xref: /illumos-gate/usr/src/uts/common/inet/tcp/tcp.c (revision cb6207858a9fcc2feaee22e626912fba281ac969)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #pragma ident	"%Z%%M%	%I%	%E% SMI"
29 const char tcp_version[] = "%Z%%M%	%I%	%E% SMI";
30 
31 
32 #include <sys/types.h>
33 #include <sys/stream.h>
34 #include <sys/strsun.h>
35 #include <sys/strsubr.h>
36 #include <sys/stropts.h>
37 #include <sys/strlog.h>
38 #include <sys/strsun.h>
39 #define	_SUN_TPI_VERSION 2
40 #include <sys/tihdr.h>
41 #include <sys/timod.h>
42 #include <sys/ddi.h>
43 #include <sys/sunddi.h>
44 #include <sys/suntpi.h>
45 #include <sys/xti_inet.h>
46 #include <sys/cmn_err.h>
47 #include <sys/debug.h>
48 #include <sys/sdt.h>
49 #include <sys/vtrace.h>
50 #include <sys/kmem.h>
51 #include <sys/ethernet.h>
52 #include <sys/cpuvar.h>
53 #include <sys/dlpi.h>
54 #include <sys/multidata.h>
55 #include <sys/multidata_impl.h>
56 #include <sys/pattr.h>
57 #include <sys/policy.h>
58 #include <sys/priv.h>
59 #include <sys/zone.h>
60 #include <sys/sunldi.h>
61 
62 #include <sys/errno.h>
63 #include <sys/signal.h>
64 #include <sys/socket.h>
65 #include <sys/sockio.h>
66 #include <sys/isa_defs.h>
67 #include <sys/md5.h>
68 #include <sys/random.h>
69 #include <netinet/in.h>
70 #include <netinet/tcp.h>
71 #include <netinet/ip6.h>
72 #include <netinet/icmp6.h>
73 #include <net/if.h>
74 #include <net/route.h>
75 #include <inet/ipsec_impl.h>
76 
77 #include <inet/common.h>
78 #include <inet/ip.h>
79 #include <inet/ip_impl.h>
80 #include <inet/ip6.h>
81 #include <inet/ip_ndp.h>
82 #include <inet/mi.h>
83 #include <inet/mib2.h>
84 #include <inet/nd.h>
85 #include <inet/optcom.h>
86 #include <inet/snmpcom.h>
87 #include <inet/kstatcom.h>
88 #include <inet/tcp.h>
89 #include <inet/tcp_impl.h>
90 #include <net/pfkeyv2.h>
91 #include <inet/ipsec_info.h>
92 #include <inet/ipdrop.h>
93 #include <inet/tcp_trace.h>
94 
95 #include <inet/ipclassifier.h>
96 #include <inet/ip_ire.h>
97 #include <inet/ip_ftable.h>
98 #include <inet/ip_if.h>
99 #include <inet/ipp_common.h>
100 #include <inet/ip_netinfo.h>
101 #include <sys/squeue.h>
102 #include <inet/kssl/ksslapi.h>
103 #include <sys/tsol/label.h>
104 #include <sys/tsol/tnet.h>
105 #include <sys/sdt.h>
106 #include <rpc/pmap_prot.h>
107 
108 /*
109  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
110  *
111  * (Read the detailed design doc in PSARC case directory)
112  *
113  * The entire tcp state is contained in tcp_t and conn_t structure
114  * which are allocated in tandem using ipcl_conn_create() and passing
115  * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect
116  * the references on the tcp_t. The tcp_t structure is never compressed
117  * and packets always land on the correct TCP perimeter from the time
118  * eager is created till the time tcp_t dies (as such the old mentat
119  * TCP global queue is not used for detached state and no IPSEC checking
120  * is required). The global queue is still allocated to send out resets
121  * for connection which have no listeners and IP directly calls
122  * tcp_xmit_listeners_reset() which does any policy check.
123  *
124  * Protection and Synchronisation mechanism:
125  *
126  * The tcp data structure does not use any kind of lock for protecting
127  * its state but instead uses 'squeues' for mutual exclusion from various
128  * read and write side threads. To access a tcp member, the thread should
129  * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or
130  * squeue_fill). Since the squeues allow a direct function call, caller
131  * can pass any tcp function having prototype of edesc_t as argument
132  * (different from traditional STREAMs model where packets come in only
133  * designated entry points). The list of functions that can be directly
134  * called via squeue are listed before the usual function prototype.
135  *
136  * Referencing:
137  *
138  * TCP is MT-Hot and we use a reference based scheme to make sure that the
139  * tcp structure doesn't disappear when its needed. When the application
140  * creates an outgoing connection or accepts an incoming connection, we
141  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
142  * The IP reference is just a symbolic reference since ip_tcpclose()
143  * looks at tcp structure after tcp_close_output() returns which could
144  * have dropped the last TCP reference. So as long as the connection is
145  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
146  * conn_t. The classifier puts its own reference when the connection is
147  * inserted in listen or connected hash. Anytime a thread needs to enter
148  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
149  * on write side or by doing a classify on read side and then puts a
150  * reference on the conn before doing squeue_enter/tryenter/fill. For
151  * read side, the classifier itself puts the reference under fanout lock
152  * to make sure that tcp can't disappear before it gets processed. The
153  * squeue will drop this reference automatically so the called function
154  * doesn't have to do a DEC_REF.
155  *
156  * Opening a new connection:
157  *
158  * The outgoing connection open is pretty simple. tcp_open() does the
159  * work in creating the conn/tcp structure and initializing it. The
160  * squeue assignment is done based on the CPU the application
161  * is running on. So for outbound connections, processing is always done
162  * on application CPU which might be different from the incoming CPU
163  * being interrupted by the NIC. An optimal way would be to figure out
164  * the NIC <-> CPU binding at listen time, and assign the outgoing
165  * connection to the squeue attached to the CPU that will be interrupted
166  * for incoming packets (we know the NIC based on the bind IP address).
167  * This might seem like a problem if more data is going out but the
168  * fact is that in most cases the transmit is ACK driven transmit where
169  * the outgoing data normally sits on TCP's xmit queue waiting to be
170  * transmitted.
171  *
172  * Accepting a connection:
173  *
174  * This is a more interesting case because of various races involved in
175  * establishing a eager in its own perimeter. Read the meta comment on
176  * top of tcp_conn_request(). But briefly, the squeue is picked by
177  * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU.
178  *
179  * Closing a connection:
180  *
181  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
182  * via squeue to do the close and mark the tcp as detached if the connection
183  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
184  * reference but tcp_close() drop IP's reference always. So if tcp was
185  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
186  * and 1 because it is in classifier's connected hash. This is the condition
187  * we use to determine that its OK to clean up the tcp outside of squeue
188  * when time wait expires (check the ref under fanout and conn_lock and
189  * if it is 2, remove it from fanout hash and kill it).
190  *
191  * Although close just drops the necessary references and marks the
192  * tcp_detached state, tcp_close needs to know the tcp_detached has been
193  * set (under squeue) before letting the STREAM go away (because a
194  * inbound packet might attempt to go up the STREAM while the close
195  * has happened and tcp_detached is not set). So a special lock and
196  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
197  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
198  * tcp_detached.
199  *
200  * Special provisions and fast paths:
201  *
202  * We make special provision for (AF_INET, SOCK_STREAM) sockets which
203  * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP
204  * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles
205  * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY
206  * check to send packets directly to tcp_rput_data via squeue. Everyone
207  * else comes through tcp_input() on the read side.
208  *
209  * We also make special provisions for sockfs by marking tcp_issocket
210  * whenever we have only sockfs on top of TCP. This allows us to skip
211  * putting the tcp in acceptor hash since a sockfs listener can never
212  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
213  * since eager has already been allocated and the accept now happens
214  * on acceptor STREAM. There is a big blob of comment on top of
215  * tcp_conn_request explaining the new accept. When socket is POP'd,
216  * sockfs sends us an ioctl to mark the fact and we go back to old
217  * behaviour. Once tcp_issocket is unset, its never set for the
218  * life of that connection.
219  *
220  * IPsec notes :
221  *
222  * Since a packet is always executed on the correct TCP perimeter
223  * all IPsec processing is defered to IP including checking new
224  * connections and setting IPSEC policies for new connection. The
225  * only exception is tcp_xmit_listeners_reset() which is called
226  * directly from IP and needs to policy check to see if TH_RST
227  * can be sent out.
228  *
229  * PFHooks notes :
230  *
231  * For mdt case, one meta buffer contains multiple packets. Mblks for every
232  * packet are assembled and passed to the hooks. When packets are blocked,
233  * or boundary of any packet is changed, the mdt processing is stopped, and
234  * packets of the meta buffer are send to the IP path one by one.
235  */
236 
237 extern major_t TCP6_MAJ;
238 
239 /*
240  * Values for squeue switch:
241  * 1: squeue_enter_nodrain
242  * 2: squeue_enter
243  * 3: squeue_fill
244  */
245 int tcp_squeue_close = 2;	/* Setable in /etc/system */
246 int tcp_squeue_wput = 2;
247 
248 squeue_func_t tcp_squeue_close_proc;
249 squeue_func_t tcp_squeue_wput_proc;
250 
251 /*
252  * This controls how tiny a write must be before we try to copy it
253  * into the the mblk on the tail of the transmit queue.  Not much
254  * speedup is observed for values larger than sixteen.  Zero will
255  * disable the optimisation.
256  */
257 int tcp_tx_pull_len = 16;
258 
259 /*
260  * TCP Statistics.
261  *
262  * How TCP statistics work.
263  *
264  * There are two types of statistics invoked by two macros.
265  *
266  * TCP_STAT(name) does non-atomic increment of a named stat counter. It is
267  * supposed to be used in non MT-hot paths of the code.
268  *
269  * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is
270  * supposed to be used for DEBUG purposes and may be used on a hot path.
271  *
272  * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat
273  * (use "kstat tcp" to get them).
274  *
275  * There is also additional debugging facility that marks tcp_clean_death()
276  * instances and saves them in tcp_t structure. It is triggered by
277  * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for
278  * tcp_clean_death() calls that counts the number of times each tag was hit. It
279  * is triggered by TCP_CLD_COUNTERS define.
280  *
281  * How to add new counters.
282  *
283  * 1) Add a field in the tcp_stat structure describing your counter.
284  * 2) Add a line in the template in tcp_kstat2_init() with the name
285  *    of the counter.
286  *
287  *    IMPORTANT!! - make sure that both are in sync !!
288  * 3) Use either TCP_STAT or TCP_DBGSTAT with the name.
289  *
290  * Please avoid using private counters which are not kstat-exported.
291  *
292  * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances
293  * in tcp_t structure.
294  *
295  * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags.
296  */
297 
298 #ifndef TCP_DEBUG_COUNTER
299 #ifdef DEBUG
300 #define	TCP_DEBUG_COUNTER 1
301 #else
302 #define	TCP_DEBUG_COUNTER 0
303 #endif
304 #endif
305 
306 #define	TCP_CLD_COUNTERS 0
307 
308 #define	TCP_TAG_CLEAN_DEATH 1
309 #define	TCP_MAX_CLEAN_DEATH_TAG 32
310 
311 #ifdef lint
312 static int _lint_dummy_;
313 #endif
314 
315 #if TCP_CLD_COUNTERS
316 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG];
317 #define	TCP_CLD_STAT(x) tcp_clean_death_stat[x]++
318 #elif defined(lint)
319 #define	TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0);
320 #else
321 #define	TCP_CLD_STAT(x)
322 #endif
323 
324 #if TCP_DEBUG_COUNTER
325 #define	TCP_DBGSTAT(tcps, x)	\
326 	atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1)
327 #define	TCP_G_DBGSTAT(x)	\
328 	atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1)
329 #elif defined(lint)
330 #define	TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0);
331 #define	TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0);
332 #else
333 #define	TCP_DBGSTAT(tcps, x)
334 #define	TCP_G_DBGSTAT(x)
335 #endif
336 
337 #define	TCP_G_STAT(x)	(tcp_g_statistics.x.value.ui64++)
338 
339 tcp_g_stat_t	tcp_g_statistics;
340 kstat_t		*tcp_g_kstat;
341 
342 /*
343  * Call either ip_output or ip_output_v6. This replaces putnext() calls on the
344  * tcp write side.
345  */
346 #define	CALL_IP_WPUT(connp, q, mp) {					\
347 	tcp_stack_t	*tcps;						\
348 									\
349 	tcps = connp->conn_netstack->netstack_tcp;			\
350 	ASSERT(((q)->q_flag & QREADR) == 0);				\
351 	TCP_DBGSTAT(tcps, tcp_ip_output);				\
352 	connp->conn_send(connp, (mp), (q), IP_WPUT);			\
353 }
354 
355 /* Macros for timestamp comparisons */
356 #define	TSTMP_GEQ(a, b)	((int32_t)((a)-(b)) >= 0)
357 #define	TSTMP_LT(a, b)	((int32_t)((a)-(b)) < 0)
358 
359 /*
360  * Parameters for TCP Initial Send Sequence number (ISS) generation.  When
361  * tcp_strong_iss is set to 1, which is the default, the ISS is calculated
362  * by adding three components: a time component which grows by 1 every 4096
363  * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27);
364  * a per-connection component which grows by 125000 for every new connection;
365  * and an "extra" component that grows by a random amount centered
366  * approximately on 64000.  This causes the the ISS generator to cycle every
367  * 4.89 hours if no TCP connections are made, and faster if connections are
368  * made.
369  *
370  * When tcp_strong_iss is set to 0, ISS is calculated by adding two
371  * components: a time component which grows by 250000 every second; and
372  * a per-connection component which grows by 125000 for every new connections.
373  *
374  * A third method, when tcp_strong_iss is set to 2, for generating ISS is
375  * prescribed by Steve Bellovin.  This involves adding time, the 125000 per
376  * connection, and a one-way hash (MD5) of the connection ID <sport, dport,
377  * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered
378  * password.
379  */
380 #define	ISS_INCR	250000
381 #define	ISS_NSEC_SHT	12
382 
383 static sin_t	sin_null;	/* Zero address for quick clears */
384 static sin6_t	sin6_null;	/* Zero address for quick clears */
385 
386 /*
387  * This implementation follows the 4.3BSD interpretation of the urgent
388  * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause
389  * incompatible changes in protocols like telnet and rlogin.
390  */
391 #define	TCP_OLD_URP_INTERPRETATION	1
392 
393 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
394 	(TCP_IS_DETACHED(tcp) && \
395 	    (!(tcp)->tcp_hard_binding))
396 
397 /*
398  * TCP reassembly macros.  We hide starting and ending sequence numbers in
399  * b_next and b_prev of messages on the reassembly queue.  The messages are
400  * chained using b_cont.  These macros are used in tcp_reass() so we don't
401  * have to see the ugly casts and assignments.
402  */
403 #define	TCP_REASS_SEQ(mp)		((uint32_t)(uintptr_t)((mp)->b_next))
404 #define	TCP_REASS_SET_SEQ(mp, u)	((mp)->b_next = \
405 					(mblk_t *)(uintptr_t)(u))
406 #define	TCP_REASS_END(mp)		((uint32_t)(uintptr_t)((mp)->b_prev))
407 #define	TCP_REASS_SET_END(mp, u)	((mp)->b_prev = \
408 					(mblk_t *)(uintptr_t)(u))
409 
410 /*
411  * Implementation of TCP Timers.
412  * =============================
413  *
414  * INTERFACE:
415  *
416  * There are two basic functions dealing with tcp timers:
417  *
418  *	timeout_id_t	tcp_timeout(connp, func, time)
419  * 	clock_t		tcp_timeout_cancel(connp, timeout_id)
420  *	TCP_TIMER_RESTART(tcp, intvl)
421  *
422  * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func'
423  * after 'time' ticks passed. The function called by timeout() must adhere to
424  * the same restrictions as a driver soft interrupt handler - it must not sleep
425  * or call other functions that might sleep. The value returned is the opaque
426  * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to
427  * cancel the request. The call to tcp_timeout() may fail in which case it
428  * returns zero. This is different from the timeout(9F) function which never
429  * fails.
430  *
431  * The call-back function 'func' always receives 'connp' as its single
432  * argument. It is always executed in the squeue corresponding to the tcp
433  * structure. The tcp structure is guaranteed to be present at the time the
434  * call-back is called.
435  *
436  * NOTE: The call-back function 'func' is never called if tcp is in
437  * 	the TCPS_CLOSED state.
438  *
439  * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout()
440  * request. locks acquired by the call-back routine should not be held across
441  * the call to tcp_timeout_cancel() or a deadlock may result.
442  *
443  * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request.
444  * Otherwise, it returns an integer value greater than or equal to 0. In
445  * particular, if the call-back function is already placed on the squeue, it can
446  * not be canceled.
447  *
448  * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called
449  * 	within squeue context corresponding to the tcp instance. Since the
450  *	call-back is also called via the same squeue, there are no race
451  *	conditions described in untimeout(9F) manual page since all calls are
452  *	strictly serialized.
453  *
454  *      TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout
455  *	stored in tcp_timer_tid and starts a new one using
456  *	MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back
457  *	and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid
458  *	field.
459  *
460  * NOTE: since the timeout cancellation is not guaranteed, the cancelled
461  *	call-back may still be called, so it is possible tcp_timer() will be
462  *	called several times. This should not be a problem since tcp_timer()
463  *	should always check the tcp instance state.
464  *
465  *
466  * IMPLEMENTATION:
467  *
468  * TCP timers are implemented using three-stage process. The call to
469  * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function
470  * when the timer expires. The tcp_timer_callback() arranges the call of the
471  * tcp_timer_handler() function via squeue corresponding to the tcp
472  * instance. The tcp_timer_handler() calls actual requested timeout call-back
473  * and passes tcp instance as an argument to it. Information is passed between
474  * stages using the tcp_timer_t structure which contains the connp pointer, the
475  * tcp call-back to call and the timeout id returned by the timeout(9F).
476  *
477  * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t -
478  * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo
479  * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout()
480  * returns the pointer to this mblk.
481  *
482  * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It
483  * looks like a normal mblk without actual dblk attached to it.
484  *
485  * To optimize performance each tcp instance holds a small cache of timer
486  * mblocks. In the current implementation it caches up to two timer mblocks per
487  * tcp instance. The cache is preserved over tcp frees and is only freed when
488  * the whole tcp structure is destroyed by its kmem destructor. Since all tcp
489  * timer processing happens on a corresponding squeue, the cache manipulation
490  * does not require any locks. Experiments show that majority of timer mblocks
491  * allocations are satisfied from the tcp cache and do not involve kmem calls.
492  *
493  * The tcp_timeout() places a refhold on the connp instance which guarantees
494  * that it will be present at the time the call-back function fires. The
495  * tcp_timer_handler() drops the reference after calling the call-back, so the
496  * call-back function does not need to manipulate the references explicitly.
497  */
498 
499 typedef struct tcp_timer_s {
500 	conn_t	*connp;
501 	void 	(*tcpt_proc)(void *);
502 	timeout_id_t   tcpt_tid;
503 } tcp_timer_t;
504 
505 static kmem_cache_t *tcp_timercache;
506 kmem_cache_t	*tcp_sack_info_cache;
507 kmem_cache_t	*tcp_iphc_cache;
508 
509 /*
510  * For scalability, we must not run a timer for every TCP connection
511  * in TIME_WAIT state.  To see why, consider (for time wait interval of
512  * 4 minutes):
513  *	1000 connections/sec * 240 seconds/time wait = 240,000 active conn's
514  *
515  * This list is ordered by time, so you need only delete from the head
516  * until you get to entries which aren't old enough to delete yet.
517  * The list consists of only the detached TIME_WAIT connections.
518  *
519  * Note that the timer (tcp_time_wait_expire) is started when the tcp_t
520  * becomes detached TIME_WAIT (either by changing the state and already
521  * being detached or the other way around). This means that the TIME_WAIT
522  * state can be extended (up to doubled) if the connection doesn't become
523  * detached for a long time.
524  *
525  * The list manipulations (including tcp_time_wait_next/prev)
526  * are protected by the tcp_time_wait_lock. The content of the
527  * detached TIME_WAIT connections is protected by the normal perimeters.
528  *
529  * This list is per squeue and squeues are shared across the tcp_stack_t's.
530  * Things on tcp_time_wait_head remain associated with the tcp_stack_t
531  * and conn_netstack.
532  * The tcp_t's that are added to tcp_free_list are disassociated and
533  * have NULL tcp_tcps and conn_netstack pointers.
534  */
535 typedef struct tcp_squeue_priv_s {
536 	kmutex_t	tcp_time_wait_lock;
537 	timeout_id_t	tcp_time_wait_tid;
538 	tcp_t		*tcp_time_wait_head;
539 	tcp_t		*tcp_time_wait_tail;
540 	tcp_t		*tcp_free_list;
541 	uint_t		tcp_free_list_cnt;
542 } tcp_squeue_priv_t;
543 
544 /*
545  * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs.
546  * Running it every 5 seconds seems to give the best results.
547  */
548 #define	TCP_TIME_WAIT_DELAY drv_usectohz(5000000)
549 
550 /*
551  * To prevent memory hog, limit the number of entries in tcp_free_list
552  * to 1% of available memory / number of cpus
553  */
554 uint_t tcp_free_list_max_cnt = 0;
555 
556 #define	TCP_XMIT_LOWATER	4096
557 #define	TCP_XMIT_HIWATER	49152
558 #define	TCP_RECV_LOWATER	2048
559 #define	TCP_RECV_HIWATER	49152
560 
561 /*
562  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
563  */
564 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
565 
566 #define	TIDUSZ	4096	/* transport interface data unit size */
567 
568 /*
569  * Bind hash list size and has function.  It has to be a power of 2 for
570  * hashing.
571  */
572 #define	TCP_BIND_FANOUT_SIZE	512
573 #define	TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1))
574 /*
575  * Size of listen and acceptor hash list.  It has to be a power of 2 for
576  * hashing.
577  */
578 #define	TCP_FANOUT_SIZE		256
579 
580 #ifdef	_ILP32
581 #define	TCP_ACCEPTOR_HASH(accid)					\
582 		(((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1))
583 #else
584 #define	TCP_ACCEPTOR_HASH(accid)					\
585 		((uint_t)(accid) & (TCP_FANOUT_SIZE - 1))
586 #endif	/* _ILP32 */
587 
588 #define	IP_ADDR_CACHE_SIZE	2048
589 #define	IP_ADDR_CACHE_HASH(faddr)					\
590 	(ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1))
591 
592 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */
593 #define	TCP_HSP_HASH_SIZE 256
594 
595 #define	TCP_HSP_HASH(addr)					\
596 	(((addr>>24) ^ (addr >>16) ^			\
597 	    (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE)
598 
599 /*
600  * TCP options struct returned from tcp_parse_options.
601  */
602 typedef struct tcp_opt_s {
603 	uint32_t	tcp_opt_mss;
604 	uint32_t	tcp_opt_wscale;
605 	uint32_t	tcp_opt_ts_val;
606 	uint32_t	tcp_opt_ts_ecr;
607 	tcp_t		*tcp;
608 } tcp_opt_t;
609 
610 /*
611  * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
612  */
613 
614 #ifdef _BIG_ENDIAN
615 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
616 	(TCPOPT_TSTAMP << 8) | 10)
617 #else
618 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
619 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
620 #endif
621 
622 /*
623  * Flags returned from tcp_parse_options.
624  */
625 #define	TCP_OPT_MSS_PRESENT	1
626 #define	TCP_OPT_WSCALE_PRESENT	2
627 #define	TCP_OPT_TSTAMP_PRESENT	4
628 #define	TCP_OPT_SACK_OK_PRESENT	8
629 #define	TCP_OPT_SACK_PRESENT	16
630 
631 /* TCP option length */
632 #define	TCPOPT_NOP_LEN		1
633 #define	TCPOPT_MAXSEG_LEN	4
634 #define	TCPOPT_WS_LEN		3
635 #define	TCPOPT_REAL_WS_LEN	(TCPOPT_WS_LEN+1)
636 #define	TCPOPT_TSTAMP_LEN	10
637 #define	TCPOPT_REAL_TS_LEN	(TCPOPT_TSTAMP_LEN+2)
638 #define	TCPOPT_SACK_OK_LEN	2
639 #define	TCPOPT_REAL_SACK_OK_LEN	(TCPOPT_SACK_OK_LEN+2)
640 #define	TCPOPT_REAL_SACK_LEN	4
641 #define	TCPOPT_MAX_SACK_LEN	36
642 #define	TCPOPT_HEADER_LEN	2
643 
644 /* TCP cwnd burst factor. */
645 #define	TCP_CWND_INFINITE	65535
646 #define	TCP_CWND_SS		3
647 #define	TCP_CWND_NORMAL		5
648 
649 /* Maximum TCP initial cwin (start/restart). */
650 #define	TCP_MAX_INIT_CWND	8
651 
652 /*
653  * Initialize cwnd according to RFC 3390.  def_max_init_cwnd is
654  * either tcp_slow_start_initial or tcp_slow_start_after idle
655  * depending on the caller.  If the upper layer has not used the
656  * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd
657  * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd.
658  * If the upper layer has changed set the tcp_init_cwnd, just use
659  * it to calculate the tcp_cwnd.
660  */
661 #define	SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd)			\
662 {									\
663 	if ((tcp)->tcp_init_cwnd == 0) {				\
664 		(tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss),	\
665 		    MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \
666 	} else {							\
667 		(tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss);		\
668 	}								\
669 	tcp->tcp_cwnd_cnt = 0;						\
670 }
671 
672 /* TCP Timer control structure */
673 typedef struct tcpt_s {
674 	pfv_t	tcpt_pfv;	/* The routine we are to call */
675 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
676 } tcpt_t;
677 
678 /* Host Specific Parameter structure */
679 typedef struct tcp_hsp {
680 	struct tcp_hsp	*tcp_hsp_next;
681 	in6_addr_t	tcp_hsp_addr_v6;
682 	in6_addr_t	tcp_hsp_subnet_v6;
683 	uint_t		tcp_hsp_vers;	/* IPV4_VERSION | IPV6_VERSION */
684 	int32_t		tcp_hsp_sendspace;
685 	int32_t		tcp_hsp_recvspace;
686 	int32_t		tcp_hsp_tstamp;
687 } tcp_hsp_t;
688 #define	tcp_hsp_addr	V4_PART_OF_V6(tcp_hsp_addr_v6)
689 #define	tcp_hsp_subnet	V4_PART_OF_V6(tcp_hsp_subnet_v6)
690 
691 /*
692  * Functions called directly via squeue having a prototype of edesc_t.
693  */
694 void		tcp_conn_request(void *arg, mblk_t *mp, void *arg2);
695 static void	tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2);
696 void		tcp_accept_finish(void *arg, mblk_t *mp, void *arg2);
697 static void	tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2);
698 static void	tcp_wput_proto(void *arg, mblk_t *mp, void *arg2);
699 void 		tcp_input(void *arg, mblk_t *mp, void *arg2);
700 void		tcp_rput_data(void *arg, mblk_t *mp, void *arg2);
701 static void	tcp_close_output(void *arg, mblk_t *mp, void *arg2);
702 void		tcp_output(void *arg, mblk_t *mp, void *arg2);
703 static void	tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2);
704 static void	tcp_timer_handler(void *arg, mblk_t *mp, void *arg2);
705 static void	tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2);
706 
707 
708 /* Prototype for TCP functions */
709 static void	tcp_random_init(void);
710 int		tcp_random(void);
711 static void	tcp_accept(tcp_t *tcp, mblk_t *mp);
712 static void	tcp_accept_swap(tcp_t *listener, tcp_t *acceptor,
713 		    tcp_t *eager);
714 static int	tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp);
715 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
716     int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only,
717     boolean_t user_specified);
718 static void	tcp_closei_local(tcp_t *tcp);
719 static void	tcp_close_detached(tcp_t *tcp);
720 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph,
721 			mblk_t *idmp, mblk_t **defermp);
722 static void	tcp_connect(tcp_t *tcp, mblk_t *mp);
723 static void	tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp,
724 		    in_port_t dstport, uint_t srcid);
725 static void	tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
726 		    in_port_t dstport, uint32_t flowinfo, uint_t srcid,
727 		    uint32_t scope_id);
728 static int	tcp_clean_death(tcp_t *tcp, int err, uint8_t tag);
729 static void	tcp_def_q_set(tcp_t *tcp, mblk_t *mp);
730 static void	tcp_disconnect(tcp_t *tcp, mblk_t *mp);
731 static char	*tcp_display(tcp_t *tcp, char *, char);
732 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum);
733 static void	tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only);
734 static void	tcp_eager_unlink(tcp_t *tcp);
735 static void	tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr,
736 		    int unixerr);
737 static void	tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
738 		    int tlierr, int unixerr);
739 static int	tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
740 		    cred_t *cr);
741 static int	tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
742 		    char *value, caddr_t cp, cred_t *cr);
743 static int	tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
744 		    char *value, caddr_t cp, cred_t *cr);
745 static int	tcp_tpistate(tcp_t *tcp);
746 static void	tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp,
747     int caller_holds_lock);
748 static void	tcp_bind_hash_remove(tcp_t *tcp);
749 static tcp_t	*tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *);
750 void		tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp);
751 static void	tcp_acceptor_hash_remove(tcp_t *tcp);
752 static void	tcp_capability_req(tcp_t *tcp, mblk_t *mp);
753 static void	tcp_info_req(tcp_t *tcp, mblk_t *mp);
754 static void	tcp_addr_req(tcp_t *tcp, mblk_t *mp);
755 static void	tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp);
756 void		tcp_g_q_setup(tcp_stack_t *);
757 void		tcp_g_q_create(tcp_stack_t *);
758 void		tcp_g_q_destroy(tcp_stack_t *);
759 static int	tcp_header_init_ipv4(tcp_t *tcp);
760 static int	tcp_header_init_ipv6(tcp_t *tcp);
761 int		tcp_init(tcp_t *tcp, queue_t *q);
762 static int	tcp_init_values(tcp_t *tcp);
763 static mblk_t	*tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic);
764 static mblk_t	*tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim,
765 		    t_scalar_t addr_length);
766 static void	tcp_ip_ire_mark_advice(tcp_t *tcp);
767 static void	tcp_ip_notify(tcp_t *tcp);
768 static mblk_t	*tcp_ire_mp(mblk_t *mp);
769 static void	tcp_iss_init(tcp_t *tcp);
770 static void	tcp_keepalive_killer(void *arg);
771 static int	tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt);
772 static void	tcp_mss_set(tcp_t *tcp, uint32_t size);
773 static int	tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp,
774 		    int *do_disconnectp, int *t_errorp, int *sys_errorp);
775 static boolean_t tcp_allow_connopt_set(int level, int name);
776 int		tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr);
777 int		tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr);
778 int		tcp_opt_set(queue_t *q, uint_t optset_context, int level,
779 		    int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
780 		    uchar_t *outvalp, void *thisdg_attrs, cred_t *cr,
781 		    mblk_t *mblk);
782 static void	tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha);
783 static int	tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly,
784 		    uchar_t *ptr, uint_t len);
785 static int	tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
786 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt,
787     tcp_stack_t *);
788 static int	tcp_param_set(queue_t *q, mblk_t *mp, char *value,
789 		    caddr_t cp, cred_t *cr);
790 static int	tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value,
791 		    caddr_t cp, cred_t *cr);
792 static void	tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *);
793 static int	tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value,
794 		    caddr_t cp, cred_t *cr);
795 static void	tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt);
796 static mblk_t	*tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start);
797 static void	tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp);
798 static void	tcp_reinit(tcp_t *tcp);
799 static void	tcp_reinit_values(tcp_t *tcp);
800 static void	tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval,
801 		    tcp_t *thisstream, cred_t *cr);
802 
803 static uint_t	tcp_rcv_drain(queue_t *q, tcp_t *tcp);
804 static void	tcp_sack_rxmit(tcp_t *tcp, uint_t *flags);
805 static boolean_t tcp_send_rst_chk(tcp_stack_t *);
806 static void	tcp_ss_rexmit(tcp_t *tcp);
807 static mblk_t	*tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp);
808 static void	tcp_process_options(tcp_t *, tcph_t *);
809 static void	tcp_rput_common(tcp_t *tcp, mblk_t *mp);
810 static void	tcp_rsrv(queue_t *q);
811 static int	tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd);
812 static int	tcp_snmp_state(tcp_t *tcp);
813 static int	tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp,
814 		    cred_t *cr);
815 static int	tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
816 		    cred_t *cr);
817 static int	tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
818 		    cred_t *cr);
819 static int	tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
820 		    cred_t *cr);
821 static int	tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
822 		    cred_t *cr);
823 static int	tcp_host_param_set(queue_t *q, mblk_t *mp, char *value,
824 		    caddr_t cp, cred_t *cr);
825 static int	tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value,
826 		    caddr_t cp, cred_t *cr);
827 static int	tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp,
828 		    cred_t *cr);
829 static void	tcp_timer(void *arg);
830 static void	tcp_timer_callback(void *);
831 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp,
832     boolean_t random);
833 static in_port_t tcp_get_next_priv_port(const tcp_t *);
834 static void	tcp_wput_sock(queue_t *q, mblk_t *mp);
835 void		tcp_wput_accept(queue_t *q, mblk_t *mp);
836 static void	tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent);
837 static void	tcp_wput_flush(tcp_t *tcp, mblk_t *mp);
838 static void	tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp);
839 static int	tcp_send(queue_t *q, tcp_t *tcp, const int mss,
840 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
841 		    const int num_sack_blk, int *usable, uint_t *snxt,
842 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
843 		    const int mdt_thres);
844 static int	tcp_multisend(queue_t *q, tcp_t *tcp, const int mss,
845 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
846 		    const int num_sack_blk, int *usable, uint_t *snxt,
847 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
848 		    const int mdt_thres);
849 static void	tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now,
850 		    int num_sack_blk);
851 static void	tcp_wsrv(queue_t *q);
852 static int	tcp_xmit_end(tcp_t *tcp);
853 static void	tcp_ack_timer(void *arg);
854 static mblk_t	*tcp_ack_mp(tcp_t *tcp);
855 static void	tcp_xmit_early_reset(char *str, mblk_t *mp,
856 		    uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len,
857 		    zoneid_t zoneid, tcp_stack_t *);
858 static void	tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq,
859 		    uint32_t ack, int ctl);
860 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *);
861 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr, tcp_stack_t *);
862 static int	setmaxps(queue_t *q, int maxpsz);
863 static void	tcp_set_rto(tcp_t *, time_t);
864 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *,
865 		    boolean_t, boolean_t);
866 static void	tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp,
867 		    boolean_t ipsec_mctl);
868 static mblk_t	*tcp_setsockopt_mp(int level, int cmd,
869 		    char *opt, int optlen);
870 static int	tcp_build_hdrs(queue_t *, tcp_t *);
871 static void	tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp,
872 		    uint32_t seg_seq, uint32_t seg_ack, int seg_len,
873 		    tcph_t *tcph);
874 boolean_t	tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp);
875 boolean_t	tcp_reserved_port_add(int, in_port_t *, in_port_t *);
876 boolean_t	tcp_reserved_port_del(in_port_t, in_port_t);
877 boolean_t	tcp_reserved_port_check(in_port_t, tcp_stack_t *);
878 static tcp_t	*tcp_alloc_temp_tcp(in_port_t, tcp_stack_t *);
879 static int	tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *);
880 static mblk_t	*tcp_mdt_info_mp(mblk_t *);
881 static void	tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t);
882 static int	tcp_mdt_add_attrs(multidata_t *, const mblk_t *,
883 		    const boolean_t, const uint32_t, const uint32_t,
884 		    const uint32_t, const uint32_t, tcp_stack_t *);
885 static void	tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *,
886 		    const uint_t, const uint_t, boolean_t *);
887 static mblk_t	*tcp_lso_info_mp(mblk_t *);
888 static void	tcp_lso_update(tcp_t *, ill_lso_capab_t *);
889 static void	tcp_send_data(tcp_t *, queue_t *, mblk_t *);
890 extern mblk_t	*tcp_timermp_alloc(int);
891 extern void	tcp_timermp_free(tcp_t *);
892 static void	tcp_timer_free(tcp_t *tcp, mblk_t *mp);
893 static void	tcp_stop_lingering(tcp_t *tcp);
894 static void	tcp_close_linger_timeout(void *arg);
895 static void	*tcp_stack_init(netstackid_t stackid, netstack_t *ns);
896 static void	tcp_stack_shutdown(netstackid_t stackid, void *arg);
897 static void	tcp_stack_fini(netstackid_t stackid, void *arg);
898 static void	*tcp_g_kstat_init(tcp_g_stat_t *);
899 static void	tcp_g_kstat_fini(kstat_t *);
900 static void	*tcp_kstat_init(netstackid_t, tcp_stack_t *);
901 static void	tcp_kstat_fini(netstackid_t, kstat_t *);
902 static void	*tcp_kstat2_init(netstackid_t, tcp_stat_t *);
903 static void	tcp_kstat2_fini(netstackid_t, kstat_t *);
904 static int	tcp_kstat_update(kstat_t *kp, int rw);
905 void		tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp);
906 static int	tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
907 			tcph_t *tcph, uint_t ipvers, mblk_t *idmp);
908 static int	tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
909 			tcph_t *tcph, mblk_t *idmp);
910 static squeue_func_t tcp_squeue_switch(int);
911 
912 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *);
913 static int	tcp_close(queue_t *, int);
914 static int	tcpclose_accept(queue_t *);
915 static int	tcp_modclose(queue_t *);
916 static void	tcp_wput_mod(queue_t *, mblk_t *);
917 
918 static void	tcp_squeue_add(squeue_t *);
919 static boolean_t tcp_zcopy_check(tcp_t *);
920 static void	tcp_zcopy_notify(tcp_t *);
921 static mblk_t	*tcp_zcopy_disable(tcp_t *, mblk_t *);
922 static mblk_t	*tcp_zcopy_backoff(tcp_t *, mblk_t *, int);
923 static void	tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t);
924 
925 extern void	tcp_kssl_input(tcp_t *, mblk_t *);
926 
927 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2);
928 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2);
929 
930 /*
931  * Routines related to the TCP_IOC_ABORT_CONN ioctl command.
932  *
933  * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting
934  * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure
935  * (defined in tcp.h) needs to be filled in and passed into the kernel
936  * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t
937  * structure contains the four-tuple of a TCP connection and a range of TCP
938  * states (specified by ac_start and ac_end). The use of wildcard addresses
939  * and ports is allowed. Connections with a matching four tuple and a state
940  * within the specified range will be aborted. The valid states for the
941  * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT,
942  * inclusive.
943  *
944  * An application which has its connection aborted by this ioctl will receive
945  * an error that is dependent on the connection state at the time of the abort.
946  * If the connection state is < TCPS_TIME_WAIT, an application should behave as
947  * though a RST packet has been received.  If the connection state is equal to
948  * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel
949  * and all resources associated with the connection will be freed.
950  */
951 static mblk_t	*tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *);
952 static void	tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *);
953 static void	tcp_ioctl_abort_handler(tcp_t *, mblk_t *);
954 static int	tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps);
955 static void	tcp_ioctl_abort_conn(queue_t *, mblk_t *);
956 static int	tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *,
957     boolean_t, tcp_stack_t *);
958 
959 static struct module_info tcp_rinfo =  {
960 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
961 };
962 
963 static struct module_info tcp_winfo =  {
964 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
965 };
966 
967 /*
968  * Entry points for TCP as a module. It only allows SNMP requests
969  * to pass through.
970  */
971 struct qinit tcp_mod_rinit = {
972 	(pfi_t)putnext, NULL, tcp_open, ip_snmpmod_close, NULL, &tcp_rinfo,
973 };
974 
975 struct qinit tcp_mod_winit = {
976 	(pfi_t)ip_snmpmod_wput, NULL, tcp_open, ip_snmpmod_close, NULL,
977 	&tcp_rinfo
978 };
979 
980 /*
981  * Entry points for TCP as a device. The normal case which supports
982  * the TCP functionality.
983  */
984 struct qinit tcp_rinit = {
985 	NULL, (pfi_t)tcp_rsrv, tcp_open, tcp_close, NULL, &tcp_rinfo
986 };
987 
988 struct qinit tcp_winit = {
989 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
990 };
991 
992 /* Initial entry point for TCP in socket mode. */
993 struct qinit tcp_sock_winit = {
994 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
995 };
996 
997 /*
998  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
999  * an accept. Avoid allocating data structures since eager has already
1000  * been created.
1001  */
1002 struct qinit tcp_acceptor_rinit = {
1003 	NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo
1004 };
1005 
1006 struct qinit tcp_acceptor_winit = {
1007 	(pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo
1008 };
1009 
1010 /*
1011  * Entry points for TCP loopback (read side only)
1012  */
1013 struct qinit tcp_loopback_rinit = {
1014 	(pfi_t)0, (pfi_t)tcp_rsrv, tcp_open, tcp_close, (pfi_t)0,
1015 	&tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD
1016 };
1017 
1018 struct streamtab tcpinfo = {
1019 	&tcp_rinit, &tcp_winit
1020 };
1021 
1022 /*
1023  * Have to ensure that tcp_g_q_close is not done by an
1024  * interrupt thread.
1025  */
1026 static taskq_t *tcp_taskq;
1027 
1028 /*
1029  * TCP has a private interface for other kernel modules to reserve a
1030  * port range for them to use.  Once reserved, TCP will not use any ports
1031  * in the range.  This interface relies on the TCP_EXCLBIND feature.  If
1032  * the semantics of TCP_EXCLBIND is changed, implementation of this interface
1033  * has to be verified.
1034  *
1035  * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges.  Each port
1036  * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports.  A port
1037  * range is [port a, port b] inclusive.  And each port range is between
1038  * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive.
1039  *
1040  * Note that the default anonymous port range starts from 32768.  There is
1041  * no port "collision" between that and the reserved port range.  If there
1042  * is port collision (because the default smallest anonymous port is lowered
1043  * or some apps specifically bind to ports in the reserved port range), the
1044  * system may not be able to reserve a port range even there are enough
1045  * unbound ports as a reserved port range contains consecutive ports .
1046  */
1047 #define	TCP_RESERVED_PORTS_ARRAY_MAX_SIZE	5
1048 #define	TCP_RESERVED_PORTS_RANGE_MAX		1000
1049 #define	TCP_SMALLEST_RESERVED_PORT		10240
1050 #define	TCP_LARGEST_RESERVED_PORT		20480
1051 
1052 /* Structure to represent those reserved port ranges. */
1053 typedef struct tcp_rport_s {
1054 	in_port_t	lo_port;
1055 	in_port_t	hi_port;
1056 	tcp_t		**temp_tcp_array;
1057 } tcp_rport_t;
1058 
1059 /* Setable only in /etc/system. Move to ndd? */
1060 boolean_t tcp_icmp_source_quench = B_FALSE;
1061 
1062 /*
1063  * Following assumes TPI alignment requirements stay along 32 bit
1064  * boundaries
1065  */
1066 #define	ROUNDUP32(x) \
1067 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
1068 
1069 /* Template for response to info request. */
1070 static struct T_info_ack tcp_g_t_info_ack = {
1071 	T_INFO_ACK,		/* PRIM_type */
1072 	0,			/* TSDU_size */
1073 	T_INFINITE,		/* ETSDU_size */
1074 	T_INVALID,		/* CDATA_size */
1075 	T_INVALID,		/* DDATA_size */
1076 	sizeof (sin_t),		/* ADDR_size */
1077 	0,			/* OPT_size - not initialized here */
1078 	TIDUSZ,			/* TIDU_size */
1079 	T_COTS_ORD,		/* SERV_type */
1080 	TCPS_IDLE,		/* CURRENT_state */
1081 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1082 };
1083 
1084 static struct T_info_ack tcp_g_t_info_ack_v6 = {
1085 	T_INFO_ACK,		/* PRIM_type */
1086 	0,			/* TSDU_size */
1087 	T_INFINITE,		/* ETSDU_size */
1088 	T_INVALID,		/* CDATA_size */
1089 	T_INVALID,		/* DDATA_size */
1090 	sizeof (sin6_t),	/* ADDR_size */
1091 	0,			/* OPT_size - not initialized here */
1092 	TIDUSZ,		/* TIDU_size */
1093 	T_COTS_ORD,		/* SERV_type */
1094 	TCPS_IDLE,		/* CURRENT_state */
1095 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1096 };
1097 
1098 #define	MS	1L
1099 #define	SECONDS	(1000 * MS)
1100 #define	MINUTES	(60 * SECONDS)
1101 #define	HOURS	(60 * MINUTES)
1102 #define	DAYS	(24 * HOURS)
1103 
1104 #define	PARAM_MAX (~(uint32_t)0)
1105 
1106 /* Max size IP datagram is 64k - 1 */
1107 #define	TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t)))
1108 #define	TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t)))
1109 /* Max of the above */
1110 #define	TCP_MSS_MAX	TCP_MSS_MAX_IPV4
1111 
1112 /* Largest TCP port number */
1113 #define	TCP_MAX_PORT	(64 * 1024 - 1)
1114 
1115 /*
1116  * tcp_wroff_xtra is the extra space in front of TCP/IP header for link
1117  * layer header.  It has to be a multiple of 4.
1118  */
1119 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" };
1120 #define	tcps_wroff_xtra	tcps_wroff_xtra_param->tcp_param_val
1121 
1122 /*
1123  * All of these are alterable, within the min/max values given, at run time.
1124  * Note that the default value of "tcp_time_wait_interval" is four minutes,
1125  * per the TCP spec.
1126  */
1127 /* BEGIN CSTYLED */
1128 static tcpparam_t	lcl_tcp_param_arr[] = {
1129  /*min		max		value		name */
1130  { 1*SECONDS,	10*MINUTES,	1*MINUTES,	"tcp_time_wait_interval"},
1131  { 1,		PARAM_MAX,	128,		"tcp_conn_req_max_q" },
1132  { 0,		PARAM_MAX,	1024,		"tcp_conn_req_max_q0" },
1133  { 1,		1024,		1,		"tcp_conn_req_min" },
1134  { 0*MS,	20*SECONDS,	0*MS,		"tcp_conn_grace_period" },
1135  { 128,		(1<<30),	1024*1024,	"tcp_cwnd_max" },
1136  { 0,		10,		0,		"tcp_debug" },
1137  { 1024,	(32*1024),	1024,		"tcp_smallest_nonpriv_port"},
1138  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_cinterval"},
1139  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_linterval"},
1140  { 500*MS,	PARAM_MAX,	8*MINUTES,	"tcp_ip_abort_interval"},
1141  { 1*SECONDS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_cinterval"},
1142  { 500*MS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_interval"},
1143  { 1,		255,		64,		"tcp_ipv4_ttl"},
1144  { 10*SECONDS,	10*DAYS,	2*HOURS,	"tcp_keepalive_interval"},
1145  { 0,		100,		10,		"tcp_maxpsz_multiplier" },
1146  { 1,		TCP_MSS_MAX_IPV4, 536,		"tcp_mss_def_ipv4"},
1147  { 1,		TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"},
1148  { 1,		TCP_MSS_MAX,	108,		"tcp_mss_min"},
1149  { 1,		(64*1024)-1,	(4*1024)-1,	"tcp_naglim_def"},
1150  { 1*MS,	20*SECONDS,	3*SECONDS,	"tcp_rexmit_interval_initial"},
1151  { 1*MS,	2*HOURS,	60*SECONDS,	"tcp_rexmit_interval_max"},
1152  { 1*MS,	2*HOURS,	400*MS,		"tcp_rexmit_interval_min"},
1153  { 1*MS,	1*MINUTES,	100*MS,		"tcp_deferred_ack_interval" },
1154  { 0,		16,		0,		"tcp_snd_lowat_fraction" },
1155  { 0,		128000,		0,		"tcp_sth_rcv_hiwat" },
1156  { 0,		128000,		0,		"tcp_sth_rcv_lowat" },
1157  { 1,		10000,		3,		"tcp_dupack_fast_retransmit" },
1158  { 0,		1,		0,		"tcp_ignore_path_mtu" },
1159  { 1024,	TCP_MAX_PORT,	32*1024,	"tcp_smallest_anon_port"},
1160  { 1024,	TCP_MAX_PORT,	TCP_MAX_PORT,	"tcp_largest_anon_port"},
1161  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"},
1162  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"},
1163  { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"},
1164  { 1,		65536,		4,		"tcp_recv_hiwat_minmss"},
1165  { 1*SECONDS,	PARAM_MAX,	675*SECONDS,	"tcp_fin_wait_2_flush_interval"},
1166  { 0,		TCP_MSS_MAX,	64,		"tcp_co_min"},
1167  { 8192,	(1<<30),	1024*1024,	"tcp_max_buf"},
1168 /*
1169  * Question:  What default value should I set for tcp_strong_iss?
1170  */
1171  { 0,		2,		1,		"tcp_strong_iss"},
1172  { 0,		65536,		20,		"tcp_rtt_updates"},
1173  { 0,		1,		1,		"tcp_wscale_always"},
1174  { 0,		1,		0,		"tcp_tstamp_always"},
1175  { 0,		1,		1,		"tcp_tstamp_if_wscale"},
1176  { 0*MS,	2*HOURS,	0*MS,		"tcp_rexmit_interval_extra"},
1177  { 0,		16,		2,		"tcp_deferred_acks_max"},
1178  { 1,		16384,		4,		"tcp_slow_start_after_idle"},
1179  { 1,		4,		4,		"tcp_slow_start_initial"},
1180  { 10*MS,	50*MS,		20*MS,		"tcp_co_timer_interval"},
1181  { 0,		2,		2,		"tcp_sack_permitted"},
1182  { 0,		1,		0,		"tcp_trace"},
1183  { 0,		1,		1,		"tcp_compression_enabled"},
1184  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS,	"tcp_ipv6_hoplimit"},
1185  { 1,		TCP_MSS_MAX_IPV6, 1220,		"tcp_mss_def_ipv6"},
1186  { 1,		TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"},
1187  { 0,		1,		0,		"tcp_rev_src_routes"},
1188  { 10*MS,	500*MS,		50*MS,		"tcp_local_dack_interval"},
1189  { 100*MS,	60*SECONDS,	1*SECONDS,	"tcp_ndd_get_info_interval"},
1190  { 0,		16,		8,		"tcp_local_dacks_max"},
1191  { 0,		2,		1,		"tcp_ecn_permitted"},
1192  { 0,		1,		1,		"tcp_rst_sent_rate_enabled"},
1193  { 0,		PARAM_MAX,	40,		"tcp_rst_sent_rate"},
1194  { 0,		100*MS,		50*MS,		"tcp_push_timer_interval"},
1195  { 0,		1,		0,		"tcp_use_smss_as_mss_opt"},
1196  { 0,		PARAM_MAX,	8*MINUTES,	"tcp_keepalive_abort_interval"},
1197 };
1198 /* END CSTYLED */
1199 
1200 /*
1201  * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of
1202  * each header fragment in the header buffer.  Each parameter value has
1203  * to be a multiple of 4 (32-bit aligned).
1204  */
1205 static tcpparam_t lcl_tcp_mdt_head_param =
1206 	{ 32, 256, 32, "tcp_mdt_hdr_head_min" };
1207 static tcpparam_t lcl_tcp_mdt_tail_param =
1208 	{ 0,  256, 32, "tcp_mdt_hdr_tail_min" };
1209 #define	tcps_mdt_hdr_head_min	tcps_mdt_head_param->tcp_param_val
1210 #define	tcps_mdt_hdr_tail_min	tcps_mdt_tail_param->tcp_param_val
1211 
1212 /*
1213  * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out
1214  * the maximum number of payload buffers associated per Multidata.
1215  */
1216 static tcpparam_t lcl_tcp_mdt_max_pbufs_param =
1217 	{ 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" };
1218 #define	tcps_mdt_max_pbufs	tcps_mdt_max_pbufs_param->tcp_param_val
1219 
1220 /* Round up the value to the nearest mss. */
1221 #define	MSS_ROUNDUP(value, mss)		((((value) - 1) / (mss) + 1) * (mss))
1222 
1223 /*
1224  * Set ECN capable transport (ECT) code point in IP header.
1225  *
1226  * Note that there are 2 ECT code points '01' and '10', which are called
1227  * ECT(1) and ECT(0) respectively.  Here we follow the original ECT code
1228  * point ECT(0) for TCP as described in RFC 2481.
1229  */
1230 #define	SET_ECT(tcp, iph) \
1231 	if ((tcp)->tcp_ipversion == IPV4_VERSION) { \
1232 		/* We need to clear the code point first. */ \
1233 		((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \
1234 		((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \
1235 	} else { \
1236 		((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \
1237 		((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \
1238 	}
1239 
1240 /*
1241  * The format argument to pass to tcp_display().
1242  * DISP_PORT_ONLY means that the returned string has only port info.
1243  * DISP_ADDR_AND_PORT means that the returned string also contains the
1244  * remote and local IP address.
1245  */
1246 #define	DISP_PORT_ONLY		1
1247 #define	DISP_ADDR_AND_PORT	2
1248 
1249 #define	NDD_TOO_QUICK_MSG \
1250 	"ndd get info rate too high for non-privileged users, try again " \
1251 	"later.\n"
1252 #define	NDD_OUT_OF_BUF_MSG	"<< Out of buffer >>\n"
1253 
1254 #define	IS_VMLOANED_MBLK(mp) \
1255 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
1256 
1257 
1258 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */
1259 boolean_t tcp_mdt_chain = B_TRUE;
1260 
1261 /*
1262  * MDT threshold in the form of effective send MSS multiplier; we take
1263  * the MDT path if the amount of unsent data exceeds the threshold value
1264  * (default threshold is 1*SMSS).
1265  */
1266 uint_t tcp_mdt_smss_threshold = 1;
1267 
1268 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
1269 
1270 /*
1271  * Forces all connections to obey the value of the tcps_maxpsz_multiplier
1272  * tunable settable via NDD.  Otherwise, the per-connection behavior is
1273  * determined dynamically during tcp_adapt_ire(), which is the default.
1274  */
1275 boolean_t tcp_static_maxpsz = B_FALSE;
1276 
1277 /* Setable in /etc/system */
1278 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
1279 uint32_t tcp_random_anon_port = 1;
1280 
1281 /*
1282  * To reach to an eager in Q0 which can be dropped due to an incoming
1283  * new SYN request when Q0 is full, a new doubly linked list is
1284  * introduced. This list allows to select an eager from Q0 in O(1) time.
1285  * This is needed to avoid spending too much time walking through the
1286  * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of
1287  * this new list has to be a member of Q0.
1288  * This list is headed by listener's tcp_t. When the list is empty,
1289  * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0,
1290  * of listener's tcp_t point to listener's tcp_t itself.
1291  *
1292  * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager
1293  * in the list. MAKE_UNDROPPABLE() takes the eager out of the list.
1294  * These macros do not affect the eager's membership to Q0.
1295  */
1296 
1297 
1298 #define	MAKE_DROPPABLE(listener, eager)					\
1299 	if ((eager)->tcp_eager_next_drop_q0 == NULL) {			\
1300 		(listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\
1301 		    = (eager);						\
1302 		(eager)->tcp_eager_prev_drop_q0 = (listener);		\
1303 		(eager)->tcp_eager_next_drop_q0 =			\
1304 		    (listener)->tcp_eager_next_drop_q0;			\
1305 		(listener)->tcp_eager_next_drop_q0 = (eager);		\
1306 	}
1307 
1308 #define	MAKE_UNDROPPABLE(eager)						\
1309 	if ((eager)->tcp_eager_next_drop_q0 != NULL) {			\
1310 		(eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0	\
1311 		    = (eager)->tcp_eager_prev_drop_q0;			\
1312 		(eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0	\
1313 		    = (eager)->tcp_eager_next_drop_q0;			\
1314 		(eager)->tcp_eager_prev_drop_q0 = NULL;			\
1315 		(eager)->tcp_eager_next_drop_q0 = NULL;			\
1316 	}
1317 
1318 /*
1319  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
1320  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
1321  * data, TCP will not respond with an ACK.  RFC 793 requires that
1322  * TCP responds with an ACK for such a bogus ACK.  By not following
1323  * the RFC, we prevent TCP from getting into an ACK storm if somehow
1324  * an attacker successfully spoofs an acceptable segment to our
1325  * peer; or when our peer is "confused."
1326  */
1327 uint32_t tcp_drop_ack_unsent_cnt = 10;
1328 
1329 /*
1330  * Hook functions to enable cluster networking
1331  * On non-clustered systems these vectors must always be NULL.
1332  */
1333 
1334 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family,
1335 			    uint8_t *laddrp, in_port_t lport) = NULL;
1336 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family,
1337 			    uint8_t *laddrp, in_port_t lport) = NULL;
1338 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family,
1339 			    uint8_t *laddrp, in_port_t lport,
1340 			    uint8_t *faddrp, in_port_t fport) = NULL;
1341 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family,
1342 			    uint8_t *laddrp, in_port_t lport,
1343 			    uint8_t *faddrp, in_port_t fport) = NULL;
1344 
1345 /*
1346  * The following are defined in ip.c
1347  */
1348 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family,
1349 				uint8_t *laddrp);
1350 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family,
1351 				uint8_t *laddrp, uint8_t *faddrp);
1352 
1353 #define	CL_INET_CONNECT(tcp)		{			\
1354 	if (cl_inet_connect != NULL) {				\
1355 		/*						\
1356 		 * Running in cluster mode - register active connection	\
1357 		 * information						\
1358 		 */							\
1359 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1360 			if ((tcp)->tcp_ipha->ipha_src != 0) {		\
1361 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET,\
1362 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\
1363 				    (in_port_t)(tcp)->tcp_lport,	\
1364 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\
1365 				    (in_port_t)(tcp)->tcp_fport);	\
1366 			}						\
1367 		} else {						\
1368 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1369 			    &(tcp)->tcp_ip6h->ip6_src)) {\
1370 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\
1371 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\
1372 				    (in_port_t)(tcp)->tcp_lport,	\
1373 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\
1374 				    (in_port_t)(tcp)->tcp_fport);	\
1375 			}						\
1376 		}							\
1377 	}								\
1378 }
1379 
1380 #define	CL_INET_DISCONNECT(tcp)	{				\
1381 	if (cl_inet_disconnect != NULL) {				\
1382 		/*							\
1383 		 * Running in cluster mode - deregister active		\
1384 		 * connection information				\
1385 		 */							\
1386 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1387 			if ((tcp)->tcp_ip_src != 0) {			\
1388 				(*cl_inet_disconnect)(IPPROTO_TCP,	\
1389 				    AF_INET,				\
1390 				    (uint8_t *)(&((tcp)->tcp_ip_src)),\
1391 				    (in_port_t)(tcp)->tcp_lport,	\
1392 				    (uint8_t *)				\
1393 				    (&((tcp)->tcp_ipha->ipha_dst)),\
1394 				    (in_port_t)(tcp)->tcp_fport);	\
1395 			}						\
1396 		} else {						\
1397 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1398 			    &(tcp)->tcp_ip_src_v6)) {			\
1399 				(*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\
1400 				    (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\
1401 				    (in_port_t)(tcp)->tcp_lport,	\
1402 				    (uint8_t *)				\
1403 				    (&((tcp)->tcp_ip6h->ip6_dst)),\
1404 				    (in_port_t)(tcp)->tcp_fport);	\
1405 			}						\
1406 		}							\
1407 	}								\
1408 }
1409 
1410 /*
1411  * Cluster networking hook for traversing current connection list.
1412  * This routine is used to extract the current list of live connections
1413  * which must continue to to be dispatched to this node.
1414  */
1415 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg);
1416 
1417 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *),
1418     void *arg, tcp_stack_t *tcps);
1419 
1420 /*
1421  * Figure out the value of window scale opton.  Note that the rwnd is
1422  * ASSUMED to be rounded up to the nearest MSS before the calculation.
1423  * We cannot find the scale value and then do a round up of tcp_rwnd
1424  * because the scale value may not be correct after that.
1425  *
1426  * Set the compiler flag to make this function inline.
1427  */
1428 static void
1429 tcp_set_ws_value(tcp_t *tcp)
1430 {
1431 	int i;
1432 	uint32_t rwnd = tcp->tcp_rwnd;
1433 
1434 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
1435 	    i++, rwnd >>= 1)
1436 		;
1437 	tcp->tcp_rcv_ws = i;
1438 }
1439 
1440 /*
1441  * Remove a connection from the list of detached TIME_WAIT connections.
1442  * It returns B_FALSE if it can't remove the connection from the list
1443  * as the connection has already been removed from the list due to an
1444  * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE.
1445  */
1446 static boolean_t
1447 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait)
1448 {
1449 	boolean_t	locked = B_FALSE;
1450 
1451 	if (tcp_time_wait == NULL) {
1452 		tcp_time_wait = *((tcp_squeue_priv_t **)
1453 		    squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP));
1454 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1455 		locked = B_TRUE;
1456 	} else {
1457 		ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock));
1458 	}
1459 
1460 	if (tcp->tcp_time_wait_expire == 0) {
1461 		ASSERT(tcp->tcp_time_wait_next == NULL);
1462 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1463 		if (locked)
1464 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1465 		return (B_FALSE);
1466 	}
1467 	ASSERT(TCP_IS_DETACHED(tcp));
1468 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1469 
1470 	if (tcp == tcp_time_wait->tcp_time_wait_head) {
1471 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1472 		tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next;
1473 		if (tcp_time_wait->tcp_time_wait_head != NULL) {
1474 			tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev =
1475 			    NULL;
1476 		} else {
1477 			tcp_time_wait->tcp_time_wait_tail = NULL;
1478 		}
1479 	} else if (tcp == tcp_time_wait->tcp_time_wait_tail) {
1480 		ASSERT(tcp != tcp_time_wait->tcp_time_wait_head);
1481 		ASSERT(tcp->tcp_time_wait_next == NULL);
1482 		tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev;
1483 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1484 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL;
1485 	} else {
1486 		ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp);
1487 		ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp);
1488 		tcp->tcp_time_wait_prev->tcp_time_wait_next =
1489 		    tcp->tcp_time_wait_next;
1490 		tcp->tcp_time_wait_next->tcp_time_wait_prev =
1491 		    tcp->tcp_time_wait_prev;
1492 	}
1493 	tcp->tcp_time_wait_next = NULL;
1494 	tcp->tcp_time_wait_prev = NULL;
1495 	tcp->tcp_time_wait_expire = 0;
1496 
1497 	if (locked)
1498 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1499 	return (B_TRUE);
1500 }
1501 
1502 /*
1503  * Add a connection to the list of detached TIME_WAIT connections
1504  * and set its time to expire.
1505  */
1506 static void
1507 tcp_time_wait_append(tcp_t *tcp)
1508 {
1509 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1510 	tcp_squeue_priv_t *tcp_time_wait =
1511 	    *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp,
1512 		SQPRIVATE_TCP));
1513 
1514 	tcp_timers_stop(tcp);
1515 
1516 	/* Freed above */
1517 	ASSERT(tcp->tcp_timer_tid == 0);
1518 	ASSERT(tcp->tcp_ack_tid == 0);
1519 
1520 	/* must have happened at the time of detaching the tcp */
1521 	ASSERT(tcp->tcp_ptpahn == NULL);
1522 	ASSERT(tcp->tcp_flow_stopped == 0);
1523 	ASSERT(tcp->tcp_time_wait_next == NULL);
1524 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1525 	ASSERT(tcp->tcp_time_wait_expire == NULL);
1526 	ASSERT(tcp->tcp_listener == NULL);
1527 
1528 	tcp->tcp_time_wait_expire = ddi_get_lbolt();
1529 	/*
1530 	 * The value computed below in tcp->tcp_time_wait_expire may
1531 	 * appear negative or wrap around. That is ok since our
1532 	 * interest is only in the difference between the current lbolt
1533 	 * value and tcp->tcp_time_wait_expire. But the value should not
1534 	 * be zero, since it means the tcp is not in the TIME_WAIT list.
1535 	 * The corresponding comparison in tcp_time_wait_collector() uses
1536 	 * modular arithmetic.
1537 	 */
1538 	tcp->tcp_time_wait_expire +=
1539 	    drv_usectohz(tcps->tcps_time_wait_interval * 1000);
1540 	if (tcp->tcp_time_wait_expire == 0)
1541 		tcp->tcp_time_wait_expire = 1;
1542 
1543 	ASSERT(TCP_IS_DETACHED(tcp));
1544 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1545 	ASSERT(tcp->tcp_time_wait_next == NULL);
1546 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1547 	TCP_DBGSTAT(tcps, tcp_time_wait);
1548 
1549 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1550 	if (tcp_time_wait->tcp_time_wait_head == NULL) {
1551 		ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL);
1552 		tcp_time_wait->tcp_time_wait_head = tcp;
1553 	} else {
1554 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1555 		ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state ==
1556 		    TCPS_TIME_WAIT);
1557 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp;
1558 		tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail;
1559 	}
1560 	tcp_time_wait->tcp_time_wait_tail = tcp;
1561 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1562 }
1563 
1564 /* ARGSUSED */
1565 void
1566 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2)
1567 {
1568 	conn_t	*connp = (conn_t *)arg;
1569 	tcp_t	*tcp = connp->conn_tcp;
1570 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1571 
1572 	ASSERT(tcp != NULL);
1573 	if (tcp->tcp_state == TCPS_CLOSED) {
1574 		return;
1575 	}
1576 
1577 	ASSERT((tcp->tcp_family == AF_INET &&
1578 	    tcp->tcp_ipversion == IPV4_VERSION) ||
1579 	    (tcp->tcp_family == AF_INET6 &&
1580 	    (tcp->tcp_ipversion == IPV4_VERSION ||
1581 	    tcp->tcp_ipversion == IPV6_VERSION)));
1582 	ASSERT(!tcp->tcp_listener);
1583 
1584 	TCP_STAT(tcps, tcp_time_wait_reap);
1585 	ASSERT(TCP_IS_DETACHED(tcp));
1586 
1587 	/*
1588 	 * Because they have no upstream client to rebind or tcp_close()
1589 	 * them later, we axe the connection here and now.
1590 	 */
1591 	tcp_close_detached(tcp);
1592 }
1593 
1594 /*
1595  * Remove cached/latched IPsec references.
1596  */
1597 void
1598 tcp_ipsec_cleanup(tcp_t *tcp)
1599 {
1600 	conn_t		*connp = tcp->tcp_connp;
1601 
1602 	if (connp->conn_flags & IPCL_TCPCONN) {
1603 		if (connp->conn_latch != NULL) {
1604 			IPLATCH_REFRELE(connp->conn_latch,
1605 			    connp->conn_netstack);
1606 			connp->conn_latch = NULL;
1607 		}
1608 		if (connp->conn_policy != NULL) {
1609 			IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
1610 			connp->conn_policy = NULL;
1611 		}
1612 	}
1613 }
1614 
1615 /*
1616  * Cleaup before placing on free list.
1617  * Disassociate from the netstack/tcp_stack_t since the freelist
1618  * is per squeue and not per netstack.
1619  */
1620 void
1621 tcp_cleanup(tcp_t *tcp)
1622 {
1623 	mblk_t		*mp;
1624 	char		*tcp_iphc;
1625 	int		tcp_iphc_len;
1626 	int		tcp_hdr_grown;
1627 	tcp_sack_info_t	*tcp_sack_info;
1628 	conn_t		*connp = tcp->tcp_connp;
1629 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1630 	netstack_t	*ns = tcps->tcps_netstack;
1631 
1632 	tcp_bind_hash_remove(tcp);
1633 
1634 	/* Cleanup that which needs the netstack first */
1635 	tcp_ipsec_cleanup(tcp);
1636 
1637 	tcp_free(tcp);
1638 
1639 	/* Release any SSL context */
1640 	if (tcp->tcp_kssl_ent != NULL) {
1641 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
1642 		tcp->tcp_kssl_ent = NULL;
1643 	}
1644 
1645 	if (tcp->tcp_kssl_ctx != NULL) {
1646 		kssl_release_ctx(tcp->tcp_kssl_ctx);
1647 		tcp->tcp_kssl_ctx = NULL;
1648 	}
1649 	tcp->tcp_kssl_pending = B_FALSE;
1650 
1651 	conn_delete_ire(connp, NULL);
1652 
1653 	/*
1654 	 * Since we will bzero the entire structure, we need to
1655 	 * remove it and reinsert it in global hash list. We
1656 	 * know the walkers can't get to this conn because we
1657 	 * had set CONDEMNED flag earlier and checked reference
1658 	 * under conn_lock so walker won't pick it and when we
1659 	 * go the ipcl_globalhash_remove() below, no walker
1660 	 * can get to it.
1661 	 */
1662 	ipcl_globalhash_remove(connp);
1663 
1664 	/*
1665 	 * Now it is safe to decrement the reference counts.
1666 	 * This might be the last reference on the netstack and TCPS
1667 	 * in which case it will cause the tcp_g_q_close and
1668 	 * the freeing of the IP Instance.
1669 	 */
1670 	connp->conn_netstack = NULL;
1671 	netstack_rele(ns);
1672 	ASSERT(tcps != NULL);
1673 	tcp->tcp_tcps = NULL;
1674 	TCPS_REFRELE(tcps);
1675 
1676 	/* Save some state */
1677 	mp = tcp->tcp_timercache;
1678 
1679 	tcp_sack_info = tcp->tcp_sack_info;
1680 	tcp_iphc = tcp->tcp_iphc;
1681 	tcp_iphc_len = tcp->tcp_iphc_len;
1682 	tcp_hdr_grown = tcp->tcp_hdr_grown;
1683 
1684 	if (connp->conn_cred != NULL)
1685 		crfree(connp->conn_cred);
1686 	if (connp->conn_peercred != NULL)
1687 		crfree(connp->conn_peercred);
1688 	bzero(connp, sizeof (conn_t));
1689 	bzero(tcp, sizeof (tcp_t));
1690 
1691 	/* restore the state */
1692 	tcp->tcp_timercache = mp;
1693 
1694 	tcp->tcp_sack_info = tcp_sack_info;
1695 	tcp->tcp_iphc = tcp_iphc;
1696 	tcp->tcp_iphc_len = tcp_iphc_len;
1697 	tcp->tcp_hdr_grown = tcp_hdr_grown;
1698 
1699 
1700 	tcp->tcp_connp = connp;
1701 
1702 	connp->conn_tcp = tcp;
1703 	connp->conn_flags = IPCL_TCPCONN;
1704 	connp->conn_state_flags = CONN_INCIPIENT;
1705 	connp->conn_ulp = IPPROTO_TCP;
1706 	connp->conn_ref = 1;
1707 }
1708 
1709 /*
1710  * Blows away all tcps whose TIME_WAIT has expired. List traversal
1711  * is done forwards from the head.
1712  * This walks all stack instances since
1713  * tcp_time_wait remains global across all stacks.
1714  */
1715 /* ARGSUSED */
1716 void
1717 tcp_time_wait_collector(void *arg)
1718 {
1719 	tcp_t *tcp;
1720 	clock_t now;
1721 	mblk_t *mp;
1722 	conn_t *connp;
1723 	kmutex_t *lock;
1724 	boolean_t removed;
1725 
1726 	squeue_t *sqp = (squeue_t *)arg;
1727 	tcp_squeue_priv_t *tcp_time_wait =
1728 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1729 
1730 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1731 	tcp_time_wait->tcp_time_wait_tid = 0;
1732 
1733 	if (tcp_time_wait->tcp_free_list != NULL &&
1734 	    tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) {
1735 		TCP_G_STAT(tcp_freelist_cleanup);
1736 		while ((tcp = tcp_time_wait->tcp_free_list) != NULL) {
1737 			tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1738 			tcp->tcp_time_wait_next = NULL;
1739 			tcp_time_wait->tcp_free_list_cnt--;
1740 			ASSERT(tcp->tcp_tcps == NULL);
1741 			CONN_DEC_REF(tcp->tcp_connp);
1742 		}
1743 		ASSERT(tcp_time_wait->tcp_free_list_cnt == 0);
1744 	}
1745 
1746 	/*
1747 	 * In order to reap time waits reliably, we should use a
1748 	 * source of time that is not adjustable by the user -- hence
1749 	 * the call to ddi_get_lbolt().
1750 	 */
1751 	now = ddi_get_lbolt();
1752 	while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) {
1753 		/*
1754 		 * Compare times using modular arithmetic, since
1755 		 * lbolt can wrapover.
1756 		 */
1757 		if ((now - tcp->tcp_time_wait_expire) < 0) {
1758 			break;
1759 		}
1760 
1761 		removed = tcp_time_wait_remove(tcp, tcp_time_wait);
1762 		ASSERT(removed);
1763 
1764 		connp = tcp->tcp_connp;
1765 		ASSERT(connp->conn_fanout != NULL);
1766 		lock = &connp->conn_fanout->connf_lock;
1767 		/*
1768 		 * This is essentially a TW reclaim fast path optimization for
1769 		 * performance where the timewait collector checks under the
1770 		 * fanout lock (so that no one else can get access to the
1771 		 * conn_t) that the refcnt is 2 i.e. one for TCP and one for
1772 		 * the classifier hash list. If ref count is indeed 2, we can
1773 		 * just remove the conn under the fanout lock and avoid
1774 		 * cleaning up the conn under the squeue, provided that
1775 		 * clustering callbacks are not enabled. If clustering is
1776 		 * enabled, we need to make the clustering callback before
1777 		 * setting the CONDEMNED flag and after dropping all locks and
1778 		 * so we forego this optimization and fall back to the slow
1779 		 * path. Also please see the comments in tcp_closei_local
1780 		 * regarding the refcnt logic.
1781 		 *
1782 		 * Since we are holding the tcp_time_wait_lock, its better
1783 		 * not to block on the fanout_lock because other connections
1784 		 * can't add themselves to time_wait list. So we do a
1785 		 * tryenter instead of mutex_enter.
1786 		 */
1787 		if (mutex_tryenter(lock)) {
1788 			mutex_enter(&connp->conn_lock);
1789 			if ((connp->conn_ref == 2) &&
1790 			    (cl_inet_disconnect == NULL)) {
1791 				ipcl_hash_remove_locked(connp,
1792 				    connp->conn_fanout);
1793 				/*
1794 				 * Set the CONDEMNED flag now itself so that
1795 				 * the refcnt cannot increase due to any
1796 				 * walker. But we have still not cleaned up
1797 				 * conn_ire_cache. This is still ok since
1798 				 * we are going to clean it up in tcp_cleanup
1799 				 * immediately and any interface unplumb
1800 				 * thread will wait till the ire is blown away
1801 				 */
1802 				connp->conn_state_flags |= CONN_CONDEMNED;
1803 				mutex_exit(lock);
1804 				mutex_exit(&connp->conn_lock);
1805 				if (tcp_time_wait->tcp_free_list_cnt <
1806 				    tcp_free_list_max_cnt) {
1807 					/* Add to head of tcp_free_list */
1808 					mutex_exit(
1809 					    &tcp_time_wait->tcp_time_wait_lock);
1810 					tcp_cleanup(tcp);
1811 					ASSERT(connp->conn_latch == NULL);
1812 					ASSERT(connp->conn_policy == NULL);
1813 					ASSERT(tcp->tcp_tcps == NULL);
1814 					ASSERT(connp->conn_netstack == NULL);
1815 
1816 					mutex_enter(
1817 					    &tcp_time_wait->tcp_time_wait_lock);
1818 					tcp->tcp_time_wait_next =
1819 					    tcp_time_wait->tcp_free_list;
1820 					tcp_time_wait->tcp_free_list = tcp;
1821 					tcp_time_wait->tcp_free_list_cnt++;
1822 					continue;
1823 				} else {
1824 					/* Do not add to tcp_free_list */
1825 					mutex_exit(
1826 					    &tcp_time_wait->tcp_time_wait_lock);
1827 					tcp_bind_hash_remove(tcp);
1828 					conn_delete_ire(tcp->tcp_connp, NULL);
1829 					tcp_ipsec_cleanup(tcp);
1830 					CONN_DEC_REF(tcp->tcp_connp);
1831 				}
1832 			} else {
1833 				CONN_INC_REF_LOCKED(connp);
1834 				mutex_exit(lock);
1835 				mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1836 				mutex_exit(&connp->conn_lock);
1837 				/*
1838 				 * We can reuse the closemp here since conn has
1839 				 * detached (otherwise we wouldn't even be in
1840 				 * time_wait list). tcp_closemp_used can safely
1841 				 * be changed without taking a lock as no other
1842 				 * thread can concurrently access it at this
1843 				 * point in the connection lifecycle. We
1844 				 * increment tcp_closemp_used to record any
1845 				 * attempt to reuse tcp_closemp while it is
1846 				 * still in use.
1847 				 */
1848 
1849 				if (tcp->tcp_closemp.b_prev == NULL)
1850 					tcp->tcp_closemp_used = 1;
1851 				else
1852 					tcp->tcp_closemp_used++;
1853 
1854 				TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1855 				mp = &tcp->tcp_closemp;
1856 				squeue_fill(connp->conn_sqp, mp,
1857 				    tcp_timewait_output, connp,
1858 				    SQTAG_TCP_TIMEWAIT);
1859 			}
1860 		} else {
1861 			mutex_enter(&connp->conn_lock);
1862 			CONN_INC_REF_LOCKED(connp);
1863 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1864 			mutex_exit(&connp->conn_lock);
1865 			/*
1866 			 * We can reuse the closemp here since conn has
1867 			 * detached (otherwise we wouldn't even be in
1868 			 * time_wait list). tcp_closemp_used can safely
1869 			 * be changed without taking a lock as no other
1870 			 * thread can concurrently access it at this
1871 			 * point in the connection lifecycle. We
1872 			 * increment tcp_closemp_used to record any
1873 			 * attempt to reuse tcp_closemp while it is
1874 			 * still in use.
1875 			 */
1876 
1877 			if (tcp->tcp_closemp.b_prev == NULL)
1878 				tcp->tcp_closemp_used = 1;
1879 			else
1880 				tcp->tcp_closemp_used++;
1881 
1882 			TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1883 			mp = &tcp->tcp_closemp;
1884 			squeue_fill(connp->conn_sqp, mp,
1885 			    tcp_timewait_output, connp, 0);
1886 		}
1887 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1888 	}
1889 
1890 	if (tcp_time_wait->tcp_free_list != NULL)
1891 		tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE;
1892 
1893 	tcp_time_wait->tcp_time_wait_tid =
1894 	    timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY);
1895 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1896 }
1897 /*
1898  * Reply to a clients T_CONN_RES TPI message. This function
1899  * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES
1900  * on the acceptor STREAM and processed in tcp_wput_accept().
1901  * Read the block comment on top of tcp_conn_request().
1902  */
1903 static void
1904 tcp_accept(tcp_t *listener, mblk_t *mp)
1905 {
1906 	tcp_t	*acceptor;
1907 	tcp_t	*eager;
1908 	tcp_t   *tcp;
1909 	struct T_conn_res	*tcr;
1910 	t_uscalar_t	acceptor_id;
1911 	t_scalar_t	seqnum;
1912 	mblk_t	*opt_mp = NULL;	/* T_OPTMGMT_REQ messages */
1913 	mblk_t	*ok_mp;
1914 	mblk_t	*mp1;
1915 	tcp_stack_t	*tcps = listener->tcp_tcps;
1916 
1917 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
1918 		tcp_err_ack(listener, mp, TPROTO, 0);
1919 		return;
1920 	}
1921 	tcr = (struct T_conn_res *)mp->b_rptr;
1922 
1923 	/*
1924 	 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the
1925 	 * read side queue of the streams device underneath us i.e. the
1926 	 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we
1927 	 * look it up in the queue_hash.  Under LP64 it sends down the
1928 	 * minor_t of the accepting endpoint.
1929 	 *
1930 	 * Once the acceptor/eager are modified (in tcp_accept_swap) the
1931 	 * fanout hash lock is held.
1932 	 * This prevents any thread from entering the acceptor queue from
1933 	 * below (since it has not been hard bound yet i.e. any inbound
1934 	 * packets will arrive on the listener or default tcp queue and
1935 	 * go through tcp_lookup).
1936 	 * The CONN_INC_REF will prevent the acceptor from closing.
1937 	 *
1938 	 * XXX It is still possible for a tli application to send down data
1939 	 * on the accepting stream while another thread calls t_accept.
1940 	 * This should not be a problem for well-behaved applications since
1941 	 * the T_OK_ACK is sent after the queue swapping is completed.
1942 	 *
1943 	 * If the accepting fd is the same as the listening fd, avoid
1944 	 * queue hash lookup since that will return an eager listener in a
1945 	 * already established state.
1946 	 */
1947 	acceptor_id = tcr->ACCEPTOR_id;
1948 	mutex_enter(&listener->tcp_eager_lock);
1949 	if (listener->tcp_acceptor_id == acceptor_id) {
1950 		eager = listener->tcp_eager_next_q;
1951 		/* only count how many T_CONN_INDs so don't count q0 */
1952 		if ((listener->tcp_conn_req_cnt_q != 1) ||
1953 		    (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) {
1954 			mutex_exit(&listener->tcp_eager_lock);
1955 			tcp_err_ack(listener, mp, TBADF, 0);
1956 			return;
1957 		}
1958 		if (listener->tcp_conn_req_cnt_q0 != 0) {
1959 			/* Throw away all the eagers on q0. */
1960 			tcp_eager_cleanup(listener, 1);
1961 		}
1962 		if (listener->tcp_syn_defense) {
1963 			listener->tcp_syn_defense = B_FALSE;
1964 			if (listener->tcp_ip_addr_cache != NULL) {
1965 				kmem_free(listener->tcp_ip_addr_cache,
1966 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
1967 				listener->tcp_ip_addr_cache = NULL;
1968 			}
1969 		}
1970 		/*
1971 		 * Transfer tcp_conn_req_max to the eager so that when
1972 		 * a disconnect occurs we can revert the endpoint to the
1973 		 * listen state.
1974 		 */
1975 		eager->tcp_conn_req_max = listener->tcp_conn_req_max;
1976 		ASSERT(listener->tcp_conn_req_cnt_q0 == 0);
1977 		/*
1978 		 * Get a reference on the acceptor just like the
1979 		 * tcp_acceptor_hash_lookup below.
1980 		 */
1981 		acceptor = listener;
1982 		CONN_INC_REF(acceptor->tcp_connp);
1983 	} else {
1984 		acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps);
1985 		if (acceptor == NULL) {
1986 			if (listener->tcp_debug) {
1987 				(void) strlog(TCP_MOD_ID, 0, 1,
1988 				    SL_ERROR|SL_TRACE,
1989 				    "tcp_accept: did not find acceptor 0x%x\n",
1990 				    acceptor_id);
1991 			}
1992 			mutex_exit(&listener->tcp_eager_lock);
1993 			tcp_err_ack(listener, mp, TPROVMISMATCH, 0);
1994 			return;
1995 		}
1996 		/*
1997 		 * Verify acceptor state. The acceptable states for an acceptor
1998 		 * include TCPS_IDLE and TCPS_BOUND.
1999 		 */
2000 		switch (acceptor->tcp_state) {
2001 		case TCPS_IDLE:
2002 			/* FALLTHRU */
2003 		case TCPS_BOUND:
2004 			break;
2005 		default:
2006 			CONN_DEC_REF(acceptor->tcp_connp);
2007 			mutex_exit(&listener->tcp_eager_lock);
2008 			tcp_err_ack(listener, mp, TOUTSTATE, 0);
2009 			return;
2010 		}
2011 	}
2012 
2013 	/* The listener must be in TCPS_LISTEN */
2014 	if (listener->tcp_state != TCPS_LISTEN) {
2015 		CONN_DEC_REF(acceptor->tcp_connp);
2016 		mutex_exit(&listener->tcp_eager_lock);
2017 		tcp_err_ack(listener, mp, TOUTSTATE, 0);
2018 		return;
2019 	}
2020 
2021 	/*
2022 	 * Rendezvous with an eager connection request packet hanging off
2023 	 * 'tcp' that has the 'seqnum' tag.  We tagged the detached open
2024 	 * tcp structure when the connection packet arrived in
2025 	 * tcp_conn_request().
2026 	 */
2027 	seqnum = tcr->SEQ_number;
2028 	eager = listener;
2029 	do {
2030 		eager = eager->tcp_eager_next_q;
2031 		if (eager == NULL) {
2032 			CONN_DEC_REF(acceptor->tcp_connp);
2033 			mutex_exit(&listener->tcp_eager_lock);
2034 			tcp_err_ack(listener, mp, TBADSEQ, 0);
2035 			return;
2036 		}
2037 	} while (eager->tcp_conn_req_seqnum != seqnum);
2038 	mutex_exit(&listener->tcp_eager_lock);
2039 
2040 	/*
2041 	 * At this point, both acceptor and listener have 2 ref
2042 	 * that they begin with. Acceptor has one additional ref
2043 	 * we placed in lookup while listener has 3 additional
2044 	 * ref for being behind the squeue (tcp_accept() is
2045 	 * done on listener's squeue); being in classifier hash;
2046 	 * and eager's ref on listener.
2047 	 */
2048 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2049 	ASSERT(acceptor->tcp_connp->conn_ref >= 3);
2050 
2051 	/*
2052 	 * The eager at this point is set in its own squeue and
2053 	 * could easily have been killed (tcp_accept_finish will
2054 	 * deal with that) because of a TH_RST so we can only
2055 	 * ASSERT for a single ref.
2056 	 */
2057 	ASSERT(eager->tcp_connp->conn_ref >= 1);
2058 
2059 	/* Pre allocate the stroptions mblk also */
2060 	opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
2061 	if (opt_mp == NULL) {
2062 		CONN_DEC_REF(acceptor->tcp_connp);
2063 		CONN_DEC_REF(eager->tcp_connp);
2064 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2065 		return;
2066 	}
2067 	DB_TYPE(opt_mp) = M_SETOPTS;
2068 	opt_mp->b_wptr += sizeof (struct stroptions);
2069 
2070 	/*
2071 	 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
2072 	 * from listener to acceptor. The message is chained on opt_mp
2073 	 * which will be sent onto eager's squeue.
2074 	 */
2075 	if (listener->tcp_bound_if != 0) {
2076 		/* allocate optmgmt req */
2077 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2078 		    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
2079 		    sizeof (int));
2080 		if (mp1 != NULL)
2081 			linkb(opt_mp, mp1);
2082 	}
2083 	if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
2084 		uint_t on = 1;
2085 
2086 		/* allocate optmgmt req */
2087 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2088 		    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
2089 		if (mp1 != NULL)
2090 			linkb(opt_mp, mp1);
2091 	}
2092 
2093 	/* Re-use mp1 to hold a copy of mp, in case reallocb fails */
2094 	if ((mp1 = copymsg(mp)) == NULL) {
2095 		CONN_DEC_REF(acceptor->tcp_connp);
2096 		CONN_DEC_REF(eager->tcp_connp);
2097 		freemsg(opt_mp);
2098 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2099 		return;
2100 	}
2101 
2102 	tcr = (struct T_conn_res *)mp1->b_rptr;
2103 
2104 	/*
2105 	 * This is an expanded version of mi_tpi_ok_ack_alloc()
2106 	 * which allocates a larger mblk and appends the new
2107 	 * local address to the ok_ack.  The address is copied by
2108 	 * soaccept() for getsockname().
2109 	 */
2110 	{
2111 		int extra;
2112 
2113 		extra = (eager->tcp_family == AF_INET) ?
2114 		    sizeof (sin_t) : sizeof (sin6_t);
2115 
2116 		/*
2117 		 * Try to re-use mp, if possible.  Otherwise, allocate
2118 		 * an mblk and return it as ok_mp.  In any case, mp
2119 		 * is no longer usable upon return.
2120 		 */
2121 		if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) {
2122 			CONN_DEC_REF(acceptor->tcp_connp);
2123 			CONN_DEC_REF(eager->tcp_connp);
2124 			freemsg(opt_mp);
2125 			/* Original mp has been freed by now, so use mp1 */
2126 			tcp_err_ack(listener, mp1, TSYSERR, ENOMEM);
2127 			return;
2128 		}
2129 
2130 		mp = NULL;	/* We should never use mp after this point */
2131 
2132 		switch (extra) {
2133 		case sizeof (sin_t): {
2134 				sin_t *sin = (sin_t *)ok_mp->b_wptr;
2135 
2136 				ok_mp->b_wptr += extra;
2137 				sin->sin_family = AF_INET;
2138 				sin->sin_port = eager->tcp_lport;
2139 				sin->sin_addr.s_addr =
2140 				    eager->tcp_ipha->ipha_src;
2141 				break;
2142 			}
2143 		case sizeof (sin6_t): {
2144 				sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr;
2145 
2146 				ok_mp->b_wptr += extra;
2147 				sin6->sin6_family = AF_INET6;
2148 				sin6->sin6_port = eager->tcp_lport;
2149 				if (eager->tcp_ipversion == IPV4_VERSION) {
2150 					sin6->sin6_flowinfo = 0;
2151 					IN6_IPADDR_TO_V4MAPPED(
2152 					    eager->tcp_ipha->ipha_src,
2153 					    &sin6->sin6_addr);
2154 				} else {
2155 					ASSERT(eager->tcp_ip6h != NULL);
2156 					sin6->sin6_flowinfo =
2157 					    eager->tcp_ip6h->ip6_vcf &
2158 					    ~IPV6_VERS_AND_FLOW_MASK;
2159 					sin6->sin6_addr =
2160 					    eager->tcp_ip6h->ip6_src;
2161 				}
2162 				break;
2163 			}
2164 		default:
2165 			break;
2166 		}
2167 		ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim);
2168 	}
2169 
2170 	/*
2171 	 * If there are no options we know that the T_CONN_RES will
2172 	 * succeed. However, we can't send the T_OK_ACK upstream until
2173 	 * the tcp_accept_swap is done since it would be dangerous to
2174 	 * let the application start using the new fd prior to the swap.
2175 	 */
2176 	tcp_accept_swap(listener, acceptor, eager);
2177 
2178 	/*
2179 	 * tcp_accept_swap unlinks eager from listener but does not drop
2180 	 * the eager's reference on the listener.
2181 	 */
2182 	ASSERT(eager->tcp_listener == NULL);
2183 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2184 
2185 	/*
2186 	 * The eager is now associated with its own queue. Insert in
2187 	 * the hash so that the connection can be reused for a future
2188 	 * T_CONN_RES.
2189 	 */
2190 	tcp_acceptor_hash_insert(acceptor_id, eager);
2191 
2192 	/*
2193 	 * We now do the processing of options with T_CONN_RES.
2194 	 * We delay till now since we wanted to have queue to pass to
2195 	 * option processing routines that points back to the right
2196 	 * instance structure which does not happen until after
2197 	 * tcp_accept_swap().
2198 	 *
2199 	 * Note:
2200 	 * The sanity of the logic here assumes that whatever options
2201 	 * are appropriate to inherit from listner=>eager are done
2202 	 * before this point, and whatever were to be overridden (or not)
2203 	 * in transfer logic from eager=>acceptor in tcp_accept_swap().
2204 	 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it
2205 	 *   before its ACCEPTOR_id comes down in T_CONN_RES ]
2206 	 * This may not be true at this point in time but can be fixed
2207 	 * independently. This option processing code starts with
2208 	 * the instantiated acceptor instance and the final queue at
2209 	 * this point.
2210 	 */
2211 
2212 	if (tcr->OPT_length != 0) {
2213 		/* Options to process */
2214 		int t_error = 0;
2215 		int sys_error = 0;
2216 		int do_disconnect = 0;
2217 
2218 		if (tcp_conprim_opt_process(eager, mp1,
2219 		    &do_disconnect, &t_error, &sys_error) < 0) {
2220 			eager->tcp_accept_error = 1;
2221 			if (do_disconnect) {
2222 				/*
2223 				 * An option failed which does not allow
2224 				 * connection to be accepted.
2225 				 *
2226 				 * We allow T_CONN_RES to succeed and
2227 				 * put a T_DISCON_IND on the eager queue.
2228 				 */
2229 				ASSERT(t_error == 0 && sys_error == 0);
2230 				eager->tcp_send_discon_ind = 1;
2231 			} else {
2232 				ASSERT(t_error != 0);
2233 				freemsg(ok_mp);
2234 				/*
2235 				 * Original mp was either freed or set
2236 				 * to ok_mp above, so use mp1 instead.
2237 				 */
2238 				tcp_err_ack(listener, mp1, t_error, sys_error);
2239 				goto finish;
2240 			}
2241 		}
2242 		/*
2243 		 * Most likely success in setting options (except if
2244 		 * eager->tcp_send_discon_ind set).
2245 		 * mp1 option buffer represented by OPT_length/offset
2246 		 * potentially modified and contains results of setting
2247 		 * options at this point
2248 		 */
2249 	}
2250 
2251 	/* We no longer need mp1, since all options processing has passed */
2252 	freemsg(mp1);
2253 
2254 	putnext(listener->tcp_rq, ok_mp);
2255 
2256 	mutex_enter(&listener->tcp_eager_lock);
2257 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
2258 		tcp_t	*tail;
2259 		mblk_t	*conn_ind;
2260 
2261 		/*
2262 		 * This path should not be executed if listener and
2263 		 * acceptor streams are the same.
2264 		 */
2265 		ASSERT(listener != acceptor);
2266 
2267 		tcp = listener->tcp_eager_prev_q0;
2268 		/*
2269 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
2270 		 * deferred T_conn_ind queue. We need to get to the head of
2271 		 * the queue in order to send up T_conn_ind the same order as
2272 		 * how the 3WHS is completed.
2273 		 */
2274 		while (tcp != listener) {
2275 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0)
2276 				break;
2277 			else
2278 				tcp = tcp->tcp_eager_prev_q0;
2279 		}
2280 		ASSERT(tcp != listener);
2281 		conn_ind = tcp->tcp_conn.tcp_eager_conn_ind;
2282 		ASSERT(conn_ind != NULL);
2283 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
2284 
2285 		/* Move from q0 to q */
2286 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
2287 		listener->tcp_conn_req_cnt_q0--;
2288 		listener->tcp_conn_req_cnt_q++;
2289 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
2290 		    tcp->tcp_eager_prev_q0;
2291 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
2292 		    tcp->tcp_eager_next_q0;
2293 		tcp->tcp_eager_prev_q0 = NULL;
2294 		tcp->tcp_eager_next_q0 = NULL;
2295 		tcp->tcp_conn_def_q0 = B_FALSE;
2296 
2297 		/* Make sure the tcp isn't in the list of droppables */
2298 		ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
2299 		    tcp->tcp_eager_prev_drop_q0 == NULL);
2300 
2301 		/*
2302 		 * Insert at end of the queue because sockfs sends
2303 		 * down T_CONN_RES in chronological order. Leaving
2304 		 * the older conn indications at front of the queue
2305 		 * helps reducing search time.
2306 		 */
2307 		tail = listener->tcp_eager_last_q;
2308 		if (tail != NULL)
2309 			tail->tcp_eager_next_q = tcp;
2310 		else
2311 			listener->tcp_eager_next_q = tcp;
2312 		listener->tcp_eager_last_q = tcp;
2313 		tcp->tcp_eager_next_q = NULL;
2314 		mutex_exit(&listener->tcp_eager_lock);
2315 		putnext(tcp->tcp_rq, conn_ind);
2316 	} else {
2317 		mutex_exit(&listener->tcp_eager_lock);
2318 	}
2319 
2320 	/*
2321 	 * Done with the acceptor - free it
2322 	 *
2323 	 * Note: from this point on, no access to listener should be made
2324 	 * as listener can be equal to acceptor.
2325 	 */
2326 finish:
2327 	ASSERT(acceptor->tcp_detached);
2328 	ASSERT(tcps->tcps_g_q != NULL);
2329 	acceptor->tcp_rq = tcps->tcps_g_q;
2330 	acceptor->tcp_wq = WR(tcps->tcps_g_q);
2331 	(void) tcp_clean_death(acceptor, 0, 2);
2332 	CONN_DEC_REF(acceptor->tcp_connp);
2333 
2334 	/*
2335 	 * In case we already received a FIN we have to make tcp_rput send
2336 	 * the ordrel_ind. This will also send up a window update if the window
2337 	 * has opened up.
2338 	 *
2339 	 * In the normal case of a successful connection acceptance
2340 	 * we give the O_T_BIND_REQ to the read side put procedure as an
2341 	 * indication that this was just accepted. This tells tcp_rput to
2342 	 * pass up any data queued in tcp_rcv_list.
2343 	 *
2344 	 * In the fringe case where options sent with T_CONN_RES failed and
2345 	 * we required, we would be indicating a T_DISCON_IND to blow
2346 	 * away this connection.
2347 	 */
2348 
2349 	/*
2350 	 * XXX: we currently have a problem if XTI application closes the
2351 	 * acceptor stream in between. This problem exists in on10-gate also
2352 	 * and is well know but nothing can be done short of major rewrite
2353 	 * to fix it. Now it is possible to take care of it by assigning TLI/XTI
2354 	 * eager same squeue as listener (we can distinguish non socket
2355 	 * listeners at the time of handling a SYN in tcp_conn_request)
2356 	 * and do most of the work that tcp_accept_finish does here itself
2357 	 * and then get behind the acceptor squeue to access the acceptor
2358 	 * queue.
2359 	 */
2360 	/*
2361 	 * We already have a ref on tcp so no need to do one before squeue_fill
2362 	 */
2363 	squeue_fill(eager->tcp_connp->conn_sqp, opt_mp,
2364 	    tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH);
2365 }
2366 
2367 /*
2368  * Swap information between the eager and acceptor for a TLI/XTI client.
2369  * The sockfs accept is done on the acceptor stream and control goes
2370  * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not
2371  * called. In either case, both the eager and listener are in their own
2372  * perimeter (squeue) and the code has to deal with potential race.
2373  *
2374  * See the block comment on top of tcp_accept() and tcp_wput_accept().
2375  */
2376 static void
2377 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager)
2378 {
2379 	conn_t	*econnp, *aconnp;
2380 
2381 	ASSERT(eager->tcp_rq == listener->tcp_rq);
2382 	ASSERT(eager->tcp_detached && !acceptor->tcp_detached);
2383 	ASSERT(!eager->tcp_hard_bound);
2384 	ASSERT(!TCP_IS_SOCKET(acceptor));
2385 	ASSERT(!TCP_IS_SOCKET(eager));
2386 	ASSERT(!TCP_IS_SOCKET(listener));
2387 
2388 	acceptor->tcp_detached = B_TRUE;
2389 	/*
2390 	 * To permit stream re-use by TLI/XTI, the eager needs a copy of
2391 	 * the acceptor id.
2392 	 */
2393 	eager->tcp_acceptor_id = acceptor->tcp_acceptor_id;
2394 
2395 	/* remove eager from listen list... */
2396 	mutex_enter(&listener->tcp_eager_lock);
2397 	tcp_eager_unlink(eager);
2398 	ASSERT(eager->tcp_eager_next_q == NULL &&
2399 	    eager->tcp_eager_last_q == NULL);
2400 	ASSERT(eager->tcp_eager_next_q0 == NULL &&
2401 	    eager->tcp_eager_prev_q0 == NULL);
2402 	mutex_exit(&listener->tcp_eager_lock);
2403 	eager->tcp_rq = acceptor->tcp_rq;
2404 	eager->tcp_wq = acceptor->tcp_wq;
2405 
2406 	econnp = eager->tcp_connp;
2407 	aconnp = acceptor->tcp_connp;
2408 
2409 	eager->tcp_rq->q_ptr = econnp;
2410 	eager->tcp_wq->q_ptr = econnp;
2411 
2412 	/*
2413 	 * In the TLI/XTI loopback case, we are inside the listener's squeue,
2414 	 * which might be a different squeue from our peer TCP instance.
2415 	 * For TCP Fusion, the peer expects that whenever tcp_detached is
2416 	 * clear, our TCP queues point to the acceptor's queues.  Thus, use
2417 	 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq
2418 	 * above reach global visibility prior to the clearing of tcp_detached.
2419 	 */
2420 	membar_producer();
2421 	eager->tcp_detached = B_FALSE;
2422 
2423 	ASSERT(eager->tcp_ack_tid == 0);
2424 
2425 	econnp->conn_dev = aconnp->conn_dev;
2426 	if (eager->tcp_cred != NULL)
2427 		crfree(eager->tcp_cred);
2428 	eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred;
2429 	ASSERT(econnp->conn_netstack == aconnp->conn_netstack);
2430 	ASSERT(eager->tcp_tcps == acceptor->tcp_tcps);
2431 
2432 	aconnp->conn_cred = NULL;
2433 
2434 	econnp->conn_zoneid = aconnp->conn_zoneid;
2435 	econnp->conn_allzones = aconnp->conn_allzones;
2436 
2437 	econnp->conn_mac_exempt = aconnp->conn_mac_exempt;
2438 	aconnp->conn_mac_exempt = B_FALSE;
2439 
2440 	ASSERT(aconnp->conn_peercred == NULL);
2441 
2442 	/* Do the IPC initialization */
2443 	CONN_INC_REF(econnp);
2444 
2445 	econnp->conn_multicast_loop = aconnp->conn_multicast_loop;
2446 	econnp->conn_af_isv6 = aconnp->conn_af_isv6;
2447 	econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6;
2448 	econnp->conn_ulp = aconnp->conn_ulp;
2449 
2450 	/* Done with old IPC. Drop its ref on its connp */
2451 	CONN_DEC_REF(aconnp);
2452 }
2453 
2454 
2455 /*
2456  * Adapt to the information, such as rtt and rtt_sd, provided from the
2457  * ire cached in conn_cache_ire. If no ire cached, do a ire lookup.
2458  *
2459  * Checks for multicast and broadcast destination address.
2460  * Returns zero on failure; non-zero if ok.
2461  *
2462  * Note that the MSS calculation here is based on the info given in
2463  * the IRE.  We do not do any calculation based on TCP options.  They
2464  * will be handled in tcp_rput_other() and tcp_rput_data() when TCP
2465  * knows which options to use.
2466  *
2467  * Note on how TCP gets its parameters for a connection.
2468  *
2469  * When a tcp_t structure is allocated, it gets all the default parameters.
2470  * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd,
2471  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
2472  * default.  But if there is an associated tcp_host_param, it will override
2473  * the metrics.
2474  *
2475  * An incoming SYN with a multicast or broadcast destination address, is dropped
2476  * in 1 of 2 places.
2477  *
2478  * 1. If the packet was received over the wire it is dropped in
2479  * ip_rput_process_broadcast()
2480  *
2481  * 2. If the packet was received through internal IP loopback, i.e. the packet
2482  * was generated and received on the same machine, it is dropped in
2483  * ip_wput_local()
2484  *
2485  * An incoming SYN with a multicast or broadcast source address is always
2486  * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to
2487  * reject an attempt to connect to a broadcast or multicast (destination)
2488  * address.
2489  */
2490 static int
2491 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp)
2492 {
2493 	tcp_hsp_t	*hsp;
2494 	ire_t		*ire;
2495 	ire_t		*sire = NULL;
2496 	iulp_t		*ire_uinfo = NULL;
2497 	uint32_t	mss_max;
2498 	uint32_t	mss;
2499 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2500 	conn_t		*connp = tcp->tcp_connp;
2501 	boolean_t	ire_cacheable = B_FALSE;
2502 	zoneid_t	zoneid = connp->conn_zoneid;
2503 	int		match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
2504 			    MATCH_IRE_SECATTR;
2505 	ts_label_t	*tsl = crgetlabel(CONN_CRED(connp));
2506 	ill_t		*ill = NULL;
2507 	boolean_t	incoming = (ire_mp == NULL);
2508 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2509 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
2510 
2511 	ASSERT(connp->conn_ire_cache == NULL);
2512 
2513 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2514 
2515 		if (CLASSD(tcp->tcp_connp->conn_rem)) {
2516 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
2517 			return (0);
2518 		}
2519 		/*
2520 		 * If IP_NEXTHOP is set, then look for an IRE_CACHE
2521 		 * for the destination with the nexthop as gateway.
2522 		 * ire_ctable_lookup() is used because this particular
2523 		 * ire, if it exists, will be marked private.
2524 		 * If that is not available, use the interface ire
2525 		 * for the nexthop.
2526 		 *
2527 		 * TSol: tcp_update_label will detect label mismatches based
2528 		 * only on the destination's label, but that would not
2529 		 * detect label mismatches based on the security attributes
2530 		 * of routes or next hop gateway. Hence we need to pass the
2531 		 * label to ire_ftable_lookup below in order to locate the
2532 		 * right prefix (and/or) ire cache. Similarly we also need
2533 		 * pass the label to the ire_cache_lookup below to locate
2534 		 * the right ire that also matches on the label.
2535 		 */
2536 		if (tcp->tcp_connp->conn_nexthop_set) {
2537 			ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem,
2538 			    tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid,
2539 			    tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW,
2540 			    ipst);
2541 			if (ire == NULL) {
2542 				ire = ire_ftable_lookup(
2543 				    tcp->tcp_connp->conn_nexthop_v4,
2544 				    0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0,
2545 				    tsl, match_flags, ipst);
2546 				if (ire == NULL)
2547 					return (0);
2548 			} else {
2549 				ire_uinfo = &ire->ire_uinfo;
2550 			}
2551 		} else {
2552 			ire = ire_cache_lookup(tcp->tcp_connp->conn_rem,
2553 			    zoneid, tsl, ipst);
2554 			if (ire != NULL) {
2555 				ire_cacheable = B_TRUE;
2556 				ire_uinfo = (ire_mp != NULL) ?
2557 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2558 				    &ire->ire_uinfo;
2559 
2560 			} else {
2561 				if (ire_mp == NULL) {
2562 					ire = ire_ftable_lookup(
2563 					    tcp->tcp_connp->conn_rem,
2564 					    0, 0, 0, NULL, &sire, zoneid, 0,
2565 					    tsl, (MATCH_IRE_RECURSIVE |
2566 					    MATCH_IRE_DEFAULT), ipst);
2567 					if (ire == NULL)
2568 						return (0);
2569 					ire_uinfo = (sire != NULL) ?
2570 					    &sire->ire_uinfo :
2571 					    &ire->ire_uinfo;
2572 				} else {
2573 					ire = (ire_t *)ire_mp->b_rptr;
2574 					ire_uinfo =
2575 					    &((ire_t *)
2576 					    ire_mp->b_rptr)->ire_uinfo;
2577 				}
2578 			}
2579 		}
2580 		ASSERT(ire != NULL);
2581 
2582 		if ((ire->ire_src_addr == INADDR_ANY) ||
2583 		    (ire->ire_type & IRE_BROADCAST)) {
2584 			/*
2585 			 * ire->ire_mp is non null when ire_mp passed in is used
2586 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2587 			 */
2588 			if (ire->ire_mp == NULL)
2589 				ire_refrele(ire);
2590 			if (sire != NULL)
2591 				ire_refrele(sire);
2592 			return (0);
2593 		}
2594 
2595 		if (tcp->tcp_ipha->ipha_src == INADDR_ANY) {
2596 			ipaddr_t src_addr;
2597 
2598 			/*
2599 			 * ip_bind_connected() has stored the correct source
2600 			 * address in conn_src.
2601 			 */
2602 			src_addr = tcp->tcp_connp->conn_src;
2603 			tcp->tcp_ipha->ipha_src = src_addr;
2604 			/*
2605 			 * Copy of the src addr. in tcp_t is needed
2606 			 * for the lookup funcs.
2607 			 */
2608 			IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6);
2609 		}
2610 		/*
2611 		 * Set the fragment bit so that IP will tell us if the MTU
2612 		 * should change. IP tells us the latest setting of
2613 		 * ip_path_mtu_discovery through ire_frag_flag.
2614 		 */
2615 		if (ipst->ips_ip_path_mtu_discovery) {
2616 			tcp->tcp_ipha->ipha_fragment_offset_and_flags =
2617 			    htons(IPH_DF);
2618 		}
2619 		/*
2620 		 * If ire_uinfo is NULL, this is the IRE_INTERFACE case
2621 		 * for IP_NEXTHOP. No cache ire has been found for the
2622 		 * destination and we are working with the nexthop's
2623 		 * interface ire. Since we need to forward all packets
2624 		 * to the nexthop first, we "blindly" set tcp_localnet
2625 		 * to false, eventhough the destination may also be
2626 		 * onlink.
2627 		 */
2628 		if (ire_uinfo == NULL)
2629 			tcp->tcp_localnet = 0;
2630 		else
2631 			tcp->tcp_localnet = (ire->ire_gateway_addr == 0);
2632 	} else {
2633 		/*
2634 		 * For incoming connection ire_mp = NULL
2635 		 * For outgoing connection ire_mp != NULL
2636 		 * Technically we should check conn_incoming_ill
2637 		 * when ire_mp is NULL and conn_outgoing_ill when
2638 		 * ire_mp is non-NULL. But this is performance
2639 		 * critical path and for IPV*_BOUND_IF, outgoing
2640 		 * and incoming ill are always set to the same value.
2641 		 */
2642 		ill_t	*dst_ill = NULL;
2643 		ipif_t  *dst_ipif = NULL;
2644 
2645 		ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
2646 
2647 		if (connp->conn_outgoing_ill != NULL) {
2648 			/* Outgoing or incoming path */
2649 			int   err;
2650 
2651 			dst_ill = conn_get_held_ill(connp,
2652 			    &connp->conn_outgoing_ill, &err);
2653 			if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) {
2654 				ip1dbg(("tcp_adapt_ire: ill_lookup failed\n"));
2655 				return (0);
2656 			}
2657 			match_flags |= MATCH_IRE_ILL;
2658 			dst_ipif = dst_ill->ill_ipif;
2659 		}
2660 		ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6,
2661 		    0, 0, dst_ipif, zoneid, tsl, match_flags, ipst);
2662 
2663 		if (ire != NULL) {
2664 			ire_cacheable = B_TRUE;
2665 			ire_uinfo = (ire_mp != NULL) ?
2666 			    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2667 			    &ire->ire_uinfo;
2668 		} else {
2669 			if (ire_mp == NULL) {
2670 				ire = ire_ftable_lookup_v6(
2671 				    &tcp->tcp_connp->conn_remv6,
2672 				    0, 0, 0, dst_ipif, &sire, zoneid,
2673 				    0, tsl, match_flags, ipst);
2674 				if (ire == NULL) {
2675 					if (dst_ill != NULL)
2676 						ill_refrele(dst_ill);
2677 					return (0);
2678 				}
2679 				ire_uinfo = (sire != NULL) ? &sire->ire_uinfo :
2680 				    &ire->ire_uinfo;
2681 			} else {
2682 				ire = (ire_t *)ire_mp->b_rptr;
2683 				ire_uinfo =
2684 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo;
2685 			}
2686 		}
2687 		if (dst_ill != NULL)
2688 			ill_refrele(dst_ill);
2689 
2690 		ASSERT(ire != NULL);
2691 		ASSERT(ire_uinfo != NULL);
2692 
2693 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) ||
2694 		    IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
2695 			/*
2696 			 * ire->ire_mp is non null when ire_mp passed in is used
2697 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2698 			 */
2699 			if (ire->ire_mp == NULL)
2700 				ire_refrele(ire);
2701 			if (sire != NULL)
2702 				ire_refrele(sire);
2703 			return (0);
2704 		}
2705 
2706 		if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
2707 			in6_addr_t	src_addr;
2708 
2709 			/*
2710 			 * ip_bind_connected_v6() has stored the correct source
2711 			 * address per IPv6 addr. selection policy in
2712 			 * conn_src_v6.
2713 			 */
2714 			src_addr = tcp->tcp_connp->conn_srcv6;
2715 
2716 			tcp->tcp_ip6h->ip6_src = src_addr;
2717 			/*
2718 			 * Copy of the src addr. in tcp_t is needed
2719 			 * for the lookup funcs.
2720 			 */
2721 			tcp->tcp_ip_src_v6 = src_addr;
2722 			ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src,
2723 			    &connp->conn_srcv6));
2724 		}
2725 		tcp->tcp_localnet =
2726 		    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6);
2727 	}
2728 
2729 	/*
2730 	 * This allows applications to fail quickly when connections are made
2731 	 * to dead hosts. Hosts can be labeled dead by adding a reject route
2732 	 * with both the RTF_REJECT and RTF_PRIVATE flags set.
2733 	 */
2734 	if ((ire->ire_flags & RTF_REJECT) &&
2735 	    (ire->ire_flags & RTF_PRIVATE))
2736 		goto error;
2737 
2738 	/*
2739 	 * Make use of the cached rtt and rtt_sd values to calculate the
2740 	 * initial RTO.  Note that they are already initialized in
2741 	 * tcp_init_values().
2742 	 * If ire_uinfo is NULL, i.e., we do not have a cache ire for
2743 	 * IP_NEXTHOP, but instead are using the interface ire for the
2744 	 * nexthop, then we do not use the ire_uinfo from that ire to
2745 	 * do any initializations.
2746 	 */
2747 	if (ire_uinfo != NULL) {
2748 		if (ire_uinfo->iulp_rtt != 0) {
2749 			clock_t	rto;
2750 
2751 			tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt;
2752 			tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd;
2753 			rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2754 			    tcps->tcps_rexmit_interval_extra +
2755 			    (tcp->tcp_rtt_sa >> 5);
2756 
2757 			if (rto > tcps->tcps_rexmit_interval_max) {
2758 				tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
2759 			} else if (rto < tcps->tcps_rexmit_interval_min) {
2760 				tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
2761 			} else {
2762 				tcp->tcp_rto = rto;
2763 			}
2764 		}
2765 		if (ire_uinfo->iulp_ssthresh != 0)
2766 			tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh;
2767 		else
2768 			tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2769 		if (ire_uinfo->iulp_spipe > 0) {
2770 			tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe,
2771 			    tcps->tcps_max_buf);
2772 			if (tcps->tcps_snd_lowat_fraction != 0)
2773 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2774 				    tcps->tcps_snd_lowat_fraction;
2775 			(void) tcp_maxpsz_set(tcp, B_TRUE);
2776 		}
2777 		/*
2778 		 * Note that up till now, acceptor always inherits receive
2779 		 * window from the listener.  But if there is a metrics
2780 		 * associated with a host, we should use that instead of
2781 		 * inheriting it from listener. Thus we need to pass this
2782 		 * info back to the caller.
2783 		 */
2784 		if (ire_uinfo->iulp_rpipe > 0) {
2785 			tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe,
2786 					    tcps->tcps_max_buf);
2787 		}
2788 
2789 		if (ire_uinfo->iulp_rtomax > 0) {
2790 			tcp->tcp_second_timer_threshold =
2791 			    ire_uinfo->iulp_rtomax;
2792 		}
2793 
2794 		/*
2795 		 * Use the metric option settings, iulp_tstamp_ok and
2796 		 * iulp_wscale_ok, only for active open. What this means
2797 		 * is that if the other side uses timestamp or window
2798 		 * scale option, TCP will also use those options. That
2799 		 * is for passive open.  If the application sets a
2800 		 * large window, window scale is enabled regardless of
2801 		 * the value in iulp_wscale_ok.  This is the behavior
2802 		 * since 2.6.  So we keep it.
2803 		 * The only case left in passive open processing is the
2804 		 * check for SACK.
2805 		 * For ECN, it should probably be like SACK.  But the
2806 		 * current value is binary, so we treat it like the other
2807 		 * cases.  The metric only controls active open.For passive
2808 		 * open, the ndd param, tcp_ecn_permitted, controls the
2809 		 * behavior.
2810 		 */
2811 		if (!tcp_detached) {
2812 			/*
2813 			 * The if check means that the following can only
2814 			 * be turned on by the metrics only IRE, but not off.
2815 			 */
2816 			if (ire_uinfo->iulp_tstamp_ok)
2817 				tcp->tcp_snd_ts_ok = B_TRUE;
2818 			if (ire_uinfo->iulp_wscale_ok)
2819 				tcp->tcp_snd_ws_ok = B_TRUE;
2820 			if (ire_uinfo->iulp_sack == 2)
2821 				tcp->tcp_snd_sack_ok = B_TRUE;
2822 			if (ire_uinfo->iulp_ecn_ok)
2823 				tcp->tcp_ecn_ok = B_TRUE;
2824 		} else {
2825 			/*
2826 			 * Passive open.
2827 			 *
2828 			 * As above, the if check means that SACK can only be
2829 			 * turned on by the metric only IRE.
2830 			 */
2831 			if (ire_uinfo->iulp_sack > 0) {
2832 				tcp->tcp_snd_sack_ok = B_TRUE;
2833 			}
2834 		}
2835 	}
2836 
2837 
2838 	/*
2839 	 * XXX: Note that currently, ire_max_frag can be as small as 68
2840 	 * because of PMTUd.  So tcp_mss may go to negative if combined
2841 	 * length of all those options exceeds 28 bytes.  But because
2842 	 * of the tcp_mss_min check below, we may not have a problem if
2843 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
2844 	 * the negative problem still exists.  And the check defeats PMTUd.
2845 	 * In fact, if PMTUd finds that the MSS should be smaller than
2846 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
2847 	 * value.
2848 	 *
2849 	 * We do not deal with that now.  All those problems related to
2850 	 * PMTUd will be fixed later.
2851 	 */
2852 	ASSERT(ire->ire_max_frag != 0);
2853 	mss = tcp->tcp_if_mtu = ire->ire_max_frag;
2854 	if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) {
2855 		if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) {
2856 			mss = MIN(mss, IPV6_MIN_MTU);
2857 		}
2858 	}
2859 
2860 	/* Sanity check for MSS value. */
2861 	if (tcp->tcp_ipversion == IPV4_VERSION)
2862 		mss_max = tcps->tcps_mss_max_ipv4;
2863 	else
2864 		mss_max = tcps->tcps_mss_max_ipv6;
2865 
2866 	if (tcp->tcp_ipversion == IPV6_VERSION &&
2867 	    (ire->ire_frag_flag & IPH_FRAG_HDR)) {
2868 		/*
2869 		 * After receiving an ICMPv6 "packet too big" message with a
2870 		 * MTU < 1280, and for multirouted IPv6 packets, the IP layer
2871 		 * will insert a 8-byte fragment header in every packet; we
2872 		 * reduce the MSS by that amount here.
2873 		 */
2874 		mss -= sizeof (ip6_frag_t);
2875 	}
2876 
2877 	if (tcp->tcp_ipsec_overhead == 0)
2878 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
2879 
2880 	mss -= tcp->tcp_ipsec_overhead;
2881 
2882 	if (mss < tcps->tcps_mss_min)
2883 		mss = tcps->tcps_mss_min;
2884 	if (mss > mss_max)
2885 		mss = mss_max;
2886 
2887 	/* Note that this is the maximum MSS, excluding all options. */
2888 	tcp->tcp_mss = mss;
2889 
2890 	/*
2891 	 * Initialize the ISS here now that we have the full connection ID.
2892 	 * The RFC 1948 method of initial sequence number generation requires
2893 	 * knowledge of the full connection ID before setting the ISS.
2894 	 */
2895 
2896 	tcp_iss_init(tcp);
2897 
2898 	if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL))
2899 		tcp->tcp_loopback = B_TRUE;
2900 
2901 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2902 		hsp = tcp_hsp_lookup(tcp->tcp_remote, tcps);
2903 	} else {
2904 		hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6, tcps);
2905 	}
2906 
2907 	if (hsp != NULL) {
2908 		/* Only modify if we're going to make them bigger */
2909 		if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) {
2910 			tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace;
2911 			if (tcps->tcps_snd_lowat_fraction != 0)
2912 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2913 					tcps->tcps_snd_lowat_fraction;
2914 		}
2915 
2916 		if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) {
2917 			tcp->tcp_rwnd = hsp->tcp_hsp_recvspace;
2918 		}
2919 
2920 		/* Copy timestamp flag only for active open */
2921 		if (!tcp_detached)
2922 			tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp;
2923 	}
2924 
2925 	if (sire != NULL)
2926 		IRE_REFRELE(sire);
2927 
2928 	/*
2929 	 * If we got an IRE_CACHE and an ILL, go through their properties;
2930 	 * otherwise, this is deferred until later when we have an IRE_CACHE.
2931 	 */
2932 	if (tcp->tcp_loopback ||
2933 	    (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) {
2934 		/*
2935 		 * For incoming, see if this tcp may be MDT-capable.  For
2936 		 * outgoing, this process has been taken care of through
2937 		 * tcp_rput_other.
2938 		 */
2939 		tcp_ire_ill_check(tcp, ire, ill, incoming);
2940 		tcp->tcp_ire_ill_check_done = B_TRUE;
2941 	}
2942 
2943 	mutex_enter(&connp->conn_lock);
2944 	/*
2945 	 * Make sure that conn is not marked incipient
2946 	 * for incoming connections. A blind
2947 	 * removal of incipient flag is cheaper than
2948 	 * check and removal.
2949 	 */
2950 	connp->conn_state_flags &= ~CONN_INCIPIENT;
2951 
2952 	/*
2953 	 * Must not cache forwarding table routes
2954 	 * or recache an IRE after the conn_t has
2955 	 * had conn_ire_cache cleared and is flagged
2956 	 * unusable, (see the CONN_CACHE_IRE() macro).
2957 	 */
2958 	if (ire_cacheable && CONN_CACHE_IRE(connp)) {
2959 		rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
2960 		if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
2961 			connp->conn_ire_cache = ire;
2962 			IRE_UNTRACE_REF(ire);
2963 			rw_exit(&ire->ire_bucket->irb_lock);
2964 			mutex_exit(&connp->conn_lock);
2965 			return (1);
2966 		}
2967 		rw_exit(&ire->ire_bucket->irb_lock);
2968 	}
2969 	mutex_exit(&connp->conn_lock);
2970 
2971 	if (ire->ire_mp == NULL)
2972 		ire_refrele(ire);
2973 	return (1);
2974 
2975 error:
2976 	if (ire->ire_mp == NULL)
2977 		ire_refrele(ire);
2978 	if (sire != NULL)
2979 		ire_refrele(sire);
2980 	return (0);
2981 }
2982 
2983 /*
2984  * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a
2985  * O_T_BIND_REQ/T_BIND_REQ message.
2986  */
2987 static void
2988 tcp_bind(tcp_t *tcp, mblk_t *mp)
2989 {
2990 	sin_t	*sin;
2991 	sin6_t	*sin6;
2992 	mblk_t	*mp1;
2993 	in_port_t requested_port;
2994 	in_port_t allocated_port;
2995 	struct T_bind_req *tbr;
2996 	boolean_t	bind_to_req_port_only;
2997 	boolean_t	backlog_update = B_FALSE;
2998 	boolean_t	user_specified;
2999 	in6_addr_t	v6addr;
3000 	ipaddr_t	v4addr;
3001 	uint_t	origipversion;
3002 	int	err;
3003 	queue_t *q = tcp->tcp_wq;
3004 	conn_t	*connp;
3005 	mlp_type_t addrtype, mlptype;
3006 	zone_t	*zone;
3007 	cred_t	*cr;
3008 	in_port_t mlp_port;
3009 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3010 
3011 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
3012 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
3013 		if (tcp->tcp_debug) {
3014 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3015 			    "tcp_bind: bad req, len %u",
3016 			    (uint_t)(mp->b_wptr - mp->b_rptr));
3017 		}
3018 		tcp_err_ack(tcp, mp, TPROTO, 0);
3019 		return;
3020 	}
3021 	/* Make sure the largest address fits */
3022 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
3023 	if (mp1 == NULL) {
3024 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3025 		return;
3026 	}
3027 	mp = mp1;
3028 	tbr = (struct T_bind_req *)mp->b_rptr;
3029 	if (tcp->tcp_state >= TCPS_BOUND) {
3030 		if ((tcp->tcp_state == TCPS_BOUND ||
3031 		    tcp->tcp_state == TCPS_LISTEN) &&
3032 		    tcp->tcp_conn_req_max != tbr->CONIND_number &&
3033 		    tbr->CONIND_number > 0) {
3034 			/*
3035 			 * Handle listen() increasing CONIND_number.
3036 			 * This is more "liberal" then what the TPI spec
3037 			 * requires but is needed to avoid a t_unbind
3038 			 * when handling listen() since the port number
3039 			 * might be "stolen" between the unbind and bind.
3040 			 */
3041 			backlog_update = B_TRUE;
3042 			goto do_bind;
3043 		}
3044 		if (tcp->tcp_debug) {
3045 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3046 			    "tcp_bind: bad state, %d", tcp->tcp_state);
3047 		}
3048 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
3049 		return;
3050 	}
3051 	origipversion = tcp->tcp_ipversion;
3052 
3053 	switch (tbr->ADDR_length) {
3054 	case 0:			/* request for a generic port */
3055 		tbr->ADDR_offset = sizeof (struct T_bind_req);
3056 		if (tcp->tcp_family == AF_INET) {
3057 			tbr->ADDR_length = sizeof (sin_t);
3058 			sin = (sin_t *)&tbr[1];
3059 			*sin = sin_null;
3060 			sin->sin_family = AF_INET;
3061 			mp->b_wptr = (uchar_t *)&sin[1];
3062 			tcp->tcp_ipversion = IPV4_VERSION;
3063 			IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr);
3064 		} else {
3065 			ASSERT(tcp->tcp_family == AF_INET6);
3066 			tbr->ADDR_length = sizeof (sin6_t);
3067 			sin6 = (sin6_t *)&tbr[1];
3068 			*sin6 = sin6_null;
3069 			sin6->sin6_family = AF_INET6;
3070 			mp->b_wptr = (uchar_t *)&sin6[1];
3071 			tcp->tcp_ipversion = IPV6_VERSION;
3072 			V6_SET_ZERO(v6addr);
3073 		}
3074 		requested_port = 0;
3075 		break;
3076 
3077 	case sizeof (sin_t):	/* Complete IPv4 address */
3078 		sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset,
3079 		    sizeof (sin_t));
3080 		if (sin == NULL || !OK_32PTR((char *)sin)) {
3081 			if (tcp->tcp_debug) {
3082 				(void) strlog(TCP_MOD_ID, 0, 1,
3083 				    SL_ERROR|SL_TRACE,
3084 				    "tcp_bind: bad address parameter, "
3085 				    "offset %d, len %d",
3086 				    tbr->ADDR_offset, tbr->ADDR_length);
3087 			}
3088 			tcp_err_ack(tcp, mp, TPROTO, 0);
3089 			return;
3090 		}
3091 		/*
3092 		 * With sockets sockfs will accept bogus sin_family in
3093 		 * bind() and replace it with the family used in the socket
3094 		 * call.
3095 		 */
3096 		if (sin->sin_family != AF_INET ||
3097 		    tcp->tcp_family != AF_INET) {
3098 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3099 			return;
3100 		}
3101 		requested_port = ntohs(sin->sin_port);
3102 		tcp->tcp_ipversion = IPV4_VERSION;
3103 		v4addr = sin->sin_addr.s_addr;
3104 		IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr);
3105 		break;
3106 
3107 	case sizeof (sin6_t): /* Complete IPv6 address */
3108 		sin6 = (sin6_t *)mi_offset_param(mp,
3109 		    tbr->ADDR_offset, sizeof (sin6_t));
3110 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
3111 			if (tcp->tcp_debug) {
3112 				(void) strlog(TCP_MOD_ID, 0, 1,
3113 				    SL_ERROR|SL_TRACE,
3114 				    "tcp_bind: bad IPv6 address parameter, "
3115 				    "offset %d, len %d", tbr->ADDR_offset,
3116 				    tbr->ADDR_length);
3117 			}
3118 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
3119 			return;
3120 		}
3121 		if (sin6->sin6_family != AF_INET6 ||
3122 		    tcp->tcp_family != AF_INET6) {
3123 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3124 			return;
3125 		}
3126 		requested_port = ntohs(sin6->sin6_port);
3127 		tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ?
3128 		    IPV4_VERSION : IPV6_VERSION;
3129 		v6addr = sin6->sin6_addr;
3130 		break;
3131 
3132 	default:
3133 		if (tcp->tcp_debug) {
3134 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3135 			    "tcp_bind: bad address length, %d",
3136 			    tbr->ADDR_length);
3137 		}
3138 		tcp_err_ack(tcp, mp, TBADADDR, 0);
3139 		return;
3140 	}
3141 	tcp->tcp_bound_source_v6 = v6addr;
3142 
3143 	/* Check for change in ipversion */
3144 	if (origipversion != tcp->tcp_ipversion) {
3145 		ASSERT(tcp->tcp_family == AF_INET6);
3146 		err = tcp->tcp_ipversion == IPV6_VERSION ?
3147 		    tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp);
3148 		if (err) {
3149 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3150 			return;
3151 		}
3152 	}
3153 
3154 	/*
3155 	 * Initialize family specific fields. Copy of the src addr.
3156 	 * in tcp_t is needed for the lookup funcs.
3157 	 */
3158 	if (tcp->tcp_ipversion == IPV6_VERSION) {
3159 		tcp->tcp_ip6h->ip6_src = v6addr;
3160 	} else {
3161 		IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src);
3162 	}
3163 	tcp->tcp_ip_src_v6 = v6addr;
3164 
3165 	/*
3166 	 * For O_T_BIND_REQ:
3167 	 * Verify that the target port/addr is available, or choose
3168 	 * another.
3169 	 * For  T_BIND_REQ:
3170 	 * Verify that the target port/addr is available or fail.
3171 	 * In both cases when it succeeds the tcp is inserted in the
3172 	 * bind hash table. This ensures that the operation is atomic
3173 	 * under the lock on the hash bucket.
3174 	 */
3175 	bind_to_req_port_only = requested_port != 0 &&
3176 	    tbr->PRIM_type != O_T_BIND_REQ;
3177 	/*
3178 	 * Get a valid port (within the anonymous range and should not
3179 	 * be a privileged one) to use if the user has not given a port.
3180 	 * If multiple threads are here, they may all start with
3181 	 * with the same initial port. But, it should be fine as long as
3182 	 * tcp_bindi will ensure that no two threads will be assigned
3183 	 * the same port.
3184 	 *
3185 	 * NOTE: XXX If a privileged process asks for an anonymous port, we
3186 	 * still check for ports only in the range > tcp_smallest_non_priv_port,
3187 	 * unless TCP_ANONPRIVBIND option is set.
3188 	 */
3189 	mlptype = mlptSingle;
3190 	mlp_port = requested_port;
3191 	if (requested_port == 0) {
3192 		requested_port = tcp->tcp_anon_priv_bind ?
3193 		    tcp_get_next_priv_port(tcp) :
3194 		    tcp_update_next_port(tcps->tcps_next_port_to_try,
3195 			tcp, B_TRUE);
3196 		if (requested_port == 0) {
3197 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3198 			return;
3199 		}
3200 		user_specified = B_FALSE;
3201 
3202 		/*
3203 		 * If the user went through one of the RPC interfaces to create
3204 		 * this socket and RPC is MLP in this zone, then give him an
3205 		 * anonymous MLP.
3206 		 */
3207 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3208 		connp = tcp->tcp_connp;
3209 		if (connp->conn_anon_mlp && is_system_labeled()) {
3210 			zone = crgetzone(cr);
3211 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3212 			    IPV6_VERSION, &v6addr,
3213 			    tcps->tcps_netstack->netstack_ip);
3214 			if (addrtype == mlptSingle) {
3215 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3216 				return;
3217 			}
3218 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3219 			    PMAPPORT, addrtype);
3220 			mlp_port = PMAPPORT;
3221 		}
3222 	} else {
3223 		int i;
3224 		boolean_t priv = B_FALSE;
3225 
3226 		/*
3227 		 * If the requested_port is in the well-known privileged range,
3228 		 * verify that the stream was opened by a privileged user.
3229 		 * Note: No locks are held when inspecting tcp_g_*epriv_ports
3230 		 * but instead the code relies on:
3231 		 * - the fact that the address of the array and its size never
3232 		 *   changes
3233 		 * - the atomic assignment of the elements of the array
3234 		 */
3235 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3236 		if (requested_port < tcps->tcps_smallest_nonpriv_port) {
3237 			priv = B_TRUE;
3238 		} else {
3239 			for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
3240 				if (requested_port ==
3241 				    tcps->tcps_g_epriv_ports[i]) {
3242 					priv = B_TRUE;
3243 					break;
3244 				}
3245 			}
3246 		}
3247 		if (priv) {
3248 			if (secpolicy_net_privaddr(cr, requested_port) != 0) {
3249 				if (tcp->tcp_debug) {
3250 					(void) strlog(TCP_MOD_ID, 0, 1,
3251 					    SL_ERROR|SL_TRACE,
3252 					    "tcp_bind: no priv for port %d",
3253 					    requested_port);
3254 				}
3255 				tcp_err_ack(tcp, mp, TACCES, 0);
3256 				return;
3257 			}
3258 		}
3259 		user_specified = B_TRUE;
3260 
3261 		connp = tcp->tcp_connp;
3262 		if (is_system_labeled()) {
3263 			zone = crgetzone(cr);
3264 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3265 			    IPV6_VERSION, &v6addr,
3266 			    tcps->tcps_netstack->netstack_ip);
3267 			if (addrtype == mlptSingle) {
3268 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3269 				return;
3270 			}
3271 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3272 			    requested_port, addrtype);
3273 		}
3274 	}
3275 
3276 	if (mlptype != mlptSingle) {
3277 		if (secpolicy_net_bindmlp(cr) != 0) {
3278 			if (tcp->tcp_debug) {
3279 				(void) strlog(TCP_MOD_ID, 0, 1,
3280 				    SL_ERROR|SL_TRACE,
3281 				    "tcp_bind: no priv for multilevel port %d",
3282 				    requested_port);
3283 			}
3284 			tcp_err_ack(tcp, mp, TACCES, 0);
3285 			return;
3286 		}
3287 
3288 		/*
3289 		 * If we're specifically binding a shared IP address and the
3290 		 * port is MLP on shared addresses, then check to see if this
3291 		 * zone actually owns the MLP.  Reject if not.
3292 		 */
3293 		if (mlptype == mlptShared && addrtype == mlptShared) {
3294 			/*
3295 			 * No need to handle exclusive-stack zones since
3296 			 * ALL_ZONES only applies to the shared stack.
3297 			 */
3298 			zoneid_t mlpzone;
3299 
3300 			mlpzone = tsol_mlp_findzone(IPPROTO_TCP,
3301 			    htons(mlp_port));
3302 			if (connp->conn_zoneid != mlpzone) {
3303 				if (tcp->tcp_debug) {
3304 					(void) strlog(TCP_MOD_ID, 0, 1,
3305 					    SL_ERROR|SL_TRACE,
3306 					    "tcp_bind: attempt to bind port "
3307 					    "%d on shared addr in zone %d "
3308 					    "(should be %d)",
3309 					    mlp_port, connp->conn_zoneid,
3310 					    mlpzone);
3311 				}
3312 				tcp_err_ack(tcp, mp, TACCES, 0);
3313 				return;
3314 			}
3315 		}
3316 
3317 		if (!user_specified) {
3318 			err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3319 			    requested_port, B_TRUE);
3320 			if (err != 0) {
3321 				if (tcp->tcp_debug) {
3322 					(void) strlog(TCP_MOD_ID, 0, 1,
3323 					    SL_ERROR|SL_TRACE,
3324 					    "tcp_bind: cannot establish anon "
3325 					    "MLP for port %d",
3326 					    requested_port);
3327 				}
3328 				tcp_err_ack(tcp, mp, TSYSERR, err);
3329 				return;
3330 			}
3331 			connp->conn_anon_port = B_TRUE;
3332 		}
3333 		connp->conn_mlp_type = mlptype;
3334 	}
3335 
3336 	allocated_port = tcp_bindi(tcp, requested_port, &v6addr,
3337 	    tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified);
3338 
3339 	if (allocated_port == 0) {
3340 		connp->conn_mlp_type = mlptSingle;
3341 		if (connp->conn_anon_port) {
3342 			connp->conn_anon_port = B_FALSE;
3343 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3344 			    requested_port, B_FALSE);
3345 		}
3346 		if (bind_to_req_port_only) {
3347 			if (tcp->tcp_debug) {
3348 				(void) strlog(TCP_MOD_ID, 0, 1,
3349 				    SL_ERROR|SL_TRACE,
3350 				    "tcp_bind: requested addr busy");
3351 			}
3352 			tcp_err_ack(tcp, mp, TADDRBUSY, 0);
3353 		} else {
3354 			/* If we are out of ports, fail the bind. */
3355 			if (tcp->tcp_debug) {
3356 				(void) strlog(TCP_MOD_ID, 0, 1,
3357 				    SL_ERROR|SL_TRACE,
3358 				    "tcp_bind: out of ports?");
3359 			}
3360 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3361 		}
3362 		return;
3363 	}
3364 	ASSERT(tcp->tcp_state == TCPS_BOUND);
3365 do_bind:
3366 	if (!backlog_update) {
3367 		if (tcp->tcp_family == AF_INET)
3368 			sin->sin_port = htons(allocated_port);
3369 		else
3370 			sin6->sin6_port = htons(allocated_port);
3371 	}
3372 	if (tcp->tcp_family == AF_INET) {
3373 		if (tbr->CONIND_number != 0) {
3374 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3375 			    sizeof (sin_t));
3376 		} else {
3377 			/* Just verify the local IP address */
3378 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN);
3379 		}
3380 	} else {
3381 		if (tbr->CONIND_number != 0) {
3382 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3383 			    sizeof (sin6_t));
3384 		} else {
3385 			/* Just verify the local IP address */
3386 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3387 			    IPV6_ADDR_LEN);
3388 		}
3389 	}
3390 	if (mp1 == NULL) {
3391 		if (connp->conn_anon_port) {
3392 			connp->conn_anon_port = B_FALSE;
3393 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3394 			    requested_port, B_FALSE);
3395 		}
3396 		connp->conn_mlp_type = mlptSingle;
3397 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3398 		return;
3399 	}
3400 
3401 	tbr->PRIM_type = T_BIND_ACK;
3402 	mp->b_datap->db_type = M_PCPROTO;
3403 
3404 	/* Chain in the reply mp for tcp_rput() */
3405 	mp1->b_cont = mp;
3406 	mp = mp1;
3407 
3408 	tcp->tcp_conn_req_max = tbr->CONIND_number;
3409 	if (tcp->tcp_conn_req_max) {
3410 		if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min)
3411 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_min;
3412 		if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q)
3413 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q;
3414 		/*
3415 		 * If this is a listener, do not reset the eager list
3416 		 * and other stuffs.  Note that we don't check if the
3417 		 * existing eager list meets the new tcp_conn_req_max
3418 		 * requirement.
3419 		 */
3420 		if (tcp->tcp_state != TCPS_LISTEN) {
3421 			tcp->tcp_state = TCPS_LISTEN;
3422 			/* Initialize the chain. Don't need the eager_lock */
3423 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
3424 			tcp->tcp_eager_next_drop_q0 = tcp;
3425 			tcp->tcp_eager_prev_drop_q0 = tcp;
3426 			tcp->tcp_second_ctimer_threshold =
3427 			    tcps->tcps_ip_abort_linterval;
3428 		}
3429 	}
3430 
3431 	/*
3432 	 * We can call ip_bind directly which returns a T_BIND_ACK mp. The
3433 	 * processing continues in tcp_rput_other().
3434 	 */
3435 	if (tcp->tcp_family == AF_INET6) {
3436 		ASSERT(tcp->tcp_connp->conn_af_isv6);
3437 		mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp);
3438 	} else {
3439 		ASSERT(!tcp->tcp_connp->conn_af_isv6);
3440 		mp = ip_bind_v4(q, mp, tcp->tcp_connp);
3441 	}
3442 	/*
3443 	 * If the bind cannot complete immediately
3444 	 * IP will arrange to call tcp_rput_other
3445 	 * when the bind completes.
3446 	 */
3447 	if (mp != NULL) {
3448 		tcp_rput_other(tcp, mp);
3449 	} else {
3450 		/*
3451 		 * Bind will be resumed later. Need to ensure
3452 		 * that conn doesn't disappear when that happens.
3453 		 * This will be decremented in ip_resume_tcp_bind().
3454 		 */
3455 		CONN_INC_REF(tcp->tcp_connp);
3456 	}
3457 }
3458 
3459 
3460 /*
3461  * If the "bind_to_req_port_only" parameter is set, if the requested port
3462  * number is available, return it, If not return 0
3463  *
3464  * If "bind_to_req_port_only" parameter is not set and
3465  * If the requested port number is available, return it.  If not, return
3466  * the first anonymous port we happen across.  If no anonymous ports are
3467  * available, return 0. addr is the requested local address, if any.
3468  *
3469  * In either case, when succeeding update the tcp_t to record the port number
3470  * and insert it in the bind hash table.
3471  *
3472  * Note that TCP over IPv4 and IPv6 sockets can use the same port number
3473  * without setting SO_REUSEADDR. This is needed so that they
3474  * can be viewed as two independent transport protocols.
3475  */
3476 static in_port_t
3477 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
3478     int reuseaddr, boolean_t quick_connect,
3479     boolean_t bind_to_req_port_only, boolean_t user_specified)
3480 {
3481 	/* number of times we have run around the loop */
3482 	int count = 0;
3483 	/* maximum number of times to run around the loop */
3484 	int loopmax;
3485 	conn_t *connp = tcp->tcp_connp;
3486 	zoneid_t zoneid = connp->conn_zoneid;
3487 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3488 
3489 	/*
3490 	 * Lookup for free addresses is done in a loop and "loopmax"
3491 	 * influences how long we spin in the loop
3492 	 */
3493 	if (bind_to_req_port_only) {
3494 		/*
3495 		 * If the requested port is busy, don't bother to look
3496 		 * for a new one. Setting loop maximum count to 1 has
3497 		 * that effect.
3498 		 */
3499 		loopmax = 1;
3500 	} else {
3501 		/*
3502 		 * If the requested port is busy, look for a free one
3503 		 * in the anonymous port range.
3504 		 * Set loopmax appropriately so that one does not look
3505 		 * forever in the case all of the anonymous ports are in use.
3506 		 */
3507 		if (tcp->tcp_anon_priv_bind) {
3508 			/*
3509 			 * loopmax =
3510 			 * 	(IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1
3511 			 */
3512 			loopmax = IPPORT_RESERVED -
3513 			    tcps->tcps_min_anonpriv_port;
3514 		} else {
3515 			loopmax = (tcps->tcps_largest_anon_port -
3516 			    tcps->tcps_smallest_anon_port + 1);
3517 		}
3518 	}
3519 	do {
3520 		uint16_t	lport;
3521 		tf_t		*tbf;
3522 		tcp_t		*ltcp;
3523 		conn_t		*lconnp;
3524 
3525 		lport = htons(port);
3526 
3527 		/*
3528 		 * Ensure that the tcp_t is not currently in the bind hash.
3529 		 * Hold the lock on the hash bucket to ensure that
3530 		 * the duplicate check plus the insertion is an atomic
3531 		 * operation.
3532 		 *
3533 		 * This function does an inline lookup on the bind hash list
3534 		 * Make sure that we access only members of tcp_t
3535 		 * and that we don't look at tcp_tcp, since we are not
3536 		 * doing a CONN_INC_REF.
3537 		 */
3538 		tcp_bind_hash_remove(tcp);
3539 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)];
3540 		mutex_enter(&tbf->tf_lock);
3541 		for (ltcp = tbf->tf_tcp; ltcp != NULL;
3542 		    ltcp = ltcp->tcp_bind_hash) {
3543 			boolean_t not_socket;
3544 			boolean_t exclbind;
3545 
3546 			if (lport != ltcp->tcp_lport)
3547 				continue;
3548 
3549 			lconnp = ltcp->tcp_connp;
3550 
3551 			/*
3552 			 * On a labeled system, we must treat bindings to ports
3553 			 * on shared IP addresses by sockets with MAC exemption
3554 			 * privilege as being in all zones, as there's
3555 			 * otherwise no way to identify the right receiver.
3556 			 */
3557 			if (!IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) &&
3558 			    !lconnp->conn_mac_exempt &&
3559 			    !connp->conn_mac_exempt)
3560 				continue;
3561 
3562 			/*
3563 			 * If TCP_EXCLBIND is set for either the bound or
3564 			 * binding endpoint, the semantics of bind
3565 			 * is changed according to the following.
3566 			 *
3567 			 * spec = specified address (v4 or v6)
3568 			 * unspec = unspecified address (v4 or v6)
3569 			 * A = specified addresses are different for endpoints
3570 			 *
3571 			 * bound	bind to		allowed
3572 			 * -------------------------------------
3573 			 * unspec	unspec		no
3574 			 * unspec	spec		no
3575 			 * spec		unspec		no
3576 			 * spec		spec		yes if A
3577 			 *
3578 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
3579 			 * as TCP_EXCLBIND, except that zoneid is ignored.
3580 			 *
3581 			 * Note:
3582 			 *
3583 			 * 1. Because of TLI semantics, an endpoint can go
3584 			 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or
3585 			 * TCPS_BOUND, depending on whether it is originally
3586 			 * a listener or not.  That is why we need to check
3587 			 * for states greater than or equal to TCPS_BOUND
3588 			 * here.
3589 			 *
3590 			 * 2. Ideally, we should only check for state equals
3591 			 * to TCPS_LISTEN. And the following check should be
3592 			 * added.
3593 			 *
3594 			 * if (ltcp->tcp_state == TCPS_LISTEN ||
3595 			 *	!reuseaddr || !ltcp->tcp_reuseaddr) {
3596 			 *		...
3597 			 * }
3598 			 *
3599 			 * The semantics will be changed to this.  If the
3600 			 * endpoint on the list is in state not equal to
3601 			 * TCPS_LISTEN and both endpoints have SO_REUSEADDR
3602 			 * set, let the bind succeed.
3603 			 *
3604 			 * Because of (1), we cannot do that for TLI
3605 			 * endpoints.  But we can do that for socket endpoints.
3606 			 * If in future, we can change this going back
3607 			 * semantics, we can use the above check for TLI also.
3608 			 */
3609 			not_socket = !(TCP_IS_SOCKET(ltcp) &&
3610 			    TCP_IS_SOCKET(tcp));
3611 			exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind;
3612 
3613 			if (lconnp->conn_mac_exempt || connp->conn_mac_exempt ||
3614 			    (exclbind && (not_socket ||
3615 			    ltcp->tcp_state <= TCPS_ESTABLISHED))) {
3616 				if (V6_OR_V4_INADDR_ANY(
3617 				    ltcp->tcp_bound_source_v6) ||
3618 				    V6_OR_V4_INADDR_ANY(*laddr) ||
3619 				    IN6_ARE_ADDR_EQUAL(laddr,
3620 				    &ltcp->tcp_bound_source_v6)) {
3621 					break;
3622 				}
3623 				continue;
3624 			}
3625 
3626 			/*
3627 			 * Check ipversion to allow IPv4 and IPv6 sockets to
3628 			 * have disjoint port number spaces, if *_EXCLBIND
3629 			 * is not set and only if the application binds to a
3630 			 * specific port. We use the same autoassigned port
3631 			 * number space for IPv4 and IPv6 sockets.
3632 			 */
3633 			if (tcp->tcp_ipversion != ltcp->tcp_ipversion &&
3634 			    bind_to_req_port_only)
3635 				continue;
3636 
3637 			/*
3638 			 * Ideally, we should make sure that the source
3639 			 * address, remote address, and remote port in the
3640 			 * four tuple for this tcp-connection is unique.
3641 			 * However, trying to find out the local source
3642 			 * address would require too much code duplication
3643 			 * with IP, since IP needs needs to have that code
3644 			 * to support userland TCP implementations.
3645 			 */
3646 			if (quick_connect &&
3647 			    (ltcp->tcp_state > TCPS_LISTEN) &&
3648 			    ((tcp->tcp_fport != ltcp->tcp_fport) ||
3649 				!IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
3650 				    &ltcp->tcp_remote_v6)))
3651 				continue;
3652 
3653 			if (!reuseaddr) {
3654 				/*
3655 				 * No socket option SO_REUSEADDR.
3656 				 * If existing port is bound to
3657 				 * a non-wildcard IP address
3658 				 * and the requesting stream is
3659 				 * bound to a distinct
3660 				 * different IP addresses
3661 				 * (non-wildcard, also), keep
3662 				 * going.
3663 				 */
3664 				if (!V6_OR_V4_INADDR_ANY(*laddr) &&
3665 				    !V6_OR_V4_INADDR_ANY(
3666 				    ltcp->tcp_bound_source_v6) &&
3667 				    !IN6_ARE_ADDR_EQUAL(laddr,
3668 					&ltcp->tcp_bound_source_v6))
3669 					continue;
3670 				if (ltcp->tcp_state >= TCPS_BOUND) {
3671 					/*
3672 					 * This port is being used and
3673 					 * its state is >= TCPS_BOUND,
3674 					 * so we can't bind to it.
3675 					 */
3676 					break;
3677 				}
3678 			} else {
3679 				/*
3680 				 * socket option SO_REUSEADDR is set on the
3681 				 * binding tcp_t.
3682 				 *
3683 				 * If two streams are bound to
3684 				 * same IP address or both addr
3685 				 * and bound source are wildcards
3686 				 * (INADDR_ANY), we want to stop
3687 				 * searching.
3688 				 * We have found a match of IP source
3689 				 * address and source port, which is
3690 				 * refused regardless of the
3691 				 * SO_REUSEADDR setting, so we break.
3692 				 */
3693 				if (IN6_ARE_ADDR_EQUAL(laddr,
3694 				    &ltcp->tcp_bound_source_v6) &&
3695 				    (ltcp->tcp_state == TCPS_LISTEN ||
3696 					ltcp->tcp_state == TCPS_BOUND))
3697 					break;
3698 			}
3699 		}
3700 		if (ltcp != NULL) {
3701 			/* The port number is busy */
3702 			mutex_exit(&tbf->tf_lock);
3703 		} else {
3704 			/*
3705 			 * This port is ours. Insert in fanout and mark as
3706 			 * bound to prevent others from getting the port
3707 			 * number.
3708 			 */
3709 			tcp->tcp_state = TCPS_BOUND;
3710 			tcp->tcp_lport = htons(port);
3711 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
3712 
3713 			ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH(
3714 			    tcp->tcp_lport)] == tbf);
3715 			tcp_bind_hash_insert(tbf, tcp, 1);
3716 
3717 			mutex_exit(&tbf->tf_lock);
3718 
3719 			/*
3720 			 * We don't want tcp_next_port_to_try to "inherit"
3721 			 * a port number supplied by the user in a bind.
3722 			 */
3723 			if (user_specified)
3724 				return (port);
3725 
3726 			/*
3727 			 * This is the only place where tcp_next_port_to_try
3728 			 * is updated. After the update, it may or may not
3729 			 * be in the valid range.
3730 			 */
3731 			if (!tcp->tcp_anon_priv_bind)
3732 				tcps->tcps_next_port_to_try = port + 1;
3733 			return (port);
3734 		}
3735 
3736 		if (tcp->tcp_anon_priv_bind) {
3737 			port = tcp_get_next_priv_port(tcp);
3738 		} else {
3739 			if (count == 0 && user_specified) {
3740 				/*
3741 				 * We may have to return an anonymous port. So
3742 				 * get one to start with.
3743 				 */
3744 				port =
3745 				    tcp_update_next_port(
3746 					tcps->tcps_next_port_to_try,
3747 					tcp, B_TRUE);
3748 				user_specified = B_FALSE;
3749 			} else {
3750 				port = tcp_update_next_port(port + 1, tcp,
3751 				    B_FALSE);
3752 			}
3753 		}
3754 		if (port == 0)
3755 			break;
3756 
3757 		/*
3758 		 * Don't let this loop run forever in the case where
3759 		 * all of the anonymous ports are in use.
3760 		 */
3761 	} while (++count < loopmax);
3762 	return (0);
3763 }
3764 
3765 /*
3766  * tcp_clean_death / tcp_close_detached must not be called more than once
3767  * on a tcp. Thus every function that potentially calls tcp_clean_death
3768  * must check for the tcp state before calling tcp_clean_death.
3769  * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper,
3770  * tcp_timer_handler, all check for the tcp state.
3771  */
3772 /* ARGSUSED */
3773 void
3774 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2)
3775 {
3776 	tcp_t	*tcp = ((conn_t *)arg)->conn_tcp;
3777 
3778 	freemsg(mp);
3779 	if (tcp->tcp_state > TCPS_BOUND)
3780 	    (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT, 5);
3781 }
3782 
3783 /*
3784  * We are dying for some reason.  Try to do it gracefully.  (May be called
3785  * as writer.)
3786  *
3787  * Return -1 if the structure was not cleaned up (if the cleanup had to be
3788  * done by a service procedure).
3789  * TBD - Should the return value distinguish between the tcp_t being
3790  * freed and it being reinitialized?
3791  */
3792 static int
3793 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag)
3794 {
3795 	mblk_t	*mp;
3796 	queue_t	*q;
3797 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3798 
3799 	TCP_CLD_STAT(tag);
3800 
3801 #if TCP_TAG_CLEAN_DEATH
3802 	tcp->tcp_cleandeathtag = tag;
3803 #endif
3804 
3805 	if (tcp->tcp_fused)
3806 		tcp_unfuse(tcp);
3807 
3808 	if (tcp->tcp_linger_tid != 0 &&
3809 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3810 		tcp_stop_lingering(tcp);
3811 	}
3812 
3813 	ASSERT(tcp != NULL);
3814 	ASSERT((tcp->tcp_family == AF_INET &&
3815 	    tcp->tcp_ipversion == IPV4_VERSION) ||
3816 	    (tcp->tcp_family == AF_INET6 &&
3817 	    (tcp->tcp_ipversion == IPV4_VERSION ||
3818 	    tcp->tcp_ipversion == IPV6_VERSION)));
3819 
3820 	if (TCP_IS_DETACHED(tcp)) {
3821 		if (tcp->tcp_hard_binding) {
3822 			/*
3823 			 * Its an eager that we are dealing with. We close the
3824 			 * eager but in case a conn_ind has already gone to the
3825 			 * listener, let tcp_accept_finish() send a discon_ind
3826 			 * to the listener and drop the last reference. If the
3827 			 * listener doesn't even know about the eager i.e. the
3828 			 * conn_ind hasn't gone up, blow away the eager and drop
3829 			 * the last reference as well. If the conn_ind has gone
3830 			 * up, state should be BOUND. tcp_accept_finish
3831 			 * will figure out that the connection has received a
3832 			 * RST and will send a DISCON_IND to the application.
3833 			 */
3834 			tcp_closei_local(tcp);
3835 			if (!tcp->tcp_tconnind_started) {
3836 				CONN_DEC_REF(tcp->tcp_connp);
3837 			} else {
3838 				tcp->tcp_state = TCPS_BOUND;
3839 			}
3840 		} else {
3841 			tcp_close_detached(tcp);
3842 		}
3843 		return (0);
3844 	}
3845 
3846 	TCP_STAT(tcps, tcp_clean_death_nondetached);
3847 
3848 	/*
3849 	 * If T_ORDREL_IND has not been sent yet (done when service routine
3850 	 * is run) postpone cleaning up the endpoint until service routine
3851 	 * has sent up the T_ORDREL_IND. Avoid clearing out an existing
3852 	 * client_errno since tcp_close uses the client_errno field.
3853 	 */
3854 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
3855 		if (err != 0)
3856 			tcp->tcp_client_errno = err;
3857 
3858 		tcp->tcp_deferred_clean_death = B_TRUE;
3859 		return (-1);
3860 	}
3861 
3862 	q = tcp->tcp_rq;
3863 
3864 	/* Trash all inbound data */
3865 	flushq(q, FLUSHALL);
3866 
3867 	/*
3868 	 * If we are at least part way open and there is error
3869 	 * (err==0 implies no error)
3870 	 * notify our client by a T_DISCON_IND.
3871 	 */
3872 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
3873 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
3874 		    !TCP_IS_SOCKET(tcp)) {
3875 			/*
3876 			 * Send M_FLUSH according to TPI. Because sockets will
3877 			 * (and must) ignore FLUSHR we do that only for TPI
3878 			 * endpoints and sockets in STREAMS mode.
3879 			 */
3880 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
3881 		}
3882 		if (tcp->tcp_debug) {
3883 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
3884 			    "tcp_clean_death: discon err %d", err);
3885 		}
3886 		mp = mi_tpi_discon_ind(NULL, err, 0);
3887 		if (mp != NULL) {
3888 			putnext(q, mp);
3889 		} else {
3890 			if (tcp->tcp_debug) {
3891 				(void) strlog(TCP_MOD_ID, 0, 1,
3892 				    SL_ERROR|SL_TRACE,
3893 				    "tcp_clean_death, sending M_ERROR");
3894 			}
3895 			(void) putnextctl1(q, M_ERROR, EPROTO);
3896 		}
3897 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
3898 			/* SYN_SENT or SYN_RCVD */
3899 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
3900 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
3901 			/* ESTABLISHED or CLOSE_WAIT */
3902 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
3903 		}
3904 	}
3905 
3906 	tcp_reinit(tcp);
3907 	return (-1);
3908 }
3909 
3910 /*
3911  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
3912  * to expire, stop the wait and finish the close.
3913  */
3914 static void
3915 tcp_stop_lingering(tcp_t *tcp)
3916 {
3917 	clock_t	delta = 0;
3918 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3919 
3920 	tcp->tcp_linger_tid = 0;
3921 	if (tcp->tcp_state > TCPS_LISTEN) {
3922 		tcp_acceptor_hash_remove(tcp);
3923 		mutex_enter(&tcp->tcp_non_sq_lock);
3924 		if (tcp->tcp_flow_stopped) {
3925 			tcp_clrqfull(tcp);
3926 		}
3927 		mutex_exit(&tcp->tcp_non_sq_lock);
3928 
3929 		if (tcp->tcp_timer_tid != 0) {
3930 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3931 			tcp->tcp_timer_tid = 0;
3932 		}
3933 		/*
3934 		 * Need to cancel those timers which will not be used when
3935 		 * TCP is detached.  This has to be done before the tcp_wq
3936 		 * is set to the global queue.
3937 		 */
3938 		tcp_timers_stop(tcp);
3939 
3940 
3941 		tcp->tcp_detached = B_TRUE;
3942 		ASSERT(tcps->tcps_g_q != NULL);
3943 		tcp->tcp_rq = tcps->tcps_g_q;
3944 		tcp->tcp_wq = WR(tcps->tcps_g_q);
3945 
3946 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
3947 			tcp_time_wait_append(tcp);
3948 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
3949 			goto finish;
3950 		}
3951 
3952 		/*
3953 		 * If delta is zero the timer event wasn't executed and was
3954 		 * successfully canceled. In this case we need to restart it
3955 		 * with the minimal delta possible.
3956 		 */
3957 		if (delta >= 0) {
3958 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
3959 			    delta ? delta : 1);
3960 		}
3961 	} else {
3962 		tcp_closei_local(tcp);
3963 		CONN_DEC_REF(tcp->tcp_connp);
3964 	}
3965 finish:
3966 	/* Signal closing thread that it can complete close */
3967 	mutex_enter(&tcp->tcp_closelock);
3968 	tcp->tcp_detached = B_TRUE;
3969 	ASSERT(tcps->tcps_g_q != NULL);
3970 	tcp->tcp_rq = tcps->tcps_g_q;
3971 	tcp->tcp_wq = WR(tcps->tcps_g_q);
3972 	tcp->tcp_closed = 1;
3973 	cv_signal(&tcp->tcp_closecv);
3974 	mutex_exit(&tcp->tcp_closelock);
3975 }
3976 
3977 /*
3978  * Handle lingering timeouts. This function is called when the SO_LINGER timeout
3979  * expires.
3980  */
3981 static void
3982 tcp_close_linger_timeout(void *arg)
3983 {
3984 	conn_t	*connp = (conn_t *)arg;
3985 	tcp_t 	*tcp = connp->conn_tcp;
3986 
3987 	tcp->tcp_client_errno = ETIMEDOUT;
3988 	tcp_stop_lingering(tcp);
3989 }
3990 
3991 static int
3992 tcp_close(queue_t *q, int flags)
3993 {
3994 	conn_t		*connp = Q_TO_CONN(q);
3995 	tcp_t		*tcp = connp->conn_tcp;
3996 	mblk_t 		*mp = &tcp->tcp_closemp;
3997 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
3998 	boolean_t	linger_interrupted = B_FALSE;
3999 	mblk_t		*bp;
4000 
4001 	ASSERT(WR(q)->q_next == NULL);
4002 	ASSERT(connp->conn_ref >= 2);
4003 	ASSERT((connp->conn_flags & IPCL_TCPMOD) == 0);
4004 
4005 	/*
4006 	 * We are being closed as /dev/tcp or /dev/tcp6.
4007 	 *
4008 	 * Mark the conn as closing. ill_pending_mp_add will not
4009 	 * add any mp to the pending mp list, after this conn has
4010 	 * started closing. Same for sq_pending_mp_add
4011 	 */
4012 	mutex_enter(&connp->conn_lock);
4013 	connp->conn_state_flags |= CONN_CLOSING;
4014 	if (connp->conn_oper_pending_ill != NULL)
4015 		conn_ioctl_cleanup_reqd = B_TRUE;
4016 	CONN_INC_REF_LOCKED(connp);
4017 	mutex_exit(&connp->conn_lock);
4018 	tcp->tcp_closeflags = (uint8_t)flags;
4019 	ASSERT(connp->conn_ref >= 3);
4020 
4021 	/*
4022 	 * tcp_closemp_used is used below without any protection of a lock
4023 	 * as we don't expect any one else to use it concurrently at this
4024 	 * point otherwise it would be a major defect, though we do
4025 	 * increment tcp_closemp_used to record any attempt to reuse
4026 	 * tcp_closemp while it is still in use. This would help debugging.
4027 	 */
4028 
4029 	if (mp->b_prev == NULL) {
4030 		tcp->tcp_closemp_used = 1;
4031 	} else {
4032 		tcp->tcp_closemp_used++;
4033 		ASSERT(mp->b_prev == NULL);
4034 	}
4035 
4036 	TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
4037 
4038 	(*tcp_squeue_close_proc)(connp->conn_sqp, mp,
4039 	    tcp_close_output, connp, SQTAG_IP_TCP_CLOSE);
4040 
4041 	mutex_enter(&tcp->tcp_closelock);
4042 	while (!tcp->tcp_closed) {
4043 		if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
4044 			/*
4045 			 * We got interrupted. Check if we are lingering,
4046 			 * if yes, post a message to stop and wait until
4047 			 * tcp_closed is set. If we aren't lingering,
4048 			 * just go back around.
4049 			 */
4050 			if (tcp->tcp_linger &&
4051 			    tcp->tcp_lingertime > 0 &&
4052 			    !linger_interrupted) {
4053 				mutex_exit(&tcp->tcp_closelock);
4054 				/* Entering squeue, bump ref count. */
4055 				CONN_INC_REF(connp);
4056 				bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
4057 				squeue_enter(connp->conn_sqp, bp,
4058 				    tcp_linger_interrupted, connp,
4059 				    SQTAG_IP_TCP_CLOSE);
4060 				linger_interrupted = B_TRUE;
4061 				mutex_enter(&tcp->tcp_closelock);
4062 			}
4063 		}
4064 	}
4065 	mutex_exit(&tcp->tcp_closelock);
4066 
4067 	/*
4068 	 * In the case of listener streams that have eagers in the q or q0
4069 	 * we wait for the eagers to drop their reference to us. tcp_rq and
4070 	 * tcp_wq of the eagers point to our queues. By waiting for the
4071 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
4072 	 * up their queue pointers and also dropped their references to us.
4073 	 */
4074 	if (tcp->tcp_wait_for_eagers) {
4075 		mutex_enter(&connp->conn_lock);
4076 		while (connp->conn_ref != 1) {
4077 			cv_wait(&connp->conn_cv, &connp->conn_lock);
4078 		}
4079 		mutex_exit(&connp->conn_lock);
4080 	}
4081 	/*
4082 	 * ioctl cleanup. The mp is queued in the
4083 	 * ill_pending_mp or in the sq_pending_mp.
4084 	 */
4085 	if (conn_ioctl_cleanup_reqd)
4086 		conn_ioctl_cleanup(connp);
4087 
4088 	qprocsoff(q);
4089 	inet_minor_free(ip_minor_arena, connp->conn_dev);
4090 
4091 	tcp->tcp_cpid = -1;
4092 
4093 	/*
4094 	 * Drop IP's reference on the conn. This is the last reference
4095 	 * on the connp if the state was less than established. If the
4096 	 * connection has gone into timewait state, then we will have
4097 	 * one ref for the TCP and one more ref (total of two) for the
4098 	 * classifier connected hash list (a timewait connections stays
4099 	 * in connected hash till closed).
4100 	 *
4101 	 * We can't assert the references because there might be other
4102 	 * transient reference places because of some walkers or queued
4103 	 * packets in squeue for the timewait state.
4104 	 */
4105 	CONN_DEC_REF(connp);
4106 	q->q_ptr = WR(q)->q_ptr = NULL;
4107 	return (0);
4108 }
4109 
4110 static int
4111 tcpclose_accept(queue_t *q)
4112 {
4113 	ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit);
4114 
4115 	/*
4116 	 * We had opened an acceptor STREAM for sockfs which is
4117 	 * now being closed due to some error.
4118 	 */
4119 	qprocsoff(q);
4120 	inet_minor_free(ip_minor_arena, (dev_t)q->q_ptr);
4121 	q->q_ptr = WR(q)->q_ptr = NULL;
4122 	return (0);
4123 }
4124 
4125 /*
4126  * Called by tcp_close() routine via squeue when lingering is
4127  * interrupted by a signal.
4128  */
4129 
4130 /* ARGSUSED */
4131 static void
4132 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2)
4133 {
4134 	conn_t	*connp = (conn_t *)arg;
4135 	tcp_t	*tcp = connp->conn_tcp;
4136 
4137 	freeb(mp);
4138 	if (tcp->tcp_linger_tid != 0 &&
4139 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
4140 		tcp_stop_lingering(tcp);
4141 		tcp->tcp_client_errno = EINTR;
4142 	}
4143 }
4144 
4145 /*
4146  * Called by streams close routine via squeues when our client blows off her
4147  * descriptor, we take this to mean: "close the stream state NOW, close the tcp
4148  * connection politely" When SO_LINGER is set (with a non-zero linger time and
4149  * it is not a nonblocking socket) then this routine sleeps until the FIN is
4150  * acked.
4151  *
4152  * NOTE: tcp_close potentially returns error when lingering.
4153  * However, the stream head currently does not pass these errors
4154  * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK
4155  * errors to the application (from tsleep()) and not errors
4156  * like ECONNRESET caused by receiving a reset packet.
4157  */
4158 
4159 /* ARGSUSED */
4160 static void
4161 tcp_close_output(void *arg, mblk_t *mp, void *arg2)
4162 {
4163 	char	*msg;
4164 	conn_t	*connp = (conn_t *)arg;
4165 	tcp_t	*tcp = connp->conn_tcp;
4166 	clock_t	delta = 0;
4167 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4168 
4169 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
4170 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
4171 
4172 	/* Cancel any pending timeout */
4173 	if (tcp->tcp_ordrelid != 0) {
4174 		if (tcp->tcp_timeout) {
4175 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid);
4176 		}
4177 		tcp->tcp_ordrelid = 0;
4178 		tcp->tcp_timeout = B_FALSE;
4179 	}
4180 
4181 	mutex_enter(&tcp->tcp_eager_lock);
4182 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
4183 		/* Cleanup for listener */
4184 		tcp_eager_cleanup(tcp, 0);
4185 		tcp->tcp_wait_for_eagers = 1;
4186 	}
4187 	mutex_exit(&tcp->tcp_eager_lock);
4188 
4189 	connp->conn_mdt_ok = B_FALSE;
4190 	tcp->tcp_mdt = B_FALSE;
4191 
4192 	connp->conn_lso_ok = B_FALSE;
4193 	tcp->tcp_lso = B_FALSE;
4194 
4195 	msg = NULL;
4196 	switch (tcp->tcp_state) {
4197 	case TCPS_CLOSED:
4198 	case TCPS_IDLE:
4199 	case TCPS_BOUND:
4200 	case TCPS_LISTEN:
4201 		break;
4202 	case TCPS_SYN_SENT:
4203 		msg = "tcp_close, during connect";
4204 		break;
4205 	case TCPS_SYN_RCVD:
4206 		/*
4207 		 * Close during the connect 3-way handshake
4208 		 * but here there may or may not be pending data
4209 		 * already on queue. Process almost same as in
4210 		 * the ESTABLISHED state.
4211 		 */
4212 		/* FALLTHRU */
4213 	default:
4214 		if (tcp->tcp_fused)
4215 			tcp_unfuse(tcp);
4216 
4217 		/*
4218 		 * If SO_LINGER has set a zero linger time, abort the
4219 		 * connection with a reset.
4220 		 */
4221 		if (tcp->tcp_linger && tcp->tcp_lingertime == 0) {
4222 			msg = "tcp_close, zero lingertime";
4223 			break;
4224 		}
4225 
4226 		ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding);
4227 		/*
4228 		 * Abort connection if there is unread data queued.
4229 		 */
4230 		if (tcp->tcp_rcv_list || tcp->tcp_reass_head) {
4231 			msg = "tcp_close, unread data";
4232 			break;
4233 		}
4234 		/*
4235 		 * tcp_hard_bound is now cleared thus all packets go through
4236 		 * tcp_lookup. This fact is used by tcp_detach below.
4237 		 *
4238 		 * We have done a qwait() above which could have possibly
4239 		 * drained more messages in turn causing transition to a
4240 		 * different state. Check whether we have to do the rest
4241 		 * of the processing or not.
4242 		 */
4243 		if (tcp->tcp_state <= TCPS_LISTEN)
4244 			break;
4245 
4246 		/*
4247 		 * Transmit the FIN before detaching the tcp_t.
4248 		 * After tcp_detach returns this queue/perimeter
4249 		 * no longer owns the tcp_t thus others can modify it.
4250 		 */
4251 		(void) tcp_xmit_end(tcp);
4252 
4253 		/*
4254 		 * If lingering on close then wait until the fin is acked,
4255 		 * the SO_LINGER time passes, or a reset is sent/received.
4256 		 */
4257 		if (tcp->tcp_linger && tcp->tcp_lingertime > 0 &&
4258 		    !(tcp->tcp_fin_acked) &&
4259 		    tcp->tcp_state >= TCPS_ESTABLISHED) {
4260 			if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) {
4261 				tcp->tcp_client_errno = EWOULDBLOCK;
4262 			} else if (tcp->tcp_client_errno == 0) {
4263 
4264 				ASSERT(tcp->tcp_linger_tid == 0);
4265 
4266 				tcp->tcp_linger_tid = TCP_TIMER(tcp,
4267 				    tcp_close_linger_timeout,
4268 				    tcp->tcp_lingertime * hz);
4269 
4270 				/* tcp_close_linger_timeout will finish close */
4271 				if (tcp->tcp_linger_tid == 0)
4272 					tcp->tcp_client_errno = ENOSR;
4273 				else
4274 					return;
4275 			}
4276 
4277 			/*
4278 			 * Check if we need to detach or just close
4279 			 * the instance.
4280 			 */
4281 			if (tcp->tcp_state <= TCPS_LISTEN)
4282 				break;
4283 		}
4284 
4285 		/*
4286 		 * Make sure that no other thread will access the tcp_rq of
4287 		 * this instance (through lookups etc.) as tcp_rq will go
4288 		 * away shortly.
4289 		 */
4290 		tcp_acceptor_hash_remove(tcp);
4291 
4292 		mutex_enter(&tcp->tcp_non_sq_lock);
4293 		if (tcp->tcp_flow_stopped) {
4294 			tcp_clrqfull(tcp);
4295 		}
4296 		mutex_exit(&tcp->tcp_non_sq_lock);
4297 
4298 		if (tcp->tcp_timer_tid != 0) {
4299 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4300 			tcp->tcp_timer_tid = 0;
4301 		}
4302 		/*
4303 		 * Need to cancel those timers which will not be used when
4304 		 * TCP is detached.  This has to be done before the tcp_wq
4305 		 * is set to the global queue.
4306 		 */
4307 		tcp_timers_stop(tcp);
4308 
4309 		tcp->tcp_detached = B_TRUE;
4310 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
4311 			tcp_time_wait_append(tcp);
4312 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
4313 			ASSERT(connp->conn_ref >= 3);
4314 			goto finish;
4315 		}
4316 
4317 		/*
4318 		 * If delta is zero the timer event wasn't executed and was
4319 		 * successfully canceled. In this case we need to restart it
4320 		 * with the minimal delta possible.
4321 		 */
4322 		if (delta >= 0)
4323 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
4324 			    delta ? delta : 1);
4325 
4326 		ASSERT(connp->conn_ref >= 3);
4327 		goto finish;
4328 	}
4329 
4330 	/* Detach did not complete. Still need to remove q from stream. */
4331 	if (msg) {
4332 		if (tcp->tcp_state == TCPS_ESTABLISHED ||
4333 		    tcp->tcp_state == TCPS_CLOSE_WAIT)
4334 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
4335 		if (tcp->tcp_state == TCPS_SYN_SENT ||
4336 		    tcp->tcp_state == TCPS_SYN_RCVD)
4337 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
4338 		tcp_xmit_ctl(msg, tcp,  tcp->tcp_snxt, 0, TH_RST);
4339 	}
4340 
4341 	tcp_closei_local(tcp);
4342 	CONN_DEC_REF(connp);
4343 	ASSERT(connp->conn_ref >= 2);
4344 
4345 finish:
4346 	/*
4347 	 * Although packets are always processed on the correct
4348 	 * tcp's perimeter and access is serialized via squeue's,
4349 	 * IP still needs a queue when sending packets in time_wait
4350 	 * state so use WR(tcps_g_q) till ip_output() can be
4351 	 * changed to deal with just connp. For read side, we
4352 	 * could have set tcp_rq to NULL but there are some cases
4353 	 * in tcp_rput_data() from early days of this code which
4354 	 * do a putnext without checking if tcp is closed. Those
4355 	 * need to be identified before both tcp_rq and tcp_wq
4356 	 * can be set to NULL and tcps_g_q can disappear forever.
4357 	 */
4358 	mutex_enter(&tcp->tcp_closelock);
4359 	/*
4360 	 * Don't change the queues in the case of a listener that has
4361 	 * eagers in its q or q0. It could surprise the eagers.
4362 	 * Instead wait for the eagers outside the squeue.
4363 	 */
4364 	if (!tcp->tcp_wait_for_eagers) {
4365 		tcp->tcp_detached = B_TRUE;
4366 		/*
4367 		 * When default queue is closing we set tcps_g_q to NULL
4368 		 * after the close is done.
4369 		 */
4370 		ASSERT(tcps->tcps_g_q != NULL);
4371 		tcp->tcp_rq = tcps->tcps_g_q;
4372 		tcp->tcp_wq = WR(tcps->tcps_g_q);
4373 	}
4374 
4375 	/* Signal tcp_close() to finish closing. */
4376 	tcp->tcp_closed = 1;
4377 	cv_signal(&tcp->tcp_closecv);
4378 	mutex_exit(&tcp->tcp_closelock);
4379 }
4380 
4381 
4382 /*
4383  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
4384  * Some stream heads get upset if they see these later on as anything but NULL.
4385  */
4386 static void
4387 tcp_close_mpp(mblk_t **mpp)
4388 {
4389 	mblk_t	*mp;
4390 
4391 	if ((mp = *mpp) != NULL) {
4392 		do {
4393 			mp->b_next = NULL;
4394 			mp->b_prev = NULL;
4395 		} while ((mp = mp->b_cont) != NULL);
4396 
4397 		mp = *mpp;
4398 		*mpp = NULL;
4399 		freemsg(mp);
4400 	}
4401 }
4402 
4403 /* Do detached close. */
4404 static void
4405 tcp_close_detached(tcp_t *tcp)
4406 {
4407 	if (tcp->tcp_fused)
4408 		tcp_unfuse(tcp);
4409 
4410 	/*
4411 	 * Clustering code serializes TCP disconnect callbacks and
4412 	 * cluster tcp list walks by blocking a TCP disconnect callback
4413 	 * if a cluster tcp list walk is in progress. This ensures
4414 	 * accurate accounting of TCPs in the cluster code even though
4415 	 * the TCP list walk itself is not atomic.
4416 	 */
4417 	tcp_closei_local(tcp);
4418 	CONN_DEC_REF(tcp->tcp_connp);
4419 }
4420 
4421 /*
4422  * Stop all TCP timers, and free the timer mblks if requested.
4423  */
4424 void
4425 tcp_timers_stop(tcp_t *tcp)
4426 {
4427 	if (tcp->tcp_timer_tid != 0) {
4428 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4429 		tcp->tcp_timer_tid = 0;
4430 	}
4431 	if (tcp->tcp_ka_tid != 0) {
4432 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid);
4433 		tcp->tcp_ka_tid = 0;
4434 	}
4435 	if (tcp->tcp_ack_tid != 0) {
4436 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
4437 		tcp->tcp_ack_tid = 0;
4438 	}
4439 	if (tcp->tcp_push_tid != 0) {
4440 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
4441 		tcp->tcp_push_tid = 0;
4442 	}
4443 }
4444 
4445 /*
4446  * The tcp_t is going away. Remove it from all lists and set it
4447  * to TCPS_CLOSED. The freeing up of memory is deferred until
4448  * tcp_inactive. This is needed since a thread in tcp_rput might have
4449  * done a CONN_INC_REF on this structure before it was removed from the
4450  * hashes.
4451  */
4452 static void
4453 tcp_closei_local(tcp_t *tcp)
4454 {
4455 	ire_t 	*ire;
4456 	conn_t	*connp = tcp->tcp_connp;
4457 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4458 
4459 	if (!TCP_IS_SOCKET(tcp))
4460 		tcp_acceptor_hash_remove(tcp);
4461 
4462 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
4463 	tcp->tcp_ibsegs = 0;
4464 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
4465 	tcp->tcp_obsegs = 0;
4466 
4467 	/*
4468 	 * If we are an eager connection hanging off a listener that
4469 	 * hasn't formally accepted the connection yet, get off his
4470 	 * list and blow off any data that we have accumulated.
4471 	 */
4472 	if (tcp->tcp_listener != NULL) {
4473 		tcp_t	*listener = tcp->tcp_listener;
4474 		mutex_enter(&listener->tcp_eager_lock);
4475 		/*
4476 		 * tcp_tconnind_started == B_TRUE means that the
4477 		 * conn_ind has already gone to listener. At
4478 		 * this point, eager will be closed but we
4479 		 * leave it in listeners eager list so that
4480 		 * if listener decides to close without doing
4481 		 * accept, we can clean this up. In tcp_wput_accept
4482 		 * we take care of the case of accept on closed
4483 		 * eager.
4484 		 */
4485 		if (!tcp->tcp_tconnind_started) {
4486 			tcp_eager_unlink(tcp);
4487 			mutex_exit(&listener->tcp_eager_lock);
4488 			/*
4489 			 * We don't want to have any pointers to the
4490 			 * listener queue, after we have released our
4491 			 * reference on the listener
4492 			 */
4493 			ASSERT(tcps->tcps_g_q != NULL);
4494 			tcp->tcp_rq = tcps->tcps_g_q;
4495 			tcp->tcp_wq = WR(tcps->tcps_g_q);
4496 			CONN_DEC_REF(listener->tcp_connp);
4497 		} else {
4498 			mutex_exit(&listener->tcp_eager_lock);
4499 		}
4500 	}
4501 
4502 	/* Stop all the timers */
4503 	tcp_timers_stop(tcp);
4504 
4505 	if (tcp->tcp_state == TCPS_LISTEN) {
4506 		if (tcp->tcp_ip_addr_cache) {
4507 			kmem_free((void *)tcp->tcp_ip_addr_cache,
4508 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
4509 			tcp->tcp_ip_addr_cache = NULL;
4510 		}
4511 	}
4512 	mutex_enter(&tcp->tcp_non_sq_lock);
4513 	if (tcp->tcp_flow_stopped)
4514 		tcp_clrqfull(tcp);
4515 	mutex_exit(&tcp->tcp_non_sq_lock);
4516 
4517 	tcp_bind_hash_remove(tcp);
4518 	/*
4519 	 * If the tcp_time_wait_collector (which runs outside the squeue)
4520 	 * is trying to remove this tcp from the time wait list, we will
4521 	 * block in tcp_time_wait_remove while trying to acquire the
4522 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
4523 	 * requires the ipcl_hash_remove to be ordered after the
4524 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
4525 	 */
4526 	if (tcp->tcp_state == TCPS_TIME_WAIT)
4527 		(void) tcp_time_wait_remove(tcp, NULL);
4528 	CL_INET_DISCONNECT(tcp);
4529 	ipcl_hash_remove(connp);
4530 
4531 	/*
4532 	 * Delete the cached ire in conn_ire_cache and also mark
4533 	 * the conn as CONDEMNED
4534 	 */
4535 	mutex_enter(&connp->conn_lock);
4536 	connp->conn_state_flags |= CONN_CONDEMNED;
4537 	ire = connp->conn_ire_cache;
4538 	connp->conn_ire_cache = NULL;
4539 	mutex_exit(&connp->conn_lock);
4540 	if (ire != NULL)
4541 		IRE_REFRELE_NOTR(ire);
4542 
4543 	/* Need to cleanup any pending ioctls */
4544 	ASSERT(tcp->tcp_time_wait_next == NULL);
4545 	ASSERT(tcp->tcp_time_wait_prev == NULL);
4546 	ASSERT(tcp->tcp_time_wait_expire == 0);
4547 	tcp->tcp_state = TCPS_CLOSED;
4548 
4549 	/* Release any SSL context */
4550 	if (tcp->tcp_kssl_ent != NULL) {
4551 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
4552 		tcp->tcp_kssl_ent = NULL;
4553 	}
4554 	if (tcp->tcp_kssl_ctx != NULL) {
4555 		kssl_release_ctx(tcp->tcp_kssl_ctx);
4556 		tcp->tcp_kssl_ctx = NULL;
4557 	}
4558 	tcp->tcp_kssl_pending = B_FALSE;
4559 
4560 	tcp_ipsec_cleanup(tcp);
4561 }
4562 
4563 /*
4564  * tcp is dying (called from ipcl_conn_destroy and error cases).
4565  * Free the tcp_t in either case.
4566  */
4567 void
4568 tcp_free(tcp_t *tcp)
4569 {
4570 	mblk_t	*mp;
4571 	ip6_pkt_t	*ipp;
4572 
4573 	ASSERT(tcp != NULL);
4574 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
4575 
4576 	tcp->tcp_rq = NULL;
4577 	tcp->tcp_wq = NULL;
4578 
4579 	tcp_close_mpp(&tcp->tcp_xmit_head);
4580 	tcp_close_mpp(&tcp->tcp_reass_head);
4581 	if (tcp->tcp_rcv_list != NULL) {
4582 		/* Free b_next chain */
4583 		tcp_close_mpp(&tcp->tcp_rcv_list);
4584 	}
4585 	if ((mp = tcp->tcp_urp_mp) != NULL) {
4586 		freemsg(mp);
4587 	}
4588 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
4589 		freemsg(mp);
4590 	}
4591 
4592 	if (tcp->tcp_fused_sigurg_mp != NULL) {
4593 		freeb(tcp->tcp_fused_sigurg_mp);
4594 		tcp->tcp_fused_sigurg_mp = NULL;
4595 	}
4596 
4597 	if (tcp->tcp_sack_info != NULL) {
4598 		if (tcp->tcp_notsack_list != NULL) {
4599 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
4600 		}
4601 		bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
4602 	}
4603 
4604 	if (tcp->tcp_hopopts != NULL) {
4605 		mi_free(tcp->tcp_hopopts);
4606 		tcp->tcp_hopopts = NULL;
4607 		tcp->tcp_hopoptslen = 0;
4608 	}
4609 	ASSERT(tcp->tcp_hopoptslen == 0);
4610 	if (tcp->tcp_dstopts != NULL) {
4611 		mi_free(tcp->tcp_dstopts);
4612 		tcp->tcp_dstopts = NULL;
4613 		tcp->tcp_dstoptslen = 0;
4614 	}
4615 	ASSERT(tcp->tcp_dstoptslen == 0);
4616 	if (tcp->tcp_rtdstopts != NULL) {
4617 		mi_free(tcp->tcp_rtdstopts);
4618 		tcp->tcp_rtdstopts = NULL;
4619 		tcp->tcp_rtdstoptslen = 0;
4620 	}
4621 	ASSERT(tcp->tcp_rtdstoptslen == 0);
4622 	if (tcp->tcp_rthdr != NULL) {
4623 		mi_free(tcp->tcp_rthdr);
4624 		tcp->tcp_rthdr = NULL;
4625 		tcp->tcp_rthdrlen = 0;
4626 	}
4627 	ASSERT(tcp->tcp_rthdrlen == 0);
4628 
4629 	ipp = &tcp->tcp_sticky_ipp;
4630 	if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS |
4631 	    IPPF_RTHDR))
4632 		ip6_pkt_free(ipp);
4633 
4634 	/*
4635 	 * Free memory associated with the tcp/ip header template.
4636 	 */
4637 
4638 	if (tcp->tcp_iphc != NULL)
4639 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4640 
4641 	/*
4642 	 * Following is really a blowing away a union.
4643 	 * It happens to have exactly two members of identical size
4644 	 * the following code is enough.
4645 	 */
4646 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
4647 
4648 	if (tcp->tcp_tracebuf != NULL) {
4649 		kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t));
4650 		tcp->tcp_tracebuf = NULL;
4651 	}
4652 }
4653 
4654 
4655 /*
4656  * Put a connection confirmation message upstream built from the
4657  * address information within 'iph' and 'tcph'.  Report our success or failure.
4658  */
4659 static boolean_t
4660 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp,
4661     mblk_t **defermp)
4662 {
4663 	sin_t	sin;
4664 	sin6_t	sin6;
4665 	mblk_t	*mp;
4666 	char	*optp = NULL;
4667 	int	optlen = 0;
4668 	cred_t	*cr;
4669 
4670 	if (defermp != NULL)
4671 		*defermp = NULL;
4672 
4673 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL) {
4674 		/*
4675 		 * Return in T_CONN_CON results of option negotiation through
4676 		 * the T_CONN_REQ. Note: If there is an real end-to-end option
4677 		 * negotiation, then what is received from remote end needs
4678 		 * to be taken into account but there is no such thing (yet?)
4679 		 * in our TCP/IP.
4680 		 * Note: We do not use mi_offset_param() here as
4681 		 * tcp_opts_conn_req contents do not directly come from
4682 		 * an application and are either generated in kernel or
4683 		 * from user input that was already verified.
4684 		 */
4685 		mp = tcp->tcp_conn.tcp_opts_conn_req;
4686 		optp = (char *)(mp->b_rptr +
4687 		    ((struct T_conn_req *)mp->b_rptr)->OPT_offset);
4688 		optlen = (int)
4689 		    ((struct T_conn_req *)mp->b_rptr)->OPT_length;
4690 	}
4691 
4692 	if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) {
4693 		ipha_t *ipha = (ipha_t *)iphdr;
4694 
4695 		/* packet is IPv4 */
4696 		if (tcp->tcp_family == AF_INET) {
4697 			sin = sin_null;
4698 			sin.sin_addr.s_addr = ipha->ipha_src;
4699 			sin.sin_port = *(uint16_t *)tcph->th_lport;
4700 			sin.sin_family = AF_INET;
4701 			mp = mi_tpi_conn_con(NULL, (char *)&sin,
4702 			    (int)sizeof (sin_t), optp, optlen);
4703 		} else {
4704 			sin6 = sin6_null;
4705 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4706 			sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4707 			sin6.sin6_family = AF_INET6;
4708 			mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4709 			    (int)sizeof (sin6_t), optp, optlen);
4710 
4711 		}
4712 	} else {
4713 		ip6_t	*ip6h = (ip6_t *)iphdr;
4714 
4715 		ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION);
4716 		ASSERT(tcp->tcp_family == AF_INET6);
4717 		sin6 = sin6_null;
4718 		sin6.sin6_addr = ip6h->ip6_src;
4719 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4720 		sin6.sin6_family = AF_INET6;
4721 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4722 		mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4723 		    (int)sizeof (sin6_t), optp, optlen);
4724 	}
4725 
4726 	if (!mp)
4727 		return (B_FALSE);
4728 
4729 	if ((cr = DB_CRED(idmp)) != NULL) {
4730 		mblk_setcred(mp, cr);
4731 		DB_CPID(mp) = DB_CPID(idmp);
4732 	}
4733 
4734 	if (defermp == NULL)
4735 		putnext(tcp->tcp_rq, mp);
4736 	else
4737 		*defermp = mp;
4738 
4739 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4740 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4741 	return (B_TRUE);
4742 }
4743 
4744 /*
4745  * Defense for the SYN attack -
4746  * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest
4747  *    one from the list of droppable eagers. This list is a subset of q0.
4748  *    see comments before the definition of MAKE_DROPPABLE().
4749  * 2. Don't drop a SYN request before its first timeout. This gives every
4750  *    request at least til the first timeout to complete its 3-way handshake.
4751  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
4752  *    requests currently on the queue that has timed out. This will be used
4753  *    as an indicator of whether an attack is under way, so that appropriate
4754  *    actions can be taken. (It's incremented in tcp_timer() and decremented
4755  *    either when eager goes into ESTABLISHED, or gets freed up.)
4756  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
4757  *    # of timeout drops back to <= q0len/32 => SYN alert off
4758  */
4759 static boolean_t
4760 tcp_drop_q0(tcp_t *tcp)
4761 {
4762 	tcp_t	*eager;
4763 	mblk_t	*mp;
4764 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4765 
4766 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
4767 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
4768 
4769 	/* Pick oldest eager from the list of droppable eagers */
4770 	eager = tcp->tcp_eager_prev_drop_q0;
4771 
4772 	/* If list is empty. return B_FALSE */
4773 	if (eager == tcp) {
4774 		return (B_FALSE);
4775 	}
4776 
4777 	/* If allocated, the mp will be freed in tcp_clean_death_wrapper() */
4778 	if ((mp = allocb(0, BPRI_HI)) == NULL)
4779 		return (B_FALSE);
4780 
4781 	/*
4782 	 * Take this eager out from the list of droppable eagers since we are
4783 	 * going to drop it.
4784 	 */
4785 	MAKE_UNDROPPABLE(eager);
4786 
4787 	if (tcp->tcp_debug) {
4788 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
4789 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
4790 		    " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0,
4791 		    tcp->tcp_conn_req_cnt_q0,
4792 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4793 	}
4794 
4795 	BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop);
4796 
4797 	/* Put a reference on the conn as we are enqueueing it in the sqeue */
4798 	CONN_INC_REF(eager->tcp_connp);
4799 
4800 	/* Mark the IRE created for this SYN request temporary */
4801 	tcp_ip_ire_mark_advice(eager);
4802 	squeue_fill(eager->tcp_connp->conn_sqp, mp,
4803 	    tcp_clean_death_wrapper, eager->tcp_connp, SQTAG_TCP_DROP_Q0);
4804 
4805 	return (B_TRUE);
4806 }
4807 
4808 int
4809 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
4810     tcph_t *tcph, uint_t ipvers, mblk_t *idmp)
4811 {
4812 	tcp_t 		*ltcp = lconnp->conn_tcp;
4813 	tcp_t		*tcp = connp->conn_tcp;
4814 	mblk_t		*tpi_mp;
4815 	ipha_t		*ipha;
4816 	ip6_t		*ip6h;
4817 	sin6_t 		sin6;
4818 	in6_addr_t 	v6dst;
4819 	int		err;
4820 	int		ifindex = 0;
4821 	cred_t		*cr;
4822 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4823 
4824 	if (ipvers == IPV4_VERSION) {
4825 		ipha = (ipha_t *)mp->b_rptr;
4826 
4827 		connp->conn_send = ip_output;
4828 		connp->conn_recv = tcp_input;
4829 
4830 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4831 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4832 
4833 		sin6 = sin6_null;
4834 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4835 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst);
4836 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4837 		sin6.sin6_family = AF_INET6;
4838 		sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst,
4839 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4840 		if (tcp->tcp_recvdstaddr) {
4841 			sin6_t	sin6d;
4842 
4843 			sin6d = sin6_null;
4844 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst,
4845 			    &sin6d.sin6_addr);
4846 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4847 			sin6d.sin6_family = AF_INET;
4848 			tpi_mp = mi_tpi_extconn_ind(NULL,
4849 			    (char *)&sin6d, sizeof (sin6_t),
4850 			    (char *)&tcp,
4851 			    (t_scalar_t)sizeof (intptr_t),
4852 			    (char *)&sin6d, sizeof (sin6_t),
4853 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4854 		} else {
4855 			tpi_mp = mi_tpi_conn_ind(NULL,
4856 			    (char *)&sin6, sizeof (sin6_t),
4857 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4858 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4859 		}
4860 	} else {
4861 		ip6h = (ip6_t *)mp->b_rptr;
4862 
4863 		connp->conn_send = ip_output_v6;
4864 		connp->conn_recv = tcp_input;
4865 
4866 		connp->conn_srcv6 = ip6h->ip6_dst;
4867 		connp->conn_remv6 = ip6h->ip6_src;
4868 
4869 		/* db_cksumstuff is set at ip_fanout_tcp_v6 */
4870 		ifindex = (int)DB_CKSUMSTUFF(mp);
4871 		DB_CKSUMSTUFF(mp) = 0;
4872 
4873 		sin6 = sin6_null;
4874 		sin6.sin6_addr = ip6h->ip6_src;
4875 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4876 		sin6.sin6_family = AF_INET6;
4877 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4878 		sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst,
4879 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4880 
4881 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4882 			/* Pass up the scope_id of remote addr */
4883 			sin6.sin6_scope_id = ifindex;
4884 		} else {
4885 			sin6.sin6_scope_id = 0;
4886 		}
4887 		if (tcp->tcp_recvdstaddr) {
4888 			sin6_t	sin6d;
4889 
4890 			sin6d = sin6_null;
4891 			sin6.sin6_addr = ip6h->ip6_dst;
4892 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4893 			sin6d.sin6_family = AF_INET;
4894 			tpi_mp = mi_tpi_extconn_ind(NULL,
4895 			    (char *)&sin6d, sizeof (sin6_t),
4896 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4897 			    (char *)&sin6d, sizeof (sin6_t),
4898 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4899 		} else {
4900 			tpi_mp = mi_tpi_conn_ind(NULL,
4901 			    (char *)&sin6, sizeof (sin6_t),
4902 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4903 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4904 		}
4905 	}
4906 
4907 	if (tpi_mp == NULL)
4908 		return (ENOMEM);
4909 
4910 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4911 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4912 	connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER);
4913 	connp->conn_fully_bound = B_FALSE;
4914 
4915 	if (tcps->tcps_trace)
4916 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
4917 
4918 	/* Inherit information from the "parent" */
4919 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
4920 	tcp->tcp_family = ltcp->tcp_family;
4921 	tcp->tcp_wq = ltcp->tcp_wq;
4922 	tcp->tcp_rq = ltcp->tcp_rq;
4923 	tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
4924 	tcp->tcp_detached = B_TRUE;
4925 	if ((err = tcp_init_values(tcp)) != 0) {
4926 		freemsg(tpi_mp);
4927 		return (err);
4928 	}
4929 
4930 	if (ipvers == IPV4_VERSION) {
4931 		if ((err = tcp_header_init_ipv4(tcp)) != 0) {
4932 			freemsg(tpi_mp);
4933 			return (err);
4934 		}
4935 		ASSERT(tcp->tcp_ipha != NULL);
4936 	} else {
4937 		/* ifindex must be already set */
4938 		ASSERT(ifindex != 0);
4939 
4940 		if (ltcp->tcp_bound_if != 0) {
4941 			/*
4942 			 * Set newtcp's bound_if equal to
4943 			 * listener's value. If ifindex is
4944 			 * not the same as ltcp->tcp_bound_if,
4945 			 * it must be a packet for the ipmp group
4946 			 * of interfaces
4947 			 */
4948 			tcp->tcp_bound_if = ltcp->tcp_bound_if;
4949 		} else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4950 			tcp->tcp_bound_if = ifindex;
4951 		}
4952 
4953 		tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary;
4954 		tcp->tcp_recvifindex = 0;
4955 		tcp->tcp_recvhops = 0xffffffffU;
4956 		ASSERT(tcp->tcp_ip6h != NULL);
4957 	}
4958 
4959 	tcp->tcp_lport = ltcp->tcp_lport;
4960 
4961 	if (ltcp->tcp_ipversion == tcp->tcp_ipversion) {
4962 		if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) {
4963 			/*
4964 			 * Listener had options of some sort; eager inherits.
4965 			 * Free up the eager template and allocate one
4966 			 * of the right size.
4967 			 */
4968 			if (tcp->tcp_hdr_grown) {
4969 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
4970 			} else {
4971 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4972 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
4973 			}
4974 			tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len,
4975 			    KM_NOSLEEP);
4976 			if (tcp->tcp_iphc == NULL) {
4977 				tcp->tcp_iphc_len = 0;
4978 				freemsg(tpi_mp);
4979 				return (ENOMEM);
4980 			}
4981 			tcp->tcp_iphc_len = ltcp->tcp_iphc_len;
4982 			tcp->tcp_hdr_grown = B_TRUE;
4983 		}
4984 		tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
4985 		tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
4986 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
4987 		tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops;
4988 		tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf;
4989 
4990 		/*
4991 		 * Copy the IP+TCP header template from listener to eager
4992 		 */
4993 		bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
4994 		if (tcp->tcp_ipversion == IPV6_VERSION) {
4995 			if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt ==
4996 			    IPPROTO_RAW) {
4997 				tcp->tcp_ip6h =
4998 				    (ip6_t *)(tcp->tcp_iphc +
4999 					sizeof (ip6i_t));
5000 			} else {
5001 				tcp->tcp_ip6h =
5002 				    (ip6_t *)(tcp->tcp_iphc);
5003 			}
5004 			tcp->tcp_ipha = NULL;
5005 		} else {
5006 			tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5007 			tcp->tcp_ip6h = NULL;
5008 		}
5009 		tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5010 		    tcp->tcp_ip_hdr_len);
5011 	} else {
5012 		/*
5013 		 * only valid case when ipversion of listener and
5014 		 * eager differ is when listener is IPv6 and
5015 		 * eager is IPv4.
5016 		 * Eager header template has been initialized to the
5017 		 * maximum v4 header sizes, which includes space for
5018 		 * TCP and IP options.
5019 		 */
5020 		ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) &&
5021 		    (tcp->tcp_ipversion == IPV4_VERSION));
5022 		ASSERT(tcp->tcp_iphc_len >=
5023 		    TCP_MAX_COMBINED_HEADER_LENGTH);
5024 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5025 		/* copy IP header fields individually */
5026 		tcp->tcp_ipha->ipha_ttl =
5027 		    ltcp->tcp_ip6h->ip6_hops;
5028 		bcopy(ltcp->tcp_tcph->th_lport,
5029 		    tcp->tcp_tcph->th_lport, sizeof (ushort_t));
5030 	}
5031 
5032 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5033 	bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport,
5034 	    sizeof (in_port_t));
5035 
5036 	if (ltcp->tcp_lport == 0) {
5037 		tcp->tcp_lport = *(in_port_t *)tcph->th_fport;
5038 		bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport,
5039 		    sizeof (in_port_t));
5040 	}
5041 
5042 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5043 		ASSERT(ipha != NULL);
5044 		tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5045 		tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5046 
5047 		/* Source routing option copyover (reverse it) */
5048 		if (tcps->tcps_rev_src_routes)
5049 			tcp_opt_reverse(tcp, ipha);
5050 	} else {
5051 		ASSERT(ip6h != NULL);
5052 		tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src;
5053 		tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst;
5054 	}
5055 
5056 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5057 	ASSERT(!tcp->tcp_tconnind_started);
5058 	/*
5059 	 * If the SYN contains a credential, it's a loopback packet; attach
5060 	 * the credential to the TPI message.
5061 	 */
5062 	if ((cr = DB_CRED(idmp)) != NULL) {
5063 		mblk_setcred(tpi_mp, cr);
5064 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5065 	}
5066 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5067 
5068 	/* Inherit the listener's SSL protection state */
5069 
5070 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5071 		kssl_hold_ent(tcp->tcp_kssl_ent);
5072 		tcp->tcp_kssl_pending = B_TRUE;
5073 	}
5074 
5075 	return (0);
5076 }
5077 
5078 
5079 int
5080 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
5081     tcph_t *tcph, mblk_t *idmp)
5082 {
5083 	tcp_t 		*ltcp = lconnp->conn_tcp;
5084 	tcp_t		*tcp = connp->conn_tcp;
5085 	sin_t		sin;
5086 	mblk_t		*tpi_mp = NULL;
5087 	int		err;
5088 	cred_t		*cr;
5089 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5090 
5091 	sin = sin_null;
5092 	sin.sin_addr.s_addr = ipha->ipha_src;
5093 	sin.sin_port = *(uint16_t *)tcph->th_lport;
5094 	sin.sin_family = AF_INET;
5095 	if (ltcp->tcp_recvdstaddr) {
5096 		sin_t	sind;
5097 
5098 		sind = sin_null;
5099 		sind.sin_addr.s_addr = ipha->ipha_dst;
5100 		sind.sin_port = *(uint16_t *)tcph->th_fport;
5101 		sind.sin_family = AF_INET;
5102 		tpi_mp = mi_tpi_extconn_ind(NULL,
5103 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
5104 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
5105 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5106 	} else {
5107 		tpi_mp = mi_tpi_conn_ind(NULL,
5108 		    (char *)&sin, sizeof (sin_t),
5109 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
5110 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5111 	}
5112 
5113 	if (tpi_mp == NULL) {
5114 		return (ENOMEM);
5115 	}
5116 
5117 	connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER);
5118 	connp->conn_send = ip_output;
5119 	connp->conn_recv = tcp_input;
5120 	connp->conn_fully_bound = B_FALSE;
5121 
5122 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
5123 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
5124 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
5125 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
5126 
5127 	if (tcps->tcps_trace) {
5128 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
5129 	}
5130 
5131 	/* Inherit information from the "parent" */
5132 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
5133 	tcp->tcp_family = ltcp->tcp_family;
5134 	tcp->tcp_wq = ltcp->tcp_wq;
5135 	tcp->tcp_rq = ltcp->tcp_rq;
5136 	tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
5137 	tcp->tcp_detached = B_TRUE;
5138 	if ((err = tcp_init_values(tcp)) != 0) {
5139 		freemsg(tpi_mp);
5140 		return (err);
5141 	}
5142 
5143 	/*
5144 	 * Let's make sure that eager tcp template has enough space to
5145 	 * copy IPv4 listener's tcp template. Since the conn_t structure is
5146 	 * preserved and tcp_iphc_len is also preserved, an eager conn_t may
5147 	 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or
5148 	 * more (in case of re-allocation of conn_t with tcp-IPv6 template with
5149 	 * extension headers or with ip6i_t struct). Note that bcopy() below
5150 	 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_
5151 	 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener.
5152 	 */
5153 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
5154 	ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH);
5155 
5156 	tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
5157 	tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
5158 	tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5159 	tcp->tcp_ttl = ltcp->tcp_ttl;
5160 	tcp->tcp_tos = ltcp->tcp_tos;
5161 
5162 	/* Copy the IP+TCP header template from listener to eager */
5163 	bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
5164 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5165 	tcp->tcp_ip6h = NULL;
5166 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5167 	    tcp->tcp_ip_hdr_len);
5168 
5169 	/* Initialize the IP addresses and Ports */
5170 	tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5171 	tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5172 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5173 	bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t));
5174 
5175 	/* Source routing option copyover (reverse it) */
5176 	if (tcps->tcps_rev_src_routes)
5177 		tcp_opt_reverse(tcp, ipha);
5178 
5179 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5180 	ASSERT(!tcp->tcp_tconnind_started);
5181 
5182 	/*
5183 	 * If the SYN contains a credential, it's a loopback packet; attach
5184 	 * the credential to the TPI message.
5185 	 */
5186 	if ((cr = DB_CRED(idmp)) != NULL) {
5187 		mblk_setcred(tpi_mp, cr);
5188 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5189 	}
5190 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5191 
5192 	/* Inherit the listener's SSL protection state */
5193 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5194 		kssl_hold_ent(tcp->tcp_kssl_ent);
5195 		tcp->tcp_kssl_pending = B_TRUE;
5196 	}
5197 
5198 	return (0);
5199 }
5200 
5201 /*
5202  * sets up conn for ipsec.
5203  * if the first mblk is M_CTL it is consumed and mpp is updated.
5204  * in case of error mpp is freed.
5205  */
5206 conn_t *
5207 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp)
5208 {
5209 	conn_t 		*connp = tcp->tcp_connp;
5210 	conn_t 		*econnp;
5211 	squeue_t 	*new_sqp;
5212 	mblk_t 		*first_mp = *mpp;
5213 	mblk_t		*mp = *mpp;
5214 	boolean_t	mctl_present = B_FALSE;
5215 	uint_t		ipvers;
5216 
5217 	econnp = tcp_get_conn(sqp, tcp->tcp_tcps);
5218 	if (econnp == NULL) {
5219 		freemsg(first_mp);
5220 		return (NULL);
5221 	}
5222 	if (DB_TYPE(mp) == M_CTL) {
5223 		if (mp->b_cont == NULL ||
5224 		    mp->b_cont->b_datap->db_type != M_DATA) {
5225 			freemsg(first_mp);
5226 			return (NULL);
5227 		}
5228 		mp = mp->b_cont;
5229 		if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) {
5230 			freemsg(first_mp);
5231 			return (NULL);
5232 		}
5233 
5234 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5235 		first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5236 		mctl_present = B_TRUE;
5237 	} else {
5238 		ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY);
5239 		mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5240 	}
5241 
5242 	new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5243 	DB_CKSUMSTART(mp) = 0;
5244 
5245 	ASSERT(OK_32PTR(mp->b_rptr));
5246 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5247 	if (ipvers == IPV4_VERSION) {
5248 		uint16_t  	*up;
5249 		uint32_t	ports;
5250 		ipha_t		*ipha;
5251 
5252 		ipha = (ipha_t *)mp->b_rptr;
5253 		up = (uint16_t *)((uchar_t *)ipha +
5254 		    IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET);
5255 		ports = *(uint32_t *)up;
5256 		IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP,
5257 		    ipha->ipha_dst, ipha->ipha_src, ports);
5258 	} else {
5259 		uint16_t  	*up;
5260 		uint32_t	ports;
5261 		uint16_t	ip_hdr_len;
5262 		uint8_t		*nexthdrp;
5263 		ip6_t 		*ip6h;
5264 		tcph_t		*tcph;
5265 
5266 		ip6h = (ip6_t *)mp->b_rptr;
5267 		if (ip6h->ip6_nxt == IPPROTO_TCP) {
5268 			ip_hdr_len = IPV6_HDR_LEN;
5269 		} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len,
5270 		    &nexthdrp) || *nexthdrp != IPPROTO_TCP) {
5271 			CONN_DEC_REF(econnp);
5272 			freemsg(first_mp);
5273 			return (NULL);
5274 		}
5275 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5276 		up = (uint16_t *)tcph->th_lport;
5277 		ports = *(uint32_t *)up;
5278 		IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP,
5279 		    ip6h->ip6_dst, ip6h->ip6_src, ports);
5280 	}
5281 
5282 	/*
5283 	 * The caller already ensured that there is a sqp present.
5284 	 */
5285 	econnp->conn_sqp = new_sqp;
5286 
5287 	if (connp->conn_policy != NULL) {
5288 		ipsec_in_t *ii;
5289 		ii = (ipsec_in_t *)(first_mp->b_rptr);
5290 		ASSERT(ii->ipsec_in_policy == NULL);
5291 		IPPH_REFHOLD(connp->conn_policy);
5292 		ii->ipsec_in_policy = connp->conn_policy;
5293 
5294 		first_mp->b_datap->db_type = IPSEC_POLICY_SET;
5295 		if (!ip_bind_ipsec_policy_set(econnp, first_mp)) {
5296 			CONN_DEC_REF(econnp);
5297 			freemsg(first_mp);
5298 			return (NULL);
5299 		}
5300 	}
5301 
5302 	if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) {
5303 		CONN_DEC_REF(econnp);
5304 		freemsg(first_mp);
5305 		return (NULL);
5306 	}
5307 
5308 	/*
5309 	 * If we know we have some policy, pass the "IPSEC"
5310 	 * options size TCP uses this adjust the MSS.
5311 	 */
5312 	econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp);
5313 	if (mctl_present) {
5314 		freeb(first_mp);
5315 		*mpp = mp;
5316 	}
5317 
5318 	return (econnp);
5319 }
5320 
5321 /*
5322  * tcp_get_conn/tcp_free_conn
5323  *
5324  * tcp_get_conn is used to get a clean tcp connection structure.
5325  * It tries to reuse the connections put on the freelist by the
5326  * time_wait_collector failing which it goes to kmem_cache. This
5327  * way has two benefits compared to just allocating from and
5328  * freeing to kmem_cache.
5329  * 1) The time_wait_collector can free (which includes the cleanup)
5330  * outside the squeue. So when the interrupt comes, we have a clean
5331  * connection sitting in the freelist. Obviously, this buys us
5332  * performance.
5333  *
5334  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request
5335  * has multiple disadvantages - tying up the squeue during alloc, and the
5336  * fact that IPSec policy initialization has to happen here which
5337  * requires us sending a M_CTL and checking for it i.e. real ugliness.
5338  * But allocating the conn/tcp in IP land is also not the best since
5339  * we can't check the 'q' and 'q0' which are protected by squeue and
5340  * blindly allocate memory which might have to be freed here if we are
5341  * not allowed to accept the connection. By using the freelist and
5342  * putting the conn/tcp back in freelist, we don't pay a penalty for
5343  * allocating memory without checking 'q/q0' and freeing it if we can't
5344  * accept the connection.
5345  *
5346  * Care should be taken to put the conn back in the same squeue's freelist
5347  * from which it was allocated. Best results are obtained if conn is
5348  * allocated from listener's squeue and freed to the same. Time wait
5349  * collector will free up the freelist is the connection ends up sitting
5350  * there for too long.
5351  */
5352 void *
5353 tcp_get_conn(void *arg, tcp_stack_t *tcps)
5354 {
5355 	tcp_t			*tcp = NULL;
5356 	conn_t			*connp = NULL;
5357 	squeue_t		*sqp = (squeue_t *)arg;
5358 	tcp_squeue_priv_t 	*tcp_time_wait;
5359 	netstack_t		*ns;
5360 
5361 	tcp_time_wait =
5362 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
5363 
5364 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
5365 	tcp = tcp_time_wait->tcp_free_list;
5366 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
5367 	if (tcp != NULL) {
5368 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
5369 		tcp_time_wait->tcp_free_list_cnt--;
5370 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5371 		tcp->tcp_time_wait_next = NULL;
5372 		connp = tcp->tcp_connp;
5373 		connp->conn_flags |= IPCL_REUSED;
5374 
5375 		ASSERT(tcp->tcp_tcps == NULL);
5376 		ASSERT(connp->conn_netstack == NULL);
5377 		ns = tcps->tcps_netstack;
5378 		netstack_hold(ns);
5379 		connp->conn_netstack = ns;
5380 		tcp->tcp_tcps = tcps;
5381 		TCPS_REFHOLD(tcps);
5382 		ipcl_globalhash_insert(connp);
5383 		return ((void *)connp);
5384 	}
5385 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5386 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
5387 		    tcps->tcps_netstack)) == NULL)
5388 		return (NULL);
5389 	tcp = connp->conn_tcp;
5390 	tcp->tcp_tcps = tcps;
5391 	TCPS_REFHOLD(tcps);
5392 	return ((void *)connp);
5393 }
5394 
5395 /*
5396  * Update the cached label for the given tcp_t.  This should be called once per
5397  * connection, and before any packets are sent or tcp_process_options is
5398  * invoked.  Returns B_FALSE if the correct label could not be constructed.
5399  */
5400 static boolean_t
5401 tcp_update_label(tcp_t *tcp, const cred_t *cr)
5402 {
5403 	conn_t *connp = tcp->tcp_connp;
5404 
5405 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5406 		uchar_t optbuf[IP_MAX_OPT_LENGTH];
5407 		int added;
5408 
5409 		if (tsol_compute_label(cr, tcp->tcp_remote, optbuf,
5410 		    connp->conn_mac_exempt,
5411 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5412 			return (B_FALSE);
5413 
5414 		added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len);
5415 		if (added == -1)
5416 			return (B_FALSE);
5417 		tcp->tcp_hdr_len += added;
5418 		tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added);
5419 		tcp->tcp_ip_hdr_len += added;
5420 		if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) {
5421 			tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3;
5422 			added = tsol_prepend_option(optbuf, tcp->tcp_ipha,
5423 			    tcp->tcp_hdr_len);
5424 			if (added == -1)
5425 				return (B_FALSE);
5426 			tcp->tcp_hdr_len += added;
5427 			tcp->tcp_tcph = (tcph_t *)
5428 			    ((uchar_t *)tcp->tcp_tcph + added);
5429 			tcp->tcp_ip_hdr_len += added;
5430 		}
5431 	} else {
5432 		uchar_t optbuf[TSOL_MAX_IPV6_OPTION];
5433 
5434 		if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf,
5435 		    connp->conn_mac_exempt,
5436 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5437 			return (B_FALSE);
5438 		if (tsol_update_sticky(&tcp->tcp_sticky_ipp,
5439 		    &tcp->tcp_label_len, optbuf) != 0)
5440 			return (B_FALSE);
5441 		if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0)
5442 			return (B_FALSE);
5443 	}
5444 
5445 	connp->conn_ulp_labeled = 1;
5446 
5447 	return (B_TRUE);
5448 }
5449 
5450 /* BEGIN CSTYLED */
5451 /*
5452  *
5453  * The sockfs ACCEPT path:
5454  * =======================
5455  *
5456  * The eager is now established in its own perimeter as soon as SYN is
5457  * received in tcp_conn_request(). When sockfs receives conn_ind, it
5458  * completes the accept processing on the acceptor STREAM. The sending
5459  * of conn_ind part is common for both sockfs listener and a TLI/XTI
5460  * listener but a TLI/XTI listener completes the accept processing
5461  * on the listener perimeter.
5462  *
5463  * Common control flow for 3 way handshake:
5464  * ----------------------------------------
5465  *
5466  * incoming SYN (listener perimeter) 	-> tcp_rput_data()
5467  *					-> tcp_conn_request()
5468  *
5469  * incoming SYN-ACK-ACK (eager perim) 	-> tcp_rput_data()
5470  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
5471  *
5472  * Sockfs ACCEPT Path:
5473  * -------------------
5474  *
5475  * open acceptor stream (tcp_open allocates tcp_wput_accept()
5476  * as STREAM entry point)
5477  *
5478  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept()
5479  *
5480  * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager
5481  * association (we are not behind eager's squeue but sockfs is protecting us
5482  * and no one knows about this stream yet. The STREAMS entry point q->q_info
5483  * is changed to point at tcp_wput().
5484  *
5485  * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to
5486  * listener (done on listener's perimeter).
5487  *
5488  * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish
5489  * accept.
5490  *
5491  * TLI/XTI client ACCEPT path:
5492  * ---------------------------
5493  *
5494  * soaccept() sends T_CONN_RES on the listener STREAM.
5495  *
5496  * tcp_accept() -> tcp_accept_swap() complete the processing and send
5497  * the bind_mp to eager perimeter to finish accept (tcp_rput_other()).
5498  *
5499  * Locks:
5500  * ======
5501  *
5502  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
5503  * and listeners->tcp_eager_next_q.
5504  *
5505  * Referencing:
5506  * ============
5507  *
5508  * 1) We start out in tcp_conn_request by eager placing a ref on
5509  * listener and listener adding eager to listeners->tcp_eager_next_q0.
5510  *
5511  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
5512  * doing so we place a ref on the eager. This ref is finally dropped at the
5513  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
5514  * reference is dropped by the squeue framework.
5515  *
5516  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
5517  *
5518  * The reference must be released by the same entity that added the reference
5519  * In the above scheme, the eager is the entity that adds and releases the
5520  * references. Note that tcp_accept_finish executes in the squeue of the eager
5521  * (albeit after it is attached to the acceptor stream). Though 1. executes
5522  * in the listener's squeue, the eager is nascent at this point and the
5523  * reference can be considered to have been added on behalf of the eager.
5524  *
5525  * Eager getting a Reset or listener closing:
5526  * ==========================================
5527  *
5528  * Once the listener and eager are linked, the listener never does the unlink.
5529  * If the listener needs to close, tcp_eager_cleanup() is called which queues
5530  * a message on all eager perimeter. The eager then does the unlink, clears
5531  * any pointers to the listener's queue and drops the reference to the
5532  * listener. The listener waits in tcp_close outside the squeue until its
5533  * refcount has dropped to 1. This ensures that the listener has waited for
5534  * all eagers to clear their association with the listener.
5535  *
5536  * Similarly, if eager decides to go away, it can unlink itself and close.
5537  * When the T_CONN_RES comes down, we check if eager has closed. Note that
5538  * the reference to eager is still valid because of the extra ref we put
5539  * in tcp_send_conn_ind.
5540  *
5541  * Listener can always locate the eager under the protection
5542  * of the listener->tcp_eager_lock, and then do a refhold
5543  * on the eager during the accept processing.
5544  *
5545  * The acceptor stream accesses the eager in the accept processing
5546  * based on the ref placed on eager before sending T_conn_ind.
5547  * The only entity that can negate this refhold is a listener close
5548  * which is mutually exclusive with an active acceptor stream.
5549  *
5550  * Eager's reference on the listener
5551  * ===================================
5552  *
5553  * If the accept happens (even on a closed eager) the eager drops its
5554  * reference on the listener at the start of tcp_accept_finish. If the
5555  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
5556  * the reference is dropped in tcp_closei_local. If the listener closes,
5557  * the reference is dropped in tcp_eager_kill. In all cases the reference
5558  * is dropped while executing in the eager's context (squeue).
5559  */
5560 /* END CSTYLED */
5561 
5562 /* Process the SYN packet, mp, directed at the listener 'tcp' */
5563 
5564 /*
5565  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
5566  * tcp_rput_data will not see any SYN packets.
5567  */
5568 /* ARGSUSED */
5569 void
5570 tcp_conn_request(void *arg, mblk_t *mp, void *arg2)
5571 {
5572 	tcph_t		*tcph;
5573 	uint32_t	seg_seq;
5574 	tcp_t		*eager;
5575 	uint_t		ipvers;
5576 	ipha_t		*ipha;
5577 	ip6_t		*ip6h;
5578 	int		err;
5579 	conn_t		*econnp = NULL;
5580 	squeue_t	*new_sqp;
5581 	mblk_t		*mp1;
5582 	uint_t 		ip_hdr_len;
5583 	conn_t		*connp = (conn_t *)arg;
5584 	tcp_t		*tcp = connp->conn_tcp;
5585 	ire_t		*ire;
5586 	cred_t		*credp;
5587 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5588 	ip_stack_t	*ipst;
5589 
5590 	if (tcp->tcp_state != TCPS_LISTEN)
5591 		goto error2;
5592 
5593 	ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0);
5594 
5595 	mutex_enter(&tcp->tcp_eager_lock);
5596 	if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) {
5597 		mutex_exit(&tcp->tcp_eager_lock);
5598 		TCP_STAT(tcps, tcp_listendrop);
5599 		BUMP_MIB(&tcps->tcps_mib, tcpListenDrop);
5600 		if (tcp->tcp_debug) {
5601 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
5602 			    "tcp_conn_request: listen backlog (max=%d) "
5603 			    "overflow (%d pending) on %s",
5604 			    tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q,
5605 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
5606 		}
5607 		goto error2;
5608 	}
5609 
5610 	if (tcp->tcp_conn_req_cnt_q0 >=
5611 	    tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) {
5612 		/*
5613 		 * Q0 is full. Drop a pending half-open req from the queue
5614 		 * to make room for the new SYN req. Also mark the time we
5615 		 * drop a SYN.
5616 		 *
5617 		 * A more aggressive defense against SYN attack will
5618 		 * be to set the "tcp_syn_defense" flag now.
5619 		 */
5620 		TCP_STAT(tcps, tcp_listendropq0);
5621 		tcp->tcp_last_rcv_lbolt = lbolt64;
5622 		if (!tcp_drop_q0(tcp)) {
5623 			mutex_exit(&tcp->tcp_eager_lock);
5624 			BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0);
5625 			if (tcp->tcp_debug) {
5626 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
5627 				    "tcp_conn_request: listen half-open queue "
5628 				    "(max=%d) full (%d pending) on %s",
5629 				    tcps->tcps_conn_req_max_q0,
5630 				    tcp->tcp_conn_req_cnt_q0,
5631 				    tcp_display(tcp, NULL,
5632 				    DISP_PORT_ONLY));
5633 			}
5634 			goto error2;
5635 		}
5636 	}
5637 	mutex_exit(&tcp->tcp_eager_lock);
5638 
5639 	/*
5640 	 * IP adds STRUIO_EAGER and ensures that the received packet is
5641 	 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6
5642 	 * link local address.  If IPSec is enabled, db_struioflag has
5643 	 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER);
5644 	 * otherwise an error case if neither of them is set.
5645 	 */
5646 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5647 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5648 		DB_CKSUMSTART(mp) = 0;
5649 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5650 		econnp = (conn_t *)tcp_get_conn(arg2, tcps);
5651 		if (econnp == NULL)
5652 			goto error2;
5653 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5654 		econnp->conn_sqp = new_sqp;
5655 	} else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) {
5656 		/*
5657 		 * mp is updated in tcp_get_ipsec_conn().
5658 		 */
5659 		econnp = tcp_get_ipsec_conn(tcp, arg2, &mp);
5660 		if (econnp == NULL) {
5661 			/*
5662 			 * mp freed by tcp_get_ipsec_conn.
5663 			 */
5664 			return;
5665 		}
5666 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5667 	} else {
5668 		goto error2;
5669 	}
5670 
5671 	ASSERT(DB_TYPE(mp) == M_DATA);
5672 
5673 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5674 	ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION);
5675 	ASSERT(OK_32PTR(mp->b_rptr));
5676 	if (ipvers == IPV4_VERSION) {
5677 		ipha = (ipha_t *)mp->b_rptr;
5678 		ip_hdr_len = IPH_HDR_LENGTH(ipha);
5679 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5680 	} else {
5681 		ip6h = (ip6_t *)mp->b_rptr;
5682 		ip_hdr_len = ip_hdr_length_v6(mp, ip6h);
5683 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5684 	}
5685 
5686 	if (tcp->tcp_family == AF_INET) {
5687 		ASSERT(ipvers == IPV4_VERSION);
5688 		err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp);
5689 	} else {
5690 		err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp);
5691 	}
5692 
5693 	if (err)
5694 		goto error3;
5695 
5696 	eager = econnp->conn_tcp;
5697 
5698 	/* Inherit various TCP parameters from the listener */
5699 	eager->tcp_naglim = tcp->tcp_naglim;
5700 	eager->tcp_first_timer_threshold =
5701 	    tcp->tcp_first_timer_threshold;
5702 	eager->tcp_second_timer_threshold =
5703 	    tcp->tcp_second_timer_threshold;
5704 
5705 	eager->tcp_first_ctimer_threshold =
5706 	    tcp->tcp_first_ctimer_threshold;
5707 	eager->tcp_second_ctimer_threshold =
5708 	    tcp->tcp_second_ctimer_threshold;
5709 
5710 	/*
5711 	 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics.
5712 	 * If it does not, the eager's receive window will be set to the
5713 	 * listener's receive window later in this function.
5714 	 */
5715 	eager->tcp_rwnd = 0;
5716 
5717 	/*
5718 	 * Inherit listener's tcp_init_cwnd.  Need to do this before
5719 	 * calling tcp_process_options() where tcp_mss_set() is called
5720 	 * to set the initial cwnd.
5721 	 */
5722 	eager->tcp_init_cwnd = tcp->tcp_init_cwnd;
5723 
5724 	/*
5725 	 * Zones: tcp_adapt_ire() and tcp_send_data() both need the
5726 	 * zone id before the accept is completed in tcp_wput_accept().
5727 	 */
5728 	econnp->conn_zoneid = connp->conn_zoneid;
5729 	econnp->conn_allzones = connp->conn_allzones;
5730 
5731 	/* Copy nexthop information from listener to eager */
5732 	if (connp->conn_nexthop_set) {
5733 		econnp->conn_nexthop_set = connp->conn_nexthop_set;
5734 		econnp->conn_nexthop_v4 = connp->conn_nexthop_v4;
5735 	}
5736 
5737 	/*
5738 	 * TSOL: tsol_input_proc() needs the eager's cred before the
5739 	 * eager is accepted
5740 	 */
5741 	econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred;
5742 	crhold(credp);
5743 
5744 	/*
5745 	 * If the caller has the process-wide flag set, then default to MAC
5746 	 * exempt mode.  This allows read-down to unlabeled hosts.
5747 	 */
5748 	if (getpflags(NET_MAC_AWARE, credp) != 0)
5749 		econnp->conn_mac_exempt = B_TRUE;
5750 
5751 	if (is_system_labeled()) {
5752 		cred_t *cr;
5753 
5754 		if (connp->conn_mlp_type != mlptSingle) {
5755 			cr = econnp->conn_peercred = DB_CRED(mp);
5756 			if (cr != NULL)
5757 				crhold(cr);
5758 			else
5759 				cr = econnp->conn_cred;
5760 			DTRACE_PROBE2(mlp_syn_accept, conn_t *,
5761 			    econnp, cred_t *, cr)
5762 		} else {
5763 			cr = econnp->conn_cred;
5764 			DTRACE_PROBE2(syn_accept, conn_t *,
5765 			    econnp, cred_t *, cr)
5766 		}
5767 
5768 		if (!tcp_update_label(eager, cr)) {
5769 			DTRACE_PROBE3(
5770 			    tx__ip__log__error__connrequest__tcp,
5771 			    char *, "eager connp(1) label on SYN mp(2) failed",
5772 			    conn_t *, econnp, mblk_t *, mp);
5773 			goto error3;
5774 		}
5775 	}
5776 
5777 	eager->tcp_hard_binding = B_TRUE;
5778 
5779 	tcp_bind_hash_insert(&tcps->tcps_bind_fanout[
5780 	    TCP_BIND_HASH(eager->tcp_lport)], eager, 0);
5781 
5782 	CL_INET_CONNECT(eager);
5783 
5784 	/*
5785 	 * No need to check for multicast destination since ip will only pass
5786 	 * up multicasts to those that have expressed interest
5787 	 * TODO: what about rejecting broadcasts?
5788 	 * Also check that source is not a multicast or broadcast address.
5789 	 */
5790 	eager->tcp_state = TCPS_SYN_RCVD;
5791 
5792 
5793 	/*
5794 	 * There should be no ire in the mp as we are being called after
5795 	 * receiving the SYN.
5796 	 */
5797 	ASSERT(tcp_ire_mp(mp) == NULL);
5798 
5799 	/*
5800 	 * Adapt our mss, ttl, ... according to information provided in IRE.
5801 	 */
5802 
5803 	if (tcp_adapt_ire(eager, NULL) == 0) {
5804 		/* Undo the bind_hash_insert */
5805 		tcp_bind_hash_remove(eager);
5806 		goto error3;
5807 	}
5808 
5809 	/* Process all TCP options. */
5810 	tcp_process_options(eager, tcph);
5811 
5812 	/* Is the other end ECN capable? */
5813 	if (tcps->tcps_ecn_permitted >= 1 &&
5814 	    (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
5815 		eager->tcp_ecn_ok = B_TRUE;
5816 	}
5817 
5818 	/*
5819 	 * listener->tcp_rq->q_hiwat should be the default window size or a
5820 	 * window size changed via SO_RCVBUF option.  First round up the
5821 	 * eager's tcp_rwnd to the nearest MSS.  Then find out the window
5822 	 * scale option value if needed.  Call tcp_rwnd_set() to finish the
5823 	 * setting.
5824 	 *
5825 	 * Note if there is a rpipe metric associated with the remote host,
5826 	 * we should not inherit receive window size from listener.
5827 	 */
5828 	eager->tcp_rwnd = MSS_ROUNDUP(
5829 	    (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat :
5830 	    eager->tcp_rwnd), eager->tcp_mss);
5831 	if (eager->tcp_snd_ws_ok)
5832 		tcp_set_ws_value(eager);
5833 	/*
5834 	 * Note that this is the only place tcp_rwnd_set() is called for
5835 	 * accepting a connection.  We need to call it here instead of
5836 	 * after the 3-way handshake because we need to tell the other
5837 	 * side our rwnd in the SYN-ACK segment.
5838 	 */
5839 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
5840 
5841 	/*
5842 	 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ
5843 	 * via soaccept()->soinheritoptions() which essentially applies
5844 	 * all the listener options to the new STREAM. The options that we
5845 	 * need to take care of are:
5846 	 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST,
5847 	 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER,
5848 	 * SO_SNDBUF, SO_RCVBUF.
5849 	 *
5850 	 * SO_RCVBUF:	tcp_rwnd_set() above takes care of it.
5851 	 * SO_SNDBUF:	Set the tcp_xmit_hiwater for the eager. When
5852 	 *		tcp_maxpsz_set() gets called later from
5853 	 *		tcp_accept_finish(), the option takes effect.
5854 	 *
5855 	 */
5856 	/* Set the TCP options */
5857 	eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater;
5858 	eager->tcp_dgram_errind = tcp->tcp_dgram_errind;
5859 	eager->tcp_oobinline = tcp->tcp_oobinline;
5860 	eager->tcp_reuseaddr = tcp->tcp_reuseaddr;
5861 	eager->tcp_broadcast = tcp->tcp_broadcast;
5862 	eager->tcp_useloopback = tcp->tcp_useloopback;
5863 	eager->tcp_dontroute = tcp->tcp_dontroute;
5864 	eager->tcp_linger = tcp->tcp_linger;
5865 	eager->tcp_lingertime = tcp->tcp_lingertime;
5866 	if (tcp->tcp_ka_enabled)
5867 		eager->tcp_ka_enabled = 1;
5868 
5869 	/* Set the IP options */
5870 	econnp->conn_broadcast = connp->conn_broadcast;
5871 	econnp->conn_loopback = connp->conn_loopback;
5872 	econnp->conn_dontroute = connp->conn_dontroute;
5873 	econnp->conn_reuseaddr = connp->conn_reuseaddr;
5874 
5875 	/* Put a ref on the listener for the eager. */
5876 	CONN_INC_REF(connp);
5877 	mutex_enter(&tcp->tcp_eager_lock);
5878 	tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
5879 	eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0;
5880 	tcp->tcp_eager_next_q0 = eager;
5881 	eager->tcp_eager_prev_q0 = tcp;
5882 
5883 	/* Set tcp_listener before adding it to tcp_conn_fanout */
5884 	eager->tcp_listener = tcp;
5885 	eager->tcp_saved_listener = tcp;
5886 
5887 	/*
5888 	 * Tag this detached tcp vector for later retrieval
5889 	 * by our listener client in tcp_accept().
5890 	 */
5891 	eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum;
5892 	tcp->tcp_conn_req_cnt_q0++;
5893 	if (++tcp->tcp_conn_req_seqnum == -1) {
5894 		/*
5895 		 * -1 is "special" and defined in TPI as something
5896 		 * that should never be used in T_CONN_IND
5897 		 */
5898 		++tcp->tcp_conn_req_seqnum;
5899 	}
5900 	mutex_exit(&tcp->tcp_eager_lock);
5901 
5902 	if (tcp->tcp_syn_defense) {
5903 		/* Don't drop the SYN that comes from a good IP source */
5904 		ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache);
5905 		if (addr_cache != NULL && eager->tcp_remote ==
5906 		    addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) {
5907 			eager->tcp_dontdrop = B_TRUE;
5908 		}
5909 	}
5910 
5911 	/*
5912 	 * We need to insert the eager in its own perimeter but as soon
5913 	 * as we do that, we expose the eager to the classifier and
5914 	 * should not touch any field outside the eager's perimeter.
5915 	 * So do all the work necessary before inserting the eager
5916 	 * in its own perimeter. Be optimistic that ipcl_conn_insert()
5917 	 * will succeed but undo everything if it fails.
5918 	 */
5919 	seg_seq = ABE32_TO_U32(tcph->th_seq);
5920 	eager->tcp_irs = seg_seq;
5921 	eager->tcp_rack = seg_seq;
5922 	eager->tcp_rnxt = seg_seq + 1;
5923 	U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack);
5924 	BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens);
5925 	eager->tcp_state = TCPS_SYN_RCVD;
5926 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
5927 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
5928 	if (mp1 == NULL)
5929 		goto error1;
5930 	DB_CPID(mp1) = tcp->tcp_cpid;
5931 	eager->tcp_cpid = tcp->tcp_cpid;
5932 	eager->tcp_open_time = lbolt64;
5933 
5934 	/*
5935 	 * We need to start the rto timer. In normal case, we start
5936 	 * the timer after sending the packet on the wire (or at
5937 	 * least believing that packet was sent by waiting for
5938 	 * CALL_IP_WPUT() to return). Since this is the first packet
5939 	 * being sent on the wire for the eager, our initial tcp_rto
5940 	 * is at least tcp_rexmit_interval_min which is a fairly
5941 	 * large value to allow the algorithm to adjust slowly to large
5942 	 * fluctuations of RTT during first few transmissions.
5943 	 *
5944 	 * Starting the timer first and then sending the packet in this
5945 	 * case shouldn't make much difference since tcp_rexmit_interval_min
5946 	 * is of the order of several 100ms and starting the timer
5947 	 * first and then sending the packet will result in difference
5948 	 * of few micro seconds.
5949 	 *
5950 	 * Without this optimization, we are forced to hold the fanout
5951 	 * lock across the ipcl_bind_insert() and sending the packet
5952 	 * so that we don't race against an incoming packet (maybe RST)
5953 	 * for this eager.
5954 	 *
5955 	 * It is necessary to acquire an extra reference on the eager
5956 	 * at this point and hold it until after tcp_send_data() to
5957 	 * ensure against an eager close race.
5958 	 */
5959 
5960 	CONN_INC_REF(eager->tcp_connp);
5961 
5962 	TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT);
5963 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
5964 
5965 
5966 	/*
5967 	 * Insert the eager in its own perimeter now. We are ready to deal
5968 	 * with any packets on eager.
5969 	 */
5970 	if (eager->tcp_ipversion == IPV4_VERSION) {
5971 		if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) {
5972 			goto error;
5973 		}
5974 	} else {
5975 		if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) {
5976 			goto error;
5977 		}
5978 	}
5979 
5980 	/* mark conn as fully-bound */
5981 	econnp->conn_fully_bound = B_TRUE;
5982 
5983 	/* Send the SYN-ACK */
5984 	tcp_send_data(eager, eager->tcp_wq, mp1);
5985 	CONN_DEC_REF(eager->tcp_connp);
5986 	freemsg(mp);
5987 
5988 	return;
5989 error:
5990 	(void) TCP_TIMER_CANCEL(eager, eager->tcp_timer_tid);
5991 	CONN_DEC_REF(eager->tcp_connp);
5992 	freemsg(mp1);
5993 error1:
5994 	/* Undo what we did above */
5995 	mutex_enter(&tcp->tcp_eager_lock);
5996 	tcp_eager_unlink(eager);
5997 	mutex_exit(&tcp->tcp_eager_lock);
5998 	/* Drop eager's reference on the listener */
5999 	CONN_DEC_REF(connp);
6000 
6001 	/*
6002 	 * Delete the cached ire in conn_ire_cache and also mark
6003 	 * the conn as CONDEMNED
6004 	 */
6005 	mutex_enter(&econnp->conn_lock);
6006 	econnp->conn_state_flags |= CONN_CONDEMNED;
6007 	ire = econnp->conn_ire_cache;
6008 	econnp->conn_ire_cache = NULL;
6009 	mutex_exit(&econnp->conn_lock);
6010 	if (ire != NULL)
6011 		IRE_REFRELE_NOTR(ire);
6012 
6013 	/*
6014 	 * tcp_accept_comm inserts the eager to the bind_hash
6015 	 * we need to remove it from the hash if ipcl_conn_insert
6016 	 * fails.
6017 	 */
6018 	tcp_bind_hash_remove(eager);
6019 	/* Drop the eager ref placed in tcp_open_detached */
6020 	CONN_DEC_REF(econnp);
6021 
6022 	/*
6023 	 * If a connection already exists, send the mp to that connections so
6024 	 * that it can be appropriately dealt with.
6025 	 */
6026 	ipst = tcps->tcps_netstack->netstack_ip;
6027 
6028 	if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) {
6029 		if (!IPCL_IS_CONNECTED(econnp)) {
6030 			/*
6031 			 * Something bad happened. ipcl_conn_insert()
6032 			 * failed because a connection already existed
6033 			 * in connected hash but we can't find it
6034 			 * anymore (someone blew it away). Just
6035 			 * free this message and hopefully remote
6036 			 * will retransmit at which time the SYN can be
6037 			 * treated as a new connection or dealth with
6038 			 * a TH_RST if a connection already exists.
6039 			 */
6040 			CONN_DEC_REF(econnp);
6041 			freemsg(mp);
6042 		} else {
6043 			squeue_fill(econnp->conn_sqp, mp, tcp_input,
6044 			    econnp, SQTAG_TCP_CONN_REQ);
6045 		}
6046 	} else {
6047 		/* Nobody wants this packet */
6048 		freemsg(mp);
6049 	}
6050 	return;
6051 error2:
6052 	freemsg(mp);
6053 	return;
6054 error3:
6055 	CONN_DEC_REF(econnp);
6056 	freemsg(mp);
6057 }
6058 
6059 /*
6060  * In an ideal case of vertical partition in NUMA architecture, its
6061  * beneficial to have the listener and all the incoming connections
6062  * tied to the same squeue. The other constraint is that incoming
6063  * connections should be tied to the squeue attached to interrupted
6064  * CPU for obvious locality reason so this leaves the listener to
6065  * be tied to the same squeue. Our only problem is that when listener
6066  * is binding, the CPU that will get interrupted by the NIC whose
6067  * IP address the listener is binding to is not even known. So
6068  * the code below allows us to change that binding at the time the
6069  * CPU is interrupted by virtue of incoming connection's squeue.
6070  *
6071  * This is usefull only in case of a listener bound to a specific IP
6072  * address. For other kind of listeners, they get bound the
6073  * very first time and there is no attempt to rebind them.
6074  */
6075 void
6076 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2)
6077 {
6078 	conn_t		*connp = (conn_t *)arg;
6079 	squeue_t	*sqp = (squeue_t *)arg2;
6080 	squeue_t	*new_sqp;
6081 	uint32_t	conn_flags;
6082 
6083 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
6084 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
6085 	} else {
6086 		goto done;
6087 	}
6088 
6089 	if (connp->conn_fanout == NULL)
6090 		goto done;
6091 
6092 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
6093 		mutex_enter(&connp->conn_fanout->connf_lock);
6094 		mutex_enter(&connp->conn_lock);
6095 		/*
6096 		 * No one from read or write side can access us now
6097 		 * except for already queued packets on this squeue.
6098 		 * But since we haven't changed the squeue yet, they
6099 		 * can't execute. If they are processed after we have
6100 		 * changed the squeue, they are sent back to the
6101 		 * correct squeue down below.
6102 		 * But a listner close can race with processing of
6103 		 * incoming SYN. If incoming SYN processing changes
6104 		 * the squeue then the listener close which is waiting
6105 		 * to enter the squeue would operate on the wrong
6106 		 * squeue. Hence we don't change the squeue here unless
6107 		 * the refcount is exactly the minimum refcount. The
6108 		 * minimum refcount of 4 is counted as - 1 each for
6109 		 * TCP and IP, 1 for being in the classifier hash, and
6110 		 * 1 for the mblk being processed.
6111 		 */
6112 
6113 		if (connp->conn_ref != 4 ||
6114 		    connp->conn_tcp->tcp_state != TCPS_LISTEN) {
6115 			mutex_exit(&connp->conn_lock);
6116 			mutex_exit(&connp->conn_fanout->connf_lock);
6117 			goto done;
6118 		}
6119 		if (connp->conn_sqp != new_sqp) {
6120 			while (connp->conn_sqp != new_sqp)
6121 				(void) casptr(&connp->conn_sqp, sqp, new_sqp);
6122 		}
6123 
6124 		do {
6125 			conn_flags = connp->conn_flags;
6126 			conn_flags |= IPCL_FULLY_BOUND;
6127 			(void) cas32(&connp->conn_flags, connp->conn_flags,
6128 			    conn_flags);
6129 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
6130 
6131 		mutex_exit(&connp->conn_fanout->connf_lock);
6132 		mutex_exit(&connp->conn_lock);
6133 	}
6134 
6135 done:
6136 	if (connp->conn_sqp != sqp) {
6137 		CONN_INC_REF(connp);
6138 		squeue_fill(connp->conn_sqp, mp,
6139 		    connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND);
6140 	} else {
6141 		tcp_conn_request(connp, mp, sqp);
6142 	}
6143 }
6144 
6145 /*
6146  * Successful connect request processing begins when our client passes
6147  * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes
6148  * our T_OK_ACK reply message upstream.  The control flow looks like this:
6149  *   upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP
6150  *   upstream <- tcp_rput()                <- IP
6151  * After various error checks are completed, tcp_connect() lays
6152  * the target address and port into the composite header template,
6153  * preallocates the T_OK_ACK reply message, construct a full 12 byte bind
6154  * request followed by an IRE request, and passes the three mblk message
6155  * down to IP looking like this:
6156  *   O_T_BIND_REQ for IP  --> IRE req --> T_OK_ACK for our client
6157  * Processing continues in tcp_rput() when we receive the following message:
6158  *   T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client
6159  * After consuming the first two mblks, tcp_rput() calls tcp_timer(),
6160  * to fire off the connection request, and then passes the T_OK_ACK mblk
6161  * upstream that we filled in below.  There are, of course, numerous
6162  * error conditions along the way which truncate the processing described
6163  * above.
6164  */
6165 static void
6166 tcp_connect(tcp_t *tcp, mblk_t *mp)
6167 {
6168 	sin_t		*sin;
6169 	sin6_t		*sin6;
6170 	queue_t		*q = tcp->tcp_wq;
6171 	struct T_conn_req	*tcr;
6172 	ipaddr_t	*dstaddrp;
6173 	in_port_t	dstport;
6174 	uint_t		srcid;
6175 
6176 	tcr = (struct T_conn_req *)mp->b_rptr;
6177 
6178 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6179 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
6180 		tcp_err_ack(tcp, mp, TPROTO, 0);
6181 		return;
6182 	}
6183 
6184 	/*
6185 	 * Determine packet type based on type of address passed in
6186 	 * the request should contain an IPv4 or IPv6 address.
6187 	 * Make sure that address family matches the type of
6188 	 * family of the the address passed down
6189 	 */
6190 	switch (tcr->DEST_length) {
6191 	default:
6192 		tcp_err_ack(tcp, mp, TBADADDR, 0);
6193 		return;
6194 
6195 	case (sizeof (sin_t) - sizeof (sin->sin_zero)): {
6196 		/*
6197 		 * XXX: The check for valid DEST_length was not there
6198 		 * in earlier releases and some buggy
6199 		 * TLI apps (e.g Sybase) got away with not feeding
6200 		 * in sin_zero part of address.
6201 		 * We allow that bug to keep those buggy apps humming.
6202 		 * Test suites require the check on DEST_length.
6203 		 * We construct a new mblk with valid DEST_length
6204 		 * free the original so the rest of the code does
6205 		 * not have to keep track of this special shorter
6206 		 * length address case.
6207 		 */
6208 		mblk_t *nmp;
6209 		struct T_conn_req *ntcr;
6210 		sin_t *nsin;
6211 
6212 		nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) +
6213 		    tcr->OPT_length, BPRI_HI);
6214 		if (nmp == NULL) {
6215 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
6216 			return;
6217 		}
6218 		ntcr = (struct T_conn_req *)nmp->b_rptr;
6219 		bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */
6220 		ntcr->PRIM_type = T_CONN_REQ;
6221 		ntcr->DEST_length = sizeof (sin_t);
6222 		ntcr->DEST_offset = sizeof (struct T_conn_req);
6223 
6224 		nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset);
6225 		*nsin = sin_null;
6226 		/* Get pointer to shorter address to copy from original mp */
6227 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6228 		    tcr->DEST_length); /* extract DEST_length worth of sin_t */
6229 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6230 			freemsg(nmp);
6231 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6232 			return;
6233 		}
6234 		nsin->sin_family = sin->sin_family;
6235 		nsin->sin_port = sin->sin_port;
6236 		nsin->sin_addr = sin->sin_addr;
6237 		/* Note:nsin->sin_zero zero-fill with sin_null assign above */
6238 		nmp->b_wptr = (uchar_t *)&nsin[1];
6239 		if (tcr->OPT_length != 0) {
6240 			ntcr->OPT_length = tcr->OPT_length;
6241 			ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr;
6242 			bcopy((uchar_t *)tcr + tcr->OPT_offset,
6243 			    (uchar_t *)ntcr + ntcr->OPT_offset,
6244 			    tcr->OPT_length);
6245 			nmp->b_wptr += tcr->OPT_length;
6246 		}
6247 		freemsg(mp);	/* original mp freed */
6248 		mp = nmp;	/* re-initialize original variables */
6249 		tcr = ntcr;
6250 	}
6251 	/* FALLTHRU */
6252 
6253 	case sizeof (sin_t):
6254 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6255 		    sizeof (sin_t));
6256 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6257 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6258 			return;
6259 		}
6260 		if (tcp->tcp_family != AF_INET ||
6261 		    sin->sin_family != AF_INET) {
6262 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6263 			return;
6264 		}
6265 		if (sin->sin_port == 0) {
6266 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6267 			return;
6268 		}
6269 		if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) {
6270 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6271 			return;
6272 		}
6273 
6274 		break;
6275 
6276 	case sizeof (sin6_t):
6277 		sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset,
6278 		    sizeof (sin6_t));
6279 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
6280 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6281 			return;
6282 		}
6283 		if (tcp->tcp_family != AF_INET6 ||
6284 		    sin6->sin6_family != AF_INET6) {
6285 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6286 			return;
6287 		}
6288 		if (sin6->sin6_port == 0) {
6289 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6290 			return;
6291 		}
6292 		break;
6293 	}
6294 	/*
6295 	 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we
6296 	 * should key on their sequence number and cut them loose.
6297 	 */
6298 
6299 	/*
6300 	 * If options passed in, feed it for verification and handling
6301 	 */
6302 	if (tcr->OPT_length != 0) {
6303 		mblk_t	*ok_mp;
6304 		mblk_t	*discon_mp;
6305 		mblk_t  *conn_opts_mp;
6306 		int t_error, sys_error, do_disconnect;
6307 
6308 		conn_opts_mp = NULL;
6309 
6310 		if (tcp_conprim_opt_process(tcp, mp,
6311 			&do_disconnect, &t_error, &sys_error) < 0) {
6312 			if (do_disconnect) {
6313 				ASSERT(t_error == 0 && sys_error == 0);
6314 				discon_mp = mi_tpi_discon_ind(NULL,
6315 				    ECONNREFUSED, 0);
6316 				if (!discon_mp) {
6317 					tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6318 					    TSYSERR, ENOMEM);
6319 					return;
6320 				}
6321 				ok_mp = mi_tpi_ok_ack_alloc(mp);
6322 				if (!ok_mp) {
6323 					tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6324 					    TSYSERR, ENOMEM);
6325 					return;
6326 				}
6327 				qreply(q, ok_mp);
6328 				qreply(q, discon_mp); /* no flush! */
6329 			} else {
6330 				ASSERT(t_error != 0);
6331 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error,
6332 				    sys_error);
6333 			}
6334 			return;
6335 		}
6336 		/*
6337 		 * Success in setting options, the mp option buffer represented
6338 		 * by OPT_length/offset has been potentially modified and
6339 		 * contains results of option processing. We copy it in
6340 		 * another mp to save it for potentially influencing returning
6341 		 * it in T_CONN_CONN.
6342 		 */
6343 		if (tcr->OPT_length != 0) { /* there are resulting options */
6344 			conn_opts_mp = copyb(mp);
6345 			if (!conn_opts_mp) {
6346 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6347 				    TSYSERR, ENOMEM);
6348 				return;
6349 			}
6350 			ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL);
6351 			tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp;
6352 			/*
6353 			 * Note:
6354 			 * These resulting option negotiation can include any
6355 			 * end-to-end negotiation options but there no such
6356 			 * thing (yet?) in our TCP/IP.
6357 			 */
6358 		}
6359 	}
6360 
6361 	/*
6362 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
6363 	 * make sure that the template IP header in the tcp structure is an
6364 	 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION.  We
6365 	 * need to this before we call tcp_bindi() so that the port lookup
6366 	 * code will look for ports in the correct port space (IPv4 and
6367 	 * IPv6 have separate port spaces).
6368 	 */
6369 	if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION &&
6370 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6371 		int err = 0;
6372 
6373 		err = tcp_header_init_ipv4(tcp);
6374 		if (err != 0) {
6375 			mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6376 			goto connect_failed;
6377 		}
6378 		if (tcp->tcp_lport != 0)
6379 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
6380 	}
6381 
6382 	switch (tcp->tcp_state) {
6383 	case TCPS_IDLE:
6384 		/*
6385 		 * We support quick connect, refer to comments in
6386 		 * tcp_connect_*()
6387 		 */
6388 		/* FALLTHRU */
6389 	case TCPS_BOUND:
6390 	case TCPS_LISTEN:
6391 		if (tcp->tcp_family == AF_INET6) {
6392 			if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6393 				tcp_connect_ipv6(tcp, mp,
6394 				    &sin6->sin6_addr,
6395 				    sin6->sin6_port, sin6->sin6_flowinfo,
6396 				    sin6->__sin6_src_id, sin6->sin6_scope_id);
6397 				return;
6398 			}
6399 			/*
6400 			 * Destination adress is mapped IPv6 address.
6401 			 * Source bound address should be unspecified or
6402 			 * IPv6 mapped address as well.
6403 			 */
6404 			if (!IN6_IS_ADDR_UNSPECIFIED(
6405 			    &tcp->tcp_bound_source_v6) &&
6406 			    !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) {
6407 				mp = mi_tpi_err_ack_alloc(mp, TSYSERR,
6408 				    EADDRNOTAVAIL);
6409 				break;
6410 			}
6411 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
6412 			dstport = sin6->sin6_port;
6413 			srcid = sin6->__sin6_src_id;
6414 		} else {
6415 			dstaddrp = &sin->sin_addr.s_addr;
6416 			dstport = sin->sin_port;
6417 			srcid = 0;
6418 		}
6419 
6420 		tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid);
6421 		return;
6422 	default:
6423 		mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0);
6424 		break;
6425 	}
6426 	/*
6427 	 * Note: Code below is the "failure" case
6428 	 */
6429 	/* return error ack and blow away saved option results if any */
6430 connect_failed:
6431 	if (mp != NULL)
6432 		putnext(tcp->tcp_rq, mp);
6433 	else {
6434 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6435 		    TSYSERR, ENOMEM);
6436 	}
6437 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6438 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6439 }
6440 
6441 /*
6442  * Handle connect to IPv4 destinations, including connections for AF_INET6
6443  * sockets connecting to IPv4 mapped IPv6 destinations.
6444  */
6445 static void
6446 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport,
6447     uint_t srcid)
6448 {
6449 	tcph_t	*tcph;
6450 	mblk_t	*mp1;
6451 	ipaddr_t dstaddr = *dstaddrp;
6452 	int32_t	oldstate;
6453 	uint16_t lport;
6454 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6455 
6456 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
6457 
6458 	/* Check for attempt to connect to INADDR_ANY */
6459 	if (dstaddr == INADDR_ANY)  {
6460 		/*
6461 		 * SunOS 4.x and 4.3 BSD allow an application
6462 		 * to connect a TCP socket to INADDR_ANY.
6463 		 * When they do this, the kernel picks the
6464 		 * address of one interface and uses it
6465 		 * instead.  The kernel usually ends up
6466 		 * picking the address of the loopback
6467 		 * interface.  This is an undocumented feature.
6468 		 * However, we provide the same thing here
6469 		 * in order to have source and binary
6470 		 * compatibility with SunOS 4.x.
6471 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
6472 		 * generate the T_CONN_CON.
6473 		 */
6474 		dstaddr = htonl(INADDR_LOOPBACK);
6475 		*dstaddrp = dstaddr;
6476 	}
6477 
6478 	/* Handle __sin6_src_id if socket not bound to an IP address */
6479 	if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) {
6480 		ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6,
6481 		    tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack);
6482 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6,
6483 		    tcp->tcp_ipha->ipha_src);
6484 	}
6485 
6486 	/*
6487 	 * Don't let an endpoint connect to itself.  Note that
6488 	 * the test here does not catch the case where the
6489 	 * source IP addr was left unspecified by the user. In
6490 	 * this case, the source addr is set in tcp_adapt_ire()
6491 	 * using the reply to the T_BIND message that we send
6492 	 * down to IP here and the check is repeated in tcp_rput_other.
6493 	 */
6494 	if (dstaddr == tcp->tcp_ipha->ipha_src &&
6495 	    dstport == tcp->tcp_lport) {
6496 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6497 		goto failed;
6498 	}
6499 
6500 	tcp->tcp_ipha->ipha_dst = dstaddr;
6501 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6);
6502 
6503 	/*
6504 	 * Massage a source route if any putting the first hop
6505 	 * in iph_dst. Compute a starting value for the checksum which
6506 	 * takes into account that the original iph_dst should be
6507 	 * included in the checksum but that ip will include the
6508 	 * first hop in the source route in the tcp checksum.
6509 	 */
6510 	tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack);
6511 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6512 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
6513 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
6514 	if ((int)tcp->tcp_sum < 0)
6515 		tcp->tcp_sum--;
6516 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6517 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6518 	    (tcp->tcp_sum >> 16));
6519 	tcph = tcp->tcp_tcph;
6520 	*(uint16_t *)tcph->th_fport = dstport;
6521 	tcp->tcp_fport = dstport;
6522 
6523 	oldstate = tcp->tcp_state;
6524 	/*
6525 	 * At this point the remote destination address and remote port fields
6526 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6527 	 * have to see which state tcp was in so we can take apropriate action.
6528 	 */
6529 	if (oldstate == TCPS_IDLE) {
6530 		/*
6531 		 * We support a quick connect capability here, allowing
6532 		 * clients to transition directly from IDLE to SYN_SENT
6533 		 * tcp_bindi will pick an unused port, insert the connection
6534 		 * in the bind hash and transition to BOUND state.
6535 		 */
6536 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6537 		    tcp, B_TRUE);
6538 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6539 		    B_FALSE, B_FALSE);
6540 		if (lport == 0) {
6541 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6542 			goto failed;
6543 		}
6544 	}
6545 	tcp->tcp_state = TCPS_SYN_SENT;
6546 
6547 	/*
6548 	 * TODO: allow data with connect requests
6549 	 * by unlinking M_DATA trailers here and
6550 	 * linking them in behind the T_OK_ACK mblk.
6551 	 * The tcp_rput() bind ack handler would then
6552 	 * feed them to tcp_wput_data() rather than call
6553 	 * tcp_timer().
6554 	 */
6555 	mp = mi_tpi_ok_ack_alloc(mp);
6556 	if (!mp) {
6557 		tcp->tcp_state = oldstate;
6558 		goto failed;
6559 	}
6560 	if (tcp->tcp_family == AF_INET) {
6561 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6562 		    sizeof (ipa_conn_t));
6563 	} else {
6564 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6565 		    sizeof (ipa6_conn_t));
6566 	}
6567 	if (mp1) {
6568 		/* Hang onto the T_OK_ACK for later. */
6569 		linkb(mp1, mp);
6570 		mblk_setcred(mp1, tcp->tcp_cred);
6571 		if (tcp->tcp_family == AF_INET)
6572 			mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp);
6573 		else {
6574 			mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6575 			    &tcp->tcp_sticky_ipp);
6576 		}
6577 		BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6578 		tcp->tcp_active_open = 1;
6579 		/*
6580 		 * If the bind cannot complete immediately
6581 		 * IP will arrange to call tcp_rput_other
6582 		 * when the bind completes.
6583 		 */
6584 		if (mp1 != NULL)
6585 			tcp_rput_other(tcp, mp1);
6586 		return;
6587 	}
6588 	/* Error case */
6589 	tcp->tcp_state = oldstate;
6590 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6591 
6592 failed:
6593 	/* return error ack and blow away saved option results if any */
6594 	if (mp != NULL)
6595 		putnext(tcp->tcp_rq, mp);
6596 	else {
6597 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6598 		    TSYSERR, ENOMEM);
6599 	}
6600 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6601 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6602 
6603 }
6604 
6605 /*
6606  * Handle connect to IPv6 destinations.
6607  */
6608 static void
6609 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
6610     in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
6611 {
6612 	tcph_t	*tcph;
6613 	mblk_t	*mp1;
6614 	ip6_rthdr_t *rth;
6615 	int32_t  oldstate;
6616 	uint16_t lport;
6617 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6618 
6619 	ASSERT(tcp->tcp_family == AF_INET6);
6620 
6621 	/*
6622 	 * If we're here, it means that the destination address is a native
6623 	 * IPv6 address.  Return an error if tcp_ipversion is not IPv6.  A
6624 	 * reason why it might not be IPv6 is if the socket was bound to an
6625 	 * IPv4-mapped IPv6 address.
6626 	 */
6627 	if (tcp->tcp_ipversion != IPV6_VERSION) {
6628 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6629 		goto failed;
6630 	}
6631 
6632 	/*
6633 	 * Interpret a zero destination to mean loopback.
6634 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
6635 	 * generate the T_CONN_CON.
6636 	 */
6637 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) {
6638 		*dstaddrp = ipv6_loopback;
6639 	}
6640 
6641 	/* Handle __sin6_src_id if socket not bound to an IP address */
6642 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
6643 		ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src,
6644 		    tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack);
6645 		tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src;
6646 	}
6647 
6648 	/*
6649 	 * Take care of the scope_id now and add ip6i_t
6650 	 * if ip6i_t is not already allocated through TCP
6651 	 * sticky options. At this point tcp_ip6h does not
6652 	 * have dst info, thus use dstaddrp.
6653 	 */
6654 	if (scope_id != 0 &&
6655 	    IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
6656 		ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
6657 		ip6i_t  *ip6i;
6658 
6659 		ipp->ipp_ifindex = scope_id;
6660 		ip6i = (ip6i_t *)tcp->tcp_iphc;
6661 
6662 		if ((ipp->ipp_fields & IPPF_HAS_IP6I) &&
6663 		    ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) {
6664 			/* Already allocated */
6665 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6666 			ip6i->ip6i_ifindex = ipp->ipp_ifindex;
6667 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6668 		} else {
6669 			int reterr;
6670 
6671 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6672 			if (ipp->ipp_fields & IPPF_HAS_IP6I)
6673 				ip2dbg(("tcp_connect_v6: SCOPE_ID set\n"));
6674 			reterr = tcp_build_hdrs(tcp->tcp_rq, tcp);
6675 			if (reterr != 0)
6676 				goto failed;
6677 			ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n"));
6678 		}
6679 	}
6680 
6681 	/*
6682 	 * Don't let an endpoint connect to itself.  Note that
6683 	 * the test here does not catch the case where the
6684 	 * source IP addr was left unspecified by the user. In
6685 	 * this case, the source addr is set in tcp_adapt_ire()
6686 	 * using the reply to the T_BIND message that we send
6687 	 * down to IP here and the check is repeated in tcp_rput_other.
6688 	 */
6689 	if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) &&
6690 	    (dstport == tcp->tcp_lport)) {
6691 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6692 		goto failed;
6693 	}
6694 
6695 	tcp->tcp_ip6h->ip6_dst = *dstaddrp;
6696 	tcp->tcp_remote_v6 = *dstaddrp;
6697 	tcp->tcp_ip6h->ip6_vcf =
6698 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
6699 	    (flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
6700 
6701 
6702 	/*
6703 	 * Massage a routing header (if present) putting the first hop
6704 	 * in ip6_dst. Compute a starting value for the checksum which
6705 	 * takes into account that the original ip6_dst should be
6706 	 * included in the checksum but that ip will include the
6707 	 * first hop in the source route in the tcp checksum.
6708 	 */
6709 	rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph);
6710 	if (rth != NULL) {
6711 		tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth,
6712 		    tcps->tcps_netstack);
6713 		tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6714 		    (tcp->tcp_sum >> 16));
6715 	} else {
6716 		tcp->tcp_sum = 0;
6717 	}
6718 
6719 	tcph = tcp->tcp_tcph;
6720 	*(uint16_t *)tcph->th_fport = dstport;
6721 	tcp->tcp_fport = dstport;
6722 
6723 	oldstate = tcp->tcp_state;
6724 	/*
6725 	 * At this point the remote destination address and remote port fields
6726 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6727 	 * have to see which state tcp was in so we can take apropriate action.
6728 	 */
6729 	if (oldstate == TCPS_IDLE) {
6730 		/*
6731 		 * We support a quick connect capability here, allowing
6732 		 * clients to transition directly from IDLE to SYN_SENT
6733 		 * tcp_bindi will pick an unused port, insert the connection
6734 		 * in the bind hash and transition to BOUND state.
6735 		 */
6736 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6737 		    tcp, B_TRUE);
6738 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6739 		    B_FALSE, B_FALSE);
6740 		if (lport == 0) {
6741 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6742 			goto failed;
6743 		}
6744 	}
6745 	tcp->tcp_state = TCPS_SYN_SENT;
6746 	/*
6747 	 * TODO: allow data with connect requests
6748 	 * by unlinking M_DATA trailers here and
6749 	 * linking them in behind the T_OK_ACK mblk.
6750 	 * The tcp_rput() bind ack handler would then
6751 	 * feed them to tcp_wput_data() rather than call
6752 	 * tcp_timer().
6753 	 */
6754 	mp = mi_tpi_ok_ack_alloc(mp);
6755 	if (!mp) {
6756 		tcp->tcp_state = oldstate;
6757 		goto failed;
6758 	}
6759 	mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t));
6760 	if (mp1) {
6761 		/* Hang onto the T_OK_ACK for later. */
6762 		linkb(mp1, mp);
6763 		mblk_setcred(mp1, tcp->tcp_cred);
6764 		mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6765 		    &tcp->tcp_sticky_ipp);
6766 		BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6767 		tcp->tcp_active_open = 1;
6768 		/* ip_bind_v6() may return ACK or ERROR */
6769 		if (mp1 != NULL)
6770 			tcp_rput_other(tcp, mp1);
6771 		return;
6772 	}
6773 	/* Error case */
6774 	tcp->tcp_state = oldstate;
6775 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6776 
6777 failed:
6778 	/* return error ack and blow away saved option results if any */
6779 	if (mp != NULL)
6780 		putnext(tcp->tcp_rq, mp);
6781 	else {
6782 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6783 		    TSYSERR, ENOMEM);
6784 	}
6785 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6786 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6787 }
6788 
6789 /*
6790  * We need a stream q for detached closing tcp connections
6791  * to use.  Our client hereby indicates that this q is the
6792  * one to use.
6793  */
6794 static void
6795 tcp_def_q_set(tcp_t *tcp, mblk_t *mp)
6796 {
6797 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
6798 	queue_t	*q = tcp->tcp_wq;
6799 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6800 
6801 #ifdef NS_DEBUG
6802 	(void) printf("TCP_IOC_DEFAULT_Q for stack %d\n",
6803 	    tcps->tcps_netstack->netstack_stackid);
6804 #endif
6805 	mp->b_datap->db_type = M_IOCACK;
6806 	iocp->ioc_count = 0;
6807 	mutex_enter(&tcps->tcps_g_q_lock);
6808 	if (tcps->tcps_g_q != NULL) {
6809 		mutex_exit(&tcps->tcps_g_q_lock);
6810 		iocp->ioc_error = EALREADY;
6811 	} else {
6812 		mblk_t *mp1;
6813 
6814 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0);
6815 		if (mp1 == NULL) {
6816 			mutex_exit(&tcps->tcps_g_q_lock);
6817 			iocp->ioc_error = ENOMEM;
6818 		} else {
6819 			tcps->tcps_g_q = tcp->tcp_rq;
6820 			mutex_exit(&tcps->tcps_g_q_lock);
6821 			iocp->ioc_error = 0;
6822 			iocp->ioc_rval = 0;
6823 			/*
6824 			 * We are passing tcp_sticky_ipp as NULL
6825 			 * as it is not useful for tcp_default queue
6826 			 */
6827 			mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL);
6828 			if (mp1 != NULL)
6829 				tcp_rput_other(tcp, mp1);
6830 		}
6831 	}
6832 	qreply(q, mp);
6833 }
6834 
6835 /*
6836  * Our client hereby directs us to reject the connection request
6837  * that tcp_conn_request() marked with 'seqnum'.  Rejection consists
6838  * of sending the appropriate RST, not an ICMP error.
6839  */
6840 static void
6841 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
6842 {
6843 	tcp_t	*ltcp = NULL;
6844 	t_scalar_t seqnum;
6845 	conn_t	*connp;
6846 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6847 
6848 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6849 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
6850 		tcp_err_ack(tcp, mp, TPROTO, 0);
6851 		return;
6852 	}
6853 
6854 	/*
6855 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
6856 	 * when the stream is in BOUND state. Do not send a reset,
6857 	 * since the destination IP address is not valid, and it can
6858 	 * be the initialized value of all zeros (broadcast address).
6859 	 *
6860 	 * If TCP has sent down a bind request to IP and has not
6861 	 * received the reply, reject the request.  Otherwise, TCP
6862 	 * will be confused.
6863 	 */
6864 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) {
6865 		if (tcp->tcp_debug) {
6866 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
6867 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
6868 		}
6869 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
6870 		return;
6871 	}
6872 
6873 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
6874 
6875 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
6876 
6877 		/*
6878 		 * According to TPI, for non-listeners, ignore seqnum
6879 		 * and disconnect.
6880 		 * Following interpretation of -1 seqnum is historical
6881 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
6882 		 * a valid seqnum should not be -1).
6883 		 *
6884 		 *	-1 means disconnect everything
6885 		 *	regardless even on a listener.
6886 		 */
6887 
6888 		int old_state = tcp->tcp_state;
6889 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
6890 
6891 		/*
6892 		 * The connection can't be on the tcp_time_wait_head list
6893 		 * since it is not detached.
6894 		 */
6895 		ASSERT(tcp->tcp_time_wait_next == NULL);
6896 		ASSERT(tcp->tcp_time_wait_prev == NULL);
6897 		ASSERT(tcp->tcp_time_wait_expire == 0);
6898 		ltcp = NULL;
6899 		/*
6900 		 * If it used to be a listener, check to make sure no one else
6901 		 * has taken the port before switching back to LISTEN state.
6902 		 */
6903 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6904 			connp = ipcl_lookup_listener_v4(tcp->tcp_lport,
6905 			    tcp->tcp_ipha->ipha_src,
6906 			    tcp->tcp_connp->conn_zoneid, ipst);
6907 			if (connp != NULL)
6908 				ltcp = connp->conn_tcp;
6909 		} else {
6910 			/* Allow tcp_bound_if listeners? */
6911 			connp = ipcl_lookup_listener_v6(tcp->tcp_lport,
6912 			    &tcp->tcp_ip6h->ip6_src, 0,
6913 			    tcp->tcp_connp->conn_zoneid, ipst);
6914 			if (connp != NULL)
6915 				ltcp = connp->conn_tcp;
6916 		}
6917 		if (tcp->tcp_conn_req_max && ltcp == NULL) {
6918 			tcp->tcp_state = TCPS_LISTEN;
6919 		} else if (old_state > TCPS_BOUND) {
6920 			tcp->tcp_conn_req_max = 0;
6921 			tcp->tcp_state = TCPS_BOUND;
6922 		}
6923 		if (ltcp != NULL)
6924 			CONN_DEC_REF(ltcp->tcp_connp);
6925 		if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) {
6926 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
6927 		} else if (old_state == TCPS_ESTABLISHED ||
6928 		    old_state == TCPS_CLOSE_WAIT) {
6929 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
6930 		}
6931 
6932 		if (tcp->tcp_fused)
6933 			tcp_unfuse(tcp);
6934 
6935 		mutex_enter(&tcp->tcp_eager_lock);
6936 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
6937 		    (tcp->tcp_conn_req_cnt_q != 0)) {
6938 			tcp_eager_cleanup(tcp, 0);
6939 		}
6940 		mutex_exit(&tcp->tcp_eager_lock);
6941 
6942 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
6943 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
6944 
6945 		tcp_reinit(tcp);
6946 
6947 		if (old_state >= TCPS_ESTABLISHED) {
6948 			/* Send M_FLUSH according to TPI */
6949 			(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6950 		}
6951 		mp = mi_tpi_ok_ack_alloc(mp);
6952 		if (mp)
6953 			putnext(tcp->tcp_rq, mp);
6954 		return;
6955 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
6956 		tcp_err_ack(tcp, mp, TBADSEQ, 0);
6957 		return;
6958 	}
6959 	if (tcp->tcp_state >= TCPS_ESTABLISHED) {
6960 		/* Send M_FLUSH according to TPI */
6961 		(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6962 	}
6963 	mp = mi_tpi_ok_ack_alloc(mp);
6964 	if (mp)
6965 		putnext(tcp->tcp_rq, mp);
6966 }
6967 
6968 /*
6969  * Diagnostic routine used to return a string associated with the tcp state.
6970  * Note that if the caller does not supply a buffer, it will use an internal
6971  * static string.  This means that if multiple threads call this function at
6972  * the same time, output can be corrupted...  Note also that this function
6973  * does not check the size of the supplied buffer.  The caller has to make
6974  * sure that it is big enough.
6975  */
6976 static char *
6977 tcp_display(tcp_t *tcp, char *sup_buf, char format)
6978 {
6979 	char		buf1[30];
6980 	static char	priv_buf[INET6_ADDRSTRLEN * 2 + 80];
6981 	char		*buf;
6982 	char		*cp;
6983 	in6_addr_t	local, remote;
6984 	char		local_addrbuf[INET6_ADDRSTRLEN];
6985 	char		remote_addrbuf[INET6_ADDRSTRLEN];
6986 
6987 	if (sup_buf != NULL)
6988 		buf = sup_buf;
6989 	else
6990 		buf = priv_buf;
6991 
6992 	if (tcp == NULL)
6993 		return ("NULL_TCP");
6994 	switch (tcp->tcp_state) {
6995 	case TCPS_CLOSED:
6996 		cp = "TCP_CLOSED";
6997 		break;
6998 	case TCPS_IDLE:
6999 		cp = "TCP_IDLE";
7000 		break;
7001 	case TCPS_BOUND:
7002 		cp = "TCP_BOUND";
7003 		break;
7004 	case TCPS_LISTEN:
7005 		cp = "TCP_LISTEN";
7006 		break;
7007 	case TCPS_SYN_SENT:
7008 		cp = "TCP_SYN_SENT";
7009 		break;
7010 	case TCPS_SYN_RCVD:
7011 		cp = "TCP_SYN_RCVD";
7012 		break;
7013 	case TCPS_ESTABLISHED:
7014 		cp = "TCP_ESTABLISHED";
7015 		break;
7016 	case TCPS_CLOSE_WAIT:
7017 		cp = "TCP_CLOSE_WAIT";
7018 		break;
7019 	case TCPS_FIN_WAIT_1:
7020 		cp = "TCP_FIN_WAIT_1";
7021 		break;
7022 	case TCPS_CLOSING:
7023 		cp = "TCP_CLOSING";
7024 		break;
7025 	case TCPS_LAST_ACK:
7026 		cp = "TCP_LAST_ACK";
7027 		break;
7028 	case TCPS_FIN_WAIT_2:
7029 		cp = "TCP_FIN_WAIT_2";
7030 		break;
7031 	case TCPS_TIME_WAIT:
7032 		cp = "TCP_TIME_WAIT";
7033 		break;
7034 	default:
7035 		(void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state);
7036 		cp = buf1;
7037 		break;
7038 	}
7039 	switch (format) {
7040 	case DISP_ADDR_AND_PORT:
7041 		if (tcp->tcp_ipversion == IPV4_VERSION) {
7042 			/*
7043 			 * Note that we use the remote address in the tcp_b
7044 			 * structure.  This means that it will print out
7045 			 * the real destination address, not the next hop's
7046 			 * address if source routing is used.
7047 			 */
7048 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local);
7049 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote);
7050 
7051 		} else {
7052 			local = tcp->tcp_ip_src_v6;
7053 			remote = tcp->tcp_remote_v6;
7054 		}
7055 		(void) inet_ntop(AF_INET6, &local, local_addrbuf,
7056 		    sizeof (local_addrbuf));
7057 		(void) inet_ntop(AF_INET6, &remote, remote_addrbuf,
7058 		    sizeof (remote_addrbuf));
7059 		(void) mi_sprintf(buf, "[%s.%u, %s.%u] %s",
7060 		    local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf,
7061 		    ntohs(tcp->tcp_fport), cp);
7062 		break;
7063 	case DISP_PORT_ONLY:
7064 	default:
7065 		(void) mi_sprintf(buf, "[%u, %u] %s",
7066 		    ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp);
7067 		break;
7068 	}
7069 
7070 	return (buf);
7071 }
7072 
7073 /*
7074  * Called via squeue to get on to eager's perimeter to send a
7075  * TH_RST. The listener wants the eager to disappear either
7076  * by means of tcp_eager_blowoff() or tcp_eager_cleanup()
7077  * being called.
7078  */
7079 /* ARGSUSED */
7080 void
7081 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2)
7082 {
7083 	conn_t	*econnp = (conn_t *)arg;
7084 	tcp_t	*eager = econnp->conn_tcp;
7085 	tcp_t	*listener = eager->tcp_listener;
7086 	tcp_stack_t	*tcps = eager->tcp_tcps;
7087 
7088 	/*
7089 	 * We could be called because listener is closing. Since
7090 	 * the eager is using listener's queue's, its not safe.
7091 	 * Better use the default queue just to send the TH_RST
7092 	 * out.
7093 	 */
7094 	ASSERT(tcps->tcps_g_q != NULL);
7095 	eager->tcp_rq = tcps->tcps_g_q;
7096 	eager->tcp_wq = WR(tcps->tcps_g_q);
7097 
7098 	if (eager->tcp_state > TCPS_LISTEN) {
7099 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
7100 		    eager, eager->tcp_snxt, 0, TH_RST);
7101 	}
7102 
7103 	/* We are here because listener wants this eager gone */
7104 	if (listener != NULL) {
7105 		mutex_enter(&listener->tcp_eager_lock);
7106 		tcp_eager_unlink(eager);
7107 		if (eager->tcp_tconnind_started) {
7108 			/*
7109 			 * The eager has sent a conn_ind up to the
7110 			 * listener but listener decides to close
7111 			 * instead. We need to drop the extra ref
7112 			 * placed on eager in tcp_rput_data() before
7113 			 * sending the conn_ind to listener.
7114 			 */
7115 			CONN_DEC_REF(econnp);
7116 		}
7117 		mutex_exit(&listener->tcp_eager_lock);
7118 		CONN_DEC_REF(listener->tcp_connp);
7119 	}
7120 
7121 	if (eager->tcp_state > TCPS_BOUND)
7122 		tcp_close_detached(eager);
7123 }
7124 
7125 /*
7126  * Reset any eager connection hanging off this listener marked
7127  * with 'seqnum' and then reclaim it's resources.
7128  */
7129 static boolean_t
7130 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
7131 {
7132 	tcp_t	*eager;
7133 	mblk_t 	*mp;
7134 	tcp_stack_t	*tcps = listener->tcp_tcps;
7135 
7136 	TCP_STAT(tcps, tcp_eager_blowoff_calls);
7137 	eager = listener;
7138 	mutex_enter(&listener->tcp_eager_lock);
7139 	do {
7140 		eager = eager->tcp_eager_next_q;
7141 		if (eager == NULL) {
7142 			mutex_exit(&listener->tcp_eager_lock);
7143 			return (B_FALSE);
7144 		}
7145 	} while (eager->tcp_conn_req_seqnum != seqnum);
7146 
7147 	if (eager->tcp_closemp_used > 0) {
7148 		mutex_exit(&listener->tcp_eager_lock);
7149 		return (B_TRUE);
7150 	}
7151 	eager->tcp_closemp_used = 1;
7152 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7153 	CONN_INC_REF(eager->tcp_connp);
7154 	mutex_exit(&listener->tcp_eager_lock);
7155 	mp = &eager->tcp_closemp;
7156 	squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
7157 	    eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF);
7158 	return (B_TRUE);
7159 }
7160 
7161 /*
7162  * Reset any eager connection hanging off this listener
7163  * and then reclaim it's resources.
7164  */
7165 static void
7166 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
7167 {
7168 	tcp_t	*eager;
7169 	mblk_t	*mp;
7170 	tcp_stack_t	*tcps = listener->tcp_tcps;
7171 
7172 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7173 
7174 	if (!q0_only) {
7175 		/* First cleanup q */
7176 		TCP_STAT(tcps, tcp_eager_blowoff_q);
7177 		eager = listener->tcp_eager_next_q;
7178 		while (eager != NULL) {
7179 			if (eager->tcp_closemp_used == 0) {
7180 				eager->tcp_closemp_used = 1;
7181 				TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7182 				CONN_INC_REF(eager->tcp_connp);
7183 				mp = &eager->tcp_closemp;
7184 				squeue_fill(eager->tcp_connp->conn_sqp, mp,
7185 				    tcp_eager_kill, eager->tcp_connp,
7186 				    SQTAG_TCP_EAGER_CLEANUP);
7187 			}
7188 			eager = eager->tcp_eager_next_q;
7189 		}
7190 	}
7191 	/* Then cleanup q0 */
7192 	TCP_STAT(tcps, tcp_eager_blowoff_q0);
7193 	eager = listener->tcp_eager_next_q0;
7194 	while (eager != listener) {
7195 		if (eager->tcp_closemp_used == 0) {
7196 			eager->tcp_closemp_used = 1;
7197 			TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7198 			CONN_INC_REF(eager->tcp_connp);
7199 			mp = &eager->tcp_closemp;
7200 			squeue_fill(eager->tcp_connp->conn_sqp, mp,
7201 			    tcp_eager_kill, eager->tcp_connp,
7202 			    SQTAG_TCP_EAGER_CLEANUP_Q0);
7203 		}
7204 		eager = eager->tcp_eager_next_q0;
7205 	}
7206 }
7207 
7208 /*
7209  * If we are an eager connection hanging off a listener that hasn't
7210  * formally accepted the connection yet, get off his list and blow off
7211  * any data that we have accumulated.
7212  */
7213 static void
7214 tcp_eager_unlink(tcp_t *tcp)
7215 {
7216 	tcp_t	*listener = tcp->tcp_listener;
7217 
7218 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7219 	ASSERT(listener != NULL);
7220 	if (tcp->tcp_eager_next_q0 != NULL) {
7221 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
7222 
7223 		/* Remove the eager tcp from q0 */
7224 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
7225 		    tcp->tcp_eager_prev_q0;
7226 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
7227 		    tcp->tcp_eager_next_q0;
7228 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
7229 		listener->tcp_conn_req_cnt_q0--;
7230 
7231 		tcp->tcp_eager_next_q0 = NULL;
7232 		tcp->tcp_eager_prev_q0 = NULL;
7233 
7234 		/*
7235 		 * Take the eager out, if it is in the list of droppable
7236 		 * eagers.
7237 		 */
7238 		MAKE_UNDROPPABLE(tcp);
7239 
7240 		if (tcp->tcp_syn_rcvd_timeout != 0) {
7241 			/* we have timed out before */
7242 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
7243 			listener->tcp_syn_rcvd_timeout--;
7244 		}
7245 	} else {
7246 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
7247 		tcp_t	*prev = NULL;
7248 
7249 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
7250 			if (tcpp[0] == tcp) {
7251 				if (listener->tcp_eager_last_q == tcp) {
7252 					/*
7253 					 * If we are unlinking the last
7254 					 * element on the list, adjust
7255 					 * tail pointer. Set tail pointer
7256 					 * to nil when list is empty.
7257 					 */
7258 					ASSERT(tcp->tcp_eager_next_q == NULL);
7259 					if (listener->tcp_eager_last_q ==
7260 					    listener->tcp_eager_next_q) {
7261 						listener->tcp_eager_last_q =
7262 						NULL;
7263 					} else {
7264 						/*
7265 						 * We won't get here if there
7266 						 * is only one eager in the
7267 						 * list.
7268 						 */
7269 						ASSERT(prev != NULL);
7270 						listener->tcp_eager_last_q =
7271 						    prev;
7272 					}
7273 				}
7274 				tcpp[0] = tcp->tcp_eager_next_q;
7275 				tcp->tcp_eager_next_q = NULL;
7276 				tcp->tcp_eager_last_q = NULL;
7277 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
7278 				listener->tcp_conn_req_cnt_q--;
7279 				break;
7280 			}
7281 			prev = tcpp[0];
7282 		}
7283 	}
7284 	tcp->tcp_listener = NULL;
7285 }
7286 
7287 /* Shorthand to generate and send TPI error acks to our client */
7288 static void
7289 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error)
7290 {
7291 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
7292 		putnext(tcp->tcp_rq, mp);
7293 }
7294 
7295 /* Shorthand to generate and send TPI error acks to our client */
7296 static void
7297 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
7298     int t_error, int sys_error)
7299 {
7300 	struct T_error_ack	*teackp;
7301 
7302 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
7303 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
7304 		teackp = (struct T_error_ack *)mp->b_rptr;
7305 		teackp->ERROR_prim = primitive;
7306 		teackp->TLI_error = t_error;
7307 		teackp->UNIX_error = sys_error;
7308 		putnext(tcp->tcp_rq, mp);
7309 	}
7310 }
7311 
7312 /*
7313  * Note: No locks are held when inspecting tcp_g_*epriv_ports
7314  * but instead the code relies on:
7315  * - the fact that the address of the array and its size never changes
7316  * - the atomic assignment of the elements of the array
7317  */
7318 /* ARGSUSED */
7319 static int
7320 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
7321 {
7322 	int i;
7323 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7324 
7325 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7326 		if (tcps->tcps_g_epriv_ports[i] != 0)
7327 			(void) mi_mpprintf(mp, "%d ",
7328 			    tcps->tcps_g_epriv_ports[i]);
7329 	}
7330 	return (0);
7331 }
7332 
7333 /*
7334  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7335  * threads from changing it at the same time.
7336  */
7337 /* ARGSUSED */
7338 static int
7339 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7340     cred_t *cr)
7341 {
7342 	long	new_value;
7343 	int	i;
7344 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7345 
7346 	/*
7347 	 * Fail the request if the new value does not lie within the
7348 	 * port number limits.
7349 	 */
7350 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
7351 	    new_value <= 0 || new_value >= 65536) {
7352 		return (EINVAL);
7353 	}
7354 
7355 	mutex_enter(&tcps->tcps_epriv_port_lock);
7356 	/* Check if the value is already in the list */
7357 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7358 		if (new_value == tcps->tcps_g_epriv_ports[i]) {
7359 			mutex_exit(&tcps->tcps_epriv_port_lock);
7360 			return (EEXIST);
7361 		}
7362 	}
7363 	/* Find an empty slot */
7364 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7365 		if (tcps->tcps_g_epriv_ports[i] == 0)
7366 			break;
7367 	}
7368 	if (i == tcps->tcps_g_num_epriv_ports) {
7369 		mutex_exit(&tcps->tcps_epriv_port_lock);
7370 		return (EOVERFLOW);
7371 	}
7372 	/* Set the new value */
7373 	tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value;
7374 	mutex_exit(&tcps->tcps_epriv_port_lock);
7375 	return (0);
7376 }
7377 
7378 /*
7379  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7380  * threads from changing it at the same time.
7381  */
7382 /* ARGSUSED */
7383 static int
7384 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7385     cred_t *cr)
7386 {
7387 	long	new_value;
7388 	int	i;
7389 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7390 
7391 	/*
7392 	 * Fail the request if the new value does not lie within the
7393 	 * port number limits.
7394 	 */
7395 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 ||
7396 	    new_value >= 65536) {
7397 		return (EINVAL);
7398 	}
7399 
7400 	mutex_enter(&tcps->tcps_epriv_port_lock);
7401 	/* Check that the value is already in the list */
7402 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7403 		if (tcps->tcps_g_epriv_ports[i] == new_value)
7404 			break;
7405 	}
7406 	if (i == tcps->tcps_g_num_epriv_ports) {
7407 		mutex_exit(&tcps->tcps_epriv_port_lock);
7408 		return (ESRCH);
7409 	}
7410 	/* Clear the value */
7411 	tcps->tcps_g_epriv_ports[i] = 0;
7412 	mutex_exit(&tcps->tcps_epriv_port_lock);
7413 	return (0);
7414 }
7415 
7416 /* Return the TPI/TLI equivalent of our current tcp_state */
7417 static int
7418 tcp_tpistate(tcp_t *tcp)
7419 {
7420 	switch (tcp->tcp_state) {
7421 	case TCPS_IDLE:
7422 		return (TS_UNBND);
7423 	case TCPS_LISTEN:
7424 		/*
7425 		 * Return whether there are outstanding T_CONN_IND waiting
7426 		 * for the matching T_CONN_RES. Therefore don't count q0.
7427 		 */
7428 		if (tcp->tcp_conn_req_cnt_q > 0)
7429 			return (TS_WRES_CIND);
7430 		else
7431 			return (TS_IDLE);
7432 	case TCPS_BOUND:
7433 		return (TS_IDLE);
7434 	case TCPS_SYN_SENT:
7435 		return (TS_WCON_CREQ);
7436 	case TCPS_SYN_RCVD:
7437 		/*
7438 		 * Note: assumption: this has to the active open SYN_RCVD.
7439 		 * The passive instance is detached in SYN_RCVD stage of
7440 		 * incoming connection processing so we cannot get request
7441 		 * for T_info_ack on it.
7442 		 */
7443 		return (TS_WACK_CRES);
7444 	case TCPS_ESTABLISHED:
7445 		return (TS_DATA_XFER);
7446 	case TCPS_CLOSE_WAIT:
7447 		return (TS_WREQ_ORDREL);
7448 	case TCPS_FIN_WAIT_1:
7449 		return (TS_WIND_ORDREL);
7450 	case TCPS_FIN_WAIT_2:
7451 		return (TS_WIND_ORDREL);
7452 
7453 	case TCPS_CLOSING:
7454 	case TCPS_LAST_ACK:
7455 	case TCPS_TIME_WAIT:
7456 	case TCPS_CLOSED:
7457 		/*
7458 		 * Following TS_WACK_DREQ7 is a rendition of "not
7459 		 * yet TS_IDLE" TPI state. There is no best match to any
7460 		 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we
7461 		 * choose a value chosen that will map to TLI/XTI level
7462 		 * state of TSTATECHNG (state is process of changing) which
7463 		 * captures what this dummy state represents.
7464 		 */
7465 		return (TS_WACK_DREQ7);
7466 	default:
7467 		cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s",
7468 		    tcp->tcp_state, tcp_display(tcp, NULL,
7469 		    DISP_PORT_ONLY));
7470 		return (TS_UNBND);
7471 	}
7472 }
7473 
7474 static void
7475 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp)
7476 {
7477 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7478 
7479 	if (tcp->tcp_family == AF_INET6)
7480 		*tia = tcp_g_t_info_ack_v6;
7481 	else
7482 		*tia = tcp_g_t_info_ack;
7483 	tia->CURRENT_state = tcp_tpistate(tcp);
7484 	tia->OPT_size = tcp_max_optsize;
7485 	if (tcp->tcp_mss == 0) {
7486 		/* Not yet set - tcp_open does not set mss */
7487 		if (tcp->tcp_ipversion == IPV4_VERSION)
7488 			tia->TIDU_size = tcps->tcps_mss_def_ipv4;
7489 		else
7490 			tia->TIDU_size = tcps->tcps_mss_def_ipv6;
7491 	} else {
7492 		tia->TIDU_size = tcp->tcp_mss;
7493 	}
7494 	/* TODO: Default ETSDU is 1.  Is that correct for tcp? */
7495 }
7496 
7497 /*
7498  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
7499  * tcp_wput.  Much of the T_CAPABILITY_ACK information is copied from
7500  * tcp_g_t_info_ack.  The current state of the stream is copied from
7501  * tcp_state.
7502  */
7503 static void
7504 tcp_capability_req(tcp_t *tcp, mblk_t *mp)
7505 {
7506 	t_uscalar_t		cap_bits1;
7507 	struct T_capability_ack	*tcap;
7508 
7509 	if (MBLKL(mp) < sizeof (struct T_capability_req)) {
7510 		freemsg(mp);
7511 		return;
7512 	}
7513 
7514 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
7515 
7516 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
7517 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
7518 	if (mp == NULL)
7519 		return;
7520 
7521 	tcap = (struct T_capability_ack *)mp->b_rptr;
7522 	tcap->CAP_bits1 = 0;
7523 
7524 	if (cap_bits1 & TC1_INFO) {
7525 		tcp_copy_info(&tcap->INFO_ack, tcp);
7526 		tcap->CAP_bits1 |= TC1_INFO;
7527 	}
7528 
7529 	if (cap_bits1 & TC1_ACCEPTOR_ID) {
7530 		tcap->ACCEPTOR_id = tcp->tcp_acceptor_id;
7531 		tcap->CAP_bits1 |= TC1_ACCEPTOR_ID;
7532 	}
7533 
7534 	putnext(tcp->tcp_rq, mp);
7535 }
7536 
7537 /*
7538  * This routine responds to T_INFO_REQ messages.  It is called by tcp_wput.
7539  * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack.
7540  * The current state of the stream is copied from tcp_state.
7541  */
7542 static void
7543 tcp_info_req(tcp_t *tcp, mblk_t *mp)
7544 {
7545 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
7546 	    T_INFO_ACK);
7547 	if (!mp) {
7548 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7549 		return;
7550 	}
7551 	tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp);
7552 	putnext(tcp->tcp_rq, mp);
7553 }
7554 
7555 /* Respond to the TPI addr request */
7556 static void
7557 tcp_addr_req(tcp_t *tcp, mblk_t *mp)
7558 {
7559 	sin_t	*sin;
7560 	mblk_t	*ackmp;
7561 	struct T_addr_ack *taa;
7562 
7563 	/* Make it large enough for worst case */
7564 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
7565 	    2 * sizeof (sin6_t), 1);
7566 	if (ackmp == NULL) {
7567 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7568 		return;
7569 	}
7570 
7571 	if (tcp->tcp_ipversion == IPV6_VERSION) {
7572 		tcp_addr_req_ipv6(tcp, ackmp);
7573 		return;
7574 	}
7575 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7576 
7577 	bzero(taa, sizeof (struct T_addr_ack));
7578 	ackmp->b_wptr = (uchar_t *)&taa[1];
7579 
7580 	taa->PRIM_type = T_ADDR_ACK;
7581 	ackmp->b_datap->db_type = M_PCPROTO;
7582 
7583 	/*
7584 	 * Note: Following code assumes 32 bit alignment of basic
7585 	 * data structures like sin_t and struct T_addr_ack.
7586 	 */
7587 	if (tcp->tcp_state >= TCPS_BOUND) {
7588 		/*
7589 		 * Fill in local address
7590 		 */
7591 		taa->LOCADDR_length = sizeof (sin_t);
7592 		taa->LOCADDR_offset = sizeof (*taa);
7593 
7594 		sin = (sin_t *)&taa[1];
7595 
7596 		/* Fill zeroes and then intialize non-zero fields */
7597 		*sin = sin_null;
7598 
7599 		sin->sin_family = AF_INET;
7600 
7601 		sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
7602 		sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport;
7603 
7604 		ackmp->b_wptr = (uchar_t *)&sin[1];
7605 
7606 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7607 			/*
7608 			 * Fill in Remote address
7609 			 */
7610 			taa->REMADDR_length = sizeof (sin_t);
7611 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7612 						taa->LOCADDR_length);
7613 
7614 			sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7615 			*sin = sin_null;
7616 			sin->sin_family = AF_INET;
7617 			sin->sin_addr.s_addr = tcp->tcp_remote;
7618 			sin->sin_port = tcp->tcp_fport;
7619 
7620 			ackmp->b_wptr = (uchar_t *)&sin[1];
7621 		}
7622 	}
7623 	putnext(tcp->tcp_rq, ackmp);
7624 }
7625 
7626 /* Assumes that tcp_addr_req gets enough space and alignment */
7627 static void
7628 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp)
7629 {
7630 	sin6_t	*sin6;
7631 	struct T_addr_ack *taa;
7632 
7633 	ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
7634 	ASSERT(OK_32PTR(ackmp->b_rptr));
7635 	ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) +
7636 	    2 * sizeof (sin6_t));
7637 
7638 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7639 
7640 	bzero(taa, sizeof (struct T_addr_ack));
7641 	ackmp->b_wptr = (uchar_t *)&taa[1];
7642 
7643 	taa->PRIM_type = T_ADDR_ACK;
7644 	ackmp->b_datap->db_type = M_PCPROTO;
7645 
7646 	/*
7647 	 * Note: Following code assumes 32 bit alignment of basic
7648 	 * data structures like sin6_t and struct T_addr_ack.
7649 	 */
7650 	if (tcp->tcp_state >= TCPS_BOUND) {
7651 		/*
7652 		 * Fill in local address
7653 		 */
7654 		taa->LOCADDR_length = sizeof (sin6_t);
7655 		taa->LOCADDR_offset = sizeof (*taa);
7656 
7657 		sin6 = (sin6_t *)&taa[1];
7658 		*sin6 = sin6_null;
7659 
7660 		sin6->sin6_family = AF_INET6;
7661 		sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
7662 		sin6->sin6_port = tcp->tcp_lport;
7663 
7664 		ackmp->b_wptr = (uchar_t *)&sin6[1];
7665 
7666 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7667 			/*
7668 			 * Fill in Remote address
7669 			 */
7670 			taa->REMADDR_length = sizeof (sin6_t);
7671 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7672 						taa->LOCADDR_length);
7673 
7674 			sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7675 			*sin6 = sin6_null;
7676 			sin6->sin6_family = AF_INET6;
7677 			sin6->sin6_flowinfo =
7678 			    tcp->tcp_ip6h->ip6_vcf &
7679 			    ~IPV6_VERS_AND_FLOW_MASK;
7680 			sin6->sin6_addr = tcp->tcp_remote_v6;
7681 			sin6->sin6_port = tcp->tcp_fport;
7682 
7683 			ackmp->b_wptr = (uchar_t *)&sin6[1];
7684 		}
7685 	}
7686 	putnext(tcp->tcp_rq, ackmp);
7687 }
7688 
7689 /*
7690  * Handle reinitialization of a tcp structure.
7691  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
7692  */
7693 static void
7694 tcp_reinit(tcp_t *tcp)
7695 {
7696 	mblk_t	*mp;
7697 	int 	err;
7698 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7699 
7700 	TCP_STAT(tcps, tcp_reinit_calls);
7701 
7702 	/* tcp_reinit should never be called for detached tcp_t's */
7703 	ASSERT(tcp->tcp_listener == NULL);
7704 	ASSERT((tcp->tcp_family == AF_INET &&
7705 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7706 	    (tcp->tcp_family == AF_INET6 &&
7707 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7708 	    tcp->tcp_ipversion == IPV6_VERSION)));
7709 
7710 	/* Cancel outstanding timers */
7711 	tcp_timers_stop(tcp);
7712 
7713 	/*
7714 	 * Reset everything in the state vector, after updating global
7715 	 * MIB data from instance counters.
7716 	 */
7717 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
7718 	tcp->tcp_ibsegs = 0;
7719 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
7720 	tcp->tcp_obsegs = 0;
7721 
7722 	tcp_close_mpp(&tcp->tcp_xmit_head);
7723 	if (tcp->tcp_snd_zcopy_aware)
7724 		tcp_zcopy_notify(tcp);
7725 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
7726 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
7727 	mutex_enter(&tcp->tcp_non_sq_lock);
7728 	if (tcp->tcp_flow_stopped &&
7729 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
7730 		tcp_clrqfull(tcp);
7731 	}
7732 	mutex_exit(&tcp->tcp_non_sq_lock);
7733 	tcp_close_mpp(&tcp->tcp_reass_head);
7734 	tcp->tcp_reass_tail = NULL;
7735 	if (tcp->tcp_rcv_list != NULL) {
7736 		/* Free b_next chain */
7737 		tcp_close_mpp(&tcp->tcp_rcv_list);
7738 		tcp->tcp_rcv_last_head = NULL;
7739 		tcp->tcp_rcv_last_tail = NULL;
7740 		tcp->tcp_rcv_cnt = 0;
7741 	}
7742 	tcp->tcp_rcv_last_tail = NULL;
7743 
7744 	if ((mp = tcp->tcp_urp_mp) != NULL) {
7745 		freemsg(mp);
7746 		tcp->tcp_urp_mp = NULL;
7747 	}
7748 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
7749 		freemsg(mp);
7750 		tcp->tcp_urp_mark_mp = NULL;
7751 	}
7752 	if (tcp->tcp_fused_sigurg_mp != NULL) {
7753 		freeb(tcp->tcp_fused_sigurg_mp);
7754 		tcp->tcp_fused_sigurg_mp = NULL;
7755 	}
7756 
7757 	/*
7758 	 * Following is a union with two members which are
7759 	 * identical types and size so the following cleanup
7760 	 * is enough.
7761 	 */
7762 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
7763 
7764 	CL_INET_DISCONNECT(tcp);
7765 
7766 	/*
7767 	 * The connection can't be on the tcp_time_wait_head list
7768 	 * since it is not detached.
7769 	 */
7770 	ASSERT(tcp->tcp_time_wait_next == NULL);
7771 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7772 	ASSERT(tcp->tcp_time_wait_expire == 0);
7773 
7774 	if (tcp->tcp_kssl_pending) {
7775 		tcp->tcp_kssl_pending = B_FALSE;
7776 
7777 		/* Don't reset if the initialized by bind. */
7778 		if (tcp->tcp_kssl_ent != NULL) {
7779 			kssl_release_ent(tcp->tcp_kssl_ent, NULL,
7780 			    KSSL_NO_PROXY);
7781 		}
7782 	}
7783 	if (tcp->tcp_kssl_ctx != NULL) {
7784 		kssl_release_ctx(tcp->tcp_kssl_ctx);
7785 		tcp->tcp_kssl_ctx = NULL;
7786 	}
7787 
7788 	/*
7789 	 * Reset/preserve other values
7790 	 */
7791 	tcp_reinit_values(tcp);
7792 	ipcl_hash_remove(tcp->tcp_connp);
7793 	conn_delete_ire(tcp->tcp_connp, NULL);
7794 	tcp_ipsec_cleanup(tcp);
7795 
7796 	if (tcp->tcp_conn_req_max != 0) {
7797 		/*
7798 		 * This is the case when a TLI program uses the same
7799 		 * transport end point to accept a connection.  This
7800 		 * makes the TCP both a listener and acceptor.  When
7801 		 * this connection is closed, we need to set the state
7802 		 * back to TCPS_LISTEN.  Make sure that the eager list
7803 		 * is reinitialized.
7804 		 *
7805 		 * Note that this stream is still bound to the four
7806 		 * tuples of the previous connection in IP.  If a new
7807 		 * SYN with different foreign address comes in, IP will
7808 		 * not find it and will send it to the global queue.  In
7809 		 * the global queue, TCP will do a tcp_lookup_listener()
7810 		 * to find this stream.  This works because this stream
7811 		 * is only removed from connected hash.
7812 		 *
7813 		 */
7814 		tcp->tcp_state = TCPS_LISTEN;
7815 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
7816 		tcp->tcp_eager_next_drop_q0 = tcp;
7817 		tcp->tcp_eager_prev_drop_q0 = tcp;
7818 		tcp->tcp_connp->conn_recv = tcp_conn_request;
7819 		if (tcp->tcp_family == AF_INET6) {
7820 			ASSERT(tcp->tcp_connp->conn_af_isv6);
7821 			(void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP,
7822 			    &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport);
7823 		} else {
7824 			ASSERT(!tcp->tcp_connp->conn_af_isv6);
7825 			(void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP,
7826 			    tcp->tcp_ipha->ipha_src, tcp->tcp_lport);
7827 		}
7828 	} else {
7829 		tcp->tcp_state = TCPS_BOUND;
7830 	}
7831 
7832 	/*
7833 	 * Initialize to default values
7834 	 * Can't fail since enough header template space already allocated
7835 	 * at open().
7836 	 */
7837 	err = tcp_init_values(tcp);
7838 	ASSERT(err == 0);
7839 	/* Restore state in tcp_tcph */
7840 	bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN);
7841 	if (tcp->tcp_ipversion == IPV4_VERSION)
7842 		tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source;
7843 	else
7844 		tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6;
7845 	/*
7846 	 * Copy of the src addr. in tcp_t is needed in tcp_t
7847 	 * since the lookup funcs can only lookup on tcp_t
7848 	 */
7849 	tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6;
7850 
7851 	ASSERT(tcp->tcp_ptpbhn != NULL);
7852 	tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat;
7853 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
7854 	tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ?
7855 	    tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4;
7856 }
7857 
7858 /*
7859  * Force values to zero that need be zero.
7860  * Do not touch values asociated with the BOUND or LISTEN state
7861  * since the connection will end up in that state after the reinit.
7862  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
7863  * structure!
7864  */
7865 static void
7866 tcp_reinit_values(tcp)
7867 	tcp_t *tcp;
7868 {
7869 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7870 
7871 #ifndef	lint
7872 #define	DONTCARE(x)
7873 #define	PRESERVE(x)
7874 #else
7875 #define	DONTCARE(x)	((x) = (x))
7876 #define	PRESERVE(x)	((x) = (x))
7877 #endif	/* lint */
7878 
7879 	PRESERVE(tcp->tcp_bind_hash);
7880 	PRESERVE(tcp->tcp_ptpbhn);
7881 	PRESERVE(tcp->tcp_acceptor_hash);
7882 	PRESERVE(tcp->tcp_ptpahn);
7883 
7884 	/* Should be ASSERT NULL on these with new code! */
7885 	ASSERT(tcp->tcp_time_wait_next == NULL);
7886 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7887 	ASSERT(tcp->tcp_time_wait_expire == 0);
7888 	PRESERVE(tcp->tcp_state);
7889 	PRESERVE(tcp->tcp_rq);
7890 	PRESERVE(tcp->tcp_wq);
7891 
7892 	ASSERT(tcp->tcp_xmit_head == NULL);
7893 	ASSERT(tcp->tcp_xmit_last == NULL);
7894 	ASSERT(tcp->tcp_unsent == 0);
7895 	ASSERT(tcp->tcp_xmit_tail == NULL);
7896 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
7897 
7898 	tcp->tcp_snxt = 0;			/* Displayed in mib */
7899 	tcp->tcp_suna = 0;			/* Displayed in mib */
7900 	tcp->tcp_swnd = 0;
7901 	DONTCARE(tcp->tcp_cwnd);		/* Init in tcp_mss_set */
7902 
7903 	ASSERT(tcp->tcp_ibsegs == 0);
7904 	ASSERT(tcp->tcp_obsegs == 0);
7905 
7906 	if (tcp->tcp_iphc != NULL) {
7907 		ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
7908 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
7909 	}
7910 
7911 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
7912 	DONTCARE(tcp->tcp_hdr_len);		/* Init in tcp_init_values */
7913 	DONTCARE(tcp->tcp_ipha);
7914 	DONTCARE(tcp->tcp_ip6h);
7915 	DONTCARE(tcp->tcp_ip_hdr_len);
7916 	DONTCARE(tcp->tcp_tcph);
7917 	DONTCARE(tcp->tcp_tcp_hdr_len);		/* Init in tcp_init_values */
7918 	tcp->tcp_valid_bits = 0;
7919 
7920 	DONTCARE(tcp->tcp_xmit_hiwater);	/* Init in tcp_init_values */
7921 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
7922 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
7923 	tcp->tcp_last_rcv_lbolt = 0;
7924 
7925 	tcp->tcp_init_cwnd = 0;
7926 
7927 	tcp->tcp_urp_last_valid = 0;
7928 	tcp->tcp_hard_binding = 0;
7929 	tcp->tcp_hard_bound = 0;
7930 	PRESERVE(tcp->tcp_cred);
7931 	PRESERVE(tcp->tcp_cpid);
7932 	PRESERVE(tcp->tcp_open_time);
7933 	PRESERVE(tcp->tcp_exclbind);
7934 
7935 	tcp->tcp_fin_acked = 0;
7936 	tcp->tcp_fin_rcvd = 0;
7937 	tcp->tcp_fin_sent = 0;
7938 	tcp->tcp_ordrel_done = 0;
7939 
7940 	tcp->tcp_debug = 0;
7941 	tcp->tcp_dontroute = 0;
7942 	tcp->tcp_broadcast = 0;
7943 
7944 	tcp->tcp_useloopback = 0;
7945 	tcp->tcp_reuseaddr = 0;
7946 	tcp->tcp_oobinline = 0;
7947 	tcp->tcp_dgram_errind = 0;
7948 
7949 	tcp->tcp_detached = 0;
7950 	tcp->tcp_bind_pending = 0;
7951 	tcp->tcp_unbind_pending = 0;
7952 	tcp->tcp_deferred_clean_death = 0;
7953 
7954 	tcp->tcp_snd_ws_ok = B_FALSE;
7955 	tcp->tcp_snd_ts_ok = B_FALSE;
7956 	tcp->tcp_linger = 0;
7957 	tcp->tcp_ka_enabled = 0;
7958 	tcp->tcp_zero_win_probe = 0;
7959 
7960 	tcp->tcp_loopback = 0;
7961 	tcp->tcp_localnet = 0;
7962 	tcp->tcp_syn_defense = 0;
7963 	tcp->tcp_set_timer = 0;
7964 
7965 	tcp->tcp_active_open = 0;
7966 	ASSERT(tcp->tcp_timeout == B_FALSE);
7967 	tcp->tcp_rexmit = B_FALSE;
7968 	tcp->tcp_xmit_zc_clean = B_FALSE;
7969 
7970 	tcp->tcp_snd_sack_ok = B_FALSE;
7971 	PRESERVE(tcp->tcp_recvdstaddr);
7972 	tcp->tcp_hwcksum = B_FALSE;
7973 
7974 	tcp->tcp_ire_ill_check_done = B_FALSE;
7975 	DONTCARE(tcp->tcp_maxpsz);		/* Init in tcp_init_values */
7976 
7977 	tcp->tcp_mdt = B_FALSE;
7978 	tcp->tcp_mdt_hdr_head = 0;
7979 	tcp->tcp_mdt_hdr_tail = 0;
7980 
7981 	tcp->tcp_conn_def_q0 = 0;
7982 	tcp->tcp_ip_forward_progress = B_FALSE;
7983 	tcp->tcp_anon_priv_bind = 0;
7984 	tcp->tcp_ecn_ok = B_FALSE;
7985 
7986 	tcp->tcp_cwr = B_FALSE;
7987 	tcp->tcp_ecn_echo_on = B_FALSE;
7988 
7989 	if (tcp->tcp_sack_info != NULL) {
7990 		if (tcp->tcp_notsack_list != NULL) {
7991 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
7992 		}
7993 		kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info);
7994 		tcp->tcp_sack_info = NULL;
7995 	}
7996 
7997 	tcp->tcp_rcv_ws = 0;
7998 	tcp->tcp_snd_ws = 0;
7999 	tcp->tcp_ts_recent = 0;
8000 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
8001 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
8002 	tcp->tcp_if_mtu = 0;
8003 
8004 	ASSERT(tcp->tcp_reass_head == NULL);
8005 	ASSERT(tcp->tcp_reass_tail == NULL);
8006 
8007 	tcp->tcp_cwnd_cnt = 0;
8008 
8009 	ASSERT(tcp->tcp_rcv_list == NULL);
8010 	ASSERT(tcp->tcp_rcv_last_head == NULL);
8011 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
8012 	ASSERT(tcp->tcp_rcv_cnt == 0);
8013 
8014 	DONTCARE(tcp->tcp_cwnd_ssthresh);	/* Init in tcp_adapt_ire */
8015 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
8016 	tcp->tcp_csuna = 0;
8017 
8018 	tcp->tcp_rto = 0;			/* Displayed in MIB */
8019 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
8020 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
8021 	tcp->tcp_rtt_update = 0;
8022 
8023 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
8024 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
8025 
8026 	tcp->tcp_rack = 0;			/* Displayed in mib */
8027 	tcp->tcp_rack_cnt = 0;
8028 	tcp->tcp_rack_cur_max = 0;
8029 	tcp->tcp_rack_abs_max = 0;
8030 
8031 	tcp->tcp_max_swnd = 0;
8032 
8033 	ASSERT(tcp->tcp_listener == NULL);
8034 
8035 	DONTCARE(tcp->tcp_xmit_lowater);	/* Init in tcp_init_values */
8036 
8037 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
8038 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
8039 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
8040 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
8041 
8042 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
8043 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
8044 	PRESERVE(tcp->tcp_conn_req_max);
8045 	PRESERVE(tcp->tcp_conn_req_seqnum);
8046 
8047 	DONTCARE(tcp->tcp_ip_hdr_len);		/* Init in tcp_init_values */
8048 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
8049 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
8050 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
8051 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
8052 
8053 	tcp->tcp_lingertime = 0;
8054 
8055 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
8056 	ASSERT(tcp->tcp_urp_mp == NULL);
8057 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
8058 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
8059 
8060 	ASSERT(tcp->tcp_eager_next_q == NULL);
8061 	ASSERT(tcp->tcp_eager_last_q == NULL);
8062 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
8063 	    tcp->tcp_eager_prev_q0 == NULL) ||
8064 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
8065 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
8066 
8067 	ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
8068 	    tcp->tcp_eager_prev_drop_q0 == NULL) ||
8069 	    tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
8070 
8071 	tcp->tcp_client_errno = 0;
8072 
8073 	DONTCARE(tcp->tcp_sum);			/* Init in tcp_init_values */
8074 
8075 	tcp->tcp_remote_v6 = ipv6_all_zeros;	/* Displayed in MIB */
8076 
8077 	PRESERVE(tcp->tcp_bound_source_v6);
8078 	tcp->tcp_last_sent_len = 0;
8079 	tcp->tcp_dupack_cnt = 0;
8080 
8081 	tcp->tcp_fport = 0;			/* Displayed in MIB */
8082 	PRESERVE(tcp->tcp_lport);
8083 
8084 	PRESERVE(tcp->tcp_acceptor_lockp);
8085 
8086 	ASSERT(tcp->tcp_ordrelid == 0);
8087 	PRESERVE(tcp->tcp_acceptor_id);
8088 	DONTCARE(tcp->tcp_ipsec_overhead);
8089 
8090 	/*
8091 	 * If tcp_tracing flag is ON (i.e. We have a trace buffer
8092 	 * in tcp structure and now tracing), Re-initialize all
8093 	 * members of tcp_traceinfo.
8094 	 */
8095 	if (tcp->tcp_tracebuf != NULL) {
8096 		bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t));
8097 	}
8098 
8099 	PRESERVE(tcp->tcp_family);
8100 	if (tcp->tcp_family == AF_INET6) {
8101 		tcp->tcp_ipversion = IPV6_VERSION;
8102 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
8103 	} else {
8104 		tcp->tcp_ipversion = IPV4_VERSION;
8105 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
8106 	}
8107 
8108 	tcp->tcp_bound_if = 0;
8109 	tcp->tcp_ipv6_recvancillary = 0;
8110 	tcp->tcp_recvifindex = 0;
8111 	tcp->tcp_recvhops = 0;
8112 	tcp->tcp_closed = 0;
8113 	tcp->tcp_cleandeathtag = 0;
8114 	if (tcp->tcp_hopopts != NULL) {
8115 		mi_free(tcp->tcp_hopopts);
8116 		tcp->tcp_hopopts = NULL;
8117 		tcp->tcp_hopoptslen = 0;
8118 	}
8119 	ASSERT(tcp->tcp_hopoptslen == 0);
8120 	if (tcp->tcp_dstopts != NULL) {
8121 		mi_free(tcp->tcp_dstopts);
8122 		tcp->tcp_dstopts = NULL;
8123 		tcp->tcp_dstoptslen = 0;
8124 	}
8125 	ASSERT(tcp->tcp_dstoptslen == 0);
8126 	if (tcp->tcp_rtdstopts != NULL) {
8127 		mi_free(tcp->tcp_rtdstopts);
8128 		tcp->tcp_rtdstopts = NULL;
8129 		tcp->tcp_rtdstoptslen = 0;
8130 	}
8131 	ASSERT(tcp->tcp_rtdstoptslen == 0);
8132 	if (tcp->tcp_rthdr != NULL) {
8133 		mi_free(tcp->tcp_rthdr);
8134 		tcp->tcp_rthdr = NULL;
8135 		tcp->tcp_rthdrlen = 0;
8136 	}
8137 	ASSERT(tcp->tcp_rthdrlen == 0);
8138 	PRESERVE(tcp->tcp_drop_opt_ack_cnt);
8139 
8140 	/* Reset fusion-related fields */
8141 	tcp->tcp_fused = B_FALSE;
8142 	tcp->tcp_unfusable = B_FALSE;
8143 	tcp->tcp_fused_sigurg = B_FALSE;
8144 	tcp->tcp_direct_sockfs = B_FALSE;
8145 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
8146 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
8147 	tcp->tcp_loopback_peer = NULL;
8148 	tcp->tcp_fuse_rcv_hiwater = 0;
8149 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
8150 	tcp->tcp_fuse_rcv_unread_cnt = 0;
8151 
8152 	tcp->tcp_lso = B_FALSE;
8153 
8154 	tcp->tcp_in_ack_unsent = 0;
8155 	tcp->tcp_cork = B_FALSE;
8156 	tcp->tcp_tconnind_started = B_FALSE;
8157 
8158 	PRESERVE(tcp->tcp_squeue_bytes);
8159 
8160 	ASSERT(tcp->tcp_kssl_ctx == NULL);
8161 	ASSERT(!tcp->tcp_kssl_pending);
8162 	PRESERVE(tcp->tcp_kssl_ent);
8163 
8164 	tcp->tcp_closemp_used = 0;
8165 
8166 #ifdef DEBUG
8167 	DONTCARE(tcp->tcmp_stk[0]);
8168 #endif
8169 
8170 
8171 #undef	DONTCARE
8172 #undef	PRESERVE
8173 }
8174 
8175 /*
8176  * Allocate necessary resources and initialize state vector.
8177  * Guaranteed not to fail so that when an error is returned,
8178  * the caller doesn't need to do any additional cleanup.
8179  */
8180 int
8181 tcp_init(tcp_t *tcp, queue_t *q)
8182 {
8183 	int	err;
8184 
8185 	tcp->tcp_rq = q;
8186 	tcp->tcp_wq = WR(q);
8187 	tcp->tcp_state = TCPS_IDLE;
8188 	if ((err = tcp_init_values(tcp)) != 0)
8189 		tcp_timers_stop(tcp);
8190 	return (err);
8191 }
8192 
8193 static int
8194 tcp_init_values(tcp_t *tcp)
8195 {
8196 	int	err;
8197 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8198 
8199 	ASSERT((tcp->tcp_family == AF_INET &&
8200 	    tcp->tcp_ipversion == IPV4_VERSION) ||
8201 	    (tcp->tcp_family == AF_INET6 &&
8202 	    (tcp->tcp_ipversion == IPV4_VERSION ||
8203 	    tcp->tcp_ipversion == IPV6_VERSION)));
8204 
8205 	/*
8206 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
8207 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
8208 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
8209 	 * during first few transmissions of a connection as seen in slow
8210 	 * links.
8211 	 */
8212 	tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2;
8213 	tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1;
8214 	tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
8215 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
8216 	    tcps->tcps_conn_grace_period;
8217 	if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min)
8218 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
8219 	tcp->tcp_timer_backoff = 0;
8220 	tcp->tcp_ms_we_have_waited = 0;
8221 	tcp->tcp_last_recv_time = lbolt;
8222 	tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_;
8223 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
8224 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
8225 
8226 	tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier;
8227 
8228 	tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval;
8229 	tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval;
8230 	tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval;
8231 	/*
8232 	 * Fix it to tcp_ip_abort_linterval later if it turns out to be a
8233 	 * passive open.
8234 	 */
8235 	tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval;
8236 
8237 	tcp->tcp_naglim = tcps->tcps_naglim_def;
8238 
8239 	/* NOTE:  ISS is now set in tcp_adapt_ire(). */
8240 
8241 	tcp->tcp_mdt_hdr_head = 0;
8242 	tcp->tcp_mdt_hdr_tail = 0;
8243 
8244 	/* Reset fusion-related fields */
8245 	tcp->tcp_fused = B_FALSE;
8246 	tcp->tcp_unfusable = B_FALSE;
8247 	tcp->tcp_fused_sigurg = B_FALSE;
8248 	tcp->tcp_direct_sockfs = B_FALSE;
8249 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
8250 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
8251 	tcp->tcp_loopback_peer = NULL;
8252 	tcp->tcp_fuse_rcv_hiwater = 0;
8253 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
8254 	tcp->tcp_fuse_rcv_unread_cnt = 0;
8255 
8256 	/* Initialize the header template */
8257 	if (tcp->tcp_ipversion == IPV4_VERSION) {
8258 		err = tcp_header_init_ipv4(tcp);
8259 	} else {
8260 		err = tcp_header_init_ipv6(tcp);
8261 	}
8262 	if (err)
8263 		return (err);
8264 
8265 	/*
8266 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
8267 	 * down tcp_rwnd. tcp_adapt_ire() will set the right value later.
8268 	 */
8269 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
8270 	tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat;
8271 	tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat;
8272 
8273 	tcp->tcp_cork = B_FALSE;
8274 	/*
8275 	 * Init the tcp_debug option.  This value determines whether TCP
8276 	 * calls strlog() to print out debug messages.  Doing this
8277 	 * initialization here means that this value is not inherited thru
8278 	 * tcp_reinit().
8279 	 */
8280 	tcp->tcp_debug = tcps->tcps_dbg;
8281 
8282 	tcp->tcp_ka_interval = tcps->tcps_keepalive_interval;
8283 	tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval;
8284 
8285 	return (0);
8286 }
8287 
8288 /*
8289  * Initialize the IPv4 header. Loses any record of any IP options.
8290  */
8291 static int
8292 tcp_header_init_ipv4(tcp_t *tcp)
8293 {
8294 	tcph_t		*tcph;
8295 	uint32_t	sum;
8296 	conn_t		*connp;
8297 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8298 
8299 	/*
8300 	 * This is a simple initialization. If there's
8301 	 * already a template, it should never be too small,
8302 	 * so reuse it.  Otherwise, allocate space for the new one.
8303 	 */
8304 	if (tcp->tcp_iphc == NULL) {
8305 		ASSERT(tcp->tcp_iphc_len == 0);
8306 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8307 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8308 		if (tcp->tcp_iphc == NULL) {
8309 			tcp->tcp_iphc_len = 0;
8310 			return (ENOMEM);
8311 		}
8312 	}
8313 
8314 	/* options are gone; may need a new label */
8315 	connp = tcp->tcp_connp;
8316 	connp->conn_mlp_type = mlptSingle;
8317 	connp->conn_ulp_labeled = !is_system_labeled();
8318 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8319 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
8320 	tcp->tcp_ip6h = NULL;
8321 	tcp->tcp_ipversion = IPV4_VERSION;
8322 	tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t);
8323 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8324 	tcp->tcp_ip_hdr_len = sizeof (ipha_t);
8325 	tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t));
8326 	tcp->tcp_ipha->ipha_version_and_hdr_length
8327 		= (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS;
8328 	tcp->tcp_ipha->ipha_ident = 0;
8329 
8330 	tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
8331 	tcp->tcp_tos = 0;
8332 	tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
8333 	tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
8334 	tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP;
8335 
8336 	tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t));
8337 	tcp->tcp_tcph = tcph;
8338 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8339 	/*
8340 	 * IP wants our header length in the checksum field to
8341 	 * allow it to perform a single pseudo-header+checksum
8342 	 * calculation on behalf of TCP.
8343 	 * Include the adjustment for a source route once IP_OPTIONS is set.
8344 	 */
8345 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8346 	sum = (sum >> 16) + (sum & 0xFFFF);
8347 	U16_TO_ABE16(sum, tcph->th_sum);
8348 	return (0);
8349 }
8350 
8351 /*
8352  * Initialize the IPv6 header. Loses any record of any IPv6 extension headers.
8353  */
8354 static int
8355 tcp_header_init_ipv6(tcp_t *tcp)
8356 {
8357 	tcph_t	*tcph;
8358 	uint32_t	sum;
8359 	conn_t	*connp;
8360 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8361 
8362 	/*
8363 	 * This is a simple initialization. If there's
8364 	 * already a template, it should never be too small,
8365 	 * so reuse it. Otherwise, allocate space for the new one.
8366 	 * Ensure that there is enough space to "downgrade" the tcp_t
8367 	 * to an IPv4 tcp_t. This requires having space for a full load
8368 	 * of IPv4 options, as well as a full load of TCP options
8369 	 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space
8370 	 * than a v6 header and a TCP header with a full load of TCP options
8371 	 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes).
8372 	 * We want to avoid reallocation in the "downgraded" case when
8373 	 * processing outbound IPv4 options.
8374 	 */
8375 	if (tcp->tcp_iphc == NULL) {
8376 		ASSERT(tcp->tcp_iphc_len == 0);
8377 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8378 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8379 		if (tcp->tcp_iphc == NULL) {
8380 			tcp->tcp_iphc_len = 0;
8381 			return (ENOMEM);
8382 		}
8383 	}
8384 
8385 	/* options are gone; may need a new label */
8386 	connp = tcp->tcp_connp;
8387 	connp->conn_mlp_type = mlptSingle;
8388 	connp->conn_ulp_labeled = !is_system_labeled();
8389 
8390 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8391 	tcp->tcp_ipversion = IPV6_VERSION;
8392 	tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t);
8393 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8394 	tcp->tcp_ip_hdr_len = IPV6_HDR_LEN;
8395 	tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
8396 	tcp->tcp_ipha = NULL;
8397 
8398 	/* Initialize the header template */
8399 
8400 	tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
8401 	tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t));
8402 	tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP;
8403 	tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit;
8404 
8405 	tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN);
8406 	tcp->tcp_tcph = tcph;
8407 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8408 	/*
8409 	 * IP wants our header length in the checksum field to
8410 	 * allow it to perform a single psuedo-header+checksum
8411 	 * calculation on behalf of TCP.
8412 	 * Include the adjustment for a source route when IPV6_RTHDR is set.
8413 	 */
8414 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8415 	sum = (sum >> 16) + (sum & 0xFFFF);
8416 	U16_TO_ABE16(sum, tcph->th_sum);
8417 	return (0);
8418 }
8419 
8420 /* At minimum we need 8 bytes in the TCP header for the lookup */
8421 #define	ICMP_MIN_TCP_HDR	8
8422 
8423 /*
8424  * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages
8425  * passed up by IP. The message is always received on the correct tcp_t.
8426  * Assumes that IP has pulled up everything up to and including the ICMP header.
8427  */
8428 void
8429 tcp_icmp_error(tcp_t *tcp, mblk_t *mp)
8430 {
8431 	icmph_t *icmph;
8432 	ipha_t	*ipha;
8433 	int	iph_hdr_length;
8434 	tcph_t	*tcph;
8435 	boolean_t ipsec_mctl = B_FALSE;
8436 	boolean_t secure;
8437 	mblk_t *first_mp = mp;
8438 	uint32_t new_mss;
8439 	uint32_t ratio;
8440 	size_t mp_size = MBLKL(mp);
8441 	uint32_t seg_seq;
8442 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8443 
8444 	/* Assume IP provides aligned packets - otherwise toss */
8445 	if (!OK_32PTR(mp->b_rptr)) {
8446 		freemsg(mp);
8447 		return;
8448 	}
8449 
8450 	/*
8451 	 * Since ICMP errors are normal data marked with M_CTL when sent
8452 	 * to TCP or UDP, we have to look for a IPSEC_IN value to identify
8453 	 * packets starting with an ipsec_info_t, see ipsec_info.h.
8454 	 */
8455 	if ((mp_size == sizeof (ipsec_info_t)) &&
8456 	    (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) {
8457 		ASSERT(mp->b_cont != NULL);
8458 		mp = mp->b_cont;
8459 		/* IP should have done this */
8460 		ASSERT(OK_32PTR(mp->b_rptr));
8461 		mp_size = MBLKL(mp);
8462 		ipsec_mctl = B_TRUE;
8463 	}
8464 
8465 	/*
8466 	 * Verify that we have a complete outer IP header. If not, drop it.
8467 	 */
8468 	if (mp_size < sizeof (ipha_t)) {
8469 noticmpv4:
8470 		freemsg(first_mp);
8471 		return;
8472 	}
8473 
8474 	ipha = (ipha_t *)mp->b_rptr;
8475 	/*
8476 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
8477 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
8478 	 */
8479 	switch (IPH_HDR_VERSION(ipha)) {
8480 	case IPV6_VERSION:
8481 		tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl);
8482 		return;
8483 	case IPV4_VERSION:
8484 		break;
8485 	default:
8486 		goto noticmpv4;
8487 	}
8488 
8489 	/* Skip past the outer IP and ICMP headers */
8490 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8491 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
8492 	/*
8493 	 * If we don't have the correct outer IP header length or if the ULP
8494 	 * is not IPPROTO_ICMP or if we don't have a complete inner IP header
8495 	 * send it upstream.
8496 	 */
8497 	if (iph_hdr_length < sizeof (ipha_t) ||
8498 	    ipha->ipha_protocol != IPPROTO_ICMP ||
8499 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
8500 		goto noticmpv4;
8501 	}
8502 	ipha = (ipha_t *)&icmph[1];
8503 
8504 	/* Skip past the inner IP and find the ULP header */
8505 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8506 	tcph = (tcph_t *)((char *)ipha + iph_hdr_length);
8507 	/*
8508 	 * If we don't have the correct inner IP header length or if the ULP
8509 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
8510 	 * bytes of TCP header, drop it.
8511 	 */
8512 	if (iph_hdr_length < sizeof (ipha_t) ||
8513 	    ipha->ipha_protocol != IPPROTO_TCP ||
8514 	    (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) {
8515 		goto noticmpv4;
8516 	}
8517 
8518 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
8519 		if (ipsec_mctl) {
8520 			secure = ipsec_in_is_secure(first_mp);
8521 		} else {
8522 			secure = B_FALSE;
8523 		}
8524 		if (secure) {
8525 			/*
8526 			 * If we are willing to accept this in clear
8527 			 * we don't have to verify policy.
8528 			 */
8529 			if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) {
8530 				if (!tcp_check_policy(tcp, first_mp,
8531 				    ipha, NULL, secure, ipsec_mctl)) {
8532 					/*
8533 					 * tcp_check_policy called
8534 					 * ip_drop_packet() on failure.
8535 					 */
8536 					return;
8537 				}
8538 			}
8539 		}
8540 	} else if (ipsec_mctl) {
8541 		/*
8542 		 * This is a hard_bound connection. IP has already
8543 		 * verified policy. We don't have to do it again.
8544 		 */
8545 		freeb(first_mp);
8546 		first_mp = mp;
8547 		ipsec_mctl = B_FALSE;
8548 	}
8549 
8550 	seg_seq = ABE32_TO_U32(tcph->th_seq);
8551 	/*
8552 	 * TCP SHOULD check that the TCP sequence number contained in
8553 	 * payload of the ICMP error message is within the range
8554 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8555 	 */
8556 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8557 		/*
8558 		 * If the ICMP message is bogus, should we kill the
8559 		 * connection, or should we just drop the bogus ICMP
8560 		 * message? It would probably make more sense to just
8561 		 * drop the message so that if this one managed to get
8562 		 * in, the real connection should not suffer.
8563 		 */
8564 		goto noticmpv4;
8565 	}
8566 
8567 	switch (icmph->icmph_type) {
8568 	case ICMP_DEST_UNREACHABLE:
8569 		switch (icmph->icmph_code) {
8570 		case ICMP_FRAGMENTATION_NEEDED:
8571 			/*
8572 			 * Reduce the MSS based on the new MTU.  This will
8573 			 * eliminate any fragmentation locally.
8574 			 * N.B.  There may well be some funny side-effects on
8575 			 * the local send policy and the remote receive policy.
8576 			 * Pending further research, we provide
8577 			 * tcp_ignore_path_mtu just in case this proves
8578 			 * disastrous somewhere.
8579 			 *
8580 			 * After updating the MSS, retransmit part of the
8581 			 * dropped segment using the new mss by calling
8582 			 * tcp_wput_data().  Need to adjust all those
8583 			 * params to make sure tcp_wput_data() work properly.
8584 			 */
8585 			if (tcps->tcps_ignore_path_mtu)
8586 				break;
8587 
8588 			/*
8589 			 * Decrease the MSS by time stamp options
8590 			 * IP options and IPSEC options. tcp_hdr_len
8591 			 * includes time stamp option and IP option
8592 			 * length.
8593 			 */
8594 
8595 			new_mss = ntohs(icmph->icmph_du_mtu) -
8596 			    tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead;
8597 
8598 			/*
8599 			 * Only update the MSS if the new one is
8600 			 * smaller than the previous one.  This is
8601 			 * to avoid problems when getting multiple
8602 			 * ICMP errors for the same MTU.
8603 			 */
8604 			if (new_mss >= tcp->tcp_mss)
8605 				break;
8606 
8607 			/*
8608 			 * Stop doing PMTU if new_mss is less than 68
8609 			 * or less than tcp_mss_min.
8610 			 * The value 68 comes from rfc 1191.
8611 			 */
8612 			if (new_mss < MAX(68, tcps->tcps_mss_min))
8613 				tcp->tcp_ipha->ipha_fragment_offset_and_flags =
8614 				    0;
8615 
8616 			ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8617 			ASSERT(ratio >= 1);
8618 			tcp_mss_set(tcp, new_mss);
8619 
8620 			/*
8621 			 * Make sure we have something to
8622 			 * send.
8623 			 */
8624 			if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8625 			    (tcp->tcp_xmit_head != NULL)) {
8626 				/*
8627 				 * Shrink tcp_cwnd in
8628 				 * proportion to the old MSS/new MSS.
8629 				 */
8630 				tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8631 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8632 				    (tcp->tcp_unsent == 0)) {
8633 					tcp->tcp_rexmit_max = tcp->tcp_fss;
8634 				} else {
8635 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
8636 				}
8637 				tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8638 				tcp->tcp_rexmit = B_TRUE;
8639 				tcp->tcp_dupack_cnt = 0;
8640 				tcp->tcp_snd_burst = TCP_CWND_SS;
8641 				tcp_ss_rexmit(tcp);
8642 			}
8643 			break;
8644 		case ICMP_PORT_UNREACHABLE:
8645 		case ICMP_PROTOCOL_UNREACHABLE:
8646 			switch (tcp->tcp_state) {
8647 			case TCPS_SYN_SENT:
8648 			case TCPS_SYN_RCVD:
8649 				/*
8650 				 * ICMP can snipe away incipient
8651 				 * TCP connections as long as
8652 				 * seq number is same as initial
8653 				 * send seq number.
8654 				 */
8655 				if (seg_seq == tcp->tcp_iss) {
8656 					(void) tcp_clean_death(tcp,
8657 					    ECONNREFUSED, 6);
8658 				}
8659 				break;
8660 			}
8661 			break;
8662 		case ICMP_HOST_UNREACHABLE:
8663 		case ICMP_NET_UNREACHABLE:
8664 			/* Record the error in case we finally time out. */
8665 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
8666 				tcp->tcp_client_errno = EHOSTUNREACH;
8667 			else
8668 				tcp->tcp_client_errno = ENETUNREACH;
8669 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
8670 				if (tcp->tcp_listener != NULL &&
8671 				    tcp->tcp_listener->tcp_syn_defense) {
8672 					/*
8673 					 * Ditch the half-open connection if we
8674 					 * suspect a SYN attack is under way.
8675 					 */
8676 					tcp_ip_ire_mark_advice(tcp);
8677 					(void) tcp_clean_death(tcp,
8678 					    tcp->tcp_client_errno, 7);
8679 				}
8680 			}
8681 			break;
8682 		default:
8683 			break;
8684 		}
8685 		break;
8686 	case ICMP_SOURCE_QUENCH: {
8687 		/*
8688 		 * use a global boolean to control
8689 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
8690 		 * The default is false.
8691 		 */
8692 		if (tcp_icmp_source_quench) {
8693 			/*
8694 			 * Reduce the sending rate as if we got a
8695 			 * retransmit timeout
8696 			 */
8697 			uint32_t npkt;
8698 
8699 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
8700 			    tcp->tcp_mss;
8701 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
8702 			tcp->tcp_cwnd = tcp->tcp_mss;
8703 			tcp->tcp_cwnd_cnt = 0;
8704 		}
8705 		break;
8706 	}
8707 	}
8708 	freemsg(first_mp);
8709 }
8710 
8711 /*
8712  * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6
8713  * error messages passed up by IP.
8714  * Assumes that IP has pulled up all the extension headers as well
8715  * as the ICMPv6 header.
8716  */
8717 static void
8718 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl)
8719 {
8720 	icmp6_t *icmp6;
8721 	ip6_t	*ip6h;
8722 	uint16_t	iph_hdr_length;
8723 	tcpha_t	*tcpha;
8724 	uint8_t	*nexthdrp;
8725 	uint32_t new_mss;
8726 	uint32_t ratio;
8727 	boolean_t secure;
8728 	mblk_t *first_mp = mp;
8729 	size_t mp_size;
8730 	uint32_t seg_seq;
8731 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8732 
8733 	/*
8734 	 * The caller has determined if this is an IPSEC_IN packet and
8735 	 * set ipsec_mctl appropriately (see tcp_icmp_error).
8736 	 */
8737 	if (ipsec_mctl)
8738 		mp = mp->b_cont;
8739 
8740 	mp_size = MBLKL(mp);
8741 
8742 	/*
8743 	 * Verify that we have a complete IP header. If not, send it upstream.
8744 	 */
8745 	if (mp_size < sizeof (ip6_t)) {
8746 noticmpv6:
8747 		freemsg(first_mp);
8748 		return;
8749 	}
8750 
8751 	/*
8752 	 * Verify this is an ICMPV6 packet, else send it upstream.
8753 	 */
8754 	ip6h = (ip6_t *)mp->b_rptr;
8755 	if (ip6h->ip6_nxt == IPPROTO_ICMPV6) {
8756 		iph_hdr_length = IPV6_HDR_LEN;
8757 	} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
8758 	    &nexthdrp) ||
8759 	    *nexthdrp != IPPROTO_ICMPV6) {
8760 		goto noticmpv6;
8761 	}
8762 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
8763 	ip6h = (ip6_t *)&icmp6[1];
8764 	/*
8765 	 * Verify if we have a complete ICMP and inner IP header.
8766 	 */
8767 	if ((uchar_t *)&ip6h[1] > mp->b_wptr)
8768 		goto noticmpv6;
8769 
8770 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
8771 		goto noticmpv6;
8772 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
8773 	/*
8774 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
8775 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
8776 	 * packet.
8777 	 */
8778 	if ((*nexthdrp != IPPROTO_TCP) ||
8779 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
8780 		goto noticmpv6;
8781 	}
8782 
8783 	/*
8784 	 * ICMP errors come on the right queue or come on
8785 	 * listener/global queue for detached connections and
8786 	 * get switched to the right queue. If it comes on the
8787 	 * right queue, policy check has already been done by IP
8788 	 * and thus free the first_mp without verifying the policy.
8789 	 * If it has come for a non-hard bound connection, we need
8790 	 * to verify policy as IP may not have done it.
8791 	 */
8792 	if (!tcp->tcp_hard_bound) {
8793 		if (ipsec_mctl) {
8794 			secure = ipsec_in_is_secure(first_mp);
8795 		} else {
8796 			secure = B_FALSE;
8797 		}
8798 		if (secure) {
8799 			/*
8800 			 * If we are willing to accept this in clear
8801 			 * we don't have to verify policy.
8802 			 */
8803 			if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) {
8804 				if (!tcp_check_policy(tcp, first_mp,
8805 				    NULL, ip6h, secure, ipsec_mctl)) {
8806 					/*
8807 					 * tcp_check_policy called
8808 					 * ip_drop_packet() on failure.
8809 					 */
8810 					return;
8811 				}
8812 			}
8813 		}
8814 	} else if (ipsec_mctl) {
8815 		/*
8816 		 * This is a hard_bound connection. IP has already
8817 		 * verified policy. We don't have to do it again.
8818 		 */
8819 		freeb(first_mp);
8820 		first_mp = mp;
8821 		ipsec_mctl = B_FALSE;
8822 	}
8823 
8824 	seg_seq = ntohl(tcpha->tha_seq);
8825 	/*
8826 	 * TCP SHOULD check that the TCP sequence number contained in
8827 	 * payload of the ICMP error message is within the range
8828 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8829 	 */
8830 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8831 		/*
8832 		 * If the ICMP message is bogus, should we kill the
8833 		 * connection, or should we just drop the bogus ICMP
8834 		 * message? It would probably make more sense to just
8835 		 * drop the message so that if this one managed to get
8836 		 * in, the real connection should not suffer.
8837 		 */
8838 		goto noticmpv6;
8839 	}
8840 
8841 	switch (icmp6->icmp6_type) {
8842 	case ICMP6_PACKET_TOO_BIG:
8843 		/*
8844 		 * Reduce the MSS based on the new MTU.  This will
8845 		 * eliminate any fragmentation locally.
8846 		 * N.B.  There may well be some funny side-effects on
8847 		 * the local send policy and the remote receive policy.
8848 		 * Pending further research, we provide
8849 		 * tcp_ignore_path_mtu just in case this proves
8850 		 * disastrous somewhere.
8851 		 *
8852 		 * After updating the MSS, retransmit part of the
8853 		 * dropped segment using the new mss by calling
8854 		 * tcp_wput_data().  Need to adjust all those
8855 		 * params to make sure tcp_wput_data() work properly.
8856 		 */
8857 		if (tcps->tcps_ignore_path_mtu)
8858 			break;
8859 
8860 		/*
8861 		 * Decrease the MSS by time stamp options
8862 		 * IP options and IPSEC options. tcp_hdr_len
8863 		 * includes time stamp option and IP option
8864 		 * length.
8865 		 */
8866 		new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len -
8867 			    tcp->tcp_ipsec_overhead;
8868 
8869 		/*
8870 		 * Only update the MSS if the new one is
8871 		 * smaller than the previous one.  This is
8872 		 * to avoid problems when getting multiple
8873 		 * ICMP errors for the same MTU.
8874 		 */
8875 		if (new_mss >= tcp->tcp_mss)
8876 			break;
8877 
8878 		ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8879 		ASSERT(ratio >= 1);
8880 		tcp_mss_set(tcp, new_mss);
8881 
8882 		/*
8883 		 * Make sure we have something to
8884 		 * send.
8885 		 */
8886 		if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8887 		    (tcp->tcp_xmit_head != NULL)) {
8888 			/*
8889 			 * Shrink tcp_cwnd in
8890 			 * proportion to the old MSS/new MSS.
8891 			 */
8892 			tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8893 			if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8894 			    (tcp->tcp_unsent == 0)) {
8895 				tcp->tcp_rexmit_max = tcp->tcp_fss;
8896 			} else {
8897 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
8898 			}
8899 			tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8900 			tcp->tcp_rexmit = B_TRUE;
8901 			tcp->tcp_dupack_cnt = 0;
8902 			tcp->tcp_snd_burst = TCP_CWND_SS;
8903 			tcp_ss_rexmit(tcp);
8904 		}
8905 		break;
8906 
8907 	case ICMP6_DST_UNREACH:
8908 		switch (icmp6->icmp6_code) {
8909 		case ICMP6_DST_UNREACH_NOPORT:
8910 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8911 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8912 			    (seg_seq == tcp->tcp_iss)) {
8913 				(void) tcp_clean_death(tcp,
8914 				    ECONNREFUSED, 8);
8915 			}
8916 			break;
8917 
8918 		case ICMP6_DST_UNREACH_ADMIN:
8919 		case ICMP6_DST_UNREACH_NOROUTE:
8920 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
8921 		case ICMP6_DST_UNREACH_ADDR:
8922 			/* Record the error in case we finally time out. */
8923 			tcp->tcp_client_errno = EHOSTUNREACH;
8924 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8925 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8926 			    (seg_seq == tcp->tcp_iss)) {
8927 				if (tcp->tcp_listener != NULL &&
8928 				    tcp->tcp_listener->tcp_syn_defense) {
8929 					/*
8930 					 * Ditch the half-open connection if we
8931 					 * suspect a SYN attack is under way.
8932 					 */
8933 					tcp_ip_ire_mark_advice(tcp);
8934 					(void) tcp_clean_death(tcp,
8935 					    tcp->tcp_client_errno, 9);
8936 				}
8937 			}
8938 
8939 
8940 			break;
8941 		default:
8942 			break;
8943 		}
8944 		break;
8945 
8946 	case ICMP6_PARAM_PROB:
8947 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
8948 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
8949 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
8950 		    (uchar_t *)nexthdrp) {
8951 			if (tcp->tcp_state == TCPS_SYN_SENT ||
8952 			    tcp->tcp_state == TCPS_SYN_RCVD) {
8953 				(void) tcp_clean_death(tcp,
8954 				    ECONNREFUSED, 10);
8955 			}
8956 			break;
8957 		}
8958 		break;
8959 
8960 	case ICMP6_TIME_EXCEEDED:
8961 	default:
8962 		break;
8963 	}
8964 	freemsg(first_mp);
8965 }
8966 
8967 /*
8968  * IP recognizes seven kinds of bind requests:
8969  *
8970  * - A zero-length address binds only to the protocol number.
8971  *
8972  * - A 4-byte address is treated as a request to
8973  * validate that the address is a valid local IPv4
8974  * address, appropriate for an application to bind to.
8975  * IP does the verification, but does not make any note
8976  * of the address at this time.
8977  *
8978  * - A 16-byte address contains is treated as a request
8979  * to validate a local IPv6 address, as the 4-byte
8980  * address case above.
8981  *
8982  * - A 16-byte sockaddr_in to validate the local IPv4 address and also
8983  * use it for the inbound fanout of packets.
8984  *
8985  * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also
8986  * use it for the inbound fanout of packets.
8987  *
8988  * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout
8989  * information consisting of local and remote addresses
8990  * and ports.  In this case, the addresses are both
8991  * validated as appropriate for this operation, and, if
8992  * so, the information is retained for use in the
8993  * inbound fanout.
8994  *
8995  * - A 36-byte address address (ipa6_conn_t) containing complete IPv6
8996  * fanout information, like the 12-byte case above.
8997  *
8998  * IP will also fill in the IRE request mblk with information
8999  * regarding our peer.  In all cases, we notify IP of our protocol
9000  * type by appending a single protocol byte to the bind request.
9001  */
9002 static mblk_t *
9003 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length)
9004 {
9005 	char	*cp;
9006 	mblk_t	*mp;
9007 	struct T_bind_req *tbr;
9008 	ipa_conn_t	*ac;
9009 	ipa6_conn_t	*ac6;
9010 	sin_t		*sin;
9011 	sin6_t		*sin6;
9012 
9013 	ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ);
9014 	ASSERT((tcp->tcp_family == AF_INET &&
9015 	    tcp->tcp_ipversion == IPV4_VERSION) ||
9016 	    (tcp->tcp_family == AF_INET6 &&
9017 	    (tcp->tcp_ipversion == IPV4_VERSION ||
9018 	    tcp->tcp_ipversion == IPV6_VERSION)));
9019 
9020 	mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI);
9021 	if (!mp)
9022 		return (mp);
9023 	mp->b_datap->db_type = M_PROTO;
9024 	tbr = (struct T_bind_req *)mp->b_rptr;
9025 	tbr->PRIM_type = bind_prim;
9026 	tbr->ADDR_offset = sizeof (*tbr);
9027 	tbr->CONIND_number = 0;
9028 	tbr->ADDR_length = addr_length;
9029 	cp = (char *)&tbr[1];
9030 	switch (addr_length) {
9031 	case sizeof (ipa_conn_t):
9032 		ASSERT(tcp->tcp_family == AF_INET);
9033 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
9034 
9035 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
9036 		if (mp->b_cont == NULL) {
9037 			freemsg(mp);
9038 			return (NULL);
9039 		}
9040 		mp->b_cont->b_wptr += sizeof (ire_t);
9041 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
9042 
9043 		/* cp known to be 32 bit aligned */
9044 		ac = (ipa_conn_t *)cp;
9045 		ac->ac_laddr = tcp->tcp_ipha->ipha_src;
9046 		ac->ac_faddr = tcp->tcp_remote;
9047 		ac->ac_fport = tcp->tcp_fport;
9048 		ac->ac_lport = tcp->tcp_lport;
9049 		tcp->tcp_hard_binding = 1;
9050 		break;
9051 
9052 	case sizeof (ipa6_conn_t):
9053 		ASSERT(tcp->tcp_family == AF_INET6);
9054 
9055 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
9056 		if (mp->b_cont == NULL) {
9057 			freemsg(mp);
9058 			return (NULL);
9059 		}
9060 		mp->b_cont->b_wptr += sizeof (ire_t);
9061 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
9062 
9063 		/* cp known to be 32 bit aligned */
9064 		ac6 = (ipa6_conn_t *)cp;
9065 		if (tcp->tcp_ipversion == IPV4_VERSION) {
9066 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
9067 			    &ac6->ac6_laddr);
9068 		} else {
9069 			ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src;
9070 		}
9071 		ac6->ac6_faddr = tcp->tcp_remote_v6;
9072 		ac6->ac6_fport = tcp->tcp_fport;
9073 		ac6->ac6_lport = tcp->tcp_lport;
9074 		tcp->tcp_hard_binding = 1;
9075 		break;
9076 
9077 	case sizeof (sin_t):
9078 		/*
9079 		 * NOTE: IPV6_ADDR_LEN also has same size.
9080 		 * Use family to discriminate.
9081 		 */
9082 		if (tcp->tcp_family == AF_INET) {
9083 			sin = (sin_t *)cp;
9084 
9085 			*sin = sin_null;
9086 			sin->sin_family = AF_INET;
9087 			sin->sin_addr.s_addr = tcp->tcp_bound_source;
9088 			sin->sin_port = tcp->tcp_lport;
9089 			break;
9090 		} else {
9091 			*(in6_addr_t *)cp = tcp->tcp_bound_source_v6;
9092 		}
9093 		break;
9094 
9095 	case sizeof (sin6_t):
9096 		ASSERT(tcp->tcp_family == AF_INET6);
9097 		sin6 = (sin6_t *)cp;
9098 
9099 		*sin6 = sin6_null;
9100 		sin6->sin6_family = AF_INET6;
9101 		sin6->sin6_addr = tcp->tcp_bound_source_v6;
9102 		sin6->sin6_port = tcp->tcp_lport;
9103 		break;
9104 
9105 	case IP_ADDR_LEN:
9106 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
9107 		*(uint32_t *)cp = tcp->tcp_ipha->ipha_src;
9108 		break;
9109 
9110 	}
9111 	/* Add protocol number to end */
9112 	cp[addr_length] = (char)IPPROTO_TCP;
9113 	mp->b_wptr = (uchar_t *)&cp[addr_length + 1];
9114 	return (mp);
9115 }
9116 
9117 /*
9118  * Notify IP that we are having trouble with this connection.  IP should
9119  * blow the IRE away and start over.
9120  */
9121 static void
9122 tcp_ip_notify(tcp_t *tcp)
9123 {
9124 	struct iocblk	*iocp;
9125 	ipid_t	*ipid;
9126 	mblk_t	*mp;
9127 
9128 	/* IPv6 has NUD thus notification to delete the IRE is not needed */
9129 	if (tcp->tcp_ipversion == IPV6_VERSION)
9130 		return;
9131 
9132 	mp = mkiocb(IP_IOCTL);
9133 	if (mp == NULL)
9134 		return;
9135 
9136 	iocp = (struct iocblk *)mp->b_rptr;
9137 	iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst);
9138 
9139 	mp->b_cont = allocb(iocp->ioc_count, BPRI_HI);
9140 	if (!mp->b_cont) {
9141 		freeb(mp);
9142 		return;
9143 	}
9144 
9145 	ipid = (ipid_t *)mp->b_cont->b_rptr;
9146 	mp->b_cont->b_wptr += iocp->ioc_count;
9147 	bzero(ipid, sizeof (*ipid));
9148 	ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY;
9149 	ipid->ipid_ire_type = IRE_CACHE;
9150 	ipid->ipid_addr_offset = sizeof (ipid_t);
9151 	ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst);
9152 	/*
9153 	 * Note: in the case of source routing we want to blow away the
9154 	 * route to the first source route hop.
9155 	 */
9156 	bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1],
9157 	    sizeof (tcp->tcp_ipha->ipha_dst));
9158 
9159 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
9160 }
9161 
9162 /* Unlink and return any mblk that looks like it contains an ire */
9163 static mblk_t *
9164 tcp_ire_mp(mblk_t *mp)
9165 {
9166 	mblk_t	*prev_mp;
9167 
9168 	for (;;) {
9169 		prev_mp = mp;
9170 		mp = mp->b_cont;
9171 		if (mp == NULL)
9172 			break;
9173 		switch (DB_TYPE(mp)) {
9174 		case IRE_DB_TYPE:
9175 		case IRE_DB_REQ_TYPE:
9176 			if (prev_mp != NULL)
9177 				prev_mp->b_cont = mp->b_cont;
9178 			mp->b_cont = NULL;
9179 			return (mp);
9180 		default:
9181 			break;
9182 		}
9183 	}
9184 	return (mp);
9185 }
9186 
9187 /*
9188  * Timer callback routine for keepalive probe.  We do a fake resend of
9189  * last ACKed byte.  Then set a timer using RTO.  When the timer expires,
9190  * check to see if we have heard anything from the other end for the last
9191  * RTO period.  If we have, set the timer to expire for another
9192  * tcp_keepalive_intrvl and check again.  If we have not, set a timer using
9193  * RTO << 1 and check again when it expires.  Keep exponentially increasing
9194  * the timeout if we have not heard from the other side.  If for more than
9195  * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything,
9196  * kill the connection unless the keepalive abort threshold is 0.  In
9197  * that case, we will probe "forever."
9198  */
9199 static void
9200 tcp_keepalive_killer(void *arg)
9201 {
9202 	mblk_t	*mp;
9203 	conn_t	*connp = (conn_t *)arg;
9204 	tcp_t  	*tcp = connp->conn_tcp;
9205 	int32_t	firetime;
9206 	int32_t	idletime;
9207 	int32_t	ka_intrvl;
9208 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9209 
9210 	tcp->tcp_ka_tid = 0;
9211 
9212 	if (tcp->tcp_fused)
9213 		return;
9214 
9215 	BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive);
9216 	ka_intrvl = tcp->tcp_ka_interval;
9217 
9218 	/*
9219 	 * Keepalive probe should only be sent if the application has not
9220 	 * done a close on the connection.
9221 	 */
9222 	if (tcp->tcp_state > TCPS_CLOSE_WAIT) {
9223 		return;
9224 	}
9225 	/* Timer fired too early, restart it. */
9226 	if (tcp->tcp_state < TCPS_ESTABLISHED) {
9227 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9228 		    MSEC_TO_TICK(ka_intrvl));
9229 		return;
9230 	}
9231 
9232 	idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time);
9233 	/*
9234 	 * If we have not heard from the other side for a long
9235 	 * time, kill the connection unless the keepalive abort
9236 	 * threshold is 0.  In that case, we will probe "forever."
9237 	 */
9238 	if (tcp->tcp_ka_abort_thres != 0 &&
9239 	    idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) {
9240 		BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop);
9241 		(void) tcp_clean_death(tcp, tcp->tcp_client_errno ?
9242 		    tcp->tcp_client_errno : ETIMEDOUT, 11);
9243 		return;
9244 	}
9245 
9246 	if (tcp->tcp_snxt == tcp->tcp_suna &&
9247 	    idletime >= ka_intrvl) {
9248 		/* Fake resend of last ACKed byte. */
9249 		mblk_t	*mp1 = allocb(1, BPRI_LO);
9250 
9251 		if (mp1 != NULL) {
9252 			*mp1->b_wptr++ = '\0';
9253 			mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL,
9254 			    tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE);
9255 			freeb(mp1);
9256 			/*
9257 			 * if allocation failed, fall through to start the
9258 			 * timer back.
9259 			 */
9260 			if (mp != NULL) {
9261 				TCP_RECORD_TRACE(tcp, mp,
9262 				    TCP_TRACE_SEND_PKT);
9263 				tcp_send_data(tcp, tcp->tcp_wq, mp);
9264 				BUMP_MIB(&tcps->tcps_mib,
9265 				    tcpTimKeepaliveProbe);
9266 				if (tcp->tcp_ka_last_intrvl != 0) {
9267 					int max;
9268 					/*
9269 					 * We should probe again at least
9270 					 * in ka_intrvl, but not more than
9271 					 * tcp_rexmit_interval_max.
9272 					 */
9273 					max = tcps->tcps_rexmit_interval_max;
9274 					firetime = MIN(ka_intrvl - 1,
9275 					    tcp->tcp_ka_last_intrvl << 1);
9276 					if (firetime > max)
9277 						firetime = max;
9278 				} else {
9279 					firetime = tcp->tcp_rto;
9280 				}
9281 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
9282 				    tcp_keepalive_killer,
9283 				    MSEC_TO_TICK(firetime));
9284 				tcp->tcp_ka_last_intrvl = firetime;
9285 				return;
9286 			}
9287 		}
9288 	} else {
9289 		tcp->tcp_ka_last_intrvl = 0;
9290 	}
9291 
9292 	/* firetime can be negative if (mp1 == NULL || mp == NULL) */
9293 	if ((firetime = ka_intrvl - idletime) < 0) {
9294 		firetime = ka_intrvl;
9295 	}
9296 	tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9297 	    MSEC_TO_TICK(firetime));
9298 }
9299 
9300 int
9301 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
9302 {
9303 	queue_t	*q = tcp->tcp_rq;
9304 	int32_t	mss = tcp->tcp_mss;
9305 	int	maxpsz;
9306 
9307 	if (TCP_IS_DETACHED(tcp))
9308 		return (mss);
9309 
9310 	if (tcp->tcp_fused) {
9311 		maxpsz = tcp_fuse_maxpsz_set(tcp);
9312 		mss = INFPSZ;
9313 	} else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) {
9314 		/*
9315 		 * Set the sd_qn_maxpsz according to the socket send buffer
9316 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
9317 		 * instruct the stream head to copyin user data into contiguous
9318 		 * kernel-allocated buffers without breaking it up into smaller
9319 		 * chunks.  We round up the buffer size to the nearest SMSS.
9320 		 */
9321 		maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss);
9322 		if (tcp->tcp_kssl_ctx == NULL)
9323 			mss = INFPSZ;
9324 		else
9325 			mss = SSL3_MAX_RECORD_LEN;
9326 	} else {
9327 		/*
9328 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
9329 		 * (and a multiple of the mss).  This instructs the stream
9330 		 * head to break down larger than SMSS writes into SMSS-
9331 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
9332 		 */
9333 		maxpsz = tcp->tcp_maxpsz * mss;
9334 		if (maxpsz > tcp->tcp_xmit_hiwater/2) {
9335 			maxpsz = tcp->tcp_xmit_hiwater/2;
9336 			/* Round up to nearest mss */
9337 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
9338 		}
9339 	}
9340 	(void) setmaxps(q, maxpsz);
9341 	tcp->tcp_wq->q_maxpsz = maxpsz;
9342 
9343 	if (set_maxblk)
9344 		(void) mi_set_sth_maxblk(q, mss);
9345 
9346 	return (mss);
9347 }
9348 
9349 /*
9350  * Extract option values from a tcp header.  We put any found values into the
9351  * tcpopt struct and return a bitmask saying which options were found.
9352  */
9353 static int
9354 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt)
9355 {
9356 	uchar_t		*endp;
9357 	int		len;
9358 	uint32_t	mss;
9359 	uchar_t		*up = (uchar_t *)tcph;
9360 	int		found = 0;
9361 	int32_t		sack_len;
9362 	tcp_seq		sack_begin, sack_end;
9363 	tcp_t		*tcp;
9364 
9365 	endp = up + TCP_HDR_LENGTH(tcph);
9366 	up += TCP_MIN_HEADER_LENGTH;
9367 	while (up < endp) {
9368 		len = endp - up;
9369 		switch (*up) {
9370 		case TCPOPT_EOL:
9371 			break;
9372 
9373 		case TCPOPT_NOP:
9374 			up++;
9375 			continue;
9376 
9377 		case TCPOPT_MAXSEG:
9378 			if (len < TCPOPT_MAXSEG_LEN ||
9379 			    up[1] != TCPOPT_MAXSEG_LEN)
9380 				break;
9381 
9382 			mss = BE16_TO_U16(up+2);
9383 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
9384 			tcpopt->tcp_opt_mss = mss;
9385 			found |= TCP_OPT_MSS_PRESENT;
9386 
9387 			up += TCPOPT_MAXSEG_LEN;
9388 			continue;
9389 
9390 		case TCPOPT_WSCALE:
9391 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
9392 				break;
9393 
9394 			if (up[2] > TCP_MAX_WINSHIFT)
9395 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
9396 			else
9397 				tcpopt->tcp_opt_wscale = up[2];
9398 			found |= TCP_OPT_WSCALE_PRESENT;
9399 
9400 			up += TCPOPT_WS_LEN;
9401 			continue;
9402 
9403 		case TCPOPT_SACK_PERMITTED:
9404 			if (len < TCPOPT_SACK_OK_LEN ||
9405 			    up[1] != TCPOPT_SACK_OK_LEN)
9406 				break;
9407 			found |= TCP_OPT_SACK_OK_PRESENT;
9408 			up += TCPOPT_SACK_OK_LEN;
9409 			continue;
9410 
9411 		case TCPOPT_SACK:
9412 			if (len <= 2 || up[1] <= 2 || len < up[1])
9413 				break;
9414 
9415 			/* If TCP is not interested in SACK blks... */
9416 			if ((tcp = tcpopt->tcp) == NULL) {
9417 				up += up[1];
9418 				continue;
9419 			}
9420 			sack_len = up[1] - TCPOPT_HEADER_LEN;
9421 			up += TCPOPT_HEADER_LEN;
9422 
9423 			/*
9424 			 * If the list is empty, allocate one and assume
9425 			 * nothing is sack'ed.
9426 			 */
9427 			ASSERT(tcp->tcp_sack_info != NULL);
9428 			if (tcp->tcp_notsack_list == NULL) {
9429 				tcp_notsack_update(&(tcp->tcp_notsack_list),
9430 				    tcp->tcp_suna, tcp->tcp_snxt,
9431 				    &(tcp->tcp_num_notsack_blk),
9432 				    &(tcp->tcp_cnt_notsack_list));
9433 
9434 				/*
9435 				 * Make sure tcp_notsack_list is not NULL.
9436 				 * This happens when kmem_alloc(KM_NOSLEEP)
9437 				 * returns NULL.
9438 				 */
9439 				if (tcp->tcp_notsack_list == NULL) {
9440 					up += sack_len;
9441 					continue;
9442 				}
9443 				tcp->tcp_fack = tcp->tcp_suna;
9444 			}
9445 
9446 			while (sack_len > 0) {
9447 				if (up + 8 > endp) {
9448 					up = endp;
9449 					break;
9450 				}
9451 				sack_begin = BE32_TO_U32(up);
9452 				up += 4;
9453 				sack_end = BE32_TO_U32(up);
9454 				up += 4;
9455 				sack_len -= 8;
9456 				/*
9457 				 * Bounds checking.  Make sure the SACK
9458 				 * info is within tcp_suna and tcp_snxt.
9459 				 * If this SACK blk is out of bound, ignore
9460 				 * it but continue to parse the following
9461 				 * blks.
9462 				 */
9463 				if (SEQ_LEQ(sack_end, sack_begin) ||
9464 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
9465 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
9466 					continue;
9467 				}
9468 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
9469 				    sack_begin, sack_end,
9470 				    &(tcp->tcp_num_notsack_blk),
9471 				    &(tcp->tcp_cnt_notsack_list));
9472 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
9473 					tcp->tcp_fack = sack_end;
9474 				}
9475 			}
9476 			found |= TCP_OPT_SACK_PRESENT;
9477 			continue;
9478 
9479 		case TCPOPT_TSTAMP:
9480 			if (len < TCPOPT_TSTAMP_LEN ||
9481 			    up[1] != TCPOPT_TSTAMP_LEN)
9482 				break;
9483 
9484 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
9485 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
9486 
9487 			found |= TCP_OPT_TSTAMP_PRESENT;
9488 
9489 			up += TCPOPT_TSTAMP_LEN;
9490 			continue;
9491 
9492 		default:
9493 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
9494 				break;
9495 			up += up[1];
9496 			continue;
9497 		}
9498 		break;
9499 	}
9500 	return (found);
9501 }
9502 
9503 /*
9504  * Set the mss associated with a particular tcp based on its current value,
9505  * and a new one passed in. Observe minimums and maximums, and reset
9506  * other state variables that we want to view as multiples of mss.
9507  *
9508  * This function is called in various places mainly because
9509  * 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the
9510  *    other side's SYN/SYN-ACK packet arrives.
9511  * 2) PMTUd may get us a new MSS.
9512  * 3) If the other side stops sending us timestamp option, we need to
9513  *    increase the MSS size to use the extra bytes available.
9514  */
9515 static void
9516 tcp_mss_set(tcp_t *tcp, uint32_t mss)
9517 {
9518 	uint32_t	mss_max;
9519 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9520 
9521 	if (tcp->tcp_ipversion == IPV4_VERSION)
9522 		mss_max = tcps->tcps_mss_max_ipv4;
9523 	else
9524 		mss_max = tcps->tcps_mss_max_ipv6;
9525 
9526 	if (mss < tcps->tcps_mss_min)
9527 		mss = tcps->tcps_mss_min;
9528 	if (mss > mss_max)
9529 		mss = mss_max;
9530 	/*
9531 	 * Unless naglim has been set by our client to
9532 	 * a non-mss value, force naglim to track mss.
9533 	 * This can help to aggregate small writes.
9534 	 */
9535 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
9536 		tcp->tcp_naglim = mss;
9537 	/*
9538 	 * TCP should be able to buffer at least 4 MSS data for obvious
9539 	 * performance reason.
9540 	 */
9541 	if ((mss << 2) > tcp->tcp_xmit_hiwater)
9542 		tcp->tcp_xmit_hiwater = mss << 2;
9543 
9544 	/*
9545 	 * Check if we need to apply the tcp_init_cwnd here.  If
9546 	 * it is set and the MSS gets bigger (should not happen
9547 	 * normally), we need to adjust the resulting tcp_cwnd properly.
9548 	 * The new tcp_cwnd should not get bigger.
9549 	 */
9550 	if (tcp->tcp_init_cwnd == 0) {
9551 		tcp->tcp_cwnd = MIN(tcps->tcps_slow_start_initial * mss,
9552 		    MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss)));
9553 	} else {
9554 		if (tcp->tcp_mss < mss) {
9555 			tcp->tcp_cwnd = MAX(1,
9556 			    (tcp->tcp_init_cwnd * tcp->tcp_mss / mss)) * mss;
9557 		} else {
9558 			tcp->tcp_cwnd = tcp->tcp_init_cwnd * mss;
9559 		}
9560 	}
9561 	tcp->tcp_mss = mss;
9562 	tcp->tcp_cwnd_cnt = 0;
9563 	(void) tcp_maxpsz_set(tcp, B_TRUE);
9564 }
9565 
9566 static int
9567 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9568 {
9569 	tcp_t		*tcp = NULL;
9570 	conn_t		*connp;
9571 	int		err;
9572 	dev_t		conn_dev;
9573 	zoneid_t	zoneid;
9574 	tcp_stack_t	*tcps = NULL;
9575 
9576 	if (q->q_ptr != NULL)
9577 		return (0);
9578 
9579 	if (!(flag & SO_ACCEPTOR)) {
9580 		/*
9581 		 * Special case for install: miniroot needs to be able to
9582 		 * access files via NFS as though it were always in the
9583 		 * global zone.
9584 		 */
9585 		if (credp == kcred && nfs_global_client_only != 0) {
9586 			zoneid = GLOBAL_ZONEID;
9587 			tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
9588 			    netstack_tcp;
9589 			ASSERT(tcps != NULL);
9590 		} else {
9591 			netstack_t *ns;
9592 
9593 			ns = netstack_find_by_cred(credp);
9594 			ASSERT(ns != NULL);
9595 			tcps = ns->netstack_tcp;
9596 			ASSERT(tcps != NULL);
9597 
9598 			/*
9599 			 * For exclusive stacks we set the zoneid to zero
9600 			 * to make TCP operate as if in the global zone.
9601 			 */
9602 			if (tcps->tcps_netstack->netstack_stackid !=
9603 			    GLOBAL_NETSTACKID)
9604 				zoneid = GLOBAL_ZONEID;
9605 			else
9606 				zoneid = crgetzoneid(credp);
9607 		}
9608 		/*
9609 		 * For stackid zero this is done from strplumb.c, but
9610 		 * non-zero stackids are handled here.
9611 		 */
9612 		if (tcps->tcps_g_q == NULL &&
9613 		    tcps->tcps_netstack->netstack_stackid !=
9614 		    GLOBAL_NETSTACKID) {
9615 			tcp_g_q_setup(tcps);
9616 		}
9617 	}
9618 	if (sflag == MODOPEN) {
9619 		/*
9620 		 * This is a special case. The purpose of a modopen
9621 		 * is to allow just the T_SVR4_OPTMGMT_REQ to pass
9622 		 * through for MIB browsers. Everything else is failed.
9623 		 */
9624 		connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt), tcps);
9625 		/* tcp_get_conn incremented refcnt */
9626 		netstack_rele(tcps->tcps_netstack);
9627 
9628 		if (connp == NULL)
9629 			return (ENOMEM);
9630 
9631 		connp->conn_flags |= IPCL_TCPMOD;
9632 		connp->conn_cred = credp;
9633 		connp->conn_zoneid = zoneid;
9634 		ASSERT(connp->conn_netstack == tcps->tcps_netstack);
9635 		ASSERT(connp->conn_netstack->netstack_tcp == tcps);
9636 		q->q_ptr = WR(q)->q_ptr = connp;
9637 		crhold(credp);
9638 		q->q_qinfo = &tcp_mod_rinit;
9639 		WR(q)->q_qinfo = &tcp_mod_winit;
9640 		qprocson(q);
9641 		return (0);
9642 	}
9643 	if ((conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) {
9644 		if (tcps != NULL)
9645 			netstack_rele(tcps->tcps_netstack);
9646 		return (EBUSY);
9647 	}
9648 
9649 	*devp = makedevice(getemajor(*devp), (minor_t)conn_dev);
9650 
9651 	if (flag & SO_ACCEPTOR) {
9652 		/* No netstack_find_by_cred, hence no netstack_rele needed */
9653 		ASSERT(tcps == NULL);
9654 		q->q_qinfo = &tcp_acceptor_rinit;
9655 		q->q_ptr = (void *)conn_dev;
9656 		WR(q)->q_qinfo = &tcp_acceptor_winit;
9657 		WR(q)->q_ptr = (void *)conn_dev;
9658 		qprocson(q);
9659 		return (0);
9660 	}
9661 
9662 	connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt), tcps);
9663 	/*
9664 	 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
9665 	 * so we drop it by one.
9666 	 */
9667 	netstack_rele(tcps->tcps_netstack);
9668 	if (connp == NULL) {
9669 		inet_minor_free(ip_minor_arena, conn_dev);
9670 		q->q_ptr = NULL;
9671 		return (ENOSR);
9672 	}
9673 	connp->conn_sqp = IP_SQUEUE_GET(lbolt);
9674 	tcp = connp->conn_tcp;
9675 
9676 	q->q_ptr = WR(q)->q_ptr = connp;
9677 	if (getmajor(*devp) == TCP6_MAJ) {
9678 		connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6);
9679 		connp->conn_send = ip_output_v6;
9680 		connp->conn_af_isv6 = B_TRUE;
9681 		connp->conn_pkt_isv6 = B_TRUE;
9682 		connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT;
9683 		tcp->tcp_ipversion = IPV6_VERSION;
9684 		tcp->tcp_family = AF_INET6;
9685 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
9686 	} else {
9687 		connp->conn_flags |= IPCL_TCP4;
9688 		connp->conn_send = ip_output;
9689 		connp->conn_af_isv6 = B_FALSE;
9690 		connp->conn_pkt_isv6 = B_FALSE;
9691 		tcp->tcp_ipversion = IPV4_VERSION;
9692 		tcp->tcp_family = AF_INET;
9693 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
9694 	}
9695 
9696 	/*
9697 	 * TCP keeps a copy of cred for cache locality reasons but
9698 	 * we put a reference only once. If connp->conn_cred
9699 	 * becomes invalid, tcp_cred should also be set to NULL.
9700 	 */
9701 	tcp->tcp_cred = connp->conn_cred = credp;
9702 	crhold(connp->conn_cred);
9703 	tcp->tcp_cpid = curproc->p_pid;
9704 	tcp->tcp_open_time = lbolt64;
9705 	connp->conn_zoneid = zoneid;
9706 	connp->conn_mlp_type = mlptSingle;
9707 	connp->conn_ulp_labeled = !is_system_labeled();
9708 	ASSERT(connp->conn_netstack == tcps->tcps_netstack);
9709 	ASSERT(tcp->tcp_tcps == tcps);
9710 
9711 	/*
9712 	 * If the caller has the process-wide flag set, then default to MAC
9713 	 * exempt mode.  This allows read-down to unlabeled hosts.
9714 	 */
9715 	if (getpflags(NET_MAC_AWARE, credp) != 0)
9716 		connp->conn_mac_exempt = B_TRUE;
9717 
9718 	connp->conn_dev = conn_dev;
9719 
9720 	ASSERT(q->q_qinfo == &tcp_rinit);
9721 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
9722 
9723 	if (flag & SO_SOCKSTR) {
9724 		/*
9725 		 * No need to insert a socket in tcp acceptor hash.
9726 		 * If it was a socket acceptor stream, we dealt with
9727 		 * it above. A socket listener can never accept a
9728 		 * connection and doesn't need acceptor_id.
9729 		 */
9730 		connp->conn_flags |= IPCL_SOCKET;
9731 		tcp->tcp_issocket = 1;
9732 		WR(q)->q_qinfo = &tcp_sock_winit;
9733 	} else {
9734 #ifdef	_ILP32
9735 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
9736 #else
9737 		tcp->tcp_acceptor_id = conn_dev;
9738 #endif	/* _ILP32 */
9739 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
9740 	}
9741 
9742 	if (tcps->tcps_trace)
9743 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP);
9744 
9745 	err = tcp_init(tcp, q);
9746 	if (err != 0) {
9747 		inet_minor_free(ip_minor_arena, connp->conn_dev);
9748 		tcp_acceptor_hash_remove(tcp);
9749 		CONN_DEC_REF(connp);
9750 		q->q_ptr = WR(q)->q_ptr = NULL;
9751 		return (err);
9752 	}
9753 
9754 	RD(q)->q_hiwat = tcps->tcps_recv_hiwat;
9755 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
9756 
9757 	/* Non-zero default values */
9758 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
9759 	/*
9760 	 * Put the ref for TCP. Ref for IP was already put
9761 	 * by ipcl_conn_create. Also Make the conn_t globally
9762 	 * visible to walkers
9763 	 */
9764 	mutex_enter(&connp->conn_lock);
9765 	CONN_INC_REF_LOCKED(connp);
9766 	ASSERT(connp->conn_ref == 2);
9767 	connp->conn_state_flags &= ~CONN_INCIPIENT;
9768 	mutex_exit(&connp->conn_lock);
9769 
9770 	qprocson(q);
9771 	return (0);
9772 }
9773 
9774 /*
9775  * Some TCP options can be "set" by requesting them in the option
9776  * buffer. This is needed for XTI feature test though we do not
9777  * allow it in general. We interpret that this mechanism is more
9778  * applicable to OSI protocols and need not be allowed in general.
9779  * This routine filters out options for which it is not allowed (most)
9780  * and lets through those (few) for which it is. [ The XTI interface
9781  * test suite specifics will imply that any XTI_GENERIC level XTI_* if
9782  * ever implemented will have to be allowed here ].
9783  */
9784 static boolean_t
9785 tcp_allow_connopt_set(int level, int name)
9786 {
9787 
9788 	switch (level) {
9789 	case IPPROTO_TCP:
9790 		switch (name) {
9791 		case TCP_NODELAY:
9792 			return (B_TRUE);
9793 		default:
9794 			return (B_FALSE);
9795 		}
9796 		/*NOTREACHED*/
9797 	default:
9798 		return (B_FALSE);
9799 	}
9800 	/*NOTREACHED*/
9801 }
9802 
9803 /*
9804  * This routine gets default values of certain options whose default
9805  * values are maintained by protocol specific code
9806  */
9807 /* ARGSUSED */
9808 int
9809 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
9810 {
9811 	int32_t	*i1 = (int32_t *)ptr;
9812 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
9813 
9814 	switch (level) {
9815 	case IPPROTO_TCP:
9816 		switch (name) {
9817 		case TCP_NOTIFY_THRESHOLD:
9818 			*i1 = tcps->tcps_ip_notify_interval;
9819 			break;
9820 		case TCP_ABORT_THRESHOLD:
9821 			*i1 = tcps->tcps_ip_abort_interval;
9822 			break;
9823 		case TCP_CONN_NOTIFY_THRESHOLD:
9824 			*i1 = tcps->tcps_ip_notify_cinterval;
9825 			break;
9826 		case TCP_CONN_ABORT_THRESHOLD:
9827 			*i1 = tcps->tcps_ip_abort_cinterval;
9828 			break;
9829 		default:
9830 			return (-1);
9831 		}
9832 		break;
9833 	case IPPROTO_IP:
9834 		switch (name) {
9835 		case IP_TTL:
9836 			*i1 = tcps->tcps_ipv4_ttl;
9837 			break;
9838 		default:
9839 			return (-1);
9840 		}
9841 		break;
9842 	case IPPROTO_IPV6:
9843 		switch (name) {
9844 		case IPV6_UNICAST_HOPS:
9845 			*i1 = tcps->tcps_ipv6_hoplimit;
9846 			break;
9847 		default:
9848 			return (-1);
9849 		}
9850 		break;
9851 	default:
9852 		return (-1);
9853 	}
9854 	return (sizeof (int));
9855 }
9856 
9857 
9858 /*
9859  * TCP routine to get the values of options.
9860  */
9861 int
9862 tcp_opt_get(queue_t *q, int level, int	name, uchar_t *ptr)
9863 {
9864 	int		*i1 = (int *)ptr;
9865 	conn_t		*connp = Q_TO_CONN(q);
9866 	tcp_t		*tcp = connp->conn_tcp;
9867 	ip6_pkt_t	*ipp = &tcp->tcp_sticky_ipp;
9868 
9869 	switch (level) {
9870 	case SOL_SOCKET:
9871 		switch (name) {
9872 		case SO_LINGER:	{
9873 			struct linger *lgr = (struct linger *)ptr;
9874 
9875 			lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0;
9876 			lgr->l_linger = tcp->tcp_lingertime;
9877 			}
9878 			return (sizeof (struct linger));
9879 		case SO_DEBUG:
9880 			*i1 = tcp->tcp_debug ? SO_DEBUG : 0;
9881 			break;
9882 		case SO_KEEPALIVE:
9883 			*i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0;
9884 			break;
9885 		case SO_DONTROUTE:
9886 			*i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0;
9887 			break;
9888 		case SO_USELOOPBACK:
9889 			*i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0;
9890 			break;
9891 		case SO_BROADCAST:
9892 			*i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0;
9893 			break;
9894 		case SO_REUSEADDR:
9895 			*i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0;
9896 			break;
9897 		case SO_OOBINLINE:
9898 			*i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0;
9899 			break;
9900 		case SO_DGRAM_ERRIND:
9901 			*i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0;
9902 			break;
9903 		case SO_TYPE:
9904 			*i1 = SOCK_STREAM;
9905 			break;
9906 		case SO_SNDBUF:
9907 			*i1 = tcp->tcp_xmit_hiwater;
9908 			break;
9909 		case SO_RCVBUF:
9910 			*i1 = RD(q)->q_hiwat;
9911 			break;
9912 		case SO_SND_COPYAVOID:
9913 			*i1 = tcp->tcp_snd_zcopy_on ?
9914 			    SO_SND_COPYAVOID : 0;
9915 			break;
9916 		case SO_ALLZONES:
9917 			*i1 = connp->conn_allzones ? 1 : 0;
9918 			break;
9919 		case SO_ANON_MLP:
9920 			*i1 = connp->conn_anon_mlp;
9921 			break;
9922 		case SO_MAC_EXEMPT:
9923 			*i1 = connp->conn_mac_exempt;
9924 			break;
9925 		case SO_EXCLBIND:
9926 			*i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0;
9927 			break;
9928 		case SO_PROTOTYPE:
9929 			*i1 = IPPROTO_TCP;
9930 			break;
9931 		case SO_DOMAIN:
9932 			*i1 = tcp->tcp_family;
9933 			break;
9934 		default:
9935 			return (-1);
9936 		}
9937 		break;
9938 	case IPPROTO_TCP:
9939 		switch (name) {
9940 		case TCP_NODELAY:
9941 			*i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0;
9942 			break;
9943 		case TCP_MAXSEG:
9944 			*i1 = tcp->tcp_mss;
9945 			break;
9946 		case TCP_NOTIFY_THRESHOLD:
9947 			*i1 = (int)tcp->tcp_first_timer_threshold;
9948 			break;
9949 		case TCP_ABORT_THRESHOLD:
9950 			*i1 = tcp->tcp_second_timer_threshold;
9951 			break;
9952 		case TCP_CONN_NOTIFY_THRESHOLD:
9953 			*i1 = tcp->tcp_first_ctimer_threshold;
9954 			break;
9955 		case TCP_CONN_ABORT_THRESHOLD:
9956 			*i1 = tcp->tcp_second_ctimer_threshold;
9957 			break;
9958 		case TCP_RECVDSTADDR:
9959 			*i1 = tcp->tcp_recvdstaddr;
9960 			break;
9961 		case TCP_ANONPRIVBIND:
9962 			*i1 = tcp->tcp_anon_priv_bind;
9963 			break;
9964 		case TCP_EXCLBIND:
9965 			*i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0;
9966 			break;
9967 		case TCP_INIT_CWND:
9968 			*i1 = tcp->tcp_init_cwnd;
9969 			break;
9970 		case TCP_KEEPALIVE_THRESHOLD:
9971 			*i1 = tcp->tcp_ka_interval;
9972 			break;
9973 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
9974 			*i1 = tcp->tcp_ka_abort_thres;
9975 			break;
9976 		case TCP_CORK:
9977 			*i1 = tcp->tcp_cork;
9978 			break;
9979 		default:
9980 			return (-1);
9981 		}
9982 		break;
9983 	case IPPROTO_IP:
9984 		if (tcp->tcp_family != AF_INET)
9985 			return (-1);
9986 		switch (name) {
9987 		case IP_OPTIONS:
9988 		case T_IP_OPTIONS: {
9989 			/*
9990 			 * This is compatible with BSD in that in only return
9991 			 * the reverse source route with the final destination
9992 			 * as the last entry. The first 4 bytes of the option
9993 			 * will contain the final destination.
9994 			 */
9995 			int	opt_len;
9996 
9997 			opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha;
9998 			opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH;
9999 			ASSERT(opt_len >= 0);
10000 			/* Caller ensures enough space */
10001 			if (opt_len > 0) {
10002 				/*
10003 				 * TODO: Do we have to handle getsockopt on an
10004 				 * initiator as well?
10005 				 */
10006 				return (ip_opt_get_user(tcp->tcp_ipha, ptr));
10007 			}
10008 			return (0);
10009 			}
10010 		case IP_TOS:
10011 		case T_IP_TOS:
10012 			*i1 = (int)tcp->tcp_ipha->ipha_type_of_service;
10013 			break;
10014 		case IP_TTL:
10015 			*i1 = (int)tcp->tcp_ipha->ipha_ttl;
10016 			break;
10017 		case IP_NEXTHOP:
10018 			/* Handled at IP level */
10019 			return (-EINVAL);
10020 		default:
10021 			return (-1);
10022 		}
10023 		break;
10024 	case IPPROTO_IPV6:
10025 		/*
10026 		 * IPPROTO_IPV6 options are only supported for sockets
10027 		 * that are using IPv6 on the wire.
10028 		 */
10029 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10030 			return (-1);
10031 		}
10032 		switch (name) {
10033 		case IPV6_UNICAST_HOPS:
10034 			*i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops;
10035 			break;	/* goto sizeof (int) option return */
10036 		case IPV6_BOUND_IF:
10037 			/* Zero if not set */
10038 			*i1 = tcp->tcp_bound_if;
10039 			break;	/* goto sizeof (int) option return */
10040 		case IPV6_RECVPKTINFO:
10041 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)
10042 				*i1 = 1;
10043 			else
10044 				*i1 = 0;
10045 			break;	/* goto sizeof (int) option return */
10046 		case IPV6_RECVTCLASS:
10047 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)
10048 				*i1 = 1;
10049 			else
10050 				*i1 = 0;
10051 			break;	/* goto sizeof (int) option return */
10052 		case IPV6_RECVHOPLIMIT:
10053 			if (tcp->tcp_ipv6_recvancillary &
10054 			    TCP_IPV6_RECVHOPLIMIT)
10055 				*i1 = 1;
10056 			else
10057 				*i1 = 0;
10058 			break;	/* goto sizeof (int) option return */
10059 		case IPV6_RECVHOPOPTS:
10060 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS)
10061 				*i1 = 1;
10062 			else
10063 				*i1 = 0;
10064 			break;	/* goto sizeof (int) option return */
10065 		case IPV6_RECVDSTOPTS:
10066 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS)
10067 				*i1 = 1;
10068 			else
10069 				*i1 = 0;
10070 			break;	/* goto sizeof (int) option return */
10071 		case _OLD_IPV6_RECVDSTOPTS:
10072 			if (tcp->tcp_ipv6_recvancillary &
10073 			    TCP_OLD_IPV6_RECVDSTOPTS)
10074 				*i1 = 1;
10075 			else
10076 				*i1 = 0;
10077 			break;	/* goto sizeof (int) option return */
10078 		case IPV6_RECVRTHDR:
10079 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR)
10080 				*i1 = 1;
10081 			else
10082 				*i1 = 0;
10083 			break;	/* goto sizeof (int) option return */
10084 		case IPV6_RECVRTHDRDSTOPTS:
10085 			if (tcp->tcp_ipv6_recvancillary &
10086 			    TCP_IPV6_RECVRTDSTOPTS)
10087 				*i1 = 1;
10088 			else
10089 				*i1 = 0;
10090 			break;	/* goto sizeof (int) option return */
10091 		case IPV6_PKTINFO: {
10092 			/* XXX assumes that caller has room for max size! */
10093 			struct in6_pktinfo *pkti;
10094 
10095 			pkti = (struct in6_pktinfo *)ptr;
10096 			if (ipp->ipp_fields & IPPF_IFINDEX)
10097 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
10098 			else
10099 				pkti->ipi6_ifindex = 0;
10100 			if (ipp->ipp_fields & IPPF_ADDR)
10101 				pkti->ipi6_addr = ipp->ipp_addr;
10102 			else
10103 				pkti->ipi6_addr = ipv6_all_zeros;
10104 			return (sizeof (struct in6_pktinfo));
10105 		}
10106 		case IPV6_TCLASS:
10107 			if (ipp->ipp_fields & IPPF_TCLASS)
10108 				*i1 = ipp->ipp_tclass;
10109 			else
10110 				*i1 = IPV6_FLOW_TCLASS(
10111 				    IPV6_DEFAULT_VERS_AND_FLOW);
10112 			break;	/* goto sizeof (int) option return */
10113 		case IPV6_NEXTHOP: {
10114 			sin6_t *sin6 = (sin6_t *)ptr;
10115 
10116 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
10117 				return (0);
10118 			*sin6 = sin6_null;
10119 			sin6->sin6_family = AF_INET6;
10120 			sin6->sin6_addr = ipp->ipp_nexthop;
10121 			return (sizeof (sin6_t));
10122 		}
10123 		case IPV6_HOPOPTS:
10124 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
10125 				return (0);
10126 			if (ipp->ipp_hopoptslen <= tcp->tcp_label_len)
10127 				return (0);
10128 			bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len,
10129 			    ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len);
10130 			if (tcp->tcp_label_len > 0) {
10131 				ptr[0] = ((char *)ipp->ipp_hopopts)[0];
10132 				ptr[1] = (ipp->ipp_hopoptslen -
10133 				    tcp->tcp_label_len + 7) / 8 - 1;
10134 			}
10135 			return (ipp->ipp_hopoptslen - tcp->tcp_label_len);
10136 		case IPV6_RTHDRDSTOPTS:
10137 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
10138 				return (0);
10139 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
10140 			return (ipp->ipp_rtdstoptslen);
10141 		case IPV6_RTHDR:
10142 			if (!(ipp->ipp_fields & IPPF_RTHDR))
10143 				return (0);
10144 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
10145 			return (ipp->ipp_rthdrlen);
10146 		case IPV6_DSTOPTS:
10147 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
10148 				return (0);
10149 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
10150 			return (ipp->ipp_dstoptslen);
10151 		case IPV6_SRC_PREFERENCES:
10152 			return (ip6_get_src_preferences(connp,
10153 			    (uint32_t *)ptr));
10154 		case IPV6_PATHMTU: {
10155 			struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr;
10156 
10157 			if (tcp->tcp_state < TCPS_ESTABLISHED)
10158 				return (-1);
10159 
10160 			return (ip_fill_mtuinfo(&connp->conn_remv6,
10161 				connp->conn_fport, mtuinfo,
10162 				connp->conn_netstack));
10163 		}
10164 		default:
10165 			return (-1);
10166 		}
10167 		break;
10168 	default:
10169 		return (-1);
10170 	}
10171 	return (sizeof (int));
10172 }
10173 
10174 /*
10175  * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements.
10176  * Parameters are assumed to be verified by the caller.
10177  */
10178 /* ARGSUSED */
10179 int
10180 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name,
10181     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
10182     void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
10183 {
10184 	conn_t	*connp = Q_TO_CONN(q);
10185 	tcp_t	*tcp = connp->conn_tcp;
10186 	int	*i1 = (int *)invalp;
10187 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
10188 	boolean_t checkonly;
10189 	int	reterr;
10190 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
10191 
10192 	switch (optset_context) {
10193 	case SETFN_OPTCOM_CHECKONLY:
10194 		checkonly = B_TRUE;
10195 		/*
10196 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
10197 		 * inlen != 0 implies value supplied and
10198 		 * 	we have to "pretend" to set it.
10199 		 * inlen == 0 implies that there is no
10200 		 * 	value part in T_CHECK request and just validation
10201 		 * done elsewhere should be enough, we just return here.
10202 		 */
10203 		if (inlen == 0) {
10204 			*outlenp = 0;
10205 			return (0);
10206 		}
10207 		break;
10208 	case SETFN_OPTCOM_NEGOTIATE:
10209 		checkonly = B_FALSE;
10210 		break;
10211 	case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */
10212 	case SETFN_CONN_NEGOTIATE:
10213 		checkonly = B_FALSE;
10214 		/*
10215 		 * Negotiating local and "association-related" options
10216 		 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ)
10217 		 * primitives is allowed by XTI, but we choose
10218 		 * to not implement this style negotiation for Internet
10219 		 * protocols (We interpret it is a must for OSI world but
10220 		 * optional for Internet protocols) for all options.
10221 		 * [ Will do only for the few options that enable test
10222 		 * suites that our XTI implementation of this feature
10223 		 * works for transports that do allow it ]
10224 		 */
10225 		if (!tcp_allow_connopt_set(level, name)) {
10226 			*outlenp = 0;
10227 			return (EINVAL);
10228 		}
10229 		break;
10230 	default:
10231 		/*
10232 		 * We should never get here
10233 		 */
10234 		*outlenp = 0;
10235 		return (EINVAL);
10236 	}
10237 
10238 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
10239 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
10240 
10241 	/*
10242 	 * For TCP, we should have no ancillary data sent down
10243 	 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs
10244 	 * has to be zero.
10245 	 */
10246 	ASSERT(thisdg_attrs == NULL);
10247 
10248 	/*
10249 	 * For fixed length options, no sanity check
10250 	 * of passed in length is done. It is assumed *_optcom_req()
10251 	 * routines do the right thing.
10252 	 */
10253 
10254 	switch (level) {
10255 	case SOL_SOCKET:
10256 		switch (name) {
10257 		case SO_LINGER: {
10258 			struct linger *lgr = (struct linger *)invalp;
10259 
10260 			if (!checkonly) {
10261 				if (lgr->l_onoff) {
10262 					tcp->tcp_linger = 1;
10263 					tcp->tcp_lingertime = lgr->l_linger;
10264 				} else {
10265 					tcp->tcp_linger = 0;
10266 					tcp->tcp_lingertime = 0;
10267 				}
10268 				/* struct copy */
10269 				*(struct linger *)outvalp = *lgr;
10270 			} else {
10271 				if (!lgr->l_onoff) {
10272 				    ((struct linger *)outvalp)->l_onoff = 0;
10273 				    ((struct linger *)outvalp)->l_linger = 0;
10274 				} else {
10275 				    /* struct copy */
10276 				    *(struct linger *)outvalp = *lgr;
10277 				}
10278 			}
10279 			*outlenp = sizeof (struct linger);
10280 			return (0);
10281 		}
10282 		case SO_DEBUG:
10283 			if (!checkonly)
10284 				tcp->tcp_debug = onoff;
10285 			break;
10286 		case SO_KEEPALIVE:
10287 			if (checkonly) {
10288 				/* T_CHECK case */
10289 				break;
10290 			}
10291 
10292 			if (!onoff) {
10293 				if (tcp->tcp_ka_enabled) {
10294 					if (tcp->tcp_ka_tid != 0) {
10295 						(void) TCP_TIMER_CANCEL(tcp,
10296 						    tcp->tcp_ka_tid);
10297 						tcp->tcp_ka_tid = 0;
10298 					}
10299 					tcp->tcp_ka_enabled = 0;
10300 				}
10301 				break;
10302 			}
10303 			if (!tcp->tcp_ka_enabled) {
10304 				/* Crank up the keepalive timer */
10305 				tcp->tcp_ka_last_intrvl = 0;
10306 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
10307 				    tcp_keepalive_killer,
10308 				    MSEC_TO_TICK(tcp->tcp_ka_interval));
10309 				tcp->tcp_ka_enabled = 1;
10310 			}
10311 			break;
10312 		case SO_DONTROUTE:
10313 			/*
10314 			 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are
10315 			 * only of interest to IP.  We track them here only so
10316 			 * that we can report their current value.
10317 			 */
10318 			if (!checkonly) {
10319 				tcp->tcp_dontroute = onoff;
10320 				tcp->tcp_connp->conn_dontroute = onoff;
10321 			}
10322 			break;
10323 		case SO_USELOOPBACK:
10324 			if (!checkonly) {
10325 				tcp->tcp_useloopback = onoff;
10326 				tcp->tcp_connp->conn_loopback = onoff;
10327 			}
10328 			break;
10329 		case SO_BROADCAST:
10330 			if (!checkonly) {
10331 				tcp->tcp_broadcast = onoff;
10332 				tcp->tcp_connp->conn_broadcast = onoff;
10333 			}
10334 			break;
10335 		case SO_REUSEADDR:
10336 			if (!checkonly) {
10337 				tcp->tcp_reuseaddr = onoff;
10338 				tcp->tcp_connp->conn_reuseaddr = onoff;
10339 			}
10340 			break;
10341 		case SO_OOBINLINE:
10342 			if (!checkonly)
10343 				tcp->tcp_oobinline = onoff;
10344 			break;
10345 		case SO_DGRAM_ERRIND:
10346 			if (!checkonly)
10347 				tcp->tcp_dgram_errind = onoff;
10348 			break;
10349 		case SO_SNDBUF: {
10350 			if (*i1 > tcps->tcps_max_buf) {
10351 				*outlenp = 0;
10352 				return (ENOBUFS);
10353 			}
10354 			if (checkonly)
10355 				break;
10356 
10357 			tcp->tcp_xmit_hiwater = *i1;
10358 			if (tcps->tcps_snd_lowat_fraction != 0)
10359 				tcp->tcp_xmit_lowater =
10360 				    tcp->tcp_xmit_hiwater /
10361 				    tcps->tcps_snd_lowat_fraction;
10362 			(void) tcp_maxpsz_set(tcp, B_TRUE);
10363 			/*
10364 			 * If we are flow-controlled, recheck the condition.
10365 			 * There are apps that increase SO_SNDBUF size when
10366 			 * flow-controlled (EWOULDBLOCK), and expect the flow
10367 			 * control condition to be lifted right away.
10368 			 */
10369 			mutex_enter(&tcp->tcp_non_sq_lock);
10370 			if (tcp->tcp_flow_stopped &&
10371 			    TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) {
10372 				tcp_clrqfull(tcp);
10373 			}
10374 			mutex_exit(&tcp->tcp_non_sq_lock);
10375 			break;
10376 		}
10377 		case SO_RCVBUF:
10378 			if (*i1 > tcps->tcps_max_buf) {
10379 				*outlenp = 0;
10380 				return (ENOBUFS);
10381 			}
10382 			/* Silently ignore zero */
10383 			if (!checkonly && *i1 != 0) {
10384 				*i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss);
10385 				(void) tcp_rwnd_set(tcp, *i1);
10386 			}
10387 			/*
10388 			 * XXX should we return the rwnd here
10389 			 * and tcp_opt_get ?
10390 			 */
10391 			break;
10392 		case SO_SND_COPYAVOID:
10393 			if (!checkonly) {
10394 				/* we only allow enable at most once for now */
10395 				if (tcp->tcp_loopback ||
10396 				    (!tcp->tcp_snd_zcopy_aware &&
10397 				    (onoff != 1 || !tcp_zcopy_check(tcp)))) {
10398 					*outlenp = 0;
10399 					return (EOPNOTSUPP);
10400 				}
10401 				tcp->tcp_snd_zcopy_aware = 1;
10402 			}
10403 			break;
10404 		case SO_ALLZONES:
10405 			/* Handled at the IP level */
10406 			return (-EINVAL);
10407 		case SO_ANON_MLP:
10408 			if (!checkonly) {
10409 				mutex_enter(&connp->conn_lock);
10410 				connp->conn_anon_mlp = onoff;
10411 				mutex_exit(&connp->conn_lock);
10412 			}
10413 			break;
10414 		case SO_MAC_EXEMPT:
10415 			if (secpolicy_net_mac_aware(cr) != 0 ||
10416 			    IPCL_IS_BOUND(connp))
10417 				return (EACCES);
10418 			if (!checkonly) {
10419 				mutex_enter(&connp->conn_lock);
10420 				connp->conn_mac_exempt = onoff;
10421 				mutex_exit(&connp->conn_lock);
10422 			}
10423 			break;
10424 		case SO_EXCLBIND:
10425 			if (!checkonly)
10426 				tcp->tcp_exclbind = onoff;
10427 			break;
10428 		default:
10429 			*outlenp = 0;
10430 			return (EINVAL);
10431 		}
10432 		break;
10433 	case IPPROTO_TCP:
10434 		switch (name) {
10435 		case TCP_NODELAY:
10436 			if (!checkonly)
10437 				tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss;
10438 			break;
10439 		case TCP_NOTIFY_THRESHOLD:
10440 			if (!checkonly)
10441 				tcp->tcp_first_timer_threshold = *i1;
10442 			break;
10443 		case TCP_ABORT_THRESHOLD:
10444 			if (!checkonly)
10445 				tcp->tcp_second_timer_threshold = *i1;
10446 			break;
10447 		case TCP_CONN_NOTIFY_THRESHOLD:
10448 			if (!checkonly)
10449 				tcp->tcp_first_ctimer_threshold = *i1;
10450 			break;
10451 		case TCP_CONN_ABORT_THRESHOLD:
10452 			if (!checkonly)
10453 				tcp->tcp_second_ctimer_threshold = *i1;
10454 			break;
10455 		case TCP_RECVDSTADDR:
10456 			if (tcp->tcp_state > TCPS_LISTEN)
10457 				return (EOPNOTSUPP);
10458 			if (!checkonly)
10459 				tcp->tcp_recvdstaddr = onoff;
10460 			break;
10461 		case TCP_ANONPRIVBIND:
10462 			if ((reterr = secpolicy_net_privaddr(cr, 0)) != 0) {
10463 				*outlenp = 0;
10464 				return (reterr);
10465 			}
10466 			if (!checkonly) {
10467 				tcp->tcp_anon_priv_bind = onoff;
10468 			}
10469 			break;
10470 		case TCP_EXCLBIND:
10471 			if (!checkonly)
10472 				tcp->tcp_exclbind = onoff;
10473 			break;	/* goto sizeof (int) option return */
10474 		case TCP_INIT_CWND: {
10475 			uint32_t init_cwnd = *((uint32_t *)invalp);
10476 
10477 			if (checkonly)
10478 				break;
10479 
10480 			/*
10481 			 * Only allow socket with network configuration
10482 			 * privilege to set the initial cwnd to be larger
10483 			 * than allowed by RFC 3390.
10484 			 */
10485 			if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) {
10486 				tcp->tcp_init_cwnd = init_cwnd;
10487 				break;
10488 			}
10489 			if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) {
10490 				*outlenp = 0;
10491 				return (reterr);
10492 			}
10493 			if (init_cwnd > TCP_MAX_INIT_CWND) {
10494 				*outlenp = 0;
10495 				return (EINVAL);
10496 			}
10497 			tcp->tcp_init_cwnd = init_cwnd;
10498 			break;
10499 		}
10500 		case TCP_KEEPALIVE_THRESHOLD:
10501 			if (checkonly)
10502 				break;
10503 
10504 			if (*i1 < tcps->tcps_keepalive_interval_low ||
10505 			    *i1 > tcps->tcps_keepalive_interval_high) {
10506 				*outlenp = 0;
10507 				return (EINVAL);
10508 			}
10509 			if (*i1 != tcp->tcp_ka_interval) {
10510 				tcp->tcp_ka_interval = *i1;
10511 				/*
10512 				 * Check if we need to restart the
10513 				 * keepalive timer.
10514 				 */
10515 				if (tcp->tcp_ka_tid != 0) {
10516 					ASSERT(tcp->tcp_ka_enabled);
10517 					(void) TCP_TIMER_CANCEL(tcp,
10518 					    tcp->tcp_ka_tid);
10519 					tcp->tcp_ka_last_intrvl = 0;
10520 					tcp->tcp_ka_tid = TCP_TIMER(tcp,
10521 					    tcp_keepalive_killer,
10522 					    MSEC_TO_TICK(tcp->tcp_ka_interval));
10523 				}
10524 			}
10525 			break;
10526 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10527 			if (!checkonly) {
10528 				if (*i1 <
10529 				    tcps->tcps_keepalive_abort_interval_low ||
10530 				    *i1 >
10531 				    tcps->tcps_keepalive_abort_interval_high) {
10532 					*outlenp = 0;
10533 					return (EINVAL);
10534 				}
10535 				tcp->tcp_ka_abort_thres = *i1;
10536 			}
10537 			break;
10538 		case TCP_CORK:
10539 			if (!checkonly) {
10540 				/*
10541 				 * if tcp->tcp_cork was set and is now
10542 				 * being unset, we have to make sure that
10543 				 * the remaining data gets sent out. Also
10544 				 * unset tcp->tcp_cork so that tcp_wput_data()
10545 				 * can send data even if it is less than mss
10546 				 */
10547 				if (tcp->tcp_cork && onoff == 0 &&
10548 				    tcp->tcp_unsent > 0) {
10549 					tcp->tcp_cork = B_FALSE;
10550 					tcp_wput_data(tcp, NULL, B_FALSE);
10551 				}
10552 				tcp->tcp_cork = onoff;
10553 			}
10554 			break;
10555 		default:
10556 			*outlenp = 0;
10557 			return (EINVAL);
10558 		}
10559 		break;
10560 	case IPPROTO_IP:
10561 		if (tcp->tcp_family != AF_INET) {
10562 			*outlenp = 0;
10563 			return (ENOPROTOOPT);
10564 		}
10565 		switch (name) {
10566 		case IP_OPTIONS:
10567 		case T_IP_OPTIONS:
10568 			reterr = tcp_opt_set_header(tcp, checkonly,
10569 			    invalp, inlen);
10570 			if (reterr) {
10571 				*outlenp = 0;
10572 				return (reterr);
10573 			}
10574 			/* OK return - copy input buffer into output buffer */
10575 			if (invalp != outvalp) {
10576 				/* don't trust bcopy for identical src/dst */
10577 				bcopy(invalp, outvalp, inlen);
10578 			}
10579 			*outlenp = inlen;
10580 			return (0);
10581 		case IP_TOS:
10582 		case T_IP_TOS:
10583 			if (!checkonly) {
10584 				tcp->tcp_ipha->ipha_type_of_service =
10585 				    (uchar_t)*i1;
10586 				tcp->tcp_tos = (uchar_t)*i1;
10587 			}
10588 			break;
10589 		case IP_TTL:
10590 			if (!checkonly) {
10591 				tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1;
10592 				tcp->tcp_ttl = (uchar_t)*i1;
10593 			}
10594 			break;
10595 		case IP_BOUND_IF:
10596 		case IP_NEXTHOP:
10597 			/* Handled at the IP level */
10598 			return (-EINVAL);
10599 		case IP_SEC_OPT:
10600 			/*
10601 			 * We should not allow policy setting after
10602 			 * we start listening for connections.
10603 			 */
10604 			if (tcp->tcp_state == TCPS_LISTEN) {
10605 				return (EINVAL);
10606 			} else {
10607 				/* Handled at the IP level */
10608 				return (-EINVAL);
10609 			}
10610 		default:
10611 			*outlenp = 0;
10612 			return (EINVAL);
10613 		}
10614 		break;
10615 	case IPPROTO_IPV6: {
10616 		ip6_pkt_t		*ipp;
10617 
10618 		/*
10619 		 * IPPROTO_IPV6 options are only supported for sockets
10620 		 * that are using IPv6 on the wire.
10621 		 */
10622 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10623 			*outlenp = 0;
10624 			return (ENOPROTOOPT);
10625 		}
10626 		/*
10627 		 * Only sticky options; no ancillary data
10628 		 */
10629 		ASSERT(thisdg_attrs == NULL);
10630 		ipp = &tcp->tcp_sticky_ipp;
10631 
10632 		switch (name) {
10633 		case IPV6_UNICAST_HOPS:
10634 			/* -1 means use default */
10635 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
10636 				*outlenp = 0;
10637 				return (EINVAL);
10638 			}
10639 			if (!checkonly) {
10640 				if (*i1 == -1) {
10641 					tcp->tcp_ip6h->ip6_hops =
10642 					    ipp->ipp_unicast_hops =
10643 					    (uint8_t)tcps->tcps_ipv6_hoplimit;
10644 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
10645 					/* Pass modified value to IP. */
10646 					*i1 = tcp->tcp_ip6h->ip6_hops;
10647 				} else {
10648 					tcp->tcp_ip6h->ip6_hops =
10649 					    ipp->ipp_unicast_hops =
10650 					    (uint8_t)*i1;
10651 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
10652 				}
10653 				reterr = tcp_build_hdrs(q, tcp);
10654 				if (reterr != 0)
10655 					return (reterr);
10656 			}
10657 			break;
10658 		case IPV6_BOUND_IF:
10659 			if (!checkonly) {
10660 				int error = 0;
10661 
10662 				tcp->tcp_bound_if = *i1;
10663 				error = ip_opt_set_ill(tcp->tcp_connp, *i1,
10664 				    B_TRUE, checkonly, level, name, mblk);
10665 				if (error != 0) {
10666 					*outlenp = 0;
10667 					return (error);
10668 				}
10669 			}
10670 			break;
10671 		/*
10672 		 * Set boolean switches for ancillary data delivery
10673 		 */
10674 		case IPV6_RECVPKTINFO:
10675 			if (!checkonly) {
10676 				if (onoff)
10677 					tcp->tcp_ipv6_recvancillary |=
10678 					    TCP_IPV6_RECVPKTINFO;
10679 				else
10680 					tcp->tcp_ipv6_recvancillary &=
10681 					    ~TCP_IPV6_RECVPKTINFO;
10682 				/* Force it to be sent up with the next msg */
10683 				tcp->tcp_recvifindex = 0;
10684 			}
10685 			break;
10686 		case IPV6_RECVTCLASS:
10687 			if (!checkonly) {
10688 				if (onoff)
10689 					tcp->tcp_ipv6_recvancillary |=
10690 					    TCP_IPV6_RECVTCLASS;
10691 				else
10692 					tcp->tcp_ipv6_recvancillary &=
10693 					    ~TCP_IPV6_RECVTCLASS;
10694 			}
10695 			break;
10696 		case IPV6_RECVHOPLIMIT:
10697 			if (!checkonly) {
10698 				if (onoff)
10699 					tcp->tcp_ipv6_recvancillary |=
10700 					    TCP_IPV6_RECVHOPLIMIT;
10701 				else
10702 					tcp->tcp_ipv6_recvancillary &=
10703 					    ~TCP_IPV6_RECVHOPLIMIT;
10704 				/* Force it to be sent up with the next msg */
10705 				tcp->tcp_recvhops = 0xffffffffU;
10706 			}
10707 			break;
10708 		case IPV6_RECVHOPOPTS:
10709 			if (!checkonly) {
10710 				if (onoff)
10711 					tcp->tcp_ipv6_recvancillary |=
10712 					    TCP_IPV6_RECVHOPOPTS;
10713 				else
10714 					tcp->tcp_ipv6_recvancillary &=
10715 					    ~TCP_IPV6_RECVHOPOPTS;
10716 			}
10717 			break;
10718 		case IPV6_RECVDSTOPTS:
10719 			if (!checkonly) {
10720 				if (onoff)
10721 					tcp->tcp_ipv6_recvancillary |=
10722 					    TCP_IPV6_RECVDSTOPTS;
10723 				else
10724 					tcp->tcp_ipv6_recvancillary &=
10725 					    ~TCP_IPV6_RECVDSTOPTS;
10726 			}
10727 			break;
10728 		case _OLD_IPV6_RECVDSTOPTS:
10729 			if (!checkonly) {
10730 				if (onoff)
10731 					tcp->tcp_ipv6_recvancillary |=
10732 					    TCP_OLD_IPV6_RECVDSTOPTS;
10733 				else
10734 					tcp->tcp_ipv6_recvancillary &=
10735 					    ~TCP_OLD_IPV6_RECVDSTOPTS;
10736 			}
10737 			break;
10738 		case IPV6_RECVRTHDR:
10739 			if (!checkonly) {
10740 				if (onoff)
10741 					tcp->tcp_ipv6_recvancillary |=
10742 					    TCP_IPV6_RECVRTHDR;
10743 				else
10744 					tcp->tcp_ipv6_recvancillary &=
10745 					    ~TCP_IPV6_RECVRTHDR;
10746 			}
10747 			break;
10748 		case IPV6_RECVRTHDRDSTOPTS:
10749 			if (!checkonly) {
10750 				if (onoff)
10751 					tcp->tcp_ipv6_recvancillary |=
10752 					    TCP_IPV6_RECVRTDSTOPTS;
10753 				else
10754 					tcp->tcp_ipv6_recvancillary &=
10755 					    ~TCP_IPV6_RECVRTDSTOPTS;
10756 			}
10757 			break;
10758 		case IPV6_PKTINFO:
10759 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
10760 				return (EINVAL);
10761 			if (checkonly)
10762 				break;
10763 
10764 			if (inlen == 0) {
10765 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
10766 			} else {
10767 				struct in6_pktinfo *pkti;
10768 
10769 				pkti = (struct in6_pktinfo *)invalp;
10770 				/*
10771 				 * RFC 3542 states that ipi6_addr must be
10772 				 * the unspecified address when setting the
10773 				 * IPV6_PKTINFO sticky socket option on a
10774 				 * TCP socket.
10775 				 */
10776 				if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr))
10777 					return (EINVAL);
10778 				/*
10779 				 * ip6_set_pktinfo() validates the source
10780 				 * address and interface index.
10781 				 */
10782 				reterr = ip6_set_pktinfo(cr, tcp->tcp_connp,
10783 				    pkti, mblk);
10784 				if (reterr != 0)
10785 					return (reterr);
10786 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
10787 				ipp->ipp_addr = pkti->ipi6_addr;
10788 				if (ipp->ipp_ifindex != 0)
10789 					ipp->ipp_fields |= IPPF_IFINDEX;
10790 				else
10791 					ipp->ipp_fields &= ~IPPF_IFINDEX;
10792 				if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr))
10793 					ipp->ipp_fields |= IPPF_ADDR;
10794 				else
10795 					ipp->ipp_fields &= ~IPPF_ADDR;
10796 			}
10797 			reterr = tcp_build_hdrs(q, tcp);
10798 			if (reterr != 0)
10799 				return (reterr);
10800 			break;
10801 		case IPV6_TCLASS:
10802 			if (inlen != 0 && inlen != sizeof (int))
10803 				return (EINVAL);
10804 			if (checkonly)
10805 				break;
10806 
10807 			if (inlen == 0) {
10808 				ipp->ipp_fields &= ~IPPF_TCLASS;
10809 			} else {
10810 				if (*i1 > 255 || *i1 < -1)
10811 					return (EINVAL);
10812 				if (*i1 == -1) {
10813 					ipp->ipp_tclass = 0;
10814 					*i1 = 0;
10815 				} else {
10816 					ipp->ipp_tclass = *i1;
10817 				}
10818 				ipp->ipp_fields |= IPPF_TCLASS;
10819 			}
10820 			reterr = tcp_build_hdrs(q, tcp);
10821 			if (reterr != 0)
10822 				return (reterr);
10823 			break;
10824 		case IPV6_NEXTHOP:
10825 			/*
10826 			 * IP will verify that the nexthop is reachable
10827 			 * and fail for sticky options.
10828 			 */
10829 			if (inlen != 0 && inlen != sizeof (sin6_t))
10830 				return (EINVAL);
10831 			if (checkonly)
10832 				break;
10833 
10834 			if (inlen == 0) {
10835 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
10836 			} else {
10837 				sin6_t *sin6 = (sin6_t *)invalp;
10838 
10839 				if (sin6->sin6_family != AF_INET6)
10840 					return (EAFNOSUPPORT);
10841 				if (IN6_IS_ADDR_V4MAPPED(
10842 				    &sin6->sin6_addr))
10843 					return (EADDRNOTAVAIL);
10844 				ipp->ipp_nexthop = sin6->sin6_addr;
10845 				if (!IN6_IS_ADDR_UNSPECIFIED(
10846 				    &ipp->ipp_nexthop))
10847 					ipp->ipp_fields |= IPPF_NEXTHOP;
10848 				else
10849 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
10850 			}
10851 			reterr = tcp_build_hdrs(q, tcp);
10852 			if (reterr != 0)
10853 				return (reterr);
10854 			break;
10855 		case IPV6_HOPOPTS: {
10856 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
10857 
10858 			/*
10859 			 * Sanity checks - minimum size, size a multiple of
10860 			 * eight bytes, and matching size passed in.
10861 			 */
10862 			if (inlen != 0 &&
10863 			    inlen != (8 * (hopts->ip6h_len + 1)))
10864 				return (EINVAL);
10865 
10866 			if (checkonly)
10867 				break;
10868 
10869 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10870 			    (uchar_t **)&ipp->ipp_hopopts,
10871 			    &ipp->ipp_hopoptslen, tcp->tcp_label_len);
10872 			if (reterr != 0)
10873 				return (reterr);
10874 			if (ipp->ipp_hopoptslen == 0)
10875 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
10876 			else
10877 				ipp->ipp_fields |= IPPF_HOPOPTS;
10878 			reterr = tcp_build_hdrs(q, tcp);
10879 			if (reterr != 0)
10880 				return (reterr);
10881 			break;
10882 		}
10883 		case IPV6_RTHDRDSTOPTS: {
10884 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10885 
10886 			/*
10887 			 * Sanity checks - minimum size, size a multiple of
10888 			 * eight bytes, and matching size passed in.
10889 			 */
10890 			if (inlen != 0 &&
10891 			    inlen != (8 * (dopts->ip6d_len + 1)))
10892 				return (EINVAL);
10893 
10894 			if (checkonly)
10895 				break;
10896 
10897 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10898 			    (uchar_t **)&ipp->ipp_rtdstopts,
10899 			    &ipp->ipp_rtdstoptslen, 0);
10900 			if (reterr != 0)
10901 				return (reterr);
10902 			if (ipp->ipp_rtdstoptslen == 0)
10903 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
10904 			else
10905 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
10906 			reterr = tcp_build_hdrs(q, tcp);
10907 			if (reterr != 0)
10908 				return (reterr);
10909 			break;
10910 		}
10911 		case IPV6_DSTOPTS: {
10912 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10913 
10914 			/*
10915 			 * Sanity checks - minimum size, size a multiple of
10916 			 * eight bytes, and matching size passed in.
10917 			 */
10918 			if (inlen != 0 &&
10919 			    inlen != (8 * (dopts->ip6d_len + 1)))
10920 				return (EINVAL);
10921 
10922 			if (checkonly)
10923 				break;
10924 
10925 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10926 			    (uchar_t **)&ipp->ipp_dstopts,
10927 			    &ipp->ipp_dstoptslen, 0);
10928 			if (reterr != 0)
10929 				return (reterr);
10930 			if (ipp->ipp_dstoptslen == 0)
10931 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
10932 			else
10933 				ipp->ipp_fields |= IPPF_DSTOPTS;
10934 			reterr = tcp_build_hdrs(q, tcp);
10935 			if (reterr != 0)
10936 				return (reterr);
10937 			break;
10938 		}
10939 		case IPV6_RTHDR: {
10940 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
10941 
10942 			/*
10943 			 * Sanity checks - minimum size, size a multiple of
10944 			 * eight bytes, and matching size passed in.
10945 			 */
10946 			if (inlen != 0 &&
10947 			    inlen != (8 * (rt->ip6r_len + 1)))
10948 				return (EINVAL);
10949 
10950 			if (checkonly)
10951 				break;
10952 
10953 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10954 			    (uchar_t **)&ipp->ipp_rthdr,
10955 			    &ipp->ipp_rthdrlen, 0);
10956 			if (reterr != 0)
10957 				return (reterr);
10958 			if (ipp->ipp_rthdrlen == 0)
10959 				ipp->ipp_fields &= ~IPPF_RTHDR;
10960 			else
10961 				ipp->ipp_fields |= IPPF_RTHDR;
10962 			reterr = tcp_build_hdrs(q, tcp);
10963 			if (reterr != 0)
10964 				return (reterr);
10965 			break;
10966 		}
10967 		case IPV6_V6ONLY:
10968 			if (!checkonly)
10969 				tcp->tcp_connp->conn_ipv6_v6only = onoff;
10970 			break;
10971 		case IPV6_USE_MIN_MTU:
10972 			if (inlen != sizeof (int))
10973 				return (EINVAL);
10974 
10975 			if (*i1 < -1 || *i1 > 1)
10976 				return (EINVAL);
10977 
10978 			if (checkonly)
10979 				break;
10980 
10981 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
10982 			ipp->ipp_use_min_mtu = *i1;
10983 			break;
10984 		case IPV6_BOUND_PIF:
10985 			/* Handled at the IP level */
10986 			return (-EINVAL);
10987 		case IPV6_SEC_OPT:
10988 			/*
10989 			 * We should not allow policy setting after
10990 			 * we start listening for connections.
10991 			 */
10992 			if (tcp->tcp_state == TCPS_LISTEN) {
10993 				return (EINVAL);
10994 			} else {
10995 				/* Handled at the IP level */
10996 				return (-EINVAL);
10997 			}
10998 		case IPV6_SRC_PREFERENCES:
10999 			if (inlen != sizeof (uint32_t))
11000 				return (EINVAL);
11001 			reterr = ip6_set_src_preferences(tcp->tcp_connp,
11002 			    *(uint32_t *)invalp);
11003 			if (reterr != 0) {
11004 				*outlenp = 0;
11005 				return (reterr);
11006 			}
11007 			break;
11008 		default:
11009 			*outlenp = 0;
11010 			return (EINVAL);
11011 		}
11012 		break;
11013 	}		/* end IPPROTO_IPV6 */
11014 	default:
11015 		*outlenp = 0;
11016 		return (EINVAL);
11017 	}
11018 	/*
11019 	 * Common case of OK return with outval same as inval
11020 	 */
11021 	if (invalp != outvalp) {
11022 		/* don't trust bcopy for identical src/dst */
11023 		(void) bcopy(invalp, outvalp, inlen);
11024 	}
11025 	*outlenp = inlen;
11026 	return (0);
11027 }
11028 
11029 /*
11030  * Update tcp_sticky_hdrs based on tcp_sticky_ipp.
11031  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
11032  * headers, and the maximum size tcp header (to avoid reallocation
11033  * on the fly for additional tcp options).
11034  * Returns failure if can't allocate memory.
11035  */
11036 static int
11037 tcp_build_hdrs(queue_t *q, tcp_t *tcp)
11038 {
11039 	char	*hdrs;
11040 	uint_t	hdrs_len;
11041 	ip6i_t	*ip6i;
11042 	char	buf[TCP_MAX_HDR_LENGTH];
11043 	ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
11044 	in6_addr_t src, dst;
11045 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11046 
11047 	/*
11048 	 * save the existing tcp header and source/dest IP addresses
11049 	 */
11050 	bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len);
11051 	src = tcp->tcp_ip6h->ip6_src;
11052 	dst = tcp->tcp_ip6h->ip6_dst;
11053 	hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH;
11054 	ASSERT(hdrs_len != 0);
11055 	if (hdrs_len > tcp->tcp_iphc_len) {
11056 		/* Need to reallocate */
11057 		hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP);
11058 		if (hdrs == NULL)
11059 			return (ENOMEM);
11060 		if (tcp->tcp_iphc != NULL) {
11061 			if (tcp->tcp_hdr_grown) {
11062 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
11063 			} else {
11064 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
11065 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
11066 			}
11067 			tcp->tcp_iphc_len = 0;
11068 		}
11069 		ASSERT(tcp->tcp_iphc_len == 0);
11070 		tcp->tcp_iphc = hdrs;
11071 		tcp->tcp_iphc_len = hdrs_len;
11072 		tcp->tcp_hdr_grown = B_TRUE;
11073 	}
11074 	ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc,
11075 	    hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP);
11076 
11077 	/* Set header fields not in ipp */
11078 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
11079 		ip6i = (ip6i_t *)tcp->tcp_iphc;
11080 		tcp->tcp_ip6h = (ip6_t *)&ip6i[1];
11081 	} else {
11082 		tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
11083 	}
11084 	/*
11085 	 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one.
11086 	 *
11087 	 * tcp->tcp_tcp_hdr_len doesn't change here.
11088 	 */
11089 	tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH;
11090 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len);
11091 	tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len;
11092 
11093 	bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len);
11094 
11095 	tcp->tcp_ip6h->ip6_src = src;
11096 	tcp->tcp_ip6h->ip6_dst = dst;
11097 
11098 	/*
11099 	 * If the hop limit was not set by ip_build_hdrs_v6(), set it to
11100 	 * the default value for TCP.
11101 	 */
11102 	if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS))
11103 		tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit;
11104 
11105 	/*
11106 	 * If we're setting extension headers after a connection
11107 	 * has been established, and if we have a routing header
11108 	 * among the extension headers, call ip_massage_options_v6 to
11109 	 * manipulate the routing header/ip6_dst set the checksum
11110 	 * difference in the tcp header template.
11111 	 * (This happens in tcp_connect_ipv6 if the routing header
11112 	 * is set prior to the connect.)
11113 	 * Set the tcp_sum to zero first in case we've cleared a
11114 	 * routing header or don't have one at all.
11115 	 */
11116 	tcp->tcp_sum = 0;
11117 	if ((tcp->tcp_state >= TCPS_SYN_SENT) &&
11118 	    (tcp->tcp_ipp_fields & IPPF_RTHDR)) {
11119 		ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h,
11120 		    (uint8_t *)tcp->tcp_tcph);
11121 		if (rth != NULL) {
11122 			tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h,
11123 			    rth, tcps->tcps_netstack);
11124 			tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
11125 			    (tcp->tcp_sum >> 16));
11126 		}
11127 	}
11128 
11129 	/* Try to get everything in a single mblk */
11130 	(void) mi_set_sth_wroff(RD(q), hdrs_len + tcps->tcps_wroff_xtra);
11131 	return (0);
11132 }
11133 
11134 /*
11135  * Transfer any source route option from ipha to buf/dst in reversed form.
11136  */
11137 static int
11138 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst)
11139 {
11140 	ipoptp_t	opts;
11141 	uchar_t		*opt;
11142 	uint8_t		optval;
11143 	uint8_t		optlen;
11144 	uint32_t	len = 0;
11145 
11146 	for (optval = ipoptp_first(&opts, ipha);
11147 	    optval != IPOPT_EOL;
11148 	    optval = ipoptp_next(&opts)) {
11149 		opt = opts.ipoptp_cur;
11150 		optlen = opts.ipoptp_len;
11151 		switch (optval) {
11152 			int	off1, off2;
11153 		case IPOPT_SSRR:
11154 		case IPOPT_LSRR:
11155 
11156 			/* Reverse source route */
11157 			/*
11158 			 * First entry should be the next to last one in the
11159 			 * current source route (the last entry is our
11160 			 * address.)
11161 			 * The last entry should be the final destination.
11162 			 */
11163 			buf[IPOPT_OPTVAL] = (uint8_t)optval;
11164 			buf[IPOPT_OLEN] = (uint8_t)optlen;
11165 			off1 = IPOPT_MINOFF_SR - 1;
11166 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
11167 			if (off2 < 0) {
11168 				/* No entries in source route */
11169 				break;
11170 			}
11171 			bcopy(opt + off2, dst, IP_ADDR_LEN);
11172 			/*
11173 			 * Note: use src since ipha has not had its src
11174 			 * and dst reversed (it is in the state it was
11175 			 * received.
11176 			 */
11177 			bcopy(&ipha->ipha_src, buf + off2,
11178 			    IP_ADDR_LEN);
11179 			off2 -= IP_ADDR_LEN;
11180 
11181 			while (off2 > 0) {
11182 				bcopy(opt + off2, buf + off1,
11183 				    IP_ADDR_LEN);
11184 				off1 += IP_ADDR_LEN;
11185 				off2 -= IP_ADDR_LEN;
11186 			}
11187 			buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
11188 			buf += optlen;
11189 			len += optlen;
11190 			break;
11191 		}
11192 	}
11193 done:
11194 	/* Pad the resulting options */
11195 	while (len & 0x3) {
11196 		*buf++ = IPOPT_EOL;
11197 		len++;
11198 	}
11199 	return (len);
11200 }
11201 
11202 
11203 /*
11204  * Extract and revert a source route from ipha (if any)
11205  * and then update the relevant fields in both tcp_t and the standard header.
11206  */
11207 static void
11208 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha)
11209 {
11210 	char	buf[TCP_MAX_HDR_LENGTH];
11211 	uint_t	tcph_len;
11212 	int	len;
11213 
11214 	ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
11215 	len = IPH_HDR_LENGTH(ipha);
11216 	if (len == IP_SIMPLE_HDR_LENGTH)
11217 		/* Nothing to do */
11218 		return;
11219 	if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH ||
11220 	    (len & 0x3))
11221 		return;
11222 
11223 	tcph_len = tcp->tcp_tcp_hdr_len;
11224 	bcopy(tcp->tcp_tcph, buf, tcph_len);
11225 	tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) +
11226 		(tcp->tcp_ipha->ipha_dst & 0xffff);
11227 	len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha +
11228 	    IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst);
11229 	len += IP_SIMPLE_HDR_LENGTH;
11230 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
11231 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
11232 	if ((int)tcp->tcp_sum < 0)
11233 		tcp->tcp_sum--;
11234 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
11235 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16));
11236 	tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len);
11237 	bcopy(buf, tcp->tcp_tcph, tcph_len);
11238 	tcp->tcp_ip_hdr_len = len;
11239 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11240 	    (IP_VERSION << 4) | (len >> 2);
11241 	len += tcph_len;
11242 	tcp->tcp_hdr_len = len;
11243 }
11244 
11245 /*
11246  * Copy the standard header into its new location,
11247  * lay in the new options and then update the relevant
11248  * fields in both tcp_t and the standard header.
11249  */
11250 static int
11251 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len)
11252 {
11253 	uint_t	tcph_len;
11254 	uint8_t	*ip_optp;
11255 	tcph_t	*new_tcph;
11256 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11257 
11258 	if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3))
11259 		return (EINVAL);
11260 
11261 	if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len)
11262 		return (EINVAL);
11263 
11264 	if (checkonly) {
11265 		/*
11266 		 * do not really set, just pretend to - T_CHECK
11267 		 */
11268 		return (0);
11269 	}
11270 
11271 	ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH;
11272 	if (tcp->tcp_label_len > 0) {
11273 		int padlen;
11274 		uint8_t opt;
11275 
11276 		/* convert list termination to no-ops */
11277 		padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN];
11278 		ip_optp += ip_optp[IPOPT_OLEN];
11279 		opt = len > 0 ? IPOPT_NOP : IPOPT_EOL;
11280 		while (--padlen >= 0)
11281 			*ip_optp++ = opt;
11282 	}
11283 	tcph_len = tcp->tcp_tcp_hdr_len;
11284 	new_tcph = (tcph_t *)(ip_optp + len);
11285 	ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len);
11286 	tcp->tcp_tcph = new_tcph;
11287 	bcopy(ptr, ip_optp, len);
11288 
11289 	len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len;
11290 
11291 	tcp->tcp_ip_hdr_len = len;
11292 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11293 	    (IP_VERSION << 4) | (len >> 2);
11294 	tcp->tcp_hdr_len = len + tcph_len;
11295 	if (!TCP_IS_DETACHED(tcp)) {
11296 		/* Always allocate room for all options. */
11297 		(void) mi_set_sth_wroff(tcp->tcp_rq,
11298 		    TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra);
11299 	}
11300 	return (0);
11301 }
11302 
11303 /* Get callback routine passed to nd_load by tcp_param_register */
11304 /* ARGSUSED */
11305 static int
11306 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
11307 {
11308 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11309 
11310 	(void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val);
11311 	return (0);
11312 }
11313 
11314 /*
11315  * Walk through the param array specified registering each element with the
11316  * named dispatch handler.
11317  */
11318 static boolean_t
11319 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps)
11320 {
11321 	for (; cnt-- > 0; tcppa++) {
11322 		if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) {
11323 			if (!nd_load(ndp, tcppa->tcp_param_name,
11324 			    tcp_param_get, tcp_param_set,
11325 			    (caddr_t)tcppa)) {
11326 				nd_free(ndp);
11327 				return (B_FALSE);
11328 			}
11329 		}
11330 	}
11331 	tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t),
11332 	    KM_SLEEP);
11333 	bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param,
11334 	    sizeof (tcpparam_t));
11335 	if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name,
11336 	    tcp_param_get, tcp_param_set_aligned,
11337 	    (caddr_t)tcps->tcps_wroff_xtra_param)) {
11338 		nd_free(ndp);
11339 		return (B_FALSE);
11340 	}
11341 	tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t),
11342 	    KM_SLEEP);
11343 	bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param,
11344 	    sizeof (tcpparam_t));
11345 	if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name,
11346 	    tcp_param_get, tcp_param_set_aligned,
11347 	    (caddr_t)tcps->tcps_mdt_head_param)) {
11348 		nd_free(ndp);
11349 		return (B_FALSE);
11350 	}
11351 	tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t),
11352 	    KM_SLEEP);
11353 	bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param,
11354 	    sizeof (tcpparam_t));
11355 	if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name,
11356 	    tcp_param_get, tcp_param_set_aligned,
11357 	    (caddr_t)tcps->tcps_mdt_tail_param)) {
11358 		nd_free(ndp);
11359 		return (B_FALSE);
11360 	}
11361 	tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t),
11362 	    KM_SLEEP);
11363 	bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param,
11364 	    sizeof (tcpparam_t));
11365 	if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name,
11366 	    tcp_param_get, tcp_param_set_aligned,
11367 	    (caddr_t)tcps->tcps_mdt_max_pbufs_param)) {
11368 		nd_free(ndp);
11369 		return (B_FALSE);
11370 	}
11371 	if (!nd_load(ndp, "tcp_extra_priv_ports",
11372 	    tcp_extra_priv_ports_get, NULL, NULL)) {
11373 		nd_free(ndp);
11374 		return (B_FALSE);
11375 	}
11376 	if (!nd_load(ndp, "tcp_extra_priv_ports_add",
11377 	    NULL, tcp_extra_priv_ports_add, NULL)) {
11378 		nd_free(ndp);
11379 		return (B_FALSE);
11380 	}
11381 	if (!nd_load(ndp, "tcp_extra_priv_ports_del",
11382 	    NULL, tcp_extra_priv_ports_del, NULL)) {
11383 		nd_free(ndp);
11384 		return (B_FALSE);
11385 	}
11386 	if (!nd_load(ndp, "tcp_status", tcp_status_report, NULL,
11387 	    NULL)) {
11388 		nd_free(ndp);
11389 		return (B_FALSE);
11390 	}
11391 	if (!nd_load(ndp, "tcp_bind_hash", tcp_bind_hash_report,
11392 	    NULL, NULL)) {
11393 		nd_free(ndp);
11394 		return (B_FALSE);
11395 	}
11396 	if (!nd_load(ndp, "tcp_listen_hash",
11397 	    tcp_listen_hash_report, NULL, NULL)) {
11398 		nd_free(ndp);
11399 		return (B_FALSE);
11400 	}
11401 	if (!nd_load(ndp, "tcp_conn_hash", tcp_conn_hash_report,
11402 	    NULL, NULL)) {
11403 		nd_free(ndp);
11404 		return (B_FALSE);
11405 	}
11406 	if (!nd_load(ndp, "tcp_acceptor_hash",
11407 	    tcp_acceptor_hash_report, NULL, NULL)) {
11408 		nd_free(ndp);
11409 		return (B_FALSE);
11410 	}
11411 	if (!nd_load(ndp, "tcp_host_param", tcp_host_param_report,
11412 	    tcp_host_param_set, NULL)) {
11413 		nd_free(ndp);
11414 		return (B_FALSE);
11415 	}
11416 	if (!nd_load(ndp, "tcp_host_param_ipv6",
11417 	    tcp_host_param_report, tcp_host_param_set_ipv6, NULL)) {
11418 		nd_free(ndp);
11419 		return (B_FALSE);
11420 	}
11421 	if (!nd_load(ndp, "tcp_1948_phrase", NULL,
11422 	    tcp_1948_phrase_set, NULL)) {
11423 		nd_free(ndp);
11424 		return (B_FALSE);
11425 	}
11426 	if (!nd_load(ndp, "tcp_reserved_port_list",
11427 	    tcp_reserved_port_list, NULL, NULL)) {
11428 		nd_free(ndp);
11429 		return (B_FALSE);
11430 	}
11431 	/*
11432 	 * Dummy ndd variables - only to convey obsolescence information
11433 	 * through printing of their name (no get or set routines)
11434 	 * XXX Remove in future releases ?
11435 	 */
11436 	if (!nd_load(ndp,
11437 	    "tcp_close_wait_interval(obsoleted - "
11438 	    "use tcp_time_wait_interval)", NULL, NULL, NULL)) {
11439 		nd_free(ndp);
11440 		return (B_FALSE);
11441 	}
11442 	return (B_TRUE);
11443 }
11444 
11445 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */
11446 /* ARGSUSED */
11447 static int
11448 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
11449     cred_t *cr)
11450 {
11451 	long new_value;
11452 	tcpparam_t *tcppa = (tcpparam_t *)cp;
11453 
11454 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11455 	    new_value < tcppa->tcp_param_min ||
11456 	    new_value > tcppa->tcp_param_max) {
11457 		return (EINVAL);
11458 	}
11459 	/*
11460 	 * Need to make sure new_value is a multiple of 4.  If it is not,
11461 	 * round it up.  For future 64 bit requirement, we actually make it
11462 	 * a multiple of 8.
11463 	 */
11464 	if (new_value & 0x7) {
11465 		new_value = (new_value & ~0x7) + 0x8;
11466 	}
11467 	tcppa->tcp_param_val = new_value;
11468 	return (0);
11469 }
11470 
11471 /* Set callback routine passed to nd_load by tcp_param_register */
11472 /* ARGSUSED */
11473 static int
11474 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
11475 {
11476 	long	new_value;
11477 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11478 
11479 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11480 	    new_value < tcppa->tcp_param_min ||
11481 	    new_value > tcppa->tcp_param_max) {
11482 		return (EINVAL);
11483 	}
11484 	tcppa->tcp_param_val = new_value;
11485 	return (0);
11486 }
11487 
11488 /*
11489  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
11490  * is filled, return as much as we can.  The message passed in may be
11491  * multi-part, chained using b_cont.  "start" is the starting sequence
11492  * number for this piece.
11493  */
11494 static mblk_t *
11495 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
11496 {
11497 	uint32_t	end;
11498 	mblk_t		*mp1;
11499 	mblk_t		*mp2;
11500 	mblk_t		*next_mp;
11501 	uint32_t	u1;
11502 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11503 
11504 	/* Walk through all the new pieces. */
11505 	do {
11506 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
11507 		    (uintptr_t)INT_MAX);
11508 		end = start + (int)(mp->b_wptr - mp->b_rptr);
11509 		next_mp = mp->b_cont;
11510 		if (start == end) {
11511 			/* Empty.  Blast it. */
11512 			freeb(mp);
11513 			continue;
11514 		}
11515 		mp->b_cont = NULL;
11516 		TCP_REASS_SET_SEQ(mp, start);
11517 		TCP_REASS_SET_END(mp, end);
11518 		mp1 = tcp->tcp_reass_tail;
11519 		if (!mp1) {
11520 			tcp->tcp_reass_tail = mp;
11521 			tcp->tcp_reass_head = mp;
11522 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11523 			UPDATE_MIB(&tcps->tcps_mib,
11524 			    tcpInDataUnorderBytes, end - start);
11525 			continue;
11526 		}
11527 		/* New stuff completely beyond tail? */
11528 		if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
11529 			/* Link it on end. */
11530 			mp1->b_cont = mp;
11531 			tcp->tcp_reass_tail = mp;
11532 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11533 			UPDATE_MIB(&tcps->tcps_mib,
11534 			    tcpInDataUnorderBytes, end - start);
11535 			continue;
11536 		}
11537 		mp1 = tcp->tcp_reass_head;
11538 		u1 = TCP_REASS_SEQ(mp1);
11539 		/* New stuff at the front? */
11540 		if (SEQ_LT(start, u1)) {
11541 			/* Yes... Check for overlap. */
11542 			mp->b_cont = mp1;
11543 			tcp->tcp_reass_head = mp;
11544 			tcp_reass_elim_overlap(tcp, mp);
11545 			continue;
11546 		}
11547 		/*
11548 		 * The new piece fits somewhere between the head and tail.
11549 		 * We find our slot, where mp1 precedes us and mp2 trails.
11550 		 */
11551 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
11552 			u1 = TCP_REASS_SEQ(mp2);
11553 			if (SEQ_LEQ(start, u1))
11554 				break;
11555 		}
11556 		/* Link ourselves in */
11557 		mp->b_cont = mp2;
11558 		mp1->b_cont = mp;
11559 
11560 		/* Trim overlap with following mblk(s) first */
11561 		tcp_reass_elim_overlap(tcp, mp);
11562 
11563 		/* Trim overlap with preceding mblk */
11564 		tcp_reass_elim_overlap(tcp, mp1);
11565 
11566 	} while (start = end, mp = next_mp);
11567 	mp1 = tcp->tcp_reass_head;
11568 	/* Anything ready to go? */
11569 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
11570 		return (NULL);
11571 	/* Eat what we can off the queue */
11572 	for (;;) {
11573 		mp = mp1->b_cont;
11574 		end = TCP_REASS_END(mp1);
11575 		TCP_REASS_SET_SEQ(mp1, 0);
11576 		TCP_REASS_SET_END(mp1, 0);
11577 		if (!mp) {
11578 			tcp->tcp_reass_tail = NULL;
11579 			break;
11580 		}
11581 		if (end != TCP_REASS_SEQ(mp)) {
11582 			mp1->b_cont = NULL;
11583 			break;
11584 		}
11585 		mp1 = mp;
11586 	}
11587 	mp1 = tcp->tcp_reass_head;
11588 	tcp->tcp_reass_head = mp;
11589 	return (mp1);
11590 }
11591 
11592 /* Eliminate any overlap that mp may have over later mblks */
11593 static void
11594 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
11595 {
11596 	uint32_t	end;
11597 	mblk_t		*mp1;
11598 	uint32_t	u1;
11599 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11600 
11601 	end = TCP_REASS_END(mp);
11602 	while ((mp1 = mp->b_cont) != NULL) {
11603 		u1 = TCP_REASS_SEQ(mp1);
11604 		if (!SEQ_GT(end, u1))
11605 			break;
11606 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
11607 			mp->b_wptr -= end - u1;
11608 			TCP_REASS_SET_END(mp, u1);
11609 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs);
11610 			UPDATE_MIB(&tcps->tcps_mib,
11611 			    tcpInDataPartDupBytes, end - u1);
11612 			break;
11613 		}
11614 		mp->b_cont = mp1->b_cont;
11615 		TCP_REASS_SET_SEQ(mp1, 0);
11616 		TCP_REASS_SET_END(mp1, 0);
11617 		freeb(mp1);
11618 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
11619 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1);
11620 	}
11621 	if (!mp1)
11622 		tcp->tcp_reass_tail = mp;
11623 }
11624 
11625 /*
11626  * Send up all messages queued on tcp_rcv_list.
11627  */
11628 static uint_t
11629 tcp_rcv_drain(queue_t *q, tcp_t *tcp)
11630 {
11631 	mblk_t *mp;
11632 	uint_t ret = 0;
11633 	uint_t thwin;
11634 #ifdef DEBUG
11635 	uint_t cnt = 0;
11636 #endif
11637 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11638 
11639 	/* Can't drain on an eager connection */
11640 	if (tcp->tcp_listener != NULL)
11641 		return (ret);
11642 
11643 	/*
11644 	 * Handle two cases here: we are currently fused or we were
11645 	 * previously fused and have some urgent data to be delivered
11646 	 * upstream.  The latter happens because we either ran out of
11647 	 * memory or were detached and therefore sending the SIGURG was
11648 	 * deferred until this point.  In either case we pass control
11649 	 * over to tcp_fuse_rcv_drain() since it may need to complete
11650 	 * some work.
11651 	 */
11652 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
11653 		ASSERT(tcp->tcp_fused_sigurg_mp != NULL);
11654 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
11655 		    &tcp->tcp_fused_sigurg_mp))
11656 			return (ret);
11657 	}
11658 
11659 	while ((mp = tcp->tcp_rcv_list) != NULL) {
11660 		tcp->tcp_rcv_list = mp->b_next;
11661 		mp->b_next = NULL;
11662 #ifdef DEBUG
11663 		cnt += msgdsize(mp);
11664 #endif
11665 		/* Does this need SSL processing first? */
11666 		if ((tcp->tcp_kssl_ctx  != NULL) && (DB_TYPE(mp) == M_DATA)) {
11667 			tcp_kssl_input(tcp, mp);
11668 			continue;
11669 		}
11670 		putnext(q, mp);
11671 	}
11672 	ASSERT(cnt == tcp->tcp_rcv_cnt);
11673 	tcp->tcp_rcv_last_head = NULL;
11674 	tcp->tcp_rcv_last_tail = NULL;
11675 	tcp->tcp_rcv_cnt = 0;
11676 
11677 	/* Learn the latest rwnd information that we sent to the other side. */
11678 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11679 	    << tcp->tcp_rcv_ws;
11680 	/* This is peer's calculated send window (our receive window). */
11681 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11682 	/*
11683 	 * Increase the receive window to max.  But we need to do receiver
11684 	 * SWS avoidance.  This means that we need to check the increase of
11685 	 * of receive window is at least 1 MSS.
11686 	 */
11687 	if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) {
11688 		/*
11689 		 * If the window that the other side knows is less than max
11690 		 * deferred acks segments, send an update immediately.
11691 		 */
11692 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11693 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
11694 			ret = TH_ACK_NEEDED;
11695 		}
11696 		tcp->tcp_rwnd = q->q_hiwat;
11697 	}
11698 	/* No need for the push timer now. */
11699 	if (tcp->tcp_push_tid != 0) {
11700 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11701 		tcp->tcp_push_tid = 0;
11702 	}
11703 	return (ret);
11704 }
11705 
11706 /*
11707  * Queue data on tcp_rcv_list which is a b_next chain.
11708  * tcp_rcv_last_head/tail is the last element of this chain.
11709  * Each element of the chain is a b_cont chain.
11710  *
11711  * M_DATA messages are added to the current element.
11712  * Other messages are added as new (b_next) elements.
11713  */
11714 void
11715 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len)
11716 {
11717 	ASSERT(seg_len == msgdsize(mp));
11718 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
11719 
11720 	if (tcp->tcp_rcv_list == NULL) {
11721 		ASSERT(tcp->tcp_rcv_last_head == NULL);
11722 		tcp->tcp_rcv_list = mp;
11723 		tcp->tcp_rcv_last_head = mp;
11724 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
11725 		tcp->tcp_rcv_last_tail->b_cont = mp;
11726 	} else {
11727 		tcp->tcp_rcv_last_head->b_next = mp;
11728 		tcp->tcp_rcv_last_head = mp;
11729 	}
11730 
11731 	while (mp->b_cont)
11732 		mp = mp->b_cont;
11733 
11734 	tcp->tcp_rcv_last_tail = mp;
11735 	tcp->tcp_rcv_cnt += seg_len;
11736 	tcp->tcp_rwnd -= seg_len;
11737 }
11738 
11739 /*
11740  * DEFAULT TCP ENTRY POINT via squeue on READ side.
11741  *
11742  * This is the default entry function into TCP on the read side. TCP is
11743  * always entered via squeue i.e. using squeue's for mutual exclusion.
11744  * When classifier does a lookup to find the tcp, it also puts a reference
11745  * on the conn structure associated so the tcp is guaranteed to exist
11746  * when we come here. We still need to check the state because it might
11747  * as well has been closed. The squeue processing function i.e. squeue_enter,
11748  * squeue_enter_nodrain, or squeue_drain is responsible for doing the
11749  * CONN_DEC_REF.
11750  *
11751  * Apart from the default entry point, IP also sends packets directly to
11752  * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming
11753  * connections.
11754  */
11755 void
11756 tcp_input(void *arg, mblk_t *mp, void *arg2)
11757 {
11758 	conn_t	*connp = (conn_t *)arg;
11759 	tcp_t	*tcp = (tcp_t *)connp->conn_tcp;
11760 
11761 	/* arg2 is the sqp */
11762 	ASSERT(arg2 != NULL);
11763 	ASSERT(mp != NULL);
11764 
11765 	/*
11766 	 * Don't accept any input on a closed tcp as this TCP logically does
11767 	 * not exist on the system. Don't proceed further with this TCP.
11768 	 * For eg. this packet could trigger another close of this tcp
11769 	 * which would be disastrous for tcp_refcnt. tcp_close_detached /
11770 	 * tcp_clean_death / tcp_closei_local must be called at most once
11771 	 * on a TCP. In this case we need to refeed the packet into the
11772 	 * classifier and figure out where the packet should go. Need to
11773 	 * preserve the recv_ill somehow. Until we figure that out, for
11774 	 * now just drop the packet if we can't classify the packet.
11775 	 */
11776 	if (tcp->tcp_state == TCPS_CLOSED ||
11777 	    tcp->tcp_state == TCPS_BOUND) {
11778 		conn_t	*new_connp;
11779 		ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip;
11780 
11781 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
11782 		if (new_connp != NULL) {
11783 			tcp_reinput(new_connp, mp, arg2);
11784 			return;
11785 		}
11786 		/* We failed to classify. For now just drop the packet */
11787 		freemsg(mp);
11788 		return;
11789 	}
11790 
11791 	if (DB_TYPE(mp) == M_DATA)
11792 		tcp_rput_data(connp, mp, arg2);
11793 	else
11794 		tcp_rput_common(tcp, mp);
11795 }
11796 
11797 /*
11798  * The read side put procedure.
11799  * The packets passed up by ip are assume to be aligned according to
11800  * OK_32PTR and the IP+TCP headers fitting in the first mblk.
11801  */
11802 static void
11803 tcp_rput_common(tcp_t *tcp, mblk_t *mp)
11804 {
11805 	/*
11806 	 * tcp_rput_data() does not expect M_CTL except for the case
11807 	 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO
11808 	 * type. Need to make sure that any other M_CTLs don't make
11809 	 * it to tcp_rput_data since it is not expecting any and doesn't
11810 	 * check for it.
11811 	 */
11812 	if (DB_TYPE(mp) == M_CTL) {
11813 		switch (*(uint32_t *)(mp->b_rptr)) {
11814 		case TCP_IOC_ABORT_CONN:
11815 			/*
11816 			 * Handle connection abort request.
11817 			 */
11818 			tcp_ioctl_abort_handler(tcp, mp);
11819 			return;
11820 		case IPSEC_IN:
11821 			/*
11822 			 * Only secure icmp arrive in TCP and they
11823 			 * don't go through data path.
11824 			 */
11825 			tcp_icmp_error(tcp, mp);
11826 			return;
11827 		case IN_PKTINFO:
11828 			/*
11829 			 * Handle IPV6_RECVPKTINFO socket option on AF_INET6
11830 			 * sockets that are receiving IPv4 traffic. tcp
11831 			 */
11832 			ASSERT(tcp->tcp_family == AF_INET6);
11833 			ASSERT(tcp->tcp_ipv6_recvancillary &
11834 			    TCP_IPV6_RECVPKTINFO);
11835 			tcp_rput_data(tcp->tcp_connp, mp,
11836 			    tcp->tcp_connp->conn_sqp);
11837 			return;
11838 		case MDT_IOC_INFO_UPDATE:
11839 			/*
11840 			 * Handle Multidata information update; the
11841 			 * following routine will free the message.
11842 			 */
11843 			if (tcp->tcp_connp->conn_mdt_ok) {
11844 				tcp_mdt_update(tcp,
11845 				    &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab,
11846 				    B_FALSE);
11847 			}
11848 			freemsg(mp);
11849 			return;
11850 		case LSO_IOC_INFO_UPDATE:
11851 			/*
11852 			 * Handle LSO information update; the following
11853 			 * routine will free the message.
11854 			 */
11855 			if (tcp->tcp_connp->conn_lso_ok) {
11856 				tcp_lso_update(tcp,
11857 				    &((ip_lso_info_t *)mp->b_rptr)->lso_capab);
11858 			}
11859 			freemsg(mp);
11860 			return;
11861 		default:
11862 			/*
11863 			 * tcp_icmp_err() will process the M_CTL packets.
11864 			 * Non-ICMP packets, if any, will be discarded in
11865 			 * tcp_icmp_err(). We will process the ICMP packet
11866 			 * even if we are TCP_IS_DETACHED_NONEAGER as the
11867 			 * incoming ICMP packet may result in changing
11868 			 * the tcp_mss, which we would need if we have
11869 			 * packets to retransmit.
11870 			 */
11871 			tcp_icmp_error(tcp, mp);
11872 			return;
11873 		}
11874 	}
11875 
11876 	/* No point processing the message if tcp is already closed */
11877 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
11878 		freemsg(mp);
11879 		return;
11880 	}
11881 
11882 	tcp_rput_other(tcp, mp);
11883 }
11884 
11885 
11886 /* The minimum of smoothed mean deviation in RTO calculation. */
11887 #define	TCP_SD_MIN	400
11888 
11889 /*
11890  * Set RTO for this connection.  The formula is from Jacobson and Karels'
11891  * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
11892  * are the same as those in Appendix A.2 of that paper.
11893  *
11894  * m = new measurement
11895  * sa = smoothed RTT average (8 * average estimates).
11896  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
11897  */
11898 static void
11899 tcp_set_rto(tcp_t *tcp, clock_t rtt)
11900 {
11901 	long m = TICK_TO_MSEC(rtt);
11902 	clock_t sa = tcp->tcp_rtt_sa;
11903 	clock_t sv = tcp->tcp_rtt_sd;
11904 	clock_t rto;
11905 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11906 
11907 	BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate);
11908 	tcp->tcp_rtt_update++;
11909 
11910 	/* tcp_rtt_sa is not 0 means this is a new sample. */
11911 	if (sa != 0) {
11912 		/*
11913 		 * Update average estimator:
11914 		 *	new rtt = 7/8 old rtt + 1/8 Error
11915 		 */
11916 
11917 		/* m is now Error in estimate. */
11918 		m -= sa >> 3;
11919 		if ((sa += m) <= 0) {
11920 			/*
11921 			 * Don't allow the smoothed average to be negative.
11922 			 * We use 0 to denote reinitialization of the
11923 			 * variables.
11924 			 */
11925 			sa = 1;
11926 		}
11927 
11928 		/*
11929 		 * Update deviation estimator:
11930 		 *	new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
11931 		 */
11932 		if (m < 0)
11933 			m = -m;
11934 		m -= sv >> 2;
11935 		sv += m;
11936 	} else {
11937 		/*
11938 		 * This follows BSD's implementation.  So the reinitialized
11939 		 * RTO is 3 * m.  We cannot go less than 2 because if the
11940 		 * link is bandwidth dominated, doubling the window size
11941 		 * during slow start means doubling the RTT.  We want to be
11942 		 * more conservative when we reinitialize our estimates.  3
11943 		 * is just a convenient number.
11944 		 */
11945 		sa = m << 3;
11946 		sv = m << 1;
11947 	}
11948 	if (sv < TCP_SD_MIN) {
11949 		/*
11950 		 * We do not know that if sa captures the delay ACK
11951 		 * effect as in a long train of segments, a receiver
11952 		 * does not delay its ACKs.  So set the minimum of sv
11953 		 * to be TCP_SD_MIN, which is default to 400 ms, twice
11954 		 * of BSD DATO.  That means the minimum of mean
11955 		 * deviation is 100 ms.
11956 		 *
11957 		 */
11958 		sv = TCP_SD_MIN;
11959 	}
11960 	tcp->tcp_rtt_sa = sa;
11961 	tcp->tcp_rtt_sd = sv;
11962 	/*
11963 	 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
11964 	 *
11965 	 * Add tcp_rexmit_interval extra in case of extreme environment
11966 	 * where the algorithm fails to work.  The default value of
11967 	 * tcp_rexmit_interval_extra should be 0.
11968 	 *
11969 	 * As we use a finer grained clock than BSD and update
11970 	 * RTO for every ACKs, add in another .25 of RTT to the
11971 	 * deviation of RTO to accomodate burstiness of 1/4 of
11972 	 * window size.
11973 	 */
11974 	rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5);
11975 
11976 	if (rto > tcps->tcps_rexmit_interval_max) {
11977 		tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
11978 	} else if (rto < tcps->tcps_rexmit_interval_min) {
11979 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
11980 	} else {
11981 		tcp->tcp_rto = rto;
11982 	}
11983 
11984 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
11985 	tcp->tcp_timer_backoff = 0;
11986 }
11987 
11988 /*
11989  * tcp_get_seg_mp() is called to get the pointer to a segment in the
11990  * send queue which starts at the given seq. no.
11991  *
11992  * Parameters:
11993  *	tcp_t *tcp: the tcp instance pointer.
11994  *	uint32_t seq: the starting seq. no of the requested segment.
11995  *	int32_t *off: after the execution, *off will be the offset to
11996  *		the returned mblk which points to the requested seq no.
11997  *		It is the caller's responsibility to send in a non-null off.
11998  *
11999  * Return:
12000  *	A mblk_t pointer pointing to the requested segment in send queue.
12001  */
12002 static mblk_t *
12003 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off)
12004 {
12005 	int32_t	cnt;
12006 	mblk_t	*mp;
12007 
12008 	/* Defensive coding.  Make sure we don't send incorrect data. */
12009 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
12010 		return (NULL);
12011 
12012 	cnt = seq - tcp->tcp_suna;
12013 	mp = tcp->tcp_xmit_head;
12014 	while (cnt > 0 && mp != NULL) {
12015 		cnt -= mp->b_wptr - mp->b_rptr;
12016 		if (cnt < 0) {
12017 			cnt += mp->b_wptr - mp->b_rptr;
12018 			break;
12019 		}
12020 		mp = mp->b_cont;
12021 	}
12022 	ASSERT(mp != NULL);
12023 	*off = cnt;
12024 	return (mp);
12025 }
12026 
12027 /*
12028  * This function handles all retransmissions if SACK is enabled for this
12029  * connection.  First it calculates how many segments can be retransmitted
12030  * based on tcp_pipe.  Then it goes thru the notsack list to find eligible
12031  * segments.  A segment is eligible if sack_cnt for that segment is greater
12032  * than or equal tcp_dupack_fast_retransmit.  After it has retransmitted
12033  * all eligible segments, it checks to see if TCP can send some new segments
12034  * (fast recovery).  If it can, set the appropriate flag for tcp_rput_data().
12035  *
12036  * Parameters:
12037  *	tcp_t *tcp: the tcp structure of the connection.
12038  *	uint_t *flags: in return, appropriate value will be set for
12039  *	tcp_rput_data().
12040  */
12041 static void
12042 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags)
12043 {
12044 	notsack_blk_t	*notsack_blk;
12045 	int32_t		usable_swnd;
12046 	int32_t		mss;
12047 	uint32_t	seg_len;
12048 	mblk_t		*xmit_mp;
12049 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12050 
12051 	ASSERT(tcp->tcp_sack_info != NULL);
12052 	ASSERT(tcp->tcp_notsack_list != NULL);
12053 	ASSERT(tcp->tcp_rexmit == B_FALSE);
12054 
12055 	/* Defensive coding in case there is a bug... */
12056 	if (tcp->tcp_notsack_list == NULL) {
12057 		return;
12058 	}
12059 	notsack_blk = tcp->tcp_notsack_list;
12060 	mss = tcp->tcp_mss;
12061 
12062 	/*
12063 	 * Limit the num of outstanding data in the network to be
12064 	 * tcp_cwnd_ssthresh, which is half of the original congestion wnd.
12065 	 */
12066 	usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
12067 
12068 	/* At least retransmit 1 MSS of data. */
12069 	if (usable_swnd <= 0) {
12070 		usable_swnd = mss;
12071 	}
12072 
12073 	/* Make sure no new RTT samples will be taken. */
12074 	tcp->tcp_csuna = tcp->tcp_snxt;
12075 
12076 	notsack_blk = tcp->tcp_notsack_list;
12077 	while (usable_swnd > 0) {
12078 		mblk_t		*snxt_mp, *tmp_mp;
12079 		tcp_seq		begin = tcp->tcp_sack_snxt;
12080 		tcp_seq		end;
12081 		int32_t		off;
12082 
12083 		for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) {
12084 			if (SEQ_GT(notsack_blk->end, begin) &&
12085 			    (notsack_blk->sack_cnt >=
12086 			    tcps->tcps_dupack_fast_retransmit)) {
12087 				end = notsack_blk->end;
12088 				if (SEQ_LT(begin, notsack_blk->begin)) {
12089 					begin = notsack_blk->begin;
12090 				}
12091 				break;
12092 			}
12093 		}
12094 		/*
12095 		 * All holes are filled.  Manipulate tcp_cwnd to send more
12096 		 * if we can.  Note that after the SACK recovery, tcp_cwnd is
12097 		 * set to tcp_cwnd_ssthresh.
12098 		 */
12099 		if (notsack_blk == NULL) {
12100 			usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
12101 			if (usable_swnd <= 0 || tcp->tcp_unsent == 0) {
12102 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna;
12103 				ASSERT(tcp->tcp_cwnd > 0);
12104 				return;
12105 			} else {
12106 				usable_swnd = usable_swnd / mss;
12107 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna +
12108 				    MAX(usable_swnd * mss, mss);
12109 				*flags |= TH_XMIT_NEEDED;
12110 				return;
12111 			}
12112 		}
12113 
12114 		/*
12115 		 * Note that we may send more than usable_swnd allows here
12116 		 * because of round off, but no more than 1 MSS of data.
12117 		 */
12118 		seg_len = end - begin;
12119 		if (seg_len > mss)
12120 			seg_len = mss;
12121 		snxt_mp = tcp_get_seg_mp(tcp, begin, &off);
12122 		ASSERT(snxt_mp != NULL);
12123 		/* This should not happen.  Defensive coding again... */
12124 		if (snxt_mp == NULL) {
12125 			return;
12126 		}
12127 
12128 		xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off,
12129 		    &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE);
12130 		if (xmit_mp == NULL)
12131 			return;
12132 
12133 		usable_swnd -= seg_len;
12134 		tcp->tcp_pipe += seg_len;
12135 		tcp->tcp_sack_snxt = begin + seg_len;
12136 		TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT);
12137 		tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12138 
12139 		/*
12140 		 * Update the send timestamp to avoid false retransmission.
12141 		 */
12142 		snxt_mp->b_prev = (mblk_t *)lbolt;
12143 
12144 		BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12145 		UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len);
12146 		BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs);
12147 		/*
12148 		 * Update tcp_rexmit_max to extend this SACK recovery phase.
12149 		 * This happens when new data sent during fast recovery is
12150 		 * also lost.  If TCP retransmits those new data, it needs
12151 		 * to extend SACK recover phase to avoid starting another
12152 		 * fast retransmit/recovery unnecessarily.
12153 		 */
12154 		if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) {
12155 			tcp->tcp_rexmit_max = tcp->tcp_sack_snxt;
12156 		}
12157 	}
12158 }
12159 
12160 /*
12161  * This function handles policy checking at TCP level for non-hard_bound/
12162  * detached connections.
12163  */
12164 static boolean_t
12165 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h,
12166     boolean_t secure, boolean_t mctl_present)
12167 {
12168 	ipsec_latch_t *ipl = NULL;
12169 	ipsec_action_t *act = NULL;
12170 	mblk_t *data_mp;
12171 	ipsec_in_t *ii;
12172 	const char *reason;
12173 	kstat_named_t *counter;
12174 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12175 	ipsec_stack_t	*ipss;
12176 	ip_stack_t	*ipst;
12177 
12178 	ASSERT(mctl_present || !secure);
12179 
12180 	ASSERT((ipha == NULL && ip6h != NULL) ||
12181 	    (ip6h == NULL && ipha != NULL));
12182 
12183 	/*
12184 	 * We don't necessarily have an ipsec_in_act action to verify
12185 	 * policy because of assymetrical policy where we have only
12186 	 * outbound policy and no inbound policy (possible with global
12187 	 * policy).
12188 	 */
12189 	if (!secure) {
12190 		if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS ||
12191 		    act->ipa_act.ipa_type == IPSEC_ACT_CLEAR)
12192 			return (B_TRUE);
12193 		ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
12194 		    "tcp_check_policy", ipha, ip6h, secure,
12195 		    tcps->tcps_netstack);
12196 		ipss = tcps->tcps_netstack->netstack_ipsec;
12197 
12198 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12199 		    DROPPER(ipss, ipds_tcp_clear),
12200 		    &tcps->tcps_dropper);
12201 		return (B_FALSE);
12202 	}
12203 
12204 	/*
12205 	 * We have a secure packet.
12206 	 */
12207 	if (act == NULL) {
12208 		ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED,
12209 		    "tcp_check_policy", ipha, ip6h, secure,
12210 		    tcps->tcps_netstack);
12211 		ipss = tcps->tcps_netstack->netstack_ipsec;
12212 
12213 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12214 		    DROPPER(ipss, ipds_tcp_secure),
12215 		    &tcps->tcps_dropper);
12216 		return (B_FALSE);
12217 	}
12218 
12219 	/*
12220 	 * XXX This whole routine is currently incorrect.  ipl should
12221 	 * be set to the latch pointer, but is currently not set, so
12222 	 * we initialize it to NULL to avoid picking up random garbage.
12223 	 */
12224 	if (ipl == NULL)
12225 		return (B_TRUE);
12226 
12227 	data_mp = first_mp->b_cont;
12228 
12229 	ii = (ipsec_in_t *)first_mp->b_rptr;
12230 
12231 	ipst = tcps->tcps_netstack->netstack_ip;
12232 
12233 	if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason,
12234 	    &counter, tcp->tcp_connp)) {
12235 		BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
12236 		return (B_TRUE);
12237 	}
12238 	(void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
12239 	    "tcp inbound policy mismatch: %s, packet dropped\n",
12240 	    reason);
12241 	BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
12242 
12243 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter,
12244 	    &tcps->tcps_dropper);
12245 	return (B_FALSE);
12246 }
12247 
12248 /*
12249  * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start
12250  * retransmission after a timeout.
12251  *
12252  * To limit the number of duplicate segments, we limit the number of segment
12253  * to be sent in one time to tcp_snd_burst, the burst variable.
12254  */
12255 static void
12256 tcp_ss_rexmit(tcp_t *tcp)
12257 {
12258 	uint32_t	snxt;
12259 	uint32_t	smax;
12260 	int32_t		win;
12261 	int32_t		mss;
12262 	int32_t		off;
12263 	int32_t		burst = tcp->tcp_snd_burst;
12264 	mblk_t		*snxt_mp;
12265 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12266 
12267 	/*
12268 	 * Note that tcp_rexmit can be set even though TCP has retransmitted
12269 	 * all unack'ed segments.
12270 	 */
12271 	if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) {
12272 		smax = tcp->tcp_rexmit_max;
12273 		snxt = tcp->tcp_rexmit_nxt;
12274 		if (SEQ_LT(snxt, tcp->tcp_suna)) {
12275 			snxt = tcp->tcp_suna;
12276 		}
12277 		win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd);
12278 		win -= snxt - tcp->tcp_suna;
12279 		mss = tcp->tcp_mss;
12280 		snxt_mp = tcp_get_seg_mp(tcp, snxt, &off);
12281 
12282 		while (SEQ_LT(snxt, smax) && (win > 0) &&
12283 		    (burst > 0) && (snxt_mp != NULL)) {
12284 			mblk_t	*xmit_mp;
12285 			mblk_t	*old_snxt_mp = snxt_mp;
12286 			uint32_t cnt = mss;
12287 
12288 			if (win < cnt) {
12289 				cnt = win;
12290 			}
12291 			if (SEQ_GT(snxt + cnt, smax)) {
12292 				cnt = smax - snxt;
12293 			}
12294 			xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off,
12295 			    &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE);
12296 			if (xmit_mp == NULL)
12297 				return;
12298 
12299 			tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12300 
12301 			snxt += cnt;
12302 			win -= cnt;
12303 			/*
12304 			 * Update the send timestamp to avoid false
12305 			 * retransmission.
12306 			 */
12307 			old_snxt_mp->b_prev = (mblk_t *)lbolt;
12308 			BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12309 			UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt);
12310 
12311 			tcp->tcp_rexmit_nxt = snxt;
12312 			burst--;
12313 		}
12314 		/*
12315 		 * If we have transmitted all we have at the time
12316 		 * we started the retranmission, we can leave
12317 		 * the rest of the job to tcp_wput_data().  But we
12318 		 * need to check the send window first.  If the
12319 		 * win is not 0, go on with tcp_wput_data().
12320 		 */
12321 		if (SEQ_LT(snxt, smax) || win == 0) {
12322 			return;
12323 		}
12324 	}
12325 	/* Only call tcp_wput_data() if there is data to be sent. */
12326 	if (tcp->tcp_unsent) {
12327 		tcp_wput_data(tcp, NULL, B_FALSE);
12328 	}
12329 }
12330 
12331 /*
12332  * Process all TCP option in SYN segment.  Note that this function should
12333  * be called after tcp_adapt_ire() is called so that the necessary info
12334  * from IRE is already set in the tcp structure.
12335  *
12336  * This function sets up the correct tcp_mss value according to the
12337  * MSS option value and our header size.  It also sets up the window scale
12338  * and timestamp values, and initialize SACK info blocks.  But it does not
12339  * change receive window size after setting the tcp_mss value.  The caller
12340  * should do the appropriate change.
12341  */
12342 void
12343 tcp_process_options(tcp_t *tcp, tcph_t *tcph)
12344 {
12345 	int options;
12346 	tcp_opt_t tcpopt;
12347 	uint32_t mss_max;
12348 	char *tmp_tcph;
12349 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12350 
12351 	tcpopt.tcp = NULL;
12352 	options = tcp_parse_options(tcph, &tcpopt);
12353 
12354 	/*
12355 	 * Process MSS option.  Note that MSS option value does not account
12356 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
12357 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
12358 	 * IPv6.
12359 	 */
12360 	if (!(options & TCP_OPT_MSS_PRESENT)) {
12361 		if (tcp->tcp_ipversion == IPV4_VERSION)
12362 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4;
12363 		else
12364 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6;
12365 	} else {
12366 		if (tcp->tcp_ipversion == IPV4_VERSION)
12367 			mss_max = tcps->tcps_mss_max_ipv4;
12368 		else
12369 			mss_max = tcps->tcps_mss_max_ipv6;
12370 		if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min)
12371 			tcpopt.tcp_opt_mss = tcps->tcps_mss_min;
12372 		else if (tcpopt.tcp_opt_mss > mss_max)
12373 			tcpopt.tcp_opt_mss = mss_max;
12374 	}
12375 
12376 	/* Process Window Scale option. */
12377 	if (options & TCP_OPT_WSCALE_PRESENT) {
12378 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
12379 		tcp->tcp_snd_ws_ok = B_TRUE;
12380 	} else {
12381 		tcp->tcp_snd_ws = B_FALSE;
12382 		tcp->tcp_snd_ws_ok = B_FALSE;
12383 		tcp->tcp_rcv_ws = B_FALSE;
12384 	}
12385 
12386 	/* Process Timestamp option. */
12387 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
12388 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
12389 		tmp_tcph = (char *)tcp->tcp_tcph;
12390 
12391 		tcp->tcp_snd_ts_ok = B_TRUE;
12392 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
12393 		tcp->tcp_last_rcv_lbolt = lbolt64;
12394 		ASSERT(OK_32PTR(tmp_tcph));
12395 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
12396 
12397 		/* Fill in our template header with basic timestamp option. */
12398 		tmp_tcph += tcp->tcp_tcp_hdr_len;
12399 		tmp_tcph[0] = TCPOPT_NOP;
12400 		tmp_tcph[1] = TCPOPT_NOP;
12401 		tmp_tcph[2] = TCPOPT_TSTAMP;
12402 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
12403 		tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12404 		tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12405 		tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4);
12406 	} else {
12407 		tcp->tcp_snd_ts_ok = B_FALSE;
12408 	}
12409 
12410 	/*
12411 	 * Process SACK options.  If SACK is enabled for this connection,
12412 	 * then allocate the SACK info structure.  Note the following ways
12413 	 * when tcp_snd_sack_ok is set to true.
12414 	 *
12415 	 * For active connection: in tcp_adapt_ire() called in
12416 	 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted
12417 	 * is checked.
12418 	 *
12419 	 * For passive connection: in tcp_adapt_ire() called in
12420 	 * tcp_accept_comm().
12421 	 *
12422 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
12423 	 * That check makes sure that if we did not send a SACK OK option,
12424 	 * we will not enable SACK for this connection even though the other
12425 	 * side sends us SACK OK option.  For active connection, the SACK
12426 	 * info structure has already been allocated.  So we need to free
12427 	 * it if SACK is disabled.
12428 	 */
12429 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
12430 	    (tcp->tcp_snd_sack_ok ||
12431 	    (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
12432 		/* This should be true only in the passive case. */
12433 		if (tcp->tcp_sack_info == NULL) {
12434 			ASSERT(TCP_IS_DETACHED(tcp));
12435 			tcp->tcp_sack_info =
12436 			    kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP);
12437 		}
12438 		if (tcp->tcp_sack_info == NULL) {
12439 			tcp->tcp_snd_sack_ok = B_FALSE;
12440 		} else {
12441 			tcp->tcp_snd_sack_ok = B_TRUE;
12442 			if (tcp->tcp_snd_ts_ok) {
12443 				tcp->tcp_max_sack_blk = 3;
12444 			} else {
12445 				tcp->tcp_max_sack_blk = 4;
12446 			}
12447 		}
12448 	} else {
12449 		/*
12450 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
12451 		 * no SACK info will be used for this
12452 		 * connection.  This assumes that SACK usage
12453 		 * permission is negotiated.  This may need
12454 		 * to be changed once this is clarified.
12455 		 */
12456 		if (tcp->tcp_sack_info != NULL) {
12457 			ASSERT(tcp->tcp_notsack_list == NULL);
12458 			kmem_cache_free(tcp_sack_info_cache,
12459 			    tcp->tcp_sack_info);
12460 			tcp->tcp_sack_info = NULL;
12461 		}
12462 		tcp->tcp_snd_sack_ok = B_FALSE;
12463 	}
12464 
12465 	/*
12466 	 * Now we know the exact TCP/IP header length, subtract
12467 	 * that from tcp_mss to get our side's MSS.
12468 	 */
12469 	tcp->tcp_mss -= tcp->tcp_hdr_len;
12470 	/*
12471 	 * Here we assume that the other side's header size will be equal to
12472 	 * our header size.  We calculate the real MSS accordingly.  Need to
12473 	 * take into additional stuffs IPsec puts in.
12474 	 *
12475 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
12476 	 */
12477 	tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead -
12478 	    ((tcp->tcp_ipversion == IPV4_VERSION ?
12479 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
12480 
12481 	/*
12482 	 * Set MSS to the smaller one of both ends of the connection.
12483 	 * We should not have called tcp_mss_set() before, but our
12484 	 * side of the MSS should have been set to a proper value
12485 	 * by tcp_adapt_ire().  tcp_mss_set() will also set up the
12486 	 * STREAM head parameters properly.
12487 	 *
12488 	 * If we have a larger-than-16-bit window but the other side
12489 	 * didn't want to do window scale, tcp_rwnd_set() will take
12490 	 * care of that.
12491 	 */
12492 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss));
12493 }
12494 
12495 /*
12496  * Sends the T_CONN_IND to the listener. The caller calls this
12497  * functions via squeue to get inside the listener's perimeter
12498  * once the 3 way hand shake is done a T_CONN_IND needs to be
12499  * sent. As an optimization, the caller can call this directly
12500  * if listener's perimeter is same as eager's.
12501  */
12502 /* ARGSUSED */
12503 void
12504 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2)
12505 {
12506 	conn_t			*lconnp = (conn_t *)arg;
12507 	tcp_t			*listener = lconnp->conn_tcp;
12508 	tcp_t			*tcp;
12509 	struct T_conn_ind	*conn_ind;
12510 	ipaddr_t 		*addr_cache;
12511 	boolean_t		need_send_conn_ind = B_FALSE;
12512 	tcp_stack_t		*tcps = listener->tcp_tcps;
12513 
12514 	/* retrieve the eager */
12515 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
12516 	ASSERT(conn_ind->OPT_offset != 0 &&
12517 	    conn_ind->OPT_length == sizeof (intptr_t));
12518 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
12519 		conn_ind->OPT_length);
12520 
12521 	/*
12522 	 * TLI/XTI applications will get confused by
12523 	 * sending eager as an option since it violates
12524 	 * the option semantics. So remove the eager as
12525 	 * option since TLI/XTI app doesn't need it anyway.
12526 	 */
12527 	if (!TCP_IS_SOCKET(listener)) {
12528 		conn_ind->OPT_length = 0;
12529 		conn_ind->OPT_offset = 0;
12530 	}
12531 	if (listener->tcp_state == TCPS_CLOSED ||
12532 	    TCP_IS_DETACHED(listener)) {
12533 		/*
12534 		 * If listener has closed, it would have caused a
12535 		 * a cleanup/blowoff to happen for the eager. We
12536 		 * just need to return.
12537 		 */
12538 		freemsg(mp);
12539 		return;
12540 	}
12541 
12542 
12543 	/*
12544 	 * if the conn_req_q is full defer passing up the
12545 	 * T_CONN_IND until space is availabe after t_accept()
12546 	 * processing
12547 	 */
12548 	mutex_enter(&listener->tcp_eager_lock);
12549 
12550 	/*
12551 	 * Take the eager out, if it is in the list of droppable eagers
12552 	 * as we are here because the 3W handshake is over.
12553 	 */
12554 	MAKE_UNDROPPABLE(tcp);
12555 
12556 	if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) {
12557 		tcp_t *tail;
12558 
12559 		/*
12560 		 * The eager already has an extra ref put in tcp_rput_data
12561 		 * so that it stays till accept comes back even though it
12562 		 * might get into TCPS_CLOSED as a result of a TH_RST etc.
12563 		 */
12564 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
12565 		listener->tcp_conn_req_cnt_q0--;
12566 		listener->tcp_conn_req_cnt_q++;
12567 
12568 		/* Move from SYN_RCVD to ESTABLISHED list  */
12569 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12570 		    tcp->tcp_eager_prev_q0;
12571 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12572 		    tcp->tcp_eager_next_q0;
12573 		tcp->tcp_eager_prev_q0 = NULL;
12574 		tcp->tcp_eager_next_q0 = NULL;
12575 
12576 		/*
12577 		 * Insert at end of the queue because sockfs
12578 		 * sends down T_CONN_RES in chronological
12579 		 * order. Leaving the older conn indications
12580 		 * at front of the queue helps reducing search
12581 		 * time.
12582 		 */
12583 		tail = listener->tcp_eager_last_q;
12584 		if (tail != NULL)
12585 			tail->tcp_eager_next_q = tcp;
12586 		else
12587 			listener->tcp_eager_next_q = tcp;
12588 		listener->tcp_eager_last_q = tcp;
12589 		tcp->tcp_eager_next_q = NULL;
12590 		/*
12591 		 * Delay sending up the T_conn_ind until we are
12592 		 * done with the eager. Once we have have sent up
12593 		 * the T_conn_ind, the accept can potentially complete
12594 		 * any time and release the refhold we have on the eager.
12595 		 */
12596 		need_send_conn_ind = B_TRUE;
12597 	} else {
12598 		/*
12599 		 * Defer connection on q0 and set deferred
12600 		 * connection bit true
12601 		 */
12602 		tcp->tcp_conn_def_q0 = B_TRUE;
12603 
12604 		/* take tcp out of q0 ... */
12605 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12606 		    tcp->tcp_eager_next_q0;
12607 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12608 		    tcp->tcp_eager_prev_q0;
12609 
12610 		/* ... and place it at the end of q0 */
12611 		tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0;
12612 		tcp->tcp_eager_next_q0 = listener;
12613 		listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp;
12614 		listener->tcp_eager_prev_q0 = tcp;
12615 		tcp->tcp_conn.tcp_eager_conn_ind = mp;
12616 	}
12617 
12618 	/* we have timed out before */
12619 	if (tcp->tcp_syn_rcvd_timeout != 0) {
12620 		tcp->tcp_syn_rcvd_timeout = 0;
12621 		listener->tcp_syn_rcvd_timeout--;
12622 		if (listener->tcp_syn_defense &&
12623 		    listener->tcp_syn_rcvd_timeout <=
12624 		    (tcps->tcps_conn_req_max_q0 >> 5) &&
12625 		    10*MINUTES < TICK_TO_MSEC(lbolt64 -
12626 			listener->tcp_last_rcv_lbolt)) {
12627 			/*
12628 			 * Turn off the defense mode if we
12629 			 * believe the SYN attack is over.
12630 			 */
12631 			listener->tcp_syn_defense = B_FALSE;
12632 			if (listener->tcp_ip_addr_cache) {
12633 				kmem_free((void *)listener->tcp_ip_addr_cache,
12634 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
12635 				listener->tcp_ip_addr_cache = NULL;
12636 			}
12637 		}
12638 	}
12639 	addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
12640 	if (addr_cache != NULL) {
12641 		/*
12642 		 * We have finished a 3-way handshake with this
12643 		 * remote host. This proves the IP addr is good.
12644 		 * Cache it!
12645 		 */
12646 		addr_cache[IP_ADDR_CACHE_HASH(
12647 			tcp->tcp_remote)] = tcp->tcp_remote;
12648 	}
12649 	mutex_exit(&listener->tcp_eager_lock);
12650 	if (need_send_conn_ind)
12651 		putnext(listener->tcp_rq, mp);
12652 }
12653 
12654 mblk_t *
12655 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp,
12656     uint_t *ifindexp, ip6_pkt_t *ippp)
12657 {
12658 	ip_pktinfo_t	*pinfo;
12659 	ip6_t		*ip6h;
12660 	uchar_t		*rptr;
12661 	mblk_t		*first_mp = mp;
12662 	boolean_t	mctl_present = B_FALSE;
12663 	uint_t 		ifindex = 0;
12664 	ip6_pkt_t	ipp;
12665 	uint_t		ipvers;
12666 	uint_t		ip_hdr_len;
12667 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12668 
12669 	rptr = mp->b_rptr;
12670 	ASSERT(OK_32PTR(rptr));
12671 	ASSERT(tcp != NULL);
12672 	ipp.ipp_fields = 0;
12673 
12674 	switch DB_TYPE(mp) {
12675 	case M_CTL:
12676 		mp = mp->b_cont;
12677 		if (mp == NULL) {
12678 			freemsg(first_mp);
12679 			return (NULL);
12680 		}
12681 		if (DB_TYPE(mp) != M_DATA) {
12682 			freemsg(first_mp);
12683 			return (NULL);
12684 		}
12685 		mctl_present = B_TRUE;
12686 		break;
12687 	case M_DATA:
12688 		break;
12689 	default:
12690 		cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type");
12691 		freemsg(mp);
12692 		return (NULL);
12693 	}
12694 	ipvers = IPH_HDR_VERSION(rptr);
12695 	if (ipvers == IPV4_VERSION) {
12696 		if (tcp == NULL) {
12697 			ip_hdr_len = IPH_HDR_LENGTH(rptr);
12698 			goto done;
12699 		}
12700 
12701 		ipp.ipp_fields |= IPPF_HOPLIMIT;
12702 		ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl;
12703 
12704 		/*
12705 		 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary
12706 		 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp.
12707 		 */
12708 		if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) &&
12709 		    mctl_present) {
12710 			pinfo = (ip_pktinfo_t *)first_mp->b_rptr;
12711 			if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) &&
12712 			    (pinfo->ip_pkt_ulp_type == IN_PKTINFO) &&
12713 			    (pinfo->ip_pkt_flags & IPF_RECVIF)) {
12714 				ipp.ipp_fields |= IPPF_IFINDEX;
12715 				ipp.ipp_ifindex = pinfo->ip_pkt_ifindex;
12716 				ifindex = pinfo->ip_pkt_ifindex;
12717 			}
12718 			freeb(first_mp);
12719 			mctl_present = B_FALSE;
12720 		}
12721 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12722 	} else {
12723 		ip6h = (ip6_t *)rptr;
12724 
12725 		ASSERT(ipvers == IPV6_VERSION);
12726 		ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS;
12727 		ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20;
12728 		ipp.ipp_hoplimit = ip6h->ip6_hops;
12729 
12730 		if (ip6h->ip6_nxt != IPPROTO_TCP) {
12731 			uint8_t	nexthdrp;
12732 			ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
12733 
12734 			/* Look for ifindex information */
12735 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
12736 				ip6i_t *ip6i = (ip6i_t *)ip6h;
12737 				if ((uchar_t *)&ip6i[1] > mp->b_wptr) {
12738 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12739 					freemsg(first_mp);
12740 					return (NULL);
12741 				}
12742 
12743 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
12744 					ASSERT(ip6i->ip6i_ifindex != 0);
12745 					ipp.ipp_fields |= IPPF_IFINDEX;
12746 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
12747 					ifindex = ip6i->ip6i_ifindex;
12748 				}
12749 				rptr = (uchar_t *)&ip6i[1];
12750 				mp->b_rptr = rptr;
12751 				if (rptr == mp->b_wptr) {
12752 					mblk_t *mp1;
12753 					mp1 = mp->b_cont;
12754 					freeb(mp);
12755 					mp = mp1;
12756 					rptr = mp->b_rptr;
12757 				}
12758 				if (MBLKL(mp) < IPV6_HDR_LEN +
12759 				    sizeof (tcph_t)) {
12760 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12761 					freemsg(first_mp);
12762 					return (NULL);
12763 				}
12764 				ip6h = (ip6_t *)rptr;
12765 			}
12766 
12767 			/*
12768 			 * Find any potentially interesting extension headers
12769 			 * as well as the length of the IPv6 + extension
12770 			 * headers.
12771 			 */
12772 			ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp);
12773 			/* Verify if this is a TCP packet */
12774 			if (nexthdrp != IPPROTO_TCP) {
12775 				BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12776 				freemsg(first_mp);
12777 				return (NULL);
12778 			}
12779 		} else {
12780 			ip_hdr_len = IPV6_HDR_LEN;
12781 		}
12782 	}
12783 
12784 done:
12785 	if (ipversp != NULL)
12786 		*ipversp = ipvers;
12787 	if (ip_hdr_lenp != NULL)
12788 		*ip_hdr_lenp = ip_hdr_len;
12789 	if (ippp != NULL)
12790 		*ippp = ipp;
12791 	if (ifindexp != NULL)
12792 		*ifindexp = ifindex;
12793 	if (mctl_present) {
12794 		freeb(first_mp);
12795 	}
12796 	return (mp);
12797 }
12798 
12799 /*
12800  * Handle M_DATA messages from IP. Its called directly from IP via
12801  * squeue for AF_INET type sockets fast path. No M_CTL are expected
12802  * in this path.
12803  *
12804  * For everything else (including AF_INET6 sockets with 'tcp_ipversion'
12805  * v4 and v6), we are called through tcp_input() and a M_CTL can
12806  * be present for options but tcp_find_pktinfo() deals with it. We
12807  * only expect M_DATA packets after tcp_find_pktinfo() is done.
12808  *
12809  * The first argument is always the connp/tcp to which the mp belongs.
12810  * There are no exceptions to this rule. The caller has already put
12811  * a reference on this connp/tcp and once tcp_rput_data() returns,
12812  * the squeue will do the refrele.
12813  *
12814  * The TH_SYN for the listener directly go to tcp_conn_request via
12815  * squeue.
12816  *
12817  * sqp: NULL = recursive, sqp != NULL means called from squeue
12818  */
12819 void
12820 tcp_rput_data(void *arg, mblk_t *mp, void *arg2)
12821 {
12822 	int32_t		bytes_acked;
12823 	int32_t		gap;
12824 	mblk_t		*mp1;
12825 	uint_t		flags;
12826 	uint32_t	new_swnd = 0;
12827 	uchar_t		*iphdr;
12828 	uchar_t		*rptr;
12829 	int32_t		rgap;
12830 	uint32_t	seg_ack;
12831 	int		seg_len;
12832 	uint_t		ip_hdr_len;
12833 	uint32_t	seg_seq;
12834 	tcph_t		*tcph;
12835 	int		urp;
12836 	tcp_opt_t	tcpopt;
12837 	uint_t		ipvers;
12838 	ip6_pkt_t	ipp;
12839 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
12840 	uint32_t	cwnd;
12841 	uint32_t	add;
12842 	int		npkt;
12843 	int		mss;
12844 	conn_t		*connp = (conn_t *)arg;
12845 	squeue_t	*sqp = (squeue_t *)arg2;
12846 	tcp_t		*tcp = connp->conn_tcp;
12847 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12848 
12849 	/*
12850 	 * RST from fused tcp loopback peer should trigger an unfuse.
12851 	 */
12852 	if (tcp->tcp_fused) {
12853 		TCP_STAT(tcps, tcp_fusion_aborted);
12854 		tcp_unfuse(tcp);
12855 	}
12856 
12857 	iphdr = mp->b_rptr;
12858 	rptr = mp->b_rptr;
12859 	ASSERT(OK_32PTR(rptr));
12860 
12861 	/*
12862 	 * An AF_INET socket is not capable of receiving any pktinfo. Do inline
12863 	 * processing here. For rest call tcp_find_pktinfo to fill up the
12864 	 * necessary information.
12865 	 */
12866 	if (IPCL_IS_TCP4(connp)) {
12867 		ipvers = IPV4_VERSION;
12868 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12869 	} else {
12870 		mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len,
12871 		    NULL, &ipp);
12872 		if (mp == NULL) {
12873 			TCP_STAT(tcps, tcp_rput_v6_error);
12874 			return;
12875 		}
12876 		iphdr = mp->b_rptr;
12877 		rptr = mp->b_rptr;
12878 	}
12879 	ASSERT(DB_TYPE(mp) == M_DATA);
12880 
12881 	tcph = (tcph_t *)&rptr[ip_hdr_len];
12882 	seg_seq = ABE32_TO_U32(tcph->th_seq);
12883 	seg_ack = ABE32_TO_U32(tcph->th_ack);
12884 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
12885 	seg_len = (int)(mp->b_wptr - rptr) -
12886 	    (ip_hdr_len + TCP_HDR_LENGTH(tcph));
12887 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
12888 		do {
12889 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
12890 			    (uintptr_t)INT_MAX);
12891 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
12892 		} while ((mp1 = mp1->b_cont) != NULL &&
12893 		    mp1->b_datap->db_type == M_DATA);
12894 	}
12895 
12896 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
12897 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
12898 		    seg_len, tcph);
12899 		return;
12900 	}
12901 
12902 	if (sqp != NULL) {
12903 		/*
12904 		 * This is the correct place to update tcp_last_recv_time. Note
12905 		 * that it is also updated for tcp structure that belongs to
12906 		 * global and listener queues which do not really need updating.
12907 		 * But that should not cause any harm.  And it is updated for
12908 		 * all kinds of incoming segments, not only for data segments.
12909 		 */
12910 		tcp->tcp_last_recv_time = lbolt;
12911 	}
12912 
12913 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
12914 
12915 	BUMP_LOCAL(tcp->tcp_ibsegs);
12916 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
12917 
12918 	if ((flags & TH_URG) && sqp != NULL) {
12919 		/*
12920 		 * TCP can't handle urgent pointers that arrive before
12921 		 * the connection has been accept()ed since it can't
12922 		 * buffer OOB data.  Discard segment if this happens.
12923 		 *
12924 		 * Nor can it reassemble urgent pointers, so discard
12925 		 * if it's not the next segment expected.
12926 		 *
12927 		 * Otherwise, collapse chain into one mblk (discard if
12928 		 * that fails).  This makes sure the headers, retransmitted
12929 		 * data, and new data all are in the same mblk.
12930 		 */
12931 		ASSERT(mp != NULL);
12932 		if (tcp->tcp_listener || !pullupmsg(mp, -1)) {
12933 			freemsg(mp);
12934 			return;
12935 		}
12936 		/* Update pointers into message */
12937 		iphdr = rptr = mp->b_rptr;
12938 		tcph = (tcph_t *)&rptr[ip_hdr_len];
12939 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
12940 			/*
12941 			 * Since we can't handle any data with this urgent
12942 			 * pointer that is out of sequence, we expunge
12943 			 * the data.  This allows us to still register
12944 			 * the urgent mark and generate the M_PCSIG,
12945 			 * which we can do.
12946 			 */
12947 			mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
12948 			seg_len = 0;
12949 		}
12950 	}
12951 
12952 	switch (tcp->tcp_state) {
12953 	case TCPS_SYN_SENT:
12954 		if (flags & TH_ACK) {
12955 			/*
12956 			 * Note that our stack cannot send data before a
12957 			 * connection is established, therefore the
12958 			 * following check is valid.  Otherwise, it has
12959 			 * to be changed.
12960 			 */
12961 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
12962 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
12963 				freemsg(mp);
12964 				if (flags & TH_RST)
12965 					return;
12966 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
12967 				    tcp, seg_ack, 0, TH_RST);
12968 				return;
12969 			}
12970 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
12971 		}
12972 		if (flags & TH_RST) {
12973 			freemsg(mp);
12974 			if (flags & TH_ACK)
12975 				(void) tcp_clean_death(tcp,
12976 				    ECONNREFUSED, 13);
12977 			return;
12978 		}
12979 		if (!(flags & TH_SYN)) {
12980 			freemsg(mp);
12981 			return;
12982 		}
12983 
12984 		/* Process all TCP options. */
12985 		tcp_process_options(tcp, tcph);
12986 		/*
12987 		 * The following changes our rwnd to be a multiple of the
12988 		 * MIN(peer MSS, our MSS) for performance reason.
12989 		 */
12990 		(void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat,
12991 		    tcp->tcp_mss));
12992 
12993 		/* Is the other end ECN capable? */
12994 		if (tcp->tcp_ecn_ok) {
12995 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
12996 				tcp->tcp_ecn_ok = B_FALSE;
12997 			}
12998 		}
12999 		/*
13000 		 * Clear ECN flags because it may interfere with later
13001 		 * processing.
13002 		 */
13003 		flags &= ~(TH_ECE|TH_CWR);
13004 
13005 		tcp->tcp_irs = seg_seq;
13006 		tcp->tcp_rack = seg_seq;
13007 		tcp->tcp_rnxt = seg_seq + 1;
13008 		U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13009 		if (!TCP_IS_DETACHED(tcp)) {
13010 			/* Allocate room for SACK options if needed. */
13011 			if (tcp->tcp_snd_sack_ok) {
13012 				(void) mi_set_sth_wroff(tcp->tcp_rq,
13013 				    tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
13014 				    (tcp->tcp_loopback ? 0 :
13015 				    tcps->tcps_wroff_xtra));
13016 			} else {
13017 				(void) mi_set_sth_wroff(tcp->tcp_rq,
13018 				    tcp->tcp_hdr_len +
13019 				    (tcp->tcp_loopback ? 0 :
13020 				    tcps->tcps_wroff_xtra));
13021 			}
13022 		}
13023 		if (flags & TH_ACK) {
13024 			/*
13025 			 * If we can't get the confirmation upstream, pretend
13026 			 * we didn't even see this one.
13027 			 *
13028 			 * XXX: how can we pretend we didn't see it if we
13029 			 * have updated rnxt et. al.
13030 			 *
13031 			 * For loopback we defer sending up the T_CONN_CON
13032 			 * until after some checks below.
13033 			 */
13034 			mp1 = NULL;
13035 			if (!tcp_conn_con(tcp, iphdr, tcph, mp,
13036 			    tcp->tcp_loopback ? &mp1 : NULL)) {
13037 				freemsg(mp);
13038 				return;
13039 			}
13040 			/* SYN was acked - making progress */
13041 			if (tcp->tcp_ipversion == IPV6_VERSION)
13042 				tcp->tcp_ip_forward_progress = B_TRUE;
13043 
13044 			/* One for the SYN */
13045 			tcp->tcp_suna = tcp->tcp_iss + 1;
13046 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
13047 			tcp->tcp_state = TCPS_ESTABLISHED;
13048 
13049 			/*
13050 			 * If SYN was retransmitted, need to reset all
13051 			 * retransmission info.  This is because this
13052 			 * segment will be treated as a dup ACK.
13053 			 */
13054 			if (tcp->tcp_rexmit) {
13055 				tcp->tcp_rexmit = B_FALSE;
13056 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
13057 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
13058 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
13059 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
13060 				tcp->tcp_ms_we_have_waited = 0;
13061 
13062 				/*
13063 				 * Set tcp_cwnd back to 1 MSS, per
13064 				 * recommendation from
13065 				 * draft-floyd-incr-init-win-01.txt,
13066 				 * Increasing TCP's Initial Window.
13067 				 */
13068 				tcp->tcp_cwnd = tcp->tcp_mss;
13069 			}
13070 
13071 			tcp->tcp_swl1 = seg_seq;
13072 			tcp->tcp_swl2 = seg_ack;
13073 
13074 			new_swnd = BE16_TO_U16(tcph->th_win);
13075 			tcp->tcp_swnd = new_swnd;
13076 			if (new_swnd > tcp->tcp_max_swnd)
13077 				tcp->tcp_max_swnd = new_swnd;
13078 
13079 			/*
13080 			 * Always send the three-way handshake ack immediately
13081 			 * in order to make the connection complete as soon as
13082 			 * possible on the accepting host.
13083 			 */
13084 			flags |= TH_ACK_NEEDED;
13085 
13086 			/*
13087 			 * Special case for loopback.  At this point we have
13088 			 * received SYN-ACK from the remote endpoint.  In
13089 			 * order to ensure that both endpoints reach the
13090 			 * fused state prior to any data exchange, the final
13091 			 * ACK needs to be sent before we indicate T_CONN_CON
13092 			 * to the module upstream.
13093 			 */
13094 			if (tcp->tcp_loopback) {
13095 				mblk_t *ack_mp;
13096 
13097 				ASSERT(!tcp->tcp_unfusable);
13098 				ASSERT(mp1 != NULL);
13099 				/*
13100 				 * For loopback, we always get a pure SYN-ACK
13101 				 * and only need to send back the final ACK
13102 				 * with no data (this is because the other
13103 				 * tcp is ours and we don't do T/TCP).  This
13104 				 * final ACK triggers the passive side to
13105 				 * perform fusion in ESTABLISHED state.
13106 				 */
13107 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
13108 					if (tcp->tcp_ack_tid != 0) {
13109 						(void) TCP_TIMER_CANCEL(tcp,
13110 						    tcp->tcp_ack_tid);
13111 						tcp->tcp_ack_tid = 0;
13112 					}
13113 					TCP_RECORD_TRACE(tcp, ack_mp,
13114 					    TCP_TRACE_SEND_PKT);
13115 					tcp_send_data(tcp, tcp->tcp_wq, ack_mp);
13116 					BUMP_LOCAL(tcp->tcp_obsegs);
13117 					BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
13118 
13119 					/* Send up T_CONN_CON */
13120 					putnext(tcp->tcp_rq, mp1);
13121 
13122 					freemsg(mp);
13123 					return;
13124 				}
13125 				/*
13126 				 * Forget fusion; we need to handle more
13127 				 * complex cases below.  Send the deferred
13128 				 * T_CONN_CON message upstream and proceed
13129 				 * as usual.  Mark this tcp as not capable
13130 				 * of fusion.
13131 				 */
13132 				TCP_STAT(tcps, tcp_fusion_unfusable);
13133 				tcp->tcp_unfusable = B_TRUE;
13134 				putnext(tcp->tcp_rq, mp1);
13135 			}
13136 
13137 			/*
13138 			 * Check to see if there is data to be sent.  If
13139 			 * yes, set the transmit flag.  Then check to see
13140 			 * if received data processing needs to be done.
13141 			 * If not, go straight to xmit_check.  This short
13142 			 * cut is OK as we don't support T/TCP.
13143 			 */
13144 			if (tcp->tcp_unsent)
13145 				flags |= TH_XMIT_NEEDED;
13146 
13147 			if (seg_len == 0 && !(flags & TH_URG)) {
13148 				freemsg(mp);
13149 				goto xmit_check;
13150 			}
13151 
13152 			flags &= ~TH_SYN;
13153 			seg_seq++;
13154 			break;
13155 		}
13156 		tcp->tcp_state = TCPS_SYN_RCVD;
13157 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
13158 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
13159 		if (mp1) {
13160 			DB_CPID(mp1) = tcp->tcp_cpid;
13161 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
13162 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
13163 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
13164 		}
13165 		freemsg(mp);
13166 		return;
13167 	case TCPS_SYN_RCVD:
13168 		if (flags & TH_ACK) {
13169 			/*
13170 			 * In this state, a SYN|ACK packet is either bogus
13171 			 * because the other side must be ACKing our SYN which
13172 			 * indicates it has seen the ACK for their SYN and
13173 			 * shouldn't retransmit it or we're crossing SYNs
13174 			 * on active open.
13175 			 */
13176 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
13177 				freemsg(mp);
13178 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
13179 				    tcp, seg_ack, 0, TH_RST);
13180 				return;
13181 			}
13182 			/*
13183 			 * NOTE: RFC 793 pg. 72 says this should be
13184 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
13185 			 * but that would mean we have an ack that ignored
13186 			 * our SYN.
13187 			 */
13188 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
13189 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13190 				freemsg(mp);
13191 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
13192 				    tcp, seg_ack, 0, TH_RST);
13193 				return;
13194 			}
13195 		}
13196 		break;
13197 	case TCPS_LISTEN:
13198 		/*
13199 		 * Only a TLI listener can come through this path when a
13200 		 * acceptor is going back to be a listener and a packet
13201 		 * for the acceptor hits the classifier. For a socket
13202 		 * listener, this can never happen because a listener
13203 		 * can never accept connection on itself and hence a
13204 		 * socket acceptor can not go back to being a listener.
13205 		 */
13206 		ASSERT(!TCP_IS_SOCKET(tcp));
13207 		/*FALLTHRU*/
13208 	case TCPS_CLOSED:
13209 	case TCPS_BOUND: {
13210 		conn_t	*new_connp;
13211 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
13212 
13213 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
13214 		if (new_connp != NULL) {
13215 			tcp_reinput(new_connp, mp, connp->conn_sqp);
13216 			return;
13217 		}
13218 		/* We failed to classify. For now just drop the packet */
13219 		freemsg(mp);
13220 		return;
13221 	}
13222 	case TCPS_IDLE:
13223 		/*
13224 		 * Handle the case where the tcp_clean_death() has happened
13225 		 * on a connection (application hasn't closed yet) but a packet
13226 		 * was already queued on squeue before tcp_clean_death()
13227 		 * was processed. Calling tcp_clean_death() twice on same
13228 		 * connection can result in weird behaviour.
13229 		 */
13230 		freemsg(mp);
13231 		return;
13232 	default:
13233 		break;
13234 	}
13235 
13236 	/*
13237 	 * Already on the correct queue/perimeter.
13238 	 * If this is a detached connection and not an eager
13239 	 * connection hanging off a listener then new data
13240 	 * (past the FIN) will cause a reset.
13241 	 * We do a special check here where it
13242 	 * is out of the main line, rather than check
13243 	 * if we are detached every time we see new
13244 	 * data down below.
13245 	 */
13246 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
13247 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
13248 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
13249 		TCP_RECORD_TRACE(tcp,
13250 		    mp, TCP_TRACE_RECV_PKT);
13251 
13252 		freemsg(mp);
13253 		/*
13254 		 * This could be an SSL closure alert. We're detached so just
13255 		 * acknowledge it this last time.
13256 		 */
13257 		if (tcp->tcp_kssl_ctx != NULL) {
13258 			kssl_release_ctx(tcp->tcp_kssl_ctx);
13259 			tcp->tcp_kssl_ctx = NULL;
13260 
13261 			tcp->tcp_rnxt += seg_len;
13262 			U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13263 			flags |= TH_ACK_NEEDED;
13264 			goto ack_check;
13265 		}
13266 
13267 		tcp_xmit_ctl("new data when detached", tcp,
13268 		    tcp->tcp_snxt, 0, TH_RST);
13269 		(void) tcp_clean_death(tcp, EPROTO, 12);
13270 		return;
13271 	}
13272 
13273 	mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
13274 	urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION;
13275 	new_swnd = BE16_TO_U16(tcph->th_win) <<
13276 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
13277 	mss = tcp->tcp_mss;
13278 
13279 	if (tcp->tcp_snd_ts_ok) {
13280 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
13281 			/*
13282 			 * This segment is not acceptable.
13283 			 * Drop it and send back an ACK.
13284 			 */
13285 			freemsg(mp);
13286 			flags |= TH_ACK_NEEDED;
13287 			goto ack_check;
13288 		}
13289 	} else if (tcp->tcp_snd_sack_ok) {
13290 		ASSERT(tcp->tcp_sack_info != NULL);
13291 		tcpopt.tcp = tcp;
13292 		/*
13293 		 * SACK info in already updated in tcp_parse_options.  Ignore
13294 		 * all other TCP options...
13295 		 */
13296 		(void) tcp_parse_options(tcph, &tcpopt);
13297 	}
13298 try_again:;
13299 	gap = seg_seq - tcp->tcp_rnxt;
13300 	rgap = tcp->tcp_rwnd - (gap + seg_len);
13301 	/*
13302 	 * gap is the amount of sequence space between what we expect to see
13303 	 * and what we got for seg_seq.  A positive value for gap means
13304 	 * something got lost.  A negative value means we got some old stuff.
13305 	 */
13306 	if (gap < 0) {
13307 		/* Old stuff present.  Is the SYN in there? */
13308 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
13309 		    (seg_len != 0)) {
13310 			flags &= ~TH_SYN;
13311 			seg_seq++;
13312 			urp--;
13313 			/* Recompute the gaps after noting the SYN. */
13314 			goto try_again;
13315 		}
13316 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
13317 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
13318 		    (seg_len > -gap ? -gap : seg_len));
13319 		/* Remove the old stuff from seg_len. */
13320 		seg_len += gap;
13321 		/*
13322 		 * Anything left?
13323 		 * Make sure to check for unack'd FIN when rest of data
13324 		 * has been previously ack'd.
13325 		 */
13326 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
13327 			/*
13328 			 * Resets are only valid if they lie within our offered
13329 			 * window.  If the RST bit is set, we just ignore this
13330 			 * segment.
13331 			 */
13332 			if (flags & TH_RST) {
13333 				freemsg(mp);
13334 				return;
13335 			}
13336 
13337 			/*
13338 			 * The arriving of dup data packets indicate that we
13339 			 * may have postponed an ack for too long, or the other
13340 			 * side's RTT estimate is out of shape. Start acking
13341 			 * more often.
13342 			 */
13343 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
13344 			    tcp->tcp_rack_cnt >= 1 &&
13345 			    tcp->tcp_rack_abs_max > 2) {
13346 				tcp->tcp_rack_abs_max--;
13347 			}
13348 			tcp->tcp_rack_cur_max = 1;
13349 
13350 			/*
13351 			 * This segment is "unacceptable".  None of its
13352 			 * sequence space lies within our advertized window.
13353 			 *
13354 			 * Adjust seg_len to the original value for tracing.
13355 			 */
13356 			seg_len -= gap;
13357 			if (tcp->tcp_debug) {
13358 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13359 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
13360 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
13361 				    "seg_len %d, rnxt %u, snxt %u, %s",
13362 				    gap, rgap, flags, seg_seq, seg_ack,
13363 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
13364 				    tcp_display(tcp, NULL,
13365 				    DISP_ADDR_AND_PORT));
13366 			}
13367 
13368 			/*
13369 			 * Arrange to send an ACK in response to the
13370 			 * unacceptable segment per RFC 793 page 69. There
13371 			 * is only one small difference between ours and the
13372 			 * acceptability test in the RFC - we accept ACK-only
13373 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
13374 			 * will be generated.
13375 			 *
13376 			 * Note that we have to ACK an ACK-only packet at least
13377 			 * for stacks that send 0-length keep-alives with
13378 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
13379 			 * section 4.2.3.6. As long as we don't ever generate
13380 			 * an unacceptable packet in response to an incoming
13381 			 * packet that is unacceptable, it should not cause
13382 			 * "ACK wars".
13383 			 */
13384 			flags |=  TH_ACK_NEEDED;
13385 
13386 			/*
13387 			 * Continue processing this segment in order to use the
13388 			 * ACK information it contains, but skip all other
13389 			 * sequence-number processing.	Processing the ACK
13390 			 * information is necessary in order to
13391 			 * re-synchronize connections that may have lost
13392 			 * synchronization.
13393 			 *
13394 			 * We clear seg_len and flag fields related to
13395 			 * sequence number processing as they are not
13396 			 * to be trusted for an unacceptable segment.
13397 			 */
13398 			seg_len = 0;
13399 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
13400 			goto process_ack;
13401 		}
13402 
13403 		/* Fix seg_seq, and chew the gap off the front. */
13404 		seg_seq = tcp->tcp_rnxt;
13405 		urp += gap;
13406 		do {
13407 			mblk_t	*mp2;
13408 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13409 			    (uintptr_t)UINT_MAX);
13410 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
13411 			if (gap > 0) {
13412 				mp->b_rptr = mp->b_wptr - gap;
13413 				break;
13414 			}
13415 			mp2 = mp;
13416 			mp = mp->b_cont;
13417 			freeb(mp2);
13418 		} while (gap < 0);
13419 		/*
13420 		 * If the urgent data has already been acknowledged, we
13421 		 * should ignore TH_URG below
13422 		 */
13423 		if (urp < 0)
13424 			flags &= ~TH_URG;
13425 	}
13426 	/*
13427 	 * rgap is the amount of stuff received out of window.  A negative
13428 	 * value is the amount out of window.
13429 	 */
13430 	if (rgap < 0) {
13431 		mblk_t	*mp2;
13432 
13433 		if (tcp->tcp_rwnd == 0) {
13434 			BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe);
13435 		} else {
13436 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
13437 			UPDATE_MIB(&tcps->tcps_mib,
13438 			    tcpInDataPastWinBytes, -rgap);
13439 		}
13440 
13441 		/*
13442 		 * seg_len does not include the FIN, so if more than
13443 		 * just the FIN is out of window, we act like we don't
13444 		 * see it.  (If just the FIN is out of window, rgap
13445 		 * will be zero and we will go ahead and acknowledge
13446 		 * the FIN.)
13447 		 */
13448 		flags &= ~TH_FIN;
13449 
13450 		/* Fix seg_len and make sure there is something left. */
13451 		seg_len += rgap;
13452 		if (seg_len <= 0) {
13453 			/*
13454 			 * Resets are only valid if they lie within our offered
13455 			 * window.  If the RST bit is set, we just ignore this
13456 			 * segment.
13457 			 */
13458 			if (flags & TH_RST) {
13459 				freemsg(mp);
13460 				return;
13461 			}
13462 
13463 			/* Per RFC 793, we need to send back an ACK. */
13464 			flags |= TH_ACK_NEEDED;
13465 
13466 			/*
13467 			 * Send SIGURG as soon as possible i.e. even
13468 			 * if the TH_URG was delivered in a window probe
13469 			 * packet (which will be unacceptable).
13470 			 *
13471 			 * We generate a signal if none has been generated
13472 			 * for this connection or if this is a new urgent
13473 			 * byte. Also send a zero-length "unmarked" message
13474 			 * to inform SIOCATMARK that this is not the mark.
13475 			 *
13476 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
13477 			 * is sent up. This plus the check for old data
13478 			 * (gap >= 0) handles the wraparound of the sequence
13479 			 * number space without having to always track the
13480 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
13481 			 * this max in its rcv_up variable).
13482 			 *
13483 			 * This prevents duplicate SIGURGS due to a "late"
13484 			 * zero-window probe when the T_EXDATA_IND has already
13485 			 * been sent up.
13486 			 */
13487 			if ((flags & TH_URG) &&
13488 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
13489 			    tcp->tcp_urp_last))) {
13490 				mp1 = allocb(0, BPRI_MED);
13491 				if (mp1 == NULL) {
13492 					freemsg(mp);
13493 					return;
13494 				}
13495 				if (!TCP_IS_DETACHED(tcp) &&
13496 				    !putnextctl1(tcp->tcp_rq, M_PCSIG,
13497 				    SIGURG)) {
13498 					/* Try again on the rexmit. */
13499 					freemsg(mp1);
13500 					freemsg(mp);
13501 					return;
13502 				}
13503 				/*
13504 				 * If the next byte would be the mark
13505 				 * then mark with MARKNEXT else mark
13506 				 * with NOTMARKNEXT.
13507 				 */
13508 				if (gap == 0 && urp == 0)
13509 					mp1->b_flag |= MSGMARKNEXT;
13510 				else
13511 					mp1->b_flag |= MSGNOTMARKNEXT;
13512 				freemsg(tcp->tcp_urp_mark_mp);
13513 				tcp->tcp_urp_mark_mp = mp1;
13514 				flags |= TH_SEND_URP_MARK;
13515 				tcp->tcp_urp_last_valid = B_TRUE;
13516 				tcp->tcp_urp_last = urp + seg_seq;
13517 			}
13518 			/*
13519 			 * If this is a zero window probe, continue to
13520 			 * process the ACK part.  But we need to set seg_len
13521 			 * to 0 to avoid data processing.  Otherwise just
13522 			 * drop the segment and send back an ACK.
13523 			 */
13524 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
13525 				flags &= ~(TH_SYN | TH_URG);
13526 				seg_len = 0;
13527 				goto process_ack;
13528 			} else {
13529 				freemsg(mp);
13530 				goto ack_check;
13531 			}
13532 		}
13533 		/* Pitch out of window stuff off the end. */
13534 		rgap = seg_len;
13535 		mp2 = mp;
13536 		do {
13537 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
13538 			    (uintptr_t)INT_MAX);
13539 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
13540 			if (rgap < 0) {
13541 				mp2->b_wptr += rgap;
13542 				if ((mp1 = mp2->b_cont) != NULL) {
13543 					mp2->b_cont = NULL;
13544 					freemsg(mp1);
13545 				}
13546 				break;
13547 			}
13548 		} while ((mp2 = mp2->b_cont) != NULL);
13549 	}
13550 ok:;
13551 	/*
13552 	 * TCP should check ECN info for segments inside the window only.
13553 	 * Therefore the check should be done here.
13554 	 */
13555 	if (tcp->tcp_ecn_ok) {
13556 		if (flags & TH_CWR) {
13557 			tcp->tcp_ecn_echo_on = B_FALSE;
13558 		}
13559 		/*
13560 		 * Note that both ECN_CE and CWR can be set in the
13561 		 * same segment.  In this case, we once again turn
13562 		 * on ECN_ECHO.
13563 		 */
13564 		if (tcp->tcp_ipversion == IPV4_VERSION) {
13565 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
13566 
13567 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
13568 				tcp->tcp_ecn_echo_on = B_TRUE;
13569 			}
13570 		} else {
13571 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
13572 
13573 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
13574 			    htonl(IPH_ECN_CE << 20)) {
13575 				tcp->tcp_ecn_echo_on = B_TRUE;
13576 			}
13577 		}
13578 	}
13579 
13580 	/*
13581 	 * Check whether we can update tcp_ts_recent.  This test is
13582 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
13583 	 * Extensions for High Performance: An Update", Internet Draft.
13584 	 */
13585 	if (tcp->tcp_snd_ts_ok &&
13586 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
13587 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
13588 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
13589 		tcp->tcp_last_rcv_lbolt = lbolt64;
13590 	}
13591 
13592 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
13593 		/*
13594 		 * FIN in an out of order segment.  We record this in
13595 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
13596 		 * Clear the FIN so that any check on FIN flag will fail.
13597 		 * Remember that FIN also counts in the sequence number
13598 		 * space.  So we need to ack out of order FIN only segments.
13599 		 */
13600 		if (flags & TH_FIN) {
13601 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
13602 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
13603 			flags &= ~TH_FIN;
13604 			flags |= TH_ACK_NEEDED;
13605 		}
13606 		if (seg_len > 0) {
13607 			/* Fill in the SACK blk list. */
13608 			if (tcp->tcp_snd_sack_ok) {
13609 				ASSERT(tcp->tcp_sack_info != NULL);
13610 				tcp_sack_insert(tcp->tcp_sack_list,
13611 				    seg_seq, seg_seq + seg_len,
13612 				    &(tcp->tcp_num_sack_blk));
13613 			}
13614 
13615 			/*
13616 			 * Attempt reassembly and see if we have something
13617 			 * ready to go.
13618 			 */
13619 			mp = tcp_reass(tcp, mp, seg_seq);
13620 			/* Always ack out of order packets */
13621 			flags |= TH_ACK_NEEDED | TH_PUSH;
13622 			if (mp) {
13623 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13624 				    (uintptr_t)INT_MAX);
13625 				seg_len = mp->b_cont ? msgdsize(mp) :
13626 					(int)(mp->b_wptr - mp->b_rptr);
13627 				seg_seq = tcp->tcp_rnxt;
13628 				/*
13629 				 * A gap is filled and the seq num and len
13630 				 * of the gap match that of a previously
13631 				 * received FIN, put the FIN flag back in.
13632 				 */
13633 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13634 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13635 					flags |= TH_FIN;
13636 					tcp->tcp_valid_bits &=
13637 					    ~TCP_OFO_FIN_VALID;
13638 				}
13639 			} else {
13640 				/*
13641 				 * Keep going even with NULL mp.
13642 				 * There may be a useful ACK or something else
13643 				 * we don't want to miss.
13644 				 *
13645 				 * But TCP should not perform fast retransmit
13646 				 * because of the ack number.  TCP uses
13647 				 * seg_len == 0 to determine if it is a pure
13648 				 * ACK.  And this is not a pure ACK.
13649 				 */
13650 				seg_len = 0;
13651 				ofo_seg = B_TRUE;
13652 			}
13653 		}
13654 	} else if (seg_len > 0) {
13655 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
13656 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
13657 		/*
13658 		 * If an out of order FIN was received before, and the seq
13659 		 * num and len of the new segment match that of the FIN,
13660 		 * put the FIN flag back in.
13661 		 */
13662 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13663 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13664 			flags |= TH_FIN;
13665 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
13666 		}
13667 	}
13668 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
13669 	if (flags & TH_RST) {
13670 		freemsg(mp);
13671 		switch (tcp->tcp_state) {
13672 		case TCPS_SYN_RCVD:
13673 			(void) tcp_clean_death(tcp, ECONNREFUSED, 14);
13674 			break;
13675 		case TCPS_ESTABLISHED:
13676 		case TCPS_FIN_WAIT_1:
13677 		case TCPS_FIN_WAIT_2:
13678 		case TCPS_CLOSE_WAIT:
13679 			(void) tcp_clean_death(tcp, ECONNRESET, 15);
13680 			break;
13681 		case TCPS_CLOSING:
13682 		case TCPS_LAST_ACK:
13683 			(void) tcp_clean_death(tcp, 0, 16);
13684 			break;
13685 		default:
13686 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13687 			(void) tcp_clean_death(tcp, ENXIO, 17);
13688 			break;
13689 		}
13690 		return;
13691 	}
13692 	if (flags & TH_SYN) {
13693 		/*
13694 		 * See RFC 793, Page 71
13695 		 *
13696 		 * The seq number must be in the window as it should
13697 		 * be "fixed" above.  If it is outside window, it should
13698 		 * be already rejected.  Note that we allow seg_seq to be
13699 		 * rnxt + rwnd because we want to accept 0 window probe.
13700 		 */
13701 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
13702 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
13703 		freemsg(mp);
13704 		/*
13705 		 * If the ACK flag is not set, just use our snxt as the
13706 		 * seq number of the RST segment.
13707 		 */
13708 		if (!(flags & TH_ACK)) {
13709 			seg_ack = tcp->tcp_snxt;
13710 		}
13711 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
13712 		    TH_RST|TH_ACK);
13713 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13714 		(void) tcp_clean_death(tcp, ECONNRESET, 18);
13715 		return;
13716 	}
13717 	/*
13718 	 * urp could be -1 when the urp field in the packet is 0
13719 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
13720 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
13721 	 */
13722 	if (flags & TH_URG && urp >= 0) {
13723 		if (!tcp->tcp_urp_last_valid ||
13724 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
13725 			/*
13726 			 * If we haven't generated the signal yet for this
13727 			 * urgent pointer value, do it now.  Also, send up a
13728 			 * zero-length M_DATA indicating whether or not this is
13729 			 * the mark. The latter is not needed when a
13730 			 * T_EXDATA_IND is sent up. However, if there are
13731 			 * allocation failures this code relies on the sender
13732 			 * retransmitting and the socket code for determining
13733 			 * the mark should not block waiting for the peer to
13734 			 * transmit. Thus, for simplicity we always send up the
13735 			 * mark indication.
13736 			 */
13737 			mp1 = allocb(0, BPRI_MED);
13738 			if (mp1 == NULL) {
13739 				freemsg(mp);
13740 				return;
13741 			}
13742 			if (!TCP_IS_DETACHED(tcp) &&
13743 			    !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) {
13744 				/* Try again on the rexmit. */
13745 				freemsg(mp1);
13746 				freemsg(mp);
13747 				return;
13748 			}
13749 			/*
13750 			 * Mark with NOTMARKNEXT for now.
13751 			 * The code below will change this to MARKNEXT
13752 			 * if we are at the mark.
13753 			 *
13754 			 * If there are allocation failures (e.g. in dupmsg
13755 			 * below) the next time tcp_rput_data sees the urgent
13756 			 * segment it will send up the MSG*MARKNEXT message.
13757 			 */
13758 			mp1->b_flag |= MSGNOTMARKNEXT;
13759 			freemsg(tcp->tcp_urp_mark_mp);
13760 			tcp->tcp_urp_mark_mp = mp1;
13761 			flags |= TH_SEND_URP_MARK;
13762 #ifdef DEBUG
13763 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13764 			    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
13765 			    "last %x, %s",
13766 			    seg_seq, urp, tcp->tcp_urp_last,
13767 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13768 #endif /* DEBUG */
13769 			tcp->tcp_urp_last_valid = B_TRUE;
13770 			tcp->tcp_urp_last = urp + seg_seq;
13771 		} else if (tcp->tcp_urp_mark_mp != NULL) {
13772 			/*
13773 			 * An allocation failure prevented the previous
13774 			 * tcp_rput_data from sending up the allocated
13775 			 * MSG*MARKNEXT message - send it up this time
13776 			 * around.
13777 			 */
13778 			flags |= TH_SEND_URP_MARK;
13779 		}
13780 
13781 		/*
13782 		 * If the urgent byte is in this segment, make sure that it is
13783 		 * all by itself.  This makes it much easier to deal with the
13784 		 * possibility of an allocation failure on the T_exdata_ind.
13785 		 * Note that seg_len is the number of bytes in the segment, and
13786 		 * urp is the offset into the segment of the urgent byte.
13787 		 * urp < seg_len means that the urgent byte is in this segment.
13788 		 */
13789 		if (urp < seg_len) {
13790 			if (seg_len != 1) {
13791 				uint32_t  tmp_rnxt;
13792 				/*
13793 				 * Break it up and feed it back in.
13794 				 * Re-attach the IP header.
13795 				 */
13796 				mp->b_rptr = iphdr;
13797 				if (urp > 0) {
13798 					/*
13799 					 * There is stuff before the urgent
13800 					 * byte.
13801 					 */
13802 					mp1 = dupmsg(mp);
13803 					if (!mp1) {
13804 						/*
13805 						 * Trim from urgent byte on.
13806 						 * The rest will come back.
13807 						 */
13808 						(void) adjmsg(mp,
13809 						    urp - seg_len);
13810 						tcp_rput_data(connp,
13811 						    mp, NULL);
13812 						return;
13813 					}
13814 					(void) adjmsg(mp1, urp - seg_len);
13815 					/* Feed this piece back in. */
13816 					tmp_rnxt = tcp->tcp_rnxt;
13817 					tcp_rput_data(connp, mp1, NULL);
13818 					/*
13819 					 * If the data passed back in was not
13820 					 * processed (ie: bad ACK) sending
13821 					 * the remainder back in will cause a
13822 					 * loop. In this case, drop the
13823 					 * packet and let the sender try
13824 					 * sending a good packet.
13825 					 */
13826 					if (tmp_rnxt == tcp->tcp_rnxt) {
13827 						freemsg(mp);
13828 						return;
13829 					}
13830 				}
13831 				if (urp != seg_len - 1) {
13832 					uint32_t  tmp_rnxt;
13833 					/*
13834 					 * There is stuff after the urgent
13835 					 * byte.
13836 					 */
13837 					mp1 = dupmsg(mp);
13838 					if (!mp1) {
13839 						/*
13840 						 * Trim everything beyond the
13841 						 * urgent byte.  The rest will
13842 						 * come back.
13843 						 */
13844 						(void) adjmsg(mp,
13845 						    urp + 1 - seg_len);
13846 						tcp_rput_data(connp,
13847 						    mp, NULL);
13848 						return;
13849 					}
13850 					(void) adjmsg(mp1, urp + 1 - seg_len);
13851 					tmp_rnxt = tcp->tcp_rnxt;
13852 					tcp_rput_data(connp, mp1, NULL);
13853 					/*
13854 					 * If the data passed back in was not
13855 					 * processed (ie: bad ACK) sending
13856 					 * the remainder back in will cause a
13857 					 * loop. In this case, drop the
13858 					 * packet and let the sender try
13859 					 * sending a good packet.
13860 					 */
13861 					if (tmp_rnxt == tcp->tcp_rnxt) {
13862 						freemsg(mp);
13863 						return;
13864 					}
13865 				}
13866 				tcp_rput_data(connp, mp, NULL);
13867 				return;
13868 			}
13869 			/*
13870 			 * This segment contains only the urgent byte.  We
13871 			 * have to allocate the T_exdata_ind, if we can.
13872 			 */
13873 			if (!tcp->tcp_urp_mp) {
13874 				struct T_exdata_ind *tei;
13875 				mp1 = allocb(sizeof (struct T_exdata_ind),
13876 				    BPRI_MED);
13877 				if (!mp1) {
13878 					/*
13879 					 * Sigh... It'll be back.
13880 					 * Generate any MSG*MARK message now.
13881 					 */
13882 					freemsg(mp);
13883 					seg_len = 0;
13884 					if (flags & TH_SEND_URP_MARK) {
13885 
13886 
13887 						ASSERT(tcp->tcp_urp_mark_mp);
13888 						tcp->tcp_urp_mark_mp->b_flag &=
13889 							~MSGNOTMARKNEXT;
13890 						tcp->tcp_urp_mark_mp->b_flag |=
13891 							MSGMARKNEXT;
13892 					}
13893 					goto ack_check;
13894 				}
13895 				mp1->b_datap->db_type = M_PROTO;
13896 				tei = (struct T_exdata_ind *)mp1->b_rptr;
13897 				tei->PRIM_type = T_EXDATA_IND;
13898 				tei->MORE_flag = 0;
13899 				mp1->b_wptr = (uchar_t *)&tei[1];
13900 				tcp->tcp_urp_mp = mp1;
13901 #ifdef DEBUG
13902 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13903 				    "tcp_rput: allocated exdata_ind %s",
13904 				    tcp_display(tcp, NULL,
13905 				    DISP_PORT_ONLY));
13906 #endif /* DEBUG */
13907 				/*
13908 				 * There is no need to send a separate MSG*MARK
13909 				 * message since the T_EXDATA_IND will be sent
13910 				 * now.
13911 				 */
13912 				flags &= ~TH_SEND_URP_MARK;
13913 				freemsg(tcp->tcp_urp_mark_mp);
13914 				tcp->tcp_urp_mark_mp = NULL;
13915 			}
13916 			/*
13917 			 * Now we are all set.  On the next putnext upstream,
13918 			 * tcp_urp_mp will be non-NULL and will get prepended
13919 			 * to what has to be this piece containing the urgent
13920 			 * byte.  If for any reason we abort this segment below,
13921 			 * if it comes back, we will have this ready, or it
13922 			 * will get blown off in close.
13923 			 */
13924 		} else if (urp == seg_len) {
13925 			/*
13926 			 * The urgent byte is the next byte after this sequence
13927 			 * number. If there is data it is marked with
13928 			 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded
13929 			 * since it is not needed. Otherwise, if the code
13930 			 * above just allocated a zero-length tcp_urp_mark_mp
13931 			 * message, that message is tagged with MSGMARKNEXT.
13932 			 * Sending up these MSGMARKNEXT messages makes
13933 			 * SIOCATMARK work correctly even though
13934 			 * the T_EXDATA_IND will not be sent up until the
13935 			 * urgent byte arrives.
13936 			 */
13937 			if (seg_len != 0) {
13938 				flags |= TH_MARKNEXT_NEEDED;
13939 				freemsg(tcp->tcp_urp_mark_mp);
13940 				tcp->tcp_urp_mark_mp = NULL;
13941 				flags &= ~TH_SEND_URP_MARK;
13942 			} else if (tcp->tcp_urp_mark_mp != NULL) {
13943 				flags |= TH_SEND_URP_MARK;
13944 				tcp->tcp_urp_mark_mp->b_flag &=
13945 					~MSGNOTMARKNEXT;
13946 				tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT;
13947 			}
13948 #ifdef DEBUG
13949 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13950 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
13951 			    seg_len, flags,
13952 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13953 #endif /* DEBUG */
13954 		} else {
13955 			/* Data left until we hit mark */
13956 #ifdef DEBUG
13957 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13958 			    "tcp_rput: URP %d bytes left, %s",
13959 			    urp - seg_len, tcp_display(tcp, NULL,
13960 			    DISP_PORT_ONLY));
13961 #endif /* DEBUG */
13962 		}
13963 	}
13964 
13965 process_ack:
13966 	if (!(flags & TH_ACK)) {
13967 		freemsg(mp);
13968 		goto xmit_check;
13969 	}
13970 	}
13971 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
13972 
13973 	if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0)
13974 		tcp->tcp_ip_forward_progress = B_TRUE;
13975 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
13976 		if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) &&
13977 		    ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) {
13978 			/* 3-way handshake complete - pass up the T_CONN_IND */
13979 			tcp_t	*listener = tcp->tcp_listener;
13980 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
13981 
13982 			tcp->tcp_tconnind_started = B_TRUE;
13983 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
13984 			/*
13985 			 * We are here means eager is fine but it can
13986 			 * get a TH_RST at any point between now and till
13987 			 * accept completes and disappear. We need to
13988 			 * ensure that reference to eager is valid after
13989 			 * we get out of eager's perimeter. So we do
13990 			 * an extra refhold.
13991 			 */
13992 			CONN_INC_REF(connp);
13993 
13994 			/*
13995 			 * The listener also exists because of the refhold
13996 			 * done in tcp_conn_request. Its possible that it
13997 			 * might have closed. We will check that once we
13998 			 * get inside listeners context.
13999 			 */
14000 			CONN_INC_REF(listener->tcp_connp);
14001 			if (listener->tcp_connp->conn_sqp ==
14002 			    connp->conn_sqp) {
14003 				tcp_send_conn_ind(listener->tcp_connp, mp,
14004 				    listener->tcp_connp->conn_sqp);
14005 				CONN_DEC_REF(listener->tcp_connp);
14006 			} else if (!tcp->tcp_loopback) {
14007 				squeue_fill(listener->tcp_connp->conn_sqp, mp,
14008 				    tcp_send_conn_ind,
14009 				    listener->tcp_connp, SQTAG_TCP_CONN_IND);
14010 			} else {
14011 				squeue_enter(listener->tcp_connp->conn_sqp, mp,
14012 				    tcp_send_conn_ind, listener->tcp_connp,
14013 				    SQTAG_TCP_CONN_IND);
14014 			}
14015 		}
14016 
14017 		if (tcp->tcp_active_open) {
14018 			/*
14019 			 * We are seeing the final ack in the three way
14020 			 * hand shake of a active open'ed connection
14021 			 * so we must send up a T_CONN_CON
14022 			 */
14023 			if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) {
14024 				freemsg(mp);
14025 				return;
14026 			}
14027 			/*
14028 			 * Don't fuse the loopback endpoints for
14029 			 * simultaneous active opens.
14030 			 */
14031 			if (tcp->tcp_loopback) {
14032 				TCP_STAT(tcps, tcp_fusion_unfusable);
14033 				tcp->tcp_unfusable = B_TRUE;
14034 			}
14035 		}
14036 
14037 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
14038 		bytes_acked--;
14039 		/* SYN was acked - making progress */
14040 		if (tcp->tcp_ipversion == IPV6_VERSION)
14041 			tcp->tcp_ip_forward_progress = B_TRUE;
14042 
14043 		/*
14044 		 * If SYN was retransmitted, need to reset all
14045 		 * retransmission info as this segment will be
14046 		 * treated as a dup ACK.
14047 		 */
14048 		if (tcp->tcp_rexmit) {
14049 			tcp->tcp_rexmit = B_FALSE;
14050 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14051 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
14052 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14053 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14054 			tcp->tcp_ms_we_have_waited = 0;
14055 			tcp->tcp_cwnd = mss;
14056 		}
14057 
14058 		/*
14059 		 * We set the send window to zero here.
14060 		 * This is needed if there is data to be
14061 		 * processed already on the queue.
14062 		 * Later (at swnd_update label), the
14063 		 * "new_swnd > tcp_swnd" condition is satisfied
14064 		 * the XMIT_NEEDED flag is set in the current
14065 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
14066 		 * called if there is already data on queue in
14067 		 * this state.
14068 		 */
14069 		tcp->tcp_swnd = 0;
14070 
14071 		if (new_swnd > tcp->tcp_max_swnd)
14072 			tcp->tcp_max_swnd = new_swnd;
14073 		tcp->tcp_swl1 = seg_seq;
14074 		tcp->tcp_swl2 = seg_ack;
14075 		tcp->tcp_state = TCPS_ESTABLISHED;
14076 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
14077 
14078 		/* Fuse when both sides are in ESTABLISHED state */
14079 		if (tcp->tcp_loopback && do_tcp_fusion)
14080 			tcp_fuse(tcp, iphdr, tcph);
14081 
14082 	}
14083 	/* This code follows 4.4BSD-Lite2 mostly. */
14084 	if (bytes_acked < 0)
14085 		goto est;
14086 
14087 	/*
14088 	 * If TCP is ECN capable and the congestion experience bit is
14089 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
14090 	 * done once per window (or more loosely, per RTT).
14091 	 */
14092 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
14093 		tcp->tcp_cwr = B_FALSE;
14094 	if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
14095 		if (!tcp->tcp_cwr) {
14096 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss;
14097 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
14098 			tcp->tcp_cwnd = npkt * mss;
14099 			/*
14100 			 * If the cwnd is 0, use the timer to clock out
14101 			 * new segments.  This is required by the ECN spec.
14102 			 */
14103 			if (npkt == 0) {
14104 				TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14105 				/*
14106 				 * This makes sure that when the ACK comes
14107 				 * back, we will increase tcp_cwnd by 1 MSS.
14108 				 */
14109 				tcp->tcp_cwnd_cnt = 0;
14110 			}
14111 			tcp->tcp_cwr = B_TRUE;
14112 			/*
14113 			 * This marks the end of the current window of in
14114 			 * flight data.  That is why we don't use
14115 			 * tcp_suna + tcp_swnd.  Only data in flight can
14116 			 * provide ECN info.
14117 			 */
14118 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14119 			tcp->tcp_ecn_cwr_sent = B_FALSE;
14120 		}
14121 	}
14122 
14123 	mp1 = tcp->tcp_xmit_head;
14124 	if (bytes_acked == 0) {
14125 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
14126 			int dupack_cnt;
14127 
14128 			BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
14129 			/*
14130 			 * Fast retransmit.  When we have seen exactly three
14131 			 * identical ACKs while we have unacked data
14132 			 * outstanding we take it as a hint that our peer
14133 			 * dropped something.
14134 			 *
14135 			 * If TCP is retransmitting, don't do fast retransmit.
14136 			 */
14137 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
14138 			    ! tcp->tcp_rexmit) {
14139 				/* Do Limited Transmit */
14140 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
14141 				    tcps->tcps_dupack_fast_retransmit) {
14142 					/*
14143 					 * RFC 3042
14144 					 *
14145 					 * What we need to do is temporarily
14146 					 * increase tcp_cwnd so that new
14147 					 * data can be sent if it is allowed
14148 					 * by the receive window (tcp_rwnd).
14149 					 * tcp_wput_data() will take care of
14150 					 * the rest.
14151 					 *
14152 					 * If the connection is SACK capable,
14153 					 * only do limited xmit when there
14154 					 * is SACK info.
14155 					 *
14156 					 * Note how tcp_cwnd is incremented.
14157 					 * The first dup ACK will increase
14158 					 * it by 1 MSS.  The second dup ACK
14159 					 * will increase it by 2 MSS.  This
14160 					 * means that only 1 new segment will
14161 					 * be sent for each dup ACK.
14162 					 */
14163 					if (tcp->tcp_unsent > 0 &&
14164 					    (!tcp->tcp_snd_sack_ok ||
14165 					    (tcp->tcp_snd_sack_ok &&
14166 					    tcp->tcp_notsack_list != NULL))) {
14167 						tcp->tcp_cwnd += mss <<
14168 						    (tcp->tcp_dupack_cnt - 1);
14169 						flags |= TH_LIMIT_XMIT;
14170 					}
14171 				} else if (dupack_cnt ==
14172 				    tcps->tcps_dupack_fast_retransmit) {
14173 
14174 				/*
14175 				 * If we have reduced tcp_ssthresh
14176 				 * because of ECN, do not reduce it again
14177 				 * unless it is already one window of data
14178 				 * away.  After one window of data, tcp_cwr
14179 				 * should then be cleared.  Note that
14180 				 * for non ECN capable connection, tcp_cwr
14181 				 * should always be false.
14182 				 *
14183 				 * Adjust cwnd since the duplicate
14184 				 * ack indicates that a packet was
14185 				 * dropped (due to congestion.)
14186 				 */
14187 				if (!tcp->tcp_cwr) {
14188 					npkt = ((tcp->tcp_snxt -
14189 					    tcp->tcp_suna) >> 1) / mss;
14190 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
14191 					    mss;
14192 					tcp->tcp_cwnd = (npkt +
14193 					    tcp->tcp_dupack_cnt) * mss;
14194 				}
14195 				if (tcp->tcp_ecn_ok) {
14196 					tcp->tcp_cwr = B_TRUE;
14197 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14198 					tcp->tcp_ecn_cwr_sent = B_FALSE;
14199 				}
14200 
14201 				/*
14202 				 * We do Hoe's algorithm.  Refer to her
14203 				 * paper "Improving the Start-up Behavior
14204 				 * of a Congestion Control Scheme for TCP,"
14205 				 * appeared in SIGCOMM'96.
14206 				 *
14207 				 * Save highest seq no we have sent so far.
14208 				 * Be careful about the invisible FIN byte.
14209 				 */
14210 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
14211 				    (tcp->tcp_unsent == 0)) {
14212 					tcp->tcp_rexmit_max = tcp->tcp_fss;
14213 				} else {
14214 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
14215 				}
14216 
14217 				/*
14218 				 * Do not allow bursty traffic during.
14219 				 * fast recovery.  Refer to Fall and Floyd's
14220 				 * paper "Simulation-based Comparisons of
14221 				 * Tahoe, Reno and SACK TCP" (in CCR?)
14222 				 * This is a best current practise.
14223 				 */
14224 				tcp->tcp_snd_burst = TCP_CWND_SS;
14225 
14226 				/*
14227 				 * For SACK:
14228 				 * Calculate tcp_pipe, which is the
14229 				 * estimated number of bytes in
14230 				 * network.
14231 				 *
14232 				 * tcp_fack is the highest sack'ed seq num
14233 				 * TCP has received.
14234 				 *
14235 				 * tcp_pipe is explained in the above quoted
14236 				 * Fall and Floyd's paper.  tcp_fack is
14237 				 * explained in Mathis and Mahdavi's
14238 				 * "Forward Acknowledgment: Refining TCP
14239 				 * Congestion Control" in SIGCOMM '96.
14240 				 */
14241 				if (tcp->tcp_snd_sack_ok) {
14242 					ASSERT(tcp->tcp_sack_info != NULL);
14243 					if (tcp->tcp_notsack_list != NULL) {
14244 						tcp->tcp_pipe = tcp->tcp_snxt -
14245 						    tcp->tcp_fack;
14246 						tcp->tcp_sack_snxt = seg_ack;
14247 						flags |= TH_NEED_SACK_REXMIT;
14248 					} else {
14249 						/*
14250 						 * Always initialize tcp_pipe
14251 						 * even though we don't have
14252 						 * any SACK info.  If later
14253 						 * we get SACK info and
14254 						 * tcp_pipe is not initialized,
14255 						 * funny things will happen.
14256 						 */
14257 						tcp->tcp_pipe =
14258 						    tcp->tcp_cwnd_ssthresh;
14259 					}
14260 				} else {
14261 					flags |= TH_REXMIT_NEEDED;
14262 				} /* tcp_snd_sack_ok */
14263 
14264 				} else {
14265 					/*
14266 					 * Here we perform congestion
14267 					 * avoidance, but NOT slow start.
14268 					 * This is known as the Fast
14269 					 * Recovery Algorithm.
14270 					 */
14271 					if (tcp->tcp_snd_sack_ok &&
14272 					    tcp->tcp_notsack_list != NULL) {
14273 						flags |= TH_NEED_SACK_REXMIT;
14274 						tcp->tcp_pipe -= mss;
14275 						if (tcp->tcp_pipe < 0)
14276 							tcp->tcp_pipe = 0;
14277 					} else {
14278 					/*
14279 					 * We know that one more packet has
14280 					 * left the pipe thus we can update
14281 					 * cwnd.
14282 					 */
14283 					cwnd = tcp->tcp_cwnd + mss;
14284 					if (cwnd > tcp->tcp_cwnd_max)
14285 						cwnd = tcp->tcp_cwnd_max;
14286 					tcp->tcp_cwnd = cwnd;
14287 					if (tcp->tcp_unsent > 0)
14288 						flags |= TH_XMIT_NEEDED;
14289 					}
14290 				}
14291 			}
14292 		} else if (tcp->tcp_zero_win_probe) {
14293 			/*
14294 			 * If the window has opened, need to arrange
14295 			 * to send additional data.
14296 			 */
14297 			if (new_swnd != 0) {
14298 				/* tcp_suna != tcp_snxt */
14299 				/* Packet contains a window update */
14300 				BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate);
14301 				tcp->tcp_zero_win_probe = 0;
14302 				tcp->tcp_timer_backoff = 0;
14303 				tcp->tcp_ms_we_have_waited = 0;
14304 
14305 				/*
14306 				 * Transmit starting with tcp_suna since
14307 				 * the one byte probe is not ack'ed.
14308 				 * If TCP has sent more than one identical
14309 				 * probe, tcp_rexmit will be set.  That means
14310 				 * tcp_ss_rexmit() will send out the one
14311 				 * byte along with new data.  Otherwise,
14312 				 * fake the retransmission.
14313 				 */
14314 				flags |= TH_XMIT_NEEDED;
14315 				if (!tcp->tcp_rexmit) {
14316 					tcp->tcp_rexmit = B_TRUE;
14317 					tcp->tcp_dupack_cnt = 0;
14318 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
14319 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
14320 				}
14321 			}
14322 		}
14323 		goto swnd_update;
14324 	}
14325 
14326 	/*
14327 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
14328 	 * If the ACK value acks something that we have not yet sent, it might
14329 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
14330 	 * other side.
14331 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
14332 	 * state is handled above, so we can always just drop the segment and
14333 	 * send an ACK here.
14334 	 *
14335 	 * Should we send ACKs in response to ACK only segments?
14336 	 */
14337 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
14338 		BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent);
14339 		/* drop the received segment */
14340 		freemsg(mp);
14341 
14342 		/*
14343 		 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
14344 		 * greater than 0, check if the number of such
14345 		 * bogus ACks is greater than that count.  If yes,
14346 		 * don't send back any ACK.  This prevents TCP from
14347 		 * getting into an ACK storm if somehow an attacker
14348 		 * successfully spoofs an acceptable segment to our
14349 		 * peer.
14350 		 */
14351 		if (tcp_drop_ack_unsent_cnt > 0 &&
14352 		    ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) {
14353 			TCP_STAT(tcps, tcp_in_ack_unsent_drop);
14354 			return;
14355 		}
14356 		mp = tcp_ack_mp(tcp);
14357 		if (mp != NULL) {
14358 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
14359 			BUMP_LOCAL(tcp->tcp_obsegs);
14360 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
14361 			tcp_send_data(tcp, tcp->tcp_wq, mp);
14362 		}
14363 		return;
14364 	}
14365 
14366 	/*
14367 	 * TCP gets a new ACK, update the notsack'ed list to delete those
14368 	 * blocks that are covered by this ACK.
14369 	 */
14370 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
14371 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
14372 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
14373 	}
14374 
14375 	/*
14376 	 * If we got an ACK after fast retransmit, check to see
14377 	 * if it is a partial ACK.  If it is not and the congestion
14378 	 * window was inflated to account for the other side's
14379 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
14380 	 */
14381 	if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) {
14382 		ASSERT(tcp->tcp_rexmit == B_FALSE);
14383 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
14384 			tcp->tcp_dupack_cnt = 0;
14385 			/*
14386 			 * Restore the orig tcp_cwnd_ssthresh after
14387 			 * fast retransmit phase.
14388 			 */
14389 			if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
14390 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
14391 			}
14392 			tcp->tcp_rexmit_max = seg_ack;
14393 			tcp->tcp_cwnd_cnt = 0;
14394 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14395 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14396 
14397 			/*
14398 			 * Remove all notsack info to avoid confusion with
14399 			 * the next fast retrasnmit/recovery phase.
14400 			 */
14401 			if (tcp->tcp_snd_sack_ok &&
14402 			    tcp->tcp_notsack_list != NULL) {
14403 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
14404 			}
14405 		} else {
14406 			if (tcp->tcp_snd_sack_ok &&
14407 			    tcp->tcp_notsack_list != NULL) {
14408 				flags |= TH_NEED_SACK_REXMIT;
14409 				tcp->tcp_pipe -= mss;
14410 				if (tcp->tcp_pipe < 0)
14411 					tcp->tcp_pipe = 0;
14412 			} else {
14413 				/*
14414 				 * Hoe's algorithm:
14415 				 *
14416 				 * Retransmit the unack'ed segment and
14417 				 * restart fast recovery.  Note that we
14418 				 * need to scale back tcp_cwnd to the
14419 				 * original value when we started fast
14420 				 * recovery.  This is to prevent overly
14421 				 * aggressive behaviour in sending new
14422 				 * segments.
14423 				 */
14424 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
14425 				    tcps->tcps_dupack_fast_retransmit * mss;
14426 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
14427 				flags |= TH_REXMIT_NEEDED;
14428 			}
14429 		}
14430 	} else {
14431 		tcp->tcp_dupack_cnt = 0;
14432 		if (tcp->tcp_rexmit) {
14433 			/*
14434 			 * TCP is retranmitting.  If the ACK ack's all
14435 			 * outstanding data, update tcp_rexmit_max and
14436 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
14437 			 * to the correct value.
14438 			 *
14439 			 * Note that SEQ_LEQ() is used.  This is to avoid
14440 			 * unnecessary fast retransmit caused by dup ACKs
14441 			 * received when TCP does slow start retransmission
14442 			 * after a time out.  During this phase, TCP may
14443 			 * send out segments which are already received.
14444 			 * This causes dup ACKs to be sent back.
14445 			 */
14446 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
14447 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
14448 					tcp->tcp_rexmit_nxt = seg_ack;
14449 				}
14450 				if (seg_ack != tcp->tcp_rexmit_max) {
14451 					flags |= TH_XMIT_NEEDED;
14452 				}
14453 			} else {
14454 				tcp->tcp_rexmit = B_FALSE;
14455 				tcp->tcp_xmit_zc_clean = B_FALSE;
14456 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14457 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
14458 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14459 			}
14460 			tcp->tcp_ms_we_have_waited = 0;
14461 		}
14462 	}
14463 
14464 	BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs);
14465 	UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked);
14466 	tcp->tcp_suna = seg_ack;
14467 	if (tcp->tcp_zero_win_probe != 0) {
14468 		tcp->tcp_zero_win_probe = 0;
14469 		tcp->tcp_timer_backoff = 0;
14470 	}
14471 
14472 	/*
14473 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
14474 	 * Note that it cannot be the SYN being ack'ed.  The code flow
14475 	 * will not reach here.
14476 	 */
14477 	if (mp1 == NULL) {
14478 		goto fin_acked;
14479 	}
14480 
14481 	/*
14482 	 * Update the congestion window.
14483 	 *
14484 	 * If TCP is not ECN capable or TCP is ECN capable but the
14485 	 * congestion experience bit is not set, increase the tcp_cwnd as
14486 	 * usual.
14487 	 */
14488 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
14489 		cwnd = tcp->tcp_cwnd;
14490 		add = mss;
14491 
14492 		if (cwnd >= tcp->tcp_cwnd_ssthresh) {
14493 			/*
14494 			 * This is to prevent an increase of less than 1 MSS of
14495 			 * tcp_cwnd.  With partial increase, tcp_wput_data()
14496 			 * may send out tinygrams in order to preserve mblk
14497 			 * boundaries.
14498 			 *
14499 			 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
14500 			 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
14501 			 * increased by 1 MSS for every RTTs.
14502 			 */
14503 			if (tcp->tcp_cwnd_cnt <= 0) {
14504 				tcp->tcp_cwnd_cnt = cwnd + add;
14505 			} else {
14506 				tcp->tcp_cwnd_cnt -= add;
14507 				add = 0;
14508 			}
14509 		}
14510 		tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
14511 	}
14512 
14513 	/* See if the latest urgent data has been acknowledged */
14514 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
14515 	    SEQ_GT(seg_ack, tcp->tcp_urg))
14516 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
14517 
14518 	/* Can we update the RTT estimates? */
14519 	if (tcp->tcp_snd_ts_ok) {
14520 		/* Ignore zero timestamp echo-reply. */
14521 		if (tcpopt.tcp_opt_ts_ecr != 0) {
14522 			tcp_set_rto(tcp, (int32_t)lbolt -
14523 			    (int32_t)tcpopt.tcp_opt_ts_ecr);
14524 		}
14525 
14526 		/* If needed, restart the timer. */
14527 		if (tcp->tcp_set_timer == 1) {
14528 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14529 			tcp->tcp_set_timer = 0;
14530 		}
14531 		/*
14532 		 * Update tcp_csuna in case the other side stops sending
14533 		 * us timestamps.
14534 		 */
14535 		tcp->tcp_csuna = tcp->tcp_snxt;
14536 	} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
14537 		/*
14538 		 * An ACK sequence we haven't seen before, so get the RTT
14539 		 * and update the RTO. But first check if the timestamp is
14540 		 * valid to use.
14541 		 */
14542 		if ((mp1->b_next != NULL) &&
14543 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next)))
14544 			tcp_set_rto(tcp, (int32_t)lbolt -
14545 			    (int32_t)(intptr_t)mp1->b_prev);
14546 		else
14547 			BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14548 
14549 		/* Remeber the last sequence to be ACKed */
14550 		tcp->tcp_csuna = seg_ack;
14551 		if (tcp->tcp_set_timer == 1) {
14552 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14553 			tcp->tcp_set_timer = 0;
14554 		}
14555 	} else {
14556 		BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14557 	}
14558 
14559 	/* Eat acknowledged bytes off the xmit queue. */
14560 	for (;;) {
14561 		mblk_t	*mp2;
14562 		uchar_t	*wptr;
14563 
14564 		wptr = mp1->b_wptr;
14565 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
14566 		bytes_acked -= (int)(wptr - mp1->b_rptr);
14567 		if (bytes_acked < 0) {
14568 			mp1->b_rptr = wptr + bytes_acked;
14569 			/*
14570 			 * Set a new timestamp if all the bytes timed by the
14571 			 * old timestamp have been ack'ed.
14572 			 */
14573 			if (SEQ_GT(seg_ack,
14574 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
14575 				mp1->b_prev = (mblk_t *)(uintptr_t)lbolt;
14576 				mp1->b_next = NULL;
14577 			}
14578 			break;
14579 		}
14580 		mp1->b_next = NULL;
14581 		mp1->b_prev = NULL;
14582 		mp2 = mp1;
14583 		mp1 = mp1->b_cont;
14584 
14585 		/*
14586 		 * This notification is required for some zero-copy
14587 		 * clients to maintain a copy semantic. After the data
14588 		 * is ack'ed, client is safe to modify or reuse the buffer.
14589 		 */
14590 		if (tcp->tcp_snd_zcopy_aware &&
14591 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
14592 			tcp_zcopy_notify(tcp);
14593 		freeb(mp2);
14594 		if (bytes_acked == 0) {
14595 			if (mp1 == NULL) {
14596 				/* Everything is ack'ed, clear the tail. */
14597 				tcp->tcp_xmit_tail = NULL;
14598 				/*
14599 				 * Cancel the timer unless we are still
14600 				 * waiting for an ACK for the FIN packet.
14601 				 */
14602 				if (tcp->tcp_timer_tid != 0 &&
14603 				    tcp->tcp_snxt == tcp->tcp_suna) {
14604 					(void) TCP_TIMER_CANCEL(tcp,
14605 					    tcp->tcp_timer_tid);
14606 					tcp->tcp_timer_tid = 0;
14607 				}
14608 				goto pre_swnd_update;
14609 			}
14610 			if (mp2 != tcp->tcp_xmit_tail)
14611 				break;
14612 			tcp->tcp_xmit_tail = mp1;
14613 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
14614 			    (uintptr_t)INT_MAX);
14615 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
14616 			    mp1->b_rptr);
14617 			break;
14618 		}
14619 		if (mp1 == NULL) {
14620 			/*
14621 			 * More was acked but there is nothing more
14622 			 * outstanding.  This means that the FIN was
14623 			 * just acked or that we're talking to a clown.
14624 			 */
14625 fin_acked:
14626 			ASSERT(tcp->tcp_fin_sent);
14627 			tcp->tcp_xmit_tail = NULL;
14628 			if (tcp->tcp_fin_sent) {
14629 				/* FIN was acked - making progress */
14630 				if (tcp->tcp_ipversion == IPV6_VERSION &&
14631 				    !tcp->tcp_fin_acked)
14632 					tcp->tcp_ip_forward_progress = B_TRUE;
14633 				tcp->tcp_fin_acked = B_TRUE;
14634 				if (tcp->tcp_linger_tid != 0 &&
14635 				    TCP_TIMER_CANCEL(tcp,
14636 					tcp->tcp_linger_tid) >= 0) {
14637 					tcp_stop_lingering(tcp);
14638 				}
14639 			} else {
14640 				/*
14641 				 * We should never get here because
14642 				 * we have already checked that the
14643 				 * number of bytes ack'ed should be
14644 				 * smaller than or equal to what we
14645 				 * have sent so far (it is the
14646 				 * acceptability check of the ACK).
14647 				 * We can only get here if the send
14648 				 * queue is corrupted.
14649 				 *
14650 				 * Terminate the connection and
14651 				 * panic the system.  It is better
14652 				 * for us to panic instead of
14653 				 * continuing to avoid other disaster.
14654 				 */
14655 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
14656 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
14657 				panic("Memory corruption "
14658 				    "detected for connection %s.",
14659 				    tcp_display(tcp, NULL,
14660 					DISP_ADDR_AND_PORT));
14661 				/*NOTREACHED*/
14662 			}
14663 			goto pre_swnd_update;
14664 		}
14665 		ASSERT(mp2 != tcp->tcp_xmit_tail);
14666 	}
14667 	if (tcp->tcp_unsent) {
14668 		flags |= TH_XMIT_NEEDED;
14669 	}
14670 pre_swnd_update:
14671 	tcp->tcp_xmit_head = mp1;
14672 swnd_update:
14673 	/*
14674 	 * The following check is different from most other implementations.
14675 	 * For bi-directional transfer, when segments are dropped, the
14676 	 * "normal" check will not accept a window update in those
14677 	 * retransmitted segemnts.  Failing to do that, TCP may send out
14678 	 * segments which are outside receiver's window.  As TCP accepts
14679 	 * the ack in those retransmitted segments, if the window update in
14680 	 * the same segment is not accepted, TCP will incorrectly calculates
14681 	 * that it can send more segments.  This can create a deadlock
14682 	 * with the receiver if its window becomes zero.
14683 	 */
14684 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
14685 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
14686 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
14687 		/*
14688 		 * The criteria for update is:
14689 		 *
14690 		 * 1. the segment acknowledges some data.  Or
14691 		 * 2. the segment is new, i.e. it has a higher seq num. Or
14692 		 * 3. the segment is not old and the advertised window is
14693 		 * larger than the previous advertised window.
14694 		 */
14695 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
14696 			flags |= TH_XMIT_NEEDED;
14697 		tcp->tcp_swnd = new_swnd;
14698 		if (new_swnd > tcp->tcp_max_swnd)
14699 			tcp->tcp_max_swnd = new_swnd;
14700 		tcp->tcp_swl1 = seg_seq;
14701 		tcp->tcp_swl2 = seg_ack;
14702 	}
14703 est:
14704 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
14705 
14706 		switch (tcp->tcp_state) {
14707 		case TCPS_FIN_WAIT_1:
14708 			if (tcp->tcp_fin_acked) {
14709 				tcp->tcp_state = TCPS_FIN_WAIT_2;
14710 				/*
14711 				 * We implement the non-standard BSD/SunOS
14712 				 * FIN_WAIT_2 flushing algorithm.
14713 				 * If there is no user attached to this
14714 				 * TCP endpoint, then this TCP struct
14715 				 * could hang around forever in FIN_WAIT_2
14716 				 * state if the peer forgets to send us
14717 				 * a FIN.  To prevent this, we wait only
14718 				 * 2*MSL (a convenient time value) for
14719 				 * the FIN to arrive.  If it doesn't show up,
14720 				 * we flush the TCP endpoint.  This algorithm,
14721 				 * though a violation of RFC-793, has worked
14722 				 * for over 10 years in BSD systems.
14723 				 * Note: SunOS 4.x waits 675 seconds before
14724 				 * flushing the FIN_WAIT_2 connection.
14725 				 */
14726 				TCP_TIMER_RESTART(tcp,
14727 				    tcps->tcps_fin_wait_2_flush_interval);
14728 			}
14729 			break;
14730 		case TCPS_FIN_WAIT_2:
14731 			break;	/* Shutdown hook? */
14732 		case TCPS_LAST_ACK:
14733 			freemsg(mp);
14734 			if (tcp->tcp_fin_acked) {
14735 				(void) tcp_clean_death(tcp, 0, 19);
14736 				return;
14737 			}
14738 			goto xmit_check;
14739 		case TCPS_CLOSING:
14740 			if (tcp->tcp_fin_acked) {
14741 				tcp->tcp_state = TCPS_TIME_WAIT;
14742 				/*
14743 				 * Unconditionally clear the exclusive binding
14744 				 * bit so this TIME-WAIT connection won't
14745 				 * interfere with new ones.
14746 				 */
14747 				tcp->tcp_exclbind = 0;
14748 				if (!TCP_IS_DETACHED(tcp)) {
14749 					TCP_TIMER_RESTART(tcp,
14750 					    tcps->tcps_time_wait_interval);
14751 				} else {
14752 					tcp_time_wait_append(tcp);
14753 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
14754 				}
14755 			}
14756 			/*FALLTHRU*/
14757 		case TCPS_CLOSE_WAIT:
14758 			freemsg(mp);
14759 			goto xmit_check;
14760 		default:
14761 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
14762 			break;
14763 		}
14764 	}
14765 	if (flags & TH_FIN) {
14766 		/* Make sure we ack the fin */
14767 		flags |= TH_ACK_NEEDED;
14768 		if (!tcp->tcp_fin_rcvd) {
14769 			tcp->tcp_fin_rcvd = B_TRUE;
14770 			tcp->tcp_rnxt++;
14771 			tcph = tcp->tcp_tcph;
14772 			U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14773 
14774 			/*
14775 			 * Generate the ordrel_ind at the end unless we
14776 			 * are an eager guy.
14777 			 * In the eager case tcp_rsrv will do this when run
14778 			 * after tcp_accept is done.
14779 			 */
14780 			if (tcp->tcp_listener == NULL &&
14781 			    !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding))
14782 				flags |= TH_ORDREL_NEEDED;
14783 			switch (tcp->tcp_state) {
14784 			case TCPS_SYN_RCVD:
14785 			case TCPS_ESTABLISHED:
14786 				tcp->tcp_state = TCPS_CLOSE_WAIT;
14787 				/* Keepalive? */
14788 				break;
14789 			case TCPS_FIN_WAIT_1:
14790 				if (!tcp->tcp_fin_acked) {
14791 					tcp->tcp_state = TCPS_CLOSING;
14792 					break;
14793 				}
14794 				/* FALLTHRU */
14795 			case TCPS_FIN_WAIT_2:
14796 				tcp->tcp_state = TCPS_TIME_WAIT;
14797 				/*
14798 				 * Unconditionally clear the exclusive binding
14799 				 * bit so this TIME-WAIT connection won't
14800 				 * interfere with new ones.
14801 				 */
14802 				tcp->tcp_exclbind = 0;
14803 				if (!TCP_IS_DETACHED(tcp)) {
14804 					TCP_TIMER_RESTART(tcp,
14805 					    tcps->tcps_time_wait_interval);
14806 				} else {
14807 					tcp_time_wait_append(tcp);
14808 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
14809 				}
14810 				if (seg_len) {
14811 					/*
14812 					 * implies data piggybacked on FIN.
14813 					 * break to handle data.
14814 					 */
14815 					break;
14816 				}
14817 				freemsg(mp);
14818 				goto ack_check;
14819 			}
14820 		}
14821 	}
14822 	if (mp == NULL)
14823 		goto xmit_check;
14824 	if (seg_len == 0) {
14825 		freemsg(mp);
14826 		goto xmit_check;
14827 	}
14828 	if (mp->b_rptr == mp->b_wptr) {
14829 		/*
14830 		 * The header has been consumed, so we remove the
14831 		 * zero-length mblk here.
14832 		 */
14833 		mp1 = mp;
14834 		mp = mp->b_cont;
14835 		freeb(mp1);
14836 	}
14837 	tcph = tcp->tcp_tcph;
14838 	tcp->tcp_rack_cnt++;
14839 	{
14840 		uint32_t cur_max;
14841 
14842 		cur_max = tcp->tcp_rack_cur_max;
14843 		if (tcp->tcp_rack_cnt >= cur_max) {
14844 			/*
14845 			 * We have more unacked data than we should - send
14846 			 * an ACK now.
14847 			 */
14848 			flags |= TH_ACK_NEEDED;
14849 			cur_max++;
14850 			if (cur_max > tcp->tcp_rack_abs_max)
14851 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
14852 			else
14853 				tcp->tcp_rack_cur_max = cur_max;
14854 		} else if (TCP_IS_DETACHED(tcp)) {
14855 			/* We don't have an ACK timer for detached TCP. */
14856 			flags |= TH_ACK_NEEDED;
14857 		} else if (seg_len < mss) {
14858 			/*
14859 			 * If we get a segment that is less than an mss, and we
14860 			 * already have unacknowledged data, and the amount
14861 			 * unacknowledged is not a multiple of mss, then we
14862 			 * better generate an ACK now.  Otherwise, this may be
14863 			 * the tail piece of a transaction, and we would rather
14864 			 * wait for the response.
14865 			 */
14866 			uint32_t udif;
14867 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
14868 			    (uintptr_t)INT_MAX);
14869 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
14870 			if (udif && (udif % mss))
14871 				flags |= TH_ACK_NEEDED;
14872 			else
14873 				flags |= TH_ACK_TIMER_NEEDED;
14874 		} else {
14875 			/* Start delayed ack timer */
14876 			flags |= TH_ACK_TIMER_NEEDED;
14877 		}
14878 	}
14879 	tcp->tcp_rnxt += seg_len;
14880 	U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14881 
14882 	/* Update SACK list */
14883 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
14884 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
14885 		    &(tcp->tcp_num_sack_blk));
14886 	}
14887 
14888 	if (tcp->tcp_urp_mp) {
14889 		tcp->tcp_urp_mp->b_cont = mp;
14890 		mp = tcp->tcp_urp_mp;
14891 		tcp->tcp_urp_mp = NULL;
14892 		/* Ready for a new signal. */
14893 		tcp->tcp_urp_last_valid = B_FALSE;
14894 #ifdef DEBUG
14895 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14896 		    "tcp_rput: sending exdata_ind %s",
14897 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14898 #endif /* DEBUG */
14899 	}
14900 
14901 	/*
14902 	 * Check for ancillary data changes compared to last segment.
14903 	 */
14904 	if (tcp->tcp_ipv6_recvancillary != 0) {
14905 		mp = tcp_rput_add_ancillary(tcp, mp, &ipp);
14906 		if (mp == NULL)
14907 			return;
14908 	}
14909 
14910 	if (tcp->tcp_listener || tcp->tcp_hard_binding) {
14911 		/*
14912 		 * Side queue inbound data until the accept happens.
14913 		 * tcp_accept/tcp_rput drains this when the accept happens.
14914 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
14915 		 * T_EXDATA_IND) it is queued on b_next.
14916 		 * XXX Make urgent data use this. Requires:
14917 		 *	Removing tcp_listener check for TH_URG
14918 		 *	Making M_PCPROTO and MARK messages skip the eager case
14919 		 */
14920 
14921 		if (tcp->tcp_kssl_pending) {
14922 			tcp_kssl_input(tcp, mp);
14923 		} else {
14924 			tcp_rcv_enqueue(tcp, mp, seg_len);
14925 		}
14926 	} else {
14927 		if (mp->b_datap->db_type != M_DATA ||
14928 		    (flags & TH_MARKNEXT_NEEDED)) {
14929 			if (tcp->tcp_rcv_list != NULL) {
14930 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14931 			}
14932 			ASSERT(tcp->tcp_rcv_list == NULL ||
14933 			    tcp->tcp_fused_sigurg);
14934 			if (flags & TH_MARKNEXT_NEEDED) {
14935 #ifdef DEBUG
14936 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14937 				    "tcp_rput: sending MSGMARKNEXT %s",
14938 				    tcp_display(tcp, NULL,
14939 				    DISP_PORT_ONLY));
14940 #endif /* DEBUG */
14941 				mp->b_flag |= MSGMARKNEXT;
14942 				flags &= ~TH_MARKNEXT_NEEDED;
14943 			}
14944 
14945 			/* Does this need SSL processing first? */
14946 			if ((tcp->tcp_kssl_ctx  != NULL) &&
14947 			    (DB_TYPE(mp) == M_DATA)) {
14948 				tcp_kssl_input(tcp, mp);
14949 			} else {
14950 				putnext(tcp->tcp_rq, mp);
14951 				if (!canputnext(tcp->tcp_rq))
14952 					tcp->tcp_rwnd -= seg_len;
14953 			}
14954 		} else if ((flags & (TH_PUSH|TH_FIN)) ||
14955 		    tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) {
14956 			if (tcp->tcp_rcv_list != NULL) {
14957 				/*
14958 				 * Enqueue the new segment first and then
14959 				 * call tcp_rcv_drain() to send all data
14960 				 * up.  The other way to do this is to
14961 				 * send all queued data up and then call
14962 				 * putnext() to send the new segment up.
14963 				 * This way can remove the else part later
14964 				 * on.
14965 				 *
14966 				 * We don't this to avoid one more call to
14967 				 * canputnext() as tcp_rcv_drain() needs to
14968 				 * call canputnext().
14969 				 */
14970 				tcp_rcv_enqueue(tcp, mp, seg_len);
14971 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14972 			} else {
14973 				/* Does this need SSL processing first? */
14974 				if ((tcp->tcp_kssl_ctx  != NULL) &&
14975 				    (DB_TYPE(mp) == M_DATA)) {
14976 					tcp_kssl_input(tcp, mp);
14977 				} else {
14978 					putnext(tcp->tcp_rq, mp);
14979 					if (!canputnext(tcp->tcp_rq))
14980 						tcp->tcp_rwnd -= seg_len;
14981 				}
14982 			}
14983 		} else {
14984 			/*
14985 			 * Enqueue all packets when processing an mblk
14986 			 * from the co queue and also enqueue normal packets.
14987 			 */
14988 			tcp_rcv_enqueue(tcp, mp, seg_len);
14989 		}
14990 		/*
14991 		 * Make sure the timer is running if we have data waiting
14992 		 * for a push bit. This provides resiliency against
14993 		 * implementations that do not correctly generate push bits.
14994 		 */
14995 		if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) {
14996 			/*
14997 			 * The connection may be closed at this point, so don't
14998 			 * do anything for a detached tcp.
14999 			 */
15000 			if (!TCP_IS_DETACHED(tcp))
15001 			    tcp->tcp_push_tid = TCP_TIMER(tcp,
15002 				tcp_push_timer,
15003 				MSEC_TO_TICK(tcps->tcps_push_timer_interval));
15004 		}
15005 	}
15006 xmit_check:
15007 	/* Is there anything left to do? */
15008 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15009 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
15010 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
15011 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
15012 		goto done;
15013 
15014 	/* Any transmit work to do and a non-zero window? */
15015 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
15016 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
15017 		if (flags & TH_REXMIT_NEEDED) {
15018 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
15019 
15020 			BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans);
15021 			if (snd_size > mss)
15022 				snd_size = mss;
15023 			if (snd_size > tcp->tcp_swnd)
15024 				snd_size = tcp->tcp_swnd;
15025 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
15026 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
15027 			    B_TRUE);
15028 
15029 			if (mp1 != NULL) {
15030 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
15031 				tcp->tcp_csuna = tcp->tcp_snxt;
15032 				BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
15033 				UPDATE_MIB(&tcps->tcps_mib,
15034 				    tcpRetransBytes, snd_size);
15035 				TCP_RECORD_TRACE(tcp, mp1,
15036 				    TCP_TRACE_SEND_PKT);
15037 				tcp_send_data(tcp, tcp->tcp_wq, mp1);
15038 			}
15039 		}
15040 		if (flags & TH_NEED_SACK_REXMIT) {
15041 			tcp_sack_rxmit(tcp, &flags);
15042 		}
15043 		/*
15044 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
15045 		 * out new segment.  Note that tcp_rexmit should not be
15046 		 * set, otherwise TH_LIMIT_XMIT should not be set.
15047 		 */
15048 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
15049 			if (!tcp->tcp_rexmit) {
15050 				tcp_wput_data(tcp, NULL, B_FALSE);
15051 			} else {
15052 				tcp_ss_rexmit(tcp);
15053 			}
15054 		}
15055 		/*
15056 		 * Adjust tcp_cwnd back to normal value after sending
15057 		 * new data segments.
15058 		 */
15059 		if (flags & TH_LIMIT_XMIT) {
15060 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
15061 			/*
15062 			 * This will restart the timer.  Restarting the
15063 			 * timer is used to avoid a timeout before the
15064 			 * limited transmitted segment's ACK gets back.
15065 			 */
15066 			if (tcp->tcp_xmit_head != NULL)
15067 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
15068 		}
15069 
15070 		/* Anything more to do? */
15071 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
15072 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
15073 			goto done;
15074 	}
15075 ack_check:
15076 	if (flags & TH_SEND_URP_MARK) {
15077 		ASSERT(tcp->tcp_urp_mark_mp);
15078 		/*
15079 		 * Send up any queued data and then send the mark message
15080 		 */
15081 		if (tcp->tcp_rcv_list != NULL) {
15082 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15083 		}
15084 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
15085 
15086 		mp1 = tcp->tcp_urp_mark_mp;
15087 		tcp->tcp_urp_mark_mp = NULL;
15088 #ifdef DEBUG
15089 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15090 		    "tcp_rput: sending zero-length %s %s",
15091 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
15092 		    "MSGNOTMARKNEXT"),
15093 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
15094 #endif /* DEBUG */
15095 		putnext(tcp->tcp_rq, mp1);
15096 		flags &= ~TH_SEND_URP_MARK;
15097 	}
15098 	if (flags & TH_ACK_NEEDED) {
15099 		/*
15100 		 * Time to send an ack for some reason.
15101 		 */
15102 		mp1 = tcp_ack_mp(tcp);
15103 
15104 		if (mp1 != NULL) {
15105 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
15106 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
15107 			BUMP_LOCAL(tcp->tcp_obsegs);
15108 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
15109 		}
15110 		if (tcp->tcp_ack_tid != 0) {
15111 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
15112 			tcp->tcp_ack_tid = 0;
15113 		}
15114 	}
15115 	if (flags & TH_ACK_TIMER_NEEDED) {
15116 		/*
15117 		 * Arrange for deferred ACK or push wait timeout.
15118 		 * Start timer if it is not already running.
15119 		 */
15120 		if (tcp->tcp_ack_tid == 0) {
15121 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
15122 			    MSEC_TO_TICK(tcp->tcp_localnet ?
15123 			    (clock_t)tcps->tcps_local_dack_interval :
15124 			    (clock_t)tcps->tcps_deferred_ack_interval));
15125 		}
15126 	}
15127 	if (flags & TH_ORDREL_NEEDED) {
15128 		/*
15129 		 * Send up the ordrel_ind unless we are an eager guy.
15130 		 * In the eager case tcp_rsrv will do this when run
15131 		 * after tcp_accept is done.
15132 		 */
15133 		ASSERT(tcp->tcp_listener == NULL);
15134 		if (tcp->tcp_rcv_list != NULL) {
15135 			/*
15136 			 * Push any mblk(s) enqueued from co processing.
15137 			 */
15138 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15139 		}
15140 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
15141 		if ((mp1 = mi_tpi_ordrel_ind()) != NULL) {
15142 			tcp->tcp_ordrel_done = B_TRUE;
15143 			putnext(tcp->tcp_rq, mp1);
15144 			if (tcp->tcp_deferred_clean_death) {
15145 				/*
15146 				 * tcp_clean_death was deferred
15147 				 * for T_ORDREL_IND - do it now
15148 				 */
15149 				(void) tcp_clean_death(tcp,
15150 				    tcp->tcp_client_errno, 20);
15151 				tcp->tcp_deferred_clean_death =	B_FALSE;
15152 			}
15153 		} else {
15154 			/*
15155 			 * Run the orderly release in the
15156 			 * service routine.
15157 			 */
15158 			qenable(tcp->tcp_rq);
15159 			/*
15160 			 * Caveat(XXX): The machine may be so
15161 			 * overloaded that tcp_rsrv() is not scheduled
15162 			 * until after the endpoint has transitioned
15163 			 * to TCPS_TIME_WAIT
15164 			 * and tcp_time_wait_interval expires. Then
15165 			 * tcp_timer() will blow away state in tcp_t
15166 			 * and T_ORDREL_IND will never be delivered
15167 			 * upstream. Unlikely but potentially
15168 			 * a problem.
15169 			 */
15170 		}
15171 	}
15172 done:
15173 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15174 }
15175 
15176 /*
15177  * This function does PAWS protection check. Returns B_TRUE if the
15178  * segment passes the PAWS test, else returns B_FALSE.
15179  */
15180 boolean_t
15181 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp)
15182 {
15183 	uint8_t	flags;
15184 	int	options;
15185 	uint8_t *up;
15186 
15187 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
15188 	/*
15189 	 * If timestamp option is aligned nicely, get values inline,
15190 	 * otherwise call general routine to parse.  Only do that
15191 	 * if timestamp is the only option.
15192 	 */
15193 	if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH +
15194 	    TCPOPT_REAL_TS_LEN &&
15195 	    OK_32PTR((up = ((uint8_t *)tcph) +
15196 	    TCP_MIN_HEADER_LENGTH)) &&
15197 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
15198 		tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
15199 		tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
15200 
15201 		options = TCP_OPT_TSTAMP_PRESENT;
15202 	} else {
15203 		if (tcp->tcp_snd_sack_ok) {
15204 			tcpoptp->tcp = tcp;
15205 		} else {
15206 			tcpoptp->tcp = NULL;
15207 		}
15208 		options = tcp_parse_options(tcph, tcpoptp);
15209 	}
15210 
15211 	if (options & TCP_OPT_TSTAMP_PRESENT) {
15212 		/*
15213 		 * Do PAWS per RFC 1323 section 4.2.  Accept RST
15214 		 * regardless of the timestamp, page 18 RFC 1323.bis.
15215 		 */
15216 		if ((flags & TH_RST) == 0 &&
15217 		    TSTMP_LT(tcpoptp->tcp_opt_ts_val,
15218 		    tcp->tcp_ts_recent)) {
15219 			if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt +
15220 			    PAWS_TIMEOUT)) {
15221 				/* This segment is not acceptable. */
15222 				return (B_FALSE);
15223 			} else {
15224 				/*
15225 				 * Connection has been idle for
15226 				 * too long.  Reset the timestamp
15227 				 * and assume the segment is valid.
15228 				 */
15229 				tcp->tcp_ts_recent =
15230 				    tcpoptp->tcp_opt_ts_val;
15231 			}
15232 		}
15233 	} else {
15234 		/*
15235 		 * If we don't get a timestamp on every packet, we
15236 		 * figure we can't really trust 'em, so we stop sending
15237 		 * and parsing them.
15238 		 */
15239 		tcp->tcp_snd_ts_ok = B_FALSE;
15240 
15241 		tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15242 		tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15243 		tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4);
15244 		tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN);
15245 		if (tcp->tcp_snd_sack_ok) {
15246 			ASSERT(tcp->tcp_sack_info != NULL);
15247 			tcp->tcp_max_sack_blk = 4;
15248 		}
15249 	}
15250 	return (B_TRUE);
15251 }
15252 
15253 /*
15254  * Attach ancillary data to a received TCP segments for the
15255  * ancillary pieces requested by the application that are
15256  * different than they were in the previous data segment.
15257  *
15258  * Save the "current" values once memory allocation is ok so that
15259  * when memory allocation fails we can just wait for the next data segment.
15260  */
15261 static mblk_t *
15262 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp)
15263 {
15264 	struct T_optdata_ind *todi;
15265 	int optlen;
15266 	uchar_t *optptr;
15267 	struct T_opthdr *toh;
15268 	uint_t addflag;	/* Which pieces to add */
15269 	mblk_t *mp1;
15270 
15271 	optlen = 0;
15272 	addflag = 0;
15273 	/* If app asked for pktinfo and the index has changed ... */
15274 	if ((ipp->ipp_fields & IPPF_IFINDEX) &&
15275 	    ipp->ipp_ifindex != tcp->tcp_recvifindex &&
15276 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) {
15277 		optlen += sizeof (struct T_opthdr) +
15278 		    sizeof (struct in6_pktinfo);
15279 		addflag |= TCP_IPV6_RECVPKTINFO;
15280 	}
15281 	/* If app asked for hoplimit and it has changed ... */
15282 	if ((ipp->ipp_fields & IPPF_HOPLIMIT) &&
15283 	    ipp->ipp_hoplimit != tcp->tcp_recvhops &&
15284 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) {
15285 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15286 		addflag |= TCP_IPV6_RECVHOPLIMIT;
15287 	}
15288 	/* If app asked for tclass and it has changed ... */
15289 	if ((ipp->ipp_fields & IPPF_TCLASS) &&
15290 	    ipp->ipp_tclass != tcp->tcp_recvtclass &&
15291 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) {
15292 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15293 		addflag |= TCP_IPV6_RECVTCLASS;
15294 	}
15295 	/*
15296 	 * If app asked for hopbyhop headers and it has changed ...
15297 	 * For security labels, note that (1) security labels can't change on
15298 	 * a connected socket at all, (2) we're connected to at most one peer,
15299 	 * (3) if anything changes, then it must be some other extra option.
15300 	 */
15301 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) &&
15302 	    ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
15303 	    (ipp->ipp_fields & IPPF_HOPOPTS),
15304 	    ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
15305 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen -
15306 		    tcp->tcp_label_len;
15307 		addflag |= TCP_IPV6_RECVHOPOPTS;
15308 		if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
15309 		    &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
15310 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
15311 			return (mp);
15312 	}
15313 	/* If app asked for dst headers before routing headers ... */
15314 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) &&
15315 	    ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen,
15316 		(ipp->ipp_fields & IPPF_RTDSTOPTS),
15317 		ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) {
15318 		optlen += sizeof (struct T_opthdr) +
15319 		    ipp->ipp_rtdstoptslen;
15320 		addflag |= TCP_IPV6_RECVRTDSTOPTS;
15321 		if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts,
15322 		    &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS),
15323 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen))
15324 			return (mp);
15325 	}
15326 	/* If app asked for routing headers and it has changed ... */
15327 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) &&
15328 	    ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
15329 	    (ipp->ipp_fields & IPPF_RTHDR),
15330 	    ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
15331 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
15332 		addflag |= TCP_IPV6_RECVRTHDR;
15333 		if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
15334 		    &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
15335 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
15336 			return (mp);
15337 	}
15338 	/* If app asked for dest headers and it has changed ... */
15339 	if ((tcp->tcp_ipv6_recvancillary &
15340 	    (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) &&
15341 	    ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
15342 	    (ipp->ipp_fields & IPPF_DSTOPTS),
15343 	    ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
15344 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
15345 		addflag |= TCP_IPV6_RECVDSTOPTS;
15346 		if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
15347 		    &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
15348 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
15349 			return (mp);
15350 	}
15351 
15352 	if (optlen == 0) {
15353 		/* Nothing to add */
15354 		return (mp);
15355 	}
15356 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
15357 	if (mp1 == NULL) {
15358 		/*
15359 		 * Defer sending ancillary data until the next TCP segment
15360 		 * arrives.
15361 		 */
15362 		return (mp);
15363 	}
15364 	mp1->b_cont = mp;
15365 	mp = mp1;
15366 	mp->b_wptr += sizeof (*todi) + optlen;
15367 	mp->b_datap->db_type = M_PROTO;
15368 	todi = (struct T_optdata_ind *)mp->b_rptr;
15369 	todi->PRIM_type = T_OPTDATA_IND;
15370 	todi->DATA_flag = 1;	/* MORE data */
15371 	todi->OPT_length = optlen;
15372 	todi->OPT_offset = sizeof (*todi);
15373 	optptr = (uchar_t *)&todi[1];
15374 	/*
15375 	 * If app asked for pktinfo and the index has changed ...
15376 	 * Note that the local address never changes for the connection.
15377 	 */
15378 	if (addflag & TCP_IPV6_RECVPKTINFO) {
15379 		struct in6_pktinfo *pkti;
15380 
15381 		toh = (struct T_opthdr *)optptr;
15382 		toh->level = IPPROTO_IPV6;
15383 		toh->name = IPV6_PKTINFO;
15384 		toh->len = sizeof (*toh) + sizeof (*pkti);
15385 		toh->status = 0;
15386 		optptr += sizeof (*toh);
15387 		pkti = (struct in6_pktinfo *)optptr;
15388 		if (tcp->tcp_ipversion == IPV6_VERSION)
15389 			pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src;
15390 		else
15391 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
15392 			    &pkti->ipi6_addr);
15393 		pkti->ipi6_ifindex = ipp->ipp_ifindex;
15394 		optptr += sizeof (*pkti);
15395 		ASSERT(OK_32PTR(optptr));
15396 		/* Save as "last" value */
15397 		tcp->tcp_recvifindex = ipp->ipp_ifindex;
15398 	}
15399 	/* If app asked for hoplimit and it has changed ... */
15400 	if (addflag & TCP_IPV6_RECVHOPLIMIT) {
15401 		toh = (struct T_opthdr *)optptr;
15402 		toh->level = IPPROTO_IPV6;
15403 		toh->name = IPV6_HOPLIMIT;
15404 		toh->len = sizeof (*toh) + sizeof (uint_t);
15405 		toh->status = 0;
15406 		optptr += sizeof (*toh);
15407 		*(uint_t *)optptr = ipp->ipp_hoplimit;
15408 		optptr += sizeof (uint_t);
15409 		ASSERT(OK_32PTR(optptr));
15410 		/* Save as "last" value */
15411 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
15412 	}
15413 	/* If app asked for tclass and it has changed ... */
15414 	if (addflag & TCP_IPV6_RECVTCLASS) {
15415 		toh = (struct T_opthdr *)optptr;
15416 		toh->level = IPPROTO_IPV6;
15417 		toh->name = IPV6_TCLASS;
15418 		toh->len = sizeof (*toh) + sizeof (uint_t);
15419 		toh->status = 0;
15420 		optptr += sizeof (*toh);
15421 		*(uint_t *)optptr = ipp->ipp_tclass;
15422 		optptr += sizeof (uint_t);
15423 		ASSERT(OK_32PTR(optptr));
15424 		/* Save as "last" value */
15425 		tcp->tcp_recvtclass = ipp->ipp_tclass;
15426 	}
15427 	if (addflag & TCP_IPV6_RECVHOPOPTS) {
15428 		toh = (struct T_opthdr *)optptr;
15429 		toh->level = IPPROTO_IPV6;
15430 		toh->name = IPV6_HOPOPTS;
15431 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen -
15432 		    tcp->tcp_label_len;
15433 		toh->status = 0;
15434 		optptr += sizeof (*toh);
15435 		bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr,
15436 		    ipp->ipp_hopoptslen - tcp->tcp_label_len);
15437 		optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len;
15438 		ASSERT(OK_32PTR(optptr));
15439 		/* Save as last value */
15440 		ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
15441 		    (ipp->ipp_fields & IPPF_HOPOPTS),
15442 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
15443 	}
15444 	if (addflag & TCP_IPV6_RECVRTDSTOPTS) {
15445 		toh = (struct T_opthdr *)optptr;
15446 		toh->level = IPPROTO_IPV6;
15447 		toh->name = IPV6_RTHDRDSTOPTS;
15448 		toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen;
15449 		toh->status = 0;
15450 		optptr += sizeof (*toh);
15451 		bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen);
15452 		optptr += ipp->ipp_rtdstoptslen;
15453 		ASSERT(OK_32PTR(optptr));
15454 		/* Save as last value */
15455 		ip_savebuf((void **)&tcp->tcp_rtdstopts,
15456 		    &tcp->tcp_rtdstoptslen,
15457 		    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15458 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen);
15459 	}
15460 	if (addflag & TCP_IPV6_RECVRTHDR) {
15461 		toh = (struct T_opthdr *)optptr;
15462 		toh->level = IPPROTO_IPV6;
15463 		toh->name = IPV6_RTHDR;
15464 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
15465 		toh->status = 0;
15466 		optptr += sizeof (*toh);
15467 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
15468 		optptr += ipp->ipp_rthdrlen;
15469 		ASSERT(OK_32PTR(optptr));
15470 		/* Save as last value */
15471 		ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
15472 		    (ipp->ipp_fields & IPPF_RTHDR),
15473 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
15474 	}
15475 	if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) {
15476 		toh = (struct T_opthdr *)optptr;
15477 		toh->level = IPPROTO_IPV6;
15478 		toh->name = IPV6_DSTOPTS;
15479 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
15480 		toh->status = 0;
15481 		optptr += sizeof (*toh);
15482 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
15483 		optptr += ipp->ipp_dstoptslen;
15484 		ASSERT(OK_32PTR(optptr));
15485 		/* Save as last value */
15486 		ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
15487 		    (ipp->ipp_fields & IPPF_DSTOPTS),
15488 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
15489 	}
15490 	ASSERT(optptr == mp->b_wptr);
15491 	return (mp);
15492 }
15493 
15494 
15495 /*
15496  * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK
15497  * or a "bad" IRE detected by tcp_adapt_ire.
15498  * We can't tell if the failure was due to the laddr or the faddr
15499  * thus we clear out all addresses and ports.
15500  */
15501 static void
15502 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error)
15503 {
15504 	queue_t	*q = tcp->tcp_rq;
15505 	tcph_t	*tcph;
15506 	struct T_error_ack *tea;
15507 	conn_t	*connp = tcp->tcp_connp;
15508 
15509 
15510 	ASSERT(mp->b_datap->db_type == M_PCPROTO);
15511 
15512 	if (mp->b_cont) {
15513 		freemsg(mp->b_cont);
15514 		mp->b_cont = NULL;
15515 	}
15516 	tea = (struct T_error_ack *)mp->b_rptr;
15517 	switch (tea->PRIM_type) {
15518 	case T_BIND_ACK:
15519 		/*
15520 		 * Need to unbind with classifier since we were just told that
15521 		 * our bind succeeded.
15522 		 */
15523 		tcp->tcp_hard_bound = B_FALSE;
15524 		tcp->tcp_hard_binding = B_FALSE;
15525 
15526 		ipcl_hash_remove(connp);
15527 		/* Reuse the mblk if possible */
15528 		ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >=
15529 			sizeof (*tea));
15530 		mp->b_rptr = mp->b_datap->db_base;
15531 		mp->b_wptr = mp->b_rptr + sizeof (*tea);
15532 		tea = (struct T_error_ack *)mp->b_rptr;
15533 		tea->PRIM_type = T_ERROR_ACK;
15534 		tea->TLI_error = TSYSERR;
15535 		tea->UNIX_error = error;
15536 		if (tcp->tcp_state >= TCPS_SYN_SENT) {
15537 			tea->ERROR_prim = T_CONN_REQ;
15538 		} else {
15539 			tea->ERROR_prim = O_T_BIND_REQ;
15540 		}
15541 		break;
15542 
15543 	case T_ERROR_ACK:
15544 		if (tcp->tcp_state >= TCPS_SYN_SENT)
15545 			tea->ERROR_prim = T_CONN_REQ;
15546 		break;
15547 	default:
15548 		panic("tcp_bind_failed: unexpected TPI type");
15549 		/*NOTREACHED*/
15550 	}
15551 
15552 	tcp->tcp_state = TCPS_IDLE;
15553 	if (tcp->tcp_ipversion == IPV4_VERSION)
15554 		tcp->tcp_ipha->ipha_src = 0;
15555 	else
15556 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
15557 	/*
15558 	 * Copy of the src addr. in tcp_t is needed since
15559 	 * the lookup funcs. can only look at tcp_t
15560 	 */
15561 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
15562 
15563 	tcph = tcp->tcp_tcph;
15564 	tcph->th_lport[0] = 0;
15565 	tcph->th_lport[1] = 0;
15566 	tcp_bind_hash_remove(tcp);
15567 	bzero(&connp->u_port, sizeof (connp->u_port));
15568 	/* blow away saved option results if any */
15569 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
15570 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
15571 
15572 	conn_delete_ire(tcp->tcp_connp, NULL);
15573 	putnext(q, mp);
15574 }
15575 
15576 /*
15577  * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA
15578  * messages.
15579  */
15580 void
15581 tcp_rput_other(tcp_t *tcp, mblk_t *mp)
15582 {
15583 	mblk_t	*mp1;
15584 	uchar_t	*rptr = mp->b_rptr;
15585 	queue_t	*q = tcp->tcp_rq;
15586 	struct T_error_ack *tea;
15587 	uint32_t mss;
15588 	mblk_t *syn_mp;
15589 	mblk_t *mdti;
15590 	mblk_t *lsoi;
15591 	int	retval;
15592 	mblk_t *ire_mp;
15593 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15594 
15595 	switch (mp->b_datap->db_type) {
15596 	case M_PROTO:
15597 	case M_PCPROTO:
15598 		ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
15599 		if ((mp->b_wptr - rptr) < sizeof (t_scalar_t))
15600 			break;
15601 		tea = (struct T_error_ack *)rptr;
15602 		switch (tea->PRIM_type) {
15603 		case T_BIND_ACK:
15604 			/*
15605 			 * Adapt Multidata information, if any.  The
15606 			 * following tcp_mdt_update routine will free
15607 			 * the message.
15608 			 */
15609 			if ((mdti = tcp_mdt_info_mp(mp)) != NULL) {
15610 				tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti->
15611 				    b_rptr)->mdt_capab, B_TRUE);
15612 				freemsg(mdti);
15613 			}
15614 
15615 			/*
15616 			 * Check to update LSO information with tcp, and
15617 			 * tcp_lso_update routine will free the message.
15618 			 */
15619 			if ((lsoi = tcp_lso_info_mp(mp)) != NULL) {
15620 				tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi->
15621 				    b_rptr)->lso_capab);
15622 				freemsg(lsoi);
15623 			}
15624 
15625 			/* Get the IRE, if we had requested for it */
15626 			ire_mp = tcp_ire_mp(mp);
15627 
15628 			if (tcp->tcp_hard_binding) {
15629 				tcp->tcp_hard_binding = B_FALSE;
15630 				tcp->tcp_hard_bound = B_TRUE;
15631 				CL_INET_CONNECT(tcp);
15632 			} else {
15633 				if (ire_mp != NULL)
15634 					freeb(ire_mp);
15635 				goto after_syn_sent;
15636 			}
15637 
15638 			retval = tcp_adapt_ire(tcp, ire_mp);
15639 			if (ire_mp != NULL)
15640 				freeb(ire_mp);
15641 			if (retval == 0) {
15642 				tcp_bind_failed(tcp, mp,
15643 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15644 				    ENETUNREACH : EADDRNOTAVAIL));
15645 				return;
15646 			}
15647 			/*
15648 			 * Don't let an endpoint connect to itself.
15649 			 * Also checked in tcp_connect() but that
15650 			 * check can't handle the case when the
15651 			 * local IP address is INADDR_ANY.
15652 			 */
15653 			if (tcp->tcp_ipversion == IPV4_VERSION) {
15654 				if ((tcp->tcp_ipha->ipha_dst ==
15655 				    tcp->tcp_ipha->ipha_src) &&
15656 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
15657 				    tcp->tcp_tcph->th_fport))) {
15658 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
15659 					return;
15660 				}
15661 			} else {
15662 				if (IN6_ARE_ADDR_EQUAL(
15663 				    &tcp->tcp_ip6h->ip6_dst,
15664 				    &tcp->tcp_ip6h->ip6_src) &&
15665 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
15666 				    tcp->tcp_tcph->th_fport))) {
15667 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
15668 					return;
15669 				}
15670 			}
15671 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT);
15672 			/*
15673 			 * This should not be possible!  Just for
15674 			 * defensive coding...
15675 			 */
15676 			if (tcp->tcp_state != TCPS_SYN_SENT)
15677 				goto after_syn_sent;
15678 
15679 			if (is_system_labeled() &&
15680 			    !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) {
15681 				tcp_bind_failed(tcp, mp, EHOSTUNREACH);
15682 				return;
15683 			}
15684 
15685 			ASSERT(q == tcp->tcp_rq);
15686 			/*
15687 			 * tcp_adapt_ire() does not adjust
15688 			 * for TCP/IP header length.
15689 			 */
15690 			mss = tcp->tcp_mss - tcp->tcp_hdr_len;
15691 
15692 			/*
15693 			 * Just make sure our rwnd is at
15694 			 * least tcp_recv_hiwat_mss * MSS
15695 			 * large, and round up to the nearest
15696 			 * MSS.
15697 			 *
15698 			 * We do the round up here because
15699 			 * we need to get the interface
15700 			 * MTU first before we can do the
15701 			 * round up.
15702 			 */
15703 			tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
15704 			    tcps->tcps_recv_hiwat_minmss * mss);
15705 			q->q_hiwat = tcp->tcp_rwnd;
15706 			tcp_set_ws_value(tcp);
15707 			U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws),
15708 			    tcp->tcp_tcph->th_win);
15709 			if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always)
15710 				tcp->tcp_snd_ws_ok = B_TRUE;
15711 
15712 			/*
15713 			 * Set tcp_snd_ts_ok to true
15714 			 * so that tcp_xmit_mp will
15715 			 * include the timestamp
15716 			 * option in the SYN segment.
15717 			 */
15718 			if (tcps->tcps_tstamp_always ||
15719 			    (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) {
15720 				tcp->tcp_snd_ts_ok = B_TRUE;
15721 			}
15722 
15723 			/*
15724 			 * tcp_snd_sack_ok can be set in
15725 			 * tcp_adapt_ire() if the sack metric
15726 			 * is set.  So check it here also.
15727 			 */
15728 			if (tcps->tcps_sack_permitted == 2 ||
15729 			    tcp->tcp_snd_sack_ok) {
15730 				if (tcp->tcp_sack_info == NULL) {
15731 					tcp->tcp_sack_info =
15732 					kmem_cache_alloc(tcp_sack_info_cache,
15733 					    KM_SLEEP);
15734 				}
15735 				tcp->tcp_snd_sack_ok = B_TRUE;
15736 			}
15737 
15738 			/*
15739 			 * Should we use ECN?  Note that the current
15740 			 * default value (SunOS 5.9) of tcp_ecn_permitted
15741 			 * is 1.  The reason for doing this is that there
15742 			 * are equipments out there that will drop ECN
15743 			 * enabled IP packets.  Setting it to 1 avoids
15744 			 * compatibility problems.
15745 			 */
15746 			if (tcps->tcps_ecn_permitted == 2)
15747 				tcp->tcp_ecn_ok = B_TRUE;
15748 
15749 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
15750 			syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
15751 			    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
15752 			if (syn_mp) {
15753 				cred_t *cr;
15754 				pid_t pid;
15755 
15756 				/*
15757 				 * Obtain the credential from the
15758 				 * thread calling connect(); the credential
15759 				 * lives on in the second mblk which
15760 				 * originated from T_CONN_REQ and is echoed
15761 				 * with the T_BIND_ACK from ip.  If none
15762 				 * can be found, default to the creator
15763 				 * of the socket.
15764 				 */
15765 				if (mp->b_cont == NULL ||
15766 				    (cr = DB_CRED(mp->b_cont)) == NULL) {
15767 					cr = tcp->tcp_cred;
15768 					pid = tcp->tcp_cpid;
15769 				} else {
15770 					pid = DB_CPID(mp->b_cont);
15771 				}
15772 
15773 				TCP_RECORD_TRACE(tcp, syn_mp,
15774 				    TCP_TRACE_SEND_PKT);
15775 				mblk_setcred(syn_mp, cr);
15776 				DB_CPID(syn_mp) = pid;
15777 				tcp_send_data(tcp, tcp->tcp_wq, syn_mp);
15778 			}
15779 		after_syn_sent:
15780 			/*
15781 			 * A trailer mblk indicates a waiting client upstream.
15782 			 * We complete here the processing begun in
15783 			 * either tcp_bind() or tcp_connect() by passing
15784 			 * upstream the reply message they supplied.
15785 			 */
15786 			mp1 = mp;
15787 			mp = mp->b_cont;
15788 			freeb(mp1);
15789 			if (mp)
15790 				break;
15791 			return;
15792 		case T_ERROR_ACK:
15793 			if (tcp->tcp_debug) {
15794 				(void) strlog(TCP_MOD_ID, 0, 1,
15795 				    SL_TRACE|SL_ERROR,
15796 				    "tcp_rput_other: case T_ERROR_ACK, "
15797 				    "ERROR_prim == %d",
15798 				    tea->ERROR_prim);
15799 			}
15800 			switch (tea->ERROR_prim) {
15801 			case O_T_BIND_REQ:
15802 			case T_BIND_REQ:
15803 				tcp_bind_failed(tcp, mp,
15804 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15805 				    ENETUNREACH : EADDRNOTAVAIL));
15806 				return;
15807 			case T_UNBIND_REQ:
15808 				tcp->tcp_hard_binding = B_FALSE;
15809 				tcp->tcp_hard_bound = B_FALSE;
15810 				if (mp->b_cont) {
15811 					freemsg(mp->b_cont);
15812 					mp->b_cont = NULL;
15813 				}
15814 				if (tcp->tcp_unbind_pending)
15815 					tcp->tcp_unbind_pending = 0;
15816 				else {
15817 					/* From tcp_ip_unbind() - free */
15818 					freemsg(mp);
15819 					return;
15820 				}
15821 				break;
15822 			case T_SVR4_OPTMGMT_REQ:
15823 				if (tcp->tcp_drop_opt_ack_cnt > 0) {
15824 					/* T_OPTMGMT_REQ generated by TCP */
15825 					printf("T_SVR4_OPTMGMT_REQ failed "
15826 					    "%d/%d - dropped (cnt %d)\n",
15827 					    tea->TLI_error, tea->UNIX_error,
15828 					    tcp->tcp_drop_opt_ack_cnt);
15829 					freemsg(mp);
15830 					tcp->tcp_drop_opt_ack_cnt--;
15831 					return;
15832 				}
15833 				break;
15834 			}
15835 			if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ &&
15836 			    tcp->tcp_drop_opt_ack_cnt > 0) {
15837 				printf("T_SVR4_OPTMGMT_REQ failed %d/%d "
15838 				    "- dropped (cnt %d)\n",
15839 				    tea->TLI_error, tea->UNIX_error,
15840 				    tcp->tcp_drop_opt_ack_cnt);
15841 				freemsg(mp);
15842 				tcp->tcp_drop_opt_ack_cnt--;
15843 				return;
15844 			}
15845 			break;
15846 		case T_OPTMGMT_ACK:
15847 			if (tcp->tcp_drop_opt_ack_cnt > 0) {
15848 				/* T_OPTMGMT_REQ generated by TCP */
15849 				freemsg(mp);
15850 				tcp->tcp_drop_opt_ack_cnt--;
15851 				return;
15852 			}
15853 			break;
15854 		default:
15855 			break;
15856 		}
15857 		break;
15858 	case M_FLUSH:
15859 		if (*rptr & FLUSHR)
15860 			flushq(q, FLUSHDATA);
15861 		break;
15862 	default:
15863 		/* M_CTL will be directly sent to tcp_icmp_error() */
15864 		ASSERT(DB_TYPE(mp) != M_CTL);
15865 		break;
15866 	}
15867 	/*
15868 	 * Make sure we set this bit before sending the ACK for
15869 	 * bind. Otherwise accept could possibly run and free
15870 	 * this tcp struct.
15871 	 */
15872 	putnext(q, mp);
15873 }
15874 
15875 /*
15876  * Called as the result of a qbufcall or a qtimeout to remedy a failure
15877  * to allocate a T_ordrel_ind in tcp_rsrv().  qenable(q) will make
15878  * tcp_rsrv() try again.
15879  */
15880 static void
15881 tcp_ordrel_kick(void *arg)
15882 {
15883 	conn_t 	*connp = (conn_t *)arg;
15884 	tcp_t	*tcp = connp->conn_tcp;
15885 
15886 	tcp->tcp_ordrelid = 0;
15887 	tcp->tcp_timeout = B_FALSE;
15888 	if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL &&
15889 	    tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
15890 		qenable(tcp->tcp_rq);
15891 	}
15892 }
15893 
15894 /* ARGSUSED */
15895 static void
15896 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2)
15897 {
15898 	conn_t	*connp = (conn_t *)arg;
15899 	tcp_t	*tcp = connp->conn_tcp;
15900 	queue_t	*q = tcp->tcp_rq;
15901 	uint_t	thwin;
15902 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15903 
15904 	freeb(mp);
15905 
15906 	TCP_STAT(tcps, tcp_rsrv_calls);
15907 
15908 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
15909 		return;
15910 	}
15911 
15912 	if (tcp->tcp_fused) {
15913 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
15914 
15915 		ASSERT(tcp->tcp_fused);
15916 		ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused);
15917 		ASSERT(peer_tcp->tcp_loopback_peer == tcp);
15918 		ASSERT(!TCP_IS_DETACHED(tcp));
15919 		ASSERT(tcp->tcp_connp->conn_sqp ==
15920 		    peer_tcp->tcp_connp->conn_sqp);
15921 
15922 		/*
15923 		 * Normally we would not get backenabled in synchronous
15924 		 * streams mode, but in case this happens, we need to plug
15925 		 * synchronous streams during our drain to prevent a race
15926 		 * with tcp_fuse_rrw() or tcp_fuse_rinfop().
15927 		 */
15928 		TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
15929 		if (tcp->tcp_rcv_list != NULL)
15930 			(void) tcp_rcv_drain(tcp->tcp_rq, tcp);
15931 
15932 		tcp_clrqfull(peer_tcp);
15933 		TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
15934 		TCP_STAT(tcps, tcp_fusion_backenabled);
15935 		return;
15936 	}
15937 
15938 	if (canputnext(q)) {
15939 		tcp->tcp_rwnd = q->q_hiwat;
15940 		thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
15941 		    << tcp->tcp_rcv_ws;
15942 		thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
15943 		/*
15944 		 * Send back a window update immediately if TCP is above
15945 		 * ESTABLISHED state and the increase of the rcv window
15946 		 * that the other side knows is at least 1 MSS after flow
15947 		 * control is lifted.
15948 		 */
15949 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
15950 		    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
15951 			tcp_xmit_ctl(NULL, tcp,
15952 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
15953 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
15954 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
15955 		}
15956 	}
15957 	/* Handle a failure to allocate a T_ORDREL_IND here */
15958 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
15959 		ASSERT(tcp->tcp_listener == NULL);
15960 		if (tcp->tcp_rcv_list != NULL) {
15961 			(void) tcp_rcv_drain(q, tcp);
15962 		}
15963 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
15964 		mp = mi_tpi_ordrel_ind();
15965 		if (mp) {
15966 			tcp->tcp_ordrel_done = B_TRUE;
15967 			putnext(q, mp);
15968 			if (tcp->tcp_deferred_clean_death) {
15969 				/*
15970 				 * tcp_clean_death was deferred for
15971 				 * T_ORDREL_IND - do it now
15972 				 */
15973 				tcp->tcp_deferred_clean_death = B_FALSE;
15974 				(void) tcp_clean_death(tcp,
15975 				    tcp->tcp_client_errno, 22);
15976 			}
15977 		} else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
15978 			/*
15979 			 * If there isn't already a timer running
15980 			 * start one.  Use a 4 second
15981 			 * timer as a fallback since it can't fail.
15982 			 */
15983 			tcp->tcp_timeout = B_TRUE;
15984 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
15985 			    MSEC_TO_TICK(4000));
15986 		}
15987 	}
15988 }
15989 
15990 /*
15991  * The read side service routine is called mostly when we get back-enabled as a
15992  * result of flow control relief.  Since we don't actually queue anything in
15993  * TCP, we have no data to send out of here.  What we do is clear the receive
15994  * window, and send out a window update.
15995  * This routine is also called to drive an orderly release message upstream
15996  * if the attempt in tcp_rput failed.
15997  */
15998 static void
15999 tcp_rsrv(queue_t *q)
16000 {
16001 	conn_t *connp = Q_TO_CONN(q);
16002 	tcp_t	*tcp = connp->conn_tcp;
16003 	mblk_t	*mp;
16004 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16005 
16006 	/* No code does a putq on the read side */
16007 	ASSERT(q->q_first == NULL);
16008 
16009 	/* Nothing to do for the default queue */
16010 	if (q == tcps->tcps_g_q) {
16011 		return;
16012 	}
16013 
16014 	mp = allocb(0, BPRI_HI);
16015 	if (mp == NULL) {
16016 		/*
16017 		 * We are under memory pressure. Return for now and we
16018 		 * we will be called again later.
16019 		 */
16020 		if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
16021 			/*
16022 			 * If there isn't already a timer running
16023 			 * start one.  Use a 4 second
16024 			 * timer as a fallback since it can't fail.
16025 			 */
16026 			tcp->tcp_timeout = B_TRUE;
16027 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
16028 			    MSEC_TO_TICK(4000));
16029 		}
16030 		return;
16031 	}
16032 	CONN_INC_REF(connp);
16033 	squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp,
16034 	    SQTAG_TCP_RSRV);
16035 }
16036 
16037 /*
16038  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
16039  * We do not allow the receive window to shrink.  After setting rwnd,
16040  * set the flow control hiwat of the stream.
16041  *
16042  * This function is called in 2 cases:
16043  *
16044  * 1) Before data transfer begins, in tcp_accept_comm() for accepting a
16045  *    connection (passive open) and in tcp_rput_data() for active connect.
16046  *    This is called after tcp_mss_set() when the desired MSS value is known.
16047  *    This makes sure that our window size is a mutiple of the other side's
16048  *    MSS.
16049  * 2) Handling SO_RCVBUF option.
16050  *
16051  * It is ASSUMED that the requested size is a multiple of the current MSS.
16052  *
16053  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
16054  * user requests so.
16055  */
16056 static int
16057 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
16058 {
16059 	uint32_t	mss = tcp->tcp_mss;
16060 	uint32_t	old_max_rwnd;
16061 	uint32_t	max_transmittable_rwnd;
16062 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
16063 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16064 
16065 	if (tcp->tcp_fused) {
16066 		size_t sth_hiwat;
16067 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
16068 
16069 		ASSERT(peer_tcp != NULL);
16070 		/*
16071 		 * Record the stream head's high water mark for
16072 		 * this endpoint; this is used for flow-control
16073 		 * purposes in tcp_fuse_output().
16074 		 */
16075 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
16076 		if (!tcp_detached)
16077 			(void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat);
16078 
16079 		/*
16080 		 * In the fusion case, the maxpsz stream head value of
16081 		 * our peer is set according to its send buffer size
16082 		 * and our receive buffer size; since the latter may
16083 		 * have changed we need to update the peer's maxpsz.
16084 		 */
16085 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
16086 		return (rwnd);
16087 	}
16088 
16089 	if (tcp_detached)
16090 		old_max_rwnd = tcp->tcp_rwnd;
16091 	else
16092 		old_max_rwnd = tcp->tcp_rq->q_hiwat;
16093 
16094 	/*
16095 	 * Insist on a receive window that is at least
16096 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
16097 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
16098 	 * and delayed acknowledgement.
16099 	 */
16100 	rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss);
16101 
16102 	/*
16103 	 * If window size info has already been exchanged, TCP should not
16104 	 * shrink the window.  Shrinking window is doable if done carefully.
16105 	 * We may add that support later.  But so far there is not a real
16106 	 * need to do that.
16107 	 */
16108 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
16109 		/* MSS may have changed, do a round up again. */
16110 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
16111 	}
16112 
16113 	/*
16114 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
16115 	 * can be applied even before the window scale option is decided.
16116 	 */
16117 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
16118 	if (rwnd > max_transmittable_rwnd) {
16119 		rwnd = max_transmittable_rwnd -
16120 		    (max_transmittable_rwnd % mss);
16121 		if (rwnd < mss)
16122 			rwnd = max_transmittable_rwnd;
16123 		/*
16124 		 * If we're over the limit we may have to back down tcp_rwnd.
16125 		 * The increment below won't work for us. So we set all three
16126 		 * here and the increment below will have no effect.
16127 		 */
16128 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
16129 	}
16130 	if (tcp->tcp_localnet) {
16131 		tcp->tcp_rack_abs_max =
16132 		    MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2);
16133 	} else {
16134 		/*
16135 		 * For a remote host on a different subnet (through a router),
16136 		 * we ack every other packet to be conforming to RFC1122.
16137 		 * tcp_deferred_acks_max is default to 2.
16138 		 */
16139 		tcp->tcp_rack_abs_max =
16140 		    MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2);
16141 	}
16142 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
16143 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
16144 	else
16145 		tcp->tcp_rack_cur_max = 0;
16146 	/*
16147 	 * Increment the current rwnd by the amount the maximum grew (we
16148 	 * can not overwrite it since we might be in the middle of a
16149 	 * connection.)
16150 	 */
16151 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
16152 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win);
16153 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
16154 		tcp->tcp_cwnd_max = rwnd;
16155 
16156 	if (tcp_detached)
16157 		return (rwnd);
16158 	/*
16159 	 * We set the maximum receive window into rq->q_hiwat.
16160 	 * This is not actually used for flow control.
16161 	 */
16162 	tcp->tcp_rq->q_hiwat = rwnd;
16163 	/*
16164 	 * Set the Stream head high water mark. This doesn't have to be
16165 	 * here, since we are simply using default values, but we would
16166 	 * prefer to choose these values algorithmically, with a likely
16167 	 * relationship to rwnd.
16168 	 */
16169 	(void) mi_set_sth_hiwat(tcp->tcp_rq,
16170 	    MAX(rwnd, tcps->tcps_sth_rcv_hiwat));
16171 	return (rwnd);
16172 }
16173 
16174 /*
16175  * Return SNMP stuff in buffer in mpdata.
16176  */
16177 int
16178 tcp_snmp_get(queue_t *q, mblk_t *mpctl)
16179 {
16180 	mblk_t			*mpdata;
16181 	mblk_t			*mp_conn_ctl = NULL;
16182 	mblk_t			*mp_conn_tail;
16183 	mblk_t			*mp_attr_ctl = NULL;
16184 	mblk_t			*mp_attr_tail;
16185 	mblk_t			*mp6_conn_ctl = NULL;
16186 	mblk_t			*mp6_conn_tail;
16187 	mblk_t			*mp6_attr_ctl = NULL;
16188 	mblk_t			*mp6_attr_tail;
16189 	struct opthdr		*optp;
16190 	mib2_tcpConnEntry_t	tce;
16191 	mib2_tcp6ConnEntry_t	tce6;
16192 	mib2_transportMLPEntry_t mlp;
16193 	connf_t			*connfp;
16194 	conn_t			*connp;
16195 	int			i;
16196 	boolean_t 		ispriv;
16197 	zoneid_t 		zoneid;
16198 	int			v4_conn_idx;
16199 	int			v6_conn_idx;
16200 	tcp_stack_t		*tcps = Q_TO_TCP(q)->tcp_tcps;
16201 	ip_stack_t	*ipst;
16202 
16203 	if (mpctl == NULL ||
16204 	    (mpdata = mpctl->b_cont) == NULL ||
16205 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
16206 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
16207 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
16208 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
16209 		freemsg(mp_conn_ctl);
16210 		freemsg(mp_attr_ctl);
16211 		freemsg(mp6_conn_ctl);
16212 		freemsg(mp6_attr_ctl);
16213 		return (0);
16214 	}
16215 
16216 	/* build table of connections -- need count in fixed part */
16217 	SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4);   /* vanj */
16218 	SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min);
16219 	SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max);
16220 	SET_MIB(tcps->tcps_mib.tcpMaxConn, -1);
16221 	SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0);
16222 
16223 	ispriv =
16224 	    secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0;
16225 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16226 
16227 	v4_conn_idx = v6_conn_idx = 0;
16228 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
16229 
16230 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16231 		ipst = tcps->tcps_netstack->netstack_ip;
16232 
16233 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
16234 
16235 		connp = NULL;
16236 
16237 		while ((connp =
16238 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16239 			tcp_t *tcp;
16240 			boolean_t needattr;
16241 
16242 			if (connp->conn_zoneid != zoneid)
16243 				continue;	/* not in this zone */
16244 
16245 			tcp = connp->conn_tcp;
16246 			UPDATE_MIB(&tcps->tcps_mib,
16247 			    tcpHCInSegs, tcp->tcp_ibsegs);
16248 			tcp->tcp_ibsegs = 0;
16249 			UPDATE_MIB(&tcps->tcps_mib,
16250 			    tcpHCOutSegs, tcp->tcp_obsegs);
16251 			tcp->tcp_obsegs = 0;
16252 
16253 			tce6.tcp6ConnState = tce.tcpConnState =
16254 			    tcp_snmp_state(tcp);
16255 			if (tce.tcpConnState == MIB2_TCP_established ||
16256 			    tce.tcpConnState == MIB2_TCP_closeWait)
16257 				BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab);
16258 
16259 			needattr = B_FALSE;
16260 			bzero(&mlp, sizeof (mlp));
16261 			if (connp->conn_mlp_type != mlptSingle) {
16262 				if (connp->conn_mlp_type == mlptShared ||
16263 				    connp->conn_mlp_type == mlptBoth)
16264 					mlp.tme_flags |= MIB2_TMEF_SHARED;
16265 				if (connp->conn_mlp_type == mlptPrivate ||
16266 				    connp->conn_mlp_type == mlptBoth)
16267 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
16268 				needattr = B_TRUE;
16269 			}
16270 			if (connp->conn_peercred != NULL) {
16271 				ts_label_t *tsl;
16272 
16273 				tsl = crgetlabel(connp->conn_peercred);
16274 				mlp.tme_doi = label2doi(tsl);
16275 				mlp.tme_label = *label2bslabel(tsl);
16276 				needattr = B_TRUE;
16277 			}
16278 
16279 			/* Create a message to report on IPv6 entries */
16280 			if (tcp->tcp_ipversion == IPV6_VERSION) {
16281 			tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6;
16282 			tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6;
16283 			tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport);
16284 			tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport);
16285 			tce6.tcp6ConnIfIndex = tcp->tcp_bound_if;
16286 			/* Don't want just anybody seeing these... */
16287 			if (ispriv) {
16288 				tce6.tcp6ConnEntryInfo.ce_snxt =
16289 				    tcp->tcp_snxt;
16290 				tce6.tcp6ConnEntryInfo.ce_suna =
16291 				    tcp->tcp_suna;
16292 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16293 				    tcp->tcp_rnxt;
16294 				tce6.tcp6ConnEntryInfo.ce_rack =
16295 				    tcp->tcp_rack;
16296 			} else {
16297 				/*
16298 				 * Netstat, unfortunately, uses this to
16299 				 * get send/receive queue sizes.  How to fix?
16300 				 * Why not compute the difference only?
16301 				 */
16302 				tce6.tcp6ConnEntryInfo.ce_snxt =
16303 				    tcp->tcp_snxt - tcp->tcp_suna;
16304 				tce6.tcp6ConnEntryInfo.ce_suna = 0;
16305 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16306 				    tcp->tcp_rnxt - tcp->tcp_rack;
16307 				tce6.tcp6ConnEntryInfo.ce_rack = 0;
16308 			}
16309 
16310 			tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16311 			tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16312 			tce6.tcp6ConnEntryInfo.ce_rto =  tcp->tcp_rto;
16313 			tce6.tcp6ConnEntryInfo.ce_mss =  tcp->tcp_mss;
16314 			tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state;
16315 
16316 			tce6.tcp6ConnCreationProcess =
16317 			    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
16318 			    tcp->tcp_cpid;
16319 			tce6.tcp6ConnCreationTime = tcp->tcp_open_time;
16320 
16321 			(void) snmp_append_data2(mp6_conn_ctl->b_cont,
16322 			    &mp6_conn_tail, (char *)&tce6, sizeof (tce6));
16323 
16324 			mlp.tme_connidx = v6_conn_idx++;
16325 			if (needattr)
16326 				(void) snmp_append_data2(mp6_attr_ctl->b_cont,
16327 				    &mp6_attr_tail, (char *)&mlp, sizeof (mlp));
16328 			}
16329 			/*
16330 			 * Create an IPv4 table entry for IPv4 entries and also
16331 			 * for IPv6 entries which are bound to in6addr_any
16332 			 * but don't have IPV6_V6ONLY set.
16333 			 * (i.e. anything an IPv4 peer could connect to)
16334 			 */
16335 			if (tcp->tcp_ipversion == IPV4_VERSION ||
16336 			    (tcp->tcp_state <= TCPS_LISTEN &&
16337 			    !tcp->tcp_connp->conn_ipv6_v6only &&
16338 			    IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) {
16339 				if (tcp->tcp_ipversion == IPV6_VERSION) {
16340 					tce.tcpConnRemAddress = INADDR_ANY;
16341 					tce.tcpConnLocalAddress = INADDR_ANY;
16342 				} else {
16343 					tce.tcpConnRemAddress =
16344 					    tcp->tcp_remote;
16345 					tce.tcpConnLocalAddress =
16346 					    tcp->tcp_ip_src;
16347 				}
16348 				tce.tcpConnLocalPort = ntohs(tcp->tcp_lport);
16349 				tce.tcpConnRemPort = ntohs(tcp->tcp_fport);
16350 				/* Don't want just anybody seeing these... */
16351 				if (ispriv) {
16352 					tce.tcpConnEntryInfo.ce_snxt =
16353 					    tcp->tcp_snxt;
16354 					tce.tcpConnEntryInfo.ce_suna =
16355 					    tcp->tcp_suna;
16356 					tce.tcpConnEntryInfo.ce_rnxt =
16357 					    tcp->tcp_rnxt;
16358 					tce.tcpConnEntryInfo.ce_rack =
16359 					    tcp->tcp_rack;
16360 				} else {
16361 					/*
16362 					 * Netstat, unfortunately, uses this to
16363 					 * get send/receive queue sizes.  How
16364 					 * to fix?
16365 					 * Why not compute the difference only?
16366 					 */
16367 					tce.tcpConnEntryInfo.ce_snxt =
16368 					    tcp->tcp_snxt - tcp->tcp_suna;
16369 					tce.tcpConnEntryInfo.ce_suna = 0;
16370 					tce.tcpConnEntryInfo.ce_rnxt =
16371 					    tcp->tcp_rnxt - tcp->tcp_rack;
16372 					tce.tcpConnEntryInfo.ce_rack = 0;
16373 				}
16374 
16375 				tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16376 				tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16377 				tce.tcpConnEntryInfo.ce_rto =  tcp->tcp_rto;
16378 				tce.tcpConnEntryInfo.ce_mss =  tcp->tcp_mss;
16379 				tce.tcpConnEntryInfo.ce_state =
16380 				    tcp->tcp_state;
16381 
16382 				tce.tcpConnCreationProcess =
16383 				    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
16384 				    tcp->tcp_cpid;
16385 				tce.tcpConnCreationTime = tcp->tcp_open_time;
16386 
16387 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
16388 				    &mp_conn_tail, (char *)&tce, sizeof (tce));
16389 
16390 				mlp.tme_connidx = v4_conn_idx++;
16391 				if (needattr)
16392 					(void) snmp_append_data2(
16393 					    mp_attr_ctl->b_cont,
16394 					    &mp_attr_tail, (char *)&mlp,
16395 					    sizeof (mlp));
16396 			}
16397 		}
16398 	}
16399 
16400 	/* fixed length structure for IPv4 and IPv6 counters */
16401 	SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t));
16402 	SET_MIB(tcps->tcps_mib.tcp6ConnTableSize,
16403 	    sizeof (mib2_tcp6ConnEntry_t));
16404 	/* synchronize 32- and 64-bit counters */
16405 	SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs);
16406 	SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs);
16407 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
16408 	optp->level = MIB2_TCP;
16409 	optp->name = 0;
16410 	(void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib,
16411 	    sizeof (tcps->tcps_mib));
16412 	optp->len = msgdsize(mpdata);
16413 	qreply(q, mpctl);
16414 
16415 	/* table of connections... */
16416 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
16417 	    sizeof (struct T_optmgmt_ack)];
16418 	optp->level = MIB2_TCP;
16419 	optp->name = MIB2_TCP_CONN;
16420 	optp->len = msgdsize(mp_conn_ctl->b_cont);
16421 	qreply(q, mp_conn_ctl);
16422 
16423 	/* table of MLP attributes... */
16424 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
16425 	    sizeof (struct T_optmgmt_ack)];
16426 	optp->level = MIB2_TCP;
16427 	optp->name = EXPER_XPORT_MLP;
16428 	optp->len = msgdsize(mp_attr_ctl->b_cont);
16429 	if (optp->len == 0)
16430 		freemsg(mp_attr_ctl);
16431 	else
16432 		qreply(q, mp_attr_ctl);
16433 
16434 	/* table of IPv6 connections... */
16435 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
16436 	    sizeof (struct T_optmgmt_ack)];
16437 	optp->level = MIB2_TCP6;
16438 	optp->name = MIB2_TCP6_CONN;
16439 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
16440 	qreply(q, mp6_conn_ctl);
16441 
16442 	/* table of IPv6 MLP attributes... */
16443 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
16444 	    sizeof (struct T_optmgmt_ack)];
16445 	optp->level = MIB2_TCP6;
16446 	optp->name = EXPER_XPORT_MLP;
16447 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
16448 	if (optp->len == 0)
16449 		freemsg(mp6_attr_ctl);
16450 	else
16451 		qreply(q, mp6_attr_ctl);
16452 	return (1);
16453 }
16454 
16455 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests  */
16456 /* ARGSUSED */
16457 int
16458 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
16459 {
16460 	mib2_tcpConnEntry_t	*tce = (mib2_tcpConnEntry_t *)ptr;
16461 
16462 	switch (level) {
16463 	case MIB2_TCP:
16464 		switch (name) {
16465 		case 13:
16466 			if (tce->tcpConnState != MIB2_TCP_deleteTCB)
16467 				return (0);
16468 			/* TODO: delete entry defined by tce */
16469 			return (1);
16470 		default:
16471 			return (0);
16472 		}
16473 	default:
16474 		return (1);
16475 	}
16476 }
16477 
16478 /* Translate TCP state to MIB2 TCP state. */
16479 static int
16480 tcp_snmp_state(tcp_t *tcp)
16481 {
16482 	if (tcp == NULL)
16483 		return (0);
16484 
16485 	switch (tcp->tcp_state) {
16486 	case TCPS_CLOSED:
16487 	case TCPS_IDLE:	/* RFC1213 doesn't have analogue for IDLE & BOUND */
16488 	case TCPS_BOUND:
16489 		return (MIB2_TCP_closed);
16490 	case TCPS_LISTEN:
16491 		return (MIB2_TCP_listen);
16492 	case TCPS_SYN_SENT:
16493 		return (MIB2_TCP_synSent);
16494 	case TCPS_SYN_RCVD:
16495 		return (MIB2_TCP_synReceived);
16496 	case TCPS_ESTABLISHED:
16497 		return (MIB2_TCP_established);
16498 	case TCPS_CLOSE_WAIT:
16499 		return (MIB2_TCP_closeWait);
16500 	case TCPS_FIN_WAIT_1:
16501 		return (MIB2_TCP_finWait1);
16502 	case TCPS_CLOSING:
16503 		return (MIB2_TCP_closing);
16504 	case TCPS_LAST_ACK:
16505 		return (MIB2_TCP_lastAck);
16506 	case TCPS_FIN_WAIT_2:
16507 		return (MIB2_TCP_finWait2);
16508 	case TCPS_TIME_WAIT:
16509 		return (MIB2_TCP_timeWait);
16510 	default:
16511 		return (0);
16512 	}
16513 }
16514 
16515 static char tcp_report_header[] =
16516 	"TCP     " MI_COL_HDRPAD_STR
16517 	"zone dest            snxt     suna     "
16518 	"swnd       rnxt     rack     rwnd       rto   mss   w sw rw t "
16519 	"recent   [lport,fport] state";
16520 
16521 /*
16522  * TCP status report triggered via the Named Dispatch mechanism.
16523  */
16524 /* ARGSUSED */
16525 static void
16526 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream,
16527     cred_t *cr)
16528 {
16529 	char hash[10], addrbuf[INET6_ADDRSTRLEN];
16530 	boolean_t ispriv = secpolicy_ip_config(cr, B_TRUE) == 0;
16531 	char cflag;
16532 	in6_addr_t	v6dst;
16533 	char buf[80];
16534 	uint_t print_len, buf_len;
16535 
16536 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16537 	if (buf_len <= 0)
16538 		return;
16539 
16540 	if (hashval >= 0)
16541 		(void) sprintf(hash, "%03d ", hashval);
16542 	else
16543 		hash[0] = '\0';
16544 
16545 	/*
16546 	 * Note that we use the remote address in the tcp_b  structure.
16547 	 * This means that it will print out the real destination address,
16548 	 * not the next hop's address if source routing is used.  This
16549 	 * avoid the confusion on the output because user may not
16550 	 * know that source routing is used for a connection.
16551 	 */
16552 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16553 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst);
16554 	} else {
16555 		v6dst = tcp->tcp_remote_v6;
16556 	}
16557 	(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16558 	/*
16559 	 * the ispriv checks are so that normal users cannot determine
16560 	 * sequence number information using NDD.
16561 	 */
16562 
16563 	if (TCP_IS_DETACHED(tcp))
16564 		cflag = '*';
16565 	else
16566 		cflag = ' ';
16567 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16568 	    "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x "
16569 	    "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n",
16570 	    hash,
16571 	    (void *)tcp,
16572 	    tcp->tcp_connp->conn_zoneid,
16573 	    addrbuf,
16574 	    (ispriv) ? tcp->tcp_snxt : 0,
16575 	    (ispriv) ? tcp->tcp_suna : 0,
16576 	    tcp->tcp_swnd,
16577 	    (ispriv) ? tcp->tcp_rnxt : 0,
16578 	    (ispriv) ? tcp->tcp_rack : 0,
16579 	    tcp->tcp_rwnd,
16580 	    tcp->tcp_rto,
16581 	    tcp->tcp_mss,
16582 	    tcp->tcp_snd_ws_ok,
16583 	    tcp->tcp_snd_ws,
16584 	    tcp->tcp_rcv_ws,
16585 	    tcp->tcp_snd_ts_ok,
16586 	    tcp->tcp_ts_recent,
16587 	    tcp_display(tcp, buf, DISP_PORT_ONLY), cflag);
16588 	if (print_len < buf_len) {
16589 		((mblk_t *)mp)->b_wptr += print_len;
16590 	} else {
16591 		((mblk_t *)mp)->b_wptr += buf_len;
16592 	}
16593 }
16594 
16595 /*
16596  * TCP status report (for listeners only) triggered via the Named Dispatch
16597  * mechanism.
16598  */
16599 /* ARGSUSED */
16600 static void
16601 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval)
16602 {
16603 	char addrbuf[INET6_ADDRSTRLEN];
16604 	in6_addr_t	v6dst;
16605 	uint_t print_len, buf_len;
16606 
16607 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16608 	if (buf_len <= 0)
16609 		return;
16610 
16611 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16612 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst);
16613 		(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16614 	} else {
16615 		(void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src,
16616 		    addrbuf, sizeof (addrbuf));
16617 	}
16618 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16619 	    "%03d "
16620 	    MI_COL_PTRFMT_STR
16621 	    "%d %s %05u %08u %d/%d/%d%c\n",
16622 	    hashval, (void *)tcp,
16623 	    tcp->tcp_connp->conn_zoneid,
16624 	    addrbuf,
16625 	    (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport),
16626 	    tcp->tcp_conn_req_seqnum,
16627 	    tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q,
16628 	    tcp->tcp_conn_req_max,
16629 	    tcp->tcp_syn_defense ? '*' : ' ');
16630 	if (print_len < buf_len) {
16631 		((mblk_t *)mp)->b_wptr += print_len;
16632 	} else {
16633 		((mblk_t *)mp)->b_wptr += buf_len;
16634 	}
16635 }
16636 
16637 /* TCP status report triggered via the Named Dispatch mechanism. */
16638 /* ARGSUSED */
16639 static int
16640 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16641 {
16642 	tcp_t	*tcp;
16643 	int	i;
16644 	conn_t	*connp;
16645 	connf_t	*connfp;
16646 	zoneid_t zoneid;
16647 	tcp_stack_t *tcps;
16648 	ip_stack_t *ipst;
16649 
16650 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16651 	tcps = Q_TO_TCP(q)->tcp_tcps;
16652 
16653 	/*
16654 	 * Because of the ndd constraint, at most we can have 64K buffer
16655 	 * to put in all TCP info.  So to be more efficient, just
16656 	 * allocate a 64K buffer here, assuming we need that large buffer.
16657 	 * This may be a problem as any user can read tcp_status.  Therefore
16658 	 * we limit the rate of doing this using tcp_ndd_get_info_interval.
16659 	 * This should be OK as normal users should not do this too often.
16660 	 */
16661 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16662 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16663 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16664 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16665 			return (0);
16666 		}
16667 	}
16668 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16669 		/* The following may work even if we cannot get a large buf. */
16670 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16671 		return (0);
16672 	}
16673 
16674 	(void) mi_mpprintf(mp, "%s", tcp_report_header);
16675 
16676 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16677 
16678 		ipst = tcps->tcps_netstack->netstack_ip;
16679 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
16680 
16681 		connp = NULL;
16682 
16683 		while ((connp =
16684 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16685 			tcp = connp->conn_tcp;
16686 			if (zoneid != GLOBAL_ZONEID &&
16687 			    zoneid != connp->conn_zoneid)
16688 				continue;
16689 			tcp_report_item(mp->b_cont, tcp, -1, tcp,
16690 			    cr);
16691 		}
16692 
16693 	}
16694 
16695 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16696 	return (0);
16697 }
16698 
16699 /* TCP status report triggered via the Named Dispatch mechanism. */
16700 /* ARGSUSED */
16701 static int
16702 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16703 {
16704 	tf_t	*tbf;
16705 	tcp_t	*tcp;
16706 	int	i;
16707 	zoneid_t zoneid;
16708 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
16709 
16710 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16711 
16712 	/* Refer to comments in tcp_status_report(). */
16713 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16714 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16715 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16716 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16717 			return (0);
16718 		}
16719 	}
16720 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16721 		/* The following may work even if we cannot get a large buf. */
16722 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16723 		return (0);
16724 	}
16725 
16726 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16727 
16728 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
16729 		tbf = &tcps->tcps_bind_fanout[i];
16730 		mutex_enter(&tbf->tf_lock);
16731 		for (tcp = tbf->tf_tcp; tcp != NULL;
16732 		    tcp = tcp->tcp_bind_hash) {
16733 			if (zoneid != GLOBAL_ZONEID &&
16734 			    zoneid != tcp->tcp_connp->conn_zoneid)
16735 				continue;
16736 			CONN_INC_REF(tcp->tcp_connp);
16737 			tcp_report_item(mp->b_cont, tcp, i,
16738 			    Q_TO_TCP(q), cr);
16739 			CONN_DEC_REF(tcp->tcp_connp);
16740 		}
16741 		mutex_exit(&tbf->tf_lock);
16742 	}
16743 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16744 	return (0);
16745 }
16746 
16747 /* TCP status report triggered via the Named Dispatch mechanism. */
16748 /* ARGSUSED */
16749 static int
16750 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16751 {
16752 	connf_t	*connfp;
16753 	conn_t	*connp;
16754 	tcp_t	*tcp;
16755 	int	i;
16756 	zoneid_t zoneid;
16757 	tcp_stack_t *tcps;
16758 	ip_stack_t	*ipst;
16759 
16760 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16761 	tcps = Q_TO_TCP(q)->tcp_tcps;
16762 
16763 	/* Refer to comments in tcp_status_report(). */
16764 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16765 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16766 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16767 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16768 			return (0);
16769 		}
16770 	}
16771 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16772 		/* The following may work even if we cannot get a large buf. */
16773 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16774 		return (0);
16775 	}
16776 
16777 	(void) mi_mpprintf(mp,
16778 	    "    TCP    " MI_COL_HDRPAD_STR
16779 	    "zone IP addr         port  seqnum   backlog (q0/q/max)");
16780 
16781 	ipst = tcps->tcps_netstack->netstack_ip;
16782 
16783 	for (i = 0; i < ipst->ips_ipcl_bind_fanout_size; i++) {
16784 		connfp = &ipst->ips_ipcl_bind_fanout[i];
16785 		connp = NULL;
16786 		while ((connp =
16787 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16788 			tcp = connp->conn_tcp;
16789 			if (zoneid != GLOBAL_ZONEID &&
16790 			    zoneid != connp->conn_zoneid)
16791 				continue;
16792 			tcp_report_listener(mp->b_cont, tcp, i);
16793 		}
16794 	}
16795 
16796 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16797 	return (0);
16798 }
16799 
16800 /* TCP status report triggered via the Named Dispatch mechanism. */
16801 /* ARGSUSED */
16802 static int
16803 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16804 {
16805 	connf_t	*connfp;
16806 	conn_t	*connp;
16807 	tcp_t	*tcp;
16808 	int	i;
16809 	zoneid_t zoneid;
16810 	tcp_stack_t *tcps;
16811 	ip_stack_t *ipst;
16812 
16813 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16814 	tcps = Q_TO_TCP(q)->tcp_tcps;
16815 	ipst = tcps->tcps_netstack->netstack_ip;
16816 
16817 	/* Refer to comments in tcp_status_report(). */
16818 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16819 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16820 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16821 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16822 			return (0);
16823 		}
16824 	}
16825 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16826 		/* The following may work even if we cannot get a large buf. */
16827 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16828 		return (0);
16829 	}
16830 
16831 	(void) mi_mpprintf(mp, "tcp_conn_hash_size = %d",
16832 	    ipst->ips_ipcl_conn_fanout_size);
16833 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16834 
16835 	for (i = 0; i < ipst->ips_ipcl_conn_fanout_size; i++) {
16836 		connfp =  &ipst->ips_ipcl_conn_fanout[i];
16837 		connp = NULL;
16838 		while ((connp =
16839 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16840 			tcp = connp->conn_tcp;
16841 			if (zoneid != GLOBAL_ZONEID &&
16842 			    zoneid != connp->conn_zoneid)
16843 				continue;
16844 			tcp_report_item(mp->b_cont, tcp, i,
16845 			    Q_TO_TCP(q), cr);
16846 		}
16847 	}
16848 
16849 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16850 	return (0);
16851 }
16852 
16853 /* TCP status report triggered via the Named Dispatch mechanism. */
16854 /* ARGSUSED */
16855 static int
16856 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16857 {
16858 	tf_t	*tf;
16859 	tcp_t	*tcp;
16860 	int	i;
16861 	zoneid_t zoneid;
16862 	tcp_stack_t	*tcps;
16863 
16864 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16865 	tcps = Q_TO_TCP(q)->tcp_tcps;
16866 
16867 	/* Refer to comments in tcp_status_report(). */
16868 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16869 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16870 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16871 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16872 			return (0);
16873 		}
16874 	}
16875 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16876 		/* The following may work even if we cannot get a large buf. */
16877 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16878 		return (0);
16879 	}
16880 
16881 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16882 
16883 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
16884 		tf = &tcps->tcps_acceptor_fanout[i];
16885 		mutex_enter(&tf->tf_lock);
16886 		for (tcp = tf->tf_tcp; tcp != NULL;
16887 		    tcp = tcp->tcp_acceptor_hash) {
16888 			if (zoneid != GLOBAL_ZONEID &&
16889 			    zoneid != tcp->tcp_connp->conn_zoneid)
16890 				continue;
16891 			tcp_report_item(mp->b_cont, tcp, i,
16892 			    Q_TO_TCP(q), cr);
16893 		}
16894 		mutex_exit(&tf->tf_lock);
16895 	}
16896 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16897 	return (0);
16898 }
16899 
16900 /*
16901  * tcp_timer is the timer service routine.  It handles the retransmission,
16902  * FIN_WAIT_2 flush, and zero window probe timeout events.  It figures out
16903  * from the state of the tcp instance what kind of action needs to be done
16904  * at the time it is called.
16905  */
16906 static void
16907 tcp_timer(void *arg)
16908 {
16909 	mblk_t		*mp;
16910 	clock_t		first_threshold;
16911 	clock_t		second_threshold;
16912 	clock_t		ms;
16913 	uint32_t	mss;
16914 	conn_t		*connp = (conn_t *)arg;
16915 	tcp_t		*tcp = connp->conn_tcp;
16916 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16917 
16918 	tcp->tcp_timer_tid = 0;
16919 
16920 	if (tcp->tcp_fused)
16921 		return;
16922 
16923 	first_threshold =  tcp->tcp_first_timer_threshold;
16924 	second_threshold = tcp->tcp_second_timer_threshold;
16925 	switch (tcp->tcp_state) {
16926 	case TCPS_IDLE:
16927 	case TCPS_BOUND:
16928 	case TCPS_LISTEN:
16929 		return;
16930 	case TCPS_SYN_RCVD: {
16931 		tcp_t	*listener = tcp->tcp_listener;
16932 
16933 		if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) {
16934 			ASSERT(tcp->tcp_rq == listener->tcp_rq);
16935 			/* it's our first timeout */
16936 			tcp->tcp_syn_rcvd_timeout = 1;
16937 			mutex_enter(&listener->tcp_eager_lock);
16938 			listener->tcp_syn_rcvd_timeout++;
16939 			if (!tcp->tcp_dontdrop && tcp->tcp_closemp_used == 0) {
16940 				/*
16941 				 * Make this eager available for drop if we
16942 				 * need to drop one to accomodate a new
16943 				 * incoming SYN request.
16944 				 */
16945 				MAKE_DROPPABLE(listener, tcp);
16946 			}
16947 			if (!listener->tcp_syn_defense &&
16948 			    (listener->tcp_syn_rcvd_timeout >
16949 			    (tcps->tcps_conn_req_max_q0 >> 2)) &&
16950 			    (tcps->tcps_conn_req_max_q0 > 200)) {
16951 				/* We may be under attack. Put on a defense. */
16952 				listener->tcp_syn_defense = B_TRUE;
16953 				cmn_err(CE_WARN, "High TCP connect timeout "
16954 				    "rate! System (port %d) may be under a "
16955 				    "SYN flood attack!",
16956 				    BE16_TO_U16(listener->tcp_tcph->th_lport));
16957 
16958 				listener->tcp_ip_addr_cache = kmem_zalloc(
16959 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t),
16960 				    KM_NOSLEEP);
16961 			}
16962 			mutex_exit(&listener->tcp_eager_lock);
16963 		} else if (listener != NULL) {
16964 			mutex_enter(&listener->tcp_eager_lock);
16965 			tcp->tcp_syn_rcvd_timeout++;
16966 			if (tcp->tcp_syn_rcvd_timeout > 1 &&
16967 			    tcp->tcp_closemp_used == 0) {
16968 				/*
16969 				 * This is our second timeout. Put the tcp in
16970 				 * the list of droppable eagers to allow it to
16971 				 * be dropped, if needed. We don't check
16972 				 * whether tcp_dontdrop is set or not to
16973 				 * protect ourselve from a SYN attack where a
16974 				 * remote host can spoof itself as one of the
16975 				 * good IP source and continue to hold
16976 				 * resources too long.
16977 				 */
16978 				MAKE_DROPPABLE(listener, tcp);
16979 			}
16980 			mutex_exit(&listener->tcp_eager_lock);
16981 		}
16982 	}
16983 		/* FALLTHRU */
16984 	case TCPS_SYN_SENT:
16985 		first_threshold =  tcp->tcp_first_ctimer_threshold;
16986 		second_threshold = tcp->tcp_second_ctimer_threshold;
16987 		break;
16988 	case TCPS_ESTABLISHED:
16989 	case TCPS_FIN_WAIT_1:
16990 	case TCPS_CLOSING:
16991 	case TCPS_CLOSE_WAIT:
16992 	case TCPS_LAST_ACK:
16993 		/* If we have data to rexmit */
16994 		if (tcp->tcp_suna != tcp->tcp_snxt) {
16995 			clock_t	time_to_wait;
16996 
16997 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans);
16998 			if (!tcp->tcp_xmit_head)
16999 				break;
17000 			time_to_wait = lbolt -
17001 			    (clock_t)tcp->tcp_xmit_head->b_prev;
17002 			time_to_wait = tcp->tcp_rto -
17003 			    TICK_TO_MSEC(time_to_wait);
17004 			/*
17005 			 * If the timer fires too early, 1 clock tick earlier,
17006 			 * restart the timer.
17007 			 */
17008 			if (time_to_wait > msec_per_tick) {
17009 				TCP_STAT(tcps, tcp_timer_fire_early);
17010 				TCP_TIMER_RESTART(tcp, time_to_wait);
17011 				return;
17012 			}
17013 			/*
17014 			 * When we probe zero windows, we force the swnd open.
17015 			 * If our peer acks with a closed window swnd will be
17016 			 * set to zero by tcp_rput(). As long as we are
17017 			 * receiving acks tcp_rput will
17018 			 * reset 'tcp_ms_we_have_waited' so as not to trip the
17019 			 * first and second interval actions.  NOTE: the timer
17020 			 * interval is allowed to continue its exponential
17021 			 * backoff.
17022 			 */
17023 			if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) {
17024 				if (tcp->tcp_debug) {
17025 					(void) strlog(TCP_MOD_ID, 0, 1,
17026 					    SL_TRACE, "tcp_timer: zero win");
17027 				}
17028 			} else {
17029 				/*
17030 				 * After retransmission, we need to do
17031 				 * slow start.  Set the ssthresh to one
17032 				 * half of current effective window and
17033 				 * cwnd to one MSS.  Also reset
17034 				 * tcp_cwnd_cnt.
17035 				 *
17036 				 * Note that if tcp_ssthresh is reduced because
17037 				 * of ECN, do not reduce it again unless it is
17038 				 * already one window of data away (tcp_cwr
17039 				 * should then be cleared) or this is a
17040 				 * timeout for a retransmitted segment.
17041 				 */
17042 				uint32_t npkt;
17043 
17044 				if (!tcp->tcp_cwr || tcp->tcp_rexmit) {
17045 					npkt = ((tcp->tcp_timer_backoff ?
17046 					    tcp->tcp_cwnd_ssthresh :
17047 					    tcp->tcp_snxt -
17048 					    tcp->tcp_suna) >> 1) / tcp->tcp_mss;
17049 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
17050 					    tcp->tcp_mss;
17051 				}
17052 				tcp->tcp_cwnd = tcp->tcp_mss;
17053 				tcp->tcp_cwnd_cnt = 0;
17054 				if (tcp->tcp_ecn_ok) {
17055 					tcp->tcp_cwr = B_TRUE;
17056 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
17057 					tcp->tcp_ecn_cwr_sent = B_FALSE;
17058 				}
17059 			}
17060 			break;
17061 		}
17062 		/*
17063 		 * We have something to send yet we cannot send.  The
17064 		 * reason can be:
17065 		 *
17066 		 * 1. Zero send window: we need to do zero window probe.
17067 		 * 2. Zero cwnd: because of ECN, we need to "clock out
17068 		 * segments.
17069 		 * 3. SWS avoidance: receiver may have shrunk window,
17070 		 * reset our knowledge.
17071 		 *
17072 		 * Note that condition 2 can happen with either 1 or
17073 		 * 3.  But 1 and 3 are exclusive.
17074 		 */
17075 		if (tcp->tcp_unsent != 0) {
17076 			if (tcp->tcp_cwnd == 0) {
17077 				/*
17078 				 * Set tcp_cwnd to 1 MSS so that a
17079 				 * new segment can be sent out.  We
17080 				 * are "clocking out" new data when
17081 				 * the network is really congested.
17082 				 */
17083 				ASSERT(tcp->tcp_ecn_ok);
17084 				tcp->tcp_cwnd = tcp->tcp_mss;
17085 			}
17086 			if (tcp->tcp_swnd == 0) {
17087 				/* Extend window for zero window probe */
17088 				tcp->tcp_swnd++;
17089 				tcp->tcp_zero_win_probe = B_TRUE;
17090 				BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe);
17091 			} else {
17092 				/*
17093 				 * Handle timeout from sender SWS avoidance.
17094 				 * Reset our knowledge of the max send window
17095 				 * since the receiver might have reduced its
17096 				 * receive buffer.  Avoid setting tcp_max_swnd
17097 				 * to one since that will essentially disable
17098 				 * the SWS checks.
17099 				 *
17100 				 * Note that since we don't have a SWS
17101 				 * state variable, if the timeout is set
17102 				 * for ECN but not for SWS, this
17103 				 * code will also be executed.  This is
17104 				 * fine as tcp_max_swnd is updated
17105 				 * constantly and it will not affect
17106 				 * anything.
17107 				 */
17108 				tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2);
17109 			}
17110 			tcp_wput_data(tcp, NULL, B_FALSE);
17111 			return;
17112 		}
17113 		/* Is there a FIN that needs to be to re retransmitted? */
17114 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17115 		    !tcp->tcp_fin_acked)
17116 			break;
17117 		/* Nothing to do, return without restarting timer. */
17118 		TCP_STAT(tcps, tcp_timer_fire_miss);
17119 		return;
17120 	case TCPS_FIN_WAIT_2:
17121 		/*
17122 		 * User closed the TCP endpoint and peer ACK'ed our FIN.
17123 		 * We waited some time for for peer's FIN, but it hasn't
17124 		 * arrived.  We flush the connection now to avoid
17125 		 * case where the peer has rebooted.
17126 		 */
17127 		if (TCP_IS_DETACHED(tcp)) {
17128 			(void) tcp_clean_death(tcp, 0, 23);
17129 		} else {
17130 			TCP_TIMER_RESTART(tcp,
17131 			    tcps->tcps_fin_wait_2_flush_interval);
17132 		}
17133 		return;
17134 	case TCPS_TIME_WAIT:
17135 		(void) tcp_clean_death(tcp, 0, 24);
17136 		return;
17137 	default:
17138 		if (tcp->tcp_debug) {
17139 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
17140 			    "tcp_timer: strange state (%d) %s",
17141 			    tcp->tcp_state, tcp_display(tcp, NULL,
17142 			    DISP_PORT_ONLY));
17143 		}
17144 		return;
17145 	}
17146 	if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) {
17147 		/*
17148 		 * For zero window probe, we need to send indefinitely,
17149 		 * unless we have not heard from the other side for some
17150 		 * time...
17151 		 */
17152 		if ((tcp->tcp_zero_win_probe == 0) ||
17153 		    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >
17154 		    second_threshold)) {
17155 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop);
17156 			/*
17157 			 * If TCP is in SYN_RCVD state, send back a
17158 			 * RST|ACK as BSD does.  Note that tcp_zero_win_probe
17159 			 * should be zero in TCPS_SYN_RCVD state.
17160 			 */
17161 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
17162 				tcp_xmit_ctl("tcp_timer: RST sent on timeout "
17163 				    "in SYN_RCVD",
17164 				    tcp, tcp->tcp_snxt,
17165 				    tcp->tcp_rnxt, TH_RST | TH_ACK);
17166 			}
17167 			(void) tcp_clean_death(tcp,
17168 			    tcp->tcp_client_errno ?
17169 			    tcp->tcp_client_errno : ETIMEDOUT, 25);
17170 			return;
17171 		} else {
17172 			/*
17173 			 * Set tcp_ms_we_have_waited to second_threshold
17174 			 * so that in next timeout, we will do the above
17175 			 * check (lbolt - tcp_last_recv_time).  This is
17176 			 * also to avoid overflow.
17177 			 *
17178 			 * We don't need to decrement tcp_timer_backoff
17179 			 * to avoid overflow because it will be decremented
17180 			 * later if new timeout value is greater than
17181 			 * tcp_rexmit_interval_max.  In the case when
17182 			 * tcp_rexmit_interval_max is greater than
17183 			 * second_threshold, it means that we will wait
17184 			 * longer than second_threshold to send the next
17185 			 * window probe.
17186 			 */
17187 			tcp->tcp_ms_we_have_waited = second_threshold;
17188 		}
17189 	} else if (ms > first_threshold) {
17190 		if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) &&
17191 		    tcp->tcp_xmit_head != NULL) {
17192 			tcp->tcp_xmit_head =
17193 			    tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1);
17194 		}
17195 		/*
17196 		 * We have been retransmitting for too long...  The RTT
17197 		 * we calculated is probably incorrect.  Reinitialize it.
17198 		 * Need to compensate for 0 tcp_rtt_sa.  Reset
17199 		 * tcp_rtt_update so that we won't accidentally cache a
17200 		 * bad value.  But only do this if this is not a zero
17201 		 * window probe.
17202 		 */
17203 		if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) {
17204 			tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) +
17205 			    (tcp->tcp_rtt_sa >> 5);
17206 			tcp->tcp_rtt_sa = 0;
17207 			tcp_ip_notify(tcp);
17208 			tcp->tcp_rtt_update = 0;
17209 		}
17210 	}
17211 	tcp->tcp_timer_backoff++;
17212 	if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
17213 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) <
17214 	    tcps->tcps_rexmit_interval_min) {
17215 		/*
17216 		 * This means the original RTO is tcp_rexmit_interval_min.
17217 		 * So we will use tcp_rexmit_interval_min as the RTO value
17218 		 * and do the backoff.
17219 		 */
17220 		ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff;
17221 	} else {
17222 		ms <<= tcp->tcp_timer_backoff;
17223 	}
17224 	if (ms > tcps->tcps_rexmit_interval_max) {
17225 		ms = tcps->tcps_rexmit_interval_max;
17226 		/*
17227 		 * ms is at max, decrement tcp_timer_backoff to avoid
17228 		 * overflow.
17229 		 */
17230 		tcp->tcp_timer_backoff--;
17231 	}
17232 	tcp->tcp_ms_we_have_waited += ms;
17233 	if (tcp->tcp_zero_win_probe == 0) {
17234 		tcp->tcp_rto = ms;
17235 	}
17236 	TCP_TIMER_RESTART(tcp, ms);
17237 	/*
17238 	 * This is after a timeout and tcp_rto is backed off.  Set
17239 	 * tcp_set_timer to 1 so that next time RTO is updated, we will
17240 	 * restart the timer with a correct value.
17241 	 */
17242 	tcp->tcp_set_timer = 1;
17243 	mss = tcp->tcp_snxt - tcp->tcp_suna;
17244 	if (mss > tcp->tcp_mss)
17245 		mss = tcp->tcp_mss;
17246 	if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0)
17247 		mss = tcp->tcp_swnd;
17248 
17249 	if ((mp = tcp->tcp_xmit_head) != NULL)
17250 		mp->b_prev = (mblk_t *)lbolt;
17251 	mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss,
17252 	    B_TRUE);
17253 
17254 	/*
17255 	 * When slow start after retransmission begins, start with
17256 	 * this seq no.  tcp_rexmit_max marks the end of special slow
17257 	 * start phase.  tcp_snd_burst controls how many segments
17258 	 * can be sent because of an ack.
17259 	 */
17260 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
17261 	tcp->tcp_snd_burst = TCP_CWND_SS;
17262 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17263 	    (tcp->tcp_unsent == 0)) {
17264 		tcp->tcp_rexmit_max = tcp->tcp_fss;
17265 	} else {
17266 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
17267 	}
17268 	tcp->tcp_rexmit = B_TRUE;
17269 	tcp->tcp_dupack_cnt = 0;
17270 
17271 	/*
17272 	 * Remove all rexmit SACK blk to start from fresh.
17273 	 */
17274 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
17275 		TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
17276 		tcp->tcp_num_notsack_blk = 0;
17277 		tcp->tcp_cnt_notsack_list = 0;
17278 	}
17279 	if (mp == NULL) {
17280 		return;
17281 	}
17282 	/* Attach credentials to retransmitted initial SYNs. */
17283 	if (tcp->tcp_state == TCPS_SYN_SENT) {
17284 		mblk_setcred(mp, tcp->tcp_cred);
17285 		DB_CPID(mp) = tcp->tcp_cpid;
17286 	}
17287 
17288 	tcp->tcp_csuna = tcp->tcp_snxt;
17289 	BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
17290 	UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss);
17291 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
17292 	tcp_send_data(tcp, tcp->tcp_wq, mp);
17293 
17294 }
17295 
17296 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */
17297 static void
17298 tcp_unbind(tcp_t *tcp, mblk_t *mp)
17299 {
17300 	conn_t	*connp;
17301 
17302 	switch (tcp->tcp_state) {
17303 	case TCPS_BOUND:
17304 	case TCPS_LISTEN:
17305 		break;
17306 	default:
17307 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
17308 		return;
17309 	}
17310 
17311 	/*
17312 	 * Need to clean up all the eagers since after the unbind, segments
17313 	 * will no longer be delivered to this listener stream.
17314 	 */
17315 	mutex_enter(&tcp->tcp_eager_lock);
17316 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
17317 		tcp_eager_cleanup(tcp, 0);
17318 	}
17319 	mutex_exit(&tcp->tcp_eager_lock);
17320 
17321 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17322 		tcp->tcp_ipha->ipha_src = 0;
17323 	} else {
17324 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
17325 	}
17326 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
17327 	bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport));
17328 	tcp_bind_hash_remove(tcp);
17329 	tcp->tcp_state = TCPS_IDLE;
17330 	tcp->tcp_mdt = B_FALSE;
17331 	/* Send M_FLUSH according to TPI */
17332 	(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
17333 	connp = tcp->tcp_connp;
17334 	connp->conn_mdt_ok = B_FALSE;
17335 	ipcl_hash_remove(connp);
17336 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
17337 	mp = mi_tpi_ok_ack_alloc(mp);
17338 	putnext(tcp->tcp_rq, mp);
17339 }
17340 
17341 /*
17342  * Don't let port fall into the privileged range.
17343  * Since the extra privileged ports can be arbitrary we also
17344  * ensure that we exclude those from consideration.
17345  * tcp_g_epriv_ports is not sorted thus we loop over it until
17346  * there are no changes.
17347  *
17348  * Note: No locks are held when inspecting tcp_g_*epriv_ports
17349  * but instead the code relies on:
17350  * - the fact that the address of the array and its size never changes
17351  * - the atomic assignment of the elements of the array
17352  *
17353  * Returns 0 if there are no more ports available.
17354  *
17355  * TS note: skip multilevel ports.
17356  */
17357 static in_port_t
17358 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random)
17359 {
17360 	int i;
17361 	boolean_t restart = B_FALSE;
17362 	tcp_stack_t *tcps = tcp->tcp_tcps;
17363 
17364 	if (random && tcp_random_anon_port != 0) {
17365 		(void) random_get_pseudo_bytes((uint8_t *)&port,
17366 		    sizeof (in_port_t));
17367 		/*
17368 		 * Unless changed by a sys admin, the smallest anon port
17369 		 * is 32768 and the largest anon port is 65535.  It is
17370 		 * very likely (50%) for the random port to be smaller
17371 		 * than the smallest anon port.  When that happens,
17372 		 * add port % (anon port range) to the smallest anon
17373 		 * port to get the random port.  It should fall into the
17374 		 * valid anon port range.
17375 		 */
17376 		if (port < tcps->tcps_smallest_anon_port) {
17377 			port = tcps->tcps_smallest_anon_port +
17378 			    port % (tcps->tcps_largest_anon_port -
17379 			    tcps->tcps_smallest_anon_port);
17380 		}
17381 	}
17382 
17383 retry:
17384 	if (port < tcps->tcps_smallest_anon_port)
17385 		port = (in_port_t)tcps->tcps_smallest_anon_port;
17386 
17387 	if (port > tcps->tcps_largest_anon_port) {
17388 		if (restart)
17389 			return (0);
17390 		restart = B_TRUE;
17391 		port = (in_port_t)tcps->tcps_smallest_anon_port;
17392 	}
17393 
17394 	if (port < tcps->tcps_smallest_nonpriv_port)
17395 		port = (in_port_t)tcps->tcps_smallest_nonpriv_port;
17396 
17397 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
17398 		if (port == tcps->tcps_g_epriv_ports[i]) {
17399 			port++;
17400 			/*
17401 			 * Make sure whether the port is in the
17402 			 * valid range.
17403 			 */
17404 			goto retry;
17405 		}
17406 	}
17407 	if (is_system_labeled() &&
17408 	    (i = tsol_next_port(crgetzone(tcp->tcp_cred), port,
17409 	    IPPROTO_TCP, B_TRUE)) != 0) {
17410 		port = i;
17411 		goto retry;
17412 	}
17413 	return (port);
17414 }
17415 
17416 /*
17417  * Return the next anonymous port in the privileged port range for
17418  * bind checking.  It starts at IPPORT_RESERVED - 1 and goes
17419  * downwards.  This is the same behavior as documented in the userland
17420  * library call rresvport(3N).
17421  *
17422  * TS note: skip multilevel ports.
17423  */
17424 static in_port_t
17425 tcp_get_next_priv_port(const tcp_t *tcp)
17426 {
17427 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
17428 	in_port_t nextport;
17429 	boolean_t restart = B_FALSE;
17430 	tcp_stack_t *tcps = tcp->tcp_tcps;
17431 retry:
17432 	if (next_priv_port < tcps->tcps_min_anonpriv_port ||
17433 	    next_priv_port >= IPPORT_RESERVED) {
17434 		next_priv_port = IPPORT_RESERVED - 1;
17435 		if (restart)
17436 			return (0);
17437 		restart = B_TRUE;
17438 	}
17439 	if (is_system_labeled() &&
17440 	    (nextport = tsol_next_port(crgetzone(tcp->tcp_cred),
17441 	    next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) {
17442 		next_priv_port = nextport;
17443 		goto retry;
17444 	}
17445 	return (next_priv_port--);
17446 }
17447 
17448 /* The write side r/w procedure. */
17449 
17450 #if CCS_STATS
17451 struct {
17452 	struct {
17453 		int64_t count, bytes;
17454 	} tot, hit;
17455 } wrw_stats;
17456 #endif
17457 
17458 /*
17459  * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO,
17460  * messages.
17461  */
17462 /* ARGSUSED */
17463 static void
17464 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2)
17465 {
17466 	conn_t	*connp = (conn_t *)arg;
17467 	tcp_t	*tcp = connp->conn_tcp;
17468 	queue_t	*q = tcp->tcp_wq;
17469 
17470 	ASSERT(DB_TYPE(mp) != M_IOCTL);
17471 	/*
17472 	 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close.
17473 	 * Once the close starts, streamhead and sockfs will not let any data
17474 	 * packets come down (close ensures that there are no threads using the
17475 	 * queue and no new threads will come down) but since qprocsoff()
17476 	 * hasn't happened yet, a M_FLUSH or some non data message might
17477 	 * get reflected back (in response to our own FLUSHRW) and get
17478 	 * processed after tcp_close() is done. The conn would still be valid
17479 	 * because a ref would have added but we need to check the state
17480 	 * before actually processing the packet.
17481 	 */
17482 	if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) {
17483 		freemsg(mp);
17484 		return;
17485 	}
17486 
17487 	switch (DB_TYPE(mp)) {
17488 	case M_IOCDATA:
17489 		tcp_wput_iocdata(tcp, mp);
17490 		break;
17491 	case M_FLUSH:
17492 		tcp_wput_flush(tcp, mp);
17493 		break;
17494 	default:
17495 		CALL_IP_WPUT(connp, q, mp);
17496 		break;
17497 	}
17498 }
17499 
17500 /*
17501  * The TCP fast path write put procedure.
17502  * NOTE: the logic of the fast path is duplicated from tcp_wput_data()
17503  */
17504 /* ARGSUSED */
17505 void
17506 tcp_output(void *arg, mblk_t *mp, void *arg2)
17507 {
17508 	int		len;
17509 	int		hdrlen;
17510 	int		plen;
17511 	mblk_t		*mp1;
17512 	uchar_t		*rptr;
17513 	uint32_t	snxt;
17514 	tcph_t		*tcph;
17515 	struct datab	*db;
17516 	uint32_t	suna;
17517 	uint32_t	mss;
17518 	ipaddr_t	*dst;
17519 	ipaddr_t	*src;
17520 	uint32_t	sum;
17521 	int		usable;
17522 	conn_t		*connp = (conn_t *)arg;
17523 	tcp_t		*tcp = connp->conn_tcp;
17524 	uint32_t	msize;
17525 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17526 
17527 	/*
17528 	 * Try and ASSERT the minimum possible references on the
17529 	 * conn early enough. Since we are executing on write side,
17530 	 * the connection is obviously not detached and that means
17531 	 * there is a ref each for TCP and IP. Since we are behind
17532 	 * the squeue, the minimum references needed are 3. If the
17533 	 * conn is in classifier hash list, there should be an
17534 	 * extra ref for that (we check both the possibilities).
17535 	 */
17536 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17537 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17538 
17539 	ASSERT(DB_TYPE(mp) == M_DATA);
17540 	msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
17541 
17542 	mutex_enter(&tcp->tcp_non_sq_lock);
17543 	tcp->tcp_squeue_bytes -= msize;
17544 	mutex_exit(&tcp->tcp_non_sq_lock);
17545 
17546 	/* Bypass tcp protocol for fused tcp loopback */
17547 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
17548 		return;
17549 
17550 	mss = tcp->tcp_mss;
17551 	if (tcp->tcp_xmit_zc_clean)
17552 		mp = tcp_zcopy_backoff(tcp, mp, 0);
17553 
17554 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
17555 	len = (int)(mp->b_wptr - mp->b_rptr);
17556 
17557 	/*
17558 	 * Criteria for fast path:
17559 	 *
17560 	 *   1. no unsent data
17561 	 *   2. single mblk in request
17562 	 *   3. connection established
17563 	 *   4. data in mblk
17564 	 *   5. len <= mss
17565 	 *   6. no tcp_valid bits
17566 	 */
17567 	if ((tcp->tcp_unsent != 0) ||
17568 	    (tcp->tcp_cork) ||
17569 	    (mp->b_cont != NULL) ||
17570 	    (tcp->tcp_state != TCPS_ESTABLISHED) ||
17571 	    (len == 0) ||
17572 	    (len > mss) ||
17573 	    (tcp->tcp_valid_bits != 0)) {
17574 		tcp_wput_data(tcp, mp, B_FALSE);
17575 		return;
17576 	}
17577 
17578 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
17579 	ASSERT(tcp->tcp_fin_sent == 0);
17580 
17581 	/* queue new packet onto retransmission queue */
17582 	if (tcp->tcp_xmit_head == NULL) {
17583 		tcp->tcp_xmit_head = mp;
17584 	} else {
17585 		tcp->tcp_xmit_last->b_cont = mp;
17586 	}
17587 	tcp->tcp_xmit_last = mp;
17588 	tcp->tcp_xmit_tail = mp;
17589 
17590 	/* find out how much we can send */
17591 	/* BEGIN CSTYLED */
17592 	/*
17593 	 *    un-acked           usable
17594 	 *  |--------------|-----------------|
17595 	 *  tcp_suna       tcp_snxt          tcp_suna+tcp_swnd
17596 	 */
17597 	/* END CSTYLED */
17598 
17599 	/* start sending from tcp_snxt */
17600 	snxt = tcp->tcp_snxt;
17601 
17602 	/*
17603 	 * Check to see if this connection has been idled for some
17604 	 * time and no ACK is expected.  If it is, we need to slow
17605 	 * start again to get back the connection's "self-clock" as
17606 	 * described in VJ's paper.
17607 	 *
17608 	 * Refer to the comment in tcp_mss_set() for the calculation
17609 	 * of tcp_cwnd after idle.
17610 	 */
17611 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
17612 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
17613 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
17614 	}
17615 
17616 	usable = tcp->tcp_swnd;		/* tcp window size */
17617 	if (usable > tcp->tcp_cwnd)
17618 		usable = tcp->tcp_cwnd;	/* congestion window smaller */
17619 	usable -= snxt;		/* subtract stuff already sent */
17620 	suna = tcp->tcp_suna;
17621 	usable += suna;
17622 	/* usable can be < 0 if the congestion window is smaller */
17623 	if (len > usable) {
17624 		/* Can't send complete M_DATA in one shot */
17625 		goto slow;
17626 	}
17627 
17628 	mutex_enter(&tcp->tcp_non_sq_lock);
17629 	if (tcp->tcp_flow_stopped &&
17630 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
17631 		tcp_clrqfull(tcp);
17632 	}
17633 	mutex_exit(&tcp->tcp_non_sq_lock);
17634 
17635 	/*
17636 	 * determine if anything to send (Nagle).
17637 	 *
17638 	 *   1. len < tcp_mss (i.e. small)
17639 	 *   2. unacknowledged data present
17640 	 *   3. len < nagle limit
17641 	 *   4. last packet sent < nagle limit (previous packet sent)
17642 	 */
17643 	if ((len < mss) && (snxt != suna) &&
17644 	    (len < (int)tcp->tcp_naglim) &&
17645 	    (tcp->tcp_last_sent_len < tcp->tcp_naglim)) {
17646 		/*
17647 		 * This was the first unsent packet and normally
17648 		 * mss < xmit_hiwater so there is no need to worry
17649 		 * about flow control. The next packet will go
17650 		 * through the flow control check in tcp_wput_data().
17651 		 */
17652 		/* leftover work from above */
17653 		tcp->tcp_unsent = len;
17654 		tcp->tcp_xmit_tail_unsent = len;
17655 
17656 		return;
17657 	}
17658 
17659 	/* len <= tcp->tcp_mss && len == unsent so no silly window */
17660 
17661 	if (snxt == suna) {
17662 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
17663 	}
17664 
17665 	/* we have always sent something */
17666 	tcp->tcp_rack_cnt = 0;
17667 
17668 	tcp->tcp_snxt = snxt + len;
17669 	tcp->tcp_rack = tcp->tcp_rnxt;
17670 
17671 	if ((mp1 = dupb(mp)) == 0)
17672 		goto no_memory;
17673 	mp->b_prev = (mblk_t *)(uintptr_t)lbolt;
17674 	mp->b_next = (mblk_t *)(uintptr_t)snxt;
17675 
17676 	/* adjust tcp header information */
17677 	tcph = tcp->tcp_tcph;
17678 	tcph->th_flags[0] = (TH_ACK|TH_PUSH);
17679 
17680 	sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
17681 	sum = (sum >> 16) + (sum & 0xFFFF);
17682 	U16_TO_ABE16(sum, tcph->th_sum);
17683 
17684 	U32_TO_ABE32(snxt, tcph->th_seq);
17685 
17686 	BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
17687 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
17688 	BUMP_LOCAL(tcp->tcp_obsegs);
17689 
17690 	/* Update the latest receive window size in TCP header. */
17691 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
17692 	    tcph->th_win);
17693 
17694 	tcp->tcp_last_sent_len = (ushort_t)len;
17695 
17696 	plen = len + tcp->tcp_hdr_len;
17697 
17698 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17699 		tcp->tcp_ipha->ipha_length = htons(plen);
17700 	} else {
17701 		tcp->tcp_ip6h->ip6_plen = htons(plen -
17702 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
17703 	}
17704 
17705 	/* see if we need to allocate a mblk for the headers */
17706 	hdrlen = tcp->tcp_hdr_len;
17707 	rptr = mp1->b_rptr - hdrlen;
17708 	db = mp1->b_datap;
17709 	if ((db->db_ref != 2) || rptr < db->db_base ||
17710 	    (!OK_32PTR(rptr))) {
17711 		/* NOTE: we assume allocb returns an OK_32PTR */
17712 		mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
17713 		    tcps->tcps_wroff_xtra, BPRI_MED);
17714 		if (!mp) {
17715 			freemsg(mp1);
17716 			goto no_memory;
17717 		}
17718 		mp->b_cont = mp1;
17719 		mp1 = mp;
17720 		/* Leave room for Link Level header */
17721 		/* hdrlen = tcp->tcp_hdr_len; */
17722 		rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra];
17723 		mp1->b_wptr = &rptr[hdrlen];
17724 	}
17725 	mp1->b_rptr = rptr;
17726 
17727 	/* Fill in the timestamp option. */
17728 	if (tcp->tcp_snd_ts_ok) {
17729 		U32_TO_BE32((uint32_t)lbolt,
17730 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
17731 		U32_TO_BE32(tcp->tcp_ts_recent,
17732 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
17733 	} else {
17734 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
17735 	}
17736 
17737 	/* copy header into outgoing packet */
17738 	dst = (ipaddr_t *)rptr;
17739 	src = (ipaddr_t *)tcp->tcp_iphc;
17740 	dst[0] = src[0];
17741 	dst[1] = src[1];
17742 	dst[2] = src[2];
17743 	dst[3] = src[3];
17744 	dst[4] = src[4];
17745 	dst[5] = src[5];
17746 	dst[6] = src[6];
17747 	dst[7] = src[7];
17748 	dst[8] = src[8];
17749 	dst[9] = src[9];
17750 	if (hdrlen -= 40) {
17751 		hdrlen >>= 2;
17752 		dst += 10;
17753 		src += 10;
17754 		do {
17755 			*dst++ = *src++;
17756 		} while (--hdrlen);
17757 	}
17758 
17759 	/*
17760 	 * Set the ECN info in the TCP header.  Note that this
17761 	 * is not the template header.
17762 	 */
17763 	if (tcp->tcp_ecn_ok) {
17764 		SET_ECT(tcp, rptr);
17765 
17766 		tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
17767 		if (tcp->tcp_ecn_echo_on)
17768 			tcph->th_flags[0] |= TH_ECE;
17769 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
17770 			tcph->th_flags[0] |= TH_CWR;
17771 			tcp->tcp_ecn_cwr_sent = B_TRUE;
17772 		}
17773 	}
17774 
17775 	if (tcp->tcp_ip_forward_progress) {
17776 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
17777 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
17778 		tcp->tcp_ip_forward_progress = B_FALSE;
17779 	}
17780 	TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
17781 	tcp_send_data(tcp, tcp->tcp_wq, mp1);
17782 	return;
17783 
17784 	/*
17785 	 * If we ran out of memory, we pretend to have sent the packet
17786 	 * and that it was lost on the wire.
17787 	 */
17788 no_memory:
17789 	return;
17790 
17791 slow:
17792 	/* leftover work from above */
17793 	tcp->tcp_unsent = len;
17794 	tcp->tcp_xmit_tail_unsent = len;
17795 	tcp_wput_data(tcp, NULL, B_FALSE);
17796 }
17797 
17798 /*
17799  * The function called through squeue to get behind eager's perimeter to
17800  * finish the accept processing.
17801  */
17802 /* ARGSUSED */
17803 void
17804 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2)
17805 {
17806 	conn_t			*connp = (conn_t *)arg;
17807 	tcp_t			*tcp = connp->conn_tcp;
17808 	queue_t			*q = tcp->tcp_rq;
17809 	mblk_t			*mp1;
17810 	mblk_t			*stropt_mp = mp;
17811 	struct  stroptions	*stropt;
17812 	uint_t			thwin;
17813 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17814 
17815 	/*
17816 	 * Drop the eager's ref on the listener, that was placed when
17817 	 * this eager began life in tcp_conn_request.
17818 	 */
17819 	CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp);
17820 
17821 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) {
17822 		/*
17823 		 * Someone blewoff the eager before we could finish
17824 		 * the accept.
17825 		 *
17826 		 * The only reason eager exists it because we put in
17827 		 * a ref on it when conn ind went up. We need to send
17828 		 * a disconnect indication up while the last reference
17829 		 * on the eager will be dropped by the squeue when we
17830 		 * return.
17831 		 */
17832 		ASSERT(tcp->tcp_listener == NULL);
17833 		if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) {
17834 			struct	T_discon_ind	*tdi;
17835 
17836 			(void) putnextctl1(q, M_FLUSH, FLUSHRW);
17837 			/*
17838 			 * Let us reuse the incoming mblk to avoid memory
17839 			 * allocation failure problems. We know that the
17840 			 * size of the incoming mblk i.e. stroptions is greater
17841 			 * than sizeof T_discon_ind. So the reallocb below
17842 			 * can't fail.
17843 			 */
17844 			freemsg(mp->b_cont);
17845 			mp->b_cont = NULL;
17846 			ASSERT(DB_REF(mp) == 1);
17847 			mp = reallocb(mp, sizeof (struct T_discon_ind),
17848 			    B_FALSE);
17849 			ASSERT(mp != NULL);
17850 			DB_TYPE(mp) = M_PROTO;
17851 			((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND;
17852 			tdi = (struct T_discon_ind *)mp->b_rptr;
17853 			if (tcp->tcp_issocket) {
17854 				tdi->DISCON_reason = ECONNREFUSED;
17855 				tdi->SEQ_number = 0;
17856 			} else {
17857 				tdi->DISCON_reason = ENOPROTOOPT;
17858 				tdi->SEQ_number =
17859 				    tcp->tcp_conn_req_seqnum;
17860 			}
17861 			mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind);
17862 			putnext(q, mp);
17863 		} else {
17864 			freemsg(mp);
17865 		}
17866 		if (tcp->tcp_hard_binding) {
17867 			tcp->tcp_hard_binding = B_FALSE;
17868 			tcp->tcp_hard_bound = B_TRUE;
17869 		}
17870 		tcp->tcp_detached = B_FALSE;
17871 		return;
17872 	}
17873 
17874 	mp1 = stropt_mp->b_cont;
17875 	stropt_mp->b_cont = NULL;
17876 	ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS);
17877 	stropt = (struct stroptions *)stropt_mp->b_rptr;
17878 
17879 	while (mp1 != NULL) {
17880 		mp = mp1;
17881 		mp1 = mp1->b_cont;
17882 		mp->b_cont = NULL;
17883 		tcp->tcp_drop_opt_ack_cnt++;
17884 		CALL_IP_WPUT(connp, tcp->tcp_wq, mp);
17885 	}
17886 	mp = NULL;
17887 
17888 	/*
17889 	 * For a loopback connection with tcp_direct_sockfs on, note that
17890 	 * we don't have to protect tcp_rcv_list yet because synchronous
17891 	 * streams has not yet been enabled and tcp_fuse_rrw() cannot
17892 	 * possibly race with us.
17893 	 */
17894 
17895 	/*
17896 	 * Set the max window size (tcp_rq->q_hiwat) of the acceptor
17897 	 * properly.  This is the first time we know of the acceptor'
17898 	 * queue.  So we do it here.
17899 	 */
17900 	if (tcp->tcp_rcv_list == NULL) {
17901 		/*
17902 		 * Recv queue is empty, tcp_rwnd should not have changed.
17903 		 * That means it should be equal to the listener's tcp_rwnd.
17904 		 */
17905 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd;
17906 	} else {
17907 #ifdef DEBUG
17908 		uint_t cnt = 0;
17909 
17910 		mp1 = tcp->tcp_rcv_list;
17911 		while ((mp = mp1) != NULL) {
17912 			mp1 = mp->b_next;
17913 			cnt += msgdsize(mp);
17914 		}
17915 		ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt);
17916 #endif
17917 		/* There is some data, add them back to get the max. */
17918 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
17919 	}
17920 
17921 	stropt->so_flags = SO_HIWAT;
17922 	stropt->so_hiwat = MAX(q->q_hiwat, tcps->tcps_sth_rcv_hiwat);
17923 
17924 	stropt->so_flags |= SO_MAXBLK;
17925 	stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
17926 
17927 	/*
17928 	 * This is the first time we run on the correct
17929 	 * queue after tcp_accept. So fix all the q parameters
17930 	 * here.
17931 	 */
17932 	/* Allocate room for SACK options if needed. */
17933 	stropt->so_flags |= SO_WROFF;
17934 	if (tcp->tcp_fused) {
17935 		ASSERT(tcp->tcp_loopback);
17936 		ASSERT(tcp->tcp_loopback_peer != NULL);
17937 		/*
17938 		 * For fused tcp loopback, set the stream head's write
17939 		 * offset value to zero since we won't be needing any room
17940 		 * for TCP/IP headers.  This would also improve performance
17941 		 * since it would reduce the amount of work done by kmem.
17942 		 * Non-fused tcp loopback case is handled separately below.
17943 		 */
17944 		stropt->so_wroff = 0;
17945 		/*
17946 		 * Record the stream head's high water mark for this endpoint;
17947 		 * this is used for flow-control purposes in tcp_fuse_output().
17948 		 */
17949 		stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat);
17950 		/*
17951 		 * Update the peer's transmit parameters according to
17952 		 * our recently calculated high water mark value.
17953 		 */
17954 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
17955 	} else if (tcp->tcp_snd_sack_ok) {
17956 		stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
17957 		    (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra);
17958 	} else {
17959 		stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 :
17960 		    tcps->tcps_wroff_xtra);
17961 	}
17962 
17963 	/*
17964 	 * If this is endpoint is handling SSL, then reserve extra
17965 	 * offset and space at the end.
17966 	 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets,
17967 	 * overriding the previous setting. The extra cost of signing and
17968 	 * encrypting multiple MSS-size records (12 of them with Ethernet),
17969 	 * instead of a single contiguous one by the stream head
17970 	 * largely outweighs the statistical reduction of ACKs, when
17971 	 * applicable. The peer will also save on decyption and verification
17972 	 * costs.
17973 	 */
17974 	if (tcp->tcp_kssl_ctx != NULL) {
17975 		stropt->so_wroff += SSL3_WROFFSET;
17976 
17977 		stropt->so_flags |= SO_TAIL;
17978 		stropt->so_tail = SSL3_MAX_TAIL_LEN;
17979 
17980 		stropt->so_maxblk = SSL3_MAX_RECORD_LEN;
17981 	}
17982 
17983 	/* Send the options up */
17984 	putnext(q, stropt_mp);
17985 
17986 	/*
17987 	 * Pass up any data and/or a fin that has been received.
17988 	 *
17989 	 * Adjust receive window in case it had decreased
17990 	 * (because there is data <=> tcp_rcv_list != NULL)
17991 	 * while the connection was detached. Note that
17992 	 * in case the eager was flow-controlled, w/o this
17993 	 * code, the rwnd may never open up again!
17994 	 */
17995 	if (tcp->tcp_rcv_list != NULL) {
17996 		/* We drain directly in case of fused tcp loopback */
17997 		if (!tcp->tcp_fused && canputnext(q)) {
17998 			tcp->tcp_rwnd = q->q_hiwat;
17999 			thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
18000 			    << tcp->tcp_rcv_ws;
18001 			thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
18002 			if (tcp->tcp_state >= TCPS_ESTABLISHED &&
18003 			    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
18004 				tcp_xmit_ctl(NULL,
18005 				    tcp, (tcp->tcp_swnd == 0) ?
18006 				    tcp->tcp_suna : tcp->tcp_snxt,
18007 				    tcp->tcp_rnxt, TH_ACK);
18008 				BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
18009 			}
18010 
18011 		}
18012 		(void) tcp_rcv_drain(q, tcp);
18013 
18014 		/*
18015 		 * For fused tcp loopback, back-enable peer endpoint
18016 		 * if it's currently flow-controlled.
18017 		 */
18018 		if (tcp->tcp_fused) {
18019 			tcp_t *peer_tcp = tcp->tcp_loopback_peer;
18020 
18021 			ASSERT(peer_tcp != NULL);
18022 			ASSERT(peer_tcp->tcp_fused);
18023 			/*
18024 			 * In order to change the peer's tcp_flow_stopped,
18025 			 * we need to take locks for both end points. The
18026 			 * highest address is taken first.
18027 			 */
18028 			if (peer_tcp > tcp) {
18029 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
18030 				mutex_enter(&tcp->tcp_non_sq_lock);
18031 			} else {
18032 				mutex_enter(&tcp->tcp_non_sq_lock);
18033 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
18034 			}
18035 			if (peer_tcp->tcp_flow_stopped) {
18036 				tcp_clrqfull(peer_tcp);
18037 				TCP_STAT(tcps, tcp_fusion_backenabled);
18038 			}
18039 			mutex_exit(&peer_tcp->tcp_non_sq_lock);
18040 			mutex_exit(&tcp->tcp_non_sq_lock);
18041 		}
18042 	}
18043 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
18044 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
18045 		mp = mi_tpi_ordrel_ind();
18046 		if (mp) {
18047 			tcp->tcp_ordrel_done = B_TRUE;
18048 			putnext(q, mp);
18049 			if (tcp->tcp_deferred_clean_death) {
18050 				/*
18051 				 * tcp_clean_death was deferred
18052 				 * for T_ORDREL_IND - do it now
18053 				 */
18054 				(void) tcp_clean_death(tcp,
18055 				    tcp->tcp_client_errno, 21);
18056 				tcp->tcp_deferred_clean_death = B_FALSE;
18057 			}
18058 		} else {
18059 			/*
18060 			 * Run the orderly release in the
18061 			 * service routine.
18062 			 */
18063 			qenable(q);
18064 		}
18065 	}
18066 	if (tcp->tcp_hard_binding) {
18067 		tcp->tcp_hard_binding = B_FALSE;
18068 		tcp->tcp_hard_bound = B_TRUE;
18069 	}
18070 
18071 	tcp->tcp_detached = B_FALSE;
18072 
18073 	/* We can enable synchronous streams now */
18074 	if (tcp->tcp_fused) {
18075 		tcp_fuse_syncstr_enable_pair(tcp);
18076 	}
18077 
18078 	if (tcp->tcp_ka_enabled) {
18079 		tcp->tcp_ka_last_intrvl = 0;
18080 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
18081 		    MSEC_TO_TICK(tcp->tcp_ka_interval));
18082 	}
18083 
18084 	/*
18085 	 * At this point, eager is fully established and will
18086 	 * have the following references -
18087 	 *
18088 	 * 2 references for connection to exist (1 for TCP and 1 for IP).
18089 	 * 1 reference for the squeue which will be dropped by the squeue as
18090 	 *	soon as this function returns.
18091 	 * There will be 1 additonal reference for being in classifier
18092 	 *	hash list provided something bad hasn't happened.
18093 	 */
18094 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
18095 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
18096 }
18097 
18098 /*
18099  * The function called through squeue to get behind listener's perimeter to
18100  * send a deffered conn_ind.
18101  */
18102 /* ARGSUSED */
18103 void
18104 tcp_send_pending(void *arg, mblk_t *mp, void *arg2)
18105 {
18106 	conn_t	*connp = (conn_t *)arg;
18107 	tcp_t *listener = connp->conn_tcp;
18108 
18109 	if (listener->tcp_state == TCPS_CLOSED ||
18110 	    TCP_IS_DETACHED(listener)) {
18111 		/*
18112 		 * If listener has closed, it would have caused a
18113 		 * a cleanup/blowoff to happen for the eager.
18114 		 */
18115 		tcp_t *tcp;
18116 		struct T_conn_ind	*conn_ind;
18117 
18118 		conn_ind = (struct T_conn_ind *)mp->b_rptr;
18119 		bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
18120 		    conn_ind->OPT_length);
18121 		/*
18122 		 * We need to drop the ref on eager that was put
18123 		 * tcp_rput_data() before trying to send the conn_ind
18124 		 * to listener. The conn_ind was deferred in tcp_send_conn_ind
18125 		 * and tcp_wput_accept() is sending this deferred conn_ind but
18126 		 * listener is closed so we drop the ref.
18127 		 */
18128 		CONN_DEC_REF(tcp->tcp_connp);
18129 		freemsg(mp);
18130 		return;
18131 	}
18132 	putnext(listener->tcp_rq, mp);
18133 }
18134 
18135 
18136 /*
18137  * This is the STREAMS entry point for T_CONN_RES coming down on
18138  * Acceptor STREAM when  sockfs listener does accept processing.
18139  * Read the block comment on top of tcp_conn_request().
18140  */
18141 void
18142 tcp_wput_accept(queue_t *q, mblk_t *mp)
18143 {
18144 	queue_t *rq = RD(q);
18145 	struct T_conn_res *conn_res;
18146 	tcp_t *eager;
18147 	tcp_t *listener;
18148 	struct T_ok_ack *ok;
18149 	t_scalar_t PRIM_type;
18150 	mblk_t *opt_mp;
18151 	conn_t *econnp;
18152 
18153 	ASSERT(DB_TYPE(mp) == M_PROTO);
18154 
18155 	conn_res = (struct T_conn_res *)mp->b_rptr;
18156 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
18157 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) {
18158 		mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
18159 		if (mp != NULL)
18160 			putnext(rq, mp);
18161 		return;
18162 	}
18163 	switch (conn_res->PRIM_type) {
18164 	case O_T_CONN_RES:
18165 	case T_CONN_RES:
18166 		/*
18167 		 * We pass up an err ack if allocb fails. This will
18168 		 * cause sockfs to issue a T_DISCON_REQ which will cause
18169 		 * tcp_eager_blowoff to be called. sockfs will then call
18170 		 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream.
18171 		 * we need to do the allocb up here because we have to
18172 		 * make sure rq->q_qinfo->qi_qclose still points to the
18173 		 * correct function (tcpclose_accept) in case allocb
18174 		 * fails.
18175 		 */
18176 		opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
18177 		if (opt_mp == NULL) {
18178 			mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
18179 			if (mp != NULL)
18180 				putnext(rq, mp);
18181 			return;
18182 		}
18183 
18184 		bcopy(mp->b_rptr + conn_res->OPT_offset,
18185 		    &eager, conn_res->OPT_length);
18186 		PRIM_type = conn_res->PRIM_type;
18187 		mp->b_datap->db_type = M_PCPROTO;
18188 		mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack);
18189 		ok = (struct T_ok_ack *)mp->b_rptr;
18190 		ok->PRIM_type = T_OK_ACK;
18191 		ok->CORRECT_prim = PRIM_type;
18192 		econnp = eager->tcp_connp;
18193 		econnp->conn_dev = (dev_t)q->q_ptr;
18194 		eager->tcp_rq = rq;
18195 		eager->tcp_wq = q;
18196 		rq->q_ptr = econnp;
18197 		rq->q_qinfo = &tcp_rinit;
18198 		q->q_ptr = econnp;
18199 		q->q_qinfo = &tcp_winit;
18200 		listener = eager->tcp_listener;
18201 		eager->tcp_issocket = B_TRUE;
18202 
18203 		econnp->conn_zoneid = listener->tcp_connp->conn_zoneid;
18204 		econnp->conn_allzones = listener->tcp_connp->conn_allzones;
18205 		ASSERT(econnp->conn_netstack ==
18206 		    listener->tcp_connp->conn_netstack);
18207 		ASSERT(eager->tcp_tcps == listener->tcp_tcps);
18208 
18209 		/* Put the ref for IP */
18210 		CONN_INC_REF(econnp);
18211 
18212 		/*
18213 		 * We should have minimum of 3 references on the conn
18214 		 * at this point. One each for TCP and IP and one for
18215 		 * the T_conn_ind that was sent up when the 3-way handshake
18216 		 * completed. In the normal case we would also have another
18217 		 * reference (making a total of 4) for the conn being in the
18218 		 * classifier hash list. However the eager could have received
18219 		 * an RST subsequently and tcp_closei_local could have removed
18220 		 * the eager from the classifier hash list, hence we can't
18221 		 * assert that reference.
18222 		 */
18223 		ASSERT(econnp->conn_ref >= 3);
18224 
18225 		/*
18226 		 * Send the new local address also up to sockfs. There
18227 		 * should already be enough space in the mp that came
18228 		 * down from soaccept().
18229 		 */
18230 		if (eager->tcp_family == AF_INET) {
18231 			sin_t *sin;
18232 
18233 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18234 			    (sizeof (struct T_ok_ack) + sizeof (sin_t)));
18235 			sin = (sin_t *)mp->b_wptr;
18236 			mp->b_wptr += sizeof (sin_t);
18237 			sin->sin_family = AF_INET;
18238 			sin->sin_port = eager->tcp_lport;
18239 			sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src;
18240 		} else {
18241 			sin6_t *sin6;
18242 
18243 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18244 			    sizeof (struct T_ok_ack) + sizeof (sin6_t));
18245 			sin6 = (sin6_t *)mp->b_wptr;
18246 			mp->b_wptr += sizeof (sin6_t);
18247 			sin6->sin6_family = AF_INET6;
18248 			sin6->sin6_port = eager->tcp_lport;
18249 			if (eager->tcp_ipversion == IPV4_VERSION) {
18250 				sin6->sin6_flowinfo = 0;
18251 				IN6_IPADDR_TO_V4MAPPED(
18252 					eager->tcp_ipha->ipha_src,
18253 					    &sin6->sin6_addr);
18254 			} else {
18255 				ASSERT(eager->tcp_ip6h != NULL);
18256 				sin6->sin6_flowinfo =
18257 				    eager->tcp_ip6h->ip6_vcf &
18258 				    ~IPV6_VERS_AND_FLOW_MASK;
18259 				sin6->sin6_addr = eager->tcp_ip6h->ip6_src;
18260 			}
18261 			sin6->sin6_scope_id = 0;
18262 			sin6->__sin6_src_id = 0;
18263 		}
18264 
18265 		putnext(rq, mp);
18266 
18267 		opt_mp->b_datap->db_type = M_SETOPTS;
18268 		opt_mp->b_wptr += sizeof (struct stroptions);
18269 
18270 		/*
18271 		 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
18272 		 * from listener to acceptor. The message is chained on the
18273 		 * bind_mp which tcp_rput_other will send down to IP.
18274 		 */
18275 		if (listener->tcp_bound_if != 0) {
18276 			/* allocate optmgmt req */
18277 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
18278 			    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
18279 			    sizeof (int));
18280 			if (mp != NULL)
18281 				linkb(opt_mp, mp);
18282 		}
18283 		if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
18284 			uint_t on = 1;
18285 
18286 			/* allocate optmgmt req */
18287 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
18288 			    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
18289 			if (mp != NULL)
18290 				linkb(opt_mp, mp);
18291 		}
18292 
18293 
18294 		mutex_enter(&listener->tcp_eager_lock);
18295 
18296 		if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
18297 
18298 			tcp_t *tail;
18299 			tcp_t *tcp;
18300 			mblk_t *mp1;
18301 
18302 			tcp = listener->tcp_eager_prev_q0;
18303 			/*
18304 			 * listener->tcp_eager_prev_q0 points to the TAIL of the
18305 			 * deferred T_conn_ind queue. We need to get to the head
18306 			 * of the queue in order to send up T_conn_ind the same
18307 			 * order as how the 3WHS is completed.
18308 			 */
18309 			while (tcp != listener) {
18310 				if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 &&
18311 				    !tcp->tcp_kssl_pending)
18312 					break;
18313 				else
18314 					tcp = tcp->tcp_eager_prev_q0;
18315 			}
18316 			/* None of the pending eagers can be sent up now */
18317 			if (tcp == listener)
18318 				goto no_more_eagers;
18319 
18320 			mp1 = tcp->tcp_conn.tcp_eager_conn_ind;
18321 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
18322 			/* Move from q0 to q */
18323 			ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
18324 			listener->tcp_conn_req_cnt_q0--;
18325 			listener->tcp_conn_req_cnt_q++;
18326 			tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
18327 			    tcp->tcp_eager_prev_q0;
18328 			tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
18329 			    tcp->tcp_eager_next_q0;
18330 			tcp->tcp_eager_prev_q0 = NULL;
18331 			tcp->tcp_eager_next_q0 = NULL;
18332 			tcp->tcp_conn_def_q0 = B_FALSE;
18333 
18334 			/* Make sure the tcp isn't in the list of droppables */
18335 			ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
18336 			    tcp->tcp_eager_prev_drop_q0 == NULL);
18337 
18338 			/*
18339 			 * Insert at end of the queue because sockfs sends
18340 			 * down T_CONN_RES in chronological order. Leaving
18341 			 * the older conn indications at front of the queue
18342 			 * helps reducing search time.
18343 			 */
18344 			tail = listener->tcp_eager_last_q;
18345 			if (tail != NULL) {
18346 				tail->tcp_eager_next_q = tcp;
18347 			} else {
18348 				listener->tcp_eager_next_q = tcp;
18349 			}
18350 			listener->tcp_eager_last_q = tcp;
18351 			tcp->tcp_eager_next_q = NULL;
18352 
18353 			/* Need to get inside the listener perimeter */
18354 			CONN_INC_REF(listener->tcp_connp);
18355 			squeue_fill(listener->tcp_connp->conn_sqp, mp1,
18356 			    tcp_send_pending, listener->tcp_connp,
18357 			    SQTAG_TCP_SEND_PENDING);
18358 		}
18359 no_more_eagers:
18360 		tcp_eager_unlink(eager);
18361 		mutex_exit(&listener->tcp_eager_lock);
18362 
18363 		/*
18364 		 * At this point, the eager is detached from the listener
18365 		 * but we still have an extra refs on eager (apart from the
18366 		 * usual tcp references). The ref was placed in tcp_rput_data
18367 		 * before sending the conn_ind in tcp_send_conn_ind.
18368 		 * The ref will be dropped in tcp_accept_finish().
18369 		 */
18370 		squeue_enter_nodrain(econnp->conn_sqp, opt_mp,
18371 		    tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0);
18372 		return;
18373 	default:
18374 		mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0);
18375 		if (mp != NULL)
18376 			putnext(rq, mp);
18377 		return;
18378 	}
18379 }
18380 
18381 void
18382 tcp_wput(queue_t *q, mblk_t *mp)
18383 {
18384 	conn_t	*connp = Q_TO_CONN(q);
18385 	tcp_t	*tcp;
18386 	void (*output_proc)();
18387 	t_scalar_t type;
18388 	uchar_t *rptr;
18389 	struct iocblk	*iocp;
18390 	uint32_t	msize;
18391 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
18392 
18393 	ASSERT(connp->conn_ref >= 2);
18394 
18395 	switch (DB_TYPE(mp)) {
18396 	case M_DATA:
18397 		tcp = connp->conn_tcp;
18398 		ASSERT(tcp != NULL);
18399 
18400 		msize = msgdsize(mp);
18401 
18402 		mutex_enter(&tcp->tcp_non_sq_lock);
18403 		tcp->tcp_squeue_bytes += msize;
18404 		if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) {
18405 			tcp_setqfull(tcp);
18406 		}
18407 		mutex_exit(&tcp->tcp_non_sq_lock);
18408 
18409 		CONN_INC_REF(connp);
18410 		(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
18411 		    tcp_output, connp, SQTAG_TCP_OUTPUT);
18412 		return;
18413 	case M_PROTO:
18414 	case M_PCPROTO:
18415 		/*
18416 		 * if it is a snmp message, don't get behind the squeue
18417 		 */
18418 		tcp = connp->conn_tcp;
18419 		rptr = mp->b_rptr;
18420 		if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
18421 			type = ((union T_primitives *)rptr)->type;
18422 		} else {
18423 			if (tcp->tcp_debug) {
18424 				(void) strlog(TCP_MOD_ID, 0, 1,
18425 				    SL_ERROR|SL_TRACE,
18426 				    "tcp_wput_proto, dropping one...");
18427 			}
18428 			freemsg(mp);
18429 			return;
18430 		}
18431 		if (type == T_SVR4_OPTMGMT_REQ) {
18432 			cred_t	*cr = DB_CREDDEF(mp, tcp->tcp_cred);
18433 			if (snmpcom_req(q, mp, tcp_snmp_set, tcp_snmp_get,
18434 			    cr)) {
18435 				/*
18436 				 * This was a SNMP request
18437 				 */
18438 				return;
18439 			} else {
18440 				output_proc = tcp_wput_proto;
18441 			}
18442 		} else {
18443 			output_proc = tcp_wput_proto;
18444 		}
18445 		break;
18446 	case M_IOCTL:
18447 		/*
18448 		 * Most ioctls can be processed right away without going via
18449 		 * squeues - process them right here. Those that do require
18450 		 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK)
18451 		 * are processed by tcp_wput_ioctl().
18452 		 */
18453 		iocp = (struct iocblk *)mp->b_rptr;
18454 		tcp = connp->conn_tcp;
18455 
18456 		switch (iocp->ioc_cmd) {
18457 		case TCP_IOC_ABORT_CONN:
18458 			tcp_ioctl_abort_conn(q, mp);
18459 			return;
18460 		case TI_GETPEERNAME:
18461 			if (tcp->tcp_state < TCPS_SYN_RCVD) {
18462 				iocp->ioc_error = ENOTCONN;
18463 				iocp->ioc_count = 0;
18464 				mp->b_datap->db_type = M_IOCACK;
18465 				qreply(q, mp);
18466 				return;
18467 			}
18468 			/* FALLTHRU */
18469 		case TI_GETMYNAME:
18470 			mi_copyin(q, mp, NULL,
18471 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
18472 			return;
18473 		case ND_SET:
18474 			/* nd_getset does the necessary checks */
18475 		case ND_GET:
18476 			if (!nd_getset(q, tcps->tcps_g_nd, mp)) {
18477 				CALL_IP_WPUT(connp, q, mp);
18478 				return;
18479 			}
18480 			qreply(q, mp);
18481 			return;
18482 		case TCP_IOC_DEFAULT_Q:
18483 			/*
18484 			 * Wants to be the default wq. Check the credentials
18485 			 * first, the rest is executed via squeue.
18486 			 */
18487 			if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
18488 				iocp->ioc_error = EPERM;
18489 				iocp->ioc_count = 0;
18490 				mp->b_datap->db_type = M_IOCACK;
18491 				qreply(q, mp);
18492 				return;
18493 			}
18494 			output_proc = tcp_wput_ioctl;
18495 			break;
18496 		default:
18497 			output_proc = tcp_wput_ioctl;
18498 			break;
18499 		}
18500 		break;
18501 	default:
18502 		output_proc = tcp_wput_nondata;
18503 		break;
18504 	}
18505 
18506 	CONN_INC_REF(connp);
18507 	(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
18508 	    output_proc, connp, SQTAG_TCP_WPUT_OTHER);
18509 }
18510 
18511 /*
18512  * Initial STREAMS write side put() procedure for sockets. It tries to
18513  * handle the T_CAPABILITY_REQ which sockfs sends down while setting
18514  * up the socket without using the squeue. Non T_CAPABILITY_REQ messages
18515  * are handled by tcp_wput() as usual.
18516  *
18517  * All further messages will also be handled by tcp_wput() because we cannot
18518  * be sure that the above short cut is safe later.
18519  */
18520 static void
18521 tcp_wput_sock(queue_t *wq, mblk_t *mp)
18522 {
18523 	conn_t			*connp = Q_TO_CONN(wq);
18524 	tcp_t			*tcp = connp->conn_tcp;
18525 	struct T_capability_req	*car = (struct T_capability_req *)mp->b_rptr;
18526 
18527 	ASSERT(wq->q_qinfo == &tcp_sock_winit);
18528 	wq->q_qinfo = &tcp_winit;
18529 
18530 	ASSERT(IPCL_IS_TCP(connp));
18531 	ASSERT(TCP_IS_SOCKET(tcp));
18532 
18533 	if (DB_TYPE(mp) == M_PCPROTO &&
18534 	    MBLKL(mp) == sizeof (struct T_capability_req) &&
18535 	    car->PRIM_type == T_CAPABILITY_REQ) {
18536 		tcp_capability_req(tcp, mp);
18537 		return;
18538 	}
18539 
18540 	tcp_wput(wq, mp);
18541 }
18542 
18543 static boolean_t
18544 tcp_zcopy_check(tcp_t *tcp)
18545 {
18546 	conn_t	*connp = tcp->tcp_connp;
18547 	ire_t	*ire;
18548 	boolean_t	zc_enabled = B_FALSE;
18549 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18550 
18551 	if (do_tcpzcopy == 2)
18552 		zc_enabled = B_TRUE;
18553 	else if (tcp->tcp_ipversion == IPV4_VERSION &&
18554 	    IPCL_IS_CONNECTED(connp) &&
18555 	    (connp->conn_flags & IPCL_CHECK_POLICY) == 0 &&
18556 	    connp->conn_dontroute == 0 &&
18557 	    !connp->conn_nexthop_set &&
18558 	    connp->conn_xmit_if_ill == NULL &&
18559 	    connp->conn_nofailover_ill == NULL &&
18560 	    do_tcpzcopy == 1) {
18561 		/*
18562 		 * the checks above  closely resemble the fast path checks
18563 		 * in tcp_send_data().
18564 		 */
18565 		mutex_enter(&connp->conn_lock);
18566 		ire = connp->conn_ire_cache;
18567 		ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18568 		if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18569 			IRE_REFHOLD(ire);
18570 			if (ire->ire_stq != NULL) {
18571 				ill_t	*ill = (ill_t *)ire->ire_stq->q_ptr;
18572 
18573 				zc_enabled = ill && (ill->ill_capabilities &
18574 				    ILL_CAPAB_ZEROCOPY) &&
18575 				    (ill->ill_zerocopy_capab->
18576 				    ill_zerocopy_flags != 0);
18577 			}
18578 			IRE_REFRELE(ire);
18579 		}
18580 		mutex_exit(&connp->conn_lock);
18581 	}
18582 	tcp->tcp_snd_zcopy_on = zc_enabled;
18583 	if (!TCP_IS_DETACHED(tcp)) {
18584 		if (zc_enabled) {
18585 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE);
18586 			TCP_STAT(tcps, tcp_zcopy_on);
18587 		} else {
18588 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
18589 			TCP_STAT(tcps, tcp_zcopy_off);
18590 		}
18591 	}
18592 	return (zc_enabled);
18593 }
18594 
18595 static mblk_t *
18596 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp)
18597 {
18598 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18599 
18600 	if (do_tcpzcopy == 2)
18601 		return (bp);
18602 	else if (tcp->tcp_snd_zcopy_on) {
18603 		tcp->tcp_snd_zcopy_on = B_FALSE;
18604 		if (!TCP_IS_DETACHED(tcp)) {
18605 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
18606 			TCP_STAT(tcps, tcp_zcopy_disable);
18607 		}
18608 	}
18609 	return (tcp_zcopy_backoff(tcp, bp, 0));
18610 }
18611 
18612 /*
18613  * Backoff from a zero-copy mblk by copying data to a new mblk and freeing
18614  * the original desballoca'ed segmapped mblk.
18615  */
18616 static mblk_t *
18617 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist)
18618 {
18619 	mblk_t *head, *tail, *nbp;
18620 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18621 
18622 	if (IS_VMLOANED_MBLK(bp)) {
18623 		TCP_STAT(tcps, tcp_zcopy_backoff);
18624 		if ((head = copyb(bp)) == NULL) {
18625 			/* fail to backoff; leave it for the next backoff */
18626 			tcp->tcp_xmit_zc_clean = B_FALSE;
18627 			return (bp);
18628 		}
18629 		if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18630 			if (fix_xmitlist)
18631 				tcp_zcopy_notify(tcp);
18632 			else
18633 				head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
18634 		}
18635 		nbp = bp->b_cont;
18636 		if (fix_xmitlist) {
18637 			head->b_prev = bp->b_prev;
18638 			head->b_next = bp->b_next;
18639 			if (tcp->tcp_xmit_tail == bp)
18640 				tcp->tcp_xmit_tail = head;
18641 		}
18642 		bp->b_next = NULL;
18643 		bp->b_prev = NULL;
18644 		freeb(bp);
18645 	} else {
18646 		head = bp;
18647 		nbp = bp->b_cont;
18648 	}
18649 	tail = head;
18650 	while (nbp) {
18651 		if (IS_VMLOANED_MBLK(nbp)) {
18652 			TCP_STAT(tcps, tcp_zcopy_backoff);
18653 			if ((tail->b_cont = copyb(nbp)) == NULL) {
18654 				tcp->tcp_xmit_zc_clean = B_FALSE;
18655 				tail->b_cont = nbp;
18656 				return (head);
18657 			}
18658 			tail = tail->b_cont;
18659 			if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18660 				if (fix_xmitlist)
18661 					tcp_zcopy_notify(tcp);
18662 				else
18663 					tail->b_datap->db_struioflag |=
18664 					    STRUIO_ZCNOTIFY;
18665 			}
18666 			bp = nbp;
18667 			nbp = nbp->b_cont;
18668 			if (fix_xmitlist) {
18669 				tail->b_prev = bp->b_prev;
18670 				tail->b_next = bp->b_next;
18671 				if (tcp->tcp_xmit_tail == bp)
18672 					tcp->tcp_xmit_tail = tail;
18673 			}
18674 			bp->b_next = NULL;
18675 			bp->b_prev = NULL;
18676 			freeb(bp);
18677 		} else {
18678 			tail->b_cont = nbp;
18679 			tail = nbp;
18680 			nbp = nbp->b_cont;
18681 		}
18682 	}
18683 	if (fix_xmitlist) {
18684 		tcp->tcp_xmit_last = tail;
18685 		tcp->tcp_xmit_zc_clean = B_TRUE;
18686 	}
18687 	return (head);
18688 }
18689 
18690 static void
18691 tcp_zcopy_notify(tcp_t *tcp)
18692 {
18693 	struct stdata	*stp;
18694 
18695 	if (tcp->tcp_detached)
18696 		return;
18697 	stp = STREAM(tcp->tcp_rq);
18698 	mutex_enter(&stp->sd_lock);
18699 	stp->sd_flag |= STZCNOTIFY;
18700 	cv_broadcast(&stp->sd_zcopy_wait);
18701 	mutex_exit(&stp->sd_lock);
18702 }
18703 
18704 static boolean_t
18705 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep)
18706 {
18707 	ire_t	*ire;
18708 	conn_t	*connp = tcp->tcp_connp;
18709 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18710 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
18711 
18712 	mutex_enter(&connp->conn_lock);
18713 	ire = connp->conn_ire_cache;
18714 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18715 
18716 	if ((ire != NULL) &&
18717 	    (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) &&
18718 	    IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) &&
18719 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18720 		IRE_REFHOLD(ire);
18721 		mutex_exit(&connp->conn_lock);
18722 	} else {
18723 		boolean_t cached = B_FALSE;
18724 		ts_label_t *tsl;
18725 
18726 		/* force a recheck later on */
18727 		tcp->tcp_ire_ill_check_done = B_FALSE;
18728 
18729 		TCP_DBGSTAT(tcps, tcp_ire_null1);
18730 		connp->conn_ire_cache = NULL;
18731 		mutex_exit(&connp->conn_lock);
18732 
18733 		if (ire != NULL)
18734 			IRE_REFRELE_NOTR(ire);
18735 
18736 		tsl = crgetlabel(CONN_CRED(connp));
18737 		ire = (dst ?
18738 		    ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) :
18739 		    ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst,
18740 		    connp->conn_zoneid, tsl, ipst));
18741 
18742 		if (ire == NULL) {
18743 			TCP_STAT(tcps, tcp_ire_null);
18744 			return (B_FALSE);
18745 		}
18746 
18747 		IRE_REFHOLD_NOTR(ire);
18748 		/*
18749 		 * Since we are inside the squeue, there cannot be another
18750 		 * thread in TCP trying to set the conn_ire_cache now.  The
18751 		 * check for IRE_MARK_CONDEMNED ensures that an interface
18752 		 * unplumb thread has not yet started cleaning up the conns.
18753 		 * Hence we don't need to grab the conn lock.
18754 		 */
18755 		if (CONN_CACHE_IRE(connp)) {
18756 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
18757 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18758 				connp->conn_ire_cache = ire;
18759 				cached = B_TRUE;
18760 			}
18761 			rw_exit(&ire->ire_bucket->irb_lock);
18762 		}
18763 
18764 		/*
18765 		 * We can continue to use the ire but since it was
18766 		 * not cached, we should drop the extra reference.
18767 		 */
18768 		if (!cached)
18769 			IRE_REFRELE_NOTR(ire);
18770 
18771 		/*
18772 		 * Rampart note: no need to select a new label here, since
18773 		 * labels are not allowed to change during the life of a TCP
18774 		 * connection.
18775 		 */
18776 	}
18777 
18778 	*irep = ire;
18779 
18780 	return (B_TRUE);
18781 }
18782 
18783 /*
18784  * Called from tcp_send() or tcp_send_data() to find workable IRE.
18785  *
18786  * 0 = success;
18787  * 1 = failed to find ire and ill.
18788  */
18789 static boolean_t
18790 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp)
18791 {
18792 	ipha_t		*ipha;
18793 	ipaddr_t	dst;
18794 	ire_t		*ire;
18795 	ill_t		*ill;
18796 	conn_t		*connp = tcp->tcp_connp;
18797 	mblk_t		*ire_fp_mp;
18798 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18799 
18800 	if (mp != NULL)
18801 		ipha = (ipha_t *)mp->b_rptr;
18802 	else
18803 		ipha = tcp->tcp_ipha;
18804 	dst = ipha->ipha_dst;
18805 
18806 	if (!tcp_send_find_ire(tcp, &dst, &ire))
18807 		return (B_FALSE);
18808 
18809 	if ((ire->ire_flags & RTF_MULTIRT) ||
18810 	    (ire->ire_stq == NULL) ||
18811 	    (ire->ire_nce == NULL) ||
18812 	    ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) ||
18813 	    ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) ||
18814 		MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) {
18815 		TCP_STAT(tcps, tcp_ip_ire_send);
18816 		IRE_REFRELE(ire);
18817 		return (B_FALSE);
18818 	}
18819 
18820 	ill = ire_to_ill(ire);
18821 	if (connp->conn_outgoing_ill != NULL) {
18822 		ill_t *conn_outgoing_ill = NULL;
18823 		/*
18824 		 * Choose a good ill in the group to send the packets on.
18825 		 */
18826 		ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill);
18827 		ill = ire_to_ill(ire);
18828 	}
18829 	ASSERT(ill != NULL);
18830 
18831 	if (!tcp->tcp_ire_ill_check_done) {
18832 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
18833 		tcp->tcp_ire_ill_check_done = B_TRUE;
18834 	}
18835 
18836 	*irep = ire;
18837 	*illp = ill;
18838 
18839 	return (B_TRUE);
18840 }
18841 
18842 static void
18843 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp)
18844 {
18845 	ipha_t		*ipha;
18846 	ipaddr_t	src;
18847 	ipaddr_t	dst;
18848 	uint32_t	cksum;
18849 	ire_t		*ire;
18850 	uint16_t	*up;
18851 	ill_t		*ill;
18852 	conn_t		*connp = tcp->tcp_connp;
18853 	uint32_t	hcksum_txflags = 0;
18854 	mblk_t		*ire_fp_mp;
18855 	uint_t		ire_fp_mp_len;
18856 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18857 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
18858 
18859 	ASSERT(DB_TYPE(mp) == M_DATA);
18860 
18861 	if (DB_CRED(mp) == NULL)
18862 		mblk_setcred(mp, CONN_CRED(connp));
18863 
18864 	ipha = (ipha_t *)mp->b_rptr;
18865 	src = ipha->ipha_src;
18866 	dst = ipha->ipha_dst;
18867 
18868 	/*
18869 	 * Drop off fast path for IPv6 and also if options are present or
18870 	 * we need to resolve a TS label.
18871 	 */
18872 	if (tcp->tcp_ipversion != IPV4_VERSION ||
18873 	    !IPCL_IS_CONNECTED(connp) ||
18874 	    !CONN_IS_LSO_MD_FASTPATH(connp) ||
18875 	    (connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
18876 	    !connp->conn_ulp_labeled ||
18877 	    ipha->ipha_ident == IP_HDR_INCLUDED ||
18878 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
18879 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst)) {
18880 		if (tcp->tcp_snd_zcopy_aware)
18881 			mp = tcp_zcopy_disable(tcp, mp);
18882 		TCP_STAT(tcps, tcp_ip_send);
18883 		CALL_IP_WPUT(connp, q, mp);
18884 		return;
18885 	}
18886 
18887 	if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) {
18888 		if (tcp->tcp_snd_zcopy_aware)
18889 			mp = tcp_zcopy_backoff(tcp, mp, 0);
18890 		CALL_IP_WPUT(connp, q, mp);
18891 		return;
18892 	}
18893 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
18894 	ire_fp_mp_len = MBLKL(ire_fp_mp);
18895 
18896 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
18897 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
18898 #ifndef _BIG_ENDIAN
18899 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
18900 #endif
18901 
18902 	/*
18903 	 * Check to see if we need to re-enable LSO/MDT for this connection
18904 	 * because it was previously disabled due to changes in the ill;
18905 	 * note that by doing it here, this re-enabling only applies when
18906 	 * the packet is not dispatched through CALL_IP_WPUT().
18907 	 *
18908 	 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath
18909 	 * case, since that's how we ended up here.  For IPv6, we do the
18910 	 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue.
18911 	 */
18912 	if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) {
18913 		/*
18914 		 * Restore LSO for this connection, so that next time around
18915 		 * it is eligible to go through tcp_lsosend() path again.
18916 		 */
18917 		TCP_STAT(tcps, tcp_lso_enabled);
18918 		tcp->tcp_lso = B_TRUE;
18919 		ip1dbg(("tcp_send_data: reenabling LSO for connp %p on "
18920 		    "interface %s\n", (void *)connp, ill->ill_name));
18921 	} else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) {
18922 		/*
18923 		 * Restore MDT for this connection, so that next time around
18924 		 * it is eligible to go through tcp_multisend() path again.
18925 		 */
18926 		TCP_STAT(tcps, tcp_mdt_conn_resumed1);
18927 		tcp->tcp_mdt = B_TRUE;
18928 		ip1dbg(("tcp_send_data: reenabling MDT for connp %p on "
18929 		    "interface %s\n", (void *)connp, ill->ill_name));
18930 	}
18931 
18932 	if (tcp->tcp_snd_zcopy_aware) {
18933 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
18934 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
18935 			mp = tcp_zcopy_disable(tcp, mp);
18936 		/*
18937 		 * we shouldn't need to reset ipha as the mp containing
18938 		 * ipha should never be a zero-copy mp.
18939 		 */
18940 	}
18941 
18942 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
18943 		ASSERT(ill->ill_hcksum_capab != NULL);
18944 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
18945 	}
18946 
18947 	/* pseudo-header checksum (do it in parts for IP header checksum) */
18948 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
18949 
18950 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
18951 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
18952 
18953 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
18954 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
18955 
18956 	/* Software checksum? */
18957 	if (DB_CKSUMFLAGS(mp) == 0) {
18958 		TCP_STAT(tcps, tcp_out_sw_cksum);
18959 		TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
18960 		    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
18961 	}
18962 
18963 	ipha->ipha_fragment_offset_and_flags |=
18964 	    (uint32_t)htons(ire->ire_frag_flag);
18965 
18966 	/* Calculate IP header checksum if hardware isn't capable */
18967 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
18968 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
18969 		    ((uint16_t *)ipha)[4]);
18970 	}
18971 
18972 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
18973 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
18974 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
18975 
18976 	UPDATE_OB_PKT_COUNT(ire);
18977 	ire->ire_last_used_time = lbolt;
18978 
18979 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
18980 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
18981 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
18982 	    ntohs(ipha->ipha_length));
18983 
18984 	if (ILL_DLS_CAPABLE(ill)) {
18985 		/*
18986 		 * Send the packet directly to DLD, where it may be queued
18987 		 * depending on the availability of transmit resources at
18988 		 * the media layer.
18989 		 */
18990 		IP_DLS_ILL_TX(ill, ipha, mp, ipst);
18991 	} else {
18992 		ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr;
18993 		DTRACE_PROBE4(ip4__physical__out__start,
18994 		    ill_t *, NULL, ill_t *, out_ill,
18995 		    ipha_t *, ipha, mblk_t *, mp);
18996 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
18997 		    ipst->ips_ipv4firewall_physical_out,
18998 		    NULL, out_ill, ipha, mp, mp, ipst);
18999 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
19000 		if (mp != NULL)
19001 			putnext(ire->ire_stq, mp);
19002 	}
19003 	IRE_REFRELE(ire);
19004 }
19005 
19006 /*
19007  * This handles the case when the receiver has shrunk its win. Per RFC 1122
19008  * if the receiver shrinks the window, i.e. moves the right window to the
19009  * left, the we should not send new data, but should retransmit normally the
19010  * old unacked data between suna and suna + swnd. We might has sent data
19011  * that is now outside the new window, pretend that we didn't send  it.
19012  */
19013 static void
19014 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count)
19015 {
19016 	uint32_t	snxt = tcp->tcp_snxt;
19017 	mblk_t		*xmit_tail;
19018 	int32_t		offset;
19019 
19020 	ASSERT(shrunk_count > 0);
19021 
19022 	/* Pretend we didn't send the data outside the window */
19023 	snxt -= shrunk_count;
19024 
19025 	/* Get the mblk and the offset in it per the shrunk window */
19026 	xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset);
19027 
19028 	ASSERT(xmit_tail != NULL);
19029 
19030 	/* Reset all the values per the now shrunk window */
19031 	tcp->tcp_snxt = snxt;
19032 	tcp->tcp_xmit_tail = xmit_tail;
19033 	tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr -
19034 	    offset;
19035 	tcp->tcp_unsent += shrunk_count;
19036 
19037 	if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0)
19038 		/*
19039 		 * Make sure the timer is running so that we will probe a zero
19040 		 * window.
19041 		 */
19042 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19043 }
19044 
19045 
19046 /*
19047  * The TCP normal data output path.
19048  * NOTE: the logic of the fast path is duplicated from this function.
19049  */
19050 static void
19051 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent)
19052 {
19053 	int		len;
19054 	mblk_t		*local_time;
19055 	mblk_t		*mp1;
19056 	uint32_t	snxt;
19057 	int		tail_unsent;
19058 	int		tcpstate;
19059 	int		usable = 0;
19060 	mblk_t		*xmit_tail;
19061 	queue_t		*q = tcp->tcp_wq;
19062 	int32_t		mss;
19063 	int32_t		num_sack_blk = 0;
19064 	int32_t		tcp_hdr_len;
19065 	int32_t		tcp_tcp_hdr_len;
19066 	int		mdt_thres;
19067 	int		rc;
19068 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19069 	ip_stack_t	*ipst;
19070 
19071 	tcpstate = tcp->tcp_state;
19072 	if (mp == NULL) {
19073 		/*
19074 		 * tcp_wput_data() with NULL mp should only be called when
19075 		 * there is unsent data.
19076 		 */
19077 		ASSERT(tcp->tcp_unsent > 0);
19078 		/* Really tacky... but we need this for detached closes. */
19079 		len = tcp->tcp_unsent;
19080 		goto data_null;
19081 	}
19082 
19083 #if CCS_STATS
19084 	wrw_stats.tot.count++;
19085 	wrw_stats.tot.bytes += msgdsize(mp);
19086 #endif
19087 	ASSERT(mp->b_datap->db_type == M_DATA);
19088 	/*
19089 	 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ,
19090 	 * or before a connection attempt has begun.
19091 	 */
19092 	if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT ||
19093 	    (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
19094 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
19095 #ifdef DEBUG
19096 			cmn_err(CE_WARN,
19097 			    "tcp_wput_data: data after ordrel, %s",
19098 			    tcp_display(tcp, NULL,
19099 			    DISP_ADDR_AND_PORT));
19100 #else
19101 			if (tcp->tcp_debug) {
19102 				(void) strlog(TCP_MOD_ID, 0, 1,
19103 				    SL_TRACE|SL_ERROR,
19104 				    "tcp_wput_data: data after ordrel, %s\n",
19105 				    tcp_display(tcp, NULL,
19106 				    DISP_ADDR_AND_PORT));
19107 			}
19108 #endif /* DEBUG */
19109 		}
19110 		if (tcp->tcp_snd_zcopy_aware &&
19111 		    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0)
19112 			tcp_zcopy_notify(tcp);
19113 		freemsg(mp);
19114 		mutex_enter(&tcp->tcp_non_sq_lock);
19115 		if (tcp->tcp_flow_stopped &&
19116 		    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
19117 			tcp_clrqfull(tcp);
19118 		}
19119 		mutex_exit(&tcp->tcp_non_sq_lock);
19120 		return;
19121 	}
19122 
19123 	/* Strip empties */
19124 	for (;;) {
19125 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
19126 		    (uintptr_t)INT_MAX);
19127 		len = (int)(mp->b_wptr - mp->b_rptr);
19128 		if (len > 0)
19129 			break;
19130 		mp1 = mp;
19131 		mp = mp->b_cont;
19132 		freeb(mp1);
19133 		if (!mp) {
19134 			return;
19135 		}
19136 	}
19137 
19138 	/* If we are the first on the list ... */
19139 	if (tcp->tcp_xmit_head == NULL) {
19140 		tcp->tcp_xmit_head = mp;
19141 		tcp->tcp_xmit_tail = mp;
19142 		tcp->tcp_xmit_tail_unsent = len;
19143 	} else {
19144 		/* If tiny tx and room in txq tail, pullup to save mblks. */
19145 		struct datab *dp;
19146 
19147 		mp1 = tcp->tcp_xmit_last;
19148 		if (len < tcp_tx_pull_len &&
19149 		    (dp = mp1->b_datap)->db_ref == 1 &&
19150 		    dp->db_lim - mp1->b_wptr >= len) {
19151 			ASSERT(len > 0);
19152 			ASSERT(!mp1->b_cont);
19153 			if (len == 1) {
19154 				*mp1->b_wptr++ = *mp->b_rptr;
19155 			} else {
19156 				bcopy(mp->b_rptr, mp1->b_wptr, len);
19157 				mp1->b_wptr += len;
19158 			}
19159 			if (mp1 == tcp->tcp_xmit_tail)
19160 				tcp->tcp_xmit_tail_unsent += len;
19161 			mp1->b_cont = mp->b_cont;
19162 			if (tcp->tcp_snd_zcopy_aware &&
19163 			    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
19164 				mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
19165 			freeb(mp);
19166 			mp = mp1;
19167 		} else {
19168 			tcp->tcp_xmit_last->b_cont = mp;
19169 		}
19170 		len += tcp->tcp_unsent;
19171 	}
19172 
19173 	/* Tack on however many more positive length mblks we have */
19174 	if ((mp1 = mp->b_cont) != NULL) {
19175 		do {
19176 			int tlen;
19177 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
19178 			    (uintptr_t)INT_MAX);
19179 			tlen = (int)(mp1->b_wptr - mp1->b_rptr);
19180 			if (tlen <= 0) {
19181 				mp->b_cont = mp1->b_cont;
19182 				freeb(mp1);
19183 			} else {
19184 				len += tlen;
19185 				mp = mp1;
19186 			}
19187 		} while ((mp1 = mp->b_cont) != NULL);
19188 	}
19189 	tcp->tcp_xmit_last = mp;
19190 	tcp->tcp_unsent = len;
19191 
19192 	if (urgent)
19193 		usable = 1;
19194 
19195 data_null:
19196 	snxt = tcp->tcp_snxt;
19197 	xmit_tail = tcp->tcp_xmit_tail;
19198 	tail_unsent = tcp->tcp_xmit_tail_unsent;
19199 
19200 	/*
19201 	 * Note that tcp_mss has been adjusted to take into account the
19202 	 * timestamp option if applicable.  Because SACK options do not
19203 	 * appear in every TCP segments and they are of variable lengths,
19204 	 * they cannot be included in tcp_mss.  Thus we need to calculate
19205 	 * the actual segment length when we need to send a segment which
19206 	 * includes SACK options.
19207 	 */
19208 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
19209 		int32_t	opt_len;
19210 
19211 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
19212 		    tcp->tcp_num_sack_blk);
19213 		opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN *
19214 		    2 + TCPOPT_HEADER_LEN;
19215 		mss = tcp->tcp_mss - opt_len;
19216 		tcp_hdr_len = tcp->tcp_hdr_len + opt_len;
19217 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len;
19218 	} else {
19219 		mss = tcp->tcp_mss;
19220 		tcp_hdr_len = tcp->tcp_hdr_len;
19221 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
19222 	}
19223 
19224 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
19225 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
19226 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
19227 	}
19228 	if (tcpstate == TCPS_SYN_RCVD) {
19229 		/*
19230 		 * The three-way connection establishment handshake is not
19231 		 * complete yet. We want to queue the data for transmission
19232 		 * after entering ESTABLISHED state (RFC793). A jump to
19233 		 * "done" label effectively leaves data on the queue.
19234 		 */
19235 		goto done;
19236 	} else {
19237 		int usable_r;
19238 
19239 		/*
19240 		 * In the special case when cwnd is zero, which can only
19241 		 * happen if the connection is ECN capable, return now.
19242 		 * New segments is sent using tcp_timer().  The timer
19243 		 * is set in tcp_rput_data().
19244 		 */
19245 		if (tcp->tcp_cwnd == 0) {
19246 			/*
19247 			 * Note that tcp_cwnd is 0 before 3-way handshake is
19248 			 * finished.
19249 			 */
19250 			ASSERT(tcp->tcp_ecn_ok ||
19251 			    tcp->tcp_state < TCPS_ESTABLISHED);
19252 			return;
19253 		}
19254 
19255 		/* NOTE: trouble if xmitting while SYN not acked? */
19256 		usable_r = snxt - tcp->tcp_suna;
19257 		usable_r = tcp->tcp_swnd - usable_r;
19258 
19259 		/*
19260 		 * Check if the receiver has shrunk the window.  If
19261 		 * tcp_wput_data() with NULL mp is called, tcp_fin_sent
19262 		 * cannot be set as there is unsent data, so FIN cannot
19263 		 * be sent out.  Otherwise, we need to take into account
19264 		 * of FIN as it consumes an "invisible" sequence number.
19265 		 */
19266 		ASSERT(tcp->tcp_fin_sent == 0);
19267 		if (usable_r < 0) {
19268 			/*
19269 			 * The receiver has shrunk the window and we have sent
19270 			 * -usable_r date beyond the window, re-adjust.
19271 			 *
19272 			 * If TCP window scaling is enabled, there can be
19273 			 * round down error as the advertised receive window
19274 			 * is actually right shifted n bits.  This means that
19275 			 * the lower n bits info is wiped out.  It will look
19276 			 * like the window is shrunk.  Do a check here to
19277 			 * see if the shrunk amount is actually within the
19278 			 * error in window calculation.  If it is, just
19279 			 * return.  Note that this check is inside the
19280 			 * shrunk window check.  This makes sure that even
19281 			 * though tcp_process_shrunk_swnd() is not called,
19282 			 * we will stop further processing.
19283 			 */
19284 			if ((-usable_r >> tcp->tcp_snd_ws) > 0) {
19285 				tcp_process_shrunk_swnd(tcp, -usable_r);
19286 			}
19287 			return;
19288 		}
19289 
19290 		/* usable = MIN(swnd, cwnd) - unacked_bytes */
19291 		if (tcp->tcp_swnd > tcp->tcp_cwnd)
19292 			usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd;
19293 
19294 		/* usable = MIN(usable, unsent) */
19295 		if (usable_r > len)
19296 			usable_r = len;
19297 
19298 		/* usable = MAX(usable, {1 for urgent, 0 for data}) */
19299 		if (usable_r > 0) {
19300 			usable = usable_r;
19301 		} else {
19302 			/* Bypass all other unnecessary processing. */
19303 			goto done;
19304 		}
19305 	}
19306 
19307 	local_time = (mblk_t *)lbolt;
19308 
19309 	/*
19310 	 * "Our" Nagle Algorithm.  This is not the same as in the old
19311 	 * BSD.  This is more in line with the true intent of Nagle.
19312 	 *
19313 	 * The conditions are:
19314 	 * 1. The amount of unsent data (or amount of data which can be
19315 	 *    sent, whichever is smaller) is less than Nagle limit.
19316 	 * 2. The last sent size is also less than Nagle limit.
19317 	 * 3. There is unack'ed data.
19318 	 * 4. Urgent pointer is not set.  Send urgent data ignoring the
19319 	 *    Nagle algorithm.  This reduces the probability that urgent
19320 	 *    bytes get "merged" together.
19321 	 * 5. The app has not closed the connection.  This eliminates the
19322 	 *    wait time of the receiving side waiting for the last piece of
19323 	 *    (small) data.
19324 	 *
19325 	 * If all are satisified, exit without sending anything.  Note
19326 	 * that Nagle limit can be smaller than 1 MSS.  Nagle limit is
19327 	 * the smaller of 1 MSS and global tcp_naglim_def (default to be
19328 	 * 4095).
19329 	 */
19330 	if (usable < (int)tcp->tcp_naglim &&
19331 	    tcp->tcp_naglim > tcp->tcp_last_sent_len &&
19332 	    snxt != tcp->tcp_suna &&
19333 	    !(tcp->tcp_valid_bits & TCP_URG_VALID) &&
19334 	    !(tcp->tcp_valid_bits & TCP_FSS_VALID)) {
19335 		goto done;
19336 	}
19337 
19338 	if (tcp->tcp_cork) {
19339 		/*
19340 		 * if the tcp->tcp_cork option is set, then we have to force
19341 		 * TCP not to send partial segment (smaller than MSS bytes).
19342 		 * We are calculating the usable now based on full mss and
19343 		 * will save the rest of remaining data for later.
19344 		 */
19345 		if (usable < mss)
19346 			goto done;
19347 		usable = (usable / mss) * mss;
19348 	}
19349 
19350 	/* Update the latest receive window size in TCP header. */
19351 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
19352 	    tcp->tcp_tcph->th_win);
19353 
19354 	/*
19355 	 * Determine if it's worthwhile to attempt LSO or MDT, based on:
19356 	 *
19357 	 * 1. Simple TCP/IP{v4,v6} (no options).
19358 	 * 2. IPSEC/IPQoS processing is not needed for the TCP connection.
19359 	 * 3. If the TCP connection is in ESTABLISHED state.
19360 	 * 4. The TCP is not detached.
19361 	 *
19362 	 * If any of the above conditions have changed during the
19363 	 * connection, stop using LSO/MDT and restore the stream head
19364 	 * parameters accordingly.
19365 	 */
19366 	ipst = tcps->tcps_netstack->netstack_ip;
19367 
19368 	if ((tcp->tcp_lso || tcp->tcp_mdt) &&
19369 	    ((tcp->tcp_ipversion == IPV4_VERSION &&
19370 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
19371 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19372 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) ||
19373 	    tcp->tcp_state != TCPS_ESTABLISHED ||
19374 	    TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) ||
19375 	    CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) ||
19376 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst))) {
19377 		if (tcp->tcp_lso) {
19378 			tcp->tcp_connp->conn_lso_ok = B_FALSE;
19379 			tcp->tcp_lso = B_FALSE;
19380 		} else {
19381 			tcp->tcp_connp->conn_mdt_ok = B_FALSE;
19382 			tcp->tcp_mdt = B_FALSE;
19383 		}
19384 
19385 		/* Anything other than detached is considered pathological */
19386 		if (!TCP_IS_DETACHED(tcp)) {
19387 			if (tcp->tcp_lso)
19388 				TCP_STAT(tcps, tcp_lso_disabled);
19389 			else
19390 				TCP_STAT(tcps, tcp_mdt_conn_halted1);
19391 			(void) tcp_maxpsz_set(tcp, B_TRUE);
19392 		}
19393 	}
19394 
19395 	/* Use MDT if sendable amount is greater than the threshold */
19396 	if (tcp->tcp_mdt &&
19397 	    (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) &&
19398 	    (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL &&
19399 	    MBLKL(xmit_tail->b_cont) > mdt_thres)) &&
19400 	    (tcp->tcp_valid_bits == 0 ||
19401 	    tcp->tcp_valid_bits == TCP_FSS_VALID)) {
19402 		ASSERT(tcp->tcp_connp->conn_mdt_ok);
19403 		rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19404 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19405 		    local_time, mdt_thres);
19406 	} else {
19407 		rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19408 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19409 		    local_time, INT_MAX);
19410 	}
19411 
19412 	/* Pretend that all we were trying to send really got sent */
19413 	if (rc < 0 && tail_unsent < 0) {
19414 		do {
19415 			xmit_tail = xmit_tail->b_cont;
19416 			xmit_tail->b_prev = local_time;
19417 			ASSERT((uintptr_t)(xmit_tail->b_wptr -
19418 			    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
19419 			tail_unsent += (int)(xmit_tail->b_wptr -
19420 			    xmit_tail->b_rptr);
19421 		} while (tail_unsent < 0);
19422 	}
19423 done:;
19424 	tcp->tcp_xmit_tail = xmit_tail;
19425 	tcp->tcp_xmit_tail_unsent = tail_unsent;
19426 	len = tcp->tcp_snxt - snxt;
19427 	if (len) {
19428 		/*
19429 		 * If new data was sent, need to update the notsack
19430 		 * list, which is, afterall, data blocks that have
19431 		 * not been sack'ed by the receiver.  New data is
19432 		 * not sack'ed.
19433 		 */
19434 		if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
19435 			/* len is a negative value. */
19436 			tcp->tcp_pipe -= len;
19437 			tcp_notsack_update(&(tcp->tcp_notsack_list),
19438 			    tcp->tcp_snxt, snxt,
19439 			    &(tcp->tcp_num_notsack_blk),
19440 			    &(tcp->tcp_cnt_notsack_list));
19441 		}
19442 		tcp->tcp_snxt = snxt + tcp->tcp_fin_sent;
19443 		tcp->tcp_rack = tcp->tcp_rnxt;
19444 		tcp->tcp_rack_cnt = 0;
19445 		if ((snxt + len) == tcp->tcp_suna) {
19446 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19447 		}
19448 	} else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) {
19449 		/*
19450 		 * Didn't send anything. Make sure the timer is running
19451 		 * so that we will probe a zero window.
19452 		 */
19453 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19454 	}
19455 	/* Note that len is the amount we just sent but with a negative sign */
19456 	tcp->tcp_unsent += len;
19457 	mutex_enter(&tcp->tcp_non_sq_lock);
19458 	if (tcp->tcp_flow_stopped) {
19459 		if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
19460 			tcp_clrqfull(tcp);
19461 		}
19462 	} else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) {
19463 		tcp_setqfull(tcp);
19464 	}
19465 	mutex_exit(&tcp->tcp_non_sq_lock);
19466 }
19467 
19468 /*
19469  * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the
19470  * outgoing TCP header with the template header, as well as other
19471  * options such as time-stamp, ECN and/or SACK.
19472  */
19473 static void
19474 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk)
19475 {
19476 	tcph_t *tcp_tmpl, *tcp_h;
19477 	uint32_t *dst, *src;
19478 	int hdrlen;
19479 
19480 	ASSERT(OK_32PTR(rptr));
19481 
19482 	/* Template header */
19483 	tcp_tmpl = tcp->tcp_tcph;
19484 
19485 	/* Header of outgoing packet */
19486 	tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
19487 
19488 	/* dst and src are opaque 32-bit fields, used for copying */
19489 	dst = (uint32_t *)rptr;
19490 	src = (uint32_t *)tcp->tcp_iphc;
19491 	hdrlen = tcp->tcp_hdr_len;
19492 
19493 	/* Fill time-stamp option if needed */
19494 	if (tcp->tcp_snd_ts_ok) {
19495 		U32_TO_BE32((uint32_t)now,
19496 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4);
19497 		U32_TO_BE32(tcp->tcp_ts_recent,
19498 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8);
19499 	} else {
19500 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
19501 	}
19502 
19503 	/*
19504 	 * Copy the template header; is this really more efficient than
19505 	 * calling bcopy()?  For simple IPv4/TCP, it may be the case,
19506 	 * but perhaps not for other scenarios.
19507 	 */
19508 	dst[0] = src[0];
19509 	dst[1] = src[1];
19510 	dst[2] = src[2];
19511 	dst[3] = src[3];
19512 	dst[4] = src[4];
19513 	dst[5] = src[5];
19514 	dst[6] = src[6];
19515 	dst[7] = src[7];
19516 	dst[8] = src[8];
19517 	dst[9] = src[9];
19518 	if (hdrlen -= 40) {
19519 		hdrlen >>= 2;
19520 		dst += 10;
19521 		src += 10;
19522 		do {
19523 			*dst++ = *src++;
19524 		} while (--hdrlen);
19525 	}
19526 
19527 	/*
19528 	 * Set the ECN info in the TCP header if it is not a zero
19529 	 * window probe.  Zero window probe is only sent in
19530 	 * tcp_wput_data() and tcp_timer().
19531 	 */
19532 	if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) {
19533 		SET_ECT(tcp, rptr);
19534 
19535 		if (tcp->tcp_ecn_echo_on)
19536 			tcp_h->th_flags[0] |= TH_ECE;
19537 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
19538 			tcp_h->th_flags[0] |= TH_CWR;
19539 			tcp->tcp_ecn_cwr_sent = B_TRUE;
19540 		}
19541 	}
19542 
19543 	/* Fill in SACK options */
19544 	if (num_sack_blk > 0) {
19545 		uchar_t *wptr = rptr + tcp->tcp_hdr_len;
19546 		sack_blk_t *tmp;
19547 		int32_t	i;
19548 
19549 		wptr[0] = TCPOPT_NOP;
19550 		wptr[1] = TCPOPT_NOP;
19551 		wptr[2] = TCPOPT_SACK;
19552 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
19553 		    sizeof (sack_blk_t);
19554 		wptr += TCPOPT_REAL_SACK_LEN;
19555 
19556 		tmp = tcp->tcp_sack_list;
19557 		for (i = 0; i < num_sack_blk; i++) {
19558 			U32_TO_BE32(tmp[i].begin, wptr);
19559 			wptr += sizeof (tcp_seq);
19560 			U32_TO_BE32(tmp[i].end, wptr);
19561 			wptr += sizeof (tcp_seq);
19562 		}
19563 		tcp_h->th_offset_and_rsrvd[0] +=
19564 		    ((num_sack_blk * 2 + 1) << 4);
19565 	}
19566 }
19567 
19568 /*
19569  * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach
19570  * the destination address and SAP attribute, and if necessary, the
19571  * hardware checksum offload attribute to a Multidata message.
19572  */
19573 static int
19574 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum,
19575     const uint32_t start, const uint32_t stuff, const uint32_t end,
19576     const uint32_t flags, tcp_stack_t *tcps)
19577 {
19578 	/* Add global destination address & SAP attribute */
19579 	if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) {
19580 		ip1dbg(("tcp_mdt_add_attrs: can't add global physical "
19581 		    "destination address+SAP\n"));
19582 
19583 		if (dlmp != NULL)
19584 			TCP_STAT(tcps, tcp_mdt_allocfail);
19585 		return (-1);
19586 	}
19587 
19588 	/* Add global hwcksum attribute */
19589 	if (hwcksum &&
19590 	    !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) {
19591 		ip1dbg(("tcp_mdt_add_attrs: can't add global hardware "
19592 		    "checksum attribute\n"));
19593 
19594 		TCP_STAT(tcps, tcp_mdt_allocfail);
19595 		return (-1);
19596 	}
19597 
19598 	return (0);
19599 }
19600 
19601 /*
19602  * Smaller and private version of pdescinfo_t used specifically for TCP,
19603  * which allows for only two payload spans per packet.
19604  */
19605 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t;
19606 
19607 /*
19608  * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit
19609  * scheme, and returns one the following:
19610  *
19611  * -1 = failed allocation.
19612  *  0 = success; burst count reached, or usable send window is too small,
19613  *      and that we'd rather wait until later before sending again.
19614  */
19615 static int
19616 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
19617     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
19618     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
19619     const int mdt_thres)
19620 {
19621 	mblk_t		*md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf;
19622 	multidata_t	*mmd;
19623 	uint_t		obsegs, obbytes, hdr_frag_sz;
19624 	uint_t		cur_hdr_off, cur_pld_off, base_pld_off, first_snxt;
19625 	int		num_burst_seg, max_pld;
19626 	pdesc_t		*pkt;
19627 	tcp_pdescinfo_t	tcp_pkt_info;
19628 	pdescinfo_t	*pkt_info;
19629 	int		pbuf_idx, pbuf_idx_nxt;
19630 	int		seg_len, len, spill, af;
19631 	boolean_t	add_buffer, zcopy, clusterwide;
19632 	boolean_t	buf_trunked = B_FALSE;
19633 	boolean_t	rconfirm = B_FALSE;
19634 	boolean_t	done = B_FALSE;
19635 	uint32_t	cksum;
19636 	uint32_t	hwcksum_flags;
19637 	ire_t		*ire = NULL;
19638 	ill_t		*ill;
19639 	ipha_t		*ipha;
19640 	ip6_t		*ip6h;
19641 	ipaddr_t	src, dst;
19642 	ill_zerocopy_capab_t *zc_cap = NULL;
19643 	uint16_t	*up;
19644 	int		err;
19645 	conn_t		*connp;
19646 	mblk_t		*mp, *mp1, *fw_mp_head = NULL;
19647 	uchar_t		*pld_start;
19648 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19649 	ip_stack_t 	*ipst = tcps->tcps_netstack->netstack_ip;
19650 
19651 #ifdef	_BIG_ENDIAN
19652 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 28) & 0x7)
19653 #else
19654 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 4) & 0x7)
19655 #endif
19656 
19657 #define	PREP_NEW_MULTIDATA() {			\
19658 	mmd = NULL;				\
19659 	md_mp = md_hbuf = NULL;			\
19660 	cur_hdr_off = 0;			\
19661 	max_pld = tcp->tcp_mdt_max_pld;		\
19662 	pbuf_idx = pbuf_idx_nxt = -1;		\
19663 	add_buffer = B_TRUE;			\
19664 	zcopy = B_FALSE;			\
19665 }
19666 
19667 #define	PREP_NEW_PBUF() {			\
19668 	md_pbuf = md_pbuf_nxt = NULL;		\
19669 	pbuf_idx = pbuf_idx_nxt = -1;		\
19670 	cur_pld_off = 0;			\
19671 	first_snxt = *snxt;			\
19672 	ASSERT(*tail_unsent > 0);		\
19673 	base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \
19674 }
19675 
19676 	ASSERT(mdt_thres >= mss);
19677 	ASSERT(*usable > 0 && *usable > mdt_thres);
19678 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
19679 	ASSERT(!TCP_IS_DETACHED(tcp));
19680 	ASSERT(tcp->tcp_valid_bits == 0 ||
19681 	    tcp->tcp_valid_bits == TCP_FSS_VALID);
19682 	ASSERT((tcp->tcp_ipversion == IPV4_VERSION &&
19683 	    tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) ||
19684 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19685 	    tcp->tcp_ip_hdr_len == IPV6_HDR_LEN));
19686 
19687 	connp = tcp->tcp_connp;
19688 	ASSERT(connp != NULL);
19689 	ASSERT(CONN_IS_LSO_MD_FASTPATH(connp));
19690 	ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp));
19691 
19692 	/*
19693 	 * Note that tcp will only declare at most 2 payload spans per
19694 	 * packet, which is much lower than the maximum allowable number
19695 	 * of packet spans per Multidata.  For this reason, we use the
19696 	 * privately declared and smaller descriptor info structure, in
19697 	 * order to save some stack space.
19698 	 */
19699 	pkt_info = (pdescinfo_t *)&tcp_pkt_info;
19700 
19701 	af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6;
19702 	if (af == AF_INET) {
19703 		dst = tcp->tcp_ipha->ipha_dst;
19704 		src = tcp->tcp_ipha->ipha_src;
19705 		ASSERT(!CLASSD(dst));
19706 	}
19707 	ASSERT(af == AF_INET ||
19708 	    !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst));
19709 
19710 	obsegs = obbytes = 0;
19711 	num_burst_seg = tcp->tcp_snd_burst;
19712 	md_mp_head = NULL;
19713 	PREP_NEW_MULTIDATA();
19714 
19715 	/*
19716 	 * Before we go on further, make sure there is an IRE that we can
19717 	 * use, and that the ILL supports MDT.  Otherwise, there's no point
19718 	 * in proceeding any further, and we should just hand everything
19719 	 * off to the legacy path.
19720 	 */
19721 	if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire))
19722 		goto legacy_send_no_md;
19723 
19724 	ASSERT(ire != NULL);
19725 	ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION);
19726 	ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6)));
19727 	ASSERT(af == AF_INET || ire->ire_nce != NULL);
19728 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
19729 	/*
19730 	 * If we do support loopback for MDT (which requires modifications
19731 	 * to the receiving paths), the following assertions should go away,
19732 	 * and we would be sending the Multidata to loopback conn later on.
19733 	 */
19734 	ASSERT(!IRE_IS_LOCAL(ire));
19735 	ASSERT(ire->ire_stq != NULL);
19736 
19737 	ill = ire_to_ill(ire);
19738 	ASSERT(ill != NULL);
19739 	ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL);
19740 
19741 	if (!tcp->tcp_ire_ill_check_done) {
19742 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
19743 		tcp->tcp_ire_ill_check_done = B_TRUE;
19744 	}
19745 
19746 	/*
19747 	 * If the underlying interface conditions have changed, or if the
19748 	 * new interface does not support MDT, go back to legacy path.
19749 	 */
19750 	if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) {
19751 		/* don't go through this path anymore for this connection */
19752 		TCP_STAT(tcps, tcp_mdt_conn_halted2);
19753 		tcp->tcp_mdt = B_FALSE;
19754 		ip1dbg(("tcp_multisend: disabling MDT for connp %p on "
19755 		    "interface %s\n", (void *)connp, ill->ill_name));
19756 		/* IRE will be released prior to returning */
19757 		goto legacy_send_no_md;
19758 	}
19759 
19760 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)
19761 		zc_cap = ill->ill_zerocopy_capab;
19762 
19763 	/*
19764 	 * Check if we can take tcp fast-path. Note that "incomplete"
19765 	 * ire's (where the link-layer for next hop is not resolved
19766 	 * or where the fast-path header in nce_fp_mp is not available
19767 	 * yet) are sent down the legacy (slow) path.
19768 	 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA
19769 	 */
19770 	if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) {
19771 		/* IRE will be released prior to returning */
19772 		goto legacy_send_no_md;
19773 	}
19774 
19775 	/* go to legacy path if interface doesn't support zerocopy */
19776 	if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 &&
19777 	    (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) {
19778 		/* IRE will be released prior to returning */
19779 		goto legacy_send_no_md;
19780 	}
19781 
19782 	/* does the interface support hardware checksum offload? */
19783 	hwcksum_flags = 0;
19784 	if (ILL_HCKSUM_CAPABLE(ill) &&
19785 	    (ill->ill_hcksum_capab->ill_hcksum_txflags &
19786 	    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL |
19787 	    HCKSUM_IPHDRCKSUM)) && dohwcksum) {
19788 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19789 		    HCKSUM_IPHDRCKSUM)
19790 			hwcksum_flags = HCK_IPV4_HDRCKSUM;
19791 
19792 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19793 		    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6))
19794 			hwcksum_flags |= HCK_FULLCKSUM;
19795 		else if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19796 		    HCKSUM_INET_PARTIAL)
19797 			hwcksum_flags |= HCK_PARTIALCKSUM;
19798 	}
19799 
19800 	/*
19801 	 * Each header fragment consists of the leading extra space,
19802 	 * followed by the TCP/IP header, and the trailing extra space.
19803 	 * We make sure that each header fragment begins on a 32-bit
19804 	 * aligned memory address (tcp_mdt_hdr_head is already 32-bit
19805 	 * aligned in tcp_mdt_update).
19806 	 */
19807 	hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len +
19808 	    tcp->tcp_mdt_hdr_tail), 4);
19809 
19810 	/* are we starting from the beginning of data block? */
19811 	if (*tail_unsent == 0) {
19812 		*xmit_tail = (*xmit_tail)->b_cont;
19813 		ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX);
19814 		*tail_unsent = (int)MBLKL(*xmit_tail);
19815 	}
19816 
19817 	/*
19818 	 * Here we create one or more Multidata messages, each made up of
19819 	 * one header buffer and up to N payload buffers.  This entire
19820 	 * operation is done within two loops:
19821 	 *
19822 	 * The outer loop mostly deals with creating the Multidata message,
19823 	 * as well as the header buffer that gets added to it.  It also
19824 	 * links the Multidata messages together such that all of them can
19825 	 * be sent down to the lower layer in a single putnext call; this
19826 	 * linking behavior depends on the tcp_mdt_chain tunable.
19827 	 *
19828 	 * The inner loop takes an existing Multidata message, and adds
19829 	 * one or more (up to tcp_mdt_max_pld) payload buffers to it.  It
19830 	 * packetizes those buffers by filling up the corresponding header
19831 	 * buffer fragments with the proper IP and TCP headers, and by
19832 	 * describing the layout of each packet in the packet descriptors
19833 	 * that get added to the Multidata.
19834 	 */
19835 	do {
19836 		/*
19837 		 * If usable send window is too small, or data blocks in
19838 		 * transmit list are smaller than our threshold (i.e. app
19839 		 * performs large writes followed by small ones), we hand
19840 		 * off the control over to the legacy path.  Note that we'll
19841 		 * get back the control once it encounters a large block.
19842 		 */
19843 		if (*usable < mss || (*tail_unsent <= mdt_thres &&
19844 		    (*xmit_tail)->b_cont != NULL &&
19845 		    MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) {
19846 			/* send down what we've got so far */
19847 			if (md_mp_head != NULL) {
19848 				tcp_multisend_data(tcp, ire, ill, md_mp_head,
19849 				    obsegs, obbytes, &rconfirm);
19850 			}
19851 			/*
19852 			 * Pass control over to tcp_send(), but tell it to
19853 			 * return to us once a large-size transmission is
19854 			 * possible.
19855 			 */
19856 			TCP_STAT(tcps, tcp_mdt_legacy_small);
19857 			if ((err = tcp_send(q, tcp, mss, tcp_hdr_len,
19858 			    tcp_tcp_hdr_len, num_sack_blk, usable, snxt,
19859 			    tail_unsent, xmit_tail, local_time,
19860 			    mdt_thres)) <= 0) {
19861 				/* burst count reached, or alloc failed */
19862 				IRE_REFRELE(ire);
19863 				return (err);
19864 			}
19865 
19866 			/* tcp_send() may have sent everything, so check */
19867 			if (*usable <= 0) {
19868 				IRE_REFRELE(ire);
19869 				return (0);
19870 			}
19871 
19872 			TCP_STAT(tcps, tcp_mdt_legacy_ret);
19873 			/*
19874 			 * We may have delivered the Multidata, so make sure
19875 			 * to re-initialize before the next round.
19876 			 */
19877 			md_mp_head = NULL;
19878 			obsegs = obbytes = 0;
19879 			num_burst_seg = tcp->tcp_snd_burst;
19880 			PREP_NEW_MULTIDATA();
19881 
19882 			/* are we starting from the beginning of data block? */
19883 			if (*tail_unsent == 0) {
19884 				*xmit_tail = (*xmit_tail)->b_cont;
19885 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
19886 				    (uintptr_t)INT_MAX);
19887 				*tail_unsent = (int)MBLKL(*xmit_tail);
19888 			}
19889 		}
19890 
19891 		/*
19892 		 * max_pld limits the number of mblks in tcp's transmit
19893 		 * queue that can be added to a Multidata message.  Once
19894 		 * this counter reaches zero, no more additional mblks
19895 		 * can be added to it.  What happens afterwards depends
19896 		 * on whether or not we are set to chain the Multidata
19897 		 * messages.  If we are to link them together, reset
19898 		 * max_pld to its original value (tcp_mdt_max_pld) and
19899 		 * prepare to create a new Multidata message which will
19900 		 * get linked to md_mp_head.  Else, leave it alone and
19901 		 * let the inner loop break on its own.
19902 		 */
19903 		if (tcp_mdt_chain && max_pld == 0)
19904 			PREP_NEW_MULTIDATA();
19905 
19906 		/* adding a payload buffer; re-initialize values */
19907 		if (add_buffer)
19908 			PREP_NEW_PBUF();
19909 
19910 		/*
19911 		 * If we don't have a Multidata, either because we just
19912 		 * (re)entered this outer loop, or after we branched off
19913 		 * to tcp_send above, setup the Multidata and header
19914 		 * buffer to be used.
19915 		 */
19916 		if (md_mp == NULL) {
19917 			int md_hbuflen;
19918 			uint32_t start, stuff;
19919 
19920 			/*
19921 			 * Calculate Multidata header buffer size large enough
19922 			 * to hold all of the headers that can possibly be
19923 			 * sent at this moment.  We'd rather over-estimate
19924 			 * the size than running out of space; this is okay
19925 			 * since this buffer is small anyway.
19926 			 */
19927 			md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz;
19928 
19929 			/*
19930 			 * Start and stuff offset for partial hardware
19931 			 * checksum offload; these are currently for IPv4.
19932 			 * For full checksum offload, they are set to zero.
19933 			 */
19934 			if ((hwcksum_flags & HCK_PARTIALCKSUM)) {
19935 				if (af == AF_INET) {
19936 					start = IP_SIMPLE_HDR_LENGTH;
19937 					stuff = IP_SIMPLE_HDR_LENGTH +
19938 					    TCP_CHECKSUM_OFFSET;
19939 				} else {
19940 					start = IPV6_HDR_LEN;
19941 					stuff = IPV6_HDR_LEN +
19942 					    TCP_CHECKSUM_OFFSET;
19943 				}
19944 			} else {
19945 				start = stuff = 0;
19946 			}
19947 
19948 			/*
19949 			 * Create the header buffer, Multidata, as well as
19950 			 * any necessary attributes (destination address,
19951 			 * SAP and hardware checksum offload) that should
19952 			 * be associated with the Multidata message.
19953 			 */
19954 			ASSERT(cur_hdr_off == 0);
19955 			if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL ||
19956 			    ((md_hbuf->b_wptr += md_hbuflen),
19957 			    (mmd = mmd_alloc(md_hbuf, &md_mp,
19958 			    KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd,
19959 			    /* fastpath mblk */
19960 			    ire->ire_nce->nce_res_mp,
19961 			    /* hardware checksum enabled */
19962 			    (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)),
19963 			    /* hardware checksum offsets */
19964 			    start, stuff, 0,
19965 			    /* hardware checksum flag */
19966 			    hwcksum_flags, tcps) != 0)) {
19967 legacy_send:
19968 				if (md_mp != NULL) {
19969 					/* Unlink message from the chain */
19970 					if (md_mp_head != NULL) {
19971 						err = (intptr_t)rmvb(md_mp_head,
19972 						    md_mp);
19973 						/*
19974 						 * We can't assert that rmvb
19975 						 * did not return -1, since we
19976 						 * may get here before linkb
19977 						 * happens.  We do, however,
19978 						 * check if we just removed the
19979 						 * only element in the list.
19980 						 */
19981 						if (err == 0)
19982 							md_mp_head = NULL;
19983 					}
19984 					/* md_hbuf gets freed automatically */
19985 					TCP_STAT(tcps, tcp_mdt_discarded);
19986 					freeb(md_mp);
19987 				} else {
19988 					/* Either allocb or mmd_alloc failed */
19989 					TCP_STAT(tcps, tcp_mdt_allocfail);
19990 					if (md_hbuf != NULL)
19991 						freeb(md_hbuf);
19992 				}
19993 
19994 				/* send down what we've got so far */
19995 				if (md_mp_head != NULL) {
19996 					tcp_multisend_data(tcp, ire, ill,
19997 					    md_mp_head, obsegs, obbytes,
19998 					    &rconfirm);
19999 				}
20000 legacy_send_no_md:
20001 				if (ire != NULL)
20002 					IRE_REFRELE(ire);
20003 				/*
20004 				 * Too bad; let the legacy path handle this.
20005 				 * We specify INT_MAX for the threshold, since
20006 				 * we gave up with the Multidata processings
20007 				 * and let the old path have it all.
20008 				 */
20009 				TCP_STAT(tcps, tcp_mdt_legacy_all);
20010 				return (tcp_send(q, tcp, mss, tcp_hdr_len,
20011 				    tcp_tcp_hdr_len, num_sack_blk, usable,
20012 				    snxt, tail_unsent, xmit_tail, local_time,
20013 				    INT_MAX));
20014 			}
20015 
20016 			/* link to any existing ones, if applicable */
20017 			TCP_STAT(tcps, tcp_mdt_allocd);
20018 			if (md_mp_head == NULL) {
20019 				md_mp_head = md_mp;
20020 			} else if (tcp_mdt_chain) {
20021 				TCP_STAT(tcps, tcp_mdt_linked);
20022 				linkb(md_mp_head, md_mp);
20023 			}
20024 		}
20025 
20026 		ASSERT(md_mp_head != NULL);
20027 		ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL);
20028 		ASSERT(md_mp != NULL && mmd != NULL);
20029 		ASSERT(md_hbuf != NULL);
20030 
20031 		/*
20032 		 * Packetize the transmittable portion of the data block;
20033 		 * each data block is essentially added to the Multidata
20034 		 * as a payload buffer.  We also deal with adding more
20035 		 * than one payload buffers, which happens when the remaining
20036 		 * packetized portion of the current payload buffer is less
20037 		 * than MSS, while the next data block in transmit queue
20038 		 * has enough data to make up for one.  This "spillover"
20039 		 * case essentially creates a split-packet, where portions
20040 		 * of the packet's payload fragments may span across two
20041 		 * virtually discontiguous address blocks.
20042 		 */
20043 		seg_len = mss;
20044 		do {
20045 			len = seg_len;
20046 
20047 			ASSERT(len > 0);
20048 			ASSERT(max_pld >= 0);
20049 			ASSERT(!add_buffer || cur_pld_off == 0);
20050 
20051 			/*
20052 			 * First time around for this payload buffer; note
20053 			 * in the case of a spillover, the following has
20054 			 * been done prior to adding the split-packet
20055 			 * descriptor to Multidata, and we don't want to
20056 			 * repeat the process.
20057 			 */
20058 			if (add_buffer) {
20059 				ASSERT(mmd != NULL);
20060 				ASSERT(md_pbuf == NULL);
20061 				ASSERT(md_pbuf_nxt == NULL);
20062 				ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1);
20063 
20064 				/*
20065 				 * Have we reached the limit?  We'd get to
20066 				 * this case when we're not chaining the
20067 				 * Multidata messages together, and since
20068 				 * we're done, terminate this loop.
20069 				 */
20070 				if (max_pld == 0)
20071 					break; /* done */
20072 
20073 				if ((md_pbuf = dupb(*xmit_tail)) == NULL) {
20074 					TCP_STAT(tcps, tcp_mdt_allocfail);
20075 					goto legacy_send; /* out_of_mem */
20076 				}
20077 
20078 				if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy &&
20079 				    zc_cap != NULL) {
20080 					if (!ip_md_zcopy_attr(mmd, NULL,
20081 					    zc_cap->ill_zerocopy_flags)) {
20082 						freeb(md_pbuf);
20083 						TCP_STAT(tcps,
20084 						    tcp_mdt_allocfail);
20085 						/* out_of_mem */
20086 						goto legacy_send;
20087 					}
20088 					zcopy = B_TRUE;
20089 				}
20090 
20091 				md_pbuf->b_rptr += base_pld_off;
20092 
20093 				/*
20094 				 * Add a payload buffer to the Multidata; this
20095 				 * operation must not fail, or otherwise our
20096 				 * logic in this routine is broken.  There
20097 				 * is no memory allocation done by the
20098 				 * routine, so any returned failure simply
20099 				 * tells us that we've done something wrong.
20100 				 *
20101 				 * A failure tells us that either we're adding
20102 				 * the same payload buffer more than once, or
20103 				 * we're trying to add more buffers than
20104 				 * allowed (max_pld calculation is wrong).
20105 				 * None of the above cases should happen, and
20106 				 * we panic because either there's horrible
20107 				 * heap corruption, and/or programming mistake.
20108 				 */
20109 				pbuf_idx = mmd_addpldbuf(mmd, md_pbuf);
20110 				if (pbuf_idx < 0) {
20111 					cmn_err(CE_PANIC, "tcp_multisend: "
20112 					    "payload buffer logic error "
20113 					    "detected for tcp %p mmd %p "
20114 					    "pbuf %p (%d)\n",
20115 					    (void *)tcp, (void *)mmd,
20116 					    (void *)md_pbuf, pbuf_idx);
20117 				}
20118 
20119 				ASSERT(max_pld > 0);
20120 				--max_pld;
20121 				add_buffer = B_FALSE;
20122 			}
20123 
20124 			ASSERT(md_mp_head != NULL);
20125 			ASSERT(md_pbuf != NULL);
20126 			ASSERT(md_pbuf_nxt == NULL);
20127 			ASSERT(pbuf_idx != -1);
20128 			ASSERT(pbuf_idx_nxt == -1);
20129 			ASSERT(*usable > 0);
20130 
20131 			/*
20132 			 * We spillover to the next payload buffer only
20133 			 * if all of the following is true:
20134 			 *
20135 			 *   1. There is not enough data on the current
20136 			 *	payload buffer to make up `len',
20137 			 *   2. We are allowed to send `len',
20138 			 *   3. The next payload buffer length is large
20139 			 *	enough to accomodate `spill'.
20140 			 */
20141 			if ((spill = len - *tail_unsent) > 0 &&
20142 			    *usable >= len &&
20143 			    MBLKL((*xmit_tail)->b_cont) >= spill &&
20144 			    max_pld > 0) {
20145 				md_pbuf_nxt = dupb((*xmit_tail)->b_cont);
20146 				if (md_pbuf_nxt == NULL) {
20147 					TCP_STAT(tcps, tcp_mdt_allocfail);
20148 					goto legacy_send; /* out_of_mem */
20149 				}
20150 
20151 				if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy &&
20152 				    zc_cap != NULL) {
20153 					if (!ip_md_zcopy_attr(mmd, NULL,
20154 					    zc_cap->ill_zerocopy_flags)) {
20155 						freeb(md_pbuf_nxt);
20156 						TCP_STAT(tcps,
20157 						    tcp_mdt_allocfail);
20158 						/* out_of_mem */
20159 						goto legacy_send;
20160 					}
20161 					zcopy = B_TRUE;
20162 				}
20163 
20164 				/*
20165 				 * See comments above on the first call to
20166 				 * mmd_addpldbuf for explanation on the panic.
20167 				 */
20168 				pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt);
20169 				if (pbuf_idx_nxt < 0) {
20170 					panic("tcp_multisend: "
20171 					    "next payload buffer logic error "
20172 					    "detected for tcp %p mmd %p "
20173 					    "pbuf %p (%d)\n",
20174 					    (void *)tcp, (void *)mmd,
20175 					    (void *)md_pbuf_nxt, pbuf_idx_nxt);
20176 				}
20177 
20178 				ASSERT(max_pld > 0);
20179 				--max_pld;
20180 			} else if (spill > 0) {
20181 				/*
20182 				 * If there's a spillover, but the following
20183 				 * xmit_tail couldn't give us enough octets
20184 				 * to reach "len", then stop the current
20185 				 * Multidata creation and let the legacy
20186 				 * tcp_send() path take over.  We don't want
20187 				 * to send the tiny segment as part of this
20188 				 * Multidata for performance reasons; instead,
20189 				 * we let the legacy path deal with grouping
20190 				 * it with the subsequent small mblks.
20191 				 */
20192 				if (*usable >= len &&
20193 				    MBLKL((*xmit_tail)->b_cont) < spill) {
20194 					max_pld = 0;
20195 					break;	/* done */
20196 				}
20197 
20198 				/*
20199 				 * We can't spillover, and we are near
20200 				 * the end of the current payload buffer,
20201 				 * so send what's left.
20202 				 */
20203 				ASSERT(*tail_unsent > 0);
20204 				len = *tail_unsent;
20205 			}
20206 
20207 			/* tail_unsent is negated if there is a spillover */
20208 			*tail_unsent -= len;
20209 			*usable -= len;
20210 			ASSERT(*usable >= 0);
20211 
20212 			if (*usable < mss)
20213 				seg_len = *usable;
20214 			/*
20215 			 * Sender SWS avoidance; see comments in tcp_send();
20216 			 * everything else is the same, except that we only
20217 			 * do this here if there is no more data to be sent
20218 			 * following the current xmit_tail.  We don't check
20219 			 * for 1-byte urgent data because we shouldn't get
20220 			 * here if TCP_URG_VALID is set.
20221 			 */
20222 			if (*usable > 0 && *usable < mss &&
20223 			    ((md_pbuf_nxt == NULL &&
20224 			    (*xmit_tail)->b_cont == NULL) ||
20225 			    (md_pbuf_nxt != NULL &&
20226 			    (*xmit_tail)->b_cont->b_cont == NULL)) &&
20227 			    seg_len < (tcp->tcp_max_swnd >> 1) &&
20228 			    (tcp->tcp_unsent -
20229 			    ((*snxt + len) - tcp->tcp_snxt)) > seg_len &&
20230 			    !tcp->tcp_zero_win_probe) {
20231 				if ((*snxt + len) == tcp->tcp_snxt &&
20232 				    (*snxt + len) == tcp->tcp_suna) {
20233 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20234 				}
20235 				done = B_TRUE;
20236 			}
20237 
20238 			/*
20239 			 * Prime pump for IP's checksumming on our behalf;
20240 			 * include the adjustment for a source route if any.
20241 			 * Do this only for software/partial hardware checksum
20242 			 * offload, as this field gets zeroed out later for
20243 			 * the full hardware checksum offload case.
20244 			 */
20245 			if (!(hwcksum_flags & HCK_FULLCKSUM)) {
20246 				cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
20247 				cksum = (cksum >> 16) + (cksum & 0xFFFF);
20248 				U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum);
20249 			}
20250 
20251 			U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq);
20252 			*snxt += len;
20253 
20254 			tcp->tcp_tcph->th_flags[0] = TH_ACK;
20255 			/*
20256 			 * We set the PUSH bit only if TCP has no more buffered
20257 			 * data to be transmitted (or if sender SWS avoidance
20258 			 * takes place), as opposed to setting it for every
20259 			 * last packet in the burst.
20260 			 */
20261 			if (done ||
20262 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0)
20263 				tcp->tcp_tcph->th_flags[0] |= TH_PUSH;
20264 
20265 			/*
20266 			 * Set FIN bit if this is our last segment; snxt
20267 			 * already includes its length, and it will not
20268 			 * be adjusted after this point.
20269 			 */
20270 			if (tcp->tcp_valid_bits == TCP_FSS_VALID &&
20271 			    *snxt == tcp->tcp_fss) {
20272 				if (!tcp->tcp_fin_acked) {
20273 					tcp->tcp_tcph->th_flags[0] |= TH_FIN;
20274 					BUMP_MIB(&tcps->tcps_mib,
20275 					    tcpOutControl);
20276 				}
20277 				if (!tcp->tcp_fin_sent) {
20278 					tcp->tcp_fin_sent = B_TRUE;
20279 					/*
20280 					 * tcp state must be ESTABLISHED
20281 					 * in order for us to get here in
20282 					 * the first place.
20283 					 */
20284 					tcp->tcp_state = TCPS_FIN_WAIT_1;
20285 
20286 					/*
20287 					 * Upon returning from this routine,
20288 					 * tcp_wput_data() will set tcp_snxt
20289 					 * to be equal to snxt + tcp_fin_sent.
20290 					 * This is essentially the same as
20291 					 * setting it to tcp_fss + 1.
20292 					 */
20293 				}
20294 			}
20295 
20296 			tcp->tcp_last_sent_len = (ushort_t)len;
20297 
20298 			len += tcp_hdr_len;
20299 			if (tcp->tcp_ipversion == IPV4_VERSION)
20300 				tcp->tcp_ipha->ipha_length = htons(len);
20301 			else
20302 				tcp->tcp_ip6h->ip6_plen = htons(len -
20303 				    ((char *)&tcp->tcp_ip6h[1] -
20304 				    tcp->tcp_iphc));
20305 
20306 			pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF);
20307 
20308 			/* setup header fragment */
20309 			PDESC_HDR_ADD(pkt_info,
20310 			    md_hbuf->b_rptr + cur_hdr_off,	/* base */
20311 			    tcp->tcp_mdt_hdr_head,		/* head room */
20312 			    tcp_hdr_len,			/* len */
20313 			    tcp->tcp_mdt_hdr_tail);		/* tail room */
20314 
20315 			ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base ==
20316 			    hdr_frag_sz);
20317 			ASSERT(MBLKIN(md_hbuf,
20318 			    (pkt_info->hdr_base - md_hbuf->b_rptr),
20319 			    PDESC_HDRSIZE(pkt_info)));
20320 
20321 			/* setup first payload fragment */
20322 			PDESC_PLD_INIT(pkt_info);
20323 			PDESC_PLD_SPAN_ADD(pkt_info,
20324 			    pbuf_idx,				/* index */
20325 			    md_pbuf->b_rptr + cur_pld_off,	/* start */
20326 			    tcp->tcp_last_sent_len);		/* len */
20327 
20328 			/* create a split-packet in case of a spillover */
20329 			if (md_pbuf_nxt != NULL) {
20330 				ASSERT(spill > 0);
20331 				ASSERT(pbuf_idx_nxt > pbuf_idx);
20332 				ASSERT(!add_buffer);
20333 
20334 				md_pbuf = md_pbuf_nxt;
20335 				md_pbuf_nxt = NULL;
20336 				pbuf_idx = pbuf_idx_nxt;
20337 				pbuf_idx_nxt = -1;
20338 				cur_pld_off = spill;
20339 
20340 				/* trim out first payload fragment */
20341 				PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill);
20342 
20343 				/* setup second payload fragment */
20344 				PDESC_PLD_SPAN_ADD(pkt_info,
20345 				    pbuf_idx,			/* index */
20346 				    md_pbuf->b_rptr,		/* start */
20347 				    spill);			/* len */
20348 
20349 				if ((*xmit_tail)->b_next == NULL) {
20350 					/*
20351 					 * Store the lbolt used for RTT
20352 					 * estimation. We can only record one
20353 					 * timestamp per mblk so we do it when
20354 					 * we reach the end of the payload
20355 					 * buffer.  Also we only take a new
20356 					 * timestamp sample when the previous
20357 					 * timed data from the same mblk has
20358 					 * been ack'ed.
20359 					 */
20360 					(*xmit_tail)->b_prev = local_time;
20361 					(*xmit_tail)->b_next =
20362 					    (mblk_t *)(uintptr_t)first_snxt;
20363 				}
20364 
20365 				first_snxt = *snxt - spill;
20366 
20367 				/*
20368 				 * Advance xmit_tail; usable could be 0 by
20369 				 * the time we got here, but we made sure
20370 				 * above that we would only spillover to
20371 				 * the next data block if usable includes
20372 				 * the spilled-over amount prior to the
20373 				 * subtraction.  Therefore, we are sure
20374 				 * that xmit_tail->b_cont can't be NULL.
20375 				 */
20376 				ASSERT((*xmit_tail)->b_cont != NULL);
20377 				*xmit_tail = (*xmit_tail)->b_cont;
20378 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20379 				    (uintptr_t)INT_MAX);
20380 				*tail_unsent = (int)MBLKL(*xmit_tail) - spill;
20381 			} else {
20382 				cur_pld_off += tcp->tcp_last_sent_len;
20383 			}
20384 
20385 			/*
20386 			 * Fill in the header using the template header, and
20387 			 * add options such as time-stamp, ECN and/or SACK,
20388 			 * as needed.
20389 			 */
20390 			tcp_fill_header(tcp, pkt_info->hdr_rptr,
20391 			    (clock_t)local_time, num_sack_blk);
20392 
20393 			/* take care of some IP header businesses */
20394 			if (af == AF_INET) {
20395 				ipha = (ipha_t *)pkt_info->hdr_rptr;
20396 
20397 				ASSERT(OK_32PTR((uchar_t *)ipha));
20398 				ASSERT(PDESC_HDRL(pkt_info) >=
20399 				    IP_SIMPLE_HDR_LENGTH);
20400 				ASSERT(ipha->ipha_version_and_hdr_length ==
20401 				    IP_SIMPLE_HDR_VERSION);
20402 
20403 				/*
20404 				 * Assign ident value for current packet; see
20405 				 * related comments in ip_wput_ire() about the
20406 				 * contract private interface with clustering
20407 				 * group.
20408 				 */
20409 				clusterwide = B_FALSE;
20410 				if (cl_inet_ipident != NULL) {
20411 					ASSERT(cl_inet_isclusterwide != NULL);
20412 					if ((*cl_inet_isclusterwide)(IPPROTO_IP,
20413 					    AF_INET,
20414 					    (uint8_t *)(uintptr_t)src)) {
20415 						ipha->ipha_ident =
20416 						    (*cl_inet_ipident)
20417 						    (IPPROTO_IP, AF_INET,
20418 						    (uint8_t *)(uintptr_t)src,
20419 						    (uint8_t *)(uintptr_t)dst);
20420 						clusterwide = B_TRUE;
20421 					}
20422 				}
20423 
20424 				if (!clusterwide) {
20425 					ipha->ipha_ident = (uint16_t)
20426 					    atomic_add_32_nv(
20427 						&ire->ire_ident, 1);
20428 				}
20429 #ifndef _BIG_ENDIAN
20430 				ipha->ipha_ident = (ipha->ipha_ident << 8) |
20431 				    (ipha->ipha_ident >> 8);
20432 #endif
20433 			} else {
20434 				ip6h = (ip6_t *)pkt_info->hdr_rptr;
20435 
20436 				ASSERT(OK_32PTR((uchar_t *)ip6h));
20437 				ASSERT(IPVER(ip6h) == IPV6_VERSION);
20438 				ASSERT(ip6h->ip6_nxt == IPPROTO_TCP);
20439 				ASSERT(PDESC_HDRL(pkt_info) >=
20440 				    (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET +
20441 				    TCP_CHECKSUM_SIZE));
20442 				ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
20443 
20444 				if (tcp->tcp_ip_forward_progress) {
20445 					rconfirm = B_TRUE;
20446 					tcp->tcp_ip_forward_progress = B_FALSE;
20447 				}
20448 			}
20449 
20450 			/* at least one payload span, and at most two */
20451 			ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3);
20452 
20453 			/* add the packet descriptor to Multidata */
20454 			if ((pkt = mmd_addpdesc(mmd, pkt_info, &err,
20455 			    KM_NOSLEEP)) == NULL) {
20456 				/*
20457 				 * Any failure other than ENOMEM indicates
20458 				 * that we have passed in invalid pkt_info
20459 				 * or parameters to mmd_addpdesc, which must
20460 				 * not happen.
20461 				 *
20462 				 * EINVAL is a result of failure on boundary
20463 				 * checks against the pkt_info contents.  It
20464 				 * should not happen, and we panic because
20465 				 * either there's horrible heap corruption,
20466 				 * and/or programming mistake.
20467 				 */
20468 				if (err != ENOMEM) {
20469 					cmn_err(CE_PANIC, "tcp_multisend: "
20470 					    "pdesc logic error detected for "
20471 					    "tcp %p mmd %p pinfo %p (%d)\n",
20472 					    (void *)tcp, (void *)mmd,
20473 					    (void *)pkt_info, err);
20474 				}
20475 				TCP_STAT(tcps, tcp_mdt_addpdescfail);
20476 				goto legacy_send; /* out_of_mem */
20477 			}
20478 			ASSERT(pkt != NULL);
20479 
20480 			/* calculate IP header and TCP checksums */
20481 			if (af == AF_INET) {
20482 				/* calculate pseudo-header checksum */
20483 				cksum = (dst >> 16) + (dst & 0xFFFF) +
20484 				    (src >> 16) + (src & 0xFFFF);
20485 
20486 				/* offset for TCP header checksum */
20487 				up = IPH_TCPH_CHECKSUMP(ipha,
20488 				    IP_SIMPLE_HDR_LENGTH);
20489 			} else {
20490 				up = (uint16_t *)&ip6h->ip6_src;
20491 
20492 				/* calculate pseudo-header checksum */
20493 				cksum = up[0] + up[1] + up[2] + up[3] +
20494 				    up[4] + up[5] + up[6] + up[7] +
20495 				    up[8] + up[9] + up[10] + up[11] +
20496 				    up[12] + up[13] + up[14] + up[15];
20497 
20498 				/* Fold the initial sum */
20499 				cksum = (cksum & 0xffff) + (cksum >> 16);
20500 
20501 				up = (uint16_t *)(((uchar_t *)ip6h) +
20502 				    IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET);
20503 			}
20504 
20505 			if (hwcksum_flags & HCK_FULLCKSUM) {
20506 				/* clear checksum field for hardware */
20507 				*up = 0;
20508 			} else if (hwcksum_flags & HCK_PARTIALCKSUM) {
20509 				uint32_t sum;
20510 
20511 				/* pseudo-header checksumming */
20512 				sum = *up + cksum + IP_TCP_CSUM_COMP;
20513 				sum = (sum & 0xFFFF) + (sum >> 16);
20514 				*up = (sum & 0xFFFF) + (sum >> 16);
20515 			} else {
20516 				/* software checksumming */
20517 				TCP_STAT(tcps, tcp_out_sw_cksum);
20518 				TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
20519 				    tcp->tcp_hdr_len + tcp->tcp_last_sent_len);
20520 				*up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len,
20521 				    cksum + IP_TCP_CSUM_COMP);
20522 				if (*up == 0)
20523 					*up = 0xFFFF;
20524 			}
20525 
20526 			/* IPv4 header checksum */
20527 			if (af == AF_INET) {
20528 				ipha->ipha_fragment_offset_and_flags |=
20529 				    (uint32_t)htons(ire->ire_frag_flag);
20530 
20531 				if (hwcksum_flags & HCK_IPV4_HDRCKSUM) {
20532 					ipha->ipha_hdr_checksum = 0;
20533 				} else {
20534 					IP_HDR_CKSUM(ipha, cksum,
20535 					    ((uint32_t *)ipha)[0],
20536 					    ((uint16_t *)ipha)[4]);
20537 				}
20538 			}
20539 
20540 			if (af == AF_INET &&
20541 			    HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) ||
20542 			    af == AF_INET6 &&
20543 			    HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) {
20544 				/* build header(IP/TCP) mblk for this segment */
20545 				if ((mp = dupb(md_hbuf)) == NULL)
20546 					goto legacy_send;
20547 
20548 				mp->b_rptr = pkt_info->hdr_rptr;
20549 				mp->b_wptr = pkt_info->hdr_wptr;
20550 
20551 				/* build payload mblk for this segment */
20552 				if ((mp1 = dupb(*xmit_tail)) == NULL) {
20553 					freemsg(mp);
20554 					goto legacy_send;
20555 				}
20556 				mp1->b_wptr = md_pbuf->b_rptr + cur_pld_off;
20557 				mp1->b_rptr = mp1->b_wptr -
20558 				    tcp->tcp_last_sent_len;
20559 				linkb(mp, mp1);
20560 
20561 				pld_start = mp1->b_rptr;
20562 
20563 				if (af == AF_INET) {
20564 					DTRACE_PROBE4(
20565 					    ip4__physical__out__start,
20566 					    ill_t *, NULL,
20567 					    ill_t *, ill,
20568 					    ipha_t *, ipha,
20569 					    mblk_t *, mp);
20570 					FW_HOOKS(
20571 					    ipst->ips_ip4_physical_out_event,
20572 					    ipst->ips_ipv4firewall_physical_out,
20573 					    NULL, ill, ipha, mp, mp, ipst);
20574 					DTRACE_PROBE1(
20575 					    ip4__physical__out__end,
20576 					    mblk_t *, mp);
20577 				} else {
20578 					DTRACE_PROBE4(
20579 					    ip6__physical__out_start,
20580 					    ill_t *, NULL,
20581 					    ill_t *, ill,
20582 					    ip6_t *, ip6h,
20583 					    mblk_t *, mp);
20584 					FW_HOOKS6(
20585 					    ipst->ips_ip6_physical_out_event,
20586 					    ipst->ips_ipv6firewall_physical_out,
20587 					    NULL, ill, ip6h, mp, mp, ipst);
20588 					DTRACE_PROBE1(
20589 					    ip6__physical__out__end,
20590 					    mblk_t *, mp);
20591 				}
20592 
20593 				if (buf_trunked && mp != NULL) {
20594 					/*
20595 					 * Need to pass it to normal path.
20596 					 */
20597 					CALL_IP_WPUT(tcp->tcp_connp, q, mp);
20598 				} else if (mp == NULL ||
20599 				    mp->b_rptr != pkt_info->hdr_rptr ||
20600 				    mp->b_wptr != pkt_info->hdr_wptr ||
20601 				    (mp1 = mp->b_cont) == NULL ||
20602 				    mp1->b_rptr != pld_start ||
20603 				    mp1->b_wptr != pld_start +
20604 				    tcp->tcp_last_sent_len ||
20605 				    mp1->b_cont != NULL) {
20606 					/*
20607 					 * Need to pass all packets of this
20608 					 * buffer to normal path, either when
20609 					 * packet is blocked, or when boundary
20610 					 * of header buffer or payload buffer
20611 					 * has been changed by FW_HOOKS[6].
20612 					 */
20613 					buf_trunked = B_TRUE;
20614 					if (md_mp_head != NULL) {
20615 						err = (intptr_t)rmvb(md_mp_head,
20616 						    md_mp);
20617 						if (err == 0)
20618 							md_mp_head = NULL;
20619 					}
20620 
20621 					/* send down what we've got so far */
20622 					if (md_mp_head != NULL) {
20623 						tcp_multisend_data(tcp, ire,
20624 						    ill, md_mp_head, obsegs,
20625 						    obbytes, &rconfirm);
20626 					}
20627 					md_mp_head = NULL;
20628 
20629 					if (mp != NULL)
20630 						CALL_IP_WPUT(tcp->tcp_connp,
20631 						    q, mp);
20632 
20633 					mp1 = fw_mp_head;
20634 					do {
20635 						mp = mp1;
20636 						mp1 = mp1->b_next;
20637 						mp->b_next = NULL;
20638 						mp->b_prev = NULL;
20639 						CALL_IP_WPUT(tcp->tcp_connp,
20640 						    q, mp);
20641 					} while (mp1 != NULL);
20642 
20643 					fw_mp_head = NULL;
20644 				} else {
20645 					if (fw_mp_head == NULL)
20646 						fw_mp_head = mp;
20647 					else
20648 						fw_mp_head->b_prev->b_next = mp;
20649 					fw_mp_head->b_prev = mp;
20650 				}
20651 			}
20652 
20653 			/* advance header offset */
20654 			cur_hdr_off += hdr_frag_sz;
20655 
20656 			obbytes += tcp->tcp_last_sent_len;
20657 			++obsegs;
20658 		} while (!done && *usable > 0 && --num_burst_seg > 0 &&
20659 		    *tail_unsent > 0);
20660 
20661 		if ((*xmit_tail)->b_next == NULL) {
20662 			/*
20663 			 * Store the lbolt used for RTT estimation. We can only
20664 			 * record one timestamp per mblk so we do it when we
20665 			 * reach the end of the payload buffer. Also we only
20666 			 * take a new timestamp sample when the previous timed
20667 			 * data from the same mblk has been ack'ed.
20668 			 */
20669 			(*xmit_tail)->b_prev = local_time;
20670 			(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt;
20671 		}
20672 
20673 		ASSERT(*tail_unsent >= 0);
20674 		if (*tail_unsent > 0) {
20675 			/*
20676 			 * We got here because we broke out of the above
20677 			 * loop due to of one of the following cases:
20678 			 *
20679 			 *   1. len < adjusted MSS (i.e. small),
20680 			 *   2. Sender SWS avoidance,
20681 			 *   3. max_pld is zero.
20682 			 *
20683 			 * We are done for this Multidata, so trim our
20684 			 * last payload buffer (if any) accordingly.
20685 			 */
20686 			if (md_pbuf != NULL)
20687 				md_pbuf->b_wptr -= *tail_unsent;
20688 		} else if (*usable > 0) {
20689 			*xmit_tail = (*xmit_tail)->b_cont;
20690 			ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20691 			    (uintptr_t)INT_MAX);
20692 			*tail_unsent = (int)MBLKL(*xmit_tail);
20693 			add_buffer = B_TRUE;
20694 		}
20695 
20696 		while (fw_mp_head) {
20697 			mp = fw_mp_head;
20698 			fw_mp_head = fw_mp_head->b_next;
20699 			mp->b_prev = mp->b_next = NULL;
20700 			freemsg(mp);
20701 		}
20702 		if (buf_trunked) {
20703 			TCP_STAT(tcps, tcp_mdt_discarded);
20704 			freeb(md_mp);
20705 			buf_trunked = B_FALSE;
20706 		}
20707 	} while (!done && *usable > 0 && num_burst_seg > 0 &&
20708 	    (tcp_mdt_chain || max_pld > 0));
20709 
20710 	if (md_mp_head != NULL) {
20711 		/* send everything down */
20712 		tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes,
20713 		    &rconfirm);
20714 	}
20715 
20716 #undef PREP_NEW_MULTIDATA
20717 #undef PREP_NEW_PBUF
20718 #undef IPVER
20719 
20720 	IRE_REFRELE(ire);
20721 	return (0);
20722 }
20723 
20724 /*
20725  * A wrapper function for sending one or more Multidata messages down to
20726  * the module below ip; this routine does not release the reference of the
20727  * IRE (caller does that).  This routine is analogous to tcp_send_data().
20728  */
20729 static void
20730 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head,
20731     const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm)
20732 {
20733 	uint64_t delta;
20734 	nce_t *nce;
20735 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20736 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
20737 
20738 	ASSERT(ire != NULL && ill != NULL);
20739 	ASSERT(ire->ire_stq != NULL);
20740 	ASSERT(md_mp_head != NULL);
20741 	ASSERT(rconfirm != NULL);
20742 
20743 	/* adjust MIBs and IRE timestamp */
20744 	TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT);
20745 	tcp->tcp_obsegs += obsegs;
20746 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs);
20747 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes);
20748 	TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs);
20749 
20750 	if (tcp->tcp_ipversion == IPV4_VERSION) {
20751 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs);
20752 	} else {
20753 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs);
20754 	}
20755 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs);
20756 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs);
20757 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes);
20758 
20759 	ire->ire_ob_pkt_count += obsegs;
20760 	if (ire->ire_ipif != NULL)
20761 		atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs);
20762 	ire->ire_last_used_time = lbolt;
20763 
20764 	/* send it down */
20765 	putnext(ire->ire_stq, md_mp_head);
20766 
20767 	/* we're done for TCP/IPv4 */
20768 	if (tcp->tcp_ipversion == IPV4_VERSION)
20769 		return;
20770 
20771 	nce = ire->ire_nce;
20772 
20773 	ASSERT(nce != NULL);
20774 	ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT)));
20775 	ASSERT(nce->nce_state != ND_INCOMPLETE);
20776 
20777 	/* reachability confirmation? */
20778 	if (*rconfirm) {
20779 		nce->nce_last = TICK_TO_MSEC(lbolt64);
20780 		if (nce->nce_state != ND_REACHABLE) {
20781 			mutex_enter(&nce->nce_lock);
20782 			nce->nce_state = ND_REACHABLE;
20783 			nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT;
20784 			mutex_exit(&nce->nce_lock);
20785 			(void) untimeout(nce->nce_timeout_id);
20786 			if (ip_debug > 2) {
20787 				/* ip1dbg */
20788 				pr_addr_dbg("tcp_multisend_data: state "
20789 				    "for %s changed to REACHABLE\n",
20790 				    AF_INET6, &ire->ire_addr_v6);
20791 			}
20792 		}
20793 		/* reset transport reachability confirmation */
20794 		*rconfirm = B_FALSE;
20795 	}
20796 
20797 	delta =  TICK_TO_MSEC(lbolt64) - nce->nce_last;
20798 	ip1dbg(("tcp_multisend_data: delta = %" PRId64
20799 	    " ill_reachable_time = %d \n", delta, ill->ill_reachable_time));
20800 
20801 	if (delta > (uint64_t)ill->ill_reachable_time) {
20802 		mutex_enter(&nce->nce_lock);
20803 		switch (nce->nce_state) {
20804 		case ND_REACHABLE:
20805 		case ND_STALE:
20806 			/*
20807 			 * ND_REACHABLE is identical to ND_STALE in this
20808 			 * specific case. If reachable time has expired for
20809 			 * this neighbor (delta is greater than reachable
20810 			 * time), conceptually, the neighbor cache is no
20811 			 * longer in REACHABLE state, but already in STALE
20812 			 * state.  So the correct transition here is to
20813 			 * ND_DELAY.
20814 			 */
20815 			nce->nce_state = ND_DELAY;
20816 			mutex_exit(&nce->nce_lock);
20817 			NDP_RESTART_TIMER(nce,
20818 			    ipst->ips_delay_first_probe_time);
20819 			if (ip_debug > 3) {
20820 				/* ip2dbg */
20821 				pr_addr_dbg("tcp_multisend_data: state "
20822 				    "for %s changed to DELAY\n",
20823 				    AF_INET6, &ire->ire_addr_v6);
20824 			}
20825 			break;
20826 		case ND_DELAY:
20827 		case ND_PROBE:
20828 			mutex_exit(&nce->nce_lock);
20829 			/* Timers have already started */
20830 			break;
20831 		case ND_UNREACHABLE:
20832 			/*
20833 			 * ndp timer has detected that this nce is
20834 			 * unreachable and initiated deleting this nce
20835 			 * and all its associated IREs. This is a race
20836 			 * where we found the ire before it was deleted
20837 			 * and have just sent out a packet using this
20838 			 * unreachable nce.
20839 			 */
20840 			mutex_exit(&nce->nce_lock);
20841 			break;
20842 		default:
20843 			ASSERT(0);
20844 		}
20845 	}
20846 }
20847 
20848 /*
20849  * Derived from tcp_send_data().
20850  */
20851 static void
20852 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss,
20853     int num_lso_seg)
20854 {
20855 	ipha_t		*ipha;
20856 	mblk_t		*ire_fp_mp;
20857 	uint_t		ire_fp_mp_len;
20858 	uint32_t	hcksum_txflags = 0;
20859 	ipaddr_t	src;
20860 	ipaddr_t	dst;
20861 	uint32_t	cksum;
20862 	uint16_t	*up;
20863 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20864 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
20865 
20866 	ASSERT(DB_TYPE(mp) == M_DATA);
20867 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
20868 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
20869 	ASSERT(tcp->tcp_connp != NULL);
20870 	ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp));
20871 
20872 	ipha = (ipha_t *)mp->b_rptr;
20873 	src = ipha->ipha_src;
20874 	dst = ipha->ipha_dst;
20875 
20876 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
20877 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident,
20878 	    num_lso_seg);
20879 #ifndef _BIG_ENDIAN
20880 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
20881 #endif
20882 	if (tcp->tcp_snd_zcopy_aware) {
20883 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
20884 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
20885 			mp = tcp_zcopy_disable(tcp, mp);
20886 	}
20887 
20888 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
20889 		ASSERT(ill->ill_hcksum_capab != NULL);
20890 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
20891 	}
20892 
20893 	/*
20894 	 * Since the TCP checksum should be recalculated by h/w, we can just
20895 	 * zero the checksum field for HCK_FULLCKSUM, or calculate partial
20896 	 * pseudo-header checksum for HCK_PARTIALCKSUM.
20897 	 * The partial pseudo-header excludes TCP length, that was calculated
20898 	 * in tcp_send(), so to zero *up before further processing.
20899 	 */
20900 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
20901 
20902 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
20903 	*up = 0;
20904 
20905 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
20906 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
20907 
20908 	/*
20909 	 * Append LSO flag to DB_LSOFLAGS(mp) and set the mss to DB_LSOMSS(mp).
20910 	 */
20911 	DB_LSOFLAGS(mp) |= HW_LSO;
20912 	DB_LSOMSS(mp) = mss;
20913 
20914 	ipha->ipha_fragment_offset_and_flags |=
20915 	    (uint32_t)htons(ire->ire_frag_flag);
20916 
20917 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
20918 	ire_fp_mp_len = MBLKL(ire_fp_mp);
20919 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
20920 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
20921 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
20922 
20923 	UPDATE_OB_PKT_COUNT(ire);
20924 	ire->ire_last_used_time = lbolt;
20925 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
20926 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
20927 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
20928 	    ntohs(ipha->ipha_length));
20929 
20930 	if (ILL_DLS_CAPABLE(ill)) {
20931 		/*
20932 		 * Send the packet directly to DLD, where it may be queued
20933 		 * depending on the availability of transmit resources at
20934 		 * the media layer.
20935 		 */
20936 		IP_DLS_ILL_TX(ill, ipha, mp, ipst);
20937 	} else {
20938 		ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr;
20939 		DTRACE_PROBE4(ip4__physical__out__start,
20940 		    ill_t *, NULL, ill_t *, out_ill,
20941 		    ipha_t *, ipha, mblk_t *, mp);
20942 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
20943 		    ipst->ips_ipv4firewall_physical_out,
20944 		    NULL, out_ill, ipha, mp, mp, ipst);
20945 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
20946 		if (mp != NULL)
20947 			putnext(ire->ire_stq, mp);
20948 	}
20949 }
20950 
20951 /*
20952  * tcp_send() is called by tcp_wput_data() for non-Multidata transmission
20953  * scheme, and returns one of the following:
20954  *
20955  * -1 = failed allocation.
20956  *  0 = success; burst count reached, or usable send window is too small,
20957  *      and that we'd rather wait until later before sending again.
20958  *  1 = success; we are called from tcp_multisend(), and both usable send
20959  *      window and tail_unsent are greater than the MDT threshold, and thus
20960  *      Multidata Transmit should be used instead.
20961  */
20962 static int
20963 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
20964     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
20965     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
20966     const int mdt_thres)
20967 {
20968 	int num_burst_seg = tcp->tcp_snd_burst;
20969 	ire_t		*ire = NULL;
20970 	ill_t		*ill = NULL;
20971 	mblk_t		*ire_fp_mp = NULL;
20972 	uint_t		ire_fp_mp_len = 0;
20973 	int		num_lso_seg = 1;
20974 	uint_t		lso_usable;
20975 	boolean_t	do_lso_send = B_FALSE;
20976 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20977 
20978 	/*
20979 	 * Check LSO capability before any further work. And the similar check
20980 	 * need to be done in for(;;) loop.
20981 	 * LSO will be deployed when therer is more than one mss of available
20982 	 * data and a burst transmission is allowed.
20983 	 */
20984 	if (tcp->tcp_lso &&
20985 	    (tcp->tcp_valid_bits == 0 ||
20986 	    tcp->tcp_valid_bits == TCP_FSS_VALID) &&
20987 	    num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
20988 		/*
20989 		 * Try to find usable IRE/ILL and do basic check to the ILL.
20990 		 */
20991 		if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill)) {
20992 			/*
20993 			 * Enable LSO with this transmission.
20994 			 * Since IRE has been hold in
20995 			 * tcp_send_find_ire_ill(), IRE_REFRELE(ire)
20996 			 * should be called before return.
20997 			 */
20998 			do_lso_send = B_TRUE;
20999 			ire_fp_mp = ire->ire_nce->nce_fp_mp;
21000 			ire_fp_mp_len = MBLKL(ire_fp_mp);
21001 			/* Round up to multiple of 4 */
21002 			ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4;
21003 		} else {
21004 			do_lso_send = B_FALSE;
21005 			ill = NULL;
21006 		}
21007 	}
21008 
21009 	for (;;) {
21010 		struct datab	*db;
21011 		tcph_t		*tcph;
21012 		uint32_t	sum;
21013 		mblk_t		*mp, *mp1;
21014 		uchar_t		*rptr;
21015 		int		len;
21016 
21017 		/*
21018 		 * If we're called by tcp_multisend(), and the amount of
21019 		 * sendable data as well as the size of current xmit_tail
21020 		 * is beyond the MDT threshold, return to the caller and
21021 		 * let the large data transmit be done using MDT.
21022 		 */
21023 		if (*usable > 0 && *usable > mdt_thres &&
21024 		    (*tail_unsent > mdt_thres || (*tail_unsent == 0 &&
21025 		    MBLKL((*xmit_tail)->b_cont) > mdt_thres))) {
21026 			ASSERT(tcp->tcp_mdt);
21027 			return (1);	/* success; do large send */
21028 		}
21029 
21030 		if (num_burst_seg == 0)
21031 			break;		/* success; burst count reached */
21032 
21033 		/*
21034 		 * Calculate the maximum payload length we can send in *one*
21035 		 * time.
21036 		 */
21037 		if (do_lso_send) {
21038 			/*
21039 			 * Check whether need to do LSO any more.
21040 			 */
21041 			if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
21042 				lso_usable = MIN(tcp->tcp_lso_max, *usable);
21043 				lso_usable = MIN(lso_usable,
21044 				    num_burst_seg * mss);
21045 
21046 				num_lso_seg = lso_usable / mss;
21047 				if (lso_usable % mss) {
21048 					num_lso_seg++;
21049 					tcp->tcp_last_sent_len = (ushort_t)
21050 					    (lso_usable % mss);
21051 				} else {
21052 					tcp->tcp_last_sent_len = (ushort_t)mss;
21053 				}
21054 			} else {
21055 				do_lso_send = B_FALSE;
21056 				num_lso_seg = 1;
21057 				lso_usable = mss;
21058 			}
21059 		}
21060 
21061 		ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1);
21062 
21063 		/*
21064 		 * Adjust num_burst_seg here.
21065 		 */
21066 		num_burst_seg -= num_lso_seg;
21067 
21068 		len = mss;
21069 		if (len > *usable) {
21070 			ASSERT(do_lso_send == B_FALSE);
21071 
21072 			len = *usable;
21073 			if (len <= 0) {
21074 				/* Terminate the loop */
21075 				break;	/* success; too small */
21076 			}
21077 			/*
21078 			 * Sender silly-window avoidance.
21079 			 * Ignore this if we are going to send a
21080 			 * zero window probe out.
21081 			 *
21082 			 * TODO: force data into microscopic window?
21083 			 *	==> (!pushed || (unsent > usable))
21084 			 */
21085 			if (len < (tcp->tcp_max_swnd >> 1) &&
21086 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len &&
21087 			    !((tcp->tcp_valid_bits & TCP_URG_VALID) &&
21088 			    len == 1) && (! tcp->tcp_zero_win_probe)) {
21089 				/*
21090 				 * If the retransmit timer is not running
21091 				 * we start it so that we will retransmit
21092 				 * in the case when the the receiver has
21093 				 * decremented the window.
21094 				 */
21095 				if (*snxt == tcp->tcp_snxt &&
21096 				    *snxt == tcp->tcp_suna) {
21097 					/*
21098 					 * We are not supposed to send
21099 					 * anything.  So let's wait a little
21100 					 * bit longer before breaking SWS
21101 					 * avoidance.
21102 					 *
21103 					 * What should the value be?
21104 					 * Suggestion: MAX(init rexmit time,
21105 					 * tcp->tcp_rto)
21106 					 */
21107 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
21108 				}
21109 				break;	/* success; too small */
21110 			}
21111 		}
21112 
21113 		tcph = tcp->tcp_tcph;
21114 
21115 		/*
21116 		 * The reason to adjust len here is that we need to set flags
21117 		 * and calculate checksum.
21118 		 */
21119 		if (do_lso_send)
21120 			len = lso_usable;
21121 
21122 		*usable -= len; /* Approximate - can be adjusted later */
21123 		if (*usable > 0)
21124 			tcph->th_flags[0] = TH_ACK;
21125 		else
21126 			tcph->th_flags[0] = (TH_ACK | TH_PUSH);
21127 
21128 		/*
21129 		 * Prime pump for IP's checksumming on our behalf
21130 		 * Include the adjustment for a source route if any.
21131 		 */
21132 		sum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
21133 		sum = (sum >> 16) + (sum & 0xFFFF);
21134 		U16_TO_ABE16(sum, tcph->th_sum);
21135 
21136 		U32_TO_ABE32(*snxt, tcph->th_seq);
21137 
21138 		/*
21139 		 * Branch off to tcp_xmit_mp() if any of the VALID bits is
21140 		 * set.  For the case when TCP_FSS_VALID is the only valid
21141 		 * bit (normal active close), branch off only when we think
21142 		 * that the FIN flag needs to be set.  Note for this case,
21143 		 * that (snxt + len) may not reflect the actual seg_len,
21144 		 * as len may be further reduced in tcp_xmit_mp().  If len
21145 		 * gets modified, we will end up here again.
21146 		 */
21147 		if (tcp->tcp_valid_bits != 0 &&
21148 		    (tcp->tcp_valid_bits != TCP_FSS_VALID ||
21149 		    ((*snxt + len) == tcp->tcp_fss))) {
21150 			uchar_t		*prev_rptr;
21151 			uint32_t	prev_snxt = tcp->tcp_snxt;
21152 
21153 			if (*tail_unsent == 0) {
21154 				ASSERT((*xmit_tail)->b_cont != NULL);
21155 				*xmit_tail = (*xmit_tail)->b_cont;
21156 				prev_rptr = (*xmit_tail)->b_rptr;
21157 				*tail_unsent = (int)((*xmit_tail)->b_wptr -
21158 				    (*xmit_tail)->b_rptr);
21159 			} else {
21160 				prev_rptr = (*xmit_tail)->b_rptr;
21161 				(*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr -
21162 				    *tail_unsent;
21163 			}
21164 			mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL,
21165 			    *snxt, B_FALSE, (uint32_t *)&len, B_FALSE);
21166 			/* Restore tcp_snxt so we get amount sent right. */
21167 			tcp->tcp_snxt = prev_snxt;
21168 			if (prev_rptr == (*xmit_tail)->b_rptr) {
21169 				/*
21170 				 * If the previous timestamp is still in use,
21171 				 * don't stomp on it.
21172 				 */
21173 				if ((*xmit_tail)->b_next == NULL) {
21174 					(*xmit_tail)->b_prev = local_time;
21175 					(*xmit_tail)->b_next =
21176 					    (mblk_t *)(uintptr_t)(*snxt);
21177 				}
21178 			} else
21179 				(*xmit_tail)->b_rptr = prev_rptr;
21180 
21181 			if (mp == NULL) {
21182 				if (ire != NULL)
21183 					IRE_REFRELE(ire);
21184 				return (-1);
21185 			}
21186 			mp1 = mp->b_cont;
21187 
21188 			if (len <= mss) /* LSO is unusable (!do_lso_send) */
21189 				tcp->tcp_last_sent_len = (ushort_t)len;
21190 			while (mp1->b_cont) {
21191 				*xmit_tail = (*xmit_tail)->b_cont;
21192 				(*xmit_tail)->b_prev = local_time;
21193 				(*xmit_tail)->b_next =
21194 				    (mblk_t *)(uintptr_t)(*snxt);
21195 				mp1 = mp1->b_cont;
21196 			}
21197 			*snxt += len;
21198 			*tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr;
21199 			BUMP_LOCAL(tcp->tcp_obsegs);
21200 			BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
21201 			UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
21202 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
21203 			tcp_send_data(tcp, q, mp);
21204 			continue;
21205 		}
21206 
21207 		*snxt += len;	/* Adjust later if we don't send all of len */
21208 		BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
21209 		UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
21210 
21211 		if (*tail_unsent) {
21212 			/* Are the bytes above us in flight? */
21213 			rptr = (*xmit_tail)->b_wptr - *tail_unsent;
21214 			if (rptr != (*xmit_tail)->b_rptr) {
21215 				*tail_unsent -= len;
21216 				if (len <= mss) /* LSO is unusable */
21217 					tcp->tcp_last_sent_len = (ushort_t)len;
21218 				len += tcp_hdr_len;
21219 				if (tcp->tcp_ipversion == IPV4_VERSION)
21220 					tcp->tcp_ipha->ipha_length = htons(len);
21221 				else
21222 					tcp->tcp_ip6h->ip6_plen =
21223 					    htons(len -
21224 					    ((char *)&tcp->tcp_ip6h[1] -
21225 					    tcp->tcp_iphc));
21226 				mp = dupb(*xmit_tail);
21227 				if (mp == NULL) {
21228 					if (ire != NULL)
21229 						IRE_REFRELE(ire);
21230 					return (-1);	/* out_of_mem */
21231 				}
21232 				mp->b_rptr = rptr;
21233 				/*
21234 				 * If the old timestamp is no longer in use,
21235 				 * sample a new timestamp now.
21236 				 */
21237 				if ((*xmit_tail)->b_next == NULL) {
21238 					(*xmit_tail)->b_prev = local_time;
21239 					(*xmit_tail)->b_next =
21240 					    (mblk_t *)(uintptr_t)(*snxt-len);
21241 				}
21242 				goto must_alloc;
21243 			}
21244 		} else {
21245 			*xmit_tail = (*xmit_tail)->b_cont;
21246 			ASSERT((uintptr_t)((*xmit_tail)->b_wptr -
21247 			    (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX);
21248 			*tail_unsent = (int)((*xmit_tail)->b_wptr -
21249 			    (*xmit_tail)->b_rptr);
21250 		}
21251 
21252 		(*xmit_tail)->b_prev = local_time;
21253 		(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len);
21254 
21255 		*tail_unsent -= len;
21256 		if (len <= mss) /* LSO is unusable (!do_lso_send) */
21257 			tcp->tcp_last_sent_len = (ushort_t)len;
21258 
21259 		len += tcp_hdr_len;
21260 		if (tcp->tcp_ipversion == IPV4_VERSION)
21261 			tcp->tcp_ipha->ipha_length = htons(len);
21262 		else
21263 			tcp->tcp_ip6h->ip6_plen = htons(len -
21264 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
21265 
21266 		mp = dupb(*xmit_tail);
21267 		if (mp == NULL) {
21268 			if (ire != NULL)
21269 				IRE_REFRELE(ire);
21270 			return (-1);	/* out_of_mem */
21271 		}
21272 
21273 		len = tcp_hdr_len;
21274 		/*
21275 		 * There are four reasons to allocate a new hdr mblk:
21276 		 *  1) The bytes above us are in use by another packet
21277 		 *  2) We don't have good alignment
21278 		 *  3) The mblk is being shared
21279 		 *  4) We don't have enough room for a header
21280 		 */
21281 		rptr = mp->b_rptr - len;
21282 		if (!OK_32PTR(rptr) ||
21283 		    ((db = mp->b_datap), db->db_ref != 2) ||
21284 		    rptr < db->db_base + ire_fp_mp_len) {
21285 			/* NOTE: we assume allocb returns an OK_32PTR */
21286 
21287 		must_alloc:;
21288 			mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
21289 			    tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED);
21290 			if (mp1 == NULL) {
21291 				freemsg(mp);
21292 				if (ire != NULL)
21293 					IRE_REFRELE(ire);
21294 				return (-1);	/* out_of_mem */
21295 			}
21296 			mp1->b_cont = mp;
21297 			mp = mp1;
21298 			/* Leave room for Link Level header */
21299 			len = tcp_hdr_len;
21300 			rptr =
21301 			    &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len];
21302 			mp->b_wptr = &rptr[len];
21303 		}
21304 
21305 		/*
21306 		 * Fill in the header using the template header, and add
21307 		 * options such as time-stamp, ECN and/or SACK, as needed.
21308 		 */
21309 		tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk);
21310 
21311 		mp->b_rptr = rptr;
21312 
21313 		if (*tail_unsent) {
21314 			int spill = *tail_unsent;
21315 
21316 			mp1 = mp->b_cont;
21317 			if (mp1 == NULL)
21318 				mp1 = mp;
21319 
21320 			/*
21321 			 * If we're a little short, tack on more mblks until
21322 			 * there is no more spillover.
21323 			 */
21324 			while (spill < 0) {
21325 				mblk_t *nmp;
21326 				int nmpsz;
21327 
21328 				nmp = (*xmit_tail)->b_cont;
21329 				nmpsz = MBLKL(nmp);
21330 
21331 				/*
21332 				 * Excess data in mblk; can we split it?
21333 				 * If MDT is enabled for the connection,
21334 				 * keep on splitting as this is a transient
21335 				 * send path.
21336 				 */
21337 				if (!do_lso_send && !tcp->tcp_mdt &&
21338 				    (spill + nmpsz > 0)) {
21339 					/*
21340 					 * Don't split if stream head was
21341 					 * told to break up larger writes
21342 					 * into smaller ones.
21343 					 */
21344 					if (tcp->tcp_maxpsz > 0)
21345 						break;
21346 
21347 					/*
21348 					 * Next mblk is less than SMSS/2
21349 					 * rounded up to nearest 64-byte;
21350 					 * let it get sent as part of the
21351 					 * next segment.
21352 					 */
21353 					if (tcp->tcp_localnet &&
21354 					    !tcp->tcp_cork &&
21355 					    (nmpsz < roundup((mss >> 1), 64)))
21356 						break;
21357 				}
21358 
21359 				*xmit_tail = nmp;
21360 				ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX);
21361 				/* Stash for rtt use later */
21362 				(*xmit_tail)->b_prev = local_time;
21363 				(*xmit_tail)->b_next =
21364 				    (mblk_t *)(uintptr_t)(*snxt - len);
21365 				mp1->b_cont = dupb(*xmit_tail);
21366 				mp1 = mp1->b_cont;
21367 
21368 				spill += nmpsz;
21369 				if (mp1 == NULL) {
21370 					*tail_unsent = spill;
21371 					freemsg(mp);
21372 					if (ire != NULL)
21373 						IRE_REFRELE(ire);
21374 					return (-1);	/* out_of_mem */
21375 				}
21376 			}
21377 
21378 			/* Trim back any surplus on the last mblk */
21379 			if (spill >= 0) {
21380 				mp1->b_wptr -= spill;
21381 				*tail_unsent = spill;
21382 			} else {
21383 				/*
21384 				 * We did not send everything we could in
21385 				 * order to remain within the b_cont limit.
21386 				 */
21387 				*usable -= spill;
21388 				*snxt += spill;
21389 				tcp->tcp_last_sent_len += spill;
21390 				UPDATE_MIB(&tcps->tcps_mib,
21391 				    tcpOutDataBytes, spill);
21392 				/*
21393 				 * Adjust the checksum
21394 				 */
21395 				tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
21396 				sum += spill;
21397 				sum = (sum >> 16) + (sum & 0xFFFF);
21398 				U16_TO_ABE16(sum, tcph->th_sum);
21399 				if (tcp->tcp_ipversion == IPV4_VERSION) {
21400 					sum = ntohs(
21401 					    ((ipha_t *)rptr)->ipha_length) +
21402 					    spill;
21403 					((ipha_t *)rptr)->ipha_length =
21404 					    htons(sum);
21405 				} else {
21406 					sum = ntohs(
21407 					    ((ip6_t *)rptr)->ip6_plen) +
21408 					    spill;
21409 					((ip6_t *)rptr)->ip6_plen =
21410 					    htons(sum);
21411 				}
21412 				*tail_unsent = 0;
21413 			}
21414 		}
21415 		if (tcp->tcp_ip_forward_progress) {
21416 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
21417 			*(uint32_t *)mp->b_rptr  |= IP_FORWARD_PROG;
21418 			tcp->tcp_ip_forward_progress = B_FALSE;
21419 		}
21420 
21421 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
21422 		if (do_lso_send) {
21423 			tcp_lsosend_data(tcp, mp, ire, ill, mss,
21424 			    num_lso_seg);
21425 			tcp->tcp_obsegs += num_lso_seg;
21426 
21427 			TCP_STAT(tcps, tcp_lso_times);
21428 			TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg);
21429 		} else {
21430 			tcp_send_data(tcp, q, mp);
21431 			BUMP_LOCAL(tcp->tcp_obsegs);
21432 		}
21433 	}
21434 
21435 	if (ire != NULL)
21436 		IRE_REFRELE(ire);
21437 	return (0);
21438 }
21439 
21440 /* Unlink and return any mblk that looks like it contains a MDT info */
21441 static mblk_t *
21442 tcp_mdt_info_mp(mblk_t *mp)
21443 {
21444 	mblk_t	*prev_mp;
21445 
21446 	for (;;) {
21447 		prev_mp = mp;
21448 		/* no more to process? */
21449 		if ((mp = mp->b_cont) == NULL)
21450 			break;
21451 
21452 		switch (DB_TYPE(mp)) {
21453 		case M_CTL:
21454 			if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE)
21455 				continue;
21456 			ASSERT(prev_mp != NULL);
21457 			prev_mp->b_cont = mp->b_cont;
21458 			mp->b_cont = NULL;
21459 			return (mp);
21460 		default:
21461 			break;
21462 		}
21463 	}
21464 	return (mp);
21465 }
21466 
21467 /* MDT info update routine, called when IP notifies us about MDT */
21468 static void
21469 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first)
21470 {
21471 	boolean_t prev_state;
21472 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21473 
21474 	/*
21475 	 * IP is telling us to abort MDT on this connection?  We know
21476 	 * this because the capability is only turned off when IP
21477 	 * encounters some pathological cases, e.g. link-layer change
21478 	 * where the new driver doesn't support MDT, or in situation
21479 	 * where MDT usage on the link-layer has been switched off.
21480 	 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE
21481 	 * if the link-layer doesn't support MDT, and if it does, it
21482 	 * will indicate that the feature is to be turned on.
21483 	 */
21484 	prev_state = tcp->tcp_mdt;
21485 	tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0);
21486 	if (!tcp->tcp_mdt && !first) {
21487 		TCP_STAT(tcps, tcp_mdt_conn_halted3);
21488 		ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n",
21489 		    (void *)tcp->tcp_connp));
21490 	}
21491 
21492 	/*
21493 	 * We currently only support MDT on simple TCP/{IPv4,IPv6},
21494 	 * so disable MDT otherwise.  The checks are done here
21495 	 * and in tcp_wput_data().
21496 	 */
21497 	if (tcp->tcp_mdt &&
21498 	    (tcp->tcp_ipversion == IPV4_VERSION &&
21499 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
21500 	    (tcp->tcp_ipversion == IPV6_VERSION &&
21501 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN))
21502 		tcp->tcp_mdt = B_FALSE;
21503 
21504 	if (tcp->tcp_mdt) {
21505 		if (mdt_capab->ill_mdt_version != MDT_VERSION_2) {
21506 			cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT "
21507 			    "version (%d), expected version is %d",
21508 			    mdt_capab->ill_mdt_version, MDT_VERSION_2);
21509 			tcp->tcp_mdt = B_FALSE;
21510 			return;
21511 		}
21512 
21513 		/*
21514 		 * We need the driver to be able to handle at least three
21515 		 * spans per packet in order for tcp MDT to be utilized.
21516 		 * The first is for the header portion, while the rest are
21517 		 * needed to handle a packet that straddles across two
21518 		 * virtually non-contiguous buffers; a typical tcp packet
21519 		 * therefore consists of only two spans.  Note that we take
21520 		 * a zero as "don't care".
21521 		 */
21522 		if (mdt_capab->ill_mdt_span_limit > 0 &&
21523 		    mdt_capab->ill_mdt_span_limit < 3) {
21524 			tcp->tcp_mdt = B_FALSE;
21525 			return;
21526 		}
21527 
21528 		/* a zero means driver wants default value */
21529 		tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld,
21530 		    tcps->tcps_mdt_max_pbufs);
21531 		if (tcp->tcp_mdt_max_pld == 0)
21532 			tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs;
21533 
21534 		/* ensure 32-bit alignment */
21535 		tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min,
21536 		    mdt_capab->ill_mdt_hdr_head), 4);
21537 		tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min,
21538 		    mdt_capab->ill_mdt_hdr_tail), 4);
21539 
21540 		if (!first && !prev_state) {
21541 			TCP_STAT(tcps, tcp_mdt_conn_resumed2);
21542 			ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n",
21543 			    (void *)tcp->tcp_connp));
21544 		}
21545 	}
21546 }
21547 
21548 /* Unlink and return any mblk that looks like it contains a LSO info */
21549 static mblk_t *
21550 tcp_lso_info_mp(mblk_t *mp)
21551 {
21552 	mblk_t	*prev_mp;
21553 
21554 	for (;;) {
21555 		prev_mp = mp;
21556 		/* no more to process? */
21557 		if ((mp = mp->b_cont) == NULL)
21558 			break;
21559 
21560 		switch (DB_TYPE(mp)) {
21561 		case M_CTL:
21562 			if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE)
21563 				continue;
21564 			ASSERT(prev_mp != NULL);
21565 			prev_mp->b_cont = mp->b_cont;
21566 			mp->b_cont = NULL;
21567 			return (mp);
21568 		default:
21569 			break;
21570 		}
21571 	}
21572 
21573 	return (mp);
21574 }
21575 
21576 /* LSO info update routine, called when IP notifies us about LSO */
21577 static void
21578 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab)
21579 {
21580 	tcp_stack_t *tcps = tcp->tcp_tcps;
21581 
21582 	/*
21583 	 * IP is telling us to abort LSO on this connection?  We know
21584 	 * this because the capability is only turned off when IP
21585 	 * encounters some pathological cases, e.g. link-layer change
21586 	 * where the new NIC/driver doesn't support LSO, or in situation
21587 	 * where LSO usage on the link-layer has been switched off.
21588 	 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE
21589 	 * if the link-layer doesn't support LSO, and if it does, it
21590 	 * will indicate that the feature is to be turned on.
21591 	 */
21592 	tcp->tcp_lso = (lso_capab->ill_lso_on != 0);
21593 	TCP_STAT(tcps, tcp_lso_enabled);
21594 
21595 	/*
21596 	 * We currently only support LSO on simple TCP/IPv4,
21597 	 * so disable LSO otherwise.  The checks are done here
21598 	 * and in tcp_wput_data().
21599 	 */
21600 	if (tcp->tcp_lso &&
21601 	    (tcp->tcp_ipversion == IPV4_VERSION &&
21602 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
21603 	    (tcp->tcp_ipversion == IPV6_VERSION)) {
21604 		tcp->tcp_lso = B_FALSE;
21605 		TCP_STAT(tcps, tcp_lso_disabled);
21606 	} else {
21607 		tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH,
21608 		    lso_capab->ill_lso_max);
21609 	}
21610 }
21611 
21612 static void
21613 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt)
21614 {
21615 	conn_t *connp = tcp->tcp_connp;
21616 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21617 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
21618 
21619 	ASSERT(ire != NULL);
21620 
21621 	/*
21622 	 * We may be in the fastpath here, and although we essentially do
21623 	 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return,
21624 	 * we try to keep things as brief as possible.  After all, these
21625 	 * are only best-effort checks, and we do more thorough ones prior
21626 	 * to calling tcp_send()/tcp_multisend().
21627 	 */
21628 	if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) &&
21629 	    check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) &&
21630 	    ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) &&
21631 	    !(ire->ire_flags & RTF_MULTIRT) &&
21632 	    !IPP_ENABLED(IPP_LOCAL_OUT, ipst) &&
21633 	    CONN_IS_LSO_MD_FASTPATH(connp)) {
21634 		if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) {
21635 			/* Cache the result */
21636 			connp->conn_lso_ok = B_TRUE;
21637 
21638 			ASSERT(ill->ill_lso_capab != NULL);
21639 			if (!ill->ill_lso_capab->ill_lso_on) {
21640 				ill->ill_lso_capab->ill_lso_on = 1;
21641 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
21642 				    "LSO for interface %s\n", (void *)connp,
21643 				    ill->ill_name));
21644 			}
21645 			tcp_lso_update(tcp, ill->ill_lso_capab);
21646 		} else if (ipst->ips_ip_multidata_outbound &&
21647 		    ILL_MDT_CAPABLE(ill)) {
21648 			/* Cache the result */
21649 			connp->conn_mdt_ok = B_TRUE;
21650 
21651 			ASSERT(ill->ill_mdt_capab != NULL);
21652 			if (!ill->ill_mdt_capab->ill_mdt_on) {
21653 				ill->ill_mdt_capab->ill_mdt_on = 1;
21654 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
21655 				    "MDT for interface %s\n", (void *)connp,
21656 				    ill->ill_name));
21657 			}
21658 			tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE);
21659 		}
21660 	}
21661 
21662 	/*
21663 	 * The goal is to reduce the number of generated tcp segments by
21664 	 * setting the maxpsz multiplier to 0; this will have an affect on
21665 	 * tcp_maxpsz_set().  With this behavior, tcp will pack more data
21666 	 * into each packet, up to SMSS bytes.  Doing this reduces the number
21667 	 * of outbound segments and incoming ACKs, thus allowing for better
21668 	 * network and system performance.  In contrast the legacy behavior
21669 	 * may result in sending less than SMSS size, because the last mblk
21670 	 * for some packets may have more data than needed to make up SMSS,
21671 	 * and the legacy code refused to "split" it.
21672 	 *
21673 	 * We apply the new behavior on following situations:
21674 	 *
21675 	 *   1) Loopback connections,
21676 	 *   2) Connections in which the remote peer is not on local subnet,
21677 	 *   3) Local subnet connections over the bge interface (see below).
21678 	 *
21679 	 * Ideally, we would like this behavior to apply for interfaces other
21680 	 * than bge.  However, doing so would negatively impact drivers which
21681 	 * perform dynamic mapping and unmapping of DMA resources, which are
21682 	 * increased by setting the maxpsz multiplier to 0 (more mblks per
21683 	 * packet will be generated by tcp).  The bge driver does not suffer
21684 	 * from this, as it copies the mblks into pre-mapped buffers, and
21685 	 * therefore does not require more I/O resources than before.
21686 	 *
21687 	 * Otherwise, this behavior is present on all network interfaces when
21688 	 * the destination endpoint is non-local, since reducing the number
21689 	 * of packets in general is good for the network.
21690 	 *
21691 	 * TODO We need to remove this hard-coded conditional for bge once
21692 	 *	a better "self-tuning" mechanism, or a way to comprehend
21693 	 *	the driver transmit strategy is devised.  Until the solution
21694 	 *	is found and well understood, we live with this hack.
21695 	 */
21696 	if (!tcp_static_maxpsz &&
21697 	    (tcp->tcp_loopback || !tcp->tcp_localnet ||
21698 	    (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) {
21699 		/* override the default value */
21700 		tcp->tcp_maxpsz = 0;
21701 
21702 		ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on "
21703 		    "interface %s\n", (void *)connp, tcp->tcp_maxpsz,
21704 		    ill != NULL ? ill->ill_name : ipif_loopback_name));
21705 	}
21706 
21707 	/* set the stream head parameters accordingly */
21708 	(void) tcp_maxpsz_set(tcp, B_TRUE);
21709 }
21710 
21711 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */
21712 static void
21713 tcp_wput_flush(tcp_t *tcp, mblk_t *mp)
21714 {
21715 	uchar_t	fval = *mp->b_rptr;
21716 	mblk_t	*tail;
21717 	queue_t	*q = tcp->tcp_wq;
21718 
21719 	/* TODO: How should flush interact with urgent data? */
21720 	if ((fval & FLUSHW) && tcp->tcp_xmit_head &&
21721 	    !(tcp->tcp_valid_bits & TCP_URG_VALID)) {
21722 		/*
21723 		 * Flush only data that has not yet been put on the wire.  If
21724 		 * we flush data that we have already transmitted, life, as we
21725 		 * know it, may come to an end.
21726 		 */
21727 		tail = tcp->tcp_xmit_tail;
21728 		tail->b_wptr -= tcp->tcp_xmit_tail_unsent;
21729 		tcp->tcp_xmit_tail_unsent = 0;
21730 		tcp->tcp_unsent = 0;
21731 		if (tail->b_wptr != tail->b_rptr)
21732 			tail = tail->b_cont;
21733 		if (tail) {
21734 			mblk_t **excess = &tcp->tcp_xmit_head;
21735 			for (;;) {
21736 				mblk_t *mp1 = *excess;
21737 				if (mp1 == tail)
21738 					break;
21739 				tcp->tcp_xmit_tail = mp1;
21740 				tcp->tcp_xmit_last = mp1;
21741 				excess = &mp1->b_cont;
21742 			}
21743 			*excess = NULL;
21744 			tcp_close_mpp(&tail);
21745 			if (tcp->tcp_snd_zcopy_aware)
21746 				tcp_zcopy_notify(tcp);
21747 		}
21748 		/*
21749 		 * We have no unsent data, so unsent must be less than
21750 		 * tcp_xmit_lowater, so re-enable flow.
21751 		 */
21752 		mutex_enter(&tcp->tcp_non_sq_lock);
21753 		if (tcp->tcp_flow_stopped) {
21754 			tcp_clrqfull(tcp);
21755 		}
21756 		mutex_exit(&tcp->tcp_non_sq_lock);
21757 	}
21758 	/*
21759 	 * TODO: you can't just flush these, you have to increase rwnd for one
21760 	 * thing.  For another, how should urgent data interact?
21761 	 */
21762 	if (fval & FLUSHR) {
21763 		*mp->b_rptr = fval & ~FLUSHW;
21764 		/* XXX */
21765 		qreply(q, mp);
21766 		return;
21767 	}
21768 	freemsg(mp);
21769 }
21770 
21771 /*
21772  * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA
21773  * messages.
21774  */
21775 static void
21776 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp)
21777 {
21778 	mblk_t	*mp1;
21779 	STRUCT_HANDLE(strbuf, sb);
21780 	uint16_t port;
21781 	queue_t 	*q = tcp->tcp_wq;
21782 	in6_addr_t	v6addr;
21783 	ipaddr_t	v4addr;
21784 	uint32_t	flowinfo = 0;
21785 	int		addrlen;
21786 
21787 	/* Make sure it is one of ours. */
21788 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
21789 	case TI_GETMYNAME:
21790 	case TI_GETPEERNAME:
21791 		break;
21792 	default:
21793 		CALL_IP_WPUT(tcp->tcp_connp, q, mp);
21794 		return;
21795 	}
21796 	switch (mi_copy_state(q, mp, &mp1)) {
21797 	case -1:
21798 		return;
21799 	case MI_COPY_CASE(MI_COPY_IN, 1):
21800 		break;
21801 	case MI_COPY_CASE(MI_COPY_OUT, 1):
21802 		/* Copy out the strbuf. */
21803 		mi_copyout(q, mp);
21804 		return;
21805 	case MI_COPY_CASE(MI_COPY_OUT, 2):
21806 		/* All done. */
21807 		mi_copy_done(q, mp, 0);
21808 		return;
21809 	default:
21810 		mi_copy_done(q, mp, EPROTO);
21811 		return;
21812 	}
21813 	/* Check alignment of the strbuf */
21814 	if (!OK_32PTR(mp1->b_rptr)) {
21815 		mi_copy_done(q, mp, EINVAL);
21816 		return;
21817 	}
21818 
21819 	STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag,
21820 	    (void *)mp1->b_rptr);
21821 	addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t);
21822 
21823 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
21824 		mi_copy_done(q, mp, EINVAL);
21825 		return;
21826 	}
21827 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
21828 	case TI_GETMYNAME:
21829 		if (tcp->tcp_family == AF_INET) {
21830 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21831 				v4addr = tcp->tcp_ipha->ipha_src;
21832 			} else {
21833 				/* can't return an address in this case */
21834 				v4addr = 0;
21835 			}
21836 		} else {
21837 			/* tcp->tcp_family == AF_INET6 */
21838 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21839 				IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
21840 				    &v6addr);
21841 			} else {
21842 				v6addr = tcp->tcp_ip6h->ip6_src;
21843 			}
21844 		}
21845 		port = tcp->tcp_lport;
21846 		break;
21847 	case TI_GETPEERNAME:
21848 		if (tcp->tcp_family == AF_INET) {
21849 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21850 				IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6,
21851 				    v4addr);
21852 			} else {
21853 				/* can't return an address in this case */
21854 				v4addr = 0;
21855 			}
21856 		} else {
21857 			/* tcp->tcp_family == AF_INET6) */
21858 			v6addr = tcp->tcp_remote_v6;
21859 			if (tcp->tcp_ipversion == IPV6_VERSION) {
21860 				/*
21861 				 * No flowinfo if tcp->tcp_ipversion is v4.
21862 				 *
21863 				 * flowinfo was already initialized to zero
21864 				 * where it was declared above, so only
21865 				 * set it if ipversion is v6.
21866 				 */
21867 				flowinfo = tcp->tcp_ip6h->ip6_vcf &
21868 				    ~IPV6_VERS_AND_FLOW_MASK;
21869 			}
21870 		}
21871 		port = tcp->tcp_fport;
21872 		break;
21873 	default:
21874 		mi_copy_done(q, mp, EPROTO);
21875 		return;
21876 	}
21877 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
21878 	if (!mp1)
21879 		return;
21880 
21881 	if (tcp->tcp_family == AF_INET) {
21882 		sin_t *sin;
21883 
21884 		STRUCT_FSET(sb, len, (int)sizeof (sin_t));
21885 		sin = (sin_t *)mp1->b_rptr;
21886 		mp1->b_wptr = (uchar_t *)&sin[1];
21887 		*sin = sin_null;
21888 		sin->sin_family = AF_INET;
21889 		sin->sin_addr.s_addr = v4addr;
21890 		sin->sin_port = port;
21891 	} else {
21892 		/* tcp->tcp_family == AF_INET6 */
21893 		sin6_t *sin6;
21894 
21895 		STRUCT_FSET(sb, len, (int)sizeof (sin6_t));
21896 		sin6 = (sin6_t *)mp1->b_rptr;
21897 		mp1->b_wptr = (uchar_t *)&sin6[1];
21898 		*sin6 = sin6_null;
21899 		sin6->sin6_family = AF_INET6;
21900 		sin6->sin6_flowinfo = flowinfo;
21901 		sin6->sin6_addr = v6addr;
21902 		sin6->sin6_port = port;
21903 	}
21904 	/* Copy out the address */
21905 	mi_copyout(q, mp);
21906 }
21907 
21908 /*
21909  * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL
21910  * messages.
21911  */
21912 /* ARGSUSED */
21913 static void
21914 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2)
21915 {
21916 	conn_t 	*connp = (conn_t *)arg;
21917 	tcp_t	*tcp = connp->conn_tcp;
21918 	queue_t	*q = tcp->tcp_wq;
21919 	struct iocblk	*iocp;
21920 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21921 
21922 	ASSERT(DB_TYPE(mp) == M_IOCTL);
21923 	/*
21924 	 * Try and ASSERT the minimum possible references on the
21925 	 * conn early enough. Since we are executing on write side,
21926 	 * the connection is obviously not detached and that means
21927 	 * there is a ref each for TCP and IP. Since we are behind
21928 	 * the squeue, the minimum references needed are 3. If the
21929 	 * conn is in classifier hash list, there should be an
21930 	 * extra ref for that (we check both the possibilities).
21931 	 */
21932 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
21933 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
21934 
21935 	iocp = (struct iocblk *)mp->b_rptr;
21936 	switch (iocp->ioc_cmd) {
21937 	case TCP_IOC_DEFAULT_Q:
21938 		/* Wants to be the default wq. */
21939 		if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
21940 			iocp->ioc_error = EPERM;
21941 			iocp->ioc_count = 0;
21942 			mp->b_datap->db_type = M_IOCACK;
21943 			qreply(q, mp);
21944 			return;
21945 		}
21946 		tcp_def_q_set(tcp, mp);
21947 		return;
21948 	case _SIOCSOCKFALLBACK:
21949 		/*
21950 		 * Either sockmod is about to be popped and the socket
21951 		 * would now be treated as a plain stream, or a module
21952 		 * is about to be pushed so we could no longer use read-
21953 		 * side synchronous streams for fused loopback tcp.
21954 		 * Drain any queued data and disable direct sockfs
21955 		 * interface from now on.
21956 		 */
21957 		if (!tcp->tcp_issocket) {
21958 			DB_TYPE(mp) = M_IOCNAK;
21959 			iocp->ioc_error = EINVAL;
21960 		} else {
21961 #ifdef	_ILP32
21962 			tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
21963 #else
21964 			tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev;
21965 #endif
21966 			/*
21967 			 * Insert this socket into the acceptor hash.
21968 			 * We might need it for T_CONN_RES message
21969 			 */
21970 			tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
21971 
21972 			if (tcp->tcp_fused) {
21973 				/*
21974 				 * This is a fused loopback tcp; disable
21975 				 * read-side synchronous streams interface
21976 				 * and drain any queued data.  It is okay
21977 				 * to do this for non-synchronous streams
21978 				 * fused tcp as well.
21979 				 */
21980 				tcp_fuse_disable_pair(tcp, B_FALSE);
21981 			}
21982 			tcp->tcp_issocket = B_FALSE;
21983 			TCP_STAT(tcps, tcp_sock_fallback);
21984 
21985 			DB_TYPE(mp) = M_IOCACK;
21986 			iocp->ioc_error = 0;
21987 		}
21988 		iocp->ioc_count = 0;
21989 		iocp->ioc_rval = 0;
21990 		qreply(q, mp);
21991 		return;
21992 	}
21993 	CALL_IP_WPUT(connp, q, mp);
21994 }
21995 
21996 /*
21997  * This routine is called by tcp_wput() to handle all TPI requests.
21998  */
21999 /* ARGSUSED */
22000 static void
22001 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2)
22002 {
22003 	conn_t 	*connp = (conn_t *)arg;
22004 	tcp_t	*tcp = connp->conn_tcp;
22005 	union T_primitives *tprim = (union T_primitives *)mp->b_rptr;
22006 	uchar_t *rptr;
22007 	t_scalar_t type;
22008 	int len;
22009 	cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred);
22010 
22011 	/*
22012 	 * Try and ASSERT the minimum possible references on the
22013 	 * conn early enough. Since we are executing on write side,
22014 	 * the connection is obviously not detached and that means
22015 	 * there is a ref each for TCP and IP. Since we are behind
22016 	 * the squeue, the minimum references needed are 3. If the
22017 	 * conn is in classifier hash list, there should be an
22018 	 * extra ref for that (we check both the possibilities).
22019 	 */
22020 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
22021 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
22022 
22023 	rptr = mp->b_rptr;
22024 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
22025 	if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
22026 		type = ((union T_primitives *)rptr)->type;
22027 		if (type == T_EXDATA_REQ) {
22028 			uint32_t msize = msgdsize(mp->b_cont);
22029 
22030 			len = msize - 1;
22031 			if (len < 0) {
22032 				freemsg(mp);
22033 				return;
22034 			}
22035 			/*
22036 			 * Try to force urgent data out on the wire.
22037 			 * Even if we have unsent data this will
22038 			 * at least send the urgent flag.
22039 			 * XXX does not handle more flag correctly.
22040 			 */
22041 			len += tcp->tcp_unsent;
22042 			len += tcp->tcp_snxt;
22043 			tcp->tcp_urg = len;
22044 			tcp->tcp_valid_bits |= TCP_URG_VALID;
22045 
22046 			/* Bypass tcp protocol for fused tcp loopback */
22047 			if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
22048 				return;
22049 		} else if (type != T_DATA_REQ) {
22050 			goto non_urgent_data;
22051 		}
22052 		/* TODO: options, flags, ... from user */
22053 		/* Set length to zero for reclamation below */
22054 		tcp_wput_data(tcp, mp->b_cont, B_TRUE);
22055 		freeb(mp);
22056 		return;
22057 	} else {
22058 		if (tcp->tcp_debug) {
22059 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
22060 			    "tcp_wput_proto, dropping one...");
22061 		}
22062 		freemsg(mp);
22063 		return;
22064 	}
22065 
22066 non_urgent_data:
22067 
22068 	switch ((int)tprim->type) {
22069 	case T_SSL_PROXY_BIND_REQ:	/* an SSL proxy endpoint bind request */
22070 		/*
22071 		 * save the kssl_ent_t from the next block, and convert this
22072 		 * back to a normal bind_req.
22073 		 */
22074 		if (mp->b_cont != NULL) {
22075 		    ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t));
22076 
22077 			if (tcp->tcp_kssl_ent != NULL) {
22078 				kssl_release_ent(tcp->tcp_kssl_ent, NULL,
22079 				    KSSL_NO_PROXY);
22080 				tcp->tcp_kssl_ent = NULL;
22081 			}
22082 			bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent,
22083 			    sizeof (kssl_ent_t));
22084 			kssl_hold_ent(tcp->tcp_kssl_ent);
22085 			freemsg(mp->b_cont);
22086 			mp->b_cont = NULL;
22087 		}
22088 		tprim->type = T_BIND_REQ;
22089 
22090 	/* FALLTHROUGH */
22091 	case O_T_BIND_REQ:	/* bind request */
22092 	case T_BIND_REQ:	/* new semantics bind request */
22093 		tcp_bind(tcp, mp);
22094 		break;
22095 	case T_UNBIND_REQ:	/* unbind request */
22096 		tcp_unbind(tcp, mp);
22097 		break;
22098 	case O_T_CONN_RES:	/* old connection response XXX */
22099 	case T_CONN_RES:	/* connection response */
22100 		tcp_accept(tcp, mp);
22101 		break;
22102 	case T_CONN_REQ:	/* connection request */
22103 		tcp_connect(tcp, mp);
22104 		break;
22105 	case T_DISCON_REQ:	/* disconnect request */
22106 		tcp_disconnect(tcp, mp);
22107 		break;
22108 	case T_CAPABILITY_REQ:
22109 		tcp_capability_req(tcp, mp);	/* capability request */
22110 		break;
22111 	case T_INFO_REQ:	/* information request */
22112 		tcp_info_req(tcp, mp);
22113 		break;
22114 	case T_SVR4_OPTMGMT_REQ:	/* manage options req */
22115 		/* Only IP is allowed to return meaningful value */
22116 		(void) svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj);
22117 		break;
22118 	case T_OPTMGMT_REQ:
22119 		/*
22120 		 * Note:  no support for snmpcom_req() through new
22121 		 * T_OPTMGMT_REQ. See comments in ip.c
22122 		 */
22123 		/* Only IP is allowed to return meaningful value */
22124 		(void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj);
22125 		break;
22126 
22127 	case T_UNITDATA_REQ:	/* unitdata request */
22128 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
22129 		break;
22130 	case T_ORDREL_REQ:	/* orderly release req */
22131 		freemsg(mp);
22132 
22133 		if (tcp->tcp_fused)
22134 			tcp_unfuse(tcp);
22135 
22136 		if (tcp_xmit_end(tcp) != 0) {
22137 			/*
22138 			 * We were crossing FINs and got a reset from
22139 			 * the other side. Just ignore it.
22140 			 */
22141 			if (tcp->tcp_debug) {
22142 				(void) strlog(TCP_MOD_ID, 0, 1,
22143 				    SL_ERROR|SL_TRACE,
22144 				    "tcp_wput_proto, T_ORDREL_REQ out of "
22145 				    "state %s",
22146 				    tcp_display(tcp, NULL,
22147 				    DISP_ADDR_AND_PORT));
22148 			}
22149 		}
22150 		break;
22151 	case T_ADDR_REQ:
22152 		tcp_addr_req(tcp, mp);
22153 		break;
22154 	default:
22155 		if (tcp->tcp_debug) {
22156 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
22157 			    "tcp_wput_proto, bogus TPI msg, type %d",
22158 			    tprim->type);
22159 		}
22160 		/*
22161 		 * We used to M_ERROR.  Sending TNOTSUPPORT gives the user
22162 		 * to recover.
22163 		 */
22164 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
22165 		break;
22166 	}
22167 }
22168 
22169 /*
22170  * The TCP write service routine should never be called...
22171  */
22172 /* ARGSUSED */
22173 static void
22174 tcp_wsrv(queue_t *q)
22175 {
22176 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
22177 
22178 	TCP_STAT(tcps, tcp_wsrv_called);
22179 }
22180 
22181 /* Non overlapping byte exchanger */
22182 static void
22183 tcp_xchg(uchar_t *a, uchar_t *b, int len)
22184 {
22185 	uchar_t	uch;
22186 
22187 	while (len-- > 0) {
22188 		uch = a[len];
22189 		a[len] = b[len];
22190 		b[len] = uch;
22191 	}
22192 }
22193 
22194 /*
22195  * Send out a control packet on the tcp connection specified.  This routine
22196  * is typically called where we need a simple ACK or RST generated.
22197  */
22198 static void
22199 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl)
22200 {
22201 	uchar_t		*rptr;
22202 	tcph_t		*tcph;
22203 	ipha_t		*ipha = NULL;
22204 	ip6_t		*ip6h = NULL;
22205 	uint32_t	sum;
22206 	int		tcp_hdr_len;
22207 	int		tcp_ip_hdr_len;
22208 	mblk_t		*mp;
22209 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22210 
22211 	/*
22212 	 * Save sum for use in source route later.
22213 	 */
22214 	ASSERT(tcp != NULL);
22215 	sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
22216 	tcp_hdr_len = tcp->tcp_hdr_len;
22217 	tcp_ip_hdr_len = tcp->tcp_ip_hdr_len;
22218 
22219 	/* If a text string is passed in with the request, pass it to strlog. */
22220 	if (str != NULL && tcp->tcp_debug) {
22221 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
22222 		    "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x",
22223 		    str, seq, ack, ctl);
22224 	}
22225 	mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra,
22226 	    BPRI_MED);
22227 	if (mp == NULL) {
22228 		return;
22229 	}
22230 	rptr = &mp->b_rptr[tcps->tcps_wroff_xtra];
22231 	mp->b_rptr = rptr;
22232 	mp->b_wptr = &rptr[tcp_hdr_len];
22233 	bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len);
22234 
22235 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22236 		ipha = (ipha_t *)rptr;
22237 		ipha->ipha_length = htons(tcp_hdr_len);
22238 	} else {
22239 		ip6h = (ip6_t *)rptr;
22240 		ASSERT(tcp != NULL);
22241 		ip6h->ip6_plen = htons(tcp->tcp_hdr_len -
22242 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22243 	}
22244 	tcph = (tcph_t *)&rptr[tcp_ip_hdr_len];
22245 	tcph->th_flags[0] = (uint8_t)ctl;
22246 	if (ctl & TH_RST) {
22247 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
22248 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22249 		/*
22250 		 * Don't send TSopt w/ TH_RST packets per RFC 1323.
22251 		 */
22252 		if (tcp->tcp_snd_ts_ok &&
22253 		    tcp->tcp_state > TCPS_SYN_SENT) {
22254 			mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN];
22255 			*(mp->b_wptr) = TCPOPT_EOL;
22256 			if (tcp->tcp_ipversion == IPV4_VERSION) {
22257 				ipha->ipha_length = htons(tcp_hdr_len -
22258 				    TCPOPT_REAL_TS_LEN);
22259 			} else {
22260 				ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) -
22261 				    TCPOPT_REAL_TS_LEN);
22262 			}
22263 			tcph->th_offset_and_rsrvd[0] -= (3 << 4);
22264 			sum -= TCPOPT_REAL_TS_LEN;
22265 		}
22266 	}
22267 	if (ctl & TH_ACK) {
22268 		if (tcp->tcp_snd_ts_ok) {
22269 			U32_TO_BE32(lbolt,
22270 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22271 			U32_TO_BE32(tcp->tcp_ts_recent,
22272 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22273 		}
22274 
22275 		/* Update the latest receive window size in TCP header. */
22276 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22277 		    tcph->th_win);
22278 		tcp->tcp_rack = ack;
22279 		tcp->tcp_rack_cnt = 0;
22280 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
22281 	}
22282 	BUMP_LOCAL(tcp->tcp_obsegs);
22283 	U32_TO_BE32(seq, tcph->th_seq);
22284 	U32_TO_BE32(ack, tcph->th_ack);
22285 	/*
22286 	 * Include the adjustment for a source route if any.
22287 	 */
22288 	sum = (sum >> 16) + (sum & 0xFFFF);
22289 	U16_TO_BE16(sum, tcph->th_sum);
22290 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
22291 	tcp_send_data(tcp, tcp->tcp_wq, mp);
22292 }
22293 
22294 /*
22295  * If this routine returns B_TRUE, TCP can generate a RST in response
22296  * to a segment.  If it returns B_FALSE, TCP should not respond.
22297  */
22298 static boolean_t
22299 tcp_send_rst_chk(tcp_stack_t *tcps)
22300 {
22301 	clock_t	now;
22302 
22303 	/*
22304 	 * TCP needs to protect itself from generating too many RSTs.
22305 	 * This can be a DoS attack by sending us random segments
22306 	 * soliciting RSTs.
22307 	 *
22308 	 * What we do here is to have a limit of tcp_rst_sent_rate RSTs
22309 	 * in each 1 second interval.  In this way, TCP still generate
22310 	 * RSTs in normal cases but when under attack, the impact is
22311 	 * limited.
22312 	 */
22313 	if (tcps->tcps_rst_sent_rate_enabled != 0) {
22314 		now = lbolt;
22315 		/* lbolt can wrap around. */
22316 		if ((tcps->tcps_last_rst_intrvl > now) ||
22317 		    (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) >
22318 		    1*SECONDS)) {
22319 			tcps->tcps_last_rst_intrvl = now;
22320 			tcps->tcps_rst_cnt = 1;
22321 		} else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) {
22322 			return (B_FALSE);
22323 		}
22324 	}
22325 	return (B_TRUE);
22326 }
22327 
22328 /*
22329  * Send down the advice IP ioctl to tell IP to mark an IRE temporary.
22330  */
22331 static void
22332 tcp_ip_ire_mark_advice(tcp_t *tcp)
22333 {
22334 	mblk_t *mp;
22335 	ipic_t *ipic;
22336 
22337 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22338 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
22339 		    &ipic);
22340 	} else {
22341 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
22342 		    &ipic);
22343 	}
22344 	if (mp == NULL)
22345 		return;
22346 	ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
22347 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22348 }
22349 
22350 /*
22351  * Return an IP advice ioctl mblk and set ipic to be the pointer
22352  * to the advice structure.
22353  */
22354 static mblk_t *
22355 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic)
22356 {
22357 	struct iocblk *ioc;
22358 	mblk_t *mp, *mp1;
22359 
22360 	mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI);
22361 	if (mp == NULL)
22362 		return (NULL);
22363 	bzero(mp->b_rptr, sizeof (ipic_t) + addr_len);
22364 	*ipic = (ipic_t *)mp->b_rptr;
22365 	(*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY;
22366 	(*ipic)->ipic_addr_offset = sizeof (ipic_t);
22367 
22368 	bcopy(addr, *ipic + 1, addr_len);
22369 
22370 	(*ipic)->ipic_addr_length = addr_len;
22371 	mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len];
22372 
22373 	mp1 = mkiocb(IP_IOCTL);
22374 	if (mp1 == NULL) {
22375 		freemsg(mp);
22376 		return (NULL);
22377 	}
22378 	mp1->b_cont = mp;
22379 	ioc = (struct iocblk *)mp1->b_rptr;
22380 	ioc->ioc_count = sizeof (ipic_t) + addr_len;
22381 
22382 	return (mp1);
22383 }
22384 
22385 /*
22386  * Generate a reset based on an inbound packet for which there is no active
22387  * tcp state that we can find.
22388  *
22389  * IPSEC NOTE : Try to send the reply with the same protection as it came
22390  * in.  We still have the ipsec_mp that the packet was attached to. Thus
22391  * the packet will go out at the same level of protection as it came in by
22392  * converting the IPSEC_IN to IPSEC_OUT.
22393  */
22394 static void
22395 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq,
22396     uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid,
22397     tcp_stack_t *tcps)
22398 {
22399 	ipha_t		*ipha = NULL;
22400 	ip6_t		*ip6h = NULL;
22401 	ushort_t	len;
22402 	tcph_t		*tcph;
22403 	int		i;
22404 	mblk_t		*ipsec_mp;
22405 	boolean_t	mctl_present;
22406 	ipic_t		*ipic;
22407 	ipaddr_t	v4addr;
22408 	in6_addr_t	v6addr;
22409 	int		addr_len;
22410 	void		*addr;
22411 	queue_t		*q = tcps->tcps_g_q;
22412 	tcp_t		*tcp;
22413 	cred_t		*cr;
22414 	mblk_t		*nmp;
22415 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
22416 
22417 	if (tcps->tcps_g_q == NULL) {
22418 		/*
22419 		 * For non-zero stackids the default queue isn't created
22420 		 * until the first open, thus there can be a need to send
22421 		 * a reset before then. But we can't do that, hence we just
22422 		 * drop the packet. Later during boot, when the default queue
22423 		 * has been setup, a retransmitted packet from the peer
22424 		 * will result in a reset.
22425 		 */
22426 		ASSERT(tcps->tcps_netstack->netstack_stackid !=
22427 		    GLOBAL_NETSTACKID);
22428 		freemsg(mp);
22429 		return;
22430 	}
22431 
22432 	tcp = Q_TO_TCP(q);
22433 
22434 	if (!tcp_send_rst_chk(tcps)) {
22435 		tcps->tcps_rst_unsent++;
22436 		freemsg(mp);
22437 		return;
22438 	}
22439 
22440 	if (mp->b_datap->db_type == M_CTL) {
22441 		ipsec_mp = mp;
22442 		mp = mp->b_cont;
22443 		mctl_present = B_TRUE;
22444 	} else {
22445 		ipsec_mp = mp;
22446 		mctl_present = B_FALSE;
22447 	}
22448 
22449 	if (str && q && tcps->tcps_dbg) {
22450 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
22451 		    "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, "
22452 		    "flags 0x%x",
22453 		    str, seq, ack, ctl);
22454 	}
22455 	if (mp->b_datap->db_ref != 1) {
22456 		mblk_t *mp1 = copyb(mp);
22457 		freemsg(mp);
22458 		mp = mp1;
22459 		if (!mp) {
22460 			if (mctl_present)
22461 				freeb(ipsec_mp);
22462 			return;
22463 		} else {
22464 			if (mctl_present) {
22465 				ipsec_mp->b_cont = mp;
22466 			} else {
22467 				ipsec_mp = mp;
22468 			}
22469 		}
22470 	} else if (mp->b_cont) {
22471 		freemsg(mp->b_cont);
22472 		mp->b_cont = NULL;
22473 	}
22474 	/*
22475 	 * We skip reversing source route here.
22476 	 * (for now we replace all IP options with EOL)
22477 	 */
22478 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22479 		ipha = (ipha_t *)mp->b_rptr;
22480 		for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++)
22481 			mp->b_rptr[i] = IPOPT_EOL;
22482 		/*
22483 		 * Make sure that src address isn't flagrantly invalid.
22484 		 * Not all broadcast address checking for the src address
22485 		 * is possible, since we don't know the netmask of the src
22486 		 * addr.  No check for destination address is done, since
22487 		 * IP will not pass up a packet with a broadcast dest
22488 		 * address to TCP.  Similar checks are done below for IPv6.
22489 		 */
22490 		if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST ||
22491 		    CLASSD(ipha->ipha_src)) {
22492 			freemsg(ipsec_mp);
22493 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
22494 			return;
22495 		}
22496 	} else {
22497 		ip6h = (ip6_t *)mp->b_rptr;
22498 
22499 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) ||
22500 		    IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) {
22501 			freemsg(ipsec_mp);
22502 			BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards);
22503 			return;
22504 		}
22505 
22506 		/* Remove any extension headers assuming partial overlay */
22507 		if (ip_hdr_len > IPV6_HDR_LEN) {
22508 			uint8_t *to;
22509 
22510 			to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN;
22511 			ovbcopy(ip6h, to, IPV6_HDR_LEN);
22512 			mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN;
22513 			ip_hdr_len = IPV6_HDR_LEN;
22514 			ip6h = (ip6_t *)mp->b_rptr;
22515 			ip6h->ip6_nxt = IPPROTO_TCP;
22516 		}
22517 	}
22518 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
22519 	if (tcph->th_flags[0] & TH_RST) {
22520 		freemsg(ipsec_mp);
22521 		return;
22522 	}
22523 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
22524 	len = ip_hdr_len + sizeof (tcph_t);
22525 	mp->b_wptr = &mp->b_rptr[len];
22526 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22527 		ipha->ipha_length = htons(len);
22528 		/* Swap addresses */
22529 		v4addr = ipha->ipha_src;
22530 		ipha->ipha_src = ipha->ipha_dst;
22531 		ipha->ipha_dst = v4addr;
22532 		ipha->ipha_ident = 0;
22533 		ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
22534 		addr_len = IP_ADDR_LEN;
22535 		addr = &v4addr;
22536 	} else {
22537 		/* No ip6i_t in this case */
22538 		ip6h->ip6_plen = htons(len - IPV6_HDR_LEN);
22539 		/* Swap addresses */
22540 		v6addr = ip6h->ip6_src;
22541 		ip6h->ip6_src = ip6h->ip6_dst;
22542 		ip6h->ip6_dst = v6addr;
22543 		ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit;
22544 		addr_len = IPV6_ADDR_LEN;
22545 		addr = &v6addr;
22546 	}
22547 	tcp_xchg(tcph->th_fport, tcph->th_lport, 2);
22548 	U32_TO_BE32(ack, tcph->th_ack);
22549 	U32_TO_BE32(seq, tcph->th_seq);
22550 	U16_TO_BE16(0, tcph->th_win);
22551 	U16_TO_BE16(sizeof (tcph_t), tcph->th_sum);
22552 	tcph->th_flags[0] = (uint8_t)ctl;
22553 	if (ctl & TH_RST) {
22554 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
22555 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22556 	}
22557 
22558 	/* IP trusts us to set up labels when required. */
22559 	if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL &&
22560 	    crgetlabel(cr) != NULL) {
22561 		int err, adjust;
22562 
22563 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION)
22564 			err = tsol_check_label(cr, &mp, &adjust,
22565 			    tcp->tcp_connp->conn_mac_exempt,
22566 			    tcps->tcps_netstack->netstack_ip);
22567 		else
22568 			err = tsol_check_label_v6(cr, &mp, &adjust,
22569 			    tcp->tcp_connp->conn_mac_exempt,
22570 			    tcps->tcps_netstack->netstack_ip);
22571 		if (mctl_present)
22572 			ipsec_mp->b_cont = mp;
22573 		else
22574 			ipsec_mp = mp;
22575 		if (err != 0) {
22576 			freemsg(ipsec_mp);
22577 			return;
22578 		}
22579 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22580 			ipha = (ipha_t *)mp->b_rptr;
22581 			adjust += ntohs(ipha->ipha_length);
22582 			ipha->ipha_length = htons(adjust);
22583 		} else {
22584 			ip6h = (ip6_t *)mp->b_rptr;
22585 		}
22586 	}
22587 
22588 	if (mctl_present) {
22589 		ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
22590 
22591 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
22592 		if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) {
22593 			return;
22594 		}
22595 	}
22596 	if (zoneid == ALL_ZONES)
22597 		zoneid = GLOBAL_ZONEID;
22598 
22599 	/* Add the zoneid so ip_output routes it properly */
22600 	if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) {
22601 		freemsg(ipsec_mp);
22602 		return;
22603 	}
22604 	ipsec_mp = nmp;
22605 
22606 	/*
22607 	 * NOTE:  one might consider tracing a TCP packet here, but
22608 	 * this function has no active TCP state and no tcp structure
22609 	 * that has a trace buffer.  If we traced here, we would have
22610 	 * to keep a local trace buffer in tcp_record_trace().
22611 	 *
22612 	 * TSol note: The mblk that contains the incoming packet was
22613 	 * reused by tcp_xmit_listener_reset, so it already contains
22614 	 * the right credentials and we don't need to call mblk_setcred.
22615 	 * Also the conn's cred is not right since it is associated
22616 	 * with tcps_g_q.
22617 	 */
22618 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp);
22619 
22620 	/*
22621 	 * Tell IP to mark the IRE used for this destination temporary.
22622 	 * This way, we can limit our exposure to DoS attack because IP
22623 	 * creates an IRE for each destination.  If there are too many,
22624 	 * the time to do any routing lookup will be extremely long.  And
22625 	 * the lookup can be in interrupt context.
22626 	 *
22627 	 * Note that in normal circumstances, this marking should not
22628 	 * affect anything.  It would be nice if only 1 message is
22629 	 * needed to inform IP that the IRE created for this RST should
22630 	 * not be added to the cache table.  But there is currently
22631 	 * not such communication mechanism between TCP and IP.  So
22632 	 * the best we can do now is to send the advice ioctl to IP
22633 	 * to mark the IRE temporary.
22634 	 */
22635 	if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) {
22636 		ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
22637 		CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22638 	}
22639 }
22640 
22641 /*
22642  * Initiate closedown sequence on an active connection.  (May be called as
22643  * writer.)  Return value zero for OK return, non-zero for error return.
22644  */
22645 static int
22646 tcp_xmit_end(tcp_t *tcp)
22647 {
22648 	ipic_t	*ipic;
22649 	mblk_t	*mp;
22650 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22651 
22652 	if (tcp->tcp_state < TCPS_SYN_RCVD ||
22653 	    tcp->tcp_state > TCPS_CLOSE_WAIT) {
22654 		/*
22655 		 * Invalid state, only states TCPS_SYN_RCVD,
22656 		 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid
22657 		 */
22658 		return (-1);
22659 	}
22660 
22661 	tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent;
22662 	tcp->tcp_valid_bits |= TCP_FSS_VALID;
22663 	/*
22664 	 * If there is nothing more unsent, send the FIN now.
22665 	 * Otherwise, it will go out with the last segment.
22666 	 */
22667 	if (tcp->tcp_unsent == 0) {
22668 		mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
22669 		    tcp->tcp_fss, B_FALSE, NULL, B_FALSE);
22670 
22671 		if (mp) {
22672 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
22673 			tcp_send_data(tcp, tcp->tcp_wq, mp);
22674 		} else {
22675 			/*
22676 			 * Couldn't allocate msg.  Pretend we got it out.
22677 			 * Wait for rexmit timeout.
22678 			 */
22679 			tcp->tcp_snxt = tcp->tcp_fss + 1;
22680 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
22681 		}
22682 
22683 		/*
22684 		 * If needed, update tcp_rexmit_snxt as tcp_snxt is
22685 		 * changed.
22686 		 */
22687 		if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) {
22688 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
22689 		}
22690 	} else {
22691 		/*
22692 		 * If tcp->tcp_cork is set, then the data will not get sent,
22693 		 * so we have to check that and unset it first.
22694 		 */
22695 		if (tcp->tcp_cork)
22696 			tcp->tcp_cork = B_FALSE;
22697 		tcp_wput_data(tcp, NULL, B_FALSE);
22698 	}
22699 
22700 	/*
22701 	 * If TCP does not get enough samples of RTT or tcp_rtt_updates
22702 	 * is 0, don't update the cache.
22703 	 */
22704 	if (tcps->tcps_rtt_updates == 0 ||
22705 	    tcp->tcp_rtt_update < tcps->tcps_rtt_updates)
22706 		return (0);
22707 
22708 	/*
22709 	 * NOTE: should not update if source routes i.e. if tcp_remote if
22710 	 * different from the destination.
22711 	 */
22712 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22713 		if (tcp->tcp_remote !=  tcp->tcp_ipha->ipha_dst) {
22714 			return (0);
22715 		}
22716 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
22717 		    &ipic);
22718 	} else {
22719 		if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
22720 		    &tcp->tcp_ip6h->ip6_dst))) {
22721 			return (0);
22722 		}
22723 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
22724 		    &ipic);
22725 	}
22726 
22727 	/* Record route attributes in the IRE for use by future connections. */
22728 	if (mp == NULL)
22729 		return (0);
22730 
22731 	/*
22732 	 * We do not have a good algorithm to update ssthresh at this time.
22733 	 * So don't do any update.
22734 	 */
22735 	ipic->ipic_rtt = tcp->tcp_rtt_sa;
22736 	ipic->ipic_rtt_sd = tcp->tcp_rtt_sd;
22737 
22738 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22739 	return (0);
22740 }
22741 
22742 /*
22743  * Generate a "no listener here" RST in response to an "unknown" segment.
22744  * Note that we are reusing the incoming mp to construct the outgoing
22745  * RST.
22746  */
22747 void
22748 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid,
22749     tcp_stack_t *tcps)
22750 {
22751 	uchar_t		*rptr;
22752 	uint32_t	seg_len;
22753 	tcph_t		*tcph;
22754 	uint32_t	seg_seq;
22755 	uint32_t	seg_ack;
22756 	uint_t		flags;
22757 	mblk_t		*ipsec_mp;
22758 	ipha_t 		*ipha;
22759 	ip6_t 		*ip6h;
22760 	boolean_t	mctl_present = B_FALSE;
22761 	boolean_t	check = B_TRUE;
22762 	boolean_t	policy_present;
22763 	ipsec_stack_t	*ipss = tcps->tcps_netstack->netstack_ipsec;
22764 
22765 	TCP_STAT(tcps, tcp_no_listener);
22766 
22767 	ipsec_mp = mp;
22768 
22769 	if (mp->b_datap->db_type == M_CTL) {
22770 		ipsec_in_t *ii;
22771 
22772 		mctl_present = B_TRUE;
22773 		mp = mp->b_cont;
22774 
22775 		ii = (ipsec_in_t *)ipsec_mp->b_rptr;
22776 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
22777 		if (ii->ipsec_in_dont_check) {
22778 			check = B_FALSE;
22779 			if (!ii->ipsec_in_secure) {
22780 				freeb(ipsec_mp);
22781 				mctl_present = B_FALSE;
22782 				ipsec_mp = mp;
22783 			}
22784 		}
22785 	}
22786 
22787 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22788 		policy_present = ipss->ipsec_inbound_v4_policy_present;
22789 		ipha = (ipha_t *)mp->b_rptr;
22790 		ip6h = NULL;
22791 	} else {
22792 		policy_present = ipss->ipsec_inbound_v6_policy_present;
22793 		ipha = NULL;
22794 		ip6h = (ip6_t *)mp->b_rptr;
22795 	}
22796 
22797 	if (check && policy_present) {
22798 		/*
22799 		 * The conn_t parameter is NULL because we already know
22800 		 * nobody's home.
22801 		 */
22802 		ipsec_mp = ipsec_check_global_policy(
22803 		    ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present,
22804 		    tcps->tcps_netstack);
22805 		if (ipsec_mp == NULL)
22806 			return;
22807 	}
22808 	if (is_system_labeled() && !tsol_can_reply_error(mp)) {
22809 		DTRACE_PROBE2(
22810 		    tx__ip__log__error__nolistener__tcp,
22811 		    char *, "Could not reply with RST to mp(1)",
22812 		    mblk_t *, mp);
22813 		ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n"));
22814 		freemsg(ipsec_mp);
22815 		return;
22816 	}
22817 
22818 	rptr = mp->b_rptr;
22819 
22820 	tcph = (tcph_t *)&rptr[ip_hdr_len];
22821 	seg_seq = BE32_TO_U32(tcph->th_seq);
22822 	seg_ack = BE32_TO_U32(tcph->th_ack);
22823 	flags = tcph->th_flags[0];
22824 
22825 	seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len);
22826 	if (flags & TH_RST) {
22827 		freemsg(ipsec_mp);
22828 	} else if (flags & TH_ACK) {
22829 		tcp_xmit_early_reset("no tcp, reset",
22830 		    ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps);
22831 	} else {
22832 		if (flags & TH_SYN) {
22833 			seg_len++;
22834 		} else {
22835 			/*
22836 			 * Here we violate the RFC.  Note that a normal
22837 			 * TCP will never send a segment without the ACK
22838 			 * flag, except for RST or SYN segment.  This
22839 			 * segment is neither.  Just drop it on the
22840 			 * floor.
22841 			 */
22842 			freemsg(ipsec_mp);
22843 			tcps->tcps_rst_unsent++;
22844 			return;
22845 		}
22846 
22847 		tcp_xmit_early_reset("no tcp, reset/ack",
22848 		    ipsec_mp, 0, seg_seq + seg_len,
22849 		    TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps);
22850 	}
22851 }
22852 
22853 /*
22854  * tcp_xmit_mp is called to return a pointer to an mblk chain complete with
22855  * ip and tcp header ready to pass down to IP.  If the mp passed in is
22856  * non-NULL, then up to max_to_send bytes of data will be dup'ed off that
22857  * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary
22858  * otherwise it will dup partial mblks.)
22859  * Otherwise, an appropriate ACK packet will be generated.  This
22860  * routine is not usually called to send new data for the first time.  It
22861  * is mostly called out of the timer for retransmits, and to generate ACKs.
22862  *
22863  * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will
22864  * be adjusted by *offset.  And after dupb(), the offset and the ending mblk
22865  * of the original mblk chain will be returned in *offset and *end_mp.
22866  */
22867 mblk_t *
22868 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset,
22869     mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len,
22870     boolean_t rexmit)
22871 {
22872 	int	data_length;
22873 	int32_t	off = 0;
22874 	uint_t	flags;
22875 	mblk_t	*mp1;
22876 	mblk_t	*mp2;
22877 	uchar_t	*rptr;
22878 	tcph_t	*tcph;
22879 	int32_t	num_sack_blk = 0;
22880 	int32_t	sack_opt_len = 0;
22881 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22882 
22883 	/* Allocate for our maximum TCP header + link-level */
22884 	mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
22885 	    tcps->tcps_wroff_xtra, BPRI_MED);
22886 	if (!mp1)
22887 		return (NULL);
22888 	data_length = 0;
22889 
22890 	/*
22891 	 * Note that tcp_mss has been adjusted to take into account the
22892 	 * timestamp option if applicable.  Because SACK options do not
22893 	 * appear in every TCP segments and they are of variable lengths,
22894 	 * they cannot be included in tcp_mss.  Thus we need to calculate
22895 	 * the actual segment length when we need to send a segment which
22896 	 * includes SACK options.
22897 	 */
22898 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
22899 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
22900 		    tcp->tcp_num_sack_blk);
22901 		sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
22902 		    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
22903 		if (max_to_send + sack_opt_len > tcp->tcp_mss)
22904 			max_to_send -= sack_opt_len;
22905 	}
22906 
22907 	if (offset != NULL) {
22908 		off = *offset;
22909 		/* We use offset as an indicator that end_mp is not NULL. */
22910 		*end_mp = NULL;
22911 	}
22912 	for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) {
22913 		/* This could be faster with cooperation from downstream */
22914 		if (mp2 != mp1 && !sendall &&
22915 		    data_length + (int)(mp->b_wptr - mp->b_rptr) >
22916 		    max_to_send)
22917 			/*
22918 			 * Don't send the next mblk since the whole mblk
22919 			 * does not fit.
22920 			 */
22921 			break;
22922 		mp2->b_cont = dupb(mp);
22923 		mp2 = mp2->b_cont;
22924 		if (!mp2) {
22925 			freemsg(mp1);
22926 			return (NULL);
22927 		}
22928 		mp2->b_rptr += off;
22929 		ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
22930 		    (uintptr_t)INT_MAX);
22931 
22932 		data_length += (int)(mp2->b_wptr - mp2->b_rptr);
22933 		if (data_length > max_to_send) {
22934 			mp2->b_wptr -= data_length - max_to_send;
22935 			data_length = max_to_send;
22936 			off = mp2->b_wptr - mp->b_rptr;
22937 			break;
22938 		} else {
22939 			off = 0;
22940 		}
22941 	}
22942 	if (offset != NULL) {
22943 		*offset = off;
22944 		*end_mp = mp;
22945 	}
22946 	if (seg_len != NULL) {
22947 		*seg_len = data_length;
22948 	}
22949 
22950 	/* Update the latest receive window size in TCP header. */
22951 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22952 	    tcp->tcp_tcph->th_win);
22953 
22954 	rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
22955 	mp1->b_rptr = rptr;
22956 	mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len;
22957 	bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
22958 	tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
22959 	U32_TO_ABE32(seq, tcph->th_seq);
22960 
22961 	/*
22962 	 * Use tcp_unsent to determine if the PUSH bit should be used assumes
22963 	 * that this function was called from tcp_wput_data. Thus, when called
22964 	 * to retransmit data the setting of the PUSH bit may appear some
22965 	 * what random in that it might get set when it should not. This
22966 	 * should not pose any performance issues.
22967 	 */
22968 	if (data_length != 0 && (tcp->tcp_unsent == 0 ||
22969 	    tcp->tcp_unsent == data_length)) {
22970 		flags = TH_ACK | TH_PUSH;
22971 	} else {
22972 		flags = TH_ACK;
22973 	}
22974 
22975 	if (tcp->tcp_ecn_ok) {
22976 		if (tcp->tcp_ecn_echo_on)
22977 			flags |= TH_ECE;
22978 
22979 		/*
22980 		 * Only set ECT bit and ECN_CWR if a segment contains new data.
22981 		 * There is no TCP flow control for non-data segments, and
22982 		 * only data segment is transmitted reliably.
22983 		 */
22984 		if (data_length > 0 && !rexmit) {
22985 			SET_ECT(tcp, rptr);
22986 			if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
22987 				flags |= TH_CWR;
22988 				tcp->tcp_ecn_cwr_sent = B_TRUE;
22989 			}
22990 		}
22991 	}
22992 
22993 	if (tcp->tcp_valid_bits) {
22994 		uint32_t u1;
22995 
22996 		if ((tcp->tcp_valid_bits & TCP_ISS_VALID) &&
22997 		    seq == tcp->tcp_iss) {
22998 			uchar_t	*wptr;
22999 
23000 			/*
23001 			 * If TCP_ISS_VALID and the seq number is tcp_iss,
23002 			 * TCP can only be in SYN-SENT, SYN-RCVD or
23003 			 * FIN-WAIT-1 state.  It can be FIN-WAIT-1 if
23004 			 * our SYN is not ack'ed but the app closes this
23005 			 * TCP connection.
23006 			 */
23007 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT ||
23008 			    tcp->tcp_state == TCPS_SYN_RCVD ||
23009 			    tcp->tcp_state == TCPS_FIN_WAIT_1);
23010 
23011 			/*
23012 			 * Tack on the MSS option.  It is always needed
23013 			 * for both active and passive open.
23014 			 *
23015 			 * MSS option value should be interface MTU - MIN
23016 			 * TCP/IP header according to RFC 793 as it means
23017 			 * the maximum segment size TCP can receive.  But
23018 			 * to get around some broken middle boxes/end hosts
23019 			 * out there, we allow the option value to be the
23020 			 * same as the MSS option size on the peer side.
23021 			 * In this way, the other side will not send
23022 			 * anything larger than they can receive.
23023 			 *
23024 			 * Note that for SYN_SENT state, the ndd param
23025 			 * tcp_use_smss_as_mss_opt has no effect as we
23026 			 * don't know the peer's MSS option value. So
23027 			 * the only case we need to take care of is in
23028 			 * SYN_RCVD state, which is done later.
23029 			 */
23030 			wptr = mp1->b_wptr;
23031 			wptr[0] = TCPOPT_MAXSEG;
23032 			wptr[1] = TCPOPT_MAXSEG_LEN;
23033 			wptr += 2;
23034 			u1 = tcp->tcp_if_mtu -
23035 			    (tcp->tcp_ipversion == IPV4_VERSION ?
23036 			    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) -
23037 			    TCP_MIN_HEADER_LENGTH;
23038 			U16_TO_BE16(u1, wptr);
23039 			mp1->b_wptr = wptr + 2;
23040 			/* Update the offset to cover the additional word */
23041 			tcph->th_offset_and_rsrvd[0] += (1 << 4);
23042 
23043 			/*
23044 			 * Note that the following way of filling in
23045 			 * TCP options are not optimal.  Some NOPs can
23046 			 * be saved.  But there is no need at this time
23047 			 * to optimize it.  When it is needed, we will
23048 			 * do it.
23049 			 */
23050 			switch (tcp->tcp_state) {
23051 			case TCPS_SYN_SENT:
23052 				flags = TH_SYN;
23053 
23054 				if (tcp->tcp_snd_ts_ok) {
23055 					uint32_t llbolt = (uint32_t)lbolt;
23056 
23057 					wptr = mp1->b_wptr;
23058 					wptr[0] = TCPOPT_NOP;
23059 					wptr[1] = TCPOPT_NOP;
23060 					wptr[2] = TCPOPT_TSTAMP;
23061 					wptr[3] = TCPOPT_TSTAMP_LEN;
23062 					wptr += 4;
23063 					U32_TO_BE32(llbolt, wptr);
23064 					wptr += 4;
23065 					ASSERT(tcp->tcp_ts_recent == 0);
23066 					U32_TO_BE32(0L, wptr);
23067 					mp1->b_wptr += TCPOPT_REAL_TS_LEN;
23068 					tcph->th_offset_and_rsrvd[0] +=
23069 					    (3 << 4);
23070 				}
23071 
23072 				/*
23073 				 * Set up all the bits to tell other side
23074 				 * we are ECN capable.
23075 				 */
23076 				if (tcp->tcp_ecn_ok) {
23077 					flags |= (TH_ECE | TH_CWR);
23078 				}
23079 				break;
23080 			case TCPS_SYN_RCVD:
23081 				flags |= TH_SYN;
23082 
23083 				/*
23084 				 * Reset the MSS option value to be SMSS
23085 				 * We should probably add back the bytes
23086 				 * for timestamp option and IPsec.  We
23087 				 * don't do that as this is a workaround
23088 				 * for broken middle boxes/end hosts, it
23089 				 * is better for us to be more cautious.
23090 				 * They may not take these things into
23091 				 * account in their SMSS calculation.  Thus
23092 				 * the peer's calculated SMSS may be smaller
23093 				 * than what it can be.  This should be OK.
23094 				 */
23095 				if (tcps->tcps_use_smss_as_mss_opt) {
23096 					u1 = tcp->tcp_mss;
23097 					U16_TO_BE16(u1, wptr);
23098 				}
23099 
23100 				/*
23101 				 * If the other side is ECN capable, reply
23102 				 * that we are also ECN capable.
23103 				 */
23104 				if (tcp->tcp_ecn_ok)
23105 					flags |= TH_ECE;
23106 				break;
23107 			default:
23108 				/*
23109 				 * The above ASSERT() makes sure that this
23110 				 * must be FIN-WAIT-1 state.  Our SYN has
23111 				 * not been ack'ed so retransmit it.
23112 				 */
23113 				flags |= TH_SYN;
23114 				break;
23115 			}
23116 
23117 			if (tcp->tcp_snd_ws_ok) {
23118 				wptr = mp1->b_wptr;
23119 				wptr[0] =  TCPOPT_NOP;
23120 				wptr[1] =  TCPOPT_WSCALE;
23121 				wptr[2] =  TCPOPT_WS_LEN;
23122 				wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
23123 				mp1->b_wptr += TCPOPT_REAL_WS_LEN;
23124 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
23125 			}
23126 
23127 			if (tcp->tcp_snd_sack_ok) {
23128 				wptr = mp1->b_wptr;
23129 				wptr[0] = TCPOPT_NOP;
23130 				wptr[1] = TCPOPT_NOP;
23131 				wptr[2] = TCPOPT_SACK_PERMITTED;
23132 				wptr[3] = TCPOPT_SACK_OK_LEN;
23133 				mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
23134 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
23135 			}
23136 
23137 			/* allocb() of adequate mblk assures space */
23138 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
23139 			    (uintptr_t)INT_MAX);
23140 			u1 = (int)(mp1->b_wptr - mp1->b_rptr);
23141 			/*
23142 			 * Get IP set to checksum on our behalf
23143 			 * Include the adjustment for a source route if any.
23144 			 */
23145 			u1 += tcp->tcp_sum;
23146 			u1 = (u1 >> 16) + (u1 & 0xFFFF);
23147 			U16_TO_BE16(u1, tcph->th_sum);
23148 			BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23149 		}
23150 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
23151 		    (seq + data_length) == tcp->tcp_fss) {
23152 			if (!tcp->tcp_fin_acked) {
23153 				flags |= TH_FIN;
23154 				BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23155 			}
23156 			if (!tcp->tcp_fin_sent) {
23157 				tcp->tcp_fin_sent = B_TRUE;
23158 				switch (tcp->tcp_state) {
23159 				case TCPS_SYN_RCVD:
23160 				case TCPS_ESTABLISHED:
23161 					tcp->tcp_state = TCPS_FIN_WAIT_1;
23162 					break;
23163 				case TCPS_CLOSE_WAIT:
23164 					tcp->tcp_state = TCPS_LAST_ACK;
23165 					break;
23166 				}
23167 				if (tcp->tcp_suna == tcp->tcp_snxt)
23168 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
23169 				tcp->tcp_snxt = tcp->tcp_fss + 1;
23170 			}
23171 		}
23172 		/*
23173 		 * Note the trick here.  u1 is unsigned.  When tcp_urg
23174 		 * is smaller than seq, u1 will become a very huge value.
23175 		 * So the comparison will fail.  Also note that tcp_urp
23176 		 * should be positive, see RFC 793 page 17.
23177 		 */
23178 		u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION;
23179 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 &&
23180 		    u1 < (uint32_t)(64 * 1024)) {
23181 			flags |= TH_URG;
23182 			BUMP_MIB(&tcps->tcps_mib, tcpOutUrg);
23183 			U32_TO_ABE16(u1, tcph->th_urp);
23184 		}
23185 	}
23186 	tcph->th_flags[0] = (uchar_t)flags;
23187 	tcp->tcp_rack = tcp->tcp_rnxt;
23188 	tcp->tcp_rack_cnt = 0;
23189 
23190 	if (tcp->tcp_snd_ts_ok) {
23191 		if (tcp->tcp_state != TCPS_SYN_SENT) {
23192 			uint32_t llbolt = (uint32_t)lbolt;
23193 
23194 			U32_TO_BE32(llbolt,
23195 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
23196 			U32_TO_BE32(tcp->tcp_ts_recent,
23197 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
23198 		}
23199 	}
23200 
23201 	if (num_sack_blk > 0) {
23202 		uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
23203 		sack_blk_t *tmp;
23204 		int32_t	i;
23205 
23206 		wptr[0] = TCPOPT_NOP;
23207 		wptr[1] = TCPOPT_NOP;
23208 		wptr[2] = TCPOPT_SACK;
23209 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
23210 		    sizeof (sack_blk_t);
23211 		wptr += TCPOPT_REAL_SACK_LEN;
23212 
23213 		tmp = tcp->tcp_sack_list;
23214 		for (i = 0; i < num_sack_blk; i++) {
23215 			U32_TO_BE32(tmp[i].begin, wptr);
23216 			wptr += sizeof (tcp_seq);
23217 			U32_TO_BE32(tmp[i].end, wptr);
23218 			wptr += sizeof (tcp_seq);
23219 		}
23220 		tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4);
23221 	}
23222 	ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX);
23223 	data_length += (int)(mp1->b_wptr - rptr);
23224 	if (tcp->tcp_ipversion == IPV4_VERSION) {
23225 		((ipha_t *)rptr)->ipha_length = htons(data_length);
23226 	} else {
23227 		ip6_t *ip6 = (ip6_t *)(rptr +
23228 		    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
23229 		    sizeof (ip6i_t) : 0));
23230 
23231 		ip6->ip6_plen = htons(data_length -
23232 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
23233 	}
23234 
23235 	/*
23236 	 * Prime pump for IP
23237 	 * Include the adjustment for a source route if any.
23238 	 */
23239 	data_length -= tcp->tcp_ip_hdr_len;
23240 	data_length += tcp->tcp_sum;
23241 	data_length = (data_length >> 16) + (data_length & 0xFFFF);
23242 	U16_TO_ABE16(data_length, tcph->th_sum);
23243 	if (tcp->tcp_ip_forward_progress) {
23244 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
23245 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
23246 		tcp->tcp_ip_forward_progress = B_FALSE;
23247 	}
23248 	return (mp1);
23249 }
23250 
23251 /* This function handles the push timeout. */
23252 void
23253 tcp_push_timer(void *arg)
23254 {
23255 	conn_t	*connp = (conn_t *)arg;
23256 	tcp_t *tcp = connp->conn_tcp;
23257 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23258 
23259 	TCP_DBGSTAT(tcps, tcp_push_timer_cnt);
23260 
23261 	ASSERT(tcp->tcp_listener == NULL);
23262 
23263 	/*
23264 	 * We need to plug synchronous streams during our drain to prevent
23265 	 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop().
23266 	 */
23267 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
23268 	tcp->tcp_push_tid = 0;
23269 	if ((tcp->tcp_rcv_list != NULL) &&
23270 	    (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED))
23271 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
23272 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
23273 }
23274 
23275 /*
23276  * This function handles delayed ACK timeout.
23277  */
23278 static void
23279 tcp_ack_timer(void *arg)
23280 {
23281 	conn_t	*connp = (conn_t *)arg;
23282 	tcp_t *tcp = connp->conn_tcp;
23283 	mblk_t *mp;
23284 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23285 
23286 	TCP_DBGSTAT(tcps, tcp_ack_timer_cnt);
23287 
23288 	tcp->tcp_ack_tid = 0;
23289 
23290 	if (tcp->tcp_fused)
23291 		return;
23292 
23293 	/*
23294 	 * Do not send ACK if there is no outstanding unack'ed data.
23295 	 */
23296 	if (tcp->tcp_rnxt == tcp->tcp_rack) {
23297 		return;
23298 	}
23299 
23300 	if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) {
23301 		/*
23302 		 * Make sure we don't allow deferred ACKs to result in
23303 		 * timer-based ACKing.  If we have held off an ACK
23304 		 * when there was more than an mss here, and the timer
23305 		 * goes off, we have to worry about the possibility
23306 		 * that the sender isn't doing slow-start, or is out
23307 		 * of step with us for some other reason.  We fall
23308 		 * permanently back in the direction of
23309 		 * ACK-every-other-packet as suggested in RFC 1122.
23310 		 */
23311 		if (tcp->tcp_rack_abs_max > 2)
23312 			tcp->tcp_rack_abs_max--;
23313 		tcp->tcp_rack_cur_max = 2;
23314 	}
23315 	mp = tcp_ack_mp(tcp);
23316 
23317 	if (mp != NULL) {
23318 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
23319 		BUMP_LOCAL(tcp->tcp_obsegs);
23320 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
23321 		BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed);
23322 		tcp_send_data(tcp, tcp->tcp_wq, mp);
23323 	}
23324 }
23325 
23326 
23327 /* Generate an ACK-only (no data) segment for a TCP endpoint */
23328 static mblk_t *
23329 tcp_ack_mp(tcp_t *tcp)
23330 {
23331 	uint32_t	seq_no;
23332 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23333 
23334 	/*
23335 	 * There are a few cases to be considered while setting the sequence no.
23336 	 * Essentially, we can come here while processing an unacceptable pkt
23337 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
23338 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
23339 	 * If we are here for a zero window probe, stick with suna. In all
23340 	 * other cases, we check if suna + swnd encompasses snxt and set
23341 	 * the sequence number to snxt, if so. If snxt falls outside the
23342 	 * window (the receiver probably shrunk its window), we will go with
23343 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
23344 	 * receiver.
23345 	 */
23346 	if (tcp->tcp_zero_win_probe) {
23347 		seq_no = tcp->tcp_suna;
23348 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
23349 		ASSERT(tcp->tcp_swnd == 0);
23350 		seq_no = tcp->tcp_snxt;
23351 	} else {
23352 		seq_no = SEQ_GT(tcp->tcp_snxt,
23353 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
23354 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
23355 	}
23356 
23357 	if (tcp->tcp_valid_bits) {
23358 		/*
23359 		 * For the complex case where we have to send some
23360 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
23361 		 */
23362 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
23363 		    NULL, B_FALSE));
23364 	} else {
23365 		/* Generate a simple ACK */
23366 		int	data_length;
23367 		uchar_t	*rptr;
23368 		tcph_t	*tcph;
23369 		mblk_t	*mp1;
23370 		int32_t	tcp_hdr_len;
23371 		int32_t	tcp_tcp_hdr_len;
23372 		int32_t	num_sack_blk = 0;
23373 		int32_t sack_opt_len;
23374 
23375 		/*
23376 		 * Allocate space for TCP + IP headers
23377 		 * and link-level header
23378 		 */
23379 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
23380 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
23381 			    tcp->tcp_num_sack_blk);
23382 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
23383 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
23384 			tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len;
23385 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len;
23386 		} else {
23387 			tcp_hdr_len = tcp->tcp_hdr_len;
23388 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
23389 		}
23390 		mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED);
23391 		if (!mp1)
23392 			return (NULL);
23393 
23394 		/* Update the latest receive window size in TCP header. */
23395 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
23396 		    tcp->tcp_tcph->th_win);
23397 		/* copy in prototype TCP + IP header */
23398 		rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
23399 		mp1->b_rptr = rptr;
23400 		mp1->b_wptr = rptr + tcp_hdr_len;
23401 		bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
23402 
23403 		tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
23404 
23405 		/* Set the TCP sequence number. */
23406 		U32_TO_ABE32(seq_no, tcph->th_seq);
23407 
23408 		/* Set up the TCP flag field. */
23409 		tcph->th_flags[0] = (uchar_t)TH_ACK;
23410 		if (tcp->tcp_ecn_echo_on)
23411 			tcph->th_flags[0] |= TH_ECE;
23412 
23413 		tcp->tcp_rack = tcp->tcp_rnxt;
23414 		tcp->tcp_rack_cnt = 0;
23415 
23416 		/* fill in timestamp option if in use */
23417 		if (tcp->tcp_snd_ts_ok) {
23418 			uint32_t llbolt = (uint32_t)lbolt;
23419 
23420 			U32_TO_BE32(llbolt,
23421 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
23422 			U32_TO_BE32(tcp->tcp_ts_recent,
23423 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
23424 		}
23425 
23426 		/* Fill in SACK options */
23427 		if (num_sack_blk > 0) {
23428 			uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
23429 			sack_blk_t *tmp;
23430 			int32_t	i;
23431 
23432 			wptr[0] = TCPOPT_NOP;
23433 			wptr[1] = TCPOPT_NOP;
23434 			wptr[2] = TCPOPT_SACK;
23435 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
23436 			    sizeof (sack_blk_t);
23437 			wptr += TCPOPT_REAL_SACK_LEN;
23438 
23439 			tmp = tcp->tcp_sack_list;
23440 			for (i = 0; i < num_sack_blk; i++) {
23441 				U32_TO_BE32(tmp[i].begin, wptr);
23442 				wptr += sizeof (tcp_seq);
23443 				U32_TO_BE32(tmp[i].end, wptr);
23444 				wptr += sizeof (tcp_seq);
23445 			}
23446 			tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1)
23447 			    << 4);
23448 		}
23449 
23450 		if (tcp->tcp_ipversion == IPV4_VERSION) {
23451 			((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len);
23452 		} else {
23453 			/* Check for ip6i_t header in sticky hdrs */
23454 			ip6_t *ip6 = (ip6_t *)(rptr +
23455 			    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
23456 			    sizeof (ip6i_t) : 0));
23457 
23458 			ip6->ip6_plen = htons(tcp_hdr_len -
23459 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
23460 		}
23461 
23462 		/*
23463 		 * Prime pump for checksum calculation in IP.  Include the
23464 		 * adjustment for a source route if any.
23465 		 */
23466 		data_length = tcp_tcp_hdr_len + tcp->tcp_sum;
23467 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
23468 		U16_TO_ABE16(data_length, tcph->th_sum);
23469 
23470 		if (tcp->tcp_ip_forward_progress) {
23471 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
23472 			*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
23473 			tcp->tcp_ip_forward_progress = B_FALSE;
23474 		}
23475 		return (mp1);
23476 	}
23477 }
23478 
23479 /*
23480  * To create a temporary tcp structure for inserting into bind hash list.
23481  * The parameter is assumed to be in network byte order, ready for use.
23482  */
23483 /* ARGSUSED */
23484 static tcp_t *
23485 tcp_alloc_temp_tcp(in_port_t port, tcp_stack_t *tcps)
23486 {
23487 	conn_t	*connp;
23488 	tcp_t	*tcp;
23489 
23490 	connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP, tcps->tcps_netstack);
23491 	if (connp == NULL)
23492 		return (NULL);
23493 
23494 	tcp = connp->conn_tcp;
23495 	tcp->tcp_tcps = tcps;
23496 	TCPS_REFHOLD(tcps);
23497 
23498 	/*
23499 	 * Only initialize the necessary info in those structures.  Note
23500 	 * that since INADDR_ANY is all 0, we do not need to set
23501 	 * tcp_bound_source to INADDR_ANY here.
23502 	 */
23503 	tcp->tcp_state = TCPS_BOUND;
23504 	tcp->tcp_lport = port;
23505 	tcp->tcp_exclbind = 1;
23506 	tcp->tcp_reserved_port = 1;
23507 
23508 	/* Just for place holding... */
23509 	tcp->tcp_ipversion = IPV4_VERSION;
23510 
23511 	return (tcp);
23512 }
23513 
23514 /*
23515  * To remove a port range specified by lo_port and hi_port from the
23516  * reserved port ranges.  This is one of the three public functions of
23517  * the reserved port interface.  Note that a port range has to be removed
23518  * as a whole.  Ports in a range cannot be removed individually.
23519  *
23520  * Params:
23521  *	in_port_t lo_port: the beginning port of the reserved port range to
23522  *		be deleted.
23523  *	in_port_t hi_port: the ending port of the reserved port range to
23524  *		be deleted.
23525  *
23526  * Return:
23527  *	B_TRUE if the deletion is successful, B_FALSE otherwise.
23528  *
23529  * Assumes that nca is only for zoneid=0
23530  */
23531 boolean_t
23532 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port)
23533 {
23534 	int	i, j;
23535 	int	size;
23536 	tcp_t	**temp_tcp_array;
23537 	tcp_t	*tcp;
23538 	tcp_stack_t	*tcps;
23539 
23540 	tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_tcp;
23541 	ASSERT(tcps != NULL);
23542 
23543 	rw_enter(&tcps->tcps_reserved_port_lock, RW_WRITER);
23544 
23545 	/* First make sure that the port ranage is indeed reserved. */
23546 	for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) {
23547 		if (tcps->tcps_reserved_port[i].lo_port == lo_port) {
23548 			hi_port = tcps->tcps_reserved_port[i].hi_port;
23549 			temp_tcp_array =
23550 			    tcps->tcps_reserved_port[i].temp_tcp_array;
23551 			break;
23552 		}
23553 	}
23554 	if (i == tcps->tcps_reserved_port_array_size) {
23555 		rw_exit(&tcps->tcps_reserved_port_lock);
23556 		netstack_rele(tcps->tcps_netstack);
23557 		return (B_FALSE);
23558 	}
23559 
23560 	/*
23561 	 * Remove the range from the array.  This simple loop is possible
23562 	 * because port ranges are inserted in ascending order.
23563 	 */
23564 	for (j = i; j < tcps->tcps_reserved_port_array_size - 1; j++) {
23565 		tcps->tcps_reserved_port[j].lo_port =
23566 		    tcps->tcps_reserved_port[j+1].lo_port;
23567 		tcps->tcps_reserved_port[j].hi_port =
23568 		    tcps->tcps_reserved_port[j+1].hi_port;
23569 		tcps->tcps_reserved_port[j].temp_tcp_array =
23570 		    tcps->tcps_reserved_port[j+1].temp_tcp_array;
23571 	}
23572 
23573 	/* Remove all the temporary tcp structures. */
23574 	size = hi_port - lo_port + 1;
23575 	while (size > 0) {
23576 		tcp = temp_tcp_array[size - 1];
23577 		ASSERT(tcp != NULL);
23578 		tcp_bind_hash_remove(tcp);
23579 		CONN_DEC_REF(tcp->tcp_connp);
23580 		size--;
23581 	}
23582 	kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *));
23583 	tcps->tcps_reserved_port_array_size--;
23584 	rw_exit(&tcps->tcps_reserved_port_lock);
23585 	netstack_rele(tcps->tcps_netstack);
23586 	return (B_TRUE);
23587 }
23588 
23589 /*
23590  * Macro to remove temporary tcp structure from the bind hash list.  The
23591  * first parameter is the list of tcp to be removed.  The second parameter
23592  * is the number of tcps in the array.
23593  */
23594 #define	TCP_TMP_TCP_REMOVE(tcp_array, num, tcps) \
23595 { \
23596 	while ((num) > 0) { \
23597 		tcp_t *tcp = (tcp_array)[(num) - 1]; \
23598 		tf_t *tbf; \
23599 		tcp_t *tcpnext; \
23600 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \
23601 		mutex_enter(&tbf->tf_lock); \
23602 		tcpnext = tcp->tcp_bind_hash; \
23603 		if (tcpnext) { \
23604 			tcpnext->tcp_ptpbhn = \
23605 				tcp->tcp_ptpbhn; \
23606 		} \
23607 		*tcp->tcp_ptpbhn = tcpnext; \
23608 		mutex_exit(&tbf->tf_lock); \
23609 		kmem_free(tcp, sizeof (tcp_t)); \
23610 		(tcp_array)[(num) - 1] = NULL; \
23611 		(num)--; \
23612 	} \
23613 }
23614 
23615 /*
23616  * The public interface for other modules to call to reserve a port range
23617  * in TCP.  The caller passes in how large a port range it wants.  TCP
23618  * will try to find a range and return it via lo_port and hi_port.  This is
23619  * used by NCA's nca_conn_init.
23620  * NCA can only be used in the global zone so this only affects the global
23621  * zone's ports.
23622  *
23623  * Params:
23624  *	int size: the size of the port range to be reserved.
23625  *	in_port_t *lo_port (referenced): returns the beginning port of the
23626  *		reserved port range added.
23627  *	in_port_t *hi_port (referenced): returns the ending port of the
23628  *		reserved port range added.
23629  *
23630  * Return:
23631  *	B_TRUE if the port reservation is successful, B_FALSE otherwise.
23632  *
23633  * Assumes that nca is only for zoneid=0
23634  */
23635 boolean_t
23636 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port)
23637 {
23638 	tcp_t		*tcp;
23639 	tcp_t		*tmp_tcp;
23640 	tcp_t		**temp_tcp_array;
23641 	tf_t		*tbf;
23642 	in_port_t	net_port;
23643 	in_port_t	port;
23644 	int32_t		cur_size;
23645 	int		i, j;
23646 	boolean_t	used;
23647 	tcp_rport_t 	tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE];
23648 	zoneid_t	zoneid = GLOBAL_ZONEID;
23649 	tcp_stack_t	*tcps;
23650 
23651 	/* Sanity check. */
23652 	if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) {
23653 		return (B_FALSE);
23654 	}
23655 
23656 	tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_tcp;
23657 	ASSERT(tcps != NULL);
23658 
23659 	rw_enter(&tcps->tcps_reserved_port_lock, RW_WRITER);
23660 	if (tcps->tcps_reserved_port_array_size ==
23661 	    TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) {
23662 		rw_exit(&tcps->tcps_reserved_port_lock);
23663 		netstack_rele(tcps->tcps_netstack);
23664 		return (B_FALSE);
23665 	}
23666 
23667 	/*
23668 	 * Find the starting port to try.  Since the port ranges are ordered
23669 	 * in the reserved port array, we can do a simple search here.
23670 	 */
23671 	*lo_port = TCP_SMALLEST_RESERVED_PORT;
23672 	*hi_port = TCP_LARGEST_RESERVED_PORT;
23673 	for (i = 0; i < tcps->tcps_reserved_port_array_size;
23674 	    *lo_port = tcps->tcps_reserved_port[i].hi_port + 1, i++) {
23675 		if (tcps->tcps_reserved_port[i].lo_port - *lo_port >= size) {
23676 			*hi_port = tcps->tcps_reserved_port[i].lo_port - 1;
23677 			break;
23678 		}
23679 	}
23680 	/* No available port range. */
23681 	if (i == tcps->tcps_reserved_port_array_size &&
23682 	    *hi_port - *lo_port < size) {
23683 		rw_exit(&tcps->tcps_reserved_port_lock);
23684 		netstack_rele(tcps->tcps_netstack);
23685 		return (B_FALSE);
23686 	}
23687 
23688 	temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP);
23689 	if (temp_tcp_array == NULL) {
23690 		rw_exit(&tcps->tcps_reserved_port_lock);
23691 		netstack_rele(tcps->tcps_netstack);
23692 		return (B_FALSE);
23693 	}
23694 
23695 	/* Go thru the port range to see if some ports are already bound. */
23696 	for (port = *lo_port, cur_size = 0;
23697 	    cur_size < size && port <= *hi_port;
23698 	    cur_size++, port++) {
23699 		used = B_FALSE;
23700 		net_port = htons(port);
23701 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(net_port)];
23702 		mutex_enter(&tbf->tf_lock);
23703 		for (tcp = tbf->tf_tcp; tcp != NULL;
23704 		    tcp = tcp->tcp_bind_hash) {
23705 			if (IPCL_ZONE_MATCH(tcp->tcp_connp, zoneid) &&
23706 			    net_port == tcp->tcp_lport) {
23707 				/*
23708 				 * A port is already bound.  Search again
23709 				 * starting from port + 1.  Release all
23710 				 * temporary tcps.
23711 				 */
23712 				mutex_exit(&tbf->tf_lock);
23713 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size,
23714 				    tcps);
23715 				*lo_port = port + 1;
23716 				cur_size = -1;
23717 				used = B_TRUE;
23718 				break;
23719 			}
23720 		}
23721 		if (!used) {
23722 			if ((tmp_tcp = tcp_alloc_temp_tcp(net_port, tcps)) ==
23723 			    NULL) {
23724 				/*
23725 				 * Allocation failure.  Just fail the request.
23726 				 * Need to remove all those temporary tcp
23727 				 * structures.
23728 				 */
23729 				mutex_exit(&tbf->tf_lock);
23730 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size,
23731 				    tcps);
23732 				rw_exit(&tcps->tcps_reserved_port_lock);
23733 				kmem_free(temp_tcp_array,
23734 				    (hi_port - lo_port + 1) *
23735 				    sizeof (tcp_t *));
23736 				netstack_rele(tcps->tcps_netstack);
23737 				return (B_FALSE);
23738 			}
23739 			temp_tcp_array[cur_size] = tmp_tcp;
23740 			tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE);
23741 			mutex_exit(&tbf->tf_lock);
23742 		}
23743 	}
23744 
23745 	/*
23746 	 * The current range is not large enough.  We can actually do another
23747 	 * search if this search is done between 2 reserved port ranges.  But
23748 	 * for first release, we just stop here and return saying that no port
23749 	 * range is available.
23750 	 */
23751 	if (cur_size < size) {
23752 		TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size, tcps);
23753 		rw_exit(&tcps->tcps_reserved_port_lock);
23754 		kmem_free(temp_tcp_array, size * sizeof (tcp_t *));
23755 		netstack_rele(tcps->tcps_netstack);
23756 		return (B_FALSE);
23757 	}
23758 	*hi_port = port - 1;
23759 
23760 	/*
23761 	 * Insert range into array in ascending order.  Since this function
23762 	 * must not be called often, we choose to use the simplest method.
23763 	 * The above array should not consume excessive stack space as
23764 	 * the size must be very small.  If in future releases, we find
23765 	 * that we should provide more reserved port ranges, this function
23766 	 * has to be modified to be more efficient.
23767 	 */
23768 	if (tcps->tcps_reserved_port_array_size == 0) {
23769 		tcps->tcps_reserved_port[0].lo_port = *lo_port;
23770 		tcps->tcps_reserved_port[0].hi_port = *hi_port;
23771 		tcps->tcps_reserved_port[0].temp_tcp_array = temp_tcp_array;
23772 	} else {
23773 		for (i = 0, j = 0; i < tcps->tcps_reserved_port_array_size;
23774 		    i++, j++) {
23775 			if (*lo_port < tcps->tcps_reserved_port[i].lo_port &&
23776 			    i == j) {
23777 				tmp_ports[j].lo_port = *lo_port;
23778 				tmp_ports[j].hi_port = *hi_port;
23779 				tmp_ports[j].temp_tcp_array = temp_tcp_array;
23780 				j++;
23781 			}
23782 			tmp_ports[j].lo_port =
23783 			    tcps->tcps_reserved_port[i].lo_port;
23784 			tmp_ports[j].hi_port =
23785 			    tcps->tcps_reserved_port[i].hi_port;
23786 			tmp_ports[j].temp_tcp_array =
23787 			    tcps->tcps_reserved_port[i].temp_tcp_array;
23788 		}
23789 		if (j == i) {
23790 			tmp_ports[j].lo_port = *lo_port;
23791 			tmp_ports[j].hi_port = *hi_port;
23792 			tmp_ports[j].temp_tcp_array = temp_tcp_array;
23793 		}
23794 		bcopy(tmp_ports, tcps->tcps_reserved_port, sizeof (tmp_ports));
23795 	}
23796 	tcps->tcps_reserved_port_array_size++;
23797 	rw_exit(&tcps->tcps_reserved_port_lock);
23798 	netstack_rele(tcps->tcps_netstack);
23799 	return (B_TRUE);
23800 }
23801 
23802 /*
23803  * Check to see if a port is in any reserved port range.
23804  *
23805  * Params:
23806  *	in_port_t port: the port to be verified.
23807  *
23808  * Return:
23809  *	B_TRUE is the port is inside a reserved port range, B_FALSE otherwise.
23810  */
23811 boolean_t
23812 tcp_reserved_port_check(in_port_t port, tcp_stack_t *tcps)
23813 {
23814 	int i;
23815 
23816 	rw_enter(&tcps->tcps_reserved_port_lock, RW_READER);
23817 	for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) {
23818 		if (port >= tcps->tcps_reserved_port[i].lo_port ||
23819 		    port <= tcps->tcps_reserved_port[i].hi_port) {
23820 			rw_exit(&tcps->tcps_reserved_port_lock);
23821 			return (B_TRUE);
23822 		}
23823 	}
23824 	rw_exit(&tcps->tcps_reserved_port_lock);
23825 	return (B_FALSE);
23826 }
23827 
23828 /*
23829  * To list all reserved port ranges.  This is the function to handle
23830  * ndd tcp_reserved_port_list.
23831  */
23832 /* ARGSUSED */
23833 static int
23834 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
23835 {
23836 	int i;
23837 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
23838 
23839 	rw_enter(&tcps->tcps_reserved_port_lock, RW_READER);
23840 	if (tcps->tcps_reserved_port_array_size > 0)
23841 		(void) mi_mpprintf(mp, "The following ports are reserved:");
23842 	else
23843 		(void) mi_mpprintf(mp, "No port is reserved.");
23844 	for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) {
23845 		(void) mi_mpprintf(mp, "%d-%d",
23846 		    tcps->tcps_reserved_port[i].lo_port,
23847 		    tcps->tcps_reserved_port[i].hi_port);
23848 	}
23849 	rw_exit(&tcps->tcps_reserved_port_lock);
23850 	return (0);
23851 }
23852 
23853 /*
23854  * Hash list insertion routine for tcp_t structures.
23855  * Inserts entries with the ones bound to a specific IP address first
23856  * followed by those bound to INADDR_ANY.
23857  */
23858 static void
23859 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock)
23860 {
23861 	tcp_t	**tcpp;
23862 	tcp_t	*tcpnext;
23863 
23864 	if (tcp->tcp_ptpbhn != NULL) {
23865 		ASSERT(!caller_holds_lock);
23866 		tcp_bind_hash_remove(tcp);
23867 	}
23868 	tcpp = &tbf->tf_tcp;
23869 	if (!caller_holds_lock) {
23870 		mutex_enter(&tbf->tf_lock);
23871 	} else {
23872 		ASSERT(MUTEX_HELD(&tbf->tf_lock));
23873 	}
23874 	tcpnext = tcpp[0];
23875 	if (tcpnext) {
23876 		/*
23877 		 * If the new tcp bound to the INADDR_ANY address
23878 		 * and the first one in the list is not bound to
23879 		 * INADDR_ANY we skip all entries until we find the
23880 		 * first one bound to INADDR_ANY.
23881 		 * This makes sure that applications binding to a
23882 		 * specific address get preference over those binding to
23883 		 * INADDR_ANY.
23884 		 */
23885 		if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) &&
23886 		    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) {
23887 			while ((tcpnext = tcpp[0]) != NULL &&
23888 			    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6))
23889 				tcpp = &(tcpnext->tcp_bind_hash);
23890 			if (tcpnext)
23891 				tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
23892 		} else
23893 			tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
23894 	}
23895 	tcp->tcp_bind_hash = tcpnext;
23896 	tcp->tcp_ptpbhn = tcpp;
23897 	tcpp[0] = tcp;
23898 	if (!caller_holds_lock)
23899 		mutex_exit(&tbf->tf_lock);
23900 }
23901 
23902 /*
23903  * Hash list removal routine for tcp_t structures.
23904  */
23905 static void
23906 tcp_bind_hash_remove(tcp_t *tcp)
23907 {
23908 	tcp_t	*tcpnext;
23909 	kmutex_t *lockp;
23910 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23911 
23912 	if (tcp->tcp_ptpbhn == NULL)
23913 		return;
23914 
23915 	/*
23916 	 * Extract the lock pointer in case there are concurrent
23917 	 * hash_remove's for this instance.
23918 	 */
23919 	ASSERT(tcp->tcp_lport != 0);
23920 	lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock;
23921 
23922 	ASSERT(lockp != NULL);
23923 	mutex_enter(lockp);
23924 	if (tcp->tcp_ptpbhn) {
23925 		tcpnext = tcp->tcp_bind_hash;
23926 		if (tcpnext) {
23927 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
23928 			tcp->tcp_bind_hash = NULL;
23929 		}
23930 		*tcp->tcp_ptpbhn = tcpnext;
23931 		tcp->tcp_ptpbhn = NULL;
23932 	}
23933 	mutex_exit(lockp);
23934 }
23935 
23936 
23937 /*
23938  * Hash list lookup routine for tcp_t structures.
23939  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
23940  */
23941 static tcp_t *
23942 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps)
23943 {
23944 	tf_t	*tf;
23945 	tcp_t	*tcp;
23946 
23947 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
23948 	mutex_enter(&tf->tf_lock);
23949 	for (tcp = tf->tf_tcp; tcp != NULL;
23950 	    tcp = tcp->tcp_acceptor_hash) {
23951 		if (tcp->tcp_acceptor_id == id) {
23952 			CONN_INC_REF(tcp->tcp_connp);
23953 			mutex_exit(&tf->tf_lock);
23954 			return (tcp);
23955 		}
23956 	}
23957 	mutex_exit(&tf->tf_lock);
23958 	return (NULL);
23959 }
23960 
23961 
23962 /*
23963  * Hash list insertion routine for tcp_t structures.
23964  */
23965 void
23966 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
23967 {
23968 	tf_t	*tf;
23969 	tcp_t	**tcpp;
23970 	tcp_t	*tcpnext;
23971 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23972 
23973 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
23974 
23975 	if (tcp->tcp_ptpahn != NULL)
23976 		tcp_acceptor_hash_remove(tcp);
23977 	tcpp = &tf->tf_tcp;
23978 	mutex_enter(&tf->tf_lock);
23979 	tcpnext = tcpp[0];
23980 	if (tcpnext)
23981 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
23982 	tcp->tcp_acceptor_hash = tcpnext;
23983 	tcp->tcp_ptpahn = tcpp;
23984 	tcpp[0] = tcp;
23985 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
23986 	mutex_exit(&tf->tf_lock);
23987 }
23988 
23989 /*
23990  * Hash list removal routine for tcp_t structures.
23991  */
23992 static void
23993 tcp_acceptor_hash_remove(tcp_t *tcp)
23994 {
23995 	tcp_t	*tcpnext;
23996 	kmutex_t *lockp;
23997 
23998 	/*
23999 	 * Extract the lock pointer in case there are concurrent
24000 	 * hash_remove's for this instance.
24001 	 */
24002 	lockp = tcp->tcp_acceptor_lockp;
24003 
24004 	if (tcp->tcp_ptpahn == NULL)
24005 		return;
24006 
24007 	ASSERT(lockp != NULL);
24008 	mutex_enter(lockp);
24009 	if (tcp->tcp_ptpahn) {
24010 		tcpnext = tcp->tcp_acceptor_hash;
24011 		if (tcpnext) {
24012 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
24013 			tcp->tcp_acceptor_hash = NULL;
24014 		}
24015 		*tcp->tcp_ptpahn = tcpnext;
24016 		tcp->tcp_ptpahn = NULL;
24017 	}
24018 	mutex_exit(lockp);
24019 	tcp->tcp_acceptor_lockp = NULL;
24020 }
24021 
24022 /* ARGSUSED */
24023 static int
24024 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af)
24025 {
24026 	int error = 0;
24027 	int retval;
24028 	char *end;
24029 	tcp_hsp_t *hsp;
24030 	tcp_hsp_t *hspprev;
24031 	ipaddr_t addr = 0;		/* Address we're looking for */
24032 	in6_addr_t v6addr;		/* Address we're looking for */
24033 	uint32_t hash;			/* Hash of that address */
24034 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
24035 
24036 	/*
24037 	 * If the following variables are still zero after parsing the input
24038 	 * string, the user didn't specify them and we don't change them in
24039 	 * the HSP.
24040 	 */
24041 
24042 	ipaddr_t mask = 0;		/* Subnet mask */
24043 	in6_addr_t v6mask;
24044 	long sendspace = 0;		/* Send buffer size */
24045 	long recvspace = 0;		/* Receive buffer size */
24046 	long timestamp = 0;	/* Originate TCP TSTAMP option, 1 = yes */
24047 	boolean_t delete = B_FALSE;	/* User asked to delete this HSP */
24048 
24049 	rw_enter(&tcps->tcps_hsp_lock, RW_WRITER);
24050 
24051 	/* Parse and validate address */
24052 	if (af == AF_INET) {
24053 		retval = inet_pton(af, value, &addr);
24054 		if (retval == 1)
24055 			IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
24056 	} else if (af == AF_INET6) {
24057 		retval = inet_pton(af, value, &v6addr);
24058 	} else {
24059 		error = EINVAL;
24060 		goto done;
24061 	}
24062 	if (retval == 0) {
24063 		error = EINVAL;
24064 		goto done;
24065 	}
24066 
24067 	while ((*value) && *value != ' ')
24068 		value++;
24069 
24070 	/* Parse individual keywords, set variables if found */
24071 	while (*value) {
24072 		/* Skip leading blanks */
24073 
24074 		while (*value == ' ' || *value == '\t')
24075 			value++;
24076 
24077 		/* If at end of string, we're done */
24078 
24079 		if (!*value)
24080 			break;
24081 
24082 		/* We have a word, figure out what it is */
24083 
24084 		if (strncmp("mask", value, 4) == 0) {
24085 			value += 4;
24086 			while (*value == ' ' || *value == '\t')
24087 				value++;
24088 			/* Parse subnet mask */
24089 			if (af == AF_INET) {
24090 				retval = inet_pton(af, value, &mask);
24091 				if (retval == 1) {
24092 					V4MASK_TO_V6(mask, v6mask);
24093 				}
24094 			} else if (af == AF_INET6) {
24095 				retval = inet_pton(af, value, &v6mask);
24096 			}
24097 			if (retval != 1) {
24098 				error = EINVAL;
24099 				goto done;
24100 			}
24101 			while ((*value) && *value != ' ')
24102 				value++;
24103 		} else if (strncmp("sendspace", value, 9) == 0) {
24104 			value += 9;
24105 
24106 			if (ddi_strtol(value, &end, 0, &sendspace) != 0 ||
24107 			    sendspace < TCP_XMIT_HIWATER ||
24108 			    sendspace >= (1L<<30)) {
24109 				error = EINVAL;
24110 				goto done;
24111 			}
24112 			value = end;
24113 		} else if (strncmp("recvspace", value, 9) == 0) {
24114 			value += 9;
24115 
24116 			if (ddi_strtol(value, &end, 0, &recvspace) != 0 ||
24117 			    recvspace < TCP_RECV_HIWATER ||
24118 			    recvspace >= (1L<<30)) {
24119 				error = EINVAL;
24120 				goto done;
24121 			}
24122 			value = end;
24123 		} else if (strncmp("timestamp", value, 9) == 0) {
24124 			value += 9;
24125 
24126 			if (ddi_strtol(value, &end, 0, &timestamp) != 0 ||
24127 			    timestamp < 0 || timestamp > 1) {
24128 				error = EINVAL;
24129 				goto done;
24130 			}
24131 
24132 			/*
24133 			 * We increment timestamp so we know it's been set;
24134 			 * this is undone when we put it in the HSP
24135 			 */
24136 			timestamp++;
24137 			value = end;
24138 		} else if (strncmp("delete", value, 6) == 0) {
24139 			value += 6;
24140 			delete = B_TRUE;
24141 		} else {
24142 			error = EINVAL;
24143 			goto done;
24144 		}
24145 	}
24146 
24147 	/* Hash address for lookup */
24148 
24149 	hash = TCP_HSP_HASH(addr);
24150 
24151 	if (delete) {
24152 		/*
24153 		 * Note that deletes don't return an error if the thing
24154 		 * we're trying to delete isn't there.
24155 		 */
24156 		if (tcps->tcps_hsp_hash == NULL)
24157 			goto done;
24158 		hsp = tcps->tcps_hsp_hash[hash];
24159 
24160 		if (hsp) {
24161 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
24162 			    &v6addr)) {
24163 				tcps->tcps_hsp_hash[hash] = hsp->tcp_hsp_next;
24164 				mi_free((char *)hsp);
24165 			} else {
24166 				hspprev = hsp;
24167 				while ((hsp = hsp->tcp_hsp_next) != NULL) {
24168 					if (IN6_ARE_ADDR_EQUAL(
24169 					    &hsp->tcp_hsp_addr_v6, &v6addr)) {
24170 						hspprev->tcp_hsp_next =
24171 						    hsp->tcp_hsp_next;
24172 						mi_free((char *)hsp);
24173 						break;
24174 					}
24175 					hspprev = hsp;
24176 				}
24177 			}
24178 		}
24179 	} else {
24180 		/*
24181 		 * We're adding/modifying an HSP.  If we haven't already done
24182 		 * so, allocate the hash table.
24183 		 */
24184 
24185 		if (!tcps->tcps_hsp_hash) {
24186 			tcps->tcps_hsp_hash = (tcp_hsp_t **)
24187 			    mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE);
24188 			if (!tcps->tcps_hsp_hash) {
24189 				error = EINVAL;
24190 				goto done;
24191 			}
24192 		}
24193 
24194 		/* Get head of hash chain */
24195 
24196 		hsp = tcps->tcps_hsp_hash[hash];
24197 
24198 		/* Try to find pre-existing hsp on hash chain */
24199 		/* Doesn't handle CIDR prefixes. */
24200 		while (hsp) {
24201 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr))
24202 				break;
24203 			hsp = hsp->tcp_hsp_next;
24204 		}
24205 
24206 		/*
24207 		 * If we didn't, create one with default values and put it
24208 		 * at head of hash chain
24209 		 */
24210 
24211 		if (!hsp) {
24212 			hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t));
24213 			if (!hsp) {
24214 				error = EINVAL;
24215 				goto done;
24216 			}
24217 			hsp->tcp_hsp_next = tcps->tcps_hsp_hash[hash];
24218 			tcps->tcps_hsp_hash[hash] = hsp;
24219 		}
24220 
24221 		/* Set values that the user asked us to change */
24222 
24223 		hsp->tcp_hsp_addr_v6 = v6addr;
24224 		if (IN6_IS_ADDR_V4MAPPED(&v6addr))
24225 			hsp->tcp_hsp_vers = IPV4_VERSION;
24226 		else
24227 			hsp->tcp_hsp_vers = IPV6_VERSION;
24228 		hsp->tcp_hsp_subnet_v6 = v6mask;
24229 		if (sendspace > 0)
24230 			hsp->tcp_hsp_sendspace = sendspace;
24231 		if (recvspace > 0)
24232 			hsp->tcp_hsp_recvspace = recvspace;
24233 		if (timestamp > 0)
24234 			hsp->tcp_hsp_tstamp = timestamp - 1;
24235 	}
24236 
24237 done:
24238 	rw_exit(&tcps->tcps_hsp_lock);
24239 	return (error);
24240 }
24241 
24242 /* Set callback routine passed to nd_load by tcp_param_register. */
24243 /* ARGSUSED */
24244 static int
24245 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
24246 {
24247 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET));
24248 }
24249 /* ARGSUSED */
24250 static int
24251 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
24252     cred_t *cr)
24253 {
24254 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6));
24255 }
24256 
24257 /* TCP host parameters report triggered via the Named Dispatch mechanism. */
24258 /* ARGSUSED */
24259 static int
24260 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
24261 {
24262 	tcp_hsp_t *hsp;
24263 	int i;
24264 	char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN];
24265 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
24266 
24267 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24268 	(void) mi_mpprintf(mp,
24269 	    "Hash HSP     " MI_COL_HDRPAD_STR
24270 	    "Address         Subnet Mask     Send       Receive    TStamp");
24271 	if (tcps->tcps_hsp_hash) {
24272 		for (i = 0; i < TCP_HSP_HASH_SIZE; i++) {
24273 			hsp = tcps->tcps_hsp_hash[i];
24274 			while (hsp) {
24275 				if (hsp->tcp_hsp_vers == IPV4_VERSION) {
24276 					(void) inet_ntop(AF_INET,
24277 					    &hsp->tcp_hsp_addr,
24278 					    addrbuf, sizeof (addrbuf));
24279 					(void) inet_ntop(AF_INET,
24280 					    &hsp->tcp_hsp_subnet,
24281 					    subnetbuf, sizeof (subnetbuf));
24282 				} else {
24283 					(void) inet_ntop(AF_INET6,
24284 					    &hsp->tcp_hsp_addr_v6,
24285 					    addrbuf, sizeof (addrbuf));
24286 					(void) inet_ntop(AF_INET6,
24287 					    &hsp->tcp_hsp_subnet_v6,
24288 					    subnetbuf, sizeof (subnetbuf));
24289 				}
24290 				(void) mi_mpprintf(mp,
24291 				    " %03d " MI_COL_PTRFMT_STR
24292 				    "%s %s %010d %010d      %d",
24293 				    i,
24294 				    (void *)hsp,
24295 				    addrbuf,
24296 				    subnetbuf,
24297 				    hsp->tcp_hsp_sendspace,
24298 				    hsp->tcp_hsp_recvspace,
24299 				    hsp->tcp_hsp_tstamp);
24300 
24301 				hsp = hsp->tcp_hsp_next;
24302 			}
24303 		}
24304 	}
24305 	rw_exit(&tcps->tcps_hsp_lock);
24306 	return (0);
24307 }
24308 
24309 
24310 /* Data for fast netmask macro used by tcp_hsp_lookup */
24311 
24312 static ipaddr_t netmasks[] = {
24313 	IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET,
24314 	IN_CLASSC_NET | IN_CLASSD_NET  /* Class C,D,E */
24315 };
24316 
24317 #define	netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30])
24318 
24319 /*
24320  * XXX This routine should go away and instead we should use the metrics
24321  * associated with the routes to determine the default sndspace and rcvspace.
24322  */
24323 static tcp_hsp_t *
24324 tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *tcps)
24325 {
24326 	tcp_hsp_t *hsp = NULL;
24327 
24328 	/* Quick check without acquiring the lock. */
24329 	if (tcps->tcps_hsp_hash == NULL)
24330 		return (NULL);
24331 
24332 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24333 
24334 	/* This routine finds the best-matching HSP for address addr. */
24335 
24336 	if (tcps->tcps_hsp_hash) {
24337 		int i;
24338 		ipaddr_t srchaddr;
24339 		tcp_hsp_t *hsp_net;
24340 
24341 		/* We do three passes: host, network, and subnet. */
24342 
24343 		srchaddr = addr;
24344 
24345 		for (i = 1; i <= 3; i++) {
24346 			/* Look for exact match on srchaddr */
24347 
24348 			hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(srchaddr)];
24349 			while (hsp) {
24350 				if (hsp->tcp_hsp_vers == IPV4_VERSION &&
24351 				    hsp->tcp_hsp_addr == srchaddr)
24352 					break;
24353 				hsp = hsp->tcp_hsp_next;
24354 			}
24355 			ASSERT(hsp == NULL ||
24356 			    hsp->tcp_hsp_vers == IPV4_VERSION);
24357 
24358 			/*
24359 			 * If this is the first pass:
24360 			 *   If we found a match, great, return it.
24361 			 *   If not, search for the network on the second pass.
24362 			 */
24363 
24364 			if (i == 1)
24365 				if (hsp)
24366 					break;
24367 				else
24368 				{
24369 					srchaddr = addr & netmask(addr);
24370 					continue;
24371 				}
24372 
24373 			/*
24374 			 * If this is the second pass:
24375 			 *   If we found a match, but there's a subnet mask,
24376 			 *    save the match but try again using the subnet
24377 			 *    mask on the third pass.
24378 			 *   Otherwise, return whatever we found.
24379 			 */
24380 
24381 			if (i == 2) {
24382 				if (hsp && hsp->tcp_hsp_subnet) {
24383 					hsp_net = hsp;
24384 					srchaddr = addr & hsp->tcp_hsp_subnet;
24385 					continue;
24386 				} else {
24387 					break;
24388 				}
24389 			}
24390 
24391 			/*
24392 			 * This must be the third pass.  If we didn't find
24393 			 * anything, return the saved network HSP instead.
24394 			 */
24395 
24396 			if (!hsp)
24397 				hsp = hsp_net;
24398 		}
24399 	}
24400 
24401 	rw_exit(&tcps->tcps_hsp_lock);
24402 	return (hsp);
24403 }
24404 
24405 /*
24406  * XXX Equally broken as the IPv4 routine. Doesn't handle longest
24407  * match lookup.
24408  */
24409 static tcp_hsp_t *
24410 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr, tcp_stack_t *tcps)
24411 {
24412 	tcp_hsp_t *hsp = NULL;
24413 
24414 	/* Quick check without acquiring the lock. */
24415 	if (tcps->tcps_hsp_hash == NULL)
24416 		return (NULL);
24417 
24418 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24419 
24420 	/* This routine finds the best-matching HSP for address addr. */
24421 
24422 	if (tcps->tcps_hsp_hash) {
24423 		int i;
24424 		in6_addr_t v6srchaddr;
24425 		tcp_hsp_t *hsp_net;
24426 
24427 		/* We do three passes: host, network, and subnet. */
24428 
24429 		v6srchaddr = *v6addr;
24430 
24431 		for (i = 1; i <= 3; i++) {
24432 			/* Look for exact match on srchaddr */
24433 
24434 			hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(
24435 			    V4_PART_OF_V6(v6srchaddr))];
24436 			while (hsp) {
24437 				if (hsp->tcp_hsp_vers == IPV6_VERSION &&
24438 				    IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
24439 				    &v6srchaddr))
24440 					break;
24441 				hsp = hsp->tcp_hsp_next;
24442 			}
24443 
24444 			/*
24445 			 * If this is the first pass:
24446 			 *   If we found a match, great, return it.
24447 			 *   If not, search for the network on the second pass.
24448 			 */
24449 
24450 			if (i == 1)
24451 				if (hsp)
24452 					break;
24453 				else {
24454 					/* Assume a 64 bit mask */
24455 					v6srchaddr.s6_addr32[0] =
24456 					    v6addr->s6_addr32[0];
24457 					v6srchaddr.s6_addr32[1] =
24458 					    v6addr->s6_addr32[1];
24459 					v6srchaddr.s6_addr32[2] = 0;
24460 					v6srchaddr.s6_addr32[3] = 0;
24461 					continue;
24462 				}
24463 
24464 			/*
24465 			 * If this is the second pass:
24466 			 *   If we found a match, but there's a subnet mask,
24467 			 *    save the match but try again using the subnet
24468 			 *    mask on the third pass.
24469 			 *   Otherwise, return whatever we found.
24470 			 */
24471 
24472 			if (i == 2) {
24473 				ASSERT(hsp == NULL ||
24474 				    hsp->tcp_hsp_vers == IPV6_VERSION);
24475 				if (hsp &&
24476 				    !IN6_IS_ADDR_UNSPECIFIED(
24477 				    &hsp->tcp_hsp_subnet_v6)) {
24478 					hsp_net = hsp;
24479 					V6_MASK_COPY(*v6addr,
24480 					    hsp->tcp_hsp_subnet_v6, v6srchaddr);
24481 					continue;
24482 				} else {
24483 					break;
24484 				}
24485 			}
24486 
24487 			/*
24488 			 * This must be the third pass.  If we didn't find
24489 			 * anything, return the saved network HSP instead.
24490 			 */
24491 
24492 			if (!hsp)
24493 				hsp = hsp_net;
24494 		}
24495 	}
24496 
24497 	rw_exit(&tcps->tcps_hsp_lock);
24498 	return (hsp);
24499 }
24500 
24501 /*
24502  * Type three generator adapted from the random() function in 4.4 BSD:
24503  */
24504 
24505 /*
24506  * Copyright (c) 1983, 1993
24507  *	The Regents of the University of California.  All rights reserved.
24508  *
24509  * Redistribution and use in source and binary forms, with or without
24510  * modification, are permitted provided that the following conditions
24511  * are met:
24512  * 1. Redistributions of source code must retain the above copyright
24513  *    notice, this list of conditions and the following disclaimer.
24514  * 2. Redistributions in binary form must reproduce the above copyright
24515  *    notice, this list of conditions and the following disclaimer in the
24516  *    documentation and/or other materials provided with the distribution.
24517  * 3. All advertising materials mentioning features or use of this software
24518  *    must display the following acknowledgement:
24519  *	This product includes software developed by the University of
24520  *	California, Berkeley and its contributors.
24521  * 4. Neither the name of the University nor the names of its contributors
24522  *    may be used to endorse or promote products derived from this software
24523  *    without specific prior written permission.
24524  *
24525  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24526  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24527  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24528  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24529  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24530  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24531  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24532  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24533  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24534  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24535  * SUCH DAMAGE.
24536  */
24537 
24538 /* Type 3 -- x**31 + x**3 + 1 */
24539 #define	DEG_3		31
24540 #define	SEP_3		3
24541 
24542 
24543 /* Protected by tcp_random_lock */
24544 static int tcp_randtbl[DEG_3 + 1];
24545 
24546 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
24547 static int *tcp_random_rptr = &tcp_randtbl[1];
24548 
24549 static int *tcp_random_state = &tcp_randtbl[1];
24550 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
24551 
24552 kmutex_t tcp_random_lock;
24553 
24554 void
24555 tcp_random_init(void)
24556 {
24557 	int i;
24558 	hrtime_t hrt;
24559 	time_t wallclock;
24560 	uint64_t result;
24561 
24562 	/*
24563 	 * Use high-res timer and current time for seed.  Gethrtime() returns
24564 	 * a longlong, which may contain resolution down to nanoseconds.
24565 	 * The current time will either be a 32-bit or a 64-bit quantity.
24566 	 * XOR the two together in a 64-bit result variable.
24567 	 * Convert the result to a 32-bit value by multiplying the high-order
24568 	 * 32-bits by the low-order 32-bits.
24569 	 */
24570 
24571 	hrt = gethrtime();
24572 	(void) drv_getparm(TIME, &wallclock);
24573 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
24574 	mutex_enter(&tcp_random_lock);
24575 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
24576 	    (result & 0xffffffff);
24577 
24578 	for (i = 1; i < DEG_3; i++)
24579 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
24580 			+ 12345;
24581 	tcp_random_fptr = &tcp_random_state[SEP_3];
24582 	tcp_random_rptr = &tcp_random_state[0];
24583 	mutex_exit(&tcp_random_lock);
24584 	for (i = 0; i < 10 * DEG_3; i++)
24585 		(void) tcp_random();
24586 }
24587 
24588 /*
24589  * tcp_random: Return a random number in the range [1 - (128K + 1)].
24590  * This range is selected to be approximately centered on TCP_ISS / 2,
24591  * and easy to compute. We get this value by generating a 32-bit random
24592  * number, selecting out the high-order 17 bits, and then adding one so
24593  * that we never return zero.
24594  */
24595 int
24596 tcp_random(void)
24597 {
24598 	int i;
24599 
24600 	mutex_enter(&tcp_random_lock);
24601 	*tcp_random_fptr += *tcp_random_rptr;
24602 
24603 	/*
24604 	 * The high-order bits are more random than the low-order bits,
24605 	 * so we select out the high-order 17 bits and add one so that
24606 	 * we never return zero.
24607 	 */
24608 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
24609 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
24610 		tcp_random_fptr = tcp_random_state;
24611 		++tcp_random_rptr;
24612 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
24613 		tcp_random_rptr = tcp_random_state;
24614 
24615 	mutex_exit(&tcp_random_lock);
24616 	return (i);
24617 }
24618 
24619 /*
24620  * XXX This will go away when TPI is extended to send
24621  * info reqs to sockfs/timod .....
24622  * Given a queue, set the max packet size for the write
24623  * side of the queue below stream head.  This value is
24624  * cached on the stream head.
24625  * Returns 1 on success, 0 otherwise.
24626  */
24627 static int
24628 setmaxps(queue_t *q, int maxpsz)
24629 {
24630 	struct stdata	*stp;
24631 	queue_t		*wq;
24632 	stp = STREAM(q);
24633 
24634 	/*
24635 	 * At this point change of a queue parameter is not allowed
24636 	 * when a multiplexor is sitting on top.
24637 	 */
24638 	if (stp->sd_flag & STPLEX)
24639 		return (0);
24640 
24641 	claimstr(stp->sd_wrq);
24642 	wq = stp->sd_wrq->q_next;
24643 	ASSERT(wq != NULL);
24644 	(void) strqset(wq, QMAXPSZ, 0, maxpsz);
24645 	releasestr(stp->sd_wrq);
24646 	return (1);
24647 }
24648 
24649 static int
24650 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp,
24651     int *t_errorp, int *sys_errorp)
24652 {
24653 	int error;
24654 	int is_absreq_failure;
24655 	t_scalar_t *opt_lenp;
24656 	t_scalar_t opt_offset;
24657 	int prim_type;
24658 	struct T_conn_req *tcreqp;
24659 	struct T_conn_res *tcresp;
24660 	cred_t *cr;
24661 
24662 	cr = DB_CREDDEF(mp, tcp->tcp_cred);
24663 
24664 	prim_type = ((union T_primitives *)mp->b_rptr)->type;
24665 	ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES ||
24666 	    prim_type == T_CONN_RES);
24667 
24668 	switch (prim_type) {
24669 	case T_CONN_REQ:
24670 		tcreqp = (struct T_conn_req *)mp->b_rptr;
24671 		opt_offset = tcreqp->OPT_offset;
24672 		opt_lenp = (t_scalar_t *)&tcreqp->OPT_length;
24673 		break;
24674 	case O_T_CONN_RES:
24675 	case T_CONN_RES:
24676 		tcresp = (struct T_conn_res *)mp->b_rptr;
24677 		opt_offset = tcresp->OPT_offset;
24678 		opt_lenp = (t_scalar_t *)&tcresp->OPT_length;
24679 		break;
24680 	}
24681 
24682 	*t_errorp = 0;
24683 	*sys_errorp = 0;
24684 	*do_disconnectp = 0;
24685 
24686 	error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp,
24687 	    opt_offset, cr, &tcp_opt_obj,
24688 	    NULL, &is_absreq_failure);
24689 
24690 	switch (error) {
24691 	case  0:		/* no error */
24692 		ASSERT(is_absreq_failure == 0);
24693 		return (0);
24694 	case ENOPROTOOPT:
24695 		*t_errorp = TBADOPT;
24696 		break;
24697 	case EACCES:
24698 		*t_errorp = TACCES;
24699 		break;
24700 	default:
24701 		*t_errorp = TSYSERR; *sys_errorp = error;
24702 		break;
24703 	}
24704 	if (is_absreq_failure != 0) {
24705 		/*
24706 		 * The connection request should get the local ack
24707 		 * T_OK_ACK and then a T_DISCON_IND.
24708 		 */
24709 		*do_disconnectp = 1;
24710 	}
24711 	return (-1);
24712 }
24713 
24714 /*
24715  * Split this function out so that if the secret changes, I'm okay.
24716  *
24717  * Initialize the tcp_iss_cookie and tcp_iss_key.
24718  */
24719 
24720 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
24721 
24722 static void
24723 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps)
24724 {
24725 	struct {
24726 		int32_t current_time;
24727 		uint32_t randnum;
24728 		uint16_t pad;
24729 		uint8_t ether[6];
24730 		uint8_t passwd[PASSWD_SIZE];
24731 	} tcp_iss_cookie;
24732 	time_t t;
24733 
24734 	/*
24735 	 * Start with the current absolute time.
24736 	 */
24737 	(void) drv_getparm(TIME, &t);
24738 	tcp_iss_cookie.current_time = t;
24739 
24740 	/*
24741 	 * XXX - Need a more random number per RFC 1750, not this crap.
24742 	 * OTOH, if what follows is pretty random, then I'm in better shape.
24743 	 */
24744 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
24745 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
24746 
24747 	/*
24748 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
24749 	 * as a good template.
24750 	 */
24751 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
24752 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
24753 
24754 	/*
24755 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
24756 	 */
24757 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
24758 
24759 	/*
24760 	 * See 4010593 if this section becomes a problem again,
24761 	 * but the local ethernet address is useful here.
24762 	 */
24763 	(void) localetheraddr(NULL,
24764 	    (struct ether_addr *)&tcp_iss_cookie.ether);
24765 
24766 	/*
24767 	 * Hash 'em all together.  The MD5Final is called per-connection.
24768 	 */
24769 	mutex_enter(&tcps->tcps_iss_key_lock);
24770 	MD5Init(&tcps->tcps_iss_key);
24771 	MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie,
24772 	    sizeof (tcp_iss_cookie));
24773 	mutex_exit(&tcps->tcps_iss_key_lock);
24774 }
24775 
24776 /*
24777  * Set the RFC 1948 pass phrase
24778  */
24779 /* ARGSUSED */
24780 static int
24781 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
24782     cred_t *cr)
24783 {
24784 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
24785 
24786 	/*
24787 	 * Basically, value contains a new pass phrase.  Pass it along!
24788 	 */
24789 	tcp_iss_key_init((uint8_t *)value, strlen(value), tcps);
24790 	return (0);
24791 }
24792 
24793 /* ARGSUSED */
24794 static int
24795 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags)
24796 {
24797 	bzero(buf, sizeof (tcp_sack_info_t));
24798 	return (0);
24799 }
24800 
24801 /* ARGSUSED */
24802 static int
24803 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags)
24804 {
24805 	bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH);
24806 	return (0);
24807 }
24808 
24809 /*
24810  * Make sure we wait until the default queue is setup, yet allow
24811  * tcp_g_q_create() to open a TCP stream.
24812  * We need to allow tcp_g_q_create() do do an open
24813  * of tcp, hence we compare curhread.
24814  * All others have to wait until the tcps_g_q has been
24815  * setup.
24816  */
24817 void
24818 tcp_g_q_setup(tcp_stack_t *tcps)
24819 {
24820 	mutex_enter(&tcps->tcps_g_q_lock);
24821 	if (tcps->tcps_g_q != NULL) {
24822 		mutex_exit(&tcps->tcps_g_q_lock);
24823 		return;
24824 	}
24825 	if (tcps->tcps_g_q_creator == NULL) {
24826 		/* This thread will set it up */
24827 		tcps->tcps_g_q_creator = curthread;
24828 		mutex_exit(&tcps->tcps_g_q_lock);
24829 		tcp_g_q_create(tcps);
24830 		mutex_enter(&tcps->tcps_g_q_lock);
24831 		ASSERT(tcps->tcps_g_q_creator == curthread);
24832 		tcps->tcps_g_q_creator = NULL;
24833 		cv_signal(&tcps->tcps_g_q_cv);
24834 		ASSERT(tcps->tcps_g_q != NULL);
24835 		mutex_exit(&tcps->tcps_g_q_lock);
24836 		return;
24837 	}
24838 	/* Everybody but the creator has to wait */
24839 	if (tcps->tcps_g_q_creator != curthread) {
24840 		while (tcps->tcps_g_q == NULL)
24841 			cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock);
24842 	}
24843 	mutex_exit(&tcps->tcps_g_q_lock);
24844 }
24845 
24846 major_t IP_MAJ;
24847 #define	IP	"ip"
24848 
24849 #define	TCP6DEV		"/devices/pseudo/tcp6@0:tcp6"
24850 
24851 /*
24852  * Create a default tcp queue here instead of in strplumb
24853  */
24854 void
24855 tcp_g_q_create(tcp_stack_t *tcps)
24856 {
24857 	int error;
24858 	ldi_handle_t	lh = NULL;
24859 	ldi_ident_t	li = NULL;
24860 	int		rval;
24861 	cred_t		*cr;
24862 
24863 #ifdef NS_DEBUG
24864 	(void) printf("tcp_g_q_create()\n");
24865 #endif
24866 
24867 	ASSERT(tcps->tcps_g_q_creator == curthread);
24868 
24869 	error = ldi_ident_from_major(IP_MAJ, &li);
24870 	if (error) {
24871 #ifdef DEBUG
24872 		printf("tcp_g_q_create: lyr ident get failed error %d\n",
24873 		    error);
24874 #endif
24875 		return;
24876 	}
24877 
24878 	cr = zone_get_kcred(netstackid_to_zoneid(
24879 				tcps->tcps_netstack->netstack_stackid));
24880 	ASSERT(cr != NULL);
24881 	/*
24882 	 * We set the tcp default queue to IPv6 because IPv4 falls
24883 	 * back to IPv6 when it can't find a client, but
24884 	 * IPv6 does not fall back to IPv4.
24885 	 */
24886 	error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li);
24887 	if (error) {
24888 #ifdef DEBUG
24889 		printf("tcp_g_q_create: open of TCP6DEV failed error %d\n",
24890 		    error);
24891 #endif
24892 		goto out;
24893 	}
24894 
24895 	/*
24896 	 * This ioctl causes the tcp framework to cache a pointer to
24897 	 * this stream, so we don't want to close the stream after
24898 	 * this operation.
24899 	 * Use the kernel credentials that are for the zone we're in.
24900 	 */
24901 	error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q,
24902 	    (intptr_t)0, FKIOCTL, cr, &rval);
24903 	if (error) {
24904 #ifdef DEBUG
24905 		printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed "
24906 		    "error %d\n", error);
24907 #endif
24908 		goto out;
24909 	}
24910 	tcps->tcps_g_q_lh = lh;	/* For tcp_g_q_close */
24911 	lh = NULL;
24912 out:
24913 	/* Close layered handles */
24914 	if (li)
24915 		ldi_ident_release(li);
24916 	/* Keep cred around until _inactive needs it */
24917 	tcps->tcps_g_q_cr = cr;
24918 }
24919 
24920 /*
24921  * We keep tcp_g_q set until all other tcp_t's in the zone
24922  * has gone away, and then when tcp_g_q_inactive() is called
24923  * we clear it.
24924  */
24925 void
24926 tcp_g_q_destroy(tcp_stack_t *tcps)
24927 {
24928 #ifdef NS_DEBUG
24929 	(void) printf("tcp_g_q_destroy()for stack %d\n",
24930 	    tcps->tcps_netstack->netstack_stackid);
24931 #endif
24932 
24933 	if (tcps->tcps_g_q == NULL) {
24934 		return;	/* Nothing to cleanup */
24935 	}
24936 	/*
24937 	 * Drop reference corresponding to the default queue.
24938 	 * This reference was added from tcp_open when the default queue
24939 	 * was created, hence we compensate for this extra drop in
24940 	 * tcp_g_q_close. If the refcnt drops to zero here it means
24941 	 * the default queue was the last one to be open, in which
24942 	 * case, then tcp_g_q_inactive will be
24943 	 * called as a result of the refrele.
24944 	 */
24945 	TCPS_REFRELE(tcps);
24946 }
24947 
24948 /*
24949  * Called when last tcp_t drops reference count using TCPS_REFRELE.
24950  * Run by tcp_q_q_inactive using a taskq.
24951  */
24952 static void
24953 tcp_g_q_close(void *arg)
24954 {
24955 	tcp_stack_t *tcps = arg;
24956 	int error;
24957 	ldi_handle_t	lh = NULL;
24958 	ldi_ident_t	li = NULL;
24959 	cred_t		*cr;
24960 
24961 #ifdef NS_DEBUG
24962 	(void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n",
24963 	    tcps->tcps_netstack->netstack_stackid,
24964 	    tcps->tcps_netstack->netstack_refcnt);
24965 #endif
24966 	lh = tcps->tcps_g_q_lh;
24967 	if (lh == NULL)
24968 		return;	/* Nothing to cleanup */
24969 
24970 	ASSERT(tcps->tcps_refcnt == 1);
24971 	ASSERT(tcps->tcps_g_q != NULL);
24972 
24973 	error = ldi_ident_from_major(IP_MAJ, &li);
24974 	if (error) {
24975 #ifdef DEBUG
24976 		printf("tcp_g_q_inactive: lyr ident get failed error %d\n",
24977 		    error);
24978 #endif
24979 		return;
24980 	}
24981 
24982 	cr = tcps->tcps_g_q_cr;
24983 	tcps->tcps_g_q_cr = NULL;
24984 	ASSERT(cr != NULL);
24985 
24986 	/*
24987 	 * Make sure we can break the recursion when tcp_close decrements
24988 	 * the reference count causing g_q_inactive to be called again.
24989 	 */
24990 	tcps->tcps_g_q_lh = NULL;
24991 
24992 	/* close the default queue */
24993 	(void) ldi_close(lh, FREAD|FWRITE, cr);
24994 	/*
24995 	 * At this point in time tcps and the rest of netstack_t might
24996 	 * have been deleted.
24997 	 */
24998 	tcps = NULL;
24999 
25000 	/* Close layered handles */
25001 	ldi_ident_release(li);
25002 	crfree(cr);
25003 }
25004 
25005 /*
25006  * Called when last tcp_t drops reference count using TCPS_REFRELE.
25007  *
25008  * Have to ensure that the ldi routines are not used by an
25009  * interrupt thread by using a taskq.
25010  */
25011 void
25012 tcp_g_q_inactive(tcp_stack_t *tcps)
25013 {
25014 	if (tcps->tcps_g_q_lh == NULL)
25015 		return;	/* Nothing to cleanup */
25016 
25017 	ASSERT(tcps->tcps_refcnt == 0);
25018 	TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */
25019 
25020 	if (servicing_interrupt()) {
25021 		(void) taskq_dispatch(tcp_taskq, tcp_g_q_close,
25022 			    (void *) tcps, TQ_SLEEP);
25023 	} else {
25024 		tcp_g_q_close(tcps);
25025 	}
25026 }
25027 
25028 /*
25029  * Called by IP when IP is loaded into the kernel
25030  */
25031 void
25032 tcp_ddi_g_init(void)
25033 {
25034 	IP_MAJ = ddi_name_to_major(IP);
25035 
25036 	tcp_timercache = kmem_cache_create("tcp_timercache",
25037 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
25038 	    NULL, NULL, NULL, NULL, NULL, 0);
25039 
25040 	tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache",
25041 	    sizeof (tcp_sack_info_t), 0,
25042 	    tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0);
25043 
25044 	tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache",
25045 	    TCP_MAX_COMBINED_HEADER_LENGTH, 0,
25046 	    tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0);
25047 
25048 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
25049 
25050 	/* Initialize the random number generator */
25051 	tcp_random_init();
25052 
25053 	tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput);
25054 	tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close);
25055 
25056 	/* A single callback independently of how many netstacks we have */
25057 	ip_squeue_init(tcp_squeue_add);
25058 
25059 	tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics);
25060 
25061 	tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1,
25062 	    TASKQ_PREPOPULATE);
25063 
25064 	/*
25065 	 * We want to be informed each time a stack is created or
25066 	 * destroyed in the kernel, so we can maintain the
25067 	 * set of tcp_stack_t's.
25068 	 */
25069 	netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown,
25070 	    tcp_stack_fini);
25071 }
25072 
25073 
25074 /*
25075  * Initialize the TCP stack instance.
25076  */
25077 static void *
25078 tcp_stack_init(netstackid_t stackid, netstack_t *ns)
25079 {
25080 	tcp_stack_t	*tcps;
25081 	tcpparam_t	*pa;
25082 	int		i;
25083 
25084 	tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP);
25085 	tcps->tcps_netstack = ns;
25086 
25087 	/* Initialize locks */
25088 	rw_init(&tcps->tcps_hsp_lock, NULL, RW_DEFAULT, NULL);
25089 	mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL);
25090 	cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL);
25091 	mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
25092 	mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
25093 	rw_init(&tcps->tcps_reserved_port_lock, NULL, RW_DEFAULT, NULL);
25094 
25095 	tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
25096 	tcps->tcps_g_epriv_ports[0] = 2049;
25097 	tcps->tcps_g_epriv_ports[1] = 4045;
25098 	tcps->tcps_min_anonpriv_port = 512;
25099 
25100 	tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) *
25101 	    TCP_BIND_FANOUT_SIZE, KM_SLEEP);
25102 	tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) *
25103 	    TCP_FANOUT_SIZE, KM_SLEEP);
25104 	tcps->tcps_reserved_port = kmem_zalloc(sizeof (tcp_rport_t) *
25105 	    TCP_RESERVED_PORTS_ARRAY_MAX_SIZE, KM_SLEEP);
25106 
25107 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
25108 		mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL,
25109 		    MUTEX_DEFAULT, NULL);
25110 	}
25111 
25112 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
25113 		mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL,
25114 		    MUTEX_DEFAULT, NULL);
25115 	}
25116 
25117 	/* TCP's IPsec code calls the packet dropper. */
25118 	ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement");
25119 
25120 	pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP);
25121 	tcps->tcps_params = pa;
25122 	bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr));
25123 
25124 	(void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params,
25125 	    A_CNT(lcl_tcp_param_arr), tcps);
25126 
25127 	/*
25128 	 * Note: To really walk the device tree you need the devinfo
25129 	 * pointer to your device which is only available after probe/attach.
25130 	 * The following is safe only because it uses ddi_root_node()
25131 	 */
25132 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
25133 	    tcp_opt_obj.odb_opt_arr_cnt);
25134 
25135 	/*
25136 	 * Initialize RFC 1948 secret values.  This will probably be reset once
25137 	 * by the boot scripts.
25138 	 *
25139 	 * Use NULL name, as the name is caught by the new lockstats.
25140 	 *
25141 	 * Initialize with some random, non-guessable string, like the global
25142 	 * T_INFO_ACK.
25143 	 */
25144 
25145 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
25146 	    sizeof (tcp_g_t_info_ack), tcps);
25147 
25148 	tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics);
25149 	tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps);
25150 
25151 	return (tcps);
25152 }
25153 
25154 /*
25155  * Called when the IP module is about to be unloaded.
25156  */
25157 void
25158 tcp_ddi_g_destroy(void)
25159 {
25160 	tcp_g_kstat_fini(tcp_g_kstat);
25161 	tcp_g_kstat = NULL;
25162 	bzero(&tcp_g_statistics, sizeof (tcp_g_statistics));
25163 
25164 	mutex_destroy(&tcp_random_lock);
25165 
25166 	kmem_cache_destroy(tcp_timercache);
25167 	kmem_cache_destroy(tcp_sack_info_cache);
25168 	kmem_cache_destroy(tcp_iphc_cache);
25169 
25170 	netstack_unregister(NS_TCP);
25171 	taskq_destroy(tcp_taskq);
25172 }
25173 
25174 /*
25175  * Shut down the TCP stack instance.
25176  */
25177 /* ARGSUSED */
25178 static void
25179 tcp_stack_shutdown(netstackid_t stackid, void *arg)
25180 {
25181 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
25182 
25183 	tcp_g_q_destroy(tcps);
25184 }
25185 
25186 /*
25187  * Free the TCP stack instance.
25188  */
25189 static void
25190 tcp_stack_fini(netstackid_t stackid, void *arg)
25191 {
25192 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
25193 	int i;
25194 
25195 	nd_free(&tcps->tcps_g_nd);
25196 	kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr));
25197 	tcps->tcps_params = NULL;
25198 	kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t));
25199 	tcps->tcps_wroff_xtra_param = NULL;
25200 	kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t));
25201 	tcps->tcps_mdt_head_param = NULL;
25202 	kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t));
25203 	tcps->tcps_mdt_tail_param = NULL;
25204 	kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t));
25205 	tcps->tcps_mdt_max_pbufs_param = NULL;
25206 
25207 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
25208 		ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL);
25209 		mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock);
25210 	}
25211 
25212 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
25213 		ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL);
25214 		mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock);
25215 	}
25216 
25217 	kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE);
25218 	tcps->tcps_bind_fanout = NULL;
25219 
25220 	kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE);
25221 	tcps->tcps_acceptor_fanout = NULL;
25222 
25223 	kmem_free(tcps->tcps_reserved_port, sizeof (tcp_rport_t) *
25224 	    TCP_RESERVED_PORTS_ARRAY_MAX_SIZE);
25225 	tcps->tcps_reserved_port = NULL;
25226 
25227 	mutex_destroy(&tcps->tcps_iss_key_lock);
25228 	rw_destroy(&tcps->tcps_hsp_lock);
25229 	mutex_destroy(&tcps->tcps_g_q_lock);
25230 	cv_destroy(&tcps->tcps_g_q_cv);
25231 	mutex_destroy(&tcps->tcps_epriv_port_lock);
25232 	rw_destroy(&tcps->tcps_reserved_port_lock);
25233 
25234 	ip_drop_unregister(&tcps->tcps_dropper);
25235 
25236 	tcp_kstat2_fini(stackid, tcps->tcps_kstat);
25237 	tcps->tcps_kstat = NULL;
25238 	bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics));
25239 
25240 	tcp_kstat_fini(stackid, tcps->tcps_mibkp);
25241 	tcps->tcps_mibkp = NULL;
25242 
25243 	kmem_free(tcps, sizeof (*tcps));
25244 }
25245 
25246 /*
25247  * Generate ISS, taking into account NDD changes may happen halfway through.
25248  * (If the iss is not zero, set it.)
25249  */
25250 
25251 static void
25252 tcp_iss_init(tcp_t *tcp)
25253 {
25254 	MD5_CTX context;
25255 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
25256 	uint32_t answer[4];
25257 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25258 
25259 	tcps->tcps_iss_incr_extra += (ISS_INCR >> 1);
25260 	tcp->tcp_iss = tcps->tcps_iss_incr_extra;
25261 	switch (tcps->tcps_strong_iss) {
25262 	case 2:
25263 		mutex_enter(&tcps->tcps_iss_key_lock);
25264 		context = tcps->tcps_iss_key;
25265 		mutex_exit(&tcps->tcps_iss_key_lock);
25266 		arg.ports = tcp->tcp_ports;
25267 		if (tcp->tcp_ipversion == IPV4_VERSION) {
25268 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
25269 			    &arg.src);
25270 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst,
25271 			    &arg.dst);
25272 		} else {
25273 			arg.src = tcp->tcp_ip6h->ip6_src;
25274 			arg.dst = tcp->tcp_ip6h->ip6_dst;
25275 		}
25276 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
25277 		MD5Final((uchar_t *)answer, &context);
25278 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
25279 		/*
25280 		 * Now that we've hashed into a unique per-connection sequence
25281 		 * space, add a random increment per strong_iss == 1.  So I
25282 		 * guess we'll have to...
25283 		 */
25284 		/* FALLTHRU */
25285 	case 1:
25286 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
25287 		break;
25288 	default:
25289 		tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
25290 		break;
25291 	}
25292 	tcp->tcp_valid_bits = TCP_ISS_VALID;
25293 	tcp->tcp_fss = tcp->tcp_iss - 1;
25294 	tcp->tcp_suna = tcp->tcp_iss;
25295 	tcp->tcp_snxt = tcp->tcp_iss + 1;
25296 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
25297 	tcp->tcp_csuna = tcp->tcp_snxt;
25298 }
25299 
25300 /*
25301  * Exported routine for extracting active tcp connection status.
25302  *
25303  * This is used by the Solaris Cluster Networking software to
25304  * gather a list of connections that need to be forwarded to
25305  * specific nodes in the cluster when configuration changes occur.
25306  *
25307  * The callback is invoked for each tcp_t structure. Returning
25308  * non-zero from the callback routine terminates the search.
25309  */
25310 int
25311 cl_tcp_walk_list(int (*cl_callback)(cl_tcp_info_t *, void *),
25312     void *arg)
25313 {
25314 	netstack_handle_t nh;
25315 	netstack_t *ns;
25316 	int ret = 0;
25317 
25318 	netstack_next_init(&nh);
25319 	while ((ns = netstack_next(&nh)) != NULL) {
25320 		ret = cl_tcp_walk_list_stack(cl_callback, arg,
25321 		    ns->netstack_tcp);
25322 		netstack_rele(ns);
25323 	}
25324 	netstack_next_fini(&nh);
25325 	return (ret);
25326 }
25327 
25328 static int
25329 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg,
25330     tcp_stack_t *tcps)
25331 {
25332 	tcp_t *tcp;
25333 	cl_tcp_info_t	cl_tcpi;
25334 	connf_t	*connfp;
25335 	conn_t	*connp;
25336 	int	i;
25337 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
25338 
25339 	ASSERT(callback != NULL);
25340 
25341 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
25342 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
25343 		connp = NULL;
25344 
25345 		while ((connp =
25346 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
25347 
25348 			tcp = connp->conn_tcp;
25349 			cl_tcpi.cl_tcpi_version = CL_TCPI_V1;
25350 			cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion;
25351 			cl_tcpi.cl_tcpi_state = tcp->tcp_state;
25352 			cl_tcpi.cl_tcpi_lport = tcp->tcp_lport;
25353 			cl_tcpi.cl_tcpi_fport = tcp->tcp_fport;
25354 			/*
25355 			 * The macros tcp_laddr and tcp_faddr give the IPv4
25356 			 * addresses. They are copied implicitly below as
25357 			 * mapped addresses.
25358 			 */
25359 			cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6;
25360 			if (tcp->tcp_ipversion == IPV4_VERSION) {
25361 				cl_tcpi.cl_tcpi_faddr =
25362 				    tcp->tcp_ipha->ipha_dst;
25363 			} else {
25364 				cl_tcpi.cl_tcpi_faddr_v6 =
25365 				    tcp->tcp_ip6h->ip6_dst;
25366 			}
25367 
25368 			/*
25369 			 * If the callback returns non-zero
25370 			 * we terminate the traversal.
25371 			 */
25372 			if ((*callback)(&cl_tcpi, arg) != 0) {
25373 				CONN_DEC_REF(tcp->tcp_connp);
25374 				return (1);
25375 			}
25376 		}
25377 	}
25378 
25379 	return (0);
25380 }
25381 
25382 /*
25383  * Macros used for accessing the different types of sockaddr
25384  * structures inside a tcp_ioc_abort_conn_t.
25385  */
25386 #define	TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local)
25387 #define	TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote)
25388 #define	TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr)
25389 #define	TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr)
25390 #define	TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port)
25391 #define	TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port)
25392 #define	TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local)
25393 #define	TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote)
25394 #define	TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr)
25395 #define	TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr)
25396 #define	TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port)
25397 #define	TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port)
25398 
25399 /*
25400  * Return the correct error code to mimic the behavior
25401  * of a connection reset.
25402  */
25403 #define	TCP_AC_GET_ERRCODE(state, err) {	\
25404 		switch ((state)) {		\
25405 		case TCPS_SYN_SENT:		\
25406 		case TCPS_SYN_RCVD:		\
25407 			(err) = ECONNREFUSED;	\
25408 			break;			\
25409 		case TCPS_ESTABLISHED:		\
25410 		case TCPS_FIN_WAIT_1:		\
25411 		case TCPS_FIN_WAIT_2:		\
25412 		case TCPS_CLOSE_WAIT:		\
25413 			(err) = ECONNRESET;	\
25414 			break;			\
25415 		case TCPS_CLOSING:		\
25416 		case TCPS_LAST_ACK:		\
25417 		case TCPS_TIME_WAIT:		\
25418 			(err) = 0;		\
25419 			break;			\
25420 		default:			\
25421 			(err) = ENXIO;		\
25422 		}				\
25423 	}
25424 
25425 /*
25426  * Check if a tcp structure matches the info in acp.
25427  */
25428 #define	TCP_AC_ADDR_MATCH(acp, tcp)					\
25429 	(((acp)->ac_local.ss_family == AF_INET) ?		\
25430 	((TCP_AC_V4LOCAL((acp)) == INADDR_ANY ||		\
25431 	TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) &&	\
25432 	(TCP_AC_V4REMOTE((acp)) == INADDR_ANY ||		\
25433 	TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) &&	\
25434 	(TCP_AC_V4LPORT((acp)) == 0 ||				\
25435 	TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) &&		\
25436 	(TCP_AC_V4RPORT((acp)) == 0 ||				\
25437 	TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) &&		\
25438 	(acp)->ac_start <= (tcp)->tcp_state &&	\
25439 	(acp)->ac_end >= (tcp)->tcp_state) :		\
25440 	((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) ||	\
25441 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)),		\
25442 	&(tcp)->tcp_ip_src_v6)) &&				\
25443 	(IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) ||	\
25444 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)),		\
25445 	&(tcp)->tcp_remote_v6)) &&				\
25446 	(TCP_AC_V6LPORT((acp)) == 0 ||				\
25447 	TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) &&		\
25448 	(TCP_AC_V6RPORT((acp)) == 0 ||				\
25449 	TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) &&		\
25450 	(acp)->ac_start <= (tcp)->tcp_state &&	\
25451 	(acp)->ac_end >= (tcp)->tcp_state))
25452 
25453 #define	TCP_AC_MATCH(acp, tcp)					\
25454 	(((acp)->ac_zoneid == ALL_ZONES ||			\
25455 	(acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ?	\
25456 	TCP_AC_ADDR_MATCH(acp, tcp) : 0)
25457 
25458 /*
25459  * Build a message containing a tcp_ioc_abort_conn_t structure
25460  * which is filled in with information from acp and tp.
25461  */
25462 static mblk_t *
25463 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp)
25464 {
25465 	mblk_t *mp;
25466 	tcp_ioc_abort_conn_t *tacp;
25467 
25468 	mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO);
25469 	if (mp == NULL)
25470 		return (NULL);
25471 
25472 	mp->b_datap->db_type = M_CTL;
25473 
25474 	*((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN;
25475 	tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr +
25476 		sizeof (uint32_t));
25477 
25478 	tacp->ac_start = acp->ac_start;
25479 	tacp->ac_end = acp->ac_end;
25480 	tacp->ac_zoneid = acp->ac_zoneid;
25481 
25482 	if (acp->ac_local.ss_family == AF_INET) {
25483 		tacp->ac_local.ss_family = AF_INET;
25484 		tacp->ac_remote.ss_family = AF_INET;
25485 		TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src;
25486 		TCP_AC_V4REMOTE(tacp) = tp->tcp_remote;
25487 		TCP_AC_V4LPORT(tacp) = tp->tcp_lport;
25488 		TCP_AC_V4RPORT(tacp) = tp->tcp_fport;
25489 	} else {
25490 		tacp->ac_local.ss_family = AF_INET6;
25491 		tacp->ac_remote.ss_family = AF_INET6;
25492 		TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6;
25493 		TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6;
25494 		TCP_AC_V6LPORT(tacp) = tp->tcp_lport;
25495 		TCP_AC_V6RPORT(tacp) = tp->tcp_fport;
25496 	}
25497 	mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp);
25498 	return (mp);
25499 }
25500 
25501 /*
25502  * Print a tcp_ioc_abort_conn_t structure.
25503  */
25504 static void
25505 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp)
25506 {
25507 	char lbuf[128];
25508 	char rbuf[128];
25509 	sa_family_t af;
25510 	in_port_t lport, rport;
25511 	ushort_t logflags;
25512 
25513 	af = acp->ac_local.ss_family;
25514 
25515 	if (af == AF_INET) {
25516 		(void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp),
25517 				lbuf, 128);
25518 		(void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp),
25519 				rbuf, 128);
25520 		lport = ntohs(TCP_AC_V4LPORT(acp));
25521 		rport = ntohs(TCP_AC_V4RPORT(acp));
25522 	} else {
25523 		(void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp),
25524 				lbuf, 128);
25525 		(void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp),
25526 				rbuf, 128);
25527 		lport = ntohs(TCP_AC_V6LPORT(acp));
25528 		rport = ntohs(TCP_AC_V6RPORT(acp));
25529 	}
25530 
25531 	logflags = SL_TRACE | SL_NOTE;
25532 	/*
25533 	 * Don't print this message to the console if the operation was done
25534 	 * to a non-global zone.
25535 	 */
25536 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
25537 		logflags |= SL_CONSOLE;
25538 	(void) strlog(TCP_MOD_ID, 0, 1, logflags,
25539 		"TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, "
25540 		"start = %d, end = %d\n", lbuf, lport, rbuf, rport,
25541 		acp->ac_start, acp->ac_end);
25542 }
25543 
25544 /*
25545  * Called inside tcp_rput when a message built using
25546  * tcp_ioctl_abort_build_msg is put into a queue.
25547  * Note that when we get here there is no wildcard in acp any more.
25548  */
25549 static void
25550 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp)
25551 {
25552 	tcp_ioc_abort_conn_t *acp;
25553 
25554 	acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t));
25555 	if (tcp->tcp_state <= acp->ac_end) {
25556 		/*
25557 		 * If we get here, we are already on the correct
25558 		 * squeue. This ioctl follows the following path
25559 		 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn
25560 		 * ->tcp_ioctl_abort->squeue_fill (if on a
25561 		 * different squeue)
25562 		 */
25563 		int errcode;
25564 
25565 		TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode);
25566 		(void) tcp_clean_death(tcp, errcode, 26);
25567 	}
25568 	freemsg(mp);
25569 }
25570 
25571 /*
25572  * Abort all matching connections on a hash chain.
25573  */
25574 static int
25575 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count,
25576     boolean_t exact, tcp_stack_t *tcps)
25577 {
25578 	int nmatch, err = 0;
25579 	tcp_t *tcp;
25580 	MBLKP mp, last, listhead = NULL;
25581 	conn_t	*tconnp;
25582 	connf_t	*connfp;
25583 	ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
25584 
25585 	connfp = &ipst->ips_ipcl_conn_fanout[index];
25586 
25587 startover:
25588 	nmatch = 0;
25589 
25590 	mutex_enter(&connfp->connf_lock);
25591 	for (tconnp = connfp->connf_head; tconnp != NULL;
25592 	    tconnp = tconnp->conn_next) {
25593 		tcp = tconnp->conn_tcp;
25594 		if (TCP_AC_MATCH(acp, tcp)) {
25595 			CONN_INC_REF(tcp->tcp_connp);
25596 			mp = tcp_ioctl_abort_build_msg(acp, tcp);
25597 			if (mp == NULL) {
25598 				err = ENOMEM;
25599 				CONN_DEC_REF(tcp->tcp_connp);
25600 				break;
25601 			}
25602 			mp->b_prev = (mblk_t *)tcp;
25603 
25604 			if (listhead == NULL) {
25605 				listhead = mp;
25606 				last = mp;
25607 			} else {
25608 				last->b_next = mp;
25609 				last = mp;
25610 			}
25611 			nmatch++;
25612 			if (exact)
25613 				break;
25614 		}
25615 
25616 		/* Avoid holding lock for too long. */
25617 		if (nmatch >= 500)
25618 			break;
25619 	}
25620 	mutex_exit(&connfp->connf_lock);
25621 
25622 	/* Pass mp into the correct tcp */
25623 	while ((mp = listhead) != NULL) {
25624 		listhead = listhead->b_next;
25625 		tcp = (tcp_t *)mp->b_prev;
25626 		mp->b_next = mp->b_prev = NULL;
25627 		squeue_fill(tcp->tcp_connp->conn_sqp, mp,
25628 		    tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET);
25629 	}
25630 
25631 	*count += nmatch;
25632 	if (nmatch >= 500 && err == 0)
25633 		goto startover;
25634 	return (err);
25635 }
25636 
25637 /*
25638  * Abort all connections that matches the attributes specified in acp.
25639  */
25640 static int
25641 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps)
25642 {
25643 	sa_family_t af;
25644 	uint32_t  ports;
25645 	uint16_t *pports;
25646 	int err = 0, count = 0;
25647 	boolean_t exact = B_FALSE; /* set when there is no wildcard */
25648 	int index = -1;
25649 	ushort_t logflags;
25650 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
25651 
25652 	af = acp->ac_local.ss_family;
25653 
25654 	if (af == AF_INET) {
25655 		if (TCP_AC_V4REMOTE(acp) != INADDR_ANY &&
25656 		    TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) {
25657 			pports = (uint16_t *)&ports;
25658 			pports[1] = TCP_AC_V4LPORT(acp);
25659 			pports[0] = TCP_AC_V4RPORT(acp);
25660 			exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY);
25661 		}
25662 	} else {
25663 		if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) &&
25664 		    TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) {
25665 			pports = (uint16_t *)&ports;
25666 			pports[1] = TCP_AC_V6LPORT(acp);
25667 			pports[0] = TCP_AC_V6RPORT(acp);
25668 			exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp));
25669 		}
25670 	}
25671 
25672 	/*
25673 	 * For cases where remote addr, local port, and remote port are non-
25674 	 * wildcards, tcp_ioctl_abort_bucket will only be called once.
25675 	 */
25676 	if (index != -1) {
25677 		err = tcp_ioctl_abort_bucket(acp, index,
25678 			    &count, exact, tcps);
25679 	} else {
25680 		/*
25681 		 * loop through all entries for wildcard case
25682 		 */
25683 		for (index = 0;
25684 		    index < ipst->ips_ipcl_conn_fanout_size;
25685 		    index++) {
25686 			err = tcp_ioctl_abort_bucket(acp, index,
25687 			    &count, exact, tcps);
25688 			if (err != 0)
25689 				break;
25690 		}
25691 	}
25692 
25693 	logflags = SL_TRACE | SL_NOTE;
25694 	/*
25695 	 * Don't print this message to the console if the operation was done
25696 	 * to a non-global zone.
25697 	 */
25698 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
25699 		logflags |= SL_CONSOLE;
25700 	(void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: "
25701 	    "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' '));
25702 	if (err == 0 && count == 0)
25703 		err = ENOENT;
25704 	return (err);
25705 }
25706 
25707 /*
25708  * Process the TCP_IOC_ABORT_CONN ioctl request.
25709  */
25710 static void
25711 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp)
25712 {
25713 	int	err;
25714 	IOCP    iocp;
25715 	MBLKP   mp1;
25716 	sa_family_t laf, raf;
25717 	tcp_ioc_abort_conn_t *acp;
25718 	zone_t		*zptr;
25719 	conn_t		*connp = Q_TO_CONN(q);
25720 	zoneid_t	zoneid = connp->conn_zoneid;
25721 	tcp_t		*tcp = connp->conn_tcp;
25722 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25723 
25724 	iocp = (IOCP)mp->b_rptr;
25725 
25726 	if ((mp1 = mp->b_cont) == NULL ||
25727 	    iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) {
25728 		err = EINVAL;
25729 		goto out;
25730 	}
25731 
25732 	/* check permissions */
25733 	if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
25734 		err = EPERM;
25735 		goto out;
25736 	}
25737 
25738 	if (mp1->b_cont != NULL) {
25739 		freemsg(mp1->b_cont);
25740 		mp1->b_cont = NULL;
25741 	}
25742 
25743 	acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr;
25744 	laf = acp->ac_local.ss_family;
25745 	raf = acp->ac_remote.ss_family;
25746 
25747 	/* check that a zone with the supplied zoneid exists */
25748 	if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) {
25749 		zptr = zone_find_by_id(zoneid);
25750 		if (zptr != NULL) {
25751 			zone_rele(zptr);
25752 		} else {
25753 			err = EINVAL;
25754 			goto out;
25755 		}
25756 	}
25757 
25758 	/*
25759 	 * For exclusive stacks we set the zoneid to zero
25760 	 * to make TCP operate as if in the global zone.
25761 	 */
25762 	if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID)
25763 		acp->ac_zoneid = GLOBAL_ZONEID;
25764 
25765 	if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT ||
25766 	    acp->ac_start > acp->ac_end || laf != raf ||
25767 	    (laf != AF_INET && laf != AF_INET6)) {
25768 		err = EINVAL;
25769 		goto out;
25770 	}
25771 
25772 	tcp_ioctl_abort_dump(acp);
25773 	err = tcp_ioctl_abort(acp, tcps);
25774 
25775 out:
25776 	if (mp1 != NULL) {
25777 		freemsg(mp1);
25778 		mp->b_cont = NULL;
25779 	}
25780 
25781 	if (err != 0)
25782 		miocnak(q, mp, 0, err);
25783 	else
25784 		miocack(q, mp, 0, 0);
25785 }
25786 
25787 /*
25788  * tcp_time_wait_processing() handles processing of incoming packets when
25789  * the tcp is in the TIME_WAIT state.
25790  * A TIME_WAIT tcp that has an associated open TCP stream is never put
25791  * on the time wait list.
25792  */
25793 void
25794 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq,
25795     uint32_t seg_ack, int seg_len, tcph_t *tcph)
25796 {
25797 	int32_t		bytes_acked;
25798 	int32_t		gap;
25799 	int32_t		rgap;
25800 	tcp_opt_t	tcpopt;
25801 	uint_t		flags;
25802 	uint32_t	new_swnd = 0;
25803 	conn_t		*connp;
25804 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25805 
25806 	BUMP_LOCAL(tcp->tcp_ibsegs);
25807 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
25808 
25809 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
25810 	new_swnd = BE16_TO_U16(tcph->th_win) <<
25811 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
25812 	if (tcp->tcp_snd_ts_ok) {
25813 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
25814 			tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25815 			    tcp->tcp_rnxt, TH_ACK);
25816 			goto done;
25817 		}
25818 	}
25819 	gap = seg_seq - tcp->tcp_rnxt;
25820 	rgap = tcp->tcp_rwnd - (gap + seg_len);
25821 	if (gap < 0) {
25822 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
25823 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
25824 		    (seg_len > -gap ? -gap : seg_len));
25825 		seg_len += gap;
25826 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
25827 			if (flags & TH_RST) {
25828 				goto done;
25829 			}
25830 			if ((flags & TH_FIN) && seg_len == -1) {
25831 				/*
25832 				 * When TCP receives a duplicate FIN in
25833 				 * TIME_WAIT state, restart the 2 MSL timer.
25834 				 * See page 73 in RFC 793. Make sure this TCP
25835 				 * is already on the TIME_WAIT list. If not,
25836 				 * just restart the timer.
25837 				 */
25838 				if (TCP_IS_DETACHED(tcp)) {
25839 					if (tcp_time_wait_remove(tcp, NULL) ==
25840 					    B_TRUE) {
25841 						tcp_time_wait_append(tcp);
25842 						TCP_DBGSTAT(tcps,
25843 						    tcp_rput_time_wait);
25844 					}
25845 				} else {
25846 					ASSERT(tcp != NULL);
25847 					TCP_TIMER_RESTART(tcp,
25848 					    tcps->tcps_time_wait_interval);
25849 				}
25850 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25851 				    tcp->tcp_rnxt, TH_ACK);
25852 				goto done;
25853 			}
25854 			flags |=  TH_ACK_NEEDED;
25855 			seg_len = 0;
25856 			goto process_ack;
25857 		}
25858 
25859 		/* Fix seg_seq, and chew the gap off the front. */
25860 		seg_seq = tcp->tcp_rnxt;
25861 	}
25862 
25863 	if ((flags & TH_SYN) && gap > 0 && rgap < 0) {
25864 		/*
25865 		 * Make sure that when we accept the connection, pick
25866 		 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the
25867 		 * old connection.
25868 		 *
25869 		 * The next ISS generated is equal to tcp_iss_incr_extra
25870 		 * + ISS_INCR/2 + other components depending on the
25871 		 * value of tcp_strong_iss.  We pre-calculate the new
25872 		 * ISS here and compare with tcp_snxt to determine if
25873 		 * we need to make adjustment to tcp_iss_incr_extra.
25874 		 *
25875 		 * The above calculation is ugly and is a
25876 		 * waste of CPU cycles...
25877 		 */
25878 		uint32_t new_iss = tcps->tcps_iss_incr_extra;
25879 		int32_t adj;
25880 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
25881 
25882 		switch (tcps->tcps_strong_iss) {
25883 		case 2: {
25884 			/* Add time and MD5 components. */
25885 			uint32_t answer[4];
25886 			struct {
25887 				uint32_t ports;
25888 				in6_addr_t src;
25889 				in6_addr_t dst;
25890 			} arg;
25891 			MD5_CTX context;
25892 
25893 			mutex_enter(&tcps->tcps_iss_key_lock);
25894 			context = tcps->tcps_iss_key;
25895 			mutex_exit(&tcps->tcps_iss_key_lock);
25896 			arg.ports = tcp->tcp_ports;
25897 			/* We use MAPPED addresses in tcp_iss_init */
25898 			arg.src = tcp->tcp_ip_src_v6;
25899 			if (tcp->tcp_ipversion == IPV4_VERSION) {
25900 				IN6_IPADDR_TO_V4MAPPED(
25901 					tcp->tcp_ipha->ipha_dst,
25902 					    &arg.dst);
25903 			} else {
25904 				arg.dst =
25905 				    tcp->tcp_ip6h->ip6_dst;
25906 			}
25907 			MD5Update(&context, (uchar_t *)&arg,
25908 			    sizeof (arg));
25909 			MD5Final((uchar_t *)answer, &context);
25910 			answer[0] ^= answer[1] ^ answer[2] ^ answer[3];
25911 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0];
25912 			break;
25913 		}
25914 		case 1:
25915 			/* Add time component and min random (i.e. 1). */
25916 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1;
25917 			break;
25918 		default:
25919 			/* Add only time component. */
25920 			new_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
25921 			break;
25922 		}
25923 		if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) {
25924 			/*
25925 			 * New ISS not guaranteed to be ISS_INCR/2
25926 			 * ahead of the current tcp_snxt, so add the
25927 			 * difference to tcp_iss_incr_extra.
25928 			 */
25929 			tcps->tcps_iss_incr_extra += adj;
25930 		}
25931 		/*
25932 		 * If tcp_clean_death() can not perform the task now,
25933 		 * drop the SYN packet and let the other side re-xmit.
25934 		 * Otherwise pass the SYN packet back in, since the
25935 		 * old tcp state has been cleaned up or freed.
25936 		 */
25937 		if (tcp_clean_death(tcp, 0, 27) == -1)
25938 			goto done;
25939 		/*
25940 		 * We will come back to tcp_rput_data
25941 		 * on the global queue. Packets destined
25942 		 * for the global queue will be checked
25943 		 * with global policy. But the policy for
25944 		 * this packet has already been checked as
25945 		 * this was destined for the detached
25946 		 * connection. We need to bypass policy
25947 		 * check this time by attaching a dummy
25948 		 * ipsec_in with ipsec_in_dont_check set.
25949 		 */
25950 		connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst);
25951 		if (connp != NULL) {
25952 			TCP_STAT(tcps, tcp_time_wait_syn_success);
25953 			tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp);
25954 			return;
25955 		}
25956 		goto done;
25957 	}
25958 
25959 	/*
25960 	 * rgap is the amount of stuff received out of window.  A negative
25961 	 * value is the amount out of window.
25962 	 */
25963 	if (rgap < 0) {
25964 		BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
25965 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap);
25966 		/* Fix seg_len and make sure there is something left. */
25967 		seg_len += rgap;
25968 		if (seg_len <= 0) {
25969 			if (flags & TH_RST) {
25970 				goto done;
25971 			}
25972 			flags |=  TH_ACK_NEEDED;
25973 			seg_len = 0;
25974 			goto process_ack;
25975 		}
25976 	}
25977 	/*
25978 	 * Check whether we can update tcp_ts_recent.  This test is
25979 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
25980 	 * Extensions for High Performance: An Update", Internet Draft.
25981 	 */
25982 	if (tcp->tcp_snd_ts_ok &&
25983 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
25984 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
25985 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
25986 		tcp->tcp_last_rcv_lbolt = lbolt64;
25987 	}
25988 
25989 	if (seg_seq != tcp->tcp_rnxt && seg_len > 0) {
25990 		/* Always ack out of order packets */
25991 		flags |= TH_ACK_NEEDED;
25992 		seg_len = 0;
25993 	} else if (seg_len > 0) {
25994 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
25995 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
25996 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
25997 	}
25998 	if (flags & TH_RST) {
25999 		(void) tcp_clean_death(tcp, 0, 28);
26000 		goto done;
26001 	}
26002 	if (flags & TH_SYN) {
26003 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
26004 		    TH_RST|TH_ACK);
26005 		/*
26006 		 * Do not delete the TCP structure if it is in
26007 		 * TIME_WAIT state.  Refer to RFC 1122, 4.2.2.13.
26008 		 */
26009 		goto done;
26010 	}
26011 process_ack:
26012 	if (flags & TH_ACK) {
26013 		bytes_acked = (int)(seg_ack - tcp->tcp_suna);
26014 		if (bytes_acked <= 0) {
26015 			if (bytes_acked == 0 && seg_len == 0 &&
26016 			    new_swnd == tcp->tcp_swnd)
26017 				BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
26018 		} else {
26019 			/* Acks something not sent */
26020 			flags |= TH_ACK_NEEDED;
26021 		}
26022 	}
26023 	if (flags & TH_ACK_NEEDED) {
26024 		/*
26025 		 * Time to send an ack for some reason.
26026 		 */
26027 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
26028 		    tcp->tcp_rnxt, TH_ACK);
26029 	}
26030 done:
26031 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
26032 		DB_CKSUMSTART(mp) = 0;
26033 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
26034 		TCP_STAT(tcps, tcp_time_wait_syn_fail);
26035 	}
26036 	freemsg(mp);
26037 }
26038 
26039 /*
26040  * Allocate a T_SVR4_OPTMGMT_REQ.
26041  * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so
26042  * that tcp_rput_other can drop the acks.
26043  */
26044 static mblk_t *
26045 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen)
26046 {
26047 	mblk_t *mp;
26048 	struct T_optmgmt_req *tor;
26049 	struct opthdr *oh;
26050 	uint_t size;
26051 	char *optptr;
26052 
26053 	size = sizeof (*tor) + sizeof (*oh) + optlen;
26054 	mp = allocb(size, BPRI_MED);
26055 	if (mp == NULL)
26056 		return (NULL);
26057 
26058 	mp->b_wptr += size;
26059 	mp->b_datap->db_type = M_PROTO;
26060 	tor = (struct T_optmgmt_req *)mp->b_rptr;
26061 	tor->PRIM_type = T_SVR4_OPTMGMT_REQ;
26062 	tor->MGMT_flags = T_NEGOTIATE;
26063 	tor->OPT_length = sizeof (*oh) + optlen;
26064 	tor->OPT_offset = (t_scalar_t)sizeof (*tor);
26065 
26066 	oh = (struct opthdr *)&tor[1];
26067 	oh->level = level;
26068 	oh->name = cmd;
26069 	oh->len = optlen;
26070 	if (optlen != 0) {
26071 		optptr = (char *)&oh[1];
26072 		bcopy(opt, optptr, optlen);
26073 	}
26074 	return (mp);
26075 }
26076 
26077 /*
26078  * TCP Timers Implementation.
26079  */
26080 timeout_id_t
26081 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim)
26082 {
26083 	mblk_t *mp;
26084 	tcp_timer_t *tcpt;
26085 	tcp_t *tcp = connp->conn_tcp;
26086 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26087 
26088 	ASSERT(connp->conn_sqp != NULL);
26089 
26090 	TCP_DBGSTAT(tcps, tcp_timeout_calls);
26091 
26092 	if (tcp->tcp_timercache == NULL) {
26093 		mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC);
26094 	} else {
26095 		TCP_DBGSTAT(tcps, tcp_timeout_cached_alloc);
26096 		mp = tcp->tcp_timercache;
26097 		tcp->tcp_timercache = mp->b_next;
26098 		mp->b_next = NULL;
26099 		ASSERT(mp->b_wptr == NULL);
26100 	}
26101 
26102 	CONN_INC_REF(connp);
26103 	tcpt = (tcp_timer_t *)mp->b_rptr;
26104 	tcpt->connp = connp;
26105 	tcpt->tcpt_proc = f;
26106 	tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim);
26107 	return ((timeout_id_t)mp);
26108 }
26109 
26110 static void
26111 tcp_timer_callback(void *arg)
26112 {
26113 	mblk_t *mp = (mblk_t *)arg;
26114 	tcp_timer_t *tcpt;
26115 	conn_t	*connp;
26116 
26117 	tcpt = (tcp_timer_t *)mp->b_rptr;
26118 	connp = tcpt->connp;
26119 	squeue_fill(connp->conn_sqp, mp,
26120 	    tcp_timer_handler, connp, SQTAG_TCP_TIMER);
26121 }
26122 
26123 static void
26124 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2)
26125 {
26126 	tcp_timer_t *tcpt;
26127 	conn_t *connp = (conn_t *)arg;
26128 	tcp_t *tcp = connp->conn_tcp;
26129 
26130 	tcpt = (tcp_timer_t *)mp->b_rptr;
26131 	ASSERT(connp == tcpt->connp);
26132 	ASSERT((squeue_t *)arg2 == connp->conn_sqp);
26133 
26134 	/*
26135 	 * If the TCP has reached the closed state, don't proceed any
26136 	 * further. This TCP logically does not exist on the system.
26137 	 * tcpt_proc could for example access queues, that have already
26138 	 * been qprocoff'ed off. Also see comments at the start of tcp_input
26139 	 */
26140 	if (tcp->tcp_state != TCPS_CLOSED) {
26141 		(*tcpt->tcpt_proc)(connp);
26142 	} else {
26143 		tcp->tcp_timer_tid = 0;
26144 	}
26145 	tcp_timer_free(connp->conn_tcp, mp);
26146 }
26147 
26148 /*
26149  * There is potential race with untimeout and the handler firing at the same
26150  * time. The mblock may be freed by the handler while we are trying to use
26151  * it. But since both should execute on the same squeue, this race should not
26152  * occur.
26153  */
26154 clock_t
26155 tcp_timeout_cancel(conn_t *connp, timeout_id_t id)
26156 {
26157 	mblk_t	*mp = (mblk_t *)id;
26158 	tcp_timer_t *tcpt;
26159 	clock_t delta;
26160 	tcp_stack_t	*tcps = connp->conn_tcp->tcp_tcps;
26161 
26162 	TCP_DBGSTAT(tcps, tcp_timeout_cancel_reqs);
26163 
26164 	if (mp == NULL)
26165 		return (-1);
26166 
26167 	tcpt = (tcp_timer_t *)mp->b_rptr;
26168 	ASSERT(tcpt->connp == connp);
26169 
26170 	delta = untimeout(tcpt->tcpt_tid);
26171 
26172 	if (delta >= 0) {
26173 		TCP_DBGSTAT(tcps, tcp_timeout_canceled);
26174 		tcp_timer_free(connp->conn_tcp, mp);
26175 		CONN_DEC_REF(connp);
26176 	}
26177 
26178 	return (delta);
26179 }
26180 
26181 /*
26182  * Allocate space for the timer event. The allocation looks like mblk, but it is
26183  * not a proper mblk. To avoid confusion we set b_wptr to NULL.
26184  *
26185  * Dealing with failures: If we can't allocate from the timer cache we try
26186  * allocating from dblock caches using allocb_tryhard(). In this case b_wptr
26187  * points to b_rptr.
26188  * If we can't allocate anything using allocb_tryhard(), we perform a last
26189  * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and
26190  * save the actual allocation size in b_datap.
26191  */
26192 mblk_t *
26193 tcp_timermp_alloc(int kmflags)
26194 {
26195 	mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache,
26196 	    kmflags & ~KM_PANIC);
26197 
26198 	if (mp != NULL) {
26199 		mp->b_next = mp->b_prev = NULL;
26200 		mp->b_rptr = (uchar_t *)(&mp[1]);
26201 		mp->b_wptr = NULL;
26202 		mp->b_datap = NULL;
26203 		mp->b_queue = NULL;
26204 		mp->b_cont = NULL;
26205 	} else if (kmflags & KM_PANIC) {
26206 		/*
26207 		 * Failed to allocate memory for the timer. Try allocating from
26208 		 * dblock caches.
26209 		 */
26210 		/* ipclassifier calls this from a constructor - hence no tcps */
26211 		TCP_G_STAT(tcp_timermp_allocfail);
26212 		mp = allocb_tryhard(sizeof (tcp_timer_t));
26213 		if (mp == NULL) {
26214 			size_t size = 0;
26215 			/*
26216 			 * Memory is really low. Try tryhard allocation.
26217 			 *
26218 			 * ipclassifier calls this from a constructor -
26219 			 * hence no tcps
26220 			 */
26221 			TCP_G_STAT(tcp_timermp_allocdblfail);
26222 			mp = kmem_alloc_tryhard(sizeof (mblk_t) +
26223 			    sizeof (tcp_timer_t), &size, kmflags);
26224 			mp->b_rptr = (uchar_t *)(&mp[1]);
26225 			mp->b_next = mp->b_prev = NULL;
26226 			mp->b_wptr = (uchar_t *)-1;
26227 			mp->b_datap = (dblk_t *)size;
26228 			mp->b_queue = NULL;
26229 			mp->b_cont = NULL;
26230 		}
26231 		ASSERT(mp->b_wptr != NULL);
26232 	}
26233 	/* ipclassifier calls this from a constructor - hence no tcps */
26234 	TCP_G_DBGSTAT(tcp_timermp_alloced);
26235 
26236 	return (mp);
26237 }
26238 
26239 /*
26240  * Free per-tcp timer cache.
26241  * It can only contain entries from tcp_timercache.
26242  */
26243 void
26244 tcp_timermp_free(tcp_t *tcp)
26245 {
26246 	mblk_t *mp;
26247 
26248 	while ((mp = tcp->tcp_timercache) != NULL) {
26249 		ASSERT(mp->b_wptr == NULL);
26250 		tcp->tcp_timercache = tcp->tcp_timercache->b_next;
26251 		kmem_cache_free(tcp_timercache, mp);
26252 	}
26253 }
26254 
26255 /*
26256  * Free timer event. Put it on the per-tcp timer cache if there is not too many
26257  * events there already (currently at most two events are cached).
26258  * If the event is not allocated from the timer cache, free it right away.
26259  */
26260 static void
26261 tcp_timer_free(tcp_t *tcp, mblk_t *mp)
26262 {
26263 	mblk_t *mp1 = tcp->tcp_timercache;
26264 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26265 
26266 	if (mp->b_wptr != NULL) {
26267 		/*
26268 		 * This allocation is not from a timer cache, free it right
26269 		 * away.
26270 		 */
26271 		if (mp->b_wptr != (uchar_t *)-1)
26272 			freeb(mp);
26273 		else
26274 			kmem_free(mp, (size_t)mp->b_datap);
26275 	} else if (mp1 == NULL || mp1->b_next == NULL) {
26276 		/* Cache this timer block for future allocations */
26277 		mp->b_rptr = (uchar_t *)(&mp[1]);
26278 		mp->b_next = mp1;
26279 		tcp->tcp_timercache = mp;
26280 	} else {
26281 		kmem_cache_free(tcp_timercache, mp);
26282 		TCP_DBGSTAT(tcps, tcp_timermp_freed);
26283 	}
26284 }
26285 
26286 /*
26287  * End of TCP Timers implementation.
26288  */
26289 
26290 /*
26291  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
26292  * on the specified backing STREAMS q. Note, the caller may make the
26293  * decision to call based on the tcp_t.tcp_flow_stopped value which
26294  * when check outside the q's lock is only an advisory check ...
26295  */
26296 
26297 void
26298 tcp_setqfull(tcp_t *tcp)
26299 {
26300 	queue_t *q = tcp->tcp_wq;
26301 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26302 
26303 	if (!(q->q_flag & QFULL)) {
26304 		mutex_enter(QLOCK(q));
26305 		if (!(q->q_flag & QFULL)) {
26306 			/* still need to set QFULL */
26307 			q->q_flag |= QFULL;
26308 			tcp->tcp_flow_stopped = B_TRUE;
26309 			mutex_exit(QLOCK(q));
26310 			TCP_STAT(tcps, tcp_flwctl_on);
26311 		} else {
26312 			mutex_exit(QLOCK(q));
26313 		}
26314 	}
26315 }
26316 
26317 void
26318 tcp_clrqfull(tcp_t *tcp)
26319 {
26320 	queue_t *q = tcp->tcp_wq;
26321 
26322 	if (q->q_flag & QFULL) {
26323 		mutex_enter(QLOCK(q));
26324 		if (q->q_flag & QFULL) {
26325 			q->q_flag &= ~QFULL;
26326 			tcp->tcp_flow_stopped = B_FALSE;
26327 			mutex_exit(QLOCK(q));
26328 			if (q->q_flag & QWANTW)
26329 				qbackenable(q, 0);
26330 		} else {
26331 			mutex_exit(QLOCK(q));
26332 		}
26333 	}
26334 }
26335 
26336 
26337 /*
26338  * kstats related to squeues i.e. not per IP instance
26339  */
26340 static void *
26341 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp)
26342 {
26343 	kstat_t *ksp;
26344 
26345 	tcp_g_stat_t template = {
26346 		{ "tcp_timermp_alloced",	KSTAT_DATA_UINT64 },
26347 		{ "tcp_timermp_allocfail",	KSTAT_DATA_UINT64 },
26348 		{ "tcp_timermp_allocdblfail",	KSTAT_DATA_UINT64 },
26349 		{ "tcp_freelist_cleanup",	KSTAT_DATA_UINT64 },
26350 	};
26351 
26352 	ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net",
26353 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
26354 	    KSTAT_FLAG_VIRTUAL);
26355 
26356 	if (ksp == NULL)
26357 		return (NULL);
26358 
26359 	bcopy(&template, tcp_g_statp, sizeof (template));
26360 	ksp->ks_data = (void *)tcp_g_statp;
26361 
26362 	kstat_install(ksp);
26363 	return (ksp);
26364 }
26365 
26366 static void
26367 tcp_g_kstat_fini(kstat_t *ksp)
26368 {
26369 	if (ksp != NULL) {
26370 		kstat_delete(ksp);
26371 	}
26372 }
26373 
26374 
26375 static void *
26376 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp)
26377 {
26378 	kstat_t *ksp;
26379 
26380 	tcp_stat_t template = {
26381 		{ "tcp_time_wait",		KSTAT_DATA_UINT64 },
26382 		{ "tcp_time_wait_syn",		KSTAT_DATA_UINT64 },
26383 		{ "tcp_time_wait_success",	KSTAT_DATA_UINT64 },
26384 		{ "tcp_time_wait_fail",		KSTAT_DATA_UINT64 },
26385 		{ "tcp_reinput_syn",		KSTAT_DATA_UINT64 },
26386 		{ "tcp_ip_output",		KSTAT_DATA_UINT64 },
26387 		{ "tcp_detach_non_time_wait",	KSTAT_DATA_UINT64 },
26388 		{ "tcp_detach_time_wait",	KSTAT_DATA_UINT64 },
26389 		{ "tcp_time_wait_reap",		KSTAT_DATA_UINT64 },
26390 		{ "tcp_clean_death_nondetached",	KSTAT_DATA_UINT64 },
26391 		{ "tcp_reinit_calls",		KSTAT_DATA_UINT64 },
26392 		{ "tcp_eager_err1",		KSTAT_DATA_UINT64 },
26393 		{ "tcp_eager_err2",		KSTAT_DATA_UINT64 },
26394 		{ "tcp_eager_blowoff_calls",	KSTAT_DATA_UINT64 },
26395 		{ "tcp_eager_blowoff_q",	KSTAT_DATA_UINT64 },
26396 		{ "tcp_eager_blowoff_q0",	KSTAT_DATA_UINT64 },
26397 		{ "tcp_not_hard_bound",		KSTAT_DATA_UINT64 },
26398 		{ "tcp_no_listener",		KSTAT_DATA_UINT64 },
26399 		{ "tcp_found_eager",		KSTAT_DATA_UINT64 },
26400 		{ "tcp_wrong_queue",		KSTAT_DATA_UINT64 },
26401 		{ "tcp_found_eager_binding1",	KSTAT_DATA_UINT64 },
26402 		{ "tcp_found_eager_bound1",	KSTAT_DATA_UINT64 },
26403 		{ "tcp_eager_has_listener1",	KSTAT_DATA_UINT64 },
26404 		{ "tcp_open_alloc",		KSTAT_DATA_UINT64 },
26405 		{ "tcp_open_detached_alloc",	KSTAT_DATA_UINT64 },
26406 		{ "tcp_rput_time_wait",		KSTAT_DATA_UINT64 },
26407 		{ "tcp_listendrop",		KSTAT_DATA_UINT64 },
26408 		{ "tcp_listendropq0",		KSTAT_DATA_UINT64 },
26409 		{ "tcp_wrong_rq",		KSTAT_DATA_UINT64 },
26410 		{ "tcp_rsrv_calls",		KSTAT_DATA_UINT64 },
26411 		{ "tcp_eagerfree2",		KSTAT_DATA_UINT64 },
26412 		{ "tcp_eagerfree3",		KSTAT_DATA_UINT64 },
26413 		{ "tcp_eagerfree4",		KSTAT_DATA_UINT64 },
26414 		{ "tcp_eagerfree5",		KSTAT_DATA_UINT64 },
26415 		{ "tcp_timewait_syn_fail",	KSTAT_DATA_UINT64 },
26416 		{ "tcp_listen_badflags",	KSTAT_DATA_UINT64 },
26417 		{ "tcp_timeout_calls",		KSTAT_DATA_UINT64 },
26418 		{ "tcp_timeout_cached_alloc",	KSTAT_DATA_UINT64 },
26419 		{ "tcp_timeout_cancel_reqs",	KSTAT_DATA_UINT64 },
26420 		{ "tcp_timeout_canceled",	KSTAT_DATA_UINT64 },
26421 		{ "tcp_timermp_freed",		KSTAT_DATA_UINT64 },
26422 		{ "tcp_push_timer_cnt",		KSTAT_DATA_UINT64 },
26423 		{ "tcp_ack_timer_cnt",		KSTAT_DATA_UINT64 },
26424 		{ "tcp_ire_null1",		KSTAT_DATA_UINT64 },
26425 		{ "tcp_ire_null",		KSTAT_DATA_UINT64 },
26426 		{ "tcp_ip_send",		KSTAT_DATA_UINT64 },
26427 		{ "tcp_ip_ire_send",		KSTAT_DATA_UINT64 },
26428 		{ "tcp_wsrv_called",		KSTAT_DATA_UINT64 },
26429 		{ "tcp_flwctl_on",		KSTAT_DATA_UINT64 },
26430 		{ "tcp_timer_fire_early",	KSTAT_DATA_UINT64 },
26431 		{ "tcp_timer_fire_miss",	KSTAT_DATA_UINT64 },
26432 		{ "tcp_rput_v6_error",		KSTAT_DATA_UINT64 },
26433 		{ "tcp_out_sw_cksum",		KSTAT_DATA_UINT64 },
26434 		{ "tcp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
26435 		{ "tcp_zcopy_on",		KSTAT_DATA_UINT64 },
26436 		{ "tcp_zcopy_off",		KSTAT_DATA_UINT64 },
26437 		{ "tcp_zcopy_backoff",		KSTAT_DATA_UINT64 },
26438 		{ "tcp_zcopy_disable",		KSTAT_DATA_UINT64 },
26439 		{ "tcp_mdt_pkt_out",		KSTAT_DATA_UINT64 },
26440 		{ "tcp_mdt_pkt_out_v4",		KSTAT_DATA_UINT64 },
26441 		{ "tcp_mdt_pkt_out_v6",		KSTAT_DATA_UINT64 },
26442 		{ "tcp_mdt_discarded",		KSTAT_DATA_UINT64 },
26443 		{ "tcp_mdt_conn_halted1",	KSTAT_DATA_UINT64 },
26444 		{ "tcp_mdt_conn_halted2",	KSTAT_DATA_UINT64 },
26445 		{ "tcp_mdt_conn_halted3",	KSTAT_DATA_UINT64 },
26446 		{ "tcp_mdt_conn_resumed1",	KSTAT_DATA_UINT64 },
26447 		{ "tcp_mdt_conn_resumed2",	KSTAT_DATA_UINT64 },
26448 		{ "tcp_mdt_legacy_small",	KSTAT_DATA_UINT64 },
26449 		{ "tcp_mdt_legacy_all",		KSTAT_DATA_UINT64 },
26450 		{ "tcp_mdt_legacy_ret",		KSTAT_DATA_UINT64 },
26451 		{ "tcp_mdt_allocfail",		KSTAT_DATA_UINT64 },
26452 		{ "tcp_mdt_addpdescfail",	KSTAT_DATA_UINT64 },
26453 		{ "tcp_mdt_allocd",		KSTAT_DATA_UINT64 },
26454 		{ "tcp_mdt_linked",		KSTAT_DATA_UINT64 },
26455 		{ "tcp_fusion_flowctl",		KSTAT_DATA_UINT64 },
26456 		{ "tcp_fusion_backenabled",	KSTAT_DATA_UINT64 },
26457 		{ "tcp_fusion_urg",		KSTAT_DATA_UINT64 },
26458 		{ "tcp_fusion_putnext",		KSTAT_DATA_UINT64 },
26459 		{ "tcp_fusion_unfusable",	KSTAT_DATA_UINT64 },
26460 		{ "tcp_fusion_aborted",		KSTAT_DATA_UINT64 },
26461 		{ "tcp_fusion_unqualified",	KSTAT_DATA_UINT64 },
26462 		{ "tcp_fusion_rrw_busy",	KSTAT_DATA_UINT64 },
26463 		{ "tcp_fusion_rrw_msgcnt",	KSTAT_DATA_UINT64 },
26464 		{ "tcp_fusion_rrw_plugged",	KSTAT_DATA_UINT64 },
26465 		{ "tcp_in_ack_unsent_drop",	KSTAT_DATA_UINT64 },
26466 		{ "tcp_sock_fallback",		KSTAT_DATA_UINT64 },
26467 	};
26468 
26469 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net",
26470 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
26471 	    KSTAT_FLAG_VIRTUAL, stackid);
26472 
26473 	if (ksp == NULL)
26474 		return (NULL);
26475 
26476 	bcopy(&template, tcps_statisticsp, sizeof (template));
26477 	ksp->ks_data = (void *)tcps_statisticsp;
26478 	ksp->ks_private = (void *)(uintptr_t)stackid;
26479 
26480 	kstat_install(ksp);
26481 	return (ksp);
26482 }
26483 
26484 static void
26485 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
26486 {
26487 	if (ksp != NULL) {
26488 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
26489 		kstat_delete_netstack(ksp, stackid);
26490 	}
26491 }
26492 
26493 /*
26494  * TCP Kstats implementation
26495  */
26496 static void *
26497 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps)
26498 {
26499 	kstat_t	*ksp;
26500 
26501 	tcp_named_kstat_t template = {
26502 		{ "rtoAlgorithm",	KSTAT_DATA_INT32, 0 },
26503 		{ "rtoMin",		KSTAT_DATA_INT32, 0 },
26504 		{ "rtoMax",		KSTAT_DATA_INT32, 0 },
26505 		{ "maxConn",		KSTAT_DATA_INT32, 0 },
26506 		{ "activeOpens",	KSTAT_DATA_UINT32, 0 },
26507 		{ "passiveOpens",	KSTAT_DATA_UINT32, 0 },
26508 		{ "attemptFails",	KSTAT_DATA_UINT32, 0 },
26509 		{ "estabResets",	KSTAT_DATA_UINT32, 0 },
26510 		{ "currEstab",		KSTAT_DATA_UINT32, 0 },
26511 		{ "inSegs",		KSTAT_DATA_UINT64, 0 },
26512 		{ "outSegs",		KSTAT_DATA_UINT64, 0 },
26513 		{ "retransSegs",	KSTAT_DATA_UINT32, 0 },
26514 		{ "connTableSize",	KSTAT_DATA_INT32, 0 },
26515 		{ "outRsts",		KSTAT_DATA_UINT32, 0 },
26516 		{ "outDataSegs",	KSTAT_DATA_UINT32, 0 },
26517 		{ "outDataBytes",	KSTAT_DATA_UINT32, 0 },
26518 		{ "retransBytes",	KSTAT_DATA_UINT32, 0 },
26519 		{ "outAck",		KSTAT_DATA_UINT32, 0 },
26520 		{ "outAckDelayed",	KSTAT_DATA_UINT32, 0 },
26521 		{ "outUrg",		KSTAT_DATA_UINT32, 0 },
26522 		{ "outWinUpdate",	KSTAT_DATA_UINT32, 0 },
26523 		{ "outWinProbe",	KSTAT_DATA_UINT32, 0 },
26524 		{ "outControl",		KSTAT_DATA_UINT32, 0 },
26525 		{ "outFastRetrans",	KSTAT_DATA_UINT32, 0 },
26526 		{ "inAckSegs",		KSTAT_DATA_UINT32, 0 },
26527 		{ "inAckBytes",		KSTAT_DATA_UINT32, 0 },
26528 		{ "inDupAck",		KSTAT_DATA_UINT32, 0 },
26529 		{ "inAckUnsent",	KSTAT_DATA_UINT32, 0 },
26530 		{ "inDataInorderSegs",	KSTAT_DATA_UINT32, 0 },
26531 		{ "inDataInorderBytes",	KSTAT_DATA_UINT32, 0 },
26532 		{ "inDataUnorderSegs",	KSTAT_DATA_UINT32, 0 },
26533 		{ "inDataUnorderBytes",	KSTAT_DATA_UINT32, 0 },
26534 		{ "inDataDupSegs",	KSTAT_DATA_UINT32, 0 },
26535 		{ "inDataDupBytes",	KSTAT_DATA_UINT32, 0 },
26536 		{ "inDataPartDupSegs",	KSTAT_DATA_UINT32, 0 },
26537 		{ "inDataPartDupBytes",	KSTAT_DATA_UINT32, 0 },
26538 		{ "inDataPastWinSegs",	KSTAT_DATA_UINT32, 0 },
26539 		{ "inDataPastWinBytes",	KSTAT_DATA_UINT32, 0 },
26540 		{ "inWinProbe",		KSTAT_DATA_UINT32, 0 },
26541 		{ "inWinUpdate",	KSTAT_DATA_UINT32, 0 },
26542 		{ "inClosed",		KSTAT_DATA_UINT32, 0 },
26543 		{ "rttUpdate",		KSTAT_DATA_UINT32, 0 },
26544 		{ "rttNoUpdate",	KSTAT_DATA_UINT32, 0 },
26545 		{ "timRetrans",		KSTAT_DATA_UINT32, 0 },
26546 		{ "timRetransDrop",	KSTAT_DATA_UINT32, 0 },
26547 		{ "timKeepalive",	KSTAT_DATA_UINT32, 0 },
26548 		{ "timKeepaliveProbe",	KSTAT_DATA_UINT32, 0 },
26549 		{ "timKeepaliveDrop",	KSTAT_DATA_UINT32, 0 },
26550 		{ "listenDrop",		KSTAT_DATA_UINT32, 0 },
26551 		{ "listenDropQ0",	KSTAT_DATA_UINT32, 0 },
26552 		{ "halfOpenDrop",	KSTAT_DATA_UINT32, 0 },
26553 		{ "outSackRetransSegs",	KSTAT_DATA_UINT32, 0 },
26554 		{ "connTableSize6",	KSTAT_DATA_INT32, 0 }
26555 	};
26556 
26557 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2",
26558 	    KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid);
26559 
26560 	if (ksp == NULL)
26561 		return (NULL);
26562 
26563 	template.rtoAlgorithm.value.ui32 = 4;
26564 	template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min;
26565 	template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max;
26566 	template.maxConn.value.i32 = -1;
26567 
26568 	bcopy(&template, ksp->ks_data, sizeof (template));
26569 	ksp->ks_update = tcp_kstat_update;
26570 	ksp->ks_private = (void *)(uintptr_t)stackid;
26571 
26572 	kstat_install(ksp);
26573 	return (ksp);
26574 }
26575 
26576 static void
26577 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
26578 {
26579 	if (ksp != NULL) {
26580 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
26581 		kstat_delete_netstack(ksp, stackid);
26582 	}
26583 }
26584 
26585 static int
26586 tcp_kstat_update(kstat_t *kp, int rw)
26587 {
26588 	tcp_named_kstat_t *tcpkp;
26589 	tcp_t		*tcp;
26590 	connf_t		*connfp;
26591 	conn_t		*connp;
26592 	int 		i;
26593 	netstackid_t	stackid = (netstackid_t)(uintptr_t)kp->ks_private;
26594 	netstack_t	*ns;
26595 	tcp_stack_t	*tcps;
26596 	ip_stack_t	*ipst;
26597 
26598 	if ((kp == NULL) || (kp->ks_data == NULL))
26599 		return (EIO);
26600 
26601 	if (rw == KSTAT_WRITE)
26602 		return (EACCES);
26603 
26604 	ns = netstack_find_by_stackid(stackid);
26605 	if (ns == NULL)
26606 		return (-1);
26607 	tcps = ns->netstack_tcp;
26608 	if (tcps == NULL) {
26609 		netstack_rele(ns);
26610 		return (-1);
26611 	}
26612 	tcpkp = (tcp_named_kstat_t *)kp->ks_data;
26613 
26614 	tcpkp->currEstab.value.ui32 = 0;
26615 
26616 	ipst = ns->netstack_ip;
26617 
26618 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
26619 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
26620 		connp = NULL;
26621 		while ((connp =
26622 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
26623 			tcp = connp->conn_tcp;
26624 			switch (tcp_snmp_state(tcp)) {
26625 			case MIB2_TCP_established:
26626 			case MIB2_TCP_closeWait:
26627 				tcpkp->currEstab.value.ui32++;
26628 				break;
26629 			}
26630 		}
26631 	}
26632 
26633 	tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens;
26634 	tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens;
26635 	tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails;
26636 	tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets;
26637 	tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs;
26638 	tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs;
26639 	tcpkp->retransSegs.value.ui32 =	tcps->tcps_mib.tcpRetransSegs;
26640 	tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize;
26641 	tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts;
26642 	tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs;
26643 	tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes;
26644 	tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes;
26645 	tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck;
26646 	tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed;
26647 	tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg;
26648 	tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate;
26649 	tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe;
26650 	tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl;
26651 	tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans;
26652 	tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs;
26653 	tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes;
26654 	tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck;
26655 	tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent;
26656 	tcpkp->inDataInorderSegs.value.ui32 =
26657 	    tcps->tcps_mib.tcpInDataInorderSegs;
26658 	tcpkp->inDataInorderBytes.value.ui32 =
26659 	    tcps->tcps_mib.tcpInDataInorderBytes;
26660 	tcpkp->inDataUnorderSegs.value.ui32 =
26661 	    tcps->tcps_mib.tcpInDataUnorderSegs;
26662 	tcpkp->inDataUnorderBytes.value.ui32 =
26663 	    tcps->tcps_mib.tcpInDataUnorderBytes;
26664 	tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs;
26665 	tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes;
26666 	tcpkp->inDataPartDupSegs.value.ui32 =
26667 	    tcps->tcps_mib.tcpInDataPartDupSegs;
26668 	tcpkp->inDataPartDupBytes.value.ui32 =
26669 	    tcps->tcps_mib.tcpInDataPartDupBytes;
26670 	tcpkp->inDataPastWinSegs.value.ui32 =
26671 	    tcps->tcps_mib.tcpInDataPastWinSegs;
26672 	tcpkp->inDataPastWinBytes.value.ui32 =
26673 	    tcps->tcps_mib.tcpInDataPastWinBytes;
26674 	tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe;
26675 	tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate;
26676 	tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed;
26677 	tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate;
26678 	tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate;
26679 	tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans;
26680 	tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop;
26681 	tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive;
26682 	tcpkp->timKeepaliveProbe.value.ui32 =
26683 	    tcps->tcps_mib.tcpTimKeepaliveProbe;
26684 	tcpkp->timKeepaliveDrop.value.ui32 =
26685 	    tcps->tcps_mib.tcpTimKeepaliveDrop;
26686 	tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop;
26687 	tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0;
26688 	tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop;
26689 	tcpkp->outSackRetransSegs.value.ui32 =
26690 	    tcps->tcps_mib.tcpOutSackRetransSegs;
26691 	tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize;
26692 
26693 	netstack_rele(ns);
26694 	return (0);
26695 }
26696 
26697 void
26698 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp)
26699 {
26700 	uint16_t	hdr_len;
26701 	ipha_t		*ipha;
26702 	uint8_t		*nexthdrp;
26703 	tcph_t		*tcph;
26704 	tcp_stack_t	*tcps = connp->conn_tcp->tcp_tcps;
26705 
26706 	/* Already has an eager */
26707 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
26708 		TCP_STAT(tcps, tcp_reinput_syn);
26709 		squeue_enter(connp->conn_sqp, mp, connp->conn_recv,
26710 		    connp, SQTAG_TCP_REINPUT_EAGER);
26711 		return;
26712 	}
26713 
26714 	switch (IPH_HDR_VERSION(mp->b_rptr)) {
26715 	case IPV4_VERSION:
26716 		ipha = (ipha_t *)mp->b_rptr;
26717 		hdr_len = IPH_HDR_LENGTH(ipha);
26718 		break;
26719 	case IPV6_VERSION:
26720 		if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr,
26721 		    &hdr_len, &nexthdrp)) {
26722 			CONN_DEC_REF(connp);
26723 			freemsg(mp);
26724 			return;
26725 		}
26726 		break;
26727 	}
26728 
26729 	tcph = (tcph_t *)&mp->b_rptr[hdr_len];
26730 	if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) {
26731 		mp->b_datap->db_struioflag |= STRUIO_EAGER;
26732 		DB_CKSUMSTART(mp) = (intptr_t)sqp;
26733 	}
26734 
26735 	squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp,
26736 	    SQTAG_TCP_REINPUT);
26737 }
26738 
26739 static squeue_func_t
26740 tcp_squeue_switch(int val)
26741 {
26742 	squeue_func_t rval = squeue_fill;
26743 
26744 	switch (val) {
26745 	case 1:
26746 		rval = squeue_enter_nodrain;
26747 		break;
26748 	case 2:
26749 		rval = squeue_enter;
26750 		break;
26751 	default:
26752 		break;
26753 	}
26754 	return (rval);
26755 }
26756 
26757 /*
26758  * This is called once for each squeue - globally for all stack
26759  * instances.
26760  */
26761 static void
26762 tcp_squeue_add(squeue_t *sqp)
26763 {
26764 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
26765 		sizeof (tcp_squeue_priv_t), KM_SLEEP);
26766 
26767 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
26768 	tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector,
26769 	    sqp, TCP_TIME_WAIT_DELAY);
26770 	if (tcp_free_list_max_cnt == 0) {
26771 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
26772 			max_ncpus : boot_max_ncpus);
26773 
26774 		/*
26775 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
26776 		 */
26777 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
26778 			(tcp_ncpus * sizeof (tcp_t) * 100);
26779 	}
26780 	tcp_time_wait->tcp_free_list_cnt = 0;
26781 }
26782