xref: /illumos-gate/usr/src/uts/common/inet/tcp/tcp.c (revision b4128092752f04132443f3dd6bc22b84cf15cf33)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #include <sys/types.h>
29 #include <sys/stream.h>
30 #include <sys/strsun.h>
31 #include <sys/strsubr.h>
32 #include <sys/stropts.h>
33 #include <sys/strlog.h>
34 #include <sys/strsun.h>
35 #define	_SUN_TPI_VERSION 2
36 #include <sys/tihdr.h>
37 #include <sys/timod.h>
38 #include <sys/ddi.h>
39 #include <sys/sunddi.h>
40 #include <sys/suntpi.h>
41 #include <sys/xti_inet.h>
42 #include <sys/cmn_err.h>
43 #include <sys/debug.h>
44 #include <sys/sdt.h>
45 #include <sys/vtrace.h>
46 #include <sys/kmem.h>
47 #include <sys/ethernet.h>
48 #include <sys/cpuvar.h>
49 #include <sys/dlpi.h>
50 #include <sys/multidata.h>
51 #include <sys/multidata_impl.h>
52 #include <sys/pattr.h>
53 #include <sys/policy.h>
54 #include <sys/priv.h>
55 #include <sys/zone.h>
56 #include <sys/sunldi.h>
57 
58 #include <sys/errno.h>
59 #include <sys/signal.h>
60 #include <sys/socket.h>
61 #include <sys/sockio.h>
62 #include <sys/isa_defs.h>
63 #include <sys/md5.h>
64 #include <sys/random.h>
65 #include <sys/sodirect.h>
66 #include <sys/uio.h>
67 #include <sys/systm.h>
68 #include <netinet/in.h>
69 #include <netinet/tcp.h>
70 #include <netinet/ip6.h>
71 #include <netinet/icmp6.h>
72 #include <net/if.h>
73 #include <net/route.h>
74 #include <inet/ipsec_impl.h>
75 
76 #include <inet/common.h>
77 #include <inet/ip.h>
78 #include <inet/ip_impl.h>
79 #include <inet/ip6.h>
80 #include <inet/ip_ndp.h>
81 #include <inet/mi.h>
82 #include <inet/mib2.h>
83 #include <inet/nd.h>
84 #include <inet/optcom.h>
85 #include <inet/snmpcom.h>
86 #include <inet/kstatcom.h>
87 #include <inet/tcp.h>
88 #include <inet/tcp_impl.h>
89 #include <net/pfkeyv2.h>
90 #include <inet/ipsec_info.h>
91 #include <inet/ipdrop.h>
92 
93 #include <inet/ipclassifier.h>
94 #include <inet/ip_ire.h>
95 #include <inet/ip_ftable.h>
96 #include <inet/ip_if.h>
97 #include <inet/ipp_common.h>
98 #include <inet/ip_netinfo.h>
99 #include <sys/squeue.h>
100 #include <inet/kssl/ksslapi.h>
101 #include <sys/tsol/label.h>
102 #include <sys/tsol/tnet.h>
103 #include <rpc/pmap_prot.h>
104 #include <sys/callo.h>
105 
106 /*
107  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
108  *
109  * (Read the detailed design doc in PSARC case directory)
110  *
111  * The entire tcp state is contained in tcp_t and conn_t structure
112  * which are allocated in tandem using ipcl_conn_create() and passing
113  * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect
114  * the references on the tcp_t. The tcp_t structure is never compressed
115  * and packets always land on the correct TCP perimeter from the time
116  * eager is created till the time tcp_t dies (as such the old mentat
117  * TCP global queue is not used for detached state and no IPSEC checking
118  * is required). The global queue is still allocated to send out resets
119  * for connection which have no listeners and IP directly calls
120  * tcp_xmit_listeners_reset() which does any policy check.
121  *
122  * Protection and Synchronisation mechanism:
123  *
124  * The tcp data structure does not use any kind of lock for protecting
125  * its state but instead uses 'squeues' for mutual exclusion from various
126  * read and write side threads. To access a tcp member, the thread should
127  * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or
128  * squeue_fill). Since the squeues allow a direct function call, caller
129  * can pass any tcp function having prototype of edesc_t as argument
130  * (different from traditional STREAMs model where packets come in only
131  * designated entry points). The list of functions that can be directly
132  * called via squeue are listed before the usual function prototype.
133  *
134  * Referencing:
135  *
136  * TCP is MT-Hot and we use a reference based scheme to make sure that the
137  * tcp structure doesn't disappear when its needed. When the application
138  * creates an outgoing connection or accepts an incoming connection, we
139  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
140  * The IP reference is just a symbolic reference since ip_tcpclose()
141  * looks at tcp structure after tcp_close_output() returns which could
142  * have dropped the last TCP reference. So as long as the connection is
143  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
144  * conn_t. The classifier puts its own reference when the connection is
145  * inserted in listen or connected hash. Anytime a thread needs to enter
146  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
147  * on write side or by doing a classify on read side and then puts a
148  * reference on the conn before doing squeue_enter/tryenter/fill. For
149  * read side, the classifier itself puts the reference under fanout lock
150  * to make sure that tcp can't disappear before it gets processed. The
151  * squeue will drop this reference automatically so the called function
152  * doesn't have to do a DEC_REF.
153  *
154  * Opening a new connection:
155  *
156  * The outgoing connection open is pretty simple. tcp_open() does the
157  * work in creating the conn/tcp structure and initializing it. The
158  * squeue assignment is done based on the CPU the application
159  * is running on. So for outbound connections, processing is always done
160  * on application CPU which might be different from the incoming CPU
161  * being interrupted by the NIC. An optimal way would be to figure out
162  * the NIC <-> CPU binding at listen time, and assign the outgoing
163  * connection to the squeue attached to the CPU that will be interrupted
164  * for incoming packets (we know the NIC based on the bind IP address).
165  * This might seem like a problem if more data is going out but the
166  * fact is that in most cases the transmit is ACK driven transmit where
167  * the outgoing data normally sits on TCP's xmit queue waiting to be
168  * transmitted.
169  *
170  * Accepting a connection:
171  *
172  * This is a more interesting case because of various races involved in
173  * establishing a eager in its own perimeter. Read the meta comment on
174  * top of tcp_conn_request(). But briefly, the squeue is picked by
175  * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU.
176  *
177  * Closing a connection:
178  *
179  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
180  * via squeue to do the close and mark the tcp as detached if the connection
181  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
182  * reference but tcp_close() drop IP's reference always. So if tcp was
183  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
184  * and 1 because it is in classifier's connected hash. This is the condition
185  * we use to determine that its OK to clean up the tcp outside of squeue
186  * when time wait expires (check the ref under fanout and conn_lock and
187  * if it is 2, remove it from fanout hash and kill it).
188  *
189  * Although close just drops the necessary references and marks the
190  * tcp_detached state, tcp_close needs to know the tcp_detached has been
191  * set (under squeue) before letting the STREAM go away (because a
192  * inbound packet might attempt to go up the STREAM while the close
193  * has happened and tcp_detached is not set). So a special lock and
194  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
195  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
196  * tcp_detached.
197  *
198  * Special provisions and fast paths:
199  *
200  * We make special provision for (AF_INET, SOCK_STREAM) sockets which
201  * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP
202  * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles
203  * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY
204  * check to send packets directly to tcp_rput_data via squeue. Everyone
205  * else comes through tcp_input() on the read side.
206  *
207  * We also make special provisions for sockfs by marking tcp_issocket
208  * whenever we have only sockfs on top of TCP. This allows us to skip
209  * putting the tcp in acceptor hash since a sockfs listener can never
210  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
211  * since eager has already been allocated and the accept now happens
212  * on acceptor STREAM. There is a big blob of comment on top of
213  * tcp_conn_request explaining the new accept. When socket is POP'd,
214  * sockfs sends us an ioctl to mark the fact and we go back to old
215  * behaviour. Once tcp_issocket is unset, its never set for the
216  * life of that connection.
217  *
218  * In support of on-board asynchronous DMA hardware (e.g. Intel I/OAT)
219  * two consoldiation private KAPIs are used to enqueue M_DATA mblk_t's
220  * directly to the socket (sodirect) and start an asynchronous copyout
221  * to a user-land receive-side buffer (uioa) when a blocking socket read
222  * (e.g. read, recv, ...) is pending.
223  *
224  * This is accomplished when tcp_issocket is set and tcp_sodirect is not
225  * NULL so points to an sodirect_t and if marked enabled then we enqueue
226  * all mblk_t's directly to the socket.
227  *
228  * Further, if the sodirect_t sod_uioa and if marked enabled (due to a
229  * blocking socket read, e.g. user-land read, recv, ...) then an asynchronous
230  * copyout will be started directly to the user-land uio buffer. Also, as we
231  * have a pending read, TCP's push logic can take into account the number of
232  * bytes to be received and only awake the blocked read()er when the uioa_t
233  * byte count has been satisfied.
234  *
235  * IPsec notes :
236  *
237  * Since a packet is always executed on the correct TCP perimeter
238  * all IPsec processing is defered to IP including checking new
239  * connections and setting IPSEC policies for new connection. The
240  * only exception is tcp_xmit_listeners_reset() which is called
241  * directly from IP and needs to policy check to see if TH_RST
242  * can be sent out.
243  *
244  * PFHooks notes :
245  *
246  * For mdt case, one meta buffer contains multiple packets. Mblks for every
247  * packet are assembled and passed to the hooks. When packets are blocked,
248  * or boundary of any packet is changed, the mdt processing is stopped, and
249  * packets of the meta buffer are send to the IP path one by one.
250  */
251 
252 /*
253  * Values for squeue switch:
254  * 1: squeue_enter_nodrain
255  * 2: squeue_enter
256  * 3: squeue_fill
257  */
258 int tcp_squeue_close = 2;	/* Setable in /etc/system */
259 int tcp_squeue_wput = 2;
260 
261 squeue_func_t tcp_squeue_close_proc;
262 squeue_func_t tcp_squeue_wput_proc;
263 
264 /*
265  * Macros for sodirect:
266  *
267  * SOD_PTR_ENTER(tcp, sodp) - for the tcp_t pointer "tcp" set the
268  * sodirect_t pointer "sodp" to the socket/tcp shared sodirect_t
269  * if it exists and is enabled, else to NULL. Note, in the current
270  * sodirect implementation the sod_lockp must not be held across any
271  * STREAMS call (e.g. putnext) else a "recursive mutex_enter" PANIC
272  * will result as sod_lockp is the streamhead stdata.sd_lock.
273  *
274  * SOD_NOT_ENABLED(tcp) - return true if not a sodirect tcp_t or the
275  * sodirect_t isn't enabled, usefull for ASSERT()ing that a recieve
276  * side tcp code path dealing with a tcp_rcv_list or putnext() isn't
277  * being used when sodirect code paths should be.
278  */
279 
280 #define	SOD_PTR_ENTER(tcp, sodp)					\
281 	(sodp) = (tcp)->tcp_sodirect;					\
282 									\
283 	if ((sodp) != NULL) {						\
284 		mutex_enter((sodp)->sod_lockp);				\
285 		if (!((sodp)->sod_state & SOD_ENABLED)) {		\
286 			mutex_exit((sodp)->sod_lockp);			\
287 			(sodp) = NULL;					\
288 		}							\
289 	}
290 
291 #define	SOD_NOT_ENABLED(tcp)						\
292 	((tcp)->tcp_sodirect == NULL ||					\
293 	    !((tcp)->tcp_sodirect->sod_state & SOD_ENABLED))
294 
295 /*
296  * This controls how tiny a write must be before we try to copy it
297  * into the the mblk on the tail of the transmit queue.  Not much
298  * speedup is observed for values larger than sixteen.  Zero will
299  * disable the optimisation.
300  */
301 int tcp_tx_pull_len = 16;
302 
303 /*
304  * TCP Statistics.
305  *
306  * How TCP statistics work.
307  *
308  * There are two types of statistics invoked by two macros.
309  *
310  * TCP_STAT(name) does non-atomic increment of a named stat counter. It is
311  * supposed to be used in non MT-hot paths of the code.
312  *
313  * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is
314  * supposed to be used for DEBUG purposes and may be used on a hot path.
315  *
316  * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat
317  * (use "kstat tcp" to get them).
318  *
319  * There is also additional debugging facility that marks tcp_clean_death()
320  * instances and saves them in tcp_t structure. It is triggered by
321  * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for
322  * tcp_clean_death() calls that counts the number of times each tag was hit. It
323  * is triggered by TCP_CLD_COUNTERS define.
324  *
325  * How to add new counters.
326  *
327  * 1) Add a field in the tcp_stat structure describing your counter.
328  * 2) Add a line in the template in tcp_kstat2_init() with the name
329  *    of the counter.
330  *
331  *    IMPORTANT!! - make sure that both are in sync !!
332  * 3) Use either TCP_STAT or TCP_DBGSTAT with the name.
333  *
334  * Please avoid using private counters which are not kstat-exported.
335  *
336  * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances
337  * in tcp_t structure.
338  *
339  * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags.
340  */
341 
342 #ifndef TCP_DEBUG_COUNTER
343 #ifdef DEBUG
344 #define	TCP_DEBUG_COUNTER 1
345 #else
346 #define	TCP_DEBUG_COUNTER 0
347 #endif
348 #endif
349 
350 #define	TCP_CLD_COUNTERS 0
351 
352 #define	TCP_TAG_CLEAN_DEATH 1
353 #define	TCP_MAX_CLEAN_DEATH_TAG 32
354 
355 #ifdef lint
356 static int _lint_dummy_;
357 #endif
358 
359 #if TCP_CLD_COUNTERS
360 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG];
361 #define	TCP_CLD_STAT(x) tcp_clean_death_stat[x]++
362 #elif defined(lint)
363 #define	TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0);
364 #else
365 #define	TCP_CLD_STAT(x)
366 #endif
367 
368 #if TCP_DEBUG_COUNTER
369 #define	TCP_DBGSTAT(tcps, x)	\
370 	atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1)
371 #define	TCP_G_DBGSTAT(x)	\
372 	atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1)
373 #elif defined(lint)
374 #define	TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0);
375 #define	TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0);
376 #else
377 #define	TCP_DBGSTAT(tcps, x)
378 #define	TCP_G_DBGSTAT(x)
379 #endif
380 
381 #define	TCP_G_STAT(x)	(tcp_g_statistics.x.value.ui64++)
382 
383 tcp_g_stat_t	tcp_g_statistics;
384 kstat_t		*tcp_g_kstat;
385 
386 /*
387  * Call either ip_output or ip_output_v6. This replaces putnext() calls on the
388  * tcp write side.
389  */
390 #define	CALL_IP_WPUT(connp, q, mp) {					\
391 	tcp_stack_t	*tcps;						\
392 									\
393 	tcps = connp->conn_netstack->netstack_tcp;			\
394 	ASSERT(((q)->q_flag & QREADR) == 0);				\
395 	TCP_DBGSTAT(tcps, tcp_ip_output);				\
396 	connp->conn_send(connp, (mp), (q), IP_WPUT);			\
397 }
398 
399 /* Macros for timestamp comparisons */
400 #define	TSTMP_GEQ(a, b)	((int32_t)((a)-(b)) >= 0)
401 #define	TSTMP_LT(a, b)	((int32_t)((a)-(b)) < 0)
402 
403 /*
404  * Parameters for TCP Initial Send Sequence number (ISS) generation.  When
405  * tcp_strong_iss is set to 1, which is the default, the ISS is calculated
406  * by adding three components: a time component which grows by 1 every 4096
407  * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27);
408  * a per-connection component which grows by 125000 for every new connection;
409  * and an "extra" component that grows by a random amount centered
410  * approximately on 64000.  This causes the the ISS generator to cycle every
411  * 4.89 hours if no TCP connections are made, and faster if connections are
412  * made.
413  *
414  * When tcp_strong_iss is set to 0, ISS is calculated by adding two
415  * components: a time component which grows by 250000 every second; and
416  * a per-connection component which grows by 125000 for every new connections.
417  *
418  * A third method, when tcp_strong_iss is set to 2, for generating ISS is
419  * prescribed by Steve Bellovin.  This involves adding time, the 125000 per
420  * connection, and a one-way hash (MD5) of the connection ID <sport, dport,
421  * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered
422  * password.
423  */
424 #define	ISS_INCR	250000
425 #define	ISS_NSEC_SHT	12
426 
427 static sin_t	sin_null;	/* Zero address for quick clears */
428 static sin6_t	sin6_null;	/* Zero address for quick clears */
429 
430 /*
431  * This implementation follows the 4.3BSD interpretation of the urgent
432  * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause
433  * incompatible changes in protocols like telnet and rlogin.
434  */
435 #define	TCP_OLD_URP_INTERPRETATION	1
436 
437 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
438 	(TCP_IS_DETACHED(tcp) && \
439 	    (!(tcp)->tcp_hard_binding))
440 
441 /*
442  * TCP reassembly macros.  We hide starting and ending sequence numbers in
443  * b_next and b_prev of messages on the reassembly queue.  The messages are
444  * chained using b_cont.  These macros are used in tcp_reass() so we don't
445  * have to see the ugly casts and assignments.
446  */
447 #define	TCP_REASS_SEQ(mp)		((uint32_t)(uintptr_t)((mp)->b_next))
448 #define	TCP_REASS_SET_SEQ(mp, u)	((mp)->b_next = \
449 					(mblk_t *)(uintptr_t)(u))
450 #define	TCP_REASS_END(mp)		((uint32_t)(uintptr_t)((mp)->b_prev))
451 #define	TCP_REASS_SET_END(mp, u)	((mp)->b_prev = \
452 					(mblk_t *)(uintptr_t)(u))
453 
454 /*
455  * Implementation of TCP Timers.
456  * =============================
457  *
458  * INTERFACE:
459  *
460  * There are two basic functions dealing with tcp timers:
461  *
462  *	timeout_id_t	tcp_timeout(connp, func, time)
463  * 	clock_t		tcp_timeout_cancel(connp, timeout_id)
464  *	TCP_TIMER_RESTART(tcp, intvl)
465  *
466  * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func'
467  * after 'time' ticks passed. The function called by timeout() must adhere to
468  * the same restrictions as a driver soft interrupt handler - it must not sleep
469  * or call other functions that might sleep. The value returned is the opaque
470  * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to
471  * cancel the request. The call to tcp_timeout() may fail in which case it
472  * returns zero. This is different from the timeout(9F) function which never
473  * fails.
474  *
475  * The call-back function 'func' always receives 'connp' as its single
476  * argument. It is always executed in the squeue corresponding to the tcp
477  * structure. The tcp structure is guaranteed to be present at the time the
478  * call-back is called.
479  *
480  * NOTE: The call-back function 'func' is never called if tcp is in
481  * 	the TCPS_CLOSED state.
482  *
483  * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout()
484  * request. locks acquired by the call-back routine should not be held across
485  * the call to tcp_timeout_cancel() or a deadlock may result.
486  *
487  * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request.
488  * Otherwise, it returns an integer value greater than or equal to 0. In
489  * particular, if the call-back function is already placed on the squeue, it can
490  * not be canceled.
491  *
492  * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called
493  * 	within squeue context corresponding to the tcp instance. Since the
494  *	call-back is also called via the same squeue, there are no race
495  *	conditions described in untimeout(9F) manual page since all calls are
496  *	strictly serialized.
497  *
498  *      TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout
499  *	stored in tcp_timer_tid and starts a new one using
500  *	MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back
501  *	and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid
502  *	field.
503  *
504  * NOTE: since the timeout cancellation is not guaranteed, the cancelled
505  *	call-back may still be called, so it is possible tcp_timer() will be
506  *	called several times. This should not be a problem since tcp_timer()
507  *	should always check the tcp instance state.
508  *
509  *
510  * IMPLEMENTATION:
511  *
512  * TCP timers are implemented using three-stage process. The call to
513  * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function
514  * when the timer expires. The tcp_timer_callback() arranges the call of the
515  * tcp_timer_handler() function via squeue corresponding to the tcp
516  * instance. The tcp_timer_handler() calls actual requested timeout call-back
517  * and passes tcp instance as an argument to it. Information is passed between
518  * stages using the tcp_timer_t structure which contains the connp pointer, the
519  * tcp call-back to call and the timeout id returned by the timeout(9F).
520  *
521  * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t -
522  * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo
523  * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout()
524  * returns the pointer to this mblk.
525  *
526  * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It
527  * looks like a normal mblk without actual dblk attached to it.
528  *
529  * To optimize performance each tcp instance holds a small cache of timer
530  * mblocks. In the current implementation it caches up to two timer mblocks per
531  * tcp instance. The cache is preserved over tcp frees and is only freed when
532  * the whole tcp structure is destroyed by its kmem destructor. Since all tcp
533  * timer processing happens on a corresponding squeue, the cache manipulation
534  * does not require any locks. Experiments show that majority of timer mblocks
535  * allocations are satisfied from the tcp cache and do not involve kmem calls.
536  *
537  * The tcp_timeout() places a refhold on the connp instance which guarantees
538  * that it will be present at the time the call-back function fires. The
539  * tcp_timer_handler() drops the reference after calling the call-back, so the
540  * call-back function does not need to manipulate the references explicitly.
541  */
542 
543 typedef struct tcp_timer_s {
544 	conn_t	*connp;
545 	void 	(*tcpt_proc)(void *);
546 	callout_id_t   tcpt_tid;
547 } tcp_timer_t;
548 
549 static kmem_cache_t *tcp_timercache;
550 kmem_cache_t	*tcp_sack_info_cache;
551 kmem_cache_t	*tcp_iphc_cache;
552 
553 /*
554  * For scalability, we must not run a timer for every TCP connection
555  * in TIME_WAIT state.  To see why, consider (for time wait interval of
556  * 4 minutes):
557  *	1000 connections/sec * 240 seconds/time wait = 240,000 active conn's
558  *
559  * This list is ordered by time, so you need only delete from the head
560  * until you get to entries which aren't old enough to delete yet.
561  * The list consists of only the detached TIME_WAIT connections.
562  *
563  * Note that the timer (tcp_time_wait_expire) is started when the tcp_t
564  * becomes detached TIME_WAIT (either by changing the state and already
565  * being detached or the other way around). This means that the TIME_WAIT
566  * state can be extended (up to doubled) if the connection doesn't become
567  * detached for a long time.
568  *
569  * The list manipulations (including tcp_time_wait_next/prev)
570  * are protected by the tcp_time_wait_lock. The content of the
571  * detached TIME_WAIT connections is protected by the normal perimeters.
572  *
573  * This list is per squeue and squeues are shared across the tcp_stack_t's.
574  * Things on tcp_time_wait_head remain associated with the tcp_stack_t
575  * and conn_netstack.
576  * The tcp_t's that are added to tcp_free_list are disassociated and
577  * have NULL tcp_tcps and conn_netstack pointers.
578  */
579 typedef struct tcp_squeue_priv_s {
580 	kmutex_t	tcp_time_wait_lock;
581 	callout_id_t	tcp_time_wait_tid;
582 	tcp_t		*tcp_time_wait_head;
583 	tcp_t		*tcp_time_wait_tail;
584 	tcp_t		*tcp_free_list;
585 	uint_t		tcp_free_list_cnt;
586 } tcp_squeue_priv_t;
587 
588 /*
589  * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs.
590  * Running it every 5 seconds seems to give the best results.
591  */
592 #define	TCP_TIME_WAIT_DELAY drv_usectohz(5000000)
593 
594 /*
595  * To prevent memory hog, limit the number of entries in tcp_free_list
596  * to 1% of available memory / number of cpus
597  */
598 uint_t tcp_free_list_max_cnt = 0;
599 
600 #define	TCP_XMIT_LOWATER	4096
601 #define	TCP_XMIT_HIWATER	49152
602 #define	TCP_RECV_LOWATER	2048
603 #define	TCP_RECV_HIWATER	49152
604 
605 /*
606  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
607  */
608 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
609 
610 #define	TIDUSZ	4096	/* transport interface data unit size */
611 
612 /*
613  * Bind hash list size and has function.  It has to be a power of 2 for
614  * hashing.
615  */
616 #define	TCP_BIND_FANOUT_SIZE	512
617 #define	TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1))
618 /*
619  * Size of listen and acceptor hash list.  It has to be a power of 2 for
620  * hashing.
621  */
622 #define	TCP_FANOUT_SIZE		256
623 
624 #ifdef	_ILP32
625 #define	TCP_ACCEPTOR_HASH(accid)					\
626 		(((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1))
627 #else
628 #define	TCP_ACCEPTOR_HASH(accid)					\
629 		((uint_t)(accid) & (TCP_FANOUT_SIZE - 1))
630 #endif	/* _ILP32 */
631 
632 #define	IP_ADDR_CACHE_SIZE	2048
633 #define	IP_ADDR_CACHE_HASH(faddr)					\
634 	(ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1))
635 
636 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */
637 #define	TCP_HSP_HASH_SIZE 256
638 
639 #define	TCP_HSP_HASH(addr)					\
640 	(((addr>>24) ^ (addr >>16) ^			\
641 	    (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE)
642 
643 /*
644  * TCP options struct returned from tcp_parse_options.
645  */
646 typedef struct tcp_opt_s {
647 	uint32_t	tcp_opt_mss;
648 	uint32_t	tcp_opt_wscale;
649 	uint32_t	tcp_opt_ts_val;
650 	uint32_t	tcp_opt_ts_ecr;
651 	tcp_t		*tcp;
652 } tcp_opt_t;
653 
654 /*
655  * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
656  */
657 
658 #ifdef _BIG_ENDIAN
659 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
660 	(TCPOPT_TSTAMP << 8) | 10)
661 #else
662 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
663 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
664 #endif
665 
666 /*
667  * Flags returned from tcp_parse_options.
668  */
669 #define	TCP_OPT_MSS_PRESENT	1
670 #define	TCP_OPT_WSCALE_PRESENT	2
671 #define	TCP_OPT_TSTAMP_PRESENT	4
672 #define	TCP_OPT_SACK_OK_PRESENT	8
673 #define	TCP_OPT_SACK_PRESENT	16
674 
675 /* TCP option length */
676 #define	TCPOPT_NOP_LEN		1
677 #define	TCPOPT_MAXSEG_LEN	4
678 #define	TCPOPT_WS_LEN		3
679 #define	TCPOPT_REAL_WS_LEN	(TCPOPT_WS_LEN+1)
680 #define	TCPOPT_TSTAMP_LEN	10
681 #define	TCPOPT_REAL_TS_LEN	(TCPOPT_TSTAMP_LEN+2)
682 #define	TCPOPT_SACK_OK_LEN	2
683 #define	TCPOPT_REAL_SACK_OK_LEN	(TCPOPT_SACK_OK_LEN+2)
684 #define	TCPOPT_REAL_SACK_LEN	4
685 #define	TCPOPT_MAX_SACK_LEN	36
686 #define	TCPOPT_HEADER_LEN	2
687 
688 /* TCP cwnd burst factor. */
689 #define	TCP_CWND_INFINITE	65535
690 #define	TCP_CWND_SS		3
691 #define	TCP_CWND_NORMAL		5
692 
693 /* Maximum TCP initial cwin (start/restart). */
694 #define	TCP_MAX_INIT_CWND	8
695 
696 /*
697  * Initialize cwnd according to RFC 3390.  def_max_init_cwnd is
698  * either tcp_slow_start_initial or tcp_slow_start_after idle
699  * depending on the caller.  If the upper layer has not used the
700  * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd
701  * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd.
702  * If the upper layer has changed set the tcp_init_cwnd, just use
703  * it to calculate the tcp_cwnd.
704  */
705 #define	SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd)			\
706 {									\
707 	if ((tcp)->tcp_init_cwnd == 0) {				\
708 		(tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss),	\
709 		    MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \
710 	} else {							\
711 		(tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss);		\
712 	}								\
713 	tcp->tcp_cwnd_cnt = 0;						\
714 }
715 
716 /* TCP Timer control structure */
717 typedef struct tcpt_s {
718 	pfv_t	tcpt_pfv;	/* The routine we are to call */
719 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
720 } tcpt_t;
721 
722 /* Host Specific Parameter structure */
723 typedef struct tcp_hsp {
724 	struct tcp_hsp	*tcp_hsp_next;
725 	in6_addr_t	tcp_hsp_addr_v6;
726 	in6_addr_t	tcp_hsp_subnet_v6;
727 	uint_t		tcp_hsp_vers;	/* IPV4_VERSION | IPV6_VERSION */
728 	int32_t		tcp_hsp_sendspace;
729 	int32_t		tcp_hsp_recvspace;
730 	int32_t		tcp_hsp_tstamp;
731 } tcp_hsp_t;
732 #define	tcp_hsp_addr	V4_PART_OF_V6(tcp_hsp_addr_v6)
733 #define	tcp_hsp_subnet	V4_PART_OF_V6(tcp_hsp_subnet_v6)
734 
735 /*
736  * Functions called directly via squeue having a prototype of edesc_t.
737  */
738 void		tcp_conn_request(void *arg, mblk_t *mp, void *arg2);
739 static void	tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2);
740 void		tcp_accept_finish(void *arg, mblk_t *mp, void *arg2);
741 static void	tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2);
742 static void	tcp_wput_proto(void *arg, mblk_t *mp, void *arg2);
743 void 		tcp_input(void *arg, mblk_t *mp, void *arg2);
744 void		tcp_rput_data(void *arg, mblk_t *mp, void *arg2);
745 static void	tcp_close_output(void *arg, mblk_t *mp, void *arg2);
746 void		tcp_output(void *arg, mblk_t *mp, void *arg2);
747 static void	tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2);
748 static void	tcp_timer_handler(void *arg, mblk_t *mp, void *arg2);
749 static void	tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2);
750 
751 
752 /* Prototype for TCP functions */
753 static void	tcp_random_init(void);
754 int		tcp_random(void);
755 static void	tcp_accept(tcp_t *tcp, mblk_t *mp);
756 static void	tcp_accept_swap(tcp_t *listener, tcp_t *acceptor,
757 		    tcp_t *eager);
758 static int	tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp);
759 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
760     int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only,
761     boolean_t user_specified);
762 static void	tcp_closei_local(tcp_t *tcp);
763 static void	tcp_close_detached(tcp_t *tcp);
764 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph,
765 			mblk_t *idmp, mblk_t **defermp);
766 static void	tcp_connect(tcp_t *tcp, mblk_t *mp);
767 static void	tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp,
768 		    in_port_t dstport, uint_t srcid);
769 static void	tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
770 		    in_port_t dstport, uint32_t flowinfo, uint_t srcid,
771 		    uint32_t scope_id);
772 static int	tcp_clean_death(tcp_t *tcp, int err, uint8_t tag);
773 static void	tcp_def_q_set(tcp_t *tcp, mblk_t *mp);
774 static void	tcp_disconnect(tcp_t *tcp, mblk_t *mp);
775 static char	*tcp_display(tcp_t *tcp, char *, char);
776 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum);
777 static void	tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only);
778 static void	tcp_eager_unlink(tcp_t *tcp);
779 static void	tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr,
780 		    int unixerr);
781 static void	tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
782 		    int tlierr, int unixerr);
783 static int	tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
784 		    cred_t *cr);
785 static int	tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
786 		    char *value, caddr_t cp, cred_t *cr);
787 static int	tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
788 		    char *value, caddr_t cp, cred_t *cr);
789 static int	tcp_tpistate(tcp_t *tcp);
790 static void	tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp,
791     int caller_holds_lock);
792 static void	tcp_bind_hash_remove(tcp_t *tcp);
793 static tcp_t	*tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *);
794 void		tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp);
795 static void	tcp_acceptor_hash_remove(tcp_t *tcp);
796 static void	tcp_capability_req(tcp_t *tcp, mblk_t *mp);
797 static void	tcp_info_req(tcp_t *tcp, mblk_t *mp);
798 static void	tcp_addr_req(tcp_t *tcp, mblk_t *mp);
799 static void	tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp);
800 void		tcp_g_q_setup(tcp_stack_t *);
801 void		tcp_g_q_create(tcp_stack_t *);
802 void		tcp_g_q_destroy(tcp_stack_t *);
803 static int	tcp_header_init_ipv4(tcp_t *tcp);
804 static int	tcp_header_init_ipv6(tcp_t *tcp);
805 int		tcp_init(tcp_t *tcp, queue_t *q);
806 static int	tcp_init_values(tcp_t *tcp);
807 static mblk_t	*tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic);
808 static mblk_t	*tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim,
809 		    t_scalar_t addr_length);
810 static void	tcp_ip_ire_mark_advice(tcp_t *tcp);
811 static void	tcp_ip_notify(tcp_t *tcp);
812 static mblk_t	*tcp_ire_mp(mblk_t *mp);
813 static void	tcp_iss_init(tcp_t *tcp);
814 static void	tcp_keepalive_killer(void *arg);
815 static int	tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt);
816 static void	tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss);
817 static int	tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp,
818 		    int *do_disconnectp, int *t_errorp, int *sys_errorp);
819 static boolean_t tcp_allow_connopt_set(int level, int name);
820 int		tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr);
821 int		tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr);
822 int		tcp_opt_set(queue_t *q, uint_t optset_context, int level,
823 		    int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
824 		    uchar_t *outvalp, void *thisdg_attrs, cred_t *cr,
825 		    mblk_t *mblk);
826 static void	tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha);
827 static int	tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly,
828 		    uchar_t *ptr, uint_t len);
829 static int	tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
830 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt,
831     tcp_stack_t *);
832 static int	tcp_param_set(queue_t *q, mblk_t *mp, char *value,
833 		    caddr_t cp, cred_t *cr);
834 static int	tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value,
835 		    caddr_t cp, cred_t *cr);
836 static void	tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *);
837 static int	tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value,
838 		    caddr_t cp, cred_t *cr);
839 static void	tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt);
840 static mblk_t	*tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start);
841 static void	tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp);
842 static void	tcp_reinit(tcp_t *tcp);
843 static void	tcp_reinit_values(tcp_t *tcp);
844 static void	tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval,
845 		    tcp_t *thisstream, cred_t *cr);
846 
847 static uint_t	tcp_rcv_drain(queue_t *q, tcp_t *tcp);
848 static void	tcp_sack_rxmit(tcp_t *tcp, uint_t *flags);
849 static boolean_t tcp_send_rst_chk(tcp_stack_t *);
850 static void	tcp_ss_rexmit(tcp_t *tcp);
851 static mblk_t	*tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp);
852 static void	tcp_process_options(tcp_t *, tcph_t *);
853 static void	tcp_rput_common(tcp_t *tcp, mblk_t *mp);
854 static void	tcp_rsrv(queue_t *q);
855 static int	tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd);
856 static int	tcp_snmp_state(tcp_t *tcp);
857 static int	tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp,
858 		    cred_t *cr);
859 static int	tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
860 		    cred_t *cr);
861 static int	tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
862 		    cred_t *cr);
863 static int	tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
864 		    cred_t *cr);
865 static int	tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
866 		    cred_t *cr);
867 static void	tcp_timer(void *arg);
868 static void	tcp_timer_callback(void *);
869 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp,
870     boolean_t random);
871 static in_port_t tcp_get_next_priv_port(const tcp_t *);
872 static void	tcp_wput_sock(queue_t *q, mblk_t *mp);
873 void		tcp_wput_accept(queue_t *q, mblk_t *mp);
874 static void	tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent);
875 static void	tcp_wput_flush(tcp_t *tcp, mblk_t *mp);
876 static void	tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp);
877 static int	tcp_send(queue_t *q, tcp_t *tcp, const int mss,
878 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
879 		    const int num_sack_blk, int *usable, uint_t *snxt,
880 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
881 		    const int mdt_thres);
882 static int	tcp_multisend(queue_t *q, tcp_t *tcp, const int mss,
883 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
884 		    const int num_sack_blk, int *usable, uint_t *snxt,
885 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
886 		    const int mdt_thres);
887 static void	tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now,
888 		    int num_sack_blk);
889 static void	tcp_wsrv(queue_t *q);
890 static int	tcp_xmit_end(tcp_t *tcp);
891 static void	tcp_ack_timer(void *arg);
892 static mblk_t	*tcp_ack_mp(tcp_t *tcp);
893 static void	tcp_xmit_early_reset(char *str, mblk_t *mp,
894 		    uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len,
895 		    zoneid_t zoneid, tcp_stack_t *, conn_t *connp);
896 static void	tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq,
897 		    uint32_t ack, int ctl);
898 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *);
899 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr, tcp_stack_t *);
900 static int	setmaxps(queue_t *q, int maxpsz);
901 static void	tcp_set_rto(tcp_t *, time_t);
902 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *,
903 		    boolean_t, boolean_t);
904 static void	tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp,
905 		    boolean_t ipsec_mctl);
906 static mblk_t	*tcp_setsockopt_mp(int level, int cmd,
907 		    char *opt, int optlen);
908 static int	tcp_build_hdrs(queue_t *, tcp_t *);
909 static void	tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp,
910 		    uint32_t seg_seq, uint32_t seg_ack, int seg_len,
911 		    tcph_t *tcph);
912 boolean_t	tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp);
913 static mblk_t	*tcp_mdt_info_mp(mblk_t *);
914 static void	tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t);
915 static int	tcp_mdt_add_attrs(multidata_t *, const mblk_t *,
916 		    const boolean_t, const uint32_t, const uint32_t,
917 		    const uint32_t, const uint32_t, tcp_stack_t *);
918 static void	tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *,
919 		    const uint_t, const uint_t, boolean_t *);
920 static mblk_t	*tcp_lso_info_mp(mblk_t *);
921 static void	tcp_lso_update(tcp_t *, ill_lso_capab_t *);
922 static void	tcp_send_data(tcp_t *, queue_t *, mblk_t *);
923 extern mblk_t	*tcp_timermp_alloc(int);
924 extern void	tcp_timermp_free(tcp_t *);
925 static void	tcp_timer_free(tcp_t *tcp, mblk_t *mp);
926 static void	tcp_stop_lingering(tcp_t *tcp);
927 static void	tcp_close_linger_timeout(void *arg);
928 static void	*tcp_stack_init(netstackid_t stackid, netstack_t *ns);
929 static void	tcp_stack_shutdown(netstackid_t stackid, void *arg);
930 static void	tcp_stack_fini(netstackid_t stackid, void *arg);
931 static void	*tcp_g_kstat_init(tcp_g_stat_t *);
932 static void	tcp_g_kstat_fini(kstat_t *);
933 static void	*tcp_kstat_init(netstackid_t, tcp_stack_t *);
934 static void	tcp_kstat_fini(netstackid_t, kstat_t *);
935 static void	*tcp_kstat2_init(netstackid_t, tcp_stat_t *);
936 static void	tcp_kstat2_fini(netstackid_t, kstat_t *);
937 static int	tcp_kstat_update(kstat_t *kp, int rw);
938 void		tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp);
939 static int	tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
940 			tcph_t *tcph, uint_t ipvers, mblk_t *idmp);
941 static int	tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
942 			tcph_t *tcph, mblk_t *idmp);
943 static squeue_func_t tcp_squeue_switch(int);
944 
945 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t);
946 static int	tcp_openv4(queue_t *, dev_t *, int, int, cred_t *);
947 static int	tcp_openv6(queue_t *, dev_t *, int, int, cred_t *);
948 static int	tcp_close(queue_t *, int);
949 static int	tcpclose_accept(queue_t *);
950 
951 static void	tcp_squeue_add(squeue_t *);
952 static boolean_t tcp_zcopy_check(tcp_t *);
953 static void	tcp_zcopy_notify(tcp_t *);
954 static mblk_t	*tcp_zcopy_disable(tcp_t *, mblk_t *);
955 static mblk_t	*tcp_zcopy_backoff(tcp_t *, mblk_t *, int);
956 static void	tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t);
957 
958 extern void	tcp_kssl_input(tcp_t *, mblk_t *);
959 
960 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2);
961 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2);
962 
963 /*
964  * Routines related to the TCP_IOC_ABORT_CONN ioctl command.
965  *
966  * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting
967  * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure
968  * (defined in tcp.h) needs to be filled in and passed into the kernel
969  * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t
970  * structure contains the four-tuple of a TCP connection and a range of TCP
971  * states (specified by ac_start and ac_end). The use of wildcard addresses
972  * and ports is allowed. Connections with a matching four tuple and a state
973  * within the specified range will be aborted. The valid states for the
974  * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT,
975  * inclusive.
976  *
977  * An application which has its connection aborted by this ioctl will receive
978  * an error that is dependent on the connection state at the time of the abort.
979  * If the connection state is < TCPS_TIME_WAIT, an application should behave as
980  * though a RST packet has been received.  If the connection state is equal to
981  * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel
982  * and all resources associated with the connection will be freed.
983  */
984 static mblk_t	*tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *);
985 static void	tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *);
986 static void	tcp_ioctl_abort_handler(tcp_t *, mblk_t *);
987 static int	tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps);
988 static void	tcp_ioctl_abort_conn(queue_t *, mblk_t *);
989 static int	tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *,
990     boolean_t, tcp_stack_t *);
991 
992 static struct module_info tcp_rinfo =  {
993 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
994 };
995 
996 static struct module_info tcp_winfo =  {
997 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
998 };
999 
1000 /*
1001  * Entry points for TCP as a device. The normal case which supports
1002  * the TCP functionality.
1003  * We have separate open functions for the /dev/tcp and /dev/tcp6 devices.
1004  */
1005 struct qinit tcp_rinitv4 = {
1006 	NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_close, NULL, &tcp_rinfo
1007 };
1008 
1009 struct qinit tcp_rinitv6 = {
1010 	NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_close, NULL, &tcp_rinfo
1011 };
1012 
1013 struct qinit tcp_winit = {
1014 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
1015 };
1016 
1017 /* Initial entry point for TCP in socket mode. */
1018 struct qinit tcp_sock_winit = {
1019 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
1020 };
1021 
1022 /*
1023  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
1024  * an accept. Avoid allocating data structures since eager has already
1025  * been created.
1026  */
1027 struct qinit tcp_acceptor_rinit = {
1028 	NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo
1029 };
1030 
1031 struct qinit tcp_acceptor_winit = {
1032 	(pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo
1033 };
1034 
1035 /*
1036  * Entry points for TCP loopback (read side only)
1037  * The open routine is only used for reopens, thus no need to
1038  * have a separate one for tcp_openv6.
1039  */
1040 struct qinit tcp_loopback_rinit = {
1041 	(pfi_t)0, (pfi_t)tcp_rsrv, tcp_openv4, tcp_close, (pfi_t)0,
1042 	&tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD
1043 };
1044 
1045 /* For AF_INET aka /dev/tcp */
1046 struct streamtab tcpinfov4 = {
1047 	&tcp_rinitv4, &tcp_winit
1048 };
1049 
1050 /* For AF_INET6 aka /dev/tcp6 */
1051 struct streamtab tcpinfov6 = {
1052 	&tcp_rinitv6, &tcp_winit
1053 };
1054 
1055 /*
1056  * Have to ensure that tcp_g_q_close is not done by an
1057  * interrupt thread.
1058  */
1059 static taskq_t *tcp_taskq;
1060 
1061 /* Setable only in /etc/system. Move to ndd? */
1062 boolean_t tcp_icmp_source_quench = B_FALSE;
1063 
1064 /*
1065  * Following assumes TPI alignment requirements stay along 32 bit
1066  * boundaries
1067  */
1068 #define	ROUNDUP32(x) \
1069 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
1070 
1071 /* Template for response to info request. */
1072 static struct T_info_ack tcp_g_t_info_ack = {
1073 	T_INFO_ACK,		/* PRIM_type */
1074 	0,			/* TSDU_size */
1075 	T_INFINITE,		/* ETSDU_size */
1076 	T_INVALID,		/* CDATA_size */
1077 	T_INVALID,		/* DDATA_size */
1078 	sizeof (sin_t),		/* ADDR_size */
1079 	0,			/* OPT_size - not initialized here */
1080 	TIDUSZ,			/* TIDU_size */
1081 	T_COTS_ORD,		/* SERV_type */
1082 	TCPS_IDLE,		/* CURRENT_state */
1083 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1084 };
1085 
1086 static struct T_info_ack tcp_g_t_info_ack_v6 = {
1087 	T_INFO_ACK,		/* PRIM_type */
1088 	0,			/* TSDU_size */
1089 	T_INFINITE,		/* ETSDU_size */
1090 	T_INVALID,		/* CDATA_size */
1091 	T_INVALID,		/* DDATA_size */
1092 	sizeof (sin6_t),	/* ADDR_size */
1093 	0,			/* OPT_size - not initialized here */
1094 	TIDUSZ,		/* TIDU_size */
1095 	T_COTS_ORD,		/* SERV_type */
1096 	TCPS_IDLE,		/* CURRENT_state */
1097 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1098 };
1099 
1100 #define	MS	1L
1101 #define	SECONDS	(1000 * MS)
1102 #define	MINUTES	(60 * SECONDS)
1103 #define	HOURS	(60 * MINUTES)
1104 #define	DAYS	(24 * HOURS)
1105 
1106 #define	PARAM_MAX (~(uint32_t)0)
1107 
1108 /* Max size IP datagram is 64k - 1 */
1109 #define	TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t)))
1110 #define	TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t)))
1111 /* Max of the above */
1112 #define	TCP_MSS_MAX	TCP_MSS_MAX_IPV4
1113 
1114 /* Largest TCP port number */
1115 #define	TCP_MAX_PORT	(64 * 1024 - 1)
1116 
1117 /*
1118  * tcp_wroff_xtra is the extra space in front of TCP/IP header for link
1119  * layer header.  It has to be a multiple of 4.
1120  */
1121 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" };
1122 #define	tcps_wroff_xtra	tcps_wroff_xtra_param->tcp_param_val
1123 
1124 /*
1125  * All of these are alterable, within the min/max values given, at run time.
1126  * Note that the default value of "tcp_time_wait_interval" is four minutes,
1127  * per the TCP spec.
1128  */
1129 /* BEGIN CSTYLED */
1130 static tcpparam_t	lcl_tcp_param_arr[] = {
1131  /*min		max		value		name */
1132  { 1*SECONDS,	10*MINUTES,	1*MINUTES,	"tcp_time_wait_interval"},
1133  { 1,		PARAM_MAX,	128,		"tcp_conn_req_max_q" },
1134  { 0,		PARAM_MAX,	1024,		"tcp_conn_req_max_q0" },
1135  { 1,		1024,		1,		"tcp_conn_req_min" },
1136  { 0*MS,	20*SECONDS,	0*MS,		"tcp_conn_grace_period" },
1137  { 128,		(1<<30),	1024*1024,	"tcp_cwnd_max" },
1138  { 0,		10,		0,		"tcp_debug" },
1139  { 1024,	(32*1024),	1024,		"tcp_smallest_nonpriv_port"},
1140  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_cinterval"},
1141  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_linterval"},
1142  { 500*MS,	PARAM_MAX,	8*MINUTES,	"tcp_ip_abort_interval"},
1143  { 1*SECONDS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_cinterval"},
1144  { 500*MS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_interval"},
1145  { 1,		255,		64,		"tcp_ipv4_ttl"},
1146  { 10*SECONDS,	10*DAYS,	2*HOURS,	"tcp_keepalive_interval"},
1147  { 0,		100,		10,		"tcp_maxpsz_multiplier" },
1148  { 1,		TCP_MSS_MAX_IPV4, 536,		"tcp_mss_def_ipv4"},
1149  { 1,		TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"},
1150  { 1,		TCP_MSS_MAX,	108,		"tcp_mss_min"},
1151  { 1,		(64*1024)-1,	(4*1024)-1,	"tcp_naglim_def"},
1152  { 1*MS,	20*SECONDS,	3*SECONDS,	"tcp_rexmit_interval_initial"},
1153  { 1*MS,	2*HOURS,	60*SECONDS,	"tcp_rexmit_interval_max"},
1154  { 1*MS,	2*HOURS,	400*MS,		"tcp_rexmit_interval_min"},
1155  { 1*MS,	1*MINUTES,	100*MS,		"tcp_deferred_ack_interval" },
1156  { 0,		16,		0,		"tcp_snd_lowat_fraction" },
1157  { 0,		128000,		0,		"tcp_sth_rcv_hiwat" },
1158  { 0,		128000,		0,		"tcp_sth_rcv_lowat" },
1159  { 1,		10000,		3,		"tcp_dupack_fast_retransmit" },
1160  { 0,		1,		0,		"tcp_ignore_path_mtu" },
1161  { 1024,	TCP_MAX_PORT,	32*1024,	"tcp_smallest_anon_port"},
1162  { 1024,	TCP_MAX_PORT,	TCP_MAX_PORT,	"tcp_largest_anon_port"},
1163  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"},
1164  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"},
1165  { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"},
1166  { 1,		65536,		4,		"tcp_recv_hiwat_minmss"},
1167  { 1*SECONDS,	PARAM_MAX,	675*SECONDS,	"tcp_fin_wait_2_flush_interval"},
1168  { 8192,	(1<<30),	1024*1024,	"tcp_max_buf"},
1169 /*
1170  * Question:  What default value should I set for tcp_strong_iss?
1171  */
1172  { 0,		2,		1,		"tcp_strong_iss"},
1173  { 0,		65536,		20,		"tcp_rtt_updates"},
1174  { 0,		1,		1,		"tcp_wscale_always"},
1175  { 0,		1,		0,		"tcp_tstamp_always"},
1176  { 0,		1,		1,		"tcp_tstamp_if_wscale"},
1177  { 0*MS,	2*HOURS,	0*MS,		"tcp_rexmit_interval_extra"},
1178  { 0,		16,		2,		"tcp_deferred_acks_max"},
1179  { 1,		16384,		4,		"tcp_slow_start_after_idle"},
1180  { 1,		4,		4,		"tcp_slow_start_initial"},
1181  { 0,		2,		2,		"tcp_sack_permitted"},
1182  { 0,		1,		1,		"tcp_compression_enabled"},
1183  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS,	"tcp_ipv6_hoplimit"},
1184  { 1,		TCP_MSS_MAX_IPV6, 1220,		"tcp_mss_def_ipv6"},
1185  { 1,		TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"},
1186  { 0,		1,		0,		"tcp_rev_src_routes"},
1187  { 10*MS,	500*MS,		50*MS,		"tcp_local_dack_interval"},
1188  { 100*MS,	60*SECONDS,	1*SECONDS,	"tcp_ndd_get_info_interval"},
1189  { 0,		16,		8,		"tcp_local_dacks_max"},
1190  { 0,		2,		1,		"tcp_ecn_permitted"},
1191  { 0,		1,		1,		"tcp_rst_sent_rate_enabled"},
1192  { 0,		PARAM_MAX,	40,		"tcp_rst_sent_rate"},
1193  { 0,		100*MS,		50*MS,		"tcp_push_timer_interval"},
1194  { 0,		1,		0,		"tcp_use_smss_as_mss_opt"},
1195  { 0,		PARAM_MAX,	8*MINUTES,	"tcp_keepalive_abort_interval"},
1196 };
1197 /* END CSTYLED */
1198 
1199 /*
1200  * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of
1201  * each header fragment in the header buffer.  Each parameter value has
1202  * to be a multiple of 4 (32-bit aligned).
1203  */
1204 static tcpparam_t lcl_tcp_mdt_head_param =
1205 	{ 32, 256, 32, "tcp_mdt_hdr_head_min" };
1206 static tcpparam_t lcl_tcp_mdt_tail_param =
1207 	{ 0,  256, 32, "tcp_mdt_hdr_tail_min" };
1208 #define	tcps_mdt_hdr_head_min	tcps_mdt_head_param->tcp_param_val
1209 #define	tcps_mdt_hdr_tail_min	tcps_mdt_tail_param->tcp_param_val
1210 
1211 /*
1212  * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out
1213  * the maximum number of payload buffers associated per Multidata.
1214  */
1215 static tcpparam_t lcl_tcp_mdt_max_pbufs_param =
1216 	{ 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" };
1217 #define	tcps_mdt_max_pbufs	tcps_mdt_max_pbufs_param->tcp_param_val
1218 
1219 /* Round up the value to the nearest mss. */
1220 #define	MSS_ROUNDUP(value, mss)		((((value) - 1) / (mss) + 1) * (mss))
1221 
1222 /*
1223  * Set ECN capable transport (ECT) code point in IP header.
1224  *
1225  * Note that there are 2 ECT code points '01' and '10', which are called
1226  * ECT(1) and ECT(0) respectively.  Here we follow the original ECT code
1227  * point ECT(0) for TCP as described in RFC 2481.
1228  */
1229 #define	SET_ECT(tcp, iph) \
1230 	if ((tcp)->tcp_ipversion == IPV4_VERSION) { \
1231 		/* We need to clear the code point first. */ \
1232 		((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \
1233 		((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \
1234 	} else { \
1235 		((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \
1236 		((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \
1237 	}
1238 
1239 /*
1240  * The format argument to pass to tcp_display().
1241  * DISP_PORT_ONLY means that the returned string has only port info.
1242  * DISP_ADDR_AND_PORT means that the returned string also contains the
1243  * remote and local IP address.
1244  */
1245 #define	DISP_PORT_ONLY		1
1246 #define	DISP_ADDR_AND_PORT	2
1247 
1248 #define	NDD_TOO_QUICK_MSG \
1249 	"ndd get info rate too high for non-privileged users, try again " \
1250 	"later.\n"
1251 #define	NDD_OUT_OF_BUF_MSG	"<< Out of buffer >>\n"
1252 
1253 #define	IS_VMLOANED_MBLK(mp) \
1254 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
1255 
1256 
1257 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */
1258 boolean_t tcp_mdt_chain = B_TRUE;
1259 
1260 /*
1261  * MDT threshold in the form of effective send MSS multiplier; we take
1262  * the MDT path if the amount of unsent data exceeds the threshold value
1263  * (default threshold is 1*SMSS).
1264  */
1265 uint_t tcp_mdt_smss_threshold = 1;
1266 
1267 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
1268 
1269 /*
1270  * Forces all connections to obey the value of the tcps_maxpsz_multiplier
1271  * tunable settable via NDD.  Otherwise, the per-connection behavior is
1272  * determined dynamically during tcp_adapt_ire(), which is the default.
1273  */
1274 boolean_t tcp_static_maxpsz = B_FALSE;
1275 
1276 /* Setable in /etc/system */
1277 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
1278 uint32_t tcp_random_anon_port = 1;
1279 
1280 /*
1281  * To reach to an eager in Q0 which can be dropped due to an incoming
1282  * new SYN request when Q0 is full, a new doubly linked list is
1283  * introduced. This list allows to select an eager from Q0 in O(1) time.
1284  * This is needed to avoid spending too much time walking through the
1285  * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of
1286  * this new list has to be a member of Q0.
1287  * This list is headed by listener's tcp_t. When the list is empty,
1288  * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0,
1289  * of listener's tcp_t point to listener's tcp_t itself.
1290  *
1291  * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager
1292  * in the list. MAKE_UNDROPPABLE() takes the eager out of the list.
1293  * These macros do not affect the eager's membership to Q0.
1294  */
1295 
1296 
1297 #define	MAKE_DROPPABLE(listener, eager)					\
1298 	if ((eager)->tcp_eager_next_drop_q0 == NULL) {			\
1299 		(listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\
1300 		    = (eager);						\
1301 		(eager)->tcp_eager_prev_drop_q0 = (listener);		\
1302 		(eager)->tcp_eager_next_drop_q0 =			\
1303 		    (listener)->tcp_eager_next_drop_q0;			\
1304 		(listener)->tcp_eager_next_drop_q0 = (eager);		\
1305 	}
1306 
1307 #define	MAKE_UNDROPPABLE(eager)						\
1308 	if ((eager)->tcp_eager_next_drop_q0 != NULL) {			\
1309 		(eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0	\
1310 		    = (eager)->tcp_eager_prev_drop_q0;			\
1311 		(eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0	\
1312 		    = (eager)->tcp_eager_next_drop_q0;			\
1313 		(eager)->tcp_eager_prev_drop_q0 = NULL;			\
1314 		(eager)->tcp_eager_next_drop_q0 = NULL;			\
1315 	}
1316 
1317 /*
1318  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
1319  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
1320  * data, TCP will not respond with an ACK.  RFC 793 requires that
1321  * TCP responds with an ACK for such a bogus ACK.  By not following
1322  * the RFC, we prevent TCP from getting into an ACK storm if somehow
1323  * an attacker successfully spoofs an acceptable segment to our
1324  * peer; or when our peer is "confused."
1325  */
1326 uint32_t tcp_drop_ack_unsent_cnt = 10;
1327 
1328 /*
1329  * Hook functions to enable cluster networking
1330  * On non-clustered systems these vectors must always be NULL.
1331  */
1332 
1333 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family,
1334 			    uint8_t *laddrp, in_port_t lport) = NULL;
1335 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family,
1336 			    uint8_t *laddrp, in_port_t lport) = NULL;
1337 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family,
1338 			    uint8_t *laddrp, in_port_t lport,
1339 			    uint8_t *faddrp, in_port_t fport) = NULL;
1340 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family,
1341 			    uint8_t *laddrp, in_port_t lport,
1342 			    uint8_t *faddrp, in_port_t fport) = NULL;
1343 
1344 /*
1345  * The following are defined in ip.c
1346  */
1347 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family,
1348 				uint8_t *laddrp);
1349 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family,
1350 				uint8_t *laddrp, uint8_t *faddrp);
1351 
1352 #define	CL_INET_CONNECT(tcp)		{			\
1353 	if (cl_inet_connect != NULL) {				\
1354 		/*						\
1355 		 * Running in cluster mode - register active connection	\
1356 		 * information						\
1357 		 */							\
1358 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1359 			if ((tcp)->tcp_ipha->ipha_src != 0) {		\
1360 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET,\
1361 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\
1362 				    (in_port_t)(tcp)->tcp_lport,	\
1363 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\
1364 				    (in_port_t)(tcp)->tcp_fport);	\
1365 			}						\
1366 		} else {						\
1367 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1368 			    &(tcp)->tcp_ip6h->ip6_src)) {\
1369 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\
1370 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\
1371 				    (in_port_t)(tcp)->tcp_lport,	\
1372 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\
1373 				    (in_port_t)(tcp)->tcp_fport);	\
1374 			}						\
1375 		}							\
1376 	}								\
1377 }
1378 
1379 #define	CL_INET_DISCONNECT(tcp)	{				\
1380 	if (cl_inet_disconnect != NULL) {				\
1381 		/*							\
1382 		 * Running in cluster mode - deregister active		\
1383 		 * connection information				\
1384 		 */							\
1385 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1386 			if ((tcp)->tcp_ip_src != 0) {			\
1387 				(*cl_inet_disconnect)(IPPROTO_TCP,	\
1388 				    AF_INET,				\
1389 				    (uint8_t *)(&((tcp)->tcp_ip_src)),\
1390 				    (in_port_t)(tcp)->tcp_lport,	\
1391 				    (uint8_t *)				\
1392 				    (&((tcp)->tcp_ipha->ipha_dst)),\
1393 				    (in_port_t)(tcp)->tcp_fport);	\
1394 			}						\
1395 		} else {						\
1396 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1397 			    &(tcp)->tcp_ip_src_v6)) {			\
1398 				(*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\
1399 				    (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\
1400 				    (in_port_t)(tcp)->tcp_lport,	\
1401 				    (uint8_t *)				\
1402 				    (&((tcp)->tcp_ip6h->ip6_dst)),\
1403 				    (in_port_t)(tcp)->tcp_fport);	\
1404 			}						\
1405 		}							\
1406 	}								\
1407 }
1408 
1409 /*
1410  * Cluster networking hook for traversing current connection list.
1411  * This routine is used to extract the current list of live connections
1412  * which must continue to to be dispatched to this node.
1413  */
1414 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg);
1415 
1416 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *),
1417     void *arg, tcp_stack_t *tcps);
1418 
1419 #define	DTRACE_IP_FASTPATH(mp, iph, ill, ipha, ip6h) 			\
1420 	DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *,	\
1421 	    iph, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha,		\
1422 	    ip6_t *, ip6h, int, 0);
1423 
1424 /*
1425  * Figure out the value of window scale opton.  Note that the rwnd is
1426  * ASSUMED to be rounded up to the nearest MSS before the calculation.
1427  * We cannot find the scale value and then do a round up of tcp_rwnd
1428  * because the scale value may not be correct after that.
1429  *
1430  * Set the compiler flag to make this function inline.
1431  */
1432 static void
1433 tcp_set_ws_value(tcp_t *tcp)
1434 {
1435 	int i;
1436 	uint32_t rwnd = tcp->tcp_rwnd;
1437 
1438 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
1439 	    i++, rwnd >>= 1)
1440 		;
1441 	tcp->tcp_rcv_ws = i;
1442 }
1443 
1444 /*
1445  * Remove a connection from the list of detached TIME_WAIT connections.
1446  * It returns B_FALSE if it can't remove the connection from the list
1447  * as the connection has already been removed from the list due to an
1448  * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE.
1449  */
1450 static boolean_t
1451 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait)
1452 {
1453 	boolean_t	locked = B_FALSE;
1454 
1455 	if (tcp_time_wait == NULL) {
1456 		tcp_time_wait = *((tcp_squeue_priv_t **)
1457 		    squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP));
1458 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1459 		locked = B_TRUE;
1460 	} else {
1461 		ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock));
1462 	}
1463 
1464 	if (tcp->tcp_time_wait_expire == 0) {
1465 		ASSERT(tcp->tcp_time_wait_next == NULL);
1466 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1467 		if (locked)
1468 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1469 		return (B_FALSE);
1470 	}
1471 	ASSERT(TCP_IS_DETACHED(tcp));
1472 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1473 
1474 	if (tcp == tcp_time_wait->tcp_time_wait_head) {
1475 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1476 		tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next;
1477 		if (tcp_time_wait->tcp_time_wait_head != NULL) {
1478 			tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev =
1479 			    NULL;
1480 		} else {
1481 			tcp_time_wait->tcp_time_wait_tail = NULL;
1482 		}
1483 	} else if (tcp == tcp_time_wait->tcp_time_wait_tail) {
1484 		ASSERT(tcp != tcp_time_wait->tcp_time_wait_head);
1485 		ASSERT(tcp->tcp_time_wait_next == NULL);
1486 		tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev;
1487 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1488 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL;
1489 	} else {
1490 		ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp);
1491 		ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp);
1492 		tcp->tcp_time_wait_prev->tcp_time_wait_next =
1493 		    tcp->tcp_time_wait_next;
1494 		tcp->tcp_time_wait_next->tcp_time_wait_prev =
1495 		    tcp->tcp_time_wait_prev;
1496 	}
1497 	tcp->tcp_time_wait_next = NULL;
1498 	tcp->tcp_time_wait_prev = NULL;
1499 	tcp->tcp_time_wait_expire = 0;
1500 
1501 	if (locked)
1502 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1503 	return (B_TRUE);
1504 }
1505 
1506 /*
1507  * Add a connection to the list of detached TIME_WAIT connections
1508  * and set its time to expire.
1509  */
1510 static void
1511 tcp_time_wait_append(tcp_t *tcp)
1512 {
1513 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1514 	tcp_squeue_priv_t *tcp_time_wait =
1515 	    *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp,
1516 	    SQPRIVATE_TCP));
1517 
1518 	tcp_timers_stop(tcp);
1519 
1520 	/* Freed above */
1521 	ASSERT(tcp->tcp_timer_tid == 0);
1522 	ASSERT(tcp->tcp_ack_tid == 0);
1523 
1524 	/* must have happened at the time of detaching the tcp */
1525 	ASSERT(tcp->tcp_ptpahn == NULL);
1526 	ASSERT(tcp->tcp_flow_stopped == 0);
1527 	ASSERT(tcp->tcp_time_wait_next == NULL);
1528 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1529 	ASSERT(tcp->tcp_time_wait_expire == NULL);
1530 	ASSERT(tcp->tcp_listener == NULL);
1531 
1532 	tcp->tcp_time_wait_expire = ddi_get_lbolt();
1533 	/*
1534 	 * The value computed below in tcp->tcp_time_wait_expire may
1535 	 * appear negative or wrap around. That is ok since our
1536 	 * interest is only in the difference between the current lbolt
1537 	 * value and tcp->tcp_time_wait_expire. But the value should not
1538 	 * be zero, since it means the tcp is not in the TIME_WAIT list.
1539 	 * The corresponding comparison in tcp_time_wait_collector() uses
1540 	 * modular arithmetic.
1541 	 */
1542 	tcp->tcp_time_wait_expire +=
1543 	    drv_usectohz(tcps->tcps_time_wait_interval * 1000);
1544 	if (tcp->tcp_time_wait_expire == 0)
1545 		tcp->tcp_time_wait_expire = 1;
1546 
1547 	ASSERT(TCP_IS_DETACHED(tcp));
1548 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1549 	ASSERT(tcp->tcp_time_wait_next == NULL);
1550 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1551 	TCP_DBGSTAT(tcps, tcp_time_wait);
1552 
1553 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1554 	if (tcp_time_wait->tcp_time_wait_head == NULL) {
1555 		ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL);
1556 		tcp_time_wait->tcp_time_wait_head = tcp;
1557 	} else {
1558 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1559 		ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state ==
1560 		    TCPS_TIME_WAIT);
1561 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp;
1562 		tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail;
1563 	}
1564 	tcp_time_wait->tcp_time_wait_tail = tcp;
1565 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1566 }
1567 
1568 /* ARGSUSED */
1569 void
1570 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2)
1571 {
1572 	conn_t	*connp = (conn_t *)arg;
1573 	tcp_t	*tcp = connp->conn_tcp;
1574 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1575 
1576 	ASSERT(tcp != NULL);
1577 	if (tcp->tcp_state == TCPS_CLOSED) {
1578 		return;
1579 	}
1580 
1581 	ASSERT((tcp->tcp_family == AF_INET &&
1582 	    tcp->tcp_ipversion == IPV4_VERSION) ||
1583 	    (tcp->tcp_family == AF_INET6 &&
1584 	    (tcp->tcp_ipversion == IPV4_VERSION ||
1585 	    tcp->tcp_ipversion == IPV6_VERSION)));
1586 	ASSERT(!tcp->tcp_listener);
1587 
1588 	TCP_STAT(tcps, tcp_time_wait_reap);
1589 	ASSERT(TCP_IS_DETACHED(tcp));
1590 
1591 	/*
1592 	 * Because they have no upstream client to rebind or tcp_close()
1593 	 * them later, we axe the connection here and now.
1594 	 */
1595 	tcp_close_detached(tcp);
1596 }
1597 
1598 /*
1599  * Remove cached/latched IPsec references.
1600  */
1601 void
1602 tcp_ipsec_cleanup(tcp_t *tcp)
1603 {
1604 	conn_t		*connp = tcp->tcp_connp;
1605 
1606 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1607 
1608 	if (connp->conn_latch != NULL) {
1609 		IPLATCH_REFRELE(connp->conn_latch,
1610 		    connp->conn_netstack);
1611 		connp->conn_latch = NULL;
1612 	}
1613 	if (connp->conn_policy != NULL) {
1614 		IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
1615 		connp->conn_policy = NULL;
1616 	}
1617 }
1618 
1619 /*
1620  * Cleaup before placing on free list.
1621  * Disassociate from the netstack/tcp_stack_t since the freelist
1622  * is per squeue and not per netstack.
1623  */
1624 void
1625 tcp_cleanup(tcp_t *tcp)
1626 {
1627 	mblk_t		*mp;
1628 	char		*tcp_iphc;
1629 	int		tcp_iphc_len;
1630 	int		tcp_hdr_grown;
1631 	tcp_sack_info_t	*tcp_sack_info;
1632 	conn_t		*connp = tcp->tcp_connp;
1633 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1634 	netstack_t	*ns = tcps->tcps_netstack;
1635 	mblk_t		*tcp_rsrv_mp;
1636 
1637 	tcp_bind_hash_remove(tcp);
1638 
1639 	/* Cleanup that which needs the netstack first */
1640 	tcp_ipsec_cleanup(tcp);
1641 
1642 	tcp_free(tcp);
1643 
1644 	/* Release any SSL context */
1645 	if (tcp->tcp_kssl_ent != NULL) {
1646 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
1647 		tcp->tcp_kssl_ent = NULL;
1648 	}
1649 
1650 	if (tcp->tcp_kssl_ctx != NULL) {
1651 		kssl_release_ctx(tcp->tcp_kssl_ctx);
1652 		tcp->tcp_kssl_ctx = NULL;
1653 	}
1654 	tcp->tcp_kssl_pending = B_FALSE;
1655 
1656 	conn_delete_ire(connp, NULL);
1657 
1658 	/*
1659 	 * Since we will bzero the entire structure, we need to
1660 	 * remove it and reinsert it in global hash list. We
1661 	 * know the walkers can't get to this conn because we
1662 	 * had set CONDEMNED flag earlier and checked reference
1663 	 * under conn_lock so walker won't pick it and when we
1664 	 * go the ipcl_globalhash_remove() below, no walker
1665 	 * can get to it.
1666 	 */
1667 	ipcl_globalhash_remove(connp);
1668 
1669 	/*
1670 	 * Now it is safe to decrement the reference counts.
1671 	 * This might be the last reference on the netstack and TCPS
1672 	 * in which case it will cause the tcp_g_q_close and
1673 	 * the freeing of the IP Instance.
1674 	 */
1675 	connp->conn_netstack = NULL;
1676 	netstack_rele(ns);
1677 	ASSERT(tcps != NULL);
1678 	tcp->tcp_tcps = NULL;
1679 	TCPS_REFRELE(tcps);
1680 
1681 	/* Save some state */
1682 	mp = tcp->tcp_timercache;
1683 
1684 	tcp_sack_info = tcp->tcp_sack_info;
1685 	tcp_iphc = tcp->tcp_iphc;
1686 	tcp_iphc_len = tcp->tcp_iphc_len;
1687 	tcp_hdr_grown = tcp->tcp_hdr_grown;
1688 	tcp_rsrv_mp = tcp->tcp_rsrv_mp;
1689 
1690 	if (connp->conn_cred != NULL) {
1691 		crfree(connp->conn_cred);
1692 		connp->conn_cred = NULL;
1693 	}
1694 	if (connp->conn_peercred != NULL) {
1695 		crfree(connp->conn_peercred);
1696 		connp->conn_peercred = NULL;
1697 	}
1698 	ipcl_conn_cleanup(connp);
1699 	connp->conn_flags = IPCL_TCPCONN;
1700 	bzero(tcp, sizeof (tcp_t));
1701 
1702 	/* restore the state */
1703 	tcp->tcp_timercache = mp;
1704 
1705 	tcp->tcp_sack_info = tcp_sack_info;
1706 	tcp->tcp_iphc = tcp_iphc;
1707 	tcp->tcp_iphc_len = tcp_iphc_len;
1708 	tcp->tcp_hdr_grown = tcp_hdr_grown;
1709 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
1710 
1711 	tcp->tcp_connp = connp;
1712 
1713 	ASSERT(connp->conn_tcp == tcp);
1714 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1715 	connp->conn_state_flags = CONN_INCIPIENT;
1716 	ASSERT(connp->conn_ulp == IPPROTO_TCP);
1717 	ASSERT(connp->conn_ref == 1);
1718 }
1719 
1720 /*
1721  * Blows away all tcps whose TIME_WAIT has expired. List traversal
1722  * is done forwards from the head.
1723  * This walks all stack instances since
1724  * tcp_time_wait remains global across all stacks.
1725  */
1726 /* ARGSUSED */
1727 void
1728 tcp_time_wait_collector(void *arg)
1729 {
1730 	tcp_t *tcp;
1731 	clock_t now;
1732 	mblk_t *mp;
1733 	conn_t *connp;
1734 	kmutex_t *lock;
1735 	boolean_t removed;
1736 
1737 	squeue_t *sqp = (squeue_t *)arg;
1738 	tcp_squeue_priv_t *tcp_time_wait =
1739 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1740 
1741 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1742 	tcp_time_wait->tcp_time_wait_tid = 0;
1743 
1744 	if (tcp_time_wait->tcp_free_list != NULL &&
1745 	    tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) {
1746 		TCP_G_STAT(tcp_freelist_cleanup);
1747 		while ((tcp = tcp_time_wait->tcp_free_list) != NULL) {
1748 			tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1749 			tcp->tcp_time_wait_next = NULL;
1750 			tcp_time_wait->tcp_free_list_cnt--;
1751 			ASSERT(tcp->tcp_tcps == NULL);
1752 			CONN_DEC_REF(tcp->tcp_connp);
1753 		}
1754 		ASSERT(tcp_time_wait->tcp_free_list_cnt == 0);
1755 	}
1756 
1757 	/*
1758 	 * In order to reap time waits reliably, we should use a
1759 	 * source of time that is not adjustable by the user -- hence
1760 	 * the call to ddi_get_lbolt().
1761 	 */
1762 	now = ddi_get_lbolt();
1763 	while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) {
1764 		/*
1765 		 * Compare times using modular arithmetic, since
1766 		 * lbolt can wrapover.
1767 		 */
1768 		if ((now - tcp->tcp_time_wait_expire) < 0) {
1769 			break;
1770 		}
1771 
1772 		removed = tcp_time_wait_remove(tcp, tcp_time_wait);
1773 		ASSERT(removed);
1774 
1775 		connp = tcp->tcp_connp;
1776 		ASSERT(connp->conn_fanout != NULL);
1777 		lock = &connp->conn_fanout->connf_lock;
1778 		/*
1779 		 * This is essentially a TW reclaim fast path optimization for
1780 		 * performance where the timewait collector checks under the
1781 		 * fanout lock (so that no one else can get access to the
1782 		 * conn_t) that the refcnt is 2 i.e. one for TCP and one for
1783 		 * the classifier hash list. If ref count is indeed 2, we can
1784 		 * just remove the conn under the fanout lock and avoid
1785 		 * cleaning up the conn under the squeue, provided that
1786 		 * clustering callbacks are not enabled. If clustering is
1787 		 * enabled, we need to make the clustering callback before
1788 		 * setting the CONDEMNED flag and after dropping all locks and
1789 		 * so we forego this optimization and fall back to the slow
1790 		 * path. Also please see the comments in tcp_closei_local
1791 		 * regarding the refcnt logic.
1792 		 *
1793 		 * Since we are holding the tcp_time_wait_lock, its better
1794 		 * not to block on the fanout_lock because other connections
1795 		 * can't add themselves to time_wait list. So we do a
1796 		 * tryenter instead of mutex_enter.
1797 		 */
1798 		if (mutex_tryenter(lock)) {
1799 			mutex_enter(&connp->conn_lock);
1800 			if ((connp->conn_ref == 2) &&
1801 			    (cl_inet_disconnect == NULL)) {
1802 				ipcl_hash_remove_locked(connp,
1803 				    connp->conn_fanout);
1804 				/*
1805 				 * Set the CONDEMNED flag now itself so that
1806 				 * the refcnt cannot increase due to any
1807 				 * walker. But we have still not cleaned up
1808 				 * conn_ire_cache. This is still ok since
1809 				 * we are going to clean it up in tcp_cleanup
1810 				 * immediately and any interface unplumb
1811 				 * thread will wait till the ire is blown away
1812 				 */
1813 				connp->conn_state_flags |= CONN_CONDEMNED;
1814 				mutex_exit(lock);
1815 				mutex_exit(&connp->conn_lock);
1816 				if (tcp_time_wait->tcp_free_list_cnt <
1817 				    tcp_free_list_max_cnt) {
1818 					/* Add to head of tcp_free_list */
1819 					mutex_exit(
1820 					    &tcp_time_wait->tcp_time_wait_lock);
1821 					tcp_cleanup(tcp);
1822 					ASSERT(connp->conn_latch == NULL);
1823 					ASSERT(connp->conn_policy == NULL);
1824 					ASSERT(tcp->tcp_tcps == NULL);
1825 					ASSERT(connp->conn_netstack == NULL);
1826 
1827 					mutex_enter(
1828 					    &tcp_time_wait->tcp_time_wait_lock);
1829 					tcp->tcp_time_wait_next =
1830 					    tcp_time_wait->tcp_free_list;
1831 					tcp_time_wait->tcp_free_list = tcp;
1832 					tcp_time_wait->tcp_free_list_cnt++;
1833 					continue;
1834 				} else {
1835 					/* Do not add to tcp_free_list */
1836 					mutex_exit(
1837 					    &tcp_time_wait->tcp_time_wait_lock);
1838 					tcp_bind_hash_remove(tcp);
1839 					conn_delete_ire(tcp->tcp_connp, NULL);
1840 					tcp_ipsec_cleanup(tcp);
1841 					CONN_DEC_REF(tcp->tcp_connp);
1842 				}
1843 			} else {
1844 				CONN_INC_REF_LOCKED(connp);
1845 				mutex_exit(lock);
1846 				mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1847 				mutex_exit(&connp->conn_lock);
1848 				/*
1849 				 * We can reuse the closemp here since conn has
1850 				 * detached (otherwise we wouldn't even be in
1851 				 * time_wait list). tcp_closemp_used can safely
1852 				 * be changed without taking a lock as no other
1853 				 * thread can concurrently access it at this
1854 				 * point in the connection lifecycle.
1855 				 */
1856 
1857 				if (tcp->tcp_closemp.b_prev == NULL)
1858 					tcp->tcp_closemp_used = B_TRUE;
1859 				else
1860 					cmn_err(CE_PANIC,
1861 					    "tcp_timewait_collector: "
1862 					    "concurrent use of tcp_closemp: "
1863 					    "connp %p tcp %p\n", (void *)connp,
1864 					    (void *)tcp);
1865 
1866 				TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1867 				mp = &tcp->tcp_closemp;
1868 				squeue_fill(connp->conn_sqp, mp,
1869 				    tcp_timewait_output, connp,
1870 				    SQTAG_TCP_TIMEWAIT);
1871 			}
1872 		} else {
1873 			mutex_enter(&connp->conn_lock);
1874 			CONN_INC_REF_LOCKED(connp);
1875 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1876 			mutex_exit(&connp->conn_lock);
1877 			/*
1878 			 * We can reuse the closemp here since conn has
1879 			 * detached (otherwise we wouldn't even be in
1880 			 * time_wait list). tcp_closemp_used can safely
1881 			 * be changed without taking a lock as no other
1882 			 * thread can concurrently access it at this
1883 			 * point in the connection lifecycle.
1884 			 */
1885 
1886 			if (tcp->tcp_closemp.b_prev == NULL)
1887 				tcp->tcp_closemp_used = B_TRUE;
1888 			else
1889 				cmn_err(CE_PANIC, "tcp_timewait_collector: "
1890 				    "concurrent use of tcp_closemp: "
1891 				    "connp %p tcp %p\n", (void *)connp,
1892 				    (void *)tcp);
1893 
1894 			TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1895 			mp = &tcp->tcp_closemp;
1896 			squeue_fill(connp->conn_sqp, mp,
1897 			    tcp_timewait_output, connp, 0);
1898 		}
1899 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1900 	}
1901 
1902 	if (tcp_time_wait->tcp_free_list != NULL)
1903 		tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE;
1904 
1905 	tcp_time_wait->tcp_time_wait_tid =
1906 	    timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp,
1907 	    TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION,
1908 	    CALLOUT_FLAG_ROUNDUP);
1909 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1910 }
1911 /*
1912  * Reply to a clients T_CONN_RES TPI message. This function
1913  * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES
1914  * on the acceptor STREAM and processed in tcp_wput_accept().
1915  * Read the block comment on top of tcp_conn_request().
1916  */
1917 static void
1918 tcp_accept(tcp_t *listener, mblk_t *mp)
1919 {
1920 	tcp_t	*acceptor;
1921 	tcp_t	*eager;
1922 	tcp_t   *tcp;
1923 	struct T_conn_res	*tcr;
1924 	t_uscalar_t	acceptor_id;
1925 	t_scalar_t	seqnum;
1926 	mblk_t	*opt_mp = NULL;	/* T_OPTMGMT_REQ messages */
1927 	mblk_t	*ok_mp;
1928 	mblk_t	*mp1;
1929 	tcp_stack_t	*tcps = listener->tcp_tcps;
1930 
1931 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
1932 		tcp_err_ack(listener, mp, TPROTO, 0);
1933 		return;
1934 	}
1935 	tcr = (struct T_conn_res *)mp->b_rptr;
1936 
1937 	/*
1938 	 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the
1939 	 * read side queue of the streams device underneath us i.e. the
1940 	 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we
1941 	 * look it up in the queue_hash.  Under LP64 it sends down the
1942 	 * minor_t of the accepting endpoint.
1943 	 *
1944 	 * Once the acceptor/eager are modified (in tcp_accept_swap) the
1945 	 * fanout hash lock is held.
1946 	 * This prevents any thread from entering the acceptor queue from
1947 	 * below (since it has not been hard bound yet i.e. any inbound
1948 	 * packets will arrive on the listener or default tcp queue and
1949 	 * go through tcp_lookup).
1950 	 * The CONN_INC_REF will prevent the acceptor from closing.
1951 	 *
1952 	 * XXX It is still possible for a tli application to send down data
1953 	 * on the accepting stream while another thread calls t_accept.
1954 	 * This should not be a problem for well-behaved applications since
1955 	 * the T_OK_ACK is sent after the queue swapping is completed.
1956 	 *
1957 	 * If the accepting fd is the same as the listening fd, avoid
1958 	 * queue hash lookup since that will return an eager listener in a
1959 	 * already established state.
1960 	 */
1961 	acceptor_id = tcr->ACCEPTOR_id;
1962 	mutex_enter(&listener->tcp_eager_lock);
1963 	if (listener->tcp_acceptor_id == acceptor_id) {
1964 		eager = listener->tcp_eager_next_q;
1965 		/* only count how many T_CONN_INDs so don't count q0 */
1966 		if ((listener->tcp_conn_req_cnt_q != 1) ||
1967 		    (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) {
1968 			mutex_exit(&listener->tcp_eager_lock);
1969 			tcp_err_ack(listener, mp, TBADF, 0);
1970 			return;
1971 		}
1972 		if (listener->tcp_conn_req_cnt_q0 != 0) {
1973 			/* Throw away all the eagers on q0. */
1974 			tcp_eager_cleanup(listener, 1);
1975 		}
1976 		if (listener->tcp_syn_defense) {
1977 			listener->tcp_syn_defense = B_FALSE;
1978 			if (listener->tcp_ip_addr_cache != NULL) {
1979 				kmem_free(listener->tcp_ip_addr_cache,
1980 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
1981 				listener->tcp_ip_addr_cache = NULL;
1982 			}
1983 		}
1984 		/*
1985 		 * Transfer tcp_conn_req_max to the eager so that when
1986 		 * a disconnect occurs we can revert the endpoint to the
1987 		 * listen state.
1988 		 */
1989 		eager->tcp_conn_req_max = listener->tcp_conn_req_max;
1990 		ASSERT(listener->tcp_conn_req_cnt_q0 == 0);
1991 		/*
1992 		 * Get a reference on the acceptor just like the
1993 		 * tcp_acceptor_hash_lookup below.
1994 		 */
1995 		acceptor = listener;
1996 		CONN_INC_REF(acceptor->tcp_connp);
1997 	} else {
1998 		acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps);
1999 		if (acceptor == NULL) {
2000 			if (listener->tcp_debug) {
2001 				(void) strlog(TCP_MOD_ID, 0, 1,
2002 				    SL_ERROR|SL_TRACE,
2003 				    "tcp_accept: did not find acceptor 0x%x\n",
2004 				    acceptor_id);
2005 			}
2006 			mutex_exit(&listener->tcp_eager_lock);
2007 			tcp_err_ack(listener, mp, TPROVMISMATCH, 0);
2008 			return;
2009 		}
2010 		/*
2011 		 * Verify acceptor state. The acceptable states for an acceptor
2012 		 * include TCPS_IDLE and TCPS_BOUND.
2013 		 */
2014 		switch (acceptor->tcp_state) {
2015 		case TCPS_IDLE:
2016 			/* FALLTHRU */
2017 		case TCPS_BOUND:
2018 			break;
2019 		default:
2020 			CONN_DEC_REF(acceptor->tcp_connp);
2021 			mutex_exit(&listener->tcp_eager_lock);
2022 			tcp_err_ack(listener, mp, TOUTSTATE, 0);
2023 			return;
2024 		}
2025 	}
2026 
2027 	/* The listener must be in TCPS_LISTEN */
2028 	if (listener->tcp_state != TCPS_LISTEN) {
2029 		CONN_DEC_REF(acceptor->tcp_connp);
2030 		mutex_exit(&listener->tcp_eager_lock);
2031 		tcp_err_ack(listener, mp, TOUTSTATE, 0);
2032 		return;
2033 	}
2034 
2035 	/*
2036 	 * Rendezvous with an eager connection request packet hanging off
2037 	 * 'tcp' that has the 'seqnum' tag.  We tagged the detached open
2038 	 * tcp structure when the connection packet arrived in
2039 	 * tcp_conn_request().
2040 	 */
2041 	seqnum = tcr->SEQ_number;
2042 	eager = listener;
2043 	do {
2044 		eager = eager->tcp_eager_next_q;
2045 		if (eager == NULL) {
2046 			CONN_DEC_REF(acceptor->tcp_connp);
2047 			mutex_exit(&listener->tcp_eager_lock);
2048 			tcp_err_ack(listener, mp, TBADSEQ, 0);
2049 			return;
2050 		}
2051 	} while (eager->tcp_conn_req_seqnum != seqnum);
2052 	mutex_exit(&listener->tcp_eager_lock);
2053 
2054 	/*
2055 	 * At this point, both acceptor and listener have 2 ref
2056 	 * that they begin with. Acceptor has one additional ref
2057 	 * we placed in lookup while listener has 3 additional
2058 	 * ref for being behind the squeue (tcp_accept() is
2059 	 * done on listener's squeue); being in classifier hash;
2060 	 * and eager's ref on listener.
2061 	 */
2062 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2063 	ASSERT(acceptor->tcp_connp->conn_ref >= 3);
2064 
2065 	/*
2066 	 * The eager at this point is set in its own squeue and
2067 	 * could easily have been killed (tcp_accept_finish will
2068 	 * deal with that) because of a TH_RST so we can only
2069 	 * ASSERT for a single ref.
2070 	 */
2071 	ASSERT(eager->tcp_connp->conn_ref >= 1);
2072 
2073 	/* Pre allocate the stroptions mblk also */
2074 	opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
2075 	if (opt_mp == NULL) {
2076 		CONN_DEC_REF(acceptor->tcp_connp);
2077 		CONN_DEC_REF(eager->tcp_connp);
2078 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2079 		return;
2080 	}
2081 	DB_TYPE(opt_mp) = M_SETOPTS;
2082 	opt_mp->b_wptr += sizeof (struct stroptions);
2083 
2084 	/*
2085 	 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
2086 	 * from listener to acceptor. The message is chained on opt_mp
2087 	 * which will be sent onto eager's squeue.
2088 	 */
2089 	if (listener->tcp_bound_if != 0) {
2090 		/* allocate optmgmt req */
2091 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2092 		    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
2093 		    sizeof (int));
2094 		if (mp1 != NULL)
2095 			linkb(opt_mp, mp1);
2096 	}
2097 	if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
2098 		uint_t on = 1;
2099 
2100 		/* allocate optmgmt req */
2101 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2102 		    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
2103 		if (mp1 != NULL)
2104 			linkb(opt_mp, mp1);
2105 	}
2106 
2107 	/* Re-use mp1 to hold a copy of mp, in case reallocb fails */
2108 	if ((mp1 = copymsg(mp)) == NULL) {
2109 		CONN_DEC_REF(acceptor->tcp_connp);
2110 		CONN_DEC_REF(eager->tcp_connp);
2111 		freemsg(opt_mp);
2112 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2113 		return;
2114 	}
2115 
2116 	tcr = (struct T_conn_res *)mp1->b_rptr;
2117 
2118 	/*
2119 	 * This is an expanded version of mi_tpi_ok_ack_alloc()
2120 	 * which allocates a larger mblk and appends the new
2121 	 * local address to the ok_ack.  The address is copied by
2122 	 * soaccept() for getsockname().
2123 	 */
2124 	{
2125 		int extra;
2126 
2127 		extra = (eager->tcp_family == AF_INET) ?
2128 		    sizeof (sin_t) : sizeof (sin6_t);
2129 
2130 		/*
2131 		 * Try to re-use mp, if possible.  Otherwise, allocate
2132 		 * an mblk and return it as ok_mp.  In any case, mp
2133 		 * is no longer usable upon return.
2134 		 */
2135 		if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) {
2136 			CONN_DEC_REF(acceptor->tcp_connp);
2137 			CONN_DEC_REF(eager->tcp_connp);
2138 			freemsg(opt_mp);
2139 			/* Original mp has been freed by now, so use mp1 */
2140 			tcp_err_ack(listener, mp1, TSYSERR, ENOMEM);
2141 			return;
2142 		}
2143 
2144 		mp = NULL;	/* We should never use mp after this point */
2145 
2146 		switch (extra) {
2147 		case sizeof (sin_t): {
2148 				sin_t *sin = (sin_t *)ok_mp->b_wptr;
2149 
2150 				ok_mp->b_wptr += extra;
2151 				sin->sin_family = AF_INET;
2152 				sin->sin_port = eager->tcp_lport;
2153 				sin->sin_addr.s_addr =
2154 				    eager->tcp_ipha->ipha_src;
2155 				break;
2156 			}
2157 		case sizeof (sin6_t): {
2158 				sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr;
2159 
2160 				ok_mp->b_wptr += extra;
2161 				sin6->sin6_family = AF_INET6;
2162 				sin6->sin6_port = eager->tcp_lport;
2163 				if (eager->tcp_ipversion == IPV4_VERSION) {
2164 					sin6->sin6_flowinfo = 0;
2165 					IN6_IPADDR_TO_V4MAPPED(
2166 					    eager->tcp_ipha->ipha_src,
2167 					    &sin6->sin6_addr);
2168 				} else {
2169 					ASSERT(eager->tcp_ip6h != NULL);
2170 					sin6->sin6_flowinfo =
2171 					    eager->tcp_ip6h->ip6_vcf &
2172 					    ~IPV6_VERS_AND_FLOW_MASK;
2173 					sin6->sin6_addr =
2174 					    eager->tcp_ip6h->ip6_src;
2175 				}
2176 				sin6->sin6_scope_id = 0;
2177 				sin6->__sin6_src_id = 0;
2178 				break;
2179 			}
2180 		default:
2181 			break;
2182 		}
2183 		ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim);
2184 	}
2185 
2186 	/*
2187 	 * If there are no options we know that the T_CONN_RES will
2188 	 * succeed. However, we can't send the T_OK_ACK upstream until
2189 	 * the tcp_accept_swap is done since it would be dangerous to
2190 	 * let the application start using the new fd prior to the swap.
2191 	 */
2192 	tcp_accept_swap(listener, acceptor, eager);
2193 
2194 	/*
2195 	 * tcp_accept_swap unlinks eager from listener but does not drop
2196 	 * the eager's reference on the listener.
2197 	 */
2198 	ASSERT(eager->tcp_listener == NULL);
2199 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2200 
2201 	/*
2202 	 * The eager is now associated with its own queue. Insert in
2203 	 * the hash so that the connection can be reused for a future
2204 	 * T_CONN_RES.
2205 	 */
2206 	tcp_acceptor_hash_insert(acceptor_id, eager);
2207 
2208 	/*
2209 	 * We now do the processing of options with T_CONN_RES.
2210 	 * We delay till now since we wanted to have queue to pass to
2211 	 * option processing routines that points back to the right
2212 	 * instance structure which does not happen until after
2213 	 * tcp_accept_swap().
2214 	 *
2215 	 * Note:
2216 	 * The sanity of the logic here assumes that whatever options
2217 	 * are appropriate to inherit from listner=>eager are done
2218 	 * before this point, and whatever were to be overridden (or not)
2219 	 * in transfer logic from eager=>acceptor in tcp_accept_swap().
2220 	 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it
2221 	 *   before its ACCEPTOR_id comes down in T_CONN_RES ]
2222 	 * This may not be true at this point in time but can be fixed
2223 	 * independently. This option processing code starts with
2224 	 * the instantiated acceptor instance and the final queue at
2225 	 * this point.
2226 	 */
2227 
2228 	if (tcr->OPT_length != 0) {
2229 		/* Options to process */
2230 		int t_error = 0;
2231 		int sys_error = 0;
2232 		int do_disconnect = 0;
2233 
2234 		if (tcp_conprim_opt_process(eager, mp1,
2235 		    &do_disconnect, &t_error, &sys_error) < 0) {
2236 			eager->tcp_accept_error = 1;
2237 			if (do_disconnect) {
2238 				/*
2239 				 * An option failed which does not allow
2240 				 * connection to be accepted.
2241 				 *
2242 				 * We allow T_CONN_RES to succeed and
2243 				 * put a T_DISCON_IND on the eager queue.
2244 				 */
2245 				ASSERT(t_error == 0 && sys_error == 0);
2246 				eager->tcp_send_discon_ind = 1;
2247 			} else {
2248 				ASSERT(t_error != 0);
2249 				freemsg(ok_mp);
2250 				/*
2251 				 * Original mp was either freed or set
2252 				 * to ok_mp above, so use mp1 instead.
2253 				 */
2254 				tcp_err_ack(listener, mp1, t_error, sys_error);
2255 				goto finish;
2256 			}
2257 		}
2258 		/*
2259 		 * Most likely success in setting options (except if
2260 		 * eager->tcp_send_discon_ind set).
2261 		 * mp1 option buffer represented by OPT_length/offset
2262 		 * potentially modified and contains results of setting
2263 		 * options at this point
2264 		 */
2265 	}
2266 
2267 	/* We no longer need mp1, since all options processing has passed */
2268 	freemsg(mp1);
2269 
2270 	putnext(listener->tcp_rq, ok_mp);
2271 
2272 	mutex_enter(&listener->tcp_eager_lock);
2273 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
2274 		tcp_t	*tail;
2275 		mblk_t	*conn_ind;
2276 
2277 		/*
2278 		 * This path should not be executed if listener and
2279 		 * acceptor streams are the same.
2280 		 */
2281 		ASSERT(listener != acceptor);
2282 
2283 		tcp = listener->tcp_eager_prev_q0;
2284 		/*
2285 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
2286 		 * deferred T_conn_ind queue. We need to get to the head of
2287 		 * the queue in order to send up T_conn_ind the same order as
2288 		 * how the 3WHS is completed.
2289 		 */
2290 		while (tcp != listener) {
2291 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0)
2292 				break;
2293 			else
2294 				tcp = tcp->tcp_eager_prev_q0;
2295 		}
2296 		ASSERT(tcp != listener);
2297 		conn_ind = tcp->tcp_conn.tcp_eager_conn_ind;
2298 		ASSERT(conn_ind != NULL);
2299 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
2300 
2301 		/* Move from q0 to q */
2302 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
2303 		listener->tcp_conn_req_cnt_q0--;
2304 		listener->tcp_conn_req_cnt_q++;
2305 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
2306 		    tcp->tcp_eager_prev_q0;
2307 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
2308 		    tcp->tcp_eager_next_q0;
2309 		tcp->tcp_eager_prev_q0 = NULL;
2310 		tcp->tcp_eager_next_q0 = NULL;
2311 		tcp->tcp_conn_def_q0 = B_FALSE;
2312 
2313 		/* Make sure the tcp isn't in the list of droppables */
2314 		ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
2315 		    tcp->tcp_eager_prev_drop_q0 == NULL);
2316 
2317 		/*
2318 		 * Insert at end of the queue because sockfs sends
2319 		 * down T_CONN_RES in chronological order. Leaving
2320 		 * the older conn indications at front of the queue
2321 		 * helps reducing search time.
2322 		 */
2323 		tail = listener->tcp_eager_last_q;
2324 		if (tail != NULL)
2325 			tail->tcp_eager_next_q = tcp;
2326 		else
2327 			listener->tcp_eager_next_q = tcp;
2328 		listener->tcp_eager_last_q = tcp;
2329 		tcp->tcp_eager_next_q = NULL;
2330 		mutex_exit(&listener->tcp_eager_lock);
2331 		putnext(tcp->tcp_rq, conn_ind);
2332 	} else {
2333 		mutex_exit(&listener->tcp_eager_lock);
2334 	}
2335 
2336 	/*
2337 	 * Done with the acceptor - free it
2338 	 *
2339 	 * Note: from this point on, no access to listener should be made
2340 	 * as listener can be equal to acceptor.
2341 	 */
2342 finish:
2343 	ASSERT(acceptor->tcp_detached);
2344 	ASSERT(tcps->tcps_g_q != NULL);
2345 	acceptor->tcp_rq = tcps->tcps_g_q;
2346 	acceptor->tcp_wq = WR(tcps->tcps_g_q);
2347 	(void) tcp_clean_death(acceptor, 0, 2);
2348 	CONN_DEC_REF(acceptor->tcp_connp);
2349 
2350 	/*
2351 	 * In case we already received a FIN we have to make tcp_rput send
2352 	 * the ordrel_ind. This will also send up a window update if the window
2353 	 * has opened up.
2354 	 *
2355 	 * In the normal case of a successful connection acceptance
2356 	 * we give the O_T_BIND_REQ to the read side put procedure as an
2357 	 * indication that this was just accepted. This tells tcp_rput to
2358 	 * pass up any data queued in tcp_rcv_list.
2359 	 *
2360 	 * In the fringe case where options sent with T_CONN_RES failed and
2361 	 * we required, we would be indicating a T_DISCON_IND to blow
2362 	 * away this connection.
2363 	 */
2364 
2365 	/*
2366 	 * XXX: we currently have a problem if XTI application closes the
2367 	 * acceptor stream in between. This problem exists in on10-gate also
2368 	 * and is well know but nothing can be done short of major rewrite
2369 	 * to fix it. Now it is possible to take care of it by assigning TLI/XTI
2370 	 * eager same squeue as listener (we can distinguish non socket
2371 	 * listeners at the time of handling a SYN in tcp_conn_request)
2372 	 * and do most of the work that tcp_accept_finish does here itself
2373 	 * and then get behind the acceptor squeue to access the acceptor
2374 	 * queue.
2375 	 */
2376 	/*
2377 	 * We already have a ref on tcp so no need to do one before squeue_fill
2378 	 */
2379 	squeue_fill(eager->tcp_connp->conn_sqp, opt_mp,
2380 	    tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH);
2381 }
2382 
2383 /*
2384  * Swap information between the eager and acceptor for a TLI/XTI client.
2385  * The sockfs accept is done on the acceptor stream and control goes
2386  * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not
2387  * called. In either case, both the eager and listener are in their own
2388  * perimeter (squeue) and the code has to deal with potential race.
2389  *
2390  * See the block comment on top of tcp_accept() and tcp_wput_accept().
2391  */
2392 static void
2393 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager)
2394 {
2395 	conn_t	*econnp, *aconnp;
2396 
2397 	ASSERT(eager->tcp_rq == listener->tcp_rq);
2398 	ASSERT(eager->tcp_detached && !acceptor->tcp_detached);
2399 	ASSERT(!eager->tcp_hard_bound);
2400 	ASSERT(!TCP_IS_SOCKET(acceptor));
2401 	ASSERT(!TCP_IS_SOCKET(eager));
2402 	ASSERT(!TCP_IS_SOCKET(listener));
2403 
2404 	acceptor->tcp_detached = B_TRUE;
2405 	/*
2406 	 * To permit stream re-use by TLI/XTI, the eager needs a copy of
2407 	 * the acceptor id.
2408 	 */
2409 	eager->tcp_acceptor_id = acceptor->tcp_acceptor_id;
2410 
2411 	/* remove eager from listen list... */
2412 	mutex_enter(&listener->tcp_eager_lock);
2413 	tcp_eager_unlink(eager);
2414 	ASSERT(eager->tcp_eager_next_q == NULL &&
2415 	    eager->tcp_eager_last_q == NULL);
2416 	ASSERT(eager->tcp_eager_next_q0 == NULL &&
2417 	    eager->tcp_eager_prev_q0 == NULL);
2418 	mutex_exit(&listener->tcp_eager_lock);
2419 	eager->tcp_rq = acceptor->tcp_rq;
2420 	eager->tcp_wq = acceptor->tcp_wq;
2421 
2422 	econnp = eager->tcp_connp;
2423 	aconnp = acceptor->tcp_connp;
2424 
2425 	eager->tcp_rq->q_ptr = econnp;
2426 	eager->tcp_wq->q_ptr = econnp;
2427 
2428 	/*
2429 	 * In the TLI/XTI loopback case, we are inside the listener's squeue,
2430 	 * which might be a different squeue from our peer TCP instance.
2431 	 * For TCP Fusion, the peer expects that whenever tcp_detached is
2432 	 * clear, our TCP queues point to the acceptor's queues.  Thus, use
2433 	 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq
2434 	 * above reach global visibility prior to the clearing of tcp_detached.
2435 	 */
2436 	membar_producer();
2437 	eager->tcp_detached = B_FALSE;
2438 
2439 	ASSERT(eager->tcp_ack_tid == 0);
2440 
2441 	econnp->conn_dev = aconnp->conn_dev;
2442 	econnp->conn_minor_arena = aconnp->conn_minor_arena;
2443 	ASSERT(econnp->conn_minor_arena != NULL);
2444 	if (eager->tcp_cred != NULL)
2445 		crfree(eager->tcp_cred);
2446 	eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred;
2447 	ASSERT(econnp->conn_netstack == aconnp->conn_netstack);
2448 	ASSERT(eager->tcp_tcps == acceptor->tcp_tcps);
2449 
2450 	aconnp->conn_cred = NULL;
2451 
2452 	econnp->conn_zoneid = aconnp->conn_zoneid;
2453 	econnp->conn_allzones = aconnp->conn_allzones;
2454 
2455 	econnp->conn_mac_exempt = aconnp->conn_mac_exempt;
2456 	aconnp->conn_mac_exempt = B_FALSE;
2457 
2458 	ASSERT(aconnp->conn_peercred == NULL);
2459 
2460 	/* Do the IPC initialization */
2461 	CONN_INC_REF(econnp);
2462 
2463 	econnp->conn_multicast_loop = aconnp->conn_multicast_loop;
2464 	econnp->conn_af_isv6 = aconnp->conn_af_isv6;
2465 	econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6;
2466 
2467 	/* Done with old IPC. Drop its ref on its connp */
2468 	CONN_DEC_REF(aconnp);
2469 }
2470 
2471 
2472 /*
2473  * Adapt to the information, such as rtt and rtt_sd, provided from the
2474  * ire cached in conn_cache_ire. If no ire cached, do a ire lookup.
2475  *
2476  * Checks for multicast and broadcast destination address.
2477  * Returns zero on failure; non-zero if ok.
2478  *
2479  * Note that the MSS calculation here is based on the info given in
2480  * the IRE.  We do not do any calculation based on TCP options.  They
2481  * will be handled in tcp_rput_other() and tcp_rput_data() when TCP
2482  * knows which options to use.
2483  *
2484  * Note on how TCP gets its parameters for a connection.
2485  *
2486  * When a tcp_t structure is allocated, it gets all the default parameters.
2487  * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd,
2488  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
2489  * default.
2490  *
2491  * An incoming SYN with a multicast or broadcast destination address, is dropped
2492  * in 1 of 2 places.
2493  *
2494  * 1. If the packet was received over the wire it is dropped in
2495  * ip_rput_process_broadcast()
2496  *
2497  * 2. If the packet was received through internal IP loopback, i.e. the packet
2498  * was generated and received on the same machine, it is dropped in
2499  * ip_wput_local()
2500  *
2501  * An incoming SYN with a multicast or broadcast source address is always
2502  * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to
2503  * reject an attempt to connect to a broadcast or multicast (destination)
2504  * address.
2505  */
2506 static int
2507 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp)
2508 {
2509 	tcp_hsp_t	*hsp;
2510 	ire_t		*ire;
2511 	ire_t		*sire = NULL;
2512 	iulp_t		*ire_uinfo = NULL;
2513 	uint32_t	mss_max;
2514 	uint32_t	mss;
2515 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2516 	conn_t		*connp = tcp->tcp_connp;
2517 	boolean_t	ire_cacheable = B_FALSE;
2518 	zoneid_t	zoneid = connp->conn_zoneid;
2519 	int		match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
2520 	    MATCH_IRE_SECATTR;
2521 	ts_label_t	*tsl = crgetlabel(CONN_CRED(connp));
2522 	ill_t		*ill = NULL;
2523 	boolean_t	incoming = (ire_mp == NULL);
2524 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2525 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
2526 
2527 	ASSERT(connp->conn_ire_cache == NULL);
2528 
2529 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2530 
2531 		if (CLASSD(tcp->tcp_connp->conn_rem)) {
2532 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
2533 			return (0);
2534 		}
2535 		/*
2536 		 * If IP_NEXTHOP is set, then look for an IRE_CACHE
2537 		 * for the destination with the nexthop as gateway.
2538 		 * ire_ctable_lookup() is used because this particular
2539 		 * ire, if it exists, will be marked private.
2540 		 * If that is not available, use the interface ire
2541 		 * for the nexthop.
2542 		 *
2543 		 * TSol: tcp_update_label will detect label mismatches based
2544 		 * only on the destination's label, but that would not
2545 		 * detect label mismatches based on the security attributes
2546 		 * of routes or next hop gateway. Hence we need to pass the
2547 		 * label to ire_ftable_lookup below in order to locate the
2548 		 * right prefix (and/or) ire cache. Similarly we also need
2549 		 * pass the label to the ire_cache_lookup below to locate
2550 		 * the right ire that also matches on the label.
2551 		 */
2552 		if (tcp->tcp_connp->conn_nexthop_set) {
2553 			ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem,
2554 			    tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid,
2555 			    tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW,
2556 			    ipst);
2557 			if (ire == NULL) {
2558 				ire = ire_ftable_lookup(
2559 				    tcp->tcp_connp->conn_nexthop_v4,
2560 				    0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0,
2561 				    tsl, match_flags, ipst);
2562 				if (ire == NULL)
2563 					return (0);
2564 			} else {
2565 				ire_uinfo = &ire->ire_uinfo;
2566 			}
2567 		} else {
2568 			ire = ire_cache_lookup(tcp->tcp_connp->conn_rem,
2569 			    zoneid, tsl, ipst);
2570 			if (ire != NULL) {
2571 				ire_cacheable = B_TRUE;
2572 				ire_uinfo = (ire_mp != NULL) ?
2573 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2574 				    &ire->ire_uinfo;
2575 
2576 			} else {
2577 				if (ire_mp == NULL) {
2578 					ire = ire_ftable_lookup(
2579 					    tcp->tcp_connp->conn_rem,
2580 					    0, 0, 0, NULL, &sire, zoneid, 0,
2581 					    tsl, (MATCH_IRE_RECURSIVE |
2582 					    MATCH_IRE_DEFAULT), ipst);
2583 					if (ire == NULL)
2584 						return (0);
2585 					ire_uinfo = (sire != NULL) ?
2586 					    &sire->ire_uinfo :
2587 					    &ire->ire_uinfo;
2588 				} else {
2589 					ire = (ire_t *)ire_mp->b_rptr;
2590 					ire_uinfo =
2591 					    &((ire_t *)
2592 					    ire_mp->b_rptr)->ire_uinfo;
2593 				}
2594 			}
2595 		}
2596 		ASSERT(ire != NULL);
2597 
2598 		if ((ire->ire_src_addr == INADDR_ANY) ||
2599 		    (ire->ire_type & IRE_BROADCAST)) {
2600 			/*
2601 			 * ire->ire_mp is non null when ire_mp passed in is used
2602 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2603 			 */
2604 			if (ire->ire_mp == NULL)
2605 				ire_refrele(ire);
2606 			if (sire != NULL)
2607 				ire_refrele(sire);
2608 			return (0);
2609 		}
2610 
2611 		if (tcp->tcp_ipha->ipha_src == INADDR_ANY) {
2612 			ipaddr_t src_addr;
2613 
2614 			/*
2615 			 * ip_bind_connected() has stored the correct source
2616 			 * address in conn_src.
2617 			 */
2618 			src_addr = tcp->tcp_connp->conn_src;
2619 			tcp->tcp_ipha->ipha_src = src_addr;
2620 			/*
2621 			 * Copy of the src addr. in tcp_t is needed
2622 			 * for the lookup funcs.
2623 			 */
2624 			IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6);
2625 		}
2626 		/*
2627 		 * Set the fragment bit so that IP will tell us if the MTU
2628 		 * should change. IP tells us the latest setting of
2629 		 * ip_path_mtu_discovery through ire_frag_flag.
2630 		 */
2631 		if (ipst->ips_ip_path_mtu_discovery) {
2632 			tcp->tcp_ipha->ipha_fragment_offset_and_flags =
2633 			    htons(IPH_DF);
2634 		}
2635 		/*
2636 		 * If ire_uinfo is NULL, this is the IRE_INTERFACE case
2637 		 * for IP_NEXTHOP. No cache ire has been found for the
2638 		 * destination and we are working with the nexthop's
2639 		 * interface ire. Since we need to forward all packets
2640 		 * to the nexthop first, we "blindly" set tcp_localnet
2641 		 * to false, eventhough the destination may also be
2642 		 * onlink.
2643 		 */
2644 		if (ire_uinfo == NULL)
2645 			tcp->tcp_localnet = 0;
2646 		else
2647 			tcp->tcp_localnet = (ire->ire_gateway_addr == 0);
2648 	} else {
2649 		/*
2650 		 * For incoming connection ire_mp = NULL
2651 		 * For outgoing connection ire_mp != NULL
2652 		 * Technically we should check conn_incoming_ill
2653 		 * when ire_mp is NULL and conn_outgoing_ill when
2654 		 * ire_mp is non-NULL. But this is performance
2655 		 * critical path and for IPV*_BOUND_IF, outgoing
2656 		 * and incoming ill are always set to the same value.
2657 		 */
2658 		ill_t	*dst_ill = NULL;
2659 		ipif_t  *dst_ipif = NULL;
2660 
2661 		ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
2662 
2663 		if (connp->conn_outgoing_ill != NULL) {
2664 			/* Outgoing or incoming path */
2665 			int   err;
2666 
2667 			dst_ill = conn_get_held_ill(connp,
2668 			    &connp->conn_outgoing_ill, &err);
2669 			if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) {
2670 				ip1dbg(("tcp_adapt_ire: ill_lookup failed\n"));
2671 				return (0);
2672 			}
2673 			match_flags |= MATCH_IRE_ILL;
2674 			dst_ipif = dst_ill->ill_ipif;
2675 		}
2676 		ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6,
2677 		    0, 0, dst_ipif, zoneid, tsl, match_flags, ipst);
2678 
2679 		if (ire != NULL) {
2680 			ire_cacheable = B_TRUE;
2681 			ire_uinfo = (ire_mp != NULL) ?
2682 			    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2683 			    &ire->ire_uinfo;
2684 		} else {
2685 			if (ire_mp == NULL) {
2686 				ire = ire_ftable_lookup_v6(
2687 				    &tcp->tcp_connp->conn_remv6,
2688 				    0, 0, 0, dst_ipif, &sire, zoneid,
2689 				    0, tsl, match_flags, ipst);
2690 				if (ire == NULL) {
2691 					if (dst_ill != NULL)
2692 						ill_refrele(dst_ill);
2693 					return (0);
2694 				}
2695 				ire_uinfo = (sire != NULL) ? &sire->ire_uinfo :
2696 				    &ire->ire_uinfo;
2697 			} else {
2698 				ire = (ire_t *)ire_mp->b_rptr;
2699 				ire_uinfo =
2700 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo;
2701 			}
2702 		}
2703 		if (dst_ill != NULL)
2704 			ill_refrele(dst_ill);
2705 
2706 		ASSERT(ire != NULL);
2707 		ASSERT(ire_uinfo != NULL);
2708 
2709 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) ||
2710 		    IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
2711 			/*
2712 			 * ire->ire_mp is non null when ire_mp passed in is used
2713 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2714 			 */
2715 			if (ire->ire_mp == NULL)
2716 				ire_refrele(ire);
2717 			if (sire != NULL)
2718 				ire_refrele(sire);
2719 			return (0);
2720 		}
2721 
2722 		if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
2723 			in6_addr_t	src_addr;
2724 
2725 			/*
2726 			 * ip_bind_connected_v6() has stored the correct source
2727 			 * address per IPv6 addr. selection policy in
2728 			 * conn_src_v6.
2729 			 */
2730 			src_addr = tcp->tcp_connp->conn_srcv6;
2731 
2732 			tcp->tcp_ip6h->ip6_src = src_addr;
2733 			/*
2734 			 * Copy of the src addr. in tcp_t is needed
2735 			 * for the lookup funcs.
2736 			 */
2737 			tcp->tcp_ip_src_v6 = src_addr;
2738 			ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src,
2739 			    &connp->conn_srcv6));
2740 		}
2741 		tcp->tcp_localnet =
2742 		    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6);
2743 	}
2744 
2745 	/*
2746 	 * This allows applications to fail quickly when connections are made
2747 	 * to dead hosts. Hosts can be labeled dead by adding a reject route
2748 	 * with both the RTF_REJECT and RTF_PRIVATE flags set.
2749 	 */
2750 	if ((ire->ire_flags & RTF_REJECT) &&
2751 	    (ire->ire_flags & RTF_PRIVATE))
2752 		goto error;
2753 
2754 	/*
2755 	 * Make use of the cached rtt and rtt_sd values to calculate the
2756 	 * initial RTO.  Note that they are already initialized in
2757 	 * tcp_init_values().
2758 	 * If ire_uinfo is NULL, i.e., we do not have a cache ire for
2759 	 * IP_NEXTHOP, but instead are using the interface ire for the
2760 	 * nexthop, then we do not use the ire_uinfo from that ire to
2761 	 * do any initializations.
2762 	 */
2763 	if (ire_uinfo != NULL) {
2764 		if (ire_uinfo->iulp_rtt != 0) {
2765 			clock_t	rto;
2766 
2767 			tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt;
2768 			tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd;
2769 			rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2770 			    tcps->tcps_rexmit_interval_extra +
2771 			    (tcp->tcp_rtt_sa >> 5);
2772 
2773 			if (rto > tcps->tcps_rexmit_interval_max) {
2774 				tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
2775 			} else if (rto < tcps->tcps_rexmit_interval_min) {
2776 				tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
2777 			} else {
2778 				tcp->tcp_rto = rto;
2779 			}
2780 		}
2781 		if (ire_uinfo->iulp_ssthresh != 0)
2782 			tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh;
2783 		else
2784 			tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2785 		if (ire_uinfo->iulp_spipe > 0) {
2786 			tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe,
2787 			    tcps->tcps_max_buf);
2788 			if (tcps->tcps_snd_lowat_fraction != 0)
2789 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2790 				    tcps->tcps_snd_lowat_fraction;
2791 			(void) tcp_maxpsz_set(tcp, B_TRUE);
2792 		}
2793 		/*
2794 		 * Note that up till now, acceptor always inherits receive
2795 		 * window from the listener.  But if there is a metrics
2796 		 * associated with a host, we should use that instead of
2797 		 * inheriting it from listener. Thus we need to pass this
2798 		 * info back to the caller.
2799 		 */
2800 		if (ire_uinfo->iulp_rpipe > 0) {
2801 			tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe,
2802 			    tcps->tcps_max_buf);
2803 		}
2804 
2805 		if (ire_uinfo->iulp_rtomax > 0) {
2806 			tcp->tcp_second_timer_threshold =
2807 			    ire_uinfo->iulp_rtomax;
2808 		}
2809 
2810 		/*
2811 		 * Use the metric option settings, iulp_tstamp_ok and
2812 		 * iulp_wscale_ok, only for active open. What this means
2813 		 * is that if the other side uses timestamp or window
2814 		 * scale option, TCP will also use those options. That
2815 		 * is for passive open.  If the application sets a
2816 		 * large window, window scale is enabled regardless of
2817 		 * the value in iulp_wscale_ok.  This is the behavior
2818 		 * since 2.6.  So we keep it.
2819 		 * The only case left in passive open processing is the
2820 		 * check for SACK.
2821 		 * For ECN, it should probably be like SACK.  But the
2822 		 * current value is binary, so we treat it like the other
2823 		 * cases.  The metric only controls active open.For passive
2824 		 * open, the ndd param, tcp_ecn_permitted, controls the
2825 		 * behavior.
2826 		 */
2827 		if (!tcp_detached) {
2828 			/*
2829 			 * The if check means that the following can only
2830 			 * be turned on by the metrics only IRE, but not off.
2831 			 */
2832 			if (ire_uinfo->iulp_tstamp_ok)
2833 				tcp->tcp_snd_ts_ok = B_TRUE;
2834 			if (ire_uinfo->iulp_wscale_ok)
2835 				tcp->tcp_snd_ws_ok = B_TRUE;
2836 			if (ire_uinfo->iulp_sack == 2)
2837 				tcp->tcp_snd_sack_ok = B_TRUE;
2838 			if (ire_uinfo->iulp_ecn_ok)
2839 				tcp->tcp_ecn_ok = B_TRUE;
2840 		} else {
2841 			/*
2842 			 * Passive open.
2843 			 *
2844 			 * As above, the if check means that SACK can only be
2845 			 * turned on by the metric only IRE.
2846 			 */
2847 			if (ire_uinfo->iulp_sack > 0) {
2848 				tcp->tcp_snd_sack_ok = B_TRUE;
2849 			}
2850 		}
2851 	}
2852 
2853 
2854 	/*
2855 	 * XXX: Note that currently, ire_max_frag can be as small as 68
2856 	 * because of PMTUd.  So tcp_mss may go to negative if combined
2857 	 * length of all those options exceeds 28 bytes.  But because
2858 	 * of the tcp_mss_min check below, we may not have a problem if
2859 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
2860 	 * the negative problem still exists.  And the check defeats PMTUd.
2861 	 * In fact, if PMTUd finds that the MSS should be smaller than
2862 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
2863 	 * value.
2864 	 *
2865 	 * We do not deal with that now.  All those problems related to
2866 	 * PMTUd will be fixed later.
2867 	 */
2868 	ASSERT(ire->ire_max_frag != 0);
2869 	mss = tcp->tcp_if_mtu = ire->ire_max_frag;
2870 	if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) {
2871 		if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) {
2872 			mss = MIN(mss, IPV6_MIN_MTU);
2873 		}
2874 	}
2875 
2876 	/* Sanity check for MSS value. */
2877 	if (tcp->tcp_ipversion == IPV4_VERSION)
2878 		mss_max = tcps->tcps_mss_max_ipv4;
2879 	else
2880 		mss_max = tcps->tcps_mss_max_ipv6;
2881 
2882 	if (tcp->tcp_ipversion == IPV6_VERSION &&
2883 	    (ire->ire_frag_flag & IPH_FRAG_HDR)) {
2884 		/*
2885 		 * After receiving an ICMPv6 "packet too big" message with a
2886 		 * MTU < 1280, and for multirouted IPv6 packets, the IP layer
2887 		 * will insert a 8-byte fragment header in every packet; we
2888 		 * reduce the MSS by that amount here.
2889 		 */
2890 		mss -= sizeof (ip6_frag_t);
2891 	}
2892 
2893 	if (tcp->tcp_ipsec_overhead == 0)
2894 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
2895 
2896 	mss -= tcp->tcp_ipsec_overhead;
2897 
2898 	if (mss < tcps->tcps_mss_min)
2899 		mss = tcps->tcps_mss_min;
2900 	if (mss > mss_max)
2901 		mss = mss_max;
2902 
2903 	/* Note that this is the maximum MSS, excluding all options. */
2904 	tcp->tcp_mss = mss;
2905 
2906 	/*
2907 	 * Initialize the ISS here now that we have the full connection ID.
2908 	 * The RFC 1948 method of initial sequence number generation requires
2909 	 * knowledge of the full connection ID before setting the ISS.
2910 	 */
2911 
2912 	tcp_iss_init(tcp);
2913 
2914 	if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL))
2915 		tcp->tcp_loopback = B_TRUE;
2916 
2917 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2918 		hsp = tcp_hsp_lookup(tcp->tcp_remote, tcps);
2919 	} else {
2920 		hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6, tcps);
2921 	}
2922 
2923 	if (hsp != NULL) {
2924 		/* Only modify if we're going to make them bigger */
2925 		if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) {
2926 			tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace;
2927 			if (tcps->tcps_snd_lowat_fraction != 0)
2928 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2929 				    tcps->tcps_snd_lowat_fraction;
2930 		}
2931 
2932 		if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) {
2933 			tcp->tcp_rwnd = hsp->tcp_hsp_recvspace;
2934 		}
2935 
2936 		/* Copy timestamp flag only for active open */
2937 		if (!tcp_detached)
2938 			tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp;
2939 	}
2940 
2941 	if (sire != NULL)
2942 		IRE_REFRELE(sire);
2943 
2944 	/*
2945 	 * If we got an IRE_CACHE and an ILL, go through their properties;
2946 	 * otherwise, this is deferred until later when we have an IRE_CACHE.
2947 	 */
2948 	if (tcp->tcp_loopback ||
2949 	    (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) {
2950 		/*
2951 		 * For incoming, see if this tcp may be MDT-capable.  For
2952 		 * outgoing, this process has been taken care of through
2953 		 * tcp_rput_other.
2954 		 */
2955 		tcp_ire_ill_check(tcp, ire, ill, incoming);
2956 		tcp->tcp_ire_ill_check_done = B_TRUE;
2957 	}
2958 
2959 	mutex_enter(&connp->conn_lock);
2960 	/*
2961 	 * Make sure that conn is not marked incipient
2962 	 * for incoming connections. A blind
2963 	 * removal of incipient flag is cheaper than
2964 	 * check and removal.
2965 	 */
2966 	connp->conn_state_flags &= ~CONN_INCIPIENT;
2967 
2968 	/*
2969 	 * Must not cache forwarding table routes
2970 	 * or recache an IRE after the conn_t has
2971 	 * had conn_ire_cache cleared and is flagged
2972 	 * unusable, (see the CONN_CACHE_IRE() macro).
2973 	 */
2974 	if (ire_cacheable && CONN_CACHE_IRE(connp)) {
2975 		rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
2976 		if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
2977 			connp->conn_ire_cache = ire;
2978 			IRE_UNTRACE_REF(ire);
2979 			rw_exit(&ire->ire_bucket->irb_lock);
2980 			mutex_exit(&connp->conn_lock);
2981 			return (1);
2982 		}
2983 		rw_exit(&ire->ire_bucket->irb_lock);
2984 	}
2985 	mutex_exit(&connp->conn_lock);
2986 
2987 	if (ire->ire_mp == NULL)
2988 		ire_refrele(ire);
2989 	return (1);
2990 
2991 error:
2992 	if (ire->ire_mp == NULL)
2993 		ire_refrele(ire);
2994 	if (sire != NULL)
2995 		ire_refrele(sire);
2996 	return (0);
2997 }
2998 
2999 /*
3000  * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a
3001  * O_T_BIND_REQ/T_BIND_REQ message.
3002  */
3003 static void
3004 tcp_bind(tcp_t *tcp, mblk_t *mp)
3005 {
3006 	sin_t	*sin;
3007 	sin6_t	*sin6;
3008 	mblk_t	*mp1;
3009 	in_port_t requested_port;
3010 	in_port_t allocated_port;
3011 	struct T_bind_req *tbr;
3012 	boolean_t	bind_to_req_port_only;
3013 	boolean_t	backlog_update = B_FALSE;
3014 	boolean_t	user_specified;
3015 	in6_addr_t	v6addr;
3016 	ipaddr_t	v4addr;
3017 	uint_t	origipversion;
3018 	int	err;
3019 	queue_t *q = tcp->tcp_wq;
3020 	conn_t	*connp = tcp->tcp_connp;
3021 	mlp_type_t addrtype, mlptype;
3022 	zone_t	*zone;
3023 	cred_t	*cr;
3024 	in_port_t mlp_port;
3025 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3026 
3027 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
3028 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
3029 		if (tcp->tcp_debug) {
3030 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3031 			    "tcp_bind: bad req, len %u",
3032 			    (uint_t)(mp->b_wptr - mp->b_rptr));
3033 		}
3034 		tcp_err_ack(tcp, mp, TPROTO, 0);
3035 		return;
3036 	}
3037 	/* Make sure the largest address fits */
3038 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
3039 	if (mp1 == NULL) {
3040 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3041 		return;
3042 	}
3043 	mp = mp1;
3044 	tbr = (struct T_bind_req *)mp->b_rptr;
3045 	if (tcp->tcp_state >= TCPS_BOUND) {
3046 		if ((tcp->tcp_state == TCPS_BOUND ||
3047 		    tcp->tcp_state == TCPS_LISTEN) &&
3048 		    tcp->tcp_conn_req_max != tbr->CONIND_number &&
3049 		    tbr->CONIND_number > 0) {
3050 			/*
3051 			 * Handle listen() increasing CONIND_number.
3052 			 * This is more "liberal" then what the TPI spec
3053 			 * requires but is needed to avoid a t_unbind
3054 			 * when handling listen() since the port number
3055 			 * might be "stolen" between the unbind and bind.
3056 			 */
3057 			backlog_update = B_TRUE;
3058 			goto do_bind;
3059 		}
3060 		if (tcp->tcp_debug) {
3061 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3062 			    "tcp_bind: bad state, %d", tcp->tcp_state);
3063 		}
3064 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
3065 		return;
3066 	}
3067 	origipversion = tcp->tcp_ipversion;
3068 
3069 	switch (tbr->ADDR_length) {
3070 	case 0:			/* request for a generic port */
3071 		tbr->ADDR_offset = sizeof (struct T_bind_req);
3072 		if (tcp->tcp_family == AF_INET) {
3073 			tbr->ADDR_length = sizeof (sin_t);
3074 			sin = (sin_t *)&tbr[1];
3075 			*sin = sin_null;
3076 			sin->sin_family = AF_INET;
3077 			mp->b_wptr = (uchar_t *)&sin[1];
3078 			tcp->tcp_ipversion = IPV4_VERSION;
3079 			IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr);
3080 		} else {
3081 			ASSERT(tcp->tcp_family == AF_INET6);
3082 			tbr->ADDR_length = sizeof (sin6_t);
3083 			sin6 = (sin6_t *)&tbr[1];
3084 			*sin6 = sin6_null;
3085 			sin6->sin6_family = AF_INET6;
3086 			mp->b_wptr = (uchar_t *)&sin6[1];
3087 			tcp->tcp_ipversion = IPV6_VERSION;
3088 			V6_SET_ZERO(v6addr);
3089 		}
3090 		requested_port = 0;
3091 		break;
3092 
3093 	case sizeof (sin_t):	/* Complete IPv4 address */
3094 		sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset,
3095 		    sizeof (sin_t));
3096 		if (sin == NULL || !OK_32PTR((char *)sin)) {
3097 			if (tcp->tcp_debug) {
3098 				(void) strlog(TCP_MOD_ID, 0, 1,
3099 				    SL_ERROR|SL_TRACE,
3100 				    "tcp_bind: bad address parameter, "
3101 				    "offset %d, len %d",
3102 				    tbr->ADDR_offset, tbr->ADDR_length);
3103 			}
3104 			tcp_err_ack(tcp, mp, TPROTO, 0);
3105 			return;
3106 		}
3107 		/*
3108 		 * With sockets sockfs will accept bogus sin_family in
3109 		 * bind() and replace it with the family used in the socket
3110 		 * call.
3111 		 */
3112 		if (sin->sin_family != AF_INET ||
3113 		    tcp->tcp_family != AF_INET) {
3114 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3115 			return;
3116 		}
3117 		requested_port = ntohs(sin->sin_port);
3118 		tcp->tcp_ipversion = IPV4_VERSION;
3119 		v4addr = sin->sin_addr.s_addr;
3120 		IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr);
3121 		break;
3122 
3123 	case sizeof (sin6_t): /* Complete IPv6 address */
3124 		sin6 = (sin6_t *)mi_offset_param(mp,
3125 		    tbr->ADDR_offset, sizeof (sin6_t));
3126 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
3127 			if (tcp->tcp_debug) {
3128 				(void) strlog(TCP_MOD_ID, 0, 1,
3129 				    SL_ERROR|SL_TRACE,
3130 				    "tcp_bind: bad IPv6 address parameter, "
3131 				    "offset %d, len %d", tbr->ADDR_offset,
3132 				    tbr->ADDR_length);
3133 			}
3134 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
3135 			return;
3136 		}
3137 		if (sin6->sin6_family != AF_INET6 ||
3138 		    tcp->tcp_family != AF_INET6) {
3139 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3140 			return;
3141 		}
3142 		requested_port = ntohs(sin6->sin6_port);
3143 		tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ?
3144 		    IPV4_VERSION : IPV6_VERSION;
3145 		v6addr = sin6->sin6_addr;
3146 		break;
3147 
3148 	default:
3149 		if (tcp->tcp_debug) {
3150 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3151 			    "tcp_bind: bad address length, %d",
3152 			    tbr->ADDR_length);
3153 		}
3154 		tcp_err_ack(tcp, mp, TBADADDR, 0);
3155 		return;
3156 	}
3157 	tcp->tcp_bound_source_v6 = v6addr;
3158 
3159 	/* Check for change in ipversion */
3160 	if (origipversion != tcp->tcp_ipversion) {
3161 		ASSERT(tcp->tcp_family == AF_INET6);
3162 		err = tcp->tcp_ipversion == IPV6_VERSION ?
3163 		    tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp);
3164 		if (err) {
3165 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3166 			return;
3167 		}
3168 	}
3169 
3170 	/*
3171 	 * Initialize family specific fields. Copy of the src addr.
3172 	 * in tcp_t is needed for the lookup funcs.
3173 	 */
3174 	if (tcp->tcp_ipversion == IPV6_VERSION) {
3175 		tcp->tcp_ip6h->ip6_src = v6addr;
3176 	} else {
3177 		IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src);
3178 	}
3179 	tcp->tcp_ip_src_v6 = v6addr;
3180 
3181 	/*
3182 	 * For O_T_BIND_REQ:
3183 	 * Verify that the target port/addr is available, or choose
3184 	 * another.
3185 	 * For  T_BIND_REQ:
3186 	 * Verify that the target port/addr is available or fail.
3187 	 * In both cases when it succeeds the tcp is inserted in the
3188 	 * bind hash table. This ensures that the operation is atomic
3189 	 * under the lock on the hash bucket.
3190 	 */
3191 	bind_to_req_port_only = requested_port != 0 &&
3192 	    tbr->PRIM_type != O_T_BIND_REQ;
3193 	/*
3194 	 * Get a valid port (within the anonymous range and should not
3195 	 * be a privileged one) to use if the user has not given a port.
3196 	 * If multiple threads are here, they may all start with
3197 	 * with the same initial port. But, it should be fine as long as
3198 	 * tcp_bindi will ensure that no two threads will be assigned
3199 	 * the same port.
3200 	 *
3201 	 * NOTE: XXX If a privileged process asks for an anonymous port, we
3202 	 * still check for ports only in the range > tcp_smallest_non_priv_port,
3203 	 * unless TCP_ANONPRIVBIND option is set.
3204 	 */
3205 	mlptype = mlptSingle;
3206 	mlp_port = requested_port;
3207 	if (requested_port == 0) {
3208 		requested_port = tcp->tcp_anon_priv_bind ?
3209 		    tcp_get_next_priv_port(tcp) :
3210 		    tcp_update_next_port(tcps->tcps_next_port_to_try,
3211 		    tcp, B_TRUE);
3212 		if (requested_port == 0) {
3213 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3214 			return;
3215 		}
3216 		user_specified = B_FALSE;
3217 
3218 		/*
3219 		 * If the user went through one of the RPC interfaces to create
3220 		 * this socket and RPC is MLP in this zone, then give him an
3221 		 * anonymous MLP.
3222 		 */
3223 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3224 		if (connp->conn_anon_mlp && is_system_labeled()) {
3225 			zone = crgetzone(cr);
3226 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3227 			    IPV6_VERSION, &v6addr,
3228 			    tcps->tcps_netstack->netstack_ip);
3229 			if (addrtype == mlptSingle) {
3230 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3231 				return;
3232 			}
3233 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3234 			    PMAPPORT, addrtype);
3235 			mlp_port = PMAPPORT;
3236 		}
3237 	} else {
3238 		int i;
3239 		boolean_t priv = B_FALSE;
3240 
3241 		/*
3242 		 * If the requested_port is in the well-known privileged range,
3243 		 * verify that the stream was opened by a privileged user.
3244 		 * Note: No locks are held when inspecting tcp_g_*epriv_ports
3245 		 * but instead the code relies on:
3246 		 * - the fact that the address of the array and its size never
3247 		 *   changes
3248 		 * - the atomic assignment of the elements of the array
3249 		 */
3250 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3251 		if (requested_port < tcps->tcps_smallest_nonpriv_port) {
3252 			priv = B_TRUE;
3253 		} else {
3254 			for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
3255 				if (requested_port ==
3256 				    tcps->tcps_g_epriv_ports[i]) {
3257 					priv = B_TRUE;
3258 					break;
3259 				}
3260 			}
3261 		}
3262 		if (priv) {
3263 			if (secpolicy_net_privaddr(cr, requested_port,
3264 			    IPPROTO_TCP) != 0) {
3265 				if (tcp->tcp_debug) {
3266 					(void) strlog(TCP_MOD_ID, 0, 1,
3267 					    SL_ERROR|SL_TRACE,
3268 					    "tcp_bind: no priv for port %d",
3269 					    requested_port);
3270 				}
3271 				tcp_err_ack(tcp, mp, TACCES, 0);
3272 				return;
3273 			}
3274 		}
3275 		user_specified = B_TRUE;
3276 
3277 		if (is_system_labeled()) {
3278 			zone = crgetzone(cr);
3279 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3280 			    IPV6_VERSION, &v6addr,
3281 			    tcps->tcps_netstack->netstack_ip);
3282 			if (addrtype == mlptSingle) {
3283 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3284 				return;
3285 			}
3286 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3287 			    requested_port, addrtype);
3288 		}
3289 	}
3290 
3291 	if (mlptype != mlptSingle) {
3292 		if (secpolicy_net_bindmlp(cr) != 0) {
3293 			if (tcp->tcp_debug) {
3294 				(void) strlog(TCP_MOD_ID, 0, 1,
3295 				    SL_ERROR|SL_TRACE,
3296 				    "tcp_bind: no priv for multilevel port %d",
3297 				    requested_port);
3298 			}
3299 			tcp_err_ack(tcp, mp, TACCES, 0);
3300 			return;
3301 		}
3302 
3303 		/*
3304 		 * If we're specifically binding a shared IP address and the
3305 		 * port is MLP on shared addresses, then check to see if this
3306 		 * zone actually owns the MLP.  Reject if not.
3307 		 */
3308 		if (mlptype == mlptShared && addrtype == mlptShared) {
3309 			/*
3310 			 * No need to handle exclusive-stack zones since
3311 			 * ALL_ZONES only applies to the shared stack.
3312 			 */
3313 			zoneid_t mlpzone;
3314 
3315 			mlpzone = tsol_mlp_findzone(IPPROTO_TCP,
3316 			    htons(mlp_port));
3317 			if (connp->conn_zoneid != mlpzone) {
3318 				if (tcp->tcp_debug) {
3319 					(void) strlog(TCP_MOD_ID, 0, 1,
3320 					    SL_ERROR|SL_TRACE,
3321 					    "tcp_bind: attempt to bind port "
3322 					    "%d on shared addr in zone %d "
3323 					    "(should be %d)",
3324 					    mlp_port, connp->conn_zoneid,
3325 					    mlpzone);
3326 				}
3327 				tcp_err_ack(tcp, mp, TACCES, 0);
3328 				return;
3329 			}
3330 		}
3331 
3332 		if (!user_specified) {
3333 			err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3334 			    requested_port, B_TRUE);
3335 			if (err != 0) {
3336 				if (tcp->tcp_debug) {
3337 					(void) strlog(TCP_MOD_ID, 0, 1,
3338 					    SL_ERROR|SL_TRACE,
3339 					    "tcp_bind: cannot establish anon "
3340 					    "MLP for port %d",
3341 					    requested_port);
3342 				}
3343 				tcp_err_ack(tcp, mp, TSYSERR, err);
3344 				return;
3345 			}
3346 			connp->conn_anon_port = B_TRUE;
3347 		}
3348 		connp->conn_mlp_type = mlptype;
3349 	}
3350 
3351 	allocated_port = tcp_bindi(tcp, requested_port, &v6addr,
3352 	    tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified);
3353 
3354 	if (allocated_port == 0) {
3355 		connp->conn_mlp_type = mlptSingle;
3356 		if (connp->conn_anon_port) {
3357 			connp->conn_anon_port = B_FALSE;
3358 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3359 			    requested_port, B_FALSE);
3360 		}
3361 		if (bind_to_req_port_only) {
3362 			if (tcp->tcp_debug) {
3363 				(void) strlog(TCP_MOD_ID, 0, 1,
3364 				    SL_ERROR|SL_TRACE,
3365 				    "tcp_bind: requested addr busy");
3366 			}
3367 			tcp_err_ack(tcp, mp, TADDRBUSY, 0);
3368 		} else {
3369 			/* If we are out of ports, fail the bind. */
3370 			if (tcp->tcp_debug) {
3371 				(void) strlog(TCP_MOD_ID, 0, 1,
3372 				    SL_ERROR|SL_TRACE,
3373 				    "tcp_bind: out of ports?");
3374 			}
3375 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3376 		}
3377 		return;
3378 	}
3379 	ASSERT(tcp->tcp_state == TCPS_BOUND);
3380 do_bind:
3381 	if (!backlog_update) {
3382 		if (tcp->tcp_family == AF_INET)
3383 			sin->sin_port = htons(allocated_port);
3384 		else
3385 			sin6->sin6_port = htons(allocated_port);
3386 	}
3387 	if (tcp->tcp_family == AF_INET) {
3388 		if (tbr->CONIND_number != 0) {
3389 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3390 			    sizeof (sin_t));
3391 		} else {
3392 			/* Just verify the local IP address */
3393 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN);
3394 		}
3395 	} else {
3396 		if (tbr->CONIND_number != 0) {
3397 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3398 			    sizeof (sin6_t));
3399 		} else {
3400 			/* Just verify the local IP address */
3401 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3402 			    IPV6_ADDR_LEN);
3403 		}
3404 	}
3405 	if (mp1 == NULL) {
3406 		if (connp->conn_anon_port) {
3407 			connp->conn_anon_port = B_FALSE;
3408 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3409 			    requested_port, B_FALSE);
3410 		}
3411 		connp->conn_mlp_type = mlptSingle;
3412 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3413 		return;
3414 	}
3415 
3416 	tbr->PRIM_type = T_BIND_ACK;
3417 	mp->b_datap->db_type = M_PCPROTO;
3418 
3419 	/* Chain in the reply mp for tcp_rput() */
3420 	mp1->b_cont = mp;
3421 	mp = mp1;
3422 
3423 	tcp->tcp_conn_req_max = tbr->CONIND_number;
3424 	if (tcp->tcp_conn_req_max) {
3425 		if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min)
3426 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_min;
3427 		if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q)
3428 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q;
3429 		/*
3430 		 * If this is a listener, do not reset the eager list
3431 		 * and other stuffs.  Note that we don't check if the
3432 		 * existing eager list meets the new tcp_conn_req_max
3433 		 * requirement.
3434 		 */
3435 		if (tcp->tcp_state != TCPS_LISTEN) {
3436 			tcp->tcp_state = TCPS_LISTEN;
3437 			/* Initialize the chain. Don't need the eager_lock */
3438 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
3439 			tcp->tcp_eager_next_drop_q0 = tcp;
3440 			tcp->tcp_eager_prev_drop_q0 = tcp;
3441 			tcp->tcp_second_ctimer_threshold =
3442 			    tcps->tcps_ip_abort_linterval;
3443 		}
3444 	}
3445 
3446 	/*
3447 	 * We can call ip_bind directly which returns a T_BIND_ACK mp. The
3448 	 * processing continues in tcp_rput_other().
3449 	 *
3450 	 * We need to make sure that the conn_recv is set to a non-null
3451 	 * value before we insert the conn into the classifier table.
3452 	 * This is to avoid a race with an incoming packet which does an
3453 	 * ipcl_classify().
3454 	 */
3455 	connp->conn_recv = tcp_conn_request;
3456 	if (tcp->tcp_family == AF_INET6) {
3457 		ASSERT(tcp->tcp_connp->conn_af_isv6);
3458 		mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp);
3459 	} else {
3460 		ASSERT(!tcp->tcp_connp->conn_af_isv6);
3461 		mp = ip_bind_v4(q, mp, tcp->tcp_connp);
3462 	}
3463 	/*
3464 	 * If the bind cannot complete immediately
3465 	 * IP will arrange to call tcp_rput_other
3466 	 * when the bind completes.
3467 	 */
3468 	if (mp != NULL) {
3469 		tcp_rput_other(tcp, mp);
3470 	} else {
3471 		/*
3472 		 * Bind will be resumed later. Need to ensure
3473 		 * that conn doesn't disappear when that happens.
3474 		 * This will be decremented in ip_resume_tcp_bind().
3475 		 */
3476 		CONN_INC_REF(tcp->tcp_connp);
3477 	}
3478 }
3479 
3480 
3481 /*
3482  * If the "bind_to_req_port_only" parameter is set, if the requested port
3483  * number is available, return it, If not return 0
3484  *
3485  * If "bind_to_req_port_only" parameter is not set and
3486  * If the requested port number is available, return it.  If not, return
3487  * the first anonymous port we happen across.  If no anonymous ports are
3488  * available, return 0. addr is the requested local address, if any.
3489  *
3490  * In either case, when succeeding update the tcp_t to record the port number
3491  * and insert it in the bind hash table.
3492  *
3493  * Note that TCP over IPv4 and IPv6 sockets can use the same port number
3494  * without setting SO_REUSEADDR. This is needed so that they
3495  * can be viewed as two independent transport protocols.
3496  */
3497 static in_port_t
3498 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
3499     int reuseaddr, boolean_t quick_connect,
3500     boolean_t bind_to_req_port_only, boolean_t user_specified)
3501 {
3502 	/* number of times we have run around the loop */
3503 	int count = 0;
3504 	/* maximum number of times to run around the loop */
3505 	int loopmax;
3506 	conn_t *connp = tcp->tcp_connp;
3507 	zoneid_t zoneid = connp->conn_zoneid;
3508 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3509 
3510 	/*
3511 	 * Lookup for free addresses is done in a loop and "loopmax"
3512 	 * influences how long we spin in the loop
3513 	 */
3514 	if (bind_to_req_port_only) {
3515 		/*
3516 		 * If the requested port is busy, don't bother to look
3517 		 * for a new one. Setting loop maximum count to 1 has
3518 		 * that effect.
3519 		 */
3520 		loopmax = 1;
3521 	} else {
3522 		/*
3523 		 * If the requested port is busy, look for a free one
3524 		 * in the anonymous port range.
3525 		 * Set loopmax appropriately so that one does not look
3526 		 * forever in the case all of the anonymous ports are in use.
3527 		 */
3528 		if (tcp->tcp_anon_priv_bind) {
3529 			/*
3530 			 * loopmax =
3531 			 * 	(IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1
3532 			 */
3533 			loopmax = IPPORT_RESERVED -
3534 			    tcps->tcps_min_anonpriv_port;
3535 		} else {
3536 			loopmax = (tcps->tcps_largest_anon_port -
3537 			    tcps->tcps_smallest_anon_port + 1);
3538 		}
3539 	}
3540 	do {
3541 		uint16_t	lport;
3542 		tf_t		*tbf;
3543 		tcp_t		*ltcp;
3544 		conn_t		*lconnp;
3545 
3546 		lport = htons(port);
3547 
3548 		/*
3549 		 * Ensure that the tcp_t is not currently in the bind hash.
3550 		 * Hold the lock on the hash bucket to ensure that
3551 		 * the duplicate check plus the insertion is an atomic
3552 		 * operation.
3553 		 *
3554 		 * This function does an inline lookup on the bind hash list
3555 		 * Make sure that we access only members of tcp_t
3556 		 * and that we don't look at tcp_tcp, since we are not
3557 		 * doing a CONN_INC_REF.
3558 		 */
3559 		tcp_bind_hash_remove(tcp);
3560 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)];
3561 		mutex_enter(&tbf->tf_lock);
3562 		for (ltcp = tbf->tf_tcp; ltcp != NULL;
3563 		    ltcp = ltcp->tcp_bind_hash) {
3564 			boolean_t not_socket;
3565 			boolean_t exclbind;
3566 
3567 			if (lport != ltcp->tcp_lport)
3568 				continue;
3569 
3570 			lconnp = ltcp->tcp_connp;
3571 
3572 			/*
3573 			 * On a labeled system, we must treat bindings to ports
3574 			 * on shared IP addresses by sockets with MAC exemption
3575 			 * privilege as being in all zones, as there's
3576 			 * otherwise no way to identify the right receiver.
3577 			 */
3578 			if (!(IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) ||
3579 			    IPCL_ZONE_MATCH(connp,
3580 			    ltcp->tcp_connp->conn_zoneid)) &&
3581 			    !lconnp->conn_mac_exempt &&
3582 			    !connp->conn_mac_exempt)
3583 				continue;
3584 
3585 			/*
3586 			 * If TCP_EXCLBIND is set for either the bound or
3587 			 * binding endpoint, the semantics of bind
3588 			 * is changed according to the following.
3589 			 *
3590 			 * spec = specified address (v4 or v6)
3591 			 * unspec = unspecified address (v4 or v6)
3592 			 * A = specified addresses are different for endpoints
3593 			 *
3594 			 * bound	bind to		allowed
3595 			 * -------------------------------------
3596 			 * unspec	unspec		no
3597 			 * unspec	spec		no
3598 			 * spec		unspec		no
3599 			 * spec		spec		yes if A
3600 			 *
3601 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
3602 			 * as TCP_EXCLBIND, except that zoneid is ignored.
3603 			 *
3604 			 * Note:
3605 			 *
3606 			 * 1. Because of TLI semantics, an endpoint can go
3607 			 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or
3608 			 * TCPS_BOUND, depending on whether it is originally
3609 			 * a listener or not.  That is why we need to check
3610 			 * for states greater than or equal to TCPS_BOUND
3611 			 * here.
3612 			 *
3613 			 * 2. Ideally, we should only check for state equals
3614 			 * to TCPS_LISTEN. And the following check should be
3615 			 * added.
3616 			 *
3617 			 * if (ltcp->tcp_state == TCPS_LISTEN ||
3618 			 *	!reuseaddr || !ltcp->tcp_reuseaddr) {
3619 			 *		...
3620 			 * }
3621 			 *
3622 			 * The semantics will be changed to this.  If the
3623 			 * endpoint on the list is in state not equal to
3624 			 * TCPS_LISTEN and both endpoints have SO_REUSEADDR
3625 			 * set, let the bind succeed.
3626 			 *
3627 			 * Because of (1), we cannot do that for TLI
3628 			 * endpoints.  But we can do that for socket endpoints.
3629 			 * If in future, we can change this going back
3630 			 * semantics, we can use the above check for TLI also.
3631 			 */
3632 			not_socket = !(TCP_IS_SOCKET(ltcp) &&
3633 			    TCP_IS_SOCKET(tcp));
3634 			exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind;
3635 
3636 			if (lconnp->conn_mac_exempt || connp->conn_mac_exempt ||
3637 			    (exclbind && (not_socket ||
3638 			    ltcp->tcp_state <= TCPS_ESTABLISHED))) {
3639 				if (V6_OR_V4_INADDR_ANY(
3640 				    ltcp->tcp_bound_source_v6) ||
3641 				    V6_OR_V4_INADDR_ANY(*laddr) ||
3642 				    IN6_ARE_ADDR_EQUAL(laddr,
3643 				    &ltcp->tcp_bound_source_v6)) {
3644 					break;
3645 				}
3646 				continue;
3647 			}
3648 
3649 			/*
3650 			 * Check ipversion to allow IPv4 and IPv6 sockets to
3651 			 * have disjoint port number spaces, if *_EXCLBIND
3652 			 * is not set and only if the application binds to a
3653 			 * specific port. We use the same autoassigned port
3654 			 * number space for IPv4 and IPv6 sockets.
3655 			 */
3656 			if (tcp->tcp_ipversion != ltcp->tcp_ipversion &&
3657 			    bind_to_req_port_only)
3658 				continue;
3659 
3660 			/*
3661 			 * Ideally, we should make sure that the source
3662 			 * address, remote address, and remote port in the
3663 			 * four tuple for this tcp-connection is unique.
3664 			 * However, trying to find out the local source
3665 			 * address would require too much code duplication
3666 			 * with IP, since IP needs needs to have that code
3667 			 * to support userland TCP implementations.
3668 			 */
3669 			if (quick_connect &&
3670 			    (ltcp->tcp_state > TCPS_LISTEN) &&
3671 			    ((tcp->tcp_fport != ltcp->tcp_fport) ||
3672 			    !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
3673 			    &ltcp->tcp_remote_v6)))
3674 				continue;
3675 
3676 			if (!reuseaddr) {
3677 				/*
3678 				 * No socket option SO_REUSEADDR.
3679 				 * If existing port is bound to
3680 				 * a non-wildcard IP address
3681 				 * and the requesting stream is
3682 				 * bound to a distinct
3683 				 * different IP addresses
3684 				 * (non-wildcard, also), keep
3685 				 * going.
3686 				 */
3687 				if (!V6_OR_V4_INADDR_ANY(*laddr) &&
3688 				    !V6_OR_V4_INADDR_ANY(
3689 				    ltcp->tcp_bound_source_v6) &&
3690 				    !IN6_ARE_ADDR_EQUAL(laddr,
3691 				    &ltcp->tcp_bound_source_v6))
3692 					continue;
3693 				if (ltcp->tcp_state >= TCPS_BOUND) {
3694 					/*
3695 					 * This port is being used and
3696 					 * its state is >= TCPS_BOUND,
3697 					 * so we can't bind to it.
3698 					 */
3699 					break;
3700 				}
3701 			} else {
3702 				/*
3703 				 * socket option SO_REUSEADDR is set on the
3704 				 * binding tcp_t.
3705 				 *
3706 				 * If two streams are bound to
3707 				 * same IP address or both addr
3708 				 * and bound source are wildcards
3709 				 * (INADDR_ANY), we want to stop
3710 				 * searching.
3711 				 * We have found a match of IP source
3712 				 * address and source port, which is
3713 				 * refused regardless of the
3714 				 * SO_REUSEADDR setting, so we break.
3715 				 */
3716 				if (IN6_ARE_ADDR_EQUAL(laddr,
3717 				    &ltcp->tcp_bound_source_v6) &&
3718 				    (ltcp->tcp_state == TCPS_LISTEN ||
3719 				    ltcp->tcp_state == TCPS_BOUND))
3720 					break;
3721 			}
3722 		}
3723 		if (ltcp != NULL) {
3724 			/* The port number is busy */
3725 			mutex_exit(&tbf->tf_lock);
3726 		} else {
3727 			/*
3728 			 * This port is ours. Insert in fanout and mark as
3729 			 * bound to prevent others from getting the port
3730 			 * number.
3731 			 */
3732 			tcp->tcp_state = TCPS_BOUND;
3733 			tcp->tcp_lport = htons(port);
3734 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
3735 
3736 			ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH(
3737 			    tcp->tcp_lport)] == tbf);
3738 			tcp_bind_hash_insert(tbf, tcp, 1);
3739 
3740 			mutex_exit(&tbf->tf_lock);
3741 
3742 			/*
3743 			 * We don't want tcp_next_port_to_try to "inherit"
3744 			 * a port number supplied by the user in a bind.
3745 			 */
3746 			if (user_specified)
3747 				return (port);
3748 
3749 			/*
3750 			 * This is the only place where tcp_next_port_to_try
3751 			 * is updated. After the update, it may or may not
3752 			 * be in the valid range.
3753 			 */
3754 			if (!tcp->tcp_anon_priv_bind)
3755 				tcps->tcps_next_port_to_try = port + 1;
3756 			return (port);
3757 		}
3758 
3759 		if (tcp->tcp_anon_priv_bind) {
3760 			port = tcp_get_next_priv_port(tcp);
3761 		} else {
3762 			if (count == 0 && user_specified) {
3763 				/*
3764 				 * We may have to return an anonymous port. So
3765 				 * get one to start with.
3766 				 */
3767 				port =
3768 				    tcp_update_next_port(
3769 				    tcps->tcps_next_port_to_try,
3770 				    tcp, B_TRUE);
3771 				user_specified = B_FALSE;
3772 			} else {
3773 				port = tcp_update_next_port(port + 1, tcp,
3774 				    B_FALSE);
3775 			}
3776 		}
3777 		if (port == 0)
3778 			break;
3779 
3780 		/*
3781 		 * Don't let this loop run forever in the case where
3782 		 * all of the anonymous ports are in use.
3783 		 */
3784 	} while (++count < loopmax);
3785 	return (0);
3786 }
3787 
3788 /*
3789  * tcp_clean_death / tcp_close_detached must not be called more than once
3790  * on a tcp. Thus every function that potentially calls tcp_clean_death
3791  * must check for the tcp state before calling tcp_clean_death.
3792  * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper,
3793  * tcp_timer_handler, all check for the tcp state.
3794  */
3795 /* ARGSUSED */
3796 void
3797 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2)
3798 {
3799 	tcp_t	*tcp = ((conn_t *)arg)->conn_tcp;
3800 
3801 	freemsg(mp);
3802 	if (tcp->tcp_state > TCPS_BOUND)
3803 		(void) tcp_clean_death(((conn_t *)arg)->conn_tcp,
3804 		    ETIMEDOUT, 5);
3805 }
3806 
3807 /*
3808  * We are dying for some reason.  Try to do it gracefully.  (May be called
3809  * as writer.)
3810  *
3811  * Return -1 if the structure was not cleaned up (if the cleanup had to be
3812  * done by a service procedure).
3813  * TBD - Should the return value distinguish between the tcp_t being
3814  * freed and it being reinitialized?
3815  */
3816 static int
3817 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag)
3818 {
3819 	mblk_t	*mp;
3820 	queue_t	*q;
3821 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3822 	sodirect_t	*sodp;
3823 
3824 	TCP_CLD_STAT(tag);
3825 
3826 #if TCP_TAG_CLEAN_DEATH
3827 	tcp->tcp_cleandeathtag = tag;
3828 #endif
3829 
3830 	if (tcp->tcp_fused)
3831 		tcp_unfuse(tcp);
3832 
3833 	if (tcp->tcp_linger_tid != 0 &&
3834 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3835 		tcp_stop_lingering(tcp);
3836 	}
3837 
3838 	ASSERT(tcp != NULL);
3839 	ASSERT((tcp->tcp_family == AF_INET &&
3840 	    tcp->tcp_ipversion == IPV4_VERSION) ||
3841 	    (tcp->tcp_family == AF_INET6 &&
3842 	    (tcp->tcp_ipversion == IPV4_VERSION ||
3843 	    tcp->tcp_ipversion == IPV6_VERSION)));
3844 
3845 	if (TCP_IS_DETACHED(tcp)) {
3846 		if (tcp->tcp_hard_binding) {
3847 			/*
3848 			 * Its an eager that we are dealing with. We close the
3849 			 * eager but in case a conn_ind has already gone to the
3850 			 * listener, let tcp_accept_finish() send a discon_ind
3851 			 * to the listener and drop the last reference. If the
3852 			 * listener doesn't even know about the eager i.e. the
3853 			 * conn_ind hasn't gone up, blow away the eager and drop
3854 			 * the last reference as well. If the conn_ind has gone
3855 			 * up, state should be BOUND. tcp_accept_finish
3856 			 * will figure out that the connection has received a
3857 			 * RST and will send a DISCON_IND to the application.
3858 			 */
3859 			tcp_closei_local(tcp);
3860 			if (!tcp->tcp_tconnind_started) {
3861 				CONN_DEC_REF(tcp->tcp_connp);
3862 			} else {
3863 				tcp->tcp_state = TCPS_BOUND;
3864 			}
3865 		} else {
3866 			tcp_close_detached(tcp);
3867 		}
3868 		return (0);
3869 	}
3870 
3871 	TCP_STAT(tcps, tcp_clean_death_nondetached);
3872 
3873 	/* If sodirect, not anymore */
3874 	SOD_PTR_ENTER(tcp, sodp);
3875 	if (sodp != NULL) {
3876 		tcp->tcp_sodirect = NULL;
3877 		mutex_exit(sodp->sod_lockp);
3878 	}
3879 
3880 	q = tcp->tcp_rq;
3881 
3882 	/* Trash all inbound data */
3883 	flushq(q, FLUSHALL);
3884 
3885 	/*
3886 	 * If we are at least part way open and there is error
3887 	 * (err==0 implies no error)
3888 	 * notify our client by a T_DISCON_IND.
3889 	 */
3890 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
3891 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
3892 		    !TCP_IS_SOCKET(tcp)) {
3893 			/*
3894 			 * Send M_FLUSH according to TPI. Because sockets will
3895 			 * (and must) ignore FLUSHR we do that only for TPI
3896 			 * endpoints and sockets in STREAMS mode.
3897 			 */
3898 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
3899 		}
3900 		if (tcp->tcp_debug) {
3901 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
3902 			    "tcp_clean_death: discon err %d", err);
3903 		}
3904 		mp = mi_tpi_discon_ind(NULL, err, 0);
3905 		if (mp != NULL) {
3906 			putnext(q, mp);
3907 		} else {
3908 			if (tcp->tcp_debug) {
3909 				(void) strlog(TCP_MOD_ID, 0, 1,
3910 				    SL_ERROR|SL_TRACE,
3911 				    "tcp_clean_death, sending M_ERROR");
3912 			}
3913 			(void) putnextctl1(q, M_ERROR, EPROTO);
3914 		}
3915 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
3916 			/* SYN_SENT or SYN_RCVD */
3917 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
3918 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
3919 			/* ESTABLISHED or CLOSE_WAIT */
3920 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
3921 		}
3922 	}
3923 
3924 	tcp_reinit(tcp);
3925 	return (-1);
3926 }
3927 
3928 /*
3929  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
3930  * to expire, stop the wait and finish the close.
3931  */
3932 static void
3933 tcp_stop_lingering(tcp_t *tcp)
3934 {
3935 	clock_t	delta = 0;
3936 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3937 
3938 	tcp->tcp_linger_tid = 0;
3939 	if (tcp->tcp_state > TCPS_LISTEN) {
3940 		tcp_acceptor_hash_remove(tcp);
3941 		mutex_enter(&tcp->tcp_non_sq_lock);
3942 		if (tcp->tcp_flow_stopped) {
3943 			tcp_clrqfull(tcp);
3944 		}
3945 		mutex_exit(&tcp->tcp_non_sq_lock);
3946 
3947 		if (tcp->tcp_timer_tid != 0) {
3948 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3949 			tcp->tcp_timer_tid = 0;
3950 		}
3951 		/*
3952 		 * Need to cancel those timers which will not be used when
3953 		 * TCP is detached.  This has to be done before the tcp_wq
3954 		 * is set to the global queue.
3955 		 */
3956 		tcp_timers_stop(tcp);
3957 
3958 
3959 		tcp->tcp_detached = B_TRUE;
3960 		ASSERT(tcps->tcps_g_q != NULL);
3961 		tcp->tcp_rq = tcps->tcps_g_q;
3962 		tcp->tcp_wq = WR(tcps->tcps_g_q);
3963 
3964 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
3965 			tcp_time_wait_append(tcp);
3966 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
3967 			goto finish;
3968 		}
3969 
3970 		/*
3971 		 * If delta is zero the timer event wasn't executed and was
3972 		 * successfully canceled. In this case we need to restart it
3973 		 * with the minimal delta possible.
3974 		 */
3975 		if (delta >= 0) {
3976 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
3977 			    delta ? delta : 1);
3978 		}
3979 	} else {
3980 		tcp_closei_local(tcp);
3981 		CONN_DEC_REF(tcp->tcp_connp);
3982 	}
3983 finish:
3984 	/* Signal closing thread that it can complete close */
3985 	mutex_enter(&tcp->tcp_closelock);
3986 	tcp->tcp_detached = B_TRUE;
3987 	ASSERT(tcps->tcps_g_q != NULL);
3988 	tcp->tcp_rq = tcps->tcps_g_q;
3989 	tcp->tcp_wq = WR(tcps->tcps_g_q);
3990 	tcp->tcp_closed = 1;
3991 	cv_signal(&tcp->tcp_closecv);
3992 	mutex_exit(&tcp->tcp_closelock);
3993 }
3994 
3995 /*
3996  * Handle lingering timeouts. This function is called when the SO_LINGER timeout
3997  * expires.
3998  */
3999 static void
4000 tcp_close_linger_timeout(void *arg)
4001 {
4002 	conn_t	*connp = (conn_t *)arg;
4003 	tcp_t 	*tcp = connp->conn_tcp;
4004 
4005 	tcp->tcp_client_errno = ETIMEDOUT;
4006 	tcp_stop_lingering(tcp);
4007 }
4008 
4009 static int
4010 tcp_close(queue_t *q, int flags)
4011 {
4012 	conn_t		*connp = Q_TO_CONN(q);
4013 	tcp_t		*tcp = connp->conn_tcp;
4014 	mblk_t 		*mp = &tcp->tcp_closemp;
4015 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
4016 	mblk_t		*bp;
4017 
4018 	ASSERT(WR(q)->q_next == NULL);
4019 	ASSERT(connp->conn_ref >= 2);
4020 
4021 	/*
4022 	 * We are being closed as /dev/tcp or /dev/tcp6.
4023 	 *
4024 	 * Mark the conn as closing. ill_pending_mp_add will not
4025 	 * add any mp to the pending mp list, after this conn has
4026 	 * started closing. Same for sq_pending_mp_add
4027 	 */
4028 	mutex_enter(&connp->conn_lock);
4029 	connp->conn_state_flags |= CONN_CLOSING;
4030 	if (connp->conn_oper_pending_ill != NULL)
4031 		conn_ioctl_cleanup_reqd = B_TRUE;
4032 	CONN_INC_REF_LOCKED(connp);
4033 	mutex_exit(&connp->conn_lock);
4034 	tcp->tcp_closeflags = (uint8_t)flags;
4035 	ASSERT(connp->conn_ref >= 3);
4036 
4037 	/*
4038 	 * tcp_closemp_used is used below without any protection of a lock
4039 	 * as we don't expect any one else to use it concurrently at this
4040 	 * point otherwise it would be a major defect.
4041 	 */
4042 
4043 	if (mp->b_prev == NULL)
4044 		tcp->tcp_closemp_used = B_TRUE;
4045 	else
4046 		cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: "
4047 		    "connp %p tcp %p\n", (void *)connp, (void *)tcp);
4048 
4049 	TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
4050 
4051 	(*tcp_squeue_close_proc)(connp->conn_sqp, mp,
4052 	    tcp_close_output, connp, SQTAG_IP_TCP_CLOSE);
4053 
4054 	mutex_enter(&tcp->tcp_closelock);
4055 	while (!tcp->tcp_closed) {
4056 		if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
4057 			/*
4058 			 * The cv_wait_sig() was interrupted. We now do the
4059 			 * following:
4060 			 *
4061 			 * 1) If the endpoint was lingering, we allow this
4062 			 * to be interrupted by cancelling the linger timeout
4063 			 * and closing normally.
4064 			 *
4065 			 * 2) Revert to calling cv_wait()
4066 			 *
4067 			 * We revert to using cv_wait() to avoid an
4068 			 * infinite loop which can occur if the calling
4069 			 * thread is higher priority than the squeue worker
4070 			 * thread and is bound to the same cpu.
4071 			 */
4072 			if (tcp->tcp_linger && tcp->tcp_lingertime > 0) {
4073 				mutex_exit(&tcp->tcp_closelock);
4074 				/* Entering squeue, bump ref count. */
4075 				CONN_INC_REF(connp);
4076 				bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
4077 				squeue_enter(connp->conn_sqp, bp,
4078 				    tcp_linger_interrupted, connp,
4079 				    SQTAG_IP_TCP_CLOSE);
4080 				mutex_enter(&tcp->tcp_closelock);
4081 			}
4082 			break;
4083 		}
4084 	}
4085 	while (!tcp->tcp_closed)
4086 		cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
4087 	mutex_exit(&tcp->tcp_closelock);
4088 
4089 	/*
4090 	 * In the case of listener streams that have eagers in the q or q0
4091 	 * we wait for the eagers to drop their reference to us. tcp_rq and
4092 	 * tcp_wq of the eagers point to our queues. By waiting for the
4093 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
4094 	 * up their queue pointers and also dropped their references to us.
4095 	 */
4096 	if (tcp->tcp_wait_for_eagers) {
4097 		mutex_enter(&connp->conn_lock);
4098 		while (connp->conn_ref != 1) {
4099 			cv_wait(&connp->conn_cv, &connp->conn_lock);
4100 		}
4101 		mutex_exit(&connp->conn_lock);
4102 	}
4103 	/*
4104 	 * ioctl cleanup. The mp is queued in the
4105 	 * ill_pending_mp or in the sq_pending_mp.
4106 	 */
4107 	if (conn_ioctl_cleanup_reqd)
4108 		conn_ioctl_cleanup(connp);
4109 
4110 	qprocsoff(q);
4111 	inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
4112 
4113 	tcp->tcp_cpid = -1;
4114 
4115 	/*
4116 	 * Drop IP's reference on the conn. This is the last reference
4117 	 * on the connp if the state was less than established. If the
4118 	 * connection has gone into timewait state, then we will have
4119 	 * one ref for the TCP and one more ref (total of two) for the
4120 	 * classifier connected hash list (a timewait connections stays
4121 	 * in connected hash till closed).
4122 	 *
4123 	 * We can't assert the references because there might be other
4124 	 * transient reference places because of some walkers or queued
4125 	 * packets in squeue for the timewait state.
4126 	 */
4127 	CONN_DEC_REF(connp);
4128 	q->q_ptr = WR(q)->q_ptr = NULL;
4129 	return (0);
4130 }
4131 
4132 static int
4133 tcpclose_accept(queue_t *q)
4134 {
4135 	vmem_t	*minor_arena;
4136 	dev_t	conn_dev;
4137 
4138 	ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit);
4139 
4140 	/*
4141 	 * We had opened an acceptor STREAM for sockfs which is
4142 	 * now being closed due to some error.
4143 	 */
4144 	qprocsoff(q);
4145 
4146 	minor_arena = (vmem_t *)WR(q)->q_ptr;
4147 	conn_dev = (dev_t)RD(q)->q_ptr;
4148 	ASSERT(minor_arena != NULL);
4149 	ASSERT(conn_dev != 0);
4150 	inet_minor_free(minor_arena, conn_dev);
4151 	q->q_ptr = WR(q)->q_ptr = NULL;
4152 	return (0);
4153 }
4154 
4155 /*
4156  * Called by tcp_close() routine via squeue when lingering is
4157  * interrupted by a signal.
4158  */
4159 
4160 /* ARGSUSED */
4161 static void
4162 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2)
4163 {
4164 	conn_t	*connp = (conn_t *)arg;
4165 	tcp_t	*tcp = connp->conn_tcp;
4166 
4167 	freeb(mp);
4168 	if (tcp->tcp_linger_tid != 0 &&
4169 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
4170 		tcp_stop_lingering(tcp);
4171 		tcp->tcp_client_errno = EINTR;
4172 	}
4173 }
4174 
4175 /*
4176  * Called by streams close routine via squeues when our client blows off her
4177  * descriptor, we take this to mean: "close the stream state NOW, close the tcp
4178  * connection politely" When SO_LINGER is set (with a non-zero linger time and
4179  * it is not a nonblocking socket) then this routine sleeps until the FIN is
4180  * acked.
4181  *
4182  * NOTE: tcp_close potentially returns error when lingering.
4183  * However, the stream head currently does not pass these errors
4184  * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK
4185  * errors to the application (from tsleep()) and not errors
4186  * like ECONNRESET caused by receiving a reset packet.
4187  */
4188 
4189 /* ARGSUSED */
4190 static void
4191 tcp_close_output(void *arg, mblk_t *mp, void *arg2)
4192 {
4193 	char	*msg;
4194 	conn_t	*connp = (conn_t *)arg;
4195 	tcp_t	*tcp = connp->conn_tcp;
4196 	clock_t	delta = 0;
4197 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4198 
4199 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
4200 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
4201 
4202 	mutex_enter(&tcp->tcp_eager_lock);
4203 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
4204 		/* Cleanup for listener */
4205 		tcp_eager_cleanup(tcp, 0);
4206 		tcp->tcp_wait_for_eagers = 1;
4207 	}
4208 	mutex_exit(&tcp->tcp_eager_lock);
4209 
4210 	connp->conn_mdt_ok = B_FALSE;
4211 	tcp->tcp_mdt = B_FALSE;
4212 
4213 	connp->conn_lso_ok = B_FALSE;
4214 	tcp->tcp_lso = B_FALSE;
4215 
4216 	msg = NULL;
4217 	switch (tcp->tcp_state) {
4218 	case TCPS_CLOSED:
4219 	case TCPS_IDLE:
4220 	case TCPS_BOUND:
4221 	case TCPS_LISTEN:
4222 		break;
4223 	case TCPS_SYN_SENT:
4224 		msg = "tcp_close, during connect";
4225 		break;
4226 	case TCPS_SYN_RCVD:
4227 		/*
4228 		 * Close during the connect 3-way handshake
4229 		 * but here there may or may not be pending data
4230 		 * already on queue. Process almost same as in
4231 		 * the ESTABLISHED state.
4232 		 */
4233 		/* FALLTHRU */
4234 	default:
4235 		if (tcp->tcp_sodirect != NULL) {
4236 			/* Ok, no more sodirect */
4237 			tcp->tcp_sodirect = NULL;
4238 		}
4239 
4240 		if (tcp->tcp_fused)
4241 			tcp_unfuse(tcp);
4242 
4243 		/*
4244 		 * If SO_LINGER has set a zero linger time, abort the
4245 		 * connection with a reset.
4246 		 */
4247 		if (tcp->tcp_linger && tcp->tcp_lingertime == 0) {
4248 			msg = "tcp_close, zero lingertime";
4249 			break;
4250 		}
4251 
4252 		ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding);
4253 		/*
4254 		 * Abort connection if there is unread data queued.
4255 		 */
4256 		if (tcp->tcp_rcv_list || tcp->tcp_reass_head) {
4257 			msg = "tcp_close, unread data";
4258 			break;
4259 		}
4260 		/*
4261 		 * tcp_hard_bound is now cleared thus all packets go through
4262 		 * tcp_lookup. This fact is used by tcp_detach below.
4263 		 *
4264 		 * We have done a qwait() above which could have possibly
4265 		 * drained more messages in turn causing transition to a
4266 		 * different state. Check whether we have to do the rest
4267 		 * of the processing or not.
4268 		 */
4269 		if (tcp->tcp_state <= TCPS_LISTEN)
4270 			break;
4271 
4272 		/*
4273 		 * Transmit the FIN before detaching the tcp_t.
4274 		 * After tcp_detach returns this queue/perimeter
4275 		 * no longer owns the tcp_t thus others can modify it.
4276 		 */
4277 		(void) tcp_xmit_end(tcp);
4278 
4279 		/*
4280 		 * If lingering on close then wait until the fin is acked,
4281 		 * the SO_LINGER time passes, or a reset is sent/received.
4282 		 */
4283 		if (tcp->tcp_linger && tcp->tcp_lingertime > 0 &&
4284 		    !(tcp->tcp_fin_acked) &&
4285 		    tcp->tcp_state >= TCPS_ESTABLISHED) {
4286 			if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) {
4287 				tcp->tcp_client_errno = EWOULDBLOCK;
4288 			} else if (tcp->tcp_client_errno == 0) {
4289 
4290 				ASSERT(tcp->tcp_linger_tid == 0);
4291 
4292 				tcp->tcp_linger_tid = TCP_TIMER(tcp,
4293 				    tcp_close_linger_timeout,
4294 				    tcp->tcp_lingertime * hz);
4295 
4296 				/* tcp_close_linger_timeout will finish close */
4297 				if (tcp->tcp_linger_tid == 0)
4298 					tcp->tcp_client_errno = ENOSR;
4299 				else
4300 					return;
4301 			}
4302 
4303 			/*
4304 			 * Check if we need to detach or just close
4305 			 * the instance.
4306 			 */
4307 			if (tcp->tcp_state <= TCPS_LISTEN)
4308 				break;
4309 		}
4310 
4311 		/*
4312 		 * Make sure that no other thread will access the tcp_rq of
4313 		 * this instance (through lookups etc.) as tcp_rq will go
4314 		 * away shortly.
4315 		 */
4316 		tcp_acceptor_hash_remove(tcp);
4317 
4318 		mutex_enter(&tcp->tcp_non_sq_lock);
4319 		if (tcp->tcp_flow_stopped) {
4320 			tcp_clrqfull(tcp);
4321 		}
4322 		mutex_exit(&tcp->tcp_non_sq_lock);
4323 
4324 		if (tcp->tcp_timer_tid != 0) {
4325 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4326 			tcp->tcp_timer_tid = 0;
4327 		}
4328 		/*
4329 		 * Need to cancel those timers which will not be used when
4330 		 * TCP is detached.  This has to be done before the tcp_wq
4331 		 * is set to the global queue.
4332 		 */
4333 		tcp_timers_stop(tcp);
4334 
4335 		tcp->tcp_detached = B_TRUE;
4336 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
4337 			tcp_time_wait_append(tcp);
4338 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
4339 			ASSERT(connp->conn_ref >= 3);
4340 			goto finish;
4341 		}
4342 
4343 		/*
4344 		 * If delta is zero the timer event wasn't executed and was
4345 		 * successfully canceled. In this case we need to restart it
4346 		 * with the minimal delta possible.
4347 		 */
4348 		if (delta >= 0)
4349 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
4350 			    delta ? delta : 1);
4351 
4352 		ASSERT(connp->conn_ref >= 3);
4353 		goto finish;
4354 	}
4355 
4356 	/* Detach did not complete. Still need to remove q from stream. */
4357 	if (msg) {
4358 		if (tcp->tcp_state == TCPS_ESTABLISHED ||
4359 		    tcp->tcp_state == TCPS_CLOSE_WAIT)
4360 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
4361 		if (tcp->tcp_state == TCPS_SYN_SENT ||
4362 		    tcp->tcp_state == TCPS_SYN_RCVD)
4363 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
4364 		tcp_xmit_ctl(msg, tcp,  tcp->tcp_snxt, 0, TH_RST);
4365 	}
4366 
4367 	tcp_closei_local(tcp);
4368 	CONN_DEC_REF(connp);
4369 	ASSERT(connp->conn_ref >= 2);
4370 
4371 finish:
4372 	/*
4373 	 * Although packets are always processed on the correct
4374 	 * tcp's perimeter and access is serialized via squeue's,
4375 	 * IP still needs a queue when sending packets in time_wait
4376 	 * state so use WR(tcps_g_q) till ip_output() can be
4377 	 * changed to deal with just connp. For read side, we
4378 	 * could have set tcp_rq to NULL but there are some cases
4379 	 * in tcp_rput_data() from early days of this code which
4380 	 * do a putnext without checking if tcp is closed. Those
4381 	 * need to be identified before both tcp_rq and tcp_wq
4382 	 * can be set to NULL and tcps_g_q can disappear forever.
4383 	 */
4384 	mutex_enter(&tcp->tcp_closelock);
4385 	/*
4386 	 * Don't change the queues in the case of a listener that has
4387 	 * eagers in its q or q0. It could surprise the eagers.
4388 	 * Instead wait for the eagers outside the squeue.
4389 	 */
4390 	if (!tcp->tcp_wait_for_eagers) {
4391 		tcp->tcp_detached = B_TRUE;
4392 		/*
4393 		 * When default queue is closing we set tcps_g_q to NULL
4394 		 * after the close is done.
4395 		 */
4396 		ASSERT(tcps->tcps_g_q != NULL);
4397 		tcp->tcp_rq = tcps->tcps_g_q;
4398 		tcp->tcp_wq = WR(tcps->tcps_g_q);
4399 	}
4400 
4401 	/* Signal tcp_close() to finish closing. */
4402 	tcp->tcp_closed = 1;
4403 	cv_signal(&tcp->tcp_closecv);
4404 	mutex_exit(&tcp->tcp_closelock);
4405 }
4406 
4407 
4408 /*
4409  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
4410  * Some stream heads get upset if they see these later on as anything but NULL.
4411  */
4412 static void
4413 tcp_close_mpp(mblk_t **mpp)
4414 {
4415 	mblk_t	*mp;
4416 
4417 	if ((mp = *mpp) != NULL) {
4418 		do {
4419 			mp->b_next = NULL;
4420 			mp->b_prev = NULL;
4421 		} while ((mp = mp->b_cont) != NULL);
4422 
4423 		mp = *mpp;
4424 		*mpp = NULL;
4425 		freemsg(mp);
4426 	}
4427 }
4428 
4429 /* Do detached close. */
4430 static void
4431 tcp_close_detached(tcp_t *tcp)
4432 {
4433 	if (tcp->tcp_fused)
4434 		tcp_unfuse(tcp);
4435 
4436 	/*
4437 	 * Clustering code serializes TCP disconnect callbacks and
4438 	 * cluster tcp list walks by blocking a TCP disconnect callback
4439 	 * if a cluster tcp list walk is in progress. This ensures
4440 	 * accurate accounting of TCPs in the cluster code even though
4441 	 * the TCP list walk itself is not atomic.
4442 	 */
4443 	tcp_closei_local(tcp);
4444 	CONN_DEC_REF(tcp->tcp_connp);
4445 }
4446 
4447 /*
4448  * Stop all TCP timers, and free the timer mblks if requested.
4449  */
4450 void
4451 tcp_timers_stop(tcp_t *tcp)
4452 {
4453 	if (tcp->tcp_timer_tid != 0) {
4454 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4455 		tcp->tcp_timer_tid = 0;
4456 	}
4457 	if (tcp->tcp_ka_tid != 0) {
4458 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid);
4459 		tcp->tcp_ka_tid = 0;
4460 	}
4461 	if (tcp->tcp_ack_tid != 0) {
4462 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
4463 		tcp->tcp_ack_tid = 0;
4464 	}
4465 	if (tcp->tcp_push_tid != 0) {
4466 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
4467 		tcp->tcp_push_tid = 0;
4468 	}
4469 }
4470 
4471 /*
4472  * The tcp_t is going away. Remove it from all lists and set it
4473  * to TCPS_CLOSED. The freeing up of memory is deferred until
4474  * tcp_inactive. This is needed since a thread in tcp_rput might have
4475  * done a CONN_INC_REF on this structure before it was removed from the
4476  * hashes.
4477  */
4478 static void
4479 tcp_closei_local(tcp_t *tcp)
4480 {
4481 	ire_t 	*ire;
4482 	conn_t	*connp = tcp->tcp_connp;
4483 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4484 
4485 	if (!TCP_IS_SOCKET(tcp))
4486 		tcp_acceptor_hash_remove(tcp);
4487 
4488 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
4489 	tcp->tcp_ibsegs = 0;
4490 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
4491 	tcp->tcp_obsegs = 0;
4492 
4493 	/*
4494 	 * If we are an eager connection hanging off a listener that
4495 	 * hasn't formally accepted the connection yet, get off his
4496 	 * list and blow off any data that we have accumulated.
4497 	 */
4498 	if (tcp->tcp_listener != NULL) {
4499 		tcp_t	*listener = tcp->tcp_listener;
4500 		mutex_enter(&listener->tcp_eager_lock);
4501 		/*
4502 		 * tcp_tconnind_started == B_TRUE means that the
4503 		 * conn_ind has already gone to listener. At
4504 		 * this point, eager will be closed but we
4505 		 * leave it in listeners eager list so that
4506 		 * if listener decides to close without doing
4507 		 * accept, we can clean this up. In tcp_wput_accept
4508 		 * we take care of the case of accept on closed
4509 		 * eager.
4510 		 */
4511 		if (!tcp->tcp_tconnind_started) {
4512 			tcp_eager_unlink(tcp);
4513 			mutex_exit(&listener->tcp_eager_lock);
4514 			/*
4515 			 * We don't want to have any pointers to the
4516 			 * listener queue, after we have released our
4517 			 * reference on the listener
4518 			 */
4519 			ASSERT(tcps->tcps_g_q != NULL);
4520 			tcp->tcp_rq = tcps->tcps_g_q;
4521 			tcp->tcp_wq = WR(tcps->tcps_g_q);
4522 			CONN_DEC_REF(listener->tcp_connp);
4523 		} else {
4524 			mutex_exit(&listener->tcp_eager_lock);
4525 		}
4526 	}
4527 
4528 	/* Stop all the timers */
4529 	tcp_timers_stop(tcp);
4530 
4531 	if (tcp->tcp_state == TCPS_LISTEN) {
4532 		if (tcp->tcp_ip_addr_cache) {
4533 			kmem_free((void *)tcp->tcp_ip_addr_cache,
4534 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
4535 			tcp->tcp_ip_addr_cache = NULL;
4536 		}
4537 	}
4538 	mutex_enter(&tcp->tcp_non_sq_lock);
4539 	if (tcp->tcp_flow_stopped)
4540 		tcp_clrqfull(tcp);
4541 	mutex_exit(&tcp->tcp_non_sq_lock);
4542 
4543 	tcp_bind_hash_remove(tcp);
4544 	/*
4545 	 * If the tcp_time_wait_collector (which runs outside the squeue)
4546 	 * is trying to remove this tcp from the time wait list, we will
4547 	 * block in tcp_time_wait_remove while trying to acquire the
4548 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
4549 	 * requires the ipcl_hash_remove to be ordered after the
4550 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
4551 	 */
4552 	if (tcp->tcp_state == TCPS_TIME_WAIT)
4553 		(void) tcp_time_wait_remove(tcp, NULL);
4554 	CL_INET_DISCONNECT(tcp);
4555 	ipcl_hash_remove(connp);
4556 
4557 	/*
4558 	 * Delete the cached ire in conn_ire_cache and also mark
4559 	 * the conn as CONDEMNED
4560 	 */
4561 	mutex_enter(&connp->conn_lock);
4562 	connp->conn_state_flags |= CONN_CONDEMNED;
4563 	ire = connp->conn_ire_cache;
4564 	connp->conn_ire_cache = NULL;
4565 	mutex_exit(&connp->conn_lock);
4566 	if (ire != NULL)
4567 		IRE_REFRELE_NOTR(ire);
4568 
4569 	/* Need to cleanup any pending ioctls */
4570 	ASSERT(tcp->tcp_time_wait_next == NULL);
4571 	ASSERT(tcp->tcp_time_wait_prev == NULL);
4572 	ASSERT(tcp->tcp_time_wait_expire == 0);
4573 	tcp->tcp_state = TCPS_CLOSED;
4574 
4575 	/* Release any SSL context */
4576 	if (tcp->tcp_kssl_ent != NULL) {
4577 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
4578 		tcp->tcp_kssl_ent = NULL;
4579 	}
4580 	if (tcp->tcp_kssl_ctx != NULL) {
4581 		kssl_release_ctx(tcp->tcp_kssl_ctx);
4582 		tcp->tcp_kssl_ctx = NULL;
4583 	}
4584 	tcp->tcp_kssl_pending = B_FALSE;
4585 
4586 	tcp_ipsec_cleanup(tcp);
4587 }
4588 
4589 /*
4590  * tcp is dying (called from ipcl_conn_destroy and error cases).
4591  * Free the tcp_t in either case.
4592  */
4593 void
4594 tcp_free(tcp_t *tcp)
4595 {
4596 	mblk_t	*mp;
4597 	ip6_pkt_t	*ipp;
4598 
4599 	ASSERT(tcp != NULL);
4600 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
4601 
4602 	tcp->tcp_rq = NULL;
4603 	tcp->tcp_wq = NULL;
4604 
4605 	tcp_close_mpp(&tcp->tcp_xmit_head);
4606 	tcp_close_mpp(&tcp->tcp_reass_head);
4607 	if (tcp->tcp_rcv_list != NULL) {
4608 		/* Free b_next chain */
4609 		tcp_close_mpp(&tcp->tcp_rcv_list);
4610 	}
4611 	if ((mp = tcp->tcp_urp_mp) != NULL) {
4612 		freemsg(mp);
4613 	}
4614 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
4615 		freemsg(mp);
4616 	}
4617 
4618 	if (tcp->tcp_fused_sigurg_mp != NULL) {
4619 		freeb(tcp->tcp_fused_sigurg_mp);
4620 		tcp->tcp_fused_sigurg_mp = NULL;
4621 	}
4622 
4623 	if (tcp->tcp_ordrel_mp != NULL) {
4624 		freeb(tcp->tcp_ordrel_mp);
4625 		tcp->tcp_ordrel_mp = NULL;
4626 	}
4627 
4628 	if (tcp->tcp_sack_info != NULL) {
4629 		if (tcp->tcp_notsack_list != NULL) {
4630 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
4631 		}
4632 		bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
4633 	}
4634 
4635 	if (tcp->tcp_hopopts != NULL) {
4636 		mi_free(tcp->tcp_hopopts);
4637 		tcp->tcp_hopopts = NULL;
4638 		tcp->tcp_hopoptslen = 0;
4639 	}
4640 	ASSERT(tcp->tcp_hopoptslen == 0);
4641 	if (tcp->tcp_dstopts != NULL) {
4642 		mi_free(tcp->tcp_dstopts);
4643 		tcp->tcp_dstopts = NULL;
4644 		tcp->tcp_dstoptslen = 0;
4645 	}
4646 	ASSERT(tcp->tcp_dstoptslen == 0);
4647 	if (tcp->tcp_rtdstopts != NULL) {
4648 		mi_free(tcp->tcp_rtdstopts);
4649 		tcp->tcp_rtdstopts = NULL;
4650 		tcp->tcp_rtdstoptslen = 0;
4651 	}
4652 	ASSERT(tcp->tcp_rtdstoptslen == 0);
4653 	if (tcp->tcp_rthdr != NULL) {
4654 		mi_free(tcp->tcp_rthdr);
4655 		tcp->tcp_rthdr = NULL;
4656 		tcp->tcp_rthdrlen = 0;
4657 	}
4658 	ASSERT(tcp->tcp_rthdrlen == 0);
4659 
4660 	ipp = &tcp->tcp_sticky_ipp;
4661 	if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS |
4662 	    IPPF_RTHDR))
4663 		ip6_pkt_free(ipp);
4664 
4665 	/*
4666 	 * Free memory associated with the tcp/ip header template.
4667 	 */
4668 
4669 	if (tcp->tcp_iphc != NULL)
4670 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4671 
4672 	/*
4673 	 * Following is really a blowing away a union.
4674 	 * It happens to have exactly two members of identical size
4675 	 * the following code is enough.
4676 	 */
4677 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
4678 }
4679 
4680 
4681 /*
4682  * Put a connection confirmation message upstream built from the
4683  * address information within 'iph' and 'tcph'.  Report our success or failure.
4684  */
4685 static boolean_t
4686 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp,
4687     mblk_t **defermp)
4688 {
4689 	sin_t	sin;
4690 	sin6_t	sin6;
4691 	mblk_t	*mp;
4692 	char	*optp = NULL;
4693 	int	optlen = 0;
4694 	cred_t	*cr;
4695 
4696 	if (defermp != NULL)
4697 		*defermp = NULL;
4698 
4699 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL) {
4700 		/*
4701 		 * Return in T_CONN_CON results of option negotiation through
4702 		 * the T_CONN_REQ. Note: If there is an real end-to-end option
4703 		 * negotiation, then what is received from remote end needs
4704 		 * to be taken into account but there is no such thing (yet?)
4705 		 * in our TCP/IP.
4706 		 * Note: We do not use mi_offset_param() here as
4707 		 * tcp_opts_conn_req contents do not directly come from
4708 		 * an application and are either generated in kernel or
4709 		 * from user input that was already verified.
4710 		 */
4711 		mp = tcp->tcp_conn.tcp_opts_conn_req;
4712 		optp = (char *)(mp->b_rptr +
4713 		    ((struct T_conn_req *)mp->b_rptr)->OPT_offset);
4714 		optlen = (int)
4715 		    ((struct T_conn_req *)mp->b_rptr)->OPT_length;
4716 	}
4717 
4718 	if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) {
4719 		ipha_t *ipha = (ipha_t *)iphdr;
4720 
4721 		/* packet is IPv4 */
4722 		if (tcp->tcp_family == AF_INET) {
4723 			sin = sin_null;
4724 			sin.sin_addr.s_addr = ipha->ipha_src;
4725 			sin.sin_port = *(uint16_t *)tcph->th_lport;
4726 			sin.sin_family = AF_INET;
4727 			mp = mi_tpi_conn_con(NULL, (char *)&sin,
4728 			    (int)sizeof (sin_t), optp, optlen);
4729 		} else {
4730 			sin6 = sin6_null;
4731 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4732 			sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4733 			sin6.sin6_family = AF_INET6;
4734 			mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4735 			    (int)sizeof (sin6_t), optp, optlen);
4736 
4737 		}
4738 	} else {
4739 		ip6_t	*ip6h = (ip6_t *)iphdr;
4740 
4741 		ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION);
4742 		ASSERT(tcp->tcp_family == AF_INET6);
4743 		sin6 = sin6_null;
4744 		sin6.sin6_addr = ip6h->ip6_src;
4745 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4746 		sin6.sin6_family = AF_INET6;
4747 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4748 		mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4749 		    (int)sizeof (sin6_t), optp, optlen);
4750 	}
4751 
4752 	if (!mp)
4753 		return (B_FALSE);
4754 
4755 	if ((cr = DB_CRED(idmp)) != NULL) {
4756 		mblk_setcred(mp, cr);
4757 		DB_CPID(mp) = DB_CPID(idmp);
4758 	}
4759 
4760 	if (defermp == NULL)
4761 		putnext(tcp->tcp_rq, mp);
4762 	else
4763 		*defermp = mp;
4764 
4765 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4766 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4767 	return (B_TRUE);
4768 }
4769 
4770 /*
4771  * Defense for the SYN attack -
4772  * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest
4773  *    one from the list of droppable eagers. This list is a subset of q0.
4774  *    see comments before the definition of MAKE_DROPPABLE().
4775  * 2. Don't drop a SYN request before its first timeout. This gives every
4776  *    request at least til the first timeout to complete its 3-way handshake.
4777  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
4778  *    requests currently on the queue that has timed out. This will be used
4779  *    as an indicator of whether an attack is under way, so that appropriate
4780  *    actions can be taken. (It's incremented in tcp_timer() and decremented
4781  *    either when eager goes into ESTABLISHED, or gets freed up.)
4782  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
4783  *    # of timeout drops back to <= q0len/32 => SYN alert off
4784  */
4785 static boolean_t
4786 tcp_drop_q0(tcp_t *tcp)
4787 {
4788 	tcp_t	*eager;
4789 	mblk_t	*mp;
4790 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4791 
4792 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
4793 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
4794 
4795 	/* Pick oldest eager from the list of droppable eagers */
4796 	eager = tcp->tcp_eager_prev_drop_q0;
4797 
4798 	/* If list is empty. return B_FALSE */
4799 	if (eager == tcp) {
4800 		return (B_FALSE);
4801 	}
4802 
4803 	/* If allocated, the mp will be freed in tcp_clean_death_wrapper() */
4804 	if ((mp = allocb(0, BPRI_HI)) == NULL)
4805 		return (B_FALSE);
4806 
4807 	/*
4808 	 * Take this eager out from the list of droppable eagers since we are
4809 	 * going to drop it.
4810 	 */
4811 	MAKE_UNDROPPABLE(eager);
4812 
4813 	if (tcp->tcp_debug) {
4814 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
4815 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
4816 		    " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0,
4817 		    tcp->tcp_conn_req_cnt_q0,
4818 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4819 	}
4820 
4821 	BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop);
4822 
4823 	/* Put a reference on the conn as we are enqueueing it in the sqeue */
4824 	CONN_INC_REF(eager->tcp_connp);
4825 
4826 	/* Mark the IRE created for this SYN request temporary */
4827 	tcp_ip_ire_mark_advice(eager);
4828 	squeue_fill(eager->tcp_connp->conn_sqp, mp,
4829 	    tcp_clean_death_wrapper, eager->tcp_connp, SQTAG_TCP_DROP_Q0);
4830 
4831 	return (B_TRUE);
4832 }
4833 
4834 int
4835 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
4836     tcph_t *tcph, uint_t ipvers, mblk_t *idmp)
4837 {
4838 	tcp_t 		*ltcp = lconnp->conn_tcp;
4839 	tcp_t		*tcp = connp->conn_tcp;
4840 	mblk_t		*tpi_mp;
4841 	ipha_t		*ipha;
4842 	ip6_t		*ip6h;
4843 	sin6_t 		sin6;
4844 	in6_addr_t 	v6dst;
4845 	int		err;
4846 	int		ifindex = 0;
4847 	cred_t		*cr;
4848 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4849 
4850 	if (ipvers == IPV4_VERSION) {
4851 		ipha = (ipha_t *)mp->b_rptr;
4852 
4853 		connp->conn_send = ip_output;
4854 		connp->conn_recv = tcp_input;
4855 
4856 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4857 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4858 
4859 		sin6 = sin6_null;
4860 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4861 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst);
4862 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4863 		sin6.sin6_family = AF_INET6;
4864 		sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst,
4865 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4866 		if (tcp->tcp_recvdstaddr) {
4867 			sin6_t	sin6d;
4868 
4869 			sin6d = sin6_null;
4870 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst,
4871 			    &sin6d.sin6_addr);
4872 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4873 			sin6d.sin6_family = AF_INET;
4874 			tpi_mp = mi_tpi_extconn_ind(NULL,
4875 			    (char *)&sin6d, sizeof (sin6_t),
4876 			    (char *)&tcp,
4877 			    (t_scalar_t)sizeof (intptr_t),
4878 			    (char *)&sin6d, sizeof (sin6_t),
4879 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4880 		} else {
4881 			tpi_mp = mi_tpi_conn_ind(NULL,
4882 			    (char *)&sin6, sizeof (sin6_t),
4883 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4884 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4885 		}
4886 	} else {
4887 		ip6h = (ip6_t *)mp->b_rptr;
4888 
4889 		connp->conn_send = ip_output_v6;
4890 		connp->conn_recv = tcp_input;
4891 
4892 		connp->conn_srcv6 = ip6h->ip6_dst;
4893 		connp->conn_remv6 = ip6h->ip6_src;
4894 
4895 		/* db_cksumstuff is set at ip_fanout_tcp_v6 */
4896 		ifindex = (int)DB_CKSUMSTUFF(mp);
4897 		DB_CKSUMSTUFF(mp) = 0;
4898 
4899 		sin6 = sin6_null;
4900 		sin6.sin6_addr = ip6h->ip6_src;
4901 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4902 		sin6.sin6_family = AF_INET6;
4903 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4904 		sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst,
4905 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4906 
4907 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4908 			/* Pass up the scope_id of remote addr */
4909 			sin6.sin6_scope_id = ifindex;
4910 		} else {
4911 			sin6.sin6_scope_id = 0;
4912 		}
4913 		if (tcp->tcp_recvdstaddr) {
4914 			sin6_t	sin6d;
4915 
4916 			sin6d = sin6_null;
4917 			sin6.sin6_addr = ip6h->ip6_dst;
4918 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4919 			sin6d.sin6_family = AF_INET;
4920 			tpi_mp = mi_tpi_extconn_ind(NULL,
4921 			    (char *)&sin6d, sizeof (sin6_t),
4922 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4923 			    (char *)&sin6d, sizeof (sin6_t),
4924 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4925 		} else {
4926 			tpi_mp = mi_tpi_conn_ind(NULL,
4927 			    (char *)&sin6, sizeof (sin6_t),
4928 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4929 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4930 		}
4931 	}
4932 
4933 	if (tpi_mp == NULL)
4934 		return (ENOMEM);
4935 
4936 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4937 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4938 	connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER);
4939 	connp->conn_fully_bound = B_FALSE;
4940 
4941 	/* Inherit information from the "parent" */
4942 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
4943 	tcp->tcp_family = ltcp->tcp_family;
4944 	tcp->tcp_wq = ltcp->tcp_wq;
4945 	tcp->tcp_rq = ltcp->tcp_rq;
4946 	tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
4947 	tcp->tcp_detached = B_TRUE;
4948 	if ((err = tcp_init_values(tcp)) != 0) {
4949 		freemsg(tpi_mp);
4950 		return (err);
4951 	}
4952 
4953 	if (ipvers == IPV4_VERSION) {
4954 		if ((err = tcp_header_init_ipv4(tcp)) != 0) {
4955 			freemsg(tpi_mp);
4956 			return (err);
4957 		}
4958 		ASSERT(tcp->tcp_ipha != NULL);
4959 	} else {
4960 		/* ifindex must be already set */
4961 		ASSERT(ifindex != 0);
4962 
4963 		if (ltcp->tcp_bound_if != 0) {
4964 			/*
4965 			 * Set newtcp's bound_if equal to
4966 			 * listener's value. If ifindex is
4967 			 * not the same as ltcp->tcp_bound_if,
4968 			 * it must be a packet for the ipmp group
4969 			 * of interfaces
4970 			 */
4971 			tcp->tcp_bound_if = ltcp->tcp_bound_if;
4972 		} else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4973 			tcp->tcp_bound_if = ifindex;
4974 		}
4975 
4976 		tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary;
4977 		tcp->tcp_recvifindex = 0;
4978 		tcp->tcp_recvhops = 0xffffffffU;
4979 		ASSERT(tcp->tcp_ip6h != NULL);
4980 	}
4981 
4982 	tcp->tcp_lport = ltcp->tcp_lport;
4983 
4984 	if (ltcp->tcp_ipversion == tcp->tcp_ipversion) {
4985 		if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) {
4986 			/*
4987 			 * Listener had options of some sort; eager inherits.
4988 			 * Free up the eager template and allocate one
4989 			 * of the right size.
4990 			 */
4991 			if (tcp->tcp_hdr_grown) {
4992 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
4993 			} else {
4994 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4995 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
4996 			}
4997 			tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len,
4998 			    KM_NOSLEEP);
4999 			if (tcp->tcp_iphc == NULL) {
5000 				tcp->tcp_iphc_len = 0;
5001 				freemsg(tpi_mp);
5002 				return (ENOMEM);
5003 			}
5004 			tcp->tcp_iphc_len = ltcp->tcp_iphc_len;
5005 			tcp->tcp_hdr_grown = B_TRUE;
5006 		}
5007 		tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
5008 		tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
5009 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5010 		tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops;
5011 		tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf;
5012 
5013 		/*
5014 		 * Copy the IP+TCP header template from listener to eager
5015 		 */
5016 		bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
5017 		if (tcp->tcp_ipversion == IPV6_VERSION) {
5018 			if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt ==
5019 			    IPPROTO_RAW) {
5020 				tcp->tcp_ip6h =
5021 				    (ip6_t *)(tcp->tcp_iphc +
5022 				    sizeof (ip6i_t));
5023 			} else {
5024 				tcp->tcp_ip6h =
5025 				    (ip6_t *)(tcp->tcp_iphc);
5026 			}
5027 			tcp->tcp_ipha = NULL;
5028 		} else {
5029 			tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5030 			tcp->tcp_ip6h = NULL;
5031 		}
5032 		tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5033 		    tcp->tcp_ip_hdr_len);
5034 	} else {
5035 		/*
5036 		 * only valid case when ipversion of listener and
5037 		 * eager differ is when listener is IPv6 and
5038 		 * eager is IPv4.
5039 		 * Eager header template has been initialized to the
5040 		 * maximum v4 header sizes, which includes space for
5041 		 * TCP and IP options.
5042 		 */
5043 		ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) &&
5044 		    (tcp->tcp_ipversion == IPV4_VERSION));
5045 		ASSERT(tcp->tcp_iphc_len >=
5046 		    TCP_MAX_COMBINED_HEADER_LENGTH);
5047 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5048 		/* copy IP header fields individually */
5049 		tcp->tcp_ipha->ipha_ttl =
5050 		    ltcp->tcp_ip6h->ip6_hops;
5051 		bcopy(ltcp->tcp_tcph->th_lport,
5052 		    tcp->tcp_tcph->th_lport, sizeof (ushort_t));
5053 	}
5054 
5055 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5056 	bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport,
5057 	    sizeof (in_port_t));
5058 
5059 	if (ltcp->tcp_lport == 0) {
5060 		tcp->tcp_lport = *(in_port_t *)tcph->th_fport;
5061 		bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport,
5062 		    sizeof (in_port_t));
5063 	}
5064 
5065 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5066 		ASSERT(ipha != NULL);
5067 		tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5068 		tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5069 
5070 		/* Source routing option copyover (reverse it) */
5071 		if (tcps->tcps_rev_src_routes)
5072 			tcp_opt_reverse(tcp, ipha);
5073 	} else {
5074 		ASSERT(ip6h != NULL);
5075 		tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src;
5076 		tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst;
5077 	}
5078 
5079 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5080 	ASSERT(!tcp->tcp_tconnind_started);
5081 	/*
5082 	 * If the SYN contains a credential, it's a loopback packet; attach
5083 	 * the credential to the TPI message.
5084 	 */
5085 	if ((cr = DB_CRED(idmp)) != NULL) {
5086 		mblk_setcred(tpi_mp, cr);
5087 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5088 	}
5089 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5090 
5091 	/* Inherit the listener's SSL protection state */
5092 
5093 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5094 		kssl_hold_ent(tcp->tcp_kssl_ent);
5095 		tcp->tcp_kssl_pending = B_TRUE;
5096 	}
5097 
5098 	return (0);
5099 }
5100 
5101 
5102 int
5103 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
5104     tcph_t *tcph, mblk_t *idmp)
5105 {
5106 	tcp_t 		*ltcp = lconnp->conn_tcp;
5107 	tcp_t		*tcp = connp->conn_tcp;
5108 	sin_t		sin;
5109 	mblk_t		*tpi_mp = NULL;
5110 	int		err;
5111 	cred_t		*cr;
5112 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5113 
5114 	sin = sin_null;
5115 	sin.sin_addr.s_addr = ipha->ipha_src;
5116 	sin.sin_port = *(uint16_t *)tcph->th_lport;
5117 	sin.sin_family = AF_INET;
5118 	if (ltcp->tcp_recvdstaddr) {
5119 		sin_t	sind;
5120 
5121 		sind = sin_null;
5122 		sind.sin_addr.s_addr = ipha->ipha_dst;
5123 		sind.sin_port = *(uint16_t *)tcph->th_fport;
5124 		sind.sin_family = AF_INET;
5125 		tpi_mp = mi_tpi_extconn_ind(NULL,
5126 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
5127 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
5128 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5129 	} else {
5130 		tpi_mp = mi_tpi_conn_ind(NULL,
5131 		    (char *)&sin, sizeof (sin_t),
5132 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
5133 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5134 	}
5135 
5136 	if (tpi_mp == NULL) {
5137 		return (ENOMEM);
5138 	}
5139 
5140 	connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER);
5141 	connp->conn_send = ip_output;
5142 	connp->conn_recv = tcp_input;
5143 	connp->conn_fully_bound = B_FALSE;
5144 
5145 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
5146 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
5147 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
5148 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
5149 
5150 	/* Inherit information from the "parent" */
5151 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
5152 	tcp->tcp_family = ltcp->tcp_family;
5153 	tcp->tcp_wq = ltcp->tcp_wq;
5154 	tcp->tcp_rq = ltcp->tcp_rq;
5155 	tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
5156 	tcp->tcp_detached = B_TRUE;
5157 	if ((err = tcp_init_values(tcp)) != 0) {
5158 		freemsg(tpi_mp);
5159 		return (err);
5160 	}
5161 
5162 	/*
5163 	 * Let's make sure that eager tcp template has enough space to
5164 	 * copy IPv4 listener's tcp template. Since the conn_t structure is
5165 	 * preserved and tcp_iphc_len is also preserved, an eager conn_t may
5166 	 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or
5167 	 * more (in case of re-allocation of conn_t with tcp-IPv6 template with
5168 	 * extension headers or with ip6i_t struct). Note that bcopy() below
5169 	 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_
5170 	 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener.
5171 	 */
5172 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
5173 	ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH);
5174 
5175 	tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
5176 	tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
5177 	tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5178 	tcp->tcp_ttl = ltcp->tcp_ttl;
5179 	tcp->tcp_tos = ltcp->tcp_tos;
5180 
5181 	/* Copy the IP+TCP header template from listener to eager */
5182 	bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
5183 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5184 	tcp->tcp_ip6h = NULL;
5185 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5186 	    tcp->tcp_ip_hdr_len);
5187 
5188 	/* Initialize the IP addresses and Ports */
5189 	tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5190 	tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5191 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5192 	bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t));
5193 
5194 	/* Source routing option copyover (reverse it) */
5195 	if (tcps->tcps_rev_src_routes)
5196 		tcp_opt_reverse(tcp, ipha);
5197 
5198 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5199 	ASSERT(!tcp->tcp_tconnind_started);
5200 
5201 	/*
5202 	 * If the SYN contains a credential, it's a loopback packet; attach
5203 	 * the credential to the TPI message.
5204 	 */
5205 	if ((cr = DB_CRED(idmp)) != NULL) {
5206 		mblk_setcred(tpi_mp, cr);
5207 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5208 	}
5209 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5210 
5211 	/* Inherit the listener's SSL protection state */
5212 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5213 		kssl_hold_ent(tcp->tcp_kssl_ent);
5214 		tcp->tcp_kssl_pending = B_TRUE;
5215 	}
5216 
5217 	return (0);
5218 }
5219 
5220 /*
5221  * sets up conn for ipsec.
5222  * if the first mblk is M_CTL it is consumed and mpp is updated.
5223  * in case of error mpp is freed.
5224  */
5225 conn_t *
5226 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp)
5227 {
5228 	conn_t 		*connp = tcp->tcp_connp;
5229 	conn_t 		*econnp;
5230 	squeue_t 	*new_sqp;
5231 	mblk_t 		*first_mp = *mpp;
5232 	mblk_t		*mp = *mpp;
5233 	boolean_t	mctl_present = B_FALSE;
5234 	uint_t		ipvers;
5235 
5236 	econnp = tcp_get_conn(sqp, tcp->tcp_tcps);
5237 	if (econnp == NULL) {
5238 		freemsg(first_mp);
5239 		return (NULL);
5240 	}
5241 	if (DB_TYPE(mp) == M_CTL) {
5242 		if (mp->b_cont == NULL ||
5243 		    mp->b_cont->b_datap->db_type != M_DATA) {
5244 			freemsg(first_mp);
5245 			return (NULL);
5246 		}
5247 		mp = mp->b_cont;
5248 		if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) {
5249 			freemsg(first_mp);
5250 			return (NULL);
5251 		}
5252 
5253 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5254 		first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5255 		mctl_present = B_TRUE;
5256 	} else {
5257 		ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY);
5258 		mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5259 	}
5260 
5261 	new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5262 	DB_CKSUMSTART(mp) = 0;
5263 
5264 	ASSERT(OK_32PTR(mp->b_rptr));
5265 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5266 	if (ipvers == IPV4_VERSION) {
5267 		uint16_t  	*up;
5268 		uint32_t	ports;
5269 		ipha_t		*ipha;
5270 
5271 		ipha = (ipha_t *)mp->b_rptr;
5272 		up = (uint16_t *)((uchar_t *)ipha +
5273 		    IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET);
5274 		ports = *(uint32_t *)up;
5275 		IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP,
5276 		    ipha->ipha_dst, ipha->ipha_src, ports);
5277 	} else {
5278 		uint16_t  	*up;
5279 		uint32_t	ports;
5280 		uint16_t	ip_hdr_len;
5281 		uint8_t		*nexthdrp;
5282 		ip6_t 		*ip6h;
5283 		tcph_t		*tcph;
5284 
5285 		ip6h = (ip6_t *)mp->b_rptr;
5286 		if (ip6h->ip6_nxt == IPPROTO_TCP) {
5287 			ip_hdr_len = IPV6_HDR_LEN;
5288 		} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len,
5289 		    &nexthdrp) || *nexthdrp != IPPROTO_TCP) {
5290 			CONN_DEC_REF(econnp);
5291 			freemsg(first_mp);
5292 			return (NULL);
5293 		}
5294 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5295 		up = (uint16_t *)tcph->th_lport;
5296 		ports = *(uint32_t *)up;
5297 		IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP,
5298 		    ip6h->ip6_dst, ip6h->ip6_src, ports);
5299 	}
5300 
5301 	/*
5302 	 * The caller already ensured that there is a sqp present.
5303 	 */
5304 	econnp->conn_sqp = new_sqp;
5305 
5306 	if (connp->conn_policy != NULL) {
5307 		ipsec_in_t *ii;
5308 		ii = (ipsec_in_t *)(first_mp->b_rptr);
5309 		ASSERT(ii->ipsec_in_policy == NULL);
5310 		IPPH_REFHOLD(connp->conn_policy);
5311 		ii->ipsec_in_policy = connp->conn_policy;
5312 
5313 		first_mp->b_datap->db_type = IPSEC_POLICY_SET;
5314 		if (!ip_bind_ipsec_policy_set(econnp, first_mp)) {
5315 			CONN_DEC_REF(econnp);
5316 			freemsg(first_mp);
5317 			return (NULL);
5318 		}
5319 	}
5320 
5321 	if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) {
5322 		CONN_DEC_REF(econnp);
5323 		freemsg(first_mp);
5324 		return (NULL);
5325 	}
5326 
5327 	/*
5328 	 * If we know we have some policy, pass the "IPSEC"
5329 	 * options size TCP uses this adjust the MSS.
5330 	 */
5331 	econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp);
5332 	if (mctl_present) {
5333 		freeb(first_mp);
5334 		*mpp = mp;
5335 	}
5336 
5337 	return (econnp);
5338 }
5339 
5340 /*
5341  * tcp_get_conn/tcp_free_conn
5342  *
5343  * tcp_get_conn is used to get a clean tcp connection structure.
5344  * It tries to reuse the connections put on the freelist by the
5345  * time_wait_collector failing which it goes to kmem_cache. This
5346  * way has two benefits compared to just allocating from and
5347  * freeing to kmem_cache.
5348  * 1) The time_wait_collector can free (which includes the cleanup)
5349  * outside the squeue. So when the interrupt comes, we have a clean
5350  * connection sitting in the freelist. Obviously, this buys us
5351  * performance.
5352  *
5353  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request
5354  * has multiple disadvantages - tying up the squeue during alloc, and the
5355  * fact that IPSec policy initialization has to happen here which
5356  * requires us sending a M_CTL and checking for it i.e. real ugliness.
5357  * But allocating the conn/tcp in IP land is also not the best since
5358  * we can't check the 'q' and 'q0' which are protected by squeue and
5359  * blindly allocate memory which might have to be freed here if we are
5360  * not allowed to accept the connection. By using the freelist and
5361  * putting the conn/tcp back in freelist, we don't pay a penalty for
5362  * allocating memory without checking 'q/q0' and freeing it if we can't
5363  * accept the connection.
5364  *
5365  * Care should be taken to put the conn back in the same squeue's freelist
5366  * from which it was allocated. Best results are obtained if conn is
5367  * allocated from listener's squeue and freed to the same. Time wait
5368  * collector will free up the freelist is the connection ends up sitting
5369  * there for too long.
5370  */
5371 void *
5372 tcp_get_conn(void *arg, tcp_stack_t *tcps)
5373 {
5374 	tcp_t			*tcp = NULL;
5375 	conn_t			*connp = NULL;
5376 	squeue_t		*sqp = (squeue_t *)arg;
5377 	tcp_squeue_priv_t 	*tcp_time_wait;
5378 	netstack_t		*ns;
5379 
5380 	tcp_time_wait =
5381 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
5382 
5383 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
5384 	tcp = tcp_time_wait->tcp_free_list;
5385 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
5386 	if (tcp != NULL) {
5387 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
5388 		tcp_time_wait->tcp_free_list_cnt--;
5389 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5390 		tcp->tcp_time_wait_next = NULL;
5391 		connp = tcp->tcp_connp;
5392 		connp->conn_flags |= IPCL_REUSED;
5393 
5394 		ASSERT(tcp->tcp_tcps == NULL);
5395 		ASSERT(connp->conn_netstack == NULL);
5396 		ASSERT(tcp->tcp_rsrv_mp != NULL);
5397 		ns = tcps->tcps_netstack;
5398 		netstack_hold(ns);
5399 		connp->conn_netstack = ns;
5400 		tcp->tcp_tcps = tcps;
5401 		TCPS_REFHOLD(tcps);
5402 		ipcl_globalhash_insert(connp);
5403 		return ((void *)connp);
5404 	}
5405 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5406 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
5407 	    tcps->tcps_netstack)) == NULL)
5408 		return (NULL);
5409 	tcp = connp->conn_tcp;
5410 	/*
5411 	 * Pre-allocate the tcp_rsrv_mp.  This mblk will not be freed
5412 	 * until this conn_t/tcp_t is freed at ipcl_conn_destroy().
5413 	 */
5414 	if ((tcp->tcp_rsrv_mp = allocb(0, BPRI_HI)) == NULL) {
5415 		ipcl_conn_destroy(connp);
5416 		return (NULL);
5417 	}
5418 	mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL);
5419 	tcp->tcp_tcps = tcps;
5420 	TCPS_REFHOLD(tcps);
5421 
5422 	return ((void *)connp);
5423 }
5424 
5425 /*
5426  * Update the cached label for the given tcp_t.  This should be called once per
5427  * connection, and before any packets are sent or tcp_process_options is
5428  * invoked.  Returns B_FALSE if the correct label could not be constructed.
5429  */
5430 static boolean_t
5431 tcp_update_label(tcp_t *tcp, const cred_t *cr)
5432 {
5433 	conn_t *connp = tcp->tcp_connp;
5434 
5435 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5436 		uchar_t optbuf[IP_MAX_OPT_LENGTH];
5437 		int added;
5438 
5439 		if (tsol_compute_label(cr, tcp->tcp_remote, optbuf,
5440 		    connp->conn_mac_exempt,
5441 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5442 			return (B_FALSE);
5443 
5444 		added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len);
5445 		if (added == -1)
5446 			return (B_FALSE);
5447 		tcp->tcp_hdr_len += added;
5448 		tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added);
5449 		tcp->tcp_ip_hdr_len += added;
5450 		if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) {
5451 			tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3;
5452 			added = tsol_prepend_option(optbuf, tcp->tcp_ipha,
5453 			    tcp->tcp_hdr_len);
5454 			if (added == -1)
5455 				return (B_FALSE);
5456 			tcp->tcp_hdr_len += added;
5457 			tcp->tcp_tcph = (tcph_t *)
5458 			    ((uchar_t *)tcp->tcp_tcph + added);
5459 			tcp->tcp_ip_hdr_len += added;
5460 		}
5461 	} else {
5462 		uchar_t optbuf[TSOL_MAX_IPV6_OPTION];
5463 
5464 		if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf,
5465 		    connp->conn_mac_exempt,
5466 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5467 			return (B_FALSE);
5468 		if (tsol_update_sticky(&tcp->tcp_sticky_ipp,
5469 		    &tcp->tcp_label_len, optbuf) != 0)
5470 			return (B_FALSE);
5471 		if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0)
5472 			return (B_FALSE);
5473 	}
5474 
5475 	connp->conn_ulp_labeled = 1;
5476 
5477 	return (B_TRUE);
5478 }
5479 
5480 /* BEGIN CSTYLED */
5481 /*
5482  *
5483  * The sockfs ACCEPT path:
5484  * =======================
5485  *
5486  * The eager is now established in its own perimeter as soon as SYN is
5487  * received in tcp_conn_request(). When sockfs receives conn_ind, it
5488  * completes the accept processing on the acceptor STREAM. The sending
5489  * of conn_ind part is common for both sockfs listener and a TLI/XTI
5490  * listener but a TLI/XTI listener completes the accept processing
5491  * on the listener perimeter.
5492  *
5493  * Common control flow for 3 way handshake:
5494  * ----------------------------------------
5495  *
5496  * incoming SYN (listener perimeter) 	-> tcp_rput_data()
5497  *					-> tcp_conn_request()
5498  *
5499  * incoming SYN-ACK-ACK (eager perim) 	-> tcp_rput_data()
5500  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
5501  *
5502  * Sockfs ACCEPT Path:
5503  * -------------------
5504  *
5505  * open acceptor stream (tcp_open allocates tcp_wput_accept()
5506  * as STREAM entry point)
5507  *
5508  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept()
5509  *
5510  * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager
5511  * association (we are not behind eager's squeue but sockfs is protecting us
5512  * and no one knows about this stream yet. The STREAMS entry point q->q_info
5513  * is changed to point at tcp_wput().
5514  *
5515  * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to
5516  * listener (done on listener's perimeter).
5517  *
5518  * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish
5519  * accept.
5520  *
5521  * TLI/XTI client ACCEPT path:
5522  * ---------------------------
5523  *
5524  * soaccept() sends T_CONN_RES on the listener STREAM.
5525  *
5526  * tcp_accept() -> tcp_accept_swap() complete the processing and send
5527  * the bind_mp to eager perimeter to finish accept (tcp_rput_other()).
5528  *
5529  * Locks:
5530  * ======
5531  *
5532  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
5533  * and listeners->tcp_eager_next_q.
5534  *
5535  * Referencing:
5536  * ============
5537  *
5538  * 1) We start out in tcp_conn_request by eager placing a ref on
5539  * listener and listener adding eager to listeners->tcp_eager_next_q0.
5540  *
5541  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
5542  * doing so we place a ref on the eager. This ref is finally dropped at the
5543  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
5544  * reference is dropped by the squeue framework.
5545  *
5546  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
5547  *
5548  * The reference must be released by the same entity that added the reference
5549  * In the above scheme, the eager is the entity that adds and releases the
5550  * references. Note that tcp_accept_finish executes in the squeue of the eager
5551  * (albeit after it is attached to the acceptor stream). Though 1. executes
5552  * in the listener's squeue, the eager is nascent at this point and the
5553  * reference can be considered to have been added on behalf of the eager.
5554  *
5555  * Eager getting a Reset or listener closing:
5556  * ==========================================
5557  *
5558  * Once the listener and eager are linked, the listener never does the unlink.
5559  * If the listener needs to close, tcp_eager_cleanup() is called which queues
5560  * a message on all eager perimeter. The eager then does the unlink, clears
5561  * any pointers to the listener's queue and drops the reference to the
5562  * listener. The listener waits in tcp_close outside the squeue until its
5563  * refcount has dropped to 1. This ensures that the listener has waited for
5564  * all eagers to clear their association with the listener.
5565  *
5566  * Similarly, if eager decides to go away, it can unlink itself and close.
5567  * When the T_CONN_RES comes down, we check if eager has closed. Note that
5568  * the reference to eager is still valid because of the extra ref we put
5569  * in tcp_send_conn_ind.
5570  *
5571  * Listener can always locate the eager under the protection
5572  * of the listener->tcp_eager_lock, and then do a refhold
5573  * on the eager during the accept processing.
5574  *
5575  * The acceptor stream accesses the eager in the accept processing
5576  * based on the ref placed on eager before sending T_conn_ind.
5577  * The only entity that can negate this refhold is a listener close
5578  * which is mutually exclusive with an active acceptor stream.
5579  *
5580  * Eager's reference on the listener
5581  * ===================================
5582  *
5583  * If the accept happens (even on a closed eager) the eager drops its
5584  * reference on the listener at the start of tcp_accept_finish. If the
5585  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
5586  * the reference is dropped in tcp_closei_local. If the listener closes,
5587  * the reference is dropped in tcp_eager_kill. In all cases the reference
5588  * is dropped while executing in the eager's context (squeue).
5589  */
5590 /* END CSTYLED */
5591 
5592 /* Process the SYN packet, mp, directed at the listener 'tcp' */
5593 
5594 /*
5595  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
5596  * tcp_rput_data will not see any SYN packets.
5597  */
5598 /* ARGSUSED */
5599 void
5600 tcp_conn_request(void *arg, mblk_t *mp, void *arg2)
5601 {
5602 	tcph_t		*tcph;
5603 	uint32_t	seg_seq;
5604 	tcp_t		*eager;
5605 	uint_t		ipvers;
5606 	ipha_t		*ipha;
5607 	ip6_t		*ip6h;
5608 	int		err;
5609 	conn_t		*econnp = NULL;
5610 	squeue_t	*new_sqp;
5611 	mblk_t		*mp1;
5612 	uint_t 		ip_hdr_len;
5613 	conn_t		*connp = (conn_t *)arg;
5614 	tcp_t		*tcp = connp->conn_tcp;
5615 	cred_t		*credp;
5616 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5617 	ip_stack_t	*ipst;
5618 
5619 	if (tcp->tcp_state != TCPS_LISTEN)
5620 		goto error2;
5621 
5622 	ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0);
5623 
5624 	mutex_enter(&tcp->tcp_eager_lock);
5625 	if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) {
5626 		mutex_exit(&tcp->tcp_eager_lock);
5627 		TCP_STAT(tcps, tcp_listendrop);
5628 		BUMP_MIB(&tcps->tcps_mib, tcpListenDrop);
5629 		if (tcp->tcp_debug) {
5630 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
5631 			    "tcp_conn_request: listen backlog (max=%d) "
5632 			    "overflow (%d pending) on %s",
5633 			    tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q,
5634 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
5635 		}
5636 		goto error2;
5637 	}
5638 
5639 	if (tcp->tcp_conn_req_cnt_q0 >=
5640 	    tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) {
5641 		/*
5642 		 * Q0 is full. Drop a pending half-open req from the queue
5643 		 * to make room for the new SYN req. Also mark the time we
5644 		 * drop a SYN.
5645 		 *
5646 		 * A more aggressive defense against SYN attack will
5647 		 * be to set the "tcp_syn_defense" flag now.
5648 		 */
5649 		TCP_STAT(tcps, tcp_listendropq0);
5650 		tcp->tcp_last_rcv_lbolt = lbolt64;
5651 		if (!tcp_drop_q0(tcp)) {
5652 			mutex_exit(&tcp->tcp_eager_lock);
5653 			BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0);
5654 			if (tcp->tcp_debug) {
5655 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
5656 				    "tcp_conn_request: listen half-open queue "
5657 				    "(max=%d) full (%d pending) on %s",
5658 				    tcps->tcps_conn_req_max_q0,
5659 				    tcp->tcp_conn_req_cnt_q0,
5660 				    tcp_display(tcp, NULL,
5661 				    DISP_PORT_ONLY));
5662 			}
5663 			goto error2;
5664 		}
5665 	}
5666 	mutex_exit(&tcp->tcp_eager_lock);
5667 
5668 	/*
5669 	 * IP adds STRUIO_EAGER and ensures that the received packet is
5670 	 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6
5671 	 * link local address.  If IPSec is enabled, db_struioflag has
5672 	 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER);
5673 	 * otherwise an error case if neither of them is set.
5674 	 */
5675 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5676 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5677 		DB_CKSUMSTART(mp) = 0;
5678 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5679 		econnp = (conn_t *)tcp_get_conn(arg2, tcps);
5680 		if (econnp == NULL)
5681 			goto error2;
5682 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5683 		econnp->conn_sqp = new_sqp;
5684 	} else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) {
5685 		/*
5686 		 * mp is updated in tcp_get_ipsec_conn().
5687 		 */
5688 		econnp = tcp_get_ipsec_conn(tcp, arg2, &mp);
5689 		if (econnp == NULL) {
5690 			/*
5691 			 * mp freed by tcp_get_ipsec_conn.
5692 			 */
5693 			return;
5694 		}
5695 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5696 	} else {
5697 		goto error2;
5698 	}
5699 
5700 	ASSERT(DB_TYPE(mp) == M_DATA);
5701 
5702 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5703 	ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION);
5704 	ASSERT(OK_32PTR(mp->b_rptr));
5705 	if (ipvers == IPV4_VERSION) {
5706 		ipha = (ipha_t *)mp->b_rptr;
5707 		ip_hdr_len = IPH_HDR_LENGTH(ipha);
5708 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5709 	} else {
5710 		ip6h = (ip6_t *)mp->b_rptr;
5711 		ip_hdr_len = ip_hdr_length_v6(mp, ip6h);
5712 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5713 	}
5714 
5715 	if (tcp->tcp_family == AF_INET) {
5716 		ASSERT(ipvers == IPV4_VERSION);
5717 		err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp);
5718 	} else {
5719 		err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp);
5720 	}
5721 
5722 	if (err)
5723 		goto error3;
5724 
5725 	eager = econnp->conn_tcp;
5726 
5727 	/*
5728 	 * Pre-allocate the T_ordrel_ind mblk so that at close time, we
5729 	 * will always have that to send up.  Otherwise, we need to do
5730 	 * special handling in case the allocation fails at that time.
5731 	 */
5732 	ASSERT(eager->tcp_ordrel_mp == NULL);
5733 	if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL)
5734 		goto error3;
5735 
5736 	/* Inherit various TCP parameters from the listener */
5737 	eager->tcp_naglim = tcp->tcp_naglim;
5738 	eager->tcp_first_timer_threshold =
5739 	    tcp->tcp_first_timer_threshold;
5740 	eager->tcp_second_timer_threshold =
5741 	    tcp->tcp_second_timer_threshold;
5742 
5743 	eager->tcp_first_ctimer_threshold =
5744 	    tcp->tcp_first_ctimer_threshold;
5745 	eager->tcp_second_ctimer_threshold =
5746 	    tcp->tcp_second_ctimer_threshold;
5747 
5748 	/*
5749 	 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics.
5750 	 * If it does not, the eager's receive window will be set to the
5751 	 * listener's receive window later in this function.
5752 	 */
5753 	eager->tcp_rwnd = 0;
5754 
5755 	/*
5756 	 * Inherit listener's tcp_init_cwnd.  Need to do this before
5757 	 * calling tcp_process_options() where tcp_mss_set() is called
5758 	 * to set the initial cwnd.
5759 	 */
5760 	eager->tcp_init_cwnd = tcp->tcp_init_cwnd;
5761 
5762 	/*
5763 	 * Zones: tcp_adapt_ire() and tcp_send_data() both need the
5764 	 * zone id before the accept is completed in tcp_wput_accept().
5765 	 */
5766 	econnp->conn_zoneid = connp->conn_zoneid;
5767 	econnp->conn_allzones = connp->conn_allzones;
5768 
5769 	/* Copy nexthop information from listener to eager */
5770 	if (connp->conn_nexthop_set) {
5771 		econnp->conn_nexthop_set = connp->conn_nexthop_set;
5772 		econnp->conn_nexthop_v4 = connp->conn_nexthop_v4;
5773 	}
5774 
5775 	/*
5776 	 * TSOL: tsol_input_proc() needs the eager's cred before the
5777 	 * eager is accepted
5778 	 */
5779 	econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred;
5780 	crhold(credp);
5781 
5782 	/*
5783 	 * If the caller has the process-wide flag set, then default to MAC
5784 	 * exempt mode.  This allows read-down to unlabeled hosts.
5785 	 */
5786 	if (getpflags(NET_MAC_AWARE, credp) != 0)
5787 		econnp->conn_mac_exempt = B_TRUE;
5788 
5789 	if (is_system_labeled()) {
5790 		cred_t *cr;
5791 
5792 		if (connp->conn_mlp_type != mlptSingle) {
5793 			cr = econnp->conn_peercred = DB_CRED(mp);
5794 			if (cr != NULL)
5795 				crhold(cr);
5796 			else
5797 				cr = econnp->conn_cred;
5798 			DTRACE_PROBE2(mlp_syn_accept, conn_t *,
5799 			    econnp, cred_t *, cr)
5800 		} else {
5801 			cr = econnp->conn_cred;
5802 			DTRACE_PROBE2(syn_accept, conn_t *,
5803 			    econnp, cred_t *, cr)
5804 		}
5805 
5806 		if (!tcp_update_label(eager, cr)) {
5807 			DTRACE_PROBE3(
5808 			    tx__ip__log__error__connrequest__tcp,
5809 			    char *, "eager connp(1) label on SYN mp(2) failed",
5810 			    conn_t *, econnp, mblk_t *, mp);
5811 			goto error3;
5812 		}
5813 	}
5814 
5815 	eager->tcp_hard_binding = B_TRUE;
5816 
5817 	tcp_bind_hash_insert(&tcps->tcps_bind_fanout[
5818 	    TCP_BIND_HASH(eager->tcp_lport)], eager, 0);
5819 
5820 	CL_INET_CONNECT(eager);
5821 
5822 	/*
5823 	 * No need to check for multicast destination since ip will only pass
5824 	 * up multicasts to those that have expressed interest
5825 	 * TODO: what about rejecting broadcasts?
5826 	 * Also check that source is not a multicast or broadcast address.
5827 	 */
5828 	eager->tcp_state = TCPS_SYN_RCVD;
5829 
5830 
5831 	/*
5832 	 * There should be no ire in the mp as we are being called after
5833 	 * receiving the SYN.
5834 	 */
5835 	ASSERT(tcp_ire_mp(mp) == NULL);
5836 
5837 	/*
5838 	 * Adapt our mss, ttl, ... according to information provided in IRE.
5839 	 */
5840 
5841 	if (tcp_adapt_ire(eager, NULL) == 0) {
5842 		/* Undo the bind_hash_insert */
5843 		tcp_bind_hash_remove(eager);
5844 		goto error3;
5845 	}
5846 
5847 	/* Process all TCP options. */
5848 	tcp_process_options(eager, tcph);
5849 
5850 	/* Is the other end ECN capable? */
5851 	if (tcps->tcps_ecn_permitted >= 1 &&
5852 	    (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
5853 		eager->tcp_ecn_ok = B_TRUE;
5854 	}
5855 
5856 	/*
5857 	 * listener->tcp_rq->q_hiwat should be the default window size or a
5858 	 * window size changed via SO_RCVBUF option.  First round up the
5859 	 * eager's tcp_rwnd to the nearest MSS.  Then find out the window
5860 	 * scale option value if needed.  Call tcp_rwnd_set() to finish the
5861 	 * setting.
5862 	 *
5863 	 * Note if there is a rpipe metric associated with the remote host,
5864 	 * we should not inherit receive window size from listener.
5865 	 */
5866 	eager->tcp_rwnd = MSS_ROUNDUP(
5867 	    (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat :
5868 	    eager->tcp_rwnd), eager->tcp_mss);
5869 	if (eager->tcp_snd_ws_ok)
5870 		tcp_set_ws_value(eager);
5871 	/*
5872 	 * Note that this is the only place tcp_rwnd_set() is called for
5873 	 * accepting a connection.  We need to call it here instead of
5874 	 * after the 3-way handshake because we need to tell the other
5875 	 * side our rwnd in the SYN-ACK segment.
5876 	 */
5877 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
5878 
5879 	/*
5880 	 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ
5881 	 * via soaccept()->soinheritoptions() which essentially applies
5882 	 * all the listener options to the new STREAM. The options that we
5883 	 * need to take care of are:
5884 	 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST,
5885 	 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER,
5886 	 * SO_SNDBUF, SO_RCVBUF.
5887 	 *
5888 	 * SO_RCVBUF:	tcp_rwnd_set() above takes care of it.
5889 	 * SO_SNDBUF:	Set the tcp_xmit_hiwater for the eager. When
5890 	 *		tcp_maxpsz_set() gets called later from
5891 	 *		tcp_accept_finish(), the option takes effect.
5892 	 *
5893 	 */
5894 	/* Set the TCP options */
5895 	eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater;
5896 	eager->tcp_dgram_errind = tcp->tcp_dgram_errind;
5897 	eager->tcp_oobinline = tcp->tcp_oobinline;
5898 	eager->tcp_reuseaddr = tcp->tcp_reuseaddr;
5899 	eager->tcp_broadcast = tcp->tcp_broadcast;
5900 	eager->tcp_useloopback = tcp->tcp_useloopback;
5901 	eager->tcp_dontroute = tcp->tcp_dontroute;
5902 	eager->tcp_linger = tcp->tcp_linger;
5903 	eager->tcp_lingertime = tcp->tcp_lingertime;
5904 	if (tcp->tcp_ka_enabled)
5905 		eager->tcp_ka_enabled = 1;
5906 
5907 	/* Set the IP options */
5908 	econnp->conn_broadcast = connp->conn_broadcast;
5909 	econnp->conn_loopback = connp->conn_loopback;
5910 	econnp->conn_dontroute = connp->conn_dontroute;
5911 	econnp->conn_reuseaddr = connp->conn_reuseaddr;
5912 
5913 	/* Put a ref on the listener for the eager. */
5914 	CONN_INC_REF(connp);
5915 	mutex_enter(&tcp->tcp_eager_lock);
5916 	tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
5917 	eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0;
5918 	tcp->tcp_eager_next_q0 = eager;
5919 	eager->tcp_eager_prev_q0 = tcp;
5920 
5921 	/* Set tcp_listener before adding it to tcp_conn_fanout */
5922 	eager->tcp_listener = tcp;
5923 	eager->tcp_saved_listener = tcp;
5924 
5925 	/*
5926 	 * Tag this detached tcp vector for later retrieval
5927 	 * by our listener client in tcp_accept().
5928 	 */
5929 	eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum;
5930 	tcp->tcp_conn_req_cnt_q0++;
5931 	if (++tcp->tcp_conn_req_seqnum == -1) {
5932 		/*
5933 		 * -1 is "special" and defined in TPI as something
5934 		 * that should never be used in T_CONN_IND
5935 		 */
5936 		++tcp->tcp_conn_req_seqnum;
5937 	}
5938 	mutex_exit(&tcp->tcp_eager_lock);
5939 
5940 	if (tcp->tcp_syn_defense) {
5941 		/* Don't drop the SYN that comes from a good IP source */
5942 		ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache);
5943 		if (addr_cache != NULL && eager->tcp_remote ==
5944 		    addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) {
5945 			eager->tcp_dontdrop = B_TRUE;
5946 		}
5947 	}
5948 
5949 	/*
5950 	 * We need to insert the eager in its own perimeter but as soon
5951 	 * as we do that, we expose the eager to the classifier and
5952 	 * should not touch any field outside the eager's perimeter.
5953 	 * So do all the work necessary before inserting the eager
5954 	 * in its own perimeter. Be optimistic that ipcl_conn_insert()
5955 	 * will succeed but undo everything if it fails.
5956 	 */
5957 	seg_seq = ABE32_TO_U32(tcph->th_seq);
5958 	eager->tcp_irs = seg_seq;
5959 	eager->tcp_rack = seg_seq;
5960 	eager->tcp_rnxt = seg_seq + 1;
5961 	U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack);
5962 	BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens);
5963 	eager->tcp_state = TCPS_SYN_RCVD;
5964 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
5965 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
5966 	if (mp1 == NULL) {
5967 		/*
5968 		 * Increment the ref count as we are going to
5969 		 * enqueueing an mp in squeue
5970 		 */
5971 		CONN_INC_REF(econnp);
5972 		goto error;
5973 	}
5974 	DB_CPID(mp1) = tcp->tcp_cpid;
5975 	eager->tcp_cpid = tcp->tcp_cpid;
5976 	eager->tcp_open_time = lbolt64;
5977 
5978 	/*
5979 	 * We need to start the rto timer. In normal case, we start
5980 	 * the timer after sending the packet on the wire (or at
5981 	 * least believing that packet was sent by waiting for
5982 	 * CALL_IP_WPUT() to return). Since this is the first packet
5983 	 * being sent on the wire for the eager, our initial tcp_rto
5984 	 * is at least tcp_rexmit_interval_min which is a fairly
5985 	 * large value to allow the algorithm to adjust slowly to large
5986 	 * fluctuations of RTT during first few transmissions.
5987 	 *
5988 	 * Starting the timer first and then sending the packet in this
5989 	 * case shouldn't make much difference since tcp_rexmit_interval_min
5990 	 * is of the order of several 100ms and starting the timer
5991 	 * first and then sending the packet will result in difference
5992 	 * of few micro seconds.
5993 	 *
5994 	 * Without this optimization, we are forced to hold the fanout
5995 	 * lock across the ipcl_bind_insert() and sending the packet
5996 	 * so that we don't race against an incoming packet (maybe RST)
5997 	 * for this eager.
5998 	 *
5999 	 * It is necessary to acquire an extra reference on the eager
6000 	 * at this point and hold it until after tcp_send_data() to
6001 	 * ensure against an eager close race.
6002 	 */
6003 
6004 	CONN_INC_REF(eager->tcp_connp);
6005 
6006 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
6007 
6008 	/*
6009 	 * Insert the eager in its own perimeter now. We are ready to deal
6010 	 * with any packets on eager.
6011 	 */
6012 	if (eager->tcp_ipversion == IPV4_VERSION) {
6013 		if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) {
6014 			goto error;
6015 		}
6016 	} else {
6017 		if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) {
6018 			goto error;
6019 		}
6020 	}
6021 
6022 	/* mark conn as fully-bound */
6023 	econnp->conn_fully_bound = B_TRUE;
6024 
6025 	/* Send the SYN-ACK */
6026 	tcp_send_data(eager, eager->tcp_wq, mp1);
6027 	CONN_DEC_REF(eager->tcp_connp);
6028 	freemsg(mp);
6029 
6030 	return;
6031 error:
6032 	freemsg(mp1);
6033 	eager->tcp_closemp_used = B_TRUE;
6034 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
6035 	squeue_fill(econnp->conn_sqp, &eager->tcp_closemp, tcp_eager_kill,
6036 	    econnp, SQTAG_TCP_CONN_REQ_2);
6037 
6038 	/*
6039 	 * If a connection already exists, send the mp to that connections so
6040 	 * that it can be appropriately dealt with.
6041 	 */
6042 	ipst = tcps->tcps_netstack->netstack_ip;
6043 
6044 	if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) {
6045 		if (!IPCL_IS_CONNECTED(econnp)) {
6046 			/*
6047 			 * Something bad happened. ipcl_conn_insert()
6048 			 * failed because a connection already existed
6049 			 * in connected hash but we can't find it
6050 			 * anymore (someone blew it away). Just
6051 			 * free this message and hopefully remote
6052 			 * will retransmit at which time the SYN can be
6053 			 * treated as a new connection or dealth with
6054 			 * a TH_RST if a connection already exists.
6055 			 */
6056 			CONN_DEC_REF(econnp);
6057 			freemsg(mp);
6058 		} else {
6059 			squeue_fill(econnp->conn_sqp, mp, tcp_input,
6060 			    econnp, SQTAG_TCP_CONN_REQ_1);
6061 		}
6062 	} else {
6063 		/* Nobody wants this packet */
6064 		freemsg(mp);
6065 	}
6066 	return;
6067 error3:
6068 	CONN_DEC_REF(econnp);
6069 error2:
6070 	freemsg(mp);
6071 }
6072 
6073 /*
6074  * In an ideal case of vertical partition in NUMA architecture, its
6075  * beneficial to have the listener and all the incoming connections
6076  * tied to the same squeue. The other constraint is that incoming
6077  * connections should be tied to the squeue attached to interrupted
6078  * CPU for obvious locality reason so this leaves the listener to
6079  * be tied to the same squeue. Our only problem is that when listener
6080  * is binding, the CPU that will get interrupted by the NIC whose
6081  * IP address the listener is binding to is not even known. So
6082  * the code below allows us to change that binding at the time the
6083  * CPU is interrupted by virtue of incoming connection's squeue.
6084  *
6085  * This is usefull only in case of a listener bound to a specific IP
6086  * address. For other kind of listeners, they get bound the
6087  * very first time and there is no attempt to rebind them.
6088  */
6089 void
6090 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2)
6091 {
6092 	conn_t		*connp = (conn_t *)arg;
6093 	squeue_t	*sqp = (squeue_t *)arg2;
6094 	squeue_t	*new_sqp;
6095 	uint32_t	conn_flags;
6096 
6097 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
6098 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
6099 	} else {
6100 		goto done;
6101 	}
6102 
6103 	if (connp->conn_fanout == NULL)
6104 		goto done;
6105 
6106 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
6107 		mutex_enter(&connp->conn_fanout->connf_lock);
6108 		mutex_enter(&connp->conn_lock);
6109 		/*
6110 		 * No one from read or write side can access us now
6111 		 * except for already queued packets on this squeue.
6112 		 * But since we haven't changed the squeue yet, they
6113 		 * can't execute. If they are processed after we have
6114 		 * changed the squeue, they are sent back to the
6115 		 * correct squeue down below.
6116 		 * But a listner close can race with processing of
6117 		 * incoming SYN. If incoming SYN processing changes
6118 		 * the squeue then the listener close which is waiting
6119 		 * to enter the squeue would operate on the wrong
6120 		 * squeue. Hence we don't change the squeue here unless
6121 		 * the refcount is exactly the minimum refcount. The
6122 		 * minimum refcount of 4 is counted as - 1 each for
6123 		 * TCP and IP, 1 for being in the classifier hash, and
6124 		 * 1 for the mblk being processed.
6125 		 */
6126 
6127 		if (connp->conn_ref != 4 ||
6128 		    connp->conn_tcp->tcp_state != TCPS_LISTEN) {
6129 			mutex_exit(&connp->conn_lock);
6130 			mutex_exit(&connp->conn_fanout->connf_lock);
6131 			goto done;
6132 		}
6133 		if (connp->conn_sqp != new_sqp) {
6134 			while (connp->conn_sqp != new_sqp)
6135 				(void) casptr(&connp->conn_sqp, sqp, new_sqp);
6136 		}
6137 
6138 		do {
6139 			conn_flags = connp->conn_flags;
6140 			conn_flags |= IPCL_FULLY_BOUND;
6141 			(void) cas32(&connp->conn_flags, connp->conn_flags,
6142 			    conn_flags);
6143 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
6144 
6145 		mutex_exit(&connp->conn_fanout->connf_lock);
6146 		mutex_exit(&connp->conn_lock);
6147 	}
6148 
6149 done:
6150 	if (connp->conn_sqp != sqp) {
6151 		CONN_INC_REF(connp);
6152 		squeue_fill(connp->conn_sqp, mp,
6153 		    connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND);
6154 	} else {
6155 		tcp_conn_request(connp, mp, sqp);
6156 	}
6157 }
6158 
6159 /*
6160  * Successful connect request processing begins when our client passes
6161  * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes
6162  * our T_OK_ACK reply message upstream.  The control flow looks like this:
6163  *   upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP
6164  *   upstream <- tcp_rput()                <- IP
6165  * After various error checks are completed, tcp_connect() lays
6166  * the target address and port into the composite header template,
6167  * preallocates the T_OK_ACK reply message, construct a full 12 byte bind
6168  * request followed by an IRE request, and passes the three mblk message
6169  * down to IP looking like this:
6170  *   O_T_BIND_REQ for IP  --> IRE req --> T_OK_ACK for our client
6171  * Processing continues in tcp_rput() when we receive the following message:
6172  *   T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client
6173  * After consuming the first two mblks, tcp_rput() calls tcp_timer(),
6174  * to fire off the connection request, and then passes the T_OK_ACK mblk
6175  * upstream that we filled in below.  There are, of course, numerous
6176  * error conditions along the way which truncate the processing described
6177  * above.
6178  */
6179 static void
6180 tcp_connect(tcp_t *tcp, mblk_t *mp)
6181 {
6182 	sin_t		*sin;
6183 	sin6_t		*sin6;
6184 	queue_t		*q = tcp->tcp_wq;
6185 	struct T_conn_req	*tcr;
6186 	ipaddr_t	*dstaddrp;
6187 	in_port_t	dstport;
6188 	uint_t		srcid;
6189 
6190 	tcr = (struct T_conn_req *)mp->b_rptr;
6191 
6192 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6193 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
6194 		tcp_err_ack(tcp, mp, TPROTO, 0);
6195 		return;
6196 	}
6197 
6198 	/*
6199 	 * Pre-allocate the T_ordrel_ind mblk so that at close time, we
6200 	 * will always have that to send up.  Otherwise, we need to do
6201 	 * special handling in case the allocation fails at that time.
6202 	 * If the end point is TPI, the tcp_t can be reused and the
6203 	 * tcp_ordrel_mp may be allocated already.
6204 	 */
6205 	if (tcp->tcp_ordrel_mp == NULL) {
6206 		if ((tcp->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) {
6207 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
6208 			return;
6209 		}
6210 	}
6211 
6212 	/*
6213 	 * Determine packet type based on type of address passed in
6214 	 * the request should contain an IPv4 or IPv6 address.
6215 	 * Make sure that address family matches the type of
6216 	 * family of the the address passed down
6217 	 */
6218 	switch (tcr->DEST_length) {
6219 	default:
6220 		tcp_err_ack(tcp, mp, TBADADDR, 0);
6221 		return;
6222 
6223 	case (sizeof (sin_t) - sizeof (sin->sin_zero)): {
6224 		/*
6225 		 * XXX: The check for valid DEST_length was not there
6226 		 * in earlier releases and some buggy
6227 		 * TLI apps (e.g Sybase) got away with not feeding
6228 		 * in sin_zero part of address.
6229 		 * We allow that bug to keep those buggy apps humming.
6230 		 * Test suites require the check on DEST_length.
6231 		 * We construct a new mblk with valid DEST_length
6232 		 * free the original so the rest of the code does
6233 		 * not have to keep track of this special shorter
6234 		 * length address case.
6235 		 */
6236 		mblk_t *nmp;
6237 		struct T_conn_req *ntcr;
6238 		sin_t *nsin;
6239 
6240 		nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) +
6241 		    tcr->OPT_length, BPRI_HI);
6242 		if (nmp == NULL) {
6243 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
6244 			return;
6245 		}
6246 		ntcr = (struct T_conn_req *)nmp->b_rptr;
6247 		bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */
6248 		ntcr->PRIM_type = T_CONN_REQ;
6249 		ntcr->DEST_length = sizeof (sin_t);
6250 		ntcr->DEST_offset = sizeof (struct T_conn_req);
6251 
6252 		nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset);
6253 		*nsin = sin_null;
6254 		/* Get pointer to shorter address to copy from original mp */
6255 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6256 		    tcr->DEST_length); /* extract DEST_length worth of sin_t */
6257 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6258 			freemsg(nmp);
6259 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6260 			return;
6261 		}
6262 		nsin->sin_family = sin->sin_family;
6263 		nsin->sin_port = sin->sin_port;
6264 		nsin->sin_addr = sin->sin_addr;
6265 		/* Note:nsin->sin_zero zero-fill with sin_null assign above */
6266 		nmp->b_wptr = (uchar_t *)&nsin[1];
6267 		if (tcr->OPT_length != 0) {
6268 			ntcr->OPT_length = tcr->OPT_length;
6269 			ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr;
6270 			bcopy((uchar_t *)tcr + tcr->OPT_offset,
6271 			    (uchar_t *)ntcr + ntcr->OPT_offset,
6272 			    tcr->OPT_length);
6273 			nmp->b_wptr += tcr->OPT_length;
6274 		}
6275 		freemsg(mp);	/* original mp freed */
6276 		mp = nmp;	/* re-initialize original variables */
6277 		tcr = ntcr;
6278 	}
6279 	/* FALLTHRU */
6280 
6281 	case sizeof (sin_t):
6282 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6283 		    sizeof (sin_t));
6284 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6285 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6286 			return;
6287 		}
6288 		if (tcp->tcp_family != AF_INET ||
6289 		    sin->sin_family != AF_INET) {
6290 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6291 			return;
6292 		}
6293 		if (sin->sin_port == 0) {
6294 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6295 			return;
6296 		}
6297 		if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) {
6298 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6299 			return;
6300 		}
6301 
6302 		break;
6303 
6304 	case sizeof (sin6_t):
6305 		sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset,
6306 		    sizeof (sin6_t));
6307 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
6308 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6309 			return;
6310 		}
6311 		if (tcp->tcp_family != AF_INET6 ||
6312 		    sin6->sin6_family != AF_INET6) {
6313 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6314 			return;
6315 		}
6316 		if (sin6->sin6_port == 0) {
6317 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6318 			return;
6319 		}
6320 		break;
6321 	}
6322 	/*
6323 	 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we
6324 	 * should key on their sequence number and cut them loose.
6325 	 */
6326 
6327 	/*
6328 	 * If options passed in, feed it for verification and handling
6329 	 */
6330 	if (tcr->OPT_length != 0) {
6331 		mblk_t	*ok_mp;
6332 		mblk_t	*discon_mp;
6333 		mblk_t  *conn_opts_mp;
6334 		int t_error, sys_error, do_disconnect;
6335 
6336 		conn_opts_mp = NULL;
6337 
6338 		if (tcp_conprim_opt_process(tcp, mp,
6339 		    &do_disconnect, &t_error, &sys_error) < 0) {
6340 			if (do_disconnect) {
6341 				ASSERT(t_error == 0 && sys_error == 0);
6342 				discon_mp = mi_tpi_discon_ind(NULL,
6343 				    ECONNREFUSED, 0);
6344 				if (!discon_mp) {
6345 					tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6346 					    TSYSERR, ENOMEM);
6347 					return;
6348 				}
6349 				ok_mp = mi_tpi_ok_ack_alloc(mp);
6350 				if (!ok_mp) {
6351 					tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6352 					    TSYSERR, ENOMEM);
6353 					return;
6354 				}
6355 				qreply(q, ok_mp);
6356 				qreply(q, discon_mp); /* no flush! */
6357 			} else {
6358 				ASSERT(t_error != 0);
6359 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error,
6360 				    sys_error);
6361 			}
6362 			return;
6363 		}
6364 		/*
6365 		 * Success in setting options, the mp option buffer represented
6366 		 * by OPT_length/offset has been potentially modified and
6367 		 * contains results of option processing. We copy it in
6368 		 * another mp to save it for potentially influencing returning
6369 		 * it in T_CONN_CONN.
6370 		 */
6371 		if (tcr->OPT_length != 0) { /* there are resulting options */
6372 			conn_opts_mp = copyb(mp);
6373 			if (!conn_opts_mp) {
6374 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6375 				    TSYSERR, ENOMEM);
6376 				return;
6377 			}
6378 			ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL);
6379 			tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp;
6380 			/*
6381 			 * Note:
6382 			 * These resulting option negotiation can include any
6383 			 * end-to-end negotiation options but there no such
6384 			 * thing (yet?) in our TCP/IP.
6385 			 */
6386 		}
6387 	}
6388 
6389 	/*
6390 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
6391 	 * make sure that the template IP header in the tcp structure is an
6392 	 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION.  We
6393 	 * need to this before we call tcp_bindi() so that the port lookup
6394 	 * code will look for ports in the correct port space (IPv4 and
6395 	 * IPv6 have separate port spaces).
6396 	 */
6397 	if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION &&
6398 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6399 		int err = 0;
6400 
6401 		err = tcp_header_init_ipv4(tcp);
6402 		if (err != 0) {
6403 			mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6404 			goto connect_failed;
6405 		}
6406 		if (tcp->tcp_lport != 0)
6407 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
6408 	}
6409 
6410 	if (tcp->tcp_issocket) {
6411 		/*
6412 		 * TCP is _D_SODIRECT and sockfs is directly above so save
6413 		 * the shared sonode sodirect_t pointer (if any) to enable
6414 		 * TCP sodirect.
6415 		 */
6416 		tcp->tcp_sodirect = SOD_QTOSODP(tcp->tcp_rq);
6417 	}
6418 
6419 	switch (tcp->tcp_state) {
6420 	case TCPS_IDLE:
6421 		/*
6422 		 * We support quick connect, refer to comments in
6423 		 * tcp_connect_*()
6424 		 */
6425 		/* FALLTHRU */
6426 	case TCPS_BOUND:
6427 	case TCPS_LISTEN:
6428 		if (tcp->tcp_family == AF_INET6) {
6429 			if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6430 				tcp_connect_ipv6(tcp, mp,
6431 				    &sin6->sin6_addr,
6432 				    sin6->sin6_port, sin6->sin6_flowinfo,
6433 				    sin6->__sin6_src_id, sin6->sin6_scope_id);
6434 				return;
6435 			}
6436 			/*
6437 			 * Destination adress is mapped IPv6 address.
6438 			 * Source bound address should be unspecified or
6439 			 * IPv6 mapped address as well.
6440 			 */
6441 			if (!IN6_IS_ADDR_UNSPECIFIED(
6442 			    &tcp->tcp_bound_source_v6) &&
6443 			    !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) {
6444 				mp = mi_tpi_err_ack_alloc(mp, TSYSERR,
6445 				    EADDRNOTAVAIL);
6446 				break;
6447 			}
6448 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
6449 			dstport = sin6->sin6_port;
6450 			srcid = sin6->__sin6_src_id;
6451 		} else {
6452 			dstaddrp = &sin->sin_addr.s_addr;
6453 			dstport = sin->sin_port;
6454 			srcid = 0;
6455 		}
6456 
6457 		tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid);
6458 		return;
6459 	default:
6460 		mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0);
6461 		break;
6462 	}
6463 	/*
6464 	 * Note: Code below is the "failure" case
6465 	 */
6466 	/* return error ack and blow away saved option results if any */
6467 connect_failed:
6468 	if (mp != NULL)
6469 		putnext(tcp->tcp_rq, mp);
6470 	else {
6471 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6472 		    TSYSERR, ENOMEM);
6473 	}
6474 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6475 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6476 }
6477 
6478 /*
6479  * Handle connect to IPv4 destinations, including connections for AF_INET6
6480  * sockets connecting to IPv4 mapped IPv6 destinations.
6481  */
6482 static void
6483 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport,
6484     uint_t srcid)
6485 {
6486 	tcph_t	*tcph;
6487 	mblk_t	*mp1;
6488 	ipaddr_t dstaddr = *dstaddrp;
6489 	int32_t	oldstate;
6490 	uint16_t lport;
6491 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6492 
6493 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
6494 
6495 	/* Check for attempt to connect to INADDR_ANY */
6496 	if (dstaddr == INADDR_ANY)  {
6497 		/*
6498 		 * SunOS 4.x and 4.3 BSD allow an application
6499 		 * to connect a TCP socket to INADDR_ANY.
6500 		 * When they do this, the kernel picks the
6501 		 * address of one interface and uses it
6502 		 * instead.  The kernel usually ends up
6503 		 * picking the address of the loopback
6504 		 * interface.  This is an undocumented feature.
6505 		 * However, we provide the same thing here
6506 		 * in order to have source and binary
6507 		 * compatibility with SunOS 4.x.
6508 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
6509 		 * generate the T_CONN_CON.
6510 		 */
6511 		dstaddr = htonl(INADDR_LOOPBACK);
6512 		*dstaddrp = dstaddr;
6513 	}
6514 
6515 	/* Handle __sin6_src_id if socket not bound to an IP address */
6516 	if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) {
6517 		ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6,
6518 		    tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack);
6519 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6,
6520 		    tcp->tcp_ipha->ipha_src);
6521 	}
6522 
6523 	/*
6524 	 * Don't let an endpoint connect to itself.  Note that
6525 	 * the test here does not catch the case where the
6526 	 * source IP addr was left unspecified by the user. In
6527 	 * this case, the source addr is set in tcp_adapt_ire()
6528 	 * using the reply to the T_BIND message that we send
6529 	 * down to IP here and the check is repeated in tcp_rput_other.
6530 	 */
6531 	if (dstaddr == tcp->tcp_ipha->ipha_src &&
6532 	    dstport == tcp->tcp_lport) {
6533 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6534 		goto failed;
6535 	}
6536 
6537 	tcp->tcp_ipha->ipha_dst = dstaddr;
6538 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6);
6539 
6540 	/*
6541 	 * Massage a source route if any putting the first hop
6542 	 * in iph_dst. Compute a starting value for the checksum which
6543 	 * takes into account that the original iph_dst should be
6544 	 * included in the checksum but that ip will include the
6545 	 * first hop in the source route in the tcp checksum.
6546 	 */
6547 	tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack);
6548 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6549 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
6550 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
6551 	if ((int)tcp->tcp_sum < 0)
6552 		tcp->tcp_sum--;
6553 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6554 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6555 	    (tcp->tcp_sum >> 16));
6556 	tcph = tcp->tcp_tcph;
6557 	*(uint16_t *)tcph->th_fport = dstport;
6558 	tcp->tcp_fport = dstport;
6559 
6560 	oldstate = tcp->tcp_state;
6561 	/*
6562 	 * At this point the remote destination address and remote port fields
6563 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6564 	 * have to see which state tcp was in so we can take apropriate action.
6565 	 */
6566 	if (oldstate == TCPS_IDLE) {
6567 		/*
6568 		 * We support a quick connect capability here, allowing
6569 		 * clients to transition directly from IDLE to SYN_SENT
6570 		 * tcp_bindi will pick an unused port, insert the connection
6571 		 * in the bind hash and transition to BOUND state.
6572 		 */
6573 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6574 		    tcp, B_TRUE);
6575 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6576 		    B_FALSE, B_FALSE);
6577 		if (lport == 0) {
6578 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6579 			goto failed;
6580 		}
6581 	}
6582 	tcp->tcp_state = TCPS_SYN_SENT;
6583 
6584 	/*
6585 	 * TODO: allow data with connect requests
6586 	 * by unlinking M_DATA trailers here and
6587 	 * linking them in behind the T_OK_ACK mblk.
6588 	 * The tcp_rput() bind ack handler would then
6589 	 * feed them to tcp_wput_data() rather than call
6590 	 * tcp_timer().
6591 	 */
6592 	mp = mi_tpi_ok_ack_alloc(mp);
6593 	if (!mp) {
6594 		tcp->tcp_state = oldstate;
6595 		goto failed;
6596 	}
6597 	if (tcp->tcp_family == AF_INET) {
6598 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6599 		    sizeof (ipa_conn_t));
6600 	} else {
6601 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6602 		    sizeof (ipa6_conn_t));
6603 	}
6604 	if (mp1) {
6605 		/*
6606 		 * We need to make sure that the conn_recv is set to a non-null
6607 		 * value before we insert the conn_t into the classifier table.
6608 		 * This is to avoid a race with an incoming packet which does
6609 		 * an ipcl_classify().
6610 		 */
6611 		tcp->tcp_connp->conn_recv = tcp_input;
6612 
6613 		/* Hang onto the T_OK_ACK for later. */
6614 		linkb(mp1, mp);
6615 		mblk_setcred(mp1, tcp->tcp_cred);
6616 		if (tcp->tcp_family == AF_INET)
6617 			mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp);
6618 		else {
6619 			mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6620 			    &tcp->tcp_sticky_ipp);
6621 		}
6622 		BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6623 		tcp->tcp_active_open = 1;
6624 		/*
6625 		 * If the bind cannot complete immediately
6626 		 * IP will arrange to call tcp_rput_other
6627 		 * when the bind completes.
6628 		 */
6629 		if (mp1 != NULL)
6630 			tcp_rput_other(tcp, mp1);
6631 		return;
6632 	}
6633 	/* Error case */
6634 	tcp->tcp_state = oldstate;
6635 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6636 
6637 failed:
6638 	/* return error ack and blow away saved option results if any */
6639 	if (mp != NULL)
6640 		putnext(tcp->tcp_rq, mp);
6641 	else {
6642 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6643 		    TSYSERR, ENOMEM);
6644 	}
6645 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6646 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6647 
6648 }
6649 
6650 /*
6651  * Handle connect to IPv6 destinations.
6652  */
6653 static void
6654 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
6655     in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
6656 {
6657 	tcph_t	*tcph;
6658 	mblk_t	*mp1;
6659 	ip6_rthdr_t *rth;
6660 	int32_t  oldstate;
6661 	uint16_t lport;
6662 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6663 
6664 	ASSERT(tcp->tcp_family == AF_INET6);
6665 
6666 	/*
6667 	 * If we're here, it means that the destination address is a native
6668 	 * IPv6 address.  Return an error if tcp_ipversion is not IPv6.  A
6669 	 * reason why it might not be IPv6 is if the socket was bound to an
6670 	 * IPv4-mapped IPv6 address.
6671 	 */
6672 	if (tcp->tcp_ipversion != IPV6_VERSION) {
6673 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6674 		goto failed;
6675 	}
6676 
6677 	/*
6678 	 * Interpret a zero destination to mean loopback.
6679 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
6680 	 * generate the T_CONN_CON.
6681 	 */
6682 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) {
6683 		*dstaddrp = ipv6_loopback;
6684 	}
6685 
6686 	/* Handle __sin6_src_id if socket not bound to an IP address */
6687 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
6688 		ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src,
6689 		    tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack);
6690 		tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src;
6691 	}
6692 
6693 	/*
6694 	 * Take care of the scope_id now and add ip6i_t
6695 	 * if ip6i_t is not already allocated through TCP
6696 	 * sticky options. At this point tcp_ip6h does not
6697 	 * have dst info, thus use dstaddrp.
6698 	 */
6699 	if (scope_id != 0 &&
6700 	    IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
6701 		ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
6702 		ip6i_t  *ip6i;
6703 
6704 		ipp->ipp_ifindex = scope_id;
6705 		ip6i = (ip6i_t *)tcp->tcp_iphc;
6706 
6707 		if ((ipp->ipp_fields & IPPF_HAS_IP6I) &&
6708 		    ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) {
6709 			/* Already allocated */
6710 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6711 			ip6i->ip6i_ifindex = ipp->ipp_ifindex;
6712 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6713 		} else {
6714 			int reterr;
6715 
6716 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6717 			if (ipp->ipp_fields & IPPF_HAS_IP6I)
6718 				ip2dbg(("tcp_connect_v6: SCOPE_ID set\n"));
6719 			reterr = tcp_build_hdrs(tcp->tcp_rq, tcp);
6720 			if (reterr != 0)
6721 				goto failed;
6722 			ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n"));
6723 		}
6724 	}
6725 
6726 	/*
6727 	 * Don't let an endpoint connect to itself.  Note that
6728 	 * the test here does not catch the case where the
6729 	 * source IP addr was left unspecified by the user. In
6730 	 * this case, the source addr is set in tcp_adapt_ire()
6731 	 * using the reply to the T_BIND message that we send
6732 	 * down to IP here and the check is repeated in tcp_rput_other.
6733 	 */
6734 	if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) &&
6735 	    (dstport == tcp->tcp_lport)) {
6736 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6737 		goto failed;
6738 	}
6739 
6740 	tcp->tcp_ip6h->ip6_dst = *dstaddrp;
6741 	tcp->tcp_remote_v6 = *dstaddrp;
6742 	tcp->tcp_ip6h->ip6_vcf =
6743 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
6744 	    (flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
6745 
6746 
6747 	/*
6748 	 * Massage a routing header (if present) putting the first hop
6749 	 * in ip6_dst. Compute a starting value for the checksum which
6750 	 * takes into account that the original ip6_dst should be
6751 	 * included in the checksum but that ip will include the
6752 	 * first hop in the source route in the tcp checksum.
6753 	 */
6754 	rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph);
6755 	if (rth != NULL) {
6756 		tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth,
6757 		    tcps->tcps_netstack);
6758 		tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6759 		    (tcp->tcp_sum >> 16));
6760 	} else {
6761 		tcp->tcp_sum = 0;
6762 	}
6763 
6764 	tcph = tcp->tcp_tcph;
6765 	*(uint16_t *)tcph->th_fport = dstport;
6766 	tcp->tcp_fport = dstport;
6767 
6768 	oldstate = tcp->tcp_state;
6769 	/*
6770 	 * At this point the remote destination address and remote port fields
6771 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6772 	 * have to see which state tcp was in so we can take apropriate action.
6773 	 */
6774 	if (oldstate == TCPS_IDLE) {
6775 		/*
6776 		 * We support a quick connect capability here, allowing
6777 		 * clients to transition directly from IDLE to SYN_SENT
6778 		 * tcp_bindi will pick an unused port, insert the connection
6779 		 * in the bind hash and transition to BOUND state.
6780 		 */
6781 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6782 		    tcp, B_TRUE);
6783 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6784 		    B_FALSE, B_FALSE);
6785 		if (lport == 0) {
6786 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6787 			goto failed;
6788 		}
6789 	}
6790 	tcp->tcp_state = TCPS_SYN_SENT;
6791 	/*
6792 	 * TODO: allow data with connect requests
6793 	 * by unlinking M_DATA trailers here and
6794 	 * linking them in behind the T_OK_ACK mblk.
6795 	 * The tcp_rput() bind ack handler would then
6796 	 * feed them to tcp_wput_data() rather than call
6797 	 * tcp_timer().
6798 	 */
6799 	mp = mi_tpi_ok_ack_alloc(mp);
6800 	if (!mp) {
6801 		tcp->tcp_state = oldstate;
6802 		goto failed;
6803 	}
6804 	mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t));
6805 	if (mp1) {
6806 		/*
6807 		 * We need to make sure that the conn_recv is set to a non-null
6808 		 * value before we insert the conn_t into the classifier table.
6809 		 * This is to avoid a race with an incoming packet which does
6810 		 * an ipcl_classify().
6811 		 */
6812 		tcp->tcp_connp->conn_recv = tcp_input;
6813 
6814 		/* Hang onto the T_OK_ACK for later. */
6815 		linkb(mp1, mp);
6816 		mblk_setcred(mp1, tcp->tcp_cred);
6817 		mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6818 		    &tcp->tcp_sticky_ipp);
6819 		BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6820 		tcp->tcp_active_open = 1;
6821 		/* ip_bind_v6() may return ACK or ERROR */
6822 		if (mp1 != NULL)
6823 			tcp_rput_other(tcp, mp1);
6824 		return;
6825 	}
6826 	/* Error case */
6827 	tcp->tcp_state = oldstate;
6828 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6829 
6830 failed:
6831 	/* return error ack and blow away saved option results if any */
6832 	if (mp != NULL)
6833 		putnext(tcp->tcp_rq, mp);
6834 	else {
6835 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6836 		    TSYSERR, ENOMEM);
6837 	}
6838 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6839 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6840 }
6841 
6842 /*
6843  * We need a stream q for detached closing tcp connections
6844  * to use.  Our client hereby indicates that this q is the
6845  * one to use.
6846  */
6847 static void
6848 tcp_def_q_set(tcp_t *tcp, mblk_t *mp)
6849 {
6850 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
6851 	queue_t	*q = tcp->tcp_wq;
6852 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6853 
6854 #ifdef NS_DEBUG
6855 	(void) printf("TCP_IOC_DEFAULT_Q for stack %d\n",
6856 	    tcps->tcps_netstack->netstack_stackid);
6857 #endif
6858 	mp->b_datap->db_type = M_IOCACK;
6859 	iocp->ioc_count = 0;
6860 	mutex_enter(&tcps->tcps_g_q_lock);
6861 	if (tcps->tcps_g_q != NULL) {
6862 		mutex_exit(&tcps->tcps_g_q_lock);
6863 		iocp->ioc_error = EALREADY;
6864 	} else {
6865 		mblk_t *mp1;
6866 
6867 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0);
6868 		if (mp1 == NULL) {
6869 			mutex_exit(&tcps->tcps_g_q_lock);
6870 			iocp->ioc_error = ENOMEM;
6871 		} else {
6872 			tcps->tcps_g_q = tcp->tcp_rq;
6873 			mutex_exit(&tcps->tcps_g_q_lock);
6874 			iocp->ioc_error = 0;
6875 			iocp->ioc_rval = 0;
6876 			/*
6877 			 * We are passing tcp_sticky_ipp as NULL
6878 			 * as it is not useful for tcp_default queue
6879 			 *
6880 			 * Set conn_recv just in case.
6881 			 */
6882 			tcp->tcp_connp->conn_recv = tcp_conn_request;
6883 
6884 			mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL);
6885 			if (mp1 != NULL)
6886 				tcp_rput_other(tcp, mp1);
6887 		}
6888 	}
6889 	qreply(q, mp);
6890 }
6891 
6892 /*
6893  * Our client hereby directs us to reject the connection request
6894  * that tcp_conn_request() marked with 'seqnum'.  Rejection consists
6895  * of sending the appropriate RST, not an ICMP error.
6896  */
6897 static void
6898 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
6899 {
6900 	tcp_t	*ltcp = NULL;
6901 	t_scalar_t seqnum;
6902 	conn_t	*connp;
6903 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6904 
6905 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6906 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
6907 		tcp_err_ack(tcp, mp, TPROTO, 0);
6908 		return;
6909 	}
6910 
6911 	/*
6912 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
6913 	 * when the stream is in BOUND state. Do not send a reset,
6914 	 * since the destination IP address is not valid, and it can
6915 	 * be the initialized value of all zeros (broadcast address).
6916 	 *
6917 	 * If TCP has sent down a bind request to IP and has not
6918 	 * received the reply, reject the request.  Otherwise, TCP
6919 	 * will be confused.
6920 	 */
6921 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) {
6922 		if (tcp->tcp_debug) {
6923 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
6924 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
6925 		}
6926 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
6927 		return;
6928 	}
6929 
6930 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
6931 
6932 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
6933 
6934 		/*
6935 		 * According to TPI, for non-listeners, ignore seqnum
6936 		 * and disconnect.
6937 		 * Following interpretation of -1 seqnum is historical
6938 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
6939 		 * a valid seqnum should not be -1).
6940 		 *
6941 		 *	-1 means disconnect everything
6942 		 *	regardless even on a listener.
6943 		 */
6944 
6945 		int old_state = tcp->tcp_state;
6946 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
6947 
6948 		/*
6949 		 * The connection can't be on the tcp_time_wait_head list
6950 		 * since it is not detached.
6951 		 */
6952 		ASSERT(tcp->tcp_time_wait_next == NULL);
6953 		ASSERT(tcp->tcp_time_wait_prev == NULL);
6954 		ASSERT(tcp->tcp_time_wait_expire == 0);
6955 		ltcp = NULL;
6956 		/*
6957 		 * If it used to be a listener, check to make sure no one else
6958 		 * has taken the port before switching back to LISTEN state.
6959 		 */
6960 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6961 			connp = ipcl_lookup_listener_v4(tcp->tcp_lport,
6962 			    tcp->tcp_ipha->ipha_src,
6963 			    tcp->tcp_connp->conn_zoneid, ipst);
6964 			if (connp != NULL)
6965 				ltcp = connp->conn_tcp;
6966 		} else {
6967 			/* Allow tcp_bound_if listeners? */
6968 			connp = ipcl_lookup_listener_v6(tcp->tcp_lport,
6969 			    &tcp->tcp_ip6h->ip6_src, 0,
6970 			    tcp->tcp_connp->conn_zoneid, ipst);
6971 			if (connp != NULL)
6972 				ltcp = connp->conn_tcp;
6973 		}
6974 		if (tcp->tcp_conn_req_max && ltcp == NULL) {
6975 			tcp->tcp_state = TCPS_LISTEN;
6976 		} else if (old_state > TCPS_BOUND) {
6977 			tcp->tcp_conn_req_max = 0;
6978 			tcp->tcp_state = TCPS_BOUND;
6979 		}
6980 		if (ltcp != NULL)
6981 			CONN_DEC_REF(ltcp->tcp_connp);
6982 		if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) {
6983 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
6984 		} else if (old_state == TCPS_ESTABLISHED ||
6985 		    old_state == TCPS_CLOSE_WAIT) {
6986 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
6987 		}
6988 
6989 		if (tcp->tcp_fused)
6990 			tcp_unfuse(tcp);
6991 
6992 		mutex_enter(&tcp->tcp_eager_lock);
6993 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
6994 		    (tcp->tcp_conn_req_cnt_q != 0)) {
6995 			tcp_eager_cleanup(tcp, 0);
6996 		}
6997 		mutex_exit(&tcp->tcp_eager_lock);
6998 
6999 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
7000 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
7001 
7002 		tcp_reinit(tcp);
7003 
7004 		if (old_state >= TCPS_ESTABLISHED) {
7005 			/* Send M_FLUSH according to TPI */
7006 			(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
7007 		}
7008 		mp = mi_tpi_ok_ack_alloc(mp);
7009 		if (mp)
7010 			putnext(tcp->tcp_rq, mp);
7011 		return;
7012 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
7013 		tcp_err_ack(tcp, mp, TBADSEQ, 0);
7014 		return;
7015 	}
7016 	if (tcp->tcp_state >= TCPS_ESTABLISHED) {
7017 		/* Send M_FLUSH according to TPI */
7018 		(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
7019 	}
7020 	mp = mi_tpi_ok_ack_alloc(mp);
7021 	if (mp)
7022 		putnext(tcp->tcp_rq, mp);
7023 }
7024 
7025 /*
7026  * Diagnostic routine used to return a string associated with the tcp state.
7027  * Note that if the caller does not supply a buffer, it will use an internal
7028  * static string.  This means that if multiple threads call this function at
7029  * the same time, output can be corrupted...  Note also that this function
7030  * does not check the size of the supplied buffer.  The caller has to make
7031  * sure that it is big enough.
7032  */
7033 static char *
7034 tcp_display(tcp_t *tcp, char *sup_buf, char format)
7035 {
7036 	char		buf1[30];
7037 	static char	priv_buf[INET6_ADDRSTRLEN * 2 + 80];
7038 	char		*buf;
7039 	char		*cp;
7040 	in6_addr_t	local, remote;
7041 	char		local_addrbuf[INET6_ADDRSTRLEN];
7042 	char		remote_addrbuf[INET6_ADDRSTRLEN];
7043 
7044 	if (sup_buf != NULL)
7045 		buf = sup_buf;
7046 	else
7047 		buf = priv_buf;
7048 
7049 	if (tcp == NULL)
7050 		return ("NULL_TCP");
7051 	switch (tcp->tcp_state) {
7052 	case TCPS_CLOSED:
7053 		cp = "TCP_CLOSED";
7054 		break;
7055 	case TCPS_IDLE:
7056 		cp = "TCP_IDLE";
7057 		break;
7058 	case TCPS_BOUND:
7059 		cp = "TCP_BOUND";
7060 		break;
7061 	case TCPS_LISTEN:
7062 		cp = "TCP_LISTEN";
7063 		break;
7064 	case TCPS_SYN_SENT:
7065 		cp = "TCP_SYN_SENT";
7066 		break;
7067 	case TCPS_SYN_RCVD:
7068 		cp = "TCP_SYN_RCVD";
7069 		break;
7070 	case TCPS_ESTABLISHED:
7071 		cp = "TCP_ESTABLISHED";
7072 		break;
7073 	case TCPS_CLOSE_WAIT:
7074 		cp = "TCP_CLOSE_WAIT";
7075 		break;
7076 	case TCPS_FIN_WAIT_1:
7077 		cp = "TCP_FIN_WAIT_1";
7078 		break;
7079 	case TCPS_CLOSING:
7080 		cp = "TCP_CLOSING";
7081 		break;
7082 	case TCPS_LAST_ACK:
7083 		cp = "TCP_LAST_ACK";
7084 		break;
7085 	case TCPS_FIN_WAIT_2:
7086 		cp = "TCP_FIN_WAIT_2";
7087 		break;
7088 	case TCPS_TIME_WAIT:
7089 		cp = "TCP_TIME_WAIT";
7090 		break;
7091 	default:
7092 		(void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state);
7093 		cp = buf1;
7094 		break;
7095 	}
7096 	switch (format) {
7097 	case DISP_ADDR_AND_PORT:
7098 		if (tcp->tcp_ipversion == IPV4_VERSION) {
7099 			/*
7100 			 * Note that we use the remote address in the tcp_b
7101 			 * structure.  This means that it will print out
7102 			 * the real destination address, not the next hop's
7103 			 * address if source routing is used.
7104 			 */
7105 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local);
7106 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote);
7107 
7108 		} else {
7109 			local = tcp->tcp_ip_src_v6;
7110 			remote = tcp->tcp_remote_v6;
7111 		}
7112 		(void) inet_ntop(AF_INET6, &local, local_addrbuf,
7113 		    sizeof (local_addrbuf));
7114 		(void) inet_ntop(AF_INET6, &remote, remote_addrbuf,
7115 		    sizeof (remote_addrbuf));
7116 		(void) mi_sprintf(buf, "[%s.%u, %s.%u] %s",
7117 		    local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf,
7118 		    ntohs(tcp->tcp_fport), cp);
7119 		break;
7120 	case DISP_PORT_ONLY:
7121 	default:
7122 		(void) mi_sprintf(buf, "[%u, %u] %s",
7123 		    ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp);
7124 		break;
7125 	}
7126 
7127 	return (buf);
7128 }
7129 
7130 /*
7131  * Called via squeue to get on to eager's perimeter. It sends a
7132  * TH_RST if eager is in the fanout table. The listener wants the
7133  * eager to disappear either by means of tcp_eager_blowoff() or
7134  * tcp_eager_cleanup() being called. tcp_eager_kill() can also be
7135  * called (via squeue) if the eager cannot be inserted in the
7136  * fanout table in tcp_conn_request().
7137  */
7138 /* ARGSUSED */
7139 void
7140 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2)
7141 {
7142 	conn_t	*econnp = (conn_t *)arg;
7143 	tcp_t	*eager = econnp->conn_tcp;
7144 	tcp_t	*listener = eager->tcp_listener;
7145 	tcp_stack_t	*tcps = eager->tcp_tcps;
7146 
7147 	/*
7148 	 * We could be called because listener is closing. Since
7149 	 * the eager is using listener's queue's, its not safe.
7150 	 * Better use the default queue just to send the TH_RST
7151 	 * out.
7152 	 */
7153 	ASSERT(tcps->tcps_g_q != NULL);
7154 	eager->tcp_rq = tcps->tcps_g_q;
7155 	eager->tcp_wq = WR(tcps->tcps_g_q);
7156 
7157 	/*
7158 	 * An eager's conn_fanout will be NULL if it's a duplicate
7159 	 * for an existing 4-tuples in the conn fanout table.
7160 	 * We don't want to send an RST out in such case.
7161 	 */
7162 	if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) {
7163 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
7164 		    eager, eager->tcp_snxt, 0, TH_RST);
7165 	}
7166 
7167 	/* We are here because listener wants this eager gone */
7168 	if (listener != NULL) {
7169 		mutex_enter(&listener->tcp_eager_lock);
7170 		tcp_eager_unlink(eager);
7171 		if (eager->tcp_tconnind_started) {
7172 			/*
7173 			 * The eager has sent a conn_ind up to the
7174 			 * listener but listener decides to close
7175 			 * instead. We need to drop the extra ref
7176 			 * placed on eager in tcp_rput_data() before
7177 			 * sending the conn_ind to listener.
7178 			 */
7179 			CONN_DEC_REF(econnp);
7180 		}
7181 		mutex_exit(&listener->tcp_eager_lock);
7182 		CONN_DEC_REF(listener->tcp_connp);
7183 	}
7184 
7185 	if (eager->tcp_state > TCPS_BOUND)
7186 		tcp_close_detached(eager);
7187 }
7188 
7189 /*
7190  * Reset any eager connection hanging off this listener marked
7191  * with 'seqnum' and then reclaim it's resources.
7192  */
7193 static boolean_t
7194 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
7195 {
7196 	tcp_t	*eager;
7197 	mblk_t 	*mp;
7198 	tcp_stack_t	*tcps = listener->tcp_tcps;
7199 
7200 	TCP_STAT(tcps, tcp_eager_blowoff_calls);
7201 	eager = listener;
7202 	mutex_enter(&listener->tcp_eager_lock);
7203 	do {
7204 		eager = eager->tcp_eager_next_q;
7205 		if (eager == NULL) {
7206 			mutex_exit(&listener->tcp_eager_lock);
7207 			return (B_FALSE);
7208 		}
7209 	} while (eager->tcp_conn_req_seqnum != seqnum);
7210 
7211 	if (eager->tcp_closemp_used) {
7212 		mutex_exit(&listener->tcp_eager_lock);
7213 		return (B_TRUE);
7214 	}
7215 	eager->tcp_closemp_used = B_TRUE;
7216 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7217 	CONN_INC_REF(eager->tcp_connp);
7218 	mutex_exit(&listener->tcp_eager_lock);
7219 	mp = &eager->tcp_closemp;
7220 	squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
7221 	    eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF);
7222 	return (B_TRUE);
7223 }
7224 
7225 /*
7226  * Reset any eager connection hanging off this listener
7227  * and then reclaim it's resources.
7228  */
7229 static void
7230 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
7231 {
7232 	tcp_t	*eager;
7233 	mblk_t	*mp;
7234 	tcp_stack_t	*tcps = listener->tcp_tcps;
7235 
7236 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7237 
7238 	if (!q0_only) {
7239 		/* First cleanup q */
7240 		TCP_STAT(tcps, tcp_eager_blowoff_q);
7241 		eager = listener->tcp_eager_next_q;
7242 		while (eager != NULL) {
7243 			if (!eager->tcp_closemp_used) {
7244 				eager->tcp_closemp_used = B_TRUE;
7245 				TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7246 				CONN_INC_REF(eager->tcp_connp);
7247 				mp = &eager->tcp_closemp;
7248 				squeue_fill(eager->tcp_connp->conn_sqp, mp,
7249 				    tcp_eager_kill, eager->tcp_connp,
7250 				    SQTAG_TCP_EAGER_CLEANUP);
7251 			}
7252 			eager = eager->tcp_eager_next_q;
7253 		}
7254 	}
7255 	/* Then cleanup q0 */
7256 	TCP_STAT(tcps, tcp_eager_blowoff_q0);
7257 	eager = listener->tcp_eager_next_q0;
7258 	while (eager != listener) {
7259 		if (!eager->tcp_closemp_used) {
7260 			eager->tcp_closemp_used = B_TRUE;
7261 			TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7262 			CONN_INC_REF(eager->tcp_connp);
7263 			mp = &eager->tcp_closemp;
7264 			squeue_fill(eager->tcp_connp->conn_sqp, mp,
7265 			    tcp_eager_kill, eager->tcp_connp,
7266 			    SQTAG_TCP_EAGER_CLEANUP_Q0);
7267 		}
7268 		eager = eager->tcp_eager_next_q0;
7269 	}
7270 }
7271 
7272 /*
7273  * If we are an eager connection hanging off a listener that hasn't
7274  * formally accepted the connection yet, get off his list and blow off
7275  * any data that we have accumulated.
7276  */
7277 static void
7278 tcp_eager_unlink(tcp_t *tcp)
7279 {
7280 	tcp_t	*listener = tcp->tcp_listener;
7281 
7282 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7283 	ASSERT(listener != NULL);
7284 	if (tcp->tcp_eager_next_q0 != NULL) {
7285 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
7286 
7287 		/* Remove the eager tcp from q0 */
7288 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
7289 		    tcp->tcp_eager_prev_q0;
7290 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
7291 		    tcp->tcp_eager_next_q0;
7292 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
7293 		listener->tcp_conn_req_cnt_q0--;
7294 
7295 		tcp->tcp_eager_next_q0 = NULL;
7296 		tcp->tcp_eager_prev_q0 = NULL;
7297 
7298 		/*
7299 		 * Take the eager out, if it is in the list of droppable
7300 		 * eagers.
7301 		 */
7302 		MAKE_UNDROPPABLE(tcp);
7303 
7304 		if (tcp->tcp_syn_rcvd_timeout != 0) {
7305 			/* we have timed out before */
7306 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
7307 			listener->tcp_syn_rcvd_timeout--;
7308 		}
7309 	} else {
7310 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
7311 		tcp_t	*prev = NULL;
7312 
7313 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
7314 			if (tcpp[0] == tcp) {
7315 				if (listener->tcp_eager_last_q == tcp) {
7316 					/*
7317 					 * If we are unlinking the last
7318 					 * element on the list, adjust
7319 					 * tail pointer. Set tail pointer
7320 					 * to nil when list is empty.
7321 					 */
7322 					ASSERT(tcp->tcp_eager_next_q == NULL);
7323 					if (listener->tcp_eager_last_q ==
7324 					    listener->tcp_eager_next_q) {
7325 						listener->tcp_eager_last_q =
7326 						    NULL;
7327 					} else {
7328 						/*
7329 						 * We won't get here if there
7330 						 * is only one eager in the
7331 						 * list.
7332 						 */
7333 						ASSERT(prev != NULL);
7334 						listener->tcp_eager_last_q =
7335 						    prev;
7336 					}
7337 				}
7338 				tcpp[0] = tcp->tcp_eager_next_q;
7339 				tcp->tcp_eager_next_q = NULL;
7340 				tcp->tcp_eager_last_q = NULL;
7341 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
7342 				listener->tcp_conn_req_cnt_q--;
7343 				break;
7344 			}
7345 			prev = tcpp[0];
7346 		}
7347 	}
7348 	tcp->tcp_listener = NULL;
7349 }
7350 
7351 /* Shorthand to generate and send TPI error acks to our client */
7352 static void
7353 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error)
7354 {
7355 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
7356 		putnext(tcp->tcp_rq, mp);
7357 }
7358 
7359 /* Shorthand to generate and send TPI error acks to our client */
7360 static void
7361 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
7362     int t_error, int sys_error)
7363 {
7364 	struct T_error_ack	*teackp;
7365 
7366 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
7367 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
7368 		teackp = (struct T_error_ack *)mp->b_rptr;
7369 		teackp->ERROR_prim = primitive;
7370 		teackp->TLI_error = t_error;
7371 		teackp->UNIX_error = sys_error;
7372 		putnext(tcp->tcp_rq, mp);
7373 	}
7374 }
7375 
7376 /*
7377  * Note: No locks are held when inspecting tcp_g_*epriv_ports
7378  * but instead the code relies on:
7379  * - the fact that the address of the array and its size never changes
7380  * - the atomic assignment of the elements of the array
7381  */
7382 /* ARGSUSED */
7383 static int
7384 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
7385 {
7386 	int i;
7387 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7388 
7389 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7390 		if (tcps->tcps_g_epriv_ports[i] != 0)
7391 			(void) mi_mpprintf(mp, "%d ",
7392 			    tcps->tcps_g_epriv_ports[i]);
7393 	}
7394 	return (0);
7395 }
7396 
7397 /*
7398  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7399  * threads from changing it at the same time.
7400  */
7401 /* ARGSUSED */
7402 static int
7403 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7404     cred_t *cr)
7405 {
7406 	long	new_value;
7407 	int	i;
7408 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7409 
7410 	/*
7411 	 * Fail the request if the new value does not lie within the
7412 	 * port number limits.
7413 	 */
7414 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
7415 	    new_value <= 0 || new_value >= 65536) {
7416 		return (EINVAL);
7417 	}
7418 
7419 	mutex_enter(&tcps->tcps_epriv_port_lock);
7420 	/* Check if the value is already in the list */
7421 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7422 		if (new_value == tcps->tcps_g_epriv_ports[i]) {
7423 			mutex_exit(&tcps->tcps_epriv_port_lock);
7424 			return (EEXIST);
7425 		}
7426 	}
7427 	/* Find an empty slot */
7428 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7429 		if (tcps->tcps_g_epriv_ports[i] == 0)
7430 			break;
7431 	}
7432 	if (i == tcps->tcps_g_num_epriv_ports) {
7433 		mutex_exit(&tcps->tcps_epriv_port_lock);
7434 		return (EOVERFLOW);
7435 	}
7436 	/* Set the new value */
7437 	tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value;
7438 	mutex_exit(&tcps->tcps_epriv_port_lock);
7439 	return (0);
7440 }
7441 
7442 /*
7443  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7444  * threads from changing it at the same time.
7445  */
7446 /* ARGSUSED */
7447 static int
7448 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7449     cred_t *cr)
7450 {
7451 	long	new_value;
7452 	int	i;
7453 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7454 
7455 	/*
7456 	 * Fail the request if the new value does not lie within the
7457 	 * port number limits.
7458 	 */
7459 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 ||
7460 	    new_value >= 65536) {
7461 		return (EINVAL);
7462 	}
7463 
7464 	mutex_enter(&tcps->tcps_epriv_port_lock);
7465 	/* Check that the value is already in the list */
7466 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7467 		if (tcps->tcps_g_epriv_ports[i] == new_value)
7468 			break;
7469 	}
7470 	if (i == tcps->tcps_g_num_epriv_ports) {
7471 		mutex_exit(&tcps->tcps_epriv_port_lock);
7472 		return (ESRCH);
7473 	}
7474 	/* Clear the value */
7475 	tcps->tcps_g_epriv_ports[i] = 0;
7476 	mutex_exit(&tcps->tcps_epriv_port_lock);
7477 	return (0);
7478 }
7479 
7480 /* Return the TPI/TLI equivalent of our current tcp_state */
7481 static int
7482 tcp_tpistate(tcp_t *tcp)
7483 {
7484 	switch (tcp->tcp_state) {
7485 	case TCPS_IDLE:
7486 		return (TS_UNBND);
7487 	case TCPS_LISTEN:
7488 		/*
7489 		 * Return whether there are outstanding T_CONN_IND waiting
7490 		 * for the matching T_CONN_RES. Therefore don't count q0.
7491 		 */
7492 		if (tcp->tcp_conn_req_cnt_q > 0)
7493 			return (TS_WRES_CIND);
7494 		else
7495 			return (TS_IDLE);
7496 	case TCPS_BOUND:
7497 		return (TS_IDLE);
7498 	case TCPS_SYN_SENT:
7499 		return (TS_WCON_CREQ);
7500 	case TCPS_SYN_RCVD:
7501 		/*
7502 		 * Note: assumption: this has to the active open SYN_RCVD.
7503 		 * The passive instance is detached in SYN_RCVD stage of
7504 		 * incoming connection processing so we cannot get request
7505 		 * for T_info_ack on it.
7506 		 */
7507 		return (TS_WACK_CRES);
7508 	case TCPS_ESTABLISHED:
7509 		return (TS_DATA_XFER);
7510 	case TCPS_CLOSE_WAIT:
7511 		return (TS_WREQ_ORDREL);
7512 	case TCPS_FIN_WAIT_1:
7513 		return (TS_WIND_ORDREL);
7514 	case TCPS_FIN_WAIT_2:
7515 		return (TS_WIND_ORDREL);
7516 
7517 	case TCPS_CLOSING:
7518 	case TCPS_LAST_ACK:
7519 	case TCPS_TIME_WAIT:
7520 	case TCPS_CLOSED:
7521 		/*
7522 		 * Following TS_WACK_DREQ7 is a rendition of "not
7523 		 * yet TS_IDLE" TPI state. There is no best match to any
7524 		 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we
7525 		 * choose a value chosen that will map to TLI/XTI level
7526 		 * state of TSTATECHNG (state is process of changing) which
7527 		 * captures what this dummy state represents.
7528 		 */
7529 		return (TS_WACK_DREQ7);
7530 	default:
7531 		cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s",
7532 		    tcp->tcp_state, tcp_display(tcp, NULL,
7533 		    DISP_PORT_ONLY));
7534 		return (TS_UNBND);
7535 	}
7536 }
7537 
7538 static void
7539 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp)
7540 {
7541 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7542 
7543 	if (tcp->tcp_family == AF_INET6)
7544 		*tia = tcp_g_t_info_ack_v6;
7545 	else
7546 		*tia = tcp_g_t_info_ack;
7547 	tia->CURRENT_state = tcp_tpistate(tcp);
7548 	tia->OPT_size = tcp_max_optsize;
7549 	if (tcp->tcp_mss == 0) {
7550 		/* Not yet set - tcp_open does not set mss */
7551 		if (tcp->tcp_ipversion == IPV4_VERSION)
7552 			tia->TIDU_size = tcps->tcps_mss_def_ipv4;
7553 		else
7554 			tia->TIDU_size = tcps->tcps_mss_def_ipv6;
7555 	} else {
7556 		tia->TIDU_size = tcp->tcp_mss;
7557 	}
7558 	/* TODO: Default ETSDU is 1.  Is that correct for tcp? */
7559 }
7560 
7561 /*
7562  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
7563  * tcp_wput.  Much of the T_CAPABILITY_ACK information is copied from
7564  * tcp_g_t_info_ack.  The current state of the stream is copied from
7565  * tcp_state.
7566  */
7567 static void
7568 tcp_capability_req(tcp_t *tcp, mblk_t *mp)
7569 {
7570 	t_uscalar_t		cap_bits1;
7571 	struct T_capability_ack	*tcap;
7572 
7573 	if (MBLKL(mp) < sizeof (struct T_capability_req)) {
7574 		freemsg(mp);
7575 		return;
7576 	}
7577 
7578 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
7579 
7580 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
7581 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
7582 	if (mp == NULL)
7583 		return;
7584 
7585 	tcap = (struct T_capability_ack *)mp->b_rptr;
7586 	tcap->CAP_bits1 = 0;
7587 
7588 	if (cap_bits1 & TC1_INFO) {
7589 		tcp_copy_info(&tcap->INFO_ack, tcp);
7590 		tcap->CAP_bits1 |= TC1_INFO;
7591 	}
7592 
7593 	if (cap_bits1 & TC1_ACCEPTOR_ID) {
7594 		tcap->ACCEPTOR_id = tcp->tcp_acceptor_id;
7595 		tcap->CAP_bits1 |= TC1_ACCEPTOR_ID;
7596 	}
7597 
7598 	putnext(tcp->tcp_rq, mp);
7599 }
7600 
7601 /*
7602  * This routine responds to T_INFO_REQ messages.  It is called by tcp_wput.
7603  * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack.
7604  * The current state of the stream is copied from tcp_state.
7605  */
7606 static void
7607 tcp_info_req(tcp_t *tcp, mblk_t *mp)
7608 {
7609 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
7610 	    T_INFO_ACK);
7611 	if (!mp) {
7612 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7613 		return;
7614 	}
7615 	tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp);
7616 	putnext(tcp->tcp_rq, mp);
7617 }
7618 
7619 /* Respond to the TPI addr request */
7620 static void
7621 tcp_addr_req(tcp_t *tcp, mblk_t *mp)
7622 {
7623 	sin_t	*sin;
7624 	mblk_t	*ackmp;
7625 	struct T_addr_ack *taa;
7626 
7627 	/* Make it large enough for worst case */
7628 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
7629 	    2 * sizeof (sin6_t), 1);
7630 	if (ackmp == NULL) {
7631 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7632 		return;
7633 	}
7634 
7635 	if (tcp->tcp_ipversion == IPV6_VERSION) {
7636 		tcp_addr_req_ipv6(tcp, ackmp);
7637 		return;
7638 	}
7639 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7640 
7641 	bzero(taa, sizeof (struct T_addr_ack));
7642 	ackmp->b_wptr = (uchar_t *)&taa[1];
7643 
7644 	taa->PRIM_type = T_ADDR_ACK;
7645 	ackmp->b_datap->db_type = M_PCPROTO;
7646 
7647 	/*
7648 	 * Note: Following code assumes 32 bit alignment of basic
7649 	 * data structures like sin_t and struct T_addr_ack.
7650 	 */
7651 	if (tcp->tcp_state >= TCPS_BOUND) {
7652 		/*
7653 		 * Fill in local address
7654 		 */
7655 		taa->LOCADDR_length = sizeof (sin_t);
7656 		taa->LOCADDR_offset = sizeof (*taa);
7657 
7658 		sin = (sin_t *)&taa[1];
7659 
7660 		/* Fill zeroes and then intialize non-zero fields */
7661 		*sin = sin_null;
7662 
7663 		sin->sin_family = AF_INET;
7664 
7665 		sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
7666 		sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport;
7667 
7668 		ackmp->b_wptr = (uchar_t *)&sin[1];
7669 
7670 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7671 			/*
7672 			 * Fill in Remote address
7673 			 */
7674 			taa->REMADDR_length = sizeof (sin_t);
7675 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7676 			    taa->LOCADDR_length);
7677 
7678 			sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7679 			*sin = sin_null;
7680 			sin->sin_family = AF_INET;
7681 			sin->sin_addr.s_addr = tcp->tcp_remote;
7682 			sin->sin_port = tcp->tcp_fport;
7683 
7684 			ackmp->b_wptr = (uchar_t *)&sin[1];
7685 		}
7686 	}
7687 	putnext(tcp->tcp_rq, ackmp);
7688 }
7689 
7690 /* Assumes that tcp_addr_req gets enough space and alignment */
7691 static void
7692 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp)
7693 {
7694 	sin6_t	*sin6;
7695 	struct T_addr_ack *taa;
7696 
7697 	ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
7698 	ASSERT(OK_32PTR(ackmp->b_rptr));
7699 	ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) +
7700 	    2 * sizeof (sin6_t));
7701 
7702 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7703 
7704 	bzero(taa, sizeof (struct T_addr_ack));
7705 	ackmp->b_wptr = (uchar_t *)&taa[1];
7706 
7707 	taa->PRIM_type = T_ADDR_ACK;
7708 	ackmp->b_datap->db_type = M_PCPROTO;
7709 
7710 	/*
7711 	 * Note: Following code assumes 32 bit alignment of basic
7712 	 * data structures like sin6_t and struct T_addr_ack.
7713 	 */
7714 	if (tcp->tcp_state >= TCPS_BOUND) {
7715 		/*
7716 		 * Fill in local address
7717 		 */
7718 		taa->LOCADDR_length = sizeof (sin6_t);
7719 		taa->LOCADDR_offset = sizeof (*taa);
7720 
7721 		sin6 = (sin6_t *)&taa[1];
7722 		*sin6 = sin6_null;
7723 
7724 		sin6->sin6_family = AF_INET6;
7725 		sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
7726 		sin6->sin6_port = tcp->tcp_lport;
7727 
7728 		ackmp->b_wptr = (uchar_t *)&sin6[1];
7729 
7730 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7731 			/*
7732 			 * Fill in Remote address
7733 			 */
7734 			taa->REMADDR_length = sizeof (sin6_t);
7735 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7736 			    taa->LOCADDR_length);
7737 
7738 			sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7739 			*sin6 = sin6_null;
7740 			sin6->sin6_family = AF_INET6;
7741 			sin6->sin6_flowinfo =
7742 			    tcp->tcp_ip6h->ip6_vcf &
7743 			    ~IPV6_VERS_AND_FLOW_MASK;
7744 			sin6->sin6_addr = tcp->tcp_remote_v6;
7745 			sin6->sin6_port = tcp->tcp_fport;
7746 
7747 			ackmp->b_wptr = (uchar_t *)&sin6[1];
7748 		}
7749 	}
7750 	putnext(tcp->tcp_rq, ackmp);
7751 }
7752 
7753 /*
7754  * Handle reinitialization of a tcp structure.
7755  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
7756  */
7757 static void
7758 tcp_reinit(tcp_t *tcp)
7759 {
7760 	mblk_t	*mp;
7761 	int 	err;
7762 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7763 
7764 	TCP_STAT(tcps, tcp_reinit_calls);
7765 
7766 	/* tcp_reinit should never be called for detached tcp_t's */
7767 	ASSERT(tcp->tcp_listener == NULL);
7768 	ASSERT((tcp->tcp_family == AF_INET &&
7769 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7770 	    (tcp->tcp_family == AF_INET6 &&
7771 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7772 	    tcp->tcp_ipversion == IPV6_VERSION)));
7773 
7774 	/* Cancel outstanding timers */
7775 	tcp_timers_stop(tcp);
7776 
7777 	/*
7778 	 * Reset everything in the state vector, after updating global
7779 	 * MIB data from instance counters.
7780 	 */
7781 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
7782 	tcp->tcp_ibsegs = 0;
7783 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
7784 	tcp->tcp_obsegs = 0;
7785 
7786 	tcp_close_mpp(&tcp->tcp_xmit_head);
7787 	if (tcp->tcp_snd_zcopy_aware)
7788 		tcp_zcopy_notify(tcp);
7789 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
7790 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
7791 	mutex_enter(&tcp->tcp_non_sq_lock);
7792 	if (tcp->tcp_flow_stopped &&
7793 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
7794 		tcp_clrqfull(tcp);
7795 	}
7796 	mutex_exit(&tcp->tcp_non_sq_lock);
7797 	tcp_close_mpp(&tcp->tcp_reass_head);
7798 	tcp->tcp_reass_tail = NULL;
7799 	if (tcp->tcp_rcv_list != NULL) {
7800 		/* Free b_next chain */
7801 		tcp_close_mpp(&tcp->tcp_rcv_list);
7802 		tcp->tcp_rcv_last_head = NULL;
7803 		tcp->tcp_rcv_last_tail = NULL;
7804 		tcp->tcp_rcv_cnt = 0;
7805 	}
7806 	tcp->tcp_rcv_last_tail = NULL;
7807 
7808 	if ((mp = tcp->tcp_urp_mp) != NULL) {
7809 		freemsg(mp);
7810 		tcp->tcp_urp_mp = NULL;
7811 	}
7812 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
7813 		freemsg(mp);
7814 		tcp->tcp_urp_mark_mp = NULL;
7815 	}
7816 	if (tcp->tcp_fused_sigurg_mp != NULL) {
7817 		freeb(tcp->tcp_fused_sigurg_mp);
7818 		tcp->tcp_fused_sigurg_mp = NULL;
7819 	}
7820 	if (tcp->tcp_ordrel_mp != NULL) {
7821 		freeb(tcp->tcp_ordrel_mp);
7822 		tcp->tcp_ordrel_mp = NULL;
7823 	}
7824 
7825 	/*
7826 	 * Following is a union with two members which are
7827 	 * identical types and size so the following cleanup
7828 	 * is enough.
7829 	 */
7830 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
7831 
7832 	CL_INET_DISCONNECT(tcp);
7833 
7834 	/*
7835 	 * The connection can't be on the tcp_time_wait_head list
7836 	 * since it is not detached.
7837 	 */
7838 	ASSERT(tcp->tcp_time_wait_next == NULL);
7839 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7840 	ASSERT(tcp->tcp_time_wait_expire == 0);
7841 
7842 	if (tcp->tcp_kssl_pending) {
7843 		tcp->tcp_kssl_pending = B_FALSE;
7844 
7845 		/* Don't reset if the initialized by bind. */
7846 		if (tcp->tcp_kssl_ent != NULL) {
7847 			kssl_release_ent(tcp->tcp_kssl_ent, NULL,
7848 			    KSSL_NO_PROXY);
7849 		}
7850 	}
7851 	if (tcp->tcp_kssl_ctx != NULL) {
7852 		kssl_release_ctx(tcp->tcp_kssl_ctx);
7853 		tcp->tcp_kssl_ctx = NULL;
7854 	}
7855 
7856 	/*
7857 	 * Reset/preserve other values
7858 	 */
7859 	tcp_reinit_values(tcp);
7860 	ipcl_hash_remove(tcp->tcp_connp);
7861 	conn_delete_ire(tcp->tcp_connp, NULL);
7862 	tcp_ipsec_cleanup(tcp);
7863 
7864 	if (tcp->tcp_conn_req_max != 0) {
7865 		/*
7866 		 * This is the case when a TLI program uses the same
7867 		 * transport end point to accept a connection.  This
7868 		 * makes the TCP both a listener and acceptor.  When
7869 		 * this connection is closed, we need to set the state
7870 		 * back to TCPS_LISTEN.  Make sure that the eager list
7871 		 * is reinitialized.
7872 		 *
7873 		 * Note that this stream is still bound to the four
7874 		 * tuples of the previous connection in IP.  If a new
7875 		 * SYN with different foreign address comes in, IP will
7876 		 * not find it and will send it to the global queue.  In
7877 		 * the global queue, TCP will do a tcp_lookup_listener()
7878 		 * to find this stream.  This works because this stream
7879 		 * is only removed from connected hash.
7880 		 *
7881 		 */
7882 		tcp->tcp_state = TCPS_LISTEN;
7883 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
7884 		tcp->tcp_eager_next_drop_q0 = tcp;
7885 		tcp->tcp_eager_prev_drop_q0 = tcp;
7886 		tcp->tcp_connp->conn_recv = tcp_conn_request;
7887 		if (tcp->tcp_family == AF_INET6) {
7888 			ASSERT(tcp->tcp_connp->conn_af_isv6);
7889 			(void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP,
7890 			    &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport);
7891 		} else {
7892 			ASSERT(!tcp->tcp_connp->conn_af_isv6);
7893 			(void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP,
7894 			    tcp->tcp_ipha->ipha_src, tcp->tcp_lport);
7895 		}
7896 	} else {
7897 		tcp->tcp_state = TCPS_BOUND;
7898 	}
7899 
7900 	/*
7901 	 * Initialize to default values
7902 	 * Can't fail since enough header template space already allocated
7903 	 * at open().
7904 	 */
7905 	err = tcp_init_values(tcp);
7906 	ASSERT(err == 0);
7907 	/* Restore state in tcp_tcph */
7908 	bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN);
7909 	if (tcp->tcp_ipversion == IPV4_VERSION)
7910 		tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source;
7911 	else
7912 		tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6;
7913 	/*
7914 	 * Copy of the src addr. in tcp_t is needed in tcp_t
7915 	 * since the lookup funcs can only lookup on tcp_t
7916 	 */
7917 	tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6;
7918 
7919 	ASSERT(tcp->tcp_ptpbhn != NULL);
7920 	tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat;
7921 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
7922 	tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ?
7923 	    tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4;
7924 }
7925 
7926 /*
7927  * Force values to zero that need be zero.
7928  * Do not touch values asociated with the BOUND or LISTEN state
7929  * since the connection will end up in that state after the reinit.
7930  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
7931  * structure!
7932  */
7933 static void
7934 tcp_reinit_values(tcp)
7935 	tcp_t *tcp;
7936 {
7937 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7938 
7939 #ifndef	lint
7940 #define	DONTCARE(x)
7941 #define	PRESERVE(x)
7942 #else
7943 #define	DONTCARE(x)	((x) = (x))
7944 #define	PRESERVE(x)	((x) = (x))
7945 #endif	/* lint */
7946 
7947 	PRESERVE(tcp->tcp_bind_hash);
7948 	PRESERVE(tcp->tcp_ptpbhn);
7949 	PRESERVE(tcp->tcp_acceptor_hash);
7950 	PRESERVE(tcp->tcp_ptpahn);
7951 
7952 	/* Should be ASSERT NULL on these with new code! */
7953 	ASSERT(tcp->tcp_time_wait_next == NULL);
7954 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7955 	ASSERT(tcp->tcp_time_wait_expire == 0);
7956 	PRESERVE(tcp->tcp_state);
7957 	PRESERVE(tcp->tcp_rq);
7958 	PRESERVE(tcp->tcp_wq);
7959 
7960 	ASSERT(tcp->tcp_xmit_head == NULL);
7961 	ASSERT(tcp->tcp_xmit_last == NULL);
7962 	ASSERT(tcp->tcp_unsent == 0);
7963 	ASSERT(tcp->tcp_xmit_tail == NULL);
7964 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
7965 
7966 	tcp->tcp_snxt = 0;			/* Displayed in mib */
7967 	tcp->tcp_suna = 0;			/* Displayed in mib */
7968 	tcp->tcp_swnd = 0;
7969 	DONTCARE(tcp->tcp_cwnd);		/* Init in tcp_mss_set */
7970 
7971 	ASSERT(tcp->tcp_ibsegs == 0);
7972 	ASSERT(tcp->tcp_obsegs == 0);
7973 
7974 	if (tcp->tcp_iphc != NULL) {
7975 		ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
7976 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
7977 	}
7978 
7979 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
7980 	DONTCARE(tcp->tcp_hdr_len);		/* Init in tcp_init_values */
7981 	DONTCARE(tcp->tcp_ipha);
7982 	DONTCARE(tcp->tcp_ip6h);
7983 	DONTCARE(tcp->tcp_ip_hdr_len);
7984 	DONTCARE(tcp->tcp_tcph);
7985 	DONTCARE(tcp->tcp_tcp_hdr_len);		/* Init in tcp_init_values */
7986 	tcp->tcp_valid_bits = 0;
7987 
7988 	DONTCARE(tcp->tcp_xmit_hiwater);	/* Init in tcp_init_values */
7989 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
7990 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
7991 	tcp->tcp_last_rcv_lbolt = 0;
7992 
7993 	tcp->tcp_init_cwnd = 0;
7994 
7995 	tcp->tcp_urp_last_valid = 0;
7996 	tcp->tcp_hard_binding = 0;
7997 	tcp->tcp_hard_bound = 0;
7998 	PRESERVE(tcp->tcp_cred);
7999 	PRESERVE(tcp->tcp_cpid);
8000 	PRESERVE(tcp->tcp_open_time);
8001 	PRESERVE(tcp->tcp_exclbind);
8002 
8003 	tcp->tcp_fin_acked = 0;
8004 	tcp->tcp_fin_rcvd = 0;
8005 	tcp->tcp_fin_sent = 0;
8006 	tcp->tcp_ordrel_done = 0;
8007 
8008 	tcp->tcp_debug = 0;
8009 	tcp->tcp_dontroute = 0;
8010 	tcp->tcp_broadcast = 0;
8011 
8012 	tcp->tcp_useloopback = 0;
8013 	tcp->tcp_reuseaddr = 0;
8014 	tcp->tcp_oobinline = 0;
8015 	tcp->tcp_dgram_errind = 0;
8016 
8017 	tcp->tcp_detached = 0;
8018 	tcp->tcp_bind_pending = 0;
8019 	tcp->tcp_unbind_pending = 0;
8020 
8021 	tcp->tcp_snd_ws_ok = B_FALSE;
8022 	tcp->tcp_snd_ts_ok = B_FALSE;
8023 	tcp->tcp_linger = 0;
8024 	tcp->tcp_ka_enabled = 0;
8025 	tcp->tcp_zero_win_probe = 0;
8026 
8027 	tcp->tcp_loopback = 0;
8028 	tcp->tcp_refuse = 0;
8029 	tcp->tcp_localnet = 0;
8030 	tcp->tcp_syn_defense = 0;
8031 	tcp->tcp_set_timer = 0;
8032 
8033 	tcp->tcp_active_open = 0;
8034 	tcp->tcp_rexmit = B_FALSE;
8035 	tcp->tcp_xmit_zc_clean = B_FALSE;
8036 
8037 	tcp->tcp_snd_sack_ok = B_FALSE;
8038 	PRESERVE(tcp->tcp_recvdstaddr);
8039 	tcp->tcp_hwcksum = B_FALSE;
8040 
8041 	tcp->tcp_ire_ill_check_done = B_FALSE;
8042 	DONTCARE(tcp->tcp_maxpsz);		/* Init in tcp_init_values */
8043 
8044 	tcp->tcp_mdt = B_FALSE;
8045 	tcp->tcp_mdt_hdr_head = 0;
8046 	tcp->tcp_mdt_hdr_tail = 0;
8047 
8048 	tcp->tcp_conn_def_q0 = 0;
8049 	tcp->tcp_ip_forward_progress = B_FALSE;
8050 	tcp->tcp_anon_priv_bind = 0;
8051 	tcp->tcp_ecn_ok = B_FALSE;
8052 
8053 	tcp->tcp_cwr = B_FALSE;
8054 	tcp->tcp_ecn_echo_on = B_FALSE;
8055 
8056 	if (tcp->tcp_sack_info != NULL) {
8057 		if (tcp->tcp_notsack_list != NULL) {
8058 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
8059 		}
8060 		kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info);
8061 		tcp->tcp_sack_info = NULL;
8062 	}
8063 
8064 	tcp->tcp_rcv_ws = 0;
8065 	tcp->tcp_snd_ws = 0;
8066 	tcp->tcp_ts_recent = 0;
8067 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
8068 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
8069 	tcp->tcp_if_mtu = 0;
8070 
8071 	ASSERT(tcp->tcp_reass_head == NULL);
8072 	ASSERT(tcp->tcp_reass_tail == NULL);
8073 
8074 	tcp->tcp_cwnd_cnt = 0;
8075 
8076 	ASSERT(tcp->tcp_rcv_list == NULL);
8077 	ASSERT(tcp->tcp_rcv_last_head == NULL);
8078 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
8079 	ASSERT(tcp->tcp_rcv_cnt == 0);
8080 
8081 	DONTCARE(tcp->tcp_cwnd_ssthresh);	/* Init in tcp_adapt_ire */
8082 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
8083 	tcp->tcp_csuna = 0;
8084 
8085 	tcp->tcp_rto = 0;			/* Displayed in MIB */
8086 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
8087 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
8088 	tcp->tcp_rtt_update = 0;
8089 
8090 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
8091 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
8092 
8093 	tcp->tcp_rack = 0;			/* Displayed in mib */
8094 	tcp->tcp_rack_cnt = 0;
8095 	tcp->tcp_rack_cur_max = 0;
8096 	tcp->tcp_rack_abs_max = 0;
8097 
8098 	tcp->tcp_max_swnd = 0;
8099 
8100 	ASSERT(tcp->tcp_listener == NULL);
8101 
8102 	DONTCARE(tcp->tcp_xmit_lowater);	/* Init in tcp_init_values */
8103 
8104 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
8105 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
8106 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
8107 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
8108 
8109 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
8110 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
8111 	PRESERVE(tcp->tcp_conn_req_max);
8112 	PRESERVE(tcp->tcp_conn_req_seqnum);
8113 
8114 	DONTCARE(tcp->tcp_ip_hdr_len);		/* Init in tcp_init_values */
8115 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
8116 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
8117 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
8118 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
8119 
8120 	tcp->tcp_lingertime = 0;
8121 
8122 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
8123 	ASSERT(tcp->tcp_urp_mp == NULL);
8124 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
8125 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
8126 
8127 	ASSERT(tcp->tcp_eager_next_q == NULL);
8128 	ASSERT(tcp->tcp_eager_last_q == NULL);
8129 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
8130 	    tcp->tcp_eager_prev_q0 == NULL) ||
8131 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
8132 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
8133 
8134 	ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
8135 	    tcp->tcp_eager_prev_drop_q0 == NULL) ||
8136 	    tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
8137 
8138 	tcp->tcp_client_errno = 0;
8139 
8140 	DONTCARE(tcp->tcp_sum);			/* Init in tcp_init_values */
8141 
8142 	tcp->tcp_remote_v6 = ipv6_all_zeros;	/* Displayed in MIB */
8143 
8144 	PRESERVE(tcp->tcp_bound_source_v6);
8145 	tcp->tcp_last_sent_len = 0;
8146 	tcp->tcp_dupack_cnt = 0;
8147 
8148 	tcp->tcp_fport = 0;			/* Displayed in MIB */
8149 	PRESERVE(tcp->tcp_lport);
8150 
8151 	PRESERVE(tcp->tcp_acceptor_lockp);
8152 
8153 	ASSERT(tcp->tcp_ordrel_mp == NULL);
8154 	PRESERVE(tcp->tcp_acceptor_id);
8155 	DONTCARE(tcp->tcp_ipsec_overhead);
8156 
8157 	PRESERVE(tcp->tcp_family);
8158 	if (tcp->tcp_family == AF_INET6) {
8159 		tcp->tcp_ipversion = IPV6_VERSION;
8160 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
8161 	} else {
8162 		tcp->tcp_ipversion = IPV4_VERSION;
8163 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
8164 	}
8165 
8166 	tcp->tcp_bound_if = 0;
8167 	tcp->tcp_ipv6_recvancillary = 0;
8168 	tcp->tcp_recvifindex = 0;
8169 	tcp->tcp_recvhops = 0;
8170 	tcp->tcp_closed = 0;
8171 	tcp->tcp_cleandeathtag = 0;
8172 	if (tcp->tcp_hopopts != NULL) {
8173 		mi_free(tcp->tcp_hopopts);
8174 		tcp->tcp_hopopts = NULL;
8175 		tcp->tcp_hopoptslen = 0;
8176 	}
8177 	ASSERT(tcp->tcp_hopoptslen == 0);
8178 	if (tcp->tcp_dstopts != NULL) {
8179 		mi_free(tcp->tcp_dstopts);
8180 		tcp->tcp_dstopts = NULL;
8181 		tcp->tcp_dstoptslen = 0;
8182 	}
8183 	ASSERT(tcp->tcp_dstoptslen == 0);
8184 	if (tcp->tcp_rtdstopts != NULL) {
8185 		mi_free(tcp->tcp_rtdstopts);
8186 		tcp->tcp_rtdstopts = NULL;
8187 		tcp->tcp_rtdstoptslen = 0;
8188 	}
8189 	ASSERT(tcp->tcp_rtdstoptslen == 0);
8190 	if (tcp->tcp_rthdr != NULL) {
8191 		mi_free(tcp->tcp_rthdr);
8192 		tcp->tcp_rthdr = NULL;
8193 		tcp->tcp_rthdrlen = 0;
8194 	}
8195 	ASSERT(tcp->tcp_rthdrlen == 0);
8196 	PRESERVE(tcp->tcp_drop_opt_ack_cnt);
8197 
8198 	/* Reset fusion-related fields */
8199 	tcp->tcp_fused = B_FALSE;
8200 	tcp->tcp_unfusable = B_FALSE;
8201 	tcp->tcp_fused_sigurg = B_FALSE;
8202 	tcp->tcp_direct_sockfs = B_FALSE;
8203 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
8204 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
8205 	tcp->tcp_loopback_peer = NULL;
8206 	tcp->tcp_fuse_rcv_hiwater = 0;
8207 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
8208 	tcp->tcp_fuse_rcv_unread_cnt = 0;
8209 
8210 	tcp->tcp_lso = B_FALSE;
8211 
8212 	tcp->tcp_in_ack_unsent = 0;
8213 	tcp->tcp_cork = B_FALSE;
8214 	tcp->tcp_tconnind_started = B_FALSE;
8215 
8216 	PRESERVE(tcp->tcp_squeue_bytes);
8217 
8218 	ASSERT(tcp->tcp_kssl_ctx == NULL);
8219 	ASSERT(!tcp->tcp_kssl_pending);
8220 	PRESERVE(tcp->tcp_kssl_ent);
8221 
8222 	/* Sodirect */
8223 	tcp->tcp_sodirect = NULL;
8224 
8225 	tcp->tcp_closemp_used = B_FALSE;
8226 
8227 	PRESERVE(tcp->tcp_rsrv_mp);
8228 	PRESERVE(tcp->tcp_rsrv_mp_lock);
8229 
8230 #ifdef DEBUG
8231 	DONTCARE(tcp->tcmp_stk[0]);
8232 #endif
8233 
8234 
8235 #undef	DONTCARE
8236 #undef	PRESERVE
8237 }
8238 
8239 /*
8240  * Allocate necessary resources and initialize state vector.
8241  * Guaranteed not to fail so that when an error is returned,
8242  * the caller doesn't need to do any additional cleanup.
8243  */
8244 int
8245 tcp_init(tcp_t *tcp, queue_t *q)
8246 {
8247 	int	err;
8248 
8249 	tcp->tcp_rq = q;
8250 	tcp->tcp_wq = WR(q);
8251 	tcp->tcp_state = TCPS_IDLE;
8252 	if ((err = tcp_init_values(tcp)) != 0)
8253 		tcp_timers_stop(tcp);
8254 	return (err);
8255 }
8256 
8257 static int
8258 tcp_init_values(tcp_t *tcp)
8259 {
8260 	int	err;
8261 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8262 
8263 	ASSERT((tcp->tcp_family == AF_INET &&
8264 	    tcp->tcp_ipversion == IPV4_VERSION) ||
8265 	    (tcp->tcp_family == AF_INET6 &&
8266 	    (tcp->tcp_ipversion == IPV4_VERSION ||
8267 	    tcp->tcp_ipversion == IPV6_VERSION)));
8268 
8269 	/*
8270 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
8271 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
8272 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
8273 	 * during first few transmissions of a connection as seen in slow
8274 	 * links.
8275 	 */
8276 	tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2;
8277 	tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1;
8278 	tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
8279 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
8280 	    tcps->tcps_conn_grace_period;
8281 	if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min)
8282 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
8283 	tcp->tcp_timer_backoff = 0;
8284 	tcp->tcp_ms_we_have_waited = 0;
8285 	tcp->tcp_last_recv_time = lbolt;
8286 	tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_;
8287 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
8288 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
8289 
8290 	tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier;
8291 
8292 	tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval;
8293 	tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval;
8294 	tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval;
8295 	/*
8296 	 * Fix it to tcp_ip_abort_linterval later if it turns out to be a
8297 	 * passive open.
8298 	 */
8299 	tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval;
8300 
8301 	tcp->tcp_naglim = tcps->tcps_naglim_def;
8302 
8303 	/* NOTE:  ISS is now set in tcp_adapt_ire(). */
8304 
8305 	tcp->tcp_mdt_hdr_head = 0;
8306 	tcp->tcp_mdt_hdr_tail = 0;
8307 
8308 	/* Reset fusion-related fields */
8309 	tcp->tcp_fused = B_FALSE;
8310 	tcp->tcp_unfusable = B_FALSE;
8311 	tcp->tcp_fused_sigurg = B_FALSE;
8312 	tcp->tcp_direct_sockfs = B_FALSE;
8313 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
8314 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
8315 	tcp->tcp_loopback_peer = NULL;
8316 	tcp->tcp_fuse_rcv_hiwater = 0;
8317 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
8318 	tcp->tcp_fuse_rcv_unread_cnt = 0;
8319 
8320 	/* Sodirect */
8321 	tcp->tcp_sodirect = NULL;
8322 
8323 	/* Initialize the header template */
8324 	if (tcp->tcp_ipversion == IPV4_VERSION) {
8325 		err = tcp_header_init_ipv4(tcp);
8326 	} else {
8327 		err = tcp_header_init_ipv6(tcp);
8328 	}
8329 	if (err)
8330 		return (err);
8331 
8332 	/*
8333 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
8334 	 * down tcp_rwnd. tcp_adapt_ire() will set the right value later.
8335 	 */
8336 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
8337 	tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat;
8338 	tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat;
8339 
8340 	tcp->tcp_cork = B_FALSE;
8341 	/*
8342 	 * Init the tcp_debug option.  This value determines whether TCP
8343 	 * calls strlog() to print out debug messages.  Doing this
8344 	 * initialization here means that this value is not inherited thru
8345 	 * tcp_reinit().
8346 	 */
8347 	tcp->tcp_debug = tcps->tcps_dbg;
8348 
8349 	tcp->tcp_ka_interval = tcps->tcps_keepalive_interval;
8350 	tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval;
8351 
8352 	return (0);
8353 }
8354 
8355 /*
8356  * Initialize the IPv4 header. Loses any record of any IP options.
8357  */
8358 static int
8359 tcp_header_init_ipv4(tcp_t *tcp)
8360 {
8361 	tcph_t		*tcph;
8362 	uint32_t	sum;
8363 	conn_t		*connp;
8364 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8365 
8366 	/*
8367 	 * This is a simple initialization. If there's
8368 	 * already a template, it should never be too small,
8369 	 * so reuse it.  Otherwise, allocate space for the new one.
8370 	 */
8371 	if (tcp->tcp_iphc == NULL) {
8372 		ASSERT(tcp->tcp_iphc_len == 0);
8373 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8374 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8375 		if (tcp->tcp_iphc == NULL) {
8376 			tcp->tcp_iphc_len = 0;
8377 			return (ENOMEM);
8378 		}
8379 	}
8380 
8381 	/* options are gone; may need a new label */
8382 	connp = tcp->tcp_connp;
8383 	connp->conn_mlp_type = mlptSingle;
8384 	connp->conn_ulp_labeled = !is_system_labeled();
8385 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8386 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
8387 	tcp->tcp_ip6h = NULL;
8388 	tcp->tcp_ipversion = IPV4_VERSION;
8389 	tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t);
8390 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8391 	tcp->tcp_ip_hdr_len = sizeof (ipha_t);
8392 	tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t));
8393 	tcp->tcp_ipha->ipha_version_and_hdr_length
8394 	    = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS;
8395 	tcp->tcp_ipha->ipha_ident = 0;
8396 
8397 	tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
8398 	tcp->tcp_tos = 0;
8399 	tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
8400 	tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
8401 	tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP;
8402 
8403 	tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t));
8404 	tcp->tcp_tcph = tcph;
8405 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8406 	/*
8407 	 * IP wants our header length in the checksum field to
8408 	 * allow it to perform a single pseudo-header+checksum
8409 	 * calculation on behalf of TCP.
8410 	 * Include the adjustment for a source route once IP_OPTIONS is set.
8411 	 */
8412 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8413 	sum = (sum >> 16) + (sum & 0xFFFF);
8414 	U16_TO_ABE16(sum, tcph->th_sum);
8415 	return (0);
8416 }
8417 
8418 /*
8419  * Initialize the IPv6 header. Loses any record of any IPv6 extension headers.
8420  */
8421 static int
8422 tcp_header_init_ipv6(tcp_t *tcp)
8423 {
8424 	tcph_t	*tcph;
8425 	uint32_t	sum;
8426 	conn_t	*connp;
8427 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8428 
8429 	/*
8430 	 * This is a simple initialization. If there's
8431 	 * already a template, it should never be too small,
8432 	 * so reuse it. Otherwise, allocate space for the new one.
8433 	 * Ensure that there is enough space to "downgrade" the tcp_t
8434 	 * to an IPv4 tcp_t. This requires having space for a full load
8435 	 * of IPv4 options, as well as a full load of TCP options
8436 	 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space
8437 	 * than a v6 header and a TCP header with a full load of TCP options
8438 	 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes).
8439 	 * We want to avoid reallocation in the "downgraded" case when
8440 	 * processing outbound IPv4 options.
8441 	 */
8442 	if (tcp->tcp_iphc == NULL) {
8443 		ASSERT(tcp->tcp_iphc_len == 0);
8444 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8445 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8446 		if (tcp->tcp_iphc == NULL) {
8447 			tcp->tcp_iphc_len = 0;
8448 			return (ENOMEM);
8449 		}
8450 	}
8451 
8452 	/* options are gone; may need a new label */
8453 	connp = tcp->tcp_connp;
8454 	connp->conn_mlp_type = mlptSingle;
8455 	connp->conn_ulp_labeled = !is_system_labeled();
8456 
8457 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8458 	tcp->tcp_ipversion = IPV6_VERSION;
8459 	tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t);
8460 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8461 	tcp->tcp_ip_hdr_len = IPV6_HDR_LEN;
8462 	tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
8463 	tcp->tcp_ipha = NULL;
8464 
8465 	/* Initialize the header template */
8466 
8467 	tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
8468 	tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t));
8469 	tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP;
8470 	tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit;
8471 
8472 	tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN);
8473 	tcp->tcp_tcph = tcph;
8474 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8475 	/*
8476 	 * IP wants our header length in the checksum field to
8477 	 * allow it to perform a single psuedo-header+checksum
8478 	 * calculation on behalf of TCP.
8479 	 * Include the adjustment for a source route when IPV6_RTHDR is set.
8480 	 */
8481 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8482 	sum = (sum >> 16) + (sum & 0xFFFF);
8483 	U16_TO_ABE16(sum, tcph->th_sum);
8484 	return (0);
8485 }
8486 
8487 /* At minimum we need 8 bytes in the TCP header for the lookup */
8488 #define	ICMP_MIN_TCP_HDR	8
8489 
8490 /*
8491  * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages
8492  * passed up by IP. The message is always received on the correct tcp_t.
8493  * Assumes that IP has pulled up everything up to and including the ICMP header.
8494  */
8495 void
8496 tcp_icmp_error(tcp_t *tcp, mblk_t *mp)
8497 {
8498 	icmph_t *icmph;
8499 	ipha_t	*ipha;
8500 	int	iph_hdr_length;
8501 	tcph_t	*tcph;
8502 	boolean_t ipsec_mctl = B_FALSE;
8503 	boolean_t secure;
8504 	mblk_t *first_mp = mp;
8505 	int32_t new_mss;
8506 	uint32_t ratio;
8507 	size_t mp_size = MBLKL(mp);
8508 	uint32_t seg_seq;
8509 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8510 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
8511 
8512 	/* Assume IP provides aligned packets - otherwise toss */
8513 	if (!OK_32PTR(mp->b_rptr)) {
8514 		freemsg(mp);
8515 		return;
8516 	}
8517 
8518 	/*
8519 	 * Since ICMP errors are normal data marked with M_CTL when sent
8520 	 * to TCP or UDP, we have to look for a IPSEC_IN value to identify
8521 	 * packets starting with an ipsec_info_t, see ipsec_info.h.
8522 	 */
8523 	if ((mp_size == sizeof (ipsec_info_t)) &&
8524 	    (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) {
8525 		ASSERT(mp->b_cont != NULL);
8526 		mp = mp->b_cont;
8527 		/* IP should have done this */
8528 		ASSERT(OK_32PTR(mp->b_rptr));
8529 		mp_size = MBLKL(mp);
8530 		ipsec_mctl = B_TRUE;
8531 	}
8532 
8533 	/*
8534 	 * Verify that we have a complete outer IP header. If not, drop it.
8535 	 */
8536 	if (mp_size < sizeof (ipha_t)) {
8537 noticmpv4:
8538 		freemsg(first_mp);
8539 		return;
8540 	}
8541 
8542 	ipha = (ipha_t *)mp->b_rptr;
8543 	/*
8544 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
8545 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
8546 	 */
8547 	switch (IPH_HDR_VERSION(ipha)) {
8548 	case IPV6_VERSION:
8549 		tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl);
8550 		return;
8551 	case IPV4_VERSION:
8552 		break;
8553 	default:
8554 		goto noticmpv4;
8555 	}
8556 
8557 	/* Skip past the outer IP and ICMP headers */
8558 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8559 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
8560 	/*
8561 	 * If we don't have the correct outer IP header length or if the ULP
8562 	 * is not IPPROTO_ICMP or if we don't have a complete inner IP header
8563 	 * send it upstream.
8564 	 */
8565 	if (iph_hdr_length < sizeof (ipha_t) ||
8566 	    ipha->ipha_protocol != IPPROTO_ICMP ||
8567 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
8568 		goto noticmpv4;
8569 	}
8570 	ipha = (ipha_t *)&icmph[1];
8571 
8572 	/* Skip past the inner IP and find the ULP header */
8573 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8574 	tcph = (tcph_t *)((char *)ipha + iph_hdr_length);
8575 	/*
8576 	 * If we don't have the correct inner IP header length or if the ULP
8577 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
8578 	 * bytes of TCP header, drop it.
8579 	 */
8580 	if (iph_hdr_length < sizeof (ipha_t) ||
8581 	    ipha->ipha_protocol != IPPROTO_TCP ||
8582 	    (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) {
8583 		goto noticmpv4;
8584 	}
8585 
8586 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
8587 		if (ipsec_mctl) {
8588 			secure = ipsec_in_is_secure(first_mp);
8589 		} else {
8590 			secure = B_FALSE;
8591 		}
8592 		if (secure) {
8593 			/*
8594 			 * If we are willing to accept this in clear
8595 			 * we don't have to verify policy.
8596 			 */
8597 			if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) {
8598 				if (!tcp_check_policy(tcp, first_mp,
8599 				    ipha, NULL, secure, ipsec_mctl)) {
8600 					/*
8601 					 * tcp_check_policy called
8602 					 * ip_drop_packet() on failure.
8603 					 */
8604 					return;
8605 				}
8606 			}
8607 		}
8608 	} else if (ipsec_mctl) {
8609 		/*
8610 		 * This is a hard_bound connection. IP has already
8611 		 * verified policy. We don't have to do it again.
8612 		 */
8613 		freeb(first_mp);
8614 		first_mp = mp;
8615 		ipsec_mctl = B_FALSE;
8616 	}
8617 
8618 	seg_seq = ABE32_TO_U32(tcph->th_seq);
8619 	/*
8620 	 * TCP SHOULD check that the TCP sequence number contained in
8621 	 * payload of the ICMP error message is within the range
8622 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8623 	 */
8624 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8625 		/*
8626 		 * The ICMP message is bogus, just drop it.  But if this is
8627 		 * an ICMP too big message, IP has already changed
8628 		 * the ire_max_frag to the bogus value.  We need to change
8629 		 * it back.
8630 		 */
8631 		if (icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
8632 		    icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) {
8633 			conn_t *connp = tcp->tcp_connp;
8634 			ire_t *ire;
8635 			int flag;
8636 
8637 			if (tcp->tcp_ipversion == IPV4_VERSION) {
8638 				flag = tcp->tcp_ipha->
8639 				    ipha_fragment_offset_and_flags;
8640 			} else {
8641 				flag = 0;
8642 			}
8643 			mutex_enter(&connp->conn_lock);
8644 			if ((ire = connp->conn_ire_cache) != NULL) {
8645 				mutex_enter(&ire->ire_lock);
8646 				mutex_exit(&connp->conn_lock);
8647 				ire->ire_max_frag = tcp->tcp_if_mtu;
8648 				ire->ire_frag_flag |= flag;
8649 				mutex_exit(&ire->ire_lock);
8650 			} else {
8651 				mutex_exit(&connp->conn_lock);
8652 			}
8653 		}
8654 		goto noticmpv4;
8655 	}
8656 
8657 	switch (icmph->icmph_type) {
8658 	case ICMP_DEST_UNREACHABLE:
8659 		switch (icmph->icmph_code) {
8660 		case ICMP_FRAGMENTATION_NEEDED:
8661 			/*
8662 			 * Reduce the MSS based on the new MTU.  This will
8663 			 * eliminate any fragmentation locally.
8664 			 * N.B.  There may well be some funny side-effects on
8665 			 * the local send policy and the remote receive policy.
8666 			 * Pending further research, we provide
8667 			 * tcp_ignore_path_mtu just in case this proves
8668 			 * disastrous somewhere.
8669 			 *
8670 			 * After updating the MSS, retransmit part of the
8671 			 * dropped segment using the new mss by calling
8672 			 * tcp_wput_data().  Need to adjust all those
8673 			 * params to make sure tcp_wput_data() work properly.
8674 			 */
8675 			if (tcps->tcps_ignore_path_mtu ||
8676 			    tcp->tcp_ipha->ipha_fragment_offset_and_flags == 0)
8677 				break;
8678 
8679 			/*
8680 			 * Decrease the MSS by time stamp options
8681 			 * IP options and IPSEC options. tcp_hdr_len
8682 			 * includes time stamp option and IP option
8683 			 * length.  Note that new_mss may be negative
8684 			 * if tcp_ipsec_overhead is large and the
8685 			 * icmph_du_mtu is the minimum value, which is 68.
8686 			 */
8687 			new_mss = ntohs(icmph->icmph_du_mtu) -
8688 			    tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead;
8689 
8690 			DTRACE_PROBE2(tcp__pmtu__change, tcp_t *, tcp, int,
8691 			    new_mss);
8692 
8693 			/*
8694 			 * Only update the MSS if the new one is
8695 			 * smaller than the previous one.  This is
8696 			 * to avoid problems when getting multiple
8697 			 * ICMP errors for the same MTU.
8698 			 */
8699 			if (new_mss >= tcp->tcp_mss)
8700 				break;
8701 
8702 			/*
8703 			 * Note that we are using the template header's DF
8704 			 * bit in the fast path sending.  So we need to compare
8705 			 * the new mss with both tcps_mss_min and ip_pmtu_min.
8706 			 * And stop doing IPv4 PMTUd if new_mss is less than
8707 			 * MAX(tcps_mss_min, ip_pmtu_min).
8708 			 */
8709 			if (new_mss < tcps->tcps_mss_min ||
8710 			    new_mss < ipst->ips_ip_pmtu_min) {
8711 				tcp->tcp_ipha->ipha_fragment_offset_and_flags =
8712 				    0;
8713 			}
8714 
8715 			ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8716 			ASSERT(ratio >= 1);
8717 			tcp_mss_set(tcp, new_mss, B_TRUE);
8718 
8719 			/*
8720 			 * Make sure we have something to
8721 			 * send.
8722 			 */
8723 			if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8724 			    (tcp->tcp_xmit_head != NULL)) {
8725 				/*
8726 				 * Shrink tcp_cwnd in
8727 				 * proportion to the old MSS/new MSS.
8728 				 */
8729 				tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8730 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8731 				    (tcp->tcp_unsent == 0)) {
8732 					tcp->tcp_rexmit_max = tcp->tcp_fss;
8733 				} else {
8734 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
8735 				}
8736 				tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8737 				tcp->tcp_rexmit = B_TRUE;
8738 				tcp->tcp_dupack_cnt = 0;
8739 				tcp->tcp_snd_burst = TCP_CWND_SS;
8740 				tcp_ss_rexmit(tcp);
8741 			}
8742 			break;
8743 		case ICMP_PORT_UNREACHABLE:
8744 		case ICMP_PROTOCOL_UNREACHABLE:
8745 			switch (tcp->tcp_state) {
8746 			case TCPS_SYN_SENT:
8747 			case TCPS_SYN_RCVD:
8748 				/*
8749 				 * ICMP can snipe away incipient
8750 				 * TCP connections as long as
8751 				 * seq number is same as initial
8752 				 * send seq number.
8753 				 */
8754 				if (seg_seq == tcp->tcp_iss) {
8755 					(void) tcp_clean_death(tcp,
8756 					    ECONNREFUSED, 6);
8757 				}
8758 				break;
8759 			}
8760 			break;
8761 		case ICMP_HOST_UNREACHABLE:
8762 		case ICMP_NET_UNREACHABLE:
8763 			/* Record the error in case we finally time out. */
8764 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
8765 				tcp->tcp_client_errno = EHOSTUNREACH;
8766 			else
8767 				tcp->tcp_client_errno = ENETUNREACH;
8768 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
8769 				if (tcp->tcp_listener != NULL &&
8770 				    tcp->tcp_listener->tcp_syn_defense) {
8771 					/*
8772 					 * Ditch the half-open connection if we
8773 					 * suspect a SYN attack is under way.
8774 					 */
8775 					tcp_ip_ire_mark_advice(tcp);
8776 					(void) tcp_clean_death(tcp,
8777 					    tcp->tcp_client_errno, 7);
8778 				}
8779 			}
8780 			break;
8781 		default:
8782 			break;
8783 		}
8784 		break;
8785 	case ICMP_SOURCE_QUENCH: {
8786 		/*
8787 		 * use a global boolean to control
8788 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
8789 		 * The default is false.
8790 		 */
8791 		if (tcp_icmp_source_quench) {
8792 			/*
8793 			 * Reduce the sending rate as if we got a
8794 			 * retransmit timeout
8795 			 */
8796 			uint32_t npkt;
8797 
8798 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
8799 			    tcp->tcp_mss;
8800 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
8801 			tcp->tcp_cwnd = tcp->tcp_mss;
8802 			tcp->tcp_cwnd_cnt = 0;
8803 		}
8804 		break;
8805 	}
8806 	}
8807 	freemsg(first_mp);
8808 }
8809 
8810 /*
8811  * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6
8812  * error messages passed up by IP.
8813  * Assumes that IP has pulled up all the extension headers as well
8814  * as the ICMPv6 header.
8815  */
8816 static void
8817 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl)
8818 {
8819 	icmp6_t *icmp6;
8820 	ip6_t	*ip6h;
8821 	uint16_t	iph_hdr_length;
8822 	tcpha_t	*tcpha;
8823 	uint8_t	*nexthdrp;
8824 	uint32_t new_mss;
8825 	uint32_t ratio;
8826 	boolean_t secure;
8827 	mblk_t *first_mp = mp;
8828 	size_t mp_size;
8829 	uint32_t seg_seq;
8830 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8831 
8832 	/*
8833 	 * The caller has determined if this is an IPSEC_IN packet and
8834 	 * set ipsec_mctl appropriately (see tcp_icmp_error).
8835 	 */
8836 	if (ipsec_mctl)
8837 		mp = mp->b_cont;
8838 
8839 	mp_size = MBLKL(mp);
8840 
8841 	/*
8842 	 * Verify that we have a complete IP header. If not, send it upstream.
8843 	 */
8844 	if (mp_size < sizeof (ip6_t)) {
8845 noticmpv6:
8846 		freemsg(first_mp);
8847 		return;
8848 	}
8849 
8850 	/*
8851 	 * Verify this is an ICMPV6 packet, else send it upstream.
8852 	 */
8853 	ip6h = (ip6_t *)mp->b_rptr;
8854 	if (ip6h->ip6_nxt == IPPROTO_ICMPV6) {
8855 		iph_hdr_length = IPV6_HDR_LEN;
8856 	} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
8857 	    &nexthdrp) ||
8858 	    *nexthdrp != IPPROTO_ICMPV6) {
8859 		goto noticmpv6;
8860 	}
8861 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
8862 	ip6h = (ip6_t *)&icmp6[1];
8863 	/*
8864 	 * Verify if we have a complete ICMP and inner IP header.
8865 	 */
8866 	if ((uchar_t *)&ip6h[1] > mp->b_wptr)
8867 		goto noticmpv6;
8868 
8869 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
8870 		goto noticmpv6;
8871 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
8872 	/*
8873 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
8874 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
8875 	 * packet.
8876 	 */
8877 	if ((*nexthdrp != IPPROTO_TCP) ||
8878 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
8879 		goto noticmpv6;
8880 	}
8881 
8882 	/*
8883 	 * ICMP errors come on the right queue or come on
8884 	 * listener/global queue for detached connections and
8885 	 * get switched to the right queue. If it comes on the
8886 	 * right queue, policy check has already been done by IP
8887 	 * and thus free the first_mp without verifying the policy.
8888 	 * If it has come for a non-hard bound connection, we need
8889 	 * to verify policy as IP may not have done it.
8890 	 */
8891 	if (!tcp->tcp_hard_bound) {
8892 		if (ipsec_mctl) {
8893 			secure = ipsec_in_is_secure(first_mp);
8894 		} else {
8895 			secure = B_FALSE;
8896 		}
8897 		if (secure) {
8898 			/*
8899 			 * If we are willing to accept this in clear
8900 			 * we don't have to verify policy.
8901 			 */
8902 			if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) {
8903 				if (!tcp_check_policy(tcp, first_mp,
8904 				    NULL, ip6h, secure, ipsec_mctl)) {
8905 					/*
8906 					 * tcp_check_policy called
8907 					 * ip_drop_packet() on failure.
8908 					 */
8909 					return;
8910 				}
8911 			}
8912 		}
8913 	} else if (ipsec_mctl) {
8914 		/*
8915 		 * This is a hard_bound connection. IP has already
8916 		 * verified policy. We don't have to do it again.
8917 		 */
8918 		freeb(first_mp);
8919 		first_mp = mp;
8920 		ipsec_mctl = B_FALSE;
8921 	}
8922 
8923 	seg_seq = ntohl(tcpha->tha_seq);
8924 	/*
8925 	 * TCP SHOULD check that the TCP sequence number contained in
8926 	 * payload of the ICMP error message is within the range
8927 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8928 	 */
8929 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8930 		/*
8931 		 * If the ICMP message is bogus, should we kill the
8932 		 * connection, or should we just drop the bogus ICMP
8933 		 * message? It would probably make more sense to just
8934 		 * drop the message so that if this one managed to get
8935 		 * in, the real connection should not suffer.
8936 		 */
8937 		goto noticmpv6;
8938 	}
8939 
8940 	switch (icmp6->icmp6_type) {
8941 	case ICMP6_PACKET_TOO_BIG:
8942 		/*
8943 		 * Reduce the MSS based on the new MTU.  This will
8944 		 * eliminate any fragmentation locally.
8945 		 * N.B.  There may well be some funny side-effects on
8946 		 * the local send policy and the remote receive policy.
8947 		 * Pending further research, we provide
8948 		 * tcp_ignore_path_mtu just in case this proves
8949 		 * disastrous somewhere.
8950 		 *
8951 		 * After updating the MSS, retransmit part of the
8952 		 * dropped segment using the new mss by calling
8953 		 * tcp_wput_data().  Need to adjust all those
8954 		 * params to make sure tcp_wput_data() work properly.
8955 		 */
8956 		if (tcps->tcps_ignore_path_mtu)
8957 			break;
8958 
8959 		/*
8960 		 * Decrease the MSS by time stamp options
8961 		 * IP options and IPSEC options. tcp_hdr_len
8962 		 * includes time stamp option and IP option
8963 		 * length.
8964 		 */
8965 		new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len -
8966 		    tcp->tcp_ipsec_overhead;
8967 
8968 		/*
8969 		 * Only update the MSS if the new one is
8970 		 * smaller than the previous one.  This is
8971 		 * to avoid problems when getting multiple
8972 		 * ICMP errors for the same MTU.
8973 		 */
8974 		if (new_mss >= tcp->tcp_mss)
8975 			break;
8976 
8977 		ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8978 		ASSERT(ratio >= 1);
8979 		tcp_mss_set(tcp, new_mss, B_TRUE);
8980 
8981 		/*
8982 		 * Make sure we have something to
8983 		 * send.
8984 		 */
8985 		if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8986 		    (tcp->tcp_xmit_head != NULL)) {
8987 			/*
8988 			 * Shrink tcp_cwnd in
8989 			 * proportion to the old MSS/new MSS.
8990 			 */
8991 			tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8992 			if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8993 			    (tcp->tcp_unsent == 0)) {
8994 				tcp->tcp_rexmit_max = tcp->tcp_fss;
8995 			} else {
8996 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
8997 			}
8998 			tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8999 			tcp->tcp_rexmit = B_TRUE;
9000 			tcp->tcp_dupack_cnt = 0;
9001 			tcp->tcp_snd_burst = TCP_CWND_SS;
9002 			tcp_ss_rexmit(tcp);
9003 		}
9004 		break;
9005 
9006 	case ICMP6_DST_UNREACH:
9007 		switch (icmp6->icmp6_code) {
9008 		case ICMP6_DST_UNREACH_NOPORT:
9009 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
9010 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
9011 			    (seg_seq == tcp->tcp_iss)) {
9012 				(void) tcp_clean_death(tcp,
9013 				    ECONNREFUSED, 8);
9014 			}
9015 			break;
9016 
9017 		case ICMP6_DST_UNREACH_ADMIN:
9018 		case ICMP6_DST_UNREACH_NOROUTE:
9019 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
9020 		case ICMP6_DST_UNREACH_ADDR:
9021 			/* Record the error in case we finally time out. */
9022 			tcp->tcp_client_errno = EHOSTUNREACH;
9023 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
9024 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
9025 			    (seg_seq == tcp->tcp_iss)) {
9026 				if (tcp->tcp_listener != NULL &&
9027 				    tcp->tcp_listener->tcp_syn_defense) {
9028 					/*
9029 					 * Ditch the half-open connection if we
9030 					 * suspect a SYN attack is under way.
9031 					 */
9032 					tcp_ip_ire_mark_advice(tcp);
9033 					(void) tcp_clean_death(tcp,
9034 					    tcp->tcp_client_errno, 9);
9035 				}
9036 			}
9037 
9038 
9039 			break;
9040 		default:
9041 			break;
9042 		}
9043 		break;
9044 
9045 	case ICMP6_PARAM_PROB:
9046 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
9047 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
9048 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
9049 		    (uchar_t *)nexthdrp) {
9050 			if (tcp->tcp_state == TCPS_SYN_SENT ||
9051 			    tcp->tcp_state == TCPS_SYN_RCVD) {
9052 				(void) tcp_clean_death(tcp,
9053 				    ECONNREFUSED, 10);
9054 			}
9055 			break;
9056 		}
9057 		break;
9058 
9059 	case ICMP6_TIME_EXCEEDED:
9060 	default:
9061 		break;
9062 	}
9063 	freemsg(first_mp);
9064 }
9065 
9066 /*
9067  * IP recognizes seven kinds of bind requests:
9068  *
9069  * - A zero-length address binds only to the protocol number.
9070  *
9071  * - A 4-byte address is treated as a request to
9072  * validate that the address is a valid local IPv4
9073  * address, appropriate for an application to bind to.
9074  * IP does the verification, but does not make any note
9075  * of the address at this time.
9076  *
9077  * - A 16-byte address contains is treated as a request
9078  * to validate a local IPv6 address, as the 4-byte
9079  * address case above.
9080  *
9081  * - A 16-byte sockaddr_in to validate the local IPv4 address and also
9082  * use it for the inbound fanout of packets.
9083  *
9084  * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also
9085  * use it for the inbound fanout of packets.
9086  *
9087  * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout
9088  * information consisting of local and remote addresses
9089  * and ports.  In this case, the addresses are both
9090  * validated as appropriate for this operation, and, if
9091  * so, the information is retained for use in the
9092  * inbound fanout.
9093  *
9094  * - A 36-byte address address (ipa6_conn_t) containing complete IPv6
9095  * fanout information, like the 12-byte case above.
9096  *
9097  * IP will also fill in the IRE request mblk with information
9098  * regarding our peer.  In all cases, we notify IP of our protocol
9099  * type by appending a single protocol byte to the bind request.
9100  */
9101 static mblk_t *
9102 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length)
9103 {
9104 	char	*cp;
9105 	mblk_t	*mp;
9106 	struct T_bind_req *tbr;
9107 	ipa_conn_t	*ac;
9108 	ipa6_conn_t	*ac6;
9109 	sin_t		*sin;
9110 	sin6_t		*sin6;
9111 
9112 	ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ);
9113 	ASSERT((tcp->tcp_family == AF_INET &&
9114 	    tcp->tcp_ipversion == IPV4_VERSION) ||
9115 	    (tcp->tcp_family == AF_INET6 &&
9116 	    (tcp->tcp_ipversion == IPV4_VERSION ||
9117 	    tcp->tcp_ipversion == IPV6_VERSION)));
9118 
9119 	mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI);
9120 	if (!mp)
9121 		return (mp);
9122 	mp->b_datap->db_type = M_PROTO;
9123 	tbr = (struct T_bind_req *)mp->b_rptr;
9124 	tbr->PRIM_type = bind_prim;
9125 	tbr->ADDR_offset = sizeof (*tbr);
9126 	tbr->CONIND_number = 0;
9127 	tbr->ADDR_length = addr_length;
9128 	cp = (char *)&tbr[1];
9129 	switch (addr_length) {
9130 	case sizeof (ipa_conn_t):
9131 		ASSERT(tcp->tcp_family == AF_INET);
9132 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
9133 
9134 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
9135 		if (mp->b_cont == NULL) {
9136 			freemsg(mp);
9137 			return (NULL);
9138 		}
9139 		mp->b_cont->b_wptr += sizeof (ire_t);
9140 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
9141 
9142 		/* cp known to be 32 bit aligned */
9143 		ac = (ipa_conn_t *)cp;
9144 		ac->ac_laddr = tcp->tcp_ipha->ipha_src;
9145 		ac->ac_faddr = tcp->tcp_remote;
9146 		ac->ac_fport = tcp->tcp_fport;
9147 		ac->ac_lport = tcp->tcp_lport;
9148 		tcp->tcp_hard_binding = 1;
9149 		break;
9150 
9151 	case sizeof (ipa6_conn_t):
9152 		ASSERT(tcp->tcp_family == AF_INET6);
9153 
9154 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
9155 		if (mp->b_cont == NULL) {
9156 			freemsg(mp);
9157 			return (NULL);
9158 		}
9159 		mp->b_cont->b_wptr += sizeof (ire_t);
9160 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
9161 
9162 		/* cp known to be 32 bit aligned */
9163 		ac6 = (ipa6_conn_t *)cp;
9164 		if (tcp->tcp_ipversion == IPV4_VERSION) {
9165 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
9166 			    &ac6->ac6_laddr);
9167 		} else {
9168 			ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src;
9169 		}
9170 		ac6->ac6_faddr = tcp->tcp_remote_v6;
9171 		ac6->ac6_fport = tcp->tcp_fport;
9172 		ac6->ac6_lport = tcp->tcp_lport;
9173 		tcp->tcp_hard_binding = 1;
9174 		break;
9175 
9176 	case sizeof (sin_t):
9177 		/*
9178 		 * NOTE: IPV6_ADDR_LEN also has same size.
9179 		 * Use family to discriminate.
9180 		 */
9181 		if (tcp->tcp_family == AF_INET) {
9182 			sin = (sin_t *)cp;
9183 
9184 			*sin = sin_null;
9185 			sin->sin_family = AF_INET;
9186 			sin->sin_addr.s_addr = tcp->tcp_bound_source;
9187 			sin->sin_port = tcp->tcp_lport;
9188 			break;
9189 		} else {
9190 			*(in6_addr_t *)cp = tcp->tcp_bound_source_v6;
9191 		}
9192 		break;
9193 
9194 	case sizeof (sin6_t):
9195 		ASSERT(tcp->tcp_family == AF_INET6);
9196 		sin6 = (sin6_t *)cp;
9197 
9198 		*sin6 = sin6_null;
9199 		sin6->sin6_family = AF_INET6;
9200 		sin6->sin6_addr = tcp->tcp_bound_source_v6;
9201 		sin6->sin6_port = tcp->tcp_lport;
9202 		break;
9203 
9204 	case IP_ADDR_LEN:
9205 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
9206 		*(uint32_t *)cp = tcp->tcp_ipha->ipha_src;
9207 		break;
9208 
9209 	}
9210 	/* Add protocol number to end */
9211 	cp[addr_length] = (char)IPPROTO_TCP;
9212 	mp->b_wptr = (uchar_t *)&cp[addr_length + 1];
9213 	return (mp);
9214 }
9215 
9216 /*
9217  * Notify IP that we are having trouble with this connection.  IP should
9218  * blow the IRE away and start over.
9219  */
9220 static void
9221 tcp_ip_notify(tcp_t *tcp)
9222 {
9223 	struct iocblk	*iocp;
9224 	ipid_t	*ipid;
9225 	mblk_t	*mp;
9226 
9227 	/* IPv6 has NUD thus notification to delete the IRE is not needed */
9228 	if (tcp->tcp_ipversion == IPV6_VERSION)
9229 		return;
9230 
9231 	mp = mkiocb(IP_IOCTL);
9232 	if (mp == NULL)
9233 		return;
9234 
9235 	iocp = (struct iocblk *)mp->b_rptr;
9236 	iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst);
9237 
9238 	mp->b_cont = allocb(iocp->ioc_count, BPRI_HI);
9239 	if (!mp->b_cont) {
9240 		freeb(mp);
9241 		return;
9242 	}
9243 
9244 	ipid = (ipid_t *)mp->b_cont->b_rptr;
9245 	mp->b_cont->b_wptr += iocp->ioc_count;
9246 	bzero(ipid, sizeof (*ipid));
9247 	ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY;
9248 	ipid->ipid_ire_type = IRE_CACHE;
9249 	ipid->ipid_addr_offset = sizeof (ipid_t);
9250 	ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst);
9251 	/*
9252 	 * Note: in the case of source routing we want to blow away the
9253 	 * route to the first source route hop.
9254 	 */
9255 	bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1],
9256 	    sizeof (tcp->tcp_ipha->ipha_dst));
9257 
9258 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
9259 }
9260 
9261 /* Unlink and return any mblk that looks like it contains an ire */
9262 static mblk_t *
9263 tcp_ire_mp(mblk_t *mp)
9264 {
9265 	mblk_t	*prev_mp;
9266 
9267 	for (;;) {
9268 		prev_mp = mp;
9269 		mp = mp->b_cont;
9270 		if (mp == NULL)
9271 			break;
9272 		switch (DB_TYPE(mp)) {
9273 		case IRE_DB_TYPE:
9274 		case IRE_DB_REQ_TYPE:
9275 			if (prev_mp != NULL)
9276 				prev_mp->b_cont = mp->b_cont;
9277 			mp->b_cont = NULL;
9278 			return (mp);
9279 		default:
9280 			break;
9281 		}
9282 	}
9283 	return (mp);
9284 }
9285 
9286 /*
9287  * Timer callback routine for keepalive probe.  We do a fake resend of
9288  * last ACKed byte.  Then set a timer using RTO.  When the timer expires,
9289  * check to see if we have heard anything from the other end for the last
9290  * RTO period.  If we have, set the timer to expire for another
9291  * tcp_keepalive_intrvl and check again.  If we have not, set a timer using
9292  * RTO << 1 and check again when it expires.  Keep exponentially increasing
9293  * the timeout if we have not heard from the other side.  If for more than
9294  * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything,
9295  * kill the connection unless the keepalive abort threshold is 0.  In
9296  * that case, we will probe "forever."
9297  */
9298 static void
9299 tcp_keepalive_killer(void *arg)
9300 {
9301 	mblk_t	*mp;
9302 	conn_t	*connp = (conn_t *)arg;
9303 	tcp_t  	*tcp = connp->conn_tcp;
9304 	int32_t	firetime;
9305 	int32_t	idletime;
9306 	int32_t	ka_intrvl;
9307 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9308 
9309 	tcp->tcp_ka_tid = 0;
9310 
9311 	if (tcp->tcp_fused)
9312 		return;
9313 
9314 	BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive);
9315 	ka_intrvl = tcp->tcp_ka_interval;
9316 
9317 	/*
9318 	 * Keepalive probe should only be sent if the application has not
9319 	 * done a close on the connection.
9320 	 */
9321 	if (tcp->tcp_state > TCPS_CLOSE_WAIT) {
9322 		return;
9323 	}
9324 	/* Timer fired too early, restart it. */
9325 	if (tcp->tcp_state < TCPS_ESTABLISHED) {
9326 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9327 		    MSEC_TO_TICK(ka_intrvl));
9328 		return;
9329 	}
9330 
9331 	idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time);
9332 	/*
9333 	 * If we have not heard from the other side for a long
9334 	 * time, kill the connection unless the keepalive abort
9335 	 * threshold is 0.  In that case, we will probe "forever."
9336 	 */
9337 	if (tcp->tcp_ka_abort_thres != 0 &&
9338 	    idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) {
9339 		BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop);
9340 		(void) tcp_clean_death(tcp, tcp->tcp_client_errno ?
9341 		    tcp->tcp_client_errno : ETIMEDOUT, 11);
9342 		return;
9343 	}
9344 
9345 	if (tcp->tcp_snxt == tcp->tcp_suna &&
9346 	    idletime >= ka_intrvl) {
9347 		/* Fake resend of last ACKed byte. */
9348 		mblk_t	*mp1 = allocb(1, BPRI_LO);
9349 
9350 		if (mp1 != NULL) {
9351 			*mp1->b_wptr++ = '\0';
9352 			mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL,
9353 			    tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE);
9354 			freeb(mp1);
9355 			/*
9356 			 * if allocation failed, fall through to start the
9357 			 * timer back.
9358 			 */
9359 			if (mp != NULL) {
9360 				tcp_send_data(tcp, tcp->tcp_wq, mp);
9361 				BUMP_MIB(&tcps->tcps_mib,
9362 				    tcpTimKeepaliveProbe);
9363 				if (tcp->tcp_ka_last_intrvl != 0) {
9364 					int max;
9365 					/*
9366 					 * We should probe again at least
9367 					 * in ka_intrvl, but not more than
9368 					 * tcp_rexmit_interval_max.
9369 					 */
9370 					max = tcps->tcps_rexmit_interval_max;
9371 					firetime = MIN(ka_intrvl - 1,
9372 					    tcp->tcp_ka_last_intrvl << 1);
9373 					if (firetime > max)
9374 						firetime = max;
9375 				} else {
9376 					firetime = tcp->tcp_rto;
9377 				}
9378 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
9379 				    tcp_keepalive_killer,
9380 				    MSEC_TO_TICK(firetime));
9381 				tcp->tcp_ka_last_intrvl = firetime;
9382 				return;
9383 			}
9384 		}
9385 	} else {
9386 		tcp->tcp_ka_last_intrvl = 0;
9387 	}
9388 
9389 	/* firetime can be negative if (mp1 == NULL || mp == NULL) */
9390 	if ((firetime = ka_intrvl - idletime) < 0) {
9391 		firetime = ka_intrvl;
9392 	}
9393 	tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9394 	    MSEC_TO_TICK(firetime));
9395 }
9396 
9397 int
9398 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
9399 {
9400 	queue_t	*q = tcp->tcp_rq;
9401 	int32_t	mss = tcp->tcp_mss;
9402 	int	maxpsz;
9403 
9404 	if (TCP_IS_DETACHED(tcp))
9405 		return (mss);
9406 
9407 	if (tcp->tcp_fused) {
9408 		maxpsz = tcp_fuse_maxpsz_set(tcp);
9409 		mss = INFPSZ;
9410 	} else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) {
9411 		/*
9412 		 * Set the sd_qn_maxpsz according to the socket send buffer
9413 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
9414 		 * instruct the stream head to copyin user data into contiguous
9415 		 * kernel-allocated buffers without breaking it up into smaller
9416 		 * chunks.  We round up the buffer size to the nearest SMSS.
9417 		 */
9418 		maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss);
9419 		if (tcp->tcp_kssl_ctx == NULL)
9420 			mss = INFPSZ;
9421 		else
9422 			mss = SSL3_MAX_RECORD_LEN;
9423 	} else {
9424 		/*
9425 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
9426 		 * (and a multiple of the mss).  This instructs the stream
9427 		 * head to break down larger than SMSS writes into SMSS-
9428 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
9429 		 */
9430 		maxpsz = tcp->tcp_maxpsz * mss;
9431 		if (maxpsz > tcp->tcp_xmit_hiwater/2) {
9432 			maxpsz = tcp->tcp_xmit_hiwater/2;
9433 			/* Round up to nearest mss */
9434 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
9435 		}
9436 	}
9437 	(void) setmaxps(q, maxpsz);
9438 	tcp->tcp_wq->q_maxpsz = maxpsz;
9439 
9440 	if (set_maxblk)
9441 		(void) mi_set_sth_maxblk(q, mss);
9442 
9443 	return (mss);
9444 }
9445 
9446 /*
9447  * Extract option values from a tcp header.  We put any found values into the
9448  * tcpopt struct and return a bitmask saying which options were found.
9449  */
9450 static int
9451 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt)
9452 {
9453 	uchar_t		*endp;
9454 	int		len;
9455 	uint32_t	mss;
9456 	uchar_t		*up = (uchar_t *)tcph;
9457 	int		found = 0;
9458 	int32_t		sack_len;
9459 	tcp_seq		sack_begin, sack_end;
9460 	tcp_t		*tcp;
9461 
9462 	endp = up + TCP_HDR_LENGTH(tcph);
9463 	up += TCP_MIN_HEADER_LENGTH;
9464 	while (up < endp) {
9465 		len = endp - up;
9466 		switch (*up) {
9467 		case TCPOPT_EOL:
9468 			break;
9469 
9470 		case TCPOPT_NOP:
9471 			up++;
9472 			continue;
9473 
9474 		case TCPOPT_MAXSEG:
9475 			if (len < TCPOPT_MAXSEG_LEN ||
9476 			    up[1] != TCPOPT_MAXSEG_LEN)
9477 				break;
9478 
9479 			mss = BE16_TO_U16(up+2);
9480 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
9481 			tcpopt->tcp_opt_mss = mss;
9482 			found |= TCP_OPT_MSS_PRESENT;
9483 
9484 			up += TCPOPT_MAXSEG_LEN;
9485 			continue;
9486 
9487 		case TCPOPT_WSCALE:
9488 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
9489 				break;
9490 
9491 			if (up[2] > TCP_MAX_WINSHIFT)
9492 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
9493 			else
9494 				tcpopt->tcp_opt_wscale = up[2];
9495 			found |= TCP_OPT_WSCALE_PRESENT;
9496 
9497 			up += TCPOPT_WS_LEN;
9498 			continue;
9499 
9500 		case TCPOPT_SACK_PERMITTED:
9501 			if (len < TCPOPT_SACK_OK_LEN ||
9502 			    up[1] != TCPOPT_SACK_OK_LEN)
9503 				break;
9504 			found |= TCP_OPT_SACK_OK_PRESENT;
9505 			up += TCPOPT_SACK_OK_LEN;
9506 			continue;
9507 
9508 		case TCPOPT_SACK:
9509 			if (len <= 2 || up[1] <= 2 || len < up[1])
9510 				break;
9511 
9512 			/* If TCP is not interested in SACK blks... */
9513 			if ((tcp = tcpopt->tcp) == NULL) {
9514 				up += up[1];
9515 				continue;
9516 			}
9517 			sack_len = up[1] - TCPOPT_HEADER_LEN;
9518 			up += TCPOPT_HEADER_LEN;
9519 
9520 			/*
9521 			 * If the list is empty, allocate one and assume
9522 			 * nothing is sack'ed.
9523 			 */
9524 			ASSERT(tcp->tcp_sack_info != NULL);
9525 			if (tcp->tcp_notsack_list == NULL) {
9526 				tcp_notsack_update(&(tcp->tcp_notsack_list),
9527 				    tcp->tcp_suna, tcp->tcp_snxt,
9528 				    &(tcp->tcp_num_notsack_blk),
9529 				    &(tcp->tcp_cnt_notsack_list));
9530 
9531 				/*
9532 				 * Make sure tcp_notsack_list is not NULL.
9533 				 * This happens when kmem_alloc(KM_NOSLEEP)
9534 				 * returns NULL.
9535 				 */
9536 				if (tcp->tcp_notsack_list == NULL) {
9537 					up += sack_len;
9538 					continue;
9539 				}
9540 				tcp->tcp_fack = tcp->tcp_suna;
9541 			}
9542 
9543 			while (sack_len > 0) {
9544 				if (up + 8 > endp) {
9545 					up = endp;
9546 					break;
9547 				}
9548 				sack_begin = BE32_TO_U32(up);
9549 				up += 4;
9550 				sack_end = BE32_TO_U32(up);
9551 				up += 4;
9552 				sack_len -= 8;
9553 				/*
9554 				 * Bounds checking.  Make sure the SACK
9555 				 * info is within tcp_suna and tcp_snxt.
9556 				 * If this SACK blk is out of bound, ignore
9557 				 * it but continue to parse the following
9558 				 * blks.
9559 				 */
9560 				if (SEQ_LEQ(sack_end, sack_begin) ||
9561 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
9562 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
9563 					continue;
9564 				}
9565 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
9566 				    sack_begin, sack_end,
9567 				    &(tcp->tcp_num_notsack_blk),
9568 				    &(tcp->tcp_cnt_notsack_list));
9569 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
9570 					tcp->tcp_fack = sack_end;
9571 				}
9572 			}
9573 			found |= TCP_OPT_SACK_PRESENT;
9574 			continue;
9575 
9576 		case TCPOPT_TSTAMP:
9577 			if (len < TCPOPT_TSTAMP_LEN ||
9578 			    up[1] != TCPOPT_TSTAMP_LEN)
9579 				break;
9580 
9581 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
9582 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
9583 
9584 			found |= TCP_OPT_TSTAMP_PRESENT;
9585 
9586 			up += TCPOPT_TSTAMP_LEN;
9587 			continue;
9588 
9589 		default:
9590 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
9591 				break;
9592 			up += up[1];
9593 			continue;
9594 		}
9595 		break;
9596 	}
9597 	return (found);
9598 }
9599 
9600 /*
9601  * Set the mss associated with a particular tcp based on its current value,
9602  * and a new one passed in. Observe minimums and maximums, and reset
9603  * other state variables that we want to view as multiples of mss.
9604  *
9605  * This function is called mainly because values like tcp_mss, tcp_cwnd,
9606  * highwater marks etc. need to be initialized or adjusted.
9607  * 1) From tcp_process_options() when the other side's SYN/SYN-ACK
9608  *    packet arrives.
9609  * 2) We need to set a new MSS when ICMP_FRAGMENTATION_NEEDED or
9610  *    ICMP6_PACKET_TOO_BIG arrives.
9611  * 3) From tcp_paws_check() if the other side stops sending the timestamp,
9612  *    to increase the MSS to use the extra bytes available.
9613  *
9614  * Callers except tcp_paws_check() ensure that they only reduce mss.
9615  */
9616 static void
9617 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss)
9618 {
9619 	uint32_t	mss_max;
9620 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9621 
9622 	if (tcp->tcp_ipversion == IPV4_VERSION)
9623 		mss_max = tcps->tcps_mss_max_ipv4;
9624 	else
9625 		mss_max = tcps->tcps_mss_max_ipv6;
9626 
9627 	if (mss < tcps->tcps_mss_min)
9628 		mss = tcps->tcps_mss_min;
9629 	if (mss > mss_max)
9630 		mss = mss_max;
9631 	/*
9632 	 * Unless naglim has been set by our client to
9633 	 * a non-mss value, force naglim to track mss.
9634 	 * This can help to aggregate small writes.
9635 	 */
9636 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
9637 		tcp->tcp_naglim = mss;
9638 	/*
9639 	 * TCP should be able to buffer at least 4 MSS data for obvious
9640 	 * performance reason.
9641 	 */
9642 	if ((mss << 2) > tcp->tcp_xmit_hiwater)
9643 		tcp->tcp_xmit_hiwater = mss << 2;
9644 
9645 	if (do_ss) {
9646 		/*
9647 		 * Either the tcp_cwnd is as yet uninitialized, or mss is
9648 		 * changing due to a reduction in MTU, presumably as a
9649 		 * result of a new path component, reset cwnd to its
9650 		 * "initial" value, as a multiple of the new mss.
9651 		 */
9652 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_initial);
9653 	} else {
9654 		/*
9655 		 * Called by tcp_paws_check(), the mss increased
9656 		 * marginally to allow use of space previously taken
9657 		 * by the timestamp option. It would be inappropriate
9658 		 * to apply slow start or tcp_init_cwnd values to
9659 		 * tcp_cwnd, simply adjust to a multiple of the new mss.
9660 		 */
9661 		tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss;
9662 		tcp->tcp_cwnd_cnt = 0;
9663 	}
9664 	tcp->tcp_mss = mss;
9665 	(void) tcp_maxpsz_set(tcp, B_TRUE);
9666 }
9667 
9668 /* For /dev/tcp aka AF_INET open */
9669 static int
9670 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9671 {
9672 	return (tcp_open(q, devp, flag, sflag, credp, B_FALSE));
9673 }
9674 
9675 /* For /dev/tcp6 aka AF_INET6 open */
9676 static int
9677 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9678 {
9679 	return (tcp_open(q, devp, flag, sflag, credp, B_TRUE));
9680 }
9681 
9682 static int
9683 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
9684     boolean_t isv6)
9685 {
9686 	tcp_t		*tcp = NULL;
9687 	conn_t		*connp;
9688 	int		err;
9689 	vmem_t		*minor_arena = NULL;
9690 	dev_t		conn_dev;
9691 	zoneid_t	zoneid;
9692 	tcp_stack_t	*tcps = NULL;
9693 
9694 	if (q->q_ptr != NULL)
9695 		return (0);
9696 
9697 	if (sflag == MODOPEN)
9698 		return (EINVAL);
9699 
9700 	if (!(flag & SO_ACCEPTOR)) {
9701 		/*
9702 		 * Special case for install: miniroot needs to be able to
9703 		 * access files via NFS as though it were always in the
9704 		 * global zone.
9705 		 */
9706 		if (credp == kcred && nfs_global_client_only != 0) {
9707 			zoneid = GLOBAL_ZONEID;
9708 			tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
9709 			    netstack_tcp;
9710 			ASSERT(tcps != NULL);
9711 		} else {
9712 			netstack_t *ns;
9713 
9714 			ns = netstack_find_by_cred(credp);
9715 			ASSERT(ns != NULL);
9716 			tcps = ns->netstack_tcp;
9717 			ASSERT(tcps != NULL);
9718 
9719 			/*
9720 			 * For exclusive stacks we set the zoneid to zero
9721 			 * to make TCP operate as if in the global zone.
9722 			 */
9723 			if (tcps->tcps_netstack->netstack_stackid !=
9724 			    GLOBAL_NETSTACKID)
9725 				zoneid = GLOBAL_ZONEID;
9726 			else
9727 				zoneid = crgetzoneid(credp);
9728 		}
9729 		/*
9730 		 * For stackid zero this is done from strplumb.c, but
9731 		 * non-zero stackids are handled here.
9732 		 */
9733 		if (tcps->tcps_g_q == NULL &&
9734 		    tcps->tcps_netstack->netstack_stackid !=
9735 		    GLOBAL_NETSTACKID) {
9736 			tcp_g_q_setup(tcps);
9737 		}
9738 	}
9739 
9740 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
9741 	    ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
9742 		minor_arena = ip_minor_arena_la;
9743 	} else {
9744 		/*
9745 		 * Either minor numbers in the large arena were exhausted
9746 		 * or a non socket application is doing the open.
9747 		 * Try to allocate from the small arena.
9748 		 */
9749 		if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
9750 			if (tcps != NULL)
9751 				netstack_rele(tcps->tcps_netstack);
9752 			return (EBUSY);
9753 		}
9754 		minor_arena = ip_minor_arena_sa;
9755 	}
9756 	ASSERT(minor_arena != NULL);
9757 
9758 	*devp = makedevice(getemajor(*devp), (minor_t)conn_dev);
9759 
9760 	if (flag & SO_ACCEPTOR) {
9761 		/* No netstack_find_by_cred, hence no netstack_rele needed */
9762 		ASSERT(tcps == NULL);
9763 		q->q_qinfo = &tcp_acceptor_rinit;
9764 		/*
9765 		 * the conn_dev and minor_arena will be subsequently used by
9766 		 * tcp_wput_accept() and tcpclose_accept() to figure out the
9767 		 * minor device number for this connection from the q_ptr.
9768 		 */
9769 		RD(q)->q_ptr = (void *)conn_dev;
9770 		WR(q)->q_qinfo = &tcp_acceptor_winit;
9771 		WR(q)->q_ptr = (void *)minor_arena;
9772 		qprocson(q);
9773 		return (0);
9774 	}
9775 
9776 	connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt), tcps);
9777 	/*
9778 	 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
9779 	 * so we drop it by one.
9780 	 */
9781 	netstack_rele(tcps->tcps_netstack);
9782 	if (connp == NULL) {
9783 		inet_minor_free(minor_arena, conn_dev);
9784 		q->q_ptr = NULL;
9785 		return (ENOSR);
9786 	}
9787 	connp->conn_sqp = IP_SQUEUE_GET(lbolt);
9788 	tcp = connp->conn_tcp;
9789 
9790 	q->q_ptr = WR(q)->q_ptr = connp;
9791 	if (isv6) {
9792 		connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6);
9793 		connp->conn_send = ip_output_v6;
9794 		connp->conn_af_isv6 = B_TRUE;
9795 		connp->conn_pkt_isv6 = B_TRUE;
9796 		connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT;
9797 		tcp->tcp_ipversion = IPV6_VERSION;
9798 		tcp->tcp_family = AF_INET6;
9799 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
9800 	} else {
9801 		connp->conn_flags |= IPCL_TCP4;
9802 		connp->conn_send = ip_output;
9803 		connp->conn_af_isv6 = B_FALSE;
9804 		connp->conn_pkt_isv6 = B_FALSE;
9805 		tcp->tcp_ipversion = IPV4_VERSION;
9806 		tcp->tcp_family = AF_INET;
9807 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
9808 	}
9809 
9810 	/*
9811 	 * TCP keeps a copy of cred for cache locality reasons but
9812 	 * we put a reference only once. If connp->conn_cred
9813 	 * becomes invalid, tcp_cred should also be set to NULL.
9814 	 */
9815 	tcp->tcp_cred = connp->conn_cred = credp;
9816 	crhold(connp->conn_cred);
9817 	tcp->tcp_cpid = curproc->p_pid;
9818 	tcp->tcp_open_time = lbolt64;
9819 	connp->conn_zoneid = zoneid;
9820 	connp->conn_mlp_type = mlptSingle;
9821 	connp->conn_ulp_labeled = !is_system_labeled();
9822 	ASSERT(connp->conn_netstack == tcps->tcps_netstack);
9823 	ASSERT(tcp->tcp_tcps == tcps);
9824 
9825 	/*
9826 	 * If the caller has the process-wide flag set, then default to MAC
9827 	 * exempt mode.  This allows read-down to unlabeled hosts.
9828 	 */
9829 	if (getpflags(NET_MAC_AWARE, credp) != 0)
9830 		connp->conn_mac_exempt = B_TRUE;
9831 
9832 	connp->conn_dev = conn_dev;
9833 	connp->conn_minor_arena = minor_arena;
9834 
9835 	ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6);
9836 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
9837 
9838 	if (flag & SO_SOCKSTR) {
9839 		/*
9840 		 * No need to insert a socket in tcp acceptor hash.
9841 		 * If it was a socket acceptor stream, we dealt with
9842 		 * it above. A socket listener can never accept a
9843 		 * connection and doesn't need acceptor_id.
9844 		 */
9845 		connp->conn_flags |= IPCL_SOCKET;
9846 		tcp->tcp_issocket = 1;
9847 		WR(q)->q_qinfo = &tcp_sock_winit;
9848 	} else {
9849 #ifdef	_ILP32
9850 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
9851 #else
9852 		tcp->tcp_acceptor_id = conn_dev;
9853 #endif	/* _ILP32 */
9854 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
9855 	}
9856 
9857 	err = tcp_init(tcp, q);
9858 	if (err != 0) {
9859 		inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
9860 		tcp_acceptor_hash_remove(tcp);
9861 		CONN_DEC_REF(connp);
9862 		q->q_ptr = WR(q)->q_ptr = NULL;
9863 		return (err);
9864 	}
9865 
9866 	RD(q)->q_hiwat = tcps->tcps_recv_hiwat;
9867 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
9868 
9869 	/* Non-zero default values */
9870 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
9871 	/*
9872 	 * Put the ref for TCP. Ref for IP was already put
9873 	 * by ipcl_conn_create. Also Make the conn_t globally
9874 	 * visible to walkers
9875 	 */
9876 	mutex_enter(&connp->conn_lock);
9877 	CONN_INC_REF_LOCKED(connp);
9878 	ASSERT(connp->conn_ref == 2);
9879 	connp->conn_state_flags &= ~CONN_INCIPIENT;
9880 	mutex_exit(&connp->conn_lock);
9881 
9882 	qprocson(q);
9883 	return (0);
9884 }
9885 
9886 /*
9887  * Some TCP options can be "set" by requesting them in the option
9888  * buffer. This is needed for XTI feature test though we do not
9889  * allow it in general. We interpret that this mechanism is more
9890  * applicable to OSI protocols and need not be allowed in general.
9891  * This routine filters out options for which it is not allowed (most)
9892  * and lets through those (few) for which it is. [ The XTI interface
9893  * test suite specifics will imply that any XTI_GENERIC level XTI_* if
9894  * ever implemented will have to be allowed here ].
9895  */
9896 static boolean_t
9897 tcp_allow_connopt_set(int level, int name)
9898 {
9899 
9900 	switch (level) {
9901 	case IPPROTO_TCP:
9902 		switch (name) {
9903 		case TCP_NODELAY:
9904 			return (B_TRUE);
9905 		default:
9906 			return (B_FALSE);
9907 		}
9908 		/*NOTREACHED*/
9909 	default:
9910 		return (B_FALSE);
9911 	}
9912 	/*NOTREACHED*/
9913 }
9914 
9915 /*
9916  * This routine gets default values of certain options whose default
9917  * values are maintained by protocol specific code
9918  */
9919 /* ARGSUSED */
9920 int
9921 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
9922 {
9923 	int32_t	*i1 = (int32_t *)ptr;
9924 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
9925 
9926 	switch (level) {
9927 	case IPPROTO_TCP:
9928 		switch (name) {
9929 		case TCP_NOTIFY_THRESHOLD:
9930 			*i1 = tcps->tcps_ip_notify_interval;
9931 			break;
9932 		case TCP_ABORT_THRESHOLD:
9933 			*i1 = tcps->tcps_ip_abort_interval;
9934 			break;
9935 		case TCP_CONN_NOTIFY_THRESHOLD:
9936 			*i1 = tcps->tcps_ip_notify_cinterval;
9937 			break;
9938 		case TCP_CONN_ABORT_THRESHOLD:
9939 			*i1 = tcps->tcps_ip_abort_cinterval;
9940 			break;
9941 		default:
9942 			return (-1);
9943 		}
9944 		break;
9945 	case IPPROTO_IP:
9946 		switch (name) {
9947 		case IP_TTL:
9948 			*i1 = tcps->tcps_ipv4_ttl;
9949 			break;
9950 		default:
9951 			return (-1);
9952 		}
9953 		break;
9954 	case IPPROTO_IPV6:
9955 		switch (name) {
9956 		case IPV6_UNICAST_HOPS:
9957 			*i1 = tcps->tcps_ipv6_hoplimit;
9958 			break;
9959 		default:
9960 			return (-1);
9961 		}
9962 		break;
9963 	default:
9964 		return (-1);
9965 	}
9966 	return (sizeof (int));
9967 }
9968 
9969 
9970 /*
9971  * TCP routine to get the values of options.
9972  */
9973 int
9974 tcp_opt_get(queue_t *q, int level, int	name, uchar_t *ptr)
9975 {
9976 	int		*i1 = (int *)ptr;
9977 	conn_t		*connp = Q_TO_CONN(q);
9978 	tcp_t		*tcp = connp->conn_tcp;
9979 	ip6_pkt_t	*ipp = &tcp->tcp_sticky_ipp;
9980 
9981 	switch (level) {
9982 	case SOL_SOCKET:
9983 		switch (name) {
9984 		case SO_LINGER:	{
9985 			struct linger *lgr = (struct linger *)ptr;
9986 
9987 			lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0;
9988 			lgr->l_linger = tcp->tcp_lingertime;
9989 			}
9990 			return (sizeof (struct linger));
9991 		case SO_DEBUG:
9992 			*i1 = tcp->tcp_debug ? SO_DEBUG : 0;
9993 			break;
9994 		case SO_KEEPALIVE:
9995 			*i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0;
9996 			break;
9997 		case SO_DONTROUTE:
9998 			*i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0;
9999 			break;
10000 		case SO_USELOOPBACK:
10001 			*i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0;
10002 			break;
10003 		case SO_BROADCAST:
10004 			*i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0;
10005 			break;
10006 		case SO_REUSEADDR:
10007 			*i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0;
10008 			break;
10009 		case SO_OOBINLINE:
10010 			*i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0;
10011 			break;
10012 		case SO_DGRAM_ERRIND:
10013 			*i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0;
10014 			break;
10015 		case SO_TYPE:
10016 			*i1 = SOCK_STREAM;
10017 			break;
10018 		case SO_SNDBUF:
10019 			*i1 = tcp->tcp_xmit_hiwater;
10020 			break;
10021 		case SO_RCVBUF:
10022 			*i1 = RD(q)->q_hiwat;
10023 			break;
10024 		case SO_SND_COPYAVOID:
10025 			*i1 = tcp->tcp_snd_zcopy_on ?
10026 			    SO_SND_COPYAVOID : 0;
10027 			break;
10028 		case SO_ALLZONES:
10029 			*i1 = connp->conn_allzones ? 1 : 0;
10030 			break;
10031 		case SO_ANON_MLP:
10032 			*i1 = connp->conn_anon_mlp;
10033 			break;
10034 		case SO_MAC_EXEMPT:
10035 			*i1 = connp->conn_mac_exempt;
10036 			break;
10037 		case SO_EXCLBIND:
10038 			*i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0;
10039 			break;
10040 		case SO_PROTOTYPE:
10041 			*i1 = IPPROTO_TCP;
10042 			break;
10043 		case SO_DOMAIN:
10044 			*i1 = tcp->tcp_family;
10045 			break;
10046 		default:
10047 			return (-1);
10048 		}
10049 		break;
10050 	case IPPROTO_TCP:
10051 		switch (name) {
10052 		case TCP_NODELAY:
10053 			*i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0;
10054 			break;
10055 		case TCP_MAXSEG:
10056 			*i1 = tcp->tcp_mss;
10057 			break;
10058 		case TCP_NOTIFY_THRESHOLD:
10059 			*i1 = (int)tcp->tcp_first_timer_threshold;
10060 			break;
10061 		case TCP_ABORT_THRESHOLD:
10062 			*i1 = tcp->tcp_second_timer_threshold;
10063 			break;
10064 		case TCP_CONN_NOTIFY_THRESHOLD:
10065 			*i1 = tcp->tcp_first_ctimer_threshold;
10066 			break;
10067 		case TCP_CONN_ABORT_THRESHOLD:
10068 			*i1 = tcp->tcp_second_ctimer_threshold;
10069 			break;
10070 		case TCP_RECVDSTADDR:
10071 			*i1 = tcp->tcp_recvdstaddr;
10072 			break;
10073 		case TCP_ANONPRIVBIND:
10074 			*i1 = tcp->tcp_anon_priv_bind;
10075 			break;
10076 		case TCP_EXCLBIND:
10077 			*i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0;
10078 			break;
10079 		case TCP_INIT_CWND:
10080 			*i1 = tcp->tcp_init_cwnd;
10081 			break;
10082 		case TCP_KEEPALIVE_THRESHOLD:
10083 			*i1 = tcp->tcp_ka_interval;
10084 			break;
10085 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10086 			*i1 = tcp->tcp_ka_abort_thres;
10087 			break;
10088 		case TCP_CORK:
10089 			*i1 = tcp->tcp_cork;
10090 			break;
10091 		default:
10092 			return (-1);
10093 		}
10094 		break;
10095 	case IPPROTO_IP:
10096 		if (tcp->tcp_family != AF_INET)
10097 			return (-1);
10098 		switch (name) {
10099 		case IP_OPTIONS:
10100 		case T_IP_OPTIONS: {
10101 			/*
10102 			 * This is compatible with BSD in that in only return
10103 			 * the reverse source route with the final destination
10104 			 * as the last entry. The first 4 bytes of the option
10105 			 * will contain the final destination.
10106 			 */
10107 			int	opt_len;
10108 
10109 			opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha;
10110 			opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH;
10111 			ASSERT(opt_len >= 0);
10112 			/* Caller ensures enough space */
10113 			if (opt_len > 0) {
10114 				/*
10115 				 * TODO: Do we have to handle getsockopt on an
10116 				 * initiator as well?
10117 				 */
10118 				return (ip_opt_get_user(tcp->tcp_ipha, ptr));
10119 			}
10120 			return (0);
10121 			}
10122 		case IP_TOS:
10123 		case T_IP_TOS:
10124 			*i1 = (int)tcp->tcp_ipha->ipha_type_of_service;
10125 			break;
10126 		case IP_TTL:
10127 			*i1 = (int)tcp->tcp_ipha->ipha_ttl;
10128 			break;
10129 		case IP_NEXTHOP:
10130 			/* Handled at IP level */
10131 			return (-EINVAL);
10132 		default:
10133 			return (-1);
10134 		}
10135 		break;
10136 	case IPPROTO_IPV6:
10137 		/*
10138 		 * IPPROTO_IPV6 options are only supported for sockets
10139 		 * that are using IPv6 on the wire.
10140 		 */
10141 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10142 			return (-1);
10143 		}
10144 		switch (name) {
10145 		case IPV6_UNICAST_HOPS:
10146 			*i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops;
10147 			break;	/* goto sizeof (int) option return */
10148 		case IPV6_BOUND_IF:
10149 			/* Zero if not set */
10150 			*i1 = tcp->tcp_bound_if;
10151 			break;	/* goto sizeof (int) option return */
10152 		case IPV6_RECVPKTINFO:
10153 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)
10154 				*i1 = 1;
10155 			else
10156 				*i1 = 0;
10157 			break;	/* goto sizeof (int) option return */
10158 		case IPV6_RECVTCLASS:
10159 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)
10160 				*i1 = 1;
10161 			else
10162 				*i1 = 0;
10163 			break;	/* goto sizeof (int) option return */
10164 		case IPV6_RECVHOPLIMIT:
10165 			if (tcp->tcp_ipv6_recvancillary &
10166 			    TCP_IPV6_RECVHOPLIMIT)
10167 				*i1 = 1;
10168 			else
10169 				*i1 = 0;
10170 			break;	/* goto sizeof (int) option return */
10171 		case IPV6_RECVHOPOPTS:
10172 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS)
10173 				*i1 = 1;
10174 			else
10175 				*i1 = 0;
10176 			break;	/* goto sizeof (int) option return */
10177 		case IPV6_RECVDSTOPTS:
10178 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS)
10179 				*i1 = 1;
10180 			else
10181 				*i1 = 0;
10182 			break;	/* goto sizeof (int) option return */
10183 		case _OLD_IPV6_RECVDSTOPTS:
10184 			if (tcp->tcp_ipv6_recvancillary &
10185 			    TCP_OLD_IPV6_RECVDSTOPTS)
10186 				*i1 = 1;
10187 			else
10188 				*i1 = 0;
10189 			break;	/* goto sizeof (int) option return */
10190 		case IPV6_RECVRTHDR:
10191 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR)
10192 				*i1 = 1;
10193 			else
10194 				*i1 = 0;
10195 			break;	/* goto sizeof (int) option return */
10196 		case IPV6_RECVRTHDRDSTOPTS:
10197 			if (tcp->tcp_ipv6_recvancillary &
10198 			    TCP_IPV6_RECVRTDSTOPTS)
10199 				*i1 = 1;
10200 			else
10201 				*i1 = 0;
10202 			break;	/* goto sizeof (int) option return */
10203 		case IPV6_PKTINFO: {
10204 			/* XXX assumes that caller has room for max size! */
10205 			struct in6_pktinfo *pkti;
10206 
10207 			pkti = (struct in6_pktinfo *)ptr;
10208 			if (ipp->ipp_fields & IPPF_IFINDEX)
10209 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
10210 			else
10211 				pkti->ipi6_ifindex = 0;
10212 			if (ipp->ipp_fields & IPPF_ADDR)
10213 				pkti->ipi6_addr = ipp->ipp_addr;
10214 			else
10215 				pkti->ipi6_addr = ipv6_all_zeros;
10216 			return (sizeof (struct in6_pktinfo));
10217 		}
10218 		case IPV6_TCLASS:
10219 			if (ipp->ipp_fields & IPPF_TCLASS)
10220 				*i1 = ipp->ipp_tclass;
10221 			else
10222 				*i1 = IPV6_FLOW_TCLASS(
10223 				    IPV6_DEFAULT_VERS_AND_FLOW);
10224 			break;	/* goto sizeof (int) option return */
10225 		case IPV6_NEXTHOP: {
10226 			sin6_t *sin6 = (sin6_t *)ptr;
10227 
10228 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
10229 				return (0);
10230 			*sin6 = sin6_null;
10231 			sin6->sin6_family = AF_INET6;
10232 			sin6->sin6_addr = ipp->ipp_nexthop;
10233 			return (sizeof (sin6_t));
10234 		}
10235 		case IPV6_HOPOPTS:
10236 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
10237 				return (0);
10238 			if (ipp->ipp_hopoptslen <= tcp->tcp_label_len)
10239 				return (0);
10240 			bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len,
10241 			    ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len);
10242 			if (tcp->tcp_label_len > 0) {
10243 				ptr[0] = ((char *)ipp->ipp_hopopts)[0];
10244 				ptr[1] = (ipp->ipp_hopoptslen -
10245 				    tcp->tcp_label_len + 7) / 8 - 1;
10246 			}
10247 			return (ipp->ipp_hopoptslen - tcp->tcp_label_len);
10248 		case IPV6_RTHDRDSTOPTS:
10249 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
10250 				return (0);
10251 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
10252 			return (ipp->ipp_rtdstoptslen);
10253 		case IPV6_RTHDR:
10254 			if (!(ipp->ipp_fields & IPPF_RTHDR))
10255 				return (0);
10256 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
10257 			return (ipp->ipp_rthdrlen);
10258 		case IPV6_DSTOPTS:
10259 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
10260 				return (0);
10261 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
10262 			return (ipp->ipp_dstoptslen);
10263 		case IPV6_SRC_PREFERENCES:
10264 			return (ip6_get_src_preferences(connp,
10265 			    (uint32_t *)ptr));
10266 		case IPV6_PATHMTU: {
10267 			struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr;
10268 
10269 			if (tcp->tcp_state < TCPS_ESTABLISHED)
10270 				return (-1);
10271 
10272 			return (ip_fill_mtuinfo(&connp->conn_remv6,
10273 			    connp->conn_fport, mtuinfo,
10274 			    connp->conn_netstack));
10275 		}
10276 		default:
10277 			return (-1);
10278 		}
10279 		break;
10280 	default:
10281 		return (-1);
10282 	}
10283 	return (sizeof (int));
10284 }
10285 
10286 /*
10287  * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements.
10288  * Parameters are assumed to be verified by the caller.
10289  */
10290 /* ARGSUSED */
10291 int
10292 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name,
10293     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
10294     void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
10295 {
10296 	conn_t	*connp = Q_TO_CONN(q);
10297 	tcp_t	*tcp = connp->conn_tcp;
10298 	int	*i1 = (int *)invalp;
10299 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
10300 	boolean_t checkonly;
10301 	int	reterr;
10302 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
10303 
10304 	switch (optset_context) {
10305 	case SETFN_OPTCOM_CHECKONLY:
10306 		checkonly = B_TRUE;
10307 		/*
10308 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
10309 		 * inlen != 0 implies value supplied and
10310 		 * 	we have to "pretend" to set it.
10311 		 * inlen == 0 implies that there is no
10312 		 * 	value part in T_CHECK request and just validation
10313 		 * done elsewhere should be enough, we just return here.
10314 		 */
10315 		if (inlen == 0) {
10316 			*outlenp = 0;
10317 			return (0);
10318 		}
10319 		break;
10320 	case SETFN_OPTCOM_NEGOTIATE:
10321 		checkonly = B_FALSE;
10322 		break;
10323 	case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */
10324 	case SETFN_CONN_NEGOTIATE:
10325 		checkonly = B_FALSE;
10326 		/*
10327 		 * Negotiating local and "association-related" options
10328 		 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ)
10329 		 * primitives is allowed by XTI, but we choose
10330 		 * to not implement this style negotiation for Internet
10331 		 * protocols (We interpret it is a must for OSI world but
10332 		 * optional for Internet protocols) for all options.
10333 		 * [ Will do only for the few options that enable test
10334 		 * suites that our XTI implementation of this feature
10335 		 * works for transports that do allow it ]
10336 		 */
10337 		if (!tcp_allow_connopt_set(level, name)) {
10338 			*outlenp = 0;
10339 			return (EINVAL);
10340 		}
10341 		break;
10342 	default:
10343 		/*
10344 		 * We should never get here
10345 		 */
10346 		*outlenp = 0;
10347 		return (EINVAL);
10348 	}
10349 
10350 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
10351 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
10352 
10353 	/*
10354 	 * For TCP, we should have no ancillary data sent down
10355 	 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs
10356 	 * has to be zero.
10357 	 */
10358 	ASSERT(thisdg_attrs == NULL);
10359 
10360 	/*
10361 	 * For fixed length options, no sanity check
10362 	 * of passed in length is done. It is assumed *_optcom_req()
10363 	 * routines do the right thing.
10364 	 */
10365 
10366 	switch (level) {
10367 	case SOL_SOCKET:
10368 		switch (name) {
10369 		case SO_LINGER: {
10370 			struct linger *lgr = (struct linger *)invalp;
10371 
10372 			if (!checkonly) {
10373 				if (lgr->l_onoff) {
10374 					tcp->tcp_linger = 1;
10375 					tcp->tcp_lingertime = lgr->l_linger;
10376 				} else {
10377 					tcp->tcp_linger = 0;
10378 					tcp->tcp_lingertime = 0;
10379 				}
10380 				/* struct copy */
10381 				*(struct linger *)outvalp = *lgr;
10382 			} else {
10383 				if (!lgr->l_onoff) {
10384 					((struct linger *)
10385 					    outvalp)->l_onoff = 0;
10386 					((struct linger *)
10387 					    outvalp)->l_linger = 0;
10388 				} else {
10389 					/* struct copy */
10390 					*(struct linger *)outvalp = *lgr;
10391 				}
10392 			}
10393 			*outlenp = sizeof (struct linger);
10394 			return (0);
10395 		}
10396 		case SO_DEBUG:
10397 			if (!checkonly)
10398 				tcp->tcp_debug = onoff;
10399 			break;
10400 		case SO_KEEPALIVE:
10401 			if (checkonly) {
10402 				/* T_CHECK case */
10403 				break;
10404 			}
10405 
10406 			if (!onoff) {
10407 				if (tcp->tcp_ka_enabled) {
10408 					if (tcp->tcp_ka_tid != 0) {
10409 						(void) TCP_TIMER_CANCEL(tcp,
10410 						    tcp->tcp_ka_tid);
10411 						tcp->tcp_ka_tid = 0;
10412 					}
10413 					tcp->tcp_ka_enabled = 0;
10414 				}
10415 				break;
10416 			}
10417 			if (!tcp->tcp_ka_enabled) {
10418 				/* Crank up the keepalive timer */
10419 				tcp->tcp_ka_last_intrvl = 0;
10420 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
10421 				    tcp_keepalive_killer,
10422 				    MSEC_TO_TICK(tcp->tcp_ka_interval));
10423 				tcp->tcp_ka_enabled = 1;
10424 			}
10425 			break;
10426 		case SO_DONTROUTE:
10427 			/*
10428 			 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are
10429 			 * only of interest to IP.  We track them here only so
10430 			 * that we can report their current value.
10431 			 */
10432 			if (!checkonly) {
10433 				tcp->tcp_dontroute = onoff;
10434 				tcp->tcp_connp->conn_dontroute = onoff;
10435 			}
10436 			break;
10437 		case SO_USELOOPBACK:
10438 			if (!checkonly) {
10439 				tcp->tcp_useloopback = onoff;
10440 				tcp->tcp_connp->conn_loopback = onoff;
10441 			}
10442 			break;
10443 		case SO_BROADCAST:
10444 			if (!checkonly) {
10445 				tcp->tcp_broadcast = onoff;
10446 				tcp->tcp_connp->conn_broadcast = onoff;
10447 			}
10448 			break;
10449 		case SO_REUSEADDR:
10450 			if (!checkonly) {
10451 				tcp->tcp_reuseaddr = onoff;
10452 				tcp->tcp_connp->conn_reuseaddr = onoff;
10453 			}
10454 			break;
10455 		case SO_OOBINLINE:
10456 			if (!checkonly)
10457 				tcp->tcp_oobinline = onoff;
10458 			break;
10459 		case SO_DGRAM_ERRIND:
10460 			if (!checkonly)
10461 				tcp->tcp_dgram_errind = onoff;
10462 			break;
10463 		case SO_SNDBUF: {
10464 			if (*i1 > tcps->tcps_max_buf) {
10465 				*outlenp = 0;
10466 				return (ENOBUFS);
10467 			}
10468 			if (checkonly)
10469 				break;
10470 
10471 			tcp->tcp_xmit_hiwater = *i1;
10472 			if (tcps->tcps_snd_lowat_fraction != 0)
10473 				tcp->tcp_xmit_lowater =
10474 				    tcp->tcp_xmit_hiwater /
10475 				    tcps->tcps_snd_lowat_fraction;
10476 			(void) tcp_maxpsz_set(tcp, B_TRUE);
10477 			/*
10478 			 * If we are flow-controlled, recheck the condition.
10479 			 * There are apps that increase SO_SNDBUF size when
10480 			 * flow-controlled (EWOULDBLOCK), and expect the flow
10481 			 * control condition to be lifted right away.
10482 			 */
10483 			mutex_enter(&tcp->tcp_non_sq_lock);
10484 			if (tcp->tcp_flow_stopped &&
10485 			    TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) {
10486 				tcp_clrqfull(tcp);
10487 			}
10488 			mutex_exit(&tcp->tcp_non_sq_lock);
10489 			break;
10490 		}
10491 		case SO_RCVBUF:
10492 			if (*i1 > tcps->tcps_max_buf) {
10493 				*outlenp = 0;
10494 				return (ENOBUFS);
10495 			}
10496 			/* Silently ignore zero */
10497 			if (!checkonly && *i1 != 0) {
10498 				*i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss);
10499 				(void) tcp_rwnd_set(tcp, *i1);
10500 			}
10501 			/*
10502 			 * XXX should we return the rwnd here
10503 			 * and tcp_opt_get ?
10504 			 */
10505 			break;
10506 		case SO_SND_COPYAVOID:
10507 			if (!checkonly) {
10508 				/* we only allow enable at most once for now */
10509 				if (tcp->tcp_loopback ||
10510 				    (tcp->tcp_kssl_ctx != NULL) ||
10511 				    (!tcp->tcp_snd_zcopy_aware &&
10512 				    (onoff != 1 || !tcp_zcopy_check(tcp)))) {
10513 					*outlenp = 0;
10514 					return (EOPNOTSUPP);
10515 				}
10516 				tcp->tcp_snd_zcopy_aware = 1;
10517 			}
10518 			break;
10519 		case SO_ALLZONES:
10520 			/* Pass option along to IP level for handling */
10521 			return (-EINVAL);
10522 		case SO_ANON_MLP:
10523 			/* Pass option along to IP level for handling */
10524 			return (-EINVAL);
10525 		case SO_MAC_EXEMPT:
10526 			/* Pass option along to IP level for handling */
10527 			return (-EINVAL);
10528 		case SO_EXCLBIND:
10529 			if (!checkonly)
10530 				tcp->tcp_exclbind = onoff;
10531 			break;
10532 		default:
10533 			*outlenp = 0;
10534 			return (EINVAL);
10535 		}
10536 		break;
10537 	case IPPROTO_TCP:
10538 		switch (name) {
10539 		case TCP_NODELAY:
10540 			if (!checkonly)
10541 				tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss;
10542 			break;
10543 		case TCP_NOTIFY_THRESHOLD:
10544 			if (!checkonly)
10545 				tcp->tcp_first_timer_threshold = *i1;
10546 			break;
10547 		case TCP_ABORT_THRESHOLD:
10548 			if (!checkonly)
10549 				tcp->tcp_second_timer_threshold = *i1;
10550 			break;
10551 		case TCP_CONN_NOTIFY_THRESHOLD:
10552 			if (!checkonly)
10553 				tcp->tcp_first_ctimer_threshold = *i1;
10554 			break;
10555 		case TCP_CONN_ABORT_THRESHOLD:
10556 			if (!checkonly)
10557 				tcp->tcp_second_ctimer_threshold = *i1;
10558 			break;
10559 		case TCP_RECVDSTADDR:
10560 			if (tcp->tcp_state > TCPS_LISTEN)
10561 				return (EOPNOTSUPP);
10562 			if (!checkonly)
10563 				tcp->tcp_recvdstaddr = onoff;
10564 			break;
10565 		case TCP_ANONPRIVBIND:
10566 			if ((reterr = secpolicy_net_privaddr(cr, 0,
10567 			    IPPROTO_TCP)) != 0) {
10568 				*outlenp = 0;
10569 				return (reterr);
10570 			}
10571 			if (!checkonly) {
10572 				tcp->tcp_anon_priv_bind = onoff;
10573 			}
10574 			break;
10575 		case TCP_EXCLBIND:
10576 			if (!checkonly)
10577 				tcp->tcp_exclbind = onoff;
10578 			break;	/* goto sizeof (int) option return */
10579 		case TCP_INIT_CWND: {
10580 			uint32_t init_cwnd = *((uint32_t *)invalp);
10581 
10582 			if (checkonly)
10583 				break;
10584 
10585 			/*
10586 			 * Only allow socket with network configuration
10587 			 * privilege to set the initial cwnd to be larger
10588 			 * than allowed by RFC 3390.
10589 			 */
10590 			if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) {
10591 				tcp->tcp_init_cwnd = init_cwnd;
10592 				break;
10593 			}
10594 			if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) {
10595 				*outlenp = 0;
10596 				return (reterr);
10597 			}
10598 			if (init_cwnd > TCP_MAX_INIT_CWND) {
10599 				*outlenp = 0;
10600 				return (EINVAL);
10601 			}
10602 			tcp->tcp_init_cwnd = init_cwnd;
10603 			break;
10604 		}
10605 		case TCP_KEEPALIVE_THRESHOLD:
10606 			if (checkonly)
10607 				break;
10608 
10609 			if (*i1 < tcps->tcps_keepalive_interval_low ||
10610 			    *i1 > tcps->tcps_keepalive_interval_high) {
10611 				*outlenp = 0;
10612 				return (EINVAL);
10613 			}
10614 			if (*i1 != tcp->tcp_ka_interval) {
10615 				tcp->tcp_ka_interval = *i1;
10616 				/*
10617 				 * Check if we need to restart the
10618 				 * keepalive timer.
10619 				 */
10620 				if (tcp->tcp_ka_tid != 0) {
10621 					ASSERT(tcp->tcp_ka_enabled);
10622 					(void) TCP_TIMER_CANCEL(tcp,
10623 					    tcp->tcp_ka_tid);
10624 					tcp->tcp_ka_last_intrvl = 0;
10625 					tcp->tcp_ka_tid = TCP_TIMER(tcp,
10626 					    tcp_keepalive_killer,
10627 					    MSEC_TO_TICK(tcp->tcp_ka_interval));
10628 				}
10629 			}
10630 			break;
10631 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10632 			if (!checkonly) {
10633 				if (*i1 <
10634 				    tcps->tcps_keepalive_abort_interval_low ||
10635 				    *i1 >
10636 				    tcps->tcps_keepalive_abort_interval_high) {
10637 					*outlenp = 0;
10638 					return (EINVAL);
10639 				}
10640 				tcp->tcp_ka_abort_thres = *i1;
10641 			}
10642 			break;
10643 		case TCP_CORK:
10644 			if (!checkonly) {
10645 				/*
10646 				 * if tcp->tcp_cork was set and is now
10647 				 * being unset, we have to make sure that
10648 				 * the remaining data gets sent out. Also
10649 				 * unset tcp->tcp_cork so that tcp_wput_data()
10650 				 * can send data even if it is less than mss
10651 				 */
10652 				if (tcp->tcp_cork && onoff == 0 &&
10653 				    tcp->tcp_unsent > 0) {
10654 					tcp->tcp_cork = B_FALSE;
10655 					tcp_wput_data(tcp, NULL, B_FALSE);
10656 				}
10657 				tcp->tcp_cork = onoff;
10658 			}
10659 			break;
10660 		default:
10661 			*outlenp = 0;
10662 			return (EINVAL);
10663 		}
10664 		break;
10665 	case IPPROTO_IP:
10666 		if (tcp->tcp_family != AF_INET) {
10667 			*outlenp = 0;
10668 			return (ENOPROTOOPT);
10669 		}
10670 		switch (name) {
10671 		case IP_OPTIONS:
10672 		case T_IP_OPTIONS:
10673 			reterr = tcp_opt_set_header(tcp, checkonly,
10674 			    invalp, inlen);
10675 			if (reterr) {
10676 				*outlenp = 0;
10677 				return (reterr);
10678 			}
10679 			/* OK return - copy input buffer into output buffer */
10680 			if (invalp != outvalp) {
10681 				/* don't trust bcopy for identical src/dst */
10682 				bcopy(invalp, outvalp, inlen);
10683 			}
10684 			*outlenp = inlen;
10685 			return (0);
10686 		case IP_TOS:
10687 		case T_IP_TOS:
10688 			if (!checkonly) {
10689 				tcp->tcp_ipha->ipha_type_of_service =
10690 				    (uchar_t)*i1;
10691 				tcp->tcp_tos = (uchar_t)*i1;
10692 			}
10693 			break;
10694 		case IP_TTL:
10695 			if (!checkonly) {
10696 				tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1;
10697 				tcp->tcp_ttl = (uchar_t)*i1;
10698 			}
10699 			break;
10700 		case IP_BOUND_IF:
10701 		case IP_NEXTHOP:
10702 			/* Handled at the IP level */
10703 			return (-EINVAL);
10704 		case IP_SEC_OPT:
10705 			/*
10706 			 * We should not allow policy setting after
10707 			 * we start listening for connections.
10708 			 */
10709 			if (tcp->tcp_state == TCPS_LISTEN) {
10710 				return (EINVAL);
10711 			} else {
10712 				/* Handled at the IP level */
10713 				return (-EINVAL);
10714 			}
10715 		default:
10716 			*outlenp = 0;
10717 			return (EINVAL);
10718 		}
10719 		break;
10720 	case IPPROTO_IPV6: {
10721 		ip6_pkt_t		*ipp;
10722 
10723 		/*
10724 		 * IPPROTO_IPV6 options are only supported for sockets
10725 		 * that are using IPv6 on the wire.
10726 		 */
10727 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10728 			*outlenp = 0;
10729 			return (ENOPROTOOPT);
10730 		}
10731 		/*
10732 		 * Only sticky options; no ancillary data
10733 		 */
10734 		ASSERT(thisdg_attrs == NULL);
10735 		ipp = &tcp->tcp_sticky_ipp;
10736 
10737 		switch (name) {
10738 		case IPV6_UNICAST_HOPS:
10739 			/* -1 means use default */
10740 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
10741 				*outlenp = 0;
10742 				return (EINVAL);
10743 			}
10744 			if (!checkonly) {
10745 				if (*i1 == -1) {
10746 					tcp->tcp_ip6h->ip6_hops =
10747 					    ipp->ipp_unicast_hops =
10748 					    (uint8_t)tcps->tcps_ipv6_hoplimit;
10749 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
10750 					/* Pass modified value to IP. */
10751 					*i1 = tcp->tcp_ip6h->ip6_hops;
10752 				} else {
10753 					tcp->tcp_ip6h->ip6_hops =
10754 					    ipp->ipp_unicast_hops =
10755 					    (uint8_t)*i1;
10756 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
10757 				}
10758 				reterr = tcp_build_hdrs(q, tcp);
10759 				if (reterr != 0)
10760 					return (reterr);
10761 			}
10762 			break;
10763 		case IPV6_BOUND_IF:
10764 			if (!checkonly) {
10765 				int error = 0;
10766 
10767 				tcp->tcp_bound_if = *i1;
10768 				error = ip_opt_set_ill(tcp->tcp_connp, *i1,
10769 				    B_TRUE, checkonly, level, name, mblk);
10770 				if (error != 0) {
10771 					*outlenp = 0;
10772 					return (error);
10773 				}
10774 			}
10775 			break;
10776 		/*
10777 		 * Set boolean switches for ancillary data delivery
10778 		 */
10779 		case IPV6_RECVPKTINFO:
10780 			if (!checkonly) {
10781 				if (onoff)
10782 					tcp->tcp_ipv6_recvancillary |=
10783 					    TCP_IPV6_RECVPKTINFO;
10784 				else
10785 					tcp->tcp_ipv6_recvancillary &=
10786 					    ~TCP_IPV6_RECVPKTINFO;
10787 				/* Force it to be sent up with the next msg */
10788 				tcp->tcp_recvifindex = 0;
10789 			}
10790 			break;
10791 		case IPV6_RECVTCLASS:
10792 			if (!checkonly) {
10793 				if (onoff)
10794 					tcp->tcp_ipv6_recvancillary |=
10795 					    TCP_IPV6_RECVTCLASS;
10796 				else
10797 					tcp->tcp_ipv6_recvancillary &=
10798 					    ~TCP_IPV6_RECVTCLASS;
10799 			}
10800 			break;
10801 		case IPV6_RECVHOPLIMIT:
10802 			if (!checkonly) {
10803 				if (onoff)
10804 					tcp->tcp_ipv6_recvancillary |=
10805 					    TCP_IPV6_RECVHOPLIMIT;
10806 				else
10807 					tcp->tcp_ipv6_recvancillary &=
10808 					    ~TCP_IPV6_RECVHOPLIMIT;
10809 				/* Force it to be sent up with the next msg */
10810 				tcp->tcp_recvhops = 0xffffffffU;
10811 			}
10812 			break;
10813 		case IPV6_RECVHOPOPTS:
10814 			if (!checkonly) {
10815 				if (onoff)
10816 					tcp->tcp_ipv6_recvancillary |=
10817 					    TCP_IPV6_RECVHOPOPTS;
10818 				else
10819 					tcp->tcp_ipv6_recvancillary &=
10820 					    ~TCP_IPV6_RECVHOPOPTS;
10821 			}
10822 			break;
10823 		case IPV6_RECVDSTOPTS:
10824 			if (!checkonly) {
10825 				if (onoff)
10826 					tcp->tcp_ipv6_recvancillary |=
10827 					    TCP_IPV6_RECVDSTOPTS;
10828 				else
10829 					tcp->tcp_ipv6_recvancillary &=
10830 					    ~TCP_IPV6_RECVDSTOPTS;
10831 			}
10832 			break;
10833 		case _OLD_IPV6_RECVDSTOPTS:
10834 			if (!checkonly) {
10835 				if (onoff)
10836 					tcp->tcp_ipv6_recvancillary |=
10837 					    TCP_OLD_IPV6_RECVDSTOPTS;
10838 				else
10839 					tcp->tcp_ipv6_recvancillary &=
10840 					    ~TCP_OLD_IPV6_RECVDSTOPTS;
10841 			}
10842 			break;
10843 		case IPV6_RECVRTHDR:
10844 			if (!checkonly) {
10845 				if (onoff)
10846 					tcp->tcp_ipv6_recvancillary |=
10847 					    TCP_IPV6_RECVRTHDR;
10848 				else
10849 					tcp->tcp_ipv6_recvancillary &=
10850 					    ~TCP_IPV6_RECVRTHDR;
10851 			}
10852 			break;
10853 		case IPV6_RECVRTHDRDSTOPTS:
10854 			if (!checkonly) {
10855 				if (onoff)
10856 					tcp->tcp_ipv6_recvancillary |=
10857 					    TCP_IPV6_RECVRTDSTOPTS;
10858 				else
10859 					tcp->tcp_ipv6_recvancillary &=
10860 					    ~TCP_IPV6_RECVRTDSTOPTS;
10861 			}
10862 			break;
10863 		case IPV6_PKTINFO:
10864 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
10865 				return (EINVAL);
10866 			if (checkonly)
10867 				break;
10868 
10869 			if (inlen == 0) {
10870 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
10871 			} else {
10872 				struct in6_pktinfo *pkti;
10873 
10874 				pkti = (struct in6_pktinfo *)invalp;
10875 				/*
10876 				 * RFC 3542 states that ipi6_addr must be
10877 				 * the unspecified address when setting the
10878 				 * IPV6_PKTINFO sticky socket option on a
10879 				 * TCP socket.
10880 				 */
10881 				if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr))
10882 					return (EINVAL);
10883 				/*
10884 				 * ip6_set_pktinfo() validates the source
10885 				 * address and interface index.
10886 				 */
10887 				reterr = ip6_set_pktinfo(cr, tcp->tcp_connp,
10888 				    pkti, mblk);
10889 				if (reterr != 0)
10890 					return (reterr);
10891 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
10892 				ipp->ipp_addr = pkti->ipi6_addr;
10893 				if (ipp->ipp_ifindex != 0)
10894 					ipp->ipp_fields |= IPPF_IFINDEX;
10895 				else
10896 					ipp->ipp_fields &= ~IPPF_IFINDEX;
10897 				if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr))
10898 					ipp->ipp_fields |= IPPF_ADDR;
10899 				else
10900 					ipp->ipp_fields &= ~IPPF_ADDR;
10901 			}
10902 			reterr = tcp_build_hdrs(q, tcp);
10903 			if (reterr != 0)
10904 				return (reterr);
10905 			break;
10906 		case IPV6_TCLASS:
10907 			if (inlen != 0 && inlen != sizeof (int))
10908 				return (EINVAL);
10909 			if (checkonly)
10910 				break;
10911 
10912 			if (inlen == 0) {
10913 				ipp->ipp_fields &= ~IPPF_TCLASS;
10914 			} else {
10915 				if (*i1 > 255 || *i1 < -1)
10916 					return (EINVAL);
10917 				if (*i1 == -1) {
10918 					ipp->ipp_tclass = 0;
10919 					*i1 = 0;
10920 				} else {
10921 					ipp->ipp_tclass = *i1;
10922 				}
10923 				ipp->ipp_fields |= IPPF_TCLASS;
10924 			}
10925 			reterr = tcp_build_hdrs(q, tcp);
10926 			if (reterr != 0)
10927 				return (reterr);
10928 			break;
10929 		case IPV6_NEXTHOP:
10930 			/*
10931 			 * IP will verify that the nexthop is reachable
10932 			 * and fail for sticky options.
10933 			 */
10934 			if (inlen != 0 && inlen != sizeof (sin6_t))
10935 				return (EINVAL);
10936 			if (checkonly)
10937 				break;
10938 
10939 			if (inlen == 0) {
10940 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
10941 			} else {
10942 				sin6_t *sin6 = (sin6_t *)invalp;
10943 
10944 				if (sin6->sin6_family != AF_INET6)
10945 					return (EAFNOSUPPORT);
10946 				if (IN6_IS_ADDR_V4MAPPED(
10947 				    &sin6->sin6_addr))
10948 					return (EADDRNOTAVAIL);
10949 				ipp->ipp_nexthop = sin6->sin6_addr;
10950 				if (!IN6_IS_ADDR_UNSPECIFIED(
10951 				    &ipp->ipp_nexthop))
10952 					ipp->ipp_fields |= IPPF_NEXTHOP;
10953 				else
10954 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
10955 			}
10956 			reterr = tcp_build_hdrs(q, tcp);
10957 			if (reterr != 0)
10958 				return (reterr);
10959 			break;
10960 		case IPV6_HOPOPTS: {
10961 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
10962 
10963 			/*
10964 			 * Sanity checks - minimum size, size a multiple of
10965 			 * eight bytes, and matching size passed in.
10966 			 */
10967 			if (inlen != 0 &&
10968 			    inlen != (8 * (hopts->ip6h_len + 1)))
10969 				return (EINVAL);
10970 
10971 			if (checkonly)
10972 				break;
10973 
10974 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10975 			    (uchar_t **)&ipp->ipp_hopopts,
10976 			    &ipp->ipp_hopoptslen, tcp->tcp_label_len);
10977 			if (reterr != 0)
10978 				return (reterr);
10979 			if (ipp->ipp_hopoptslen == 0)
10980 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
10981 			else
10982 				ipp->ipp_fields |= IPPF_HOPOPTS;
10983 			reterr = tcp_build_hdrs(q, tcp);
10984 			if (reterr != 0)
10985 				return (reterr);
10986 			break;
10987 		}
10988 		case IPV6_RTHDRDSTOPTS: {
10989 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10990 
10991 			/*
10992 			 * Sanity checks - minimum size, size a multiple of
10993 			 * eight bytes, and matching size passed in.
10994 			 */
10995 			if (inlen != 0 &&
10996 			    inlen != (8 * (dopts->ip6d_len + 1)))
10997 				return (EINVAL);
10998 
10999 			if (checkonly)
11000 				break;
11001 
11002 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
11003 			    (uchar_t **)&ipp->ipp_rtdstopts,
11004 			    &ipp->ipp_rtdstoptslen, 0);
11005 			if (reterr != 0)
11006 				return (reterr);
11007 			if (ipp->ipp_rtdstoptslen == 0)
11008 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
11009 			else
11010 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
11011 			reterr = tcp_build_hdrs(q, tcp);
11012 			if (reterr != 0)
11013 				return (reterr);
11014 			break;
11015 		}
11016 		case IPV6_DSTOPTS: {
11017 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
11018 
11019 			/*
11020 			 * Sanity checks - minimum size, size a multiple of
11021 			 * eight bytes, and matching size passed in.
11022 			 */
11023 			if (inlen != 0 &&
11024 			    inlen != (8 * (dopts->ip6d_len + 1)))
11025 				return (EINVAL);
11026 
11027 			if (checkonly)
11028 				break;
11029 
11030 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
11031 			    (uchar_t **)&ipp->ipp_dstopts,
11032 			    &ipp->ipp_dstoptslen, 0);
11033 			if (reterr != 0)
11034 				return (reterr);
11035 			if (ipp->ipp_dstoptslen == 0)
11036 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
11037 			else
11038 				ipp->ipp_fields |= IPPF_DSTOPTS;
11039 			reterr = tcp_build_hdrs(q, tcp);
11040 			if (reterr != 0)
11041 				return (reterr);
11042 			break;
11043 		}
11044 		case IPV6_RTHDR: {
11045 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
11046 
11047 			/*
11048 			 * Sanity checks - minimum size, size a multiple of
11049 			 * eight bytes, and matching size passed in.
11050 			 */
11051 			if (inlen != 0 &&
11052 			    inlen != (8 * (rt->ip6r_len + 1)))
11053 				return (EINVAL);
11054 
11055 			if (checkonly)
11056 				break;
11057 
11058 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
11059 			    (uchar_t **)&ipp->ipp_rthdr,
11060 			    &ipp->ipp_rthdrlen, 0);
11061 			if (reterr != 0)
11062 				return (reterr);
11063 			if (ipp->ipp_rthdrlen == 0)
11064 				ipp->ipp_fields &= ~IPPF_RTHDR;
11065 			else
11066 				ipp->ipp_fields |= IPPF_RTHDR;
11067 			reterr = tcp_build_hdrs(q, tcp);
11068 			if (reterr != 0)
11069 				return (reterr);
11070 			break;
11071 		}
11072 		case IPV6_V6ONLY:
11073 			if (!checkonly)
11074 				tcp->tcp_connp->conn_ipv6_v6only = onoff;
11075 			break;
11076 		case IPV6_USE_MIN_MTU:
11077 			if (inlen != sizeof (int))
11078 				return (EINVAL);
11079 
11080 			if (*i1 < -1 || *i1 > 1)
11081 				return (EINVAL);
11082 
11083 			if (checkonly)
11084 				break;
11085 
11086 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
11087 			ipp->ipp_use_min_mtu = *i1;
11088 			break;
11089 		case IPV6_BOUND_PIF:
11090 			/* Handled at the IP level */
11091 			return (-EINVAL);
11092 		case IPV6_SEC_OPT:
11093 			/*
11094 			 * We should not allow policy setting after
11095 			 * we start listening for connections.
11096 			 */
11097 			if (tcp->tcp_state == TCPS_LISTEN) {
11098 				return (EINVAL);
11099 			} else {
11100 				/* Handled at the IP level */
11101 				return (-EINVAL);
11102 			}
11103 		case IPV6_SRC_PREFERENCES:
11104 			if (inlen != sizeof (uint32_t))
11105 				return (EINVAL);
11106 			reterr = ip6_set_src_preferences(tcp->tcp_connp,
11107 			    *(uint32_t *)invalp);
11108 			if (reterr != 0) {
11109 				*outlenp = 0;
11110 				return (reterr);
11111 			}
11112 			break;
11113 		default:
11114 			*outlenp = 0;
11115 			return (EINVAL);
11116 		}
11117 		break;
11118 	}		/* end IPPROTO_IPV6 */
11119 	default:
11120 		*outlenp = 0;
11121 		return (EINVAL);
11122 	}
11123 	/*
11124 	 * Common case of OK return with outval same as inval
11125 	 */
11126 	if (invalp != outvalp) {
11127 		/* don't trust bcopy for identical src/dst */
11128 		(void) bcopy(invalp, outvalp, inlen);
11129 	}
11130 	*outlenp = inlen;
11131 	return (0);
11132 }
11133 
11134 /*
11135  * Update tcp_sticky_hdrs based on tcp_sticky_ipp.
11136  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
11137  * headers, and the maximum size tcp header (to avoid reallocation
11138  * on the fly for additional tcp options).
11139  * Returns failure if can't allocate memory.
11140  */
11141 static int
11142 tcp_build_hdrs(queue_t *q, tcp_t *tcp)
11143 {
11144 	char	*hdrs;
11145 	uint_t	hdrs_len;
11146 	ip6i_t	*ip6i;
11147 	char	buf[TCP_MAX_HDR_LENGTH];
11148 	ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
11149 	in6_addr_t src, dst;
11150 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11151 
11152 	/*
11153 	 * save the existing tcp header and source/dest IP addresses
11154 	 */
11155 	bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len);
11156 	src = tcp->tcp_ip6h->ip6_src;
11157 	dst = tcp->tcp_ip6h->ip6_dst;
11158 	hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH;
11159 	ASSERT(hdrs_len != 0);
11160 	if (hdrs_len > tcp->tcp_iphc_len) {
11161 		/* Need to reallocate */
11162 		hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP);
11163 		if (hdrs == NULL)
11164 			return (ENOMEM);
11165 		if (tcp->tcp_iphc != NULL) {
11166 			if (tcp->tcp_hdr_grown) {
11167 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
11168 			} else {
11169 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
11170 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
11171 			}
11172 			tcp->tcp_iphc_len = 0;
11173 		}
11174 		ASSERT(tcp->tcp_iphc_len == 0);
11175 		tcp->tcp_iphc = hdrs;
11176 		tcp->tcp_iphc_len = hdrs_len;
11177 		tcp->tcp_hdr_grown = B_TRUE;
11178 	}
11179 	ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc,
11180 	    hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP);
11181 
11182 	/* Set header fields not in ipp */
11183 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
11184 		ip6i = (ip6i_t *)tcp->tcp_iphc;
11185 		tcp->tcp_ip6h = (ip6_t *)&ip6i[1];
11186 	} else {
11187 		tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
11188 	}
11189 	/*
11190 	 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one.
11191 	 *
11192 	 * tcp->tcp_tcp_hdr_len doesn't change here.
11193 	 */
11194 	tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH;
11195 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len);
11196 	tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len;
11197 
11198 	bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len);
11199 
11200 	tcp->tcp_ip6h->ip6_src = src;
11201 	tcp->tcp_ip6h->ip6_dst = dst;
11202 
11203 	/*
11204 	 * If the hop limit was not set by ip_build_hdrs_v6(), set it to
11205 	 * the default value for TCP.
11206 	 */
11207 	if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS))
11208 		tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit;
11209 
11210 	/*
11211 	 * If we're setting extension headers after a connection
11212 	 * has been established, and if we have a routing header
11213 	 * among the extension headers, call ip_massage_options_v6 to
11214 	 * manipulate the routing header/ip6_dst set the checksum
11215 	 * difference in the tcp header template.
11216 	 * (This happens in tcp_connect_ipv6 if the routing header
11217 	 * is set prior to the connect.)
11218 	 * Set the tcp_sum to zero first in case we've cleared a
11219 	 * routing header or don't have one at all.
11220 	 */
11221 	tcp->tcp_sum = 0;
11222 	if ((tcp->tcp_state >= TCPS_SYN_SENT) &&
11223 	    (tcp->tcp_ipp_fields & IPPF_RTHDR)) {
11224 		ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h,
11225 		    (uint8_t *)tcp->tcp_tcph);
11226 		if (rth != NULL) {
11227 			tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h,
11228 			    rth, tcps->tcps_netstack);
11229 			tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
11230 			    (tcp->tcp_sum >> 16));
11231 		}
11232 	}
11233 
11234 	/* Try to get everything in a single mblk */
11235 	(void) mi_set_sth_wroff(RD(q), hdrs_len + tcps->tcps_wroff_xtra);
11236 	return (0);
11237 }
11238 
11239 /*
11240  * Transfer any source route option from ipha to buf/dst in reversed form.
11241  */
11242 static int
11243 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst)
11244 {
11245 	ipoptp_t	opts;
11246 	uchar_t		*opt;
11247 	uint8_t		optval;
11248 	uint8_t		optlen;
11249 	uint32_t	len = 0;
11250 
11251 	for (optval = ipoptp_first(&opts, ipha);
11252 	    optval != IPOPT_EOL;
11253 	    optval = ipoptp_next(&opts)) {
11254 		opt = opts.ipoptp_cur;
11255 		optlen = opts.ipoptp_len;
11256 		switch (optval) {
11257 			int	off1, off2;
11258 		case IPOPT_SSRR:
11259 		case IPOPT_LSRR:
11260 
11261 			/* Reverse source route */
11262 			/*
11263 			 * First entry should be the next to last one in the
11264 			 * current source route (the last entry is our
11265 			 * address.)
11266 			 * The last entry should be the final destination.
11267 			 */
11268 			buf[IPOPT_OPTVAL] = (uint8_t)optval;
11269 			buf[IPOPT_OLEN] = (uint8_t)optlen;
11270 			off1 = IPOPT_MINOFF_SR - 1;
11271 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
11272 			if (off2 < 0) {
11273 				/* No entries in source route */
11274 				break;
11275 			}
11276 			bcopy(opt + off2, dst, IP_ADDR_LEN);
11277 			/*
11278 			 * Note: use src since ipha has not had its src
11279 			 * and dst reversed (it is in the state it was
11280 			 * received.
11281 			 */
11282 			bcopy(&ipha->ipha_src, buf + off2,
11283 			    IP_ADDR_LEN);
11284 			off2 -= IP_ADDR_LEN;
11285 
11286 			while (off2 > 0) {
11287 				bcopy(opt + off2, buf + off1,
11288 				    IP_ADDR_LEN);
11289 				off1 += IP_ADDR_LEN;
11290 				off2 -= IP_ADDR_LEN;
11291 			}
11292 			buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
11293 			buf += optlen;
11294 			len += optlen;
11295 			break;
11296 		}
11297 	}
11298 done:
11299 	/* Pad the resulting options */
11300 	while (len & 0x3) {
11301 		*buf++ = IPOPT_EOL;
11302 		len++;
11303 	}
11304 	return (len);
11305 }
11306 
11307 
11308 /*
11309  * Extract and revert a source route from ipha (if any)
11310  * and then update the relevant fields in both tcp_t and the standard header.
11311  */
11312 static void
11313 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha)
11314 {
11315 	char	buf[TCP_MAX_HDR_LENGTH];
11316 	uint_t	tcph_len;
11317 	int	len;
11318 
11319 	ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
11320 	len = IPH_HDR_LENGTH(ipha);
11321 	if (len == IP_SIMPLE_HDR_LENGTH)
11322 		/* Nothing to do */
11323 		return;
11324 	if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH ||
11325 	    (len & 0x3))
11326 		return;
11327 
11328 	tcph_len = tcp->tcp_tcp_hdr_len;
11329 	bcopy(tcp->tcp_tcph, buf, tcph_len);
11330 	tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) +
11331 	    (tcp->tcp_ipha->ipha_dst & 0xffff);
11332 	len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha +
11333 	    IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst);
11334 	len += IP_SIMPLE_HDR_LENGTH;
11335 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
11336 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
11337 	if ((int)tcp->tcp_sum < 0)
11338 		tcp->tcp_sum--;
11339 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
11340 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16));
11341 	tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len);
11342 	bcopy(buf, tcp->tcp_tcph, tcph_len);
11343 	tcp->tcp_ip_hdr_len = len;
11344 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11345 	    (IP_VERSION << 4) | (len >> 2);
11346 	len += tcph_len;
11347 	tcp->tcp_hdr_len = len;
11348 }
11349 
11350 /*
11351  * Copy the standard header into its new location,
11352  * lay in the new options and then update the relevant
11353  * fields in both tcp_t and the standard header.
11354  */
11355 static int
11356 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len)
11357 {
11358 	uint_t	tcph_len;
11359 	uint8_t	*ip_optp;
11360 	tcph_t	*new_tcph;
11361 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11362 
11363 	if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3))
11364 		return (EINVAL);
11365 
11366 	if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len)
11367 		return (EINVAL);
11368 
11369 	if (checkonly) {
11370 		/*
11371 		 * do not really set, just pretend to - T_CHECK
11372 		 */
11373 		return (0);
11374 	}
11375 
11376 	ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH;
11377 	if (tcp->tcp_label_len > 0) {
11378 		int padlen;
11379 		uint8_t opt;
11380 
11381 		/* convert list termination to no-ops */
11382 		padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN];
11383 		ip_optp += ip_optp[IPOPT_OLEN];
11384 		opt = len > 0 ? IPOPT_NOP : IPOPT_EOL;
11385 		while (--padlen >= 0)
11386 			*ip_optp++ = opt;
11387 	}
11388 	tcph_len = tcp->tcp_tcp_hdr_len;
11389 	new_tcph = (tcph_t *)(ip_optp + len);
11390 	ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len);
11391 	tcp->tcp_tcph = new_tcph;
11392 	bcopy(ptr, ip_optp, len);
11393 
11394 	len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len;
11395 
11396 	tcp->tcp_ip_hdr_len = len;
11397 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11398 	    (IP_VERSION << 4) | (len >> 2);
11399 	tcp->tcp_hdr_len = len + tcph_len;
11400 	if (!TCP_IS_DETACHED(tcp)) {
11401 		/* Always allocate room for all options. */
11402 		(void) mi_set_sth_wroff(tcp->tcp_rq,
11403 		    TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra);
11404 	}
11405 	return (0);
11406 }
11407 
11408 /* Get callback routine passed to nd_load by tcp_param_register */
11409 /* ARGSUSED */
11410 static int
11411 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
11412 {
11413 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11414 
11415 	(void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val);
11416 	return (0);
11417 }
11418 
11419 /*
11420  * Walk through the param array specified registering each element with the
11421  * named dispatch handler.
11422  */
11423 static boolean_t
11424 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps)
11425 {
11426 	for (; cnt-- > 0; tcppa++) {
11427 		if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) {
11428 			if (!nd_load(ndp, tcppa->tcp_param_name,
11429 			    tcp_param_get, tcp_param_set,
11430 			    (caddr_t)tcppa)) {
11431 				nd_free(ndp);
11432 				return (B_FALSE);
11433 			}
11434 		}
11435 	}
11436 	tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t),
11437 	    KM_SLEEP);
11438 	bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param,
11439 	    sizeof (tcpparam_t));
11440 	if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name,
11441 	    tcp_param_get, tcp_param_set_aligned,
11442 	    (caddr_t)tcps->tcps_wroff_xtra_param)) {
11443 		nd_free(ndp);
11444 		return (B_FALSE);
11445 	}
11446 	tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t),
11447 	    KM_SLEEP);
11448 	bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param,
11449 	    sizeof (tcpparam_t));
11450 	if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name,
11451 	    tcp_param_get, tcp_param_set_aligned,
11452 	    (caddr_t)tcps->tcps_mdt_head_param)) {
11453 		nd_free(ndp);
11454 		return (B_FALSE);
11455 	}
11456 	tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t),
11457 	    KM_SLEEP);
11458 	bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param,
11459 	    sizeof (tcpparam_t));
11460 	if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name,
11461 	    tcp_param_get, tcp_param_set_aligned,
11462 	    (caddr_t)tcps->tcps_mdt_tail_param)) {
11463 		nd_free(ndp);
11464 		return (B_FALSE);
11465 	}
11466 	tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t),
11467 	    KM_SLEEP);
11468 	bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param,
11469 	    sizeof (tcpparam_t));
11470 	if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name,
11471 	    tcp_param_get, tcp_param_set_aligned,
11472 	    (caddr_t)tcps->tcps_mdt_max_pbufs_param)) {
11473 		nd_free(ndp);
11474 		return (B_FALSE);
11475 	}
11476 	if (!nd_load(ndp, "tcp_extra_priv_ports",
11477 	    tcp_extra_priv_ports_get, NULL, NULL)) {
11478 		nd_free(ndp);
11479 		return (B_FALSE);
11480 	}
11481 	if (!nd_load(ndp, "tcp_extra_priv_ports_add",
11482 	    NULL, tcp_extra_priv_ports_add, NULL)) {
11483 		nd_free(ndp);
11484 		return (B_FALSE);
11485 	}
11486 	if (!nd_load(ndp, "tcp_extra_priv_ports_del",
11487 	    NULL, tcp_extra_priv_ports_del, NULL)) {
11488 		nd_free(ndp);
11489 		return (B_FALSE);
11490 	}
11491 	if (!nd_load(ndp, "tcp_status", tcp_status_report, NULL,
11492 	    NULL)) {
11493 		nd_free(ndp);
11494 		return (B_FALSE);
11495 	}
11496 	if (!nd_load(ndp, "tcp_bind_hash", tcp_bind_hash_report,
11497 	    NULL, NULL)) {
11498 		nd_free(ndp);
11499 		return (B_FALSE);
11500 	}
11501 	if (!nd_load(ndp, "tcp_listen_hash",
11502 	    tcp_listen_hash_report, NULL, NULL)) {
11503 		nd_free(ndp);
11504 		return (B_FALSE);
11505 	}
11506 	if (!nd_load(ndp, "tcp_conn_hash", tcp_conn_hash_report,
11507 	    NULL, NULL)) {
11508 		nd_free(ndp);
11509 		return (B_FALSE);
11510 	}
11511 	if (!nd_load(ndp, "tcp_acceptor_hash",
11512 	    tcp_acceptor_hash_report, NULL, NULL)) {
11513 		nd_free(ndp);
11514 		return (B_FALSE);
11515 	}
11516 	if (!nd_load(ndp, "tcp_1948_phrase", NULL,
11517 	    tcp_1948_phrase_set, NULL)) {
11518 		nd_free(ndp);
11519 		return (B_FALSE);
11520 	}
11521 	/*
11522 	 * Dummy ndd variables - only to convey obsolescence information
11523 	 * through printing of their name (no get or set routines)
11524 	 * XXX Remove in future releases ?
11525 	 */
11526 	if (!nd_load(ndp,
11527 	    "tcp_close_wait_interval(obsoleted - "
11528 	    "use tcp_time_wait_interval)", NULL, NULL, NULL)) {
11529 		nd_free(ndp);
11530 		return (B_FALSE);
11531 	}
11532 	return (B_TRUE);
11533 }
11534 
11535 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */
11536 /* ARGSUSED */
11537 static int
11538 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
11539     cred_t *cr)
11540 {
11541 	long new_value;
11542 	tcpparam_t *tcppa = (tcpparam_t *)cp;
11543 
11544 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11545 	    new_value < tcppa->tcp_param_min ||
11546 	    new_value > tcppa->tcp_param_max) {
11547 		return (EINVAL);
11548 	}
11549 	/*
11550 	 * Need to make sure new_value is a multiple of 4.  If it is not,
11551 	 * round it up.  For future 64 bit requirement, we actually make it
11552 	 * a multiple of 8.
11553 	 */
11554 	if (new_value & 0x7) {
11555 		new_value = (new_value & ~0x7) + 0x8;
11556 	}
11557 	tcppa->tcp_param_val = new_value;
11558 	return (0);
11559 }
11560 
11561 /* Set callback routine passed to nd_load by tcp_param_register */
11562 /* ARGSUSED */
11563 static int
11564 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
11565 {
11566 	long	new_value;
11567 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11568 
11569 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11570 	    new_value < tcppa->tcp_param_min ||
11571 	    new_value > tcppa->tcp_param_max) {
11572 		return (EINVAL);
11573 	}
11574 	tcppa->tcp_param_val = new_value;
11575 	return (0);
11576 }
11577 
11578 /*
11579  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
11580  * is filled, return as much as we can.  The message passed in may be
11581  * multi-part, chained using b_cont.  "start" is the starting sequence
11582  * number for this piece.
11583  */
11584 static mblk_t *
11585 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
11586 {
11587 	uint32_t	end;
11588 	mblk_t		*mp1;
11589 	mblk_t		*mp2;
11590 	mblk_t		*next_mp;
11591 	uint32_t	u1;
11592 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11593 
11594 	/* Walk through all the new pieces. */
11595 	do {
11596 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
11597 		    (uintptr_t)INT_MAX);
11598 		end = start + (int)(mp->b_wptr - mp->b_rptr);
11599 		next_mp = mp->b_cont;
11600 		if (start == end) {
11601 			/* Empty.  Blast it. */
11602 			freeb(mp);
11603 			continue;
11604 		}
11605 		mp->b_cont = NULL;
11606 		TCP_REASS_SET_SEQ(mp, start);
11607 		TCP_REASS_SET_END(mp, end);
11608 		mp1 = tcp->tcp_reass_tail;
11609 		if (!mp1) {
11610 			tcp->tcp_reass_tail = mp;
11611 			tcp->tcp_reass_head = mp;
11612 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11613 			UPDATE_MIB(&tcps->tcps_mib,
11614 			    tcpInDataUnorderBytes, end - start);
11615 			continue;
11616 		}
11617 		/* New stuff completely beyond tail? */
11618 		if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
11619 			/* Link it on end. */
11620 			mp1->b_cont = mp;
11621 			tcp->tcp_reass_tail = mp;
11622 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11623 			UPDATE_MIB(&tcps->tcps_mib,
11624 			    tcpInDataUnorderBytes, end - start);
11625 			continue;
11626 		}
11627 		mp1 = tcp->tcp_reass_head;
11628 		u1 = TCP_REASS_SEQ(mp1);
11629 		/* New stuff at the front? */
11630 		if (SEQ_LT(start, u1)) {
11631 			/* Yes... Check for overlap. */
11632 			mp->b_cont = mp1;
11633 			tcp->tcp_reass_head = mp;
11634 			tcp_reass_elim_overlap(tcp, mp);
11635 			continue;
11636 		}
11637 		/*
11638 		 * The new piece fits somewhere between the head and tail.
11639 		 * We find our slot, where mp1 precedes us and mp2 trails.
11640 		 */
11641 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
11642 			u1 = TCP_REASS_SEQ(mp2);
11643 			if (SEQ_LEQ(start, u1))
11644 				break;
11645 		}
11646 		/* Link ourselves in */
11647 		mp->b_cont = mp2;
11648 		mp1->b_cont = mp;
11649 
11650 		/* Trim overlap with following mblk(s) first */
11651 		tcp_reass_elim_overlap(tcp, mp);
11652 
11653 		/* Trim overlap with preceding mblk */
11654 		tcp_reass_elim_overlap(tcp, mp1);
11655 
11656 	} while (start = end, mp = next_mp);
11657 	mp1 = tcp->tcp_reass_head;
11658 	/* Anything ready to go? */
11659 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
11660 		return (NULL);
11661 	/* Eat what we can off the queue */
11662 	for (;;) {
11663 		mp = mp1->b_cont;
11664 		end = TCP_REASS_END(mp1);
11665 		TCP_REASS_SET_SEQ(mp1, 0);
11666 		TCP_REASS_SET_END(mp1, 0);
11667 		if (!mp) {
11668 			tcp->tcp_reass_tail = NULL;
11669 			break;
11670 		}
11671 		if (end != TCP_REASS_SEQ(mp)) {
11672 			mp1->b_cont = NULL;
11673 			break;
11674 		}
11675 		mp1 = mp;
11676 	}
11677 	mp1 = tcp->tcp_reass_head;
11678 	tcp->tcp_reass_head = mp;
11679 	return (mp1);
11680 }
11681 
11682 /* Eliminate any overlap that mp may have over later mblks */
11683 static void
11684 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
11685 {
11686 	uint32_t	end;
11687 	mblk_t		*mp1;
11688 	uint32_t	u1;
11689 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11690 
11691 	end = TCP_REASS_END(mp);
11692 	while ((mp1 = mp->b_cont) != NULL) {
11693 		u1 = TCP_REASS_SEQ(mp1);
11694 		if (!SEQ_GT(end, u1))
11695 			break;
11696 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
11697 			mp->b_wptr -= end - u1;
11698 			TCP_REASS_SET_END(mp, u1);
11699 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs);
11700 			UPDATE_MIB(&tcps->tcps_mib,
11701 			    tcpInDataPartDupBytes, end - u1);
11702 			break;
11703 		}
11704 		mp->b_cont = mp1->b_cont;
11705 		TCP_REASS_SET_SEQ(mp1, 0);
11706 		TCP_REASS_SET_END(mp1, 0);
11707 		freeb(mp1);
11708 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
11709 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1);
11710 	}
11711 	if (!mp1)
11712 		tcp->tcp_reass_tail = mp;
11713 }
11714 
11715 /*
11716  * Send up all messages queued on tcp_rcv_list.
11717  */
11718 static uint_t
11719 tcp_rcv_drain(queue_t *q, tcp_t *tcp)
11720 {
11721 	mblk_t *mp;
11722 	uint_t ret = 0;
11723 	uint_t thwin;
11724 #ifdef DEBUG
11725 	uint_t cnt = 0;
11726 #endif
11727 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11728 
11729 	/* Can't drain on an eager connection */
11730 	if (tcp->tcp_listener != NULL)
11731 		return (ret);
11732 
11733 	/* Can't be sodirect enabled */
11734 	ASSERT(SOD_NOT_ENABLED(tcp));
11735 
11736 	/* No need for the push timer now. */
11737 	if (tcp->tcp_push_tid != 0) {
11738 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11739 		tcp->tcp_push_tid = 0;
11740 	}
11741 
11742 	/*
11743 	 * Handle two cases here: we are currently fused or we were
11744 	 * previously fused and have some urgent data to be delivered
11745 	 * upstream.  The latter happens because we either ran out of
11746 	 * memory or were detached and therefore sending the SIGURG was
11747 	 * deferred until this point.  In either case we pass control
11748 	 * over to tcp_fuse_rcv_drain() since it may need to complete
11749 	 * some work.
11750 	 */
11751 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
11752 		ASSERT(tcp->tcp_fused_sigurg_mp != NULL);
11753 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
11754 		    &tcp->tcp_fused_sigurg_mp))
11755 			return (ret);
11756 	}
11757 
11758 	while ((mp = tcp->tcp_rcv_list) != NULL) {
11759 		tcp->tcp_rcv_list = mp->b_next;
11760 		mp->b_next = NULL;
11761 #ifdef DEBUG
11762 		cnt += msgdsize(mp);
11763 #endif
11764 		/* Does this need SSL processing first? */
11765 		if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) {
11766 			DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain,
11767 			    mblk_t *, mp);
11768 			tcp_kssl_input(tcp, mp);
11769 			continue;
11770 		}
11771 		putnext(q, mp);
11772 	}
11773 	ASSERT(cnt == tcp->tcp_rcv_cnt);
11774 	tcp->tcp_rcv_last_head = NULL;
11775 	tcp->tcp_rcv_last_tail = NULL;
11776 	tcp->tcp_rcv_cnt = 0;
11777 
11778 	/* Learn the latest rwnd information that we sent to the other side. */
11779 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11780 	    << tcp->tcp_rcv_ws;
11781 	/* This is peer's calculated send window (our receive window). */
11782 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11783 	/*
11784 	 * Increase the receive window to max.  But we need to do receiver
11785 	 * SWS avoidance.  This means that we need to check the increase of
11786 	 * of receive window is at least 1 MSS.
11787 	 */
11788 	if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) {
11789 		/*
11790 		 * If the window that the other side knows is less than max
11791 		 * deferred acks segments, send an update immediately.
11792 		 */
11793 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11794 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
11795 			ret = TH_ACK_NEEDED;
11796 		}
11797 		tcp->tcp_rwnd = q->q_hiwat;
11798 	}
11799 	return (ret);
11800 }
11801 
11802 /*
11803  * Queue data on tcp_rcv_list which is a b_next chain.
11804  * tcp_rcv_last_head/tail is the last element of this chain.
11805  * Each element of the chain is a b_cont chain.
11806  *
11807  * M_DATA messages are added to the current element.
11808  * Other messages are added as new (b_next) elements.
11809  */
11810 void
11811 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len)
11812 {
11813 	ASSERT(seg_len == msgdsize(mp));
11814 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
11815 
11816 	if (tcp->tcp_rcv_list == NULL) {
11817 		ASSERT(tcp->tcp_rcv_last_head == NULL);
11818 		tcp->tcp_rcv_list = mp;
11819 		tcp->tcp_rcv_last_head = mp;
11820 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
11821 		tcp->tcp_rcv_last_tail->b_cont = mp;
11822 	} else {
11823 		tcp->tcp_rcv_last_head->b_next = mp;
11824 		tcp->tcp_rcv_last_head = mp;
11825 	}
11826 
11827 	while (mp->b_cont)
11828 		mp = mp->b_cont;
11829 
11830 	tcp->tcp_rcv_last_tail = mp;
11831 	tcp->tcp_rcv_cnt += seg_len;
11832 	tcp->tcp_rwnd -= seg_len;
11833 }
11834 
11835 /*
11836  * The tcp_rcv_sod_XXX() functions enqueue data directly to the socket
11837  * above, in addition when uioa is enabled schedule an asynchronous uio
11838  * prior to enqueuing. They implement the combinhed semantics of the
11839  * tcp_rcv_XXX() functions, tcp_rcv_list push logic, and STREAMS putnext()
11840  * canputnext(), i.e. flow-control with backenable.
11841  *
11842  * tcp_sod_wakeup() is called where tcp_rcv_drain() would be called in the
11843  * non sodirect connection but as there are no tcp_tcv_list mblk_t's we deal
11844  * with the rcv_wnd and push timer and call the sodirect wakeup function.
11845  *
11846  * Must be called with sodp->sod_lockp held and will return with the lock
11847  * released.
11848  */
11849 static uint_t
11850 tcp_rcv_sod_wakeup(tcp_t *tcp, sodirect_t *sodp)
11851 {
11852 	queue_t		*q = tcp->tcp_rq;
11853 	uint_t		thwin;
11854 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11855 	uint_t		ret = 0;
11856 
11857 	/* Can't be an eager connection */
11858 	ASSERT(tcp->tcp_listener == NULL);
11859 
11860 	/* Caller must have lock held */
11861 	ASSERT(MUTEX_HELD(sodp->sod_lockp));
11862 
11863 	/* Sodirect mode so must not be a tcp_rcv_list */
11864 	ASSERT(tcp->tcp_rcv_list == NULL);
11865 
11866 	if (SOD_QFULL(sodp)) {
11867 		/* Q is full, mark Q for need backenable */
11868 		SOD_QSETBE(sodp);
11869 	}
11870 	/* Last advertised rwnd, i.e. rwnd last sent in a packet */
11871 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11872 	    << tcp->tcp_rcv_ws;
11873 	/* This is peer's calculated send window (our available rwnd). */
11874 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11875 	/*
11876 	 * Increase the receive window to max.  But we need to do receiver
11877 	 * SWS avoidance.  This means that we need to check the increase of
11878 	 * of receive window is at least 1 MSS.
11879 	 */
11880 	if (!SOD_QFULL(sodp) && (q->q_hiwat - thwin >= tcp->tcp_mss)) {
11881 		/*
11882 		 * If the window that the other side knows is less than max
11883 		 * deferred acks segments, send an update immediately.
11884 		 */
11885 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11886 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
11887 			ret = TH_ACK_NEEDED;
11888 		}
11889 		tcp->tcp_rwnd = q->q_hiwat;
11890 	}
11891 
11892 	if (!SOD_QEMPTY(sodp)) {
11893 		/* Wakeup to socket */
11894 		sodp->sod_state &= SOD_WAKE_CLR;
11895 		sodp->sod_state |= SOD_WAKE_DONE;
11896 		(sodp->sod_wakeup)(sodp);
11897 		/* wakeup() does the mutex_ext() */
11898 	} else {
11899 		/* Q is empty, no need to wake */
11900 		sodp->sod_state &= SOD_WAKE_CLR;
11901 		sodp->sod_state |= SOD_WAKE_NOT;
11902 		mutex_exit(sodp->sod_lockp);
11903 	}
11904 
11905 	/* No need for the push timer now. */
11906 	if (tcp->tcp_push_tid != 0) {
11907 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11908 		tcp->tcp_push_tid = 0;
11909 	}
11910 
11911 	return (ret);
11912 }
11913 
11914 /*
11915  * Called where tcp_rcv_enqueue()/putnext(RD(q)) would be. For M_DATA
11916  * mblk_t's if uioa enabled then start a uioa asynchronous copy directly
11917  * to the user-land buffer and flag the mblk_t as such.
11918  *
11919  * Also, handle tcp_rwnd.
11920  */
11921 uint_t
11922 tcp_rcv_sod_enqueue(tcp_t *tcp, sodirect_t *sodp, mblk_t *mp, uint_t seg_len)
11923 {
11924 	uioa_t		*uioap = &sodp->sod_uioa;
11925 	boolean_t	qfull;
11926 	uint_t		thwin;
11927 
11928 	/* Can't be an eager connection */
11929 	ASSERT(tcp->tcp_listener == NULL);
11930 
11931 	/* Caller must have lock held */
11932 	ASSERT(MUTEX_HELD(sodp->sod_lockp));
11933 
11934 	/* Sodirect mode so must not be a tcp_rcv_list */
11935 	ASSERT(tcp->tcp_rcv_list == NULL);
11936 
11937 	/* Passed in segment length must be equal to mblk_t chain data size */
11938 	ASSERT(seg_len == msgdsize(mp));
11939 
11940 	if (DB_TYPE(mp) != M_DATA) {
11941 		/* Only process M_DATA mblk_t's */
11942 		goto enq;
11943 	}
11944 	if (uioap->uioa_state & UIOA_ENABLED) {
11945 		/* Uioa is enabled */
11946 		mblk_t		*mp1 = mp;
11947 		mblk_t		*lmp = NULL;
11948 
11949 		if (seg_len > uioap->uio_resid) {
11950 			/*
11951 			 * There isn't enough uio space for the mblk_t chain
11952 			 * so disable uioa such that this and any additional
11953 			 * mblk_t data is handled by the socket and schedule
11954 			 * the socket for wakeup to finish this uioa.
11955 			 */
11956 			uioap->uioa_state &= UIOA_CLR;
11957 			uioap->uioa_state |= UIOA_FINI;
11958 			if (sodp->sod_state & SOD_WAKE_NOT) {
11959 				sodp->sod_state &= SOD_WAKE_CLR;
11960 				sodp->sod_state |= SOD_WAKE_NEED;
11961 			}
11962 			goto enq;
11963 		}
11964 		do {
11965 			uint32_t	len = MBLKL(mp1);
11966 
11967 			if (!uioamove(mp1->b_rptr, len, UIO_READ, uioap)) {
11968 				/* Scheduled, mark dblk_t as such */
11969 				DB_FLAGS(mp1) |= DBLK_UIOA;
11970 			} else {
11971 				/* Error, turn off async processing */
11972 				uioap->uioa_state &= UIOA_CLR;
11973 				uioap->uioa_state |= UIOA_FINI;
11974 				break;
11975 			}
11976 			lmp = mp1;
11977 		} while ((mp1 = mp1->b_cont) != NULL);
11978 
11979 		if (mp1 != NULL || uioap->uio_resid == 0) {
11980 			/*
11981 			 * Not all mblk_t(s) uioamoved (error) or all uio
11982 			 * space has been consumed so schedule the socket
11983 			 * for wakeup to finish this uio.
11984 			 */
11985 			sodp->sod_state &= SOD_WAKE_CLR;
11986 			sodp->sod_state |= SOD_WAKE_NEED;
11987 
11988 			/* Break the mblk chain if neccessary. */
11989 			if (mp1 != NULL && lmp != NULL) {
11990 				mp->b_next = mp1;
11991 				lmp->b_cont = NULL;
11992 			}
11993 		}
11994 	} else if (uioap->uioa_state & UIOA_FINI) {
11995 		/*
11996 		 * Post UIO_ENABLED waiting for socket to finish processing
11997 		 * so just enqueue and update tcp_rwnd.
11998 		 */
11999 		if (SOD_QFULL(sodp))
12000 			tcp->tcp_rwnd -= seg_len;
12001 	} else if (sodp->sod_want > 0) {
12002 		/*
12003 		 * Uioa isn't enabled but sodirect has a pending read().
12004 		 */
12005 		if (SOD_QCNT(sodp) + seg_len >= sodp->sod_want) {
12006 			if (sodp->sod_state & SOD_WAKE_NOT) {
12007 				/* Schedule socket for wakeup */
12008 				sodp->sod_state &= SOD_WAKE_CLR;
12009 				sodp->sod_state |= SOD_WAKE_NEED;
12010 			}
12011 			tcp->tcp_rwnd -= seg_len;
12012 		}
12013 	} else if (SOD_QCNT(sodp) + seg_len >= tcp->tcp_rq->q_hiwat >> 3) {
12014 		/*
12015 		 * No pending sodirect read() so used the default
12016 		 * TCP push logic to guess that a push is needed.
12017 		 */
12018 		if (sodp->sod_state & SOD_WAKE_NOT) {
12019 			/* Schedule socket for wakeup */
12020 			sodp->sod_state &= SOD_WAKE_CLR;
12021 			sodp->sod_state |= SOD_WAKE_NEED;
12022 		}
12023 		tcp->tcp_rwnd -= seg_len;
12024 	} else {
12025 		/* Just update tcp_rwnd */
12026 		tcp->tcp_rwnd -= seg_len;
12027 	}
12028 enq:
12029 	qfull = SOD_QFULL(sodp);
12030 
12031 	(sodp->sod_enqueue)(sodp, mp);
12032 
12033 	if (! qfull && SOD_QFULL(sodp)) {
12034 		/* Wasn't QFULL, now QFULL, need back-enable */
12035 		SOD_QSETBE(sodp);
12036 	}
12037 
12038 	/*
12039 	 * Check to see if remote avail swnd < mss due to delayed ACK,
12040 	 * first get advertised rwnd.
12041 	 */
12042 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win));
12043 	/* Minus delayed ACK count */
12044 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
12045 	if (thwin < tcp->tcp_mss) {
12046 		/* Remote avail swnd < mss, need ACK now */
12047 		return (TH_ACK_NEEDED);
12048 	}
12049 
12050 	return (0);
12051 }
12052 
12053 /*
12054  * DEFAULT TCP ENTRY POINT via squeue on READ side.
12055  *
12056  * This is the default entry function into TCP on the read side. TCP is
12057  * always entered via squeue i.e. using squeue's for mutual exclusion.
12058  * When classifier does a lookup to find the tcp, it also puts a reference
12059  * on the conn structure associated so the tcp is guaranteed to exist
12060  * when we come here. We still need to check the state because it might
12061  * as well has been closed. The squeue processing function i.e. squeue_enter,
12062  * squeue_enter_nodrain, or squeue_drain is responsible for doing the
12063  * CONN_DEC_REF.
12064  *
12065  * Apart from the default entry point, IP also sends packets directly to
12066  * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming
12067  * connections.
12068  */
12069 void
12070 tcp_input(void *arg, mblk_t *mp, void *arg2)
12071 {
12072 	conn_t	*connp = (conn_t *)arg;
12073 	tcp_t	*tcp = (tcp_t *)connp->conn_tcp;
12074 
12075 	/* arg2 is the sqp */
12076 	ASSERT(arg2 != NULL);
12077 	ASSERT(mp != NULL);
12078 
12079 	/*
12080 	 * Don't accept any input on a closed tcp as this TCP logically does
12081 	 * not exist on the system. Don't proceed further with this TCP.
12082 	 * For eg. this packet could trigger another close of this tcp
12083 	 * which would be disastrous for tcp_refcnt. tcp_close_detached /
12084 	 * tcp_clean_death / tcp_closei_local must be called at most once
12085 	 * on a TCP. In this case we need to refeed the packet into the
12086 	 * classifier and figure out where the packet should go. Need to
12087 	 * preserve the recv_ill somehow. Until we figure that out, for
12088 	 * now just drop the packet if we can't classify the packet.
12089 	 */
12090 	if (tcp->tcp_state == TCPS_CLOSED ||
12091 	    tcp->tcp_state == TCPS_BOUND) {
12092 		conn_t	*new_connp;
12093 		ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip;
12094 
12095 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
12096 		if (new_connp != NULL) {
12097 			tcp_reinput(new_connp, mp, arg2);
12098 			return;
12099 		}
12100 		/* We failed to classify. For now just drop the packet */
12101 		freemsg(mp);
12102 		return;
12103 	}
12104 
12105 	if (DB_TYPE(mp) == M_DATA)
12106 		tcp_rput_data(connp, mp, arg2);
12107 	else
12108 		tcp_rput_common(tcp, mp);
12109 }
12110 
12111 /*
12112  * The read side put procedure.
12113  * The packets passed up by ip are assume to be aligned according to
12114  * OK_32PTR and the IP+TCP headers fitting in the first mblk.
12115  */
12116 static void
12117 tcp_rput_common(tcp_t *tcp, mblk_t *mp)
12118 {
12119 	/*
12120 	 * tcp_rput_data() does not expect M_CTL except for the case
12121 	 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO
12122 	 * type. Need to make sure that any other M_CTLs don't make
12123 	 * it to tcp_rput_data since it is not expecting any and doesn't
12124 	 * check for it.
12125 	 */
12126 	if (DB_TYPE(mp) == M_CTL) {
12127 		switch (*(uint32_t *)(mp->b_rptr)) {
12128 		case TCP_IOC_ABORT_CONN:
12129 			/*
12130 			 * Handle connection abort request.
12131 			 */
12132 			tcp_ioctl_abort_handler(tcp, mp);
12133 			return;
12134 		case IPSEC_IN:
12135 			/*
12136 			 * Only secure icmp arrive in TCP and they
12137 			 * don't go through data path.
12138 			 */
12139 			tcp_icmp_error(tcp, mp);
12140 			return;
12141 		case IN_PKTINFO:
12142 			/*
12143 			 * Handle IPV6_RECVPKTINFO socket option on AF_INET6
12144 			 * sockets that are receiving IPv4 traffic. tcp
12145 			 */
12146 			ASSERT(tcp->tcp_family == AF_INET6);
12147 			ASSERT(tcp->tcp_ipv6_recvancillary &
12148 			    TCP_IPV6_RECVPKTINFO);
12149 			tcp_rput_data(tcp->tcp_connp, mp,
12150 			    tcp->tcp_connp->conn_sqp);
12151 			return;
12152 		case MDT_IOC_INFO_UPDATE:
12153 			/*
12154 			 * Handle Multidata information update; the
12155 			 * following routine will free the message.
12156 			 */
12157 			if (tcp->tcp_connp->conn_mdt_ok) {
12158 				tcp_mdt_update(tcp,
12159 				    &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab,
12160 				    B_FALSE);
12161 			}
12162 			freemsg(mp);
12163 			return;
12164 		case LSO_IOC_INFO_UPDATE:
12165 			/*
12166 			 * Handle LSO information update; the following
12167 			 * routine will free the message.
12168 			 */
12169 			if (tcp->tcp_connp->conn_lso_ok) {
12170 				tcp_lso_update(tcp,
12171 				    &((ip_lso_info_t *)mp->b_rptr)->lso_capab);
12172 			}
12173 			freemsg(mp);
12174 			return;
12175 		default:
12176 			/*
12177 			 * tcp_icmp_err() will process the M_CTL packets.
12178 			 * Non-ICMP packets, if any, will be discarded in
12179 			 * tcp_icmp_err(). We will process the ICMP packet
12180 			 * even if we are TCP_IS_DETACHED_NONEAGER as the
12181 			 * incoming ICMP packet may result in changing
12182 			 * the tcp_mss, which we would need if we have
12183 			 * packets to retransmit.
12184 			 */
12185 			tcp_icmp_error(tcp, mp);
12186 			return;
12187 		}
12188 	}
12189 
12190 	/* No point processing the message if tcp is already closed */
12191 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
12192 		freemsg(mp);
12193 		return;
12194 	}
12195 
12196 	tcp_rput_other(tcp, mp);
12197 }
12198 
12199 
12200 /* The minimum of smoothed mean deviation in RTO calculation. */
12201 #define	TCP_SD_MIN	400
12202 
12203 /*
12204  * Set RTO for this connection.  The formula is from Jacobson and Karels'
12205  * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
12206  * are the same as those in Appendix A.2 of that paper.
12207  *
12208  * m = new measurement
12209  * sa = smoothed RTT average (8 * average estimates).
12210  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
12211  */
12212 static void
12213 tcp_set_rto(tcp_t *tcp, clock_t rtt)
12214 {
12215 	long m = TICK_TO_MSEC(rtt);
12216 	clock_t sa = tcp->tcp_rtt_sa;
12217 	clock_t sv = tcp->tcp_rtt_sd;
12218 	clock_t rto;
12219 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12220 
12221 	BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate);
12222 	tcp->tcp_rtt_update++;
12223 
12224 	/* tcp_rtt_sa is not 0 means this is a new sample. */
12225 	if (sa != 0) {
12226 		/*
12227 		 * Update average estimator:
12228 		 *	new rtt = 7/8 old rtt + 1/8 Error
12229 		 */
12230 
12231 		/* m is now Error in estimate. */
12232 		m -= sa >> 3;
12233 		if ((sa += m) <= 0) {
12234 			/*
12235 			 * Don't allow the smoothed average to be negative.
12236 			 * We use 0 to denote reinitialization of the
12237 			 * variables.
12238 			 */
12239 			sa = 1;
12240 		}
12241 
12242 		/*
12243 		 * Update deviation estimator:
12244 		 *	new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
12245 		 */
12246 		if (m < 0)
12247 			m = -m;
12248 		m -= sv >> 2;
12249 		sv += m;
12250 	} else {
12251 		/*
12252 		 * This follows BSD's implementation.  So the reinitialized
12253 		 * RTO is 3 * m.  We cannot go less than 2 because if the
12254 		 * link is bandwidth dominated, doubling the window size
12255 		 * during slow start means doubling the RTT.  We want to be
12256 		 * more conservative when we reinitialize our estimates.  3
12257 		 * is just a convenient number.
12258 		 */
12259 		sa = m << 3;
12260 		sv = m << 1;
12261 	}
12262 	if (sv < TCP_SD_MIN) {
12263 		/*
12264 		 * We do not know that if sa captures the delay ACK
12265 		 * effect as in a long train of segments, a receiver
12266 		 * does not delay its ACKs.  So set the minimum of sv
12267 		 * to be TCP_SD_MIN, which is default to 400 ms, twice
12268 		 * of BSD DATO.  That means the minimum of mean
12269 		 * deviation is 100 ms.
12270 		 *
12271 		 */
12272 		sv = TCP_SD_MIN;
12273 	}
12274 	tcp->tcp_rtt_sa = sa;
12275 	tcp->tcp_rtt_sd = sv;
12276 	/*
12277 	 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
12278 	 *
12279 	 * Add tcp_rexmit_interval extra in case of extreme environment
12280 	 * where the algorithm fails to work.  The default value of
12281 	 * tcp_rexmit_interval_extra should be 0.
12282 	 *
12283 	 * As we use a finer grained clock than BSD and update
12284 	 * RTO for every ACKs, add in another .25 of RTT to the
12285 	 * deviation of RTO to accomodate burstiness of 1/4 of
12286 	 * window size.
12287 	 */
12288 	rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5);
12289 
12290 	if (rto > tcps->tcps_rexmit_interval_max) {
12291 		tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
12292 	} else if (rto < tcps->tcps_rexmit_interval_min) {
12293 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
12294 	} else {
12295 		tcp->tcp_rto = rto;
12296 	}
12297 
12298 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
12299 	tcp->tcp_timer_backoff = 0;
12300 }
12301 
12302 /*
12303  * tcp_get_seg_mp() is called to get the pointer to a segment in the
12304  * send queue which starts at the given seq. no.
12305  *
12306  * Parameters:
12307  *	tcp_t *tcp: the tcp instance pointer.
12308  *	uint32_t seq: the starting seq. no of the requested segment.
12309  *	int32_t *off: after the execution, *off will be the offset to
12310  *		the returned mblk which points to the requested seq no.
12311  *		It is the caller's responsibility to send in a non-null off.
12312  *
12313  * Return:
12314  *	A mblk_t pointer pointing to the requested segment in send queue.
12315  */
12316 static mblk_t *
12317 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off)
12318 {
12319 	int32_t	cnt;
12320 	mblk_t	*mp;
12321 
12322 	/* Defensive coding.  Make sure we don't send incorrect data. */
12323 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
12324 		return (NULL);
12325 
12326 	cnt = seq - tcp->tcp_suna;
12327 	mp = tcp->tcp_xmit_head;
12328 	while (cnt > 0 && mp != NULL) {
12329 		cnt -= mp->b_wptr - mp->b_rptr;
12330 		if (cnt < 0) {
12331 			cnt += mp->b_wptr - mp->b_rptr;
12332 			break;
12333 		}
12334 		mp = mp->b_cont;
12335 	}
12336 	ASSERT(mp != NULL);
12337 	*off = cnt;
12338 	return (mp);
12339 }
12340 
12341 /*
12342  * This function handles all retransmissions if SACK is enabled for this
12343  * connection.  First it calculates how many segments can be retransmitted
12344  * based on tcp_pipe.  Then it goes thru the notsack list to find eligible
12345  * segments.  A segment is eligible if sack_cnt for that segment is greater
12346  * than or equal tcp_dupack_fast_retransmit.  After it has retransmitted
12347  * all eligible segments, it checks to see if TCP can send some new segments
12348  * (fast recovery).  If it can, set the appropriate flag for tcp_rput_data().
12349  *
12350  * Parameters:
12351  *	tcp_t *tcp: the tcp structure of the connection.
12352  *	uint_t *flags: in return, appropriate value will be set for
12353  *	tcp_rput_data().
12354  */
12355 static void
12356 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags)
12357 {
12358 	notsack_blk_t	*notsack_blk;
12359 	int32_t		usable_swnd;
12360 	int32_t		mss;
12361 	uint32_t	seg_len;
12362 	mblk_t		*xmit_mp;
12363 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12364 
12365 	ASSERT(tcp->tcp_sack_info != NULL);
12366 	ASSERT(tcp->tcp_notsack_list != NULL);
12367 	ASSERT(tcp->tcp_rexmit == B_FALSE);
12368 
12369 	/* Defensive coding in case there is a bug... */
12370 	if (tcp->tcp_notsack_list == NULL) {
12371 		return;
12372 	}
12373 	notsack_blk = tcp->tcp_notsack_list;
12374 	mss = tcp->tcp_mss;
12375 
12376 	/*
12377 	 * Limit the num of outstanding data in the network to be
12378 	 * tcp_cwnd_ssthresh, which is half of the original congestion wnd.
12379 	 */
12380 	usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
12381 
12382 	/* At least retransmit 1 MSS of data. */
12383 	if (usable_swnd <= 0) {
12384 		usable_swnd = mss;
12385 	}
12386 
12387 	/* Make sure no new RTT samples will be taken. */
12388 	tcp->tcp_csuna = tcp->tcp_snxt;
12389 
12390 	notsack_blk = tcp->tcp_notsack_list;
12391 	while (usable_swnd > 0) {
12392 		mblk_t		*snxt_mp, *tmp_mp;
12393 		tcp_seq		begin = tcp->tcp_sack_snxt;
12394 		tcp_seq		end;
12395 		int32_t		off;
12396 
12397 		for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) {
12398 			if (SEQ_GT(notsack_blk->end, begin) &&
12399 			    (notsack_blk->sack_cnt >=
12400 			    tcps->tcps_dupack_fast_retransmit)) {
12401 				end = notsack_blk->end;
12402 				if (SEQ_LT(begin, notsack_blk->begin)) {
12403 					begin = notsack_blk->begin;
12404 				}
12405 				break;
12406 			}
12407 		}
12408 		/*
12409 		 * All holes are filled.  Manipulate tcp_cwnd to send more
12410 		 * if we can.  Note that after the SACK recovery, tcp_cwnd is
12411 		 * set to tcp_cwnd_ssthresh.
12412 		 */
12413 		if (notsack_blk == NULL) {
12414 			usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
12415 			if (usable_swnd <= 0 || tcp->tcp_unsent == 0) {
12416 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna;
12417 				ASSERT(tcp->tcp_cwnd > 0);
12418 				return;
12419 			} else {
12420 				usable_swnd = usable_swnd / mss;
12421 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna +
12422 				    MAX(usable_swnd * mss, mss);
12423 				*flags |= TH_XMIT_NEEDED;
12424 				return;
12425 			}
12426 		}
12427 
12428 		/*
12429 		 * Note that we may send more than usable_swnd allows here
12430 		 * because of round off, but no more than 1 MSS of data.
12431 		 */
12432 		seg_len = end - begin;
12433 		if (seg_len > mss)
12434 			seg_len = mss;
12435 		snxt_mp = tcp_get_seg_mp(tcp, begin, &off);
12436 		ASSERT(snxt_mp != NULL);
12437 		/* This should not happen.  Defensive coding again... */
12438 		if (snxt_mp == NULL) {
12439 			return;
12440 		}
12441 
12442 		xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off,
12443 		    &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE);
12444 		if (xmit_mp == NULL)
12445 			return;
12446 
12447 		usable_swnd -= seg_len;
12448 		tcp->tcp_pipe += seg_len;
12449 		tcp->tcp_sack_snxt = begin + seg_len;
12450 
12451 		tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12452 
12453 		/*
12454 		 * Update the send timestamp to avoid false retransmission.
12455 		 */
12456 		snxt_mp->b_prev = (mblk_t *)lbolt;
12457 
12458 		BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12459 		UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len);
12460 		BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs);
12461 		/*
12462 		 * Update tcp_rexmit_max to extend this SACK recovery phase.
12463 		 * This happens when new data sent during fast recovery is
12464 		 * also lost.  If TCP retransmits those new data, it needs
12465 		 * to extend SACK recover phase to avoid starting another
12466 		 * fast retransmit/recovery unnecessarily.
12467 		 */
12468 		if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) {
12469 			tcp->tcp_rexmit_max = tcp->tcp_sack_snxt;
12470 		}
12471 	}
12472 }
12473 
12474 /*
12475  * This function handles policy checking at TCP level for non-hard_bound/
12476  * detached connections.
12477  */
12478 static boolean_t
12479 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h,
12480     boolean_t secure, boolean_t mctl_present)
12481 {
12482 	ipsec_latch_t *ipl = NULL;
12483 	ipsec_action_t *act = NULL;
12484 	mblk_t *data_mp;
12485 	ipsec_in_t *ii;
12486 	const char *reason;
12487 	kstat_named_t *counter;
12488 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12489 	ipsec_stack_t	*ipss;
12490 	ip_stack_t	*ipst;
12491 
12492 	ASSERT(mctl_present || !secure);
12493 
12494 	ASSERT((ipha == NULL && ip6h != NULL) ||
12495 	    (ip6h == NULL && ipha != NULL));
12496 
12497 	/*
12498 	 * We don't necessarily have an ipsec_in_act action to verify
12499 	 * policy because of assymetrical policy where we have only
12500 	 * outbound policy and no inbound policy (possible with global
12501 	 * policy).
12502 	 */
12503 	if (!secure) {
12504 		if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS ||
12505 		    act->ipa_act.ipa_type == IPSEC_ACT_CLEAR)
12506 			return (B_TRUE);
12507 		ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
12508 		    "tcp_check_policy", ipha, ip6h, secure,
12509 		    tcps->tcps_netstack);
12510 		ipss = tcps->tcps_netstack->netstack_ipsec;
12511 
12512 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12513 		    DROPPER(ipss, ipds_tcp_clear),
12514 		    &tcps->tcps_dropper);
12515 		return (B_FALSE);
12516 	}
12517 
12518 	/*
12519 	 * We have a secure packet.
12520 	 */
12521 	if (act == NULL) {
12522 		ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED,
12523 		    "tcp_check_policy", ipha, ip6h, secure,
12524 		    tcps->tcps_netstack);
12525 		ipss = tcps->tcps_netstack->netstack_ipsec;
12526 
12527 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12528 		    DROPPER(ipss, ipds_tcp_secure),
12529 		    &tcps->tcps_dropper);
12530 		return (B_FALSE);
12531 	}
12532 
12533 	/*
12534 	 * XXX This whole routine is currently incorrect.  ipl should
12535 	 * be set to the latch pointer, but is currently not set, so
12536 	 * we initialize it to NULL to avoid picking up random garbage.
12537 	 */
12538 	if (ipl == NULL)
12539 		return (B_TRUE);
12540 
12541 	data_mp = first_mp->b_cont;
12542 
12543 	ii = (ipsec_in_t *)first_mp->b_rptr;
12544 
12545 	ipst = tcps->tcps_netstack->netstack_ip;
12546 
12547 	if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason,
12548 	    &counter, tcp->tcp_connp)) {
12549 		BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
12550 		return (B_TRUE);
12551 	}
12552 	(void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
12553 	    "tcp inbound policy mismatch: %s, packet dropped\n",
12554 	    reason);
12555 	BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
12556 
12557 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter,
12558 	    &tcps->tcps_dropper);
12559 	return (B_FALSE);
12560 }
12561 
12562 /*
12563  * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start
12564  * retransmission after a timeout.
12565  *
12566  * To limit the number of duplicate segments, we limit the number of segment
12567  * to be sent in one time to tcp_snd_burst, the burst variable.
12568  */
12569 static void
12570 tcp_ss_rexmit(tcp_t *tcp)
12571 {
12572 	uint32_t	snxt;
12573 	uint32_t	smax;
12574 	int32_t		win;
12575 	int32_t		mss;
12576 	int32_t		off;
12577 	int32_t		burst = tcp->tcp_snd_burst;
12578 	mblk_t		*snxt_mp;
12579 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12580 
12581 	/*
12582 	 * Note that tcp_rexmit can be set even though TCP has retransmitted
12583 	 * all unack'ed segments.
12584 	 */
12585 	if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) {
12586 		smax = tcp->tcp_rexmit_max;
12587 		snxt = tcp->tcp_rexmit_nxt;
12588 		if (SEQ_LT(snxt, tcp->tcp_suna)) {
12589 			snxt = tcp->tcp_suna;
12590 		}
12591 		win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd);
12592 		win -= snxt - tcp->tcp_suna;
12593 		mss = tcp->tcp_mss;
12594 		snxt_mp = tcp_get_seg_mp(tcp, snxt, &off);
12595 
12596 		while (SEQ_LT(snxt, smax) && (win > 0) &&
12597 		    (burst > 0) && (snxt_mp != NULL)) {
12598 			mblk_t	*xmit_mp;
12599 			mblk_t	*old_snxt_mp = snxt_mp;
12600 			uint32_t cnt = mss;
12601 
12602 			if (win < cnt) {
12603 				cnt = win;
12604 			}
12605 			if (SEQ_GT(snxt + cnt, smax)) {
12606 				cnt = smax - snxt;
12607 			}
12608 			xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off,
12609 			    &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE);
12610 			if (xmit_mp == NULL)
12611 				return;
12612 
12613 			tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12614 
12615 			snxt += cnt;
12616 			win -= cnt;
12617 			/*
12618 			 * Update the send timestamp to avoid false
12619 			 * retransmission.
12620 			 */
12621 			old_snxt_mp->b_prev = (mblk_t *)lbolt;
12622 			BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12623 			UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt);
12624 
12625 			tcp->tcp_rexmit_nxt = snxt;
12626 			burst--;
12627 		}
12628 		/*
12629 		 * If we have transmitted all we have at the time
12630 		 * we started the retranmission, we can leave
12631 		 * the rest of the job to tcp_wput_data().  But we
12632 		 * need to check the send window first.  If the
12633 		 * win is not 0, go on with tcp_wput_data().
12634 		 */
12635 		if (SEQ_LT(snxt, smax) || win == 0) {
12636 			return;
12637 		}
12638 	}
12639 	/* Only call tcp_wput_data() if there is data to be sent. */
12640 	if (tcp->tcp_unsent) {
12641 		tcp_wput_data(tcp, NULL, B_FALSE);
12642 	}
12643 }
12644 
12645 /*
12646  * Process all TCP option in SYN segment.  Note that this function should
12647  * be called after tcp_adapt_ire() is called so that the necessary info
12648  * from IRE is already set in the tcp structure.
12649  *
12650  * This function sets up the correct tcp_mss value according to the
12651  * MSS option value and our header size.  It also sets up the window scale
12652  * and timestamp values, and initialize SACK info blocks.  But it does not
12653  * change receive window size after setting the tcp_mss value.  The caller
12654  * should do the appropriate change.
12655  */
12656 void
12657 tcp_process_options(tcp_t *tcp, tcph_t *tcph)
12658 {
12659 	int options;
12660 	tcp_opt_t tcpopt;
12661 	uint32_t mss_max;
12662 	char *tmp_tcph;
12663 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12664 
12665 	tcpopt.tcp = NULL;
12666 	options = tcp_parse_options(tcph, &tcpopt);
12667 
12668 	/*
12669 	 * Process MSS option.  Note that MSS option value does not account
12670 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
12671 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
12672 	 * IPv6.
12673 	 */
12674 	if (!(options & TCP_OPT_MSS_PRESENT)) {
12675 		if (tcp->tcp_ipversion == IPV4_VERSION)
12676 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4;
12677 		else
12678 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6;
12679 	} else {
12680 		if (tcp->tcp_ipversion == IPV4_VERSION)
12681 			mss_max = tcps->tcps_mss_max_ipv4;
12682 		else
12683 			mss_max = tcps->tcps_mss_max_ipv6;
12684 		if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min)
12685 			tcpopt.tcp_opt_mss = tcps->tcps_mss_min;
12686 		else if (tcpopt.tcp_opt_mss > mss_max)
12687 			tcpopt.tcp_opt_mss = mss_max;
12688 	}
12689 
12690 	/* Process Window Scale option. */
12691 	if (options & TCP_OPT_WSCALE_PRESENT) {
12692 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
12693 		tcp->tcp_snd_ws_ok = B_TRUE;
12694 	} else {
12695 		tcp->tcp_snd_ws = B_FALSE;
12696 		tcp->tcp_snd_ws_ok = B_FALSE;
12697 		tcp->tcp_rcv_ws = B_FALSE;
12698 	}
12699 
12700 	/* Process Timestamp option. */
12701 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
12702 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
12703 		tmp_tcph = (char *)tcp->tcp_tcph;
12704 
12705 		tcp->tcp_snd_ts_ok = B_TRUE;
12706 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
12707 		tcp->tcp_last_rcv_lbolt = lbolt64;
12708 		ASSERT(OK_32PTR(tmp_tcph));
12709 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
12710 
12711 		/* Fill in our template header with basic timestamp option. */
12712 		tmp_tcph += tcp->tcp_tcp_hdr_len;
12713 		tmp_tcph[0] = TCPOPT_NOP;
12714 		tmp_tcph[1] = TCPOPT_NOP;
12715 		tmp_tcph[2] = TCPOPT_TSTAMP;
12716 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
12717 		tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12718 		tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12719 		tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4);
12720 	} else {
12721 		tcp->tcp_snd_ts_ok = B_FALSE;
12722 	}
12723 
12724 	/*
12725 	 * Process SACK options.  If SACK is enabled for this connection,
12726 	 * then allocate the SACK info structure.  Note the following ways
12727 	 * when tcp_snd_sack_ok is set to true.
12728 	 *
12729 	 * For active connection: in tcp_adapt_ire() called in
12730 	 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted
12731 	 * is checked.
12732 	 *
12733 	 * For passive connection: in tcp_adapt_ire() called in
12734 	 * tcp_accept_comm().
12735 	 *
12736 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
12737 	 * That check makes sure that if we did not send a SACK OK option,
12738 	 * we will not enable SACK for this connection even though the other
12739 	 * side sends us SACK OK option.  For active connection, the SACK
12740 	 * info structure has already been allocated.  So we need to free
12741 	 * it if SACK is disabled.
12742 	 */
12743 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
12744 	    (tcp->tcp_snd_sack_ok ||
12745 	    (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
12746 		/* This should be true only in the passive case. */
12747 		if (tcp->tcp_sack_info == NULL) {
12748 			ASSERT(TCP_IS_DETACHED(tcp));
12749 			tcp->tcp_sack_info =
12750 			    kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP);
12751 		}
12752 		if (tcp->tcp_sack_info == NULL) {
12753 			tcp->tcp_snd_sack_ok = B_FALSE;
12754 		} else {
12755 			tcp->tcp_snd_sack_ok = B_TRUE;
12756 			if (tcp->tcp_snd_ts_ok) {
12757 				tcp->tcp_max_sack_blk = 3;
12758 			} else {
12759 				tcp->tcp_max_sack_blk = 4;
12760 			}
12761 		}
12762 	} else {
12763 		/*
12764 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
12765 		 * no SACK info will be used for this
12766 		 * connection.  This assumes that SACK usage
12767 		 * permission is negotiated.  This may need
12768 		 * to be changed once this is clarified.
12769 		 */
12770 		if (tcp->tcp_sack_info != NULL) {
12771 			ASSERT(tcp->tcp_notsack_list == NULL);
12772 			kmem_cache_free(tcp_sack_info_cache,
12773 			    tcp->tcp_sack_info);
12774 			tcp->tcp_sack_info = NULL;
12775 		}
12776 		tcp->tcp_snd_sack_ok = B_FALSE;
12777 	}
12778 
12779 	/*
12780 	 * Now we know the exact TCP/IP header length, subtract
12781 	 * that from tcp_mss to get our side's MSS.
12782 	 */
12783 	tcp->tcp_mss -= tcp->tcp_hdr_len;
12784 	/*
12785 	 * Here we assume that the other side's header size will be equal to
12786 	 * our header size.  We calculate the real MSS accordingly.  Need to
12787 	 * take into additional stuffs IPsec puts in.
12788 	 *
12789 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
12790 	 */
12791 	tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead -
12792 	    ((tcp->tcp_ipversion == IPV4_VERSION ?
12793 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
12794 
12795 	/*
12796 	 * Set MSS to the smaller one of both ends of the connection.
12797 	 * We should not have called tcp_mss_set() before, but our
12798 	 * side of the MSS should have been set to a proper value
12799 	 * by tcp_adapt_ire().  tcp_mss_set() will also set up the
12800 	 * STREAM head parameters properly.
12801 	 *
12802 	 * If we have a larger-than-16-bit window but the other side
12803 	 * didn't want to do window scale, tcp_rwnd_set() will take
12804 	 * care of that.
12805 	 */
12806 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE);
12807 }
12808 
12809 /*
12810  * Sends the T_CONN_IND to the listener. The caller calls this
12811  * functions via squeue to get inside the listener's perimeter
12812  * once the 3 way hand shake is done a T_CONN_IND needs to be
12813  * sent. As an optimization, the caller can call this directly
12814  * if listener's perimeter is same as eager's.
12815  */
12816 /* ARGSUSED */
12817 void
12818 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2)
12819 {
12820 	conn_t			*lconnp = (conn_t *)arg;
12821 	tcp_t			*listener = lconnp->conn_tcp;
12822 	tcp_t			*tcp;
12823 	struct T_conn_ind	*conn_ind;
12824 	ipaddr_t 		*addr_cache;
12825 	boolean_t		need_send_conn_ind = B_FALSE;
12826 	tcp_stack_t		*tcps = listener->tcp_tcps;
12827 
12828 	/* retrieve the eager */
12829 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
12830 	ASSERT(conn_ind->OPT_offset != 0 &&
12831 	    conn_ind->OPT_length == sizeof (intptr_t));
12832 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
12833 	    conn_ind->OPT_length);
12834 
12835 	/*
12836 	 * TLI/XTI applications will get confused by
12837 	 * sending eager as an option since it violates
12838 	 * the option semantics. So remove the eager as
12839 	 * option since TLI/XTI app doesn't need it anyway.
12840 	 */
12841 	if (!TCP_IS_SOCKET(listener)) {
12842 		conn_ind->OPT_length = 0;
12843 		conn_ind->OPT_offset = 0;
12844 	}
12845 	if (listener->tcp_state == TCPS_CLOSED ||
12846 	    TCP_IS_DETACHED(listener)) {
12847 		/*
12848 		 * If listener has closed, it would have caused a
12849 		 * a cleanup/blowoff to happen for the eager. We
12850 		 * just need to return.
12851 		 */
12852 		freemsg(mp);
12853 		return;
12854 	}
12855 
12856 
12857 	/*
12858 	 * if the conn_req_q is full defer passing up the
12859 	 * T_CONN_IND until space is availabe after t_accept()
12860 	 * processing
12861 	 */
12862 	mutex_enter(&listener->tcp_eager_lock);
12863 
12864 	/*
12865 	 * Take the eager out, if it is in the list of droppable eagers
12866 	 * as we are here because the 3W handshake is over.
12867 	 */
12868 	MAKE_UNDROPPABLE(tcp);
12869 
12870 	if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) {
12871 		tcp_t *tail;
12872 
12873 		/*
12874 		 * The eager already has an extra ref put in tcp_rput_data
12875 		 * so that it stays till accept comes back even though it
12876 		 * might get into TCPS_CLOSED as a result of a TH_RST etc.
12877 		 */
12878 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
12879 		listener->tcp_conn_req_cnt_q0--;
12880 		listener->tcp_conn_req_cnt_q++;
12881 
12882 		/* Move from SYN_RCVD to ESTABLISHED list  */
12883 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12884 		    tcp->tcp_eager_prev_q0;
12885 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12886 		    tcp->tcp_eager_next_q0;
12887 		tcp->tcp_eager_prev_q0 = NULL;
12888 		tcp->tcp_eager_next_q0 = NULL;
12889 
12890 		/*
12891 		 * Insert at end of the queue because sockfs
12892 		 * sends down T_CONN_RES in chronological
12893 		 * order. Leaving the older conn indications
12894 		 * at front of the queue helps reducing search
12895 		 * time.
12896 		 */
12897 		tail = listener->tcp_eager_last_q;
12898 		if (tail != NULL)
12899 			tail->tcp_eager_next_q = tcp;
12900 		else
12901 			listener->tcp_eager_next_q = tcp;
12902 		listener->tcp_eager_last_q = tcp;
12903 		tcp->tcp_eager_next_q = NULL;
12904 		/*
12905 		 * Delay sending up the T_conn_ind until we are
12906 		 * done with the eager. Once we have have sent up
12907 		 * the T_conn_ind, the accept can potentially complete
12908 		 * any time and release the refhold we have on the eager.
12909 		 */
12910 		need_send_conn_ind = B_TRUE;
12911 	} else {
12912 		/*
12913 		 * Defer connection on q0 and set deferred
12914 		 * connection bit true
12915 		 */
12916 		tcp->tcp_conn_def_q0 = B_TRUE;
12917 
12918 		/* take tcp out of q0 ... */
12919 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12920 		    tcp->tcp_eager_next_q0;
12921 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12922 		    tcp->tcp_eager_prev_q0;
12923 
12924 		/* ... and place it at the end of q0 */
12925 		tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0;
12926 		tcp->tcp_eager_next_q0 = listener;
12927 		listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp;
12928 		listener->tcp_eager_prev_q0 = tcp;
12929 		tcp->tcp_conn.tcp_eager_conn_ind = mp;
12930 	}
12931 
12932 	/* we have timed out before */
12933 	if (tcp->tcp_syn_rcvd_timeout != 0) {
12934 		tcp->tcp_syn_rcvd_timeout = 0;
12935 		listener->tcp_syn_rcvd_timeout--;
12936 		if (listener->tcp_syn_defense &&
12937 		    listener->tcp_syn_rcvd_timeout <=
12938 		    (tcps->tcps_conn_req_max_q0 >> 5) &&
12939 		    10*MINUTES < TICK_TO_MSEC(lbolt64 -
12940 		    listener->tcp_last_rcv_lbolt)) {
12941 			/*
12942 			 * Turn off the defense mode if we
12943 			 * believe the SYN attack is over.
12944 			 */
12945 			listener->tcp_syn_defense = B_FALSE;
12946 			if (listener->tcp_ip_addr_cache) {
12947 				kmem_free((void *)listener->tcp_ip_addr_cache,
12948 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
12949 				listener->tcp_ip_addr_cache = NULL;
12950 			}
12951 		}
12952 	}
12953 	addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
12954 	if (addr_cache != NULL) {
12955 		/*
12956 		 * We have finished a 3-way handshake with this
12957 		 * remote host. This proves the IP addr is good.
12958 		 * Cache it!
12959 		 */
12960 		addr_cache[IP_ADDR_CACHE_HASH(
12961 		    tcp->tcp_remote)] = tcp->tcp_remote;
12962 	}
12963 	mutex_exit(&listener->tcp_eager_lock);
12964 	if (need_send_conn_ind)
12965 		putnext(listener->tcp_rq, mp);
12966 }
12967 
12968 mblk_t *
12969 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp,
12970     uint_t *ifindexp, ip6_pkt_t *ippp)
12971 {
12972 	ip_pktinfo_t	*pinfo;
12973 	ip6_t		*ip6h;
12974 	uchar_t		*rptr;
12975 	mblk_t		*first_mp = mp;
12976 	boolean_t	mctl_present = B_FALSE;
12977 	uint_t 		ifindex = 0;
12978 	ip6_pkt_t	ipp;
12979 	uint_t		ipvers;
12980 	uint_t		ip_hdr_len;
12981 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12982 
12983 	rptr = mp->b_rptr;
12984 	ASSERT(OK_32PTR(rptr));
12985 	ASSERT(tcp != NULL);
12986 	ipp.ipp_fields = 0;
12987 
12988 	switch DB_TYPE(mp) {
12989 	case M_CTL:
12990 		mp = mp->b_cont;
12991 		if (mp == NULL) {
12992 			freemsg(first_mp);
12993 			return (NULL);
12994 		}
12995 		if (DB_TYPE(mp) != M_DATA) {
12996 			freemsg(first_mp);
12997 			return (NULL);
12998 		}
12999 		mctl_present = B_TRUE;
13000 		break;
13001 	case M_DATA:
13002 		break;
13003 	default:
13004 		cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type");
13005 		freemsg(mp);
13006 		return (NULL);
13007 	}
13008 	ipvers = IPH_HDR_VERSION(rptr);
13009 	if (ipvers == IPV4_VERSION) {
13010 		if (tcp == NULL) {
13011 			ip_hdr_len = IPH_HDR_LENGTH(rptr);
13012 			goto done;
13013 		}
13014 
13015 		ipp.ipp_fields |= IPPF_HOPLIMIT;
13016 		ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl;
13017 
13018 		/*
13019 		 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary
13020 		 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp.
13021 		 */
13022 		if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) &&
13023 		    mctl_present) {
13024 			pinfo = (ip_pktinfo_t *)first_mp->b_rptr;
13025 			if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) &&
13026 			    (pinfo->ip_pkt_ulp_type == IN_PKTINFO) &&
13027 			    (pinfo->ip_pkt_flags & IPF_RECVIF)) {
13028 				ipp.ipp_fields |= IPPF_IFINDEX;
13029 				ipp.ipp_ifindex = pinfo->ip_pkt_ifindex;
13030 				ifindex = pinfo->ip_pkt_ifindex;
13031 			}
13032 			freeb(first_mp);
13033 			mctl_present = B_FALSE;
13034 		}
13035 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
13036 	} else {
13037 		ip6h = (ip6_t *)rptr;
13038 
13039 		ASSERT(ipvers == IPV6_VERSION);
13040 		ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS;
13041 		ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20;
13042 		ipp.ipp_hoplimit = ip6h->ip6_hops;
13043 
13044 		if (ip6h->ip6_nxt != IPPROTO_TCP) {
13045 			uint8_t	nexthdrp;
13046 			ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
13047 
13048 			/* Look for ifindex information */
13049 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
13050 				ip6i_t *ip6i = (ip6i_t *)ip6h;
13051 				if ((uchar_t *)&ip6i[1] > mp->b_wptr) {
13052 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
13053 					freemsg(first_mp);
13054 					return (NULL);
13055 				}
13056 
13057 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
13058 					ASSERT(ip6i->ip6i_ifindex != 0);
13059 					ipp.ipp_fields |= IPPF_IFINDEX;
13060 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
13061 					ifindex = ip6i->ip6i_ifindex;
13062 				}
13063 				rptr = (uchar_t *)&ip6i[1];
13064 				mp->b_rptr = rptr;
13065 				if (rptr == mp->b_wptr) {
13066 					mblk_t *mp1;
13067 					mp1 = mp->b_cont;
13068 					freeb(mp);
13069 					mp = mp1;
13070 					rptr = mp->b_rptr;
13071 				}
13072 				if (MBLKL(mp) < IPV6_HDR_LEN +
13073 				    sizeof (tcph_t)) {
13074 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
13075 					freemsg(first_mp);
13076 					return (NULL);
13077 				}
13078 				ip6h = (ip6_t *)rptr;
13079 			}
13080 
13081 			/*
13082 			 * Find any potentially interesting extension headers
13083 			 * as well as the length of the IPv6 + extension
13084 			 * headers.
13085 			 */
13086 			ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp);
13087 			/* Verify if this is a TCP packet */
13088 			if (nexthdrp != IPPROTO_TCP) {
13089 				BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
13090 				freemsg(first_mp);
13091 				return (NULL);
13092 			}
13093 		} else {
13094 			ip_hdr_len = IPV6_HDR_LEN;
13095 		}
13096 	}
13097 
13098 done:
13099 	if (ipversp != NULL)
13100 		*ipversp = ipvers;
13101 	if (ip_hdr_lenp != NULL)
13102 		*ip_hdr_lenp = ip_hdr_len;
13103 	if (ippp != NULL)
13104 		*ippp = ipp;
13105 	if (ifindexp != NULL)
13106 		*ifindexp = ifindex;
13107 	if (mctl_present) {
13108 		freeb(first_mp);
13109 	}
13110 	return (mp);
13111 }
13112 
13113 /*
13114  * Handle M_DATA messages from IP. Its called directly from IP via
13115  * squeue for AF_INET type sockets fast path. No M_CTL are expected
13116  * in this path.
13117  *
13118  * For everything else (including AF_INET6 sockets with 'tcp_ipversion'
13119  * v4 and v6), we are called through tcp_input() and a M_CTL can
13120  * be present for options but tcp_find_pktinfo() deals with it. We
13121  * only expect M_DATA packets after tcp_find_pktinfo() is done.
13122  *
13123  * The first argument is always the connp/tcp to which the mp belongs.
13124  * There are no exceptions to this rule. The caller has already put
13125  * a reference on this connp/tcp and once tcp_rput_data() returns,
13126  * the squeue will do the refrele.
13127  *
13128  * The TH_SYN for the listener directly go to tcp_conn_request via
13129  * squeue.
13130  *
13131  * sqp: NULL = recursive, sqp != NULL means called from squeue
13132  */
13133 void
13134 tcp_rput_data(void *arg, mblk_t *mp, void *arg2)
13135 {
13136 	int32_t		bytes_acked;
13137 	int32_t		gap;
13138 	mblk_t		*mp1;
13139 	uint_t		flags;
13140 	uint32_t	new_swnd = 0;
13141 	uchar_t		*iphdr;
13142 	uchar_t		*rptr;
13143 	int32_t		rgap;
13144 	uint32_t	seg_ack;
13145 	int		seg_len;
13146 	uint_t		ip_hdr_len;
13147 	uint32_t	seg_seq;
13148 	tcph_t		*tcph;
13149 	int		urp;
13150 	tcp_opt_t	tcpopt;
13151 	uint_t		ipvers;
13152 	ip6_pkt_t	ipp;
13153 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
13154 	uint32_t	cwnd;
13155 	uint32_t	add;
13156 	int		npkt;
13157 	int		mss;
13158 	conn_t		*connp = (conn_t *)arg;
13159 	squeue_t	*sqp = (squeue_t *)arg2;
13160 	tcp_t		*tcp = connp->conn_tcp;
13161 	tcp_stack_t	*tcps = tcp->tcp_tcps;
13162 
13163 	/*
13164 	 * RST from fused tcp loopback peer should trigger an unfuse.
13165 	 */
13166 	if (tcp->tcp_fused) {
13167 		TCP_STAT(tcps, tcp_fusion_aborted);
13168 		tcp_unfuse(tcp);
13169 	}
13170 
13171 	iphdr = mp->b_rptr;
13172 	rptr = mp->b_rptr;
13173 	ASSERT(OK_32PTR(rptr));
13174 
13175 	/*
13176 	 * An AF_INET socket is not capable of receiving any pktinfo. Do inline
13177 	 * processing here. For rest call tcp_find_pktinfo to fill up the
13178 	 * necessary information.
13179 	 */
13180 	if (IPCL_IS_TCP4(connp)) {
13181 		ipvers = IPV4_VERSION;
13182 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
13183 	} else {
13184 		mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len,
13185 		    NULL, &ipp);
13186 		if (mp == NULL) {
13187 			TCP_STAT(tcps, tcp_rput_v6_error);
13188 			return;
13189 		}
13190 		iphdr = mp->b_rptr;
13191 		rptr = mp->b_rptr;
13192 	}
13193 	ASSERT(DB_TYPE(mp) == M_DATA);
13194 
13195 	tcph = (tcph_t *)&rptr[ip_hdr_len];
13196 	seg_seq = ABE32_TO_U32(tcph->th_seq);
13197 	seg_ack = ABE32_TO_U32(tcph->th_ack);
13198 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
13199 	seg_len = (int)(mp->b_wptr - rptr) -
13200 	    (ip_hdr_len + TCP_HDR_LENGTH(tcph));
13201 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
13202 		do {
13203 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
13204 			    (uintptr_t)INT_MAX);
13205 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
13206 		} while ((mp1 = mp1->b_cont) != NULL &&
13207 		    mp1->b_datap->db_type == M_DATA);
13208 	}
13209 
13210 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
13211 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
13212 		    seg_len, tcph);
13213 		return;
13214 	}
13215 
13216 	if (sqp != NULL) {
13217 		/*
13218 		 * This is the correct place to update tcp_last_recv_time. Note
13219 		 * that it is also updated for tcp structure that belongs to
13220 		 * global and listener queues which do not really need updating.
13221 		 * But that should not cause any harm.  And it is updated for
13222 		 * all kinds of incoming segments, not only for data segments.
13223 		 */
13224 		tcp->tcp_last_recv_time = lbolt;
13225 	}
13226 
13227 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
13228 
13229 	BUMP_LOCAL(tcp->tcp_ibsegs);
13230 	DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
13231 
13232 	if ((flags & TH_URG) && sqp != NULL) {
13233 		/*
13234 		 * TCP can't handle urgent pointers that arrive before
13235 		 * the connection has been accept()ed since it can't
13236 		 * buffer OOB data.  Discard segment if this happens.
13237 		 *
13238 		 * We can't just rely on a non-null tcp_listener to indicate
13239 		 * that the accept() has completed since unlinking of the
13240 		 * eager and completion of the accept are not atomic.
13241 		 * tcp_detached, when it is not set (B_FALSE) indicates
13242 		 * that the accept() has completed.
13243 		 *
13244 		 * Nor can it reassemble urgent pointers, so discard
13245 		 * if it's not the next segment expected.
13246 		 *
13247 		 * Otherwise, collapse chain into one mblk (discard if
13248 		 * that fails).  This makes sure the headers, retransmitted
13249 		 * data, and new data all are in the same mblk.
13250 		 */
13251 		ASSERT(mp != NULL);
13252 		if (tcp->tcp_detached || !pullupmsg(mp, -1)) {
13253 			freemsg(mp);
13254 			return;
13255 		}
13256 		/* Update pointers into message */
13257 		iphdr = rptr = mp->b_rptr;
13258 		tcph = (tcph_t *)&rptr[ip_hdr_len];
13259 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
13260 			/*
13261 			 * Since we can't handle any data with this urgent
13262 			 * pointer that is out of sequence, we expunge
13263 			 * the data.  This allows us to still register
13264 			 * the urgent mark and generate the M_PCSIG,
13265 			 * which we can do.
13266 			 */
13267 			mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
13268 			seg_len = 0;
13269 		}
13270 	}
13271 
13272 	switch (tcp->tcp_state) {
13273 	case TCPS_SYN_SENT:
13274 		if (flags & TH_ACK) {
13275 			/*
13276 			 * Note that our stack cannot send data before a
13277 			 * connection is established, therefore the
13278 			 * following check is valid.  Otherwise, it has
13279 			 * to be changed.
13280 			 */
13281 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
13282 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13283 				freemsg(mp);
13284 				if (flags & TH_RST)
13285 					return;
13286 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
13287 				    tcp, seg_ack, 0, TH_RST);
13288 				return;
13289 			}
13290 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
13291 		}
13292 		if (flags & TH_RST) {
13293 			freemsg(mp);
13294 			if (flags & TH_ACK)
13295 				(void) tcp_clean_death(tcp,
13296 				    ECONNREFUSED, 13);
13297 			return;
13298 		}
13299 		if (!(flags & TH_SYN)) {
13300 			freemsg(mp);
13301 			return;
13302 		}
13303 
13304 		/* Process all TCP options. */
13305 		tcp_process_options(tcp, tcph);
13306 		/*
13307 		 * The following changes our rwnd to be a multiple of the
13308 		 * MIN(peer MSS, our MSS) for performance reason.
13309 		 */
13310 		(void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat,
13311 		    tcp->tcp_mss));
13312 
13313 		/* Is the other end ECN capable? */
13314 		if (tcp->tcp_ecn_ok) {
13315 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
13316 				tcp->tcp_ecn_ok = B_FALSE;
13317 			}
13318 		}
13319 		/*
13320 		 * Clear ECN flags because it may interfere with later
13321 		 * processing.
13322 		 */
13323 		flags &= ~(TH_ECE|TH_CWR);
13324 
13325 		tcp->tcp_irs = seg_seq;
13326 		tcp->tcp_rack = seg_seq;
13327 		tcp->tcp_rnxt = seg_seq + 1;
13328 		U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13329 		if (!TCP_IS_DETACHED(tcp)) {
13330 			/* Allocate room for SACK options if needed. */
13331 			if (tcp->tcp_snd_sack_ok) {
13332 				(void) mi_set_sth_wroff(tcp->tcp_rq,
13333 				    tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
13334 				    (tcp->tcp_loopback ? 0 :
13335 				    tcps->tcps_wroff_xtra));
13336 			} else {
13337 				(void) mi_set_sth_wroff(tcp->tcp_rq,
13338 				    tcp->tcp_hdr_len +
13339 				    (tcp->tcp_loopback ? 0 :
13340 				    tcps->tcps_wroff_xtra));
13341 			}
13342 		}
13343 		if (flags & TH_ACK) {
13344 			/*
13345 			 * If we can't get the confirmation upstream, pretend
13346 			 * we didn't even see this one.
13347 			 *
13348 			 * XXX: how can we pretend we didn't see it if we
13349 			 * have updated rnxt et. al.
13350 			 *
13351 			 * For loopback we defer sending up the T_CONN_CON
13352 			 * until after some checks below.
13353 			 */
13354 			mp1 = NULL;
13355 			if (!tcp_conn_con(tcp, iphdr, tcph, mp,
13356 			    tcp->tcp_loopback ? &mp1 : NULL)) {
13357 				freemsg(mp);
13358 				return;
13359 			}
13360 			/* SYN was acked - making progress */
13361 			if (tcp->tcp_ipversion == IPV6_VERSION)
13362 				tcp->tcp_ip_forward_progress = B_TRUE;
13363 
13364 			/* One for the SYN */
13365 			tcp->tcp_suna = tcp->tcp_iss + 1;
13366 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
13367 			tcp->tcp_state = TCPS_ESTABLISHED;
13368 
13369 			/*
13370 			 * If SYN was retransmitted, need to reset all
13371 			 * retransmission info.  This is because this
13372 			 * segment will be treated as a dup ACK.
13373 			 */
13374 			if (tcp->tcp_rexmit) {
13375 				tcp->tcp_rexmit = B_FALSE;
13376 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
13377 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
13378 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
13379 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
13380 				tcp->tcp_ms_we_have_waited = 0;
13381 
13382 				/*
13383 				 * Set tcp_cwnd back to 1 MSS, per
13384 				 * recommendation from
13385 				 * draft-floyd-incr-init-win-01.txt,
13386 				 * Increasing TCP's Initial Window.
13387 				 */
13388 				tcp->tcp_cwnd = tcp->tcp_mss;
13389 			}
13390 
13391 			tcp->tcp_swl1 = seg_seq;
13392 			tcp->tcp_swl2 = seg_ack;
13393 
13394 			new_swnd = BE16_TO_U16(tcph->th_win);
13395 			tcp->tcp_swnd = new_swnd;
13396 			if (new_swnd > tcp->tcp_max_swnd)
13397 				tcp->tcp_max_swnd = new_swnd;
13398 
13399 			/*
13400 			 * Always send the three-way handshake ack immediately
13401 			 * in order to make the connection complete as soon as
13402 			 * possible on the accepting host.
13403 			 */
13404 			flags |= TH_ACK_NEEDED;
13405 
13406 			/*
13407 			 * Special case for loopback.  At this point we have
13408 			 * received SYN-ACK from the remote endpoint.  In
13409 			 * order to ensure that both endpoints reach the
13410 			 * fused state prior to any data exchange, the final
13411 			 * ACK needs to be sent before we indicate T_CONN_CON
13412 			 * to the module upstream.
13413 			 */
13414 			if (tcp->tcp_loopback) {
13415 				mblk_t *ack_mp;
13416 
13417 				ASSERT(!tcp->tcp_unfusable);
13418 				ASSERT(mp1 != NULL);
13419 				/*
13420 				 * For loopback, we always get a pure SYN-ACK
13421 				 * and only need to send back the final ACK
13422 				 * with no data (this is because the other
13423 				 * tcp is ours and we don't do T/TCP).  This
13424 				 * final ACK triggers the passive side to
13425 				 * perform fusion in ESTABLISHED state.
13426 				 */
13427 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
13428 					if (tcp->tcp_ack_tid != 0) {
13429 						(void) TCP_TIMER_CANCEL(tcp,
13430 						    tcp->tcp_ack_tid);
13431 						tcp->tcp_ack_tid = 0;
13432 					}
13433 					tcp_send_data(tcp, tcp->tcp_wq, ack_mp);
13434 					BUMP_LOCAL(tcp->tcp_obsegs);
13435 					BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
13436 
13437 					/* Send up T_CONN_CON */
13438 					putnext(tcp->tcp_rq, mp1);
13439 
13440 					freemsg(mp);
13441 					return;
13442 				}
13443 				/*
13444 				 * Forget fusion; we need to handle more
13445 				 * complex cases below.  Send the deferred
13446 				 * T_CONN_CON message upstream and proceed
13447 				 * as usual.  Mark this tcp as not capable
13448 				 * of fusion.
13449 				 */
13450 				TCP_STAT(tcps, tcp_fusion_unfusable);
13451 				tcp->tcp_unfusable = B_TRUE;
13452 				putnext(tcp->tcp_rq, mp1);
13453 			}
13454 
13455 			/*
13456 			 * Check to see if there is data to be sent.  If
13457 			 * yes, set the transmit flag.  Then check to see
13458 			 * if received data processing needs to be done.
13459 			 * If not, go straight to xmit_check.  This short
13460 			 * cut is OK as we don't support T/TCP.
13461 			 */
13462 			if (tcp->tcp_unsent)
13463 				flags |= TH_XMIT_NEEDED;
13464 
13465 			if (seg_len == 0 && !(flags & TH_URG)) {
13466 				freemsg(mp);
13467 				goto xmit_check;
13468 			}
13469 
13470 			flags &= ~TH_SYN;
13471 			seg_seq++;
13472 			break;
13473 		}
13474 		tcp->tcp_state = TCPS_SYN_RCVD;
13475 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
13476 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
13477 		if (mp1) {
13478 			DB_CPID(mp1) = tcp->tcp_cpid;
13479 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
13480 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
13481 		}
13482 		freemsg(mp);
13483 		return;
13484 	case TCPS_SYN_RCVD:
13485 		if (flags & TH_ACK) {
13486 			/*
13487 			 * In this state, a SYN|ACK packet is either bogus
13488 			 * because the other side must be ACKing our SYN which
13489 			 * indicates it has seen the ACK for their SYN and
13490 			 * shouldn't retransmit it or we're crossing SYNs
13491 			 * on active open.
13492 			 */
13493 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
13494 				freemsg(mp);
13495 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
13496 				    tcp, seg_ack, 0, TH_RST);
13497 				return;
13498 			}
13499 			/*
13500 			 * NOTE: RFC 793 pg. 72 says this should be
13501 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
13502 			 * but that would mean we have an ack that ignored
13503 			 * our SYN.
13504 			 */
13505 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
13506 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13507 				freemsg(mp);
13508 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
13509 				    tcp, seg_ack, 0, TH_RST);
13510 				return;
13511 			}
13512 		}
13513 		break;
13514 	case TCPS_LISTEN:
13515 		/*
13516 		 * Only a TLI listener can come through this path when a
13517 		 * acceptor is going back to be a listener and a packet
13518 		 * for the acceptor hits the classifier. For a socket
13519 		 * listener, this can never happen because a listener
13520 		 * can never accept connection on itself and hence a
13521 		 * socket acceptor can not go back to being a listener.
13522 		 */
13523 		ASSERT(!TCP_IS_SOCKET(tcp));
13524 		/*FALLTHRU*/
13525 	case TCPS_CLOSED:
13526 	case TCPS_BOUND: {
13527 		conn_t	*new_connp;
13528 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
13529 
13530 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
13531 		if (new_connp != NULL) {
13532 			tcp_reinput(new_connp, mp, connp->conn_sqp);
13533 			return;
13534 		}
13535 		/* We failed to classify. For now just drop the packet */
13536 		freemsg(mp);
13537 		return;
13538 	}
13539 	case TCPS_IDLE:
13540 		/*
13541 		 * Handle the case where the tcp_clean_death() has happened
13542 		 * on a connection (application hasn't closed yet) but a packet
13543 		 * was already queued on squeue before tcp_clean_death()
13544 		 * was processed. Calling tcp_clean_death() twice on same
13545 		 * connection can result in weird behaviour.
13546 		 */
13547 		freemsg(mp);
13548 		return;
13549 	default:
13550 		break;
13551 	}
13552 
13553 	/*
13554 	 * Already on the correct queue/perimeter.
13555 	 * If this is a detached connection and not an eager
13556 	 * connection hanging off a listener then new data
13557 	 * (past the FIN) will cause a reset.
13558 	 * We do a special check here where it
13559 	 * is out of the main line, rather than check
13560 	 * if we are detached every time we see new
13561 	 * data down below.
13562 	 */
13563 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
13564 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
13565 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
13566 		DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
13567 
13568 		freemsg(mp);
13569 		/*
13570 		 * This could be an SSL closure alert. We're detached so just
13571 		 * acknowledge it this last time.
13572 		 */
13573 		if (tcp->tcp_kssl_ctx != NULL) {
13574 			kssl_release_ctx(tcp->tcp_kssl_ctx);
13575 			tcp->tcp_kssl_ctx = NULL;
13576 
13577 			tcp->tcp_rnxt += seg_len;
13578 			U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13579 			flags |= TH_ACK_NEEDED;
13580 			goto ack_check;
13581 		}
13582 
13583 		tcp_xmit_ctl("new data when detached", tcp,
13584 		    tcp->tcp_snxt, 0, TH_RST);
13585 		(void) tcp_clean_death(tcp, EPROTO, 12);
13586 		return;
13587 	}
13588 
13589 	mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
13590 	urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION;
13591 	new_swnd = BE16_TO_U16(tcph->th_win) <<
13592 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
13593 
13594 	if (tcp->tcp_snd_ts_ok) {
13595 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
13596 			/*
13597 			 * This segment is not acceptable.
13598 			 * Drop it and send back an ACK.
13599 			 */
13600 			freemsg(mp);
13601 			flags |= TH_ACK_NEEDED;
13602 			goto ack_check;
13603 		}
13604 	} else if (tcp->tcp_snd_sack_ok) {
13605 		ASSERT(tcp->tcp_sack_info != NULL);
13606 		tcpopt.tcp = tcp;
13607 		/*
13608 		 * SACK info in already updated in tcp_parse_options.  Ignore
13609 		 * all other TCP options...
13610 		 */
13611 		(void) tcp_parse_options(tcph, &tcpopt);
13612 	}
13613 try_again:;
13614 	mss = tcp->tcp_mss;
13615 	gap = seg_seq - tcp->tcp_rnxt;
13616 	rgap = tcp->tcp_rwnd - (gap + seg_len);
13617 	/*
13618 	 * gap is the amount of sequence space between what we expect to see
13619 	 * and what we got for seg_seq.  A positive value for gap means
13620 	 * something got lost.  A negative value means we got some old stuff.
13621 	 */
13622 	if (gap < 0) {
13623 		/* Old stuff present.  Is the SYN in there? */
13624 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
13625 		    (seg_len != 0)) {
13626 			flags &= ~TH_SYN;
13627 			seg_seq++;
13628 			urp--;
13629 			/* Recompute the gaps after noting the SYN. */
13630 			goto try_again;
13631 		}
13632 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
13633 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
13634 		    (seg_len > -gap ? -gap : seg_len));
13635 		/* Remove the old stuff from seg_len. */
13636 		seg_len += gap;
13637 		/*
13638 		 * Anything left?
13639 		 * Make sure to check for unack'd FIN when rest of data
13640 		 * has been previously ack'd.
13641 		 */
13642 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
13643 			/*
13644 			 * Resets are only valid if they lie within our offered
13645 			 * window.  If the RST bit is set, we just ignore this
13646 			 * segment.
13647 			 */
13648 			if (flags & TH_RST) {
13649 				freemsg(mp);
13650 				return;
13651 			}
13652 
13653 			/*
13654 			 * The arriving of dup data packets indicate that we
13655 			 * may have postponed an ack for too long, or the other
13656 			 * side's RTT estimate is out of shape. Start acking
13657 			 * more often.
13658 			 */
13659 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
13660 			    tcp->tcp_rack_cnt >= 1 &&
13661 			    tcp->tcp_rack_abs_max > 2) {
13662 				tcp->tcp_rack_abs_max--;
13663 			}
13664 			tcp->tcp_rack_cur_max = 1;
13665 
13666 			/*
13667 			 * This segment is "unacceptable".  None of its
13668 			 * sequence space lies within our advertized window.
13669 			 *
13670 			 * Adjust seg_len to the original value for tracing.
13671 			 */
13672 			seg_len -= gap;
13673 			if (tcp->tcp_debug) {
13674 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13675 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
13676 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
13677 				    "seg_len %d, rnxt %u, snxt %u, %s",
13678 				    gap, rgap, flags, seg_seq, seg_ack,
13679 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
13680 				    tcp_display(tcp, NULL,
13681 				    DISP_ADDR_AND_PORT));
13682 			}
13683 
13684 			/*
13685 			 * Arrange to send an ACK in response to the
13686 			 * unacceptable segment per RFC 793 page 69. There
13687 			 * is only one small difference between ours and the
13688 			 * acceptability test in the RFC - we accept ACK-only
13689 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
13690 			 * will be generated.
13691 			 *
13692 			 * Note that we have to ACK an ACK-only packet at least
13693 			 * for stacks that send 0-length keep-alives with
13694 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
13695 			 * section 4.2.3.6. As long as we don't ever generate
13696 			 * an unacceptable packet in response to an incoming
13697 			 * packet that is unacceptable, it should not cause
13698 			 * "ACK wars".
13699 			 */
13700 			flags |=  TH_ACK_NEEDED;
13701 
13702 			/*
13703 			 * Continue processing this segment in order to use the
13704 			 * ACK information it contains, but skip all other
13705 			 * sequence-number processing.	Processing the ACK
13706 			 * information is necessary in order to
13707 			 * re-synchronize connections that may have lost
13708 			 * synchronization.
13709 			 *
13710 			 * We clear seg_len and flag fields related to
13711 			 * sequence number processing as they are not
13712 			 * to be trusted for an unacceptable segment.
13713 			 */
13714 			seg_len = 0;
13715 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
13716 			goto process_ack;
13717 		}
13718 
13719 		/* Fix seg_seq, and chew the gap off the front. */
13720 		seg_seq = tcp->tcp_rnxt;
13721 		urp += gap;
13722 		do {
13723 			mblk_t	*mp2;
13724 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13725 			    (uintptr_t)UINT_MAX);
13726 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
13727 			if (gap > 0) {
13728 				mp->b_rptr = mp->b_wptr - gap;
13729 				break;
13730 			}
13731 			mp2 = mp;
13732 			mp = mp->b_cont;
13733 			freeb(mp2);
13734 		} while (gap < 0);
13735 		/*
13736 		 * If the urgent data has already been acknowledged, we
13737 		 * should ignore TH_URG below
13738 		 */
13739 		if (urp < 0)
13740 			flags &= ~TH_URG;
13741 	}
13742 	/*
13743 	 * rgap is the amount of stuff received out of window.  A negative
13744 	 * value is the amount out of window.
13745 	 */
13746 	if (rgap < 0) {
13747 		mblk_t	*mp2;
13748 
13749 		if (tcp->tcp_rwnd == 0) {
13750 			BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe);
13751 		} else {
13752 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
13753 			UPDATE_MIB(&tcps->tcps_mib,
13754 			    tcpInDataPastWinBytes, -rgap);
13755 		}
13756 
13757 		/*
13758 		 * seg_len does not include the FIN, so if more than
13759 		 * just the FIN is out of window, we act like we don't
13760 		 * see it.  (If just the FIN is out of window, rgap
13761 		 * will be zero and we will go ahead and acknowledge
13762 		 * the FIN.)
13763 		 */
13764 		flags &= ~TH_FIN;
13765 
13766 		/* Fix seg_len and make sure there is something left. */
13767 		seg_len += rgap;
13768 		if (seg_len <= 0) {
13769 			/*
13770 			 * Resets are only valid if they lie within our offered
13771 			 * window.  If the RST bit is set, we just ignore this
13772 			 * segment.
13773 			 */
13774 			if (flags & TH_RST) {
13775 				freemsg(mp);
13776 				return;
13777 			}
13778 
13779 			/* Per RFC 793, we need to send back an ACK. */
13780 			flags |= TH_ACK_NEEDED;
13781 
13782 			/*
13783 			 * Send SIGURG as soon as possible i.e. even
13784 			 * if the TH_URG was delivered in a window probe
13785 			 * packet (which will be unacceptable).
13786 			 *
13787 			 * We generate a signal if none has been generated
13788 			 * for this connection or if this is a new urgent
13789 			 * byte. Also send a zero-length "unmarked" message
13790 			 * to inform SIOCATMARK that this is not the mark.
13791 			 *
13792 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
13793 			 * is sent up. This plus the check for old data
13794 			 * (gap >= 0) handles the wraparound of the sequence
13795 			 * number space without having to always track the
13796 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
13797 			 * this max in its rcv_up variable).
13798 			 *
13799 			 * This prevents duplicate SIGURGS due to a "late"
13800 			 * zero-window probe when the T_EXDATA_IND has already
13801 			 * been sent up.
13802 			 */
13803 			if ((flags & TH_URG) &&
13804 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
13805 			    tcp->tcp_urp_last))) {
13806 				mp1 = allocb(0, BPRI_MED);
13807 				if (mp1 == NULL) {
13808 					freemsg(mp);
13809 					return;
13810 				}
13811 				if (!TCP_IS_DETACHED(tcp) &&
13812 				    !putnextctl1(tcp->tcp_rq, M_PCSIG,
13813 				    SIGURG)) {
13814 					/* Try again on the rexmit. */
13815 					freemsg(mp1);
13816 					freemsg(mp);
13817 					return;
13818 				}
13819 				/*
13820 				 * If the next byte would be the mark
13821 				 * then mark with MARKNEXT else mark
13822 				 * with NOTMARKNEXT.
13823 				 */
13824 				if (gap == 0 && urp == 0)
13825 					mp1->b_flag |= MSGMARKNEXT;
13826 				else
13827 					mp1->b_flag |= MSGNOTMARKNEXT;
13828 				freemsg(tcp->tcp_urp_mark_mp);
13829 				tcp->tcp_urp_mark_mp = mp1;
13830 				flags |= TH_SEND_URP_MARK;
13831 				tcp->tcp_urp_last_valid = B_TRUE;
13832 				tcp->tcp_urp_last = urp + seg_seq;
13833 			}
13834 			/*
13835 			 * If this is a zero window probe, continue to
13836 			 * process the ACK part.  But we need to set seg_len
13837 			 * to 0 to avoid data processing.  Otherwise just
13838 			 * drop the segment and send back an ACK.
13839 			 */
13840 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
13841 				flags &= ~(TH_SYN | TH_URG);
13842 				seg_len = 0;
13843 				goto process_ack;
13844 			} else {
13845 				freemsg(mp);
13846 				goto ack_check;
13847 			}
13848 		}
13849 		/* Pitch out of window stuff off the end. */
13850 		rgap = seg_len;
13851 		mp2 = mp;
13852 		do {
13853 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
13854 			    (uintptr_t)INT_MAX);
13855 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
13856 			if (rgap < 0) {
13857 				mp2->b_wptr += rgap;
13858 				if ((mp1 = mp2->b_cont) != NULL) {
13859 					mp2->b_cont = NULL;
13860 					freemsg(mp1);
13861 				}
13862 				break;
13863 			}
13864 		} while ((mp2 = mp2->b_cont) != NULL);
13865 	}
13866 ok:;
13867 	/*
13868 	 * TCP should check ECN info for segments inside the window only.
13869 	 * Therefore the check should be done here.
13870 	 */
13871 	if (tcp->tcp_ecn_ok) {
13872 		if (flags & TH_CWR) {
13873 			tcp->tcp_ecn_echo_on = B_FALSE;
13874 		}
13875 		/*
13876 		 * Note that both ECN_CE and CWR can be set in the
13877 		 * same segment.  In this case, we once again turn
13878 		 * on ECN_ECHO.
13879 		 */
13880 		if (tcp->tcp_ipversion == IPV4_VERSION) {
13881 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
13882 
13883 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
13884 				tcp->tcp_ecn_echo_on = B_TRUE;
13885 			}
13886 		} else {
13887 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
13888 
13889 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
13890 			    htonl(IPH_ECN_CE << 20)) {
13891 				tcp->tcp_ecn_echo_on = B_TRUE;
13892 			}
13893 		}
13894 	}
13895 
13896 	/*
13897 	 * Check whether we can update tcp_ts_recent.  This test is
13898 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
13899 	 * Extensions for High Performance: An Update", Internet Draft.
13900 	 */
13901 	if (tcp->tcp_snd_ts_ok &&
13902 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
13903 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
13904 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
13905 		tcp->tcp_last_rcv_lbolt = lbolt64;
13906 	}
13907 
13908 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
13909 		/*
13910 		 * FIN in an out of order segment.  We record this in
13911 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
13912 		 * Clear the FIN so that any check on FIN flag will fail.
13913 		 * Remember that FIN also counts in the sequence number
13914 		 * space.  So we need to ack out of order FIN only segments.
13915 		 */
13916 		if (flags & TH_FIN) {
13917 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
13918 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
13919 			flags &= ~TH_FIN;
13920 			flags |= TH_ACK_NEEDED;
13921 		}
13922 		if (seg_len > 0) {
13923 			/* Fill in the SACK blk list. */
13924 			if (tcp->tcp_snd_sack_ok) {
13925 				ASSERT(tcp->tcp_sack_info != NULL);
13926 				tcp_sack_insert(tcp->tcp_sack_list,
13927 				    seg_seq, seg_seq + seg_len,
13928 				    &(tcp->tcp_num_sack_blk));
13929 			}
13930 
13931 			/*
13932 			 * Attempt reassembly and see if we have something
13933 			 * ready to go.
13934 			 */
13935 			mp = tcp_reass(tcp, mp, seg_seq);
13936 			/* Always ack out of order packets */
13937 			flags |= TH_ACK_NEEDED | TH_PUSH;
13938 			if (mp) {
13939 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13940 				    (uintptr_t)INT_MAX);
13941 				seg_len = mp->b_cont ? msgdsize(mp) :
13942 				    (int)(mp->b_wptr - mp->b_rptr);
13943 				seg_seq = tcp->tcp_rnxt;
13944 				/*
13945 				 * A gap is filled and the seq num and len
13946 				 * of the gap match that of a previously
13947 				 * received FIN, put the FIN flag back in.
13948 				 */
13949 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13950 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13951 					flags |= TH_FIN;
13952 					tcp->tcp_valid_bits &=
13953 					    ~TCP_OFO_FIN_VALID;
13954 				}
13955 			} else {
13956 				/*
13957 				 * Keep going even with NULL mp.
13958 				 * There may be a useful ACK or something else
13959 				 * we don't want to miss.
13960 				 *
13961 				 * But TCP should not perform fast retransmit
13962 				 * because of the ack number.  TCP uses
13963 				 * seg_len == 0 to determine if it is a pure
13964 				 * ACK.  And this is not a pure ACK.
13965 				 */
13966 				seg_len = 0;
13967 				ofo_seg = B_TRUE;
13968 			}
13969 		}
13970 	} else if (seg_len > 0) {
13971 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
13972 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
13973 		/*
13974 		 * If an out of order FIN was received before, and the seq
13975 		 * num and len of the new segment match that of the FIN,
13976 		 * put the FIN flag back in.
13977 		 */
13978 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13979 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13980 			flags |= TH_FIN;
13981 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
13982 		}
13983 	}
13984 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
13985 	if (flags & TH_RST) {
13986 		freemsg(mp);
13987 		switch (tcp->tcp_state) {
13988 		case TCPS_SYN_RCVD:
13989 			(void) tcp_clean_death(tcp, ECONNREFUSED, 14);
13990 			break;
13991 		case TCPS_ESTABLISHED:
13992 		case TCPS_FIN_WAIT_1:
13993 		case TCPS_FIN_WAIT_2:
13994 		case TCPS_CLOSE_WAIT:
13995 			(void) tcp_clean_death(tcp, ECONNRESET, 15);
13996 			break;
13997 		case TCPS_CLOSING:
13998 		case TCPS_LAST_ACK:
13999 			(void) tcp_clean_death(tcp, 0, 16);
14000 			break;
14001 		default:
14002 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
14003 			(void) tcp_clean_death(tcp, ENXIO, 17);
14004 			break;
14005 		}
14006 		return;
14007 	}
14008 	if (flags & TH_SYN) {
14009 		/*
14010 		 * See RFC 793, Page 71
14011 		 *
14012 		 * The seq number must be in the window as it should
14013 		 * be "fixed" above.  If it is outside window, it should
14014 		 * be already rejected.  Note that we allow seg_seq to be
14015 		 * rnxt + rwnd because we want to accept 0 window probe.
14016 		 */
14017 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
14018 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
14019 		freemsg(mp);
14020 		/*
14021 		 * If the ACK flag is not set, just use our snxt as the
14022 		 * seq number of the RST segment.
14023 		 */
14024 		if (!(flags & TH_ACK)) {
14025 			seg_ack = tcp->tcp_snxt;
14026 		}
14027 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
14028 		    TH_RST|TH_ACK);
14029 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
14030 		(void) tcp_clean_death(tcp, ECONNRESET, 18);
14031 		return;
14032 	}
14033 	/*
14034 	 * urp could be -1 when the urp field in the packet is 0
14035 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
14036 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
14037 	 */
14038 	if (flags & TH_URG && urp >= 0) {
14039 		if (!tcp->tcp_urp_last_valid ||
14040 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
14041 			/*
14042 			 * If we haven't generated the signal yet for this
14043 			 * urgent pointer value, do it now.  Also, send up a
14044 			 * zero-length M_DATA indicating whether or not this is
14045 			 * the mark. The latter is not needed when a
14046 			 * T_EXDATA_IND is sent up. However, if there are
14047 			 * allocation failures this code relies on the sender
14048 			 * retransmitting and the socket code for determining
14049 			 * the mark should not block waiting for the peer to
14050 			 * transmit. Thus, for simplicity we always send up the
14051 			 * mark indication.
14052 			 */
14053 			mp1 = allocb(0, BPRI_MED);
14054 			if (mp1 == NULL) {
14055 				freemsg(mp);
14056 				return;
14057 			}
14058 			if (!TCP_IS_DETACHED(tcp) &&
14059 			    !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) {
14060 				/* Try again on the rexmit. */
14061 				freemsg(mp1);
14062 				freemsg(mp);
14063 				return;
14064 			}
14065 			/*
14066 			 * Mark with NOTMARKNEXT for now.
14067 			 * The code below will change this to MARKNEXT
14068 			 * if we are at the mark.
14069 			 *
14070 			 * If there are allocation failures (e.g. in dupmsg
14071 			 * below) the next time tcp_rput_data sees the urgent
14072 			 * segment it will send up the MSG*MARKNEXT message.
14073 			 */
14074 			mp1->b_flag |= MSGNOTMARKNEXT;
14075 			freemsg(tcp->tcp_urp_mark_mp);
14076 			tcp->tcp_urp_mark_mp = mp1;
14077 			flags |= TH_SEND_URP_MARK;
14078 #ifdef DEBUG
14079 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14080 			    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
14081 			    "last %x, %s",
14082 			    seg_seq, urp, tcp->tcp_urp_last,
14083 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14084 #endif /* DEBUG */
14085 			tcp->tcp_urp_last_valid = B_TRUE;
14086 			tcp->tcp_urp_last = urp + seg_seq;
14087 		} else if (tcp->tcp_urp_mark_mp != NULL) {
14088 			/*
14089 			 * An allocation failure prevented the previous
14090 			 * tcp_rput_data from sending up the allocated
14091 			 * MSG*MARKNEXT message - send it up this time
14092 			 * around.
14093 			 */
14094 			flags |= TH_SEND_URP_MARK;
14095 		}
14096 
14097 		/*
14098 		 * If the urgent byte is in this segment, make sure that it is
14099 		 * all by itself.  This makes it much easier to deal with the
14100 		 * possibility of an allocation failure on the T_exdata_ind.
14101 		 * Note that seg_len is the number of bytes in the segment, and
14102 		 * urp is the offset into the segment of the urgent byte.
14103 		 * urp < seg_len means that the urgent byte is in this segment.
14104 		 */
14105 		if (urp < seg_len) {
14106 			if (seg_len != 1) {
14107 				uint32_t  tmp_rnxt;
14108 				/*
14109 				 * Break it up and feed it back in.
14110 				 * Re-attach the IP header.
14111 				 */
14112 				mp->b_rptr = iphdr;
14113 				if (urp > 0) {
14114 					/*
14115 					 * There is stuff before the urgent
14116 					 * byte.
14117 					 */
14118 					mp1 = dupmsg(mp);
14119 					if (!mp1) {
14120 						/*
14121 						 * Trim from urgent byte on.
14122 						 * The rest will come back.
14123 						 */
14124 						(void) adjmsg(mp,
14125 						    urp - seg_len);
14126 						tcp_rput_data(connp,
14127 						    mp, NULL);
14128 						return;
14129 					}
14130 					(void) adjmsg(mp1, urp - seg_len);
14131 					/* Feed this piece back in. */
14132 					tmp_rnxt = tcp->tcp_rnxt;
14133 					tcp_rput_data(connp, mp1, NULL);
14134 					/*
14135 					 * If the data passed back in was not
14136 					 * processed (ie: bad ACK) sending
14137 					 * the remainder back in will cause a
14138 					 * loop. In this case, drop the
14139 					 * packet and let the sender try
14140 					 * sending a good packet.
14141 					 */
14142 					if (tmp_rnxt == tcp->tcp_rnxt) {
14143 						freemsg(mp);
14144 						return;
14145 					}
14146 				}
14147 				if (urp != seg_len - 1) {
14148 					uint32_t  tmp_rnxt;
14149 					/*
14150 					 * There is stuff after the urgent
14151 					 * byte.
14152 					 */
14153 					mp1 = dupmsg(mp);
14154 					if (!mp1) {
14155 						/*
14156 						 * Trim everything beyond the
14157 						 * urgent byte.  The rest will
14158 						 * come back.
14159 						 */
14160 						(void) adjmsg(mp,
14161 						    urp + 1 - seg_len);
14162 						tcp_rput_data(connp,
14163 						    mp, NULL);
14164 						return;
14165 					}
14166 					(void) adjmsg(mp1, urp + 1 - seg_len);
14167 					tmp_rnxt = tcp->tcp_rnxt;
14168 					tcp_rput_data(connp, mp1, NULL);
14169 					/*
14170 					 * If the data passed back in was not
14171 					 * processed (ie: bad ACK) sending
14172 					 * the remainder back in will cause a
14173 					 * loop. In this case, drop the
14174 					 * packet and let the sender try
14175 					 * sending a good packet.
14176 					 */
14177 					if (tmp_rnxt == tcp->tcp_rnxt) {
14178 						freemsg(mp);
14179 						return;
14180 					}
14181 				}
14182 				tcp_rput_data(connp, mp, NULL);
14183 				return;
14184 			}
14185 			/*
14186 			 * This segment contains only the urgent byte.  We
14187 			 * have to allocate the T_exdata_ind, if we can.
14188 			 */
14189 			if (!tcp->tcp_urp_mp) {
14190 				struct T_exdata_ind *tei;
14191 				mp1 = allocb(sizeof (struct T_exdata_ind),
14192 				    BPRI_MED);
14193 				if (!mp1) {
14194 					/*
14195 					 * Sigh... It'll be back.
14196 					 * Generate any MSG*MARK message now.
14197 					 */
14198 					freemsg(mp);
14199 					seg_len = 0;
14200 					if (flags & TH_SEND_URP_MARK) {
14201 
14202 
14203 						ASSERT(tcp->tcp_urp_mark_mp);
14204 						tcp->tcp_urp_mark_mp->b_flag &=
14205 						    ~MSGNOTMARKNEXT;
14206 						tcp->tcp_urp_mark_mp->b_flag |=
14207 						    MSGMARKNEXT;
14208 					}
14209 					goto ack_check;
14210 				}
14211 				mp1->b_datap->db_type = M_PROTO;
14212 				tei = (struct T_exdata_ind *)mp1->b_rptr;
14213 				tei->PRIM_type = T_EXDATA_IND;
14214 				tei->MORE_flag = 0;
14215 				mp1->b_wptr = (uchar_t *)&tei[1];
14216 				tcp->tcp_urp_mp = mp1;
14217 #ifdef DEBUG
14218 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14219 				    "tcp_rput: allocated exdata_ind %s",
14220 				    tcp_display(tcp, NULL,
14221 				    DISP_PORT_ONLY));
14222 #endif /* DEBUG */
14223 				/*
14224 				 * There is no need to send a separate MSG*MARK
14225 				 * message since the T_EXDATA_IND will be sent
14226 				 * now.
14227 				 */
14228 				flags &= ~TH_SEND_URP_MARK;
14229 				freemsg(tcp->tcp_urp_mark_mp);
14230 				tcp->tcp_urp_mark_mp = NULL;
14231 			}
14232 			/*
14233 			 * Now we are all set.  On the next putnext upstream,
14234 			 * tcp_urp_mp will be non-NULL and will get prepended
14235 			 * to what has to be this piece containing the urgent
14236 			 * byte.  If for any reason we abort this segment below,
14237 			 * if it comes back, we will have this ready, or it
14238 			 * will get blown off in close.
14239 			 */
14240 		} else if (urp == seg_len) {
14241 			/*
14242 			 * The urgent byte is the next byte after this sequence
14243 			 * number. If there is data it is marked with
14244 			 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded
14245 			 * since it is not needed. Otherwise, if the code
14246 			 * above just allocated a zero-length tcp_urp_mark_mp
14247 			 * message, that message is tagged with MSGMARKNEXT.
14248 			 * Sending up these MSGMARKNEXT messages makes
14249 			 * SIOCATMARK work correctly even though
14250 			 * the T_EXDATA_IND will not be sent up until the
14251 			 * urgent byte arrives.
14252 			 */
14253 			if (seg_len != 0) {
14254 				flags |= TH_MARKNEXT_NEEDED;
14255 				freemsg(tcp->tcp_urp_mark_mp);
14256 				tcp->tcp_urp_mark_mp = NULL;
14257 				flags &= ~TH_SEND_URP_MARK;
14258 			} else if (tcp->tcp_urp_mark_mp != NULL) {
14259 				flags |= TH_SEND_URP_MARK;
14260 				tcp->tcp_urp_mark_mp->b_flag &=
14261 				    ~MSGNOTMARKNEXT;
14262 				tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT;
14263 			}
14264 #ifdef DEBUG
14265 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14266 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
14267 			    seg_len, flags,
14268 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14269 #endif /* DEBUG */
14270 		} else {
14271 			/* Data left until we hit mark */
14272 #ifdef DEBUG
14273 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14274 			    "tcp_rput: URP %d bytes left, %s",
14275 			    urp - seg_len, tcp_display(tcp, NULL,
14276 			    DISP_PORT_ONLY));
14277 #endif /* DEBUG */
14278 		}
14279 	}
14280 
14281 process_ack:
14282 	if (!(flags & TH_ACK)) {
14283 		freemsg(mp);
14284 		goto xmit_check;
14285 	}
14286 	}
14287 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
14288 
14289 	if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0)
14290 		tcp->tcp_ip_forward_progress = B_TRUE;
14291 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
14292 		if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) &&
14293 		    ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) {
14294 			/* 3-way handshake complete - pass up the T_CONN_IND */
14295 			tcp_t	*listener = tcp->tcp_listener;
14296 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
14297 
14298 			tcp->tcp_tconnind_started = B_TRUE;
14299 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
14300 			/*
14301 			 * We are here means eager is fine but it can
14302 			 * get a TH_RST at any point between now and till
14303 			 * accept completes and disappear. We need to
14304 			 * ensure that reference to eager is valid after
14305 			 * we get out of eager's perimeter. So we do
14306 			 * an extra refhold.
14307 			 */
14308 			CONN_INC_REF(connp);
14309 
14310 			/*
14311 			 * The listener also exists because of the refhold
14312 			 * done in tcp_conn_request. Its possible that it
14313 			 * might have closed. We will check that once we
14314 			 * get inside listeners context.
14315 			 */
14316 			CONN_INC_REF(listener->tcp_connp);
14317 			if (listener->tcp_connp->conn_sqp ==
14318 			    connp->conn_sqp) {
14319 				tcp_send_conn_ind(listener->tcp_connp, mp,
14320 				    listener->tcp_connp->conn_sqp);
14321 				CONN_DEC_REF(listener->tcp_connp);
14322 			} else if (!tcp->tcp_loopback) {
14323 				squeue_fill(listener->tcp_connp->conn_sqp, mp,
14324 				    tcp_send_conn_ind,
14325 				    listener->tcp_connp, SQTAG_TCP_CONN_IND);
14326 			} else {
14327 				squeue_enter(listener->tcp_connp->conn_sqp, mp,
14328 				    tcp_send_conn_ind, listener->tcp_connp,
14329 				    SQTAG_TCP_CONN_IND);
14330 			}
14331 		}
14332 
14333 		if (tcp->tcp_active_open) {
14334 			/*
14335 			 * We are seeing the final ack in the three way
14336 			 * hand shake of a active open'ed connection
14337 			 * so we must send up a T_CONN_CON
14338 			 */
14339 			if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) {
14340 				freemsg(mp);
14341 				return;
14342 			}
14343 			/*
14344 			 * Don't fuse the loopback endpoints for
14345 			 * simultaneous active opens.
14346 			 */
14347 			if (tcp->tcp_loopback) {
14348 				TCP_STAT(tcps, tcp_fusion_unfusable);
14349 				tcp->tcp_unfusable = B_TRUE;
14350 			}
14351 		}
14352 
14353 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
14354 		bytes_acked--;
14355 		/* SYN was acked - making progress */
14356 		if (tcp->tcp_ipversion == IPV6_VERSION)
14357 			tcp->tcp_ip_forward_progress = B_TRUE;
14358 
14359 		/*
14360 		 * If SYN was retransmitted, need to reset all
14361 		 * retransmission info as this segment will be
14362 		 * treated as a dup ACK.
14363 		 */
14364 		if (tcp->tcp_rexmit) {
14365 			tcp->tcp_rexmit = B_FALSE;
14366 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14367 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
14368 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14369 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14370 			tcp->tcp_ms_we_have_waited = 0;
14371 			tcp->tcp_cwnd = mss;
14372 		}
14373 
14374 		/*
14375 		 * We set the send window to zero here.
14376 		 * This is needed if there is data to be
14377 		 * processed already on the queue.
14378 		 * Later (at swnd_update label), the
14379 		 * "new_swnd > tcp_swnd" condition is satisfied
14380 		 * the XMIT_NEEDED flag is set in the current
14381 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
14382 		 * called if there is already data on queue in
14383 		 * this state.
14384 		 */
14385 		tcp->tcp_swnd = 0;
14386 
14387 		if (new_swnd > tcp->tcp_max_swnd)
14388 			tcp->tcp_max_swnd = new_swnd;
14389 		tcp->tcp_swl1 = seg_seq;
14390 		tcp->tcp_swl2 = seg_ack;
14391 		tcp->tcp_state = TCPS_ESTABLISHED;
14392 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
14393 
14394 		/* Fuse when both sides are in ESTABLISHED state */
14395 		if (tcp->tcp_loopback && do_tcp_fusion)
14396 			tcp_fuse(tcp, iphdr, tcph);
14397 
14398 	}
14399 	/* This code follows 4.4BSD-Lite2 mostly. */
14400 	if (bytes_acked < 0)
14401 		goto est;
14402 
14403 	/*
14404 	 * If TCP is ECN capable and the congestion experience bit is
14405 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
14406 	 * done once per window (or more loosely, per RTT).
14407 	 */
14408 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
14409 		tcp->tcp_cwr = B_FALSE;
14410 	if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
14411 		if (!tcp->tcp_cwr) {
14412 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss;
14413 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
14414 			tcp->tcp_cwnd = npkt * mss;
14415 			/*
14416 			 * If the cwnd is 0, use the timer to clock out
14417 			 * new segments.  This is required by the ECN spec.
14418 			 */
14419 			if (npkt == 0) {
14420 				TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14421 				/*
14422 				 * This makes sure that when the ACK comes
14423 				 * back, we will increase tcp_cwnd by 1 MSS.
14424 				 */
14425 				tcp->tcp_cwnd_cnt = 0;
14426 			}
14427 			tcp->tcp_cwr = B_TRUE;
14428 			/*
14429 			 * This marks the end of the current window of in
14430 			 * flight data.  That is why we don't use
14431 			 * tcp_suna + tcp_swnd.  Only data in flight can
14432 			 * provide ECN info.
14433 			 */
14434 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14435 			tcp->tcp_ecn_cwr_sent = B_FALSE;
14436 		}
14437 	}
14438 
14439 	mp1 = tcp->tcp_xmit_head;
14440 	if (bytes_acked == 0) {
14441 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
14442 			int dupack_cnt;
14443 
14444 			BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
14445 			/*
14446 			 * Fast retransmit.  When we have seen exactly three
14447 			 * identical ACKs while we have unacked data
14448 			 * outstanding we take it as a hint that our peer
14449 			 * dropped something.
14450 			 *
14451 			 * If TCP is retransmitting, don't do fast retransmit.
14452 			 */
14453 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
14454 			    ! tcp->tcp_rexmit) {
14455 				/* Do Limited Transmit */
14456 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
14457 				    tcps->tcps_dupack_fast_retransmit) {
14458 					/*
14459 					 * RFC 3042
14460 					 *
14461 					 * What we need to do is temporarily
14462 					 * increase tcp_cwnd so that new
14463 					 * data can be sent if it is allowed
14464 					 * by the receive window (tcp_rwnd).
14465 					 * tcp_wput_data() will take care of
14466 					 * the rest.
14467 					 *
14468 					 * If the connection is SACK capable,
14469 					 * only do limited xmit when there
14470 					 * is SACK info.
14471 					 *
14472 					 * Note how tcp_cwnd is incremented.
14473 					 * The first dup ACK will increase
14474 					 * it by 1 MSS.  The second dup ACK
14475 					 * will increase it by 2 MSS.  This
14476 					 * means that only 1 new segment will
14477 					 * be sent for each dup ACK.
14478 					 */
14479 					if (tcp->tcp_unsent > 0 &&
14480 					    (!tcp->tcp_snd_sack_ok ||
14481 					    (tcp->tcp_snd_sack_ok &&
14482 					    tcp->tcp_notsack_list != NULL))) {
14483 						tcp->tcp_cwnd += mss <<
14484 						    (tcp->tcp_dupack_cnt - 1);
14485 						flags |= TH_LIMIT_XMIT;
14486 					}
14487 				} else if (dupack_cnt ==
14488 				    tcps->tcps_dupack_fast_retransmit) {
14489 
14490 				/*
14491 				 * If we have reduced tcp_ssthresh
14492 				 * because of ECN, do not reduce it again
14493 				 * unless it is already one window of data
14494 				 * away.  After one window of data, tcp_cwr
14495 				 * should then be cleared.  Note that
14496 				 * for non ECN capable connection, tcp_cwr
14497 				 * should always be false.
14498 				 *
14499 				 * Adjust cwnd since the duplicate
14500 				 * ack indicates that a packet was
14501 				 * dropped (due to congestion.)
14502 				 */
14503 				if (!tcp->tcp_cwr) {
14504 					npkt = ((tcp->tcp_snxt -
14505 					    tcp->tcp_suna) >> 1) / mss;
14506 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
14507 					    mss;
14508 					tcp->tcp_cwnd = (npkt +
14509 					    tcp->tcp_dupack_cnt) * mss;
14510 				}
14511 				if (tcp->tcp_ecn_ok) {
14512 					tcp->tcp_cwr = B_TRUE;
14513 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14514 					tcp->tcp_ecn_cwr_sent = B_FALSE;
14515 				}
14516 
14517 				/*
14518 				 * We do Hoe's algorithm.  Refer to her
14519 				 * paper "Improving the Start-up Behavior
14520 				 * of a Congestion Control Scheme for TCP,"
14521 				 * appeared in SIGCOMM'96.
14522 				 *
14523 				 * Save highest seq no we have sent so far.
14524 				 * Be careful about the invisible FIN byte.
14525 				 */
14526 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
14527 				    (tcp->tcp_unsent == 0)) {
14528 					tcp->tcp_rexmit_max = tcp->tcp_fss;
14529 				} else {
14530 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
14531 				}
14532 
14533 				/*
14534 				 * Do not allow bursty traffic during.
14535 				 * fast recovery.  Refer to Fall and Floyd's
14536 				 * paper "Simulation-based Comparisons of
14537 				 * Tahoe, Reno and SACK TCP" (in CCR?)
14538 				 * This is a best current practise.
14539 				 */
14540 				tcp->tcp_snd_burst = TCP_CWND_SS;
14541 
14542 				/*
14543 				 * For SACK:
14544 				 * Calculate tcp_pipe, which is the
14545 				 * estimated number of bytes in
14546 				 * network.
14547 				 *
14548 				 * tcp_fack is the highest sack'ed seq num
14549 				 * TCP has received.
14550 				 *
14551 				 * tcp_pipe is explained in the above quoted
14552 				 * Fall and Floyd's paper.  tcp_fack is
14553 				 * explained in Mathis and Mahdavi's
14554 				 * "Forward Acknowledgment: Refining TCP
14555 				 * Congestion Control" in SIGCOMM '96.
14556 				 */
14557 				if (tcp->tcp_snd_sack_ok) {
14558 					ASSERT(tcp->tcp_sack_info != NULL);
14559 					if (tcp->tcp_notsack_list != NULL) {
14560 						tcp->tcp_pipe = tcp->tcp_snxt -
14561 						    tcp->tcp_fack;
14562 						tcp->tcp_sack_snxt = seg_ack;
14563 						flags |= TH_NEED_SACK_REXMIT;
14564 					} else {
14565 						/*
14566 						 * Always initialize tcp_pipe
14567 						 * even though we don't have
14568 						 * any SACK info.  If later
14569 						 * we get SACK info and
14570 						 * tcp_pipe is not initialized,
14571 						 * funny things will happen.
14572 						 */
14573 						tcp->tcp_pipe =
14574 						    tcp->tcp_cwnd_ssthresh;
14575 					}
14576 				} else {
14577 					flags |= TH_REXMIT_NEEDED;
14578 				} /* tcp_snd_sack_ok */
14579 
14580 				} else {
14581 					/*
14582 					 * Here we perform congestion
14583 					 * avoidance, but NOT slow start.
14584 					 * This is known as the Fast
14585 					 * Recovery Algorithm.
14586 					 */
14587 					if (tcp->tcp_snd_sack_ok &&
14588 					    tcp->tcp_notsack_list != NULL) {
14589 						flags |= TH_NEED_SACK_REXMIT;
14590 						tcp->tcp_pipe -= mss;
14591 						if (tcp->tcp_pipe < 0)
14592 							tcp->tcp_pipe = 0;
14593 					} else {
14594 					/*
14595 					 * We know that one more packet has
14596 					 * left the pipe thus we can update
14597 					 * cwnd.
14598 					 */
14599 					cwnd = tcp->tcp_cwnd + mss;
14600 					if (cwnd > tcp->tcp_cwnd_max)
14601 						cwnd = tcp->tcp_cwnd_max;
14602 					tcp->tcp_cwnd = cwnd;
14603 					if (tcp->tcp_unsent > 0)
14604 						flags |= TH_XMIT_NEEDED;
14605 					}
14606 				}
14607 			}
14608 		} else if (tcp->tcp_zero_win_probe) {
14609 			/*
14610 			 * If the window has opened, need to arrange
14611 			 * to send additional data.
14612 			 */
14613 			if (new_swnd != 0) {
14614 				/* tcp_suna != tcp_snxt */
14615 				/* Packet contains a window update */
14616 				BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate);
14617 				tcp->tcp_zero_win_probe = 0;
14618 				tcp->tcp_timer_backoff = 0;
14619 				tcp->tcp_ms_we_have_waited = 0;
14620 
14621 				/*
14622 				 * Transmit starting with tcp_suna since
14623 				 * the one byte probe is not ack'ed.
14624 				 * If TCP has sent more than one identical
14625 				 * probe, tcp_rexmit will be set.  That means
14626 				 * tcp_ss_rexmit() will send out the one
14627 				 * byte along with new data.  Otherwise,
14628 				 * fake the retransmission.
14629 				 */
14630 				flags |= TH_XMIT_NEEDED;
14631 				if (!tcp->tcp_rexmit) {
14632 					tcp->tcp_rexmit = B_TRUE;
14633 					tcp->tcp_dupack_cnt = 0;
14634 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
14635 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
14636 				}
14637 			}
14638 		}
14639 		goto swnd_update;
14640 	}
14641 
14642 	/*
14643 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
14644 	 * If the ACK value acks something that we have not yet sent, it might
14645 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
14646 	 * other side.
14647 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
14648 	 * state is handled above, so we can always just drop the segment and
14649 	 * send an ACK here.
14650 	 *
14651 	 * Should we send ACKs in response to ACK only segments?
14652 	 */
14653 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
14654 		BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent);
14655 		/* drop the received segment */
14656 		freemsg(mp);
14657 
14658 		/*
14659 		 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
14660 		 * greater than 0, check if the number of such
14661 		 * bogus ACks is greater than that count.  If yes,
14662 		 * don't send back any ACK.  This prevents TCP from
14663 		 * getting into an ACK storm if somehow an attacker
14664 		 * successfully spoofs an acceptable segment to our
14665 		 * peer.
14666 		 */
14667 		if (tcp_drop_ack_unsent_cnt > 0 &&
14668 		    ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) {
14669 			TCP_STAT(tcps, tcp_in_ack_unsent_drop);
14670 			return;
14671 		}
14672 		mp = tcp_ack_mp(tcp);
14673 		if (mp != NULL) {
14674 			BUMP_LOCAL(tcp->tcp_obsegs);
14675 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
14676 			tcp_send_data(tcp, tcp->tcp_wq, mp);
14677 		}
14678 		return;
14679 	}
14680 
14681 	/*
14682 	 * TCP gets a new ACK, update the notsack'ed list to delete those
14683 	 * blocks that are covered by this ACK.
14684 	 */
14685 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
14686 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
14687 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
14688 	}
14689 
14690 	/*
14691 	 * If we got an ACK after fast retransmit, check to see
14692 	 * if it is a partial ACK.  If it is not and the congestion
14693 	 * window was inflated to account for the other side's
14694 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
14695 	 */
14696 	if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) {
14697 		ASSERT(tcp->tcp_rexmit == B_FALSE);
14698 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
14699 			tcp->tcp_dupack_cnt = 0;
14700 			/*
14701 			 * Restore the orig tcp_cwnd_ssthresh after
14702 			 * fast retransmit phase.
14703 			 */
14704 			if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
14705 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
14706 			}
14707 			tcp->tcp_rexmit_max = seg_ack;
14708 			tcp->tcp_cwnd_cnt = 0;
14709 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14710 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14711 
14712 			/*
14713 			 * Remove all notsack info to avoid confusion with
14714 			 * the next fast retrasnmit/recovery phase.
14715 			 */
14716 			if (tcp->tcp_snd_sack_ok &&
14717 			    tcp->tcp_notsack_list != NULL) {
14718 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
14719 			}
14720 		} else {
14721 			if (tcp->tcp_snd_sack_ok &&
14722 			    tcp->tcp_notsack_list != NULL) {
14723 				flags |= TH_NEED_SACK_REXMIT;
14724 				tcp->tcp_pipe -= mss;
14725 				if (tcp->tcp_pipe < 0)
14726 					tcp->tcp_pipe = 0;
14727 			} else {
14728 				/*
14729 				 * Hoe's algorithm:
14730 				 *
14731 				 * Retransmit the unack'ed segment and
14732 				 * restart fast recovery.  Note that we
14733 				 * need to scale back tcp_cwnd to the
14734 				 * original value when we started fast
14735 				 * recovery.  This is to prevent overly
14736 				 * aggressive behaviour in sending new
14737 				 * segments.
14738 				 */
14739 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
14740 				    tcps->tcps_dupack_fast_retransmit * mss;
14741 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
14742 				flags |= TH_REXMIT_NEEDED;
14743 			}
14744 		}
14745 	} else {
14746 		tcp->tcp_dupack_cnt = 0;
14747 		if (tcp->tcp_rexmit) {
14748 			/*
14749 			 * TCP is retranmitting.  If the ACK ack's all
14750 			 * outstanding data, update tcp_rexmit_max and
14751 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
14752 			 * to the correct value.
14753 			 *
14754 			 * Note that SEQ_LEQ() is used.  This is to avoid
14755 			 * unnecessary fast retransmit caused by dup ACKs
14756 			 * received when TCP does slow start retransmission
14757 			 * after a time out.  During this phase, TCP may
14758 			 * send out segments which are already received.
14759 			 * This causes dup ACKs to be sent back.
14760 			 */
14761 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
14762 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
14763 					tcp->tcp_rexmit_nxt = seg_ack;
14764 				}
14765 				if (seg_ack != tcp->tcp_rexmit_max) {
14766 					flags |= TH_XMIT_NEEDED;
14767 				}
14768 			} else {
14769 				tcp->tcp_rexmit = B_FALSE;
14770 				tcp->tcp_xmit_zc_clean = B_FALSE;
14771 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14772 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
14773 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14774 			}
14775 			tcp->tcp_ms_we_have_waited = 0;
14776 		}
14777 	}
14778 
14779 	BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs);
14780 	UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked);
14781 	tcp->tcp_suna = seg_ack;
14782 	if (tcp->tcp_zero_win_probe != 0) {
14783 		tcp->tcp_zero_win_probe = 0;
14784 		tcp->tcp_timer_backoff = 0;
14785 	}
14786 
14787 	/*
14788 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
14789 	 * Note that it cannot be the SYN being ack'ed.  The code flow
14790 	 * will not reach here.
14791 	 */
14792 	if (mp1 == NULL) {
14793 		goto fin_acked;
14794 	}
14795 
14796 	/*
14797 	 * Update the congestion window.
14798 	 *
14799 	 * If TCP is not ECN capable or TCP is ECN capable but the
14800 	 * congestion experience bit is not set, increase the tcp_cwnd as
14801 	 * usual.
14802 	 */
14803 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
14804 		cwnd = tcp->tcp_cwnd;
14805 		add = mss;
14806 
14807 		if (cwnd >= tcp->tcp_cwnd_ssthresh) {
14808 			/*
14809 			 * This is to prevent an increase of less than 1 MSS of
14810 			 * tcp_cwnd.  With partial increase, tcp_wput_data()
14811 			 * may send out tinygrams in order to preserve mblk
14812 			 * boundaries.
14813 			 *
14814 			 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
14815 			 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
14816 			 * increased by 1 MSS for every RTTs.
14817 			 */
14818 			if (tcp->tcp_cwnd_cnt <= 0) {
14819 				tcp->tcp_cwnd_cnt = cwnd + add;
14820 			} else {
14821 				tcp->tcp_cwnd_cnt -= add;
14822 				add = 0;
14823 			}
14824 		}
14825 		tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
14826 	}
14827 
14828 	/* See if the latest urgent data has been acknowledged */
14829 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
14830 	    SEQ_GT(seg_ack, tcp->tcp_urg))
14831 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
14832 
14833 	/* Can we update the RTT estimates? */
14834 	if (tcp->tcp_snd_ts_ok) {
14835 		/* Ignore zero timestamp echo-reply. */
14836 		if (tcpopt.tcp_opt_ts_ecr != 0) {
14837 			tcp_set_rto(tcp, (int32_t)lbolt -
14838 			    (int32_t)tcpopt.tcp_opt_ts_ecr);
14839 		}
14840 
14841 		/* If needed, restart the timer. */
14842 		if (tcp->tcp_set_timer == 1) {
14843 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14844 			tcp->tcp_set_timer = 0;
14845 		}
14846 		/*
14847 		 * Update tcp_csuna in case the other side stops sending
14848 		 * us timestamps.
14849 		 */
14850 		tcp->tcp_csuna = tcp->tcp_snxt;
14851 	} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
14852 		/*
14853 		 * An ACK sequence we haven't seen before, so get the RTT
14854 		 * and update the RTO. But first check if the timestamp is
14855 		 * valid to use.
14856 		 */
14857 		if ((mp1->b_next != NULL) &&
14858 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next)))
14859 			tcp_set_rto(tcp, (int32_t)lbolt -
14860 			    (int32_t)(intptr_t)mp1->b_prev);
14861 		else
14862 			BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14863 
14864 		/* Remeber the last sequence to be ACKed */
14865 		tcp->tcp_csuna = seg_ack;
14866 		if (tcp->tcp_set_timer == 1) {
14867 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14868 			tcp->tcp_set_timer = 0;
14869 		}
14870 	} else {
14871 		BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14872 	}
14873 
14874 	/* Eat acknowledged bytes off the xmit queue. */
14875 	for (;;) {
14876 		mblk_t	*mp2;
14877 		uchar_t	*wptr;
14878 
14879 		wptr = mp1->b_wptr;
14880 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
14881 		bytes_acked -= (int)(wptr - mp1->b_rptr);
14882 		if (bytes_acked < 0) {
14883 			mp1->b_rptr = wptr + bytes_acked;
14884 			/*
14885 			 * Set a new timestamp if all the bytes timed by the
14886 			 * old timestamp have been ack'ed.
14887 			 */
14888 			if (SEQ_GT(seg_ack,
14889 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
14890 				mp1->b_prev = (mblk_t *)(uintptr_t)lbolt;
14891 				mp1->b_next = NULL;
14892 			}
14893 			break;
14894 		}
14895 		mp1->b_next = NULL;
14896 		mp1->b_prev = NULL;
14897 		mp2 = mp1;
14898 		mp1 = mp1->b_cont;
14899 
14900 		/*
14901 		 * This notification is required for some zero-copy
14902 		 * clients to maintain a copy semantic. After the data
14903 		 * is ack'ed, client is safe to modify or reuse the buffer.
14904 		 */
14905 		if (tcp->tcp_snd_zcopy_aware &&
14906 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
14907 			tcp_zcopy_notify(tcp);
14908 		freeb(mp2);
14909 		if (bytes_acked == 0) {
14910 			if (mp1 == NULL) {
14911 				/* Everything is ack'ed, clear the tail. */
14912 				tcp->tcp_xmit_tail = NULL;
14913 				/*
14914 				 * Cancel the timer unless we are still
14915 				 * waiting for an ACK for the FIN packet.
14916 				 */
14917 				if (tcp->tcp_timer_tid != 0 &&
14918 				    tcp->tcp_snxt == tcp->tcp_suna) {
14919 					(void) TCP_TIMER_CANCEL(tcp,
14920 					    tcp->tcp_timer_tid);
14921 					tcp->tcp_timer_tid = 0;
14922 				}
14923 				goto pre_swnd_update;
14924 			}
14925 			if (mp2 != tcp->tcp_xmit_tail)
14926 				break;
14927 			tcp->tcp_xmit_tail = mp1;
14928 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
14929 			    (uintptr_t)INT_MAX);
14930 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
14931 			    mp1->b_rptr);
14932 			break;
14933 		}
14934 		if (mp1 == NULL) {
14935 			/*
14936 			 * More was acked but there is nothing more
14937 			 * outstanding.  This means that the FIN was
14938 			 * just acked or that we're talking to a clown.
14939 			 */
14940 fin_acked:
14941 			ASSERT(tcp->tcp_fin_sent);
14942 			tcp->tcp_xmit_tail = NULL;
14943 			if (tcp->tcp_fin_sent) {
14944 				/* FIN was acked - making progress */
14945 				if (tcp->tcp_ipversion == IPV6_VERSION &&
14946 				    !tcp->tcp_fin_acked)
14947 					tcp->tcp_ip_forward_progress = B_TRUE;
14948 				tcp->tcp_fin_acked = B_TRUE;
14949 				if (tcp->tcp_linger_tid != 0 &&
14950 				    TCP_TIMER_CANCEL(tcp,
14951 				    tcp->tcp_linger_tid) >= 0) {
14952 					tcp_stop_lingering(tcp);
14953 					freemsg(mp);
14954 					mp = NULL;
14955 				}
14956 			} else {
14957 				/*
14958 				 * We should never get here because
14959 				 * we have already checked that the
14960 				 * number of bytes ack'ed should be
14961 				 * smaller than or equal to what we
14962 				 * have sent so far (it is the
14963 				 * acceptability check of the ACK).
14964 				 * We can only get here if the send
14965 				 * queue is corrupted.
14966 				 *
14967 				 * Terminate the connection and
14968 				 * panic the system.  It is better
14969 				 * for us to panic instead of
14970 				 * continuing to avoid other disaster.
14971 				 */
14972 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
14973 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
14974 				panic("Memory corruption "
14975 				    "detected for connection %s.",
14976 				    tcp_display(tcp, NULL,
14977 				    DISP_ADDR_AND_PORT));
14978 				/*NOTREACHED*/
14979 			}
14980 			goto pre_swnd_update;
14981 		}
14982 		ASSERT(mp2 != tcp->tcp_xmit_tail);
14983 	}
14984 	if (tcp->tcp_unsent) {
14985 		flags |= TH_XMIT_NEEDED;
14986 	}
14987 pre_swnd_update:
14988 	tcp->tcp_xmit_head = mp1;
14989 swnd_update:
14990 	/*
14991 	 * The following check is different from most other implementations.
14992 	 * For bi-directional transfer, when segments are dropped, the
14993 	 * "normal" check will not accept a window update in those
14994 	 * retransmitted segemnts.  Failing to do that, TCP may send out
14995 	 * segments which are outside receiver's window.  As TCP accepts
14996 	 * the ack in those retransmitted segments, if the window update in
14997 	 * the same segment is not accepted, TCP will incorrectly calculates
14998 	 * that it can send more segments.  This can create a deadlock
14999 	 * with the receiver if its window becomes zero.
15000 	 */
15001 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
15002 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
15003 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
15004 		/*
15005 		 * The criteria for update is:
15006 		 *
15007 		 * 1. the segment acknowledges some data.  Or
15008 		 * 2. the segment is new, i.e. it has a higher seq num. Or
15009 		 * 3. the segment is not old and the advertised window is
15010 		 * larger than the previous advertised window.
15011 		 */
15012 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
15013 			flags |= TH_XMIT_NEEDED;
15014 		tcp->tcp_swnd = new_swnd;
15015 		if (new_swnd > tcp->tcp_max_swnd)
15016 			tcp->tcp_max_swnd = new_swnd;
15017 		tcp->tcp_swl1 = seg_seq;
15018 		tcp->tcp_swl2 = seg_ack;
15019 	}
15020 est:
15021 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
15022 
15023 		switch (tcp->tcp_state) {
15024 		case TCPS_FIN_WAIT_1:
15025 			if (tcp->tcp_fin_acked) {
15026 				tcp->tcp_state = TCPS_FIN_WAIT_2;
15027 				/*
15028 				 * We implement the non-standard BSD/SunOS
15029 				 * FIN_WAIT_2 flushing algorithm.
15030 				 * If there is no user attached to this
15031 				 * TCP endpoint, then this TCP struct
15032 				 * could hang around forever in FIN_WAIT_2
15033 				 * state if the peer forgets to send us
15034 				 * a FIN.  To prevent this, we wait only
15035 				 * 2*MSL (a convenient time value) for
15036 				 * the FIN to arrive.  If it doesn't show up,
15037 				 * we flush the TCP endpoint.  This algorithm,
15038 				 * though a violation of RFC-793, has worked
15039 				 * for over 10 years in BSD systems.
15040 				 * Note: SunOS 4.x waits 675 seconds before
15041 				 * flushing the FIN_WAIT_2 connection.
15042 				 */
15043 				TCP_TIMER_RESTART(tcp,
15044 				    tcps->tcps_fin_wait_2_flush_interval);
15045 			}
15046 			break;
15047 		case TCPS_FIN_WAIT_2:
15048 			break;	/* Shutdown hook? */
15049 		case TCPS_LAST_ACK:
15050 			freemsg(mp);
15051 			if (tcp->tcp_fin_acked) {
15052 				(void) tcp_clean_death(tcp, 0, 19);
15053 				return;
15054 			}
15055 			goto xmit_check;
15056 		case TCPS_CLOSING:
15057 			if (tcp->tcp_fin_acked) {
15058 				tcp->tcp_state = TCPS_TIME_WAIT;
15059 				/*
15060 				 * Unconditionally clear the exclusive binding
15061 				 * bit so this TIME-WAIT connection won't
15062 				 * interfere with new ones.
15063 				 */
15064 				tcp->tcp_exclbind = 0;
15065 				if (!TCP_IS_DETACHED(tcp)) {
15066 					TCP_TIMER_RESTART(tcp,
15067 					    tcps->tcps_time_wait_interval);
15068 				} else {
15069 					tcp_time_wait_append(tcp);
15070 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
15071 				}
15072 			}
15073 			/*FALLTHRU*/
15074 		case TCPS_CLOSE_WAIT:
15075 			freemsg(mp);
15076 			goto xmit_check;
15077 		default:
15078 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
15079 			break;
15080 		}
15081 	}
15082 	if (flags & TH_FIN) {
15083 		/* Make sure we ack the fin */
15084 		flags |= TH_ACK_NEEDED;
15085 		if (!tcp->tcp_fin_rcvd) {
15086 			tcp->tcp_fin_rcvd = B_TRUE;
15087 			tcp->tcp_rnxt++;
15088 			tcph = tcp->tcp_tcph;
15089 			U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
15090 
15091 			/*
15092 			 * Generate the ordrel_ind at the end unless we
15093 			 * are an eager guy.
15094 			 * In the eager case tcp_rsrv will do this when run
15095 			 * after tcp_accept is done.
15096 			 */
15097 			if (tcp->tcp_listener == NULL &&
15098 			    !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding))
15099 				flags |= TH_ORDREL_NEEDED;
15100 			switch (tcp->tcp_state) {
15101 			case TCPS_SYN_RCVD:
15102 			case TCPS_ESTABLISHED:
15103 				tcp->tcp_state = TCPS_CLOSE_WAIT;
15104 				/* Keepalive? */
15105 				break;
15106 			case TCPS_FIN_WAIT_1:
15107 				if (!tcp->tcp_fin_acked) {
15108 					tcp->tcp_state = TCPS_CLOSING;
15109 					break;
15110 				}
15111 				/* FALLTHRU */
15112 			case TCPS_FIN_WAIT_2:
15113 				tcp->tcp_state = TCPS_TIME_WAIT;
15114 				/*
15115 				 * Unconditionally clear the exclusive binding
15116 				 * bit so this TIME-WAIT connection won't
15117 				 * interfere with new ones.
15118 				 */
15119 				tcp->tcp_exclbind = 0;
15120 				if (!TCP_IS_DETACHED(tcp)) {
15121 					TCP_TIMER_RESTART(tcp,
15122 					    tcps->tcps_time_wait_interval);
15123 				} else {
15124 					tcp_time_wait_append(tcp);
15125 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
15126 				}
15127 				if (seg_len) {
15128 					/*
15129 					 * implies data piggybacked on FIN.
15130 					 * break to handle data.
15131 					 */
15132 					break;
15133 				}
15134 				freemsg(mp);
15135 				goto ack_check;
15136 			}
15137 		}
15138 	}
15139 	if (mp == NULL)
15140 		goto xmit_check;
15141 	if (seg_len == 0) {
15142 		freemsg(mp);
15143 		goto xmit_check;
15144 	}
15145 	if (mp->b_rptr == mp->b_wptr) {
15146 		/*
15147 		 * The header has been consumed, so we remove the
15148 		 * zero-length mblk here.
15149 		 */
15150 		mp1 = mp;
15151 		mp = mp->b_cont;
15152 		freeb(mp1);
15153 	}
15154 	tcph = tcp->tcp_tcph;
15155 	tcp->tcp_rack_cnt++;
15156 	{
15157 		uint32_t cur_max;
15158 
15159 		cur_max = tcp->tcp_rack_cur_max;
15160 		if (tcp->tcp_rack_cnt >= cur_max) {
15161 			/*
15162 			 * We have more unacked data than we should - send
15163 			 * an ACK now.
15164 			 */
15165 			flags |= TH_ACK_NEEDED;
15166 			cur_max++;
15167 			if (cur_max > tcp->tcp_rack_abs_max)
15168 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
15169 			else
15170 				tcp->tcp_rack_cur_max = cur_max;
15171 		} else if (TCP_IS_DETACHED(tcp)) {
15172 			/* We don't have an ACK timer for detached TCP. */
15173 			flags |= TH_ACK_NEEDED;
15174 		} else if (seg_len < mss) {
15175 			/*
15176 			 * If we get a segment that is less than an mss, and we
15177 			 * already have unacknowledged data, and the amount
15178 			 * unacknowledged is not a multiple of mss, then we
15179 			 * better generate an ACK now.  Otherwise, this may be
15180 			 * the tail piece of a transaction, and we would rather
15181 			 * wait for the response.
15182 			 */
15183 			uint32_t udif;
15184 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
15185 			    (uintptr_t)INT_MAX);
15186 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
15187 			if (udif && (udif % mss))
15188 				flags |= TH_ACK_NEEDED;
15189 			else
15190 				flags |= TH_ACK_TIMER_NEEDED;
15191 		} else {
15192 			/* Start delayed ack timer */
15193 			flags |= TH_ACK_TIMER_NEEDED;
15194 		}
15195 	}
15196 	tcp->tcp_rnxt += seg_len;
15197 	U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
15198 
15199 	/* Update SACK list */
15200 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
15201 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
15202 		    &(tcp->tcp_num_sack_blk));
15203 	}
15204 
15205 	if (tcp->tcp_urp_mp) {
15206 		tcp->tcp_urp_mp->b_cont = mp;
15207 		mp = tcp->tcp_urp_mp;
15208 		tcp->tcp_urp_mp = NULL;
15209 		/* Ready for a new signal. */
15210 		tcp->tcp_urp_last_valid = B_FALSE;
15211 #ifdef DEBUG
15212 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15213 		    "tcp_rput: sending exdata_ind %s",
15214 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
15215 #endif /* DEBUG */
15216 	}
15217 
15218 	/*
15219 	 * Check for ancillary data changes compared to last segment.
15220 	 */
15221 	if (tcp->tcp_ipv6_recvancillary != 0) {
15222 		mp = tcp_rput_add_ancillary(tcp, mp, &ipp);
15223 		ASSERT(mp != NULL);
15224 	}
15225 
15226 	if (tcp->tcp_listener || tcp->tcp_hard_binding) {
15227 		/*
15228 		 * Side queue inbound data until the accept happens.
15229 		 * tcp_accept/tcp_rput drains this when the accept happens.
15230 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
15231 		 * T_EXDATA_IND) it is queued on b_next.
15232 		 * XXX Make urgent data use this. Requires:
15233 		 *	Removing tcp_listener check for TH_URG
15234 		 *	Making M_PCPROTO and MARK messages skip the eager case
15235 		 */
15236 
15237 		if (tcp->tcp_kssl_pending) {
15238 			DTRACE_PROBE1(kssl_mblk__ksslinput_pending,
15239 			    mblk_t *, mp);
15240 			tcp_kssl_input(tcp, mp);
15241 		} else {
15242 			tcp_rcv_enqueue(tcp, mp, seg_len);
15243 		}
15244 	} else {
15245 		sodirect_t	*sodp = tcp->tcp_sodirect;
15246 
15247 		/*
15248 		 * If an sodirect connection and an enabled sodirect_t then
15249 		 * sodp will be set to point to the tcp_t/sonode_t shared
15250 		 * sodirect_t and the sodirect_t's lock will be held.
15251 		 */
15252 		if (sodp != NULL) {
15253 			mutex_enter(sodp->sod_lockp);
15254 			if (!(sodp->sod_state & SOD_ENABLED) ||
15255 			    (tcp->tcp_kssl_ctx != NULL &&
15256 			    DB_TYPE(mp) == M_DATA)) {
15257 				mutex_exit(sodp->sod_lockp);
15258 				sodp = NULL;
15259 			}
15260 		}
15261 		if (mp->b_datap->db_type != M_DATA ||
15262 		    (flags & TH_MARKNEXT_NEEDED)) {
15263 			if (sodp != NULL) {
15264 				if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) {
15265 					sodp->sod_uioa.uioa_state &= UIOA_CLR;
15266 					sodp->sod_uioa.uioa_state |= UIOA_FINI;
15267 				}
15268 				if (!SOD_QEMPTY(sodp) &&
15269 				    (sodp->sod_state & SOD_WAKE_NOT)) {
15270 					flags |= tcp_rcv_sod_wakeup(tcp, sodp);
15271 					/* sod_wakeup() did the mutex_exit() */
15272 				} else {
15273 					mutex_exit(sodp->sod_lockp);
15274 				}
15275 			} else if (tcp->tcp_rcv_list != NULL) {
15276 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15277 			}
15278 			ASSERT(tcp->tcp_rcv_list == NULL ||
15279 			    tcp->tcp_fused_sigurg);
15280 
15281 			if (flags & TH_MARKNEXT_NEEDED) {
15282 #ifdef DEBUG
15283 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15284 				    "tcp_rput: sending MSGMARKNEXT %s",
15285 				    tcp_display(tcp, NULL,
15286 				    DISP_PORT_ONLY));
15287 #endif /* DEBUG */
15288 				mp->b_flag |= MSGMARKNEXT;
15289 				flags &= ~TH_MARKNEXT_NEEDED;
15290 			}
15291 
15292 			/* Does this need SSL processing first? */
15293 			if ((tcp->tcp_kssl_ctx != NULL) &&
15294 			    (DB_TYPE(mp) == M_DATA)) {
15295 				DTRACE_PROBE1(kssl_mblk__ksslinput_data1,
15296 				    mblk_t *, mp);
15297 				tcp_kssl_input(tcp, mp);
15298 			} else {
15299 				putnext(tcp->tcp_rq, mp);
15300 				if (!canputnext(tcp->tcp_rq))
15301 					tcp->tcp_rwnd -= seg_len;
15302 			}
15303 		} else if ((tcp->tcp_kssl_ctx != NULL) &&
15304 		    (DB_TYPE(mp) == M_DATA)) {
15305 			/* Do SSL processing first */
15306 			DTRACE_PROBE1(kssl_mblk__ksslinput_data2,
15307 			    mblk_t *, mp);
15308 			tcp_kssl_input(tcp, mp);
15309 		} else if (sodp != NULL) {
15310 			/*
15311 			 * Sodirect so all mblk_t's are queued on the
15312 			 * socket directly, check for wakeup of blocked
15313 			 * reader (if any), and last if flow-controled.
15314 			 */
15315 			flags |= tcp_rcv_sod_enqueue(tcp, sodp, mp, seg_len);
15316 			if ((sodp->sod_state & SOD_WAKE_NEED) ||
15317 			    (flags & (TH_PUSH|TH_FIN))) {
15318 				flags |= tcp_rcv_sod_wakeup(tcp, sodp);
15319 				/* sod_wakeup() did the mutex_exit() */
15320 			} else {
15321 				if (SOD_QFULL(sodp)) {
15322 					/* Q is full, need backenable */
15323 					SOD_QSETBE(sodp);
15324 				}
15325 				mutex_exit(sodp->sod_lockp);
15326 			}
15327 		} else if ((flags & (TH_PUSH|TH_FIN)) ||
15328 		    tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) {
15329 			if (tcp->tcp_rcv_list != NULL) {
15330 				/*
15331 				 * Enqueue the new segment first and then
15332 				 * call tcp_rcv_drain() to send all data
15333 				 * up.  The other way to do this is to
15334 				 * send all queued data up and then call
15335 				 * putnext() to send the new segment up.
15336 				 * This way can remove the else part later
15337 				 * on.
15338 				 *
15339 				 * We don't this to avoid one more call to
15340 				 * canputnext() as tcp_rcv_drain() needs to
15341 				 * call canputnext().
15342 				 */
15343 				tcp_rcv_enqueue(tcp, mp, seg_len);
15344 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15345 			} else {
15346 				putnext(tcp->tcp_rq, mp);
15347 				if (!canputnext(tcp->tcp_rq))
15348 					tcp->tcp_rwnd -= seg_len;
15349 			}
15350 		} else {
15351 			/*
15352 			 * Enqueue all packets when processing an mblk
15353 			 * from the co queue and also enqueue normal packets.
15354 			 */
15355 			tcp_rcv_enqueue(tcp, mp, seg_len);
15356 		}
15357 		/*
15358 		 * Make sure the timer is running if we have data waiting
15359 		 * for a push bit. This provides resiliency against
15360 		 * implementations that do not correctly generate push bits.
15361 		 *
15362 		 * Note, for sodirect if Q isn't empty and there's not a
15363 		 * pending wakeup then we need a timer. Also note that sodp
15364 		 * is assumed to be still valid after exit()ing the sod_lockp
15365 		 * above and while the SOD state can change it can only change
15366 		 * such that the Q is empty now even though data was added
15367 		 * above.
15368 		 */
15369 		if (((sodp != NULL && !SOD_QEMPTY(sodp) &&
15370 		    (sodp->sod_state & SOD_WAKE_NOT)) ||
15371 		    (sodp == NULL && tcp->tcp_rcv_list != NULL)) &&
15372 		    tcp->tcp_push_tid == 0) {
15373 			/*
15374 			 * The connection may be closed at this point, so don't
15375 			 * do anything for a detached tcp.
15376 			 */
15377 			if (!TCP_IS_DETACHED(tcp))
15378 				tcp->tcp_push_tid = TCP_TIMER(tcp,
15379 				    tcp_push_timer,
15380 				    MSEC_TO_TICK(
15381 				    tcps->tcps_push_timer_interval));
15382 		}
15383 	}
15384 
15385 xmit_check:
15386 	/* Is there anything left to do? */
15387 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15388 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
15389 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
15390 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
15391 		goto done;
15392 
15393 	/* Any transmit work to do and a non-zero window? */
15394 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
15395 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
15396 		if (flags & TH_REXMIT_NEEDED) {
15397 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
15398 
15399 			BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans);
15400 			if (snd_size > mss)
15401 				snd_size = mss;
15402 			if (snd_size > tcp->tcp_swnd)
15403 				snd_size = tcp->tcp_swnd;
15404 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
15405 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
15406 			    B_TRUE);
15407 
15408 			if (mp1 != NULL) {
15409 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
15410 				tcp->tcp_csuna = tcp->tcp_snxt;
15411 				BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
15412 				UPDATE_MIB(&tcps->tcps_mib,
15413 				    tcpRetransBytes, snd_size);
15414 				tcp_send_data(tcp, tcp->tcp_wq, mp1);
15415 			}
15416 		}
15417 		if (flags & TH_NEED_SACK_REXMIT) {
15418 			tcp_sack_rxmit(tcp, &flags);
15419 		}
15420 		/*
15421 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
15422 		 * out new segment.  Note that tcp_rexmit should not be
15423 		 * set, otherwise TH_LIMIT_XMIT should not be set.
15424 		 */
15425 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
15426 			if (!tcp->tcp_rexmit) {
15427 				tcp_wput_data(tcp, NULL, B_FALSE);
15428 			} else {
15429 				tcp_ss_rexmit(tcp);
15430 			}
15431 		}
15432 		/*
15433 		 * Adjust tcp_cwnd back to normal value after sending
15434 		 * new data segments.
15435 		 */
15436 		if (flags & TH_LIMIT_XMIT) {
15437 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
15438 			/*
15439 			 * This will restart the timer.  Restarting the
15440 			 * timer is used to avoid a timeout before the
15441 			 * limited transmitted segment's ACK gets back.
15442 			 */
15443 			if (tcp->tcp_xmit_head != NULL)
15444 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
15445 		}
15446 
15447 		/* Anything more to do? */
15448 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
15449 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
15450 			goto done;
15451 	}
15452 ack_check:
15453 	if (flags & TH_SEND_URP_MARK) {
15454 		ASSERT(tcp->tcp_urp_mark_mp);
15455 		/*
15456 		 * Send up any queued data and then send the mark message
15457 		 */
15458 		sodirect_t *sodp;
15459 
15460 		SOD_PTR_ENTER(tcp, sodp);
15461 
15462 		mp1 = tcp->tcp_urp_mark_mp;
15463 		tcp->tcp_urp_mark_mp = NULL;
15464 		if (sodp != NULL) {
15465 			if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) {
15466 				sodp->sod_uioa.uioa_state &= UIOA_CLR;
15467 				sodp->sod_uioa.uioa_state |= UIOA_FINI;
15468 			}
15469 			ASSERT(tcp->tcp_rcv_list == NULL);
15470 
15471 			flags |= tcp_rcv_sod_wakeup(tcp, sodp);
15472 			/* sod_wakeup() does the mutex_exit() */
15473 		} else if (tcp->tcp_rcv_list != NULL) {
15474 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15475 
15476 			ASSERT(tcp->tcp_rcv_list == NULL ||
15477 			    tcp->tcp_fused_sigurg);
15478 
15479 		}
15480 		putnext(tcp->tcp_rq, mp1);
15481 #ifdef DEBUG
15482 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15483 		    "tcp_rput: sending zero-length %s %s",
15484 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
15485 		    "MSGNOTMARKNEXT"),
15486 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
15487 #endif /* DEBUG */
15488 		flags &= ~TH_SEND_URP_MARK;
15489 	}
15490 	if (flags & TH_ACK_NEEDED) {
15491 		/*
15492 		 * Time to send an ack for some reason.
15493 		 */
15494 		mp1 = tcp_ack_mp(tcp);
15495 
15496 		if (mp1 != NULL) {
15497 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
15498 			BUMP_LOCAL(tcp->tcp_obsegs);
15499 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
15500 		}
15501 		if (tcp->tcp_ack_tid != 0) {
15502 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
15503 			tcp->tcp_ack_tid = 0;
15504 		}
15505 	}
15506 	if (flags & TH_ACK_TIMER_NEEDED) {
15507 		/*
15508 		 * Arrange for deferred ACK or push wait timeout.
15509 		 * Start timer if it is not already running.
15510 		 */
15511 		if (tcp->tcp_ack_tid == 0) {
15512 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
15513 			    MSEC_TO_TICK(tcp->tcp_localnet ?
15514 			    (clock_t)tcps->tcps_local_dack_interval :
15515 			    (clock_t)tcps->tcps_deferred_ack_interval));
15516 		}
15517 	}
15518 	if (flags & TH_ORDREL_NEEDED) {
15519 		/*
15520 		 * Send up the ordrel_ind unless we are an eager guy.
15521 		 * In the eager case tcp_rsrv will do this when run
15522 		 * after tcp_accept is done.
15523 		 */
15524 		sodirect_t *sodp;
15525 
15526 		ASSERT(tcp->tcp_listener == NULL);
15527 
15528 		SOD_PTR_ENTER(tcp, sodp);
15529 		if (sodp != NULL) {
15530 			if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) {
15531 				sodp->sod_uioa.uioa_state &= UIOA_CLR;
15532 				sodp->sod_uioa.uioa_state |= UIOA_FINI;
15533 			}
15534 			/* No more sodirect */
15535 			tcp->tcp_sodirect = NULL;
15536 			if (!SOD_QEMPTY(sodp)) {
15537 				/* Mblk(s) to process, notify */
15538 				flags |= tcp_rcv_sod_wakeup(tcp, sodp);
15539 				/* sod_wakeup() does the mutex_exit() */
15540 			} else {
15541 				/* Nothing to process */
15542 				mutex_exit(sodp->sod_lockp);
15543 			}
15544 		} else if (tcp->tcp_rcv_list != NULL) {
15545 			/*
15546 			 * Push any mblk(s) enqueued from co processing.
15547 			 */
15548 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15549 
15550 			ASSERT(tcp->tcp_rcv_list == NULL ||
15551 			    tcp->tcp_fused_sigurg);
15552 		}
15553 
15554 		mp1 = tcp->tcp_ordrel_mp;
15555 		tcp->tcp_ordrel_mp = NULL;
15556 		tcp->tcp_ordrel_done = B_TRUE;
15557 		putnext(tcp->tcp_rq, mp1);
15558 	}
15559 done:
15560 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15561 }
15562 
15563 /*
15564  * This function does PAWS protection check. Returns B_TRUE if the
15565  * segment passes the PAWS test, else returns B_FALSE.
15566  */
15567 boolean_t
15568 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp)
15569 {
15570 	uint8_t	flags;
15571 	int	options;
15572 	uint8_t *up;
15573 
15574 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
15575 	/*
15576 	 * If timestamp option is aligned nicely, get values inline,
15577 	 * otherwise call general routine to parse.  Only do that
15578 	 * if timestamp is the only option.
15579 	 */
15580 	if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH +
15581 	    TCPOPT_REAL_TS_LEN &&
15582 	    OK_32PTR((up = ((uint8_t *)tcph) +
15583 	    TCP_MIN_HEADER_LENGTH)) &&
15584 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
15585 		tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
15586 		tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
15587 
15588 		options = TCP_OPT_TSTAMP_PRESENT;
15589 	} else {
15590 		if (tcp->tcp_snd_sack_ok) {
15591 			tcpoptp->tcp = tcp;
15592 		} else {
15593 			tcpoptp->tcp = NULL;
15594 		}
15595 		options = tcp_parse_options(tcph, tcpoptp);
15596 	}
15597 
15598 	if (options & TCP_OPT_TSTAMP_PRESENT) {
15599 		/*
15600 		 * Do PAWS per RFC 1323 section 4.2.  Accept RST
15601 		 * regardless of the timestamp, page 18 RFC 1323.bis.
15602 		 */
15603 		if ((flags & TH_RST) == 0 &&
15604 		    TSTMP_LT(tcpoptp->tcp_opt_ts_val,
15605 		    tcp->tcp_ts_recent)) {
15606 			if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt +
15607 			    PAWS_TIMEOUT)) {
15608 				/* This segment is not acceptable. */
15609 				return (B_FALSE);
15610 			} else {
15611 				/*
15612 				 * Connection has been idle for
15613 				 * too long.  Reset the timestamp
15614 				 * and assume the segment is valid.
15615 				 */
15616 				tcp->tcp_ts_recent =
15617 				    tcpoptp->tcp_opt_ts_val;
15618 			}
15619 		}
15620 	} else {
15621 		/*
15622 		 * If we don't get a timestamp on every packet, we
15623 		 * figure we can't really trust 'em, so we stop sending
15624 		 * and parsing them.
15625 		 */
15626 		tcp->tcp_snd_ts_ok = B_FALSE;
15627 
15628 		tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15629 		tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15630 		tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4);
15631 		/*
15632 		 * Adjust the tcp_mss accordingly. We also need to
15633 		 * adjust tcp_cwnd here in accordance with the new mss.
15634 		 * But we avoid doing a slow start here so as to not
15635 		 * to lose on the transfer rate built up so far.
15636 		 */
15637 		tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE);
15638 		if (tcp->tcp_snd_sack_ok) {
15639 			ASSERT(tcp->tcp_sack_info != NULL);
15640 			tcp->tcp_max_sack_blk = 4;
15641 		}
15642 	}
15643 	return (B_TRUE);
15644 }
15645 
15646 /*
15647  * Attach ancillary data to a received TCP segments for the
15648  * ancillary pieces requested by the application that are
15649  * different than they were in the previous data segment.
15650  *
15651  * Save the "current" values once memory allocation is ok so that
15652  * when memory allocation fails we can just wait for the next data segment.
15653  */
15654 static mblk_t *
15655 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp)
15656 {
15657 	struct T_optdata_ind *todi;
15658 	int optlen;
15659 	uchar_t *optptr;
15660 	struct T_opthdr *toh;
15661 	uint_t addflag;	/* Which pieces to add */
15662 	mblk_t *mp1;
15663 
15664 	optlen = 0;
15665 	addflag = 0;
15666 	/* If app asked for pktinfo and the index has changed ... */
15667 	if ((ipp->ipp_fields & IPPF_IFINDEX) &&
15668 	    ipp->ipp_ifindex != tcp->tcp_recvifindex &&
15669 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) {
15670 		optlen += sizeof (struct T_opthdr) +
15671 		    sizeof (struct in6_pktinfo);
15672 		addflag |= TCP_IPV6_RECVPKTINFO;
15673 	}
15674 	/* If app asked for hoplimit and it has changed ... */
15675 	if ((ipp->ipp_fields & IPPF_HOPLIMIT) &&
15676 	    ipp->ipp_hoplimit != tcp->tcp_recvhops &&
15677 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) {
15678 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15679 		addflag |= TCP_IPV6_RECVHOPLIMIT;
15680 	}
15681 	/* If app asked for tclass and it has changed ... */
15682 	if ((ipp->ipp_fields & IPPF_TCLASS) &&
15683 	    ipp->ipp_tclass != tcp->tcp_recvtclass &&
15684 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) {
15685 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15686 		addflag |= TCP_IPV6_RECVTCLASS;
15687 	}
15688 	/*
15689 	 * If app asked for hopbyhop headers and it has changed ...
15690 	 * For security labels, note that (1) security labels can't change on
15691 	 * a connected socket at all, (2) we're connected to at most one peer,
15692 	 * (3) if anything changes, then it must be some other extra option.
15693 	 */
15694 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) &&
15695 	    ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
15696 	    (ipp->ipp_fields & IPPF_HOPOPTS),
15697 	    ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
15698 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen -
15699 		    tcp->tcp_label_len;
15700 		addflag |= TCP_IPV6_RECVHOPOPTS;
15701 		if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
15702 		    &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
15703 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
15704 			return (mp);
15705 	}
15706 	/* If app asked for dst headers before routing headers ... */
15707 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) &&
15708 	    ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen,
15709 	    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15710 	    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) {
15711 		optlen += sizeof (struct T_opthdr) +
15712 		    ipp->ipp_rtdstoptslen;
15713 		addflag |= TCP_IPV6_RECVRTDSTOPTS;
15714 		if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts,
15715 		    &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS),
15716 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen))
15717 			return (mp);
15718 	}
15719 	/* If app asked for routing headers and it has changed ... */
15720 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) &&
15721 	    ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
15722 	    (ipp->ipp_fields & IPPF_RTHDR),
15723 	    ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
15724 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
15725 		addflag |= TCP_IPV6_RECVRTHDR;
15726 		if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
15727 		    &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
15728 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
15729 			return (mp);
15730 	}
15731 	/* If app asked for dest headers and it has changed ... */
15732 	if ((tcp->tcp_ipv6_recvancillary &
15733 	    (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) &&
15734 	    ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
15735 	    (ipp->ipp_fields & IPPF_DSTOPTS),
15736 	    ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
15737 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
15738 		addflag |= TCP_IPV6_RECVDSTOPTS;
15739 		if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
15740 		    &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
15741 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
15742 			return (mp);
15743 	}
15744 
15745 	if (optlen == 0) {
15746 		/* Nothing to add */
15747 		return (mp);
15748 	}
15749 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
15750 	if (mp1 == NULL) {
15751 		/*
15752 		 * Defer sending ancillary data until the next TCP segment
15753 		 * arrives.
15754 		 */
15755 		return (mp);
15756 	}
15757 	mp1->b_cont = mp;
15758 	mp = mp1;
15759 	mp->b_wptr += sizeof (*todi) + optlen;
15760 	mp->b_datap->db_type = M_PROTO;
15761 	todi = (struct T_optdata_ind *)mp->b_rptr;
15762 	todi->PRIM_type = T_OPTDATA_IND;
15763 	todi->DATA_flag = 1;	/* MORE data */
15764 	todi->OPT_length = optlen;
15765 	todi->OPT_offset = sizeof (*todi);
15766 	optptr = (uchar_t *)&todi[1];
15767 	/*
15768 	 * If app asked for pktinfo and the index has changed ...
15769 	 * Note that the local address never changes for the connection.
15770 	 */
15771 	if (addflag & TCP_IPV6_RECVPKTINFO) {
15772 		struct in6_pktinfo *pkti;
15773 
15774 		toh = (struct T_opthdr *)optptr;
15775 		toh->level = IPPROTO_IPV6;
15776 		toh->name = IPV6_PKTINFO;
15777 		toh->len = sizeof (*toh) + sizeof (*pkti);
15778 		toh->status = 0;
15779 		optptr += sizeof (*toh);
15780 		pkti = (struct in6_pktinfo *)optptr;
15781 		if (tcp->tcp_ipversion == IPV6_VERSION)
15782 			pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src;
15783 		else
15784 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
15785 			    &pkti->ipi6_addr);
15786 		pkti->ipi6_ifindex = ipp->ipp_ifindex;
15787 		optptr += sizeof (*pkti);
15788 		ASSERT(OK_32PTR(optptr));
15789 		/* Save as "last" value */
15790 		tcp->tcp_recvifindex = ipp->ipp_ifindex;
15791 	}
15792 	/* If app asked for hoplimit and it has changed ... */
15793 	if (addflag & TCP_IPV6_RECVHOPLIMIT) {
15794 		toh = (struct T_opthdr *)optptr;
15795 		toh->level = IPPROTO_IPV6;
15796 		toh->name = IPV6_HOPLIMIT;
15797 		toh->len = sizeof (*toh) + sizeof (uint_t);
15798 		toh->status = 0;
15799 		optptr += sizeof (*toh);
15800 		*(uint_t *)optptr = ipp->ipp_hoplimit;
15801 		optptr += sizeof (uint_t);
15802 		ASSERT(OK_32PTR(optptr));
15803 		/* Save as "last" value */
15804 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
15805 	}
15806 	/* If app asked for tclass and it has changed ... */
15807 	if (addflag & TCP_IPV6_RECVTCLASS) {
15808 		toh = (struct T_opthdr *)optptr;
15809 		toh->level = IPPROTO_IPV6;
15810 		toh->name = IPV6_TCLASS;
15811 		toh->len = sizeof (*toh) + sizeof (uint_t);
15812 		toh->status = 0;
15813 		optptr += sizeof (*toh);
15814 		*(uint_t *)optptr = ipp->ipp_tclass;
15815 		optptr += sizeof (uint_t);
15816 		ASSERT(OK_32PTR(optptr));
15817 		/* Save as "last" value */
15818 		tcp->tcp_recvtclass = ipp->ipp_tclass;
15819 	}
15820 	if (addflag & TCP_IPV6_RECVHOPOPTS) {
15821 		toh = (struct T_opthdr *)optptr;
15822 		toh->level = IPPROTO_IPV6;
15823 		toh->name = IPV6_HOPOPTS;
15824 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen -
15825 		    tcp->tcp_label_len;
15826 		toh->status = 0;
15827 		optptr += sizeof (*toh);
15828 		bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr,
15829 		    ipp->ipp_hopoptslen - tcp->tcp_label_len);
15830 		optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len;
15831 		ASSERT(OK_32PTR(optptr));
15832 		/* Save as last value */
15833 		ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
15834 		    (ipp->ipp_fields & IPPF_HOPOPTS),
15835 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
15836 	}
15837 	if (addflag & TCP_IPV6_RECVRTDSTOPTS) {
15838 		toh = (struct T_opthdr *)optptr;
15839 		toh->level = IPPROTO_IPV6;
15840 		toh->name = IPV6_RTHDRDSTOPTS;
15841 		toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen;
15842 		toh->status = 0;
15843 		optptr += sizeof (*toh);
15844 		bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen);
15845 		optptr += ipp->ipp_rtdstoptslen;
15846 		ASSERT(OK_32PTR(optptr));
15847 		/* Save as last value */
15848 		ip_savebuf((void **)&tcp->tcp_rtdstopts,
15849 		    &tcp->tcp_rtdstoptslen,
15850 		    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15851 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen);
15852 	}
15853 	if (addflag & TCP_IPV6_RECVRTHDR) {
15854 		toh = (struct T_opthdr *)optptr;
15855 		toh->level = IPPROTO_IPV6;
15856 		toh->name = IPV6_RTHDR;
15857 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
15858 		toh->status = 0;
15859 		optptr += sizeof (*toh);
15860 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
15861 		optptr += ipp->ipp_rthdrlen;
15862 		ASSERT(OK_32PTR(optptr));
15863 		/* Save as last value */
15864 		ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
15865 		    (ipp->ipp_fields & IPPF_RTHDR),
15866 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
15867 	}
15868 	if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) {
15869 		toh = (struct T_opthdr *)optptr;
15870 		toh->level = IPPROTO_IPV6;
15871 		toh->name = IPV6_DSTOPTS;
15872 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
15873 		toh->status = 0;
15874 		optptr += sizeof (*toh);
15875 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
15876 		optptr += ipp->ipp_dstoptslen;
15877 		ASSERT(OK_32PTR(optptr));
15878 		/* Save as last value */
15879 		ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
15880 		    (ipp->ipp_fields & IPPF_DSTOPTS),
15881 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
15882 	}
15883 	ASSERT(optptr == mp->b_wptr);
15884 	return (mp);
15885 }
15886 
15887 
15888 /*
15889  * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK
15890  * or a "bad" IRE detected by tcp_adapt_ire.
15891  * We can't tell if the failure was due to the laddr or the faddr
15892  * thus we clear out all addresses and ports.
15893  */
15894 static void
15895 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error)
15896 {
15897 	queue_t	*q = tcp->tcp_rq;
15898 	tcph_t	*tcph;
15899 	struct T_error_ack *tea;
15900 	conn_t	*connp = tcp->tcp_connp;
15901 
15902 
15903 	ASSERT(mp->b_datap->db_type == M_PCPROTO);
15904 
15905 	if (mp->b_cont) {
15906 		freemsg(mp->b_cont);
15907 		mp->b_cont = NULL;
15908 	}
15909 	tea = (struct T_error_ack *)mp->b_rptr;
15910 	switch (tea->PRIM_type) {
15911 	case T_BIND_ACK:
15912 		/*
15913 		 * Need to unbind with classifier since we were just told that
15914 		 * our bind succeeded.
15915 		 */
15916 		tcp->tcp_hard_bound = B_FALSE;
15917 		tcp->tcp_hard_binding = B_FALSE;
15918 
15919 		ipcl_hash_remove(connp);
15920 		/* Reuse the mblk if possible */
15921 		ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >=
15922 		    sizeof (*tea));
15923 		mp->b_rptr = mp->b_datap->db_base;
15924 		mp->b_wptr = mp->b_rptr + sizeof (*tea);
15925 		tea = (struct T_error_ack *)mp->b_rptr;
15926 		tea->PRIM_type = T_ERROR_ACK;
15927 		tea->TLI_error = TSYSERR;
15928 		tea->UNIX_error = error;
15929 		if (tcp->tcp_state >= TCPS_SYN_SENT) {
15930 			tea->ERROR_prim = T_CONN_REQ;
15931 		} else {
15932 			tea->ERROR_prim = O_T_BIND_REQ;
15933 		}
15934 		break;
15935 
15936 	case T_ERROR_ACK:
15937 		if (tcp->tcp_state >= TCPS_SYN_SENT)
15938 			tea->ERROR_prim = T_CONN_REQ;
15939 		break;
15940 	default:
15941 		panic("tcp_bind_failed: unexpected TPI type");
15942 		/*NOTREACHED*/
15943 	}
15944 
15945 	tcp->tcp_state = TCPS_IDLE;
15946 	if (tcp->tcp_ipversion == IPV4_VERSION)
15947 		tcp->tcp_ipha->ipha_src = 0;
15948 	else
15949 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
15950 	/*
15951 	 * Copy of the src addr. in tcp_t is needed since
15952 	 * the lookup funcs. can only look at tcp_t
15953 	 */
15954 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
15955 
15956 	tcph = tcp->tcp_tcph;
15957 	tcph->th_lport[0] = 0;
15958 	tcph->th_lport[1] = 0;
15959 	tcp_bind_hash_remove(tcp);
15960 	bzero(&connp->u_port, sizeof (connp->u_port));
15961 	/* blow away saved option results if any */
15962 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
15963 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
15964 
15965 	conn_delete_ire(tcp->tcp_connp, NULL);
15966 	putnext(q, mp);
15967 }
15968 
15969 /*
15970  * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA
15971  * messages.
15972  */
15973 void
15974 tcp_rput_other(tcp_t *tcp, mblk_t *mp)
15975 {
15976 	mblk_t	*mp1;
15977 	uchar_t	*rptr = mp->b_rptr;
15978 	queue_t	*q = tcp->tcp_rq;
15979 	struct T_error_ack *tea;
15980 	uint32_t mss;
15981 	mblk_t *syn_mp;
15982 	mblk_t *mdti;
15983 	mblk_t *lsoi;
15984 	int	retval;
15985 	mblk_t *ire_mp;
15986 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15987 
15988 	switch (mp->b_datap->db_type) {
15989 	case M_PROTO:
15990 	case M_PCPROTO:
15991 		ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
15992 		if ((mp->b_wptr - rptr) < sizeof (t_scalar_t))
15993 			break;
15994 		tea = (struct T_error_ack *)rptr;
15995 		switch (tea->PRIM_type) {
15996 		case T_BIND_ACK:
15997 			/*
15998 			 * Adapt Multidata information, if any.  The
15999 			 * following tcp_mdt_update routine will free
16000 			 * the message.
16001 			 */
16002 			if ((mdti = tcp_mdt_info_mp(mp)) != NULL) {
16003 				tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti->
16004 				    b_rptr)->mdt_capab, B_TRUE);
16005 				freemsg(mdti);
16006 			}
16007 
16008 			/*
16009 			 * Check to update LSO information with tcp, and
16010 			 * tcp_lso_update routine will free the message.
16011 			 */
16012 			if ((lsoi = tcp_lso_info_mp(mp)) != NULL) {
16013 				tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi->
16014 				    b_rptr)->lso_capab);
16015 				freemsg(lsoi);
16016 			}
16017 
16018 			/* Get the IRE, if we had requested for it */
16019 			ire_mp = tcp_ire_mp(mp);
16020 
16021 			if (tcp->tcp_hard_binding) {
16022 				tcp->tcp_hard_binding = B_FALSE;
16023 				tcp->tcp_hard_bound = B_TRUE;
16024 				CL_INET_CONNECT(tcp);
16025 			} else {
16026 				if (ire_mp != NULL)
16027 					freeb(ire_mp);
16028 				goto after_syn_sent;
16029 			}
16030 
16031 			retval = tcp_adapt_ire(tcp, ire_mp);
16032 			if (ire_mp != NULL)
16033 				freeb(ire_mp);
16034 			if (retval == 0) {
16035 				tcp_bind_failed(tcp, mp,
16036 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
16037 				    ENETUNREACH : EADDRNOTAVAIL));
16038 				return;
16039 			}
16040 			/*
16041 			 * Don't let an endpoint connect to itself.
16042 			 * Also checked in tcp_connect() but that
16043 			 * check can't handle the case when the
16044 			 * local IP address is INADDR_ANY.
16045 			 */
16046 			if (tcp->tcp_ipversion == IPV4_VERSION) {
16047 				if ((tcp->tcp_ipha->ipha_dst ==
16048 				    tcp->tcp_ipha->ipha_src) &&
16049 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
16050 				    tcp->tcp_tcph->th_fport))) {
16051 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
16052 					return;
16053 				}
16054 			} else {
16055 				if (IN6_ARE_ADDR_EQUAL(
16056 				    &tcp->tcp_ip6h->ip6_dst,
16057 				    &tcp->tcp_ip6h->ip6_src) &&
16058 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
16059 				    tcp->tcp_tcph->th_fport))) {
16060 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
16061 					return;
16062 				}
16063 			}
16064 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT);
16065 			/*
16066 			 * This should not be possible!  Just for
16067 			 * defensive coding...
16068 			 */
16069 			if (tcp->tcp_state != TCPS_SYN_SENT)
16070 				goto after_syn_sent;
16071 
16072 			if (is_system_labeled() &&
16073 			    !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) {
16074 				tcp_bind_failed(tcp, mp, EHOSTUNREACH);
16075 				return;
16076 			}
16077 
16078 			ASSERT(q == tcp->tcp_rq);
16079 			/*
16080 			 * tcp_adapt_ire() does not adjust
16081 			 * for TCP/IP header length.
16082 			 */
16083 			mss = tcp->tcp_mss - tcp->tcp_hdr_len;
16084 
16085 			/*
16086 			 * Just make sure our rwnd is at
16087 			 * least tcp_recv_hiwat_mss * MSS
16088 			 * large, and round up to the nearest
16089 			 * MSS.
16090 			 *
16091 			 * We do the round up here because
16092 			 * we need to get the interface
16093 			 * MTU first before we can do the
16094 			 * round up.
16095 			 */
16096 			tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
16097 			    tcps->tcps_recv_hiwat_minmss * mss);
16098 			q->q_hiwat = tcp->tcp_rwnd;
16099 			tcp_set_ws_value(tcp);
16100 			U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws),
16101 			    tcp->tcp_tcph->th_win);
16102 			if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always)
16103 				tcp->tcp_snd_ws_ok = B_TRUE;
16104 
16105 			/*
16106 			 * Set tcp_snd_ts_ok to true
16107 			 * so that tcp_xmit_mp will
16108 			 * include the timestamp
16109 			 * option in the SYN segment.
16110 			 */
16111 			if (tcps->tcps_tstamp_always ||
16112 			    (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) {
16113 				tcp->tcp_snd_ts_ok = B_TRUE;
16114 			}
16115 
16116 			/*
16117 			 * tcp_snd_sack_ok can be set in
16118 			 * tcp_adapt_ire() if the sack metric
16119 			 * is set.  So check it here also.
16120 			 */
16121 			if (tcps->tcps_sack_permitted == 2 ||
16122 			    tcp->tcp_snd_sack_ok) {
16123 				if (tcp->tcp_sack_info == NULL) {
16124 					tcp->tcp_sack_info =
16125 					    kmem_cache_alloc(
16126 					    tcp_sack_info_cache,
16127 					    KM_SLEEP);
16128 				}
16129 				tcp->tcp_snd_sack_ok = B_TRUE;
16130 			}
16131 
16132 			/*
16133 			 * Should we use ECN?  Note that the current
16134 			 * default value (SunOS 5.9) of tcp_ecn_permitted
16135 			 * is 1.  The reason for doing this is that there
16136 			 * are equipments out there that will drop ECN
16137 			 * enabled IP packets.  Setting it to 1 avoids
16138 			 * compatibility problems.
16139 			 */
16140 			if (tcps->tcps_ecn_permitted == 2)
16141 				tcp->tcp_ecn_ok = B_TRUE;
16142 
16143 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
16144 			syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
16145 			    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
16146 			if (syn_mp) {
16147 				cred_t *cr;
16148 				pid_t pid;
16149 
16150 				/*
16151 				 * Obtain the credential from the
16152 				 * thread calling connect(); the credential
16153 				 * lives on in the second mblk which
16154 				 * originated from T_CONN_REQ and is echoed
16155 				 * with the T_BIND_ACK from ip.  If none
16156 				 * can be found, default to the creator
16157 				 * of the socket.
16158 				 */
16159 				if (mp->b_cont == NULL ||
16160 				    (cr = DB_CRED(mp->b_cont)) == NULL) {
16161 					cr = tcp->tcp_cred;
16162 					pid = tcp->tcp_cpid;
16163 				} else {
16164 					pid = DB_CPID(mp->b_cont);
16165 				}
16166 				mblk_setcred(syn_mp, cr);
16167 				DB_CPID(syn_mp) = pid;
16168 				tcp_send_data(tcp, tcp->tcp_wq, syn_mp);
16169 			}
16170 		after_syn_sent:
16171 			/*
16172 			 * A trailer mblk indicates a waiting client upstream.
16173 			 * We complete here the processing begun in
16174 			 * either tcp_bind() or tcp_connect() by passing
16175 			 * upstream the reply message they supplied.
16176 			 */
16177 			mp1 = mp;
16178 			mp = mp->b_cont;
16179 			freeb(mp1);
16180 			if (mp)
16181 				break;
16182 			return;
16183 		case T_ERROR_ACK:
16184 			if (tcp->tcp_debug) {
16185 				(void) strlog(TCP_MOD_ID, 0, 1,
16186 				    SL_TRACE|SL_ERROR,
16187 				    "tcp_rput_other: case T_ERROR_ACK, "
16188 				    "ERROR_prim == %d",
16189 				    tea->ERROR_prim);
16190 			}
16191 			switch (tea->ERROR_prim) {
16192 			case O_T_BIND_REQ:
16193 			case T_BIND_REQ:
16194 				tcp_bind_failed(tcp, mp,
16195 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
16196 				    ENETUNREACH : EADDRNOTAVAIL));
16197 				return;
16198 			case T_UNBIND_REQ:
16199 				tcp->tcp_hard_binding = B_FALSE;
16200 				tcp->tcp_hard_bound = B_FALSE;
16201 				if (mp->b_cont) {
16202 					freemsg(mp->b_cont);
16203 					mp->b_cont = NULL;
16204 				}
16205 				if (tcp->tcp_unbind_pending)
16206 					tcp->tcp_unbind_pending = 0;
16207 				else {
16208 					/* From tcp_ip_unbind() - free */
16209 					freemsg(mp);
16210 					return;
16211 				}
16212 				break;
16213 			case T_SVR4_OPTMGMT_REQ:
16214 				if (tcp->tcp_drop_opt_ack_cnt > 0) {
16215 					/* T_OPTMGMT_REQ generated by TCP */
16216 					printf("T_SVR4_OPTMGMT_REQ failed "
16217 					    "%d/%d - dropped (cnt %d)\n",
16218 					    tea->TLI_error, tea->UNIX_error,
16219 					    tcp->tcp_drop_opt_ack_cnt);
16220 					freemsg(mp);
16221 					tcp->tcp_drop_opt_ack_cnt--;
16222 					return;
16223 				}
16224 				break;
16225 			}
16226 			if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ &&
16227 			    tcp->tcp_drop_opt_ack_cnt > 0) {
16228 				printf("T_SVR4_OPTMGMT_REQ failed %d/%d "
16229 				    "- dropped (cnt %d)\n",
16230 				    tea->TLI_error, tea->UNIX_error,
16231 				    tcp->tcp_drop_opt_ack_cnt);
16232 				freemsg(mp);
16233 				tcp->tcp_drop_opt_ack_cnt--;
16234 				return;
16235 			}
16236 			break;
16237 		case T_OPTMGMT_ACK:
16238 			if (tcp->tcp_drop_opt_ack_cnt > 0) {
16239 				/* T_OPTMGMT_REQ generated by TCP */
16240 				freemsg(mp);
16241 				tcp->tcp_drop_opt_ack_cnt--;
16242 				return;
16243 			}
16244 			break;
16245 		default:
16246 			break;
16247 		}
16248 		break;
16249 	case M_FLUSH:
16250 		if (*rptr & FLUSHR)
16251 			flushq(q, FLUSHDATA);
16252 		break;
16253 	default:
16254 		/* M_CTL will be directly sent to tcp_icmp_error() */
16255 		ASSERT(DB_TYPE(mp) != M_CTL);
16256 		break;
16257 	}
16258 	/*
16259 	 * Make sure we set this bit before sending the ACK for
16260 	 * bind. Otherwise accept could possibly run and free
16261 	 * this tcp struct.
16262 	 */
16263 	putnext(q, mp);
16264 }
16265 
16266 /* ARGSUSED */
16267 static void
16268 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2)
16269 {
16270 	conn_t	*connp = (conn_t *)arg;
16271 	tcp_t	*tcp = connp->conn_tcp;
16272 	queue_t	*q = tcp->tcp_rq;
16273 	uint_t	thwin;
16274 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16275 	sodirect_t	*sodp;
16276 	boolean_t	fc;
16277 
16278 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
16279 	tcp->tcp_rsrv_mp = mp;
16280 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
16281 
16282 	TCP_STAT(tcps, tcp_rsrv_calls);
16283 
16284 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
16285 		return;
16286 	}
16287 
16288 	if (tcp->tcp_fused) {
16289 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
16290 
16291 		ASSERT(tcp->tcp_fused);
16292 		ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused);
16293 		ASSERT(peer_tcp->tcp_loopback_peer == tcp);
16294 		ASSERT(!TCP_IS_DETACHED(tcp));
16295 		ASSERT(tcp->tcp_connp->conn_sqp ==
16296 		    peer_tcp->tcp_connp->conn_sqp);
16297 
16298 		/*
16299 		 * Normally we would not get backenabled in synchronous
16300 		 * streams mode, but in case this happens, we need to plug
16301 		 * synchronous streams during our drain to prevent a race
16302 		 * with tcp_fuse_rrw() or tcp_fuse_rinfop().
16303 		 */
16304 		TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
16305 		if (tcp->tcp_rcv_list != NULL)
16306 			(void) tcp_rcv_drain(tcp->tcp_rq, tcp);
16307 
16308 		if (peer_tcp > tcp) {
16309 			mutex_enter(&peer_tcp->tcp_non_sq_lock);
16310 			mutex_enter(&tcp->tcp_non_sq_lock);
16311 		} else {
16312 			mutex_enter(&tcp->tcp_non_sq_lock);
16313 			mutex_enter(&peer_tcp->tcp_non_sq_lock);
16314 		}
16315 
16316 		if (peer_tcp->tcp_flow_stopped &&
16317 		    (TCP_UNSENT_BYTES(peer_tcp) <=
16318 		    peer_tcp->tcp_xmit_lowater)) {
16319 			tcp_clrqfull(peer_tcp);
16320 		}
16321 		mutex_exit(&peer_tcp->tcp_non_sq_lock);
16322 		mutex_exit(&tcp->tcp_non_sq_lock);
16323 
16324 		TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
16325 		TCP_STAT(tcps, tcp_fusion_backenabled);
16326 		return;
16327 	}
16328 
16329 	SOD_PTR_ENTER(tcp, sodp);
16330 	if (sodp != NULL) {
16331 		/* An sodirect connection */
16332 		if (SOD_QFULL(sodp)) {
16333 			/* Flow-controlled, need another back-enable */
16334 			fc = B_TRUE;
16335 			SOD_QSETBE(sodp);
16336 		} else {
16337 			/* Not flow-controlled */
16338 			fc = B_FALSE;
16339 		}
16340 		mutex_exit(sodp->sod_lockp);
16341 	} else if (canputnext(q)) {
16342 		/* STREAMS, not flow-controlled */
16343 		fc = B_FALSE;
16344 	} else {
16345 		/* STREAMS, flow-controlled */
16346 		fc = B_TRUE;
16347 	}
16348 	if (!fc) {
16349 		/* Not flow-controlled, open rwnd */
16350 		tcp->tcp_rwnd = q->q_hiwat;
16351 		thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
16352 		    << tcp->tcp_rcv_ws;
16353 		thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
16354 		/*
16355 		 * Send back a window update immediately if TCP is above
16356 		 * ESTABLISHED state and the increase of the rcv window
16357 		 * that the other side knows is at least 1 MSS after flow
16358 		 * control is lifted.
16359 		 */
16360 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
16361 		    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
16362 			tcp_xmit_ctl(NULL, tcp,
16363 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
16364 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
16365 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
16366 		}
16367 	}
16368 }
16369 
16370 /*
16371  * The read side service routine is called mostly when we get back-enabled as a
16372  * result of flow control relief.  Since we don't actually queue anything in
16373  * TCP, we have no data to send out of here.  What we do is clear the receive
16374  * window, and send out a window update.
16375  */
16376 static void
16377 tcp_rsrv(queue_t *q)
16378 {
16379 	conn_t		*connp = Q_TO_CONN(q);
16380 	tcp_t		*tcp = connp->conn_tcp;
16381 	mblk_t		*mp;
16382 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16383 
16384 	/* No code does a putq on the read side */
16385 	ASSERT(q->q_first == NULL);
16386 
16387 	/* Nothing to do for the default queue */
16388 	if (q == tcps->tcps_g_q) {
16389 		return;
16390 	}
16391 
16392 	/*
16393 	 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already
16394 	 * been run.  So just return.
16395 	 */
16396 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
16397 	if ((mp = tcp->tcp_rsrv_mp) == NULL) {
16398 		mutex_exit(&tcp->tcp_rsrv_mp_lock);
16399 		return;
16400 	}
16401 	tcp->tcp_rsrv_mp = NULL;
16402 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
16403 
16404 	CONN_INC_REF(connp);
16405 	squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp,
16406 	    SQTAG_TCP_RSRV);
16407 }
16408 
16409 /*
16410  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
16411  * We do not allow the receive window to shrink.  After setting rwnd,
16412  * set the flow control hiwat of the stream.
16413  *
16414  * This function is called in 2 cases:
16415  *
16416  * 1) Before data transfer begins, in tcp_accept_comm() for accepting a
16417  *    connection (passive open) and in tcp_rput_data() for active connect.
16418  *    This is called after tcp_mss_set() when the desired MSS value is known.
16419  *    This makes sure that our window size is a mutiple of the other side's
16420  *    MSS.
16421  * 2) Handling SO_RCVBUF option.
16422  *
16423  * It is ASSUMED that the requested size is a multiple of the current MSS.
16424  *
16425  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
16426  * user requests so.
16427  */
16428 static int
16429 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
16430 {
16431 	uint32_t	mss = tcp->tcp_mss;
16432 	uint32_t	old_max_rwnd;
16433 	uint32_t	max_transmittable_rwnd;
16434 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
16435 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16436 
16437 	if (tcp->tcp_fused) {
16438 		size_t sth_hiwat;
16439 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
16440 
16441 		ASSERT(peer_tcp != NULL);
16442 		/*
16443 		 * Record the stream head's high water mark for
16444 		 * this endpoint; this is used for flow-control
16445 		 * purposes in tcp_fuse_output().
16446 		 */
16447 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
16448 		if (!tcp_detached)
16449 			(void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat);
16450 
16451 		/*
16452 		 * In the fusion case, the maxpsz stream head value of
16453 		 * our peer is set according to its send buffer size
16454 		 * and our receive buffer size; since the latter may
16455 		 * have changed we need to update the peer's maxpsz.
16456 		 */
16457 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
16458 		return (rwnd);
16459 	}
16460 
16461 	if (tcp_detached)
16462 		old_max_rwnd = tcp->tcp_rwnd;
16463 	else
16464 		old_max_rwnd = tcp->tcp_rq->q_hiwat;
16465 
16466 	/*
16467 	 * Insist on a receive window that is at least
16468 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
16469 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
16470 	 * and delayed acknowledgement.
16471 	 */
16472 	rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss);
16473 
16474 	/*
16475 	 * If window size info has already been exchanged, TCP should not
16476 	 * shrink the window.  Shrinking window is doable if done carefully.
16477 	 * We may add that support later.  But so far there is not a real
16478 	 * need to do that.
16479 	 */
16480 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
16481 		/* MSS may have changed, do a round up again. */
16482 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
16483 	}
16484 
16485 	/*
16486 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
16487 	 * can be applied even before the window scale option is decided.
16488 	 */
16489 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
16490 	if (rwnd > max_transmittable_rwnd) {
16491 		rwnd = max_transmittable_rwnd -
16492 		    (max_transmittable_rwnd % mss);
16493 		if (rwnd < mss)
16494 			rwnd = max_transmittable_rwnd;
16495 		/*
16496 		 * If we're over the limit we may have to back down tcp_rwnd.
16497 		 * The increment below won't work for us. So we set all three
16498 		 * here and the increment below will have no effect.
16499 		 */
16500 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
16501 	}
16502 	if (tcp->tcp_localnet) {
16503 		tcp->tcp_rack_abs_max =
16504 		    MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2);
16505 	} else {
16506 		/*
16507 		 * For a remote host on a different subnet (through a router),
16508 		 * we ack every other packet to be conforming to RFC1122.
16509 		 * tcp_deferred_acks_max is default to 2.
16510 		 */
16511 		tcp->tcp_rack_abs_max =
16512 		    MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2);
16513 	}
16514 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
16515 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
16516 	else
16517 		tcp->tcp_rack_cur_max = 0;
16518 	/*
16519 	 * Increment the current rwnd by the amount the maximum grew (we
16520 	 * can not overwrite it since we might be in the middle of a
16521 	 * connection.)
16522 	 */
16523 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
16524 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win);
16525 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
16526 		tcp->tcp_cwnd_max = rwnd;
16527 
16528 	if (tcp_detached)
16529 		return (rwnd);
16530 	/*
16531 	 * We set the maximum receive window into rq->q_hiwat.
16532 	 * This is not actually used for flow control.
16533 	 */
16534 	tcp->tcp_rq->q_hiwat = rwnd;
16535 	/*
16536 	 * Set the Stream head high water mark. This doesn't have to be
16537 	 * here, since we are simply using default values, but we would
16538 	 * prefer to choose these values algorithmically, with a likely
16539 	 * relationship to rwnd.
16540 	 */
16541 	(void) mi_set_sth_hiwat(tcp->tcp_rq,
16542 	    MAX(rwnd, tcps->tcps_sth_rcv_hiwat));
16543 	return (rwnd);
16544 }
16545 
16546 /*
16547  * Return SNMP stuff in buffer in mpdata.
16548  */
16549 mblk_t *
16550 tcp_snmp_get(queue_t *q, mblk_t *mpctl)
16551 {
16552 	mblk_t			*mpdata;
16553 	mblk_t			*mp_conn_ctl = NULL;
16554 	mblk_t			*mp_conn_tail;
16555 	mblk_t			*mp_attr_ctl = NULL;
16556 	mblk_t			*mp_attr_tail;
16557 	mblk_t			*mp6_conn_ctl = NULL;
16558 	mblk_t			*mp6_conn_tail;
16559 	mblk_t			*mp6_attr_ctl = NULL;
16560 	mblk_t			*mp6_attr_tail;
16561 	struct opthdr		*optp;
16562 	mib2_tcpConnEntry_t	tce;
16563 	mib2_tcp6ConnEntry_t	tce6;
16564 	mib2_transportMLPEntry_t mlp;
16565 	connf_t			*connfp;
16566 	int			i;
16567 	boolean_t 		ispriv;
16568 	zoneid_t 		zoneid;
16569 	int			v4_conn_idx;
16570 	int			v6_conn_idx;
16571 	conn_t			*connp = Q_TO_CONN(q);
16572 	tcp_stack_t		*tcps;
16573 	ip_stack_t		*ipst;
16574 	mblk_t			*mp2ctl;
16575 
16576 	/*
16577 	 * make a copy of the original message
16578 	 */
16579 	mp2ctl = copymsg(mpctl);
16580 
16581 	if (mpctl == NULL ||
16582 	    (mpdata = mpctl->b_cont) == NULL ||
16583 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
16584 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
16585 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
16586 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
16587 		freemsg(mp_conn_ctl);
16588 		freemsg(mp_attr_ctl);
16589 		freemsg(mp6_conn_ctl);
16590 		freemsg(mp6_attr_ctl);
16591 		freemsg(mpctl);
16592 		freemsg(mp2ctl);
16593 		return (NULL);
16594 	}
16595 
16596 	ipst = connp->conn_netstack->netstack_ip;
16597 	tcps = connp->conn_netstack->netstack_tcp;
16598 
16599 	/* build table of connections -- need count in fixed part */
16600 	SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4);   /* vanj */
16601 	SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min);
16602 	SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max);
16603 	SET_MIB(tcps->tcps_mib.tcpMaxConn, -1);
16604 	SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0);
16605 
16606 	ispriv =
16607 	    secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0;
16608 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16609 
16610 	v4_conn_idx = v6_conn_idx = 0;
16611 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
16612 
16613 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16614 		ipst = tcps->tcps_netstack->netstack_ip;
16615 
16616 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
16617 
16618 		connp = NULL;
16619 
16620 		while ((connp =
16621 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16622 			tcp_t *tcp;
16623 			boolean_t needattr;
16624 
16625 			if (connp->conn_zoneid != zoneid)
16626 				continue;	/* not in this zone */
16627 
16628 			tcp = connp->conn_tcp;
16629 			UPDATE_MIB(&tcps->tcps_mib,
16630 			    tcpHCInSegs, tcp->tcp_ibsegs);
16631 			tcp->tcp_ibsegs = 0;
16632 			UPDATE_MIB(&tcps->tcps_mib,
16633 			    tcpHCOutSegs, tcp->tcp_obsegs);
16634 			tcp->tcp_obsegs = 0;
16635 
16636 			tce6.tcp6ConnState = tce.tcpConnState =
16637 			    tcp_snmp_state(tcp);
16638 			if (tce.tcpConnState == MIB2_TCP_established ||
16639 			    tce.tcpConnState == MIB2_TCP_closeWait)
16640 				BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab);
16641 
16642 			needattr = B_FALSE;
16643 			bzero(&mlp, sizeof (mlp));
16644 			if (connp->conn_mlp_type != mlptSingle) {
16645 				if (connp->conn_mlp_type == mlptShared ||
16646 				    connp->conn_mlp_type == mlptBoth)
16647 					mlp.tme_flags |= MIB2_TMEF_SHARED;
16648 				if (connp->conn_mlp_type == mlptPrivate ||
16649 				    connp->conn_mlp_type == mlptBoth)
16650 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
16651 				needattr = B_TRUE;
16652 			}
16653 			if (connp->conn_peercred != NULL) {
16654 				ts_label_t *tsl;
16655 
16656 				tsl = crgetlabel(connp->conn_peercred);
16657 				mlp.tme_doi = label2doi(tsl);
16658 				mlp.tme_label = *label2bslabel(tsl);
16659 				needattr = B_TRUE;
16660 			}
16661 
16662 			/* Create a message to report on IPv6 entries */
16663 			if (tcp->tcp_ipversion == IPV6_VERSION) {
16664 			tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6;
16665 			tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6;
16666 			tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport);
16667 			tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport);
16668 			tce6.tcp6ConnIfIndex = tcp->tcp_bound_if;
16669 			/* Don't want just anybody seeing these... */
16670 			if (ispriv) {
16671 				tce6.tcp6ConnEntryInfo.ce_snxt =
16672 				    tcp->tcp_snxt;
16673 				tce6.tcp6ConnEntryInfo.ce_suna =
16674 				    tcp->tcp_suna;
16675 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16676 				    tcp->tcp_rnxt;
16677 				tce6.tcp6ConnEntryInfo.ce_rack =
16678 				    tcp->tcp_rack;
16679 			} else {
16680 				/*
16681 				 * Netstat, unfortunately, uses this to
16682 				 * get send/receive queue sizes.  How to fix?
16683 				 * Why not compute the difference only?
16684 				 */
16685 				tce6.tcp6ConnEntryInfo.ce_snxt =
16686 				    tcp->tcp_snxt - tcp->tcp_suna;
16687 				tce6.tcp6ConnEntryInfo.ce_suna = 0;
16688 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16689 				    tcp->tcp_rnxt - tcp->tcp_rack;
16690 				tce6.tcp6ConnEntryInfo.ce_rack = 0;
16691 			}
16692 
16693 			tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16694 			tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16695 			tce6.tcp6ConnEntryInfo.ce_rto =  tcp->tcp_rto;
16696 			tce6.tcp6ConnEntryInfo.ce_mss =  tcp->tcp_mss;
16697 			tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state;
16698 
16699 			tce6.tcp6ConnCreationProcess =
16700 			    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
16701 			    tcp->tcp_cpid;
16702 			tce6.tcp6ConnCreationTime = tcp->tcp_open_time;
16703 
16704 			(void) snmp_append_data2(mp6_conn_ctl->b_cont,
16705 			    &mp6_conn_tail, (char *)&tce6, sizeof (tce6));
16706 
16707 			mlp.tme_connidx = v6_conn_idx++;
16708 			if (needattr)
16709 				(void) snmp_append_data2(mp6_attr_ctl->b_cont,
16710 				    &mp6_attr_tail, (char *)&mlp, sizeof (mlp));
16711 			}
16712 			/*
16713 			 * Create an IPv4 table entry for IPv4 entries and also
16714 			 * for IPv6 entries which are bound to in6addr_any
16715 			 * but don't have IPV6_V6ONLY set.
16716 			 * (i.e. anything an IPv4 peer could connect to)
16717 			 */
16718 			if (tcp->tcp_ipversion == IPV4_VERSION ||
16719 			    (tcp->tcp_state <= TCPS_LISTEN &&
16720 			    !tcp->tcp_connp->conn_ipv6_v6only &&
16721 			    IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) {
16722 				if (tcp->tcp_ipversion == IPV6_VERSION) {
16723 					tce.tcpConnRemAddress = INADDR_ANY;
16724 					tce.tcpConnLocalAddress = INADDR_ANY;
16725 				} else {
16726 					tce.tcpConnRemAddress =
16727 					    tcp->tcp_remote;
16728 					tce.tcpConnLocalAddress =
16729 					    tcp->tcp_ip_src;
16730 				}
16731 				tce.tcpConnLocalPort = ntohs(tcp->tcp_lport);
16732 				tce.tcpConnRemPort = ntohs(tcp->tcp_fport);
16733 				/* Don't want just anybody seeing these... */
16734 				if (ispriv) {
16735 					tce.tcpConnEntryInfo.ce_snxt =
16736 					    tcp->tcp_snxt;
16737 					tce.tcpConnEntryInfo.ce_suna =
16738 					    tcp->tcp_suna;
16739 					tce.tcpConnEntryInfo.ce_rnxt =
16740 					    tcp->tcp_rnxt;
16741 					tce.tcpConnEntryInfo.ce_rack =
16742 					    tcp->tcp_rack;
16743 				} else {
16744 					/*
16745 					 * Netstat, unfortunately, uses this to
16746 					 * get send/receive queue sizes.  How
16747 					 * to fix?
16748 					 * Why not compute the difference only?
16749 					 */
16750 					tce.tcpConnEntryInfo.ce_snxt =
16751 					    tcp->tcp_snxt - tcp->tcp_suna;
16752 					tce.tcpConnEntryInfo.ce_suna = 0;
16753 					tce.tcpConnEntryInfo.ce_rnxt =
16754 					    tcp->tcp_rnxt - tcp->tcp_rack;
16755 					tce.tcpConnEntryInfo.ce_rack = 0;
16756 				}
16757 
16758 				tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16759 				tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16760 				tce.tcpConnEntryInfo.ce_rto =  tcp->tcp_rto;
16761 				tce.tcpConnEntryInfo.ce_mss =  tcp->tcp_mss;
16762 				tce.tcpConnEntryInfo.ce_state =
16763 				    tcp->tcp_state;
16764 
16765 				tce.tcpConnCreationProcess =
16766 				    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
16767 				    tcp->tcp_cpid;
16768 				tce.tcpConnCreationTime = tcp->tcp_open_time;
16769 
16770 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
16771 				    &mp_conn_tail, (char *)&tce, sizeof (tce));
16772 
16773 				mlp.tme_connidx = v4_conn_idx++;
16774 				if (needattr)
16775 					(void) snmp_append_data2(
16776 					    mp_attr_ctl->b_cont,
16777 					    &mp_attr_tail, (char *)&mlp,
16778 					    sizeof (mlp));
16779 			}
16780 		}
16781 	}
16782 
16783 	/* fixed length structure for IPv4 and IPv6 counters */
16784 	SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t));
16785 	SET_MIB(tcps->tcps_mib.tcp6ConnTableSize,
16786 	    sizeof (mib2_tcp6ConnEntry_t));
16787 	/* synchronize 32- and 64-bit counters */
16788 	SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs);
16789 	SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs);
16790 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
16791 	optp->level = MIB2_TCP;
16792 	optp->name = 0;
16793 	(void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib,
16794 	    sizeof (tcps->tcps_mib));
16795 	optp->len = msgdsize(mpdata);
16796 	qreply(q, mpctl);
16797 
16798 	/* table of connections... */
16799 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
16800 	    sizeof (struct T_optmgmt_ack)];
16801 	optp->level = MIB2_TCP;
16802 	optp->name = MIB2_TCP_CONN;
16803 	optp->len = msgdsize(mp_conn_ctl->b_cont);
16804 	qreply(q, mp_conn_ctl);
16805 
16806 	/* table of MLP attributes... */
16807 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
16808 	    sizeof (struct T_optmgmt_ack)];
16809 	optp->level = MIB2_TCP;
16810 	optp->name = EXPER_XPORT_MLP;
16811 	optp->len = msgdsize(mp_attr_ctl->b_cont);
16812 	if (optp->len == 0)
16813 		freemsg(mp_attr_ctl);
16814 	else
16815 		qreply(q, mp_attr_ctl);
16816 
16817 	/* table of IPv6 connections... */
16818 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
16819 	    sizeof (struct T_optmgmt_ack)];
16820 	optp->level = MIB2_TCP6;
16821 	optp->name = MIB2_TCP6_CONN;
16822 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
16823 	qreply(q, mp6_conn_ctl);
16824 
16825 	/* table of IPv6 MLP attributes... */
16826 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
16827 	    sizeof (struct T_optmgmt_ack)];
16828 	optp->level = MIB2_TCP6;
16829 	optp->name = EXPER_XPORT_MLP;
16830 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
16831 	if (optp->len == 0)
16832 		freemsg(mp6_attr_ctl);
16833 	else
16834 		qreply(q, mp6_attr_ctl);
16835 	return (mp2ctl);
16836 }
16837 
16838 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests  */
16839 /* ARGSUSED */
16840 int
16841 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
16842 {
16843 	mib2_tcpConnEntry_t	*tce = (mib2_tcpConnEntry_t *)ptr;
16844 
16845 	switch (level) {
16846 	case MIB2_TCP:
16847 		switch (name) {
16848 		case 13:
16849 			if (tce->tcpConnState != MIB2_TCP_deleteTCB)
16850 				return (0);
16851 			/* TODO: delete entry defined by tce */
16852 			return (1);
16853 		default:
16854 			return (0);
16855 		}
16856 	default:
16857 		return (1);
16858 	}
16859 }
16860 
16861 /* Translate TCP state to MIB2 TCP state. */
16862 static int
16863 tcp_snmp_state(tcp_t *tcp)
16864 {
16865 	if (tcp == NULL)
16866 		return (0);
16867 
16868 	switch (tcp->tcp_state) {
16869 	case TCPS_CLOSED:
16870 	case TCPS_IDLE:	/* RFC1213 doesn't have analogue for IDLE & BOUND */
16871 	case TCPS_BOUND:
16872 		return (MIB2_TCP_closed);
16873 	case TCPS_LISTEN:
16874 		return (MIB2_TCP_listen);
16875 	case TCPS_SYN_SENT:
16876 		return (MIB2_TCP_synSent);
16877 	case TCPS_SYN_RCVD:
16878 		return (MIB2_TCP_synReceived);
16879 	case TCPS_ESTABLISHED:
16880 		return (MIB2_TCP_established);
16881 	case TCPS_CLOSE_WAIT:
16882 		return (MIB2_TCP_closeWait);
16883 	case TCPS_FIN_WAIT_1:
16884 		return (MIB2_TCP_finWait1);
16885 	case TCPS_CLOSING:
16886 		return (MIB2_TCP_closing);
16887 	case TCPS_LAST_ACK:
16888 		return (MIB2_TCP_lastAck);
16889 	case TCPS_FIN_WAIT_2:
16890 		return (MIB2_TCP_finWait2);
16891 	case TCPS_TIME_WAIT:
16892 		return (MIB2_TCP_timeWait);
16893 	default:
16894 		return (0);
16895 	}
16896 }
16897 
16898 static char tcp_report_header[] =
16899 	"TCP     " MI_COL_HDRPAD_STR
16900 	"zone dest            snxt     suna     "
16901 	"swnd       rnxt     rack     rwnd       rto   mss   w sw rw t "
16902 	"recent   [lport,fport] state";
16903 
16904 /*
16905  * TCP status report triggered via the Named Dispatch mechanism.
16906  */
16907 /* ARGSUSED */
16908 static void
16909 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream,
16910     cred_t *cr)
16911 {
16912 	char hash[10], addrbuf[INET6_ADDRSTRLEN];
16913 	boolean_t ispriv = secpolicy_ip_config(cr, B_TRUE) == 0;
16914 	char cflag;
16915 	in6_addr_t	v6dst;
16916 	char buf[80];
16917 	uint_t print_len, buf_len;
16918 
16919 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16920 	if (buf_len <= 0)
16921 		return;
16922 
16923 	if (hashval >= 0)
16924 		(void) sprintf(hash, "%03d ", hashval);
16925 	else
16926 		hash[0] = '\0';
16927 
16928 	/*
16929 	 * Note that we use the remote address in the tcp_b  structure.
16930 	 * This means that it will print out the real destination address,
16931 	 * not the next hop's address if source routing is used.  This
16932 	 * avoid the confusion on the output because user may not
16933 	 * know that source routing is used for a connection.
16934 	 */
16935 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16936 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst);
16937 	} else {
16938 		v6dst = tcp->tcp_remote_v6;
16939 	}
16940 	(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16941 	/*
16942 	 * the ispriv checks are so that normal users cannot determine
16943 	 * sequence number information using NDD.
16944 	 */
16945 
16946 	if (TCP_IS_DETACHED(tcp))
16947 		cflag = '*';
16948 	else
16949 		cflag = ' ';
16950 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16951 	    "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x "
16952 	    "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n",
16953 	    hash,
16954 	    (void *)tcp,
16955 	    tcp->tcp_connp->conn_zoneid,
16956 	    addrbuf,
16957 	    (ispriv) ? tcp->tcp_snxt : 0,
16958 	    (ispriv) ? tcp->tcp_suna : 0,
16959 	    tcp->tcp_swnd,
16960 	    (ispriv) ? tcp->tcp_rnxt : 0,
16961 	    (ispriv) ? tcp->tcp_rack : 0,
16962 	    tcp->tcp_rwnd,
16963 	    tcp->tcp_rto,
16964 	    tcp->tcp_mss,
16965 	    tcp->tcp_snd_ws_ok,
16966 	    tcp->tcp_snd_ws,
16967 	    tcp->tcp_rcv_ws,
16968 	    tcp->tcp_snd_ts_ok,
16969 	    tcp->tcp_ts_recent,
16970 	    tcp_display(tcp, buf, DISP_PORT_ONLY), cflag);
16971 	if (print_len < buf_len) {
16972 		((mblk_t *)mp)->b_wptr += print_len;
16973 	} else {
16974 		((mblk_t *)mp)->b_wptr += buf_len;
16975 	}
16976 }
16977 
16978 /*
16979  * TCP status report (for listeners only) triggered via the Named Dispatch
16980  * mechanism.
16981  */
16982 /* ARGSUSED */
16983 static void
16984 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval)
16985 {
16986 	char addrbuf[INET6_ADDRSTRLEN];
16987 	in6_addr_t	v6dst;
16988 	uint_t print_len, buf_len;
16989 
16990 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16991 	if (buf_len <= 0)
16992 		return;
16993 
16994 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16995 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst);
16996 		(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16997 	} else {
16998 		(void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src,
16999 		    addrbuf, sizeof (addrbuf));
17000 	}
17001 	print_len = snprintf((char *)mp->b_wptr, buf_len,
17002 	    "%03d "
17003 	    MI_COL_PTRFMT_STR
17004 	    "%d %s %05u %08u %d/%d/%d%c\n",
17005 	    hashval, (void *)tcp,
17006 	    tcp->tcp_connp->conn_zoneid,
17007 	    addrbuf,
17008 	    (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport),
17009 	    tcp->tcp_conn_req_seqnum,
17010 	    tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q,
17011 	    tcp->tcp_conn_req_max,
17012 	    tcp->tcp_syn_defense ? '*' : ' ');
17013 	if (print_len < buf_len) {
17014 		((mblk_t *)mp)->b_wptr += print_len;
17015 	} else {
17016 		((mblk_t *)mp)->b_wptr += buf_len;
17017 	}
17018 }
17019 
17020 /* TCP status report triggered via the Named Dispatch mechanism. */
17021 /* ARGSUSED */
17022 static int
17023 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
17024 {
17025 	tcp_t	*tcp;
17026 	int	i;
17027 	conn_t	*connp;
17028 	connf_t	*connfp;
17029 	zoneid_t zoneid;
17030 	tcp_stack_t *tcps;
17031 	ip_stack_t *ipst;
17032 
17033 	zoneid = Q_TO_CONN(q)->conn_zoneid;
17034 	tcps = Q_TO_TCP(q)->tcp_tcps;
17035 
17036 	/*
17037 	 * Because of the ndd constraint, at most we can have 64K buffer
17038 	 * to put in all TCP info.  So to be more efficient, just
17039 	 * allocate a 64K buffer here, assuming we need that large buffer.
17040 	 * This may be a problem as any user can read tcp_status.  Therefore
17041 	 * we limit the rate of doing this using tcp_ndd_get_info_interval.
17042 	 * This should be OK as normal users should not do this too often.
17043 	 */
17044 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
17045 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
17046 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
17047 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
17048 			return (0);
17049 		}
17050 	}
17051 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
17052 		/* The following may work even if we cannot get a large buf. */
17053 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
17054 		return (0);
17055 	}
17056 
17057 	(void) mi_mpprintf(mp, "%s", tcp_report_header);
17058 
17059 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
17060 
17061 		ipst = tcps->tcps_netstack->netstack_ip;
17062 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
17063 
17064 		connp = NULL;
17065 
17066 		while ((connp =
17067 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
17068 			tcp = connp->conn_tcp;
17069 			if (zoneid != GLOBAL_ZONEID &&
17070 			    zoneid != connp->conn_zoneid)
17071 				continue;
17072 			tcp_report_item(mp->b_cont, tcp, -1, tcp,
17073 			    cr);
17074 		}
17075 
17076 	}
17077 
17078 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
17079 	return (0);
17080 }
17081 
17082 /* TCP status report triggered via the Named Dispatch mechanism. */
17083 /* ARGSUSED */
17084 static int
17085 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
17086 {
17087 	tf_t	*tbf;
17088 	tcp_t	*tcp;
17089 	int	i;
17090 	zoneid_t zoneid;
17091 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
17092 
17093 	zoneid = Q_TO_CONN(q)->conn_zoneid;
17094 
17095 	/* Refer to comments in tcp_status_report(). */
17096 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
17097 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
17098 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
17099 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
17100 			return (0);
17101 		}
17102 	}
17103 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
17104 		/* The following may work even if we cannot get a large buf. */
17105 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
17106 		return (0);
17107 	}
17108 
17109 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
17110 
17111 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
17112 		tbf = &tcps->tcps_bind_fanout[i];
17113 		mutex_enter(&tbf->tf_lock);
17114 		for (tcp = tbf->tf_tcp; tcp != NULL;
17115 		    tcp = tcp->tcp_bind_hash) {
17116 			if (zoneid != GLOBAL_ZONEID &&
17117 			    zoneid != tcp->tcp_connp->conn_zoneid)
17118 				continue;
17119 			CONN_INC_REF(tcp->tcp_connp);
17120 			tcp_report_item(mp->b_cont, tcp, i,
17121 			    Q_TO_TCP(q), cr);
17122 			CONN_DEC_REF(tcp->tcp_connp);
17123 		}
17124 		mutex_exit(&tbf->tf_lock);
17125 	}
17126 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
17127 	return (0);
17128 }
17129 
17130 /* TCP status report triggered via the Named Dispatch mechanism. */
17131 /* ARGSUSED */
17132 static int
17133 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
17134 {
17135 	connf_t	*connfp;
17136 	conn_t	*connp;
17137 	tcp_t	*tcp;
17138 	int	i;
17139 	zoneid_t zoneid;
17140 	tcp_stack_t *tcps;
17141 	ip_stack_t	*ipst;
17142 
17143 	zoneid = Q_TO_CONN(q)->conn_zoneid;
17144 	tcps = Q_TO_TCP(q)->tcp_tcps;
17145 
17146 	/* Refer to comments in tcp_status_report(). */
17147 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
17148 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
17149 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
17150 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
17151 			return (0);
17152 		}
17153 	}
17154 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
17155 		/* The following may work even if we cannot get a large buf. */
17156 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
17157 		return (0);
17158 	}
17159 
17160 	(void) mi_mpprintf(mp,
17161 	    "    TCP    " MI_COL_HDRPAD_STR
17162 	    "zone IP addr         port  seqnum   backlog (q0/q/max)");
17163 
17164 	ipst = tcps->tcps_netstack->netstack_ip;
17165 
17166 	for (i = 0; i < ipst->ips_ipcl_bind_fanout_size; i++) {
17167 		connfp = &ipst->ips_ipcl_bind_fanout[i];
17168 		connp = NULL;
17169 		while ((connp =
17170 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
17171 			tcp = connp->conn_tcp;
17172 			if (zoneid != GLOBAL_ZONEID &&
17173 			    zoneid != connp->conn_zoneid)
17174 				continue;
17175 			tcp_report_listener(mp->b_cont, tcp, i);
17176 		}
17177 	}
17178 
17179 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
17180 	return (0);
17181 }
17182 
17183 /* TCP status report triggered via the Named Dispatch mechanism. */
17184 /* ARGSUSED */
17185 static int
17186 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
17187 {
17188 	connf_t	*connfp;
17189 	conn_t	*connp;
17190 	tcp_t	*tcp;
17191 	int	i;
17192 	zoneid_t zoneid;
17193 	tcp_stack_t *tcps;
17194 	ip_stack_t *ipst;
17195 
17196 	zoneid = Q_TO_CONN(q)->conn_zoneid;
17197 	tcps = Q_TO_TCP(q)->tcp_tcps;
17198 	ipst = tcps->tcps_netstack->netstack_ip;
17199 
17200 	/* Refer to comments in tcp_status_report(). */
17201 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
17202 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
17203 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
17204 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
17205 			return (0);
17206 		}
17207 	}
17208 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
17209 		/* The following may work even if we cannot get a large buf. */
17210 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
17211 		return (0);
17212 	}
17213 
17214 	(void) mi_mpprintf(mp, "tcp_conn_hash_size = %d",
17215 	    ipst->ips_ipcl_conn_fanout_size);
17216 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
17217 
17218 	for (i = 0; i < ipst->ips_ipcl_conn_fanout_size; i++) {
17219 		connfp =  &ipst->ips_ipcl_conn_fanout[i];
17220 		connp = NULL;
17221 		while ((connp =
17222 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
17223 			tcp = connp->conn_tcp;
17224 			if (zoneid != GLOBAL_ZONEID &&
17225 			    zoneid != connp->conn_zoneid)
17226 				continue;
17227 			tcp_report_item(mp->b_cont, tcp, i,
17228 			    Q_TO_TCP(q), cr);
17229 		}
17230 	}
17231 
17232 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
17233 	return (0);
17234 }
17235 
17236 /* TCP status report triggered via the Named Dispatch mechanism. */
17237 /* ARGSUSED */
17238 static int
17239 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
17240 {
17241 	tf_t	*tf;
17242 	tcp_t	*tcp;
17243 	int	i;
17244 	zoneid_t zoneid;
17245 	tcp_stack_t	*tcps;
17246 
17247 	zoneid = Q_TO_CONN(q)->conn_zoneid;
17248 	tcps = Q_TO_TCP(q)->tcp_tcps;
17249 
17250 	/* Refer to comments in tcp_status_report(). */
17251 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
17252 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
17253 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
17254 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
17255 			return (0);
17256 		}
17257 	}
17258 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
17259 		/* The following may work even if we cannot get a large buf. */
17260 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
17261 		return (0);
17262 	}
17263 
17264 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
17265 
17266 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
17267 		tf = &tcps->tcps_acceptor_fanout[i];
17268 		mutex_enter(&tf->tf_lock);
17269 		for (tcp = tf->tf_tcp; tcp != NULL;
17270 		    tcp = tcp->tcp_acceptor_hash) {
17271 			if (zoneid != GLOBAL_ZONEID &&
17272 			    zoneid != tcp->tcp_connp->conn_zoneid)
17273 				continue;
17274 			tcp_report_item(mp->b_cont, tcp, i,
17275 			    Q_TO_TCP(q), cr);
17276 		}
17277 		mutex_exit(&tf->tf_lock);
17278 	}
17279 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
17280 	return (0);
17281 }
17282 
17283 /*
17284  * tcp_timer is the timer service routine.  It handles the retransmission,
17285  * FIN_WAIT_2 flush, and zero window probe timeout events.  It figures out
17286  * from the state of the tcp instance what kind of action needs to be done
17287  * at the time it is called.
17288  */
17289 static void
17290 tcp_timer(void *arg)
17291 {
17292 	mblk_t		*mp;
17293 	clock_t		first_threshold;
17294 	clock_t		second_threshold;
17295 	clock_t		ms;
17296 	uint32_t	mss;
17297 	conn_t		*connp = (conn_t *)arg;
17298 	tcp_t		*tcp = connp->conn_tcp;
17299 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17300 
17301 	tcp->tcp_timer_tid = 0;
17302 
17303 	if (tcp->tcp_fused)
17304 		return;
17305 
17306 	first_threshold =  tcp->tcp_first_timer_threshold;
17307 	second_threshold = tcp->tcp_second_timer_threshold;
17308 	switch (tcp->tcp_state) {
17309 	case TCPS_IDLE:
17310 	case TCPS_BOUND:
17311 	case TCPS_LISTEN:
17312 		return;
17313 	case TCPS_SYN_RCVD: {
17314 		tcp_t	*listener = tcp->tcp_listener;
17315 
17316 		if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) {
17317 			ASSERT(tcp->tcp_rq == listener->tcp_rq);
17318 			/* it's our first timeout */
17319 			tcp->tcp_syn_rcvd_timeout = 1;
17320 			mutex_enter(&listener->tcp_eager_lock);
17321 			listener->tcp_syn_rcvd_timeout++;
17322 			if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) {
17323 				/*
17324 				 * Make this eager available for drop if we
17325 				 * need to drop one to accomodate a new
17326 				 * incoming SYN request.
17327 				 */
17328 				MAKE_DROPPABLE(listener, tcp);
17329 			}
17330 			if (!listener->tcp_syn_defense &&
17331 			    (listener->tcp_syn_rcvd_timeout >
17332 			    (tcps->tcps_conn_req_max_q0 >> 2)) &&
17333 			    (tcps->tcps_conn_req_max_q0 > 200)) {
17334 				/* We may be under attack. Put on a defense. */
17335 				listener->tcp_syn_defense = B_TRUE;
17336 				cmn_err(CE_WARN, "High TCP connect timeout "
17337 				    "rate! System (port %d) may be under a "
17338 				    "SYN flood attack!",
17339 				    BE16_TO_U16(listener->tcp_tcph->th_lport));
17340 
17341 				listener->tcp_ip_addr_cache = kmem_zalloc(
17342 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t),
17343 				    KM_NOSLEEP);
17344 			}
17345 			mutex_exit(&listener->tcp_eager_lock);
17346 		} else if (listener != NULL) {
17347 			mutex_enter(&listener->tcp_eager_lock);
17348 			tcp->tcp_syn_rcvd_timeout++;
17349 			if (tcp->tcp_syn_rcvd_timeout > 1 &&
17350 			    !tcp->tcp_closemp_used) {
17351 				/*
17352 				 * This is our second timeout. Put the tcp in
17353 				 * the list of droppable eagers to allow it to
17354 				 * be dropped, if needed. We don't check
17355 				 * whether tcp_dontdrop is set or not to
17356 				 * protect ourselve from a SYN attack where a
17357 				 * remote host can spoof itself as one of the
17358 				 * good IP source and continue to hold
17359 				 * resources too long.
17360 				 */
17361 				MAKE_DROPPABLE(listener, tcp);
17362 			}
17363 			mutex_exit(&listener->tcp_eager_lock);
17364 		}
17365 	}
17366 		/* FALLTHRU */
17367 	case TCPS_SYN_SENT:
17368 		first_threshold =  tcp->tcp_first_ctimer_threshold;
17369 		second_threshold = tcp->tcp_second_ctimer_threshold;
17370 		break;
17371 	case TCPS_ESTABLISHED:
17372 	case TCPS_FIN_WAIT_1:
17373 	case TCPS_CLOSING:
17374 	case TCPS_CLOSE_WAIT:
17375 	case TCPS_LAST_ACK:
17376 		/* If we have data to rexmit */
17377 		if (tcp->tcp_suna != tcp->tcp_snxt) {
17378 			clock_t	time_to_wait;
17379 
17380 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans);
17381 			if (!tcp->tcp_xmit_head)
17382 				break;
17383 			time_to_wait = lbolt -
17384 			    (clock_t)tcp->tcp_xmit_head->b_prev;
17385 			time_to_wait = tcp->tcp_rto -
17386 			    TICK_TO_MSEC(time_to_wait);
17387 			/*
17388 			 * If the timer fires too early, 1 clock tick earlier,
17389 			 * restart the timer.
17390 			 */
17391 			if (time_to_wait > msec_per_tick) {
17392 				TCP_STAT(tcps, tcp_timer_fire_early);
17393 				TCP_TIMER_RESTART(tcp, time_to_wait);
17394 				return;
17395 			}
17396 			/*
17397 			 * When we probe zero windows, we force the swnd open.
17398 			 * If our peer acks with a closed window swnd will be
17399 			 * set to zero by tcp_rput(). As long as we are
17400 			 * receiving acks tcp_rput will
17401 			 * reset 'tcp_ms_we_have_waited' so as not to trip the
17402 			 * first and second interval actions.  NOTE: the timer
17403 			 * interval is allowed to continue its exponential
17404 			 * backoff.
17405 			 */
17406 			if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) {
17407 				if (tcp->tcp_debug) {
17408 					(void) strlog(TCP_MOD_ID, 0, 1,
17409 					    SL_TRACE, "tcp_timer: zero win");
17410 				}
17411 			} else {
17412 				/*
17413 				 * After retransmission, we need to do
17414 				 * slow start.  Set the ssthresh to one
17415 				 * half of current effective window and
17416 				 * cwnd to one MSS.  Also reset
17417 				 * tcp_cwnd_cnt.
17418 				 *
17419 				 * Note that if tcp_ssthresh is reduced because
17420 				 * of ECN, do not reduce it again unless it is
17421 				 * already one window of data away (tcp_cwr
17422 				 * should then be cleared) or this is a
17423 				 * timeout for a retransmitted segment.
17424 				 */
17425 				uint32_t npkt;
17426 
17427 				if (!tcp->tcp_cwr || tcp->tcp_rexmit) {
17428 					npkt = ((tcp->tcp_timer_backoff ?
17429 					    tcp->tcp_cwnd_ssthresh :
17430 					    tcp->tcp_snxt -
17431 					    tcp->tcp_suna) >> 1) / tcp->tcp_mss;
17432 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
17433 					    tcp->tcp_mss;
17434 				}
17435 				tcp->tcp_cwnd = tcp->tcp_mss;
17436 				tcp->tcp_cwnd_cnt = 0;
17437 				if (tcp->tcp_ecn_ok) {
17438 					tcp->tcp_cwr = B_TRUE;
17439 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
17440 					tcp->tcp_ecn_cwr_sent = B_FALSE;
17441 				}
17442 			}
17443 			break;
17444 		}
17445 		/*
17446 		 * We have something to send yet we cannot send.  The
17447 		 * reason can be:
17448 		 *
17449 		 * 1. Zero send window: we need to do zero window probe.
17450 		 * 2. Zero cwnd: because of ECN, we need to "clock out
17451 		 * segments.
17452 		 * 3. SWS avoidance: receiver may have shrunk window,
17453 		 * reset our knowledge.
17454 		 *
17455 		 * Note that condition 2 can happen with either 1 or
17456 		 * 3.  But 1 and 3 are exclusive.
17457 		 */
17458 		if (tcp->tcp_unsent != 0) {
17459 			if (tcp->tcp_cwnd == 0) {
17460 				/*
17461 				 * Set tcp_cwnd to 1 MSS so that a
17462 				 * new segment can be sent out.  We
17463 				 * are "clocking out" new data when
17464 				 * the network is really congested.
17465 				 */
17466 				ASSERT(tcp->tcp_ecn_ok);
17467 				tcp->tcp_cwnd = tcp->tcp_mss;
17468 			}
17469 			if (tcp->tcp_swnd == 0) {
17470 				/* Extend window for zero window probe */
17471 				tcp->tcp_swnd++;
17472 				tcp->tcp_zero_win_probe = B_TRUE;
17473 				BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe);
17474 			} else {
17475 				/*
17476 				 * Handle timeout from sender SWS avoidance.
17477 				 * Reset our knowledge of the max send window
17478 				 * since the receiver might have reduced its
17479 				 * receive buffer.  Avoid setting tcp_max_swnd
17480 				 * to one since that will essentially disable
17481 				 * the SWS checks.
17482 				 *
17483 				 * Note that since we don't have a SWS
17484 				 * state variable, if the timeout is set
17485 				 * for ECN but not for SWS, this
17486 				 * code will also be executed.  This is
17487 				 * fine as tcp_max_swnd is updated
17488 				 * constantly and it will not affect
17489 				 * anything.
17490 				 */
17491 				tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2);
17492 			}
17493 			tcp_wput_data(tcp, NULL, B_FALSE);
17494 			return;
17495 		}
17496 		/* Is there a FIN that needs to be to re retransmitted? */
17497 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17498 		    !tcp->tcp_fin_acked)
17499 			break;
17500 		/* Nothing to do, return without restarting timer. */
17501 		TCP_STAT(tcps, tcp_timer_fire_miss);
17502 		return;
17503 	case TCPS_FIN_WAIT_2:
17504 		/*
17505 		 * User closed the TCP endpoint and peer ACK'ed our FIN.
17506 		 * We waited some time for for peer's FIN, but it hasn't
17507 		 * arrived.  We flush the connection now to avoid
17508 		 * case where the peer has rebooted.
17509 		 */
17510 		if (TCP_IS_DETACHED(tcp)) {
17511 			(void) tcp_clean_death(tcp, 0, 23);
17512 		} else {
17513 			TCP_TIMER_RESTART(tcp,
17514 			    tcps->tcps_fin_wait_2_flush_interval);
17515 		}
17516 		return;
17517 	case TCPS_TIME_WAIT:
17518 		(void) tcp_clean_death(tcp, 0, 24);
17519 		return;
17520 	default:
17521 		if (tcp->tcp_debug) {
17522 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
17523 			    "tcp_timer: strange state (%d) %s",
17524 			    tcp->tcp_state, tcp_display(tcp, NULL,
17525 			    DISP_PORT_ONLY));
17526 		}
17527 		return;
17528 	}
17529 	if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) {
17530 		/*
17531 		 * For zero window probe, we need to send indefinitely,
17532 		 * unless we have not heard from the other side for some
17533 		 * time...
17534 		 */
17535 		if ((tcp->tcp_zero_win_probe == 0) ||
17536 		    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >
17537 		    second_threshold)) {
17538 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop);
17539 			/*
17540 			 * If TCP is in SYN_RCVD state, send back a
17541 			 * RST|ACK as BSD does.  Note that tcp_zero_win_probe
17542 			 * should be zero in TCPS_SYN_RCVD state.
17543 			 */
17544 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
17545 				tcp_xmit_ctl("tcp_timer: RST sent on timeout "
17546 				    "in SYN_RCVD",
17547 				    tcp, tcp->tcp_snxt,
17548 				    tcp->tcp_rnxt, TH_RST | TH_ACK);
17549 			}
17550 			(void) tcp_clean_death(tcp,
17551 			    tcp->tcp_client_errno ?
17552 			    tcp->tcp_client_errno : ETIMEDOUT, 25);
17553 			return;
17554 		} else {
17555 			/*
17556 			 * Set tcp_ms_we_have_waited to second_threshold
17557 			 * so that in next timeout, we will do the above
17558 			 * check (lbolt - tcp_last_recv_time).  This is
17559 			 * also to avoid overflow.
17560 			 *
17561 			 * We don't need to decrement tcp_timer_backoff
17562 			 * to avoid overflow because it will be decremented
17563 			 * later if new timeout value is greater than
17564 			 * tcp_rexmit_interval_max.  In the case when
17565 			 * tcp_rexmit_interval_max is greater than
17566 			 * second_threshold, it means that we will wait
17567 			 * longer than second_threshold to send the next
17568 			 * window probe.
17569 			 */
17570 			tcp->tcp_ms_we_have_waited = second_threshold;
17571 		}
17572 	} else if (ms > first_threshold) {
17573 		if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) &&
17574 		    tcp->tcp_xmit_head != NULL) {
17575 			tcp->tcp_xmit_head =
17576 			    tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1);
17577 		}
17578 		/*
17579 		 * We have been retransmitting for too long...  The RTT
17580 		 * we calculated is probably incorrect.  Reinitialize it.
17581 		 * Need to compensate for 0 tcp_rtt_sa.  Reset
17582 		 * tcp_rtt_update so that we won't accidentally cache a
17583 		 * bad value.  But only do this if this is not a zero
17584 		 * window probe.
17585 		 */
17586 		if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) {
17587 			tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) +
17588 			    (tcp->tcp_rtt_sa >> 5);
17589 			tcp->tcp_rtt_sa = 0;
17590 			tcp_ip_notify(tcp);
17591 			tcp->tcp_rtt_update = 0;
17592 		}
17593 	}
17594 	tcp->tcp_timer_backoff++;
17595 	if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
17596 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) <
17597 	    tcps->tcps_rexmit_interval_min) {
17598 		/*
17599 		 * This means the original RTO is tcp_rexmit_interval_min.
17600 		 * So we will use tcp_rexmit_interval_min as the RTO value
17601 		 * and do the backoff.
17602 		 */
17603 		ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff;
17604 	} else {
17605 		ms <<= tcp->tcp_timer_backoff;
17606 	}
17607 	if (ms > tcps->tcps_rexmit_interval_max) {
17608 		ms = tcps->tcps_rexmit_interval_max;
17609 		/*
17610 		 * ms is at max, decrement tcp_timer_backoff to avoid
17611 		 * overflow.
17612 		 */
17613 		tcp->tcp_timer_backoff--;
17614 	}
17615 	tcp->tcp_ms_we_have_waited += ms;
17616 	if (tcp->tcp_zero_win_probe == 0) {
17617 		tcp->tcp_rto = ms;
17618 	}
17619 	TCP_TIMER_RESTART(tcp, ms);
17620 	/*
17621 	 * This is after a timeout and tcp_rto is backed off.  Set
17622 	 * tcp_set_timer to 1 so that next time RTO is updated, we will
17623 	 * restart the timer with a correct value.
17624 	 */
17625 	tcp->tcp_set_timer = 1;
17626 	mss = tcp->tcp_snxt - tcp->tcp_suna;
17627 	if (mss > tcp->tcp_mss)
17628 		mss = tcp->tcp_mss;
17629 	if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0)
17630 		mss = tcp->tcp_swnd;
17631 
17632 	if ((mp = tcp->tcp_xmit_head) != NULL)
17633 		mp->b_prev = (mblk_t *)lbolt;
17634 	mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss,
17635 	    B_TRUE);
17636 
17637 	/*
17638 	 * When slow start after retransmission begins, start with
17639 	 * this seq no.  tcp_rexmit_max marks the end of special slow
17640 	 * start phase.  tcp_snd_burst controls how many segments
17641 	 * can be sent because of an ack.
17642 	 */
17643 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
17644 	tcp->tcp_snd_burst = TCP_CWND_SS;
17645 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17646 	    (tcp->tcp_unsent == 0)) {
17647 		tcp->tcp_rexmit_max = tcp->tcp_fss;
17648 	} else {
17649 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
17650 	}
17651 	tcp->tcp_rexmit = B_TRUE;
17652 	tcp->tcp_dupack_cnt = 0;
17653 
17654 	/*
17655 	 * Remove all rexmit SACK blk to start from fresh.
17656 	 */
17657 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
17658 		TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
17659 		tcp->tcp_num_notsack_blk = 0;
17660 		tcp->tcp_cnt_notsack_list = 0;
17661 	}
17662 	if (mp == NULL) {
17663 		return;
17664 	}
17665 	/* Attach credentials to retransmitted initial SYNs. */
17666 	if (tcp->tcp_state == TCPS_SYN_SENT) {
17667 		mblk_setcred(mp, tcp->tcp_cred);
17668 		DB_CPID(mp) = tcp->tcp_cpid;
17669 	}
17670 
17671 	tcp->tcp_csuna = tcp->tcp_snxt;
17672 	BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
17673 	UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss);
17674 	tcp_send_data(tcp, tcp->tcp_wq, mp);
17675 
17676 }
17677 
17678 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */
17679 static void
17680 tcp_unbind(tcp_t *tcp, mblk_t *mp)
17681 {
17682 	conn_t	*connp;
17683 
17684 	switch (tcp->tcp_state) {
17685 	case TCPS_BOUND:
17686 	case TCPS_LISTEN:
17687 		break;
17688 	default:
17689 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
17690 		return;
17691 	}
17692 
17693 	/*
17694 	 * Need to clean up all the eagers since after the unbind, segments
17695 	 * will no longer be delivered to this listener stream.
17696 	 */
17697 	mutex_enter(&tcp->tcp_eager_lock);
17698 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
17699 		tcp_eager_cleanup(tcp, 0);
17700 	}
17701 	mutex_exit(&tcp->tcp_eager_lock);
17702 
17703 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17704 		tcp->tcp_ipha->ipha_src = 0;
17705 	} else {
17706 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
17707 	}
17708 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
17709 	bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport));
17710 	tcp_bind_hash_remove(tcp);
17711 	tcp->tcp_state = TCPS_IDLE;
17712 	tcp->tcp_mdt = B_FALSE;
17713 	/* Send M_FLUSH according to TPI */
17714 	(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
17715 	connp = tcp->tcp_connp;
17716 	connp->conn_mdt_ok = B_FALSE;
17717 	ipcl_hash_remove(connp);
17718 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
17719 	mp = mi_tpi_ok_ack_alloc(mp);
17720 	putnext(tcp->tcp_rq, mp);
17721 }
17722 
17723 /*
17724  * Don't let port fall into the privileged range.
17725  * Since the extra privileged ports can be arbitrary we also
17726  * ensure that we exclude those from consideration.
17727  * tcp_g_epriv_ports is not sorted thus we loop over it until
17728  * there are no changes.
17729  *
17730  * Note: No locks are held when inspecting tcp_g_*epriv_ports
17731  * but instead the code relies on:
17732  * - the fact that the address of the array and its size never changes
17733  * - the atomic assignment of the elements of the array
17734  *
17735  * Returns 0 if there are no more ports available.
17736  *
17737  * TS note: skip multilevel ports.
17738  */
17739 static in_port_t
17740 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random)
17741 {
17742 	int i;
17743 	boolean_t restart = B_FALSE;
17744 	tcp_stack_t *tcps = tcp->tcp_tcps;
17745 
17746 	if (random && tcp_random_anon_port != 0) {
17747 		(void) random_get_pseudo_bytes((uint8_t *)&port,
17748 		    sizeof (in_port_t));
17749 		/*
17750 		 * Unless changed by a sys admin, the smallest anon port
17751 		 * is 32768 and the largest anon port is 65535.  It is
17752 		 * very likely (50%) for the random port to be smaller
17753 		 * than the smallest anon port.  When that happens,
17754 		 * add port % (anon port range) to the smallest anon
17755 		 * port to get the random port.  It should fall into the
17756 		 * valid anon port range.
17757 		 */
17758 		if (port < tcps->tcps_smallest_anon_port) {
17759 			port = tcps->tcps_smallest_anon_port +
17760 			    port % (tcps->tcps_largest_anon_port -
17761 			    tcps->tcps_smallest_anon_port);
17762 		}
17763 	}
17764 
17765 retry:
17766 	if (port < tcps->tcps_smallest_anon_port)
17767 		port = (in_port_t)tcps->tcps_smallest_anon_port;
17768 
17769 	if (port > tcps->tcps_largest_anon_port) {
17770 		if (restart)
17771 			return (0);
17772 		restart = B_TRUE;
17773 		port = (in_port_t)tcps->tcps_smallest_anon_port;
17774 	}
17775 
17776 	if (port < tcps->tcps_smallest_nonpriv_port)
17777 		port = (in_port_t)tcps->tcps_smallest_nonpriv_port;
17778 
17779 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
17780 		if (port == tcps->tcps_g_epriv_ports[i]) {
17781 			port++;
17782 			/*
17783 			 * Make sure whether the port is in the
17784 			 * valid range.
17785 			 */
17786 			goto retry;
17787 		}
17788 	}
17789 	if (is_system_labeled() &&
17790 	    (i = tsol_next_port(crgetzone(tcp->tcp_cred), port,
17791 	    IPPROTO_TCP, B_TRUE)) != 0) {
17792 		port = i;
17793 		goto retry;
17794 	}
17795 	return (port);
17796 }
17797 
17798 /*
17799  * Return the next anonymous port in the privileged port range for
17800  * bind checking.  It starts at IPPORT_RESERVED - 1 and goes
17801  * downwards.  This is the same behavior as documented in the userland
17802  * library call rresvport(3N).
17803  *
17804  * TS note: skip multilevel ports.
17805  */
17806 static in_port_t
17807 tcp_get_next_priv_port(const tcp_t *tcp)
17808 {
17809 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
17810 	in_port_t nextport;
17811 	boolean_t restart = B_FALSE;
17812 	tcp_stack_t *tcps = tcp->tcp_tcps;
17813 retry:
17814 	if (next_priv_port < tcps->tcps_min_anonpriv_port ||
17815 	    next_priv_port >= IPPORT_RESERVED) {
17816 		next_priv_port = IPPORT_RESERVED - 1;
17817 		if (restart)
17818 			return (0);
17819 		restart = B_TRUE;
17820 	}
17821 	if (is_system_labeled() &&
17822 	    (nextport = tsol_next_port(crgetzone(tcp->tcp_cred),
17823 	    next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) {
17824 		next_priv_port = nextport;
17825 		goto retry;
17826 	}
17827 	return (next_priv_port--);
17828 }
17829 
17830 /* The write side r/w procedure. */
17831 
17832 #if CCS_STATS
17833 struct {
17834 	struct {
17835 		int64_t count, bytes;
17836 	} tot, hit;
17837 } wrw_stats;
17838 #endif
17839 
17840 /*
17841  * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO,
17842  * messages.
17843  */
17844 /* ARGSUSED */
17845 static void
17846 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2)
17847 {
17848 	conn_t	*connp = (conn_t *)arg;
17849 	tcp_t	*tcp = connp->conn_tcp;
17850 	queue_t	*q = tcp->tcp_wq;
17851 
17852 	ASSERT(DB_TYPE(mp) != M_IOCTL);
17853 	/*
17854 	 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close.
17855 	 * Once the close starts, streamhead and sockfs will not let any data
17856 	 * packets come down (close ensures that there are no threads using the
17857 	 * queue and no new threads will come down) but since qprocsoff()
17858 	 * hasn't happened yet, a M_FLUSH or some non data message might
17859 	 * get reflected back (in response to our own FLUSHRW) and get
17860 	 * processed after tcp_close() is done. The conn would still be valid
17861 	 * because a ref would have added but we need to check the state
17862 	 * before actually processing the packet.
17863 	 */
17864 	if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) {
17865 		freemsg(mp);
17866 		return;
17867 	}
17868 
17869 	switch (DB_TYPE(mp)) {
17870 	case M_IOCDATA:
17871 		tcp_wput_iocdata(tcp, mp);
17872 		break;
17873 	case M_FLUSH:
17874 		tcp_wput_flush(tcp, mp);
17875 		break;
17876 	default:
17877 		CALL_IP_WPUT(connp, q, mp);
17878 		break;
17879 	}
17880 }
17881 
17882 /*
17883  * The TCP fast path write put procedure.
17884  * NOTE: the logic of the fast path is duplicated from tcp_wput_data()
17885  */
17886 /* ARGSUSED */
17887 void
17888 tcp_output(void *arg, mblk_t *mp, void *arg2)
17889 {
17890 	int		len;
17891 	int		hdrlen;
17892 	int		plen;
17893 	mblk_t		*mp1;
17894 	uchar_t		*rptr;
17895 	uint32_t	snxt;
17896 	tcph_t		*tcph;
17897 	struct datab	*db;
17898 	uint32_t	suna;
17899 	uint32_t	mss;
17900 	ipaddr_t	*dst;
17901 	ipaddr_t	*src;
17902 	uint32_t	sum;
17903 	int		usable;
17904 	conn_t		*connp = (conn_t *)arg;
17905 	tcp_t		*tcp = connp->conn_tcp;
17906 	uint32_t	msize;
17907 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17908 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
17909 
17910 	/*
17911 	 * Try and ASSERT the minimum possible references on the
17912 	 * conn early enough. Since we are executing on write side,
17913 	 * the connection is obviously not detached and that means
17914 	 * there is a ref each for TCP and IP. Since we are behind
17915 	 * the squeue, the minimum references needed are 3. If the
17916 	 * conn is in classifier hash list, there should be an
17917 	 * extra ref for that (we check both the possibilities).
17918 	 */
17919 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17920 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17921 
17922 	ASSERT(DB_TYPE(mp) == M_DATA);
17923 	msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
17924 
17925 	mutex_enter(&tcp->tcp_non_sq_lock);
17926 	tcp->tcp_squeue_bytes -= msize;
17927 	mutex_exit(&tcp->tcp_non_sq_lock);
17928 
17929 	/* Check to see if this connection wants to be re-fused. */
17930 	if (tcp->tcp_refuse && !ipst->ips_ipobs_enabled) {
17931 		if (tcp->tcp_ipversion == IPV4_VERSION) {
17932 			tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ipha,
17933 			    &tcp->tcp_saved_tcph);
17934 		} else {
17935 			tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ip6h,
17936 			    &tcp->tcp_saved_tcph);
17937 		}
17938 	}
17939 	/* Bypass tcp protocol for fused tcp loopback */
17940 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
17941 		return;
17942 
17943 	mss = tcp->tcp_mss;
17944 	if (tcp->tcp_xmit_zc_clean)
17945 		mp = tcp_zcopy_backoff(tcp, mp, 0);
17946 
17947 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
17948 	len = (int)(mp->b_wptr - mp->b_rptr);
17949 
17950 	/*
17951 	 * Criteria for fast path:
17952 	 *
17953 	 *   1. no unsent data
17954 	 *   2. single mblk in request
17955 	 *   3. connection established
17956 	 *   4. data in mblk
17957 	 *   5. len <= mss
17958 	 *   6. no tcp_valid bits
17959 	 */
17960 	if ((tcp->tcp_unsent != 0) ||
17961 	    (tcp->tcp_cork) ||
17962 	    (mp->b_cont != NULL) ||
17963 	    (tcp->tcp_state != TCPS_ESTABLISHED) ||
17964 	    (len == 0) ||
17965 	    (len > mss) ||
17966 	    (tcp->tcp_valid_bits != 0)) {
17967 		tcp_wput_data(tcp, mp, B_FALSE);
17968 		return;
17969 	}
17970 
17971 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
17972 	ASSERT(tcp->tcp_fin_sent == 0);
17973 
17974 	/* queue new packet onto retransmission queue */
17975 	if (tcp->tcp_xmit_head == NULL) {
17976 		tcp->tcp_xmit_head = mp;
17977 	} else {
17978 		tcp->tcp_xmit_last->b_cont = mp;
17979 	}
17980 	tcp->tcp_xmit_last = mp;
17981 	tcp->tcp_xmit_tail = mp;
17982 
17983 	/* find out how much we can send */
17984 	/* BEGIN CSTYLED */
17985 	/*
17986 	 *    un-acked           usable
17987 	 *  |--------------|-----------------|
17988 	 *  tcp_suna       tcp_snxt          tcp_suna+tcp_swnd
17989 	 */
17990 	/* END CSTYLED */
17991 
17992 	/* start sending from tcp_snxt */
17993 	snxt = tcp->tcp_snxt;
17994 
17995 	/*
17996 	 * Check to see if this connection has been idled for some
17997 	 * time and no ACK is expected.  If it is, we need to slow
17998 	 * start again to get back the connection's "self-clock" as
17999 	 * described in VJ's paper.
18000 	 *
18001 	 * Refer to the comment in tcp_mss_set() for the calculation
18002 	 * of tcp_cwnd after idle.
18003 	 */
18004 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
18005 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
18006 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
18007 	}
18008 
18009 	usable = tcp->tcp_swnd;		/* tcp window size */
18010 	if (usable > tcp->tcp_cwnd)
18011 		usable = tcp->tcp_cwnd;	/* congestion window smaller */
18012 	usable -= snxt;		/* subtract stuff already sent */
18013 	suna = tcp->tcp_suna;
18014 	usable += suna;
18015 	/* usable can be < 0 if the congestion window is smaller */
18016 	if (len > usable) {
18017 		/* Can't send complete M_DATA in one shot */
18018 		goto slow;
18019 	}
18020 
18021 	mutex_enter(&tcp->tcp_non_sq_lock);
18022 	if (tcp->tcp_flow_stopped &&
18023 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
18024 		tcp_clrqfull(tcp);
18025 	}
18026 	mutex_exit(&tcp->tcp_non_sq_lock);
18027 
18028 	/*
18029 	 * determine if anything to send (Nagle).
18030 	 *
18031 	 *   1. len < tcp_mss (i.e. small)
18032 	 *   2. unacknowledged data present
18033 	 *   3. len < nagle limit
18034 	 *   4. last packet sent < nagle limit (previous packet sent)
18035 	 */
18036 	if ((len < mss) && (snxt != suna) &&
18037 	    (len < (int)tcp->tcp_naglim) &&
18038 	    (tcp->tcp_last_sent_len < tcp->tcp_naglim)) {
18039 		/*
18040 		 * This was the first unsent packet and normally
18041 		 * mss < xmit_hiwater so there is no need to worry
18042 		 * about flow control. The next packet will go
18043 		 * through the flow control check in tcp_wput_data().
18044 		 */
18045 		/* leftover work from above */
18046 		tcp->tcp_unsent = len;
18047 		tcp->tcp_xmit_tail_unsent = len;
18048 
18049 		return;
18050 	}
18051 
18052 	/* len <= tcp->tcp_mss && len == unsent so no silly window */
18053 
18054 	if (snxt == suna) {
18055 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
18056 	}
18057 
18058 	/* we have always sent something */
18059 	tcp->tcp_rack_cnt = 0;
18060 
18061 	tcp->tcp_snxt = snxt + len;
18062 	tcp->tcp_rack = tcp->tcp_rnxt;
18063 
18064 	if ((mp1 = dupb(mp)) == 0)
18065 		goto no_memory;
18066 	mp->b_prev = (mblk_t *)(uintptr_t)lbolt;
18067 	mp->b_next = (mblk_t *)(uintptr_t)snxt;
18068 
18069 	/* adjust tcp header information */
18070 	tcph = tcp->tcp_tcph;
18071 	tcph->th_flags[0] = (TH_ACK|TH_PUSH);
18072 
18073 	sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
18074 	sum = (sum >> 16) + (sum & 0xFFFF);
18075 	U16_TO_ABE16(sum, tcph->th_sum);
18076 
18077 	U32_TO_ABE32(snxt, tcph->th_seq);
18078 
18079 	BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
18080 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
18081 	BUMP_LOCAL(tcp->tcp_obsegs);
18082 
18083 	/* Update the latest receive window size in TCP header. */
18084 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
18085 	    tcph->th_win);
18086 
18087 	tcp->tcp_last_sent_len = (ushort_t)len;
18088 
18089 	plen = len + tcp->tcp_hdr_len;
18090 
18091 	if (tcp->tcp_ipversion == IPV4_VERSION) {
18092 		tcp->tcp_ipha->ipha_length = htons(plen);
18093 	} else {
18094 		tcp->tcp_ip6h->ip6_plen = htons(plen -
18095 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
18096 	}
18097 
18098 	/* see if we need to allocate a mblk for the headers */
18099 	hdrlen = tcp->tcp_hdr_len;
18100 	rptr = mp1->b_rptr - hdrlen;
18101 	db = mp1->b_datap;
18102 	if ((db->db_ref != 2) || rptr < db->db_base ||
18103 	    (!OK_32PTR(rptr))) {
18104 		/* NOTE: we assume allocb returns an OK_32PTR */
18105 		mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
18106 		    tcps->tcps_wroff_xtra, BPRI_MED);
18107 		if (!mp) {
18108 			freemsg(mp1);
18109 			goto no_memory;
18110 		}
18111 		mp->b_cont = mp1;
18112 		mp1 = mp;
18113 		/* Leave room for Link Level header */
18114 		/* hdrlen = tcp->tcp_hdr_len; */
18115 		rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra];
18116 		mp1->b_wptr = &rptr[hdrlen];
18117 	}
18118 	mp1->b_rptr = rptr;
18119 
18120 	/* Fill in the timestamp option. */
18121 	if (tcp->tcp_snd_ts_ok) {
18122 		U32_TO_BE32((uint32_t)lbolt,
18123 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
18124 		U32_TO_BE32(tcp->tcp_ts_recent,
18125 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
18126 	} else {
18127 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
18128 	}
18129 
18130 	/* copy header into outgoing packet */
18131 	dst = (ipaddr_t *)rptr;
18132 	src = (ipaddr_t *)tcp->tcp_iphc;
18133 	dst[0] = src[0];
18134 	dst[1] = src[1];
18135 	dst[2] = src[2];
18136 	dst[3] = src[3];
18137 	dst[4] = src[4];
18138 	dst[5] = src[5];
18139 	dst[6] = src[6];
18140 	dst[7] = src[7];
18141 	dst[8] = src[8];
18142 	dst[9] = src[9];
18143 	if (hdrlen -= 40) {
18144 		hdrlen >>= 2;
18145 		dst += 10;
18146 		src += 10;
18147 		do {
18148 			*dst++ = *src++;
18149 		} while (--hdrlen);
18150 	}
18151 
18152 	/*
18153 	 * Set the ECN info in the TCP header.  Note that this
18154 	 * is not the template header.
18155 	 */
18156 	if (tcp->tcp_ecn_ok) {
18157 		SET_ECT(tcp, rptr);
18158 
18159 		tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
18160 		if (tcp->tcp_ecn_echo_on)
18161 			tcph->th_flags[0] |= TH_ECE;
18162 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
18163 			tcph->th_flags[0] |= TH_CWR;
18164 			tcp->tcp_ecn_cwr_sent = B_TRUE;
18165 		}
18166 	}
18167 
18168 	if (tcp->tcp_ip_forward_progress) {
18169 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
18170 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
18171 		tcp->tcp_ip_forward_progress = B_FALSE;
18172 	}
18173 	tcp_send_data(tcp, tcp->tcp_wq, mp1);
18174 	return;
18175 
18176 	/*
18177 	 * If we ran out of memory, we pretend to have sent the packet
18178 	 * and that it was lost on the wire.
18179 	 */
18180 no_memory:
18181 	return;
18182 
18183 slow:
18184 	/* leftover work from above */
18185 	tcp->tcp_unsent = len;
18186 	tcp->tcp_xmit_tail_unsent = len;
18187 	tcp_wput_data(tcp, NULL, B_FALSE);
18188 }
18189 
18190 /*
18191  * The function called through squeue to get behind eager's perimeter to
18192  * finish the accept processing.
18193  */
18194 /* ARGSUSED */
18195 void
18196 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2)
18197 {
18198 	conn_t			*connp = (conn_t *)arg;
18199 	tcp_t			*tcp = connp->conn_tcp;
18200 	queue_t			*q = tcp->tcp_rq;
18201 	mblk_t			*mp1;
18202 	mblk_t			*stropt_mp = mp;
18203 	struct  stroptions	*stropt;
18204 	uint_t			thwin;
18205 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18206 
18207 	/*
18208 	 * Drop the eager's ref on the listener, that was placed when
18209 	 * this eager began life in tcp_conn_request.
18210 	 */
18211 	CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp);
18212 
18213 	tcp->tcp_detached = B_FALSE;
18214 
18215 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) {
18216 		/*
18217 		 * Someone blewoff the eager before we could finish
18218 		 * the accept.
18219 		 *
18220 		 * The only reason eager exists it because we put in
18221 		 * a ref on it when conn ind went up. We need to send
18222 		 * a disconnect indication up while the last reference
18223 		 * on the eager will be dropped by the squeue when we
18224 		 * return.
18225 		 */
18226 		ASSERT(tcp->tcp_listener == NULL);
18227 		if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) {
18228 			struct	T_discon_ind	*tdi;
18229 
18230 			(void) putnextctl1(q, M_FLUSH, FLUSHRW);
18231 			/*
18232 			 * Let us reuse the incoming mblk to avoid memory
18233 			 * allocation failure problems. We know that the
18234 			 * size of the incoming mblk i.e. stroptions is greater
18235 			 * than sizeof T_discon_ind. So the reallocb below
18236 			 * can't fail.
18237 			 */
18238 			freemsg(mp->b_cont);
18239 			mp->b_cont = NULL;
18240 			ASSERT(DB_REF(mp) == 1);
18241 			mp = reallocb(mp, sizeof (struct T_discon_ind),
18242 			    B_FALSE);
18243 			ASSERT(mp != NULL);
18244 			DB_TYPE(mp) = M_PROTO;
18245 			((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND;
18246 			tdi = (struct T_discon_ind *)mp->b_rptr;
18247 			if (tcp->tcp_issocket) {
18248 				tdi->DISCON_reason = ECONNREFUSED;
18249 				tdi->SEQ_number = 0;
18250 			} else {
18251 				tdi->DISCON_reason = ENOPROTOOPT;
18252 				tdi->SEQ_number =
18253 				    tcp->tcp_conn_req_seqnum;
18254 			}
18255 			mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind);
18256 			putnext(q, mp);
18257 		} else {
18258 			freemsg(mp);
18259 		}
18260 		if (tcp->tcp_hard_binding) {
18261 			tcp->tcp_hard_binding = B_FALSE;
18262 			tcp->tcp_hard_bound = B_TRUE;
18263 		}
18264 		return;
18265 	}
18266 
18267 	mp1 = stropt_mp->b_cont;
18268 	stropt_mp->b_cont = NULL;
18269 	ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS);
18270 	stropt = (struct stroptions *)stropt_mp->b_rptr;
18271 
18272 	while (mp1 != NULL) {
18273 		mp = mp1;
18274 		mp1 = mp1->b_cont;
18275 		mp->b_cont = NULL;
18276 		tcp->tcp_drop_opt_ack_cnt++;
18277 		CALL_IP_WPUT(connp, tcp->tcp_wq, mp);
18278 	}
18279 	mp = NULL;
18280 
18281 	/*
18282 	 * For a loopback connection with tcp_direct_sockfs on, note that
18283 	 * we don't have to protect tcp_rcv_list yet because synchronous
18284 	 * streams has not yet been enabled and tcp_fuse_rrw() cannot
18285 	 * possibly race with us.
18286 	 */
18287 
18288 	/*
18289 	 * Set the max window size (tcp_rq->q_hiwat) of the acceptor
18290 	 * properly.  This is the first time we know of the acceptor'
18291 	 * queue.  So we do it here.
18292 	 */
18293 	if (tcp->tcp_rcv_list == NULL) {
18294 		/*
18295 		 * Recv queue is empty, tcp_rwnd should not have changed.
18296 		 * That means it should be equal to the listener's tcp_rwnd.
18297 		 */
18298 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd;
18299 	} else {
18300 #ifdef DEBUG
18301 		uint_t cnt = 0;
18302 
18303 		mp1 = tcp->tcp_rcv_list;
18304 		while ((mp = mp1) != NULL) {
18305 			mp1 = mp->b_next;
18306 			cnt += msgdsize(mp);
18307 		}
18308 		ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt);
18309 #endif
18310 		/* There is some data, add them back to get the max. */
18311 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
18312 	}
18313 	/*
18314 	 * This is the first time we run on the correct
18315 	 * queue after tcp_accept. So fix all the q parameters
18316 	 * here.
18317 	 */
18318 	stropt->so_flags = SO_HIWAT | SO_MAXBLK | SO_WROFF;
18319 	stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
18320 
18321 	/*
18322 	 * Record the stream head's high water mark for this endpoint;
18323 	 * this is used for flow-control purposes.
18324 	 */
18325 	stropt->so_hiwat = tcp->tcp_fused ?
18326 	    tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat) :
18327 	    MAX(q->q_hiwat, tcps->tcps_sth_rcv_hiwat);
18328 
18329 	/*
18330 	 * Determine what write offset value to use depending on SACK and
18331 	 * whether the endpoint is fused or not.
18332 	 */
18333 	if (tcp->tcp_fused) {
18334 		ASSERT(tcp->tcp_loopback);
18335 		ASSERT(tcp->tcp_loopback_peer != NULL);
18336 		/*
18337 		 * For fused tcp loopback, set the stream head's write
18338 		 * offset value to zero since we won't be needing any room
18339 		 * for TCP/IP headers.  This would also improve performance
18340 		 * since it would reduce the amount of work done by kmem.
18341 		 * Non-fused tcp loopback case is handled separately below.
18342 		 */
18343 		stropt->so_wroff = 0;
18344 		/*
18345 		 * Update the peer's transmit parameters according to
18346 		 * our recently calculated high water mark value.
18347 		 */
18348 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
18349 	} else if (tcp->tcp_snd_sack_ok) {
18350 		stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
18351 		    (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra);
18352 	} else {
18353 		stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 :
18354 		    tcps->tcps_wroff_xtra);
18355 	}
18356 
18357 	/*
18358 	 * If this is endpoint is handling SSL, then reserve extra
18359 	 * offset and space at the end.
18360 	 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets,
18361 	 * overriding the previous setting. The extra cost of signing and
18362 	 * encrypting multiple MSS-size records (12 of them with Ethernet),
18363 	 * instead of a single contiguous one by the stream head
18364 	 * largely outweighs the statistical reduction of ACKs, when
18365 	 * applicable. The peer will also save on decryption and verification
18366 	 * costs.
18367 	 */
18368 	if (tcp->tcp_kssl_ctx != NULL) {
18369 		stropt->so_wroff += SSL3_WROFFSET;
18370 
18371 		stropt->so_flags |= SO_TAIL;
18372 		stropt->so_tail = SSL3_MAX_TAIL_LEN;
18373 
18374 		stropt->so_flags |= SO_COPYOPT;
18375 		stropt->so_copyopt = ZCVMUNSAFE;
18376 
18377 		stropt->so_maxblk = SSL3_MAX_RECORD_LEN;
18378 	}
18379 
18380 	/* Send the options up */
18381 	putnext(q, stropt_mp);
18382 
18383 	/*
18384 	 * Pass up any data and/or a fin that has been received.
18385 	 *
18386 	 * Adjust receive window in case it had decreased
18387 	 * (because there is data <=> tcp_rcv_list != NULL)
18388 	 * while the connection was detached. Note that
18389 	 * in case the eager was flow-controlled, w/o this
18390 	 * code, the rwnd may never open up again!
18391 	 */
18392 	if (tcp->tcp_rcv_list != NULL) {
18393 		/* We drain directly in case of fused tcp loopback */
18394 		sodirect_t *sodp;
18395 
18396 		if (!tcp->tcp_fused && canputnext(q)) {
18397 			tcp->tcp_rwnd = q->q_hiwat;
18398 			thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
18399 			    << tcp->tcp_rcv_ws;
18400 			thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
18401 			if (tcp->tcp_state >= TCPS_ESTABLISHED &&
18402 			    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
18403 				tcp_xmit_ctl(NULL,
18404 				    tcp, (tcp->tcp_swnd == 0) ?
18405 				    tcp->tcp_suna : tcp->tcp_snxt,
18406 				    tcp->tcp_rnxt, TH_ACK);
18407 				BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
18408 			}
18409 
18410 		}
18411 
18412 		SOD_PTR_ENTER(tcp, sodp);
18413 		if (sodp != NULL) {
18414 			/* Sodirect, move from rcv_list */
18415 			ASSERT(!tcp->tcp_fused);
18416 			while ((mp = tcp->tcp_rcv_list) != NULL) {
18417 				tcp->tcp_rcv_list = mp->b_next;
18418 				mp->b_next = NULL;
18419 				(void) tcp_rcv_sod_enqueue(tcp, sodp, mp,
18420 				    msgdsize(mp));
18421 			}
18422 			tcp->tcp_rcv_last_head = NULL;
18423 			tcp->tcp_rcv_last_tail = NULL;
18424 			tcp->tcp_rcv_cnt = 0;
18425 			(void) tcp_rcv_sod_wakeup(tcp, sodp);
18426 			/* sod_wakeup() did the mutex_exit() */
18427 		} else {
18428 			/* Not sodirect, drain */
18429 			(void) tcp_rcv_drain(q, tcp);
18430 		}
18431 
18432 		/*
18433 		 * For fused tcp loopback, back-enable peer endpoint
18434 		 * if it's currently flow-controlled.
18435 		 */
18436 		if (tcp->tcp_fused) {
18437 			tcp_t *peer_tcp = tcp->tcp_loopback_peer;
18438 
18439 			ASSERT(peer_tcp != NULL);
18440 			ASSERT(peer_tcp->tcp_fused);
18441 			/*
18442 			 * In order to change the peer's tcp_flow_stopped,
18443 			 * we need to take locks for both end points. The
18444 			 * highest address is taken first.
18445 			 */
18446 			if (peer_tcp > tcp) {
18447 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
18448 				mutex_enter(&tcp->tcp_non_sq_lock);
18449 			} else {
18450 				mutex_enter(&tcp->tcp_non_sq_lock);
18451 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
18452 			}
18453 			if (peer_tcp->tcp_flow_stopped) {
18454 				tcp_clrqfull(peer_tcp);
18455 				TCP_STAT(tcps, tcp_fusion_backenabled);
18456 			}
18457 			mutex_exit(&peer_tcp->tcp_non_sq_lock);
18458 			mutex_exit(&tcp->tcp_non_sq_lock);
18459 		}
18460 	}
18461 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
18462 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
18463 		mp = tcp->tcp_ordrel_mp;
18464 		tcp->tcp_ordrel_mp = NULL;
18465 		tcp->tcp_ordrel_done = B_TRUE;
18466 		putnext(q, mp);
18467 	}
18468 	if (tcp->tcp_hard_binding) {
18469 		tcp->tcp_hard_binding = B_FALSE;
18470 		tcp->tcp_hard_bound = B_TRUE;
18471 	}
18472 
18473 	/* We can enable synchronous streams now */
18474 	if (tcp->tcp_fused) {
18475 		tcp_fuse_syncstr_enable_pair(tcp);
18476 	}
18477 
18478 	if (tcp->tcp_ka_enabled) {
18479 		tcp->tcp_ka_last_intrvl = 0;
18480 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
18481 		    MSEC_TO_TICK(tcp->tcp_ka_interval));
18482 	}
18483 
18484 	/*
18485 	 * At this point, eager is fully established and will
18486 	 * have the following references -
18487 	 *
18488 	 * 2 references for connection to exist (1 for TCP and 1 for IP).
18489 	 * 1 reference for the squeue which will be dropped by the squeue as
18490 	 *	soon as this function returns.
18491 	 * There will be 1 additonal reference for being in classifier
18492 	 *	hash list provided something bad hasn't happened.
18493 	 */
18494 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
18495 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
18496 }
18497 
18498 /*
18499  * The function called through squeue to get behind listener's perimeter to
18500  * send a deffered conn_ind.
18501  */
18502 /* ARGSUSED */
18503 void
18504 tcp_send_pending(void *arg, mblk_t *mp, void *arg2)
18505 {
18506 	conn_t	*connp = (conn_t *)arg;
18507 	tcp_t *listener = connp->conn_tcp;
18508 
18509 	if (listener->tcp_state == TCPS_CLOSED ||
18510 	    TCP_IS_DETACHED(listener)) {
18511 		/*
18512 		 * If listener has closed, it would have caused a
18513 		 * a cleanup/blowoff to happen for the eager.
18514 		 */
18515 		tcp_t *tcp;
18516 		struct T_conn_ind	*conn_ind;
18517 
18518 		conn_ind = (struct T_conn_ind *)mp->b_rptr;
18519 		bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
18520 		    conn_ind->OPT_length);
18521 		/*
18522 		 * We need to drop the ref on eager that was put
18523 		 * tcp_rput_data() before trying to send the conn_ind
18524 		 * to listener. The conn_ind was deferred in tcp_send_conn_ind
18525 		 * and tcp_wput_accept() is sending this deferred conn_ind but
18526 		 * listener is closed so we drop the ref.
18527 		 */
18528 		CONN_DEC_REF(tcp->tcp_connp);
18529 		freemsg(mp);
18530 		return;
18531 	}
18532 	putnext(listener->tcp_rq, mp);
18533 }
18534 
18535 
18536 /*
18537  * This is the STREAMS entry point for T_CONN_RES coming down on
18538  * Acceptor STREAM when  sockfs listener does accept processing.
18539  * Read the block comment on top of tcp_conn_request().
18540  */
18541 void
18542 tcp_wput_accept(queue_t *q, mblk_t *mp)
18543 {
18544 	queue_t *rq = RD(q);
18545 	struct T_conn_res *conn_res;
18546 	tcp_t *eager;
18547 	tcp_t *listener;
18548 	struct T_ok_ack *ok;
18549 	t_scalar_t PRIM_type;
18550 	mblk_t *opt_mp;
18551 	conn_t *econnp;
18552 
18553 	ASSERT(DB_TYPE(mp) == M_PROTO);
18554 
18555 	conn_res = (struct T_conn_res *)mp->b_rptr;
18556 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
18557 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) {
18558 		mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
18559 		if (mp != NULL)
18560 			putnext(rq, mp);
18561 		return;
18562 	}
18563 	switch (conn_res->PRIM_type) {
18564 	case O_T_CONN_RES:
18565 	case T_CONN_RES:
18566 		/*
18567 		 * We pass up an err ack if allocb fails. This will
18568 		 * cause sockfs to issue a T_DISCON_REQ which will cause
18569 		 * tcp_eager_blowoff to be called. sockfs will then call
18570 		 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream.
18571 		 * we need to do the allocb up here because we have to
18572 		 * make sure rq->q_qinfo->qi_qclose still points to the
18573 		 * correct function (tcpclose_accept) in case allocb
18574 		 * fails.
18575 		 */
18576 		opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
18577 		if (opt_mp == NULL) {
18578 			mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
18579 			if (mp != NULL)
18580 				putnext(rq, mp);
18581 			return;
18582 		}
18583 
18584 		bcopy(mp->b_rptr + conn_res->OPT_offset,
18585 		    &eager, conn_res->OPT_length);
18586 		PRIM_type = conn_res->PRIM_type;
18587 		mp->b_datap->db_type = M_PCPROTO;
18588 		mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack);
18589 		ok = (struct T_ok_ack *)mp->b_rptr;
18590 		ok->PRIM_type = T_OK_ACK;
18591 		ok->CORRECT_prim = PRIM_type;
18592 		econnp = eager->tcp_connp;
18593 		econnp->conn_dev = (dev_t)RD(q)->q_ptr;
18594 		econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr);
18595 		eager->tcp_rq = rq;
18596 		eager->tcp_wq = q;
18597 		rq->q_ptr = econnp;
18598 		rq->q_qinfo = &tcp_rinitv4;	/* No open - same as rinitv6 */
18599 		q->q_ptr = econnp;
18600 		q->q_qinfo = &tcp_winit;
18601 		listener = eager->tcp_listener;
18602 		eager->tcp_issocket = B_TRUE;
18603 
18604 		/*
18605 		 * TCP is _D_SODIRECT and sockfs is directly above so
18606 		 * save shared sodirect_t pointer (if any).
18607 		 *
18608 		 * If tcp_fused and sodirect enabled disable it.
18609 		 */
18610 		eager->tcp_sodirect = SOD_QTOSODP(eager->tcp_rq);
18611 		if (eager->tcp_fused && eager->tcp_sodirect != NULL) {
18612 			/* Fused, disable sodirect */
18613 			mutex_enter(eager->tcp_sodirect->sod_lockp);
18614 			SOD_DISABLE(eager->tcp_sodirect);
18615 			mutex_exit(eager->tcp_sodirect->sod_lockp);
18616 			eager->tcp_sodirect = NULL;
18617 		}
18618 
18619 		econnp->conn_zoneid = listener->tcp_connp->conn_zoneid;
18620 		econnp->conn_allzones = listener->tcp_connp->conn_allzones;
18621 		ASSERT(econnp->conn_netstack ==
18622 		    listener->tcp_connp->conn_netstack);
18623 		ASSERT(eager->tcp_tcps == listener->tcp_tcps);
18624 
18625 		/* Put the ref for IP */
18626 		CONN_INC_REF(econnp);
18627 
18628 		/*
18629 		 * We should have minimum of 3 references on the conn
18630 		 * at this point. One each for TCP and IP and one for
18631 		 * the T_conn_ind that was sent up when the 3-way handshake
18632 		 * completed. In the normal case we would also have another
18633 		 * reference (making a total of 4) for the conn being in the
18634 		 * classifier hash list. However the eager could have received
18635 		 * an RST subsequently and tcp_closei_local could have removed
18636 		 * the eager from the classifier hash list, hence we can't
18637 		 * assert that reference.
18638 		 */
18639 		ASSERT(econnp->conn_ref >= 3);
18640 
18641 		/*
18642 		 * Send the new local address also up to sockfs. There
18643 		 * should already be enough space in the mp that came
18644 		 * down from soaccept().
18645 		 */
18646 		if (eager->tcp_family == AF_INET) {
18647 			sin_t *sin;
18648 
18649 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18650 			    (sizeof (struct T_ok_ack) + sizeof (sin_t)));
18651 			sin = (sin_t *)mp->b_wptr;
18652 			mp->b_wptr += sizeof (sin_t);
18653 			sin->sin_family = AF_INET;
18654 			sin->sin_port = eager->tcp_lport;
18655 			sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src;
18656 		} else {
18657 			sin6_t *sin6;
18658 
18659 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18660 			    sizeof (struct T_ok_ack) + sizeof (sin6_t));
18661 			sin6 = (sin6_t *)mp->b_wptr;
18662 			mp->b_wptr += sizeof (sin6_t);
18663 			sin6->sin6_family = AF_INET6;
18664 			sin6->sin6_port = eager->tcp_lport;
18665 			if (eager->tcp_ipversion == IPV4_VERSION) {
18666 				sin6->sin6_flowinfo = 0;
18667 				IN6_IPADDR_TO_V4MAPPED(
18668 				    eager->tcp_ipha->ipha_src,
18669 				    &sin6->sin6_addr);
18670 			} else {
18671 				ASSERT(eager->tcp_ip6h != NULL);
18672 				sin6->sin6_flowinfo =
18673 				    eager->tcp_ip6h->ip6_vcf &
18674 				    ~IPV6_VERS_AND_FLOW_MASK;
18675 				sin6->sin6_addr = eager->tcp_ip6h->ip6_src;
18676 			}
18677 			sin6->sin6_scope_id = 0;
18678 			sin6->__sin6_src_id = 0;
18679 		}
18680 
18681 		putnext(rq, mp);
18682 
18683 		opt_mp->b_datap->db_type = M_SETOPTS;
18684 		opt_mp->b_wptr += sizeof (struct stroptions);
18685 
18686 		/*
18687 		 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
18688 		 * from listener to acceptor. The message is chained on the
18689 		 * bind_mp which tcp_rput_other will send down to IP.
18690 		 */
18691 		if (listener->tcp_bound_if != 0) {
18692 			/* allocate optmgmt req */
18693 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
18694 			    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
18695 			    sizeof (int));
18696 			if (mp != NULL)
18697 				linkb(opt_mp, mp);
18698 		}
18699 		if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
18700 			uint_t on = 1;
18701 
18702 			/* allocate optmgmt req */
18703 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
18704 			    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
18705 			if (mp != NULL)
18706 				linkb(opt_mp, mp);
18707 		}
18708 
18709 
18710 		mutex_enter(&listener->tcp_eager_lock);
18711 
18712 		if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
18713 
18714 			tcp_t *tail;
18715 			tcp_t *tcp;
18716 			mblk_t *mp1;
18717 
18718 			tcp = listener->tcp_eager_prev_q0;
18719 			/*
18720 			 * listener->tcp_eager_prev_q0 points to the TAIL of the
18721 			 * deferred T_conn_ind queue. We need to get to the head
18722 			 * of the queue in order to send up T_conn_ind the same
18723 			 * order as how the 3WHS is completed.
18724 			 */
18725 			while (tcp != listener) {
18726 				if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 &&
18727 				    !tcp->tcp_kssl_pending)
18728 					break;
18729 				else
18730 					tcp = tcp->tcp_eager_prev_q0;
18731 			}
18732 			/* None of the pending eagers can be sent up now */
18733 			if (tcp == listener)
18734 				goto no_more_eagers;
18735 
18736 			mp1 = tcp->tcp_conn.tcp_eager_conn_ind;
18737 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
18738 			/* Move from q0 to q */
18739 			ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
18740 			listener->tcp_conn_req_cnt_q0--;
18741 			listener->tcp_conn_req_cnt_q++;
18742 			tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
18743 			    tcp->tcp_eager_prev_q0;
18744 			tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
18745 			    tcp->tcp_eager_next_q0;
18746 			tcp->tcp_eager_prev_q0 = NULL;
18747 			tcp->tcp_eager_next_q0 = NULL;
18748 			tcp->tcp_conn_def_q0 = B_FALSE;
18749 
18750 			/* Make sure the tcp isn't in the list of droppables */
18751 			ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
18752 			    tcp->tcp_eager_prev_drop_q0 == NULL);
18753 
18754 			/*
18755 			 * Insert at end of the queue because sockfs sends
18756 			 * down T_CONN_RES in chronological order. Leaving
18757 			 * the older conn indications at front of the queue
18758 			 * helps reducing search time.
18759 			 */
18760 			tail = listener->tcp_eager_last_q;
18761 			if (tail != NULL) {
18762 				tail->tcp_eager_next_q = tcp;
18763 			} else {
18764 				listener->tcp_eager_next_q = tcp;
18765 			}
18766 			listener->tcp_eager_last_q = tcp;
18767 			tcp->tcp_eager_next_q = NULL;
18768 
18769 			/* Need to get inside the listener perimeter */
18770 			CONN_INC_REF(listener->tcp_connp);
18771 			squeue_fill(listener->tcp_connp->conn_sqp, mp1,
18772 			    tcp_send_pending, listener->tcp_connp,
18773 			    SQTAG_TCP_SEND_PENDING);
18774 		}
18775 no_more_eagers:
18776 		tcp_eager_unlink(eager);
18777 		mutex_exit(&listener->tcp_eager_lock);
18778 
18779 		/*
18780 		 * At this point, the eager is detached from the listener
18781 		 * but we still have an extra refs on eager (apart from the
18782 		 * usual tcp references). The ref was placed in tcp_rput_data
18783 		 * before sending the conn_ind in tcp_send_conn_ind.
18784 		 * The ref will be dropped in tcp_accept_finish().
18785 		 */
18786 		squeue_enter_nodrain(econnp->conn_sqp, opt_mp,
18787 		    tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0);
18788 		return;
18789 	default:
18790 		mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0);
18791 		if (mp != NULL)
18792 			putnext(rq, mp);
18793 		return;
18794 	}
18795 }
18796 
18797 static int
18798 tcp_getmyname(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp)
18799 {
18800 	sin_t *sin = (sin_t *)sa;
18801 	sin6_t *sin6 = (sin6_t *)sa;
18802 
18803 	switch (tcp->tcp_family) {
18804 	case AF_INET:
18805 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
18806 
18807 		if (*salenp < sizeof (sin_t))
18808 			return (EINVAL);
18809 
18810 		*sin = sin_null;
18811 		sin->sin_family = AF_INET;
18812 		sin->sin_port = tcp->tcp_lport;
18813 		sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
18814 		break;
18815 
18816 	case AF_INET6:
18817 		if (*salenp < sizeof (sin6_t))
18818 			return (EINVAL);
18819 
18820 		*sin6 = sin6_null;
18821 		sin6->sin6_family = AF_INET6;
18822 		sin6->sin6_port = tcp->tcp_lport;
18823 		if (tcp->tcp_ipversion == IPV4_VERSION) {
18824 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
18825 			    &sin6->sin6_addr);
18826 		} else {
18827 			sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
18828 		}
18829 		break;
18830 	}
18831 
18832 	return (0);
18833 }
18834 
18835 static int
18836 tcp_getpeername(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp)
18837 {
18838 	sin_t *sin = (sin_t *)sa;
18839 	sin6_t *sin6 = (sin6_t *)sa;
18840 
18841 	if (tcp->tcp_state < TCPS_SYN_RCVD)
18842 		return (ENOTCONN);
18843 
18844 	switch (tcp->tcp_family) {
18845 	case AF_INET:
18846 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
18847 
18848 		if (*salenp < sizeof (sin_t))
18849 			return (EINVAL);
18850 
18851 		*sin = sin_null;
18852 		sin->sin_family = AF_INET;
18853 		sin->sin_port = tcp->tcp_fport;
18854 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6,
18855 		    sin->sin_addr.s_addr);
18856 		break;
18857 
18858 	case AF_INET6:
18859 		if (*salenp < sizeof (sin6_t))
18860 			return (EINVAL);
18861 
18862 		*sin6 = sin6_null;
18863 		sin6->sin6_family = AF_INET6;
18864 		sin6->sin6_port = tcp->tcp_fport;
18865 		sin6->sin6_addr = tcp->tcp_remote_v6;
18866 		if (tcp->tcp_ipversion == IPV6_VERSION) {
18867 			sin6->sin6_flowinfo = tcp->tcp_ip6h->ip6_vcf &
18868 			    ~IPV6_VERS_AND_FLOW_MASK;
18869 		}
18870 		break;
18871 	}
18872 
18873 	return (0);
18874 }
18875 
18876 /*
18877  * Handle special out-of-band ioctl requests (see PSARC/2008/265).
18878  */
18879 static void
18880 tcp_wput_cmdblk(queue_t *q, mblk_t *mp)
18881 {
18882 	void	*data;
18883 	mblk_t	*datamp = mp->b_cont;
18884 	tcp_t	*tcp = Q_TO_TCP(q);
18885 	cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr;
18886 
18887 	if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) {
18888 		cmdp->cb_error = EPROTO;
18889 		qreply(q, mp);
18890 		return;
18891 	}
18892 
18893 	data = datamp->b_rptr;
18894 
18895 	switch (cmdp->cb_cmd) {
18896 	case TI_GETPEERNAME:
18897 		cmdp->cb_error = tcp_getpeername(tcp, data, &cmdp->cb_len);
18898 		break;
18899 	case TI_GETMYNAME:
18900 		cmdp->cb_error = tcp_getmyname(tcp, data, &cmdp->cb_len);
18901 		break;
18902 	default:
18903 		cmdp->cb_error = EINVAL;
18904 		break;
18905 	}
18906 
18907 	qreply(q, mp);
18908 }
18909 
18910 void
18911 tcp_wput(queue_t *q, mblk_t *mp)
18912 {
18913 	conn_t	*connp = Q_TO_CONN(q);
18914 	tcp_t	*tcp;
18915 	void (*output_proc)();
18916 	t_scalar_t type;
18917 	uchar_t *rptr;
18918 	struct iocblk	*iocp;
18919 	uint32_t	msize;
18920 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
18921 
18922 	ASSERT(connp->conn_ref >= 2);
18923 
18924 	switch (DB_TYPE(mp)) {
18925 	case M_DATA:
18926 		tcp = connp->conn_tcp;
18927 		ASSERT(tcp != NULL);
18928 
18929 		msize = msgdsize(mp);
18930 
18931 		mutex_enter(&tcp->tcp_non_sq_lock);
18932 		tcp->tcp_squeue_bytes += msize;
18933 		if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) {
18934 			tcp_setqfull(tcp);
18935 		}
18936 		mutex_exit(&tcp->tcp_non_sq_lock);
18937 
18938 		CONN_INC_REF(connp);
18939 		(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
18940 		    tcp_output, connp, SQTAG_TCP_OUTPUT);
18941 		return;
18942 
18943 	case M_CMD:
18944 		tcp_wput_cmdblk(q, mp);
18945 		return;
18946 
18947 	case M_PROTO:
18948 	case M_PCPROTO:
18949 		/*
18950 		 * if it is a snmp message, don't get behind the squeue
18951 		 */
18952 		tcp = connp->conn_tcp;
18953 		rptr = mp->b_rptr;
18954 		if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
18955 			type = ((union T_primitives *)rptr)->type;
18956 		} else {
18957 			if (tcp->tcp_debug) {
18958 				(void) strlog(TCP_MOD_ID, 0, 1,
18959 				    SL_ERROR|SL_TRACE,
18960 				    "tcp_wput_proto, dropping one...");
18961 			}
18962 			freemsg(mp);
18963 			return;
18964 		}
18965 		if (type == T_SVR4_OPTMGMT_REQ) {
18966 			cred_t	*cr = DB_CREDDEF(mp, tcp->tcp_cred);
18967 			if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get,
18968 			    cr)) {
18969 				/*
18970 				 * This was a SNMP request
18971 				 */
18972 				return;
18973 			} else {
18974 				output_proc = tcp_wput_proto;
18975 			}
18976 		} else {
18977 			output_proc = tcp_wput_proto;
18978 		}
18979 		break;
18980 	case M_IOCTL:
18981 		/*
18982 		 * Most ioctls can be processed right away without going via
18983 		 * squeues - process them right here. Those that do require
18984 		 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK)
18985 		 * are processed by tcp_wput_ioctl().
18986 		 */
18987 		iocp = (struct iocblk *)mp->b_rptr;
18988 		tcp = connp->conn_tcp;
18989 
18990 		switch (iocp->ioc_cmd) {
18991 		case TCP_IOC_ABORT_CONN:
18992 			tcp_ioctl_abort_conn(q, mp);
18993 			return;
18994 		case TI_GETPEERNAME:
18995 		case TI_GETMYNAME:
18996 			mi_copyin(q, mp, NULL,
18997 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
18998 			return;
18999 		case ND_SET:
19000 			/* nd_getset does the necessary checks */
19001 		case ND_GET:
19002 			if (!nd_getset(q, tcps->tcps_g_nd, mp)) {
19003 				CALL_IP_WPUT(connp, q, mp);
19004 				return;
19005 			}
19006 			qreply(q, mp);
19007 			return;
19008 		case TCP_IOC_DEFAULT_Q:
19009 			/*
19010 			 * Wants to be the default wq. Check the credentials
19011 			 * first, the rest is executed via squeue.
19012 			 */
19013 			if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
19014 				iocp->ioc_error = EPERM;
19015 				iocp->ioc_count = 0;
19016 				mp->b_datap->db_type = M_IOCACK;
19017 				qreply(q, mp);
19018 				return;
19019 			}
19020 			output_proc = tcp_wput_ioctl;
19021 			break;
19022 		default:
19023 			output_proc = tcp_wput_ioctl;
19024 			break;
19025 		}
19026 		break;
19027 	default:
19028 		output_proc = tcp_wput_nondata;
19029 		break;
19030 	}
19031 
19032 	CONN_INC_REF(connp);
19033 	(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
19034 	    output_proc, connp, SQTAG_TCP_WPUT_OTHER);
19035 }
19036 
19037 /*
19038  * Initial STREAMS write side put() procedure for sockets. It tries to
19039  * handle the T_CAPABILITY_REQ which sockfs sends down while setting
19040  * up the socket without using the squeue. Non T_CAPABILITY_REQ messages
19041  * are handled by tcp_wput() as usual.
19042  *
19043  * All further messages will also be handled by tcp_wput() because we cannot
19044  * be sure that the above short cut is safe later.
19045  */
19046 static void
19047 tcp_wput_sock(queue_t *wq, mblk_t *mp)
19048 {
19049 	conn_t			*connp = Q_TO_CONN(wq);
19050 	tcp_t			*tcp = connp->conn_tcp;
19051 	struct T_capability_req	*car = (struct T_capability_req *)mp->b_rptr;
19052 
19053 	ASSERT(wq->q_qinfo == &tcp_sock_winit);
19054 	wq->q_qinfo = &tcp_winit;
19055 
19056 	ASSERT(IPCL_IS_TCP(connp));
19057 	ASSERT(TCP_IS_SOCKET(tcp));
19058 
19059 	if (DB_TYPE(mp) == M_PCPROTO &&
19060 	    MBLKL(mp) == sizeof (struct T_capability_req) &&
19061 	    car->PRIM_type == T_CAPABILITY_REQ) {
19062 		tcp_capability_req(tcp, mp);
19063 		return;
19064 	}
19065 
19066 	tcp_wput(wq, mp);
19067 }
19068 
19069 static boolean_t
19070 tcp_zcopy_check(tcp_t *tcp)
19071 {
19072 	conn_t	*connp = tcp->tcp_connp;
19073 	ire_t	*ire;
19074 	boolean_t	zc_enabled = B_FALSE;
19075 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19076 
19077 	if (do_tcpzcopy == 2)
19078 		zc_enabled = B_TRUE;
19079 	else if (tcp->tcp_ipversion == IPV4_VERSION &&
19080 	    IPCL_IS_CONNECTED(connp) &&
19081 	    (connp->conn_flags & IPCL_CHECK_POLICY) == 0 &&
19082 	    connp->conn_dontroute == 0 &&
19083 	    !connp->conn_nexthop_set &&
19084 	    connp->conn_outgoing_ill == NULL &&
19085 	    connp->conn_nofailover_ill == NULL &&
19086 	    do_tcpzcopy == 1) {
19087 		/*
19088 		 * the checks above  closely resemble the fast path checks
19089 		 * in tcp_send_data().
19090 		 */
19091 		mutex_enter(&connp->conn_lock);
19092 		ire = connp->conn_ire_cache;
19093 		ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
19094 		if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
19095 			IRE_REFHOLD(ire);
19096 			if (ire->ire_stq != NULL) {
19097 				ill_t	*ill = (ill_t *)ire->ire_stq->q_ptr;
19098 
19099 				zc_enabled = ill && (ill->ill_capabilities &
19100 				    ILL_CAPAB_ZEROCOPY) &&
19101 				    (ill->ill_zerocopy_capab->
19102 				    ill_zerocopy_flags != 0);
19103 			}
19104 			IRE_REFRELE(ire);
19105 		}
19106 		mutex_exit(&connp->conn_lock);
19107 	}
19108 	tcp->tcp_snd_zcopy_on = zc_enabled;
19109 	if (!TCP_IS_DETACHED(tcp)) {
19110 		if (zc_enabled) {
19111 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE);
19112 			TCP_STAT(tcps, tcp_zcopy_on);
19113 		} else {
19114 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
19115 			TCP_STAT(tcps, tcp_zcopy_off);
19116 		}
19117 	}
19118 	return (zc_enabled);
19119 }
19120 
19121 static mblk_t *
19122 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp)
19123 {
19124 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19125 
19126 	if (do_tcpzcopy == 2)
19127 		return (bp);
19128 	else if (tcp->tcp_snd_zcopy_on) {
19129 		tcp->tcp_snd_zcopy_on = B_FALSE;
19130 		if (!TCP_IS_DETACHED(tcp)) {
19131 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
19132 			TCP_STAT(tcps, tcp_zcopy_disable);
19133 		}
19134 	}
19135 	return (tcp_zcopy_backoff(tcp, bp, 0));
19136 }
19137 
19138 /*
19139  * Backoff from a zero-copy mblk by copying data to a new mblk and freeing
19140  * the original desballoca'ed segmapped mblk.
19141  */
19142 static mblk_t *
19143 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist)
19144 {
19145 	mblk_t *head, *tail, *nbp;
19146 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19147 
19148 	if (IS_VMLOANED_MBLK(bp)) {
19149 		TCP_STAT(tcps, tcp_zcopy_backoff);
19150 		if ((head = copyb(bp)) == NULL) {
19151 			/* fail to backoff; leave it for the next backoff */
19152 			tcp->tcp_xmit_zc_clean = B_FALSE;
19153 			return (bp);
19154 		}
19155 		if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
19156 			if (fix_xmitlist)
19157 				tcp_zcopy_notify(tcp);
19158 			else
19159 				head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
19160 		}
19161 		nbp = bp->b_cont;
19162 		if (fix_xmitlist) {
19163 			head->b_prev = bp->b_prev;
19164 			head->b_next = bp->b_next;
19165 			if (tcp->tcp_xmit_tail == bp)
19166 				tcp->tcp_xmit_tail = head;
19167 		}
19168 		bp->b_next = NULL;
19169 		bp->b_prev = NULL;
19170 		freeb(bp);
19171 	} else {
19172 		head = bp;
19173 		nbp = bp->b_cont;
19174 	}
19175 	tail = head;
19176 	while (nbp) {
19177 		if (IS_VMLOANED_MBLK(nbp)) {
19178 			TCP_STAT(tcps, tcp_zcopy_backoff);
19179 			if ((tail->b_cont = copyb(nbp)) == NULL) {
19180 				tcp->tcp_xmit_zc_clean = B_FALSE;
19181 				tail->b_cont = nbp;
19182 				return (head);
19183 			}
19184 			tail = tail->b_cont;
19185 			if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
19186 				if (fix_xmitlist)
19187 					tcp_zcopy_notify(tcp);
19188 				else
19189 					tail->b_datap->db_struioflag |=
19190 					    STRUIO_ZCNOTIFY;
19191 			}
19192 			bp = nbp;
19193 			nbp = nbp->b_cont;
19194 			if (fix_xmitlist) {
19195 				tail->b_prev = bp->b_prev;
19196 				tail->b_next = bp->b_next;
19197 				if (tcp->tcp_xmit_tail == bp)
19198 					tcp->tcp_xmit_tail = tail;
19199 			}
19200 			bp->b_next = NULL;
19201 			bp->b_prev = NULL;
19202 			freeb(bp);
19203 		} else {
19204 			tail->b_cont = nbp;
19205 			tail = nbp;
19206 			nbp = nbp->b_cont;
19207 		}
19208 	}
19209 	if (fix_xmitlist) {
19210 		tcp->tcp_xmit_last = tail;
19211 		tcp->tcp_xmit_zc_clean = B_TRUE;
19212 	}
19213 	return (head);
19214 }
19215 
19216 static void
19217 tcp_zcopy_notify(tcp_t *tcp)
19218 {
19219 	struct stdata	*stp;
19220 
19221 	if (tcp->tcp_detached)
19222 		return;
19223 	stp = STREAM(tcp->tcp_rq);
19224 	mutex_enter(&stp->sd_lock);
19225 	stp->sd_flag |= STZCNOTIFY;
19226 	cv_broadcast(&stp->sd_zcopy_wait);
19227 	mutex_exit(&stp->sd_lock);
19228 }
19229 
19230 static boolean_t
19231 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep)
19232 {
19233 	ire_t	*ire;
19234 	conn_t	*connp = tcp->tcp_connp;
19235 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19236 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
19237 
19238 	mutex_enter(&connp->conn_lock);
19239 	ire = connp->conn_ire_cache;
19240 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
19241 
19242 	if ((ire != NULL) &&
19243 	    (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) &&
19244 	    IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) &&
19245 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
19246 		IRE_REFHOLD(ire);
19247 		mutex_exit(&connp->conn_lock);
19248 	} else {
19249 		boolean_t cached = B_FALSE;
19250 		ts_label_t *tsl;
19251 
19252 		/* force a recheck later on */
19253 		tcp->tcp_ire_ill_check_done = B_FALSE;
19254 
19255 		TCP_DBGSTAT(tcps, tcp_ire_null1);
19256 		connp->conn_ire_cache = NULL;
19257 		mutex_exit(&connp->conn_lock);
19258 
19259 		if (ire != NULL)
19260 			IRE_REFRELE_NOTR(ire);
19261 
19262 		tsl = crgetlabel(CONN_CRED(connp));
19263 		ire = (dst ?
19264 		    ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) :
19265 		    ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst,
19266 		    connp->conn_zoneid, tsl, ipst));
19267 
19268 		if (ire == NULL) {
19269 			TCP_STAT(tcps, tcp_ire_null);
19270 			return (B_FALSE);
19271 		}
19272 
19273 		IRE_REFHOLD_NOTR(ire);
19274 
19275 		mutex_enter(&connp->conn_lock);
19276 		if (CONN_CACHE_IRE(connp)) {
19277 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
19278 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
19279 				TCP_CHECK_IREINFO(tcp, ire);
19280 				connp->conn_ire_cache = ire;
19281 				cached = B_TRUE;
19282 			}
19283 			rw_exit(&ire->ire_bucket->irb_lock);
19284 		}
19285 		mutex_exit(&connp->conn_lock);
19286 
19287 		/*
19288 		 * We can continue to use the ire but since it was
19289 		 * not cached, we should drop the extra reference.
19290 		 */
19291 		if (!cached)
19292 			IRE_REFRELE_NOTR(ire);
19293 
19294 		/*
19295 		 * Rampart note: no need to select a new label here, since
19296 		 * labels are not allowed to change during the life of a TCP
19297 		 * connection.
19298 		 */
19299 	}
19300 
19301 	*irep = ire;
19302 
19303 	return (B_TRUE);
19304 }
19305 
19306 /*
19307  * Called from tcp_send() or tcp_send_data() to find workable IRE.
19308  *
19309  * 0 = success;
19310  * 1 = failed to find ire and ill.
19311  */
19312 static boolean_t
19313 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp)
19314 {
19315 	ipha_t		*ipha;
19316 	ipaddr_t	dst;
19317 	ire_t		*ire;
19318 	ill_t		*ill;
19319 	conn_t		*connp = tcp->tcp_connp;
19320 	mblk_t		*ire_fp_mp;
19321 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19322 
19323 	if (mp != NULL)
19324 		ipha = (ipha_t *)mp->b_rptr;
19325 	else
19326 		ipha = tcp->tcp_ipha;
19327 	dst = ipha->ipha_dst;
19328 
19329 	if (!tcp_send_find_ire(tcp, &dst, &ire))
19330 		return (B_FALSE);
19331 
19332 	if ((ire->ire_flags & RTF_MULTIRT) ||
19333 	    (ire->ire_stq == NULL) ||
19334 	    (ire->ire_nce == NULL) ||
19335 	    ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) ||
19336 	    ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) ||
19337 	    MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) {
19338 		TCP_STAT(tcps, tcp_ip_ire_send);
19339 		IRE_REFRELE(ire);
19340 		return (B_FALSE);
19341 	}
19342 
19343 	ill = ire_to_ill(ire);
19344 	if (connp->conn_outgoing_ill != NULL) {
19345 		ill_t *conn_outgoing_ill = NULL;
19346 		/*
19347 		 * Choose a good ill in the group to send the packets on.
19348 		 */
19349 		ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill);
19350 		ill = ire_to_ill(ire);
19351 	}
19352 	ASSERT(ill != NULL);
19353 
19354 	if (!tcp->tcp_ire_ill_check_done) {
19355 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
19356 		tcp->tcp_ire_ill_check_done = B_TRUE;
19357 	}
19358 
19359 	*irep = ire;
19360 	*illp = ill;
19361 
19362 	return (B_TRUE);
19363 }
19364 
19365 static void
19366 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp)
19367 {
19368 	ipha_t		*ipha;
19369 	ipaddr_t	src;
19370 	ipaddr_t	dst;
19371 	uint32_t	cksum;
19372 	ire_t		*ire;
19373 	uint16_t	*up;
19374 	ill_t		*ill;
19375 	conn_t		*connp = tcp->tcp_connp;
19376 	uint32_t	hcksum_txflags = 0;
19377 	mblk_t		*ire_fp_mp;
19378 	uint_t		ire_fp_mp_len;
19379 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19380 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
19381 
19382 	ASSERT(DB_TYPE(mp) == M_DATA);
19383 
19384 	if (DB_CRED(mp) == NULL)
19385 		mblk_setcred(mp, CONN_CRED(connp));
19386 
19387 	ipha = (ipha_t *)mp->b_rptr;
19388 	src = ipha->ipha_src;
19389 	dst = ipha->ipha_dst;
19390 
19391 	DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp);
19392 
19393 	/*
19394 	 * Drop off fast path for IPv6 and also if options are present or
19395 	 * we need to resolve a TS label.
19396 	 */
19397 	if (tcp->tcp_ipversion != IPV4_VERSION ||
19398 	    !IPCL_IS_CONNECTED(connp) ||
19399 	    !CONN_IS_LSO_MD_FASTPATH(connp) ||
19400 	    (connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
19401 	    !connp->conn_ulp_labeled ||
19402 	    ipha->ipha_ident == IP_HDR_INCLUDED ||
19403 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
19404 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst)) {
19405 		if (tcp->tcp_snd_zcopy_aware)
19406 			mp = tcp_zcopy_disable(tcp, mp);
19407 		TCP_STAT(tcps, tcp_ip_send);
19408 		CALL_IP_WPUT(connp, q, mp);
19409 		return;
19410 	}
19411 
19412 	if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) {
19413 		if (tcp->tcp_snd_zcopy_aware)
19414 			mp = tcp_zcopy_backoff(tcp, mp, 0);
19415 		CALL_IP_WPUT(connp, q, mp);
19416 		return;
19417 	}
19418 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
19419 	ire_fp_mp_len = MBLKL(ire_fp_mp);
19420 
19421 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
19422 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
19423 #ifndef _BIG_ENDIAN
19424 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
19425 #endif
19426 
19427 	/*
19428 	 * Check to see if we need to re-enable LSO/MDT for this connection
19429 	 * because it was previously disabled due to changes in the ill;
19430 	 * note that by doing it here, this re-enabling only applies when
19431 	 * the packet is not dispatched through CALL_IP_WPUT().
19432 	 *
19433 	 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath
19434 	 * case, since that's how we ended up here.  For IPv6, we do the
19435 	 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue.
19436 	 */
19437 	if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) {
19438 		/*
19439 		 * Restore LSO for this connection, so that next time around
19440 		 * it is eligible to go through tcp_lsosend() path again.
19441 		 */
19442 		TCP_STAT(tcps, tcp_lso_enabled);
19443 		tcp->tcp_lso = B_TRUE;
19444 		ip1dbg(("tcp_send_data: reenabling LSO for connp %p on "
19445 		    "interface %s\n", (void *)connp, ill->ill_name));
19446 	} else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) {
19447 		/*
19448 		 * Restore MDT for this connection, so that next time around
19449 		 * it is eligible to go through tcp_multisend() path again.
19450 		 */
19451 		TCP_STAT(tcps, tcp_mdt_conn_resumed1);
19452 		tcp->tcp_mdt = B_TRUE;
19453 		ip1dbg(("tcp_send_data: reenabling MDT for connp %p on "
19454 		    "interface %s\n", (void *)connp, ill->ill_name));
19455 	}
19456 
19457 	if (tcp->tcp_snd_zcopy_aware) {
19458 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
19459 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
19460 			mp = tcp_zcopy_disable(tcp, mp);
19461 		/*
19462 		 * we shouldn't need to reset ipha as the mp containing
19463 		 * ipha should never be a zero-copy mp.
19464 		 */
19465 	}
19466 
19467 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
19468 		ASSERT(ill->ill_hcksum_capab != NULL);
19469 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
19470 	}
19471 
19472 	/* pseudo-header checksum (do it in parts for IP header checksum) */
19473 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
19474 
19475 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
19476 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
19477 
19478 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
19479 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
19480 
19481 	/* Software checksum? */
19482 	if (DB_CKSUMFLAGS(mp) == 0) {
19483 		TCP_STAT(tcps, tcp_out_sw_cksum);
19484 		TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
19485 		    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
19486 	}
19487 
19488 	/* Calculate IP header checksum if hardware isn't capable */
19489 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
19490 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
19491 		    ((uint16_t *)ipha)[4]);
19492 	}
19493 
19494 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
19495 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
19496 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
19497 
19498 	UPDATE_OB_PKT_COUNT(ire);
19499 	ire->ire_last_used_time = lbolt;
19500 
19501 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
19502 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
19503 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
19504 	    ntohs(ipha->ipha_length));
19505 
19506 	if (ILL_DLS_CAPABLE(ill)) {
19507 		/*
19508 		 * Send the packet directly to DLD, where it may be queued
19509 		 * depending on the availability of transmit resources at
19510 		 * the media layer.
19511 		 */
19512 		IP_DLS_ILL_TX(ill, ipha, mp, ipst, ire_fp_mp_len);
19513 	} else {
19514 		ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr;
19515 		DTRACE_PROBE4(ip4__physical__out__start,
19516 		    ill_t *, NULL, ill_t *, out_ill,
19517 		    ipha_t *, ipha, mblk_t *, mp);
19518 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
19519 		    ipst->ips_ipv4firewall_physical_out,
19520 		    NULL, out_ill, ipha, mp, mp, 0, ipst);
19521 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
19522 
19523 		if (mp != NULL) {
19524 			if (ipst->ips_ipobs_enabled) {
19525 				ipobs_hook(mp, IPOBS_HOOK_OUTBOUND,
19526 				    IP_REAL_ZONEID(connp->conn_zoneid, ipst),
19527 				    ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len,
19528 				    ipst);
19529 			}
19530 			DTRACE_IP_FASTPATH(mp, ipha, out_ill, ipha, NULL);
19531 			putnext(ire->ire_stq, mp);
19532 		}
19533 	}
19534 	IRE_REFRELE(ire);
19535 }
19536 
19537 /*
19538  * This handles the case when the receiver has shrunk its win. Per RFC 1122
19539  * if the receiver shrinks the window, i.e. moves the right window to the
19540  * left, the we should not send new data, but should retransmit normally the
19541  * old unacked data between suna and suna + swnd. We might has sent data
19542  * that is now outside the new window, pretend that we didn't send  it.
19543  */
19544 static void
19545 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count)
19546 {
19547 	uint32_t	snxt = tcp->tcp_snxt;
19548 	mblk_t		*xmit_tail;
19549 	int32_t		offset;
19550 
19551 	ASSERT(shrunk_count > 0);
19552 
19553 	/* Pretend we didn't send the data outside the window */
19554 	snxt -= shrunk_count;
19555 
19556 	/* Get the mblk and the offset in it per the shrunk window */
19557 	xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset);
19558 
19559 	ASSERT(xmit_tail != NULL);
19560 
19561 	/* Reset all the values per the now shrunk window */
19562 	tcp->tcp_snxt = snxt;
19563 	tcp->tcp_xmit_tail = xmit_tail;
19564 	tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr -
19565 	    offset;
19566 	tcp->tcp_unsent += shrunk_count;
19567 
19568 	if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0)
19569 		/*
19570 		 * Make sure the timer is running so that we will probe a zero
19571 		 * window.
19572 		 */
19573 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19574 }
19575 
19576 
19577 /*
19578  * The TCP normal data output path.
19579  * NOTE: the logic of the fast path is duplicated from this function.
19580  */
19581 static void
19582 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent)
19583 {
19584 	int		len;
19585 	mblk_t		*local_time;
19586 	mblk_t		*mp1;
19587 	uint32_t	snxt;
19588 	int		tail_unsent;
19589 	int		tcpstate;
19590 	int		usable = 0;
19591 	mblk_t		*xmit_tail;
19592 	queue_t		*q = tcp->tcp_wq;
19593 	int32_t		mss;
19594 	int32_t		num_sack_blk = 0;
19595 	int32_t		tcp_hdr_len;
19596 	int32_t		tcp_tcp_hdr_len;
19597 	int		mdt_thres;
19598 	int		rc;
19599 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19600 	ip_stack_t	*ipst;
19601 
19602 	tcpstate = tcp->tcp_state;
19603 	if (mp == NULL) {
19604 		/*
19605 		 * tcp_wput_data() with NULL mp should only be called when
19606 		 * there is unsent data.
19607 		 */
19608 		ASSERT(tcp->tcp_unsent > 0);
19609 		/* Really tacky... but we need this for detached closes. */
19610 		len = tcp->tcp_unsent;
19611 		goto data_null;
19612 	}
19613 
19614 #if CCS_STATS
19615 	wrw_stats.tot.count++;
19616 	wrw_stats.tot.bytes += msgdsize(mp);
19617 #endif
19618 	ASSERT(mp->b_datap->db_type == M_DATA);
19619 	/*
19620 	 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ,
19621 	 * or before a connection attempt has begun.
19622 	 */
19623 	if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT ||
19624 	    (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
19625 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
19626 #ifdef DEBUG
19627 			cmn_err(CE_WARN,
19628 			    "tcp_wput_data: data after ordrel, %s",
19629 			    tcp_display(tcp, NULL,
19630 			    DISP_ADDR_AND_PORT));
19631 #else
19632 			if (tcp->tcp_debug) {
19633 				(void) strlog(TCP_MOD_ID, 0, 1,
19634 				    SL_TRACE|SL_ERROR,
19635 				    "tcp_wput_data: data after ordrel, %s\n",
19636 				    tcp_display(tcp, NULL,
19637 				    DISP_ADDR_AND_PORT));
19638 			}
19639 #endif /* DEBUG */
19640 		}
19641 		if (tcp->tcp_snd_zcopy_aware &&
19642 		    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0)
19643 			tcp_zcopy_notify(tcp);
19644 		freemsg(mp);
19645 		mutex_enter(&tcp->tcp_non_sq_lock);
19646 		if (tcp->tcp_flow_stopped &&
19647 		    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
19648 			tcp_clrqfull(tcp);
19649 		}
19650 		mutex_exit(&tcp->tcp_non_sq_lock);
19651 		return;
19652 	}
19653 
19654 	/* Strip empties */
19655 	for (;;) {
19656 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
19657 		    (uintptr_t)INT_MAX);
19658 		len = (int)(mp->b_wptr - mp->b_rptr);
19659 		if (len > 0)
19660 			break;
19661 		mp1 = mp;
19662 		mp = mp->b_cont;
19663 		freeb(mp1);
19664 		if (!mp) {
19665 			return;
19666 		}
19667 	}
19668 
19669 	/* If we are the first on the list ... */
19670 	if (tcp->tcp_xmit_head == NULL) {
19671 		tcp->tcp_xmit_head = mp;
19672 		tcp->tcp_xmit_tail = mp;
19673 		tcp->tcp_xmit_tail_unsent = len;
19674 	} else {
19675 		/* If tiny tx and room in txq tail, pullup to save mblks. */
19676 		struct datab *dp;
19677 
19678 		mp1 = tcp->tcp_xmit_last;
19679 		if (len < tcp_tx_pull_len &&
19680 		    (dp = mp1->b_datap)->db_ref == 1 &&
19681 		    dp->db_lim - mp1->b_wptr >= len) {
19682 			ASSERT(len > 0);
19683 			ASSERT(!mp1->b_cont);
19684 			if (len == 1) {
19685 				*mp1->b_wptr++ = *mp->b_rptr;
19686 			} else {
19687 				bcopy(mp->b_rptr, mp1->b_wptr, len);
19688 				mp1->b_wptr += len;
19689 			}
19690 			if (mp1 == tcp->tcp_xmit_tail)
19691 				tcp->tcp_xmit_tail_unsent += len;
19692 			mp1->b_cont = mp->b_cont;
19693 			if (tcp->tcp_snd_zcopy_aware &&
19694 			    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
19695 				mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
19696 			freeb(mp);
19697 			mp = mp1;
19698 		} else {
19699 			tcp->tcp_xmit_last->b_cont = mp;
19700 		}
19701 		len += tcp->tcp_unsent;
19702 	}
19703 
19704 	/* Tack on however many more positive length mblks we have */
19705 	if ((mp1 = mp->b_cont) != NULL) {
19706 		do {
19707 			int tlen;
19708 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
19709 			    (uintptr_t)INT_MAX);
19710 			tlen = (int)(mp1->b_wptr - mp1->b_rptr);
19711 			if (tlen <= 0) {
19712 				mp->b_cont = mp1->b_cont;
19713 				freeb(mp1);
19714 			} else {
19715 				len += tlen;
19716 				mp = mp1;
19717 			}
19718 		} while ((mp1 = mp->b_cont) != NULL);
19719 	}
19720 	tcp->tcp_xmit_last = mp;
19721 	tcp->tcp_unsent = len;
19722 
19723 	if (urgent)
19724 		usable = 1;
19725 
19726 data_null:
19727 	snxt = tcp->tcp_snxt;
19728 	xmit_tail = tcp->tcp_xmit_tail;
19729 	tail_unsent = tcp->tcp_xmit_tail_unsent;
19730 
19731 	/*
19732 	 * Note that tcp_mss has been adjusted to take into account the
19733 	 * timestamp option if applicable.  Because SACK options do not
19734 	 * appear in every TCP segments and they are of variable lengths,
19735 	 * they cannot be included in tcp_mss.  Thus we need to calculate
19736 	 * the actual segment length when we need to send a segment which
19737 	 * includes SACK options.
19738 	 */
19739 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
19740 		int32_t	opt_len;
19741 
19742 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
19743 		    tcp->tcp_num_sack_blk);
19744 		opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN *
19745 		    2 + TCPOPT_HEADER_LEN;
19746 		mss = tcp->tcp_mss - opt_len;
19747 		tcp_hdr_len = tcp->tcp_hdr_len + opt_len;
19748 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len;
19749 	} else {
19750 		mss = tcp->tcp_mss;
19751 		tcp_hdr_len = tcp->tcp_hdr_len;
19752 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
19753 	}
19754 
19755 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
19756 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
19757 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
19758 	}
19759 	if (tcpstate == TCPS_SYN_RCVD) {
19760 		/*
19761 		 * The three-way connection establishment handshake is not
19762 		 * complete yet. We want to queue the data for transmission
19763 		 * after entering ESTABLISHED state (RFC793). A jump to
19764 		 * "done" label effectively leaves data on the queue.
19765 		 */
19766 		goto done;
19767 	} else {
19768 		int usable_r;
19769 
19770 		/*
19771 		 * In the special case when cwnd is zero, which can only
19772 		 * happen if the connection is ECN capable, return now.
19773 		 * New segments is sent using tcp_timer().  The timer
19774 		 * is set in tcp_rput_data().
19775 		 */
19776 		if (tcp->tcp_cwnd == 0) {
19777 			/*
19778 			 * Note that tcp_cwnd is 0 before 3-way handshake is
19779 			 * finished.
19780 			 */
19781 			ASSERT(tcp->tcp_ecn_ok ||
19782 			    tcp->tcp_state < TCPS_ESTABLISHED);
19783 			return;
19784 		}
19785 
19786 		/* NOTE: trouble if xmitting while SYN not acked? */
19787 		usable_r = snxt - tcp->tcp_suna;
19788 		usable_r = tcp->tcp_swnd - usable_r;
19789 
19790 		/*
19791 		 * Check if the receiver has shrunk the window.  If
19792 		 * tcp_wput_data() with NULL mp is called, tcp_fin_sent
19793 		 * cannot be set as there is unsent data, so FIN cannot
19794 		 * be sent out.  Otherwise, we need to take into account
19795 		 * of FIN as it consumes an "invisible" sequence number.
19796 		 */
19797 		ASSERT(tcp->tcp_fin_sent == 0);
19798 		if (usable_r < 0) {
19799 			/*
19800 			 * The receiver has shrunk the window and we have sent
19801 			 * -usable_r date beyond the window, re-adjust.
19802 			 *
19803 			 * If TCP window scaling is enabled, there can be
19804 			 * round down error as the advertised receive window
19805 			 * is actually right shifted n bits.  This means that
19806 			 * the lower n bits info is wiped out.  It will look
19807 			 * like the window is shrunk.  Do a check here to
19808 			 * see if the shrunk amount is actually within the
19809 			 * error in window calculation.  If it is, just
19810 			 * return.  Note that this check is inside the
19811 			 * shrunk window check.  This makes sure that even
19812 			 * though tcp_process_shrunk_swnd() is not called,
19813 			 * we will stop further processing.
19814 			 */
19815 			if ((-usable_r >> tcp->tcp_snd_ws) > 0) {
19816 				tcp_process_shrunk_swnd(tcp, -usable_r);
19817 			}
19818 			return;
19819 		}
19820 
19821 		/* usable = MIN(swnd, cwnd) - unacked_bytes */
19822 		if (tcp->tcp_swnd > tcp->tcp_cwnd)
19823 			usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd;
19824 
19825 		/* usable = MIN(usable, unsent) */
19826 		if (usable_r > len)
19827 			usable_r = len;
19828 
19829 		/* usable = MAX(usable, {1 for urgent, 0 for data}) */
19830 		if (usable_r > 0) {
19831 			usable = usable_r;
19832 		} else {
19833 			/* Bypass all other unnecessary processing. */
19834 			goto done;
19835 		}
19836 	}
19837 
19838 	local_time = (mblk_t *)lbolt;
19839 
19840 	/*
19841 	 * "Our" Nagle Algorithm.  This is not the same as in the old
19842 	 * BSD.  This is more in line with the true intent of Nagle.
19843 	 *
19844 	 * The conditions are:
19845 	 * 1. The amount of unsent data (or amount of data which can be
19846 	 *    sent, whichever is smaller) is less than Nagle limit.
19847 	 * 2. The last sent size is also less than Nagle limit.
19848 	 * 3. There is unack'ed data.
19849 	 * 4. Urgent pointer is not set.  Send urgent data ignoring the
19850 	 *    Nagle algorithm.  This reduces the probability that urgent
19851 	 *    bytes get "merged" together.
19852 	 * 5. The app has not closed the connection.  This eliminates the
19853 	 *    wait time of the receiving side waiting for the last piece of
19854 	 *    (small) data.
19855 	 *
19856 	 * If all are satisified, exit without sending anything.  Note
19857 	 * that Nagle limit can be smaller than 1 MSS.  Nagle limit is
19858 	 * the smaller of 1 MSS and global tcp_naglim_def (default to be
19859 	 * 4095).
19860 	 */
19861 	if (usable < (int)tcp->tcp_naglim &&
19862 	    tcp->tcp_naglim > tcp->tcp_last_sent_len &&
19863 	    snxt != tcp->tcp_suna &&
19864 	    !(tcp->tcp_valid_bits & TCP_URG_VALID) &&
19865 	    !(tcp->tcp_valid_bits & TCP_FSS_VALID)) {
19866 		goto done;
19867 	}
19868 
19869 	if (tcp->tcp_cork) {
19870 		/*
19871 		 * if the tcp->tcp_cork option is set, then we have to force
19872 		 * TCP not to send partial segment (smaller than MSS bytes).
19873 		 * We are calculating the usable now based on full mss and
19874 		 * will save the rest of remaining data for later.
19875 		 */
19876 		if (usable < mss)
19877 			goto done;
19878 		usable = (usable / mss) * mss;
19879 	}
19880 
19881 	/* Update the latest receive window size in TCP header. */
19882 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
19883 	    tcp->tcp_tcph->th_win);
19884 
19885 	/*
19886 	 * Determine if it's worthwhile to attempt LSO or MDT, based on:
19887 	 *
19888 	 * 1. Simple TCP/IP{v4,v6} (no options).
19889 	 * 2. IPSEC/IPQoS processing is not needed for the TCP connection.
19890 	 * 3. If the TCP connection is in ESTABLISHED state.
19891 	 * 4. The TCP is not detached.
19892 	 *
19893 	 * If any of the above conditions have changed during the
19894 	 * connection, stop using LSO/MDT and restore the stream head
19895 	 * parameters accordingly.
19896 	 */
19897 	ipst = tcps->tcps_netstack->netstack_ip;
19898 
19899 	if ((tcp->tcp_lso || tcp->tcp_mdt) &&
19900 	    ((tcp->tcp_ipversion == IPV4_VERSION &&
19901 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
19902 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19903 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) ||
19904 	    tcp->tcp_state != TCPS_ESTABLISHED ||
19905 	    TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) ||
19906 	    CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) ||
19907 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst))) {
19908 		if (tcp->tcp_lso) {
19909 			tcp->tcp_connp->conn_lso_ok = B_FALSE;
19910 			tcp->tcp_lso = B_FALSE;
19911 		} else {
19912 			tcp->tcp_connp->conn_mdt_ok = B_FALSE;
19913 			tcp->tcp_mdt = B_FALSE;
19914 		}
19915 
19916 		/* Anything other than detached is considered pathological */
19917 		if (!TCP_IS_DETACHED(tcp)) {
19918 			if (tcp->tcp_lso)
19919 				TCP_STAT(tcps, tcp_lso_disabled);
19920 			else
19921 				TCP_STAT(tcps, tcp_mdt_conn_halted1);
19922 			(void) tcp_maxpsz_set(tcp, B_TRUE);
19923 		}
19924 	}
19925 
19926 	/* Use MDT if sendable amount is greater than the threshold */
19927 	if (tcp->tcp_mdt &&
19928 	    (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) &&
19929 	    (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL &&
19930 	    MBLKL(xmit_tail->b_cont) > mdt_thres)) &&
19931 	    (tcp->tcp_valid_bits == 0 ||
19932 	    tcp->tcp_valid_bits == TCP_FSS_VALID)) {
19933 		ASSERT(tcp->tcp_connp->conn_mdt_ok);
19934 		rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19935 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19936 		    local_time, mdt_thres);
19937 	} else {
19938 		rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19939 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19940 		    local_time, INT_MAX);
19941 	}
19942 
19943 	/* Pretend that all we were trying to send really got sent */
19944 	if (rc < 0 && tail_unsent < 0) {
19945 		do {
19946 			xmit_tail = xmit_tail->b_cont;
19947 			xmit_tail->b_prev = local_time;
19948 			ASSERT((uintptr_t)(xmit_tail->b_wptr -
19949 			    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
19950 			tail_unsent += (int)(xmit_tail->b_wptr -
19951 			    xmit_tail->b_rptr);
19952 		} while (tail_unsent < 0);
19953 	}
19954 done:;
19955 	tcp->tcp_xmit_tail = xmit_tail;
19956 	tcp->tcp_xmit_tail_unsent = tail_unsent;
19957 	len = tcp->tcp_snxt - snxt;
19958 	if (len) {
19959 		/*
19960 		 * If new data was sent, need to update the notsack
19961 		 * list, which is, afterall, data blocks that have
19962 		 * not been sack'ed by the receiver.  New data is
19963 		 * not sack'ed.
19964 		 */
19965 		if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
19966 			/* len is a negative value. */
19967 			tcp->tcp_pipe -= len;
19968 			tcp_notsack_update(&(tcp->tcp_notsack_list),
19969 			    tcp->tcp_snxt, snxt,
19970 			    &(tcp->tcp_num_notsack_blk),
19971 			    &(tcp->tcp_cnt_notsack_list));
19972 		}
19973 		tcp->tcp_snxt = snxt + tcp->tcp_fin_sent;
19974 		tcp->tcp_rack = tcp->tcp_rnxt;
19975 		tcp->tcp_rack_cnt = 0;
19976 		if ((snxt + len) == tcp->tcp_suna) {
19977 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19978 		}
19979 	} else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) {
19980 		/*
19981 		 * Didn't send anything. Make sure the timer is running
19982 		 * so that we will probe a zero window.
19983 		 */
19984 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19985 	}
19986 	/* Note that len is the amount we just sent but with a negative sign */
19987 	tcp->tcp_unsent += len;
19988 	mutex_enter(&tcp->tcp_non_sq_lock);
19989 	if (tcp->tcp_flow_stopped) {
19990 		if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
19991 			tcp_clrqfull(tcp);
19992 		}
19993 	} else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) {
19994 		tcp_setqfull(tcp);
19995 	}
19996 	mutex_exit(&tcp->tcp_non_sq_lock);
19997 }
19998 
19999 /*
20000  * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the
20001  * outgoing TCP header with the template header, as well as other
20002  * options such as time-stamp, ECN and/or SACK.
20003  */
20004 static void
20005 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk)
20006 {
20007 	tcph_t *tcp_tmpl, *tcp_h;
20008 	uint32_t *dst, *src;
20009 	int hdrlen;
20010 
20011 	ASSERT(OK_32PTR(rptr));
20012 
20013 	/* Template header */
20014 	tcp_tmpl = tcp->tcp_tcph;
20015 
20016 	/* Header of outgoing packet */
20017 	tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
20018 
20019 	/* dst and src are opaque 32-bit fields, used for copying */
20020 	dst = (uint32_t *)rptr;
20021 	src = (uint32_t *)tcp->tcp_iphc;
20022 	hdrlen = tcp->tcp_hdr_len;
20023 
20024 	/* Fill time-stamp option if needed */
20025 	if (tcp->tcp_snd_ts_ok) {
20026 		U32_TO_BE32((uint32_t)now,
20027 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4);
20028 		U32_TO_BE32(tcp->tcp_ts_recent,
20029 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8);
20030 	} else {
20031 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
20032 	}
20033 
20034 	/*
20035 	 * Copy the template header; is this really more efficient than
20036 	 * calling bcopy()?  For simple IPv4/TCP, it may be the case,
20037 	 * but perhaps not for other scenarios.
20038 	 */
20039 	dst[0] = src[0];
20040 	dst[1] = src[1];
20041 	dst[2] = src[2];
20042 	dst[3] = src[3];
20043 	dst[4] = src[4];
20044 	dst[5] = src[5];
20045 	dst[6] = src[6];
20046 	dst[7] = src[7];
20047 	dst[8] = src[8];
20048 	dst[9] = src[9];
20049 	if (hdrlen -= 40) {
20050 		hdrlen >>= 2;
20051 		dst += 10;
20052 		src += 10;
20053 		do {
20054 			*dst++ = *src++;
20055 		} while (--hdrlen);
20056 	}
20057 
20058 	/*
20059 	 * Set the ECN info in the TCP header if it is not a zero
20060 	 * window probe.  Zero window probe is only sent in
20061 	 * tcp_wput_data() and tcp_timer().
20062 	 */
20063 	if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) {
20064 		SET_ECT(tcp, rptr);
20065 
20066 		if (tcp->tcp_ecn_echo_on)
20067 			tcp_h->th_flags[0] |= TH_ECE;
20068 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
20069 			tcp_h->th_flags[0] |= TH_CWR;
20070 			tcp->tcp_ecn_cwr_sent = B_TRUE;
20071 		}
20072 	}
20073 
20074 	/* Fill in SACK options */
20075 	if (num_sack_blk > 0) {
20076 		uchar_t *wptr = rptr + tcp->tcp_hdr_len;
20077 		sack_blk_t *tmp;
20078 		int32_t	i;
20079 
20080 		wptr[0] = TCPOPT_NOP;
20081 		wptr[1] = TCPOPT_NOP;
20082 		wptr[2] = TCPOPT_SACK;
20083 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
20084 		    sizeof (sack_blk_t);
20085 		wptr += TCPOPT_REAL_SACK_LEN;
20086 
20087 		tmp = tcp->tcp_sack_list;
20088 		for (i = 0; i < num_sack_blk; i++) {
20089 			U32_TO_BE32(tmp[i].begin, wptr);
20090 			wptr += sizeof (tcp_seq);
20091 			U32_TO_BE32(tmp[i].end, wptr);
20092 			wptr += sizeof (tcp_seq);
20093 		}
20094 		tcp_h->th_offset_and_rsrvd[0] +=
20095 		    ((num_sack_blk * 2 + 1) << 4);
20096 	}
20097 }
20098 
20099 /*
20100  * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach
20101  * the destination address and SAP attribute, and if necessary, the
20102  * hardware checksum offload attribute to a Multidata message.
20103  */
20104 static int
20105 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum,
20106     const uint32_t start, const uint32_t stuff, const uint32_t end,
20107     const uint32_t flags, tcp_stack_t *tcps)
20108 {
20109 	/* Add global destination address & SAP attribute */
20110 	if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) {
20111 		ip1dbg(("tcp_mdt_add_attrs: can't add global physical "
20112 		    "destination address+SAP\n"));
20113 
20114 		if (dlmp != NULL)
20115 			TCP_STAT(tcps, tcp_mdt_allocfail);
20116 		return (-1);
20117 	}
20118 
20119 	/* Add global hwcksum attribute */
20120 	if (hwcksum &&
20121 	    !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) {
20122 		ip1dbg(("tcp_mdt_add_attrs: can't add global hardware "
20123 		    "checksum attribute\n"));
20124 
20125 		TCP_STAT(tcps, tcp_mdt_allocfail);
20126 		return (-1);
20127 	}
20128 
20129 	return (0);
20130 }
20131 
20132 /*
20133  * Smaller and private version of pdescinfo_t used specifically for TCP,
20134  * which allows for only two payload spans per packet.
20135  */
20136 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t;
20137 
20138 /*
20139  * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit
20140  * scheme, and returns one the following:
20141  *
20142  * -1 = failed allocation.
20143  *  0 = success; burst count reached, or usable send window is too small,
20144  *      and that we'd rather wait until later before sending again.
20145  */
20146 static int
20147 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
20148     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
20149     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
20150     const int mdt_thres)
20151 {
20152 	mblk_t		*md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf;
20153 	multidata_t	*mmd;
20154 	uint_t		obsegs, obbytes, hdr_frag_sz;
20155 	uint_t		cur_hdr_off, cur_pld_off, base_pld_off, first_snxt;
20156 	int		num_burst_seg, max_pld;
20157 	pdesc_t		*pkt;
20158 	tcp_pdescinfo_t	tcp_pkt_info;
20159 	pdescinfo_t	*pkt_info;
20160 	int		pbuf_idx, pbuf_idx_nxt;
20161 	int		seg_len, len, spill, af;
20162 	boolean_t	add_buffer, zcopy, clusterwide;
20163 	boolean_t	rconfirm = B_FALSE;
20164 	boolean_t	done = B_FALSE;
20165 	uint32_t	cksum;
20166 	uint32_t	hwcksum_flags;
20167 	ire_t		*ire = NULL;
20168 	ill_t		*ill;
20169 	ipha_t		*ipha;
20170 	ip6_t		*ip6h;
20171 	ipaddr_t	src, dst;
20172 	ill_zerocopy_capab_t *zc_cap = NULL;
20173 	uint16_t	*up;
20174 	int		err;
20175 	conn_t		*connp;
20176 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20177 	ip_stack_t 	*ipst = tcps->tcps_netstack->netstack_ip;
20178 	int		usable_mmd, tail_unsent_mmd;
20179 	uint_t		snxt_mmd, obsegs_mmd, obbytes_mmd;
20180 	mblk_t		*xmit_tail_mmd;
20181 
20182 #ifdef	_BIG_ENDIAN
20183 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 28) & 0x7)
20184 #else
20185 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 4) & 0x7)
20186 #endif
20187 
20188 #define	PREP_NEW_MULTIDATA() {			\
20189 	mmd = NULL;				\
20190 	md_mp = md_hbuf = NULL;			\
20191 	cur_hdr_off = 0;			\
20192 	max_pld = tcp->tcp_mdt_max_pld;		\
20193 	pbuf_idx = pbuf_idx_nxt = -1;		\
20194 	add_buffer = B_TRUE;			\
20195 	zcopy = B_FALSE;			\
20196 }
20197 
20198 #define	PREP_NEW_PBUF() {			\
20199 	md_pbuf = md_pbuf_nxt = NULL;		\
20200 	pbuf_idx = pbuf_idx_nxt = -1;		\
20201 	cur_pld_off = 0;			\
20202 	first_snxt = *snxt;			\
20203 	ASSERT(*tail_unsent > 0);		\
20204 	base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \
20205 }
20206 
20207 	ASSERT(mdt_thres >= mss);
20208 	ASSERT(*usable > 0 && *usable > mdt_thres);
20209 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
20210 	ASSERT(!TCP_IS_DETACHED(tcp));
20211 	ASSERT(tcp->tcp_valid_bits == 0 ||
20212 	    tcp->tcp_valid_bits == TCP_FSS_VALID);
20213 	ASSERT((tcp->tcp_ipversion == IPV4_VERSION &&
20214 	    tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) ||
20215 	    (tcp->tcp_ipversion == IPV6_VERSION &&
20216 	    tcp->tcp_ip_hdr_len == IPV6_HDR_LEN));
20217 
20218 	connp = tcp->tcp_connp;
20219 	ASSERT(connp != NULL);
20220 	ASSERT(CONN_IS_LSO_MD_FASTPATH(connp));
20221 	ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp));
20222 
20223 	usable_mmd = tail_unsent_mmd = 0;
20224 	snxt_mmd = obsegs_mmd = obbytes_mmd = 0;
20225 	xmit_tail_mmd = NULL;
20226 	/*
20227 	 * Note that tcp will only declare at most 2 payload spans per
20228 	 * packet, which is much lower than the maximum allowable number
20229 	 * of packet spans per Multidata.  For this reason, we use the
20230 	 * privately declared and smaller descriptor info structure, in
20231 	 * order to save some stack space.
20232 	 */
20233 	pkt_info = (pdescinfo_t *)&tcp_pkt_info;
20234 
20235 	af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6;
20236 	if (af == AF_INET) {
20237 		dst = tcp->tcp_ipha->ipha_dst;
20238 		src = tcp->tcp_ipha->ipha_src;
20239 		ASSERT(!CLASSD(dst));
20240 	}
20241 	ASSERT(af == AF_INET ||
20242 	    !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst));
20243 
20244 	obsegs = obbytes = 0;
20245 	num_burst_seg = tcp->tcp_snd_burst;
20246 	md_mp_head = NULL;
20247 	PREP_NEW_MULTIDATA();
20248 
20249 	/*
20250 	 * Before we go on further, make sure there is an IRE that we can
20251 	 * use, and that the ILL supports MDT.  Otherwise, there's no point
20252 	 * in proceeding any further, and we should just hand everything
20253 	 * off to the legacy path.
20254 	 */
20255 	if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire))
20256 		goto legacy_send_no_md;
20257 
20258 	ASSERT(ire != NULL);
20259 	ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION);
20260 	ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6)));
20261 	ASSERT(af == AF_INET || ire->ire_nce != NULL);
20262 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
20263 	/*
20264 	 * If we do support loopback for MDT (which requires modifications
20265 	 * to the receiving paths), the following assertions should go away,
20266 	 * and we would be sending the Multidata to loopback conn later on.
20267 	 */
20268 	ASSERT(!IRE_IS_LOCAL(ire));
20269 	ASSERT(ire->ire_stq != NULL);
20270 
20271 	ill = ire_to_ill(ire);
20272 	ASSERT(ill != NULL);
20273 	ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL);
20274 
20275 	if (!tcp->tcp_ire_ill_check_done) {
20276 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
20277 		tcp->tcp_ire_ill_check_done = B_TRUE;
20278 	}
20279 
20280 	/*
20281 	 * If the underlying interface conditions have changed, or if the
20282 	 * new interface does not support MDT, go back to legacy path.
20283 	 */
20284 	if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) {
20285 		/* don't go through this path anymore for this connection */
20286 		TCP_STAT(tcps, tcp_mdt_conn_halted2);
20287 		tcp->tcp_mdt = B_FALSE;
20288 		ip1dbg(("tcp_multisend: disabling MDT for connp %p on "
20289 		    "interface %s\n", (void *)connp, ill->ill_name));
20290 		/* IRE will be released prior to returning */
20291 		goto legacy_send_no_md;
20292 	}
20293 
20294 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)
20295 		zc_cap = ill->ill_zerocopy_capab;
20296 
20297 	/*
20298 	 * Check if we can take tcp fast-path. Note that "incomplete"
20299 	 * ire's (where the link-layer for next hop is not resolved
20300 	 * or where the fast-path header in nce_fp_mp is not available
20301 	 * yet) are sent down the legacy (slow) path.
20302 	 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA
20303 	 */
20304 	if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) {
20305 		/* IRE will be released prior to returning */
20306 		goto legacy_send_no_md;
20307 	}
20308 
20309 	/* go to legacy path if interface doesn't support zerocopy */
20310 	if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 &&
20311 	    (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) {
20312 		/* IRE will be released prior to returning */
20313 		goto legacy_send_no_md;
20314 	}
20315 
20316 	/* does the interface support hardware checksum offload? */
20317 	hwcksum_flags = 0;
20318 	if (ILL_HCKSUM_CAPABLE(ill) &&
20319 	    (ill->ill_hcksum_capab->ill_hcksum_txflags &
20320 	    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL |
20321 	    HCKSUM_IPHDRCKSUM)) && dohwcksum) {
20322 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
20323 		    HCKSUM_IPHDRCKSUM)
20324 			hwcksum_flags = HCK_IPV4_HDRCKSUM;
20325 
20326 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
20327 		    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6))
20328 			hwcksum_flags |= HCK_FULLCKSUM;
20329 		else if (ill->ill_hcksum_capab->ill_hcksum_txflags &
20330 		    HCKSUM_INET_PARTIAL)
20331 			hwcksum_flags |= HCK_PARTIALCKSUM;
20332 	}
20333 
20334 	/*
20335 	 * Each header fragment consists of the leading extra space,
20336 	 * followed by the TCP/IP header, and the trailing extra space.
20337 	 * We make sure that each header fragment begins on a 32-bit
20338 	 * aligned memory address (tcp_mdt_hdr_head is already 32-bit
20339 	 * aligned in tcp_mdt_update).
20340 	 */
20341 	hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len +
20342 	    tcp->tcp_mdt_hdr_tail), 4);
20343 
20344 	/* are we starting from the beginning of data block? */
20345 	if (*tail_unsent == 0) {
20346 		*xmit_tail = (*xmit_tail)->b_cont;
20347 		ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX);
20348 		*tail_unsent = (int)MBLKL(*xmit_tail);
20349 	}
20350 
20351 	/*
20352 	 * Here we create one or more Multidata messages, each made up of
20353 	 * one header buffer and up to N payload buffers.  This entire
20354 	 * operation is done within two loops:
20355 	 *
20356 	 * The outer loop mostly deals with creating the Multidata message,
20357 	 * as well as the header buffer that gets added to it.  It also
20358 	 * links the Multidata messages together such that all of them can
20359 	 * be sent down to the lower layer in a single putnext call; this
20360 	 * linking behavior depends on the tcp_mdt_chain tunable.
20361 	 *
20362 	 * The inner loop takes an existing Multidata message, and adds
20363 	 * one or more (up to tcp_mdt_max_pld) payload buffers to it.  It
20364 	 * packetizes those buffers by filling up the corresponding header
20365 	 * buffer fragments with the proper IP and TCP headers, and by
20366 	 * describing the layout of each packet in the packet descriptors
20367 	 * that get added to the Multidata.
20368 	 */
20369 	do {
20370 		/*
20371 		 * If usable send window is too small, or data blocks in
20372 		 * transmit list are smaller than our threshold (i.e. app
20373 		 * performs large writes followed by small ones), we hand
20374 		 * off the control over to the legacy path.  Note that we'll
20375 		 * get back the control once it encounters a large block.
20376 		 */
20377 		if (*usable < mss || (*tail_unsent <= mdt_thres &&
20378 		    (*xmit_tail)->b_cont != NULL &&
20379 		    MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) {
20380 			/* send down what we've got so far */
20381 			if (md_mp_head != NULL) {
20382 				tcp_multisend_data(tcp, ire, ill, md_mp_head,
20383 				    obsegs, obbytes, &rconfirm);
20384 			}
20385 			/*
20386 			 * Pass control over to tcp_send(), but tell it to
20387 			 * return to us once a large-size transmission is
20388 			 * possible.
20389 			 */
20390 			TCP_STAT(tcps, tcp_mdt_legacy_small);
20391 			if ((err = tcp_send(q, tcp, mss, tcp_hdr_len,
20392 			    tcp_tcp_hdr_len, num_sack_blk, usable, snxt,
20393 			    tail_unsent, xmit_tail, local_time,
20394 			    mdt_thres)) <= 0) {
20395 				/* burst count reached, or alloc failed */
20396 				IRE_REFRELE(ire);
20397 				return (err);
20398 			}
20399 
20400 			/* tcp_send() may have sent everything, so check */
20401 			if (*usable <= 0) {
20402 				IRE_REFRELE(ire);
20403 				return (0);
20404 			}
20405 
20406 			TCP_STAT(tcps, tcp_mdt_legacy_ret);
20407 			/*
20408 			 * We may have delivered the Multidata, so make sure
20409 			 * to re-initialize before the next round.
20410 			 */
20411 			md_mp_head = NULL;
20412 			obsegs = obbytes = 0;
20413 			num_burst_seg = tcp->tcp_snd_burst;
20414 			PREP_NEW_MULTIDATA();
20415 
20416 			/* are we starting from the beginning of data block? */
20417 			if (*tail_unsent == 0) {
20418 				*xmit_tail = (*xmit_tail)->b_cont;
20419 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20420 				    (uintptr_t)INT_MAX);
20421 				*tail_unsent = (int)MBLKL(*xmit_tail);
20422 			}
20423 		}
20424 		/*
20425 		 * Record current values for parameters we may need to pass
20426 		 * to tcp_send() or tcp_multisend_data(). We checkpoint at
20427 		 * each iteration of the outer loop (each multidata message
20428 		 * creation). If we have a failure in the inner loop, we send
20429 		 * any complete multidata messages we have before reverting
20430 		 * to using the traditional non-md path.
20431 		 */
20432 		snxt_mmd = *snxt;
20433 		usable_mmd = *usable;
20434 		xmit_tail_mmd = *xmit_tail;
20435 		tail_unsent_mmd = *tail_unsent;
20436 		obsegs_mmd = obsegs;
20437 		obbytes_mmd = obbytes;
20438 
20439 		/*
20440 		 * max_pld limits the number of mblks in tcp's transmit
20441 		 * queue that can be added to a Multidata message.  Once
20442 		 * this counter reaches zero, no more additional mblks
20443 		 * can be added to it.  What happens afterwards depends
20444 		 * on whether or not we are set to chain the Multidata
20445 		 * messages.  If we are to link them together, reset
20446 		 * max_pld to its original value (tcp_mdt_max_pld) and
20447 		 * prepare to create a new Multidata message which will
20448 		 * get linked to md_mp_head.  Else, leave it alone and
20449 		 * let the inner loop break on its own.
20450 		 */
20451 		if (tcp_mdt_chain && max_pld == 0)
20452 			PREP_NEW_MULTIDATA();
20453 
20454 		/* adding a payload buffer; re-initialize values */
20455 		if (add_buffer)
20456 			PREP_NEW_PBUF();
20457 
20458 		/*
20459 		 * If we don't have a Multidata, either because we just
20460 		 * (re)entered this outer loop, or after we branched off
20461 		 * to tcp_send above, setup the Multidata and header
20462 		 * buffer to be used.
20463 		 */
20464 		if (md_mp == NULL) {
20465 			int md_hbuflen;
20466 			uint32_t start, stuff;
20467 
20468 			/*
20469 			 * Calculate Multidata header buffer size large enough
20470 			 * to hold all of the headers that can possibly be
20471 			 * sent at this moment.  We'd rather over-estimate
20472 			 * the size than running out of space; this is okay
20473 			 * since this buffer is small anyway.
20474 			 */
20475 			md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz;
20476 
20477 			/*
20478 			 * Start and stuff offset for partial hardware
20479 			 * checksum offload; these are currently for IPv4.
20480 			 * For full checksum offload, they are set to zero.
20481 			 */
20482 			if ((hwcksum_flags & HCK_PARTIALCKSUM)) {
20483 				if (af == AF_INET) {
20484 					start = IP_SIMPLE_HDR_LENGTH;
20485 					stuff = IP_SIMPLE_HDR_LENGTH +
20486 					    TCP_CHECKSUM_OFFSET;
20487 				} else {
20488 					start = IPV6_HDR_LEN;
20489 					stuff = IPV6_HDR_LEN +
20490 					    TCP_CHECKSUM_OFFSET;
20491 				}
20492 			} else {
20493 				start = stuff = 0;
20494 			}
20495 
20496 			/*
20497 			 * Create the header buffer, Multidata, as well as
20498 			 * any necessary attributes (destination address,
20499 			 * SAP and hardware checksum offload) that should
20500 			 * be associated with the Multidata message.
20501 			 */
20502 			ASSERT(cur_hdr_off == 0);
20503 			if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL ||
20504 			    ((md_hbuf->b_wptr += md_hbuflen),
20505 			    (mmd = mmd_alloc(md_hbuf, &md_mp,
20506 			    KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd,
20507 			    /* fastpath mblk */
20508 			    ire->ire_nce->nce_res_mp,
20509 			    /* hardware checksum enabled */
20510 			    (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)),
20511 			    /* hardware checksum offsets */
20512 			    start, stuff, 0,
20513 			    /* hardware checksum flag */
20514 			    hwcksum_flags, tcps) != 0)) {
20515 legacy_send:
20516 				/*
20517 				 * We arrive here from a failure within the
20518 				 * inner (packetizer) loop or we fail one of
20519 				 * the conditionals above. We restore the
20520 				 * previously checkpointed values for:
20521 				 *    xmit_tail
20522 				 *    usable
20523 				 *    tail_unsent
20524 				 *    snxt
20525 				 *    obbytes
20526 				 *    obsegs
20527 				 * We should then be able to dispatch any
20528 				 * complete multidata before reverting to the
20529 				 * traditional path with consistent parameters
20530 				 * (the inner loop updates these as it
20531 				 * iterates).
20532 				 */
20533 				*xmit_tail = xmit_tail_mmd;
20534 				*usable = usable_mmd;
20535 				*tail_unsent = tail_unsent_mmd;
20536 				*snxt = snxt_mmd;
20537 				obbytes = obbytes_mmd;
20538 				obsegs = obsegs_mmd;
20539 				if (md_mp != NULL) {
20540 					/* Unlink message from the chain */
20541 					if (md_mp_head != NULL) {
20542 						err = (intptr_t)rmvb(md_mp_head,
20543 						    md_mp);
20544 						/*
20545 						 * We can't assert that rmvb
20546 						 * did not return -1, since we
20547 						 * may get here before linkb
20548 						 * happens.  We do, however,
20549 						 * check if we just removed the
20550 						 * only element in the list.
20551 						 */
20552 						if (err == 0)
20553 							md_mp_head = NULL;
20554 					}
20555 					/* md_hbuf gets freed automatically */
20556 					TCP_STAT(tcps, tcp_mdt_discarded);
20557 					freeb(md_mp);
20558 				} else {
20559 					/* Either allocb or mmd_alloc failed */
20560 					TCP_STAT(tcps, tcp_mdt_allocfail);
20561 					if (md_hbuf != NULL)
20562 						freeb(md_hbuf);
20563 				}
20564 
20565 				/* send down what we've got so far */
20566 				if (md_mp_head != NULL) {
20567 					tcp_multisend_data(tcp, ire, ill,
20568 					    md_mp_head, obsegs, obbytes,
20569 					    &rconfirm);
20570 				}
20571 legacy_send_no_md:
20572 				if (ire != NULL)
20573 					IRE_REFRELE(ire);
20574 				/*
20575 				 * Too bad; let the legacy path handle this.
20576 				 * We specify INT_MAX for the threshold, since
20577 				 * we gave up with the Multidata processings
20578 				 * and let the old path have it all.
20579 				 */
20580 				TCP_STAT(tcps, tcp_mdt_legacy_all);
20581 				return (tcp_send(q, tcp, mss, tcp_hdr_len,
20582 				    tcp_tcp_hdr_len, num_sack_blk, usable,
20583 				    snxt, tail_unsent, xmit_tail, local_time,
20584 				    INT_MAX));
20585 			}
20586 
20587 			/* link to any existing ones, if applicable */
20588 			TCP_STAT(tcps, tcp_mdt_allocd);
20589 			if (md_mp_head == NULL) {
20590 				md_mp_head = md_mp;
20591 			} else if (tcp_mdt_chain) {
20592 				TCP_STAT(tcps, tcp_mdt_linked);
20593 				linkb(md_mp_head, md_mp);
20594 			}
20595 		}
20596 
20597 		ASSERT(md_mp_head != NULL);
20598 		ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL);
20599 		ASSERT(md_mp != NULL && mmd != NULL);
20600 		ASSERT(md_hbuf != NULL);
20601 
20602 		/*
20603 		 * Packetize the transmittable portion of the data block;
20604 		 * each data block is essentially added to the Multidata
20605 		 * as a payload buffer.  We also deal with adding more
20606 		 * than one payload buffers, which happens when the remaining
20607 		 * packetized portion of the current payload buffer is less
20608 		 * than MSS, while the next data block in transmit queue
20609 		 * has enough data to make up for one.  This "spillover"
20610 		 * case essentially creates a split-packet, where portions
20611 		 * of the packet's payload fragments may span across two
20612 		 * virtually discontiguous address blocks.
20613 		 */
20614 		seg_len = mss;
20615 		do {
20616 			len = seg_len;
20617 
20618 			/* one must remain NULL for DTRACE_IP_FASTPATH */
20619 			ipha = NULL;
20620 			ip6h = NULL;
20621 
20622 			ASSERT(len > 0);
20623 			ASSERT(max_pld >= 0);
20624 			ASSERT(!add_buffer || cur_pld_off == 0);
20625 
20626 			/*
20627 			 * First time around for this payload buffer; note
20628 			 * in the case of a spillover, the following has
20629 			 * been done prior to adding the split-packet
20630 			 * descriptor to Multidata, and we don't want to
20631 			 * repeat the process.
20632 			 */
20633 			if (add_buffer) {
20634 				ASSERT(mmd != NULL);
20635 				ASSERT(md_pbuf == NULL);
20636 				ASSERT(md_pbuf_nxt == NULL);
20637 				ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1);
20638 
20639 				/*
20640 				 * Have we reached the limit?  We'd get to
20641 				 * this case when we're not chaining the
20642 				 * Multidata messages together, and since
20643 				 * we're done, terminate this loop.
20644 				 */
20645 				if (max_pld == 0)
20646 					break; /* done */
20647 
20648 				if ((md_pbuf = dupb(*xmit_tail)) == NULL) {
20649 					TCP_STAT(tcps, tcp_mdt_allocfail);
20650 					goto legacy_send; /* out_of_mem */
20651 				}
20652 
20653 				if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy &&
20654 				    zc_cap != NULL) {
20655 					if (!ip_md_zcopy_attr(mmd, NULL,
20656 					    zc_cap->ill_zerocopy_flags)) {
20657 						freeb(md_pbuf);
20658 						TCP_STAT(tcps,
20659 						    tcp_mdt_allocfail);
20660 						/* out_of_mem */
20661 						goto legacy_send;
20662 					}
20663 					zcopy = B_TRUE;
20664 				}
20665 
20666 				md_pbuf->b_rptr += base_pld_off;
20667 
20668 				/*
20669 				 * Add a payload buffer to the Multidata; this
20670 				 * operation must not fail, or otherwise our
20671 				 * logic in this routine is broken.  There
20672 				 * is no memory allocation done by the
20673 				 * routine, so any returned failure simply
20674 				 * tells us that we've done something wrong.
20675 				 *
20676 				 * A failure tells us that either we're adding
20677 				 * the same payload buffer more than once, or
20678 				 * we're trying to add more buffers than
20679 				 * allowed (max_pld calculation is wrong).
20680 				 * None of the above cases should happen, and
20681 				 * we panic because either there's horrible
20682 				 * heap corruption, and/or programming mistake.
20683 				 */
20684 				pbuf_idx = mmd_addpldbuf(mmd, md_pbuf);
20685 				if (pbuf_idx < 0) {
20686 					cmn_err(CE_PANIC, "tcp_multisend: "
20687 					    "payload buffer logic error "
20688 					    "detected for tcp %p mmd %p "
20689 					    "pbuf %p (%d)\n",
20690 					    (void *)tcp, (void *)mmd,
20691 					    (void *)md_pbuf, pbuf_idx);
20692 				}
20693 
20694 				ASSERT(max_pld > 0);
20695 				--max_pld;
20696 				add_buffer = B_FALSE;
20697 			}
20698 
20699 			ASSERT(md_mp_head != NULL);
20700 			ASSERT(md_pbuf != NULL);
20701 			ASSERT(md_pbuf_nxt == NULL);
20702 			ASSERT(pbuf_idx != -1);
20703 			ASSERT(pbuf_idx_nxt == -1);
20704 			ASSERT(*usable > 0);
20705 
20706 			/*
20707 			 * We spillover to the next payload buffer only
20708 			 * if all of the following is true:
20709 			 *
20710 			 *   1. There is not enough data on the current
20711 			 *	payload buffer to make up `len',
20712 			 *   2. We are allowed to send `len',
20713 			 *   3. The next payload buffer length is large
20714 			 *	enough to accomodate `spill'.
20715 			 */
20716 			if ((spill = len - *tail_unsent) > 0 &&
20717 			    *usable >= len &&
20718 			    MBLKL((*xmit_tail)->b_cont) >= spill &&
20719 			    max_pld > 0) {
20720 				md_pbuf_nxt = dupb((*xmit_tail)->b_cont);
20721 				if (md_pbuf_nxt == NULL) {
20722 					TCP_STAT(tcps, tcp_mdt_allocfail);
20723 					goto legacy_send; /* out_of_mem */
20724 				}
20725 
20726 				if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy &&
20727 				    zc_cap != NULL) {
20728 					if (!ip_md_zcopy_attr(mmd, NULL,
20729 					    zc_cap->ill_zerocopy_flags)) {
20730 						freeb(md_pbuf_nxt);
20731 						TCP_STAT(tcps,
20732 						    tcp_mdt_allocfail);
20733 						/* out_of_mem */
20734 						goto legacy_send;
20735 					}
20736 					zcopy = B_TRUE;
20737 				}
20738 
20739 				/*
20740 				 * See comments above on the first call to
20741 				 * mmd_addpldbuf for explanation on the panic.
20742 				 */
20743 				pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt);
20744 				if (pbuf_idx_nxt < 0) {
20745 					panic("tcp_multisend: "
20746 					    "next payload buffer logic error "
20747 					    "detected for tcp %p mmd %p "
20748 					    "pbuf %p (%d)\n",
20749 					    (void *)tcp, (void *)mmd,
20750 					    (void *)md_pbuf_nxt, pbuf_idx_nxt);
20751 				}
20752 
20753 				ASSERT(max_pld > 0);
20754 				--max_pld;
20755 			} else if (spill > 0) {
20756 				/*
20757 				 * If there's a spillover, but the following
20758 				 * xmit_tail couldn't give us enough octets
20759 				 * to reach "len", then stop the current
20760 				 * Multidata creation and let the legacy
20761 				 * tcp_send() path take over.  We don't want
20762 				 * to send the tiny segment as part of this
20763 				 * Multidata for performance reasons; instead,
20764 				 * we let the legacy path deal with grouping
20765 				 * it with the subsequent small mblks.
20766 				 */
20767 				if (*usable >= len &&
20768 				    MBLKL((*xmit_tail)->b_cont) < spill) {
20769 					max_pld = 0;
20770 					break;	/* done */
20771 				}
20772 
20773 				/*
20774 				 * We can't spillover, and we are near
20775 				 * the end of the current payload buffer,
20776 				 * so send what's left.
20777 				 */
20778 				ASSERT(*tail_unsent > 0);
20779 				len = *tail_unsent;
20780 			}
20781 
20782 			/* tail_unsent is negated if there is a spillover */
20783 			*tail_unsent -= len;
20784 			*usable -= len;
20785 			ASSERT(*usable >= 0);
20786 
20787 			if (*usable < mss)
20788 				seg_len = *usable;
20789 			/*
20790 			 * Sender SWS avoidance; see comments in tcp_send();
20791 			 * everything else is the same, except that we only
20792 			 * do this here if there is no more data to be sent
20793 			 * following the current xmit_tail.  We don't check
20794 			 * for 1-byte urgent data because we shouldn't get
20795 			 * here if TCP_URG_VALID is set.
20796 			 */
20797 			if (*usable > 0 && *usable < mss &&
20798 			    ((md_pbuf_nxt == NULL &&
20799 			    (*xmit_tail)->b_cont == NULL) ||
20800 			    (md_pbuf_nxt != NULL &&
20801 			    (*xmit_tail)->b_cont->b_cont == NULL)) &&
20802 			    seg_len < (tcp->tcp_max_swnd >> 1) &&
20803 			    (tcp->tcp_unsent -
20804 			    ((*snxt + len) - tcp->tcp_snxt)) > seg_len &&
20805 			    !tcp->tcp_zero_win_probe) {
20806 				if ((*snxt + len) == tcp->tcp_snxt &&
20807 				    (*snxt + len) == tcp->tcp_suna) {
20808 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20809 				}
20810 				done = B_TRUE;
20811 			}
20812 
20813 			/*
20814 			 * Prime pump for IP's checksumming on our behalf;
20815 			 * include the adjustment for a source route if any.
20816 			 * Do this only for software/partial hardware checksum
20817 			 * offload, as this field gets zeroed out later for
20818 			 * the full hardware checksum offload case.
20819 			 */
20820 			if (!(hwcksum_flags & HCK_FULLCKSUM)) {
20821 				cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
20822 				cksum = (cksum >> 16) + (cksum & 0xFFFF);
20823 				U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum);
20824 			}
20825 
20826 			U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq);
20827 			*snxt += len;
20828 
20829 			tcp->tcp_tcph->th_flags[0] = TH_ACK;
20830 			/*
20831 			 * We set the PUSH bit only if TCP has no more buffered
20832 			 * data to be transmitted (or if sender SWS avoidance
20833 			 * takes place), as opposed to setting it for every
20834 			 * last packet in the burst.
20835 			 */
20836 			if (done ||
20837 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0)
20838 				tcp->tcp_tcph->th_flags[0] |= TH_PUSH;
20839 
20840 			/*
20841 			 * Set FIN bit if this is our last segment; snxt
20842 			 * already includes its length, and it will not
20843 			 * be adjusted after this point.
20844 			 */
20845 			if (tcp->tcp_valid_bits == TCP_FSS_VALID &&
20846 			    *snxt == tcp->tcp_fss) {
20847 				if (!tcp->tcp_fin_acked) {
20848 					tcp->tcp_tcph->th_flags[0] |= TH_FIN;
20849 					BUMP_MIB(&tcps->tcps_mib,
20850 					    tcpOutControl);
20851 				}
20852 				if (!tcp->tcp_fin_sent) {
20853 					tcp->tcp_fin_sent = B_TRUE;
20854 					/*
20855 					 * tcp state must be ESTABLISHED
20856 					 * in order for us to get here in
20857 					 * the first place.
20858 					 */
20859 					tcp->tcp_state = TCPS_FIN_WAIT_1;
20860 
20861 					/*
20862 					 * Upon returning from this routine,
20863 					 * tcp_wput_data() will set tcp_snxt
20864 					 * to be equal to snxt + tcp_fin_sent.
20865 					 * This is essentially the same as
20866 					 * setting it to tcp_fss + 1.
20867 					 */
20868 				}
20869 			}
20870 
20871 			tcp->tcp_last_sent_len = (ushort_t)len;
20872 
20873 			len += tcp_hdr_len;
20874 			if (tcp->tcp_ipversion == IPV4_VERSION)
20875 				tcp->tcp_ipha->ipha_length = htons(len);
20876 			else
20877 				tcp->tcp_ip6h->ip6_plen = htons(len -
20878 				    ((char *)&tcp->tcp_ip6h[1] -
20879 				    tcp->tcp_iphc));
20880 
20881 			pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF);
20882 
20883 			/* setup header fragment */
20884 			PDESC_HDR_ADD(pkt_info,
20885 			    md_hbuf->b_rptr + cur_hdr_off,	/* base */
20886 			    tcp->tcp_mdt_hdr_head,		/* head room */
20887 			    tcp_hdr_len,			/* len */
20888 			    tcp->tcp_mdt_hdr_tail);		/* tail room */
20889 
20890 			ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base ==
20891 			    hdr_frag_sz);
20892 			ASSERT(MBLKIN(md_hbuf,
20893 			    (pkt_info->hdr_base - md_hbuf->b_rptr),
20894 			    PDESC_HDRSIZE(pkt_info)));
20895 
20896 			/* setup first payload fragment */
20897 			PDESC_PLD_INIT(pkt_info);
20898 			PDESC_PLD_SPAN_ADD(pkt_info,
20899 			    pbuf_idx,				/* index */
20900 			    md_pbuf->b_rptr + cur_pld_off,	/* start */
20901 			    tcp->tcp_last_sent_len);		/* len */
20902 
20903 			/* create a split-packet in case of a spillover */
20904 			if (md_pbuf_nxt != NULL) {
20905 				ASSERT(spill > 0);
20906 				ASSERT(pbuf_idx_nxt > pbuf_idx);
20907 				ASSERT(!add_buffer);
20908 
20909 				md_pbuf = md_pbuf_nxt;
20910 				md_pbuf_nxt = NULL;
20911 				pbuf_idx = pbuf_idx_nxt;
20912 				pbuf_idx_nxt = -1;
20913 				cur_pld_off = spill;
20914 
20915 				/* trim out first payload fragment */
20916 				PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill);
20917 
20918 				/* setup second payload fragment */
20919 				PDESC_PLD_SPAN_ADD(pkt_info,
20920 				    pbuf_idx,			/* index */
20921 				    md_pbuf->b_rptr,		/* start */
20922 				    spill);			/* len */
20923 
20924 				if ((*xmit_tail)->b_next == NULL) {
20925 					/*
20926 					 * Store the lbolt used for RTT
20927 					 * estimation. We can only record one
20928 					 * timestamp per mblk so we do it when
20929 					 * we reach the end of the payload
20930 					 * buffer.  Also we only take a new
20931 					 * timestamp sample when the previous
20932 					 * timed data from the same mblk has
20933 					 * been ack'ed.
20934 					 */
20935 					(*xmit_tail)->b_prev = local_time;
20936 					(*xmit_tail)->b_next =
20937 					    (mblk_t *)(uintptr_t)first_snxt;
20938 				}
20939 
20940 				first_snxt = *snxt - spill;
20941 
20942 				/*
20943 				 * Advance xmit_tail; usable could be 0 by
20944 				 * the time we got here, but we made sure
20945 				 * above that we would only spillover to
20946 				 * the next data block if usable includes
20947 				 * the spilled-over amount prior to the
20948 				 * subtraction.  Therefore, we are sure
20949 				 * that xmit_tail->b_cont can't be NULL.
20950 				 */
20951 				ASSERT((*xmit_tail)->b_cont != NULL);
20952 				*xmit_tail = (*xmit_tail)->b_cont;
20953 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20954 				    (uintptr_t)INT_MAX);
20955 				*tail_unsent = (int)MBLKL(*xmit_tail) - spill;
20956 			} else {
20957 				cur_pld_off += tcp->tcp_last_sent_len;
20958 			}
20959 
20960 			/*
20961 			 * Fill in the header using the template header, and
20962 			 * add options such as time-stamp, ECN and/or SACK,
20963 			 * as needed.
20964 			 */
20965 			tcp_fill_header(tcp, pkt_info->hdr_rptr,
20966 			    (clock_t)local_time, num_sack_blk);
20967 
20968 			/* take care of some IP header businesses */
20969 			if (af == AF_INET) {
20970 				ipha = (ipha_t *)pkt_info->hdr_rptr;
20971 
20972 				ASSERT(OK_32PTR((uchar_t *)ipha));
20973 				ASSERT(PDESC_HDRL(pkt_info) >=
20974 				    IP_SIMPLE_HDR_LENGTH);
20975 				ASSERT(ipha->ipha_version_and_hdr_length ==
20976 				    IP_SIMPLE_HDR_VERSION);
20977 
20978 				/*
20979 				 * Assign ident value for current packet; see
20980 				 * related comments in ip_wput_ire() about the
20981 				 * contract private interface with clustering
20982 				 * group.
20983 				 */
20984 				clusterwide = B_FALSE;
20985 				if (cl_inet_ipident != NULL) {
20986 					ASSERT(cl_inet_isclusterwide != NULL);
20987 					if ((*cl_inet_isclusterwide)(IPPROTO_IP,
20988 					    AF_INET,
20989 					    (uint8_t *)(uintptr_t)src)) {
20990 						ipha->ipha_ident =
20991 						    (*cl_inet_ipident)
20992 						    (IPPROTO_IP, AF_INET,
20993 						    (uint8_t *)(uintptr_t)src,
20994 						    (uint8_t *)(uintptr_t)dst);
20995 						clusterwide = B_TRUE;
20996 					}
20997 				}
20998 
20999 				if (!clusterwide) {
21000 					ipha->ipha_ident = (uint16_t)
21001 					    atomic_add_32_nv(
21002 						&ire->ire_ident, 1);
21003 				}
21004 #ifndef _BIG_ENDIAN
21005 				ipha->ipha_ident = (ipha->ipha_ident << 8) |
21006 				    (ipha->ipha_ident >> 8);
21007 #endif
21008 			} else {
21009 				ip6h = (ip6_t *)pkt_info->hdr_rptr;
21010 
21011 				ASSERT(OK_32PTR((uchar_t *)ip6h));
21012 				ASSERT(IPVER(ip6h) == IPV6_VERSION);
21013 				ASSERT(ip6h->ip6_nxt == IPPROTO_TCP);
21014 				ASSERT(PDESC_HDRL(pkt_info) >=
21015 				    (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET +
21016 				    TCP_CHECKSUM_SIZE));
21017 				ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
21018 
21019 				if (tcp->tcp_ip_forward_progress) {
21020 					rconfirm = B_TRUE;
21021 					tcp->tcp_ip_forward_progress = B_FALSE;
21022 				}
21023 			}
21024 
21025 			/* at least one payload span, and at most two */
21026 			ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3);
21027 
21028 			/* add the packet descriptor to Multidata */
21029 			if ((pkt = mmd_addpdesc(mmd, pkt_info, &err,
21030 			    KM_NOSLEEP)) == NULL) {
21031 				/*
21032 				 * Any failure other than ENOMEM indicates
21033 				 * that we have passed in invalid pkt_info
21034 				 * or parameters to mmd_addpdesc, which must
21035 				 * not happen.
21036 				 *
21037 				 * EINVAL is a result of failure on boundary
21038 				 * checks against the pkt_info contents.  It
21039 				 * should not happen, and we panic because
21040 				 * either there's horrible heap corruption,
21041 				 * and/or programming mistake.
21042 				 */
21043 				if (err != ENOMEM) {
21044 					cmn_err(CE_PANIC, "tcp_multisend: "
21045 					    "pdesc logic error detected for "
21046 					    "tcp %p mmd %p pinfo %p (%d)\n",
21047 					    (void *)tcp, (void *)mmd,
21048 					    (void *)pkt_info, err);
21049 				}
21050 				TCP_STAT(tcps, tcp_mdt_addpdescfail);
21051 				goto legacy_send; /* out_of_mem */
21052 			}
21053 			ASSERT(pkt != NULL);
21054 
21055 			/* calculate IP header and TCP checksums */
21056 			if (af == AF_INET) {
21057 				/* calculate pseudo-header checksum */
21058 				cksum = (dst >> 16) + (dst & 0xFFFF) +
21059 				    (src >> 16) + (src & 0xFFFF);
21060 
21061 				/* offset for TCP header checksum */
21062 				up = IPH_TCPH_CHECKSUMP(ipha,
21063 				    IP_SIMPLE_HDR_LENGTH);
21064 			} else {
21065 				up = (uint16_t *)&ip6h->ip6_src;
21066 
21067 				/* calculate pseudo-header checksum */
21068 				cksum = up[0] + up[1] + up[2] + up[3] +
21069 				    up[4] + up[5] + up[6] + up[7] +
21070 				    up[8] + up[9] + up[10] + up[11] +
21071 				    up[12] + up[13] + up[14] + up[15];
21072 
21073 				/* Fold the initial sum */
21074 				cksum = (cksum & 0xffff) + (cksum >> 16);
21075 
21076 				up = (uint16_t *)(((uchar_t *)ip6h) +
21077 				    IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET);
21078 			}
21079 
21080 			if (hwcksum_flags & HCK_FULLCKSUM) {
21081 				/* clear checksum field for hardware */
21082 				*up = 0;
21083 			} else if (hwcksum_flags & HCK_PARTIALCKSUM) {
21084 				uint32_t sum;
21085 
21086 				/* pseudo-header checksumming */
21087 				sum = *up + cksum + IP_TCP_CSUM_COMP;
21088 				sum = (sum & 0xFFFF) + (sum >> 16);
21089 				*up = (sum & 0xFFFF) + (sum >> 16);
21090 			} else {
21091 				/* software checksumming */
21092 				TCP_STAT(tcps, tcp_out_sw_cksum);
21093 				TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
21094 				    tcp->tcp_hdr_len + tcp->tcp_last_sent_len);
21095 				*up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len,
21096 				    cksum + IP_TCP_CSUM_COMP);
21097 				if (*up == 0)
21098 					*up = 0xFFFF;
21099 			}
21100 
21101 			/* IPv4 header checksum */
21102 			if (af == AF_INET) {
21103 				if (hwcksum_flags & HCK_IPV4_HDRCKSUM) {
21104 					ipha->ipha_hdr_checksum = 0;
21105 				} else {
21106 					IP_HDR_CKSUM(ipha, cksum,
21107 					    ((uint32_t *)ipha)[0],
21108 					    ((uint16_t *)ipha)[4]);
21109 				}
21110 			}
21111 
21112 			if (af == AF_INET &&
21113 			    HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) ||
21114 			    af == AF_INET6 &&
21115 			    HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) {
21116 				mblk_t	*mp, *mp1;
21117 				uchar_t	*hdr_rptr, *hdr_wptr;
21118 				uchar_t	*pld_rptr, *pld_wptr;
21119 
21120 				/*
21121 				 * We reconstruct a pseudo packet for the hooks
21122 				 * framework using mmd_transform_link().
21123 				 * If it is a split packet we pullup the
21124 				 * payload. FW_HOOKS expects a pkt comprising
21125 				 * of two mblks: a header and the payload.
21126 				 */
21127 				if ((mp = mmd_transform_link(pkt)) == NULL) {
21128 					TCP_STAT(tcps, tcp_mdt_allocfail);
21129 					goto legacy_send;
21130 				}
21131 
21132 				if (pkt_info->pld_cnt > 1) {
21133 					/* split payload, more than one pld */
21134 					if ((mp1 = msgpullup(mp->b_cont, -1)) ==
21135 					    NULL) {
21136 						freemsg(mp);
21137 						TCP_STAT(tcps,
21138 						    tcp_mdt_allocfail);
21139 						goto legacy_send;
21140 					}
21141 					freemsg(mp->b_cont);
21142 					mp->b_cont = mp1;
21143 				} else {
21144 					mp1 = mp->b_cont;
21145 				}
21146 				ASSERT(mp1 != NULL && mp1->b_cont == NULL);
21147 
21148 				/*
21149 				 * Remember the message offsets. This is so we
21150 				 * can detect changes when we return from the
21151 				 * FW_HOOKS callbacks.
21152 				 */
21153 				hdr_rptr = mp->b_rptr;
21154 				hdr_wptr = mp->b_wptr;
21155 				pld_rptr = mp->b_cont->b_rptr;
21156 				pld_wptr = mp->b_cont->b_wptr;
21157 
21158 				if (af == AF_INET) {
21159 					DTRACE_PROBE4(
21160 					    ip4__physical__out__start,
21161 					    ill_t *, NULL,
21162 					    ill_t *, ill,
21163 					    ipha_t *, ipha,
21164 					    mblk_t *, mp);
21165 					FW_HOOKS(
21166 					    ipst->ips_ip4_physical_out_event,
21167 					    ipst->ips_ipv4firewall_physical_out,
21168 					    NULL, ill, ipha, mp, mp, 0, ipst);
21169 					DTRACE_PROBE1(
21170 					    ip4__physical__out__end,
21171 					    mblk_t *, mp);
21172 				} else {
21173 					DTRACE_PROBE4(
21174 					    ip6__physical__out_start,
21175 					    ill_t *, NULL,
21176 					    ill_t *, ill,
21177 					    ip6_t *, ip6h,
21178 					    mblk_t *, mp);
21179 					FW_HOOKS6(
21180 					    ipst->ips_ip6_physical_out_event,
21181 					    ipst->ips_ipv6firewall_physical_out,
21182 					    NULL, ill, ip6h, mp, mp, 0, ipst);
21183 					DTRACE_PROBE1(
21184 					    ip6__physical__out__end,
21185 					    mblk_t *, mp);
21186 				}
21187 
21188 				if (mp == NULL ||
21189 				    (mp1 = mp->b_cont) == NULL ||
21190 				    mp->b_rptr != hdr_rptr ||
21191 				    mp->b_wptr != hdr_wptr ||
21192 				    mp1->b_rptr != pld_rptr ||
21193 				    mp1->b_wptr != pld_wptr ||
21194 				    mp1->b_cont != NULL) {
21195 					/*
21196 					 * We abandon multidata processing and
21197 					 * return to the normal path, either
21198 					 * when a packet is blocked, or when
21199 					 * the boundaries of header buffer or
21200 					 * payload buffer have been changed by
21201 					 * FW_HOOKS[6].
21202 					 */
21203 					if (mp != NULL)
21204 						freemsg(mp);
21205 					goto legacy_send;
21206 				}
21207 				/* Finished with the pseudo packet */
21208 				freemsg(mp);
21209 			}
21210 			DTRACE_IP_FASTPATH(md_hbuf, pkt_info->hdr_rptr,
21211 			    ill, ipha, ip6h);
21212 			/* advance header offset */
21213 			cur_hdr_off += hdr_frag_sz;
21214 
21215 			obbytes += tcp->tcp_last_sent_len;
21216 			++obsegs;
21217 		} while (!done && *usable > 0 && --num_burst_seg > 0 &&
21218 		    *tail_unsent > 0);
21219 
21220 		if ((*xmit_tail)->b_next == NULL) {
21221 			/*
21222 			 * Store the lbolt used for RTT estimation. We can only
21223 			 * record one timestamp per mblk so we do it when we
21224 			 * reach the end of the payload buffer. Also we only
21225 			 * take a new timestamp sample when the previous timed
21226 			 * data from the same mblk has been ack'ed.
21227 			 */
21228 			(*xmit_tail)->b_prev = local_time;
21229 			(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt;
21230 		}
21231 
21232 		ASSERT(*tail_unsent >= 0);
21233 		if (*tail_unsent > 0) {
21234 			/*
21235 			 * We got here because we broke out of the above
21236 			 * loop due to of one of the following cases:
21237 			 *
21238 			 *   1. len < adjusted MSS (i.e. small),
21239 			 *   2. Sender SWS avoidance,
21240 			 *   3. max_pld is zero.
21241 			 *
21242 			 * We are done for this Multidata, so trim our
21243 			 * last payload buffer (if any) accordingly.
21244 			 */
21245 			if (md_pbuf != NULL)
21246 				md_pbuf->b_wptr -= *tail_unsent;
21247 		} else if (*usable > 0) {
21248 			*xmit_tail = (*xmit_tail)->b_cont;
21249 			ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
21250 			    (uintptr_t)INT_MAX);
21251 			*tail_unsent = (int)MBLKL(*xmit_tail);
21252 			add_buffer = B_TRUE;
21253 		}
21254 	} while (!done && *usable > 0 && num_burst_seg > 0 &&
21255 	    (tcp_mdt_chain || max_pld > 0));
21256 
21257 	if (md_mp_head != NULL) {
21258 		/* send everything down */
21259 		tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes,
21260 		    &rconfirm);
21261 	}
21262 
21263 #undef PREP_NEW_MULTIDATA
21264 #undef PREP_NEW_PBUF
21265 #undef IPVER
21266 
21267 	IRE_REFRELE(ire);
21268 	return (0);
21269 }
21270 
21271 /*
21272  * A wrapper function for sending one or more Multidata messages down to
21273  * the module below ip; this routine does not release the reference of the
21274  * IRE (caller does that).  This routine is analogous to tcp_send_data().
21275  */
21276 static void
21277 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head,
21278     const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm)
21279 {
21280 	uint64_t delta;
21281 	nce_t *nce;
21282 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21283 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
21284 
21285 	ASSERT(ire != NULL && ill != NULL);
21286 	ASSERT(ire->ire_stq != NULL);
21287 	ASSERT(md_mp_head != NULL);
21288 	ASSERT(rconfirm != NULL);
21289 
21290 	/* adjust MIBs and IRE timestamp */
21291 	DTRACE_PROBE2(tcp__trace__send, mblk_t *, md_mp_head, tcp_t *, tcp);
21292 	tcp->tcp_obsegs += obsegs;
21293 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs);
21294 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes);
21295 	TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs);
21296 
21297 	if (tcp->tcp_ipversion == IPV4_VERSION) {
21298 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs);
21299 	} else {
21300 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs);
21301 	}
21302 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs);
21303 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs);
21304 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes);
21305 
21306 	ire->ire_ob_pkt_count += obsegs;
21307 	if (ire->ire_ipif != NULL)
21308 		atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs);
21309 	ire->ire_last_used_time = lbolt;
21310 
21311 	if (ipst->ips_ipobs_enabled) {
21312 		multidata_t *dlmdp = mmd_getmultidata(md_mp_head);
21313 		pdesc_t *dl_pkt;
21314 		pdescinfo_t pinfo;
21315 		mblk_t *nmp;
21316 		zoneid_t szone = tcp->tcp_connp->conn_zoneid;
21317 
21318 		for (dl_pkt = mmd_getfirstpdesc(dlmdp, &pinfo);
21319 		    (dl_pkt != NULL);
21320 		    dl_pkt = mmd_getnextpdesc(dl_pkt, &pinfo)) {
21321 			if ((nmp = mmd_transform_link(dl_pkt)) == NULL)
21322 				continue;
21323 			ipobs_hook(nmp, IPOBS_HOOK_OUTBOUND, szone,
21324 			    ALL_ZONES, ill, tcp->tcp_ipversion, 0, ipst);
21325 			freemsg(nmp);
21326 		}
21327 	}
21328 
21329 	/* send it down */
21330 	if (ILL_DLS_CAPABLE(ill)) {
21331 		ill_dls_capab_t *ill_dls = ill->ill_dls_capab;
21332 		ill_dls->ill_tx(ill_dls->ill_tx_handle, md_mp_head);
21333 	} else {
21334 		putnext(ire->ire_stq, md_mp_head);
21335 	}
21336 
21337 	/* we're done for TCP/IPv4 */
21338 	if (tcp->tcp_ipversion == IPV4_VERSION)
21339 		return;
21340 
21341 	nce = ire->ire_nce;
21342 
21343 	ASSERT(nce != NULL);
21344 	ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT)));
21345 	ASSERT(nce->nce_state != ND_INCOMPLETE);
21346 
21347 	/* reachability confirmation? */
21348 	if (*rconfirm) {
21349 		nce->nce_last = TICK_TO_MSEC(lbolt64);
21350 		if (nce->nce_state != ND_REACHABLE) {
21351 			mutex_enter(&nce->nce_lock);
21352 			nce->nce_state = ND_REACHABLE;
21353 			nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT;
21354 			mutex_exit(&nce->nce_lock);
21355 			(void) untimeout(nce->nce_timeout_id);
21356 			if (ip_debug > 2) {
21357 				/* ip1dbg */
21358 				pr_addr_dbg("tcp_multisend_data: state "
21359 				    "for %s changed to REACHABLE\n",
21360 				    AF_INET6, &ire->ire_addr_v6);
21361 			}
21362 		}
21363 		/* reset transport reachability confirmation */
21364 		*rconfirm = B_FALSE;
21365 	}
21366 
21367 	delta =  TICK_TO_MSEC(lbolt64) - nce->nce_last;
21368 	ip1dbg(("tcp_multisend_data: delta = %" PRId64
21369 	    " ill_reachable_time = %d \n", delta, ill->ill_reachable_time));
21370 
21371 	if (delta > (uint64_t)ill->ill_reachable_time) {
21372 		mutex_enter(&nce->nce_lock);
21373 		switch (nce->nce_state) {
21374 		case ND_REACHABLE:
21375 		case ND_STALE:
21376 			/*
21377 			 * ND_REACHABLE is identical to ND_STALE in this
21378 			 * specific case. If reachable time has expired for
21379 			 * this neighbor (delta is greater than reachable
21380 			 * time), conceptually, the neighbor cache is no
21381 			 * longer in REACHABLE state, but already in STALE
21382 			 * state.  So the correct transition here is to
21383 			 * ND_DELAY.
21384 			 */
21385 			nce->nce_state = ND_DELAY;
21386 			mutex_exit(&nce->nce_lock);
21387 			NDP_RESTART_TIMER(nce,
21388 			    ipst->ips_delay_first_probe_time);
21389 			if (ip_debug > 3) {
21390 				/* ip2dbg */
21391 				pr_addr_dbg("tcp_multisend_data: state "
21392 				    "for %s changed to DELAY\n",
21393 				    AF_INET6, &ire->ire_addr_v6);
21394 			}
21395 			break;
21396 		case ND_DELAY:
21397 		case ND_PROBE:
21398 			mutex_exit(&nce->nce_lock);
21399 			/* Timers have already started */
21400 			break;
21401 		case ND_UNREACHABLE:
21402 			/*
21403 			 * ndp timer has detected that this nce is
21404 			 * unreachable and initiated deleting this nce
21405 			 * and all its associated IREs. This is a race
21406 			 * where we found the ire before it was deleted
21407 			 * and have just sent out a packet using this
21408 			 * unreachable nce.
21409 			 */
21410 			mutex_exit(&nce->nce_lock);
21411 			break;
21412 		default:
21413 			ASSERT(0);
21414 		}
21415 	}
21416 }
21417 
21418 /*
21419  * Derived from tcp_send_data().
21420  */
21421 static void
21422 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss,
21423     int num_lso_seg)
21424 {
21425 	ipha_t		*ipha;
21426 	mblk_t		*ire_fp_mp;
21427 	uint_t		ire_fp_mp_len;
21428 	uint32_t	hcksum_txflags = 0;
21429 	ipaddr_t	src;
21430 	ipaddr_t	dst;
21431 	uint32_t	cksum;
21432 	uint16_t	*up;
21433 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21434 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
21435 
21436 	ASSERT(DB_TYPE(mp) == M_DATA);
21437 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
21438 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
21439 	ASSERT(tcp->tcp_connp != NULL);
21440 	ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp));
21441 
21442 	ipha = (ipha_t *)mp->b_rptr;
21443 	src = ipha->ipha_src;
21444 	dst = ipha->ipha_dst;
21445 
21446 	DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp);
21447 
21448 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
21449 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident,
21450 	    num_lso_seg);
21451 #ifndef _BIG_ENDIAN
21452 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
21453 #endif
21454 	if (tcp->tcp_snd_zcopy_aware) {
21455 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
21456 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
21457 			mp = tcp_zcopy_disable(tcp, mp);
21458 	}
21459 
21460 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
21461 		ASSERT(ill->ill_hcksum_capab != NULL);
21462 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
21463 	}
21464 
21465 	/*
21466 	 * Since the TCP checksum should be recalculated by h/w, we can just
21467 	 * zero the checksum field for HCK_FULLCKSUM, or calculate partial
21468 	 * pseudo-header checksum for HCK_PARTIALCKSUM.
21469 	 * The partial pseudo-header excludes TCP length, that was calculated
21470 	 * in tcp_send(), so to zero *up before further processing.
21471 	 */
21472 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
21473 
21474 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
21475 	*up = 0;
21476 
21477 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
21478 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
21479 
21480 	/*
21481 	 * Append LSO flag to DB_LSOFLAGS(mp) and set the mss to DB_LSOMSS(mp).
21482 	 */
21483 	DB_LSOFLAGS(mp) |= HW_LSO;
21484 	DB_LSOMSS(mp) = mss;
21485 
21486 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
21487 	ire_fp_mp_len = MBLKL(ire_fp_mp);
21488 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
21489 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
21490 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
21491 
21492 	UPDATE_OB_PKT_COUNT(ire);
21493 	ire->ire_last_used_time = lbolt;
21494 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
21495 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
21496 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
21497 	    ntohs(ipha->ipha_length));
21498 
21499 	if (ILL_DLS_CAPABLE(ill)) {
21500 		/*
21501 		 * Send the packet directly to DLD, where it may be queued
21502 		 * depending on the availability of transmit resources at
21503 		 * the media layer.
21504 		 */
21505 		IP_DLS_ILL_TX(ill, ipha, mp, ipst, ire_fp_mp_len);
21506 	} else {
21507 		ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr;
21508 		DTRACE_PROBE4(ip4__physical__out__start,
21509 		    ill_t *, NULL, ill_t *, out_ill,
21510 		    ipha_t *, ipha, mblk_t *, mp);
21511 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
21512 		    ipst->ips_ipv4firewall_physical_out,
21513 		    NULL, out_ill, ipha, mp, mp, 0, ipst);
21514 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
21515 
21516 		if (mp != NULL) {
21517 			if (ipst->ips_ipobs_enabled) {
21518 				zoneid_t szone = tcp->tcp_connp->conn_zoneid;
21519 
21520 				ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone,
21521 				    ALL_ZONES, ill, tcp->tcp_ipversion,
21522 				    ire_fp_mp_len, ipst);
21523 			}
21524 			DTRACE_IP_FASTPATH(mp, ipha, out_ill, ipha, NULL);
21525 			putnext(ire->ire_stq, mp);
21526 		}
21527 	}
21528 }
21529 
21530 /*
21531  * tcp_send() is called by tcp_wput_data() for non-Multidata transmission
21532  * scheme, and returns one of the following:
21533  *
21534  * -1 = failed allocation.
21535  *  0 = success; burst count reached, or usable send window is too small,
21536  *      and that we'd rather wait until later before sending again.
21537  *  1 = success; we are called from tcp_multisend(), and both usable send
21538  *      window and tail_unsent are greater than the MDT threshold, and thus
21539  *      Multidata Transmit should be used instead.
21540  */
21541 static int
21542 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
21543     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
21544     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
21545     const int mdt_thres)
21546 {
21547 	int num_burst_seg = tcp->tcp_snd_burst;
21548 	ire_t		*ire = NULL;
21549 	ill_t		*ill = NULL;
21550 	mblk_t		*ire_fp_mp = NULL;
21551 	uint_t		ire_fp_mp_len = 0;
21552 	int		num_lso_seg = 1;
21553 	uint_t		lso_usable;
21554 	boolean_t	do_lso_send = B_FALSE;
21555 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21556 
21557 	/*
21558 	 * Check LSO capability before any further work. And the similar check
21559 	 * need to be done in for(;;) loop.
21560 	 * LSO will be deployed when therer is more than one mss of available
21561 	 * data and a burst transmission is allowed.
21562 	 */
21563 	if (tcp->tcp_lso &&
21564 	    (tcp->tcp_valid_bits == 0 ||
21565 	    tcp->tcp_valid_bits == TCP_FSS_VALID) &&
21566 	    num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
21567 		/*
21568 		 * Try to find usable IRE/ILL and do basic check to the ILL.
21569 		 */
21570 		if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill)) {
21571 			/*
21572 			 * Enable LSO with this transmission.
21573 			 * Since IRE has been hold in
21574 			 * tcp_send_find_ire_ill(), IRE_REFRELE(ire)
21575 			 * should be called before return.
21576 			 */
21577 			do_lso_send = B_TRUE;
21578 			ire_fp_mp = ire->ire_nce->nce_fp_mp;
21579 			ire_fp_mp_len = MBLKL(ire_fp_mp);
21580 			/* Round up to multiple of 4 */
21581 			ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4;
21582 		} else {
21583 			do_lso_send = B_FALSE;
21584 			ill = NULL;
21585 		}
21586 	}
21587 
21588 	for (;;) {
21589 		struct datab	*db;
21590 		tcph_t		*tcph;
21591 		uint32_t	sum;
21592 		mblk_t		*mp, *mp1;
21593 		uchar_t		*rptr;
21594 		int		len;
21595 
21596 		/*
21597 		 * If we're called by tcp_multisend(), and the amount of
21598 		 * sendable data as well as the size of current xmit_tail
21599 		 * is beyond the MDT threshold, return to the caller and
21600 		 * let the large data transmit be done using MDT.
21601 		 */
21602 		if (*usable > 0 && *usable > mdt_thres &&
21603 		    (*tail_unsent > mdt_thres || (*tail_unsent == 0 &&
21604 		    MBLKL((*xmit_tail)->b_cont) > mdt_thres))) {
21605 			ASSERT(tcp->tcp_mdt);
21606 			return (1);	/* success; do large send */
21607 		}
21608 
21609 		if (num_burst_seg == 0)
21610 			break;		/* success; burst count reached */
21611 
21612 		/*
21613 		 * Calculate the maximum payload length we can send in *one*
21614 		 * time.
21615 		 */
21616 		if (do_lso_send) {
21617 			/*
21618 			 * Check whether need to do LSO any more.
21619 			 */
21620 			if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
21621 				lso_usable = MIN(tcp->tcp_lso_max, *usable);
21622 				lso_usable = MIN(lso_usable,
21623 				    num_burst_seg * mss);
21624 
21625 				num_lso_seg = lso_usable / mss;
21626 				if (lso_usable % mss) {
21627 					num_lso_seg++;
21628 					tcp->tcp_last_sent_len = (ushort_t)
21629 					    (lso_usable % mss);
21630 				} else {
21631 					tcp->tcp_last_sent_len = (ushort_t)mss;
21632 				}
21633 			} else {
21634 				do_lso_send = B_FALSE;
21635 				num_lso_seg = 1;
21636 				lso_usable = mss;
21637 			}
21638 		}
21639 
21640 		ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1);
21641 
21642 		/*
21643 		 * Adjust num_burst_seg here.
21644 		 */
21645 		num_burst_seg -= num_lso_seg;
21646 
21647 		len = mss;
21648 		if (len > *usable) {
21649 			ASSERT(do_lso_send == B_FALSE);
21650 
21651 			len = *usable;
21652 			if (len <= 0) {
21653 				/* Terminate the loop */
21654 				break;	/* success; too small */
21655 			}
21656 			/*
21657 			 * Sender silly-window avoidance.
21658 			 * Ignore this if we are going to send a
21659 			 * zero window probe out.
21660 			 *
21661 			 * TODO: force data into microscopic window?
21662 			 *	==> (!pushed || (unsent > usable))
21663 			 */
21664 			if (len < (tcp->tcp_max_swnd >> 1) &&
21665 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len &&
21666 			    !((tcp->tcp_valid_bits & TCP_URG_VALID) &&
21667 			    len == 1) && (! tcp->tcp_zero_win_probe)) {
21668 				/*
21669 				 * If the retransmit timer is not running
21670 				 * we start it so that we will retransmit
21671 				 * in the case when the the receiver has
21672 				 * decremented the window.
21673 				 */
21674 				if (*snxt == tcp->tcp_snxt &&
21675 				    *snxt == tcp->tcp_suna) {
21676 					/*
21677 					 * We are not supposed to send
21678 					 * anything.  So let's wait a little
21679 					 * bit longer before breaking SWS
21680 					 * avoidance.
21681 					 *
21682 					 * What should the value be?
21683 					 * Suggestion: MAX(init rexmit time,
21684 					 * tcp->tcp_rto)
21685 					 */
21686 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
21687 				}
21688 				break;	/* success; too small */
21689 			}
21690 		}
21691 
21692 		tcph = tcp->tcp_tcph;
21693 
21694 		/*
21695 		 * The reason to adjust len here is that we need to set flags
21696 		 * and calculate checksum.
21697 		 */
21698 		if (do_lso_send)
21699 			len = lso_usable;
21700 
21701 		*usable -= len; /* Approximate - can be adjusted later */
21702 		if (*usable > 0)
21703 			tcph->th_flags[0] = TH_ACK;
21704 		else
21705 			tcph->th_flags[0] = (TH_ACK | TH_PUSH);
21706 
21707 		/*
21708 		 * Prime pump for IP's checksumming on our behalf
21709 		 * Include the adjustment for a source route if any.
21710 		 */
21711 		sum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
21712 		sum = (sum >> 16) + (sum & 0xFFFF);
21713 		U16_TO_ABE16(sum, tcph->th_sum);
21714 
21715 		U32_TO_ABE32(*snxt, tcph->th_seq);
21716 
21717 		/*
21718 		 * Branch off to tcp_xmit_mp() if any of the VALID bits is
21719 		 * set.  For the case when TCP_FSS_VALID is the only valid
21720 		 * bit (normal active close), branch off only when we think
21721 		 * that the FIN flag needs to be set.  Note for this case,
21722 		 * that (snxt + len) may not reflect the actual seg_len,
21723 		 * as len may be further reduced in tcp_xmit_mp().  If len
21724 		 * gets modified, we will end up here again.
21725 		 */
21726 		if (tcp->tcp_valid_bits != 0 &&
21727 		    (tcp->tcp_valid_bits != TCP_FSS_VALID ||
21728 		    ((*snxt + len) == tcp->tcp_fss))) {
21729 			uchar_t		*prev_rptr;
21730 			uint32_t	prev_snxt = tcp->tcp_snxt;
21731 
21732 			if (*tail_unsent == 0) {
21733 				ASSERT((*xmit_tail)->b_cont != NULL);
21734 				*xmit_tail = (*xmit_tail)->b_cont;
21735 				prev_rptr = (*xmit_tail)->b_rptr;
21736 				*tail_unsent = (int)((*xmit_tail)->b_wptr -
21737 				    (*xmit_tail)->b_rptr);
21738 			} else {
21739 				prev_rptr = (*xmit_tail)->b_rptr;
21740 				(*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr -
21741 				    *tail_unsent;
21742 			}
21743 			mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL,
21744 			    *snxt, B_FALSE, (uint32_t *)&len, B_FALSE);
21745 			/* Restore tcp_snxt so we get amount sent right. */
21746 			tcp->tcp_snxt = prev_snxt;
21747 			if (prev_rptr == (*xmit_tail)->b_rptr) {
21748 				/*
21749 				 * If the previous timestamp is still in use,
21750 				 * don't stomp on it.
21751 				 */
21752 				if ((*xmit_tail)->b_next == NULL) {
21753 					(*xmit_tail)->b_prev = local_time;
21754 					(*xmit_tail)->b_next =
21755 					    (mblk_t *)(uintptr_t)(*snxt);
21756 				}
21757 			} else
21758 				(*xmit_tail)->b_rptr = prev_rptr;
21759 
21760 			if (mp == NULL) {
21761 				if (ire != NULL)
21762 					IRE_REFRELE(ire);
21763 				return (-1);
21764 			}
21765 			mp1 = mp->b_cont;
21766 
21767 			if (len <= mss) /* LSO is unusable (!do_lso_send) */
21768 				tcp->tcp_last_sent_len = (ushort_t)len;
21769 			while (mp1->b_cont) {
21770 				*xmit_tail = (*xmit_tail)->b_cont;
21771 				(*xmit_tail)->b_prev = local_time;
21772 				(*xmit_tail)->b_next =
21773 				    (mblk_t *)(uintptr_t)(*snxt);
21774 				mp1 = mp1->b_cont;
21775 			}
21776 			*snxt += len;
21777 			*tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr;
21778 			BUMP_LOCAL(tcp->tcp_obsegs);
21779 			BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
21780 			UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
21781 			tcp_send_data(tcp, q, mp);
21782 			continue;
21783 		}
21784 
21785 		*snxt += len;	/* Adjust later if we don't send all of len */
21786 		BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
21787 		UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
21788 
21789 		if (*tail_unsent) {
21790 			/* Are the bytes above us in flight? */
21791 			rptr = (*xmit_tail)->b_wptr - *tail_unsent;
21792 			if (rptr != (*xmit_tail)->b_rptr) {
21793 				*tail_unsent -= len;
21794 				if (len <= mss) /* LSO is unusable */
21795 					tcp->tcp_last_sent_len = (ushort_t)len;
21796 				len += tcp_hdr_len;
21797 				if (tcp->tcp_ipversion == IPV4_VERSION)
21798 					tcp->tcp_ipha->ipha_length = htons(len);
21799 				else
21800 					tcp->tcp_ip6h->ip6_plen =
21801 					    htons(len -
21802 					    ((char *)&tcp->tcp_ip6h[1] -
21803 					    tcp->tcp_iphc));
21804 				mp = dupb(*xmit_tail);
21805 				if (mp == NULL) {
21806 					if (ire != NULL)
21807 						IRE_REFRELE(ire);
21808 					return (-1);	/* out_of_mem */
21809 				}
21810 				mp->b_rptr = rptr;
21811 				/*
21812 				 * If the old timestamp is no longer in use,
21813 				 * sample a new timestamp now.
21814 				 */
21815 				if ((*xmit_tail)->b_next == NULL) {
21816 					(*xmit_tail)->b_prev = local_time;
21817 					(*xmit_tail)->b_next =
21818 					    (mblk_t *)(uintptr_t)(*snxt-len);
21819 				}
21820 				goto must_alloc;
21821 			}
21822 		} else {
21823 			*xmit_tail = (*xmit_tail)->b_cont;
21824 			ASSERT((uintptr_t)((*xmit_tail)->b_wptr -
21825 			    (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX);
21826 			*tail_unsent = (int)((*xmit_tail)->b_wptr -
21827 			    (*xmit_tail)->b_rptr);
21828 		}
21829 
21830 		(*xmit_tail)->b_prev = local_time;
21831 		(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len);
21832 
21833 		*tail_unsent -= len;
21834 		if (len <= mss) /* LSO is unusable (!do_lso_send) */
21835 			tcp->tcp_last_sent_len = (ushort_t)len;
21836 
21837 		len += tcp_hdr_len;
21838 		if (tcp->tcp_ipversion == IPV4_VERSION)
21839 			tcp->tcp_ipha->ipha_length = htons(len);
21840 		else
21841 			tcp->tcp_ip6h->ip6_plen = htons(len -
21842 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
21843 
21844 		mp = dupb(*xmit_tail);
21845 		if (mp == NULL) {
21846 			if (ire != NULL)
21847 				IRE_REFRELE(ire);
21848 			return (-1);	/* out_of_mem */
21849 		}
21850 
21851 		len = tcp_hdr_len;
21852 		/*
21853 		 * There are four reasons to allocate a new hdr mblk:
21854 		 *  1) The bytes above us are in use by another packet
21855 		 *  2) We don't have good alignment
21856 		 *  3) The mblk is being shared
21857 		 *  4) We don't have enough room for a header
21858 		 */
21859 		rptr = mp->b_rptr - len;
21860 		if (!OK_32PTR(rptr) ||
21861 		    ((db = mp->b_datap), db->db_ref != 2) ||
21862 		    rptr < db->db_base + ire_fp_mp_len) {
21863 			/* NOTE: we assume allocb returns an OK_32PTR */
21864 
21865 		must_alloc:;
21866 			mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
21867 			    tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED);
21868 			if (mp1 == NULL) {
21869 				freemsg(mp);
21870 				if (ire != NULL)
21871 					IRE_REFRELE(ire);
21872 				return (-1);	/* out_of_mem */
21873 			}
21874 			mp1->b_cont = mp;
21875 			mp = mp1;
21876 			/* Leave room for Link Level header */
21877 			len = tcp_hdr_len;
21878 			rptr =
21879 			    &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len];
21880 			mp->b_wptr = &rptr[len];
21881 		}
21882 
21883 		/*
21884 		 * Fill in the header using the template header, and add
21885 		 * options such as time-stamp, ECN and/or SACK, as needed.
21886 		 */
21887 		tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk);
21888 
21889 		mp->b_rptr = rptr;
21890 
21891 		if (*tail_unsent) {
21892 			int spill = *tail_unsent;
21893 
21894 			mp1 = mp->b_cont;
21895 			if (mp1 == NULL)
21896 				mp1 = mp;
21897 
21898 			/*
21899 			 * If we're a little short, tack on more mblks until
21900 			 * there is no more spillover.
21901 			 */
21902 			while (spill < 0) {
21903 				mblk_t *nmp;
21904 				int nmpsz;
21905 
21906 				nmp = (*xmit_tail)->b_cont;
21907 				nmpsz = MBLKL(nmp);
21908 
21909 				/*
21910 				 * Excess data in mblk; can we split it?
21911 				 * If MDT is enabled for the connection,
21912 				 * keep on splitting as this is a transient
21913 				 * send path.
21914 				 */
21915 				if (!do_lso_send && !tcp->tcp_mdt &&
21916 				    (spill + nmpsz > 0)) {
21917 					/*
21918 					 * Don't split if stream head was
21919 					 * told to break up larger writes
21920 					 * into smaller ones.
21921 					 */
21922 					if (tcp->tcp_maxpsz > 0)
21923 						break;
21924 
21925 					/*
21926 					 * Next mblk is less than SMSS/2
21927 					 * rounded up to nearest 64-byte;
21928 					 * let it get sent as part of the
21929 					 * next segment.
21930 					 */
21931 					if (tcp->tcp_localnet &&
21932 					    !tcp->tcp_cork &&
21933 					    (nmpsz < roundup((mss >> 1), 64)))
21934 						break;
21935 				}
21936 
21937 				*xmit_tail = nmp;
21938 				ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX);
21939 				/* Stash for rtt use later */
21940 				(*xmit_tail)->b_prev = local_time;
21941 				(*xmit_tail)->b_next =
21942 				    (mblk_t *)(uintptr_t)(*snxt - len);
21943 				mp1->b_cont = dupb(*xmit_tail);
21944 				mp1 = mp1->b_cont;
21945 
21946 				spill += nmpsz;
21947 				if (mp1 == NULL) {
21948 					*tail_unsent = spill;
21949 					freemsg(mp);
21950 					if (ire != NULL)
21951 						IRE_REFRELE(ire);
21952 					return (-1);	/* out_of_mem */
21953 				}
21954 			}
21955 
21956 			/* Trim back any surplus on the last mblk */
21957 			if (spill >= 0) {
21958 				mp1->b_wptr -= spill;
21959 				*tail_unsent = spill;
21960 			} else {
21961 				/*
21962 				 * We did not send everything we could in
21963 				 * order to remain within the b_cont limit.
21964 				 */
21965 				*usable -= spill;
21966 				*snxt += spill;
21967 				tcp->tcp_last_sent_len += spill;
21968 				UPDATE_MIB(&tcps->tcps_mib,
21969 				    tcpOutDataBytes, spill);
21970 				/*
21971 				 * Adjust the checksum
21972 				 */
21973 				tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
21974 				sum += spill;
21975 				sum = (sum >> 16) + (sum & 0xFFFF);
21976 				U16_TO_ABE16(sum, tcph->th_sum);
21977 				if (tcp->tcp_ipversion == IPV4_VERSION) {
21978 					sum = ntohs(
21979 					    ((ipha_t *)rptr)->ipha_length) +
21980 					    spill;
21981 					((ipha_t *)rptr)->ipha_length =
21982 					    htons(sum);
21983 				} else {
21984 					sum = ntohs(
21985 					    ((ip6_t *)rptr)->ip6_plen) +
21986 					    spill;
21987 					((ip6_t *)rptr)->ip6_plen =
21988 					    htons(sum);
21989 				}
21990 				*tail_unsent = 0;
21991 			}
21992 		}
21993 		if (tcp->tcp_ip_forward_progress) {
21994 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
21995 			*(uint32_t *)mp->b_rptr  |= IP_FORWARD_PROG;
21996 			tcp->tcp_ip_forward_progress = B_FALSE;
21997 		}
21998 
21999 		if (do_lso_send) {
22000 			tcp_lsosend_data(tcp, mp, ire, ill, mss,
22001 			    num_lso_seg);
22002 			tcp->tcp_obsegs += num_lso_seg;
22003 
22004 			TCP_STAT(tcps, tcp_lso_times);
22005 			TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg);
22006 		} else {
22007 			tcp_send_data(tcp, q, mp);
22008 			BUMP_LOCAL(tcp->tcp_obsegs);
22009 		}
22010 	}
22011 
22012 	if (ire != NULL)
22013 		IRE_REFRELE(ire);
22014 	return (0);
22015 }
22016 
22017 /* Unlink and return any mblk that looks like it contains a MDT info */
22018 static mblk_t *
22019 tcp_mdt_info_mp(mblk_t *mp)
22020 {
22021 	mblk_t	*prev_mp;
22022 
22023 	for (;;) {
22024 		prev_mp = mp;
22025 		/* no more to process? */
22026 		if ((mp = mp->b_cont) == NULL)
22027 			break;
22028 
22029 		switch (DB_TYPE(mp)) {
22030 		case M_CTL:
22031 			if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE)
22032 				continue;
22033 			ASSERT(prev_mp != NULL);
22034 			prev_mp->b_cont = mp->b_cont;
22035 			mp->b_cont = NULL;
22036 			return (mp);
22037 		default:
22038 			break;
22039 		}
22040 	}
22041 	return (mp);
22042 }
22043 
22044 /* MDT info update routine, called when IP notifies us about MDT */
22045 static void
22046 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first)
22047 {
22048 	boolean_t prev_state;
22049 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22050 
22051 	/*
22052 	 * IP is telling us to abort MDT on this connection?  We know
22053 	 * this because the capability is only turned off when IP
22054 	 * encounters some pathological cases, e.g. link-layer change
22055 	 * where the new driver doesn't support MDT, or in situation
22056 	 * where MDT usage on the link-layer has been switched off.
22057 	 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE
22058 	 * if the link-layer doesn't support MDT, and if it does, it
22059 	 * will indicate that the feature is to be turned on.
22060 	 */
22061 	prev_state = tcp->tcp_mdt;
22062 	tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0);
22063 	if (!tcp->tcp_mdt && !first) {
22064 		TCP_STAT(tcps, tcp_mdt_conn_halted3);
22065 		ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n",
22066 		    (void *)tcp->tcp_connp));
22067 	}
22068 
22069 	/*
22070 	 * We currently only support MDT on simple TCP/{IPv4,IPv6},
22071 	 * so disable MDT otherwise.  The checks are done here
22072 	 * and in tcp_wput_data().
22073 	 */
22074 	if (tcp->tcp_mdt &&
22075 	    (tcp->tcp_ipversion == IPV4_VERSION &&
22076 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
22077 	    (tcp->tcp_ipversion == IPV6_VERSION &&
22078 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN))
22079 		tcp->tcp_mdt = B_FALSE;
22080 
22081 	if (tcp->tcp_mdt) {
22082 		if (mdt_capab->ill_mdt_version != MDT_VERSION_2) {
22083 			cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT "
22084 			    "version (%d), expected version is %d",
22085 			    mdt_capab->ill_mdt_version, MDT_VERSION_2);
22086 			tcp->tcp_mdt = B_FALSE;
22087 			return;
22088 		}
22089 
22090 		/*
22091 		 * We need the driver to be able to handle at least three
22092 		 * spans per packet in order for tcp MDT to be utilized.
22093 		 * The first is for the header portion, while the rest are
22094 		 * needed to handle a packet that straddles across two
22095 		 * virtually non-contiguous buffers; a typical tcp packet
22096 		 * therefore consists of only two spans.  Note that we take
22097 		 * a zero as "don't care".
22098 		 */
22099 		if (mdt_capab->ill_mdt_span_limit > 0 &&
22100 		    mdt_capab->ill_mdt_span_limit < 3) {
22101 			tcp->tcp_mdt = B_FALSE;
22102 			return;
22103 		}
22104 
22105 		/* a zero means driver wants default value */
22106 		tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld,
22107 		    tcps->tcps_mdt_max_pbufs);
22108 		if (tcp->tcp_mdt_max_pld == 0)
22109 			tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs;
22110 
22111 		/* ensure 32-bit alignment */
22112 		tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min,
22113 		    mdt_capab->ill_mdt_hdr_head), 4);
22114 		tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min,
22115 		    mdt_capab->ill_mdt_hdr_tail), 4);
22116 
22117 		if (!first && !prev_state) {
22118 			TCP_STAT(tcps, tcp_mdt_conn_resumed2);
22119 			ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n",
22120 			    (void *)tcp->tcp_connp));
22121 		}
22122 	}
22123 }
22124 
22125 /* Unlink and return any mblk that looks like it contains a LSO info */
22126 static mblk_t *
22127 tcp_lso_info_mp(mblk_t *mp)
22128 {
22129 	mblk_t	*prev_mp;
22130 
22131 	for (;;) {
22132 		prev_mp = mp;
22133 		/* no more to process? */
22134 		if ((mp = mp->b_cont) == NULL)
22135 			break;
22136 
22137 		switch (DB_TYPE(mp)) {
22138 		case M_CTL:
22139 			if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE)
22140 				continue;
22141 			ASSERT(prev_mp != NULL);
22142 			prev_mp->b_cont = mp->b_cont;
22143 			mp->b_cont = NULL;
22144 			return (mp);
22145 		default:
22146 			break;
22147 		}
22148 	}
22149 
22150 	return (mp);
22151 }
22152 
22153 /* LSO info update routine, called when IP notifies us about LSO */
22154 static void
22155 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab)
22156 {
22157 	tcp_stack_t *tcps = tcp->tcp_tcps;
22158 
22159 	/*
22160 	 * IP is telling us to abort LSO on this connection?  We know
22161 	 * this because the capability is only turned off when IP
22162 	 * encounters some pathological cases, e.g. link-layer change
22163 	 * where the new NIC/driver doesn't support LSO, or in situation
22164 	 * where LSO usage on the link-layer has been switched off.
22165 	 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE
22166 	 * if the link-layer doesn't support LSO, and if it does, it
22167 	 * will indicate that the feature is to be turned on.
22168 	 */
22169 	tcp->tcp_lso = (lso_capab->ill_lso_on != 0);
22170 	TCP_STAT(tcps, tcp_lso_enabled);
22171 
22172 	/*
22173 	 * We currently only support LSO on simple TCP/IPv4,
22174 	 * so disable LSO otherwise.  The checks are done here
22175 	 * and in tcp_wput_data().
22176 	 */
22177 	if (tcp->tcp_lso &&
22178 	    (tcp->tcp_ipversion == IPV4_VERSION &&
22179 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
22180 	    (tcp->tcp_ipversion == IPV6_VERSION)) {
22181 		tcp->tcp_lso = B_FALSE;
22182 		TCP_STAT(tcps, tcp_lso_disabled);
22183 	} else {
22184 		tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH,
22185 		    lso_capab->ill_lso_max);
22186 	}
22187 }
22188 
22189 static void
22190 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt)
22191 {
22192 	conn_t *connp = tcp->tcp_connp;
22193 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22194 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
22195 
22196 	ASSERT(ire != NULL);
22197 
22198 	/*
22199 	 * We may be in the fastpath here, and although we essentially do
22200 	 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return,
22201 	 * we try to keep things as brief as possible.  After all, these
22202 	 * are only best-effort checks, and we do more thorough ones prior
22203 	 * to calling tcp_send()/tcp_multisend().
22204 	 */
22205 	if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) &&
22206 	    check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) &&
22207 	    ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) &&
22208 	    !(ire->ire_flags & RTF_MULTIRT) &&
22209 	    !IPP_ENABLED(IPP_LOCAL_OUT, ipst) &&
22210 	    CONN_IS_LSO_MD_FASTPATH(connp)) {
22211 		if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) {
22212 			/* Cache the result */
22213 			connp->conn_lso_ok = B_TRUE;
22214 
22215 			ASSERT(ill->ill_lso_capab != NULL);
22216 			if (!ill->ill_lso_capab->ill_lso_on) {
22217 				ill->ill_lso_capab->ill_lso_on = 1;
22218 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
22219 				    "LSO for interface %s\n", (void *)connp,
22220 				    ill->ill_name));
22221 			}
22222 			tcp_lso_update(tcp, ill->ill_lso_capab);
22223 		} else if (ipst->ips_ip_multidata_outbound &&
22224 		    ILL_MDT_CAPABLE(ill)) {
22225 			/* Cache the result */
22226 			connp->conn_mdt_ok = B_TRUE;
22227 
22228 			ASSERT(ill->ill_mdt_capab != NULL);
22229 			if (!ill->ill_mdt_capab->ill_mdt_on) {
22230 				ill->ill_mdt_capab->ill_mdt_on = 1;
22231 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
22232 				    "MDT for interface %s\n", (void *)connp,
22233 				    ill->ill_name));
22234 			}
22235 			tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE);
22236 		}
22237 	}
22238 
22239 	/*
22240 	 * The goal is to reduce the number of generated tcp segments by
22241 	 * setting the maxpsz multiplier to 0; this will have an affect on
22242 	 * tcp_maxpsz_set().  With this behavior, tcp will pack more data
22243 	 * into each packet, up to SMSS bytes.  Doing this reduces the number
22244 	 * of outbound segments and incoming ACKs, thus allowing for better
22245 	 * network and system performance.  In contrast the legacy behavior
22246 	 * may result in sending less than SMSS size, because the last mblk
22247 	 * for some packets may have more data than needed to make up SMSS,
22248 	 * and the legacy code refused to "split" it.
22249 	 *
22250 	 * We apply the new behavior on following situations:
22251 	 *
22252 	 *   1) Loopback connections,
22253 	 *   2) Connections in which the remote peer is not on local subnet,
22254 	 *   3) Local subnet connections over the bge interface (see below).
22255 	 *
22256 	 * Ideally, we would like this behavior to apply for interfaces other
22257 	 * than bge.  However, doing so would negatively impact drivers which
22258 	 * perform dynamic mapping and unmapping of DMA resources, which are
22259 	 * increased by setting the maxpsz multiplier to 0 (more mblks per
22260 	 * packet will be generated by tcp).  The bge driver does not suffer
22261 	 * from this, as it copies the mblks into pre-mapped buffers, and
22262 	 * therefore does not require more I/O resources than before.
22263 	 *
22264 	 * Otherwise, this behavior is present on all network interfaces when
22265 	 * the destination endpoint is non-local, since reducing the number
22266 	 * of packets in general is good for the network.
22267 	 *
22268 	 * TODO We need to remove this hard-coded conditional for bge once
22269 	 *	a better "self-tuning" mechanism, or a way to comprehend
22270 	 *	the driver transmit strategy is devised.  Until the solution
22271 	 *	is found and well understood, we live with this hack.
22272 	 */
22273 	if (!tcp_static_maxpsz &&
22274 	    (tcp->tcp_loopback || !tcp->tcp_localnet ||
22275 	    (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) {
22276 		/* override the default value */
22277 		tcp->tcp_maxpsz = 0;
22278 
22279 		ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on "
22280 		    "interface %s\n", (void *)connp, tcp->tcp_maxpsz,
22281 		    ill != NULL ? ill->ill_name : ipif_loopback_name));
22282 	}
22283 
22284 	/* set the stream head parameters accordingly */
22285 	(void) tcp_maxpsz_set(tcp, B_TRUE);
22286 }
22287 
22288 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */
22289 static void
22290 tcp_wput_flush(tcp_t *tcp, mblk_t *mp)
22291 {
22292 	uchar_t	fval = *mp->b_rptr;
22293 	mblk_t	*tail;
22294 	queue_t	*q = tcp->tcp_wq;
22295 
22296 	/* TODO: How should flush interact with urgent data? */
22297 	if ((fval & FLUSHW) && tcp->tcp_xmit_head &&
22298 	    !(tcp->tcp_valid_bits & TCP_URG_VALID)) {
22299 		/*
22300 		 * Flush only data that has not yet been put on the wire.  If
22301 		 * we flush data that we have already transmitted, life, as we
22302 		 * know it, may come to an end.
22303 		 */
22304 		tail = tcp->tcp_xmit_tail;
22305 		tail->b_wptr -= tcp->tcp_xmit_tail_unsent;
22306 		tcp->tcp_xmit_tail_unsent = 0;
22307 		tcp->tcp_unsent = 0;
22308 		if (tail->b_wptr != tail->b_rptr)
22309 			tail = tail->b_cont;
22310 		if (tail) {
22311 			mblk_t **excess = &tcp->tcp_xmit_head;
22312 			for (;;) {
22313 				mblk_t *mp1 = *excess;
22314 				if (mp1 == tail)
22315 					break;
22316 				tcp->tcp_xmit_tail = mp1;
22317 				tcp->tcp_xmit_last = mp1;
22318 				excess = &mp1->b_cont;
22319 			}
22320 			*excess = NULL;
22321 			tcp_close_mpp(&tail);
22322 			if (tcp->tcp_snd_zcopy_aware)
22323 				tcp_zcopy_notify(tcp);
22324 		}
22325 		/*
22326 		 * We have no unsent data, so unsent must be less than
22327 		 * tcp_xmit_lowater, so re-enable flow.
22328 		 */
22329 		mutex_enter(&tcp->tcp_non_sq_lock);
22330 		if (tcp->tcp_flow_stopped) {
22331 			tcp_clrqfull(tcp);
22332 		}
22333 		mutex_exit(&tcp->tcp_non_sq_lock);
22334 	}
22335 	/*
22336 	 * TODO: you can't just flush these, you have to increase rwnd for one
22337 	 * thing.  For another, how should urgent data interact?
22338 	 */
22339 	if (fval & FLUSHR) {
22340 		*mp->b_rptr = fval & ~FLUSHW;
22341 		/* XXX */
22342 		qreply(q, mp);
22343 		return;
22344 	}
22345 	freemsg(mp);
22346 }
22347 
22348 /*
22349  * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA
22350  * messages.
22351  */
22352 static void
22353 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp)
22354 {
22355 	mblk_t	*mp1;
22356 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
22357 	STRUCT_HANDLE(strbuf, sb);
22358 	queue_t *q = tcp->tcp_wq;
22359 	int	error;
22360 	uint_t	addrlen;
22361 
22362 	/* Make sure it is one of ours. */
22363 	switch (iocp->ioc_cmd) {
22364 	case TI_GETMYNAME:
22365 	case TI_GETPEERNAME:
22366 		break;
22367 	default:
22368 		CALL_IP_WPUT(tcp->tcp_connp, q, mp);
22369 		return;
22370 	}
22371 	switch (mi_copy_state(q, mp, &mp1)) {
22372 	case -1:
22373 		return;
22374 	case MI_COPY_CASE(MI_COPY_IN, 1):
22375 		break;
22376 	case MI_COPY_CASE(MI_COPY_OUT, 1):
22377 		/* Copy out the strbuf. */
22378 		mi_copyout(q, mp);
22379 		return;
22380 	case MI_COPY_CASE(MI_COPY_OUT, 2):
22381 		/* All done. */
22382 		mi_copy_done(q, mp, 0);
22383 		return;
22384 	default:
22385 		mi_copy_done(q, mp, EPROTO);
22386 		return;
22387 	}
22388 	/* Check alignment of the strbuf */
22389 	if (!OK_32PTR(mp1->b_rptr)) {
22390 		mi_copy_done(q, mp, EINVAL);
22391 		return;
22392 	}
22393 
22394 	STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr);
22395 	addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t);
22396 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
22397 		mi_copy_done(q, mp, EINVAL);
22398 		return;
22399 	}
22400 
22401 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
22402 	if (mp1 == NULL)
22403 		return;
22404 
22405 	switch (iocp->ioc_cmd) {
22406 	case TI_GETMYNAME:
22407 		error = tcp_getmyname(tcp, (void *)mp1->b_rptr, &addrlen);
22408 		break;
22409 	case TI_GETPEERNAME:
22410 		error = tcp_getpeername(tcp, (void *)mp1->b_rptr, &addrlen);
22411 		break;
22412 	}
22413 
22414 	if (error != 0) {
22415 		mi_copy_done(q, mp, error);
22416 	} else {
22417 		mp1->b_wptr += addrlen;
22418 		STRUCT_FSET(sb, len, addrlen);
22419 
22420 		/* Copy out the address */
22421 		mi_copyout(q, mp);
22422 	}
22423 }
22424 
22425 /*
22426  * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL
22427  * messages.
22428  */
22429 /* ARGSUSED */
22430 static void
22431 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2)
22432 {
22433 	conn_t 	*connp = (conn_t *)arg;
22434 	tcp_t	*tcp = connp->conn_tcp;
22435 	queue_t	*q = tcp->tcp_wq;
22436 	struct iocblk	*iocp;
22437 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22438 
22439 	ASSERT(DB_TYPE(mp) == M_IOCTL);
22440 	/*
22441 	 * Try and ASSERT the minimum possible references on the
22442 	 * conn early enough. Since we are executing on write side,
22443 	 * the connection is obviously not detached and that means
22444 	 * there is a ref each for TCP and IP. Since we are behind
22445 	 * the squeue, the minimum references needed are 3. If the
22446 	 * conn is in classifier hash list, there should be an
22447 	 * extra ref for that (we check both the possibilities).
22448 	 */
22449 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
22450 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
22451 
22452 	iocp = (struct iocblk *)mp->b_rptr;
22453 	switch (iocp->ioc_cmd) {
22454 	case TCP_IOC_DEFAULT_Q:
22455 		/* Wants to be the default wq. */
22456 		if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
22457 			iocp->ioc_error = EPERM;
22458 			iocp->ioc_count = 0;
22459 			mp->b_datap->db_type = M_IOCACK;
22460 			qreply(q, mp);
22461 			return;
22462 		}
22463 		tcp_def_q_set(tcp, mp);
22464 		return;
22465 	case _SIOCSOCKFALLBACK:
22466 		/*
22467 		 * Either sockmod is about to be popped and the socket
22468 		 * would now be treated as a plain stream, or a module
22469 		 * is about to be pushed so we could no longer use read-
22470 		 * side synchronous streams for fused loopback tcp.
22471 		 * Drain any queued data and disable direct sockfs
22472 		 * interface from now on.
22473 		 */
22474 		if (!tcp->tcp_issocket) {
22475 			DB_TYPE(mp) = M_IOCNAK;
22476 			iocp->ioc_error = EINVAL;
22477 		} else {
22478 #ifdef	_ILP32
22479 			tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
22480 #else
22481 			tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev;
22482 #endif
22483 			/*
22484 			 * Insert this socket into the acceptor hash.
22485 			 * We might need it for T_CONN_RES message
22486 			 */
22487 			tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
22488 
22489 			if (tcp->tcp_fused) {
22490 				/*
22491 				 * This is a fused loopback tcp; disable
22492 				 * read-side synchronous streams interface
22493 				 * and drain any queued data.  It is okay
22494 				 * to do this for non-synchronous streams
22495 				 * fused tcp as well.
22496 				 */
22497 				tcp_fuse_disable_pair(tcp, B_FALSE);
22498 			}
22499 			tcp->tcp_issocket = B_FALSE;
22500 			tcp->tcp_sodirect = NULL;
22501 			TCP_STAT(tcps, tcp_sock_fallback);
22502 
22503 			DB_TYPE(mp) = M_IOCACK;
22504 			iocp->ioc_error = 0;
22505 		}
22506 		iocp->ioc_count = 0;
22507 		iocp->ioc_rval = 0;
22508 		qreply(q, mp);
22509 		return;
22510 	}
22511 	CALL_IP_WPUT(connp, q, mp);
22512 }
22513 
22514 /*
22515  * This routine is called by tcp_wput() to handle all TPI requests.
22516  */
22517 /* ARGSUSED */
22518 static void
22519 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2)
22520 {
22521 	conn_t 	*connp = (conn_t *)arg;
22522 	tcp_t	*tcp = connp->conn_tcp;
22523 	union T_primitives *tprim = (union T_primitives *)mp->b_rptr;
22524 	uchar_t *rptr;
22525 	t_scalar_t type;
22526 	int len;
22527 	cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred);
22528 
22529 	/*
22530 	 * Try and ASSERT the minimum possible references on the
22531 	 * conn early enough. Since we are executing on write side,
22532 	 * the connection is obviously not detached and that means
22533 	 * there is a ref each for TCP and IP. Since we are behind
22534 	 * the squeue, the minimum references needed are 3. If the
22535 	 * conn is in classifier hash list, there should be an
22536 	 * extra ref for that (we check both the possibilities).
22537 	 */
22538 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
22539 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
22540 
22541 	rptr = mp->b_rptr;
22542 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
22543 	if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
22544 		type = ((union T_primitives *)rptr)->type;
22545 		if (type == T_EXDATA_REQ) {
22546 			uint32_t msize = msgdsize(mp->b_cont);
22547 
22548 			len = msize - 1;
22549 			if (len < 0) {
22550 				freemsg(mp);
22551 				return;
22552 			}
22553 			/*
22554 			 * Try to force urgent data out on the wire.
22555 			 * Even if we have unsent data this will
22556 			 * at least send the urgent flag.
22557 			 * XXX does not handle more flag correctly.
22558 			 */
22559 			len += tcp->tcp_unsent;
22560 			len += tcp->tcp_snxt;
22561 			tcp->tcp_urg = len;
22562 			tcp->tcp_valid_bits |= TCP_URG_VALID;
22563 
22564 			/* Bypass tcp protocol for fused tcp loopback */
22565 			if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
22566 				return;
22567 		} else if (type != T_DATA_REQ) {
22568 			goto non_urgent_data;
22569 		}
22570 		/* TODO: options, flags, ... from user */
22571 		/* Set length to zero for reclamation below */
22572 		tcp_wput_data(tcp, mp->b_cont, B_TRUE);
22573 		freeb(mp);
22574 		return;
22575 	} else {
22576 		if (tcp->tcp_debug) {
22577 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
22578 			    "tcp_wput_proto, dropping one...");
22579 		}
22580 		freemsg(mp);
22581 		return;
22582 	}
22583 
22584 non_urgent_data:
22585 
22586 	switch ((int)tprim->type) {
22587 	case T_SSL_PROXY_BIND_REQ:	/* an SSL proxy endpoint bind request */
22588 		/*
22589 		 * save the kssl_ent_t from the next block, and convert this
22590 		 * back to a normal bind_req.
22591 		 */
22592 		if (mp->b_cont != NULL) {
22593 			ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t));
22594 
22595 			if (tcp->tcp_kssl_ent != NULL) {
22596 				kssl_release_ent(tcp->tcp_kssl_ent, NULL,
22597 				    KSSL_NO_PROXY);
22598 				tcp->tcp_kssl_ent = NULL;
22599 			}
22600 			bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent,
22601 			    sizeof (kssl_ent_t));
22602 			kssl_hold_ent(tcp->tcp_kssl_ent);
22603 			freemsg(mp->b_cont);
22604 			mp->b_cont = NULL;
22605 		}
22606 		tprim->type = T_BIND_REQ;
22607 
22608 	/* FALLTHROUGH */
22609 	case O_T_BIND_REQ:	/* bind request */
22610 	case T_BIND_REQ:	/* new semantics bind request */
22611 		tcp_bind(tcp, mp);
22612 		break;
22613 	case T_UNBIND_REQ:	/* unbind request */
22614 		tcp_unbind(tcp, mp);
22615 		break;
22616 	case O_T_CONN_RES:	/* old connection response XXX */
22617 	case T_CONN_RES:	/* connection response */
22618 		tcp_accept(tcp, mp);
22619 		break;
22620 	case T_CONN_REQ:	/* connection request */
22621 		tcp_connect(tcp, mp);
22622 		break;
22623 	case T_DISCON_REQ:	/* disconnect request */
22624 		tcp_disconnect(tcp, mp);
22625 		break;
22626 	case T_CAPABILITY_REQ:
22627 		tcp_capability_req(tcp, mp);	/* capability request */
22628 		break;
22629 	case T_INFO_REQ:	/* information request */
22630 		tcp_info_req(tcp, mp);
22631 		break;
22632 	case T_SVR4_OPTMGMT_REQ:	/* manage options req */
22633 		(void) svr4_optcom_req(tcp->tcp_wq, mp, cr,
22634 		    &tcp_opt_obj, B_TRUE);
22635 		break;
22636 	case T_OPTMGMT_REQ:
22637 		/*
22638 		 * Note:  no support for snmpcom_req() through new
22639 		 * T_OPTMGMT_REQ. See comments in ip.c
22640 		 */
22641 		/* Only IP is allowed to return meaningful value */
22642 		(void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj,
22643 		    B_TRUE);
22644 		break;
22645 
22646 	case T_UNITDATA_REQ:	/* unitdata request */
22647 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
22648 		break;
22649 	case T_ORDREL_REQ:	/* orderly release req */
22650 		freemsg(mp);
22651 
22652 		if (tcp->tcp_fused)
22653 			tcp_unfuse(tcp);
22654 
22655 		if (tcp_xmit_end(tcp) != 0) {
22656 			/*
22657 			 * We were crossing FINs and got a reset from
22658 			 * the other side. Just ignore it.
22659 			 */
22660 			if (tcp->tcp_debug) {
22661 				(void) strlog(TCP_MOD_ID, 0, 1,
22662 				    SL_ERROR|SL_TRACE,
22663 				    "tcp_wput_proto, T_ORDREL_REQ out of "
22664 				    "state %s",
22665 				    tcp_display(tcp, NULL,
22666 				    DISP_ADDR_AND_PORT));
22667 			}
22668 		}
22669 		break;
22670 	case T_ADDR_REQ:
22671 		tcp_addr_req(tcp, mp);
22672 		break;
22673 	default:
22674 		if (tcp->tcp_debug) {
22675 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
22676 			    "tcp_wput_proto, bogus TPI msg, type %d",
22677 			    tprim->type);
22678 		}
22679 		/*
22680 		 * We used to M_ERROR.  Sending TNOTSUPPORT gives the user
22681 		 * to recover.
22682 		 */
22683 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
22684 		break;
22685 	}
22686 }
22687 
22688 /*
22689  * The TCP write service routine should never be called...
22690  */
22691 /* ARGSUSED */
22692 static void
22693 tcp_wsrv(queue_t *q)
22694 {
22695 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
22696 
22697 	TCP_STAT(tcps, tcp_wsrv_called);
22698 }
22699 
22700 /* Non overlapping byte exchanger */
22701 static void
22702 tcp_xchg(uchar_t *a, uchar_t *b, int len)
22703 {
22704 	uchar_t	uch;
22705 
22706 	while (len-- > 0) {
22707 		uch = a[len];
22708 		a[len] = b[len];
22709 		b[len] = uch;
22710 	}
22711 }
22712 
22713 /*
22714  * Send out a control packet on the tcp connection specified.  This routine
22715  * is typically called where we need a simple ACK or RST generated.
22716  */
22717 static void
22718 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl)
22719 {
22720 	uchar_t		*rptr;
22721 	tcph_t		*tcph;
22722 	ipha_t		*ipha = NULL;
22723 	ip6_t		*ip6h = NULL;
22724 	uint32_t	sum;
22725 	int		tcp_hdr_len;
22726 	int		tcp_ip_hdr_len;
22727 	mblk_t		*mp;
22728 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22729 
22730 	/*
22731 	 * Save sum for use in source route later.
22732 	 */
22733 	ASSERT(tcp != NULL);
22734 	sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
22735 	tcp_hdr_len = tcp->tcp_hdr_len;
22736 	tcp_ip_hdr_len = tcp->tcp_ip_hdr_len;
22737 
22738 	/* If a text string is passed in with the request, pass it to strlog. */
22739 	if (str != NULL && tcp->tcp_debug) {
22740 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
22741 		    "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x",
22742 		    str, seq, ack, ctl);
22743 	}
22744 	mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra,
22745 	    BPRI_MED);
22746 	if (mp == NULL) {
22747 		return;
22748 	}
22749 	rptr = &mp->b_rptr[tcps->tcps_wroff_xtra];
22750 	mp->b_rptr = rptr;
22751 	mp->b_wptr = &rptr[tcp_hdr_len];
22752 	bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len);
22753 
22754 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22755 		ipha = (ipha_t *)rptr;
22756 		ipha->ipha_length = htons(tcp_hdr_len);
22757 	} else {
22758 		ip6h = (ip6_t *)rptr;
22759 		ASSERT(tcp != NULL);
22760 		ip6h->ip6_plen = htons(tcp->tcp_hdr_len -
22761 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22762 	}
22763 	tcph = (tcph_t *)&rptr[tcp_ip_hdr_len];
22764 	tcph->th_flags[0] = (uint8_t)ctl;
22765 	if (ctl & TH_RST) {
22766 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
22767 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22768 		/*
22769 		 * Don't send TSopt w/ TH_RST packets per RFC 1323.
22770 		 */
22771 		if (tcp->tcp_snd_ts_ok &&
22772 		    tcp->tcp_state > TCPS_SYN_SENT) {
22773 			mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN];
22774 			*(mp->b_wptr) = TCPOPT_EOL;
22775 			if (tcp->tcp_ipversion == IPV4_VERSION) {
22776 				ipha->ipha_length = htons(tcp_hdr_len -
22777 				    TCPOPT_REAL_TS_LEN);
22778 			} else {
22779 				ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) -
22780 				    TCPOPT_REAL_TS_LEN);
22781 			}
22782 			tcph->th_offset_and_rsrvd[0] -= (3 << 4);
22783 			sum -= TCPOPT_REAL_TS_LEN;
22784 		}
22785 	}
22786 	if (ctl & TH_ACK) {
22787 		if (tcp->tcp_snd_ts_ok) {
22788 			U32_TO_BE32(lbolt,
22789 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22790 			U32_TO_BE32(tcp->tcp_ts_recent,
22791 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22792 		}
22793 
22794 		/* Update the latest receive window size in TCP header. */
22795 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22796 		    tcph->th_win);
22797 		tcp->tcp_rack = ack;
22798 		tcp->tcp_rack_cnt = 0;
22799 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
22800 	}
22801 	BUMP_LOCAL(tcp->tcp_obsegs);
22802 	U32_TO_BE32(seq, tcph->th_seq);
22803 	U32_TO_BE32(ack, tcph->th_ack);
22804 	/*
22805 	 * Include the adjustment for a source route if any.
22806 	 */
22807 	sum = (sum >> 16) + (sum & 0xFFFF);
22808 	U16_TO_BE16(sum, tcph->th_sum);
22809 	tcp_send_data(tcp, tcp->tcp_wq, mp);
22810 }
22811 
22812 /*
22813  * If this routine returns B_TRUE, TCP can generate a RST in response
22814  * to a segment.  If it returns B_FALSE, TCP should not respond.
22815  */
22816 static boolean_t
22817 tcp_send_rst_chk(tcp_stack_t *tcps)
22818 {
22819 	clock_t	now;
22820 
22821 	/*
22822 	 * TCP needs to protect itself from generating too many RSTs.
22823 	 * This can be a DoS attack by sending us random segments
22824 	 * soliciting RSTs.
22825 	 *
22826 	 * What we do here is to have a limit of tcp_rst_sent_rate RSTs
22827 	 * in each 1 second interval.  In this way, TCP still generate
22828 	 * RSTs in normal cases but when under attack, the impact is
22829 	 * limited.
22830 	 */
22831 	if (tcps->tcps_rst_sent_rate_enabled != 0) {
22832 		now = lbolt;
22833 		/* lbolt can wrap around. */
22834 		if ((tcps->tcps_last_rst_intrvl > now) ||
22835 		    (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) >
22836 		    1*SECONDS)) {
22837 			tcps->tcps_last_rst_intrvl = now;
22838 			tcps->tcps_rst_cnt = 1;
22839 		} else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) {
22840 			return (B_FALSE);
22841 		}
22842 	}
22843 	return (B_TRUE);
22844 }
22845 
22846 /*
22847  * Send down the advice IP ioctl to tell IP to mark an IRE temporary.
22848  */
22849 static void
22850 tcp_ip_ire_mark_advice(tcp_t *tcp)
22851 {
22852 	mblk_t *mp;
22853 	ipic_t *ipic;
22854 
22855 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22856 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
22857 		    &ipic);
22858 	} else {
22859 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
22860 		    &ipic);
22861 	}
22862 	if (mp == NULL)
22863 		return;
22864 	ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
22865 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22866 }
22867 
22868 /*
22869  * Return an IP advice ioctl mblk and set ipic to be the pointer
22870  * to the advice structure.
22871  */
22872 static mblk_t *
22873 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic)
22874 {
22875 	struct iocblk *ioc;
22876 	mblk_t *mp, *mp1;
22877 
22878 	mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI);
22879 	if (mp == NULL)
22880 		return (NULL);
22881 	bzero(mp->b_rptr, sizeof (ipic_t) + addr_len);
22882 	*ipic = (ipic_t *)mp->b_rptr;
22883 	(*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY;
22884 	(*ipic)->ipic_addr_offset = sizeof (ipic_t);
22885 
22886 	bcopy(addr, *ipic + 1, addr_len);
22887 
22888 	(*ipic)->ipic_addr_length = addr_len;
22889 	mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len];
22890 
22891 	mp1 = mkiocb(IP_IOCTL);
22892 	if (mp1 == NULL) {
22893 		freemsg(mp);
22894 		return (NULL);
22895 	}
22896 	mp1->b_cont = mp;
22897 	ioc = (struct iocblk *)mp1->b_rptr;
22898 	ioc->ioc_count = sizeof (ipic_t) + addr_len;
22899 
22900 	return (mp1);
22901 }
22902 
22903 /*
22904  * Generate a reset based on an inbound packet, connp is set by caller
22905  * when RST is in response to an unexpected inbound packet for which
22906  * there is active tcp state in the system.
22907  *
22908  * IPSEC NOTE : Try to send the reply with the same protection as it came
22909  * in.  We still have the ipsec_mp that the packet was attached to. Thus
22910  * the packet will go out at the same level of protection as it came in by
22911  * converting the IPSEC_IN to IPSEC_OUT.
22912  */
22913 static void
22914 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq,
22915     uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid,
22916     tcp_stack_t *tcps, conn_t *connp)
22917 {
22918 	ipha_t		*ipha = NULL;
22919 	ip6_t		*ip6h = NULL;
22920 	ushort_t	len;
22921 	tcph_t		*tcph;
22922 	int		i;
22923 	mblk_t		*ipsec_mp;
22924 	boolean_t	mctl_present;
22925 	ipic_t		*ipic;
22926 	ipaddr_t	v4addr;
22927 	in6_addr_t	v6addr;
22928 	int		addr_len;
22929 	void		*addr;
22930 	queue_t		*q = tcps->tcps_g_q;
22931 	tcp_t		*tcp;
22932 	cred_t		*cr;
22933 	mblk_t		*nmp;
22934 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
22935 
22936 	if (tcps->tcps_g_q == NULL) {
22937 		/*
22938 		 * For non-zero stackids the default queue isn't created
22939 		 * until the first open, thus there can be a need to send
22940 		 * a reset before then. But we can't do that, hence we just
22941 		 * drop the packet. Later during boot, when the default queue
22942 		 * has been setup, a retransmitted packet from the peer
22943 		 * will result in a reset.
22944 		 */
22945 		ASSERT(tcps->tcps_netstack->netstack_stackid !=
22946 		    GLOBAL_NETSTACKID);
22947 		freemsg(mp);
22948 		return;
22949 	}
22950 
22951 	if (connp != NULL)
22952 		tcp = connp->conn_tcp;
22953 	else
22954 		tcp = Q_TO_TCP(q);
22955 
22956 	if (!tcp_send_rst_chk(tcps)) {
22957 		tcps->tcps_rst_unsent++;
22958 		freemsg(mp);
22959 		return;
22960 	}
22961 
22962 	if (mp->b_datap->db_type == M_CTL) {
22963 		ipsec_mp = mp;
22964 		mp = mp->b_cont;
22965 		mctl_present = B_TRUE;
22966 	} else {
22967 		ipsec_mp = mp;
22968 		mctl_present = B_FALSE;
22969 	}
22970 
22971 	if (str && q && tcps->tcps_dbg) {
22972 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
22973 		    "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, "
22974 		    "flags 0x%x",
22975 		    str, seq, ack, ctl);
22976 	}
22977 	if (mp->b_datap->db_ref != 1) {
22978 		mblk_t *mp1 = copyb(mp);
22979 		freemsg(mp);
22980 		mp = mp1;
22981 		if (!mp) {
22982 			if (mctl_present)
22983 				freeb(ipsec_mp);
22984 			return;
22985 		} else {
22986 			if (mctl_present) {
22987 				ipsec_mp->b_cont = mp;
22988 			} else {
22989 				ipsec_mp = mp;
22990 			}
22991 		}
22992 	} else if (mp->b_cont) {
22993 		freemsg(mp->b_cont);
22994 		mp->b_cont = NULL;
22995 	}
22996 	/*
22997 	 * We skip reversing source route here.
22998 	 * (for now we replace all IP options with EOL)
22999 	 */
23000 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
23001 		ipha = (ipha_t *)mp->b_rptr;
23002 		for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++)
23003 			mp->b_rptr[i] = IPOPT_EOL;
23004 		/*
23005 		 * Make sure that src address isn't flagrantly invalid.
23006 		 * Not all broadcast address checking for the src address
23007 		 * is possible, since we don't know the netmask of the src
23008 		 * addr.  No check for destination address is done, since
23009 		 * IP will not pass up a packet with a broadcast dest
23010 		 * address to TCP.  Similar checks are done below for IPv6.
23011 		 */
23012 		if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST ||
23013 		    CLASSD(ipha->ipha_src)) {
23014 			freemsg(ipsec_mp);
23015 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
23016 			return;
23017 		}
23018 	} else {
23019 		ip6h = (ip6_t *)mp->b_rptr;
23020 
23021 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) ||
23022 		    IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) {
23023 			freemsg(ipsec_mp);
23024 			BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards);
23025 			return;
23026 		}
23027 
23028 		/* Remove any extension headers assuming partial overlay */
23029 		if (ip_hdr_len > IPV6_HDR_LEN) {
23030 			uint8_t *to;
23031 
23032 			to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN;
23033 			ovbcopy(ip6h, to, IPV6_HDR_LEN);
23034 			mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN;
23035 			ip_hdr_len = IPV6_HDR_LEN;
23036 			ip6h = (ip6_t *)mp->b_rptr;
23037 			ip6h->ip6_nxt = IPPROTO_TCP;
23038 		}
23039 	}
23040 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
23041 	if (tcph->th_flags[0] & TH_RST) {
23042 		freemsg(ipsec_mp);
23043 		return;
23044 	}
23045 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
23046 	len = ip_hdr_len + sizeof (tcph_t);
23047 	mp->b_wptr = &mp->b_rptr[len];
23048 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
23049 		ipha->ipha_length = htons(len);
23050 		/* Swap addresses */
23051 		v4addr = ipha->ipha_src;
23052 		ipha->ipha_src = ipha->ipha_dst;
23053 		ipha->ipha_dst = v4addr;
23054 		ipha->ipha_ident = 0;
23055 		ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
23056 		addr_len = IP_ADDR_LEN;
23057 		addr = &v4addr;
23058 	} else {
23059 		/* No ip6i_t in this case */
23060 		ip6h->ip6_plen = htons(len - IPV6_HDR_LEN);
23061 		/* Swap addresses */
23062 		v6addr = ip6h->ip6_src;
23063 		ip6h->ip6_src = ip6h->ip6_dst;
23064 		ip6h->ip6_dst = v6addr;
23065 		ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit;
23066 		addr_len = IPV6_ADDR_LEN;
23067 		addr = &v6addr;
23068 	}
23069 	tcp_xchg(tcph->th_fport, tcph->th_lport, 2);
23070 	U32_TO_BE32(ack, tcph->th_ack);
23071 	U32_TO_BE32(seq, tcph->th_seq);
23072 	U16_TO_BE16(0, tcph->th_win);
23073 	U16_TO_BE16(sizeof (tcph_t), tcph->th_sum);
23074 	tcph->th_flags[0] = (uint8_t)ctl;
23075 	if (ctl & TH_RST) {
23076 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
23077 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23078 	}
23079 
23080 	/* IP trusts us to set up labels when required. */
23081 	if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL &&
23082 	    crgetlabel(cr) != NULL) {
23083 		int err;
23084 
23085 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION)
23086 			err = tsol_check_label(cr, &mp,
23087 			    tcp->tcp_connp->conn_mac_exempt,
23088 			    tcps->tcps_netstack->netstack_ip);
23089 		else
23090 			err = tsol_check_label_v6(cr, &mp,
23091 			    tcp->tcp_connp->conn_mac_exempt,
23092 			    tcps->tcps_netstack->netstack_ip);
23093 		if (mctl_present)
23094 			ipsec_mp->b_cont = mp;
23095 		else
23096 			ipsec_mp = mp;
23097 		if (err != 0) {
23098 			freemsg(ipsec_mp);
23099 			return;
23100 		}
23101 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
23102 			ipha = (ipha_t *)mp->b_rptr;
23103 		} else {
23104 			ip6h = (ip6_t *)mp->b_rptr;
23105 		}
23106 	}
23107 
23108 	if (mctl_present) {
23109 		ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
23110 
23111 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
23112 		if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) {
23113 			return;
23114 		}
23115 	}
23116 	if (zoneid == ALL_ZONES)
23117 		zoneid = GLOBAL_ZONEID;
23118 
23119 	/* Add the zoneid so ip_output routes it properly */
23120 	if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) {
23121 		freemsg(ipsec_mp);
23122 		return;
23123 	}
23124 	ipsec_mp = nmp;
23125 
23126 	/*
23127 	 * NOTE:  one might consider tracing a TCP packet here, but
23128 	 * this function has no active TCP state and no tcp structure
23129 	 * that has a trace buffer.  If we traced here, we would have
23130 	 * to keep a local trace buffer in tcp_record_trace().
23131 	 *
23132 	 * TSol note: The mblk that contains the incoming packet was
23133 	 * reused by tcp_xmit_listener_reset, so it already contains
23134 	 * the right credentials and we don't need to call mblk_setcred.
23135 	 * Also the conn's cred is not right since it is associated
23136 	 * with tcps_g_q.
23137 	 */
23138 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp);
23139 
23140 	/*
23141 	 * Tell IP to mark the IRE used for this destination temporary.
23142 	 * This way, we can limit our exposure to DoS attack because IP
23143 	 * creates an IRE for each destination.  If there are too many,
23144 	 * the time to do any routing lookup will be extremely long.  And
23145 	 * the lookup can be in interrupt context.
23146 	 *
23147 	 * Note that in normal circumstances, this marking should not
23148 	 * affect anything.  It would be nice if only 1 message is
23149 	 * needed to inform IP that the IRE created for this RST should
23150 	 * not be added to the cache table.  But there is currently
23151 	 * not such communication mechanism between TCP and IP.  So
23152 	 * the best we can do now is to send the advice ioctl to IP
23153 	 * to mark the IRE temporary.
23154 	 */
23155 	if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) {
23156 		ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
23157 		CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
23158 	}
23159 }
23160 
23161 /*
23162  * Initiate closedown sequence on an active connection.  (May be called as
23163  * writer.)  Return value zero for OK return, non-zero for error return.
23164  */
23165 static int
23166 tcp_xmit_end(tcp_t *tcp)
23167 {
23168 	ipic_t	*ipic;
23169 	mblk_t	*mp;
23170 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23171 
23172 	if (tcp->tcp_state < TCPS_SYN_RCVD ||
23173 	    tcp->tcp_state > TCPS_CLOSE_WAIT) {
23174 		/*
23175 		 * Invalid state, only states TCPS_SYN_RCVD,
23176 		 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid
23177 		 */
23178 		return (-1);
23179 	}
23180 
23181 	tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent;
23182 	tcp->tcp_valid_bits |= TCP_FSS_VALID;
23183 	/*
23184 	 * If there is nothing more unsent, send the FIN now.
23185 	 * Otherwise, it will go out with the last segment.
23186 	 */
23187 	if (tcp->tcp_unsent == 0) {
23188 		mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
23189 		    tcp->tcp_fss, B_FALSE, NULL, B_FALSE);
23190 
23191 		if (mp) {
23192 			tcp_send_data(tcp, tcp->tcp_wq, mp);
23193 		} else {
23194 			/*
23195 			 * Couldn't allocate msg.  Pretend we got it out.
23196 			 * Wait for rexmit timeout.
23197 			 */
23198 			tcp->tcp_snxt = tcp->tcp_fss + 1;
23199 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
23200 		}
23201 
23202 		/*
23203 		 * If needed, update tcp_rexmit_snxt as tcp_snxt is
23204 		 * changed.
23205 		 */
23206 		if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) {
23207 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
23208 		}
23209 	} else {
23210 		/*
23211 		 * If tcp->tcp_cork is set, then the data will not get sent,
23212 		 * so we have to check that and unset it first.
23213 		 */
23214 		if (tcp->tcp_cork)
23215 			tcp->tcp_cork = B_FALSE;
23216 		tcp_wput_data(tcp, NULL, B_FALSE);
23217 	}
23218 
23219 	/*
23220 	 * If TCP does not get enough samples of RTT or tcp_rtt_updates
23221 	 * is 0, don't update the cache.
23222 	 */
23223 	if (tcps->tcps_rtt_updates == 0 ||
23224 	    tcp->tcp_rtt_update < tcps->tcps_rtt_updates)
23225 		return (0);
23226 
23227 	/*
23228 	 * NOTE: should not update if source routes i.e. if tcp_remote if
23229 	 * different from the destination.
23230 	 */
23231 	if (tcp->tcp_ipversion == IPV4_VERSION) {
23232 		if (tcp->tcp_remote !=  tcp->tcp_ipha->ipha_dst) {
23233 			return (0);
23234 		}
23235 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
23236 		    &ipic);
23237 	} else {
23238 		if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
23239 		    &tcp->tcp_ip6h->ip6_dst))) {
23240 			return (0);
23241 		}
23242 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
23243 		    &ipic);
23244 	}
23245 
23246 	/* Record route attributes in the IRE for use by future connections. */
23247 	if (mp == NULL)
23248 		return (0);
23249 
23250 	/*
23251 	 * We do not have a good algorithm to update ssthresh at this time.
23252 	 * So don't do any update.
23253 	 */
23254 	ipic->ipic_rtt = tcp->tcp_rtt_sa;
23255 	ipic->ipic_rtt_sd = tcp->tcp_rtt_sd;
23256 
23257 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
23258 	return (0);
23259 }
23260 
23261 /*
23262  * Generate a "no listener here" RST in response to an "unknown" segment.
23263  * connp is set by caller when RST is in response to an unexpected
23264  * inbound packet for which there is active tcp state in the system.
23265  * Note that we are reusing the incoming mp to construct the outgoing RST.
23266  */
23267 void
23268 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid,
23269     tcp_stack_t *tcps, conn_t *connp)
23270 {
23271 	uchar_t		*rptr;
23272 	uint32_t	seg_len;
23273 	tcph_t		*tcph;
23274 	uint32_t	seg_seq;
23275 	uint32_t	seg_ack;
23276 	uint_t		flags;
23277 	mblk_t		*ipsec_mp;
23278 	ipha_t 		*ipha;
23279 	ip6_t 		*ip6h;
23280 	boolean_t	mctl_present = B_FALSE;
23281 	boolean_t	check = B_TRUE;
23282 	boolean_t	policy_present;
23283 	ipsec_stack_t	*ipss = tcps->tcps_netstack->netstack_ipsec;
23284 
23285 	TCP_STAT(tcps, tcp_no_listener);
23286 
23287 	ipsec_mp = mp;
23288 
23289 	if (mp->b_datap->db_type == M_CTL) {
23290 		ipsec_in_t *ii;
23291 
23292 		mctl_present = B_TRUE;
23293 		mp = mp->b_cont;
23294 
23295 		ii = (ipsec_in_t *)ipsec_mp->b_rptr;
23296 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
23297 		if (ii->ipsec_in_dont_check) {
23298 			check = B_FALSE;
23299 			if (!ii->ipsec_in_secure) {
23300 				freeb(ipsec_mp);
23301 				mctl_present = B_FALSE;
23302 				ipsec_mp = mp;
23303 			}
23304 		}
23305 	}
23306 
23307 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
23308 		policy_present = ipss->ipsec_inbound_v4_policy_present;
23309 		ipha = (ipha_t *)mp->b_rptr;
23310 		ip6h = NULL;
23311 	} else {
23312 		policy_present = ipss->ipsec_inbound_v6_policy_present;
23313 		ipha = NULL;
23314 		ip6h = (ip6_t *)mp->b_rptr;
23315 	}
23316 
23317 	if (check && policy_present) {
23318 		/*
23319 		 * The conn_t parameter is NULL because we already know
23320 		 * nobody's home.
23321 		 */
23322 		ipsec_mp = ipsec_check_global_policy(
23323 		    ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present,
23324 		    tcps->tcps_netstack);
23325 		if (ipsec_mp == NULL)
23326 			return;
23327 	}
23328 	if (is_system_labeled() && !tsol_can_reply_error(mp)) {
23329 		DTRACE_PROBE2(
23330 		    tx__ip__log__error__nolistener__tcp,
23331 		    char *, "Could not reply with RST to mp(1)",
23332 		    mblk_t *, mp);
23333 		ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n"));
23334 		freemsg(ipsec_mp);
23335 		return;
23336 	}
23337 
23338 	rptr = mp->b_rptr;
23339 
23340 	tcph = (tcph_t *)&rptr[ip_hdr_len];
23341 	seg_seq = BE32_TO_U32(tcph->th_seq);
23342 	seg_ack = BE32_TO_U32(tcph->th_ack);
23343 	flags = tcph->th_flags[0];
23344 
23345 	seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len);
23346 	if (flags & TH_RST) {
23347 		freemsg(ipsec_mp);
23348 	} else if (flags & TH_ACK) {
23349 		tcp_xmit_early_reset("no tcp, reset",
23350 		    ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps,
23351 		    connp);
23352 	} else {
23353 		if (flags & TH_SYN) {
23354 			seg_len++;
23355 		} else {
23356 			/*
23357 			 * Here we violate the RFC.  Note that a normal
23358 			 * TCP will never send a segment without the ACK
23359 			 * flag, except for RST or SYN segment.  This
23360 			 * segment is neither.  Just drop it on the
23361 			 * floor.
23362 			 */
23363 			freemsg(ipsec_mp);
23364 			tcps->tcps_rst_unsent++;
23365 			return;
23366 		}
23367 
23368 		tcp_xmit_early_reset("no tcp, reset/ack",
23369 		    ipsec_mp, 0, seg_seq + seg_len,
23370 		    TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps, connp);
23371 	}
23372 }
23373 
23374 /*
23375  * tcp_xmit_mp is called to return a pointer to an mblk chain complete with
23376  * ip and tcp header ready to pass down to IP.  If the mp passed in is
23377  * non-NULL, then up to max_to_send bytes of data will be dup'ed off that
23378  * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary
23379  * otherwise it will dup partial mblks.)
23380  * Otherwise, an appropriate ACK packet will be generated.  This
23381  * routine is not usually called to send new data for the first time.  It
23382  * is mostly called out of the timer for retransmits, and to generate ACKs.
23383  *
23384  * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will
23385  * be adjusted by *offset.  And after dupb(), the offset and the ending mblk
23386  * of the original mblk chain will be returned in *offset and *end_mp.
23387  */
23388 mblk_t *
23389 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset,
23390     mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len,
23391     boolean_t rexmit)
23392 {
23393 	int	data_length;
23394 	int32_t	off = 0;
23395 	uint_t	flags;
23396 	mblk_t	*mp1;
23397 	mblk_t	*mp2;
23398 	uchar_t	*rptr;
23399 	tcph_t	*tcph;
23400 	int32_t	num_sack_blk = 0;
23401 	int32_t	sack_opt_len = 0;
23402 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23403 
23404 	/* Allocate for our maximum TCP header + link-level */
23405 	mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
23406 	    tcps->tcps_wroff_xtra, BPRI_MED);
23407 	if (!mp1)
23408 		return (NULL);
23409 	data_length = 0;
23410 
23411 	/*
23412 	 * Note that tcp_mss has been adjusted to take into account the
23413 	 * timestamp option if applicable.  Because SACK options do not
23414 	 * appear in every TCP segments and they are of variable lengths,
23415 	 * they cannot be included in tcp_mss.  Thus we need to calculate
23416 	 * the actual segment length when we need to send a segment which
23417 	 * includes SACK options.
23418 	 */
23419 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
23420 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
23421 		    tcp->tcp_num_sack_blk);
23422 		sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
23423 		    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
23424 		if (max_to_send + sack_opt_len > tcp->tcp_mss)
23425 			max_to_send -= sack_opt_len;
23426 	}
23427 
23428 	if (offset != NULL) {
23429 		off = *offset;
23430 		/* We use offset as an indicator that end_mp is not NULL. */
23431 		*end_mp = NULL;
23432 	}
23433 	for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) {
23434 		/* This could be faster with cooperation from downstream */
23435 		if (mp2 != mp1 && !sendall &&
23436 		    data_length + (int)(mp->b_wptr - mp->b_rptr) >
23437 		    max_to_send)
23438 			/*
23439 			 * Don't send the next mblk since the whole mblk
23440 			 * does not fit.
23441 			 */
23442 			break;
23443 		mp2->b_cont = dupb(mp);
23444 		mp2 = mp2->b_cont;
23445 		if (!mp2) {
23446 			freemsg(mp1);
23447 			return (NULL);
23448 		}
23449 		mp2->b_rptr += off;
23450 		ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
23451 		    (uintptr_t)INT_MAX);
23452 
23453 		data_length += (int)(mp2->b_wptr - mp2->b_rptr);
23454 		if (data_length > max_to_send) {
23455 			mp2->b_wptr -= data_length - max_to_send;
23456 			data_length = max_to_send;
23457 			off = mp2->b_wptr - mp->b_rptr;
23458 			break;
23459 		} else {
23460 			off = 0;
23461 		}
23462 	}
23463 	if (offset != NULL) {
23464 		*offset = off;
23465 		*end_mp = mp;
23466 	}
23467 	if (seg_len != NULL) {
23468 		*seg_len = data_length;
23469 	}
23470 
23471 	/* Update the latest receive window size in TCP header. */
23472 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
23473 	    tcp->tcp_tcph->th_win);
23474 
23475 	rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
23476 	mp1->b_rptr = rptr;
23477 	mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len;
23478 	bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
23479 	tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
23480 	U32_TO_ABE32(seq, tcph->th_seq);
23481 
23482 	/*
23483 	 * Use tcp_unsent to determine if the PUSH bit should be used assumes
23484 	 * that this function was called from tcp_wput_data. Thus, when called
23485 	 * to retransmit data the setting of the PUSH bit may appear some
23486 	 * what random in that it might get set when it should not. This
23487 	 * should not pose any performance issues.
23488 	 */
23489 	if (data_length != 0 && (tcp->tcp_unsent == 0 ||
23490 	    tcp->tcp_unsent == data_length)) {
23491 		flags = TH_ACK | TH_PUSH;
23492 	} else {
23493 		flags = TH_ACK;
23494 	}
23495 
23496 	if (tcp->tcp_ecn_ok) {
23497 		if (tcp->tcp_ecn_echo_on)
23498 			flags |= TH_ECE;
23499 
23500 		/*
23501 		 * Only set ECT bit and ECN_CWR if a segment contains new data.
23502 		 * There is no TCP flow control for non-data segments, and
23503 		 * only data segment is transmitted reliably.
23504 		 */
23505 		if (data_length > 0 && !rexmit) {
23506 			SET_ECT(tcp, rptr);
23507 			if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
23508 				flags |= TH_CWR;
23509 				tcp->tcp_ecn_cwr_sent = B_TRUE;
23510 			}
23511 		}
23512 	}
23513 
23514 	if (tcp->tcp_valid_bits) {
23515 		uint32_t u1;
23516 
23517 		if ((tcp->tcp_valid_bits & TCP_ISS_VALID) &&
23518 		    seq == tcp->tcp_iss) {
23519 			uchar_t	*wptr;
23520 
23521 			/*
23522 			 * If TCP_ISS_VALID and the seq number is tcp_iss,
23523 			 * TCP can only be in SYN-SENT, SYN-RCVD or
23524 			 * FIN-WAIT-1 state.  It can be FIN-WAIT-1 if
23525 			 * our SYN is not ack'ed but the app closes this
23526 			 * TCP connection.
23527 			 */
23528 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT ||
23529 			    tcp->tcp_state == TCPS_SYN_RCVD ||
23530 			    tcp->tcp_state == TCPS_FIN_WAIT_1);
23531 
23532 			/*
23533 			 * Tack on the MSS option.  It is always needed
23534 			 * for both active and passive open.
23535 			 *
23536 			 * MSS option value should be interface MTU - MIN
23537 			 * TCP/IP header according to RFC 793 as it means
23538 			 * the maximum segment size TCP can receive.  But
23539 			 * to get around some broken middle boxes/end hosts
23540 			 * out there, we allow the option value to be the
23541 			 * same as the MSS option size on the peer side.
23542 			 * In this way, the other side will not send
23543 			 * anything larger than they can receive.
23544 			 *
23545 			 * Note that for SYN_SENT state, the ndd param
23546 			 * tcp_use_smss_as_mss_opt has no effect as we
23547 			 * don't know the peer's MSS option value. So
23548 			 * the only case we need to take care of is in
23549 			 * SYN_RCVD state, which is done later.
23550 			 */
23551 			wptr = mp1->b_wptr;
23552 			wptr[0] = TCPOPT_MAXSEG;
23553 			wptr[1] = TCPOPT_MAXSEG_LEN;
23554 			wptr += 2;
23555 			u1 = tcp->tcp_if_mtu -
23556 			    (tcp->tcp_ipversion == IPV4_VERSION ?
23557 			    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) -
23558 			    TCP_MIN_HEADER_LENGTH;
23559 			U16_TO_BE16(u1, wptr);
23560 			mp1->b_wptr = wptr + 2;
23561 			/* Update the offset to cover the additional word */
23562 			tcph->th_offset_and_rsrvd[0] += (1 << 4);
23563 
23564 			/*
23565 			 * Note that the following way of filling in
23566 			 * TCP options are not optimal.  Some NOPs can
23567 			 * be saved.  But there is no need at this time
23568 			 * to optimize it.  When it is needed, we will
23569 			 * do it.
23570 			 */
23571 			switch (tcp->tcp_state) {
23572 			case TCPS_SYN_SENT:
23573 				flags = TH_SYN;
23574 
23575 				if (tcp->tcp_snd_ts_ok) {
23576 					uint32_t llbolt = (uint32_t)lbolt;
23577 
23578 					wptr = mp1->b_wptr;
23579 					wptr[0] = TCPOPT_NOP;
23580 					wptr[1] = TCPOPT_NOP;
23581 					wptr[2] = TCPOPT_TSTAMP;
23582 					wptr[3] = TCPOPT_TSTAMP_LEN;
23583 					wptr += 4;
23584 					U32_TO_BE32(llbolt, wptr);
23585 					wptr += 4;
23586 					ASSERT(tcp->tcp_ts_recent == 0);
23587 					U32_TO_BE32(0L, wptr);
23588 					mp1->b_wptr += TCPOPT_REAL_TS_LEN;
23589 					tcph->th_offset_and_rsrvd[0] +=
23590 					    (3 << 4);
23591 				}
23592 
23593 				/*
23594 				 * Set up all the bits to tell other side
23595 				 * we are ECN capable.
23596 				 */
23597 				if (tcp->tcp_ecn_ok) {
23598 					flags |= (TH_ECE | TH_CWR);
23599 				}
23600 				break;
23601 			case TCPS_SYN_RCVD:
23602 				flags |= TH_SYN;
23603 
23604 				/*
23605 				 * Reset the MSS option value to be SMSS
23606 				 * We should probably add back the bytes
23607 				 * for timestamp option and IPsec.  We
23608 				 * don't do that as this is a workaround
23609 				 * for broken middle boxes/end hosts, it
23610 				 * is better for us to be more cautious.
23611 				 * They may not take these things into
23612 				 * account in their SMSS calculation.  Thus
23613 				 * the peer's calculated SMSS may be smaller
23614 				 * than what it can be.  This should be OK.
23615 				 */
23616 				if (tcps->tcps_use_smss_as_mss_opt) {
23617 					u1 = tcp->tcp_mss;
23618 					U16_TO_BE16(u1, wptr);
23619 				}
23620 
23621 				/*
23622 				 * If the other side is ECN capable, reply
23623 				 * that we are also ECN capable.
23624 				 */
23625 				if (tcp->tcp_ecn_ok)
23626 					flags |= TH_ECE;
23627 				break;
23628 			default:
23629 				/*
23630 				 * The above ASSERT() makes sure that this
23631 				 * must be FIN-WAIT-1 state.  Our SYN has
23632 				 * not been ack'ed so retransmit it.
23633 				 */
23634 				flags |= TH_SYN;
23635 				break;
23636 			}
23637 
23638 			if (tcp->tcp_snd_ws_ok) {
23639 				wptr = mp1->b_wptr;
23640 				wptr[0] =  TCPOPT_NOP;
23641 				wptr[1] =  TCPOPT_WSCALE;
23642 				wptr[2] =  TCPOPT_WS_LEN;
23643 				wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
23644 				mp1->b_wptr += TCPOPT_REAL_WS_LEN;
23645 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
23646 			}
23647 
23648 			if (tcp->tcp_snd_sack_ok) {
23649 				wptr = mp1->b_wptr;
23650 				wptr[0] = TCPOPT_NOP;
23651 				wptr[1] = TCPOPT_NOP;
23652 				wptr[2] = TCPOPT_SACK_PERMITTED;
23653 				wptr[3] = TCPOPT_SACK_OK_LEN;
23654 				mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
23655 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
23656 			}
23657 
23658 			/* allocb() of adequate mblk assures space */
23659 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
23660 			    (uintptr_t)INT_MAX);
23661 			u1 = (int)(mp1->b_wptr - mp1->b_rptr);
23662 			/*
23663 			 * Get IP set to checksum on our behalf
23664 			 * Include the adjustment for a source route if any.
23665 			 */
23666 			u1 += tcp->tcp_sum;
23667 			u1 = (u1 >> 16) + (u1 & 0xFFFF);
23668 			U16_TO_BE16(u1, tcph->th_sum);
23669 			BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23670 		}
23671 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
23672 		    (seq + data_length) == tcp->tcp_fss) {
23673 			if (!tcp->tcp_fin_acked) {
23674 				flags |= TH_FIN;
23675 				BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23676 			}
23677 			if (!tcp->tcp_fin_sent) {
23678 				tcp->tcp_fin_sent = B_TRUE;
23679 				switch (tcp->tcp_state) {
23680 				case TCPS_SYN_RCVD:
23681 				case TCPS_ESTABLISHED:
23682 					tcp->tcp_state = TCPS_FIN_WAIT_1;
23683 					break;
23684 				case TCPS_CLOSE_WAIT:
23685 					tcp->tcp_state = TCPS_LAST_ACK;
23686 					break;
23687 				}
23688 				if (tcp->tcp_suna == tcp->tcp_snxt)
23689 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
23690 				tcp->tcp_snxt = tcp->tcp_fss + 1;
23691 			}
23692 		}
23693 		/*
23694 		 * Note the trick here.  u1 is unsigned.  When tcp_urg
23695 		 * is smaller than seq, u1 will become a very huge value.
23696 		 * So the comparison will fail.  Also note that tcp_urp
23697 		 * should be positive, see RFC 793 page 17.
23698 		 */
23699 		u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION;
23700 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 &&
23701 		    u1 < (uint32_t)(64 * 1024)) {
23702 			flags |= TH_URG;
23703 			BUMP_MIB(&tcps->tcps_mib, tcpOutUrg);
23704 			U32_TO_ABE16(u1, tcph->th_urp);
23705 		}
23706 	}
23707 	tcph->th_flags[0] = (uchar_t)flags;
23708 	tcp->tcp_rack = tcp->tcp_rnxt;
23709 	tcp->tcp_rack_cnt = 0;
23710 
23711 	if (tcp->tcp_snd_ts_ok) {
23712 		if (tcp->tcp_state != TCPS_SYN_SENT) {
23713 			uint32_t llbolt = (uint32_t)lbolt;
23714 
23715 			U32_TO_BE32(llbolt,
23716 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
23717 			U32_TO_BE32(tcp->tcp_ts_recent,
23718 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
23719 		}
23720 	}
23721 
23722 	if (num_sack_blk > 0) {
23723 		uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
23724 		sack_blk_t *tmp;
23725 		int32_t	i;
23726 
23727 		wptr[0] = TCPOPT_NOP;
23728 		wptr[1] = TCPOPT_NOP;
23729 		wptr[2] = TCPOPT_SACK;
23730 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
23731 		    sizeof (sack_blk_t);
23732 		wptr += TCPOPT_REAL_SACK_LEN;
23733 
23734 		tmp = tcp->tcp_sack_list;
23735 		for (i = 0; i < num_sack_blk; i++) {
23736 			U32_TO_BE32(tmp[i].begin, wptr);
23737 			wptr += sizeof (tcp_seq);
23738 			U32_TO_BE32(tmp[i].end, wptr);
23739 			wptr += sizeof (tcp_seq);
23740 		}
23741 		tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4);
23742 	}
23743 	ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX);
23744 	data_length += (int)(mp1->b_wptr - rptr);
23745 	if (tcp->tcp_ipversion == IPV4_VERSION) {
23746 		((ipha_t *)rptr)->ipha_length = htons(data_length);
23747 	} else {
23748 		ip6_t *ip6 = (ip6_t *)(rptr +
23749 		    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
23750 		    sizeof (ip6i_t) : 0));
23751 
23752 		ip6->ip6_plen = htons(data_length -
23753 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
23754 	}
23755 
23756 	/*
23757 	 * Prime pump for IP
23758 	 * Include the adjustment for a source route if any.
23759 	 */
23760 	data_length -= tcp->tcp_ip_hdr_len;
23761 	data_length += tcp->tcp_sum;
23762 	data_length = (data_length >> 16) + (data_length & 0xFFFF);
23763 	U16_TO_ABE16(data_length, tcph->th_sum);
23764 	if (tcp->tcp_ip_forward_progress) {
23765 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
23766 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
23767 		tcp->tcp_ip_forward_progress = B_FALSE;
23768 	}
23769 	return (mp1);
23770 }
23771 
23772 /* This function handles the push timeout. */
23773 void
23774 tcp_push_timer(void *arg)
23775 {
23776 	conn_t	*connp = (conn_t *)arg;
23777 	tcp_t *tcp = connp->conn_tcp;
23778 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23779 	uint_t		flags;
23780 	sodirect_t	*sodp;
23781 
23782 	TCP_DBGSTAT(tcps, tcp_push_timer_cnt);
23783 
23784 	ASSERT(tcp->tcp_listener == NULL);
23785 
23786 	/*
23787 	 * We need to plug synchronous streams during our drain to prevent
23788 	 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop().
23789 	 */
23790 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
23791 	tcp->tcp_push_tid = 0;
23792 
23793 	SOD_PTR_ENTER(tcp, sodp);
23794 	if (sodp != NULL) {
23795 		flags = tcp_rcv_sod_wakeup(tcp, sodp);
23796 		/* sod_wakeup() does the mutex_exit() */
23797 	} else if (tcp->tcp_rcv_list != NULL) {
23798 		flags = tcp_rcv_drain(tcp->tcp_rq, tcp);
23799 	}
23800 	if (flags == TH_ACK_NEEDED)
23801 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
23802 
23803 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
23804 }
23805 
23806 /*
23807  * This function handles delayed ACK timeout.
23808  */
23809 static void
23810 tcp_ack_timer(void *arg)
23811 {
23812 	conn_t	*connp = (conn_t *)arg;
23813 	tcp_t *tcp = connp->conn_tcp;
23814 	mblk_t *mp;
23815 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23816 
23817 	TCP_DBGSTAT(tcps, tcp_ack_timer_cnt);
23818 
23819 	tcp->tcp_ack_tid = 0;
23820 
23821 	if (tcp->tcp_fused)
23822 		return;
23823 
23824 	/*
23825 	 * Do not send ACK if there is no outstanding unack'ed data.
23826 	 */
23827 	if (tcp->tcp_rnxt == tcp->tcp_rack) {
23828 		return;
23829 	}
23830 
23831 	if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) {
23832 		/*
23833 		 * Make sure we don't allow deferred ACKs to result in
23834 		 * timer-based ACKing.  If we have held off an ACK
23835 		 * when there was more than an mss here, and the timer
23836 		 * goes off, we have to worry about the possibility
23837 		 * that the sender isn't doing slow-start, or is out
23838 		 * of step with us for some other reason.  We fall
23839 		 * permanently back in the direction of
23840 		 * ACK-every-other-packet as suggested in RFC 1122.
23841 		 */
23842 		if (tcp->tcp_rack_abs_max > 2)
23843 			tcp->tcp_rack_abs_max--;
23844 		tcp->tcp_rack_cur_max = 2;
23845 	}
23846 	mp = tcp_ack_mp(tcp);
23847 
23848 	if (mp != NULL) {
23849 		BUMP_LOCAL(tcp->tcp_obsegs);
23850 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
23851 		BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed);
23852 		tcp_send_data(tcp, tcp->tcp_wq, mp);
23853 	}
23854 }
23855 
23856 
23857 /* Generate an ACK-only (no data) segment for a TCP endpoint */
23858 static mblk_t *
23859 tcp_ack_mp(tcp_t *tcp)
23860 {
23861 	uint32_t	seq_no;
23862 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23863 
23864 	/*
23865 	 * There are a few cases to be considered while setting the sequence no.
23866 	 * Essentially, we can come here while processing an unacceptable pkt
23867 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
23868 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
23869 	 * If we are here for a zero window probe, stick with suna. In all
23870 	 * other cases, we check if suna + swnd encompasses snxt and set
23871 	 * the sequence number to snxt, if so. If snxt falls outside the
23872 	 * window (the receiver probably shrunk its window), we will go with
23873 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
23874 	 * receiver.
23875 	 */
23876 	if (tcp->tcp_zero_win_probe) {
23877 		seq_no = tcp->tcp_suna;
23878 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
23879 		ASSERT(tcp->tcp_swnd == 0);
23880 		seq_no = tcp->tcp_snxt;
23881 	} else {
23882 		seq_no = SEQ_GT(tcp->tcp_snxt,
23883 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
23884 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
23885 	}
23886 
23887 	if (tcp->tcp_valid_bits) {
23888 		/*
23889 		 * For the complex case where we have to send some
23890 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
23891 		 */
23892 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
23893 		    NULL, B_FALSE));
23894 	} else {
23895 		/* Generate a simple ACK */
23896 		int	data_length;
23897 		uchar_t	*rptr;
23898 		tcph_t	*tcph;
23899 		mblk_t	*mp1;
23900 		int32_t	tcp_hdr_len;
23901 		int32_t	tcp_tcp_hdr_len;
23902 		int32_t	num_sack_blk = 0;
23903 		int32_t sack_opt_len;
23904 
23905 		/*
23906 		 * Allocate space for TCP + IP headers
23907 		 * and link-level header
23908 		 */
23909 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
23910 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
23911 			    tcp->tcp_num_sack_blk);
23912 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
23913 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
23914 			tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len;
23915 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len;
23916 		} else {
23917 			tcp_hdr_len = tcp->tcp_hdr_len;
23918 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
23919 		}
23920 		mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED);
23921 		if (!mp1)
23922 			return (NULL);
23923 
23924 		/* Update the latest receive window size in TCP header. */
23925 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
23926 		    tcp->tcp_tcph->th_win);
23927 		/* copy in prototype TCP + IP header */
23928 		rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
23929 		mp1->b_rptr = rptr;
23930 		mp1->b_wptr = rptr + tcp_hdr_len;
23931 		bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
23932 
23933 		tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
23934 
23935 		/* Set the TCP sequence number. */
23936 		U32_TO_ABE32(seq_no, tcph->th_seq);
23937 
23938 		/* Set up the TCP flag field. */
23939 		tcph->th_flags[0] = (uchar_t)TH_ACK;
23940 		if (tcp->tcp_ecn_echo_on)
23941 			tcph->th_flags[0] |= TH_ECE;
23942 
23943 		tcp->tcp_rack = tcp->tcp_rnxt;
23944 		tcp->tcp_rack_cnt = 0;
23945 
23946 		/* fill in timestamp option if in use */
23947 		if (tcp->tcp_snd_ts_ok) {
23948 			uint32_t llbolt = (uint32_t)lbolt;
23949 
23950 			U32_TO_BE32(llbolt,
23951 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
23952 			U32_TO_BE32(tcp->tcp_ts_recent,
23953 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
23954 		}
23955 
23956 		/* Fill in SACK options */
23957 		if (num_sack_blk > 0) {
23958 			uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
23959 			sack_blk_t *tmp;
23960 			int32_t	i;
23961 
23962 			wptr[0] = TCPOPT_NOP;
23963 			wptr[1] = TCPOPT_NOP;
23964 			wptr[2] = TCPOPT_SACK;
23965 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
23966 			    sizeof (sack_blk_t);
23967 			wptr += TCPOPT_REAL_SACK_LEN;
23968 
23969 			tmp = tcp->tcp_sack_list;
23970 			for (i = 0; i < num_sack_blk; i++) {
23971 				U32_TO_BE32(tmp[i].begin, wptr);
23972 				wptr += sizeof (tcp_seq);
23973 				U32_TO_BE32(tmp[i].end, wptr);
23974 				wptr += sizeof (tcp_seq);
23975 			}
23976 			tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1)
23977 			    << 4);
23978 		}
23979 
23980 		if (tcp->tcp_ipversion == IPV4_VERSION) {
23981 			((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len);
23982 		} else {
23983 			/* Check for ip6i_t header in sticky hdrs */
23984 			ip6_t *ip6 = (ip6_t *)(rptr +
23985 			    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
23986 			    sizeof (ip6i_t) : 0));
23987 
23988 			ip6->ip6_plen = htons(tcp_hdr_len -
23989 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
23990 		}
23991 
23992 		/*
23993 		 * Prime pump for checksum calculation in IP.  Include the
23994 		 * adjustment for a source route if any.
23995 		 */
23996 		data_length = tcp_tcp_hdr_len + tcp->tcp_sum;
23997 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
23998 		U16_TO_ABE16(data_length, tcph->th_sum);
23999 
24000 		if (tcp->tcp_ip_forward_progress) {
24001 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
24002 			*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
24003 			tcp->tcp_ip_forward_progress = B_FALSE;
24004 		}
24005 		return (mp1);
24006 	}
24007 }
24008 
24009 /*
24010  * Hash list insertion routine for tcp_t structures.
24011  * Inserts entries with the ones bound to a specific IP address first
24012  * followed by those bound to INADDR_ANY.
24013  */
24014 static void
24015 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock)
24016 {
24017 	tcp_t	**tcpp;
24018 	tcp_t	*tcpnext;
24019 
24020 	if (tcp->tcp_ptpbhn != NULL) {
24021 		ASSERT(!caller_holds_lock);
24022 		tcp_bind_hash_remove(tcp);
24023 	}
24024 	tcpp = &tbf->tf_tcp;
24025 	if (!caller_holds_lock) {
24026 		mutex_enter(&tbf->tf_lock);
24027 	} else {
24028 		ASSERT(MUTEX_HELD(&tbf->tf_lock));
24029 	}
24030 	tcpnext = tcpp[0];
24031 	if (tcpnext) {
24032 		/*
24033 		 * If the new tcp bound to the INADDR_ANY address
24034 		 * and the first one in the list is not bound to
24035 		 * INADDR_ANY we skip all entries until we find the
24036 		 * first one bound to INADDR_ANY.
24037 		 * This makes sure that applications binding to a
24038 		 * specific address get preference over those binding to
24039 		 * INADDR_ANY.
24040 		 */
24041 		if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) &&
24042 		    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) {
24043 			while ((tcpnext = tcpp[0]) != NULL &&
24044 			    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6))
24045 				tcpp = &(tcpnext->tcp_bind_hash);
24046 			if (tcpnext)
24047 				tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
24048 		} else
24049 			tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
24050 	}
24051 	tcp->tcp_bind_hash = tcpnext;
24052 	tcp->tcp_ptpbhn = tcpp;
24053 	tcpp[0] = tcp;
24054 	if (!caller_holds_lock)
24055 		mutex_exit(&tbf->tf_lock);
24056 }
24057 
24058 /*
24059  * Hash list removal routine for tcp_t structures.
24060  */
24061 static void
24062 tcp_bind_hash_remove(tcp_t *tcp)
24063 {
24064 	tcp_t	*tcpnext;
24065 	kmutex_t *lockp;
24066 	tcp_stack_t	*tcps = tcp->tcp_tcps;
24067 
24068 	if (tcp->tcp_ptpbhn == NULL)
24069 		return;
24070 
24071 	/*
24072 	 * Extract the lock pointer in case there are concurrent
24073 	 * hash_remove's for this instance.
24074 	 */
24075 	ASSERT(tcp->tcp_lport != 0);
24076 	lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock;
24077 
24078 	ASSERT(lockp != NULL);
24079 	mutex_enter(lockp);
24080 	if (tcp->tcp_ptpbhn) {
24081 		tcpnext = tcp->tcp_bind_hash;
24082 		if (tcpnext) {
24083 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
24084 			tcp->tcp_bind_hash = NULL;
24085 		}
24086 		*tcp->tcp_ptpbhn = tcpnext;
24087 		tcp->tcp_ptpbhn = NULL;
24088 	}
24089 	mutex_exit(lockp);
24090 }
24091 
24092 
24093 /*
24094  * Hash list lookup routine for tcp_t structures.
24095  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
24096  */
24097 static tcp_t *
24098 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps)
24099 {
24100 	tf_t	*tf;
24101 	tcp_t	*tcp;
24102 
24103 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
24104 	mutex_enter(&tf->tf_lock);
24105 	for (tcp = tf->tf_tcp; tcp != NULL;
24106 	    tcp = tcp->tcp_acceptor_hash) {
24107 		if (tcp->tcp_acceptor_id == id) {
24108 			CONN_INC_REF(tcp->tcp_connp);
24109 			mutex_exit(&tf->tf_lock);
24110 			return (tcp);
24111 		}
24112 	}
24113 	mutex_exit(&tf->tf_lock);
24114 	return (NULL);
24115 }
24116 
24117 
24118 /*
24119  * Hash list insertion routine for tcp_t structures.
24120  */
24121 void
24122 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
24123 {
24124 	tf_t	*tf;
24125 	tcp_t	**tcpp;
24126 	tcp_t	*tcpnext;
24127 	tcp_stack_t	*tcps = tcp->tcp_tcps;
24128 
24129 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
24130 
24131 	if (tcp->tcp_ptpahn != NULL)
24132 		tcp_acceptor_hash_remove(tcp);
24133 	tcpp = &tf->tf_tcp;
24134 	mutex_enter(&tf->tf_lock);
24135 	tcpnext = tcpp[0];
24136 	if (tcpnext)
24137 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
24138 	tcp->tcp_acceptor_hash = tcpnext;
24139 	tcp->tcp_ptpahn = tcpp;
24140 	tcpp[0] = tcp;
24141 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
24142 	mutex_exit(&tf->tf_lock);
24143 }
24144 
24145 /*
24146  * Hash list removal routine for tcp_t structures.
24147  */
24148 static void
24149 tcp_acceptor_hash_remove(tcp_t *tcp)
24150 {
24151 	tcp_t	*tcpnext;
24152 	kmutex_t *lockp;
24153 
24154 	/*
24155 	 * Extract the lock pointer in case there are concurrent
24156 	 * hash_remove's for this instance.
24157 	 */
24158 	lockp = tcp->tcp_acceptor_lockp;
24159 
24160 	if (tcp->tcp_ptpahn == NULL)
24161 		return;
24162 
24163 	ASSERT(lockp != NULL);
24164 	mutex_enter(lockp);
24165 	if (tcp->tcp_ptpahn) {
24166 		tcpnext = tcp->tcp_acceptor_hash;
24167 		if (tcpnext) {
24168 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
24169 			tcp->tcp_acceptor_hash = NULL;
24170 		}
24171 		*tcp->tcp_ptpahn = tcpnext;
24172 		tcp->tcp_ptpahn = NULL;
24173 	}
24174 	mutex_exit(lockp);
24175 	tcp->tcp_acceptor_lockp = NULL;
24176 }
24177 
24178 /* Data for fast netmask macro used by tcp_hsp_lookup */
24179 
24180 static ipaddr_t netmasks[] = {
24181 	IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET,
24182 	IN_CLASSC_NET | IN_CLASSD_NET  /* Class C,D,E */
24183 };
24184 
24185 #define	netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30])
24186 
24187 /*
24188  * XXX This routine should go away and instead we should use the metrics
24189  * associated with the routes to determine the default sndspace and rcvspace.
24190  */
24191 static tcp_hsp_t *
24192 tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *tcps)
24193 {
24194 	tcp_hsp_t *hsp = NULL;
24195 
24196 	/* Quick check without acquiring the lock. */
24197 	if (tcps->tcps_hsp_hash == NULL)
24198 		return (NULL);
24199 
24200 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24201 
24202 	/* This routine finds the best-matching HSP for address addr. */
24203 
24204 	if (tcps->tcps_hsp_hash) {
24205 		int i;
24206 		ipaddr_t srchaddr;
24207 		tcp_hsp_t *hsp_net;
24208 
24209 		/* We do three passes: host, network, and subnet. */
24210 
24211 		srchaddr = addr;
24212 
24213 		for (i = 1; i <= 3; i++) {
24214 			/* Look for exact match on srchaddr */
24215 
24216 			hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(srchaddr)];
24217 			while (hsp) {
24218 				if (hsp->tcp_hsp_vers == IPV4_VERSION &&
24219 				    hsp->tcp_hsp_addr == srchaddr)
24220 					break;
24221 				hsp = hsp->tcp_hsp_next;
24222 			}
24223 			ASSERT(hsp == NULL ||
24224 			    hsp->tcp_hsp_vers == IPV4_VERSION);
24225 
24226 			/*
24227 			 * If this is the first pass:
24228 			 *   If we found a match, great, return it.
24229 			 *   If not, search for the network on the second pass.
24230 			 */
24231 
24232 			if (i == 1)
24233 				if (hsp)
24234 					break;
24235 				else
24236 				{
24237 					srchaddr = addr & netmask(addr);
24238 					continue;
24239 				}
24240 
24241 			/*
24242 			 * If this is the second pass:
24243 			 *   If we found a match, but there's a subnet mask,
24244 			 *    save the match but try again using the subnet
24245 			 *    mask on the third pass.
24246 			 *   Otherwise, return whatever we found.
24247 			 */
24248 
24249 			if (i == 2) {
24250 				if (hsp && hsp->tcp_hsp_subnet) {
24251 					hsp_net = hsp;
24252 					srchaddr = addr & hsp->tcp_hsp_subnet;
24253 					continue;
24254 				} else {
24255 					break;
24256 				}
24257 			}
24258 
24259 			/*
24260 			 * This must be the third pass.  If we didn't find
24261 			 * anything, return the saved network HSP instead.
24262 			 */
24263 
24264 			if (!hsp)
24265 				hsp = hsp_net;
24266 		}
24267 	}
24268 
24269 	rw_exit(&tcps->tcps_hsp_lock);
24270 	return (hsp);
24271 }
24272 
24273 /*
24274  * XXX Equally broken as the IPv4 routine. Doesn't handle longest
24275  * match lookup.
24276  */
24277 static tcp_hsp_t *
24278 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr, tcp_stack_t *tcps)
24279 {
24280 	tcp_hsp_t *hsp = NULL;
24281 
24282 	/* Quick check without acquiring the lock. */
24283 	if (tcps->tcps_hsp_hash == NULL)
24284 		return (NULL);
24285 
24286 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24287 
24288 	/* This routine finds the best-matching HSP for address addr. */
24289 
24290 	if (tcps->tcps_hsp_hash) {
24291 		int i;
24292 		in6_addr_t v6srchaddr;
24293 		tcp_hsp_t *hsp_net;
24294 
24295 		/* We do three passes: host, network, and subnet. */
24296 
24297 		v6srchaddr = *v6addr;
24298 
24299 		for (i = 1; i <= 3; i++) {
24300 			/* Look for exact match on srchaddr */
24301 
24302 			hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(
24303 			    V4_PART_OF_V6(v6srchaddr))];
24304 			while (hsp) {
24305 				if (hsp->tcp_hsp_vers == IPV6_VERSION &&
24306 				    IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
24307 				    &v6srchaddr))
24308 					break;
24309 				hsp = hsp->tcp_hsp_next;
24310 			}
24311 
24312 			/*
24313 			 * If this is the first pass:
24314 			 *   If we found a match, great, return it.
24315 			 *   If not, search for the network on the second pass.
24316 			 */
24317 
24318 			if (i == 1)
24319 				if (hsp)
24320 					break;
24321 				else {
24322 					/* Assume a 64 bit mask */
24323 					v6srchaddr.s6_addr32[0] =
24324 					    v6addr->s6_addr32[0];
24325 					v6srchaddr.s6_addr32[1] =
24326 					    v6addr->s6_addr32[1];
24327 					v6srchaddr.s6_addr32[2] = 0;
24328 					v6srchaddr.s6_addr32[3] = 0;
24329 					continue;
24330 				}
24331 
24332 			/*
24333 			 * If this is the second pass:
24334 			 *   If we found a match, but there's a subnet mask,
24335 			 *    save the match but try again using the subnet
24336 			 *    mask on the third pass.
24337 			 *   Otherwise, return whatever we found.
24338 			 */
24339 
24340 			if (i == 2) {
24341 				ASSERT(hsp == NULL ||
24342 				    hsp->tcp_hsp_vers == IPV6_VERSION);
24343 				if (hsp &&
24344 				    !IN6_IS_ADDR_UNSPECIFIED(
24345 				    &hsp->tcp_hsp_subnet_v6)) {
24346 					hsp_net = hsp;
24347 					V6_MASK_COPY(*v6addr,
24348 					    hsp->tcp_hsp_subnet_v6, v6srchaddr);
24349 					continue;
24350 				} else {
24351 					break;
24352 				}
24353 			}
24354 
24355 			/*
24356 			 * This must be the third pass.  If we didn't find
24357 			 * anything, return the saved network HSP instead.
24358 			 */
24359 
24360 			if (!hsp)
24361 				hsp = hsp_net;
24362 		}
24363 	}
24364 
24365 	rw_exit(&tcps->tcps_hsp_lock);
24366 	return (hsp);
24367 }
24368 
24369 /*
24370  * Type three generator adapted from the random() function in 4.4 BSD:
24371  */
24372 
24373 /*
24374  * Copyright (c) 1983, 1993
24375  *	The Regents of the University of California.  All rights reserved.
24376  *
24377  * Redistribution and use in source and binary forms, with or without
24378  * modification, are permitted provided that the following conditions
24379  * are met:
24380  * 1. Redistributions of source code must retain the above copyright
24381  *    notice, this list of conditions and the following disclaimer.
24382  * 2. Redistributions in binary form must reproduce the above copyright
24383  *    notice, this list of conditions and the following disclaimer in the
24384  *    documentation and/or other materials provided with the distribution.
24385  * 3. All advertising materials mentioning features or use of this software
24386  *    must display the following acknowledgement:
24387  *	This product includes software developed by the University of
24388  *	California, Berkeley and its contributors.
24389  * 4. Neither the name of the University nor the names of its contributors
24390  *    may be used to endorse or promote products derived from this software
24391  *    without specific prior written permission.
24392  *
24393  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24394  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24395  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24396  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24397  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24398  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24399  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24400  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24401  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24402  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24403  * SUCH DAMAGE.
24404  */
24405 
24406 /* Type 3 -- x**31 + x**3 + 1 */
24407 #define	DEG_3		31
24408 #define	SEP_3		3
24409 
24410 
24411 /* Protected by tcp_random_lock */
24412 static int tcp_randtbl[DEG_3 + 1];
24413 
24414 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
24415 static int *tcp_random_rptr = &tcp_randtbl[1];
24416 
24417 static int *tcp_random_state = &tcp_randtbl[1];
24418 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
24419 
24420 kmutex_t tcp_random_lock;
24421 
24422 void
24423 tcp_random_init(void)
24424 {
24425 	int i;
24426 	hrtime_t hrt;
24427 	time_t wallclock;
24428 	uint64_t result;
24429 
24430 	/*
24431 	 * Use high-res timer and current time for seed.  Gethrtime() returns
24432 	 * a longlong, which may contain resolution down to nanoseconds.
24433 	 * The current time will either be a 32-bit or a 64-bit quantity.
24434 	 * XOR the two together in a 64-bit result variable.
24435 	 * Convert the result to a 32-bit value by multiplying the high-order
24436 	 * 32-bits by the low-order 32-bits.
24437 	 */
24438 
24439 	hrt = gethrtime();
24440 	(void) drv_getparm(TIME, &wallclock);
24441 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
24442 	mutex_enter(&tcp_random_lock);
24443 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
24444 	    (result & 0xffffffff);
24445 
24446 	for (i = 1; i < DEG_3; i++)
24447 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
24448 		    + 12345;
24449 	tcp_random_fptr = &tcp_random_state[SEP_3];
24450 	tcp_random_rptr = &tcp_random_state[0];
24451 	mutex_exit(&tcp_random_lock);
24452 	for (i = 0; i < 10 * DEG_3; i++)
24453 		(void) tcp_random();
24454 }
24455 
24456 /*
24457  * tcp_random: Return a random number in the range [1 - (128K + 1)].
24458  * This range is selected to be approximately centered on TCP_ISS / 2,
24459  * and easy to compute. We get this value by generating a 32-bit random
24460  * number, selecting out the high-order 17 bits, and then adding one so
24461  * that we never return zero.
24462  */
24463 int
24464 tcp_random(void)
24465 {
24466 	int i;
24467 
24468 	mutex_enter(&tcp_random_lock);
24469 	*tcp_random_fptr += *tcp_random_rptr;
24470 
24471 	/*
24472 	 * The high-order bits are more random than the low-order bits,
24473 	 * so we select out the high-order 17 bits and add one so that
24474 	 * we never return zero.
24475 	 */
24476 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
24477 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
24478 		tcp_random_fptr = tcp_random_state;
24479 		++tcp_random_rptr;
24480 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
24481 		tcp_random_rptr = tcp_random_state;
24482 
24483 	mutex_exit(&tcp_random_lock);
24484 	return (i);
24485 }
24486 
24487 /*
24488  * XXX This will go away when TPI is extended to send
24489  * info reqs to sockfs/timod .....
24490  * Given a queue, set the max packet size for the write
24491  * side of the queue below stream head.  This value is
24492  * cached on the stream head.
24493  * Returns 1 on success, 0 otherwise.
24494  */
24495 static int
24496 setmaxps(queue_t *q, int maxpsz)
24497 {
24498 	struct stdata	*stp;
24499 	queue_t		*wq;
24500 	stp = STREAM(q);
24501 
24502 	/*
24503 	 * At this point change of a queue parameter is not allowed
24504 	 * when a multiplexor is sitting on top.
24505 	 */
24506 	if (stp->sd_flag & STPLEX)
24507 		return (0);
24508 
24509 	claimstr(stp->sd_wrq);
24510 	wq = stp->sd_wrq->q_next;
24511 	ASSERT(wq != NULL);
24512 	(void) strqset(wq, QMAXPSZ, 0, maxpsz);
24513 	releasestr(stp->sd_wrq);
24514 	return (1);
24515 }
24516 
24517 static int
24518 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp,
24519     int *t_errorp, int *sys_errorp)
24520 {
24521 	int error;
24522 	int is_absreq_failure;
24523 	t_scalar_t *opt_lenp;
24524 	t_scalar_t opt_offset;
24525 	int prim_type;
24526 	struct T_conn_req *tcreqp;
24527 	struct T_conn_res *tcresp;
24528 	cred_t *cr;
24529 
24530 	cr = DB_CREDDEF(mp, tcp->tcp_cred);
24531 
24532 	prim_type = ((union T_primitives *)mp->b_rptr)->type;
24533 	ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES ||
24534 	    prim_type == T_CONN_RES);
24535 
24536 	switch (prim_type) {
24537 	case T_CONN_REQ:
24538 		tcreqp = (struct T_conn_req *)mp->b_rptr;
24539 		opt_offset = tcreqp->OPT_offset;
24540 		opt_lenp = (t_scalar_t *)&tcreqp->OPT_length;
24541 		break;
24542 	case O_T_CONN_RES:
24543 	case T_CONN_RES:
24544 		tcresp = (struct T_conn_res *)mp->b_rptr;
24545 		opt_offset = tcresp->OPT_offset;
24546 		opt_lenp = (t_scalar_t *)&tcresp->OPT_length;
24547 		break;
24548 	}
24549 
24550 	*t_errorp = 0;
24551 	*sys_errorp = 0;
24552 	*do_disconnectp = 0;
24553 
24554 	error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp,
24555 	    opt_offset, cr, &tcp_opt_obj,
24556 	    NULL, &is_absreq_failure);
24557 
24558 	switch (error) {
24559 	case  0:		/* no error */
24560 		ASSERT(is_absreq_failure == 0);
24561 		return (0);
24562 	case ENOPROTOOPT:
24563 		*t_errorp = TBADOPT;
24564 		break;
24565 	case EACCES:
24566 		*t_errorp = TACCES;
24567 		break;
24568 	default:
24569 		*t_errorp = TSYSERR; *sys_errorp = error;
24570 		break;
24571 	}
24572 	if (is_absreq_failure != 0) {
24573 		/*
24574 		 * The connection request should get the local ack
24575 		 * T_OK_ACK and then a T_DISCON_IND.
24576 		 */
24577 		*do_disconnectp = 1;
24578 	}
24579 	return (-1);
24580 }
24581 
24582 /*
24583  * Split this function out so that if the secret changes, I'm okay.
24584  *
24585  * Initialize the tcp_iss_cookie and tcp_iss_key.
24586  */
24587 
24588 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
24589 
24590 static void
24591 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps)
24592 {
24593 	struct {
24594 		int32_t current_time;
24595 		uint32_t randnum;
24596 		uint16_t pad;
24597 		uint8_t ether[6];
24598 		uint8_t passwd[PASSWD_SIZE];
24599 	} tcp_iss_cookie;
24600 	time_t t;
24601 
24602 	/*
24603 	 * Start with the current absolute time.
24604 	 */
24605 	(void) drv_getparm(TIME, &t);
24606 	tcp_iss_cookie.current_time = t;
24607 
24608 	/*
24609 	 * XXX - Need a more random number per RFC 1750, not this crap.
24610 	 * OTOH, if what follows is pretty random, then I'm in better shape.
24611 	 */
24612 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
24613 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
24614 
24615 	/*
24616 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
24617 	 * as a good template.
24618 	 */
24619 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
24620 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
24621 
24622 	/*
24623 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
24624 	 */
24625 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
24626 
24627 	/*
24628 	 * See 4010593 if this section becomes a problem again,
24629 	 * but the local ethernet address is useful here.
24630 	 */
24631 	(void) localetheraddr(NULL,
24632 	    (struct ether_addr *)&tcp_iss_cookie.ether);
24633 
24634 	/*
24635 	 * Hash 'em all together.  The MD5Final is called per-connection.
24636 	 */
24637 	mutex_enter(&tcps->tcps_iss_key_lock);
24638 	MD5Init(&tcps->tcps_iss_key);
24639 	MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie,
24640 	    sizeof (tcp_iss_cookie));
24641 	mutex_exit(&tcps->tcps_iss_key_lock);
24642 }
24643 
24644 /*
24645  * Set the RFC 1948 pass phrase
24646  */
24647 /* ARGSUSED */
24648 static int
24649 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
24650     cred_t *cr)
24651 {
24652 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
24653 
24654 	/*
24655 	 * Basically, value contains a new pass phrase.  Pass it along!
24656 	 */
24657 	tcp_iss_key_init((uint8_t *)value, strlen(value), tcps);
24658 	return (0);
24659 }
24660 
24661 /* ARGSUSED */
24662 static int
24663 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags)
24664 {
24665 	bzero(buf, sizeof (tcp_sack_info_t));
24666 	return (0);
24667 }
24668 
24669 /* ARGSUSED */
24670 static int
24671 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags)
24672 {
24673 	bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH);
24674 	return (0);
24675 }
24676 
24677 /*
24678  * Make sure we wait until the default queue is setup, yet allow
24679  * tcp_g_q_create() to open a TCP stream.
24680  * We need to allow tcp_g_q_create() do do an open
24681  * of tcp, hence we compare curhread.
24682  * All others have to wait until the tcps_g_q has been
24683  * setup.
24684  */
24685 void
24686 tcp_g_q_setup(tcp_stack_t *tcps)
24687 {
24688 	mutex_enter(&tcps->tcps_g_q_lock);
24689 	if (tcps->tcps_g_q != NULL) {
24690 		mutex_exit(&tcps->tcps_g_q_lock);
24691 		return;
24692 	}
24693 	if (tcps->tcps_g_q_creator == NULL) {
24694 		/* This thread will set it up */
24695 		tcps->tcps_g_q_creator = curthread;
24696 		mutex_exit(&tcps->tcps_g_q_lock);
24697 		tcp_g_q_create(tcps);
24698 		mutex_enter(&tcps->tcps_g_q_lock);
24699 		ASSERT(tcps->tcps_g_q_creator == curthread);
24700 		tcps->tcps_g_q_creator = NULL;
24701 		cv_signal(&tcps->tcps_g_q_cv);
24702 		ASSERT(tcps->tcps_g_q != NULL);
24703 		mutex_exit(&tcps->tcps_g_q_lock);
24704 		return;
24705 	}
24706 	/* Everybody but the creator has to wait */
24707 	if (tcps->tcps_g_q_creator != curthread) {
24708 		while (tcps->tcps_g_q == NULL)
24709 			cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock);
24710 	}
24711 	mutex_exit(&tcps->tcps_g_q_lock);
24712 }
24713 
24714 #define	IP	"ip"
24715 
24716 #define	TCP6DEV		"/devices/pseudo/tcp6@0:tcp6"
24717 
24718 /*
24719  * Create a default tcp queue here instead of in strplumb
24720  */
24721 void
24722 tcp_g_q_create(tcp_stack_t *tcps)
24723 {
24724 	int error;
24725 	ldi_handle_t	lh = NULL;
24726 	ldi_ident_t	li = NULL;
24727 	int		rval;
24728 	cred_t		*cr;
24729 	major_t IP_MAJ;
24730 
24731 #ifdef NS_DEBUG
24732 	(void) printf("tcp_g_q_create()\n");
24733 #endif
24734 
24735 	IP_MAJ = ddi_name_to_major(IP);
24736 
24737 	ASSERT(tcps->tcps_g_q_creator == curthread);
24738 
24739 	error = ldi_ident_from_major(IP_MAJ, &li);
24740 	if (error) {
24741 #ifdef DEBUG
24742 		printf("tcp_g_q_create: lyr ident get failed error %d\n",
24743 		    error);
24744 #endif
24745 		return;
24746 	}
24747 
24748 	cr = zone_get_kcred(netstackid_to_zoneid(
24749 	    tcps->tcps_netstack->netstack_stackid));
24750 	ASSERT(cr != NULL);
24751 	/*
24752 	 * We set the tcp default queue to IPv6 because IPv4 falls
24753 	 * back to IPv6 when it can't find a client, but
24754 	 * IPv6 does not fall back to IPv4.
24755 	 */
24756 	error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li);
24757 	if (error) {
24758 #ifdef DEBUG
24759 		printf("tcp_g_q_create: open of TCP6DEV failed error %d\n",
24760 		    error);
24761 #endif
24762 		goto out;
24763 	}
24764 
24765 	/*
24766 	 * This ioctl causes the tcp framework to cache a pointer to
24767 	 * this stream, so we don't want to close the stream after
24768 	 * this operation.
24769 	 * Use the kernel credentials that are for the zone we're in.
24770 	 */
24771 	error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q,
24772 	    (intptr_t)0, FKIOCTL, cr, &rval);
24773 	if (error) {
24774 #ifdef DEBUG
24775 		printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed "
24776 		    "error %d\n", error);
24777 #endif
24778 		goto out;
24779 	}
24780 	tcps->tcps_g_q_lh = lh;	/* For tcp_g_q_close */
24781 	lh = NULL;
24782 out:
24783 	/* Close layered handles */
24784 	if (li)
24785 		ldi_ident_release(li);
24786 	/* Keep cred around until _inactive needs it */
24787 	tcps->tcps_g_q_cr = cr;
24788 }
24789 
24790 /*
24791  * We keep tcp_g_q set until all other tcp_t's in the zone
24792  * has gone away, and then when tcp_g_q_inactive() is called
24793  * we clear it.
24794  */
24795 void
24796 tcp_g_q_destroy(tcp_stack_t *tcps)
24797 {
24798 #ifdef NS_DEBUG
24799 	(void) printf("tcp_g_q_destroy()for stack %d\n",
24800 	    tcps->tcps_netstack->netstack_stackid);
24801 #endif
24802 
24803 	if (tcps->tcps_g_q == NULL) {
24804 		return;	/* Nothing to cleanup */
24805 	}
24806 	/*
24807 	 * Drop reference corresponding to the default queue.
24808 	 * This reference was added from tcp_open when the default queue
24809 	 * was created, hence we compensate for this extra drop in
24810 	 * tcp_g_q_close. If the refcnt drops to zero here it means
24811 	 * the default queue was the last one to be open, in which
24812 	 * case, then tcp_g_q_inactive will be
24813 	 * called as a result of the refrele.
24814 	 */
24815 	TCPS_REFRELE(tcps);
24816 }
24817 
24818 /*
24819  * Called when last tcp_t drops reference count using TCPS_REFRELE.
24820  * Run by tcp_q_q_inactive using a taskq.
24821  */
24822 static void
24823 tcp_g_q_close(void *arg)
24824 {
24825 	tcp_stack_t *tcps = arg;
24826 	int error;
24827 	ldi_handle_t	lh = NULL;
24828 	ldi_ident_t	li = NULL;
24829 	cred_t		*cr;
24830 	major_t IP_MAJ;
24831 
24832 	IP_MAJ = ddi_name_to_major(IP);
24833 
24834 #ifdef NS_DEBUG
24835 	(void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n",
24836 	    tcps->tcps_netstack->netstack_stackid,
24837 	    tcps->tcps_netstack->netstack_refcnt);
24838 #endif
24839 	lh = tcps->tcps_g_q_lh;
24840 	if (lh == NULL)
24841 		return;	/* Nothing to cleanup */
24842 
24843 	ASSERT(tcps->tcps_refcnt == 1);
24844 	ASSERT(tcps->tcps_g_q != NULL);
24845 
24846 	error = ldi_ident_from_major(IP_MAJ, &li);
24847 	if (error) {
24848 #ifdef DEBUG
24849 		printf("tcp_g_q_inactive: lyr ident get failed error %d\n",
24850 		    error);
24851 #endif
24852 		return;
24853 	}
24854 
24855 	cr = tcps->tcps_g_q_cr;
24856 	tcps->tcps_g_q_cr = NULL;
24857 	ASSERT(cr != NULL);
24858 
24859 	/*
24860 	 * Make sure we can break the recursion when tcp_close decrements
24861 	 * the reference count causing g_q_inactive to be called again.
24862 	 */
24863 	tcps->tcps_g_q_lh = NULL;
24864 
24865 	/* close the default queue */
24866 	(void) ldi_close(lh, FREAD|FWRITE, cr);
24867 	/*
24868 	 * At this point in time tcps and the rest of netstack_t might
24869 	 * have been deleted.
24870 	 */
24871 	tcps = NULL;
24872 
24873 	/* Close layered handles */
24874 	ldi_ident_release(li);
24875 	crfree(cr);
24876 }
24877 
24878 /*
24879  * Called when last tcp_t drops reference count using TCPS_REFRELE.
24880  *
24881  * Have to ensure that the ldi routines are not used by an
24882  * interrupt thread by using a taskq.
24883  */
24884 void
24885 tcp_g_q_inactive(tcp_stack_t *tcps)
24886 {
24887 	if (tcps->tcps_g_q_lh == NULL)
24888 		return;	/* Nothing to cleanup */
24889 
24890 	ASSERT(tcps->tcps_refcnt == 0);
24891 	TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */
24892 
24893 	if (servicing_interrupt()) {
24894 		(void) taskq_dispatch(tcp_taskq, tcp_g_q_close,
24895 		    (void *) tcps, TQ_SLEEP);
24896 	} else {
24897 		tcp_g_q_close(tcps);
24898 	}
24899 }
24900 
24901 /*
24902  * Called by IP when IP is loaded into the kernel
24903  */
24904 void
24905 tcp_ddi_g_init(void)
24906 {
24907 	tcp_timercache = kmem_cache_create("tcp_timercache",
24908 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
24909 	    NULL, NULL, NULL, NULL, NULL, 0);
24910 
24911 	tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache",
24912 	    sizeof (tcp_sack_info_t), 0,
24913 	    tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0);
24914 
24915 	tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache",
24916 	    TCP_MAX_COMBINED_HEADER_LENGTH, 0,
24917 	    tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0);
24918 
24919 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
24920 
24921 	/* Initialize the random number generator */
24922 	tcp_random_init();
24923 
24924 	tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput);
24925 	tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close);
24926 
24927 	/* A single callback independently of how many netstacks we have */
24928 	ip_squeue_init(tcp_squeue_add);
24929 
24930 	tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics);
24931 
24932 	tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1,
24933 	    TASKQ_PREPOPULATE);
24934 
24935 	/*
24936 	 * We want to be informed each time a stack is created or
24937 	 * destroyed in the kernel, so we can maintain the
24938 	 * set of tcp_stack_t's.
24939 	 */
24940 	netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown,
24941 	    tcp_stack_fini);
24942 }
24943 
24944 
24945 /*
24946  * Initialize the TCP stack instance.
24947  */
24948 static void *
24949 tcp_stack_init(netstackid_t stackid, netstack_t *ns)
24950 {
24951 	tcp_stack_t	*tcps;
24952 	tcpparam_t	*pa;
24953 	int		i;
24954 
24955 	tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP);
24956 	tcps->tcps_netstack = ns;
24957 
24958 	/* Initialize locks */
24959 	rw_init(&tcps->tcps_hsp_lock, NULL, RW_DEFAULT, NULL);
24960 	mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL);
24961 	cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL);
24962 	mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
24963 	mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
24964 
24965 	tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
24966 	tcps->tcps_g_epriv_ports[0] = 2049;
24967 	tcps->tcps_g_epriv_ports[1] = 4045;
24968 	tcps->tcps_min_anonpriv_port = 512;
24969 
24970 	tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) *
24971 	    TCP_BIND_FANOUT_SIZE, KM_SLEEP);
24972 	tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) *
24973 	    TCP_FANOUT_SIZE, KM_SLEEP);
24974 
24975 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
24976 		mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL,
24977 		    MUTEX_DEFAULT, NULL);
24978 	}
24979 
24980 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
24981 		mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL,
24982 		    MUTEX_DEFAULT, NULL);
24983 	}
24984 
24985 	/* TCP's IPsec code calls the packet dropper. */
24986 	ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement");
24987 
24988 	pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP);
24989 	tcps->tcps_params = pa;
24990 	bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr));
24991 
24992 	(void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params,
24993 	    A_CNT(lcl_tcp_param_arr), tcps);
24994 
24995 	/*
24996 	 * Note: To really walk the device tree you need the devinfo
24997 	 * pointer to your device which is only available after probe/attach.
24998 	 * The following is safe only because it uses ddi_root_node()
24999 	 */
25000 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
25001 	    tcp_opt_obj.odb_opt_arr_cnt);
25002 
25003 	/*
25004 	 * Initialize RFC 1948 secret values.  This will probably be reset once
25005 	 * by the boot scripts.
25006 	 *
25007 	 * Use NULL name, as the name is caught by the new lockstats.
25008 	 *
25009 	 * Initialize with some random, non-guessable string, like the global
25010 	 * T_INFO_ACK.
25011 	 */
25012 
25013 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
25014 	    sizeof (tcp_g_t_info_ack), tcps);
25015 
25016 	tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics);
25017 	tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps);
25018 
25019 	return (tcps);
25020 }
25021 
25022 /*
25023  * Called when the IP module is about to be unloaded.
25024  */
25025 void
25026 tcp_ddi_g_destroy(void)
25027 {
25028 	tcp_g_kstat_fini(tcp_g_kstat);
25029 	tcp_g_kstat = NULL;
25030 	bzero(&tcp_g_statistics, sizeof (tcp_g_statistics));
25031 
25032 	mutex_destroy(&tcp_random_lock);
25033 
25034 	kmem_cache_destroy(tcp_timercache);
25035 	kmem_cache_destroy(tcp_sack_info_cache);
25036 	kmem_cache_destroy(tcp_iphc_cache);
25037 
25038 	netstack_unregister(NS_TCP);
25039 	taskq_destroy(tcp_taskq);
25040 }
25041 
25042 /*
25043  * Shut down the TCP stack instance.
25044  */
25045 /* ARGSUSED */
25046 static void
25047 tcp_stack_shutdown(netstackid_t stackid, void *arg)
25048 {
25049 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
25050 
25051 	tcp_g_q_destroy(tcps);
25052 }
25053 
25054 /*
25055  * Free the TCP stack instance.
25056  */
25057 static void
25058 tcp_stack_fini(netstackid_t stackid, void *arg)
25059 {
25060 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
25061 	int i;
25062 
25063 	nd_free(&tcps->tcps_g_nd);
25064 	kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr));
25065 	tcps->tcps_params = NULL;
25066 	kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t));
25067 	tcps->tcps_wroff_xtra_param = NULL;
25068 	kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t));
25069 	tcps->tcps_mdt_head_param = NULL;
25070 	kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t));
25071 	tcps->tcps_mdt_tail_param = NULL;
25072 	kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t));
25073 	tcps->tcps_mdt_max_pbufs_param = NULL;
25074 
25075 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
25076 		ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL);
25077 		mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock);
25078 	}
25079 
25080 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
25081 		ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL);
25082 		mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock);
25083 	}
25084 
25085 	kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE);
25086 	tcps->tcps_bind_fanout = NULL;
25087 
25088 	kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE);
25089 	tcps->tcps_acceptor_fanout = NULL;
25090 
25091 	mutex_destroy(&tcps->tcps_iss_key_lock);
25092 	rw_destroy(&tcps->tcps_hsp_lock);
25093 	mutex_destroy(&tcps->tcps_g_q_lock);
25094 	cv_destroy(&tcps->tcps_g_q_cv);
25095 	mutex_destroy(&tcps->tcps_epriv_port_lock);
25096 
25097 	ip_drop_unregister(&tcps->tcps_dropper);
25098 
25099 	tcp_kstat2_fini(stackid, tcps->tcps_kstat);
25100 	tcps->tcps_kstat = NULL;
25101 	bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics));
25102 
25103 	tcp_kstat_fini(stackid, tcps->tcps_mibkp);
25104 	tcps->tcps_mibkp = NULL;
25105 
25106 	kmem_free(tcps, sizeof (*tcps));
25107 }
25108 
25109 /*
25110  * Generate ISS, taking into account NDD changes may happen halfway through.
25111  * (If the iss is not zero, set it.)
25112  */
25113 
25114 static void
25115 tcp_iss_init(tcp_t *tcp)
25116 {
25117 	MD5_CTX context;
25118 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
25119 	uint32_t answer[4];
25120 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25121 
25122 	tcps->tcps_iss_incr_extra += (ISS_INCR >> 1);
25123 	tcp->tcp_iss = tcps->tcps_iss_incr_extra;
25124 	switch (tcps->tcps_strong_iss) {
25125 	case 2:
25126 		mutex_enter(&tcps->tcps_iss_key_lock);
25127 		context = tcps->tcps_iss_key;
25128 		mutex_exit(&tcps->tcps_iss_key_lock);
25129 		arg.ports = tcp->tcp_ports;
25130 		if (tcp->tcp_ipversion == IPV4_VERSION) {
25131 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
25132 			    &arg.src);
25133 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst,
25134 			    &arg.dst);
25135 		} else {
25136 			arg.src = tcp->tcp_ip6h->ip6_src;
25137 			arg.dst = tcp->tcp_ip6h->ip6_dst;
25138 		}
25139 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
25140 		MD5Final((uchar_t *)answer, &context);
25141 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
25142 		/*
25143 		 * Now that we've hashed into a unique per-connection sequence
25144 		 * space, add a random increment per strong_iss == 1.  So I
25145 		 * guess we'll have to...
25146 		 */
25147 		/* FALLTHRU */
25148 	case 1:
25149 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
25150 		break;
25151 	default:
25152 		tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
25153 		break;
25154 	}
25155 	tcp->tcp_valid_bits = TCP_ISS_VALID;
25156 	tcp->tcp_fss = tcp->tcp_iss - 1;
25157 	tcp->tcp_suna = tcp->tcp_iss;
25158 	tcp->tcp_snxt = tcp->tcp_iss + 1;
25159 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
25160 	tcp->tcp_csuna = tcp->tcp_snxt;
25161 }
25162 
25163 /*
25164  * Exported routine for extracting active tcp connection status.
25165  *
25166  * This is used by the Solaris Cluster Networking software to
25167  * gather a list of connections that need to be forwarded to
25168  * specific nodes in the cluster when configuration changes occur.
25169  *
25170  * The callback is invoked for each tcp_t structure. Returning
25171  * non-zero from the callback routine terminates the search.
25172  */
25173 int
25174 cl_tcp_walk_list(int (*cl_callback)(cl_tcp_info_t *, void *),
25175     void *arg)
25176 {
25177 	netstack_handle_t nh;
25178 	netstack_t *ns;
25179 	int ret = 0;
25180 
25181 	netstack_next_init(&nh);
25182 	while ((ns = netstack_next(&nh)) != NULL) {
25183 		ret = cl_tcp_walk_list_stack(cl_callback, arg,
25184 		    ns->netstack_tcp);
25185 		netstack_rele(ns);
25186 	}
25187 	netstack_next_fini(&nh);
25188 	return (ret);
25189 }
25190 
25191 static int
25192 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg,
25193     tcp_stack_t *tcps)
25194 {
25195 	tcp_t *tcp;
25196 	cl_tcp_info_t	cl_tcpi;
25197 	connf_t	*connfp;
25198 	conn_t	*connp;
25199 	int	i;
25200 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
25201 
25202 	ASSERT(callback != NULL);
25203 
25204 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
25205 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
25206 		connp = NULL;
25207 
25208 		while ((connp =
25209 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
25210 
25211 			tcp = connp->conn_tcp;
25212 			cl_tcpi.cl_tcpi_version = CL_TCPI_V1;
25213 			cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion;
25214 			cl_tcpi.cl_tcpi_state = tcp->tcp_state;
25215 			cl_tcpi.cl_tcpi_lport = tcp->tcp_lport;
25216 			cl_tcpi.cl_tcpi_fport = tcp->tcp_fport;
25217 			/*
25218 			 * The macros tcp_laddr and tcp_faddr give the IPv4
25219 			 * addresses. They are copied implicitly below as
25220 			 * mapped addresses.
25221 			 */
25222 			cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6;
25223 			if (tcp->tcp_ipversion == IPV4_VERSION) {
25224 				cl_tcpi.cl_tcpi_faddr =
25225 				    tcp->tcp_ipha->ipha_dst;
25226 			} else {
25227 				cl_tcpi.cl_tcpi_faddr_v6 =
25228 				    tcp->tcp_ip6h->ip6_dst;
25229 			}
25230 
25231 			/*
25232 			 * If the callback returns non-zero
25233 			 * we terminate the traversal.
25234 			 */
25235 			if ((*callback)(&cl_tcpi, arg) != 0) {
25236 				CONN_DEC_REF(tcp->tcp_connp);
25237 				return (1);
25238 			}
25239 		}
25240 	}
25241 
25242 	return (0);
25243 }
25244 
25245 /*
25246  * Macros used for accessing the different types of sockaddr
25247  * structures inside a tcp_ioc_abort_conn_t.
25248  */
25249 #define	TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local)
25250 #define	TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote)
25251 #define	TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr)
25252 #define	TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr)
25253 #define	TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port)
25254 #define	TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port)
25255 #define	TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local)
25256 #define	TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote)
25257 #define	TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr)
25258 #define	TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr)
25259 #define	TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port)
25260 #define	TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port)
25261 
25262 /*
25263  * Return the correct error code to mimic the behavior
25264  * of a connection reset.
25265  */
25266 #define	TCP_AC_GET_ERRCODE(state, err) {	\
25267 		switch ((state)) {		\
25268 		case TCPS_SYN_SENT:		\
25269 		case TCPS_SYN_RCVD:		\
25270 			(err) = ECONNREFUSED;	\
25271 			break;			\
25272 		case TCPS_ESTABLISHED:		\
25273 		case TCPS_FIN_WAIT_1:		\
25274 		case TCPS_FIN_WAIT_2:		\
25275 		case TCPS_CLOSE_WAIT:		\
25276 			(err) = ECONNRESET;	\
25277 			break;			\
25278 		case TCPS_CLOSING:		\
25279 		case TCPS_LAST_ACK:		\
25280 		case TCPS_TIME_WAIT:		\
25281 			(err) = 0;		\
25282 			break;			\
25283 		default:			\
25284 			(err) = ENXIO;		\
25285 		}				\
25286 	}
25287 
25288 /*
25289  * Check if a tcp structure matches the info in acp.
25290  */
25291 #define	TCP_AC_ADDR_MATCH(acp, tcp)					\
25292 	(((acp)->ac_local.ss_family == AF_INET) ?		\
25293 	((TCP_AC_V4LOCAL((acp)) == INADDR_ANY ||		\
25294 	TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) &&	\
25295 	(TCP_AC_V4REMOTE((acp)) == INADDR_ANY ||		\
25296 	TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) &&	\
25297 	(TCP_AC_V4LPORT((acp)) == 0 ||				\
25298 	TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) &&		\
25299 	(TCP_AC_V4RPORT((acp)) == 0 ||				\
25300 	TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) &&		\
25301 	(acp)->ac_start <= (tcp)->tcp_state &&	\
25302 	(acp)->ac_end >= (tcp)->tcp_state) :		\
25303 	((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) ||	\
25304 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)),		\
25305 	&(tcp)->tcp_ip_src_v6)) &&				\
25306 	(IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) ||	\
25307 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)),		\
25308 	&(tcp)->tcp_remote_v6)) &&				\
25309 	(TCP_AC_V6LPORT((acp)) == 0 ||				\
25310 	TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) &&		\
25311 	(TCP_AC_V6RPORT((acp)) == 0 ||				\
25312 	TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) &&		\
25313 	(acp)->ac_start <= (tcp)->tcp_state &&	\
25314 	(acp)->ac_end >= (tcp)->tcp_state))
25315 
25316 #define	TCP_AC_MATCH(acp, tcp)					\
25317 	(((acp)->ac_zoneid == ALL_ZONES ||			\
25318 	(acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ?	\
25319 	TCP_AC_ADDR_MATCH(acp, tcp) : 0)
25320 
25321 /*
25322  * Build a message containing a tcp_ioc_abort_conn_t structure
25323  * which is filled in with information from acp and tp.
25324  */
25325 static mblk_t *
25326 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp)
25327 {
25328 	mblk_t *mp;
25329 	tcp_ioc_abort_conn_t *tacp;
25330 
25331 	mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO);
25332 	if (mp == NULL)
25333 		return (NULL);
25334 
25335 	mp->b_datap->db_type = M_CTL;
25336 
25337 	*((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN;
25338 	tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr +
25339 	    sizeof (uint32_t));
25340 
25341 	tacp->ac_start = acp->ac_start;
25342 	tacp->ac_end = acp->ac_end;
25343 	tacp->ac_zoneid = acp->ac_zoneid;
25344 
25345 	if (acp->ac_local.ss_family == AF_INET) {
25346 		tacp->ac_local.ss_family = AF_INET;
25347 		tacp->ac_remote.ss_family = AF_INET;
25348 		TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src;
25349 		TCP_AC_V4REMOTE(tacp) = tp->tcp_remote;
25350 		TCP_AC_V4LPORT(tacp) = tp->tcp_lport;
25351 		TCP_AC_V4RPORT(tacp) = tp->tcp_fport;
25352 	} else {
25353 		tacp->ac_local.ss_family = AF_INET6;
25354 		tacp->ac_remote.ss_family = AF_INET6;
25355 		TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6;
25356 		TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6;
25357 		TCP_AC_V6LPORT(tacp) = tp->tcp_lport;
25358 		TCP_AC_V6RPORT(tacp) = tp->tcp_fport;
25359 	}
25360 	mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp);
25361 	return (mp);
25362 }
25363 
25364 /*
25365  * Print a tcp_ioc_abort_conn_t structure.
25366  */
25367 static void
25368 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp)
25369 {
25370 	char lbuf[128];
25371 	char rbuf[128];
25372 	sa_family_t af;
25373 	in_port_t lport, rport;
25374 	ushort_t logflags;
25375 
25376 	af = acp->ac_local.ss_family;
25377 
25378 	if (af == AF_INET) {
25379 		(void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp),
25380 		    lbuf, 128);
25381 		(void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp),
25382 		    rbuf, 128);
25383 		lport = ntohs(TCP_AC_V4LPORT(acp));
25384 		rport = ntohs(TCP_AC_V4RPORT(acp));
25385 	} else {
25386 		(void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp),
25387 		    lbuf, 128);
25388 		(void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp),
25389 		    rbuf, 128);
25390 		lport = ntohs(TCP_AC_V6LPORT(acp));
25391 		rport = ntohs(TCP_AC_V6RPORT(acp));
25392 	}
25393 
25394 	logflags = SL_TRACE | SL_NOTE;
25395 	/*
25396 	 * Don't print this message to the console if the operation was done
25397 	 * to a non-global zone.
25398 	 */
25399 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
25400 		logflags |= SL_CONSOLE;
25401 	(void) strlog(TCP_MOD_ID, 0, 1, logflags,
25402 	    "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, "
25403 	    "start = %d, end = %d\n", lbuf, lport, rbuf, rport,
25404 	    acp->ac_start, acp->ac_end);
25405 }
25406 
25407 /*
25408  * Called inside tcp_rput when a message built using
25409  * tcp_ioctl_abort_build_msg is put into a queue.
25410  * Note that when we get here there is no wildcard in acp any more.
25411  */
25412 static void
25413 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp)
25414 {
25415 	tcp_ioc_abort_conn_t *acp;
25416 
25417 	acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t));
25418 	if (tcp->tcp_state <= acp->ac_end) {
25419 		/*
25420 		 * If we get here, we are already on the correct
25421 		 * squeue. This ioctl follows the following path
25422 		 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn
25423 		 * ->tcp_ioctl_abort->squeue_fill (if on a
25424 		 * different squeue)
25425 		 */
25426 		int errcode;
25427 
25428 		TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode);
25429 		(void) tcp_clean_death(tcp, errcode, 26);
25430 	}
25431 	freemsg(mp);
25432 }
25433 
25434 /*
25435  * Abort all matching connections on a hash chain.
25436  */
25437 static int
25438 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count,
25439     boolean_t exact, tcp_stack_t *tcps)
25440 {
25441 	int nmatch, err = 0;
25442 	tcp_t *tcp;
25443 	MBLKP mp, last, listhead = NULL;
25444 	conn_t	*tconnp;
25445 	connf_t	*connfp;
25446 	ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
25447 
25448 	connfp = &ipst->ips_ipcl_conn_fanout[index];
25449 
25450 startover:
25451 	nmatch = 0;
25452 
25453 	mutex_enter(&connfp->connf_lock);
25454 	for (tconnp = connfp->connf_head; tconnp != NULL;
25455 	    tconnp = tconnp->conn_next) {
25456 		tcp = tconnp->conn_tcp;
25457 		if (TCP_AC_MATCH(acp, tcp)) {
25458 			CONN_INC_REF(tcp->tcp_connp);
25459 			mp = tcp_ioctl_abort_build_msg(acp, tcp);
25460 			if (mp == NULL) {
25461 				err = ENOMEM;
25462 				CONN_DEC_REF(tcp->tcp_connp);
25463 				break;
25464 			}
25465 			mp->b_prev = (mblk_t *)tcp;
25466 
25467 			if (listhead == NULL) {
25468 				listhead = mp;
25469 				last = mp;
25470 			} else {
25471 				last->b_next = mp;
25472 				last = mp;
25473 			}
25474 			nmatch++;
25475 			if (exact)
25476 				break;
25477 		}
25478 
25479 		/* Avoid holding lock for too long. */
25480 		if (nmatch >= 500)
25481 			break;
25482 	}
25483 	mutex_exit(&connfp->connf_lock);
25484 
25485 	/* Pass mp into the correct tcp */
25486 	while ((mp = listhead) != NULL) {
25487 		listhead = listhead->b_next;
25488 		tcp = (tcp_t *)mp->b_prev;
25489 		mp->b_next = mp->b_prev = NULL;
25490 		squeue_fill(tcp->tcp_connp->conn_sqp, mp,
25491 		    tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET);
25492 	}
25493 
25494 	*count += nmatch;
25495 	if (nmatch >= 500 && err == 0)
25496 		goto startover;
25497 	return (err);
25498 }
25499 
25500 /*
25501  * Abort all connections that matches the attributes specified in acp.
25502  */
25503 static int
25504 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps)
25505 {
25506 	sa_family_t af;
25507 	uint32_t  ports;
25508 	uint16_t *pports;
25509 	int err = 0, count = 0;
25510 	boolean_t exact = B_FALSE; /* set when there is no wildcard */
25511 	int index = -1;
25512 	ushort_t logflags;
25513 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
25514 
25515 	af = acp->ac_local.ss_family;
25516 
25517 	if (af == AF_INET) {
25518 		if (TCP_AC_V4REMOTE(acp) != INADDR_ANY &&
25519 		    TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) {
25520 			pports = (uint16_t *)&ports;
25521 			pports[1] = TCP_AC_V4LPORT(acp);
25522 			pports[0] = TCP_AC_V4RPORT(acp);
25523 			exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY);
25524 		}
25525 	} else {
25526 		if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) &&
25527 		    TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) {
25528 			pports = (uint16_t *)&ports;
25529 			pports[1] = TCP_AC_V6LPORT(acp);
25530 			pports[0] = TCP_AC_V6RPORT(acp);
25531 			exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp));
25532 		}
25533 	}
25534 
25535 	/*
25536 	 * For cases where remote addr, local port, and remote port are non-
25537 	 * wildcards, tcp_ioctl_abort_bucket will only be called once.
25538 	 */
25539 	if (index != -1) {
25540 		err = tcp_ioctl_abort_bucket(acp, index,
25541 		    &count, exact, tcps);
25542 	} else {
25543 		/*
25544 		 * loop through all entries for wildcard case
25545 		 */
25546 		for (index = 0;
25547 		    index < ipst->ips_ipcl_conn_fanout_size;
25548 		    index++) {
25549 			err = tcp_ioctl_abort_bucket(acp, index,
25550 			    &count, exact, tcps);
25551 			if (err != 0)
25552 				break;
25553 		}
25554 	}
25555 
25556 	logflags = SL_TRACE | SL_NOTE;
25557 	/*
25558 	 * Don't print this message to the console if the operation was done
25559 	 * to a non-global zone.
25560 	 */
25561 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
25562 		logflags |= SL_CONSOLE;
25563 	(void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: "
25564 	    "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' '));
25565 	if (err == 0 && count == 0)
25566 		err = ENOENT;
25567 	return (err);
25568 }
25569 
25570 /*
25571  * Process the TCP_IOC_ABORT_CONN ioctl request.
25572  */
25573 static void
25574 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp)
25575 {
25576 	int	err;
25577 	IOCP    iocp;
25578 	MBLKP   mp1;
25579 	sa_family_t laf, raf;
25580 	tcp_ioc_abort_conn_t *acp;
25581 	zone_t		*zptr;
25582 	conn_t		*connp = Q_TO_CONN(q);
25583 	zoneid_t	zoneid = connp->conn_zoneid;
25584 	tcp_t		*tcp = connp->conn_tcp;
25585 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25586 
25587 	iocp = (IOCP)mp->b_rptr;
25588 
25589 	if ((mp1 = mp->b_cont) == NULL ||
25590 	    iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) {
25591 		err = EINVAL;
25592 		goto out;
25593 	}
25594 
25595 	/* check permissions */
25596 	if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
25597 		err = EPERM;
25598 		goto out;
25599 	}
25600 
25601 	if (mp1->b_cont != NULL) {
25602 		freemsg(mp1->b_cont);
25603 		mp1->b_cont = NULL;
25604 	}
25605 
25606 	acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr;
25607 	laf = acp->ac_local.ss_family;
25608 	raf = acp->ac_remote.ss_family;
25609 
25610 	/* check that a zone with the supplied zoneid exists */
25611 	if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) {
25612 		zptr = zone_find_by_id(zoneid);
25613 		if (zptr != NULL) {
25614 			zone_rele(zptr);
25615 		} else {
25616 			err = EINVAL;
25617 			goto out;
25618 		}
25619 	}
25620 
25621 	/*
25622 	 * For exclusive stacks we set the zoneid to zero
25623 	 * to make TCP operate as if in the global zone.
25624 	 */
25625 	if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID)
25626 		acp->ac_zoneid = GLOBAL_ZONEID;
25627 
25628 	if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT ||
25629 	    acp->ac_start > acp->ac_end || laf != raf ||
25630 	    (laf != AF_INET && laf != AF_INET6)) {
25631 		err = EINVAL;
25632 		goto out;
25633 	}
25634 
25635 	tcp_ioctl_abort_dump(acp);
25636 	err = tcp_ioctl_abort(acp, tcps);
25637 
25638 out:
25639 	if (mp1 != NULL) {
25640 		freemsg(mp1);
25641 		mp->b_cont = NULL;
25642 	}
25643 
25644 	if (err != 0)
25645 		miocnak(q, mp, 0, err);
25646 	else
25647 		miocack(q, mp, 0, 0);
25648 }
25649 
25650 /*
25651  * tcp_time_wait_processing() handles processing of incoming packets when
25652  * the tcp is in the TIME_WAIT state.
25653  * A TIME_WAIT tcp that has an associated open TCP stream is never put
25654  * on the time wait list.
25655  */
25656 void
25657 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq,
25658     uint32_t seg_ack, int seg_len, tcph_t *tcph)
25659 {
25660 	int32_t		bytes_acked;
25661 	int32_t		gap;
25662 	int32_t		rgap;
25663 	tcp_opt_t	tcpopt;
25664 	uint_t		flags;
25665 	uint32_t	new_swnd = 0;
25666 	conn_t		*connp;
25667 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25668 
25669 	BUMP_LOCAL(tcp->tcp_ibsegs);
25670 	DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
25671 
25672 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
25673 	new_swnd = BE16_TO_U16(tcph->th_win) <<
25674 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
25675 	if (tcp->tcp_snd_ts_ok) {
25676 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
25677 			tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25678 			    tcp->tcp_rnxt, TH_ACK);
25679 			goto done;
25680 		}
25681 	}
25682 	gap = seg_seq - tcp->tcp_rnxt;
25683 	rgap = tcp->tcp_rwnd - (gap + seg_len);
25684 	if (gap < 0) {
25685 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
25686 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
25687 		    (seg_len > -gap ? -gap : seg_len));
25688 		seg_len += gap;
25689 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
25690 			if (flags & TH_RST) {
25691 				goto done;
25692 			}
25693 			if ((flags & TH_FIN) && seg_len == -1) {
25694 				/*
25695 				 * When TCP receives a duplicate FIN in
25696 				 * TIME_WAIT state, restart the 2 MSL timer.
25697 				 * See page 73 in RFC 793. Make sure this TCP
25698 				 * is already on the TIME_WAIT list. If not,
25699 				 * just restart the timer.
25700 				 */
25701 				if (TCP_IS_DETACHED(tcp)) {
25702 					if (tcp_time_wait_remove(tcp, NULL) ==
25703 					    B_TRUE) {
25704 						tcp_time_wait_append(tcp);
25705 						TCP_DBGSTAT(tcps,
25706 						    tcp_rput_time_wait);
25707 					}
25708 				} else {
25709 					ASSERT(tcp != NULL);
25710 					TCP_TIMER_RESTART(tcp,
25711 					    tcps->tcps_time_wait_interval);
25712 				}
25713 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25714 				    tcp->tcp_rnxt, TH_ACK);
25715 				goto done;
25716 			}
25717 			flags |=  TH_ACK_NEEDED;
25718 			seg_len = 0;
25719 			goto process_ack;
25720 		}
25721 
25722 		/* Fix seg_seq, and chew the gap off the front. */
25723 		seg_seq = tcp->tcp_rnxt;
25724 	}
25725 
25726 	if ((flags & TH_SYN) && gap > 0 && rgap < 0) {
25727 		/*
25728 		 * Make sure that when we accept the connection, pick
25729 		 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the
25730 		 * old connection.
25731 		 *
25732 		 * The next ISS generated is equal to tcp_iss_incr_extra
25733 		 * + ISS_INCR/2 + other components depending on the
25734 		 * value of tcp_strong_iss.  We pre-calculate the new
25735 		 * ISS here and compare with tcp_snxt to determine if
25736 		 * we need to make adjustment to tcp_iss_incr_extra.
25737 		 *
25738 		 * The above calculation is ugly and is a
25739 		 * waste of CPU cycles...
25740 		 */
25741 		uint32_t new_iss = tcps->tcps_iss_incr_extra;
25742 		int32_t adj;
25743 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
25744 
25745 		switch (tcps->tcps_strong_iss) {
25746 		case 2: {
25747 			/* Add time and MD5 components. */
25748 			uint32_t answer[4];
25749 			struct {
25750 				uint32_t ports;
25751 				in6_addr_t src;
25752 				in6_addr_t dst;
25753 			} arg;
25754 			MD5_CTX context;
25755 
25756 			mutex_enter(&tcps->tcps_iss_key_lock);
25757 			context = tcps->tcps_iss_key;
25758 			mutex_exit(&tcps->tcps_iss_key_lock);
25759 			arg.ports = tcp->tcp_ports;
25760 			/* We use MAPPED addresses in tcp_iss_init */
25761 			arg.src = tcp->tcp_ip_src_v6;
25762 			if (tcp->tcp_ipversion == IPV4_VERSION) {
25763 				IN6_IPADDR_TO_V4MAPPED(
25764 				    tcp->tcp_ipha->ipha_dst,
25765 				    &arg.dst);
25766 			} else {
25767 				arg.dst =
25768 				    tcp->tcp_ip6h->ip6_dst;
25769 			}
25770 			MD5Update(&context, (uchar_t *)&arg,
25771 			    sizeof (arg));
25772 			MD5Final((uchar_t *)answer, &context);
25773 			answer[0] ^= answer[1] ^ answer[2] ^ answer[3];
25774 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0];
25775 			break;
25776 		}
25777 		case 1:
25778 			/* Add time component and min random (i.e. 1). */
25779 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1;
25780 			break;
25781 		default:
25782 			/* Add only time component. */
25783 			new_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
25784 			break;
25785 		}
25786 		if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) {
25787 			/*
25788 			 * New ISS not guaranteed to be ISS_INCR/2
25789 			 * ahead of the current tcp_snxt, so add the
25790 			 * difference to tcp_iss_incr_extra.
25791 			 */
25792 			tcps->tcps_iss_incr_extra += adj;
25793 		}
25794 		/*
25795 		 * If tcp_clean_death() can not perform the task now,
25796 		 * drop the SYN packet and let the other side re-xmit.
25797 		 * Otherwise pass the SYN packet back in, since the
25798 		 * old tcp state has been cleaned up or freed.
25799 		 */
25800 		if (tcp_clean_death(tcp, 0, 27) == -1)
25801 			goto done;
25802 		/*
25803 		 * We will come back to tcp_rput_data
25804 		 * on the global queue. Packets destined
25805 		 * for the global queue will be checked
25806 		 * with global policy. But the policy for
25807 		 * this packet has already been checked as
25808 		 * this was destined for the detached
25809 		 * connection. We need to bypass policy
25810 		 * check this time by attaching a dummy
25811 		 * ipsec_in with ipsec_in_dont_check set.
25812 		 */
25813 		connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst);
25814 		if (connp != NULL) {
25815 			TCP_STAT(tcps, tcp_time_wait_syn_success);
25816 			tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp);
25817 			return;
25818 		}
25819 		goto done;
25820 	}
25821 
25822 	/*
25823 	 * rgap is the amount of stuff received out of window.  A negative
25824 	 * value is the amount out of window.
25825 	 */
25826 	if (rgap < 0) {
25827 		BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
25828 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap);
25829 		/* Fix seg_len and make sure there is something left. */
25830 		seg_len += rgap;
25831 		if (seg_len <= 0) {
25832 			if (flags & TH_RST) {
25833 				goto done;
25834 			}
25835 			flags |=  TH_ACK_NEEDED;
25836 			seg_len = 0;
25837 			goto process_ack;
25838 		}
25839 	}
25840 	/*
25841 	 * Check whether we can update tcp_ts_recent.  This test is
25842 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
25843 	 * Extensions for High Performance: An Update", Internet Draft.
25844 	 */
25845 	if (tcp->tcp_snd_ts_ok &&
25846 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
25847 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
25848 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
25849 		tcp->tcp_last_rcv_lbolt = lbolt64;
25850 	}
25851 
25852 	if (seg_seq != tcp->tcp_rnxt && seg_len > 0) {
25853 		/* Always ack out of order packets */
25854 		flags |= TH_ACK_NEEDED;
25855 		seg_len = 0;
25856 	} else if (seg_len > 0) {
25857 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
25858 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
25859 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
25860 	}
25861 	if (flags & TH_RST) {
25862 		(void) tcp_clean_death(tcp, 0, 28);
25863 		goto done;
25864 	}
25865 	if (flags & TH_SYN) {
25866 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
25867 		    TH_RST|TH_ACK);
25868 		/*
25869 		 * Do not delete the TCP structure if it is in
25870 		 * TIME_WAIT state.  Refer to RFC 1122, 4.2.2.13.
25871 		 */
25872 		goto done;
25873 	}
25874 process_ack:
25875 	if (flags & TH_ACK) {
25876 		bytes_acked = (int)(seg_ack - tcp->tcp_suna);
25877 		if (bytes_acked <= 0) {
25878 			if (bytes_acked == 0 && seg_len == 0 &&
25879 			    new_swnd == tcp->tcp_swnd)
25880 				BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
25881 		} else {
25882 			/* Acks something not sent */
25883 			flags |= TH_ACK_NEEDED;
25884 		}
25885 	}
25886 	if (flags & TH_ACK_NEEDED) {
25887 		/*
25888 		 * Time to send an ack for some reason.
25889 		 */
25890 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25891 		    tcp->tcp_rnxt, TH_ACK);
25892 	}
25893 done:
25894 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
25895 		DB_CKSUMSTART(mp) = 0;
25896 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
25897 		TCP_STAT(tcps, tcp_time_wait_syn_fail);
25898 	}
25899 	freemsg(mp);
25900 }
25901 
25902 /*
25903  * Allocate a T_SVR4_OPTMGMT_REQ.
25904  * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so
25905  * that tcp_rput_other can drop the acks.
25906  */
25907 static mblk_t *
25908 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen)
25909 {
25910 	mblk_t *mp;
25911 	struct T_optmgmt_req *tor;
25912 	struct opthdr *oh;
25913 	uint_t size;
25914 	char *optptr;
25915 
25916 	size = sizeof (*tor) + sizeof (*oh) + optlen;
25917 	mp = allocb(size, BPRI_MED);
25918 	if (mp == NULL)
25919 		return (NULL);
25920 
25921 	mp->b_wptr += size;
25922 	mp->b_datap->db_type = M_PROTO;
25923 	tor = (struct T_optmgmt_req *)mp->b_rptr;
25924 	tor->PRIM_type = T_SVR4_OPTMGMT_REQ;
25925 	tor->MGMT_flags = T_NEGOTIATE;
25926 	tor->OPT_length = sizeof (*oh) + optlen;
25927 	tor->OPT_offset = (t_scalar_t)sizeof (*tor);
25928 
25929 	oh = (struct opthdr *)&tor[1];
25930 	oh->level = level;
25931 	oh->name = cmd;
25932 	oh->len = optlen;
25933 	if (optlen != 0) {
25934 		optptr = (char *)&oh[1];
25935 		bcopy(opt, optptr, optlen);
25936 	}
25937 	return (mp);
25938 }
25939 
25940 /*
25941  * TCP Timers Implementation.
25942  */
25943 timeout_id_t
25944 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim)
25945 {
25946 	mblk_t *mp;
25947 	tcp_timer_t *tcpt;
25948 	tcp_t *tcp = connp->conn_tcp;
25949 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25950 
25951 	ASSERT(connp->conn_sqp != NULL);
25952 
25953 	TCP_DBGSTAT(tcps, tcp_timeout_calls);
25954 
25955 	if (tcp->tcp_timercache == NULL) {
25956 		mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC);
25957 	} else {
25958 		TCP_DBGSTAT(tcps, tcp_timeout_cached_alloc);
25959 		mp = tcp->tcp_timercache;
25960 		tcp->tcp_timercache = mp->b_next;
25961 		mp->b_next = NULL;
25962 		ASSERT(mp->b_wptr == NULL);
25963 	}
25964 
25965 	CONN_INC_REF(connp);
25966 	tcpt = (tcp_timer_t *)mp->b_rptr;
25967 	tcpt->connp = connp;
25968 	tcpt->tcpt_proc = f;
25969 	/*
25970 	 * TCP timers are normal timeouts. Plus, they do not require more than
25971 	 * a 10 millisecond resolution. By choosing a coarser resolution and by
25972 	 * rounding up the expiration to the next resolution boundary, we can
25973 	 * batch timers in the callout subsystem to make TCP timers more
25974 	 * efficient. The roundup also protects short timers from expiring too
25975 	 * early before they have a chance to be cancelled.
25976 	 */
25977 	tcpt->tcpt_tid = timeout_generic(CALLOUT_NORMAL, tcp_timer_callback, mp,
25978 	    TICK_TO_NSEC(tim), CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP);
25979 
25980 	return ((timeout_id_t)mp);
25981 }
25982 
25983 static void
25984 tcp_timer_callback(void *arg)
25985 {
25986 	mblk_t *mp = (mblk_t *)arg;
25987 	tcp_timer_t *tcpt;
25988 	conn_t	*connp;
25989 
25990 	tcpt = (tcp_timer_t *)mp->b_rptr;
25991 	connp = tcpt->connp;
25992 	squeue_fill(connp->conn_sqp, mp,
25993 	    tcp_timer_handler, connp, SQTAG_TCP_TIMER);
25994 }
25995 
25996 static void
25997 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2)
25998 {
25999 	tcp_timer_t *tcpt;
26000 	conn_t *connp = (conn_t *)arg;
26001 	tcp_t *tcp = connp->conn_tcp;
26002 
26003 	tcpt = (tcp_timer_t *)mp->b_rptr;
26004 	ASSERT(connp == tcpt->connp);
26005 	ASSERT((squeue_t *)arg2 == connp->conn_sqp);
26006 
26007 	/*
26008 	 * If the TCP has reached the closed state, don't proceed any
26009 	 * further. This TCP logically does not exist on the system.
26010 	 * tcpt_proc could for example access queues, that have already
26011 	 * been qprocoff'ed off. Also see comments at the start of tcp_input
26012 	 */
26013 	if (tcp->tcp_state != TCPS_CLOSED) {
26014 		(*tcpt->tcpt_proc)(connp);
26015 	} else {
26016 		tcp->tcp_timer_tid = 0;
26017 	}
26018 	tcp_timer_free(connp->conn_tcp, mp);
26019 }
26020 
26021 /*
26022  * There is potential race with untimeout and the handler firing at the same
26023  * time. The mblock may be freed by the handler while we are trying to use
26024  * it. But since both should execute on the same squeue, this race should not
26025  * occur.
26026  */
26027 clock_t
26028 tcp_timeout_cancel(conn_t *connp, timeout_id_t id)
26029 {
26030 	mblk_t	*mp = (mblk_t *)id;
26031 	tcp_timer_t *tcpt;
26032 	clock_t delta;
26033 	tcp_stack_t	*tcps = connp->conn_tcp->tcp_tcps;
26034 
26035 	TCP_DBGSTAT(tcps, tcp_timeout_cancel_reqs);
26036 
26037 	if (mp == NULL)
26038 		return (-1);
26039 
26040 	tcpt = (tcp_timer_t *)mp->b_rptr;
26041 	ASSERT(tcpt->connp == connp);
26042 
26043 	delta = untimeout_default(tcpt->tcpt_tid, 0);
26044 
26045 	if (delta >= 0) {
26046 		TCP_DBGSTAT(tcps, tcp_timeout_canceled);
26047 		tcp_timer_free(connp->conn_tcp, mp);
26048 		CONN_DEC_REF(connp);
26049 	}
26050 
26051 	return (delta);
26052 }
26053 
26054 /*
26055  * Allocate space for the timer event. The allocation looks like mblk, but it is
26056  * not a proper mblk. To avoid confusion we set b_wptr to NULL.
26057  *
26058  * Dealing with failures: If we can't allocate from the timer cache we try
26059  * allocating from dblock caches using allocb_tryhard(). In this case b_wptr
26060  * points to b_rptr.
26061  * If we can't allocate anything using allocb_tryhard(), we perform a last
26062  * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and
26063  * save the actual allocation size in b_datap.
26064  */
26065 mblk_t *
26066 tcp_timermp_alloc(int kmflags)
26067 {
26068 	mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache,
26069 	    kmflags & ~KM_PANIC);
26070 
26071 	if (mp != NULL) {
26072 		mp->b_next = mp->b_prev = NULL;
26073 		mp->b_rptr = (uchar_t *)(&mp[1]);
26074 		mp->b_wptr = NULL;
26075 		mp->b_datap = NULL;
26076 		mp->b_queue = NULL;
26077 		mp->b_cont = NULL;
26078 	} else if (kmflags & KM_PANIC) {
26079 		/*
26080 		 * Failed to allocate memory for the timer. Try allocating from
26081 		 * dblock caches.
26082 		 */
26083 		/* ipclassifier calls this from a constructor - hence no tcps */
26084 		TCP_G_STAT(tcp_timermp_allocfail);
26085 		mp = allocb_tryhard(sizeof (tcp_timer_t));
26086 		if (mp == NULL) {
26087 			size_t size = 0;
26088 			/*
26089 			 * Memory is really low. Try tryhard allocation.
26090 			 *
26091 			 * ipclassifier calls this from a constructor -
26092 			 * hence no tcps
26093 			 */
26094 			TCP_G_STAT(tcp_timermp_allocdblfail);
26095 			mp = kmem_alloc_tryhard(sizeof (mblk_t) +
26096 			    sizeof (tcp_timer_t), &size, kmflags);
26097 			mp->b_rptr = (uchar_t *)(&mp[1]);
26098 			mp->b_next = mp->b_prev = NULL;
26099 			mp->b_wptr = (uchar_t *)-1;
26100 			mp->b_datap = (dblk_t *)size;
26101 			mp->b_queue = NULL;
26102 			mp->b_cont = NULL;
26103 		}
26104 		ASSERT(mp->b_wptr != NULL);
26105 	}
26106 	/* ipclassifier calls this from a constructor - hence no tcps */
26107 	TCP_G_DBGSTAT(tcp_timermp_alloced);
26108 
26109 	return (mp);
26110 }
26111 
26112 /*
26113  * Free per-tcp timer cache.
26114  * It can only contain entries from tcp_timercache.
26115  */
26116 void
26117 tcp_timermp_free(tcp_t *tcp)
26118 {
26119 	mblk_t *mp;
26120 
26121 	while ((mp = tcp->tcp_timercache) != NULL) {
26122 		ASSERT(mp->b_wptr == NULL);
26123 		tcp->tcp_timercache = tcp->tcp_timercache->b_next;
26124 		kmem_cache_free(tcp_timercache, mp);
26125 	}
26126 }
26127 
26128 /*
26129  * Free timer event. Put it on the per-tcp timer cache if there is not too many
26130  * events there already (currently at most two events are cached).
26131  * If the event is not allocated from the timer cache, free it right away.
26132  */
26133 static void
26134 tcp_timer_free(tcp_t *tcp, mblk_t *mp)
26135 {
26136 	mblk_t *mp1 = tcp->tcp_timercache;
26137 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26138 
26139 	if (mp->b_wptr != NULL) {
26140 		/*
26141 		 * This allocation is not from a timer cache, free it right
26142 		 * away.
26143 		 */
26144 		if (mp->b_wptr != (uchar_t *)-1)
26145 			freeb(mp);
26146 		else
26147 			kmem_free(mp, (size_t)mp->b_datap);
26148 	} else if (mp1 == NULL || mp1->b_next == NULL) {
26149 		/* Cache this timer block for future allocations */
26150 		mp->b_rptr = (uchar_t *)(&mp[1]);
26151 		mp->b_next = mp1;
26152 		tcp->tcp_timercache = mp;
26153 	} else {
26154 		kmem_cache_free(tcp_timercache, mp);
26155 		TCP_DBGSTAT(tcps, tcp_timermp_freed);
26156 	}
26157 }
26158 
26159 /*
26160  * End of TCP Timers implementation.
26161  */
26162 
26163 /*
26164  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
26165  * on the specified backing STREAMS q. Note, the caller may make the
26166  * decision to call based on the tcp_t.tcp_flow_stopped value which
26167  * when check outside the q's lock is only an advisory check ...
26168  */
26169 
26170 void
26171 tcp_setqfull(tcp_t *tcp)
26172 {
26173 	queue_t *q = tcp->tcp_wq;
26174 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26175 
26176 	if (!(q->q_flag & QFULL)) {
26177 		mutex_enter(QLOCK(q));
26178 		if (!(q->q_flag & QFULL)) {
26179 			/* still need to set QFULL */
26180 			q->q_flag |= QFULL;
26181 			tcp->tcp_flow_stopped = B_TRUE;
26182 			mutex_exit(QLOCK(q));
26183 			TCP_STAT(tcps, tcp_flwctl_on);
26184 		} else {
26185 			mutex_exit(QLOCK(q));
26186 		}
26187 	}
26188 }
26189 
26190 void
26191 tcp_clrqfull(tcp_t *tcp)
26192 {
26193 	queue_t *q = tcp->tcp_wq;
26194 
26195 	if (q->q_flag & QFULL) {
26196 		mutex_enter(QLOCK(q));
26197 		if (q->q_flag & QFULL) {
26198 			q->q_flag &= ~QFULL;
26199 			tcp->tcp_flow_stopped = B_FALSE;
26200 			mutex_exit(QLOCK(q));
26201 			if (q->q_flag & QWANTW)
26202 				qbackenable(q, 0);
26203 		} else {
26204 			mutex_exit(QLOCK(q));
26205 		}
26206 	}
26207 }
26208 
26209 
26210 /*
26211  * kstats related to squeues i.e. not per IP instance
26212  */
26213 static void *
26214 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp)
26215 {
26216 	kstat_t *ksp;
26217 
26218 	tcp_g_stat_t template = {
26219 		{ "tcp_timermp_alloced",	KSTAT_DATA_UINT64 },
26220 		{ "tcp_timermp_allocfail",	KSTAT_DATA_UINT64 },
26221 		{ "tcp_timermp_allocdblfail",	KSTAT_DATA_UINT64 },
26222 		{ "tcp_freelist_cleanup",	KSTAT_DATA_UINT64 },
26223 	};
26224 
26225 	ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net",
26226 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
26227 	    KSTAT_FLAG_VIRTUAL);
26228 
26229 	if (ksp == NULL)
26230 		return (NULL);
26231 
26232 	bcopy(&template, tcp_g_statp, sizeof (template));
26233 	ksp->ks_data = (void *)tcp_g_statp;
26234 
26235 	kstat_install(ksp);
26236 	return (ksp);
26237 }
26238 
26239 static void
26240 tcp_g_kstat_fini(kstat_t *ksp)
26241 {
26242 	if (ksp != NULL) {
26243 		kstat_delete(ksp);
26244 	}
26245 }
26246 
26247 
26248 static void *
26249 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp)
26250 {
26251 	kstat_t *ksp;
26252 
26253 	tcp_stat_t template = {
26254 		{ "tcp_time_wait",		KSTAT_DATA_UINT64 },
26255 		{ "tcp_time_wait_syn",		KSTAT_DATA_UINT64 },
26256 		{ "tcp_time_wait_success",	KSTAT_DATA_UINT64 },
26257 		{ "tcp_time_wait_fail",		KSTAT_DATA_UINT64 },
26258 		{ "tcp_reinput_syn",		KSTAT_DATA_UINT64 },
26259 		{ "tcp_ip_output",		KSTAT_DATA_UINT64 },
26260 		{ "tcp_detach_non_time_wait",	KSTAT_DATA_UINT64 },
26261 		{ "tcp_detach_time_wait",	KSTAT_DATA_UINT64 },
26262 		{ "tcp_time_wait_reap",		KSTAT_DATA_UINT64 },
26263 		{ "tcp_clean_death_nondetached",	KSTAT_DATA_UINT64 },
26264 		{ "tcp_reinit_calls",		KSTAT_DATA_UINT64 },
26265 		{ "tcp_eager_err1",		KSTAT_DATA_UINT64 },
26266 		{ "tcp_eager_err2",		KSTAT_DATA_UINT64 },
26267 		{ "tcp_eager_blowoff_calls",	KSTAT_DATA_UINT64 },
26268 		{ "tcp_eager_blowoff_q",	KSTAT_DATA_UINT64 },
26269 		{ "tcp_eager_blowoff_q0",	KSTAT_DATA_UINT64 },
26270 		{ "tcp_not_hard_bound",		KSTAT_DATA_UINT64 },
26271 		{ "tcp_no_listener",		KSTAT_DATA_UINT64 },
26272 		{ "tcp_found_eager",		KSTAT_DATA_UINT64 },
26273 		{ "tcp_wrong_queue",		KSTAT_DATA_UINT64 },
26274 		{ "tcp_found_eager_binding1",	KSTAT_DATA_UINT64 },
26275 		{ "tcp_found_eager_bound1",	KSTAT_DATA_UINT64 },
26276 		{ "tcp_eager_has_listener1",	KSTAT_DATA_UINT64 },
26277 		{ "tcp_open_alloc",		KSTAT_DATA_UINT64 },
26278 		{ "tcp_open_detached_alloc",	KSTAT_DATA_UINT64 },
26279 		{ "tcp_rput_time_wait",		KSTAT_DATA_UINT64 },
26280 		{ "tcp_listendrop",		KSTAT_DATA_UINT64 },
26281 		{ "tcp_listendropq0",		KSTAT_DATA_UINT64 },
26282 		{ "tcp_wrong_rq",		KSTAT_DATA_UINT64 },
26283 		{ "tcp_rsrv_calls",		KSTAT_DATA_UINT64 },
26284 		{ "tcp_eagerfree2",		KSTAT_DATA_UINT64 },
26285 		{ "tcp_eagerfree3",		KSTAT_DATA_UINT64 },
26286 		{ "tcp_eagerfree4",		KSTAT_DATA_UINT64 },
26287 		{ "tcp_eagerfree5",		KSTAT_DATA_UINT64 },
26288 		{ "tcp_timewait_syn_fail",	KSTAT_DATA_UINT64 },
26289 		{ "tcp_listen_badflags",	KSTAT_DATA_UINT64 },
26290 		{ "tcp_timeout_calls",		KSTAT_DATA_UINT64 },
26291 		{ "tcp_timeout_cached_alloc",	KSTAT_DATA_UINT64 },
26292 		{ "tcp_timeout_cancel_reqs",	KSTAT_DATA_UINT64 },
26293 		{ "tcp_timeout_canceled",	KSTAT_DATA_UINT64 },
26294 		{ "tcp_timermp_freed",		KSTAT_DATA_UINT64 },
26295 		{ "tcp_push_timer_cnt",		KSTAT_DATA_UINT64 },
26296 		{ "tcp_ack_timer_cnt",		KSTAT_DATA_UINT64 },
26297 		{ "tcp_ire_null1",		KSTAT_DATA_UINT64 },
26298 		{ "tcp_ire_null",		KSTAT_DATA_UINT64 },
26299 		{ "tcp_ip_send",		KSTAT_DATA_UINT64 },
26300 		{ "tcp_ip_ire_send",		KSTAT_DATA_UINT64 },
26301 		{ "tcp_wsrv_called",		KSTAT_DATA_UINT64 },
26302 		{ "tcp_flwctl_on",		KSTAT_DATA_UINT64 },
26303 		{ "tcp_timer_fire_early",	KSTAT_DATA_UINT64 },
26304 		{ "tcp_timer_fire_miss",	KSTAT_DATA_UINT64 },
26305 		{ "tcp_rput_v6_error",		KSTAT_DATA_UINT64 },
26306 		{ "tcp_out_sw_cksum",		KSTAT_DATA_UINT64 },
26307 		{ "tcp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
26308 		{ "tcp_zcopy_on",		KSTAT_DATA_UINT64 },
26309 		{ "tcp_zcopy_off",		KSTAT_DATA_UINT64 },
26310 		{ "tcp_zcopy_backoff",		KSTAT_DATA_UINT64 },
26311 		{ "tcp_zcopy_disable",		KSTAT_DATA_UINT64 },
26312 		{ "tcp_mdt_pkt_out",		KSTAT_DATA_UINT64 },
26313 		{ "tcp_mdt_pkt_out_v4",		KSTAT_DATA_UINT64 },
26314 		{ "tcp_mdt_pkt_out_v6",		KSTAT_DATA_UINT64 },
26315 		{ "tcp_mdt_discarded",		KSTAT_DATA_UINT64 },
26316 		{ "tcp_mdt_conn_halted1",	KSTAT_DATA_UINT64 },
26317 		{ "tcp_mdt_conn_halted2",	KSTAT_DATA_UINT64 },
26318 		{ "tcp_mdt_conn_halted3",	KSTAT_DATA_UINT64 },
26319 		{ "tcp_mdt_conn_resumed1",	KSTAT_DATA_UINT64 },
26320 		{ "tcp_mdt_conn_resumed2",	KSTAT_DATA_UINT64 },
26321 		{ "tcp_mdt_legacy_small",	KSTAT_DATA_UINT64 },
26322 		{ "tcp_mdt_legacy_all",		KSTAT_DATA_UINT64 },
26323 		{ "tcp_mdt_legacy_ret",		KSTAT_DATA_UINT64 },
26324 		{ "tcp_mdt_allocfail",		KSTAT_DATA_UINT64 },
26325 		{ "tcp_mdt_addpdescfail",	KSTAT_DATA_UINT64 },
26326 		{ "tcp_mdt_allocd",		KSTAT_DATA_UINT64 },
26327 		{ "tcp_mdt_linked",		KSTAT_DATA_UINT64 },
26328 		{ "tcp_fusion_flowctl",		KSTAT_DATA_UINT64 },
26329 		{ "tcp_fusion_backenabled",	KSTAT_DATA_UINT64 },
26330 		{ "tcp_fusion_urg",		KSTAT_DATA_UINT64 },
26331 		{ "tcp_fusion_putnext",		KSTAT_DATA_UINT64 },
26332 		{ "tcp_fusion_unfusable",	KSTAT_DATA_UINT64 },
26333 		{ "tcp_fusion_aborted",		KSTAT_DATA_UINT64 },
26334 		{ "tcp_fusion_unqualified",	KSTAT_DATA_UINT64 },
26335 		{ "tcp_fusion_rrw_busy",	KSTAT_DATA_UINT64 },
26336 		{ "tcp_fusion_rrw_msgcnt",	KSTAT_DATA_UINT64 },
26337 		{ "tcp_fusion_rrw_plugged",	KSTAT_DATA_UINT64 },
26338 		{ "tcp_in_ack_unsent_drop",	KSTAT_DATA_UINT64 },
26339 		{ "tcp_sock_fallback",		KSTAT_DATA_UINT64 },
26340 		{ "tcp_lso_enabled",		KSTAT_DATA_UINT64 },
26341 		{ "tcp_lso_disabled",		KSTAT_DATA_UINT64 },
26342 		{ "tcp_lso_times",		KSTAT_DATA_UINT64 },
26343 		{ "tcp_lso_pkt_out",		KSTAT_DATA_UINT64 },
26344 	};
26345 
26346 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net",
26347 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
26348 	    KSTAT_FLAG_VIRTUAL, stackid);
26349 
26350 	if (ksp == NULL)
26351 		return (NULL);
26352 
26353 	bcopy(&template, tcps_statisticsp, sizeof (template));
26354 	ksp->ks_data = (void *)tcps_statisticsp;
26355 	ksp->ks_private = (void *)(uintptr_t)stackid;
26356 
26357 	kstat_install(ksp);
26358 	return (ksp);
26359 }
26360 
26361 static void
26362 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
26363 {
26364 	if (ksp != NULL) {
26365 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
26366 		kstat_delete_netstack(ksp, stackid);
26367 	}
26368 }
26369 
26370 /*
26371  * TCP Kstats implementation
26372  */
26373 static void *
26374 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps)
26375 {
26376 	kstat_t	*ksp;
26377 
26378 	tcp_named_kstat_t template = {
26379 		{ "rtoAlgorithm",	KSTAT_DATA_INT32, 0 },
26380 		{ "rtoMin",		KSTAT_DATA_INT32, 0 },
26381 		{ "rtoMax",		KSTAT_DATA_INT32, 0 },
26382 		{ "maxConn",		KSTAT_DATA_INT32, 0 },
26383 		{ "activeOpens",	KSTAT_DATA_UINT32, 0 },
26384 		{ "passiveOpens",	KSTAT_DATA_UINT32, 0 },
26385 		{ "attemptFails",	KSTAT_DATA_UINT32, 0 },
26386 		{ "estabResets",	KSTAT_DATA_UINT32, 0 },
26387 		{ "currEstab",		KSTAT_DATA_UINT32, 0 },
26388 		{ "inSegs",		KSTAT_DATA_UINT64, 0 },
26389 		{ "outSegs",		KSTAT_DATA_UINT64, 0 },
26390 		{ "retransSegs",	KSTAT_DATA_UINT32, 0 },
26391 		{ "connTableSize",	KSTAT_DATA_INT32, 0 },
26392 		{ "outRsts",		KSTAT_DATA_UINT32, 0 },
26393 		{ "outDataSegs",	KSTAT_DATA_UINT32, 0 },
26394 		{ "outDataBytes",	KSTAT_DATA_UINT32, 0 },
26395 		{ "retransBytes",	KSTAT_DATA_UINT32, 0 },
26396 		{ "outAck",		KSTAT_DATA_UINT32, 0 },
26397 		{ "outAckDelayed",	KSTAT_DATA_UINT32, 0 },
26398 		{ "outUrg",		KSTAT_DATA_UINT32, 0 },
26399 		{ "outWinUpdate",	KSTAT_DATA_UINT32, 0 },
26400 		{ "outWinProbe",	KSTAT_DATA_UINT32, 0 },
26401 		{ "outControl",		KSTAT_DATA_UINT32, 0 },
26402 		{ "outFastRetrans",	KSTAT_DATA_UINT32, 0 },
26403 		{ "inAckSegs",		KSTAT_DATA_UINT32, 0 },
26404 		{ "inAckBytes",		KSTAT_DATA_UINT32, 0 },
26405 		{ "inDupAck",		KSTAT_DATA_UINT32, 0 },
26406 		{ "inAckUnsent",	KSTAT_DATA_UINT32, 0 },
26407 		{ "inDataInorderSegs",	KSTAT_DATA_UINT32, 0 },
26408 		{ "inDataInorderBytes",	KSTAT_DATA_UINT32, 0 },
26409 		{ "inDataUnorderSegs",	KSTAT_DATA_UINT32, 0 },
26410 		{ "inDataUnorderBytes",	KSTAT_DATA_UINT32, 0 },
26411 		{ "inDataDupSegs",	KSTAT_DATA_UINT32, 0 },
26412 		{ "inDataDupBytes",	KSTAT_DATA_UINT32, 0 },
26413 		{ "inDataPartDupSegs",	KSTAT_DATA_UINT32, 0 },
26414 		{ "inDataPartDupBytes",	KSTAT_DATA_UINT32, 0 },
26415 		{ "inDataPastWinSegs",	KSTAT_DATA_UINT32, 0 },
26416 		{ "inDataPastWinBytes",	KSTAT_DATA_UINT32, 0 },
26417 		{ "inWinProbe",		KSTAT_DATA_UINT32, 0 },
26418 		{ "inWinUpdate",	KSTAT_DATA_UINT32, 0 },
26419 		{ "inClosed",		KSTAT_DATA_UINT32, 0 },
26420 		{ "rttUpdate",		KSTAT_DATA_UINT32, 0 },
26421 		{ "rttNoUpdate",	KSTAT_DATA_UINT32, 0 },
26422 		{ "timRetrans",		KSTAT_DATA_UINT32, 0 },
26423 		{ "timRetransDrop",	KSTAT_DATA_UINT32, 0 },
26424 		{ "timKeepalive",	KSTAT_DATA_UINT32, 0 },
26425 		{ "timKeepaliveProbe",	KSTAT_DATA_UINT32, 0 },
26426 		{ "timKeepaliveDrop",	KSTAT_DATA_UINT32, 0 },
26427 		{ "listenDrop",		KSTAT_DATA_UINT32, 0 },
26428 		{ "listenDropQ0",	KSTAT_DATA_UINT32, 0 },
26429 		{ "halfOpenDrop",	KSTAT_DATA_UINT32, 0 },
26430 		{ "outSackRetransSegs",	KSTAT_DATA_UINT32, 0 },
26431 		{ "connTableSize6",	KSTAT_DATA_INT32, 0 }
26432 	};
26433 
26434 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2",
26435 	    KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid);
26436 
26437 	if (ksp == NULL)
26438 		return (NULL);
26439 
26440 	template.rtoAlgorithm.value.ui32 = 4;
26441 	template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min;
26442 	template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max;
26443 	template.maxConn.value.i32 = -1;
26444 
26445 	bcopy(&template, ksp->ks_data, sizeof (template));
26446 	ksp->ks_update = tcp_kstat_update;
26447 	ksp->ks_private = (void *)(uintptr_t)stackid;
26448 
26449 	kstat_install(ksp);
26450 	return (ksp);
26451 }
26452 
26453 static void
26454 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
26455 {
26456 	if (ksp != NULL) {
26457 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
26458 		kstat_delete_netstack(ksp, stackid);
26459 	}
26460 }
26461 
26462 static int
26463 tcp_kstat_update(kstat_t *kp, int rw)
26464 {
26465 	tcp_named_kstat_t *tcpkp;
26466 	tcp_t		*tcp;
26467 	connf_t		*connfp;
26468 	conn_t		*connp;
26469 	int 		i;
26470 	netstackid_t	stackid = (netstackid_t)(uintptr_t)kp->ks_private;
26471 	netstack_t	*ns;
26472 	tcp_stack_t	*tcps;
26473 	ip_stack_t	*ipst;
26474 
26475 	if ((kp == NULL) || (kp->ks_data == NULL))
26476 		return (EIO);
26477 
26478 	if (rw == KSTAT_WRITE)
26479 		return (EACCES);
26480 
26481 	ns = netstack_find_by_stackid(stackid);
26482 	if (ns == NULL)
26483 		return (-1);
26484 	tcps = ns->netstack_tcp;
26485 	if (tcps == NULL) {
26486 		netstack_rele(ns);
26487 		return (-1);
26488 	}
26489 	tcpkp = (tcp_named_kstat_t *)kp->ks_data;
26490 
26491 	tcpkp->currEstab.value.ui32 = 0;
26492 
26493 	ipst = ns->netstack_ip;
26494 
26495 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
26496 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
26497 		connp = NULL;
26498 		while ((connp =
26499 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
26500 			tcp = connp->conn_tcp;
26501 			switch (tcp_snmp_state(tcp)) {
26502 			case MIB2_TCP_established:
26503 			case MIB2_TCP_closeWait:
26504 				tcpkp->currEstab.value.ui32++;
26505 				break;
26506 			}
26507 		}
26508 	}
26509 
26510 	tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens;
26511 	tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens;
26512 	tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails;
26513 	tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets;
26514 	tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs;
26515 	tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs;
26516 	tcpkp->retransSegs.value.ui32 =	tcps->tcps_mib.tcpRetransSegs;
26517 	tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize;
26518 	tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts;
26519 	tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs;
26520 	tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes;
26521 	tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes;
26522 	tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck;
26523 	tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed;
26524 	tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg;
26525 	tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate;
26526 	tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe;
26527 	tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl;
26528 	tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans;
26529 	tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs;
26530 	tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes;
26531 	tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck;
26532 	tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent;
26533 	tcpkp->inDataInorderSegs.value.ui32 =
26534 	    tcps->tcps_mib.tcpInDataInorderSegs;
26535 	tcpkp->inDataInorderBytes.value.ui32 =
26536 	    tcps->tcps_mib.tcpInDataInorderBytes;
26537 	tcpkp->inDataUnorderSegs.value.ui32 =
26538 	    tcps->tcps_mib.tcpInDataUnorderSegs;
26539 	tcpkp->inDataUnorderBytes.value.ui32 =
26540 	    tcps->tcps_mib.tcpInDataUnorderBytes;
26541 	tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs;
26542 	tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes;
26543 	tcpkp->inDataPartDupSegs.value.ui32 =
26544 	    tcps->tcps_mib.tcpInDataPartDupSegs;
26545 	tcpkp->inDataPartDupBytes.value.ui32 =
26546 	    tcps->tcps_mib.tcpInDataPartDupBytes;
26547 	tcpkp->inDataPastWinSegs.value.ui32 =
26548 	    tcps->tcps_mib.tcpInDataPastWinSegs;
26549 	tcpkp->inDataPastWinBytes.value.ui32 =
26550 	    tcps->tcps_mib.tcpInDataPastWinBytes;
26551 	tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe;
26552 	tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate;
26553 	tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed;
26554 	tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate;
26555 	tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate;
26556 	tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans;
26557 	tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop;
26558 	tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive;
26559 	tcpkp->timKeepaliveProbe.value.ui32 =
26560 	    tcps->tcps_mib.tcpTimKeepaliveProbe;
26561 	tcpkp->timKeepaliveDrop.value.ui32 =
26562 	    tcps->tcps_mib.tcpTimKeepaliveDrop;
26563 	tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop;
26564 	tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0;
26565 	tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop;
26566 	tcpkp->outSackRetransSegs.value.ui32 =
26567 	    tcps->tcps_mib.tcpOutSackRetransSegs;
26568 	tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize;
26569 
26570 	netstack_rele(ns);
26571 	return (0);
26572 }
26573 
26574 void
26575 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp)
26576 {
26577 	uint16_t	hdr_len;
26578 	ipha_t		*ipha;
26579 	uint8_t		*nexthdrp;
26580 	tcph_t		*tcph;
26581 	tcp_stack_t	*tcps = connp->conn_tcp->tcp_tcps;
26582 
26583 	/* Already has an eager */
26584 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
26585 		TCP_STAT(tcps, tcp_reinput_syn);
26586 		squeue_enter(connp->conn_sqp, mp, connp->conn_recv,
26587 		    connp, SQTAG_TCP_REINPUT_EAGER);
26588 		return;
26589 	}
26590 
26591 	switch (IPH_HDR_VERSION(mp->b_rptr)) {
26592 	case IPV4_VERSION:
26593 		ipha = (ipha_t *)mp->b_rptr;
26594 		hdr_len = IPH_HDR_LENGTH(ipha);
26595 		break;
26596 	case IPV6_VERSION:
26597 		if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr,
26598 		    &hdr_len, &nexthdrp)) {
26599 			CONN_DEC_REF(connp);
26600 			freemsg(mp);
26601 			return;
26602 		}
26603 		break;
26604 	}
26605 
26606 	tcph = (tcph_t *)&mp->b_rptr[hdr_len];
26607 	if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) {
26608 		mp->b_datap->db_struioflag |= STRUIO_EAGER;
26609 		DB_CKSUMSTART(mp) = (intptr_t)sqp;
26610 	}
26611 
26612 	squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp,
26613 	    SQTAG_TCP_REINPUT);
26614 }
26615 
26616 static squeue_func_t
26617 tcp_squeue_switch(int val)
26618 {
26619 	squeue_func_t rval = squeue_fill;
26620 
26621 	switch (val) {
26622 	case 1:
26623 		rval = squeue_enter_nodrain;
26624 		break;
26625 	case 2:
26626 		rval = squeue_enter;
26627 		break;
26628 	default:
26629 		break;
26630 	}
26631 	return (rval);
26632 }
26633 
26634 /*
26635  * This is called once for each squeue - globally for all stack
26636  * instances.
26637  */
26638 static void
26639 tcp_squeue_add(squeue_t *sqp)
26640 {
26641 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
26642 	    sizeof (tcp_squeue_priv_t), KM_SLEEP);
26643 
26644 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
26645 	tcp_time_wait->tcp_time_wait_tid =
26646 	    timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp,
26647 	    TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION,
26648 	    CALLOUT_FLAG_ROUNDUP);
26649 	if (tcp_free_list_max_cnt == 0) {
26650 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
26651 		    max_ncpus : boot_max_ncpus);
26652 
26653 		/*
26654 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
26655 		 */
26656 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
26657 		    (tcp_ncpus * sizeof (tcp_t) * 100);
26658 	}
26659 	tcp_time_wait->tcp_free_list_cnt = 0;
26660 }
26661