xref: /illumos-gate/usr/src/uts/common/inet/tcp/tcp.c (revision b77a2dc4455ca028e52fdf96385a530a2d168316)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, Joyent Inc. All rights reserved.
25  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
26  * Copyright (c) 2013, 2017 by Delphix. All rights reserved.
27  * Copyright 2014, OmniTI Computer Consulting, Inc. All rights reserved.
28  */
29 /* Copyright (c) 1990 Mentat Inc. */
30 
31 #include <sys/types.h>
32 #include <sys/stream.h>
33 #include <sys/strsun.h>
34 #include <sys/strsubr.h>
35 #include <sys/stropts.h>
36 #include <sys/strlog.h>
37 #define	_SUN_TPI_VERSION 2
38 #include <sys/tihdr.h>
39 #include <sys/timod.h>
40 #include <sys/ddi.h>
41 #include <sys/sunddi.h>
42 #include <sys/suntpi.h>
43 #include <sys/xti_inet.h>
44 #include <sys/cmn_err.h>
45 #include <sys/debug.h>
46 #include <sys/sdt.h>
47 #include <sys/vtrace.h>
48 #include <sys/kmem.h>
49 #include <sys/ethernet.h>
50 #include <sys/cpuvar.h>
51 #include <sys/dlpi.h>
52 #include <sys/pattr.h>
53 #include <sys/policy.h>
54 #include <sys/priv.h>
55 #include <sys/zone.h>
56 #include <sys/sunldi.h>
57 
58 #include <sys/errno.h>
59 #include <sys/signal.h>
60 #include <sys/socket.h>
61 #include <sys/socketvar.h>
62 #include <sys/sockio.h>
63 #include <sys/isa_defs.h>
64 #include <sys/md5.h>
65 #include <sys/random.h>
66 #include <sys/uio.h>
67 #include <sys/systm.h>
68 #include <netinet/in.h>
69 #include <netinet/tcp.h>
70 #include <netinet/ip6.h>
71 #include <netinet/icmp6.h>
72 #include <net/if.h>
73 #include <net/route.h>
74 #include <inet/ipsec_impl.h>
75 
76 #include <inet/common.h>
77 #include <inet/cc.h>
78 #include <inet/ip.h>
79 #include <inet/ip_impl.h>
80 #include <inet/ip6.h>
81 #include <inet/ip_ndp.h>
82 #include <inet/proto_set.h>
83 #include <inet/mib2.h>
84 #include <inet/optcom.h>
85 #include <inet/snmpcom.h>
86 #include <inet/kstatcom.h>
87 #include <inet/tcp.h>
88 #include <inet/tcp_impl.h>
89 #include <inet/tcp_cluster.h>
90 #include <inet/udp_impl.h>
91 #include <net/pfkeyv2.h>
92 #include <inet/ipdrop.h>
93 
94 #include <inet/ipclassifier.h>
95 #include <inet/ip_ire.h>
96 #include <inet/ip_ftable.h>
97 #include <inet/ip_if.h>
98 #include <inet/ipp_common.h>
99 #include <inet/ip_rts.h>
100 #include <inet/ip_netinfo.h>
101 #include <sys/squeue_impl.h>
102 #include <sys/squeue.h>
103 #include <sys/tsol/label.h>
104 #include <sys/tsol/tnet.h>
105 #include <rpc/pmap_prot.h>
106 #include <sys/callo.h>
107 
108 /*
109  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
110  *
111  * (Read the detailed design doc in PSARC case directory)
112  *
113  * The entire tcp state is contained in tcp_t and conn_t structure
114  * which are allocated in tandem using ipcl_conn_create() and passing
115  * IPCL_TCPCONN as a flag. We use 'conn_ref' and 'conn_lock' to protect
116  * the references on the tcp_t. The tcp_t structure is never compressed
117  * and packets always land on the correct TCP perimeter from the time
118  * eager is created till the time tcp_t dies (as such the old mentat
119  * TCP global queue is not used for detached state and no IPSEC checking
120  * is required). The global queue is still allocated to send out resets
121  * for connection which have no listeners and IP directly calls
122  * tcp_xmit_listeners_reset() which does any policy check.
123  *
124  * Protection and Synchronisation mechanism:
125  *
126  * The tcp data structure does not use any kind of lock for protecting
127  * its state but instead uses 'squeues' for mutual exclusion from various
128  * read and write side threads. To access a tcp member, the thread should
129  * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS,
130  * or SQ_NODRAIN). Since the squeues allow a direct function call, caller
131  * can pass any tcp function having prototype of edesc_t as argument
132  * (different from traditional STREAMs model where packets come in only
133  * designated entry points). The list of functions that can be directly
134  * called via squeue are listed before the usual function prototype.
135  *
136  * Referencing:
137  *
138  * TCP is MT-Hot and we use a reference based scheme to make sure that the
139  * tcp structure doesn't disappear when its needed. When the application
140  * creates an outgoing connection or accepts an incoming connection, we
141  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
142  * The IP reference is just a symbolic reference since ip_tcpclose()
143  * looks at tcp structure after tcp_close_output() returns which could
144  * have dropped the last TCP reference. So as long as the connection is
145  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
146  * conn_t. The classifier puts its own reference when the connection is
147  * inserted in listen or connected hash. Anytime a thread needs to enter
148  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
149  * on write side or by doing a classify on read side and then puts a
150  * reference on the conn before doing squeue_enter/tryenter/fill. For
151  * read side, the classifier itself puts the reference under fanout lock
152  * to make sure that tcp can't disappear before it gets processed. The
153  * squeue will drop this reference automatically so the called function
154  * doesn't have to do a DEC_REF.
155  *
156  * Opening a new connection:
157  *
158  * The outgoing connection open is pretty simple. tcp_open() does the
159  * work in creating the conn/tcp structure and initializing it. The
160  * squeue assignment is done based on the CPU the application
161  * is running on. So for outbound connections, processing is always done
162  * on application CPU which might be different from the incoming CPU
163  * being interrupted by the NIC. An optimal way would be to figure out
164  * the NIC <-> CPU binding at listen time, and assign the outgoing
165  * connection to the squeue attached to the CPU that will be interrupted
166  * for incoming packets (we know the NIC based on the bind IP address).
167  * This might seem like a problem if more data is going out but the
168  * fact is that in most cases the transmit is ACK driven transmit where
169  * the outgoing data normally sits on TCP's xmit queue waiting to be
170  * transmitted.
171  *
172  * Accepting a connection:
173  *
174  * This is a more interesting case because of various races involved in
175  * establishing a eager in its own perimeter. Read the meta comment on
176  * top of tcp_input_listener(). But briefly, the squeue is picked by
177  * ip_fanout based on the ring or the sender (if loopback).
178  *
179  * Closing a connection:
180  *
181  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
182  * via squeue to do the close and mark the tcp as detached if the connection
183  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
184  * reference but tcp_close() drop IP's reference always. So if tcp was
185  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
186  * and 1 because it is in classifier's connected hash. This is the condition
187  * we use to determine that its OK to clean up the tcp outside of squeue
188  * when time wait expires (check the ref under fanout and conn_lock and
189  * if it is 2, remove it from fanout hash and kill it).
190  *
191  * Although close just drops the necessary references and marks the
192  * tcp_detached state, tcp_close needs to know the tcp_detached has been
193  * set (under squeue) before letting the STREAM go away (because a
194  * inbound packet might attempt to go up the STREAM while the close
195  * has happened and tcp_detached is not set). So a special lock and
196  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
197  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
198  * tcp_detached.
199  *
200  * Special provisions and fast paths:
201  *
202  * We make special provisions for sockfs by marking tcp_issocket
203  * whenever we have only sockfs on top of TCP. This allows us to skip
204  * putting the tcp in acceptor hash since a sockfs listener can never
205  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
206  * since eager has already been allocated and the accept now happens
207  * on acceptor STREAM. There is a big blob of comment on top of
208  * tcp_input_listener explaining the new accept. When socket is POP'd,
209  * sockfs sends us an ioctl to mark the fact and we go back to old
210  * behaviour. Once tcp_issocket is unset, its never set for the
211  * life of that connection.
212  *
213  * IPsec notes :
214  *
215  * Since a packet is always executed on the correct TCP perimeter
216  * all IPsec processing is defered to IP including checking new
217  * connections and setting IPSEC policies for new connection. The
218  * only exception is tcp_xmit_listeners_reset() which is called
219  * directly from IP and needs to policy check to see if TH_RST
220  * can be sent out.
221  */
222 
223 /*
224  * Values for squeue switch:
225  * 1: SQ_NODRAIN
226  * 2: SQ_PROCESS
227  * 3: SQ_FILL
228  */
229 int tcp_squeue_wput = 2;	/* /etc/systems */
230 int tcp_squeue_flag;
231 
232 /*
233  * To prevent memory hog, limit the number of entries in tcp_free_list
234  * to 1% of available memory / number of cpus
235  */
236 uint_t tcp_free_list_max_cnt = 0;
237 
238 #define	TIDUSZ	4096	/* transport interface data unit size */
239 
240 /*
241  * Size of acceptor hash list.  It has to be a power of 2 for hashing.
242  */
243 #define	TCP_ACCEPTOR_FANOUT_SIZE		512
244 
245 #ifdef	_ILP32
246 #define	TCP_ACCEPTOR_HASH(accid)					\
247 		(((uint_t)(accid) >> 8) & (TCP_ACCEPTOR_FANOUT_SIZE - 1))
248 #else
249 #define	TCP_ACCEPTOR_HASH(accid)					\
250 		((uint_t)(accid) & (TCP_ACCEPTOR_FANOUT_SIZE - 1))
251 #endif	/* _ILP32 */
252 
253 /*
254  * Minimum number of connections which can be created per listener.  Used
255  * when the listener connection count is in effect.
256  */
257 static uint32_t tcp_min_conn_listener = 2;
258 
259 uint32_t tcp_early_abort = 30;
260 
261 /* TCP Timer control structure */
262 typedef struct tcpt_s {
263 	pfv_t	tcpt_pfv;	/* The routine we are to call */
264 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
265 } tcpt_t;
266 
267 /*
268  * Functions called directly via squeue having a prototype of edesc_t.
269  */
270 void		tcp_input_data(void *arg, mblk_t *mp, void *arg2,
271     ip_recv_attr_t *ira);
272 static void	tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2,
273     ip_recv_attr_t *dummy);
274 
275 
276 /* Prototype for TCP functions */
277 static void	tcp_random_init(void);
278 int		tcp_random(void);
279 static int	tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp,
280 		    in_port_t dstport, uint_t srcid);
281 static int	tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp,
282 		    in_port_t dstport, uint32_t flowinfo,
283 		    uint_t srcid, uint32_t scope_id);
284 static void	tcp_iss_init(tcp_t *tcp);
285 static void	tcp_reinit(tcp_t *tcp);
286 static void	tcp_reinit_values(tcp_t *tcp);
287 
288 static int	tcp_wsrv(queue_t *q);
289 static void	tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa);
290 static void	tcp_update_zcopy(tcp_t *tcp);
291 static void	tcp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t,
292     ixa_notify_arg_t);
293 static void	*tcp_stack_init(netstackid_t stackid, netstack_t *ns);
294 static void	tcp_stack_fini(netstackid_t stackid, void *arg);
295 
296 static int	tcp_squeue_switch(int);
297 
298 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t);
299 static int	tcp_openv4(queue_t *, dev_t *, int, int, cred_t *);
300 static int	tcp_openv6(queue_t *, dev_t *, int, int, cred_t *);
301 
302 static void	tcp_squeue_add(squeue_t *);
303 
304 struct module_info tcp_rinfo =  {
305 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
306 };
307 
308 static struct module_info tcp_winfo =  {
309 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
310 };
311 
312 /*
313  * Entry points for TCP as a device. The normal case which supports
314  * the TCP functionality.
315  * We have separate open functions for the /dev/tcp and /dev/tcp6 devices.
316  */
317 struct qinit tcp_rinitv4 = {
318 	NULL, tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo
319 };
320 
321 struct qinit tcp_rinitv6 = {
322 	NULL, tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo
323 };
324 
325 struct qinit tcp_winit = {
326 	tcp_wput, tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
327 };
328 
329 /* Initial entry point for TCP in socket mode. */
330 struct qinit tcp_sock_winit = {
331 	tcp_wput_sock, tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
332 };
333 
334 /* TCP entry point during fallback */
335 struct qinit tcp_fallback_sock_winit = {
336 	tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo
337 };
338 
339 /*
340  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
341  * an accept. Avoid allocating data structures since eager has already
342  * been created.
343  */
344 struct qinit tcp_acceptor_rinit = {
345 	NULL, tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo
346 };
347 
348 struct qinit tcp_acceptor_winit = {
349 	tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo
350 };
351 
352 /* For AF_INET aka /dev/tcp */
353 struct streamtab tcpinfov4 = {
354 	&tcp_rinitv4, &tcp_winit
355 };
356 
357 /* For AF_INET6 aka /dev/tcp6 */
358 struct streamtab tcpinfov6 = {
359 	&tcp_rinitv6, &tcp_winit
360 };
361 
362 /*
363  * Following assumes TPI alignment requirements stay along 32 bit
364  * boundaries
365  */
366 #define	ROUNDUP32(x) \
367 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
368 
369 /* Template for response to info request. */
370 struct T_info_ack tcp_g_t_info_ack = {
371 	T_INFO_ACK,		/* PRIM_type */
372 	0,			/* TSDU_size */
373 	T_INFINITE,		/* ETSDU_size */
374 	T_INVALID,		/* CDATA_size */
375 	T_INVALID,		/* DDATA_size */
376 	sizeof (sin_t),		/* ADDR_size */
377 	0,			/* OPT_size - not initialized here */
378 	TIDUSZ,			/* TIDU_size */
379 	T_COTS_ORD,		/* SERV_type */
380 	TCPS_IDLE,		/* CURRENT_state */
381 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
382 };
383 
384 struct T_info_ack tcp_g_t_info_ack_v6 = {
385 	T_INFO_ACK,		/* PRIM_type */
386 	0,			/* TSDU_size */
387 	T_INFINITE,		/* ETSDU_size */
388 	T_INVALID,		/* CDATA_size */
389 	T_INVALID,		/* DDATA_size */
390 	sizeof (sin6_t),	/* ADDR_size */
391 	0,			/* OPT_size - not initialized here */
392 	TIDUSZ,		/* TIDU_size */
393 	T_COTS_ORD,		/* SERV_type */
394 	TCPS_IDLE,		/* CURRENT_state */
395 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
396 };
397 
398 /*
399  * TCP tunables related declarations. Definitions are in tcp_tunables.c
400  */
401 extern mod_prop_info_t tcp_propinfo_tbl[];
402 extern int tcp_propinfo_count;
403 
404 #define	IS_VMLOANED_MBLK(mp) \
405 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
406 
407 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
408 
409 /*
410  * Forces all connections to obey the value of the tcps_maxpsz_multiplier
411  * tunable settable via NDD.  Otherwise, the per-connection behavior is
412  * determined dynamically during tcp_set_destination(), which is the default.
413  */
414 boolean_t tcp_static_maxpsz = B_FALSE;
415 
416 /*
417  * If the receive buffer size is changed, this function is called to update
418  * the upper socket layer on the new delayed receive wake up threshold.
419  */
420 static void
421 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh)
422 {
423 	uint32_t default_threshold = SOCKET_RECVHIWATER >> 3;
424 
425 	if (IPCL_IS_NONSTR(tcp->tcp_connp)) {
426 		conn_t *connp = tcp->tcp_connp;
427 		struct sock_proto_props sopp;
428 
429 		/*
430 		 * only increase rcvthresh upto default_threshold
431 		 */
432 		if (new_rcvthresh > default_threshold)
433 			new_rcvthresh = default_threshold;
434 
435 		sopp.sopp_flags = SOCKOPT_RCVTHRESH;
436 		sopp.sopp_rcvthresh = new_rcvthresh;
437 
438 		(*connp->conn_upcalls->su_set_proto_props)
439 		    (connp->conn_upper_handle, &sopp);
440 	}
441 }
442 
443 /*
444  * Figure out the value of window scale opton.  Note that the rwnd is
445  * ASSUMED to be rounded up to the nearest MSS before the calculation.
446  * We cannot find the scale value and then do a round up of tcp_rwnd
447  * because the scale value may not be correct after that.
448  *
449  * Set the compiler flag to make this function inline.
450  */
451 void
452 tcp_set_ws_value(tcp_t *tcp)
453 {
454 	int i;
455 	uint32_t rwnd = tcp->tcp_rwnd;
456 
457 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
458 	    i++, rwnd >>= 1)
459 		;
460 	tcp->tcp_rcv_ws = i;
461 }
462 
463 /*
464  * Remove cached/latched IPsec references.
465  */
466 void
467 tcp_ipsec_cleanup(tcp_t *tcp)
468 {
469 	conn_t		*connp = tcp->tcp_connp;
470 
471 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
472 
473 	if (connp->conn_latch != NULL) {
474 		IPLATCH_REFRELE(connp->conn_latch);
475 		connp->conn_latch = NULL;
476 	}
477 	if (connp->conn_latch_in_policy != NULL) {
478 		IPPOL_REFRELE(connp->conn_latch_in_policy);
479 		connp->conn_latch_in_policy = NULL;
480 	}
481 	if (connp->conn_latch_in_action != NULL) {
482 		IPACT_REFRELE(connp->conn_latch_in_action);
483 		connp->conn_latch_in_action = NULL;
484 	}
485 	if (connp->conn_policy != NULL) {
486 		IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
487 		connp->conn_policy = NULL;
488 	}
489 }
490 
491 /*
492  * Cleaup before placing on free list.
493  * Disassociate from the netstack/tcp_stack_t since the freelist
494  * is per squeue and not per netstack.
495  */
496 void
497 tcp_cleanup(tcp_t *tcp)
498 {
499 	mblk_t		*mp;
500 	conn_t		*connp = tcp->tcp_connp;
501 	tcp_stack_t	*tcps = tcp->tcp_tcps;
502 	netstack_t	*ns = tcps->tcps_netstack;
503 	mblk_t		*tcp_rsrv_mp;
504 
505 	tcp_bind_hash_remove(tcp);
506 
507 	/* Cleanup that which needs the netstack first */
508 	tcp_ipsec_cleanup(tcp);
509 	ixa_cleanup(connp->conn_ixa);
510 
511 	if (connp->conn_ht_iphc != NULL) {
512 		kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated);
513 		connp->conn_ht_iphc = NULL;
514 		connp->conn_ht_iphc_allocated = 0;
515 		connp->conn_ht_iphc_len = 0;
516 		connp->conn_ht_ulp = NULL;
517 		connp->conn_ht_ulp_len = 0;
518 		tcp->tcp_ipha = NULL;
519 		tcp->tcp_ip6h = NULL;
520 		tcp->tcp_tcpha = NULL;
521 	}
522 
523 	/* We clear any IP_OPTIONS and extension headers */
524 	ip_pkt_free(&connp->conn_xmit_ipp);
525 
526 	tcp_free(tcp);
527 
528 	/*
529 	 * Since we will bzero the entire structure, we need to
530 	 * remove it and reinsert it in global hash list. We
531 	 * know the walkers can't get to this conn because we
532 	 * had set CONDEMNED flag earlier and checked reference
533 	 * under conn_lock so walker won't pick it and when we
534 	 * go the ipcl_globalhash_remove() below, no walker
535 	 * can get to it.
536 	 */
537 	ipcl_globalhash_remove(connp);
538 
539 	/* Save some state */
540 	mp = tcp->tcp_timercache;
541 
542 	tcp_rsrv_mp = tcp->tcp_rsrv_mp;
543 
544 	if (connp->conn_cred != NULL) {
545 		crfree(connp->conn_cred);
546 		connp->conn_cred = NULL;
547 	}
548 	ipcl_conn_cleanup(connp);
549 	connp->conn_flags = IPCL_TCPCONN;
550 
551 	/*
552 	 * Now it is safe to decrement the reference counts.
553 	 * This might be the last reference on the netstack
554 	 * in which case it will cause the freeing of the IP Instance.
555 	 */
556 	connp->conn_netstack = NULL;
557 	connp->conn_ixa->ixa_ipst = NULL;
558 	netstack_rele(ns);
559 	ASSERT(tcps != NULL);
560 	tcp->tcp_tcps = NULL;
561 
562 	bzero(tcp, sizeof (tcp_t));
563 
564 	/* restore the state */
565 	tcp->tcp_timercache = mp;
566 
567 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
568 
569 	tcp->tcp_connp = connp;
570 
571 	ASSERT(connp->conn_tcp == tcp);
572 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
573 	connp->conn_state_flags = CONN_INCIPIENT;
574 	ASSERT(connp->conn_proto == IPPROTO_TCP);
575 	ASSERT(connp->conn_ref == 1);
576 }
577 
578 /*
579  * Adapt to the information, such as rtt and rtt_sd, provided from the
580  * DCE and IRE maintained by IP.
581  *
582  * Checks for multicast and broadcast destination address.
583  * Returns zero if ok; an errno on failure.
584  *
585  * Note that the MSS calculation here is based on the info given in
586  * the DCE and IRE.  We do not do any calculation based on TCP options.  They
587  * will be handled in tcp_input_data() when TCP knows which options to use.
588  *
589  * Note on how TCP gets its parameters for a connection.
590  *
591  * When a tcp_t structure is allocated, it gets all the default parameters.
592  * In tcp_set_destination(), it gets those metric parameters, like rtt, rtt_sd,
593  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
594  * default.
595  *
596  * An incoming SYN with a multicast or broadcast destination address is dropped
597  * in ip_fanout_v4/v6.
598  *
599  * An incoming SYN with a multicast or broadcast source address is always
600  * dropped in tcp_set_destination, since IPDF_ALLOW_MCBC is not set in
601  * conn_connect.
602  * The same logic in tcp_set_destination also serves to
603  * reject an attempt to connect to a broadcast or multicast (destination)
604  * address.
605  */
606 int
607 tcp_set_destination(tcp_t *tcp)
608 {
609 	uint32_t	mss_max;
610 	uint32_t	mss;
611 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
612 	conn_t		*connp = tcp->tcp_connp;
613 	tcp_stack_t	*tcps = tcp->tcp_tcps;
614 	iulp_t		uinfo;
615 	int		error;
616 	uint32_t	flags;
617 
618 	flags = IPDF_LSO | IPDF_ZCOPY;
619 	/*
620 	 * Make sure we have a dce for the destination to avoid dce_ident
621 	 * contention for connected sockets.
622 	 */
623 	flags |= IPDF_UNIQUE_DCE;
624 
625 	if (!tcps->tcps_ignore_path_mtu)
626 		connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY;
627 
628 	/* Use conn_lock to satify ASSERT; tcp is already serialized */
629 	mutex_enter(&connp->conn_lock);
630 	error = conn_connect(connp, &uinfo, flags);
631 	mutex_exit(&connp->conn_lock);
632 	if (error != 0)
633 		return (error);
634 
635 	error = tcp_build_hdrs(tcp);
636 	if (error != 0)
637 		return (error);
638 
639 	tcp->tcp_localnet = uinfo.iulp_localnet;
640 
641 	if (uinfo.iulp_rtt != 0) {
642 		tcp->tcp_rtt_sa = MSEC2NSEC(uinfo.iulp_rtt);
643 		tcp->tcp_rtt_sd = MSEC2NSEC(uinfo.iulp_rtt_sd);
644 		tcp->tcp_rto = tcp_calculate_rto(tcp, tcps, 0);
645 	}
646 	if (uinfo.iulp_ssthresh != 0)
647 		tcp->tcp_cwnd_ssthresh = uinfo.iulp_ssthresh;
648 	else
649 		tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
650 	if (uinfo.iulp_spipe > 0) {
651 		connp->conn_sndbuf = MIN(uinfo.iulp_spipe,
652 		    tcps->tcps_max_buf);
653 		if (tcps->tcps_snd_lowat_fraction != 0) {
654 			connp->conn_sndlowat = connp->conn_sndbuf /
655 			    tcps->tcps_snd_lowat_fraction;
656 		}
657 		(void) tcp_maxpsz_set(tcp, B_TRUE);
658 	}
659 	/*
660 	 * Note that up till now, acceptor always inherits receive
661 	 * window from the listener.  But if there is a metrics
662 	 * associated with a host, we should use that instead of
663 	 * inheriting it from listener. Thus we need to pass this
664 	 * info back to the caller.
665 	 */
666 	if (uinfo.iulp_rpipe > 0) {
667 		tcp->tcp_rwnd = MIN(uinfo.iulp_rpipe,
668 		    tcps->tcps_max_buf);
669 	}
670 
671 	if (uinfo.iulp_rtomax > 0) {
672 		tcp->tcp_second_timer_threshold =
673 		    uinfo.iulp_rtomax;
674 	}
675 
676 	/*
677 	 * Use the metric option settings, iulp_tstamp_ok and
678 	 * iulp_wscale_ok, only for active open. What this means
679 	 * is that if the other side uses timestamp or window
680 	 * scale option, TCP will also use those options. That
681 	 * is for passive open.  If the application sets a
682 	 * large window, window scale is enabled regardless of
683 	 * the value in iulp_wscale_ok.  This is the behavior
684 	 * since 2.6.  So we keep it.
685 	 * The only case left in passive open processing is the
686 	 * check for SACK.
687 	 * For ECN, it should probably be like SACK.  But the
688 	 * current value is binary, so we treat it like the other
689 	 * cases.  The metric only controls active open.For passive
690 	 * open, the ndd param, tcp_ecn_permitted, controls the
691 	 * behavior.
692 	 */
693 	if (!tcp_detached) {
694 		/*
695 		 * The if check means that the following can only
696 		 * be turned on by the metrics only IRE, but not off.
697 		 */
698 		if (uinfo.iulp_tstamp_ok)
699 			tcp->tcp_snd_ts_ok = B_TRUE;
700 		if (uinfo.iulp_wscale_ok)
701 			tcp->tcp_snd_ws_ok = B_TRUE;
702 		if (uinfo.iulp_sack == 2)
703 			tcp->tcp_snd_sack_ok = B_TRUE;
704 		if (uinfo.iulp_ecn_ok)
705 			tcp->tcp_ecn_ok = B_TRUE;
706 	} else {
707 		/*
708 		 * Passive open.
709 		 *
710 		 * As above, the if check means that SACK can only be
711 		 * turned on by the metric only IRE.
712 		 */
713 		if (uinfo.iulp_sack > 0) {
714 			tcp->tcp_snd_sack_ok = B_TRUE;
715 		}
716 	}
717 
718 	/*
719 	 * XXX Note that currently, iulp_mtu can be as small as 68
720 	 * because of PMTUd.  So tcp_mss may go to negative if combined
721 	 * length of all those options exceeds 28 bytes.  But because
722 	 * of the tcp_mss_min check below, we may not have a problem if
723 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
724 	 * the negative problem still exists.  And the check defeats PMTUd.
725 	 * In fact, if PMTUd finds that the MSS should be smaller than
726 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
727 	 * value.
728 	 *
729 	 * We do not deal with that now.  All those problems related to
730 	 * PMTUd will be fixed later.
731 	 */
732 	ASSERT(uinfo.iulp_mtu != 0);
733 	mss = tcp->tcp_initial_pmtu = uinfo.iulp_mtu;
734 
735 	/* Sanity check for MSS value. */
736 	if (connp->conn_ipversion == IPV4_VERSION)
737 		mss_max = tcps->tcps_mss_max_ipv4;
738 	else
739 		mss_max = tcps->tcps_mss_max_ipv6;
740 
741 	if (tcp->tcp_ipsec_overhead == 0)
742 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
743 
744 	mss -= tcp->tcp_ipsec_overhead;
745 
746 	if (mss < tcps->tcps_mss_min)
747 		mss = tcps->tcps_mss_min;
748 	if (mss > mss_max)
749 		mss = mss_max;
750 
751 	/* Note that this is the maximum MSS, excluding all options. */
752 	tcp->tcp_mss = mss;
753 
754 	/*
755 	 * Update the tcp connection with LSO capability.
756 	 */
757 	tcp_update_lso(tcp, connp->conn_ixa);
758 
759 	/*
760 	 * Initialize the ISS here now that we have the full connection ID.
761 	 * The RFC 1948 method of initial sequence number generation requires
762 	 * knowledge of the full connection ID before setting the ISS.
763 	 */
764 	tcp_iss_init(tcp);
765 
766 	tcp->tcp_loopback = (uinfo.iulp_loopback | uinfo.iulp_local);
767 
768 	/*
769 	 * Make sure that conn is not marked incipient
770 	 * for incoming connections. A blind
771 	 * removal of incipient flag is cheaper than
772 	 * check and removal.
773 	 */
774 	mutex_enter(&connp->conn_lock);
775 	connp->conn_state_flags &= ~CONN_INCIPIENT;
776 	mutex_exit(&connp->conn_lock);
777 	return (0);
778 }
779 
780 /*
781  * tcp_clean_death / tcp_close_detached must not be called more than once
782  * on a tcp. Thus every function that potentially calls tcp_clean_death
783  * must check for the tcp state before calling tcp_clean_death.
784  * Eg. tcp_input_data, tcp_eager_kill, tcp_clean_death_wrapper,
785  * tcp_timer_handler, all check for the tcp state.
786  */
787 /* ARGSUSED */
788 void
789 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2,
790     ip_recv_attr_t *dummy)
791 {
792 	tcp_t	*tcp = ((conn_t *)arg)->conn_tcp;
793 
794 	freemsg(mp);
795 	if (tcp->tcp_state > TCPS_BOUND)
796 		(void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT);
797 }
798 
799 /*
800  * We are dying for some reason.  Try to do it gracefully.  (May be called
801  * as writer.)
802  *
803  * Return -1 if the structure was not cleaned up (if the cleanup had to be
804  * done by a service procedure).
805  * TBD - Should the return value distinguish between the tcp_t being
806  * freed and it being reinitialized?
807  */
808 int
809 tcp_clean_death(tcp_t *tcp, int err)
810 {
811 	mblk_t	*mp;
812 	queue_t	*q;
813 	conn_t	*connp = tcp->tcp_connp;
814 	tcp_stack_t	*tcps = tcp->tcp_tcps;
815 
816 	if (tcp->tcp_fused)
817 		tcp_unfuse(tcp);
818 
819 	if (tcp->tcp_linger_tid != 0 &&
820 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
821 		tcp_stop_lingering(tcp);
822 	}
823 
824 	ASSERT(tcp != NULL);
825 	ASSERT((connp->conn_family == AF_INET &&
826 	    connp->conn_ipversion == IPV4_VERSION) ||
827 	    (connp->conn_family == AF_INET6 &&
828 	    (connp->conn_ipversion == IPV4_VERSION ||
829 	    connp->conn_ipversion == IPV6_VERSION)));
830 
831 	if (TCP_IS_DETACHED(tcp)) {
832 		if (tcp->tcp_hard_binding) {
833 			/*
834 			 * Its an eager that we are dealing with. We close the
835 			 * eager but in case a conn_ind has already gone to the
836 			 * listener, let tcp_accept_finish() send a discon_ind
837 			 * to the listener and drop the last reference. If the
838 			 * listener doesn't even know about the eager i.e. the
839 			 * conn_ind hasn't gone up, blow away the eager and drop
840 			 * the last reference as well. If the conn_ind has gone
841 			 * up, state should be BOUND. tcp_accept_finish
842 			 * will figure out that the connection has received a
843 			 * RST and will send a DISCON_IND to the application.
844 			 */
845 			tcp_closei_local(tcp);
846 			if (!tcp->tcp_tconnind_started) {
847 				CONN_DEC_REF(connp);
848 			} else {
849 				tcp->tcp_state = TCPS_BOUND;
850 				DTRACE_TCP6(state__change, void, NULL,
851 				    ip_xmit_attr_t *, connp->conn_ixa,
852 				    void, NULL, tcp_t *, tcp, void, NULL,
853 				    int32_t, TCPS_CLOSED);
854 			}
855 		} else {
856 			tcp_close_detached(tcp);
857 		}
858 		return (0);
859 	}
860 
861 	TCP_STAT(tcps, tcp_clean_death_nondetached);
862 
863 	/*
864 	 * The connection is dead.  Decrement listener connection counter if
865 	 * necessary.
866 	 */
867 	if (tcp->tcp_listen_cnt != NULL)
868 		TCP_DECR_LISTEN_CNT(tcp);
869 
870 	/*
871 	 * When a connection is moved to TIME_WAIT state, the connection
872 	 * counter is already decremented.  So no need to decrement here
873 	 * again.  See SET_TIME_WAIT() macro.
874 	 */
875 	if (tcp->tcp_state >= TCPS_ESTABLISHED &&
876 	    tcp->tcp_state < TCPS_TIME_WAIT) {
877 		TCPS_CONN_DEC(tcps);
878 	}
879 
880 	q = connp->conn_rq;
881 
882 	/* Trash all inbound data */
883 	if (!IPCL_IS_NONSTR(connp)) {
884 		ASSERT(q != NULL);
885 		flushq(q, FLUSHALL);
886 	}
887 
888 	/*
889 	 * If we are at least part way open and there is error
890 	 * (err==0 implies no error)
891 	 * notify our client by a T_DISCON_IND.
892 	 */
893 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
894 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
895 		    !TCP_IS_SOCKET(tcp)) {
896 			/*
897 			 * Send M_FLUSH according to TPI. Because sockets will
898 			 * (and must) ignore FLUSHR we do that only for TPI
899 			 * endpoints and sockets in STREAMS mode.
900 			 */
901 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
902 		}
903 		if (connp->conn_debug) {
904 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
905 			    "tcp_clean_death: discon err %d", err);
906 		}
907 		if (IPCL_IS_NONSTR(connp)) {
908 			/* Direct socket, use upcall */
909 			(*connp->conn_upcalls->su_disconnected)(
910 			    connp->conn_upper_handle, tcp->tcp_connid, err);
911 		} else {
912 			mp = mi_tpi_discon_ind(NULL, err, 0);
913 			if (mp != NULL) {
914 				putnext(q, mp);
915 			} else {
916 				if (connp->conn_debug) {
917 					(void) strlog(TCP_MOD_ID, 0, 1,
918 					    SL_ERROR|SL_TRACE,
919 					    "tcp_clean_death, sending M_ERROR");
920 				}
921 				(void) putnextctl1(q, M_ERROR, EPROTO);
922 			}
923 		}
924 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
925 			/* SYN_SENT or SYN_RCVD */
926 			TCPS_BUMP_MIB(tcps, tcpAttemptFails);
927 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
928 			/* ESTABLISHED or CLOSE_WAIT */
929 			TCPS_BUMP_MIB(tcps, tcpEstabResets);
930 		}
931 	}
932 
933 	/*
934 	 * ESTABLISHED non-STREAMS eagers are not 'detached' because
935 	 * an upper handle is obtained when the SYN-ACK comes in. So it
936 	 * should receive the 'disconnected' upcall, but tcp_reinit should
937 	 * not be called since this is an eager.
938 	 */
939 	if (tcp->tcp_listener != NULL && IPCL_IS_NONSTR(connp)) {
940 		tcp_closei_local(tcp);
941 		tcp->tcp_state = TCPS_BOUND;
942 		DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
943 		    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
944 		    int32_t, TCPS_CLOSED);
945 		return (0);
946 	}
947 
948 	tcp_reinit(tcp);
949 	if (IPCL_IS_NONSTR(connp))
950 		(void) tcp_do_unbind(connp);
951 
952 	return (-1);
953 }
954 
955 /*
956  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
957  * to expire, stop the wait and finish the close.
958  */
959 void
960 tcp_stop_lingering(tcp_t *tcp)
961 {
962 	clock_t	delta = 0;
963 	tcp_stack_t	*tcps = tcp->tcp_tcps;
964 	conn_t		*connp = tcp->tcp_connp;
965 
966 	tcp->tcp_linger_tid = 0;
967 	if (tcp->tcp_state > TCPS_LISTEN) {
968 		tcp_acceptor_hash_remove(tcp);
969 		mutex_enter(&tcp->tcp_non_sq_lock);
970 		if (tcp->tcp_flow_stopped) {
971 			tcp_clrqfull(tcp);
972 		}
973 		mutex_exit(&tcp->tcp_non_sq_lock);
974 
975 		if (tcp->tcp_timer_tid != 0) {
976 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
977 			tcp->tcp_timer_tid = 0;
978 		}
979 		/*
980 		 * Need to cancel those timers which will not be used when
981 		 * TCP is detached.  This has to be done before the conn_wq
982 		 * is cleared.
983 		 */
984 		tcp_timers_stop(tcp);
985 
986 		tcp->tcp_detached = B_TRUE;
987 		connp->conn_rq = NULL;
988 		connp->conn_wq = NULL;
989 
990 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
991 			tcp_time_wait_append(tcp);
992 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
993 			goto finish;
994 		}
995 
996 		/*
997 		 * If delta is zero the timer event wasn't executed and was
998 		 * successfully canceled. In this case we need to restart it
999 		 * with the minimal delta possible.
1000 		 */
1001 		if (delta >= 0) {
1002 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
1003 			    delta ? delta : 1);
1004 		}
1005 	} else {
1006 		tcp_closei_local(tcp);
1007 		CONN_DEC_REF(connp);
1008 	}
1009 finish:
1010 	tcp->tcp_detached = B_TRUE;
1011 	connp->conn_rq = NULL;
1012 	connp->conn_wq = NULL;
1013 
1014 	/* Signal closing thread that it can complete close */
1015 	mutex_enter(&tcp->tcp_closelock);
1016 	tcp->tcp_closed = 1;
1017 	cv_signal(&tcp->tcp_closecv);
1018 	mutex_exit(&tcp->tcp_closelock);
1019 
1020 	/* If we have an upper handle (socket), release it */
1021 	if (IPCL_IS_NONSTR(connp)) {
1022 		ASSERT(connp->conn_upper_handle != NULL);
1023 		(*connp->conn_upcalls->su_closed)(connp->conn_upper_handle);
1024 		connp->conn_upper_handle = NULL;
1025 		connp->conn_upcalls = NULL;
1026 	}
1027 }
1028 
1029 void
1030 tcp_close_common(conn_t *connp, int flags)
1031 {
1032 	tcp_t		*tcp = connp->conn_tcp;
1033 	mblk_t		*mp = &tcp->tcp_closemp;
1034 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
1035 	mblk_t		*bp;
1036 
1037 	ASSERT(connp->conn_ref >= 2);
1038 
1039 	/*
1040 	 * Mark the conn as closing. ipsq_pending_mp_add will not
1041 	 * add any mp to the pending mp list, after this conn has
1042 	 * started closing.
1043 	 */
1044 	mutex_enter(&connp->conn_lock);
1045 	connp->conn_state_flags |= CONN_CLOSING;
1046 	if (connp->conn_oper_pending_ill != NULL)
1047 		conn_ioctl_cleanup_reqd = B_TRUE;
1048 	CONN_INC_REF_LOCKED(connp);
1049 	mutex_exit(&connp->conn_lock);
1050 	tcp->tcp_closeflags = (uint8_t)flags;
1051 	ASSERT(connp->conn_ref >= 3);
1052 
1053 	/*
1054 	 * tcp_closemp_used is used below without any protection of a lock
1055 	 * as we don't expect any one else to use it concurrently at this
1056 	 * point otherwise it would be a major defect.
1057 	 */
1058 
1059 	if (mp->b_prev == NULL)
1060 		tcp->tcp_closemp_used = B_TRUE;
1061 	else
1062 		cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: "
1063 		    "connp %p tcp %p\n", (void *)connp, (void *)tcp);
1064 
1065 	TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1066 
1067 	/*
1068 	 * Cleanup any queued ioctls here. This must be done before the wq/rq
1069 	 * are re-written by tcp_close_output().
1070 	 */
1071 	if (conn_ioctl_cleanup_reqd)
1072 		conn_ioctl_cleanup(connp);
1073 
1074 	/*
1075 	 * As CONN_CLOSING is set, no further ioctls should be passed down to
1076 	 * IP for this conn (see the guards in tcp_ioctl, tcp_wput_ioctl and
1077 	 * tcp_wput_iocdata). If the ioctl was queued on an ipsq,
1078 	 * conn_ioctl_cleanup should have found it and removed it. If the ioctl
1079 	 * was still in flight at the time, we wait for it here. See comments
1080 	 * for CONN_INC_IOCTLREF in ip.h for details.
1081 	 */
1082 	mutex_enter(&connp->conn_lock);
1083 	while (connp->conn_ioctlref > 0)
1084 		cv_wait(&connp->conn_cv, &connp->conn_lock);
1085 	ASSERT(connp->conn_ioctlref == 0);
1086 	ASSERT(connp->conn_oper_pending_ill == NULL);
1087 	mutex_exit(&connp->conn_lock);
1088 
1089 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp,
1090 	    NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
1091 
1092 	/*
1093 	 * For non-STREAMS sockets, the normal case is that the conn makes
1094 	 * an upcall when it's finally closed, so there is no need to wait
1095 	 * in the protocol. But in case of SO_LINGER the thread sleeps here
1096 	 * so it can properly deal with the thread being interrupted.
1097 	 */
1098 	if (IPCL_IS_NONSTR(connp) && connp->conn_linger == 0)
1099 		goto nowait;
1100 
1101 	mutex_enter(&tcp->tcp_closelock);
1102 	while (!tcp->tcp_closed) {
1103 		if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
1104 			/*
1105 			 * The cv_wait_sig() was interrupted. We now do the
1106 			 * following:
1107 			 *
1108 			 * 1) If the endpoint was lingering, we allow this
1109 			 * to be interrupted by cancelling the linger timeout
1110 			 * and closing normally.
1111 			 *
1112 			 * 2) Revert to calling cv_wait()
1113 			 *
1114 			 * We revert to using cv_wait() to avoid an
1115 			 * infinite loop which can occur if the calling
1116 			 * thread is higher priority than the squeue worker
1117 			 * thread and is bound to the same cpu.
1118 			 */
1119 			if (connp->conn_linger && connp->conn_lingertime > 0) {
1120 				mutex_exit(&tcp->tcp_closelock);
1121 				/* Entering squeue, bump ref count. */
1122 				CONN_INC_REF(connp);
1123 				bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
1124 				SQUEUE_ENTER_ONE(connp->conn_sqp, bp,
1125 				    tcp_linger_interrupted, connp, NULL,
1126 				    tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
1127 				mutex_enter(&tcp->tcp_closelock);
1128 			}
1129 			break;
1130 		}
1131 	}
1132 	while (!tcp->tcp_closed)
1133 		cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
1134 	mutex_exit(&tcp->tcp_closelock);
1135 
1136 	/*
1137 	 * In the case of listener streams that have eagers in the q or q0
1138 	 * we wait for the eagers to drop their reference to us. conn_rq and
1139 	 * conn_wq of the eagers point to our queues. By waiting for the
1140 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
1141 	 * up their queue pointers and also dropped their references to us.
1142 	 *
1143 	 * For non-STREAMS sockets we do not have to wait here; the
1144 	 * listener will instead make a su_closed upcall when the last
1145 	 * reference is dropped.
1146 	 */
1147 	if (tcp->tcp_wait_for_eagers && !IPCL_IS_NONSTR(connp)) {
1148 		mutex_enter(&connp->conn_lock);
1149 		while (connp->conn_ref != 1) {
1150 			cv_wait(&connp->conn_cv, &connp->conn_lock);
1151 		}
1152 		mutex_exit(&connp->conn_lock);
1153 	}
1154 
1155 nowait:
1156 	connp->conn_cpid = NOPID;
1157 }
1158 
1159 /*
1160  * Called by tcp_close() routine via squeue when lingering is
1161  * interrupted by a signal.
1162  */
1163 
1164 /* ARGSUSED */
1165 static void
1166 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
1167 {
1168 	conn_t	*connp = (conn_t *)arg;
1169 	tcp_t	*tcp = connp->conn_tcp;
1170 
1171 	freeb(mp);
1172 	if (tcp->tcp_linger_tid != 0 &&
1173 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
1174 		tcp_stop_lingering(tcp);
1175 		tcp->tcp_client_errno = EINTR;
1176 	}
1177 }
1178 
1179 /*
1180  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
1181  * Some stream heads get upset if they see these later on as anything but NULL.
1182  */
1183 void
1184 tcp_close_mpp(mblk_t **mpp)
1185 {
1186 	mblk_t	*mp;
1187 
1188 	if ((mp = *mpp) != NULL) {
1189 		do {
1190 			mp->b_next = NULL;
1191 			mp->b_prev = NULL;
1192 		} while ((mp = mp->b_cont) != NULL);
1193 
1194 		mp = *mpp;
1195 		*mpp = NULL;
1196 		freemsg(mp);
1197 	}
1198 }
1199 
1200 /* Do detached close. */
1201 void
1202 tcp_close_detached(tcp_t *tcp)
1203 {
1204 	if (tcp->tcp_fused)
1205 		tcp_unfuse(tcp);
1206 
1207 	/*
1208 	 * Clustering code serializes TCP disconnect callbacks and
1209 	 * cluster tcp list walks by blocking a TCP disconnect callback
1210 	 * if a cluster tcp list walk is in progress. This ensures
1211 	 * accurate accounting of TCPs in the cluster code even though
1212 	 * the TCP list walk itself is not atomic.
1213 	 */
1214 	tcp_closei_local(tcp);
1215 	CONN_DEC_REF(tcp->tcp_connp);
1216 }
1217 
1218 /*
1219  * The tcp_t is going away. Remove it from all lists and set it
1220  * to TCPS_CLOSED. The freeing up of memory is deferred until
1221  * tcp_inactive. This is needed since a thread in tcp_rput might have
1222  * done a CONN_INC_REF on this structure before it was removed from the
1223  * hashes.
1224  */
1225 void
1226 tcp_closei_local(tcp_t *tcp)
1227 {
1228 	conn_t		*connp = tcp->tcp_connp;
1229 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1230 	int32_t		oldstate;
1231 
1232 	if (!TCP_IS_SOCKET(tcp))
1233 		tcp_acceptor_hash_remove(tcp);
1234 
1235 	/*
1236 	 * This can be called via tcp_time_wait_processing() if TCP gets a
1237 	 * SYN with sequence number outside the TIME-WAIT connection's
1238 	 * window.  So we need to check for TIME-WAIT state here as the
1239 	 * connection counter is already decremented.  See SET_TIME_WAIT()
1240 	 * macro
1241 	 */
1242 	if (tcp->tcp_state >= TCPS_ESTABLISHED &&
1243 	    tcp->tcp_state < TCPS_TIME_WAIT) {
1244 		TCPS_CONN_DEC(tcps);
1245 	}
1246 
1247 	/*
1248 	 * If we are an eager connection hanging off a listener that
1249 	 * hasn't formally accepted the connection yet, get off its
1250 	 * list and blow off any data that we have accumulated.
1251 	 */
1252 	if (tcp->tcp_listener != NULL) {
1253 		tcp_t	*listener = tcp->tcp_listener;
1254 		mutex_enter(&listener->tcp_eager_lock);
1255 		/*
1256 		 * tcp_tconnind_started == B_TRUE means that the
1257 		 * conn_ind has already gone to listener. At
1258 		 * this point, eager will be closed but we
1259 		 * leave it in listeners eager list so that
1260 		 * if listener decides to close without doing
1261 		 * accept, we can clean this up. In tcp_tli_accept
1262 		 * we take care of the case of accept on closed
1263 		 * eager.
1264 		 */
1265 		if (!tcp->tcp_tconnind_started) {
1266 			tcp_eager_unlink(tcp);
1267 			mutex_exit(&listener->tcp_eager_lock);
1268 			/*
1269 			 * We don't want to have any pointers to the
1270 			 * listener queue, after we have released our
1271 			 * reference on the listener
1272 			 */
1273 			ASSERT(tcp->tcp_detached);
1274 			connp->conn_rq = NULL;
1275 			connp->conn_wq = NULL;
1276 			CONN_DEC_REF(listener->tcp_connp);
1277 		} else {
1278 			mutex_exit(&listener->tcp_eager_lock);
1279 		}
1280 	}
1281 
1282 	/* Stop all the timers */
1283 	tcp_timers_stop(tcp);
1284 
1285 	if (tcp->tcp_state == TCPS_LISTEN) {
1286 		if (tcp->tcp_ip_addr_cache) {
1287 			kmem_free((void *)tcp->tcp_ip_addr_cache,
1288 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
1289 			tcp->tcp_ip_addr_cache = NULL;
1290 		}
1291 	}
1292 
1293 	/* Decrement listerner connection counter if necessary. */
1294 	if (tcp->tcp_listen_cnt != NULL)
1295 		TCP_DECR_LISTEN_CNT(tcp);
1296 
1297 	mutex_enter(&tcp->tcp_non_sq_lock);
1298 	if (tcp->tcp_flow_stopped)
1299 		tcp_clrqfull(tcp);
1300 	mutex_exit(&tcp->tcp_non_sq_lock);
1301 
1302 	tcp_bind_hash_remove(tcp);
1303 	/*
1304 	 * If the tcp_time_wait_collector (which runs outside the squeue)
1305 	 * is trying to remove this tcp from the time wait list, we will
1306 	 * block in tcp_time_wait_remove while trying to acquire the
1307 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
1308 	 * requires the ipcl_hash_remove to be ordered after the
1309 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
1310 	 */
1311 	if (tcp->tcp_state == TCPS_TIME_WAIT)
1312 		(void) tcp_time_wait_remove(tcp, NULL);
1313 	CL_INET_DISCONNECT(connp);
1314 	ipcl_hash_remove(connp);
1315 	oldstate = tcp->tcp_state;
1316 	tcp->tcp_state = TCPS_CLOSED;
1317 	/* Need to probe before ixa_cleanup() is called */
1318 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1319 	    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
1320 	    int32_t, oldstate);
1321 	ixa_cleanup(connp->conn_ixa);
1322 
1323 	/*
1324 	 * Mark the conn as CONDEMNED
1325 	 */
1326 	mutex_enter(&connp->conn_lock);
1327 	connp->conn_state_flags |= CONN_CONDEMNED;
1328 	mutex_exit(&connp->conn_lock);
1329 
1330 	ASSERT(tcp->tcp_time_wait_next == NULL);
1331 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1332 	ASSERT(tcp->tcp_time_wait_expire == 0);
1333 
1334 	tcp_ipsec_cleanup(tcp);
1335 }
1336 
1337 /*
1338  * tcp is dying (called from ipcl_conn_destroy and error cases).
1339  * Free the tcp_t in either case.
1340  */
1341 void
1342 tcp_free(tcp_t *tcp)
1343 {
1344 	mblk_t		*mp;
1345 	conn_t		*connp = tcp->tcp_connp;
1346 
1347 	ASSERT(tcp != NULL);
1348 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
1349 
1350 	connp->conn_rq = NULL;
1351 	connp->conn_wq = NULL;
1352 
1353 	tcp_close_mpp(&tcp->tcp_xmit_head);
1354 	tcp_close_mpp(&tcp->tcp_reass_head);
1355 	if (tcp->tcp_rcv_list != NULL) {
1356 		/* Free b_next chain */
1357 		tcp_close_mpp(&tcp->tcp_rcv_list);
1358 	}
1359 	if ((mp = tcp->tcp_urp_mp) != NULL) {
1360 		freemsg(mp);
1361 	}
1362 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
1363 		freemsg(mp);
1364 	}
1365 
1366 	if (tcp->tcp_fused_sigurg_mp != NULL) {
1367 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1368 		freeb(tcp->tcp_fused_sigurg_mp);
1369 		tcp->tcp_fused_sigurg_mp = NULL;
1370 	}
1371 
1372 	if (tcp->tcp_ordrel_mp != NULL) {
1373 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1374 		freeb(tcp->tcp_ordrel_mp);
1375 		tcp->tcp_ordrel_mp = NULL;
1376 	}
1377 
1378 	TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp);
1379 	bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
1380 
1381 	if (tcp->tcp_hopopts != NULL) {
1382 		mi_free(tcp->tcp_hopopts);
1383 		tcp->tcp_hopopts = NULL;
1384 		tcp->tcp_hopoptslen = 0;
1385 	}
1386 	ASSERT(tcp->tcp_hopoptslen == 0);
1387 	if (tcp->tcp_dstopts != NULL) {
1388 		mi_free(tcp->tcp_dstopts);
1389 		tcp->tcp_dstopts = NULL;
1390 		tcp->tcp_dstoptslen = 0;
1391 	}
1392 	ASSERT(tcp->tcp_dstoptslen == 0);
1393 	if (tcp->tcp_rthdrdstopts != NULL) {
1394 		mi_free(tcp->tcp_rthdrdstopts);
1395 		tcp->tcp_rthdrdstopts = NULL;
1396 		tcp->tcp_rthdrdstoptslen = 0;
1397 	}
1398 	ASSERT(tcp->tcp_rthdrdstoptslen == 0);
1399 	if (tcp->tcp_rthdr != NULL) {
1400 		mi_free(tcp->tcp_rthdr);
1401 		tcp->tcp_rthdr = NULL;
1402 		tcp->tcp_rthdrlen = 0;
1403 	}
1404 	ASSERT(tcp->tcp_rthdrlen == 0);
1405 
1406 	/*
1407 	 * Following is really a blowing away a union.
1408 	 * It happens to have exactly two members of identical size
1409 	 * the following code is enough.
1410 	 */
1411 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
1412 
1413 	/* Allow the CC algorithm to clean up after itself. */
1414 	if (tcp->tcp_cc_algo != NULL && tcp->tcp_cc_algo->cb_destroy != NULL)
1415 		tcp->tcp_cc_algo->cb_destroy(&tcp->tcp_ccv);
1416 
1417 	/*
1418 	 * If this is a non-STREAM socket still holding on to an upper
1419 	 * handle, release it. As a result of fallback we might also see
1420 	 * STREAMS based conns with upper handles, in which case there is
1421 	 * nothing to do other than clearing the field.
1422 	 */
1423 	if (connp->conn_upper_handle != NULL) {
1424 		if (IPCL_IS_NONSTR(connp)) {
1425 			(*connp->conn_upcalls->su_closed)(
1426 			    connp->conn_upper_handle);
1427 			tcp->tcp_detached = B_TRUE;
1428 		}
1429 		connp->conn_upper_handle = NULL;
1430 		connp->conn_upcalls = NULL;
1431 	}
1432 }
1433 
1434 /*
1435  * tcp_get_conn/tcp_free_conn
1436  *
1437  * tcp_get_conn is used to get a clean tcp connection structure.
1438  * It tries to reuse the connections put on the freelist by the
1439  * time_wait_collector failing which it goes to kmem_cache. This
1440  * way has two benefits compared to just allocating from and
1441  * freeing to kmem_cache.
1442  * 1) The time_wait_collector can free (which includes the cleanup)
1443  * outside the squeue. So when the interrupt comes, we have a clean
1444  * connection sitting in the freelist. Obviously, this buys us
1445  * performance.
1446  *
1447  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_input_listener
1448  * has multiple disadvantages - tying up the squeue during alloc.
1449  * But allocating the conn/tcp in IP land is also not the best since
1450  * we can't check the 'q' and 'q0' which are protected by squeue and
1451  * blindly allocate memory which might have to be freed here if we are
1452  * not allowed to accept the connection. By using the freelist and
1453  * putting the conn/tcp back in freelist, we don't pay a penalty for
1454  * allocating memory without checking 'q/q0' and freeing it if we can't
1455  * accept the connection.
1456  *
1457  * Care should be taken to put the conn back in the same squeue's freelist
1458  * from which it was allocated. Best results are obtained if conn is
1459  * allocated from listener's squeue and freed to the same. Time wait
1460  * collector will free up the freelist is the connection ends up sitting
1461  * there for too long.
1462  */
1463 conn_t *
1464 tcp_get_conn(void *arg, tcp_stack_t *tcps)
1465 {
1466 	tcp_t			*tcp = NULL;
1467 	conn_t			*connp = NULL;
1468 	squeue_t		*sqp = (squeue_t *)arg;
1469 	tcp_squeue_priv_t	*tcp_time_wait;
1470 	netstack_t		*ns;
1471 	mblk_t			*tcp_rsrv_mp = NULL;
1472 
1473 	tcp_time_wait =
1474 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1475 
1476 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1477 	tcp = tcp_time_wait->tcp_free_list;
1478 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
1479 	if (tcp != NULL) {
1480 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1481 		tcp_time_wait->tcp_free_list_cnt--;
1482 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1483 		tcp->tcp_time_wait_next = NULL;
1484 		connp = tcp->tcp_connp;
1485 		connp->conn_flags |= IPCL_REUSED;
1486 
1487 		ASSERT(tcp->tcp_tcps == NULL);
1488 		ASSERT(connp->conn_netstack == NULL);
1489 		ASSERT(tcp->tcp_rsrv_mp != NULL);
1490 		ns = tcps->tcps_netstack;
1491 		netstack_hold(ns);
1492 		connp->conn_netstack = ns;
1493 		connp->conn_ixa->ixa_ipst = ns->netstack_ip;
1494 		tcp->tcp_tcps = tcps;
1495 		ipcl_globalhash_insert(connp);
1496 
1497 		connp->conn_ixa->ixa_notify_cookie = tcp;
1498 		ASSERT(connp->conn_ixa->ixa_notify == tcp_notify);
1499 		connp->conn_recv = tcp_input_data;
1500 		ASSERT(connp->conn_recvicmp == tcp_icmp_input);
1501 		ASSERT(connp->conn_verifyicmp == tcp_verifyicmp);
1502 		return (connp);
1503 	}
1504 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1505 	/*
1506 	 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until
1507 	 * this conn_t/tcp_t is freed at ipcl_conn_destroy().
1508 	 */
1509 	tcp_rsrv_mp = allocb(0, BPRI_HI);
1510 	if (tcp_rsrv_mp == NULL)
1511 		return (NULL);
1512 
1513 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
1514 	    tcps->tcps_netstack)) == NULL) {
1515 		freeb(tcp_rsrv_mp);
1516 		return (NULL);
1517 	}
1518 
1519 	tcp = connp->conn_tcp;
1520 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
1521 	mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL);
1522 
1523 	tcp->tcp_tcps = tcps;
1524 
1525 	connp->conn_recv = tcp_input_data;
1526 	connp->conn_recvicmp = tcp_icmp_input;
1527 	connp->conn_verifyicmp = tcp_verifyicmp;
1528 
1529 	/*
1530 	 * Register tcp_notify to listen to capability changes detected by IP.
1531 	 * This upcall is made in the context of the call to conn_ip_output
1532 	 * thus it is inside the squeue.
1533 	 */
1534 	connp->conn_ixa->ixa_notify = tcp_notify;
1535 	connp->conn_ixa->ixa_notify_cookie = tcp;
1536 
1537 	return (connp);
1538 }
1539 
1540 /*
1541  * Handle connect to IPv4 destinations, including connections for AF_INET6
1542  * sockets connecting to IPv4 mapped IPv6 destinations.
1543  * Returns zero if OK, a positive errno, or a negative TLI error.
1544  */
1545 static int
1546 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport,
1547     uint_t srcid)
1548 {
1549 	ipaddr_t	dstaddr = *dstaddrp;
1550 	uint16_t	lport;
1551 	conn_t		*connp = tcp->tcp_connp;
1552 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1553 	int		error;
1554 
1555 	ASSERT(connp->conn_ipversion == IPV4_VERSION);
1556 
1557 	/* Check for attempt to connect to INADDR_ANY */
1558 	if (dstaddr == INADDR_ANY)  {
1559 		/*
1560 		 * SunOS 4.x and 4.3 BSD allow an application
1561 		 * to connect a TCP socket to INADDR_ANY.
1562 		 * When they do this, the kernel picks the
1563 		 * address of one interface and uses it
1564 		 * instead.  The kernel usually ends up
1565 		 * picking the address of the loopback
1566 		 * interface.  This is an undocumented feature.
1567 		 * However, we provide the same thing here
1568 		 * in order to have source and binary
1569 		 * compatibility with SunOS 4.x.
1570 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
1571 		 * generate the T_CONN_CON.
1572 		 */
1573 		dstaddr = htonl(INADDR_LOOPBACK);
1574 		*dstaddrp = dstaddr;
1575 	}
1576 
1577 	/* Handle __sin6_src_id if socket not bound to an IP address */
1578 	if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) {
1579 		if (!ip_srcid_find_id(srcid, &connp->conn_laddr_v6,
1580 		    IPCL_ZONEID(connp), B_TRUE, tcps->tcps_netstack)) {
1581 			/* Mismatch - conn_laddr_v6 would be v6 address. */
1582 			return (EADDRNOTAVAIL);
1583 		}
1584 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
1585 	}
1586 
1587 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6);
1588 	connp->conn_fport = dstport;
1589 
1590 	/*
1591 	 * At this point the remote destination address and remote port fields
1592 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
1593 	 * have to see which state tcp was in so we can take appropriate action.
1594 	 */
1595 	if (tcp->tcp_state == TCPS_IDLE) {
1596 		/*
1597 		 * We support a quick connect capability here, allowing
1598 		 * clients to transition directly from IDLE to SYN_SENT
1599 		 * tcp_bindi will pick an unused port, insert the connection
1600 		 * in the bind hash and transition to BOUND state.
1601 		 */
1602 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
1603 		    tcp, B_TRUE);
1604 		lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE,
1605 		    B_FALSE, B_FALSE);
1606 		if (lport == 0)
1607 			return (-TNOADDR);
1608 	}
1609 
1610 	/*
1611 	 * Lookup the route to determine a source address and the uinfo.
1612 	 * Setup TCP parameters based on the metrics/DCE.
1613 	 */
1614 	error = tcp_set_destination(tcp);
1615 	if (error != 0)
1616 		return (error);
1617 
1618 	/*
1619 	 * Don't let an endpoint connect to itself.
1620 	 */
1621 	if (connp->conn_faddr_v4 == connp->conn_laddr_v4 &&
1622 	    connp->conn_fport == connp->conn_lport)
1623 		return (-TBADADDR);
1624 
1625 	tcp->tcp_state = TCPS_SYN_SENT;
1626 
1627 	return (ipcl_conn_insert_v4(connp));
1628 }
1629 
1630 /*
1631  * Handle connect to IPv6 destinations.
1632  * Returns zero if OK, a positive errno, or a negative TLI error.
1633  */
1634 static int
1635 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport,
1636     uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
1637 {
1638 	uint16_t	lport;
1639 	conn_t		*connp = tcp->tcp_connp;
1640 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1641 	int		error;
1642 
1643 	ASSERT(connp->conn_family == AF_INET6);
1644 
1645 	/*
1646 	 * If we're here, it means that the destination address is a native
1647 	 * IPv6 address.  Return an error if conn_ipversion is not IPv6.  A
1648 	 * reason why it might not be IPv6 is if the socket was bound to an
1649 	 * IPv4-mapped IPv6 address.
1650 	 */
1651 	if (connp->conn_ipversion != IPV6_VERSION)
1652 		return (-TBADADDR);
1653 
1654 	/*
1655 	 * Interpret a zero destination to mean loopback.
1656 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
1657 	 * generate the T_CONN_CON.
1658 	 */
1659 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp))
1660 		*dstaddrp = ipv6_loopback;
1661 
1662 	/* Handle __sin6_src_id if socket not bound to an IP address */
1663 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) {
1664 		if (!ip_srcid_find_id(srcid, &connp->conn_laddr_v6,
1665 		    IPCL_ZONEID(connp), B_FALSE, tcps->tcps_netstack)) {
1666 			/* Mismatch - conn_laddr_v6 would be v4-mapped. */
1667 			return (EADDRNOTAVAIL);
1668 		}
1669 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
1670 	}
1671 
1672 	/*
1673 	 * Take care of the scope_id now.
1674 	 */
1675 	if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
1676 		connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET;
1677 		connp->conn_ixa->ixa_scopeid = scope_id;
1678 	} else {
1679 		connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET;
1680 	}
1681 
1682 	connp->conn_flowinfo = flowinfo;
1683 	connp->conn_faddr_v6 = *dstaddrp;
1684 	connp->conn_fport = dstport;
1685 
1686 	/*
1687 	 * At this point the remote destination address and remote port fields
1688 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
1689 	 * have to see which state tcp was in so we can take appropriate action.
1690 	 */
1691 	if (tcp->tcp_state == TCPS_IDLE) {
1692 		/*
1693 		 * We support a quick connect capability here, allowing
1694 		 * clients to transition directly from IDLE to SYN_SENT
1695 		 * tcp_bindi will pick an unused port, insert the connection
1696 		 * in the bind hash and transition to BOUND state.
1697 		 */
1698 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
1699 		    tcp, B_TRUE);
1700 		lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE,
1701 		    B_FALSE, B_FALSE);
1702 		if (lport == 0)
1703 			return (-TNOADDR);
1704 	}
1705 
1706 	/*
1707 	 * Lookup the route to determine a source address and the uinfo.
1708 	 * Setup TCP parameters based on the metrics/DCE.
1709 	 */
1710 	error = tcp_set_destination(tcp);
1711 	if (error != 0)
1712 		return (error);
1713 
1714 	/*
1715 	 * Don't let an endpoint connect to itself.
1716 	 */
1717 	if (IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &connp->conn_laddr_v6) &&
1718 	    connp->conn_fport == connp->conn_lport)
1719 		return (-TBADADDR);
1720 
1721 	tcp->tcp_state = TCPS_SYN_SENT;
1722 
1723 	return (ipcl_conn_insert_v6(connp));
1724 }
1725 
1726 /*
1727  * Disconnect
1728  * Note that unlike other functions this returns a positive tli error
1729  * when it fails; it never returns an errno.
1730  */
1731 static int
1732 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum)
1733 {
1734 	conn_t		*lconnp;
1735 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1736 	conn_t		*connp = tcp->tcp_connp;
1737 
1738 	/*
1739 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
1740 	 * when the stream is in BOUND state. Do not send a reset,
1741 	 * since the destination IP address is not valid, and it can
1742 	 * be the initialized value of all zeros (broadcast address).
1743 	 */
1744 	if (tcp->tcp_state <= TCPS_BOUND) {
1745 		if (connp->conn_debug) {
1746 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
1747 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
1748 		}
1749 		return (TOUTSTATE);
1750 	} else if (tcp->tcp_state >= TCPS_ESTABLISHED) {
1751 		TCPS_CONN_DEC(tcps);
1752 	}
1753 
1754 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
1755 
1756 		/*
1757 		 * According to TPI, for non-listeners, ignore seqnum
1758 		 * and disconnect.
1759 		 * Following interpretation of -1 seqnum is historical
1760 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
1761 		 * a valid seqnum should not be -1).
1762 		 *
1763 		 *	-1 means disconnect everything
1764 		 *	regardless even on a listener.
1765 		 */
1766 
1767 		int old_state = tcp->tcp_state;
1768 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
1769 
1770 		/*
1771 		 * The connection can't be on the tcp_time_wait_head list
1772 		 * since it is not detached.
1773 		 */
1774 		ASSERT(tcp->tcp_time_wait_next == NULL);
1775 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1776 		ASSERT(tcp->tcp_time_wait_expire == 0);
1777 		/*
1778 		 * If it used to be a listener, check to make sure no one else
1779 		 * has taken the port before switching back to LISTEN state.
1780 		 */
1781 		if (connp->conn_ipversion == IPV4_VERSION) {
1782 			lconnp = ipcl_lookup_listener_v4(connp->conn_lport,
1783 			    connp->conn_laddr_v4, IPCL_ZONEID(connp), ipst);
1784 		} else {
1785 			uint_t ifindex = 0;
1786 
1787 			if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)
1788 				ifindex = connp->conn_ixa->ixa_scopeid;
1789 
1790 			/* Allow conn_bound_if listeners? */
1791 			lconnp = ipcl_lookup_listener_v6(connp->conn_lport,
1792 			    &connp->conn_laddr_v6, ifindex, IPCL_ZONEID(connp),
1793 			    ipst);
1794 		}
1795 		if (tcp->tcp_conn_req_max && lconnp == NULL) {
1796 			tcp->tcp_state = TCPS_LISTEN;
1797 			DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1798 			    connp->conn_ixa, void, NULL, tcp_t *, tcp, void,
1799 			    NULL, int32_t, old_state);
1800 		} else if (old_state > TCPS_BOUND) {
1801 			tcp->tcp_conn_req_max = 0;
1802 			tcp->tcp_state = TCPS_BOUND;
1803 			DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1804 			    connp->conn_ixa, void, NULL, tcp_t *, tcp, void,
1805 			    NULL, int32_t, old_state);
1806 
1807 			/*
1808 			 * If this end point is not going to become a listener,
1809 			 * decrement the listener connection count if
1810 			 * necessary.  Note that we do not do this if it is
1811 			 * going to be a listner (the above if case) since
1812 			 * then it may remove the counter struct.
1813 			 */
1814 			if (tcp->tcp_listen_cnt != NULL)
1815 				TCP_DECR_LISTEN_CNT(tcp);
1816 		}
1817 		if (lconnp != NULL)
1818 			CONN_DEC_REF(lconnp);
1819 		switch (old_state) {
1820 		case TCPS_SYN_SENT:
1821 		case TCPS_SYN_RCVD:
1822 			TCPS_BUMP_MIB(tcps, tcpAttemptFails);
1823 			break;
1824 		case TCPS_ESTABLISHED:
1825 		case TCPS_CLOSE_WAIT:
1826 			TCPS_BUMP_MIB(tcps, tcpEstabResets);
1827 			break;
1828 		}
1829 
1830 		if (tcp->tcp_fused)
1831 			tcp_unfuse(tcp);
1832 
1833 		mutex_enter(&tcp->tcp_eager_lock);
1834 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
1835 		    (tcp->tcp_conn_req_cnt_q != 0)) {
1836 			tcp_eager_cleanup(tcp, 0);
1837 		}
1838 		mutex_exit(&tcp->tcp_eager_lock);
1839 
1840 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
1841 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
1842 
1843 		tcp_reinit(tcp);
1844 
1845 		return (0);
1846 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
1847 		return (TBADSEQ);
1848 	}
1849 	return (0);
1850 }
1851 
1852 /*
1853  * Our client hereby directs us to reject the connection request
1854  * that tcp_input_listener() marked with 'seqnum'.  Rejection consists
1855  * of sending the appropriate RST, not an ICMP error.
1856  */
1857 void
1858 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
1859 {
1860 	t_scalar_t seqnum;
1861 	int	error;
1862 	conn_t	*connp = tcp->tcp_connp;
1863 
1864 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
1865 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
1866 		tcp_err_ack(tcp, mp, TPROTO, 0);
1867 		return;
1868 	}
1869 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
1870 	error = tcp_disconnect_common(tcp, seqnum);
1871 	if (error != 0)
1872 		tcp_err_ack(tcp, mp, error, 0);
1873 	else {
1874 		if (tcp->tcp_state >= TCPS_ESTABLISHED) {
1875 			/* Send M_FLUSH according to TPI */
1876 			(void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW);
1877 		}
1878 		mp = mi_tpi_ok_ack_alloc(mp);
1879 		if (mp != NULL)
1880 			putnext(connp->conn_rq, mp);
1881 	}
1882 }
1883 
1884 /*
1885  * Handle reinitialization of a tcp structure.
1886  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
1887  */
1888 static void
1889 tcp_reinit(tcp_t *tcp)
1890 {
1891 	mblk_t		*mp;
1892 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1893 	conn_t		*connp  = tcp->tcp_connp;
1894 	int32_t		oldstate;
1895 
1896 	/* tcp_reinit should never be called for detached tcp_t's */
1897 	ASSERT(tcp->tcp_listener == NULL);
1898 	ASSERT((connp->conn_family == AF_INET &&
1899 	    connp->conn_ipversion == IPV4_VERSION) ||
1900 	    (connp->conn_family == AF_INET6 &&
1901 	    (connp->conn_ipversion == IPV4_VERSION ||
1902 	    connp->conn_ipversion == IPV6_VERSION)));
1903 
1904 	/* Cancel outstanding timers */
1905 	tcp_timers_stop(tcp);
1906 
1907 	tcp_close_mpp(&tcp->tcp_xmit_head);
1908 	if (tcp->tcp_snd_zcopy_aware)
1909 		tcp_zcopy_notify(tcp);
1910 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
1911 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
1912 	mutex_enter(&tcp->tcp_non_sq_lock);
1913 	if (tcp->tcp_flow_stopped &&
1914 	    TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) {
1915 		tcp_clrqfull(tcp);
1916 	}
1917 	mutex_exit(&tcp->tcp_non_sq_lock);
1918 	tcp_close_mpp(&tcp->tcp_reass_head);
1919 	tcp->tcp_reass_tail = NULL;
1920 	if (tcp->tcp_rcv_list != NULL) {
1921 		/* Free b_next chain */
1922 		tcp_close_mpp(&tcp->tcp_rcv_list);
1923 		tcp->tcp_rcv_last_head = NULL;
1924 		tcp->tcp_rcv_last_tail = NULL;
1925 		tcp->tcp_rcv_cnt = 0;
1926 	}
1927 	tcp->tcp_rcv_last_tail = NULL;
1928 
1929 	if ((mp = tcp->tcp_urp_mp) != NULL) {
1930 		freemsg(mp);
1931 		tcp->tcp_urp_mp = NULL;
1932 	}
1933 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
1934 		freemsg(mp);
1935 		tcp->tcp_urp_mark_mp = NULL;
1936 	}
1937 	if (tcp->tcp_fused_sigurg_mp != NULL) {
1938 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1939 		freeb(tcp->tcp_fused_sigurg_mp);
1940 		tcp->tcp_fused_sigurg_mp = NULL;
1941 	}
1942 	if (tcp->tcp_ordrel_mp != NULL) {
1943 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1944 		freeb(tcp->tcp_ordrel_mp);
1945 		tcp->tcp_ordrel_mp = NULL;
1946 	}
1947 
1948 	/*
1949 	 * Following is a union with two members which are
1950 	 * identical types and size so the following cleanup
1951 	 * is enough.
1952 	 */
1953 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
1954 
1955 	CL_INET_DISCONNECT(connp);
1956 
1957 	/*
1958 	 * The connection can't be on the tcp_time_wait_head list
1959 	 * since it is not detached.
1960 	 */
1961 	ASSERT(tcp->tcp_time_wait_next == NULL);
1962 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1963 	ASSERT(tcp->tcp_time_wait_expire == 0);
1964 
1965 	/*
1966 	 * Reset/preserve other values
1967 	 */
1968 	tcp_reinit_values(tcp);
1969 	ipcl_hash_remove(connp);
1970 	/* Note that ixa_cred gets cleared in ixa_cleanup */
1971 	ixa_cleanup(connp->conn_ixa);
1972 	tcp_ipsec_cleanup(tcp);
1973 
1974 	connp->conn_laddr_v6 = connp->conn_bound_addr_v6;
1975 	connp->conn_saddr_v6 = connp->conn_bound_addr_v6;
1976 	oldstate = tcp->tcp_state;
1977 
1978 	if (tcp->tcp_conn_req_max != 0) {
1979 		/*
1980 		 * This is the case when a TLI program uses the same
1981 		 * transport end point to accept a connection.  This
1982 		 * makes the TCP both a listener and acceptor.  When
1983 		 * this connection is closed, we need to set the state
1984 		 * back to TCPS_LISTEN.  Make sure that the eager list
1985 		 * is reinitialized.
1986 		 *
1987 		 * Note that this stream is still bound to the four
1988 		 * tuples of the previous connection in IP.  If a new
1989 		 * SYN with different foreign address comes in, IP will
1990 		 * not find it and will send it to the global queue.  In
1991 		 * the global queue, TCP will do a tcp_lookup_listener()
1992 		 * to find this stream.  This works because this stream
1993 		 * is only removed from connected hash.
1994 		 *
1995 		 */
1996 		tcp->tcp_state = TCPS_LISTEN;
1997 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
1998 		tcp->tcp_eager_next_drop_q0 = tcp;
1999 		tcp->tcp_eager_prev_drop_q0 = tcp;
2000 		/*
2001 		 * Initially set conn_recv to tcp_input_listener_unbound to try
2002 		 * to pick a good squeue for the listener when the first SYN
2003 		 * arrives. tcp_input_listener_unbound sets it to
2004 		 * tcp_input_listener on that first SYN.
2005 		 */
2006 		connp->conn_recv = tcp_input_listener_unbound;
2007 
2008 		connp->conn_proto = IPPROTO_TCP;
2009 		connp->conn_faddr_v6 = ipv6_all_zeros;
2010 		connp->conn_fport = 0;
2011 
2012 		(void) ipcl_bind_insert(connp);
2013 	} else {
2014 		tcp->tcp_state = TCPS_BOUND;
2015 	}
2016 
2017 	/*
2018 	 * Initialize to default values
2019 	 */
2020 	tcp_init_values(tcp, NULL);
2021 
2022 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
2023 	    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
2024 	    int32_t, oldstate);
2025 
2026 	ASSERT(tcp->tcp_ptpbhn != NULL);
2027 	tcp->tcp_rwnd = connp->conn_rcvbuf;
2028 	tcp->tcp_mss = connp->conn_ipversion != IPV4_VERSION ?
2029 	    tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4;
2030 }
2031 
2032 /*
2033  * Force values to zero that need be zero.
2034  * Do not touch values asociated with the BOUND or LISTEN state
2035  * since the connection will end up in that state after the reinit.
2036  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
2037  * structure!
2038  */
2039 static void
2040 tcp_reinit_values(tcp_t *tcp)
2041 {
2042 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2043 	conn_t		*connp = tcp->tcp_connp;
2044 
2045 #ifndef	lint
2046 #define	DONTCARE(x)
2047 #define	PRESERVE(x)
2048 #else
2049 #define	DONTCARE(x)	((x) = (x))
2050 #define	PRESERVE(x)	((x) = (x))
2051 #endif	/* lint */
2052 
2053 	PRESERVE(tcp->tcp_bind_hash_port);
2054 	PRESERVE(tcp->tcp_bind_hash);
2055 	PRESERVE(tcp->tcp_ptpbhn);
2056 	PRESERVE(tcp->tcp_acceptor_hash);
2057 	PRESERVE(tcp->tcp_ptpahn);
2058 
2059 	/* Should be ASSERT NULL on these with new code! */
2060 	ASSERT(tcp->tcp_time_wait_next == NULL);
2061 	ASSERT(tcp->tcp_time_wait_prev == NULL);
2062 	ASSERT(tcp->tcp_time_wait_expire == 0);
2063 	PRESERVE(tcp->tcp_state);
2064 	PRESERVE(connp->conn_rq);
2065 	PRESERVE(connp->conn_wq);
2066 
2067 	ASSERT(tcp->tcp_xmit_head == NULL);
2068 	ASSERT(tcp->tcp_xmit_last == NULL);
2069 	ASSERT(tcp->tcp_unsent == 0);
2070 	ASSERT(tcp->tcp_xmit_tail == NULL);
2071 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
2072 
2073 	tcp->tcp_snxt = 0;			/* Displayed in mib */
2074 	tcp->tcp_suna = 0;			/* Displayed in mib */
2075 	tcp->tcp_swnd = 0;
2076 	DONTCARE(tcp->tcp_cwnd);	/* Init in tcp_process_options */
2077 
2078 	if (connp->conn_ht_iphc != NULL) {
2079 		kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated);
2080 		connp->conn_ht_iphc = NULL;
2081 		connp->conn_ht_iphc_allocated = 0;
2082 		connp->conn_ht_iphc_len = 0;
2083 		connp->conn_ht_ulp = NULL;
2084 		connp->conn_ht_ulp_len = 0;
2085 		tcp->tcp_ipha = NULL;
2086 		tcp->tcp_ip6h = NULL;
2087 		tcp->tcp_tcpha = NULL;
2088 	}
2089 
2090 	/* We clear any IP_OPTIONS and extension headers */
2091 	ip_pkt_free(&connp->conn_xmit_ipp);
2092 
2093 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
2094 	DONTCARE(tcp->tcp_ipha);
2095 	DONTCARE(tcp->tcp_ip6h);
2096 	DONTCARE(tcp->tcp_tcpha);
2097 	tcp->tcp_valid_bits = 0;
2098 
2099 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
2100 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
2101 	tcp->tcp_last_rcv_lbolt = 0;
2102 
2103 	tcp->tcp_init_cwnd = 0;
2104 
2105 	tcp->tcp_urp_last_valid = 0;
2106 	tcp->tcp_hard_binding = 0;
2107 
2108 	tcp->tcp_fin_acked = 0;
2109 	tcp->tcp_fin_rcvd = 0;
2110 	tcp->tcp_fin_sent = 0;
2111 	tcp->tcp_ordrel_done = 0;
2112 
2113 	tcp->tcp_detached = 0;
2114 
2115 	tcp->tcp_snd_ws_ok = B_FALSE;
2116 	tcp->tcp_snd_ts_ok = B_FALSE;
2117 	tcp->tcp_zero_win_probe = 0;
2118 
2119 	tcp->tcp_loopback = 0;
2120 	tcp->tcp_localnet = 0;
2121 	tcp->tcp_syn_defense = 0;
2122 	tcp->tcp_set_timer = 0;
2123 
2124 	tcp->tcp_active_open = 0;
2125 	tcp->tcp_rexmit = B_FALSE;
2126 	tcp->tcp_xmit_zc_clean = B_FALSE;
2127 
2128 	tcp->tcp_snd_sack_ok = B_FALSE;
2129 	tcp->tcp_hwcksum = B_FALSE;
2130 
2131 	DONTCARE(tcp->tcp_maxpsz_multiplier);	/* Init in tcp_init_values */
2132 
2133 	tcp->tcp_conn_def_q0 = 0;
2134 	tcp->tcp_ip_forward_progress = B_FALSE;
2135 	tcp->tcp_ecn_ok = B_FALSE;
2136 
2137 	tcp->tcp_cwr = B_FALSE;
2138 	tcp->tcp_ecn_echo_on = B_FALSE;
2139 	tcp->tcp_is_wnd_shrnk = B_FALSE;
2140 
2141 	TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp);
2142 	bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
2143 
2144 	tcp->tcp_rcv_ws = 0;
2145 	tcp->tcp_snd_ws = 0;
2146 	tcp->tcp_ts_recent = 0;
2147 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
2148 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
2149 	tcp->tcp_initial_pmtu = 0;
2150 
2151 	ASSERT(tcp->tcp_reass_head == NULL);
2152 	ASSERT(tcp->tcp_reass_tail == NULL);
2153 
2154 	tcp->tcp_cwnd_cnt = 0;
2155 
2156 	ASSERT(tcp->tcp_rcv_list == NULL);
2157 	ASSERT(tcp->tcp_rcv_last_head == NULL);
2158 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
2159 	ASSERT(tcp->tcp_rcv_cnt == 0);
2160 
2161 	DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_set_destination */
2162 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
2163 	tcp->tcp_csuna = 0;
2164 
2165 	tcp->tcp_rto = 0;			/* Displayed in MIB */
2166 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
2167 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
2168 	tcp->tcp_rtt_update = 0;
2169 	tcp->tcp_rtt_sum = 0;
2170 	tcp->tcp_rtt_cnt = 0;
2171 
2172 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
2173 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
2174 
2175 	tcp->tcp_rack = 0;			/* Displayed in mib */
2176 	tcp->tcp_rack_cnt = 0;
2177 	tcp->tcp_rack_cur_max = 0;
2178 	tcp->tcp_rack_abs_max = 0;
2179 
2180 	tcp->tcp_max_swnd = 0;
2181 
2182 	ASSERT(tcp->tcp_listener == NULL);
2183 
2184 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
2185 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
2186 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
2187 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
2188 
2189 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
2190 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
2191 	PRESERVE(tcp->tcp_conn_req_max);
2192 	PRESERVE(tcp->tcp_conn_req_seqnum);
2193 
2194 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
2195 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
2196 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
2197 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
2198 
2199 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
2200 	ASSERT(tcp->tcp_urp_mp == NULL);
2201 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
2202 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
2203 
2204 	ASSERT(tcp->tcp_eager_next_q == NULL);
2205 	ASSERT(tcp->tcp_eager_last_q == NULL);
2206 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
2207 	    tcp->tcp_eager_prev_q0 == NULL) ||
2208 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
2209 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
2210 
2211 	ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
2212 	    tcp->tcp_eager_prev_drop_q0 == NULL) ||
2213 	    tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
2214 
2215 	DONTCARE(tcp->tcp_ka_rinterval);	/* Init in tcp_init_values */
2216 	DONTCARE(tcp->tcp_ka_abort_thres);	/* Init in tcp_init_values */
2217 	DONTCARE(tcp->tcp_ka_cnt);		/* Init in tcp_init_values */
2218 
2219 	tcp->tcp_client_errno = 0;
2220 
2221 	DONTCARE(connp->conn_sum);		/* Init in tcp_init_values */
2222 
2223 	connp->conn_faddr_v6 = ipv6_all_zeros;	/* Displayed in MIB */
2224 
2225 	PRESERVE(connp->conn_bound_addr_v6);
2226 	tcp->tcp_last_sent_len = 0;
2227 	tcp->tcp_dupack_cnt = 0;
2228 
2229 	connp->conn_fport = 0;			/* Displayed in MIB */
2230 	PRESERVE(connp->conn_lport);
2231 
2232 	PRESERVE(tcp->tcp_acceptor_lockp);
2233 
2234 	ASSERT(tcp->tcp_ordrel_mp == NULL);
2235 	PRESERVE(tcp->tcp_acceptor_id);
2236 	DONTCARE(tcp->tcp_ipsec_overhead);
2237 
2238 	PRESERVE(connp->conn_family);
2239 	/* Remove any remnants of mapped address binding */
2240 	if (connp->conn_family == AF_INET6) {
2241 		connp->conn_ipversion = IPV6_VERSION;
2242 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
2243 	} else {
2244 		connp->conn_ipversion = IPV4_VERSION;
2245 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
2246 	}
2247 
2248 	connp->conn_bound_if = 0;
2249 	connp->conn_recv_ancillary.crb_all = 0;
2250 	tcp->tcp_recvifindex = 0;
2251 	tcp->tcp_recvhops = 0;
2252 	tcp->tcp_closed = 0;
2253 	if (tcp->tcp_hopopts != NULL) {
2254 		mi_free(tcp->tcp_hopopts);
2255 		tcp->tcp_hopopts = NULL;
2256 		tcp->tcp_hopoptslen = 0;
2257 	}
2258 	ASSERT(tcp->tcp_hopoptslen == 0);
2259 	if (tcp->tcp_dstopts != NULL) {
2260 		mi_free(tcp->tcp_dstopts);
2261 		tcp->tcp_dstopts = NULL;
2262 		tcp->tcp_dstoptslen = 0;
2263 	}
2264 	ASSERT(tcp->tcp_dstoptslen == 0);
2265 	if (tcp->tcp_rthdrdstopts != NULL) {
2266 		mi_free(tcp->tcp_rthdrdstopts);
2267 		tcp->tcp_rthdrdstopts = NULL;
2268 		tcp->tcp_rthdrdstoptslen = 0;
2269 	}
2270 	ASSERT(tcp->tcp_rthdrdstoptslen == 0);
2271 	if (tcp->tcp_rthdr != NULL) {
2272 		mi_free(tcp->tcp_rthdr);
2273 		tcp->tcp_rthdr = NULL;
2274 		tcp->tcp_rthdrlen = 0;
2275 	}
2276 	ASSERT(tcp->tcp_rthdrlen == 0);
2277 
2278 	/* Reset fusion-related fields */
2279 	tcp->tcp_fused = B_FALSE;
2280 	tcp->tcp_unfusable = B_FALSE;
2281 	tcp->tcp_fused_sigurg = B_FALSE;
2282 	tcp->tcp_loopback_peer = NULL;
2283 
2284 	tcp->tcp_lso = B_FALSE;
2285 
2286 	tcp->tcp_in_ack_unsent = 0;
2287 	tcp->tcp_cork = B_FALSE;
2288 	tcp->tcp_tconnind_started = B_FALSE;
2289 
2290 	PRESERVE(tcp->tcp_squeue_bytes);
2291 
2292 	tcp->tcp_closemp_used = B_FALSE;
2293 
2294 	PRESERVE(tcp->tcp_rsrv_mp);
2295 	PRESERVE(tcp->tcp_rsrv_mp_lock);
2296 
2297 #ifdef DEBUG
2298 	DONTCARE(tcp->tcmp_stk[0]);
2299 #endif
2300 
2301 	PRESERVE(tcp->tcp_connid);
2302 
2303 	ASSERT(tcp->tcp_listen_cnt == NULL);
2304 	ASSERT(tcp->tcp_reass_tid == 0);
2305 
2306 	/* Allow the CC algorithm to clean up after itself. */
2307 	if (tcp->tcp_cc_algo->cb_destroy != NULL)
2308 		tcp->tcp_cc_algo->cb_destroy(&tcp->tcp_ccv);
2309 	tcp->tcp_cc_algo = NULL;
2310 
2311 #undef	DONTCARE
2312 #undef	PRESERVE
2313 }
2314 
2315 /*
2316  * Initialize the various fields in tcp_t.  If parent (the listener) is non
2317  * NULL, certain values will be inheritted from it.
2318  */
2319 void
2320 tcp_init_values(tcp_t *tcp, tcp_t *parent)
2321 {
2322 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2323 	conn_t		*connp = tcp->tcp_connp;
2324 
2325 	ASSERT((connp->conn_family == AF_INET &&
2326 	    connp->conn_ipversion == IPV4_VERSION) ||
2327 	    (connp->conn_family == AF_INET6 &&
2328 	    (connp->conn_ipversion == IPV4_VERSION ||
2329 	    connp->conn_ipversion == IPV6_VERSION)));
2330 
2331 	tcp->tcp_ccv.type = IPPROTO_TCP;
2332 	tcp->tcp_ccv.ccvc.tcp = tcp;
2333 
2334 	if (parent == NULL) {
2335 		tcp->tcp_cc_algo = tcps->tcps_default_cc_algo;
2336 
2337 		tcp->tcp_naglim = tcps->tcps_naglim_def;
2338 
2339 		tcp->tcp_rto_initial = tcps->tcps_rexmit_interval_initial;
2340 		tcp->tcp_rto_min = tcps->tcps_rexmit_interval_min;
2341 		tcp->tcp_rto_max = tcps->tcps_rexmit_interval_max;
2342 
2343 		tcp->tcp_first_ctimer_threshold =
2344 		    tcps->tcps_ip_notify_cinterval;
2345 		tcp->tcp_second_ctimer_threshold =
2346 		    tcps->tcps_ip_abort_cinterval;
2347 		tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval;
2348 		tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval;
2349 
2350 		tcp->tcp_fin_wait_2_flush_interval =
2351 		    tcps->tcps_fin_wait_2_flush_interval;
2352 
2353 		tcp->tcp_ka_interval = tcps->tcps_keepalive_interval;
2354 		tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval;
2355 		tcp->tcp_ka_cnt = 0;
2356 		tcp->tcp_ka_rinterval = 0;
2357 
2358 		/*
2359 		 * Default value of tcp_init_cwnd is 0, so no need to set here
2360 		 * if parent is NULL.  But we need to inherit it from parent.
2361 		 */
2362 	} else {
2363 		/* Inherit various TCP parameters from the parent. */
2364 		tcp->tcp_cc_algo = parent->tcp_cc_algo;
2365 
2366 		tcp->tcp_naglim = parent->tcp_naglim;
2367 
2368 		tcp->tcp_rto_initial = parent->tcp_rto_initial;
2369 		tcp->tcp_rto_min = parent->tcp_rto_min;
2370 		tcp->tcp_rto_max = parent->tcp_rto_max;
2371 
2372 		tcp->tcp_first_ctimer_threshold =
2373 		    parent->tcp_first_ctimer_threshold;
2374 		tcp->tcp_second_ctimer_threshold =
2375 		    parent->tcp_second_ctimer_threshold;
2376 		tcp->tcp_first_timer_threshold =
2377 		    parent->tcp_first_timer_threshold;
2378 		tcp->tcp_second_timer_threshold =
2379 		    parent->tcp_second_timer_threshold;
2380 
2381 		tcp->tcp_fin_wait_2_flush_interval =
2382 		    parent->tcp_fin_wait_2_flush_interval;
2383 
2384 		tcp->tcp_ka_interval = parent->tcp_ka_interval;
2385 		tcp->tcp_ka_abort_thres = parent->tcp_ka_abort_thres;
2386 		tcp->tcp_ka_cnt = parent->tcp_ka_cnt;
2387 		tcp->tcp_ka_rinterval = parent->tcp_ka_rinterval;
2388 
2389 		tcp->tcp_init_cwnd = parent->tcp_init_cwnd;
2390 	}
2391 
2392 	if (tcp->tcp_cc_algo->cb_init != NULL)
2393 		VERIFY(tcp->tcp_cc_algo->cb_init(&tcp->tcp_ccv) == 0);
2394 
2395 	/*
2396 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
2397 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
2398 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
2399 	 * during first few transmissions of a connection as seen in slow
2400 	 * links.
2401 	 */
2402 	tcp->tcp_rtt_sa = MSEC2NSEC(tcp->tcp_rto_initial) << 2;
2403 	tcp->tcp_rtt_sd = MSEC2NSEC(tcp->tcp_rto_initial) >> 1;
2404 	tcp->tcp_rto = tcp_calculate_rto(tcp, tcps,
2405 	    tcps->tcps_conn_grace_period);
2406 
2407 	tcp->tcp_timer_backoff = 0;
2408 	tcp->tcp_ms_we_have_waited = 0;
2409 	tcp->tcp_last_recv_time = ddi_get_lbolt();
2410 	tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_;
2411 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2412 
2413 	tcp->tcp_maxpsz_multiplier = tcps->tcps_maxpsz_multiplier;
2414 
2415 	/* NOTE:  ISS is now set in tcp_set_destination(). */
2416 
2417 	/* Reset fusion-related fields */
2418 	tcp->tcp_fused = B_FALSE;
2419 	tcp->tcp_unfusable = B_FALSE;
2420 	tcp->tcp_fused_sigurg = B_FALSE;
2421 	tcp->tcp_loopback_peer = NULL;
2422 
2423 	/* We rebuild the header template on the next connect/conn_request */
2424 
2425 	connp->conn_mlp_type = mlptSingle;
2426 
2427 	/*
2428 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
2429 	 * down tcp_rwnd. tcp_set_destination() will set the right value later.
2430 	 */
2431 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
2432 	tcp->tcp_rwnd = connp->conn_rcvbuf;
2433 
2434 	tcp->tcp_cork = B_FALSE;
2435 	/*
2436 	 * Init the tcp_debug option if it wasn't already set.  This value
2437 	 * determines whether TCP
2438 	 * calls strlog() to print out debug messages.  Doing this
2439 	 * initialization here means that this value is not inherited thru
2440 	 * tcp_reinit().
2441 	 */
2442 	if (!connp->conn_debug)
2443 		connp->conn_debug = tcps->tcps_dbg;
2444 }
2445 
2446 /*
2447  * Update the TCP connection according to change of PMTU.
2448  *
2449  * Path MTU might have changed by either increase or decrease, so need to
2450  * adjust the MSS based on the value of ixa_pmtu. No need to handle tiny
2451  * or negative MSS, since tcp_mss_set() will do it.
2452  */
2453 void
2454 tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only)
2455 {
2456 	uint32_t	pmtu;
2457 	int32_t		mss;
2458 	conn_t		*connp = tcp->tcp_connp;
2459 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
2460 	iaflags_t	ixaflags;
2461 
2462 	if (tcp->tcp_tcps->tcps_ignore_path_mtu)
2463 		return;
2464 
2465 	if (tcp->tcp_state < TCPS_ESTABLISHED)
2466 		return;
2467 
2468 	/*
2469 	 * Always call ip_get_pmtu() to make sure that IP has updated
2470 	 * ixa_flags properly.
2471 	 */
2472 	pmtu = ip_get_pmtu(ixa);
2473 	ixaflags = ixa->ixa_flags;
2474 
2475 	/*
2476 	 * Calculate the MSS by decreasing the PMTU by conn_ht_iphc_len and
2477 	 * IPsec overhead if applied. Make sure to use the most recent
2478 	 * IPsec information.
2479 	 */
2480 	mss = pmtu - connp->conn_ht_iphc_len - conn_ipsec_length(connp);
2481 
2482 	/*
2483 	 * Nothing to change, so just return.
2484 	 */
2485 	if (mss == tcp->tcp_mss)
2486 		return;
2487 
2488 	/*
2489 	 * Currently, for ICMP errors, only PMTU decrease is handled.
2490 	 */
2491 	if (mss > tcp->tcp_mss && decrease_only)
2492 		return;
2493 
2494 	DTRACE_PROBE2(tcp_update_pmtu, int32_t, tcp->tcp_mss, uint32_t, mss);
2495 
2496 	/*
2497 	 * Update ixa_fragsize and ixa_pmtu.
2498 	 */
2499 	ixa->ixa_fragsize = ixa->ixa_pmtu = pmtu;
2500 
2501 	/*
2502 	 * Adjust MSS and all relevant variables.
2503 	 */
2504 	tcp_mss_set(tcp, mss);
2505 
2506 	/*
2507 	 * If the PMTU is below the min size maintained by IP, then ip_get_pmtu
2508 	 * has set IXAF_PMTU_TOO_SMALL and cleared IXAF_PMTU_IPV4_DF. Since TCP
2509 	 * has a (potentially different) min size we do the same. Make sure to
2510 	 * clear IXAF_DONTFRAG, which is used by IP to decide whether to
2511 	 * fragment the packet.
2512 	 *
2513 	 * LSO over IPv6 can not be fragmented. So need to disable LSO
2514 	 * when IPv6 fragmentation is needed.
2515 	 */
2516 	if (mss < tcp->tcp_tcps->tcps_mss_min)
2517 		ixaflags |= IXAF_PMTU_TOO_SMALL;
2518 
2519 	if (ixaflags & IXAF_PMTU_TOO_SMALL)
2520 		ixaflags &= ~(IXAF_DONTFRAG | IXAF_PMTU_IPV4_DF);
2521 
2522 	if ((connp->conn_ipversion == IPV4_VERSION) &&
2523 	    !(ixaflags & IXAF_PMTU_IPV4_DF)) {
2524 		tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
2525 	}
2526 	ixa->ixa_flags = ixaflags;
2527 }
2528 
2529 int
2530 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
2531 {
2532 	conn_t	*connp = tcp->tcp_connp;
2533 	queue_t	*q = connp->conn_rq;
2534 	int32_t	mss = tcp->tcp_mss;
2535 	int	maxpsz;
2536 
2537 	if (TCP_IS_DETACHED(tcp))
2538 		return (mss);
2539 	if (tcp->tcp_fused) {
2540 		maxpsz = tcp_fuse_maxpsz(tcp);
2541 		mss = INFPSZ;
2542 	} else if (tcp->tcp_maxpsz_multiplier == 0) {
2543 		/*
2544 		 * Set the sd_qn_maxpsz according to the socket send buffer
2545 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
2546 		 * instruct the stream head to copyin user data into contiguous
2547 		 * kernel-allocated buffers without breaking it up into smaller
2548 		 * chunks.  We round up the buffer size to the nearest SMSS.
2549 		 */
2550 		maxpsz = MSS_ROUNDUP(connp->conn_sndbuf, mss);
2551 		mss = INFPSZ;
2552 	} else {
2553 		/*
2554 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
2555 		 * (and a multiple of the mss).  This instructs the stream
2556 		 * head to break down larger than SMSS writes into SMSS-
2557 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
2558 		 */
2559 		maxpsz = tcp->tcp_maxpsz_multiplier * mss;
2560 		if (maxpsz > connp->conn_sndbuf / 2) {
2561 			maxpsz = connp->conn_sndbuf / 2;
2562 			/* Round up to nearest mss */
2563 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
2564 		}
2565 	}
2566 
2567 	(void) proto_set_maxpsz(q, connp, maxpsz);
2568 	if (!(IPCL_IS_NONSTR(connp)))
2569 		connp->conn_wq->q_maxpsz = maxpsz;
2570 	if (set_maxblk)
2571 		(void) proto_set_tx_maxblk(q, connp, mss);
2572 	return (mss);
2573 }
2574 
2575 /* For /dev/tcp aka AF_INET open */
2576 static int
2577 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2578 {
2579 	return (tcp_open(q, devp, flag, sflag, credp, B_FALSE));
2580 }
2581 
2582 /* For /dev/tcp6 aka AF_INET6 open */
2583 static int
2584 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2585 {
2586 	return (tcp_open(q, devp, flag, sflag, credp, B_TRUE));
2587 }
2588 
2589 conn_t *
2590 tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket,
2591     int *errorp)
2592 {
2593 	tcp_t		*tcp = NULL;
2594 	conn_t		*connp;
2595 	zoneid_t	zoneid;
2596 	tcp_stack_t	*tcps;
2597 	squeue_t	*sqp;
2598 
2599 	ASSERT(errorp != NULL);
2600 	/*
2601 	 * Find the proper zoneid and netstack.
2602 	 */
2603 	/*
2604 	 * Special case for install: miniroot needs to be able to
2605 	 * access files via NFS as though it were always in the
2606 	 * global zone.
2607 	 */
2608 	if (credp == kcred && nfs_global_client_only != 0) {
2609 		zoneid = GLOBAL_ZONEID;
2610 		tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
2611 		    netstack_tcp;
2612 		ASSERT(tcps != NULL);
2613 	} else {
2614 		netstack_t *ns;
2615 		int err;
2616 
2617 		if ((err = secpolicy_basic_net_access(credp)) != 0) {
2618 			*errorp = err;
2619 			return (NULL);
2620 		}
2621 
2622 		ns = netstack_find_by_cred(credp);
2623 		ASSERT(ns != NULL);
2624 		tcps = ns->netstack_tcp;
2625 		ASSERT(tcps != NULL);
2626 
2627 		/*
2628 		 * For exclusive stacks we set the zoneid to zero
2629 		 * to make TCP operate as if in the global zone.
2630 		 */
2631 		if (tcps->tcps_netstack->netstack_stackid !=
2632 		    GLOBAL_NETSTACKID)
2633 			zoneid = GLOBAL_ZONEID;
2634 		else
2635 			zoneid = crgetzoneid(credp);
2636 	}
2637 
2638 	sqp = IP_SQUEUE_GET((uint_t)gethrtime());
2639 	connp = tcp_get_conn(sqp, tcps);
2640 	/*
2641 	 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
2642 	 * so we drop it by one.
2643 	 */
2644 	netstack_rele(tcps->tcps_netstack);
2645 	if (connp == NULL) {
2646 		*errorp = ENOSR;
2647 		return (NULL);
2648 	}
2649 	ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto);
2650 
2651 	connp->conn_sqp = sqp;
2652 	connp->conn_initial_sqp = connp->conn_sqp;
2653 	connp->conn_ixa->ixa_sqp = connp->conn_sqp;
2654 	tcp = connp->conn_tcp;
2655 
2656 	/*
2657 	 * Besides asking IP to set the checksum for us, have conn_ip_output
2658 	 * to do the following checks when necessary:
2659 	 *
2660 	 * IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid
2661 	 * IXAF_VERIFY_PMTU: verify PMTU changes
2662 	 * IXAF_VERIFY_LSO: verify LSO capability changes
2663 	 */
2664 	connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
2665 	    IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO;
2666 
2667 	if (!tcps->tcps_dev_flow_ctl)
2668 		connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL;
2669 
2670 	if (isv6) {
2671 		connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
2672 		connp->conn_ipversion = IPV6_VERSION;
2673 		connp->conn_family = AF_INET6;
2674 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
2675 		connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit;
2676 	} else {
2677 		connp->conn_ipversion = IPV4_VERSION;
2678 		connp->conn_family = AF_INET;
2679 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
2680 		connp->conn_default_ttl = tcps->tcps_ipv4_ttl;
2681 	}
2682 	connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl;
2683 
2684 	crhold(credp);
2685 	connp->conn_cred = credp;
2686 	connp->conn_cpid = curproc->p_pid;
2687 	connp->conn_open_time = ddi_get_lbolt64();
2688 
2689 	/* Cache things in the ixa without any refhold */
2690 	ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
2691 	connp->conn_ixa->ixa_cred = credp;
2692 	connp->conn_ixa->ixa_cpid = connp->conn_cpid;
2693 
2694 	connp->conn_zoneid = zoneid;
2695 	/* conn_allzones can not be set this early, hence no IPCL_ZONEID */
2696 	connp->conn_ixa->ixa_zoneid = zoneid;
2697 	connp->conn_mlp_type = mlptSingle;
2698 	ASSERT(connp->conn_netstack == tcps->tcps_netstack);
2699 	ASSERT(tcp->tcp_tcps == tcps);
2700 
2701 	/*
2702 	 * If the caller has the process-wide flag set, then default to MAC
2703 	 * exempt mode.  This allows read-down to unlabeled hosts.
2704 	 */
2705 	if (getpflags(NET_MAC_AWARE, credp) != 0)
2706 		connp->conn_mac_mode = CONN_MAC_AWARE;
2707 
2708 	connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);
2709 
2710 	if (issocket) {
2711 		tcp->tcp_issocket = 1;
2712 	}
2713 
2714 	connp->conn_rcvbuf = tcps->tcps_recv_hiwat;
2715 	connp->conn_sndbuf = tcps->tcps_xmit_hiwat;
2716 	if (tcps->tcps_snd_lowat_fraction != 0) {
2717 		connp->conn_sndlowat = connp->conn_sndbuf /
2718 		    tcps->tcps_snd_lowat_fraction;
2719 	} else {
2720 		connp->conn_sndlowat = tcps->tcps_xmit_lowat;
2721 	}
2722 	connp->conn_so_type = SOCK_STREAM;
2723 	connp->conn_wroff = connp->conn_ht_iphc_allocated +
2724 	    tcps->tcps_wroff_xtra;
2725 
2726 	SOCK_CONNID_INIT(tcp->tcp_connid);
2727 	/* DTrace ignores this - it isn't a tcp:::state-change */
2728 	tcp->tcp_state = TCPS_IDLE;
2729 	tcp_init_values(tcp, NULL);
2730 	return (connp);
2731 }
2732 
2733 static int
2734 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
2735     boolean_t isv6)
2736 {
2737 	tcp_t		*tcp = NULL;
2738 	conn_t		*connp = NULL;
2739 	int		err;
2740 	vmem_t		*minor_arena = NULL;
2741 	dev_t		conn_dev;
2742 	boolean_t	issocket;
2743 
2744 	if (q->q_ptr != NULL)
2745 		return (0);
2746 
2747 	if (sflag == MODOPEN)
2748 		return (EINVAL);
2749 
2750 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
2751 	    ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
2752 		minor_arena = ip_minor_arena_la;
2753 	} else {
2754 		/*
2755 		 * Either minor numbers in the large arena were exhausted
2756 		 * or a non socket application is doing the open.
2757 		 * Try to allocate from the small arena.
2758 		 */
2759 		if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
2760 			return (EBUSY);
2761 		}
2762 		minor_arena = ip_minor_arena_sa;
2763 	}
2764 
2765 	ASSERT(minor_arena != NULL);
2766 
2767 	*devp = makedevice(getmajor(*devp), (minor_t)conn_dev);
2768 
2769 	if (flag & SO_FALLBACK) {
2770 		/*
2771 		 * Non streams socket needs a stream to fallback to
2772 		 */
2773 		RD(q)->q_ptr = (void *)conn_dev;
2774 		WR(q)->q_qinfo = &tcp_fallback_sock_winit;
2775 		WR(q)->q_ptr = (void *)minor_arena;
2776 		qprocson(q);
2777 		return (0);
2778 	} else if (flag & SO_ACCEPTOR) {
2779 		q->q_qinfo = &tcp_acceptor_rinit;
2780 		/*
2781 		 * the conn_dev and minor_arena will be subsequently used by
2782 		 * tcp_tli_accept() and tcp_tpi_close_accept() to figure out
2783 		 * the minor device number for this connection from the q_ptr.
2784 		 */
2785 		RD(q)->q_ptr = (void *)conn_dev;
2786 		WR(q)->q_qinfo = &tcp_acceptor_winit;
2787 		WR(q)->q_ptr = (void *)minor_arena;
2788 		qprocson(q);
2789 		return (0);
2790 	}
2791 
2792 	issocket = flag & SO_SOCKSTR;
2793 	connp = tcp_create_common(credp, isv6, issocket, &err);
2794 
2795 	if (connp == NULL) {
2796 		inet_minor_free(minor_arena, conn_dev);
2797 		q->q_ptr = WR(q)->q_ptr = NULL;
2798 		return (err);
2799 	}
2800 
2801 	connp->conn_rq = q;
2802 	connp->conn_wq = WR(q);
2803 	q->q_ptr = WR(q)->q_ptr = connp;
2804 
2805 	connp->conn_dev = conn_dev;
2806 	connp->conn_minor_arena = minor_arena;
2807 
2808 	ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6);
2809 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
2810 
2811 	tcp = connp->conn_tcp;
2812 
2813 	if (issocket) {
2814 		WR(q)->q_qinfo = &tcp_sock_winit;
2815 	} else {
2816 #ifdef  _ILP32
2817 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
2818 #else
2819 		tcp->tcp_acceptor_id = conn_dev;
2820 #endif  /* _ILP32 */
2821 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
2822 	}
2823 
2824 	/*
2825 	 * Put the ref for TCP. Ref for IP was already put
2826 	 * by ipcl_conn_create. Also Make the conn_t globally
2827 	 * visible to walkers
2828 	 */
2829 	mutex_enter(&connp->conn_lock);
2830 	CONN_INC_REF_LOCKED(connp);
2831 	ASSERT(connp->conn_ref == 2);
2832 	connp->conn_state_flags &= ~CONN_INCIPIENT;
2833 	mutex_exit(&connp->conn_lock);
2834 
2835 	qprocson(q);
2836 	return (0);
2837 }
2838 
2839 /*
2840  * Build/update the tcp header template (in conn_ht_iphc) based on
2841  * conn_xmit_ipp. The headers include ip6_t, any extension
2842  * headers, and the maximum size tcp header (to avoid reallocation
2843  * on the fly for additional tcp options).
2844  *
2845  * Assumes the caller has already set conn_{faddr,laddr,fport,lport,flowinfo}.
2846  * Returns failure if can't allocate memory.
2847  */
2848 int
2849 tcp_build_hdrs(tcp_t *tcp)
2850 {
2851 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2852 	conn_t		*connp = tcp->tcp_connp;
2853 	char		buf[TCP_MAX_HDR_LENGTH];
2854 	uint_t		buflen;
2855 	uint_t		ulplen = TCP_MIN_HEADER_LENGTH;
2856 	uint_t		extralen = TCP_MAX_TCP_OPTIONS_LENGTH;
2857 	tcpha_t		*tcpha;
2858 	uint32_t	cksum;
2859 	int		error;
2860 
2861 	/*
2862 	 * We might be called after the connection is set up, and we might
2863 	 * have TS options already in the TCP header. Thus we  save any
2864 	 * existing tcp header.
2865 	 */
2866 	buflen = connp->conn_ht_ulp_len;
2867 	if (buflen != 0) {
2868 		bcopy(connp->conn_ht_ulp, buf, buflen);
2869 		extralen -= buflen - ulplen;
2870 		ulplen = buflen;
2871 	}
2872 
2873 	/* Grab lock to satisfy ASSERT; TCP is serialized using squeue */
2874 	mutex_enter(&connp->conn_lock);
2875 	error = conn_build_hdr_template(connp, ulplen, extralen,
2876 	    &connp->conn_laddr_v6, &connp->conn_faddr_v6, connp->conn_flowinfo);
2877 	mutex_exit(&connp->conn_lock);
2878 	if (error != 0)
2879 		return (error);
2880 
2881 	/*
2882 	 * Any routing header/option has been massaged. The checksum difference
2883 	 * is stored in conn_sum for later use.
2884 	 */
2885 	tcpha = (tcpha_t *)connp->conn_ht_ulp;
2886 	tcp->tcp_tcpha = tcpha;
2887 
2888 	/* restore any old tcp header */
2889 	if (buflen != 0) {
2890 		bcopy(buf, connp->conn_ht_ulp, buflen);
2891 	} else {
2892 		tcpha->tha_sum = 0;
2893 		tcpha->tha_urp = 0;
2894 		tcpha->tha_ack = 0;
2895 		tcpha->tha_offset_and_reserved = (5 << 4);
2896 		tcpha->tha_lport = connp->conn_lport;
2897 		tcpha->tha_fport = connp->conn_fport;
2898 	}
2899 
2900 	/*
2901 	 * IP wants our header length in the checksum field to
2902 	 * allow it to perform a single pseudo-header+checksum
2903 	 * calculation on behalf of TCP.
2904 	 * Include the adjustment for a source route once IP_OPTIONS is set.
2905 	 */
2906 	cksum = sizeof (tcpha_t) + connp->conn_sum;
2907 	cksum = (cksum >> 16) + (cksum & 0xFFFF);
2908 	ASSERT(cksum < 0x10000);
2909 	tcpha->tha_sum = htons(cksum);
2910 
2911 	if (connp->conn_ipversion == IPV4_VERSION)
2912 		tcp->tcp_ipha = (ipha_t *)connp->conn_ht_iphc;
2913 	else
2914 		tcp->tcp_ip6h = (ip6_t *)connp->conn_ht_iphc;
2915 
2916 	if (connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra >
2917 	    connp->conn_wroff) {
2918 		connp->conn_wroff = connp->conn_ht_iphc_allocated +
2919 		    tcps->tcps_wroff_xtra;
2920 		(void) proto_set_tx_wroff(connp->conn_rq, connp,
2921 		    connp->conn_wroff);
2922 	}
2923 	return (0);
2924 }
2925 
2926 /*
2927  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
2928  * We do not allow the receive window to shrink.  After setting rwnd,
2929  * set the flow control hiwat of the stream.
2930  *
2931  * This function is called in 2 cases:
2932  *
2933  * 1) Before data transfer begins, in tcp_input_listener() for accepting a
2934  *    connection (passive open) and in tcp_input_data() for active connect.
2935  *    This is called after tcp_mss_set() when the desired MSS value is known.
2936  *    This makes sure that our window size is a mutiple of the other side's
2937  *    MSS.
2938  * 2) Handling SO_RCVBUF option.
2939  *
2940  * It is ASSUMED that the requested size is a multiple of the current MSS.
2941  *
2942  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
2943  * user requests so.
2944  */
2945 int
2946 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
2947 {
2948 	uint32_t	mss = tcp->tcp_mss;
2949 	uint32_t	old_max_rwnd;
2950 	uint32_t	max_transmittable_rwnd;
2951 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2952 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2953 	conn_t		*connp = tcp->tcp_connp;
2954 
2955 	/*
2956 	 * Insist on a receive window that is at least
2957 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
2958 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
2959 	 * and delayed acknowledgement.
2960 	 */
2961 	rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss);
2962 
2963 	if (tcp->tcp_fused) {
2964 		size_t sth_hiwat;
2965 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
2966 
2967 		ASSERT(peer_tcp != NULL);
2968 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
2969 		if (!tcp_detached) {
2970 			(void) proto_set_rx_hiwat(connp->conn_rq, connp,
2971 			    sth_hiwat);
2972 			tcp_set_recv_threshold(tcp, sth_hiwat >> 3);
2973 		}
2974 
2975 		/* Caller could have changed tcp_rwnd; update tha_win */
2976 		if (tcp->tcp_tcpha != NULL) {
2977 			tcp->tcp_tcpha->tha_win =
2978 			    htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
2979 		}
2980 		if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
2981 			tcp->tcp_cwnd_max = rwnd;
2982 
2983 		/*
2984 		 * In the fusion case, the maxpsz stream head value of
2985 		 * our peer is set according to its send buffer size
2986 		 * and our receive buffer size; since the latter may
2987 		 * have changed we need to update the peer's maxpsz.
2988 		 */
2989 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
2990 		return (sth_hiwat);
2991 	}
2992 
2993 	if (tcp_detached)
2994 		old_max_rwnd = tcp->tcp_rwnd;
2995 	else
2996 		old_max_rwnd = connp->conn_rcvbuf;
2997 
2998 
2999 	/*
3000 	 * If window size info has already been exchanged, TCP should not
3001 	 * shrink the window.  Shrinking window is doable if done carefully.
3002 	 * We may add that support later.  But so far there is not a real
3003 	 * need to do that.
3004 	 */
3005 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
3006 		/* MSS may have changed, do a round up again. */
3007 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
3008 	}
3009 
3010 	/*
3011 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
3012 	 * can be applied even before the window scale option is decided.
3013 	 */
3014 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
3015 	if (rwnd > max_transmittable_rwnd) {
3016 		rwnd = max_transmittable_rwnd -
3017 		    (max_transmittable_rwnd % mss);
3018 		if (rwnd < mss)
3019 			rwnd = max_transmittable_rwnd;
3020 		/*
3021 		 * If we're over the limit we may have to back down tcp_rwnd.
3022 		 * The increment below won't work for us. So we set all three
3023 		 * here and the increment below will have no effect.
3024 		 */
3025 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
3026 	}
3027 	if (tcp->tcp_localnet) {
3028 		tcp->tcp_rack_abs_max =
3029 		    MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2);
3030 	} else {
3031 		/*
3032 		 * For a remote host on a different subnet (through a router),
3033 		 * we ack every other packet to be conforming to RFC1122.
3034 		 * tcp_deferred_acks_max is default to 2.
3035 		 */
3036 		tcp->tcp_rack_abs_max =
3037 		    MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2);
3038 	}
3039 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
3040 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
3041 	else
3042 		tcp->tcp_rack_cur_max = 0;
3043 	/*
3044 	 * Increment the current rwnd by the amount the maximum grew (we
3045 	 * can not overwrite it since we might be in the middle of a
3046 	 * connection.)
3047 	 */
3048 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
3049 	connp->conn_rcvbuf = rwnd;
3050 
3051 	/* Are we already connected? */
3052 	if (tcp->tcp_tcpha != NULL) {
3053 		tcp->tcp_tcpha->tha_win =
3054 		    htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
3055 	}
3056 
3057 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
3058 		tcp->tcp_cwnd_max = rwnd;
3059 
3060 	if (tcp_detached)
3061 		return (rwnd);
3062 
3063 	tcp_set_recv_threshold(tcp, rwnd >> 3);
3064 
3065 	(void) proto_set_rx_hiwat(connp->conn_rq, connp, rwnd);
3066 	return (rwnd);
3067 }
3068 
3069 int
3070 tcp_do_unbind(conn_t *connp)
3071 {
3072 	tcp_t *tcp = connp->conn_tcp;
3073 	int32_t oldstate;
3074 
3075 	switch (tcp->tcp_state) {
3076 	case TCPS_BOUND:
3077 	case TCPS_LISTEN:
3078 		break;
3079 	default:
3080 		return (-TOUTSTATE);
3081 	}
3082 
3083 	/*
3084 	 * Need to clean up all the eagers since after the unbind, segments
3085 	 * will no longer be delivered to this listener stream.
3086 	 */
3087 	mutex_enter(&tcp->tcp_eager_lock);
3088 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
3089 		tcp_eager_cleanup(tcp, 0);
3090 	}
3091 	mutex_exit(&tcp->tcp_eager_lock);
3092 
3093 	/* Clean up the listener connection counter if necessary. */
3094 	if (tcp->tcp_listen_cnt != NULL)
3095 		TCP_DECR_LISTEN_CNT(tcp);
3096 	connp->conn_laddr_v6 = ipv6_all_zeros;
3097 	connp->conn_saddr_v6 = ipv6_all_zeros;
3098 	tcp_bind_hash_remove(tcp);
3099 	oldstate = tcp->tcp_state;
3100 	tcp->tcp_state = TCPS_IDLE;
3101 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
3102 	    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
3103 	    int32_t, oldstate);
3104 
3105 	ip_unbind(connp);
3106 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
3107 
3108 	return (0);
3109 }
3110 
3111 /*
3112  * Collect protocol properties to send to the upper handle.
3113  */
3114 void
3115 tcp_get_proto_props(tcp_t *tcp, struct sock_proto_props *sopp)
3116 {
3117 	conn_t *connp = tcp->tcp_connp;
3118 
3119 	sopp->sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF;
3120 	sopp->sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
3121 
3122 	sopp->sopp_rxhiwat = tcp->tcp_fused ?
3123 	    tcp_fuse_set_rcv_hiwat(tcp, connp->conn_rcvbuf) :
3124 	    connp->conn_rcvbuf;
3125 	/*
3126 	 * Determine what write offset value to use depending on SACK and
3127 	 * whether the endpoint is fused or not.
3128 	 */
3129 	if (tcp->tcp_fused) {
3130 		ASSERT(tcp->tcp_loopback);
3131 		ASSERT(tcp->tcp_loopback_peer != NULL);
3132 		/*
3133 		 * For fused tcp loopback, set the stream head's write
3134 		 * offset value to zero since we won't be needing any room
3135 		 * for TCP/IP headers.  This would also improve performance
3136 		 * since it would reduce the amount of work done by kmem.
3137 		 * Non-fused tcp loopback case is handled separately below.
3138 		 */
3139 		sopp->sopp_wroff = 0;
3140 		/*
3141 		 * Update the peer's transmit parameters according to
3142 		 * our recently calculated high water mark value.
3143 		 */
3144 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
3145 	} else if (tcp->tcp_snd_sack_ok) {
3146 		sopp->sopp_wroff = connp->conn_ht_iphc_allocated +
3147 		    (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra);
3148 	} else {
3149 		sopp->sopp_wroff = connp->conn_ht_iphc_len +
3150 		    (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra);
3151 	}
3152 
3153 	if (tcp->tcp_loopback) {
3154 		sopp->sopp_flags |= SOCKOPT_LOOPBACK;
3155 		sopp->sopp_loopback = B_TRUE;
3156 	}
3157 }
3158 
3159 /*
3160  * Check the usability of ZEROCOPY. It's instead checking the flag set by IP.
3161  */
3162 boolean_t
3163 tcp_zcopy_check(tcp_t *tcp)
3164 {
3165 	conn_t		*connp = tcp->tcp_connp;
3166 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
3167 	boolean_t	zc_enabled = B_FALSE;
3168 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3169 
3170 	if (do_tcpzcopy == 2)
3171 		zc_enabled = B_TRUE;
3172 	else if ((do_tcpzcopy == 1) && (ixa->ixa_flags & IXAF_ZCOPY_CAPAB))
3173 		zc_enabled = B_TRUE;
3174 
3175 	tcp->tcp_snd_zcopy_on = zc_enabled;
3176 	if (!TCP_IS_DETACHED(tcp)) {
3177 		if (zc_enabled) {
3178 			ixa->ixa_flags |= IXAF_VERIFY_ZCOPY;
3179 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
3180 			    ZCVMSAFE);
3181 			TCP_STAT(tcps, tcp_zcopy_on);
3182 		} else {
3183 			ixa->ixa_flags &= ~IXAF_VERIFY_ZCOPY;
3184 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
3185 			    ZCVMUNSAFE);
3186 			TCP_STAT(tcps, tcp_zcopy_off);
3187 		}
3188 	}
3189 	return (zc_enabled);
3190 }
3191 
3192 /*
3193  * Backoff from a zero-copy message by copying data to a new allocated
3194  * message and freeing the original desballoca'ed segmapped message.
3195  *
3196  * This function is called by following two callers:
3197  * 1. tcp_timer: fix_xmitlist is set to B_TRUE, because it's safe to free
3198  *    the origial desballoca'ed message and notify sockfs. This is in re-
3199  *    transmit state.
3200  * 2. tcp_output: fix_xmitlist is set to B_FALSE. Flag STRUIO_ZCNOTIFY need
3201  *    to be copied to new message.
3202  */
3203 mblk_t *
3204 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, boolean_t fix_xmitlist)
3205 {
3206 	mblk_t		*nbp;
3207 	mblk_t		*head = NULL;
3208 	mblk_t		*tail = NULL;
3209 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3210 
3211 	ASSERT(bp != NULL);
3212 	while (bp != NULL) {
3213 		if (IS_VMLOANED_MBLK(bp)) {
3214 			TCP_STAT(tcps, tcp_zcopy_backoff);
3215 			if ((nbp = copyb(bp)) == NULL) {
3216 				tcp->tcp_xmit_zc_clean = B_FALSE;
3217 				if (tail != NULL)
3218 					tail->b_cont = bp;
3219 				return ((head == NULL) ? bp : head);
3220 			}
3221 
3222 			if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
3223 				if (fix_xmitlist)
3224 					tcp_zcopy_notify(tcp);
3225 				else
3226 					nbp->b_datap->db_struioflag |=
3227 					    STRUIO_ZCNOTIFY;
3228 			}
3229 			nbp->b_cont = bp->b_cont;
3230 
3231 			/*
3232 			 * Copy saved information and adjust tcp_xmit_tail
3233 			 * if needed.
3234 			 */
3235 			if (fix_xmitlist) {
3236 				nbp->b_prev = bp->b_prev;
3237 				nbp->b_next = bp->b_next;
3238 
3239 				if (tcp->tcp_xmit_tail == bp)
3240 					tcp->tcp_xmit_tail = nbp;
3241 			}
3242 
3243 			/* Free the original message. */
3244 			bp->b_prev = NULL;
3245 			bp->b_next = NULL;
3246 			freeb(bp);
3247 
3248 			bp = nbp;
3249 		}
3250 
3251 		if (head == NULL) {
3252 			head = bp;
3253 		}
3254 		if (tail == NULL) {
3255 			tail = bp;
3256 		} else {
3257 			tail->b_cont = bp;
3258 			tail = bp;
3259 		}
3260 
3261 		/* Move forward. */
3262 		bp = bp->b_cont;
3263 	}
3264 
3265 	if (fix_xmitlist) {
3266 		tcp->tcp_xmit_last = tail;
3267 		tcp->tcp_xmit_zc_clean = B_TRUE;
3268 	}
3269 
3270 	return (head);
3271 }
3272 
3273 void
3274 tcp_zcopy_notify(tcp_t *tcp)
3275 {
3276 	struct stdata	*stp;
3277 	conn_t		*connp;
3278 
3279 	if (tcp->tcp_detached)
3280 		return;
3281 	connp = tcp->tcp_connp;
3282 	if (IPCL_IS_NONSTR(connp)) {
3283 		(*connp->conn_upcalls->su_zcopy_notify)
3284 		    (connp->conn_upper_handle);
3285 		return;
3286 	}
3287 	stp = STREAM(connp->conn_rq);
3288 	mutex_enter(&stp->sd_lock);
3289 	stp->sd_flag |= STZCNOTIFY;
3290 	cv_broadcast(&stp->sd_zcopy_wait);
3291 	mutex_exit(&stp->sd_lock);
3292 }
3293 
3294 /*
3295  * Update the TCP connection according to change of LSO capability.
3296  */
3297 static void
3298 tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa)
3299 {
3300 	/*
3301 	 * We check against IPv4 header length to preserve the old behavior
3302 	 * of only enabling LSO when there are no IP options.
3303 	 * But this restriction might not be necessary at all. Before removing
3304 	 * it, need to verify how LSO is handled for source routing case, with
3305 	 * which IP does software checksum.
3306 	 *
3307 	 * For IPv6, whenever any extension header is needed, LSO is supressed.
3308 	 */
3309 	if (ixa->ixa_ip_hdr_length != ((ixa->ixa_flags & IXAF_IS_IPV4) ?
3310 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN))
3311 		return;
3312 
3313 	/*
3314 	 * Either the LSO capability newly became usable, or it has changed.
3315 	 */
3316 	if (ixa->ixa_flags & IXAF_LSO_CAPAB) {
3317 		ill_lso_capab_t	*lsoc = &ixa->ixa_lso_capab;
3318 
3319 		ASSERT(lsoc->ill_lso_max > 0);
3320 		tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, lsoc->ill_lso_max);
3321 
3322 		DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso,
3323 		    boolean_t, B_TRUE, uint32_t, tcp->tcp_lso_max);
3324 
3325 		/*
3326 		 * If LSO to be enabled, notify the STREAM header with larger
3327 		 * data block.
3328 		 */
3329 		if (!tcp->tcp_lso)
3330 			tcp->tcp_maxpsz_multiplier = 0;
3331 
3332 		tcp->tcp_lso = B_TRUE;
3333 		TCP_STAT(tcp->tcp_tcps, tcp_lso_enabled);
3334 	} else { /* LSO capability is not usable any more. */
3335 		DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso,
3336 		    boolean_t, B_FALSE, uint32_t, tcp->tcp_lso_max);
3337 
3338 		/*
3339 		 * If LSO to be disabled, notify the STREAM header with smaller
3340 		 * data block. And need to restore fragsize to PMTU.
3341 		 */
3342 		if (tcp->tcp_lso) {
3343 			tcp->tcp_maxpsz_multiplier =
3344 			    tcp->tcp_tcps->tcps_maxpsz_multiplier;
3345 			ixa->ixa_fragsize = ixa->ixa_pmtu;
3346 			tcp->tcp_lso = B_FALSE;
3347 			TCP_STAT(tcp->tcp_tcps, tcp_lso_disabled);
3348 		}
3349 	}
3350 
3351 	(void) tcp_maxpsz_set(tcp, B_TRUE);
3352 }
3353 
3354 /*
3355  * Update the TCP connection according to change of ZEROCOPY capability.
3356  */
3357 static void
3358 tcp_update_zcopy(tcp_t *tcp)
3359 {
3360 	conn_t		*connp = tcp->tcp_connp;
3361 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3362 
3363 	if (tcp->tcp_snd_zcopy_on) {
3364 		tcp->tcp_snd_zcopy_on = B_FALSE;
3365 		if (!TCP_IS_DETACHED(tcp)) {
3366 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
3367 			    ZCVMUNSAFE);
3368 			TCP_STAT(tcps, tcp_zcopy_off);
3369 		}
3370 	} else {
3371 		tcp->tcp_snd_zcopy_on = B_TRUE;
3372 		if (!TCP_IS_DETACHED(tcp)) {
3373 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
3374 			    ZCVMSAFE);
3375 			TCP_STAT(tcps, tcp_zcopy_on);
3376 		}
3377 	}
3378 }
3379 
3380 /*
3381  * Notify function registered with ip_xmit_attr_t. It's called in the squeue
3382  * so it's safe to update the TCP connection.
3383  */
3384 /* ARGSUSED1 */
3385 static void
3386 tcp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype,
3387     ixa_notify_arg_t narg)
3388 {
3389 	tcp_t		*tcp = (tcp_t *)arg;
3390 	conn_t		*connp = tcp->tcp_connp;
3391 
3392 	switch (ntype) {
3393 	case IXAN_LSO:
3394 		tcp_update_lso(tcp, connp->conn_ixa);
3395 		break;
3396 	case IXAN_PMTU:
3397 		tcp_update_pmtu(tcp, B_FALSE);
3398 		break;
3399 	case IXAN_ZCOPY:
3400 		tcp_update_zcopy(tcp);
3401 		break;
3402 	default:
3403 		break;
3404 	}
3405 }
3406 
3407 /*
3408  * The TCP write service routine should never be called...
3409  */
3410 /* ARGSUSED */
3411 static int
3412 tcp_wsrv(queue_t *q)
3413 {
3414 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
3415 
3416 	TCP_STAT(tcps, tcp_wsrv_called);
3417 	return (0);
3418 }
3419 
3420 /*
3421  * Hash list lookup routine for tcp_t structures.
3422  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
3423  */
3424 tcp_t *
3425 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps)
3426 {
3427 	tf_t	*tf;
3428 	tcp_t	*tcp;
3429 
3430 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
3431 	mutex_enter(&tf->tf_lock);
3432 	for (tcp = tf->tf_tcp; tcp != NULL;
3433 	    tcp = tcp->tcp_acceptor_hash) {
3434 		if (tcp->tcp_acceptor_id == id) {
3435 			CONN_INC_REF(tcp->tcp_connp);
3436 			mutex_exit(&tf->tf_lock);
3437 			return (tcp);
3438 		}
3439 	}
3440 	mutex_exit(&tf->tf_lock);
3441 	return (NULL);
3442 }
3443 
3444 /*
3445  * Hash list insertion routine for tcp_t structures.
3446  */
3447 void
3448 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
3449 {
3450 	tf_t	*tf;
3451 	tcp_t	**tcpp;
3452 	tcp_t	*tcpnext;
3453 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3454 
3455 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
3456 
3457 	if (tcp->tcp_ptpahn != NULL)
3458 		tcp_acceptor_hash_remove(tcp);
3459 	tcpp = &tf->tf_tcp;
3460 	mutex_enter(&tf->tf_lock);
3461 	tcpnext = tcpp[0];
3462 	if (tcpnext)
3463 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
3464 	tcp->tcp_acceptor_hash = tcpnext;
3465 	tcp->tcp_ptpahn = tcpp;
3466 	tcpp[0] = tcp;
3467 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
3468 	mutex_exit(&tf->tf_lock);
3469 }
3470 
3471 /*
3472  * Hash list removal routine for tcp_t structures.
3473  */
3474 void
3475 tcp_acceptor_hash_remove(tcp_t *tcp)
3476 {
3477 	tcp_t	*tcpnext;
3478 	kmutex_t *lockp;
3479 
3480 	/*
3481 	 * Extract the lock pointer in case there are concurrent
3482 	 * hash_remove's for this instance.
3483 	 */
3484 	lockp = tcp->tcp_acceptor_lockp;
3485 
3486 	if (tcp->tcp_ptpahn == NULL)
3487 		return;
3488 
3489 	ASSERT(lockp != NULL);
3490 	mutex_enter(lockp);
3491 	if (tcp->tcp_ptpahn) {
3492 		tcpnext = tcp->tcp_acceptor_hash;
3493 		if (tcpnext) {
3494 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
3495 			tcp->tcp_acceptor_hash = NULL;
3496 		}
3497 		*tcp->tcp_ptpahn = tcpnext;
3498 		tcp->tcp_ptpahn = NULL;
3499 	}
3500 	mutex_exit(lockp);
3501 	tcp->tcp_acceptor_lockp = NULL;
3502 }
3503 
3504 /*
3505  * Type three generator adapted from the random() function in 4.4 BSD:
3506  */
3507 
3508 /*
3509  * Copyright (c) 1983, 1993
3510  *	The Regents of the University of California.  All rights reserved.
3511  *
3512  * Redistribution and use in source and binary forms, with or without
3513  * modification, are permitted provided that the following conditions
3514  * are met:
3515  * 1. Redistributions of source code must retain the above copyright
3516  *    notice, this list of conditions and the following disclaimer.
3517  * 2. Redistributions in binary form must reproduce the above copyright
3518  *    notice, this list of conditions and the following disclaimer in the
3519  *    documentation and/or other materials provided with the distribution.
3520  * 3. All advertising materials mentioning features or use of this software
3521  *    must display the following acknowledgement:
3522  *	This product includes software developed by the University of
3523  *	California, Berkeley and its contributors.
3524  * 4. Neither the name of the University nor the names of its contributors
3525  *    may be used to endorse or promote products derived from this software
3526  *    without specific prior written permission.
3527  *
3528  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
3529  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
3530  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
3531  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
3532  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
3533  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
3534  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
3535  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
3536  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
3537  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
3538  * SUCH DAMAGE.
3539  */
3540 
3541 /* Type 3 -- x**31 + x**3 + 1 */
3542 #define	DEG_3		31
3543 #define	SEP_3		3
3544 
3545 
3546 /* Protected by tcp_random_lock */
3547 static int tcp_randtbl[DEG_3 + 1];
3548 
3549 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
3550 static int *tcp_random_rptr = &tcp_randtbl[1];
3551 
3552 static int *tcp_random_state = &tcp_randtbl[1];
3553 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
3554 
3555 kmutex_t tcp_random_lock;
3556 
3557 void
3558 tcp_random_init(void)
3559 {
3560 	int i;
3561 	hrtime_t hrt;
3562 	time_t wallclock;
3563 	uint64_t result;
3564 
3565 	/*
3566 	 * Use high-res timer and current time for seed.  Gethrtime() returns
3567 	 * a longlong, which may contain resolution down to nanoseconds.
3568 	 * The current time will either be a 32-bit or a 64-bit quantity.
3569 	 * XOR the two together in a 64-bit result variable.
3570 	 * Convert the result to a 32-bit value by multiplying the high-order
3571 	 * 32-bits by the low-order 32-bits.
3572 	 */
3573 
3574 	hrt = gethrtime();
3575 	(void) drv_getparm(TIME, &wallclock);
3576 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
3577 	mutex_enter(&tcp_random_lock);
3578 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
3579 	    (result & 0xffffffff);
3580 
3581 	for (i = 1; i < DEG_3; i++)
3582 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
3583 		    + 12345;
3584 	tcp_random_fptr = &tcp_random_state[SEP_3];
3585 	tcp_random_rptr = &tcp_random_state[0];
3586 	mutex_exit(&tcp_random_lock);
3587 	for (i = 0; i < 10 * DEG_3; i++)
3588 		(void) tcp_random();
3589 }
3590 
3591 /*
3592  * tcp_random: Return a random number in the range [1 - (128K + 1)].
3593  * This range is selected to be approximately centered on TCP_ISS / 2,
3594  * and easy to compute. We get this value by generating a 32-bit random
3595  * number, selecting out the high-order 17 bits, and then adding one so
3596  * that we never return zero.
3597  */
3598 int
3599 tcp_random(void)
3600 {
3601 	int i;
3602 
3603 	mutex_enter(&tcp_random_lock);
3604 	*tcp_random_fptr += *tcp_random_rptr;
3605 
3606 	/*
3607 	 * The high-order bits are more random than the low-order bits,
3608 	 * so we select out the high-order 17 bits and add one so that
3609 	 * we never return zero.
3610 	 */
3611 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
3612 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
3613 		tcp_random_fptr = tcp_random_state;
3614 		++tcp_random_rptr;
3615 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
3616 		tcp_random_rptr = tcp_random_state;
3617 
3618 	mutex_exit(&tcp_random_lock);
3619 	return (i);
3620 }
3621 
3622 /*
3623  * Split this function out so that if the secret changes, I'm okay.
3624  *
3625  * Initialize the tcp_iss_cookie and tcp_iss_key.
3626  */
3627 
3628 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
3629 
3630 void
3631 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps)
3632 {
3633 	struct {
3634 		int32_t current_time;
3635 		uint32_t randnum;
3636 		uint16_t pad;
3637 		uint8_t ether[6];
3638 		uint8_t passwd[PASSWD_SIZE];
3639 	} tcp_iss_cookie;
3640 	time_t t;
3641 
3642 	/*
3643 	 * Start with the current absolute time.
3644 	 */
3645 	(void) drv_getparm(TIME, &t);
3646 	tcp_iss_cookie.current_time = t;
3647 
3648 	/*
3649 	 * XXX - Need a more random number per RFC 1750, not this crap.
3650 	 * OTOH, if what follows is pretty random, then I'm in better shape.
3651 	 */
3652 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
3653 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
3654 
3655 	/*
3656 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
3657 	 * as a good template.
3658 	 */
3659 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
3660 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
3661 
3662 	/*
3663 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
3664 	 */
3665 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
3666 
3667 	/*
3668 	 * See 4010593 if this section becomes a problem again,
3669 	 * but the local ethernet address is useful here.
3670 	 */
3671 	(void) localetheraddr(NULL,
3672 	    (struct ether_addr *)&tcp_iss_cookie.ether);
3673 
3674 	/*
3675 	 * Hash 'em all together.  The MD5Final is called per-connection.
3676 	 */
3677 	mutex_enter(&tcps->tcps_iss_key_lock);
3678 	MD5Init(&tcps->tcps_iss_key);
3679 	MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie,
3680 	    sizeof (tcp_iss_cookie));
3681 	mutex_exit(&tcps->tcps_iss_key_lock);
3682 }
3683 
3684 /*
3685  * Called by IP when IP is loaded into the kernel
3686  */
3687 void
3688 tcp_ddi_g_init(void)
3689 {
3690 	tcp_timercache = kmem_cache_create("tcp_timercache",
3691 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
3692 	    NULL, NULL, NULL, NULL, NULL, 0);
3693 
3694 	tcp_notsack_blk_cache = kmem_cache_create("tcp_notsack_blk_cache",
3695 	    sizeof (notsack_blk_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3696 
3697 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
3698 
3699 	/* Initialize the random number generator */
3700 	tcp_random_init();
3701 
3702 	/* A single callback independently of how many netstacks we have */
3703 	ip_squeue_init(tcp_squeue_add);
3704 
3705 	tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics);
3706 
3707 	tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput);
3708 
3709 	/*
3710 	 * We want to be informed each time a stack is created or
3711 	 * destroyed in the kernel, so we can maintain the
3712 	 * set of tcp_stack_t's.
3713 	 */
3714 	netstack_register(NS_TCP, tcp_stack_init, NULL, tcp_stack_fini);
3715 }
3716 
3717 
3718 #define	INET_NAME	"ip"
3719 
3720 /*
3721  * Initialize the TCP stack instance.
3722  */
3723 static void *
3724 tcp_stack_init(netstackid_t stackid, netstack_t *ns)
3725 {
3726 	tcp_stack_t	*tcps;
3727 	int		i;
3728 	int		error = 0;
3729 	major_t		major;
3730 	size_t		arrsz;
3731 
3732 	tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP);
3733 	tcps->tcps_netstack = ns;
3734 
3735 	/* Initialize locks */
3736 	mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
3737 	mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
3738 
3739 	tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
3740 	tcps->tcps_g_epriv_ports[0] = ULP_DEF_EPRIV_PORT1;
3741 	tcps->tcps_g_epriv_ports[1] = ULP_DEF_EPRIV_PORT2;
3742 	tcps->tcps_min_anonpriv_port = 512;
3743 
3744 	tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) *
3745 	    TCP_BIND_FANOUT_SIZE, KM_SLEEP);
3746 	tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) *
3747 	    TCP_ACCEPTOR_FANOUT_SIZE, KM_SLEEP);
3748 
3749 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
3750 		mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL,
3751 		    MUTEX_DEFAULT, NULL);
3752 	}
3753 
3754 	for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) {
3755 		mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL,
3756 		    MUTEX_DEFAULT, NULL);
3757 	}
3758 
3759 	/* TCP's IPsec code calls the packet dropper. */
3760 	ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement");
3761 
3762 	arrsz = tcp_propinfo_count * sizeof (mod_prop_info_t);
3763 	tcps->tcps_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz,
3764 	    KM_SLEEP);
3765 	bcopy(tcp_propinfo_tbl, tcps->tcps_propinfo_tbl, arrsz);
3766 
3767 	/*
3768 	 * Note: To really walk the device tree you need the devinfo
3769 	 * pointer to your device which is only available after probe/attach.
3770 	 * The following is safe only because it uses ddi_root_node()
3771 	 */
3772 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
3773 	    tcp_opt_obj.odb_opt_arr_cnt);
3774 
3775 	/*
3776 	 * Initialize RFC 1948 secret values.  This will probably be reset once
3777 	 * by the boot scripts.
3778 	 *
3779 	 * Use NULL name, as the name is caught by the new lockstats.
3780 	 *
3781 	 * Initialize with some random, non-guessable string, like the global
3782 	 * T_INFO_ACK.
3783 	 */
3784 
3785 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
3786 	    sizeof (tcp_g_t_info_ack), tcps);
3787 
3788 	tcps->tcps_kstat = tcp_kstat2_init(stackid);
3789 	tcps->tcps_mibkp = tcp_kstat_init(stackid);
3790 
3791 	major = mod_name_to_major(INET_NAME);
3792 	error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident);
3793 	ASSERT(error == 0);
3794 	tcps->tcps_ixa_cleanup_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL);
3795 	ASSERT(tcps->tcps_ixa_cleanup_mp != NULL);
3796 	cv_init(&tcps->tcps_ixa_cleanup_ready_cv, NULL, CV_DEFAULT, NULL);
3797 	cv_init(&tcps->tcps_ixa_cleanup_done_cv, NULL, CV_DEFAULT, NULL);
3798 	mutex_init(&tcps->tcps_ixa_cleanup_lock, NULL, MUTEX_DEFAULT, NULL);
3799 
3800 	mutex_init(&tcps->tcps_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
3801 	tcps->tcps_reclaim = B_FALSE;
3802 	tcps->tcps_reclaim_tid = 0;
3803 	tcps->tcps_reclaim_period = tcps->tcps_rexmit_interval_max;
3804 
3805 	/*
3806 	 * ncpus is the current number of CPUs, which can be bigger than
3807 	 * boot_ncpus.  But we don't want to use ncpus to allocate all the
3808 	 * tcp_stats_cpu_t at system boot up time since it will be 1.  While
3809 	 * we handle adding CPU in tcp_cpu_update(), it will be slow if
3810 	 * there are many CPUs as we will be adding them 1 by 1.
3811 	 *
3812 	 * Note that tcps_sc_cnt never decreases and the tcps_sc[x] pointers
3813 	 * are not freed until the stack is going away.  So there is no need
3814 	 * to grab a lock to access the per CPU tcps_sc[x] pointer.
3815 	 */
3816 	mutex_enter(&cpu_lock);
3817 	tcps->tcps_sc_cnt = MAX(ncpus, boot_ncpus);
3818 	mutex_exit(&cpu_lock);
3819 	tcps->tcps_sc = kmem_zalloc(max_ncpus  * sizeof (tcp_stats_cpu_t *),
3820 	    KM_SLEEP);
3821 	for (i = 0; i < tcps->tcps_sc_cnt; i++) {
3822 		tcps->tcps_sc[i] = kmem_zalloc(sizeof (tcp_stats_cpu_t),
3823 		    KM_SLEEP);
3824 	}
3825 
3826 	mutex_init(&tcps->tcps_listener_conf_lock, NULL, MUTEX_DEFAULT, NULL);
3827 	list_create(&tcps->tcps_listener_conf, sizeof (tcp_listener_t),
3828 	    offsetof(tcp_listener_t, tl_link));
3829 
3830 	tcps->tcps_default_cc_algo = cc_load_algo(CC_DEFAULT_ALGO_NAME);
3831 	VERIFY3P(tcps->tcps_default_cc_algo, !=, NULL);
3832 
3833 	return (tcps);
3834 }
3835 
3836 /*
3837  * Called when the IP module is about to be unloaded.
3838  */
3839 void
3840 tcp_ddi_g_destroy(void)
3841 {
3842 	tcp_g_kstat_fini(tcp_g_kstat);
3843 	tcp_g_kstat = NULL;
3844 	bzero(&tcp_g_statistics, sizeof (tcp_g_statistics));
3845 
3846 	mutex_destroy(&tcp_random_lock);
3847 
3848 	kmem_cache_destroy(tcp_timercache);
3849 	kmem_cache_destroy(tcp_notsack_blk_cache);
3850 
3851 	netstack_unregister(NS_TCP);
3852 }
3853 
3854 /*
3855  * Free the TCP stack instance.
3856  */
3857 static void
3858 tcp_stack_fini(netstackid_t stackid, void *arg)
3859 {
3860 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
3861 	int i;
3862 
3863 	freeb(tcps->tcps_ixa_cleanup_mp);
3864 	tcps->tcps_ixa_cleanup_mp = NULL;
3865 	cv_destroy(&tcps->tcps_ixa_cleanup_ready_cv);
3866 	cv_destroy(&tcps->tcps_ixa_cleanup_done_cv);
3867 	mutex_destroy(&tcps->tcps_ixa_cleanup_lock);
3868 
3869 	/*
3870 	 * Set tcps_reclaim to false tells tcp_reclaim_timer() not to restart
3871 	 * the timer.
3872 	 */
3873 	mutex_enter(&tcps->tcps_reclaim_lock);
3874 	tcps->tcps_reclaim = B_FALSE;
3875 	mutex_exit(&tcps->tcps_reclaim_lock);
3876 	if (tcps->tcps_reclaim_tid != 0)
3877 		(void) untimeout(tcps->tcps_reclaim_tid);
3878 	mutex_destroy(&tcps->tcps_reclaim_lock);
3879 
3880 	tcp_listener_conf_cleanup(tcps);
3881 
3882 	for (i = 0; i < tcps->tcps_sc_cnt; i++)
3883 		kmem_free(tcps->tcps_sc[i], sizeof (tcp_stats_cpu_t));
3884 	kmem_free(tcps->tcps_sc, max_ncpus * sizeof (tcp_stats_cpu_t *));
3885 
3886 	kmem_free(tcps->tcps_propinfo_tbl,
3887 	    tcp_propinfo_count * sizeof (mod_prop_info_t));
3888 	tcps->tcps_propinfo_tbl = NULL;
3889 
3890 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
3891 		ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL);
3892 		mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock);
3893 	}
3894 
3895 	for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) {
3896 		ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL);
3897 		mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock);
3898 	}
3899 
3900 	kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE);
3901 	tcps->tcps_bind_fanout = NULL;
3902 
3903 	kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) *
3904 	    TCP_ACCEPTOR_FANOUT_SIZE);
3905 	tcps->tcps_acceptor_fanout = NULL;
3906 
3907 	mutex_destroy(&tcps->tcps_iss_key_lock);
3908 	mutex_destroy(&tcps->tcps_epriv_port_lock);
3909 
3910 	ip_drop_unregister(&tcps->tcps_dropper);
3911 
3912 	tcp_kstat2_fini(stackid, tcps->tcps_kstat);
3913 	tcps->tcps_kstat = NULL;
3914 
3915 	tcp_kstat_fini(stackid, tcps->tcps_mibkp);
3916 	tcps->tcps_mibkp = NULL;
3917 
3918 	ldi_ident_release(tcps->tcps_ldi_ident);
3919 	kmem_free(tcps, sizeof (*tcps));
3920 }
3921 
3922 /*
3923  * Generate ISS, taking into account NDD changes may happen halfway through.
3924  * (If the iss is not zero, set it.)
3925  */
3926 
3927 static void
3928 tcp_iss_init(tcp_t *tcp)
3929 {
3930 	MD5_CTX context;
3931 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
3932 	uint32_t answer[4];
3933 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3934 	conn_t		*connp = tcp->tcp_connp;
3935 
3936 	tcps->tcps_iss_incr_extra += (tcps->tcps_iss_incr >> 1);
3937 	tcp->tcp_iss = tcps->tcps_iss_incr_extra;
3938 	switch (tcps->tcps_strong_iss) {
3939 	case 2:
3940 		mutex_enter(&tcps->tcps_iss_key_lock);
3941 		context = tcps->tcps_iss_key;
3942 		mutex_exit(&tcps->tcps_iss_key_lock);
3943 		arg.ports = connp->conn_ports;
3944 		arg.src = connp->conn_laddr_v6;
3945 		arg.dst = connp->conn_faddr_v6;
3946 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
3947 		MD5Final((uchar_t *)answer, &context);
3948 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
3949 		/*
3950 		 * Now that we've hashed into a unique per-connection sequence
3951 		 * space, add a random increment per strong_iss == 1.  So I
3952 		 * guess we'll have to...
3953 		 */
3954 		/* FALLTHRU */
3955 	case 1:
3956 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
3957 		break;
3958 	default:
3959 		tcp->tcp_iss += (uint32_t)gethrestime_sec() *
3960 		    tcps->tcps_iss_incr;
3961 		break;
3962 	}
3963 	tcp->tcp_valid_bits = TCP_ISS_VALID;
3964 	tcp->tcp_fss = tcp->tcp_iss - 1;
3965 	tcp->tcp_suna = tcp->tcp_iss;
3966 	tcp->tcp_snxt = tcp->tcp_iss + 1;
3967 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
3968 	tcp->tcp_csuna = tcp->tcp_snxt;
3969 }
3970 
3971 /*
3972  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
3973  * on the specified backing STREAMS q. Note, the caller may make the
3974  * decision to call based on the tcp_t.tcp_flow_stopped value which
3975  * when check outside the q's lock is only an advisory check ...
3976  */
3977 void
3978 tcp_setqfull(tcp_t *tcp)
3979 {
3980 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3981 	conn_t	*connp = tcp->tcp_connp;
3982 
3983 	if (tcp->tcp_closed)
3984 		return;
3985 
3986 	conn_setqfull(connp, &tcp->tcp_flow_stopped);
3987 	if (tcp->tcp_flow_stopped)
3988 		TCP_STAT(tcps, tcp_flwctl_on);
3989 }
3990 
3991 void
3992 tcp_clrqfull(tcp_t *tcp)
3993 {
3994 	conn_t  *connp = tcp->tcp_connp;
3995 
3996 	if (tcp->tcp_closed)
3997 		return;
3998 	conn_clrqfull(connp, &tcp->tcp_flow_stopped);
3999 }
4000 
4001 static int
4002 tcp_squeue_switch(int val)
4003 {
4004 	int rval = SQ_FILL;
4005 
4006 	switch (val) {
4007 	case 1:
4008 		rval = SQ_NODRAIN;
4009 		break;
4010 	case 2:
4011 		rval = SQ_PROCESS;
4012 		break;
4013 	default:
4014 		break;
4015 	}
4016 	return (rval);
4017 }
4018 
4019 /*
4020  * This is called once for each squeue - globally for all stack
4021  * instances.
4022  */
4023 static void
4024 tcp_squeue_add(squeue_t *sqp)
4025 {
4026 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
4027 	    sizeof (tcp_squeue_priv_t), KM_SLEEP);
4028 
4029 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
4030 	if (tcp_free_list_max_cnt == 0) {
4031 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
4032 		    max_ncpus : boot_max_ncpus);
4033 
4034 		/*
4035 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
4036 		 */
4037 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
4038 		    (tcp_ncpus * sizeof (tcp_t) * 100);
4039 	}
4040 	tcp_time_wait->tcp_free_list_cnt = 0;
4041 }
4042 /*
4043  * Return unix error is tli error is TSYSERR, otherwise return a negative
4044  * tli error.
4045  */
4046 int
4047 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,
4048     boolean_t bind_to_req_port_only)
4049 {
4050 	int error;
4051 	tcp_t *tcp = connp->conn_tcp;
4052 
4053 	if (tcp->tcp_state >= TCPS_BOUND) {
4054 		if (connp->conn_debug) {
4055 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
4056 			    "tcp_bind: bad state, %d", tcp->tcp_state);
4057 		}
4058 		return (-TOUTSTATE);
4059 	}
4060 
4061 	error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only);
4062 	if (error != 0)
4063 		return (error);
4064 
4065 	ASSERT(tcp->tcp_state == TCPS_BOUND);
4066 	tcp->tcp_conn_req_max = 0;
4067 	return (0);
4068 }
4069 
4070 /*
4071  * If the return value from this function is positive, it's a UNIX error.
4072  * Otherwise, if it's negative, then the absolute value is a TLI error.
4073  * the TPI routine tcp_tpi_connect() is a wrapper function for this.
4074  */
4075 int
4076 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len,
4077     cred_t *cr, pid_t pid)
4078 {
4079 	tcp_t		*tcp = connp->conn_tcp;
4080 	sin_t		*sin = (sin_t *)sa;
4081 	sin6_t		*sin6 = (sin6_t *)sa;
4082 	ipaddr_t	*dstaddrp;
4083 	in_port_t	dstport;
4084 	uint_t		srcid;
4085 	int		error;
4086 	uint32_t	mss;
4087 	mblk_t		*syn_mp;
4088 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4089 	int32_t		oldstate;
4090 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
4091 
4092 	oldstate = tcp->tcp_state;
4093 
4094 	switch (len) {
4095 	default:
4096 		/*
4097 		 * Should never happen
4098 		 */
4099 		return (EINVAL);
4100 
4101 	case sizeof (sin_t):
4102 		sin = (sin_t *)sa;
4103 		if (sin->sin_port == 0) {
4104 			return (-TBADADDR);
4105 		}
4106 		if (connp->conn_ipv6_v6only) {
4107 			return (EAFNOSUPPORT);
4108 		}
4109 		break;
4110 
4111 	case sizeof (sin6_t):
4112 		sin6 = (sin6_t *)sa;
4113 		if (sin6->sin6_port == 0) {
4114 			return (-TBADADDR);
4115 		}
4116 		break;
4117 	}
4118 	/*
4119 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
4120 	 * make sure that the conn_ipversion is IPV4_VERSION.  We
4121 	 * need to this before we call tcp_bindi() so that the port lookup
4122 	 * code will look for ports in the correct port space (IPv4 and
4123 	 * IPv6 have separate port spaces).
4124 	 */
4125 	if (connp->conn_family == AF_INET6 &&
4126 	    connp->conn_ipversion == IPV6_VERSION &&
4127 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
4128 		if (connp->conn_ipv6_v6only)
4129 			return (EADDRNOTAVAIL);
4130 
4131 		connp->conn_ipversion = IPV4_VERSION;
4132 	}
4133 
4134 	switch (tcp->tcp_state) {
4135 	case TCPS_LISTEN:
4136 		/*
4137 		 * Listening sockets are not allowed to issue connect().
4138 		 */
4139 		if (IPCL_IS_NONSTR(connp))
4140 			return (EOPNOTSUPP);
4141 		/* FALLTHRU */
4142 	case TCPS_IDLE:
4143 		/*
4144 		 * We support quick connect, refer to comments in
4145 		 * tcp_connect_*()
4146 		 */
4147 		/* FALLTHRU */
4148 	case TCPS_BOUND:
4149 		break;
4150 	default:
4151 		return (-TOUTSTATE);
4152 	}
4153 
4154 	/*
4155 	 * We update our cred/cpid based on the caller of connect
4156 	 */
4157 	if (connp->conn_cred != cr) {
4158 		crhold(cr);
4159 		crfree(connp->conn_cred);
4160 		connp->conn_cred = cr;
4161 	}
4162 	connp->conn_cpid = pid;
4163 
4164 	/* Cache things in the ixa without any refhold */
4165 	ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED));
4166 	ixa->ixa_cred = cr;
4167 	ixa->ixa_cpid = pid;
4168 	if (is_system_labeled()) {
4169 		/* We need to restart with a label based on the cred */
4170 		ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred);
4171 	}
4172 
4173 	if (connp->conn_family == AF_INET6) {
4174 		if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
4175 			error = tcp_connect_ipv6(tcp, &sin6->sin6_addr,
4176 			    sin6->sin6_port, sin6->sin6_flowinfo,
4177 			    sin6->__sin6_src_id, sin6->sin6_scope_id);
4178 		} else {
4179 			/*
4180 			 * Destination adress is mapped IPv6 address.
4181 			 * Source bound address should be unspecified or
4182 			 * IPv6 mapped address as well.
4183 			 */
4184 			if (!IN6_IS_ADDR_UNSPECIFIED(
4185 			    &connp->conn_bound_addr_v6) &&
4186 			    !IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) {
4187 				return (EADDRNOTAVAIL);
4188 			}
4189 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
4190 			dstport = sin6->sin6_port;
4191 			srcid = sin6->__sin6_src_id;
4192 			error = tcp_connect_ipv4(tcp, dstaddrp, dstport,
4193 			    srcid);
4194 		}
4195 	} else {
4196 		dstaddrp = &sin->sin_addr.s_addr;
4197 		dstport = sin->sin_port;
4198 		srcid = 0;
4199 		error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid);
4200 	}
4201 
4202 	if (error != 0)
4203 		goto connect_failed;
4204 
4205 	CL_INET_CONNECT(connp, B_TRUE, error);
4206 	if (error != 0)
4207 		goto connect_failed;
4208 
4209 	/* connect succeeded */
4210 	TCPS_BUMP_MIB(tcps, tcpActiveOpens);
4211 	tcp->tcp_active_open = 1;
4212 
4213 	/*
4214 	 * tcp_set_destination() does not adjust for TCP/IP header length.
4215 	 */
4216 	mss = tcp->tcp_mss - connp->conn_ht_iphc_len;
4217 
4218 	/*
4219 	 * Just make sure our rwnd is at least rcvbuf * MSS large, and round up
4220 	 * to the nearest MSS.
4221 	 *
4222 	 * We do the round up here because we need to get the interface MTU
4223 	 * first before we can do the round up.
4224 	 */
4225 	tcp->tcp_rwnd = connp->conn_rcvbuf;
4226 	tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
4227 	    tcps->tcps_recv_hiwat_minmss * mss);
4228 	connp->conn_rcvbuf = tcp->tcp_rwnd;
4229 	tcp_set_ws_value(tcp);
4230 	tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
4231 	if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always)
4232 		tcp->tcp_snd_ws_ok = B_TRUE;
4233 
4234 	/*
4235 	 * Set tcp_snd_ts_ok to true
4236 	 * so that tcp_xmit_mp will
4237 	 * include the timestamp
4238 	 * option in the SYN segment.
4239 	 */
4240 	if (tcps->tcps_tstamp_always ||
4241 	    (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) {
4242 		tcp->tcp_snd_ts_ok = B_TRUE;
4243 	}
4244 
4245 	/*
4246 	 * Note that tcp_snd_sack_ok can be set in tcp_set_destination() if
4247 	 * the SACK metric is set.  So here we just check the per stack SACK
4248 	 * permitted param.
4249 	 */
4250 	if (tcps->tcps_sack_permitted == 2) {
4251 		ASSERT(tcp->tcp_num_sack_blk == 0);
4252 		ASSERT(tcp->tcp_notsack_list == NULL);
4253 		tcp->tcp_snd_sack_ok = B_TRUE;
4254 	}
4255 
4256 	/*
4257 	 * Should we use ECN?  Note that the current
4258 	 * default value (SunOS 5.9) of tcp_ecn_permitted
4259 	 * is 1.  The reason for doing this is that there
4260 	 * are equipments out there that will drop ECN
4261 	 * enabled IP packets.  Setting it to 1 avoids
4262 	 * compatibility problems.
4263 	 */
4264 	if (tcps->tcps_ecn_permitted == 2)
4265 		tcp->tcp_ecn_ok = B_TRUE;
4266 
4267 	/* Trace change from BOUND -> SYN_SENT here */
4268 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4269 	    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
4270 	    int32_t, TCPS_BOUND);
4271 
4272 	TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
4273 	syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
4274 	    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
4275 	if (syn_mp != NULL) {
4276 		/*
4277 		 * We must bump the generation before sending the syn
4278 		 * to ensure that we use the right generation in case
4279 		 * this thread issues a "connected" up call.
4280 		 */
4281 		SOCK_CONNID_BUMP(tcp->tcp_connid);
4282 		/*
4283 		 * DTrace sending the first SYN as a
4284 		 * tcp:::connect-request event.
4285 		 */
4286 		DTRACE_TCP5(connect__request, mblk_t *, NULL,
4287 		    ip_xmit_attr_t *, connp->conn_ixa,
4288 		    void_ip_t *, syn_mp->b_rptr, tcp_t *, tcp,
4289 		    tcph_t *,
4290 		    &syn_mp->b_rptr[connp->conn_ixa->ixa_ip_hdr_length]);
4291 		tcp_send_data(tcp, syn_mp);
4292 	}
4293 
4294 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4295 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4296 	return (0);
4297 
4298 connect_failed:
4299 	connp->conn_faddr_v6 = ipv6_all_zeros;
4300 	connp->conn_fport = 0;
4301 	tcp->tcp_state = oldstate;
4302 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4303 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4304 	return (error);
4305 }
4306 
4307 int
4308 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len,
4309     int backlog, cred_t *cr, boolean_t bind_to_req_port_only)
4310 {
4311 	tcp_t		*tcp = connp->conn_tcp;
4312 	int		error = 0;
4313 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4314 	int32_t		oldstate;
4315 
4316 	/* All Solaris components should pass a cred for this operation. */
4317 	ASSERT(cr != NULL);
4318 
4319 	if (tcp->tcp_state >= TCPS_BOUND) {
4320 		if ((tcp->tcp_state == TCPS_BOUND ||
4321 		    tcp->tcp_state == TCPS_LISTEN) && backlog > 0) {
4322 			/*
4323 			 * Handle listen() increasing backlog.
4324 			 * This is more "liberal" then what the TPI spec
4325 			 * requires but is needed to avoid a t_unbind
4326 			 * when handling listen() since the port number
4327 			 * might be "stolen" between the unbind and bind.
4328 			 */
4329 			goto do_listen;
4330 		}
4331 		if (connp->conn_debug) {
4332 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
4333 			    "tcp_listen: bad state, %d", tcp->tcp_state);
4334 		}
4335 		return (-TOUTSTATE);
4336 	} else {
4337 		if (sa == NULL) {
4338 			sin6_t	addr;
4339 			sin_t *sin;
4340 			sin6_t *sin6;
4341 
4342 			ASSERT(IPCL_IS_NONSTR(connp));
4343 			/* Do an implicit bind: Request for a generic port. */
4344 			if (connp->conn_family == AF_INET) {
4345 				len = sizeof (sin_t);
4346 				sin = (sin_t *)&addr;
4347 				*sin = sin_null;
4348 				sin->sin_family = AF_INET;
4349 			} else {
4350 				ASSERT(connp->conn_family == AF_INET6);
4351 				len = sizeof (sin6_t);
4352 				sin6 = (sin6_t *)&addr;
4353 				*sin6 = sin6_null;
4354 				sin6->sin6_family = AF_INET6;
4355 			}
4356 			sa = (struct sockaddr *)&addr;
4357 		}
4358 
4359 		error = tcp_bind_check(connp, sa, len, cr,
4360 		    bind_to_req_port_only);
4361 		if (error)
4362 			return (error);
4363 		/* Fall through and do the fanout insertion */
4364 	}
4365 
4366 do_listen:
4367 	ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN);
4368 	tcp->tcp_conn_req_max = backlog;
4369 	if (tcp->tcp_conn_req_max) {
4370 		if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min)
4371 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_min;
4372 		if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q)
4373 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q;
4374 		/*
4375 		 * If this is a listener, do not reset the eager list
4376 		 * and other stuffs.  Note that we don't check if the
4377 		 * existing eager list meets the new tcp_conn_req_max
4378 		 * requirement.
4379 		 */
4380 		if (tcp->tcp_state != TCPS_LISTEN) {
4381 			tcp->tcp_state = TCPS_LISTEN;
4382 			DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4383 			    connp->conn_ixa, void, NULL, tcp_t *, tcp,
4384 			    void, NULL, int32_t, TCPS_BOUND);
4385 			/* Initialize the chain. Don't need the eager_lock */
4386 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
4387 			tcp->tcp_eager_next_drop_q0 = tcp;
4388 			tcp->tcp_eager_prev_drop_q0 = tcp;
4389 			tcp->tcp_second_ctimer_threshold =
4390 			    tcps->tcps_ip_abort_linterval;
4391 		}
4392 	}
4393 
4394 	/*
4395 	 * We need to make sure that the conn_recv is set to a non-null
4396 	 * value before we insert the conn into the classifier table.
4397 	 * This is to avoid a race with an incoming packet which does an
4398 	 * ipcl_classify().
4399 	 * We initially set it to tcp_input_listener_unbound to try to
4400 	 * pick a good squeue for the listener when the first SYN arrives.
4401 	 * tcp_input_listener_unbound sets it to tcp_input_listener on that
4402 	 * first SYN.
4403 	 */
4404 	connp->conn_recv = tcp_input_listener_unbound;
4405 
4406 	/* Insert the listener in the classifier table */
4407 	error = ip_laddr_fanout_insert(connp);
4408 	if (error != 0) {
4409 		/* Undo the bind - release the port number */
4410 		oldstate = tcp->tcp_state;
4411 		tcp->tcp_state = TCPS_IDLE;
4412 		DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4413 		    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
4414 		    int32_t, oldstate);
4415 		connp->conn_bound_addr_v6 = ipv6_all_zeros;
4416 
4417 		connp->conn_laddr_v6 = ipv6_all_zeros;
4418 		connp->conn_saddr_v6 = ipv6_all_zeros;
4419 		connp->conn_ports = 0;
4420 
4421 		if (connp->conn_anon_port) {
4422 			zone_t		*zone;
4423 
4424 			zone = crgetzone(cr);
4425 			connp->conn_anon_port = B_FALSE;
4426 			(void) tsol_mlp_anon(zone, connp->conn_mlp_type,
4427 			    connp->conn_proto, connp->conn_lport, B_FALSE);
4428 		}
4429 		connp->conn_mlp_type = mlptSingle;
4430 
4431 		tcp_bind_hash_remove(tcp);
4432 		return (error);
4433 	} else {
4434 		/*
4435 		 * If there is a connection limit, allocate and initialize
4436 		 * the counter struct.  Note that since listen can be called
4437 		 * multiple times, the struct may have been allready allocated.
4438 		 */
4439 		if (!list_is_empty(&tcps->tcps_listener_conf) &&
4440 		    tcp->tcp_listen_cnt == NULL) {
4441 			tcp_listen_cnt_t *tlc;
4442 			uint32_t ratio;
4443 
4444 			ratio = tcp_find_listener_conf(tcps,
4445 			    ntohs(connp->conn_lport));
4446 			if (ratio != 0) {
4447 				uint32_t mem_ratio, tot_buf;
4448 
4449 				tlc = kmem_alloc(sizeof (tcp_listen_cnt_t),
4450 				    KM_SLEEP);
4451 				/*
4452 				 * Calculate the connection limit based on
4453 				 * the configured ratio and maxusers.  Maxusers
4454 				 * are calculated based on memory size,
4455 				 * ~ 1 user per MB.  Note that the conn_rcvbuf
4456 				 * and conn_sndbuf may change after a
4457 				 * connection is accepted.  So what we have
4458 				 * is only an approximation.
4459 				 */
4460 				if ((tot_buf = connp->conn_rcvbuf +
4461 				    connp->conn_sndbuf) < MB) {
4462 					mem_ratio = MB / tot_buf;
4463 					tlc->tlc_max = maxusers / ratio *
4464 					    mem_ratio;
4465 				} else {
4466 					mem_ratio = tot_buf / MB;
4467 					tlc->tlc_max = maxusers / ratio /
4468 					    mem_ratio;
4469 				}
4470 				/* At least we should allow two connections! */
4471 				if (tlc->tlc_max <= tcp_min_conn_listener)
4472 					tlc->tlc_max = tcp_min_conn_listener;
4473 				tlc->tlc_cnt = 1;
4474 				tlc->tlc_drop = 0;
4475 				tcp->tcp_listen_cnt = tlc;
4476 			}
4477 		}
4478 	}
4479 	return (error);
4480 }
4481