1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2013, 2017 by Delphix. All rights reserved. 26 * Copyright 2014, OmniTI Computer Consulting, Inc. All rights reserved. 27 * Copyright 2020 Joyent, Inc. 28 */ 29 /* Copyright (c) 1990 Mentat Inc. */ 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/strsun.h> 34 #include <sys/strsubr.h> 35 #include <sys/stropts.h> 36 #include <sys/strlog.h> 37 #define _SUN_TPI_VERSION 2 38 #include <sys/tihdr.h> 39 #include <sys/timod.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/suntpi.h> 43 #include <sys/xti_inet.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/sdt.h> 47 #include <sys/vtrace.h> 48 #include <sys/kmem.h> 49 #include <sys/ethernet.h> 50 #include <sys/cpuvar.h> 51 #include <sys/dlpi.h> 52 #include <sys/pattr.h> 53 #include <sys/policy.h> 54 #include <sys/priv.h> 55 #include <sys/zone.h> 56 #include <sys/sunldi.h> 57 58 #include <sys/errno.h> 59 #include <sys/signal.h> 60 #include <sys/socket.h> 61 #include <sys/socketvar.h> 62 #include <sys/sockio.h> 63 #include <sys/isa_defs.h> 64 #include <sys/md5.h> 65 #include <sys/random.h> 66 #include <sys/uio.h> 67 #include <sys/systm.h> 68 #include <netinet/in.h> 69 #include <netinet/tcp.h> 70 #include <netinet/ip6.h> 71 #include <netinet/icmp6.h> 72 #include <net/if.h> 73 #include <net/route.h> 74 #include <inet/ipsec_impl.h> 75 76 #include <inet/common.h> 77 #include <inet/cc.h> 78 #include <inet/ip.h> 79 #include <inet/ip_impl.h> 80 #include <inet/ip6.h> 81 #include <inet/ip_ndp.h> 82 #include <inet/proto_set.h> 83 #include <inet/mib2.h> 84 #include <inet/optcom.h> 85 #include <inet/snmpcom.h> 86 #include <inet/kstatcom.h> 87 #include <inet/tcp.h> 88 #include <inet/tcp_impl.h> 89 #include <inet/tcp_cluster.h> 90 #include <inet/udp_impl.h> 91 #include <net/pfkeyv2.h> 92 #include <inet/ipdrop.h> 93 94 #include <inet/ipclassifier.h> 95 #include <inet/ip_ire.h> 96 #include <inet/ip_ftable.h> 97 #include <inet/ip_if.h> 98 #include <inet/ipp_common.h> 99 #include <inet/ip_rts.h> 100 #include <inet/ip_netinfo.h> 101 #include <sys/squeue_impl.h> 102 #include <sys/squeue.h> 103 #include <sys/tsol/label.h> 104 #include <sys/tsol/tnet.h> 105 #include <rpc/pmap_prot.h> 106 #include <sys/callo.h> 107 108 /* 109 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 110 * 111 * (Read the detailed design doc in PSARC case directory) 112 * 113 * The entire tcp state is contained in tcp_t and conn_t structure 114 * which are allocated in tandem using ipcl_conn_create() and passing 115 * IPCL_TCPCONN as a flag. We use 'conn_ref' and 'conn_lock' to protect 116 * the references on the tcp_t. The tcp_t structure is never compressed 117 * and packets always land on the correct TCP perimeter from the time 118 * eager is created till the time tcp_t dies (as such the old mentat 119 * TCP global queue is not used for detached state and no IPSEC checking 120 * is required). The global queue is still allocated to send out resets 121 * for connection which have no listeners and IP directly calls 122 * tcp_xmit_listeners_reset() which does any policy check. 123 * 124 * Protection and Synchronisation mechanism: 125 * 126 * The tcp data structure does not use any kind of lock for protecting 127 * its state but instead uses 'squeues' for mutual exclusion from various 128 * read and write side threads. To access a tcp member, the thread should 129 * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS, 130 * or SQ_NODRAIN). Since the squeues allow a direct function call, caller 131 * can pass any tcp function having prototype of edesc_t as argument 132 * (different from traditional STREAMs model where packets come in only 133 * designated entry points). The list of functions that can be directly 134 * called via squeue are listed before the usual function prototype. 135 * 136 * Referencing: 137 * 138 * TCP is MT-Hot and we use a reference based scheme to make sure that the 139 * tcp structure doesn't disappear when its needed. When the application 140 * creates an outgoing connection or accepts an incoming connection, we 141 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 142 * The IP reference is just a symbolic reference since ip_tcpclose() 143 * looks at tcp structure after tcp_close_output() returns which could 144 * have dropped the last TCP reference. So as long as the connection is 145 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 146 * conn_t. The classifier puts its own reference when the connection is 147 * inserted in listen or connected hash. Anytime a thread needs to enter 148 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 149 * on write side or by doing a classify on read side and then puts a 150 * reference on the conn before doing squeue_enter/tryenter/fill. For 151 * read side, the classifier itself puts the reference under fanout lock 152 * to make sure that tcp can't disappear before it gets processed. The 153 * squeue will drop this reference automatically so the called function 154 * doesn't have to do a DEC_REF. 155 * 156 * Opening a new connection: 157 * 158 * The outgoing connection open is pretty simple. tcp_open() does the 159 * work in creating the conn/tcp structure and initializing it. The 160 * squeue assignment is done based on the CPU the application 161 * is running on. So for outbound connections, processing is always done 162 * on application CPU which might be different from the incoming CPU 163 * being interrupted by the NIC. An optimal way would be to figure out 164 * the NIC <-> CPU binding at listen time, and assign the outgoing 165 * connection to the squeue attached to the CPU that will be interrupted 166 * for incoming packets (we know the NIC based on the bind IP address). 167 * This might seem like a problem if more data is going out but the 168 * fact is that in most cases the transmit is ACK driven transmit where 169 * the outgoing data normally sits on TCP's xmit queue waiting to be 170 * transmitted. 171 * 172 * Accepting a connection: 173 * 174 * This is a more interesting case because of various races involved in 175 * establishing a eager in its own perimeter. Read the meta comment on 176 * top of tcp_input_listener(). But briefly, the squeue is picked by 177 * ip_fanout based on the ring or the sender (if loopback). 178 * 179 * Closing a connection: 180 * 181 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 182 * via squeue to do the close and mark the tcp as detached if the connection 183 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 184 * reference but tcp_close() drop IP's reference always. So if tcp was 185 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 186 * and 1 because it is in classifier's connected hash. This is the condition 187 * we use to determine that its OK to clean up the tcp outside of squeue 188 * when time wait expires (check the ref under fanout and conn_lock and 189 * if it is 2, remove it from fanout hash and kill it). 190 * 191 * Although close just drops the necessary references and marks the 192 * tcp_detached state, tcp_close needs to know the tcp_detached has been 193 * set (under squeue) before letting the STREAM go away (because a 194 * inbound packet might attempt to go up the STREAM while the close 195 * has happened and tcp_detached is not set). So a special lock and 196 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 197 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 198 * tcp_detached. 199 * 200 * Special provisions and fast paths: 201 * 202 * We make special provisions for sockfs by marking tcp_issocket 203 * whenever we have only sockfs on top of TCP. This allows us to skip 204 * putting the tcp in acceptor hash since a sockfs listener can never 205 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 206 * since eager has already been allocated and the accept now happens 207 * on acceptor STREAM. There is a big blob of comment on top of 208 * tcp_input_listener explaining the new accept. When socket is POP'd, 209 * sockfs sends us an ioctl to mark the fact and we go back to old 210 * behaviour. Once tcp_issocket is unset, its never set for the 211 * life of that connection. 212 * 213 * IPsec notes : 214 * 215 * Since a packet is always executed on the correct TCP perimeter 216 * all IPsec processing is defered to IP including checking new 217 * connections and setting IPSEC policies for new connection. The 218 * only exception is tcp_xmit_listeners_reset() which is called 219 * directly from IP and needs to policy check to see if TH_RST 220 * can be sent out. 221 */ 222 223 /* 224 * Values for squeue switch: 225 * 1: SQ_NODRAIN 226 * 2: SQ_PROCESS 227 * 3: SQ_FILL 228 */ 229 int tcp_squeue_wput = 2; /* /etc/systems */ 230 int tcp_squeue_flag; 231 232 /* 233 * To prevent memory hog, limit the number of entries in tcp_free_list 234 * to 1% of available memory / number of cpus 235 */ 236 uint_t tcp_free_list_max_cnt = 0; 237 238 #define TIDUSZ 4096 /* transport interface data unit size */ 239 240 /* 241 * Size of acceptor hash list. It has to be a power of 2 for hashing. 242 */ 243 #define TCP_ACCEPTOR_FANOUT_SIZE 512 244 245 #ifdef _ILP32 246 #define TCP_ACCEPTOR_HASH(accid) \ 247 (((uint_t)(accid) >> 8) & (TCP_ACCEPTOR_FANOUT_SIZE - 1)) 248 #else 249 #define TCP_ACCEPTOR_HASH(accid) \ 250 ((uint_t)(accid) & (TCP_ACCEPTOR_FANOUT_SIZE - 1)) 251 #endif /* _ILP32 */ 252 253 /* 254 * Minimum number of connections which can be created per listener. Used 255 * when the listener connection count is in effect. 256 */ 257 static uint32_t tcp_min_conn_listener = 2; 258 259 uint32_t tcp_early_abort = 30; 260 261 /* TCP Timer control structure */ 262 typedef struct tcpt_s { 263 pfv_t tcpt_pfv; /* The routine we are to call */ 264 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 265 } tcpt_t; 266 267 /* 268 * Functions called directly via squeue having a prototype of edesc_t. 269 */ 270 void tcp_input_data(void *arg, mblk_t *mp, void *arg2, 271 ip_recv_attr_t *ira); 272 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, 273 ip_recv_attr_t *dummy); 274 275 276 /* Prototype for TCP functions */ 277 static void tcp_random_init(void); 278 int tcp_random(void); 279 static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, 280 in_port_t dstport, uint_t srcid); 281 static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, 282 in_port_t dstport, uint32_t flowinfo, 283 uint_t srcid, uint32_t scope_id); 284 static void tcp_iss_init(tcp_t *tcp); 285 static void tcp_reinit(tcp_t *tcp); 286 static void tcp_reinit_values(tcp_t *tcp); 287 288 static int tcp_wsrv(queue_t *q); 289 static void tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa); 290 static void tcp_update_zcopy(tcp_t *tcp); 291 static void tcp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t, 292 ixa_notify_arg_t); 293 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 294 static void tcp_stack_fini(netstackid_t stackid, void *arg); 295 296 static int tcp_squeue_switch(int); 297 298 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 299 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 300 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 301 302 static void tcp_squeue_add(squeue_t *); 303 304 struct module_info tcp_rinfo = { 305 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 306 }; 307 308 static struct module_info tcp_winfo = { 309 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 310 }; 311 312 /* 313 * Entry points for TCP as a device. The normal case which supports 314 * the TCP functionality. 315 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 316 */ 317 struct qinit tcp_rinitv4 = { 318 NULL, tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo 319 }; 320 321 struct qinit tcp_rinitv6 = { 322 NULL, tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo 323 }; 324 325 struct qinit tcp_winit = { 326 tcp_wput, tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 327 }; 328 329 /* Initial entry point for TCP in socket mode. */ 330 struct qinit tcp_sock_winit = { 331 tcp_wput_sock, tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 332 }; 333 334 /* TCP entry point during fallback */ 335 struct qinit tcp_fallback_sock_winit = { 336 tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo 337 }; 338 339 /* 340 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 341 * an accept. Avoid allocating data structures since eager has already 342 * been created. 343 */ 344 struct qinit tcp_acceptor_rinit = { 345 NULL, tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo 346 }; 347 348 struct qinit tcp_acceptor_winit = { 349 tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo 350 }; 351 352 /* For AF_INET aka /dev/tcp */ 353 struct streamtab tcpinfov4 = { 354 &tcp_rinitv4, &tcp_winit 355 }; 356 357 /* For AF_INET6 aka /dev/tcp6 */ 358 struct streamtab tcpinfov6 = { 359 &tcp_rinitv6, &tcp_winit 360 }; 361 362 /* 363 * Following assumes TPI alignment requirements stay along 32 bit 364 * boundaries 365 */ 366 #define ROUNDUP32(x) \ 367 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 368 369 /* Template for response to info request. */ 370 struct T_info_ack tcp_g_t_info_ack = { 371 T_INFO_ACK, /* PRIM_type */ 372 0, /* TSDU_size */ 373 T_INFINITE, /* ETSDU_size */ 374 T_INVALID, /* CDATA_size */ 375 T_INVALID, /* DDATA_size */ 376 sizeof (sin_t), /* ADDR_size */ 377 0, /* OPT_size - not initialized here */ 378 TIDUSZ, /* TIDU_size */ 379 T_COTS_ORD, /* SERV_type */ 380 TCPS_IDLE, /* CURRENT_state */ 381 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 382 }; 383 384 struct T_info_ack tcp_g_t_info_ack_v6 = { 385 T_INFO_ACK, /* PRIM_type */ 386 0, /* TSDU_size */ 387 T_INFINITE, /* ETSDU_size */ 388 T_INVALID, /* CDATA_size */ 389 T_INVALID, /* DDATA_size */ 390 sizeof (sin6_t), /* ADDR_size */ 391 0, /* OPT_size - not initialized here */ 392 TIDUSZ, /* TIDU_size */ 393 T_COTS_ORD, /* SERV_type */ 394 TCPS_IDLE, /* CURRENT_state */ 395 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 396 }; 397 398 /* 399 * TCP tunables related declarations. Definitions are in tcp_tunables.c 400 */ 401 extern mod_prop_info_t tcp_propinfo_tbl[]; 402 extern int tcp_propinfo_count; 403 404 #define IS_VMLOANED_MBLK(mp) \ 405 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 406 407 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 408 409 /* 410 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 411 * tunable settable via NDD. Otherwise, the per-connection behavior is 412 * determined dynamically during tcp_set_destination(), which is the default. 413 */ 414 boolean_t tcp_static_maxpsz = B_FALSE; 415 416 /* 417 * If the receive buffer size is changed, this function is called to update 418 * the upper socket layer on the new delayed receive wake up threshold. 419 */ 420 static void 421 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh) 422 { 423 uint32_t default_threshold = SOCKET_RECVHIWATER >> 3; 424 425 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 426 conn_t *connp = tcp->tcp_connp; 427 struct sock_proto_props sopp; 428 429 /* 430 * only increase rcvthresh upto default_threshold 431 */ 432 if (new_rcvthresh > default_threshold) 433 new_rcvthresh = default_threshold; 434 435 sopp.sopp_flags = SOCKOPT_RCVTHRESH; 436 sopp.sopp_rcvthresh = new_rcvthresh; 437 438 (*connp->conn_upcalls->su_set_proto_props) 439 (connp->conn_upper_handle, &sopp); 440 } 441 } 442 443 /* 444 * Figure out the value of window scale opton. Note that the rwnd is 445 * ASSUMED to be rounded up to the nearest MSS before the calculation. 446 * We cannot find the scale value and then do a round up of tcp_rwnd 447 * because the scale value may not be correct after that. 448 * 449 * Set the compiler flag to make this function inline. 450 */ 451 void 452 tcp_set_ws_value(tcp_t *tcp) 453 { 454 int i; 455 uint32_t rwnd = tcp->tcp_rwnd; 456 457 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 458 i++, rwnd >>= 1) 459 ; 460 tcp->tcp_rcv_ws = i; 461 } 462 463 /* 464 * Remove cached/latched IPsec references. 465 */ 466 void 467 tcp_ipsec_cleanup(tcp_t *tcp) 468 { 469 conn_t *connp = tcp->tcp_connp; 470 471 ASSERT(connp->conn_flags & IPCL_TCPCONN); 472 473 if (connp->conn_latch != NULL) { 474 IPLATCH_REFRELE(connp->conn_latch); 475 connp->conn_latch = NULL; 476 } 477 if (connp->conn_latch_in_policy != NULL) { 478 IPPOL_REFRELE(connp->conn_latch_in_policy); 479 connp->conn_latch_in_policy = NULL; 480 } 481 if (connp->conn_latch_in_action != NULL) { 482 IPACT_REFRELE(connp->conn_latch_in_action); 483 connp->conn_latch_in_action = NULL; 484 } 485 if (connp->conn_policy != NULL) { 486 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 487 connp->conn_policy = NULL; 488 } 489 } 490 491 /* 492 * Cleaup before placing on free list. 493 * Disassociate from the netstack/tcp_stack_t since the freelist 494 * is per squeue and not per netstack. 495 */ 496 void 497 tcp_cleanup(tcp_t *tcp) 498 { 499 mblk_t *mp; 500 conn_t *connp = tcp->tcp_connp; 501 tcp_stack_t *tcps = tcp->tcp_tcps; 502 netstack_t *ns = tcps->tcps_netstack; 503 mblk_t *tcp_rsrv_mp; 504 505 tcp_bind_hash_remove(tcp); 506 507 /* Cleanup that which needs the netstack first */ 508 tcp_ipsec_cleanup(tcp); 509 ixa_cleanup(connp->conn_ixa); 510 511 if (connp->conn_ht_iphc != NULL) { 512 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 513 connp->conn_ht_iphc = NULL; 514 connp->conn_ht_iphc_allocated = 0; 515 connp->conn_ht_iphc_len = 0; 516 connp->conn_ht_ulp = NULL; 517 connp->conn_ht_ulp_len = 0; 518 tcp->tcp_ipha = NULL; 519 tcp->tcp_ip6h = NULL; 520 tcp->tcp_tcpha = NULL; 521 } 522 523 /* We clear any IP_OPTIONS and extension headers */ 524 ip_pkt_free(&connp->conn_xmit_ipp); 525 526 tcp_free(tcp); 527 528 /* 529 * Since we will bzero the entire structure, we need to 530 * remove it and reinsert it in global hash list. We 531 * know the walkers can't get to this conn because we 532 * had set CONDEMNED flag earlier and checked reference 533 * under conn_lock so walker won't pick it and when we 534 * go the ipcl_globalhash_remove() below, no walker 535 * can get to it. 536 */ 537 ipcl_globalhash_remove(connp); 538 539 /* Save some state */ 540 mp = tcp->tcp_timercache; 541 542 tcp_rsrv_mp = tcp->tcp_rsrv_mp; 543 544 if (connp->conn_cred != NULL) { 545 crfree(connp->conn_cred); 546 connp->conn_cred = NULL; 547 } 548 ipcl_conn_cleanup(connp); 549 connp->conn_flags = IPCL_TCPCONN; 550 551 /* 552 * Now it is safe to decrement the reference counts. 553 * This might be the last reference on the netstack 554 * in which case it will cause the freeing of the IP Instance. 555 */ 556 connp->conn_netstack = NULL; 557 connp->conn_ixa->ixa_ipst = NULL; 558 netstack_rele(ns); 559 ASSERT(tcps != NULL); 560 tcp->tcp_tcps = NULL; 561 562 bzero(tcp, sizeof (tcp_t)); 563 564 /* restore the state */ 565 tcp->tcp_timercache = mp; 566 567 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 568 569 tcp->tcp_connp = connp; 570 571 ASSERT(connp->conn_tcp == tcp); 572 ASSERT(connp->conn_flags & IPCL_TCPCONN); 573 connp->conn_state_flags = CONN_INCIPIENT; 574 ASSERT(connp->conn_proto == IPPROTO_TCP); 575 ASSERT(connp->conn_ref == 1); 576 } 577 578 /* 579 * Adapt to the information, such as rtt and rtt_sd, provided from the 580 * DCE and IRE maintained by IP. 581 * 582 * Checks for multicast and broadcast destination address. 583 * Returns zero if ok; an errno on failure. 584 * 585 * Note that the MSS calculation here is based on the info given in 586 * the DCE and IRE. We do not do any calculation based on TCP options. They 587 * will be handled in tcp_input_data() when TCP knows which options to use. 588 * 589 * Note on how TCP gets its parameters for a connection. 590 * 591 * When a tcp_t structure is allocated, it gets all the default parameters. 592 * In tcp_set_destination(), it gets those metric parameters, like rtt, rtt_sd, 593 * spipe, rpipe, ... from the route metrics. Route metric overrides the 594 * default. 595 * 596 * An incoming SYN with a multicast or broadcast destination address is dropped 597 * in ip_fanout_v4/v6. 598 * 599 * An incoming SYN with a multicast or broadcast source address is always 600 * dropped in tcp_set_destination, since IPDF_ALLOW_MCBC is not set in 601 * conn_connect. 602 * The same logic in tcp_set_destination also serves to 603 * reject an attempt to connect to a broadcast or multicast (destination) 604 * address. 605 */ 606 int 607 tcp_set_destination(tcp_t *tcp) 608 { 609 uint32_t mss_max; 610 uint32_t mss; 611 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 612 conn_t *connp = tcp->tcp_connp; 613 tcp_stack_t *tcps = tcp->tcp_tcps; 614 iulp_t uinfo; 615 int error; 616 uint32_t flags; 617 618 flags = IPDF_LSO | IPDF_ZCOPY; 619 /* 620 * Make sure we have a dce for the destination to avoid dce_ident 621 * contention for connected sockets. 622 */ 623 flags |= IPDF_UNIQUE_DCE; 624 625 if (!tcps->tcps_ignore_path_mtu) 626 connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY; 627 628 /* Use conn_lock to satify ASSERT; tcp is already serialized */ 629 mutex_enter(&connp->conn_lock); 630 error = conn_connect(connp, &uinfo, flags); 631 mutex_exit(&connp->conn_lock); 632 if (error != 0) 633 return (error); 634 635 error = tcp_build_hdrs(tcp); 636 if (error != 0) 637 return (error); 638 639 tcp->tcp_localnet = uinfo.iulp_localnet; 640 641 if (uinfo.iulp_rtt != 0) { 642 tcp->tcp_rtt_sa = MSEC2NSEC(uinfo.iulp_rtt); 643 tcp->tcp_rtt_sd = MSEC2NSEC(uinfo.iulp_rtt_sd); 644 tcp->tcp_rto = tcp_calculate_rto(tcp, tcps, 0); 645 } 646 if (uinfo.iulp_ssthresh != 0) 647 tcp->tcp_cwnd_ssthresh = uinfo.iulp_ssthresh; 648 else 649 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 650 if (uinfo.iulp_spipe > 0) { 651 connp->conn_sndbuf = MIN(uinfo.iulp_spipe, 652 tcps->tcps_max_buf); 653 if (tcps->tcps_snd_lowat_fraction != 0) { 654 connp->conn_sndlowat = connp->conn_sndbuf / 655 tcps->tcps_snd_lowat_fraction; 656 } 657 (void) tcp_maxpsz_set(tcp, B_TRUE); 658 } 659 /* 660 * Note that up till now, acceptor always inherits receive 661 * window from the listener. But if there is a metrics 662 * associated with a host, we should use that instead of 663 * inheriting it from listener. Thus we need to pass this 664 * info back to the caller. 665 */ 666 if (uinfo.iulp_rpipe > 0) { 667 tcp->tcp_rwnd = MIN(uinfo.iulp_rpipe, 668 tcps->tcps_max_buf); 669 } 670 671 if (uinfo.iulp_rtomax > 0) { 672 tcp->tcp_second_timer_threshold = 673 uinfo.iulp_rtomax; 674 } 675 676 /* 677 * Use the metric option settings, iulp_tstamp_ok and 678 * iulp_wscale_ok, only for active open. What this means 679 * is that if the other side uses timestamp or window 680 * scale option, TCP will also use those options. That 681 * is for passive open. If the application sets a 682 * large window, window scale is enabled regardless of 683 * the value in iulp_wscale_ok. This is the behavior 684 * since 2.6. So we keep it. 685 * The only case left in passive open processing is the 686 * check for SACK. 687 * For ECN, it should probably be like SACK. But the 688 * current value is binary, so we treat it like the other 689 * cases. The metric only controls active open.For passive 690 * open, the ndd param, tcp_ecn_permitted, controls the 691 * behavior. 692 */ 693 if (!tcp_detached) { 694 /* 695 * The if check means that the following can only 696 * be turned on by the metrics only IRE, but not off. 697 */ 698 if (uinfo.iulp_tstamp_ok) 699 tcp->tcp_snd_ts_ok = B_TRUE; 700 if (uinfo.iulp_wscale_ok) 701 tcp->tcp_snd_ws_ok = B_TRUE; 702 if (uinfo.iulp_sack == 2) 703 tcp->tcp_snd_sack_ok = B_TRUE; 704 if (uinfo.iulp_ecn_ok) 705 tcp->tcp_ecn_ok = B_TRUE; 706 } else { 707 /* 708 * Passive open. 709 * 710 * As above, the if check means that SACK can only be 711 * turned on by the metric only IRE. 712 */ 713 if (uinfo.iulp_sack > 0) { 714 tcp->tcp_snd_sack_ok = B_TRUE; 715 } 716 } 717 718 /* 719 * XXX Note that currently, iulp_mtu can be as small as 68 720 * because of PMTUd. So tcp_mss may go to negative if combined 721 * length of all those options exceeds 28 bytes. But because 722 * of the tcp_mss_min check below, we may not have a problem if 723 * tcp_mss_min is of a reasonable value. The default is 1 so 724 * the negative problem still exists. And the check defeats PMTUd. 725 * In fact, if PMTUd finds that the MSS should be smaller than 726 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 727 * value. 728 * 729 * We do not deal with that now. All those problems related to 730 * PMTUd will be fixed later. 731 */ 732 ASSERT(uinfo.iulp_mtu != 0); 733 mss = tcp->tcp_initial_pmtu = uinfo.iulp_mtu; 734 735 /* Sanity check for MSS value. */ 736 if (connp->conn_ipversion == IPV4_VERSION) 737 mss_max = tcps->tcps_mss_max_ipv4; 738 else 739 mss_max = tcps->tcps_mss_max_ipv6; 740 741 if (tcp->tcp_ipsec_overhead == 0) 742 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 743 744 mss -= tcp->tcp_ipsec_overhead; 745 746 if (mss < tcps->tcps_mss_min) 747 mss = tcps->tcps_mss_min; 748 if (mss > mss_max) 749 mss = mss_max; 750 751 /* Note that this is the maximum MSS, excluding all options. */ 752 tcp->tcp_mss = mss; 753 754 /* 755 * Update the tcp connection with LSO capability. 756 */ 757 tcp_update_lso(tcp, connp->conn_ixa); 758 759 /* 760 * Initialize the ISS here now that we have the full connection ID. 761 * The RFC 1948 method of initial sequence number generation requires 762 * knowledge of the full connection ID before setting the ISS. 763 */ 764 tcp_iss_init(tcp); 765 766 tcp->tcp_loopback = (uinfo.iulp_loopback | uinfo.iulp_local); 767 768 /* 769 * Make sure that conn is not marked incipient 770 * for incoming connections. A blind 771 * removal of incipient flag is cheaper than 772 * check and removal. 773 */ 774 mutex_enter(&connp->conn_lock); 775 connp->conn_state_flags &= ~CONN_INCIPIENT; 776 mutex_exit(&connp->conn_lock); 777 return (0); 778 } 779 780 /* 781 * tcp_clean_death / tcp_close_detached must not be called more than once 782 * on a tcp. Thus every function that potentially calls tcp_clean_death 783 * must check for the tcp state before calling tcp_clean_death. 784 * Eg. tcp_input_data, tcp_eager_kill, tcp_clean_death_wrapper, 785 * tcp_timer_handler, all check for the tcp state. 786 */ 787 /* ARGSUSED */ 788 void 789 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2, 790 ip_recv_attr_t *dummy) 791 { 792 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 793 794 freemsg(mp); 795 if (tcp->tcp_state > TCPS_BOUND) 796 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT); 797 } 798 799 /* 800 * We are dying for some reason. Try to do it gracefully. (May be called 801 * as writer.) 802 * 803 * Return -1 if the structure was not cleaned up (if the cleanup had to be 804 * done by a service procedure). 805 * TBD - Should the return value distinguish between the tcp_t being 806 * freed and it being reinitialized? 807 */ 808 int 809 tcp_clean_death(tcp_t *tcp, int err) 810 { 811 mblk_t *mp; 812 queue_t *q; 813 conn_t *connp = tcp->tcp_connp; 814 tcp_stack_t *tcps = tcp->tcp_tcps; 815 816 if (tcp->tcp_fused) 817 tcp_unfuse(tcp); 818 819 if (tcp->tcp_linger_tid != 0 && 820 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 821 tcp_stop_lingering(tcp); 822 } 823 824 ASSERT(tcp != NULL); 825 ASSERT((connp->conn_family == AF_INET && 826 connp->conn_ipversion == IPV4_VERSION) || 827 (connp->conn_family == AF_INET6 && 828 (connp->conn_ipversion == IPV4_VERSION || 829 connp->conn_ipversion == IPV6_VERSION))); 830 831 if (TCP_IS_DETACHED(tcp)) { 832 if (tcp->tcp_hard_binding) { 833 /* 834 * Its an eager that we are dealing with. We close the 835 * eager but in case a conn_ind has already gone to the 836 * listener, let tcp_accept_finish() send a discon_ind 837 * to the listener and drop the last reference. If the 838 * listener doesn't even know about the eager i.e. the 839 * conn_ind hasn't gone up, blow away the eager and drop 840 * the last reference as well. If the conn_ind has gone 841 * up, state should be BOUND. tcp_accept_finish 842 * will figure out that the connection has received a 843 * RST and will send a DISCON_IND to the application. 844 */ 845 tcp_closei_local(tcp); 846 if (!tcp->tcp_tconnind_started) { 847 CONN_DEC_REF(connp); 848 } else { 849 tcp->tcp_state = TCPS_BOUND; 850 DTRACE_TCP6(state__change, void, NULL, 851 ip_xmit_attr_t *, connp->conn_ixa, 852 void, NULL, tcp_t *, tcp, void, NULL, 853 int32_t, TCPS_CLOSED); 854 } 855 } else { 856 tcp_close_detached(tcp); 857 } 858 return (0); 859 } 860 861 TCP_STAT(tcps, tcp_clean_death_nondetached); 862 863 /* 864 * The connection is dead. Decrement listener connection counter if 865 * necessary. 866 */ 867 if (tcp->tcp_listen_cnt != NULL) 868 TCP_DECR_LISTEN_CNT(tcp); 869 870 /* 871 * When a connection is moved to TIME_WAIT state, the connection 872 * counter is already decremented. So no need to decrement here 873 * again. See SET_TIME_WAIT() macro. 874 */ 875 if (tcp->tcp_state >= TCPS_ESTABLISHED && 876 tcp->tcp_state < TCPS_TIME_WAIT) { 877 TCPS_CONN_DEC(tcps); 878 } 879 880 q = connp->conn_rq; 881 882 /* Trash all inbound data */ 883 if (!IPCL_IS_NONSTR(connp)) { 884 ASSERT(q != NULL); 885 flushq(q, FLUSHALL); 886 } 887 888 /* 889 * If we are at least part way open and there is error 890 * (err==0 implies no error) 891 * notify our client by a T_DISCON_IND. 892 */ 893 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 894 if (tcp->tcp_state >= TCPS_ESTABLISHED && 895 !TCP_IS_SOCKET(tcp)) { 896 /* 897 * Send M_FLUSH according to TPI. Because sockets will 898 * (and must) ignore FLUSHR we do that only for TPI 899 * endpoints and sockets in STREAMS mode. 900 */ 901 (void) putnextctl1(q, M_FLUSH, FLUSHR); 902 } 903 if (connp->conn_debug) { 904 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 905 "tcp_clean_death: discon err %d", err); 906 } 907 if (IPCL_IS_NONSTR(connp)) { 908 /* Direct socket, use upcall */ 909 (*connp->conn_upcalls->su_disconnected)( 910 connp->conn_upper_handle, tcp->tcp_connid, err); 911 } else { 912 mp = mi_tpi_discon_ind(NULL, err, 0); 913 if (mp != NULL) { 914 putnext(q, mp); 915 } else { 916 if (connp->conn_debug) { 917 (void) strlog(TCP_MOD_ID, 0, 1, 918 SL_ERROR|SL_TRACE, 919 "tcp_clean_death, sending M_ERROR"); 920 } 921 (void) putnextctl1(q, M_ERROR, EPROTO); 922 } 923 } 924 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 925 /* SYN_SENT or SYN_RCVD */ 926 TCPS_BUMP_MIB(tcps, tcpAttemptFails); 927 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 928 /* ESTABLISHED or CLOSE_WAIT */ 929 TCPS_BUMP_MIB(tcps, tcpEstabResets); 930 } 931 } 932 933 /* 934 * ESTABLISHED non-STREAMS eagers are not 'detached' because 935 * an upper handle is obtained when the SYN-ACK comes in. So it 936 * should receive the 'disconnected' upcall, but tcp_reinit should 937 * not be called since this is an eager. 938 */ 939 if (tcp->tcp_listener != NULL && IPCL_IS_NONSTR(connp)) { 940 tcp_closei_local(tcp); 941 tcp->tcp_state = TCPS_BOUND; 942 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 943 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 944 int32_t, TCPS_CLOSED); 945 return (0); 946 } 947 948 tcp_reinit(tcp); 949 if (IPCL_IS_NONSTR(connp)) 950 (void) tcp_do_unbind(connp); 951 952 return (-1); 953 } 954 955 /* 956 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 957 * to expire, stop the wait and finish the close. 958 */ 959 void 960 tcp_stop_lingering(tcp_t *tcp) 961 { 962 clock_t delta = 0; 963 tcp_stack_t *tcps = tcp->tcp_tcps; 964 conn_t *connp = tcp->tcp_connp; 965 966 tcp->tcp_linger_tid = 0; 967 if (tcp->tcp_state > TCPS_LISTEN) { 968 tcp_acceptor_hash_remove(tcp); 969 mutex_enter(&tcp->tcp_non_sq_lock); 970 if (tcp->tcp_flow_stopped) { 971 tcp_clrqfull(tcp); 972 } 973 mutex_exit(&tcp->tcp_non_sq_lock); 974 975 if (tcp->tcp_timer_tid != 0) { 976 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 977 tcp->tcp_timer_tid = 0; 978 } 979 /* 980 * Need to cancel those timers which will not be used when 981 * TCP is detached. This has to be done before the conn_wq 982 * is cleared. 983 */ 984 tcp_timers_stop(tcp); 985 986 tcp->tcp_detached = B_TRUE; 987 connp->conn_rq = NULL; 988 connp->conn_wq = NULL; 989 990 if (tcp->tcp_state == TCPS_TIME_WAIT) { 991 tcp_time_wait_append(tcp); 992 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 993 goto finish; 994 } 995 996 /* 997 * If delta is zero the timer event wasn't executed and was 998 * successfully canceled. In this case we need to restart it 999 * with the minimal delta possible. 1000 */ 1001 if (delta >= 0) { 1002 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 1003 delta ? delta : 1); 1004 } 1005 } else { 1006 tcp_closei_local(tcp); 1007 CONN_DEC_REF(connp); 1008 } 1009 finish: 1010 tcp->tcp_detached = B_TRUE; 1011 connp->conn_rq = NULL; 1012 connp->conn_wq = NULL; 1013 1014 /* Signal closing thread that it can complete close */ 1015 mutex_enter(&tcp->tcp_closelock); 1016 tcp->tcp_closed = 1; 1017 cv_signal(&tcp->tcp_closecv); 1018 mutex_exit(&tcp->tcp_closelock); 1019 1020 /* If we have an upper handle (socket), release it */ 1021 if (IPCL_IS_NONSTR(connp)) { 1022 sock_upcalls_t *upcalls = connp->conn_upcalls; 1023 sock_upper_handle_t handle = connp->conn_upper_handle; 1024 1025 ASSERT(upcalls != NULL); 1026 ASSERT(upcalls->su_closed != NULL); 1027 ASSERT(handle != NULL); 1028 /* 1029 * Set these to NULL first because closed() will free upper 1030 * structures. Acquire conn_lock because an external caller 1031 * like conn_get_socket_info() will upcall if these are 1032 * non-NULL. 1033 */ 1034 mutex_enter(&connp->conn_lock); 1035 connp->conn_upper_handle = NULL; 1036 connp->conn_upcalls = NULL; 1037 mutex_exit(&connp->conn_lock); 1038 upcalls->su_closed(handle); 1039 } 1040 } 1041 1042 void 1043 tcp_close_common(conn_t *connp, int flags) 1044 { 1045 tcp_t *tcp = connp->conn_tcp; 1046 mblk_t *mp = &tcp->tcp_closemp; 1047 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 1048 mblk_t *bp; 1049 1050 ASSERT(connp->conn_ref >= 2); 1051 1052 /* 1053 * Mark the conn as closing. ipsq_pending_mp_add will not 1054 * add any mp to the pending mp list, after this conn has 1055 * started closing. 1056 */ 1057 mutex_enter(&connp->conn_lock); 1058 connp->conn_state_flags |= CONN_CLOSING; 1059 if (connp->conn_oper_pending_ill != NULL) 1060 conn_ioctl_cleanup_reqd = B_TRUE; 1061 CONN_INC_REF_LOCKED(connp); 1062 mutex_exit(&connp->conn_lock); 1063 tcp->tcp_closeflags = (uint8_t)flags; 1064 ASSERT(connp->conn_ref >= 3); 1065 1066 /* 1067 * tcp_closemp_used is used below without any protection of a lock 1068 * as we don't expect any one else to use it concurrently at this 1069 * point otherwise it would be a major defect. 1070 */ 1071 1072 if (mp->b_prev == NULL) 1073 tcp->tcp_closemp_used = B_TRUE; 1074 else 1075 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 1076 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 1077 1078 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1079 1080 /* 1081 * Cleanup any queued ioctls here. This must be done before the wq/rq 1082 * are re-written by tcp_close_output(). 1083 */ 1084 if (conn_ioctl_cleanup_reqd) 1085 conn_ioctl_cleanup(connp); 1086 1087 /* 1088 * As CONN_CLOSING is set, no further ioctls should be passed down to 1089 * IP for this conn (see the guards in tcp_ioctl, tcp_wput_ioctl and 1090 * tcp_wput_iocdata). If the ioctl was queued on an ipsq, 1091 * conn_ioctl_cleanup should have found it and removed it. If the ioctl 1092 * was still in flight at the time, we wait for it here. See comments 1093 * for CONN_INC_IOCTLREF in ip.h for details. 1094 */ 1095 mutex_enter(&connp->conn_lock); 1096 while (connp->conn_ioctlref > 0) 1097 cv_wait(&connp->conn_cv, &connp->conn_lock); 1098 ASSERT(connp->conn_ioctlref == 0); 1099 ASSERT(connp->conn_oper_pending_ill == NULL); 1100 mutex_exit(&connp->conn_lock); 1101 1102 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp, 1103 NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 1104 1105 /* 1106 * For non-STREAMS sockets, the normal case is that the conn makes 1107 * an upcall when it's finally closed, so there is no need to wait 1108 * in the protocol. But in case of SO_LINGER the thread sleeps here 1109 * so it can properly deal with the thread being interrupted. 1110 */ 1111 if (IPCL_IS_NONSTR(connp) && connp->conn_linger == 0) 1112 goto nowait; 1113 1114 mutex_enter(&tcp->tcp_closelock); 1115 while (!tcp->tcp_closed) { 1116 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 1117 /* 1118 * The cv_wait_sig() was interrupted. We now do the 1119 * following: 1120 * 1121 * 1) If the endpoint was lingering, we allow this 1122 * to be interrupted by cancelling the linger timeout 1123 * and closing normally. 1124 * 1125 * 2) Revert to calling cv_wait() 1126 * 1127 * We revert to using cv_wait() to avoid an 1128 * infinite loop which can occur if the calling 1129 * thread is higher priority than the squeue worker 1130 * thread and is bound to the same cpu. 1131 */ 1132 if (connp->conn_linger && connp->conn_lingertime > 0) { 1133 mutex_exit(&tcp->tcp_closelock); 1134 /* Entering squeue, bump ref count. */ 1135 CONN_INC_REF(connp); 1136 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 1137 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, 1138 tcp_linger_interrupted, connp, NULL, 1139 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 1140 mutex_enter(&tcp->tcp_closelock); 1141 } 1142 break; 1143 } 1144 } 1145 while (!tcp->tcp_closed) 1146 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 1147 mutex_exit(&tcp->tcp_closelock); 1148 1149 /* 1150 * In the case of listener streams that have eagers in the q or q0 1151 * we wait for the eagers to drop their reference to us. conn_rq and 1152 * conn_wq of the eagers point to our queues. By waiting for the 1153 * refcnt to drop to 1, we are sure that the eagers have cleaned 1154 * up their queue pointers and also dropped their references to us. 1155 * 1156 * For non-STREAMS sockets we do not have to wait here; the 1157 * listener will instead make a su_closed upcall when the last 1158 * reference is dropped. 1159 */ 1160 if (tcp->tcp_wait_for_eagers && !IPCL_IS_NONSTR(connp)) { 1161 mutex_enter(&connp->conn_lock); 1162 while (connp->conn_ref != 1) { 1163 cv_wait(&connp->conn_cv, &connp->conn_lock); 1164 } 1165 mutex_exit(&connp->conn_lock); 1166 } 1167 1168 nowait: 1169 connp->conn_cpid = NOPID; 1170 } 1171 1172 /* 1173 * Called by tcp_close() routine via squeue when lingering is 1174 * interrupted by a signal. 1175 */ 1176 1177 /* ARGSUSED */ 1178 static void 1179 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 1180 { 1181 conn_t *connp = (conn_t *)arg; 1182 tcp_t *tcp = connp->conn_tcp; 1183 1184 freeb(mp); 1185 if (tcp->tcp_linger_tid != 0 && 1186 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 1187 tcp_stop_lingering(tcp); 1188 tcp->tcp_client_errno = EINTR; 1189 } 1190 } 1191 1192 /* 1193 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 1194 * Some stream heads get upset if they see these later on as anything but NULL. 1195 */ 1196 void 1197 tcp_close_mpp(mblk_t **mpp) 1198 { 1199 mblk_t *mp; 1200 1201 if ((mp = *mpp) != NULL) { 1202 do { 1203 mp->b_next = NULL; 1204 mp->b_prev = NULL; 1205 } while ((mp = mp->b_cont) != NULL); 1206 1207 mp = *mpp; 1208 *mpp = NULL; 1209 freemsg(mp); 1210 } 1211 } 1212 1213 /* Do detached close. */ 1214 void 1215 tcp_close_detached(tcp_t *tcp) 1216 { 1217 if (tcp->tcp_fused) 1218 tcp_unfuse(tcp); 1219 1220 /* 1221 * Clustering code serializes TCP disconnect callbacks and 1222 * cluster tcp list walks by blocking a TCP disconnect callback 1223 * if a cluster tcp list walk is in progress. This ensures 1224 * accurate accounting of TCPs in the cluster code even though 1225 * the TCP list walk itself is not atomic. 1226 */ 1227 tcp_closei_local(tcp); 1228 CONN_DEC_REF(tcp->tcp_connp); 1229 } 1230 1231 /* 1232 * The tcp_t is going away. Remove it from all lists and set it 1233 * to TCPS_CLOSED. The freeing up of memory is deferred until 1234 * tcp_inactive. This is needed since a thread in tcp_rput might have 1235 * done a CONN_INC_REF on this structure before it was removed from the 1236 * hashes. 1237 */ 1238 void 1239 tcp_closei_local(tcp_t *tcp) 1240 { 1241 conn_t *connp = tcp->tcp_connp; 1242 tcp_stack_t *tcps = tcp->tcp_tcps; 1243 int32_t oldstate; 1244 1245 if (!TCP_IS_SOCKET(tcp)) 1246 tcp_acceptor_hash_remove(tcp); 1247 1248 /* 1249 * This can be called via tcp_time_wait_processing() if TCP gets a 1250 * SYN with sequence number outside the TIME-WAIT connection's 1251 * window. So we need to check for TIME-WAIT state here as the 1252 * connection counter is already decremented. See SET_TIME_WAIT() 1253 * macro 1254 */ 1255 if (tcp->tcp_state >= TCPS_ESTABLISHED && 1256 tcp->tcp_state < TCPS_TIME_WAIT) { 1257 TCPS_CONN_DEC(tcps); 1258 } 1259 1260 /* 1261 * If we are an eager connection hanging off a listener that 1262 * hasn't formally accepted the connection yet, get off its 1263 * list and blow off any data that we have accumulated. 1264 */ 1265 if (tcp->tcp_listener != NULL) { 1266 tcp_t *listener = tcp->tcp_listener; 1267 mutex_enter(&listener->tcp_eager_lock); 1268 /* 1269 * tcp_tconnind_started == B_TRUE means that the 1270 * conn_ind has already gone to listener. At 1271 * this point, eager will be closed but we 1272 * leave it in listeners eager list so that 1273 * if listener decides to close without doing 1274 * accept, we can clean this up. In tcp_tli_accept 1275 * we take care of the case of accept on closed 1276 * eager. 1277 */ 1278 if (!tcp->tcp_tconnind_started) { 1279 tcp_eager_unlink(tcp); 1280 mutex_exit(&listener->tcp_eager_lock); 1281 /* 1282 * We don't want to have any pointers to the 1283 * listener queue, after we have released our 1284 * reference on the listener 1285 */ 1286 ASSERT(tcp->tcp_detached); 1287 connp->conn_rq = NULL; 1288 connp->conn_wq = NULL; 1289 CONN_DEC_REF(listener->tcp_connp); 1290 } else { 1291 mutex_exit(&listener->tcp_eager_lock); 1292 } 1293 } 1294 1295 /* Stop all the timers */ 1296 tcp_timers_stop(tcp); 1297 1298 if (tcp->tcp_state == TCPS_LISTEN) { 1299 if (tcp->tcp_ip_addr_cache) { 1300 kmem_free((void *)tcp->tcp_ip_addr_cache, 1301 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1302 tcp->tcp_ip_addr_cache = NULL; 1303 } 1304 } 1305 1306 /* Decrement listerner connection counter if necessary. */ 1307 if (tcp->tcp_listen_cnt != NULL) 1308 TCP_DECR_LISTEN_CNT(tcp); 1309 1310 mutex_enter(&tcp->tcp_non_sq_lock); 1311 if (tcp->tcp_flow_stopped) 1312 tcp_clrqfull(tcp); 1313 mutex_exit(&tcp->tcp_non_sq_lock); 1314 1315 tcp_bind_hash_remove(tcp); 1316 /* 1317 * If the tcp_time_wait_collector (which runs outside the squeue) 1318 * is trying to remove this tcp from the time wait list, we will 1319 * block in tcp_time_wait_remove while trying to acquire the 1320 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 1321 * requires the ipcl_hash_remove to be ordered after the 1322 * tcp_time_wait_remove for the refcnt checks to work correctly. 1323 */ 1324 if (tcp->tcp_state == TCPS_TIME_WAIT) 1325 (void) tcp_time_wait_remove(tcp, NULL); 1326 CL_INET_DISCONNECT(connp); 1327 ipcl_hash_remove(connp); 1328 oldstate = tcp->tcp_state; 1329 tcp->tcp_state = TCPS_CLOSED; 1330 /* Need to probe before ixa_cleanup() is called */ 1331 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 1332 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 1333 int32_t, oldstate); 1334 ixa_cleanup(connp->conn_ixa); 1335 1336 /* 1337 * Mark the conn as CONDEMNED 1338 */ 1339 mutex_enter(&connp->conn_lock); 1340 connp->conn_state_flags |= CONN_CONDEMNED; 1341 mutex_exit(&connp->conn_lock); 1342 1343 ASSERT(tcp->tcp_time_wait_next == NULL); 1344 ASSERT(tcp->tcp_time_wait_prev == NULL); 1345 ASSERT(tcp->tcp_time_wait_expire == 0); 1346 1347 tcp_ipsec_cleanup(tcp); 1348 } 1349 1350 /* 1351 * tcp is dying (called from ipcl_conn_destroy and error cases). 1352 * Free the tcp_t in either case. 1353 */ 1354 void 1355 tcp_free(tcp_t *tcp) 1356 { 1357 mblk_t *mp; 1358 conn_t *connp = tcp->tcp_connp; 1359 1360 ASSERT(tcp != NULL); 1361 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 1362 1363 connp->conn_rq = NULL; 1364 connp->conn_wq = NULL; 1365 1366 tcp_close_mpp(&tcp->tcp_xmit_head); 1367 tcp_close_mpp(&tcp->tcp_reass_head); 1368 if (tcp->tcp_rcv_list != NULL) { 1369 /* Free b_next chain */ 1370 tcp_close_mpp(&tcp->tcp_rcv_list); 1371 } 1372 if ((mp = tcp->tcp_urp_mp) != NULL) { 1373 freemsg(mp); 1374 } 1375 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 1376 freemsg(mp); 1377 } 1378 1379 if (tcp->tcp_fused_sigurg_mp != NULL) { 1380 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1381 freeb(tcp->tcp_fused_sigurg_mp); 1382 tcp->tcp_fused_sigurg_mp = NULL; 1383 } 1384 1385 if (tcp->tcp_ordrel_mp != NULL) { 1386 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1387 freeb(tcp->tcp_ordrel_mp); 1388 tcp->tcp_ordrel_mp = NULL; 1389 } 1390 1391 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 1392 bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 1393 1394 if (tcp->tcp_hopopts != NULL) { 1395 mi_free(tcp->tcp_hopopts); 1396 tcp->tcp_hopopts = NULL; 1397 tcp->tcp_hopoptslen = 0; 1398 } 1399 ASSERT(tcp->tcp_hopoptslen == 0); 1400 if (tcp->tcp_dstopts != NULL) { 1401 mi_free(tcp->tcp_dstopts); 1402 tcp->tcp_dstopts = NULL; 1403 tcp->tcp_dstoptslen = 0; 1404 } 1405 ASSERT(tcp->tcp_dstoptslen == 0); 1406 if (tcp->tcp_rthdrdstopts != NULL) { 1407 mi_free(tcp->tcp_rthdrdstopts); 1408 tcp->tcp_rthdrdstopts = NULL; 1409 tcp->tcp_rthdrdstoptslen = 0; 1410 } 1411 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 1412 if (tcp->tcp_rthdr != NULL) { 1413 mi_free(tcp->tcp_rthdr); 1414 tcp->tcp_rthdr = NULL; 1415 tcp->tcp_rthdrlen = 0; 1416 } 1417 ASSERT(tcp->tcp_rthdrlen == 0); 1418 1419 /* 1420 * Following is really a blowing away a union. 1421 * It happens to have exactly two members of identical size 1422 * the following code is enough. 1423 */ 1424 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 1425 1426 /* Allow the CC algorithm to clean up after itself. */ 1427 if (tcp->tcp_cc_algo != NULL && tcp->tcp_cc_algo->cb_destroy != NULL) 1428 tcp->tcp_cc_algo->cb_destroy(&tcp->tcp_ccv); 1429 1430 /* 1431 * If this is a non-STREAM socket still holding on to an upper 1432 * handle, release it. As a result of fallback we might also see 1433 * STREAMS based conns with upper handles, in which case there is 1434 * nothing to do other than clearing the field. 1435 */ 1436 if (connp->conn_upper_handle != NULL) { 1437 sock_upcalls_t *upcalls = connp->conn_upcalls; 1438 sock_upper_handle_t handle = connp->conn_upper_handle; 1439 1440 /* 1441 * Set these to NULL first because closed() will free upper 1442 * structures. Acquire conn_lock because an external caller 1443 * like conn_get_socket_info() will upcall if these are 1444 * non-NULL. 1445 */ 1446 mutex_enter(&connp->conn_lock); 1447 connp->conn_upper_handle = NULL; 1448 connp->conn_upcalls = NULL; 1449 mutex_exit(&connp->conn_lock); 1450 if (IPCL_IS_NONSTR(connp)) { 1451 ASSERT(upcalls != NULL); 1452 ASSERT(upcalls->su_closed != NULL); 1453 ASSERT(handle != NULL); 1454 upcalls->su_closed(handle); 1455 tcp->tcp_detached = B_TRUE; 1456 } 1457 } 1458 } 1459 1460 /* 1461 * tcp_get_conn/tcp_free_conn 1462 * 1463 * tcp_get_conn is used to get a clean tcp connection structure. 1464 * It tries to reuse the connections put on the freelist by the 1465 * time_wait_collector failing which it goes to kmem_cache. This 1466 * way has two benefits compared to just allocating from and 1467 * freeing to kmem_cache. 1468 * 1) The time_wait_collector can free (which includes the cleanup) 1469 * outside the squeue. So when the interrupt comes, we have a clean 1470 * connection sitting in the freelist. Obviously, this buys us 1471 * performance. 1472 * 1473 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_input_listener 1474 * has multiple disadvantages - tying up the squeue during alloc. 1475 * But allocating the conn/tcp in IP land is also not the best since 1476 * we can't check the 'q' and 'q0' which are protected by squeue and 1477 * blindly allocate memory which might have to be freed here if we are 1478 * not allowed to accept the connection. By using the freelist and 1479 * putting the conn/tcp back in freelist, we don't pay a penalty for 1480 * allocating memory without checking 'q/q0' and freeing it if we can't 1481 * accept the connection. 1482 * 1483 * Care should be taken to put the conn back in the same squeue's freelist 1484 * from which it was allocated. Best results are obtained if conn is 1485 * allocated from listener's squeue and freed to the same. Time wait 1486 * collector will free up the freelist is the connection ends up sitting 1487 * there for too long. 1488 */ 1489 conn_t * 1490 tcp_get_conn(void *arg, tcp_stack_t *tcps) 1491 { 1492 tcp_t *tcp = NULL; 1493 conn_t *connp = NULL; 1494 squeue_t *sqp = (squeue_t *)arg; 1495 tcp_squeue_priv_t *tcp_time_wait; 1496 netstack_t *ns; 1497 mblk_t *tcp_rsrv_mp = NULL; 1498 1499 tcp_time_wait = 1500 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1501 1502 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1503 tcp = tcp_time_wait->tcp_free_list; 1504 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 1505 if (tcp != NULL) { 1506 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1507 tcp_time_wait->tcp_free_list_cnt--; 1508 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1509 tcp->tcp_time_wait_next = NULL; 1510 connp = tcp->tcp_connp; 1511 connp->conn_flags |= IPCL_REUSED; 1512 1513 ASSERT(tcp->tcp_tcps == NULL); 1514 ASSERT(connp->conn_netstack == NULL); 1515 ASSERT(tcp->tcp_rsrv_mp != NULL); 1516 ns = tcps->tcps_netstack; 1517 netstack_hold(ns); 1518 connp->conn_netstack = ns; 1519 connp->conn_ixa->ixa_ipst = ns->netstack_ip; 1520 tcp->tcp_tcps = tcps; 1521 ipcl_globalhash_insert(connp); 1522 1523 connp->conn_ixa->ixa_notify_cookie = tcp; 1524 ASSERT(connp->conn_ixa->ixa_notify == tcp_notify); 1525 connp->conn_recv = tcp_input_data; 1526 ASSERT(connp->conn_recvicmp == tcp_icmp_input); 1527 ASSERT(connp->conn_verifyicmp == tcp_verifyicmp); 1528 return (connp); 1529 } 1530 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1531 /* 1532 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until 1533 * this conn_t/tcp_t is freed at ipcl_conn_destroy(). 1534 */ 1535 tcp_rsrv_mp = allocb(0, BPRI_HI); 1536 if (tcp_rsrv_mp == NULL) 1537 return (NULL); 1538 1539 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 1540 tcps->tcps_netstack)) == NULL) { 1541 freeb(tcp_rsrv_mp); 1542 return (NULL); 1543 } 1544 1545 tcp = connp->conn_tcp; 1546 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 1547 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL); 1548 1549 tcp->tcp_tcps = tcps; 1550 1551 connp->conn_recv = tcp_input_data; 1552 connp->conn_recvicmp = tcp_icmp_input; 1553 connp->conn_verifyicmp = tcp_verifyicmp; 1554 1555 /* 1556 * Register tcp_notify to listen to capability changes detected by IP. 1557 * This upcall is made in the context of the call to conn_ip_output 1558 * thus it is inside the squeue. 1559 */ 1560 connp->conn_ixa->ixa_notify = tcp_notify; 1561 connp->conn_ixa->ixa_notify_cookie = tcp; 1562 1563 return (connp); 1564 } 1565 1566 /* 1567 * Handle connect to IPv4 destinations, including connections for AF_INET6 1568 * sockets connecting to IPv4 mapped IPv6 destinations. 1569 * Returns zero if OK, a positive errno, or a negative TLI error. 1570 */ 1571 static int 1572 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport, 1573 uint_t srcid) 1574 { 1575 ipaddr_t dstaddr = *dstaddrp; 1576 uint16_t lport; 1577 conn_t *connp = tcp->tcp_connp; 1578 tcp_stack_t *tcps = tcp->tcp_tcps; 1579 int error; 1580 1581 ASSERT(connp->conn_ipversion == IPV4_VERSION); 1582 1583 /* Check for attempt to connect to INADDR_ANY */ 1584 if (dstaddr == INADDR_ANY) { 1585 /* 1586 * SunOS 4.x and 4.3 BSD allow an application 1587 * to connect a TCP socket to INADDR_ANY. 1588 * When they do this, the kernel picks the 1589 * address of one interface and uses it 1590 * instead. The kernel usually ends up 1591 * picking the address of the loopback 1592 * interface. This is an undocumented feature. 1593 * However, we provide the same thing here 1594 * in order to have source and binary 1595 * compatibility with SunOS 4.x. 1596 * Update the T_CONN_REQ (sin/sin6) since it is used to 1597 * generate the T_CONN_CON. 1598 */ 1599 dstaddr = htonl(INADDR_LOOPBACK); 1600 *dstaddrp = dstaddr; 1601 } 1602 1603 /* Handle __sin6_src_id if socket not bound to an IP address */ 1604 if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) { 1605 if (!ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 1606 IPCL_ZONEID(connp), B_TRUE, tcps->tcps_netstack)) { 1607 /* Mismatch - conn_laddr_v6 would be v6 address. */ 1608 return (EADDRNOTAVAIL); 1609 } 1610 connp->conn_saddr_v6 = connp->conn_laddr_v6; 1611 } 1612 1613 IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6); 1614 connp->conn_fport = dstport; 1615 1616 /* 1617 * At this point the remote destination address and remote port fields 1618 * in the tcp-four-tuple have been filled in the tcp structure. Now we 1619 * have to see which state tcp was in so we can take appropriate action. 1620 */ 1621 if (tcp->tcp_state == TCPS_IDLE) { 1622 /* 1623 * We support a quick connect capability here, allowing 1624 * clients to transition directly from IDLE to SYN_SENT 1625 * tcp_bindi will pick an unused port, insert the connection 1626 * in the bind hash and transition to BOUND state. 1627 */ 1628 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 1629 tcp, B_TRUE); 1630 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 1631 B_FALSE, B_FALSE); 1632 if (lport == 0) 1633 return (-TNOADDR); 1634 } 1635 1636 /* 1637 * Lookup the route to determine a source address and the uinfo. 1638 * Setup TCP parameters based on the metrics/DCE. 1639 */ 1640 error = tcp_set_destination(tcp); 1641 if (error != 0) 1642 return (error); 1643 1644 /* 1645 * Don't let an endpoint connect to itself. 1646 */ 1647 if (connp->conn_faddr_v4 == connp->conn_laddr_v4 && 1648 connp->conn_fport == connp->conn_lport) 1649 return (-TBADADDR); 1650 1651 tcp->tcp_state = TCPS_SYN_SENT; 1652 1653 return (ipcl_conn_insert_v4(connp)); 1654 } 1655 1656 /* 1657 * Handle connect to IPv6 destinations. 1658 * Returns zero if OK, a positive errno, or a negative TLI error. 1659 */ 1660 static int 1661 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport, 1662 uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 1663 { 1664 uint16_t lport; 1665 conn_t *connp = tcp->tcp_connp; 1666 tcp_stack_t *tcps = tcp->tcp_tcps; 1667 int error; 1668 1669 ASSERT(connp->conn_family == AF_INET6); 1670 1671 /* 1672 * If we're here, it means that the destination address is a native 1673 * IPv6 address. Return an error if conn_ipversion is not IPv6. A 1674 * reason why it might not be IPv6 is if the socket was bound to an 1675 * IPv4-mapped IPv6 address. 1676 */ 1677 if (connp->conn_ipversion != IPV6_VERSION) 1678 return (-TBADADDR); 1679 1680 /* 1681 * Interpret a zero destination to mean loopback. 1682 * Update the T_CONN_REQ (sin/sin6) since it is used to 1683 * generate the T_CONN_CON. 1684 */ 1685 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) 1686 *dstaddrp = ipv6_loopback; 1687 1688 /* Handle __sin6_src_id if socket not bound to an IP address */ 1689 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) { 1690 if (!ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 1691 IPCL_ZONEID(connp), B_FALSE, tcps->tcps_netstack)) { 1692 /* Mismatch - conn_laddr_v6 would be v4-mapped. */ 1693 return (EADDRNOTAVAIL); 1694 } 1695 connp->conn_saddr_v6 = connp->conn_laddr_v6; 1696 } 1697 1698 /* 1699 * Take care of the scope_id now. 1700 */ 1701 if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 1702 connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; 1703 connp->conn_ixa->ixa_scopeid = scope_id; 1704 } else { 1705 connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET; 1706 } 1707 1708 connp->conn_flowinfo = flowinfo; 1709 connp->conn_faddr_v6 = *dstaddrp; 1710 connp->conn_fport = dstport; 1711 1712 /* 1713 * At this point the remote destination address and remote port fields 1714 * in the tcp-four-tuple have been filled in the tcp structure. Now we 1715 * have to see which state tcp was in so we can take appropriate action. 1716 */ 1717 if (tcp->tcp_state == TCPS_IDLE) { 1718 /* 1719 * We support a quick connect capability here, allowing 1720 * clients to transition directly from IDLE to SYN_SENT 1721 * tcp_bindi will pick an unused port, insert the connection 1722 * in the bind hash and transition to BOUND state. 1723 */ 1724 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 1725 tcp, B_TRUE); 1726 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 1727 B_FALSE, B_FALSE); 1728 if (lport == 0) 1729 return (-TNOADDR); 1730 } 1731 1732 /* 1733 * Lookup the route to determine a source address and the uinfo. 1734 * Setup TCP parameters based on the metrics/DCE. 1735 */ 1736 error = tcp_set_destination(tcp); 1737 if (error != 0) 1738 return (error); 1739 1740 /* 1741 * Don't let an endpoint connect to itself. 1742 */ 1743 if (IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &connp->conn_laddr_v6) && 1744 connp->conn_fport == connp->conn_lport) 1745 return (-TBADADDR); 1746 1747 tcp->tcp_state = TCPS_SYN_SENT; 1748 1749 return (ipcl_conn_insert_v6(connp)); 1750 } 1751 1752 /* 1753 * Disconnect 1754 * Note that unlike other functions this returns a positive tli error 1755 * when it fails; it never returns an errno. 1756 */ 1757 static int 1758 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum) 1759 { 1760 conn_t *lconnp; 1761 tcp_stack_t *tcps = tcp->tcp_tcps; 1762 conn_t *connp = tcp->tcp_connp; 1763 1764 /* 1765 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 1766 * when the stream is in BOUND state. Do not send a reset, 1767 * since the destination IP address is not valid, and it can 1768 * be the initialized value of all zeros (broadcast address). 1769 */ 1770 if (tcp->tcp_state <= TCPS_BOUND) { 1771 if (connp->conn_debug) { 1772 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 1773 "tcp_disconnect: bad state, %d", tcp->tcp_state); 1774 } 1775 return (TOUTSTATE); 1776 } else if (tcp->tcp_state >= TCPS_ESTABLISHED) { 1777 TCPS_CONN_DEC(tcps); 1778 } 1779 1780 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 1781 1782 /* 1783 * According to TPI, for non-listeners, ignore seqnum 1784 * and disconnect. 1785 * Following interpretation of -1 seqnum is historical 1786 * and implied TPI ? (TPI only states that for T_CONN_IND, 1787 * a valid seqnum should not be -1). 1788 * 1789 * -1 means disconnect everything 1790 * regardless even on a listener. 1791 */ 1792 1793 int old_state = tcp->tcp_state; 1794 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 1795 1796 /* 1797 * The connection can't be on the tcp_time_wait_head list 1798 * since it is not detached. 1799 */ 1800 ASSERT(tcp->tcp_time_wait_next == NULL); 1801 ASSERT(tcp->tcp_time_wait_prev == NULL); 1802 ASSERT(tcp->tcp_time_wait_expire == 0); 1803 /* 1804 * If it used to be a listener, check to make sure no one else 1805 * has taken the port before switching back to LISTEN state. 1806 */ 1807 if (connp->conn_ipversion == IPV4_VERSION) { 1808 lconnp = ipcl_lookup_listener_v4(connp->conn_lport, 1809 connp->conn_laddr_v4, IPCL_ZONEID(connp), ipst); 1810 } else { 1811 uint_t ifindex = 0; 1812 1813 if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET) 1814 ifindex = connp->conn_ixa->ixa_scopeid; 1815 1816 /* Allow conn_bound_if listeners? */ 1817 lconnp = ipcl_lookup_listener_v6(connp->conn_lport, 1818 &connp->conn_laddr_v6, ifindex, IPCL_ZONEID(connp), 1819 ipst); 1820 } 1821 if (tcp->tcp_conn_req_max && lconnp == NULL) { 1822 tcp->tcp_state = TCPS_LISTEN; 1823 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 1824 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, 1825 NULL, int32_t, old_state); 1826 } else if (old_state > TCPS_BOUND) { 1827 tcp->tcp_conn_req_max = 0; 1828 tcp->tcp_state = TCPS_BOUND; 1829 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 1830 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, 1831 NULL, int32_t, old_state); 1832 1833 /* 1834 * If this end point is not going to become a listener, 1835 * decrement the listener connection count if 1836 * necessary. Note that we do not do this if it is 1837 * going to be a listner (the above if case) since 1838 * then it may remove the counter struct. 1839 */ 1840 if (tcp->tcp_listen_cnt != NULL) 1841 TCP_DECR_LISTEN_CNT(tcp); 1842 } 1843 if (lconnp != NULL) 1844 CONN_DEC_REF(lconnp); 1845 switch (old_state) { 1846 case TCPS_SYN_SENT: 1847 case TCPS_SYN_RCVD: 1848 TCPS_BUMP_MIB(tcps, tcpAttemptFails); 1849 break; 1850 case TCPS_ESTABLISHED: 1851 case TCPS_CLOSE_WAIT: 1852 TCPS_BUMP_MIB(tcps, tcpEstabResets); 1853 break; 1854 } 1855 1856 if (tcp->tcp_fused) 1857 tcp_unfuse(tcp); 1858 1859 mutex_enter(&tcp->tcp_eager_lock); 1860 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 1861 (tcp->tcp_conn_req_cnt_q != 0)) { 1862 tcp_eager_cleanup(tcp, 0); 1863 } 1864 mutex_exit(&tcp->tcp_eager_lock); 1865 1866 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 1867 tcp->tcp_rnxt, TH_RST | TH_ACK); 1868 1869 tcp_reinit(tcp); 1870 1871 return (0); 1872 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 1873 return (TBADSEQ); 1874 } 1875 return (0); 1876 } 1877 1878 /* 1879 * Our client hereby directs us to reject the connection request 1880 * that tcp_input_listener() marked with 'seqnum'. Rejection consists 1881 * of sending the appropriate RST, not an ICMP error. 1882 */ 1883 void 1884 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 1885 { 1886 t_scalar_t seqnum; 1887 int error; 1888 conn_t *connp = tcp->tcp_connp; 1889 1890 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 1891 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 1892 tcp_err_ack(tcp, mp, TPROTO, 0); 1893 return; 1894 } 1895 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 1896 error = tcp_disconnect_common(tcp, seqnum); 1897 if (error != 0) 1898 tcp_err_ack(tcp, mp, error, 0); 1899 else { 1900 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 1901 /* Send M_FLUSH according to TPI */ 1902 (void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW); 1903 } 1904 mp = mi_tpi_ok_ack_alloc(mp); 1905 if (mp != NULL) 1906 putnext(connp->conn_rq, mp); 1907 } 1908 } 1909 1910 /* 1911 * Handle reinitialization of a tcp structure. 1912 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 1913 */ 1914 static void 1915 tcp_reinit(tcp_t *tcp) 1916 { 1917 mblk_t *mp; 1918 tcp_stack_t *tcps = tcp->tcp_tcps; 1919 conn_t *connp = tcp->tcp_connp; 1920 int32_t oldstate; 1921 1922 /* tcp_reinit should never be called for detached tcp_t's */ 1923 ASSERT(tcp->tcp_listener == NULL); 1924 ASSERT((connp->conn_family == AF_INET && 1925 connp->conn_ipversion == IPV4_VERSION) || 1926 (connp->conn_family == AF_INET6 && 1927 (connp->conn_ipversion == IPV4_VERSION || 1928 connp->conn_ipversion == IPV6_VERSION))); 1929 1930 /* Cancel outstanding timers */ 1931 tcp_timers_stop(tcp); 1932 1933 tcp_close_mpp(&tcp->tcp_xmit_head); 1934 if (tcp->tcp_snd_zcopy_aware) 1935 tcp_zcopy_notify(tcp); 1936 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 1937 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 1938 mutex_enter(&tcp->tcp_non_sq_lock); 1939 if (tcp->tcp_flow_stopped && 1940 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 1941 tcp_clrqfull(tcp); 1942 } 1943 mutex_exit(&tcp->tcp_non_sq_lock); 1944 tcp_close_mpp(&tcp->tcp_reass_head); 1945 tcp->tcp_reass_tail = NULL; 1946 if (tcp->tcp_rcv_list != NULL) { 1947 /* Free b_next chain */ 1948 tcp_close_mpp(&tcp->tcp_rcv_list); 1949 tcp->tcp_rcv_last_head = NULL; 1950 tcp->tcp_rcv_last_tail = NULL; 1951 tcp->tcp_rcv_cnt = 0; 1952 } 1953 tcp->tcp_rcv_last_tail = NULL; 1954 1955 if ((mp = tcp->tcp_urp_mp) != NULL) { 1956 freemsg(mp); 1957 tcp->tcp_urp_mp = NULL; 1958 } 1959 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 1960 freemsg(mp); 1961 tcp->tcp_urp_mark_mp = NULL; 1962 } 1963 if (tcp->tcp_fused_sigurg_mp != NULL) { 1964 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1965 freeb(tcp->tcp_fused_sigurg_mp); 1966 tcp->tcp_fused_sigurg_mp = NULL; 1967 } 1968 if (tcp->tcp_ordrel_mp != NULL) { 1969 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1970 freeb(tcp->tcp_ordrel_mp); 1971 tcp->tcp_ordrel_mp = NULL; 1972 } 1973 1974 /* 1975 * Following is a union with two members which are 1976 * identical types and size so the following cleanup 1977 * is enough. 1978 */ 1979 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 1980 1981 CL_INET_DISCONNECT(connp); 1982 1983 /* 1984 * The connection can't be on the tcp_time_wait_head list 1985 * since it is not detached. 1986 */ 1987 ASSERT(tcp->tcp_time_wait_next == NULL); 1988 ASSERT(tcp->tcp_time_wait_prev == NULL); 1989 ASSERT(tcp->tcp_time_wait_expire == 0); 1990 1991 /* 1992 * Reset/preserve other values 1993 */ 1994 tcp_reinit_values(tcp); 1995 ipcl_hash_remove(connp); 1996 /* Note that ixa_cred gets cleared in ixa_cleanup */ 1997 ixa_cleanup(connp->conn_ixa); 1998 tcp_ipsec_cleanup(tcp); 1999 2000 connp->conn_laddr_v6 = connp->conn_bound_addr_v6; 2001 connp->conn_saddr_v6 = connp->conn_bound_addr_v6; 2002 oldstate = tcp->tcp_state; 2003 2004 if (tcp->tcp_conn_req_max != 0) { 2005 /* 2006 * This is the case when a TLI program uses the same 2007 * transport end point to accept a connection. This 2008 * makes the TCP both a listener and acceptor. When 2009 * this connection is closed, we need to set the state 2010 * back to TCPS_LISTEN. Make sure that the eager list 2011 * is reinitialized. 2012 * 2013 * Note that this stream is still bound to the four 2014 * tuples of the previous connection in IP. If a new 2015 * SYN with different foreign address comes in, IP will 2016 * not find it and will send it to the global queue. In 2017 * the global queue, TCP will do a tcp_lookup_listener() 2018 * to find this stream. This works because this stream 2019 * is only removed from connected hash. 2020 * 2021 */ 2022 tcp->tcp_state = TCPS_LISTEN; 2023 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 2024 tcp->tcp_eager_next_drop_q0 = tcp; 2025 tcp->tcp_eager_prev_drop_q0 = tcp; 2026 /* 2027 * Initially set conn_recv to tcp_input_listener_unbound to try 2028 * to pick a good squeue for the listener when the first SYN 2029 * arrives. tcp_input_listener_unbound sets it to 2030 * tcp_input_listener on that first SYN. 2031 */ 2032 connp->conn_recv = tcp_input_listener_unbound; 2033 2034 connp->conn_proto = IPPROTO_TCP; 2035 connp->conn_faddr_v6 = ipv6_all_zeros; 2036 connp->conn_fport = 0; 2037 2038 (void) ipcl_bind_insert(connp); 2039 } else { 2040 tcp->tcp_state = TCPS_BOUND; 2041 } 2042 2043 /* 2044 * Initialize to default values 2045 */ 2046 tcp_init_values(tcp, NULL); 2047 2048 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 2049 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 2050 int32_t, oldstate); 2051 2052 ASSERT(tcp->tcp_ptpbhn != NULL); 2053 tcp->tcp_rwnd = connp->conn_rcvbuf; 2054 tcp->tcp_mss = connp->conn_ipversion != IPV4_VERSION ? 2055 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 2056 } 2057 2058 /* 2059 * Force values to zero that need be zero. 2060 * Do not touch values asociated with the BOUND or LISTEN state 2061 * since the connection will end up in that state after the reinit. 2062 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 2063 * structure! 2064 */ 2065 static void 2066 tcp_reinit_values(tcp_t *tcp) 2067 { 2068 tcp_stack_t *tcps = tcp->tcp_tcps; 2069 conn_t *connp = tcp->tcp_connp; 2070 2071 #ifndef lint 2072 #define DONTCARE(x) 2073 #define PRESERVE(x) 2074 #else 2075 #define DONTCARE(x) ((x) = (x)) 2076 #define PRESERVE(x) ((x) = (x)) 2077 #endif /* lint */ 2078 2079 PRESERVE(tcp->tcp_bind_hash_port); 2080 PRESERVE(tcp->tcp_bind_hash); 2081 PRESERVE(tcp->tcp_ptpbhn); 2082 PRESERVE(tcp->tcp_acceptor_hash); 2083 PRESERVE(tcp->tcp_ptpahn); 2084 2085 /* Should be ASSERT NULL on these with new code! */ 2086 ASSERT(tcp->tcp_time_wait_next == NULL); 2087 ASSERT(tcp->tcp_time_wait_prev == NULL); 2088 ASSERT(tcp->tcp_time_wait_expire == 0); 2089 PRESERVE(tcp->tcp_state); 2090 PRESERVE(connp->conn_rq); 2091 PRESERVE(connp->conn_wq); 2092 2093 ASSERT(tcp->tcp_xmit_head == NULL); 2094 ASSERT(tcp->tcp_xmit_last == NULL); 2095 ASSERT(tcp->tcp_unsent == 0); 2096 ASSERT(tcp->tcp_xmit_tail == NULL); 2097 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 2098 2099 tcp->tcp_snxt = 0; /* Displayed in mib */ 2100 tcp->tcp_suna = 0; /* Displayed in mib */ 2101 tcp->tcp_swnd = 0; 2102 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_process_options */ 2103 2104 if (connp->conn_ht_iphc != NULL) { 2105 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 2106 connp->conn_ht_iphc = NULL; 2107 connp->conn_ht_iphc_allocated = 0; 2108 connp->conn_ht_iphc_len = 0; 2109 connp->conn_ht_ulp = NULL; 2110 connp->conn_ht_ulp_len = 0; 2111 tcp->tcp_ipha = NULL; 2112 tcp->tcp_ip6h = NULL; 2113 tcp->tcp_tcpha = NULL; 2114 } 2115 2116 /* We clear any IP_OPTIONS and extension headers */ 2117 ip_pkt_free(&connp->conn_xmit_ipp); 2118 2119 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 2120 DONTCARE(tcp->tcp_ipha); 2121 DONTCARE(tcp->tcp_ip6h); 2122 DONTCARE(tcp->tcp_tcpha); 2123 tcp->tcp_valid_bits = 0; 2124 2125 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 2126 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 2127 tcp->tcp_last_rcv_lbolt = 0; 2128 2129 tcp->tcp_init_cwnd = 0; 2130 2131 tcp->tcp_urp_last_valid = 0; 2132 tcp->tcp_hard_binding = 0; 2133 2134 tcp->tcp_fin_acked = 0; 2135 tcp->tcp_fin_rcvd = 0; 2136 tcp->tcp_fin_sent = 0; 2137 tcp->tcp_ordrel_done = 0; 2138 2139 tcp->tcp_detached = 0; 2140 2141 tcp->tcp_snd_ws_ok = B_FALSE; 2142 tcp->tcp_snd_ts_ok = B_FALSE; 2143 tcp->tcp_zero_win_probe = 0; 2144 2145 tcp->tcp_loopback = 0; 2146 tcp->tcp_localnet = 0; 2147 tcp->tcp_syn_defense = 0; 2148 tcp->tcp_set_timer = 0; 2149 2150 tcp->tcp_active_open = 0; 2151 tcp->tcp_rexmit = B_FALSE; 2152 tcp->tcp_xmit_zc_clean = B_FALSE; 2153 2154 tcp->tcp_snd_sack_ok = B_FALSE; 2155 tcp->tcp_hwcksum = B_FALSE; 2156 2157 DONTCARE(tcp->tcp_maxpsz_multiplier); /* Init in tcp_init_values */ 2158 2159 tcp->tcp_conn_def_q0 = 0; 2160 tcp->tcp_ip_forward_progress = B_FALSE; 2161 tcp->tcp_ecn_ok = B_FALSE; 2162 2163 tcp->tcp_cwr = B_FALSE; 2164 tcp->tcp_ecn_echo_on = B_FALSE; 2165 tcp->tcp_is_wnd_shrnk = B_FALSE; 2166 2167 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 2168 bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 2169 2170 tcp->tcp_rcv_ws = 0; 2171 tcp->tcp_snd_ws = 0; 2172 tcp->tcp_ts_recent = 0; 2173 tcp->tcp_rnxt = 0; /* Displayed in mib */ 2174 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 2175 tcp->tcp_initial_pmtu = 0; 2176 2177 ASSERT(tcp->tcp_reass_head == NULL); 2178 ASSERT(tcp->tcp_reass_tail == NULL); 2179 2180 tcp->tcp_cwnd_cnt = 0; 2181 2182 ASSERT(tcp->tcp_rcv_list == NULL); 2183 ASSERT(tcp->tcp_rcv_last_head == NULL); 2184 ASSERT(tcp->tcp_rcv_last_tail == NULL); 2185 ASSERT(tcp->tcp_rcv_cnt == 0); 2186 2187 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_set_destination */ 2188 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 2189 tcp->tcp_csuna = 0; 2190 2191 tcp->tcp_rto = 0; /* Displayed in MIB */ 2192 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 2193 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 2194 tcp->tcp_rtt_update = 0; 2195 tcp->tcp_rtt_sum = 0; 2196 tcp->tcp_rtt_cnt = 0; 2197 2198 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 2199 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 2200 2201 tcp->tcp_rack = 0; /* Displayed in mib */ 2202 tcp->tcp_rack_cnt = 0; 2203 tcp->tcp_rack_cur_max = 0; 2204 tcp->tcp_rack_abs_max = 0; 2205 2206 tcp->tcp_max_swnd = 0; 2207 2208 ASSERT(tcp->tcp_listener == NULL); 2209 2210 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 2211 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 2212 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 2213 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 2214 2215 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 2216 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 2217 PRESERVE(tcp->tcp_conn_req_max); 2218 PRESERVE(tcp->tcp_conn_req_seqnum); 2219 2220 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 2221 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 2222 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 2223 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 2224 2225 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 2226 ASSERT(tcp->tcp_urp_mp == NULL); 2227 ASSERT(tcp->tcp_urp_mark_mp == NULL); 2228 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 2229 2230 ASSERT(tcp->tcp_eager_next_q == NULL); 2231 ASSERT(tcp->tcp_eager_last_q == NULL); 2232 ASSERT((tcp->tcp_eager_next_q0 == NULL && 2233 tcp->tcp_eager_prev_q0 == NULL) || 2234 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 2235 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 2236 2237 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 2238 tcp->tcp_eager_prev_drop_q0 == NULL) || 2239 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 2240 2241 DONTCARE(tcp->tcp_ka_rinterval); /* Init in tcp_init_values */ 2242 DONTCARE(tcp->tcp_ka_abort_thres); /* Init in tcp_init_values */ 2243 DONTCARE(tcp->tcp_ka_cnt); /* Init in tcp_init_values */ 2244 2245 tcp->tcp_client_errno = 0; 2246 2247 DONTCARE(connp->conn_sum); /* Init in tcp_init_values */ 2248 2249 connp->conn_faddr_v6 = ipv6_all_zeros; /* Displayed in MIB */ 2250 2251 PRESERVE(connp->conn_bound_addr_v6); 2252 tcp->tcp_last_sent_len = 0; 2253 tcp->tcp_dupack_cnt = 0; 2254 2255 connp->conn_fport = 0; /* Displayed in MIB */ 2256 PRESERVE(connp->conn_lport); 2257 2258 PRESERVE(tcp->tcp_acceptor_lockp); 2259 2260 ASSERT(tcp->tcp_ordrel_mp == NULL); 2261 PRESERVE(tcp->tcp_acceptor_id); 2262 DONTCARE(tcp->tcp_ipsec_overhead); 2263 2264 PRESERVE(connp->conn_family); 2265 /* Remove any remnants of mapped address binding */ 2266 if (connp->conn_family == AF_INET6) { 2267 connp->conn_ipversion = IPV6_VERSION; 2268 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 2269 } else { 2270 connp->conn_ipversion = IPV4_VERSION; 2271 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 2272 } 2273 2274 connp->conn_bound_if = 0; 2275 connp->conn_recv_ancillary.crb_all = 0; 2276 tcp->tcp_recvifindex = 0; 2277 tcp->tcp_recvhops = 0; 2278 tcp->tcp_closed = 0; 2279 if (tcp->tcp_hopopts != NULL) { 2280 mi_free(tcp->tcp_hopopts); 2281 tcp->tcp_hopopts = NULL; 2282 tcp->tcp_hopoptslen = 0; 2283 } 2284 ASSERT(tcp->tcp_hopoptslen == 0); 2285 if (tcp->tcp_dstopts != NULL) { 2286 mi_free(tcp->tcp_dstopts); 2287 tcp->tcp_dstopts = NULL; 2288 tcp->tcp_dstoptslen = 0; 2289 } 2290 ASSERT(tcp->tcp_dstoptslen == 0); 2291 if (tcp->tcp_rthdrdstopts != NULL) { 2292 mi_free(tcp->tcp_rthdrdstopts); 2293 tcp->tcp_rthdrdstopts = NULL; 2294 tcp->tcp_rthdrdstoptslen = 0; 2295 } 2296 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 2297 if (tcp->tcp_rthdr != NULL) { 2298 mi_free(tcp->tcp_rthdr); 2299 tcp->tcp_rthdr = NULL; 2300 tcp->tcp_rthdrlen = 0; 2301 } 2302 ASSERT(tcp->tcp_rthdrlen == 0); 2303 2304 /* Reset fusion-related fields */ 2305 tcp->tcp_fused = B_FALSE; 2306 tcp->tcp_unfusable = B_FALSE; 2307 tcp->tcp_fused_sigurg = B_FALSE; 2308 tcp->tcp_loopback_peer = NULL; 2309 2310 tcp->tcp_lso = B_FALSE; 2311 2312 tcp->tcp_in_ack_unsent = 0; 2313 tcp->tcp_cork = B_FALSE; 2314 tcp->tcp_tconnind_started = B_FALSE; 2315 2316 PRESERVE(tcp->tcp_squeue_bytes); 2317 2318 tcp->tcp_closemp_used = B_FALSE; 2319 2320 PRESERVE(tcp->tcp_rsrv_mp); 2321 PRESERVE(tcp->tcp_rsrv_mp_lock); 2322 2323 #ifdef DEBUG 2324 DONTCARE(tcp->tcmp_stk[0]); 2325 #endif 2326 2327 PRESERVE(tcp->tcp_connid); 2328 2329 ASSERT(tcp->tcp_listen_cnt == NULL); 2330 ASSERT(tcp->tcp_reass_tid == 0); 2331 2332 /* Allow the CC algorithm to clean up after itself. */ 2333 if (tcp->tcp_cc_algo->cb_destroy != NULL) 2334 tcp->tcp_cc_algo->cb_destroy(&tcp->tcp_ccv); 2335 tcp->tcp_cc_algo = NULL; 2336 2337 #undef DONTCARE 2338 #undef PRESERVE 2339 } 2340 2341 /* 2342 * Initialize the various fields in tcp_t. If parent (the listener) is non 2343 * NULL, certain values will be inheritted from it. 2344 */ 2345 void 2346 tcp_init_values(tcp_t *tcp, tcp_t *parent) 2347 { 2348 tcp_stack_t *tcps = tcp->tcp_tcps; 2349 conn_t *connp = tcp->tcp_connp; 2350 2351 ASSERT((connp->conn_family == AF_INET && 2352 connp->conn_ipversion == IPV4_VERSION) || 2353 (connp->conn_family == AF_INET6 && 2354 (connp->conn_ipversion == IPV4_VERSION || 2355 connp->conn_ipversion == IPV6_VERSION))); 2356 2357 tcp->tcp_ccv.type = IPPROTO_TCP; 2358 tcp->tcp_ccv.ccvc.tcp = tcp; 2359 2360 if (parent == NULL) { 2361 tcp->tcp_cc_algo = tcps->tcps_default_cc_algo; 2362 2363 tcp->tcp_naglim = tcps->tcps_naglim_def; 2364 2365 tcp->tcp_rto_initial = tcps->tcps_rexmit_interval_initial; 2366 tcp->tcp_rto_min = tcps->tcps_rexmit_interval_min; 2367 tcp->tcp_rto_max = tcps->tcps_rexmit_interval_max; 2368 2369 tcp->tcp_first_ctimer_threshold = 2370 tcps->tcps_ip_notify_cinterval; 2371 tcp->tcp_second_ctimer_threshold = 2372 tcps->tcps_ip_abort_cinterval; 2373 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 2374 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 2375 2376 tcp->tcp_fin_wait_2_flush_interval = 2377 tcps->tcps_fin_wait_2_flush_interval; 2378 2379 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 2380 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 2381 tcp->tcp_ka_cnt = 0; 2382 tcp->tcp_ka_rinterval = 0; 2383 2384 /* 2385 * Default value of tcp_init_cwnd is 0, so no need to set here 2386 * if parent is NULL. But we need to inherit it from parent. 2387 */ 2388 } else { 2389 /* Inherit various TCP parameters from the parent. */ 2390 tcp->tcp_cc_algo = parent->tcp_cc_algo; 2391 2392 tcp->tcp_naglim = parent->tcp_naglim; 2393 2394 tcp->tcp_rto_initial = parent->tcp_rto_initial; 2395 tcp->tcp_rto_min = parent->tcp_rto_min; 2396 tcp->tcp_rto_max = parent->tcp_rto_max; 2397 2398 tcp->tcp_first_ctimer_threshold = 2399 parent->tcp_first_ctimer_threshold; 2400 tcp->tcp_second_ctimer_threshold = 2401 parent->tcp_second_ctimer_threshold; 2402 tcp->tcp_first_timer_threshold = 2403 parent->tcp_first_timer_threshold; 2404 tcp->tcp_second_timer_threshold = 2405 parent->tcp_second_timer_threshold; 2406 2407 tcp->tcp_fin_wait_2_flush_interval = 2408 parent->tcp_fin_wait_2_flush_interval; 2409 2410 tcp->tcp_ka_interval = parent->tcp_ka_interval; 2411 tcp->tcp_ka_abort_thres = parent->tcp_ka_abort_thres; 2412 tcp->tcp_ka_cnt = parent->tcp_ka_cnt; 2413 tcp->tcp_ka_rinterval = parent->tcp_ka_rinterval; 2414 2415 tcp->tcp_init_cwnd = parent->tcp_init_cwnd; 2416 } 2417 2418 if (tcp->tcp_cc_algo->cb_init != NULL) 2419 VERIFY(tcp->tcp_cc_algo->cb_init(&tcp->tcp_ccv) == 0); 2420 2421 /* 2422 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 2423 * will be close to tcp_rexmit_interval_initial. By doing this, we 2424 * allow the algorithm to adjust slowly to large fluctuations of RTT 2425 * during first few transmissions of a connection as seen in slow 2426 * links. 2427 */ 2428 tcp->tcp_rtt_sa = MSEC2NSEC(tcp->tcp_rto_initial) << 2; 2429 tcp->tcp_rtt_sd = MSEC2NSEC(tcp->tcp_rto_initial) >> 1; 2430 tcp->tcp_rto = tcp_calculate_rto(tcp, tcps, 2431 tcps->tcps_conn_grace_period); 2432 2433 tcp->tcp_timer_backoff = 0; 2434 tcp->tcp_ms_we_have_waited = 0; 2435 tcp->tcp_last_recv_time = ddi_get_lbolt(); 2436 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 2437 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2438 2439 tcp->tcp_maxpsz_multiplier = tcps->tcps_maxpsz_multiplier; 2440 2441 /* NOTE: ISS is now set in tcp_set_destination(). */ 2442 2443 /* Reset fusion-related fields */ 2444 tcp->tcp_fused = B_FALSE; 2445 tcp->tcp_unfusable = B_FALSE; 2446 tcp->tcp_fused_sigurg = B_FALSE; 2447 tcp->tcp_loopback_peer = NULL; 2448 2449 /* We rebuild the header template on the next connect/conn_request */ 2450 2451 connp->conn_mlp_type = mlptSingle; 2452 2453 /* 2454 * Init the window scale to the max so tcp_rwnd_set() won't pare 2455 * down tcp_rwnd. tcp_set_destination() will set the right value later. 2456 */ 2457 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 2458 tcp->tcp_rwnd = connp->conn_rcvbuf; 2459 2460 tcp->tcp_cork = B_FALSE; 2461 /* 2462 * Init the tcp_debug option if it wasn't already set. This value 2463 * determines whether TCP 2464 * calls strlog() to print out debug messages. Doing this 2465 * initialization here means that this value is not inherited thru 2466 * tcp_reinit(). 2467 */ 2468 if (!connp->conn_debug) 2469 connp->conn_debug = tcps->tcps_dbg; 2470 } 2471 2472 /* 2473 * Update the TCP connection according to change of PMTU. 2474 * 2475 * Path MTU might have changed by either increase or decrease, so need to 2476 * adjust the MSS based on the value of ixa_pmtu. No need to handle tiny 2477 * or negative MSS, since tcp_mss_set() will do it. 2478 */ 2479 void 2480 tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only) 2481 { 2482 uint32_t pmtu; 2483 int32_t mss; 2484 conn_t *connp = tcp->tcp_connp; 2485 ip_xmit_attr_t *ixa = connp->conn_ixa; 2486 iaflags_t ixaflags; 2487 2488 if (tcp->tcp_tcps->tcps_ignore_path_mtu) 2489 return; 2490 2491 if (tcp->tcp_state < TCPS_ESTABLISHED) 2492 return; 2493 2494 /* 2495 * Always call ip_get_pmtu() to make sure that IP has updated 2496 * ixa_flags properly. 2497 */ 2498 pmtu = ip_get_pmtu(ixa); 2499 ixaflags = ixa->ixa_flags; 2500 2501 /* 2502 * Calculate the MSS by decreasing the PMTU by conn_ht_iphc_len and 2503 * IPsec overhead if applied. Make sure to use the most recent 2504 * IPsec information. 2505 */ 2506 mss = pmtu - connp->conn_ht_iphc_len - conn_ipsec_length(connp); 2507 2508 /* 2509 * Nothing to change, so just return. 2510 */ 2511 if (mss == tcp->tcp_mss) 2512 return; 2513 2514 /* 2515 * Currently, for ICMP errors, only PMTU decrease is handled. 2516 */ 2517 if (mss > tcp->tcp_mss && decrease_only) 2518 return; 2519 2520 DTRACE_PROBE2(tcp_update_pmtu, int32_t, tcp->tcp_mss, uint32_t, mss); 2521 2522 /* 2523 * Update ixa_fragsize and ixa_pmtu. 2524 */ 2525 ixa->ixa_fragsize = ixa->ixa_pmtu = pmtu; 2526 2527 /* 2528 * Adjust MSS and all relevant variables. 2529 */ 2530 tcp_mss_set(tcp, mss); 2531 2532 /* 2533 * If the PMTU is below the min size maintained by IP, then ip_get_pmtu 2534 * has set IXAF_PMTU_TOO_SMALL and cleared IXAF_PMTU_IPV4_DF. Since TCP 2535 * has a (potentially different) min size we do the same. Make sure to 2536 * clear IXAF_DONTFRAG, which is used by IP to decide whether to 2537 * fragment the packet. 2538 * 2539 * LSO over IPv6 can not be fragmented. So need to disable LSO 2540 * when IPv6 fragmentation is needed. 2541 */ 2542 if (mss < tcp->tcp_tcps->tcps_mss_min) 2543 ixaflags |= IXAF_PMTU_TOO_SMALL; 2544 2545 if (ixaflags & IXAF_PMTU_TOO_SMALL) 2546 ixaflags &= ~(IXAF_DONTFRAG | IXAF_PMTU_IPV4_DF); 2547 2548 if ((connp->conn_ipversion == IPV4_VERSION) && 2549 !(ixaflags & IXAF_PMTU_IPV4_DF)) { 2550 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 2551 } 2552 ixa->ixa_flags = ixaflags; 2553 } 2554 2555 int 2556 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 2557 { 2558 conn_t *connp = tcp->tcp_connp; 2559 queue_t *q = connp->conn_rq; 2560 int32_t mss = tcp->tcp_mss; 2561 int maxpsz; 2562 2563 if (TCP_IS_DETACHED(tcp)) 2564 return (mss); 2565 if (tcp->tcp_fused) { 2566 maxpsz = tcp_fuse_maxpsz(tcp); 2567 mss = INFPSZ; 2568 } else if (tcp->tcp_maxpsz_multiplier == 0) { 2569 /* 2570 * Set the sd_qn_maxpsz according to the socket send buffer 2571 * size, and sd_maxblk to INFPSZ (-1). This will essentially 2572 * instruct the stream head to copyin user data into contiguous 2573 * kernel-allocated buffers without breaking it up into smaller 2574 * chunks. We round up the buffer size to the nearest SMSS. 2575 */ 2576 maxpsz = MSS_ROUNDUP(connp->conn_sndbuf, mss); 2577 mss = INFPSZ; 2578 } else { 2579 /* 2580 * Set sd_qn_maxpsz to approx half the (receivers) buffer 2581 * (and a multiple of the mss). This instructs the stream 2582 * head to break down larger than SMSS writes into SMSS- 2583 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 2584 */ 2585 maxpsz = tcp->tcp_maxpsz_multiplier * mss; 2586 if (maxpsz > connp->conn_sndbuf / 2) { 2587 maxpsz = connp->conn_sndbuf / 2; 2588 /* Round up to nearest mss */ 2589 maxpsz = MSS_ROUNDUP(maxpsz, mss); 2590 } 2591 } 2592 2593 (void) proto_set_maxpsz(q, connp, maxpsz); 2594 if (!(IPCL_IS_NONSTR(connp))) 2595 connp->conn_wq->q_maxpsz = maxpsz; 2596 if (set_maxblk) 2597 (void) proto_set_tx_maxblk(q, connp, mss); 2598 return (mss); 2599 } 2600 2601 /* For /dev/tcp aka AF_INET open */ 2602 static int 2603 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 2604 { 2605 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 2606 } 2607 2608 /* For /dev/tcp6 aka AF_INET6 open */ 2609 static int 2610 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 2611 { 2612 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 2613 } 2614 2615 conn_t * 2616 tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket, 2617 int *errorp) 2618 { 2619 tcp_t *tcp = NULL; 2620 conn_t *connp; 2621 zoneid_t zoneid; 2622 tcp_stack_t *tcps; 2623 squeue_t *sqp; 2624 2625 ASSERT(errorp != NULL); 2626 /* 2627 * Find the proper zoneid and netstack. 2628 */ 2629 /* 2630 * Special case for install: miniroot needs to be able to 2631 * access files via NFS as though it were always in the 2632 * global zone. 2633 */ 2634 if (credp == kcred && nfs_global_client_only != 0) { 2635 zoneid = GLOBAL_ZONEID; 2636 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 2637 netstack_tcp; 2638 ASSERT(tcps != NULL); 2639 } else { 2640 netstack_t *ns; 2641 int err; 2642 2643 if ((err = secpolicy_basic_net_access(credp)) != 0) { 2644 *errorp = err; 2645 return (NULL); 2646 } 2647 2648 ns = netstack_find_by_cred(credp); 2649 ASSERT(ns != NULL); 2650 tcps = ns->netstack_tcp; 2651 ASSERT(tcps != NULL); 2652 2653 /* 2654 * For exclusive stacks we set the zoneid to zero 2655 * to make TCP operate as if in the global zone. 2656 */ 2657 if (tcps->tcps_netstack->netstack_stackid != 2658 GLOBAL_NETSTACKID) 2659 zoneid = GLOBAL_ZONEID; 2660 else 2661 zoneid = crgetzoneid(credp); 2662 } 2663 2664 sqp = IP_SQUEUE_GET((uint_t)gethrtime()); 2665 connp = tcp_get_conn(sqp, tcps); 2666 /* 2667 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 2668 * so we drop it by one. 2669 */ 2670 netstack_rele(tcps->tcps_netstack); 2671 if (connp == NULL) { 2672 *errorp = ENOSR; 2673 return (NULL); 2674 } 2675 ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto); 2676 2677 connp->conn_sqp = sqp; 2678 connp->conn_initial_sqp = connp->conn_sqp; 2679 connp->conn_ixa->ixa_sqp = connp->conn_sqp; 2680 tcp = connp->conn_tcp; 2681 2682 /* 2683 * Besides asking IP to set the checksum for us, have conn_ip_output 2684 * to do the following checks when necessary: 2685 * 2686 * IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid 2687 * IXAF_VERIFY_PMTU: verify PMTU changes 2688 * IXAF_VERIFY_LSO: verify LSO capability changes 2689 */ 2690 connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 2691 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO; 2692 2693 if (!tcps->tcps_dev_flow_ctl) 2694 connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL; 2695 2696 if (isv6) { 2697 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 2698 connp->conn_ipversion = IPV6_VERSION; 2699 connp->conn_family = AF_INET6; 2700 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 2701 connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit; 2702 } else { 2703 connp->conn_ipversion = IPV4_VERSION; 2704 connp->conn_family = AF_INET; 2705 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 2706 connp->conn_default_ttl = tcps->tcps_ipv4_ttl; 2707 } 2708 connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl; 2709 2710 crhold(credp); 2711 connp->conn_cred = credp; 2712 connp->conn_cpid = curproc->p_pid; 2713 connp->conn_open_time = ddi_get_lbolt64(); 2714 2715 /* Cache things in the ixa without any refhold */ 2716 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED)); 2717 connp->conn_ixa->ixa_cred = credp; 2718 connp->conn_ixa->ixa_cpid = connp->conn_cpid; 2719 2720 connp->conn_zoneid = zoneid; 2721 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 2722 connp->conn_ixa->ixa_zoneid = zoneid; 2723 connp->conn_mlp_type = mlptSingle; 2724 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 2725 ASSERT(tcp->tcp_tcps == tcps); 2726 2727 /* 2728 * If the caller has the process-wide flag set, then default to MAC 2729 * exempt mode. This allows read-down to unlabeled hosts. 2730 */ 2731 if (getpflags(NET_MAC_AWARE, credp) != 0) 2732 connp->conn_mac_mode = CONN_MAC_AWARE; 2733 2734 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 2735 2736 if (issocket) { 2737 tcp->tcp_issocket = 1; 2738 } 2739 2740 connp->conn_rcvbuf = tcps->tcps_recv_hiwat; 2741 connp->conn_sndbuf = tcps->tcps_xmit_hiwat; 2742 if (tcps->tcps_snd_lowat_fraction != 0) { 2743 connp->conn_sndlowat = connp->conn_sndbuf / 2744 tcps->tcps_snd_lowat_fraction; 2745 } else { 2746 connp->conn_sndlowat = tcps->tcps_xmit_lowat; 2747 } 2748 connp->conn_so_type = SOCK_STREAM; 2749 connp->conn_wroff = connp->conn_ht_iphc_allocated + 2750 tcps->tcps_wroff_xtra; 2751 2752 SOCK_CONNID_INIT(tcp->tcp_connid); 2753 /* DTrace ignores this - it isn't a tcp:::state-change */ 2754 tcp->tcp_state = TCPS_IDLE; 2755 tcp_init_values(tcp, NULL); 2756 return (connp); 2757 } 2758 2759 static int 2760 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 2761 boolean_t isv6) 2762 { 2763 tcp_t *tcp = NULL; 2764 conn_t *connp = NULL; 2765 int err; 2766 vmem_t *minor_arena = NULL; 2767 dev_t conn_dev; 2768 boolean_t issocket; 2769 2770 if (q->q_ptr != NULL) 2771 return (0); 2772 2773 if (sflag == MODOPEN) 2774 return (EINVAL); 2775 2776 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 2777 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 2778 minor_arena = ip_minor_arena_la; 2779 } else { 2780 /* 2781 * Either minor numbers in the large arena were exhausted 2782 * or a non socket application is doing the open. 2783 * Try to allocate from the small arena. 2784 */ 2785 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 2786 return (EBUSY); 2787 } 2788 minor_arena = ip_minor_arena_sa; 2789 } 2790 2791 ASSERT(minor_arena != NULL); 2792 2793 *devp = makedevice(getmajor(*devp), (minor_t)conn_dev); 2794 2795 if (flag & SO_FALLBACK) { 2796 /* 2797 * Non streams socket needs a stream to fallback to 2798 */ 2799 RD(q)->q_ptr = (void *)conn_dev; 2800 WR(q)->q_qinfo = &tcp_fallback_sock_winit; 2801 WR(q)->q_ptr = (void *)minor_arena; 2802 qprocson(q); 2803 return (0); 2804 } else if (flag & SO_ACCEPTOR) { 2805 q->q_qinfo = &tcp_acceptor_rinit; 2806 /* 2807 * the conn_dev and minor_arena will be subsequently used by 2808 * tcp_tli_accept() and tcp_tpi_close_accept() to figure out 2809 * the minor device number for this connection from the q_ptr. 2810 */ 2811 RD(q)->q_ptr = (void *)conn_dev; 2812 WR(q)->q_qinfo = &tcp_acceptor_winit; 2813 WR(q)->q_ptr = (void *)minor_arena; 2814 qprocson(q); 2815 return (0); 2816 } 2817 2818 issocket = flag & SO_SOCKSTR; 2819 connp = tcp_create_common(credp, isv6, issocket, &err); 2820 2821 if (connp == NULL) { 2822 inet_minor_free(minor_arena, conn_dev); 2823 q->q_ptr = WR(q)->q_ptr = NULL; 2824 return (err); 2825 } 2826 2827 connp->conn_rq = q; 2828 connp->conn_wq = WR(q); 2829 q->q_ptr = WR(q)->q_ptr = connp; 2830 2831 connp->conn_dev = conn_dev; 2832 connp->conn_minor_arena = minor_arena; 2833 2834 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 2835 ASSERT(WR(q)->q_qinfo == &tcp_winit); 2836 2837 tcp = connp->conn_tcp; 2838 2839 if (issocket) { 2840 WR(q)->q_qinfo = &tcp_sock_winit; 2841 } else { 2842 #ifdef _ILP32 2843 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 2844 #else 2845 tcp->tcp_acceptor_id = conn_dev; 2846 #endif /* _ILP32 */ 2847 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 2848 } 2849 2850 /* 2851 * Put the ref for TCP. Ref for IP was already put 2852 * by ipcl_conn_create. Also Make the conn_t globally 2853 * visible to walkers 2854 */ 2855 mutex_enter(&connp->conn_lock); 2856 CONN_INC_REF_LOCKED(connp); 2857 ASSERT(connp->conn_ref == 2); 2858 connp->conn_state_flags &= ~CONN_INCIPIENT; 2859 mutex_exit(&connp->conn_lock); 2860 2861 qprocson(q); 2862 return (0); 2863 } 2864 2865 /* 2866 * Build/update the tcp header template (in conn_ht_iphc) based on 2867 * conn_xmit_ipp. The headers include ip6_t, any extension 2868 * headers, and the maximum size tcp header (to avoid reallocation 2869 * on the fly for additional tcp options). 2870 * 2871 * Assumes the caller has already set conn_{faddr,laddr,fport,lport,flowinfo}. 2872 * Returns failure if can't allocate memory. 2873 */ 2874 int 2875 tcp_build_hdrs(tcp_t *tcp) 2876 { 2877 tcp_stack_t *tcps = tcp->tcp_tcps; 2878 conn_t *connp = tcp->tcp_connp; 2879 char buf[TCP_MAX_HDR_LENGTH]; 2880 uint_t buflen; 2881 uint_t ulplen = TCP_MIN_HEADER_LENGTH; 2882 uint_t extralen = TCP_MAX_TCP_OPTIONS_LENGTH; 2883 tcpha_t *tcpha; 2884 uint32_t cksum; 2885 int error; 2886 2887 /* 2888 * We might be called after the connection is set up, and we might 2889 * have TS options already in the TCP header. Thus we save any 2890 * existing tcp header. 2891 */ 2892 buflen = connp->conn_ht_ulp_len; 2893 if (buflen != 0) { 2894 bcopy(connp->conn_ht_ulp, buf, buflen); 2895 extralen -= buflen - ulplen; 2896 ulplen = buflen; 2897 } 2898 2899 /* Grab lock to satisfy ASSERT; TCP is serialized using squeue */ 2900 mutex_enter(&connp->conn_lock); 2901 error = conn_build_hdr_template(connp, ulplen, extralen, 2902 &connp->conn_laddr_v6, &connp->conn_faddr_v6, connp->conn_flowinfo); 2903 mutex_exit(&connp->conn_lock); 2904 if (error != 0) 2905 return (error); 2906 2907 /* 2908 * Any routing header/option has been massaged. The checksum difference 2909 * is stored in conn_sum for later use. 2910 */ 2911 tcpha = (tcpha_t *)connp->conn_ht_ulp; 2912 tcp->tcp_tcpha = tcpha; 2913 2914 /* restore any old tcp header */ 2915 if (buflen != 0) { 2916 bcopy(buf, connp->conn_ht_ulp, buflen); 2917 } else { 2918 tcpha->tha_sum = 0; 2919 tcpha->tha_urp = 0; 2920 tcpha->tha_ack = 0; 2921 tcpha->tha_offset_and_reserved = (5 << 4); 2922 tcpha->tha_lport = connp->conn_lport; 2923 tcpha->tha_fport = connp->conn_fport; 2924 } 2925 2926 /* 2927 * IP wants our header length in the checksum field to 2928 * allow it to perform a single pseudo-header+checksum 2929 * calculation on behalf of TCP. 2930 * Include the adjustment for a source route once IP_OPTIONS is set. 2931 */ 2932 cksum = sizeof (tcpha_t) + connp->conn_sum; 2933 cksum = (cksum >> 16) + (cksum & 0xFFFF); 2934 ASSERT(cksum < 0x10000); 2935 tcpha->tha_sum = htons(cksum); 2936 2937 if (connp->conn_ipversion == IPV4_VERSION) 2938 tcp->tcp_ipha = (ipha_t *)connp->conn_ht_iphc; 2939 else 2940 tcp->tcp_ip6h = (ip6_t *)connp->conn_ht_iphc; 2941 2942 if (connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra > 2943 connp->conn_wroff) { 2944 connp->conn_wroff = connp->conn_ht_iphc_allocated + 2945 tcps->tcps_wroff_xtra; 2946 (void) proto_set_tx_wroff(connp->conn_rq, connp, 2947 connp->conn_wroff); 2948 } 2949 return (0); 2950 } 2951 2952 /* 2953 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 2954 * We do not allow the receive window to shrink. After setting rwnd, 2955 * set the flow control hiwat of the stream. 2956 * 2957 * This function is called in 2 cases: 2958 * 2959 * 1) Before data transfer begins, in tcp_input_listener() for accepting a 2960 * connection (passive open) and in tcp_input_data() for active connect. 2961 * This is called after tcp_mss_set() when the desired MSS value is known. 2962 * This makes sure that our window size is a mutiple of the other side's 2963 * MSS. 2964 * 2) Handling SO_RCVBUF option. 2965 * 2966 * It is ASSUMED that the requested size is a multiple of the current MSS. 2967 * 2968 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 2969 * user requests so. 2970 */ 2971 int 2972 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 2973 { 2974 uint32_t mss = tcp->tcp_mss; 2975 uint32_t old_max_rwnd; 2976 uint32_t max_transmittable_rwnd; 2977 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2978 tcp_stack_t *tcps = tcp->tcp_tcps; 2979 conn_t *connp = tcp->tcp_connp; 2980 2981 /* 2982 * Insist on a receive window that is at least 2983 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 2984 * funny TCP interactions of Nagle algorithm, SWS avoidance 2985 * and delayed acknowledgement. 2986 */ 2987 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 2988 2989 if (tcp->tcp_fused) { 2990 size_t sth_hiwat; 2991 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 2992 2993 ASSERT(peer_tcp != NULL); 2994 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 2995 if (!tcp_detached) { 2996 (void) proto_set_rx_hiwat(connp->conn_rq, connp, 2997 sth_hiwat); 2998 tcp_set_recv_threshold(tcp, sth_hiwat >> 3); 2999 } 3000 3001 /* Caller could have changed tcp_rwnd; update tha_win */ 3002 if (tcp->tcp_tcpha != NULL) { 3003 tcp->tcp_tcpha->tha_win = 3004 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 3005 } 3006 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 3007 tcp->tcp_cwnd_max = rwnd; 3008 3009 /* 3010 * In the fusion case, the maxpsz stream head value of 3011 * our peer is set according to its send buffer size 3012 * and our receive buffer size; since the latter may 3013 * have changed we need to update the peer's maxpsz. 3014 */ 3015 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 3016 return (sth_hiwat); 3017 } 3018 3019 if (tcp_detached) 3020 old_max_rwnd = tcp->tcp_rwnd; 3021 else 3022 old_max_rwnd = connp->conn_rcvbuf; 3023 3024 3025 /* 3026 * If window size info has already been exchanged, TCP should not 3027 * shrink the window. Shrinking window is doable if done carefully. 3028 * We may add that support later. But so far there is not a real 3029 * need to do that. 3030 */ 3031 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 3032 /* MSS may have changed, do a round up again. */ 3033 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 3034 } 3035 3036 /* 3037 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 3038 * can be applied even before the window scale option is decided. 3039 */ 3040 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 3041 if (rwnd > max_transmittable_rwnd) { 3042 rwnd = max_transmittable_rwnd - 3043 (max_transmittable_rwnd % mss); 3044 if (rwnd < mss) 3045 rwnd = max_transmittable_rwnd; 3046 /* 3047 * If we're over the limit we may have to back down tcp_rwnd. 3048 * The increment below won't work for us. So we set all three 3049 * here and the increment below will have no effect. 3050 */ 3051 tcp->tcp_rwnd = old_max_rwnd = rwnd; 3052 } 3053 if (tcp->tcp_localnet) { 3054 tcp->tcp_rack_abs_max = 3055 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 3056 } else { 3057 /* 3058 * For a remote host on a different subnet (through a router), 3059 * we ack every other packet to be conforming to RFC1122. 3060 * tcp_deferred_acks_max is default to 2. 3061 */ 3062 tcp->tcp_rack_abs_max = 3063 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 3064 } 3065 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 3066 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 3067 else 3068 tcp->tcp_rack_cur_max = 0; 3069 /* 3070 * Increment the current rwnd by the amount the maximum grew (we 3071 * can not overwrite it since we might be in the middle of a 3072 * connection.) 3073 */ 3074 tcp->tcp_rwnd += rwnd - old_max_rwnd; 3075 connp->conn_rcvbuf = rwnd; 3076 3077 /* Are we already connected? */ 3078 if (tcp->tcp_tcpha != NULL) { 3079 tcp->tcp_tcpha->tha_win = 3080 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 3081 } 3082 3083 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 3084 tcp->tcp_cwnd_max = rwnd; 3085 3086 if (tcp_detached) 3087 return (rwnd); 3088 3089 tcp_set_recv_threshold(tcp, rwnd >> 3); 3090 3091 (void) proto_set_rx_hiwat(connp->conn_rq, connp, rwnd); 3092 return (rwnd); 3093 } 3094 3095 int 3096 tcp_do_unbind(conn_t *connp) 3097 { 3098 tcp_t *tcp = connp->conn_tcp; 3099 int32_t oldstate; 3100 3101 switch (tcp->tcp_state) { 3102 case TCPS_BOUND: 3103 case TCPS_LISTEN: 3104 break; 3105 default: 3106 return (-TOUTSTATE); 3107 } 3108 3109 /* 3110 * Need to clean up all the eagers since after the unbind, segments 3111 * will no longer be delivered to this listener stream. 3112 */ 3113 mutex_enter(&tcp->tcp_eager_lock); 3114 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 3115 tcp_eager_cleanup(tcp, 0); 3116 } 3117 mutex_exit(&tcp->tcp_eager_lock); 3118 3119 /* Clean up the listener connection counter if necessary. */ 3120 if (tcp->tcp_listen_cnt != NULL) 3121 TCP_DECR_LISTEN_CNT(tcp); 3122 connp->conn_laddr_v6 = ipv6_all_zeros; 3123 connp->conn_saddr_v6 = ipv6_all_zeros; 3124 tcp_bind_hash_remove(tcp); 3125 oldstate = tcp->tcp_state; 3126 tcp->tcp_state = TCPS_IDLE; 3127 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 3128 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 3129 int32_t, oldstate); 3130 3131 ip_unbind(connp); 3132 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 3133 3134 return (0); 3135 } 3136 3137 /* 3138 * Collect protocol properties to send to the upper handle. 3139 */ 3140 void 3141 tcp_get_proto_props(tcp_t *tcp, struct sock_proto_props *sopp) 3142 { 3143 conn_t *connp = tcp->tcp_connp; 3144 3145 sopp->sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF; 3146 sopp->sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 3147 3148 sopp->sopp_rxhiwat = tcp->tcp_fused ? 3149 tcp_fuse_set_rcv_hiwat(tcp, connp->conn_rcvbuf) : 3150 connp->conn_rcvbuf; 3151 /* 3152 * Determine what write offset value to use depending on SACK and 3153 * whether the endpoint is fused or not. 3154 */ 3155 if (tcp->tcp_fused) { 3156 ASSERT(tcp->tcp_loopback); 3157 ASSERT(tcp->tcp_loopback_peer != NULL); 3158 /* 3159 * For fused tcp loopback, set the stream head's write 3160 * offset value to zero since we won't be needing any room 3161 * for TCP/IP headers. This would also improve performance 3162 * since it would reduce the amount of work done by kmem. 3163 * Non-fused tcp loopback case is handled separately below. 3164 */ 3165 sopp->sopp_wroff = 0; 3166 /* 3167 * Update the peer's transmit parameters according to 3168 * our recently calculated high water mark value. 3169 */ 3170 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 3171 } else if (tcp->tcp_snd_sack_ok) { 3172 sopp->sopp_wroff = connp->conn_ht_iphc_allocated + 3173 (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra); 3174 } else { 3175 sopp->sopp_wroff = connp->conn_ht_iphc_len + 3176 (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra); 3177 } 3178 3179 if (tcp->tcp_loopback) { 3180 sopp->sopp_flags |= SOCKOPT_LOOPBACK; 3181 sopp->sopp_loopback = B_TRUE; 3182 } 3183 } 3184 3185 /* 3186 * Check the usability of ZEROCOPY. It's instead checking the flag set by IP. 3187 */ 3188 boolean_t 3189 tcp_zcopy_check(tcp_t *tcp) 3190 { 3191 conn_t *connp = tcp->tcp_connp; 3192 ip_xmit_attr_t *ixa = connp->conn_ixa; 3193 boolean_t zc_enabled = B_FALSE; 3194 tcp_stack_t *tcps = tcp->tcp_tcps; 3195 3196 if (do_tcpzcopy == 2) 3197 zc_enabled = B_TRUE; 3198 else if ((do_tcpzcopy == 1) && (ixa->ixa_flags & IXAF_ZCOPY_CAPAB)) 3199 zc_enabled = B_TRUE; 3200 3201 tcp->tcp_snd_zcopy_on = zc_enabled; 3202 if (!TCP_IS_DETACHED(tcp)) { 3203 if (zc_enabled) { 3204 ixa->ixa_flags |= IXAF_VERIFY_ZCOPY; 3205 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3206 ZCVMSAFE); 3207 TCP_STAT(tcps, tcp_zcopy_on); 3208 } else { 3209 ixa->ixa_flags &= ~IXAF_VERIFY_ZCOPY; 3210 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3211 ZCVMUNSAFE); 3212 TCP_STAT(tcps, tcp_zcopy_off); 3213 } 3214 } 3215 return (zc_enabled); 3216 } 3217 3218 /* 3219 * Backoff from a zero-copy message by copying data to a new allocated 3220 * message and freeing the original desballoca'ed segmapped message. 3221 * 3222 * This function is called by following two callers: 3223 * 1. tcp_timer: fix_xmitlist is set to B_TRUE, because it's safe to free 3224 * the origial desballoca'ed message and notify sockfs. This is in re- 3225 * transmit state. 3226 * 2. tcp_output: fix_xmitlist is set to B_FALSE. Flag STRUIO_ZCNOTIFY need 3227 * to be copied to new message. 3228 */ 3229 mblk_t * 3230 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, boolean_t fix_xmitlist) 3231 { 3232 mblk_t *nbp; 3233 mblk_t *head = NULL; 3234 mblk_t *tail = NULL; 3235 tcp_stack_t *tcps = tcp->tcp_tcps; 3236 3237 ASSERT(bp != NULL); 3238 while (bp != NULL) { 3239 if (IS_VMLOANED_MBLK(bp)) { 3240 TCP_STAT(tcps, tcp_zcopy_backoff); 3241 if ((nbp = copyb(bp)) == NULL) { 3242 tcp->tcp_xmit_zc_clean = B_FALSE; 3243 if (tail != NULL) 3244 tail->b_cont = bp; 3245 return ((head == NULL) ? bp : head); 3246 } 3247 3248 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 3249 if (fix_xmitlist) 3250 tcp_zcopy_notify(tcp); 3251 else 3252 nbp->b_datap->db_struioflag |= 3253 STRUIO_ZCNOTIFY; 3254 } 3255 nbp->b_cont = bp->b_cont; 3256 3257 /* 3258 * Copy saved information and adjust tcp_xmit_tail 3259 * if needed. 3260 */ 3261 if (fix_xmitlist) { 3262 nbp->b_prev = bp->b_prev; 3263 nbp->b_next = bp->b_next; 3264 3265 if (tcp->tcp_xmit_tail == bp) 3266 tcp->tcp_xmit_tail = nbp; 3267 } 3268 3269 /* Free the original message. */ 3270 bp->b_prev = NULL; 3271 bp->b_next = NULL; 3272 freeb(bp); 3273 3274 bp = nbp; 3275 } 3276 3277 if (head == NULL) { 3278 head = bp; 3279 } 3280 if (tail == NULL) { 3281 tail = bp; 3282 } else { 3283 tail->b_cont = bp; 3284 tail = bp; 3285 } 3286 3287 /* Move forward. */ 3288 bp = bp->b_cont; 3289 } 3290 3291 if (fix_xmitlist) { 3292 tcp->tcp_xmit_last = tail; 3293 tcp->tcp_xmit_zc_clean = B_TRUE; 3294 } 3295 3296 return (head); 3297 } 3298 3299 void 3300 tcp_zcopy_notify(tcp_t *tcp) 3301 { 3302 struct stdata *stp; 3303 conn_t *connp; 3304 3305 if (tcp->tcp_detached) 3306 return; 3307 connp = tcp->tcp_connp; 3308 if (IPCL_IS_NONSTR(connp)) { 3309 (*connp->conn_upcalls->su_zcopy_notify) 3310 (connp->conn_upper_handle); 3311 return; 3312 } 3313 stp = STREAM(connp->conn_rq); 3314 mutex_enter(&stp->sd_lock); 3315 stp->sd_flag |= STZCNOTIFY; 3316 cv_broadcast(&stp->sd_zcopy_wait); 3317 mutex_exit(&stp->sd_lock); 3318 } 3319 3320 /* 3321 * Update the TCP connection according to change of LSO capability. 3322 */ 3323 static void 3324 tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa) 3325 { 3326 /* 3327 * We check against IPv4 header length to preserve the old behavior 3328 * of only enabling LSO when there are no IP options. 3329 * But this restriction might not be necessary at all. Before removing 3330 * it, need to verify how LSO is handled for source routing case, with 3331 * which IP does software checksum. 3332 * 3333 * For IPv6, whenever any extension header is needed, LSO is supressed. 3334 */ 3335 if (ixa->ixa_ip_hdr_length != ((ixa->ixa_flags & IXAF_IS_IPV4) ? 3336 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN)) 3337 return; 3338 3339 /* 3340 * Either the LSO capability newly became usable, or it has changed. 3341 */ 3342 if (ixa->ixa_flags & IXAF_LSO_CAPAB) { 3343 ill_lso_capab_t *lsoc = &ixa->ixa_lso_capab; 3344 uint_t lso_max = (ixa->ixa_flags & IXAF_IS_IPV4) ? 3345 lsoc->ill_lso_max_tcpv4 : lsoc->ill_lso_max_tcpv6; 3346 3347 ASSERT3U(lso_max, >, 0); 3348 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, lso_max); 3349 3350 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 3351 boolean_t, B_TRUE, uint32_t, tcp->tcp_lso_max); 3352 3353 /* 3354 * If LSO to be enabled, notify the STREAM header with larger 3355 * data block. 3356 */ 3357 if (!tcp->tcp_lso) 3358 tcp->tcp_maxpsz_multiplier = 0; 3359 3360 tcp->tcp_lso = B_TRUE; 3361 TCP_STAT(tcp->tcp_tcps, tcp_lso_enabled); 3362 } else { /* LSO capability is not usable any more. */ 3363 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 3364 boolean_t, B_FALSE, uint32_t, tcp->tcp_lso_max); 3365 3366 /* 3367 * If LSO to be disabled, notify the STREAM header with smaller 3368 * data block. And need to restore fragsize to PMTU. 3369 */ 3370 if (tcp->tcp_lso) { 3371 tcp->tcp_maxpsz_multiplier = 3372 tcp->tcp_tcps->tcps_maxpsz_multiplier; 3373 ixa->ixa_fragsize = ixa->ixa_pmtu; 3374 tcp->tcp_lso = B_FALSE; 3375 TCP_STAT(tcp->tcp_tcps, tcp_lso_disabled); 3376 } 3377 } 3378 3379 (void) tcp_maxpsz_set(tcp, B_TRUE); 3380 } 3381 3382 /* 3383 * Update the TCP connection according to change of ZEROCOPY capability. 3384 */ 3385 static void 3386 tcp_update_zcopy(tcp_t *tcp) 3387 { 3388 conn_t *connp = tcp->tcp_connp; 3389 tcp_stack_t *tcps = tcp->tcp_tcps; 3390 3391 if (tcp->tcp_snd_zcopy_on) { 3392 tcp->tcp_snd_zcopy_on = B_FALSE; 3393 if (!TCP_IS_DETACHED(tcp)) { 3394 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3395 ZCVMUNSAFE); 3396 TCP_STAT(tcps, tcp_zcopy_off); 3397 } 3398 } else { 3399 tcp->tcp_snd_zcopy_on = B_TRUE; 3400 if (!TCP_IS_DETACHED(tcp)) { 3401 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3402 ZCVMSAFE); 3403 TCP_STAT(tcps, tcp_zcopy_on); 3404 } 3405 } 3406 } 3407 3408 /* 3409 * Notify function registered with ip_xmit_attr_t. It's called in the squeue 3410 * so it's safe to update the TCP connection. 3411 */ 3412 /* ARGSUSED1 */ 3413 static void 3414 tcp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype, 3415 ixa_notify_arg_t narg) 3416 { 3417 tcp_t *tcp = (tcp_t *)arg; 3418 conn_t *connp = tcp->tcp_connp; 3419 3420 switch (ntype) { 3421 case IXAN_LSO: 3422 tcp_update_lso(tcp, connp->conn_ixa); 3423 break; 3424 case IXAN_PMTU: 3425 tcp_update_pmtu(tcp, B_FALSE); 3426 break; 3427 case IXAN_ZCOPY: 3428 tcp_update_zcopy(tcp); 3429 break; 3430 default: 3431 break; 3432 } 3433 } 3434 3435 /* 3436 * The TCP write service routine should never be called... 3437 */ 3438 /* ARGSUSED */ 3439 static int 3440 tcp_wsrv(queue_t *q) 3441 { 3442 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 3443 3444 TCP_STAT(tcps, tcp_wsrv_called); 3445 return (0); 3446 } 3447 3448 /* 3449 * Hash list lookup routine for tcp_t structures. 3450 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 3451 */ 3452 tcp_t * 3453 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 3454 { 3455 tf_t *tf; 3456 tcp_t *tcp; 3457 3458 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 3459 mutex_enter(&tf->tf_lock); 3460 for (tcp = tf->tf_tcp; tcp != NULL; 3461 tcp = tcp->tcp_acceptor_hash) { 3462 if (tcp->tcp_acceptor_id == id) { 3463 CONN_INC_REF(tcp->tcp_connp); 3464 mutex_exit(&tf->tf_lock); 3465 return (tcp); 3466 } 3467 } 3468 mutex_exit(&tf->tf_lock); 3469 return (NULL); 3470 } 3471 3472 /* 3473 * Hash list insertion routine for tcp_t structures. 3474 */ 3475 void 3476 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 3477 { 3478 tf_t *tf; 3479 tcp_t **tcpp; 3480 tcp_t *tcpnext; 3481 tcp_stack_t *tcps = tcp->tcp_tcps; 3482 3483 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 3484 3485 if (tcp->tcp_ptpahn != NULL) 3486 tcp_acceptor_hash_remove(tcp); 3487 tcpp = &tf->tf_tcp; 3488 mutex_enter(&tf->tf_lock); 3489 tcpnext = tcpp[0]; 3490 if (tcpnext) 3491 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 3492 tcp->tcp_acceptor_hash = tcpnext; 3493 tcp->tcp_ptpahn = tcpp; 3494 tcpp[0] = tcp; 3495 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 3496 mutex_exit(&tf->tf_lock); 3497 } 3498 3499 /* 3500 * Hash list removal routine for tcp_t structures. 3501 */ 3502 void 3503 tcp_acceptor_hash_remove(tcp_t *tcp) 3504 { 3505 tcp_t *tcpnext; 3506 kmutex_t *lockp; 3507 3508 /* 3509 * Extract the lock pointer in case there are concurrent 3510 * hash_remove's for this instance. 3511 */ 3512 lockp = tcp->tcp_acceptor_lockp; 3513 3514 if (tcp->tcp_ptpahn == NULL) 3515 return; 3516 3517 ASSERT(lockp != NULL); 3518 mutex_enter(lockp); 3519 if (tcp->tcp_ptpahn) { 3520 tcpnext = tcp->tcp_acceptor_hash; 3521 if (tcpnext) { 3522 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 3523 tcp->tcp_acceptor_hash = NULL; 3524 } 3525 *tcp->tcp_ptpahn = tcpnext; 3526 tcp->tcp_ptpahn = NULL; 3527 } 3528 mutex_exit(lockp); 3529 tcp->tcp_acceptor_lockp = NULL; 3530 } 3531 3532 /* 3533 * Type three generator adapted from the random() function in 4.4 BSD: 3534 */ 3535 3536 /* 3537 * Copyright (c) 1983, 1993 3538 * The Regents of the University of California. All rights reserved. 3539 * 3540 * Redistribution and use in source and binary forms, with or without 3541 * modification, are permitted provided that the following conditions 3542 * are met: 3543 * 1. Redistributions of source code must retain the above copyright 3544 * notice, this list of conditions and the following disclaimer. 3545 * 2. Redistributions in binary form must reproduce the above copyright 3546 * notice, this list of conditions and the following disclaimer in the 3547 * documentation and/or other materials provided with the distribution. 3548 * 3. All advertising materials mentioning features or use of this software 3549 * must display the following acknowledgement: 3550 * This product includes software developed by the University of 3551 * California, Berkeley and its contributors. 3552 * 4. Neither the name of the University nor the names of its contributors 3553 * may be used to endorse or promote products derived from this software 3554 * without specific prior written permission. 3555 * 3556 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 3557 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 3558 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 3559 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 3560 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 3561 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 3562 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 3563 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 3564 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 3565 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 3566 * SUCH DAMAGE. 3567 */ 3568 3569 /* Type 3 -- x**31 + x**3 + 1 */ 3570 #define DEG_3 31 3571 #define SEP_3 3 3572 3573 3574 /* Protected by tcp_random_lock */ 3575 static int tcp_randtbl[DEG_3 + 1]; 3576 3577 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 3578 static int *tcp_random_rptr = &tcp_randtbl[1]; 3579 3580 static int *tcp_random_state = &tcp_randtbl[1]; 3581 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 3582 3583 kmutex_t tcp_random_lock; 3584 3585 void 3586 tcp_random_init(void) 3587 { 3588 int i; 3589 hrtime_t hrt; 3590 time_t wallclock; 3591 uint64_t result; 3592 3593 /* 3594 * Use high-res timer and current time for seed. Gethrtime() returns 3595 * a longlong, which may contain resolution down to nanoseconds. 3596 * The current time will either be a 32-bit or a 64-bit quantity. 3597 * XOR the two together in a 64-bit result variable. 3598 * Convert the result to a 32-bit value by multiplying the high-order 3599 * 32-bits by the low-order 32-bits. 3600 */ 3601 3602 hrt = gethrtime(); 3603 (void) drv_getparm(TIME, &wallclock); 3604 result = (uint64_t)wallclock ^ (uint64_t)hrt; 3605 mutex_enter(&tcp_random_lock); 3606 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 3607 (result & 0xffffffff); 3608 3609 for (i = 1; i < DEG_3; i++) 3610 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 3611 + 12345; 3612 tcp_random_fptr = &tcp_random_state[SEP_3]; 3613 tcp_random_rptr = &tcp_random_state[0]; 3614 mutex_exit(&tcp_random_lock); 3615 for (i = 0; i < 10 * DEG_3; i++) 3616 (void) tcp_random(); 3617 } 3618 3619 /* 3620 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 3621 * This range is selected to be approximately centered on TCP_ISS / 2, 3622 * and easy to compute. We get this value by generating a 32-bit random 3623 * number, selecting out the high-order 17 bits, and then adding one so 3624 * that we never return zero. 3625 */ 3626 int 3627 tcp_random(void) 3628 { 3629 int i; 3630 3631 mutex_enter(&tcp_random_lock); 3632 *tcp_random_fptr += *tcp_random_rptr; 3633 3634 /* 3635 * The high-order bits are more random than the low-order bits, 3636 * so we select out the high-order 17 bits and add one so that 3637 * we never return zero. 3638 */ 3639 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 3640 if (++tcp_random_fptr >= tcp_random_end_ptr) { 3641 tcp_random_fptr = tcp_random_state; 3642 ++tcp_random_rptr; 3643 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 3644 tcp_random_rptr = tcp_random_state; 3645 3646 mutex_exit(&tcp_random_lock); 3647 return (i); 3648 } 3649 3650 /* 3651 * Split this function out so that if the secret changes, I'm okay. 3652 * 3653 * Initialize the tcp_iss_cookie and tcp_iss_key. 3654 */ 3655 3656 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 3657 3658 void 3659 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 3660 { 3661 struct { 3662 int32_t current_time; 3663 uint32_t randnum; 3664 uint16_t pad; 3665 uint8_t ether[6]; 3666 uint8_t passwd[PASSWD_SIZE]; 3667 } tcp_iss_cookie; 3668 time_t t; 3669 3670 /* 3671 * Start with the current absolute time. 3672 */ 3673 (void) drv_getparm(TIME, &t); 3674 tcp_iss_cookie.current_time = t; 3675 3676 /* 3677 * XXX - Need a more random number per RFC 1750, not this crap. 3678 * OTOH, if what follows is pretty random, then I'm in better shape. 3679 */ 3680 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 3681 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 3682 3683 /* 3684 * The cpu_type_info is pretty non-random. Ugggh. It does serve 3685 * as a good template. 3686 */ 3687 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 3688 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 3689 3690 /* 3691 * The pass-phrase. Normally this is supplied by user-called NDD. 3692 */ 3693 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 3694 3695 /* 3696 * See 4010593 if this section becomes a problem again, 3697 * but the local ethernet address is useful here. 3698 */ 3699 (void) localetheraddr(NULL, 3700 (struct ether_addr *)&tcp_iss_cookie.ether); 3701 3702 /* 3703 * Hash 'em all together. The MD5Final is called per-connection. 3704 */ 3705 mutex_enter(&tcps->tcps_iss_key_lock); 3706 MD5Init(&tcps->tcps_iss_key); 3707 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 3708 sizeof (tcp_iss_cookie)); 3709 mutex_exit(&tcps->tcps_iss_key_lock); 3710 } 3711 3712 /* 3713 * Called by IP when IP is loaded into the kernel 3714 */ 3715 void 3716 tcp_ddi_g_init(void) 3717 { 3718 tcp_timercache = kmem_cache_create("tcp_timercache", 3719 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 3720 NULL, NULL, NULL, NULL, NULL, 0); 3721 3722 tcp_notsack_blk_cache = kmem_cache_create("tcp_notsack_blk_cache", 3723 sizeof (notsack_blk_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 3724 3725 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 3726 3727 /* Initialize the random number generator */ 3728 tcp_random_init(); 3729 3730 /* A single callback independently of how many netstacks we have */ 3731 ip_squeue_init(tcp_squeue_add); 3732 3733 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 3734 3735 tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput); 3736 3737 /* 3738 * We want to be informed each time a stack is created or 3739 * destroyed in the kernel, so we can maintain the 3740 * set of tcp_stack_t's. 3741 */ 3742 netstack_register(NS_TCP, tcp_stack_init, NULL, tcp_stack_fini); 3743 } 3744 3745 3746 #define INET_NAME "ip" 3747 3748 /* 3749 * Initialize the TCP stack instance. 3750 */ 3751 static void * 3752 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 3753 { 3754 tcp_stack_t *tcps; 3755 int i; 3756 int error = 0; 3757 major_t major; 3758 size_t arrsz; 3759 3760 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 3761 tcps->tcps_netstack = ns; 3762 3763 /* Initialize locks */ 3764 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 3765 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 3766 3767 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 3768 tcps->tcps_g_epriv_ports[0] = ULP_DEF_EPRIV_PORT1; 3769 tcps->tcps_g_epriv_ports[1] = ULP_DEF_EPRIV_PORT2; 3770 tcps->tcps_min_anonpriv_port = 512; 3771 3772 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 3773 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 3774 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 3775 TCP_ACCEPTOR_FANOUT_SIZE, KM_SLEEP); 3776 3777 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 3778 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 3779 MUTEX_DEFAULT, NULL); 3780 } 3781 3782 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) { 3783 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 3784 MUTEX_DEFAULT, NULL); 3785 } 3786 3787 /* TCP's IPsec code calls the packet dropper. */ 3788 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 3789 3790 arrsz = tcp_propinfo_count * sizeof (mod_prop_info_t); 3791 tcps->tcps_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, 3792 KM_SLEEP); 3793 bcopy(tcp_propinfo_tbl, tcps->tcps_propinfo_tbl, arrsz); 3794 3795 /* 3796 * Note: To really walk the device tree you need the devinfo 3797 * pointer to your device which is only available after probe/attach. 3798 * The following is safe only because it uses ddi_root_node() 3799 */ 3800 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 3801 tcp_opt_obj.odb_opt_arr_cnt); 3802 3803 /* 3804 * Initialize RFC 1948 secret values. This will probably be reset once 3805 * by the boot scripts. 3806 * 3807 * Use NULL name, as the name is caught by the new lockstats. 3808 * 3809 * Initialize with some random, non-guessable string, like the global 3810 * T_INFO_ACK. 3811 */ 3812 3813 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 3814 sizeof (tcp_g_t_info_ack), tcps); 3815 3816 tcps->tcps_kstat = tcp_kstat2_init(stackid); 3817 tcps->tcps_mibkp = tcp_kstat_init(stackid); 3818 3819 major = mod_name_to_major(INET_NAME); 3820 error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident); 3821 ASSERT(error == 0); 3822 tcps->tcps_ixa_cleanup_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL); 3823 ASSERT(tcps->tcps_ixa_cleanup_mp != NULL); 3824 cv_init(&tcps->tcps_ixa_cleanup_ready_cv, NULL, CV_DEFAULT, NULL); 3825 cv_init(&tcps->tcps_ixa_cleanup_done_cv, NULL, CV_DEFAULT, NULL); 3826 mutex_init(&tcps->tcps_ixa_cleanup_lock, NULL, MUTEX_DEFAULT, NULL); 3827 3828 mutex_init(&tcps->tcps_reclaim_lock, NULL, MUTEX_DEFAULT, NULL); 3829 tcps->tcps_reclaim = B_FALSE; 3830 tcps->tcps_reclaim_tid = 0; 3831 tcps->tcps_reclaim_period = tcps->tcps_rexmit_interval_max; 3832 3833 /* 3834 * ncpus is the current number of CPUs, which can be bigger than 3835 * boot_ncpus. But we don't want to use ncpus to allocate all the 3836 * tcp_stats_cpu_t at system boot up time since it will be 1. While 3837 * we handle adding CPU in tcp_cpu_update(), it will be slow if 3838 * there are many CPUs as we will be adding them 1 by 1. 3839 * 3840 * Note that tcps_sc_cnt never decreases and the tcps_sc[x] pointers 3841 * are not freed until the stack is going away. So there is no need 3842 * to grab a lock to access the per CPU tcps_sc[x] pointer. 3843 */ 3844 mutex_enter(&cpu_lock); 3845 tcps->tcps_sc_cnt = MAX(ncpus, boot_ncpus); 3846 mutex_exit(&cpu_lock); 3847 tcps->tcps_sc = kmem_zalloc(max_ncpus * sizeof (tcp_stats_cpu_t *), 3848 KM_SLEEP); 3849 for (i = 0; i < tcps->tcps_sc_cnt; i++) { 3850 tcps->tcps_sc[i] = kmem_zalloc(sizeof (tcp_stats_cpu_t), 3851 KM_SLEEP); 3852 } 3853 3854 mutex_init(&tcps->tcps_listener_conf_lock, NULL, MUTEX_DEFAULT, NULL); 3855 list_create(&tcps->tcps_listener_conf, sizeof (tcp_listener_t), 3856 offsetof(tcp_listener_t, tl_link)); 3857 3858 tcps->tcps_default_cc_algo = cc_load_algo(CC_DEFAULT_ALGO_NAME); 3859 VERIFY3P(tcps->tcps_default_cc_algo, !=, NULL); 3860 3861 return (tcps); 3862 } 3863 3864 /* 3865 * Called when the IP module is about to be unloaded. 3866 */ 3867 void 3868 tcp_ddi_g_destroy(void) 3869 { 3870 tcp_g_kstat_fini(tcp_g_kstat); 3871 tcp_g_kstat = NULL; 3872 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 3873 3874 mutex_destroy(&tcp_random_lock); 3875 3876 kmem_cache_destroy(tcp_timercache); 3877 kmem_cache_destroy(tcp_notsack_blk_cache); 3878 3879 netstack_unregister(NS_TCP); 3880 } 3881 3882 /* 3883 * Free the TCP stack instance. 3884 */ 3885 static void 3886 tcp_stack_fini(netstackid_t stackid, void *arg) 3887 { 3888 tcp_stack_t *tcps = (tcp_stack_t *)arg; 3889 int i; 3890 3891 freeb(tcps->tcps_ixa_cleanup_mp); 3892 tcps->tcps_ixa_cleanup_mp = NULL; 3893 cv_destroy(&tcps->tcps_ixa_cleanup_ready_cv); 3894 cv_destroy(&tcps->tcps_ixa_cleanup_done_cv); 3895 mutex_destroy(&tcps->tcps_ixa_cleanup_lock); 3896 3897 /* 3898 * Set tcps_reclaim to false tells tcp_reclaim_timer() not to restart 3899 * the timer. 3900 */ 3901 mutex_enter(&tcps->tcps_reclaim_lock); 3902 tcps->tcps_reclaim = B_FALSE; 3903 mutex_exit(&tcps->tcps_reclaim_lock); 3904 if (tcps->tcps_reclaim_tid != 0) 3905 (void) untimeout(tcps->tcps_reclaim_tid); 3906 mutex_destroy(&tcps->tcps_reclaim_lock); 3907 3908 tcp_listener_conf_cleanup(tcps); 3909 3910 for (i = 0; i < tcps->tcps_sc_cnt; i++) 3911 kmem_free(tcps->tcps_sc[i], sizeof (tcp_stats_cpu_t)); 3912 kmem_free(tcps->tcps_sc, max_ncpus * sizeof (tcp_stats_cpu_t *)); 3913 3914 kmem_free(tcps->tcps_propinfo_tbl, 3915 tcp_propinfo_count * sizeof (mod_prop_info_t)); 3916 tcps->tcps_propinfo_tbl = NULL; 3917 3918 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 3919 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 3920 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 3921 } 3922 3923 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) { 3924 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 3925 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 3926 } 3927 3928 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 3929 tcps->tcps_bind_fanout = NULL; 3930 3931 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * 3932 TCP_ACCEPTOR_FANOUT_SIZE); 3933 tcps->tcps_acceptor_fanout = NULL; 3934 3935 mutex_destroy(&tcps->tcps_iss_key_lock); 3936 mutex_destroy(&tcps->tcps_epriv_port_lock); 3937 3938 ip_drop_unregister(&tcps->tcps_dropper); 3939 3940 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 3941 tcps->tcps_kstat = NULL; 3942 3943 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 3944 tcps->tcps_mibkp = NULL; 3945 3946 ldi_ident_release(tcps->tcps_ldi_ident); 3947 kmem_free(tcps, sizeof (*tcps)); 3948 } 3949 3950 /* 3951 * Generate ISS, taking into account NDD changes may happen halfway through. 3952 * (If the iss is not zero, set it.) 3953 */ 3954 3955 static void 3956 tcp_iss_init(tcp_t *tcp) 3957 { 3958 MD5_CTX context; 3959 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 3960 uint32_t answer[4]; 3961 tcp_stack_t *tcps = tcp->tcp_tcps; 3962 conn_t *connp = tcp->tcp_connp; 3963 3964 tcps->tcps_iss_incr_extra += (tcps->tcps_iss_incr >> 1); 3965 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 3966 switch (tcps->tcps_strong_iss) { 3967 case 2: 3968 mutex_enter(&tcps->tcps_iss_key_lock); 3969 context = tcps->tcps_iss_key; 3970 mutex_exit(&tcps->tcps_iss_key_lock); 3971 arg.ports = connp->conn_ports; 3972 arg.src = connp->conn_laddr_v6; 3973 arg.dst = connp->conn_faddr_v6; 3974 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 3975 MD5Final((uchar_t *)answer, &context); 3976 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 3977 /* 3978 * Now that we've hashed into a unique per-connection sequence 3979 * space, add a random increment per strong_iss == 1. So I 3980 * guess we'll have to... 3981 */ 3982 /* FALLTHRU */ 3983 case 1: 3984 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 3985 break; 3986 default: 3987 tcp->tcp_iss += (uint32_t)gethrestime_sec() * 3988 tcps->tcps_iss_incr; 3989 break; 3990 } 3991 tcp->tcp_valid_bits = TCP_ISS_VALID; 3992 tcp->tcp_fss = tcp->tcp_iss - 1; 3993 tcp->tcp_suna = tcp->tcp_iss; 3994 tcp->tcp_snxt = tcp->tcp_iss + 1; 3995 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 3996 tcp->tcp_csuna = tcp->tcp_snxt; 3997 } 3998 3999 /* 4000 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 4001 * on the specified backing STREAMS q. Note, the caller may make the 4002 * decision to call based on the tcp_t.tcp_flow_stopped value which 4003 * when check outside the q's lock is only an advisory check ... 4004 */ 4005 void 4006 tcp_setqfull(tcp_t *tcp) 4007 { 4008 tcp_stack_t *tcps = tcp->tcp_tcps; 4009 conn_t *connp = tcp->tcp_connp; 4010 4011 if (tcp->tcp_closed) 4012 return; 4013 4014 conn_setqfull(connp, &tcp->tcp_flow_stopped); 4015 if (tcp->tcp_flow_stopped) 4016 TCP_STAT(tcps, tcp_flwctl_on); 4017 } 4018 4019 void 4020 tcp_clrqfull(tcp_t *tcp) 4021 { 4022 conn_t *connp = tcp->tcp_connp; 4023 4024 if (tcp->tcp_closed) 4025 return; 4026 conn_clrqfull(connp, &tcp->tcp_flow_stopped); 4027 } 4028 4029 static int 4030 tcp_squeue_switch(int val) 4031 { 4032 int rval = SQ_FILL; 4033 4034 switch (val) { 4035 case 1: 4036 rval = SQ_NODRAIN; 4037 break; 4038 case 2: 4039 rval = SQ_PROCESS; 4040 break; 4041 default: 4042 break; 4043 } 4044 return (rval); 4045 } 4046 4047 /* 4048 * This is called once for each squeue - globally for all stack 4049 * instances. 4050 */ 4051 static void 4052 tcp_squeue_add(squeue_t *sqp) 4053 { 4054 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 4055 sizeof (tcp_squeue_priv_t), KM_SLEEP); 4056 4057 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 4058 if (tcp_free_list_max_cnt == 0) { 4059 int tcp_ncpus = ((boot_max_ncpus == -1) ? 4060 max_ncpus : boot_max_ncpus); 4061 4062 /* 4063 * Limit number of entries to 1% of availble memory / tcp_ncpus 4064 */ 4065 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 4066 (tcp_ncpus * sizeof (tcp_t) * 100); 4067 } 4068 tcp_time_wait->tcp_free_list_cnt = 0; 4069 } 4070 /* 4071 * Return unix error is tli error is TSYSERR, otherwise return a negative 4072 * tli error. 4073 */ 4074 int 4075 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 4076 boolean_t bind_to_req_port_only) 4077 { 4078 int error; 4079 tcp_t *tcp = connp->conn_tcp; 4080 4081 if (tcp->tcp_state >= TCPS_BOUND) { 4082 if (connp->conn_debug) { 4083 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 4084 "tcp_bind: bad state, %d", tcp->tcp_state); 4085 } 4086 return (-TOUTSTATE); 4087 } 4088 4089 error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only); 4090 if (error != 0) 4091 return (error); 4092 4093 ASSERT(tcp->tcp_state == TCPS_BOUND); 4094 tcp->tcp_conn_req_max = 0; 4095 return (0); 4096 } 4097 4098 /* 4099 * If the return value from this function is positive, it's a UNIX error. 4100 * Otherwise, if it's negative, then the absolute value is a TLI error. 4101 * the TPI routine tcp_tpi_connect() is a wrapper function for this. 4102 */ 4103 int 4104 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len, 4105 cred_t *cr, pid_t pid) 4106 { 4107 tcp_t *tcp = connp->conn_tcp; 4108 sin_t *sin = (sin_t *)sa; 4109 sin6_t *sin6 = (sin6_t *)sa; 4110 ipaddr_t *dstaddrp; 4111 in_port_t dstport; 4112 uint_t srcid; 4113 int error; 4114 uint32_t mss; 4115 mblk_t *syn_mp; 4116 tcp_stack_t *tcps = tcp->tcp_tcps; 4117 int32_t oldstate; 4118 ip_xmit_attr_t *ixa = connp->conn_ixa; 4119 4120 oldstate = tcp->tcp_state; 4121 4122 switch (len) { 4123 default: 4124 /* 4125 * Should never happen 4126 */ 4127 return (EINVAL); 4128 4129 case sizeof (sin_t): 4130 sin = (sin_t *)sa; 4131 if (sin->sin_port == 0) { 4132 return (-TBADADDR); 4133 } 4134 if (connp->conn_ipv6_v6only) { 4135 return (EAFNOSUPPORT); 4136 } 4137 break; 4138 4139 case sizeof (sin6_t): 4140 sin6 = (sin6_t *)sa; 4141 if (sin6->sin6_port == 0) { 4142 return (-TBADADDR); 4143 } 4144 break; 4145 } 4146 /* 4147 * If we're connecting to an IPv4-mapped IPv6 address, we need to 4148 * make sure that the conn_ipversion is IPV4_VERSION. We 4149 * need to this before we call tcp_bindi() so that the port lookup 4150 * code will look for ports in the correct port space (IPv4 and 4151 * IPv6 have separate port spaces). 4152 */ 4153 if (connp->conn_family == AF_INET6 && 4154 connp->conn_ipversion == IPV6_VERSION && 4155 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 4156 if (connp->conn_ipv6_v6only) 4157 return (EADDRNOTAVAIL); 4158 4159 connp->conn_ipversion = IPV4_VERSION; 4160 } 4161 4162 switch (tcp->tcp_state) { 4163 case TCPS_LISTEN: 4164 /* 4165 * Listening sockets are not allowed to issue connect(). 4166 */ 4167 if (IPCL_IS_NONSTR(connp)) 4168 return (EOPNOTSUPP); 4169 /* FALLTHRU */ 4170 case TCPS_IDLE: 4171 /* 4172 * We support quick connect, refer to comments in 4173 * tcp_connect_*() 4174 */ 4175 /* FALLTHRU */ 4176 case TCPS_BOUND: 4177 break; 4178 default: 4179 return (-TOUTSTATE); 4180 } 4181 4182 /* 4183 * We update our cred/cpid based on the caller of connect 4184 */ 4185 if (connp->conn_cred != cr) { 4186 crhold(cr); 4187 crfree(connp->conn_cred); 4188 connp->conn_cred = cr; 4189 } 4190 connp->conn_cpid = pid; 4191 4192 /* Cache things in the ixa without any refhold */ 4193 ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED)); 4194 ixa->ixa_cred = cr; 4195 ixa->ixa_cpid = pid; 4196 if (is_system_labeled()) { 4197 /* We need to restart with a label based on the cred */ 4198 ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred); 4199 } 4200 4201 if (connp->conn_family == AF_INET6) { 4202 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 4203 error = tcp_connect_ipv6(tcp, &sin6->sin6_addr, 4204 sin6->sin6_port, sin6->sin6_flowinfo, 4205 sin6->__sin6_src_id, sin6->sin6_scope_id); 4206 } else { 4207 /* 4208 * Destination adress is mapped IPv6 address. 4209 * Source bound address should be unspecified or 4210 * IPv6 mapped address as well. 4211 */ 4212 if (!IN6_IS_ADDR_UNSPECIFIED( 4213 &connp->conn_bound_addr_v6) && 4214 !IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) { 4215 return (EADDRNOTAVAIL); 4216 } 4217 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 4218 dstport = sin6->sin6_port; 4219 srcid = sin6->__sin6_src_id; 4220 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, 4221 srcid); 4222 } 4223 } else { 4224 dstaddrp = &sin->sin_addr.s_addr; 4225 dstport = sin->sin_port; 4226 srcid = 0; 4227 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid); 4228 } 4229 4230 if (error != 0) 4231 goto connect_failed; 4232 4233 CL_INET_CONNECT(connp, B_TRUE, error); 4234 if (error != 0) 4235 goto connect_failed; 4236 4237 /* connect succeeded */ 4238 TCPS_BUMP_MIB(tcps, tcpActiveOpens); 4239 tcp->tcp_active_open = 1; 4240 4241 /* 4242 * tcp_set_destination() does not adjust for TCP/IP header length. 4243 */ 4244 mss = tcp->tcp_mss - connp->conn_ht_iphc_len; 4245 4246 /* 4247 * Just make sure our rwnd is at least rcvbuf * MSS large, and round up 4248 * to the nearest MSS. 4249 * 4250 * We do the round up here because we need to get the interface MTU 4251 * first before we can do the round up. 4252 */ 4253 tcp->tcp_rwnd = connp->conn_rcvbuf; 4254 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 4255 tcps->tcps_recv_hiwat_minmss * mss); 4256 connp->conn_rcvbuf = tcp->tcp_rwnd; 4257 tcp_set_ws_value(tcp); 4258 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 4259 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 4260 tcp->tcp_snd_ws_ok = B_TRUE; 4261 4262 /* 4263 * Set tcp_snd_ts_ok to true 4264 * so that tcp_xmit_mp will 4265 * include the timestamp 4266 * option in the SYN segment. 4267 */ 4268 if (tcps->tcps_tstamp_always || 4269 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 4270 tcp->tcp_snd_ts_ok = B_TRUE; 4271 } 4272 4273 /* 4274 * Note that tcp_snd_sack_ok can be set in tcp_set_destination() if 4275 * the SACK metric is set. So here we just check the per stack SACK 4276 * permitted param. 4277 */ 4278 if (tcps->tcps_sack_permitted == 2) { 4279 ASSERT(tcp->tcp_num_sack_blk == 0); 4280 ASSERT(tcp->tcp_notsack_list == NULL); 4281 tcp->tcp_snd_sack_ok = B_TRUE; 4282 } 4283 4284 /* 4285 * Should we use ECN? Note that the current 4286 * default value (SunOS 5.9) of tcp_ecn_permitted 4287 * is 1. The reason for doing this is that there 4288 * are equipments out there that will drop ECN 4289 * enabled IP packets. Setting it to 1 avoids 4290 * compatibility problems. 4291 */ 4292 if (tcps->tcps_ecn_permitted == 2) 4293 tcp->tcp_ecn_ok = B_TRUE; 4294 4295 /* Trace change from BOUND -> SYN_SENT here */ 4296 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 4297 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 4298 int32_t, TCPS_BOUND); 4299 4300 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 4301 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 4302 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 4303 if (syn_mp != NULL) { 4304 /* 4305 * We must bump the generation before sending the syn 4306 * to ensure that we use the right generation in case 4307 * this thread issues a "connected" up call. 4308 */ 4309 SOCK_CONNID_BUMP(tcp->tcp_connid); 4310 /* 4311 * DTrace sending the first SYN as a 4312 * tcp:::connect-request event. 4313 */ 4314 DTRACE_TCP5(connect__request, mblk_t *, NULL, 4315 ip_xmit_attr_t *, connp->conn_ixa, 4316 void_ip_t *, syn_mp->b_rptr, tcp_t *, tcp, 4317 tcph_t *, 4318 &syn_mp->b_rptr[connp->conn_ixa->ixa_ip_hdr_length]); 4319 tcp_send_data(tcp, syn_mp); 4320 } 4321 4322 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4323 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4324 return (0); 4325 4326 connect_failed: 4327 connp->conn_faddr_v6 = ipv6_all_zeros; 4328 connp->conn_fport = 0; 4329 tcp->tcp_state = oldstate; 4330 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4331 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4332 return (error); 4333 } 4334 4335 int 4336 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len, 4337 int backlog, cred_t *cr, boolean_t bind_to_req_port_only) 4338 { 4339 tcp_t *tcp = connp->conn_tcp; 4340 int error = 0; 4341 tcp_stack_t *tcps = tcp->tcp_tcps; 4342 int32_t oldstate; 4343 4344 /* All Solaris components should pass a cred for this operation. */ 4345 ASSERT(cr != NULL); 4346 4347 if (tcp->tcp_state >= TCPS_BOUND) { 4348 if ((tcp->tcp_state == TCPS_BOUND || 4349 tcp->tcp_state == TCPS_LISTEN) && backlog > 0) { 4350 /* 4351 * Handle listen() increasing backlog. 4352 * This is more "liberal" then what the TPI spec 4353 * requires but is needed to avoid a t_unbind 4354 * when handling listen() since the port number 4355 * might be "stolen" between the unbind and bind. 4356 */ 4357 goto do_listen; 4358 } 4359 if (connp->conn_debug) { 4360 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 4361 "tcp_listen: bad state, %d", tcp->tcp_state); 4362 } 4363 return (-TOUTSTATE); 4364 } else { 4365 sin6_t addr; 4366 sin_t *sin; 4367 sin6_t *sin6; 4368 4369 if (sa == NULL) { 4370 ASSERT(IPCL_IS_NONSTR(connp)); 4371 /* Do an implicit bind: Request for a generic port. */ 4372 if (connp->conn_family == AF_INET) { 4373 len = sizeof (sin_t); 4374 sin = (sin_t *)&addr; 4375 *sin = sin_null; 4376 sin->sin_family = AF_INET; 4377 } else { 4378 ASSERT(connp->conn_family == AF_INET6); 4379 len = sizeof (sin6_t); 4380 sin6 = (sin6_t *)&addr; 4381 *sin6 = sin6_null; 4382 sin6->sin6_family = AF_INET6; 4383 } 4384 sa = (struct sockaddr *)&addr; 4385 } 4386 4387 error = tcp_bind_check(connp, sa, len, cr, 4388 bind_to_req_port_only); 4389 if (error) 4390 return (error); 4391 /* Fall through and do the fanout insertion */ 4392 } 4393 4394 do_listen: 4395 ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN); 4396 tcp->tcp_conn_req_max = backlog; 4397 if (tcp->tcp_conn_req_max) { 4398 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 4399 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 4400 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 4401 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 4402 /* 4403 * If this is a listener, do not reset the eager list 4404 * and other stuffs. Note that we don't check if the 4405 * existing eager list meets the new tcp_conn_req_max 4406 * requirement. 4407 */ 4408 if (tcp->tcp_state != TCPS_LISTEN) { 4409 tcp->tcp_state = TCPS_LISTEN; 4410 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 4411 connp->conn_ixa, void, NULL, tcp_t *, tcp, 4412 void, NULL, int32_t, TCPS_BOUND); 4413 /* Initialize the chain. Don't need the eager_lock */ 4414 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 4415 tcp->tcp_eager_next_drop_q0 = tcp; 4416 tcp->tcp_eager_prev_drop_q0 = tcp; 4417 tcp->tcp_second_ctimer_threshold = 4418 tcps->tcps_ip_abort_linterval; 4419 } 4420 } 4421 4422 /* 4423 * We need to make sure that the conn_recv is set to a non-null 4424 * value before we insert the conn into the classifier table. 4425 * This is to avoid a race with an incoming packet which does an 4426 * ipcl_classify(). 4427 * We initially set it to tcp_input_listener_unbound to try to 4428 * pick a good squeue for the listener when the first SYN arrives. 4429 * tcp_input_listener_unbound sets it to tcp_input_listener on that 4430 * first SYN. 4431 */ 4432 connp->conn_recv = tcp_input_listener_unbound; 4433 4434 /* Insert the listener in the classifier table */ 4435 error = ip_laddr_fanout_insert(connp); 4436 if (error != 0) { 4437 /* Undo the bind - release the port number */ 4438 oldstate = tcp->tcp_state; 4439 tcp->tcp_state = TCPS_IDLE; 4440 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 4441 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 4442 int32_t, oldstate); 4443 connp->conn_bound_addr_v6 = ipv6_all_zeros; 4444 4445 connp->conn_laddr_v6 = ipv6_all_zeros; 4446 connp->conn_saddr_v6 = ipv6_all_zeros; 4447 connp->conn_ports = 0; 4448 4449 if (connp->conn_anon_port) { 4450 zone_t *zone; 4451 4452 zone = crgetzone(cr); 4453 connp->conn_anon_port = B_FALSE; 4454 (void) tsol_mlp_anon(zone, connp->conn_mlp_type, 4455 connp->conn_proto, connp->conn_lport, B_FALSE); 4456 } 4457 connp->conn_mlp_type = mlptSingle; 4458 4459 tcp_bind_hash_remove(tcp); 4460 return (error); 4461 } else { 4462 /* 4463 * If there is a connection limit, allocate and initialize 4464 * the counter struct. Note that since listen can be called 4465 * multiple times, the struct may have been allready allocated. 4466 */ 4467 if (!list_is_empty(&tcps->tcps_listener_conf) && 4468 tcp->tcp_listen_cnt == NULL) { 4469 tcp_listen_cnt_t *tlc; 4470 uint32_t ratio; 4471 4472 ratio = tcp_find_listener_conf(tcps, 4473 ntohs(connp->conn_lport)); 4474 if (ratio != 0) { 4475 uint32_t mem_ratio, tot_buf; 4476 4477 tlc = kmem_alloc(sizeof (tcp_listen_cnt_t), 4478 KM_SLEEP); 4479 /* 4480 * Calculate the connection limit based on 4481 * the configured ratio and maxusers. Maxusers 4482 * are calculated based on memory size, 4483 * ~ 1 user per MB. Note that the conn_rcvbuf 4484 * and conn_sndbuf may change after a 4485 * connection is accepted. So what we have 4486 * is only an approximation. 4487 */ 4488 if ((tot_buf = connp->conn_rcvbuf + 4489 connp->conn_sndbuf) < MB) { 4490 mem_ratio = MB / tot_buf; 4491 tlc->tlc_max = maxusers / ratio * 4492 mem_ratio; 4493 } else { 4494 mem_ratio = tot_buf / MB; 4495 tlc->tlc_max = maxusers / ratio / 4496 mem_ratio; 4497 } 4498 /* At least we should allow two connections! */ 4499 if (tlc->tlc_max <= tcp_min_conn_listener) 4500 tlc->tlc_max = tcp_min_conn_listener; 4501 tlc->tlc_cnt = 1; 4502 tlc->tlc_drop = 0; 4503 tcp->tcp_listen_cnt = tlc; 4504 } 4505 } 4506 } 4507 return (error); 4508 } 4509