xref: /illumos-gate/usr/src/uts/common/inet/tcp/tcp.c (revision aedf2b3bb56b025fcaf87b49ec6c8aeea07f16d7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #include <sys/types.h>
29 #include <sys/stream.h>
30 #include <sys/strsun.h>
31 #include <sys/strsubr.h>
32 #include <sys/stropts.h>
33 #include <sys/strlog.h>
34 #define	_SUN_TPI_VERSION 2
35 #include <sys/tihdr.h>
36 #include <sys/timod.h>
37 #include <sys/ddi.h>
38 #include <sys/sunddi.h>
39 #include <sys/suntpi.h>
40 #include <sys/xti_inet.h>
41 #include <sys/cmn_err.h>
42 #include <sys/debug.h>
43 #include <sys/sdt.h>
44 #include <sys/vtrace.h>
45 #include <sys/kmem.h>
46 #include <sys/ethernet.h>
47 #include <sys/cpuvar.h>
48 #include <sys/dlpi.h>
49 #include <sys/pattr.h>
50 #include <sys/policy.h>
51 #include <sys/priv.h>
52 #include <sys/zone.h>
53 #include <sys/sunldi.h>
54 
55 #include <sys/errno.h>
56 #include <sys/signal.h>
57 #include <sys/socket.h>
58 #include <sys/socketvar.h>
59 #include <sys/sockio.h>
60 #include <sys/isa_defs.h>
61 #include <sys/md5.h>
62 #include <sys/random.h>
63 #include <sys/uio.h>
64 #include <sys/systm.h>
65 #include <netinet/in.h>
66 #include <netinet/tcp.h>
67 #include <netinet/ip6.h>
68 #include <netinet/icmp6.h>
69 #include <net/if.h>
70 #include <net/route.h>
71 #include <inet/ipsec_impl.h>
72 
73 #include <inet/common.h>
74 #include <inet/ip.h>
75 #include <inet/ip_impl.h>
76 #include <inet/ip6.h>
77 #include <inet/ip_ndp.h>
78 #include <inet/proto_set.h>
79 #include <inet/mib2.h>
80 #include <inet/nd.h>
81 #include <inet/optcom.h>
82 #include <inet/snmpcom.h>
83 #include <inet/kstatcom.h>
84 #include <inet/tcp.h>
85 #include <inet/tcp_impl.h>
86 #include <inet/udp_impl.h>
87 #include <net/pfkeyv2.h>
88 #include <inet/ipdrop.h>
89 
90 #include <inet/ipclassifier.h>
91 #include <inet/ip_ire.h>
92 #include <inet/ip_ftable.h>
93 #include <inet/ip_if.h>
94 #include <inet/ipp_common.h>
95 #include <inet/ip_rts.h>
96 #include <inet/ip_netinfo.h>
97 #include <sys/squeue_impl.h>
98 #include <sys/squeue.h>
99 #include <inet/kssl/ksslapi.h>
100 #include <sys/tsol/label.h>
101 #include <sys/tsol/tnet.h>
102 #include <rpc/pmap_prot.h>
103 #include <sys/callo.h>
104 
105 #include <sys/clock_impl.h>
106 
107 /*
108  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
109  *
110  * (Read the detailed design doc in PSARC case directory)
111  *
112  * The entire tcp state is contained in tcp_t and conn_t structure
113  * which are allocated in tandem using ipcl_conn_create() and passing
114  * IPCL_TCPCONN as a flag. We use 'conn_ref' and 'conn_lock' to protect
115  * the references on the tcp_t. The tcp_t structure is never compressed
116  * and packets always land on the correct TCP perimeter from the time
117  * eager is created till the time tcp_t dies (as such the old mentat
118  * TCP global queue is not used for detached state and no IPSEC checking
119  * is required). The global queue is still allocated to send out resets
120  * for connection which have no listeners and IP directly calls
121  * tcp_xmit_listeners_reset() which does any policy check.
122  *
123  * Protection and Synchronisation mechanism:
124  *
125  * The tcp data structure does not use any kind of lock for protecting
126  * its state but instead uses 'squeues' for mutual exclusion from various
127  * read and write side threads. To access a tcp member, the thread should
128  * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS,
129  * or SQ_NODRAIN). Since the squeues allow a direct function call, caller
130  * can pass any tcp function having prototype of edesc_t as argument
131  * (different from traditional STREAMs model where packets come in only
132  * designated entry points). The list of functions that can be directly
133  * called via squeue are listed before the usual function prototype.
134  *
135  * Referencing:
136  *
137  * TCP is MT-Hot and we use a reference based scheme to make sure that the
138  * tcp structure doesn't disappear when its needed. When the application
139  * creates an outgoing connection or accepts an incoming connection, we
140  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
141  * The IP reference is just a symbolic reference since ip_tcpclose()
142  * looks at tcp structure after tcp_close_output() returns which could
143  * have dropped the last TCP reference. So as long as the connection is
144  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
145  * conn_t. The classifier puts its own reference when the connection is
146  * inserted in listen or connected hash. Anytime a thread needs to enter
147  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
148  * on write side or by doing a classify on read side and then puts a
149  * reference on the conn before doing squeue_enter/tryenter/fill. For
150  * read side, the classifier itself puts the reference under fanout lock
151  * to make sure that tcp can't disappear before it gets processed. The
152  * squeue will drop this reference automatically so the called function
153  * doesn't have to do a DEC_REF.
154  *
155  * Opening a new connection:
156  *
157  * The outgoing connection open is pretty simple. tcp_open() does the
158  * work in creating the conn/tcp structure and initializing it. The
159  * squeue assignment is done based on the CPU the application
160  * is running on. So for outbound connections, processing is always done
161  * on application CPU which might be different from the incoming CPU
162  * being interrupted by the NIC. An optimal way would be to figure out
163  * the NIC <-> CPU binding at listen time, and assign the outgoing
164  * connection to the squeue attached to the CPU that will be interrupted
165  * for incoming packets (we know the NIC based on the bind IP address).
166  * This might seem like a problem if more data is going out but the
167  * fact is that in most cases the transmit is ACK driven transmit where
168  * the outgoing data normally sits on TCP's xmit queue waiting to be
169  * transmitted.
170  *
171  * Accepting a connection:
172  *
173  * This is a more interesting case because of various races involved in
174  * establishing a eager in its own perimeter. Read the meta comment on
175  * top of tcp_input_listener(). But briefly, the squeue is picked by
176  * ip_fanout based on the ring or the sender (if loopback).
177  *
178  * Closing a connection:
179  *
180  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
181  * via squeue to do the close and mark the tcp as detached if the connection
182  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
183  * reference but tcp_close() drop IP's reference always. So if tcp was
184  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
185  * and 1 because it is in classifier's connected hash. This is the condition
186  * we use to determine that its OK to clean up the tcp outside of squeue
187  * when time wait expires (check the ref under fanout and conn_lock and
188  * if it is 2, remove it from fanout hash and kill it).
189  *
190  * Although close just drops the necessary references and marks the
191  * tcp_detached state, tcp_close needs to know the tcp_detached has been
192  * set (under squeue) before letting the STREAM go away (because a
193  * inbound packet might attempt to go up the STREAM while the close
194  * has happened and tcp_detached is not set). So a special lock and
195  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
196  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
197  * tcp_detached.
198  *
199  * Special provisions and fast paths:
200  *
201  * We make special provisions for sockfs by marking tcp_issocket
202  * whenever we have only sockfs on top of TCP. This allows us to skip
203  * putting the tcp in acceptor hash since a sockfs listener can never
204  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
205  * since eager has already been allocated and the accept now happens
206  * on acceptor STREAM. There is a big blob of comment on top of
207  * tcp_input_listener explaining the new accept. When socket is POP'd,
208  * sockfs sends us an ioctl to mark the fact and we go back to old
209  * behaviour. Once tcp_issocket is unset, its never set for the
210  * life of that connection.
211  *
212  * IPsec notes :
213  *
214  * Since a packet is always executed on the correct TCP perimeter
215  * all IPsec processing is defered to IP including checking new
216  * connections and setting IPSEC policies for new connection. The
217  * only exception is tcp_xmit_listeners_reset() which is called
218  * directly from IP and needs to policy check to see if TH_RST
219  * can be sent out.
220  */
221 
222 /*
223  * Values for squeue switch:
224  * 1: SQ_NODRAIN
225  * 2: SQ_PROCESS
226  * 3: SQ_FILL
227  */
228 int tcp_squeue_wput = 2;	/* /etc/systems */
229 int tcp_squeue_flag;
230 
231 /*
232  * This controls how tiny a write must be before we try to copy it
233  * into the mblk on the tail of the transmit queue.  Not much
234  * speedup is observed for values larger than sixteen.  Zero will
235  * disable the optimisation.
236  */
237 int tcp_tx_pull_len = 16;
238 
239 /*
240  * TCP Statistics.
241  *
242  * How TCP statistics work.
243  *
244  * There are two types of statistics invoked by two macros.
245  *
246  * TCP_STAT(name) does non-atomic increment of a named stat counter. It is
247  * supposed to be used in non MT-hot paths of the code.
248  *
249  * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is
250  * supposed to be used for DEBUG purposes and may be used on a hot path.
251  *
252  * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat
253  * (use "kstat tcp" to get them).
254  *
255  * There is also additional debugging facility that marks tcp_clean_death()
256  * instances and saves them in tcp_t structure. It is triggered by
257  * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for
258  * tcp_clean_death() calls that counts the number of times each tag was hit. It
259  * is triggered by TCP_CLD_COUNTERS define.
260  *
261  * How to add new counters.
262  *
263  * 1) Add a field in the tcp_stat structure describing your counter.
264  * 2) Add a line in the template in tcp_kstat2_init() with the name
265  *    of the counter.
266  *
267  *    IMPORTANT!! - make sure that both are in sync !!
268  * 3) Use either TCP_STAT or TCP_DBGSTAT with the name.
269  *
270  * Please avoid using private counters which are not kstat-exported.
271  *
272  * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances
273  * in tcp_t structure.
274  *
275  * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags.
276  */
277 
278 #ifndef TCP_DEBUG_COUNTER
279 #ifdef DEBUG
280 #define	TCP_DEBUG_COUNTER 1
281 #else
282 #define	TCP_DEBUG_COUNTER 0
283 #endif
284 #endif
285 
286 #define	TCP_CLD_COUNTERS 0
287 
288 #define	TCP_TAG_CLEAN_DEATH 1
289 #define	TCP_MAX_CLEAN_DEATH_TAG 32
290 
291 #ifdef lint
292 static int _lint_dummy_;
293 #endif
294 
295 #if TCP_CLD_COUNTERS
296 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG];
297 #define	TCP_CLD_STAT(x) tcp_clean_death_stat[x]++
298 #elif defined(lint)
299 #define	TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0);
300 #else
301 #define	TCP_CLD_STAT(x)
302 #endif
303 
304 #if TCP_DEBUG_COUNTER
305 #define	TCP_DBGSTAT(tcps, x)	\
306 	atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1)
307 #define	TCP_G_DBGSTAT(x)	\
308 	atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1)
309 #elif defined(lint)
310 #define	TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0);
311 #define	TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0);
312 #else
313 #define	TCP_DBGSTAT(tcps, x)
314 #define	TCP_G_DBGSTAT(x)
315 #endif
316 
317 #define	TCP_G_STAT(x)	(tcp_g_statistics.x.value.ui64++)
318 
319 tcp_g_stat_t	tcp_g_statistics;
320 kstat_t		*tcp_g_kstat;
321 
322 /* Macros for timestamp comparisons */
323 #define	TSTMP_GEQ(a, b)	((int32_t)((a)-(b)) >= 0)
324 #define	TSTMP_LT(a, b)	((int32_t)((a)-(b)) < 0)
325 
326 /*
327  * Parameters for TCP Initial Send Sequence number (ISS) generation.  When
328  * tcp_strong_iss is set to 1, which is the default, the ISS is calculated
329  * by adding three components: a time component which grows by 1 every 4096
330  * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27);
331  * a per-connection component which grows by 125000 for every new connection;
332  * and an "extra" component that grows by a random amount centered
333  * approximately on 64000.  This causes the ISS generator to cycle every
334  * 4.89 hours if no TCP connections are made, and faster if connections are
335  * made.
336  *
337  * When tcp_strong_iss is set to 0, ISS is calculated by adding two
338  * components: a time component which grows by 250000 every second; and
339  * a per-connection component which grows by 125000 for every new connections.
340  *
341  * A third method, when tcp_strong_iss is set to 2, for generating ISS is
342  * prescribed by Steve Bellovin.  This involves adding time, the 125000 per
343  * connection, and a one-way hash (MD5) of the connection ID <sport, dport,
344  * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered
345  * password.
346  */
347 #define	ISS_INCR	250000
348 #define	ISS_NSEC_SHT	12
349 
350 static sin_t	sin_null;	/* Zero address for quick clears */
351 static sin6_t	sin6_null;	/* Zero address for quick clears */
352 
353 /*
354  * This implementation follows the 4.3BSD interpretation of the urgent
355  * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause
356  * incompatible changes in protocols like telnet and rlogin.
357  */
358 #define	TCP_OLD_URP_INTERPRETATION	1
359 
360 /*
361  * Since tcp_listener is not cleared atomically with tcp_detached
362  * being cleared we need this extra bit to tell a detached connection
363  * apart from one that is in the process of being accepted.
364  */
365 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
366 	(TCP_IS_DETACHED(tcp) &&	\
367 	    (!(tcp)->tcp_hard_binding))
368 
369 /*
370  * TCP reassembly macros.  We hide starting and ending sequence numbers in
371  * b_next and b_prev of messages on the reassembly queue.  The messages are
372  * chained using b_cont.  These macros are used in tcp_reass() so we don't
373  * have to see the ugly casts and assignments.
374  */
375 #define	TCP_REASS_SEQ(mp)		((uint32_t)(uintptr_t)((mp)->b_next))
376 #define	TCP_REASS_SET_SEQ(mp, u)	((mp)->b_next = \
377 					(mblk_t *)(uintptr_t)(u))
378 #define	TCP_REASS_END(mp)		((uint32_t)(uintptr_t)((mp)->b_prev))
379 #define	TCP_REASS_SET_END(mp, u)	((mp)->b_prev = \
380 					(mblk_t *)(uintptr_t)(u))
381 
382 /*
383  * Implementation of TCP Timers.
384  * =============================
385  *
386  * INTERFACE:
387  *
388  * There are two basic functions dealing with tcp timers:
389  *
390  *	timeout_id_t	tcp_timeout(connp, func, time)
391  * 	clock_t		tcp_timeout_cancel(connp, timeout_id)
392  *	TCP_TIMER_RESTART(tcp, intvl)
393  *
394  * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func'
395  * after 'time' ticks passed. The function called by timeout() must adhere to
396  * the same restrictions as a driver soft interrupt handler - it must not sleep
397  * or call other functions that might sleep. The value returned is the opaque
398  * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to
399  * cancel the request. The call to tcp_timeout() may fail in which case it
400  * returns zero. This is different from the timeout(9F) function which never
401  * fails.
402  *
403  * The call-back function 'func' always receives 'connp' as its single
404  * argument. It is always executed in the squeue corresponding to the tcp
405  * structure. The tcp structure is guaranteed to be present at the time the
406  * call-back is called.
407  *
408  * NOTE: The call-back function 'func' is never called if tcp is in
409  * 	the TCPS_CLOSED state.
410  *
411  * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout()
412  * request. locks acquired by the call-back routine should not be held across
413  * the call to tcp_timeout_cancel() or a deadlock may result.
414  *
415  * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request.
416  * Otherwise, it returns an integer value greater than or equal to 0. In
417  * particular, if the call-back function is already placed on the squeue, it can
418  * not be canceled.
419  *
420  * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called
421  * 	within squeue context corresponding to the tcp instance. Since the
422  *	call-back is also called via the same squeue, there are no race
423  *	conditions described in untimeout(9F) manual page since all calls are
424  *	strictly serialized.
425  *
426  *      TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout
427  *	stored in tcp_timer_tid and starts a new one using
428  *	MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back
429  *	and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid
430  *	field.
431  *
432  * NOTE: since the timeout cancellation is not guaranteed, the cancelled
433  *	call-back may still be called, so it is possible tcp_timer() will be
434  *	called several times. This should not be a problem since tcp_timer()
435  *	should always check the tcp instance state.
436  *
437  *
438  * IMPLEMENTATION:
439  *
440  * TCP timers are implemented using three-stage process. The call to
441  * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function
442  * when the timer expires. The tcp_timer_callback() arranges the call of the
443  * tcp_timer_handler() function via squeue corresponding to the tcp
444  * instance. The tcp_timer_handler() calls actual requested timeout call-back
445  * and passes tcp instance as an argument to it. Information is passed between
446  * stages using the tcp_timer_t structure which contains the connp pointer, the
447  * tcp call-back to call and the timeout id returned by the timeout(9F).
448  *
449  * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t -
450  * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo
451  * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout()
452  * returns the pointer to this mblk.
453  *
454  * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It
455  * looks like a normal mblk without actual dblk attached to it.
456  *
457  * To optimize performance each tcp instance holds a small cache of timer
458  * mblocks. In the current implementation it caches up to two timer mblocks per
459  * tcp instance. The cache is preserved over tcp frees and is only freed when
460  * the whole tcp structure is destroyed by its kmem destructor. Since all tcp
461  * timer processing happens on a corresponding squeue, the cache manipulation
462  * does not require any locks. Experiments show that majority of timer mblocks
463  * allocations are satisfied from the tcp cache and do not involve kmem calls.
464  *
465  * The tcp_timeout() places a refhold on the connp instance which guarantees
466  * that it will be present at the time the call-back function fires. The
467  * tcp_timer_handler() drops the reference after calling the call-back, so the
468  * call-back function does not need to manipulate the references explicitly.
469  */
470 
471 typedef struct tcp_timer_s {
472 	conn_t	*connp;
473 	void 	(*tcpt_proc)(void *);
474 	callout_id_t   tcpt_tid;
475 } tcp_timer_t;
476 
477 static kmem_cache_t *tcp_timercache;
478 kmem_cache_t	*tcp_sack_info_cache;
479 
480 /*
481  * For scalability, we must not run a timer for every TCP connection
482  * in TIME_WAIT state.  To see why, consider (for time wait interval of
483  * 4 minutes):
484  *	1000 connections/sec * 240 seconds/time wait = 240,000 active conn's
485  *
486  * This list is ordered by time, so you need only delete from the head
487  * until you get to entries which aren't old enough to delete yet.
488  * The list consists of only the detached TIME_WAIT connections.
489  *
490  * Note that the timer (tcp_time_wait_expire) is started when the tcp_t
491  * becomes detached TIME_WAIT (either by changing the state and already
492  * being detached or the other way around). This means that the TIME_WAIT
493  * state can be extended (up to doubled) if the connection doesn't become
494  * detached for a long time.
495  *
496  * The list manipulations (including tcp_time_wait_next/prev)
497  * are protected by the tcp_time_wait_lock. The content of the
498  * detached TIME_WAIT connections is protected by the normal perimeters.
499  *
500  * This list is per squeue and squeues are shared across the tcp_stack_t's.
501  * Things on tcp_time_wait_head remain associated with the tcp_stack_t
502  * and conn_netstack.
503  * The tcp_t's that are added to tcp_free_list are disassociated and
504  * have NULL tcp_tcps and conn_netstack pointers.
505  */
506 typedef struct tcp_squeue_priv_s {
507 	kmutex_t	tcp_time_wait_lock;
508 	callout_id_t	tcp_time_wait_tid;
509 	tcp_t		*tcp_time_wait_head;
510 	tcp_t		*tcp_time_wait_tail;
511 	tcp_t		*tcp_free_list;
512 	uint_t		tcp_free_list_cnt;
513 } tcp_squeue_priv_t;
514 
515 /*
516  * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs.
517  * Running it every 5 seconds seems to give the best results.
518  */
519 #define	TCP_TIME_WAIT_DELAY drv_usectohz(5000000)
520 
521 /*
522  * To prevent memory hog, limit the number of entries in tcp_free_list
523  * to 1% of available memory / number of cpus
524  */
525 uint_t tcp_free_list_max_cnt = 0;
526 
527 #define	TCP_XMIT_LOWATER	4096
528 #define	TCP_XMIT_HIWATER	49152
529 #define	TCP_RECV_LOWATER	2048
530 #define	TCP_RECV_HIWATER	128000
531 
532 /*
533  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
534  */
535 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
536 
537 #define	TIDUSZ	4096	/* transport interface data unit size */
538 
539 /*
540  * Bind hash list size and has function.  It has to be a power of 2 for
541  * hashing.
542  */
543 #define	TCP_BIND_FANOUT_SIZE	512
544 #define	TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1))
545 /*
546  * Size of listen and acceptor hash list.  It has to be a power of 2 for
547  * hashing.
548  */
549 #define	TCP_FANOUT_SIZE		256
550 
551 #ifdef	_ILP32
552 #define	TCP_ACCEPTOR_HASH(accid)					\
553 		(((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1))
554 #else
555 #define	TCP_ACCEPTOR_HASH(accid)					\
556 		((uint_t)(accid) & (TCP_FANOUT_SIZE - 1))
557 #endif	/* _ILP32 */
558 
559 #define	IP_ADDR_CACHE_SIZE	2048
560 #define	IP_ADDR_CACHE_HASH(faddr)					\
561 	(ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1))
562 
563 /*
564  * TCP options struct returned from tcp_parse_options.
565  */
566 typedef struct tcp_opt_s {
567 	uint32_t	tcp_opt_mss;
568 	uint32_t	tcp_opt_wscale;
569 	uint32_t	tcp_opt_ts_val;
570 	uint32_t	tcp_opt_ts_ecr;
571 	tcp_t		*tcp;
572 } tcp_opt_t;
573 
574 /*
575  * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
576  */
577 
578 #ifdef _BIG_ENDIAN
579 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
580 	(TCPOPT_TSTAMP << 8) | 10)
581 #else
582 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
583 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
584 #endif
585 
586 /*
587  * Flags returned from tcp_parse_options.
588  */
589 #define	TCP_OPT_MSS_PRESENT	1
590 #define	TCP_OPT_WSCALE_PRESENT	2
591 #define	TCP_OPT_TSTAMP_PRESENT	4
592 #define	TCP_OPT_SACK_OK_PRESENT	8
593 #define	TCP_OPT_SACK_PRESENT	16
594 
595 /* TCP option length */
596 #define	TCPOPT_NOP_LEN		1
597 #define	TCPOPT_MAXSEG_LEN	4
598 #define	TCPOPT_WS_LEN		3
599 #define	TCPOPT_REAL_WS_LEN	(TCPOPT_WS_LEN+1)
600 #define	TCPOPT_TSTAMP_LEN	10
601 #define	TCPOPT_REAL_TS_LEN	(TCPOPT_TSTAMP_LEN+2)
602 #define	TCPOPT_SACK_OK_LEN	2
603 #define	TCPOPT_REAL_SACK_OK_LEN	(TCPOPT_SACK_OK_LEN+2)
604 #define	TCPOPT_REAL_SACK_LEN	4
605 #define	TCPOPT_MAX_SACK_LEN	36
606 #define	TCPOPT_HEADER_LEN	2
607 
608 /* TCP cwnd burst factor. */
609 #define	TCP_CWND_INFINITE	65535
610 #define	TCP_CWND_SS		3
611 #define	TCP_CWND_NORMAL		5
612 
613 /* Maximum TCP initial cwin (start/restart). */
614 #define	TCP_MAX_INIT_CWND	8
615 
616 /*
617  * Initialize cwnd according to RFC 3390.  def_max_init_cwnd is
618  * either tcp_slow_start_initial or tcp_slow_start_after idle
619  * depending on the caller.  If the upper layer has not used the
620  * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd
621  * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd.
622  * If the upper layer has changed set the tcp_init_cwnd, just use
623  * it to calculate the tcp_cwnd.
624  */
625 #define	SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd)			\
626 {									\
627 	if ((tcp)->tcp_init_cwnd == 0) {				\
628 		(tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss),	\
629 		    MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \
630 	} else {							\
631 		(tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss);		\
632 	}								\
633 	tcp->tcp_cwnd_cnt = 0;						\
634 }
635 
636 /* TCP Timer control structure */
637 typedef struct tcpt_s {
638 	pfv_t	tcpt_pfv;	/* The routine we are to call */
639 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
640 } tcpt_t;
641 
642 /*
643  * Functions called directly via squeue having a prototype of edesc_t.
644  */
645 void		tcp_input_listener(void *arg, mblk_t *mp, void *arg2,
646     ip_recv_attr_t *ira);
647 static void	tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2,
648     ip_recv_attr_t *dummy);
649 void		tcp_accept_finish(void *arg, mblk_t *mp, void *arg2,
650     ip_recv_attr_t *dummy);
651 static void	tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2,
652     ip_recv_attr_t *dummy);
653 static void	tcp_wput_proto(void *arg, mblk_t *mp, void *arg2,
654     ip_recv_attr_t *dummy);
655 void		tcp_input_data(void *arg, mblk_t *mp, void *arg2,
656     ip_recv_attr_t *ira);
657 static void	tcp_close_output(void *arg, mblk_t *mp, void *arg2,
658     ip_recv_attr_t *dummy);
659 void		tcp_output(void *arg, mblk_t *mp, void *arg2,
660     ip_recv_attr_t *dummy);
661 void		tcp_output_urgent(void *arg, mblk_t *mp, void *arg2,
662     ip_recv_attr_t *dummy);
663 static void	tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2,
664     ip_recv_attr_t *dummy);
665 static void	tcp_timer_handler(void *arg, mblk_t *mp, void *arg2,
666     ip_recv_attr_t *dummy);
667 static void	tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2,
668     ip_recv_attr_t *dummy);
669 
670 
671 /* Prototype for TCP functions */
672 static void	tcp_random_init(void);
673 int		tcp_random(void);
674 static void	tcp_tli_accept(tcp_t *tcp, mblk_t *mp);
675 static void	tcp_accept_swap(tcp_t *listener, tcp_t *acceptor,
676 		    tcp_t *eager);
677 static int	tcp_set_destination(tcp_t *tcp);
678 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
679     int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only,
680     boolean_t user_specified);
681 static void	tcp_closei_local(tcp_t *tcp);
682 static void	tcp_close_detached(tcp_t *tcp);
683 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr,
684 		    mblk_t *idmp, mblk_t **defermp, ip_recv_attr_t *ira);
685 static void	tcp_tpi_connect(tcp_t *tcp, mblk_t *mp);
686 static int	tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp,
687 		    in_port_t dstport, uint_t srcid);
688 static int	tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp,
689 		    in_port_t dstport, uint32_t flowinfo,
690 		    uint_t srcid, uint32_t scope_id);
691 static int	tcp_clean_death(tcp_t *tcp, int err, uint8_t tag);
692 static void	tcp_disconnect(tcp_t *tcp, mblk_t *mp);
693 static char	*tcp_display(tcp_t *tcp, char *, char);
694 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum);
695 static void	tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only);
696 static void	tcp_eager_unlink(tcp_t *tcp);
697 static void	tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr,
698 		    int unixerr);
699 static void	tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
700 		    int tlierr, int unixerr);
701 static int	tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
702 		    cred_t *cr);
703 static int	tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
704 		    char *value, caddr_t cp, cred_t *cr);
705 static int	tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
706 		    char *value, caddr_t cp, cred_t *cr);
707 static int	tcp_tpistate(tcp_t *tcp);
708 static void	tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp,
709     int caller_holds_lock);
710 static void	tcp_bind_hash_remove(tcp_t *tcp);
711 static tcp_t	*tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *);
712 void		tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp);
713 static void	tcp_acceptor_hash_remove(tcp_t *tcp);
714 static void	tcp_capability_req(tcp_t *tcp, mblk_t *mp);
715 static void	tcp_info_req(tcp_t *tcp, mblk_t *mp);
716 static void	tcp_addr_req(tcp_t *tcp, mblk_t *mp);
717 static void	tcp_init_values(tcp_t *tcp);
718 static void	tcp_ip_notify(tcp_t *tcp);
719 static void	tcp_iss_init(tcp_t *tcp);
720 static void	tcp_keepalive_killer(void *arg);
721 static int	tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt);
722 static void	tcp_mss_set(tcp_t *tcp, uint32_t size);
723 static int	tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp,
724 		    int *do_disconnectp, int *t_errorp, int *sys_errorp);
725 static boolean_t tcp_allow_connopt_set(int level, int name);
726 int		tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr);
727 static int	tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
728 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt,
729     tcp_stack_t *);
730 static int	tcp_param_set(queue_t *q, mblk_t *mp, char *value,
731 		    caddr_t cp, cred_t *cr);
732 static int	tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value,
733 		    caddr_t cp, cred_t *cr);
734 static void	tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *);
735 static int	tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value,
736 		    caddr_t cp, cred_t *cr);
737 static void	tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt);
738 static void	tcp_update_xmit_tail(tcp_t *tcp, uint32_t snxt);
739 static mblk_t	*tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start);
740 static void	tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp);
741 static void	tcp_reinit(tcp_t *tcp);
742 static void	tcp_reinit_values(tcp_t *tcp);
743 
744 static uint_t	tcp_rwnd_reopen(tcp_t *tcp);
745 static uint_t	tcp_rcv_drain(tcp_t *tcp);
746 static void	tcp_sack_rxmit(tcp_t *tcp, uint_t *flags);
747 static boolean_t tcp_send_rst_chk(tcp_stack_t *);
748 static void	tcp_ss_rexmit(tcp_t *tcp);
749 static mblk_t	*tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp,
750     ip_recv_attr_t *);
751 static void	tcp_process_options(tcp_t *, tcpha_t *);
752 static void	tcp_rsrv(queue_t *q);
753 static int	tcp_snmp_state(tcp_t *tcp);
754 static void	tcp_timer(void *arg);
755 static void	tcp_timer_callback(void *);
756 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp,
757     boolean_t random);
758 static in_port_t tcp_get_next_priv_port(const tcp_t *);
759 static void	tcp_wput_sock(queue_t *q, mblk_t *mp);
760 static void	tcp_wput_fallback(queue_t *q, mblk_t *mp);
761 void		tcp_tpi_accept(queue_t *q, mblk_t *mp);
762 static void	tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent);
763 static void	tcp_wput_flush(tcp_t *tcp, mblk_t *mp);
764 static void	tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp);
765 static int	tcp_send(tcp_t *tcp, const int mss,
766 		    const int total_hdr_len, const int tcp_hdr_len,
767 		    const int num_sack_blk, int *usable, uint_t *snxt,
768 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time);
769 static void	tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now,
770 		    int num_sack_blk);
771 static void	tcp_wsrv(queue_t *q);
772 static int	tcp_xmit_end(tcp_t *tcp);
773 static void	tcp_ack_timer(void *arg);
774 static mblk_t	*tcp_ack_mp(tcp_t *tcp);
775 static void	tcp_xmit_early_reset(char *str, mblk_t *mp,
776 		    uint32_t seq, uint32_t ack, int ctl, ip_recv_attr_t *,
777 		    ip_stack_t *, conn_t *);
778 static void	tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq,
779 		    uint32_t ack, int ctl);
780 static void	tcp_set_rto(tcp_t *, time_t);
781 static void	tcp_icmp_input(void *, mblk_t *, void *, ip_recv_attr_t *);
782 static void	tcp_icmp_error_ipv6(tcp_t *, mblk_t *, ip_recv_attr_t *);
783 static boolean_t tcp_verifyicmp(conn_t *, void *, icmph_t *, icmp6_t *,
784     ip_recv_attr_t *);
785 static int	tcp_build_hdrs(tcp_t *);
786 static void	tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp,
787     uint32_t seg_seq, uint32_t seg_ack, int seg_len, tcpha_t *tcpha,
788     ip_recv_attr_t *ira);
789 boolean_t	tcp_paws_check(tcp_t *tcp, tcpha_t *tcpha, tcp_opt_t *tcpoptp);
790 static boolean_t tcp_zcopy_check(tcp_t *);
791 static void	tcp_zcopy_notify(tcp_t *);
792 static mblk_t	*tcp_zcopy_backoff(tcp_t *, mblk_t *, boolean_t);
793 static void	tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa);
794 static void	tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only);
795 static void	tcp_update_zcopy(tcp_t *tcp);
796 static void	tcp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t,
797     ixa_notify_arg_t);
798 static void	tcp_rexmit_after_error(tcp_t *tcp);
799 static void	tcp_send_data(tcp_t *, mblk_t *);
800 extern mblk_t	*tcp_timermp_alloc(int);
801 extern void	tcp_timermp_free(tcp_t *);
802 static void	tcp_timer_free(tcp_t *tcp, mblk_t *mp);
803 static void	tcp_stop_lingering(tcp_t *tcp);
804 static void	tcp_close_linger_timeout(void *arg);
805 static void	*tcp_stack_init(netstackid_t stackid, netstack_t *ns);
806 static void	tcp_stack_fini(netstackid_t stackid, void *arg);
807 static void	*tcp_g_kstat_init(tcp_g_stat_t *);
808 static void	tcp_g_kstat_fini(kstat_t *);
809 static void	*tcp_kstat_init(netstackid_t, tcp_stack_t *);
810 static void	tcp_kstat_fini(netstackid_t, kstat_t *);
811 static void	*tcp_kstat2_init(netstackid_t, tcp_stat_t *);
812 static void	tcp_kstat2_fini(netstackid_t, kstat_t *);
813 static int	tcp_kstat_update(kstat_t *kp, int rw);
814 static mblk_t	*tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
815     ip_recv_attr_t *ira);
816 static mblk_t	*tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp,
817     ip_recv_attr_t *ira);
818 static int	tcp_squeue_switch(int);
819 
820 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t);
821 static int	tcp_openv4(queue_t *, dev_t *, int, int, cred_t *);
822 static int	tcp_openv6(queue_t *, dev_t *, int, int, cred_t *);
823 static int	tcp_tpi_close(queue_t *, int);
824 static int	tcp_tpi_close_accept(queue_t *);
825 
826 static void	tcp_squeue_add(squeue_t *);
827 static void	tcp_setcred_data(mblk_t *, ip_recv_attr_t *);
828 
829 extern void	tcp_kssl_input(tcp_t *, mblk_t *, cred_t *);
830 
831 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy);
832 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2,
833     ip_recv_attr_t *dummy);
834 
835 static int tcp_accept(sock_lower_handle_t, sock_lower_handle_t,
836 	    sock_upper_handle_t, cred_t *);
837 static int tcp_listen(sock_lower_handle_t, int, cred_t *);
838 static int tcp_do_listen(conn_t *, struct sockaddr *, socklen_t, int, cred_t *,
839     boolean_t);
840 static int tcp_do_connect(conn_t *, const struct sockaddr *, socklen_t,
841     cred_t *, pid_t);
842 static int tcp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *,
843     boolean_t);
844 static int tcp_do_unbind(conn_t *);
845 static int tcp_bind_check(conn_t *, struct sockaddr *, socklen_t, cred_t *,
846     boolean_t);
847 
848 static void tcp_ulp_newconn(conn_t *, conn_t *, mblk_t *);
849 
850 /*
851  * Routines related to the TCP_IOC_ABORT_CONN ioctl command.
852  *
853  * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting
854  * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure
855  * (defined in tcp.h) needs to be filled in and passed into the kernel
856  * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t
857  * structure contains the four-tuple of a TCP connection and a range of TCP
858  * states (specified by ac_start and ac_end). The use of wildcard addresses
859  * and ports is allowed. Connections with a matching four tuple and a state
860  * within the specified range will be aborted. The valid states for the
861  * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT,
862  * inclusive.
863  *
864  * An application which has its connection aborted by this ioctl will receive
865  * an error that is dependent on the connection state at the time of the abort.
866  * If the connection state is < TCPS_TIME_WAIT, an application should behave as
867  * though a RST packet has been received.  If the connection state is equal to
868  * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel
869  * and all resources associated with the connection will be freed.
870  */
871 static mblk_t	*tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *);
872 static void	tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *);
873 static void	tcp_ioctl_abort_handler(void *arg, mblk_t *mp, void *arg2,
874     ip_recv_attr_t *dummy);
875 static int	tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps);
876 static void	tcp_ioctl_abort_conn(queue_t *, mblk_t *);
877 static int	tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *,
878     boolean_t, tcp_stack_t *);
879 
880 static struct module_info tcp_rinfo =  {
881 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
882 };
883 
884 static struct module_info tcp_winfo =  {
885 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
886 };
887 
888 /*
889  * Entry points for TCP as a device. The normal case which supports
890  * the TCP functionality.
891  * We have separate open functions for the /dev/tcp and /dev/tcp6 devices.
892  */
893 struct qinit tcp_rinitv4 = {
894 	NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo
895 };
896 
897 struct qinit tcp_rinitv6 = {
898 	NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo
899 };
900 
901 struct qinit tcp_winit = {
902 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
903 };
904 
905 /* Initial entry point for TCP in socket mode. */
906 struct qinit tcp_sock_winit = {
907 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
908 };
909 
910 /* TCP entry point during fallback */
911 struct qinit tcp_fallback_sock_winit = {
912 	(pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo
913 };
914 
915 /*
916  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
917  * an accept. Avoid allocating data structures since eager has already
918  * been created.
919  */
920 struct qinit tcp_acceptor_rinit = {
921 	NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo
922 };
923 
924 struct qinit tcp_acceptor_winit = {
925 	(pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo
926 };
927 
928 /* For AF_INET aka /dev/tcp */
929 struct streamtab tcpinfov4 = {
930 	&tcp_rinitv4, &tcp_winit
931 };
932 
933 /* For AF_INET6 aka /dev/tcp6 */
934 struct streamtab tcpinfov6 = {
935 	&tcp_rinitv6, &tcp_winit
936 };
937 
938 sock_downcalls_t sock_tcp_downcalls;
939 
940 /* Setable only in /etc/system. Move to ndd? */
941 boolean_t tcp_icmp_source_quench = B_FALSE;
942 
943 /*
944  * Following assumes TPI alignment requirements stay along 32 bit
945  * boundaries
946  */
947 #define	ROUNDUP32(x) \
948 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
949 
950 /* Template for response to info request. */
951 static struct T_info_ack tcp_g_t_info_ack = {
952 	T_INFO_ACK,		/* PRIM_type */
953 	0,			/* TSDU_size */
954 	T_INFINITE,		/* ETSDU_size */
955 	T_INVALID,		/* CDATA_size */
956 	T_INVALID,		/* DDATA_size */
957 	sizeof (sin_t),		/* ADDR_size */
958 	0,			/* OPT_size - not initialized here */
959 	TIDUSZ,			/* TIDU_size */
960 	T_COTS_ORD,		/* SERV_type */
961 	TCPS_IDLE,		/* CURRENT_state */
962 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
963 };
964 
965 static struct T_info_ack tcp_g_t_info_ack_v6 = {
966 	T_INFO_ACK,		/* PRIM_type */
967 	0,			/* TSDU_size */
968 	T_INFINITE,		/* ETSDU_size */
969 	T_INVALID,		/* CDATA_size */
970 	T_INVALID,		/* DDATA_size */
971 	sizeof (sin6_t),	/* ADDR_size */
972 	0,			/* OPT_size - not initialized here */
973 	TIDUSZ,		/* TIDU_size */
974 	T_COTS_ORD,		/* SERV_type */
975 	TCPS_IDLE,		/* CURRENT_state */
976 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
977 };
978 
979 #define	MS	1L
980 #define	SECONDS	(1000 * MS)
981 #define	MINUTES	(60 * SECONDS)
982 #define	HOURS	(60 * MINUTES)
983 #define	DAYS	(24 * HOURS)
984 
985 #define	PARAM_MAX (~(uint32_t)0)
986 
987 /* Max size IP datagram is 64k - 1 */
988 #define	TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcpha_t)))
989 #define	TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcpha_t)))
990 /* Max of the above */
991 #define	TCP_MSS_MAX	TCP_MSS_MAX_IPV4
992 
993 /* Largest TCP port number */
994 #define	TCP_MAX_PORT	(64 * 1024 - 1)
995 
996 /*
997  * tcp_wroff_xtra is the extra space in front of TCP/IP header for link
998  * layer header.  It has to be a multiple of 4.
999  */
1000 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" };
1001 #define	tcps_wroff_xtra	tcps_wroff_xtra_param->tcp_param_val
1002 
1003 /*
1004  * All of these are alterable, within the min/max values given, at run time.
1005  * Note that the default value of "tcp_time_wait_interval" is four minutes,
1006  * per the TCP spec.
1007  */
1008 /* BEGIN CSTYLED */
1009 static tcpparam_t	lcl_tcp_param_arr[] = {
1010  /*min		max		value		name */
1011  { 1*SECONDS,	10*MINUTES,	1*MINUTES,	"tcp_time_wait_interval"},
1012  { 1,		PARAM_MAX,	128,		"tcp_conn_req_max_q" },
1013  { 0,		PARAM_MAX,	1024,		"tcp_conn_req_max_q0" },
1014  { 1,		1024,		1,		"tcp_conn_req_min" },
1015  { 0*MS,	20*SECONDS,	0*MS,		"tcp_conn_grace_period" },
1016  { 128,		(1<<30),	1024*1024,	"tcp_cwnd_max" },
1017  { 0,		10,		0,		"tcp_debug" },
1018  { 1024,	(32*1024),	1024,		"tcp_smallest_nonpriv_port"},
1019  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_cinterval"},
1020  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_linterval"},
1021  { 500*MS,	PARAM_MAX,	8*MINUTES,	"tcp_ip_abort_interval"},
1022  { 1*SECONDS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_cinterval"},
1023  { 500*MS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_interval"},
1024  { 1,		255,		64,		"tcp_ipv4_ttl"},
1025  { 10*SECONDS,	10*DAYS,	2*HOURS,	"tcp_keepalive_interval"},
1026  { 0,		100,		10,		"tcp_maxpsz_multiplier" },
1027  { 1,		TCP_MSS_MAX_IPV4, 536,		"tcp_mss_def_ipv4"},
1028  { 1,		TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"},
1029  { 1,		TCP_MSS_MAX,	108,		"tcp_mss_min"},
1030  { 1,		(64*1024)-1,	(4*1024)-1,	"tcp_naglim_def"},
1031  { 1*MS,	20*SECONDS,	3*SECONDS,	"tcp_rexmit_interval_initial"},
1032  { 1*MS,	2*HOURS,	60*SECONDS,	"tcp_rexmit_interval_max"},
1033  { 1*MS,	2*HOURS,	400*MS,		"tcp_rexmit_interval_min"},
1034  { 1*MS,	1*MINUTES,	100*MS,		"tcp_deferred_ack_interval" },
1035  { 0,		16,		0,		"tcp_snd_lowat_fraction" },
1036  { 0,		128000,		0,		"tcp_sth_rcv_hiwat" },
1037  { 0,		128000,		0,		"tcp_sth_rcv_lowat" },
1038  { 1,		10000,		3,		"tcp_dupack_fast_retransmit" },
1039  { 0,		1,		0,		"tcp_ignore_path_mtu" },
1040  { 1024,	TCP_MAX_PORT,	32*1024,	"tcp_smallest_anon_port"},
1041  { 1024,	TCP_MAX_PORT,	TCP_MAX_PORT,	"tcp_largest_anon_port"},
1042  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"},
1043  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"},
1044  { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"},
1045  { 1,		65536,		4,		"tcp_recv_hiwat_minmss"},
1046  { 1*SECONDS,	PARAM_MAX,	675*SECONDS,	"tcp_fin_wait_2_flush_interval"},
1047  { 8192,	(1<<30),	1024*1024,	"tcp_max_buf"},
1048 /*
1049  * Question:  What default value should I set for tcp_strong_iss?
1050  */
1051  { 0,		2,		1,		"tcp_strong_iss"},
1052  { 0,		65536,		20,		"tcp_rtt_updates"},
1053  { 0,		1,		1,		"tcp_wscale_always"},
1054  { 0,		1,		0,		"tcp_tstamp_always"},
1055  { 0,		1,		1,		"tcp_tstamp_if_wscale"},
1056  { 0*MS,	2*HOURS,	0*MS,		"tcp_rexmit_interval_extra"},
1057  { 0,		16,		2,		"tcp_deferred_acks_max"},
1058  { 1,		16384,		4,		"tcp_slow_start_after_idle"},
1059  { 1,		4,		4,		"tcp_slow_start_initial"},
1060  { 0,		2,		2,		"tcp_sack_permitted"},
1061  { 0,		1,		1,		"tcp_compression_enabled"},
1062  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS,	"tcp_ipv6_hoplimit"},
1063  { 1,		TCP_MSS_MAX_IPV6, 1220,		"tcp_mss_def_ipv6"},
1064  { 1,		TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"},
1065  { 0,		1,		0,		"tcp_rev_src_routes"},
1066  { 10*MS,	500*MS,		50*MS,		"tcp_local_dack_interval"},
1067  { 0,		16,		8,		"tcp_local_dacks_max"},
1068  { 0,		2,		1,		"tcp_ecn_permitted"},
1069  { 0,		1,		1,		"tcp_rst_sent_rate_enabled"},
1070  { 0,		PARAM_MAX,	40,		"tcp_rst_sent_rate"},
1071  { 0,		100*MS,		50*MS,		"tcp_push_timer_interval"},
1072  { 0,		1,		0,		"tcp_use_smss_as_mss_opt"},
1073  { 0,		PARAM_MAX,	8*MINUTES,	"tcp_keepalive_abort_interval"},
1074  { 0,		1,		0,		"tcp_dev_flow_ctl"},
1075 };
1076 /* END CSTYLED */
1077 
1078 /* Round up the value to the nearest mss. */
1079 #define	MSS_ROUNDUP(value, mss)		((((value) - 1) / (mss) + 1) * (mss))
1080 
1081 /*
1082  * Set ECN capable transport (ECT) code point in IP header.
1083  *
1084  * Note that there are 2 ECT code points '01' and '10', which are called
1085  * ECT(1) and ECT(0) respectively.  Here we follow the original ECT code
1086  * point ECT(0) for TCP as described in RFC 2481.
1087  */
1088 #define	SET_ECT(tcp, iph) \
1089 	if ((tcp)->tcp_connp->conn_ipversion == IPV4_VERSION) { \
1090 		/* We need to clear the code point first. */ \
1091 		((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \
1092 		((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \
1093 	} else { \
1094 		((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \
1095 		((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \
1096 	}
1097 
1098 /*
1099  * The format argument to pass to tcp_display().
1100  * DISP_PORT_ONLY means that the returned string has only port info.
1101  * DISP_ADDR_AND_PORT means that the returned string also contains the
1102  * remote and local IP address.
1103  */
1104 #define	DISP_PORT_ONLY		1
1105 #define	DISP_ADDR_AND_PORT	2
1106 
1107 #define	IS_VMLOANED_MBLK(mp) \
1108 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
1109 
1110 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
1111 
1112 /*
1113  * Forces all connections to obey the value of the tcps_maxpsz_multiplier
1114  * tunable settable via NDD.  Otherwise, the per-connection behavior is
1115  * determined dynamically during tcp_set_destination(), which is the default.
1116  */
1117 boolean_t tcp_static_maxpsz = B_FALSE;
1118 
1119 /* Setable in /etc/system */
1120 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
1121 uint32_t tcp_random_anon_port = 1;
1122 
1123 /*
1124  * To reach to an eager in Q0 which can be dropped due to an incoming
1125  * new SYN request when Q0 is full, a new doubly linked list is
1126  * introduced. This list allows to select an eager from Q0 in O(1) time.
1127  * This is needed to avoid spending too much time walking through the
1128  * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of
1129  * this new list has to be a member of Q0.
1130  * This list is headed by listener's tcp_t. When the list is empty,
1131  * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0,
1132  * of listener's tcp_t point to listener's tcp_t itself.
1133  *
1134  * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager
1135  * in the list. MAKE_UNDROPPABLE() takes the eager out of the list.
1136  * These macros do not affect the eager's membership to Q0.
1137  */
1138 
1139 
1140 #define	MAKE_DROPPABLE(listener, eager)					\
1141 	if ((eager)->tcp_eager_next_drop_q0 == NULL) {			\
1142 		(listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\
1143 		    = (eager);						\
1144 		(eager)->tcp_eager_prev_drop_q0 = (listener);		\
1145 		(eager)->tcp_eager_next_drop_q0 =			\
1146 		    (listener)->tcp_eager_next_drop_q0;			\
1147 		(listener)->tcp_eager_next_drop_q0 = (eager);		\
1148 	}
1149 
1150 #define	MAKE_UNDROPPABLE(eager)						\
1151 	if ((eager)->tcp_eager_next_drop_q0 != NULL) {			\
1152 		(eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0	\
1153 		    = (eager)->tcp_eager_prev_drop_q0;			\
1154 		(eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0	\
1155 		    = (eager)->tcp_eager_next_drop_q0;			\
1156 		(eager)->tcp_eager_prev_drop_q0 = NULL;			\
1157 		(eager)->tcp_eager_next_drop_q0 = NULL;			\
1158 	}
1159 
1160 /*
1161  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
1162  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
1163  * data, TCP will not respond with an ACK.  RFC 793 requires that
1164  * TCP responds with an ACK for such a bogus ACK.  By not following
1165  * the RFC, we prevent TCP from getting into an ACK storm if somehow
1166  * an attacker successfully spoofs an acceptable segment to our
1167  * peer; or when our peer is "confused."
1168  */
1169 uint32_t tcp_drop_ack_unsent_cnt = 10;
1170 
1171 /*
1172  * Hook functions to enable cluster networking
1173  * On non-clustered systems these vectors must always be NULL.
1174  */
1175 
1176 void (*cl_inet_listen)(netstackid_t stack_id, uint8_t protocol,
1177 			    sa_family_t addr_family, uint8_t *laddrp,
1178 			    in_port_t lport, void *args) = NULL;
1179 void (*cl_inet_unlisten)(netstackid_t stack_id, uint8_t protocol,
1180 			    sa_family_t addr_family, uint8_t *laddrp,
1181 			    in_port_t lport, void *args) = NULL;
1182 
1183 int (*cl_inet_connect2)(netstackid_t stack_id, uint8_t protocol,
1184 			    boolean_t is_outgoing,
1185 			    sa_family_t addr_family,
1186 			    uint8_t *laddrp, in_port_t lport,
1187 			    uint8_t *faddrp, in_port_t fport,
1188 			    void *args) = NULL;
1189 void (*cl_inet_disconnect)(netstackid_t stack_id, uint8_t protocol,
1190 			    sa_family_t addr_family, uint8_t *laddrp,
1191 			    in_port_t lport, uint8_t *faddrp,
1192 			    in_port_t fport, void *args) = NULL;
1193 
1194 
1195 /*
1196  * int CL_INET_CONNECT(conn_t *cp, tcp_t *tcp, boolean_t is_outgoing, int err)
1197  */
1198 #define	CL_INET_CONNECT(connp, is_outgoing, err) {		\
1199 	(err) = 0;						\
1200 	if (cl_inet_connect2 != NULL) {				\
1201 		/*						\
1202 		 * Running in cluster mode - register active connection	\
1203 		 * information						\
1204 		 */							\
1205 		if ((connp)->conn_ipversion == IPV4_VERSION) {		\
1206 			if ((connp)->conn_laddr_v4 != 0) {		\
1207 				(err) = (*cl_inet_connect2)(		\
1208 				    (connp)->conn_netstack->netstack_stackid,\
1209 				    IPPROTO_TCP, is_outgoing, AF_INET,	\
1210 				    (uint8_t *)(&((connp)->conn_laddr_v4)),\
1211 				    (in_port_t)(connp)->conn_lport,	\
1212 				    (uint8_t *)(&((connp)->conn_faddr_v4)),\
1213 				    (in_port_t)(connp)->conn_fport, NULL); \
1214 			}						\
1215 		} else {						\
1216 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1217 			    &(connp)->conn_laddr_v6)) {			\
1218 				(err) = (*cl_inet_connect2)(		\
1219 				    (connp)->conn_netstack->netstack_stackid,\
1220 				    IPPROTO_TCP, is_outgoing, AF_INET6,	\
1221 				    (uint8_t *)(&((connp)->conn_laddr_v6)),\
1222 				    (in_port_t)(connp)->conn_lport,	\
1223 				    (uint8_t *)(&((connp)->conn_faddr_v6)), \
1224 				    (in_port_t)(connp)->conn_fport, NULL); \
1225 			}						\
1226 		}							\
1227 	}								\
1228 }
1229 
1230 #define	CL_INET_DISCONNECT(connp)	{				\
1231 	if (cl_inet_disconnect != NULL) {				\
1232 		/*							\
1233 		 * Running in cluster mode - deregister active		\
1234 		 * connection information				\
1235 		 */							\
1236 		if ((connp)->conn_ipversion == IPV4_VERSION) {		\
1237 			if ((connp)->conn_laddr_v4 != 0) {		\
1238 				(*cl_inet_disconnect)(			\
1239 				    (connp)->conn_netstack->netstack_stackid,\
1240 				    IPPROTO_TCP, AF_INET,		\
1241 				    (uint8_t *)(&((connp)->conn_laddr_v4)),\
1242 				    (in_port_t)(connp)->conn_lport,	\
1243 				    (uint8_t *)(&((connp)->conn_faddr_v4)),\
1244 				    (in_port_t)(connp)->conn_fport, NULL); \
1245 			}						\
1246 		} else {						\
1247 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1248 			    &(connp)->conn_laddr_v6)) {			\
1249 				(*cl_inet_disconnect)(			\
1250 				    (connp)->conn_netstack->netstack_stackid,\
1251 				    IPPROTO_TCP, AF_INET6,		\
1252 				    (uint8_t *)(&((connp)->conn_laddr_v6)),\
1253 				    (in_port_t)(connp)->conn_lport,	\
1254 				    (uint8_t *)(&((connp)->conn_faddr_v6)), \
1255 				    (in_port_t)(connp)->conn_fport, NULL); \
1256 			}						\
1257 		}							\
1258 	}								\
1259 }
1260 
1261 /*
1262  * Cluster networking hook for traversing current connection list.
1263  * This routine is used to extract the current list of live connections
1264  * which must continue to to be dispatched to this node.
1265  */
1266 int cl_tcp_walk_list(netstackid_t stack_id,
1267     int (*callback)(cl_tcp_info_t *, void *), void *arg);
1268 
1269 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *),
1270     void *arg, tcp_stack_t *tcps);
1271 
1272 static void
1273 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh)
1274 {
1275 	uint32_t default_threshold = SOCKET_RECVHIWATER >> 3;
1276 
1277 	if (IPCL_IS_NONSTR(tcp->tcp_connp)) {
1278 		conn_t *connp = tcp->tcp_connp;
1279 		struct sock_proto_props sopp;
1280 
1281 		/*
1282 		 * only increase rcvthresh upto default_threshold
1283 		 */
1284 		if (new_rcvthresh > default_threshold)
1285 			new_rcvthresh = default_threshold;
1286 
1287 		sopp.sopp_flags = SOCKOPT_RCVTHRESH;
1288 		sopp.sopp_rcvthresh = new_rcvthresh;
1289 
1290 		(*connp->conn_upcalls->su_set_proto_props)
1291 		    (connp->conn_upper_handle, &sopp);
1292 	}
1293 }
1294 /*
1295  * Figure out the value of window scale opton.  Note that the rwnd is
1296  * ASSUMED to be rounded up to the nearest MSS before the calculation.
1297  * We cannot find the scale value and then do a round up of tcp_rwnd
1298  * because the scale value may not be correct after that.
1299  *
1300  * Set the compiler flag to make this function inline.
1301  */
1302 static void
1303 tcp_set_ws_value(tcp_t *tcp)
1304 {
1305 	int i;
1306 	uint32_t rwnd = tcp->tcp_rwnd;
1307 
1308 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
1309 	    i++, rwnd >>= 1)
1310 		;
1311 	tcp->tcp_rcv_ws = i;
1312 }
1313 
1314 /*
1315  * Remove a connection from the list of detached TIME_WAIT connections.
1316  * It returns B_FALSE if it can't remove the connection from the list
1317  * as the connection has already been removed from the list due to an
1318  * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE.
1319  */
1320 static boolean_t
1321 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait)
1322 {
1323 	boolean_t	locked = B_FALSE;
1324 
1325 	if (tcp_time_wait == NULL) {
1326 		tcp_time_wait = *((tcp_squeue_priv_t **)
1327 		    squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP));
1328 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1329 		locked = B_TRUE;
1330 	} else {
1331 		ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock));
1332 	}
1333 
1334 	if (tcp->tcp_time_wait_expire == 0) {
1335 		ASSERT(tcp->tcp_time_wait_next == NULL);
1336 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1337 		if (locked)
1338 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1339 		return (B_FALSE);
1340 	}
1341 	ASSERT(TCP_IS_DETACHED(tcp));
1342 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1343 
1344 	if (tcp == tcp_time_wait->tcp_time_wait_head) {
1345 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1346 		tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next;
1347 		if (tcp_time_wait->tcp_time_wait_head != NULL) {
1348 			tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev =
1349 			    NULL;
1350 		} else {
1351 			tcp_time_wait->tcp_time_wait_tail = NULL;
1352 		}
1353 	} else if (tcp == tcp_time_wait->tcp_time_wait_tail) {
1354 		ASSERT(tcp != tcp_time_wait->tcp_time_wait_head);
1355 		ASSERT(tcp->tcp_time_wait_next == NULL);
1356 		tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev;
1357 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1358 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL;
1359 	} else {
1360 		ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp);
1361 		ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp);
1362 		tcp->tcp_time_wait_prev->tcp_time_wait_next =
1363 		    tcp->tcp_time_wait_next;
1364 		tcp->tcp_time_wait_next->tcp_time_wait_prev =
1365 		    tcp->tcp_time_wait_prev;
1366 	}
1367 	tcp->tcp_time_wait_next = NULL;
1368 	tcp->tcp_time_wait_prev = NULL;
1369 	tcp->tcp_time_wait_expire = 0;
1370 
1371 	if (locked)
1372 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1373 	return (B_TRUE);
1374 }
1375 
1376 /*
1377  * Add a connection to the list of detached TIME_WAIT connections
1378  * and set its time to expire.
1379  */
1380 static void
1381 tcp_time_wait_append(tcp_t *tcp)
1382 {
1383 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1384 	tcp_squeue_priv_t *tcp_time_wait =
1385 	    *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp,
1386 	    SQPRIVATE_TCP));
1387 
1388 	tcp_timers_stop(tcp);
1389 
1390 	/* Freed above */
1391 	ASSERT(tcp->tcp_timer_tid == 0);
1392 	ASSERT(tcp->tcp_ack_tid == 0);
1393 
1394 	/* must have happened at the time of detaching the tcp */
1395 	ASSERT(tcp->tcp_ptpahn == NULL);
1396 	ASSERT(tcp->tcp_flow_stopped == 0);
1397 	ASSERT(tcp->tcp_time_wait_next == NULL);
1398 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1399 	ASSERT(tcp->tcp_time_wait_expire == NULL);
1400 	ASSERT(tcp->tcp_listener == NULL);
1401 
1402 	tcp->tcp_time_wait_expire = ddi_get_lbolt();
1403 	/*
1404 	 * The value computed below in tcp->tcp_time_wait_expire may
1405 	 * appear negative or wrap around. That is ok since our
1406 	 * interest is only in the difference between the current lbolt
1407 	 * value and tcp->tcp_time_wait_expire. But the value should not
1408 	 * be zero, since it means the tcp is not in the TIME_WAIT list.
1409 	 * The corresponding comparison in tcp_time_wait_collector() uses
1410 	 * modular arithmetic.
1411 	 */
1412 	tcp->tcp_time_wait_expire +=
1413 	    drv_usectohz(tcps->tcps_time_wait_interval * 1000);
1414 	if (tcp->tcp_time_wait_expire == 0)
1415 		tcp->tcp_time_wait_expire = 1;
1416 
1417 	ASSERT(TCP_IS_DETACHED(tcp));
1418 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1419 	ASSERT(tcp->tcp_time_wait_next == NULL);
1420 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1421 	TCP_DBGSTAT(tcps, tcp_time_wait);
1422 
1423 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1424 	if (tcp_time_wait->tcp_time_wait_head == NULL) {
1425 		ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL);
1426 		tcp_time_wait->tcp_time_wait_head = tcp;
1427 	} else {
1428 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1429 		ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state ==
1430 		    TCPS_TIME_WAIT);
1431 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp;
1432 		tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail;
1433 	}
1434 	tcp_time_wait->tcp_time_wait_tail = tcp;
1435 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1436 }
1437 
1438 /* ARGSUSED */
1439 void
1440 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
1441 {
1442 	conn_t	*connp = (conn_t *)arg;
1443 	tcp_t	*tcp = connp->conn_tcp;
1444 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1445 
1446 	ASSERT(tcp != NULL);
1447 	if (tcp->tcp_state == TCPS_CLOSED) {
1448 		return;
1449 	}
1450 
1451 	ASSERT((connp->conn_family == AF_INET &&
1452 	    connp->conn_ipversion == IPV4_VERSION) ||
1453 	    (connp->conn_family == AF_INET6 &&
1454 	    (connp->conn_ipversion == IPV4_VERSION ||
1455 	    connp->conn_ipversion == IPV6_VERSION)));
1456 	ASSERT(!tcp->tcp_listener);
1457 
1458 	TCP_STAT(tcps, tcp_time_wait_reap);
1459 	ASSERT(TCP_IS_DETACHED(tcp));
1460 
1461 	/*
1462 	 * Because they have no upstream client to rebind or tcp_close()
1463 	 * them later, we axe the connection here and now.
1464 	 */
1465 	tcp_close_detached(tcp);
1466 }
1467 
1468 /*
1469  * Remove cached/latched IPsec references.
1470  */
1471 void
1472 tcp_ipsec_cleanup(tcp_t *tcp)
1473 {
1474 	conn_t		*connp = tcp->tcp_connp;
1475 
1476 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1477 
1478 	if (connp->conn_latch != NULL) {
1479 		IPLATCH_REFRELE(connp->conn_latch);
1480 		connp->conn_latch = NULL;
1481 	}
1482 	if (connp->conn_latch_in_policy != NULL) {
1483 		IPPOL_REFRELE(connp->conn_latch_in_policy);
1484 		connp->conn_latch_in_policy = NULL;
1485 	}
1486 	if (connp->conn_latch_in_action != NULL) {
1487 		IPACT_REFRELE(connp->conn_latch_in_action);
1488 		connp->conn_latch_in_action = NULL;
1489 	}
1490 	if (connp->conn_policy != NULL) {
1491 		IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
1492 		connp->conn_policy = NULL;
1493 	}
1494 }
1495 
1496 /*
1497  * Cleaup before placing on free list.
1498  * Disassociate from the netstack/tcp_stack_t since the freelist
1499  * is per squeue and not per netstack.
1500  */
1501 void
1502 tcp_cleanup(tcp_t *tcp)
1503 {
1504 	mblk_t		*mp;
1505 	tcp_sack_info_t	*tcp_sack_info;
1506 	conn_t		*connp = tcp->tcp_connp;
1507 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1508 	netstack_t	*ns = tcps->tcps_netstack;
1509 	mblk_t		*tcp_rsrv_mp;
1510 
1511 	tcp_bind_hash_remove(tcp);
1512 
1513 	/* Cleanup that which needs the netstack first */
1514 	tcp_ipsec_cleanup(tcp);
1515 	ixa_cleanup(connp->conn_ixa);
1516 
1517 	if (connp->conn_ht_iphc != NULL) {
1518 		kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated);
1519 		connp->conn_ht_iphc = NULL;
1520 		connp->conn_ht_iphc_allocated = 0;
1521 		connp->conn_ht_iphc_len = 0;
1522 		connp->conn_ht_ulp = NULL;
1523 		connp->conn_ht_ulp_len = 0;
1524 		tcp->tcp_ipha = NULL;
1525 		tcp->tcp_ip6h = NULL;
1526 		tcp->tcp_tcpha = NULL;
1527 	}
1528 
1529 	/* We clear any IP_OPTIONS and extension headers */
1530 	ip_pkt_free(&connp->conn_xmit_ipp);
1531 
1532 	tcp_free(tcp);
1533 
1534 	/* Release any SSL context */
1535 	if (tcp->tcp_kssl_ent != NULL) {
1536 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
1537 		tcp->tcp_kssl_ent = NULL;
1538 	}
1539 
1540 	if (tcp->tcp_kssl_ctx != NULL) {
1541 		kssl_release_ctx(tcp->tcp_kssl_ctx);
1542 		tcp->tcp_kssl_ctx = NULL;
1543 	}
1544 	tcp->tcp_kssl_pending = B_FALSE;
1545 
1546 	/*
1547 	 * Since we will bzero the entire structure, we need to
1548 	 * remove it and reinsert it in global hash list. We
1549 	 * know the walkers can't get to this conn because we
1550 	 * had set CONDEMNED flag earlier and checked reference
1551 	 * under conn_lock so walker won't pick it and when we
1552 	 * go the ipcl_globalhash_remove() below, no walker
1553 	 * can get to it.
1554 	 */
1555 	ipcl_globalhash_remove(connp);
1556 
1557 	/* Save some state */
1558 	mp = tcp->tcp_timercache;
1559 
1560 	tcp_sack_info = tcp->tcp_sack_info;
1561 	tcp_rsrv_mp = tcp->tcp_rsrv_mp;
1562 
1563 	if (connp->conn_cred != NULL) {
1564 		crfree(connp->conn_cred);
1565 		connp->conn_cred = NULL;
1566 	}
1567 	ipcl_conn_cleanup(connp);
1568 	connp->conn_flags = IPCL_TCPCONN;
1569 
1570 	/*
1571 	 * Now it is safe to decrement the reference counts.
1572 	 * This might be the last reference on the netstack
1573 	 * in which case it will cause the freeing of the IP Instance.
1574 	 */
1575 	connp->conn_netstack = NULL;
1576 	connp->conn_ixa->ixa_ipst = NULL;
1577 	netstack_rele(ns);
1578 	ASSERT(tcps != NULL);
1579 	tcp->tcp_tcps = NULL;
1580 
1581 	bzero(tcp, sizeof (tcp_t));
1582 
1583 	/* restore the state */
1584 	tcp->tcp_timercache = mp;
1585 
1586 	tcp->tcp_sack_info = tcp_sack_info;
1587 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
1588 
1589 	tcp->tcp_connp = connp;
1590 
1591 	ASSERT(connp->conn_tcp == tcp);
1592 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1593 	connp->conn_state_flags = CONN_INCIPIENT;
1594 	ASSERT(connp->conn_proto == IPPROTO_TCP);
1595 	ASSERT(connp->conn_ref == 1);
1596 }
1597 
1598 /*
1599  * Blows away all tcps whose TIME_WAIT has expired. List traversal
1600  * is done forwards from the head.
1601  * This walks all stack instances since
1602  * tcp_time_wait remains global across all stacks.
1603  */
1604 /* ARGSUSED */
1605 void
1606 tcp_time_wait_collector(void *arg)
1607 {
1608 	tcp_t *tcp;
1609 	clock_t now;
1610 	mblk_t *mp;
1611 	conn_t *connp;
1612 	kmutex_t *lock;
1613 	boolean_t removed;
1614 
1615 	squeue_t *sqp = (squeue_t *)arg;
1616 	tcp_squeue_priv_t *tcp_time_wait =
1617 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1618 
1619 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1620 	tcp_time_wait->tcp_time_wait_tid = 0;
1621 
1622 	if (tcp_time_wait->tcp_free_list != NULL &&
1623 	    tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) {
1624 		TCP_G_STAT(tcp_freelist_cleanup);
1625 		while ((tcp = tcp_time_wait->tcp_free_list) != NULL) {
1626 			tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1627 			tcp->tcp_time_wait_next = NULL;
1628 			tcp_time_wait->tcp_free_list_cnt--;
1629 			ASSERT(tcp->tcp_tcps == NULL);
1630 			CONN_DEC_REF(tcp->tcp_connp);
1631 		}
1632 		ASSERT(tcp_time_wait->tcp_free_list_cnt == 0);
1633 	}
1634 
1635 	/*
1636 	 * In order to reap time waits reliably, we should use a
1637 	 * source of time that is not adjustable by the user -- hence
1638 	 * the call to ddi_get_lbolt().
1639 	 */
1640 	now = ddi_get_lbolt();
1641 	while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) {
1642 		/*
1643 		 * Compare times using modular arithmetic, since
1644 		 * lbolt can wrapover.
1645 		 */
1646 		if ((now - tcp->tcp_time_wait_expire) < 0) {
1647 			break;
1648 		}
1649 
1650 		removed = tcp_time_wait_remove(tcp, tcp_time_wait);
1651 		ASSERT(removed);
1652 
1653 		connp = tcp->tcp_connp;
1654 		ASSERT(connp->conn_fanout != NULL);
1655 		lock = &connp->conn_fanout->connf_lock;
1656 		/*
1657 		 * This is essentially a TW reclaim fast path optimization for
1658 		 * performance where the timewait collector checks under the
1659 		 * fanout lock (so that no one else can get access to the
1660 		 * conn_t) that the refcnt is 2 i.e. one for TCP and one for
1661 		 * the classifier hash list. If ref count is indeed 2, we can
1662 		 * just remove the conn under the fanout lock and avoid
1663 		 * cleaning up the conn under the squeue, provided that
1664 		 * clustering callbacks are not enabled. If clustering is
1665 		 * enabled, we need to make the clustering callback before
1666 		 * setting the CONDEMNED flag and after dropping all locks and
1667 		 * so we forego this optimization and fall back to the slow
1668 		 * path. Also please see the comments in tcp_closei_local
1669 		 * regarding the refcnt logic.
1670 		 *
1671 		 * Since we are holding the tcp_time_wait_lock, its better
1672 		 * not to block on the fanout_lock because other connections
1673 		 * can't add themselves to time_wait list. So we do a
1674 		 * tryenter instead of mutex_enter.
1675 		 */
1676 		if (mutex_tryenter(lock)) {
1677 			mutex_enter(&connp->conn_lock);
1678 			if ((connp->conn_ref == 2) &&
1679 			    (cl_inet_disconnect == NULL)) {
1680 				ipcl_hash_remove_locked(connp,
1681 				    connp->conn_fanout);
1682 				/*
1683 				 * Set the CONDEMNED flag now itself so that
1684 				 * the refcnt cannot increase due to any
1685 				 * walker.
1686 				 */
1687 				connp->conn_state_flags |= CONN_CONDEMNED;
1688 				mutex_exit(lock);
1689 				mutex_exit(&connp->conn_lock);
1690 				if (tcp_time_wait->tcp_free_list_cnt <
1691 				    tcp_free_list_max_cnt) {
1692 					/* Add to head of tcp_free_list */
1693 					mutex_exit(
1694 					    &tcp_time_wait->tcp_time_wait_lock);
1695 					tcp_cleanup(tcp);
1696 					ASSERT(connp->conn_latch == NULL);
1697 					ASSERT(connp->conn_policy == NULL);
1698 					ASSERT(tcp->tcp_tcps == NULL);
1699 					ASSERT(connp->conn_netstack == NULL);
1700 
1701 					mutex_enter(
1702 					    &tcp_time_wait->tcp_time_wait_lock);
1703 					tcp->tcp_time_wait_next =
1704 					    tcp_time_wait->tcp_free_list;
1705 					tcp_time_wait->tcp_free_list = tcp;
1706 					tcp_time_wait->tcp_free_list_cnt++;
1707 					continue;
1708 				} else {
1709 					/* Do not add to tcp_free_list */
1710 					mutex_exit(
1711 					    &tcp_time_wait->tcp_time_wait_lock);
1712 					tcp_bind_hash_remove(tcp);
1713 					ixa_cleanup(tcp->tcp_connp->conn_ixa);
1714 					tcp_ipsec_cleanup(tcp);
1715 					CONN_DEC_REF(tcp->tcp_connp);
1716 				}
1717 			} else {
1718 				CONN_INC_REF_LOCKED(connp);
1719 				mutex_exit(lock);
1720 				mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1721 				mutex_exit(&connp->conn_lock);
1722 				/*
1723 				 * We can reuse the closemp here since conn has
1724 				 * detached (otherwise we wouldn't even be in
1725 				 * time_wait list). tcp_closemp_used can safely
1726 				 * be changed without taking a lock as no other
1727 				 * thread can concurrently access it at this
1728 				 * point in the connection lifecycle.
1729 				 */
1730 
1731 				if (tcp->tcp_closemp.b_prev == NULL)
1732 					tcp->tcp_closemp_used = B_TRUE;
1733 				else
1734 					cmn_err(CE_PANIC,
1735 					    "tcp_timewait_collector: "
1736 					    "concurrent use of tcp_closemp: "
1737 					    "connp %p tcp %p\n", (void *)connp,
1738 					    (void *)tcp);
1739 
1740 				TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1741 				mp = &tcp->tcp_closemp;
1742 				SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
1743 				    tcp_timewait_output, connp, NULL,
1744 				    SQ_FILL, SQTAG_TCP_TIMEWAIT);
1745 			}
1746 		} else {
1747 			mutex_enter(&connp->conn_lock);
1748 			CONN_INC_REF_LOCKED(connp);
1749 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1750 			mutex_exit(&connp->conn_lock);
1751 			/*
1752 			 * We can reuse the closemp here since conn has
1753 			 * detached (otherwise we wouldn't even be in
1754 			 * time_wait list). tcp_closemp_used can safely
1755 			 * be changed without taking a lock as no other
1756 			 * thread can concurrently access it at this
1757 			 * point in the connection lifecycle.
1758 			 */
1759 
1760 			if (tcp->tcp_closemp.b_prev == NULL)
1761 				tcp->tcp_closemp_used = B_TRUE;
1762 			else
1763 				cmn_err(CE_PANIC, "tcp_timewait_collector: "
1764 				    "concurrent use of tcp_closemp: "
1765 				    "connp %p tcp %p\n", (void *)connp,
1766 				    (void *)tcp);
1767 
1768 			TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1769 			mp = &tcp->tcp_closemp;
1770 			SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
1771 			    tcp_timewait_output, connp, NULL,
1772 			    SQ_FILL, SQTAG_TCP_TIMEWAIT);
1773 		}
1774 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1775 	}
1776 
1777 	if (tcp_time_wait->tcp_free_list != NULL)
1778 		tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE;
1779 
1780 	tcp_time_wait->tcp_time_wait_tid =
1781 	    timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp,
1782 	    TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION,
1783 	    CALLOUT_FLAG_ROUNDUP);
1784 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1785 }
1786 
1787 /*
1788  * Reply to a clients T_CONN_RES TPI message. This function
1789  * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES
1790  * on the acceptor STREAM and processed in tcp_accept_common().
1791  * Read the block comment on top of tcp_input_listener().
1792  */
1793 static void
1794 tcp_tli_accept(tcp_t *listener, mblk_t *mp)
1795 {
1796 	tcp_t		*acceptor;
1797 	tcp_t		*eager;
1798 	tcp_t   	*tcp;
1799 	struct T_conn_res	*tcr;
1800 	t_uscalar_t	acceptor_id;
1801 	t_scalar_t	seqnum;
1802 	mblk_t		*discon_mp = NULL;
1803 	mblk_t		*ok_mp;
1804 	mblk_t		*mp1;
1805 	tcp_stack_t	*tcps = listener->tcp_tcps;
1806 	conn_t		*econnp;
1807 
1808 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
1809 		tcp_err_ack(listener, mp, TPROTO, 0);
1810 		return;
1811 	}
1812 	tcr = (struct T_conn_res *)mp->b_rptr;
1813 
1814 	/*
1815 	 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the
1816 	 * read side queue of the streams device underneath us i.e. the
1817 	 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we
1818 	 * look it up in the queue_hash.  Under LP64 it sends down the
1819 	 * minor_t of the accepting endpoint.
1820 	 *
1821 	 * Once the acceptor/eager are modified (in tcp_accept_swap) the
1822 	 * fanout hash lock is held.
1823 	 * This prevents any thread from entering the acceptor queue from
1824 	 * below (since it has not been hard bound yet i.e. any inbound
1825 	 * packets will arrive on the listener conn_t and
1826 	 * go through the classifier).
1827 	 * The CONN_INC_REF will prevent the acceptor from closing.
1828 	 *
1829 	 * XXX It is still possible for a tli application to send down data
1830 	 * on the accepting stream while another thread calls t_accept.
1831 	 * This should not be a problem for well-behaved applications since
1832 	 * the T_OK_ACK is sent after the queue swapping is completed.
1833 	 *
1834 	 * If the accepting fd is the same as the listening fd, avoid
1835 	 * queue hash lookup since that will return an eager listener in a
1836 	 * already established state.
1837 	 */
1838 	acceptor_id = tcr->ACCEPTOR_id;
1839 	mutex_enter(&listener->tcp_eager_lock);
1840 	if (listener->tcp_acceptor_id == acceptor_id) {
1841 		eager = listener->tcp_eager_next_q;
1842 		/* only count how many T_CONN_INDs so don't count q0 */
1843 		if ((listener->tcp_conn_req_cnt_q != 1) ||
1844 		    (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) {
1845 			mutex_exit(&listener->tcp_eager_lock);
1846 			tcp_err_ack(listener, mp, TBADF, 0);
1847 			return;
1848 		}
1849 		if (listener->tcp_conn_req_cnt_q0 != 0) {
1850 			/* Throw away all the eagers on q0. */
1851 			tcp_eager_cleanup(listener, 1);
1852 		}
1853 		if (listener->tcp_syn_defense) {
1854 			listener->tcp_syn_defense = B_FALSE;
1855 			if (listener->tcp_ip_addr_cache != NULL) {
1856 				kmem_free(listener->tcp_ip_addr_cache,
1857 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
1858 				listener->tcp_ip_addr_cache = NULL;
1859 			}
1860 		}
1861 		/*
1862 		 * Transfer tcp_conn_req_max to the eager so that when
1863 		 * a disconnect occurs we can revert the endpoint to the
1864 		 * listen state.
1865 		 */
1866 		eager->tcp_conn_req_max = listener->tcp_conn_req_max;
1867 		ASSERT(listener->tcp_conn_req_cnt_q0 == 0);
1868 		/*
1869 		 * Get a reference on the acceptor just like the
1870 		 * tcp_acceptor_hash_lookup below.
1871 		 */
1872 		acceptor = listener;
1873 		CONN_INC_REF(acceptor->tcp_connp);
1874 	} else {
1875 		acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps);
1876 		if (acceptor == NULL) {
1877 			if (listener->tcp_connp->conn_debug) {
1878 				(void) strlog(TCP_MOD_ID, 0, 1,
1879 				    SL_ERROR|SL_TRACE,
1880 				    "tcp_accept: did not find acceptor 0x%x\n",
1881 				    acceptor_id);
1882 			}
1883 			mutex_exit(&listener->tcp_eager_lock);
1884 			tcp_err_ack(listener, mp, TPROVMISMATCH, 0);
1885 			return;
1886 		}
1887 		/*
1888 		 * Verify acceptor state. The acceptable states for an acceptor
1889 		 * include TCPS_IDLE and TCPS_BOUND.
1890 		 */
1891 		switch (acceptor->tcp_state) {
1892 		case TCPS_IDLE:
1893 			/* FALLTHRU */
1894 		case TCPS_BOUND:
1895 			break;
1896 		default:
1897 			CONN_DEC_REF(acceptor->tcp_connp);
1898 			mutex_exit(&listener->tcp_eager_lock);
1899 			tcp_err_ack(listener, mp, TOUTSTATE, 0);
1900 			return;
1901 		}
1902 	}
1903 
1904 	/* The listener must be in TCPS_LISTEN */
1905 	if (listener->tcp_state != TCPS_LISTEN) {
1906 		CONN_DEC_REF(acceptor->tcp_connp);
1907 		mutex_exit(&listener->tcp_eager_lock);
1908 		tcp_err_ack(listener, mp, TOUTSTATE, 0);
1909 		return;
1910 	}
1911 
1912 	/*
1913 	 * Rendezvous with an eager connection request packet hanging off
1914 	 * 'tcp' that has the 'seqnum' tag.  We tagged the detached open
1915 	 * tcp structure when the connection packet arrived in
1916 	 * tcp_input_listener().
1917 	 */
1918 	seqnum = tcr->SEQ_number;
1919 	eager = listener;
1920 	do {
1921 		eager = eager->tcp_eager_next_q;
1922 		if (eager == NULL) {
1923 			CONN_DEC_REF(acceptor->tcp_connp);
1924 			mutex_exit(&listener->tcp_eager_lock);
1925 			tcp_err_ack(listener, mp, TBADSEQ, 0);
1926 			return;
1927 		}
1928 	} while (eager->tcp_conn_req_seqnum != seqnum);
1929 	mutex_exit(&listener->tcp_eager_lock);
1930 
1931 	/*
1932 	 * At this point, both acceptor and listener have 2 ref
1933 	 * that they begin with. Acceptor has one additional ref
1934 	 * we placed in lookup while listener has 3 additional
1935 	 * ref for being behind the squeue (tcp_accept() is
1936 	 * done on listener's squeue); being in classifier hash;
1937 	 * and eager's ref on listener.
1938 	 */
1939 	ASSERT(listener->tcp_connp->conn_ref >= 5);
1940 	ASSERT(acceptor->tcp_connp->conn_ref >= 3);
1941 
1942 	/*
1943 	 * The eager at this point is set in its own squeue and
1944 	 * could easily have been killed (tcp_accept_finish will
1945 	 * deal with that) because of a TH_RST so we can only
1946 	 * ASSERT for a single ref.
1947 	 */
1948 	ASSERT(eager->tcp_connp->conn_ref >= 1);
1949 
1950 	/*
1951 	 * Pre allocate the discon_ind mblk also. tcp_accept_finish will
1952 	 * use it if something failed.
1953 	 */
1954 	discon_mp = allocb(MAX(sizeof (struct T_discon_ind),
1955 	    sizeof (struct stroptions)), BPRI_HI);
1956 	if (discon_mp == NULL) {
1957 		CONN_DEC_REF(acceptor->tcp_connp);
1958 		CONN_DEC_REF(eager->tcp_connp);
1959 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
1960 		return;
1961 	}
1962 
1963 	econnp = eager->tcp_connp;
1964 
1965 	/* Hold a copy of mp, in case reallocb fails */
1966 	if ((mp1 = copymsg(mp)) == NULL) {
1967 		CONN_DEC_REF(acceptor->tcp_connp);
1968 		CONN_DEC_REF(eager->tcp_connp);
1969 		freemsg(discon_mp);
1970 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
1971 		return;
1972 	}
1973 
1974 	tcr = (struct T_conn_res *)mp1->b_rptr;
1975 
1976 	/*
1977 	 * This is an expanded version of mi_tpi_ok_ack_alloc()
1978 	 * which allocates a larger mblk and appends the new
1979 	 * local address to the ok_ack.  The address is copied by
1980 	 * soaccept() for getsockname().
1981 	 */
1982 	{
1983 		int extra;
1984 
1985 		extra = (econnp->conn_family == AF_INET) ?
1986 		    sizeof (sin_t) : sizeof (sin6_t);
1987 
1988 		/*
1989 		 * Try to re-use mp, if possible.  Otherwise, allocate
1990 		 * an mblk and return it as ok_mp.  In any case, mp
1991 		 * is no longer usable upon return.
1992 		 */
1993 		if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) {
1994 			CONN_DEC_REF(acceptor->tcp_connp);
1995 			CONN_DEC_REF(eager->tcp_connp);
1996 			freemsg(discon_mp);
1997 			/* Original mp has been freed by now, so use mp1 */
1998 			tcp_err_ack(listener, mp1, TSYSERR, ENOMEM);
1999 			return;
2000 		}
2001 
2002 		mp = NULL;	/* We should never use mp after this point */
2003 
2004 		switch (extra) {
2005 		case sizeof (sin_t): {
2006 			sin_t *sin = (sin_t *)ok_mp->b_wptr;
2007 
2008 			ok_mp->b_wptr += extra;
2009 			sin->sin_family = AF_INET;
2010 			sin->sin_port = econnp->conn_lport;
2011 			sin->sin_addr.s_addr = econnp->conn_laddr_v4;
2012 			break;
2013 		}
2014 		case sizeof (sin6_t): {
2015 			sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr;
2016 
2017 			ok_mp->b_wptr += extra;
2018 			sin6->sin6_family = AF_INET6;
2019 			sin6->sin6_port = econnp->conn_lport;
2020 			sin6->sin6_addr = econnp->conn_laddr_v6;
2021 			sin6->sin6_flowinfo = econnp->conn_flowinfo;
2022 			if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6) &&
2023 			    (econnp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)) {
2024 				sin6->sin6_scope_id =
2025 				    econnp->conn_ixa->ixa_scopeid;
2026 			} else {
2027 				sin6->sin6_scope_id = 0;
2028 			}
2029 			sin6->__sin6_src_id = 0;
2030 			break;
2031 		}
2032 		default:
2033 			break;
2034 		}
2035 		ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim);
2036 	}
2037 
2038 	/*
2039 	 * If there are no options we know that the T_CONN_RES will
2040 	 * succeed. However, we can't send the T_OK_ACK upstream until
2041 	 * the tcp_accept_swap is done since it would be dangerous to
2042 	 * let the application start using the new fd prior to the swap.
2043 	 */
2044 	tcp_accept_swap(listener, acceptor, eager);
2045 
2046 	/*
2047 	 * tcp_accept_swap unlinks eager from listener but does not drop
2048 	 * the eager's reference on the listener.
2049 	 */
2050 	ASSERT(eager->tcp_listener == NULL);
2051 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2052 
2053 	/*
2054 	 * The eager is now associated with its own queue. Insert in
2055 	 * the hash so that the connection can be reused for a future
2056 	 * T_CONN_RES.
2057 	 */
2058 	tcp_acceptor_hash_insert(acceptor_id, eager);
2059 
2060 	/*
2061 	 * We now do the processing of options with T_CONN_RES.
2062 	 * We delay till now since we wanted to have queue to pass to
2063 	 * option processing routines that points back to the right
2064 	 * instance structure which does not happen until after
2065 	 * tcp_accept_swap().
2066 	 *
2067 	 * Note:
2068 	 * The sanity of the logic here assumes that whatever options
2069 	 * are appropriate to inherit from listner=>eager are done
2070 	 * before this point, and whatever were to be overridden (or not)
2071 	 * in transfer logic from eager=>acceptor in tcp_accept_swap().
2072 	 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it
2073 	 *   before its ACCEPTOR_id comes down in T_CONN_RES ]
2074 	 * This may not be true at this point in time but can be fixed
2075 	 * independently. This option processing code starts with
2076 	 * the instantiated acceptor instance and the final queue at
2077 	 * this point.
2078 	 */
2079 
2080 	if (tcr->OPT_length != 0) {
2081 		/* Options to process */
2082 		int t_error = 0;
2083 		int sys_error = 0;
2084 		int do_disconnect = 0;
2085 
2086 		if (tcp_conprim_opt_process(eager, mp1,
2087 		    &do_disconnect, &t_error, &sys_error) < 0) {
2088 			eager->tcp_accept_error = 1;
2089 			if (do_disconnect) {
2090 				/*
2091 				 * An option failed which does not allow
2092 				 * connection to be accepted.
2093 				 *
2094 				 * We allow T_CONN_RES to succeed and
2095 				 * put a T_DISCON_IND on the eager queue.
2096 				 */
2097 				ASSERT(t_error == 0 && sys_error == 0);
2098 				eager->tcp_send_discon_ind = 1;
2099 			} else {
2100 				ASSERT(t_error != 0);
2101 				freemsg(ok_mp);
2102 				/*
2103 				 * Original mp was either freed or set
2104 				 * to ok_mp above, so use mp1 instead.
2105 				 */
2106 				tcp_err_ack(listener, mp1, t_error, sys_error);
2107 				goto finish;
2108 			}
2109 		}
2110 		/*
2111 		 * Most likely success in setting options (except if
2112 		 * eager->tcp_send_discon_ind set).
2113 		 * mp1 option buffer represented by OPT_length/offset
2114 		 * potentially modified and contains results of setting
2115 		 * options at this point
2116 		 */
2117 	}
2118 
2119 	/* We no longer need mp1, since all options processing has passed */
2120 	freemsg(mp1);
2121 
2122 	putnext(listener->tcp_connp->conn_rq, ok_mp);
2123 
2124 	mutex_enter(&listener->tcp_eager_lock);
2125 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
2126 		tcp_t	*tail;
2127 		mblk_t	*conn_ind;
2128 
2129 		/*
2130 		 * This path should not be executed if listener and
2131 		 * acceptor streams are the same.
2132 		 */
2133 		ASSERT(listener != acceptor);
2134 
2135 		tcp = listener->tcp_eager_prev_q0;
2136 		/*
2137 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
2138 		 * deferred T_conn_ind queue. We need to get to the head of
2139 		 * the queue in order to send up T_conn_ind the same order as
2140 		 * how the 3WHS is completed.
2141 		 */
2142 		while (tcp != listener) {
2143 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0)
2144 				break;
2145 			else
2146 				tcp = tcp->tcp_eager_prev_q0;
2147 		}
2148 		ASSERT(tcp != listener);
2149 		conn_ind = tcp->tcp_conn.tcp_eager_conn_ind;
2150 		ASSERT(conn_ind != NULL);
2151 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
2152 
2153 		/* Move from q0 to q */
2154 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
2155 		listener->tcp_conn_req_cnt_q0--;
2156 		listener->tcp_conn_req_cnt_q++;
2157 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
2158 		    tcp->tcp_eager_prev_q0;
2159 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
2160 		    tcp->tcp_eager_next_q0;
2161 		tcp->tcp_eager_prev_q0 = NULL;
2162 		tcp->tcp_eager_next_q0 = NULL;
2163 		tcp->tcp_conn_def_q0 = B_FALSE;
2164 
2165 		/* Make sure the tcp isn't in the list of droppables */
2166 		ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
2167 		    tcp->tcp_eager_prev_drop_q0 == NULL);
2168 
2169 		/*
2170 		 * Insert at end of the queue because sockfs sends
2171 		 * down T_CONN_RES in chronological order. Leaving
2172 		 * the older conn indications at front of the queue
2173 		 * helps reducing search time.
2174 		 */
2175 		tail = listener->tcp_eager_last_q;
2176 		if (tail != NULL)
2177 			tail->tcp_eager_next_q = tcp;
2178 		else
2179 			listener->tcp_eager_next_q = tcp;
2180 		listener->tcp_eager_last_q = tcp;
2181 		tcp->tcp_eager_next_q = NULL;
2182 		mutex_exit(&listener->tcp_eager_lock);
2183 		putnext(tcp->tcp_connp->conn_rq, conn_ind);
2184 	} else {
2185 		mutex_exit(&listener->tcp_eager_lock);
2186 	}
2187 
2188 	/*
2189 	 * Done with the acceptor - free it
2190 	 *
2191 	 * Note: from this point on, no access to listener should be made
2192 	 * as listener can be equal to acceptor.
2193 	 */
2194 finish:
2195 	ASSERT(acceptor->tcp_detached);
2196 	acceptor->tcp_connp->conn_rq = NULL;
2197 	ASSERT(!IPCL_IS_NONSTR(acceptor->tcp_connp));
2198 	acceptor->tcp_connp->conn_wq = NULL;
2199 	(void) tcp_clean_death(acceptor, 0, 2);
2200 	CONN_DEC_REF(acceptor->tcp_connp);
2201 
2202 	/*
2203 	 * We pass discon_mp to tcp_accept_finish to get on the right squeue.
2204 	 *
2205 	 * It will update the setting for sockfs/stream head and also take
2206 	 * care of any data that arrived before accept() wad called.
2207 	 * In case we already received a FIN then tcp_accept_finish will send up
2208 	 * the ordrel. It will also send up a window update if the window
2209 	 * has opened up.
2210 	 */
2211 
2212 	/*
2213 	 * XXX: we currently have a problem if XTI application closes the
2214 	 * acceptor stream in between. This problem exists in on10-gate also
2215 	 * and is well know but nothing can be done short of major rewrite
2216 	 * to fix it. Now it is possible to take care of it by assigning TLI/XTI
2217 	 * eager same squeue as listener (we can distinguish non socket
2218 	 * listeners at the time of handling a SYN in tcp_input_listener)
2219 	 * and do most of the work that tcp_accept_finish does here itself
2220 	 * and then get behind the acceptor squeue to access the acceptor
2221 	 * queue.
2222 	 */
2223 	/*
2224 	 * We already have a ref on tcp so no need to do one before squeue_enter
2225 	 */
2226 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, discon_mp,
2227 	    tcp_accept_finish, eager->tcp_connp, NULL, SQ_FILL,
2228 	    SQTAG_TCP_ACCEPT_FINISH);
2229 }
2230 
2231 /*
2232  * Swap information between the eager and acceptor for a TLI/XTI client.
2233  * The sockfs accept is done on the acceptor stream and control goes
2234  * through tcp_tli_accept() and tcp_accept()/tcp_accept_swap() is not
2235  * called. In either case, both the eager and listener are in their own
2236  * perimeter (squeue) and the code has to deal with potential race.
2237  *
2238  * See the block comment on top of tcp_accept() and tcp_tli_accept().
2239  */
2240 static void
2241 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager)
2242 {
2243 	conn_t	*econnp, *aconnp;
2244 
2245 	ASSERT(eager->tcp_connp->conn_rq == listener->tcp_connp->conn_rq);
2246 	ASSERT(eager->tcp_detached && !acceptor->tcp_detached);
2247 	ASSERT(!TCP_IS_SOCKET(acceptor));
2248 	ASSERT(!TCP_IS_SOCKET(eager));
2249 	ASSERT(!TCP_IS_SOCKET(listener));
2250 
2251 	/*
2252 	 * Trusted Extensions may need to use a security label that is
2253 	 * different from the acceptor's label on MLP and MAC-Exempt
2254 	 * sockets. If this is the case, the required security label
2255 	 * already exists in econnp->conn_ixa->ixa_tsl. Since we make the
2256 	 * acceptor stream refer to econnp we atomatically get that label.
2257 	 */
2258 
2259 	acceptor->tcp_detached = B_TRUE;
2260 	/*
2261 	 * To permit stream re-use by TLI/XTI, the eager needs a copy of
2262 	 * the acceptor id.
2263 	 */
2264 	eager->tcp_acceptor_id = acceptor->tcp_acceptor_id;
2265 
2266 	/* remove eager from listen list... */
2267 	mutex_enter(&listener->tcp_eager_lock);
2268 	tcp_eager_unlink(eager);
2269 	ASSERT(eager->tcp_eager_next_q == NULL &&
2270 	    eager->tcp_eager_last_q == NULL);
2271 	ASSERT(eager->tcp_eager_next_q0 == NULL &&
2272 	    eager->tcp_eager_prev_q0 == NULL);
2273 	mutex_exit(&listener->tcp_eager_lock);
2274 
2275 	econnp = eager->tcp_connp;
2276 	aconnp = acceptor->tcp_connp;
2277 	econnp->conn_rq = aconnp->conn_rq;
2278 	econnp->conn_wq = aconnp->conn_wq;
2279 	econnp->conn_rq->q_ptr = econnp;
2280 	econnp->conn_wq->q_ptr = econnp;
2281 
2282 	/*
2283 	 * In the TLI/XTI loopback case, we are inside the listener's squeue,
2284 	 * which might be a different squeue from our peer TCP instance.
2285 	 * For TCP Fusion, the peer expects that whenever tcp_detached is
2286 	 * clear, our TCP queues point to the acceptor's queues.  Thus, use
2287 	 * membar_producer() to ensure that the assignments of conn_rq/conn_wq
2288 	 * above reach global visibility prior to the clearing of tcp_detached.
2289 	 */
2290 	membar_producer();
2291 	eager->tcp_detached = B_FALSE;
2292 
2293 	ASSERT(eager->tcp_ack_tid == 0);
2294 
2295 	econnp->conn_dev = aconnp->conn_dev;
2296 	econnp->conn_minor_arena = aconnp->conn_minor_arena;
2297 
2298 	ASSERT(econnp->conn_minor_arena != NULL);
2299 	if (econnp->conn_cred != NULL)
2300 		crfree(econnp->conn_cred);
2301 	econnp->conn_cred = aconnp->conn_cred;
2302 	aconnp->conn_cred = NULL;
2303 	econnp->conn_cpid = aconnp->conn_cpid;
2304 	ASSERT(econnp->conn_netstack == aconnp->conn_netstack);
2305 	ASSERT(eager->tcp_tcps == acceptor->tcp_tcps);
2306 
2307 	econnp->conn_zoneid = aconnp->conn_zoneid;
2308 	econnp->conn_allzones = aconnp->conn_allzones;
2309 	econnp->conn_ixa->ixa_zoneid = aconnp->conn_ixa->ixa_zoneid;
2310 
2311 	econnp->conn_mac_mode = aconnp->conn_mac_mode;
2312 	econnp->conn_zone_is_global = aconnp->conn_zone_is_global;
2313 	aconnp->conn_mac_mode = CONN_MAC_DEFAULT;
2314 
2315 	/* Do the IPC initialization */
2316 	CONN_INC_REF(econnp);
2317 
2318 	econnp->conn_family = aconnp->conn_family;
2319 	econnp->conn_ipversion = aconnp->conn_ipversion;
2320 
2321 	/* Done with old IPC. Drop its ref on its connp */
2322 	CONN_DEC_REF(aconnp);
2323 }
2324 
2325 
2326 /*
2327  * Adapt to the information, such as rtt and rtt_sd, provided from the
2328  * DCE and IRE maintained by IP.
2329  *
2330  * Checks for multicast and broadcast destination address.
2331  * Returns zero if ok; an errno on failure.
2332  *
2333  * Note that the MSS calculation here is based on the info given in
2334  * the DCE and IRE.  We do not do any calculation based on TCP options.  They
2335  * will be handled in tcp_input_data() when TCP knows which options to use.
2336  *
2337  * Note on how TCP gets its parameters for a connection.
2338  *
2339  * When a tcp_t structure is allocated, it gets all the default parameters.
2340  * In tcp_set_destination(), it gets those metric parameters, like rtt, rtt_sd,
2341  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
2342  * default.
2343  *
2344  * An incoming SYN with a multicast or broadcast destination address is dropped
2345  * in ip_fanout_v4/v6.
2346  *
2347  * An incoming SYN with a multicast or broadcast source address is always
2348  * dropped in tcp_set_destination, since IPDF_ALLOW_MCBC is not set in
2349  * conn_connect.
2350  * The same logic in tcp_set_destination also serves to
2351  * reject an attempt to connect to a broadcast or multicast (destination)
2352  * address.
2353  */
2354 static int
2355 tcp_set_destination(tcp_t *tcp)
2356 {
2357 	uint32_t	mss_max;
2358 	uint32_t	mss;
2359 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2360 	conn_t		*connp = tcp->tcp_connp;
2361 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2362 	iulp_t		uinfo;
2363 	int		error;
2364 	uint32_t	flags;
2365 
2366 	flags = IPDF_LSO | IPDF_ZCOPY;
2367 	/*
2368 	 * Make sure we have a dce for the destination to avoid dce_ident
2369 	 * contention for connected sockets.
2370 	 */
2371 	flags |= IPDF_UNIQUE_DCE;
2372 
2373 	if (!tcps->tcps_ignore_path_mtu)
2374 		connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY;
2375 
2376 	/* Use conn_lock to satify ASSERT; tcp is already serialized */
2377 	mutex_enter(&connp->conn_lock);
2378 	error = conn_connect(connp, &uinfo, flags);
2379 	mutex_exit(&connp->conn_lock);
2380 	if (error != 0)
2381 		return (error);
2382 
2383 	error = tcp_build_hdrs(tcp);
2384 	if (error != 0)
2385 		return (error);
2386 
2387 	tcp->tcp_localnet = uinfo.iulp_localnet;
2388 
2389 	if (uinfo.iulp_rtt != 0) {
2390 		clock_t	rto;
2391 
2392 		tcp->tcp_rtt_sa = uinfo.iulp_rtt;
2393 		tcp->tcp_rtt_sd = uinfo.iulp_rtt_sd;
2394 		rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2395 		    tcps->tcps_rexmit_interval_extra +
2396 		    (tcp->tcp_rtt_sa >> 5);
2397 
2398 		if (rto > tcps->tcps_rexmit_interval_max) {
2399 			tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
2400 		} else if (rto < tcps->tcps_rexmit_interval_min) {
2401 			tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
2402 		} else {
2403 			tcp->tcp_rto = rto;
2404 		}
2405 	}
2406 	if (uinfo.iulp_ssthresh != 0)
2407 		tcp->tcp_cwnd_ssthresh = uinfo.iulp_ssthresh;
2408 	else
2409 		tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2410 	if (uinfo.iulp_spipe > 0) {
2411 		connp->conn_sndbuf = MIN(uinfo.iulp_spipe,
2412 		    tcps->tcps_max_buf);
2413 		if (tcps->tcps_snd_lowat_fraction != 0) {
2414 			connp->conn_sndlowat = connp->conn_sndbuf /
2415 			    tcps->tcps_snd_lowat_fraction;
2416 		}
2417 		(void) tcp_maxpsz_set(tcp, B_TRUE);
2418 	}
2419 	/*
2420 	 * Note that up till now, acceptor always inherits receive
2421 	 * window from the listener.  But if there is a metrics
2422 	 * associated with a host, we should use that instead of
2423 	 * inheriting it from listener. Thus we need to pass this
2424 	 * info back to the caller.
2425 	 */
2426 	if (uinfo.iulp_rpipe > 0) {
2427 		tcp->tcp_rwnd = MIN(uinfo.iulp_rpipe,
2428 		    tcps->tcps_max_buf);
2429 	}
2430 
2431 	if (uinfo.iulp_rtomax > 0) {
2432 		tcp->tcp_second_timer_threshold =
2433 		    uinfo.iulp_rtomax;
2434 	}
2435 
2436 	/*
2437 	 * Use the metric option settings, iulp_tstamp_ok and
2438 	 * iulp_wscale_ok, only for active open. What this means
2439 	 * is that if the other side uses timestamp or window
2440 	 * scale option, TCP will also use those options. That
2441 	 * is for passive open.  If the application sets a
2442 	 * large window, window scale is enabled regardless of
2443 	 * the value in iulp_wscale_ok.  This is the behavior
2444 	 * since 2.6.  So we keep it.
2445 	 * The only case left in passive open processing is the
2446 	 * check for SACK.
2447 	 * For ECN, it should probably be like SACK.  But the
2448 	 * current value is binary, so we treat it like the other
2449 	 * cases.  The metric only controls active open.For passive
2450 	 * open, the ndd param, tcp_ecn_permitted, controls the
2451 	 * behavior.
2452 	 */
2453 	if (!tcp_detached) {
2454 		/*
2455 		 * The if check means that the following can only
2456 		 * be turned on by the metrics only IRE, but not off.
2457 		 */
2458 		if (uinfo.iulp_tstamp_ok)
2459 			tcp->tcp_snd_ts_ok = B_TRUE;
2460 		if (uinfo.iulp_wscale_ok)
2461 			tcp->tcp_snd_ws_ok = B_TRUE;
2462 		if (uinfo.iulp_sack == 2)
2463 			tcp->tcp_snd_sack_ok = B_TRUE;
2464 		if (uinfo.iulp_ecn_ok)
2465 			tcp->tcp_ecn_ok = B_TRUE;
2466 	} else {
2467 		/*
2468 		 * Passive open.
2469 		 *
2470 		 * As above, the if check means that SACK can only be
2471 		 * turned on by the metric only IRE.
2472 		 */
2473 		if (uinfo.iulp_sack > 0) {
2474 			tcp->tcp_snd_sack_ok = B_TRUE;
2475 		}
2476 	}
2477 
2478 	/*
2479 	 * XXX Note that currently, iulp_mtu can be as small as 68
2480 	 * because of PMTUd.  So tcp_mss may go to negative if combined
2481 	 * length of all those options exceeds 28 bytes.  But because
2482 	 * of the tcp_mss_min check below, we may not have a problem if
2483 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
2484 	 * the negative problem still exists.  And the check defeats PMTUd.
2485 	 * In fact, if PMTUd finds that the MSS should be smaller than
2486 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
2487 	 * value.
2488 	 *
2489 	 * We do not deal with that now.  All those problems related to
2490 	 * PMTUd will be fixed later.
2491 	 */
2492 	ASSERT(uinfo.iulp_mtu != 0);
2493 	mss = tcp->tcp_initial_pmtu = uinfo.iulp_mtu;
2494 
2495 	/* Sanity check for MSS value. */
2496 	if (connp->conn_ipversion == IPV4_VERSION)
2497 		mss_max = tcps->tcps_mss_max_ipv4;
2498 	else
2499 		mss_max = tcps->tcps_mss_max_ipv6;
2500 
2501 	if (tcp->tcp_ipsec_overhead == 0)
2502 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
2503 
2504 	mss -= tcp->tcp_ipsec_overhead;
2505 
2506 	if (mss < tcps->tcps_mss_min)
2507 		mss = tcps->tcps_mss_min;
2508 	if (mss > mss_max)
2509 		mss = mss_max;
2510 
2511 	/* Note that this is the maximum MSS, excluding all options. */
2512 	tcp->tcp_mss = mss;
2513 
2514 	/*
2515 	 * Update the tcp connection with LSO capability.
2516 	 */
2517 	tcp_update_lso(tcp, connp->conn_ixa);
2518 
2519 	/*
2520 	 * Initialize the ISS here now that we have the full connection ID.
2521 	 * The RFC 1948 method of initial sequence number generation requires
2522 	 * knowledge of the full connection ID before setting the ISS.
2523 	 */
2524 	tcp_iss_init(tcp);
2525 
2526 	tcp->tcp_loopback = (uinfo.iulp_loopback | uinfo.iulp_local);
2527 
2528 	/*
2529 	 * Make sure that conn is not marked incipient
2530 	 * for incoming connections. A blind
2531 	 * removal of incipient flag is cheaper than
2532 	 * check and removal.
2533 	 */
2534 	mutex_enter(&connp->conn_lock);
2535 	connp->conn_state_flags &= ~CONN_INCIPIENT;
2536 	mutex_exit(&connp->conn_lock);
2537 	return (0);
2538 }
2539 
2540 static void
2541 tcp_tpi_bind(tcp_t *tcp, mblk_t *mp)
2542 {
2543 	int	error;
2544 	conn_t	*connp = tcp->tcp_connp;
2545 	struct sockaddr	*sa;
2546 	mblk_t  *mp1;
2547 	struct T_bind_req *tbr;
2548 	int	backlog;
2549 	socklen_t	len;
2550 	sin_t	*sin;
2551 	sin6_t	*sin6;
2552 	cred_t		*cr;
2553 
2554 	/*
2555 	 * All Solaris components should pass a db_credp
2556 	 * for this TPI message, hence we ASSERT.
2557 	 * But in case there is some other M_PROTO that looks
2558 	 * like a TPI message sent by some other kernel
2559 	 * component, we check and return an error.
2560 	 */
2561 	cr = msg_getcred(mp, NULL);
2562 	ASSERT(cr != NULL);
2563 	if (cr == NULL) {
2564 		tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
2565 		return;
2566 	}
2567 
2568 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
2569 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
2570 		if (connp->conn_debug) {
2571 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
2572 			    "tcp_tpi_bind: bad req, len %u",
2573 			    (uint_t)(mp->b_wptr - mp->b_rptr));
2574 		}
2575 		tcp_err_ack(tcp, mp, TPROTO, 0);
2576 		return;
2577 	}
2578 	/* Make sure the largest address fits */
2579 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t), 1);
2580 	if (mp1 == NULL) {
2581 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
2582 		return;
2583 	}
2584 	mp = mp1;
2585 	tbr = (struct T_bind_req *)mp->b_rptr;
2586 
2587 	backlog = tbr->CONIND_number;
2588 	len = tbr->ADDR_length;
2589 
2590 	switch (len) {
2591 	case 0:		/* request for a generic port */
2592 		tbr->ADDR_offset = sizeof (struct T_bind_req);
2593 		if (connp->conn_family == AF_INET) {
2594 			tbr->ADDR_length = sizeof (sin_t);
2595 			sin = (sin_t *)&tbr[1];
2596 			*sin = sin_null;
2597 			sin->sin_family = AF_INET;
2598 			sa = (struct sockaddr *)sin;
2599 			len = sizeof (sin_t);
2600 			mp->b_wptr = (uchar_t *)&sin[1];
2601 		} else {
2602 			ASSERT(connp->conn_family == AF_INET6);
2603 			tbr->ADDR_length = sizeof (sin6_t);
2604 			sin6 = (sin6_t *)&tbr[1];
2605 			*sin6 = sin6_null;
2606 			sin6->sin6_family = AF_INET6;
2607 			sa = (struct sockaddr *)sin6;
2608 			len = sizeof (sin6_t);
2609 			mp->b_wptr = (uchar_t *)&sin6[1];
2610 		}
2611 		break;
2612 
2613 	case sizeof (sin_t):    /* Complete IPv4 address */
2614 		sa = (struct sockaddr *)mi_offset_param(mp, tbr->ADDR_offset,
2615 		    sizeof (sin_t));
2616 		break;
2617 
2618 	case sizeof (sin6_t): /* Complete IPv6 address */
2619 		sa = (struct sockaddr *)mi_offset_param(mp,
2620 		    tbr->ADDR_offset, sizeof (sin6_t));
2621 		break;
2622 
2623 	default:
2624 		if (connp->conn_debug) {
2625 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
2626 			    "tcp_tpi_bind: bad address length, %d",
2627 			    tbr->ADDR_length);
2628 		}
2629 		tcp_err_ack(tcp, mp, TBADADDR, 0);
2630 		return;
2631 	}
2632 
2633 	if (backlog > 0) {
2634 		error = tcp_do_listen(connp, sa, len, backlog, DB_CRED(mp),
2635 		    tbr->PRIM_type != O_T_BIND_REQ);
2636 	} else {
2637 		error = tcp_do_bind(connp, sa, len, DB_CRED(mp),
2638 		    tbr->PRIM_type != O_T_BIND_REQ);
2639 	}
2640 done:
2641 	if (error > 0) {
2642 		tcp_err_ack(tcp, mp, TSYSERR, error);
2643 	} else if (error < 0) {
2644 		tcp_err_ack(tcp, mp, -error, 0);
2645 	} else {
2646 		/*
2647 		 * Update port information as sockfs/tpi needs it for checking
2648 		 */
2649 		if (connp->conn_family == AF_INET) {
2650 			sin = (sin_t *)sa;
2651 			sin->sin_port = connp->conn_lport;
2652 		} else {
2653 			sin6 = (sin6_t *)sa;
2654 			sin6->sin6_port = connp->conn_lport;
2655 		}
2656 		mp->b_datap->db_type = M_PCPROTO;
2657 		tbr->PRIM_type = T_BIND_ACK;
2658 		putnext(connp->conn_rq, mp);
2659 	}
2660 }
2661 
2662 /*
2663  * If the "bind_to_req_port_only" parameter is set, if the requested port
2664  * number is available, return it, If not return 0
2665  *
2666  * If "bind_to_req_port_only" parameter is not set and
2667  * If the requested port number is available, return it.  If not, return
2668  * the first anonymous port we happen across.  If no anonymous ports are
2669  * available, return 0. addr is the requested local address, if any.
2670  *
2671  * In either case, when succeeding update the tcp_t to record the port number
2672  * and insert it in the bind hash table.
2673  *
2674  * Note that TCP over IPv4 and IPv6 sockets can use the same port number
2675  * without setting SO_REUSEADDR. This is needed so that they
2676  * can be viewed as two independent transport protocols.
2677  */
2678 static in_port_t
2679 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
2680     int reuseaddr, boolean_t quick_connect,
2681     boolean_t bind_to_req_port_only, boolean_t user_specified)
2682 {
2683 	/* number of times we have run around the loop */
2684 	int count = 0;
2685 	/* maximum number of times to run around the loop */
2686 	int loopmax;
2687 	conn_t *connp = tcp->tcp_connp;
2688 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2689 
2690 	/*
2691 	 * Lookup for free addresses is done in a loop and "loopmax"
2692 	 * influences how long we spin in the loop
2693 	 */
2694 	if (bind_to_req_port_only) {
2695 		/*
2696 		 * If the requested port is busy, don't bother to look
2697 		 * for a new one. Setting loop maximum count to 1 has
2698 		 * that effect.
2699 		 */
2700 		loopmax = 1;
2701 	} else {
2702 		/*
2703 		 * If the requested port is busy, look for a free one
2704 		 * in the anonymous port range.
2705 		 * Set loopmax appropriately so that one does not look
2706 		 * forever in the case all of the anonymous ports are in use.
2707 		 */
2708 		if (connp->conn_anon_priv_bind) {
2709 			/*
2710 			 * loopmax =
2711 			 * 	(IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1
2712 			 */
2713 			loopmax = IPPORT_RESERVED -
2714 			    tcps->tcps_min_anonpriv_port;
2715 		} else {
2716 			loopmax = (tcps->tcps_largest_anon_port -
2717 			    tcps->tcps_smallest_anon_port + 1);
2718 		}
2719 	}
2720 	do {
2721 		uint16_t	lport;
2722 		tf_t		*tbf;
2723 		tcp_t		*ltcp;
2724 		conn_t		*lconnp;
2725 
2726 		lport = htons(port);
2727 
2728 		/*
2729 		 * Ensure that the tcp_t is not currently in the bind hash.
2730 		 * Hold the lock on the hash bucket to ensure that
2731 		 * the duplicate check plus the insertion is an atomic
2732 		 * operation.
2733 		 *
2734 		 * This function does an inline lookup on the bind hash list
2735 		 * Make sure that we access only members of tcp_t
2736 		 * and that we don't look at tcp_tcp, since we are not
2737 		 * doing a CONN_INC_REF.
2738 		 */
2739 		tcp_bind_hash_remove(tcp);
2740 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)];
2741 		mutex_enter(&tbf->tf_lock);
2742 		for (ltcp = tbf->tf_tcp; ltcp != NULL;
2743 		    ltcp = ltcp->tcp_bind_hash) {
2744 			if (lport == ltcp->tcp_connp->conn_lport)
2745 				break;
2746 		}
2747 
2748 		for (; ltcp != NULL; ltcp = ltcp->tcp_bind_hash_port) {
2749 			boolean_t not_socket;
2750 			boolean_t exclbind;
2751 
2752 			lconnp = ltcp->tcp_connp;
2753 
2754 			/*
2755 			 * On a labeled system, we must treat bindings to ports
2756 			 * on shared IP addresses by sockets with MAC exemption
2757 			 * privilege as being in all zones, as there's
2758 			 * otherwise no way to identify the right receiver.
2759 			 */
2760 			if (!IPCL_BIND_ZONE_MATCH(lconnp, connp))
2761 				continue;
2762 
2763 			/*
2764 			 * If TCP_EXCLBIND is set for either the bound or
2765 			 * binding endpoint, the semantics of bind
2766 			 * is changed according to the following.
2767 			 *
2768 			 * spec = specified address (v4 or v6)
2769 			 * unspec = unspecified address (v4 or v6)
2770 			 * A = specified addresses are different for endpoints
2771 			 *
2772 			 * bound	bind to		allowed
2773 			 * -------------------------------------
2774 			 * unspec	unspec		no
2775 			 * unspec	spec		no
2776 			 * spec		unspec		no
2777 			 * spec		spec		yes if A
2778 			 *
2779 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
2780 			 * as TCP_EXCLBIND, except that zoneid is ignored.
2781 			 *
2782 			 * Note:
2783 			 *
2784 			 * 1. Because of TLI semantics, an endpoint can go
2785 			 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or
2786 			 * TCPS_BOUND, depending on whether it is originally
2787 			 * a listener or not.  That is why we need to check
2788 			 * for states greater than or equal to TCPS_BOUND
2789 			 * here.
2790 			 *
2791 			 * 2. Ideally, we should only check for state equals
2792 			 * to TCPS_LISTEN. And the following check should be
2793 			 * added.
2794 			 *
2795 			 * if (ltcp->tcp_state == TCPS_LISTEN ||
2796 			 *	!reuseaddr || !lconnp->conn_reuseaddr) {
2797 			 *		...
2798 			 * }
2799 			 *
2800 			 * The semantics will be changed to this.  If the
2801 			 * endpoint on the list is in state not equal to
2802 			 * TCPS_LISTEN and both endpoints have SO_REUSEADDR
2803 			 * set, let the bind succeed.
2804 			 *
2805 			 * Because of (1), we cannot do that for TLI
2806 			 * endpoints.  But we can do that for socket endpoints.
2807 			 * If in future, we can change this going back
2808 			 * semantics, we can use the above check for TLI also.
2809 			 */
2810 			not_socket = !(TCP_IS_SOCKET(ltcp) &&
2811 			    TCP_IS_SOCKET(tcp));
2812 			exclbind = lconnp->conn_exclbind ||
2813 			    connp->conn_exclbind;
2814 
2815 			if ((lconnp->conn_mac_mode != CONN_MAC_DEFAULT) ||
2816 			    (connp->conn_mac_mode != CONN_MAC_DEFAULT) ||
2817 			    (exclbind && (not_socket ||
2818 			    ltcp->tcp_state <= TCPS_ESTABLISHED))) {
2819 				if (V6_OR_V4_INADDR_ANY(
2820 				    lconnp->conn_bound_addr_v6) ||
2821 				    V6_OR_V4_INADDR_ANY(*laddr) ||
2822 				    IN6_ARE_ADDR_EQUAL(laddr,
2823 				    &lconnp->conn_bound_addr_v6)) {
2824 					break;
2825 				}
2826 				continue;
2827 			}
2828 
2829 			/*
2830 			 * Check ipversion to allow IPv4 and IPv6 sockets to
2831 			 * have disjoint port number spaces, if *_EXCLBIND
2832 			 * is not set and only if the application binds to a
2833 			 * specific port. We use the same autoassigned port
2834 			 * number space for IPv4 and IPv6 sockets.
2835 			 */
2836 			if (connp->conn_ipversion != lconnp->conn_ipversion &&
2837 			    bind_to_req_port_only)
2838 				continue;
2839 
2840 			/*
2841 			 * Ideally, we should make sure that the source
2842 			 * address, remote address, and remote port in the
2843 			 * four tuple for this tcp-connection is unique.
2844 			 * However, trying to find out the local source
2845 			 * address would require too much code duplication
2846 			 * with IP, since IP needs needs to have that code
2847 			 * to support userland TCP implementations.
2848 			 */
2849 			if (quick_connect &&
2850 			    (ltcp->tcp_state > TCPS_LISTEN) &&
2851 			    ((connp->conn_fport != lconnp->conn_fport) ||
2852 			    !IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6,
2853 			    &lconnp->conn_faddr_v6)))
2854 				continue;
2855 
2856 			if (!reuseaddr) {
2857 				/*
2858 				 * No socket option SO_REUSEADDR.
2859 				 * If existing port is bound to
2860 				 * a non-wildcard IP address
2861 				 * and the requesting stream is
2862 				 * bound to a distinct
2863 				 * different IP addresses
2864 				 * (non-wildcard, also), keep
2865 				 * going.
2866 				 */
2867 				if (!V6_OR_V4_INADDR_ANY(*laddr) &&
2868 				    !V6_OR_V4_INADDR_ANY(
2869 				    lconnp->conn_bound_addr_v6) &&
2870 				    !IN6_ARE_ADDR_EQUAL(laddr,
2871 				    &lconnp->conn_bound_addr_v6))
2872 					continue;
2873 				if (ltcp->tcp_state >= TCPS_BOUND) {
2874 					/*
2875 					 * This port is being used and
2876 					 * its state is >= TCPS_BOUND,
2877 					 * so we can't bind to it.
2878 					 */
2879 					break;
2880 				}
2881 			} else {
2882 				/*
2883 				 * socket option SO_REUSEADDR is set on the
2884 				 * binding tcp_t.
2885 				 *
2886 				 * If two streams are bound to
2887 				 * same IP address or both addr
2888 				 * and bound source are wildcards
2889 				 * (INADDR_ANY), we want to stop
2890 				 * searching.
2891 				 * We have found a match of IP source
2892 				 * address and source port, which is
2893 				 * refused regardless of the
2894 				 * SO_REUSEADDR setting, so we break.
2895 				 */
2896 				if (IN6_ARE_ADDR_EQUAL(laddr,
2897 				    &lconnp->conn_bound_addr_v6) &&
2898 				    (ltcp->tcp_state == TCPS_LISTEN ||
2899 				    ltcp->tcp_state == TCPS_BOUND))
2900 					break;
2901 			}
2902 		}
2903 		if (ltcp != NULL) {
2904 			/* The port number is busy */
2905 			mutex_exit(&tbf->tf_lock);
2906 		} else {
2907 			/*
2908 			 * This port is ours. Insert in fanout and mark as
2909 			 * bound to prevent others from getting the port
2910 			 * number.
2911 			 */
2912 			tcp->tcp_state = TCPS_BOUND;
2913 			connp->conn_lport = htons(port);
2914 
2915 			ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH(
2916 			    connp->conn_lport)] == tbf);
2917 			tcp_bind_hash_insert(tbf, tcp, 1);
2918 
2919 			mutex_exit(&tbf->tf_lock);
2920 
2921 			/*
2922 			 * We don't want tcp_next_port_to_try to "inherit"
2923 			 * a port number supplied by the user in a bind.
2924 			 */
2925 			if (user_specified)
2926 				return (port);
2927 
2928 			/*
2929 			 * This is the only place where tcp_next_port_to_try
2930 			 * is updated. After the update, it may or may not
2931 			 * be in the valid range.
2932 			 */
2933 			if (!connp->conn_anon_priv_bind)
2934 				tcps->tcps_next_port_to_try = port + 1;
2935 			return (port);
2936 		}
2937 
2938 		if (connp->conn_anon_priv_bind) {
2939 			port = tcp_get_next_priv_port(tcp);
2940 		} else {
2941 			if (count == 0 && user_specified) {
2942 				/*
2943 				 * We may have to return an anonymous port. So
2944 				 * get one to start with.
2945 				 */
2946 				port =
2947 				    tcp_update_next_port(
2948 				    tcps->tcps_next_port_to_try,
2949 				    tcp, B_TRUE);
2950 				user_specified = B_FALSE;
2951 			} else {
2952 				port = tcp_update_next_port(port + 1, tcp,
2953 				    B_FALSE);
2954 			}
2955 		}
2956 		if (port == 0)
2957 			break;
2958 
2959 		/*
2960 		 * Don't let this loop run forever in the case where
2961 		 * all of the anonymous ports are in use.
2962 		 */
2963 	} while (++count < loopmax);
2964 	return (0);
2965 }
2966 
2967 /*
2968  * tcp_clean_death / tcp_close_detached must not be called more than once
2969  * on a tcp. Thus every function that potentially calls tcp_clean_death
2970  * must check for the tcp state before calling tcp_clean_death.
2971  * Eg. tcp_input_data, tcp_eager_kill, tcp_clean_death_wrapper,
2972  * tcp_timer_handler, all check for the tcp state.
2973  */
2974 /* ARGSUSED */
2975 void
2976 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2,
2977     ip_recv_attr_t *dummy)
2978 {
2979 	tcp_t	*tcp = ((conn_t *)arg)->conn_tcp;
2980 
2981 	freemsg(mp);
2982 	if (tcp->tcp_state > TCPS_BOUND)
2983 		(void) tcp_clean_death(((conn_t *)arg)->conn_tcp,
2984 		    ETIMEDOUT, 5);
2985 }
2986 
2987 /*
2988  * We are dying for some reason.  Try to do it gracefully.  (May be called
2989  * as writer.)
2990  *
2991  * Return -1 if the structure was not cleaned up (if the cleanup had to be
2992  * done by a service procedure).
2993  * TBD - Should the return value distinguish between the tcp_t being
2994  * freed and it being reinitialized?
2995  */
2996 static int
2997 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag)
2998 {
2999 	mblk_t	*mp;
3000 	queue_t	*q;
3001 	conn_t	*connp = tcp->tcp_connp;
3002 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3003 
3004 	TCP_CLD_STAT(tag);
3005 
3006 #if TCP_TAG_CLEAN_DEATH
3007 	tcp->tcp_cleandeathtag = tag;
3008 #endif
3009 
3010 	if (tcp->tcp_fused)
3011 		tcp_unfuse(tcp);
3012 
3013 	if (tcp->tcp_linger_tid != 0 &&
3014 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3015 		tcp_stop_lingering(tcp);
3016 	}
3017 
3018 	ASSERT(tcp != NULL);
3019 	ASSERT((connp->conn_family == AF_INET &&
3020 	    connp->conn_ipversion == IPV4_VERSION) ||
3021 	    (connp->conn_family == AF_INET6 &&
3022 	    (connp->conn_ipversion == IPV4_VERSION ||
3023 	    connp->conn_ipversion == IPV6_VERSION)));
3024 
3025 	if (TCP_IS_DETACHED(tcp)) {
3026 		if (tcp->tcp_hard_binding) {
3027 			/*
3028 			 * Its an eager that we are dealing with. We close the
3029 			 * eager but in case a conn_ind has already gone to the
3030 			 * listener, let tcp_accept_finish() send a discon_ind
3031 			 * to the listener and drop the last reference. If the
3032 			 * listener doesn't even know about the eager i.e. the
3033 			 * conn_ind hasn't gone up, blow away the eager and drop
3034 			 * the last reference as well. If the conn_ind has gone
3035 			 * up, state should be BOUND. tcp_accept_finish
3036 			 * will figure out that the connection has received a
3037 			 * RST and will send a DISCON_IND to the application.
3038 			 */
3039 			tcp_closei_local(tcp);
3040 			if (!tcp->tcp_tconnind_started) {
3041 				CONN_DEC_REF(connp);
3042 			} else {
3043 				tcp->tcp_state = TCPS_BOUND;
3044 			}
3045 		} else {
3046 			tcp_close_detached(tcp);
3047 		}
3048 		return (0);
3049 	}
3050 
3051 	TCP_STAT(tcps, tcp_clean_death_nondetached);
3052 
3053 	q = connp->conn_rq;
3054 
3055 	/* Trash all inbound data */
3056 	if (!IPCL_IS_NONSTR(connp)) {
3057 		ASSERT(q != NULL);
3058 		flushq(q, FLUSHALL);
3059 	}
3060 
3061 	/*
3062 	 * If we are at least part way open and there is error
3063 	 * (err==0 implies no error)
3064 	 * notify our client by a T_DISCON_IND.
3065 	 */
3066 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
3067 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
3068 		    !TCP_IS_SOCKET(tcp)) {
3069 			/*
3070 			 * Send M_FLUSH according to TPI. Because sockets will
3071 			 * (and must) ignore FLUSHR we do that only for TPI
3072 			 * endpoints and sockets in STREAMS mode.
3073 			 */
3074 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
3075 		}
3076 		if (connp->conn_debug) {
3077 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
3078 			    "tcp_clean_death: discon err %d", err);
3079 		}
3080 		if (IPCL_IS_NONSTR(connp)) {
3081 			/* Direct socket, use upcall */
3082 			(*connp->conn_upcalls->su_disconnected)(
3083 			    connp->conn_upper_handle, tcp->tcp_connid, err);
3084 		} else {
3085 			mp = mi_tpi_discon_ind(NULL, err, 0);
3086 			if (mp != NULL) {
3087 				putnext(q, mp);
3088 			} else {
3089 				if (connp->conn_debug) {
3090 					(void) strlog(TCP_MOD_ID, 0, 1,
3091 					    SL_ERROR|SL_TRACE,
3092 					    "tcp_clean_death, sending M_ERROR");
3093 				}
3094 				(void) putnextctl1(q, M_ERROR, EPROTO);
3095 			}
3096 		}
3097 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
3098 			/* SYN_SENT or SYN_RCVD */
3099 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
3100 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
3101 			/* ESTABLISHED or CLOSE_WAIT */
3102 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
3103 		}
3104 	}
3105 
3106 	tcp_reinit(tcp);
3107 	if (IPCL_IS_NONSTR(connp))
3108 		(void) tcp_do_unbind(connp);
3109 
3110 	return (-1);
3111 }
3112 
3113 /*
3114  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
3115  * to expire, stop the wait and finish the close.
3116  */
3117 static void
3118 tcp_stop_lingering(tcp_t *tcp)
3119 {
3120 	clock_t	delta = 0;
3121 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3122 	conn_t		*connp = tcp->tcp_connp;
3123 
3124 	tcp->tcp_linger_tid = 0;
3125 	if (tcp->tcp_state > TCPS_LISTEN) {
3126 		tcp_acceptor_hash_remove(tcp);
3127 		mutex_enter(&tcp->tcp_non_sq_lock);
3128 		if (tcp->tcp_flow_stopped) {
3129 			tcp_clrqfull(tcp);
3130 		}
3131 		mutex_exit(&tcp->tcp_non_sq_lock);
3132 
3133 		if (tcp->tcp_timer_tid != 0) {
3134 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3135 			tcp->tcp_timer_tid = 0;
3136 		}
3137 		/*
3138 		 * Need to cancel those timers which will not be used when
3139 		 * TCP is detached.  This has to be done before the conn_wq
3140 		 * is cleared.
3141 		 */
3142 		tcp_timers_stop(tcp);
3143 
3144 		tcp->tcp_detached = B_TRUE;
3145 		connp->conn_rq = NULL;
3146 		connp->conn_wq = NULL;
3147 
3148 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
3149 			tcp_time_wait_append(tcp);
3150 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
3151 			goto finish;
3152 		}
3153 
3154 		/*
3155 		 * If delta is zero the timer event wasn't executed and was
3156 		 * successfully canceled. In this case we need to restart it
3157 		 * with the minimal delta possible.
3158 		 */
3159 		if (delta >= 0) {
3160 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
3161 			    delta ? delta : 1);
3162 		}
3163 	} else {
3164 		tcp_closei_local(tcp);
3165 		CONN_DEC_REF(connp);
3166 	}
3167 finish:
3168 	/* Signal closing thread that it can complete close */
3169 	mutex_enter(&tcp->tcp_closelock);
3170 	tcp->tcp_detached = B_TRUE;
3171 	connp->conn_rq = NULL;
3172 	connp->conn_wq = NULL;
3173 
3174 	tcp->tcp_closed = 1;
3175 	cv_signal(&tcp->tcp_closecv);
3176 	mutex_exit(&tcp->tcp_closelock);
3177 }
3178 
3179 /*
3180  * Handle lingering timeouts. This function is called when the SO_LINGER timeout
3181  * expires.
3182  */
3183 static void
3184 tcp_close_linger_timeout(void *arg)
3185 {
3186 	conn_t	*connp = (conn_t *)arg;
3187 	tcp_t 	*tcp = connp->conn_tcp;
3188 
3189 	tcp->tcp_client_errno = ETIMEDOUT;
3190 	tcp_stop_lingering(tcp);
3191 }
3192 
3193 static void
3194 tcp_close_common(conn_t *connp, int flags)
3195 {
3196 	tcp_t		*tcp = connp->conn_tcp;
3197 	mblk_t 		*mp = &tcp->tcp_closemp;
3198 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
3199 	mblk_t		*bp;
3200 
3201 	ASSERT(connp->conn_ref >= 2);
3202 
3203 	/*
3204 	 * Mark the conn as closing. ipsq_pending_mp_add will not
3205 	 * add any mp to the pending mp list, after this conn has
3206 	 * started closing.
3207 	 */
3208 	mutex_enter(&connp->conn_lock);
3209 	connp->conn_state_flags |= CONN_CLOSING;
3210 	if (connp->conn_oper_pending_ill != NULL)
3211 		conn_ioctl_cleanup_reqd = B_TRUE;
3212 	CONN_INC_REF_LOCKED(connp);
3213 	mutex_exit(&connp->conn_lock);
3214 	tcp->tcp_closeflags = (uint8_t)flags;
3215 	ASSERT(connp->conn_ref >= 3);
3216 
3217 	/*
3218 	 * tcp_closemp_used is used below without any protection of a lock
3219 	 * as we don't expect any one else to use it concurrently at this
3220 	 * point otherwise it would be a major defect.
3221 	 */
3222 
3223 	if (mp->b_prev == NULL)
3224 		tcp->tcp_closemp_used = B_TRUE;
3225 	else
3226 		cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: "
3227 		    "connp %p tcp %p\n", (void *)connp, (void *)tcp);
3228 
3229 	TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
3230 
3231 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp,
3232 	    NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
3233 
3234 	mutex_enter(&tcp->tcp_closelock);
3235 	while (!tcp->tcp_closed) {
3236 		if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
3237 			/*
3238 			 * The cv_wait_sig() was interrupted. We now do the
3239 			 * following:
3240 			 *
3241 			 * 1) If the endpoint was lingering, we allow this
3242 			 * to be interrupted by cancelling the linger timeout
3243 			 * and closing normally.
3244 			 *
3245 			 * 2) Revert to calling cv_wait()
3246 			 *
3247 			 * We revert to using cv_wait() to avoid an
3248 			 * infinite loop which can occur if the calling
3249 			 * thread is higher priority than the squeue worker
3250 			 * thread and is bound to the same cpu.
3251 			 */
3252 			if (connp->conn_linger && connp->conn_lingertime > 0) {
3253 				mutex_exit(&tcp->tcp_closelock);
3254 				/* Entering squeue, bump ref count. */
3255 				CONN_INC_REF(connp);
3256 				bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
3257 				SQUEUE_ENTER_ONE(connp->conn_sqp, bp,
3258 				    tcp_linger_interrupted, connp, NULL,
3259 				    tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
3260 				mutex_enter(&tcp->tcp_closelock);
3261 			}
3262 			break;
3263 		}
3264 	}
3265 	while (!tcp->tcp_closed)
3266 		cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
3267 	mutex_exit(&tcp->tcp_closelock);
3268 
3269 	/*
3270 	 * In the case of listener streams that have eagers in the q or q0
3271 	 * we wait for the eagers to drop their reference to us. conn_rq and
3272 	 * conn_wq of the eagers point to our queues. By waiting for the
3273 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
3274 	 * up their queue pointers and also dropped their references to us.
3275 	 */
3276 	if (tcp->tcp_wait_for_eagers) {
3277 		mutex_enter(&connp->conn_lock);
3278 		while (connp->conn_ref != 1) {
3279 			cv_wait(&connp->conn_cv, &connp->conn_lock);
3280 		}
3281 		mutex_exit(&connp->conn_lock);
3282 	}
3283 	/*
3284 	 * ioctl cleanup. The mp is queued in the ipx_pending_mp.
3285 	 */
3286 	if (conn_ioctl_cleanup_reqd)
3287 		conn_ioctl_cleanup(connp);
3288 
3289 	connp->conn_cpid = NOPID;
3290 }
3291 
3292 static int
3293 tcp_tpi_close(queue_t *q, int flags)
3294 {
3295 	conn_t		*connp;
3296 
3297 	ASSERT(WR(q)->q_next == NULL);
3298 
3299 	if (flags & SO_FALLBACK) {
3300 		/*
3301 		 * stream is being closed while in fallback
3302 		 * simply free the resources that were allocated
3303 		 */
3304 		inet_minor_free(WR(q)->q_ptr, (dev_t)(RD(q)->q_ptr));
3305 		qprocsoff(q);
3306 		goto done;
3307 	}
3308 
3309 	connp = Q_TO_CONN(q);
3310 	/*
3311 	 * We are being closed as /dev/tcp or /dev/tcp6.
3312 	 */
3313 	tcp_close_common(connp, flags);
3314 
3315 	qprocsoff(q);
3316 	inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
3317 
3318 	/*
3319 	 * Drop IP's reference on the conn. This is the last reference
3320 	 * on the connp if the state was less than established. If the
3321 	 * connection has gone into timewait state, then we will have
3322 	 * one ref for the TCP and one more ref (total of two) for the
3323 	 * classifier connected hash list (a timewait connections stays
3324 	 * in connected hash till closed).
3325 	 *
3326 	 * We can't assert the references because there might be other
3327 	 * transient reference places because of some walkers or queued
3328 	 * packets in squeue for the timewait state.
3329 	 */
3330 	CONN_DEC_REF(connp);
3331 done:
3332 	q->q_ptr = WR(q)->q_ptr = NULL;
3333 	return (0);
3334 }
3335 
3336 static int
3337 tcp_tpi_close_accept(queue_t *q)
3338 {
3339 	vmem_t	*minor_arena;
3340 	dev_t	conn_dev;
3341 
3342 	ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit);
3343 
3344 	/*
3345 	 * We had opened an acceptor STREAM for sockfs which is
3346 	 * now being closed due to some error.
3347 	 */
3348 	qprocsoff(q);
3349 
3350 	minor_arena = (vmem_t *)WR(q)->q_ptr;
3351 	conn_dev = (dev_t)RD(q)->q_ptr;
3352 	ASSERT(minor_arena != NULL);
3353 	ASSERT(conn_dev != 0);
3354 	inet_minor_free(minor_arena, conn_dev);
3355 	q->q_ptr = WR(q)->q_ptr = NULL;
3356 	return (0);
3357 }
3358 
3359 /*
3360  * Called by tcp_close() routine via squeue when lingering is
3361  * interrupted by a signal.
3362  */
3363 
3364 /* ARGSUSED */
3365 static void
3366 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
3367 {
3368 	conn_t	*connp = (conn_t *)arg;
3369 	tcp_t	*tcp = connp->conn_tcp;
3370 
3371 	freeb(mp);
3372 	if (tcp->tcp_linger_tid != 0 &&
3373 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3374 		tcp_stop_lingering(tcp);
3375 		tcp->tcp_client_errno = EINTR;
3376 	}
3377 }
3378 
3379 /*
3380  * Called by streams close routine via squeues when our client blows off her
3381  * descriptor, we take this to mean: "close the stream state NOW, close the tcp
3382  * connection politely" When SO_LINGER is set (with a non-zero linger time and
3383  * it is not a nonblocking socket) then this routine sleeps until the FIN is
3384  * acked.
3385  *
3386  * NOTE: tcp_close potentially returns error when lingering.
3387  * However, the stream head currently does not pass these errors
3388  * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK
3389  * errors to the application (from tsleep()) and not errors
3390  * like ECONNRESET caused by receiving a reset packet.
3391  */
3392 
3393 /* ARGSUSED */
3394 static void
3395 tcp_close_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
3396 {
3397 	char	*msg;
3398 	conn_t	*connp = (conn_t *)arg;
3399 	tcp_t	*tcp = connp->conn_tcp;
3400 	clock_t	delta = 0;
3401 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3402 
3403 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
3404 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
3405 
3406 	mutex_enter(&tcp->tcp_eager_lock);
3407 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
3408 		/* Cleanup for listener */
3409 		tcp_eager_cleanup(tcp, 0);
3410 		tcp->tcp_wait_for_eagers = 1;
3411 	}
3412 	mutex_exit(&tcp->tcp_eager_lock);
3413 
3414 	tcp->tcp_lso = B_FALSE;
3415 
3416 	msg = NULL;
3417 	switch (tcp->tcp_state) {
3418 	case TCPS_CLOSED:
3419 	case TCPS_IDLE:
3420 	case TCPS_BOUND:
3421 	case TCPS_LISTEN:
3422 		break;
3423 	case TCPS_SYN_SENT:
3424 		msg = "tcp_close, during connect";
3425 		break;
3426 	case TCPS_SYN_RCVD:
3427 		/*
3428 		 * Close during the connect 3-way handshake
3429 		 * but here there may or may not be pending data
3430 		 * already on queue. Process almost same as in
3431 		 * the ESTABLISHED state.
3432 		 */
3433 		/* FALLTHRU */
3434 	default:
3435 		if (tcp->tcp_fused)
3436 			tcp_unfuse(tcp);
3437 
3438 		/*
3439 		 * If SO_LINGER has set a zero linger time, abort the
3440 		 * connection with a reset.
3441 		 */
3442 		if (connp->conn_linger && connp->conn_lingertime == 0) {
3443 			msg = "tcp_close, zero lingertime";
3444 			break;
3445 		}
3446 
3447 		/*
3448 		 * Abort connection if there is unread data queued.
3449 		 */
3450 		if (tcp->tcp_rcv_list || tcp->tcp_reass_head) {
3451 			msg = "tcp_close, unread data";
3452 			break;
3453 		}
3454 		/*
3455 		 * We have done a qwait() above which could have possibly
3456 		 * drained more messages in turn causing transition to a
3457 		 * different state. Check whether we have to do the rest
3458 		 * of the processing or not.
3459 		 */
3460 		if (tcp->tcp_state <= TCPS_LISTEN)
3461 			break;
3462 
3463 		/*
3464 		 * Transmit the FIN before detaching the tcp_t.
3465 		 * After tcp_detach returns this queue/perimeter
3466 		 * no longer owns the tcp_t thus others can modify it.
3467 		 */
3468 		(void) tcp_xmit_end(tcp);
3469 
3470 		/*
3471 		 * If lingering on close then wait until the fin is acked,
3472 		 * the SO_LINGER time passes, or a reset is sent/received.
3473 		 */
3474 		if (connp->conn_linger && connp->conn_lingertime > 0 &&
3475 		    !(tcp->tcp_fin_acked) &&
3476 		    tcp->tcp_state >= TCPS_ESTABLISHED) {
3477 			if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) {
3478 				tcp->tcp_client_errno = EWOULDBLOCK;
3479 			} else if (tcp->tcp_client_errno == 0) {
3480 
3481 				ASSERT(tcp->tcp_linger_tid == 0);
3482 
3483 				tcp->tcp_linger_tid = TCP_TIMER(tcp,
3484 				    tcp_close_linger_timeout,
3485 				    connp->conn_lingertime * hz);
3486 
3487 				/* tcp_close_linger_timeout will finish close */
3488 				if (tcp->tcp_linger_tid == 0)
3489 					tcp->tcp_client_errno = ENOSR;
3490 				else
3491 					return;
3492 			}
3493 
3494 			/*
3495 			 * Check if we need to detach or just close
3496 			 * the instance.
3497 			 */
3498 			if (tcp->tcp_state <= TCPS_LISTEN)
3499 				break;
3500 		}
3501 
3502 		/*
3503 		 * Make sure that no other thread will access the conn_rq of
3504 		 * this instance (through lookups etc.) as conn_rq will go
3505 		 * away shortly.
3506 		 */
3507 		tcp_acceptor_hash_remove(tcp);
3508 
3509 		mutex_enter(&tcp->tcp_non_sq_lock);
3510 		if (tcp->tcp_flow_stopped) {
3511 			tcp_clrqfull(tcp);
3512 		}
3513 		mutex_exit(&tcp->tcp_non_sq_lock);
3514 
3515 		if (tcp->tcp_timer_tid != 0) {
3516 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3517 			tcp->tcp_timer_tid = 0;
3518 		}
3519 		/*
3520 		 * Need to cancel those timers which will not be used when
3521 		 * TCP is detached.  This has to be done before the conn_wq
3522 		 * is set to NULL.
3523 		 */
3524 		tcp_timers_stop(tcp);
3525 
3526 		tcp->tcp_detached = B_TRUE;
3527 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
3528 			tcp_time_wait_append(tcp);
3529 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
3530 			ASSERT(connp->conn_ref >= 3);
3531 			goto finish;
3532 		}
3533 
3534 		/*
3535 		 * If delta is zero the timer event wasn't executed and was
3536 		 * successfully canceled. In this case we need to restart it
3537 		 * with the minimal delta possible.
3538 		 */
3539 		if (delta >= 0)
3540 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
3541 			    delta ? delta : 1);
3542 
3543 		ASSERT(connp->conn_ref >= 3);
3544 		goto finish;
3545 	}
3546 
3547 	/* Detach did not complete. Still need to remove q from stream. */
3548 	if (msg) {
3549 		if (tcp->tcp_state == TCPS_ESTABLISHED ||
3550 		    tcp->tcp_state == TCPS_CLOSE_WAIT)
3551 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
3552 		if (tcp->tcp_state == TCPS_SYN_SENT ||
3553 		    tcp->tcp_state == TCPS_SYN_RCVD)
3554 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
3555 		tcp_xmit_ctl(msg, tcp,  tcp->tcp_snxt, 0, TH_RST);
3556 	}
3557 
3558 	tcp_closei_local(tcp);
3559 	CONN_DEC_REF(connp);
3560 	ASSERT(connp->conn_ref >= 2);
3561 
3562 finish:
3563 	mutex_enter(&tcp->tcp_closelock);
3564 	/*
3565 	 * Don't change the queues in the case of a listener that has
3566 	 * eagers in its q or q0. It could surprise the eagers.
3567 	 * Instead wait for the eagers outside the squeue.
3568 	 */
3569 	if (!tcp->tcp_wait_for_eagers) {
3570 		tcp->tcp_detached = B_TRUE;
3571 		connp->conn_rq = NULL;
3572 		connp->conn_wq = NULL;
3573 	}
3574 
3575 	/* Signal tcp_close() to finish closing. */
3576 	tcp->tcp_closed = 1;
3577 	cv_signal(&tcp->tcp_closecv);
3578 	mutex_exit(&tcp->tcp_closelock);
3579 }
3580 
3581 /*
3582  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
3583  * Some stream heads get upset if they see these later on as anything but NULL.
3584  */
3585 static void
3586 tcp_close_mpp(mblk_t **mpp)
3587 {
3588 	mblk_t	*mp;
3589 
3590 	if ((mp = *mpp) != NULL) {
3591 		do {
3592 			mp->b_next = NULL;
3593 			mp->b_prev = NULL;
3594 		} while ((mp = mp->b_cont) != NULL);
3595 
3596 		mp = *mpp;
3597 		*mpp = NULL;
3598 		freemsg(mp);
3599 	}
3600 }
3601 
3602 /* Do detached close. */
3603 static void
3604 tcp_close_detached(tcp_t *tcp)
3605 {
3606 	if (tcp->tcp_fused)
3607 		tcp_unfuse(tcp);
3608 
3609 	/*
3610 	 * Clustering code serializes TCP disconnect callbacks and
3611 	 * cluster tcp list walks by blocking a TCP disconnect callback
3612 	 * if a cluster tcp list walk is in progress. This ensures
3613 	 * accurate accounting of TCPs in the cluster code even though
3614 	 * the TCP list walk itself is not atomic.
3615 	 */
3616 	tcp_closei_local(tcp);
3617 	CONN_DEC_REF(tcp->tcp_connp);
3618 }
3619 
3620 /*
3621  * Stop all TCP timers, and free the timer mblks if requested.
3622  */
3623 void
3624 tcp_timers_stop(tcp_t *tcp)
3625 {
3626 	if (tcp->tcp_timer_tid != 0) {
3627 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3628 		tcp->tcp_timer_tid = 0;
3629 	}
3630 	if (tcp->tcp_ka_tid != 0) {
3631 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid);
3632 		tcp->tcp_ka_tid = 0;
3633 	}
3634 	if (tcp->tcp_ack_tid != 0) {
3635 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
3636 		tcp->tcp_ack_tid = 0;
3637 	}
3638 	if (tcp->tcp_push_tid != 0) {
3639 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
3640 		tcp->tcp_push_tid = 0;
3641 	}
3642 }
3643 
3644 /*
3645  * The tcp_t is going away. Remove it from all lists and set it
3646  * to TCPS_CLOSED. The freeing up of memory is deferred until
3647  * tcp_inactive. This is needed since a thread in tcp_rput might have
3648  * done a CONN_INC_REF on this structure before it was removed from the
3649  * hashes.
3650  */
3651 static void
3652 tcp_closei_local(tcp_t *tcp)
3653 {
3654 	conn_t		*connp = tcp->tcp_connp;
3655 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3656 
3657 	if (!TCP_IS_SOCKET(tcp))
3658 		tcp_acceptor_hash_remove(tcp);
3659 
3660 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
3661 	tcp->tcp_ibsegs = 0;
3662 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
3663 	tcp->tcp_obsegs = 0;
3664 
3665 	/*
3666 	 * If we are an eager connection hanging off a listener that
3667 	 * hasn't formally accepted the connection yet, get off his
3668 	 * list and blow off any data that we have accumulated.
3669 	 */
3670 	if (tcp->tcp_listener != NULL) {
3671 		tcp_t	*listener = tcp->tcp_listener;
3672 		mutex_enter(&listener->tcp_eager_lock);
3673 		/*
3674 		 * tcp_tconnind_started == B_TRUE means that the
3675 		 * conn_ind has already gone to listener. At
3676 		 * this point, eager will be closed but we
3677 		 * leave it in listeners eager list so that
3678 		 * if listener decides to close without doing
3679 		 * accept, we can clean this up. In tcp_tli_accept
3680 		 * we take care of the case of accept on closed
3681 		 * eager.
3682 		 */
3683 		if (!tcp->tcp_tconnind_started) {
3684 			tcp_eager_unlink(tcp);
3685 			mutex_exit(&listener->tcp_eager_lock);
3686 			/*
3687 			 * We don't want to have any pointers to the
3688 			 * listener queue, after we have released our
3689 			 * reference on the listener
3690 			 */
3691 			ASSERT(tcp->tcp_detached);
3692 			connp->conn_rq = NULL;
3693 			connp->conn_wq = NULL;
3694 			CONN_DEC_REF(listener->tcp_connp);
3695 		} else {
3696 			mutex_exit(&listener->tcp_eager_lock);
3697 		}
3698 	}
3699 
3700 	/* Stop all the timers */
3701 	tcp_timers_stop(tcp);
3702 
3703 	if (tcp->tcp_state == TCPS_LISTEN) {
3704 		if (tcp->tcp_ip_addr_cache) {
3705 			kmem_free((void *)tcp->tcp_ip_addr_cache,
3706 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
3707 			tcp->tcp_ip_addr_cache = NULL;
3708 		}
3709 	}
3710 	mutex_enter(&tcp->tcp_non_sq_lock);
3711 	if (tcp->tcp_flow_stopped)
3712 		tcp_clrqfull(tcp);
3713 	mutex_exit(&tcp->tcp_non_sq_lock);
3714 
3715 	tcp_bind_hash_remove(tcp);
3716 	/*
3717 	 * If the tcp_time_wait_collector (which runs outside the squeue)
3718 	 * is trying to remove this tcp from the time wait list, we will
3719 	 * block in tcp_time_wait_remove while trying to acquire the
3720 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
3721 	 * requires the ipcl_hash_remove to be ordered after the
3722 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
3723 	 */
3724 	if (tcp->tcp_state == TCPS_TIME_WAIT)
3725 		(void) tcp_time_wait_remove(tcp, NULL);
3726 	CL_INET_DISCONNECT(connp);
3727 	ipcl_hash_remove(connp);
3728 	ixa_cleanup(connp->conn_ixa);
3729 
3730 	/*
3731 	 * Mark the conn as CONDEMNED
3732 	 */
3733 	mutex_enter(&connp->conn_lock);
3734 	connp->conn_state_flags |= CONN_CONDEMNED;
3735 	mutex_exit(&connp->conn_lock);
3736 
3737 	/* Need to cleanup any pending ioctls */
3738 	ASSERT(tcp->tcp_time_wait_next == NULL);
3739 	ASSERT(tcp->tcp_time_wait_prev == NULL);
3740 	ASSERT(tcp->tcp_time_wait_expire == 0);
3741 	tcp->tcp_state = TCPS_CLOSED;
3742 
3743 	/* Release any SSL context */
3744 	if (tcp->tcp_kssl_ent != NULL) {
3745 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
3746 		tcp->tcp_kssl_ent = NULL;
3747 	}
3748 	if (tcp->tcp_kssl_ctx != NULL) {
3749 		kssl_release_ctx(tcp->tcp_kssl_ctx);
3750 		tcp->tcp_kssl_ctx = NULL;
3751 	}
3752 	tcp->tcp_kssl_pending = B_FALSE;
3753 
3754 	tcp_ipsec_cleanup(tcp);
3755 }
3756 
3757 /*
3758  * tcp is dying (called from ipcl_conn_destroy and error cases).
3759  * Free the tcp_t in either case.
3760  */
3761 void
3762 tcp_free(tcp_t *tcp)
3763 {
3764 	mblk_t		*mp;
3765 	conn_t		*connp = tcp->tcp_connp;
3766 
3767 	ASSERT(tcp != NULL);
3768 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
3769 
3770 	connp->conn_rq = NULL;
3771 	connp->conn_wq = NULL;
3772 
3773 	tcp_close_mpp(&tcp->tcp_xmit_head);
3774 	tcp_close_mpp(&tcp->tcp_reass_head);
3775 	if (tcp->tcp_rcv_list != NULL) {
3776 		/* Free b_next chain */
3777 		tcp_close_mpp(&tcp->tcp_rcv_list);
3778 	}
3779 	if ((mp = tcp->tcp_urp_mp) != NULL) {
3780 		freemsg(mp);
3781 	}
3782 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
3783 		freemsg(mp);
3784 	}
3785 
3786 	if (tcp->tcp_fused_sigurg_mp != NULL) {
3787 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
3788 		freeb(tcp->tcp_fused_sigurg_mp);
3789 		tcp->tcp_fused_sigurg_mp = NULL;
3790 	}
3791 
3792 	if (tcp->tcp_ordrel_mp != NULL) {
3793 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
3794 		freeb(tcp->tcp_ordrel_mp);
3795 		tcp->tcp_ordrel_mp = NULL;
3796 	}
3797 
3798 	if (tcp->tcp_sack_info != NULL) {
3799 		if (tcp->tcp_notsack_list != NULL) {
3800 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list,
3801 			    tcp);
3802 		}
3803 		bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
3804 	}
3805 
3806 	if (tcp->tcp_hopopts != NULL) {
3807 		mi_free(tcp->tcp_hopopts);
3808 		tcp->tcp_hopopts = NULL;
3809 		tcp->tcp_hopoptslen = 0;
3810 	}
3811 	ASSERT(tcp->tcp_hopoptslen == 0);
3812 	if (tcp->tcp_dstopts != NULL) {
3813 		mi_free(tcp->tcp_dstopts);
3814 		tcp->tcp_dstopts = NULL;
3815 		tcp->tcp_dstoptslen = 0;
3816 	}
3817 	ASSERT(tcp->tcp_dstoptslen == 0);
3818 	if (tcp->tcp_rthdrdstopts != NULL) {
3819 		mi_free(tcp->tcp_rthdrdstopts);
3820 		tcp->tcp_rthdrdstopts = NULL;
3821 		tcp->tcp_rthdrdstoptslen = 0;
3822 	}
3823 	ASSERT(tcp->tcp_rthdrdstoptslen == 0);
3824 	if (tcp->tcp_rthdr != NULL) {
3825 		mi_free(tcp->tcp_rthdr);
3826 		tcp->tcp_rthdr = NULL;
3827 		tcp->tcp_rthdrlen = 0;
3828 	}
3829 	ASSERT(tcp->tcp_rthdrlen == 0);
3830 
3831 	/*
3832 	 * Following is really a blowing away a union.
3833 	 * It happens to have exactly two members of identical size
3834 	 * the following code is enough.
3835 	 */
3836 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
3837 }
3838 
3839 
3840 /*
3841  * Put a connection confirmation message upstream built from the
3842  * address/flowid information with the conn and iph. Report our success or
3843  * failure.
3844  */
3845 static boolean_t
3846 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, mblk_t *idmp,
3847     mblk_t **defermp, ip_recv_attr_t *ira)
3848 {
3849 	sin_t	sin;
3850 	sin6_t	sin6;
3851 	mblk_t	*mp;
3852 	char	*optp = NULL;
3853 	int	optlen = 0;
3854 	conn_t	*connp = tcp->tcp_connp;
3855 
3856 	if (defermp != NULL)
3857 		*defermp = NULL;
3858 
3859 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL) {
3860 		/*
3861 		 * Return in T_CONN_CON results of option negotiation through
3862 		 * the T_CONN_REQ. Note: If there is an real end-to-end option
3863 		 * negotiation, then what is received from remote end needs
3864 		 * to be taken into account but there is no such thing (yet?)
3865 		 * in our TCP/IP.
3866 		 * Note: We do not use mi_offset_param() here as
3867 		 * tcp_opts_conn_req contents do not directly come from
3868 		 * an application and are either generated in kernel or
3869 		 * from user input that was already verified.
3870 		 */
3871 		mp = tcp->tcp_conn.tcp_opts_conn_req;
3872 		optp = (char *)(mp->b_rptr +
3873 		    ((struct T_conn_req *)mp->b_rptr)->OPT_offset);
3874 		optlen = (int)
3875 		    ((struct T_conn_req *)mp->b_rptr)->OPT_length;
3876 	}
3877 
3878 	if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) {
3879 
3880 		/* packet is IPv4 */
3881 		if (connp->conn_family == AF_INET) {
3882 			sin = sin_null;
3883 			sin.sin_addr.s_addr = connp->conn_faddr_v4;
3884 			sin.sin_port = connp->conn_fport;
3885 			sin.sin_family = AF_INET;
3886 			mp = mi_tpi_conn_con(NULL, (char *)&sin,
3887 			    (int)sizeof (sin_t), optp, optlen);
3888 		} else {
3889 			sin6 = sin6_null;
3890 			sin6.sin6_addr = connp->conn_faddr_v6;
3891 			sin6.sin6_port = connp->conn_fport;
3892 			sin6.sin6_family = AF_INET6;
3893 			mp = mi_tpi_conn_con(NULL, (char *)&sin6,
3894 			    (int)sizeof (sin6_t), optp, optlen);
3895 
3896 		}
3897 	} else {
3898 		ip6_t	*ip6h = (ip6_t *)iphdr;
3899 
3900 		ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION);
3901 		ASSERT(connp->conn_family == AF_INET6);
3902 		sin6 = sin6_null;
3903 		sin6.sin6_addr = connp->conn_faddr_v6;
3904 		sin6.sin6_port = connp->conn_fport;
3905 		sin6.sin6_family = AF_INET6;
3906 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
3907 		mp = mi_tpi_conn_con(NULL, (char *)&sin6,
3908 		    (int)sizeof (sin6_t), optp, optlen);
3909 	}
3910 
3911 	if (!mp)
3912 		return (B_FALSE);
3913 
3914 	mblk_copycred(mp, idmp);
3915 
3916 	if (defermp == NULL) {
3917 		conn_t *connp = tcp->tcp_connp;
3918 		if (IPCL_IS_NONSTR(connp)) {
3919 			(*connp->conn_upcalls->su_connected)
3920 			    (connp->conn_upper_handle, tcp->tcp_connid,
3921 			    ira->ira_cred, ira->ira_cpid);
3922 			freemsg(mp);
3923 		} else {
3924 			if (ira->ira_cred != NULL) {
3925 				/* So that getpeerucred works for TPI sockfs */
3926 				mblk_setcred(mp, ira->ira_cred, ira->ira_cpid);
3927 			}
3928 			putnext(connp->conn_rq, mp);
3929 		}
3930 	} else {
3931 		*defermp = mp;
3932 	}
3933 
3934 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
3935 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
3936 	return (B_TRUE);
3937 }
3938 
3939 /*
3940  * Defense for the SYN attack -
3941  * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest
3942  *    one from the list of droppable eagers. This list is a subset of q0.
3943  *    see comments before the definition of MAKE_DROPPABLE().
3944  * 2. Don't drop a SYN request before its first timeout. This gives every
3945  *    request at least til the first timeout to complete its 3-way handshake.
3946  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
3947  *    requests currently on the queue that has timed out. This will be used
3948  *    as an indicator of whether an attack is under way, so that appropriate
3949  *    actions can be taken. (It's incremented in tcp_timer() and decremented
3950  *    either when eager goes into ESTABLISHED, or gets freed up.)
3951  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
3952  *    # of timeout drops back to <= q0len/32 => SYN alert off
3953  */
3954 static boolean_t
3955 tcp_drop_q0(tcp_t *tcp)
3956 {
3957 	tcp_t	*eager;
3958 	mblk_t	*mp;
3959 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3960 
3961 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
3962 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
3963 
3964 	/* Pick oldest eager from the list of droppable eagers */
3965 	eager = tcp->tcp_eager_prev_drop_q0;
3966 
3967 	/* If list is empty. return B_FALSE */
3968 	if (eager == tcp) {
3969 		return (B_FALSE);
3970 	}
3971 
3972 	/* If allocated, the mp will be freed in tcp_clean_death_wrapper() */
3973 	if ((mp = allocb(0, BPRI_HI)) == NULL)
3974 		return (B_FALSE);
3975 
3976 	/*
3977 	 * Take this eager out from the list of droppable eagers since we are
3978 	 * going to drop it.
3979 	 */
3980 	MAKE_UNDROPPABLE(eager);
3981 
3982 	if (tcp->tcp_connp->conn_debug) {
3983 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
3984 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
3985 		    " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0,
3986 		    tcp->tcp_conn_req_cnt_q0,
3987 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
3988 	}
3989 
3990 	BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop);
3991 
3992 	/* Put a reference on the conn as we are enqueueing it in the sqeue */
3993 	CONN_INC_REF(eager->tcp_connp);
3994 
3995 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
3996 	    tcp_clean_death_wrapper, eager->tcp_connp, NULL,
3997 	    SQ_FILL, SQTAG_TCP_DROP_Q0);
3998 
3999 	return (B_TRUE);
4000 }
4001 
4002 /*
4003  * Handle a SYN on an AF_INET6 socket; can be either IPv4 or IPv6
4004  */
4005 static mblk_t *
4006 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
4007     ip_recv_attr_t *ira)
4008 {
4009 	tcp_t 		*ltcp = lconnp->conn_tcp;
4010 	tcp_t		*tcp = connp->conn_tcp;
4011 	mblk_t		*tpi_mp;
4012 	ipha_t		*ipha;
4013 	ip6_t		*ip6h;
4014 	sin6_t 		sin6;
4015 	uint_t		ifindex = ira->ira_ruifindex;
4016 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4017 
4018 	if (ira->ira_flags & IRAF_IS_IPV4) {
4019 		ipha = (ipha_t *)mp->b_rptr;
4020 
4021 		connp->conn_ipversion = IPV4_VERSION;
4022 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6);
4023 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6);
4024 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
4025 
4026 		sin6 = sin6_null;
4027 		sin6.sin6_addr = connp->conn_faddr_v6;
4028 		sin6.sin6_port = connp->conn_fport;
4029 		sin6.sin6_family = AF_INET6;
4030 		sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6,
4031 		    IPCL_ZONEID(lconnp), tcps->tcps_netstack);
4032 
4033 		if (connp->conn_recv_ancillary.crb_recvdstaddr) {
4034 			sin6_t	sin6d;
4035 
4036 			sin6d = sin6_null;
4037 			sin6d.sin6_addr = connp->conn_laddr_v6;
4038 			sin6d.sin6_port = connp->conn_lport;
4039 			sin6d.sin6_family = AF_INET;
4040 			tpi_mp = mi_tpi_extconn_ind(NULL,
4041 			    (char *)&sin6d, sizeof (sin6_t),
4042 			    (char *)&tcp,
4043 			    (t_scalar_t)sizeof (intptr_t),
4044 			    (char *)&sin6d, sizeof (sin6_t),
4045 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4046 		} else {
4047 			tpi_mp = mi_tpi_conn_ind(NULL,
4048 			    (char *)&sin6, sizeof (sin6_t),
4049 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4050 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4051 		}
4052 	} else {
4053 		ip6h = (ip6_t *)mp->b_rptr;
4054 
4055 		connp->conn_ipversion = IPV6_VERSION;
4056 		connp->conn_laddr_v6 = ip6h->ip6_dst;
4057 		connp->conn_faddr_v6 = ip6h->ip6_src;
4058 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
4059 
4060 		sin6 = sin6_null;
4061 		sin6.sin6_addr = connp->conn_faddr_v6;
4062 		sin6.sin6_port = connp->conn_fport;
4063 		sin6.sin6_family = AF_INET6;
4064 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4065 		sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6,
4066 		    IPCL_ZONEID(lconnp), tcps->tcps_netstack);
4067 
4068 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4069 			/* Pass up the scope_id of remote addr */
4070 			sin6.sin6_scope_id = ifindex;
4071 		} else {
4072 			sin6.sin6_scope_id = 0;
4073 		}
4074 		if (connp->conn_recv_ancillary.crb_recvdstaddr) {
4075 			sin6_t	sin6d;
4076 
4077 			sin6d = sin6_null;
4078 			sin6.sin6_addr = connp->conn_laddr_v6;
4079 			sin6d.sin6_port = connp->conn_lport;
4080 			sin6d.sin6_family = AF_INET6;
4081 			if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_laddr_v6))
4082 				sin6d.sin6_scope_id = ifindex;
4083 
4084 			tpi_mp = mi_tpi_extconn_ind(NULL,
4085 			    (char *)&sin6d, sizeof (sin6_t),
4086 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4087 			    (char *)&sin6d, sizeof (sin6_t),
4088 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4089 		} else {
4090 			tpi_mp = mi_tpi_conn_ind(NULL,
4091 			    (char *)&sin6, sizeof (sin6_t),
4092 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4093 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4094 		}
4095 	}
4096 
4097 	tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
4098 	return (tpi_mp);
4099 }
4100 
4101 /* Handle a SYN on an AF_INET socket */
4102 mblk_t *
4103 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp,
4104     ip_recv_attr_t *ira)
4105 {
4106 	tcp_t 		*ltcp = lconnp->conn_tcp;
4107 	tcp_t		*tcp = connp->conn_tcp;
4108 	sin_t		sin;
4109 	mblk_t		*tpi_mp = NULL;
4110 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4111 	ipha_t		*ipha;
4112 
4113 	ASSERT(ira->ira_flags & IRAF_IS_IPV4);
4114 	ipha = (ipha_t *)mp->b_rptr;
4115 
4116 	connp->conn_ipversion = IPV4_VERSION;
4117 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6);
4118 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6);
4119 	connp->conn_saddr_v6 = connp->conn_laddr_v6;
4120 
4121 	sin = sin_null;
4122 	sin.sin_addr.s_addr = connp->conn_faddr_v4;
4123 	sin.sin_port = connp->conn_fport;
4124 	sin.sin_family = AF_INET;
4125 	if (lconnp->conn_recv_ancillary.crb_recvdstaddr) {
4126 		sin_t	sind;
4127 
4128 		sind = sin_null;
4129 		sind.sin_addr.s_addr = connp->conn_laddr_v4;
4130 		sind.sin_port = connp->conn_lport;
4131 		sind.sin_family = AF_INET;
4132 		tpi_mp = mi_tpi_extconn_ind(NULL,
4133 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
4134 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
4135 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4136 	} else {
4137 		tpi_mp = mi_tpi_conn_ind(NULL,
4138 		    (char *)&sin, sizeof (sin_t),
4139 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4140 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4141 	}
4142 
4143 	tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
4144 	return (tpi_mp);
4145 }
4146 
4147 /*
4148  * tcp_get_conn/tcp_free_conn
4149  *
4150  * tcp_get_conn is used to get a clean tcp connection structure.
4151  * It tries to reuse the connections put on the freelist by the
4152  * time_wait_collector failing which it goes to kmem_cache. This
4153  * way has two benefits compared to just allocating from and
4154  * freeing to kmem_cache.
4155  * 1) The time_wait_collector can free (which includes the cleanup)
4156  * outside the squeue. So when the interrupt comes, we have a clean
4157  * connection sitting in the freelist. Obviously, this buys us
4158  * performance.
4159  *
4160  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_input_listener
4161  * has multiple disadvantages - tying up the squeue during alloc.
4162  * But allocating the conn/tcp in IP land is also not the best since
4163  * we can't check the 'q' and 'q0' which are protected by squeue and
4164  * blindly allocate memory which might have to be freed here if we are
4165  * not allowed to accept the connection. By using the freelist and
4166  * putting the conn/tcp back in freelist, we don't pay a penalty for
4167  * allocating memory without checking 'q/q0' and freeing it if we can't
4168  * accept the connection.
4169  *
4170  * Care should be taken to put the conn back in the same squeue's freelist
4171  * from which it was allocated. Best results are obtained if conn is
4172  * allocated from listener's squeue and freed to the same. Time wait
4173  * collector will free up the freelist is the connection ends up sitting
4174  * there for too long.
4175  */
4176 void *
4177 tcp_get_conn(void *arg, tcp_stack_t *tcps)
4178 {
4179 	tcp_t			*tcp = NULL;
4180 	conn_t			*connp = NULL;
4181 	squeue_t		*sqp = (squeue_t *)arg;
4182 	tcp_squeue_priv_t 	*tcp_time_wait;
4183 	netstack_t		*ns;
4184 	mblk_t			*tcp_rsrv_mp = NULL;
4185 
4186 	tcp_time_wait =
4187 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
4188 
4189 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
4190 	tcp = tcp_time_wait->tcp_free_list;
4191 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
4192 	if (tcp != NULL) {
4193 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
4194 		tcp_time_wait->tcp_free_list_cnt--;
4195 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
4196 		tcp->tcp_time_wait_next = NULL;
4197 		connp = tcp->tcp_connp;
4198 		connp->conn_flags |= IPCL_REUSED;
4199 
4200 		ASSERT(tcp->tcp_tcps == NULL);
4201 		ASSERT(connp->conn_netstack == NULL);
4202 		ASSERT(tcp->tcp_rsrv_mp != NULL);
4203 		ns = tcps->tcps_netstack;
4204 		netstack_hold(ns);
4205 		connp->conn_netstack = ns;
4206 		connp->conn_ixa->ixa_ipst = ns->netstack_ip;
4207 		tcp->tcp_tcps = tcps;
4208 		ipcl_globalhash_insert(connp);
4209 
4210 		connp->conn_ixa->ixa_notify_cookie = tcp;
4211 		ASSERT(connp->conn_ixa->ixa_notify == tcp_notify);
4212 		connp->conn_recv = tcp_input_data;
4213 		ASSERT(connp->conn_recvicmp == tcp_icmp_input);
4214 		ASSERT(connp->conn_verifyicmp == tcp_verifyicmp);
4215 		return ((void *)connp);
4216 	}
4217 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
4218 	/*
4219 	 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until
4220 	 * this conn_t/tcp_t is freed at ipcl_conn_destroy().
4221 	 */
4222 	tcp_rsrv_mp = allocb(0, BPRI_HI);
4223 	if (tcp_rsrv_mp == NULL)
4224 		return (NULL);
4225 
4226 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
4227 	    tcps->tcps_netstack)) == NULL) {
4228 		freeb(tcp_rsrv_mp);
4229 		return (NULL);
4230 	}
4231 
4232 	tcp = connp->conn_tcp;
4233 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
4234 	mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL);
4235 
4236 	tcp->tcp_tcps = tcps;
4237 
4238 	connp->conn_recv = tcp_input_data;
4239 	connp->conn_recvicmp = tcp_icmp_input;
4240 	connp->conn_verifyicmp = tcp_verifyicmp;
4241 
4242 	/*
4243 	 * Register tcp_notify to listen to capability changes detected by IP.
4244 	 * This upcall is made in the context of the call to conn_ip_output
4245 	 * thus it is inside the squeue.
4246 	 */
4247 	connp->conn_ixa->ixa_notify = tcp_notify;
4248 	connp->conn_ixa->ixa_notify_cookie = tcp;
4249 
4250 	return ((void *)connp);
4251 }
4252 
4253 /* BEGIN CSTYLED */
4254 /*
4255  *
4256  * The sockfs ACCEPT path:
4257  * =======================
4258  *
4259  * The eager is now established in its own perimeter as soon as SYN is
4260  * received in tcp_input_listener(). When sockfs receives conn_ind, it
4261  * completes the accept processing on the acceptor STREAM. The sending
4262  * of conn_ind part is common for both sockfs listener and a TLI/XTI
4263  * listener but a TLI/XTI listener completes the accept processing
4264  * on the listener perimeter.
4265  *
4266  * Common control flow for 3 way handshake:
4267  * ----------------------------------------
4268  *
4269  * incoming SYN (listener perimeter)	-> tcp_input_listener()
4270  *
4271  * incoming SYN-ACK-ACK (eager perim) 	-> tcp_input_data()
4272  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
4273  *
4274  * Sockfs ACCEPT Path:
4275  * -------------------
4276  *
4277  * open acceptor stream (tcp_open allocates tcp_tli_accept()
4278  * as STREAM entry point)
4279  *
4280  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_tli_accept()
4281  *
4282  * tcp_tli_accept() extracts the eager and makes the q->q_ptr <-> eager
4283  * association (we are not behind eager's squeue but sockfs is protecting us
4284  * and no one knows about this stream yet. The STREAMS entry point q->q_info
4285  * is changed to point at tcp_wput().
4286  *
4287  * tcp_accept_common() sends any deferred eagers via tcp_send_pending() to
4288  * listener (done on listener's perimeter).
4289  *
4290  * tcp_tli_accept() calls tcp_accept_finish() on eagers perimeter to finish
4291  * accept.
4292  *
4293  * TLI/XTI client ACCEPT path:
4294  * ---------------------------
4295  *
4296  * soaccept() sends T_CONN_RES on the listener STREAM.
4297  *
4298  * tcp_tli_accept() -> tcp_accept_swap() complete the processing and send
4299  * a M_SETOPS mblk to eager perimeter to finish accept (tcp_accept_finish()).
4300  *
4301  * Locks:
4302  * ======
4303  *
4304  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
4305  * and listeners->tcp_eager_next_q.
4306  *
4307  * Referencing:
4308  * ============
4309  *
4310  * 1) We start out in tcp_input_listener by eager placing a ref on
4311  * listener and listener adding eager to listeners->tcp_eager_next_q0.
4312  *
4313  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
4314  * doing so we place a ref on the eager. This ref is finally dropped at the
4315  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
4316  * reference is dropped by the squeue framework.
4317  *
4318  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
4319  *
4320  * The reference must be released by the same entity that added the reference
4321  * In the above scheme, the eager is the entity that adds and releases the
4322  * references. Note that tcp_accept_finish executes in the squeue of the eager
4323  * (albeit after it is attached to the acceptor stream). Though 1. executes
4324  * in the listener's squeue, the eager is nascent at this point and the
4325  * reference can be considered to have been added on behalf of the eager.
4326  *
4327  * Eager getting a Reset or listener closing:
4328  * ==========================================
4329  *
4330  * Once the listener and eager are linked, the listener never does the unlink.
4331  * If the listener needs to close, tcp_eager_cleanup() is called which queues
4332  * a message on all eager perimeter. The eager then does the unlink, clears
4333  * any pointers to the listener's queue and drops the reference to the
4334  * listener. The listener waits in tcp_close outside the squeue until its
4335  * refcount has dropped to 1. This ensures that the listener has waited for
4336  * all eagers to clear their association with the listener.
4337  *
4338  * Similarly, if eager decides to go away, it can unlink itself and close.
4339  * When the T_CONN_RES comes down, we check if eager has closed. Note that
4340  * the reference to eager is still valid because of the extra ref we put
4341  * in tcp_send_conn_ind.
4342  *
4343  * Listener can always locate the eager under the protection
4344  * of the listener->tcp_eager_lock, and then do a refhold
4345  * on the eager during the accept processing.
4346  *
4347  * The acceptor stream accesses the eager in the accept processing
4348  * based on the ref placed on eager before sending T_conn_ind.
4349  * The only entity that can negate this refhold is a listener close
4350  * which is mutually exclusive with an active acceptor stream.
4351  *
4352  * Eager's reference on the listener
4353  * ===================================
4354  *
4355  * If the accept happens (even on a closed eager) the eager drops its
4356  * reference on the listener at the start of tcp_accept_finish. If the
4357  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
4358  * the reference is dropped in tcp_closei_local. If the listener closes,
4359  * the reference is dropped in tcp_eager_kill. In all cases the reference
4360  * is dropped while executing in the eager's context (squeue).
4361  */
4362 /* END CSTYLED */
4363 
4364 /* Process the SYN packet, mp, directed at the listener 'tcp' */
4365 
4366 /*
4367  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
4368  * tcp_input_data will not see any packets for listeners since the listener
4369  * has conn_recv set to tcp_input_listener.
4370  */
4371 /* ARGSUSED */
4372 void
4373 tcp_input_listener(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4374 {
4375 	tcpha_t		*tcpha;
4376 	uint32_t	seg_seq;
4377 	tcp_t		*eager;
4378 	int		err;
4379 	conn_t		*econnp = NULL;
4380 	squeue_t	*new_sqp;
4381 	mblk_t		*mp1;
4382 	uint_t 		ip_hdr_len;
4383 	conn_t		*lconnp = (conn_t *)arg;
4384 	tcp_t		*listener = lconnp->conn_tcp;
4385 	tcp_stack_t	*tcps = listener->tcp_tcps;
4386 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
4387 	uint_t		flags;
4388 	mblk_t		*tpi_mp;
4389 	uint_t		ifindex = ira->ira_ruifindex;
4390 
4391 	ip_hdr_len = ira->ira_ip_hdr_length;
4392 	tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len];
4393 	flags = (unsigned int)tcpha->tha_flags & 0xFF;
4394 
4395 	if (!(flags & TH_SYN)) {
4396 		if ((flags & TH_RST) || (flags & TH_URG)) {
4397 			freemsg(mp);
4398 			return;
4399 		}
4400 		if (flags & TH_ACK) {
4401 			/* Note this executes in listener's squeue */
4402 			tcp_xmit_listeners_reset(mp, ira, ipst, lconnp);
4403 			return;
4404 		}
4405 
4406 		freemsg(mp);
4407 		return;
4408 	}
4409 
4410 	if (listener->tcp_state != TCPS_LISTEN)
4411 		goto error2;
4412 
4413 	ASSERT(IPCL_IS_BOUND(lconnp));
4414 
4415 	mutex_enter(&listener->tcp_eager_lock);
4416 	if (listener->tcp_conn_req_cnt_q >= listener->tcp_conn_req_max) {
4417 		mutex_exit(&listener->tcp_eager_lock);
4418 		TCP_STAT(tcps, tcp_listendrop);
4419 		BUMP_MIB(&tcps->tcps_mib, tcpListenDrop);
4420 		if (lconnp->conn_debug) {
4421 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
4422 			    "tcp_input_listener: listen backlog (max=%d) "
4423 			    "overflow (%d pending) on %s",
4424 			    listener->tcp_conn_req_max,
4425 			    listener->tcp_conn_req_cnt_q,
4426 			    tcp_display(listener, NULL, DISP_PORT_ONLY));
4427 		}
4428 		goto error2;
4429 	}
4430 
4431 	if (listener->tcp_conn_req_cnt_q0 >=
4432 	    listener->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) {
4433 		/*
4434 		 * Q0 is full. Drop a pending half-open req from the queue
4435 		 * to make room for the new SYN req. Also mark the time we
4436 		 * drop a SYN.
4437 		 *
4438 		 * A more aggressive defense against SYN attack will
4439 		 * be to set the "tcp_syn_defense" flag now.
4440 		 */
4441 		TCP_STAT(tcps, tcp_listendropq0);
4442 		listener->tcp_last_rcv_lbolt = ddi_get_lbolt64();
4443 		if (!tcp_drop_q0(listener)) {
4444 			mutex_exit(&listener->tcp_eager_lock);
4445 			BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0);
4446 			if (lconnp->conn_debug) {
4447 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
4448 				    "tcp_input_listener: listen half-open "
4449 				    "queue (max=%d) full (%d pending) on %s",
4450 				    tcps->tcps_conn_req_max_q0,
4451 				    listener->tcp_conn_req_cnt_q0,
4452 				    tcp_display(listener, NULL,
4453 				    DISP_PORT_ONLY));
4454 			}
4455 			goto error2;
4456 		}
4457 	}
4458 	mutex_exit(&listener->tcp_eager_lock);
4459 
4460 	/*
4461 	 * IP sets ira_sqp to either the senders conn_sqp (for loopback)
4462 	 * or based on the ring (for packets from GLD). Otherwise it is
4463 	 * set based on lbolt i.e., a somewhat random number.
4464 	 */
4465 	ASSERT(ira->ira_sqp != NULL);
4466 	new_sqp = ira->ira_sqp;
4467 
4468 	econnp = (conn_t *)tcp_get_conn(arg2, tcps);
4469 	if (econnp == NULL)
4470 		goto error2;
4471 
4472 	ASSERT(econnp->conn_netstack == lconnp->conn_netstack);
4473 	econnp->conn_sqp = new_sqp;
4474 	econnp->conn_initial_sqp = new_sqp;
4475 	econnp->conn_ixa->ixa_sqp = new_sqp;
4476 
4477 	econnp->conn_fport = tcpha->tha_lport;
4478 	econnp->conn_lport = tcpha->tha_fport;
4479 
4480 	err = conn_inherit_parent(lconnp, econnp);
4481 	if (err != 0)
4482 		goto error3;
4483 
4484 	ASSERT(OK_32PTR(mp->b_rptr));
4485 	ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION ||
4486 	    IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
4487 
4488 	if (lconnp->conn_family == AF_INET) {
4489 		ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION);
4490 		tpi_mp = tcp_conn_create_v4(lconnp, econnp, mp, ira);
4491 	} else {
4492 		tpi_mp = tcp_conn_create_v6(lconnp, econnp, mp, ira);
4493 	}
4494 
4495 	if (tpi_mp == NULL)
4496 		goto error3;
4497 
4498 	eager = econnp->conn_tcp;
4499 	eager->tcp_detached = B_TRUE;
4500 	SOCK_CONNID_INIT(eager->tcp_connid);
4501 
4502 	tcp_init_values(eager);
4503 
4504 	ASSERT((econnp->conn_ixa->ixa_flags &
4505 	    (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
4506 	    IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)) ==
4507 	    (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
4508 	    IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO));
4509 
4510 	if (!tcps->tcps_dev_flow_ctl)
4511 		econnp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL;
4512 
4513 	/* Prepare for diffing against previous packets */
4514 	eager->tcp_recvifindex = 0;
4515 	eager->tcp_recvhops = 0xffffffffU;
4516 
4517 	if (!(ira->ira_flags & IRAF_IS_IPV4) && econnp->conn_bound_if == 0) {
4518 		if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_faddr_v6) ||
4519 		    IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6)) {
4520 			econnp->conn_incoming_ifindex = ifindex;
4521 			econnp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET;
4522 			econnp->conn_ixa->ixa_scopeid = ifindex;
4523 		}
4524 	}
4525 
4526 	if ((ira->ira_flags & (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS)) ==
4527 	    (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS) &&
4528 	    tcps->tcps_rev_src_routes) {
4529 		ipha_t *ipha = (ipha_t *)mp->b_rptr;
4530 		ip_pkt_t *ipp = &econnp->conn_xmit_ipp;
4531 
4532 		/* Source routing option copyover (reverse it) */
4533 		err = ip_find_hdr_v4(ipha, ipp, B_TRUE);
4534 		if (err != 0) {
4535 			freemsg(tpi_mp);
4536 			goto error3;
4537 		}
4538 		ip_pkt_source_route_reverse_v4(ipp);
4539 	}
4540 
4541 	ASSERT(eager->tcp_conn.tcp_eager_conn_ind == NULL);
4542 	ASSERT(!eager->tcp_tconnind_started);
4543 	/*
4544 	 * If the SYN came with a credential, it's a loopback packet or a
4545 	 * labeled packet; attach the credential to the TPI message.
4546 	 */
4547 	if (ira->ira_cred != NULL)
4548 		mblk_setcred(tpi_mp, ira->ira_cred, ira->ira_cpid);
4549 
4550 	eager->tcp_conn.tcp_eager_conn_ind = tpi_mp;
4551 
4552 	/* Inherit the listener's SSL protection state */
4553 	if ((eager->tcp_kssl_ent = listener->tcp_kssl_ent) != NULL) {
4554 		kssl_hold_ent(eager->tcp_kssl_ent);
4555 		eager->tcp_kssl_pending = B_TRUE;
4556 	}
4557 
4558 	/* Inherit the listener's non-STREAMS flag */
4559 	if (IPCL_IS_NONSTR(lconnp)) {
4560 		econnp->conn_flags |= IPCL_NONSTR;
4561 	}
4562 
4563 	ASSERT(eager->tcp_ordrel_mp == NULL);
4564 
4565 	if (!IPCL_IS_NONSTR(econnp)) {
4566 		/*
4567 		 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that
4568 		 * at close time, we will always have that to send up.
4569 		 * Otherwise, we need to do special handling in case the
4570 		 * allocation fails at that time.
4571 		 */
4572 		if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL)
4573 			goto error3;
4574 	}
4575 	/*
4576 	 * Now that the IP addresses and ports are setup in econnp we
4577 	 * can do the IPsec policy work.
4578 	 */
4579 	if (ira->ira_flags & IRAF_IPSEC_SECURE) {
4580 		if (lconnp->conn_policy != NULL) {
4581 			/*
4582 			 * Inherit the policy from the listener; use
4583 			 * actions from ira
4584 			 */
4585 			if (!ip_ipsec_policy_inherit(econnp, lconnp, ira)) {
4586 				CONN_DEC_REF(econnp);
4587 				freemsg(mp);
4588 				goto error3;
4589 			}
4590 		}
4591 	}
4592 
4593 	/* Inherit various TCP parameters from the listener */
4594 	eager->tcp_naglim = listener->tcp_naglim;
4595 	eager->tcp_first_timer_threshold = listener->tcp_first_timer_threshold;
4596 	eager->tcp_second_timer_threshold =
4597 	    listener->tcp_second_timer_threshold;
4598 	eager->tcp_first_ctimer_threshold =
4599 	    listener->tcp_first_ctimer_threshold;
4600 	eager->tcp_second_ctimer_threshold =
4601 	    listener->tcp_second_ctimer_threshold;
4602 
4603 	/*
4604 	 * tcp_set_destination() may set tcp_rwnd according to the route
4605 	 * metrics. If it does not, the eager's receive window will be set
4606 	 * to the listener's receive window later in this function.
4607 	 */
4608 	eager->tcp_rwnd = 0;
4609 
4610 	/*
4611 	 * Inherit listener's tcp_init_cwnd.  Need to do this before
4612 	 * calling tcp_process_options() which set the initial cwnd.
4613 	 */
4614 	eager->tcp_init_cwnd = listener->tcp_init_cwnd;
4615 
4616 	if (is_system_labeled()) {
4617 		ip_xmit_attr_t *ixa = econnp->conn_ixa;
4618 
4619 		ASSERT(ira->ira_tsl != NULL);
4620 		/* Discard any old label */
4621 		if (ixa->ixa_free_flags & IXA_FREE_TSL) {
4622 			ASSERT(ixa->ixa_tsl != NULL);
4623 			label_rele(ixa->ixa_tsl);
4624 			ixa->ixa_free_flags &= ~IXA_FREE_TSL;
4625 			ixa->ixa_tsl = NULL;
4626 		}
4627 		if ((lconnp->conn_mlp_type != mlptSingle ||
4628 		    lconnp->conn_mac_mode != CONN_MAC_DEFAULT) &&
4629 		    ira->ira_tsl != NULL) {
4630 			/*
4631 			 * If this is an MLP connection or a MAC-Exempt
4632 			 * connection with an unlabeled node, packets are to be
4633 			 * exchanged using the security label of the received
4634 			 * SYN packet instead of the server application's label.
4635 			 * tsol_check_dest called from ip_set_destination
4636 			 * might later update TSF_UNLABELED by replacing
4637 			 * ixa_tsl with a new label.
4638 			 */
4639 			label_hold(ira->ira_tsl);
4640 			ip_xmit_attr_replace_tsl(ixa, ira->ira_tsl);
4641 			DTRACE_PROBE2(mlp_syn_accept, conn_t *,
4642 			    econnp, ts_label_t *, ixa->ixa_tsl)
4643 		} else {
4644 			ixa->ixa_tsl = crgetlabel(econnp->conn_cred);
4645 			DTRACE_PROBE2(syn_accept, conn_t *,
4646 			    econnp, ts_label_t *, ixa->ixa_tsl)
4647 		}
4648 		/*
4649 		 * conn_connect() called from tcp_set_destination will verify
4650 		 * the destination is allowed to receive packets at the
4651 		 * security label of the SYN-ACK we are generating. As part of
4652 		 * that, tsol_check_dest() may create a new effective label for
4653 		 * this connection.
4654 		 * Finally conn_connect() will call conn_update_label.
4655 		 * All that remains for TCP to do is to call
4656 		 * conn_build_hdr_template which is done as part of
4657 		 * tcp_set_destination.
4658 		 */
4659 	}
4660 
4661 	/*
4662 	 * Since we will clear tcp_listener before we clear tcp_detached
4663 	 * in the accept code we need tcp_hard_binding aka tcp_accept_inprogress
4664 	 * so we can tell a TCP_DETACHED_NONEAGER apart.
4665 	 */
4666 	eager->tcp_hard_binding = B_TRUE;
4667 
4668 	tcp_bind_hash_insert(&tcps->tcps_bind_fanout[
4669 	    TCP_BIND_HASH(econnp->conn_lport)], eager, 0);
4670 
4671 	CL_INET_CONNECT(econnp, B_FALSE, err);
4672 	if (err != 0) {
4673 		tcp_bind_hash_remove(eager);
4674 		goto error3;
4675 	}
4676 
4677 	/*
4678 	 * No need to check for multicast destination since ip will only pass
4679 	 * up multicasts to those that have expressed interest
4680 	 * TODO: what about rejecting broadcasts?
4681 	 * Also check that source is not a multicast or broadcast address.
4682 	 */
4683 	eager->tcp_state = TCPS_SYN_RCVD;
4684 	SOCK_CONNID_BUMP(eager->tcp_connid);
4685 
4686 	/*
4687 	 * Adapt our mss, ttl, ... based on the remote address.
4688 	 */
4689 
4690 	if (tcp_set_destination(eager) != 0) {
4691 		BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
4692 		/* Undo the bind_hash_insert */
4693 		tcp_bind_hash_remove(eager);
4694 		goto error3;
4695 	}
4696 
4697 	/* Process all TCP options. */
4698 	tcp_process_options(eager, tcpha);
4699 
4700 	/* Is the other end ECN capable? */
4701 	if (tcps->tcps_ecn_permitted >= 1 &&
4702 	    (tcpha->tha_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
4703 		eager->tcp_ecn_ok = B_TRUE;
4704 	}
4705 
4706 	/*
4707 	 * The listener's conn_rcvbuf should be the default window size or a
4708 	 * window size changed via SO_RCVBUF option. First round up the
4709 	 * eager's tcp_rwnd to the nearest MSS. Then find out the window
4710 	 * scale option value if needed. Call tcp_rwnd_set() to finish the
4711 	 * setting.
4712 	 *
4713 	 * Note if there is a rpipe metric associated with the remote host,
4714 	 * we should not inherit receive window size from listener.
4715 	 */
4716 	eager->tcp_rwnd = MSS_ROUNDUP(
4717 	    (eager->tcp_rwnd == 0 ? econnp->conn_rcvbuf :
4718 	    eager->tcp_rwnd), eager->tcp_mss);
4719 	if (eager->tcp_snd_ws_ok)
4720 		tcp_set_ws_value(eager);
4721 	/*
4722 	 * Note that this is the only place tcp_rwnd_set() is called for
4723 	 * accepting a connection.  We need to call it here instead of
4724 	 * after the 3-way handshake because we need to tell the other
4725 	 * side our rwnd in the SYN-ACK segment.
4726 	 */
4727 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
4728 
4729 	ASSERT(eager->tcp_connp->conn_rcvbuf != 0 &&
4730 	    eager->tcp_connp->conn_rcvbuf == eager->tcp_rwnd);
4731 
4732 	ASSERT(econnp->conn_rcvbuf != 0 &&
4733 	    econnp->conn_rcvbuf == eager->tcp_rwnd);
4734 
4735 	/* Put a ref on the listener for the eager. */
4736 	CONN_INC_REF(lconnp);
4737 	mutex_enter(&listener->tcp_eager_lock);
4738 	listener->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
4739 	eager->tcp_eager_next_q0 = listener->tcp_eager_next_q0;
4740 	listener->tcp_eager_next_q0 = eager;
4741 	eager->tcp_eager_prev_q0 = listener;
4742 
4743 	/* Set tcp_listener before adding it to tcp_conn_fanout */
4744 	eager->tcp_listener = listener;
4745 	eager->tcp_saved_listener = listener;
4746 
4747 	/*
4748 	 * Tag this detached tcp vector for later retrieval
4749 	 * by our listener client in tcp_accept().
4750 	 */
4751 	eager->tcp_conn_req_seqnum = listener->tcp_conn_req_seqnum;
4752 	listener->tcp_conn_req_cnt_q0++;
4753 	if (++listener->tcp_conn_req_seqnum == -1) {
4754 		/*
4755 		 * -1 is "special" and defined in TPI as something
4756 		 * that should never be used in T_CONN_IND
4757 		 */
4758 		++listener->tcp_conn_req_seqnum;
4759 	}
4760 	mutex_exit(&listener->tcp_eager_lock);
4761 
4762 	if (listener->tcp_syn_defense) {
4763 		/* Don't drop the SYN that comes from a good IP source */
4764 		ipaddr_t *addr_cache;
4765 
4766 		addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
4767 		if (addr_cache != NULL && econnp->conn_faddr_v4 ==
4768 		    addr_cache[IP_ADDR_CACHE_HASH(econnp->conn_faddr_v4)]) {
4769 			eager->tcp_dontdrop = B_TRUE;
4770 		}
4771 	}
4772 
4773 	/*
4774 	 * We need to insert the eager in its own perimeter but as soon
4775 	 * as we do that, we expose the eager to the classifier and
4776 	 * should not touch any field outside the eager's perimeter.
4777 	 * So do all the work necessary before inserting the eager
4778 	 * in its own perimeter. Be optimistic that conn_connect()
4779 	 * will succeed but undo everything if it fails.
4780 	 */
4781 	seg_seq = ntohl(tcpha->tha_seq);
4782 	eager->tcp_irs = seg_seq;
4783 	eager->tcp_rack = seg_seq;
4784 	eager->tcp_rnxt = seg_seq + 1;
4785 	eager->tcp_tcpha->tha_ack = htonl(eager->tcp_rnxt);
4786 	BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens);
4787 	eager->tcp_state = TCPS_SYN_RCVD;
4788 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
4789 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
4790 	if (mp1 == NULL) {
4791 		/*
4792 		 * Increment the ref count as we are going to
4793 		 * enqueueing an mp in squeue
4794 		 */
4795 		CONN_INC_REF(econnp);
4796 		goto error;
4797 	}
4798 
4799 	/*
4800 	 * We need to start the rto timer. In normal case, we start
4801 	 * the timer after sending the packet on the wire (or at
4802 	 * least believing that packet was sent by waiting for
4803 	 * conn_ip_output() to return). Since this is the first packet
4804 	 * being sent on the wire for the eager, our initial tcp_rto
4805 	 * is at least tcp_rexmit_interval_min which is a fairly
4806 	 * large value to allow the algorithm to adjust slowly to large
4807 	 * fluctuations of RTT during first few transmissions.
4808 	 *
4809 	 * Starting the timer first and then sending the packet in this
4810 	 * case shouldn't make much difference since tcp_rexmit_interval_min
4811 	 * is of the order of several 100ms and starting the timer
4812 	 * first and then sending the packet will result in difference
4813 	 * of few micro seconds.
4814 	 *
4815 	 * Without this optimization, we are forced to hold the fanout
4816 	 * lock across the ipcl_bind_insert() and sending the packet
4817 	 * so that we don't race against an incoming packet (maybe RST)
4818 	 * for this eager.
4819 	 *
4820 	 * It is necessary to acquire an extra reference on the eager
4821 	 * at this point and hold it until after tcp_send_data() to
4822 	 * ensure against an eager close race.
4823 	 */
4824 
4825 	CONN_INC_REF(econnp);
4826 
4827 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
4828 
4829 	/*
4830 	 * Insert the eager in its own perimeter now. We are ready to deal
4831 	 * with any packets on eager.
4832 	 */
4833 	if (ipcl_conn_insert(econnp) != 0)
4834 		goto error;
4835 
4836 	/*
4837 	 * Send the SYN-ACK. Can't use tcp_send_data since we can't update
4838 	 * pmtu etc; we are not on the eager's squeue
4839 	 */
4840 	ASSERT(econnp->conn_ixa->ixa_notify_cookie == econnp->conn_tcp);
4841 	(void) conn_ip_output(mp1, econnp->conn_ixa);
4842 	CONN_DEC_REF(econnp);
4843 	freemsg(mp);
4844 
4845 	return;
4846 error:
4847 	freemsg(mp1);
4848 	eager->tcp_closemp_used = B_TRUE;
4849 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
4850 	mp1 = &eager->tcp_closemp;
4851 	SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill,
4852 	    econnp, NULL, SQ_FILL, SQTAG_TCP_CONN_REQ_2);
4853 
4854 	/*
4855 	 * If a connection already exists, send the mp to that connections so
4856 	 * that it can be appropriately dealt with.
4857 	 */
4858 	ipst = tcps->tcps_netstack->netstack_ip;
4859 
4860 	if ((econnp = ipcl_classify(mp, ira, ipst)) != NULL) {
4861 		if (!IPCL_IS_CONNECTED(econnp)) {
4862 			/*
4863 			 * Something bad happened. ipcl_conn_insert()
4864 			 * failed because a connection already existed
4865 			 * in connected hash but we can't find it
4866 			 * anymore (someone blew it away). Just
4867 			 * free this message and hopefully remote
4868 			 * will retransmit at which time the SYN can be
4869 			 * treated as a new connection or dealth with
4870 			 * a TH_RST if a connection already exists.
4871 			 */
4872 			CONN_DEC_REF(econnp);
4873 			freemsg(mp);
4874 		} else {
4875 			SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, tcp_input_data,
4876 			    econnp, ira, SQ_FILL, SQTAG_TCP_CONN_REQ_1);
4877 		}
4878 	} else {
4879 		/* Nobody wants this packet */
4880 		freemsg(mp);
4881 	}
4882 	return;
4883 error3:
4884 	CONN_DEC_REF(econnp);
4885 error2:
4886 	freemsg(mp);
4887 }
4888 
4889 /*
4890  * In an ideal case of vertical partition in NUMA architecture, its
4891  * beneficial to have the listener and all the incoming connections
4892  * tied to the same squeue. The other constraint is that incoming
4893  * connections should be tied to the squeue attached to interrupted
4894  * CPU for obvious locality reason so this leaves the listener to
4895  * be tied to the same squeue. Our only problem is that when listener
4896  * is binding, the CPU that will get interrupted by the NIC whose
4897  * IP address the listener is binding to is not even known. So
4898  * the code below allows us to change that binding at the time the
4899  * CPU is interrupted by virtue of incoming connection's squeue.
4900  *
4901  * This is usefull only in case of a listener bound to a specific IP
4902  * address. For other kind of listeners, they get bound the
4903  * very first time and there is no attempt to rebind them.
4904  */
4905 void
4906 tcp_input_listener_unbound(void *arg, mblk_t *mp, void *arg2,
4907     ip_recv_attr_t *ira)
4908 {
4909 	conn_t		*connp = (conn_t *)arg;
4910 	squeue_t	*sqp = (squeue_t *)arg2;
4911 	squeue_t	*new_sqp;
4912 	uint32_t	conn_flags;
4913 
4914 	/*
4915 	 * IP sets ira_sqp to either the senders conn_sqp (for loopback)
4916 	 * or based on the ring (for packets from GLD). Otherwise it is
4917 	 * set based on lbolt i.e., a somewhat random number.
4918 	 */
4919 	ASSERT(ira->ira_sqp != NULL);
4920 	new_sqp = ira->ira_sqp;
4921 
4922 	if (connp->conn_fanout == NULL)
4923 		goto done;
4924 
4925 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
4926 		mutex_enter(&connp->conn_fanout->connf_lock);
4927 		mutex_enter(&connp->conn_lock);
4928 		/*
4929 		 * No one from read or write side can access us now
4930 		 * except for already queued packets on this squeue.
4931 		 * But since we haven't changed the squeue yet, they
4932 		 * can't execute. If they are processed after we have
4933 		 * changed the squeue, they are sent back to the
4934 		 * correct squeue down below.
4935 		 * But a listner close can race with processing of
4936 		 * incoming SYN. If incoming SYN processing changes
4937 		 * the squeue then the listener close which is waiting
4938 		 * to enter the squeue would operate on the wrong
4939 		 * squeue. Hence we don't change the squeue here unless
4940 		 * the refcount is exactly the minimum refcount. The
4941 		 * minimum refcount of 4 is counted as - 1 each for
4942 		 * TCP and IP, 1 for being in the classifier hash, and
4943 		 * 1 for the mblk being processed.
4944 		 */
4945 
4946 		if (connp->conn_ref != 4 ||
4947 		    connp->conn_tcp->tcp_state != TCPS_LISTEN) {
4948 			mutex_exit(&connp->conn_lock);
4949 			mutex_exit(&connp->conn_fanout->connf_lock);
4950 			goto done;
4951 		}
4952 		if (connp->conn_sqp != new_sqp) {
4953 			while (connp->conn_sqp != new_sqp)
4954 				(void) casptr(&connp->conn_sqp, sqp, new_sqp);
4955 			/* No special MT issues for outbound ixa_sqp hint */
4956 			connp->conn_ixa->ixa_sqp = new_sqp;
4957 		}
4958 
4959 		do {
4960 			conn_flags = connp->conn_flags;
4961 			conn_flags |= IPCL_FULLY_BOUND;
4962 			(void) cas32(&connp->conn_flags, connp->conn_flags,
4963 			    conn_flags);
4964 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
4965 
4966 		mutex_exit(&connp->conn_fanout->connf_lock);
4967 		mutex_exit(&connp->conn_lock);
4968 
4969 		/*
4970 		 * Assume we have picked a good squeue for the listener. Make
4971 		 * subsequent SYNs not try to change the squeue.
4972 		 */
4973 		connp->conn_recv = tcp_input_listener;
4974 	}
4975 
4976 done:
4977 	if (connp->conn_sqp != sqp) {
4978 		CONN_INC_REF(connp);
4979 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp,
4980 		    ira, SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND);
4981 	} else {
4982 		tcp_input_listener(connp, mp, sqp, ira);
4983 	}
4984 }
4985 
4986 /*
4987  * Successful connect request processing begins when our client passes
4988  * a T_CONN_REQ message into tcp_wput(), which performs function calls into
4989  * IP and the passes a T_OK_ACK (or T_ERROR_ACK upstream).
4990  *
4991  * After various error checks are completed, tcp_tpi_connect() lays
4992  * the target address and port into the composite header template.
4993  * Then we ask IP for information, including a source address if we didn't
4994  * already have one. Finally we prepare to send the SYN packet, and then
4995  * send up the T_OK_ACK reply message.
4996  */
4997 static void
4998 tcp_tpi_connect(tcp_t *tcp, mblk_t *mp)
4999 {
5000 	sin_t		*sin;
5001 	struct T_conn_req	*tcr;
5002 	struct sockaddr	*sa;
5003 	socklen_t	len;
5004 	int		error;
5005 	cred_t		*cr;
5006 	pid_t		cpid;
5007 	conn_t		*connp = tcp->tcp_connp;
5008 	queue_t		*q = connp->conn_wq;
5009 
5010 	/*
5011 	 * All Solaris components should pass a db_credp
5012 	 * for this TPI message, hence we ASSERT.
5013 	 * But in case there is some other M_PROTO that looks
5014 	 * like a TPI message sent by some other kernel
5015 	 * component, we check and return an error.
5016 	 */
5017 	cr = msg_getcred(mp, &cpid);
5018 	ASSERT(cr != NULL);
5019 	if (cr == NULL) {
5020 		tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
5021 		return;
5022 	}
5023 
5024 	tcr = (struct T_conn_req *)mp->b_rptr;
5025 
5026 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
5027 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
5028 		tcp_err_ack(tcp, mp, TPROTO, 0);
5029 		return;
5030 	}
5031 
5032 	/*
5033 	 * Pre-allocate the T_ordrel_ind mblk so that at close time, we
5034 	 * will always have that to send up.  Otherwise, we need to do
5035 	 * special handling in case the allocation fails at that time.
5036 	 * If the end point is TPI, the tcp_t can be reused and the
5037 	 * tcp_ordrel_mp may be allocated already.
5038 	 */
5039 	if (tcp->tcp_ordrel_mp == NULL) {
5040 		if ((tcp->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) {
5041 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
5042 			return;
5043 		}
5044 	}
5045 
5046 	/*
5047 	 * Determine packet type based on type of address passed in
5048 	 * the request should contain an IPv4 or IPv6 address.
5049 	 * Make sure that address family matches the type of
5050 	 * family of the address passed down.
5051 	 */
5052 	switch (tcr->DEST_length) {
5053 	default:
5054 		tcp_err_ack(tcp, mp, TBADADDR, 0);
5055 		return;
5056 
5057 	case (sizeof (sin_t) - sizeof (sin->sin_zero)): {
5058 		/*
5059 		 * XXX: The check for valid DEST_length was not there
5060 		 * in earlier releases and some buggy
5061 		 * TLI apps (e.g Sybase) got away with not feeding
5062 		 * in sin_zero part of address.
5063 		 * We allow that bug to keep those buggy apps humming.
5064 		 * Test suites require the check on DEST_length.
5065 		 * We construct a new mblk with valid DEST_length
5066 		 * free the original so the rest of the code does
5067 		 * not have to keep track of this special shorter
5068 		 * length address case.
5069 		 */
5070 		mblk_t *nmp;
5071 		struct T_conn_req *ntcr;
5072 		sin_t *nsin;
5073 
5074 		nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) +
5075 		    tcr->OPT_length, BPRI_HI);
5076 		if (nmp == NULL) {
5077 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
5078 			return;
5079 		}
5080 		ntcr = (struct T_conn_req *)nmp->b_rptr;
5081 		bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */
5082 		ntcr->PRIM_type = T_CONN_REQ;
5083 		ntcr->DEST_length = sizeof (sin_t);
5084 		ntcr->DEST_offset = sizeof (struct T_conn_req);
5085 
5086 		nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset);
5087 		*nsin = sin_null;
5088 		/* Get pointer to shorter address to copy from original mp */
5089 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
5090 		    tcr->DEST_length); /* extract DEST_length worth of sin_t */
5091 		if (sin == NULL || !OK_32PTR((char *)sin)) {
5092 			freemsg(nmp);
5093 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
5094 			return;
5095 		}
5096 		nsin->sin_family = sin->sin_family;
5097 		nsin->sin_port = sin->sin_port;
5098 		nsin->sin_addr = sin->sin_addr;
5099 		/* Note:nsin->sin_zero zero-fill with sin_null assign above */
5100 		nmp->b_wptr = (uchar_t *)&nsin[1];
5101 		if (tcr->OPT_length != 0) {
5102 			ntcr->OPT_length = tcr->OPT_length;
5103 			ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr;
5104 			bcopy((uchar_t *)tcr + tcr->OPT_offset,
5105 			    (uchar_t *)ntcr + ntcr->OPT_offset,
5106 			    tcr->OPT_length);
5107 			nmp->b_wptr += tcr->OPT_length;
5108 		}
5109 		freemsg(mp);	/* original mp freed */
5110 		mp = nmp;	/* re-initialize original variables */
5111 		tcr = ntcr;
5112 	}
5113 	/* FALLTHRU */
5114 
5115 	case sizeof (sin_t):
5116 		sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset,
5117 		    sizeof (sin_t));
5118 		len = sizeof (sin_t);
5119 		break;
5120 
5121 	case sizeof (sin6_t):
5122 		sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset,
5123 		    sizeof (sin6_t));
5124 		len = sizeof (sin6_t);
5125 		break;
5126 	}
5127 
5128 	error = proto_verify_ip_addr(connp->conn_family, sa, len);
5129 	if (error != 0) {
5130 		tcp_err_ack(tcp, mp, TSYSERR, error);
5131 		return;
5132 	}
5133 
5134 	/*
5135 	 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we
5136 	 * should key on their sequence number and cut them loose.
5137 	 */
5138 
5139 	/*
5140 	 * If options passed in, feed it for verification and handling
5141 	 */
5142 	if (tcr->OPT_length != 0) {
5143 		mblk_t	*ok_mp;
5144 		mblk_t	*discon_mp;
5145 		mblk_t  *conn_opts_mp;
5146 		int t_error, sys_error, do_disconnect;
5147 
5148 		conn_opts_mp = NULL;
5149 
5150 		if (tcp_conprim_opt_process(tcp, mp,
5151 		    &do_disconnect, &t_error, &sys_error) < 0) {
5152 			if (do_disconnect) {
5153 				ASSERT(t_error == 0 && sys_error == 0);
5154 				discon_mp = mi_tpi_discon_ind(NULL,
5155 				    ECONNREFUSED, 0);
5156 				if (!discon_mp) {
5157 					tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
5158 					    TSYSERR, ENOMEM);
5159 					return;
5160 				}
5161 				ok_mp = mi_tpi_ok_ack_alloc(mp);
5162 				if (!ok_mp) {
5163 					tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
5164 					    TSYSERR, ENOMEM);
5165 					return;
5166 				}
5167 				qreply(q, ok_mp);
5168 				qreply(q, discon_mp); /* no flush! */
5169 			} else {
5170 				ASSERT(t_error != 0);
5171 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error,
5172 				    sys_error);
5173 			}
5174 			return;
5175 		}
5176 		/*
5177 		 * Success in setting options, the mp option buffer represented
5178 		 * by OPT_length/offset has been potentially modified and
5179 		 * contains results of option processing. We copy it in
5180 		 * another mp to save it for potentially influencing returning
5181 		 * it in T_CONN_CONN.
5182 		 */
5183 		if (tcr->OPT_length != 0) { /* there are resulting options */
5184 			conn_opts_mp = copyb(mp);
5185 			if (!conn_opts_mp) {
5186 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
5187 				    TSYSERR, ENOMEM);
5188 				return;
5189 			}
5190 			ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL);
5191 			tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp;
5192 			/*
5193 			 * Note:
5194 			 * These resulting option negotiation can include any
5195 			 * end-to-end negotiation options but there no such
5196 			 * thing (yet?) in our TCP/IP.
5197 			 */
5198 		}
5199 	}
5200 
5201 	/* call the non-TPI version */
5202 	error = tcp_do_connect(tcp->tcp_connp, sa, len, cr, cpid);
5203 	if (error < 0) {
5204 		mp = mi_tpi_err_ack_alloc(mp, -error, 0);
5205 	} else if (error > 0) {
5206 		mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error);
5207 	} else {
5208 		mp = mi_tpi_ok_ack_alloc(mp);
5209 	}
5210 
5211 	/*
5212 	 * Note: Code below is the "failure" case
5213 	 */
5214 	/* return error ack and blow away saved option results if any */
5215 connect_failed:
5216 	if (mp != NULL)
5217 		putnext(connp->conn_rq, mp);
5218 	else {
5219 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
5220 		    TSYSERR, ENOMEM);
5221 	}
5222 }
5223 
5224 /*
5225  * Handle connect to IPv4 destinations, including connections for AF_INET6
5226  * sockets connecting to IPv4 mapped IPv6 destinations.
5227  * Returns zero if OK, a positive errno, or a negative TLI error.
5228  */
5229 static int
5230 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport,
5231     uint_t srcid)
5232 {
5233 	ipaddr_t 	dstaddr = *dstaddrp;
5234 	uint16_t 	lport;
5235 	conn_t		*connp = tcp->tcp_connp;
5236 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5237 	int		error;
5238 
5239 	ASSERT(connp->conn_ipversion == IPV4_VERSION);
5240 
5241 	/* Check for attempt to connect to INADDR_ANY */
5242 	if (dstaddr == INADDR_ANY)  {
5243 		/*
5244 		 * SunOS 4.x and 4.3 BSD allow an application
5245 		 * to connect a TCP socket to INADDR_ANY.
5246 		 * When they do this, the kernel picks the
5247 		 * address of one interface and uses it
5248 		 * instead.  The kernel usually ends up
5249 		 * picking the address of the loopback
5250 		 * interface.  This is an undocumented feature.
5251 		 * However, we provide the same thing here
5252 		 * in order to have source and binary
5253 		 * compatibility with SunOS 4.x.
5254 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
5255 		 * generate the T_CONN_CON.
5256 		 */
5257 		dstaddr = htonl(INADDR_LOOPBACK);
5258 		*dstaddrp = dstaddr;
5259 	}
5260 
5261 	/* Handle __sin6_src_id if socket not bound to an IP address */
5262 	if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) {
5263 		ip_srcid_find_id(srcid, &connp->conn_laddr_v6,
5264 		    IPCL_ZONEID(connp), tcps->tcps_netstack);
5265 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
5266 	}
5267 
5268 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6);
5269 	connp->conn_fport = dstport;
5270 
5271 	/*
5272 	 * At this point the remote destination address and remote port fields
5273 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
5274 	 * have to see which state tcp was in so we can take appropriate action.
5275 	 */
5276 	if (tcp->tcp_state == TCPS_IDLE) {
5277 		/*
5278 		 * We support a quick connect capability here, allowing
5279 		 * clients to transition directly from IDLE to SYN_SENT
5280 		 * tcp_bindi will pick an unused port, insert the connection
5281 		 * in the bind hash and transition to BOUND state.
5282 		 */
5283 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
5284 		    tcp, B_TRUE);
5285 		lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE,
5286 		    B_FALSE, B_FALSE);
5287 		if (lport == 0)
5288 			return (-TNOADDR);
5289 	}
5290 
5291 	/*
5292 	 * Lookup the route to determine a source address and the uinfo.
5293 	 * Setup TCP parameters based on the metrics/DCE.
5294 	 */
5295 	error = tcp_set_destination(tcp);
5296 	if (error != 0)
5297 		return (error);
5298 
5299 	/*
5300 	 * Don't let an endpoint connect to itself.
5301 	 */
5302 	if (connp->conn_faddr_v4 == connp->conn_laddr_v4 &&
5303 	    connp->conn_fport == connp->conn_lport)
5304 		return (-TBADADDR);
5305 
5306 	tcp->tcp_state = TCPS_SYN_SENT;
5307 
5308 	return (ipcl_conn_insert_v4(connp));
5309 }
5310 
5311 /*
5312  * Handle connect to IPv6 destinations.
5313  * Returns zero if OK, a positive errno, or a negative TLI error.
5314  */
5315 static int
5316 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport,
5317     uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
5318 {
5319 	uint16_t 	lport;
5320 	conn_t		*connp = tcp->tcp_connp;
5321 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5322 	int		error;
5323 
5324 	ASSERT(connp->conn_family == AF_INET6);
5325 
5326 	/*
5327 	 * If we're here, it means that the destination address is a native
5328 	 * IPv6 address.  Return an error if conn_ipversion is not IPv6.  A
5329 	 * reason why it might not be IPv6 is if the socket was bound to an
5330 	 * IPv4-mapped IPv6 address.
5331 	 */
5332 	if (connp->conn_ipversion != IPV6_VERSION)
5333 		return (-TBADADDR);
5334 
5335 	/*
5336 	 * Interpret a zero destination to mean loopback.
5337 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
5338 	 * generate the T_CONN_CON.
5339 	 */
5340 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp))
5341 		*dstaddrp = ipv6_loopback;
5342 
5343 	/* Handle __sin6_src_id if socket not bound to an IP address */
5344 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) {
5345 		ip_srcid_find_id(srcid, &connp->conn_laddr_v6,
5346 		    IPCL_ZONEID(connp), tcps->tcps_netstack);
5347 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
5348 	}
5349 
5350 	/*
5351 	 * Take care of the scope_id now.
5352 	 */
5353 	if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
5354 		connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET;
5355 		connp->conn_ixa->ixa_scopeid = scope_id;
5356 	} else {
5357 		connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET;
5358 	}
5359 
5360 	connp->conn_flowinfo = flowinfo;
5361 	connp->conn_faddr_v6 = *dstaddrp;
5362 	connp->conn_fport = dstport;
5363 
5364 	/*
5365 	 * At this point the remote destination address and remote port fields
5366 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
5367 	 * have to see which state tcp was in so we can take appropriate action.
5368 	 */
5369 	if (tcp->tcp_state == TCPS_IDLE) {
5370 		/*
5371 		 * We support a quick connect capability here, allowing
5372 		 * clients to transition directly from IDLE to SYN_SENT
5373 		 * tcp_bindi will pick an unused port, insert the connection
5374 		 * in the bind hash and transition to BOUND state.
5375 		 */
5376 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
5377 		    tcp, B_TRUE);
5378 		lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE,
5379 		    B_FALSE, B_FALSE);
5380 		if (lport == 0)
5381 			return (-TNOADDR);
5382 	}
5383 
5384 	/*
5385 	 * Lookup the route to determine a source address and the uinfo.
5386 	 * Setup TCP parameters based on the metrics/DCE.
5387 	 */
5388 	error = tcp_set_destination(tcp);
5389 	if (error != 0)
5390 		return (error);
5391 
5392 	/*
5393 	 * Don't let an endpoint connect to itself.
5394 	 */
5395 	if (IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &connp->conn_laddr_v6) &&
5396 	    connp->conn_fport == connp->conn_lport)
5397 		return (-TBADADDR);
5398 
5399 	tcp->tcp_state = TCPS_SYN_SENT;
5400 
5401 	return (ipcl_conn_insert_v6(connp));
5402 }
5403 
5404 /*
5405  * Disconnect
5406  * Note that unlike other functions this returns a positive tli error
5407  * when it fails; it never returns an errno.
5408  */
5409 static int
5410 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum)
5411 {
5412 	conn_t		*lconnp;
5413 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5414 	conn_t		*connp = tcp->tcp_connp;
5415 
5416 	/*
5417 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
5418 	 * when the stream is in BOUND state. Do not send a reset,
5419 	 * since the destination IP address is not valid, and it can
5420 	 * be the initialized value of all zeros (broadcast address).
5421 	 */
5422 	if (tcp->tcp_state <= TCPS_BOUND) {
5423 		if (connp->conn_debug) {
5424 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
5425 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
5426 		}
5427 		return (TOUTSTATE);
5428 	}
5429 
5430 
5431 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
5432 
5433 		/*
5434 		 * According to TPI, for non-listeners, ignore seqnum
5435 		 * and disconnect.
5436 		 * Following interpretation of -1 seqnum is historical
5437 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
5438 		 * a valid seqnum should not be -1).
5439 		 *
5440 		 *	-1 means disconnect everything
5441 		 *	regardless even on a listener.
5442 		 */
5443 
5444 		int old_state = tcp->tcp_state;
5445 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
5446 
5447 		/*
5448 		 * The connection can't be on the tcp_time_wait_head list
5449 		 * since it is not detached.
5450 		 */
5451 		ASSERT(tcp->tcp_time_wait_next == NULL);
5452 		ASSERT(tcp->tcp_time_wait_prev == NULL);
5453 		ASSERT(tcp->tcp_time_wait_expire == 0);
5454 		/*
5455 		 * If it used to be a listener, check to make sure no one else
5456 		 * has taken the port before switching back to LISTEN state.
5457 		 */
5458 		if (connp->conn_ipversion == IPV4_VERSION) {
5459 			lconnp = ipcl_lookup_listener_v4(connp->conn_lport,
5460 			    connp->conn_laddr_v4, IPCL_ZONEID(connp), ipst);
5461 		} else {
5462 			uint_t ifindex = 0;
5463 
5464 			if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)
5465 				ifindex = connp->conn_ixa->ixa_scopeid;
5466 
5467 			/* Allow conn_bound_if listeners? */
5468 			lconnp = ipcl_lookup_listener_v6(connp->conn_lport,
5469 			    &connp->conn_laddr_v6, ifindex, IPCL_ZONEID(connp),
5470 			    ipst);
5471 		}
5472 		if (tcp->tcp_conn_req_max && lconnp == NULL) {
5473 			tcp->tcp_state = TCPS_LISTEN;
5474 		} else if (old_state > TCPS_BOUND) {
5475 			tcp->tcp_conn_req_max = 0;
5476 			tcp->tcp_state = TCPS_BOUND;
5477 		}
5478 		if (lconnp != NULL)
5479 			CONN_DEC_REF(lconnp);
5480 		if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) {
5481 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
5482 		} else if (old_state == TCPS_ESTABLISHED ||
5483 		    old_state == TCPS_CLOSE_WAIT) {
5484 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
5485 		}
5486 
5487 		if (tcp->tcp_fused)
5488 			tcp_unfuse(tcp);
5489 
5490 		mutex_enter(&tcp->tcp_eager_lock);
5491 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
5492 		    (tcp->tcp_conn_req_cnt_q != 0)) {
5493 			tcp_eager_cleanup(tcp, 0);
5494 		}
5495 		mutex_exit(&tcp->tcp_eager_lock);
5496 
5497 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
5498 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
5499 
5500 		tcp_reinit(tcp);
5501 
5502 		return (0);
5503 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
5504 		return (TBADSEQ);
5505 	}
5506 	return (0);
5507 }
5508 
5509 /*
5510  * Our client hereby directs us to reject the connection request
5511  * that tcp_input_listener() marked with 'seqnum'.  Rejection consists
5512  * of sending the appropriate RST, not an ICMP error.
5513  */
5514 static void
5515 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
5516 {
5517 	t_scalar_t seqnum;
5518 	int	error;
5519 	conn_t	*connp = tcp->tcp_connp;
5520 
5521 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
5522 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
5523 		tcp_err_ack(tcp, mp, TPROTO, 0);
5524 		return;
5525 	}
5526 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
5527 	error = tcp_disconnect_common(tcp, seqnum);
5528 	if (error != 0)
5529 		tcp_err_ack(tcp, mp, error, 0);
5530 	else {
5531 		if (tcp->tcp_state >= TCPS_ESTABLISHED) {
5532 			/* Send M_FLUSH according to TPI */
5533 			(void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW);
5534 		}
5535 		mp = mi_tpi_ok_ack_alloc(mp);
5536 		if (mp != NULL)
5537 			putnext(connp->conn_rq, mp);
5538 	}
5539 }
5540 
5541 /*
5542  * Diagnostic routine used to return a string associated with the tcp state.
5543  * Note that if the caller does not supply a buffer, it will use an internal
5544  * static string.  This means that if multiple threads call this function at
5545  * the same time, output can be corrupted...  Note also that this function
5546  * does not check the size of the supplied buffer.  The caller has to make
5547  * sure that it is big enough.
5548  */
5549 static char *
5550 tcp_display(tcp_t *tcp, char *sup_buf, char format)
5551 {
5552 	char		buf1[30];
5553 	static char	priv_buf[INET6_ADDRSTRLEN * 2 + 80];
5554 	char		*buf;
5555 	char		*cp;
5556 	in6_addr_t	local, remote;
5557 	char		local_addrbuf[INET6_ADDRSTRLEN];
5558 	char		remote_addrbuf[INET6_ADDRSTRLEN];
5559 	conn_t		*connp;
5560 
5561 	if (sup_buf != NULL)
5562 		buf = sup_buf;
5563 	else
5564 		buf = priv_buf;
5565 
5566 	if (tcp == NULL)
5567 		return ("NULL_TCP");
5568 
5569 	connp = tcp->tcp_connp;
5570 	switch (tcp->tcp_state) {
5571 	case TCPS_CLOSED:
5572 		cp = "TCP_CLOSED";
5573 		break;
5574 	case TCPS_IDLE:
5575 		cp = "TCP_IDLE";
5576 		break;
5577 	case TCPS_BOUND:
5578 		cp = "TCP_BOUND";
5579 		break;
5580 	case TCPS_LISTEN:
5581 		cp = "TCP_LISTEN";
5582 		break;
5583 	case TCPS_SYN_SENT:
5584 		cp = "TCP_SYN_SENT";
5585 		break;
5586 	case TCPS_SYN_RCVD:
5587 		cp = "TCP_SYN_RCVD";
5588 		break;
5589 	case TCPS_ESTABLISHED:
5590 		cp = "TCP_ESTABLISHED";
5591 		break;
5592 	case TCPS_CLOSE_WAIT:
5593 		cp = "TCP_CLOSE_WAIT";
5594 		break;
5595 	case TCPS_FIN_WAIT_1:
5596 		cp = "TCP_FIN_WAIT_1";
5597 		break;
5598 	case TCPS_CLOSING:
5599 		cp = "TCP_CLOSING";
5600 		break;
5601 	case TCPS_LAST_ACK:
5602 		cp = "TCP_LAST_ACK";
5603 		break;
5604 	case TCPS_FIN_WAIT_2:
5605 		cp = "TCP_FIN_WAIT_2";
5606 		break;
5607 	case TCPS_TIME_WAIT:
5608 		cp = "TCP_TIME_WAIT";
5609 		break;
5610 	default:
5611 		(void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state);
5612 		cp = buf1;
5613 		break;
5614 	}
5615 	switch (format) {
5616 	case DISP_ADDR_AND_PORT:
5617 		if (connp->conn_ipversion == IPV4_VERSION) {
5618 			/*
5619 			 * Note that we use the remote address in the tcp_b
5620 			 * structure.  This means that it will print out
5621 			 * the real destination address, not the next hop's
5622 			 * address if source routing is used.
5623 			 */
5624 			IN6_IPADDR_TO_V4MAPPED(connp->conn_laddr_v4, &local);
5625 			IN6_IPADDR_TO_V4MAPPED(connp->conn_faddr_v4, &remote);
5626 
5627 		} else {
5628 			local = connp->conn_laddr_v6;
5629 			remote = connp->conn_faddr_v6;
5630 		}
5631 		(void) inet_ntop(AF_INET6, &local, local_addrbuf,
5632 		    sizeof (local_addrbuf));
5633 		(void) inet_ntop(AF_INET6, &remote, remote_addrbuf,
5634 		    sizeof (remote_addrbuf));
5635 		(void) mi_sprintf(buf, "[%s.%u, %s.%u] %s",
5636 		    local_addrbuf, ntohs(connp->conn_lport), remote_addrbuf,
5637 		    ntohs(connp->conn_fport), cp);
5638 		break;
5639 	case DISP_PORT_ONLY:
5640 	default:
5641 		(void) mi_sprintf(buf, "[%u, %u] %s",
5642 		    ntohs(connp->conn_lport), ntohs(connp->conn_fport), cp);
5643 		break;
5644 	}
5645 
5646 	return (buf);
5647 }
5648 
5649 /*
5650  * Called via squeue to get on to eager's perimeter. It sends a
5651  * TH_RST if eager is in the fanout table. The listener wants the
5652  * eager to disappear either by means of tcp_eager_blowoff() or
5653  * tcp_eager_cleanup() being called. tcp_eager_kill() can also be
5654  * called (via squeue) if the eager cannot be inserted in the
5655  * fanout table in tcp_input_listener().
5656  */
5657 /* ARGSUSED */
5658 void
5659 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
5660 {
5661 	conn_t	*econnp = (conn_t *)arg;
5662 	tcp_t	*eager = econnp->conn_tcp;
5663 	tcp_t	*listener = eager->tcp_listener;
5664 
5665 	/*
5666 	 * We could be called because listener is closing. Since
5667 	 * the eager was using listener's queue's, we avoid
5668 	 * using the listeners queues from now on.
5669 	 */
5670 	ASSERT(eager->tcp_detached);
5671 	econnp->conn_rq = NULL;
5672 	econnp->conn_wq = NULL;
5673 
5674 	/*
5675 	 * An eager's conn_fanout will be NULL if it's a duplicate
5676 	 * for an existing 4-tuples in the conn fanout table.
5677 	 * We don't want to send an RST out in such case.
5678 	 */
5679 	if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) {
5680 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
5681 		    eager, eager->tcp_snxt, 0, TH_RST);
5682 	}
5683 
5684 	/* We are here because listener wants this eager gone */
5685 	if (listener != NULL) {
5686 		mutex_enter(&listener->tcp_eager_lock);
5687 		tcp_eager_unlink(eager);
5688 		if (eager->tcp_tconnind_started) {
5689 			/*
5690 			 * The eager has sent a conn_ind up to the
5691 			 * listener but listener decides to close
5692 			 * instead. We need to drop the extra ref
5693 			 * placed on eager in tcp_input_data() before
5694 			 * sending the conn_ind to listener.
5695 			 */
5696 			CONN_DEC_REF(econnp);
5697 		}
5698 		mutex_exit(&listener->tcp_eager_lock);
5699 		CONN_DEC_REF(listener->tcp_connp);
5700 	}
5701 
5702 	if (eager->tcp_state != TCPS_CLOSED)
5703 		tcp_close_detached(eager);
5704 }
5705 
5706 /*
5707  * Reset any eager connection hanging off this listener marked
5708  * with 'seqnum' and then reclaim it's resources.
5709  */
5710 static boolean_t
5711 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
5712 {
5713 	tcp_t	*eager;
5714 	mblk_t 	*mp;
5715 	tcp_stack_t	*tcps = listener->tcp_tcps;
5716 
5717 	TCP_STAT(tcps, tcp_eager_blowoff_calls);
5718 	eager = listener;
5719 	mutex_enter(&listener->tcp_eager_lock);
5720 	do {
5721 		eager = eager->tcp_eager_next_q;
5722 		if (eager == NULL) {
5723 			mutex_exit(&listener->tcp_eager_lock);
5724 			return (B_FALSE);
5725 		}
5726 	} while (eager->tcp_conn_req_seqnum != seqnum);
5727 
5728 	if (eager->tcp_closemp_used) {
5729 		mutex_exit(&listener->tcp_eager_lock);
5730 		return (B_TRUE);
5731 	}
5732 	eager->tcp_closemp_used = B_TRUE;
5733 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
5734 	CONN_INC_REF(eager->tcp_connp);
5735 	mutex_exit(&listener->tcp_eager_lock);
5736 	mp = &eager->tcp_closemp;
5737 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
5738 	    eager->tcp_connp, NULL, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF);
5739 	return (B_TRUE);
5740 }
5741 
5742 /*
5743  * Reset any eager connection hanging off this listener
5744  * and then reclaim it's resources.
5745  */
5746 static void
5747 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
5748 {
5749 	tcp_t	*eager;
5750 	mblk_t	*mp;
5751 	tcp_stack_t	*tcps = listener->tcp_tcps;
5752 
5753 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
5754 
5755 	if (!q0_only) {
5756 		/* First cleanup q */
5757 		TCP_STAT(tcps, tcp_eager_blowoff_q);
5758 		eager = listener->tcp_eager_next_q;
5759 		while (eager != NULL) {
5760 			if (!eager->tcp_closemp_used) {
5761 				eager->tcp_closemp_used = B_TRUE;
5762 				TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
5763 				CONN_INC_REF(eager->tcp_connp);
5764 				mp = &eager->tcp_closemp;
5765 				SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
5766 				    tcp_eager_kill, eager->tcp_connp, NULL,
5767 				    SQ_FILL, SQTAG_TCP_EAGER_CLEANUP);
5768 			}
5769 			eager = eager->tcp_eager_next_q;
5770 		}
5771 	}
5772 	/* Then cleanup q0 */
5773 	TCP_STAT(tcps, tcp_eager_blowoff_q0);
5774 	eager = listener->tcp_eager_next_q0;
5775 	while (eager != listener) {
5776 		if (!eager->tcp_closemp_used) {
5777 			eager->tcp_closemp_used = B_TRUE;
5778 			TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
5779 			CONN_INC_REF(eager->tcp_connp);
5780 			mp = &eager->tcp_closemp;
5781 			SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
5782 			    tcp_eager_kill, eager->tcp_connp, NULL, SQ_FILL,
5783 			    SQTAG_TCP_EAGER_CLEANUP_Q0);
5784 		}
5785 		eager = eager->tcp_eager_next_q0;
5786 	}
5787 }
5788 
5789 /*
5790  * If we are an eager connection hanging off a listener that hasn't
5791  * formally accepted the connection yet, get off his list and blow off
5792  * any data that we have accumulated.
5793  */
5794 static void
5795 tcp_eager_unlink(tcp_t *tcp)
5796 {
5797 	tcp_t	*listener = tcp->tcp_listener;
5798 
5799 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
5800 	ASSERT(listener != NULL);
5801 	if (tcp->tcp_eager_next_q0 != NULL) {
5802 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
5803 
5804 		/* Remove the eager tcp from q0 */
5805 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
5806 		    tcp->tcp_eager_prev_q0;
5807 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
5808 		    tcp->tcp_eager_next_q0;
5809 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
5810 		listener->tcp_conn_req_cnt_q0--;
5811 
5812 		tcp->tcp_eager_next_q0 = NULL;
5813 		tcp->tcp_eager_prev_q0 = NULL;
5814 
5815 		/*
5816 		 * Take the eager out, if it is in the list of droppable
5817 		 * eagers.
5818 		 */
5819 		MAKE_UNDROPPABLE(tcp);
5820 
5821 		if (tcp->tcp_syn_rcvd_timeout != 0) {
5822 			/* we have timed out before */
5823 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
5824 			listener->tcp_syn_rcvd_timeout--;
5825 		}
5826 	} else {
5827 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
5828 		tcp_t	*prev = NULL;
5829 
5830 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
5831 			if (tcpp[0] == tcp) {
5832 				if (listener->tcp_eager_last_q == tcp) {
5833 					/*
5834 					 * If we are unlinking the last
5835 					 * element on the list, adjust
5836 					 * tail pointer. Set tail pointer
5837 					 * to nil when list is empty.
5838 					 */
5839 					ASSERT(tcp->tcp_eager_next_q == NULL);
5840 					if (listener->tcp_eager_last_q ==
5841 					    listener->tcp_eager_next_q) {
5842 						listener->tcp_eager_last_q =
5843 						    NULL;
5844 					} else {
5845 						/*
5846 						 * We won't get here if there
5847 						 * is only one eager in the
5848 						 * list.
5849 						 */
5850 						ASSERT(prev != NULL);
5851 						listener->tcp_eager_last_q =
5852 						    prev;
5853 					}
5854 				}
5855 				tcpp[0] = tcp->tcp_eager_next_q;
5856 				tcp->tcp_eager_next_q = NULL;
5857 				tcp->tcp_eager_last_q = NULL;
5858 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
5859 				listener->tcp_conn_req_cnt_q--;
5860 				break;
5861 			}
5862 			prev = tcpp[0];
5863 		}
5864 	}
5865 	tcp->tcp_listener = NULL;
5866 }
5867 
5868 /* Shorthand to generate and send TPI error acks to our client */
5869 static void
5870 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error)
5871 {
5872 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
5873 		putnext(tcp->tcp_connp->conn_rq, mp);
5874 }
5875 
5876 /* Shorthand to generate and send TPI error acks to our client */
5877 static void
5878 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
5879     int t_error, int sys_error)
5880 {
5881 	struct T_error_ack	*teackp;
5882 
5883 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
5884 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
5885 		teackp = (struct T_error_ack *)mp->b_rptr;
5886 		teackp->ERROR_prim = primitive;
5887 		teackp->TLI_error = t_error;
5888 		teackp->UNIX_error = sys_error;
5889 		putnext(tcp->tcp_connp->conn_rq, mp);
5890 	}
5891 }
5892 
5893 /*
5894  * Note: No locks are held when inspecting tcp_g_*epriv_ports
5895  * but instead the code relies on:
5896  * - the fact that the address of the array and its size never changes
5897  * - the atomic assignment of the elements of the array
5898  */
5899 /* ARGSUSED */
5900 static int
5901 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
5902 {
5903 	int i;
5904 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
5905 
5906 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
5907 		if (tcps->tcps_g_epriv_ports[i] != 0)
5908 			(void) mi_mpprintf(mp, "%d ",
5909 			    tcps->tcps_g_epriv_ports[i]);
5910 	}
5911 	return (0);
5912 }
5913 
5914 /*
5915  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
5916  * threads from changing it at the same time.
5917  */
5918 /* ARGSUSED */
5919 static int
5920 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
5921     cred_t *cr)
5922 {
5923 	long	new_value;
5924 	int	i;
5925 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
5926 
5927 	/*
5928 	 * Fail the request if the new value does not lie within the
5929 	 * port number limits.
5930 	 */
5931 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
5932 	    new_value <= 0 || new_value >= 65536) {
5933 		return (EINVAL);
5934 	}
5935 
5936 	mutex_enter(&tcps->tcps_epriv_port_lock);
5937 	/* Check if the value is already in the list */
5938 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
5939 		if (new_value == tcps->tcps_g_epriv_ports[i]) {
5940 			mutex_exit(&tcps->tcps_epriv_port_lock);
5941 			return (EEXIST);
5942 		}
5943 	}
5944 	/* Find an empty slot */
5945 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
5946 		if (tcps->tcps_g_epriv_ports[i] == 0)
5947 			break;
5948 	}
5949 	if (i == tcps->tcps_g_num_epriv_ports) {
5950 		mutex_exit(&tcps->tcps_epriv_port_lock);
5951 		return (EOVERFLOW);
5952 	}
5953 	/* Set the new value */
5954 	tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value;
5955 	mutex_exit(&tcps->tcps_epriv_port_lock);
5956 	return (0);
5957 }
5958 
5959 /*
5960  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
5961  * threads from changing it at the same time.
5962  */
5963 /* ARGSUSED */
5964 static int
5965 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
5966     cred_t *cr)
5967 {
5968 	long	new_value;
5969 	int	i;
5970 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
5971 
5972 	/*
5973 	 * Fail the request if the new value does not lie within the
5974 	 * port number limits.
5975 	 */
5976 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 ||
5977 	    new_value >= 65536) {
5978 		return (EINVAL);
5979 	}
5980 
5981 	mutex_enter(&tcps->tcps_epriv_port_lock);
5982 	/* Check that the value is already in the list */
5983 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
5984 		if (tcps->tcps_g_epriv_ports[i] == new_value)
5985 			break;
5986 	}
5987 	if (i == tcps->tcps_g_num_epriv_ports) {
5988 		mutex_exit(&tcps->tcps_epriv_port_lock);
5989 		return (ESRCH);
5990 	}
5991 	/* Clear the value */
5992 	tcps->tcps_g_epriv_ports[i] = 0;
5993 	mutex_exit(&tcps->tcps_epriv_port_lock);
5994 	return (0);
5995 }
5996 
5997 /* Return the TPI/TLI equivalent of our current tcp_state */
5998 static int
5999 tcp_tpistate(tcp_t *tcp)
6000 {
6001 	switch (tcp->tcp_state) {
6002 	case TCPS_IDLE:
6003 		return (TS_UNBND);
6004 	case TCPS_LISTEN:
6005 		/*
6006 		 * Return whether there are outstanding T_CONN_IND waiting
6007 		 * for the matching T_CONN_RES. Therefore don't count q0.
6008 		 */
6009 		if (tcp->tcp_conn_req_cnt_q > 0)
6010 			return (TS_WRES_CIND);
6011 		else
6012 			return (TS_IDLE);
6013 	case TCPS_BOUND:
6014 		return (TS_IDLE);
6015 	case TCPS_SYN_SENT:
6016 		return (TS_WCON_CREQ);
6017 	case TCPS_SYN_RCVD:
6018 		/*
6019 		 * Note: assumption: this has to the active open SYN_RCVD.
6020 		 * The passive instance is detached in SYN_RCVD stage of
6021 		 * incoming connection processing so we cannot get request
6022 		 * for T_info_ack on it.
6023 		 */
6024 		return (TS_WACK_CRES);
6025 	case TCPS_ESTABLISHED:
6026 		return (TS_DATA_XFER);
6027 	case TCPS_CLOSE_WAIT:
6028 		return (TS_WREQ_ORDREL);
6029 	case TCPS_FIN_WAIT_1:
6030 		return (TS_WIND_ORDREL);
6031 	case TCPS_FIN_WAIT_2:
6032 		return (TS_WIND_ORDREL);
6033 
6034 	case TCPS_CLOSING:
6035 	case TCPS_LAST_ACK:
6036 	case TCPS_TIME_WAIT:
6037 	case TCPS_CLOSED:
6038 		/*
6039 		 * Following TS_WACK_DREQ7 is a rendition of "not
6040 		 * yet TS_IDLE" TPI state. There is no best match to any
6041 		 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we
6042 		 * choose a value chosen that will map to TLI/XTI level
6043 		 * state of TSTATECHNG (state is process of changing) which
6044 		 * captures what this dummy state represents.
6045 		 */
6046 		return (TS_WACK_DREQ7);
6047 	default:
6048 		cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s",
6049 		    tcp->tcp_state, tcp_display(tcp, NULL,
6050 		    DISP_PORT_ONLY));
6051 		return (TS_UNBND);
6052 	}
6053 }
6054 
6055 static void
6056 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp)
6057 {
6058 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6059 	conn_t		*connp = tcp->tcp_connp;
6060 
6061 	if (connp->conn_family == AF_INET6)
6062 		*tia = tcp_g_t_info_ack_v6;
6063 	else
6064 		*tia = tcp_g_t_info_ack;
6065 	tia->CURRENT_state = tcp_tpistate(tcp);
6066 	tia->OPT_size = tcp_max_optsize;
6067 	if (tcp->tcp_mss == 0) {
6068 		/* Not yet set - tcp_open does not set mss */
6069 		if (connp->conn_ipversion == IPV4_VERSION)
6070 			tia->TIDU_size = tcps->tcps_mss_def_ipv4;
6071 		else
6072 			tia->TIDU_size = tcps->tcps_mss_def_ipv6;
6073 	} else {
6074 		tia->TIDU_size = tcp->tcp_mss;
6075 	}
6076 	/* TODO: Default ETSDU is 1.  Is that correct for tcp? */
6077 }
6078 
6079 static void
6080 tcp_do_capability_ack(tcp_t *tcp, struct T_capability_ack *tcap,
6081     t_uscalar_t cap_bits1)
6082 {
6083 	tcap->CAP_bits1 = 0;
6084 
6085 	if (cap_bits1 & TC1_INFO) {
6086 		tcp_copy_info(&tcap->INFO_ack, tcp);
6087 		tcap->CAP_bits1 |= TC1_INFO;
6088 	}
6089 
6090 	if (cap_bits1 & TC1_ACCEPTOR_ID) {
6091 		tcap->ACCEPTOR_id = tcp->tcp_acceptor_id;
6092 		tcap->CAP_bits1 |= TC1_ACCEPTOR_ID;
6093 	}
6094 
6095 }
6096 
6097 /*
6098  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
6099  * tcp_wput.  Much of the T_CAPABILITY_ACK information is copied from
6100  * tcp_g_t_info_ack.  The current state of the stream is copied from
6101  * tcp_state.
6102  */
6103 static void
6104 tcp_capability_req(tcp_t *tcp, mblk_t *mp)
6105 {
6106 	t_uscalar_t		cap_bits1;
6107 	struct T_capability_ack	*tcap;
6108 
6109 	if (MBLKL(mp) < sizeof (struct T_capability_req)) {
6110 		freemsg(mp);
6111 		return;
6112 	}
6113 
6114 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
6115 
6116 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
6117 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
6118 	if (mp == NULL)
6119 		return;
6120 
6121 	tcap = (struct T_capability_ack *)mp->b_rptr;
6122 	tcp_do_capability_ack(tcp, tcap, cap_bits1);
6123 
6124 	putnext(tcp->tcp_connp->conn_rq, mp);
6125 }
6126 
6127 /*
6128  * This routine responds to T_INFO_REQ messages.  It is called by tcp_wput.
6129  * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack.
6130  * The current state of the stream is copied from tcp_state.
6131  */
6132 static void
6133 tcp_info_req(tcp_t *tcp, mblk_t *mp)
6134 {
6135 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
6136 	    T_INFO_ACK);
6137 	if (!mp) {
6138 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
6139 		return;
6140 	}
6141 	tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp);
6142 	putnext(tcp->tcp_connp->conn_rq, mp);
6143 }
6144 
6145 /* Respond to the TPI addr request */
6146 static void
6147 tcp_addr_req(tcp_t *tcp, mblk_t *mp)
6148 {
6149 	struct sockaddr *sa;
6150 	mblk_t	*ackmp;
6151 	struct T_addr_ack *taa;
6152 	conn_t	*connp = tcp->tcp_connp;
6153 	uint_t	addrlen;
6154 
6155 	/* Make it large enough for worst case */
6156 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
6157 	    2 * sizeof (sin6_t), 1);
6158 	if (ackmp == NULL) {
6159 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
6160 		return;
6161 	}
6162 
6163 	taa = (struct T_addr_ack *)ackmp->b_rptr;
6164 
6165 	bzero(taa, sizeof (struct T_addr_ack));
6166 	ackmp->b_wptr = (uchar_t *)&taa[1];
6167 
6168 	taa->PRIM_type = T_ADDR_ACK;
6169 	ackmp->b_datap->db_type = M_PCPROTO;
6170 
6171 	if (connp->conn_family == AF_INET)
6172 		addrlen = sizeof (sin_t);
6173 	else
6174 		addrlen = sizeof (sin6_t);
6175 
6176 	/*
6177 	 * Note: Following code assumes 32 bit alignment of basic
6178 	 * data structures like sin_t and struct T_addr_ack.
6179 	 */
6180 	if (tcp->tcp_state >= TCPS_BOUND) {
6181 		/*
6182 		 * Fill in local address first
6183 		 */
6184 		taa->LOCADDR_offset = sizeof (*taa);
6185 		taa->LOCADDR_length = addrlen;
6186 		sa = (struct sockaddr *)&taa[1];
6187 		(void) conn_getsockname(connp, sa, &addrlen);
6188 		ackmp->b_wptr += addrlen;
6189 	}
6190 	if (tcp->tcp_state >= TCPS_SYN_RCVD) {
6191 		/*
6192 		 * Fill in Remote address
6193 		 */
6194 		taa->REMADDR_length = addrlen;
6195 		/* assumed 32-bit alignment */
6196 		taa->REMADDR_offset = taa->LOCADDR_offset + taa->LOCADDR_length;
6197 		sa = (struct sockaddr *)(ackmp->b_rptr + taa->REMADDR_offset);
6198 		(void) conn_getpeername(connp, sa, &addrlen);
6199 		ackmp->b_wptr += addrlen;
6200 	}
6201 	ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim);
6202 	putnext(tcp->tcp_connp->conn_rq, ackmp);
6203 }
6204 
6205 /*
6206  * Handle reinitialization of a tcp structure.
6207  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
6208  */
6209 static void
6210 tcp_reinit(tcp_t *tcp)
6211 {
6212 	mblk_t		*mp;
6213 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6214 	conn_t		*connp  = tcp->tcp_connp;
6215 
6216 	TCP_STAT(tcps, tcp_reinit_calls);
6217 
6218 	/* tcp_reinit should never be called for detached tcp_t's */
6219 	ASSERT(tcp->tcp_listener == NULL);
6220 	ASSERT((connp->conn_family == AF_INET &&
6221 	    connp->conn_ipversion == IPV4_VERSION) ||
6222 	    (connp->conn_family == AF_INET6 &&
6223 	    (connp->conn_ipversion == IPV4_VERSION ||
6224 	    connp->conn_ipversion == IPV6_VERSION)));
6225 
6226 	/* Cancel outstanding timers */
6227 	tcp_timers_stop(tcp);
6228 
6229 	/*
6230 	 * Reset everything in the state vector, after updating global
6231 	 * MIB data from instance counters.
6232 	 */
6233 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
6234 	tcp->tcp_ibsegs = 0;
6235 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
6236 	tcp->tcp_obsegs = 0;
6237 
6238 	tcp_close_mpp(&tcp->tcp_xmit_head);
6239 	if (tcp->tcp_snd_zcopy_aware)
6240 		tcp_zcopy_notify(tcp);
6241 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
6242 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
6243 	mutex_enter(&tcp->tcp_non_sq_lock);
6244 	if (tcp->tcp_flow_stopped &&
6245 	    TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) {
6246 		tcp_clrqfull(tcp);
6247 	}
6248 	mutex_exit(&tcp->tcp_non_sq_lock);
6249 	tcp_close_mpp(&tcp->tcp_reass_head);
6250 	tcp->tcp_reass_tail = NULL;
6251 	if (tcp->tcp_rcv_list != NULL) {
6252 		/* Free b_next chain */
6253 		tcp_close_mpp(&tcp->tcp_rcv_list);
6254 		tcp->tcp_rcv_last_head = NULL;
6255 		tcp->tcp_rcv_last_tail = NULL;
6256 		tcp->tcp_rcv_cnt = 0;
6257 	}
6258 	tcp->tcp_rcv_last_tail = NULL;
6259 
6260 	if ((mp = tcp->tcp_urp_mp) != NULL) {
6261 		freemsg(mp);
6262 		tcp->tcp_urp_mp = NULL;
6263 	}
6264 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
6265 		freemsg(mp);
6266 		tcp->tcp_urp_mark_mp = NULL;
6267 	}
6268 	if (tcp->tcp_fused_sigurg_mp != NULL) {
6269 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
6270 		freeb(tcp->tcp_fused_sigurg_mp);
6271 		tcp->tcp_fused_sigurg_mp = NULL;
6272 	}
6273 	if (tcp->tcp_ordrel_mp != NULL) {
6274 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
6275 		freeb(tcp->tcp_ordrel_mp);
6276 		tcp->tcp_ordrel_mp = NULL;
6277 	}
6278 
6279 	/*
6280 	 * Following is a union with two members which are
6281 	 * identical types and size so the following cleanup
6282 	 * is enough.
6283 	 */
6284 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
6285 
6286 	CL_INET_DISCONNECT(connp);
6287 
6288 	/*
6289 	 * The connection can't be on the tcp_time_wait_head list
6290 	 * since it is not detached.
6291 	 */
6292 	ASSERT(tcp->tcp_time_wait_next == NULL);
6293 	ASSERT(tcp->tcp_time_wait_prev == NULL);
6294 	ASSERT(tcp->tcp_time_wait_expire == 0);
6295 
6296 	if (tcp->tcp_kssl_pending) {
6297 		tcp->tcp_kssl_pending = B_FALSE;
6298 
6299 		/* Don't reset if the initialized by bind. */
6300 		if (tcp->tcp_kssl_ent != NULL) {
6301 			kssl_release_ent(tcp->tcp_kssl_ent, NULL,
6302 			    KSSL_NO_PROXY);
6303 		}
6304 	}
6305 	if (tcp->tcp_kssl_ctx != NULL) {
6306 		kssl_release_ctx(tcp->tcp_kssl_ctx);
6307 		tcp->tcp_kssl_ctx = NULL;
6308 	}
6309 
6310 	/*
6311 	 * Reset/preserve other values
6312 	 */
6313 	tcp_reinit_values(tcp);
6314 	ipcl_hash_remove(connp);
6315 	ixa_cleanup(connp->conn_ixa);
6316 	tcp_ipsec_cleanup(tcp);
6317 
6318 	connp->conn_laddr_v6 = connp->conn_bound_addr_v6;
6319 	connp->conn_saddr_v6 = connp->conn_bound_addr_v6;
6320 
6321 	if (tcp->tcp_conn_req_max != 0) {
6322 		/*
6323 		 * This is the case when a TLI program uses the same
6324 		 * transport end point to accept a connection.  This
6325 		 * makes the TCP both a listener and acceptor.  When
6326 		 * this connection is closed, we need to set the state
6327 		 * back to TCPS_LISTEN.  Make sure that the eager list
6328 		 * is reinitialized.
6329 		 *
6330 		 * Note that this stream is still bound to the four
6331 		 * tuples of the previous connection in IP.  If a new
6332 		 * SYN with different foreign address comes in, IP will
6333 		 * not find it and will send it to the global queue.  In
6334 		 * the global queue, TCP will do a tcp_lookup_listener()
6335 		 * to find this stream.  This works because this stream
6336 		 * is only removed from connected hash.
6337 		 *
6338 		 */
6339 		tcp->tcp_state = TCPS_LISTEN;
6340 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
6341 		tcp->tcp_eager_next_drop_q0 = tcp;
6342 		tcp->tcp_eager_prev_drop_q0 = tcp;
6343 		/*
6344 		 * Initially set conn_recv to tcp_input_listener_unbound to try
6345 		 * to pick a good squeue for the listener when the first SYN
6346 		 * arrives. tcp_input_listener_unbound sets it to
6347 		 * tcp_input_listener on that first SYN.
6348 		 */
6349 		connp->conn_recv = tcp_input_listener_unbound;
6350 
6351 		connp->conn_proto = IPPROTO_TCP;
6352 		connp->conn_faddr_v6 = ipv6_all_zeros;
6353 		connp->conn_fport = 0;
6354 
6355 		(void) ipcl_bind_insert(connp);
6356 	} else {
6357 		tcp->tcp_state = TCPS_BOUND;
6358 	}
6359 
6360 	/*
6361 	 * Initialize to default values
6362 	 */
6363 	tcp_init_values(tcp);
6364 
6365 	ASSERT(tcp->tcp_ptpbhn != NULL);
6366 	tcp->tcp_rwnd = connp->conn_rcvbuf;
6367 	tcp->tcp_mss = connp->conn_ipversion != IPV4_VERSION ?
6368 	    tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4;
6369 }
6370 
6371 /*
6372  * Force values to zero that need be zero.
6373  * Do not touch values asociated with the BOUND or LISTEN state
6374  * since the connection will end up in that state after the reinit.
6375  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
6376  * structure!
6377  */
6378 static void
6379 tcp_reinit_values(tcp)
6380 	tcp_t *tcp;
6381 {
6382 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6383 	conn_t		*connp = tcp->tcp_connp;
6384 
6385 #ifndef	lint
6386 #define	DONTCARE(x)
6387 #define	PRESERVE(x)
6388 #else
6389 #define	DONTCARE(x)	((x) = (x))
6390 #define	PRESERVE(x)	((x) = (x))
6391 #endif	/* lint */
6392 
6393 	PRESERVE(tcp->tcp_bind_hash_port);
6394 	PRESERVE(tcp->tcp_bind_hash);
6395 	PRESERVE(tcp->tcp_ptpbhn);
6396 	PRESERVE(tcp->tcp_acceptor_hash);
6397 	PRESERVE(tcp->tcp_ptpahn);
6398 
6399 	/* Should be ASSERT NULL on these with new code! */
6400 	ASSERT(tcp->tcp_time_wait_next == NULL);
6401 	ASSERT(tcp->tcp_time_wait_prev == NULL);
6402 	ASSERT(tcp->tcp_time_wait_expire == 0);
6403 	PRESERVE(tcp->tcp_state);
6404 	PRESERVE(connp->conn_rq);
6405 	PRESERVE(connp->conn_wq);
6406 
6407 	ASSERT(tcp->tcp_xmit_head == NULL);
6408 	ASSERT(tcp->tcp_xmit_last == NULL);
6409 	ASSERT(tcp->tcp_unsent == 0);
6410 	ASSERT(tcp->tcp_xmit_tail == NULL);
6411 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
6412 
6413 	tcp->tcp_snxt = 0;			/* Displayed in mib */
6414 	tcp->tcp_suna = 0;			/* Displayed in mib */
6415 	tcp->tcp_swnd = 0;
6416 	DONTCARE(tcp->tcp_cwnd);	/* Init in tcp_process_options */
6417 
6418 	ASSERT(tcp->tcp_ibsegs == 0);
6419 	ASSERT(tcp->tcp_obsegs == 0);
6420 
6421 	if (connp->conn_ht_iphc != NULL) {
6422 		kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated);
6423 		connp->conn_ht_iphc = NULL;
6424 		connp->conn_ht_iphc_allocated = 0;
6425 		connp->conn_ht_iphc_len = 0;
6426 		connp->conn_ht_ulp = NULL;
6427 		connp->conn_ht_ulp_len = 0;
6428 		tcp->tcp_ipha = NULL;
6429 		tcp->tcp_ip6h = NULL;
6430 		tcp->tcp_tcpha = NULL;
6431 	}
6432 
6433 	/* We clear any IP_OPTIONS and extension headers */
6434 	ip_pkt_free(&connp->conn_xmit_ipp);
6435 
6436 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
6437 	DONTCARE(tcp->tcp_ipha);
6438 	DONTCARE(tcp->tcp_ip6h);
6439 	DONTCARE(tcp->tcp_tcpha);
6440 	tcp->tcp_valid_bits = 0;
6441 
6442 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
6443 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
6444 	tcp->tcp_last_rcv_lbolt = 0;
6445 
6446 	tcp->tcp_init_cwnd = 0;
6447 
6448 	tcp->tcp_urp_last_valid = 0;
6449 	tcp->tcp_hard_binding = 0;
6450 
6451 	tcp->tcp_fin_acked = 0;
6452 	tcp->tcp_fin_rcvd = 0;
6453 	tcp->tcp_fin_sent = 0;
6454 	tcp->tcp_ordrel_done = 0;
6455 
6456 	tcp->tcp_detached = 0;
6457 
6458 	tcp->tcp_snd_ws_ok = B_FALSE;
6459 	tcp->tcp_snd_ts_ok = B_FALSE;
6460 	tcp->tcp_zero_win_probe = 0;
6461 
6462 	tcp->tcp_loopback = 0;
6463 	tcp->tcp_localnet = 0;
6464 	tcp->tcp_syn_defense = 0;
6465 	tcp->tcp_set_timer = 0;
6466 
6467 	tcp->tcp_active_open = 0;
6468 	tcp->tcp_rexmit = B_FALSE;
6469 	tcp->tcp_xmit_zc_clean = B_FALSE;
6470 
6471 	tcp->tcp_snd_sack_ok = B_FALSE;
6472 	tcp->tcp_hwcksum = B_FALSE;
6473 
6474 	DONTCARE(tcp->tcp_maxpsz_multiplier);	/* Init in tcp_init_values */
6475 
6476 	tcp->tcp_conn_def_q0 = 0;
6477 	tcp->tcp_ip_forward_progress = B_FALSE;
6478 	tcp->tcp_ecn_ok = B_FALSE;
6479 
6480 	tcp->tcp_cwr = B_FALSE;
6481 	tcp->tcp_ecn_echo_on = B_FALSE;
6482 	tcp->tcp_is_wnd_shrnk = B_FALSE;
6483 
6484 	if (tcp->tcp_sack_info != NULL) {
6485 		if (tcp->tcp_notsack_list != NULL) {
6486 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list,
6487 			    tcp);
6488 		}
6489 		kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info);
6490 		tcp->tcp_sack_info = NULL;
6491 	}
6492 
6493 	tcp->tcp_rcv_ws = 0;
6494 	tcp->tcp_snd_ws = 0;
6495 	tcp->tcp_ts_recent = 0;
6496 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
6497 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
6498 	tcp->tcp_initial_pmtu = 0;
6499 
6500 	ASSERT(tcp->tcp_reass_head == NULL);
6501 	ASSERT(tcp->tcp_reass_tail == NULL);
6502 
6503 	tcp->tcp_cwnd_cnt = 0;
6504 
6505 	ASSERT(tcp->tcp_rcv_list == NULL);
6506 	ASSERT(tcp->tcp_rcv_last_head == NULL);
6507 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
6508 	ASSERT(tcp->tcp_rcv_cnt == 0);
6509 
6510 	DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_set_destination */
6511 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
6512 	tcp->tcp_csuna = 0;
6513 
6514 	tcp->tcp_rto = 0;			/* Displayed in MIB */
6515 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
6516 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
6517 	tcp->tcp_rtt_update = 0;
6518 
6519 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
6520 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
6521 
6522 	tcp->tcp_rack = 0;			/* Displayed in mib */
6523 	tcp->tcp_rack_cnt = 0;
6524 	tcp->tcp_rack_cur_max = 0;
6525 	tcp->tcp_rack_abs_max = 0;
6526 
6527 	tcp->tcp_max_swnd = 0;
6528 
6529 	ASSERT(tcp->tcp_listener == NULL);
6530 
6531 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
6532 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
6533 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
6534 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
6535 
6536 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
6537 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
6538 	PRESERVE(tcp->tcp_conn_req_max);
6539 	PRESERVE(tcp->tcp_conn_req_seqnum);
6540 
6541 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
6542 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
6543 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
6544 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
6545 
6546 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
6547 	ASSERT(tcp->tcp_urp_mp == NULL);
6548 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
6549 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
6550 
6551 	ASSERT(tcp->tcp_eager_next_q == NULL);
6552 	ASSERT(tcp->tcp_eager_last_q == NULL);
6553 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
6554 	    tcp->tcp_eager_prev_q0 == NULL) ||
6555 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
6556 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
6557 
6558 	ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
6559 	    tcp->tcp_eager_prev_drop_q0 == NULL) ||
6560 	    tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
6561 
6562 	tcp->tcp_client_errno = 0;
6563 
6564 	DONTCARE(connp->conn_sum);		/* Init in tcp_init_values */
6565 
6566 	connp->conn_faddr_v6 = ipv6_all_zeros;	/* Displayed in MIB */
6567 
6568 	PRESERVE(connp->conn_bound_addr_v6);
6569 	tcp->tcp_last_sent_len = 0;
6570 	tcp->tcp_dupack_cnt = 0;
6571 
6572 	connp->conn_fport = 0;			/* Displayed in MIB */
6573 	PRESERVE(connp->conn_lport);
6574 
6575 	PRESERVE(tcp->tcp_acceptor_lockp);
6576 
6577 	ASSERT(tcp->tcp_ordrel_mp == NULL);
6578 	PRESERVE(tcp->tcp_acceptor_id);
6579 	DONTCARE(tcp->tcp_ipsec_overhead);
6580 
6581 	PRESERVE(connp->conn_family);
6582 	/* Remove any remnants of mapped address binding */
6583 	if (connp->conn_family == AF_INET6) {
6584 		connp->conn_ipversion = IPV6_VERSION;
6585 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
6586 	} else {
6587 		connp->conn_ipversion = IPV4_VERSION;
6588 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
6589 	}
6590 
6591 	connp->conn_bound_if = 0;
6592 	connp->conn_recv_ancillary.crb_all = 0;
6593 	tcp->tcp_recvifindex = 0;
6594 	tcp->tcp_recvhops = 0;
6595 	tcp->tcp_closed = 0;
6596 	tcp->tcp_cleandeathtag = 0;
6597 	if (tcp->tcp_hopopts != NULL) {
6598 		mi_free(tcp->tcp_hopopts);
6599 		tcp->tcp_hopopts = NULL;
6600 		tcp->tcp_hopoptslen = 0;
6601 	}
6602 	ASSERT(tcp->tcp_hopoptslen == 0);
6603 	if (tcp->tcp_dstopts != NULL) {
6604 		mi_free(tcp->tcp_dstopts);
6605 		tcp->tcp_dstopts = NULL;
6606 		tcp->tcp_dstoptslen = 0;
6607 	}
6608 	ASSERT(tcp->tcp_dstoptslen == 0);
6609 	if (tcp->tcp_rthdrdstopts != NULL) {
6610 		mi_free(tcp->tcp_rthdrdstopts);
6611 		tcp->tcp_rthdrdstopts = NULL;
6612 		tcp->tcp_rthdrdstoptslen = 0;
6613 	}
6614 	ASSERT(tcp->tcp_rthdrdstoptslen == 0);
6615 	if (tcp->tcp_rthdr != NULL) {
6616 		mi_free(tcp->tcp_rthdr);
6617 		tcp->tcp_rthdr = NULL;
6618 		tcp->tcp_rthdrlen = 0;
6619 	}
6620 	ASSERT(tcp->tcp_rthdrlen == 0);
6621 
6622 	/* Reset fusion-related fields */
6623 	tcp->tcp_fused = B_FALSE;
6624 	tcp->tcp_unfusable = B_FALSE;
6625 	tcp->tcp_fused_sigurg = B_FALSE;
6626 	tcp->tcp_loopback_peer = NULL;
6627 
6628 	tcp->tcp_lso = B_FALSE;
6629 
6630 	tcp->tcp_in_ack_unsent = 0;
6631 	tcp->tcp_cork = B_FALSE;
6632 	tcp->tcp_tconnind_started = B_FALSE;
6633 
6634 	PRESERVE(tcp->tcp_squeue_bytes);
6635 
6636 	ASSERT(tcp->tcp_kssl_ctx == NULL);
6637 	ASSERT(!tcp->tcp_kssl_pending);
6638 	PRESERVE(tcp->tcp_kssl_ent);
6639 
6640 	tcp->tcp_closemp_used = B_FALSE;
6641 
6642 	PRESERVE(tcp->tcp_rsrv_mp);
6643 	PRESERVE(tcp->tcp_rsrv_mp_lock);
6644 
6645 #ifdef DEBUG
6646 	DONTCARE(tcp->tcmp_stk[0]);
6647 #endif
6648 
6649 	PRESERVE(tcp->tcp_connid);
6650 
6651 
6652 #undef	DONTCARE
6653 #undef	PRESERVE
6654 }
6655 
6656 static void
6657 tcp_init_values(tcp_t *tcp)
6658 {
6659 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6660 	conn_t		*connp = tcp->tcp_connp;
6661 
6662 	ASSERT((connp->conn_family == AF_INET &&
6663 	    connp->conn_ipversion == IPV4_VERSION) ||
6664 	    (connp->conn_family == AF_INET6 &&
6665 	    (connp->conn_ipversion == IPV4_VERSION ||
6666 	    connp->conn_ipversion == IPV6_VERSION)));
6667 
6668 	/*
6669 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
6670 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
6671 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
6672 	 * during first few transmissions of a connection as seen in slow
6673 	 * links.
6674 	 */
6675 	tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2;
6676 	tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1;
6677 	tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
6678 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
6679 	    tcps->tcps_conn_grace_period;
6680 	if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min)
6681 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
6682 	tcp->tcp_timer_backoff = 0;
6683 	tcp->tcp_ms_we_have_waited = 0;
6684 	tcp->tcp_last_recv_time = ddi_get_lbolt();
6685 	tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_;
6686 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
6687 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
6688 
6689 	tcp->tcp_maxpsz_multiplier = tcps->tcps_maxpsz_multiplier;
6690 
6691 	tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval;
6692 	tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval;
6693 	tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval;
6694 	/*
6695 	 * Fix it to tcp_ip_abort_linterval later if it turns out to be a
6696 	 * passive open.
6697 	 */
6698 	tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval;
6699 
6700 	tcp->tcp_naglim = tcps->tcps_naglim_def;
6701 
6702 	/* NOTE:  ISS is now set in tcp_set_destination(). */
6703 
6704 	/* Reset fusion-related fields */
6705 	tcp->tcp_fused = B_FALSE;
6706 	tcp->tcp_unfusable = B_FALSE;
6707 	tcp->tcp_fused_sigurg = B_FALSE;
6708 	tcp->tcp_loopback_peer = NULL;
6709 
6710 	/* We rebuild the header template on the next connect/conn_request */
6711 
6712 	connp->conn_mlp_type = mlptSingle;
6713 
6714 	/*
6715 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
6716 	 * down tcp_rwnd. tcp_set_destination() will set the right value later.
6717 	 */
6718 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
6719 	tcp->tcp_rwnd = connp->conn_rcvbuf;
6720 
6721 	tcp->tcp_cork = B_FALSE;
6722 	/*
6723 	 * Init the tcp_debug option if it wasn't already set.  This value
6724 	 * determines whether TCP
6725 	 * calls strlog() to print out debug messages.  Doing this
6726 	 * initialization here means that this value is not inherited thru
6727 	 * tcp_reinit().
6728 	 */
6729 	if (!connp->conn_debug)
6730 		connp->conn_debug = tcps->tcps_dbg;
6731 
6732 	tcp->tcp_ka_interval = tcps->tcps_keepalive_interval;
6733 	tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval;
6734 }
6735 
6736 /* At minimum we need 8 bytes in the TCP header for the lookup */
6737 #define	ICMP_MIN_TCP_HDR	8
6738 
6739 /*
6740  * tcp_icmp_input is called as conn_recvicmp to process ICMP error messages
6741  * passed up by IP. The message is always received on the correct tcp_t.
6742  * Assumes that IP has pulled up everything up to and including the ICMP header.
6743  */
6744 /* ARGSUSED2 */
6745 static void
6746 tcp_icmp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
6747 {
6748 	conn_t		*connp = (conn_t *)arg1;
6749 	icmph_t		*icmph;
6750 	ipha_t		*ipha;
6751 	int		iph_hdr_length;
6752 	tcpha_t		*tcpha;
6753 	uint32_t	seg_seq;
6754 	tcp_t		*tcp = connp->conn_tcp;
6755 
6756 	/* Assume IP provides aligned packets */
6757 	ASSERT(OK_32PTR(mp->b_rptr));
6758 	ASSERT((MBLKL(mp) >= sizeof (ipha_t)));
6759 
6760 	/*
6761 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
6762 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
6763 	 */
6764 	if (!(ira->ira_flags & IRAF_IS_IPV4)) {
6765 		tcp_icmp_error_ipv6(tcp, mp, ira);
6766 		return;
6767 	}
6768 
6769 	/* Skip past the outer IP and ICMP headers */
6770 	iph_hdr_length = ira->ira_ip_hdr_length;
6771 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
6772 	/*
6773 	 * If we don't have the correct outer IP header length
6774 	 * or if we don't have a complete inner IP header
6775 	 * drop it.
6776 	 */
6777 	if (iph_hdr_length < sizeof (ipha_t) ||
6778 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
6779 noticmpv4:
6780 		freemsg(mp);
6781 		return;
6782 	}
6783 	ipha = (ipha_t *)&icmph[1];
6784 
6785 	/* Skip past the inner IP and find the ULP header */
6786 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
6787 	tcpha = (tcpha_t *)((char *)ipha + iph_hdr_length);
6788 	/*
6789 	 * If we don't have the correct inner IP header length or if the ULP
6790 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
6791 	 * bytes of TCP header, drop it.
6792 	 */
6793 	if (iph_hdr_length < sizeof (ipha_t) ||
6794 	    ipha->ipha_protocol != IPPROTO_TCP ||
6795 	    (uchar_t *)tcpha + ICMP_MIN_TCP_HDR > mp->b_wptr) {
6796 		goto noticmpv4;
6797 	}
6798 
6799 	seg_seq = ntohl(tcpha->tha_seq);
6800 	switch (icmph->icmph_type) {
6801 	case ICMP_DEST_UNREACHABLE:
6802 		switch (icmph->icmph_code) {
6803 		case ICMP_FRAGMENTATION_NEEDED:
6804 			/*
6805 			 * Update Path MTU, then try to send something out.
6806 			 */
6807 			tcp_update_pmtu(tcp, B_TRUE);
6808 			tcp_rexmit_after_error(tcp);
6809 			break;
6810 		case ICMP_PORT_UNREACHABLE:
6811 		case ICMP_PROTOCOL_UNREACHABLE:
6812 			switch (tcp->tcp_state) {
6813 			case TCPS_SYN_SENT:
6814 			case TCPS_SYN_RCVD:
6815 				/*
6816 				 * ICMP can snipe away incipient
6817 				 * TCP connections as long as
6818 				 * seq number is same as initial
6819 				 * send seq number.
6820 				 */
6821 				if (seg_seq == tcp->tcp_iss) {
6822 					(void) tcp_clean_death(tcp,
6823 					    ECONNREFUSED, 6);
6824 				}
6825 				break;
6826 			}
6827 			break;
6828 		case ICMP_HOST_UNREACHABLE:
6829 		case ICMP_NET_UNREACHABLE:
6830 			/* Record the error in case we finally time out. */
6831 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
6832 				tcp->tcp_client_errno = EHOSTUNREACH;
6833 			else
6834 				tcp->tcp_client_errno = ENETUNREACH;
6835 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
6836 				if (tcp->tcp_listener != NULL &&
6837 				    tcp->tcp_listener->tcp_syn_defense) {
6838 					/*
6839 					 * Ditch the half-open connection if we
6840 					 * suspect a SYN attack is under way.
6841 					 */
6842 					(void) tcp_clean_death(tcp,
6843 					    tcp->tcp_client_errno, 7);
6844 				}
6845 			}
6846 			break;
6847 		default:
6848 			break;
6849 		}
6850 		break;
6851 	case ICMP_SOURCE_QUENCH: {
6852 		/*
6853 		 * use a global boolean to control
6854 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
6855 		 * The default is false.
6856 		 */
6857 		if (tcp_icmp_source_quench) {
6858 			/*
6859 			 * Reduce the sending rate as if we got a
6860 			 * retransmit timeout
6861 			 */
6862 			uint32_t npkt;
6863 
6864 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
6865 			    tcp->tcp_mss;
6866 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
6867 			tcp->tcp_cwnd = tcp->tcp_mss;
6868 			tcp->tcp_cwnd_cnt = 0;
6869 		}
6870 		break;
6871 	}
6872 	}
6873 	freemsg(mp);
6874 }
6875 
6876 /*
6877  * CALLED OUTSIDE OF SQUEUE! It can not follow any pointers that tcp might
6878  * change. But it can refer to fields like tcp_suna and tcp_snxt.
6879  *
6880  * Function tcp_verifyicmp is called as conn_verifyicmp to verify the ICMP
6881  * error messages received by IP. The message is always received on the correct
6882  * tcp_t.
6883  */
6884 /* ARGSUSED */
6885 static boolean_t
6886 tcp_verifyicmp(conn_t *connp, void *arg2, icmph_t *icmph, icmp6_t *icmp6,
6887     ip_recv_attr_t *ira)
6888 {
6889 	tcpha_t		*tcpha = (tcpha_t *)arg2;
6890 	uint32_t	seq = ntohl(tcpha->tha_seq);
6891 	tcp_t		*tcp = connp->conn_tcp;
6892 
6893 	/*
6894 	 * TCP sequence number contained in payload of the ICMP error message
6895 	 * should be within the range SND.UNA <= SEG.SEQ < SND.NXT. Otherwise,
6896 	 * the message is either a stale ICMP error, or an attack from the
6897 	 * network. Fail the verification.
6898 	 */
6899 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
6900 		return (B_FALSE);
6901 
6902 	/* For "too big" we also check the ignore flag */
6903 	if (ira->ira_flags & IRAF_IS_IPV4) {
6904 		ASSERT(icmph != NULL);
6905 		if (icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
6906 		    icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED &&
6907 		    tcp->tcp_tcps->tcps_ignore_path_mtu)
6908 			return (B_FALSE);
6909 	} else {
6910 		ASSERT(icmp6 != NULL);
6911 		if (icmp6->icmp6_type == ICMP6_PACKET_TOO_BIG &&
6912 		    tcp->tcp_tcps->tcps_ignore_path_mtu)
6913 			return (B_FALSE);
6914 	}
6915 	return (B_TRUE);
6916 }
6917 
6918 /*
6919  * Update the TCP connection according to change of PMTU.
6920  *
6921  * Path MTU might have changed by either increase or decrease, so need to
6922  * adjust the MSS based on the value of ixa_pmtu. No need to handle tiny
6923  * or negative MSS, since tcp_mss_set() will do it.
6924  */
6925 static void
6926 tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only)
6927 {
6928 	uint32_t	pmtu;
6929 	int32_t		mss;
6930 	conn_t		*connp = tcp->tcp_connp;
6931 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
6932 	iaflags_t	ixaflags;
6933 
6934 	if (tcp->tcp_tcps->tcps_ignore_path_mtu)
6935 		return;
6936 
6937 	if (tcp->tcp_state < TCPS_ESTABLISHED)
6938 		return;
6939 
6940 	/*
6941 	 * Always call ip_get_pmtu() to make sure that IP has updated
6942 	 * ixa_flags properly.
6943 	 */
6944 	pmtu = ip_get_pmtu(ixa);
6945 	ixaflags = ixa->ixa_flags;
6946 
6947 	/*
6948 	 * Calculate the MSS by decreasing the PMTU by conn_ht_iphc_len and
6949 	 * IPsec overhead if applied. Make sure to use the most recent
6950 	 * IPsec information.
6951 	 */
6952 	mss = pmtu - connp->conn_ht_iphc_len - conn_ipsec_length(connp);
6953 
6954 	/*
6955 	 * Nothing to change, so just return.
6956 	 */
6957 	if (mss == tcp->tcp_mss)
6958 		return;
6959 
6960 	/*
6961 	 * Currently, for ICMP errors, only PMTU decrease is handled.
6962 	 */
6963 	if (mss > tcp->tcp_mss && decrease_only)
6964 		return;
6965 
6966 	DTRACE_PROBE2(tcp_update_pmtu, int32_t, tcp->tcp_mss, uint32_t, mss);
6967 
6968 	/*
6969 	 * Update ixa_fragsize and ixa_pmtu.
6970 	 */
6971 	ixa->ixa_fragsize = ixa->ixa_pmtu = pmtu;
6972 
6973 	/*
6974 	 * Adjust MSS and all relevant variables.
6975 	 */
6976 	tcp_mss_set(tcp, mss);
6977 
6978 	/*
6979 	 * If the PMTU is below the min size maintained by IP, then ip_get_pmtu
6980 	 * has set IXAF_PMTU_TOO_SMALL and cleared IXAF_PMTU_IPV4_DF. Since TCP
6981 	 * has a (potentially different) min size we do the same. Make sure to
6982 	 * clear IXAF_DONTFRAG, which is used by IP to decide whether to
6983 	 * fragment the packet.
6984 	 *
6985 	 * LSO over IPv6 can not be fragmented. So need to disable LSO
6986 	 * when IPv6 fragmentation is needed.
6987 	 */
6988 	if (mss < tcp->tcp_tcps->tcps_mss_min)
6989 		ixaflags |= IXAF_PMTU_TOO_SMALL;
6990 
6991 	if (ixaflags & IXAF_PMTU_TOO_SMALL)
6992 		ixaflags &= ~(IXAF_DONTFRAG | IXAF_PMTU_IPV4_DF);
6993 
6994 	if ((connp->conn_ipversion == IPV4_VERSION) &&
6995 	    !(ixaflags & IXAF_PMTU_IPV4_DF)) {
6996 		tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
6997 	}
6998 	ixa->ixa_flags = ixaflags;
6999 }
7000 
7001 /*
7002  * Do slow start retransmission after ICMP errors of PMTU changes.
7003  */
7004 static void
7005 tcp_rexmit_after_error(tcp_t *tcp)
7006 {
7007 	/*
7008 	 * All sent data has been acknowledged or no data left to send, just
7009 	 * to return.
7010 	 */
7011 	if (!SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) ||
7012 	    (tcp->tcp_xmit_head == NULL))
7013 		return;
7014 
7015 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && (tcp->tcp_unsent == 0))
7016 		tcp->tcp_rexmit_max = tcp->tcp_fss;
7017 	else
7018 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
7019 
7020 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
7021 	tcp->tcp_rexmit = B_TRUE;
7022 	tcp->tcp_dupack_cnt = 0;
7023 	tcp->tcp_snd_burst = TCP_CWND_SS;
7024 	tcp_ss_rexmit(tcp);
7025 }
7026 
7027 /*
7028  * tcp_icmp_error_ipv6 is called from tcp_icmp_input to process ICMPv6
7029  * error messages passed up by IP.
7030  * Assumes that IP has pulled up all the extension headers as well
7031  * as the ICMPv6 header.
7032  */
7033 static void
7034 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, ip_recv_attr_t *ira)
7035 {
7036 	icmp6_t		*icmp6;
7037 	ip6_t		*ip6h;
7038 	uint16_t	iph_hdr_length = ira->ira_ip_hdr_length;
7039 	tcpha_t		*tcpha;
7040 	uint8_t		*nexthdrp;
7041 	uint32_t	seg_seq;
7042 
7043 	/*
7044 	 * Verify that we have a complete IP header.
7045 	 */
7046 	ASSERT((MBLKL(mp) >= sizeof (ip6_t)));
7047 
7048 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
7049 	ip6h = (ip6_t *)&icmp6[1];
7050 	/*
7051 	 * Verify if we have a complete ICMP and inner IP header.
7052 	 */
7053 	if ((uchar_t *)&ip6h[1] > mp->b_wptr) {
7054 noticmpv6:
7055 		freemsg(mp);
7056 		return;
7057 	}
7058 
7059 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
7060 		goto noticmpv6;
7061 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
7062 	/*
7063 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
7064 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
7065 	 * packet.
7066 	 */
7067 	if ((*nexthdrp != IPPROTO_TCP) ||
7068 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
7069 		goto noticmpv6;
7070 	}
7071 
7072 	seg_seq = ntohl(tcpha->tha_seq);
7073 	switch (icmp6->icmp6_type) {
7074 	case ICMP6_PACKET_TOO_BIG:
7075 		/*
7076 		 * Update Path MTU, then try to send something out.
7077 		 */
7078 		tcp_update_pmtu(tcp, B_TRUE);
7079 		tcp_rexmit_after_error(tcp);
7080 		break;
7081 	case ICMP6_DST_UNREACH:
7082 		switch (icmp6->icmp6_code) {
7083 		case ICMP6_DST_UNREACH_NOPORT:
7084 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
7085 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
7086 			    (seg_seq == tcp->tcp_iss)) {
7087 				(void) tcp_clean_death(tcp,
7088 				    ECONNREFUSED, 8);
7089 			}
7090 			break;
7091 		case ICMP6_DST_UNREACH_ADMIN:
7092 		case ICMP6_DST_UNREACH_NOROUTE:
7093 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
7094 		case ICMP6_DST_UNREACH_ADDR:
7095 			/* Record the error in case we finally time out. */
7096 			tcp->tcp_client_errno = EHOSTUNREACH;
7097 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
7098 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
7099 			    (seg_seq == tcp->tcp_iss)) {
7100 				if (tcp->tcp_listener != NULL &&
7101 				    tcp->tcp_listener->tcp_syn_defense) {
7102 					/*
7103 					 * Ditch the half-open connection if we
7104 					 * suspect a SYN attack is under way.
7105 					 */
7106 					(void) tcp_clean_death(tcp,
7107 					    tcp->tcp_client_errno, 9);
7108 				}
7109 			}
7110 
7111 
7112 			break;
7113 		default:
7114 			break;
7115 		}
7116 		break;
7117 	case ICMP6_PARAM_PROB:
7118 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
7119 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
7120 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
7121 		    (uchar_t *)nexthdrp) {
7122 			if (tcp->tcp_state == TCPS_SYN_SENT ||
7123 			    tcp->tcp_state == TCPS_SYN_RCVD) {
7124 				(void) tcp_clean_death(tcp,
7125 				    ECONNREFUSED, 10);
7126 			}
7127 			break;
7128 		}
7129 		break;
7130 
7131 	case ICMP6_TIME_EXCEEDED:
7132 	default:
7133 		break;
7134 	}
7135 	freemsg(mp);
7136 }
7137 
7138 /*
7139  * Notify IP that we are having trouble with this connection.  IP should
7140  * make note so it can potentially use a different IRE.
7141  */
7142 static void
7143 tcp_ip_notify(tcp_t *tcp)
7144 {
7145 	conn_t		*connp = tcp->tcp_connp;
7146 	ire_t		*ire;
7147 
7148 	/*
7149 	 * Note: in the case of source routing we want to blow away the
7150 	 * route to the first source route hop.
7151 	 */
7152 	ire = connp->conn_ixa->ixa_ire;
7153 	if (ire != NULL && !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
7154 		if (ire->ire_ipversion == IPV4_VERSION) {
7155 			/*
7156 			 * As per RFC 1122, we send an RTM_LOSING to inform
7157 			 * routing protocols.
7158 			 */
7159 			ip_rts_change(RTM_LOSING, ire->ire_addr,
7160 			    ire->ire_gateway_addr, ire->ire_mask,
7161 			    connp->conn_laddr_v4,  0, 0, 0,
7162 			    (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA),
7163 			    ire->ire_ipst);
7164 		}
7165 		(void) ire_no_good(ire);
7166 	}
7167 }
7168 
7169 #pragma inline(tcp_send_data)
7170 
7171 /*
7172  * Timer callback routine for keepalive probe.  We do a fake resend of
7173  * last ACKed byte.  Then set a timer using RTO.  When the timer expires,
7174  * check to see if we have heard anything from the other end for the last
7175  * RTO period.  If we have, set the timer to expire for another
7176  * tcp_keepalive_intrvl and check again.  If we have not, set a timer using
7177  * RTO << 1 and check again when it expires.  Keep exponentially increasing
7178  * the timeout if we have not heard from the other side.  If for more than
7179  * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything,
7180  * kill the connection unless the keepalive abort threshold is 0.  In
7181  * that case, we will probe "forever."
7182  */
7183 static void
7184 tcp_keepalive_killer(void *arg)
7185 {
7186 	mblk_t	*mp;
7187 	conn_t	*connp = (conn_t *)arg;
7188 	tcp_t  	*tcp = connp->conn_tcp;
7189 	int32_t	firetime;
7190 	int32_t	idletime;
7191 	int32_t	ka_intrvl;
7192 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7193 
7194 	tcp->tcp_ka_tid = 0;
7195 
7196 	if (tcp->tcp_fused)
7197 		return;
7198 
7199 	BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive);
7200 	ka_intrvl = tcp->tcp_ka_interval;
7201 
7202 	/*
7203 	 * Keepalive probe should only be sent if the application has not
7204 	 * done a close on the connection.
7205 	 */
7206 	if (tcp->tcp_state > TCPS_CLOSE_WAIT) {
7207 		return;
7208 	}
7209 	/* Timer fired too early, restart it. */
7210 	if (tcp->tcp_state < TCPS_ESTABLISHED) {
7211 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
7212 		    MSEC_TO_TICK(ka_intrvl));
7213 		return;
7214 	}
7215 
7216 	idletime = TICK_TO_MSEC(ddi_get_lbolt() - tcp->tcp_last_recv_time);
7217 	/*
7218 	 * If we have not heard from the other side for a long
7219 	 * time, kill the connection unless the keepalive abort
7220 	 * threshold is 0.  In that case, we will probe "forever."
7221 	 */
7222 	if (tcp->tcp_ka_abort_thres != 0 &&
7223 	    idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) {
7224 		BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop);
7225 		(void) tcp_clean_death(tcp, tcp->tcp_client_errno ?
7226 		    tcp->tcp_client_errno : ETIMEDOUT, 11);
7227 		return;
7228 	}
7229 
7230 	if (tcp->tcp_snxt == tcp->tcp_suna &&
7231 	    idletime >= ka_intrvl) {
7232 		/* Fake resend of last ACKed byte. */
7233 		mblk_t	*mp1 = allocb(1, BPRI_LO);
7234 
7235 		if (mp1 != NULL) {
7236 			*mp1->b_wptr++ = '\0';
7237 			mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL,
7238 			    tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE);
7239 			freeb(mp1);
7240 			/*
7241 			 * if allocation failed, fall through to start the
7242 			 * timer back.
7243 			 */
7244 			if (mp != NULL) {
7245 				tcp_send_data(tcp, mp);
7246 				BUMP_MIB(&tcps->tcps_mib,
7247 				    tcpTimKeepaliveProbe);
7248 				if (tcp->tcp_ka_last_intrvl != 0) {
7249 					int max;
7250 					/*
7251 					 * We should probe again at least
7252 					 * in ka_intrvl, but not more than
7253 					 * tcp_rexmit_interval_max.
7254 					 */
7255 					max = tcps->tcps_rexmit_interval_max;
7256 					firetime = MIN(ka_intrvl - 1,
7257 					    tcp->tcp_ka_last_intrvl << 1);
7258 					if (firetime > max)
7259 						firetime = max;
7260 				} else {
7261 					firetime = tcp->tcp_rto;
7262 				}
7263 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
7264 				    tcp_keepalive_killer,
7265 				    MSEC_TO_TICK(firetime));
7266 				tcp->tcp_ka_last_intrvl = firetime;
7267 				return;
7268 			}
7269 		}
7270 	} else {
7271 		tcp->tcp_ka_last_intrvl = 0;
7272 	}
7273 
7274 	/* firetime can be negative if (mp1 == NULL || mp == NULL) */
7275 	if ((firetime = ka_intrvl - idletime) < 0) {
7276 		firetime = ka_intrvl;
7277 	}
7278 	tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
7279 	    MSEC_TO_TICK(firetime));
7280 }
7281 
7282 int
7283 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
7284 {
7285 	conn_t	*connp = tcp->tcp_connp;
7286 	queue_t	*q = connp->conn_rq;
7287 	int32_t	mss = tcp->tcp_mss;
7288 	int	maxpsz;
7289 
7290 	if (TCP_IS_DETACHED(tcp))
7291 		return (mss);
7292 	if (tcp->tcp_fused) {
7293 		maxpsz = tcp_fuse_maxpsz(tcp);
7294 		mss = INFPSZ;
7295 	} else if (tcp->tcp_maxpsz_multiplier == 0) {
7296 		/*
7297 		 * Set the sd_qn_maxpsz according to the socket send buffer
7298 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
7299 		 * instruct the stream head to copyin user data into contiguous
7300 		 * kernel-allocated buffers without breaking it up into smaller
7301 		 * chunks.  We round up the buffer size to the nearest SMSS.
7302 		 */
7303 		maxpsz = MSS_ROUNDUP(connp->conn_sndbuf, mss);
7304 		if (tcp->tcp_kssl_ctx == NULL)
7305 			mss = INFPSZ;
7306 		else
7307 			mss = SSL3_MAX_RECORD_LEN;
7308 	} else {
7309 		/*
7310 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
7311 		 * (and a multiple of the mss).  This instructs the stream
7312 		 * head to break down larger than SMSS writes into SMSS-
7313 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
7314 		 */
7315 		maxpsz = tcp->tcp_maxpsz_multiplier * mss;
7316 		if (maxpsz > connp->conn_sndbuf / 2) {
7317 			maxpsz = connp->conn_sndbuf / 2;
7318 			/* Round up to nearest mss */
7319 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
7320 		}
7321 	}
7322 
7323 	(void) proto_set_maxpsz(q, connp, maxpsz);
7324 	if (!(IPCL_IS_NONSTR(connp)))
7325 		connp->conn_wq->q_maxpsz = maxpsz;
7326 	if (set_maxblk)
7327 		(void) proto_set_tx_maxblk(q, connp, mss);
7328 	return (mss);
7329 }
7330 
7331 /*
7332  * Extract option values from a tcp header.  We put any found values into the
7333  * tcpopt struct and return a bitmask saying which options were found.
7334  */
7335 static int
7336 tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt)
7337 {
7338 	uchar_t		*endp;
7339 	int		len;
7340 	uint32_t	mss;
7341 	uchar_t		*up = (uchar_t *)tcpha;
7342 	int		found = 0;
7343 	int32_t		sack_len;
7344 	tcp_seq		sack_begin, sack_end;
7345 	tcp_t		*tcp;
7346 
7347 	endp = up + TCP_HDR_LENGTH(tcpha);
7348 	up += TCP_MIN_HEADER_LENGTH;
7349 	while (up < endp) {
7350 		len = endp - up;
7351 		switch (*up) {
7352 		case TCPOPT_EOL:
7353 			break;
7354 
7355 		case TCPOPT_NOP:
7356 			up++;
7357 			continue;
7358 
7359 		case TCPOPT_MAXSEG:
7360 			if (len < TCPOPT_MAXSEG_LEN ||
7361 			    up[1] != TCPOPT_MAXSEG_LEN)
7362 				break;
7363 
7364 			mss = BE16_TO_U16(up+2);
7365 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
7366 			tcpopt->tcp_opt_mss = mss;
7367 			found |= TCP_OPT_MSS_PRESENT;
7368 
7369 			up += TCPOPT_MAXSEG_LEN;
7370 			continue;
7371 
7372 		case TCPOPT_WSCALE:
7373 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
7374 				break;
7375 
7376 			if (up[2] > TCP_MAX_WINSHIFT)
7377 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
7378 			else
7379 				tcpopt->tcp_opt_wscale = up[2];
7380 			found |= TCP_OPT_WSCALE_PRESENT;
7381 
7382 			up += TCPOPT_WS_LEN;
7383 			continue;
7384 
7385 		case TCPOPT_SACK_PERMITTED:
7386 			if (len < TCPOPT_SACK_OK_LEN ||
7387 			    up[1] != TCPOPT_SACK_OK_LEN)
7388 				break;
7389 			found |= TCP_OPT_SACK_OK_PRESENT;
7390 			up += TCPOPT_SACK_OK_LEN;
7391 			continue;
7392 
7393 		case TCPOPT_SACK:
7394 			if (len <= 2 || up[1] <= 2 || len < up[1])
7395 				break;
7396 
7397 			/* If TCP is not interested in SACK blks... */
7398 			if ((tcp = tcpopt->tcp) == NULL) {
7399 				up += up[1];
7400 				continue;
7401 			}
7402 			sack_len = up[1] - TCPOPT_HEADER_LEN;
7403 			up += TCPOPT_HEADER_LEN;
7404 
7405 			/*
7406 			 * If the list is empty, allocate one and assume
7407 			 * nothing is sack'ed.
7408 			 */
7409 			ASSERT(tcp->tcp_sack_info != NULL);
7410 			if (tcp->tcp_notsack_list == NULL) {
7411 				tcp_notsack_update(&(tcp->tcp_notsack_list),
7412 				    tcp->tcp_suna, tcp->tcp_snxt,
7413 				    &(tcp->tcp_num_notsack_blk),
7414 				    &(tcp->tcp_cnt_notsack_list));
7415 
7416 				/*
7417 				 * Make sure tcp_notsack_list is not NULL.
7418 				 * This happens when kmem_alloc(KM_NOSLEEP)
7419 				 * returns NULL.
7420 				 */
7421 				if (tcp->tcp_notsack_list == NULL) {
7422 					up += sack_len;
7423 					continue;
7424 				}
7425 				tcp->tcp_fack = tcp->tcp_suna;
7426 			}
7427 
7428 			while (sack_len > 0) {
7429 				if (up + 8 > endp) {
7430 					up = endp;
7431 					break;
7432 				}
7433 				sack_begin = BE32_TO_U32(up);
7434 				up += 4;
7435 				sack_end = BE32_TO_U32(up);
7436 				up += 4;
7437 				sack_len -= 8;
7438 				/*
7439 				 * Bounds checking.  Make sure the SACK
7440 				 * info is within tcp_suna and tcp_snxt.
7441 				 * If this SACK blk is out of bound, ignore
7442 				 * it but continue to parse the following
7443 				 * blks.
7444 				 */
7445 				if (SEQ_LEQ(sack_end, sack_begin) ||
7446 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
7447 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
7448 					continue;
7449 				}
7450 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
7451 				    sack_begin, sack_end,
7452 				    &(tcp->tcp_num_notsack_blk),
7453 				    &(tcp->tcp_cnt_notsack_list));
7454 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
7455 					tcp->tcp_fack = sack_end;
7456 				}
7457 			}
7458 			found |= TCP_OPT_SACK_PRESENT;
7459 			continue;
7460 
7461 		case TCPOPT_TSTAMP:
7462 			if (len < TCPOPT_TSTAMP_LEN ||
7463 			    up[1] != TCPOPT_TSTAMP_LEN)
7464 				break;
7465 
7466 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
7467 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
7468 
7469 			found |= TCP_OPT_TSTAMP_PRESENT;
7470 
7471 			up += TCPOPT_TSTAMP_LEN;
7472 			continue;
7473 
7474 		default:
7475 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
7476 				break;
7477 			up += up[1];
7478 			continue;
7479 		}
7480 		break;
7481 	}
7482 	return (found);
7483 }
7484 
7485 /*
7486  * Set the MSS associated with a particular tcp based on its current value,
7487  * and a new one passed in. Observe minimums and maximums, and reset other
7488  * state variables that we want to view as multiples of MSS.
7489  *
7490  * The value of MSS could be either increased or descreased.
7491  */
7492 static void
7493 tcp_mss_set(tcp_t *tcp, uint32_t mss)
7494 {
7495 	uint32_t	mss_max;
7496 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7497 	conn_t		*connp = tcp->tcp_connp;
7498 
7499 	if (connp->conn_ipversion == IPV4_VERSION)
7500 		mss_max = tcps->tcps_mss_max_ipv4;
7501 	else
7502 		mss_max = tcps->tcps_mss_max_ipv6;
7503 
7504 	if (mss < tcps->tcps_mss_min)
7505 		mss = tcps->tcps_mss_min;
7506 	if (mss > mss_max)
7507 		mss = mss_max;
7508 	/*
7509 	 * Unless naglim has been set by our client to
7510 	 * a non-mss value, force naglim to track mss.
7511 	 * This can help to aggregate small writes.
7512 	 */
7513 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
7514 		tcp->tcp_naglim = mss;
7515 	/*
7516 	 * TCP should be able to buffer at least 4 MSS data for obvious
7517 	 * performance reason.
7518 	 */
7519 	if ((mss << 2) > connp->conn_sndbuf)
7520 		connp->conn_sndbuf = mss << 2;
7521 
7522 	/*
7523 	 * Set the send lowater to at least twice of MSS.
7524 	 */
7525 	if ((mss << 1) > connp->conn_sndlowat)
7526 		connp->conn_sndlowat = mss << 1;
7527 
7528 	/*
7529 	 * Update tcp_cwnd according to the new value of MSS. Keep the
7530 	 * previous ratio to preserve the transmit rate.
7531 	 */
7532 	tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss;
7533 	tcp->tcp_cwnd_cnt = 0;
7534 
7535 	tcp->tcp_mss = mss;
7536 	(void) tcp_maxpsz_set(tcp, B_TRUE);
7537 }
7538 
7539 /* For /dev/tcp aka AF_INET open */
7540 static int
7541 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
7542 {
7543 	return (tcp_open(q, devp, flag, sflag, credp, B_FALSE));
7544 }
7545 
7546 /* For /dev/tcp6 aka AF_INET6 open */
7547 static int
7548 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
7549 {
7550 	return (tcp_open(q, devp, flag, sflag, credp, B_TRUE));
7551 }
7552 
7553 static conn_t *
7554 tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket,
7555     int *errorp)
7556 {
7557 	tcp_t		*tcp = NULL;
7558 	conn_t		*connp;
7559 	zoneid_t	zoneid;
7560 	tcp_stack_t	*tcps;
7561 	squeue_t	*sqp;
7562 
7563 	ASSERT(errorp != NULL);
7564 	/*
7565 	 * Find the proper zoneid and netstack.
7566 	 */
7567 	/*
7568 	 * Special case for install: miniroot needs to be able to
7569 	 * access files via NFS as though it were always in the
7570 	 * global zone.
7571 	 */
7572 	if (credp == kcred && nfs_global_client_only != 0) {
7573 		zoneid = GLOBAL_ZONEID;
7574 		tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
7575 		    netstack_tcp;
7576 		ASSERT(tcps != NULL);
7577 	} else {
7578 		netstack_t *ns;
7579 
7580 		ns = netstack_find_by_cred(credp);
7581 		ASSERT(ns != NULL);
7582 		tcps = ns->netstack_tcp;
7583 		ASSERT(tcps != NULL);
7584 
7585 		/*
7586 		 * For exclusive stacks we set the zoneid to zero
7587 		 * to make TCP operate as if in the global zone.
7588 		 */
7589 		if (tcps->tcps_netstack->netstack_stackid !=
7590 		    GLOBAL_NETSTACKID)
7591 			zoneid = GLOBAL_ZONEID;
7592 		else
7593 			zoneid = crgetzoneid(credp);
7594 	}
7595 
7596 	sqp = IP_SQUEUE_GET((uint_t)gethrtime());
7597 	connp = (conn_t *)tcp_get_conn(sqp, tcps);
7598 	/*
7599 	 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
7600 	 * so we drop it by one.
7601 	 */
7602 	netstack_rele(tcps->tcps_netstack);
7603 	if (connp == NULL) {
7604 		*errorp = ENOSR;
7605 		return (NULL);
7606 	}
7607 	ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto);
7608 
7609 	connp->conn_sqp = sqp;
7610 	connp->conn_initial_sqp = connp->conn_sqp;
7611 	connp->conn_ixa->ixa_sqp = connp->conn_sqp;
7612 	tcp = connp->conn_tcp;
7613 
7614 	/*
7615 	 * Besides asking IP to set the checksum for us, have conn_ip_output
7616 	 * to do the following checks when necessary:
7617 	 *
7618 	 * IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid
7619 	 * IXAF_VERIFY_PMTU: verify PMTU changes
7620 	 * IXAF_VERIFY_LSO: verify LSO capability changes
7621 	 */
7622 	connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
7623 	    IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO;
7624 
7625 	if (!tcps->tcps_dev_flow_ctl)
7626 		connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL;
7627 
7628 	if (isv6) {
7629 		connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
7630 		connp->conn_ipversion = IPV6_VERSION;
7631 		connp->conn_family = AF_INET6;
7632 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
7633 		connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit;
7634 	} else {
7635 		connp->conn_ipversion = IPV4_VERSION;
7636 		connp->conn_family = AF_INET;
7637 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
7638 		connp->conn_default_ttl = tcps->tcps_ipv4_ttl;
7639 	}
7640 	connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl;
7641 
7642 	crhold(credp);
7643 	connp->conn_cred = credp;
7644 	connp->conn_cpid = curproc->p_pid;
7645 	connp->conn_open_time = ddi_get_lbolt64();
7646 
7647 	connp->conn_zoneid = zoneid;
7648 	/* conn_allzones can not be set this early, hence no IPCL_ZONEID */
7649 	connp->conn_ixa->ixa_zoneid = zoneid;
7650 	connp->conn_mlp_type = mlptSingle;
7651 	ASSERT(connp->conn_netstack == tcps->tcps_netstack);
7652 	ASSERT(tcp->tcp_tcps == tcps);
7653 
7654 	/*
7655 	 * If the caller has the process-wide flag set, then default to MAC
7656 	 * exempt mode.  This allows read-down to unlabeled hosts.
7657 	 */
7658 	if (getpflags(NET_MAC_AWARE, credp) != 0)
7659 		connp->conn_mac_mode = CONN_MAC_AWARE;
7660 
7661 	connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);
7662 
7663 	if (issocket) {
7664 		tcp->tcp_issocket = 1;
7665 	}
7666 
7667 	connp->conn_rcvbuf = tcps->tcps_recv_hiwat;
7668 	connp->conn_sndbuf = tcps->tcps_xmit_hiwat;
7669 	connp->conn_sndlowat = tcps->tcps_xmit_lowat;
7670 	connp->conn_so_type = SOCK_STREAM;
7671 	connp->conn_wroff = connp->conn_ht_iphc_allocated +
7672 	    tcps->tcps_wroff_xtra;
7673 
7674 	SOCK_CONNID_INIT(tcp->tcp_connid);
7675 	tcp->tcp_state = TCPS_IDLE;
7676 	tcp_init_values(tcp);
7677 	return (connp);
7678 }
7679 
7680 static int
7681 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
7682     boolean_t isv6)
7683 {
7684 	tcp_t		*tcp = NULL;
7685 	conn_t		*connp = NULL;
7686 	int		err;
7687 	vmem_t		*minor_arena = NULL;
7688 	dev_t		conn_dev;
7689 	boolean_t	issocket;
7690 
7691 	if (q->q_ptr != NULL)
7692 		return (0);
7693 
7694 	if (sflag == MODOPEN)
7695 		return (EINVAL);
7696 
7697 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
7698 	    ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
7699 		minor_arena = ip_minor_arena_la;
7700 	} else {
7701 		/*
7702 		 * Either minor numbers in the large arena were exhausted
7703 		 * or a non socket application is doing the open.
7704 		 * Try to allocate from the small arena.
7705 		 */
7706 		if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
7707 			return (EBUSY);
7708 		}
7709 		minor_arena = ip_minor_arena_sa;
7710 	}
7711 
7712 	ASSERT(minor_arena != NULL);
7713 
7714 	*devp = makedevice(getmajor(*devp), (minor_t)conn_dev);
7715 
7716 	if (flag & SO_FALLBACK) {
7717 		/*
7718 		 * Non streams socket needs a stream to fallback to
7719 		 */
7720 		RD(q)->q_ptr = (void *)conn_dev;
7721 		WR(q)->q_qinfo = &tcp_fallback_sock_winit;
7722 		WR(q)->q_ptr = (void *)minor_arena;
7723 		qprocson(q);
7724 		return (0);
7725 	} else if (flag & SO_ACCEPTOR) {
7726 		q->q_qinfo = &tcp_acceptor_rinit;
7727 		/*
7728 		 * the conn_dev and minor_arena will be subsequently used by
7729 		 * tcp_tli_accept() and tcp_tpi_close_accept() to figure out
7730 		 * the minor device number for this connection from the q_ptr.
7731 		 */
7732 		RD(q)->q_ptr = (void *)conn_dev;
7733 		WR(q)->q_qinfo = &tcp_acceptor_winit;
7734 		WR(q)->q_ptr = (void *)minor_arena;
7735 		qprocson(q);
7736 		return (0);
7737 	}
7738 
7739 	issocket = flag & SO_SOCKSTR;
7740 	connp = tcp_create_common(credp, isv6, issocket, &err);
7741 
7742 	if (connp == NULL) {
7743 		inet_minor_free(minor_arena, conn_dev);
7744 		q->q_ptr = WR(q)->q_ptr = NULL;
7745 		return (err);
7746 	}
7747 
7748 	connp->conn_rq = q;
7749 	connp->conn_wq = WR(q);
7750 	q->q_ptr = WR(q)->q_ptr = connp;
7751 
7752 	connp->conn_dev = conn_dev;
7753 	connp->conn_minor_arena = minor_arena;
7754 
7755 	ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6);
7756 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
7757 
7758 	tcp = connp->conn_tcp;
7759 
7760 	if (issocket) {
7761 		WR(q)->q_qinfo = &tcp_sock_winit;
7762 	} else {
7763 #ifdef  _ILP32
7764 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
7765 #else
7766 		tcp->tcp_acceptor_id = conn_dev;
7767 #endif  /* _ILP32 */
7768 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
7769 	}
7770 
7771 	/*
7772 	 * Put the ref for TCP. Ref for IP was already put
7773 	 * by ipcl_conn_create. Also Make the conn_t globally
7774 	 * visible to walkers
7775 	 */
7776 	mutex_enter(&connp->conn_lock);
7777 	CONN_INC_REF_LOCKED(connp);
7778 	ASSERT(connp->conn_ref == 2);
7779 	connp->conn_state_flags &= ~CONN_INCIPIENT;
7780 	mutex_exit(&connp->conn_lock);
7781 
7782 	qprocson(q);
7783 	return (0);
7784 }
7785 
7786 /*
7787  * Some TCP options can be "set" by requesting them in the option
7788  * buffer. This is needed for XTI feature test though we do not
7789  * allow it in general. We interpret that this mechanism is more
7790  * applicable to OSI protocols and need not be allowed in general.
7791  * This routine filters out options for which it is not allowed (most)
7792  * and lets through those (few) for which it is. [ The XTI interface
7793  * test suite specifics will imply that any XTI_GENERIC level XTI_* if
7794  * ever implemented will have to be allowed here ].
7795  */
7796 static boolean_t
7797 tcp_allow_connopt_set(int level, int name)
7798 {
7799 
7800 	switch (level) {
7801 	case IPPROTO_TCP:
7802 		switch (name) {
7803 		case TCP_NODELAY:
7804 			return (B_TRUE);
7805 		default:
7806 			return (B_FALSE);
7807 		}
7808 		/*NOTREACHED*/
7809 	default:
7810 		return (B_FALSE);
7811 	}
7812 	/*NOTREACHED*/
7813 }
7814 
7815 /*
7816  * This routine gets default values of certain options whose default
7817  * values are maintained by protocol specific code
7818  */
7819 /* ARGSUSED */
7820 int
7821 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
7822 {
7823 	int32_t	*i1 = (int32_t *)ptr;
7824 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7825 
7826 	switch (level) {
7827 	case IPPROTO_TCP:
7828 		switch (name) {
7829 		case TCP_NOTIFY_THRESHOLD:
7830 			*i1 = tcps->tcps_ip_notify_interval;
7831 			break;
7832 		case TCP_ABORT_THRESHOLD:
7833 			*i1 = tcps->tcps_ip_abort_interval;
7834 			break;
7835 		case TCP_CONN_NOTIFY_THRESHOLD:
7836 			*i1 = tcps->tcps_ip_notify_cinterval;
7837 			break;
7838 		case TCP_CONN_ABORT_THRESHOLD:
7839 			*i1 = tcps->tcps_ip_abort_cinterval;
7840 			break;
7841 		default:
7842 			return (-1);
7843 		}
7844 		break;
7845 	case IPPROTO_IP:
7846 		switch (name) {
7847 		case IP_TTL:
7848 			*i1 = tcps->tcps_ipv4_ttl;
7849 			break;
7850 		default:
7851 			return (-1);
7852 		}
7853 		break;
7854 	case IPPROTO_IPV6:
7855 		switch (name) {
7856 		case IPV6_UNICAST_HOPS:
7857 			*i1 = tcps->tcps_ipv6_hoplimit;
7858 			break;
7859 		default:
7860 			return (-1);
7861 		}
7862 		break;
7863 	default:
7864 		return (-1);
7865 	}
7866 	return (sizeof (int));
7867 }
7868 
7869 /*
7870  * TCP routine to get the values of options.
7871  */
7872 static int
7873 tcp_opt_get(conn_t *connp, int level, int name, uchar_t *ptr)
7874 {
7875 	int		*i1 = (int *)ptr;
7876 	tcp_t		*tcp = connp->conn_tcp;
7877 	conn_opt_arg_t	coas;
7878 	int		retval;
7879 
7880 	coas.coa_connp = connp;
7881 	coas.coa_ixa = connp->conn_ixa;
7882 	coas.coa_ipp = &connp->conn_xmit_ipp;
7883 	coas.coa_ancillary = B_FALSE;
7884 	coas.coa_changed = 0;
7885 
7886 	switch (level) {
7887 	case SOL_SOCKET:
7888 		switch (name) {
7889 		case SO_SND_COPYAVOID:
7890 			*i1 = tcp->tcp_snd_zcopy_on ?
7891 			    SO_SND_COPYAVOID : 0;
7892 			return (sizeof (int));
7893 		case SO_ACCEPTCONN:
7894 			*i1 = (tcp->tcp_state == TCPS_LISTEN);
7895 			return (sizeof (int));
7896 		}
7897 		break;
7898 	case IPPROTO_TCP:
7899 		switch (name) {
7900 		case TCP_NODELAY:
7901 			*i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0;
7902 			return (sizeof (int));
7903 		case TCP_MAXSEG:
7904 			*i1 = tcp->tcp_mss;
7905 			return (sizeof (int));
7906 		case TCP_NOTIFY_THRESHOLD:
7907 			*i1 = (int)tcp->tcp_first_timer_threshold;
7908 			return (sizeof (int));
7909 		case TCP_ABORT_THRESHOLD:
7910 			*i1 = tcp->tcp_second_timer_threshold;
7911 			return (sizeof (int));
7912 		case TCP_CONN_NOTIFY_THRESHOLD:
7913 			*i1 = tcp->tcp_first_ctimer_threshold;
7914 			return (sizeof (int));
7915 		case TCP_CONN_ABORT_THRESHOLD:
7916 			*i1 = tcp->tcp_second_ctimer_threshold;
7917 			return (sizeof (int));
7918 		case TCP_INIT_CWND:
7919 			*i1 = tcp->tcp_init_cwnd;
7920 			return (sizeof (int));
7921 		case TCP_KEEPALIVE_THRESHOLD:
7922 			*i1 = tcp->tcp_ka_interval;
7923 			return (sizeof (int));
7924 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
7925 			*i1 = tcp->tcp_ka_abort_thres;
7926 			return (sizeof (int));
7927 		case TCP_CORK:
7928 			*i1 = tcp->tcp_cork;
7929 			return (sizeof (int));
7930 		}
7931 		break;
7932 	case IPPROTO_IP:
7933 		if (connp->conn_family != AF_INET)
7934 			return (-1);
7935 		switch (name) {
7936 		case IP_OPTIONS:
7937 		case T_IP_OPTIONS:
7938 			/* Caller ensures enough space */
7939 			return (ip_opt_get_user(connp, ptr));
7940 		default:
7941 			break;
7942 		}
7943 		break;
7944 
7945 	case IPPROTO_IPV6:
7946 		/*
7947 		 * IPPROTO_IPV6 options are only supported for sockets
7948 		 * that are using IPv6 on the wire.
7949 		 */
7950 		if (connp->conn_ipversion != IPV6_VERSION) {
7951 			return (-1);
7952 		}
7953 		switch (name) {
7954 		case IPV6_PATHMTU:
7955 			if (tcp->tcp_state < TCPS_ESTABLISHED)
7956 				return (-1);
7957 			break;
7958 		}
7959 		break;
7960 	}
7961 	mutex_enter(&connp->conn_lock);
7962 	retval = conn_opt_get(&coas, level, name, ptr);
7963 	mutex_exit(&connp->conn_lock);
7964 	return (retval);
7965 }
7966 
7967 /*
7968  * TCP routine to get the values of options.
7969  */
7970 int
7971 tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr)
7972 {
7973 	return (tcp_opt_get(Q_TO_CONN(q), level, name, ptr));
7974 }
7975 
7976 /* returns UNIX error, the optlen is a value-result arg */
7977 int
7978 tcp_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name,
7979     void *optvalp, socklen_t *optlen, cred_t *cr)
7980 {
7981 	conn_t		*connp = (conn_t *)proto_handle;
7982 	squeue_t	*sqp = connp->conn_sqp;
7983 	int		error;
7984 	t_uscalar_t	max_optbuf_len;
7985 	void		*optvalp_buf;
7986 	int		len;
7987 
7988 	ASSERT(connp->conn_upper_handle != NULL);
7989 
7990 	error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len,
7991 	    tcp_opt_obj.odb_opt_des_arr,
7992 	    tcp_opt_obj.odb_opt_arr_cnt,
7993 	    B_FALSE, B_TRUE, cr);
7994 	if (error != 0) {
7995 		if (error < 0) {
7996 			error = proto_tlitosyserr(-error);
7997 		}
7998 		return (error);
7999 	}
8000 
8001 	optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP);
8002 
8003 	error = squeue_synch_enter(sqp, connp, NULL);
8004 	if (error == ENOMEM) {
8005 		kmem_free(optvalp_buf, max_optbuf_len);
8006 		return (ENOMEM);
8007 	}
8008 
8009 	len = tcp_opt_get(connp, level, option_name, optvalp_buf);
8010 	squeue_synch_exit(sqp, connp);
8011 
8012 	if (len == -1) {
8013 		kmem_free(optvalp_buf, max_optbuf_len);
8014 		return (EINVAL);
8015 	}
8016 
8017 	/*
8018 	 * update optlen and copy option value
8019 	 */
8020 	t_uscalar_t size = MIN(len, *optlen);
8021 
8022 	bcopy(optvalp_buf, optvalp, size);
8023 	bcopy(&size, optlen, sizeof (size));
8024 
8025 	kmem_free(optvalp_buf, max_optbuf_len);
8026 	return (0);
8027 }
8028 
8029 /*
8030  * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements.
8031  * Parameters are assumed to be verified by the caller.
8032  */
8033 /* ARGSUSED */
8034 int
8035 tcp_opt_set(conn_t *connp, uint_t optset_context, int level, int name,
8036     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
8037     void *thisdg_attrs, cred_t *cr)
8038 {
8039 	tcp_t	*tcp = connp->conn_tcp;
8040 	int	*i1 = (int *)invalp;
8041 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
8042 	boolean_t checkonly;
8043 	int	reterr;
8044 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8045 	conn_opt_arg_t	coas;
8046 
8047 	coas.coa_connp = connp;
8048 	coas.coa_ixa = connp->conn_ixa;
8049 	coas.coa_ipp = &connp->conn_xmit_ipp;
8050 	coas.coa_ancillary = B_FALSE;
8051 	coas.coa_changed = 0;
8052 
8053 	switch (optset_context) {
8054 	case SETFN_OPTCOM_CHECKONLY:
8055 		checkonly = B_TRUE;
8056 		/*
8057 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
8058 		 * inlen != 0 implies value supplied and
8059 		 * 	we have to "pretend" to set it.
8060 		 * inlen == 0 implies that there is no
8061 		 * 	value part in T_CHECK request and just validation
8062 		 * done elsewhere should be enough, we just return here.
8063 		 */
8064 		if (inlen == 0) {
8065 			*outlenp = 0;
8066 			return (0);
8067 		}
8068 		break;
8069 	case SETFN_OPTCOM_NEGOTIATE:
8070 		checkonly = B_FALSE;
8071 		break;
8072 	case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */
8073 	case SETFN_CONN_NEGOTIATE:
8074 		checkonly = B_FALSE;
8075 		/*
8076 		 * Negotiating local and "association-related" options
8077 		 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ)
8078 		 * primitives is allowed by XTI, but we choose
8079 		 * to not implement this style negotiation for Internet
8080 		 * protocols (We interpret it is a must for OSI world but
8081 		 * optional for Internet protocols) for all options.
8082 		 * [ Will do only for the few options that enable test
8083 		 * suites that our XTI implementation of this feature
8084 		 * works for transports that do allow it ]
8085 		 */
8086 		if (!tcp_allow_connopt_set(level, name)) {
8087 			*outlenp = 0;
8088 			return (EINVAL);
8089 		}
8090 		break;
8091 	default:
8092 		/*
8093 		 * We should never get here
8094 		 */
8095 		*outlenp = 0;
8096 		return (EINVAL);
8097 	}
8098 
8099 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
8100 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
8101 
8102 	/*
8103 	 * For TCP, we should have no ancillary data sent down
8104 	 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs
8105 	 * has to be zero.
8106 	 */
8107 	ASSERT(thisdg_attrs == NULL);
8108 
8109 	/*
8110 	 * For fixed length options, no sanity check
8111 	 * of passed in length is done. It is assumed *_optcom_req()
8112 	 * routines do the right thing.
8113 	 */
8114 	switch (level) {
8115 	case SOL_SOCKET:
8116 		switch (name) {
8117 		case SO_KEEPALIVE:
8118 			if (checkonly) {
8119 				/* check only case */
8120 				break;
8121 			}
8122 
8123 			if (!onoff) {
8124 				if (connp->conn_keepalive) {
8125 					if (tcp->tcp_ka_tid != 0) {
8126 						(void) TCP_TIMER_CANCEL(tcp,
8127 						    tcp->tcp_ka_tid);
8128 						tcp->tcp_ka_tid = 0;
8129 					}
8130 					connp->conn_keepalive = 0;
8131 				}
8132 				break;
8133 			}
8134 			if (!connp->conn_keepalive) {
8135 				/* Crank up the keepalive timer */
8136 				tcp->tcp_ka_last_intrvl = 0;
8137 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
8138 				    tcp_keepalive_killer,
8139 				    MSEC_TO_TICK(tcp->tcp_ka_interval));
8140 				connp->conn_keepalive = 1;
8141 			}
8142 			break;
8143 		case SO_SNDBUF: {
8144 			if (*i1 > tcps->tcps_max_buf) {
8145 				*outlenp = 0;
8146 				return (ENOBUFS);
8147 			}
8148 			if (checkonly)
8149 				break;
8150 
8151 			connp->conn_sndbuf = *i1;
8152 			if (tcps->tcps_snd_lowat_fraction != 0) {
8153 				connp->conn_sndlowat = connp->conn_sndbuf /
8154 				    tcps->tcps_snd_lowat_fraction;
8155 			}
8156 			(void) tcp_maxpsz_set(tcp, B_TRUE);
8157 			/*
8158 			 * If we are flow-controlled, recheck the condition.
8159 			 * There are apps that increase SO_SNDBUF size when
8160 			 * flow-controlled (EWOULDBLOCK), and expect the flow
8161 			 * control condition to be lifted right away.
8162 			 */
8163 			mutex_enter(&tcp->tcp_non_sq_lock);
8164 			if (tcp->tcp_flow_stopped &&
8165 			    TCP_UNSENT_BYTES(tcp) < connp->conn_sndbuf) {
8166 				tcp_clrqfull(tcp);
8167 			}
8168 			mutex_exit(&tcp->tcp_non_sq_lock);
8169 			*outlenp = inlen;
8170 			return (0);
8171 		}
8172 		case SO_RCVBUF:
8173 			if (*i1 > tcps->tcps_max_buf) {
8174 				*outlenp = 0;
8175 				return (ENOBUFS);
8176 			}
8177 			/* Silently ignore zero */
8178 			if (!checkonly && *i1 != 0) {
8179 				*i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss);
8180 				(void) tcp_rwnd_set(tcp, *i1);
8181 			}
8182 			/*
8183 			 * XXX should we return the rwnd here
8184 			 * and tcp_opt_get ?
8185 			 */
8186 			*outlenp = inlen;
8187 			return (0);
8188 		case SO_SND_COPYAVOID:
8189 			if (!checkonly) {
8190 				if (tcp->tcp_loopback ||
8191 				    (tcp->tcp_kssl_ctx != NULL) ||
8192 				    (onoff != 1) || !tcp_zcopy_check(tcp)) {
8193 					*outlenp = 0;
8194 					return (EOPNOTSUPP);
8195 				}
8196 				tcp->tcp_snd_zcopy_aware = 1;
8197 			}
8198 			*outlenp = inlen;
8199 			return (0);
8200 		}
8201 		break;
8202 	case IPPROTO_TCP:
8203 		switch (name) {
8204 		case TCP_NODELAY:
8205 			if (!checkonly)
8206 				tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss;
8207 			break;
8208 		case TCP_NOTIFY_THRESHOLD:
8209 			if (!checkonly)
8210 				tcp->tcp_first_timer_threshold = *i1;
8211 			break;
8212 		case TCP_ABORT_THRESHOLD:
8213 			if (!checkonly)
8214 				tcp->tcp_second_timer_threshold = *i1;
8215 			break;
8216 		case TCP_CONN_NOTIFY_THRESHOLD:
8217 			if (!checkonly)
8218 				tcp->tcp_first_ctimer_threshold = *i1;
8219 			break;
8220 		case TCP_CONN_ABORT_THRESHOLD:
8221 			if (!checkonly)
8222 				tcp->tcp_second_ctimer_threshold = *i1;
8223 			break;
8224 		case TCP_RECVDSTADDR:
8225 			if (tcp->tcp_state > TCPS_LISTEN) {
8226 				*outlenp = 0;
8227 				return (EOPNOTSUPP);
8228 			}
8229 			/* Setting done in conn_opt_set */
8230 			break;
8231 		case TCP_INIT_CWND: {
8232 			uint32_t init_cwnd = *((uint32_t *)invalp);
8233 
8234 			if (checkonly)
8235 				break;
8236 
8237 			/*
8238 			 * Only allow socket with network configuration
8239 			 * privilege to set the initial cwnd to be larger
8240 			 * than allowed by RFC 3390.
8241 			 */
8242 			if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) {
8243 				tcp->tcp_init_cwnd = init_cwnd;
8244 				break;
8245 			}
8246 			if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) {
8247 				*outlenp = 0;
8248 				return (reterr);
8249 			}
8250 			if (init_cwnd > TCP_MAX_INIT_CWND) {
8251 				*outlenp = 0;
8252 				return (EINVAL);
8253 			}
8254 			tcp->tcp_init_cwnd = init_cwnd;
8255 			break;
8256 		}
8257 		case TCP_KEEPALIVE_THRESHOLD:
8258 			if (checkonly)
8259 				break;
8260 
8261 			if (*i1 < tcps->tcps_keepalive_interval_low ||
8262 			    *i1 > tcps->tcps_keepalive_interval_high) {
8263 				*outlenp = 0;
8264 				return (EINVAL);
8265 			}
8266 			if (*i1 != tcp->tcp_ka_interval) {
8267 				tcp->tcp_ka_interval = *i1;
8268 				/*
8269 				 * Check if we need to restart the
8270 				 * keepalive timer.
8271 				 */
8272 				if (tcp->tcp_ka_tid != 0) {
8273 					ASSERT(connp->conn_keepalive);
8274 					(void) TCP_TIMER_CANCEL(tcp,
8275 					    tcp->tcp_ka_tid);
8276 					tcp->tcp_ka_last_intrvl = 0;
8277 					tcp->tcp_ka_tid = TCP_TIMER(tcp,
8278 					    tcp_keepalive_killer,
8279 					    MSEC_TO_TICK(tcp->tcp_ka_interval));
8280 				}
8281 			}
8282 			break;
8283 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
8284 			if (!checkonly) {
8285 				if (*i1 <
8286 				    tcps->tcps_keepalive_abort_interval_low ||
8287 				    *i1 >
8288 				    tcps->tcps_keepalive_abort_interval_high) {
8289 					*outlenp = 0;
8290 					return (EINVAL);
8291 				}
8292 				tcp->tcp_ka_abort_thres = *i1;
8293 			}
8294 			break;
8295 		case TCP_CORK:
8296 			if (!checkonly) {
8297 				/*
8298 				 * if tcp->tcp_cork was set and is now
8299 				 * being unset, we have to make sure that
8300 				 * the remaining data gets sent out. Also
8301 				 * unset tcp->tcp_cork so that tcp_wput_data()
8302 				 * can send data even if it is less than mss
8303 				 */
8304 				if (tcp->tcp_cork && onoff == 0 &&
8305 				    tcp->tcp_unsent > 0) {
8306 					tcp->tcp_cork = B_FALSE;
8307 					tcp_wput_data(tcp, NULL, B_FALSE);
8308 				}
8309 				tcp->tcp_cork = onoff;
8310 			}
8311 			break;
8312 		default:
8313 			break;
8314 		}
8315 		break;
8316 	case IPPROTO_IP:
8317 		if (connp->conn_family != AF_INET) {
8318 			*outlenp = 0;
8319 			return (EINVAL);
8320 		}
8321 		switch (name) {
8322 		case IP_SEC_OPT:
8323 			/*
8324 			 * We should not allow policy setting after
8325 			 * we start listening for connections.
8326 			 */
8327 			if (tcp->tcp_state == TCPS_LISTEN) {
8328 				return (EINVAL);
8329 			}
8330 			break;
8331 		}
8332 		break;
8333 	case IPPROTO_IPV6:
8334 		/*
8335 		 * IPPROTO_IPV6 options are only supported for sockets
8336 		 * that are using IPv6 on the wire.
8337 		 */
8338 		if (connp->conn_ipversion != IPV6_VERSION) {
8339 			*outlenp = 0;
8340 			return (EINVAL);
8341 		}
8342 
8343 		switch (name) {
8344 		case IPV6_RECVPKTINFO:
8345 			if (!checkonly) {
8346 				/* Force it to be sent up with the next msg */
8347 				tcp->tcp_recvifindex = 0;
8348 			}
8349 			break;
8350 		case IPV6_RECVTCLASS:
8351 			if (!checkonly) {
8352 				/* Force it to be sent up with the next msg */
8353 				tcp->tcp_recvtclass = 0xffffffffU;
8354 			}
8355 			break;
8356 		case IPV6_RECVHOPLIMIT:
8357 			if (!checkonly) {
8358 				/* Force it to be sent up with the next msg */
8359 				tcp->tcp_recvhops = 0xffffffffU;
8360 			}
8361 			break;
8362 		case IPV6_PKTINFO:
8363 			/* This is an extra check for TCP */
8364 			if (inlen == sizeof (struct in6_pktinfo)) {
8365 				struct in6_pktinfo *pkti;
8366 
8367 				pkti = (struct in6_pktinfo *)invalp;
8368 				/*
8369 				 * RFC 3542 states that ipi6_addr must be
8370 				 * the unspecified address when setting the
8371 				 * IPV6_PKTINFO sticky socket option on a
8372 				 * TCP socket.
8373 				 */
8374 				if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr))
8375 					return (EINVAL);
8376 			}
8377 			break;
8378 		case IPV6_SEC_OPT:
8379 			/*
8380 			 * We should not allow policy setting after
8381 			 * we start listening for connections.
8382 			 */
8383 			if (tcp->tcp_state == TCPS_LISTEN) {
8384 				return (EINVAL);
8385 			}
8386 			break;
8387 		}
8388 		break;
8389 	}
8390 	reterr = conn_opt_set(&coas, level, name, inlen, invalp,
8391 	    checkonly, cr);
8392 	if (reterr != 0) {
8393 		*outlenp = 0;
8394 		return (reterr);
8395 	}
8396 
8397 	/*
8398 	 * Common case of OK return with outval same as inval
8399 	 */
8400 	if (invalp != outvalp) {
8401 		/* don't trust bcopy for identical src/dst */
8402 		(void) bcopy(invalp, outvalp, inlen);
8403 	}
8404 	*outlenp = inlen;
8405 
8406 	if (coas.coa_changed & COA_HEADER_CHANGED) {
8407 		reterr = tcp_build_hdrs(tcp);
8408 		if (reterr != 0)
8409 			return (reterr);
8410 	}
8411 	if (coas.coa_changed & COA_ROUTE_CHANGED) {
8412 		in6_addr_t nexthop;
8413 
8414 		/*
8415 		 * If we are connected we re-cache the information.
8416 		 * We ignore errors to preserve BSD behavior.
8417 		 * Note that we don't redo IPsec policy lookup here
8418 		 * since the final destination (or source) didn't change.
8419 		 */
8420 		ip_attr_nexthop(&connp->conn_xmit_ipp, connp->conn_ixa,
8421 		    &connp->conn_faddr_v6, &nexthop);
8422 
8423 		if (!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6) &&
8424 		    !IN6_IS_ADDR_V4MAPPED_ANY(&connp->conn_faddr_v6)) {
8425 			(void) ip_attr_connect(connp, connp->conn_ixa,
8426 			    &connp->conn_laddr_v6, &connp->conn_faddr_v6,
8427 			    &nexthop, connp->conn_fport, NULL, NULL,
8428 			    IPDF_VERIFY_DST);
8429 		}
8430 	}
8431 	if ((coas.coa_changed & COA_SNDBUF_CHANGED) && !IPCL_IS_NONSTR(connp)) {
8432 		connp->conn_wq->q_hiwat = connp->conn_sndbuf;
8433 	}
8434 	if (coas.coa_changed & COA_WROFF_CHANGED) {
8435 		connp->conn_wroff = connp->conn_ht_iphc_allocated +
8436 		    tcps->tcps_wroff_xtra;
8437 		(void) proto_set_tx_wroff(connp->conn_rq, connp,
8438 		    connp->conn_wroff);
8439 	}
8440 	if (coas.coa_changed & COA_OOBINLINE_CHANGED) {
8441 		if (IPCL_IS_NONSTR(connp))
8442 			proto_set_rx_oob_opt(connp, onoff);
8443 	}
8444 	return (0);
8445 }
8446 
8447 /* ARGSUSED */
8448 int
8449 tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, int name,
8450     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
8451     void *thisdg_attrs, cred_t *cr)
8452 {
8453 	conn_t	*connp =  Q_TO_CONN(q);
8454 
8455 	return (tcp_opt_set(connp, optset_context, level, name, inlen, invalp,
8456 	    outlenp, outvalp, thisdg_attrs, cr));
8457 }
8458 
8459 int
8460 tcp_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name,
8461     const void *optvalp, socklen_t optlen, cred_t *cr)
8462 {
8463 	conn_t		*connp = (conn_t *)proto_handle;
8464 	squeue_t	*sqp = connp->conn_sqp;
8465 	int		error;
8466 
8467 	ASSERT(connp->conn_upper_handle != NULL);
8468 	/*
8469 	 * Entering the squeue synchronously can result in a context switch,
8470 	 * which can cause a rather sever performance degradation. So we try to
8471 	 * handle whatever options we can without entering the squeue.
8472 	 */
8473 	if (level == IPPROTO_TCP) {
8474 		switch (option_name) {
8475 		case TCP_NODELAY:
8476 			if (optlen != sizeof (int32_t))
8477 				return (EINVAL);
8478 			mutex_enter(&connp->conn_tcp->tcp_non_sq_lock);
8479 			connp->conn_tcp->tcp_naglim = *(int *)optvalp ? 1 :
8480 			    connp->conn_tcp->tcp_mss;
8481 			mutex_exit(&connp->conn_tcp->tcp_non_sq_lock);
8482 			return (0);
8483 		default:
8484 			break;
8485 		}
8486 	}
8487 
8488 	error = squeue_synch_enter(sqp, connp, NULL);
8489 	if (error == ENOMEM) {
8490 		return (ENOMEM);
8491 	}
8492 
8493 	error = proto_opt_check(level, option_name, optlen, NULL,
8494 	    tcp_opt_obj.odb_opt_des_arr,
8495 	    tcp_opt_obj.odb_opt_arr_cnt,
8496 	    B_TRUE, B_FALSE, cr);
8497 
8498 	if (error != 0) {
8499 		if (error < 0) {
8500 			error = proto_tlitosyserr(-error);
8501 		}
8502 		squeue_synch_exit(sqp, connp);
8503 		return (error);
8504 	}
8505 
8506 	error = tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name,
8507 	    optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp,
8508 	    NULL, cr);
8509 	squeue_synch_exit(sqp, connp);
8510 
8511 	ASSERT(error >= 0);
8512 
8513 	return (error);
8514 }
8515 
8516 /*
8517  * Build/update the tcp header template (in conn_ht_iphc) based on
8518  * conn_xmit_ipp. The headers include ip6_t, any extension
8519  * headers, and the maximum size tcp header (to avoid reallocation
8520  * on the fly for additional tcp options).
8521  *
8522  * Assumes the caller has already set conn_{faddr,laddr,fport,lport,flowinfo}.
8523  * Returns failure if can't allocate memory.
8524  */
8525 static int
8526 tcp_build_hdrs(tcp_t *tcp)
8527 {
8528 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8529 	conn_t		*connp = tcp->tcp_connp;
8530 	char		buf[TCP_MAX_HDR_LENGTH];
8531 	uint_t		buflen;
8532 	uint_t		ulplen = TCP_MIN_HEADER_LENGTH;
8533 	uint_t		extralen = TCP_MAX_TCP_OPTIONS_LENGTH;
8534 	tcpha_t		*tcpha;
8535 	uint32_t	cksum;
8536 	int		error;
8537 
8538 	/*
8539 	 * We might be called after the connection is set up, and we might
8540 	 * have TS options already in the TCP header. Thus we  save any
8541 	 * existing tcp header.
8542 	 */
8543 	buflen = connp->conn_ht_ulp_len;
8544 	if (buflen != 0) {
8545 		bcopy(connp->conn_ht_ulp, buf, buflen);
8546 		extralen -= buflen - ulplen;
8547 		ulplen = buflen;
8548 	}
8549 
8550 	/* Grab lock to satisfy ASSERT; TCP is serialized using squeue */
8551 	mutex_enter(&connp->conn_lock);
8552 	error = conn_build_hdr_template(connp, ulplen, extralen,
8553 	    &connp->conn_laddr_v6, &connp->conn_faddr_v6, connp->conn_flowinfo);
8554 	mutex_exit(&connp->conn_lock);
8555 	if (error != 0)
8556 		return (error);
8557 
8558 	/*
8559 	 * Any routing header/option has been massaged. The checksum difference
8560 	 * is stored in conn_sum for later use.
8561 	 */
8562 	tcpha = (tcpha_t *)connp->conn_ht_ulp;
8563 	tcp->tcp_tcpha = tcpha;
8564 
8565 	/* restore any old tcp header */
8566 	if (buflen != 0) {
8567 		bcopy(buf, connp->conn_ht_ulp, buflen);
8568 	} else {
8569 		tcpha->tha_lport = connp->conn_lport;
8570 		tcpha->tha_fport = connp->conn_fport;
8571 		tcpha->tha_sum = 0;
8572 		tcpha->tha_offset_and_reserved = (5 << 4);
8573 	}
8574 
8575 	/*
8576 	 * IP wants our header length in the checksum field to
8577 	 * allow it to perform a single pseudo-header+checksum
8578 	 * calculation on behalf of TCP.
8579 	 * Include the adjustment for a source route once IP_OPTIONS is set.
8580 	 */
8581 	cksum = sizeof (tcpha_t) + connp->conn_sum;
8582 	cksum = (cksum >> 16) + (cksum & 0xFFFF);
8583 	ASSERT(cksum < 0x10000);
8584 	tcpha->tha_sum = htons(cksum);
8585 
8586 	if (connp->conn_ipversion == IPV4_VERSION)
8587 		tcp->tcp_ipha = (ipha_t *)connp->conn_ht_iphc;
8588 	else
8589 		tcp->tcp_ip6h = (ip6_t *)connp->conn_ht_iphc;
8590 
8591 	if (connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra >
8592 	    connp->conn_wroff) {
8593 		connp->conn_wroff = connp->conn_ht_iphc_allocated +
8594 		    tcps->tcps_wroff_xtra;
8595 		(void) proto_set_tx_wroff(connp->conn_rq, connp,
8596 		    connp->conn_wroff);
8597 	}
8598 	return (0);
8599 }
8600 
8601 /* Get callback routine passed to nd_load by tcp_param_register */
8602 /* ARGSUSED */
8603 static int
8604 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
8605 {
8606 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
8607 
8608 	(void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val);
8609 	return (0);
8610 }
8611 
8612 /*
8613  * Walk through the param array specified registering each element with the
8614  * named dispatch handler.
8615  */
8616 static boolean_t
8617 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps)
8618 {
8619 	for (; cnt-- > 0; tcppa++) {
8620 		if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) {
8621 			if (!nd_load(ndp, tcppa->tcp_param_name,
8622 			    tcp_param_get, tcp_param_set,
8623 			    (caddr_t)tcppa)) {
8624 				nd_free(ndp);
8625 				return (B_FALSE);
8626 			}
8627 		}
8628 	}
8629 	tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t),
8630 	    KM_SLEEP);
8631 	bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param,
8632 	    sizeof (tcpparam_t));
8633 	if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name,
8634 	    tcp_param_get, tcp_param_set_aligned,
8635 	    (caddr_t)tcps->tcps_wroff_xtra_param)) {
8636 		nd_free(ndp);
8637 		return (B_FALSE);
8638 	}
8639 	if (!nd_load(ndp, "tcp_extra_priv_ports",
8640 	    tcp_extra_priv_ports_get, NULL, NULL)) {
8641 		nd_free(ndp);
8642 		return (B_FALSE);
8643 	}
8644 	if (!nd_load(ndp, "tcp_extra_priv_ports_add",
8645 	    NULL, tcp_extra_priv_ports_add, NULL)) {
8646 		nd_free(ndp);
8647 		return (B_FALSE);
8648 	}
8649 	if (!nd_load(ndp, "tcp_extra_priv_ports_del",
8650 	    NULL, tcp_extra_priv_ports_del, NULL)) {
8651 		nd_free(ndp);
8652 		return (B_FALSE);
8653 	}
8654 	if (!nd_load(ndp, "tcp_1948_phrase", NULL,
8655 	    tcp_1948_phrase_set, NULL)) {
8656 		nd_free(ndp);
8657 		return (B_FALSE);
8658 	}
8659 	/*
8660 	 * Dummy ndd variables - only to convey obsolescence information
8661 	 * through printing of their name (no get or set routines)
8662 	 * XXX Remove in future releases ?
8663 	 */
8664 	if (!nd_load(ndp,
8665 	    "tcp_close_wait_interval(obsoleted - "
8666 	    "use tcp_time_wait_interval)", NULL, NULL, NULL)) {
8667 		nd_free(ndp);
8668 		return (B_FALSE);
8669 	}
8670 	return (B_TRUE);
8671 }
8672 
8673 /* ndd set routine for tcp_wroff_xtra. */
8674 /* ARGSUSED */
8675 static int
8676 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
8677     cred_t *cr)
8678 {
8679 	long new_value;
8680 	tcpparam_t *tcppa = (tcpparam_t *)cp;
8681 
8682 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
8683 	    new_value < tcppa->tcp_param_min ||
8684 	    new_value > tcppa->tcp_param_max) {
8685 		return (EINVAL);
8686 	}
8687 	/*
8688 	 * Need to make sure new_value is a multiple of 4.  If it is not,
8689 	 * round it up.  For future 64 bit requirement, we actually make it
8690 	 * a multiple of 8.
8691 	 */
8692 	if (new_value & 0x7) {
8693 		new_value = (new_value & ~0x7) + 0x8;
8694 	}
8695 	tcppa->tcp_param_val = new_value;
8696 	return (0);
8697 }
8698 
8699 /* Set callback routine passed to nd_load by tcp_param_register */
8700 /* ARGSUSED */
8701 static int
8702 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
8703 {
8704 	long	new_value;
8705 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
8706 
8707 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
8708 	    new_value < tcppa->tcp_param_min ||
8709 	    new_value > tcppa->tcp_param_max) {
8710 		return (EINVAL);
8711 	}
8712 	tcppa->tcp_param_val = new_value;
8713 	return (0);
8714 }
8715 
8716 /*
8717  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
8718  * is filled, return as much as we can.  The message passed in may be
8719  * multi-part, chained using b_cont.  "start" is the starting sequence
8720  * number for this piece.
8721  */
8722 static mblk_t *
8723 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
8724 {
8725 	uint32_t	end;
8726 	mblk_t		*mp1;
8727 	mblk_t		*mp2;
8728 	mblk_t		*next_mp;
8729 	uint32_t	u1;
8730 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8731 
8732 
8733 	/* Walk through all the new pieces. */
8734 	do {
8735 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
8736 		    (uintptr_t)INT_MAX);
8737 		end = start + (int)(mp->b_wptr - mp->b_rptr);
8738 		next_mp = mp->b_cont;
8739 		if (start == end) {
8740 			/* Empty.  Blast it. */
8741 			freeb(mp);
8742 			continue;
8743 		}
8744 		mp->b_cont = NULL;
8745 		TCP_REASS_SET_SEQ(mp, start);
8746 		TCP_REASS_SET_END(mp, end);
8747 		mp1 = tcp->tcp_reass_tail;
8748 		if (!mp1) {
8749 			tcp->tcp_reass_tail = mp;
8750 			tcp->tcp_reass_head = mp;
8751 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
8752 			UPDATE_MIB(&tcps->tcps_mib,
8753 			    tcpInDataUnorderBytes, end - start);
8754 			continue;
8755 		}
8756 		/* New stuff completely beyond tail? */
8757 		if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
8758 			/* Link it on end. */
8759 			mp1->b_cont = mp;
8760 			tcp->tcp_reass_tail = mp;
8761 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
8762 			UPDATE_MIB(&tcps->tcps_mib,
8763 			    tcpInDataUnorderBytes, end - start);
8764 			continue;
8765 		}
8766 		mp1 = tcp->tcp_reass_head;
8767 		u1 = TCP_REASS_SEQ(mp1);
8768 		/* New stuff at the front? */
8769 		if (SEQ_LT(start, u1)) {
8770 			/* Yes... Check for overlap. */
8771 			mp->b_cont = mp1;
8772 			tcp->tcp_reass_head = mp;
8773 			tcp_reass_elim_overlap(tcp, mp);
8774 			continue;
8775 		}
8776 		/*
8777 		 * The new piece fits somewhere between the head and tail.
8778 		 * We find our slot, where mp1 precedes us and mp2 trails.
8779 		 */
8780 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
8781 			u1 = TCP_REASS_SEQ(mp2);
8782 			if (SEQ_LEQ(start, u1))
8783 				break;
8784 		}
8785 		/* Link ourselves in */
8786 		mp->b_cont = mp2;
8787 		mp1->b_cont = mp;
8788 
8789 		/* Trim overlap with following mblk(s) first */
8790 		tcp_reass_elim_overlap(tcp, mp);
8791 
8792 		/* Trim overlap with preceding mblk */
8793 		tcp_reass_elim_overlap(tcp, mp1);
8794 
8795 	} while (start = end, mp = next_mp);
8796 	mp1 = tcp->tcp_reass_head;
8797 	/* Anything ready to go? */
8798 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
8799 		return (NULL);
8800 	/* Eat what we can off the queue */
8801 	for (;;) {
8802 		mp = mp1->b_cont;
8803 		end = TCP_REASS_END(mp1);
8804 		TCP_REASS_SET_SEQ(mp1, 0);
8805 		TCP_REASS_SET_END(mp1, 0);
8806 		if (!mp) {
8807 			tcp->tcp_reass_tail = NULL;
8808 			break;
8809 		}
8810 		if (end != TCP_REASS_SEQ(mp)) {
8811 			mp1->b_cont = NULL;
8812 			break;
8813 		}
8814 		mp1 = mp;
8815 	}
8816 	mp1 = tcp->tcp_reass_head;
8817 	tcp->tcp_reass_head = mp;
8818 	return (mp1);
8819 }
8820 
8821 /* Eliminate any overlap that mp may have over later mblks */
8822 static void
8823 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
8824 {
8825 	uint32_t	end;
8826 	mblk_t		*mp1;
8827 	uint32_t	u1;
8828 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8829 
8830 	end = TCP_REASS_END(mp);
8831 	while ((mp1 = mp->b_cont) != NULL) {
8832 		u1 = TCP_REASS_SEQ(mp1);
8833 		if (!SEQ_GT(end, u1))
8834 			break;
8835 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
8836 			mp->b_wptr -= end - u1;
8837 			TCP_REASS_SET_END(mp, u1);
8838 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs);
8839 			UPDATE_MIB(&tcps->tcps_mib,
8840 			    tcpInDataPartDupBytes, end - u1);
8841 			break;
8842 		}
8843 		mp->b_cont = mp1->b_cont;
8844 		TCP_REASS_SET_SEQ(mp1, 0);
8845 		TCP_REASS_SET_END(mp1, 0);
8846 		freeb(mp1);
8847 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
8848 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1);
8849 	}
8850 	if (!mp1)
8851 		tcp->tcp_reass_tail = mp;
8852 }
8853 
8854 static uint_t
8855 tcp_rwnd_reopen(tcp_t *tcp)
8856 {
8857 	uint_t ret = 0;
8858 	uint_t thwin;
8859 	conn_t *connp = tcp->tcp_connp;
8860 
8861 	/* Learn the latest rwnd information that we sent to the other side. */
8862 	thwin = ((uint_t)ntohs(tcp->tcp_tcpha->tha_win))
8863 	    << tcp->tcp_rcv_ws;
8864 	/* This is peer's calculated send window (our receive window). */
8865 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
8866 	/*
8867 	 * Increase the receive window to max.  But we need to do receiver
8868 	 * SWS avoidance.  This means that we need to check the increase of
8869 	 * of receive window is at least 1 MSS.
8870 	 */
8871 	if (connp->conn_rcvbuf - thwin >= tcp->tcp_mss) {
8872 		/*
8873 		 * If the window that the other side knows is less than max
8874 		 * deferred acks segments, send an update immediately.
8875 		 */
8876 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
8877 			BUMP_MIB(&tcp->tcp_tcps->tcps_mib, tcpOutWinUpdate);
8878 			ret = TH_ACK_NEEDED;
8879 		}
8880 		tcp->tcp_rwnd = connp->conn_rcvbuf;
8881 	}
8882 	return (ret);
8883 }
8884 
8885 /*
8886  * Send up all messages queued on tcp_rcv_list.
8887  */
8888 static uint_t
8889 tcp_rcv_drain(tcp_t *tcp)
8890 {
8891 	mblk_t *mp;
8892 	uint_t ret = 0;
8893 #ifdef DEBUG
8894 	uint_t cnt = 0;
8895 #endif
8896 	queue_t	*q = tcp->tcp_connp->conn_rq;
8897 
8898 	/* Can't drain on an eager connection */
8899 	if (tcp->tcp_listener != NULL)
8900 		return (ret);
8901 
8902 	/* Can't be a non-STREAMS connection */
8903 	ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
8904 
8905 	/* No need for the push timer now. */
8906 	if (tcp->tcp_push_tid != 0) {
8907 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
8908 		tcp->tcp_push_tid = 0;
8909 	}
8910 
8911 	/*
8912 	 * Handle two cases here: we are currently fused or we were
8913 	 * previously fused and have some urgent data to be delivered
8914 	 * upstream.  The latter happens because we either ran out of
8915 	 * memory or were detached and therefore sending the SIGURG was
8916 	 * deferred until this point.  In either case we pass control
8917 	 * over to tcp_fuse_rcv_drain() since it may need to complete
8918 	 * some work.
8919 	 */
8920 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
8921 		ASSERT(IPCL_IS_NONSTR(tcp->tcp_connp) ||
8922 		    tcp->tcp_fused_sigurg_mp != NULL);
8923 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
8924 		    &tcp->tcp_fused_sigurg_mp))
8925 			return (ret);
8926 	}
8927 
8928 	while ((mp = tcp->tcp_rcv_list) != NULL) {
8929 		tcp->tcp_rcv_list = mp->b_next;
8930 		mp->b_next = NULL;
8931 #ifdef DEBUG
8932 		cnt += msgdsize(mp);
8933 #endif
8934 		/* Does this need SSL processing first? */
8935 		if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) {
8936 			DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain,
8937 			    mblk_t *, mp);
8938 			tcp_kssl_input(tcp, mp, NULL);
8939 			continue;
8940 		}
8941 		putnext(q, mp);
8942 	}
8943 #ifdef DEBUG
8944 	ASSERT(cnt == tcp->tcp_rcv_cnt);
8945 #endif
8946 	tcp->tcp_rcv_last_head = NULL;
8947 	tcp->tcp_rcv_last_tail = NULL;
8948 	tcp->tcp_rcv_cnt = 0;
8949 
8950 	if (canputnext(q))
8951 		return (tcp_rwnd_reopen(tcp));
8952 
8953 	return (ret);
8954 }
8955 
8956 /*
8957  * Queue data on tcp_rcv_list which is a b_next chain.
8958  * tcp_rcv_last_head/tail is the last element of this chain.
8959  * Each element of the chain is a b_cont chain.
8960  *
8961  * M_DATA messages are added to the current element.
8962  * Other messages are added as new (b_next) elements.
8963  */
8964 void
8965 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len, cred_t *cr)
8966 {
8967 	ASSERT(seg_len == msgdsize(mp));
8968 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
8969 
8970 	if (is_system_labeled()) {
8971 		ASSERT(cr != NULL || msg_getcred(mp, NULL) != NULL);
8972 		/*
8973 		 * Provide for protocols above TCP such as RPC. NOPID leaves
8974 		 * db_cpid unchanged.
8975 		 * The cred could have already been set.
8976 		 */
8977 		if (cr != NULL)
8978 			mblk_setcred(mp, cr, NOPID);
8979 	}
8980 
8981 	if (tcp->tcp_rcv_list == NULL) {
8982 		ASSERT(tcp->tcp_rcv_last_head == NULL);
8983 		tcp->tcp_rcv_list = mp;
8984 		tcp->tcp_rcv_last_head = mp;
8985 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
8986 		tcp->tcp_rcv_last_tail->b_cont = mp;
8987 	} else {
8988 		tcp->tcp_rcv_last_head->b_next = mp;
8989 		tcp->tcp_rcv_last_head = mp;
8990 	}
8991 
8992 	while (mp->b_cont)
8993 		mp = mp->b_cont;
8994 
8995 	tcp->tcp_rcv_last_tail = mp;
8996 	tcp->tcp_rcv_cnt += seg_len;
8997 	tcp->tcp_rwnd -= seg_len;
8998 }
8999 
9000 /* The minimum of smoothed mean deviation in RTO calculation. */
9001 #define	TCP_SD_MIN	400
9002 
9003 /*
9004  * Set RTO for this connection.  The formula is from Jacobson and Karels'
9005  * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
9006  * are the same as those in Appendix A.2 of that paper.
9007  *
9008  * m = new measurement
9009  * sa = smoothed RTT average (8 * average estimates).
9010  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
9011  */
9012 static void
9013 tcp_set_rto(tcp_t *tcp, clock_t rtt)
9014 {
9015 	long m = TICK_TO_MSEC(rtt);
9016 	clock_t sa = tcp->tcp_rtt_sa;
9017 	clock_t sv = tcp->tcp_rtt_sd;
9018 	clock_t rto;
9019 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9020 
9021 	BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate);
9022 	tcp->tcp_rtt_update++;
9023 
9024 	/* tcp_rtt_sa is not 0 means this is a new sample. */
9025 	if (sa != 0) {
9026 		/*
9027 		 * Update average estimator:
9028 		 *	new rtt = 7/8 old rtt + 1/8 Error
9029 		 */
9030 
9031 		/* m is now Error in estimate. */
9032 		m -= sa >> 3;
9033 		if ((sa += m) <= 0) {
9034 			/*
9035 			 * Don't allow the smoothed average to be negative.
9036 			 * We use 0 to denote reinitialization of the
9037 			 * variables.
9038 			 */
9039 			sa = 1;
9040 		}
9041 
9042 		/*
9043 		 * Update deviation estimator:
9044 		 *	new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
9045 		 */
9046 		if (m < 0)
9047 			m = -m;
9048 		m -= sv >> 2;
9049 		sv += m;
9050 	} else {
9051 		/*
9052 		 * This follows BSD's implementation.  So the reinitialized
9053 		 * RTO is 3 * m.  We cannot go less than 2 because if the
9054 		 * link is bandwidth dominated, doubling the window size
9055 		 * during slow start means doubling the RTT.  We want to be
9056 		 * more conservative when we reinitialize our estimates.  3
9057 		 * is just a convenient number.
9058 		 */
9059 		sa = m << 3;
9060 		sv = m << 1;
9061 	}
9062 	if (sv < TCP_SD_MIN) {
9063 		/*
9064 		 * We do not know that if sa captures the delay ACK
9065 		 * effect as in a long train of segments, a receiver
9066 		 * does not delay its ACKs.  So set the minimum of sv
9067 		 * to be TCP_SD_MIN, which is default to 400 ms, twice
9068 		 * of BSD DATO.  That means the minimum of mean
9069 		 * deviation is 100 ms.
9070 		 *
9071 		 */
9072 		sv = TCP_SD_MIN;
9073 	}
9074 	tcp->tcp_rtt_sa = sa;
9075 	tcp->tcp_rtt_sd = sv;
9076 	/*
9077 	 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
9078 	 *
9079 	 * Add tcp_rexmit_interval extra in case of extreme environment
9080 	 * where the algorithm fails to work.  The default value of
9081 	 * tcp_rexmit_interval_extra should be 0.
9082 	 *
9083 	 * As we use a finer grained clock than BSD and update
9084 	 * RTO for every ACKs, add in another .25 of RTT to the
9085 	 * deviation of RTO to accomodate burstiness of 1/4 of
9086 	 * window size.
9087 	 */
9088 	rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5);
9089 
9090 	if (rto > tcps->tcps_rexmit_interval_max) {
9091 		tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
9092 	} else if (rto < tcps->tcps_rexmit_interval_min) {
9093 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
9094 	} else {
9095 		tcp->tcp_rto = rto;
9096 	}
9097 
9098 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
9099 	tcp->tcp_timer_backoff = 0;
9100 }
9101 
9102 /*
9103  * tcp_get_seg_mp() is called to get the pointer to a segment in the
9104  * send queue which starts at the given sequence number. If the given
9105  * sequence number is equal to last valid sequence number (tcp_snxt), the
9106  * returned mblk is the last valid mblk, and off is set to the length of
9107  * that mblk.
9108  *
9109  * send queue which starts at the given seq. no.
9110  *
9111  * Parameters:
9112  *	tcp_t *tcp: the tcp instance pointer.
9113  *	uint32_t seq: the starting seq. no of the requested segment.
9114  *	int32_t *off: after the execution, *off will be the offset to
9115  *		the returned mblk which points to the requested seq no.
9116  *		It is the caller's responsibility to send in a non-null off.
9117  *
9118  * Return:
9119  *	A mblk_t pointer pointing to the requested segment in send queue.
9120  */
9121 static mblk_t *
9122 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off)
9123 {
9124 	int32_t	cnt;
9125 	mblk_t	*mp;
9126 
9127 	/* Defensive coding.  Make sure we don't send incorrect data. */
9128 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GT(seq, tcp->tcp_snxt))
9129 		return (NULL);
9130 
9131 	cnt = seq - tcp->tcp_suna;
9132 	mp = tcp->tcp_xmit_head;
9133 	while (cnt > 0 && mp != NULL) {
9134 		cnt -= mp->b_wptr - mp->b_rptr;
9135 		if (cnt <= 0) {
9136 			cnt += mp->b_wptr - mp->b_rptr;
9137 			break;
9138 		}
9139 		mp = mp->b_cont;
9140 	}
9141 	ASSERT(mp != NULL);
9142 	*off = cnt;
9143 	return (mp);
9144 }
9145 
9146 /*
9147  * This function handles all retransmissions if SACK is enabled for this
9148  * connection.  First it calculates how many segments can be retransmitted
9149  * based on tcp_pipe.  Then it goes thru the notsack list to find eligible
9150  * segments.  A segment is eligible if sack_cnt for that segment is greater
9151  * than or equal tcp_dupack_fast_retransmit.  After it has retransmitted
9152  * all eligible segments, it checks to see if TCP can send some new segments
9153  * (fast recovery).  If it can, set the appropriate flag for tcp_input_data().
9154  *
9155  * Parameters:
9156  *	tcp_t *tcp: the tcp structure of the connection.
9157  *	uint_t *flags: in return, appropriate value will be set for
9158  *	tcp_input_data().
9159  */
9160 static void
9161 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags)
9162 {
9163 	notsack_blk_t	*notsack_blk;
9164 	int32_t		usable_swnd;
9165 	int32_t		mss;
9166 	uint32_t	seg_len;
9167 	mblk_t		*xmit_mp;
9168 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9169 
9170 	ASSERT(tcp->tcp_sack_info != NULL);
9171 	ASSERT(tcp->tcp_notsack_list != NULL);
9172 	ASSERT(tcp->tcp_rexmit == B_FALSE);
9173 
9174 	/* Defensive coding in case there is a bug... */
9175 	if (tcp->tcp_notsack_list == NULL) {
9176 		return;
9177 	}
9178 	notsack_blk = tcp->tcp_notsack_list;
9179 	mss = tcp->tcp_mss;
9180 
9181 	/*
9182 	 * Limit the num of outstanding data in the network to be
9183 	 * tcp_cwnd_ssthresh, which is half of the original congestion wnd.
9184 	 */
9185 	usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
9186 
9187 	/* At least retransmit 1 MSS of data. */
9188 	if (usable_swnd <= 0) {
9189 		usable_swnd = mss;
9190 	}
9191 
9192 	/* Make sure no new RTT samples will be taken. */
9193 	tcp->tcp_csuna = tcp->tcp_snxt;
9194 
9195 	notsack_blk = tcp->tcp_notsack_list;
9196 	while (usable_swnd > 0) {
9197 		mblk_t		*snxt_mp, *tmp_mp;
9198 		tcp_seq		begin = tcp->tcp_sack_snxt;
9199 		tcp_seq		end;
9200 		int32_t		off;
9201 
9202 		for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) {
9203 			if (SEQ_GT(notsack_blk->end, begin) &&
9204 			    (notsack_blk->sack_cnt >=
9205 			    tcps->tcps_dupack_fast_retransmit)) {
9206 				end = notsack_blk->end;
9207 				if (SEQ_LT(begin, notsack_blk->begin)) {
9208 					begin = notsack_blk->begin;
9209 				}
9210 				break;
9211 			}
9212 		}
9213 		/*
9214 		 * All holes are filled.  Manipulate tcp_cwnd to send more
9215 		 * if we can.  Note that after the SACK recovery, tcp_cwnd is
9216 		 * set to tcp_cwnd_ssthresh.
9217 		 */
9218 		if (notsack_blk == NULL) {
9219 			usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
9220 			if (usable_swnd <= 0 || tcp->tcp_unsent == 0) {
9221 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna;
9222 				ASSERT(tcp->tcp_cwnd > 0);
9223 				return;
9224 			} else {
9225 				usable_swnd = usable_swnd / mss;
9226 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna +
9227 				    MAX(usable_swnd * mss, mss);
9228 				*flags |= TH_XMIT_NEEDED;
9229 				return;
9230 			}
9231 		}
9232 
9233 		/*
9234 		 * Note that we may send more than usable_swnd allows here
9235 		 * because of round off, but no more than 1 MSS of data.
9236 		 */
9237 		seg_len = end - begin;
9238 		if (seg_len > mss)
9239 			seg_len = mss;
9240 		snxt_mp = tcp_get_seg_mp(tcp, begin, &off);
9241 		ASSERT(snxt_mp != NULL);
9242 		/* This should not happen.  Defensive coding again... */
9243 		if (snxt_mp == NULL) {
9244 			return;
9245 		}
9246 
9247 		xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off,
9248 		    &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE);
9249 		if (xmit_mp == NULL)
9250 			return;
9251 
9252 		usable_swnd -= seg_len;
9253 		tcp->tcp_pipe += seg_len;
9254 		tcp->tcp_sack_snxt = begin + seg_len;
9255 
9256 		tcp_send_data(tcp, xmit_mp);
9257 
9258 		/*
9259 		 * Update the send timestamp to avoid false retransmission.
9260 		 */
9261 		snxt_mp->b_prev = (mblk_t *)ddi_get_lbolt();
9262 
9263 		BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
9264 		UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len);
9265 		BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs);
9266 		/*
9267 		 * Update tcp_rexmit_max to extend this SACK recovery phase.
9268 		 * This happens when new data sent during fast recovery is
9269 		 * also lost.  If TCP retransmits those new data, it needs
9270 		 * to extend SACK recover phase to avoid starting another
9271 		 * fast retransmit/recovery unnecessarily.
9272 		 */
9273 		if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) {
9274 			tcp->tcp_rexmit_max = tcp->tcp_sack_snxt;
9275 		}
9276 	}
9277 }
9278 
9279 /*
9280  * tcp_ss_rexmit() is called to do slow start retransmission after a timeout
9281  * or ICMP errors.
9282  *
9283  * To limit the number of duplicate segments, we limit the number of segment
9284  * to be sent in one time to tcp_snd_burst, the burst variable.
9285  */
9286 static void
9287 tcp_ss_rexmit(tcp_t *tcp)
9288 {
9289 	uint32_t	snxt;
9290 	uint32_t	smax;
9291 	int32_t		win;
9292 	int32_t		mss;
9293 	int32_t		off;
9294 	int32_t		burst = tcp->tcp_snd_burst;
9295 	mblk_t		*snxt_mp;
9296 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9297 
9298 	/*
9299 	 * Note that tcp_rexmit can be set even though TCP has retransmitted
9300 	 * all unack'ed segments.
9301 	 */
9302 	if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) {
9303 		smax = tcp->tcp_rexmit_max;
9304 		snxt = tcp->tcp_rexmit_nxt;
9305 		if (SEQ_LT(snxt, tcp->tcp_suna)) {
9306 			snxt = tcp->tcp_suna;
9307 		}
9308 		win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd);
9309 		win -= snxt - tcp->tcp_suna;
9310 		mss = tcp->tcp_mss;
9311 		snxt_mp = tcp_get_seg_mp(tcp, snxt, &off);
9312 
9313 		while (SEQ_LT(snxt, smax) && (win > 0) &&
9314 		    (burst > 0) && (snxt_mp != NULL)) {
9315 			mblk_t	*xmit_mp;
9316 			mblk_t	*old_snxt_mp = snxt_mp;
9317 			uint32_t cnt = mss;
9318 
9319 			if (win < cnt) {
9320 				cnt = win;
9321 			}
9322 			if (SEQ_GT(snxt + cnt, smax)) {
9323 				cnt = smax - snxt;
9324 			}
9325 			xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off,
9326 			    &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE);
9327 			if (xmit_mp == NULL)
9328 				return;
9329 
9330 			tcp_send_data(tcp, xmit_mp);
9331 
9332 			snxt += cnt;
9333 			win -= cnt;
9334 			/*
9335 			 * Update the send timestamp to avoid false
9336 			 * retransmission.
9337 			 */
9338 			old_snxt_mp->b_prev = (mblk_t *)ddi_get_lbolt();
9339 			BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
9340 			UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt);
9341 
9342 			tcp->tcp_rexmit_nxt = snxt;
9343 			burst--;
9344 		}
9345 		/*
9346 		 * If we have transmitted all we have at the time
9347 		 * we started the retranmission, we can leave
9348 		 * the rest of the job to tcp_wput_data().  But we
9349 		 * need to check the send window first.  If the
9350 		 * win is not 0, go on with tcp_wput_data().
9351 		 */
9352 		if (SEQ_LT(snxt, smax) || win == 0) {
9353 			return;
9354 		}
9355 	}
9356 	/* Only call tcp_wput_data() if there is data to be sent. */
9357 	if (tcp->tcp_unsent) {
9358 		tcp_wput_data(tcp, NULL, B_FALSE);
9359 	}
9360 }
9361 
9362 /*
9363  * Process all TCP option in SYN segment.  Note that this function should
9364  * be called after tcp_set_destination() is called so that the necessary info
9365  * from IRE is already set in the tcp structure.
9366  *
9367  * This function sets up the correct tcp_mss value according to the
9368  * MSS option value and our header size.  It also sets up the window scale
9369  * and timestamp values, and initialize SACK info blocks.  But it does not
9370  * change receive window size after setting the tcp_mss value.  The caller
9371  * should do the appropriate change.
9372  */
9373 void
9374 tcp_process_options(tcp_t *tcp, tcpha_t *tcpha)
9375 {
9376 	int options;
9377 	tcp_opt_t tcpopt;
9378 	uint32_t mss_max;
9379 	char *tmp_tcph;
9380 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9381 	conn_t		*connp = tcp->tcp_connp;
9382 
9383 	tcpopt.tcp = NULL;
9384 	options = tcp_parse_options(tcpha, &tcpopt);
9385 
9386 	/*
9387 	 * Process MSS option.  Note that MSS option value does not account
9388 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
9389 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
9390 	 * IPv6.
9391 	 */
9392 	if (!(options & TCP_OPT_MSS_PRESENT)) {
9393 		if (connp->conn_ipversion == IPV4_VERSION)
9394 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4;
9395 		else
9396 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6;
9397 	} else {
9398 		if (connp->conn_ipversion == IPV4_VERSION)
9399 			mss_max = tcps->tcps_mss_max_ipv4;
9400 		else
9401 			mss_max = tcps->tcps_mss_max_ipv6;
9402 		if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min)
9403 			tcpopt.tcp_opt_mss = tcps->tcps_mss_min;
9404 		else if (tcpopt.tcp_opt_mss > mss_max)
9405 			tcpopt.tcp_opt_mss = mss_max;
9406 	}
9407 
9408 	/* Process Window Scale option. */
9409 	if (options & TCP_OPT_WSCALE_PRESENT) {
9410 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
9411 		tcp->tcp_snd_ws_ok = B_TRUE;
9412 	} else {
9413 		tcp->tcp_snd_ws = B_FALSE;
9414 		tcp->tcp_snd_ws_ok = B_FALSE;
9415 		tcp->tcp_rcv_ws = B_FALSE;
9416 	}
9417 
9418 	/* Process Timestamp option. */
9419 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
9420 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
9421 		tmp_tcph = (char *)tcp->tcp_tcpha;
9422 
9423 		tcp->tcp_snd_ts_ok = B_TRUE;
9424 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
9425 		tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64();
9426 		ASSERT(OK_32PTR(tmp_tcph));
9427 		ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH);
9428 
9429 		/* Fill in our template header with basic timestamp option. */
9430 		tmp_tcph += connp->conn_ht_ulp_len;
9431 		tmp_tcph[0] = TCPOPT_NOP;
9432 		tmp_tcph[1] = TCPOPT_NOP;
9433 		tmp_tcph[2] = TCPOPT_TSTAMP;
9434 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
9435 		connp->conn_ht_iphc_len += TCPOPT_REAL_TS_LEN;
9436 		connp->conn_ht_ulp_len += TCPOPT_REAL_TS_LEN;
9437 		tcp->tcp_tcpha->tha_offset_and_reserved += (3 << 4);
9438 	} else {
9439 		tcp->tcp_snd_ts_ok = B_FALSE;
9440 	}
9441 
9442 	/*
9443 	 * Process SACK options.  If SACK is enabled for this connection,
9444 	 * then allocate the SACK info structure.  Note the following ways
9445 	 * when tcp_snd_sack_ok is set to true.
9446 	 *
9447 	 * For active connection: in tcp_set_destination() called in
9448 	 * tcp_connect().
9449 	 *
9450 	 * For passive connection: in tcp_set_destination() called in
9451 	 * tcp_input_listener().
9452 	 *
9453 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
9454 	 * That check makes sure that if we did not send a SACK OK option,
9455 	 * we will not enable SACK for this connection even though the other
9456 	 * side sends us SACK OK option.  For active connection, the SACK
9457 	 * info structure has already been allocated.  So we need to free
9458 	 * it if SACK is disabled.
9459 	 */
9460 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
9461 	    (tcp->tcp_snd_sack_ok ||
9462 	    (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
9463 		/* This should be true only in the passive case. */
9464 		if (tcp->tcp_sack_info == NULL) {
9465 			ASSERT(TCP_IS_DETACHED(tcp));
9466 			tcp->tcp_sack_info =
9467 			    kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP);
9468 		}
9469 		if (tcp->tcp_sack_info == NULL) {
9470 			tcp->tcp_snd_sack_ok = B_FALSE;
9471 		} else {
9472 			tcp->tcp_snd_sack_ok = B_TRUE;
9473 			if (tcp->tcp_snd_ts_ok) {
9474 				tcp->tcp_max_sack_blk = 3;
9475 			} else {
9476 				tcp->tcp_max_sack_blk = 4;
9477 			}
9478 		}
9479 	} else {
9480 		/*
9481 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
9482 		 * no SACK info will be used for this
9483 		 * connection.  This assumes that SACK usage
9484 		 * permission is negotiated.  This may need
9485 		 * to be changed once this is clarified.
9486 		 */
9487 		if (tcp->tcp_sack_info != NULL) {
9488 			ASSERT(tcp->tcp_notsack_list == NULL);
9489 			kmem_cache_free(tcp_sack_info_cache,
9490 			    tcp->tcp_sack_info);
9491 			tcp->tcp_sack_info = NULL;
9492 		}
9493 		tcp->tcp_snd_sack_ok = B_FALSE;
9494 	}
9495 
9496 	/*
9497 	 * Now we know the exact TCP/IP header length, subtract
9498 	 * that from tcp_mss to get our side's MSS.
9499 	 */
9500 	tcp->tcp_mss -= connp->conn_ht_iphc_len;
9501 
9502 	/*
9503 	 * Here we assume that the other side's header size will be equal to
9504 	 * our header size.  We calculate the real MSS accordingly.  Need to
9505 	 * take into additional stuffs IPsec puts in.
9506 	 *
9507 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
9508 	 */
9509 	tcpopt.tcp_opt_mss -= connp->conn_ht_iphc_len +
9510 	    tcp->tcp_ipsec_overhead -
9511 	    ((connp->conn_ipversion == IPV4_VERSION ?
9512 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
9513 
9514 	/*
9515 	 * Set MSS to the smaller one of both ends of the connection.
9516 	 * We should not have called tcp_mss_set() before, but our
9517 	 * side of the MSS should have been set to a proper value
9518 	 * by tcp_set_destination().  tcp_mss_set() will also set up the
9519 	 * STREAM head parameters properly.
9520 	 *
9521 	 * If we have a larger-than-16-bit window but the other side
9522 	 * didn't want to do window scale, tcp_rwnd_set() will take
9523 	 * care of that.
9524 	 */
9525 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss));
9526 
9527 	/*
9528 	 * Initialize tcp_cwnd value. After tcp_mss_set(), tcp_mss has been
9529 	 * updated properly.
9530 	 */
9531 	SET_TCP_INIT_CWND(tcp, tcp->tcp_mss, tcps->tcps_slow_start_initial);
9532 }
9533 
9534 /*
9535  * Sends the T_CONN_IND to the listener. The caller calls this
9536  * functions via squeue to get inside the listener's perimeter
9537  * once the 3 way hand shake is done a T_CONN_IND needs to be
9538  * sent. As an optimization, the caller can call this directly
9539  * if listener's perimeter is same as eager's.
9540  */
9541 /* ARGSUSED */
9542 void
9543 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2)
9544 {
9545 	conn_t			*lconnp = (conn_t *)arg;
9546 	tcp_t			*listener = lconnp->conn_tcp;
9547 	tcp_t			*tcp;
9548 	struct T_conn_ind	*conn_ind;
9549 	ipaddr_t 		*addr_cache;
9550 	boolean_t		need_send_conn_ind = B_FALSE;
9551 	tcp_stack_t		*tcps = listener->tcp_tcps;
9552 
9553 	/* retrieve the eager */
9554 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
9555 	ASSERT(conn_ind->OPT_offset != 0 &&
9556 	    conn_ind->OPT_length == sizeof (intptr_t));
9557 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
9558 	    conn_ind->OPT_length);
9559 
9560 	/*
9561 	 * TLI/XTI applications will get confused by
9562 	 * sending eager as an option since it violates
9563 	 * the option semantics. So remove the eager as
9564 	 * option since TLI/XTI app doesn't need it anyway.
9565 	 */
9566 	if (!TCP_IS_SOCKET(listener)) {
9567 		conn_ind->OPT_length = 0;
9568 		conn_ind->OPT_offset = 0;
9569 	}
9570 	if (listener->tcp_state != TCPS_LISTEN) {
9571 		/*
9572 		 * If listener has closed, it would have caused a
9573 		 * a cleanup/blowoff to happen for the eager. We
9574 		 * just need to return.
9575 		 */
9576 		freemsg(mp);
9577 		return;
9578 	}
9579 
9580 
9581 	/*
9582 	 * if the conn_req_q is full defer passing up the
9583 	 * T_CONN_IND until space is availabe after t_accept()
9584 	 * processing
9585 	 */
9586 	mutex_enter(&listener->tcp_eager_lock);
9587 
9588 	/*
9589 	 * Take the eager out, if it is in the list of droppable eagers
9590 	 * as we are here because the 3W handshake is over.
9591 	 */
9592 	MAKE_UNDROPPABLE(tcp);
9593 
9594 	if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) {
9595 		tcp_t *tail;
9596 
9597 		/*
9598 		 * The eager already has an extra ref put in tcp_input_data
9599 		 * so that it stays till accept comes back even though it
9600 		 * might get into TCPS_CLOSED as a result of a TH_RST etc.
9601 		 */
9602 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
9603 		listener->tcp_conn_req_cnt_q0--;
9604 		listener->tcp_conn_req_cnt_q++;
9605 
9606 		/* Move from SYN_RCVD to ESTABLISHED list  */
9607 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
9608 		    tcp->tcp_eager_prev_q0;
9609 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
9610 		    tcp->tcp_eager_next_q0;
9611 		tcp->tcp_eager_prev_q0 = NULL;
9612 		tcp->tcp_eager_next_q0 = NULL;
9613 
9614 		/*
9615 		 * Insert at end of the queue because sockfs
9616 		 * sends down T_CONN_RES in chronological
9617 		 * order. Leaving the older conn indications
9618 		 * at front of the queue helps reducing search
9619 		 * time.
9620 		 */
9621 		tail = listener->tcp_eager_last_q;
9622 		if (tail != NULL)
9623 			tail->tcp_eager_next_q = tcp;
9624 		else
9625 			listener->tcp_eager_next_q = tcp;
9626 		listener->tcp_eager_last_q = tcp;
9627 		tcp->tcp_eager_next_q = NULL;
9628 		/*
9629 		 * Delay sending up the T_conn_ind until we are
9630 		 * done with the eager. Once we have have sent up
9631 		 * the T_conn_ind, the accept can potentially complete
9632 		 * any time and release the refhold we have on the eager.
9633 		 */
9634 		need_send_conn_ind = B_TRUE;
9635 	} else {
9636 		/*
9637 		 * Defer connection on q0 and set deferred
9638 		 * connection bit true
9639 		 */
9640 		tcp->tcp_conn_def_q0 = B_TRUE;
9641 
9642 		/* take tcp out of q0 ... */
9643 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
9644 		    tcp->tcp_eager_next_q0;
9645 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
9646 		    tcp->tcp_eager_prev_q0;
9647 
9648 		/* ... and place it at the end of q0 */
9649 		tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0;
9650 		tcp->tcp_eager_next_q0 = listener;
9651 		listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp;
9652 		listener->tcp_eager_prev_q0 = tcp;
9653 		tcp->tcp_conn.tcp_eager_conn_ind = mp;
9654 	}
9655 
9656 	/* we have timed out before */
9657 	if (tcp->tcp_syn_rcvd_timeout != 0) {
9658 		tcp->tcp_syn_rcvd_timeout = 0;
9659 		listener->tcp_syn_rcvd_timeout--;
9660 		if (listener->tcp_syn_defense &&
9661 		    listener->tcp_syn_rcvd_timeout <=
9662 		    (tcps->tcps_conn_req_max_q0 >> 5) &&
9663 		    10*MINUTES < TICK_TO_MSEC(ddi_get_lbolt64() -
9664 		    listener->tcp_last_rcv_lbolt)) {
9665 			/*
9666 			 * Turn off the defense mode if we
9667 			 * believe the SYN attack is over.
9668 			 */
9669 			listener->tcp_syn_defense = B_FALSE;
9670 			if (listener->tcp_ip_addr_cache) {
9671 				kmem_free((void *)listener->tcp_ip_addr_cache,
9672 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
9673 				listener->tcp_ip_addr_cache = NULL;
9674 			}
9675 		}
9676 	}
9677 	addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
9678 	if (addr_cache != NULL) {
9679 		/*
9680 		 * We have finished a 3-way handshake with this
9681 		 * remote host. This proves the IP addr is good.
9682 		 * Cache it!
9683 		 */
9684 		addr_cache[IP_ADDR_CACHE_HASH(tcp->tcp_connp->conn_faddr_v4)] =
9685 		    tcp->tcp_connp->conn_faddr_v4;
9686 	}
9687 	mutex_exit(&listener->tcp_eager_lock);
9688 	if (need_send_conn_ind)
9689 		tcp_ulp_newconn(lconnp, tcp->tcp_connp, mp);
9690 }
9691 
9692 /*
9693  * Send the newconn notification to ulp. The eager is blown off if the
9694  * notification fails.
9695  */
9696 static void
9697 tcp_ulp_newconn(conn_t *lconnp, conn_t *econnp, mblk_t *mp)
9698 {
9699 	if (IPCL_IS_NONSTR(lconnp)) {
9700 		cred_t	*cr;
9701 		pid_t	cpid = NOPID;
9702 
9703 		ASSERT(econnp->conn_tcp->tcp_listener == lconnp->conn_tcp);
9704 		ASSERT(econnp->conn_tcp->tcp_saved_listener ==
9705 		    lconnp->conn_tcp);
9706 
9707 		cr = msg_getcred(mp, &cpid);
9708 
9709 		/* Keep the message around in case of a fallback to TPI */
9710 		econnp->conn_tcp->tcp_conn.tcp_eager_conn_ind = mp;
9711 		/*
9712 		 * Notify the ULP about the newconn. It is guaranteed that no
9713 		 * tcp_accept() call will be made for the eager if the
9714 		 * notification fails, so it's safe to blow it off in that
9715 		 * case.
9716 		 *
9717 		 * The upper handle will be assigned when tcp_accept() is
9718 		 * called.
9719 		 */
9720 		if ((*lconnp->conn_upcalls->su_newconn)
9721 		    (lconnp->conn_upper_handle,
9722 		    (sock_lower_handle_t)econnp,
9723 		    &sock_tcp_downcalls, cr, cpid,
9724 		    &econnp->conn_upcalls) == NULL) {
9725 			/* Failed to allocate a socket */
9726 			BUMP_MIB(&lconnp->conn_tcp->tcp_tcps->tcps_mib,
9727 			    tcpEstabResets);
9728 			(void) tcp_eager_blowoff(lconnp->conn_tcp,
9729 			    econnp->conn_tcp->tcp_conn_req_seqnum);
9730 		}
9731 	} else {
9732 		putnext(lconnp->conn_rq, mp);
9733 	}
9734 }
9735 
9736 /*
9737  * Handle a packet that has been reclassified by TCP.
9738  * This function drops the ref on connp that the caller had.
9739  */
9740 static void
9741 tcp_reinput(conn_t *connp, mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst)
9742 {
9743 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
9744 
9745 	if (connp->conn_incoming_ifindex != 0 &&
9746 	    connp->conn_incoming_ifindex != ira->ira_ruifindex) {
9747 		freemsg(mp);
9748 		CONN_DEC_REF(connp);
9749 		return;
9750 	}
9751 
9752 	if (CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss) ||
9753 	    (ira->ira_flags & IRAF_IPSEC_SECURE)) {
9754 		ip6_t *ip6h;
9755 		ipha_t *ipha;
9756 
9757 		if (ira->ira_flags & IRAF_IS_IPV4) {
9758 			ipha = (ipha_t *)mp->b_rptr;
9759 			ip6h = NULL;
9760 		} else {
9761 			ipha = NULL;
9762 			ip6h = (ip6_t *)mp->b_rptr;
9763 		}
9764 		mp = ipsec_check_inbound_policy(mp, connp, ipha, ip6h, ira);
9765 		if (mp == NULL) {
9766 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
9767 			/* Note that mp is NULL */
9768 			ip_drop_input("ipIfStatsInDiscards", mp, NULL);
9769 			CONN_DEC_REF(connp);
9770 			return;
9771 		}
9772 	}
9773 
9774 	if (IPCL_IS_TCP(connp)) {
9775 		/*
9776 		 * do not drain, certain use cases can blow
9777 		 * the stack
9778 		 */
9779 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
9780 		    connp->conn_recv, connp, ira,
9781 		    SQ_NODRAIN, SQTAG_IP_TCP_INPUT);
9782 	} else {
9783 		/* Not TCP; must be SOCK_RAW, IPPROTO_TCP */
9784 		(connp->conn_recv)(connp, mp, NULL,
9785 		    ira);
9786 		CONN_DEC_REF(connp);
9787 	}
9788 
9789 }
9790 
9791 boolean_t tcp_outbound_squeue_switch = B_FALSE;
9792 
9793 /*
9794  * Handle M_DATA messages from IP. Its called directly from IP via
9795  * squeue for received IP packets.
9796  *
9797  * The first argument is always the connp/tcp to which the mp belongs.
9798  * There are no exceptions to this rule. The caller has already put
9799  * a reference on this connp/tcp and once tcp_input_data() returns,
9800  * the squeue will do the refrele.
9801  *
9802  * The TH_SYN for the listener directly go to tcp_input_listener via
9803  * squeue. ICMP errors go directly to tcp_icmp_input().
9804  *
9805  * sqp: NULL = recursive, sqp != NULL means called from squeue
9806  */
9807 void
9808 tcp_input_data(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
9809 {
9810 	int32_t		bytes_acked;
9811 	int32_t		gap;
9812 	mblk_t		*mp1;
9813 	uint_t		flags;
9814 	uint32_t	new_swnd = 0;
9815 	uchar_t		*iphdr;
9816 	uchar_t		*rptr;
9817 	int32_t		rgap;
9818 	uint32_t	seg_ack;
9819 	int		seg_len;
9820 	uint_t		ip_hdr_len;
9821 	uint32_t	seg_seq;
9822 	tcpha_t		*tcpha;
9823 	int		urp;
9824 	tcp_opt_t	tcpopt;
9825 	ip_pkt_t	ipp;
9826 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
9827 	uint32_t	cwnd;
9828 	uint32_t	add;
9829 	int		npkt;
9830 	int		mss;
9831 	conn_t		*connp = (conn_t *)arg;
9832 	squeue_t	*sqp = (squeue_t *)arg2;
9833 	tcp_t		*tcp = connp->conn_tcp;
9834 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9835 
9836 	/*
9837 	 * RST from fused tcp loopback peer should trigger an unfuse.
9838 	 */
9839 	if (tcp->tcp_fused) {
9840 		TCP_STAT(tcps, tcp_fusion_aborted);
9841 		tcp_unfuse(tcp);
9842 	}
9843 
9844 	iphdr = mp->b_rptr;
9845 	rptr = mp->b_rptr;
9846 	ASSERT(OK_32PTR(rptr));
9847 
9848 	ip_hdr_len = ira->ira_ip_hdr_length;
9849 	if (connp->conn_recv_ancillary.crb_all != 0) {
9850 		/*
9851 		 * Record packet information in the ip_pkt_t
9852 		 */
9853 		ipp.ipp_fields = 0;
9854 		if (ira->ira_flags & IRAF_IS_IPV4) {
9855 			(void) ip_find_hdr_v4((ipha_t *)rptr, &ipp,
9856 			    B_FALSE);
9857 		} else {
9858 			uint8_t nexthdrp;
9859 
9860 			/*
9861 			 * IPv6 packets can only be received by applications
9862 			 * that are prepared to receive IPv6 addresses.
9863 			 * The IP fanout must ensure this.
9864 			 */
9865 			ASSERT(connp->conn_family == AF_INET6);
9866 
9867 			(void) ip_find_hdr_v6(mp, (ip6_t *)rptr, B_TRUE, &ipp,
9868 			    &nexthdrp);
9869 			ASSERT(nexthdrp == IPPROTO_TCP);
9870 
9871 			/* Could have caused a pullup? */
9872 			iphdr = mp->b_rptr;
9873 			rptr = mp->b_rptr;
9874 		}
9875 	}
9876 	ASSERT(DB_TYPE(mp) == M_DATA);
9877 	ASSERT(mp->b_next == NULL);
9878 
9879 	tcpha = (tcpha_t *)&rptr[ip_hdr_len];
9880 	seg_seq = ntohl(tcpha->tha_seq);
9881 	seg_ack = ntohl(tcpha->tha_ack);
9882 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
9883 	seg_len = (int)(mp->b_wptr - rptr) -
9884 	    (ip_hdr_len + TCP_HDR_LENGTH(tcpha));
9885 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
9886 		do {
9887 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
9888 			    (uintptr_t)INT_MAX);
9889 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
9890 		} while ((mp1 = mp1->b_cont) != NULL &&
9891 		    mp1->b_datap->db_type == M_DATA);
9892 	}
9893 
9894 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
9895 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
9896 		    seg_len, tcpha, ira);
9897 		return;
9898 	}
9899 
9900 	if (sqp != NULL) {
9901 		/*
9902 		 * This is the correct place to update tcp_last_recv_time. Note
9903 		 * that it is also updated for tcp structure that belongs to
9904 		 * global and listener queues which do not really need updating.
9905 		 * But that should not cause any harm.  And it is updated for
9906 		 * all kinds of incoming segments, not only for data segments.
9907 		 */
9908 		tcp->tcp_last_recv_time = LBOLT_FASTPATH;
9909 	}
9910 
9911 	flags = (unsigned int)tcpha->tha_flags & 0xFF;
9912 
9913 	BUMP_LOCAL(tcp->tcp_ibsegs);
9914 	DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
9915 
9916 	if ((flags & TH_URG) && sqp != NULL) {
9917 		/*
9918 		 * TCP can't handle urgent pointers that arrive before
9919 		 * the connection has been accept()ed since it can't
9920 		 * buffer OOB data.  Discard segment if this happens.
9921 		 *
9922 		 * We can't just rely on a non-null tcp_listener to indicate
9923 		 * that the accept() has completed since unlinking of the
9924 		 * eager and completion of the accept are not atomic.
9925 		 * tcp_detached, when it is not set (B_FALSE) indicates
9926 		 * that the accept() has completed.
9927 		 *
9928 		 * Nor can it reassemble urgent pointers, so discard
9929 		 * if it's not the next segment expected.
9930 		 *
9931 		 * Otherwise, collapse chain into one mblk (discard if
9932 		 * that fails).  This makes sure the headers, retransmitted
9933 		 * data, and new data all are in the same mblk.
9934 		 */
9935 		ASSERT(mp != NULL);
9936 		if (tcp->tcp_detached || !pullupmsg(mp, -1)) {
9937 			freemsg(mp);
9938 			return;
9939 		}
9940 		/* Update pointers into message */
9941 		iphdr = rptr = mp->b_rptr;
9942 		tcpha = (tcpha_t *)&rptr[ip_hdr_len];
9943 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
9944 			/*
9945 			 * Since we can't handle any data with this urgent
9946 			 * pointer that is out of sequence, we expunge
9947 			 * the data.  This allows us to still register
9948 			 * the urgent mark and generate the M_PCSIG,
9949 			 * which we can do.
9950 			 */
9951 			mp->b_wptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha);
9952 			seg_len = 0;
9953 		}
9954 	}
9955 
9956 	switch (tcp->tcp_state) {
9957 	case TCPS_SYN_SENT:
9958 		if (connp->conn_final_sqp == NULL &&
9959 		    tcp_outbound_squeue_switch && sqp != NULL) {
9960 			ASSERT(connp->conn_initial_sqp == connp->conn_sqp);
9961 			connp->conn_final_sqp = sqp;
9962 			if (connp->conn_final_sqp != connp->conn_sqp) {
9963 				DTRACE_PROBE1(conn__final__sqp__switch,
9964 				    conn_t *, connp);
9965 				CONN_INC_REF(connp);
9966 				SQUEUE_SWITCH(connp, connp->conn_final_sqp);
9967 				SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
9968 				    tcp_input_data, connp, ira, ip_squeue_flag,
9969 				    SQTAG_CONNECT_FINISH);
9970 				return;
9971 			}
9972 			DTRACE_PROBE1(conn__final__sqp__same, conn_t *, connp);
9973 		}
9974 		if (flags & TH_ACK) {
9975 			/*
9976 			 * Note that our stack cannot send data before a
9977 			 * connection is established, therefore the
9978 			 * following check is valid.  Otherwise, it has
9979 			 * to be changed.
9980 			 */
9981 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
9982 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
9983 				freemsg(mp);
9984 				if (flags & TH_RST)
9985 					return;
9986 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
9987 				    tcp, seg_ack, 0, TH_RST);
9988 				return;
9989 			}
9990 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
9991 		}
9992 		if (flags & TH_RST) {
9993 			freemsg(mp);
9994 			if (flags & TH_ACK)
9995 				(void) tcp_clean_death(tcp,
9996 				    ECONNREFUSED, 13);
9997 			return;
9998 		}
9999 		if (!(flags & TH_SYN)) {
10000 			freemsg(mp);
10001 			return;
10002 		}
10003 
10004 		/* Process all TCP options. */
10005 		tcp_process_options(tcp, tcpha);
10006 		/*
10007 		 * The following changes our rwnd to be a multiple of the
10008 		 * MIN(peer MSS, our MSS) for performance reason.
10009 		 */
10010 		(void) tcp_rwnd_set(tcp, MSS_ROUNDUP(connp->conn_rcvbuf,
10011 		    tcp->tcp_mss));
10012 
10013 		/* Is the other end ECN capable? */
10014 		if (tcp->tcp_ecn_ok) {
10015 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
10016 				tcp->tcp_ecn_ok = B_FALSE;
10017 			}
10018 		}
10019 		/*
10020 		 * Clear ECN flags because it may interfere with later
10021 		 * processing.
10022 		 */
10023 		flags &= ~(TH_ECE|TH_CWR);
10024 
10025 		tcp->tcp_irs = seg_seq;
10026 		tcp->tcp_rack = seg_seq;
10027 		tcp->tcp_rnxt = seg_seq + 1;
10028 		tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt);
10029 		if (!TCP_IS_DETACHED(tcp)) {
10030 			/* Allocate room for SACK options if needed. */
10031 			connp->conn_wroff = connp->conn_ht_iphc_len;
10032 			if (tcp->tcp_snd_sack_ok)
10033 				connp->conn_wroff += TCPOPT_MAX_SACK_LEN;
10034 			if (!tcp->tcp_loopback)
10035 				connp->conn_wroff += tcps->tcps_wroff_xtra;
10036 
10037 			(void) proto_set_tx_wroff(connp->conn_rq, connp,
10038 			    connp->conn_wroff);
10039 		}
10040 		if (flags & TH_ACK) {
10041 			/*
10042 			 * If we can't get the confirmation upstream, pretend
10043 			 * we didn't even see this one.
10044 			 *
10045 			 * XXX: how can we pretend we didn't see it if we
10046 			 * have updated rnxt et. al.
10047 			 *
10048 			 * For loopback we defer sending up the T_CONN_CON
10049 			 * until after some checks below.
10050 			 */
10051 			mp1 = NULL;
10052 			/*
10053 			 * tcp_sendmsg() checks tcp_state without entering
10054 			 * the squeue so tcp_state should be updated before
10055 			 * sending up connection confirmation
10056 			 */
10057 			tcp->tcp_state = TCPS_ESTABLISHED;
10058 			if (!tcp_conn_con(tcp, iphdr, mp,
10059 			    tcp->tcp_loopback ? &mp1 : NULL, ira)) {
10060 				tcp->tcp_state = TCPS_SYN_SENT;
10061 				freemsg(mp);
10062 				return;
10063 			}
10064 			/* SYN was acked - making progress */
10065 			tcp->tcp_ip_forward_progress = B_TRUE;
10066 
10067 			/* One for the SYN */
10068 			tcp->tcp_suna = tcp->tcp_iss + 1;
10069 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
10070 
10071 			/*
10072 			 * If SYN was retransmitted, need to reset all
10073 			 * retransmission info.  This is because this
10074 			 * segment will be treated as a dup ACK.
10075 			 */
10076 			if (tcp->tcp_rexmit) {
10077 				tcp->tcp_rexmit = B_FALSE;
10078 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
10079 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
10080 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
10081 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
10082 				tcp->tcp_ms_we_have_waited = 0;
10083 
10084 				/*
10085 				 * Set tcp_cwnd back to 1 MSS, per
10086 				 * recommendation from
10087 				 * draft-floyd-incr-init-win-01.txt,
10088 				 * Increasing TCP's Initial Window.
10089 				 */
10090 				tcp->tcp_cwnd = tcp->tcp_mss;
10091 			}
10092 
10093 			tcp->tcp_swl1 = seg_seq;
10094 			tcp->tcp_swl2 = seg_ack;
10095 
10096 			new_swnd = ntohs(tcpha->tha_win);
10097 			tcp->tcp_swnd = new_swnd;
10098 			if (new_swnd > tcp->tcp_max_swnd)
10099 				tcp->tcp_max_swnd = new_swnd;
10100 
10101 			/*
10102 			 * Always send the three-way handshake ack immediately
10103 			 * in order to make the connection complete as soon as
10104 			 * possible on the accepting host.
10105 			 */
10106 			flags |= TH_ACK_NEEDED;
10107 
10108 			/*
10109 			 * Special case for loopback.  At this point we have
10110 			 * received SYN-ACK from the remote endpoint.  In
10111 			 * order to ensure that both endpoints reach the
10112 			 * fused state prior to any data exchange, the final
10113 			 * ACK needs to be sent before we indicate T_CONN_CON
10114 			 * to the module upstream.
10115 			 */
10116 			if (tcp->tcp_loopback) {
10117 				mblk_t *ack_mp;
10118 
10119 				ASSERT(!tcp->tcp_unfusable);
10120 				ASSERT(mp1 != NULL);
10121 				/*
10122 				 * For loopback, we always get a pure SYN-ACK
10123 				 * and only need to send back the final ACK
10124 				 * with no data (this is because the other
10125 				 * tcp is ours and we don't do T/TCP).  This
10126 				 * final ACK triggers the passive side to
10127 				 * perform fusion in ESTABLISHED state.
10128 				 */
10129 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
10130 					if (tcp->tcp_ack_tid != 0) {
10131 						(void) TCP_TIMER_CANCEL(tcp,
10132 						    tcp->tcp_ack_tid);
10133 						tcp->tcp_ack_tid = 0;
10134 					}
10135 					tcp_send_data(tcp, ack_mp);
10136 					BUMP_LOCAL(tcp->tcp_obsegs);
10137 					BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
10138 
10139 					if (!IPCL_IS_NONSTR(connp)) {
10140 						/* Send up T_CONN_CON */
10141 						if (ira->ira_cred != NULL) {
10142 							mblk_setcred(mp1,
10143 							    ira->ira_cred,
10144 							    ira->ira_cpid);
10145 						}
10146 						putnext(connp->conn_rq, mp1);
10147 					} else {
10148 						(*connp->conn_upcalls->
10149 						    su_connected)
10150 						    (connp->conn_upper_handle,
10151 						    tcp->tcp_connid,
10152 						    ira->ira_cred,
10153 						    ira->ira_cpid);
10154 						freemsg(mp1);
10155 					}
10156 
10157 					freemsg(mp);
10158 					return;
10159 				}
10160 				/*
10161 				 * Forget fusion; we need to handle more
10162 				 * complex cases below.  Send the deferred
10163 				 * T_CONN_CON message upstream and proceed
10164 				 * as usual.  Mark this tcp as not capable
10165 				 * of fusion.
10166 				 */
10167 				TCP_STAT(tcps, tcp_fusion_unfusable);
10168 				tcp->tcp_unfusable = B_TRUE;
10169 				if (!IPCL_IS_NONSTR(connp)) {
10170 					if (ira->ira_cred != NULL) {
10171 						mblk_setcred(mp1, ira->ira_cred,
10172 						    ira->ira_cpid);
10173 					}
10174 					putnext(connp->conn_rq, mp1);
10175 				} else {
10176 					(*connp->conn_upcalls->su_connected)
10177 					    (connp->conn_upper_handle,
10178 					    tcp->tcp_connid, ira->ira_cred,
10179 					    ira->ira_cpid);
10180 					freemsg(mp1);
10181 				}
10182 			}
10183 
10184 			/*
10185 			 * Check to see if there is data to be sent.  If
10186 			 * yes, set the transmit flag.  Then check to see
10187 			 * if received data processing needs to be done.
10188 			 * If not, go straight to xmit_check.  This short
10189 			 * cut is OK as we don't support T/TCP.
10190 			 */
10191 			if (tcp->tcp_unsent)
10192 				flags |= TH_XMIT_NEEDED;
10193 
10194 			if (seg_len == 0 && !(flags & TH_URG)) {
10195 				freemsg(mp);
10196 				goto xmit_check;
10197 			}
10198 
10199 			flags &= ~TH_SYN;
10200 			seg_seq++;
10201 			break;
10202 		}
10203 		tcp->tcp_state = TCPS_SYN_RCVD;
10204 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
10205 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
10206 		if (mp1 != NULL) {
10207 			tcp_send_data(tcp, mp1);
10208 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
10209 		}
10210 		freemsg(mp);
10211 		return;
10212 	case TCPS_SYN_RCVD:
10213 		if (flags & TH_ACK) {
10214 			/*
10215 			 * In this state, a SYN|ACK packet is either bogus
10216 			 * because the other side must be ACKing our SYN which
10217 			 * indicates it has seen the ACK for their SYN and
10218 			 * shouldn't retransmit it or we're crossing SYNs
10219 			 * on active open.
10220 			 */
10221 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
10222 				freemsg(mp);
10223 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
10224 				    tcp, seg_ack, 0, TH_RST);
10225 				return;
10226 			}
10227 			/*
10228 			 * NOTE: RFC 793 pg. 72 says this should be
10229 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
10230 			 * but that would mean we have an ack that ignored
10231 			 * our SYN.
10232 			 */
10233 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
10234 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
10235 				freemsg(mp);
10236 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
10237 				    tcp, seg_ack, 0, TH_RST);
10238 				return;
10239 			}
10240 		}
10241 		break;
10242 	case TCPS_LISTEN:
10243 		/*
10244 		 * Only a TLI listener can come through this path when a
10245 		 * acceptor is going back to be a listener and a packet
10246 		 * for the acceptor hits the classifier. For a socket
10247 		 * listener, this can never happen because a listener
10248 		 * can never accept connection on itself and hence a
10249 		 * socket acceptor can not go back to being a listener.
10250 		 */
10251 		ASSERT(!TCP_IS_SOCKET(tcp));
10252 		/*FALLTHRU*/
10253 	case TCPS_CLOSED:
10254 	case TCPS_BOUND: {
10255 		conn_t	*new_connp;
10256 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
10257 
10258 		/*
10259 		 * Don't accept any input on a closed tcp as this TCP logically
10260 		 * does not exist on the system. Don't proceed further with
10261 		 * this TCP. For instance, this packet could trigger another
10262 		 * close of this tcp which would be disastrous for tcp_refcnt.
10263 		 * tcp_close_detached / tcp_clean_death / tcp_closei_local must
10264 		 * be called at most once on a TCP. In this case we need to
10265 		 * refeed the packet into the classifier and figure out where
10266 		 * the packet should go.
10267 		 */
10268 		new_connp = ipcl_classify(mp, ira, ipst);
10269 		if (new_connp != NULL) {
10270 			/* Drops ref on new_connp */
10271 			tcp_reinput(new_connp, mp, ira, ipst);
10272 			return;
10273 		}
10274 		/* We failed to classify. For now just drop the packet */
10275 		freemsg(mp);
10276 		return;
10277 	}
10278 	case TCPS_IDLE:
10279 		/*
10280 		 * Handle the case where the tcp_clean_death() has happened
10281 		 * on a connection (application hasn't closed yet) but a packet
10282 		 * was already queued on squeue before tcp_clean_death()
10283 		 * was processed. Calling tcp_clean_death() twice on same
10284 		 * connection can result in weird behaviour.
10285 		 */
10286 		freemsg(mp);
10287 		return;
10288 	default:
10289 		break;
10290 	}
10291 
10292 	/*
10293 	 * Already on the correct queue/perimeter.
10294 	 * If this is a detached connection and not an eager
10295 	 * connection hanging off a listener then new data
10296 	 * (past the FIN) will cause a reset.
10297 	 * We do a special check here where it
10298 	 * is out of the main line, rather than check
10299 	 * if we are detached every time we see new
10300 	 * data down below.
10301 	 */
10302 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
10303 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
10304 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
10305 		DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
10306 
10307 		freemsg(mp);
10308 		/*
10309 		 * This could be an SSL closure alert. We're detached so just
10310 		 * acknowledge it this last time.
10311 		 */
10312 		if (tcp->tcp_kssl_ctx != NULL) {
10313 			kssl_release_ctx(tcp->tcp_kssl_ctx);
10314 			tcp->tcp_kssl_ctx = NULL;
10315 
10316 			tcp->tcp_rnxt += seg_len;
10317 			tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt);
10318 			flags |= TH_ACK_NEEDED;
10319 			goto ack_check;
10320 		}
10321 
10322 		tcp_xmit_ctl("new data when detached", tcp,
10323 		    tcp->tcp_snxt, 0, TH_RST);
10324 		(void) tcp_clean_death(tcp, EPROTO, 12);
10325 		return;
10326 	}
10327 
10328 	mp->b_rptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha);
10329 	urp = ntohs(tcpha->tha_urp) - TCP_OLD_URP_INTERPRETATION;
10330 	new_swnd = ntohs(tcpha->tha_win) <<
10331 	    ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws);
10332 
10333 	if (tcp->tcp_snd_ts_ok) {
10334 		if (!tcp_paws_check(tcp, tcpha, &tcpopt)) {
10335 			/*
10336 			 * This segment is not acceptable.
10337 			 * Drop it and send back an ACK.
10338 			 */
10339 			freemsg(mp);
10340 			flags |= TH_ACK_NEEDED;
10341 			goto ack_check;
10342 		}
10343 	} else if (tcp->tcp_snd_sack_ok) {
10344 		ASSERT(tcp->tcp_sack_info != NULL);
10345 		tcpopt.tcp = tcp;
10346 		/*
10347 		 * SACK info in already updated in tcp_parse_options.  Ignore
10348 		 * all other TCP options...
10349 		 */
10350 		(void) tcp_parse_options(tcpha, &tcpopt);
10351 	}
10352 try_again:;
10353 	mss = tcp->tcp_mss;
10354 	gap = seg_seq - tcp->tcp_rnxt;
10355 	rgap = tcp->tcp_rwnd - (gap + seg_len);
10356 	/*
10357 	 * gap is the amount of sequence space between what we expect to see
10358 	 * and what we got for seg_seq.  A positive value for gap means
10359 	 * something got lost.  A negative value means we got some old stuff.
10360 	 */
10361 	if (gap < 0) {
10362 		/* Old stuff present.  Is the SYN in there? */
10363 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
10364 		    (seg_len != 0)) {
10365 			flags &= ~TH_SYN;
10366 			seg_seq++;
10367 			urp--;
10368 			/* Recompute the gaps after noting the SYN. */
10369 			goto try_again;
10370 		}
10371 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
10372 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
10373 		    (seg_len > -gap ? -gap : seg_len));
10374 		/* Remove the old stuff from seg_len. */
10375 		seg_len += gap;
10376 		/*
10377 		 * Anything left?
10378 		 * Make sure to check for unack'd FIN when rest of data
10379 		 * has been previously ack'd.
10380 		 */
10381 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
10382 			/*
10383 			 * Resets are only valid if they lie within our offered
10384 			 * window.  If the RST bit is set, we just ignore this
10385 			 * segment.
10386 			 */
10387 			if (flags & TH_RST) {
10388 				freemsg(mp);
10389 				return;
10390 			}
10391 
10392 			/*
10393 			 * The arriving of dup data packets indicate that we
10394 			 * may have postponed an ack for too long, or the other
10395 			 * side's RTT estimate is out of shape. Start acking
10396 			 * more often.
10397 			 */
10398 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
10399 			    tcp->tcp_rack_cnt >= 1 &&
10400 			    tcp->tcp_rack_abs_max > 2) {
10401 				tcp->tcp_rack_abs_max--;
10402 			}
10403 			tcp->tcp_rack_cur_max = 1;
10404 
10405 			/*
10406 			 * This segment is "unacceptable".  None of its
10407 			 * sequence space lies within our advertized window.
10408 			 *
10409 			 * Adjust seg_len to the original value for tracing.
10410 			 */
10411 			seg_len -= gap;
10412 			if (connp->conn_debug) {
10413 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
10414 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
10415 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
10416 				    "seg_len %d, rnxt %u, snxt %u, %s",
10417 				    gap, rgap, flags, seg_seq, seg_ack,
10418 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
10419 				    tcp_display(tcp, NULL,
10420 				    DISP_ADDR_AND_PORT));
10421 			}
10422 
10423 			/*
10424 			 * Arrange to send an ACK in response to the
10425 			 * unacceptable segment per RFC 793 page 69. There
10426 			 * is only one small difference between ours and the
10427 			 * acceptability test in the RFC - we accept ACK-only
10428 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
10429 			 * will be generated.
10430 			 *
10431 			 * Note that we have to ACK an ACK-only packet at least
10432 			 * for stacks that send 0-length keep-alives with
10433 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
10434 			 * section 4.2.3.6. As long as we don't ever generate
10435 			 * an unacceptable packet in response to an incoming
10436 			 * packet that is unacceptable, it should not cause
10437 			 * "ACK wars".
10438 			 */
10439 			flags |=  TH_ACK_NEEDED;
10440 
10441 			/*
10442 			 * Continue processing this segment in order to use the
10443 			 * ACK information it contains, but skip all other
10444 			 * sequence-number processing.	Processing the ACK
10445 			 * information is necessary in order to
10446 			 * re-synchronize connections that may have lost
10447 			 * synchronization.
10448 			 *
10449 			 * We clear seg_len and flag fields related to
10450 			 * sequence number processing as they are not
10451 			 * to be trusted for an unacceptable segment.
10452 			 */
10453 			seg_len = 0;
10454 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
10455 			goto process_ack;
10456 		}
10457 
10458 		/* Fix seg_seq, and chew the gap off the front. */
10459 		seg_seq = tcp->tcp_rnxt;
10460 		urp += gap;
10461 		do {
10462 			mblk_t	*mp2;
10463 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
10464 			    (uintptr_t)UINT_MAX);
10465 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
10466 			if (gap > 0) {
10467 				mp->b_rptr = mp->b_wptr - gap;
10468 				break;
10469 			}
10470 			mp2 = mp;
10471 			mp = mp->b_cont;
10472 			freeb(mp2);
10473 		} while (gap < 0);
10474 		/*
10475 		 * If the urgent data has already been acknowledged, we
10476 		 * should ignore TH_URG below
10477 		 */
10478 		if (urp < 0)
10479 			flags &= ~TH_URG;
10480 	}
10481 	/*
10482 	 * rgap is the amount of stuff received out of window.  A negative
10483 	 * value is the amount out of window.
10484 	 */
10485 	if (rgap < 0) {
10486 		mblk_t	*mp2;
10487 
10488 		if (tcp->tcp_rwnd == 0) {
10489 			BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe);
10490 		} else {
10491 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
10492 			UPDATE_MIB(&tcps->tcps_mib,
10493 			    tcpInDataPastWinBytes, -rgap);
10494 		}
10495 
10496 		/*
10497 		 * seg_len does not include the FIN, so if more than
10498 		 * just the FIN is out of window, we act like we don't
10499 		 * see it.  (If just the FIN is out of window, rgap
10500 		 * will be zero and we will go ahead and acknowledge
10501 		 * the FIN.)
10502 		 */
10503 		flags &= ~TH_FIN;
10504 
10505 		/* Fix seg_len and make sure there is something left. */
10506 		seg_len += rgap;
10507 		if (seg_len <= 0) {
10508 			/*
10509 			 * Resets are only valid if they lie within our offered
10510 			 * window.  If the RST bit is set, we just ignore this
10511 			 * segment.
10512 			 */
10513 			if (flags & TH_RST) {
10514 				freemsg(mp);
10515 				return;
10516 			}
10517 
10518 			/* Per RFC 793, we need to send back an ACK. */
10519 			flags |= TH_ACK_NEEDED;
10520 
10521 			/*
10522 			 * Send SIGURG as soon as possible i.e. even
10523 			 * if the TH_URG was delivered in a window probe
10524 			 * packet (which will be unacceptable).
10525 			 *
10526 			 * We generate a signal if none has been generated
10527 			 * for this connection or if this is a new urgent
10528 			 * byte. Also send a zero-length "unmarked" message
10529 			 * to inform SIOCATMARK that this is not the mark.
10530 			 *
10531 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
10532 			 * is sent up. This plus the check for old data
10533 			 * (gap >= 0) handles the wraparound of the sequence
10534 			 * number space without having to always track the
10535 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
10536 			 * this max in its rcv_up variable).
10537 			 *
10538 			 * This prevents duplicate SIGURGS due to a "late"
10539 			 * zero-window probe when the T_EXDATA_IND has already
10540 			 * been sent up.
10541 			 */
10542 			if ((flags & TH_URG) &&
10543 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
10544 			    tcp->tcp_urp_last))) {
10545 				if (IPCL_IS_NONSTR(connp)) {
10546 					if (!TCP_IS_DETACHED(tcp)) {
10547 						(*connp->conn_upcalls->
10548 						    su_signal_oob)
10549 						    (connp->conn_upper_handle,
10550 						    urp);
10551 					}
10552 				} else {
10553 					mp1 = allocb(0, BPRI_MED);
10554 					if (mp1 == NULL) {
10555 						freemsg(mp);
10556 						return;
10557 					}
10558 					if (!TCP_IS_DETACHED(tcp) &&
10559 					    !putnextctl1(connp->conn_rq,
10560 					    M_PCSIG, SIGURG)) {
10561 						/* Try again on the rexmit. */
10562 						freemsg(mp1);
10563 						freemsg(mp);
10564 						return;
10565 					}
10566 					/*
10567 					 * If the next byte would be the mark
10568 					 * then mark with MARKNEXT else mark
10569 					 * with NOTMARKNEXT.
10570 					 */
10571 					if (gap == 0 && urp == 0)
10572 						mp1->b_flag |= MSGMARKNEXT;
10573 					else
10574 						mp1->b_flag |= MSGNOTMARKNEXT;
10575 					freemsg(tcp->tcp_urp_mark_mp);
10576 					tcp->tcp_urp_mark_mp = mp1;
10577 					flags |= TH_SEND_URP_MARK;
10578 				}
10579 				tcp->tcp_urp_last_valid = B_TRUE;
10580 				tcp->tcp_urp_last = urp + seg_seq;
10581 			}
10582 			/*
10583 			 * If this is a zero window probe, continue to
10584 			 * process the ACK part.  But we need to set seg_len
10585 			 * to 0 to avoid data processing.  Otherwise just
10586 			 * drop the segment and send back an ACK.
10587 			 */
10588 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
10589 				flags &= ~(TH_SYN | TH_URG);
10590 				seg_len = 0;
10591 				goto process_ack;
10592 			} else {
10593 				freemsg(mp);
10594 				goto ack_check;
10595 			}
10596 		}
10597 		/* Pitch out of window stuff off the end. */
10598 		rgap = seg_len;
10599 		mp2 = mp;
10600 		do {
10601 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
10602 			    (uintptr_t)INT_MAX);
10603 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
10604 			if (rgap < 0) {
10605 				mp2->b_wptr += rgap;
10606 				if ((mp1 = mp2->b_cont) != NULL) {
10607 					mp2->b_cont = NULL;
10608 					freemsg(mp1);
10609 				}
10610 				break;
10611 			}
10612 		} while ((mp2 = mp2->b_cont) != NULL);
10613 	}
10614 ok:;
10615 	/*
10616 	 * TCP should check ECN info for segments inside the window only.
10617 	 * Therefore the check should be done here.
10618 	 */
10619 	if (tcp->tcp_ecn_ok) {
10620 		if (flags & TH_CWR) {
10621 			tcp->tcp_ecn_echo_on = B_FALSE;
10622 		}
10623 		/*
10624 		 * Note that both ECN_CE and CWR can be set in the
10625 		 * same segment.  In this case, we once again turn
10626 		 * on ECN_ECHO.
10627 		 */
10628 		if (connp->conn_ipversion == IPV4_VERSION) {
10629 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
10630 
10631 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
10632 				tcp->tcp_ecn_echo_on = B_TRUE;
10633 			}
10634 		} else {
10635 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
10636 
10637 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
10638 			    htonl(IPH_ECN_CE << 20)) {
10639 				tcp->tcp_ecn_echo_on = B_TRUE;
10640 			}
10641 		}
10642 	}
10643 
10644 	/*
10645 	 * Check whether we can update tcp_ts_recent.  This test is
10646 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
10647 	 * Extensions for High Performance: An Update", Internet Draft.
10648 	 */
10649 	if (tcp->tcp_snd_ts_ok &&
10650 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
10651 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
10652 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
10653 		tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64();
10654 	}
10655 
10656 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
10657 		/*
10658 		 * FIN in an out of order segment.  We record this in
10659 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
10660 		 * Clear the FIN so that any check on FIN flag will fail.
10661 		 * Remember that FIN also counts in the sequence number
10662 		 * space.  So we need to ack out of order FIN only segments.
10663 		 */
10664 		if (flags & TH_FIN) {
10665 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
10666 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
10667 			flags &= ~TH_FIN;
10668 			flags |= TH_ACK_NEEDED;
10669 		}
10670 		if (seg_len > 0) {
10671 			/* Fill in the SACK blk list. */
10672 			if (tcp->tcp_snd_sack_ok) {
10673 				ASSERT(tcp->tcp_sack_info != NULL);
10674 				tcp_sack_insert(tcp->tcp_sack_list,
10675 				    seg_seq, seg_seq + seg_len,
10676 				    &(tcp->tcp_num_sack_blk));
10677 			}
10678 
10679 			/*
10680 			 * Attempt reassembly and see if we have something
10681 			 * ready to go.
10682 			 */
10683 			mp = tcp_reass(tcp, mp, seg_seq);
10684 			/* Always ack out of order packets */
10685 			flags |= TH_ACK_NEEDED | TH_PUSH;
10686 			if (mp) {
10687 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
10688 				    (uintptr_t)INT_MAX);
10689 				seg_len = mp->b_cont ? msgdsize(mp) :
10690 				    (int)(mp->b_wptr - mp->b_rptr);
10691 				seg_seq = tcp->tcp_rnxt;
10692 				/*
10693 				 * A gap is filled and the seq num and len
10694 				 * of the gap match that of a previously
10695 				 * received FIN, put the FIN flag back in.
10696 				 */
10697 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
10698 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
10699 					flags |= TH_FIN;
10700 					tcp->tcp_valid_bits &=
10701 					    ~TCP_OFO_FIN_VALID;
10702 				}
10703 			} else {
10704 				/*
10705 				 * Keep going even with NULL mp.
10706 				 * There may be a useful ACK or something else
10707 				 * we don't want to miss.
10708 				 *
10709 				 * But TCP should not perform fast retransmit
10710 				 * because of the ack number.  TCP uses
10711 				 * seg_len == 0 to determine if it is a pure
10712 				 * ACK.  And this is not a pure ACK.
10713 				 */
10714 				seg_len = 0;
10715 				ofo_seg = B_TRUE;
10716 			}
10717 		}
10718 	} else if (seg_len > 0) {
10719 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
10720 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
10721 		/*
10722 		 * If an out of order FIN was received before, and the seq
10723 		 * num and len of the new segment match that of the FIN,
10724 		 * put the FIN flag back in.
10725 		 */
10726 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
10727 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
10728 			flags |= TH_FIN;
10729 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
10730 		}
10731 	}
10732 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
10733 	if (flags & TH_RST) {
10734 		freemsg(mp);
10735 		switch (tcp->tcp_state) {
10736 		case TCPS_SYN_RCVD:
10737 			(void) tcp_clean_death(tcp, ECONNREFUSED, 14);
10738 			break;
10739 		case TCPS_ESTABLISHED:
10740 		case TCPS_FIN_WAIT_1:
10741 		case TCPS_FIN_WAIT_2:
10742 		case TCPS_CLOSE_WAIT:
10743 			(void) tcp_clean_death(tcp, ECONNRESET, 15);
10744 			break;
10745 		case TCPS_CLOSING:
10746 		case TCPS_LAST_ACK:
10747 			(void) tcp_clean_death(tcp, 0, 16);
10748 			break;
10749 		default:
10750 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
10751 			(void) tcp_clean_death(tcp, ENXIO, 17);
10752 			break;
10753 		}
10754 		return;
10755 	}
10756 	if (flags & TH_SYN) {
10757 		/*
10758 		 * See RFC 793, Page 71
10759 		 *
10760 		 * The seq number must be in the window as it should
10761 		 * be "fixed" above.  If it is outside window, it should
10762 		 * be already rejected.  Note that we allow seg_seq to be
10763 		 * rnxt + rwnd because we want to accept 0 window probe.
10764 		 */
10765 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
10766 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
10767 		freemsg(mp);
10768 		/*
10769 		 * If the ACK flag is not set, just use our snxt as the
10770 		 * seq number of the RST segment.
10771 		 */
10772 		if (!(flags & TH_ACK)) {
10773 			seg_ack = tcp->tcp_snxt;
10774 		}
10775 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
10776 		    TH_RST|TH_ACK);
10777 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
10778 		(void) tcp_clean_death(tcp, ECONNRESET, 18);
10779 		return;
10780 	}
10781 	/*
10782 	 * urp could be -1 when the urp field in the packet is 0
10783 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
10784 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
10785 	 */
10786 	if (flags & TH_URG && urp >= 0) {
10787 		if (!tcp->tcp_urp_last_valid ||
10788 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
10789 			/*
10790 			 * Non-STREAMS sockets handle the urgent data a litte
10791 			 * differently from STREAMS based sockets. There is no
10792 			 * need to mark any mblks with the MSG{NOT,}MARKNEXT
10793 			 * flags to keep SIOCATMARK happy. Instead a
10794 			 * su_signal_oob upcall is made to update the mark.
10795 			 * Neither is a T_EXDATA_IND mblk needed to be
10796 			 * prepended to the urgent data. The urgent data is
10797 			 * delivered using the su_recv upcall, where we set
10798 			 * the MSG_OOB flag to indicate that it is urg data.
10799 			 *
10800 			 * Neither TH_SEND_URP_MARK nor TH_MARKNEXT_NEEDED
10801 			 * are used by non-STREAMS sockets.
10802 			 */
10803 			if (IPCL_IS_NONSTR(connp)) {
10804 				if (!TCP_IS_DETACHED(tcp)) {
10805 					(*connp->conn_upcalls->su_signal_oob)
10806 					    (connp->conn_upper_handle, urp);
10807 				}
10808 			} else {
10809 				/*
10810 				 * If we haven't generated the signal yet for
10811 				 * this urgent pointer value, do it now.  Also,
10812 				 * send up a zero-length M_DATA indicating
10813 				 * whether or not this is the mark. The latter
10814 				 * is not needed when a T_EXDATA_IND is sent up.
10815 				 * However, if there are allocation failures
10816 				 * this code relies on the sender retransmitting
10817 				 * and the socket code for determining the mark
10818 				 * should not block waiting for the peer to
10819 				 * transmit. Thus, for simplicity we always
10820 				 * send up the mark indication.
10821 				 */
10822 				mp1 = allocb(0, BPRI_MED);
10823 				if (mp1 == NULL) {
10824 					freemsg(mp);
10825 					return;
10826 				}
10827 				if (!TCP_IS_DETACHED(tcp) &&
10828 				    !putnextctl1(connp->conn_rq, M_PCSIG,
10829 				    SIGURG)) {
10830 					/* Try again on the rexmit. */
10831 					freemsg(mp1);
10832 					freemsg(mp);
10833 					return;
10834 				}
10835 				/*
10836 				 * Mark with NOTMARKNEXT for now.
10837 				 * The code below will change this to MARKNEXT
10838 				 * if we are at the mark.
10839 				 *
10840 				 * If there are allocation failures (e.g. in
10841 				 * dupmsg below) the next time tcp_rput_data
10842 				 * sees the urgent segment it will send up the
10843 				 * MSGMARKNEXT message.
10844 				 */
10845 				mp1->b_flag |= MSGNOTMARKNEXT;
10846 				freemsg(tcp->tcp_urp_mark_mp);
10847 				tcp->tcp_urp_mark_mp = mp1;
10848 				flags |= TH_SEND_URP_MARK;
10849 #ifdef DEBUG
10850 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
10851 				    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
10852 				    "last %x, %s",
10853 				    seg_seq, urp, tcp->tcp_urp_last,
10854 				    tcp_display(tcp, NULL, DISP_PORT_ONLY));
10855 #endif /* DEBUG */
10856 			}
10857 			tcp->tcp_urp_last_valid = B_TRUE;
10858 			tcp->tcp_urp_last = urp + seg_seq;
10859 		} else if (tcp->tcp_urp_mark_mp != NULL) {
10860 			/*
10861 			 * An allocation failure prevented the previous
10862 			 * tcp_input_data from sending up the allocated
10863 			 * MSG*MARKNEXT message - send it up this time
10864 			 * around.
10865 			 */
10866 			flags |= TH_SEND_URP_MARK;
10867 		}
10868 
10869 		/*
10870 		 * If the urgent byte is in this segment, make sure that it is
10871 		 * all by itself.  This makes it much easier to deal with the
10872 		 * possibility of an allocation failure on the T_exdata_ind.
10873 		 * Note that seg_len is the number of bytes in the segment, and
10874 		 * urp is the offset into the segment of the urgent byte.
10875 		 * urp < seg_len means that the urgent byte is in this segment.
10876 		 */
10877 		if (urp < seg_len) {
10878 			if (seg_len != 1) {
10879 				uint32_t  tmp_rnxt;
10880 				/*
10881 				 * Break it up and feed it back in.
10882 				 * Re-attach the IP header.
10883 				 */
10884 				mp->b_rptr = iphdr;
10885 				if (urp > 0) {
10886 					/*
10887 					 * There is stuff before the urgent
10888 					 * byte.
10889 					 */
10890 					mp1 = dupmsg(mp);
10891 					if (!mp1) {
10892 						/*
10893 						 * Trim from urgent byte on.
10894 						 * The rest will come back.
10895 						 */
10896 						(void) adjmsg(mp,
10897 						    urp - seg_len);
10898 						tcp_input_data(connp,
10899 						    mp, NULL, ira);
10900 						return;
10901 					}
10902 					(void) adjmsg(mp1, urp - seg_len);
10903 					/* Feed this piece back in. */
10904 					tmp_rnxt = tcp->tcp_rnxt;
10905 					tcp_input_data(connp, mp1, NULL, ira);
10906 					/*
10907 					 * If the data passed back in was not
10908 					 * processed (ie: bad ACK) sending
10909 					 * the remainder back in will cause a
10910 					 * loop. In this case, drop the
10911 					 * packet and let the sender try
10912 					 * sending a good packet.
10913 					 */
10914 					if (tmp_rnxt == tcp->tcp_rnxt) {
10915 						freemsg(mp);
10916 						return;
10917 					}
10918 				}
10919 				if (urp != seg_len - 1) {
10920 					uint32_t  tmp_rnxt;
10921 					/*
10922 					 * There is stuff after the urgent
10923 					 * byte.
10924 					 */
10925 					mp1 = dupmsg(mp);
10926 					if (!mp1) {
10927 						/*
10928 						 * Trim everything beyond the
10929 						 * urgent byte.  The rest will
10930 						 * come back.
10931 						 */
10932 						(void) adjmsg(mp,
10933 						    urp + 1 - seg_len);
10934 						tcp_input_data(connp,
10935 						    mp, NULL, ira);
10936 						return;
10937 					}
10938 					(void) adjmsg(mp1, urp + 1 - seg_len);
10939 					tmp_rnxt = tcp->tcp_rnxt;
10940 					tcp_input_data(connp, mp1, NULL, ira);
10941 					/*
10942 					 * If the data passed back in was not
10943 					 * processed (ie: bad ACK) sending
10944 					 * the remainder back in will cause a
10945 					 * loop. In this case, drop the
10946 					 * packet and let the sender try
10947 					 * sending a good packet.
10948 					 */
10949 					if (tmp_rnxt == tcp->tcp_rnxt) {
10950 						freemsg(mp);
10951 						return;
10952 					}
10953 				}
10954 				tcp_input_data(connp, mp, NULL, ira);
10955 				return;
10956 			}
10957 			/*
10958 			 * This segment contains only the urgent byte.  We
10959 			 * have to allocate the T_exdata_ind, if we can.
10960 			 */
10961 			if (IPCL_IS_NONSTR(connp)) {
10962 				int error;
10963 
10964 				(*connp->conn_upcalls->su_recv)
10965 				    (connp->conn_upper_handle, mp, seg_len,
10966 				    MSG_OOB, &error, NULL);
10967 				/*
10968 				 * We should never be in middle of a
10969 				 * fallback, the squeue guarantees that.
10970 				 */
10971 				ASSERT(error != EOPNOTSUPP);
10972 				mp = NULL;
10973 				goto update_ack;
10974 			} else if (!tcp->tcp_urp_mp) {
10975 				struct T_exdata_ind *tei;
10976 				mp1 = allocb(sizeof (struct T_exdata_ind),
10977 				    BPRI_MED);
10978 				if (!mp1) {
10979 					/*
10980 					 * Sigh... It'll be back.
10981 					 * Generate any MSG*MARK message now.
10982 					 */
10983 					freemsg(mp);
10984 					seg_len = 0;
10985 					if (flags & TH_SEND_URP_MARK) {
10986 
10987 
10988 						ASSERT(tcp->tcp_urp_mark_mp);
10989 						tcp->tcp_urp_mark_mp->b_flag &=
10990 						    ~MSGNOTMARKNEXT;
10991 						tcp->tcp_urp_mark_mp->b_flag |=
10992 						    MSGMARKNEXT;
10993 					}
10994 					goto ack_check;
10995 				}
10996 				mp1->b_datap->db_type = M_PROTO;
10997 				tei = (struct T_exdata_ind *)mp1->b_rptr;
10998 				tei->PRIM_type = T_EXDATA_IND;
10999 				tei->MORE_flag = 0;
11000 				mp1->b_wptr = (uchar_t *)&tei[1];
11001 				tcp->tcp_urp_mp = mp1;
11002 #ifdef DEBUG
11003 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
11004 				    "tcp_rput: allocated exdata_ind %s",
11005 				    tcp_display(tcp, NULL,
11006 				    DISP_PORT_ONLY));
11007 #endif /* DEBUG */
11008 				/*
11009 				 * There is no need to send a separate MSG*MARK
11010 				 * message since the T_EXDATA_IND will be sent
11011 				 * now.
11012 				 */
11013 				flags &= ~TH_SEND_URP_MARK;
11014 				freemsg(tcp->tcp_urp_mark_mp);
11015 				tcp->tcp_urp_mark_mp = NULL;
11016 			}
11017 			/*
11018 			 * Now we are all set.  On the next putnext upstream,
11019 			 * tcp_urp_mp will be non-NULL and will get prepended
11020 			 * to what has to be this piece containing the urgent
11021 			 * byte.  If for any reason we abort this segment below,
11022 			 * if it comes back, we will have this ready, or it
11023 			 * will get blown off in close.
11024 			 */
11025 		} else if (urp == seg_len) {
11026 			/*
11027 			 * The urgent byte is the next byte after this sequence
11028 			 * number. If this endpoint is non-STREAMS, then there
11029 			 * is nothing to do here since the socket has already
11030 			 * been notified about the urg pointer by the
11031 			 * su_signal_oob call above.
11032 			 *
11033 			 * In case of STREAMS, some more work might be needed.
11034 			 * If there is data it is marked with MSGMARKNEXT and
11035 			 * and any tcp_urp_mark_mp is discarded since it is not
11036 			 * needed. Otherwise, if the code above just allocated
11037 			 * a zero-length tcp_urp_mark_mp message, that message
11038 			 * is tagged with MSGMARKNEXT. Sending up these
11039 			 * MSGMARKNEXT messages makes SIOCATMARK work correctly
11040 			 * even though the T_EXDATA_IND will not be sent up
11041 			 * until the urgent byte arrives.
11042 			 */
11043 			if (!IPCL_IS_NONSTR(tcp->tcp_connp)) {
11044 				if (seg_len != 0) {
11045 					flags |= TH_MARKNEXT_NEEDED;
11046 					freemsg(tcp->tcp_urp_mark_mp);
11047 					tcp->tcp_urp_mark_mp = NULL;
11048 					flags &= ~TH_SEND_URP_MARK;
11049 				} else if (tcp->tcp_urp_mark_mp != NULL) {
11050 					flags |= TH_SEND_URP_MARK;
11051 					tcp->tcp_urp_mark_mp->b_flag &=
11052 					    ~MSGNOTMARKNEXT;
11053 					tcp->tcp_urp_mark_mp->b_flag |=
11054 					    MSGMARKNEXT;
11055 				}
11056 			}
11057 #ifdef DEBUG
11058 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
11059 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
11060 			    seg_len, flags,
11061 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
11062 #endif /* DEBUG */
11063 		}
11064 #ifdef DEBUG
11065 		else {
11066 			/* Data left until we hit mark */
11067 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
11068 			    "tcp_rput: URP %d bytes left, %s",
11069 			    urp - seg_len, tcp_display(tcp, NULL,
11070 			    DISP_PORT_ONLY));
11071 		}
11072 #endif /* DEBUG */
11073 	}
11074 
11075 process_ack:
11076 	if (!(flags & TH_ACK)) {
11077 		freemsg(mp);
11078 		goto xmit_check;
11079 	}
11080 	}
11081 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
11082 
11083 	if (bytes_acked > 0)
11084 		tcp->tcp_ip_forward_progress = B_TRUE;
11085 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
11086 		if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) &&
11087 		    ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) {
11088 			/* 3-way handshake complete - pass up the T_CONN_IND */
11089 			tcp_t	*listener = tcp->tcp_listener;
11090 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
11091 
11092 			tcp->tcp_tconnind_started = B_TRUE;
11093 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
11094 			/*
11095 			 * We are here means eager is fine but it can
11096 			 * get a TH_RST at any point between now and till
11097 			 * accept completes and disappear. We need to
11098 			 * ensure that reference to eager is valid after
11099 			 * we get out of eager's perimeter. So we do
11100 			 * an extra refhold.
11101 			 */
11102 			CONN_INC_REF(connp);
11103 
11104 			/*
11105 			 * The listener also exists because of the refhold
11106 			 * done in tcp_input_listener. Its possible that it
11107 			 * might have closed. We will check that once we
11108 			 * get inside listeners context.
11109 			 */
11110 			CONN_INC_REF(listener->tcp_connp);
11111 			if (listener->tcp_connp->conn_sqp ==
11112 			    connp->conn_sqp) {
11113 				/*
11114 				 * We optimize by not calling an SQUEUE_ENTER
11115 				 * on the listener since we know that the
11116 				 * listener and eager squeues are the same.
11117 				 * We are able to make this check safely only
11118 				 * because neither the eager nor the listener
11119 				 * can change its squeue. Only an active connect
11120 				 * can change its squeue
11121 				 */
11122 				tcp_send_conn_ind(listener->tcp_connp, mp,
11123 				    listener->tcp_connp->conn_sqp);
11124 				CONN_DEC_REF(listener->tcp_connp);
11125 			} else if (!tcp->tcp_loopback) {
11126 				SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp,
11127 				    mp, tcp_send_conn_ind,
11128 				    listener->tcp_connp, NULL, SQ_FILL,
11129 				    SQTAG_TCP_CONN_IND);
11130 			} else {
11131 				SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp,
11132 				    mp, tcp_send_conn_ind,
11133 				    listener->tcp_connp, NULL, SQ_PROCESS,
11134 				    SQTAG_TCP_CONN_IND);
11135 			}
11136 		}
11137 
11138 		/*
11139 		 * We are seeing the final ack in the three way
11140 		 * hand shake of a active open'ed connection
11141 		 * so we must send up a T_CONN_CON
11142 		 *
11143 		 * tcp_sendmsg() checks tcp_state without entering
11144 		 * the squeue so tcp_state should be updated before
11145 		 * sending up connection confirmation.
11146 		 */
11147 		tcp->tcp_state = TCPS_ESTABLISHED;
11148 		if (tcp->tcp_active_open) {
11149 			if (!tcp_conn_con(tcp, iphdr, mp, NULL, ira)) {
11150 				freemsg(mp);
11151 				tcp->tcp_state = TCPS_SYN_RCVD;
11152 				return;
11153 			}
11154 			/*
11155 			 * Don't fuse the loopback endpoints for
11156 			 * simultaneous active opens.
11157 			 */
11158 			if (tcp->tcp_loopback) {
11159 				TCP_STAT(tcps, tcp_fusion_unfusable);
11160 				tcp->tcp_unfusable = B_TRUE;
11161 			}
11162 		}
11163 
11164 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
11165 		bytes_acked--;
11166 		/* SYN was acked - making progress */
11167 		tcp->tcp_ip_forward_progress = B_TRUE;
11168 
11169 		/*
11170 		 * If SYN was retransmitted, need to reset all
11171 		 * retransmission info as this segment will be
11172 		 * treated as a dup ACK.
11173 		 */
11174 		if (tcp->tcp_rexmit) {
11175 			tcp->tcp_rexmit = B_FALSE;
11176 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
11177 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
11178 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
11179 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
11180 			tcp->tcp_ms_we_have_waited = 0;
11181 			tcp->tcp_cwnd = mss;
11182 		}
11183 
11184 		/*
11185 		 * We set the send window to zero here.
11186 		 * This is needed if there is data to be
11187 		 * processed already on the queue.
11188 		 * Later (at swnd_update label), the
11189 		 * "new_swnd > tcp_swnd" condition is satisfied
11190 		 * the XMIT_NEEDED flag is set in the current
11191 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
11192 		 * called if there is already data on queue in
11193 		 * this state.
11194 		 */
11195 		tcp->tcp_swnd = 0;
11196 
11197 		if (new_swnd > tcp->tcp_max_swnd)
11198 			tcp->tcp_max_swnd = new_swnd;
11199 		tcp->tcp_swl1 = seg_seq;
11200 		tcp->tcp_swl2 = seg_ack;
11201 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
11202 
11203 		/* Fuse when both sides are in ESTABLISHED state */
11204 		if (tcp->tcp_loopback && do_tcp_fusion)
11205 			tcp_fuse(tcp, iphdr, tcpha);
11206 
11207 	}
11208 	/* This code follows 4.4BSD-Lite2 mostly. */
11209 	if (bytes_acked < 0)
11210 		goto est;
11211 
11212 	/*
11213 	 * If TCP is ECN capable and the congestion experience bit is
11214 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
11215 	 * done once per window (or more loosely, per RTT).
11216 	 */
11217 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
11218 		tcp->tcp_cwr = B_FALSE;
11219 	if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
11220 		if (!tcp->tcp_cwr) {
11221 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss;
11222 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
11223 			tcp->tcp_cwnd = npkt * mss;
11224 			/*
11225 			 * If the cwnd is 0, use the timer to clock out
11226 			 * new segments.  This is required by the ECN spec.
11227 			 */
11228 			if (npkt == 0) {
11229 				TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
11230 				/*
11231 				 * This makes sure that when the ACK comes
11232 				 * back, we will increase tcp_cwnd by 1 MSS.
11233 				 */
11234 				tcp->tcp_cwnd_cnt = 0;
11235 			}
11236 			tcp->tcp_cwr = B_TRUE;
11237 			/*
11238 			 * This marks the end of the current window of in
11239 			 * flight data.  That is why we don't use
11240 			 * tcp_suna + tcp_swnd.  Only data in flight can
11241 			 * provide ECN info.
11242 			 */
11243 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
11244 			tcp->tcp_ecn_cwr_sent = B_FALSE;
11245 		}
11246 	}
11247 
11248 	mp1 = tcp->tcp_xmit_head;
11249 	if (bytes_acked == 0) {
11250 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
11251 			int dupack_cnt;
11252 
11253 			BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
11254 			/*
11255 			 * Fast retransmit.  When we have seen exactly three
11256 			 * identical ACKs while we have unacked data
11257 			 * outstanding we take it as a hint that our peer
11258 			 * dropped something.
11259 			 *
11260 			 * If TCP is retransmitting, don't do fast retransmit.
11261 			 */
11262 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
11263 			    ! tcp->tcp_rexmit) {
11264 				/* Do Limited Transmit */
11265 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
11266 				    tcps->tcps_dupack_fast_retransmit) {
11267 					/*
11268 					 * RFC 3042
11269 					 *
11270 					 * What we need to do is temporarily
11271 					 * increase tcp_cwnd so that new
11272 					 * data can be sent if it is allowed
11273 					 * by the receive window (tcp_rwnd).
11274 					 * tcp_wput_data() will take care of
11275 					 * the rest.
11276 					 *
11277 					 * If the connection is SACK capable,
11278 					 * only do limited xmit when there
11279 					 * is SACK info.
11280 					 *
11281 					 * Note how tcp_cwnd is incremented.
11282 					 * The first dup ACK will increase
11283 					 * it by 1 MSS.  The second dup ACK
11284 					 * will increase it by 2 MSS.  This
11285 					 * means that only 1 new segment will
11286 					 * be sent for each dup ACK.
11287 					 */
11288 					if (tcp->tcp_unsent > 0 &&
11289 					    (!tcp->tcp_snd_sack_ok ||
11290 					    (tcp->tcp_snd_sack_ok &&
11291 					    tcp->tcp_notsack_list != NULL))) {
11292 						tcp->tcp_cwnd += mss <<
11293 						    (tcp->tcp_dupack_cnt - 1);
11294 						flags |= TH_LIMIT_XMIT;
11295 					}
11296 				} else if (dupack_cnt ==
11297 				    tcps->tcps_dupack_fast_retransmit) {
11298 
11299 				/*
11300 				 * If we have reduced tcp_ssthresh
11301 				 * because of ECN, do not reduce it again
11302 				 * unless it is already one window of data
11303 				 * away.  After one window of data, tcp_cwr
11304 				 * should then be cleared.  Note that
11305 				 * for non ECN capable connection, tcp_cwr
11306 				 * should always be false.
11307 				 *
11308 				 * Adjust cwnd since the duplicate
11309 				 * ack indicates that a packet was
11310 				 * dropped (due to congestion.)
11311 				 */
11312 				if (!tcp->tcp_cwr) {
11313 					npkt = ((tcp->tcp_snxt -
11314 					    tcp->tcp_suna) >> 1) / mss;
11315 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
11316 					    mss;
11317 					tcp->tcp_cwnd = (npkt +
11318 					    tcp->tcp_dupack_cnt) * mss;
11319 				}
11320 				if (tcp->tcp_ecn_ok) {
11321 					tcp->tcp_cwr = B_TRUE;
11322 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
11323 					tcp->tcp_ecn_cwr_sent = B_FALSE;
11324 				}
11325 
11326 				/*
11327 				 * We do Hoe's algorithm.  Refer to her
11328 				 * paper "Improving the Start-up Behavior
11329 				 * of a Congestion Control Scheme for TCP,"
11330 				 * appeared in SIGCOMM'96.
11331 				 *
11332 				 * Save highest seq no we have sent so far.
11333 				 * Be careful about the invisible FIN byte.
11334 				 */
11335 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
11336 				    (tcp->tcp_unsent == 0)) {
11337 					tcp->tcp_rexmit_max = tcp->tcp_fss;
11338 				} else {
11339 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
11340 				}
11341 
11342 				/*
11343 				 * Do not allow bursty traffic during.
11344 				 * fast recovery.  Refer to Fall and Floyd's
11345 				 * paper "Simulation-based Comparisons of
11346 				 * Tahoe, Reno and SACK TCP" (in CCR?)
11347 				 * This is a best current practise.
11348 				 */
11349 				tcp->tcp_snd_burst = TCP_CWND_SS;
11350 
11351 				/*
11352 				 * For SACK:
11353 				 * Calculate tcp_pipe, which is the
11354 				 * estimated number of bytes in
11355 				 * network.
11356 				 *
11357 				 * tcp_fack is the highest sack'ed seq num
11358 				 * TCP has received.
11359 				 *
11360 				 * tcp_pipe is explained in the above quoted
11361 				 * Fall and Floyd's paper.  tcp_fack is
11362 				 * explained in Mathis and Mahdavi's
11363 				 * "Forward Acknowledgment: Refining TCP
11364 				 * Congestion Control" in SIGCOMM '96.
11365 				 */
11366 				if (tcp->tcp_snd_sack_ok) {
11367 					ASSERT(tcp->tcp_sack_info != NULL);
11368 					if (tcp->tcp_notsack_list != NULL) {
11369 						tcp->tcp_pipe = tcp->tcp_snxt -
11370 						    tcp->tcp_fack;
11371 						tcp->tcp_sack_snxt = seg_ack;
11372 						flags |= TH_NEED_SACK_REXMIT;
11373 					} else {
11374 						/*
11375 						 * Always initialize tcp_pipe
11376 						 * even though we don't have
11377 						 * any SACK info.  If later
11378 						 * we get SACK info and
11379 						 * tcp_pipe is not initialized,
11380 						 * funny things will happen.
11381 						 */
11382 						tcp->tcp_pipe =
11383 						    tcp->tcp_cwnd_ssthresh;
11384 					}
11385 				} else {
11386 					flags |= TH_REXMIT_NEEDED;
11387 				} /* tcp_snd_sack_ok */
11388 
11389 				} else {
11390 					/*
11391 					 * Here we perform congestion
11392 					 * avoidance, but NOT slow start.
11393 					 * This is known as the Fast
11394 					 * Recovery Algorithm.
11395 					 */
11396 					if (tcp->tcp_snd_sack_ok &&
11397 					    tcp->tcp_notsack_list != NULL) {
11398 						flags |= TH_NEED_SACK_REXMIT;
11399 						tcp->tcp_pipe -= mss;
11400 						if (tcp->tcp_pipe < 0)
11401 							tcp->tcp_pipe = 0;
11402 					} else {
11403 					/*
11404 					 * We know that one more packet has
11405 					 * left the pipe thus we can update
11406 					 * cwnd.
11407 					 */
11408 					cwnd = tcp->tcp_cwnd + mss;
11409 					if (cwnd > tcp->tcp_cwnd_max)
11410 						cwnd = tcp->tcp_cwnd_max;
11411 					tcp->tcp_cwnd = cwnd;
11412 					if (tcp->tcp_unsent > 0)
11413 						flags |= TH_XMIT_NEEDED;
11414 					}
11415 				}
11416 			}
11417 		} else if (tcp->tcp_zero_win_probe) {
11418 			/*
11419 			 * If the window has opened, need to arrange
11420 			 * to send additional data.
11421 			 */
11422 			if (new_swnd != 0) {
11423 				/* tcp_suna != tcp_snxt */
11424 				/* Packet contains a window update */
11425 				BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate);
11426 				tcp->tcp_zero_win_probe = 0;
11427 				tcp->tcp_timer_backoff = 0;
11428 				tcp->tcp_ms_we_have_waited = 0;
11429 
11430 				/*
11431 				 * Transmit starting with tcp_suna since
11432 				 * the one byte probe is not ack'ed.
11433 				 * If TCP has sent more than one identical
11434 				 * probe, tcp_rexmit will be set.  That means
11435 				 * tcp_ss_rexmit() will send out the one
11436 				 * byte along with new data.  Otherwise,
11437 				 * fake the retransmission.
11438 				 */
11439 				flags |= TH_XMIT_NEEDED;
11440 				if (!tcp->tcp_rexmit) {
11441 					tcp->tcp_rexmit = B_TRUE;
11442 					tcp->tcp_dupack_cnt = 0;
11443 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
11444 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
11445 				}
11446 			}
11447 		}
11448 		goto swnd_update;
11449 	}
11450 
11451 	/*
11452 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
11453 	 * If the ACK value acks something that we have not yet sent, it might
11454 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
11455 	 * other side.
11456 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
11457 	 * state is handled above, so we can always just drop the segment and
11458 	 * send an ACK here.
11459 	 *
11460 	 * In the case where the peer shrinks the window, we see the new window
11461 	 * update, but all the data sent previously is queued up by the peer.
11462 	 * To account for this, in tcp_process_shrunk_swnd(), the sequence
11463 	 * number, which was already sent, and within window, is recorded.
11464 	 * tcp_snxt is then updated.
11465 	 *
11466 	 * If the window has previously shrunk, and an ACK for data not yet
11467 	 * sent, according to tcp_snxt is recieved, it may still be valid. If
11468 	 * the ACK is for data within the window at the time the window was
11469 	 * shrunk, then the ACK is acceptable. In this case tcp_snxt is set to
11470 	 * the sequence number ACK'ed.
11471 	 *
11472 	 * If the ACK covers all the data sent at the time the window was
11473 	 * shrunk, we can now set tcp_is_wnd_shrnk to B_FALSE.
11474 	 *
11475 	 * Should we send ACKs in response to ACK only segments?
11476 	 */
11477 
11478 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
11479 		if ((tcp->tcp_is_wnd_shrnk) &&
11480 		    (SEQ_LEQ(seg_ack, tcp->tcp_snxt_shrunk))) {
11481 			uint32_t data_acked_ahead_snxt;
11482 
11483 			data_acked_ahead_snxt = seg_ack - tcp->tcp_snxt;
11484 			tcp_update_xmit_tail(tcp, seg_ack);
11485 			tcp->tcp_unsent -= data_acked_ahead_snxt;
11486 		} else {
11487 			BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent);
11488 			/* drop the received segment */
11489 			freemsg(mp);
11490 
11491 			/*
11492 			 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
11493 			 * greater than 0, check if the number of such
11494 			 * bogus ACks is greater than that count.  If yes,
11495 			 * don't send back any ACK.  This prevents TCP from
11496 			 * getting into an ACK storm if somehow an attacker
11497 			 * successfully spoofs an acceptable segment to our
11498 			 * peer.
11499 			 */
11500 			if (tcp_drop_ack_unsent_cnt > 0 &&
11501 			    ++tcp->tcp_in_ack_unsent >
11502 			    tcp_drop_ack_unsent_cnt) {
11503 				TCP_STAT(tcps, tcp_in_ack_unsent_drop);
11504 				return;
11505 			}
11506 			mp = tcp_ack_mp(tcp);
11507 			if (mp != NULL) {
11508 				BUMP_LOCAL(tcp->tcp_obsegs);
11509 				BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
11510 				tcp_send_data(tcp, mp);
11511 			}
11512 			return;
11513 		}
11514 	} else if (tcp->tcp_is_wnd_shrnk && SEQ_GEQ(seg_ack,
11515 	    tcp->tcp_snxt_shrunk)) {
11516 			tcp->tcp_is_wnd_shrnk = B_FALSE;
11517 	}
11518 
11519 	/*
11520 	 * TCP gets a new ACK, update the notsack'ed list to delete those
11521 	 * blocks that are covered by this ACK.
11522 	 */
11523 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
11524 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
11525 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
11526 	}
11527 
11528 	/*
11529 	 * If we got an ACK after fast retransmit, check to see
11530 	 * if it is a partial ACK.  If it is not and the congestion
11531 	 * window was inflated to account for the other side's
11532 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
11533 	 */
11534 	if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) {
11535 		ASSERT(tcp->tcp_rexmit == B_FALSE);
11536 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
11537 			tcp->tcp_dupack_cnt = 0;
11538 			/*
11539 			 * Restore the orig tcp_cwnd_ssthresh after
11540 			 * fast retransmit phase.
11541 			 */
11542 			if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
11543 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
11544 			}
11545 			tcp->tcp_rexmit_max = seg_ack;
11546 			tcp->tcp_cwnd_cnt = 0;
11547 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
11548 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
11549 
11550 			/*
11551 			 * Remove all notsack info to avoid confusion with
11552 			 * the next fast retrasnmit/recovery phase.
11553 			 */
11554 			if (tcp->tcp_snd_sack_ok &&
11555 			    tcp->tcp_notsack_list != NULL) {
11556 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list,
11557 				    tcp);
11558 			}
11559 		} else {
11560 			if (tcp->tcp_snd_sack_ok &&
11561 			    tcp->tcp_notsack_list != NULL) {
11562 				flags |= TH_NEED_SACK_REXMIT;
11563 				tcp->tcp_pipe -= mss;
11564 				if (tcp->tcp_pipe < 0)
11565 					tcp->tcp_pipe = 0;
11566 			} else {
11567 				/*
11568 				 * Hoe's algorithm:
11569 				 *
11570 				 * Retransmit the unack'ed segment and
11571 				 * restart fast recovery.  Note that we
11572 				 * need to scale back tcp_cwnd to the
11573 				 * original value when we started fast
11574 				 * recovery.  This is to prevent overly
11575 				 * aggressive behaviour in sending new
11576 				 * segments.
11577 				 */
11578 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
11579 				    tcps->tcps_dupack_fast_retransmit * mss;
11580 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
11581 				flags |= TH_REXMIT_NEEDED;
11582 			}
11583 		}
11584 	} else {
11585 		tcp->tcp_dupack_cnt = 0;
11586 		if (tcp->tcp_rexmit) {
11587 			/*
11588 			 * TCP is retranmitting.  If the ACK ack's all
11589 			 * outstanding data, update tcp_rexmit_max and
11590 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
11591 			 * to the correct value.
11592 			 *
11593 			 * Note that SEQ_LEQ() is used.  This is to avoid
11594 			 * unnecessary fast retransmit caused by dup ACKs
11595 			 * received when TCP does slow start retransmission
11596 			 * after a time out.  During this phase, TCP may
11597 			 * send out segments which are already received.
11598 			 * This causes dup ACKs to be sent back.
11599 			 */
11600 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
11601 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
11602 					tcp->tcp_rexmit_nxt = seg_ack;
11603 				}
11604 				if (seg_ack != tcp->tcp_rexmit_max) {
11605 					flags |= TH_XMIT_NEEDED;
11606 				}
11607 			} else {
11608 				tcp->tcp_rexmit = B_FALSE;
11609 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
11610 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
11611 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
11612 			}
11613 			tcp->tcp_ms_we_have_waited = 0;
11614 		}
11615 	}
11616 
11617 	BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs);
11618 	UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked);
11619 	tcp->tcp_suna = seg_ack;
11620 	if (tcp->tcp_zero_win_probe != 0) {
11621 		tcp->tcp_zero_win_probe = 0;
11622 		tcp->tcp_timer_backoff = 0;
11623 	}
11624 
11625 	/*
11626 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
11627 	 * Note that it cannot be the SYN being ack'ed.  The code flow
11628 	 * will not reach here.
11629 	 */
11630 	if (mp1 == NULL) {
11631 		goto fin_acked;
11632 	}
11633 
11634 	/*
11635 	 * Update the congestion window.
11636 	 *
11637 	 * If TCP is not ECN capable or TCP is ECN capable but the
11638 	 * congestion experience bit is not set, increase the tcp_cwnd as
11639 	 * usual.
11640 	 */
11641 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
11642 		cwnd = tcp->tcp_cwnd;
11643 		add = mss;
11644 
11645 		if (cwnd >= tcp->tcp_cwnd_ssthresh) {
11646 			/*
11647 			 * This is to prevent an increase of less than 1 MSS of
11648 			 * tcp_cwnd.  With partial increase, tcp_wput_data()
11649 			 * may send out tinygrams in order to preserve mblk
11650 			 * boundaries.
11651 			 *
11652 			 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
11653 			 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
11654 			 * increased by 1 MSS for every RTTs.
11655 			 */
11656 			if (tcp->tcp_cwnd_cnt <= 0) {
11657 				tcp->tcp_cwnd_cnt = cwnd + add;
11658 			} else {
11659 				tcp->tcp_cwnd_cnt -= add;
11660 				add = 0;
11661 			}
11662 		}
11663 		tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
11664 	}
11665 
11666 	/* See if the latest urgent data has been acknowledged */
11667 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
11668 	    SEQ_GT(seg_ack, tcp->tcp_urg))
11669 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
11670 
11671 	/* Can we update the RTT estimates? */
11672 	if (tcp->tcp_snd_ts_ok) {
11673 		/* Ignore zero timestamp echo-reply. */
11674 		if (tcpopt.tcp_opt_ts_ecr != 0) {
11675 			tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH -
11676 			    (int32_t)tcpopt.tcp_opt_ts_ecr);
11677 		}
11678 
11679 		/* If needed, restart the timer. */
11680 		if (tcp->tcp_set_timer == 1) {
11681 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
11682 			tcp->tcp_set_timer = 0;
11683 		}
11684 		/*
11685 		 * Update tcp_csuna in case the other side stops sending
11686 		 * us timestamps.
11687 		 */
11688 		tcp->tcp_csuna = tcp->tcp_snxt;
11689 	} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
11690 		/*
11691 		 * An ACK sequence we haven't seen before, so get the RTT
11692 		 * and update the RTO. But first check if the timestamp is
11693 		 * valid to use.
11694 		 */
11695 		if ((mp1->b_next != NULL) &&
11696 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next)))
11697 			tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH -
11698 			    (int32_t)(intptr_t)mp1->b_prev);
11699 		else
11700 			BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
11701 
11702 		/* Remeber the last sequence to be ACKed */
11703 		tcp->tcp_csuna = seg_ack;
11704 		if (tcp->tcp_set_timer == 1) {
11705 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
11706 			tcp->tcp_set_timer = 0;
11707 		}
11708 	} else {
11709 		BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
11710 	}
11711 
11712 	/* Eat acknowledged bytes off the xmit queue. */
11713 	for (;;) {
11714 		mblk_t	*mp2;
11715 		uchar_t	*wptr;
11716 
11717 		wptr = mp1->b_wptr;
11718 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
11719 		bytes_acked -= (int)(wptr - mp1->b_rptr);
11720 		if (bytes_acked < 0) {
11721 			mp1->b_rptr = wptr + bytes_acked;
11722 			/*
11723 			 * Set a new timestamp if all the bytes timed by the
11724 			 * old timestamp have been ack'ed.
11725 			 */
11726 			if (SEQ_GT(seg_ack,
11727 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
11728 				mp1->b_prev =
11729 				    (mblk_t *)(uintptr_t)LBOLT_FASTPATH;
11730 				mp1->b_next = NULL;
11731 			}
11732 			break;
11733 		}
11734 		mp1->b_next = NULL;
11735 		mp1->b_prev = NULL;
11736 		mp2 = mp1;
11737 		mp1 = mp1->b_cont;
11738 
11739 		/*
11740 		 * This notification is required for some zero-copy
11741 		 * clients to maintain a copy semantic. After the data
11742 		 * is ack'ed, client is safe to modify or reuse the buffer.
11743 		 */
11744 		if (tcp->tcp_snd_zcopy_aware &&
11745 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
11746 			tcp_zcopy_notify(tcp);
11747 		freeb(mp2);
11748 		if (bytes_acked == 0) {
11749 			if (mp1 == NULL) {
11750 				/* Everything is ack'ed, clear the tail. */
11751 				tcp->tcp_xmit_tail = NULL;
11752 				/*
11753 				 * Cancel the timer unless we are still
11754 				 * waiting for an ACK for the FIN packet.
11755 				 */
11756 				if (tcp->tcp_timer_tid != 0 &&
11757 				    tcp->tcp_snxt == tcp->tcp_suna) {
11758 					(void) TCP_TIMER_CANCEL(tcp,
11759 					    tcp->tcp_timer_tid);
11760 					tcp->tcp_timer_tid = 0;
11761 				}
11762 				goto pre_swnd_update;
11763 			}
11764 			if (mp2 != tcp->tcp_xmit_tail)
11765 				break;
11766 			tcp->tcp_xmit_tail = mp1;
11767 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
11768 			    (uintptr_t)INT_MAX);
11769 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
11770 			    mp1->b_rptr);
11771 			break;
11772 		}
11773 		if (mp1 == NULL) {
11774 			/*
11775 			 * More was acked but there is nothing more
11776 			 * outstanding.  This means that the FIN was
11777 			 * just acked or that we're talking to a clown.
11778 			 */
11779 fin_acked:
11780 			ASSERT(tcp->tcp_fin_sent);
11781 			tcp->tcp_xmit_tail = NULL;
11782 			if (tcp->tcp_fin_sent) {
11783 				/* FIN was acked - making progress */
11784 				if (!tcp->tcp_fin_acked)
11785 					tcp->tcp_ip_forward_progress = B_TRUE;
11786 				tcp->tcp_fin_acked = B_TRUE;
11787 				if (tcp->tcp_linger_tid != 0 &&
11788 				    TCP_TIMER_CANCEL(tcp,
11789 				    tcp->tcp_linger_tid) >= 0) {
11790 					tcp_stop_lingering(tcp);
11791 					freemsg(mp);
11792 					mp = NULL;
11793 				}
11794 			} else {
11795 				/*
11796 				 * We should never get here because
11797 				 * we have already checked that the
11798 				 * number of bytes ack'ed should be
11799 				 * smaller than or equal to what we
11800 				 * have sent so far (it is the
11801 				 * acceptability check of the ACK).
11802 				 * We can only get here if the send
11803 				 * queue is corrupted.
11804 				 *
11805 				 * Terminate the connection and
11806 				 * panic the system.  It is better
11807 				 * for us to panic instead of
11808 				 * continuing to avoid other disaster.
11809 				 */
11810 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
11811 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
11812 				panic("Memory corruption "
11813 				    "detected for connection %s.",
11814 				    tcp_display(tcp, NULL,
11815 				    DISP_ADDR_AND_PORT));
11816 				/*NOTREACHED*/
11817 			}
11818 			goto pre_swnd_update;
11819 		}
11820 		ASSERT(mp2 != tcp->tcp_xmit_tail);
11821 	}
11822 	if (tcp->tcp_unsent) {
11823 		flags |= TH_XMIT_NEEDED;
11824 	}
11825 pre_swnd_update:
11826 	tcp->tcp_xmit_head = mp1;
11827 swnd_update:
11828 	/*
11829 	 * The following check is different from most other implementations.
11830 	 * For bi-directional transfer, when segments are dropped, the
11831 	 * "normal" check will not accept a window update in those
11832 	 * retransmitted segemnts.  Failing to do that, TCP may send out
11833 	 * segments which are outside receiver's window.  As TCP accepts
11834 	 * the ack in those retransmitted segments, if the window update in
11835 	 * the same segment is not accepted, TCP will incorrectly calculates
11836 	 * that it can send more segments.  This can create a deadlock
11837 	 * with the receiver if its window becomes zero.
11838 	 */
11839 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
11840 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
11841 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
11842 		/*
11843 		 * The criteria for update is:
11844 		 *
11845 		 * 1. the segment acknowledges some data.  Or
11846 		 * 2. the segment is new, i.e. it has a higher seq num. Or
11847 		 * 3. the segment is not old and the advertised window is
11848 		 * larger than the previous advertised window.
11849 		 */
11850 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
11851 			flags |= TH_XMIT_NEEDED;
11852 		tcp->tcp_swnd = new_swnd;
11853 		if (new_swnd > tcp->tcp_max_swnd)
11854 			tcp->tcp_max_swnd = new_swnd;
11855 		tcp->tcp_swl1 = seg_seq;
11856 		tcp->tcp_swl2 = seg_ack;
11857 	}
11858 est:
11859 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
11860 
11861 		switch (tcp->tcp_state) {
11862 		case TCPS_FIN_WAIT_1:
11863 			if (tcp->tcp_fin_acked) {
11864 				tcp->tcp_state = TCPS_FIN_WAIT_2;
11865 				/*
11866 				 * We implement the non-standard BSD/SunOS
11867 				 * FIN_WAIT_2 flushing algorithm.
11868 				 * If there is no user attached to this
11869 				 * TCP endpoint, then this TCP struct
11870 				 * could hang around forever in FIN_WAIT_2
11871 				 * state if the peer forgets to send us
11872 				 * a FIN.  To prevent this, we wait only
11873 				 * 2*MSL (a convenient time value) for
11874 				 * the FIN to arrive.  If it doesn't show up,
11875 				 * we flush the TCP endpoint.  This algorithm,
11876 				 * though a violation of RFC-793, has worked
11877 				 * for over 10 years in BSD systems.
11878 				 * Note: SunOS 4.x waits 675 seconds before
11879 				 * flushing the FIN_WAIT_2 connection.
11880 				 */
11881 				TCP_TIMER_RESTART(tcp,
11882 				    tcps->tcps_fin_wait_2_flush_interval);
11883 			}
11884 			break;
11885 		case TCPS_FIN_WAIT_2:
11886 			break;	/* Shutdown hook? */
11887 		case TCPS_LAST_ACK:
11888 			freemsg(mp);
11889 			if (tcp->tcp_fin_acked) {
11890 				(void) tcp_clean_death(tcp, 0, 19);
11891 				return;
11892 			}
11893 			goto xmit_check;
11894 		case TCPS_CLOSING:
11895 			if (tcp->tcp_fin_acked) {
11896 				tcp->tcp_state = TCPS_TIME_WAIT;
11897 				/*
11898 				 * Unconditionally clear the exclusive binding
11899 				 * bit so this TIME-WAIT connection won't
11900 				 * interfere with new ones.
11901 				 */
11902 				connp->conn_exclbind = 0;
11903 				if (!TCP_IS_DETACHED(tcp)) {
11904 					TCP_TIMER_RESTART(tcp,
11905 					    tcps->tcps_time_wait_interval);
11906 				} else {
11907 					tcp_time_wait_append(tcp);
11908 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
11909 				}
11910 			}
11911 			/*FALLTHRU*/
11912 		case TCPS_CLOSE_WAIT:
11913 			freemsg(mp);
11914 			goto xmit_check;
11915 		default:
11916 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
11917 			break;
11918 		}
11919 	}
11920 	if (flags & TH_FIN) {
11921 		/* Make sure we ack the fin */
11922 		flags |= TH_ACK_NEEDED;
11923 		if (!tcp->tcp_fin_rcvd) {
11924 			tcp->tcp_fin_rcvd = B_TRUE;
11925 			tcp->tcp_rnxt++;
11926 			tcpha = tcp->tcp_tcpha;
11927 			tcpha->tha_ack = htonl(tcp->tcp_rnxt);
11928 
11929 			/*
11930 			 * Generate the ordrel_ind at the end unless we
11931 			 * are an eager guy.
11932 			 * In the eager case tcp_rsrv will do this when run
11933 			 * after tcp_accept is done.
11934 			 */
11935 			if (tcp->tcp_listener == NULL &&
11936 			    !TCP_IS_DETACHED(tcp) && !tcp->tcp_hard_binding)
11937 				flags |= TH_ORDREL_NEEDED;
11938 			switch (tcp->tcp_state) {
11939 			case TCPS_SYN_RCVD:
11940 			case TCPS_ESTABLISHED:
11941 				tcp->tcp_state = TCPS_CLOSE_WAIT;
11942 				/* Keepalive? */
11943 				break;
11944 			case TCPS_FIN_WAIT_1:
11945 				if (!tcp->tcp_fin_acked) {
11946 					tcp->tcp_state = TCPS_CLOSING;
11947 					break;
11948 				}
11949 				/* FALLTHRU */
11950 			case TCPS_FIN_WAIT_2:
11951 				tcp->tcp_state = TCPS_TIME_WAIT;
11952 				/*
11953 				 * Unconditionally clear the exclusive binding
11954 				 * bit so this TIME-WAIT connection won't
11955 				 * interfere with new ones.
11956 				 */
11957 				connp->conn_exclbind = 0;
11958 				if (!TCP_IS_DETACHED(tcp)) {
11959 					TCP_TIMER_RESTART(tcp,
11960 					    tcps->tcps_time_wait_interval);
11961 				} else {
11962 					tcp_time_wait_append(tcp);
11963 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
11964 				}
11965 				if (seg_len) {
11966 					/*
11967 					 * implies data piggybacked on FIN.
11968 					 * break to handle data.
11969 					 */
11970 					break;
11971 				}
11972 				freemsg(mp);
11973 				goto ack_check;
11974 			}
11975 		}
11976 	}
11977 	if (mp == NULL)
11978 		goto xmit_check;
11979 	if (seg_len == 0) {
11980 		freemsg(mp);
11981 		goto xmit_check;
11982 	}
11983 	if (mp->b_rptr == mp->b_wptr) {
11984 		/*
11985 		 * The header has been consumed, so we remove the
11986 		 * zero-length mblk here.
11987 		 */
11988 		mp1 = mp;
11989 		mp = mp->b_cont;
11990 		freeb(mp1);
11991 	}
11992 update_ack:
11993 	tcpha = tcp->tcp_tcpha;
11994 	tcp->tcp_rack_cnt++;
11995 	{
11996 		uint32_t cur_max;
11997 
11998 		cur_max = tcp->tcp_rack_cur_max;
11999 		if (tcp->tcp_rack_cnt >= cur_max) {
12000 			/*
12001 			 * We have more unacked data than we should - send
12002 			 * an ACK now.
12003 			 */
12004 			flags |= TH_ACK_NEEDED;
12005 			cur_max++;
12006 			if (cur_max > tcp->tcp_rack_abs_max)
12007 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
12008 			else
12009 				tcp->tcp_rack_cur_max = cur_max;
12010 		} else if (TCP_IS_DETACHED(tcp)) {
12011 			/* We don't have an ACK timer for detached TCP. */
12012 			flags |= TH_ACK_NEEDED;
12013 		} else if (seg_len < mss) {
12014 			/*
12015 			 * If we get a segment that is less than an mss, and we
12016 			 * already have unacknowledged data, and the amount
12017 			 * unacknowledged is not a multiple of mss, then we
12018 			 * better generate an ACK now.  Otherwise, this may be
12019 			 * the tail piece of a transaction, and we would rather
12020 			 * wait for the response.
12021 			 */
12022 			uint32_t udif;
12023 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
12024 			    (uintptr_t)INT_MAX);
12025 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
12026 			if (udif && (udif % mss))
12027 				flags |= TH_ACK_NEEDED;
12028 			else
12029 				flags |= TH_ACK_TIMER_NEEDED;
12030 		} else {
12031 			/* Start delayed ack timer */
12032 			flags |= TH_ACK_TIMER_NEEDED;
12033 		}
12034 	}
12035 	tcp->tcp_rnxt += seg_len;
12036 	tcpha->tha_ack = htonl(tcp->tcp_rnxt);
12037 
12038 	if (mp == NULL)
12039 		goto xmit_check;
12040 
12041 	/* Update SACK list */
12042 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
12043 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
12044 		    &(tcp->tcp_num_sack_blk));
12045 	}
12046 
12047 	if (tcp->tcp_urp_mp) {
12048 		tcp->tcp_urp_mp->b_cont = mp;
12049 		mp = tcp->tcp_urp_mp;
12050 		tcp->tcp_urp_mp = NULL;
12051 		/* Ready for a new signal. */
12052 		tcp->tcp_urp_last_valid = B_FALSE;
12053 #ifdef DEBUG
12054 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
12055 		    "tcp_rput: sending exdata_ind %s",
12056 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
12057 #endif /* DEBUG */
12058 	}
12059 
12060 	/*
12061 	 * Check for ancillary data changes compared to last segment.
12062 	 */
12063 	if (connp->conn_recv_ancillary.crb_all != 0) {
12064 		mp = tcp_input_add_ancillary(tcp, mp, &ipp, ira);
12065 		if (mp == NULL)
12066 			return;
12067 	}
12068 
12069 	if (tcp->tcp_listener != NULL || tcp->tcp_hard_binding) {
12070 		/*
12071 		 * Side queue inbound data until the accept happens.
12072 		 * tcp_accept/tcp_rput drains this when the accept happens.
12073 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
12074 		 * T_EXDATA_IND) it is queued on b_next.
12075 		 * XXX Make urgent data use this. Requires:
12076 		 *	Removing tcp_listener check for TH_URG
12077 		 *	Making M_PCPROTO and MARK messages skip the eager case
12078 		 */
12079 
12080 		if (tcp->tcp_kssl_pending) {
12081 			DTRACE_PROBE1(kssl_mblk__ksslinput_pending,
12082 			    mblk_t *, mp);
12083 			tcp_kssl_input(tcp, mp, ira->ira_cred);
12084 		} else {
12085 			tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred);
12086 		}
12087 	} else if (IPCL_IS_NONSTR(connp)) {
12088 		/*
12089 		 * Non-STREAMS socket
12090 		 *
12091 		 * Note that no KSSL processing is done here, because
12092 		 * KSSL is not supported for non-STREAMS sockets.
12093 		 */
12094 		boolean_t push = flags & (TH_PUSH|TH_FIN);
12095 		int error;
12096 
12097 		if ((*connp->conn_upcalls->su_recv)(
12098 		    connp->conn_upper_handle,
12099 		    mp, seg_len, 0, &error, &push) <= 0) {
12100 			/*
12101 			 * We should never be in middle of a
12102 			 * fallback, the squeue guarantees that.
12103 			 */
12104 			ASSERT(error != EOPNOTSUPP);
12105 			if (error == ENOSPC)
12106 				tcp->tcp_rwnd -= seg_len;
12107 		} else if (push) {
12108 			/* PUSH bit set and sockfs is not flow controlled */
12109 			flags |= tcp_rwnd_reopen(tcp);
12110 		}
12111 	} else {
12112 		/* STREAMS socket */
12113 		if (mp->b_datap->db_type != M_DATA ||
12114 		    (flags & TH_MARKNEXT_NEEDED)) {
12115 			if (tcp->tcp_rcv_list != NULL) {
12116 				flags |= tcp_rcv_drain(tcp);
12117 			}
12118 			ASSERT(tcp->tcp_rcv_list == NULL ||
12119 			    tcp->tcp_fused_sigurg);
12120 
12121 			if (flags & TH_MARKNEXT_NEEDED) {
12122 #ifdef DEBUG
12123 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
12124 				    "tcp_rput: sending MSGMARKNEXT %s",
12125 				    tcp_display(tcp, NULL,
12126 				    DISP_PORT_ONLY));
12127 #endif /* DEBUG */
12128 				mp->b_flag |= MSGMARKNEXT;
12129 				flags &= ~TH_MARKNEXT_NEEDED;
12130 			}
12131 
12132 			/* Does this need SSL processing first? */
12133 			if ((tcp->tcp_kssl_ctx != NULL) &&
12134 			    (DB_TYPE(mp) == M_DATA)) {
12135 				DTRACE_PROBE1(kssl_mblk__ksslinput_data1,
12136 				    mblk_t *, mp);
12137 				tcp_kssl_input(tcp, mp, ira->ira_cred);
12138 			} else {
12139 				if (is_system_labeled())
12140 					tcp_setcred_data(mp, ira);
12141 
12142 				putnext(connp->conn_rq, mp);
12143 				if (!canputnext(connp->conn_rq))
12144 					tcp->tcp_rwnd -= seg_len;
12145 			}
12146 		} else if ((tcp->tcp_kssl_ctx != NULL) &&
12147 		    (DB_TYPE(mp) == M_DATA)) {
12148 			/* Does this need SSL processing first? */
12149 			DTRACE_PROBE1(kssl_mblk__ksslinput_data2, mblk_t *, mp);
12150 			tcp_kssl_input(tcp, mp, ira->ira_cred);
12151 		} else if ((flags & (TH_PUSH|TH_FIN)) ||
12152 		    tcp->tcp_rcv_cnt + seg_len >= connp->conn_rcvbuf >> 3) {
12153 			if (tcp->tcp_rcv_list != NULL) {
12154 				/*
12155 				 * Enqueue the new segment first and then
12156 				 * call tcp_rcv_drain() to send all data
12157 				 * up.  The other way to do this is to
12158 				 * send all queued data up and then call
12159 				 * putnext() to send the new segment up.
12160 				 * This way can remove the else part later
12161 				 * on.
12162 				 *
12163 				 * We don't do this to avoid one more call to
12164 				 * canputnext() as tcp_rcv_drain() needs to
12165 				 * call canputnext().
12166 				 */
12167 				tcp_rcv_enqueue(tcp, mp, seg_len,
12168 				    ira->ira_cred);
12169 				flags |= tcp_rcv_drain(tcp);
12170 			} else {
12171 				if (is_system_labeled())
12172 					tcp_setcred_data(mp, ira);
12173 
12174 				putnext(connp->conn_rq, mp);
12175 				if (!canputnext(connp->conn_rq))
12176 					tcp->tcp_rwnd -= seg_len;
12177 			}
12178 		} else {
12179 			/*
12180 			 * Enqueue all packets when processing an mblk
12181 			 * from the co queue and also enqueue normal packets.
12182 			 */
12183 			tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred);
12184 		}
12185 		/*
12186 		 * Make sure the timer is running if we have data waiting
12187 		 * for a push bit. This provides resiliency against
12188 		 * implementations that do not correctly generate push bits.
12189 		 */
12190 		if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) {
12191 			/*
12192 			 * The connection may be closed at this point, so don't
12193 			 * do anything for a detached tcp.
12194 			 */
12195 			if (!TCP_IS_DETACHED(tcp))
12196 				tcp->tcp_push_tid = TCP_TIMER(tcp,
12197 				    tcp_push_timer,
12198 				    MSEC_TO_TICK(
12199 				    tcps->tcps_push_timer_interval));
12200 		}
12201 	}
12202 
12203 xmit_check:
12204 	/* Is there anything left to do? */
12205 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
12206 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
12207 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
12208 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
12209 		goto done;
12210 
12211 	/* Any transmit work to do and a non-zero window? */
12212 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
12213 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
12214 		if (flags & TH_REXMIT_NEEDED) {
12215 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
12216 
12217 			BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans);
12218 			if (snd_size > mss)
12219 				snd_size = mss;
12220 			if (snd_size > tcp->tcp_swnd)
12221 				snd_size = tcp->tcp_swnd;
12222 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
12223 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
12224 			    B_TRUE);
12225 
12226 			if (mp1 != NULL) {
12227 				tcp->tcp_xmit_head->b_prev =
12228 				    (mblk_t *)LBOLT_FASTPATH;
12229 				tcp->tcp_csuna = tcp->tcp_snxt;
12230 				BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12231 				UPDATE_MIB(&tcps->tcps_mib,
12232 				    tcpRetransBytes, snd_size);
12233 				tcp_send_data(tcp, mp1);
12234 			}
12235 		}
12236 		if (flags & TH_NEED_SACK_REXMIT) {
12237 			tcp_sack_rxmit(tcp, &flags);
12238 		}
12239 		/*
12240 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
12241 		 * out new segment.  Note that tcp_rexmit should not be
12242 		 * set, otherwise TH_LIMIT_XMIT should not be set.
12243 		 */
12244 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
12245 			if (!tcp->tcp_rexmit) {
12246 				tcp_wput_data(tcp, NULL, B_FALSE);
12247 			} else {
12248 				tcp_ss_rexmit(tcp);
12249 			}
12250 		}
12251 		/*
12252 		 * Adjust tcp_cwnd back to normal value after sending
12253 		 * new data segments.
12254 		 */
12255 		if (flags & TH_LIMIT_XMIT) {
12256 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
12257 			/*
12258 			 * This will restart the timer.  Restarting the
12259 			 * timer is used to avoid a timeout before the
12260 			 * limited transmitted segment's ACK gets back.
12261 			 */
12262 			if (tcp->tcp_xmit_head != NULL)
12263 				tcp->tcp_xmit_head->b_prev =
12264 				    (mblk_t *)LBOLT_FASTPATH;
12265 		}
12266 
12267 		/* Anything more to do? */
12268 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
12269 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
12270 			goto done;
12271 	}
12272 ack_check:
12273 	if (flags & TH_SEND_URP_MARK) {
12274 		ASSERT(tcp->tcp_urp_mark_mp);
12275 		ASSERT(!IPCL_IS_NONSTR(connp));
12276 		/*
12277 		 * Send up any queued data and then send the mark message
12278 		 */
12279 		if (tcp->tcp_rcv_list != NULL) {
12280 			flags |= tcp_rcv_drain(tcp);
12281 
12282 		}
12283 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
12284 		mp1 = tcp->tcp_urp_mark_mp;
12285 		tcp->tcp_urp_mark_mp = NULL;
12286 		if (is_system_labeled())
12287 			tcp_setcred_data(mp1, ira);
12288 
12289 		putnext(connp->conn_rq, mp1);
12290 #ifdef DEBUG
12291 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
12292 		    "tcp_rput: sending zero-length %s %s",
12293 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
12294 		    "MSGNOTMARKNEXT"),
12295 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
12296 #endif /* DEBUG */
12297 		flags &= ~TH_SEND_URP_MARK;
12298 	}
12299 	if (flags & TH_ACK_NEEDED) {
12300 		/*
12301 		 * Time to send an ack for some reason.
12302 		 */
12303 		mp1 = tcp_ack_mp(tcp);
12304 
12305 		if (mp1 != NULL) {
12306 			tcp_send_data(tcp, mp1);
12307 			BUMP_LOCAL(tcp->tcp_obsegs);
12308 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
12309 		}
12310 		if (tcp->tcp_ack_tid != 0) {
12311 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
12312 			tcp->tcp_ack_tid = 0;
12313 		}
12314 	}
12315 	if (flags & TH_ACK_TIMER_NEEDED) {
12316 		/*
12317 		 * Arrange for deferred ACK or push wait timeout.
12318 		 * Start timer if it is not already running.
12319 		 */
12320 		if (tcp->tcp_ack_tid == 0) {
12321 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
12322 			    MSEC_TO_TICK(tcp->tcp_localnet ?
12323 			    (clock_t)tcps->tcps_local_dack_interval :
12324 			    (clock_t)tcps->tcps_deferred_ack_interval));
12325 		}
12326 	}
12327 	if (flags & TH_ORDREL_NEEDED) {
12328 		/*
12329 		 * Send up the ordrel_ind unless we are an eager guy.
12330 		 * In the eager case tcp_rsrv will do this when run
12331 		 * after tcp_accept is done.
12332 		 */
12333 		ASSERT(tcp->tcp_listener == NULL);
12334 		ASSERT(!tcp->tcp_detached);
12335 
12336 		if (IPCL_IS_NONSTR(connp)) {
12337 			ASSERT(tcp->tcp_ordrel_mp == NULL);
12338 			tcp->tcp_ordrel_done = B_TRUE;
12339 			(*connp->conn_upcalls->su_opctl)
12340 			    (connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0);
12341 			goto done;
12342 		}
12343 
12344 		if (tcp->tcp_rcv_list != NULL) {
12345 			/*
12346 			 * Push any mblk(s) enqueued from co processing.
12347 			 */
12348 			flags |= tcp_rcv_drain(tcp);
12349 		}
12350 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
12351 
12352 		mp1 = tcp->tcp_ordrel_mp;
12353 		tcp->tcp_ordrel_mp = NULL;
12354 		tcp->tcp_ordrel_done = B_TRUE;
12355 		putnext(connp->conn_rq, mp1);
12356 	}
12357 done:
12358 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
12359 }
12360 
12361 /*
12362  * This routine adjusts next-to-send sequence number variables, in the
12363  * case where the reciever has shrunk it's window.
12364  */
12365 static void
12366 tcp_update_xmit_tail(tcp_t *tcp, uint32_t snxt)
12367 {
12368 	mblk_t *xmit_tail;
12369 	int32_t offset;
12370 
12371 	tcp->tcp_snxt = snxt;
12372 
12373 	/* Get the mblk, and the offset in it, as per the shrunk window */
12374 	xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset);
12375 	ASSERT(xmit_tail != NULL);
12376 	tcp->tcp_xmit_tail = xmit_tail;
12377 	tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr -
12378 	    xmit_tail->b_rptr - offset;
12379 }
12380 
12381 /*
12382  * This function does PAWS protection check. Returns B_TRUE if the
12383  * segment passes the PAWS test, else returns B_FALSE.
12384  */
12385 boolean_t
12386 tcp_paws_check(tcp_t *tcp, tcpha_t *tcpha, tcp_opt_t *tcpoptp)
12387 {
12388 	uint8_t	flags;
12389 	int	options;
12390 	uint8_t *up;
12391 	conn_t	*connp = tcp->tcp_connp;
12392 
12393 	flags = (unsigned int)tcpha->tha_flags & 0xFF;
12394 	/*
12395 	 * If timestamp option is aligned nicely, get values inline,
12396 	 * otherwise call general routine to parse.  Only do that
12397 	 * if timestamp is the only option.
12398 	 */
12399 	if (TCP_HDR_LENGTH(tcpha) == (uint32_t)TCP_MIN_HEADER_LENGTH +
12400 	    TCPOPT_REAL_TS_LEN &&
12401 	    OK_32PTR((up = ((uint8_t *)tcpha) +
12402 	    TCP_MIN_HEADER_LENGTH)) &&
12403 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
12404 		tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
12405 		tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
12406 
12407 		options = TCP_OPT_TSTAMP_PRESENT;
12408 	} else {
12409 		if (tcp->tcp_snd_sack_ok) {
12410 			tcpoptp->tcp = tcp;
12411 		} else {
12412 			tcpoptp->tcp = NULL;
12413 		}
12414 		options = tcp_parse_options(tcpha, tcpoptp);
12415 	}
12416 
12417 	if (options & TCP_OPT_TSTAMP_PRESENT) {
12418 		/*
12419 		 * Do PAWS per RFC 1323 section 4.2.  Accept RST
12420 		 * regardless of the timestamp, page 18 RFC 1323.bis.
12421 		 */
12422 		if ((flags & TH_RST) == 0 &&
12423 		    TSTMP_LT(tcpoptp->tcp_opt_ts_val,
12424 		    tcp->tcp_ts_recent)) {
12425 			if (TSTMP_LT(LBOLT_FASTPATH,
12426 			    tcp->tcp_last_rcv_lbolt + PAWS_TIMEOUT)) {
12427 				/* This segment is not acceptable. */
12428 				return (B_FALSE);
12429 			} else {
12430 				/*
12431 				 * Connection has been idle for
12432 				 * too long.  Reset the timestamp
12433 				 * and assume the segment is valid.
12434 				 */
12435 				tcp->tcp_ts_recent =
12436 				    tcpoptp->tcp_opt_ts_val;
12437 			}
12438 		}
12439 	} else {
12440 		/*
12441 		 * If we don't get a timestamp on every packet, we
12442 		 * figure we can't really trust 'em, so we stop sending
12443 		 * and parsing them.
12444 		 */
12445 		tcp->tcp_snd_ts_ok = B_FALSE;
12446 
12447 		connp->conn_ht_iphc_len -= TCPOPT_REAL_TS_LEN;
12448 		connp->conn_ht_ulp_len -= TCPOPT_REAL_TS_LEN;
12449 		tcp->tcp_tcpha->tha_offset_and_reserved -= (3 << 4);
12450 		/*
12451 		 * Adjust the tcp_mss and tcp_cwnd accordingly. We avoid
12452 		 * doing a slow start here so as to not to lose on the
12453 		 * transfer rate built up so far.
12454 		 */
12455 		tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN);
12456 		if (tcp->tcp_snd_sack_ok) {
12457 			ASSERT(tcp->tcp_sack_info != NULL);
12458 			tcp->tcp_max_sack_blk = 4;
12459 		}
12460 	}
12461 	return (B_TRUE);
12462 }
12463 
12464 /*
12465  * Attach ancillary data to a received TCP segments for the
12466  * ancillary pieces requested by the application that are
12467  * different than they were in the previous data segment.
12468  *
12469  * Save the "current" values once memory allocation is ok so that
12470  * when memory allocation fails we can just wait for the next data segment.
12471  */
12472 static mblk_t *
12473 tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp,
12474     ip_recv_attr_t *ira)
12475 {
12476 	struct T_optdata_ind *todi;
12477 	int optlen;
12478 	uchar_t *optptr;
12479 	struct T_opthdr *toh;
12480 	crb_t addflag;	/* Which pieces to add */
12481 	mblk_t *mp1;
12482 	conn_t	*connp = tcp->tcp_connp;
12483 
12484 	optlen = 0;
12485 	addflag.crb_all = 0;
12486 	/* If app asked for pktinfo and the index has changed ... */
12487 	if (connp->conn_recv_ancillary.crb_ip_recvpktinfo &&
12488 	    ira->ira_ruifindex != tcp->tcp_recvifindex) {
12489 		optlen += sizeof (struct T_opthdr) +
12490 		    sizeof (struct in6_pktinfo);
12491 		addflag.crb_ip_recvpktinfo = 1;
12492 	}
12493 	/* If app asked for hoplimit and it has changed ... */
12494 	if (connp->conn_recv_ancillary.crb_ipv6_recvhoplimit &&
12495 	    ipp->ipp_hoplimit != tcp->tcp_recvhops) {
12496 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
12497 		addflag.crb_ipv6_recvhoplimit = 1;
12498 	}
12499 	/* If app asked for tclass and it has changed ... */
12500 	if (connp->conn_recv_ancillary.crb_ipv6_recvtclass &&
12501 	    ipp->ipp_tclass != tcp->tcp_recvtclass) {
12502 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
12503 		addflag.crb_ipv6_recvtclass = 1;
12504 	}
12505 	/*
12506 	 * If app asked for hopbyhop headers and it has changed ...
12507 	 * For security labels, note that (1) security labels can't change on
12508 	 * a connected socket at all, (2) we're connected to at most one peer,
12509 	 * (3) if anything changes, then it must be some other extra option.
12510 	 */
12511 	if (connp->conn_recv_ancillary.crb_ipv6_recvhopopts &&
12512 	    ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
12513 	    (ipp->ipp_fields & IPPF_HOPOPTS),
12514 	    ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
12515 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen;
12516 		addflag.crb_ipv6_recvhopopts = 1;
12517 		if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
12518 		    &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
12519 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
12520 			return (mp);
12521 	}
12522 	/* If app asked for dst headers before routing headers ... */
12523 	if (connp->conn_recv_ancillary.crb_ipv6_recvrthdrdstopts &&
12524 	    ip_cmpbuf(tcp->tcp_rthdrdstopts, tcp->tcp_rthdrdstoptslen,
12525 	    (ipp->ipp_fields & IPPF_RTHDRDSTOPTS),
12526 	    ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) {
12527 		optlen += sizeof (struct T_opthdr) +
12528 		    ipp->ipp_rthdrdstoptslen;
12529 		addflag.crb_ipv6_recvrthdrdstopts = 1;
12530 		if (!ip_allocbuf((void **)&tcp->tcp_rthdrdstopts,
12531 		    &tcp->tcp_rthdrdstoptslen,
12532 		    (ipp->ipp_fields & IPPF_RTHDRDSTOPTS),
12533 		    ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen))
12534 			return (mp);
12535 	}
12536 	/* If app asked for routing headers and it has changed ... */
12537 	if (connp->conn_recv_ancillary.crb_ipv6_recvrthdr &&
12538 	    ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
12539 	    (ipp->ipp_fields & IPPF_RTHDR),
12540 	    ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
12541 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
12542 		addflag.crb_ipv6_recvrthdr = 1;
12543 		if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
12544 		    &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
12545 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
12546 			return (mp);
12547 	}
12548 	/* If app asked for dest headers and it has changed ... */
12549 	if ((connp->conn_recv_ancillary.crb_ipv6_recvdstopts ||
12550 	    connp->conn_recv_ancillary.crb_old_ipv6_recvdstopts) &&
12551 	    ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
12552 	    (ipp->ipp_fields & IPPF_DSTOPTS),
12553 	    ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
12554 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
12555 		addflag.crb_ipv6_recvdstopts = 1;
12556 		if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
12557 		    &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
12558 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
12559 			return (mp);
12560 	}
12561 
12562 	if (optlen == 0) {
12563 		/* Nothing to add */
12564 		return (mp);
12565 	}
12566 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
12567 	if (mp1 == NULL) {
12568 		/*
12569 		 * Defer sending ancillary data until the next TCP segment
12570 		 * arrives.
12571 		 */
12572 		return (mp);
12573 	}
12574 	mp1->b_cont = mp;
12575 	mp = mp1;
12576 	mp->b_wptr += sizeof (*todi) + optlen;
12577 	mp->b_datap->db_type = M_PROTO;
12578 	todi = (struct T_optdata_ind *)mp->b_rptr;
12579 	todi->PRIM_type = T_OPTDATA_IND;
12580 	todi->DATA_flag = 1;	/* MORE data */
12581 	todi->OPT_length = optlen;
12582 	todi->OPT_offset = sizeof (*todi);
12583 	optptr = (uchar_t *)&todi[1];
12584 	/*
12585 	 * If app asked for pktinfo and the index has changed ...
12586 	 * Note that the local address never changes for the connection.
12587 	 */
12588 	if (addflag.crb_ip_recvpktinfo) {
12589 		struct in6_pktinfo *pkti;
12590 		uint_t ifindex;
12591 
12592 		ifindex = ira->ira_ruifindex;
12593 		toh = (struct T_opthdr *)optptr;
12594 		toh->level = IPPROTO_IPV6;
12595 		toh->name = IPV6_PKTINFO;
12596 		toh->len = sizeof (*toh) + sizeof (*pkti);
12597 		toh->status = 0;
12598 		optptr += sizeof (*toh);
12599 		pkti = (struct in6_pktinfo *)optptr;
12600 		pkti->ipi6_addr = connp->conn_laddr_v6;
12601 		pkti->ipi6_ifindex = ifindex;
12602 		optptr += sizeof (*pkti);
12603 		ASSERT(OK_32PTR(optptr));
12604 		/* Save as "last" value */
12605 		tcp->tcp_recvifindex = ifindex;
12606 	}
12607 	/* If app asked for hoplimit and it has changed ... */
12608 	if (addflag.crb_ipv6_recvhoplimit) {
12609 		toh = (struct T_opthdr *)optptr;
12610 		toh->level = IPPROTO_IPV6;
12611 		toh->name = IPV6_HOPLIMIT;
12612 		toh->len = sizeof (*toh) + sizeof (uint_t);
12613 		toh->status = 0;
12614 		optptr += sizeof (*toh);
12615 		*(uint_t *)optptr = ipp->ipp_hoplimit;
12616 		optptr += sizeof (uint_t);
12617 		ASSERT(OK_32PTR(optptr));
12618 		/* Save as "last" value */
12619 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
12620 	}
12621 	/* If app asked for tclass and it has changed ... */
12622 	if (addflag.crb_ipv6_recvtclass) {
12623 		toh = (struct T_opthdr *)optptr;
12624 		toh->level = IPPROTO_IPV6;
12625 		toh->name = IPV6_TCLASS;
12626 		toh->len = sizeof (*toh) + sizeof (uint_t);
12627 		toh->status = 0;
12628 		optptr += sizeof (*toh);
12629 		*(uint_t *)optptr = ipp->ipp_tclass;
12630 		optptr += sizeof (uint_t);
12631 		ASSERT(OK_32PTR(optptr));
12632 		/* Save as "last" value */
12633 		tcp->tcp_recvtclass = ipp->ipp_tclass;
12634 	}
12635 	if (addflag.crb_ipv6_recvhopopts) {
12636 		toh = (struct T_opthdr *)optptr;
12637 		toh->level = IPPROTO_IPV6;
12638 		toh->name = IPV6_HOPOPTS;
12639 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen;
12640 		toh->status = 0;
12641 		optptr += sizeof (*toh);
12642 		bcopy((uchar_t *)ipp->ipp_hopopts, optptr, ipp->ipp_hopoptslen);
12643 		optptr += ipp->ipp_hopoptslen;
12644 		ASSERT(OK_32PTR(optptr));
12645 		/* Save as last value */
12646 		ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
12647 		    (ipp->ipp_fields & IPPF_HOPOPTS),
12648 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
12649 	}
12650 	if (addflag.crb_ipv6_recvrthdrdstopts) {
12651 		toh = (struct T_opthdr *)optptr;
12652 		toh->level = IPPROTO_IPV6;
12653 		toh->name = IPV6_RTHDRDSTOPTS;
12654 		toh->len = sizeof (*toh) + ipp->ipp_rthdrdstoptslen;
12655 		toh->status = 0;
12656 		optptr += sizeof (*toh);
12657 		bcopy(ipp->ipp_rthdrdstopts, optptr, ipp->ipp_rthdrdstoptslen);
12658 		optptr += ipp->ipp_rthdrdstoptslen;
12659 		ASSERT(OK_32PTR(optptr));
12660 		/* Save as last value */
12661 		ip_savebuf((void **)&tcp->tcp_rthdrdstopts,
12662 		    &tcp->tcp_rthdrdstoptslen,
12663 		    (ipp->ipp_fields & IPPF_RTHDRDSTOPTS),
12664 		    ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen);
12665 	}
12666 	if (addflag.crb_ipv6_recvrthdr) {
12667 		toh = (struct T_opthdr *)optptr;
12668 		toh->level = IPPROTO_IPV6;
12669 		toh->name = IPV6_RTHDR;
12670 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
12671 		toh->status = 0;
12672 		optptr += sizeof (*toh);
12673 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
12674 		optptr += ipp->ipp_rthdrlen;
12675 		ASSERT(OK_32PTR(optptr));
12676 		/* Save as last value */
12677 		ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
12678 		    (ipp->ipp_fields & IPPF_RTHDR),
12679 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
12680 	}
12681 	if (addflag.crb_ipv6_recvdstopts) {
12682 		toh = (struct T_opthdr *)optptr;
12683 		toh->level = IPPROTO_IPV6;
12684 		toh->name = IPV6_DSTOPTS;
12685 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
12686 		toh->status = 0;
12687 		optptr += sizeof (*toh);
12688 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
12689 		optptr += ipp->ipp_dstoptslen;
12690 		ASSERT(OK_32PTR(optptr));
12691 		/* Save as last value */
12692 		ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
12693 		    (ipp->ipp_fields & IPPF_DSTOPTS),
12694 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
12695 	}
12696 	ASSERT(optptr == mp->b_wptr);
12697 	return (mp);
12698 }
12699 
12700 /* ARGSUSED */
12701 static void
12702 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
12703 {
12704 	conn_t	*connp = (conn_t *)arg;
12705 	tcp_t	*tcp = connp->conn_tcp;
12706 	queue_t	*q = connp->conn_rq;
12707 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12708 
12709 	ASSERT(!IPCL_IS_NONSTR(connp));
12710 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
12711 	tcp->tcp_rsrv_mp = mp;
12712 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
12713 
12714 	TCP_STAT(tcps, tcp_rsrv_calls);
12715 
12716 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
12717 		return;
12718 	}
12719 
12720 	if (tcp->tcp_fused) {
12721 		tcp_fuse_backenable(tcp);
12722 		return;
12723 	}
12724 
12725 	if (canputnext(q)) {
12726 		/* Not flow-controlled, open rwnd */
12727 		tcp->tcp_rwnd = connp->conn_rcvbuf;
12728 
12729 		/*
12730 		 * Send back a window update immediately if TCP is above
12731 		 * ESTABLISHED state and the increase of the rcv window
12732 		 * that the other side knows is at least 1 MSS after flow
12733 		 * control is lifted.
12734 		 */
12735 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
12736 		    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
12737 			tcp_xmit_ctl(NULL, tcp,
12738 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
12739 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
12740 		}
12741 	}
12742 }
12743 
12744 /*
12745  * The read side service routine is called mostly when we get back-enabled as a
12746  * result of flow control relief.  Since we don't actually queue anything in
12747  * TCP, we have no data to send out of here.  What we do is clear the receive
12748  * window, and send out a window update.
12749  */
12750 static void
12751 tcp_rsrv(queue_t *q)
12752 {
12753 	conn_t		*connp = Q_TO_CONN(q);
12754 	tcp_t		*tcp = connp->conn_tcp;
12755 	mblk_t		*mp;
12756 
12757 	/* No code does a putq on the read side */
12758 	ASSERT(q->q_first == NULL);
12759 
12760 	/*
12761 	 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already
12762 	 * been run.  So just return.
12763 	 */
12764 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
12765 	if ((mp = tcp->tcp_rsrv_mp) == NULL) {
12766 		mutex_exit(&tcp->tcp_rsrv_mp_lock);
12767 		return;
12768 	}
12769 	tcp->tcp_rsrv_mp = NULL;
12770 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
12771 
12772 	CONN_INC_REF(connp);
12773 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp,
12774 	    NULL, SQ_PROCESS, SQTAG_TCP_RSRV);
12775 }
12776 
12777 /*
12778  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
12779  * We do not allow the receive window to shrink.  After setting rwnd,
12780  * set the flow control hiwat of the stream.
12781  *
12782  * This function is called in 2 cases:
12783  *
12784  * 1) Before data transfer begins, in tcp_input_listener() for accepting a
12785  *    connection (passive open) and in tcp_input_data() for active connect.
12786  *    This is called after tcp_mss_set() when the desired MSS value is known.
12787  *    This makes sure that our window size is a mutiple of the other side's
12788  *    MSS.
12789  * 2) Handling SO_RCVBUF option.
12790  *
12791  * It is ASSUMED that the requested size is a multiple of the current MSS.
12792  *
12793  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
12794  * user requests so.
12795  */
12796 int
12797 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
12798 {
12799 	uint32_t	mss = tcp->tcp_mss;
12800 	uint32_t	old_max_rwnd;
12801 	uint32_t	max_transmittable_rwnd;
12802 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
12803 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12804 	conn_t		*connp = tcp->tcp_connp;
12805 
12806 	/*
12807 	 * Insist on a receive window that is at least
12808 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
12809 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
12810 	 * and delayed acknowledgement.
12811 	 */
12812 	rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss);
12813 
12814 	if (tcp->tcp_fused) {
12815 		size_t sth_hiwat;
12816 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
12817 
12818 		ASSERT(peer_tcp != NULL);
12819 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
12820 		if (!tcp_detached) {
12821 			(void) proto_set_rx_hiwat(connp->conn_rq, connp,
12822 			    sth_hiwat);
12823 			tcp_set_recv_threshold(tcp, sth_hiwat >> 3);
12824 		}
12825 
12826 		/*
12827 		 * In the fusion case, the maxpsz stream head value of
12828 		 * our peer is set according to its send buffer size
12829 		 * and our receive buffer size; since the latter may
12830 		 * have changed we need to update the peer's maxpsz.
12831 		 */
12832 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
12833 		return (sth_hiwat);
12834 	}
12835 
12836 	if (tcp_detached)
12837 		old_max_rwnd = tcp->tcp_rwnd;
12838 	else
12839 		old_max_rwnd = connp->conn_rcvbuf;
12840 
12841 
12842 	/*
12843 	 * If window size info has already been exchanged, TCP should not
12844 	 * shrink the window.  Shrinking window is doable if done carefully.
12845 	 * We may add that support later.  But so far there is not a real
12846 	 * need to do that.
12847 	 */
12848 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
12849 		/* MSS may have changed, do a round up again. */
12850 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
12851 	}
12852 
12853 	/*
12854 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
12855 	 * can be applied even before the window scale option is decided.
12856 	 */
12857 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
12858 	if (rwnd > max_transmittable_rwnd) {
12859 		rwnd = max_transmittable_rwnd -
12860 		    (max_transmittable_rwnd % mss);
12861 		if (rwnd < mss)
12862 			rwnd = max_transmittable_rwnd;
12863 		/*
12864 		 * If we're over the limit we may have to back down tcp_rwnd.
12865 		 * The increment below won't work for us. So we set all three
12866 		 * here and the increment below will have no effect.
12867 		 */
12868 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
12869 	}
12870 	if (tcp->tcp_localnet) {
12871 		tcp->tcp_rack_abs_max =
12872 		    MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2);
12873 	} else {
12874 		/*
12875 		 * For a remote host on a different subnet (through a router),
12876 		 * we ack every other packet to be conforming to RFC1122.
12877 		 * tcp_deferred_acks_max is default to 2.
12878 		 */
12879 		tcp->tcp_rack_abs_max =
12880 		    MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2);
12881 	}
12882 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
12883 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
12884 	else
12885 		tcp->tcp_rack_cur_max = 0;
12886 	/*
12887 	 * Increment the current rwnd by the amount the maximum grew (we
12888 	 * can not overwrite it since we might be in the middle of a
12889 	 * connection.)
12890 	 */
12891 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
12892 	connp->conn_rcvbuf = rwnd;
12893 
12894 	/* Are we already connected? */
12895 	if (tcp->tcp_tcpha != NULL) {
12896 		tcp->tcp_tcpha->tha_win =
12897 		    htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
12898 	}
12899 
12900 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
12901 		tcp->tcp_cwnd_max = rwnd;
12902 
12903 	if (tcp_detached)
12904 		return (rwnd);
12905 
12906 	tcp_set_recv_threshold(tcp, rwnd >> 3);
12907 
12908 	(void) proto_set_rx_hiwat(connp->conn_rq, connp, rwnd);
12909 	return (rwnd);
12910 }
12911 
12912 /*
12913  * Return SNMP stuff in buffer in mpdata.
12914  */
12915 mblk_t *
12916 tcp_snmp_get(queue_t *q, mblk_t *mpctl)
12917 {
12918 	mblk_t			*mpdata;
12919 	mblk_t			*mp_conn_ctl = NULL;
12920 	mblk_t			*mp_conn_tail;
12921 	mblk_t			*mp_attr_ctl = NULL;
12922 	mblk_t			*mp_attr_tail;
12923 	mblk_t			*mp6_conn_ctl = NULL;
12924 	mblk_t			*mp6_conn_tail;
12925 	mblk_t			*mp6_attr_ctl = NULL;
12926 	mblk_t			*mp6_attr_tail;
12927 	struct opthdr		*optp;
12928 	mib2_tcpConnEntry_t	tce;
12929 	mib2_tcp6ConnEntry_t	tce6;
12930 	mib2_transportMLPEntry_t mlp;
12931 	connf_t			*connfp;
12932 	int			i;
12933 	boolean_t 		ispriv;
12934 	zoneid_t 		zoneid;
12935 	int			v4_conn_idx;
12936 	int			v6_conn_idx;
12937 	conn_t			*connp = Q_TO_CONN(q);
12938 	tcp_stack_t		*tcps;
12939 	ip_stack_t		*ipst;
12940 	mblk_t			*mp2ctl;
12941 
12942 	/*
12943 	 * make a copy of the original message
12944 	 */
12945 	mp2ctl = copymsg(mpctl);
12946 
12947 	if (mpctl == NULL ||
12948 	    (mpdata = mpctl->b_cont) == NULL ||
12949 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
12950 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
12951 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
12952 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
12953 		freemsg(mp_conn_ctl);
12954 		freemsg(mp_attr_ctl);
12955 		freemsg(mp6_conn_ctl);
12956 		freemsg(mp6_attr_ctl);
12957 		freemsg(mpctl);
12958 		freemsg(mp2ctl);
12959 		return (NULL);
12960 	}
12961 
12962 	ipst = connp->conn_netstack->netstack_ip;
12963 	tcps = connp->conn_netstack->netstack_tcp;
12964 
12965 	/* build table of connections -- need count in fixed part */
12966 	SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4);   /* vanj */
12967 	SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min);
12968 	SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max);
12969 	SET_MIB(tcps->tcps_mib.tcpMaxConn, -1);
12970 	SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0);
12971 
12972 	ispriv =
12973 	    secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0;
12974 	zoneid = Q_TO_CONN(q)->conn_zoneid;
12975 
12976 	v4_conn_idx = v6_conn_idx = 0;
12977 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
12978 
12979 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
12980 		ipst = tcps->tcps_netstack->netstack_ip;
12981 
12982 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
12983 
12984 		connp = NULL;
12985 
12986 		while ((connp =
12987 		    ipcl_get_next_conn(connfp, connp, IPCL_TCPCONN)) != NULL) {
12988 			tcp_t *tcp;
12989 			boolean_t needattr;
12990 
12991 			if (connp->conn_zoneid != zoneid)
12992 				continue;	/* not in this zone */
12993 
12994 			tcp = connp->conn_tcp;
12995 			UPDATE_MIB(&tcps->tcps_mib,
12996 			    tcpHCInSegs, tcp->tcp_ibsegs);
12997 			tcp->tcp_ibsegs = 0;
12998 			UPDATE_MIB(&tcps->tcps_mib,
12999 			    tcpHCOutSegs, tcp->tcp_obsegs);
13000 			tcp->tcp_obsegs = 0;
13001 
13002 			tce6.tcp6ConnState = tce.tcpConnState =
13003 			    tcp_snmp_state(tcp);
13004 			if (tce.tcpConnState == MIB2_TCP_established ||
13005 			    tce.tcpConnState == MIB2_TCP_closeWait)
13006 				BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab);
13007 
13008 			needattr = B_FALSE;
13009 			bzero(&mlp, sizeof (mlp));
13010 			if (connp->conn_mlp_type != mlptSingle) {
13011 				if (connp->conn_mlp_type == mlptShared ||
13012 				    connp->conn_mlp_type == mlptBoth)
13013 					mlp.tme_flags |= MIB2_TMEF_SHARED;
13014 				if (connp->conn_mlp_type == mlptPrivate ||
13015 				    connp->conn_mlp_type == mlptBoth)
13016 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
13017 				needattr = B_TRUE;
13018 			}
13019 			if (connp->conn_anon_mlp) {
13020 				mlp.tme_flags |= MIB2_TMEF_ANONMLP;
13021 				needattr = B_TRUE;
13022 			}
13023 			switch (connp->conn_mac_mode) {
13024 			case CONN_MAC_DEFAULT:
13025 				break;
13026 			case CONN_MAC_AWARE:
13027 				mlp.tme_flags |= MIB2_TMEF_MACEXEMPT;
13028 				needattr = B_TRUE;
13029 				break;
13030 			case CONN_MAC_IMPLICIT:
13031 				mlp.tme_flags |= MIB2_TMEF_MACIMPLICIT;
13032 				needattr = B_TRUE;
13033 				break;
13034 			}
13035 			if (connp->conn_ixa->ixa_tsl != NULL) {
13036 				ts_label_t *tsl;
13037 
13038 				tsl = connp->conn_ixa->ixa_tsl;
13039 				mlp.tme_flags |= MIB2_TMEF_IS_LABELED;
13040 				mlp.tme_doi = label2doi(tsl);
13041 				mlp.tme_label = *label2bslabel(tsl);
13042 				needattr = B_TRUE;
13043 			}
13044 
13045 			/* Create a message to report on IPv6 entries */
13046 			if (connp->conn_ipversion == IPV6_VERSION) {
13047 			tce6.tcp6ConnLocalAddress = connp->conn_laddr_v6;
13048 			tce6.tcp6ConnRemAddress = connp->conn_faddr_v6;
13049 			tce6.tcp6ConnLocalPort = ntohs(connp->conn_lport);
13050 			tce6.tcp6ConnRemPort = ntohs(connp->conn_fport);
13051 			if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET) {
13052 				tce6.tcp6ConnIfIndex =
13053 				    connp->conn_ixa->ixa_scopeid;
13054 			} else {
13055 				tce6.tcp6ConnIfIndex = connp->conn_bound_if;
13056 			}
13057 			/* Don't want just anybody seeing these... */
13058 			if (ispriv) {
13059 				tce6.tcp6ConnEntryInfo.ce_snxt =
13060 				    tcp->tcp_snxt;
13061 				tce6.tcp6ConnEntryInfo.ce_suna =
13062 				    tcp->tcp_suna;
13063 				tce6.tcp6ConnEntryInfo.ce_rnxt =
13064 				    tcp->tcp_rnxt;
13065 				tce6.tcp6ConnEntryInfo.ce_rack =
13066 				    tcp->tcp_rack;
13067 			} else {
13068 				/*
13069 				 * Netstat, unfortunately, uses this to
13070 				 * get send/receive queue sizes.  How to fix?
13071 				 * Why not compute the difference only?
13072 				 */
13073 				tce6.tcp6ConnEntryInfo.ce_snxt =
13074 				    tcp->tcp_snxt - tcp->tcp_suna;
13075 				tce6.tcp6ConnEntryInfo.ce_suna = 0;
13076 				tce6.tcp6ConnEntryInfo.ce_rnxt =
13077 				    tcp->tcp_rnxt - tcp->tcp_rack;
13078 				tce6.tcp6ConnEntryInfo.ce_rack = 0;
13079 			}
13080 
13081 			tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd;
13082 			tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
13083 			tce6.tcp6ConnEntryInfo.ce_rto =  tcp->tcp_rto;
13084 			tce6.tcp6ConnEntryInfo.ce_mss =  tcp->tcp_mss;
13085 			tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state;
13086 
13087 			tce6.tcp6ConnCreationProcess =
13088 			    (connp->conn_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
13089 			    connp->conn_cpid;
13090 			tce6.tcp6ConnCreationTime = connp->conn_open_time;
13091 
13092 			(void) snmp_append_data2(mp6_conn_ctl->b_cont,
13093 			    &mp6_conn_tail, (char *)&tce6, sizeof (tce6));
13094 
13095 			mlp.tme_connidx = v6_conn_idx++;
13096 			if (needattr)
13097 				(void) snmp_append_data2(mp6_attr_ctl->b_cont,
13098 				    &mp6_attr_tail, (char *)&mlp, sizeof (mlp));
13099 			}
13100 			/*
13101 			 * Create an IPv4 table entry for IPv4 entries and also
13102 			 * for IPv6 entries which are bound to in6addr_any
13103 			 * but don't have IPV6_V6ONLY set.
13104 			 * (i.e. anything an IPv4 peer could connect to)
13105 			 */
13106 			if (connp->conn_ipversion == IPV4_VERSION ||
13107 			    (tcp->tcp_state <= TCPS_LISTEN &&
13108 			    !connp->conn_ipv6_v6only &&
13109 			    IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6))) {
13110 				if (connp->conn_ipversion == IPV6_VERSION) {
13111 					tce.tcpConnRemAddress = INADDR_ANY;
13112 					tce.tcpConnLocalAddress = INADDR_ANY;
13113 				} else {
13114 					tce.tcpConnRemAddress =
13115 					    connp->conn_faddr_v4;
13116 					tce.tcpConnLocalAddress =
13117 					    connp->conn_laddr_v4;
13118 				}
13119 				tce.tcpConnLocalPort = ntohs(connp->conn_lport);
13120 				tce.tcpConnRemPort = ntohs(connp->conn_fport);
13121 				/* Don't want just anybody seeing these... */
13122 				if (ispriv) {
13123 					tce.tcpConnEntryInfo.ce_snxt =
13124 					    tcp->tcp_snxt;
13125 					tce.tcpConnEntryInfo.ce_suna =
13126 					    tcp->tcp_suna;
13127 					tce.tcpConnEntryInfo.ce_rnxt =
13128 					    tcp->tcp_rnxt;
13129 					tce.tcpConnEntryInfo.ce_rack =
13130 					    tcp->tcp_rack;
13131 				} else {
13132 					/*
13133 					 * Netstat, unfortunately, uses this to
13134 					 * get send/receive queue sizes.  How
13135 					 * to fix?
13136 					 * Why not compute the difference only?
13137 					 */
13138 					tce.tcpConnEntryInfo.ce_snxt =
13139 					    tcp->tcp_snxt - tcp->tcp_suna;
13140 					tce.tcpConnEntryInfo.ce_suna = 0;
13141 					tce.tcpConnEntryInfo.ce_rnxt =
13142 					    tcp->tcp_rnxt - tcp->tcp_rack;
13143 					tce.tcpConnEntryInfo.ce_rack = 0;
13144 				}
13145 
13146 				tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd;
13147 				tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
13148 				tce.tcpConnEntryInfo.ce_rto =  tcp->tcp_rto;
13149 				tce.tcpConnEntryInfo.ce_mss =  tcp->tcp_mss;
13150 				tce.tcpConnEntryInfo.ce_state =
13151 				    tcp->tcp_state;
13152 
13153 				tce.tcpConnCreationProcess =
13154 				    (connp->conn_cpid < 0) ?
13155 				    MIB2_UNKNOWN_PROCESS :
13156 				    connp->conn_cpid;
13157 				tce.tcpConnCreationTime = connp->conn_open_time;
13158 
13159 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
13160 				    &mp_conn_tail, (char *)&tce, sizeof (tce));
13161 
13162 				mlp.tme_connidx = v4_conn_idx++;
13163 				if (needattr)
13164 					(void) snmp_append_data2(
13165 					    mp_attr_ctl->b_cont,
13166 					    &mp_attr_tail, (char *)&mlp,
13167 					    sizeof (mlp));
13168 			}
13169 		}
13170 	}
13171 
13172 	/* fixed length structure for IPv4 and IPv6 counters */
13173 	SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t));
13174 	SET_MIB(tcps->tcps_mib.tcp6ConnTableSize,
13175 	    sizeof (mib2_tcp6ConnEntry_t));
13176 	/* synchronize 32- and 64-bit counters */
13177 	SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs);
13178 	SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs);
13179 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
13180 	optp->level = MIB2_TCP;
13181 	optp->name = 0;
13182 	(void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib,
13183 	    sizeof (tcps->tcps_mib));
13184 	optp->len = msgdsize(mpdata);
13185 	qreply(q, mpctl);
13186 
13187 	/* table of connections... */
13188 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
13189 	    sizeof (struct T_optmgmt_ack)];
13190 	optp->level = MIB2_TCP;
13191 	optp->name = MIB2_TCP_CONN;
13192 	optp->len = msgdsize(mp_conn_ctl->b_cont);
13193 	qreply(q, mp_conn_ctl);
13194 
13195 	/* table of MLP attributes... */
13196 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
13197 	    sizeof (struct T_optmgmt_ack)];
13198 	optp->level = MIB2_TCP;
13199 	optp->name = EXPER_XPORT_MLP;
13200 	optp->len = msgdsize(mp_attr_ctl->b_cont);
13201 	if (optp->len == 0)
13202 		freemsg(mp_attr_ctl);
13203 	else
13204 		qreply(q, mp_attr_ctl);
13205 
13206 	/* table of IPv6 connections... */
13207 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
13208 	    sizeof (struct T_optmgmt_ack)];
13209 	optp->level = MIB2_TCP6;
13210 	optp->name = MIB2_TCP6_CONN;
13211 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
13212 	qreply(q, mp6_conn_ctl);
13213 
13214 	/* table of IPv6 MLP attributes... */
13215 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
13216 	    sizeof (struct T_optmgmt_ack)];
13217 	optp->level = MIB2_TCP6;
13218 	optp->name = EXPER_XPORT_MLP;
13219 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
13220 	if (optp->len == 0)
13221 		freemsg(mp6_attr_ctl);
13222 	else
13223 		qreply(q, mp6_attr_ctl);
13224 	return (mp2ctl);
13225 }
13226 
13227 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests  */
13228 /* ARGSUSED */
13229 int
13230 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
13231 {
13232 	mib2_tcpConnEntry_t	*tce = (mib2_tcpConnEntry_t *)ptr;
13233 
13234 	switch (level) {
13235 	case MIB2_TCP:
13236 		switch (name) {
13237 		case 13:
13238 			if (tce->tcpConnState != MIB2_TCP_deleteTCB)
13239 				return (0);
13240 			/* TODO: delete entry defined by tce */
13241 			return (1);
13242 		default:
13243 			return (0);
13244 		}
13245 	default:
13246 		return (1);
13247 	}
13248 }
13249 
13250 /* Translate TCP state to MIB2 TCP state. */
13251 static int
13252 tcp_snmp_state(tcp_t *tcp)
13253 {
13254 	if (tcp == NULL)
13255 		return (0);
13256 
13257 	switch (tcp->tcp_state) {
13258 	case TCPS_CLOSED:
13259 	case TCPS_IDLE:	/* RFC1213 doesn't have analogue for IDLE & BOUND */
13260 	case TCPS_BOUND:
13261 		return (MIB2_TCP_closed);
13262 	case TCPS_LISTEN:
13263 		return (MIB2_TCP_listen);
13264 	case TCPS_SYN_SENT:
13265 		return (MIB2_TCP_synSent);
13266 	case TCPS_SYN_RCVD:
13267 		return (MIB2_TCP_synReceived);
13268 	case TCPS_ESTABLISHED:
13269 		return (MIB2_TCP_established);
13270 	case TCPS_CLOSE_WAIT:
13271 		return (MIB2_TCP_closeWait);
13272 	case TCPS_FIN_WAIT_1:
13273 		return (MIB2_TCP_finWait1);
13274 	case TCPS_CLOSING:
13275 		return (MIB2_TCP_closing);
13276 	case TCPS_LAST_ACK:
13277 		return (MIB2_TCP_lastAck);
13278 	case TCPS_FIN_WAIT_2:
13279 		return (MIB2_TCP_finWait2);
13280 	case TCPS_TIME_WAIT:
13281 		return (MIB2_TCP_timeWait);
13282 	default:
13283 		return (0);
13284 	}
13285 }
13286 
13287 /*
13288  * tcp_timer is the timer service routine.  It handles the retransmission,
13289  * FIN_WAIT_2 flush, and zero window probe timeout events.  It figures out
13290  * from the state of the tcp instance what kind of action needs to be done
13291  * at the time it is called.
13292  */
13293 static void
13294 tcp_timer(void *arg)
13295 {
13296 	mblk_t		*mp;
13297 	clock_t		first_threshold;
13298 	clock_t		second_threshold;
13299 	clock_t		ms;
13300 	uint32_t	mss;
13301 	conn_t		*connp = (conn_t *)arg;
13302 	tcp_t		*tcp = connp->conn_tcp;
13303 	tcp_stack_t	*tcps = tcp->tcp_tcps;
13304 
13305 	tcp->tcp_timer_tid = 0;
13306 
13307 	if (tcp->tcp_fused)
13308 		return;
13309 
13310 	first_threshold =  tcp->tcp_first_timer_threshold;
13311 	second_threshold = tcp->tcp_second_timer_threshold;
13312 	switch (tcp->tcp_state) {
13313 	case TCPS_IDLE:
13314 	case TCPS_BOUND:
13315 	case TCPS_LISTEN:
13316 		return;
13317 	case TCPS_SYN_RCVD: {
13318 		tcp_t	*listener = tcp->tcp_listener;
13319 
13320 		if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) {
13321 			/* it's our first timeout */
13322 			tcp->tcp_syn_rcvd_timeout = 1;
13323 			mutex_enter(&listener->tcp_eager_lock);
13324 			listener->tcp_syn_rcvd_timeout++;
13325 			if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) {
13326 				/*
13327 				 * Make this eager available for drop if we
13328 				 * need to drop one to accomodate a new
13329 				 * incoming SYN request.
13330 				 */
13331 				MAKE_DROPPABLE(listener, tcp);
13332 			}
13333 			if (!listener->tcp_syn_defense &&
13334 			    (listener->tcp_syn_rcvd_timeout >
13335 			    (tcps->tcps_conn_req_max_q0 >> 2)) &&
13336 			    (tcps->tcps_conn_req_max_q0 > 200)) {
13337 				/* We may be under attack. Put on a defense. */
13338 				listener->tcp_syn_defense = B_TRUE;
13339 				cmn_err(CE_WARN, "High TCP connect timeout "
13340 				    "rate! System (port %d) may be under a "
13341 				    "SYN flood attack!",
13342 				    ntohs(listener->tcp_connp->conn_lport));
13343 
13344 				listener->tcp_ip_addr_cache = kmem_zalloc(
13345 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t),
13346 				    KM_NOSLEEP);
13347 			}
13348 			mutex_exit(&listener->tcp_eager_lock);
13349 		} else if (listener != NULL) {
13350 			mutex_enter(&listener->tcp_eager_lock);
13351 			tcp->tcp_syn_rcvd_timeout++;
13352 			if (tcp->tcp_syn_rcvd_timeout > 1 &&
13353 			    !tcp->tcp_closemp_used) {
13354 				/*
13355 				 * This is our second timeout. Put the tcp in
13356 				 * the list of droppable eagers to allow it to
13357 				 * be dropped, if needed. We don't check
13358 				 * whether tcp_dontdrop is set or not to
13359 				 * protect ourselve from a SYN attack where a
13360 				 * remote host can spoof itself as one of the
13361 				 * good IP source and continue to hold
13362 				 * resources too long.
13363 				 */
13364 				MAKE_DROPPABLE(listener, tcp);
13365 			}
13366 			mutex_exit(&listener->tcp_eager_lock);
13367 		}
13368 	}
13369 		/* FALLTHRU */
13370 	case TCPS_SYN_SENT:
13371 		first_threshold =  tcp->tcp_first_ctimer_threshold;
13372 		second_threshold = tcp->tcp_second_ctimer_threshold;
13373 		break;
13374 	case TCPS_ESTABLISHED:
13375 	case TCPS_FIN_WAIT_1:
13376 	case TCPS_CLOSING:
13377 	case TCPS_CLOSE_WAIT:
13378 	case TCPS_LAST_ACK:
13379 		/* If we have data to rexmit */
13380 		if (tcp->tcp_suna != tcp->tcp_snxt) {
13381 			clock_t	time_to_wait;
13382 
13383 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans);
13384 			if (!tcp->tcp_xmit_head)
13385 				break;
13386 			time_to_wait = ddi_get_lbolt() -
13387 			    (clock_t)tcp->tcp_xmit_head->b_prev;
13388 			time_to_wait = tcp->tcp_rto -
13389 			    TICK_TO_MSEC(time_to_wait);
13390 			/*
13391 			 * If the timer fires too early, 1 clock tick earlier,
13392 			 * restart the timer.
13393 			 */
13394 			if (time_to_wait > msec_per_tick) {
13395 				TCP_STAT(tcps, tcp_timer_fire_early);
13396 				TCP_TIMER_RESTART(tcp, time_to_wait);
13397 				return;
13398 			}
13399 			/*
13400 			 * When we probe zero windows, we force the swnd open.
13401 			 * If our peer acks with a closed window swnd will be
13402 			 * set to zero by tcp_rput(). As long as we are
13403 			 * receiving acks tcp_rput will
13404 			 * reset 'tcp_ms_we_have_waited' so as not to trip the
13405 			 * first and second interval actions.  NOTE: the timer
13406 			 * interval is allowed to continue its exponential
13407 			 * backoff.
13408 			 */
13409 			if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) {
13410 				if (connp->conn_debug) {
13411 					(void) strlog(TCP_MOD_ID, 0, 1,
13412 					    SL_TRACE, "tcp_timer: zero win");
13413 				}
13414 			} else {
13415 				/*
13416 				 * After retransmission, we need to do
13417 				 * slow start.  Set the ssthresh to one
13418 				 * half of current effective window and
13419 				 * cwnd to one MSS.  Also reset
13420 				 * tcp_cwnd_cnt.
13421 				 *
13422 				 * Note that if tcp_ssthresh is reduced because
13423 				 * of ECN, do not reduce it again unless it is
13424 				 * already one window of data away (tcp_cwr
13425 				 * should then be cleared) or this is a
13426 				 * timeout for a retransmitted segment.
13427 				 */
13428 				uint32_t npkt;
13429 
13430 				if (!tcp->tcp_cwr || tcp->tcp_rexmit) {
13431 					npkt = ((tcp->tcp_timer_backoff ?
13432 					    tcp->tcp_cwnd_ssthresh :
13433 					    tcp->tcp_snxt -
13434 					    tcp->tcp_suna) >> 1) / tcp->tcp_mss;
13435 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
13436 					    tcp->tcp_mss;
13437 				}
13438 				tcp->tcp_cwnd = tcp->tcp_mss;
13439 				tcp->tcp_cwnd_cnt = 0;
13440 				if (tcp->tcp_ecn_ok) {
13441 					tcp->tcp_cwr = B_TRUE;
13442 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
13443 					tcp->tcp_ecn_cwr_sent = B_FALSE;
13444 				}
13445 			}
13446 			break;
13447 		}
13448 		/*
13449 		 * We have something to send yet we cannot send.  The
13450 		 * reason can be:
13451 		 *
13452 		 * 1. Zero send window: we need to do zero window probe.
13453 		 * 2. Zero cwnd: because of ECN, we need to "clock out
13454 		 * segments.
13455 		 * 3. SWS avoidance: receiver may have shrunk window,
13456 		 * reset our knowledge.
13457 		 *
13458 		 * Note that condition 2 can happen with either 1 or
13459 		 * 3.  But 1 and 3 are exclusive.
13460 		 */
13461 		if (tcp->tcp_unsent != 0) {
13462 			/*
13463 			 * Should not hold the zero-copy messages for too long.
13464 			 */
13465 			if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean)
13466 				tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp,
13467 				    tcp->tcp_xmit_head, B_TRUE);
13468 
13469 			if (tcp->tcp_cwnd == 0) {
13470 				/*
13471 				 * Set tcp_cwnd to 1 MSS so that a
13472 				 * new segment can be sent out.  We
13473 				 * are "clocking out" new data when
13474 				 * the network is really congested.
13475 				 */
13476 				ASSERT(tcp->tcp_ecn_ok);
13477 				tcp->tcp_cwnd = tcp->tcp_mss;
13478 			}
13479 			if (tcp->tcp_swnd == 0) {
13480 				/* Extend window for zero window probe */
13481 				tcp->tcp_swnd++;
13482 				tcp->tcp_zero_win_probe = B_TRUE;
13483 				BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe);
13484 			} else {
13485 				/*
13486 				 * Handle timeout from sender SWS avoidance.
13487 				 * Reset our knowledge of the max send window
13488 				 * since the receiver might have reduced its
13489 				 * receive buffer.  Avoid setting tcp_max_swnd
13490 				 * to one since that will essentially disable
13491 				 * the SWS checks.
13492 				 *
13493 				 * Note that since we don't have a SWS
13494 				 * state variable, if the timeout is set
13495 				 * for ECN but not for SWS, this
13496 				 * code will also be executed.  This is
13497 				 * fine as tcp_max_swnd is updated
13498 				 * constantly and it will not affect
13499 				 * anything.
13500 				 */
13501 				tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2);
13502 			}
13503 			tcp_wput_data(tcp, NULL, B_FALSE);
13504 			return;
13505 		}
13506 		/* Is there a FIN that needs to be to re retransmitted? */
13507 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
13508 		    !tcp->tcp_fin_acked)
13509 			break;
13510 		/* Nothing to do, return without restarting timer. */
13511 		TCP_STAT(tcps, tcp_timer_fire_miss);
13512 		return;
13513 	case TCPS_FIN_WAIT_2:
13514 		/*
13515 		 * User closed the TCP endpoint and peer ACK'ed our FIN.
13516 		 * We waited some time for for peer's FIN, but it hasn't
13517 		 * arrived.  We flush the connection now to avoid
13518 		 * case where the peer has rebooted.
13519 		 */
13520 		if (TCP_IS_DETACHED(tcp)) {
13521 			(void) tcp_clean_death(tcp, 0, 23);
13522 		} else {
13523 			TCP_TIMER_RESTART(tcp,
13524 			    tcps->tcps_fin_wait_2_flush_interval);
13525 		}
13526 		return;
13527 	case TCPS_TIME_WAIT:
13528 		(void) tcp_clean_death(tcp, 0, 24);
13529 		return;
13530 	default:
13531 		if (connp->conn_debug) {
13532 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
13533 			    "tcp_timer: strange state (%d) %s",
13534 			    tcp->tcp_state, tcp_display(tcp, NULL,
13535 			    DISP_PORT_ONLY));
13536 		}
13537 		return;
13538 	}
13539 
13540 	if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) {
13541 		/*
13542 		 * Should not hold the zero-copy messages for too long.
13543 		 */
13544 		if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean)
13545 			tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp,
13546 			    tcp->tcp_xmit_head, B_TRUE);
13547 
13548 		/*
13549 		 * For zero window probe, we need to send indefinitely,
13550 		 * unless we have not heard from the other side for some
13551 		 * time...
13552 		 */
13553 		if ((tcp->tcp_zero_win_probe == 0) ||
13554 		    (TICK_TO_MSEC(ddi_get_lbolt() - tcp->tcp_last_recv_time) >
13555 		    second_threshold)) {
13556 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop);
13557 			/*
13558 			 * If TCP is in SYN_RCVD state, send back a
13559 			 * RST|ACK as BSD does.  Note that tcp_zero_win_probe
13560 			 * should be zero in TCPS_SYN_RCVD state.
13561 			 */
13562 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
13563 				tcp_xmit_ctl("tcp_timer: RST sent on timeout "
13564 				    "in SYN_RCVD",
13565 				    tcp, tcp->tcp_snxt,
13566 				    tcp->tcp_rnxt, TH_RST | TH_ACK);
13567 			}
13568 			(void) tcp_clean_death(tcp,
13569 			    tcp->tcp_client_errno ?
13570 			    tcp->tcp_client_errno : ETIMEDOUT, 25);
13571 			return;
13572 		} else {
13573 			/*
13574 			 * Set tcp_ms_we_have_waited to second_threshold
13575 			 * so that in next timeout, we will do the above
13576 			 * check (ddi_get_lbolt() - tcp_last_recv_time).
13577 			 * This is also to avoid overflow.
13578 			 *
13579 			 * We don't need to decrement tcp_timer_backoff
13580 			 * to avoid overflow because it will be decremented
13581 			 * later if new timeout value is greater than
13582 			 * tcp_rexmit_interval_max.  In the case when
13583 			 * tcp_rexmit_interval_max is greater than
13584 			 * second_threshold, it means that we will wait
13585 			 * longer than second_threshold to send the next
13586 			 * window probe.
13587 			 */
13588 			tcp->tcp_ms_we_have_waited = second_threshold;
13589 		}
13590 	} else if (ms > first_threshold) {
13591 		/*
13592 		 * Should not hold the zero-copy messages for too long.
13593 		 */
13594 		if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean)
13595 			tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp,
13596 			    tcp->tcp_xmit_head, B_TRUE);
13597 
13598 		/*
13599 		 * We have been retransmitting for too long...  The RTT
13600 		 * we calculated is probably incorrect.  Reinitialize it.
13601 		 * Need to compensate for 0 tcp_rtt_sa.  Reset
13602 		 * tcp_rtt_update so that we won't accidentally cache a
13603 		 * bad value.  But only do this if this is not a zero
13604 		 * window probe.
13605 		 */
13606 		if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) {
13607 			tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) +
13608 			    (tcp->tcp_rtt_sa >> 5);
13609 			tcp->tcp_rtt_sa = 0;
13610 			tcp_ip_notify(tcp);
13611 			tcp->tcp_rtt_update = 0;
13612 		}
13613 	}
13614 	tcp->tcp_timer_backoff++;
13615 	if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
13616 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) <
13617 	    tcps->tcps_rexmit_interval_min) {
13618 		/*
13619 		 * This means the original RTO is tcp_rexmit_interval_min.
13620 		 * So we will use tcp_rexmit_interval_min as the RTO value
13621 		 * and do the backoff.
13622 		 */
13623 		ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff;
13624 	} else {
13625 		ms <<= tcp->tcp_timer_backoff;
13626 	}
13627 	if (ms > tcps->tcps_rexmit_interval_max) {
13628 		ms = tcps->tcps_rexmit_interval_max;
13629 		/*
13630 		 * ms is at max, decrement tcp_timer_backoff to avoid
13631 		 * overflow.
13632 		 */
13633 		tcp->tcp_timer_backoff--;
13634 	}
13635 	tcp->tcp_ms_we_have_waited += ms;
13636 	if (tcp->tcp_zero_win_probe == 0) {
13637 		tcp->tcp_rto = ms;
13638 	}
13639 	TCP_TIMER_RESTART(tcp, ms);
13640 	/*
13641 	 * This is after a timeout and tcp_rto is backed off.  Set
13642 	 * tcp_set_timer to 1 so that next time RTO is updated, we will
13643 	 * restart the timer with a correct value.
13644 	 */
13645 	tcp->tcp_set_timer = 1;
13646 	mss = tcp->tcp_snxt - tcp->tcp_suna;
13647 	if (mss > tcp->tcp_mss)
13648 		mss = tcp->tcp_mss;
13649 	if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0)
13650 		mss = tcp->tcp_swnd;
13651 
13652 	if ((mp = tcp->tcp_xmit_head) != NULL)
13653 		mp->b_prev = (mblk_t *)ddi_get_lbolt();
13654 	mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss,
13655 	    B_TRUE);
13656 
13657 	/*
13658 	 * When slow start after retransmission begins, start with
13659 	 * this seq no.  tcp_rexmit_max marks the end of special slow
13660 	 * start phase.  tcp_snd_burst controls how many segments
13661 	 * can be sent because of an ack.
13662 	 */
13663 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
13664 	tcp->tcp_snd_burst = TCP_CWND_SS;
13665 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
13666 	    (tcp->tcp_unsent == 0)) {
13667 		tcp->tcp_rexmit_max = tcp->tcp_fss;
13668 	} else {
13669 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
13670 	}
13671 	tcp->tcp_rexmit = B_TRUE;
13672 	tcp->tcp_dupack_cnt = 0;
13673 
13674 	/*
13675 	 * Remove all rexmit SACK blk to start from fresh.
13676 	 */
13677 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL)
13678 		TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp);
13679 	if (mp == NULL) {
13680 		return;
13681 	}
13682 
13683 	tcp->tcp_csuna = tcp->tcp_snxt;
13684 	BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
13685 	UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss);
13686 	tcp_send_data(tcp, mp);
13687 
13688 }
13689 
13690 static int
13691 tcp_do_unbind(conn_t *connp)
13692 {
13693 	tcp_t *tcp = connp->conn_tcp;
13694 
13695 	switch (tcp->tcp_state) {
13696 	case TCPS_BOUND:
13697 	case TCPS_LISTEN:
13698 		break;
13699 	default:
13700 		return (-TOUTSTATE);
13701 	}
13702 
13703 	/*
13704 	 * Need to clean up all the eagers since after the unbind, segments
13705 	 * will no longer be delivered to this listener stream.
13706 	 */
13707 	mutex_enter(&tcp->tcp_eager_lock);
13708 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
13709 		tcp_eager_cleanup(tcp, 0);
13710 	}
13711 	mutex_exit(&tcp->tcp_eager_lock);
13712 
13713 	connp->conn_laddr_v6 = ipv6_all_zeros;
13714 	connp->conn_saddr_v6 = ipv6_all_zeros;
13715 	tcp_bind_hash_remove(tcp);
13716 	tcp->tcp_state = TCPS_IDLE;
13717 
13718 	ip_unbind(connp);
13719 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
13720 
13721 	return (0);
13722 }
13723 
13724 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */
13725 static void
13726 tcp_tpi_unbind(tcp_t *tcp, mblk_t *mp)
13727 {
13728 	conn_t *connp = tcp->tcp_connp;
13729 	int error;
13730 
13731 	error = tcp_do_unbind(connp);
13732 	if (error > 0) {
13733 		tcp_err_ack(tcp, mp, TSYSERR, error);
13734 	} else if (error < 0) {
13735 		tcp_err_ack(tcp, mp, -error, 0);
13736 	} else {
13737 		/* Send M_FLUSH according to TPI */
13738 		(void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW);
13739 
13740 		mp = mi_tpi_ok_ack_alloc(mp);
13741 		if (mp != NULL)
13742 			putnext(connp->conn_rq, mp);
13743 	}
13744 }
13745 
13746 /*
13747  * Don't let port fall into the privileged range.
13748  * Since the extra privileged ports can be arbitrary we also
13749  * ensure that we exclude those from consideration.
13750  * tcp_g_epriv_ports is not sorted thus we loop over it until
13751  * there are no changes.
13752  *
13753  * Note: No locks are held when inspecting tcp_g_*epriv_ports
13754  * but instead the code relies on:
13755  * - the fact that the address of the array and its size never changes
13756  * - the atomic assignment of the elements of the array
13757  *
13758  * Returns 0 if there are no more ports available.
13759  *
13760  * TS note: skip multilevel ports.
13761  */
13762 static in_port_t
13763 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random)
13764 {
13765 	int i;
13766 	boolean_t restart = B_FALSE;
13767 	tcp_stack_t *tcps = tcp->tcp_tcps;
13768 
13769 	if (random && tcp_random_anon_port != 0) {
13770 		(void) random_get_pseudo_bytes((uint8_t *)&port,
13771 		    sizeof (in_port_t));
13772 		/*
13773 		 * Unless changed by a sys admin, the smallest anon port
13774 		 * is 32768 and the largest anon port is 65535.  It is
13775 		 * very likely (50%) for the random port to be smaller
13776 		 * than the smallest anon port.  When that happens,
13777 		 * add port % (anon port range) to the smallest anon
13778 		 * port to get the random port.  It should fall into the
13779 		 * valid anon port range.
13780 		 */
13781 		if (port < tcps->tcps_smallest_anon_port) {
13782 			port = tcps->tcps_smallest_anon_port +
13783 			    port % (tcps->tcps_largest_anon_port -
13784 			    tcps->tcps_smallest_anon_port);
13785 		}
13786 	}
13787 
13788 retry:
13789 	if (port < tcps->tcps_smallest_anon_port)
13790 		port = (in_port_t)tcps->tcps_smallest_anon_port;
13791 
13792 	if (port > tcps->tcps_largest_anon_port) {
13793 		if (restart)
13794 			return (0);
13795 		restart = B_TRUE;
13796 		port = (in_port_t)tcps->tcps_smallest_anon_port;
13797 	}
13798 
13799 	if (port < tcps->tcps_smallest_nonpriv_port)
13800 		port = (in_port_t)tcps->tcps_smallest_nonpriv_port;
13801 
13802 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
13803 		if (port == tcps->tcps_g_epriv_ports[i]) {
13804 			port++;
13805 			/*
13806 			 * Make sure whether the port is in the
13807 			 * valid range.
13808 			 */
13809 			goto retry;
13810 		}
13811 	}
13812 	if (is_system_labeled() &&
13813 	    (i = tsol_next_port(crgetzone(tcp->tcp_connp->conn_cred), port,
13814 	    IPPROTO_TCP, B_TRUE)) != 0) {
13815 		port = i;
13816 		goto retry;
13817 	}
13818 	return (port);
13819 }
13820 
13821 /*
13822  * Return the next anonymous port in the privileged port range for
13823  * bind checking.  It starts at IPPORT_RESERVED - 1 and goes
13824  * downwards.  This is the same behavior as documented in the userland
13825  * library call rresvport(3N).
13826  *
13827  * TS note: skip multilevel ports.
13828  */
13829 static in_port_t
13830 tcp_get_next_priv_port(const tcp_t *tcp)
13831 {
13832 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
13833 	in_port_t nextport;
13834 	boolean_t restart = B_FALSE;
13835 	tcp_stack_t *tcps = tcp->tcp_tcps;
13836 retry:
13837 	if (next_priv_port < tcps->tcps_min_anonpriv_port ||
13838 	    next_priv_port >= IPPORT_RESERVED) {
13839 		next_priv_port = IPPORT_RESERVED - 1;
13840 		if (restart)
13841 			return (0);
13842 		restart = B_TRUE;
13843 	}
13844 	if (is_system_labeled() &&
13845 	    (nextport = tsol_next_port(crgetzone(tcp->tcp_connp->conn_cred),
13846 	    next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) {
13847 		next_priv_port = nextport;
13848 		goto retry;
13849 	}
13850 	return (next_priv_port--);
13851 }
13852 
13853 /* The write side r/w procedure. */
13854 
13855 #if CCS_STATS
13856 struct {
13857 	struct {
13858 		int64_t count, bytes;
13859 	} tot, hit;
13860 } wrw_stats;
13861 #endif
13862 
13863 /*
13864  * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO,
13865  * messages.
13866  */
13867 /* ARGSUSED */
13868 static void
13869 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
13870 {
13871 	conn_t	*connp = (conn_t *)arg;
13872 	tcp_t	*tcp = connp->conn_tcp;
13873 
13874 	ASSERT(DB_TYPE(mp) != M_IOCTL);
13875 	/*
13876 	 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close.
13877 	 * Once the close starts, streamhead and sockfs will not let any data
13878 	 * packets come down (close ensures that there are no threads using the
13879 	 * queue and no new threads will come down) but since qprocsoff()
13880 	 * hasn't happened yet, a M_FLUSH or some non data message might
13881 	 * get reflected back (in response to our own FLUSHRW) and get
13882 	 * processed after tcp_close() is done. The conn would still be valid
13883 	 * because a ref would have added but we need to check the state
13884 	 * before actually processing the packet.
13885 	 */
13886 	if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) {
13887 		freemsg(mp);
13888 		return;
13889 	}
13890 
13891 	switch (DB_TYPE(mp)) {
13892 	case M_IOCDATA:
13893 		tcp_wput_iocdata(tcp, mp);
13894 		break;
13895 	case M_FLUSH:
13896 		tcp_wput_flush(tcp, mp);
13897 		break;
13898 	default:
13899 		ip_wput_nondata(connp->conn_wq, mp);
13900 		break;
13901 	}
13902 }
13903 
13904 /*
13905  * The TCP fast path write put procedure.
13906  * NOTE: the logic of the fast path is duplicated from tcp_wput_data()
13907  */
13908 /* ARGSUSED */
13909 void
13910 tcp_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
13911 {
13912 	int		len;
13913 	int		hdrlen;
13914 	int		plen;
13915 	mblk_t		*mp1;
13916 	uchar_t		*rptr;
13917 	uint32_t	snxt;
13918 	tcpha_t		*tcpha;
13919 	struct datab	*db;
13920 	uint32_t	suna;
13921 	uint32_t	mss;
13922 	ipaddr_t	*dst;
13923 	ipaddr_t	*src;
13924 	uint32_t	sum;
13925 	int		usable;
13926 	conn_t		*connp = (conn_t *)arg;
13927 	tcp_t		*tcp = connp->conn_tcp;
13928 	uint32_t	msize;
13929 	tcp_stack_t	*tcps = tcp->tcp_tcps;
13930 	ip_xmit_attr_t	*ixa;
13931 
13932 	/*
13933 	 * Try and ASSERT the minimum possible references on the
13934 	 * conn early enough. Since we are executing on write side,
13935 	 * the connection is obviously not detached and that means
13936 	 * there is a ref each for TCP and IP. Since we are behind
13937 	 * the squeue, the minimum references needed are 3. If the
13938 	 * conn is in classifier hash list, there should be an
13939 	 * extra ref for that (we check both the possibilities).
13940 	 */
13941 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
13942 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
13943 
13944 	ASSERT(DB_TYPE(mp) == M_DATA);
13945 	msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
13946 
13947 	mutex_enter(&tcp->tcp_non_sq_lock);
13948 	tcp->tcp_squeue_bytes -= msize;
13949 	mutex_exit(&tcp->tcp_non_sq_lock);
13950 
13951 	/* Bypass tcp protocol for fused tcp loopback */
13952 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
13953 		return;
13954 
13955 	mss = tcp->tcp_mss;
13956 	/*
13957 	 * If ZEROCOPY has turned off, try not to send any zero-copy message
13958 	 * down. Do backoff, now.
13959 	 */
13960 	if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_snd_zcopy_on)
13961 		mp = tcp_zcopy_backoff(tcp, mp, B_FALSE);
13962 
13963 
13964 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
13965 	len = (int)(mp->b_wptr - mp->b_rptr);
13966 
13967 	/*
13968 	 * Criteria for fast path:
13969 	 *
13970 	 *   1. no unsent data
13971 	 *   2. single mblk in request
13972 	 *   3. connection established
13973 	 *   4. data in mblk
13974 	 *   5. len <= mss
13975 	 *   6. no tcp_valid bits
13976 	 */
13977 	if ((tcp->tcp_unsent != 0) ||
13978 	    (tcp->tcp_cork) ||
13979 	    (mp->b_cont != NULL) ||
13980 	    (tcp->tcp_state != TCPS_ESTABLISHED) ||
13981 	    (len == 0) ||
13982 	    (len > mss) ||
13983 	    (tcp->tcp_valid_bits != 0)) {
13984 		tcp_wput_data(tcp, mp, B_FALSE);
13985 		return;
13986 	}
13987 
13988 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
13989 	ASSERT(tcp->tcp_fin_sent == 0);
13990 
13991 	/* queue new packet onto retransmission queue */
13992 	if (tcp->tcp_xmit_head == NULL) {
13993 		tcp->tcp_xmit_head = mp;
13994 	} else {
13995 		tcp->tcp_xmit_last->b_cont = mp;
13996 	}
13997 	tcp->tcp_xmit_last = mp;
13998 	tcp->tcp_xmit_tail = mp;
13999 
14000 	/* find out how much we can send */
14001 	/* BEGIN CSTYLED */
14002 	/*
14003 	 *    un-acked	   usable
14004 	 *  |--------------|-----------------|
14005 	 *  tcp_suna       tcp_snxt	  tcp_suna+tcp_swnd
14006 	 */
14007 	/* END CSTYLED */
14008 
14009 	/* start sending from tcp_snxt */
14010 	snxt = tcp->tcp_snxt;
14011 
14012 	/*
14013 	 * Check to see if this connection has been idled for some
14014 	 * time and no ACK is expected.  If it is, we need to slow
14015 	 * start again to get back the connection's "self-clock" as
14016 	 * described in VJ's paper.
14017 	 *
14018 	 * Reinitialize tcp_cwnd after idle.
14019 	 */
14020 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
14021 	    (TICK_TO_MSEC(ddi_get_lbolt() - tcp->tcp_last_recv_time) >=
14022 	    tcp->tcp_rto)) {
14023 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
14024 	}
14025 
14026 	usable = tcp->tcp_swnd;		/* tcp window size */
14027 	if (usable > tcp->tcp_cwnd)
14028 		usable = tcp->tcp_cwnd;	/* congestion window smaller */
14029 	usable -= snxt;		/* subtract stuff already sent */
14030 	suna = tcp->tcp_suna;
14031 	usable += suna;
14032 	/* usable can be < 0 if the congestion window is smaller */
14033 	if (len > usable) {
14034 		/* Can't send complete M_DATA in one shot */
14035 		goto slow;
14036 	}
14037 
14038 	mutex_enter(&tcp->tcp_non_sq_lock);
14039 	if (tcp->tcp_flow_stopped &&
14040 	    TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) {
14041 		tcp_clrqfull(tcp);
14042 	}
14043 	mutex_exit(&tcp->tcp_non_sq_lock);
14044 
14045 	/*
14046 	 * determine if anything to send (Nagle).
14047 	 *
14048 	 *   1. len < tcp_mss (i.e. small)
14049 	 *   2. unacknowledged data present
14050 	 *   3. len < nagle limit
14051 	 *   4. last packet sent < nagle limit (previous packet sent)
14052 	 */
14053 	if ((len < mss) && (snxt != suna) &&
14054 	    (len < (int)tcp->tcp_naglim) &&
14055 	    (tcp->tcp_last_sent_len < tcp->tcp_naglim)) {
14056 		/*
14057 		 * This was the first unsent packet and normally
14058 		 * mss < xmit_hiwater so there is no need to worry
14059 		 * about flow control. The next packet will go
14060 		 * through the flow control check in tcp_wput_data().
14061 		 */
14062 		/* leftover work from above */
14063 		tcp->tcp_unsent = len;
14064 		tcp->tcp_xmit_tail_unsent = len;
14065 
14066 		return;
14067 	}
14068 
14069 	/* len <= tcp->tcp_mss && len == unsent so no silly window */
14070 
14071 	if (snxt == suna) {
14072 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14073 	}
14074 
14075 	/* we have always sent something */
14076 	tcp->tcp_rack_cnt = 0;
14077 
14078 	tcp->tcp_snxt = snxt + len;
14079 	tcp->tcp_rack = tcp->tcp_rnxt;
14080 
14081 	if ((mp1 = dupb(mp)) == 0)
14082 		goto no_memory;
14083 	mp->b_prev = (mblk_t *)(uintptr_t)ddi_get_lbolt();
14084 	mp->b_next = (mblk_t *)(uintptr_t)snxt;
14085 
14086 	/* adjust tcp header information */
14087 	tcpha = tcp->tcp_tcpha;
14088 	tcpha->tha_flags = (TH_ACK|TH_PUSH);
14089 
14090 	sum = len + connp->conn_ht_ulp_len + connp->conn_sum;
14091 	sum = (sum >> 16) + (sum & 0xFFFF);
14092 	tcpha->tha_sum = htons(sum);
14093 
14094 	tcpha->tha_seq = htonl(snxt);
14095 
14096 	BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
14097 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
14098 	BUMP_LOCAL(tcp->tcp_obsegs);
14099 
14100 	/* Update the latest receive window size in TCP header. */
14101 	tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
14102 
14103 	tcp->tcp_last_sent_len = (ushort_t)len;
14104 
14105 	plen = len + connp->conn_ht_iphc_len;
14106 
14107 	ixa = connp->conn_ixa;
14108 	ixa->ixa_pktlen = plen;
14109 
14110 	if (ixa->ixa_flags & IXAF_IS_IPV4) {
14111 		tcp->tcp_ipha->ipha_length = htons(plen);
14112 	} else {
14113 		tcp->tcp_ip6h->ip6_plen = htons(plen - IPV6_HDR_LEN);
14114 	}
14115 
14116 	/* see if we need to allocate a mblk for the headers */
14117 	hdrlen = connp->conn_ht_iphc_len;
14118 	rptr = mp1->b_rptr - hdrlen;
14119 	db = mp1->b_datap;
14120 	if ((db->db_ref != 2) || rptr < db->db_base ||
14121 	    (!OK_32PTR(rptr))) {
14122 		/* NOTE: we assume allocb returns an OK_32PTR */
14123 		mp = allocb(hdrlen + tcps->tcps_wroff_xtra, BPRI_MED);
14124 		if (!mp) {
14125 			freemsg(mp1);
14126 			goto no_memory;
14127 		}
14128 		mp->b_cont = mp1;
14129 		mp1 = mp;
14130 		/* Leave room for Link Level header */
14131 		rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra];
14132 		mp1->b_wptr = &rptr[hdrlen];
14133 	}
14134 	mp1->b_rptr = rptr;
14135 
14136 	/* Fill in the timestamp option. */
14137 	if (tcp->tcp_snd_ts_ok) {
14138 		uint32_t llbolt = (uint32_t)LBOLT_FASTPATH;
14139 
14140 		U32_TO_BE32(llbolt,
14141 		    (char *)tcpha + TCP_MIN_HEADER_LENGTH+4);
14142 		U32_TO_BE32(tcp->tcp_ts_recent,
14143 		    (char *)tcpha + TCP_MIN_HEADER_LENGTH+8);
14144 	} else {
14145 		ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH);
14146 	}
14147 
14148 	/* copy header into outgoing packet */
14149 	dst = (ipaddr_t *)rptr;
14150 	src = (ipaddr_t *)connp->conn_ht_iphc;
14151 	dst[0] = src[0];
14152 	dst[1] = src[1];
14153 	dst[2] = src[2];
14154 	dst[3] = src[3];
14155 	dst[4] = src[4];
14156 	dst[5] = src[5];
14157 	dst[6] = src[6];
14158 	dst[7] = src[7];
14159 	dst[8] = src[8];
14160 	dst[9] = src[9];
14161 	if (hdrlen -= 40) {
14162 		hdrlen >>= 2;
14163 		dst += 10;
14164 		src += 10;
14165 		do {
14166 			*dst++ = *src++;
14167 		} while (--hdrlen);
14168 	}
14169 
14170 	/*
14171 	 * Set the ECN info in the TCP header.  Note that this
14172 	 * is not the template header.
14173 	 */
14174 	if (tcp->tcp_ecn_ok) {
14175 		SET_ECT(tcp, rptr);
14176 
14177 		tcpha = (tcpha_t *)(rptr + ixa->ixa_ip_hdr_length);
14178 		if (tcp->tcp_ecn_echo_on)
14179 			tcpha->tha_flags |= TH_ECE;
14180 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
14181 			tcpha->tha_flags |= TH_CWR;
14182 			tcp->tcp_ecn_cwr_sent = B_TRUE;
14183 		}
14184 	}
14185 
14186 	if (tcp->tcp_ip_forward_progress) {
14187 		tcp->tcp_ip_forward_progress = B_FALSE;
14188 		connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF;
14189 	} else {
14190 		connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF;
14191 	}
14192 	tcp_send_data(tcp, mp1);
14193 	return;
14194 
14195 	/*
14196 	 * If we ran out of memory, we pretend to have sent the packet
14197 	 * and that it was lost on the wire.
14198 	 */
14199 no_memory:
14200 	return;
14201 
14202 slow:
14203 	/* leftover work from above */
14204 	tcp->tcp_unsent = len;
14205 	tcp->tcp_xmit_tail_unsent = len;
14206 	tcp_wput_data(tcp, NULL, B_FALSE);
14207 }
14208 
14209 /*
14210  * This runs at the tail end of accept processing on the squeue of the
14211  * new connection.
14212  */
14213 /* ARGSUSED */
14214 void
14215 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
14216 {
14217 	conn_t			*connp = (conn_t *)arg;
14218 	tcp_t			*tcp = connp->conn_tcp;
14219 	queue_t			*q = connp->conn_rq;
14220 	tcp_stack_t		*tcps = tcp->tcp_tcps;
14221 	/* socket options */
14222 	struct sock_proto_props	sopp;
14223 
14224 	/* We should just receive a single mblk that fits a T_discon_ind */
14225 	ASSERT(mp->b_cont == NULL);
14226 
14227 	/*
14228 	 * Drop the eager's ref on the listener, that was placed when
14229 	 * this eager began life in tcp_input_listener.
14230 	 */
14231 	CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp);
14232 	if (IPCL_IS_NONSTR(connp)) {
14233 		/* Safe to free conn_ind message */
14234 		freemsg(tcp->tcp_conn.tcp_eager_conn_ind);
14235 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
14236 	}
14237 
14238 	tcp->tcp_detached = B_FALSE;
14239 
14240 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) {
14241 		/*
14242 		 * Someone blewoff the eager before we could finish
14243 		 * the accept.
14244 		 *
14245 		 * The only reason eager exists it because we put in
14246 		 * a ref on it when conn ind went up. We need to send
14247 		 * a disconnect indication up while the last reference
14248 		 * on the eager will be dropped by the squeue when we
14249 		 * return.
14250 		 */
14251 		ASSERT(tcp->tcp_listener == NULL);
14252 		if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) {
14253 			if (IPCL_IS_NONSTR(connp)) {
14254 				ASSERT(tcp->tcp_issocket);
14255 				(*connp->conn_upcalls->su_disconnected)(
14256 				    connp->conn_upper_handle, tcp->tcp_connid,
14257 				    ECONNREFUSED);
14258 				freemsg(mp);
14259 			} else {
14260 				struct	T_discon_ind	*tdi;
14261 
14262 				(void) putnextctl1(q, M_FLUSH, FLUSHRW);
14263 				/*
14264 				 * Let us reuse the incoming mblk to avoid
14265 				 * memory allocation failure problems. We know
14266 				 * that the size of the incoming mblk i.e.
14267 				 * stroptions is greater than sizeof
14268 				 * T_discon_ind.
14269 				 */
14270 				ASSERT(DB_REF(mp) == 1);
14271 				ASSERT(MBLKSIZE(mp) >=
14272 				    sizeof (struct T_discon_ind));
14273 
14274 				DB_TYPE(mp) = M_PROTO;
14275 				((union T_primitives *)mp->b_rptr)->type =
14276 				    T_DISCON_IND;
14277 				tdi = (struct T_discon_ind *)mp->b_rptr;
14278 				if (tcp->tcp_issocket) {
14279 					tdi->DISCON_reason = ECONNREFUSED;
14280 					tdi->SEQ_number = 0;
14281 				} else {
14282 					tdi->DISCON_reason = ENOPROTOOPT;
14283 					tdi->SEQ_number =
14284 					    tcp->tcp_conn_req_seqnum;
14285 				}
14286 				mp->b_wptr = mp->b_rptr +
14287 				    sizeof (struct T_discon_ind);
14288 				putnext(q, mp);
14289 			}
14290 		}
14291 		tcp->tcp_hard_binding = B_FALSE;
14292 		return;
14293 	}
14294 
14295 	/*
14296 	 * Set max window size (conn_rcvbuf) of the acceptor.
14297 	 */
14298 	if (tcp->tcp_rcv_list == NULL) {
14299 		/*
14300 		 * Recv queue is empty, tcp_rwnd should not have changed.
14301 		 * That means it should be equal to the listener's tcp_rwnd.
14302 		 */
14303 		connp->conn_rcvbuf = tcp->tcp_rwnd;
14304 	} else {
14305 #ifdef DEBUG
14306 		mblk_t *tmp;
14307 		mblk_t	*mp1;
14308 		uint_t	cnt = 0;
14309 
14310 		mp1 = tcp->tcp_rcv_list;
14311 		while ((tmp = mp1) != NULL) {
14312 			mp1 = tmp->b_next;
14313 			cnt += msgdsize(tmp);
14314 		}
14315 		ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt);
14316 #endif
14317 		/* There is some data, add them back to get the max. */
14318 		connp->conn_rcvbuf = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
14319 	}
14320 	/*
14321 	 * This is the first time we run on the correct
14322 	 * queue after tcp_accept. So fix all the q parameters
14323 	 * here.
14324 	 */
14325 	sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF;
14326 	sopp.sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
14327 
14328 	sopp.sopp_rxhiwat = tcp->tcp_fused ?
14329 	    tcp_fuse_set_rcv_hiwat(tcp, connp->conn_rcvbuf) :
14330 	    connp->conn_rcvbuf;
14331 
14332 	/*
14333 	 * Determine what write offset value to use depending on SACK and
14334 	 * whether the endpoint is fused or not.
14335 	 */
14336 	if (tcp->tcp_fused) {
14337 		ASSERT(tcp->tcp_loopback);
14338 		ASSERT(tcp->tcp_loopback_peer != NULL);
14339 		/*
14340 		 * For fused tcp loopback, set the stream head's write
14341 		 * offset value to zero since we won't be needing any room
14342 		 * for TCP/IP headers.  This would also improve performance
14343 		 * since it would reduce the amount of work done by kmem.
14344 		 * Non-fused tcp loopback case is handled separately below.
14345 		 */
14346 		sopp.sopp_wroff = 0;
14347 		/*
14348 		 * Update the peer's transmit parameters according to
14349 		 * our recently calculated high water mark value.
14350 		 */
14351 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
14352 	} else if (tcp->tcp_snd_sack_ok) {
14353 		sopp.sopp_wroff = connp->conn_ht_iphc_allocated +
14354 		    (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra);
14355 	} else {
14356 		sopp.sopp_wroff = connp->conn_ht_iphc_len +
14357 		    (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra);
14358 	}
14359 
14360 	/*
14361 	 * If this is endpoint is handling SSL, then reserve extra
14362 	 * offset and space at the end.
14363 	 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets,
14364 	 * overriding the previous setting. The extra cost of signing and
14365 	 * encrypting multiple MSS-size records (12 of them with Ethernet),
14366 	 * instead of a single contiguous one by the stream head
14367 	 * largely outweighs the statistical reduction of ACKs, when
14368 	 * applicable. The peer will also save on decryption and verification
14369 	 * costs.
14370 	 */
14371 	if (tcp->tcp_kssl_ctx != NULL) {
14372 		sopp.sopp_wroff += SSL3_WROFFSET;
14373 
14374 		sopp.sopp_flags |= SOCKOPT_TAIL;
14375 		sopp.sopp_tail = SSL3_MAX_TAIL_LEN;
14376 
14377 		sopp.sopp_flags |= SOCKOPT_ZCOPY;
14378 		sopp.sopp_zcopyflag = ZCVMUNSAFE;
14379 
14380 		sopp.sopp_maxblk = SSL3_MAX_RECORD_LEN;
14381 	}
14382 
14383 	/* Send the options up */
14384 	if (IPCL_IS_NONSTR(connp)) {
14385 		if (sopp.sopp_flags & SOCKOPT_TAIL) {
14386 			ASSERT(tcp->tcp_kssl_ctx != NULL);
14387 			ASSERT(sopp.sopp_flags & SOCKOPT_ZCOPY);
14388 		}
14389 		if (tcp->tcp_loopback) {
14390 			sopp.sopp_flags |= SOCKOPT_LOOPBACK;
14391 			sopp.sopp_loopback = B_TRUE;
14392 		}
14393 		(*connp->conn_upcalls->su_set_proto_props)
14394 		    (connp->conn_upper_handle, &sopp);
14395 		freemsg(mp);
14396 	} else {
14397 		/*
14398 		 * Let us reuse the incoming mblk to avoid
14399 		 * memory allocation failure problems. We know
14400 		 * that the size of the incoming mblk is at least
14401 		 * stroptions
14402 		 */
14403 		struct stroptions *stropt;
14404 
14405 		ASSERT(DB_REF(mp) == 1);
14406 		ASSERT(MBLKSIZE(mp) >= sizeof (struct stroptions));
14407 
14408 		DB_TYPE(mp) = M_SETOPTS;
14409 		stropt = (struct stroptions *)mp->b_rptr;
14410 		mp->b_wptr = mp->b_rptr + sizeof (struct stroptions);
14411 		stropt = (struct stroptions *)mp->b_rptr;
14412 		stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK;
14413 		stropt->so_hiwat = sopp.sopp_rxhiwat;
14414 		stropt->so_wroff = sopp.sopp_wroff;
14415 		stropt->so_maxblk = sopp.sopp_maxblk;
14416 
14417 		if (sopp.sopp_flags & SOCKOPT_TAIL) {
14418 			ASSERT(tcp->tcp_kssl_ctx != NULL);
14419 
14420 			stropt->so_flags |= SO_TAIL | SO_COPYOPT;
14421 			stropt->so_tail = sopp.sopp_tail;
14422 			stropt->so_copyopt = sopp.sopp_zcopyflag;
14423 		}
14424 
14425 		/* Send the options up */
14426 		putnext(q, mp);
14427 	}
14428 
14429 	/*
14430 	 * Pass up any data and/or a fin that has been received.
14431 	 *
14432 	 * Adjust receive window in case it had decreased
14433 	 * (because there is data <=> tcp_rcv_list != NULL)
14434 	 * while the connection was detached. Note that
14435 	 * in case the eager was flow-controlled, w/o this
14436 	 * code, the rwnd may never open up again!
14437 	 */
14438 	if (tcp->tcp_rcv_list != NULL) {
14439 		if (IPCL_IS_NONSTR(connp)) {
14440 			mblk_t *mp;
14441 			int space_left;
14442 			int error;
14443 			boolean_t push = B_TRUE;
14444 
14445 			if (!tcp->tcp_fused && (*connp->conn_upcalls->su_recv)
14446 			    (connp->conn_upper_handle, NULL, 0, 0, &error,
14447 			    &push) >= 0) {
14448 				tcp->tcp_rwnd = connp->conn_rcvbuf;
14449 				if (tcp->tcp_state >= TCPS_ESTABLISHED &&
14450 				    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
14451 					tcp_xmit_ctl(NULL,
14452 					    tcp, (tcp->tcp_swnd == 0) ?
14453 					    tcp->tcp_suna : tcp->tcp_snxt,
14454 					    tcp->tcp_rnxt, TH_ACK);
14455 				}
14456 			}
14457 			while ((mp = tcp->tcp_rcv_list) != NULL) {
14458 				push = B_TRUE;
14459 				tcp->tcp_rcv_list = mp->b_next;
14460 				mp->b_next = NULL;
14461 				space_left = (*connp->conn_upcalls->su_recv)
14462 				    (connp->conn_upper_handle, mp, msgdsize(mp),
14463 				    0, &error, &push);
14464 				if (space_left < 0) {
14465 					/*
14466 					 * We should never be in middle of a
14467 					 * fallback, the squeue guarantees that.
14468 					 */
14469 					ASSERT(error != EOPNOTSUPP);
14470 				}
14471 			}
14472 			tcp->tcp_rcv_last_head = NULL;
14473 			tcp->tcp_rcv_last_tail = NULL;
14474 			tcp->tcp_rcv_cnt = 0;
14475 		} else {
14476 			/* We drain directly in case of fused tcp loopback */
14477 
14478 			if (!tcp->tcp_fused && canputnext(q)) {
14479 				tcp->tcp_rwnd = connp->conn_rcvbuf;
14480 				if (tcp->tcp_state >= TCPS_ESTABLISHED &&
14481 				    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
14482 					tcp_xmit_ctl(NULL,
14483 					    tcp, (tcp->tcp_swnd == 0) ?
14484 					    tcp->tcp_suna : tcp->tcp_snxt,
14485 					    tcp->tcp_rnxt, TH_ACK);
14486 				}
14487 			}
14488 
14489 			(void) tcp_rcv_drain(tcp);
14490 		}
14491 
14492 		/*
14493 		 * For fused tcp loopback, back-enable peer endpoint
14494 		 * if it's currently flow-controlled.
14495 		 */
14496 		if (tcp->tcp_fused) {
14497 			tcp_t *peer_tcp = tcp->tcp_loopback_peer;
14498 
14499 			ASSERT(peer_tcp != NULL);
14500 			ASSERT(peer_tcp->tcp_fused);
14501 
14502 			mutex_enter(&peer_tcp->tcp_non_sq_lock);
14503 			if (peer_tcp->tcp_flow_stopped) {
14504 				tcp_clrqfull(peer_tcp);
14505 				TCP_STAT(tcps, tcp_fusion_backenabled);
14506 			}
14507 			mutex_exit(&peer_tcp->tcp_non_sq_lock);
14508 		}
14509 	}
14510 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
14511 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
14512 		tcp->tcp_ordrel_done = B_TRUE;
14513 		if (IPCL_IS_NONSTR(connp)) {
14514 			ASSERT(tcp->tcp_ordrel_mp == NULL);
14515 			(*connp->conn_upcalls->su_opctl)(
14516 			    connp->conn_upper_handle,
14517 			    SOCK_OPCTL_SHUT_RECV, 0);
14518 		} else {
14519 			mp = tcp->tcp_ordrel_mp;
14520 			tcp->tcp_ordrel_mp = NULL;
14521 			putnext(q, mp);
14522 		}
14523 	}
14524 	tcp->tcp_hard_binding = B_FALSE;
14525 
14526 	if (connp->conn_keepalive) {
14527 		tcp->tcp_ka_last_intrvl = 0;
14528 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
14529 		    MSEC_TO_TICK(tcp->tcp_ka_interval));
14530 	}
14531 
14532 	/*
14533 	 * At this point, eager is fully established and will
14534 	 * have the following references -
14535 	 *
14536 	 * 2 references for connection to exist (1 for TCP and 1 for IP).
14537 	 * 1 reference for the squeue which will be dropped by the squeue as
14538 	 *	soon as this function returns.
14539 	 * There will be 1 additonal reference for being in classifier
14540 	 *	hash list provided something bad hasn't happened.
14541 	 */
14542 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
14543 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
14544 }
14545 
14546 /*
14547  * The function called through squeue to get behind listener's perimeter to
14548  * send a deferred conn_ind.
14549  */
14550 /* ARGSUSED */
14551 void
14552 tcp_send_pending(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
14553 {
14554 	conn_t	*lconnp = (conn_t *)arg;
14555 	tcp_t *listener = lconnp->conn_tcp;
14556 	struct T_conn_ind *conn_ind;
14557 	tcp_t *tcp;
14558 
14559 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
14560 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
14561 	    conn_ind->OPT_length);
14562 
14563 	if (listener->tcp_state != TCPS_LISTEN) {
14564 		/*
14565 		 * If listener has closed, it would have caused a
14566 		 * a cleanup/blowoff to happen for the eager, so
14567 		 * we don't need to do anything more.
14568 		 */
14569 		freemsg(mp);
14570 		return;
14571 	}
14572 
14573 	tcp_ulp_newconn(lconnp, tcp->tcp_connp, mp);
14574 }
14575 
14576 /*
14577  * Common to TPI and sockfs accept code.
14578  */
14579 /* ARGSUSED2 */
14580 static int
14581 tcp_accept_common(conn_t *lconnp, conn_t *econnp, cred_t *cr)
14582 {
14583 	tcp_t *listener, *eager;
14584 	mblk_t *discon_mp;
14585 
14586 	listener = lconnp->conn_tcp;
14587 	ASSERT(listener->tcp_state == TCPS_LISTEN);
14588 	eager = econnp->conn_tcp;
14589 	ASSERT(eager->tcp_listener != NULL);
14590 
14591 	/*
14592 	 * Pre allocate the discon_ind mblk also. tcp_accept_finish will
14593 	 * use it if something failed.
14594 	 */
14595 	discon_mp = allocb(MAX(sizeof (struct T_discon_ind),
14596 	    sizeof (struct stroptions)), BPRI_HI);
14597 
14598 	if (discon_mp == NULL) {
14599 		return (-TPROTO);
14600 	}
14601 	eager->tcp_issocket = B_TRUE;
14602 
14603 	econnp->conn_zoneid = listener->tcp_connp->conn_zoneid;
14604 	econnp->conn_allzones = listener->tcp_connp->conn_allzones;
14605 	ASSERT(econnp->conn_netstack ==
14606 	    listener->tcp_connp->conn_netstack);
14607 	ASSERT(eager->tcp_tcps == listener->tcp_tcps);
14608 
14609 	/* Put the ref for IP */
14610 	CONN_INC_REF(econnp);
14611 
14612 	/*
14613 	 * We should have minimum of 3 references on the conn
14614 	 * at this point. One each for TCP and IP and one for
14615 	 * the T_conn_ind that was sent up when the 3-way handshake
14616 	 * completed. In the normal case we would also have another
14617 	 * reference (making a total of 4) for the conn being in the
14618 	 * classifier hash list. However the eager could have received
14619 	 * an RST subsequently and tcp_closei_local could have removed
14620 	 * the eager from the classifier hash list, hence we can't
14621 	 * assert that reference.
14622 	 */
14623 	ASSERT(econnp->conn_ref >= 3);
14624 
14625 	mutex_enter(&listener->tcp_eager_lock);
14626 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
14627 
14628 		tcp_t *tail;
14629 		tcp_t *tcp;
14630 		mblk_t *mp1;
14631 
14632 		tcp = listener->tcp_eager_prev_q0;
14633 		/*
14634 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
14635 		 * deferred T_conn_ind queue. We need to get to the head
14636 		 * of the queue in order to send up T_conn_ind the same
14637 		 * order as how the 3WHS is completed.
14638 		 */
14639 		while (tcp != listener) {
14640 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 &&
14641 			    !tcp->tcp_kssl_pending)
14642 				break;
14643 			else
14644 				tcp = tcp->tcp_eager_prev_q0;
14645 		}
14646 		/* None of the pending eagers can be sent up now */
14647 		if (tcp == listener)
14648 			goto no_more_eagers;
14649 
14650 		mp1 = tcp->tcp_conn.tcp_eager_conn_ind;
14651 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
14652 		/* Move from q0 to q */
14653 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
14654 		listener->tcp_conn_req_cnt_q0--;
14655 		listener->tcp_conn_req_cnt_q++;
14656 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
14657 		    tcp->tcp_eager_prev_q0;
14658 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
14659 		    tcp->tcp_eager_next_q0;
14660 		tcp->tcp_eager_prev_q0 = NULL;
14661 		tcp->tcp_eager_next_q0 = NULL;
14662 		tcp->tcp_conn_def_q0 = B_FALSE;
14663 
14664 		/* Make sure the tcp isn't in the list of droppables */
14665 		ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
14666 		    tcp->tcp_eager_prev_drop_q0 == NULL);
14667 
14668 		/*
14669 		 * Insert at end of the queue because sockfs sends
14670 		 * down T_CONN_RES in chronological order. Leaving
14671 		 * the older conn indications at front of the queue
14672 		 * helps reducing search time.
14673 		 */
14674 		tail = listener->tcp_eager_last_q;
14675 		if (tail != NULL) {
14676 			tail->tcp_eager_next_q = tcp;
14677 		} else {
14678 			listener->tcp_eager_next_q = tcp;
14679 		}
14680 		listener->tcp_eager_last_q = tcp;
14681 		tcp->tcp_eager_next_q = NULL;
14682 
14683 		/* Need to get inside the listener perimeter */
14684 		CONN_INC_REF(listener->tcp_connp);
14685 		SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp1,
14686 		    tcp_send_pending, listener->tcp_connp, NULL, SQ_FILL,
14687 		    SQTAG_TCP_SEND_PENDING);
14688 	}
14689 no_more_eagers:
14690 	tcp_eager_unlink(eager);
14691 	mutex_exit(&listener->tcp_eager_lock);
14692 
14693 	/*
14694 	 * At this point, the eager is detached from the listener
14695 	 * but we still have an extra refs on eager (apart from the
14696 	 * usual tcp references). The ref was placed in tcp_rput_data
14697 	 * before sending the conn_ind in tcp_send_conn_ind.
14698 	 * The ref will be dropped in tcp_accept_finish().
14699 	 */
14700 	SQUEUE_ENTER_ONE(econnp->conn_sqp, discon_mp, tcp_accept_finish,
14701 	    econnp, NULL, SQ_NODRAIN, SQTAG_TCP_ACCEPT_FINISH_Q0);
14702 	return (0);
14703 }
14704 
14705 int
14706 tcp_accept(sock_lower_handle_t lproto_handle,
14707     sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle,
14708     cred_t *cr)
14709 {
14710 	conn_t *lconnp, *econnp;
14711 	tcp_t *listener, *eager;
14712 
14713 	lconnp = (conn_t *)lproto_handle;
14714 	listener = lconnp->conn_tcp;
14715 	ASSERT(listener->tcp_state == TCPS_LISTEN);
14716 	econnp = (conn_t *)eproto_handle;
14717 	eager = econnp->conn_tcp;
14718 	ASSERT(eager->tcp_listener != NULL);
14719 
14720 	/*
14721 	 * It is OK to manipulate these fields outside the eager's squeue
14722 	 * because they will not start being used until tcp_accept_finish
14723 	 * has been called.
14724 	 */
14725 	ASSERT(lconnp->conn_upper_handle != NULL);
14726 	ASSERT(econnp->conn_upper_handle == NULL);
14727 	econnp->conn_upper_handle = sock_handle;
14728 	econnp->conn_upcalls = lconnp->conn_upcalls;
14729 	ASSERT(IPCL_IS_NONSTR(econnp));
14730 	return (tcp_accept_common(lconnp, econnp, cr));
14731 }
14732 
14733 
14734 /*
14735  * This is the STREAMS entry point for T_CONN_RES coming down on
14736  * Acceptor STREAM when  sockfs listener does accept processing.
14737  * Read the block comment on top of tcp_input_listener().
14738  */
14739 void
14740 tcp_tpi_accept(queue_t *q, mblk_t *mp)
14741 {
14742 	queue_t *rq = RD(q);
14743 	struct T_conn_res *conn_res;
14744 	tcp_t *eager;
14745 	tcp_t *listener;
14746 	struct T_ok_ack *ok;
14747 	t_scalar_t PRIM_type;
14748 	conn_t *econnp;
14749 	cred_t *cr;
14750 
14751 	ASSERT(DB_TYPE(mp) == M_PROTO);
14752 
14753 	/*
14754 	 * All Solaris components should pass a db_credp
14755 	 * for this TPI message, hence we ASSERT.
14756 	 * But in case there is some other M_PROTO that looks
14757 	 * like a TPI message sent by some other kernel
14758 	 * component, we check and return an error.
14759 	 */
14760 	cr = msg_getcred(mp, NULL);
14761 	ASSERT(cr != NULL);
14762 	if (cr == NULL) {
14763 		mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL);
14764 		if (mp != NULL)
14765 			putnext(rq, mp);
14766 		return;
14767 	}
14768 	conn_res = (struct T_conn_res *)mp->b_rptr;
14769 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
14770 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) {
14771 		mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
14772 		if (mp != NULL)
14773 			putnext(rq, mp);
14774 		return;
14775 	}
14776 	switch (conn_res->PRIM_type) {
14777 	case O_T_CONN_RES:
14778 	case T_CONN_RES:
14779 		/*
14780 		 * We pass up an err ack if allocb fails. This will
14781 		 * cause sockfs to issue a T_DISCON_REQ which will cause
14782 		 * tcp_eager_blowoff to be called. sockfs will then call
14783 		 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream.
14784 		 * we need to do the allocb up here because we have to
14785 		 * make sure rq->q_qinfo->qi_qclose still points to the
14786 		 * correct function (tcp_tpi_close_accept) in case allocb
14787 		 * fails.
14788 		 */
14789 		bcopy(mp->b_rptr + conn_res->OPT_offset,
14790 		    &eager, conn_res->OPT_length);
14791 		PRIM_type = conn_res->PRIM_type;
14792 		mp->b_datap->db_type = M_PCPROTO;
14793 		mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack);
14794 		ok = (struct T_ok_ack *)mp->b_rptr;
14795 		ok->PRIM_type = T_OK_ACK;
14796 		ok->CORRECT_prim = PRIM_type;
14797 		econnp = eager->tcp_connp;
14798 		econnp->conn_dev = (dev_t)RD(q)->q_ptr;
14799 		econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr);
14800 		econnp->conn_rq = rq;
14801 		econnp->conn_wq = q;
14802 		rq->q_ptr = econnp;
14803 		rq->q_qinfo = &tcp_rinitv4;	/* No open - same as rinitv6 */
14804 		q->q_ptr = econnp;
14805 		q->q_qinfo = &tcp_winit;
14806 		listener = eager->tcp_listener;
14807 
14808 		if (tcp_accept_common(listener->tcp_connp,
14809 		    econnp, cr) < 0) {
14810 			mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
14811 			if (mp != NULL)
14812 				putnext(rq, mp);
14813 			return;
14814 		}
14815 
14816 		/*
14817 		 * Send the new local address also up to sockfs. There
14818 		 * should already be enough space in the mp that came
14819 		 * down from soaccept().
14820 		 */
14821 		if (econnp->conn_family == AF_INET) {
14822 			sin_t *sin;
14823 
14824 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
14825 			    (sizeof (struct T_ok_ack) + sizeof (sin_t)));
14826 			sin = (sin_t *)mp->b_wptr;
14827 			mp->b_wptr += sizeof (sin_t);
14828 			sin->sin_family = AF_INET;
14829 			sin->sin_port = econnp->conn_lport;
14830 			sin->sin_addr.s_addr = econnp->conn_laddr_v4;
14831 		} else {
14832 			sin6_t *sin6;
14833 
14834 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
14835 			    sizeof (struct T_ok_ack) + sizeof (sin6_t));
14836 			sin6 = (sin6_t *)mp->b_wptr;
14837 			mp->b_wptr += sizeof (sin6_t);
14838 			sin6->sin6_family = AF_INET6;
14839 			sin6->sin6_port = econnp->conn_lport;
14840 			sin6->sin6_addr = econnp->conn_laddr_v6;
14841 			if (econnp->conn_ipversion == IPV4_VERSION) {
14842 				sin6->sin6_flowinfo = 0;
14843 			} else {
14844 				ASSERT(eager->tcp_ip6h != NULL);
14845 				sin6->sin6_flowinfo =
14846 				    eager->tcp_ip6h->ip6_vcf &
14847 				    ~IPV6_VERS_AND_FLOW_MASK;
14848 			}
14849 			if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6) &&
14850 			    (econnp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)) {
14851 				sin6->sin6_scope_id =
14852 				    econnp->conn_ixa->ixa_scopeid;
14853 			} else {
14854 				sin6->sin6_scope_id = 0;
14855 			}
14856 			sin6->__sin6_src_id = 0;
14857 		}
14858 
14859 		putnext(rq, mp);
14860 		return;
14861 	default:
14862 		mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0);
14863 		if (mp != NULL)
14864 			putnext(rq, mp);
14865 		return;
14866 	}
14867 }
14868 
14869 /*
14870  * Handle special out-of-band ioctl requests (see PSARC/2008/265).
14871  */
14872 static void
14873 tcp_wput_cmdblk(queue_t *q, mblk_t *mp)
14874 {
14875 	void	*data;
14876 	mblk_t	*datamp = mp->b_cont;
14877 	conn_t	*connp = Q_TO_CONN(q);
14878 	tcp_t	*tcp = connp->conn_tcp;
14879 	cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr;
14880 
14881 	if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) {
14882 		cmdp->cb_error = EPROTO;
14883 		qreply(q, mp);
14884 		return;
14885 	}
14886 
14887 	data = datamp->b_rptr;
14888 
14889 	switch (cmdp->cb_cmd) {
14890 	case TI_GETPEERNAME:
14891 		if (tcp->tcp_state < TCPS_SYN_RCVD)
14892 			cmdp->cb_error = ENOTCONN;
14893 		else
14894 			cmdp->cb_error = conn_getpeername(connp, data,
14895 			    &cmdp->cb_len);
14896 		break;
14897 	case TI_GETMYNAME:
14898 		cmdp->cb_error = conn_getsockname(connp, data, &cmdp->cb_len);
14899 		break;
14900 	default:
14901 		cmdp->cb_error = EINVAL;
14902 		break;
14903 	}
14904 
14905 	qreply(q, mp);
14906 }
14907 
14908 void
14909 tcp_wput(queue_t *q, mblk_t *mp)
14910 {
14911 	conn_t	*connp = Q_TO_CONN(q);
14912 	tcp_t	*tcp;
14913 	void (*output_proc)();
14914 	t_scalar_t type;
14915 	uchar_t *rptr;
14916 	struct iocblk	*iocp;
14917 	size_t size;
14918 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
14919 
14920 	ASSERT(connp->conn_ref >= 2);
14921 
14922 	switch (DB_TYPE(mp)) {
14923 	case M_DATA:
14924 		tcp = connp->conn_tcp;
14925 		ASSERT(tcp != NULL);
14926 
14927 		size = msgdsize(mp);
14928 
14929 		mutex_enter(&tcp->tcp_non_sq_lock);
14930 		tcp->tcp_squeue_bytes += size;
14931 		if (TCP_UNSENT_BYTES(tcp) > connp->conn_sndbuf) {
14932 			tcp_setqfull(tcp);
14933 		}
14934 		mutex_exit(&tcp->tcp_non_sq_lock);
14935 
14936 		CONN_INC_REF(connp);
14937 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, connp,
14938 		    NULL, tcp_squeue_flag, SQTAG_TCP_OUTPUT);
14939 		return;
14940 
14941 	case M_CMD:
14942 		tcp_wput_cmdblk(q, mp);
14943 		return;
14944 
14945 	case M_PROTO:
14946 	case M_PCPROTO:
14947 		/*
14948 		 * if it is a snmp message, don't get behind the squeue
14949 		 */
14950 		tcp = connp->conn_tcp;
14951 		rptr = mp->b_rptr;
14952 		if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
14953 			type = ((union T_primitives *)rptr)->type;
14954 		} else {
14955 			if (connp->conn_debug) {
14956 				(void) strlog(TCP_MOD_ID, 0, 1,
14957 				    SL_ERROR|SL_TRACE,
14958 				    "tcp_wput_proto, dropping one...");
14959 			}
14960 			freemsg(mp);
14961 			return;
14962 		}
14963 		if (type == T_SVR4_OPTMGMT_REQ) {
14964 			/*
14965 			 * All Solaris components should pass a db_credp
14966 			 * for this TPI message, hence we ASSERT.
14967 			 * But in case there is some other M_PROTO that looks
14968 			 * like a TPI message sent by some other kernel
14969 			 * component, we check and return an error.
14970 			 */
14971 			cred_t	*cr = msg_getcred(mp, NULL);
14972 
14973 			ASSERT(cr != NULL);
14974 			if (cr == NULL) {
14975 				tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
14976 				return;
14977 			}
14978 			if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get,
14979 			    cr)) {
14980 				/*
14981 				 * This was a SNMP request
14982 				 */
14983 				return;
14984 			} else {
14985 				output_proc = tcp_wput_proto;
14986 			}
14987 		} else {
14988 			output_proc = tcp_wput_proto;
14989 		}
14990 		break;
14991 	case M_IOCTL:
14992 		/*
14993 		 * Most ioctls can be processed right away without going via
14994 		 * squeues - process them right here. Those that do require
14995 		 * squeue (currently _SIOCSOCKFALLBACK)
14996 		 * are processed by tcp_wput_ioctl().
14997 		 */
14998 		iocp = (struct iocblk *)mp->b_rptr;
14999 		tcp = connp->conn_tcp;
15000 
15001 		switch (iocp->ioc_cmd) {
15002 		case TCP_IOC_ABORT_CONN:
15003 			tcp_ioctl_abort_conn(q, mp);
15004 			return;
15005 		case TI_GETPEERNAME:
15006 		case TI_GETMYNAME:
15007 			mi_copyin(q, mp, NULL,
15008 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
15009 			return;
15010 		case ND_SET:
15011 			/* nd_getset does the necessary checks */
15012 		case ND_GET:
15013 			if (nd_getset(q, tcps->tcps_g_nd, mp)) {
15014 				qreply(q, mp);
15015 				return;
15016 			}
15017 			ip_wput_nondata(q, mp);
15018 			return;
15019 
15020 		default:
15021 			output_proc = tcp_wput_ioctl;
15022 			break;
15023 		}
15024 		break;
15025 	default:
15026 		output_proc = tcp_wput_nondata;
15027 		break;
15028 	}
15029 
15030 	CONN_INC_REF(connp);
15031 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, output_proc, connp,
15032 	    NULL, tcp_squeue_flag, SQTAG_TCP_WPUT_OTHER);
15033 }
15034 
15035 /*
15036  * Initial STREAMS write side put() procedure for sockets. It tries to
15037  * handle the T_CAPABILITY_REQ which sockfs sends down while setting
15038  * up the socket without using the squeue. Non T_CAPABILITY_REQ messages
15039  * are handled by tcp_wput() as usual.
15040  *
15041  * All further messages will also be handled by tcp_wput() because we cannot
15042  * be sure that the above short cut is safe later.
15043  */
15044 static void
15045 tcp_wput_sock(queue_t *wq, mblk_t *mp)
15046 {
15047 	conn_t			*connp = Q_TO_CONN(wq);
15048 	tcp_t			*tcp = connp->conn_tcp;
15049 	struct T_capability_req	*car = (struct T_capability_req *)mp->b_rptr;
15050 
15051 	ASSERT(wq->q_qinfo == &tcp_sock_winit);
15052 	wq->q_qinfo = &tcp_winit;
15053 
15054 	ASSERT(IPCL_IS_TCP(connp));
15055 	ASSERT(TCP_IS_SOCKET(tcp));
15056 
15057 	if (DB_TYPE(mp) == M_PCPROTO &&
15058 	    MBLKL(mp) == sizeof (struct T_capability_req) &&
15059 	    car->PRIM_type == T_CAPABILITY_REQ) {
15060 		tcp_capability_req(tcp, mp);
15061 		return;
15062 	}
15063 
15064 	tcp_wput(wq, mp);
15065 }
15066 
15067 /* ARGSUSED */
15068 static void
15069 tcp_wput_fallback(queue_t *wq, mblk_t *mp)
15070 {
15071 #ifdef DEBUG
15072 	cmn_err(CE_CONT, "tcp_wput_fallback: Message during fallback \n");
15073 #endif
15074 	freemsg(mp);
15075 }
15076 
15077 /*
15078  * Check the usability of ZEROCOPY. It's instead checking the flag set by IP.
15079  */
15080 static boolean_t
15081 tcp_zcopy_check(tcp_t *tcp)
15082 {
15083 	conn_t		*connp = tcp->tcp_connp;
15084 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
15085 	boolean_t	zc_enabled = B_FALSE;
15086 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15087 
15088 	if (do_tcpzcopy == 2)
15089 		zc_enabled = B_TRUE;
15090 	else if ((do_tcpzcopy == 1) && (ixa->ixa_flags & IXAF_ZCOPY_CAPAB))
15091 		zc_enabled = B_TRUE;
15092 
15093 	tcp->tcp_snd_zcopy_on = zc_enabled;
15094 	if (!TCP_IS_DETACHED(tcp)) {
15095 		if (zc_enabled) {
15096 			ixa->ixa_flags |= IXAF_VERIFY_ZCOPY;
15097 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
15098 			    ZCVMSAFE);
15099 			TCP_STAT(tcps, tcp_zcopy_on);
15100 		} else {
15101 			ixa->ixa_flags &= ~IXAF_VERIFY_ZCOPY;
15102 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
15103 			    ZCVMUNSAFE);
15104 			TCP_STAT(tcps, tcp_zcopy_off);
15105 		}
15106 	}
15107 	return (zc_enabled);
15108 }
15109 
15110 /*
15111  * Backoff from a zero-copy message by copying data to a new allocated
15112  * message and freeing the original desballoca'ed segmapped message.
15113  *
15114  * This function is called by following two callers:
15115  * 1. tcp_timer: fix_xmitlist is set to B_TRUE, because it's safe to free
15116  *    the origial desballoca'ed message and notify sockfs. This is in re-
15117  *    transmit state.
15118  * 2. tcp_output: fix_xmitlist is set to B_FALSE. Flag STRUIO_ZCNOTIFY need
15119  *    to be copied to new message.
15120  */
15121 static mblk_t *
15122 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, boolean_t fix_xmitlist)
15123 {
15124 	mblk_t		*nbp;
15125 	mblk_t		*head = NULL;
15126 	mblk_t		*tail = NULL;
15127 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15128 
15129 	ASSERT(bp != NULL);
15130 	while (bp != NULL) {
15131 		if (IS_VMLOANED_MBLK(bp)) {
15132 			TCP_STAT(tcps, tcp_zcopy_backoff);
15133 			if ((nbp = copyb(bp)) == NULL) {
15134 				tcp->tcp_xmit_zc_clean = B_FALSE;
15135 				if (tail != NULL)
15136 					tail->b_cont = bp;
15137 				return ((head == NULL) ? bp : head);
15138 			}
15139 
15140 			if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
15141 				if (fix_xmitlist)
15142 					tcp_zcopy_notify(tcp);
15143 				else
15144 					nbp->b_datap->db_struioflag |=
15145 					    STRUIO_ZCNOTIFY;
15146 			}
15147 			nbp->b_cont = bp->b_cont;
15148 
15149 			/*
15150 			 * Copy saved information and adjust tcp_xmit_tail
15151 			 * if needed.
15152 			 */
15153 			if (fix_xmitlist) {
15154 				nbp->b_prev = bp->b_prev;
15155 				nbp->b_next = bp->b_next;
15156 
15157 				if (tcp->tcp_xmit_tail == bp)
15158 					tcp->tcp_xmit_tail = nbp;
15159 			}
15160 
15161 			/* Free the original message. */
15162 			bp->b_prev = NULL;
15163 			bp->b_next = NULL;
15164 			freeb(bp);
15165 
15166 			bp = nbp;
15167 		}
15168 
15169 		if (head == NULL) {
15170 			head = bp;
15171 		}
15172 		if (tail == NULL) {
15173 			tail = bp;
15174 		} else {
15175 			tail->b_cont = bp;
15176 			tail = bp;
15177 		}
15178 
15179 		/* Move forward. */
15180 		bp = bp->b_cont;
15181 	}
15182 
15183 	if (fix_xmitlist) {
15184 		tcp->tcp_xmit_last = tail;
15185 		tcp->tcp_xmit_zc_clean = B_TRUE;
15186 	}
15187 
15188 	return (head);
15189 }
15190 
15191 static void
15192 tcp_zcopy_notify(tcp_t *tcp)
15193 {
15194 	struct stdata	*stp;
15195 	conn_t		*connp;
15196 
15197 	if (tcp->tcp_detached)
15198 		return;
15199 	connp = tcp->tcp_connp;
15200 	if (IPCL_IS_NONSTR(connp)) {
15201 		(*connp->conn_upcalls->su_zcopy_notify)
15202 		    (connp->conn_upper_handle);
15203 		return;
15204 	}
15205 	stp = STREAM(connp->conn_rq);
15206 	mutex_enter(&stp->sd_lock);
15207 	stp->sd_flag |= STZCNOTIFY;
15208 	cv_broadcast(&stp->sd_zcopy_wait);
15209 	mutex_exit(&stp->sd_lock);
15210 }
15211 
15212 /*
15213  * Update the TCP connection according to change of LSO capability.
15214  */
15215 static void
15216 tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa)
15217 {
15218 	/*
15219 	 * We check against IPv4 header length to preserve the old behavior
15220 	 * of only enabling LSO when there are no IP options.
15221 	 * But this restriction might not be necessary at all. Before removing
15222 	 * it, need to verify how LSO is handled for source routing case, with
15223 	 * which IP does software checksum.
15224 	 *
15225 	 * For IPv6, whenever any extension header is needed, LSO is supressed.
15226 	 */
15227 	if (ixa->ixa_ip_hdr_length != ((ixa->ixa_flags & IXAF_IS_IPV4) ?
15228 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN))
15229 		return;
15230 
15231 	/*
15232 	 * Either the LSO capability newly became usable, or it has changed.
15233 	 */
15234 	if (ixa->ixa_flags & IXAF_LSO_CAPAB) {
15235 		ill_lso_capab_t	*lsoc = &ixa->ixa_lso_capab;
15236 
15237 		ASSERT(lsoc->ill_lso_max > 0);
15238 		tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, lsoc->ill_lso_max);
15239 
15240 		DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso,
15241 		    boolean_t, B_TRUE, uint32_t, tcp->tcp_lso_max);
15242 
15243 		/*
15244 		 * If LSO to be enabled, notify the STREAM header with larger
15245 		 * data block.
15246 		 */
15247 		if (!tcp->tcp_lso)
15248 			tcp->tcp_maxpsz_multiplier = 0;
15249 
15250 		tcp->tcp_lso = B_TRUE;
15251 		TCP_STAT(tcp->tcp_tcps, tcp_lso_enabled);
15252 	} else { /* LSO capability is not usable any more. */
15253 		DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso,
15254 		    boolean_t, B_FALSE, uint32_t, tcp->tcp_lso_max);
15255 
15256 		/*
15257 		 * If LSO to be disabled, notify the STREAM header with smaller
15258 		 * data block. And need to restore fragsize to PMTU.
15259 		 */
15260 		if (tcp->tcp_lso) {
15261 			tcp->tcp_maxpsz_multiplier =
15262 			    tcp->tcp_tcps->tcps_maxpsz_multiplier;
15263 			ixa->ixa_fragsize = ixa->ixa_pmtu;
15264 			tcp->tcp_lso = B_FALSE;
15265 			TCP_STAT(tcp->tcp_tcps, tcp_lso_disabled);
15266 		}
15267 	}
15268 
15269 	(void) tcp_maxpsz_set(tcp, B_TRUE);
15270 }
15271 
15272 /*
15273  * Update the TCP connection according to change of ZEROCOPY capability.
15274  */
15275 static void
15276 tcp_update_zcopy(tcp_t *tcp)
15277 {
15278 	conn_t		*connp = tcp->tcp_connp;
15279 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15280 
15281 	if (tcp->tcp_snd_zcopy_on) {
15282 		tcp->tcp_snd_zcopy_on = B_FALSE;
15283 		if (!TCP_IS_DETACHED(tcp)) {
15284 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
15285 			    ZCVMUNSAFE);
15286 			TCP_STAT(tcps, tcp_zcopy_off);
15287 		}
15288 	} else {
15289 		tcp->tcp_snd_zcopy_on = B_TRUE;
15290 		if (!TCP_IS_DETACHED(tcp)) {
15291 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
15292 			    ZCVMSAFE);
15293 			TCP_STAT(tcps, tcp_zcopy_on);
15294 		}
15295 	}
15296 }
15297 
15298 /*
15299  * Notify function registered with ip_xmit_attr_t. It's called in the squeue
15300  * so it's safe to update the TCP connection.
15301  */
15302 /* ARGSUSED1 */
15303 static void
15304 tcp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype,
15305     ixa_notify_arg_t narg)
15306 {
15307 	tcp_t		*tcp = (tcp_t *)arg;
15308 	conn_t		*connp = tcp->tcp_connp;
15309 
15310 	switch (ntype) {
15311 	case IXAN_LSO:
15312 		tcp_update_lso(tcp, connp->conn_ixa);
15313 		break;
15314 	case IXAN_PMTU:
15315 		tcp_update_pmtu(tcp, B_FALSE);
15316 		break;
15317 	case IXAN_ZCOPY:
15318 		tcp_update_zcopy(tcp);
15319 		break;
15320 	default:
15321 		break;
15322 	}
15323 }
15324 
15325 static void
15326 tcp_send_data(tcp_t *tcp, mblk_t *mp)
15327 {
15328 	conn_t		*connp = tcp->tcp_connp;
15329 
15330 	/*
15331 	 * Check here to avoid sending zero-copy message down to IP when
15332 	 * ZEROCOPY capability has turned off. We only need to deal with
15333 	 * the race condition between sockfs and the notification here.
15334 	 * Since we have tried to backoff the tcp_xmit_head when turning
15335 	 * zero-copy off and new messages in tcp_output(), we simply drop
15336 	 * the dup'ed packet here and let tcp retransmit, if tcp_xmit_zc_clean
15337 	 * is not true.
15338 	 */
15339 	if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_snd_zcopy_on &&
15340 	    !tcp->tcp_xmit_zc_clean) {
15341 		ip_drop_output("TCP ZC was disabled but not clean", mp, NULL);
15342 		freemsg(mp);
15343 		return;
15344 	}
15345 
15346 	ASSERT(connp->conn_ixa->ixa_notify_cookie == connp->conn_tcp);
15347 	(void) conn_ip_output(mp, connp->conn_ixa);
15348 }
15349 
15350 /*
15351  * This handles the case when the receiver has shrunk its win. Per RFC 1122
15352  * if the receiver shrinks the window, i.e. moves the right window to the
15353  * left, the we should not send new data, but should retransmit normally the
15354  * old unacked data between suna and suna + swnd. We might has sent data
15355  * that is now outside the new window, pretend that we didn't send  it.
15356  */
15357 static void
15358 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count)
15359 {
15360 	uint32_t	snxt = tcp->tcp_snxt;
15361 
15362 	ASSERT(shrunk_count > 0);
15363 
15364 	if (!tcp->tcp_is_wnd_shrnk) {
15365 		tcp->tcp_snxt_shrunk = snxt;
15366 		tcp->tcp_is_wnd_shrnk = B_TRUE;
15367 	} else if (SEQ_GT(snxt, tcp->tcp_snxt_shrunk)) {
15368 		tcp->tcp_snxt_shrunk = snxt;
15369 	}
15370 
15371 	/* Pretend we didn't send the data outside the window */
15372 	snxt -= shrunk_count;
15373 
15374 	/* Reset all the values per the now shrunk window */
15375 	tcp_update_xmit_tail(tcp, snxt);
15376 	tcp->tcp_unsent += shrunk_count;
15377 
15378 	/*
15379 	 * If the SACK option is set, delete the entire list of
15380 	 * notsack'ed blocks.
15381 	 */
15382 	if (tcp->tcp_sack_info != NULL) {
15383 		if (tcp->tcp_notsack_list != NULL)
15384 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp);
15385 	}
15386 
15387 	if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0)
15388 		/*
15389 		 * Make sure the timer is running so that we will probe a zero
15390 		 * window.
15391 		 */
15392 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
15393 }
15394 
15395 
15396 /*
15397  * The TCP normal data output path.
15398  * NOTE: the logic of the fast path is duplicated from this function.
15399  */
15400 static void
15401 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent)
15402 {
15403 	int		len;
15404 	mblk_t		*local_time;
15405 	mblk_t		*mp1;
15406 	uint32_t	snxt;
15407 	int		tail_unsent;
15408 	int		tcpstate;
15409 	int		usable = 0;
15410 	mblk_t		*xmit_tail;
15411 	int32_t		mss;
15412 	int32_t		num_sack_blk = 0;
15413 	int32_t		total_hdr_len;
15414 	int32_t		tcp_hdr_len;
15415 	int		rc;
15416 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15417 	conn_t		*connp = tcp->tcp_connp;
15418 
15419 	tcpstate = tcp->tcp_state;
15420 	if (mp == NULL) {
15421 		/*
15422 		 * tcp_wput_data() with NULL mp should only be called when
15423 		 * there is unsent data.
15424 		 */
15425 		ASSERT(tcp->tcp_unsent > 0);
15426 		/* Really tacky... but we need this for detached closes. */
15427 		len = tcp->tcp_unsent;
15428 		goto data_null;
15429 	}
15430 
15431 #if CCS_STATS
15432 	wrw_stats.tot.count++;
15433 	wrw_stats.tot.bytes += msgdsize(mp);
15434 #endif
15435 	ASSERT(mp->b_datap->db_type == M_DATA);
15436 	/*
15437 	 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ,
15438 	 * or before a connection attempt has begun.
15439 	 */
15440 	if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT ||
15441 	    (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
15442 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
15443 #ifdef DEBUG
15444 			cmn_err(CE_WARN,
15445 			    "tcp_wput_data: data after ordrel, %s",
15446 			    tcp_display(tcp, NULL,
15447 			    DISP_ADDR_AND_PORT));
15448 #else
15449 			if (connp->conn_debug) {
15450 				(void) strlog(TCP_MOD_ID, 0, 1,
15451 				    SL_TRACE|SL_ERROR,
15452 				    "tcp_wput_data: data after ordrel, %s\n",
15453 				    tcp_display(tcp, NULL,
15454 				    DISP_ADDR_AND_PORT));
15455 			}
15456 #endif /* DEBUG */
15457 		}
15458 		if (tcp->tcp_snd_zcopy_aware &&
15459 		    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
15460 			tcp_zcopy_notify(tcp);
15461 		freemsg(mp);
15462 		mutex_enter(&tcp->tcp_non_sq_lock);
15463 		if (tcp->tcp_flow_stopped &&
15464 		    TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) {
15465 			tcp_clrqfull(tcp);
15466 		}
15467 		mutex_exit(&tcp->tcp_non_sq_lock);
15468 		return;
15469 	}
15470 
15471 	/* Strip empties */
15472 	for (;;) {
15473 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
15474 		    (uintptr_t)INT_MAX);
15475 		len = (int)(mp->b_wptr - mp->b_rptr);
15476 		if (len > 0)
15477 			break;
15478 		mp1 = mp;
15479 		mp = mp->b_cont;
15480 		freeb(mp1);
15481 		if (!mp) {
15482 			return;
15483 		}
15484 	}
15485 
15486 	/* If we are the first on the list ... */
15487 	if (tcp->tcp_xmit_head == NULL) {
15488 		tcp->tcp_xmit_head = mp;
15489 		tcp->tcp_xmit_tail = mp;
15490 		tcp->tcp_xmit_tail_unsent = len;
15491 	} else {
15492 		/* If tiny tx and room in txq tail, pullup to save mblks. */
15493 		struct datab *dp;
15494 
15495 		mp1 = tcp->tcp_xmit_last;
15496 		if (len < tcp_tx_pull_len &&
15497 		    (dp = mp1->b_datap)->db_ref == 1 &&
15498 		    dp->db_lim - mp1->b_wptr >= len) {
15499 			ASSERT(len > 0);
15500 			ASSERT(!mp1->b_cont);
15501 			if (len == 1) {
15502 				*mp1->b_wptr++ = *mp->b_rptr;
15503 			} else {
15504 				bcopy(mp->b_rptr, mp1->b_wptr, len);
15505 				mp1->b_wptr += len;
15506 			}
15507 			if (mp1 == tcp->tcp_xmit_tail)
15508 				tcp->tcp_xmit_tail_unsent += len;
15509 			mp1->b_cont = mp->b_cont;
15510 			if (tcp->tcp_snd_zcopy_aware &&
15511 			    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
15512 				mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
15513 			freeb(mp);
15514 			mp = mp1;
15515 		} else {
15516 			tcp->tcp_xmit_last->b_cont = mp;
15517 		}
15518 		len += tcp->tcp_unsent;
15519 	}
15520 
15521 	/* Tack on however many more positive length mblks we have */
15522 	if ((mp1 = mp->b_cont) != NULL) {
15523 		do {
15524 			int tlen;
15525 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
15526 			    (uintptr_t)INT_MAX);
15527 			tlen = (int)(mp1->b_wptr - mp1->b_rptr);
15528 			if (tlen <= 0) {
15529 				mp->b_cont = mp1->b_cont;
15530 				freeb(mp1);
15531 			} else {
15532 				len += tlen;
15533 				mp = mp1;
15534 			}
15535 		} while ((mp1 = mp->b_cont) != NULL);
15536 	}
15537 	tcp->tcp_xmit_last = mp;
15538 	tcp->tcp_unsent = len;
15539 
15540 	if (urgent)
15541 		usable = 1;
15542 
15543 data_null:
15544 	snxt = tcp->tcp_snxt;
15545 	xmit_tail = tcp->tcp_xmit_tail;
15546 	tail_unsent = tcp->tcp_xmit_tail_unsent;
15547 
15548 	/*
15549 	 * Note that tcp_mss has been adjusted to take into account the
15550 	 * timestamp option if applicable.  Because SACK options do not
15551 	 * appear in every TCP segments and they are of variable lengths,
15552 	 * they cannot be included in tcp_mss.  Thus we need to calculate
15553 	 * the actual segment length when we need to send a segment which
15554 	 * includes SACK options.
15555 	 */
15556 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
15557 		int32_t	opt_len;
15558 
15559 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
15560 		    tcp->tcp_num_sack_blk);
15561 		opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN *
15562 		    2 + TCPOPT_HEADER_LEN;
15563 		mss = tcp->tcp_mss - opt_len;
15564 		total_hdr_len = connp->conn_ht_iphc_len + opt_len;
15565 		tcp_hdr_len = connp->conn_ht_ulp_len + opt_len;
15566 	} else {
15567 		mss = tcp->tcp_mss;
15568 		total_hdr_len = connp->conn_ht_iphc_len;
15569 		tcp_hdr_len = connp->conn_ht_ulp_len;
15570 	}
15571 
15572 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
15573 	    (TICK_TO_MSEC((clock_t)LBOLT_FASTPATH - tcp->tcp_last_recv_time) >=
15574 	    tcp->tcp_rto)) {
15575 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
15576 	}
15577 	if (tcpstate == TCPS_SYN_RCVD) {
15578 		/*
15579 		 * The three-way connection establishment handshake is not
15580 		 * complete yet. We want to queue the data for transmission
15581 		 * after entering ESTABLISHED state (RFC793). A jump to
15582 		 * "done" label effectively leaves data on the queue.
15583 		 */
15584 		goto done;
15585 	} else {
15586 		int usable_r;
15587 
15588 		/*
15589 		 * In the special case when cwnd is zero, which can only
15590 		 * happen if the connection is ECN capable, return now.
15591 		 * New segments is sent using tcp_timer().  The timer
15592 		 * is set in tcp_input_data().
15593 		 */
15594 		if (tcp->tcp_cwnd == 0) {
15595 			/*
15596 			 * Note that tcp_cwnd is 0 before 3-way handshake is
15597 			 * finished.
15598 			 */
15599 			ASSERT(tcp->tcp_ecn_ok ||
15600 			    tcp->tcp_state < TCPS_ESTABLISHED);
15601 			return;
15602 		}
15603 
15604 		/* NOTE: trouble if xmitting while SYN not acked? */
15605 		usable_r = snxt - tcp->tcp_suna;
15606 		usable_r = tcp->tcp_swnd - usable_r;
15607 
15608 		/*
15609 		 * Check if the receiver has shrunk the window.  If
15610 		 * tcp_wput_data() with NULL mp is called, tcp_fin_sent
15611 		 * cannot be set as there is unsent data, so FIN cannot
15612 		 * be sent out.  Otherwise, we need to take into account
15613 		 * of FIN as it consumes an "invisible" sequence number.
15614 		 */
15615 		ASSERT(tcp->tcp_fin_sent == 0);
15616 		if (usable_r < 0) {
15617 			/*
15618 			 * The receiver has shrunk the window and we have sent
15619 			 * -usable_r date beyond the window, re-adjust.
15620 			 *
15621 			 * If TCP window scaling is enabled, there can be
15622 			 * round down error as the advertised receive window
15623 			 * is actually right shifted n bits.  This means that
15624 			 * the lower n bits info is wiped out.  It will look
15625 			 * like the window is shrunk.  Do a check here to
15626 			 * see if the shrunk amount is actually within the
15627 			 * error in window calculation.  If it is, just
15628 			 * return.  Note that this check is inside the
15629 			 * shrunk window check.  This makes sure that even
15630 			 * though tcp_process_shrunk_swnd() is not called,
15631 			 * we will stop further processing.
15632 			 */
15633 			if ((-usable_r >> tcp->tcp_snd_ws) > 0) {
15634 				tcp_process_shrunk_swnd(tcp, -usable_r);
15635 			}
15636 			return;
15637 		}
15638 
15639 		/* usable = MIN(swnd, cwnd) - unacked_bytes */
15640 		if (tcp->tcp_swnd > tcp->tcp_cwnd)
15641 			usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd;
15642 
15643 		/* usable = MIN(usable, unsent) */
15644 		if (usable_r > len)
15645 			usable_r = len;
15646 
15647 		/* usable = MAX(usable, {1 for urgent, 0 for data}) */
15648 		if (usable_r > 0) {
15649 			usable = usable_r;
15650 		} else {
15651 			/* Bypass all other unnecessary processing. */
15652 			goto done;
15653 		}
15654 	}
15655 
15656 	local_time = (mblk_t *)LBOLT_FASTPATH;
15657 
15658 	/*
15659 	 * "Our" Nagle Algorithm.  This is not the same as in the old
15660 	 * BSD.  This is more in line with the true intent of Nagle.
15661 	 *
15662 	 * The conditions are:
15663 	 * 1. The amount of unsent data (or amount of data which can be
15664 	 *    sent, whichever is smaller) is less than Nagle limit.
15665 	 * 2. The last sent size is also less than Nagle limit.
15666 	 * 3. There is unack'ed data.
15667 	 * 4. Urgent pointer is not set.  Send urgent data ignoring the
15668 	 *    Nagle algorithm.  This reduces the probability that urgent
15669 	 *    bytes get "merged" together.
15670 	 * 5. The app has not closed the connection.  This eliminates the
15671 	 *    wait time of the receiving side waiting for the last piece of
15672 	 *    (small) data.
15673 	 *
15674 	 * If all are satisified, exit without sending anything.  Note
15675 	 * that Nagle limit can be smaller than 1 MSS.  Nagle limit is
15676 	 * the smaller of 1 MSS and global tcp_naglim_def (default to be
15677 	 * 4095).
15678 	 */
15679 	if (usable < (int)tcp->tcp_naglim &&
15680 	    tcp->tcp_naglim > tcp->tcp_last_sent_len &&
15681 	    snxt != tcp->tcp_suna &&
15682 	    !(tcp->tcp_valid_bits & TCP_URG_VALID) &&
15683 	    !(tcp->tcp_valid_bits & TCP_FSS_VALID)) {
15684 		goto done;
15685 	}
15686 
15687 	/*
15688 	 * If tcp_zero_win_probe is not set and the tcp->tcp_cork option
15689 	 * is set, then we have to force TCP not to send partial segment
15690 	 * (smaller than MSS bytes). We are calculating the usable now
15691 	 * based on full mss and will save the rest of remaining data for
15692 	 * later. When tcp_zero_win_probe is set, TCP needs to send out
15693 	 * something to do zero window probe.
15694 	 */
15695 	if (tcp->tcp_cork && !tcp->tcp_zero_win_probe) {
15696 		if (usable < mss)
15697 			goto done;
15698 		usable = (usable / mss) * mss;
15699 	}
15700 
15701 	/* Update the latest receive window size in TCP header. */
15702 	tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
15703 
15704 	/* Send the packet. */
15705 	rc = tcp_send(tcp, mss, total_hdr_len, tcp_hdr_len,
15706 	    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
15707 	    local_time);
15708 
15709 	/* Pretend that all we were trying to send really got sent */
15710 	if (rc < 0 && tail_unsent < 0) {
15711 		do {
15712 			xmit_tail = xmit_tail->b_cont;
15713 			xmit_tail->b_prev = local_time;
15714 			ASSERT((uintptr_t)(xmit_tail->b_wptr -
15715 			    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
15716 			tail_unsent += (int)(xmit_tail->b_wptr -
15717 			    xmit_tail->b_rptr);
15718 		} while (tail_unsent < 0);
15719 	}
15720 done:;
15721 	tcp->tcp_xmit_tail = xmit_tail;
15722 	tcp->tcp_xmit_tail_unsent = tail_unsent;
15723 	len = tcp->tcp_snxt - snxt;
15724 	if (len) {
15725 		/*
15726 		 * If new data was sent, need to update the notsack
15727 		 * list, which is, afterall, data blocks that have
15728 		 * not been sack'ed by the receiver.  New data is
15729 		 * not sack'ed.
15730 		 */
15731 		if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
15732 			/* len is a negative value. */
15733 			tcp->tcp_pipe -= len;
15734 			tcp_notsack_update(&(tcp->tcp_notsack_list),
15735 			    tcp->tcp_snxt, snxt,
15736 			    &(tcp->tcp_num_notsack_blk),
15737 			    &(tcp->tcp_cnt_notsack_list));
15738 		}
15739 		tcp->tcp_snxt = snxt + tcp->tcp_fin_sent;
15740 		tcp->tcp_rack = tcp->tcp_rnxt;
15741 		tcp->tcp_rack_cnt = 0;
15742 		if ((snxt + len) == tcp->tcp_suna) {
15743 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
15744 		}
15745 	} else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) {
15746 		/*
15747 		 * Didn't send anything. Make sure the timer is running
15748 		 * so that we will probe a zero window.
15749 		 */
15750 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
15751 	}
15752 	/* Note that len is the amount we just sent but with a negative sign */
15753 	tcp->tcp_unsent += len;
15754 	mutex_enter(&tcp->tcp_non_sq_lock);
15755 	if (tcp->tcp_flow_stopped) {
15756 		if (TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) {
15757 			tcp_clrqfull(tcp);
15758 		}
15759 	} else if (TCP_UNSENT_BYTES(tcp) >= connp->conn_sndbuf) {
15760 		if (!(tcp->tcp_detached))
15761 			tcp_setqfull(tcp);
15762 	}
15763 	mutex_exit(&tcp->tcp_non_sq_lock);
15764 }
15765 
15766 /*
15767  * tcp_fill_header is called by tcp_send() to fill the outgoing TCP header
15768  * with the template header, as well as other options such as time-stamp,
15769  * ECN and/or SACK.
15770  */
15771 static void
15772 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk)
15773 {
15774 	tcpha_t *tcp_tmpl, *tcpha;
15775 	uint32_t *dst, *src;
15776 	int hdrlen;
15777 	conn_t *connp = tcp->tcp_connp;
15778 
15779 	ASSERT(OK_32PTR(rptr));
15780 
15781 	/* Template header */
15782 	tcp_tmpl = tcp->tcp_tcpha;
15783 
15784 	/* Header of outgoing packet */
15785 	tcpha = (tcpha_t *)(rptr + connp->conn_ixa->ixa_ip_hdr_length);
15786 
15787 	/* dst and src are opaque 32-bit fields, used for copying */
15788 	dst = (uint32_t *)rptr;
15789 	src = (uint32_t *)connp->conn_ht_iphc;
15790 	hdrlen = connp->conn_ht_iphc_len;
15791 
15792 	/* Fill time-stamp option if needed */
15793 	if (tcp->tcp_snd_ts_ok) {
15794 		U32_TO_BE32((uint32_t)now,
15795 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4);
15796 		U32_TO_BE32(tcp->tcp_ts_recent,
15797 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8);
15798 	} else {
15799 		ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH);
15800 	}
15801 
15802 	/*
15803 	 * Copy the template header; is this really more efficient than
15804 	 * calling bcopy()?  For simple IPv4/TCP, it may be the case,
15805 	 * but perhaps not for other scenarios.
15806 	 */
15807 	dst[0] = src[0];
15808 	dst[1] = src[1];
15809 	dst[2] = src[2];
15810 	dst[3] = src[3];
15811 	dst[4] = src[4];
15812 	dst[5] = src[5];
15813 	dst[6] = src[6];
15814 	dst[7] = src[7];
15815 	dst[8] = src[8];
15816 	dst[9] = src[9];
15817 	if (hdrlen -= 40) {
15818 		hdrlen >>= 2;
15819 		dst += 10;
15820 		src += 10;
15821 		do {
15822 			*dst++ = *src++;
15823 		} while (--hdrlen);
15824 	}
15825 
15826 	/*
15827 	 * Set the ECN info in the TCP header if it is not a zero
15828 	 * window probe.  Zero window probe is only sent in
15829 	 * tcp_wput_data() and tcp_timer().
15830 	 */
15831 	if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) {
15832 		SET_ECT(tcp, rptr);
15833 
15834 		if (tcp->tcp_ecn_echo_on)
15835 			tcpha->tha_flags |= TH_ECE;
15836 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
15837 			tcpha->tha_flags |= TH_CWR;
15838 			tcp->tcp_ecn_cwr_sent = B_TRUE;
15839 		}
15840 	}
15841 
15842 	/* Fill in SACK options */
15843 	if (num_sack_blk > 0) {
15844 		uchar_t *wptr = rptr + connp->conn_ht_iphc_len;
15845 		sack_blk_t *tmp;
15846 		int32_t	i;
15847 
15848 		wptr[0] = TCPOPT_NOP;
15849 		wptr[1] = TCPOPT_NOP;
15850 		wptr[2] = TCPOPT_SACK;
15851 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
15852 		    sizeof (sack_blk_t);
15853 		wptr += TCPOPT_REAL_SACK_LEN;
15854 
15855 		tmp = tcp->tcp_sack_list;
15856 		for (i = 0; i < num_sack_blk; i++) {
15857 			U32_TO_BE32(tmp[i].begin, wptr);
15858 			wptr += sizeof (tcp_seq);
15859 			U32_TO_BE32(tmp[i].end, wptr);
15860 			wptr += sizeof (tcp_seq);
15861 		}
15862 		tcpha->tha_offset_and_reserved +=
15863 		    ((num_sack_blk * 2 + 1) << 4);
15864 	}
15865 }
15866 
15867 /*
15868  * tcp_send() is called by tcp_wput_data() and returns one of the following:
15869  *
15870  * -1 = failed allocation.
15871  *  0 = success; burst count reached, or usable send window is too small,
15872  *      and that we'd rather wait until later before sending again.
15873  */
15874 static int
15875 tcp_send(tcp_t *tcp, const int mss, const int total_hdr_len,
15876     const int tcp_hdr_len, const int num_sack_blk, int *usable,
15877     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time)
15878 {
15879 	int		num_burst_seg = tcp->tcp_snd_burst;
15880 	int		num_lso_seg = 1;
15881 	uint_t		lso_usable;
15882 	boolean_t	do_lso_send = B_FALSE;
15883 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15884 	conn_t		*connp = tcp->tcp_connp;
15885 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
15886 
15887 	/*
15888 	 * Check LSO possibility. The value of tcp->tcp_lso indicates whether
15889 	 * the underlying connection is LSO capable. Will check whether having
15890 	 * enough available data to initiate LSO transmission in the for(){}
15891 	 * loops.
15892 	 */
15893 	if (tcp->tcp_lso && (tcp->tcp_valid_bits & ~TCP_FSS_VALID) == 0)
15894 			do_lso_send = B_TRUE;
15895 
15896 	for (;;) {
15897 		struct datab	*db;
15898 		tcpha_t		*tcpha;
15899 		uint32_t	sum;
15900 		mblk_t		*mp, *mp1;
15901 		uchar_t		*rptr;
15902 		int		len;
15903 
15904 		/*
15905 		 * Burst count reached, return successfully.
15906 		 */
15907 		if (num_burst_seg == 0)
15908 			break;
15909 
15910 		/*
15911 		 * Calculate the maximum payload length we can send at one
15912 		 * time.
15913 		 */
15914 		if (do_lso_send) {
15915 			/*
15916 			 * Check whether be able to to do LSO for the current
15917 			 * available data.
15918 			 */
15919 			if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
15920 				lso_usable = MIN(tcp->tcp_lso_max, *usable);
15921 				lso_usable = MIN(lso_usable,
15922 				    num_burst_seg * mss);
15923 
15924 				num_lso_seg = lso_usable / mss;
15925 				if (lso_usable % mss) {
15926 					num_lso_seg++;
15927 					tcp->tcp_last_sent_len = (ushort_t)
15928 					    (lso_usable % mss);
15929 				} else {
15930 					tcp->tcp_last_sent_len = (ushort_t)mss;
15931 				}
15932 			} else {
15933 				do_lso_send = B_FALSE;
15934 				num_lso_seg = 1;
15935 				lso_usable = mss;
15936 			}
15937 		}
15938 
15939 		ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1);
15940 #ifdef DEBUG
15941 		DTRACE_PROBE2(tcp_send_lso, int, num_lso_seg, boolean_t,
15942 		    do_lso_send);
15943 #endif
15944 		/*
15945 		 * Adjust num_burst_seg here.
15946 		 */
15947 		num_burst_seg -= num_lso_seg;
15948 
15949 		len = mss;
15950 		if (len > *usable) {
15951 			ASSERT(do_lso_send == B_FALSE);
15952 
15953 			len = *usable;
15954 			if (len <= 0) {
15955 				/* Terminate the loop */
15956 				break;	/* success; too small */
15957 			}
15958 			/*
15959 			 * Sender silly-window avoidance.
15960 			 * Ignore this if we are going to send a
15961 			 * zero window probe out.
15962 			 *
15963 			 * TODO: force data into microscopic window?
15964 			 *	==> (!pushed || (unsent > usable))
15965 			 */
15966 			if (len < (tcp->tcp_max_swnd >> 1) &&
15967 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len &&
15968 			    !((tcp->tcp_valid_bits & TCP_URG_VALID) &&
15969 			    len == 1) && (! tcp->tcp_zero_win_probe)) {
15970 				/*
15971 				 * If the retransmit timer is not running
15972 				 * we start it so that we will retransmit
15973 				 * in the case when the receiver has
15974 				 * decremented the window.
15975 				 */
15976 				if (*snxt == tcp->tcp_snxt &&
15977 				    *snxt == tcp->tcp_suna) {
15978 					/*
15979 					 * We are not supposed to send
15980 					 * anything.  So let's wait a little
15981 					 * bit longer before breaking SWS
15982 					 * avoidance.
15983 					 *
15984 					 * What should the value be?
15985 					 * Suggestion: MAX(init rexmit time,
15986 					 * tcp->tcp_rto)
15987 					 */
15988 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
15989 				}
15990 				break;	/* success; too small */
15991 			}
15992 		}
15993 
15994 		tcpha = tcp->tcp_tcpha;
15995 
15996 		/*
15997 		 * The reason to adjust len here is that we need to set flags
15998 		 * and calculate checksum.
15999 		 */
16000 		if (do_lso_send)
16001 			len = lso_usable;
16002 
16003 		*usable -= len; /* Approximate - can be adjusted later */
16004 		if (*usable > 0)
16005 			tcpha->tha_flags = TH_ACK;
16006 		else
16007 			tcpha->tha_flags = (TH_ACK | TH_PUSH);
16008 
16009 		/*
16010 		 * Prime pump for IP's checksumming on our behalf.
16011 		 * Include the adjustment for a source route if any.
16012 		 * In case of LSO, the partial pseudo-header checksum should
16013 		 * exclusive TCP length, so zero tha_sum before IP calculate
16014 		 * pseudo-header checksum for partial checksum offload.
16015 		 */
16016 		if (do_lso_send) {
16017 			sum = 0;
16018 		} else {
16019 			sum = len + tcp_hdr_len + connp->conn_sum;
16020 			sum = (sum >> 16) + (sum & 0xFFFF);
16021 		}
16022 		tcpha->tha_sum = htons(sum);
16023 		tcpha->tha_seq = htonl(*snxt);
16024 
16025 		/*
16026 		 * Branch off to tcp_xmit_mp() if any of the VALID bits is
16027 		 * set.  For the case when TCP_FSS_VALID is the only valid
16028 		 * bit (normal active close), branch off only when we think
16029 		 * that the FIN flag needs to be set.  Note for this case,
16030 		 * that (snxt + len) may not reflect the actual seg_len,
16031 		 * as len may be further reduced in tcp_xmit_mp().  If len
16032 		 * gets modified, we will end up here again.
16033 		 */
16034 		if (tcp->tcp_valid_bits != 0 &&
16035 		    (tcp->tcp_valid_bits != TCP_FSS_VALID ||
16036 		    ((*snxt + len) == tcp->tcp_fss))) {
16037 			uchar_t		*prev_rptr;
16038 			uint32_t	prev_snxt = tcp->tcp_snxt;
16039 
16040 			if (*tail_unsent == 0) {
16041 				ASSERT((*xmit_tail)->b_cont != NULL);
16042 				*xmit_tail = (*xmit_tail)->b_cont;
16043 				prev_rptr = (*xmit_tail)->b_rptr;
16044 				*tail_unsent = (int)((*xmit_tail)->b_wptr -
16045 				    (*xmit_tail)->b_rptr);
16046 			} else {
16047 				prev_rptr = (*xmit_tail)->b_rptr;
16048 				(*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr -
16049 				    *tail_unsent;
16050 			}
16051 			mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL,
16052 			    *snxt, B_FALSE, (uint32_t *)&len, B_FALSE);
16053 			/* Restore tcp_snxt so we get amount sent right. */
16054 			tcp->tcp_snxt = prev_snxt;
16055 			if (prev_rptr == (*xmit_tail)->b_rptr) {
16056 				/*
16057 				 * If the previous timestamp is still in use,
16058 				 * don't stomp on it.
16059 				 */
16060 				if ((*xmit_tail)->b_next == NULL) {
16061 					(*xmit_tail)->b_prev = local_time;
16062 					(*xmit_tail)->b_next =
16063 					    (mblk_t *)(uintptr_t)(*snxt);
16064 				}
16065 			} else
16066 				(*xmit_tail)->b_rptr = prev_rptr;
16067 
16068 			if (mp == NULL) {
16069 				return (-1);
16070 			}
16071 			mp1 = mp->b_cont;
16072 
16073 			if (len <= mss) /* LSO is unusable (!do_lso_send) */
16074 				tcp->tcp_last_sent_len = (ushort_t)len;
16075 			while (mp1->b_cont) {
16076 				*xmit_tail = (*xmit_tail)->b_cont;
16077 				(*xmit_tail)->b_prev = local_time;
16078 				(*xmit_tail)->b_next =
16079 				    (mblk_t *)(uintptr_t)(*snxt);
16080 				mp1 = mp1->b_cont;
16081 			}
16082 			*snxt += len;
16083 			*tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr;
16084 			BUMP_LOCAL(tcp->tcp_obsegs);
16085 			BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
16086 			UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
16087 			tcp_send_data(tcp, mp);
16088 			continue;
16089 		}
16090 
16091 		*snxt += len;	/* Adjust later if we don't send all of len */
16092 		BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
16093 		UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
16094 
16095 		if (*tail_unsent) {
16096 			/* Are the bytes above us in flight? */
16097 			rptr = (*xmit_tail)->b_wptr - *tail_unsent;
16098 			if (rptr != (*xmit_tail)->b_rptr) {
16099 				*tail_unsent -= len;
16100 				if (len <= mss) /* LSO is unusable */
16101 					tcp->tcp_last_sent_len = (ushort_t)len;
16102 				len += total_hdr_len;
16103 				ixa->ixa_pktlen = len;
16104 
16105 				if (ixa->ixa_flags & IXAF_IS_IPV4) {
16106 					tcp->tcp_ipha->ipha_length = htons(len);
16107 				} else {
16108 					tcp->tcp_ip6h->ip6_plen =
16109 					    htons(len - IPV6_HDR_LEN);
16110 				}
16111 
16112 				mp = dupb(*xmit_tail);
16113 				if (mp == NULL) {
16114 					return (-1);	/* out_of_mem */
16115 				}
16116 				mp->b_rptr = rptr;
16117 				/*
16118 				 * If the old timestamp is no longer in use,
16119 				 * sample a new timestamp now.
16120 				 */
16121 				if ((*xmit_tail)->b_next == NULL) {
16122 					(*xmit_tail)->b_prev = local_time;
16123 					(*xmit_tail)->b_next =
16124 					    (mblk_t *)(uintptr_t)(*snxt-len);
16125 				}
16126 				goto must_alloc;
16127 			}
16128 		} else {
16129 			*xmit_tail = (*xmit_tail)->b_cont;
16130 			ASSERT((uintptr_t)((*xmit_tail)->b_wptr -
16131 			    (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX);
16132 			*tail_unsent = (int)((*xmit_tail)->b_wptr -
16133 			    (*xmit_tail)->b_rptr);
16134 		}
16135 
16136 		(*xmit_tail)->b_prev = local_time;
16137 		(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len);
16138 
16139 		*tail_unsent -= len;
16140 		if (len <= mss) /* LSO is unusable (!do_lso_send) */
16141 			tcp->tcp_last_sent_len = (ushort_t)len;
16142 
16143 		len += total_hdr_len;
16144 		ixa->ixa_pktlen = len;
16145 
16146 		if (ixa->ixa_flags & IXAF_IS_IPV4) {
16147 			tcp->tcp_ipha->ipha_length = htons(len);
16148 		} else {
16149 			tcp->tcp_ip6h->ip6_plen = htons(len - IPV6_HDR_LEN);
16150 		}
16151 
16152 		mp = dupb(*xmit_tail);
16153 		if (mp == NULL) {
16154 			return (-1);	/* out_of_mem */
16155 		}
16156 
16157 		len = total_hdr_len;
16158 		/*
16159 		 * There are four reasons to allocate a new hdr mblk:
16160 		 *  1) The bytes above us are in use by another packet
16161 		 *  2) We don't have good alignment
16162 		 *  3) The mblk is being shared
16163 		 *  4) We don't have enough room for a header
16164 		 */
16165 		rptr = mp->b_rptr - len;
16166 		if (!OK_32PTR(rptr) ||
16167 		    ((db = mp->b_datap), db->db_ref != 2) ||
16168 		    rptr < db->db_base) {
16169 			/* NOTE: we assume allocb returns an OK_32PTR */
16170 
16171 		must_alloc:;
16172 			mp1 = allocb(connp->conn_ht_iphc_allocated +
16173 			    tcps->tcps_wroff_xtra, BPRI_MED);
16174 			if (mp1 == NULL) {
16175 				freemsg(mp);
16176 				return (-1);	/* out_of_mem */
16177 			}
16178 			mp1->b_cont = mp;
16179 			mp = mp1;
16180 			/* Leave room for Link Level header */
16181 			len = total_hdr_len;
16182 			rptr = &mp->b_rptr[tcps->tcps_wroff_xtra];
16183 			mp->b_wptr = &rptr[len];
16184 		}
16185 
16186 		/*
16187 		 * Fill in the header using the template header, and add
16188 		 * options such as time-stamp, ECN and/or SACK, as needed.
16189 		 */
16190 		tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk);
16191 
16192 		mp->b_rptr = rptr;
16193 
16194 		if (*tail_unsent) {
16195 			int spill = *tail_unsent;
16196 
16197 			mp1 = mp->b_cont;
16198 			if (mp1 == NULL)
16199 				mp1 = mp;
16200 
16201 			/*
16202 			 * If we're a little short, tack on more mblks until
16203 			 * there is no more spillover.
16204 			 */
16205 			while (spill < 0) {
16206 				mblk_t *nmp;
16207 				int nmpsz;
16208 
16209 				nmp = (*xmit_tail)->b_cont;
16210 				nmpsz = MBLKL(nmp);
16211 
16212 				/*
16213 				 * Excess data in mblk; can we split it?
16214 				 * If LSO is enabled for the connection,
16215 				 * keep on splitting as this is a transient
16216 				 * send path.
16217 				 */
16218 				if (!do_lso_send && (spill + nmpsz > 0)) {
16219 					/*
16220 					 * Don't split if stream head was
16221 					 * told to break up larger writes
16222 					 * into smaller ones.
16223 					 */
16224 					if (tcp->tcp_maxpsz_multiplier > 0)
16225 						break;
16226 
16227 					/*
16228 					 * Next mblk is less than SMSS/2
16229 					 * rounded up to nearest 64-byte;
16230 					 * let it get sent as part of the
16231 					 * next segment.
16232 					 */
16233 					if (tcp->tcp_localnet &&
16234 					    !tcp->tcp_cork &&
16235 					    (nmpsz < roundup((mss >> 1), 64)))
16236 						break;
16237 				}
16238 
16239 				*xmit_tail = nmp;
16240 				ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX);
16241 				/* Stash for rtt use later */
16242 				(*xmit_tail)->b_prev = local_time;
16243 				(*xmit_tail)->b_next =
16244 				    (mblk_t *)(uintptr_t)(*snxt - len);
16245 				mp1->b_cont = dupb(*xmit_tail);
16246 				mp1 = mp1->b_cont;
16247 
16248 				spill += nmpsz;
16249 				if (mp1 == NULL) {
16250 					*tail_unsent = spill;
16251 					freemsg(mp);
16252 					return (-1);	/* out_of_mem */
16253 				}
16254 			}
16255 
16256 			/* Trim back any surplus on the last mblk */
16257 			if (spill >= 0) {
16258 				mp1->b_wptr -= spill;
16259 				*tail_unsent = spill;
16260 			} else {
16261 				/*
16262 				 * We did not send everything we could in
16263 				 * order to remain within the b_cont limit.
16264 				 */
16265 				*usable -= spill;
16266 				*snxt += spill;
16267 				tcp->tcp_last_sent_len += spill;
16268 				UPDATE_MIB(&tcps->tcps_mib,
16269 				    tcpOutDataBytes, spill);
16270 				/*
16271 				 * Adjust the checksum
16272 				 */
16273 				tcpha = (tcpha_t *)(rptr +
16274 				    ixa->ixa_ip_hdr_length);
16275 				sum += spill;
16276 				sum = (sum >> 16) + (sum & 0xFFFF);
16277 				tcpha->tha_sum = htons(sum);
16278 				if (connp->conn_ipversion == IPV4_VERSION) {
16279 					sum = ntohs(
16280 					    ((ipha_t *)rptr)->ipha_length) +
16281 					    spill;
16282 					((ipha_t *)rptr)->ipha_length =
16283 					    htons(sum);
16284 				} else {
16285 					sum = ntohs(
16286 					    ((ip6_t *)rptr)->ip6_plen) +
16287 					    spill;
16288 					((ip6_t *)rptr)->ip6_plen =
16289 					    htons(sum);
16290 				}
16291 				ixa->ixa_pktlen += spill;
16292 				*tail_unsent = 0;
16293 			}
16294 		}
16295 		if (tcp->tcp_ip_forward_progress) {
16296 			tcp->tcp_ip_forward_progress = B_FALSE;
16297 			ixa->ixa_flags |= IXAF_REACH_CONF;
16298 		} else {
16299 			ixa->ixa_flags &= ~IXAF_REACH_CONF;
16300 		}
16301 
16302 		/*
16303 		 * Append LSO information, both flags and mss, to the mp.
16304 		 */
16305 		if (do_lso_send) {
16306 			lso_info_set(mp, mss, HW_LSO);
16307 			ixa->ixa_fragsize = IP_MAXPACKET;
16308 			ixa->ixa_extra_ident = num_lso_seg - 1;
16309 
16310 			DTRACE_PROBE2(tcp_send_lso, int, num_lso_seg,
16311 			    boolean_t, B_TRUE);
16312 
16313 			tcp_send_data(tcp, mp);
16314 
16315 			/*
16316 			 * Restore values of ixa_fragsize and ixa_extra_ident.
16317 			 */
16318 			ixa->ixa_fragsize = ixa->ixa_pmtu;
16319 			ixa->ixa_extra_ident = 0;
16320 			tcp->tcp_obsegs += num_lso_seg;
16321 			TCP_STAT(tcps, tcp_lso_times);
16322 			TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg);
16323 		} else {
16324 			tcp_send_data(tcp, mp);
16325 			BUMP_LOCAL(tcp->tcp_obsegs);
16326 		}
16327 	}
16328 
16329 	return (0);
16330 }
16331 
16332 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */
16333 static void
16334 tcp_wput_flush(tcp_t *tcp, mblk_t *mp)
16335 {
16336 	uchar_t	fval = *mp->b_rptr;
16337 	mblk_t	*tail;
16338 	conn_t	*connp = tcp->tcp_connp;
16339 	queue_t	*q = connp->conn_wq;
16340 
16341 	/* TODO: How should flush interact with urgent data? */
16342 	if ((fval & FLUSHW) && tcp->tcp_xmit_head &&
16343 	    !(tcp->tcp_valid_bits & TCP_URG_VALID)) {
16344 		/*
16345 		 * Flush only data that has not yet been put on the wire.  If
16346 		 * we flush data that we have already transmitted, life, as we
16347 		 * know it, may come to an end.
16348 		 */
16349 		tail = tcp->tcp_xmit_tail;
16350 		tail->b_wptr -= tcp->tcp_xmit_tail_unsent;
16351 		tcp->tcp_xmit_tail_unsent = 0;
16352 		tcp->tcp_unsent = 0;
16353 		if (tail->b_wptr != tail->b_rptr)
16354 			tail = tail->b_cont;
16355 		if (tail) {
16356 			mblk_t **excess = &tcp->tcp_xmit_head;
16357 			for (;;) {
16358 				mblk_t *mp1 = *excess;
16359 				if (mp1 == tail)
16360 					break;
16361 				tcp->tcp_xmit_tail = mp1;
16362 				tcp->tcp_xmit_last = mp1;
16363 				excess = &mp1->b_cont;
16364 			}
16365 			*excess = NULL;
16366 			tcp_close_mpp(&tail);
16367 			if (tcp->tcp_snd_zcopy_aware)
16368 				tcp_zcopy_notify(tcp);
16369 		}
16370 		/*
16371 		 * We have no unsent data, so unsent must be less than
16372 		 * conn_sndlowat, so re-enable flow.
16373 		 */
16374 		mutex_enter(&tcp->tcp_non_sq_lock);
16375 		if (tcp->tcp_flow_stopped) {
16376 			tcp_clrqfull(tcp);
16377 		}
16378 		mutex_exit(&tcp->tcp_non_sq_lock);
16379 	}
16380 	/*
16381 	 * TODO: you can't just flush these, you have to increase rwnd for one
16382 	 * thing.  For another, how should urgent data interact?
16383 	 */
16384 	if (fval & FLUSHR) {
16385 		*mp->b_rptr = fval & ~FLUSHW;
16386 		/* XXX */
16387 		qreply(q, mp);
16388 		return;
16389 	}
16390 	freemsg(mp);
16391 }
16392 
16393 /*
16394  * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA
16395  * messages.
16396  */
16397 static void
16398 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp)
16399 {
16400 	mblk_t		*mp1;
16401 	struct iocblk	*iocp = (struct iocblk *)mp->b_rptr;
16402 	STRUCT_HANDLE(strbuf, sb);
16403 	uint_t		addrlen;
16404 	conn_t		*connp = tcp->tcp_connp;
16405 	queue_t 	*q = connp->conn_wq;
16406 
16407 	/* Make sure it is one of ours. */
16408 	switch (iocp->ioc_cmd) {
16409 	case TI_GETMYNAME:
16410 	case TI_GETPEERNAME:
16411 		break;
16412 	default:
16413 		ip_wput_nondata(q, mp);
16414 		return;
16415 	}
16416 	switch (mi_copy_state(q, mp, &mp1)) {
16417 	case -1:
16418 		return;
16419 	case MI_COPY_CASE(MI_COPY_IN, 1):
16420 		break;
16421 	case MI_COPY_CASE(MI_COPY_OUT, 1):
16422 		/* Copy out the strbuf. */
16423 		mi_copyout(q, mp);
16424 		return;
16425 	case MI_COPY_CASE(MI_COPY_OUT, 2):
16426 		/* All done. */
16427 		mi_copy_done(q, mp, 0);
16428 		return;
16429 	default:
16430 		mi_copy_done(q, mp, EPROTO);
16431 		return;
16432 	}
16433 	/* Check alignment of the strbuf */
16434 	if (!OK_32PTR(mp1->b_rptr)) {
16435 		mi_copy_done(q, mp, EINVAL);
16436 		return;
16437 	}
16438 
16439 	STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr);
16440 
16441 	if (connp->conn_family == AF_INET)
16442 		addrlen = sizeof (sin_t);
16443 	else
16444 		addrlen = sizeof (sin6_t);
16445 
16446 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
16447 		mi_copy_done(q, mp, EINVAL);
16448 		return;
16449 	}
16450 
16451 	switch (iocp->ioc_cmd) {
16452 	case TI_GETMYNAME:
16453 		break;
16454 	case TI_GETPEERNAME:
16455 		if (tcp->tcp_state < TCPS_SYN_RCVD) {
16456 			mi_copy_done(q, mp, ENOTCONN);
16457 			return;
16458 		}
16459 		break;
16460 	}
16461 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
16462 	if (!mp1)
16463 		return;
16464 
16465 	STRUCT_FSET(sb, len, addrlen);
16466 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
16467 	case TI_GETMYNAME:
16468 		(void) conn_getsockname(connp, (struct sockaddr *)mp1->b_wptr,
16469 		    &addrlen);
16470 		break;
16471 	case TI_GETPEERNAME:
16472 		(void) conn_getpeername(connp, (struct sockaddr *)mp1->b_wptr,
16473 		    &addrlen);
16474 		break;
16475 	}
16476 	mp1->b_wptr += addrlen;
16477 	/* Copy out the address */
16478 	mi_copyout(q, mp);
16479 }
16480 
16481 static void
16482 tcp_use_pure_tpi(tcp_t *tcp)
16483 {
16484 	conn_t		*connp = tcp->tcp_connp;
16485 
16486 #ifdef	_ILP32
16487 	tcp->tcp_acceptor_id = (t_uscalar_t)connp->conn_rq;
16488 #else
16489 	tcp->tcp_acceptor_id = connp->conn_dev;
16490 #endif
16491 	/*
16492 	 * Insert this socket into the acceptor hash.
16493 	 * We might need it for T_CONN_RES message
16494 	 */
16495 	tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
16496 
16497 	tcp->tcp_issocket = B_FALSE;
16498 	TCP_STAT(tcp->tcp_tcps, tcp_sock_fallback);
16499 }
16500 
16501 /*
16502  * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL
16503  * messages.
16504  */
16505 /* ARGSUSED */
16506 static void
16507 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
16508 {
16509 	conn_t 		*connp = (conn_t *)arg;
16510 	tcp_t		*tcp = connp->conn_tcp;
16511 	queue_t		*q = connp->conn_wq;
16512 	struct iocblk	*iocp;
16513 
16514 	ASSERT(DB_TYPE(mp) == M_IOCTL);
16515 	/*
16516 	 * Try and ASSERT the minimum possible references on the
16517 	 * conn early enough. Since we are executing on write side,
16518 	 * the connection is obviously not detached and that means
16519 	 * there is a ref each for TCP and IP. Since we are behind
16520 	 * the squeue, the minimum references needed are 3. If the
16521 	 * conn is in classifier hash list, there should be an
16522 	 * extra ref for that (we check both the possibilities).
16523 	 */
16524 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
16525 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
16526 
16527 	iocp = (struct iocblk *)mp->b_rptr;
16528 	switch (iocp->ioc_cmd) {
16529 	case _SIOCSOCKFALLBACK:
16530 		/*
16531 		 * Either sockmod is about to be popped and the socket
16532 		 * would now be treated as a plain stream, or a module
16533 		 * is about to be pushed so we could no longer use read-
16534 		 * side synchronous streams for fused loopback tcp.
16535 		 * Drain any queued data and disable direct sockfs
16536 		 * interface from now on.
16537 		 */
16538 		if (!tcp->tcp_issocket) {
16539 			DB_TYPE(mp) = M_IOCNAK;
16540 			iocp->ioc_error = EINVAL;
16541 		} else {
16542 			tcp_use_pure_tpi(tcp);
16543 			DB_TYPE(mp) = M_IOCACK;
16544 			iocp->ioc_error = 0;
16545 		}
16546 		iocp->ioc_count = 0;
16547 		iocp->ioc_rval = 0;
16548 		qreply(q, mp);
16549 		return;
16550 	}
16551 	ip_wput_nondata(q, mp);
16552 }
16553 
16554 /*
16555  * This routine is called by tcp_wput() to handle all TPI requests.
16556  */
16557 /* ARGSUSED */
16558 static void
16559 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
16560 {
16561 	conn_t		*connp = (conn_t *)arg;
16562 	tcp_t		*tcp = connp->conn_tcp;
16563 	union T_primitives *tprim = (union T_primitives *)mp->b_rptr;
16564 	uchar_t		*rptr;
16565 	t_scalar_t	type;
16566 	cred_t		*cr;
16567 
16568 	/*
16569 	 * Try and ASSERT the minimum possible references on the
16570 	 * conn early enough. Since we are executing on write side,
16571 	 * the connection is obviously not detached and that means
16572 	 * there is a ref each for TCP and IP. Since we are behind
16573 	 * the squeue, the minimum references needed are 3. If the
16574 	 * conn is in classifier hash list, there should be an
16575 	 * extra ref for that (we check both the possibilities).
16576 	 */
16577 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
16578 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
16579 
16580 	rptr = mp->b_rptr;
16581 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
16582 	if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
16583 		type = ((union T_primitives *)rptr)->type;
16584 		if (type == T_EXDATA_REQ) {
16585 			tcp_output_urgent(connp, mp, arg2, NULL);
16586 		} else if (type != T_DATA_REQ) {
16587 			goto non_urgent_data;
16588 		} else {
16589 			/* TODO: options, flags, ... from user */
16590 			/* Set length to zero for reclamation below */
16591 			tcp_wput_data(tcp, mp->b_cont, B_TRUE);
16592 			freeb(mp);
16593 		}
16594 		return;
16595 	} else {
16596 		if (connp->conn_debug) {
16597 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
16598 			    "tcp_wput_proto, dropping one...");
16599 		}
16600 		freemsg(mp);
16601 		return;
16602 	}
16603 
16604 non_urgent_data:
16605 
16606 	switch ((int)tprim->type) {
16607 	case T_SSL_PROXY_BIND_REQ:	/* an SSL proxy endpoint bind request */
16608 		/*
16609 		 * save the kssl_ent_t from the next block, and convert this
16610 		 * back to a normal bind_req.
16611 		 */
16612 		if (mp->b_cont != NULL) {
16613 			ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t));
16614 
16615 			if (tcp->tcp_kssl_ent != NULL) {
16616 				kssl_release_ent(tcp->tcp_kssl_ent, NULL,
16617 				    KSSL_NO_PROXY);
16618 				tcp->tcp_kssl_ent = NULL;
16619 			}
16620 			bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent,
16621 			    sizeof (kssl_ent_t));
16622 			kssl_hold_ent(tcp->tcp_kssl_ent);
16623 			freemsg(mp->b_cont);
16624 			mp->b_cont = NULL;
16625 		}
16626 		tprim->type = T_BIND_REQ;
16627 
16628 	/* FALLTHROUGH */
16629 	case O_T_BIND_REQ:	/* bind request */
16630 	case T_BIND_REQ:	/* new semantics bind request */
16631 		tcp_tpi_bind(tcp, mp);
16632 		break;
16633 	case T_UNBIND_REQ:	/* unbind request */
16634 		tcp_tpi_unbind(tcp, mp);
16635 		break;
16636 	case O_T_CONN_RES:	/* old connection response XXX */
16637 	case T_CONN_RES:	/* connection response */
16638 		tcp_tli_accept(tcp, mp);
16639 		break;
16640 	case T_CONN_REQ:	/* connection request */
16641 		tcp_tpi_connect(tcp, mp);
16642 		break;
16643 	case T_DISCON_REQ:	/* disconnect request */
16644 		tcp_disconnect(tcp, mp);
16645 		break;
16646 	case T_CAPABILITY_REQ:
16647 		tcp_capability_req(tcp, mp);	/* capability request */
16648 		break;
16649 	case T_INFO_REQ:	/* information request */
16650 		tcp_info_req(tcp, mp);
16651 		break;
16652 	case T_SVR4_OPTMGMT_REQ:	/* manage options req */
16653 	case T_OPTMGMT_REQ:
16654 		/*
16655 		 * Note:  no support for snmpcom_req() through new
16656 		 * T_OPTMGMT_REQ. See comments in ip.c
16657 		 */
16658 
16659 		/*
16660 		 * All Solaris components should pass a db_credp
16661 		 * for this TPI message, hence we ASSERT.
16662 		 * But in case there is some other M_PROTO that looks
16663 		 * like a TPI message sent by some other kernel
16664 		 * component, we check and return an error.
16665 		 */
16666 		cr = msg_getcred(mp, NULL);
16667 		ASSERT(cr != NULL);
16668 		if (cr == NULL) {
16669 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
16670 			return;
16671 		}
16672 		/*
16673 		 * If EINPROGRESS is returned, the request has been queued
16674 		 * for subsequent processing by ip_restart_optmgmt(), which
16675 		 * will do the CONN_DEC_REF().
16676 		 */
16677 		if ((int)tprim->type == T_SVR4_OPTMGMT_REQ) {
16678 			svr4_optcom_req(connp->conn_wq, mp, cr, &tcp_opt_obj);
16679 		} else {
16680 			tpi_optcom_req(connp->conn_wq, mp, cr, &tcp_opt_obj);
16681 		}
16682 		break;
16683 
16684 	case T_UNITDATA_REQ:	/* unitdata request */
16685 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
16686 		break;
16687 	case T_ORDREL_REQ:	/* orderly release req */
16688 		freemsg(mp);
16689 
16690 		if (tcp->tcp_fused)
16691 			tcp_unfuse(tcp);
16692 
16693 		if (tcp_xmit_end(tcp) != 0) {
16694 			/*
16695 			 * We were crossing FINs and got a reset from
16696 			 * the other side. Just ignore it.
16697 			 */
16698 			if (connp->conn_debug) {
16699 				(void) strlog(TCP_MOD_ID, 0, 1,
16700 				    SL_ERROR|SL_TRACE,
16701 				    "tcp_wput_proto, T_ORDREL_REQ out of "
16702 				    "state %s",
16703 				    tcp_display(tcp, NULL,
16704 				    DISP_ADDR_AND_PORT));
16705 			}
16706 		}
16707 		break;
16708 	case T_ADDR_REQ:
16709 		tcp_addr_req(tcp, mp);
16710 		break;
16711 	default:
16712 		if (connp->conn_debug) {
16713 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
16714 			    "tcp_wput_proto, bogus TPI msg, type %d",
16715 			    tprim->type);
16716 		}
16717 		/*
16718 		 * We used to M_ERROR.  Sending TNOTSUPPORT gives the user
16719 		 * to recover.
16720 		 */
16721 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
16722 		break;
16723 	}
16724 }
16725 
16726 /*
16727  * The TCP write service routine should never be called...
16728  */
16729 /* ARGSUSED */
16730 static void
16731 tcp_wsrv(queue_t *q)
16732 {
16733 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
16734 
16735 	TCP_STAT(tcps, tcp_wsrv_called);
16736 }
16737 
16738 /*
16739  * Send out a control packet on the tcp connection specified.  This routine
16740  * is typically called where we need a simple ACK or RST generated.
16741  */
16742 static void
16743 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl)
16744 {
16745 	uchar_t		*rptr;
16746 	tcpha_t		*tcpha;
16747 	ipha_t		*ipha = NULL;
16748 	ip6_t		*ip6h = NULL;
16749 	uint32_t	sum;
16750 	int		total_hdr_len;
16751 	int		ip_hdr_len;
16752 	mblk_t		*mp;
16753 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16754 	conn_t		*connp = tcp->tcp_connp;
16755 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
16756 
16757 	/*
16758 	 * Save sum for use in source route later.
16759 	 */
16760 	sum = connp->conn_ht_ulp_len + connp->conn_sum;
16761 	total_hdr_len = connp->conn_ht_iphc_len;
16762 	ip_hdr_len = ixa->ixa_ip_hdr_length;
16763 
16764 	/* If a text string is passed in with the request, pass it to strlog. */
16765 	if (str != NULL && connp->conn_debug) {
16766 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
16767 		    "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x",
16768 		    str, seq, ack, ctl);
16769 	}
16770 	mp = allocb(connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra,
16771 	    BPRI_MED);
16772 	if (mp == NULL) {
16773 		return;
16774 	}
16775 	rptr = &mp->b_rptr[tcps->tcps_wroff_xtra];
16776 	mp->b_rptr = rptr;
16777 	mp->b_wptr = &rptr[total_hdr_len];
16778 	bcopy(connp->conn_ht_iphc, rptr, total_hdr_len);
16779 
16780 	ixa->ixa_pktlen = total_hdr_len;
16781 
16782 	if (ixa->ixa_flags & IXAF_IS_IPV4) {
16783 		ipha = (ipha_t *)rptr;
16784 		ipha->ipha_length = htons(total_hdr_len);
16785 	} else {
16786 		ip6h = (ip6_t *)rptr;
16787 		ip6h->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN);
16788 	}
16789 	tcpha = (tcpha_t *)&rptr[ip_hdr_len];
16790 	tcpha->tha_flags = (uint8_t)ctl;
16791 	if (ctl & TH_RST) {
16792 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
16793 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
16794 		/*
16795 		 * Don't send TSopt w/ TH_RST packets per RFC 1323.
16796 		 */
16797 		if (tcp->tcp_snd_ts_ok &&
16798 		    tcp->tcp_state > TCPS_SYN_SENT) {
16799 			mp->b_wptr = &rptr[total_hdr_len - TCPOPT_REAL_TS_LEN];
16800 			*(mp->b_wptr) = TCPOPT_EOL;
16801 
16802 			ixa->ixa_pktlen = total_hdr_len - TCPOPT_REAL_TS_LEN;
16803 
16804 			if (connp->conn_ipversion == IPV4_VERSION) {
16805 				ipha->ipha_length = htons(total_hdr_len -
16806 				    TCPOPT_REAL_TS_LEN);
16807 			} else {
16808 				ip6h->ip6_plen = htons(total_hdr_len -
16809 				    IPV6_HDR_LEN - TCPOPT_REAL_TS_LEN);
16810 			}
16811 			tcpha->tha_offset_and_reserved -= (3 << 4);
16812 			sum -= TCPOPT_REAL_TS_LEN;
16813 		}
16814 	}
16815 	if (ctl & TH_ACK) {
16816 		if (tcp->tcp_snd_ts_ok) {
16817 			uint32_t llbolt = (uint32_t)ddi_get_lbolt();
16818 
16819 			U32_TO_BE32(llbolt,
16820 			    (char *)tcpha + TCP_MIN_HEADER_LENGTH+4);
16821 			U32_TO_BE32(tcp->tcp_ts_recent,
16822 			    (char *)tcpha + TCP_MIN_HEADER_LENGTH+8);
16823 		}
16824 
16825 		/* Update the latest receive window size in TCP header. */
16826 		tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
16827 		tcp->tcp_rack = ack;
16828 		tcp->tcp_rack_cnt = 0;
16829 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
16830 	}
16831 	BUMP_LOCAL(tcp->tcp_obsegs);
16832 	tcpha->tha_seq = htonl(seq);
16833 	tcpha->tha_ack = htonl(ack);
16834 	/*
16835 	 * Include the adjustment for a source route if any.
16836 	 */
16837 	sum = (sum >> 16) + (sum & 0xFFFF);
16838 	tcpha->tha_sum = htons(sum);
16839 	tcp_send_data(tcp, mp);
16840 }
16841 
16842 /*
16843  * If this routine returns B_TRUE, TCP can generate a RST in response
16844  * to a segment.  If it returns B_FALSE, TCP should not respond.
16845  */
16846 static boolean_t
16847 tcp_send_rst_chk(tcp_stack_t *tcps)
16848 {
16849 	clock_t	now;
16850 
16851 	/*
16852 	 * TCP needs to protect itself from generating too many RSTs.
16853 	 * This can be a DoS attack by sending us random segments
16854 	 * soliciting RSTs.
16855 	 *
16856 	 * What we do here is to have a limit of tcp_rst_sent_rate RSTs
16857 	 * in each 1 second interval.  In this way, TCP still generate
16858 	 * RSTs in normal cases but when under attack, the impact is
16859 	 * limited.
16860 	 */
16861 	if (tcps->tcps_rst_sent_rate_enabled != 0) {
16862 		now = ddi_get_lbolt();
16863 		/* lbolt can wrap around. */
16864 		if ((tcps->tcps_last_rst_intrvl > now) ||
16865 		    (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) >
16866 		    1*SECONDS)) {
16867 			tcps->tcps_last_rst_intrvl = now;
16868 			tcps->tcps_rst_cnt = 1;
16869 		} else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) {
16870 			return (B_FALSE);
16871 		}
16872 	}
16873 	return (B_TRUE);
16874 }
16875 
16876 /*
16877  * Generate a reset based on an inbound packet, connp is set by caller
16878  * when RST is in response to an unexpected inbound packet for which
16879  * there is active tcp state in the system.
16880  *
16881  * IPSEC NOTE : Try to send the reply with the same protection as it came
16882  * in.  We have the ip_recv_attr_t which is reversed to form the ip_xmit_attr_t.
16883  * That way the packet will go out at the same level of protection as it
16884  * came in with.
16885  */
16886 static void
16887 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, uint32_t ack, int ctl,
16888     ip_recv_attr_t *ira, ip_stack_t *ipst, conn_t *connp)
16889 {
16890 	ipha_t		*ipha = NULL;
16891 	ip6_t		*ip6h = NULL;
16892 	ushort_t	len;
16893 	tcpha_t		*tcpha;
16894 	int		i;
16895 	ipaddr_t	v4addr;
16896 	in6_addr_t	v6addr;
16897 	netstack_t	*ns = ipst->ips_netstack;
16898 	tcp_stack_t	*tcps = ns->netstack_tcp;
16899 	ip_xmit_attr_t	ixas, *ixa;
16900 	uint_t		ip_hdr_len = ira->ira_ip_hdr_length;
16901 	boolean_t	need_refrele = B_FALSE;		/* ixa_refrele(ixa) */
16902 	ushort_t	port;
16903 
16904 	if (!tcp_send_rst_chk(tcps)) {
16905 		tcps->tcps_rst_unsent++;
16906 		freemsg(mp);
16907 		return;
16908 	}
16909 
16910 	/*
16911 	 * If connp != NULL we use conn_ixa to keep IP_NEXTHOP and other
16912 	 * options from the listener. In that case the caller must ensure that
16913 	 * we are running on the listener = connp squeue.
16914 	 *
16915 	 * We get a safe copy of conn_ixa so we don't need to restore anything
16916 	 * we or ip_output_simple might change in the ixa.
16917 	 */
16918 	if (connp != NULL) {
16919 		ASSERT(connp->conn_on_sqp);
16920 
16921 		ixa = conn_get_ixa_exclusive(connp);
16922 		if (ixa == NULL) {
16923 			tcps->tcps_rst_unsent++;
16924 			freemsg(mp);
16925 			return;
16926 		}
16927 		need_refrele = B_TRUE;
16928 	} else {
16929 		bzero(&ixas, sizeof (ixas));
16930 		ixa = &ixas;
16931 		/*
16932 		 * IXAF_VERIFY_SOURCE is overkill since we know the
16933 		 * packet was for us.
16934 		 */
16935 		ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE;
16936 		ixa->ixa_protocol = IPPROTO_TCP;
16937 		ixa->ixa_zoneid = ira->ira_zoneid;
16938 		ixa->ixa_ifindex = 0;
16939 		ixa->ixa_ipst = ipst;
16940 		ixa->ixa_cred = kcred;
16941 		ixa->ixa_cpid = NOPID;
16942 	}
16943 
16944 	if (str && tcps->tcps_dbg) {
16945 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
16946 		    "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, "
16947 		    "flags 0x%x",
16948 		    str, seq, ack, ctl);
16949 	}
16950 	if (mp->b_datap->db_ref != 1) {
16951 		mblk_t *mp1 = copyb(mp);
16952 		freemsg(mp);
16953 		mp = mp1;
16954 		if (mp == NULL)
16955 			goto done;
16956 	} else if (mp->b_cont) {
16957 		freemsg(mp->b_cont);
16958 		mp->b_cont = NULL;
16959 		DB_CKSUMFLAGS(mp) = 0;
16960 	}
16961 	/*
16962 	 * We skip reversing source route here.
16963 	 * (for now we replace all IP options with EOL)
16964 	 */
16965 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
16966 		ipha = (ipha_t *)mp->b_rptr;
16967 		for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++)
16968 			mp->b_rptr[i] = IPOPT_EOL;
16969 		/*
16970 		 * Make sure that src address isn't flagrantly invalid.
16971 		 * Not all broadcast address checking for the src address
16972 		 * is possible, since we don't know the netmask of the src
16973 		 * addr.  No check for destination address is done, since
16974 		 * IP will not pass up a packet with a broadcast dest
16975 		 * address to TCP.  Similar checks are done below for IPv6.
16976 		 */
16977 		if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST ||
16978 		    CLASSD(ipha->ipha_src)) {
16979 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
16980 			ip_drop_input("ipIfStatsInDiscards", mp, NULL);
16981 			freemsg(mp);
16982 			goto done;
16983 		}
16984 	} else {
16985 		ip6h = (ip6_t *)mp->b_rptr;
16986 
16987 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) ||
16988 		    IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) {
16989 			BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards);
16990 			ip_drop_input("ipIfStatsInDiscards", mp, NULL);
16991 			freemsg(mp);
16992 			goto done;
16993 		}
16994 
16995 		/* Remove any extension headers assuming partial overlay */
16996 		if (ip_hdr_len > IPV6_HDR_LEN) {
16997 			uint8_t *to;
16998 
16999 			to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN;
17000 			ovbcopy(ip6h, to, IPV6_HDR_LEN);
17001 			mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN;
17002 			ip_hdr_len = IPV6_HDR_LEN;
17003 			ip6h = (ip6_t *)mp->b_rptr;
17004 			ip6h->ip6_nxt = IPPROTO_TCP;
17005 		}
17006 	}
17007 	tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len];
17008 	if (tcpha->tha_flags & TH_RST) {
17009 		freemsg(mp);
17010 		goto done;
17011 	}
17012 	tcpha->tha_offset_and_reserved = (5 << 4);
17013 	len = ip_hdr_len + sizeof (tcpha_t);
17014 	mp->b_wptr = &mp->b_rptr[len];
17015 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
17016 		ipha->ipha_length = htons(len);
17017 		/* Swap addresses */
17018 		v4addr = ipha->ipha_src;
17019 		ipha->ipha_src = ipha->ipha_dst;
17020 		ipha->ipha_dst = v4addr;
17021 		ipha->ipha_ident = 0;
17022 		ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
17023 		ixa->ixa_flags |= IXAF_IS_IPV4;
17024 		ixa->ixa_ip_hdr_length = ip_hdr_len;
17025 	} else {
17026 		ip6h->ip6_plen = htons(len - IPV6_HDR_LEN);
17027 		/* Swap addresses */
17028 		v6addr = ip6h->ip6_src;
17029 		ip6h->ip6_src = ip6h->ip6_dst;
17030 		ip6h->ip6_dst = v6addr;
17031 		ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit;
17032 		ixa->ixa_flags &= ~IXAF_IS_IPV4;
17033 
17034 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_dst)) {
17035 			ixa->ixa_flags |= IXAF_SCOPEID_SET;
17036 			ixa->ixa_scopeid = ira->ira_ruifindex;
17037 		}
17038 		ixa->ixa_ip_hdr_length = IPV6_HDR_LEN;
17039 	}
17040 	ixa->ixa_pktlen = len;
17041 
17042 	/* Swap the ports */
17043 	port = tcpha->tha_fport;
17044 	tcpha->tha_fport = tcpha->tha_lport;
17045 	tcpha->tha_lport = port;
17046 
17047 	tcpha->tha_ack = htonl(ack);
17048 	tcpha->tha_seq = htonl(seq);
17049 	tcpha->tha_win = 0;
17050 	tcpha->tha_sum = htons(sizeof (tcpha_t));
17051 	tcpha->tha_flags = (uint8_t)ctl;
17052 	if (ctl & TH_RST) {
17053 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
17054 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
17055 	}
17056 
17057 	/* Discard any old label */
17058 	if (ixa->ixa_free_flags & IXA_FREE_TSL) {
17059 		ASSERT(ixa->ixa_tsl != NULL);
17060 		label_rele(ixa->ixa_tsl);
17061 		ixa->ixa_free_flags &= ~IXA_FREE_TSL;
17062 	}
17063 	ixa->ixa_tsl = ira->ira_tsl;	/* Behave as a multi-level responder */
17064 
17065 	if (ira->ira_flags & IRAF_IPSEC_SECURE) {
17066 		/*
17067 		 * Apply IPsec based on how IPsec was applied to
17068 		 * the packet that caused the RST.
17069 		 */
17070 		if (!ipsec_in_to_out(ira, ixa, mp, ipha, ip6h)) {
17071 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
17072 			/* Note: mp already consumed and ip_drop_packet done */
17073 			goto done;
17074 		}
17075 	} else {
17076 		/*
17077 		 * This is in clear. The RST message we are building
17078 		 * here should go out in clear, independent of our policy.
17079 		 */
17080 		ixa->ixa_flags |= IXAF_NO_IPSEC;
17081 	}
17082 
17083 	/*
17084 	 * NOTE:  one might consider tracing a TCP packet here, but
17085 	 * this function has no active TCP state and no tcp structure
17086 	 * that has a trace buffer.  If we traced here, we would have
17087 	 * to keep a local trace buffer in tcp_record_trace().
17088 	 */
17089 
17090 	(void) ip_output_simple(mp, ixa);
17091 done:
17092 	ixa_cleanup(ixa);
17093 	if (need_refrele) {
17094 		ASSERT(ixa != &ixas);
17095 		ixa_refrele(ixa);
17096 	}
17097 }
17098 
17099 /*
17100  * Initiate closedown sequence on an active connection.  (May be called as
17101  * writer.)  Return value zero for OK return, non-zero for error return.
17102  */
17103 static int
17104 tcp_xmit_end(tcp_t *tcp)
17105 {
17106 	mblk_t		*mp;
17107 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17108 	iulp_t		uinfo;
17109 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
17110 	conn_t		*connp = tcp->tcp_connp;
17111 
17112 	if (tcp->tcp_state < TCPS_SYN_RCVD ||
17113 	    tcp->tcp_state > TCPS_CLOSE_WAIT) {
17114 		/*
17115 		 * Invalid state, only states TCPS_SYN_RCVD,
17116 		 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid
17117 		 */
17118 		return (-1);
17119 	}
17120 
17121 	tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent;
17122 	tcp->tcp_valid_bits |= TCP_FSS_VALID;
17123 	/*
17124 	 * If there is nothing more unsent, send the FIN now.
17125 	 * Otherwise, it will go out with the last segment.
17126 	 */
17127 	if (tcp->tcp_unsent == 0) {
17128 		mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
17129 		    tcp->tcp_fss, B_FALSE, NULL, B_FALSE);
17130 
17131 		if (mp) {
17132 			tcp_send_data(tcp, mp);
17133 		} else {
17134 			/*
17135 			 * Couldn't allocate msg.  Pretend we got it out.
17136 			 * Wait for rexmit timeout.
17137 			 */
17138 			tcp->tcp_snxt = tcp->tcp_fss + 1;
17139 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
17140 		}
17141 
17142 		/*
17143 		 * If needed, update tcp_rexmit_snxt as tcp_snxt is
17144 		 * changed.
17145 		 */
17146 		if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) {
17147 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
17148 		}
17149 	} else {
17150 		/*
17151 		 * If tcp->tcp_cork is set, then the data will not get sent,
17152 		 * so we have to check that and unset it first.
17153 		 */
17154 		if (tcp->tcp_cork)
17155 			tcp->tcp_cork = B_FALSE;
17156 		tcp_wput_data(tcp, NULL, B_FALSE);
17157 	}
17158 
17159 	/*
17160 	 * If TCP does not get enough samples of RTT or tcp_rtt_updates
17161 	 * is 0, don't update the cache.
17162 	 */
17163 	if (tcps->tcps_rtt_updates == 0 ||
17164 	    tcp->tcp_rtt_update < tcps->tcps_rtt_updates)
17165 		return (0);
17166 
17167 	/*
17168 	 * We do not have a good algorithm to update ssthresh at this time.
17169 	 * So don't do any update.
17170 	 */
17171 	bzero(&uinfo, sizeof (uinfo));
17172 	uinfo.iulp_rtt = tcp->tcp_rtt_sa;
17173 	uinfo.iulp_rtt_sd = tcp->tcp_rtt_sd;
17174 
17175 	/*
17176 	 * Note that uinfo is kept for conn_faddr in the DCE. Could update even
17177 	 * if source routed but we don't.
17178 	 */
17179 	if (connp->conn_ipversion == IPV4_VERSION) {
17180 		if (connp->conn_faddr_v4 !=  tcp->tcp_ipha->ipha_dst) {
17181 			return (0);
17182 		}
17183 		(void) dce_update_uinfo_v4(connp->conn_faddr_v4, &uinfo, ipst);
17184 	} else {
17185 		uint_t ifindex;
17186 
17187 		if (!(IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6,
17188 		    &tcp->tcp_ip6h->ip6_dst))) {
17189 			return (0);
17190 		}
17191 		ifindex = 0;
17192 		if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_faddr_v6)) {
17193 			ip_xmit_attr_t *ixa = connp->conn_ixa;
17194 
17195 			/*
17196 			 * If we are going to create a DCE we'd better have
17197 			 * an ifindex
17198 			 */
17199 			if (ixa->ixa_nce != NULL) {
17200 				ifindex = ixa->ixa_nce->nce_common->ncec_ill->
17201 				    ill_phyint->phyint_ifindex;
17202 			} else {
17203 				return (0);
17204 			}
17205 		}
17206 
17207 		(void) dce_update_uinfo(&connp->conn_faddr_v6, ifindex, &uinfo,
17208 		    ipst);
17209 	}
17210 	return (0);
17211 }
17212 
17213 /*
17214  * Generate a "no listener here" RST in response to an "unknown" segment.
17215  * connp is set by caller when RST is in response to an unexpected
17216  * inbound packet for which there is active tcp state in the system.
17217  * Note that we are reusing the incoming mp to construct the outgoing RST.
17218  */
17219 void
17220 tcp_xmit_listeners_reset(mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst,
17221     conn_t *connp)
17222 {
17223 	uchar_t		*rptr;
17224 	uint32_t	seg_len;
17225 	tcpha_t		*tcpha;
17226 	uint32_t	seg_seq;
17227 	uint32_t	seg_ack;
17228 	uint_t		flags;
17229 	ipha_t 		*ipha;
17230 	ip6_t 		*ip6h;
17231 	boolean_t	policy_present;
17232 	netstack_t	*ns = ipst->ips_netstack;
17233 	tcp_stack_t	*tcps = ns->netstack_tcp;
17234 	ipsec_stack_t	*ipss = tcps->tcps_netstack->netstack_ipsec;
17235 	uint_t		ip_hdr_len = ira->ira_ip_hdr_length;
17236 
17237 	TCP_STAT(tcps, tcp_no_listener);
17238 
17239 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
17240 		policy_present = ipss->ipsec_inbound_v4_policy_present;
17241 		ipha = (ipha_t *)mp->b_rptr;
17242 		ip6h = NULL;
17243 	} else {
17244 		policy_present = ipss->ipsec_inbound_v6_policy_present;
17245 		ipha = NULL;
17246 		ip6h = (ip6_t *)mp->b_rptr;
17247 	}
17248 
17249 	if (policy_present) {
17250 		/*
17251 		 * The conn_t parameter is NULL because we already know
17252 		 * nobody's home.
17253 		 */
17254 		mp = ipsec_check_global_policy(mp, (conn_t *)NULL, ipha, ip6h,
17255 		    ira, ns);
17256 		if (mp == NULL)
17257 			return;
17258 	}
17259 	if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) {
17260 		DTRACE_PROBE2(
17261 		    tx__ip__log__error__nolistener__tcp,
17262 		    char *, "Could not reply with RST to mp(1)",
17263 		    mblk_t *, mp);
17264 		ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n"));
17265 		freemsg(mp);
17266 		return;
17267 	}
17268 
17269 	rptr = mp->b_rptr;
17270 
17271 	tcpha = (tcpha_t *)&rptr[ip_hdr_len];
17272 	seg_seq = ntohl(tcpha->tha_seq);
17273 	seg_ack = ntohl(tcpha->tha_ack);
17274 	flags = tcpha->tha_flags;
17275 
17276 	seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcpha) + ip_hdr_len);
17277 	if (flags & TH_RST) {
17278 		freemsg(mp);
17279 	} else if (flags & TH_ACK) {
17280 		tcp_xmit_early_reset("no tcp, reset", mp, seg_ack, 0, TH_RST,
17281 		    ira, ipst, connp);
17282 	} else {
17283 		if (flags & TH_SYN) {
17284 			seg_len++;
17285 		} else {
17286 			/*
17287 			 * Here we violate the RFC.  Note that a normal
17288 			 * TCP will never send a segment without the ACK
17289 			 * flag, except for RST or SYN segment.  This
17290 			 * segment is neither.  Just drop it on the
17291 			 * floor.
17292 			 */
17293 			freemsg(mp);
17294 			tcps->tcps_rst_unsent++;
17295 			return;
17296 		}
17297 
17298 		tcp_xmit_early_reset("no tcp, reset/ack", mp, 0,
17299 		    seg_seq + seg_len, TH_RST | TH_ACK, ira, ipst, connp);
17300 	}
17301 }
17302 
17303 /*
17304  * tcp_xmit_mp is called to return a pointer to an mblk chain complete with
17305  * ip and tcp header ready to pass down to IP.  If the mp passed in is
17306  * non-NULL, then up to max_to_send bytes of data will be dup'ed off that
17307  * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary
17308  * otherwise it will dup partial mblks.)
17309  * Otherwise, an appropriate ACK packet will be generated.  This
17310  * routine is not usually called to send new data for the first time.  It
17311  * is mostly called out of the timer for retransmits, and to generate ACKs.
17312  *
17313  * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will
17314  * be adjusted by *offset.  And after dupb(), the offset and the ending mblk
17315  * of the original mblk chain will be returned in *offset and *end_mp.
17316  */
17317 mblk_t *
17318 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset,
17319     mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len,
17320     boolean_t rexmit)
17321 {
17322 	int	data_length;
17323 	int32_t	off = 0;
17324 	uint_t	flags;
17325 	mblk_t	*mp1;
17326 	mblk_t	*mp2;
17327 	uchar_t	*rptr;
17328 	tcpha_t	*tcpha;
17329 	int32_t	num_sack_blk = 0;
17330 	int32_t	sack_opt_len = 0;
17331 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17332 	conn_t		*connp = tcp->tcp_connp;
17333 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
17334 
17335 	/* Allocate for our maximum TCP header + link-level */
17336 	mp1 = allocb(connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra,
17337 	    BPRI_MED);
17338 	if (!mp1)
17339 		return (NULL);
17340 	data_length = 0;
17341 
17342 	/*
17343 	 * Note that tcp_mss has been adjusted to take into account the
17344 	 * timestamp option if applicable.  Because SACK options do not
17345 	 * appear in every TCP segments and they are of variable lengths,
17346 	 * they cannot be included in tcp_mss.  Thus we need to calculate
17347 	 * the actual segment length when we need to send a segment which
17348 	 * includes SACK options.
17349 	 */
17350 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
17351 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
17352 		    tcp->tcp_num_sack_blk);
17353 		sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
17354 		    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
17355 		if (max_to_send + sack_opt_len > tcp->tcp_mss)
17356 			max_to_send -= sack_opt_len;
17357 	}
17358 
17359 	if (offset != NULL) {
17360 		off = *offset;
17361 		/* We use offset as an indicator that end_mp is not NULL. */
17362 		*end_mp = NULL;
17363 	}
17364 	for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) {
17365 		/* This could be faster with cooperation from downstream */
17366 		if (mp2 != mp1 && !sendall &&
17367 		    data_length + (int)(mp->b_wptr - mp->b_rptr) >
17368 		    max_to_send)
17369 			/*
17370 			 * Don't send the next mblk since the whole mblk
17371 			 * does not fit.
17372 			 */
17373 			break;
17374 		mp2->b_cont = dupb(mp);
17375 		mp2 = mp2->b_cont;
17376 		if (!mp2) {
17377 			freemsg(mp1);
17378 			return (NULL);
17379 		}
17380 		mp2->b_rptr += off;
17381 		ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
17382 		    (uintptr_t)INT_MAX);
17383 
17384 		data_length += (int)(mp2->b_wptr - mp2->b_rptr);
17385 		if (data_length > max_to_send) {
17386 			mp2->b_wptr -= data_length - max_to_send;
17387 			data_length = max_to_send;
17388 			off = mp2->b_wptr - mp->b_rptr;
17389 			break;
17390 		} else {
17391 			off = 0;
17392 		}
17393 	}
17394 	if (offset != NULL) {
17395 		*offset = off;
17396 		*end_mp = mp;
17397 	}
17398 	if (seg_len != NULL) {
17399 		*seg_len = data_length;
17400 	}
17401 
17402 	/* Update the latest receive window size in TCP header. */
17403 	tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
17404 
17405 	rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
17406 	mp1->b_rptr = rptr;
17407 	mp1->b_wptr = rptr + connp->conn_ht_iphc_len + sack_opt_len;
17408 	bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len);
17409 	tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length];
17410 	tcpha->tha_seq = htonl(seq);
17411 
17412 	/*
17413 	 * Use tcp_unsent to determine if the PUSH bit should be used assumes
17414 	 * that this function was called from tcp_wput_data. Thus, when called
17415 	 * to retransmit data the setting of the PUSH bit may appear some
17416 	 * what random in that it might get set when it should not. This
17417 	 * should not pose any performance issues.
17418 	 */
17419 	if (data_length != 0 && (tcp->tcp_unsent == 0 ||
17420 	    tcp->tcp_unsent == data_length)) {
17421 		flags = TH_ACK | TH_PUSH;
17422 	} else {
17423 		flags = TH_ACK;
17424 	}
17425 
17426 	if (tcp->tcp_ecn_ok) {
17427 		if (tcp->tcp_ecn_echo_on)
17428 			flags |= TH_ECE;
17429 
17430 		/*
17431 		 * Only set ECT bit and ECN_CWR if a segment contains new data.
17432 		 * There is no TCP flow control for non-data segments, and
17433 		 * only data segment is transmitted reliably.
17434 		 */
17435 		if (data_length > 0 && !rexmit) {
17436 			SET_ECT(tcp, rptr);
17437 			if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
17438 				flags |= TH_CWR;
17439 				tcp->tcp_ecn_cwr_sent = B_TRUE;
17440 			}
17441 		}
17442 	}
17443 
17444 	if (tcp->tcp_valid_bits) {
17445 		uint32_t u1;
17446 
17447 		if ((tcp->tcp_valid_bits & TCP_ISS_VALID) &&
17448 		    seq == tcp->tcp_iss) {
17449 			uchar_t	*wptr;
17450 
17451 			/*
17452 			 * If TCP_ISS_VALID and the seq number is tcp_iss,
17453 			 * TCP can only be in SYN-SENT, SYN-RCVD or
17454 			 * FIN-WAIT-1 state.  It can be FIN-WAIT-1 if
17455 			 * our SYN is not ack'ed but the app closes this
17456 			 * TCP connection.
17457 			 */
17458 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT ||
17459 			    tcp->tcp_state == TCPS_SYN_RCVD ||
17460 			    tcp->tcp_state == TCPS_FIN_WAIT_1);
17461 
17462 			/*
17463 			 * Tack on the MSS option.  It is always needed
17464 			 * for both active and passive open.
17465 			 *
17466 			 * MSS option value should be interface MTU - MIN
17467 			 * TCP/IP header according to RFC 793 as it means
17468 			 * the maximum segment size TCP can receive.  But
17469 			 * to get around some broken middle boxes/end hosts
17470 			 * out there, we allow the option value to be the
17471 			 * same as the MSS option size on the peer side.
17472 			 * In this way, the other side will not send
17473 			 * anything larger than they can receive.
17474 			 *
17475 			 * Note that for SYN_SENT state, the ndd param
17476 			 * tcp_use_smss_as_mss_opt has no effect as we
17477 			 * don't know the peer's MSS option value. So
17478 			 * the only case we need to take care of is in
17479 			 * SYN_RCVD state, which is done later.
17480 			 */
17481 			wptr = mp1->b_wptr;
17482 			wptr[0] = TCPOPT_MAXSEG;
17483 			wptr[1] = TCPOPT_MAXSEG_LEN;
17484 			wptr += 2;
17485 			u1 = tcp->tcp_initial_pmtu -
17486 			    (connp->conn_ipversion == IPV4_VERSION ?
17487 			    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) -
17488 			    TCP_MIN_HEADER_LENGTH;
17489 			U16_TO_BE16(u1, wptr);
17490 			mp1->b_wptr = wptr + 2;
17491 			/* Update the offset to cover the additional word */
17492 			tcpha->tha_offset_and_reserved += (1 << 4);
17493 
17494 			/*
17495 			 * Note that the following way of filling in
17496 			 * TCP options are not optimal.  Some NOPs can
17497 			 * be saved.  But there is no need at this time
17498 			 * to optimize it.  When it is needed, we will
17499 			 * do it.
17500 			 */
17501 			switch (tcp->tcp_state) {
17502 			case TCPS_SYN_SENT:
17503 				flags = TH_SYN;
17504 
17505 				if (tcp->tcp_snd_ts_ok) {
17506 					uint32_t llbolt =
17507 					    (uint32_t)ddi_get_lbolt();
17508 
17509 					wptr = mp1->b_wptr;
17510 					wptr[0] = TCPOPT_NOP;
17511 					wptr[1] = TCPOPT_NOP;
17512 					wptr[2] = TCPOPT_TSTAMP;
17513 					wptr[3] = TCPOPT_TSTAMP_LEN;
17514 					wptr += 4;
17515 					U32_TO_BE32(llbolt, wptr);
17516 					wptr += 4;
17517 					ASSERT(tcp->tcp_ts_recent == 0);
17518 					U32_TO_BE32(0L, wptr);
17519 					mp1->b_wptr += TCPOPT_REAL_TS_LEN;
17520 					tcpha->tha_offset_and_reserved +=
17521 					    (3 << 4);
17522 				}
17523 
17524 				/*
17525 				 * Set up all the bits to tell other side
17526 				 * we are ECN capable.
17527 				 */
17528 				if (tcp->tcp_ecn_ok) {
17529 					flags |= (TH_ECE | TH_CWR);
17530 				}
17531 				break;
17532 			case TCPS_SYN_RCVD:
17533 				flags |= TH_SYN;
17534 
17535 				/*
17536 				 * Reset the MSS option value to be SMSS
17537 				 * We should probably add back the bytes
17538 				 * for timestamp option and IPsec.  We
17539 				 * don't do that as this is a workaround
17540 				 * for broken middle boxes/end hosts, it
17541 				 * is better for us to be more cautious.
17542 				 * They may not take these things into
17543 				 * account in their SMSS calculation.  Thus
17544 				 * the peer's calculated SMSS may be smaller
17545 				 * than what it can be.  This should be OK.
17546 				 */
17547 				if (tcps->tcps_use_smss_as_mss_opt) {
17548 					u1 = tcp->tcp_mss;
17549 					U16_TO_BE16(u1, wptr);
17550 				}
17551 
17552 				/*
17553 				 * If the other side is ECN capable, reply
17554 				 * that we are also ECN capable.
17555 				 */
17556 				if (tcp->tcp_ecn_ok)
17557 					flags |= TH_ECE;
17558 				break;
17559 			default:
17560 				/*
17561 				 * The above ASSERT() makes sure that this
17562 				 * must be FIN-WAIT-1 state.  Our SYN has
17563 				 * not been ack'ed so retransmit it.
17564 				 */
17565 				flags |= TH_SYN;
17566 				break;
17567 			}
17568 
17569 			if (tcp->tcp_snd_ws_ok) {
17570 				wptr = mp1->b_wptr;
17571 				wptr[0] =  TCPOPT_NOP;
17572 				wptr[1] =  TCPOPT_WSCALE;
17573 				wptr[2] =  TCPOPT_WS_LEN;
17574 				wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
17575 				mp1->b_wptr += TCPOPT_REAL_WS_LEN;
17576 				tcpha->tha_offset_and_reserved += (1 << 4);
17577 			}
17578 
17579 			if (tcp->tcp_snd_sack_ok) {
17580 				wptr = mp1->b_wptr;
17581 				wptr[0] = TCPOPT_NOP;
17582 				wptr[1] = TCPOPT_NOP;
17583 				wptr[2] = TCPOPT_SACK_PERMITTED;
17584 				wptr[3] = TCPOPT_SACK_OK_LEN;
17585 				mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
17586 				tcpha->tha_offset_and_reserved += (1 << 4);
17587 			}
17588 
17589 			/* allocb() of adequate mblk assures space */
17590 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
17591 			    (uintptr_t)INT_MAX);
17592 			u1 = (int)(mp1->b_wptr - mp1->b_rptr);
17593 			/*
17594 			 * Get IP set to checksum on our behalf
17595 			 * Include the adjustment for a source route if any.
17596 			 */
17597 			u1 += connp->conn_sum;
17598 			u1 = (u1 >> 16) + (u1 & 0xFFFF);
17599 			tcpha->tha_sum = htons(u1);
17600 			BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
17601 		}
17602 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17603 		    (seq + data_length) == tcp->tcp_fss) {
17604 			if (!tcp->tcp_fin_acked) {
17605 				flags |= TH_FIN;
17606 				BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
17607 			}
17608 			if (!tcp->tcp_fin_sent) {
17609 				tcp->tcp_fin_sent = B_TRUE;
17610 				switch (tcp->tcp_state) {
17611 				case TCPS_SYN_RCVD:
17612 				case TCPS_ESTABLISHED:
17613 					tcp->tcp_state = TCPS_FIN_WAIT_1;
17614 					break;
17615 				case TCPS_CLOSE_WAIT:
17616 					tcp->tcp_state = TCPS_LAST_ACK;
17617 					break;
17618 				}
17619 				if (tcp->tcp_suna == tcp->tcp_snxt)
17620 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
17621 				tcp->tcp_snxt = tcp->tcp_fss + 1;
17622 			}
17623 		}
17624 		/*
17625 		 * Note the trick here.  u1 is unsigned.  When tcp_urg
17626 		 * is smaller than seq, u1 will become a very huge value.
17627 		 * So the comparison will fail.  Also note that tcp_urp
17628 		 * should be positive, see RFC 793 page 17.
17629 		 */
17630 		u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION;
17631 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 &&
17632 		    u1 < (uint32_t)(64 * 1024)) {
17633 			flags |= TH_URG;
17634 			BUMP_MIB(&tcps->tcps_mib, tcpOutUrg);
17635 			tcpha->tha_urp = htons(u1);
17636 		}
17637 	}
17638 	tcpha->tha_flags = (uchar_t)flags;
17639 	tcp->tcp_rack = tcp->tcp_rnxt;
17640 	tcp->tcp_rack_cnt = 0;
17641 
17642 	if (tcp->tcp_snd_ts_ok) {
17643 		if (tcp->tcp_state != TCPS_SYN_SENT) {
17644 			uint32_t llbolt = (uint32_t)ddi_get_lbolt();
17645 
17646 			U32_TO_BE32(llbolt,
17647 			    (char *)tcpha + TCP_MIN_HEADER_LENGTH+4);
17648 			U32_TO_BE32(tcp->tcp_ts_recent,
17649 			    (char *)tcpha + TCP_MIN_HEADER_LENGTH+8);
17650 		}
17651 	}
17652 
17653 	if (num_sack_blk > 0) {
17654 		uchar_t *wptr = (uchar_t *)tcpha + connp->conn_ht_ulp_len;
17655 		sack_blk_t *tmp;
17656 		int32_t	i;
17657 
17658 		wptr[0] = TCPOPT_NOP;
17659 		wptr[1] = TCPOPT_NOP;
17660 		wptr[2] = TCPOPT_SACK;
17661 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
17662 		    sizeof (sack_blk_t);
17663 		wptr += TCPOPT_REAL_SACK_LEN;
17664 
17665 		tmp = tcp->tcp_sack_list;
17666 		for (i = 0; i < num_sack_blk; i++) {
17667 			U32_TO_BE32(tmp[i].begin, wptr);
17668 			wptr += sizeof (tcp_seq);
17669 			U32_TO_BE32(tmp[i].end, wptr);
17670 			wptr += sizeof (tcp_seq);
17671 		}
17672 		tcpha->tha_offset_and_reserved += ((num_sack_blk * 2 + 1) << 4);
17673 	}
17674 	ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX);
17675 	data_length += (int)(mp1->b_wptr - rptr);
17676 
17677 	ixa->ixa_pktlen = data_length;
17678 
17679 	if (ixa->ixa_flags & IXAF_IS_IPV4) {
17680 		((ipha_t *)rptr)->ipha_length = htons(data_length);
17681 	} else {
17682 		ip6_t *ip6 = (ip6_t *)rptr;
17683 
17684 		ip6->ip6_plen = htons(data_length - IPV6_HDR_LEN);
17685 	}
17686 
17687 	/*
17688 	 * Prime pump for IP
17689 	 * Include the adjustment for a source route if any.
17690 	 */
17691 	data_length -= ixa->ixa_ip_hdr_length;
17692 	data_length += connp->conn_sum;
17693 	data_length = (data_length >> 16) + (data_length & 0xFFFF);
17694 	tcpha->tha_sum = htons(data_length);
17695 	if (tcp->tcp_ip_forward_progress) {
17696 		tcp->tcp_ip_forward_progress = B_FALSE;
17697 		connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF;
17698 	} else {
17699 		connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF;
17700 	}
17701 	return (mp1);
17702 }
17703 
17704 /* This function handles the push timeout. */
17705 void
17706 tcp_push_timer(void *arg)
17707 {
17708 	conn_t	*connp = (conn_t *)arg;
17709 	tcp_t *tcp = connp->conn_tcp;
17710 
17711 	TCP_DBGSTAT(tcp->tcp_tcps, tcp_push_timer_cnt);
17712 
17713 	ASSERT(tcp->tcp_listener == NULL);
17714 
17715 	ASSERT(!IPCL_IS_NONSTR(connp));
17716 
17717 	tcp->tcp_push_tid = 0;
17718 
17719 	if (tcp->tcp_rcv_list != NULL &&
17720 	    tcp_rcv_drain(tcp) == TH_ACK_NEEDED)
17721 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
17722 }
17723 
17724 /*
17725  * This function handles delayed ACK timeout.
17726  */
17727 static void
17728 tcp_ack_timer(void *arg)
17729 {
17730 	conn_t	*connp = (conn_t *)arg;
17731 	tcp_t *tcp = connp->conn_tcp;
17732 	mblk_t *mp;
17733 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17734 
17735 	TCP_DBGSTAT(tcps, tcp_ack_timer_cnt);
17736 
17737 	tcp->tcp_ack_tid = 0;
17738 
17739 	if (tcp->tcp_fused)
17740 		return;
17741 
17742 	/*
17743 	 * Do not send ACK if there is no outstanding unack'ed data.
17744 	 */
17745 	if (tcp->tcp_rnxt == tcp->tcp_rack) {
17746 		return;
17747 	}
17748 
17749 	if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) {
17750 		/*
17751 		 * Make sure we don't allow deferred ACKs to result in
17752 		 * timer-based ACKing.  If we have held off an ACK
17753 		 * when there was more than an mss here, and the timer
17754 		 * goes off, we have to worry about the possibility
17755 		 * that the sender isn't doing slow-start, or is out
17756 		 * of step with us for some other reason.  We fall
17757 		 * permanently back in the direction of
17758 		 * ACK-every-other-packet as suggested in RFC 1122.
17759 		 */
17760 		if (tcp->tcp_rack_abs_max > 2)
17761 			tcp->tcp_rack_abs_max--;
17762 		tcp->tcp_rack_cur_max = 2;
17763 	}
17764 	mp = tcp_ack_mp(tcp);
17765 
17766 	if (mp != NULL) {
17767 		BUMP_LOCAL(tcp->tcp_obsegs);
17768 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
17769 		BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed);
17770 		tcp_send_data(tcp, mp);
17771 	}
17772 }
17773 
17774 
17775 /* Generate an ACK-only (no data) segment for a TCP endpoint */
17776 static mblk_t *
17777 tcp_ack_mp(tcp_t *tcp)
17778 {
17779 	uint32_t	seq_no;
17780 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17781 	conn_t		*connp = tcp->tcp_connp;
17782 
17783 	/*
17784 	 * There are a few cases to be considered while setting the sequence no.
17785 	 * Essentially, we can come here while processing an unacceptable pkt
17786 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
17787 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
17788 	 * If we are here for a zero window probe, stick with suna. In all
17789 	 * other cases, we check if suna + swnd encompasses snxt and set
17790 	 * the sequence number to snxt, if so. If snxt falls outside the
17791 	 * window (the receiver probably shrunk its window), we will go with
17792 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
17793 	 * receiver.
17794 	 */
17795 	if (tcp->tcp_zero_win_probe) {
17796 		seq_no = tcp->tcp_suna;
17797 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
17798 		ASSERT(tcp->tcp_swnd == 0);
17799 		seq_no = tcp->tcp_snxt;
17800 	} else {
17801 		seq_no = SEQ_GT(tcp->tcp_snxt,
17802 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
17803 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
17804 	}
17805 
17806 	if (tcp->tcp_valid_bits) {
17807 		/*
17808 		 * For the complex case where we have to send some
17809 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
17810 		 */
17811 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
17812 		    NULL, B_FALSE));
17813 	} else {
17814 		/* Generate a simple ACK */
17815 		int	data_length;
17816 		uchar_t	*rptr;
17817 		tcpha_t	*tcpha;
17818 		mblk_t	*mp1;
17819 		int32_t	total_hdr_len;
17820 		int32_t	tcp_hdr_len;
17821 		int32_t	num_sack_blk = 0;
17822 		int32_t sack_opt_len;
17823 		ip_xmit_attr_t *ixa = connp->conn_ixa;
17824 
17825 		/*
17826 		 * Allocate space for TCP + IP headers
17827 		 * and link-level header
17828 		 */
17829 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
17830 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
17831 			    tcp->tcp_num_sack_blk);
17832 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
17833 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
17834 			total_hdr_len = connp->conn_ht_iphc_len + sack_opt_len;
17835 			tcp_hdr_len = connp->conn_ht_ulp_len + sack_opt_len;
17836 		} else {
17837 			total_hdr_len = connp->conn_ht_iphc_len;
17838 			tcp_hdr_len = connp->conn_ht_ulp_len;
17839 		}
17840 		mp1 = allocb(total_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED);
17841 		if (!mp1)
17842 			return (NULL);
17843 
17844 		/* Update the latest receive window size in TCP header. */
17845 		tcp->tcp_tcpha->tha_win =
17846 		    htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
17847 		/* copy in prototype TCP + IP header */
17848 		rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
17849 		mp1->b_rptr = rptr;
17850 		mp1->b_wptr = rptr + total_hdr_len;
17851 		bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len);
17852 
17853 		tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length];
17854 
17855 		/* Set the TCP sequence number. */
17856 		tcpha->tha_seq = htonl(seq_no);
17857 
17858 		/* Set up the TCP flag field. */
17859 		tcpha->tha_flags = (uchar_t)TH_ACK;
17860 		if (tcp->tcp_ecn_echo_on)
17861 			tcpha->tha_flags |= TH_ECE;
17862 
17863 		tcp->tcp_rack = tcp->tcp_rnxt;
17864 		tcp->tcp_rack_cnt = 0;
17865 
17866 		/* fill in timestamp option if in use */
17867 		if (tcp->tcp_snd_ts_ok) {
17868 			uint32_t llbolt = (uint32_t)LBOLT_FASTPATH;
17869 
17870 			U32_TO_BE32(llbolt,
17871 			    (char *)tcpha + TCP_MIN_HEADER_LENGTH+4);
17872 			U32_TO_BE32(tcp->tcp_ts_recent,
17873 			    (char *)tcpha + TCP_MIN_HEADER_LENGTH+8);
17874 		}
17875 
17876 		/* Fill in SACK options */
17877 		if (num_sack_blk > 0) {
17878 			uchar_t *wptr = (uchar_t *)tcpha +
17879 			    connp->conn_ht_ulp_len;
17880 			sack_blk_t *tmp;
17881 			int32_t	i;
17882 
17883 			wptr[0] = TCPOPT_NOP;
17884 			wptr[1] = TCPOPT_NOP;
17885 			wptr[2] = TCPOPT_SACK;
17886 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
17887 			    sizeof (sack_blk_t);
17888 			wptr += TCPOPT_REAL_SACK_LEN;
17889 
17890 			tmp = tcp->tcp_sack_list;
17891 			for (i = 0; i < num_sack_blk; i++) {
17892 				U32_TO_BE32(tmp[i].begin, wptr);
17893 				wptr += sizeof (tcp_seq);
17894 				U32_TO_BE32(tmp[i].end, wptr);
17895 				wptr += sizeof (tcp_seq);
17896 			}
17897 			tcpha->tha_offset_and_reserved +=
17898 			    ((num_sack_blk * 2 + 1) << 4);
17899 		}
17900 
17901 		ixa->ixa_pktlen = total_hdr_len;
17902 
17903 		if (ixa->ixa_flags & IXAF_IS_IPV4) {
17904 			((ipha_t *)rptr)->ipha_length = htons(total_hdr_len);
17905 		} else {
17906 			ip6_t *ip6 = (ip6_t *)rptr;
17907 
17908 			ip6->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN);
17909 		}
17910 
17911 		/*
17912 		 * Prime pump for checksum calculation in IP.  Include the
17913 		 * adjustment for a source route if any.
17914 		 */
17915 		data_length = tcp_hdr_len + connp->conn_sum;
17916 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
17917 		tcpha->tha_sum = htons(data_length);
17918 
17919 		if (tcp->tcp_ip_forward_progress) {
17920 			tcp->tcp_ip_forward_progress = B_FALSE;
17921 			connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF;
17922 		} else {
17923 			connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF;
17924 		}
17925 		return (mp1);
17926 	}
17927 }
17928 
17929 /*
17930  * Hash list insertion routine for tcp_t structures. Each hash bucket
17931  * contains a list of tcp_t entries, and each entry is bound to a unique
17932  * port. If there are multiple tcp_t's that are bound to the same port, then
17933  * one of them will be linked into the hash bucket list, and the rest will
17934  * hang off of that one entry. For each port, entries bound to a specific IP
17935  * address will be inserted before those those bound to INADDR_ANY.
17936  */
17937 static void
17938 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock)
17939 {
17940 	tcp_t	**tcpp;
17941 	tcp_t	*tcpnext;
17942 	tcp_t	*tcphash;
17943 	conn_t	*connp = tcp->tcp_connp;
17944 	conn_t	*connext;
17945 
17946 	if (tcp->tcp_ptpbhn != NULL) {
17947 		ASSERT(!caller_holds_lock);
17948 		tcp_bind_hash_remove(tcp);
17949 	}
17950 	tcpp = &tbf->tf_tcp;
17951 	if (!caller_holds_lock) {
17952 		mutex_enter(&tbf->tf_lock);
17953 	} else {
17954 		ASSERT(MUTEX_HELD(&tbf->tf_lock));
17955 	}
17956 	tcphash = tcpp[0];
17957 	tcpnext = NULL;
17958 	if (tcphash != NULL) {
17959 		/* Look for an entry using the same port */
17960 		while ((tcphash = tcpp[0]) != NULL &&
17961 		    connp->conn_lport != tcphash->tcp_connp->conn_lport)
17962 			tcpp = &(tcphash->tcp_bind_hash);
17963 
17964 		/* The port was not found, just add to the end */
17965 		if (tcphash == NULL)
17966 			goto insert;
17967 
17968 		/*
17969 		 * OK, there already exists an entry bound to the
17970 		 * same port.
17971 		 *
17972 		 * If the new tcp bound to the INADDR_ANY address
17973 		 * and the first one in the list is not bound to
17974 		 * INADDR_ANY we skip all entries until we find the
17975 		 * first one bound to INADDR_ANY.
17976 		 * This makes sure that applications binding to a
17977 		 * specific address get preference over those binding to
17978 		 * INADDR_ANY.
17979 		 */
17980 		tcpnext = tcphash;
17981 		connext = tcpnext->tcp_connp;
17982 		tcphash = NULL;
17983 		if (V6_OR_V4_INADDR_ANY(connp->conn_bound_addr_v6) &&
17984 		    !V6_OR_V4_INADDR_ANY(connext->conn_bound_addr_v6)) {
17985 			while ((tcpnext = tcpp[0]) != NULL) {
17986 				connext = tcpnext->tcp_connp;
17987 				if (!V6_OR_V4_INADDR_ANY(
17988 				    connext->conn_bound_addr_v6))
17989 					tcpp = &(tcpnext->tcp_bind_hash_port);
17990 				else
17991 					break;
17992 			}
17993 			if (tcpnext != NULL) {
17994 				tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port;
17995 				tcphash = tcpnext->tcp_bind_hash;
17996 				if (tcphash != NULL) {
17997 					tcphash->tcp_ptpbhn =
17998 					    &(tcp->tcp_bind_hash);
17999 					tcpnext->tcp_bind_hash = NULL;
18000 				}
18001 			}
18002 		} else {
18003 			tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port;
18004 			tcphash = tcpnext->tcp_bind_hash;
18005 			if (tcphash != NULL) {
18006 				tcphash->tcp_ptpbhn =
18007 				    &(tcp->tcp_bind_hash);
18008 				tcpnext->tcp_bind_hash = NULL;
18009 			}
18010 		}
18011 	}
18012 insert:
18013 	tcp->tcp_bind_hash_port = tcpnext;
18014 	tcp->tcp_bind_hash = tcphash;
18015 	tcp->tcp_ptpbhn = tcpp;
18016 	tcpp[0] = tcp;
18017 	if (!caller_holds_lock)
18018 		mutex_exit(&tbf->tf_lock);
18019 }
18020 
18021 /*
18022  * Hash list removal routine for tcp_t structures.
18023  */
18024 static void
18025 tcp_bind_hash_remove(tcp_t *tcp)
18026 {
18027 	tcp_t	*tcpnext;
18028 	kmutex_t *lockp;
18029 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18030 	conn_t		*connp = tcp->tcp_connp;
18031 
18032 	if (tcp->tcp_ptpbhn == NULL)
18033 		return;
18034 
18035 	/*
18036 	 * Extract the lock pointer in case there are concurrent
18037 	 * hash_remove's for this instance.
18038 	 */
18039 	ASSERT(connp->conn_lport != 0);
18040 	lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(
18041 	    connp->conn_lport)].tf_lock;
18042 
18043 	ASSERT(lockp != NULL);
18044 	mutex_enter(lockp);
18045 	if (tcp->tcp_ptpbhn) {
18046 		tcpnext = tcp->tcp_bind_hash_port;
18047 		if (tcpnext != NULL) {
18048 			tcp->tcp_bind_hash_port = NULL;
18049 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
18050 			tcpnext->tcp_bind_hash = tcp->tcp_bind_hash;
18051 			if (tcpnext->tcp_bind_hash != NULL) {
18052 				tcpnext->tcp_bind_hash->tcp_ptpbhn =
18053 				    &(tcpnext->tcp_bind_hash);
18054 				tcp->tcp_bind_hash = NULL;
18055 			}
18056 		} else if ((tcpnext = tcp->tcp_bind_hash) != NULL) {
18057 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
18058 			tcp->tcp_bind_hash = NULL;
18059 		}
18060 		*tcp->tcp_ptpbhn = tcpnext;
18061 		tcp->tcp_ptpbhn = NULL;
18062 	}
18063 	mutex_exit(lockp);
18064 }
18065 
18066 
18067 /*
18068  * Hash list lookup routine for tcp_t structures.
18069  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
18070  */
18071 static tcp_t *
18072 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps)
18073 {
18074 	tf_t	*tf;
18075 	tcp_t	*tcp;
18076 
18077 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
18078 	mutex_enter(&tf->tf_lock);
18079 	for (tcp = tf->tf_tcp; tcp != NULL;
18080 	    tcp = tcp->tcp_acceptor_hash) {
18081 		if (tcp->tcp_acceptor_id == id) {
18082 			CONN_INC_REF(tcp->tcp_connp);
18083 			mutex_exit(&tf->tf_lock);
18084 			return (tcp);
18085 		}
18086 	}
18087 	mutex_exit(&tf->tf_lock);
18088 	return (NULL);
18089 }
18090 
18091 
18092 /*
18093  * Hash list insertion routine for tcp_t structures.
18094  */
18095 void
18096 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
18097 {
18098 	tf_t	*tf;
18099 	tcp_t	**tcpp;
18100 	tcp_t	*tcpnext;
18101 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18102 
18103 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
18104 
18105 	if (tcp->tcp_ptpahn != NULL)
18106 		tcp_acceptor_hash_remove(tcp);
18107 	tcpp = &tf->tf_tcp;
18108 	mutex_enter(&tf->tf_lock);
18109 	tcpnext = tcpp[0];
18110 	if (tcpnext)
18111 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
18112 	tcp->tcp_acceptor_hash = tcpnext;
18113 	tcp->tcp_ptpahn = tcpp;
18114 	tcpp[0] = tcp;
18115 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
18116 	mutex_exit(&tf->tf_lock);
18117 }
18118 
18119 /*
18120  * Hash list removal routine for tcp_t structures.
18121  */
18122 static void
18123 tcp_acceptor_hash_remove(tcp_t *tcp)
18124 {
18125 	tcp_t	*tcpnext;
18126 	kmutex_t *lockp;
18127 
18128 	/*
18129 	 * Extract the lock pointer in case there are concurrent
18130 	 * hash_remove's for this instance.
18131 	 */
18132 	lockp = tcp->tcp_acceptor_lockp;
18133 
18134 	if (tcp->tcp_ptpahn == NULL)
18135 		return;
18136 
18137 	ASSERT(lockp != NULL);
18138 	mutex_enter(lockp);
18139 	if (tcp->tcp_ptpahn) {
18140 		tcpnext = tcp->tcp_acceptor_hash;
18141 		if (tcpnext) {
18142 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
18143 			tcp->tcp_acceptor_hash = NULL;
18144 		}
18145 		*tcp->tcp_ptpahn = tcpnext;
18146 		tcp->tcp_ptpahn = NULL;
18147 	}
18148 	mutex_exit(lockp);
18149 	tcp->tcp_acceptor_lockp = NULL;
18150 }
18151 
18152 /*
18153  * Type three generator adapted from the random() function in 4.4 BSD:
18154  */
18155 
18156 /*
18157  * Copyright (c) 1983, 1993
18158  *	The Regents of the University of California.  All rights reserved.
18159  *
18160  * Redistribution and use in source and binary forms, with or without
18161  * modification, are permitted provided that the following conditions
18162  * are met:
18163  * 1. Redistributions of source code must retain the above copyright
18164  *    notice, this list of conditions and the following disclaimer.
18165  * 2. Redistributions in binary form must reproduce the above copyright
18166  *    notice, this list of conditions and the following disclaimer in the
18167  *    documentation and/or other materials provided with the distribution.
18168  * 3. All advertising materials mentioning features or use of this software
18169  *    must display the following acknowledgement:
18170  *	This product includes software developed by the University of
18171  *	California, Berkeley and its contributors.
18172  * 4. Neither the name of the University nor the names of its contributors
18173  *    may be used to endorse or promote products derived from this software
18174  *    without specific prior written permission.
18175  *
18176  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18177  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18178  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18179  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
18180  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18181  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
18182  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
18183  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
18184  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
18185  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
18186  * SUCH DAMAGE.
18187  */
18188 
18189 /* Type 3 -- x**31 + x**3 + 1 */
18190 #define	DEG_3		31
18191 #define	SEP_3		3
18192 
18193 
18194 /* Protected by tcp_random_lock */
18195 static int tcp_randtbl[DEG_3 + 1];
18196 
18197 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
18198 static int *tcp_random_rptr = &tcp_randtbl[1];
18199 
18200 static int *tcp_random_state = &tcp_randtbl[1];
18201 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
18202 
18203 kmutex_t tcp_random_lock;
18204 
18205 void
18206 tcp_random_init(void)
18207 {
18208 	int i;
18209 	hrtime_t hrt;
18210 	time_t wallclock;
18211 	uint64_t result;
18212 
18213 	/*
18214 	 * Use high-res timer and current time for seed.  Gethrtime() returns
18215 	 * a longlong, which may contain resolution down to nanoseconds.
18216 	 * The current time will either be a 32-bit or a 64-bit quantity.
18217 	 * XOR the two together in a 64-bit result variable.
18218 	 * Convert the result to a 32-bit value by multiplying the high-order
18219 	 * 32-bits by the low-order 32-bits.
18220 	 */
18221 
18222 	hrt = gethrtime();
18223 	(void) drv_getparm(TIME, &wallclock);
18224 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
18225 	mutex_enter(&tcp_random_lock);
18226 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
18227 	    (result & 0xffffffff);
18228 
18229 	for (i = 1; i < DEG_3; i++)
18230 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
18231 		    + 12345;
18232 	tcp_random_fptr = &tcp_random_state[SEP_3];
18233 	tcp_random_rptr = &tcp_random_state[0];
18234 	mutex_exit(&tcp_random_lock);
18235 	for (i = 0; i < 10 * DEG_3; i++)
18236 		(void) tcp_random();
18237 }
18238 
18239 /*
18240  * tcp_random: Return a random number in the range [1 - (128K + 1)].
18241  * This range is selected to be approximately centered on TCP_ISS / 2,
18242  * and easy to compute. We get this value by generating a 32-bit random
18243  * number, selecting out the high-order 17 bits, and then adding one so
18244  * that we never return zero.
18245  */
18246 int
18247 tcp_random(void)
18248 {
18249 	int i;
18250 
18251 	mutex_enter(&tcp_random_lock);
18252 	*tcp_random_fptr += *tcp_random_rptr;
18253 
18254 	/*
18255 	 * The high-order bits are more random than the low-order bits,
18256 	 * so we select out the high-order 17 bits and add one so that
18257 	 * we never return zero.
18258 	 */
18259 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
18260 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
18261 		tcp_random_fptr = tcp_random_state;
18262 		++tcp_random_rptr;
18263 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
18264 		tcp_random_rptr = tcp_random_state;
18265 
18266 	mutex_exit(&tcp_random_lock);
18267 	return (i);
18268 }
18269 
18270 static int
18271 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp,
18272     int *t_errorp, int *sys_errorp)
18273 {
18274 	int error;
18275 	int is_absreq_failure;
18276 	t_scalar_t *opt_lenp;
18277 	t_scalar_t opt_offset;
18278 	int prim_type;
18279 	struct T_conn_req *tcreqp;
18280 	struct T_conn_res *tcresp;
18281 	cred_t *cr;
18282 
18283 	/*
18284 	 * All Solaris components should pass a db_credp
18285 	 * for this TPI message, hence we ASSERT.
18286 	 * But in case there is some other M_PROTO that looks
18287 	 * like a TPI message sent by some other kernel
18288 	 * component, we check and return an error.
18289 	 */
18290 	cr = msg_getcred(mp, NULL);
18291 	ASSERT(cr != NULL);
18292 	if (cr == NULL)
18293 		return (-1);
18294 
18295 	prim_type = ((union T_primitives *)mp->b_rptr)->type;
18296 	ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES ||
18297 	    prim_type == T_CONN_RES);
18298 
18299 	switch (prim_type) {
18300 	case T_CONN_REQ:
18301 		tcreqp = (struct T_conn_req *)mp->b_rptr;
18302 		opt_offset = tcreqp->OPT_offset;
18303 		opt_lenp = (t_scalar_t *)&tcreqp->OPT_length;
18304 		break;
18305 	case O_T_CONN_RES:
18306 	case T_CONN_RES:
18307 		tcresp = (struct T_conn_res *)mp->b_rptr;
18308 		opt_offset = tcresp->OPT_offset;
18309 		opt_lenp = (t_scalar_t *)&tcresp->OPT_length;
18310 		break;
18311 	}
18312 
18313 	*t_errorp = 0;
18314 	*sys_errorp = 0;
18315 	*do_disconnectp = 0;
18316 
18317 	error = tpi_optcom_buf(tcp->tcp_connp->conn_wq, mp, opt_lenp,
18318 	    opt_offset, cr, &tcp_opt_obj,
18319 	    NULL, &is_absreq_failure);
18320 
18321 	switch (error) {
18322 	case  0:		/* no error */
18323 		ASSERT(is_absreq_failure == 0);
18324 		return (0);
18325 	case ENOPROTOOPT:
18326 		*t_errorp = TBADOPT;
18327 		break;
18328 	case EACCES:
18329 		*t_errorp = TACCES;
18330 		break;
18331 	default:
18332 		*t_errorp = TSYSERR; *sys_errorp = error;
18333 		break;
18334 	}
18335 	if (is_absreq_failure != 0) {
18336 		/*
18337 		 * The connection request should get the local ack
18338 		 * T_OK_ACK and then a T_DISCON_IND.
18339 		 */
18340 		*do_disconnectp = 1;
18341 	}
18342 	return (-1);
18343 }
18344 
18345 /*
18346  * Split this function out so that if the secret changes, I'm okay.
18347  *
18348  * Initialize the tcp_iss_cookie and tcp_iss_key.
18349  */
18350 
18351 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
18352 
18353 static void
18354 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps)
18355 {
18356 	struct {
18357 		int32_t current_time;
18358 		uint32_t randnum;
18359 		uint16_t pad;
18360 		uint8_t ether[6];
18361 		uint8_t passwd[PASSWD_SIZE];
18362 	} tcp_iss_cookie;
18363 	time_t t;
18364 
18365 	/*
18366 	 * Start with the current absolute time.
18367 	 */
18368 	(void) drv_getparm(TIME, &t);
18369 	tcp_iss_cookie.current_time = t;
18370 
18371 	/*
18372 	 * XXX - Need a more random number per RFC 1750, not this crap.
18373 	 * OTOH, if what follows is pretty random, then I'm in better shape.
18374 	 */
18375 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
18376 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
18377 
18378 	/*
18379 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
18380 	 * as a good template.
18381 	 */
18382 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
18383 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
18384 
18385 	/*
18386 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
18387 	 */
18388 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
18389 
18390 	/*
18391 	 * See 4010593 if this section becomes a problem again,
18392 	 * but the local ethernet address is useful here.
18393 	 */
18394 	(void) localetheraddr(NULL,
18395 	    (struct ether_addr *)&tcp_iss_cookie.ether);
18396 
18397 	/*
18398 	 * Hash 'em all together.  The MD5Final is called per-connection.
18399 	 */
18400 	mutex_enter(&tcps->tcps_iss_key_lock);
18401 	MD5Init(&tcps->tcps_iss_key);
18402 	MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie,
18403 	    sizeof (tcp_iss_cookie));
18404 	mutex_exit(&tcps->tcps_iss_key_lock);
18405 }
18406 
18407 /*
18408  * Set the RFC 1948 pass phrase
18409  */
18410 /* ARGSUSED */
18411 static int
18412 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
18413     cred_t *cr)
18414 {
18415 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
18416 
18417 	/*
18418 	 * Basically, value contains a new pass phrase.  Pass it along!
18419 	 */
18420 	tcp_iss_key_init((uint8_t *)value, strlen(value), tcps);
18421 	return (0);
18422 }
18423 
18424 /* ARGSUSED */
18425 static int
18426 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags)
18427 {
18428 	bzero(buf, sizeof (tcp_sack_info_t));
18429 	return (0);
18430 }
18431 
18432 /*
18433  * Called by IP when IP is loaded into the kernel
18434  */
18435 void
18436 tcp_ddi_g_init(void)
18437 {
18438 	tcp_timercache = kmem_cache_create("tcp_timercache",
18439 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
18440 	    NULL, NULL, NULL, NULL, NULL, 0);
18441 
18442 	tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache",
18443 	    sizeof (tcp_sack_info_t), 0,
18444 	    tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0);
18445 
18446 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
18447 
18448 	/* Initialize the random number generator */
18449 	tcp_random_init();
18450 
18451 	/* A single callback independently of how many netstacks we have */
18452 	ip_squeue_init(tcp_squeue_add);
18453 
18454 	tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics);
18455 
18456 	tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput);
18457 
18458 	/*
18459 	 * We want to be informed each time a stack is created or
18460 	 * destroyed in the kernel, so we can maintain the
18461 	 * set of tcp_stack_t's.
18462 	 */
18463 	netstack_register(NS_TCP, tcp_stack_init, NULL, tcp_stack_fini);
18464 }
18465 
18466 
18467 #define	INET_NAME	"ip"
18468 
18469 /*
18470  * Initialize the TCP stack instance.
18471  */
18472 static void *
18473 tcp_stack_init(netstackid_t stackid, netstack_t *ns)
18474 {
18475 	tcp_stack_t	*tcps;
18476 	tcpparam_t	*pa;
18477 	int		i;
18478 	int		error = 0;
18479 	major_t		major;
18480 
18481 	tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP);
18482 	tcps->tcps_netstack = ns;
18483 
18484 	/* Initialize locks */
18485 	mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
18486 	mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
18487 
18488 	tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
18489 	tcps->tcps_g_epriv_ports[0] = 2049;
18490 	tcps->tcps_g_epriv_ports[1] = 4045;
18491 	tcps->tcps_min_anonpriv_port = 512;
18492 
18493 	tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) *
18494 	    TCP_BIND_FANOUT_SIZE, KM_SLEEP);
18495 	tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) *
18496 	    TCP_FANOUT_SIZE, KM_SLEEP);
18497 
18498 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
18499 		mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL,
18500 		    MUTEX_DEFAULT, NULL);
18501 	}
18502 
18503 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
18504 		mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL,
18505 		    MUTEX_DEFAULT, NULL);
18506 	}
18507 
18508 	/* TCP's IPsec code calls the packet dropper. */
18509 	ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement");
18510 
18511 	pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP);
18512 	tcps->tcps_params = pa;
18513 	bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr));
18514 
18515 	(void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params,
18516 	    A_CNT(lcl_tcp_param_arr), tcps);
18517 
18518 	/*
18519 	 * Note: To really walk the device tree you need the devinfo
18520 	 * pointer to your device which is only available after probe/attach.
18521 	 * The following is safe only because it uses ddi_root_node()
18522 	 */
18523 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
18524 	    tcp_opt_obj.odb_opt_arr_cnt);
18525 
18526 	/*
18527 	 * Initialize RFC 1948 secret values.  This will probably be reset once
18528 	 * by the boot scripts.
18529 	 *
18530 	 * Use NULL name, as the name is caught by the new lockstats.
18531 	 *
18532 	 * Initialize with some random, non-guessable string, like the global
18533 	 * T_INFO_ACK.
18534 	 */
18535 
18536 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
18537 	    sizeof (tcp_g_t_info_ack), tcps);
18538 
18539 	tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics);
18540 	tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps);
18541 
18542 	major = mod_name_to_major(INET_NAME);
18543 	error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident);
18544 	ASSERT(error == 0);
18545 	tcps->tcps_ixa_cleanup_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL);
18546 	ASSERT(tcps->tcps_ixa_cleanup_mp != NULL);
18547 	cv_init(&tcps->tcps_ixa_cleanup_cv, NULL, CV_DEFAULT, NULL);
18548 	mutex_init(&tcps->tcps_ixa_cleanup_lock, NULL, MUTEX_DEFAULT, NULL);
18549 
18550 	return (tcps);
18551 }
18552 
18553 /*
18554  * Called when the IP module is about to be unloaded.
18555  */
18556 void
18557 tcp_ddi_g_destroy(void)
18558 {
18559 	tcp_g_kstat_fini(tcp_g_kstat);
18560 	tcp_g_kstat = NULL;
18561 	bzero(&tcp_g_statistics, sizeof (tcp_g_statistics));
18562 
18563 	mutex_destroy(&tcp_random_lock);
18564 
18565 	kmem_cache_destroy(tcp_timercache);
18566 	kmem_cache_destroy(tcp_sack_info_cache);
18567 
18568 	netstack_unregister(NS_TCP);
18569 }
18570 
18571 /*
18572  * Free the TCP stack instance.
18573  */
18574 static void
18575 tcp_stack_fini(netstackid_t stackid, void *arg)
18576 {
18577 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
18578 	int i;
18579 
18580 	freeb(tcps->tcps_ixa_cleanup_mp);
18581 	tcps->tcps_ixa_cleanup_mp = NULL;
18582 	cv_destroy(&tcps->tcps_ixa_cleanup_cv);
18583 	mutex_destroy(&tcps->tcps_ixa_cleanup_lock);
18584 
18585 	nd_free(&tcps->tcps_g_nd);
18586 	kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr));
18587 	tcps->tcps_params = NULL;
18588 	kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t));
18589 	tcps->tcps_wroff_xtra_param = NULL;
18590 
18591 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
18592 		ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL);
18593 		mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock);
18594 	}
18595 
18596 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
18597 		ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL);
18598 		mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock);
18599 	}
18600 
18601 	kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE);
18602 	tcps->tcps_bind_fanout = NULL;
18603 
18604 	kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE);
18605 	tcps->tcps_acceptor_fanout = NULL;
18606 
18607 	mutex_destroy(&tcps->tcps_iss_key_lock);
18608 	mutex_destroy(&tcps->tcps_epriv_port_lock);
18609 
18610 	ip_drop_unregister(&tcps->tcps_dropper);
18611 
18612 	tcp_kstat2_fini(stackid, tcps->tcps_kstat);
18613 	tcps->tcps_kstat = NULL;
18614 	bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics));
18615 
18616 	tcp_kstat_fini(stackid, tcps->tcps_mibkp);
18617 	tcps->tcps_mibkp = NULL;
18618 
18619 	ldi_ident_release(tcps->tcps_ldi_ident);
18620 	kmem_free(tcps, sizeof (*tcps));
18621 }
18622 
18623 /*
18624  * Generate ISS, taking into account NDD changes may happen halfway through.
18625  * (If the iss is not zero, set it.)
18626  */
18627 
18628 static void
18629 tcp_iss_init(tcp_t *tcp)
18630 {
18631 	MD5_CTX context;
18632 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
18633 	uint32_t answer[4];
18634 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18635 	conn_t		*connp = tcp->tcp_connp;
18636 
18637 	tcps->tcps_iss_incr_extra += (ISS_INCR >> 1);
18638 	tcp->tcp_iss = tcps->tcps_iss_incr_extra;
18639 	switch (tcps->tcps_strong_iss) {
18640 	case 2:
18641 		mutex_enter(&tcps->tcps_iss_key_lock);
18642 		context = tcps->tcps_iss_key;
18643 		mutex_exit(&tcps->tcps_iss_key_lock);
18644 		arg.ports = connp->conn_ports;
18645 		arg.src = connp->conn_laddr_v6;
18646 		arg.dst = connp->conn_faddr_v6;
18647 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
18648 		MD5Final((uchar_t *)answer, &context);
18649 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
18650 		/*
18651 		 * Now that we've hashed into a unique per-connection sequence
18652 		 * space, add a random increment per strong_iss == 1.  So I
18653 		 * guess we'll have to...
18654 		 */
18655 		/* FALLTHRU */
18656 	case 1:
18657 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
18658 		break;
18659 	default:
18660 		tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
18661 		break;
18662 	}
18663 	tcp->tcp_valid_bits = TCP_ISS_VALID;
18664 	tcp->tcp_fss = tcp->tcp_iss - 1;
18665 	tcp->tcp_suna = tcp->tcp_iss;
18666 	tcp->tcp_snxt = tcp->tcp_iss + 1;
18667 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
18668 	tcp->tcp_csuna = tcp->tcp_snxt;
18669 }
18670 
18671 /*
18672  * Exported routine for extracting active tcp connection status.
18673  *
18674  * This is used by the Solaris Cluster Networking software to
18675  * gather a list of connections that need to be forwarded to
18676  * specific nodes in the cluster when configuration changes occur.
18677  *
18678  * The callback is invoked for each tcp_t structure from all netstacks,
18679  * if 'stack_id' is less than 0. Otherwise, only for tcp_t structures
18680  * from the netstack with the specified stack_id. Returning
18681  * non-zero from the callback routine terminates the search.
18682  */
18683 int
18684 cl_tcp_walk_list(netstackid_t stack_id,
18685     int (*cl_callback)(cl_tcp_info_t *, void *), void *arg)
18686 {
18687 	netstack_handle_t nh;
18688 	netstack_t *ns;
18689 	int ret = 0;
18690 
18691 	if (stack_id >= 0) {
18692 		if ((ns = netstack_find_by_stackid(stack_id)) == NULL)
18693 			return (EINVAL);
18694 
18695 		ret = cl_tcp_walk_list_stack(cl_callback, arg,
18696 		    ns->netstack_tcp);
18697 		netstack_rele(ns);
18698 		return (ret);
18699 	}
18700 
18701 	netstack_next_init(&nh);
18702 	while ((ns = netstack_next(&nh)) != NULL) {
18703 		ret = cl_tcp_walk_list_stack(cl_callback, arg,
18704 		    ns->netstack_tcp);
18705 		netstack_rele(ns);
18706 	}
18707 	netstack_next_fini(&nh);
18708 	return (ret);
18709 }
18710 
18711 static int
18712 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg,
18713     tcp_stack_t *tcps)
18714 {
18715 	tcp_t *tcp;
18716 	cl_tcp_info_t	cl_tcpi;
18717 	connf_t	*connfp;
18718 	conn_t	*connp;
18719 	int	i;
18720 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
18721 
18722 	ASSERT(callback != NULL);
18723 
18724 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
18725 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
18726 		connp = NULL;
18727 
18728 		while ((connp =
18729 		    ipcl_get_next_conn(connfp, connp, IPCL_TCPCONN)) != NULL) {
18730 
18731 			tcp = connp->conn_tcp;
18732 			cl_tcpi.cl_tcpi_version = CL_TCPI_V1;
18733 			cl_tcpi.cl_tcpi_ipversion = connp->conn_ipversion;
18734 			cl_tcpi.cl_tcpi_state = tcp->tcp_state;
18735 			cl_tcpi.cl_tcpi_lport = connp->conn_lport;
18736 			cl_tcpi.cl_tcpi_fport = connp->conn_fport;
18737 			cl_tcpi.cl_tcpi_laddr_v6 = connp->conn_laddr_v6;
18738 			cl_tcpi.cl_tcpi_faddr_v6 = connp->conn_faddr_v6;
18739 
18740 			/*
18741 			 * If the callback returns non-zero
18742 			 * we terminate the traversal.
18743 			 */
18744 			if ((*callback)(&cl_tcpi, arg) != 0) {
18745 				CONN_DEC_REF(tcp->tcp_connp);
18746 				return (1);
18747 			}
18748 		}
18749 	}
18750 
18751 	return (0);
18752 }
18753 
18754 /*
18755  * Macros used for accessing the different types of sockaddr
18756  * structures inside a tcp_ioc_abort_conn_t.
18757  */
18758 #define	TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local)
18759 #define	TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote)
18760 #define	TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr)
18761 #define	TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr)
18762 #define	TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port)
18763 #define	TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port)
18764 #define	TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local)
18765 #define	TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote)
18766 #define	TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr)
18767 #define	TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr)
18768 #define	TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port)
18769 #define	TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port)
18770 
18771 /*
18772  * Return the correct error code to mimic the behavior
18773  * of a connection reset.
18774  */
18775 #define	TCP_AC_GET_ERRCODE(state, err) {	\
18776 		switch ((state)) {		\
18777 		case TCPS_SYN_SENT:		\
18778 		case TCPS_SYN_RCVD:		\
18779 			(err) = ECONNREFUSED;	\
18780 			break;			\
18781 		case TCPS_ESTABLISHED:		\
18782 		case TCPS_FIN_WAIT_1:		\
18783 		case TCPS_FIN_WAIT_2:		\
18784 		case TCPS_CLOSE_WAIT:		\
18785 			(err) = ECONNRESET;	\
18786 			break;			\
18787 		case TCPS_CLOSING:		\
18788 		case TCPS_LAST_ACK:		\
18789 		case TCPS_TIME_WAIT:		\
18790 			(err) = 0;		\
18791 			break;			\
18792 		default:			\
18793 			(err) = ENXIO;		\
18794 		}				\
18795 	}
18796 
18797 /*
18798  * Check if a tcp structure matches the info in acp.
18799  */
18800 #define	TCP_AC_ADDR_MATCH(acp, connp, tcp)			\
18801 	(((acp)->ac_local.ss_family == AF_INET) ?		\
18802 	((TCP_AC_V4LOCAL((acp)) == INADDR_ANY ||		\
18803 	TCP_AC_V4LOCAL((acp)) == (connp)->conn_laddr_v4) &&	\
18804 	(TCP_AC_V4REMOTE((acp)) == INADDR_ANY ||		\
18805 	TCP_AC_V4REMOTE((acp)) == (connp)->conn_faddr_v4) &&	\
18806 	(TCP_AC_V4LPORT((acp)) == 0 ||				\
18807 	TCP_AC_V4LPORT((acp)) == (connp)->conn_lport) &&	\
18808 	(TCP_AC_V4RPORT((acp)) == 0 ||				\
18809 	TCP_AC_V4RPORT((acp)) == (connp)->conn_fport) &&	\
18810 	(acp)->ac_start <= (tcp)->tcp_state &&			\
18811 	(acp)->ac_end >= (tcp)->tcp_state) :			\
18812 	((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) ||	\
18813 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)),		\
18814 	&(connp)->conn_laddr_v6)) &&				\
18815 	(IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) ||	\
18816 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)),		\
18817 	&(connp)->conn_faddr_v6)) &&				\
18818 	(TCP_AC_V6LPORT((acp)) == 0 ||				\
18819 	TCP_AC_V6LPORT((acp)) == (connp)->conn_lport) &&	\
18820 	(TCP_AC_V6RPORT((acp)) == 0 ||				\
18821 	TCP_AC_V6RPORT((acp)) == (connp)->conn_fport) &&	\
18822 	(acp)->ac_start <= (tcp)->tcp_state &&			\
18823 	(acp)->ac_end >= (tcp)->tcp_state))
18824 
18825 #define	TCP_AC_MATCH(acp, connp, tcp)				\
18826 	(((acp)->ac_zoneid == ALL_ZONES ||			\
18827 	(acp)->ac_zoneid == (connp)->conn_zoneid) ?		\
18828 	TCP_AC_ADDR_MATCH(acp, connp, tcp) : 0)
18829 
18830 /*
18831  * Build a message containing a tcp_ioc_abort_conn_t structure
18832  * which is filled in with information from acp and tp.
18833  */
18834 static mblk_t *
18835 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp)
18836 {
18837 	mblk_t *mp;
18838 	tcp_ioc_abort_conn_t *tacp;
18839 
18840 	mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO);
18841 	if (mp == NULL)
18842 		return (NULL);
18843 
18844 	*((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN;
18845 	tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr +
18846 	    sizeof (uint32_t));
18847 
18848 	tacp->ac_start = acp->ac_start;
18849 	tacp->ac_end = acp->ac_end;
18850 	tacp->ac_zoneid = acp->ac_zoneid;
18851 
18852 	if (acp->ac_local.ss_family == AF_INET) {
18853 		tacp->ac_local.ss_family = AF_INET;
18854 		tacp->ac_remote.ss_family = AF_INET;
18855 		TCP_AC_V4LOCAL(tacp) = tp->tcp_connp->conn_laddr_v4;
18856 		TCP_AC_V4REMOTE(tacp) = tp->tcp_connp->conn_faddr_v4;
18857 		TCP_AC_V4LPORT(tacp) = tp->tcp_connp->conn_lport;
18858 		TCP_AC_V4RPORT(tacp) = tp->tcp_connp->conn_fport;
18859 	} else {
18860 		tacp->ac_local.ss_family = AF_INET6;
18861 		tacp->ac_remote.ss_family = AF_INET6;
18862 		TCP_AC_V6LOCAL(tacp) = tp->tcp_connp->conn_laddr_v6;
18863 		TCP_AC_V6REMOTE(tacp) = tp->tcp_connp->conn_faddr_v6;
18864 		TCP_AC_V6LPORT(tacp) = tp->tcp_connp->conn_lport;
18865 		TCP_AC_V6RPORT(tacp) = tp->tcp_connp->conn_fport;
18866 	}
18867 	mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp);
18868 	return (mp);
18869 }
18870 
18871 /*
18872  * Print a tcp_ioc_abort_conn_t structure.
18873  */
18874 static void
18875 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp)
18876 {
18877 	char lbuf[128];
18878 	char rbuf[128];
18879 	sa_family_t af;
18880 	in_port_t lport, rport;
18881 	ushort_t logflags;
18882 
18883 	af = acp->ac_local.ss_family;
18884 
18885 	if (af == AF_INET) {
18886 		(void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp),
18887 		    lbuf, 128);
18888 		(void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp),
18889 		    rbuf, 128);
18890 		lport = ntohs(TCP_AC_V4LPORT(acp));
18891 		rport = ntohs(TCP_AC_V4RPORT(acp));
18892 	} else {
18893 		(void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp),
18894 		    lbuf, 128);
18895 		(void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp),
18896 		    rbuf, 128);
18897 		lport = ntohs(TCP_AC_V6LPORT(acp));
18898 		rport = ntohs(TCP_AC_V6RPORT(acp));
18899 	}
18900 
18901 	logflags = SL_TRACE | SL_NOTE;
18902 	/*
18903 	 * Don't print this message to the console if the operation was done
18904 	 * to a non-global zone.
18905 	 */
18906 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
18907 		logflags |= SL_CONSOLE;
18908 	(void) strlog(TCP_MOD_ID, 0, 1, logflags,
18909 	    "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, "
18910 	    "start = %d, end = %d\n", lbuf, lport, rbuf, rport,
18911 	    acp->ac_start, acp->ac_end);
18912 }
18913 
18914 /*
18915  * Called using SQ_FILL when a message built using
18916  * tcp_ioctl_abort_build_msg is put into a queue.
18917  * Note that when we get here there is no wildcard in acp any more.
18918  */
18919 /* ARGSUSED2 */
18920 static void
18921 tcp_ioctl_abort_handler(void *arg, mblk_t *mp, void *arg2,
18922     ip_recv_attr_t *dummy)
18923 {
18924 	conn_t			*connp = (conn_t *)arg;
18925 	tcp_t			*tcp = connp->conn_tcp;
18926 	tcp_ioc_abort_conn_t	*acp;
18927 
18928 	/*
18929 	 * Don't accept any input on a closed tcp as this TCP logically does
18930 	 * not exist on the system. Don't proceed further with this TCP.
18931 	 * For eg. this packet could trigger another close of this tcp
18932 	 * which would be disastrous for tcp_refcnt. tcp_close_detached /
18933 	 * tcp_clean_death / tcp_closei_local must be called at most once
18934 	 * on a TCP.
18935 	 */
18936 	if (tcp->tcp_state == TCPS_CLOSED ||
18937 	    tcp->tcp_state == TCPS_BOUND) {
18938 		freemsg(mp);
18939 		return;
18940 	}
18941 
18942 	acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t));
18943 	if (tcp->tcp_state <= acp->ac_end) {
18944 		/*
18945 		 * If we get here, we are already on the correct
18946 		 * squeue. This ioctl follows the following path
18947 		 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn
18948 		 * ->tcp_ioctl_abort->squeue_enter (if on a
18949 		 * different squeue)
18950 		 */
18951 		int errcode;
18952 
18953 		TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode);
18954 		(void) tcp_clean_death(tcp, errcode, 26);
18955 	}
18956 	freemsg(mp);
18957 }
18958 
18959 /*
18960  * Abort all matching connections on a hash chain.
18961  */
18962 static int
18963 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count,
18964     boolean_t exact, tcp_stack_t *tcps)
18965 {
18966 	int nmatch, err = 0;
18967 	tcp_t *tcp;
18968 	MBLKP mp, last, listhead = NULL;
18969 	conn_t	*tconnp;
18970 	connf_t	*connfp;
18971 	ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
18972 
18973 	connfp = &ipst->ips_ipcl_conn_fanout[index];
18974 
18975 startover:
18976 	nmatch = 0;
18977 
18978 	mutex_enter(&connfp->connf_lock);
18979 	for (tconnp = connfp->connf_head; tconnp != NULL;
18980 	    tconnp = tconnp->conn_next) {
18981 		tcp = tconnp->conn_tcp;
18982 		/*
18983 		 * We are missing a check on sin6_scope_id for linklocals here,
18984 		 * but current usage is just for aborting based on zoneid
18985 		 * for shared-IP zones.
18986 		 */
18987 		if (TCP_AC_MATCH(acp, tconnp, tcp)) {
18988 			CONN_INC_REF(tconnp);
18989 			mp = tcp_ioctl_abort_build_msg(acp, tcp);
18990 			if (mp == NULL) {
18991 				err = ENOMEM;
18992 				CONN_DEC_REF(tconnp);
18993 				break;
18994 			}
18995 			mp->b_prev = (mblk_t *)tcp;
18996 
18997 			if (listhead == NULL) {
18998 				listhead = mp;
18999 				last = mp;
19000 			} else {
19001 				last->b_next = mp;
19002 				last = mp;
19003 			}
19004 			nmatch++;
19005 			if (exact)
19006 				break;
19007 		}
19008 
19009 		/* Avoid holding lock for too long. */
19010 		if (nmatch >= 500)
19011 			break;
19012 	}
19013 	mutex_exit(&connfp->connf_lock);
19014 
19015 	/* Pass mp into the correct tcp */
19016 	while ((mp = listhead) != NULL) {
19017 		listhead = listhead->b_next;
19018 		tcp = (tcp_t *)mp->b_prev;
19019 		mp->b_next = mp->b_prev = NULL;
19020 		SQUEUE_ENTER_ONE(tcp->tcp_connp->conn_sqp, mp,
19021 		    tcp_ioctl_abort_handler, tcp->tcp_connp, NULL,
19022 		    SQ_FILL, SQTAG_TCP_ABORT_BUCKET);
19023 	}
19024 
19025 	*count += nmatch;
19026 	if (nmatch >= 500 && err == 0)
19027 		goto startover;
19028 	return (err);
19029 }
19030 
19031 /*
19032  * Abort all connections that matches the attributes specified in acp.
19033  */
19034 static int
19035 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps)
19036 {
19037 	sa_family_t af;
19038 	uint32_t  ports;
19039 	uint16_t *pports;
19040 	int err = 0, count = 0;
19041 	boolean_t exact = B_FALSE; /* set when there is no wildcard */
19042 	int index = -1;
19043 	ushort_t logflags;
19044 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
19045 
19046 	af = acp->ac_local.ss_family;
19047 
19048 	if (af == AF_INET) {
19049 		if (TCP_AC_V4REMOTE(acp) != INADDR_ANY &&
19050 		    TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) {
19051 			pports = (uint16_t *)&ports;
19052 			pports[1] = TCP_AC_V4LPORT(acp);
19053 			pports[0] = TCP_AC_V4RPORT(acp);
19054 			exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY);
19055 		}
19056 	} else {
19057 		if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) &&
19058 		    TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) {
19059 			pports = (uint16_t *)&ports;
19060 			pports[1] = TCP_AC_V6LPORT(acp);
19061 			pports[0] = TCP_AC_V6RPORT(acp);
19062 			exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp));
19063 		}
19064 	}
19065 
19066 	/*
19067 	 * For cases where remote addr, local port, and remote port are non-
19068 	 * wildcards, tcp_ioctl_abort_bucket will only be called once.
19069 	 */
19070 	if (index != -1) {
19071 		err = tcp_ioctl_abort_bucket(acp, index,
19072 		    &count, exact, tcps);
19073 	} else {
19074 		/*
19075 		 * loop through all entries for wildcard case
19076 		 */
19077 		for (index = 0;
19078 		    index < ipst->ips_ipcl_conn_fanout_size;
19079 		    index++) {
19080 			err = tcp_ioctl_abort_bucket(acp, index,
19081 			    &count, exact, tcps);
19082 			if (err != 0)
19083 				break;
19084 		}
19085 	}
19086 
19087 	logflags = SL_TRACE | SL_NOTE;
19088 	/*
19089 	 * Don't print this message to the console if the operation was done
19090 	 * to a non-global zone.
19091 	 */
19092 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
19093 		logflags |= SL_CONSOLE;
19094 	(void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: "
19095 	    "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' '));
19096 	if (err == 0 && count == 0)
19097 		err = ENOENT;
19098 	return (err);
19099 }
19100 
19101 /*
19102  * Process the TCP_IOC_ABORT_CONN ioctl request.
19103  */
19104 static void
19105 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp)
19106 {
19107 	int	err;
19108 	IOCP    iocp;
19109 	MBLKP   mp1;
19110 	sa_family_t laf, raf;
19111 	tcp_ioc_abort_conn_t *acp;
19112 	zone_t		*zptr;
19113 	conn_t		*connp = Q_TO_CONN(q);
19114 	zoneid_t	zoneid = connp->conn_zoneid;
19115 	tcp_t		*tcp = connp->conn_tcp;
19116 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19117 
19118 	iocp = (IOCP)mp->b_rptr;
19119 
19120 	if ((mp1 = mp->b_cont) == NULL ||
19121 	    iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) {
19122 		err = EINVAL;
19123 		goto out;
19124 	}
19125 
19126 	/* check permissions */
19127 	if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
19128 		err = EPERM;
19129 		goto out;
19130 	}
19131 
19132 	if (mp1->b_cont != NULL) {
19133 		freemsg(mp1->b_cont);
19134 		mp1->b_cont = NULL;
19135 	}
19136 
19137 	acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr;
19138 	laf = acp->ac_local.ss_family;
19139 	raf = acp->ac_remote.ss_family;
19140 
19141 	/* check that a zone with the supplied zoneid exists */
19142 	if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) {
19143 		zptr = zone_find_by_id(zoneid);
19144 		if (zptr != NULL) {
19145 			zone_rele(zptr);
19146 		} else {
19147 			err = EINVAL;
19148 			goto out;
19149 		}
19150 	}
19151 
19152 	/*
19153 	 * For exclusive stacks we set the zoneid to zero
19154 	 * to make TCP operate as if in the global zone.
19155 	 */
19156 	if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID)
19157 		acp->ac_zoneid = GLOBAL_ZONEID;
19158 
19159 	if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT ||
19160 	    acp->ac_start > acp->ac_end || laf != raf ||
19161 	    (laf != AF_INET && laf != AF_INET6)) {
19162 		err = EINVAL;
19163 		goto out;
19164 	}
19165 
19166 	tcp_ioctl_abort_dump(acp);
19167 	err = tcp_ioctl_abort(acp, tcps);
19168 
19169 out:
19170 	if (mp1 != NULL) {
19171 		freemsg(mp1);
19172 		mp->b_cont = NULL;
19173 	}
19174 
19175 	if (err != 0)
19176 		miocnak(q, mp, 0, err);
19177 	else
19178 		miocack(q, mp, 0, 0);
19179 }
19180 
19181 /*
19182  * tcp_time_wait_processing() handles processing of incoming packets when
19183  * the tcp is in the TIME_WAIT state.
19184  * A TIME_WAIT tcp that has an associated open TCP stream is never put
19185  * on the time wait list.
19186  */
19187 void
19188 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq,
19189     uint32_t seg_ack, int seg_len, tcpha_t *tcpha, ip_recv_attr_t *ira)
19190 {
19191 	int32_t		bytes_acked;
19192 	int32_t		gap;
19193 	int32_t		rgap;
19194 	tcp_opt_t	tcpopt;
19195 	uint_t		flags;
19196 	uint32_t	new_swnd = 0;
19197 	conn_t		*nconnp;
19198 	conn_t		*connp = tcp->tcp_connp;
19199 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19200 
19201 	BUMP_LOCAL(tcp->tcp_ibsegs);
19202 	DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
19203 
19204 	flags = (unsigned int)tcpha->tha_flags & 0xFF;
19205 	new_swnd = ntohs(tcpha->tha_win) <<
19206 	    ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws);
19207 	if (tcp->tcp_snd_ts_ok) {
19208 		if (!tcp_paws_check(tcp, tcpha, &tcpopt)) {
19209 			tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
19210 			    tcp->tcp_rnxt, TH_ACK);
19211 			goto done;
19212 		}
19213 	}
19214 	gap = seg_seq - tcp->tcp_rnxt;
19215 	rgap = tcp->tcp_rwnd - (gap + seg_len);
19216 	if (gap < 0) {
19217 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
19218 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
19219 		    (seg_len > -gap ? -gap : seg_len));
19220 		seg_len += gap;
19221 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
19222 			if (flags & TH_RST) {
19223 				goto done;
19224 			}
19225 			if ((flags & TH_FIN) && seg_len == -1) {
19226 				/*
19227 				 * When TCP receives a duplicate FIN in
19228 				 * TIME_WAIT state, restart the 2 MSL timer.
19229 				 * See page 73 in RFC 793. Make sure this TCP
19230 				 * is already on the TIME_WAIT list. If not,
19231 				 * just restart the timer.
19232 				 */
19233 				if (TCP_IS_DETACHED(tcp)) {
19234 					if (tcp_time_wait_remove(tcp, NULL) ==
19235 					    B_TRUE) {
19236 						tcp_time_wait_append(tcp);
19237 						TCP_DBGSTAT(tcps,
19238 						    tcp_rput_time_wait);
19239 					}
19240 				} else {
19241 					ASSERT(tcp != NULL);
19242 					TCP_TIMER_RESTART(tcp,
19243 					    tcps->tcps_time_wait_interval);
19244 				}
19245 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
19246 				    tcp->tcp_rnxt, TH_ACK);
19247 				goto done;
19248 			}
19249 			flags |=  TH_ACK_NEEDED;
19250 			seg_len = 0;
19251 			goto process_ack;
19252 		}
19253 
19254 		/* Fix seg_seq, and chew the gap off the front. */
19255 		seg_seq = tcp->tcp_rnxt;
19256 	}
19257 
19258 	if ((flags & TH_SYN) && gap > 0 && rgap < 0) {
19259 		/*
19260 		 * Make sure that when we accept the connection, pick
19261 		 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the
19262 		 * old connection.
19263 		 *
19264 		 * The next ISS generated is equal to tcp_iss_incr_extra
19265 		 * + ISS_INCR/2 + other components depending on the
19266 		 * value of tcp_strong_iss.  We pre-calculate the new
19267 		 * ISS here and compare with tcp_snxt to determine if
19268 		 * we need to make adjustment to tcp_iss_incr_extra.
19269 		 *
19270 		 * The above calculation is ugly and is a
19271 		 * waste of CPU cycles...
19272 		 */
19273 		uint32_t new_iss = tcps->tcps_iss_incr_extra;
19274 		int32_t adj;
19275 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
19276 
19277 		switch (tcps->tcps_strong_iss) {
19278 		case 2: {
19279 			/* Add time and MD5 components. */
19280 			uint32_t answer[4];
19281 			struct {
19282 				uint32_t ports;
19283 				in6_addr_t src;
19284 				in6_addr_t dst;
19285 			} arg;
19286 			MD5_CTX context;
19287 
19288 			mutex_enter(&tcps->tcps_iss_key_lock);
19289 			context = tcps->tcps_iss_key;
19290 			mutex_exit(&tcps->tcps_iss_key_lock);
19291 			arg.ports = connp->conn_ports;
19292 			/* We use MAPPED addresses in tcp_iss_init */
19293 			arg.src = connp->conn_laddr_v6;
19294 			arg.dst = connp->conn_faddr_v6;
19295 			MD5Update(&context, (uchar_t *)&arg,
19296 			    sizeof (arg));
19297 			MD5Final((uchar_t *)answer, &context);
19298 			answer[0] ^= answer[1] ^ answer[2] ^ answer[3];
19299 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0];
19300 			break;
19301 		}
19302 		case 1:
19303 			/* Add time component and min random (i.e. 1). */
19304 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1;
19305 			break;
19306 		default:
19307 			/* Add only time component. */
19308 			new_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
19309 			break;
19310 		}
19311 		if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) {
19312 			/*
19313 			 * New ISS not guaranteed to be ISS_INCR/2
19314 			 * ahead of the current tcp_snxt, so add the
19315 			 * difference to tcp_iss_incr_extra.
19316 			 */
19317 			tcps->tcps_iss_incr_extra += adj;
19318 		}
19319 		/*
19320 		 * If tcp_clean_death() can not perform the task now,
19321 		 * drop the SYN packet and let the other side re-xmit.
19322 		 * Otherwise pass the SYN packet back in, since the
19323 		 * old tcp state has been cleaned up or freed.
19324 		 */
19325 		if (tcp_clean_death(tcp, 0, 27) == -1)
19326 			goto done;
19327 		nconnp = ipcl_classify(mp, ira, ipst);
19328 		if (nconnp != NULL) {
19329 			TCP_STAT(tcps, tcp_time_wait_syn_success);
19330 			/* Drops ref on nconnp */
19331 			tcp_reinput(nconnp, mp, ira, ipst);
19332 			return;
19333 		}
19334 		goto done;
19335 	}
19336 
19337 	/*
19338 	 * rgap is the amount of stuff received out of window.  A negative
19339 	 * value is the amount out of window.
19340 	 */
19341 	if (rgap < 0) {
19342 		BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
19343 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap);
19344 		/* Fix seg_len and make sure there is something left. */
19345 		seg_len += rgap;
19346 		if (seg_len <= 0) {
19347 			if (flags & TH_RST) {
19348 				goto done;
19349 			}
19350 			flags |=  TH_ACK_NEEDED;
19351 			seg_len = 0;
19352 			goto process_ack;
19353 		}
19354 	}
19355 	/*
19356 	 * Check whether we can update tcp_ts_recent.  This test is
19357 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
19358 	 * Extensions for High Performance: An Update", Internet Draft.
19359 	 */
19360 	if (tcp->tcp_snd_ts_ok &&
19361 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
19362 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
19363 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
19364 		tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64();
19365 	}
19366 
19367 	if (seg_seq != tcp->tcp_rnxt && seg_len > 0) {
19368 		/* Always ack out of order packets */
19369 		flags |= TH_ACK_NEEDED;
19370 		seg_len = 0;
19371 	} else if (seg_len > 0) {
19372 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
19373 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
19374 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
19375 	}
19376 	if (flags & TH_RST) {
19377 		(void) tcp_clean_death(tcp, 0, 28);
19378 		goto done;
19379 	}
19380 	if (flags & TH_SYN) {
19381 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
19382 		    TH_RST|TH_ACK);
19383 		/*
19384 		 * Do not delete the TCP structure if it is in
19385 		 * TIME_WAIT state.  Refer to RFC 1122, 4.2.2.13.
19386 		 */
19387 		goto done;
19388 	}
19389 process_ack:
19390 	if (flags & TH_ACK) {
19391 		bytes_acked = (int)(seg_ack - tcp->tcp_suna);
19392 		if (bytes_acked <= 0) {
19393 			if (bytes_acked == 0 && seg_len == 0 &&
19394 			    new_swnd == tcp->tcp_swnd)
19395 				BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
19396 		} else {
19397 			/* Acks something not sent */
19398 			flags |= TH_ACK_NEEDED;
19399 		}
19400 	}
19401 	if (flags & TH_ACK_NEEDED) {
19402 		/*
19403 		 * Time to send an ack for some reason.
19404 		 */
19405 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
19406 		    tcp->tcp_rnxt, TH_ACK);
19407 	}
19408 done:
19409 	freemsg(mp);
19410 }
19411 
19412 /*
19413  * TCP Timers Implementation.
19414  */
19415 timeout_id_t
19416 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim)
19417 {
19418 	mblk_t *mp;
19419 	tcp_timer_t *tcpt;
19420 	tcp_t *tcp = connp->conn_tcp;
19421 
19422 	ASSERT(connp->conn_sqp != NULL);
19423 
19424 	TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_calls);
19425 
19426 	if (tcp->tcp_timercache == NULL) {
19427 		mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC);
19428 	} else {
19429 		TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_cached_alloc);
19430 		mp = tcp->tcp_timercache;
19431 		tcp->tcp_timercache = mp->b_next;
19432 		mp->b_next = NULL;
19433 		ASSERT(mp->b_wptr == NULL);
19434 	}
19435 
19436 	CONN_INC_REF(connp);
19437 	tcpt = (tcp_timer_t *)mp->b_rptr;
19438 	tcpt->connp = connp;
19439 	tcpt->tcpt_proc = f;
19440 	/*
19441 	 * TCP timers are normal timeouts. Plus, they do not require more than
19442 	 * a 10 millisecond resolution. By choosing a coarser resolution and by
19443 	 * rounding up the expiration to the next resolution boundary, we can
19444 	 * batch timers in the callout subsystem to make TCP timers more
19445 	 * efficient. The roundup also protects short timers from expiring too
19446 	 * early before they have a chance to be cancelled.
19447 	 */
19448 	tcpt->tcpt_tid = timeout_generic(CALLOUT_NORMAL, tcp_timer_callback, mp,
19449 	    TICK_TO_NSEC(tim), CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP);
19450 
19451 	return ((timeout_id_t)mp);
19452 }
19453 
19454 static void
19455 tcp_timer_callback(void *arg)
19456 {
19457 	mblk_t *mp = (mblk_t *)arg;
19458 	tcp_timer_t *tcpt;
19459 	conn_t	*connp;
19460 
19461 	tcpt = (tcp_timer_t *)mp->b_rptr;
19462 	connp = tcpt->connp;
19463 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_timer_handler, connp,
19464 	    NULL, SQ_FILL, SQTAG_TCP_TIMER);
19465 }
19466 
19467 /* ARGSUSED */
19468 static void
19469 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
19470 {
19471 	tcp_timer_t *tcpt;
19472 	conn_t *connp = (conn_t *)arg;
19473 	tcp_t *tcp = connp->conn_tcp;
19474 
19475 	tcpt = (tcp_timer_t *)mp->b_rptr;
19476 	ASSERT(connp == tcpt->connp);
19477 	ASSERT((squeue_t *)arg2 == connp->conn_sqp);
19478 
19479 	/*
19480 	 * If the TCP has reached the closed state, don't proceed any
19481 	 * further. This TCP logically does not exist on the system.
19482 	 * tcpt_proc could for example access queues, that have already
19483 	 * been qprocoff'ed off.
19484 	 */
19485 	if (tcp->tcp_state != TCPS_CLOSED) {
19486 		(*tcpt->tcpt_proc)(connp);
19487 	} else {
19488 		tcp->tcp_timer_tid = 0;
19489 	}
19490 	tcp_timer_free(connp->conn_tcp, mp);
19491 }
19492 
19493 /*
19494  * There is potential race with untimeout and the handler firing at the same
19495  * time. The mblock may be freed by the handler while we are trying to use
19496  * it. But since both should execute on the same squeue, this race should not
19497  * occur.
19498  */
19499 clock_t
19500 tcp_timeout_cancel(conn_t *connp, timeout_id_t id)
19501 {
19502 	mblk_t	*mp = (mblk_t *)id;
19503 	tcp_timer_t *tcpt;
19504 	clock_t delta;
19505 
19506 	TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_cancel_reqs);
19507 
19508 	if (mp == NULL)
19509 		return (-1);
19510 
19511 	tcpt = (tcp_timer_t *)mp->b_rptr;
19512 	ASSERT(tcpt->connp == connp);
19513 
19514 	delta = untimeout_default(tcpt->tcpt_tid, 0);
19515 
19516 	if (delta >= 0) {
19517 		TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_canceled);
19518 		tcp_timer_free(connp->conn_tcp, mp);
19519 		CONN_DEC_REF(connp);
19520 	}
19521 
19522 	return (delta);
19523 }
19524 
19525 /*
19526  * Allocate space for the timer event. The allocation looks like mblk, but it is
19527  * not a proper mblk. To avoid confusion we set b_wptr to NULL.
19528  *
19529  * Dealing with failures: If we can't allocate from the timer cache we try
19530  * allocating from dblock caches using allocb_tryhard(). In this case b_wptr
19531  * points to b_rptr.
19532  * If we can't allocate anything using allocb_tryhard(), we perform a last
19533  * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and
19534  * save the actual allocation size in b_datap.
19535  */
19536 mblk_t *
19537 tcp_timermp_alloc(int kmflags)
19538 {
19539 	mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache,
19540 	    kmflags & ~KM_PANIC);
19541 
19542 	if (mp != NULL) {
19543 		mp->b_next = mp->b_prev = NULL;
19544 		mp->b_rptr = (uchar_t *)(&mp[1]);
19545 		mp->b_wptr = NULL;
19546 		mp->b_datap = NULL;
19547 		mp->b_queue = NULL;
19548 		mp->b_cont = NULL;
19549 	} else if (kmflags & KM_PANIC) {
19550 		/*
19551 		 * Failed to allocate memory for the timer. Try allocating from
19552 		 * dblock caches.
19553 		 */
19554 		/* ipclassifier calls this from a constructor - hence no tcps */
19555 		TCP_G_STAT(tcp_timermp_allocfail);
19556 		mp = allocb_tryhard(sizeof (tcp_timer_t));
19557 		if (mp == NULL) {
19558 			size_t size = 0;
19559 			/*
19560 			 * Memory is really low. Try tryhard allocation.
19561 			 *
19562 			 * ipclassifier calls this from a constructor -
19563 			 * hence no tcps
19564 			 */
19565 			TCP_G_STAT(tcp_timermp_allocdblfail);
19566 			mp = kmem_alloc_tryhard(sizeof (mblk_t) +
19567 			    sizeof (tcp_timer_t), &size, kmflags);
19568 			mp->b_rptr = (uchar_t *)(&mp[1]);
19569 			mp->b_next = mp->b_prev = NULL;
19570 			mp->b_wptr = (uchar_t *)-1;
19571 			mp->b_datap = (dblk_t *)size;
19572 			mp->b_queue = NULL;
19573 			mp->b_cont = NULL;
19574 		}
19575 		ASSERT(mp->b_wptr != NULL);
19576 	}
19577 	/* ipclassifier calls this from a constructor - hence no tcps */
19578 	TCP_G_DBGSTAT(tcp_timermp_alloced);
19579 
19580 	return (mp);
19581 }
19582 
19583 /*
19584  * Free per-tcp timer cache.
19585  * It can only contain entries from tcp_timercache.
19586  */
19587 void
19588 tcp_timermp_free(tcp_t *tcp)
19589 {
19590 	mblk_t *mp;
19591 
19592 	while ((mp = tcp->tcp_timercache) != NULL) {
19593 		ASSERT(mp->b_wptr == NULL);
19594 		tcp->tcp_timercache = tcp->tcp_timercache->b_next;
19595 		kmem_cache_free(tcp_timercache, mp);
19596 	}
19597 }
19598 
19599 /*
19600  * Free timer event. Put it on the per-tcp timer cache if there is not too many
19601  * events there already (currently at most two events are cached).
19602  * If the event is not allocated from the timer cache, free it right away.
19603  */
19604 static void
19605 tcp_timer_free(tcp_t *tcp, mblk_t *mp)
19606 {
19607 	mblk_t *mp1 = tcp->tcp_timercache;
19608 
19609 	if (mp->b_wptr != NULL) {
19610 		/*
19611 		 * This allocation is not from a timer cache, free it right
19612 		 * away.
19613 		 */
19614 		if (mp->b_wptr != (uchar_t *)-1)
19615 			freeb(mp);
19616 		else
19617 			kmem_free(mp, (size_t)mp->b_datap);
19618 	} else if (mp1 == NULL || mp1->b_next == NULL) {
19619 		/* Cache this timer block for future allocations */
19620 		mp->b_rptr = (uchar_t *)(&mp[1]);
19621 		mp->b_next = mp1;
19622 		tcp->tcp_timercache = mp;
19623 	} else {
19624 		kmem_cache_free(tcp_timercache, mp);
19625 		TCP_DBGSTAT(tcp->tcp_tcps, tcp_timermp_freed);
19626 	}
19627 }
19628 
19629 /*
19630  * End of TCP Timers implementation.
19631  */
19632 
19633 /*
19634  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
19635  * on the specified backing STREAMS q. Note, the caller may make the
19636  * decision to call based on the tcp_t.tcp_flow_stopped value which
19637  * when check outside the q's lock is only an advisory check ...
19638  */
19639 void
19640 tcp_setqfull(tcp_t *tcp)
19641 {
19642 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19643 	conn_t	*connp = tcp->tcp_connp;
19644 
19645 	if (tcp->tcp_closed)
19646 		return;
19647 
19648 	conn_setqfull(connp, &tcp->tcp_flow_stopped);
19649 	if (tcp->tcp_flow_stopped)
19650 		TCP_STAT(tcps, tcp_flwctl_on);
19651 }
19652 
19653 void
19654 tcp_clrqfull(tcp_t *tcp)
19655 {
19656 	conn_t  *connp = tcp->tcp_connp;
19657 
19658 	if (tcp->tcp_closed)
19659 		return;
19660 	conn_clrqfull(connp, &tcp->tcp_flow_stopped);
19661 }
19662 
19663 /*
19664  * kstats related to squeues i.e. not per IP instance
19665  */
19666 static void *
19667 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp)
19668 {
19669 	kstat_t *ksp;
19670 
19671 	tcp_g_stat_t template = {
19672 		{ "tcp_timermp_alloced",	KSTAT_DATA_UINT64 },
19673 		{ "tcp_timermp_allocfail",	KSTAT_DATA_UINT64 },
19674 		{ "tcp_timermp_allocdblfail",	KSTAT_DATA_UINT64 },
19675 		{ "tcp_freelist_cleanup",	KSTAT_DATA_UINT64 },
19676 	};
19677 
19678 	ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net",
19679 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
19680 	    KSTAT_FLAG_VIRTUAL);
19681 
19682 	if (ksp == NULL)
19683 		return (NULL);
19684 
19685 	bcopy(&template, tcp_g_statp, sizeof (template));
19686 	ksp->ks_data = (void *)tcp_g_statp;
19687 
19688 	kstat_install(ksp);
19689 	return (ksp);
19690 }
19691 
19692 static void
19693 tcp_g_kstat_fini(kstat_t *ksp)
19694 {
19695 	if (ksp != NULL) {
19696 		kstat_delete(ksp);
19697 	}
19698 }
19699 
19700 
19701 static void *
19702 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp)
19703 {
19704 	kstat_t *ksp;
19705 
19706 	tcp_stat_t template = {
19707 		{ "tcp_time_wait",		KSTAT_DATA_UINT64 },
19708 		{ "tcp_time_wait_syn",		KSTAT_DATA_UINT64 },
19709 		{ "tcp_time_wait_syn_success",	KSTAT_DATA_UINT64 },
19710 		{ "tcp_detach_non_time_wait",	KSTAT_DATA_UINT64 },
19711 		{ "tcp_detach_time_wait",	KSTAT_DATA_UINT64 },
19712 		{ "tcp_time_wait_reap",		KSTAT_DATA_UINT64 },
19713 		{ "tcp_clean_death_nondetached",	KSTAT_DATA_UINT64 },
19714 		{ "tcp_reinit_calls",		KSTAT_DATA_UINT64 },
19715 		{ "tcp_eager_err1",		KSTAT_DATA_UINT64 },
19716 		{ "tcp_eager_err2",		KSTAT_DATA_UINT64 },
19717 		{ "tcp_eager_blowoff_calls",	KSTAT_DATA_UINT64 },
19718 		{ "tcp_eager_blowoff_q",	KSTAT_DATA_UINT64 },
19719 		{ "tcp_eager_blowoff_q0",	KSTAT_DATA_UINT64 },
19720 		{ "tcp_not_hard_bound",		KSTAT_DATA_UINT64 },
19721 		{ "tcp_no_listener",		KSTAT_DATA_UINT64 },
19722 		{ "tcp_found_eager",		KSTAT_DATA_UINT64 },
19723 		{ "tcp_wrong_queue",		KSTAT_DATA_UINT64 },
19724 		{ "tcp_found_eager_binding1",	KSTAT_DATA_UINT64 },
19725 		{ "tcp_found_eager_bound1",	KSTAT_DATA_UINT64 },
19726 		{ "tcp_eager_has_listener1",	KSTAT_DATA_UINT64 },
19727 		{ "tcp_open_alloc",		KSTAT_DATA_UINT64 },
19728 		{ "tcp_open_detached_alloc",	KSTAT_DATA_UINT64 },
19729 		{ "tcp_rput_time_wait",		KSTAT_DATA_UINT64 },
19730 		{ "tcp_listendrop",		KSTAT_DATA_UINT64 },
19731 		{ "tcp_listendropq0",		KSTAT_DATA_UINT64 },
19732 		{ "tcp_wrong_rq",		KSTAT_DATA_UINT64 },
19733 		{ "tcp_rsrv_calls",		KSTAT_DATA_UINT64 },
19734 		{ "tcp_eagerfree2",		KSTAT_DATA_UINT64 },
19735 		{ "tcp_eagerfree3",		KSTAT_DATA_UINT64 },
19736 		{ "tcp_eagerfree4",		KSTAT_DATA_UINT64 },
19737 		{ "tcp_eagerfree5",		KSTAT_DATA_UINT64 },
19738 		{ "tcp_timewait_syn_fail",	KSTAT_DATA_UINT64 },
19739 		{ "tcp_listen_badflags",	KSTAT_DATA_UINT64 },
19740 		{ "tcp_timeout_calls",		KSTAT_DATA_UINT64 },
19741 		{ "tcp_timeout_cached_alloc",	KSTAT_DATA_UINT64 },
19742 		{ "tcp_timeout_cancel_reqs",	KSTAT_DATA_UINT64 },
19743 		{ "tcp_timeout_canceled",	KSTAT_DATA_UINT64 },
19744 		{ "tcp_timermp_freed",		KSTAT_DATA_UINT64 },
19745 		{ "tcp_push_timer_cnt",		KSTAT_DATA_UINT64 },
19746 		{ "tcp_ack_timer_cnt",		KSTAT_DATA_UINT64 },
19747 		{ "tcp_wsrv_called",		KSTAT_DATA_UINT64 },
19748 		{ "tcp_flwctl_on",		KSTAT_DATA_UINT64 },
19749 		{ "tcp_timer_fire_early",	KSTAT_DATA_UINT64 },
19750 		{ "tcp_timer_fire_miss",	KSTAT_DATA_UINT64 },
19751 		{ "tcp_rput_v6_error",		KSTAT_DATA_UINT64 },
19752 		{ "tcp_zcopy_on",		KSTAT_DATA_UINT64 },
19753 		{ "tcp_zcopy_off",		KSTAT_DATA_UINT64 },
19754 		{ "tcp_zcopy_backoff",		KSTAT_DATA_UINT64 },
19755 		{ "tcp_fusion_flowctl",		KSTAT_DATA_UINT64 },
19756 		{ "tcp_fusion_backenabled",	KSTAT_DATA_UINT64 },
19757 		{ "tcp_fusion_urg",		KSTAT_DATA_UINT64 },
19758 		{ "tcp_fusion_putnext",		KSTAT_DATA_UINT64 },
19759 		{ "tcp_fusion_unfusable",	KSTAT_DATA_UINT64 },
19760 		{ "tcp_fusion_aborted",		KSTAT_DATA_UINT64 },
19761 		{ "tcp_fusion_unqualified",	KSTAT_DATA_UINT64 },
19762 		{ "tcp_fusion_rrw_busy",	KSTAT_DATA_UINT64 },
19763 		{ "tcp_fusion_rrw_msgcnt",	KSTAT_DATA_UINT64 },
19764 		{ "tcp_fusion_rrw_plugged",	KSTAT_DATA_UINT64 },
19765 		{ "tcp_in_ack_unsent_drop",	KSTAT_DATA_UINT64 },
19766 		{ "tcp_sock_fallback",		KSTAT_DATA_UINT64 },
19767 		{ "tcp_lso_enabled",		KSTAT_DATA_UINT64 },
19768 		{ "tcp_lso_disabled",		KSTAT_DATA_UINT64 },
19769 		{ "tcp_lso_times",		KSTAT_DATA_UINT64 },
19770 		{ "tcp_lso_pkt_out",		KSTAT_DATA_UINT64 },
19771 	};
19772 
19773 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net",
19774 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
19775 	    KSTAT_FLAG_VIRTUAL, stackid);
19776 
19777 	if (ksp == NULL)
19778 		return (NULL);
19779 
19780 	bcopy(&template, tcps_statisticsp, sizeof (template));
19781 	ksp->ks_data = (void *)tcps_statisticsp;
19782 	ksp->ks_private = (void *)(uintptr_t)stackid;
19783 
19784 	kstat_install(ksp);
19785 	return (ksp);
19786 }
19787 
19788 static void
19789 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
19790 {
19791 	if (ksp != NULL) {
19792 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
19793 		kstat_delete_netstack(ksp, stackid);
19794 	}
19795 }
19796 
19797 /*
19798  * TCP Kstats implementation
19799  */
19800 static void *
19801 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps)
19802 {
19803 	kstat_t	*ksp;
19804 
19805 	tcp_named_kstat_t template = {
19806 		{ "rtoAlgorithm",	KSTAT_DATA_INT32, 0 },
19807 		{ "rtoMin",		KSTAT_DATA_INT32, 0 },
19808 		{ "rtoMax",		KSTAT_DATA_INT32, 0 },
19809 		{ "maxConn",		KSTAT_DATA_INT32, 0 },
19810 		{ "activeOpens",	KSTAT_DATA_UINT32, 0 },
19811 		{ "passiveOpens",	KSTAT_DATA_UINT32, 0 },
19812 		{ "attemptFails",	KSTAT_DATA_UINT32, 0 },
19813 		{ "estabResets",	KSTAT_DATA_UINT32, 0 },
19814 		{ "currEstab",		KSTAT_DATA_UINT32, 0 },
19815 		{ "inSegs",		KSTAT_DATA_UINT64, 0 },
19816 		{ "outSegs",		KSTAT_DATA_UINT64, 0 },
19817 		{ "retransSegs",	KSTAT_DATA_UINT32, 0 },
19818 		{ "connTableSize",	KSTAT_DATA_INT32, 0 },
19819 		{ "outRsts",		KSTAT_DATA_UINT32, 0 },
19820 		{ "outDataSegs",	KSTAT_DATA_UINT32, 0 },
19821 		{ "outDataBytes",	KSTAT_DATA_UINT32, 0 },
19822 		{ "retransBytes",	KSTAT_DATA_UINT32, 0 },
19823 		{ "outAck",		KSTAT_DATA_UINT32, 0 },
19824 		{ "outAckDelayed",	KSTAT_DATA_UINT32, 0 },
19825 		{ "outUrg",		KSTAT_DATA_UINT32, 0 },
19826 		{ "outWinUpdate",	KSTAT_DATA_UINT32, 0 },
19827 		{ "outWinProbe",	KSTAT_DATA_UINT32, 0 },
19828 		{ "outControl",		KSTAT_DATA_UINT32, 0 },
19829 		{ "outFastRetrans",	KSTAT_DATA_UINT32, 0 },
19830 		{ "inAckSegs",		KSTAT_DATA_UINT32, 0 },
19831 		{ "inAckBytes",		KSTAT_DATA_UINT32, 0 },
19832 		{ "inDupAck",		KSTAT_DATA_UINT32, 0 },
19833 		{ "inAckUnsent",	KSTAT_DATA_UINT32, 0 },
19834 		{ "inDataInorderSegs",	KSTAT_DATA_UINT32, 0 },
19835 		{ "inDataInorderBytes",	KSTAT_DATA_UINT32, 0 },
19836 		{ "inDataUnorderSegs",	KSTAT_DATA_UINT32, 0 },
19837 		{ "inDataUnorderBytes",	KSTAT_DATA_UINT32, 0 },
19838 		{ "inDataDupSegs",	KSTAT_DATA_UINT32, 0 },
19839 		{ "inDataDupBytes",	KSTAT_DATA_UINT32, 0 },
19840 		{ "inDataPartDupSegs",	KSTAT_DATA_UINT32, 0 },
19841 		{ "inDataPartDupBytes",	KSTAT_DATA_UINT32, 0 },
19842 		{ "inDataPastWinSegs",	KSTAT_DATA_UINT32, 0 },
19843 		{ "inDataPastWinBytes",	KSTAT_DATA_UINT32, 0 },
19844 		{ "inWinProbe",		KSTAT_DATA_UINT32, 0 },
19845 		{ "inWinUpdate",	KSTAT_DATA_UINT32, 0 },
19846 		{ "inClosed",		KSTAT_DATA_UINT32, 0 },
19847 		{ "rttUpdate",		KSTAT_DATA_UINT32, 0 },
19848 		{ "rttNoUpdate",	KSTAT_DATA_UINT32, 0 },
19849 		{ "timRetrans",		KSTAT_DATA_UINT32, 0 },
19850 		{ "timRetransDrop",	KSTAT_DATA_UINT32, 0 },
19851 		{ "timKeepalive",	KSTAT_DATA_UINT32, 0 },
19852 		{ "timKeepaliveProbe",	KSTAT_DATA_UINT32, 0 },
19853 		{ "timKeepaliveDrop",	KSTAT_DATA_UINT32, 0 },
19854 		{ "listenDrop",		KSTAT_DATA_UINT32, 0 },
19855 		{ "listenDropQ0",	KSTAT_DATA_UINT32, 0 },
19856 		{ "halfOpenDrop",	KSTAT_DATA_UINT32, 0 },
19857 		{ "outSackRetransSegs",	KSTAT_DATA_UINT32, 0 },
19858 		{ "connTableSize6",	KSTAT_DATA_INT32, 0 }
19859 	};
19860 
19861 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2",
19862 	    KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid);
19863 
19864 	if (ksp == NULL)
19865 		return (NULL);
19866 
19867 	template.rtoAlgorithm.value.ui32 = 4;
19868 	template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min;
19869 	template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max;
19870 	template.maxConn.value.i32 = -1;
19871 
19872 	bcopy(&template, ksp->ks_data, sizeof (template));
19873 	ksp->ks_update = tcp_kstat_update;
19874 	ksp->ks_private = (void *)(uintptr_t)stackid;
19875 
19876 	kstat_install(ksp);
19877 	return (ksp);
19878 }
19879 
19880 static void
19881 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
19882 {
19883 	if (ksp != NULL) {
19884 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
19885 		kstat_delete_netstack(ksp, stackid);
19886 	}
19887 }
19888 
19889 static int
19890 tcp_kstat_update(kstat_t *kp, int rw)
19891 {
19892 	tcp_named_kstat_t *tcpkp;
19893 	tcp_t		*tcp;
19894 	connf_t		*connfp;
19895 	conn_t		*connp;
19896 	int 		i;
19897 	netstackid_t	stackid = (netstackid_t)(uintptr_t)kp->ks_private;
19898 	netstack_t	*ns;
19899 	tcp_stack_t	*tcps;
19900 	ip_stack_t	*ipst;
19901 
19902 	if ((kp == NULL) || (kp->ks_data == NULL))
19903 		return (EIO);
19904 
19905 	if (rw == KSTAT_WRITE)
19906 		return (EACCES);
19907 
19908 	ns = netstack_find_by_stackid(stackid);
19909 	if (ns == NULL)
19910 		return (-1);
19911 	tcps = ns->netstack_tcp;
19912 	if (tcps == NULL) {
19913 		netstack_rele(ns);
19914 		return (-1);
19915 	}
19916 
19917 	tcpkp = (tcp_named_kstat_t *)kp->ks_data;
19918 
19919 	tcpkp->currEstab.value.ui32 = 0;
19920 
19921 	ipst = ns->netstack_ip;
19922 
19923 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
19924 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
19925 		connp = NULL;
19926 		while ((connp =
19927 		    ipcl_get_next_conn(connfp, connp, IPCL_TCPCONN)) != NULL) {
19928 			tcp = connp->conn_tcp;
19929 			switch (tcp_snmp_state(tcp)) {
19930 			case MIB2_TCP_established:
19931 			case MIB2_TCP_closeWait:
19932 				tcpkp->currEstab.value.ui32++;
19933 				break;
19934 			}
19935 		}
19936 	}
19937 
19938 	tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens;
19939 	tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens;
19940 	tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails;
19941 	tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets;
19942 	tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs;
19943 	tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs;
19944 	tcpkp->retransSegs.value.ui32 =	tcps->tcps_mib.tcpRetransSegs;
19945 	tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize;
19946 	tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts;
19947 	tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs;
19948 	tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes;
19949 	tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes;
19950 	tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck;
19951 	tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed;
19952 	tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg;
19953 	tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate;
19954 	tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe;
19955 	tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl;
19956 	tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans;
19957 	tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs;
19958 	tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes;
19959 	tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck;
19960 	tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent;
19961 	tcpkp->inDataInorderSegs.value.ui32 =
19962 	    tcps->tcps_mib.tcpInDataInorderSegs;
19963 	tcpkp->inDataInorderBytes.value.ui32 =
19964 	    tcps->tcps_mib.tcpInDataInorderBytes;
19965 	tcpkp->inDataUnorderSegs.value.ui32 =
19966 	    tcps->tcps_mib.tcpInDataUnorderSegs;
19967 	tcpkp->inDataUnorderBytes.value.ui32 =
19968 	    tcps->tcps_mib.tcpInDataUnorderBytes;
19969 	tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs;
19970 	tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes;
19971 	tcpkp->inDataPartDupSegs.value.ui32 =
19972 	    tcps->tcps_mib.tcpInDataPartDupSegs;
19973 	tcpkp->inDataPartDupBytes.value.ui32 =
19974 	    tcps->tcps_mib.tcpInDataPartDupBytes;
19975 	tcpkp->inDataPastWinSegs.value.ui32 =
19976 	    tcps->tcps_mib.tcpInDataPastWinSegs;
19977 	tcpkp->inDataPastWinBytes.value.ui32 =
19978 	    tcps->tcps_mib.tcpInDataPastWinBytes;
19979 	tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe;
19980 	tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate;
19981 	tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed;
19982 	tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate;
19983 	tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate;
19984 	tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans;
19985 	tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop;
19986 	tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive;
19987 	tcpkp->timKeepaliveProbe.value.ui32 =
19988 	    tcps->tcps_mib.tcpTimKeepaliveProbe;
19989 	tcpkp->timKeepaliveDrop.value.ui32 =
19990 	    tcps->tcps_mib.tcpTimKeepaliveDrop;
19991 	tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop;
19992 	tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0;
19993 	tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop;
19994 	tcpkp->outSackRetransSegs.value.ui32 =
19995 	    tcps->tcps_mib.tcpOutSackRetransSegs;
19996 	tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize;
19997 
19998 	netstack_rele(ns);
19999 	return (0);
20000 }
20001 
20002 static int
20003 tcp_squeue_switch(int val)
20004 {
20005 	int rval = SQ_FILL;
20006 
20007 	switch (val) {
20008 	case 1:
20009 		rval = SQ_NODRAIN;
20010 		break;
20011 	case 2:
20012 		rval = SQ_PROCESS;
20013 		break;
20014 	default:
20015 		break;
20016 	}
20017 	return (rval);
20018 }
20019 
20020 /*
20021  * This is called once for each squeue - globally for all stack
20022  * instances.
20023  */
20024 static void
20025 tcp_squeue_add(squeue_t *sqp)
20026 {
20027 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
20028 	    sizeof (tcp_squeue_priv_t), KM_SLEEP);
20029 
20030 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
20031 	tcp_time_wait->tcp_time_wait_tid =
20032 	    timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp,
20033 	    TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION,
20034 	    CALLOUT_FLAG_ROUNDUP);
20035 	if (tcp_free_list_max_cnt == 0) {
20036 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
20037 		    max_ncpus : boot_max_ncpus);
20038 
20039 		/*
20040 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
20041 		 */
20042 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
20043 		    (tcp_ncpus * sizeof (tcp_t) * 100);
20044 	}
20045 	tcp_time_wait->tcp_free_list_cnt = 0;
20046 }
20047 
20048 /*
20049  * On a labeled system we have some protocols above TCP, such as RPC, which
20050  * appear to assume that every mblk in a chain has a db_credp.
20051  */
20052 static void
20053 tcp_setcred_data(mblk_t *mp, ip_recv_attr_t *ira)
20054 {
20055 	ASSERT(is_system_labeled());
20056 	ASSERT(ira->ira_cred != NULL);
20057 
20058 	while (mp != NULL) {
20059 		mblk_setcred(mp, ira->ira_cred, NOPID);
20060 		mp = mp->b_cont;
20061 	}
20062 }
20063 
20064 static int
20065 tcp_bind_select_lport(tcp_t *tcp, in_port_t *requested_port_ptr,
20066     boolean_t bind_to_req_port_only, cred_t *cr)
20067 {
20068 	in_port_t	mlp_port;
20069 	mlp_type_t 	addrtype, mlptype;
20070 	boolean_t	user_specified;
20071 	in_port_t	allocated_port;
20072 	in_port_t	requested_port = *requested_port_ptr;
20073 	conn_t		*connp = tcp->tcp_connp;
20074 	zone_t		*zone;
20075 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20076 	in6_addr_t	v6addr = connp->conn_laddr_v6;
20077 
20078 	/*
20079 	 * XXX It's up to the caller to specify bind_to_req_port_only or not.
20080 	 */
20081 	ASSERT(cr != NULL);
20082 
20083 	/*
20084 	 * Get a valid port (within the anonymous range and should not
20085 	 * be a privileged one) to use if the user has not given a port.
20086 	 * If multiple threads are here, they may all start with
20087 	 * with the same initial port. But, it should be fine as long as
20088 	 * tcp_bindi will ensure that no two threads will be assigned
20089 	 * the same port.
20090 	 *
20091 	 * NOTE: XXX If a privileged process asks for an anonymous port, we
20092 	 * still check for ports only in the range > tcp_smallest_non_priv_port,
20093 	 * unless TCP_ANONPRIVBIND option is set.
20094 	 */
20095 	mlptype = mlptSingle;
20096 	mlp_port = requested_port;
20097 	if (requested_port == 0) {
20098 		requested_port = connp->conn_anon_priv_bind ?
20099 		    tcp_get_next_priv_port(tcp) :
20100 		    tcp_update_next_port(tcps->tcps_next_port_to_try,
20101 		    tcp, B_TRUE);
20102 		if (requested_port == 0) {
20103 			return (-TNOADDR);
20104 		}
20105 		user_specified = B_FALSE;
20106 
20107 		/*
20108 		 * If the user went through one of the RPC interfaces to create
20109 		 * this socket and RPC is MLP in this zone, then give him an
20110 		 * anonymous MLP.
20111 		 */
20112 		if (connp->conn_anon_mlp && is_system_labeled()) {
20113 			zone = crgetzone(cr);
20114 			addrtype = tsol_mlp_addr_type(
20115 			    connp->conn_allzones ? ALL_ZONES : zone->zone_id,
20116 			    IPV6_VERSION, &v6addr,
20117 			    tcps->tcps_netstack->netstack_ip);
20118 			if (addrtype == mlptSingle) {
20119 				return (-TNOADDR);
20120 			}
20121 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
20122 			    PMAPPORT, addrtype);
20123 			mlp_port = PMAPPORT;
20124 		}
20125 	} else {
20126 		int i;
20127 		boolean_t priv = B_FALSE;
20128 
20129 		/*
20130 		 * If the requested_port is in the well-known privileged range,
20131 		 * verify that the stream was opened by a privileged user.
20132 		 * Note: No locks are held when inspecting tcp_g_*epriv_ports
20133 		 * but instead the code relies on:
20134 		 * - the fact that the address of the array and its size never
20135 		 *   changes
20136 		 * - the atomic assignment of the elements of the array
20137 		 */
20138 		if (requested_port < tcps->tcps_smallest_nonpriv_port) {
20139 			priv = B_TRUE;
20140 		} else {
20141 			for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
20142 				if (requested_port ==
20143 				    tcps->tcps_g_epriv_ports[i]) {
20144 					priv = B_TRUE;
20145 					break;
20146 				}
20147 			}
20148 		}
20149 		if (priv) {
20150 			if (secpolicy_net_privaddr(cr, requested_port,
20151 			    IPPROTO_TCP) != 0) {
20152 				if (connp->conn_debug) {
20153 					(void) strlog(TCP_MOD_ID, 0, 1,
20154 					    SL_ERROR|SL_TRACE,
20155 					    "tcp_bind: no priv for port %d",
20156 					    requested_port);
20157 				}
20158 				return (-TACCES);
20159 			}
20160 		}
20161 		user_specified = B_TRUE;
20162 
20163 		connp = tcp->tcp_connp;
20164 		if (is_system_labeled()) {
20165 			zone = crgetzone(cr);
20166 			addrtype = tsol_mlp_addr_type(
20167 			    connp->conn_allzones ? ALL_ZONES : zone->zone_id,
20168 			    IPV6_VERSION, &v6addr,
20169 			    tcps->tcps_netstack->netstack_ip);
20170 			if (addrtype == mlptSingle) {
20171 				return (-TNOADDR);
20172 			}
20173 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
20174 			    requested_port, addrtype);
20175 		}
20176 	}
20177 
20178 	if (mlptype != mlptSingle) {
20179 		if (secpolicy_net_bindmlp(cr) != 0) {
20180 			if (connp->conn_debug) {
20181 				(void) strlog(TCP_MOD_ID, 0, 1,
20182 				    SL_ERROR|SL_TRACE,
20183 				    "tcp_bind: no priv for multilevel port %d",
20184 				    requested_port);
20185 			}
20186 			return (-TACCES);
20187 		}
20188 
20189 		/*
20190 		 * If we're specifically binding a shared IP address and the
20191 		 * port is MLP on shared addresses, then check to see if this
20192 		 * zone actually owns the MLP.  Reject if not.
20193 		 */
20194 		if (mlptype == mlptShared && addrtype == mlptShared) {
20195 			/*
20196 			 * No need to handle exclusive-stack zones since
20197 			 * ALL_ZONES only applies to the shared stack.
20198 			 */
20199 			zoneid_t mlpzone;
20200 
20201 			mlpzone = tsol_mlp_findzone(IPPROTO_TCP,
20202 			    htons(mlp_port));
20203 			if (connp->conn_zoneid != mlpzone) {
20204 				if (connp->conn_debug) {
20205 					(void) strlog(TCP_MOD_ID, 0, 1,
20206 					    SL_ERROR|SL_TRACE,
20207 					    "tcp_bind: attempt to bind port "
20208 					    "%d on shared addr in zone %d "
20209 					    "(should be %d)",
20210 					    mlp_port, connp->conn_zoneid,
20211 					    mlpzone);
20212 				}
20213 				return (-TACCES);
20214 			}
20215 		}
20216 
20217 		if (!user_specified) {
20218 			int err;
20219 			err = tsol_mlp_anon(zone, mlptype, connp->conn_proto,
20220 			    requested_port, B_TRUE);
20221 			if (err != 0) {
20222 				if (connp->conn_debug) {
20223 					(void) strlog(TCP_MOD_ID, 0, 1,
20224 					    SL_ERROR|SL_TRACE,
20225 					    "tcp_bind: cannot establish anon "
20226 					    "MLP for port %d",
20227 					    requested_port);
20228 				}
20229 				return (err);
20230 			}
20231 			connp->conn_anon_port = B_TRUE;
20232 		}
20233 		connp->conn_mlp_type = mlptype;
20234 	}
20235 
20236 	allocated_port = tcp_bindi(tcp, requested_port, &v6addr,
20237 	    connp->conn_reuseaddr, B_FALSE, bind_to_req_port_only,
20238 	    user_specified);
20239 
20240 	if (allocated_port == 0) {
20241 		connp->conn_mlp_type = mlptSingle;
20242 		if (connp->conn_anon_port) {
20243 			connp->conn_anon_port = B_FALSE;
20244 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_proto,
20245 			    requested_port, B_FALSE);
20246 		}
20247 		if (bind_to_req_port_only) {
20248 			if (connp->conn_debug) {
20249 				(void) strlog(TCP_MOD_ID, 0, 1,
20250 				    SL_ERROR|SL_TRACE,
20251 				    "tcp_bind: requested addr busy");
20252 			}
20253 			return (-TADDRBUSY);
20254 		} else {
20255 			/* If we are out of ports, fail the bind. */
20256 			if (connp->conn_debug) {
20257 				(void) strlog(TCP_MOD_ID, 0, 1,
20258 				    SL_ERROR|SL_TRACE,
20259 				    "tcp_bind: out of ports?");
20260 			}
20261 			return (-TNOADDR);
20262 		}
20263 	}
20264 
20265 	/* Pass the allocated port back */
20266 	*requested_port_ptr = allocated_port;
20267 	return (0);
20268 }
20269 
20270 /*
20271  * Check the address and check/pick a local port number.
20272  */
20273 static int
20274 tcp_bind_check(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,
20275     boolean_t bind_to_req_port_only)
20276 {
20277 	tcp_t	*tcp = connp->conn_tcp;
20278 	sin_t	*sin;
20279 	sin6_t  *sin6;
20280 	in_port_t	requested_port;
20281 	ipaddr_t	v4addr;
20282 	in6_addr_t	v6addr;
20283 	ip_laddr_t	laddr_type = IPVL_UNICAST_UP;	/* INADDR_ANY */
20284 	zoneid_t	zoneid = IPCL_ZONEID(connp);
20285 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
20286 	uint_t		scopeid = 0;
20287 	int		error = 0;
20288 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
20289 
20290 	ASSERT((uintptr_t)len <= (uintptr_t)INT_MAX);
20291 
20292 	if (tcp->tcp_state == TCPS_BOUND) {
20293 		return (0);
20294 	} else if (tcp->tcp_state > TCPS_BOUND) {
20295 		if (connp->conn_debug) {
20296 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
20297 			    "tcp_bind: bad state, %d", tcp->tcp_state);
20298 		}
20299 		return (-TOUTSTATE);
20300 	}
20301 
20302 	ASSERT(sa != NULL && len != 0);
20303 
20304 	if (!OK_32PTR((char *)sa)) {
20305 		if (connp->conn_debug) {
20306 			(void) strlog(TCP_MOD_ID, 0, 1,
20307 			    SL_ERROR|SL_TRACE,
20308 			    "tcp_bind: bad address parameter, "
20309 			    "address %p, len %d",
20310 			    (void *)sa, len);
20311 		}
20312 		return (-TPROTO);
20313 	}
20314 
20315 	error = proto_verify_ip_addr(connp->conn_family, sa, len);
20316 	if (error != 0) {
20317 		return (error);
20318 	}
20319 
20320 	switch (len) {
20321 	case sizeof (sin_t):	/* Complete IPv4 address */
20322 		sin = (sin_t *)sa;
20323 		requested_port = ntohs(sin->sin_port);
20324 		v4addr = sin->sin_addr.s_addr;
20325 		IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr);
20326 		if (v4addr != INADDR_ANY) {
20327 			laddr_type = ip_laddr_verify_v4(v4addr, zoneid, ipst,
20328 			    B_FALSE);
20329 		}
20330 		break;
20331 
20332 	case sizeof (sin6_t): /* Complete IPv6 address */
20333 		sin6 = (sin6_t *)sa;
20334 		v6addr = sin6->sin6_addr;
20335 		requested_port = ntohs(sin6->sin6_port);
20336 		if (IN6_IS_ADDR_V4MAPPED(&v6addr)) {
20337 			if (connp->conn_ipv6_v6only)
20338 				return (EADDRNOTAVAIL);
20339 
20340 			IN6_V4MAPPED_TO_IPADDR(&v6addr, v4addr);
20341 			if (v4addr != INADDR_ANY) {
20342 				laddr_type = ip_laddr_verify_v4(v4addr,
20343 				    zoneid, ipst, B_FALSE);
20344 			}
20345 		} else {
20346 			if (!IN6_IS_ADDR_UNSPECIFIED(&v6addr)) {
20347 				if (IN6_IS_ADDR_LINKSCOPE(&v6addr))
20348 					scopeid = sin6->sin6_scope_id;
20349 				laddr_type = ip_laddr_verify_v6(&v6addr,
20350 				    zoneid, ipst, B_FALSE, scopeid);
20351 			}
20352 		}
20353 		break;
20354 
20355 	default:
20356 		if (connp->conn_debug) {
20357 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
20358 			    "tcp_bind: bad address length, %d", len);
20359 		}
20360 		return (EAFNOSUPPORT);
20361 		/* return (-TBADADDR); */
20362 	}
20363 
20364 	/* Is the local address a valid unicast address? */
20365 	if (laddr_type == IPVL_BAD)
20366 		return (EADDRNOTAVAIL);
20367 
20368 	connp->conn_bound_addr_v6 = v6addr;
20369 	if (scopeid != 0) {
20370 		ixa->ixa_flags |= IXAF_SCOPEID_SET;
20371 		ixa->ixa_scopeid = scopeid;
20372 		connp->conn_incoming_ifindex = scopeid;
20373 	} else {
20374 		ixa->ixa_flags &= ~IXAF_SCOPEID_SET;
20375 		connp->conn_incoming_ifindex = connp->conn_bound_if;
20376 	}
20377 
20378 	connp->conn_laddr_v6 = v6addr;
20379 	connp->conn_saddr_v6 = v6addr;
20380 
20381 	bind_to_req_port_only = requested_port != 0 && bind_to_req_port_only;
20382 
20383 	error = tcp_bind_select_lport(tcp, &requested_port,
20384 	    bind_to_req_port_only, cr);
20385 	if (error != 0) {
20386 		connp->conn_laddr_v6 = ipv6_all_zeros;
20387 		connp->conn_saddr_v6 = ipv6_all_zeros;
20388 		connp->conn_bound_addr_v6 = ipv6_all_zeros;
20389 	}
20390 	return (error);
20391 }
20392 
20393 /*
20394  * Return unix error is tli error is TSYSERR, otherwise return a negative
20395  * tli error.
20396  */
20397 int
20398 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,
20399     boolean_t bind_to_req_port_only)
20400 {
20401 	int error;
20402 	tcp_t *tcp = connp->conn_tcp;
20403 
20404 	if (tcp->tcp_state >= TCPS_BOUND) {
20405 		if (connp->conn_debug) {
20406 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
20407 			    "tcp_bind: bad state, %d", tcp->tcp_state);
20408 		}
20409 		return (-TOUTSTATE);
20410 	}
20411 
20412 	error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only);
20413 	if (error != 0)
20414 		return (error);
20415 
20416 	ASSERT(tcp->tcp_state == TCPS_BOUND);
20417 	tcp->tcp_conn_req_max = 0;
20418 	return (0);
20419 }
20420 
20421 int
20422 tcp_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa,
20423     socklen_t len, cred_t *cr)
20424 {
20425 	int 		error;
20426 	conn_t		*connp = (conn_t *)proto_handle;
20427 	squeue_t	*sqp = connp->conn_sqp;
20428 
20429 	/* All Solaris components should pass a cred for this operation. */
20430 	ASSERT(cr != NULL);
20431 
20432 	ASSERT(sqp != NULL);
20433 	ASSERT(connp->conn_upper_handle != NULL);
20434 
20435 	error = squeue_synch_enter(sqp, connp, NULL);
20436 	if (error != 0) {
20437 		/* failed to enter */
20438 		return (ENOSR);
20439 	}
20440 
20441 	/* binding to a NULL address really means unbind */
20442 	if (sa == NULL) {
20443 		if (connp->conn_tcp->tcp_state < TCPS_LISTEN)
20444 			error = tcp_do_unbind(connp);
20445 		else
20446 			error = EINVAL;
20447 	} else {
20448 		error = tcp_do_bind(connp, sa, len, cr, B_TRUE);
20449 	}
20450 
20451 	squeue_synch_exit(sqp, connp);
20452 
20453 	if (error < 0) {
20454 		if (error == -TOUTSTATE)
20455 			error = EINVAL;
20456 		else
20457 			error = proto_tlitosyserr(-error);
20458 	}
20459 
20460 	return (error);
20461 }
20462 
20463 /*
20464  * If the return value from this function is positive, it's a UNIX error.
20465  * Otherwise, if it's negative, then the absolute value is a TLI error.
20466  * the TPI routine tcp_tpi_connect() is a wrapper function for this.
20467  */
20468 int
20469 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len,
20470     cred_t *cr, pid_t pid)
20471 {
20472 	tcp_t		*tcp = connp->conn_tcp;
20473 	sin_t		*sin = (sin_t *)sa;
20474 	sin6_t		*sin6 = (sin6_t *)sa;
20475 	ipaddr_t	*dstaddrp;
20476 	in_port_t	dstport;
20477 	uint_t		srcid;
20478 	int		error;
20479 	uint32_t	mss;
20480 	mblk_t		*syn_mp;
20481 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20482 	int32_t		oldstate;
20483 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
20484 
20485 	oldstate = tcp->tcp_state;
20486 
20487 	switch (len) {
20488 	default:
20489 		/*
20490 		 * Should never happen
20491 		 */
20492 		return (EINVAL);
20493 
20494 	case sizeof (sin_t):
20495 		sin = (sin_t *)sa;
20496 		if (sin->sin_port == 0) {
20497 			return (-TBADADDR);
20498 		}
20499 		if (connp->conn_ipv6_v6only) {
20500 			return (EAFNOSUPPORT);
20501 		}
20502 		break;
20503 
20504 	case sizeof (sin6_t):
20505 		sin6 = (sin6_t *)sa;
20506 		if (sin6->sin6_port == 0) {
20507 			return (-TBADADDR);
20508 		}
20509 		break;
20510 	}
20511 	/*
20512 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
20513 	 * make sure that the conn_ipversion is IPV4_VERSION.  We
20514 	 * need to this before we call tcp_bindi() so that the port lookup
20515 	 * code will look for ports in the correct port space (IPv4 and
20516 	 * IPv6 have separate port spaces).
20517 	 */
20518 	if (connp->conn_family == AF_INET6 &&
20519 	    connp->conn_ipversion == IPV6_VERSION &&
20520 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
20521 		if (connp->conn_ipv6_v6only)
20522 			return (EADDRNOTAVAIL);
20523 
20524 		connp->conn_ipversion = IPV4_VERSION;
20525 	}
20526 
20527 	switch (tcp->tcp_state) {
20528 	case TCPS_LISTEN:
20529 		/*
20530 		 * Listening sockets are not allowed to issue connect().
20531 		 */
20532 		if (IPCL_IS_NONSTR(connp))
20533 			return (EOPNOTSUPP);
20534 		/* FALLTHRU */
20535 	case TCPS_IDLE:
20536 		/*
20537 		 * We support quick connect, refer to comments in
20538 		 * tcp_connect_*()
20539 		 */
20540 		/* FALLTHRU */
20541 	case TCPS_BOUND:
20542 		break;
20543 	default:
20544 		return (-TOUTSTATE);
20545 	}
20546 
20547 	/*
20548 	 * We update our cred/cpid based on the caller of connect
20549 	 */
20550 	if (connp->conn_cred != cr) {
20551 		crhold(cr);
20552 		crfree(connp->conn_cred);
20553 		connp->conn_cred = cr;
20554 	}
20555 	connp->conn_cpid = pid;
20556 
20557 	/* Cache things in the ixa without any refhold */
20558 	ixa->ixa_cred = cr;
20559 	ixa->ixa_cpid = pid;
20560 	if (is_system_labeled()) {
20561 		/* We need to restart with a label based on the cred */
20562 		ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred);
20563 	}
20564 
20565 	if (connp->conn_family == AF_INET6) {
20566 		if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
20567 			error = tcp_connect_ipv6(tcp, &sin6->sin6_addr,
20568 			    sin6->sin6_port, sin6->sin6_flowinfo,
20569 			    sin6->__sin6_src_id, sin6->sin6_scope_id);
20570 		} else {
20571 			/*
20572 			 * Destination adress is mapped IPv6 address.
20573 			 * Source bound address should be unspecified or
20574 			 * IPv6 mapped address as well.
20575 			 */
20576 			if (!IN6_IS_ADDR_UNSPECIFIED(
20577 			    &connp->conn_bound_addr_v6) &&
20578 			    !IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) {
20579 				return (EADDRNOTAVAIL);
20580 			}
20581 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
20582 			dstport = sin6->sin6_port;
20583 			srcid = sin6->__sin6_src_id;
20584 			error = tcp_connect_ipv4(tcp, dstaddrp, dstport,
20585 			    srcid);
20586 		}
20587 	} else {
20588 		dstaddrp = &sin->sin_addr.s_addr;
20589 		dstport = sin->sin_port;
20590 		srcid = 0;
20591 		error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid);
20592 	}
20593 
20594 	if (error != 0)
20595 		goto connect_failed;
20596 
20597 	CL_INET_CONNECT(connp, B_TRUE, error);
20598 	if (error != 0)
20599 		goto connect_failed;
20600 
20601 	/* connect succeeded */
20602 	BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
20603 	tcp->tcp_active_open = 1;
20604 
20605 	/*
20606 	 * tcp_set_destination() does not adjust for TCP/IP header length.
20607 	 */
20608 	mss = tcp->tcp_mss - connp->conn_ht_iphc_len;
20609 
20610 	/*
20611 	 * Just make sure our rwnd is at least rcvbuf * MSS large, and round up
20612 	 * to the nearest MSS.
20613 	 *
20614 	 * We do the round up here because we need to get the interface MTU
20615 	 * first before we can do the round up.
20616 	 */
20617 	tcp->tcp_rwnd = connp->conn_rcvbuf;
20618 	tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
20619 	    tcps->tcps_recv_hiwat_minmss * mss);
20620 	connp->conn_rcvbuf = tcp->tcp_rwnd;
20621 	tcp_set_ws_value(tcp);
20622 	tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
20623 	if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always)
20624 		tcp->tcp_snd_ws_ok = B_TRUE;
20625 
20626 	/*
20627 	 * Set tcp_snd_ts_ok to true
20628 	 * so that tcp_xmit_mp will
20629 	 * include the timestamp
20630 	 * option in the SYN segment.
20631 	 */
20632 	if (tcps->tcps_tstamp_always ||
20633 	    (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) {
20634 		tcp->tcp_snd_ts_ok = B_TRUE;
20635 	}
20636 
20637 	/*
20638 	 * tcp_snd_sack_ok can be set in
20639 	 * tcp_set_destination() if the sack metric
20640 	 * is set.  So check it here also.
20641 	 */
20642 	if (tcps->tcps_sack_permitted == 2 ||
20643 	    tcp->tcp_snd_sack_ok) {
20644 		if (tcp->tcp_sack_info == NULL) {
20645 			tcp->tcp_sack_info = kmem_cache_alloc(
20646 			    tcp_sack_info_cache, KM_SLEEP);
20647 		}
20648 		tcp->tcp_snd_sack_ok = B_TRUE;
20649 	}
20650 
20651 	/*
20652 	 * Should we use ECN?  Note that the current
20653 	 * default value (SunOS 5.9) of tcp_ecn_permitted
20654 	 * is 1.  The reason for doing this is that there
20655 	 * are equipments out there that will drop ECN
20656 	 * enabled IP packets.  Setting it to 1 avoids
20657 	 * compatibility problems.
20658 	 */
20659 	if (tcps->tcps_ecn_permitted == 2)
20660 		tcp->tcp_ecn_ok = B_TRUE;
20661 
20662 	TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20663 	syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
20664 	    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
20665 	if (syn_mp != NULL) {
20666 		/*
20667 		 * We must bump the generation before sending the syn
20668 		 * to ensure that we use the right generation in case
20669 		 * this thread issues a "connected" up call.
20670 		 */
20671 		SOCK_CONNID_BUMP(tcp->tcp_connid);
20672 		tcp_send_data(tcp, syn_mp);
20673 	}
20674 
20675 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
20676 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
20677 	return (0);
20678 
20679 connect_failed:
20680 	connp->conn_faddr_v6 = ipv6_all_zeros;
20681 	connp->conn_fport = 0;
20682 	tcp->tcp_state = oldstate;
20683 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
20684 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
20685 	return (error);
20686 }
20687 
20688 int
20689 tcp_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa,
20690     socklen_t len, sock_connid_t *id, cred_t *cr)
20691 {
20692 	conn_t		*connp = (conn_t *)proto_handle;
20693 	squeue_t	*sqp = connp->conn_sqp;
20694 	int		error;
20695 
20696 	ASSERT(connp->conn_upper_handle != NULL);
20697 
20698 	/* All Solaris components should pass a cred for this operation. */
20699 	ASSERT(cr != NULL);
20700 
20701 	error = proto_verify_ip_addr(connp->conn_family, sa, len);
20702 	if (error != 0) {
20703 		return (error);
20704 	}
20705 
20706 	error = squeue_synch_enter(sqp, connp, NULL);
20707 	if (error != 0) {
20708 		/* failed to enter */
20709 		return (ENOSR);
20710 	}
20711 
20712 	/*
20713 	 * TCP supports quick connect, so no need to do an implicit bind
20714 	 */
20715 	error = tcp_do_connect(connp, sa, len, cr, curproc->p_pid);
20716 	if (error == 0) {
20717 		*id = connp->conn_tcp->tcp_connid;
20718 	} else if (error < 0) {
20719 		if (error == -TOUTSTATE) {
20720 			switch (connp->conn_tcp->tcp_state) {
20721 			case TCPS_SYN_SENT:
20722 				error = EALREADY;
20723 				break;
20724 			case TCPS_ESTABLISHED:
20725 				error = EISCONN;
20726 				break;
20727 			case TCPS_LISTEN:
20728 				error = EOPNOTSUPP;
20729 				break;
20730 			default:
20731 				error = EINVAL;
20732 				break;
20733 			}
20734 		} else {
20735 			error = proto_tlitosyserr(-error);
20736 		}
20737 	}
20738 
20739 	if (connp->conn_tcp->tcp_loopback) {
20740 		struct sock_proto_props sopp;
20741 
20742 		sopp.sopp_flags = SOCKOPT_LOOPBACK;
20743 		sopp.sopp_loopback = B_TRUE;
20744 
20745 		(*connp->conn_upcalls->su_set_proto_props)(
20746 		    connp->conn_upper_handle, &sopp);
20747 	}
20748 done:
20749 	squeue_synch_exit(sqp, connp);
20750 
20751 	return ((error == 0) ? EINPROGRESS : error);
20752 }
20753 
20754 /* ARGSUSED */
20755 sock_lower_handle_t
20756 tcp_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls,
20757     uint_t *smodep, int *errorp, int flags, cred_t *credp)
20758 {
20759 	conn_t		*connp;
20760 	boolean_t	isv6 = family == AF_INET6;
20761 	if (type != SOCK_STREAM || (family != AF_INET && family != AF_INET6) ||
20762 	    (proto != 0 && proto != IPPROTO_TCP)) {
20763 		*errorp = EPROTONOSUPPORT;
20764 		return (NULL);
20765 	}
20766 
20767 	connp = tcp_create_common(credp, isv6, B_TRUE, errorp);
20768 	if (connp == NULL) {
20769 		return (NULL);
20770 	}
20771 
20772 	/*
20773 	 * Put the ref for TCP. Ref for IP was already put
20774 	 * by ipcl_conn_create. Also Make the conn_t globally
20775 	 * visible to walkers
20776 	 */
20777 	mutex_enter(&connp->conn_lock);
20778 	CONN_INC_REF_LOCKED(connp);
20779 	ASSERT(connp->conn_ref == 2);
20780 	connp->conn_state_flags &= ~CONN_INCIPIENT;
20781 
20782 	connp->conn_flags |= IPCL_NONSTR;
20783 	mutex_exit(&connp->conn_lock);
20784 
20785 	ASSERT(errorp != NULL);
20786 	*errorp = 0;
20787 	*sock_downcalls = &sock_tcp_downcalls;
20788 	*smodep = SM_CONNREQUIRED | SM_EXDATA | SM_ACCEPTSUPP |
20789 	    SM_SENDFILESUPP;
20790 
20791 	return ((sock_lower_handle_t)connp);
20792 }
20793 
20794 /* ARGSUSED */
20795 void
20796 tcp_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle,
20797     sock_upcalls_t *sock_upcalls, int flags, cred_t *cr)
20798 {
20799 	conn_t *connp = (conn_t *)proto_handle;
20800 	struct sock_proto_props sopp;
20801 
20802 	ASSERT(connp->conn_upper_handle == NULL);
20803 
20804 	/* All Solaris components should pass a cred for this operation. */
20805 	ASSERT(cr != NULL);
20806 
20807 	sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT |
20808 	    SOCKOPT_MAXPSZ | SOCKOPT_MAXBLK | SOCKOPT_RCVTIMER |
20809 	    SOCKOPT_RCVTHRESH | SOCKOPT_MAXADDRLEN | SOCKOPT_MINPSZ;
20810 
20811 	sopp.sopp_rxhiwat = SOCKET_RECVHIWATER;
20812 	sopp.sopp_rxlowat = SOCKET_RECVLOWATER;
20813 	sopp.sopp_maxpsz = INFPSZ;
20814 	sopp.sopp_maxblk = INFPSZ;
20815 	sopp.sopp_rcvtimer = SOCKET_TIMER_INTERVAL;
20816 	sopp.sopp_rcvthresh = SOCKET_RECVHIWATER >> 3;
20817 	sopp.sopp_maxaddrlen = sizeof (sin6_t);
20818 	sopp.sopp_minpsz = (tcp_rinfo.mi_minpsz == 1) ? 0 :
20819 	    tcp_rinfo.mi_minpsz;
20820 
20821 	connp->conn_upcalls = sock_upcalls;
20822 	connp->conn_upper_handle = sock_handle;
20823 
20824 	ASSERT(connp->conn_rcvbuf != 0 &&
20825 	    connp->conn_rcvbuf == connp->conn_tcp->tcp_rwnd);
20826 	(*sock_upcalls->su_set_proto_props)(sock_handle, &sopp);
20827 }
20828 
20829 /* ARGSUSED */
20830 int
20831 tcp_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr)
20832 {
20833 	conn_t *connp = (conn_t *)proto_handle;
20834 
20835 	ASSERT(connp->conn_upper_handle != NULL);
20836 
20837 	/* All Solaris components should pass a cred for this operation. */
20838 	ASSERT(cr != NULL);
20839 
20840 	tcp_close_common(connp, flags);
20841 
20842 	ip_free_helper_stream(connp);
20843 
20844 	/*
20845 	 * Drop IP's reference on the conn. This is the last reference
20846 	 * on the connp if the state was less than established. If the
20847 	 * connection has gone into timewait state, then we will have
20848 	 * one ref for the TCP and one more ref (total of two) for the
20849 	 * classifier connected hash list (a timewait connections stays
20850 	 * in connected hash till closed).
20851 	 *
20852 	 * We can't assert the references because there might be other
20853 	 * transient reference places because of some walkers or queued
20854 	 * packets in squeue for the timewait state.
20855 	 */
20856 	CONN_DEC_REF(connp);
20857 	return (0);
20858 }
20859 
20860 /* ARGSUSED */
20861 int
20862 tcp_sendmsg(sock_lower_handle_t proto_handle, mblk_t *mp, struct nmsghdr *msg,
20863     cred_t *cr)
20864 {
20865 	tcp_t		*tcp;
20866 	uint32_t	msize;
20867 	conn_t *connp = (conn_t *)proto_handle;
20868 	int32_t		tcpstate;
20869 
20870 	/* All Solaris components should pass a cred for this operation. */
20871 	ASSERT(cr != NULL);
20872 
20873 	ASSERT(connp->conn_ref >= 2);
20874 	ASSERT(connp->conn_upper_handle != NULL);
20875 
20876 	if (msg->msg_controllen != 0) {
20877 		freemsg(mp);
20878 		return (EOPNOTSUPP);
20879 	}
20880 
20881 	switch (DB_TYPE(mp)) {
20882 	case M_DATA:
20883 		tcp = connp->conn_tcp;
20884 		ASSERT(tcp != NULL);
20885 
20886 		tcpstate = tcp->tcp_state;
20887 		if (tcpstate < TCPS_ESTABLISHED) {
20888 			freemsg(mp);
20889 			/*
20890 			 * We return ENOTCONN if the endpoint is trying to
20891 			 * connect or has never been connected, and EPIPE if it
20892 			 * has been disconnected. The connection id helps us
20893 			 * distinguish between the last two cases.
20894 			 */
20895 			return ((tcpstate == TCPS_SYN_SENT) ? ENOTCONN :
20896 			    ((tcp->tcp_connid > 0) ? EPIPE : ENOTCONN));
20897 		} else if (tcpstate > TCPS_CLOSE_WAIT) {
20898 			freemsg(mp);
20899 			return (EPIPE);
20900 		}
20901 
20902 		msize = msgdsize(mp);
20903 
20904 		mutex_enter(&tcp->tcp_non_sq_lock);
20905 		tcp->tcp_squeue_bytes += msize;
20906 		/*
20907 		 * Squeue Flow Control
20908 		 */
20909 		if (TCP_UNSENT_BYTES(tcp) > connp->conn_sndbuf) {
20910 			tcp_setqfull(tcp);
20911 		}
20912 		mutex_exit(&tcp->tcp_non_sq_lock);
20913 
20914 		/*
20915 		 * The application may pass in an address in the msghdr, but
20916 		 * we ignore the address on connection-oriented sockets.
20917 		 * Just like BSD this code does not generate an error for
20918 		 * TCP (a CONNREQUIRED socket) when sending to an address
20919 		 * passed in with sendto/sendmsg. Instead the data is
20920 		 * delivered on the connection as if no address had been
20921 		 * supplied.
20922 		 */
20923 		CONN_INC_REF(connp);
20924 
20925 		if (msg->msg_flags & MSG_OOB) {
20926 			SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output_urgent,
20927 			    connp, NULL, tcp_squeue_flag, SQTAG_TCP_OUTPUT);
20928 		} else {
20929 			SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output,
20930 			    connp, NULL, tcp_squeue_flag, SQTAG_TCP_OUTPUT);
20931 		}
20932 
20933 		return (0);
20934 
20935 	default:
20936 		ASSERT(0);
20937 	}
20938 
20939 	freemsg(mp);
20940 	return (0);
20941 }
20942 
20943 /* ARGSUSED2 */
20944 void
20945 tcp_output_urgent(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
20946 {
20947 	int len;
20948 	uint32_t msize;
20949 	conn_t *connp = (conn_t *)arg;
20950 	tcp_t *tcp = connp->conn_tcp;
20951 
20952 	msize = msgdsize(mp);
20953 
20954 	len = msize - 1;
20955 	if (len < 0) {
20956 		freemsg(mp);
20957 		return;
20958 	}
20959 
20960 	/*
20961 	 * Try to force urgent data out on the wire. Even if we have unsent
20962 	 * data this will at least send the urgent flag.
20963 	 * XXX does not handle more flag correctly.
20964 	 */
20965 	len += tcp->tcp_unsent;
20966 	len += tcp->tcp_snxt;
20967 	tcp->tcp_urg = len;
20968 	tcp->tcp_valid_bits |= TCP_URG_VALID;
20969 
20970 	/* Bypass tcp protocol for fused tcp loopback */
20971 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
20972 		return;
20973 
20974 	/* Strip off the T_EXDATA_REQ if the data is from TPI */
20975 	if (DB_TYPE(mp) != M_DATA) {
20976 		mblk_t *mp1 = mp;
20977 		ASSERT(!IPCL_IS_NONSTR(connp));
20978 		mp = mp->b_cont;
20979 		freeb(mp1);
20980 	}
20981 	tcp_wput_data(tcp, mp, B_TRUE);
20982 }
20983 
20984 /* ARGSUSED3 */
20985 int
20986 tcp_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr,
20987     socklen_t *addrlenp, cred_t *cr)
20988 {
20989 	conn_t	*connp = (conn_t *)proto_handle;
20990 	tcp_t	*tcp = connp->conn_tcp;
20991 
20992 	ASSERT(connp->conn_upper_handle != NULL);
20993 	/* All Solaris components should pass a cred for this operation. */
20994 	ASSERT(cr != NULL);
20995 
20996 	ASSERT(tcp != NULL);
20997 	if (tcp->tcp_state < TCPS_SYN_RCVD)
20998 		return (ENOTCONN);
20999 
21000 	return (conn_getpeername(connp, addr, addrlenp));
21001 }
21002 
21003 /* ARGSUSED3 */
21004 int
21005 tcp_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr,
21006     socklen_t *addrlenp, cred_t *cr)
21007 {
21008 	conn_t	*connp = (conn_t *)proto_handle;
21009 
21010 	/* All Solaris components should pass a cred for this operation. */
21011 	ASSERT(cr != NULL);
21012 
21013 	ASSERT(connp->conn_upper_handle != NULL);
21014 	return (conn_getsockname(connp, addr, addrlenp));
21015 }
21016 
21017 /*
21018  * tcp_fallback
21019  *
21020  * A direct socket is falling back to using STREAMS. The queue
21021  * that is being passed down was created using tcp_open() with
21022  * the SO_FALLBACK flag set. As a result, the queue is not
21023  * associated with a conn, and the q_ptrs instead contain the
21024  * dev and minor area that should be used.
21025  *
21026  * The 'issocket' flag indicates whether the FireEngine
21027  * optimizations should be used. The common case would be that
21028  * optimizations are enabled, and they might be subsequently
21029  * disabled using the _SIOCSOCKFALLBACK ioctl.
21030  */
21031 
21032 /*
21033  * An active connection is falling back to TPI. Gather all the information
21034  * required by the STREAM head and TPI sonode and send it up.
21035  */
21036 void
21037 tcp_fallback_noneager(tcp_t *tcp, mblk_t *stropt_mp, queue_t *q,
21038     boolean_t issocket, so_proto_quiesced_cb_t quiesced_cb)
21039 {
21040 	conn_t			*connp = tcp->tcp_connp;
21041 	struct stroptions	*stropt;
21042 	struct T_capability_ack tca;
21043 	struct sockaddr_in6	laddr, faddr;
21044 	socklen_t 		laddrlen, faddrlen;
21045 	short			opts;
21046 	int			error;
21047 	mblk_t			*mp;
21048 
21049 	connp->conn_dev = (dev_t)RD(q)->q_ptr;
21050 	connp->conn_minor_arena = WR(q)->q_ptr;
21051 
21052 	RD(q)->q_ptr = WR(q)->q_ptr = connp;
21053 
21054 	connp->conn_rq = RD(q);
21055 	connp->conn_wq = WR(q);
21056 
21057 	WR(q)->q_qinfo = &tcp_sock_winit;
21058 
21059 	if (!issocket)
21060 		tcp_use_pure_tpi(tcp);
21061 
21062 	/*
21063 	 * free the helper stream
21064 	 */
21065 	ip_free_helper_stream(connp);
21066 
21067 	/*
21068 	 * Notify the STREAM head about options
21069 	 */
21070 	DB_TYPE(stropt_mp) = M_SETOPTS;
21071 	stropt = (struct stroptions *)stropt_mp->b_rptr;
21072 	stropt_mp->b_wptr += sizeof (struct stroptions);
21073 	stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK;
21074 
21075 	stropt->so_wroff = connp->conn_ht_iphc_len + (tcp->tcp_loopback ? 0 :
21076 	    tcp->tcp_tcps->tcps_wroff_xtra);
21077 	if (tcp->tcp_snd_sack_ok)
21078 		stropt->so_wroff += TCPOPT_MAX_SACK_LEN;
21079 	stropt->so_hiwat = connp->conn_rcvbuf;
21080 	stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
21081 
21082 	putnext(RD(q), stropt_mp);
21083 
21084 	/*
21085 	 * Collect the information needed to sync with the sonode
21086 	 */
21087 	tcp_do_capability_ack(tcp, &tca, TC1_INFO|TC1_ACCEPTOR_ID);
21088 
21089 	laddrlen = faddrlen = sizeof (sin6_t);
21090 	(void) tcp_getsockname((sock_lower_handle_t)connp,
21091 	    (struct sockaddr *)&laddr, &laddrlen, CRED());
21092 	error = tcp_getpeername((sock_lower_handle_t)connp,
21093 	    (struct sockaddr *)&faddr, &faddrlen, CRED());
21094 	if (error != 0)
21095 		faddrlen = 0;
21096 
21097 	opts = 0;
21098 	if (connp->conn_oobinline)
21099 		opts |= SO_OOBINLINE;
21100 	if (connp->conn_ixa->ixa_flags & IXAF_DONTROUTE)
21101 		opts |= SO_DONTROUTE;
21102 
21103 	/*
21104 	 * Notify the socket that the protocol is now quiescent,
21105 	 * and it's therefore safe move data from the socket
21106 	 * to the stream head.
21107 	 */
21108 	(*quiesced_cb)(connp->conn_upper_handle, q, &tca,
21109 	    (struct sockaddr *)&laddr, laddrlen,
21110 	    (struct sockaddr *)&faddr, faddrlen, opts);
21111 
21112 	while ((mp = tcp->tcp_rcv_list) != NULL) {
21113 		tcp->tcp_rcv_list = mp->b_next;
21114 		mp->b_next = NULL;
21115 		/* We never do fallback for kernel RPC */
21116 		putnext(q, mp);
21117 	}
21118 	tcp->tcp_rcv_last_head = NULL;
21119 	tcp->tcp_rcv_last_tail = NULL;
21120 	tcp->tcp_rcv_cnt = 0;
21121 }
21122 
21123 /*
21124  * An eager is falling back to TPI. All we have to do is send
21125  * up a T_CONN_IND.
21126  */
21127 void
21128 tcp_fallback_eager(tcp_t *eager, boolean_t direct_sockfs)
21129 {
21130 	tcp_t *listener = eager->tcp_listener;
21131 	mblk_t *mp = eager->tcp_conn.tcp_eager_conn_ind;
21132 
21133 	ASSERT(listener != NULL);
21134 	ASSERT(mp != NULL);
21135 
21136 	eager->tcp_conn.tcp_eager_conn_ind = NULL;
21137 
21138 	/*
21139 	 * TLI/XTI applications will get confused by
21140 	 * sending eager as an option since it violates
21141 	 * the option semantics. So remove the eager as
21142 	 * option since TLI/XTI app doesn't need it anyway.
21143 	 */
21144 	if (!direct_sockfs) {
21145 		struct T_conn_ind *conn_ind;
21146 
21147 		conn_ind = (struct T_conn_ind *)mp->b_rptr;
21148 		conn_ind->OPT_length = 0;
21149 		conn_ind->OPT_offset = 0;
21150 	}
21151 
21152 	/*
21153 	 * Sockfs guarantees that the listener will not be closed
21154 	 * during fallback. So we can safely use the listener's queue.
21155 	 */
21156 	putnext(listener->tcp_connp->conn_rq, mp);
21157 }
21158 
21159 int
21160 tcp_fallback(sock_lower_handle_t proto_handle, queue_t *q,
21161     boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb)
21162 {
21163 	tcp_t			*tcp;
21164 	conn_t 			*connp = (conn_t *)proto_handle;
21165 	int			error;
21166 	mblk_t			*stropt_mp;
21167 	mblk_t			*ordrel_mp;
21168 
21169 	tcp = connp->conn_tcp;
21170 
21171 	stropt_mp = allocb_wait(sizeof (struct stroptions), BPRI_HI, STR_NOSIG,
21172 	    NULL);
21173 
21174 	/* Pre-allocate the T_ordrel_ind mblk. */
21175 	ASSERT(tcp->tcp_ordrel_mp == NULL);
21176 	ordrel_mp = allocb_wait(sizeof (struct T_ordrel_ind), BPRI_HI,
21177 	    STR_NOSIG, NULL);
21178 	ordrel_mp->b_datap->db_type = M_PROTO;
21179 	((struct T_ordrel_ind *)ordrel_mp->b_rptr)->PRIM_type = T_ORDREL_IND;
21180 	ordrel_mp->b_wptr += sizeof (struct T_ordrel_ind);
21181 
21182 	/*
21183 	 * Enter the squeue so that no new packets can come in
21184 	 */
21185 	error = squeue_synch_enter(connp->conn_sqp, connp, NULL);
21186 	if (error != 0) {
21187 		/* failed to enter, free all the pre-allocated messages. */
21188 		freeb(stropt_mp);
21189 		freeb(ordrel_mp);
21190 		/*
21191 		 * We cannot process the eager, so at least send out a
21192 		 * RST so the peer can reconnect.
21193 		 */
21194 		if (tcp->tcp_listener != NULL) {
21195 			(void) tcp_eager_blowoff(tcp->tcp_listener,
21196 			    tcp->tcp_conn_req_seqnum);
21197 		}
21198 		return (ENOMEM);
21199 	}
21200 
21201 	/*
21202 	 * Both endpoints must be of the same type (either STREAMS or
21203 	 * non-STREAMS) for fusion to be enabled. So if we are fused,
21204 	 * we have to unfuse.
21205 	 */
21206 	if (tcp->tcp_fused)
21207 		tcp_unfuse(tcp);
21208 
21209 	/*
21210 	 * No longer a direct socket
21211 	 */
21212 	connp->conn_flags &= ~IPCL_NONSTR;
21213 	tcp->tcp_ordrel_mp = ordrel_mp;
21214 
21215 	if (tcp->tcp_listener != NULL) {
21216 		/* The eager will deal with opts when accept() is called */
21217 		freeb(stropt_mp);
21218 		tcp_fallback_eager(tcp, direct_sockfs);
21219 	} else {
21220 		tcp_fallback_noneager(tcp, stropt_mp, q, direct_sockfs,
21221 		    quiesced_cb);
21222 	}
21223 
21224 	/*
21225 	 * There should be atleast two ref's (IP + TCP)
21226 	 */
21227 	ASSERT(connp->conn_ref >= 2);
21228 	squeue_synch_exit(connp->conn_sqp, connp);
21229 
21230 	return (0);
21231 }
21232 
21233 /* ARGSUSED */
21234 static void
21235 tcp_shutdown_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
21236 {
21237 	conn_t 	*connp = (conn_t *)arg;
21238 	tcp_t	*tcp = connp->conn_tcp;
21239 
21240 	freemsg(mp);
21241 
21242 	if (tcp->tcp_fused)
21243 		tcp_unfuse(tcp);
21244 
21245 	if (tcp_xmit_end(tcp) != 0) {
21246 		/*
21247 		 * We were crossing FINs and got a reset from
21248 		 * the other side. Just ignore it.
21249 		 */
21250 		if (connp->conn_debug) {
21251 			(void) strlog(TCP_MOD_ID, 0, 1,
21252 			    SL_ERROR|SL_TRACE,
21253 			    "tcp_shutdown_output() out of state %s",
21254 			    tcp_display(tcp, NULL, DISP_ADDR_AND_PORT));
21255 		}
21256 	}
21257 }
21258 
21259 /* ARGSUSED */
21260 int
21261 tcp_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr)
21262 {
21263 	conn_t  *connp = (conn_t *)proto_handle;
21264 	tcp_t   *tcp = connp->conn_tcp;
21265 
21266 	ASSERT(connp->conn_upper_handle != NULL);
21267 
21268 	/* All Solaris components should pass a cred for this operation. */
21269 	ASSERT(cr != NULL);
21270 
21271 	/*
21272 	 * X/Open requires that we check the connected state.
21273 	 */
21274 	if (tcp->tcp_state < TCPS_SYN_SENT)
21275 		return (ENOTCONN);
21276 
21277 	/* shutdown the send side */
21278 	if (how != SHUT_RD) {
21279 		mblk_t *bp;
21280 
21281 		bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
21282 		CONN_INC_REF(connp);
21283 		SQUEUE_ENTER_ONE(connp->conn_sqp, bp, tcp_shutdown_output,
21284 		    connp, NULL, SQ_NODRAIN, SQTAG_TCP_SHUTDOWN_OUTPUT);
21285 
21286 		(*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
21287 		    SOCK_OPCTL_SHUT_SEND, 0);
21288 	}
21289 
21290 	/* shutdown the recv side */
21291 	if (how != SHUT_WR)
21292 		(*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
21293 		    SOCK_OPCTL_SHUT_RECV, 0);
21294 
21295 	return (0);
21296 }
21297 
21298 /*
21299  * SOP_LISTEN() calls into tcp_listen().
21300  */
21301 /* ARGSUSED */
21302 int
21303 tcp_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr)
21304 {
21305 	conn_t	*connp = (conn_t *)proto_handle;
21306 	int 	error;
21307 	squeue_t *sqp = connp->conn_sqp;
21308 
21309 	ASSERT(connp->conn_upper_handle != NULL);
21310 
21311 	/* All Solaris components should pass a cred for this operation. */
21312 	ASSERT(cr != NULL);
21313 
21314 	error = squeue_synch_enter(sqp, connp, NULL);
21315 	if (error != 0) {
21316 		/* failed to enter */
21317 		return (ENOBUFS);
21318 	}
21319 
21320 	error = tcp_do_listen(connp, NULL, 0, backlog, cr, FALSE);
21321 	if (error == 0) {
21322 		(*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
21323 		    SOCK_OPCTL_ENAB_ACCEPT, (uintptr_t)backlog);
21324 	} else if (error < 0) {
21325 		if (error == -TOUTSTATE)
21326 			error = EINVAL;
21327 		else
21328 			error = proto_tlitosyserr(-error);
21329 	}
21330 	squeue_synch_exit(sqp, connp);
21331 	return (error);
21332 }
21333 
21334 static int
21335 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len,
21336     int backlog, cred_t *cr, boolean_t bind_to_req_port_only)
21337 {
21338 	tcp_t		*tcp = connp->conn_tcp;
21339 	int		error = 0;
21340 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21341 
21342 	/* All Solaris components should pass a cred for this operation. */
21343 	ASSERT(cr != NULL);
21344 
21345 	if (tcp->tcp_state >= TCPS_BOUND) {
21346 		if ((tcp->tcp_state == TCPS_BOUND ||
21347 		    tcp->tcp_state == TCPS_LISTEN) && backlog > 0) {
21348 			/*
21349 			 * Handle listen() increasing backlog.
21350 			 * This is more "liberal" then what the TPI spec
21351 			 * requires but is needed to avoid a t_unbind
21352 			 * when handling listen() since the port number
21353 			 * might be "stolen" between the unbind and bind.
21354 			 */
21355 			goto do_listen;
21356 		}
21357 		if (connp->conn_debug) {
21358 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
21359 			    "tcp_listen: bad state, %d", tcp->tcp_state);
21360 		}
21361 		return (-TOUTSTATE);
21362 	} else {
21363 		if (sa == NULL) {
21364 			sin6_t	addr;
21365 			sin_t *sin;
21366 			sin6_t *sin6;
21367 
21368 			ASSERT(IPCL_IS_NONSTR(connp));
21369 			/* Do an implicit bind: Request for a generic port. */
21370 			if (connp->conn_family == AF_INET) {
21371 				len = sizeof (sin_t);
21372 				sin = (sin_t *)&addr;
21373 				*sin = sin_null;
21374 				sin->sin_family = AF_INET;
21375 			} else {
21376 				ASSERT(connp->conn_family == AF_INET6);
21377 				len = sizeof (sin6_t);
21378 				sin6 = (sin6_t *)&addr;
21379 				*sin6 = sin6_null;
21380 				sin6->sin6_family = AF_INET6;
21381 			}
21382 			sa = (struct sockaddr *)&addr;
21383 		}
21384 
21385 		error = tcp_bind_check(connp, sa, len, cr,
21386 		    bind_to_req_port_only);
21387 		if (error)
21388 			return (error);
21389 		/* Fall through and do the fanout insertion */
21390 	}
21391 
21392 do_listen:
21393 	ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN);
21394 	tcp->tcp_conn_req_max = backlog;
21395 	if (tcp->tcp_conn_req_max) {
21396 		if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min)
21397 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_min;
21398 		if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q)
21399 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q;
21400 		/*
21401 		 * If this is a listener, do not reset the eager list
21402 		 * and other stuffs.  Note that we don't check if the
21403 		 * existing eager list meets the new tcp_conn_req_max
21404 		 * requirement.
21405 		 */
21406 		if (tcp->tcp_state != TCPS_LISTEN) {
21407 			tcp->tcp_state = TCPS_LISTEN;
21408 			/* Initialize the chain. Don't need the eager_lock */
21409 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
21410 			tcp->tcp_eager_next_drop_q0 = tcp;
21411 			tcp->tcp_eager_prev_drop_q0 = tcp;
21412 			tcp->tcp_second_ctimer_threshold =
21413 			    tcps->tcps_ip_abort_linterval;
21414 		}
21415 	}
21416 
21417 	/*
21418 	 * We need to make sure that the conn_recv is set to a non-null
21419 	 * value before we insert the conn into the classifier table.
21420 	 * This is to avoid a race with an incoming packet which does an
21421 	 * ipcl_classify().
21422 	 * We initially set it to tcp_input_listener_unbound to try to
21423 	 * pick a good squeue for the listener when the first SYN arrives.
21424 	 * tcp_input_listener_unbound sets it to tcp_input_listener on that
21425 	 * first SYN.
21426 	 */
21427 	connp->conn_recv = tcp_input_listener_unbound;
21428 
21429 	/* Insert the listener in the classifier table */
21430 	error = ip_laddr_fanout_insert(connp);
21431 	if (error != 0) {
21432 		/* Undo the bind - release the port number */
21433 		tcp->tcp_state = TCPS_IDLE;
21434 		connp->conn_bound_addr_v6 = ipv6_all_zeros;
21435 
21436 		connp->conn_laddr_v6 = ipv6_all_zeros;
21437 		connp->conn_saddr_v6 = ipv6_all_zeros;
21438 		connp->conn_ports = 0;
21439 
21440 		if (connp->conn_anon_port) {
21441 			zone_t		*zone;
21442 
21443 			zone = crgetzone(cr);
21444 			connp->conn_anon_port = B_FALSE;
21445 			(void) tsol_mlp_anon(zone, connp->conn_mlp_type,
21446 			    connp->conn_proto, connp->conn_lport, B_FALSE);
21447 		}
21448 		connp->conn_mlp_type = mlptSingle;
21449 
21450 		tcp_bind_hash_remove(tcp);
21451 		return (error);
21452 	}
21453 	return (error);
21454 }
21455 
21456 void
21457 tcp_clr_flowctrl(sock_lower_handle_t proto_handle)
21458 {
21459 	conn_t  *connp = (conn_t *)proto_handle;
21460 	tcp_t	*tcp = connp->conn_tcp;
21461 	mblk_t *mp;
21462 	int error;
21463 
21464 	ASSERT(connp->conn_upper_handle != NULL);
21465 
21466 	/*
21467 	 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_clr_flowctrl()
21468 	 * is currently running.
21469 	 */
21470 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
21471 	if ((mp = tcp->tcp_rsrv_mp) == NULL) {
21472 		mutex_exit(&tcp->tcp_rsrv_mp_lock);
21473 		return;
21474 	}
21475 	tcp->tcp_rsrv_mp = NULL;
21476 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
21477 
21478 	error = squeue_synch_enter(connp->conn_sqp, connp, mp);
21479 	ASSERT(error == 0);
21480 
21481 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
21482 	tcp->tcp_rsrv_mp = mp;
21483 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
21484 
21485 	if (tcp->tcp_fused) {
21486 		tcp_fuse_backenable(tcp);
21487 	} else {
21488 		tcp->tcp_rwnd = connp->conn_rcvbuf;
21489 		/*
21490 		 * Send back a window update immediately if TCP is above
21491 		 * ESTABLISHED state and the increase of the rcv window
21492 		 * that the other side knows is at least 1 MSS after flow
21493 		 * control is lifted.
21494 		 */
21495 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
21496 		    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
21497 			tcp_xmit_ctl(NULL, tcp,
21498 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
21499 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
21500 		}
21501 	}
21502 
21503 	squeue_synch_exit(connp->conn_sqp, connp);
21504 }
21505 
21506 /* ARGSUSED */
21507 int
21508 tcp_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg,
21509     int mode, int32_t *rvalp, cred_t *cr)
21510 {
21511 	conn_t  	*connp = (conn_t *)proto_handle;
21512 	int		error;
21513 
21514 	ASSERT(connp->conn_upper_handle != NULL);
21515 
21516 	/* All Solaris components should pass a cred for this operation. */
21517 	ASSERT(cr != NULL);
21518 
21519 	/*
21520 	 * If we don't have a helper stream then create one.
21521 	 * ip_create_helper_stream takes care of locking the conn_t,
21522 	 * so this check for NULL is just a performance optimization.
21523 	 */
21524 	if (connp->conn_helper_info == NULL) {
21525 		tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps;
21526 
21527 		/*
21528 		 * Create a helper stream for non-STREAMS socket.
21529 		 */
21530 		error = ip_create_helper_stream(connp, tcps->tcps_ldi_ident);
21531 		if (error != 0) {
21532 			ip0dbg(("tcp_ioctl: create of IP helper stream "
21533 			    "failed %d\n", error));
21534 			return (error);
21535 		}
21536 	}
21537 
21538 	switch (cmd) {
21539 		case ND_SET:
21540 		case ND_GET:
21541 		case _SIOCSOCKFALLBACK:
21542 		case TCP_IOC_ABORT_CONN:
21543 		case TI_GETPEERNAME:
21544 		case TI_GETMYNAME:
21545 			ip1dbg(("tcp_ioctl: cmd 0x%x on non sreams socket",
21546 			    cmd));
21547 			error = EINVAL;
21548 			break;
21549 		default:
21550 			/*
21551 			 * Pass on to IP using helper stream
21552 			 */
21553 			error = ldi_ioctl(connp->conn_helper_info->iphs_handle,
21554 			    cmd, arg, mode, cr, rvalp);
21555 			break;
21556 	}
21557 	return (error);
21558 }
21559 
21560 sock_downcalls_t sock_tcp_downcalls = {
21561 	tcp_activate,
21562 	tcp_accept,
21563 	tcp_bind,
21564 	tcp_listen,
21565 	tcp_connect,
21566 	tcp_getpeername,
21567 	tcp_getsockname,
21568 	tcp_getsockopt,
21569 	tcp_setsockopt,
21570 	tcp_sendmsg,
21571 	NULL,
21572 	NULL,
21573 	NULL,
21574 	tcp_shutdown,
21575 	tcp_clr_flowctrl,
21576 	tcp_ioctl,
21577 	tcp_close,
21578 };
21579