xref: /illumos-gate/usr/src/uts/common/inet/tcp/tcp.c (revision a73c0fe4e90b82a478f821ef3adb5cf34f6a9346)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #include <sys/types.h>
29 #include <sys/stream.h>
30 #include <sys/strsun.h>
31 #include <sys/strsubr.h>
32 #include <sys/stropts.h>
33 #include <sys/strlog.h>
34 #define	_SUN_TPI_VERSION 2
35 #include <sys/tihdr.h>
36 #include <sys/timod.h>
37 #include <sys/ddi.h>
38 #include <sys/sunddi.h>
39 #include <sys/suntpi.h>
40 #include <sys/xti_inet.h>
41 #include <sys/cmn_err.h>
42 #include <sys/debug.h>
43 #include <sys/sdt.h>
44 #include <sys/vtrace.h>
45 #include <sys/kmem.h>
46 #include <sys/ethernet.h>
47 #include <sys/cpuvar.h>
48 #include <sys/dlpi.h>
49 #include <sys/multidata.h>
50 #include <sys/multidata_impl.h>
51 #include <sys/pattr.h>
52 #include <sys/policy.h>
53 #include <sys/priv.h>
54 #include <sys/zone.h>
55 #include <sys/sunldi.h>
56 
57 #include <sys/errno.h>
58 #include <sys/signal.h>
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 #include <sys/sockio.h>
62 #include <sys/isa_defs.h>
63 #include <sys/md5.h>
64 #include <sys/random.h>
65 #include <sys/sodirect.h>
66 #include <sys/uio.h>
67 #include <sys/systm.h>
68 #include <netinet/in.h>
69 #include <netinet/tcp.h>
70 #include <netinet/ip6.h>
71 #include <netinet/icmp6.h>
72 #include <net/if.h>
73 #include <net/route.h>
74 #include <inet/ipsec_impl.h>
75 
76 #include <inet/common.h>
77 #include <inet/ip.h>
78 #include <inet/ip_impl.h>
79 #include <inet/ip6.h>
80 #include <inet/ip_ndp.h>
81 #include <inet/proto_set.h>
82 #include <inet/mib2.h>
83 #include <inet/nd.h>
84 #include <inet/optcom.h>
85 #include <inet/snmpcom.h>
86 #include <inet/kstatcom.h>
87 #include <inet/tcp.h>
88 #include <inet/tcp_impl.h>
89 #include <net/pfkeyv2.h>
90 #include <inet/ipsec_info.h>
91 #include <inet/ipdrop.h>
92 
93 #include <inet/ipclassifier.h>
94 #include <inet/ip_ire.h>
95 #include <inet/ip_ftable.h>
96 #include <inet/ip_if.h>
97 #include <inet/ipp_common.h>
98 #include <inet/ip_netinfo.h>
99 #include <sys/squeue_impl.h>
100 #include <sys/squeue.h>
101 #include <inet/kssl/ksslapi.h>
102 #include <sys/tsol/label.h>
103 #include <sys/tsol/tnet.h>
104 #include <rpc/pmap_prot.h>
105 #include <sys/callo.h>
106 
107 /*
108  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
109  *
110  * (Read the detailed design doc in PSARC case directory)
111  *
112  * The entire tcp state is contained in tcp_t and conn_t structure
113  * which are allocated in tandem using ipcl_conn_create() and passing
114  * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect
115  * the references on the tcp_t. The tcp_t structure is never compressed
116  * and packets always land on the correct TCP perimeter from the time
117  * eager is created till the time tcp_t dies (as such the old mentat
118  * TCP global queue is not used for detached state and no IPSEC checking
119  * is required). The global queue is still allocated to send out resets
120  * for connection which have no listeners and IP directly calls
121  * tcp_xmit_listeners_reset() which does any policy check.
122  *
123  * Protection and Synchronisation mechanism:
124  *
125  * The tcp data structure does not use any kind of lock for protecting
126  * its state but instead uses 'squeues' for mutual exclusion from various
127  * read and write side threads. To access a tcp member, the thread should
128  * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS,
129  * or SQ_NODRAIN). Since the squeues allow a direct function call, caller
130  * can pass any tcp function having prototype of edesc_t as argument
131  * (different from traditional STREAMs model where packets come in only
132  * designated entry points). The list of functions that can be directly
133  * called via squeue are listed before the usual function prototype.
134  *
135  * Referencing:
136  *
137  * TCP is MT-Hot and we use a reference based scheme to make sure that the
138  * tcp structure doesn't disappear when its needed. When the application
139  * creates an outgoing connection or accepts an incoming connection, we
140  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
141  * The IP reference is just a symbolic reference since ip_tcpclose()
142  * looks at tcp structure after tcp_close_output() returns which could
143  * have dropped the last TCP reference. So as long as the connection is
144  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
145  * conn_t. The classifier puts its own reference when the connection is
146  * inserted in listen or connected hash. Anytime a thread needs to enter
147  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
148  * on write side or by doing a classify on read side and then puts a
149  * reference on the conn before doing squeue_enter/tryenter/fill. For
150  * read side, the classifier itself puts the reference under fanout lock
151  * to make sure that tcp can't disappear before it gets processed. The
152  * squeue will drop this reference automatically so the called function
153  * doesn't have to do a DEC_REF.
154  *
155  * Opening a new connection:
156  *
157  * The outgoing connection open is pretty simple. tcp_open() does the
158  * work in creating the conn/tcp structure and initializing it. The
159  * squeue assignment is done based on the CPU the application
160  * is running on. So for outbound connections, processing is always done
161  * on application CPU which might be different from the incoming CPU
162  * being interrupted by the NIC. An optimal way would be to figure out
163  * the NIC <-> CPU binding at listen time, and assign the outgoing
164  * connection to the squeue attached to the CPU that will be interrupted
165  * for incoming packets (we know the NIC based on the bind IP address).
166  * This might seem like a problem if more data is going out but the
167  * fact is that in most cases the transmit is ACK driven transmit where
168  * the outgoing data normally sits on TCP's xmit queue waiting to be
169  * transmitted.
170  *
171  * Accepting a connection:
172  *
173  * This is a more interesting case because of various races involved in
174  * establishing a eager in its own perimeter. Read the meta comment on
175  * top of tcp_conn_request(). But briefly, the squeue is picked by
176  * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU.
177  *
178  * Closing a connection:
179  *
180  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
181  * via squeue to do the close and mark the tcp as detached if the connection
182  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
183  * reference but tcp_close() drop IP's reference always. So if tcp was
184  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
185  * and 1 because it is in classifier's connected hash. This is the condition
186  * we use to determine that its OK to clean up the tcp outside of squeue
187  * when time wait expires (check the ref under fanout and conn_lock and
188  * if it is 2, remove it from fanout hash and kill it).
189  *
190  * Although close just drops the necessary references and marks the
191  * tcp_detached state, tcp_close needs to know the tcp_detached has been
192  * set (under squeue) before letting the STREAM go away (because a
193  * inbound packet might attempt to go up the STREAM while the close
194  * has happened and tcp_detached is not set). So a special lock and
195  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
196  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
197  * tcp_detached.
198  *
199  * Special provisions and fast paths:
200  *
201  * We make special provision for (AF_INET, SOCK_STREAM) sockets which
202  * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP
203  * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles
204  * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY
205  * check to send packets directly to tcp_rput_data via squeue. Everyone
206  * else comes through tcp_input() on the read side.
207  *
208  * We also make special provisions for sockfs by marking tcp_issocket
209  * whenever we have only sockfs on top of TCP. This allows us to skip
210  * putting the tcp in acceptor hash since a sockfs listener can never
211  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
212  * since eager has already been allocated and the accept now happens
213  * on acceptor STREAM. There is a big blob of comment on top of
214  * tcp_conn_request explaining the new accept. When socket is POP'd,
215  * sockfs sends us an ioctl to mark the fact and we go back to old
216  * behaviour. Once tcp_issocket is unset, its never set for the
217  * life of that connection.
218  *
219  * In support of on-board asynchronous DMA hardware (e.g. Intel I/OAT)
220  * two consoldiation private KAPIs are used to enqueue M_DATA mblk_t's
221  * directly to the socket (sodirect) and start an asynchronous copyout
222  * to a user-land receive-side buffer (uioa) when a blocking socket read
223  * (e.g. read, recv, ...) is pending.
224  *
225  * This is accomplished when tcp_issocket is set and tcp_sodirect is not
226  * NULL so points to an sodirect_t and if marked enabled then we enqueue
227  * all mblk_t's directly to the socket.
228  *
229  * Further, if the sodirect_t sod_uioa and if marked enabled (due to a
230  * blocking socket read, e.g. user-land read, recv, ...) then an asynchronous
231  * copyout will be started directly to the user-land uio buffer. Also, as we
232  * have a pending read, TCP's push logic can take into account the number of
233  * bytes to be received and only awake the blocked read()er when the uioa_t
234  * byte count has been satisfied.
235  *
236  * IPsec notes :
237  *
238  * Since a packet is always executed on the correct TCP perimeter
239  * all IPsec processing is defered to IP including checking new
240  * connections and setting IPSEC policies for new connection. The
241  * only exception is tcp_xmit_listeners_reset() which is called
242  * directly from IP and needs to policy check to see if TH_RST
243  * can be sent out.
244  *
245  * PFHooks notes :
246  *
247  * For mdt case, one meta buffer contains multiple packets. Mblks for every
248  * packet are assembled and passed to the hooks. When packets are blocked,
249  * or boundary of any packet is changed, the mdt processing is stopped, and
250  * packets of the meta buffer are send to the IP path one by one.
251  */
252 
253 /*
254  * Values for squeue switch:
255  * 1: SQ_NODRAIN
256  * 2: SQ_PROCESS
257  * 3: SQ_FILL
258  */
259 int tcp_squeue_wput = 2;	/* /etc/systems */
260 int tcp_squeue_flag;
261 
262 /*
263  * Macros for sodirect:
264  *
265  * SOD_PTR_ENTER(tcp, sodp) - for the tcp_t pointer "tcp" set the
266  * sodirect_t pointer "sodp" to the socket/tcp shared sodirect_t
267  * if it exists and is enabled, else to NULL. Note, in the current
268  * sodirect implementation the sod_lockp must not be held across any
269  * STREAMS call (e.g. putnext) else a "recursive mutex_enter" PANIC
270  * will result as sod_lockp is the streamhead stdata.sd_lock.
271  *
272  * SOD_NOT_ENABLED(tcp) - return true if not a sodirect tcp_t or the
273  * sodirect_t isn't enabled, usefull for ASSERT()ing that a recieve
274  * side tcp code path dealing with a tcp_rcv_list or putnext() isn't
275  * being used when sodirect code paths should be.
276  */
277 
278 #define	SOD_PTR_ENTER(tcp, sodp)					\
279 	(sodp) = (tcp)->tcp_sodirect;					\
280 									\
281 	if ((sodp) != NULL) {						\
282 		mutex_enter((sodp)->sod_lockp);				\
283 		if (!((sodp)->sod_state & SOD_ENABLED)) {		\
284 			mutex_exit((sodp)->sod_lockp);			\
285 			(sodp) = NULL;					\
286 		}							\
287 	}
288 
289 #define	SOD_NOT_ENABLED(tcp)						\
290 	((tcp)->tcp_sodirect == NULL ||					\
291 	    !((tcp)->tcp_sodirect->sod_state & SOD_ENABLED))
292 
293 /*
294  * This controls how tiny a write must be before we try to copy it
295  * into the the mblk on the tail of the transmit queue.  Not much
296  * speedup is observed for values larger than sixteen.  Zero will
297  * disable the optimisation.
298  */
299 int tcp_tx_pull_len = 16;
300 
301 /*
302  * TCP Statistics.
303  *
304  * How TCP statistics work.
305  *
306  * There are two types of statistics invoked by two macros.
307  *
308  * TCP_STAT(name) does non-atomic increment of a named stat counter. It is
309  * supposed to be used in non MT-hot paths of the code.
310  *
311  * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is
312  * supposed to be used for DEBUG purposes and may be used on a hot path.
313  *
314  * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat
315  * (use "kstat tcp" to get them).
316  *
317  * There is also additional debugging facility that marks tcp_clean_death()
318  * instances and saves them in tcp_t structure. It is triggered by
319  * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for
320  * tcp_clean_death() calls that counts the number of times each tag was hit. It
321  * is triggered by TCP_CLD_COUNTERS define.
322  *
323  * How to add new counters.
324  *
325  * 1) Add a field in the tcp_stat structure describing your counter.
326  * 2) Add a line in the template in tcp_kstat2_init() with the name
327  *    of the counter.
328  *
329  *    IMPORTANT!! - make sure that both are in sync !!
330  * 3) Use either TCP_STAT or TCP_DBGSTAT with the name.
331  *
332  * Please avoid using private counters which are not kstat-exported.
333  *
334  * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances
335  * in tcp_t structure.
336  *
337  * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags.
338  */
339 
340 #ifndef TCP_DEBUG_COUNTER
341 #ifdef DEBUG
342 #define	TCP_DEBUG_COUNTER 1
343 #else
344 #define	TCP_DEBUG_COUNTER 0
345 #endif
346 #endif
347 
348 #define	TCP_CLD_COUNTERS 0
349 
350 #define	TCP_TAG_CLEAN_DEATH 1
351 #define	TCP_MAX_CLEAN_DEATH_TAG 32
352 
353 #ifdef lint
354 static int _lint_dummy_;
355 #endif
356 
357 #if TCP_CLD_COUNTERS
358 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG];
359 #define	TCP_CLD_STAT(x) tcp_clean_death_stat[x]++
360 #elif defined(lint)
361 #define	TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0);
362 #else
363 #define	TCP_CLD_STAT(x)
364 #endif
365 
366 #if TCP_DEBUG_COUNTER
367 #define	TCP_DBGSTAT(tcps, x)	\
368 	atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1)
369 #define	TCP_G_DBGSTAT(x)	\
370 	atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1)
371 #elif defined(lint)
372 #define	TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0);
373 #define	TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0);
374 #else
375 #define	TCP_DBGSTAT(tcps, x)
376 #define	TCP_G_DBGSTAT(x)
377 #endif
378 
379 #define	TCP_G_STAT(x)	(tcp_g_statistics.x.value.ui64++)
380 
381 tcp_g_stat_t	tcp_g_statistics;
382 kstat_t		*tcp_g_kstat;
383 
384 /*
385  * Call either ip_output or ip_output_v6. This replaces putnext() calls on the
386  * tcp write side.
387  */
388 #define	CALL_IP_WPUT(connp, q, mp) {					\
389 	ASSERT(((q)->q_flag & QREADR) == 0);				\
390 	TCP_DBGSTAT(connp->conn_netstack->netstack_tcp, tcp_ip_output);	\
391 	connp->conn_send(connp, (mp), (q), IP_WPUT);			\
392 }
393 
394 /* Macros for timestamp comparisons */
395 #define	TSTMP_GEQ(a, b)	((int32_t)((a)-(b)) >= 0)
396 #define	TSTMP_LT(a, b)	((int32_t)((a)-(b)) < 0)
397 
398 /*
399  * Parameters for TCP Initial Send Sequence number (ISS) generation.  When
400  * tcp_strong_iss is set to 1, which is the default, the ISS is calculated
401  * by adding three components: a time component which grows by 1 every 4096
402  * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27);
403  * a per-connection component which grows by 125000 for every new connection;
404  * and an "extra" component that grows by a random amount centered
405  * approximately on 64000.  This causes the the ISS generator to cycle every
406  * 4.89 hours if no TCP connections are made, and faster if connections are
407  * made.
408  *
409  * When tcp_strong_iss is set to 0, ISS is calculated by adding two
410  * components: a time component which grows by 250000 every second; and
411  * a per-connection component which grows by 125000 for every new connections.
412  *
413  * A third method, when tcp_strong_iss is set to 2, for generating ISS is
414  * prescribed by Steve Bellovin.  This involves adding time, the 125000 per
415  * connection, and a one-way hash (MD5) of the connection ID <sport, dport,
416  * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered
417  * password.
418  */
419 #define	ISS_INCR	250000
420 #define	ISS_NSEC_SHT	12
421 
422 static sin_t	sin_null;	/* Zero address for quick clears */
423 static sin6_t	sin6_null;	/* Zero address for quick clears */
424 
425 /*
426  * This implementation follows the 4.3BSD interpretation of the urgent
427  * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause
428  * incompatible changes in protocols like telnet and rlogin.
429  */
430 #define	TCP_OLD_URP_INTERPRETATION	1
431 
432 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
433 	(TCP_IS_DETACHED(tcp) && \
434 	    (!(tcp)->tcp_hard_binding))
435 
436 /*
437  * TCP reassembly macros.  We hide starting and ending sequence numbers in
438  * b_next and b_prev of messages on the reassembly queue.  The messages are
439  * chained using b_cont.  These macros are used in tcp_reass() so we don't
440  * have to see the ugly casts and assignments.
441  */
442 #define	TCP_REASS_SEQ(mp)		((uint32_t)(uintptr_t)((mp)->b_next))
443 #define	TCP_REASS_SET_SEQ(mp, u)	((mp)->b_next = \
444 					(mblk_t *)(uintptr_t)(u))
445 #define	TCP_REASS_END(mp)		((uint32_t)(uintptr_t)((mp)->b_prev))
446 #define	TCP_REASS_SET_END(mp, u)	((mp)->b_prev = \
447 					(mblk_t *)(uintptr_t)(u))
448 
449 /*
450  * Implementation of TCP Timers.
451  * =============================
452  *
453  * INTERFACE:
454  *
455  * There are two basic functions dealing with tcp timers:
456  *
457  *	timeout_id_t	tcp_timeout(connp, func, time)
458  * 	clock_t		tcp_timeout_cancel(connp, timeout_id)
459  *	TCP_TIMER_RESTART(tcp, intvl)
460  *
461  * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func'
462  * after 'time' ticks passed. The function called by timeout() must adhere to
463  * the same restrictions as a driver soft interrupt handler - it must not sleep
464  * or call other functions that might sleep. The value returned is the opaque
465  * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to
466  * cancel the request. The call to tcp_timeout() may fail in which case it
467  * returns zero. This is different from the timeout(9F) function which never
468  * fails.
469  *
470  * The call-back function 'func' always receives 'connp' as its single
471  * argument. It is always executed in the squeue corresponding to the tcp
472  * structure. The tcp structure is guaranteed to be present at the time the
473  * call-back is called.
474  *
475  * NOTE: The call-back function 'func' is never called if tcp is in
476  * 	the TCPS_CLOSED state.
477  *
478  * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout()
479  * request. locks acquired by the call-back routine should not be held across
480  * the call to tcp_timeout_cancel() or a deadlock may result.
481  *
482  * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request.
483  * Otherwise, it returns an integer value greater than or equal to 0. In
484  * particular, if the call-back function is already placed on the squeue, it can
485  * not be canceled.
486  *
487  * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called
488  * 	within squeue context corresponding to the tcp instance. Since the
489  *	call-back is also called via the same squeue, there are no race
490  *	conditions described in untimeout(9F) manual page since all calls are
491  *	strictly serialized.
492  *
493  *      TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout
494  *	stored in tcp_timer_tid and starts a new one using
495  *	MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back
496  *	and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid
497  *	field.
498  *
499  * NOTE: since the timeout cancellation is not guaranteed, the cancelled
500  *	call-back may still be called, so it is possible tcp_timer() will be
501  *	called several times. This should not be a problem since tcp_timer()
502  *	should always check the tcp instance state.
503  *
504  *
505  * IMPLEMENTATION:
506  *
507  * TCP timers are implemented using three-stage process. The call to
508  * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function
509  * when the timer expires. The tcp_timer_callback() arranges the call of the
510  * tcp_timer_handler() function via squeue corresponding to the tcp
511  * instance. The tcp_timer_handler() calls actual requested timeout call-back
512  * and passes tcp instance as an argument to it. Information is passed between
513  * stages using the tcp_timer_t structure which contains the connp pointer, the
514  * tcp call-back to call and the timeout id returned by the timeout(9F).
515  *
516  * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t -
517  * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo
518  * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout()
519  * returns the pointer to this mblk.
520  *
521  * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It
522  * looks like a normal mblk without actual dblk attached to it.
523  *
524  * To optimize performance each tcp instance holds a small cache of timer
525  * mblocks. In the current implementation it caches up to two timer mblocks per
526  * tcp instance. The cache is preserved over tcp frees and is only freed when
527  * the whole tcp structure is destroyed by its kmem destructor. Since all tcp
528  * timer processing happens on a corresponding squeue, the cache manipulation
529  * does not require any locks. Experiments show that majority of timer mblocks
530  * allocations are satisfied from the tcp cache and do not involve kmem calls.
531  *
532  * The tcp_timeout() places a refhold on the connp instance which guarantees
533  * that it will be present at the time the call-back function fires. The
534  * tcp_timer_handler() drops the reference after calling the call-back, so the
535  * call-back function does not need to manipulate the references explicitly.
536  */
537 
538 typedef struct tcp_timer_s {
539 	conn_t	*connp;
540 	void 	(*tcpt_proc)(void *);
541 	callout_id_t   tcpt_tid;
542 } tcp_timer_t;
543 
544 static kmem_cache_t *tcp_timercache;
545 kmem_cache_t	*tcp_sack_info_cache;
546 kmem_cache_t	*tcp_iphc_cache;
547 
548 /*
549  * For scalability, we must not run a timer for every TCP connection
550  * in TIME_WAIT state.  To see why, consider (for time wait interval of
551  * 4 minutes):
552  *	1000 connections/sec * 240 seconds/time wait = 240,000 active conn's
553  *
554  * This list is ordered by time, so you need only delete from the head
555  * until you get to entries which aren't old enough to delete yet.
556  * The list consists of only the detached TIME_WAIT connections.
557  *
558  * Note that the timer (tcp_time_wait_expire) is started when the tcp_t
559  * becomes detached TIME_WAIT (either by changing the state and already
560  * being detached or the other way around). This means that the TIME_WAIT
561  * state can be extended (up to doubled) if the connection doesn't become
562  * detached for a long time.
563  *
564  * The list manipulations (including tcp_time_wait_next/prev)
565  * are protected by the tcp_time_wait_lock. The content of the
566  * detached TIME_WAIT connections is protected by the normal perimeters.
567  *
568  * This list is per squeue and squeues are shared across the tcp_stack_t's.
569  * Things on tcp_time_wait_head remain associated with the tcp_stack_t
570  * and conn_netstack.
571  * The tcp_t's that are added to tcp_free_list are disassociated and
572  * have NULL tcp_tcps and conn_netstack pointers.
573  */
574 typedef struct tcp_squeue_priv_s {
575 	kmutex_t	tcp_time_wait_lock;
576 	callout_id_t	tcp_time_wait_tid;
577 	tcp_t		*tcp_time_wait_head;
578 	tcp_t		*tcp_time_wait_tail;
579 	tcp_t		*tcp_free_list;
580 	uint_t		tcp_free_list_cnt;
581 } tcp_squeue_priv_t;
582 
583 /*
584  * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs.
585  * Running it every 5 seconds seems to give the best results.
586  */
587 #define	TCP_TIME_WAIT_DELAY drv_usectohz(5000000)
588 
589 /*
590  * To prevent memory hog, limit the number of entries in tcp_free_list
591  * to 1% of available memory / number of cpus
592  */
593 uint_t tcp_free_list_max_cnt = 0;
594 
595 #define	TCP_XMIT_LOWATER	4096
596 #define	TCP_XMIT_HIWATER	49152
597 #define	TCP_RECV_LOWATER	2048
598 #define	TCP_RECV_HIWATER	49152
599 
600 /*
601  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
602  */
603 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
604 
605 #define	TIDUSZ	4096	/* transport interface data unit size */
606 
607 /*
608  * Bind hash list size and has function.  It has to be a power of 2 for
609  * hashing.
610  */
611 #define	TCP_BIND_FANOUT_SIZE	512
612 #define	TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1))
613 /*
614  * Size of listen and acceptor hash list.  It has to be a power of 2 for
615  * hashing.
616  */
617 #define	TCP_FANOUT_SIZE		256
618 
619 #ifdef	_ILP32
620 #define	TCP_ACCEPTOR_HASH(accid)					\
621 		(((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1))
622 #else
623 #define	TCP_ACCEPTOR_HASH(accid)					\
624 		((uint_t)(accid) & (TCP_FANOUT_SIZE - 1))
625 #endif	/* _ILP32 */
626 
627 #define	IP_ADDR_CACHE_SIZE	2048
628 #define	IP_ADDR_CACHE_HASH(faddr)					\
629 	(ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1))
630 
631 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */
632 #define	TCP_HSP_HASH_SIZE 256
633 
634 #define	TCP_HSP_HASH(addr)					\
635 	(((addr>>24) ^ (addr >>16) ^			\
636 	    (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE)
637 
638 /*
639  * TCP options struct returned from tcp_parse_options.
640  */
641 typedef struct tcp_opt_s {
642 	uint32_t	tcp_opt_mss;
643 	uint32_t	tcp_opt_wscale;
644 	uint32_t	tcp_opt_ts_val;
645 	uint32_t	tcp_opt_ts_ecr;
646 	tcp_t		*tcp;
647 } tcp_opt_t;
648 
649 /*
650  * TCP option struct passing information b/w lisenter and eager.
651  */
652 struct tcp_options {
653 	uint_t			to_flags;
654 	ssize_t			to_boundif;	/* IPV6_BOUND_IF */
655 	sock_upper_handle_t	to_handle;
656 };
657 
658 #define	TCPOPT_BOUNDIF		0x00000001	/* set IPV6_BOUND_IF */
659 #define	TCPOPT_RECVPKTINFO	0x00000002	/* set IPV6_RECVPKTINFO */
660 #define	TCPOPT_UPPERHANDLE	0x00000004	/* set upper handle */
661 
662 /*
663  * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
664  */
665 
666 #ifdef _BIG_ENDIAN
667 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
668 	(TCPOPT_TSTAMP << 8) | 10)
669 #else
670 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
671 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
672 #endif
673 
674 /*
675  * Flags returned from tcp_parse_options.
676  */
677 #define	TCP_OPT_MSS_PRESENT	1
678 #define	TCP_OPT_WSCALE_PRESENT	2
679 #define	TCP_OPT_TSTAMP_PRESENT	4
680 #define	TCP_OPT_SACK_OK_PRESENT	8
681 #define	TCP_OPT_SACK_PRESENT	16
682 
683 /* TCP option length */
684 #define	TCPOPT_NOP_LEN		1
685 #define	TCPOPT_MAXSEG_LEN	4
686 #define	TCPOPT_WS_LEN		3
687 #define	TCPOPT_REAL_WS_LEN	(TCPOPT_WS_LEN+1)
688 #define	TCPOPT_TSTAMP_LEN	10
689 #define	TCPOPT_REAL_TS_LEN	(TCPOPT_TSTAMP_LEN+2)
690 #define	TCPOPT_SACK_OK_LEN	2
691 #define	TCPOPT_REAL_SACK_OK_LEN	(TCPOPT_SACK_OK_LEN+2)
692 #define	TCPOPT_REAL_SACK_LEN	4
693 #define	TCPOPT_MAX_SACK_LEN	36
694 #define	TCPOPT_HEADER_LEN	2
695 
696 /* TCP cwnd burst factor. */
697 #define	TCP_CWND_INFINITE	65535
698 #define	TCP_CWND_SS		3
699 #define	TCP_CWND_NORMAL		5
700 
701 /* Maximum TCP initial cwin (start/restart). */
702 #define	TCP_MAX_INIT_CWND	8
703 
704 /*
705  * Initialize cwnd according to RFC 3390.  def_max_init_cwnd is
706  * either tcp_slow_start_initial or tcp_slow_start_after idle
707  * depending on the caller.  If the upper layer has not used the
708  * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd
709  * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd.
710  * If the upper layer has changed set the tcp_init_cwnd, just use
711  * it to calculate the tcp_cwnd.
712  */
713 #define	SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd)			\
714 {									\
715 	if ((tcp)->tcp_init_cwnd == 0) {				\
716 		(tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss),	\
717 		    MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \
718 	} else {							\
719 		(tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss);		\
720 	}								\
721 	tcp->tcp_cwnd_cnt = 0;						\
722 }
723 
724 /* TCP Timer control structure */
725 typedef struct tcpt_s {
726 	pfv_t	tcpt_pfv;	/* The routine we are to call */
727 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
728 } tcpt_t;
729 
730 /* Host Specific Parameter structure */
731 typedef struct tcp_hsp {
732 	struct tcp_hsp	*tcp_hsp_next;
733 	in6_addr_t	tcp_hsp_addr_v6;
734 	in6_addr_t	tcp_hsp_subnet_v6;
735 	uint_t		tcp_hsp_vers;	/* IPV4_VERSION | IPV6_VERSION */
736 	int32_t		tcp_hsp_sendspace;
737 	int32_t		tcp_hsp_recvspace;
738 	int32_t		tcp_hsp_tstamp;
739 } tcp_hsp_t;
740 #define	tcp_hsp_addr	V4_PART_OF_V6(tcp_hsp_addr_v6)
741 #define	tcp_hsp_subnet	V4_PART_OF_V6(tcp_hsp_subnet_v6)
742 
743 /*
744  * Functions called directly via squeue having a prototype of edesc_t.
745  */
746 void		tcp_conn_request(void *arg, mblk_t *mp, void *arg2);
747 static void	tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2);
748 void		tcp_accept_finish(void *arg, mblk_t *mp, void *arg2);
749 static void	tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2);
750 static void	tcp_wput_proto(void *arg, mblk_t *mp, void *arg2);
751 void 		tcp_input(void *arg, mblk_t *mp, void *arg2);
752 void		tcp_rput_data(void *arg, mblk_t *mp, void *arg2);
753 static void	tcp_close_output(void *arg, mblk_t *mp, void *arg2);
754 void		tcp_output(void *arg, mblk_t *mp, void *arg2);
755 void		tcp_output_urgent(void *arg, mblk_t *mp, void *arg2);
756 static void	tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2);
757 static void	tcp_timer_handler(void *arg, mblk_t *mp, void *arg2);
758 static void	tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2);
759 
760 
761 /* Prototype for TCP functions */
762 static void	tcp_random_init(void);
763 int		tcp_random(void);
764 static void	tcp_tli_accept(tcp_t *tcp, mblk_t *mp);
765 static void	tcp_accept_swap(tcp_t *listener, tcp_t *acceptor,
766 		    tcp_t *eager);
767 static int	tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp);
768 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
769     int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only,
770     boolean_t user_specified);
771 static void	tcp_closei_local(tcp_t *tcp);
772 static void	tcp_close_detached(tcp_t *tcp);
773 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph,
774 			mblk_t *idmp, mblk_t **defermp);
775 static void	tcp_tpi_connect(tcp_t *tcp, mblk_t *mp);
776 static int	tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp,
777 		    in_port_t dstport, uint_t srcid, cred_t *cr, pid_t pid);
778 static int 	tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp,
779 		    in_port_t dstport, uint32_t flowinfo, uint_t srcid,
780 		    uint32_t scope_id, cred_t *cr, pid_t pid);
781 static int	tcp_clean_death(tcp_t *tcp, int err, uint8_t tag);
782 static void	tcp_def_q_set(tcp_t *tcp, mblk_t *mp);
783 static void	tcp_disconnect(tcp_t *tcp, mblk_t *mp);
784 static char	*tcp_display(tcp_t *tcp, char *, char);
785 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum);
786 static void	tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only);
787 static void	tcp_eager_unlink(tcp_t *tcp);
788 static void	tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr,
789 		    int unixerr);
790 static void	tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
791 		    int tlierr, int unixerr);
792 static int	tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
793 		    cred_t *cr);
794 static int	tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
795 		    char *value, caddr_t cp, cred_t *cr);
796 static int	tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
797 		    char *value, caddr_t cp, cred_t *cr);
798 static int	tcp_tpistate(tcp_t *tcp);
799 static void	tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp,
800     int caller_holds_lock);
801 static void	tcp_bind_hash_remove(tcp_t *tcp);
802 static tcp_t	*tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *);
803 void		tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp);
804 static void	tcp_acceptor_hash_remove(tcp_t *tcp);
805 static void	tcp_capability_req(tcp_t *tcp, mblk_t *mp);
806 static void	tcp_info_req(tcp_t *tcp, mblk_t *mp);
807 static void	tcp_addr_req(tcp_t *tcp, mblk_t *mp);
808 static void	tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp);
809 void		tcp_g_q_setup(tcp_stack_t *);
810 void		tcp_g_q_create(tcp_stack_t *);
811 void		tcp_g_q_destroy(tcp_stack_t *);
812 static int	tcp_header_init_ipv4(tcp_t *tcp);
813 static int	tcp_header_init_ipv6(tcp_t *tcp);
814 int		tcp_init(tcp_t *tcp, queue_t *q);
815 static int	tcp_init_values(tcp_t *tcp);
816 static mblk_t	*tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic);
817 static void	tcp_ip_ire_mark_advice(tcp_t *tcp);
818 static void	tcp_ip_notify(tcp_t *tcp);
819 static mblk_t	*tcp_ire_mp(mblk_t **mpp);
820 static void	tcp_iss_init(tcp_t *tcp);
821 static void	tcp_keepalive_killer(void *arg);
822 static int	tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt);
823 static void	tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss);
824 static int	tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp,
825 		    int *do_disconnectp, int *t_errorp, int *sys_errorp);
826 static boolean_t tcp_allow_connopt_set(int level, int name);
827 int		tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr);
828 int		tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr);
829 int		tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level,
830 		    int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
831 		    uchar_t *outvalp, void *thisdg_attrs, cred_t *cr,
832 		    mblk_t *mblk);
833 static void	tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha);
834 static int	tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly,
835 		    uchar_t *ptr, uint_t len);
836 static int	tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
837 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt,
838     tcp_stack_t *);
839 static int	tcp_param_set(queue_t *q, mblk_t *mp, char *value,
840 		    caddr_t cp, cred_t *cr);
841 static int	tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value,
842 		    caddr_t cp, cred_t *cr);
843 static void	tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *);
844 static int	tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value,
845 		    caddr_t cp, cred_t *cr);
846 static void	tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt);
847 static mblk_t	*tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start);
848 static void	tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp);
849 static void	tcp_reinit(tcp_t *tcp);
850 static void	tcp_reinit_values(tcp_t *tcp);
851 static void	tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval,
852 		    tcp_t *thisstream, cred_t *cr);
853 
854 static uint_t	tcp_rwnd_reopen(tcp_t *tcp);
855 static uint_t	tcp_rcv_drain(tcp_t *tcp);
856 static void	tcp_sack_rxmit(tcp_t *tcp, uint_t *flags);
857 static boolean_t tcp_send_rst_chk(tcp_stack_t *);
858 static void	tcp_ss_rexmit(tcp_t *tcp);
859 static mblk_t	*tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp);
860 static void	tcp_process_options(tcp_t *, tcph_t *);
861 static void	tcp_rput_common(tcp_t *tcp, mblk_t *mp);
862 static void	tcp_rsrv(queue_t *q);
863 static int	tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd);
864 static int	tcp_snmp_state(tcp_t *tcp);
865 static int	tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp,
866 		    cred_t *cr);
867 static int	tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
868 		    cred_t *cr);
869 static int	tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
870 		    cred_t *cr);
871 static int	tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
872 		    cred_t *cr);
873 static int	tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
874 		    cred_t *cr);
875 static void	tcp_timer(void *arg);
876 static void	tcp_timer_callback(void *);
877 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp,
878     boolean_t random);
879 static in_port_t tcp_get_next_priv_port(const tcp_t *);
880 static void	tcp_wput_sock(queue_t *q, mblk_t *mp);
881 static void	tcp_wput_fallback(queue_t *q, mblk_t *mp);
882 void		tcp_tpi_accept(queue_t *q, mblk_t *mp);
883 static void	tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent);
884 static void	tcp_wput_flush(tcp_t *tcp, mblk_t *mp);
885 static void	tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp);
886 static int	tcp_send(queue_t *q, tcp_t *tcp, const int mss,
887 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
888 		    const int num_sack_blk, int *usable, uint_t *snxt,
889 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
890 		    const int mdt_thres);
891 static int	tcp_multisend(queue_t *q, tcp_t *tcp, const int mss,
892 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
893 		    const int num_sack_blk, int *usable, uint_t *snxt,
894 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
895 		    const int mdt_thres);
896 static void	tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now,
897 		    int num_sack_blk);
898 static void	tcp_wsrv(queue_t *q);
899 static int	tcp_xmit_end(tcp_t *tcp);
900 static void	tcp_ack_timer(void *arg);
901 static mblk_t	*tcp_ack_mp(tcp_t *tcp);
902 static void	tcp_xmit_early_reset(char *str, mblk_t *mp,
903 		    uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len,
904 		    zoneid_t zoneid, tcp_stack_t *, conn_t *connp);
905 static void	tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq,
906 		    uint32_t ack, int ctl);
907 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *);
908 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr, tcp_stack_t *);
909 static int	setmaxps(queue_t *q, int maxpsz);
910 static void	tcp_set_rto(tcp_t *, time_t);
911 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *,
912 		    boolean_t, boolean_t);
913 static void	tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp,
914 		    boolean_t ipsec_mctl);
915 static int	tcp_build_hdrs(tcp_t *);
916 static void	tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp,
917 		    uint32_t seg_seq, uint32_t seg_ack, int seg_len,
918 		    tcph_t *tcph);
919 boolean_t	tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp);
920 static mblk_t	*tcp_mdt_info_mp(mblk_t *);
921 static void	tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t);
922 static int	tcp_mdt_add_attrs(multidata_t *, const mblk_t *,
923 		    const boolean_t, const uint32_t, const uint32_t,
924 		    const uint32_t, const uint32_t, tcp_stack_t *);
925 static void	tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *,
926 		    const uint_t, const uint_t, boolean_t *);
927 static mblk_t	*tcp_lso_info_mp(mblk_t *);
928 static void	tcp_lso_update(tcp_t *, ill_lso_capab_t *);
929 static void	tcp_send_data(tcp_t *, queue_t *, mblk_t *);
930 extern mblk_t	*tcp_timermp_alloc(int);
931 extern void	tcp_timermp_free(tcp_t *);
932 static void	tcp_timer_free(tcp_t *tcp, mblk_t *mp);
933 static void	tcp_stop_lingering(tcp_t *tcp);
934 static void	tcp_close_linger_timeout(void *arg);
935 static void	*tcp_stack_init(netstackid_t stackid, netstack_t *ns);
936 static void	tcp_stack_shutdown(netstackid_t stackid, void *arg);
937 static void	tcp_stack_fini(netstackid_t stackid, void *arg);
938 static void	*tcp_g_kstat_init(tcp_g_stat_t *);
939 static void	tcp_g_kstat_fini(kstat_t *);
940 static void	*tcp_kstat_init(netstackid_t, tcp_stack_t *);
941 static void	tcp_kstat_fini(netstackid_t, kstat_t *);
942 static void	*tcp_kstat2_init(netstackid_t, tcp_stat_t *);
943 static void	tcp_kstat2_fini(netstackid_t, kstat_t *);
944 static int	tcp_kstat_update(kstat_t *kp, int rw);
945 void		tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp);
946 static int	tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
947 			tcph_t *tcph, uint_t ipvers, mblk_t *idmp);
948 static int	tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
949 			tcph_t *tcph, mblk_t *idmp);
950 static int	tcp_squeue_switch(int);
951 
952 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t);
953 static int	tcp_openv4(queue_t *, dev_t *, int, int, cred_t *);
954 static int	tcp_openv6(queue_t *, dev_t *, int, int, cred_t *);
955 static int	tcp_tpi_close(queue_t *, int);
956 static int	tcpclose_accept(queue_t *);
957 
958 static void	tcp_squeue_add(squeue_t *);
959 static boolean_t tcp_zcopy_check(tcp_t *);
960 static void	tcp_zcopy_notify(tcp_t *);
961 static mblk_t	*tcp_zcopy_disable(tcp_t *, mblk_t *);
962 static mblk_t	*tcp_zcopy_backoff(tcp_t *, mblk_t *, int);
963 static void	tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t);
964 
965 extern void	tcp_kssl_input(tcp_t *, mblk_t *);
966 
967 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2);
968 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2);
969 
970 static int tcp_accept(sock_lower_handle_t, sock_lower_handle_t,
971 	    sock_upper_handle_t, cred_t *);
972 static int tcp_listen(sock_lower_handle_t, int, cred_t *);
973 static int tcp_post_ip_bind(tcp_t *, mblk_t *, int, cred_t *, pid_t);
974 static int tcp_do_listen(conn_t *, int, cred_t *);
975 static int tcp_do_connect(conn_t *, const struct sockaddr *, socklen_t,
976     cred_t *, pid_t);
977 static int tcp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *,
978     boolean_t);
979 static int tcp_do_unbind(conn_t *);
980 static int tcp_bind_check(conn_t *, struct sockaddr *, socklen_t, cred_t *,
981     boolean_t);
982 
983 /*
984  * Routines related to the TCP_IOC_ABORT_CONN ioctl command.
985  *
986  * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting
987  * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure
988  * (defined in tcp.h) needs to be filled in and passed into the kernel
989  * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t
990  * structure contains the four-tuple of a TCP connection and a range of TCP
991  * states (specified by ac_start and ac_end). The use of wildcard addresses
992  * and ports is allowed. Connections with a matching four tuple and a state
993  * within the specified range will be aborted. The valid states for the
994  * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT,
995  * inclusive.
996  *
997  * An application which has its connection aborted by this ioctl will receive
998  * an error that is dependent on the connection state at the time of the abort.
999  * If the connection state is < TCPS_TIME_WAIT, an application should behave as
1000  * though a RST packet has been received.  If the connection state is equal to
1001  * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel
1002  * and all resources associated with the connection will be freed.
1003  */
1004 static mblk_t	*tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *);
1005 static void	tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *);
1006 static void	tcp_ioctl_abort_handler(tcp_t *, mblk_t *);
1007 static int	tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps);
1008 static void	tcp_ioctl_abort_conn(queue_t *, mblk_t *);
1009 static int	tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *,
1010     boolean_t, tcp_stack_t *);
1011 
1012 static struct module_info tcp_rinfo =  {
1013 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
1014 };
1015 
1016 static struct module_info tcp_winfo =  {
1017 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
1018 };
1019 
1020 /*
1021  * Entry points for TCP as a device. The normal case which supports
1022  * the TCP functionality.
1023  * We have separate open functions for the /dev/tcp and /dev/tcp6 devices.
1024  */
1025 struct qinit tcp_rinitv4 = {
1026 	NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo
1027 };
1028 
1029 struct qinit tcp_rinitv6 = {
1030 	NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo
1031 };
1032 
1033 struct qinit tcp_winit = {
1034 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
1035 };
1036 
1037 /* Initial entry point for TCP in socket mode. */
1038 struct qinit tcp_sock_winit = {
1039 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
1040 };
1041 
1042 /* TCP entry point during fallback */
1043 struct qinit tcp_fallback_sock_winit = {
1044 	(pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo
1045 };
1046 
1047 /*
1048  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
1049  * an accept. Avoid allocating data structures since eager has already
1050  * been created.
1051  */
1052 struct qinit tcp_acceptor_rinit = {
1053 	NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo
1054 };
1055 
1056 struct qinit tcp_acceptor_winit = {
1057 	(pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo
1058 };
1059 
1060 /*
1061  * Entry points for TCP loopback (read side only)
1062  * The open routine is only used for reopens, thus no need to
1063  * have a separate one for tcp_openv6.
1064  */
1065 struct qinit tcp_loopback_rinit = {
1066 	(pfi_t)0, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, (pfi_t)0,
1067 	&tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD
1068 };
1069 
1070 /* For AF_INET aka /dev/tcp */
1071 struct streamtab tcpinfov4 = {
1072 	&tcp_rinitv4, &tcp_winit
1073 };
1074 
1075 /* For AF_INET6 aka /dev/tcp6 */
1076 struct streamtab tcpinfov6 = {
1077 	&tcp_rinitv6, &tcp_winit
1078 };
1079 
1080 sock_downcalls_t sock_tcp_downcalls;
1081 
1082 /*
1083  * Have to ensure that tcp_g_q_close is not done by an
1084  * interrupt thread.
1085  */
1086 static taskq_t *tcp_taskq;
1087 
1088 /* Setable only in /etc/system. Move to ndd? */
1089 boolean_t tcp_icmp_source_quench = B_FALSE;
1090 
1091 /*
1092  * Following assumes TPI alignment requirements stay along 32 bit
1093  * boundaries
1094  */
1095 #define	ROUNDUP32(x) \
1096 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
1097 
1098 /* Template for response to info request. */
1099 static struct T_info_ack tcp_g_t_info_ack = {
1100 	T_INFO_ACK,		/* PRIM_type */
1101 	0,			/* TSDU_size */
1102 	T_INFINITE,		/* ETSDU_size */
1103 	T_INVALID,		/* CDATA_size */
1104 	T_INVALID,		/* DDATA_size */
1105 	sizeof (sin_t),		/* ADDR_size */
1106 	0,			/* OPT_size - not initialized here */
1107 	TIDUSZ,			/* TIDU_size */
1108 	T_COTS_ORD,		/* SERV_type */
1109 	TCPS_IDLE,		/* CURRENT_state */
1110 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1111 };
1112 
1113 static struct T_info_ack tcp_g_t_info_ack_v6 = {
1114 	T_INFO_ACK,		/* PRIM_type */
1115 	0,			/* TSDU_size */
1116 	T_INFINITE,		/* ETSDU_size */
1117 	T_INVALID,		/* CDATA_size */
1118 	T_INVALID,		/* DDATA_size */
1119 	sizeof (sin6_t),	/* ADDR_size */
1120 	0,			/* OPT_size - not initialized here */
1121 	TIDUSZ,		/* TIDU_size */
1122 	T_COTS_ORD,		/* SERV_type */
1123 	TCPS_IDLE,		/* CURRENT_state */
1124 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1125 };
1126 
1127 #define	MS	1L
1128 #define	SECONDS	(1000 * MS)
1129 #define	MINUTES	(60 * SECONDS)
1130 #define	HOURS	(60 * MINUTES)
1131 #define	DAYS	(24 * HOURS)
1132 
1133 #define	PARAM_MAX (~(uint32_t)0)
1134 
1135 /* Max size IP datagram is 64k - 1 */
1136 #define	TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t)))
1137 #define	TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t)))
1138 /* Max of the above */
1139 #define	TCP_MSS_MAX	TCP_MSS_MAX_IPV4
1140 
1141 /* Largest TCP port number */
1142 #define	TCP_MAX_PORT	(64 * 1024 - 1)
1143 
1144 /*
1145  * tcp_wroff_xtra is the extra space in front of TCP/IP header for link
1146  * layer header.  It has to be a multiple of 4.
1147  */
1148 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" };
1149 #define	tcps_wroff_xtra	tcps_wroff_xtra_param->tcp_param_val
1150 
1151 /*
1152  * All of these are alterable, within the min/max values given, at run time.
1153  * Note that the default value of "tcp_time_wait_interval" is four minutes,
1154  * per the TCP spec.
1155  */
1156 /* BEGIN CSTYLED */
1157 static tcpparam_t	lcl_tcp_param_arr[] = {
1158  /*min		max		value		name */
1159  { 1*SECONDS,	10*MINUTES,	1*MINUTES,	"tcp_time_wait_interval"},
1160  { 1,		PARAM_MAX,	128,		"tcp_conn_req_max_q" },
1161  { 0,		PARAM_MAX,	1024,		"tcp_conn_req_max_q0" },
1162  { 1,		1024,		1,		"tcp_conn_req_min" },
1163  { 0*MS,	20*SECONDS,	0*MS,		"tcp_conn_grace_period" },
1164  { 128,		(1<<30),	1024*1024,	"tcp_cwnd_max" },
1165  { 0,		10,		0,		"tcp_debug" },
1166  { 1024,	(32*1024),	1024,		"tcp_smallest_nonpriv_port"},
1167  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_cinterval"},
1168  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_linterval"},
1169  { 500*MS,	PARAM_MAX,	8*MINUTES,	"tcp_ip_abort_interval"},
1170  { 1*SECONDS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_cinterval"},
1171  { 500*MS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_interval"},
1172  { 1,		255,		64,		"tcp_ipv4_ttl"},
1173  { 10*SECONDS,	10*DAYS,	2*HOURS,	"tcp_keepalive_interval"},
1174  { 0,		100,		10,		"tcp_maxpsz_multiplier" },
1175  { 1,		TCP_MSS_MAX_IPV4, 536,		"tcp_mss_def_ipv4"},
1176  { 1,		TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"},
1177  { 1,		TCP_MSS_MAX,	108,		"tcp_mss_min"},
1178  { 1,		(64*1024)-1,	(4*1024)-1,	"tcp_naglim_def"},
1179  { 1*MS,	20*SECONDS,	3*SECONDS,	"tcp_rexmit_interval_initial"},
1180  { 1*MS,	2*HOURS,	60*SECONDS,	"tcp_rexmit_interval_max"},
1181  { 1*MS,	2*HOURS,	400*MS,		"tcp_rexmit_interval_min"},
1182  { 1*MS,	1*MINUTES,	100*MS,		"tcp_deferred_ack_interval" },
1183  { 0,		16,		0,		"tcp_snd_lowat_fraction" },
1184  { 0,		128000,		0,		"tcp_sth_rcv_hiwat" },
1185  { 0,		128000,		0,		"tcp_sth_rcv_lowat" },
1186  { 1,		10000,		3,		"tcp_dupack_fast_retransmit" },
1187  { 0,		1,		0,		"tcp_ignore_path_mtu" },
1188  { 1024,	TCP_MAX_PORT,	32*1024,	"tcp_smallest_anon_port"},
1189  { 1024,	TCP_MAX_PORT,	TCP_MAX_PORT,	"tcp_largest_anon_port"},
1190  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"},
1191  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"},
1192  { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"},
1193  { 1,		65536,		4,		"tcp_recv_hiwat_minmss"},
1194  { 1*SECONDS,	PARAM_MAX,	675*SECONDS,	"tcp_fin_wait_2_flush_interval"},
1195  { 8192,	(1<<30),	1024*1024,	"tcp_max_buf"},
1196 /*
1197  * Question:  What default value should I set for tcp_strong_iss?
1198  */
1199  { 0,		2,		1,		"tcp_strong_iss"},
1200  { 0,		65536,		20,		"tcp_rtt_updates"},
1201  { 0,		1,		1,		"tcp_wscale_always"},
1202  { 0,		1,		0,		"tcp_tstamp_always"},
1203  { 0,		1,		1,		"tcp_tstamp_if_wscale"},
1204  { 0*MS,	2*HOURS,	0*MS,		"tcp_rexmit_interval_extra"},
1205  { 0,		16,		2,		"tcp_deferred_acks_max"},
1206  { 1,		16384,		4,		"tcp_slow_start_after_idle"},
1207  { 1,		4,		4,		"tcp_slow_start_initial"},
1208  { 0,		2,		2,		"tcp_sack_permitted"},
1209  { 0,		1,		1,		"tcp_compression_enabled"},
1210  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS,	"tcp_ipv6_hoplimit"},
1211  { 1,		TCP_MSS_MAX_IPV6, 1220,		"tcp_mss_def_ipv6"},
1212  { 1,		TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"},
1213  { 0,		1,		0,		"tcp_rev_src_routes"},
1214  { 10*MS,	500*MS,		50*MS,		"tcp_local_dack_interval"},
1215  { 100*MS,	60*SECONDS,	1*SECONDS,	"tcp_ndd_get_info_interval"},
1216  { 0,		16,		8,		"tcp_local_dacks_max"},
1217  { 0,		2,		1,		"tcp_ecn_permitted"},
1218  { 0,		1,		1,		"tcp_rst_sent_rate_enabled"},
1219  { 0,		PARAM_MAX,	40,		"tcp_rst_sent_rate"},
1220  { 0,		100*MS,		50*MS,		"tcp_push_timer_interval"},
1221  { 0,		1,		0,		"tcp_use_smss_as_mss_opt"},
1222  { 0,		PARAM_MAX,	8*MINUTES,	"tcp_keepalive_abort_interval"},
1223 };
1224 /* END CSTYLED */
1225 
1226 /*
1227  * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of
1228  * each header fragment in the header buffer.  Each parameter value has
1229  * to be a multiple of 4 (32-bit aligned).
1230  */
1231 static tcpparam_t lcl_tcp_mdt_head_param =
1232 	{ 32, 256, 32, "tcp_mdt_hdr_head_min" };
1233 static tcpparam_t lcl_tcp_mdt_tail_param =
1234 	{ 0,  256, 32, "tcp_mdt_hdr_tail_min" };
1235 #define	tcps_mdt_hdr_head_min	tcps_mdt_head_param->tcp_param_val
1236 #define	tcps_mdt_hdr_tail_min	tcps_mdt_tail_param->tcp_param_val
1237 
1238 /*
1239  * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out
1240  * the maximum number of payload buffers associated per Multidata.
1241  */
1242 static tcpparam_t lcl_tcp_mdt_max_pbufs_param =
1243 	{ 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" };
1244 #define	tcps_mdt_max_pbufs	tcps_mdt_max_pbufs_param->tcp_param_val
1245 
1246 /* Round up the value to the nearest mss. */
1247 #define	MSS_ROUNDUP(value, mss)		((((value) - 1) / (mss) + 1) * (mss))
1248 
1249 /*
1250  * Set ECN capable transport (ECT) code point in IP header.
1251  *
1252  * Note that there are 2 ECT code points '01' and '10', which are called
1253  * ECT(1) and ECT(0) respectively.  Here we follow the original ECT code
1254  * point ECT(0) for TCP as described in RFC 2481.
1255  */
1256 #define	SET_ECT(tcp, iph) \
1257 	if ((tcp)->tcp_ipversion == IPV4_VERSION) { \
1258 		/* We need to clear the code point first. */ \
1259 		((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \
1260 		((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \
1261 	} else { \
1262 		((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \
1263 		((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \
1264 	}
1265 
1266 /*
1267  * The format argument to pass to tcp_display().
1268  * DISP_PORT_ONLY means that the returned string has only port info.
1269  * DISP_ADDR_AND_PORT means that the returned string also contains the
1270  * remote and local IP address.
1271  */
1272 #define	DISP_PORT_ONLY		1
1273 #define	DISP_ADDR_AND_PORT	2
1274 
1275 #define	NDD_TOO_QUICK_MSG \
1276 	"ndd get info rate too high for non-privileged users, try again " \
1277 	"later.\n"
1278 #define	NDD_OUT_OF_BUF_MSG	"<< Out of buffer >>\n"
1279 
1280 #define	IS_VMLOANED_MBLK(mp) \
1281 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
1282 
1283 
1284 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */
1285 boolean_t tcp_mdt_chain = B_TRUE;
1286 
1287 /*
1288  * MDT threshold in the form of effective send MSS multiplier; we take
1289  * the MDT path if the amount of unsent data exceeds the threshold value
1290  * (default threshold is 1*SMSS).
1291  */
1292 uint_t tcp_mdt_smss_threshold = 1;
1293 
1294 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
1295 
1296 /*
1297  * Forces all connections to obey the value of the tcps_maxpsz_multiplier
1298  * tunable settable via NDD.  Otherwise, the per-connection behavior is
1299  * determined dynamically during tcp_adapt_ire(), which is the default.
1300  */
1301 boolean_t tcp_static_maxpsz = B_FALSE;
1302 
1303 /* Setable in /etc/system */
1304 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
1305 uint32_t tcp_random_anon_port = 1;
1306 
1307 /*
1308  * To reach to an eager in Q0 which can be dropped due to an incoming
1309  * new SYN request when Q0 is full, a new doubly linked list is
1310  * introduced. This list allows to select an eager from Q0 in O(1) time.
1311  * This is needed to avoid spending too much time walking through the
1312  * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of
1313  * this new list has to be a member of Q0.
1314  * This list is headed by listener's tcp_t. When the list is empty,
1315  * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0,
1316  * of listener's tcp_t point to listener's tcp_t itself.
1317  *
1318  * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager
1319  * in the list. MAKE_UNDROPPABLE() takes the eager out of the list.
1320  * These macros do not affect the eager's membership to Q0.
1321  */
1322 
1323 
1324 #define	MAKE_DROPPABLE(listener, eager)					\
1325 	if ((eager)->tcp_eager_next_drop_q0 == NULL) {			\
1326 		(listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\
1327 		    = (eager);						\
1328 		(eager)->tcp_eager_prev_drop_q0 = (listener);		\
1329 		(eager)->tcp_eager_next_drop_q0 =			\
1330 		    (listener)->tcp_eager_next_drop_q0;			\
1331 		(listener)->tcp_eager_next_drop_q0 = (eager);		\
1332 	}
1333 
1334 #define	MAKE_UNDROPPABLE(eager)						\
1335 	if ((eager)->tcp_eager_next_drop_q0 != NULL) {			\
1336 		(eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0	\
1337 		    = (eager)->tcp_eager_prev_drop_q0;			\
1338 		(eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0	\
1339 		    = (eager)->tcp_eager_next_drop_q0;			\
1340 		(eager)->tcp_eager_prev_drop_q0 = NULL;			\
1341 		(eager)->tcp_eager_next_drop_q0 = NULL;			\
1342 	}
1343 
1344 /*
1345  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
1346  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
1347  * data, TCP will not respond with an ACK.  RFC 793 requires that
1348  * TCP responds with an ACK for such a bogus ACK.  By not following
1349  * the RFC, we prevent TCP from getting into an ACK storm if somehow
1350  * an attacker successfully spoofs an acceptable segment to our
1351  * peer; or when our peer is "confused."
1352  */
1353 uint32_t tcp_drop_ack_unsent_cnt = 10;
1354 
1355 /*
1356  * Hook functions to enable cluster networking
1357  * On non-clustered systems these vectors must always be NULL.
1358  */
1359 
1360 void (*cl_inet_listen)(netstackid_t stack_id, uint8_t protocol,
1361 			    sa_family_t addr_family, uint8_t *laddrp,
1362 			    in_port_t lport, void *args) = NULL;
1363 void (*cl_inet_unlisten)(netstackid_t stack_id, uint8_t protocol,
1364 			    sa_family_t addr_family, uint8_t *laddrp,
1365 			    in_port_t lport, void *args) = NULL;
1366 
1367 int (*cl_inet_connect2)(netstackid_t stack_id, uint8_t protocol,
1368 			    boolean_t is_outgoing,
1369 			    sa_family_t addr_family,
1370 			    uint8_t *laddrp, in_port_t lport,
1371 			    uint8_t *faddrp, in_port_t fport,
1372 			    void *args) = NULL;
1373 
1374 void (*cl_inet_disconnect)(netstackid_t stack_id, uint8_t protocol,
1375 			    sa_family_t addr_family, uint8_t *laddrp,
1376 			    in_port_t lport, uint8_t *faddrp,
1377 			    in_port_t fport, void *args) = NULL;
1378 
1379 /*
1380  * The following are defined in ip.c
1381  */
1382 extern int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol,
1383 			    sa_family_t addr_family, uint8_t *laddrp,
1384 			    void *args);
1385 extern uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol,
1386 			    sa_family_t addr_family, uint8_t *laddrp,
1387 			    uint8_t *faddrp, void *args);
1388 
1389 
1390 /*
1391  * int CL_INET_CONNECT(conn_t *cp, tcp_t *tcp, boolean_t is_outgoing, int err)
1392  */
1393 #define	CL_INET_CONNECT(connp, tcp, is_outgoing, err) {		\
1394 	(err) = 0;						\
1395 	if (cl_inet_connect2 != NULL) {				\
1396 		/*						\
1397 		 * Running in cluster mode - register active connection	\
1398 		 * information						\
1399 		 */							\
1400 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1401 			if ((tcp)->tcp_ipha->ipha_src != 0) {		\
1402 				(err) = (*cl_inet_connect2)(		\
1403 				    (connp)->conn_netstack->netstack_stackid,\
1404 				    IPPROTO_TCP, is_outgoing, AF_INET,	\
1405 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\
1406 				    (in_port_t)(tcp)->tcp_lport,	\
1407 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\
1408 				    (in_port_t)(tcp)->tcp_fport, NULL);	\
1409 			}						\
1410 		} else {						\
1411 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1412 			    &(tcp)->tcp_ip6h->ip6_src)) {		\
1413 				(err) = (*cl_inet_connect2)(		\
1414 				    (connp)->conn_netstack->netstack_stackid,\
1415 				    IPPROTO_TCP, is_outgoing, AF_INET6,	\
1416 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\
1417 				    (in_port_t)(tcp)->tcp_lport,	\
1418 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\
1419 				    (in_port_t)(tcp)->tcp_fport, NULL);	\
1420 			}						\
1421 		}							\
1422 	}								\
1423 }
1424 
1425 #define	CL_INET_DISCONNECT(connp, tcp)	{				\
1426 	if (cl_inet_disconnect != NULL) {				\
1427 		/*							\
1428 		 * Running in cluster mode - deregister active		\
1429 		 * connection information				\
1430 		 */							\
1431 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1432 			if ((tcp)->tcp_ip_src != 0) {			\
1433 				(*cl_inet_disconnect)(			\
1434 				    (connp)->conn_netstack->netstack_stackid,\
1435 				    IPPROTO_TCP, AF_INET,		\
1436 				    (uint8_t *)(&((tcp)->tcp_ip_src)),	\
1437 				    (in_port_t)(tcp)->tcp_lport,	\
1438 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\
1439 				    (in_port_t)(tcp)->tcp_fport, NULL);	\
1440 			}						\
1441 		} else {						\
1442 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1443 			    &(tcp)->tcp_ip_src_v6)) {			\
1444 				(*cl_inet_disconnect)(			\
1445 				    (connp)->conn_netstack->netstack_stackid,\
1446 				    IPPROTO_TCP, AF_INET6,		\
1447 				    (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\
1448 				    (in_port_t)(tcp)->tcp_lport,	\
1449 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\
1450 				    (in_port_t)(tcp)->tcp_fport, NULL);	\
1451 			}						\
1452 		}							\
1453 	}								\
1454 }
1455 
1456 /*
1457  * Cluster networking hook for traversing current connection list.
1458  * This routine is used to extract the current list of live connections
1459  * which must continue to to be dispatched to this node.
1460  */
1461 int cl_tcp_walk_list(netstackid_t stack_id,
1462     int (*callback)(cl_tcp_info_t *, void *), void *arg);
1463 
1464 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *),
1465     void *arg, tcp_stack_t *tcps);
1466 
1467 #define	DTRACE_IP_FASTPATH(mp, iph, ill, ipha, ip6h) 			\
1468 	DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *,	\
1469 	    iph, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha,		\
1470 	    ip6_t *, ip6h, int, 0);
1471 
1472 /*
1473  * Figure out the value of window scale opton.  Note that the rwnd is
1474  * ASSUMED to be rounded up to the nearest MSS before the calculation.
1475  * We cannot find the scale value and then do a round up of tcp_rwnd
1476  * because the scale value may not be correct after that.
1477  *
1478  * Set the compiler flag to make this function inline.
1479  */
1480 static void
1481 tcp_set_ws_value(tcp_t *tcp)
1482 {
1483 	int i;
1484 	uint32_t rwnd = tcp->tcp_rwnd;
1485 
1486 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
1487 	    i++, rwnd >>= 1)
1488 		;
1489 	tcp->tcp_rcv_ws = i;
1490 }
1491 
1492 /*
1493  * Remove a connection from the list of detached TIME_WAIT connections.
1494  * It returns B_FALSE if it can't remove the connection from the list
1495  * as the connection has already been removed from the list due to an
1496  * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE.
1497  */
1498 static boolean_t
1499 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait)
1500 {
1501 	boolean_t	locked = B_FALSE;
1502 
1503 	if (tcp_time_wait == NULL) {
1504 		tcp_time_wait = *((tcp_squeue_priv_t **)
1505 		    squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP));
1506 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1507 		locked = B_TRUE;
1508 	} else {
1509 		ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock));
1510 	}
1511 
1512 	if (tcp->tcp_time_wait_expire == 0) {
1513 		ASSERT(tcp->tcp_time_wait_next == NULL);
1514 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1515 		if (locked)
1516 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1517 		return (B_FALSE);
1518 	}
1519 	ASSERT(TCP_IS_DETACHED(tcp));
1520 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1521 
1522 	if (tcp == tcp_time_wait->tcp_time_wait_head) {
1523 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1524 		tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next;
1525 		if (tcp_time_wait->tcp_time_wait_head != NULL) {
1526 			tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev =
1527 			    NULL;
1528 		} else {
1529 			tcp_time_wait->tcp_time_wait_tail = NULL;
1530 		}
1531 	} else if (tcp == tcp_time_wait->tcp_time_wait_tail) {
1532 		ASSERT(tcp != tcp_time_wait->tcp_time_wait_head);
1533 		ASSERT(tcp->tcp_time_wait_next == NULL);
1534 		tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev;
1535 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1536 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL;
1537 	} else {
1538 		ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp);
1539 		ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp);
1540 		tcp->tcp_time_wait_prev->tcp_time_wait_next =
1541 		    tcp->tcp_time_wait_next;
1542 		tcp->tcp_time_wait_next->tcp_time_wait_prev =
1543 		    tcp->tcp_time_wait_prev;
1544 	}
1545 	tcp->tcp_time_wait_next = NULL;
1546 	tcp->tcp_time_wait_prev = NULL;
1547 	tcp->tcp_time_wait_expire = 0;
1548 
1549 	if (locked)
1550 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1551 	return (B_TRUE);
1552 }
1553 
1554 /*
1555  * Add a connection to the list of detached TIME_WAIT connections
1556  * and set its time to expire.
1557  */
1558 static void
1559 tcp_time_wait_append(tcp_t *tcp)
1560 {
1561 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1562 	tcp_squeue_priv_t *tcp_time_wait =
1563 	    *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp,
1564 	    SQPRIVATE_TCP));
1565 
1566 	tcp_timers_stop(tcp);
1567 
1568 	/* Freed above */
1569 	ASSERT(tcp->tcp_timer_tid == 0);
1570 	ASSERT(tcp->tcp_ack_tid == 0);
1571 
1572 	/* must have happened at the time of detaching the tcp */
1573 	ASSERT(tcp->tcp_ptpahn == NULL);
1574 	ASSERT(tcp->tcp_flow_stopped == 0);
1575 	ASSERT(tcp->tcp_time_wait_next == NULL);
1576 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1577 	ASSERT(tcp->tcp_time_wait_expire == NULL);
1578 	ASSERT(tcp->tcp_listener == NULL);
1579 
1580 	tcp->tcp_time_wait_expire = ddi_get_lbolt();
1581 	/*
1582 	 * The value computed below in tcp->tcp_time_wait_expire may
1583 	 * appear negative or wrap around. That is ok since our
1584 	 * interest is only in the difference between the current lbolt
1585 	 * value and tcp->tcp_time_wait_expire. But the value should not
1586 	 * be zero, since it means the tcp is not in the TIME_WAIT list.
1587 	 * The corresponding comparison in tcp_time_wait_collector() uses
1588 	 * modular arithmetic.
1589 	 */
1590 	tcp->tcp_time_wait_expire +=
1591 	    drv_usectohz(tcps->tcps_time_wait_interval * 1000);
1592 	if (tcp->tcp_time_wait_expire == 0)
1593 		tcp->tcp_time_wait_expire = 1;
1594 
1595 	ASSERT(TCP_IS_DETACHED(tcp));
1596 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1597 	ASSERT(tcp->tcp_time_wait_next == NULL);
1598 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1599 	TCP_DBGSTAT(tcps, tcp_time_wait);
1600 
1601 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1602 	if (tcp_time_wait->tcp_time_wait_head == NULL) {
1603 		ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL);
1604 		tcp_time_wait->tcp_time_wait_head = tcp;
1605 	} else {
1606 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1607 		ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state ==
1608 		    TCPS_TIME_WAIT);
1609 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp;
1610 		tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail;
1611 	}
1612 	tcp_time_wait->tcp_time_wait_tail = tcp;
1613 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1614 }
1615 
1616 /* ARGSUSED */
1617 void
1618 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2)
1619 {
1620 	conn_t	*connp = (conn_t *)arg;
1621 	tcp_t	*tcp = connp->conn_tcp;
1622 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1623 
1624 	ASSERT(tcp != NULL);
1625 	if (tcp->tcp_state == TCPS_CLOSED) {
1626 		return;
1627 	}
1628 
1629 	ASSERT((tcp->tcp_family == AF_INET &&
1630 	    tcp->tcp_ipversion == IPV4_VERSION) ||
1631 	    (tcp->tcp_family == AF_INET6 &&
1632 	    (tcp->tcp_ipversion == IPV4_VERSION ||
1633 	    tcp->tcp_ipversion == IPV6_VERSION)));
1634 	ASSERT(!tcp->tcp_listener);
1635 
1636 	TCP_STAT(tcps, tcp_time_wait_reap);
1637 	ASSERT(TCP_IS_DETACHED(tcp));
1638 
1639 	/*
1640 	 * Because they have no upstream client to rebind or tcp_close()
1641 	 * them later, we axe the connection here and now.
1642 	 */
1643 	tcp_close_detached(tcp);
1644 }
1645 
1646 /*
1647  * Remove cached/latched IPsec references.
1648  */
1649 void
1650 tcp_ipsec_cleanup(tcp_t *tcp)
1651 {
1652 	conn_t		*connp = tcp->tcp_connp;
1653 
1654 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1655 
1656 	if (connp->conn_latch != NULL) {
1657 		IPLATCH_REFRELE(connp->conn_latch,
1658 		    connp->conn_netstack);
1659 		connp->conn_latch = NULL;
1660 	}
1661 	if (connp->conn_policy != NULL) {
1662 		IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
1663 		connp->conn_policy = NULL;
1664 	}
1665 }
1666 
1667 /*
1668  * Cleaup before placing on free list.
1669  * Disassociate from the netstack/tcp_stack_t since the freelist
1670  * is per squeue and not per netstack.
1671  */
1672 void
1673 tcp_cleanup(tcp_t *tcp)
1674 {
1675 	mblk_t		*mp;
1676 	char		*tcp_iphc;
1677 	int		tcp_iphc_len;
1678 	int		tcp_hdr_grown;
1679 	tcp_sack_info_t	*tcp_sack_info;
1680 	conn_t		*connp = tcp->tcp_connp;
1681 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1682 	netstack_t	*ns = tcps->tcps_netstack;
1683 	mblk_t		*tcp_rsrv_mp;
1684 
1685 	tcp_bind_hash_remove(tcp);
1686 
1687 	/* Cleanup that which needs the netstack first */
1688 	tcp_ipsec_cleanup(tcp);
1689 
1690 	tcp_free(tcp);
1691 
1692 	/* Release any SSL context */
1693 	if (tcp->tcp_kssl_ent != NULL) {
1694 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
1695 		tcp->tcp_kssl_ent = NULL;
1696 	}
1697 
1698 	if (tcp->tcp_kssl_ctx != NULL) {
1699 		kssl_release_ctx(tcp->tcp_kssl_ctx);
1700 		tcp->tcp_kssl_ctx = NULL;
1701 	}
1702 	tcp->tcp_kssl_pending = B_FALSE;
1703 
1704 	conn_delete_ire(connp, NULL);
1705 
1706 	/*
1707 	 * Since we will bzero the entire structure, we need to
1708 	 * remove it and reinsert it in global hash list. We
1709 	 * know the walkers can't get to this conn because we
1710 	 * had set CONDEMNED flag earlier and checked reference
1711 	 * under conn_lock so walker won't pick it and when we
1712 	 * go the ipcl_globalhash_remove() below, no walker
1713 	 * can get to it.
1714 	 */
1715 	ipcl_globalhash_remove(connp);
1716 
1717 	/*
1718 	 * Now it is safe to decrement the reference counts.
1719 	 * This might be the last reference on the netstack and TCPS
1720 	 * in which case it will cause the tcp_g_q_close and
1721 	 * the freeing of the IP Instance.
1722 	 */
1723 	connp->conn_netstack = NULL;
1724 	netstack_rele(ns);
1725 	ASSERT(tcps != NULL);
1726 	tcp->tcp_tcps = NULL;
1727 	TCPS_REFRELE(tcps);
1728 
1729 	/* Save some state */
1730 	mp = tcp->tcp_timercache;
1731 
1732 	tcp_sack_info = tcp->tcp_sack_info;
1733 	tcp_iphc = tcp->tcp_iphc;
1734 	tcp_iphc_len = tcp->tcp_iphc_len;
1735 	tcp_hdr_grown = tcp->tcp_hdr_grown;
1736 	tcp_rsrv_mp = tcp->tcp_rsrv_mp;
1737 
1738 	if (connp->conn_cred != NULL) {
1739 		crfree(connp->conn_cred);
1740 		connp->conn_cred = NULL;
1741 	}
1742 	if (connp->conn_peercred != NULL) {
1743 		crfree(connp->conn_peercred);
1744 		connp->conn_peercred = NULL;
1745 	}
1746 	ipcl_conn_cleanup(connp);
1747 	connp->conn_flags = IPCL_TCPCONN;
1748 	bzero(tcp, sizeof (tcp_t));
1749 
1750 	/* restore the state */
1751 	tcp->tcp_timercache = mp;
1752 
1753 	tcp->tcp_sack_info = tcp_sack_info;
1754 	tcp->tcp_iphc = tcp_iphc;
1755 	tcp->tcp_iphc_len = tcp_iphc_len;
1756 	tcp->tcp_hdr_grown = tcp_hdr_grown;
1757 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
1758 
1759 	tcp->tcp_connp = connp;
1760 
1761 	ASSERT(connp->conn_tcp == tcp);
1762 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1763 	connp->conn_state_flags = CONN_INCIPIENT;
1764 	ASSERT(connp->conn_ulp == IPPROTO_TCP);
1765 	ASSERT(connp->conn_ref == 1);
1766 }
1767 
1768 /*
1769  * Blows away all tcps whose TIME_WAIT has expired. List traversal
1770  * is done forwards from the head.
1771  * This walks all stack instances since
1772  * tcp_time_wait remains global across all stacks.
1773  */
1774 /* ARGSUSED */
1775 void
1776 tcp_time_wait_collector(void *arg)
1777 {
1778 	tcp_t *tcp;
1779 	clock_t now;
1780 	mblk_t *mp;
1781 	conn_t *connp;
1782 	kmutex_t *lock;
1783 	boolean_t removed;
1784 
1785 	squeue_t *sqp = (squeue_t *)arg;
1786 	tcp_squeue_priv_t *tcp_time_wait =
1787 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1788 
1789 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1790 	tcp_time_wait->tcp_time_wait_tid = 0;
1791 
1792 	if (tcp_time_wait->tcp_free_list != NULL &&
1793 	    tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) {
1794 		TCP_G_STAT(tcp_freelist_cleanup);
1795 		while ((tcp = tcp_time_wait->tcp_free_list) != NULL) {
1796 			tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1797 			tcp->tcp_time_wait_next = NULL;
1798 			tcp_time_wait->tcp_free_list_cnt--;
1799 			ASSERT(tcp->tcp_tcps == NULL);
1800 			CONN_DEC_REF(tcp->tcp_connp);
1801 		}
1802 		ASSERT(tcp_time_wait->tcp_free_list_cnt == 0);
1803 	}
1804 
1805 	/*
1806 	 * In order to reap time waits reliably, we should use a
1807 	 * source of time that is not adjustable by the user -- hence
1808 	 * the call to ddi_get_lbolt().
1809 	 */
1810 	now = ddi_get_lbolt();
1811 	while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) {
1812 		/*
1813 		 * Compare times using modular arithmetic, since
1814 		 * lbolt can wrapover.
1815 		 */
1816 		if ((now - tcp->tcp_time_wait_expire) < 0) {
1817 			break;
1818 		}
1819 
1820 		removed = tcp_time_wait_remove(tcp, tcp_time_wait);
1821 		ASSERT(removed);
1822 
1823 		connp = tcp->tcp_connp;
1824 		ASSERT(connp->conn_fanout != NULL);
1825 		lock = &connp->conn_fanout->connf_lock;
1826 		/*
1827 		 * This is essentially a TW reclaim fast path optimization for
1828 		 * performance where the timewait collector checks under the
1829 		 * fanout lock (so that no one else can get access to the
1830 		 * conn_t) that the refcnt is 2 i.e. one for TCP and one for
1831 		 * the classifier hash list. If ref count is indeed 2, we can
1832 		 * just remove the conn under the fanout lock and avoid
1833 		 * cleaning up the conn under the squeue, provided that
1834 		 * clustering callbacks are not enabled. If clustering is
1835 		 * enabled, we need to make the clustering callback before
1836 		 * setting the CONDEMNED flag and after dropping all locks and
1837 		 * so we forego this optimization and fall back to the slow
1838 		 * path. Also please see the comments in tcp_closei_local
1839 		 * regarding the refcnt logic.
1840 		 *
1841 		 * Since we are holding the tcp_time_wait_lock, its better
1842 		 * not to block on the fanout_lock because other connections
1843 		 * can't add themselves to time_wait list. So we do a
1844 		 * tryenter instead of mutex_enter.
1845 		 */
1846 		if (mutex_tryenter(lock)) {
1847 			mutex_enter(&connp->conn_lock);
1848 			if ((connp->conn_ref == 2) &&
1849 			    (cl_inet_disconnect == NULL)) {
1850 				ipcl_hash_remove_locked(connp,
1851 				    connp->conn_fanout);
1852 				/*
1853 				 * Set the CONDEMNED flag now itself so that
1854 				 * the refcnt cannot increase due to any
1855 				 * walker. But we have still not cleaned up
1856 				 * conn_ire_cache. This is still ok since
1857 				 * we are going to clean it up in tcp_cleanup
1858 				 * immediately and any interface unplumb
1859 				 * thread will wait till the ire is blown away
1860 				 */
1861 				connp->conn_state_flags |= CONN_CONDEMNED;
1862 				mutex_exit(lock);
1863 				mutex_exit(&connp->conn_lock);
1864 				if (tcp_time_wait->tcp_free_list_cnt <
1865 				    tcp_free_list_max_cnt) {
1866 					/* Add to head of tcp_free_list */
1867 					mutex_exit(
1868 					    &tcp_time_wait->tcp_time_wait_lock);
1869 					tcp_cleanup(tcp);
1870 					ASSERT(connp->conn_latch == NULL);
1871 					ASSERT(connp->conn_policy == NULL);
1872 					ASSERT(tcp->tcp_tcps == NULL);
1873 					ASSERT(connp->conn_netstack == NULL);
1874 
1875 					mutex_enter(
1876 					    &tcp_time_wait->tcp_time_wait_lock);
1877 					tcp->tcp_time_wait_next =
1878 					    tcp_time_wait->tcp_free_list;
1879 					tcp_time_wait->tcp_free_list = tcp;
1880 					tcp_time_wait->tcp_free_list_cnt++;
1881 					continue;
1882 				} else {
1883 					/* Do not add to tcp_free_list */
1884 					mutex_exit(
1885 					    &tcp_time_wait->tcp_time_wait_lock);
1886 					tcp_bind_hash_remove(tcp);
1887 					conn_delete_ire(tcp->tcp_connp, NULL);
1888 					tcp_ipsec_cleanup(tcp);
1889 					CONN_DEC_REF(tcp->tcp_connp);
1890 				}
1891 			} else {
1892 				CONN_INC_REF_LOCKED(connp);
1893 				mutex_exit(lock);
1894 				mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1895 				mutex_exit(&connp->conn_lock);
1896 				/*
1897 				 * We can reuse the closemp here since conn has
1898 				 * detached (otherwise we wouldn't even be in
1899 				 * time_wait list). tcp_closemp_used can safely
1900 				 * be changed without taking a lock as no other
1901 				 * thread can concurrently access it at this
1902 				 * point in the connection lifecycle.
1903 				 */
1904 
1905 				if (tcp->tcp_closemp.b_prev == NULL)
1906 					tcp->tcp_closemp_used = B_TRUE;
1907 				else
1908 					cmn_err(CE_PANIC,
1909 					    "tcp_timewait_collector: "
1910 					    "concurrent use of tcp_closemp: "
1911 					    "connp %p tcp %p\n", (void *)connp,
1912 					    (void *)tcp);
1913 
1914 				TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1915 				mp = &tcp->tcp_closemp;
1916 				SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
1917 				    tcp_timewait_output, connp,
1918 				    SQ_FILL, SQTAG_TCP_TIMEWAIT);
1919 			}
1920 		} else {
1921 			mutex_enter(&connp->conn_lock);
1922 			CONN_INC_REF_LOCKED(connp);
1923 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1924 			mutex_exit(&connp->conn_lock);
1925 			/*
1926 			 * We can reuse the closemp here since conn has
1927 			 * detached (otherwise we wouldn't even be in
1928 			 * time_wait list). tcp_closemp_used can safely
1929 			 * be changed without taking a lock as no other
1930 			 * thread can concurrently access it at this
1931 			 * point in the connection lifecycle.
1932 			 */
1933 
1934 			if (tcp->tcp_closemp.b_prev == NULL)
1935 				tcp->tcp_closemp_used = B_TRUE;
1936 			else
1937 				cmn_err(CE_PANIC, "tcp_timewait_collector: "
1938 				    "concurrent use of tcp_closemp: "
1939 				    "connp %p tcp %p\n", (void *)connp,
1940 				    (void *)tcp);
1941 
1942 			TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1943 			mp = &tcp->tcp_closemp;
1944 			SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
1945 			    tcp_timewait_output, connp,
1946 			    SQ_FILL, SQTAG_TCP_TIMEWAIT);
1947 		}
1948 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1949 	}
1950 
1951 	if (tcp_time_wait->tcp_free_list != NULL)
1952 		tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE;
1953 
1954 	tcp_time_wait->tcp_time_wait_tid =
1955 	    timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp,
1956 	    TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION,
1957 	    CALLOUT_FLAG_ROUNDUP);
1958 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1959 }
1960 
1961 /*
1962  * Reply to a clients T_CONN_RES TPI message. This function
1963  * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES
1964  * on the acceptor STREAM and processed in tcp_wput_accept().
1965  * Read the block comment on top of tcp_conn_request().
1966  */
1967 static void
1968 tcp_tli_accept(tcp_t *listener, mblk_t *mp)
1969 {
1970 	tcp_t	*acceptor;
1971 	tcp_t	*eager;
1972 	tcp_t   *tcp;
1973 	struct T_conn_res	*tcr;
1974 	t_uscalar_t	acceptor_id;
1975 	t_scalar_t	seqnum;
1976 	mblk_t	*opt_mp = NULL;	/* T_OPTMGMT_REQ messages */
1977 	struct tcp_options *tcpopt;
1978 	mblk_t	*ok_mp;
1979 	mblk_t	*mp1;
1980 	tcp_stack_t	*tcps = listener->tcp_tcps;
1981 
1982 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
1983 		tcp_err_ack(listener, mp, TPROTO, 0);
1984 		return;
1985 	}
1986 	tcr = (struct T_conn_res *)mp->b_rptr;
1987 
1988 	/*
1989 	 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the
1990 	 * read side queue of the streams device underneath us i.e. the
1991 	 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we
1992 	 * look it up in the queue_hash.  Under LP64 it sends down the
1993 	 * minor_t of the accepting endpoint.
1994 	 *
1995 	 * Once the acceptor/eager are modified (in tcp_accept_swap) the
1996 	 * fanout hash lock is held.
1997 	 * This prevents any thread from entering the acceptor queue from
1998 	 * below (since it has not been hard bound yet i.e. any inbound
1999 	 * packets will arrive on the listener or default tcp queue and
2000 	 * go through tcp_lookup).
2001 	 * The CONN_INC_REF will prevent the acceptor from closing.
2002 	 *
2003 	 * XXX It is still possible for a tli application to send down data
2004 	 * on the accepting stream while another thread calls t_accept.
2005 	 * This should not be a problem for well-behaved applications since
2006 	 * the T_OK_ACK is sent after the queue swapping is completed.
2007 	 *
2008 	 * If the accepting fd is the same as the listening fd, avoid
2009 	 * queue hash lookup since that will return an eager listener in a
2010 	 * already established state.
2011 	 */
2012 	acceptor_id = tcr->ACCEPTOR_id;
2013 	mutex_enter(&listener->tcp_eager_lock);
2014 	if (listener->tcp_acceptor_id == acceptor_id) {
2015 		eager = listener->tcp_eager_next_q;
2016 		/* only count how many T_CONN_INDs so don't count q0 */
2017 		if ((listener->tcp_conn_req_cnt_q != 1) ||
2018 		    (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) {
2019 			mutex_exit(&listener->tcp_eager_lock);
2020 			tcp_err_ack(listener, mp, TBADF, 0);
2021 			return;
2022 		}
2023 		if (listener->tcp_conn_req_cnt_q0 != 0) {
2024 			/* Throw away all the eagers on q0. */
2025 			tcp_eager_cleanup(listener, 1);
2026 		}
2027 		if (listener->tcp_syn_defense) {
2028 			listener->tcp_syn_defense = B_FALSE;
2029 			if (listener->tcp_ip_addr_cache != NULL) {
2030 				kmem_free(listener->tcp_ip_addr_cache,
2031 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
2032 				listener->tcp_ip_addr_cache = NULL;
2033 			}
2034 		}
2035 		/*
2036 		 * Transfer tcp_conn_req_max to the eager so that when
2037 		 * a disconnect occurs we can revert the endpoint to the
2038 		 * listen state.
2039 		 */
2040 		eager->tcp_conn_req_max = listener->tcp_conn_req_max;
2041 		ASSERT(listener->tcp_conn_req_cnt_q0 == 0);
2042 		/*
2043 		 * Get a reference on the acceptor just like the
2044 		 * tcp_acceptor_hash_lookup below.
2045 		 */
2046 		acceptor = listener;
2047 		CONN_INC_REF(acceptor->tcp_connp);
2048 	} else {
2049 		acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps);
2050 		if (acceptor == NULL) {
2051 			if (listener->tcp_debug) {
2052 				(void) strlog(TCP_MOD_ID, 0, 1,
2053 				    SL_ERROR|SL_TRACE,
2054 				    "tcp_accept: did not find acceptor 0x%x\n",
2055 				    acceptor_id);
2056 			}
2057 			mutex_exit(&listener->tcp_eager_lock);
2058 			tcp_err_ack(listener, mp, TPROVMISMATCH, 0);
2059 			return;
2060 		}
2061 		/*
2062 		 * Verify acceptor state. The acceptable states for an acceptor
2063 		 * include TCPS_IDLE and TCPS_BOUND.
2064 		 */
2065 		switch (acceptor->tcp_state) {
2066 		case TCPS_IDLE:
2067 			/* FALLTHRU */
2068 		case TCPS_BOUND:
2069 			break;
2070 		default:
2071 			CONN_DEC_REF(acceptor->tcp_connp);
2072 			mutex_exit(&listener->tcp_eager_lock);
2073 			tcp_err_ack(listener, mp, TOUTSTATE, 0);
2074 			return;
2075 		}
2076 	}
2077 
2078 	/* The listener must be in TCPS_LISTEN */
2079 	if (listener->tcp_state != TCPS_LISTEN) {
2080 		CONN_DEC_REF(acceptor->tcp_connp);
2081 		mutex_exit(&listener->tcp_eager_lock);
2082 		tcp_err_ack(listener, mp, TOUTSTATE, 0);
2083 		return;
2084 	}
2085 
2086 	/*
2087 	 * Rendezvous with an eager connection request packet hanging off
2088 	 * 'tcp' that has the 'seqnum' tag.  We tagged the detached open
2089 	 * tcp structure when the connection packet arrived in
2090 	 * tcp_conn_request().
2091 	 */
2092 	seqnum = tcr->SEQ_number;
2093 	eager = listener;
2094 	do {
2095 		eager = eager->tcp_eager_next_q;
2096 		if (eager == NULL) {
2097 			CONN_DEC_REF(acceptor->tcp_connp);
2098 			mutex_exit(&listener->tcp_eager_lock);
2099 			tcp_err_ack(listener, mp, TBADSEQ, 0);
2100 			return;
2101 		}
2102 	} while (eager->tcp_conn_req_seqnum != seqnum);
2103 	mutex_exit(&listener->tcp_eager_lock);
2104 
2105 	/*
2106 	 * At this point, both acceptor and listener have 2 ref
2107 	 * that they begin with. Acceptor has one additional ref
2108 	 * we placed in lookup while listener has 3 additional
2109 	 * ref for being behind the squeue (tcp_accept() is
2110 	 * done on listener's squeue); being in classifier hash;
2111 	 * and eager's ref on listener.
2112 	 */
2113 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2114 	ASSERT(acceptor->tcp_connp->conn_ref >= 3);
2115 
2116 	/*
2117 	 * The eager at this point is set in its own squeue and
2118 	 * could easily have been killed (tcp_accept_finish will
2119 	 * deal with that) because of a TH_RST so we can only
2120 	 * ASSERT for a single ref.
2121 	 */
2122 	ASSERT(eager->tcp_connp->conn_ref >= 1);
2123 
2124 	/* Pre allocate the stroptions mblk also */
2125 	opt_mp = allocb(MAX(sizeof (struct tcp_options),
2126 	    sizeof (struct T_conn_res)), BPRI_HI);
2127 	if (opt_mp == NULL) {
2128 		CONN_DEC_REF(acceptor->tcp_connp);
2129 		CONN_DEC_REF(eager->tcp_connp);
2130 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2131 		return;
2132 	}
2133 	DB_TYPE(opt_mp) = M_SETOPTS;
2134 	opt_mp->b_wptr += sizeof (struct tcp_options);
2135 	tcpopt = (struct tcp_options *)opt_mp->b_rptr;
2136 	tcpopt->to_flags = 0;
2137 
2138 	/*
2139 	 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
2140 	 * from listener to acceptor.
2141 	 */
2142 	if (listener->tcp_bound_if != 0) {
2143 		tcpopt->to_flags |= TCPOPT_BOUNDIF;
2144 		tcpopt->to_boundif = listener->tcp_bound_if;
2145 	}
2146 	if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
2147 		tcpopt->to_flags |= TCPOPT_RECVPKTINFO;
2148 	}
2149 
2150 	/* Re-use mp1 to hold a copy of mp, in case reallocb fails */
2151 	if ((mp1 = copymsg(mp)) == NULL) {
2152 		CONN_DEC_REF(acceptor->tcp_connp);
2153 		CONN_DEC_REF(eager->tcp_connp);
2154 		freemsg(opt_mp);
2155 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2156 		return;
2157 	}
2158 
2159 	tcr = (struct T_conn_res *)mp1->b_rptr;
2160 
2161 	/*
2162 	 * This is an expanded version of mi_tpi_ok_ack_alloc()
2163 	 * which allocates a larger mblk and appends the new
2164 	 * local address to the ok_ack.  The address is copied by
2165 	 * soaccept() for getsockname().
2166 	 */
2167 	{
2168 		int extra;
2169 
2170 		extra = (eager->tcp_family == AF_INET) ?
2171 		    sizeof (sin_t) : sizeof (sin6_t);
2172 
2173 		/*
2174 		 * Try to re-use mp, if possible.  Otherwise, allocate
2175 		 * an mblk and return it as ok_mp.  In any case, mp
2176 		 * is no longer usable upon return.
2177 		 */
2178 		if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) {
2179 			CONN_DEC_REF(acceptor->tcp_connp);
2180 			CONN_DEC_REF(eager->tcp_connp);
2181 			freemsg(opt_mp);
2182 			/* Original mp has been freed by now, so use mp1 */
2183 			tcp_err_ack(listener, mp1, TSYSERR, ENOMEM);
2184 			return;
2185 		}
2186 
2187 		mp = NULL;	/* We should never use mp after this point */
2188 
2189 		switch (extra) {
2190 		case sizeof (sin_t): {
2191 				sin_t *sin = (sin_t *)ok_mp->b_wptr;
2192 
2193 				ok_mp->b_wptr += extra;
2194 				sin->sin_family = AF_INET;
2195 				sin->sin_port = eager->tcp_lport;
2196 				sin->sin_addr.s_addr =
2197 				    eager->tcp_ipha->ipha_src;
2198 				break;
2199 			}
2200 		case sizeof (sin6_t): {
2201 				sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr;
2202 
2203 				ok_mp->b_wptr += extra;
2204 				sin6->sin6_family = AF_INET6;
2205 				sin6->sin6_port = eager->tcp_lport;
2206 				if (eager->tcp_ipversion == IPV4_VERSION) {
2207 					sin6->sin6_flowinfo = 0;
2208 					IN6_IPADDR_TO_V4MAPPED(
2209 					    eager->tcp_ipha->ipha_src,
2210 					    &sin6->sin6_addr);
2211 				} else {
2212 					ASSERT(eager->tcp_ip6h != NULL);
2213 					sin6->sin6_flowinfo =
2214 					    eager->tcp_ip6h->ip6_vcf &
2215 					    ~IPV6_VERS_AND_FLOW_MASK;
2216 					sin6->sin6_addr =
2217 					    eager->tcp_ip6h->ip6_src;
2218 				}
2219 				sin6->sin6_scope_id = 0;
2220 				sin6->__sin6_src_id = 0;
2221 				break;
2222 			}
2223 		default:
2224 			break;
2225 		}
2226 		ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim);
2227 	}
2228 
2229 	/*
2230 	 * If there are no options we know that the T_CONN_RES will
2231 	 * succeed. However, we can't send the T_OK_ACK upstream until
2232 	 * the tcp_accept_swap is done since it would be dangerous to
2233 	 * let the application start using the new fd prior to the swap.
2234 	 */
2235 	tcp_accept_swap(listener, acceptor, eager);
2236 
2237 	/*
2238 	 * tcp_accept_swap unlinks eager from listener but does not drop
2239 	 * the eager's reference on the listener.
2240 	 */
2241 	ASSERT(eager->tcp_listener == NULL);
2242 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2243 
2244 	/*
2245 	 * The eager is now associated with its own queue. Insert in
2246 	 * the hash so that the connection can be reused for a future
2247 	 * T_CONN_RES.
2248 	 */
2249 	tcp_acceptor_hash_insert(acceptor_id, eager);
2250 
2251 	/*
2252 	 * We now do the processing of options with T_CONN_RES.
2253 	 * We delay till now since we wanted to have queue to pass to
2254 	 * option processing routines that points back to the right
2255 	 * instance structure which does not happen until after
2256 	 * tcp_accept_swap().
2257 	 *
2258 	 * Note:
2259 	 * The sanity of the logic here assumes that whatever options
2260 	 * are appropriate to inherit from listner=>eager are done
2261 	 * before this point, and whatever were to be overridden (or not)
2262 	 * in transfer logic from eager=>acceptor in tcp_accept_swap().
2263 	 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it
2264 	 *   before its ACCEPTOR_id comes down in T_CONN_RES ]
2265 	 * This may not be true at this point in time but can be fixed
2266 	 * independently. This option processing code starts with
2267 	 * the instantiated acceptor instance and the final queue at
2268 	 * this point.
2269 	 */
2270 
2271 	if (tcr->OPT_length != 0) {
2272 		/* Options to process */
2273 		int t_error = 0;
2274 		int sys_error = 0;
2275 		int do_disconnect = 0;
2276 
2277 		if (tcp_conprim_opt_process(eager, mp1,
2278 		    &do_disconnect, &t_error, &sys_error) < 0) {
2279 			eager->tcp_accept_error = 1;
2280 			if (do_disconnect) {
2281 				/*
2282 				 * An option failed which does not allow
2283 				 * connection to be accepted.
2284 				 *
2285 				 * We allow T_CONN_RES to succeed and
2286 				 * put a T_DISCON_IND on the eager queue.
2287 				 */
2288 				ASSERT(t_error == 0 && sys_error == 0);
2289 				eager->tcp_send_discon_ind = 1;
2290 			} else {
2291 				ASSERT(t_error != 0);
2292 				freemsg(ok_mp);
2293 				/*
2294 				 * Original mp was either freed or set
2295 				 * to ok_mp above, so use mp1 instead.
2296 				 */
2297 				tcp_err_ack(listener, mp1, t_error, sys_error);
2298 				goto finish;
2299 			}
2300 		}
2301 		/*
2302 		 * Most likely success in setting options (except if
2303 		 * eager->tcp_send_discon_ind set).
2304 		 * mp1 option buffer represented by OPT_length/offset
2305 		 * potentially modified and contains results of setting
2306 		 * options at this point
2307 		 */
2308 	}
2309 
2310 	/* We no longer need mp1, since all options processing has passed */
2311 	freemsg(mp1);
2312 
2313 	putnext(listener->tcp_rq, ok_mp);
2314 
2315 	mutex_enter(&listener->tcp_eager_lock);
2316 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
2317 		tcp_t	*tail;
2318 		mblk_t	*conn_ind;
2319 
2320 		/*
2321 		 * This path should not be executed if listener and
2322 		 * acceptor streams are the same.
2323 		 */
2324 		ASSERT(listener != acceptor);
2325 
2326 		tcp = listener->tcp_eager_prev_q0;
2327 		/*
2328 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
2329 		 * deferred T_conn_ind queue. We need to get to the head of
2330 		 * the queue in order to send up T_conn_ind the same order as
2331 		 * how the 3WHS is completed.
2332 		 */
2333 		while (tcp != listener) {
2334 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0)
2335 				break;
2336 			else
2337 				tcp = tcp->tcp_eager_prev_q0;
2338 		}
2339 		ASSERT(tcp != listener);
2340 		conn_ind = tcp->tcp_conn.tcp_eager_conn_ind;
2341 		ASSERT(conn_ind != NULL);
2342 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
2343 
2344 		/* Move from q0 to q */
2345 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
2346 		listener->tcp_conn_req_cnt_q0--;
2347 		listener->tcp_conn_req_cnt_q++;
2348 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
2349 		    tcp->tcp_eager_prev_q0;
2350 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
2351 		    tcp->tcp_eager_next_q0;
2352 		tcp->tcp_eager_prev_q0 = NULL;
2353 		tcp->tcp_eager_next_q0 = NULL;
2354 		tcp->tcp_conn_def_q0 = B_FALSE;
2355 
2356 		/* Make sure the tcp isn't in the list of droppables */
2357 		ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
2358 		    tcp->tcp_eager_prev_drop_q0 == NULL);
2359 
2360 		/*
2361 		 * Insert at end of the queue because sockfs sends
2362 		 * down T_CONN_RES in chronological order. Leaving
2363 		 * the older conn indications at front of the queue
2364 		 * helps reducing search time.
2365 		 */
2366 		tail = listener->tcp_eager_last_q;
2367 		if (tail != NULL)
2368 			tail->tcp_eager_next_q = tcp;
2369 		else
2370 			listener->tcp_eager_next_q = tcp;
2371 		listener->tcp_eager_last_q = tcp;
2372 		tcp->tcp_eager_next_q = NULL;
2373 		mutex_exit(&listener->tcp_eager_lock);
2374 		putnext(tcp->tcp_rq, conn_ind);
2375 	} else {
2376 		mutex_exit(&listener->tcp_eager_lock);
2377 	}
2378 
2379 	/*
2380 	 * Done with the acceptor - free it
2381 	 *
2382 	 * Note: from this point on, no access to listener should be made
2383 	 * as listener can be equal to acceptor.
2384 	 */
2385 finish:
2386 	ASSERT(acceptor->tcp_detached);
2387 	ASSERT(tcps->tcps_g_q != NULL);
2388 	ASSERT(!IPCL_IS_NONSTR(acceptor->tcp_connp));
2389 	acceptor->tcp_rq = tcps->tcps_g_q;
2390 	acceptor->tcp_wq = WR(tcps->tcps_g_q);
2391 	(void) tcp_clean_death(acceptor, 0, 2);
2392 	CONN_DEC_REF(acceptor->tcp_connp);
2393 
2394 	/*
2395 	 * In case we already received a FIN we have to make tcp_rput send
2396 	 * the ordrel_ind. This will also send up a window update if the window
2397 	 * has opened up.
2398 	 *
2399 	 * In the normal case of a successful connection acceptance
2400 	 * we give the O_T_BIND_REQ to the read side put procedure as an
2401 	 * indication that this was just accepted. This tells tcp_rput to
2402 	 * pass up any data queued in tcp_rcv_list.
2403 	 *
2404 	 * In the fringe case where options sent with T_CONN_RES failed and
2405 	 * we required, we would be indicating a T_DISCON_IND to blow
2406 	 * away this connection.
2407 	 */
2408 
2409 	/*
2410 	 * XXX: we currently have a problem if XTI application closes the
2411 	 * acceptor stream in between. This problem exists in on10-gate also
2412 	 * and is well know but nothing can be done short of major rewrite
2413 	 * to fix it. Now it is possible to take care of it by assigning TLI/XTI
2414 	 * eager same squeue as listener (we can distinguish non socket
2415 	 * listeners at the time of handling a SYN in tcp_conn_request)
2416 	 * and do most of the work that tcp_accept_finish does here itself
2417 	 * and then get behind the acceptor squeue to access the acceptor
2418 	 * queue.
2419 	 */
2420 	/*
2421 	 * We already have a ref on tcp so no need to do one before squeue_enter
2422 	 */
2423 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, opt_mp, tcp_accept_finish,
2424 	    eager->tcp_connp, SQ_FILL, SQTAG_TCP_ACCEPT_FINISH);
2425 }
2426 
2427 /*
2428  * Swap information between the eager and acceptor for a TLI/XTI client.
2429  * The sockfs accept is done on the acceptor stream and control goes
2430  * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not
2431  * called. In either case, both the eager and listener are in their own
2432  * perimeter (squeue) and the code has to deal with potential race.
2433  *
2434  * See the block comment on top of tcp_accept() and tcp_wput_accept().
2435  */
2436 static void
2437 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager)
2438 {
2439 	conn_t	*econnp, *aconnp;
2440 
2441 	ASSERT(eager->tcp_rq == listener->tcp_rq);
2442 	ASSERT(eager->tcp_detached && !acceptor->tcp_detached);
2443 	ASSERT(!eager->tcp_hard_bound);
2444 	ASSERT(!TCP_IS_SOCKET(acceptor));
2445 	ASSERT(!TCP_IS_SOCKET(eager));
2446 	ASSERT(!TCP_IS_SOCKET(listener));
2447 
2448 	acceptor->tcp_detached = B_TRUE;
2449 	/*
2450 	 * To permit stream re-use by TLI/XTI, the eager needs a copy of
2451 	 * the acceptor id.
2452 	 */
2453 	eager->tcp_acceptor_id = acceptor->tcp_acceptor_id;
2454 
2455 	/* remove eager from listen list... */
2456 	mutex_enter(&listener->tcp_eager_lock);
2457 	tcp_eager_unlink(eager);
2458 	ASSERT(eager->tcp_eager_next_q == NULL &&
2459 	    eager->tcp_eager_last_q == NULL);
2460 	ASSERT(eager->tcp_eager_next_q0 == NULL &&
2461 	    eager->tcp_eager_prev_q0 == NULL);
2462 	mutex_exit(&listener->tcp_eager_lock);
2463 	eager->tcp_rq = acceptor->tcp_rq;
2464 	eager->tcp_wq = acceptor->tcp_wq;
2465 
2466 	econnp = eager->tcp_connp;
2467 	aconnp = acceptor->tcp_connp;
2468 
2469 	eager->tcp_rq->q_ptr = econnp;
2470 	eager->tcp_wq->q_ptr = econnp;
2471 
2472 	/*
2473 	 * In the TLI/XTI loopback case, we are inside the listener's squeue,
2474 	 * which might be a different squeue from our peer TCP instance.
2475 	 * For TCP Fusion, the peer expects that whenever tcp_detached is
2476 	 * clear, our TCP queues point to the acceptor's queues.  Thus, use
2477 	 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq
2478 	 * above reach global visibility prior to the clearing of tcp_detached.
2479 	 */
2480 	membar_producer();
2481 	eager->tcp_detached = B_FALSE;
2482 
2483 	ASSERT(eager->tcp_ack_tid == 0);
2484 
2485 	econnp->conn_dev = aconnp->conn_dev;
2486 	econnp->conn_minor_arena = aconnp->conn_minor_arena;
2487 	ASSERT(econnp->conn_minor_arena != NULL);
2488 	if (eager->tcp_cred != NULL)
2489 		crfree(eager->tcp_cred);
2490 	eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred;
2491 	ASSERT(econnp->conn_netstack == aconnp->conn_netstack);
2492 	ASSERT(eager->tcp_tcps == acceptor->tcp_tcps);
2493 
2494 	aconnp->conn_cred = NULL;
2495 
2496 	econnp->conn_zoneid = aconnp->conn_zoneid;
2497 	econnp->conn_allzones = aconnp->conn_allzones;
2498 
2499 	econnp->conn_mac_exempt = aconnp->conn_mac_exempt;
2500 	aconnp->conn_mac_exempt = B_FALSE;
2501 
2502 	ASSERT(aconnp->conn_peercred == NULL);
2503 
2504 	/* Do the IPC initialization */
2505 	CONN_INC_REF(econnp);
2506 
2507 	econnp->conn_multicast_loop = aconnp->conn_multicast_loop;
2508 	econnp->conn_af_isv6 = aconnp->conn_af_isv6;
2509 	econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6;
2510 
2511 	/* Done with old IPC. Drop its ref on its connp */
2512 	CONN_DEC_REF(aconnp);
2513 }
2514 
2515 
2516 /*
2517  * Adapt to the information, such as rtt and rtt_sd, provided from the
2518  * ire cached in conn_cache_ire. If no ire cached, do a ire lookup.
2519  *
2520  * Checks for multicast and broadcast destination address.
2521  * Returns zero on failure; non-zero if ok.
2522  *
2523  * Note that the MSS calculation here is based on the info given in
2524  * the IRE.  We do not do any calculation based on TCP options.  They
2525  * will be handled in tcp_rput_other() and tcp_rput_data() when TCP
2526  * knows which options to use.
2527  *
2528  * Note on how TCP gets its parameters for a connection.
2529  *
2530  * When a tcp_t structure is allocated, it gets all the default parameters.
2531  * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd,
2532  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
2533  * default.
2534  *
2535  * An incoming SYN with a multicast or broadcast destination address, is dropped
2536  * in 1 of 2 places.
2537  *
2538  * 1. If the packet was received over the wire it is dropped in
2539  * ip_rput_process_broadcast()
2540  *
2541  * 2. If the packet was received through internal IP loopback, i.e. the packet
2542  * was generated and received on the same machine, it is dropped in
2543  * ip_wput_local()
2544  *
2545  * An incoming SYN with a multicast or broadcast source address is always
2546  * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to
2547  * reject an attempt to connect to a broadcast or multicast (destination)
2548  * address.
2549  */
2550 static int
2551 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp)
2552 {
2553 	tcp_hsp_t	*hsp;
2554 	ire_t		*ire;
2555 	ire_t		*sire = NULL;
2556 	iulp_t		*ire_uinfo = NULL;
2557 	uint32_t	mss_max;
2558 	uint32_t	mss;
2559 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2560 	conn_t		*connp = tcp->tcp_connp;
2561 	boolean_t	ire_cacheable = B_FALSE;
2562 	zoneid_t	zoneid = connp->conn_zoneid;
2563 	int		match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
2564 	    MATCH_IRE_SECATTR;
2565 	ts_label_t	*tsl = crgetlabel(CONN_CRED(connp));
2566 	ill_t		*ill = NULL;
2567 	boolean_t	incoming = (ire_mp == NULL);
2568 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2569 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
2570 
2571 	ASSERT(connp->conn_ire_cache == NULL);
2572 
2573 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2574 
2575 		if (CLASSD(tcp->tcp_connp->conn_rem)) {
2576 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
2577 			return (0);
2578 		}
2579 		/*
2580 		 * If IP_NEXTHOP is set, then look for an IRE_CACHE
2581 		 * for the destination with the nexthop as gateway.
2582 		 * ire_ctable_lookup() is used because this particular
2583 		 * ire, if it exists, will be marked private.
2584 		 * If that is not available, use the interface ire
2585 		 * for the nexthop.
2586 		 *
2587 		 * TSol: tcp_update_label will detect label mismatches based
2588 		 * only on the destination's label, but that would not
2589 		 * detect label mismatches based on the security attributes
2590 		 * of routes or next hop gateway. Hence we need to pass the
2591 		 * label to ire_ftable_lookup below in order to locate the
2592 		 * right prefix (and/or) ire cache. Similarly we also need
2593 		 * pass the label to the ire_cache_lookup below to locate
2594 		 * the right ire that also matches on the label.
2595 		 */
2596 		if (tcp->tcp_connp->conn_nexthop_set) {
2597 			ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem,
2598 			    tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid,
2599 			    tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW,
2600 			    ipst);
2601 			if (ire == NULL) {
2602 				ire = ire_ftable_lookup(
2603 				    tcp->tcp_connp->conn_nexthop_v4,
2604 				    0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0,
2605 				    tsl, match_flags, ipst);
2606 				if (ire == NULL)
2607 					return (0);
2608 			} else {
2609 				ire_uinfo = &ire->ire_uinfo;
2610 			}
2611 		} else {
2612 			ire = ire_cache_lookup(tcp->tcp_connp->conn_rem,
2613 			    zoneid, tsl, ipst);
2614 			if (ire != NULL) {
2615 				ire_cacheable = B_TRUE;
2616 				ire_uinfo = (ire_mp != NULL) ?
2617 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2618 				    &ire->ire_uinfo;
2619 
2620 			} else {
2621 				if (ire_mp == NULL) {
2622 					ire = ire_ftable_lookup(
2623 					    tcp->tcp_connp->conn_rem,
2624 					    0, 0, 0, NULL, &sire, zoneid, 0,
2625 					    tsl, (MATCH_IRE_RECURSIVE |
2626 					    MATCH_IRE_DEFAULT), ipst);
2627 					if (ire == NULL)
2628 						return (0);
2629 					ire_uinfo = (sire != NULL) ?
2630 					    &sire->ire_uinfo :
2631 					    &ire->ire_uinfo;
2632 				} else {
2633 					ire = (ire_t *)ire_mp->b_rptr;
2634 					ire_uinfo =
2635 					    &((ire_t *)
2636 					    ire_mp->b_rptr)->ire_uinfo;
2637 				}
2638 			}
2639 		}
2640 		ASSERT(ire != NULL);
2641 
2642 		if ((ire->ire_src_addr == INADDR_ANY) ||
2643 		    (ire->ire_type & IRE_BROADCAST)) {
2644 			/*
2645 			 * ire->ire_mp is non null when ire_mp passed in is used
2646 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2647 			 */
2648 			if (ire->ire_mp == NULL)
2649 				ire_refrele(ire);
2650 			if (sire != NULL)
2651 				ire_refrele(sire);
2652 			return (0);
2653 		}
2654 
2655 		if (tcp->tcp_ipha->ipha_src == INADDR_ANY) {
2656 			ipaddr_t src_addr;
2657 
2658 			/*
2659 			 * ip_bind_connected() has stored the correct source
2660 			 * address in conn_src.
2661 			 */
2662 			src_addr = tcp->tcp_connp->conn_src;
2663 			tcp->tcp_ipha->ipha_src = src_addr;
2664 			/*
2665 			 * Copy of the src addr. in tcp_t is needed
2666 			 * for the lookup funcs.
2667 			 */
2668 			IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6);
2669 		}
2670 		/*
2671 		 * Set the fragment bit so that IP will tell us if the MTU
2672 		 * should change. IP tells us the latest setting of
2673 		 * ip_path_mtu_discovery through ire_frag_flag.
2674 		 */
2675 		if (ipst->ips_ip_path_mtu_discovery) {
2676 			tcp->tcp_ipha->ipha_fragment_offset_and_flags =
2677 			    htons(IPH_DF);
2678 		}
2679 		/*
2680 		 * If ire_uinfo is NULL, this is the IRE_INTERFACE case
2681 		 * for IP_NEXTHOP. No cache ire has been found for the
2682 		 * destination and we are working with the nexthop's
2683 		 * interface ire. Since we need to forward all packets
2684 		 * to the nexthop first, we "blindly" set tcp_localnet
2685 		 * to false, eventhough the destination may also be
2686 		 * onlink.
2687 		 */
2688 		if (ire_uinfo == NULL)
2689 			tcp->tcp_localnet = 0;
2690 		else
2691 			tcp->tcp_localnet = (ire->ire_gateway_addr == 0);
2692 	} else {
2693 		/*
2694 		 * For incoming connection ire_mp = NULL
2695 		 * For outgoing connection ire_mp != NULL
2696 		 * Technically we should check conn_incoming_ill
2697 		 * when ire_mp is NULL and conn_outgoing_ill when
2698 		 * ire_mp is non-NULL. But this is performance
2699 		 * critical path and for IPV*_BOUND_IF, outgoing
2700 		 * and incoming ill are always set to the same value.
2701 		 */
2702 		ill_t	*dst_ill = NULL;
2703 		ipif_t  *dst_ipif = NULL;
2704 
2705 		ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
2706 
2707 		if (connp->conn_outgoing_ill != NULL) {
2708 			/* Outgoing or incoming path */
2709 			int   err;
2710 
2711 			dst_ill = conn_get_held_ill(connp,
2712 			    &connp->conn_outgoing_ill, &err);
2713 			if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) {
2714 				ip1dbg(("tcp_adapt_ire: ill_lookup failed\n"));
2715 				return (0);
2716 			}
2717 			match_flags |= MATCH_IRE_ILL;
2718 			dst_ipif = dst_ill->ill_ipif;
2719 		}
2720 		ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6,
2721 		    0, 0, dst_ipif, zoneid, tsl, match_flags, ipst);
2722 
2723 		if (ire != NULL) {
2724 			ire_cacheable = B_TRUE;
2725 			ire_uinfo = (ire_mp != NULL) ?
2726 			    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2727 			    &ire->ire_uinfo;
2728 		} else {
2729 			if (ire_mp == NULL) {
2730 				ire = ire_ftable_lookup_v6(
2731 				    &tcp->tcp_connp->conn_remv6,
2732 				    0, 0, 0, dst_ipif, &sire, zoneid,
2733 				    0, tsl, match_flags, ipst);
2734 				if (ire == NULL) {
2735 					if (dst_ill != NULL)
2736 						ill_refrele(dst_ill);
2737 					return (0);
2738 				}
2739 				ire_uinfo = (sire != NULL) ? &sire->ire_uinfo :
2740 				    &ire->ire_uinfo;
2741 			} else {
2742 				ire = (ire_t *)ire_mp->b_rptr;
2743 				ire_uinfo =
2744 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo;
2745 			}
2746 		}
2747 		if (dst_ill != NULL)
2748 			ill_refrele(dst_ill);
2749 
2750 		ASSERT(ire != NULL);
2751 		ASSERT(ire_uinfo != NULL);
2752 
2753 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) ||
2754 		    IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
2755 			/*
2756 			 * ire->ire_mp is non null when ire_mp passed in is used
2757 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2758 			 */
2759 			if (ire->ire_mp == NULL)
2760 				ire_refrele(ire);
2761 			if (sire != NULL)
2762 				ire_refrele(sire);
2763 			return (0);
2764 		}
2765 
2766 		if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
2767 			in6_addr_t	src_addr;
2768 
2769 			/*
2770 			 * ip_bind_connected_v6() has stored the correct source
2771 			 * address per IPv6 addr. selection policy in
2772 			 * conn_src_v6.
2773 			 */
2774 			src_addr = tcp->tcp_connp->conn_srcv6;
2775 
2776 			tcp->tcp_ip6h->ip6_src = src_addr;
2777 			/*
2778 			 * Copy of the src addr. in tcp_t is needed
2779 			 * for the lookup funcs.
2780 			 */
2781 			tcp->tcp_ip_src_v6 = src_addr;
2782 			ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src,
2783 			    &connp->conn_srcv6));
2784 		}
2785 		tcp->tcp_localnet =
2786 		    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6);
2787 	}
2788 
2789 	/*
2790 	 * This allows applications to fail quickly when connections are made
2791 	 * to dead hosts. Hosts can be labeled dead by adding a reject route
2792 	 * with both the RTF_REJECT and RTF_PRIVATE flags set.
2793 	 */
2794 	if ((ire->ire_flags & RTF_REJECT) &&
2795 	    (ire->ire_flags & RTF_PRIVATE))
2796 		goto error;
2797 
2798 	/*
2799 	 * Make use of the cached rtt and rtt_sd values to calculate the
2800 	 * initial RTO.  Note that they are already initialized in
2801 	 * tcp_init_values().
2802 	 * If ire_uinfo is NULL, i.e., we do not have a cache ire for
2803 	 * IP_NEXTHOP, but instead are using the interface ire for the
2804 	 * nexthop, then we do not use the ire_uinfo from that ire to
2805 	 * do any initializations.
2806 	 */
2807 	if (ire_uinfo != NULL) {
2808 		if (ire_uinfo->iulp_rtt != 0) {
2809 			clock_t	rto;
2810 
2811 			tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt;
2812 			tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd;
2813 			rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2814 			    tcps->tcps_rexmit_interval_extra +
2815 			    (tcp->tcp_rtt_sa >> 5);
2816 
2817 			if (rto > tcps->tcps_rexmit_interval_max) {
2818 				tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
2819 			} else if (rto < tcps->tcps_rexmit_interval_min) {
2820 				tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
2821 			} else {
2822 				tcp->tcp_rto = rto;
2823 			}
2824 		}
2825 		if (ire_uinfo->iulp_ssthresh != 0)
2826 			tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh;
2827 		else
2828 			tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2829 		if (ire_uinfo->iulp_spipe > 0) {
2830 			tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe,
2831 			    tcps->tcps_max_buf);
2832 			if (tcps->tcps_snd_lowat_fraction != 0)
2833 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2834 				    tcps->tcps_snd_lowat_fraction;
2835 			(void) tcp_maxpsz_set(tcp, B_TRUE);
2836 		}
2837 		/*
2838 		 * Note that up till now, acceptor always inherits receive
2839 		 * window from the listener.  But if there is a metrics
2840 		 * associated with a host, we should use that instead of
2841 		 * inheriting it from listener. Thus we need to pass this
2842 		 * info back to the caller.
2843 		 */
2844 		if (ire_uinfo->iulp_rpipe > 0) {
2845 			tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe,
2846 			    tcps->tcps_max_buf);
2847 		}
2848 
2849 		if (ire_uinfo->iulp_rtomax > 0) {
2850 			tcp->tcp_second_timer_threshold =
2851 			    ire_uinfo->iulp_rtomax;
2852 		}
2853 
2854 		/*
2855 		 * Use the metric option settings, iulp_tstamp_ok and
2856 		 * iulp_wscale_ok, only for active open. What this means
2857 		 * is that if the other side uses timestamp or window
2858 		 * scale option, TCP will also use those options. That
2859 		 * is for passive open.  If the application sets a
2860 		 * large window, window scale is enabled regardless of
2861 		 * the value in iulp_wscale_ok.  This is the behavior
2862 		 * since 2.6.  So we keep it.
2863 		 * The only case left in passive open processing is the
2864 		 * check for SACK.
2865 		 * For ECN, it should probably be like SACK.  But the
2866 		 * current value is binary, so we treat it like the other
2867 		 * cases.  The metric only controls active open.For passive
2868 		 * open, the ndd param, tcp_ecn_permitted, controls the
2869 		 * behavior.
2870 		 */
2871 		if (!tcp_detached) {
2872 			/*
2873 			 * The if check means that the following can only
2874 			 * be turned on by the metrics only IRE, but not off.
2875 			 */
2876 			if (ire_uinfo->iulp_tstamp_ok)
2877 				tcp->tcp_snd_ts_ok = B_TRUE;
2878 			if (ire_uinfo->iulp_wscale_ok)
2879 				tcp->tcp_snd_ws_ok = B_TRUE;
2880 			if (ire_uinfo->iulp_sack == 2)
2881 				tcp->tcp_snd_sack_ok = B_TRUE;
2882 			if (ire_uinfo->iulp_ecn_ok)
2883 				tcp->tcp_ecn_ok = B_TRUE;
2884 		} else {
2885 			/*
2886 			 * Passive open.
2887 			 *
2888 			 * As above, the if check means that SACK can only be
2889 			 * turned on by the metric only IRE.
2890 			 */
2891 			if (ire_uinfo->iulp_sack > 0) {
2892 				tcp->tcp_snd_sack_ok = B_TRUE;
2893 			}
2894 		}
2895 	}
2896 
2897 
2898 	/*
2899 	 * XXX: Note that currently, ire_max_frag can be as small as 68
2900 	 * because of PMTUd.  So tcp_mss may go to negative if combined
2901 	 * length of all those options exceeds 28 bytes.  But because
2902 	 * of the tcp_mss_min check below, we may not have a problem if
2903 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
2904 	 * the negative problem still exists.  And the check defeats PMTUd.
2905 	 * In fact, if PMTUd finds that the MSS should be smaller than
2906 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
2907 	 * value.
2908 	 *
2909 	 * We do not deal with that now.  All those problems related to
2910 	 * PMTUd will be fixed later.
2911 	 */
2912 	ASSERT(ire->ire_max_frag != 0);
2913 	mss = tcp->tcp_if_mtu = ire->ire_max_frag;
2914 	if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) {
2915 		if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) {
2916 			mss = MIN(mss, IPV6_MIN_MTU);
2917 		}
2918 	}
2919 
2920 	/* Sanity check for MSS value. */
2921 	if (tcp->tcp_ipversion == IPV4_VERSION)
2922 		mss_max = tcps->tcps_mss_max_ipv4;
2923 	else
2924 		mss_max = tcps->tcps_mss_max_ipv6;
2925 
2926 	if (tcp->tcp_ipversion == IPV6_VERSION &&
2927 	    (ire->ire_frag_flag & IPH_FRAG_HDR)) {
2928 		/*
2929 		 * After receiving an ICMPv6 "packet too big" message with a
2930 		 * MTU < 1280, and for multirouted IPv6 packets, the IP layer
2931 		 * will insert a 8-byte fragment header in every packet; we
2932 		 * reduce the MSS by that amount here.
2933 		 */
2934 		mss -= sizeof (ip6_frag_t);
2935 	}
2936 
2937 	if (tcp->tcp_ipsec_overhead == 0)
2938 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
2939 
2940 	mss -= tcp->tcp_ipsec_overhead;
2941 
2942 	if (mss < tcps->tcps_mss_min)
2943 		mss = tcps->tcps_mss_min;
2944 	if (mss > mss_max)
2945 		mss = mss_max;
2946 
2947 	/* Note that this is the maximum MSS, excluding all options. */
2948 	tcp->tcp_mss = mss;
2949 
2950 	/*
2951 	 * Initialize the ISS here now that we have the full connection ID.
2952 	 * The RFC 1948 method of initial sequence number generation requires
2953 	 * knowledge of the full connection ID before setting the ISS.
2954 	 */
2955 
2956 	tcp_iss_init(tcp);
2957 
2958 	if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL))
2959 		tcp->tcp_loopback = B_TRUE;
2960 
2961 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2962 		hsp = tcp_hsp_lookup(tcp->tcp_remote, tcps);
2963 	} else {
2964 		hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6, tcps);
2965 	}
2966 
2967 	if (hsp != NULL) {
2968 		/* Only modify if we're going to make them bigger */
2969 		if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) {
2970 			tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace;
2971 			if (tcps->tcps_snd_lowat_fraction != 0)
2972 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2973 				    tcps->tcps_snd_lowat_fraction;
2974 		}
2975 
2976 		if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) {
2977 			tcp->tcp_rwnd = hsp->tcp_hsp_recvspace;
2978 		}
2979 
2980 		/* Copy timestamp flag only for active open */
2981 		if (!tcp_detached)
2982 			tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp;
2983 	}
2984 
2985 	if (sire != NULL)
2986 		IRE_REFRELE(sire);
2987 
2988 	/*
2989 	 * If we got an IRE_CACHE and an ILL, go through their properties;
2990 	 * otherwise, this is deferred until later when we have an IRE_CACHE.
2991 	 */
2992 	if (tcp->tcp_loopback ||
2993 	    (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) {
2994 		/*
2995 		 * For incoming, see if this tcp may be MDT-capable.  For
2996 		 * outgoing, this process has been taken care of through
2997 		 * tcp_rput_other.
2998 		 */
2999 		tcp_ire_ill_check(tcp, ire, ill, incoming);
3000 		tcp->tcp_ire_ill_check_done = B_TRUE;
3001 	}
3002 
3003 	mutex_enter(&connp->conn_lock);
3004 	/*
3005 	 * Make sure that conn is not marked incipient
3006 	 * for incoming connections. A blind
3007 	 * removal of incipient flag is cheaper than
3008 	 * check and removal.
3009 	 */
3010 	connp->conn_state_flags &= ~CONN_INCIPIENT;
3011 
3012 	/*
3013 	 * Must not cache forwarding table routes
3014 	 * or recache an IRE after the conn_t has
3015 	 * had conn_ire_cache cleared and is flagged
3016 	 * unusable, (see the CONN_CACHE_IRE() macro).
3017 	 */
3018 	if (ire_cacheable && CONN_CACHE_IRE(connp)) {
3019 		rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
3020 		if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
3021 			connp->conn_ire_cache = ire;
3022 			IRE_UNTRACE_REF(ire);
3023 			rw_exit(&ire->ire_bucket->irb_lock);
3024 			mutex_exit(&connp->conn_lock);
3025 			return (1);
3026 		}
3027 		rw_exit(&ire->ire_bucket->irb_lock);
3028 	}
3029 	mutex_exit(&connp->conn_lock);
3030 
3031 	if (ire->ire_mp == NULL)
3032 		ire_refrele(ire);
3033 	return (1);
3034 
3035 error:
3036 	if (ire->ire_mp == NULL)
3037 		ire_refrele(ire);
3038 	if (sire != NULL)
3039 		ire_refrele(sire);
3040 	return (0);
3041 }
3042 
3043 static void
3044 tcp_tpi_bind(tcp_t *tcp, mblk_t *mp)
3045 {
3046 	int	error;
3047 	conn_t	*connp = tcp->tcp_connp;
3048 	struct sockaddr	*sa;
3049 	mblk_t  *mp1;
3050 	struct T_bind_req *tbr;
3051 	int	backlog;
3052 	socklen_t	len;
3053 	sin_t	*sin;
3054 	sin6_t	*sin6;
3055 
3056 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
3057 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
3058 		if (tcp->tcp_debug) {
3059 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3060 			    "tcp_tpi_bind: bad req, len %u",
3061 			    (uint_t)(mp->b_wptr - mp->b_rptr));
3062 		}
3063 		tcp_err_ack(tcp, mp, TPROTO, 0);
3064 		return;
3065 	}
3066 	/* Make sure the largest address fits */
3067 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
3068 	if (mp1 == NULL) {
3069 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3070 		return;
3071 	}
3072 	mp = mp1;
3073 	tbr = (struct T_bind_req *)mp->b_rptr;
3074 
3075 	backlog = tbr->CONIND_number;
3076 	len = tbr->ADDR_length;
3077 
3078 	switch (len) {
3079 	case 0:		/* request for a generic port */
3080 		tbr->ADDR_offset = sizeof (struct T_bind_req);
3081 		if (tcp->tcp_family == AF_INET) {
3082 			tbr->ADDR_length = sizeof (sin_t);
3083 			sin = (sin_t *)&tbr[1];
3084 			*sin = sin_null;
3085 			sin->sin_family = AF_INET;
3086 			sa = (struct sockaddr *)sin;
3087 			len = sizeof (sin_t);
3088 			mp->b_wptr = (uchar_t *)&sin[1];
3089 		} else {
3090 			ASSERT(tcp->tcp_family == AF_INET6);
3091 			tbr->ADDR_length = sizeof (sin6_t);
3092 			sin6 = (sin6_t *)&tbr[1];
3093 			*sin6 = sin6_null;
3094 			sin6->sin6_family = AF_INET6;
3095 			sa = (struct sockaddr *)sin6;
3096 			len = sizeof (sin6_t);
3097 			mp->b_wptr = (uchar_t *)&sin6[1];
3098 		}
3099 		break;
3100 
3101 	case sizeof (sin_t):    /* Complete IPv4 address */
3102 		sa = (struct sockaddr *)mi_offset_param(mp, tbr->ADDR_offset,
3103 		    sizeof (sin_t));
3104 		break;
3105 
3106 	case sizeof (sin6_t): /* Complete IPv6 address */
3107 		sa = (struct sockaddr *)mi_offset_param(mp,
3108 		    tbr->ADDR_offset, sizeof (sin6_t));
3109 		break;
3110 
3111 	default:
3112 		if (tcp->tcp_debug) {
3113 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3114 			    "tcp_tpi_bind: bad address length, %d",
3115 			    tbr->ADDR_length);
3116 		}
3117 		tcp_err_ack(tcp, mp, TBADADDR, 0);
3118 		return;
3119 	}
3120 
3121 	error = tcp_bind_check(connp, sa, len, DB_CRED(mp),
3122 	    tbr->PRIM_type != O_T_BIND_REQ);
3123 	if (error == 0) {
3124 		if (tcp->tcp_family == AF_INET) {
3125 			sin = (sin_t *)sa;
3126 			sin->sin_port = tcp->tcp_lport;
3127 		} else {
3128 			sin6 = (sin6_t *)sa;
3129 			sin6->sin6_port = tcp->tcp_lport;
3130 		}
3131 
3132 		if (backlog > 0) {
3133 			error = tcp_do_listen(connp, backlog, DB_CRED(mp));
3134 		}
3135 	}
3136 done:
3137 	if (error > 0) {
3138 		tcp_err_ack(tcp, mp, TSYSERR, error);
3139 	} else if (error < 0) {
3140 		tcp_err_ack(tcp, mp, -error, 0);
3141 	} else {
3142 		mp->b_datap->db_type = M_PCPROTO;
3143 		tbr->PRIM_type = T_BIND_ACK;
3144 		putnext(tcp->tcp_rq, mp);
3145 	}
3146 }
3147 
3148 /*
3149  * If the "bind_to_req_port_only" parameter is set, if the requested port
3150  * number is available, return it, If not return 0
3151  *
3152  * If "bind_to_req_port_only" parameter is not set and
3153  * If the requested port number is available, return it.  If not, return
3154  * the first anonymous port we happen across.  If no anonymous ports are
3155  * available, return 0. addr is the requested local address, if any.
3156  *
3157  * In either case, when succeeding update the tcp_t to record the port number
3158  * and insert it in the bind hash table.
3159  *
3160  * Note that TCP over IPv4 and IPv6 sockets can use the same port number
3161  * without setting SO_REUSEADDR. This is needed so that they
3162  * can be viewed as two independent transport protocols.
3163  */
3164 static in_port_t
3165 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
3166     int reuseaddr, boolean_t quick_connect,
3167     boolean_t bind_to_req_port_only, boolean_t user_specified)
3168 {
3169 	/* number of times we have run around the loop */
3170 	int count = 0;
3171 	/* maximum number of times to run around the loop */
3172 	int loopmax;
3173 	conn_t *connp = tcp->tcp_connp;
3174 	zoneid_t zoneid = connp->conn_zoneid;
3175 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3176 
3177 	/*
3178 	 * Lookup for free addresses is done in a loop and "loopmax"
3179 	 * influences how long we spin in the loop
3180 	 */
3181 	if (bind_to_req_port_only) {
3182 		/*
3183 		 * If the requested port is busy, don't bother to look
3184 		 * for a new one. Setting loop maximum count to 1 has
3185 		 * that effect.
3186 		 */
3187 		loopmax = 1;
3188 	} else {
3189 		/*
3190 		 * If the requested port is busy, look for a free one
3191 		 * in the anonymous port range.
3192 		 * Set loopmax appropriately so that one does not look
3193 		 * forever in the case all of the anonymous ports are in use.
3194 		 */
3195 		if (tcp->tcp_anon_priv_bind) {
3196 			/*
3197 			 * loopmax =
3198 			 * 	(IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1
3199 			 */
3200 			loopmax = IPPORT_RESERVED -
3201 			    tcps->tcps_min_anonpriv_port;
3202 		} else {
3203 			loopmax = (tcps->tcps_largest_anon_port -
3204 			    tcps->tcps_smallest_anon_port + 1);
3205 		}
3206 	}
3207 	do {
3208 		uint16_t	lport;
3209 		tf_t		*tbf;
3210 		tcp_t		*ltcp;
3211 		conn_t		*lconnp;
3212 
3213 		lport = htons(port);
3214 
3215 		/*
3216 		 * Ensure that the tcp_t is not currently in the bind hash.
3217 		 * Hold the lock on the hash bucket to ensure that
3218 		 * the duplicate check plus the insertion is an atomic
3219 		 * operation.
3220 		 *
3221 		 * This function does an inline lookup on the bind hash list
3222 		 * Make sure that we access only members of tcp_t
3223 		 * and that we don't look at tcp_tcp, since we are not
3224 		 * doing a CONN_INC_REF.
3225 		 */
3226 		tcp_bind_hash_remove(tcp);
3227 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)];
3228 		mutex_enter(&tbf->tf_lock);
3229 		for (ltcp = tbf->tf_tcp; ltcp != NULL;
3230 		    ltcp = ltcp->tcp_bind_hash) {
3231 			if (lport == ltcp->tcp_lport)
3232 				break;
3233 		}
3234 
3235 		for (; ltcp != NULL; ltcp = ltcp->tcp_bind_hash_port) {
3236 			boolean_t not_socket;
3237 			boolean_t exclbind;
3238 
3239 			lconnp = ltcp->tcp_connp;
3240 
3241 			/*
3242 			 * On a labeled system, we must treat bindings to ports
3243 			 * on shared IP addresses by sockets with MAC exemption
3244 			 * privilege as being in all zones, as there's
3245 			 * otherwise no way to identify the right receiver.
3246 			 */
3247 			if (!(IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) ||
3248 			    IPCL_ZONE_MATCH(connp,
3249 			    ltcp->tcp_connp->conn_zoneid)) &&
3250 			    !lconnp->conn_mac_exempt &&
3251 			    !connp->conn_mac_exempt)
3252 				continue;
3253 
3254 			/*
3255 			 * If TCP_EXCLBIND is set for either the bound or
3256 			 * binding endpoint, the semantics of bind
3257 			 * is changed according to the following.
3258 			 *
3259 			 * spec = specified address (v4 or v6)
3260 			 * unspec = unspecified address (v4 or v6)
3261 			 * A = specified addresses are different for endpoints
3262 			 *
3263 			 * bound	bind to		allowed
3264 			 * -------------------------------------
3265 			 * unspec	unspec		no
3266 			 * unspec	spec		no
3267 			 * spec		unspec		no
3268 			 * spec		spec		yes if A
3269 			 *
3270 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
3271 			 * as TCP_EXCLBIND, except that zoneid is ignored.
3272 			 *
3273 			 * Note:
3274 			 *
3275 			 * 1. Because of TLI semantics, an endpoint can go
3276 			 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or
3277 			 * TCPS_BOUND, depending on whether it is originally
3278 			 * a listener or not.  That is why we need to check
3279 			 * for states greater than or equal to TCPS_BOUND
3280 			 * here.
3281 			 *
3282 			 * 2. Ideally, we should only check for state equals
3283 			 * to TCPS_LISTEN. And the following check should be
3284 			 * added.
3285 			 *
3286 			 * if (ltcp->tcp_state == TCPS_LISTEN ||
3287 			 *	!reuseaddr || !ltcp->tcp_reuseaddr) {
3288 			 *		...
3289 			 * }
3290 			 *
3291 			 * The semantics will be changed to this.  If the
3292 			 * endpoint on the list is in state not equal to
3293 			 * TCPS_LISTEN and both endpoints have SO_REUSEADDR
3294 			 * set, let the bind succeed.
3295 			 *
3296 			 * Because of (1), we cannot do that for TLI
3297 			 * endpoints.  But we can do that for socket endpoints.
3298 			 * If in future, we can change this going back
3299 			 * semantics, we can use the above check for TLI also.
3300 			 */
3301 			not_socket = !(TCP_IS_SOCKET(ltcp) &&
3302 			    TCP_IS_SOCKET(tcp));
3303 			exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind;
3304 
3305 			if (lconnp->conn_mac_exempt || connp->conn_mac_exempt ||
3306 			    (exclbind && (not_socket ||
3307 			    ltcp->tcp_state <= TCPS_ESTABLISHED))) {
3308 				if (V6_OR_V4_INADDR_ANY(
3309 				    ltcp->tcp_bound_source_v6) ||
3310 				    V6_OR_V4_INADDR_ANY(*laddr) ||
3311 				    IN6_ARE_ADDR_EQUAL(laddr,
3312 				    &ltcp->tcp_bound_source_v6)) {
3313 					break;
3314 				}
3315 				continue;
3316 			}
3317 
3318 			/*
3319 			 * Check ipversion to allow IPv4 and IPv6 sockets to
3320 			 * have disjoint port number spaces, if *_EXCLBIND
3321 			 * is not set and only if the application binds to a
3322 			 * specific port. We use the same autoassigned port
3323 			 * number space for IPv4 and IPv6 sockets.
3324 			 */
3325 			if (tcp->tcp_ipversion != ltcp->tcp_ipversion &&
3326 			    bind_to_req_port_only)
3327 				continue;
3328 
3329 			/*
3330 			 * Ideally, we should make sure that the source
3331 			 * address, remote address, and remote port in the
3332 			 * four tuple for this tcp-connection is unique.
3333 			 * However, trying to find out the local source
3334 			 * address would require too much code duplication
3335 			 * with IP, since IP needs needs to have that code
3336 			 * to support userland TCP implementations.
3337 			 */
3338 			if (quick_connect &&
3339 			    (ltcp->tcp_state > TCPS_LISTEN) &&
3340 			    ((tcp->tcp_fport != ltcp->tcp_fport) ||
3341 			    !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
3342 			    &ltcp->tcp_remote_v6)))
3343 				continue;
3344 
3345 			if (!reuseaddr) {
3346 				/*
3347 				 * No socket option SO_REUSEADDR.
3348 				 * If existing port is bound to
3349 				 * a non-wildcard IP address
3350 				 * and the requesting stream is
3351 				 * bound to a distinct
3352 				 * different IP addresses
3353 				 * (non-wildcard, also), keep
3354 				 * going.
3355 				 */
3356 				if (!V6_OR_V4_INADDR_ANY(*laddr) &&
3357 				    !V6_OR_V4_INADDR_ANY(
3358 				    ltcp->tcp_bound_source_v6) &&
3359 				    !IN6_ARE_ADDR_EQUAL(laddr,
3360 				    &ltcp->tcp_bound_source_v6))
3361 					continue;
3362 				if (ltcp->tcp_state >= TCPS_BOUND) {
3363 					/*
3364 					 * This port is being used and
3365 					 * its state is >= TCPS_BOUND,
3366 					 * so we can't bind to it.
3367 					 */
3368 					break;
3369 				}
3370 			} else {
3371 				/*
3372 				 * socket option SO_REUSEADDR is set on the
3373 				 * binding tcp_t.
3374 				 *
3375 				 * If two streams are bound to
3376 				 * same IP address or both addr
3377 				 * and bound source are wildcards
3378 				 * (INADDR_ANY), we want to stop
3379 				 * searching.
3380 				 * We have found a match of IP source
3381 				 * address and source port, which is
3382 				 * refused regardless of the
3383 				 * SO_REUSEADDR setting, so we break.
3384 				 */
3385 				if (IN6_ARE_ADDR_EQUAL(laddr,
3386 				    &ltcp->tcp_bound_source_v6) &&
3387 				    (ltcp->tcp_state == TCPS_LISTEN ||
3388 				    ltcp->tcp_state == TCPS_BOUND))
3389 					break;
3390 			}
3391 		}
3392 		if (ltcp != NULL) {
3393 			/* The port number is busy */
3394 			mutex_exit(&tbf->tf_lock);
3395 		} else {
3396 			/*
3397 			 * This port is ours. Insert in fanout and mark as
3398 			 * bound to prevent others from getting the port
3399 			 * number.
3400 			 */
3401 			tcp->tcp_state = TCPS_BOUND;
3402 			tcp->tcp_lport = htons(port);
3403 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
3404 
3405 			ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH(
3406 			    tcp->tcp_lport)] == tbf);
3407 			tcp_bind_hash_insert(tbf, tcp, 1);
3408 
3409 			mutex_exit(&tbf->tf_lock);
3410 
3411 			/*
3412 			 * We don't want tcp_next_port_to_try to "inherit"
3413 			 * a port number supplied by the user in a bind.
3414 			 */
3415 			if (user_specified)
3416 				return (port);
3417 
3418 			/*
3419 			 * This is the only place where tcp_next_port_to_try
3420 			 * is updated. After the update, it may or may not
3421 			 * be in the valid range.
3422 			 */
3423 			if (!tcp->tcp_anon_priv_bind)
3424 				tcps->tcps_next_port_to_try = port + 1;
3425 			return (port);
3426 		}
3427 
3428 		if (tcp->tcp_anon_priv_bind) {
3429 			port = tcp_get_next_priv_port(tcp);
3430 		} else {
3431 			if (count == 0 && user_specified) {
3432 				/*
3433 				 * We may have to return an anonymous port. So
3434 				 * get one to start with.
3435 				 */
3436 				port =
3437 				    tcp_update_next_port(
3438 				    tcps->tcps_next_port_to_try,
3439 				    tcp, B_TRUE);
3440 				user_specified = B_FALSE;
3441 			} else {
3442 				port = tcp_update_next_port(port + 1, tcp,
3443 				    B_FALSE);
3444 			}
3445 		}
3446 		if (port == 0)
3447 			break;
3448 
3449 		/*
3450 		 * Don't let this loop run forever in the case where
3451 		 * all of the anonymous ports are in use.
3452 		 */
3453 	} while (++count < loopmax);
3454 	return (0);
3455 }
3456 
3457 /*
3458  * tcp_clean_death / tcp_close_detached must not be called more than once
3459  * on a tcp. Thus every function that potentially calls tcp_clean_death
3460  * must check for the tcp state before calling tcp_clean_death.
3461  * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper,
3462  * tcp_timer_handler, all check for the tcp state.
3463  */
3464 /* ARGSUSED */
3465 void
3466 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2)
3467 {
3468 	tcp_t	*tcp = ((conn_t *)arg)->conn_tcp;
3469 
3470 	freemsg(mp);
3471 	if (tcp->tcp_state > TCPS_BOUND)
3472 		(void) tcp_clean_death(((conn_t *)arg)->conn_tcp,
3473 		    ETIMEDOUT, 5);
3474 }
3475 
3476 /*
3477  * We are dying for some reason.  Try to do it gracefully.  (May be called
3478  * as writer.)
3479  *
3480  * Return -1 if the structure was not cleaned up (if the cleanup had to be
3481  * done by a service procedure).
3482  * TBD - Should the return value distinguish between the tcp_t being
3483  * freed and it being reinitialized?
3484  */
3485 static int
3486 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag)
3487 {
3488 	mblk_t	*mp;
3489 	queue_t	*q;
3490 	conn_t	*connp = tcp->tcp_connp;
3491 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3492 	sodirect_t	*sodp;
3493 
3494 	TCP_CLD_STAT(tag);
3495 
3496 #if TCP_TAG_CLEAN_DEATH
3497 	tcp->tcp_cleandeathtag = tag;
3498 #endif
3499 
3500 	if (tcp->tcp_fused)
3501 		tcp_unfuse(tcp);
3502 
3503 	if (tcp->tcp_linger_tid != 0 &&
3504 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3505 		tcp_stop_lingering(tcp);
3506 	}
3507 
3508 	ASSERT(tcp != NULL);
3509 	ASSERT((tcp->tcp_family == AF_INET &&
3510 	    tcp->tcp_ipversion == IPV4_VERSION) ||
3511 	    (tcp->tcp_family == AF_INET6 &&
3512 	    (tcp->tcp_ipversion == IPV4_VERSION ||
3513 	    tcp->tcp_ipversion == IPV6_VERSION)));
3514 
3515 	if (TCP_IS_DETACHED(tcp)) {
3516 		if (tcp->tcp_hard_binding) {
3517 			/*
3518 			 * Its an eager that we are dealing with. We close the
3519 			 * eager but in case a conn_ind has already gone to the
3520 			 * listener, let tcp_accept_finish() send a discon_ind
3521 			 * to the listener and drop the last reference. If the
3522 			 * listener doesn't even know about the eager i.e. the
3523 			 * conn_ind hasn't gone up, blow away the eager and drop
3524 			 * the last reference as well. If the conn_ind has gone
3525 			 * up, state should be BOUND. tcp_accept_finish
3526 			 * will figure out that the connection has received a
3527 			 * RST and will send a DISCON_IND to the application.
3528 			 */
3529 			tcp_closei_local(tcp);
3530 			if (!tcp->tcp_tconnind_started) {
3531 				CONN_DEC_REF(connp);
3532 			} else {
3533 				tcp->tcp_state = TCPS_BOUND;
3534 			}
3535 		} else {
3536 			tcp_close_detached(tcp);
3537 		}
3538 		return (0);
3539 	}
3540 
3541 	TCP_STAT(tcps, tcp_clean_death_nondetached);
3542 
3543 	/* If sodirect, not anymore */
3544 	SOD_PTR_ENTER(tcp, sodp);
3545 	if (sodp != NULL) {
3546 		tcp->tcp_sodirect = NULL;
3547 		mutex_exit(sodp->sod_lockp);
3548 	}
3549 
3550 	q = tcp->tcp_rq;
3551 
3552 	/* Trash all inbound data */
3553 	if (!IPCL_IS_NONSTR(connp)) {
3554 		ASSERT(q != NULL);
3555 		flushq(q, FLUSHALL);
3556 	}
3557 
3558 	/*
3559 	 * If we are at least part way open and there is error
3560 	 * (err==0 implies no error)
3561 	 * notify our client by a T_DISCON_IND.
3562 	 */
3563 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
3564 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
3565 		    !TCP_IS_SOCKET(tcp)) {
3566 			/*
3567 			 * Send M_FLUSH according to TPI. Because sockets will
3568 			 * (and must) ignore FLUSHR we do that only for TPI
3569 			 * endpoints and sockets in STREAMS mode.
3570 			 */
3571 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
3572 		}
3573 		if (tcp->tcp_debug) {
3574 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
3575 			    "tcp_clean_death: discon err %d", err);
3576 		}
3577 		if (IPCL_IS_NONSTR(connp)) {
3578 			/* Direct socket, use upcall */
3579 			(*connp->conn_upcalls->su_disconnected)(
3580 			    connp->conn_upper_handle, tcp->tcp_connid, err);
3581 		} else {
3582 			mp = mi_tpi_discon_ind(NULL, err, 0);
3583 			if (mp != NULL) {
3584 				putnext(q, mp);
3585 			} else {
3586 				if (tcp->tcp_debug) {
3587 					(void) strlog(TCP_MOD_ID, 0, 1,
3588 					    SL_ERROR|SL_TRACE,
3589 					    "tcp_clean_death, sending M_ERROR");
3590 				}
3591 				(void) putnextctl1(q, M_ERROR, EPROTO);
3592 			}
3593 		}
3594 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
3595 			/* SYN_SENT or SYN_RCVD */
3596 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
3597 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
3598 			/* ESTABLISHED or CLOSE_WAIT */
3599 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
3600 		}
3601 	}
3602 
3603 	tcp_reinit(tcp);
3604 	if (IPCL_IS_NONSTR(connp))
3605 		(void) tcp_do_unbind(connp);
3606 
3607 	return (-1);
3608 }
3609 
3610 /*
3611  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
3612  * to expire, stop the wait and finish the close.
3613  */
3614 static void
3615 tcp_stop_lingering(tcp_t *tcp)
3616 {
3617 	clock_t	delta = 0;
3618 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3619 
3620 	tcp->tcp_linger_tid = 0;
3621 	if (tcp->tcp_state > TCPS_LISTEN) {
3622 		tcp_acceptor_hash_remove(tcp);
3623 		mutex_enter(&tcp->tcp_non_sq_lock);
3624 		if (tcp->tcp_flow_stopped) {
3625 			tcp_clrqfull(tcp);
3626 		}
3627 		mutex_exit(&tcp->tcp_non_sq_lock);
3628 
3629 		if (tcp->tcp_timer_tid != 0) {
3630 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3631 			tcp->tcp_timer_tid = 0;
3632 		}
3633 		/*
3634 		 * Need to cancel those timers which will not be used when
3635 		 * TCP is detached.  This has to be done before the tcp_wq
3636 		 * is set to the global queue.
3637 		 */
3638 		tcp_timers_stop(tcp);
3639 
3640 		tcp->tcp_detached = B_TRUE;
3641 		ASSERT(tcps->tcps_g_q != NULL);
3642 		tcp->tcp_rq = tcps->tcps_g_q;
3643 		tcp->tcp_wq = WR(tcps->tcps_g_q);
3644 
3645 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
3646 			tcp_time_wait_append(tcp);
3647 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
3648 			goto finish;
3649 		}
3650 
3651 		/*
3652 		 * If delta is zero the timer event wasn't executed and was
3653 		 * successfully canceled. In this case we need to restart it
3654 		 * with the minimal delta possible.
3655 		 */
3656 		if (delta >= 0) {
3657 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
3658 			    delta ? delta : 1);
3659 		}
3660 	} else {
3661 		tcp_closei_local(tcp);
3662 		CONN_DEC_REF(tcp->tcp_connp);
3663 	}
3664 finish:
3665 	/* Signal closing thread that it can complete close */
3666 	mutex_enter(&tcp->tcp_closelock);
3667 	tcp->tcp_detached = B_TRUE;
3668 	ASSERT(tcps->tcps_g_q != NULL);
3669 
3670 	tcp->tcp_rq = tcps->tcps_g_q;
3671 	tcp->tcp_wq = WR(tcps->tcps_g_q);
3672 
3673 	tcp->tcp_closed = 1;
3674 	cv_signal(&tcp->tcp_closecv);
3675 	mutex_exit(&tcp->tcp_closelock);
3676 }
3677 
3678 /*
3679  * Handle lingering timeouts. This function is called when the SO_LINGER timeout
3680  * expires.
3681  */
3682 static void
3683 tcp_close_linger_timeout(void *arg)
3684 {
3685 	conn_t	*connp = (conn_t *)arg;
3686 	tcp_t 	*tcp = connp->conn_tcp;
3687 
3688 	tcp->tcp_client_errno = ETIMEDOUT;
3689 	tcp_stop_lingering(tcp);
3690 }
3691 
3692 static void
3693 tcp_close_common(conn_t *connp, int flags)
3694 {
3695 	tcp_t		*tcp = connp->conn_tcp;
3696 	mblk_t 		*mp = &tcp->tcp_closemp;
3697 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
3698 	mblk_t		*bp;
3699 
3700 	ASSERT(connp->conn_ref >= 2);
3701 
3702 	/*
3703 	 * Mark the conn as closing. ill_pending_mp_add will not
3704 	 * add any mp to the pending mp list, after this conn has
3705 	 * started closing. Same for sq_pending_mp_add
3706 	 */
3707 	mutex_enter(&connp->conn_lock);
3708 	connp->conn_state_flags |= CONN_CLOSING;
3709 	if (connp->conn_oper_pending_ill != NULL)
3710 		conn_ioctl_cleanup_reqd = B_TRUE;
3711 	CONN_INC_REF_LOCKED(connp);
3712 	mutex_exit(&connp->conn_lock);
3713 	tcp->tcp_closeflags = (uint8_t)flags;
3714 	ASSERT(connp->conn_ref >= 3);
3715 
3716 	/*
3717 	 * tcp_closemp_used is used below without any protection of a lock
3718 	 * as we don't expect any one else to use it concurrently at this
3719 	 * point otherwise it would be a major defect.
3720 	 */
3721 
3722 	if (mp->b_prev == NULL)
3723 		tcp->tcp_closemp_used = B_TRUE;
3724 	else
3725 		cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: "
3726 		    "connp %p tcp %p\n", (void *)connp, (void *)tcp);
3727 
3728 	TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
3729 
3730 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp,
3731 	    tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
3732 
3733 	mutex_enter(&tcp->tcp_closelock);
3734 	while (!tcp->tcp_closed) {
3735 		if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
3736 			/*
3737 			 * The cv_wait_sig() was interrupted. We now do the
3738 			 * following:
3739 			 *
3740 			 * 1) If the endpoint was lingering, we allow this
3741 			 * to be interrupted by cancelling the linger timeout
3742 			 * and closing normally.
3743 			 *
3744 			 * 2) Revert to calling cv_wait()
3745 			 *
3746 			 * We revert to using cv_wait() to avoid an
3747 			 * infinite loop which can occur if the calling
3748 			 * thread is higher priority than the squeue worker
3749 			 * thread and is bound to the same cpu.
3750 			 */
3751 			if (tcp->tcp_linger && tcp->tcp_lingertime > 0) {
3752 				mutex_exit(&tcp->tcp_closelock);
3753 				/* Entering squeue, bump ref count. */
3754 				CONN_INC_REF(connp);
3755 				bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
3756 				SQUEUE_ENTER_ONE(connp->conn_sqp, bp,
3757 				    tcp_linger_interrupted, connp,
3758 				    tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
3759 				mutex_enter(&tcp->tcp_closelock);
3760 			}
3761 			break;
3762 		}
3763 	}
3764 	while (!tcp->tcp_closed)
3765 		cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
3766 	mutex_exit(&tcp->tcp_closelock);
3767 
3768 	/*
3769 	 * In the case of listener streams that have eagers in the q or q0
3770 	 * we wait for the eagers to drop their reference to us. tcp_rq and
3771 	 * tcp_wq of the eagers point to our queues. By waiting for the
3772 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
3773 	 * up their queue pointers and also dropped their references to us.
3774 	 */
3775 	if (tcp->tcp_wait_for_eagers) {
3776 		mutex_enter(&connp->conn_lock);
3777 		while (connp->conn_ref != 1) {
3778 			cv_wait(&connp->conn_cv, &connp->conn_lock);
3779 		}
3780 		mutex_exit(&connp->conn_lock);
3781 	}
3782 	/*
3783 	 * ioctl cleanup. The mp is queued in the
3784 	 * ill_pending_mp or in the sq_pending_mp.
3785 	 */
3786 	if (conn_ioctl_cleanup_reqd)
3787 		conn_ioctl_cleanup(connp);
3788 
3789 	tcp->tcp_cpid = -1;
3790 }
3791 
3792 static int
3793 tcp_tpi_close(queue_t *q, int flags)
3794 {
3795 	conn_t		*connp;
3796 
3797 	ASSERT(WR(q)->q_next == NULL);
3798 
3799 	if (flags & SO_FALLBACK) {
3800 		/*
3801 		 * stream is being closed while in fallback
3802 		 * simply free the resources that were allocated
3803 		 */
3804 		inet_minor_free(WR(q)->q_ptr, (dev_t)(RD(q)->q_ptr));
3805 		qprocsoff(q);
3806 		goto done;
3807 	}
3808 
3809 	connp = Q_TO_CONN(q);
3810 	/*
3811 	 * We are being closed as /dev/tcp or /dev/tcp6.
3812 	 */
3813 	tcp_close_common(connp, flags);
3814 
3815 	qprocsoff(q);
3816 	inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
3817 
3818 	/*
3819 	 * Drop IP's reference on the conn. This is the last reference
3820 	 * on the connp if the state was less than established. If the
3821 	 * connection has gone into timewait state, then we will have
3822 	 * one ref for the TCP and one more ref (total of two) for the
3823 	 * classifier connected hash list (a timewait connections stays
3824 	 * in connected hash till closed).
3825 	 *
3826 	 * We can't assert the references because there might be other
3827 	 * transient reference places because of some walkers or queued
3828 	 * packets in squeue for the timewait state.
3829 	 */
3830 	CONN_DEC_REF(connp);
3831 done:
3832 	q->q_ptr = WR(q)->q_ptr = NULL;
3833 	return (0);
3834 }
3835 
3836 static int
3837 tcpclose_accept(queue_t *q)
3838 {
3839 	vmem_t	*minor_arena;
3840 	dev_t	conn_dev;
3841 
3842 	ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit);
3843 
3844 	/*
3845 	 * We had opened an acceptor STREAM for sockfs which is
3846 	 * now being closed due to some error.
3847 	 */
3848 	qprocsoff(q);
3849 
3850 	minor_arena = (vmem_t *)WR(q)->q_ptr;
3851 	conn_dev = (dev_t)RD(q)->q_ptr;
3852 	ASSERT(minor_arena != NULL);
3853 	ASSERT(conn_dev != 0);
3854 	inet_minor_free(minor_arena, conn_dev);
3855 	q->q_ptr = WR(q)->q_ptr = NULL;
3856 	return (0);
3857 }
3858 
3859 /*
3860  * Called by tcp_close() routine via squeue when lingering is
3861  * interrupted by a signal.
3862  */
3863 
3864 /* ARGSUSED */
3865 static void
3866 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2)
3867 {
3868 	conn_t	*connp = (conn_t *)arg;
3869 	tcp_t	*tcp = connp->conn_tcp;
3870 
3871 	freeb(mp);
3872 	if (tcp->tcp_linger_tid != 0 &&
3873 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3874 		tcp_stop_lingering(tcp);
3875 		tcp->tcp_client_errno = EINTR;
3876 	}
3877 }
3878 
3879 /*
3880  * Called by streams close routine via squeues when our client blows off her
3881  * descriptor, we take this to mean: "close the stream state NOW, close the tcp
3882  * connection politely" When SO_LINGER is set (with a non-zero linger time and
3883  * it is not a nonblocking socket) then this routine sleeps until the FIN is
3884  * acked.
3885  *
3886  * NOTE: tcp_close potentially returns error when lingering.
3887  * However, the stream head currently does not pass these errors
3888  * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK
3889  * errors to the application (from tsleep()) and not errors
3890  * like ECONNRESET caused by receiving a reset packet.
3891  */
3892 
3893 /* ARGSUSED */
3894 static void
3895 tcp_close_output(void *arg, mblk_t *mp, void *arg2)
3896 {
3897 	char	*msg;
3898 	conn_t	*connp = (conn_t *)arg;
3899 	tcp_t	*tcp = connp->conn_tcp;
3900 	clock_t	delta = 0;
3901 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3902 
3903 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
3904 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
3905 
3906 	mutex_enter(&tcp->tcp_eager_lock);
3907 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
3908 		/* Cleanup for listener */
3909 		tcp_eager_cleanup(tcp, 0);
3910 		tcp->tcp_wait_for_eagers = 1;
3911 	}
3912 	mutex_exit(&tcp->tcp_eager_lock);
3913 
3914 	connp->conn_mdt_ok = B_FALSE;
3915 	tcp->tcp_mdt = B_FALSE;
3916 
3917 	connp->conn_lso_ok = B_FALSE;
3918 	tcp->tcp_lso = B_FALSE;
3919 
3920 	msg = NULL;
3921 	switch (tcp->tcp_state) {
3922 	case TCPS_CLOSED:
3923 	case TCPS_IDLE:
3924 	case TCPS_BOUND:
3925 	case TCPS_LISTEN:
3926 		break;
3927 	case TCPS_SYN_SENT:
3928 		msg = "tcp_close, during connect";
3929 		break;
3930 	case TCPS_SYN_RCVD:
3931 		/*
3932 		 * Close during the connect 3-way handshake
3933 		 * but here there may or may not be pending data
3934 		 * already on queue. Process almost same as in
3935 		 * the ESTABLISHED state.
3936 		 */
3937 		/* FALLTHRU */
3938 	default:
3939 		if (tcp->tcp_sodirect != NULL) {
3940 			/* Ok, no more sodirect */
3941 			tcp->tcp_sodirect = NULL;
3942 		}
3943 
3944 		if (tcp->tcp_fused)
3945 			tcp_unfuse(tcp);
3946 
3947 		/*
3948 		 * If SO_LINGER has set a zero linger time, abort the
3949 		 * connection with a reset.
3950 		 */
3951 		if (tcp->tcp_linger && tcp->tcp_lingertime == 0) {
3952 			msg = "tcp_close, zero lingertime";
3953 			break;
3954 		}
3955 
3956 		ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding);
3957 		/*
3958 		 * Abort connection if there is unread data queued.
3959 		 */
3960 		if (tcp->tcp_rcv_list || tcp->tcp_reass_head) {
3961 			msg = "tcp_close, unread data";
3962 			break;
3963 		}
3964 		/*
3965 		 * tcp_hard_bound is now cleared thus all packets go through
3966 		 * tcp_lookup. This fact is used by tcp_detach below.
3967 		 *
3968 		 * We have done a qwait() above which could have possibly
3969 		 * drained more messages in turn causing transition to a
3970 		 * different state. Check whether we have to do the rest
3971 		 * of the processing or not.
3972 		 */
3973 		if (tcp->tcp_state <= TCPS_LISTEN)
3974 			break;
3975 
3976 		/*
3977 		 * Transmit the FIN before detaching the tcp_t.
3978 		 * After tcp_detach returns this queue/perimeter
3979 		 * no longer owns the tcp_t thus others can modify it.
3980 		 */
3981 		(void) tcp_xmit_end(tcp);
3982 
3983 		/*
3984 		 * If lingering on close then wait until the fin is acked,
3985 		 * the SO_LINGER time passes, or a reset is sent/received.
3986 		 */
3987 		if (tcp->tcp_linger && tcp->tcp_lingertime > 0 &&
3988 		    !(tcp->tcp_fin_acked) &&
3989 		    tcp->tcp_state >= TCPS_ESTABLISHED) {
3990 			if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) {
3991 				tcp->tcp_client_errno = EWOULDBLOCK;
3992 			} else if (tcp->tcp_client_errno == 0) {
3993 
3994 				ASSERT(tcp->tcp_linger_tid == 0);
3995 
3996 				tcp->tcp_linger_tid = TCP_TIMER(tcp,
3997 				    tcp_close_linger_timeout,
3998 				    tcp->tcp_lingertime * hz);
3999 
4000 				/* tcp_close_linger_timeout will finish close */
4001 				if (tcp->tcp_linger_tid == 0)
4002 					tcp->tcp_client_errno = ENOSR;
4003 				else
4004 					return;
4005 			}
4006 
4007 			/*
4008 			 * Check if we need to detach or just close
4009 			 * the instance.
4010 			 */
4011 			if (tcp->tcp_state <= TCPS_LISTEN)
4012 				break;
4013 		}
4014 
4015 		/*
4016 		 * Make sure that no other thread will access the tcp_rq of
4017 		 * this instance (through lookups etc.) as tcp_rq will go
4018 		 * away shortly.
4019 		 */
4020 		tcp_acceptor_hash_remove(tcp);
4021 
4022 		mutex_enter(&tcp->tcp_non_sq_lock);
4023 		if (tcp->tcp_flow_stopped) {
4024 			tcp_clrqfull(tcp);
4025 		}
4026 		mutex_exit(&tcp->tcp_non_sq_lock);
4027 
4028 		if (tcp->tcp_timer_tid != 0) {
4029 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4030 			tcp->tcp_timer_tid = 0;
4031 		}
4032 		/*
4033 		 * Need to cancel those timers which will not be used when
4034 		 * TCP is detached.  This has to be done before the tcp_wq
4035 		 * is set to the global queue.
4036 		 */
4037 		tcp_timers_stop(tcp);
4038 
4039 		tcp->tcp_detached = B_TRUE;
4040 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
4041 			tcp_time_wait_append(tcp);
4042 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
4043 			ASSERT(connp->conn_ref >= 3);
4044 			goto finish;
4045 		}
4046 
4047 		/*
4048 		 * If delta is zero the timer event wasn't executed and was
4049 		 * successfully canceled. In this case we need to restart it
4050 		 * with the minimal delta possible.
4051 		 */
4052 		if (delta >= 0)
4053 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
4054 			    delta ? delta : 1);
4055 
4056 		ASSERT(connp->conn_ref >= 3);
4057 		goto finish;
4058 	}
4059 
4060 	/* Detach did not complete. Still need to remove q from stream. */
4061 	if (msg) {
4062 		if (tcp->tcp_state == TCPS_ESTABLISHED ||
4063 		    tcp->tcp_state == TCPS_CLOSE_WAIT)
4064 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
4065 		if (tcp->tcp_state == TCPS_SYN_SENT ||
4066 		    tcp->tcp_state == TCPS_SYN_RCVD)
4067 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
4068 		tcp_xmit_ctl(msg, tcp,  tcp->tcp_snxt, 0, TH_RST);
4069 	}
4070 
4071 	tcp_closei_local(tcp);
4072 	CONN_DEC_REF(connp);
4073 	ASSERT(connp->conn_ref >= 2);
4074 
4075 finish:
4076 	/*
4077 	 * Although packets are always processed on the correct
4078 	 * tcp's perimeter and access is serialized via squeue's,
4079 	 * IP still needs a queue when sending packets in time_wait
4080 	 * state so use WR(tcps_g_q) till ip_output() can be
4081 	 * changed to deal with just connp. For read side, we
4082 	 * could have set tcp_rq to NULL but there are some cases
4083 	 * in tcp_rput_data() from early days of this code which
4084 	 * do a putnext without checking if tcp is closed. Those
4085 	 * need to be identified before both tcp_rq and tcp_wq
4086 	 * can be set to NULL and tcps_g_q can disappear forever.
4087 	 */
4088 	mutex_enter(&tcp->tcp_closelock);
4089 	/*
4090 	 * Don't change the queues in the case of a listener that has
4091 	 * eagers in its q or q0. It could surprise the eagers.
4092 	 * Instead wait for the eagers outside the squeue.
4093 	 */
4094 	if (!tcp->tcp_wait_for_eagers) {
4095 		tcp->tcp_detached = B_TRUE;
4096 		/*
4097 		 * When default queue is closing we set tcps_g_q to NULL
4098 		 * after the close is done.
4099 		 */
4100 		ASSERT(tcps->tcps_g_q != NULL);
4101 		tcp->tcp_rq = tcps->tcps_g_q;
4102 		tcp->tcp_wq = WR(tcps->tcps_g_q);
4103 	}
4104 
4105 	/* Signal tcp_close() to finish closing. */
4106 	tcp->tcp_closed = 1;
4107 	cv_signal(&tcp->tcp_closecv);
4108 	mutex_exit(&tcp->tcp_closelock);
4109 }
4110 
4111 
4112 /*
4113  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
4114  * Some stream heads get upset if they see these later on as anything but NULL.
4115  */
4116 static void
4117 tcp_close_mpp(mblk_t **mpp)
4118 {
4119 	mblk_t	*mp;
4120 
4121 	if ((mp = *mpp) != NULL) {
4122 		do {
4123 			mp->b_next = NULL;
4124 			mp->b_prev = NULL;
4125 		} while ((mp = mp->b_cont) != NULL);
4126 
4127 		mp = *mpp;
4128 		*mpp = NULL;
4129 		freemsg(mp);
4130 	}
4131 }
4132 
4133 /* Do detached close. */
4134 static void
4135 tcp_close_detached(tcp_t *tcp)
4136 {
4137 	if (tcp->tcp_fused)
4138 		tcp_unfuse(tcp);
4139 
4140 	/*
4141 	 * Clustering code serializes TCP disconnect callbacks and
4142 	 * cluster tcp list walks by blocking a TCP disconnect callback
4143 	 * if a cluster tcp list walk is in progress. This ensures
4144 	 * accurate accounting of TCPs in the cluster code even though
4145 	 * the TCP list walk itself is not atomic.
4146 	 */
4147 	tcp_closei_local(tcp);
4148 	CONN_DEC_REF(tcp->tcp_connp);
4149 }
4150 
4151 /*
4152  * Stop all TCP timers, and free the timer mblks if requested.
4153  */
4154 void
4155 tcp_timers_stop(tcp_t *tcp)
4156 {
4157 	if (tcp->tcp_timer_tid != 0) {
4158 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4159 		tcp->tcp_timer_tid = 0;
4160 	}
4161 	if (tcp->tcp_ka_tid != 0) {
4162 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid);
4163 		tcp->tcp_ka_tid = 0;
4164 	}
4165 	if (tcp->tcp_ack_tid != 0) {
4166 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
4167 		tcp->tcp_ack_tid = 0;
4168 	}
4169 	if (tcp->tcp_push_tid != 0) {
4170 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
4171 		tcp->tcp_push_tid = 0;
4172 	}
4173 }
4174 
4175 /*
4176  * The tcp_t is going away. Remove it from all lists and set it
4177  * to TCPS_CLOSED. The freeing up of memory is deferred until
4178  * tcp_inactive. This is needed since a thread in tcp_rput might have
4179  * done a CONN_INC_REF on this structure before it was removed from the
4180  * hashes.
4181  */
4182 static void
4183 tcp_closei_local(tcp_t *tcp)
4184 {
4185 	ire_t 	*ire;
4186 	conn_t	*connp = tcp->tcp_connp;
4187 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4188 
4189 	if (!TCP_IS_SOCKET(tcp))
4190 		tcp_acceptor_hash_remove(tcp);
4191 
4192 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
4193 	tcp->tcp_ibsegs = 0;
4194 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
4195 	tcp->tcp_obsegs = 0;
4196 
4197 	/*
4198 	 * If we are an eager connection hanging off a listener that
4199 	 * hasn't formally accepted the connection yet, get off his
4200 	 * list and blow off any data that we have accumulated.
4201 	 */
4202 	if (tcp->tcp_listener != NULL) {
4203 		tcp_t	*listener = tcp->tcp_listener;
4204 		mutex_enter(&listener->tcp_eager_lock);
4205 		/*
4206 		 * tcp_tconnind_started == B_TRUE means that the
4207 		 * conn_ind has already gone to listener. At
4208 		 * this point, eager will be closed but we
4209 		 * leave it in listeners eager list so that
4210 		 * if listener decides to close without doing
4211 		 * accept, we can clean this up. In tcp_wput_accept
4212 		 * we take care of the case of accept on closed
4213 		 * eager.
4214 		 */
4215 		if (!tcp->tcp_tconnind_started) {
4216 			tcp_eager_unlink(tcp);
4217 			mutex_exit(&listener->tcp_eager_lock);
4218 			/*
4219 			 * We don't want to have any pointers to the
4220 			 * listener queue, after we have released our
4221 			 * reference on the listener
4222 			 */
4223 			ASSERT(tcps->tcps_g_q != NULL);
4224 			tcp->tcp_rq = tcps->tcps_g_q;
4225 			tcp->tcp_wq = WR(tcps->tcps_g_q);
4226 			CONN_DEC_REF(listener->tcp_connp);
4227 		} else {
4228 			mutex_exit(&listener->tcp_eager_lock);
4229 		}
4230 	}
4231 
4232 	/* Stop all the timers */
4233 	tcp_timers_stop(tcp);
4234 
4235 	if (tcp->tcp_state == TCPS_LISTEN) {
4236 		if (tcp->tcp_ip_addr_cache) {
4237 			kmem_free((void *)tcp->tcp_ip_addr_cache,
4238 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
4239 			tcp->tcp_ip_addr_cache = NULL;
4240 		}
4241 	}
4242 	mutex_enter(&tcp->tcp_non_sq_lock);
4243 	if (tcp->tcp_flow_stopped)
4244 		tcp_clrqfull(tcp);
4245 	mutex_exit(&tcp->tcp_non_sq_lock);
4246 
4247 	tcp_bind_hash_remove(tcp);
4248 	/*
4249 	 * If the tcp_time_wait_collector (which runs outside the squeue)
4250 	 * is trying to remove this tcp from the time wait list, we will
4251 	 * block in tcp_time_wait_remove while trying to acquire the
4252 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
4253 	 * requires the ipcl_hash_remove to be ordered after the
4254 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
4255 	 */
4256 	if (tcp->tcp_state == TCPS_TIME_WAIT)
4257 		(void) tcp_time_wait_remove(tcp, NULL);
4258 	CL_INET_DISCONNECT(connp, tcp);
4259 	ipcl_hash_remove(connp);
4260 
4261 	/*
4262 	 * Delete the cached ire in conn_ire_cache and also mark
4263 	 * the conn as CONDEMNED
4264 	 */
4265 	mutex_enter(&connp->conn_lock);
4266 	connp->conn_state_flags |= CONN_CONDEMNED;
4267 	ire = connp->conn_ire_cache;
4268 	connp->conn_ire_cache = NULL;
4269 	mutex_exit(&connp->conn_lock);
4270 	if (ire != NULL)
4271 		IRE_REFRELE_NOTR(ire);
4272 
4273 	/* Need to cleanup any pending ioctls */
4274 	ASSERT(tcp->tcp_time_wait_next == NULL);
4275 	ASSERT(tcp->tcp_time_wait_prev == NULL);
4276 	ASSERT(tcp->tcp_time_wait_expire == 0);
4277 	tcp->tcp_state = TCPS_CLOSED;
4278 
4279 	/* Release any SSL context */
4280 	if (tcp->tcp_kssl_ent != NULL) {
4281 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
4282 		tcp->tcp_kssl_ent = NULL;
4283 	}
4284 	if (tcp->tcp_kssl_ctx != NULL) {
4285 		kssl_release_ctx(tcp->tcp_kssl_ctx);
4286 		tcp->tcp_kssl_ctx = NULL;
4287 	}
4288 	tcp->tcp_kssl_pending = B_FALSE;
4289 
4290 	tcp_ipsec_cleanup(tcp);
4291 }
4292 
4293 /*
4294  * tcp is dying (called from ipcl_conn_destroy and error cases).
4295  * Free the tcp_t in either case.
4296  */
4297 void
4298 tcp_free(tcp_t *tcp)
4299 {
4300 	mblk_t	*mp;
4301 	ip6_pkt_t	*ipp;
4302 
4303 	ASSERT(tcp != NULL);
4304 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
4305 
4306 	tcp->tcp_rq = NULL;
4307 	tcp->tcp_wq = NULL;
4308 
4309 	tcp_close_mpp(&tcp->tcp_xmit_head);
4310 	tcp_close_mpp(&tcp->tcp_reass_head);
4311 	if (tcp->tcp_rcv_list != NULL) {
4312 		/* Free b_next chain */
4313 		tcp_close_mpp(&tcp->tcp_rcv_list);
4314 	}
4315 	if ((mp = tcp->tcp_urp_mp) != NULL) {
4316 		freemsg(mp);
4317 	}
4318 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
4319 		freemsg(mp);
4320 	}
4321 
4322 	if (tcp->tcp_fused_sigurg_mp != NULL) {
4323 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
4324 		freeb(tcp->tcp_fused_sigurg_mp);
4325 		tcp->tcp_fused_sigurg_mp = NULL;
4326 	}
4327 
4328 	if (tcp->tcp_ordrel_mp != NULL) {
4329 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
4330 		freeb(tcp->tcp_ordrel_mp);
4331 		tcp->tcp_ordrel_mp = NULL;
4332 	}
4333 
4334 	if (tcp->tcp_sack_info != NULL) {
4335 		if (tcp->tcp_notsack_list != NULL) {
4336 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
4337 		}
4338 		bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
4339 	}
4340 
4341 	if (tcp->tcp_hopopts != NULL) {
4342 		mi_free(tcp->tcp_hopopts);
4343 		tcp->tcp_hopopts = NULL;
4344 		tcp->tcp_hopoptslen = 0;
4345 	}
4346 	ASSERT(tcp->tcp_hopoptslen == 0);
4347 	if (tcp->tcp_dstopts != NULL) {
4348 		mi_free(tcp->tcp_dstopts);
4349 		tcp->tcp_dstopts = NULL;
4350 		tcp->tcp_dstoptslen = 0;
4351 	}
4352 	ASSERT(tcp->tcp_dstoptslen == 0);
4353 	if (tcp->tcp_rtdstopts != NULL) {
4354 		mi_free(tcp->tcp_rtdstopts);
4355 		tcp->tcp_rtdstopts = NULL;
4356 		tcp->tcp_rtdstoptslen = 0;
4357 	}
4358 	ASSERT(tcp->tcp_rtdstoptslen == 0);
4359 	if (tcp->tcp_rthdr != NULL) {
4360 		mi_free(tcp->tcp_rthdr);
4361 		tcp->tcp_rthdr = NULL;
4362 		tcp->tcp_rthdrlen = 0;
4363 	}
4364 	ASSERT(tcp->tcp_rthdrlen == 0);
4365 
4366 	ipp = &tcp->tcp_sticky_ipp;
4367 	if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS |
4368 	    IPPF_RTHDR))
4369 		ip6_pkt_free(ipp);
4370 
4371 	/*
4372 	 * Free memory associated with the tcp/ip header template.
4373 	 */
4374 
4375 	if (tcp->tcp_iphc != NULL)
4376 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4377 
4378 	/*
4379 	 * Following is really a blowing away a union.
4380 	 * It happens to have exactly two members of identical size
4381 	 * the following code is enough.
4382 	 */
4383 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
4384 }
4385 
4386 
4387 /*
4388  * Put a connection confirmation message upstream built from the
4389  * address information within 'iph' and 'tcph'.  Report our success or failure.
4390  */
4391 static boolean_t
4392 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp,
4393     mblk_t **defermp)
4394 {
4395 	sin_t	sin;
4396 	sin6_t	sin6;
4397 	mblk_t	*mp;
4398 	char	*optp = NULL;
4399 	int	optlen = 0;
4400 	cred_t	*cr;
4401 
4402 	if (defermp != NULL)
4403 		*defermp = NULL;
4404 
4405 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL) {
4406 		/*
4407 		 * Return in T_CONN_CON results of option negotiation through
4408 		 * the T_CONN_REQ. Note: If there is an real end-to-end option
4409 		 * negotiation, then what is received from remote end needs
4410 		 * to be taken into account but there is no such thing (yet?)
4411 		 * in our TCP/IP.
4412 		 * Note: We do not use mi_offset_param() here as
4413 		 * tcp_opts_conn_req contents do not directly come from
4414 		 * an application and are either generated in kernel or
4415 		 * from user input that was already verified.
4416 		 */
4417 		mp = tcp->tcp_conn.tcp_opts_conn_req;
4418 		optp = (char *)(mp->b_rptr +
4419 		    ((struct T_conn_req *)mp->b_rptr)->OPT_offset);
4420 		optlen = (int)
4421 		    ((struct T_conn_req *)mp->b_rptr)->OPT_length;
4422 	}
4423 
4424 	if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) {
4425 		ipha_t *ipha = (ipha_t *)iphdr;
4426 
4427 		/* packet is IPv4 */
4428 		if (tcp->tcp_family == AF_INET) {
4429 			sin = sin_null;
4430 			sin.sin_addr.s_addr = ipha->ipha_src;
4431 			sin.sin_port = *(uint16_t *)tcph->th_lport;
4432 			sin.sin_family = AF_INET;
4433 			mp = mi_tpi_conn_con(NULL, (char *)&sin,
4434 			    (int)sizeof (sin_t), optp, optlen);
4435 		} else {
4436 			sin6 = sin6_null;
4437 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4438 			sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4439 			sin6.sin6_family = AF_INET6;
4440 			mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4441 			    (int)sizeof (sin6_t), optp, optlen);
4442 
4443 		}
4444 	} else {
4445 		ip6_t	*ip6h = (ip6_t *)iphdr;
4446 
4447 		ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION);
4448 		ASSERT(tcp->tcp_family == AF_INET6);
4449 		sin6 = sin6_null;
4450 		sin6.sin6_addr = ip6h->ip6_src;
4451 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4452 		sin6.sin6_family = AF_INET6;
4453 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4454 		mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4455 		    (int)sizeof (sin6_t), optp, optlen);
4456 	}
4457 
4458 	if (!mp)
4459 		return (B_FALSE);
4460 
4461 	if ((cr = DB_CRED(idmp)) != NULL) {
4462 		mblk_setcred(mp, cr);
4463 		DB_CPID(mp) = DB_CPID(idmp);
4464 	}
4465 
4466 	if (defermp == NULL) {
4467 		conn_t *connp = tcp->tcp_connp;
4468 		if (IPCL_IS_NONSTR(connp)) {
4469 			(*connp->conn_upcalls->su_connected)
4470 			    (connp->conn_upper_handle, tcp->tcp_connid, cr,
4471 			    DB_CPID(mp));
4472 			freemsg(mp);
4473 		} else {
4474 			putnext(tcp->tcp_rq, mp);
4475 		}
4476 	} else {
4477 		*defermp = mp;
4478 	}
4479 
4480 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4481 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4482 	return (B_TRUE);
4483 }
4484 
4485 /*
4486  * Defense for the SYN attack -
4487  * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest
4488  *    one from the list of droppable eagers. This list is a subset of q0.
4489  *    see comments before the definition of MAKE_DROPPABLE().
4490  * 2. Don't drop a SYN request before its first timeout. This gives every
4491  *    request at least til the first timeout to complete its 3-way handshake.
4492  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
4493  *    requests currently on the queue that has timed out. This will be used
4494  *    as an indicator of whether an attack is under way, so that appropriate
4495  *    actions can be taken. (It's incremented in tcp_timer() and decremented
4496  *    either when eager goes into ESTABLISHED, or gets freed up.)
4497  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
4498  *    # of timeout drops back to <= q0len/32 => SYN alert off
4499  */
4500 static boolean_t
4501 tcp_drop_q0(tcp_t *tcp)
4502 {
4503 	tcp_t	*eager;
4504 	mblk_t	*mp;
4505 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4506 
4507 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
4508 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
4509 
4510 	/* Pick oldest eager from the list of droppable eagers */
4511 	eager = tcp->tcp_eager_prev_drop_q0;
4512 
4513 	/* If list is empty. return B_FALSE */
4514 	if (eager == tcp) {
4515 		return (B_FALSE);
4516 	}
4517 
4518 	/* If allocated, the mp will be freed in tcp_clean_death_wrapper() */
4519 	if ((mp = allocb(0, BPRI_HI)) == NULL)
4520 		return (B_FALSE);
4521 
4522 	/*
4523 	 * Take this eager out from the list of droppable eagers since we are
4524 	 * going to drop it.
4525 	 */
4526 	MAKE_UNDROPPABLE(eager);
4527 
4528 	if (tcp->tcp_debug) {
4529 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
4530 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
4531 		    " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0,
4532 		    tcp->tcp_conn_req_cnt_q0,
4533 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4534 	}
4535 
4536 	BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop);
4537 
4538 	/* Put a reference on the conn as we are enqueueing it in the sqeue */
4539 	CONN_INC_REF(eager->tcp_connp);
4540 
4541 	/* Mark the IRE created for this SYN request temporary */
4542 	tcp_ip_ire_mark_advice(eager);
4543 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
4544 	    tcp_clean_death_wrapper, eager->tcp_connp,
4545 	    SQ_FILL, SQTAG_TCP_DROP_Q0);
4546 
4547 	return (B_TRUE);
4548 }
4549 
4550 int
4551 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
4552     tcph_t *tcph, uint_t ipvers, mblk_t *idmp)
4553 {
4554 	tcp_t 		*ltcp = lconnp->conn_tcp;
4555 	tcp_t		*tcp = connp->conn_tcp;
4556 	mblk_t		*tpi_mp;
4557 	ipha_t		*ipha;
4558 	ip6_t		*ip6h;
4559 	sin6_t 		sin6;
4560 	in6_addr_t 	v6dst;
4561 	int		err;
4562 	int		ifindex = 0;
4563 	cred_t		*cr;
4564 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4565 
4566 	if (ipvers == IPV4_VERSION) {
4567 		ipha = (ipha_t *)mp->b_rptr;
4568 
4569 		connp->conn_send = ip_output;
4570 		connp->conn_recv = tcp_input;
4571 
4572 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst,
4573 		    &connp->conn_bound_source_v6);
4574 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4575 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4576 
4577 		sin6 = sin6_null;
4578 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4579 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst);
4580 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4581 		sin6.sin6_family = AF_INET6;
4582 		sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst,
4583 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4584 		if (tcp->tcp_recvdstaddr) {
4585 			sin6_t	sin6d;
4586 
4587 			sin6d = sin6_null;
4588 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst,
4589 			    &sin6d.sin6_addr);
4590 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4591 			sin6d.sin6_family = AF_INET;
4592 			tpi_mp = mi_tpi_extconn_ind(NULL,
4593 			    (char *)&sin6d, sizeof (sin6_t),
4594 			    (char *)&tcp,
4595 			    (t_scalar_t)sizeof (intptr_t),
4596 			    (char *)&sin6d, sizeof (sin6_t),
4597 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4598 		} else {
4599 			tpi_mp = mi_tpi_conn_ind(NULL,
4600 			    (char *)&sin6, sizeof (sin6_t),
4601 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4602 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4603 		}
4604 	} else {
4605 		ip6h = (ip6_t *)mp->b_rptr;
4606 
4607 		connp->conn_send = ip_output_v6;
4608 		connp->conn_recv = tcp_input;
4609 
4610 		connp->conn_bound_source_v6 = ip6h->ip6_dst;
4611 		connp->conn_srcv6 = ip6h->ip6_dst;
4612 		connp->conn_remv6 = ip6h->ip6_src;
4613 
4614 		/* db_cksumstuff is set at ip_fanout_tcp_v6 */
4615 		ifindex = (int)DB_CKSUMSTUFF(mp);
4616 		DB_CKSUMSTUFF(mp) = 0;
4617 
4618 		sin6 = sin6_null;
4619 		sin6.sin6_addr = ip6h->ip6_src;
4620 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4621 		sin6.sin6_family = AF_INET6;
4622 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4623 		sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst,
4624 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4625 
4626 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4627 			/* Pass up the scope_id of remote addr */
4628 			sin6.sin6_scope_id = ifindex;
4629 		} else {
4630 			sin6.sin6_scope_id = 0;
4631 		}
4632 		if (tcp->tcp_recvdstaddr) {
4633 			sin6_t	sin6d;
4634 
4635 			sin6d = sin6_null;
4636 			sin6.sin6_addr = ip6h->ip6_dst;
4637 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4638 			sin6d.sin6_family = AF_INET;
4639 			tpi_mp = mi_tpi_extconn_ind(NULL,
4640 			    (char *)&sin6d, sizeof (sin6_t),
4641 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4642 			    (char *)&sin6d, sizeof (sin6_t),
4643 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4644 		} else {
4645 			tpi_mp = mi_tpi_conn_ind(NULL,
4646 			    (char *)&sin6, sizeof (sin6_t),
4647 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4648 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4649 		}
4650 	}
4651 
4652 	if (tpi_mp == NULL)
4653 		return (ENOMEM);
4654 
4655 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4656 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4657 	connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER);
4658 	connp->conn_fully_bound = B_FALSE;
4659 
4660 	/* Inherit information from the "parent" */
4661 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
4662 	tcp->tcp_family = ltcp->tcp_family;
4663 
4664 	tcp->tcp_wq = ltcp->tcp_wq;
4665 	tcp->tcp_rq = ltcp->tcp_rq;
4666 
4667 	tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
4668 	tcp->tcp_detached = B_TRUE;
4669 	SOCK_CONNID_INIT(tcp->tcp_connid);
4670 	if ((err = tcp_init_values(tcp)) != 0) {
4671 		freemsg(tpi_mp);
4672 		return (err);
4673 	}
4674 
4675 	if (ipvers == IPV4_VERSION) {
4676 		if ((err = tcp_header_init_ipv4(tcp)) != 0) {
4677 			freemsg(tpi_mp);
4678 			return (err);
4679 		}
4680 		ASSERT(tcp->tcp_ipha != NULL);
4681 	} else {
4682 		/* ifindex must be already set */
4683 		ASSERT(ifindex != 0);
4684 
4685 		if (ltcp->tcp_bound_if != 0)
4686 			tcp->tcp_bound_if = ltcp->tcp_bound_if;
4687 		else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src))
4688 			tcp->tcp_bound_if = ifindex;
4689 
4690 		tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary;
4691 		tcp->tcp_recvifindex = 0;
4692 		tcp->tcp_recvhops = 0xffffffffU;
4693 		ASSERT(tcp->tcp_ip6h != NULL);
4694 	}
4695 
4696 	tcp->tcp_lport = ltcp->tcp_lport;
4697 
4698 	if (ltcp->tcp_ipversion == tcp->tcp_ipversion) {
4699 		if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) {
4700 			/*
4701 			 * Listener had options of some sort; eager inherits.
4702 			 * Free up the eager template and allocate one
4703 			 * of the right size.
4704 			 */
4705 			if (tcp->tcp_hdr_grown) {
4706 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
4707 			} else {
4708 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4709 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
4710 			}
4711 			tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len,
4712 			    KM_NOSLEEP);
4713 			if (tcp->tcp_iphc == NULL) {
4714 				tcp->tcp_iphc_len = 0;
4715 				freemsg(tpi_mp);
4716 				return (ENOMEM);
4717 			}
4718 			tcp->tcp_iphc_len = ltcp->tcp_iphc_len;
4719 			tcp->tcp_hdr_grown = B_TRUE;
4720 		}
4721 		tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
4722 		tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
4723 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
4724 		tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops;
4725 		tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf;
4726 
4727 		/*
4728 		 * Copy the IP+TCP header template from listener to eager
4729 		 */
4730 		bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
4731 		if (tcp->tcp_ipversion == IPV6_VERSION) {
4732 			if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt ==
4733 			    IPPROTO_RAW) {
4734 				tcp->tcp_ip6h =
4735 				    (ip6_t *)(tcp->tcp_iphc +
4736 				    sizeof (ip6i_t));
4737 			} else {
4738 				tcp->tcp_ip6h =
4739 				    (ip6_t *)(tcp->tcp_iphc);
4740 			}
4741 			tcp->tcp_ipha = NULL;
4742 		} else {
4743 			tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
4744 			tcp->tcp_ip6h = NULL;
4745 		}
4746 		tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
4747 		    tcp->tcp_ip_hdr_len);
4748 	} else {
4749 		/*
4750 		 * only valid case when ipversion of listener and
4751 		 * eager differ is when listener is IPv6 and
4752 		 * eager is IPv4.
4753 		 * Eager header template has been initialized to the
4754 		 * maximum v4 header sizes, which includes space for
4755 		 * TCP and IP options.
4756 		 */
4757 		ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) &&
4758 		    (tcp->tcp_ipversion == IPV4_VERSION));
4759 		ASSERT(tcp->tcp_iphc_len >=
4760 		    TCP_MAX_COMBINED_HEADER_LENGTH);
4761 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
4762 		/* copy IP header fields individually */
4763 		tcp->tcp_ipha->ipha_ttl =
4764 		    ltcp->tcp_ip6h->ip6_hops;
4765 		bcopy(ltcp->tcp_tcph->th_lport,
4766 		    tcp->tcp_tcph->th_lport, sizeof (ushort_t));
4767 	}
4768 
4769 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
4770 	bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport,
4771 	    sizeof (in_port_t));
4772 
4773 	if (ltcp->tcp_lport == 0) {
4774 		tcp->tcp_lport = *(in_port_t *)tcph->th_fport;
4775 		bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport,
4776 		    sizeof (in_port_t));
4777 	}
4778 
4779 	if (tcp->tcp_ipversion == IPV4_VERSION) {
4780 		ASSERT(ipha != NULL);
4781 		tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
4782 		tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
4783 
4784 		/* Source routing option copyover (reverse it) */
4785 		if (tcps->tcps_rev_src_routes)
4786 			tcp_opt_reverse(tcp, ipha);
4787 	} else {
4788 		ASSERT(ip6h != NULL);
4789 		tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src;
4790 		tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst;
4791 	}
4792 
4793 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
4794 	ASSERT(!tcp->tcp_tconnind_started);
4795 	/*
4796 	 * If the SYN contains a credential, it's a loopback packet; attach
4797 	 * the credential to the TPI message.
4798 	 */
4799 	if ((cr = DB_CRED(idmp)) != NULL) {
4800 		mblk_setcred(tpi_mp, cr);
4801 		DB_CPID(tpi_mp) = DB_CPID(idmp);
4802 	}
4803 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
4804 
4805 	/* Inherit the listener's SSL protection state */
4806 
4807 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
4808 		kssl_hold_ent(tcp->tcp_kssl_ent);
4809 		tcp->tcp_kssl_pending = B_TRUE;
4810 	}
4811 
4812 	/* Inherit the listener's non-STREAMS flag */
4813 	if (IPCL_IS_NONSTR(lconnp)) {
4814 		connp->conn_flags |= IPCL_NONSTR;
4815 		connp->conn_upcalls = lconnp->conn_upcalls;
4816 	}
4817 
4818 	return (0);
4819 }
4820 
4821 
4822 int
4823 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
4824     tcph_t *tcph, mblk_t *idmp)
4825 {
4826 	tcp_t 		*ltcp = lconnp->conn_tcp;
4827 	tcp_t		*tcp = connp->conn_tcp;
4828 	sin_t		sin;
4829 	mblk_t		*tpi_mp = NULL;
4830 	int		err;
4831 	cred_t		*cr;
4832 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4833 
4834 	sin = sin_null;
4835 	sin.sin_addr.s_addr = ipha->ipha_src;
4836 	sin.sin_port = *(uint16_t *)tcph->th_lport;
4837 	sin.sin_family = AF_INET;
4838 	if (ltcp->tcp_recvdstaddr) {
4839 		sin_t	sind;
4840 
4841 		sind = sin_null;
4842 		sind.sin_addr.s_addr = ipha->ipha_dst;
4843 		sind.sin_port = *(uint16_t *)tcph->th_fport;
4844 		sind.sin_family = AF_INET;
4845 		tpi_mp = mi_tpi_extconn_ind(NULL,
4846 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
4847 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
4848 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4849 	} else {
4850 		tpi_mp = mi_tpi_conn_ind(NULL,
4851 		    (char *)&sin, sizeof (sin_t),
4852 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4853 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4854 	}
4855 
4856 	if (tpi_mp == NULL) {
4857 		return (ENOMEM);
4858 	}
4859 
4860 	connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER);
4861 	connp->conn_send = ip_output;
4862 	connp->conn_recv = tcp_input;
4863 	connp->conn_fully_bound = B_FALSE;
4864 
4865 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_bound_source_v6);
4866 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4867 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4868 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4869 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4870 
4871 	/* Inherit information from the "parent" */
4872 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
4873 	tcp->tcp_family = ltcp->tcp_family;
4874 	tcp->tcp_wq = ltcp->tcp_wq;
4875 	tcp->tcp_rq = ltcp->tcp_rq;
4876 	tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
4877 	tcp->tcp_detached = B_TRUE;
4878 	SOCK_CONNID_INIT(tcp->tcp_connid);
4879 	if ((err = tcp_init_values(tcp)) != 0) {
4880 		freemsg(tpi_mp);
4881 		return (err);
4882 	}
4883 
4884 	/*
4885 	 * Let's make sure that eager tcp template has enough space to
4886 	 * copy IPv4 listener's tcp template. Since the conn_t structure is
4887 	 * preserved and tcp_iphc_len is also preserved, an eager conn_t may
4888 	 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or
4889 	 * more (in case of re-allocation of conn_t with tcp-IPv6 template with
4890 	 * extension headers or with ip6i_t struct). Note that bcopy() below
4891 	 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_
4892 	 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener.
4893 	 */
4894 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
4895 	ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH);
4896 
4897 	tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
4898 	tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
4899 	tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
4900 	tcp->tcp_ttl = ltcp->tcp_ttl;
4901 	tcp->tcp_tos = ltcp->tcp_tos;
4902 
4903 	/* Copy the IP+TCP header template from listener to eager */
4904 	bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
4905 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
4906 	tcp->tcp_ip6h = NULL;
4907 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
4908 	    tcp->tcp_ip_hdr_len);
4909 
4910 	/* Initialize the IP addresses and Ports */
4911 	tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
4912 	tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
4913 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
4914 	bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t));
4915 
4916 	/* Source routing option copyover (reverse it) */
4917 	if (tcps->tcps_rev_src_routes)
4918 		tcp_opt_reverse(tcp, ipha);
4919 
4920 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
4921 	ASSERT(!tcp->tcp_tconnind_started);
4922 
4923 	/*
4924 	 * If the SYN contains a credential, it's a loopback packet; attach
4925 	 * the credential to the TPI message.
4926 	 */
4927 	if ((cr = DB_CRED(idmp)) != NULL) {
4928 		mblk_setcred(tpi_mp, cr);
4929 		DB_CPID(tpi_mp) = DB_CPID(idmp);
4930 	}
4931 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
4932 
4933 	/* Inherit the listener's SSL protection state */
4934 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
4935 		kssl_hold_ent(tcp->tcp_kssl_ent);
4936 		tcp->tcp_kssl_pending = B_TRUE;
4937 	}
4938 
4939 	/* Inherit the listener's non-STREAMS flag */
4940 	if (IPCL_IS_NONSTR(lconnp)) {
4941 		connp->conn_flags |= IPCL_NONSTR;
4942 		connp->conn_upcalls = lconnp->conn_upcalls;
4943 	}
4944 
4945 	return (0);
4946 }
4947 
4948 /*
4949  * sets up conn for ipsec.
4950  * if the first mblk is M_CTL it is consumed and mpp is updated.
4951  * in case of error mpp is freed.
4952  */
4953 conn_t *
4954 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp)
4955 {
4956 	conn_t 		*connp = tcp->tcp_connp;
4957 	conn_t 		*econnp;
4958 	squeue_t 	*new_sqp;
4959 	mblk_t 		*first_mp = *mpp;
4960 	mblk_t		*mp = *mpp;
4961 	boolean_t	mctl_present = B_FALSE;
4962 	uint_t		ipvers;
4963 
4964 	econnp = tcp_get_conn(sqp, tcp->tcp_tcps);
4965 	if (econnp == NULL) {
4966 		freemsg(first_mp);
4967 		return (NULL);
4968 	}
4969 	if (DB_TYPE(mp) == M_CTL) {
4970 		if (mp->b_cont == NULL ||
4971 		    mp->b_cont->b_datap->db_type != M_DATA) {
4972 			freemsg(first_mp);
4973 			return (NULL);
4974 		}
4975 		mp = mp->b_cont;
4976 		if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) {
4977 			freemsg(first_mp);
4978 			return (NULL);
4979 		}
4980 
4981 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
4982 		first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
4983 		mctl_present = B_TRUE;
4984 	} else {
4985 		ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY);
4986 		mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
4987 	}
4988 
4989 	new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
4990 	DB_CKSUMSTART(mp) = 0;
4991 
4992 	ASSERT(OK_32PTR(mp->b_rptr));
4993 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
4994 	if (ipvers == IPV4_VERSION) {
4995 		uint16_t  	*up;
4996 		uint32_t	ports;
4997 		ipha_t		*ipha;
4998 
4999 		ipha = (ipha_t *)mp->b_rptr;
5000 		up = (uint16_t *)((uchar_t *)ipha +
5001 		    IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET);
5002 		ports = *(uint32_t *)up;
5003 		IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP,
5004 		    ipha->ipha_dst, ipha->ipha_src, ports);
5005 	} else {
5006 		uint16_t  	*up;
5007 		uint32_t	ports;
5008 		uint16_t	ip_hdr_len;
5009 		uint8_t		*nexthdrp;
5010 		ip6_t 		*ip6h;
5011 		tcph_t		*tcph;
5012 
5013 		ip6h = (ip6_t *)mp->b_rptr;
5014 		if (ip6h->ip6_nxt == IPPROTO_TCP) {
5015 			ip_hdr_len = IPV6_HDR_LEN;
5016 		} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len,
5017 		    &nexthdrp) || *nexthdrp != IPPROTO_TCP) {
5018 			CONN_DEC_REF(econnp);
5019 			freemsg(first_mp);
5020 			return (NULL);
5021 		}
5022 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5023 		up = (uint16_t *)tcph->th_lport;
5024 		ports = *(uint32_t *)up;
5025 		IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP,
5026 		    ip6h->ip6_dst, ip6h->ip6_src, ports);
5027 	}
5028 
5029 	/*
5030 	 * The caller already ensured that there is a sqp present.
5031 	 */
5032 	econnp->conn_sqp = new_sqp;
5033 	econnp->conn_initial_sqp = new_sqp;
5034 
5035 	if (connp->conn_policy != NULL) {
5036 		ipsec_in_t *ii;
5037 		ii = (ipsec_in_t *)(first_mp->b_rptr);
5038 		ASSERT(ii->ipsec_in_policy == NULL);
5039 		IPPH_REFHOLD(connp->conn_policy);
5040 		ii->ipsec_in_policy = connp->conn_policy;
5041 
5042 		first_mp->b_datap->db_type = IPSEC_POLICY_SET;
5043 		if (!ip_bind_ipsec_policy_set(econnp, first_mp)) {
5044 			CONN_DEC_REF(econnp);
5045 			freemsg(first_mp);
5046 			return (NULL);
5047 		}
5048 	}
5049 
5050 	if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) {
5051 		CONN_DEC_REF(econnp);
5052 		freemsg(first_mp);
5053 		return (NULL);
5054 	}
5055 
5056 	/*
5057 	 * If we know we have some policy, pass the "IPSEC"
5058 	 * options size TCP uses this adjust the MSS.
5059 	 */
5060 	econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp);
5061 	if (mctl_present) {
5062 		freeb(first_mp);
5063 		*mpp = mp;
5064 	}
5065 
5066 	return (econnp);
5067 }
5068 
5069 /*
5070  * tcp_get_conn/tcp_free_conn
5071  *
5072  * tcp_get_conn is used to get a clean tcp connection structure.
5073  * It tries to reuse the connections put on the freelist by the
5074  * time_wait_collector failing which it goes to kmem_cache. This
5075  * way has two benefits compared to just allocating from and
5076  * freeing to kmem_cache.
5077  * 1) The time_wait_collector can free (which includes the cleanup)
5078  * outside the squeue. So when the interrupt comes, we have a clean
5079  * connection sitting in the freelist. Obviously, this buys us
5080  * performance.
5081  *
5082  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request
5083  * has multiple disadvantages - tying up the squeue during alloc, and the
5084  * fact that IPSec policy initialization has to happen here which
5085  * requires us sending a M_CTL and checking for it i.e. real ugliness.
5086  * But allocating the conn/tcp in IP land is also not the best since
5087  * we can't check the 'q' and 'q0' which are protected by squeue and
5088  * blindly allocate memory which might have to be freed here if we are
5089  * not allowed to accept the connection. By using the freelist and
5090  * putting the conn/tcp back in freelist, we don't pay a penalty for
5091  * allocating memory without checking 'q/q0' and freeing it if we can't
5092  * accept the connection.
5093  *
5094  * Care should be taken to put the conn back in the same squeue's freelist
5095  * from which it was allocated. Best results are obtained if conn is
5096  * allocated from listener's squeue and freed to the same. Time wait
5097  * collector will free up the freelist is the connection ends up sitting
5098  * there for too long.
5099  */
5100 void *
5101 tcp_get_conn(void *arg, tcp_stack_t *tcps)
5102 {
5103 	tcp_t			*tcp = NULL;
5104 	conn_t			*connp = NULL;
5105 	squeue_t		*sqp = (squeue_t *)arg;
5106 	tcp_squeue_priv_t 	*tcp_time_wait;
5107 	netstack_t		*ns;
5108 
5109 	tcp_time_wait =
5110 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
5111 
5112 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
5113 	tcp = tcp_time_wait->tcp_free_list;
5114 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
5115 	if (tcp != NULL) {
5116 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
5117 		tcp_time_wait->tcp_free_list_cnt--;
5118 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5119 		tcp->tcp_time_wait_next = NULL;
5120 		connp = tcp->tcp_connp;
5121 		connp->conn_flags |= IPCL_REUSED;
5122 
5123 		ASSERT(tcp->tcp_tcps == NULL);
5124 		ASSERT(connp->conn_netstack == NULL);
5125 		ASSERT(tcp->tcp_rsrv_mp != NULL);
5126 		ns = tcps->tcps_netstack;
5127 		netstack_hold(ns);
5128 		connp->conn_netstack = ns;
5129 		tcp->tcp_tcps = tcps;
5130 		TCPS_REFHOLD(tcps);
5131 		ipcl_globalhash_insert(connp);
5132 		return ((void *)connp);
5133 	}
5134 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5135 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
5136 	    tcps->tcps_netstack)) == NULL)
5137 		return (NULL);
5138 	tcp = connp->conn_tcp;
5139 	/*
5140 	 * Pre-allocate the tcp_rsrv_mp.  This mblk will not be freed
5141 	 * until this conn_t/tcp_t is freed at ipcl_conn_destroy().
5142 	 */
5143 	if ((tcp->tcp_rsrv_mp = allocb(0, BPRI_HI)) == NULL) {
5144 		ipcl_conn_destroy(connp);
5145 		return (NULL);
5146 	}
5147 	mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL);
5148 	tcp->tcp_tcps = tcps;
5149 	TCPS_REFHOLD(tcps);
5150 
5151 	return ((void *)connp);
5152 }
5153 
5154 /*
5155  * Update the cached label for the given tcp_t.  This should be called once per
5156  * connection, and before any packets are sent or tcp_process_options is
5157  * invoked.  Returns B_FALSE if the correct label could not be constructed.
5158  */
5159 static boolean_t
5160 tcp_update_label(tcp_t *tcp, const cred_t *cr)
5161 {
5162 	conn_t *connp = tcp->tcp_connp;
5163 
5164 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5165 		uchar_t optbuf[IP_MAX_OPT_LENGTH];
5166 		int added;
5167 
5168 		if (tsol_compute_label(cr, tcp->tcp_remote, optbuf,
5169 		    connp->conn_mac_exempt,
5170 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5171 			return (B_FALSE);
5172 
5173 		added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len);
5174 		if (added == -1)
5175 			return (B_FALSE);
5176 		tcp->tcp_hdr_len += added;
5177 		tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added);
5178 		tcp->tcp_ip_hdr_len += added;
5179 		if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) {
5180 			tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3;
5181 			added = tsol_prepend_option(optbuf, tcp->tcp_ipha,
5182 			    tcp->tcp_hdr_len);
5183 			if (added == -1)
5184 				return (B_FALSE);
5185 			tcp->tcp_hdr_len += added;
5186 			tcp->tcp_tcph = (tcph_t *)
5187 			    ((uchar_t *)tcp->tcp_tcph + added);
5188 			tcp->tcp_ip_hdr_len += added;
5189 		}
5190 	} else {
5191 		uchar_t optbuf[TSOL_MAX_IPV6_OPTION];
5192 
5193 		if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf,
5194 		    connp->conn_mac_exempt,
5195 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5196 			return (B_FALSE);
5197 		if (tsol_update_sticky(&tcp->tcp_sticky_ipp,
5198 		    &tcp->tcp_label_len, optbuf) != 0)
5199 			return (B_FALSE);
5200 		if (tcp_build_hdrs(tcp) != 0)
5201 			return (B_FALSE);
5202 	}
5203 
5204 	connp->conn_ulp_labeled = 1;
5205 
5206 	return (B_TRUE);
5207 }
5208 
5209 /* BEGIN CSTYLED */
5210 /*
5211  *
5212  * The sockfs ACCEPT path:
5213  * =======================
5214  *
5215  * The eager is now established in its own perimeter as soon as SYN is
5216  * received in tcp_conn_request(). When sockfs receives conn_ind, it
5217  * completes the accept processing on the acceptor STREAM. The sending
5218  * of conn_ind part is common for both sockfs listener and a TLI/XTI
5219  * listener but a TLI/XTI listener completes the accept processing
5220  * on the listener perimeter.
5221  *
5222  * Common control flow for 3 way handshake:
5223  * ----------------------------------------
5224  *
5225  * incoming SYN (listener perimeter) 	-> tcp_rput_data()
5226  *					-> tcp_conn_request()
5227  *
5228  * incoming SYN-ACK-ACK (eager perim) 	-> tcp_rput_data()
5229  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
5230  *
5231  * Sockfs ACCEPT Path:
5232  * -------------------
5233  *
5234  * open acceptor stream (tcp_open allocates tcp_wput_accept()
5235  * as STREAM entry point)
5236  *
5237  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept()
5238  *
5239  * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager
5240  * association (we are not behind eager's squeue but sockfs is protecting us
5241  * and no one knows about this stream yet. The STREAMS entry point q->q_info
5242  * is changed to point at tcp_wput().
5243  *
5244  * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to
5245  * listener (done on listener's perimeter).
5246  *
5247  * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish
5248  * accept.
5249  *
5250  * TLI/XTI client ACCEPT path:
5251  * ---------------------------
5252  *
5253  * soaccept() sends T_CONN_RES on the listener STREAM.
5254  *
5255  * tcp_accept() -> tcp_accept_swap() complete the processing and send
5256  * the bind_mp to eager perimeter to finish accept (tcp_rput_other()).
5257  *
5258  * Locks:
5259  * ======
5260  *
5261  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
5262  * and listeners->tcp_eager_next_q.
5263  *
5264  * Referencing:
5265  * ============
5266  *
5267  * 1) We start out in tcp_conn_request by eager placing a ref on
5268  * listener and listener adding eager to listeners->tcp_eager_next_q0.
5269  *
5270  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
5271  * doing so we place a ref on the eager. This ref is finally dropped at the
5272  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
5273  * reference is dropped by the squeue framework.
5274  *
5275  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
5276  *
5277  * The reference must be released by the same entity that added the reference
5278  * In the above scheme, the eager is the entity that adds and releases the
5279  * references. Note that tcp_accept_finish executes in the squeue of the eager
5280  * (albeit after it is attached to the acceptor stream). Though 1. executes
5281  * in the listener's squeue, the eager is nascent at this point and the
5282  * reference can be considered to have been added on behalf of the eager.
5283  *
5284  * Eager getting a Reset or listener closing:
5285  * ==========================================
5286  *
5287  * Once the listener and eager are linked, the listener never does the unlink.
5288  * If the listener needs to close, tcp_eager_cleanup() is called which queues
5289  * a message on all eager perimeter. The eager then does the unlink, clears
5290  * any pointers to the listener's queue and drops the reference to the
5291  * listener. The listener waits in tcp_close outside the squeue until its
5292  * refcount has dropped to 1. This ensures that the listener has waited for
5293  * all eagers to clear their association with the listener.
5294  *
5295  * Similarly, if eager decides to go away, it can unlink itself and close.
5296  * When the T_CONN_RES comes down, we check if eager has closed. Note that
5297  * the reference to eager is still valid because of the extra ref we put
5298  * in tcp_send_conn_ind.
5299  *
5300  * Listener can always locate the eager under the protection
5301  * of the listener->tcp_eager_lock, and then do a refhold
5302  * on the eager during the accept processing.
5303  *
5304  * The acceptor stream accesses the eager in the accept processing
5305  * based on the ref placed on eager before sending T_conn_ind.
5306  * The only entity that can negate this refhold is a listener close
5307  * which is mutually exclusive with an active acceptor stream.
5308  *
5309  * Eager's reference on the listener
5310  * ===================================
5311  *
5312  * If the accept happens (even on a closed eager) the eager drops its
5313  * reference on the listener at the start of tcp_accept_finish. If the
5314  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
5315  * the reference is dropped in tcp_closei_local. If the listener closes,
5316  * the reference is dropped in tcp_eager_kill. In all cases the reference
5317  * is dropped while executing in the eager's context (squeue).
5318  */
5319 /* END CSTYLED */
5320 
5321 /* Process the SYN packet, mp, directed at the listener 'tcp' */
5322 
5323 /*
5324  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
5325  * tcp_rput_data will not see any SYN packets.
5326  */
5327 /* ARGSUSED */
5328 void
5329 tcp_conn_request(void *arg, mblk_t *mp, void *arg2)
5330 {
5331 	tcph_t		*tcph;
5332 	uint32_t	seg_seq;
5333 	tcp_t		*eager;
5334 	uint_t		ipvers;
5335 	ipha_t		*ipha;
5336 	ip6_t		*ip6h;
5337 	int		err;
5338 	conn_t		*econnp = NULL;
5339 	squeue_t	*new_sqp;
5340 	mblk_t		*mp1;
5341 	uint_t 		ip_hdr_len;
5342 	conn_t		*connp = (conn_t *)arg;
5343 	tcp_t		*tcp = connp->conn_tcp;
5344 	cred_t		*credp;
5345 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5346 	ip_stack_t	*ipst;
5347 
5348 	if (tcp->tcp_state != TCPS_LISTEN)
5349 		goto error2;
5350 
5351 	ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0);
5352 
5353 	mutex_enter(&tcp->tcp_eager_lock);
5354 	if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) {
5355 		mutex_exit(&tcp->tcp_eager_lock);
5356 		TCP_STAT(tcps, tcp_listendrop);
5357 		BUMP_MIB(&tcps->tcps_mib, tcpListenDrop);
5358 		if (tcp->tcp_debug) {
5359 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
5360 			    "tcp_conn_request: listen backlog (max=%d) "
5361 			    "overflow (%d pending) on %s",
5362 			    tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q,
5363 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
5364 		}
5365 		goto error2;
5366 	}
5367 
5368 	if (tcp->tcp_conn_req_cnt_q0 >=
5369 	    tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) {
5370 		/*
5371 		 * Q0 is full. Drop a pending half-open req from the queue
5372 		 * to make room for the new SYN req. Also mark the time we
5373 		 * drop a SYN.
5374 		 *
5375 		 * A more aggressive defense against SYN attack will
5376 		 * be to set the "tcp_syn_defense" flag now.
5377 		 */
5378 		TCP_STAT(tcps, tcp_listendropq0);
5379 		tcp->tcp_last_rcv_lbolt = lbolt64;
5380 		if (!tcp_drop_q0(tcp)) {
5381 			mutex_exit(&tcp->tcp_eager_lock);
5382 			BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0);
5383 			if (tcp->tcp_debug) {
5384 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
5385 				    "tcp_conn_request: listen half-open queue "
5386 				    "(max=%d) full (%d pending) on %s",
5387 				    tcps->tcps_conn_req_max_q0,
5388 				    tcp->tcp_conn_req_cnt_q0,
5389 				    tcp_display(tcp, NULL,
5390 				    DISP_PORT_ONLY));
5391 			}
5392 			goto error2;
5393 		}
5394 	}
5395 	mutex_exit(&tcp->tcp_eager_lock);
5396 
5397 	/*
5398 	 * IP adds STRUIO_EAGER and ensures that the received packet is
5399 	 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6
5400 	 * link local address.  If IPSec is enabled, db_struioflag has
5401 	 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER);
5402 	 * otherwise an error case if neither of them is set.
5403 	 */
5404 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5405 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5406 		DB_CKSUMSTART(mp) = 0;
5407 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5408 		econnp = (conn_t *)tcp_get_conn(arg2, tcps);
5409 		if (econnp == NULL)
5410 			goto error2;
5411 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5412 		econnp->conn_sqp = new_sqp;
5413 		econnp->conn_initial_sqp = new_sqp;
5414 	} else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) {
5415 		/*
5416 		 * mp is updated in tcp_get_ipsec_conn().
5417 		 */
5418 		econnp = tcp_get_ipsec_conn(tcp, arg2, &mp);
5419 		if (econnp == NULL) {
5420 			/*
5421 			 * mp freed by tcp_get_ipsec_conn.
5422 			 */
5423 			return;
5424 		}
5425 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5426 	} else {
5427 		goto error2;
5428 	}
5429 
5430 	ASSERT(DB_TYPE(mp) == M_DATA);
5431 
5432 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5433 	ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION);
5434 	ASSERT(OK_32PTR(mp->b_rptr));
5435 	if (ipvers == IPV4_VERSION) {
5436 		ipha = (ipha_t *)mp->b_rptr;
5437 		ip_hdr_len = IPH_HDR_LENGTH(ipha);
5438 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5439 	} else {
5440 		ip6h = (ip6_t *)mp->b_rptr;
5441 		ip_hdr_len = ip_hdr_length_v6(mp, ip6h);
5442 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5443 	}
5444 
5445 	if (tcp->tcp_family == AF_INET) {
5446 		ASSERT(ipvers == IPV4_VERSION);
5447 		err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp);
5448 	} else {
5449 		err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp);
5450 	}
5451 
5452 	if (err)
5453 		goto error3;
5454 
5455 	eager = econnp->conn_tcp;
5456 
5457 	/*
5458 	 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that at close
5459 	 * time, we will always have that to send up.  Otherwise, we need to do
5460 	 * special handling in case the allocation fails at that time.
5461 	 */
5462 	ASSERT(eager->tcp_ordrel_mp == NULL);
5463 	if (!IPCL_IS_NONSTR(econnp) &&
5464 	    (eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL)
5465 		goto error3;
5466 
5467 	/* Inherit various TCP parameters from the listener */
5468 	eager->tcp_naglim = tcp->tcp_naglim;
5469 	eager->tcp_first_timer_threshold =
5470 	    tcp->tcp_first_timer_threshold;
5471 	eager->tcp_second_timer_threshold =
5472 	    tcp->tcp_second_timer_threshold;
5473 
5474 	eager->tcp_first_ctimer_threshold =
5475 	    tcp->tcp_first_ctimer_threshold;
5476 	eager->tcp_second_ctimer_threshold =
5477 	    tcp->tcp_second_ctimer_threshold;
5478 
5479 	/*
5480 	 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics.
5481 	 * If it does not, the eager's receive window will be set to the
5482 	 * listener's receive window later in this function.
5483 	 */
5484 	eager->tcp_rwnd = 0;
5485 
5486 	/*
5487 	 * Inherit listener's tcp_init_cwnd.  Need to do this before
5488 	 * calling tcp_process_options() where tcp_mss_set() is called
5489 	 * to set the initial cwnd.
5490 	 */
5491 	eager->tcp_init_cwnd = tcp->tcp_init_cwnd;
5492 
5493 	/*
5494 	 * Zones: tcp_adapt_ire() and tcp_send_data() both need the
5495 	 * zone id before the accept is completed in tcp_wput_accept().
5496 	 */
5497 	econnp->conn_zoneid = connp->conn_zoneid;
5498 	econnp->conn_allzones = connp->conn_allzones;
5499 
5500 	/* Copy nexthop information from listener to eager */
5501 	if (connp->conn_nexthop_set) {
5502 		econnp->conn_nexthop_set = connp->conn_nexthop_set;
5503 		econnp->conn_nexthop_v4 = connp->conn_nexthop_v4;
5504 	}
5505 
5506 	/*
5507 	 * TSOL: tsol_input_proc() needs the eager's cred before the
5508 	 * eager is accepted
5509 	 */
5510 	econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred;
5511 	crhold(credp);
5512 
5513 	/*
5514 	 * If the caller has the process-wide flag set, then default to MAC
5515 	 * exempt mode.  This allows read-down to unlabeled hosts.
5516 	 */
5517 	if (getpflags(NET_MAC_AWARE, credp) != 0)
5518 		econnp->conn_mac_exempt = B_TRUE;
5519 
5520 	if (is_system_labeled()) {
5521 		cred_t *cr;
5522 
5523 		if (connp->conn_mlp_type != mlptSingle) {
5524 			cr = econnp->conn_peercred = DB_CRED(mp);
5525 			if (cr != NULL)
5526 				crhold(cr);
5527 			else
5528 				cr = econnp->conn_cred;
5529 			DTRACE_PROBE2(mlp_syn_accept, conn_t *,
5530 			    econnp, cred_t *, cr)
5531 		} else {
5532 			cr = econnp->conn_cred;
5533 			DTRACE_PROBE2(syn_accept, conn_t *,
5534 			    econnp, cred_t *, cr)
5535 		}
5536 
5537 		if (!tcp_update_label(eager, cr)) {
5538 			DTRACE_PROBE3(
5539 			    tx__ip__log__error__connrequest__tcp,
5540 			    char *, "eager connp(1) label on SYN mp(2) failed",
5541 			    conn_t *, econnp, mblk_t *, mp);
5542 			goto error3;
5543 		}
5544 	}
5545 
5546 	eager->tcp_hard_binding = B_TRUE;
5547 
5548 	tcp_bind_hash_insert(&tcps->tcps_bind_fanout[
5549 	    TCP_BIND_HASH(eager->tcp_lport)], eager, 0);
5550 
5551 	CL_INET_CONNECT(connp, eager, B_FALSE, err);
5552 	if (err != 0) {
5553 		tcp_bind_hash_remove(eager);
5554 		goto error3;
5555 	}
5556 
5557 	/*
5558 	 * No need to check for multicast destination since ip will only pass
5559 	 * up multicasts to those that have expressed interest
5560 	 * TODO: what about rejecting broadcasts?
5561 	 * Also check that source is not a multicast or broadcast address.
5562 	 */
5563 	eager->tcp_state = TCPS_SYN_RCVD;
5564 
5565 
5566 	/*
5567 	 * There should be no ire in the mp as we are being called after
5568 	 * receiving the SYN.
5569 	 */
5570 	ASSERT(tcp_ire_mp(&mp) == NULL);
5571 
5572 	/*
5573 	 * Adapt our mss, ttl, ... according to information provided in IRE.
5574 	 */
5575 
5576 	if (tcp_adapt_ire(eager, NULL) == 0) {
5577 		/* Undo the bind_hash_insert */
5578 		tcp_bind_hash_remove(eager);
5579 		goto error3;
5580 	}
5581 
5582 	/* Process all TCP options. */
5583 	tcp_process_options(eager, tcph);
5584 
5585 	/* Is the other end ECN capable? */
5586 	if (tcps->tcps_ecn_permitted >= 1 &&
5587 	    (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
5588 		eager->tcp_ecn_ok = B_TRUE;
5589 	}
5590 
5591 	/*
5592 	 * listener->tcp_rq->q_hiwat should be the default window size or a
5593 	 * window size changed via SO_RCVBUF option.  First round up the
5594 	 * eager's tcp_rwnd to the nearest MSS.  Then find out the window
5595 	 * scale option value if needed.  Call tcp_rwnd_set() to finish the
5596 	 * setting.
5597 	 *
5598 	 * Note if there is a rpipe metric associated with the remote host,
5599 	 * we should not inherit receive window size from listener.
5600 	 */
5601 	eager->tcp_rwnd = MSS_ROUNDUP(
5602 	    (eager->tcp_rwnd == 0 ? tcp->tcp_recv_hiwater:
5603 	    eager->tcp_rwnd), eager->tcp_mss);
5604 	if (eager->tcp_snd_ws_ok)
5605 		tcp_set_ws_value(eager);
5606 	/*
5607 	 * Note that this is the only place tcp_rwnd_set() is called for
5608 	 * accepting a connection.  We need to call it here instead of
5609 	 * after the 3-way handshake because we need to tell the other
5610 	 * side our rwnd in the SYN-ACK segment.
5611 	 */
5612 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
5613 
5614 	/*
5615 	 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ
5616 	 * via soaccept()->soinheritoptions() which essentially applies
5617 	 * all the listener options to the new STREAM. The options that we
5618 	 * need to take care of are:
5619 	 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST,
5620 	 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER,
5621 	 * SO_SNDBUF, SO_RCVBUF.
5622 	 *
5623 	 * SO_RCVBUF:	tcp_rwnd_set() above takes care of it.
5624 	 * SO_SNDBUF:	Set the tcp_xmit_hiwater for the eager. When
5625 	 *		tcp_maxpsz_set() gets called later from
5626 	 *		tcp_accept_finish(), the option takes effect.
5627 	 *
5628 	 */
5629 	/* Set the TCP options */
5630 	eager->tcp_recv_hiwater = tcp->tcp_recv_hiwater;
5631 	eager->tcp_recv_lowater = tcp->tcp_recv_lowater;
5632 	eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater;
5633 	eager->tcp_dgram_errind = tcp->tcp_dgram_errind;
5634 	eager->tcp_oobinline = tcp->tcp_oobinline;
5635 	eager->tcp_reuseaddr = tcp->tcp_reuseaddr;
5636 	eager->tcp_broadcast = tcp->tcp_broadcast;
5637 	eager->tcp_useloopback = tcp->tcp_useloopback;
5638 	eager->tcp_dontroute = tcp->tcp_dontroute;
5639 	eager->tcp_debug = tcp->tcp_debug;
5640 	eager->tcp_linger = tcp->tcp_linger;
5641 	eager->tcp_lingertime = tcp->tcp_lingertime;
5642 	if (tcp->tcp_ka_enabled)
5643 		eager->tcp_ka_enabled = 1;
5644 
5645 	/* Set the IP options */
5646 	econnp->conn_broadcast = connp->conn_broadcast;
5647 	econnp->conn_loopback = connp->conn_loopback;
5648 	econnp->conn_dontroute = connp->conn_dontroute;
5649 	econnp->conn_reuseaddr = connp->conn_reuseaddr;
5650 
5651 	/* Put a ref on the listener for the eager. */
5652 	CONN_INC_REF(connp);
5653 	mutex_enter(&tcp->tcp_eager_lock);
5654 	tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
5655 	eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0;
5656 	tcp->tcp_eager_next_q0 = eager;
5657 	eager->tcp_eager_prev_q0 = tcp;
5658 
5659 	/* Set tcp_listener before adding it to tcp_conn_fanout */
5660 	eager->tcp_listener = tcp;
5661 	eager->tcp_saved_listener = tcp;
5662 
5663 	/*
5664 	 * Tag this detached tcp vector for later retrieval
5665 	 * by our listener client in tcp_accept().
5666 	 */
5667 	eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum;
5668 	tcp->tcp_conn_req_cnt_q0++;
5669 	if (++tcp->tcp_conn_req_seqnum == -1) {
5670 		/*
5671 		 * -1 is "special" and defined in TPI as something
5672 		 * that should never be used in T_CONN_IND
5673 		 */
5674 		++tcp->tcp_conn_req_seqnum;
5675 	}
5676 	mutex_exit(&tcp->tcp_eager_lock);
5677 
5678 	if (tcp->tcp_syn_defense) {
5679 		/* Don't drop the SYN that comes from a good IP source */
5680 		ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache);
5681 		if (addr_cache != NULL && eager->tcp_remote ==
5682 		    addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) {
5683 			eager->tcp_dontdrop = B_TRUE;
5684 		}
5685 	}
5686 
5687 	/*
5688 	 * We need to insert the eager in its own perimeter but as soon
5689 	 * as we do that, we expose the eager to the classifier and
5690 	 * should not touch any field outside the eager's perimeter.
5691 	 * So do all the work necessary before inserting the eager
5692 	 * in its own perimeter. Be optimistic that ipcl_conn_insert()
5693 	 * will succeed but undo everything if it fails.
5694 	 */
5695 	seg_seq = ABE32_TO_U32(tcph->th_seq);
5696 	eager->tcp_irs = seg_seq;
5697 	eager->tcp_rack = seg_seq;
5698 	eager->tcp_rnxt = seg_seq + 1;
5699 	U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack);
5700 	BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens);
5701 	eager->tcp_state = TCPS_SYN_RCVD;
5702 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
5703 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
5704 	if (mp1 == NULL) {
5705 		/*
5706 		 * Increment the ref count as we are going to
5707 		 * enqueueing an mp in squeue
5708 		 */
5709 		CONN_INC_REF(econnp);
5710 		goto error;
5711 	}
5712 
5713 	DB_CPID(mp1) = tcp->tcp_cpid;
5714 	mblk_setcred(mp1, CONN_CRED(eager->tcp_connp));
5715 	eager->tcp_cpid = tcp->tcp_cpid;
5716 	eager->tcp_open_time = lbolt64;
5717 
5718 	/*
5719 	 * We need to start the rto timer. In normal case, we start
5720 	 * the timer after sending the packet on the wire (or at
5721 	 * least believing that packet was sent by waiting for
5722 	 * CALL_IP_WPUT() to return). Since this is the first packet
5723 	 * being sent on the wire for the eager, our initial tcp_rto
5724 	 * is at least tcp_rexmit_interval_min which is a fairly
5725 	 * large value to allow the algorithm to adjust slowly to large
5726 	 * fluctuations of RTT during first few transmissions.
5727 	 *
5728 	 * Starting the timer first and then sending the packet in this
5729 	 * case shouldn't make much difference since tcp_rexmit_interval_min
5730 	 * is of the order of several 100ms and starting the timer
5731 	 * first and then sending the packet will result in difference
5732 	 * of few micro seconds.
5733 	 *
5734 	 * Without this optimization, we are forced to hold the fanout
5735 	 * lock across the ipcl_bind_insert() and sending the packet
5736 	 * so that we don't race against an incoming packet (maybe RST)
5737 	 * for this eager.
5738 	 *
5739 	 * It is necessary to acquire an extra reference on the eager
5740 	 * at this point and hold it until after tcp_send_data() to
5741 	 * ensure against an eager close race.
5742 	 */
5743 
5744 	CONN_INC_REF(eager->tcp_connp);
5745 
5746 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
5747 
5748 	/*
5749 	 * Insert the eager in its own perimeter now. We are ready to deal
5750 	 * with any packets on eager.
5751 	 */
5752 	if (eager->tcp_ipversion == IPV4_VERSION) {
5753 		if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) {
5754 			goto error;
5755 		}
5756 	} else {
5757 		if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) {
5758 			goto error;
5759 		}
5760 	}
5761 
5762 	/* mark conn as fully-bound */
5763 	econnp->conn_fully_bound = B_TRUE;
5764 
5765 	/* Send the SYN-ACK */
5766 	tcp_send_data(eager, eager->tcp_wq, mp1);
5767 	CONN_DEC_REF(eager->tcp_connp);
5768 	freemsg(mp);
5769 
5770 	return;
5771 error:
5772 	freemsg(mp1);
5773 	eager->tcp_closemp_used = B_TRUE;
5774 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
5775 	mp1 = &eager->tcp_closemp;
5776 	SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill,
5777 	    econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_2);
5778 
5779 	/*
5780 	 * If a connection already exists, send the mp to that connections so
5781 	 * that it can be appropriately dealt with.
5782 	 */
5783 	ipst = tcps->tcps_netstack->netstack_ip;
5784 
5785 	if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) {
5786 		if (!IPCL_IS_CONNECTED(econnp)) {
5787 			/*
5788 			 * Something bad happened. ipcl_conn_insert()
5789 			 * failed because a connection already existed
5790 			 * in connected hash but we can't find it
5791 			 * anymore (someone blew it away). Just
5792 			 * free this message and hopefully remote
5793 			 * will retransmit at which time the SYN can be
5794 			 * treated as a new connection or dealth with
5795 			 * a TH_RST if a connection already exists.
5796 			 */
5797 			CONN_DEC_REF(econnp);
5798 			freemsg(mp);
5799 		} else {
5800 			SQUEUE_ENTER_ONE(econnp->conn_sqp, mp,
5801 			    tcp_input, econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_1);
5802 		}
5803 	} else {
5804 		/* Nobody wants this packet */
5805 		freemsg(mp);
5806 	}
5807 	return;
5808 error3:
5809 	CONN_DEC_REF(econnp);
5810 error2:
5811 	freemsg(mp);
5812 }
5813 
5814 /*
5815  * In an ideal case of vertical partition in NUMA architecture, its
5816  * beneficial to have the listener and all the incoming connections
5817  * tied to the same squeue. The other constraint is that incoming
5818  * connections should be tied to the squeue attached to interrupted
5819  * CPU for obvious locality reason so this leaves the listener to
5820  * be tied to the same squeue. Our only problem is that when listener
5821  * is binding, the CPU that will get interrupted by the NIC whose
5822  * IP address the listener is binding to is not even known. So
5823  * the code below allows us to change that binding at the time the
5824  * CPU is interrupted by virtue of incoming connection's squeue.
5825  *
5826  * This is usefull only in case of a listener bound to a specific IP
5827  * address. For other kind of listeners, they get bound the
5828  * very first time and there is no attempt to rebind them.
5829  */
5830 void
5831 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2)
5832 {
5833 	conn_t		*connp = (conn_t *)arg;
5834 	squeue_t	*sqp = (squeue_t *)arg2;
5835 	squeue_t	*new_sqp;
5836 	uint32_t	conn_flags;
5837 
5838 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5839 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5840 	} else {
5841 		goto done;
5842 	}
5843 
5844 	if (connp->conn_fanout == NULL)
5845 		goto done;
5846 
5847 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
5848 		mutex_enter(&connp->conn_fanout->connf_lock);
5849 		mutex_enter(&connp->conn_lock);
5850 		/*
5851 		 * No one from read or write side can access us now
5852 		 * except for already queued packets on this squeue.
5853 		 * But since we haven't changed the squeue yet, they
5854 		 * can't execute. If they are processed after we have
5855 		 * changed the squeue, they are sent back to the
5856 		 * correct squeue down below.
5857 		 * But a listner close can race with processing of
5858 		 * incoming SYN. If incoming SYN processing changes
5859 		 * the squeue then the listener close which is waiting
5860 		 * to enter the squeue would operate on the wrong
5861 		 * squeue. Hence we don't change the squeue here unless
5862 		 * the refcount is exactly the minimum refcount. The
5863 		 * minimum refcount of 4 is counted as - 1 each for
5864 		 * TCP and IP, 1 for being in the classifier hash, and
5865 		 * 1 for the mblk being processed.
5866 		 */
5867 
5868 		if (connp->conn_ref != 4 ||
5869 		    connp->conn_tcp->tcp_state != TCPS_LISTEN) {
5870 			mutex_exit(&connp->conn_lock);
5871 			mutex_exit(&connp->conn_fanout->connf_lock);
5872 			goto done;
5873 		}
5874 		if (connp->conn_sqp != new_sqp) {
5875 			while (connp->conn_sqp != new_sqp)
5876 				(void) casptr(&connp->conn_sqp, sqp, new_sqp);
5877 		}
5878 
5879 		do {
5880 			conn_flags = connp->conn_flags;
5881 			conn_flags |= IPCL_FULLY_BOUND;
5882 			(void) cas32(&connp->conn_flags, connp->conn_flags,
5883 			    conn_flags);
5884 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
5885 
5886 		mutex_exit(&connp->conn_fanout->connf_lock);
5887 		mutex_exit(&connp->conn_lock);
5888 	}
5889 
5890 done:
5891 	if (connp->conn_sqp != sqp) {
5892 		CONN_INC_REF(connp);
5893 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp,
5894 		    SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND);
5895 	} else {
5896 		tcp_conn_request(connp, mp, sqp);
5897 	}
5898 }
5899 
5900 /*
5901  * Successful connect request processing begins when our client passes
5902  * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes
5903  * our T_OK_ACK reply message upstream.  The control flow looks like this:
5904  *   upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_tpi_connect() -> IP
5905  *   upstream <- tcp_rput()		<- IP
5906  * After various error checks are completed, tcp_tpi_connect() lays
5907  * the target address and port into the composite header template,
5908  * preallocates the T_OK_ACK reply message, construct a full 12 byte bind
5909  * request followed by an IRE request, and passes the three mblk message
5910  * down to IP looking like this:
5911  *   O_T_BIND_REQ for IP  --> IRE req --> T_OK_ACK for our client
5912  * Processing continues in tcp_rput() when we receive the following message:
5913  *   T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client
5914  * After consuming the first two mblks, tcp_rput() calls tcp_timer(),
5915  * to fire off the connection request, and then passes the T_OK_ACK mblk
5916  * upstream that we filled in below.  There are, of course, numerous
5917  * error conditions along the way which truncate the processing described
5918  * above.
5919  */
5920 static void
5921 tcp_tpi_connect(tcp_t *tcp, mblk_t *mp)
5922 {
5923 	sin_t		*sin;
5924 	queue_t		*q = tcp->tcp_wq;
5925 	struct T_conn_req	*tcr;
5926 	struct sockaddr	*sa;
5927 	socklen_t	len;
5928 	int		error;
5929 
5930 	tcr = (struct T_conn_req *)mp->b_rptr;
5931 
5932 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
5933 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
5934 		tcp_err_ack(tcp, mp, TPROTO, 0);
5935 		return;
5936 	}
5937 
5938 	/*
5939 	 * Pre-allocate the T_ordrel_ind mblk so that at close time, we
5940 	 * will always have that to send up.  Otherwise, we need to do
5941 	 * special handling in case the allocation fails at that time.
5942 	 * If the end point is TPI, the tcp_t can be reused and the
5943 	 * tcp_ordrel_mp may be allocated already.
5944 	 */
5945 	if (tcp->tcp_ordrel_mp == NULL) {
5946 		if ((tcp->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) {
5947 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
5948 			return;
5949 		}
5950 	}
5951 
5952 	/*
5953 	 * Determine packet type based on type of address passed in
5954 	 * the request should contain an IPv4 or IPv6 address.
5955 	 * Make sure that address family matches the type of
5956 	 * family of the the address passed down
5957 	 */
5958 	switch (tcr->DEST_length) {
5959 	default:
5960 		tcp_err_ack(tcp, mp, TBADADDR, 0);
5961 		return;
5962 
5963 	case (sizeof (sin_t) - sizeof (sin->sin_zero)): {
5964 		/*
5965 		 * XXX: The check for valid DEST_length was not there
5966 		 * in earlier releases and some buggy
5967 		 * TLI apps (e.g Sybase) got away with not feeding
5968 		 * in sin_zero part of address.
5969 		 * We allow that bug to keep those buggy apps humming.
5970 		 * Test suites require the check on DEST_length.
5971 		 * We construct a new mblk with valid DEST_length
5972 		 * free the original so the rest of the code does
5973 		 * not have to keep track of this special shorter
5974 		 * length address case.
5975 		 */
5976 		mblk_t *nmp;
5977 		struct T_conn_req *ntcr;
5978 		sin_t *nsin;
5979 
5980 		nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) +
5981 		    tcr->OPT_length, BPRI_HI);
5982 		if (nmp == NULL) {
5983 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
5984 			return;
5985 		}
5986 		ntcr = (struct T_conn_req *)nmp->b_rptr;
5987 		bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */
5988 		ntcr->PRIM_type = T_CONN_REQ;
5989 		ntcr->DEST_length = sizeof (sin_t);
5990 		ntcr->DEST_offset = sizeof (struct T_conn_req);
5991 
5992 		nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset);
5993 		*nsin = sin_null;
5994 		/* Get pointer to shorter address to copy from original mp */
5995 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
5996 		    tcr->DEST_length); /* extract DEST_length worth of sin_t */
5997 		if (sin == NULL || !OK_32PTR((char *)sin)) {
5998 			freemsg(nmp);
5999 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6000 			return;
6001 		}
6002 		nsin->sin_family = sin->sin_family;
6003 		nsin->sin_port = sin->sin_port;
6004 		nsin->sin_addr = sin->sin_addr;
6005 		/* Note:nsin->sin_zero zero-fill with sin_null assign above */
6006 		nmp->b_wptr = (uchar_t *)&nsin[1];
6007 		if (tcr->OPT_length != 0) {
6008 			ntcr->OPT_length = tcr->OPT_length;
6009 			ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr;
6010 			bcopy((uchar_t *)tcr + tcr->OPT_offset,
6011 			    (uchar_t *)ntcr + ntcr->OPT_offset,
6012 			    tcr->OPT_length);
6013 			nmp->b_wptr += tcr->OPT_length;
6014 		}
6015 		freemsg(mp);	/* original mp freed */
6016 		mp = nmp;	/* re-initialize original variables */
6017 		tcr = ntcr;
6018 	}
6019 	/* FALLTHRU */
6020 
6021 	case sizeof (sin_t):
6022 		sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset,
6023 		    sizeof (sin_t));
6024 		len = sizeof (sin_t);
6025 		break;
6026 
6027 	case sizeof (sin6_t):
6028 		sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset,
6029 		    sizeof (sin6_t));
6030 		len = sizeof (sin6_t);
6031 		break;
6032 	}
6033 
6034 	error = proto_verify_ip_addr(tcp->tcp_family, sa, len);
6035 	if (error != 0) {
6036 		tcp_err_ack(tcp, mp, TSYSERR, error);
6037 		return;
6038 	}
6039 
6040 	/*
6041 	 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we
6042 	 * should key on their sequence number and cut them loose.
6043 	 */
6044 
6045 	/*
6046 	 * If options passed in, feed it for verification and handling
6047 	 */
6048 	if (tcr->OPT_length != 0) {
6049 		mblk_t	*ok_mp;
6050 		mblk_t	*discon_mp;
6051 		mblk_t  *conn_opts_mp;
6052 		int t_error, sys_error, do_disconnect;
6053 
6054 		conn_opts_mp = NULL;
6055 
6056 		if (tcp_conprim_opt_process(tcp, mp,
6057 		    &do_disconnect, &t_error, &sys_error) < 0) {
6058 			if (do_disconnect) {
6059 				ASSERT(t_error == 0 && sys_error == 0);
6060 				discon_mp = mi_tpi_discon_ind(NULL,
6061 				    ECONNREFUSED, 0);
6062 				if (!discon_mp) {
6063 					tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6064 					    TSYSERR, ENOMEM);
6065 					return;
6066 				}
6067 				ok_mp = mi_tpi_ok_ack_alloc(mp);
6068 				if (!ok_mp) {
6069 					tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6070 					    TSYSERR, ENOMEM);
6071 					return;
6072 				}
6073 				qreply(q, ok_mp);
6074 				qreply(q, discon_mp); /* no flush! */
6075 			} else {
6076 				ASSERT(t_error != 0);
6077 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error,
6078 				    sys_error);
6079 			}
6080 			return;
6081 		}
6082 		/*
6083 		 * Success in setting options, the mp option buffer represented
6084 		 * by OPT_length/offset has been potentially modified and
6085 		 * contains results of option processing. We copy it in
6086 		 * another mp to save it for potentially influencing returning
6087 		 * it in T_CONN_CONN.
6088 		 */
6089 		if (tcr->OPT_length != 0) { /* there are resulting options */
6090 			conn_opts_mp = copyb(mp);
6091 			if (!conn_opts_mp) {
6092 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6093 				    TSYSERR, ENOMEM);
6094 				return;
6095 			}
6096 			ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL);
6097 			tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp;
6098 			/*
6099 			 * Note:
6100 			 * These resulting option negotiation can include any
6101 			 * end-to-end negotiation options but there no such
6102 			 * thing (yet?) in our TCP/IP.
6103 			 */
6104 		}
6105 	}
6106 
6107 	/* call the non-TPI version */
6108 	error = tcp_do_connect(tcp->tcp_connp, sa, len, DB_CRED(mp),
6109 	    DB_CPID(mp));
6110 	if (error < 0) {
6111 		mp = mi_tpi_err_ack_alloc(mp, -error, 0);
6112 	} else if (error > 0) {
6113 		mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error);
6114 	} else {
6115 		mp = mi_tpi_ok_ack_alloc(mp);
6116 	}
6117 
6118 	/*
6119 	 * Note: Code below is the "failure" case
6120 	 */
6121 	/* return error ack and blow away saved option results if any */
6122 connect_failed:
6123 	if (mp != NULL)
6124 		putnext(tcp->tcp_rq, mp);
6125 	else {
6126 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6127 		    TSYSERR, ENOMEM);
6128 	}
6129 }
6130 
6131 /*
6132  * Handle connect to IPv4 destinations, including connections for AF_INET6
6133  * sockets connecting to IPv4 mapped IPv6 destinations.
6134  */
6135 static int
6136 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport,
6137     uint_t srcid, cred_t *cr, pid_t pid)
6138 {
6139 	tcph_t	*tcph;
6140 	mblk_t	*mp;
6141 	ipaddr_t dstaddr = *dstaddrp;
6142 	int32_t	oldstate;
6143 	uint16_t lport;
6144 	int	error = 0;
6145 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6146 
6147 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
6148 
6149 	/* Check for attempt to connect to INADDR_ANY */
6150 	if (dstaddr == INADDR_ANY)  {
6151 		/*
6152 		 * SunOS 4.x and 4.3 BSD allow an application
6153 		 * to connect a TCP socket to INADDR_ANY.
6154 		 * When they do this, the kernel picks the
6155 		 * address of one interface and uses it
6156 		 * instead.  The kernel usually ends up
6157 		 * picking the address of the loopback
6158 		 * interface.  This is an undocumented feature.
6159 		 * However, we provide the same thing here
6160 		 * in order to have source and binary
6161 		 * compatibility with SunOS 4.x.
6162 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
6163 		 * generate the T_CONN_CON.
6164 		 */
6165 		dstaddr = htonl(INADDR_LOOPBACK);
6166 		*dstaddrp = dstaddr;
6167 	}
6168 
6169 	/* Handle __sin6_src_id if socket not bound to an IP address */
6170 	if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) {
6171 		ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6,
6172 		    tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack);
6173 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6,
6174 		    tcp->tcp_ipha->ipha_src);
6175 	}
6176 
6177 	/*
6178 	 * Don't let an endpoint connect to itself.  Note that
6179 	 * the test here does not catch the case where the
6180 	 * source IP addr was left unspecified by the user. In
6181 	 * this case, the source addr is set in tcp_adapt_ire()
6182 	 * using the reply to the T_BIND message that we send
6183 	 * down to IP here and the check is repeated in tcp_rput_other.
6184 	 */
6185 	if (dstaddr == tcp->tcp_ipha->ipha_src &&
6186 	    dstport == tcp->tcp_lport) {
6187 		error = -TBADADDR;
6188 		goto failed;
6189 	}
6190 
6191 	tcp->tcp_ipha->ipha_dst = dstaddr;
6192 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6);
6193 
6194 	/*
6195 	 * Massage a source route if any putting the first hop
6196 	 * in iph_dst. Compute a starting value for the checksum which
6197 	 * takes into account that the original iph_dst should be
6198 	 * included in the checksum but that ip will include the
6199 	 * first hop in the source route in the tcp checksum.
6200 	 */
6201 	tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack);
6202 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6203 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
6204 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
6205 	if ((int)tcp->tcp_sum < 0)
6206 		tcp->tcp_sum--;
6207 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6208 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6209 	    (tcp->tcp_sum >> 16));
6210 	tcph = tcp->tcp_tcph;
6211 	*(uint16_t *)tcph->th_fport = dstport;
6212 	tcp->tcp_fport = dstport;
6213 
6214 	oldstate = tcp->tcp_state;
6215 	/*
6216 	 * At this point the remote destination address and remote port fields
6217 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6218 	 * have to see which state tcp was in so we can take apropriate action.
6219 	 */
6220 	if (oldstate == TCPS_IDLE) {
6221 		/*
6222 		 * We support a quick connect capability here, allowing
6223 		 * clients to transition directly from IDLE to SYN_SENT
6224 		 * tcp_bindi will pick an unused port, insert the connection
6225 		 * in the bind hash and transition to BOUND state.
6226 		 */
6227 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6228 		    tcp, B_TRUE);
6229 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6230 		    B_FALSE, B_FALSE);
6231 		if (lport == 0) {
6232 			error = -TNOADDR;
6233 			goto failed;
6234 		}
6235 	}
6236 	tcp->tcp_state = TCPS_SYN_SENT;
6237 
6238 	mp = allocb(sizeof (ire_t), BPRI_HI);
6239 	if (mp == NULL) {
6240 		tcp->tcp_state = oldstate;
6241 		error = ENOMEM;
6242 		goto failed;
6243 	}
6244 
6245 	mp->b_wptr += sizeof (ire_t);
6246 	mp->b_datap->db_type = IRE_DB_REQ_TYPE;
6247 	tcp->tcp_hard_binding = 1;
6248 
6249 	/*
6250 	 * We need to make sure that the conn_recv is set to a non-null
6251 	 * value before we insert the conn_t into the classifier table.
6252 	 * This is to avoid a race with an incoming packet which does
6253 	 * an ipcl_classify().
6254 	 */
6255 	tcp->tcp_connp->conn_recv = tcp_input;
6256 
6257 	if (tcp->tcp_family == AF_INET) {
6258 		error = ip_proto_bind_connected_v4(tcp->tcp_connp, &mp,
6259 		    IPPROTO_TCP, &tcp->tcp_ipha->ipha_src, tcp->tcp_lport,
6260 		    tcp->tcp_remote, tcp->tcp_fport, B_TRUE, B_TRUE);
6261 	} else {
6262 		in6_addr_t v6src;
6263 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6264 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src);
6265 		} else {
6266 			v6src = tcp->tcp_ip6h->ip6_src;
6267 		}
6268 		error = ip_proto_bind_connected_v6(tcp->tcp_connp, &mp,
6269 		    IPPROTO_TCP, &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6,
6270 		    &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE);
6271 	}
6272 	BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6273 	tcp->tcp_active_open = 1;
6274 
6275 
6276 	return (tcp_post_ip_bind(tcp, mp, error, cr, pid));
6277 failed:
6278 	/* return error ack and blow away saved option results if any */
6279 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6280 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6281 	return (error);
6282 }
6283 
6284 /*
6285  * Handle connect to IPv6 destinations.
6286  */
6287 static int
6288 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport,
6289     uint32_t flowinfo, uint_t srcid, uint32_t scope_id, cred_t *cr, pid_t pid)
6290 {
6291 	tcph_t	*tcph;
6292 	mblk_t	*mp;
6293 	ip6_rthdr_t *rth;
6294 	int32_t  oldstate;
6295 	uint16_t lport;
6296 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6297 	int	error = 0;
6298 	conn_t	*connp = tcp->tcp_connp;
6299 
6300 	ASSERT(tcp->tcp_family == AF_INET6);
6301 
6302 	/*
6303 	 * If we're here, it means that the destination address is a native
6304 	 * IPv6 address.  Return an error if tcp_ipversion is not IPv6.  A
6305 	 * reason why it might not be IPv6 is if the socket was bound to an
6306 	 * IPv4-mapped IPv6 address.
6307 	 */
6308 	if (tcp->tcp_ipversion != IPV6_VERSION) {
6309 		return (-TBADADDR);
6310 	}
6311 
6312 	/*
6313 	 * Interpret a zero destination to mean loopback.
6314 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
6315 	 * generate the T_CONN_CON.
6316 	 */
6317 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) {
6318 		*dstaddrp = ipv6_loopback;
6319 	}
6320 
6321 	/* Handle __sin6_src_id if socket not bound to an IP address */
6322 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
6323 		ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src,
6324 		    connp->conn_zoneid, tcps->tcps_netstack);
6325 		tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src;
6326 	}
6327 
6328 	/*
6329 	 * Take care of the scope_id now and add ip6i_t
6330 	 * if ip6i_t is not already allocated through TCP
6331 	 * sticky options. At this point tcp_ip6h does not
6332 	 * have dst info, thus use dstaddrp.
6333 	 */
6334 	if (scope_id != 0 &&
6335 	    IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
6336 		ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
6337 		ip6i_t  *ip6i;
6338 
6339 		ipp->ipp_ifindex = scope_id;
6340 		ip6i = (ip6i_t *)tcp->tcp_iphc;
6341 
6342 		if ((ipp->ipp_fields & IPPF_HAS_IP6I) &&
6343 		    ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) {
6344 			/* Already allocated */
6345 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6346 			ip6i->ip6i_ifindex = ipp->ipp_ifindex;
6347 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6348 		} else {
6349 			int reterr;
6350 
6351 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6352 			if (ipp->ipp_fields & IPPF_HAS_IP6I)
6353 				ip2dbg(("tcp_connect_v6: SCOPE_ID set\n"));
6354 			reterr = tcp_build_hdrs(tcp);
6355 			if (reterr != 0)
6356 				goto failed;
6357 			ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n"));
6358 		}
6359 	}
6360 
6361 	/*
6362 	 * Don't let an endpoint connect to itself.  Note that
6363 	 * the test here does not catch the case where the
6364 	 * source IP addr was left unspecified by the user. In
6365 	 * this case, the source addr is set in tcp_adapt_ire()
6366 	 * using the reply to the T_BIND message that we send
6367 	 * down to IP here and the check is repeated in tcp_rput_other.
6368 	 */
6369 	if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) &&
6370 	    (dstport == tcp->tcp_lport)) {
6371 		error = -TBADADDR;
6372 		goto failed;
6373 	}
6374 
6375 	tcp->tcp_ip6h->ip6_dst = *dstaddrp;
6376 	tcp->tcp_remote_v6 = *dstaddrp;
6377 	tcp->tcp_ip6h->ip6_vcf =
6378 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
6379 	    (flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
6380 
6381 	/*
6382 	 * Massage a routing header (if present) putting the first hop
6383 	 * in ip6_dst. Compute a starting value for the checksum which
6384 	 * takes into account that the original ip6_dst should be
6385 	 * included in the checksum but that ip will include the
6386 	 * first hop in the source route in the tcp checksum.
6387 	 */
6388 	rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph);
6389 	if (rth != NULL) {
6390 		tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth,
6391 		    tcps->tcps_netstack);
6392 		tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6393 		    (tcp->tcp_sum >> 16));
6394 	} else {
6395 		tcp->tcp_sum = 0;
6396 	}
6397 
6398 	tcph = tcp->tcp_tcph;
6399 	*(uint16_t *)tcph->th_fport = dstport;
6400 	tcp->tcp_fport = dstport;
6401 
6402 	oldstate = tcp->tcp_state;
6403 	/*
6404 	 * At this point the remote destination address and remote port fields
6405 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6406 	 * have to see which state tcp was in so we can take apropriate action.
6407 	 */
6408 	if (oldstate == TCPS_IDLE) {
6409 		/*
6410 		 * We support a quick connect capability here, allowing
6411 		 * clients to transition directly from IDLE to SYN_SENT
6412 		 * tcp_bindi will pick an unused port, insert the connection
6413 		 * in the bind hash and transition to BOUND state.
6414 		 */
6415 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6416 		    tcp, B_TRUE);
6417 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6418 		    B_FALSE, B_FALSE);
6419 		if (lport == 0) {
6420 			error = -TNOADDR;
6421 			goto failed;
6422 		}
6423 	}
6424 	tcp->tcp_state = TCPS_SYN_SENT;
6425 
6426 	mp = allocb(sizeof (ire_t), BPRI_HI);
6427 	if (mp != NULL) {
6428 		in6_addr_t v6src;
6429 
6430 		mp->b_wptr += sizeof (ire_t);
6431 		mp->b_datap->db_type = IRE_DB_REQ_TYPE;
6432 
6433 		tcp->tcp_hard_binding = 1;
6434 
6435 		/*
6436 		 * We need to make sure that the conn_recv is set to a non-null
6437 		 * value before we insert the conn_t into the classifier table.
6438 		 * This is to avoid a race with an incoming packet which does
6439 		 * an ipcl_classify().
6440 		 */
6441 		tcp->tcp_connp->conn_recv = tcp_input;
6442 
6443 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6444 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src);
6445 		} else {
6446 			v6src = tcp->tcp_ip6h->ip6_src;
6447 		}
6448 		error = ip_proto_bind_connected_v6(connp, &mp, IPPROTO_TCP,
6449 		    &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6,
6450 		    &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE);
6451 		BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6452 		tcp->tcp_active_open = 1;
6453 
6454 		return (tcp_post_ip_bind(tcp, mp, error, cr, pid));
6455 	}
6456 	/* Error case */
6457 	tcp->tcp_state = oldstate;
6458 	error = ENOMEM;
6459 
6460 failed:
6461 	/* return error ack and blow away saved option results if any */
6462 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6463 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6464 	return (error);
6465 }
6466 
6467 /*
6468  * We need a stream q for detached closing tcp connections
6469  * to use.  Our client hereby indicates that this q is the
6470  * one to use.
6471  */
6472 static void
6473 tcp_def_q_set(tcp_t *tcp, mblk_t *mp)
6474 {
6475 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
6476 	queue_t	*q = tcp->tcp_wq;
6477 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6478 
6479 #ifdef NS_DEBUG
6480 	(void) printf("TCP_IOC_DEFAULT_Q for stack %d\n",
6481 	    tcps->tcps_netstack->netstack_stackid);
6482 #endif
6483 	mp->b_datap->db_type = M_IOCACK;
6484 	iocp->ioc_count = 0;
6485 	mutex_enter(&tcps->tcps_g_q_lock);
6486 	if (tcps->tcps_g_q != NULL) {
6487 		mutex_exit(&tcps->tcps_g_q_lock);
6488 		iocp->ioc_error = EALREADY;
6489 	} else {
6490 		int error = 0;
6491 		conn_t *connp = tcp->tcp_connp;
6492 		ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
6493 
6494 		tcps->tcps_g_q = tcp->tcp_rq;
6495 		mutex_exit(&tcps->tcps_g_q_lock);
6496 		iocp->ioc_error = 0;
6497 		iocp->ioc_rval = 0;
6498 		/*
6499 		 * We are passing tcp_sticky_ipp as NULL
6500 		 * as it is not useful for tcp_default queue
6501 		 *
6502 		 * Set conn_recv just in case.
6503 		 */
6504 		tcp->tcp_connp->conn_recv = tcp_conn_request;
6505 
6506 		ASSERT(connp->conn_af_isv6);
6507 		connp->conn_ulp = IPPROTO_TCP;
6508 
6509 		if (ipst->ips_ipcl_proto_fanout_v6[IPPROTO_TCP].connf_head !=
6510 		    NULL || connp->conn_mac_exempt) {
6511 			error = -TBADADDR;
6512 		} else {
6513 			connp->conn_srcv6 = ipv6_all_zeros;
6514 			ipcl_proto_insert_v6(connp, IPPROTO_TCP);
6515 		}
6516 
6517 		(void) tcp_post_ip_bind(tcp, NULL, error, NULL, 0);
6518 	}
6519 	qreply(q, mp);
6520 }
6521 
6522 static int
6523 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum)
6524 {
6525 	tcp_t	*ltcp = NULL;
6526 	conn_t	*connp;
6527 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6528 
6529 	/*
6530 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
6531 	 * when the stream is in BOUND state. Do not send a reset,
6532 	 * since the destination IP address is not valid, and it can
6533 	 * be the initialized value of all zeros (broadcast address).
6534 	 *
6535 	 * XXX There won't be any pending bind request to IP.
6536 	 */
6537 	if (tcp->tcp_state <= TCPS_BOUND) {
6538 		if (tcp->tcp_debug) {
6539 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
6540 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
6541 		}
6542 		return (TOUTSTATE);
6543 	}
6544 
6545 
6546 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
6547 
6548 		/*
6549 		 * According to TPI, for non-listeners, ignore seqnum
6550 		 * and disconnect.
6551 		 * Following interpretation of -1 seqnum is historical
6552 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
6553 		 * a valid seqnum should not be -1).
6554 		 *
6555 		 *	-1 means disconnect everything
6556 		 *	regardless even on a listener.
6557 		 */
6558 
6559 		int old_state = tcp->tcp_state;
6560 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
6561 
6562 		/*
6563 		 * The connection can't be on the tcp_time_wait_head list
6564 		 * since it is not detached.
6565 		 */
6566 		ASSERT(tcp->tcp_time_wait_next == NULL);
6567 		ASSERT(tcp->tcp_time_wait_prev == NULL);
6568 		ASSERT(tcp->tcp_time_wait_expire == 0);
6569 		ltcp = NULL;
6570 		/*
6571 		 * If it used to be a listener, check to make sure no one else
6572 		 * has taken the port before switching back to LISTEN state.
6573 		 */
6574 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6575 			connp = ipcl_lookup_listener_v4(tcp->tcp_lport,
6576 			    tcp->tcp_ipha->ipha_src,
6577 			    tcp->tcp_connp->conn_zoneid, ipst);
6578 			if (connp != NULL)
6579 				ltcp = connp->conn_tcp;
6580 		} else {
6581 			/* Allow tcp_bound_if listeners? */
6582 			connp = ipcl_lookup_listener_v6(tcp->tcp_lport,
6583 			    &tcp->tcp_ip6h->ip6_src, 0,
6584 			    tcp->tcp_connp->conn_zoneid, ipst);
6585 			if (connp != NULL)
6586 				ltcp = connp->conn_tcp;
6587 		}
6588 		if (tcp->tcp_conn_req_max && ltcp == NULL) {
6589 			tcp->tcp_state = TCPS_LISTEN;
6590 		} else if (old_state > TCPS_BOUND) {
6591 			tcp->tcp_conn_req_max = 0;
6592 			tcp->tcp_state = TCPS_BOUND;
6593 		}
6594 		if (ltcp != NULL)
6595 			CONN_DEC_REF(ltcp->tcp_connp);
6596 		if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) {
6597 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
6598 		} else if (old_state == TCPS_ESTABLISHED ||
6599 		    old_state == TCPS_CLOSE_WAIT) {
6600 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
6601 		}
6602 
6603 		if (tcp->tcp_fused)
6604 			tcp_unfuse(tcp);
6605 
6606 		mutex_enter(&tcp->tcp_eager_lock);
6607 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
6608 		    (tcp->tcp_conn_req_cnt_q != 0)) {
6609 			tcp_eager_cleanup(tcp, 0);
6610 		}
6611 		mutex_exit(&tcp->tcp_eager_lock);
6612 
6613 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
6614 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
6615 
6616 		tcp_reinit(tcp);
6617 
6618 		return (0);
6619 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
6620 		return (TBADSEQ);
6621 	}
6622 	return (0);
6623 }
6624 
6625 /*
6626  * Our client hereby directs us to reject the connection request
6627  * that tcp_conn_request() marked with 'seqnum'.  Rejection consists
6628  * of sending the appropriate RST, not an ICMP error.
6629  */
6630 static void
6631 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
6632 {
6633 	t_scalar_t seqnum;
6634 	int	error;
6635 
6636 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6637 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
6638 		tcp_err_ack(tcp, mp, TPROTO, 0);
6639 		return;
6640 	}
6641 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
6642 	error = tcp_disconnect_common(tcp, seqnum);
6643 	if (error != 0)
6644 		tcp_err_ack(tcp, mp, error, 0);
6645 	else {
6646 		if (tcp->tcp_state >= TCPS_ESTABLISHED) {
6647 			/* Send M_FLUSH according to TPI */
6648 			(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6649 		}
6650 		mp = mi_tpi_ok_ack_alloc(mp);
6651 		if (mp)
6652 			putnext(tcp->tcp_rq, mp);
6653 	}
6654 }
6655 
6656 /*
6657  * Diagnostic routine used to return a string associated with the tcp state.
6658  * Note that if the caller does not supply a buffer, it will use an internal
6659  * static string.  This means that if multiple threads call this function at
6660  * the same time, output can be corrupted...  Note also that this function
6661  * does not check the size of the supplied buffer.  The caller has to make
6662  * sure that it is big enough.
6663  */
6664 static char *
6665 tcp_display(tcp_t *tcp, char *sup_buf, char format)
6666 {
6667 	char		buf1[30];
6668 	static char	priv_buf[INET6_ADDRSTRLEN * 2 + 80];
6669 	char		*buf;
6670 	char		*cp;
6671 	in6_addr_t	local, remote;
6672 	char		local_addrbuf[INET6_ADDRSTRLEN];
6673 	char		remote_addrbuf[INET6_ADDRSTRLEN];
6674 
6675 	if (sup_buf != NULL)
6676 		buf = sup_buf;
6677 	else
6678 		buf = priv_buf;
6679 
6680 	if (tcp == NULL)
6681 		return ("NULL_TCP");
6682 	switch (tcp->tcp_state) {
6683 	case TCPS_CLOSED:
6684 		cp = "TCP_CLOSED";
6685 		break;
6686 	case TCPS_IDLE:
6687 		cp = "TCP_IDLE";
6688 		break;
6689 	case TCPS_BOUND:
6690 		cp = "TCP_BOUND";
6691 		break;
6692 	case TCPS_LISTEN:
6693 		cp = "TCP_LISTEN";
6694 		break;
6695 	case TCPS_SYN_SENT:
6696 		cp = "TCP_SYN_SENT";
6697 		break;
6698 	case TCPS_SYN_RCVD:
6699 		cp = "TCP_SYN_RCVD";
6700 		break;
6701 	case TCPS_ESTABLISHED:
6702 		cp = "TCP_ESTABLISHED";
6703 		break;
6704 	case TCPS_CLOSE_WAIT:
6705 		cp = "TCP_CLOSE_WAIT";
6706 		break;
6707 	case TCPS_FIN_WAIT_1:
6708 		cp = "TCP_FIN_WAIT_1";
6709 		break;
6710 	case TCPS_CLOSING:
6711 		cp = "TCP_CLOSING";
6712 		break;
6713 	case TCPS_LAST_ACK:
6714 		cp = "TCP_LAST_ACK";
6715 		break;
6716 	case TCPS_FIN_WAIT_2:
6717 		cp = "TCP_FIN_WAIT_2";
6718 		break;
6719 	case TCPS_TIME_WAIT:
6720 		cp = "TCP_TIME_WAIT";
6721 		break;
6722 	default:
6723 		(void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state);
6724 		cp = buf1;
6725 		break;
6726 	}
6727 	switch (format) {
6728 	case DISP_ADDR_AND_PORT:
6729 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6730 			/*
6731 			 * Note that we use the remote address in the tcp_b
6732 			 * structure.  This means that it will print out
6733 			 * the real destination address, not the next hop's
6734 			 * address if source routing is used.
6735 			 */
6736 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local);
6737 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote);
6738 
6739 		} else {
6740 			local = tcp->tcp_ip_src_v6;
6741 			remote = tcp->tcp_remote_v6;
6742 		}
6743 		(void) inet_ntop(AF_INET6, &local, local_addrbuf,
6744 		    sizeof (local_addrbuf));
6745 		(void) inet_ntop(AF_INET6, &remote, remote_addrbuf,
6746 		    sizeof (remote_addrbuf));
6747 		(void) mi_sprintf(buf, "[%s.%u, %s.%u] %s",
6748 		    local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf,
6749 		    ntohs(tcp->tcp_fport), cp);
6750 		break;
6751 	case DISP_PORT_ONLY:
6752 	default:
6753 		(void) mi_sprintf(buf, "[%u, %u] %s",
6754 		    ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp);
6755 		break;
6756 	}
6757 
6758 	return (buf);
6759 }
6760 
6761 /*
6762  * Called via squeue to get on to eager's perimeter. It sends a
6763  * TH_RST if eager is in the fanout table. The listener wants the
6764  * eager to disappear either by means of tcp_eager_blowoff() or
6765  * tcp_eager_cleanup() being called. tcp_eager_kill() can also be
6766  * called (via squeue) if the eager cannot be inserted in the
6767  * fanout table in tcp_conn_request().
6768  */
6769 /* ARGSUSED */
6770 void
6771 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2)
6772 {
6773 	conn_t	*econnp = (conn_t *)arg;
6774 	tcp_t	*eager = econnp->conn_tcp;
6775 	tcp_t	*listener = eager->tcp_listener;
6776 	tcp_stack_t	*tcps = eager->tcp_tcps;
6777 
6778 	/*
6779 	 * We could be called because listener is closing. Since
6780 	 * the eager is using listener's queue's, its not safe.
6781 	 * Better use the default queue just to send the TH_RST
6782 	 * out.
6783 	 */
6784 	ASSERT(tcps->tcps_g_q != NULL);
6785 	eager->tcp_rq = tcps->tcps_g_q;
6786 	eager->tcp_wq = WR(tcps->tcps_g_q);
6787 
6788 	/*
6789 	 * An eager's conn_fanout will be NULL if it's a duplicate
6790 	 * for an existing 4-tuples in the conn fanout table.
6791 	 * We don't want to send an RST out in such case.
6792 	 */
6793 	if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) {
6794 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
6795 		    eager, eager->tcp_snxt, 0, TH_RST);
6796 	}
6797 
6798 	/* We are here because listener wants this eager gone */
6799 	if (listener != NULL) {
6800 		mutex_enter(&listener->tcp_eager_lock);
6801 		tcp_eager_unlink(eager);
6802 		if (eager->tcp_tconnind_started) {
6803 			/*
6804 			 * The eager has sent a conn_ind up to the
6805 			 * listener but listener decides to close
6806 			 * instead. We need to drop the extra ref
6807 			 * placed on eager in tcp_rput_data() before
6808 			 * sending the conn_ind to listener.
6809 			 */
6810 			CONN_DEC_REF(econnp);
6811 		}
6812 		mutex_exit(&listener->tcp_eager_lock);
6813 		CONN_DEC_REF(listener->tcp_connp);
6814 	}
6815 
6816 	if (eager->tcp_state > TCPS_BOUND)
6817 		tcp_close_detached(eager);
6818 }
6819 
6820 /*
6821  * Reset any eager connection hanging off this listener marked
6822  * with 'seqnum' and then reclaim it's resources.
6823  */
6824 static boolean_t
6825 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
6826 {
6827 	tcp_t	*eager;
6828 	mblk_t 	*mp;
6829 	tcp_stack_t	*tcps = listener->tcp_tcps;
6830 
6831 	TCP_STAT(tcps, tcp_eager_blowoff_calls);
6832 	eager = listener;
6833 	mutex_enter(&listener->tcp_eager_lock);
6834 	do {
6835 		eager = eager->tcp_eager_next_q;
6836 		if (eager == NULL) {
6837 			mutex_exit(&listener->tcp_eager_lock);
6838 			return (B_FALSE);
6839 		}
6840 	} while (eager->tcp_conn_req_seqnum != seqnum);
6841 
6842 	if (eager->tcp_closemp_used) {
6843 		mutex_exit(&listener->tcp_eager_lock);
6844 		return (B_TRUE);
6845 	}
6846 	eager->tcp_closemp_used = B_TRUE;
6847 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
6848 	CONN_INC_REF(eager->tcp_connp);
6849 	mutex_exit(&listener->tcp_eager_lock);
6850 	mp = &eager->tcp_closemp;
6851 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
6852 	    eager->tcp_connp, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF);
6853 	return (B_TRUE);
6854 }
6855 
6856 /*
6857  * Reset any eager connection hanging off this listener
6858  * and then reclaim it's resources.
6859  */
6860 static void
6861 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
6862 {
6863 	tcp_t	*eager;
6864 	mblk_t	*mp;
6865 	tcp_stack_t	*tcps = listener->tcp_tcps;
6866 
6867 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
6868 
6869 	if (!q0_only) {
6870 		/* First cleanup q */
6871 		TCP_STAT(tcps, tcp_eager_blowoff_q);
6872 		eager = listener->tcp_eager_next_q;
6873 		while (eager != NULL) {
6874 			if (!eager->tcp_closemp_used) {
6875 				eager->tcp_closemp_used = B_TRUE;
6876 				TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
6877 				CONN_INC_REF(eager->tcp_connp);
6878 				mp = &eager->tcp_closemp;
6879 				SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
6880 				    tcp_eager_kill, eager->tcp_connp,
6881 				    SQ_FILL, SQTAG_TCP_EAGER_CLEANUP);
6882 			}
6883 			eager = eager->tcp_eager_next_q;
6884 		}
6885 	}
6886 	/* Then cleanup q0 */
6887 	TCP_STAT(tcps, tcp_eager_blowoff_q0);
6888 	eager = listener->tcp_eager_next_q0;
6889 	while (eager != listener) {
6890 		if (!eager->tcp_closemp_used) {
6891 			eager->tcp_closemp_used = B_TRUE;
6892 			TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
6893 			CONN_INC_REF(eager->tcp_connp);
6894 			mp = &eager->tcp_closemp;
6895 			SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
6896 			    tcp_eager_kill, eager->tcp_connp, SQ_FILL,
6897 			    SQTAG_TCP_EAGER_CLEANUP_Q0);
6898 		}
6899 		eager = eager->tcp_eager_next_q0;
6900 	}
6901 }
6902 
6903 /*
6904  * If we are an eager connection hanging off a listener that hasn't
6905  * formally accepted the connection yet, get off his list and blow off
6906  * any data that we have accumulated.
6907  */
6908 static void
6909 tcp_eager_unlink(tcp_t *tcp)
6910 {
6911 	tcp_t	*listener = tcp->tcp_listener;
6912 
6913 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
6914 	ASSERT(listener != NULL);
6915 	if (tcp->tcp_eager_next_q0 != NULL) {
6916 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
6917 
6918 		/* Remove the eager tcp from q0 */
6919 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
6920 		    tcp->tcp_eager_prev_q0;
6921 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
6922 		    tcp->tcp_eager_next_q0;
6923 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
6924 		listener->tcp_conn_req_cnt_q0--;
6925 
6926 		tcp->tcp_eager_next_q0 = NULL;
6927 		tcp->tcp_eager_prev_q0 = NULL;
6928 
6929 		/*
6930 		 * Take the eager out, if it is in the list of droppable
6931 		 * eagers.
6932 		 */
6933 		MAKE_UNDROPPABLE(tcp);
6934 
6935 		if (tcp->tcp_syn_rcvd_timeout != 0) {
6936 			/* we have timed out before */
6937 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
6938 			listener->tcp_syn_rcvd_timeout--;
6939 		}
6940 	} else {
6941 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
6942 		tcp_t	*prev = NULL;
6943 
6944 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
6945 			if (tcpp[0] == tcp) {
6946 				if (listener->tcp_eager_last_q == tcp) {
6947 					/*
6948 					 * If we are unlinking the last
6949 					 * element on the list, adjust
6950 					 * tail pointer. Set tail pointer
6951 					 * to nil when list is empty.
6952 					 */
6953 					ASSERT(tcp->tcp_eager_next_q == NULL);
6954 					if (listener->tcp_eager_last_q ==
6955 					    listener->tcp_eager_next_q) {
6956 						listener->tcp_eager_last_q =
6957 						    NULL;
6958 					} else {
6959 						/*
6960 						 * We won't get here if there
6961 						 * is only one eager in the
6962 						 * list.
6963 						 */
6964 						ASSERT(prev != NULL);
6965 						listener->tcp_eager_last_q =
6966 						    prev;
6967 					}
6968 				}
6969 				tcpp[0] = tcp->tcp_eager_next_q;
6970 				tcp->tcp_eager_next_q = NULL;
6971 				tcp->tcp_eager_last_q = NULL;
6972 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
6973 				listener->tcp_conn_req_cnt_q--;
6974 				break;
6975 			}
6976 			prev = tcpp[0];
6977 		}
6978 	}
6979 	tcp->tcp_listener = NULL;
6980 }
6981 
6982 /* Shorthand to generate and send TPI error acks to our client */
6983 static void
6984 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error)
6985 {
6986 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
6987 		putnext(tcp->tcp_rq, mp);
6988 }
6989 
6990 /* Shorthand to generate and send TPI error acks to our client */
6991 static void
6992 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
6993     int t_error, int sys_error)
6994 {
6995 	struct T_error_ack	*teackp;
6996 
6997 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
6998 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
6999 		teackp = (struct T_error_ack *)mp->b_rptr;
7000 		teackp->ERROR_prim = primitive;
7001 		teackp->TLI_error = t_error;
7002 		teackp->UNIX_error = sys_error;
7003 		putnext(tcp->tcp_rq, mp);
7004 	}
7005 }
7006 
7007 /*
7008  * Note: No locks are held when inspecting tcp_g_*epriv_ports
7009  * but instead the code relies on:
7010  * - the fact that the address of the array and its size never changes
7011  * - the atomic assignment of the elements of the array
7012  */
7013 /* ARGSUSED */
7014 static int
7015 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
7016 {
7017 	int i;
7018 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7019 
7020 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7021 		if (tcps->tcps_g_epriv_ports[i] != 0)
7022 			(void) mi_mpprintf(mp, "%d ",
7023 			    tcps->tcps_g_epriv_ports[i]);
7024 	}
7025 	return (0);
7026 }
7027 
7028 /*
7029  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7030  * threads from changing it at the same time.
7031  */
7032 /* ARGSUSED */
7033 static int
7034 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7035     cred_t *cr)
7036 {
7037 	long	new_value;
7038 	int	i;
7039 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7040 
7041 	/*
7042 	 * Fail the request if the new value does not lie within the
7043 	 * port number limits.
7044 	 */
7045 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
7046 	    new_value <= 0 || new_value >= 65536) {
7047 		return (EINVAL);
7048 	}
7049 
7050 	mutex_enter(&tcps->tcps_epriv_port_lock);
7051 	/* Check if the value is already in the list */
7052 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7053 		if (new_value == tcps->tcps_g_epriv_ports[i]) {
7054 			mutex_exit(&tcps->tcps_epriv_port_lock);
7055 			return (EEXIST);
7056 		}
7057 	}
7058 	/* Find an empty slot */
7059 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7060 		if (tcps->tcps_g_epriv_ports[i] == 0)
7061 			break;
7062 	}
7063 	if (i == tcps->tcps_g_num_epriv_ports) {
7064 		mutex_exit(&tcps->tcps_epriv_port_lock);
7065 		return (EOVERFLOW);
7066 	}
7067 	/* Set the new value */
7068 	tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value;
7069 	mutex_exit(&tcps->tcps_epriv_port_lock);
7070 	return (0);
7071 }
7072 
7073 /*
7074  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7075  * threads from changing it at the same time.
7076  */
7077 /* ARGSUSED */
7078 static int
7079 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7080     cred_t *cr)
7081 {
7082 	long	new_value;
7083 	int	i;
7084 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7085 
7086 	/*
7087 	 * Fail the request if the new value does not lie within the
7088 	 * port number limits.
7089 	 */
7090 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 ||
7091 	    new_value >= 65536) {
7092 		return (EINVAL);
7093 	}
7094 
7095 	mutex_enter(&tcps->tcps_epriv_port_lock);
7096 	/* Check that the value is already in the list */
7097 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7098 		if (tcps->tcps_g_epriv_ports[i] == new_value)
7099 			break;
7100 	}
7101 	if (i == tcps->tcps_g_num_epriv_ports) {
7102 		mutex_exit(&tcps->tcps_epriv_port_lock);
7103 		return (ESRCH);
7104 	}
7105 	/* Clear the value */
7106 	tcps->tcps_g_epriv_ports[i] = 0;
7107 	mutex_exit(&tcps->tcps_epriv_port_lock);
7108 	return (0);
7109 }
7110 
7111 /* Return the TPI/TLI equivalent of our current tcp_state */
7112 static int
7113 tcp_tpistate(tcp_t *tcp)
7114 {
7115 	switch (tcp->tcp_state) {
7116 	case TCPS_IDLE:
7117 		return (TS_UNBND);
7118 	case TCPS_LISTEN:
7119 		/*
7120 		 * Return whether there are outstanding T_CONN_IND waiting
7121 		 * for the matching T_CONN_RES. Therefore don't count q0.
7122 		 */
7123 		if (tcp->tcp_conn_req_cnt_q > 0)
7124 			return (TS_WRES_CIND);
7125 		else
7126 			return (TS_IDLE);
7127 	case TCPS_BOUND:
7128 		return (TS_IDLE);
7129 	case TCPS_SYN_SENT:
7130 		return (TS_WCON_CREQ);
7131 	case TCPS_SYN_RCVD:
7132 		/*
7133 		 * Note: assumption: this has to the active open SYN_RCVD.
7134 		 * The passive instance is detached in SYN_RCVD stage of
7135 		 * incoming connection processing so we cannot get request
7136 		 * for T_info_ack on it.
7137 		 */
7138 		return (TS_WACK_CRES);
7139 	case TCPS_ESTABLISHED:
7140 		return (TS_DATA_XFER);
7141 	case TCPS_CLOSE_WAIT:
7142 		return (TS_WREQ_ORDREL);
7143 	case TCPS_FIN_WAIT_1:
7144 		return (TS_WIND_ORDREL);
7145 	case TCPS_FIN_WAIT_2:
7146 		return (TS_WIND_ORDREL);
7147 
7148 	case TCPS_CLOSING:
7149 	case TCPS_LAST_ACK:
7150 	case TCPS_TIME_WAIT:
7151 	case TCPS_CLOSED:
7152 		/*
7153 		 * Following TS_WACK_DREQ7 is a rendition of "not
7154 		 * yet TS_IDLE" TPI state. There is no best match to any
7155 		 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we
7156 		 * choose a value chosen that will map to TLI/XTI level
7157 		 * state of TSTATECHNG (state is process of changing) which
7158 		 * captures what this dummy state represents.
7159 		 */
7160 		return (TS_WACK_DREQ7);
7161 	default:
7162 		cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s",
7163 		    tcp->tcp_state, tcp_display(tcp, NULL,
7164 		    DISP_PORT_ONLY));
7165 		return (TS_UNBND);
7166 	}
7167 }
7168 
7169 static void
7170 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp)
7171 {
7172 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7173 
7174 	if (tcp->tcp_family == AF_INET6)
7175 		*tia = tcp_g_t_info_ack_v6;
7176 	else
7177 		*tia = tcp_g_t_info_ack;
7178 	tia->CURRENT_state = tcp_tpistate(tcp);
7179 	tia->OPT_size = tcp_max_optsize;
7180 	if (tcp->tcp_mss == 0) {
7181 		/* Not yet set - tcp_open does not set mss */
7182 		if (tcp->tcp_ipversion == IPV4_VERSION)
7183 			tia->TIDU_size = tcps->tcps_mss_def_ipv4;
7184 		else
7185 			tia->TIDU_size = tcps->tcps_mss_def_ipv6;
7186 	} else {
7187 		tia->TIDU_size = tcp->tcp_mss;
7188 	}
7189 	/* TODO: Default ETSDU is 1.  Is that correct for tcp? */
7190 }
7191 
7192 static void
7193 tcp_do_capability_ack(tcp_t *tcp, struct T_capability_ack *tcap,
7194     t_uscalar_t cap_bits1)
7195 {
7196 	tcap->CAP_bits1 = 0;
7197 
7198 	if (cap_bits1 & TC1_INFO) {
7199 		tcp_copy_info(&tcap->INFO_ack, tcp);
7200 		tcap->CAP_bits1 |= TC1_INFO;
7201 	}
7202 
7203 	if (cap_bits1 & TC1_ACCEPTOR_ID) {
7204 		tcap->ACCEPTOR_id = tcp->tcp_acceptor_id;
7205 		tcap->CAP_bits1 |= TC1_ACCEPTOR_ID;
7206 	}
7207 
7208 }
7209 
7210 /*
7211  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
7212  * tcp_wput.  Much of the T_CAPABILITY_ACK information is copied from
7213  * tcp_g_t_info_ack.  The current state of the stream is copied from
7214  * tcp_state.
7215  */
7216 static void
7217 tcp_capability_req(tcp_t *tcp, mblk_t *mp)
7218 {
7219 	t_uscalar_t		cap_bits1;
7220 	struct T_capability_ack	*tcap;
7221 
7222 	if (MBLKL(mp) < sizeof (struct T_capability_req)) {
7223 		freemsg(mp);
7224 		return;
7225 	}
7226 
7227 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
7228 
7229 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
7230 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
7231 	if (mp == NULL)
7232 		return;
7233 
7234 	tcap = (struct T_capability_ack *)mp->b_rptr;
7235 	tcp_do_capability_ack(tcp, tcap, cap_bits1);
7236 
7237 	putnext(tcp->tcp_rq, mp);
7238 }
7239 
7240 /*
7241  * This routine responds to T_INFO_REQ messages.  It is called by tcp_wput.
7242  * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack.
7243  * The current state of the stream is copied from tcp_state.
7244  */
7245 static void
7246 tcp_info_req(tcp_t *tcp, mblk_t *mp)
7247 {
7248 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
7249 	    T_INFO_ACK);
7250 	if (!mp) {
7251 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7252 		return;
7253 	}
7254 	tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp);
7255 	putnext(tcp->tcp_rq, mp);
7256 }
7257 
7258 /* Respond to the TPI addr request */
7259 static void
7260 tcp_addr_req(tcp_t *tcp, mblk_t *mp)
7261 {
7262 	sin_t	*sin;
7263 	mblk_t	*ackmp;
7264 	struct T_addr_ack *taa;
7265 
7266 	/* Make it large enough for worst case */
7267 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
7268 	    2 * sizeof (sin6_t), 1);
7269 	if (ackmp == NULL) {
7270 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7271 		return;
7272 	}
7273 
7274 	if (tcp->tcp_ipversion == IPV6_VERSION) {
7275 		tcp_addr_req_ipv6(tcp, ackmp);
7276 		return;
7277 	}
7278 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7279 
7280 	bzero(taa, sizeof (struct T_addr_ack));
7281 	ackmp->b_wptr = (uchar_t *)&taa[1];
7282 
7283 	taa->PRIM_type = T_ADDR_ACK;
7284 	ackmp->b_datap->db_type = M_PCPROTO;
7285 
7286 	/*
7287 	 * Note: Following code assumes 32 bit alignment of basic
7288 	 * data structures like sin_t and struct T_addr_ack.
7289 	 */
7290 	if (tcp->tcp_state >= TCPS_BOUND) {
7291 		/*
7292 		 * Fill in local address
7293 		 */
7294 		taa->LOCADDR_length = sizeof (sin_t);
7295 		taa->LOCADDR_offset = sizeof (*taa);
7296 
7297 		sin = (sin_t *)&taa[1];
7298 
7299 		/* Fill zeroes and then intialize non-zero fields */
7300 		*sin = sin_null;
7301 
7302 		sin->sin_family = AF_INET;
7303 
7304 		sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
7305 		sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport;
7306 
7307 		ackmp->b_wptr = (uchar_t *)&sin[1];
7308 
7309 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7310 			/*
7311 			 * Fill in Remote address
7312 			 */
7313 			taa->REMADDR_length = sizeof (sin_t);
7314 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7315 			    taa->LOCADDR_length);
7316 
7317 			sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7318 			*sin = sin_null;
7319 			sin->sin_family = AF_INET;
7320 			sin->sin_addr.s_addr = tcp->tcp_remote;
7321 			sin->sin_port = tcp->tcp_fport;
7322 
7323 			ackmp->b_wptr = (uchar_t *)&sin[1];
7324 		}
7325 	}
7326 	putnext(tcp->tcp_rq, ackmp);
7327 }
7328 
7329 /* Assumes that tcp_addr_req gets enough space and alignment */
7330 static void
7331 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp)
7332 {
7333 	sin6_t	*sin6;
7334 	struct T_addr_ack *taa;
7335 
7336 	ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
7337 	ASSERT(OK_32PTR(ackmp->b_rptr));
7338 	ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) +
7339 	    2 * sizeof (sin6_t));
7340 
7341 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7342 
7343 	bzero(taa, sizeof (struct T_addr_ack));
7344 	ackmp->b_wptr = (uchar_t *)&taa[1];
7345 
7346 	taa->PRIM_type = T_ADDR_ACK;
7347 	ackmp->b_datap->db_type = M_PCPROTO;
7348 
7349 	/*
7350 	 * Note: Following code assumes 32 bit alignment of basic
7351 	 * data structures like sin6_t and struct T_addr_ack.
7352 	 */
7353 	if (tcp->tcp_state >= TCPS_BOUND) {
7354 		/*
7355 		 * Fill in local address
7356 		 */
7357 		taa->LOCADDR_length = sizeof (sin6_t);
7358 		taa->LOCADDR_offset = sizeof (*taa);
7359 
7360 		sin6 = (sin6_t *)&taa[1];
7361 		*sin6 = sin6_null;
7362 
7363 		sin6->sin6_family = AF_INET6;
7364 		sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
7365 		sin6->sin6_port = tcp->tcp_lport;
7366 
7367 		ackmp->b_wptr = (uchar_t *)&sin6[1];
7368 
7369 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7370 			/*
7371 			 * Fill in Remote address
7372 			 */
7373 			taa->REMADDR_length = sizeof (sin6_t);
7374 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7375 			    taa->LOCADDR_length);
7376 
7377 			sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7378 			*sin6 = sin6_null;
7379 			sin6->sin6_family = AF_INET6;
7380 			sin6->sin6_flowinfo =
7381 			    tcp->tcp_ip6h->ip6_vcf &
7382 			    ~IPV6_VERS_AND_FLOW_MASK;
7383 			sin6->sin6_addr = tcp->tcp_remote_v6;
7384 			sin6->sin6_port = tcp->tcp_fport;
7385 
7386 			ackmp->b_wptr = (uchar_t *)&sin6[1];
7387 		}
7388 	}
7389 	putnext(tcp->tcp_rq, ackmp);
7390 }
7391 
7392 /*
7393  * Handle reinitialization of a tcp structure.
7394  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
7395  */
7396 static void
7397 tcp_reinit(tcp_t *tcp)
7398 {
7399 	mblk_t	*mp;
7400 	int 	err;
7401 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7402 
7403 	TCP_STAT(tcps, tcp_reinit_calls);
7404 
7405 	/* tcp_reinit should never be called for detached tcp_t's */
7406 	ASSERT(tcp->tcp_listener == NULL);
7407 	ASSERT((tcp->tcp_family == AF_INET &&
7408 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7409 	    (tcp->tcp_family == AF_INET6 &&
7410 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7411 	    tcp->tcp_ipversion == IPV6_VERSION)));
7412 
7413 	/* Cancel outstanding timers */
7414 	tcp_timers_stop(tcp);
7415 
7416 	/*
7417 	 * Reset everything in the state vector, after updating global
7418 	 * MIB data from instance counters.
7419 	 */
7420 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
7421 	tcp->tcp_ibsegs = 0;
7422 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
7423 	tcp->tcp_obsegs = 0;
7424 
7425 	tcp_close_mpp(&tcp->tcp_xmit_head);
7426 	if (tcp->tcp_snd_zcopy_aware)
7427 		tcp_zcopy_notify(tcp);
7428 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
7429 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
7430 	mutex_enter(&tcp->tcp_non_sq_lock);
7431 	if (tcp->tcp_flow_stopped &&
7432 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
7433 		tcp_clrqfull(tcp);
7434 	}
7435 	mutex_exit(&tcp->tcp_non_sq_lock);
7436 	tcp_close_mpp(&tcp->tcp_reass_head);
7437 	tcp->tcp_reass_tail = NULL;
7438 	if (tcp->tcp_rcv_list != NULL) {
7439 		/* Free b_next chain */
7440 		tcp_close_mpp(&tcp->tcp_rcv_list);
7441 		tcp->tcp_rcv_last_head = NULL;
7442 		tcp->tcp_rcv_last_tail = NULL;
7443 		tcp->tcp_rcv_cnt = 0;
7444 	}
7445 	tcp->tcp_rcv_last_tail = NULL;
7446 
7447 	if ((mp = tcp->tcp_urp_mp) != NULL) {
7448 		freemsg(mp);
7449 		tcp->tcp_urp_mp = NULL;
7450 	}
7451 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
7452 		freemsg(mp);
7453 		tcp->tcp_urp_mark_mp = NULL;
7454 	}
7455 	if (tcp->tcp_fused_sigurg_mp != NULL) {
7456 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
7457 		freeb(tcp->tcp_fused_sigurg_mp);
7458 		tcp->tcp_fused_sigurg_mp = NULL;
7459 	}
7460 	if (tcp->tcp_ordrel_mp != NULL) {
7461 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
7462 		freeb(tcp->tcp_ordrel_mp);
7463 		tcp->tcp_ordrel_mp = NULL;
7464 	}
7465 
7466 	/*
7467 	 * Following is a union with two members which are
7468 	 * identical types and size so the following cleanup
7469 	 * is enough.
7470 	 */
7471 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
7472 
7473 	CL_INET_DISCONNECT(tcp->tcp_connp, tcp);
7474 
7475 	/*
7476 	 * The connection can't be on the tcp_time_wait_head list
7477 	 * since it is not detached.
7478 	 */
7479 	ASSERT(tcp->tcp_time_wait_next == NULL);
7480 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7481 	ASSERT(tcp->tcp_time_wait_expire == 0);
7482 
7483 	if (tcp->tcp_kssl_pending) {
7484 		tcp->tcp_kssl_pending = B_FALSE;
7485 
7486 		/* Don't reset if the initialized by bind. */
7487 		if (tcp->tcp_kssl_ent != NULL) {
7488 			kssl_release_ent(tcp->tcp_kssl_ent, NULL,
7489 			    KSSL_NO_PROXY);
7490 		}
7491 	}
7492 	if (tcp->tcp_kssl_ctx != NULL) {
7493 		kssl_release_ctx(tcp->tcp_kssl_ctx);
7494 		tcp->tcp_kssl_ctx = NULL;
7495 	}
7496 
7497 	/*
7498 	 * Reset/preserve other values
7499 	 */
7500 	tcp_reinit_values(tcp);
7501 	ipcl_hash_remove(tcp->tcp_connp);
7502 	conn_delete_ire(tcp->tcp_connp, NULL);
7503 	tcp_ipsec_cleanup(tcp);
7504 
7505 	if (tcp->tcp_conn_req_max != 0) {
7506 		/*
7507 		 * This is the case when a TLI program uses the same
7508 		 * transport end point to accept a connection.  This
7509 		 * makes the TCP both a listener and acceptor.  When
7510 		 * this connection is closed, we need to set the state
7511 		 * back to TCPS_LISTEN.  Make sure that the eager list
7512 		 * is reinitialized.
7513 		 *
7514 		 * Note that this stream is still bound to the four
7515 		 * tuples of the previous connection in IP.  If a new
7516 		 * SYN with different foreign address comes in, IP will
7517 		 * not find it and will send it to the global queue.  In
7518 		 * the global queue, TCP will do a tcp_lookup_listener()
7519 		 * to find this stream.  This works because this stream
7520 		 * is only removed from connected hash.
7521 		 *
7522 		 */
7523 		tcp->tcp_state = TCPS_LISTEN;
7524 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
7525 		tcp->tcp_eager_next_drop_q0 = tcp;
7526 		tcp->tcp_eager_prev_drop_q0 = tcp;
7527 		tcp->tcp_connp->conn_recv = tcp_conn_request;
7528 		if (tcp->tcp_family == AF_INET6) {
7529 			ASSERT(tcp->tcp_connp->conn_af_isv6);
7530 			(void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP,
7531 			    &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport);
7532 		} else {
7533 			ASSERT(!tcp->tcp_connp->conn_af_isv6);
7534 			(void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP,
7535 			    tcp->tcp_ipha->ipha_src, tcp->tcp_lport);
7536 		}
7537 	} else {
7538 		tcp->tcp_state = TCPS_BOUND;
7539 	}
7540 
7541 	/*
7542 	 * Initialize to default values
7543 	 * Can't fail since enough header template space already allocated
7544 	 * at open().
7545 	 */
7546 	err = tcp_init_values(tcp);
7547 	ASSERT(err == 0);
7548 	/* Restore state in tcp_tcph */
7549 	bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN);
7550 	if (tcp->tcp_ipversion == IPV4_VERSION)
7551 		tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source;
7552 	else
7553 		tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6;
7554 	/*
7555 	 * Copy of the src addr. in tcp_t is needed in tcp_t
7556 	 * since the lookup funcs can only lookup on tcp_t
7557 	 */
7558 	tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6;
7559 
7560 	ASSERT(tcp->tcp_ptpbhn != NULL);
7561 	if (!IPCL_IS_NONSTR(tcp->tcp_connp))
7562 		tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat;
7563 	tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat;
7564 	tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat;
7565 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
7566 	tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ?
7567 	    tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4;
7568 }
7569 
7570 /*
7571  * Force values to zero that need be zero.
7572  * Do not touch values asociated with the BOUND or LISTEN state
7573  * since the connection will end up in that state after the reinit.
7574  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
7575  * structure!
7576  */
7577 static void
7578 tcp_reinit_values(tcp)
7579 	tcp_t *tcp;
7580 {
7581 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7582 
7583 #ifndef	lint
7584 #define	DONTCARE(x)
7585 #define	PRESERVE(x)
7586 #else
7587 #define	DONTCARE(x)	((x) = (x))
7588 #define	PRESERVE(x)	((x) = (x))
7589 #endif	/* lint */
7590 
7591 	PRESERVE(tcp->tcp_bind_hash_port);
7592 	PRESERVE(tcp->tcp_bind_hash);
7593 	PRESERVE(tcp->tcp_ptpbhn);
7594 	PRESERVE(tcp->tcp_acceptor_hash);
7595 	PRESERVE(tcp->tcp_ptpahn);
7596 
7597 	/* Should be ASSERT NULL on these with new code! */
7598 	ASSERT(tcp->tcp_time_wait_next == NULL);
7599 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7600 	ASSERT(tcp->tcp_time_wait_expire == 0);
7601 	PRESERVE(tcp->tcp_state);
7602 	PRESERVE(tcp->tcp_rq);
7603 	PRESERVE(tcp->tcp_wq);
7604 
7605 	ASSERT(tcp->tcp_xmit_head == NULL);
7606 	ASSERT(tcp->tcp_xmit_last == NULL);
7607 	ASSERT(tcp->tcp_unsent == 0);
7608 	ASSERT(tcp->tcp_xmit_tail == NULL);
7609 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
7610 
7611 	tcp->tcp_snxt = 0;			/* Displayed in mib */
7612 	tcp->tcp_suna = 0;			/* Displayed in mib */
7613 	tcp->tcp_swnd = 0;
7614 	DONTCARE(tcp->tcp_cwnd);		/* Init in tcp_mss_set */
7615 
7616 	ASSERT(tcp->tcp_ibsegs == 0);
7617 	ASSERT(tcp->tcp_obsegs == 0);
7618 
7619 	if (tcp->tcp_iphc != NULL) {
7620 		ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
7621 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
7622 	}
7623 
7624 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
7625 	DONTCARE(tcp->tcp_hdr_len);		/* Init in tcp_init_values */
7626 	DONTCARE(tcp->tcp_ipha);
7627 	DONTCARE(tcp->tcp_ip6h);
7628 	DONTCARE(tcp->tcp_ip_hdr_len);
7629 	DONTCARE(tcp->tcp_tcph);
7630 	DONTCARE(tcp->tcp_tcp_hdr_len);		/* Init in tcp_init_values */
7631 	tcp->tcp_valid_bits = 0;
7632 
7633 	DONTCARE(tcp->tcp_xmit_hiwater);	/* Init in tcp_init_values */
7634 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
7635 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
7636 	tcp->tcp_last_rcv_lbolt = 0;
7637 
7638 	tcp->tcp_init_cwnd = 0;
7639 
7640 	tcp->tcp_urp_last_valid = 0;
7641 	tcp->tcp_hard_binding = 0;
7642 	tcp->tcp_hard_bound = 0;
7643 	PRESERVE(tcp->tcp_cred);
7644 	PRESERVE(tcp->tcp_cpid);
7645 	PRESERVE(tcp->tcp_open_time);
7646 	PRESERVE(tcp->tcp_exclbind);
7647 
7648 	tcp->tcp_fin_acked = 0;
7649 	tcp->tcp_fin_rcvd = 0;
7650 	tcp->tcp_fin_sent = 0;
7651 	tcp->tcp_ordrel_done = 0;
7652 
7653 	tcp->tcp_debug = 0;
7654 	tcp->tcp_dontroute = 0;
7655 	tcp->tcp_broadcast = 0;
7656 
7657 	tcp->tcp_useloopback = 0;
7658 	tcp->tcp_reuseaddr = 0;
7659 	tcp->tcp_oobinline = 0;
7660 	tcp->tcp_dgram_errind = 0;
7661 
7662 	tcp->tcp_detached = 0;
7663 	tcp->tcp_bind_pending = 0;
7664 	tcp->tcp_unbind_pending = 0;
7665 
7666 	tcp->tcp_snd_ws_ok = B_FALSE;
7667 	tcp->tcp_snd_ts_ok = B_FALSE;
7668 	tcp->tcp_linger = 0;
7669 	tcp->tcp_ka_enabled = 0;
7670 	tcp->tcp_zero_win_probe = 0;
7671 
7672 	tcp->tcp_loopback = 0;
7673 	tcp->tcp_refuse = 0;
7674 	tcp->tcp_localnet = 0;
7675 	tcp->tcp_syn_defense = 0;
7676 	tcp->tcp_set_timer = 0;
7677 
7678 	tcp->tcp_active_open = 0;
7679 	tcp->tcp_rexmit = B_FALSE;
7680 	tcp->tcp_xmit_zc_clean = B_FALSE;
7681 
7682 	tcp->tcp_snd_sack_ok = B_FALSE;
7683 	PRESERVE(tcp->tcp_recvdstaddr);
7684 	tcp->tcp_hwcksum = B_FALSE;
7685 
7686 	tcp->tcp_ire_ill_check_done = B_FALSE;
7687 	DONTCARE(tcp->tcp_maxpsz);		/* Init in tcp_init_values */
7688 
7689 	tcp->tcp_mdt = B_FALSE;
7690 	tcp->tcp_mdt_hdr_head = 0;
7691 	tcp->tcp_mdt_hdr_tail = 0;
7692 
7693 	tcp->tcp_conn_def_q0 = 0;
7694 	tcp->tcp_ip_forward_progress = B_FALSE;
7695 	tcp->tcp_anon_priv_bind = 0;
7696 	tcp->tcp_ecn_ok = B_FALSE;
7697 
7698 	tcp->tcp_cwr = B_FALSE;
7699 	tcp->tcp_ecn_echo_on = B_FALSE;
7700 
7701 	if (tcp->tcp_sack_info != NULL) {
7702 		if (tcp->tcp_notsack_list != NULL) {
7703 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
7704 		}
7705 		kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info);
7706 		tcp->tcp_sack_info = NULL;
7707 	}
7708 
7709 	tcp->tcp_rcv_ws = 0;
7710 	tcp->tcp_snd_ws = 0;
7711 	tcp->tcp_ts_recent = 0;
7712 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
7713 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
7714 	tcp->tcp_if_mtu = 0;
7715 
7716 	ASSERT(tcp->tcp_reass_head == NULL);
7717 	ASSERT(tcp->tcp_reass_tail == NULL);
7718 
7719 	tcp->tcp_cwnd_cnt = 0;
7720 
7721 	ASSERT(tcp->tcp_rcv_list == NULL);
7722 	ASSERT(tcp->tcp_rcv_last_head == NULL);
7723 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
7724 	ASSERT(tcp->tcp_rcv_cnt == 0);
7725 
7726 	DONTCARE(tcp->tcp_cwnd_ssthresh);	/* Init in tcp_adapt_ire */
7727 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
7728 	tcp->tcp_csuna = 0;
7729 
7730 	tcp->tcp_rto = 0;			/* Displayed in MIB */
7731 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
7732 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
7733 	tcp->tcp_rtt_update = 0;
7734 
7735 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
7736 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
7737 
7738 	tcp->tcp_rack = 0;			/* Displayed in mib */
7739 	tcp->tcp_rack_cnt = 0;
7740 	tcp->tcp_rack_cur_max = 0;
7741 	tcp->tcp_rack_abs_max = 0;
7742 
7743 	tcp->tcp_max_swnd = 0;
7744 
7745 	ASSERT(tcp->tcp_listener == NULL);
7746 
7747 	DONTCARE(tcp->tcp_xmit_lowater);	/* Init in tcp_init_values */
7748 
7749 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
7750 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
7751 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
7752 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
7753 
7754 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
7755 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
7756 	PRESERVE(tcp->tcp_conn_req_max);
7757 	PRESERVE(tcp->tcp_conn_req_seqnum);
7758 
7759 	DONTCARE(tcp->tcp_ip_hdr_len);		/* Init in tcp_init_values */
7760 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
7761 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
7762 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
7763 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
7764 
7765 	tcp->tcp_lingertime = 0;
7766 
7767 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
7768 	ASSERT(tcp->tcp_urp_mp == NULL);
7769 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
7770 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
7771 
7772 	ASSERT(tcp->tcp_eager_next_q == NULL);
7773 	ASSERT(tcp->tcp_eager_last_q == NULL);
7774 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
7775 	    tcp->tcp_eager_prev_q0 == NULL) ||
7776 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
7777 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
7778 
7779 	ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
7780 	    tcp->tcp_eager_prev_drop_q0 == NULL) ||
7781 	    tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
7782 
7783 	tcp->tcp_client_errno = 0;
7784 
7785 	DONTCARE(tcp->tcp_sum);			/* Init in tcp_init_values */
7786 
7787 	tcp->tcp_remote_v6 = ipv6_all_zeros;	/* Displayed in MIB */
7788 
7789 	PRESERVE(tcp->tcp_bound_source_v6);
7790 	tcp->tcp_last_sent_len = 0;
7791 	tcp->tcp_dupack_cnt = 0;
7792 
7793 	tcp->tcp_fport = 0;			/* Displayed in MIB */
7794 	PRESERVE(tcp->tcp_lport);
7795 
7796 	PRESERVE(tcp->tcp_acceptor_lockp);
7797 
7798 	ASSERT(tcp->tcp_ordrel_mp == NULL);
7799 	PRESERVE(tcp->tcp_acceptor_id);
7800 	DONTCARE(tcp->tcp_ipsec_overhead);
7801 
7802 	PRESERVE(tcp->tcp_family);
7803 	if (tcp->tcp_family == AF_INET6) {
7804 		tcp->tcp_ipversion = IPV6_VERSION;
7805 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
7806 	} else {
7807 		tcp->tcp_ipversion = IPV4_VERSION;
7808 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
7809 	}
7810 
7811 	tcp->tcp_bound_if = 0;
7812 	tcp->tcp_ipv6_recvancillary = 0;
7813 	tcp->tcp_recvifindex = 0;
7814 	tcp->tcp_recvhops = 0;
7815 	tcp->tcp_closed = 0;
7816 	tcp->tcp_cleandeathtag = 0;
7817 	if (tcp->tcp_hopopts != NULL) {
7818 		mi_free(tcp->tcp_hopopts);
7819 		tcp->tcp_hopopts = NULL;
7820 		tcp->tcp_hopoptslen = 0;
7821 	}
7822 	ASSERT(tcp->tcp_hopoptslen == 0);
7823 	if (tcp->tcp_dstopts != NULL) {
7824 		mi_free(tcp->tcp_dstopts);
7825 		tcp->tcp_dstopts = NULL;
7826 		tcp->tcp_dstoptslen = 0;
7827 	}
7828 	ASSERT(tcp->tcp_dstoptslen == 0);
7829 	if (tcp->tcp_rtdstopts != NULL) {
7830 		mi_free(tcp->tcp_rtdstopts);
7831 		tcp->tcp_rtdstopts = NULL;
7832 		tcp->tcp_rtdstoptslen = 0;
7833 	}
7834 	ASSERT(tcp->tcp_rtdstoptslen == 0);
7835 	if (tcp->tcp_rthdr != NULL) {
7836 		mi_free(tcp->tcp_rthdr);
7837 		tcp->tcp_rthdr = NULL;
7838 		tcp->tcp_rthdrlen = 0;
7839 	}
7840 	ASSERT(tcp->tcp_rthdrlen == 0);
7841 	PRESERVE(tcp->tcp_drop_opt_ack_cnt);
7842 
7843 	/* Reset fusion-related fields */
7844 	tcp->tcp_fused = B_FALSE;
7845 	tcp->tcp_unfusable = B_FALSE;
7846 	tcp->tcp_fused_sigurg = B_FALSE;
7847 	tcp->tcp_direct_sockfs = B_FALSE;
7848 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
7849 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
7850 	tcp->tcp_loopback_peer = NULL;
7851 	tcp->tcp_fuse_rcv_hiwater = 0;
7852 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
7853 	tcp->tcp_fuse_rcv_unread_cnt = 0;
7854 
7855 	tcp->tcp_lso = B_FALSE;
7856 
7857 	tcp->tcp_in_ack_unsent = 0;
7858 	tcp->tcp_cork = B_FALSE;
7859 	tcp->tcp_tconnind_started = B_FALSE;
7860 
7861 	PRESERVE(tcp->tcp_squeue_bytes);
7862 
7863 	ASSERT(tcp->tcp_kssl_ctx == NULL);
7864 	ASSERT(!tcp->tcp_kssl_pending);
7865 	PRESERVE(tcp->tcp_kssl_ent);
7866 
7867 	/* Sodirect */
7868 	tcp->tcp_sodirect = NULL;
7869 
7870 	tcp->tcp_closemp_used = B_FALSE;
7871 
7872 	PRESERVE(tcp->tcp_rsrv_mp);
7873 	PRESERVE(tcp->tcp_rsrv_mp_lock);
7874 
7875 #ifdef DEBUG
7876 	DONTCARE(tcp->tcmp_stk[0]);
7877 #endif
7878 
7879 	PRESERVE(tcp->tcp_connid);
7880 
7881 
7882 #undef	DONTCARE
7883 #undef	PRESERVE
7884 }
7885 
7886 /*
7887  * Allocate necessary resources and initialize state vector.
7888  * Guaranteed not to fail so that when an error is returned,
7889  * the caller doesn't need to do any additional cleanup.
7890  */
7891 int
7892 tcp_init(tcp_t *tcp, queue_t *q)
7893 {
7894 	int	err;
7895 
7896 	tcp->tcp_rq = q;
7897 	tcp->tcp_wq = WR(q);
7898 	tcp->tcp_state = TCPS_IDLE;
7899 	if ((err = tcp_init_values(tcp)) != 0)
7900 		tcp_timers_stop(tcp);
7901 	return (err);
7902 }
7903 
7904 static int
7905 tcp_init_values(tcp_t *tcp)
7906 {
7907 	int	err;
7908 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7909 
7910 	ASSERT((tcp->tcp_family == AF_INET &&
7911 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7912 	    (tcp->tcp_family == AF_INET6 &&
7913 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7914 	    tcp->tcp_ipversion == IPV6_VERSION)));
7915 
7916 	/*
7917 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
7918 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
7919 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
7920 	 * during first few transmissions of a connection as seen in slow
7921 	 * links.
7922 	 */
7923 	tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2;
7924 	tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1;
7925 	tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
7926 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
7927 	    tcps->tcps_conn_grace_period;
7928 	if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min)
7929 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
7930 	tcp->tcp_timer_backoff = 0;
7931 	tcp->tcp_ms_we_have_waited = 0;
7932 	tcp->tcp_last_recv_time = lbolt;
7933 	tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_;
7934 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
7935 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
7936 
7937 	tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier;
7938 
7939 	tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval;
7940 	tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval;
7941 	tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval;
7942 	/*
7943 	 * Fix it to tcp_ip_abort_linterval later if it turns out to be a
7944 	 * passive open.
7945 	 */
7946 	tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval;
7947 
7948 	tcp->tcp_naglim = tcps->tcps_naglim_def;
7949 
7950 	/* NOTE:  ISS is now set in tcp_adapt_ire(). */
7951 
7952 	tcp->tcp_mdt_hdr_head = 0;
7953 	tcp->tcp_mdt_hdr_tail = 0;
7954 
7955 	/* Reset fusion-related fields */
7956 	tcp->tcp_fused = B_FALSE;
7957 	tcp->tcp_unfusable = B_FALSE;
7958 	tcp->tcp_fused_sigurg = B_FALSE;
7959 	tcp->tcp_direct_sockfs = B_FALSE;
7960 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
7961 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
7962 	tcp->tcp_loopback_peer = NULL;
7963 	tcp->tcp_fuse_rcv_hiwater = 0;
7964 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
7965 	tcp->tcp_fuse_rcv_unread_cnt = 0;
7966 
7967 	/* Sodirect */
7968 	tcp->tcp_sodirect = NULL;
7969 
7970 	/* Initialize the header template */
7971 	if (tcp->tcp_ipversion == IPV4_VERSION) {
7972 		err = tcp_header_init_ipv4(tcp);
7973 	} else {
7974 		err = tcp_header_init_ipv6(tcp);
7975 	}
7976 	if (err)
7977 		return (err);
7978 
7979 	/*
7980 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
7981 	 * down tcp_rwnd. tcp_adapt_ire() will set the right value later.
7982 	 */
7983 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
7984 	tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat;
7985 	tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat;
7986 
7987 	tcp->tcp_cork = B_FALSE;
7988 	/*
7989 	 * Init the tcp_debug option.  This value determines whether TCP
7990 	 * calls strlog() to print out debug messages.  Doing this
7991 	 * initialization here means that this value is not inherited thru
7992 	 * tcp_reinit().
7993 	 */
7994 	tcp->tcp_debug = tcps->tcps_dbg;
7995 
7996 	tcp->tcp_ka_interval = tcps->tcps_keepalive_interval;
7997 	tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval;
7998 
7999 	return (0);
8000 }
8001 
8002 /*
8003  * Initialize the IPv4 header. Loses any record of any IP options.
8004  */
8005 static int
8006 tcp_header_init_ipv4(tcp_t *tcp)
8007 {
8008 	tcph_t		*tcph;
8009 	uint32_t	sum;
8010 	conn_t		*connp;
8011 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8012 
8013 	/*
8014 	 * This is a simple initialization. If there's
8015 	 * already a template, it should never be too small,
8016 	 * so reuse it.  Otherwise, allocate space for the new one.
8017 	 */
8018 	if (tcp->tcp_iphc == NULL) {
8019 		ASSERT(tcp->tcp_iphc_len == 0);
8020 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8021 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8022 		if (tcp->tcp_iphc == NULL) {
8023 			tcp->tcp_iphc_len = 0;
8024 			return (ENOMEM);
8025 		}
8026 	}
8027 
8028 	/* options are gone; may need a new label */
8029 	connp = tcp->tcp_connp;
8030 	connp->conn_mlp_type = mlptSingle;
8031 	connp->conn_ulp_labeled = !is_system_labeled();
8032 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8033 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
8034 	tcp->tcp_ip6h = NULL;
8035 	tcp->tcp_ipversion = IPV4_VERSION;
8036 	tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t);
8037 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8038 	tcp->tcp_ip_hdr_len = sizeof (ipha_t);
8039 	tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t));
8040 	tcp->tcp_ipha->ipha_version_and_hdr_length
8041 	    = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS;
8042 	tcp->tcp_ipha->ipha_ident = 0;
8043 
8044 	tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
8045 	tcp->tcp_tos = 0;
8046 	tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
8047 	tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
8048 	tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP;
8049 
8050 	tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t));
8051 	tcp->tcp_tcph = tcph;
8052 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8053 	/*
8054 	 * IP wants our header length in the checksum field to
8055 	 * allow it to perform a single pseudo-header+checksum
8056 	 * calculation on behalf of TCP.
8057 	 * Include the adjustment for a source route once IP_OPTIONS is set.
8058 	 */
8059 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8060 	sum = (sum >> 16) + (sum & 0xFFFF);
8061 	U16_TO_ABE16(sum, tcph->th_sum);
8062 	return (0);
8063 }
8064 
8065 /*
8066  * Initialize the IPv6 header. Loses any record of any IPv6 extension headers.
8067  */
8068 static int
8069 tcp_header_init_ipv6(tcp_t *tcp)
8070 {
8071 	tcph_t	*tcph;
8072 	uint32_t	sum;
8073 	conn_t	*connp;
8074 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8075 
8076 	/*
8077 	 * This is a simple initialization. If there's
8078 	 * already a template, it should never be too small,
8079 	 * so reuse it. Otherwise, allocate space for the new one.
8080 	 * Ensure that there is enough space to "downgrade" the tcp_t
8081 	 * to an IPv4 tcp_t. This requires having space for a full load
8082 	 * of IPv4 options, as well as a full load of TCP options
8083 	 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space
8084 	 * than a v6 header and a TCP header with a full load of TCP options
8085 	 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes).
8086 	 * We want to avoid reallocation in the "downgraded" case when
8087 	 * processing outbound IPv4 options.
8088 	 */
8089 	if (tcp->tcp_iphc == NULL) {
8090 		ASSERT(tcp->tcp_iphc_len == 0);
8091 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8092 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8093 		if (tcp->tcp_iphc == NULL) {
8094 			tcp->tcp_iphc_len = 0;
8095 			return (ENOMEM);
8096 		}
8097 	}
8098 
8099 	/* options are gone; may need a new label */
8100 	connp = tcp->tcp_connp;
8101 	connp->conn_mlp_type = mlptSingle;
8102 	connp->conn_ulp_labeled = !is_system_labeled();
8103 
8104 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8105 	tcp->tcp_ipversion = IPV6_VERSION;
8106 	tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t);
8107 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8108 	tcp->tcp_ip_hdr_len = IPV6_HDR_LEN;
8109 	tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
8110 	tcp->tcp_ipha = NULL;
8111 
8112 	/* Initialize the header template */
8113 
8114 	tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
8115 	tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t));
8116 	tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP;
8117 	tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit;
8118 
8119 	tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN);
8120 	tcp->tcp_tcph = tcph;
8121 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8122 	/*
8123 	 * IP wants our header length in the checksum field to
8124 	 * allow it to perform a single psuedo-header+checksum
8125 	 * calculation on behalf of TCP.
8126 	 * Include the adjustment for a source route when IPV6_RTHDR is set.
8127 	 */
8128 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8129 	sum = (sum >> 16) + (sum & 0xFFFF);
8130 	U16_TO_ABE16(sum, tcph->th_sum);
8131 	return (0);
8132 }
8133 
8134 /* At minimum we need 8 bytes in the TCP header for the lookup */
8135 #define	ICMP_MIN_TCP_HDR	8
8136 
8137 /*
8138  * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages
8139  * passed up by IP. The message is always received on the correct tcp_t.
8140  * Assumes that IP has pulled up everything up to and including the ICMP header.
8141  */
8142 void
8143 tcp_icmp_error(tcp_t *tcp, mblk_t *mp)
8144 {
8145 	icmph_t *icmph;
8146 	ipha_t	*ipha;
8147 	int	iph_hdr_length;
8148 	tcph_t	*tcph;
8149 	boolean_t ipsec_mctl = B_FALSE;
8150 	boolean_t secure;
8151 	mblk_t *first_mp = mp;
8152 	int32_t new_mss;
8153 	uint32_t ratio;
8154 	size_t mp_size = MBLKL(mp);
8155 	uint32_t seg_seq;
8156 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8157 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
8158 
8159 	/* Assume IP provides aligned packets - otherwise toss */
8160 	if (!OK_32PTR(mp->b_rptr)) {
8161 		freemsg(mp);
8162 		return;
8163 	}
8164 
8165 	/*
8166 	 * Since ICMP errors are normal data marked with M_CTL when sent
8167 	 * to TCP or UDP, we have to look for a IPSEC_IN value to identify
8168 	 * packets starting with an ipsec_info_t, see ipsec_info.h.
8169 	 */
8170 	if ((mp_size == sizeof (ipsec_info_t)) &&
8171 	    (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) {
8172 		ASSERT(mp->b_cont != NULL);
8173 		mp = mp->b_cont;
8174 		/* IP should have done this */
8175 		ASSERT(OK_32PTR(mp->b_rptr));
8176 		mp_size = MBLKL(mp);
8177 		ipsec_mctl = B_TRUE;
8178 	}
8179 
8180 	/*
8181 	 * Verify that we have a complete outer IP header. If not, drop it.
8182 	 */
8183 	if (mp_size < sizeof (ipha_t)) {
8184 noticmpv4:
8185 		freemsg(first_mp);
8186 		return;
8187 	}
8188 
8189 	ipha = (ipha_t *)mp->b_rptr;
8190 	/*
8191 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
8192 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
8193 	 */
8194 	switch (IPH_HDR_VERSION(ipha)) {
8195 	case IPV6_VERSION:
8196 		tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl);
8197 		return;
8198 	case IPV4_VERSION:
8199 		break;
8200 	default:
8201 		goto noticmpv4;
8202 	}
8203 
8204 	/* Skip past the outer IP and ICMP headers */
8205 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8206 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
8207 	/*
8208 	 * If we don't have the correct outer IP header length or if the ULP
8209 	 * is not IPPROTO_ICMP or if we don't have a complete inner IP header
8210 	 * send it upstream.
8211 	 */
8212 	if (iph_hdr_length < sizeof (ipha_t) ||
8213 	    ipha->ipha_protocol != IPPROTO_ICMP ||
8214 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
8215 		goto noticmpv4;
8216 	}
8217 	ipha = (ipha_t *)&icmph[1];
8218 
8219 	/* Skip past the inner IP and find the ULP header */
8220 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8221 	tcph = (tcph_t *)((char *)ipha + iph_hdr_length);
8222 	/*
8223 	 * If we don't have the correct inner IP header length or if the ULP
8224 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
8225 	 * bytes of TCP header, drop it.
8226 	 */
8227 	if (iph_hdr_length < sizeof (ipha_t) ||
8228 	    ipha->ipha_protocol != IPPROTO_TCP ||
8229 	    (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) {
8230 		goto noticmpv4;
8231 	}
8232 
8233 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
8234 		if (ipsec_mctl) {
8235 			secure = ipsec_in_is_secure(first_mp);
8236 		} else {
8237 			secure = B_FALSE;
8238 		}
8239 		if (secure) {
8240 			/*
8241 			 * If we are willing to accept this in clear
8242 			 * we don't have to verify policy.
8243 			 */
8244 			if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) {
8245 				if (!tcp_check_policy(tcp, first_mp,
8246 				    ipha, NULL, secure, ipsec_mctl)) {
8247 					/*
8248 					 * tcp_check_policy called
8249 					 * ip_drop_packet() on failure.
8250 					 */
8251 					return;
8252 				}
8253 			}
8254 		}
8255 	} else if (ipsec_mctl) {
8256 		/*
8257 		 * This is a hard_bound connection. IP has already
8258 		 * verified policy. We don't have to do it again.
8259 		 */
8260 		freeb(first_mp);
8261 		first_mp = mp;
8262 		ipsec_mctl = B_FALSE;
8263 	}
8264 
8265 	seg_seq = ABE32_TO_U32(tcph->th_seq);
8266 	/*
8267 	 * TCP SHOULD check that the TCP sequence number contained in
8268 	 * payload of the ICMP error message is within the range
8269 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8270 	 */
8271 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8272 		/*
8273 		 * The ICMP message is bogus, just drop it.  But if this is
8274 		 * an ICMP too big message, IP has already changed
8275 		 * the ire_max_frag to the bogus value.  We need to change
8276 		 * it back.
8277 		 */
8278 		if (icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
8279 		    icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) {
8280 			conn_t *connp = tcp->tcp_connp;
8281 			ire_t *ire;
8282 			int flag;
8283 
8284 			if (tcp->tcp_ipversion == IPV4_VERSION) {
8285 				flag = tcp->tcp_ipha->
8286 				    ipha_fragment_offset_and_flags;
8287 			} else {
8288 				flag = 0;
8289 			}
8290 			mutex_enter(&connp->conn_lock);
8291 			if ((ire = connp->conn_ire_cache) != NULL) {
8292 				mutex_enter(&ire->ire_lock);
8293 				mutex_exit(&connp->conn_lock);
8294 				ire->ire_max_frag = tcp->tcp_if_mtu;
8295 				ire->ire_frag_flag |= flag;
8296 				mutex_exit(&ire->ire_lock);
8297 			} else {
8298 				mutex_exit(&connp->conn_lock);
8299 			}
8300 		}
8301 		goto noticmpv4;
8302 	}
8303 
8304 	switch (icmph->icmph_type) {
8305 	case ICMP_DEST_UNREACHABLE:
8306 		switch (icmph->icmph_code) {
8307 		case ICMP_FRAGMENTATION_NEEDED:
8308 			/*
8309 			 * Reduce the MSS based on the new MTU.  This will
8310 			 * eliminate any fragmentation locally.
8311 			 * N.B.  There may well be some funny side-effects on
8312 			 * the local send policy and the remote receive policy.
8313 			 * Pending further research, we provide
8314 			 * tcp_ignore_path_mtu just in case this proves
8315 			 * disastrous somewhere.
8316 			 *
8317 			 * After updating the MSS, retransmit part of the
8318 			 * dropped segment using the new mss by calling
8319 			 * tcp_wput_data().  Need to adjust all those
8320 			 * params to make sure tcp_wput_data() work properly.
8321 			 */
8322 			if (tcps->tcps_ignore_path_mtu ||
8323 			    tcp->tcp_ipha->ipha_fragment_offset_and_flags == 0)
8324 				break;
8325 
8326 			/*
8327 			 * Decrease the MSS by time stamp options
8328 			 * IP options and IPSEC options. tcp_hdr_len
8329 			 * includes time stamp option and IP option
8330 			 * length.  Note that new_mss may be negative
8331 			 * if tcp_ipsec_overhead is large and the
8332 			 * icmph_du_mtu is the minimum value, which is 68.
8333 			 */
8334 			new_mss = ntohs(icmph->icmph_du_mtu) -
8335 			    tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead;
8336 
8337 			DTRACE_PROBE2(tcp__pmtu__change, tcp_t *, tcp, int,
8338 			    new_mss);
8339 
8340 			/*
8341 			 * Only update the MSS if the new one is
8342 			 * smaller than the previous one.  This is
8343 			 * to avoid problems when getting multiple
8344 			 * ICMP errors for the same MTU.
8345 			 */
8346 			if (new_mss >= tcp->tcp_mss)
8347 				break;
8348 
8349 			/*
8350 			 * Note that we are using the template header's DF
8351 			 * bit in the fast path sending.  So we need to compare
8352 			 * the new mss with both tcps_mss_min and ip_pmtu_min.
8353 			 * And stop doing IPv4 PMTUd if new_mss is less than
8354 			 * MAX(tcps_mss_min, ip_pmtu_min).
8355 			 */
8356 			if (new_mss < tcps->tcps_mss_min ||
8357 			    new_mss < ipst->ips_ip_pmtu_min) {
8358 				tcp->tcp_ipha->ipha_fragment_offset_and_flags =
8359 				    0;
8360 			}
8361 
8362 			ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8363 			ASSERT(ratio >= 1);
8364 			tcp_mss_set(tcp, new_mss, B_TRUE);
8365 
8366 			/*
8367 			 * Make sure we have something to
8368 			 * send.
8369 			 */
8370 			if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8371 			    (tcp->tcp_xmit_head != NULL)) {
8372 				/*
8373 				 * Shrink tcp_cwnd in
8374 				 * proportion to the old MSS/new MSS.
8375 				 */
8376 				tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8377 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8378 				    (tcp->tcp_unsent == 0)) {
8379 					tcp->tcp_rexmit_max = tcp->tcp_fss;
8380 				} else {
8381 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
8382 				}
8383 				tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8384 				tcp->tcp_rexmit = B_TRUE;
8385 				tcp->tcp_dupack_cnt = 0;
8386 				tcp->tcp_snd_burst = TCP_CWND_SS;
8387 				tcp_ss_rexmit(tcp);
8388 			}
8389 			break;
8390 		case ICMP_PORT_UNREACHABLE:
8391 		case ICMP_PROTOCOL_UNREACHABLE:
8392 			switch (tcp->tcp_state) {
8393 			case TCPS_SYN_SENT:
8394 			case TCPS_SYN_RCVD:
8395 				/*
8396 				 * ICMP can snipe away incipient
8397 				 * TCP connections as long as
8398 				 * seq number is same as initial
8399 				 * send seq number.
8400 				 */
8401 				if (seg_seq == tcp->tcp_iss) {
8402 					(void) tcp_clean_death(tcp,
8403 					    ECONNREFUSED, 6);
8404 				}
8405 				break;
8406 			}
8407 			break;
8408 		case ICMP_HOST_UNREACHABLE:
8409 		case ICMP_NET_UNREACHABLE:
8410 			/* Record the error in case we finally time out. */
8411 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
8412 				tcp->tcp_client_errno = EHOSTUNREACH;
8413 			else
8414 				tcp->tcp_client_errno = ENETUNREACH;
8415 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
8416 				if (tcp->tcp_listener != NULL &&
8417 				    tcp->tcp_listener->tcp_syn_defense) {
8418 					/*
8419 					 * Ditch the half-open connection if we
8420 					 * suspect a SYN attack is under way.
8421 					 */
8422 					tcp_ip_ire_mark_advice(tcp);
8423 					(void) tcp_clean_death(tcp,
8424 					    tcp->tcp_client_errno, 7);
8425 				}
8426 			}
8427 			break;
8428 		default:
8429 			break;
8430 		}
8431 		break;
8432 	case ICMP_SOURCE_QUENCH: {
8433 		/*
8434 		 * use a global boolean to control
8435 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
8436 		 * The default is false.
8437 		 */
8438 		if (tcp_icmp_source_quench) {
8439 			/*
8440 			 * Reduce the sending rate as if we got a
8441 			 * retransmit timeout
8442 			 */
8443 			uint32_t npkt;
8444 
8445 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
8446 			    tcp->tcp_mss;
8447 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
8448 			tcp->tcp_cwnd = tcp->tcp_mss;
8449 			tcp->tcp_cwnd_cnt = 0;
8450 		}
8451 		break;
8452 	}
8453 	}
8454 	freemsg(first_mp);
8455 }
8456 
8457 /*
8458  * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6
8459  * error messages passed up by IP.
8460  * Assumes that IP has pulled up all the extension headers as well
8461  * as the ICMPv6 header.
8462  */
8463 static void
8464 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl)
8465 {
8466 	icmp6_t *icmp6;
8467 	ip6_t	*ip6h;
8468 	uint16_t	iph_hdr_length;
8469 	tcpha_t	*tcpha;
8470 	uint8_t	*nexthdrp;
8471 	uint32_t new_mss;
8472 	uint32_t ratio;
8473 	boolean_t secure;
8474 	mblk_t *first_mp = mp;
8475 	size_t mp_size;
8476 	uint32_t seg_seq;
8477 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8478 
8479 	/*
8480 	 * The caller has determined if this is an IPSEC_IN packet and
8481 	 * set ipsec_mctl appropriately (see tcp_icmp_error).
8482 	 */
8483 	if (ipsec_mctl)
8484 		mp = mp->b_cont;
8485 
8486 	mp_size = MBLKL(mp);
8487 
8488 	/*
8489 	 * Verify that we have a complete IP header. If not, send it upstream.
8490 	 */
8491 	if (mp_size < sizeof (ip6_t)) {
8492 noticmpv6:
8493 		freemsg(first_mp);
8494 		return;
8495 	}
8496 
8497 	/*
8498 	 * Verify this is an ICMPV6 packet, else send it upstream.
8499 	 */
8500 	ip6h = (ip6_t *)mp->b_rptr;
8501 	if (ip6h->ip6_nxt == IPPROTO_ICMPV6) {
8502 		iph_hdr_length = IPV6_HDR_LEN;
8503 	} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
8504 	    &nexthdrp) ||
8505 	    *nexthdrp != IPPROTO_ICMPV6) {
8506 		goto noticmpv6;
8507 	}
8508 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
8509 	ip6h = (ip6_t *)&icmp6[1];
8510 	/*
8511 	 * Verify if we have a complete ICMP and inner IP header.
8512 	 */
8513 	if ((uchar_t *)&ip6h[1] > mp->b_wptr)
8514 		goto noticmpv6;
8515 
8516 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
8517 		goto noticmpv6;
8518 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
8519 	/*
8520 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
8521 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
8522 	 * packet.
8523 	 */
8524 	if ((*nexthdrp != IPPROTO_TCP) ||
8525 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
8526 		goto noticmpv6;
8527 	}
8528 
8529 	/*
8530 	 * ICMP errors come on the right queue or come on
8531 	 * listener/global queue for detached connections and
8532 	 * get switched to the right queue. If it comes on the
8533 	 * right queue, policy check has already been done by IP
8534 	 * and thus free the first_mp without verifying the policy.
8535 	 * If it has come for a non-hard bound connection, we need
8536 	 * to verify policy as IP may not have done it.
8537 	 */
8538 	if (!tcp->tcp_hard_bound) {
8539 		if (ipsec_mctl) {
8540 			secure = ipsec_in_is_secure(first_mp);
8541 		} else {
8542 			secure = B_FALSE;
8543 		}
8544 		if (secure) {
8545 			/*
8546 			 * If we are willing to accept this in clear
8547 			 * we don't have to verify policy.
8548 			 */
8549 			if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) {
8550 				if (!tcp_check_policy(tcp, first_mp,
8551 				    NULL, ip6h, secure, ipsec_mctl)) {
8552 					/*
8553 					 * tcp_check_policy called
8554 					 * ip_drop_packet() on failure.
8555 					 */
8556 					return;
8557 				}
8558 			}
8559 		}
8560 	} else if (ipsec_mctl) {
8561 		/*
8562 		 * This is a hard_bound connection. IP has already
8563 		 * verified policy. We don't have to do it again.
8564 		 */
8565 		freeb(first_mp);
8566 		first_mp = mp;
8567 		ipsec_mctl = B_FALSE;
8568 	}
8569 
8570 	seg_seq = ntohl(tcpha->tha_seq);
8571 	/*
8572 	 * TCP SHOULD check that the TCP sequence number contained in
8573 	 * payload of the ICMP error message is within the range
8574 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8575 	 */
8576 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8577 		/*
8578 		 * If the ICMP message is bogus, should we kill the
8579 		 * connection, or should we just drop the bogus ICMP
8580 		 * message? It would probably make more sense to just
8581 		 * drop the message so that if this one managed to get
8582 		 * in, the real connection should not suffer.
8583 		 */
8584 		goto noticmpv6;
8585 	}
8586 
8587 	switch (icmp6->icmp6_type) {
8588 	case ICMP6_PACKET_TOO_BIG:
8589 		/*
8590 		 * Reduce the MSS based on the new MTU.  This will
8591 		 * eliminate any fragmentation locally.
8592 		 * N.B.  There may well be some funny side-effects on
8593 		 * the local send policy and the remote receive policy.
8594 		 * Pending further research, we provide
8595 		 * tcp_ignore_path_mtu just in case this proves
8596 		 * disastrous somewhere.
8597 		 *
8598 		 * After updating the MSS, retransmit part of the
8599 		 * dropped segment using the new mss by calling
8600 		 * tcp_wput_data().  Need to adjust all those
8601 		 * params to make sure tcp_wput_data() work properly.
8602 		 */
8603 		if (tcps->tcps_ignore_path_mtu)
8604 			break;
8605 
8606 		/*
8607 		 * Decrease the MSS by time stamp options
8608 		 * IP options and IPSEC options. tcp_hdr_len
8609 		 * includes time stamp option and IP option
8610 		 * length.
8611 		 */
8612 		new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len -
8613 		    tcp->tcp_ipsec_overhead;
8614 
8615 		/*
8616 		 * Only update the MSS if the new one is
8617 		 * smaller than the previous one.  This is
8618 		 * to avoid problems when getting multiple
8619 		 * ICMP errors for the same MTU.
8620 		 */
8621 		if (new_mss >= tcp->tcp_mss)
8622 			break;
8623 
8624 		ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8625 		ASSERT(ratio >= 1);
8626 		tcp_mss_set(tcp, new_mss, B_TRUE);
8627 
8628 		/*
8629 		 * Make sure we have something to
8630 		 * send.
8631 		 */
8632 		if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8633 		    (tcp->tcp_xmit_head != NULL)) {
8634 			/*
8635 			 * Shrink tcp_cwnd in
8636 			 * proportion to the old MSS/new MSS.
8637 			 */
8638 			tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8639 			if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8640 			    (tcp->tcp_unsent == 0)) {
8641 				tcp->tcp_rexmit_max = tcp->tcp_fss;
8642 			} else {
8643 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
8644 			}
8645 			tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8646 			tcp->tcp_rexmit = B_TRUE;
8647 			tcp->tcp_dupack_cnt = 0;
8648 			tcp->tcp_snd_burst = TCP_CWND_SS;
8649 			tcp_ss_rexmit(tcp);
8650 		}
8651 		break;
8652 
8653 	case ICMP6_DST_UNREACH:
8654 		switch (icmp6->icmp6_code) {
8655 		case ICMP6_DST_UNREACH_NOPORT:
8656 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8657 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8658 			    (seg_seq == tcp->tcp_iss)) {
8659 				(void) tcp_clean_death(tcp,
8660 				    ECONNREFUSED, 8);
8661 			}
8662 			break;
8663 
8664 		case ICMP6_DST_UNREACH_ADMIN:
8665 		case ICMP6_DST_UNREACH_NOROUTE:
8666 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
8667 		case ICMP6_DST_UNREACH_ADDR:
8668 			/* Record the error in case we finally time out. */
8669 			tcp->tcp_client_errno = EHOSTUNREACH;
8670 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8671 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8672 			    (seg_seq == tcp->tcp_iss)) {
8673 				if (tcp->tcp_listener != NULL &&
8674 				    tcp->tcp_listener->tcp_syn_defense) {
8675 					/*
8676 					 * Ditch the half-open connection if we
8677 					 * suspect a SYN attack is under way.
8678 					 */
8679 					tcp_ip_ire_mark_advice(tcp);
8680 					(void) tcp_clean_death(tcp,
8681 					    tcp->tcp_client_errno, 9);
8682 				}
8683 			}
8684 
8685 
8686 			break;
8687 		default:
8688 			break;
8689 		}
8690 		break;
8691 
8692 	case ICMP6_PARAM_PROB:
8693 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
8694 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
8695 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
8696 		    (uchar_t *)nexthdrp) {
8697 			if (tcp->tcp_state == TCPS_SYN_SENT ||
8698 			    tcp->tcp_state == TCPS_SYN_RCVD) {
8699 				(void) tcp_clean_death(tcp,
8700 				    ECONNREFUSED, 10);
8701 			}
8702 			break;
8703 		}
8704 		break;
8705 
8706 	case ICMP6_TIME_EXCEEDED:
8707 	default:
8708 		break;
8709 	}
8710 	freemsg(first_mp);
8711 }
8712 
8713 /*
8714  * Notify IP that we are having trouble with this connection.  IP should
8715  * blow the IRE away and start over.
8716  */
8717 static void
8718 tcp_ip_notify(tcp_t *tcp)
8719 {
8720 	struct iocblk	*iocp;
8721 	ipid_t	*ipid;
8722 	mblk_t	*mp;
8723 
8724 	/* IPv6 has NUD thus notification to delete the IRE is not needed */
8725 	if (tcp->tcp_ipversion == IPV6_VERSION)
8726 		return;
8727 
8728 	mp = mkiocb(IP_IOCTL);
8729 	if (mp == NULL)
8730 		return;
8731 
8732 	iocp = (struct iocblk *)mp->b_rptr;
8733 	iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst);
8734 
8735 	mp->b_cont = allocb(iocp->ioc_count, BPRI_HI);
8736 	if (!mp->b_cont) {
8737 		freeb(mp);
8738 		return;
8739 	}
8740 
8741 	ipid = (ipid_t *)mp->b_cont->b_rptr;
8742 	mp->b_cont->b_wptr += iocp->ioc_count;
8743 	bzero(ipid, sizeof (*ipid));
8744 	ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY;
8745 	ipid->ipid_ire_type = IRE_CACHE;
8746 	ipid->ipid_addr_offset = sizeof (ipid_t);
8747 	ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst);
8748 	/*
8749 	 * Note: in the case of source routing we want to blow away the
8750 	 * route to the first source route hop.
8751 	 */
8752 	bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1],
8753 	    sizeof (tcp->tcp_ipha->ipha_dst));
8754 
8755 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
8756 }
8757 
8758 /* Unlink and return any mblk that looks like it contains an ire */
8759 static mblk_t *
8760 tcp_ire_mp(mblk_t **mpp)
8761 {
8762 	mblk_t 	*mp = *mpp;
8763 	mblk_t	*prev_mp = NULL;
8764 
8765 	for (;;) {
8766 		switch (DB_TYPE(mp)) {
8767 		case IRE_DB_TYPE:
8768 		case IRE_DB_REQ_TYPE:
8769 			if (mp == *mpp) {
8770 				*mpp = mp->b_cont;
8771 			} else {
8772 				prev_mp->b_cont = mp->b_cont;
8773 			}
8774 			mp->b_cont = NULL;
8775 			return (mp);
8776 		default:
8777 			break;
8778 		}
8779 		prev_mp = mp;
8780 		mp = mp->b_cont;
8781 		if (mp == NULL)
8782 			break;
8783 	}
8784 	return (mp);
8785 }
8786 
8787 /*
8788  * Timer callback routine for keepalive probe.  We do a fake resend of
8789  * last ACKed byte.  Then set a timer using RTO.  When the timer expires,
8790  * check to see if we have heard anything from the other end for the last
8791  * RTO period.  If we have, set the timer to expire for another
8792  * tcp_keepalive_intrvl and check again.  If we have not, set a timer using
8793  * RTO << 1 and check again when it expires.  Keep exponentially increasing
8794  * the timeout if we have not heard from the other side.  If for more than
8795  * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything,
8796  * kill the connection unless the keepalive abort threshold is 0.  In
8797  * that case, we will probe "forever."
8798  */
8799 static void
8800 tcp_keepalive_killer(void *arg)
8801 {
8802 	mblk_t	*mp;
8803 	conn_t	*connp = (conn_t *)arg;
8804 	tcp_t  	*tcp = connp->conn_tcp;
8805 	int32_t	firetime;
8806 	int32_t	idletime;
8807 	int32_t	ka_intrvl;
8808 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8809 
8810 	tcp->tcp_ka_tid = 0;
8811 
8812 	if (tcp->tcp_fused)
8813 		return;
8814 
8815 	BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive);
8816 	ka_intrvl = tcp->tcp_ka_interval;
8817 
8818 	/*
8819 	 * Keepalive probe should only be sent if the application has not
8820 	 * done a close on the connection.
8821 	 */
8822 	if (tcp->tcp_state > TCPS_CLOSE_WAIT) {
8823 		return;
8824 	}
8825 	/* Timer fired too early, restart it. */
8826 	if (tcp->tcp_state < TCPS_ESTABLISHED) {
8827 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
8828 		    MSEC_TO_TICK(ka_intrvl));
8829 		return;
8830 	}
8831 
8832 	idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time);
8833 	/*
8834 	 * If we have not heard from the other side for a long
8835 	 * time, kill the connection unless the keepalive abort
8836 	 * threshold is 0.  In that case, we will probe "forever."
8837 	 */
8838 	if (tcp->tcp_ka_abort_thres != 0 &&
8839 	    idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) {
8840 		BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop);
8841 		(void) tcp_clean_death(tcp, tcp->tcp_client_errno ?
8842 		    tcp->tcp_client_errno : ETIMEDOUT, 11);
8843 		return;
8844 	}
8845 
8846 	if (tcp->tcp_snxt == tcp->tcp_suna &&
8847 	    idletime >= ka_intrvl) {
8848 		/* Fake resend of last ACKed byte. */
8849 		mblk_t	*mp1 = allocb(1, BPRI_LO);
8850 
8851 		if (mp1 != NULL) {
8852 			*mp1->b_wptr++ = '\0';
8853 			mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL,
8854 			    tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE);
8855 			freeb(mp1);
8856 			/*
8857 			 * if allocation failed, fall through to start the
8858 			 * timer back.
8859 			 */
8860 			if (mp != NULL) {
8861 				tcp_send_data(tcp, tcp->tcp_wq, mp);
8862 				BUMP_MIB(&tcps->tcps_mib,
8863 				    tcpTimKeepaliveProbe);
8864 				if (tcp->tcp_ka_last_intrvl != 0) {
8865 					int max;
8866 					/*
8867 					 * We should probe again at least
8868 					 * in ka_intrvl, but not more than
8869 					 * tcp_rexmit_interval_max.
8870 					 */
8871 					max = tcps->tcps_rexmit_interval_max;
8872 					firetime = MIN(ka_intrvl - 1,
8873 					    tcp->tcp_ka_last_intrvl << 1);
8874 					if (firetime > max)
8875 						firetime = max;
8876 				} else {
8877 					firetime = tcp->tcp_rto;
8878 				}
8879 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
8880 				    tcp_keepalive_killer,
8881 				    MSEC_TO_TICK(firetime));
8882 				tcp->tcp_ka_last_intrvl = firetime;
8883 				return;
8884 			}
8885 		}
8886 	} else {
8887 		tcp->tcp_ka_last_intrvl = 0;
8888 	}
8889 
8890 	/* firetime can be negative if (mp1 == NULL || mp == NULL) */
8891 	if ((firetime = ka_intrvl - idletime) < 0) {
8892 		firetime = ka_intrvl;
8893 	}
8894 	tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
8895 	    MSEC_TO_TICK(firetime));
8896 }
8897 
8898 int
8899 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
8900 {
8901 	queue_t	*q = tcp->tcp_rq;
8902 	int32_t	mss = tcp->tcp_mss;
8903 	int	maxpsz;
8904 	conn_t	*connp = tcp->tcp_connp;
8905 
8906 	if (TCP_IS_DETACHED(tcp))
8907 		return (mss);
8908 	if (tcp->tcp_fused) {
8909 		maxpsz = tcp_fuse_maxpsz_set(tcp);
8910 		mss = INFPSZ;
8911 	} else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) {
8912 		/*
8913 		 * Set the sd_qn_maxpsz according to the socket send buffer
8914 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
8915 		 * instruct the stream head to copyin user data into contiguous
8916 		 * kernel-allocated buffers without breaking it up into smaller
8917 		 * chunks.  We round up the buffer size to the nearest SMSS.
8918 		 */
8919 		maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss);
8920 		if (tcp->tcp_kssl_ctx == NULL)
8921 			mss = INFPSZ;
8922 		else
8923 			mss = SSL3_MAX_RECORD_LEN;
8924 	} else {
8925 		/*
8926 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
8927 		 * (and a multiple of the mss).  This instructs the stream
8928 		 * head to break down larger than SMSS writes into SMSS-
8929 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
8930 		 */
8931 		/* XXX tune this with ndd tcp_maxpsz_multiplier */
8932 		maxpsz = tcp->tcp_maxpsz * mss;
8933 		if (maxpsz > tcp->tcp_xmit_hiwater/2) {
8934 			maxpsz = tcp->tcp_xmit_hiwater/2;
8935 			/* Round up to nearest mss */
8936 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
8937 		}
8938 	}
8939 
8940 	(void) proto_set_maxpsz(q, connp, maxpsz);
8941 	if (!(IPCL_IS_NONSTR(connp))) {
8942 		/* XXX do it in set_maxpsz()? */
8943 		tcp->tcp_wq->q_maxpsz = maxpsz;
8944 	}
8945 
8946 	if (set_maxblk)
8947 		(void) proto_set_tx_maxblk(q, connp, mss);
8948 	return (mss);
8949 }
8950 
8951 /*
8952  * Extract option values from a tcp header.  We put any found values into the
8953  * tcpopt struct and return a bitmask saying which options were found.
8954  */
8955 static int
8956 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt)
8957 {
8958 	uchar_t		*endp;
8959 	int		len;
8960 	uint32_t	mss;
8961 	uchar_t		*up = (uchar_t *)tcph;
8962 	int		found = 0;
8963 	int32_t		sack_len;
8964 	tcp_seq		sack_begin, sack_end;
8965 	tcp_t		*tcp;
8966 
8967 	endp = up + TCP_HDR_LENGTH(tcph);
8968 	up += TCP_MIN_HEADER_LENGTH;
8969 	while (up < endp) {
8970 		len = endp - up;
8971 		switch (*up) {
8972 		case TCPOPT_EOL:
8973 			break;
8974 
8975 		case TCPOPT_NOP:
8976 			up++;
8977 			continue;
8978 
8979 		case TCPOPT_MAXSEG:
8980 			if (len < TCPOPT_MAXSEG_LEN ||
8981 			    up[1] != TCPOPT_MAXSEG_LEN)
8982 				break;
8983 
8984 			mss = BE16_TO_U16(up+2);
8985 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
8986 			tcpopt->tcp_opt_mss = mss;
8987 			found |= TCP_OPT_MSS_PRESENT;
8988 
8989 			up += TCPOPT_MAXSEG_LEN;
8990 			continue;
8991 
8992 		case TCPOPT_WSCALE:
8993 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
8994 				break;
8995 
8996 			if (up[2] > TCP_MAX_WINSHIFT)
8997 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
8998 			else
8999 				tcpopt->tcp_opt_wscale = up[2];
9000 			found |= TCP_OPT_WSCALE_PRESENT;
9001 
9002 			up += TCPOPT_WS_LEN;
9003 			continue;
9004 
9005 		case TCPOPT_SACK_PERMITTED:
9006 			if (len < TCPOPT_SACK_OK_LEN ||
9007 			    up[1] != TCPOPT_SACK_OK_LEN)
9008 				break;
9009 			found |= TCP_OPT_SACK_OK_PRESENT;
9010 			up += TCPOPT_SACK_OK_LEN;
9011 			continue;
9012 
9013 		case TCPOPT_SACK:
9014 			if (len <= 2 || up[1] <= 2 || len < up[1])
9015 				break;
9016 
9017 			/* If TCP is not interested in SACK blks... */
9018 			if ((tcp = tcpopt->tcp) == NULL) {
9019 				up += up[1];
9020 				continue;
9021 			}
9022 			sack_len = up[1] - TCPOPT_HEADER_LEN;
9023 			up += TCPOPT_HEADER_LEN;
9024 
9025 			/*
9026 			 * If the list is empty, allocate one and assume
9027 			 * nothing is sack'ed.
9028 			 */
9029 			ASSERT(tcp->tcp_sack_info != NULL);
9030 			if (tcp->tcp_notsack_list == NULL) {
9031 				tcp_notsack_update(&(tcp->tcp_notsack_list),
9032 				    tcp->tcp_suna, tcp->tcp_snxt,
9033 				    &(tcp->tcp_num_notsack_blk),
9034 				    &(tcp->tcp_cnt_notsack_list));
9035 
9036 				/*
9037 				 * Make sure tcp_notsack_list is not NULL.
9038 				 * This happens when kmem_alloc(KM_NOSLEEP)
9039 				 * returns NULL.
9040 				 */
9041 				if (tcp->tcp_notsack_list == NULL) {
9042 					up += sack_len;
9043 					continue;
9044 				}
9045 				tcp->tcp_fack = tcp->tcp_suna;
9046 			}
9047 
9048 			while (sack_len > 0) {
9049 				if (up + 8 > endp) {
9050 					up = endp;
9051 					break;
9052 				}
9053 				sack_begin = BE32_TO_U32(up);
9054 				up += 4;
9055 				sack_end = BE32_TO_U32(up);
9056 				up += 4;
9057 				sack_len -= 8;
9058 				/*
9059 				 * Bounds checking.  Make sure the SACK
9060 				 * info is within tcp_suna and tcp_snxt.
9061 				 * If this SACK blk is out of bound, ignore
9062 				 * it but continue to parse the following
9063 				 * blks.
9064 				 */
9065 				if (SEQ_LEQ(sack_end, sack_begin) ||
9066 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
9067 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
9068 					continue;
9069 				}
9070 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
9071 				    sack_begin, sack_end,
9072 				    &(tcp->tcp_num_notsack_blk),
9073 				    &(tcp->tcp_cnt_notsack_list));
9074 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
9075 					tcp->tcp_fack = sack_end;
9076 				}
9077 			}
9078 			found |= TCP_OPT_SACK_PRESENT;
9079 			continue;
9080 
9081 		case TCPOPT_TSTAMP:
9082 			if (len < TCPOPT_TSTAMP_LEN ||
9083 			    up[1] != TCPOPT_TSTAMP_LEN)
9084 				break;
9085 
9086 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
9087 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
9088 
9089 			found |= TCP_OPT_TSTAMP_PRESENT;
9090 
9091 			up += TCPOPT_TSTAMP_LEN;
9092 			continue;
9093 
9094 		default:
9095 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
9096 				break;
9097 			up += up[1];
9098 			continue;
9099 		}
9100 		break;
9101 	}
9102 	return (found);
9103 }
9104 
9105 /*
9106  * Set the mss associated with a particular tcp based on its current value,
9107  * and a new one passed in. Observe minimums and maximums, and reset
9108  * other state variables that we want to view as multiples of mss.
9109  *
9110  * This function is called mainly because values like tcp_mss, tcp_cwnd,
9111  * highwater marks etc. need to be initialized or adjusted.
9112  * 1) From tcp_process_options() when the other side's SYN/SYN-ACK
9113  *    packet arrives.
9114  * 2) We need to set a new MSS when ICMP_FRAGMENTATION_NEEDED or
9115  *    ICMP6_PACKET_TOO_BIG arrives.
9116  * 3) From tcp_paws_check() if the other side stops sending the timestamp,
9117  *    to increase the MSS to use the extra bytes available.
9118  *
9119  * Callers except tcp_paws_check() ensure that they only reduce mss.
9120  */
9121 static void
9122 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss)
9123 {
9124 	uint32_t	mss_max;
9125 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9126 
9127 	if (tcp->tcp_ipversion == IPV4_VERSION)
9128 		mss_max = tcps->tcps_mss_max_ipv4;
9129 	else
9130 		mss_max = tcps->tcps_mss_max_ipv6;
9131 
9132 	if (mss < tcps->tcps_mss_min)
9133 		mss = tcps->tcps_mss_min;
9134 	if (mss > mss_max)
9135 		mss = mss_max;
9136 	/*
9137 	 * Unless naglim has been set by our client to
9138 	 * a non-mss value, force naglim to track mss.
9139 	 * This can help to aggregate small writes.
9140 	 */
9141 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
9142 		tcp->tcp_naglim = mss;
9143 	/*
9144 	 * TCP should be able to buffer at least 4 MSS data for obvious
9145 	 * performance reason.
9146 	 */
9147 	if ((mss << 2) > tcp->tcp_xmit_hiwater)
9148 		tcp->tcp_xmit_hiwater = mss << 2;
9149 
9150 	if (do_ss) {
9151 		/*
9152 		 * Either the tcp_cwnd is as yet uninitialized, or mss is
9153 		 * changing due to a reduction in MTU, presumably as a
9154 		 * result of a new path component, reset cwnd to its
9155 		 * "initial" value, as a multiple of the new mss.
9156 		 */
9157 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_initial);
9158 	} else {
9159 		/*
9160 		 * Called by tcp_paws_check(), the mss increased
9161 		 * marginally to allow use of space previously taken
9162 		 * by the timestamp option. It would be inappropriate
9163 		 * to apply slow start or tcp_init_cwnd values to
9164 		 * tcp_cwnd, simply adjust to a multiple of the new mss.
9165 		 */
9166 		tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss;
9167 		tcp->tcp_cwnd_cnt = 0;
9168 	}
9169 	tcp->tcp_mss = mss;
9170 	(void) tcp_maxpsz_set(tcp, B_TRUE);
9171 }
9172 
9173 /* For /dev/tcp aka AF_INET open */
9174 static int
9175 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9176 {
9177 	return (tcp_open(q, devp, flag, sflag, credp, B_FALSE));
9178 }
9179 
9180 /* For /dev/tcp6 aka AF_INET6 open */
9181 static int
9182 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9183 {
9184 	return (tcp_open(q, devp, flag, sflag, credp, B_TRUE));
9185 }
9186 
9187 static conn_t *
9188 tcp_create_common(queue_t *q, cred_t *credp, boolean_t isv6,
9189     boolean_t issocket, int *errorp)
9190 {
9191 	tcp_t		*tcp = NULL;
9192 	conn_t		*connp;
9193 	int		err;
9194 	zoneid_t	zoneid;
9195 	tcp_stack_t	*tcps;
9196 	squeue_t	*sqp;
9197 
9198 	ASSERT(errorp != NULL);
9199 	/*
9200 	 * Find the proper zoneid and netstack.
9201 	 */
9202 	/*
9203 	 * Special case for install: miniroot needs to be able to
9204 	 * access files via NFS as though it were always in the
9205 	 * global zone.
9206 	 */
9207 	if (credp == kcred && nfs_global_client_only != 0) {
9208 		zoneid = GLOBAL_ZONEID;
9209 		tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
9210 		    netstack_tcp;
9211 		ASSERT(tcps != NULL);
9212 	} else {
9213 		netstack_t *ns;
9214 
9215 		ns = netstack_find_by_cred(credp);
9216 		ASSERT(ns != NULL);
9217 		tcps = ns->netstack_tcp;
9218 		ASSERT(tcps != NULL);
9219 
9220 		/*
9221 		 * For exclusive stacks we set the zoneid to zero
9222 		 * to make TCP operate as if in the global zone.
9223 		 */
9224 		if (tcps->tcps_netstack->netstack_stackid !=
9225 		    GLOBAL_NETSTACKID)
9226 			zoneid = GLOBAL_ZONEID;
9227 		else
9228 			zoneid = crgetzoneid(credp);
9229 	}
9230 	/*
9231 	 * For stackid zero this is done from strplumb.c, but
9232 	 * non-zero stackids are handled here.
9233 	 */
9234 	if (tcps->tcps_g_q == NULL &&
9235 	    tcps->tcps_netstack->netstack_stackid !=
9236 	    GLOBAL_NETSTACKID) {
9237 		tcp_g_q_setup(tcps);
9238 	}
9239 
9240 	sqp = IP_SQUEUE_GET((uint_t)gethrtime());
9241 	connp = (conn_t *)tcp_get_conn(sqp, tcps);
9242 	/*
9243 	 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
9244 	 * so we drop it by one.
9245 	 */
9246 	netstack_rele(tcps->tcps_netstack);
9247 	if (connp == NULL) {
9248 		*errorp = ENOSR;
9249 		return (NULL);
9250 	}
9251 	connp->conn_sqp = sqp;
9252 	connp->conn_initial_sqp = connp->conn_sqp;
9253 	tcp = connp->conn_tcp;
9254 
9255 	if (isv6) {
9256 		connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6);
9257 		connp->conn_send = ip_output_v6;
9258 		connp->conn_af_isv6 = B_TRUE;
9259 		connp->conn_pkt_isv6 = B_TRUE;
9260 		connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT;
9261 		tcp->tcp_ipversion = IPV6_VERSION;
9262 		tcp->tcp_family = AF_INET6;
9263 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
9264 	} else {
9265 		connp->conn_flags |= IPCL_TCP4;
9266 		connp->conn_send = ip_output;
9267 		connp->conn_af_isv6 = B_FALSE;
9268 		connp->conn_pkt_isv6 = B_FALSE;
9269 		tcp->tcp_ipversion = IPV4_VERSION;
9270 		tcp->tcp_family = AF_INET;
9271 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
9272 	}
9273 
9274 	/*
9275 	 * TCP keeps a copy of cred for cache locality reasons but
9276 	 * we put a reference only once. If connp->conn_cred
9277 	 * becomes invalid, tcp_cred should also be set to NULL.
9278 	 */
9279 	tcp->tcp_cred = connp->conn_cred = credp;
9280 	crhold(connp->conn_cred);
9281 	tcp->tcp_cpid = curproc->p_pid;
9282 	tcp->tcp_open_time = lbolt64;
9283 	connp->conn_zoneid = zoneid;
9284 	connp->conn_mlp_type = mlptSingle;
9285 	connp->conn_ulp_labeled = !is_system_labeled();
9286 	ASSERT(connp->conn_netstack == tcps->tcps_netstack);
9287 	ASSERT(tcp->tcp_tcps == tcps);
9288 
9289 	/*
9290 	 * If the caller has the process-wide flag set, then default to MAC
9291 	 * exempt mode.  This allows read-down to unlabeled hosts.
9292 	 */
9293 	if (getpflags(NET_MAC_AWARE, credp) != 0)
9294 		connp->conn_mac_exempt = B_TRUE;
9295 
9296 	connp->conn_dev = NULL;
9297 	if (issocket) {
9298 		connp->conn_flags |= IPCL_SOCKET;
9299 		tcp->tcp_issocket = 1;
9300 	}
9301 
9302 	tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat;
9303 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
9304 	tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat;
9305 
9306 	/* Non-zero default values */
9307 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
9308 
9309 	if (q == NULL) {
9310 		/*
9311 		 * Create a helper stream for non-STREAMS socket.
9312 		 */
9313 		err = ip_create_helper_stream(connp, tcps->tcps_ldi_ident);
9314 		if (err != 0) {
9315 			ip1dbg(("tcp_create_common: create of IP helper stream "
9316 			    "failed\n"));
9317 			CONN_DEC_REF(connp);
9318 			*errorp = err;
9319 			return (NULL);
9320 		}
9321 		q = connp->conn_rq;
9322 	} else {
9323 		RD(q)->q_hiwat = tcps->tcps_recv_hiwat;
9324 	}
9325 
9326 	SOCK_CONNID_INIT(tcp->tcp_connid);
9327 	err = tcp_init(tcp, q);
9328 	if (err != 0) {
9329 		CONN_DEC_REF(connp);
9330 		*errorp = err;
9331 		return (NULL);
9332 	}
9333 
9334 	return (connp);
9335 }
9336 
9337 static int
9338 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
9339     boolean_t isv6)
9340 {
9341 	tcp_t		*tcp = NULL;
9342 	conn_t		*connp = NULL;
9343 	int		err;
9344 	vmem_t		*minor_arena = NULL;
9345 	dev_t		conn_dev;
9346 	boolean_t	issocket;
9347 
9348 	if (q->q_ptr != NULL)
9349 		return (0);
9350 
9351 	if (sflag == MODOPEN)
9352 		return (EINVAL);
9353 
9354 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
9355 	    ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
9356 		minor_arena = ip_minor_arena_la;
9357 	} else {
9358 		/*
9359 		 * Either minor numbers in the large arena were exhausted
9360 		 * or a non socket application is doing the open.
9361 		 * Try to allocate from the small arena.
9362 		 */
9363 		if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
9364 			return (EBUSY);
9365 		}
9366 		minor_arena = ip_minor_arena_sa;
9367 	}
9368 
9369 	ASSERT(minor_arena != NULL);
9370 
9371 	*devp = makedevice(getmajor(*devp), (minor_t)conn_dev);
9372 
9373 	if (flag & SO_FALLBACK) {
9374 		/*
9375 		 * Non streams socket needs a stream to fallback to
9376 		 */
9377 		RD(q)->q_ptr = (void *)conn_dev;
9378 		WR(q)->q_qinfo = &tcp_fallback_sock_winit;
9379 		WR(q)->q_ptr = (void *)minor_arena;
9380 		qprocson(q);
9381 		return (0);
9382 	} else if (flag & SO_ACCEPTOR) {
9383 		q->q_qinfo = &tcp_acceptor_rinit;
9384 		/*
9385 		 * the conn_dev and minor_arena will be subsequently used by
9386 		 * tcp_wput_accept() and tcpclose_accept() to figure out the
9387 		 * minor device number for this connection from the q_ptr.
9388 		 */
9389 		RD(q)->q_ptr = (void *)conn_dev;
9390 		WR(q)->q_qinfo = &tcp_acceptor_winit;
9391 		WR(q)->q_ptr = (void *)minor_arena;
9392 		qprocson(q);
9393 		return (0);
9394 	}
9395 
9396 	issocket = flag & SO_SOCKSTR;
9397 	connp = tcp_create_common(q, credp, isv6, issocket, &err);
9398 
9399 	if (connp == NULL) {
9400 		inet_minor_free(minor_arena, conn_dev);
9401 		q->q_ptr = WR(q)->q_ptr = NULL;
9402 		return (err);
9403 	}
9404 
9405 	q->q_ptr = WR(q)->q_ptr = connp;
9406 
9407 	connp->conn_dev = conn_dev;
9408 	connp->conn_minor_arena = minor_arena;
9409 
9410 	ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6);
9411 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
9412 
9413 	if (issocket) {
9414 		WR(q)->q_qinfo = &tcp_sock_winit;
9415 	} else {
9416 		tcp = connp->conn_tcp;
9417 #ifdef  _ILP32
9418 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
9419 #else
9420 		tcp->tcp_acceptor_id = conn_dev;
9421 #endif  /* _ILP32 */
9422 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
9423 	}
9424 
9425 	/*
9426 	 * Put the ref for TCP. Ref for IP was already put
9427 	 * by ipcl_conn_create. Also Make the conn_t globally
9428 	 * visible to walkers
9429 	 */
9430 	mutex_enter(&connp->conn_lock);
9431 	CONN_INC_REF_LOCKED(connp);
9432 	ASSERT(connp->conn_ref == 2);
9433 	connp->conn_state_flags &= ~CONN_INCIPIENT;
9434 	mutex_exit(&connp->conn_lock);
9435 
9436 	qprocson(q);
9437 	return (0);
9438 }
9439 
9440 /*
9441  * Some TCP options can be "set" by requesting them in the option
9442  * buffer. This is needed for XTI feature test though we do not
9443  * allow it in general. We interpret that this mechanism is more
9444  * applicable to OSI protocols and need not be allowed in general.
9445  * This routine filters out options for which it is not allowed (most)
9446  * and lets through those (few) for which it is. [ The XTI interface
9447  * test suite specifics will imply that any XTI_GENERIC level XTI_* if
9448  * ever implemented will have to be allowed here ].
9449  */
9450 static boolean_t
9451 tcp_allow_connopt_set(int level, int name)
9452 {
9453 
9454 	switch (level) {
9455 	case IPPROTO_TCP:
9456 		switch (name) {
9457 		case TCP_NODELAY:
9458 			return (B_TRUE);
9459 		default:
9460 			return (B_FALSE);
9461 		}
9462 		/*NOTREACHED*/
9463 	default:
9464 		return (B_FALSE);
9465 	}
9466 	/*NOTREACHED*/
9467 }
9468 
9469 /*
9470  * this routine gets default values of certain options whose default
9471  * values are maintained by protocol specific code
9472  */
9473 /* ARGSUSED */
9474 int
9475 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
9476 {
9477 	int32_t	*i1 = (int32_t *)ptr;
9478 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
9479 
9480 	switch (level) {
9481 	case IPPROTO_TCP:
9482 		switch (name) {
9483 		case TCP_NOTIFY_THRESHOLD:
9484 			*i1 = tcps->tcps_ip_notify_interval;
9485 			break;
9486 		case TCP_ABORT_THRESHOLD:
9487 			*i1 = tcps->tcps_ip_abort_interval;
9488 			break;
9489 		case TCP_CONN_NOTIFY_THRESHOLD:
9490 			*i1 = tcps->tcps_ip_notify_cinterval;
9491 			break;
9492 		case TCP_CONN_ABORT_THRESHOLD:
9493 			*i1 = tcps->tcps_ip_abort_cinterval;
9494 			break;
9495 		default:
9496 			return (-1);
9497 		}
9498 		break;
9499 	case IPPROTO_IP:
9500 		switch (name) {
9501 		case IP_TTL:
9502 			*i1 = tcps->tcps_ipv4_ttl;
9503 			break;
9504 		default:
9505 			return (-1);
9506 		}
9507 		break;
9508 	case IPPROTO_IPV6:
9509 		switch (name) {
9510 		case IPV6_UNICAST_HOPS:
9511 			*i1 = tcps->tcps_ipv6_hoplimit;
9512 			break;
9513 		default:
9514 			return (-1);
9515 		}
9516 		break;
9517 	default:
9518 		return (-1);
9519 	}
9520 	return (sizeof (int));
9521 }
9522 
9523 static int
9524 tcp_opt_get(conn_t *connp, int level, int name, uchar_t *ptr)
9525 {
9526 	int		*i1 = (int *)ptr;
9527 	tcp_t		*tcp = connp->conn_tcp;
9528 	ip6_pkt_t	*ipp = &tcp->tcp_sticky_ipp;
9529 
9530 	switch (level) {
9531 	case SOL_SOCKET:
9532 		switch (name) {
9533 		case SO_LINGER:	{
9534 			struct linger *lgr = (struct linger *)ptr;
9535 
9536 			lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0;
9537 			lgr->l_linger = tcp->tcp_lingertime;
9538 			}
9539 			return (sizeof (struct linger));
9540 		case SO_DEBUG:
9541 			*i1 = tcp->tcp_debug ? SO_DEBUG : 0;
9542 			break;
9543 		case SO_KEEPALIVE:
9544 			*i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0;
9545 			break;
9546 		case SO_DONTROUTE:
9547 			*i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0;
9548 			break;
9549 		case SO_USELOOPBACK:
9550 			*i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0;
9551 			break;
9552 		case SO_BROADCAST:
9553 			*i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0;
9554 			break;
9555 		case SO_REUSEADDR:
9556 			*i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0;
9557 			break;
9558 		case SO_OOBINLINE:
9559 			*i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0;
9560 			break;
9561 		case SO_DGRAM_ERRIND:
9562 			*i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0;
9563 			break;
9564 		case SO_TYPE:
9565 			*i1 = SOCK_STREAM;
9566 			break;
9567 		case SO_SNDBUF:
9568 			*i1 = tcp->tcp_xmit_hiwater;
9569 			break;
9570 		case SO_RCVBUF:
9571 			*i1 = tcp->tcp_recv_hiwater;
9572 			break;
9573 		case SO_SND_COPYAVOID:
9574 			*i1 = tcp->tcp_snd_zcopy_on ?
9575 			    SO_SND_COPYAVOID : 0;
9576 			break;
9577 		case SO_ALLZONES:
9578 			*i1 = connp->conn_allzones ? 1 : 0;
9579 			break;
9580 		case SO_ANON_MLP:
9581 			*i1 = connp->conn_anon_mlp;
9582 			break;
9583 		case SO_MAC_EXEMPT:
9584 			*i1 = connp->conn_mac_exempt;
9585 			break;
9586 		case SO_EXCLBIND:
9587 			*i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0;
9588 			break;
9589 		case SO_PROTOTYPE:
9590 			*i1 = IPPROTO_TCP;
9591 			break;
9592 		case SO_DOMAIN:
9593 			*i1 = tcp->tcp_family;
9594 			break;
9595 		case SO_ACCEPTCONN:
9596 			*i1 = (tcp->tcp_state == TCPS_LISTEN);
9597 		default:
9598 			return (-1);
9599 		}
9600 		break;
9601 	case IPPROTO_TCP:
9602 		switch (name) {
9603 		case TCP_NODELAY:
9604 			*i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0;
9605 			break;
9606 		case TCP_MAXSEG:
9607 			*i1 = tcp->tcp_mss;
9608 			break;
9609 		case TCP_NOTIFY_THRESHOLD:
9610 			*i1 = (int)tcp->tcp_first_timer_threshold;
9611 			break;
9612 		case TCP_ABORT_THRESHOLD:
9613 			*i1 = tcp->tcp_second_timer_threshold;
9614 			break;
9615 		case TCP_CONN_NOTIFY_THRESHOLD:
9616 			*i1 = tcp->tcp_first_ctimer_threshold;
9617 			break;
9618 		case TCP_CONN_ABORT_THRESHOLD:
9619 			*i1 = tcp->tcp_second_ctimer_threshold;
9620 			break;
9621 		case TCP_RECVDSTADDR:
9622 			*i1 = tcp->tcp_recvdstaddr;
9623 			break;
9624 		case TCP_ANONPRIVBIND:
9625 			*i1 = tcp->tcp_anon_priv_bind;
9626 			break;
9627 		case TCP_EXCLBIND:
9628 			*i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0;
9629 			break;
9630 		case TCP_INIT_CWND:
9631 			*i1 = tcp->tcp_init_cwnd;
9632 			break;
9633 		case TCP_KEEPALIVE_THRESHOLD:
9634 			*i1 = tcp->tcp_ka_interval;
9635 			break;
9636 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
9637 			*i1 = tcp->tcp_ka_abort_thres;
9638 			break;
9639 		case TCP_CORK:
9640 			*i1 = tcp->tcp_cork;
9641 			break;
9642 		default:
9643 			return (-1);
9644 		}
9645 		break;
9646 	case IPPROTO_IP:
9647 		if (tcp->tcp_family != AF_INET)
9648 			return (-1);
9649 		switch (name) {
9650 		case IP_OPTIONS:
9651 		case T_IP_OPTIONS: {
9652 			/*
9653 			 * This is compatible with BSD in that in only return
9654 			 * the reverse source route with the final destination
9655 			 * as the last entry. The first 4 bytes of the option
9656 			 * will contain the final destination.
9657 			 */
9658 			int	opt_len;
9659 
9660 			opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha;
9661 			opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH;
9662 			ASSERT(opt_len >= 0);
9663 			/* Caller ensures enough space */
9664 			if (opt_len > 0) {
9665 				/*
9666 				 * TODO: Do we have to handle getsockopt on an
9667 				 * initiator as well?
9668 				 */
9669 				return (ip_opt_get_user(tcp->tcp_ipha, ptr));
9670 			}
9671 			return (0);
9672 			}
9673 		case IP_TOS:
9674 		case T_IP_TOS:
9675 			*i1 = (int)tcp->tcp_ipha->ipha_type_of_service;
9676 			break;
9677 		case IP_TTL:
9678 			*i1 = (int)tcp->tcp_ipha->ipha_ttl;
9679 			break;
9680 		case IP_NEXTHOP:
9681 			/* Handled at IP level */
9682 			return (-EINVAL);
9683 		default:
9684 			return (-1);
9685 		}
9686 		break;
9687 	case IPPROTO_IPV6:
9688 		/*
9689 		 * IPPROTO_IPV6 options are only supported for sockets
9690 		 * that are using IPv6 on the wire.
9691 		 */
9692 		if (tcp->tcp_ipversion != IPV6_VERSION) {
9693 			return (-1);
9694 		}
9695 		switch (name) {
9696 		case IPV6_UNICAST_HOPS:
9697 			*i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops;
9698 			break;	/* goto sizeof (int) option return */
9699 		case IPV6_BOUND_IF:
9700 			/* Zero if not set */
9701 			*i1 = tcp->tcp_bound_if;
9702 			break;	/* goto sizeof (int) option return */
9703 		case IPV6_RECVPKTINFO:
9704 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)
9705 				*i1 = 1;
9706 			else
9707 				*i1 = 0;
9708 			break;	/* goto sizeof (int) option return */
9709 		case IPV6_RECVTCLASS:
9710 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)
9711 				*i1 = 1;
9712 			else
9713 				*i1 = 0;
9714 			break;	/* goto sizeof (int) option return */
9715 		case IPV6_RECVHOPLIMIT:
9716 			if (tcp->tcp_ipv6_recvancillary &
9717 			    TCP_IPV6_RECVHOPLIMIT)
9718 				*i1 = 1;
9719 			else
9720 				*i1 = 0;
9721 			break;	/* goto sizeof (int) option return */
9722 		case IPV6_RECVHOPOPTS:
9723 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS)
9724 				*i1 = 1;
9725 			else
9726 				*i1 = 0;
9727 			break;	/* goto sizeof (int) option return */
9728 		case IPV6_RECVDSTOPTS:
9729 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS)
9730 				*i1 = 1;
9731 			else
9732 				*i1 = 0;
9733 			break;	/* goto sizeof (int) option return */
9734 		case _OLD_IPV6_RECVDSTOPTS:
9735 			if (tcp->tcp_ipv6_recvancillary &
9736 			    TCP_OLD_IPV6_RECVDSTOPTS)
9737 				*i1 = 1;
9738 			else
9739 				*i1 = 0;
9740 			break;	/* goto sizeof (int) option return */
9741 		case IPV6_RECVRTHDR:
9742 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR)
9743 				*i1 = 1;
9744 			else
9745 				*i1 = 0;
9746 			break;	/* goto sizeof (int) option return */
9747 		case IPV6_RECVRTHDRDSTOPTS:
9748 			if (tcp->tcp_ipv6_recvancillary &
9749 			    TCP_IPV6_RECVRTDSTOPTS)
9750 				*i1 = 1;
9751 			else
9752 				*i1 = 0;
9753 			break;	/* goto sizeof (int) option return */
9754 		case IPV6_PKTINFO: {
9755 			/* XXX assumes that caller has room for max size! */
9756 			struct in6_pktinfo *pkti;
9757 
9758 			pkti = (struct in6_pktinfo *)ptr;
9759 			if (ipp->ipp_fields & IPPF_IFINDEX)
9760 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
9761 			else
9762 				pkti->ipi6_ifindex = 0;
9763 			if (ipp->ipp_fields & IPPF_ADDR)
9764 				pkti->ipi6_addr = ipp->ipp_addr;
9765 			else
9766 				pkti->ipi6_addr = ipv6_all_zeros;
9767 			return (sizeof (struct in6_pktinfo));
9768 		}
9769 		case IPV6_TCLASS:
9770 			if (ipp->ipp_fields & IPPF_TCLASS)
9771 				*i1 = ipp->ipp_tclass;
9772 			else
9773 				*i1 = IPV6_FLOW_TCLASS(
9774 				    IPV6_DEFAULT_VERS_AND_FLOW);
9775 			break;	/* goto sizeof (int) option return */
9776 		case IPV6_NEXTHOP: {
9777 			sin6_t *sin6 = (sin6_t *)ptr;
9778 
9779 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
9780 				return (0);
9781 			*sin6 = sin6_null;
9782 			sin6->sin6_family = AF_INET6;
9783 			sin6->sin6_addr = ipp->ipp_nexthop;
9784 			return (sizeof (sin6_t));
9785 		}
9786 		case IPV6_HOPOPTS:
9787 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
9788 				return (0);
9789 			if (ipp->ipp_hopoptslen <= tcp->tcp_label_len)
9790 				return (0);
9791 			bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len,
9792 			    ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len);
9793 			if (tcp->tcp_label_len > 0) {
9794 				ptr[0] = ((char *)ipp->ipp_hopopts)[0];
9795 				ptr[1] = (ipp->ipp_hopoptslen -
9796 				    tcp->tcp_label_len + 7) / 8 - 1;
9797 			}
9798 			return (ipp->ipp_hopoptslen - tcp->tcp_label_len);
9799 		case IPV6_RTHDRDSTOPTS:
9800 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
9801 				return (0);
9802 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
9803 			return (ipp->ipp_rtdstoptslen);
9804 		case IPV6_RTHDR:
9805 			if (!(ipp->ipp_fields & IPPF_RTHDR))
9806 				return (0);
9807 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
9808 			return (ipp->ipp_rthdrlen);
9809 		case IPV6_DSTOPTS:
9810 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
9811 				return (0);
9812 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
9813 			return (ipp->ipp_dstoptslen);
9814 		case IPV6_SRC_PREFERENCES:
9815 			return (ip6_get_src_preferences(connp,
9816 			    (uint32_t *)ptr));
9817 		case IPV6_PATHMTU: {
9818 			struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr;
9819 
9820 			if (tcp->tcp_state < TCPS_ESTABLISHED)
9821 				return (-1);
9822 
9823 			return (ip_fill_mtuinfo(&connp->conn_remv6,
9824 			    connp->conn_fport, mtuinfo,
9825 			    connp->conn_netstack));
9826 		}
9827 		default:
9828 			return (-1);
9829 		}
9830 		break;
9831 	default:
9832 		return (-1);
9833 	}
9834 	return (sizeof (int));
9835 }
9836 
9837 /*
9838  * TCP routine to get the values of options.
9839  */
9840 int
9841 tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr)
9842 {
9843 	return (tcp_opt_get(Q_TO_CONN(q), level, name, ptr));
9844 }
9845 
9846 /* returns UNIX error, the optlen is a value-result arg */
9847 int
9848 tcp_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name,
9849     void *optvalp, socklen_t *optlen, cred_t *cr)
9850 {
9851 	conn_t		*connp = (conn_t *)proto_handle;
9852 	squeue_t	*sqp = connp->conn_sqp;
9853 	int		error;
9854 	t_uscalar_t	max_optbuf_len;
9855 	void		*optvalp_buf;
9856 	int		len;
9857 
9858 	error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len,
9859 	    tcp_opt_obj.odb_opt_des_arr,
9860 	    tcp_opt_obj.odb_opt_arr_cnt,
9861 	    tcp_opt_obj.odb_topmost_tpiprovider,
9862 	    B_FALSE, B_TRUE, cr);
9863 	if (error != 0) {
9864 		if (error < 0) {
9865 			error = proto_tlitosyserr(-error);
9866 		}
9867 		return (error);
9868 	}
9869 
9870 	optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP);
9871 
9872 	error = squeue_synch_enter(sqp, connp, 0);
9873 	if (error == ENOMEM) {
9874 		return (ENOMEM);
9875 	}
9876 
9877 	len = tcp_opt_get(connp, level, option_name, optvalp_buf);
9878 	squeue_synch_exit(sqp, connp);
9879 
9880 	if (len < 0) {
9881 		/*
9882 		 * Pass on to IP
9883 		 */
9884 		kmem_free(optvalp_buf, max_optbuf_len);
9885 		return (ip_get_options(connp, level, option_name,
9886 		    optvalp, optlen, cr));
9887 	} else {
9888 		/*
9889 		 * update optlen and copy option value
9890 		 */
9891 		t_uscalar_t size = MIN(len, *optlen);
9892 		bcopy(optvalp_buf, optvalp, size);
9893 		bcopy(&size, optlen, sizeof (size));
9894 
9895 		kmem_free(optvalp_buf, max_optbuf_len);
9896 		return (0);
9897 	}
9898 }
9899 
9900 /*
9901  * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements.
9902  * Parameters are assumed to be verified by the caller.
9903  */
9904 /* ARGSUSED */
9905 int
9906 tcp_opt_set(conn_t *connp, uint_t optset_context, int level, int name,
9907     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
9908     void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
9909 {
9910 	tcp_t	*tcp = connp->conn_tcp;
9911 	int	*i1 = (int *)invalp;
9912 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
9913 	boolean_t checkonly;
9914 	int	reterr;
9915 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9916 
9917 	switch (optset_context) {
9918 	case SETFN_OPTCOM_CHECKONLY:
9919 		checkonly = B_TRUE;
9920 		/*
9921 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
9922 		 * inlen != 0 implies value supplied and
9923 		 * 	we have to "pretend" to set it.
9924 		 * inlen == 0 implies that there is no
9925 		 * 	value part in T_CHECK request and just validation
9926 		 * done elsewhere should be enough, we just return here.
9927 		 */
9928 		if (inlen == 0) {
9929 			*outlenp = 0;
9930 			return (0);
9931 		}
9932 		break;
9933 	case SETFN_OPTCOM_NEGOTIATE:
9934 		checkonly = B_FALSE;
9935 		break;
9936 	case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */
9937 	case SETFN_CONN_NEGOTIATE:
9938 		checkonly = B_FALSE;
9939 		/*
9940 		 * Negotiating local and "association-related" options
9941 		 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ)
9942 		 * primitives is allowed by XTI, but we choose
9943 		 * to not implement this style negotiation for Internet
9944 		 * protocols (We interpret it is a must for OSI world but
9945 		 * optional for Internet protocols) for all options.
9946 		 * [ Will do only for the few options that enable test
9947 		 * suites that our XTI implementation of this feature
9948 		 * works for transports that do allow it ]
9949 		 */
9950 		if (!tcp_allow_connopt_set(level, name)) {
9951 			*outlenp = 0;
9952 			return (EINVAL);
9953 		}
9954 		break;
9955 	default:
9956 		/*
9957 		 * We should never get here
9958 		 */
9959 		*outlenp = 0;
9960 		return (EINVAL);
9961 	}
9962 
9963 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
9964 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
9965 
9966 	/*
9967 	 * For TCP, we should have no ancillary data sent down
9968 	 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs
9969 	 * has to be zero.
9970 	 */
9971 	ASSERT(thisdg_attrs == NULL);
9972 
9973 	/*
9974 	 * For fixed length options, no sanity check
9975 	 * of passed in length is done. It is assumed *_optcom_req()
9976 	 * routines do the right thing.
9977 	 */
9978 	switch (level) {
9979 	case SOL_SOCKET:
9980 		switch (name) {
9981 		case SO_LINGER: {
9982 			struct linger *lgr = (struct linger *)invalp;
9983 
9984 			if (!checkonly) {
9985 				if (lgr->l_onoff) {
9986 					tcp->tcp_linger = 1;
9987 					tcp->tcp_lingertime = lgr->l_linger;
9988 				} else {
9989 					tcp->tcp_linger = 0;
9990 					tcp->tcp_lingertime = 0;
9991 				}
9992 				/* struct copy */
9993 				*(struct linger *)outvalp = *lgr;
9994 			} else {
9995 				if (!lgr->l_onoff) {
9996 					((struct linger *)
9997 					    outvalp)->l_onoff = 0;
9998 					((struct linger *)
9999 					    outvalp)->l_linger = 0;
10000 				} else {
10001 					/* struct copy */
10002 					*(struct linger *)outvalp = *lgr;
10003 				}
10004 			}
10005 			*outlenp = sizeof (struct linger);
10006 			return (0);
10007 		}
10008 		case SO_DEBUG:
10009 			if (!checkonly)
10010 				tcp->tcp_debug = onoff;
10011 			break;
10012 		case SO_KEEPALIVE:
10013 			if (checkonly) {
10014 				/* check only case */
10015 				break;
10016 			}
10017 
10018 			if (!onoff) {
10019 				if (tcp->tcp_ka_enabled) {
10020 					if (tcp->tcp_ka_tid != 0) {
10021 						(void) TCP_TIMER_CANCEL(tcp,
10022 						    tcp->tcp_ka_tid);
10023 						tcp->tcp_ka_tid = 0;
10024 					}
10025 					tcp->tcp_ka_enabled = 0;
10026 				}
10027 				break;
10028 			}
10029 			if (!tcp->tcp_ka_enabled) {
10030 				/* Crank up the keepalive timer */
10031 				tcp->tcp_ka_last_intrvl = 0;
10032 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
10033 				    tcp_keepalive_killer,
10034 				    MSEC_TO_TICK(tcp->tcp_ka_interval));
10035 				tcp->tcp_ka_enabled = 1;
10036 			}
10037 			break;
10038 		case SO_DONTROUTE:
10039 			/*
10040 			 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are
10041 			 * only of interest to IP.  We track them here only so
10042 			 * that we can report their current value.
10043 			 */
10044 			if (!checkonly) {
10045 				tcp->tcp_dontroute = onoff;
10046 				tcp->tcp_connp->conn_dontroute = onoff;
10047 			}
10048 			break;
10049 		case SO_USELOOPBACK:
10050 			if (!checkonly) {
10051 				tcp->tcp_useloopback = onoff;
10052 				tcp->tcp_connp->conn_loopback = onoff;
10053 			}
10054 			break;
10055 		case SO_BROADCAST:
10056 			if (!checkonly) {
10057 				tcp->tcp_broadcast = onoff;
10058 				tcp->tcp_connp->conn_broadcast = onoff;
10059 			}
10060 			break;
10061 		case SO_REUSEADDR:
10062 			if (!checkonly) {
10063 				tcp->tcp_reuseaddr = onoff;
10064 				tcp->tcp_connp->conn_reuseaddr = onoff;
10065 			}
10066 			break;
10067 		case SO_OOBINLINE:
10068 			if (!checkonly) {
10069 				tcp->tcp_oobinline = onoff;
10070 				if (IPCL_IS_NONSTR(tcp->tcp_connp))
10071 					proto_set_rx_oob_opt(connp, onoff);
10072 			}
10073 			break;
10074 		case SO_DGRAM_ERRIND:
10075 			if (!checkonly)
10076 				tcp->tcp_dgram_errind = onoff;
10077 			break;
10078 		case SO_SNDBUF: {
10079 			if (*i1 > tcps->tcps_max_buf) {
10080 				*outlenp = 0;
10081 				return (ENOBUFS);
10082 			}
10083 			if (checkonly)
10084 				break;
10085 
10086 			tcp->tcp_xmit_hiwater = *i1;
10087 			if (tcps->tcps_snd_lowat_fraction != 0)
10088 				tcp->tcp_xmit_lowater =
10089 				    tcp->tcp_xmit_hiwater /
10090 				    tcps->tcps_snd_lowat_fraction;
10091 			(void) tcp_maxpsz_set(tcp, B_TRUE);
10092 			/*
10093 			 * If we are flow-controlled, recheck the condition.
10094 			 * There are apps that increase SO_SNDBUF size when
10095 			 * flow-controlled (EWOULDBLOCK), and expect the flow
10096 			 * control condition to be lifted right away.
10097 			 */
10098 			mutex_enter(&tcp->tcp_non_sq_lock);
10099 			if (tcp->tcp_flow_stopped &&
10100 			    TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) {
10101 				tcp_clrqfull(tcp);
10102 			}
10103 			mutex_exit(&tcp->tcp_non_sq_lock);
10104 			break;
10105 		}
10106 		case SO_RCVBUF:
10107 			if (*i1 > tcps->tcps_max_buf) {
10108 				*outlenp = 0;
10109 				return (ENOBUFS);
10110 			}
10111 			/* Silently ignore zero */
10112 			if (!checkonly && *i1 != 0) {
10113 				*i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss);
10114 				(void) tcp_rwnd_set(tcp, *i1);
10115 			}
10116 			/*
10117 			 * XXX should we return the rwnd here
10118 			 * and tcp_opt_get ?
10119 			 */
10120 			break;
10121 		case SO_SND_COPYAVOID:
10122 			if (!checkonly) {
10123 				/* we only allow enable at most once for now */
10124 				if (tcp->tcp_loopback ||
10125 				    (tcp->tcp_kssl_ctx != NULL) ||
10126 				    (!tcp->tcp_snd_zcopy_aware &&
10127 				    (onoff != 1 || !tcp_zcopy_check(tcp)))) {
10128 					*outlenp = 0;
10129 					return (EOPNOTSUPP);
10130 				}
10131 				tcp->tcp_snd_zcopy_aware = 1;
10132 			}
10133 			break;
10134 		case SO_RCVTIMEO:
10135 		case SO_SNDTIMEO:
10136 			/*
10137 			 * Pass these two options in order for third part
10138 			 * protocol usage. Here just return directly.
10139 			 */
10140 			return (0);
10141 		case SO_ALLZONES:
10142 			/* Pass option along to IP level for handling */
10143 			return (-EINVAL);
10144 		case SO_ANON_MLP:
10145 			/* Pass option along to IP level for handling */
10146 			return (-EINVAL);
10147 		case SO_MAC_EXEMPT:
10148 			/* Pass option along to IP level for handling */
10149 			return (-EINVAL);
10150 		case SO_EXCLBIND:
10151 			if (!checkonly)
10152 				tcp->tcp_exclbind = onoff;
10153 			break;
10154 		default:
10155 			*outlenp = 0;
10156 			return (EINVAL);
10157 		}
10158 		break;
10159 	case IPPROTO_TCP:
10160 		switch (name) {
10161 		case TCP_NODELAY:
10162 			if (!checkonly)
10163 				tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss;
10164 			break;
10165 		case TCP_NOTIFY_THRESHOLD:
10166 			if (!checkonly)
10167 				tcp->tcp_first_timer_threshold = *i1;
10168 			break;
10169 		case TCP_ABORT_THRESHOLD:
10170 			if (!checkonly)
10171 				tcp->tcp_second_timer_threshold = *i1;
10172 			break;
10173 		case TCP_CONN_NOTIFY_THRESHOLD:
10174 			if (!checkonly)
10175 				tcp->tcp_first_ctimer_threshold = *i1;
10176 			break;
10177 		case TCP_CONN_ABORT_THRESHOLD:
10178 			if (!checkonly)
10179 				tcp->tcp_second_ctimer_threshold = *i1;
10180 			break;
10181 		case TCP_RECVDSTADDR:
10182 			if (tcp->tcp_state > TCPS_LISTEN)
10183 				return (EOPNOTSUPP);
10184 			if (!checkonly)
10185 				tcp->tcp_recvdstaddr = onoff;
10186 			break;
10187 		case TCP_ANONPRIVBIND:
10188 			if ((reterr = secpolicy_net_privaddr(cr, 0,
10189 			    IPPROTO_TCP)) != 0) {
10190 				*outlenp = 0;
10191 				return (reterr);
10192 			}
10193 			if (!checkonly) {
10194 				tcp->tcp_anon_priv_bind = onoff;
10195 			}
10196 			break;
10197 		case TCP_EXCLBIND:
10198 			if (!checkonly)
10199 				tcp->tcp_exclbind = onoff;
10200 			break;	/* goto sizeof (int) option return */
10201 		case TCP_INIT_CWND: {
10202 			uint32_t init_cwnd = *((uint32_t *)invalp);
10203 
10204 			if (checkonly)
10205 				break;
10206 
10207 			/*
10208 			 * Only allow socket with network configuration
10209 			 * privilege to set the initial cwnd to be larger
10210 			 * than allowed by RFC 3390.
10211 			 */
10212 			if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) {
10213 				tcp->tcp_init_cwnd = init_cwnd;
10214 				break;
10215 			}
10216 			if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) {
10217 				*outlenp = 0;
10218 				return (reterr);
10219 			}
10220 			if (init_cwnd > TCP_MAX_INIT_CWND) {
10221 				*outlenp = 0;
10222 				return (EINVAL);
10223 			}
10224 			tcp->tcp_init_cwnd = init_cwnd;
10225 			break;
10226 		}
10227 		case TCP_KEEPALIVE_THRESHOLD:
10228 			if (checkonly)
10229 				break;
10230 
10231 			if (*i1 < tcps->tcps_keepalive_interval_low ||
10232 			    *i1 > tcps->tcps_keepalive_interval_high) {
10233 				*outlenp = 0;
10234 				return (EINVAL);
10235 			}
10236 			if (*i1 != tcp->tcp_ka_interval) {
10237 				tcp->tcp_ka_interval = *i1;
10238 				/*
10239 				 * Check if we need to restart the
10240 				 * keepalive timer.
10241 				 */
10242 				if (tcp->tcp_ka_tid != 0) {
10243 					ASSERT(tcp->tcp_ka_enabled);
10244 					(void) TCP_TIMER_CANCEL(tcp,
10245 					    tcp->tcp_ka_tid);
10246 					tcp->tcp_ka_last_intrvl = 0;
10247 					tcp->tcp_ka_tid = TCP_TIMER(tcp,
10248 					    tcp_keepalive_killer,
10249 					    MSEC_TO_TICK(tcp->tcp_ka_interval));
10250 				}
10251 			}
10252 			break;
10253 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10254 			if (!checkonly) {
10255 				if (*i1 <
10256 				    tcps->tcps_keepalive_abort_interval_low ||
10257 				    *i1 >
10258 				    tcps->tcps_keepalive_abort_interval_high) {
10259 					*outlenp = 0;
10260 					return (EINVAL);
10261 				}
10262 				tcp->tcp_ka_abort_thres = *i1;
10263 			}
10264 			break;
10265 		case TCP_CORK:
10266 			if (!checkonly) {
10267 				/*
10268 				 * if tcp->tcp_cork was set and is now
10269 				 * being unset, we have to make sure that
10270 				 * the remaining data gets sent out. Also
10271 				 * unset tcp->tcp_cork so that tcp_wput_data()
10272 				 * can send data even if it is less than mss
10273 				 */
10274 				if (tcp->tcp_cork && onoff == 0 &&
10275 				    tcp->tcp_unsent > 0) {
10276 					tcp->tcp_cork = B_FALSE;
10277 					tcp_wput_data(tcp, NULL, B_FALSE);
10278 				}
10279 				tcp->tcp_cork = onoff;
10280 			}
10281 			break;
10282 		default:
10283 			*outlenp = 0;
10284 			return (EINVAL);
10285 		}
10286 		break;
10287 	case IPPROTO_IP:
10288 		if (tcp->tcp_family != AF_INET) {
10289 			*outlenp = 0;
10290 			return (ENOPROTOOPT);
10291 		}
10292 		switch (name) {
10293 		case IP_OPTIONS:
10294 		case T_IP_OPTIONS:
10295 			reterr = tcp_opt_set_header(tcp, checkonly,
10296 			    invalp, inlen);
10297 			if (reterr) {
10298 				*outlenp = 0;
10299 				return (reterr);
10300 			}
10301 			/* OK return - copy input buffer into output buffer */
10302 			if (invalp != outvalp) {
10303 				/* don't trust bcopy for identical src/dst */
10304 				bcopy(invalp, outvalp, inlen);
10305 			}
10306 			*outlenp = inlen;
10307 			return (0);
10308 		case IP_TOS:
10309 		case T_IP_TOS:
10310 			if (!checkonly) {
10311 				tcp->tcp_ipha->ipha_type_of_service =
10312 				    (uchar_t)*i1;
10313 				tcp->tcp_tos = (uchar_t)*i1;
10314 			}
10315 			break;
10316 		case IP_TTL:
10317 			if (!checkonly) {
10318 				tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1;
10319 				tcp->tcp_ttl = (uchar_t)*i1;
10320 			}
10321 			break;
10322 		case IP_BOUND_IF:
10323 		case IP_NEXTHOP:
10324 			/* Handled at the IP level */
10325 			return (-EINVAL);
10326 		case IP_SEC_OPT:
10327 			/*
10328 			 * We should not allow policy setting after
10329 			 * we start listening for connections.
10330 			 */
10331 			if (tcp->tcp_state == TCPS_LISTEN) {
10332 				return (EINVAL);
10333 			} else {
10334 				/* Handled at the IP level */
10335 				return (-EINVAL);
10336 			}
10337 		default:
10338 			*outlenp = 0;
10339 			return (EINVAL);
10340 		}
10341 		break;
10342 	case IPPROTO_IPV6: {
10343 		ip6_pkt_t		*ipp;
10344 
10345 		/*
10346 		 * IPPROTO_IPV6 options are only supported for sockets
10347 		 * that are using IPv6 on the wire.
10348 		 */
10349 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10350 			*outlenp = 0;
10351 			return (ENOPROTOOPT);
10352 		}
10353 		/*
10354 		 * Only sticky options; no ancillary data
10355 		 */
10356 		ipp = &tcp->tcp_sticky_ipp;
10357 
10358 		switch (name) {
10359 		case IPV6_UNICAST_HOPS:
10360 			/* -1 means use default */
10361 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
10362 				*outlenp = 0;
10363 				return (EINVAL);
10364 			}
10365 			if (!checkonly) {
10366 				if (*i1 == -1) {
10367 					tcp->tcp_ip6h->ip6_hops =
10368 					    ipp->ipp_unicast_hops =
10369 					    (uint8_t)tcps->tcps_ipv6_hoplimit;
10370 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
10371 					/* Pass modified value to IP. */
10372 					*i1 = tcp->tcp_ip6h->ip6_hops;
10373 				} else {
10374 					tcp->tcp_ip6h->ip6_hops =
10375 					    ipp->ipp_unicast_hops =
10376 					    (uint8_t)*i1;
10377 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
10378 				}
10379 				reterr = tcp_build_hdrs(tcp);
10380 				if (reterr != 0)
10381 					return (reterr);
10382 			}
10383 			break;
10384 		case IPV6_BOUND_IF:
10385 			if (!checkonly) {
10386 				tcp->tcp_bound_if = *i1;
10387 				PASS_OPT_TO_IP(connp);
10388 			}
10389 			break;
10390 		/*
10391 		 * Set boolean switches for ancillary data delivery
10392 		 */
10393 		case IPV6_RECVPKTINFO:
10394 			if (!checkonly) {
10395 				if (onoff)
10396 					tcp->tcp_ipv6_recvancillary |=
10397 					    TCP_IPV6_RECVPKTINFO;
10398 				else
10399 					tcp->tcp_ipv6_recvancillary &=
10400 					    ~TCP_IPV6_RECVPKTINFO;
10401 				/* Force it to be sent up with the next msg */
10402 				tcp->tcp_recvifindex = 0;
10403 				PASS_OPT_TO_IP(connp);
10404 			}
10405 			break;
10406 		case IPV6_RECVTCLASS:
10407 			if (!checkonly) {
10408 				if (onoff)
10409 					tcp->tcp_ipv6_recvancillary |=
10410 					    TCP_IPV6_RECVTCLASS;
10411 				else
10412 					tcp->tcp_ipv6_recvancillary &=
10413 					    ~TCP_IPV6_RECVTCLASS;
10414 				PASS_OPT_TO_IP(connp);
10415 			}
10416 			break;
10417 		case IPV6_RECVHOPLIMIT:
10418 			if (!checkonly) {
10419 				if (onoff)
10420 					tcp->tcp_ipv6_recvancillary |=
10421 					    TCP_IPV6_RECVHOPLIMIT;
10422 				else
10423 					tcp->tcp_ipv6_recvancillary &=
10424 					    ~TCP_IPV6_RECVHOPLIMIT;
10425 				/* Force it to be sent up with the next msg */
10426 				tcp->tcp_recvhops = 0xffffffffU;
10427 				PASS_OPT_TO_IP(connp);
10428 			}
10429 			break;
10430 		case IPV6_RECVHOPOPTS:
10431 			if (!checkonly) {
10432 				if (onoff)
10433 					tcp->tcp_ipv6_recvancillary |=
10434 					    TCP_IPV6_RECVHOPOPTS;
10435 				else
10436 					tcp->tcp_ipv6_recvancillary &=
10437 					    ~TCP_IPV6_RECVHOPOPTS;
10438 				PASS_OPT_TO_IP(connp);
10439 			}
10440 			break;
10441 		case IPV6_RECVDSTOPTS:
10442 			if (!checkonly) {
10443 				if (onoff)
10444 					tcp->tcp_ipv6_recvancillary |=
10445 					    TCP_IPV6_RECVDSTOPTS;
10446 				else
10447 					tcp->tcp_ipv6_recvancillary &=
10448 					    ~TCP_IPV6_RECVDSTOPTS;
10449 				PASS_OPT_TO_IP(connp);
10450 			}
10451 			break;
10452 		case _OLD_IPV6_RECVDSTOPTS:
10453 			if (!checkonly) {
10454 				if (onoff)
10455 					tcp->tcp_ipv6_recvancillary |=
10456 					    TCP_OLD_IPV6_RECVDSTOPTS;
10457 				else
10458 					tcp->tcp_ipv6_recvancillary &=
10459 					    ~TCP_OLD_IPV6_RECVDSTOPTS;
10460 			}
10461 			break;
10462 		case IPV6_RECVRTHDR:
10463 			if (!checkonly) {
10464 				if (onoff)
10465 					tcp->tcp_ipv6_recvancillary |=
10466 					    TCP_IPV6_RECVRTHDR;
10467 				else
10468 					tcp->tcp_ipv6_recvancillary &=
10469 					    ~TCP_IPV6_RECVRTHDR;
10470 				PASS_OPT_TO_IP(connp);
10471 			}
10472 			break;
10473 		case IPV6_RECVRTHDRDSTOPTS:
10474 			if (!checkonly) {
10475 				if (onoff)
10476 					tcp->tcp_ipv6_recvancillary |=
10477 					    TCP_IPV6_RECVRTDSTOPTS;
10478 				else
10479 					tcp->tcp_ipv6_recvancillary &=
10480 					    ~TCP_IPV6_RECVRTDSTOPTS;
10481 				PASS_OPT_TO_IP(connp);
10482 			}
10483 			break;
10484 		case IPV6_PKTINFO:
10485 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
10486 				return (EINVAL);
10487 			if (checkonly)
10488 				break;
10489 
10490 			if (inlen == 0) {
10491 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
10492 			} else {
10493 				struct in6_pktinfo *pkti;
10494 
10495 				pkti = (struct in6_pktinfo *)invalp;
10496 				/*
10497 				 * RFC 3542 states that ipi6_addr must be
10498 				 * the unspecified address when setting the
10499 				 * IPV6_PKTINFO sticky socket option on a
10500 				 * TCP socket.
10501 				 */
10502 				if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr))
10503 					return (EINVAL);
10504 				/*
10505 				 * IP will validate the source address and
10506 				 * interface index.
10507 				 */
10508 				if (IPCL_IS_NONSTR(tcp->tcp_connp)) {
10509 					reterr = ip_set_options(tcp->tcp_connp,
10510 					    level, name, invalp, inlen, cr);
10511 				} else {
10512 					reterr = ip6_set_pktinfo(cr,
10513 					    tcp->tcp_connp, pkti, mblk);
10514 				}
10515 				if (reterr != 0)
10516 					return (reterr);
10517 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
10518 				ipp->ipp_addr = pkti->ipi6_addr;
10519 				if (ipp->ipp_ifindex != 0)
10520 					ipp->ipp_fields |= IPPF_IFINDEX;
10521 				else
10522 					ipp->ipp_fields &= ~IPPF_IFINDEX;
10523 				if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr))
10524 					ipp->ipp_fields |= IPPF_ADDR;
10525 				else
10526 					ipp->ipp_fields &= ~IPPF_ADDR;
10527 			}
10528 			reterr = tcp_build_hdrs(tcp);
10529 			if (reterr != 0)
10530 				return (reterr);
10531 			break;
10532 		case IPV6_TCLASS:
10533 			if (inlen != 0 && inlen != sizeof (int))
10534 				return (EINVAL);
10535 			if (checkonly)
10536 				break;
10537 
10538 			if (inlen == 0) {
10539 				ipp->ipp_fields &= ~IPPF_TCLASS;
10540 			} else {
10541 				if (*i1 > 255 || *i1 < -1)
10542 					return (EINVAL);
10543 				if (*i1 == -1) {
10544 					ipp->ipp_tclass = 0;
10545 					*i1 = 0;
10546 				} else {
10547 					ipp->ipp_tclass = *i1;
10548 				}
10549 				ipp->ipp_fields |= IPPF_TCLASS;
10550 			}
10551 			reterr = tcp_build_hdrs(tcp);
10552 			if (reterr != 0)
10553 				return (reterr);
10554 			break;
10555 		case IPV6_NEXTHOP:
10556 			/*
10557 			 * IP will verify that the nexthop is reachable
10558 			 * and fail for sticky options.
10559 			 */
10560 			if (inlen != 0 && inlen != sizeof (sin6_t))
10561 				return (EINVAL);
10562 			if (checkonly)
10563 				break;
10564 
10565 			if (inlen == 0) {
10566 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
10567 			} else {
10568 				sin6_t *sin6 = (sin6_t *)invalp;
10569 
10570 				if (sin6->sin6_family != AF_INET6)
10571 					return (EAFNOSUPPORT);
10572 				if (IN6_IS_ADDR_V4MAPPED(
10573 				    &sin6->sin6_addr))
10574 					return (EADDRNOTAVAIL);
10575 				ipp->ipp_nexthop = sin6->sin6_addr;
10576 				if (!IN6_IS_ADDR_UNSPECIFIED(
10577 				    &ipp->ipp_nexthop))
10578 					ipp->ipp_fields |= IPPF_NEXTHOP;
10579 				else
10580 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
10581 			}
10582 			reterr = tcp_build_hdrs(tcp);
10583 			if (reterr != 0)
10584 				return (reterr);
10585 			PASS_OPT_TO_IP(connp);
10586 			break;
10587 		case IPV6_HOPOPTS: {
10588 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
10589 
10590 			/*
10591 			 * Sanity checks - minimum size, size a multiple of
10592 			 * eight bytes, and matching size passed in.
10593 			 */
10594 			if (inlen != 0 &&
10595 			    inlen != (8 * (hopts->ip6h_len + 1)))
10596 				return (EINVAL);
10597 
10598 			if (checkonly)
10599 				break;
10600 
10601 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10602 			    (uchar_t **)&ipp->ipp_hopopts,
10603 			    &ipp->ipp_hopoptslen, tcp->tcp_label_len);
10604 			if (reterr != 0)
10605 				return (reterr);
10606 			if (ipp->ipp_hopoptslen == 0)
10607 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
10608 			else
10609 				ipp->ipp_fields |= IPPF_HOPOPTS;
10610 			reterr = tcp_build_hdrs(tcp);
10611 			if (reterr != 0)
10612 				return (reterr);
10613 			break;
10614 		}
10615 		case IPV6_RTHDRDSTOPTS: {
10616 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10617 
10618 			/*
10619 			 * Sanity checks - minimum size, size a multiple of
10620 			 * eight bytes, and matching size passed in.
10621 			 */
10622 			if (inlen != 0 &&
10623 			    inlen != (8 * (dopts->ip6d_len + 1)))
10624 				return (EINVAL);
10625 
10626 			if (checkonly)
10627 				break;
10628 
10629 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10630 			    (uchar_t **)&ipp->ipp_rtdstopts,
10631 			    &ipp->ipp_rtdstoptslen, 0);
10632 			if (reterr != 0)
10633 				return (reterr);
10634 			if (ipp->ipp_rtdstoptslen == 0)
10635 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
10636 			else
10637 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
10638 			reterr = tcp_build_hdrs(tcp);
10639 			if (reterr != 0)
10640 				return (reterr);
10641 			break;
10642 		}
10643 		case IPV6_DSTOPTS: {
10644 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10645 
10646 			/*
10647 			 * Sanity checks - minimum size, size a multiple of
10648 			 * eight bytes, and matching size passed in.
10649 			 */
10650 			if (inlen != 0 &&
10651 			    inlen != (8 * (dopts->ip6d_len + 1)))
10652 				return (EINVAL);
10653 
10654 			if (checkonly)
10655 				break;
10656 
10657 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10658 			    (uchar_t **)&ipp->ipp_dstopts,
10659 			    &ipp->ipp_dstoptslen, 0);
10660 			if (reterr != 0)
10661 				return (reterr);
10662 			if (ipp->ipp_dstoptslen == 0)
10663 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
10664 			else
10665 				ipp->ipp_fields |= IPPF_DSTOPTS;
10666 			reterr = tcp_build_hdrs(tcp);
10667 			if (reterr != 0)
10668 				return (reterr);
10669 			break;
10670 		}
10671 		case IPV6_RTHDR: {
10672 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
10673 
10674 			/*
10675 			 * Sanity checks - minimum size, size a multiple of
10676 			 * eight bytes, and matching size passed in.
10677 			 */
10678 			if (inlen != 0 &&
10679 			    inlen != (8 * (rt->ip6r_len + 1)))
10680 				return (EINVAL);
10681 
10682 			if (checkonly)
10683 				break;
10684 
10685 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10686 			    (uchar_t **)&ipp->ipp_rthdr,
10687 			    &ipp->ipp_rthdrlen, 0);
10688 			if (reterr != 0)
10689 				return (reterr);
10690 			if (ipp->ipp_rthdrlen == 0)
10691 				ipp->ipp_fields &= ~IPPF_RTHDR;
10692 			else
10693 				ipp->ipp_fields |= IPPF_RTHDR;
10694 			reterr = tcp_build_hdrs(tcp);
10695 			if (reterr != 0)
10696 				return (reterr);
10697 			break;
10698 		}
10699 		case IPV6_V6ONLY:
10700 			if (!checkonly) {
10701 				tcp->tcp_connp->conn_ipv6_v6only = onoff;
10702 			}
10703 			break;
10704 		case IPV6_USE_MIN_MTU:
10705 			if (inlen != sizeof (int))
10706 				return (EINVAL);
10707 
10708 			if (*i1 < -1 || *i1 > 1)
10709 				return (EINVAL);
10710 
10711 			if (checkonly)
10712 				break;
10713 
10714 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
10715 			ipp->ipp_use_min_mtu = *i1;
10716 			break;
10717 		case IPV6_SEC_OPT:
10718 			/*
10719 			 * We should not allow policy setting after
10720 			 * we start listening for connections.
10721 			 */
10722 			if (tcp->tcp_state == TCPS_LISTEN) {
10723 				return (EINVAL);
10724 			} else {
10725 				/* Handled at the IP level */
10726 				return (-EINVAL);
10727 			}
10728 		case IPV6_SRC_PREFERENCES:
10729 			if (inlen != sizeof (uint32_t))
10730 				return (EINVAL);
10731 			reterr = ip6_set_src_preferences(tcp->tcp_connp,
10732 			    *(uint32_t *)invalp);
10733 			if (reterr != 0) {
10734 				*outlenp = 0;
10735 				return (reterr);
10736 			}
10737 			break;
10738 		default:
10739 			*outlenp = 0;
10740 			return (EINVAL);
10741 		}
10742 		break;
10743 	}		/* end IPPROTO_IPV6 */
10744 	default:
10745 		*outlenp = 0;
10746 		return (EINVAL);
10747 	}
10748 	/*
10749 	 * Common case of OK return with outval same as inval
10750 	 */
10751 	if (invalp != outvalp) {
10752 		/* don't trust bcopy for identical src/dst */
10753 		(void) bcopy(invalp, outvalp, inlen);
10754 	}
10755 	*outlenp = inlen;
10756 	return (0);
10757 }
10758 
10759 /* ARGSUSED */
10760 int
10761 tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, int name,
10762     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
10763     void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
10764 {
10765 	conn_t	*connp =  Q_TO_CONN(q);
10766 
10767 	return (tcp_opt_set(connp, optset_context, level, name, inlen, invalp,
10768 	    outlenp, outvalp, thisdg_attrs, cr, mblk));
10769 }
10770 
10771 int
10772 tcp_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name,
10773     const void *optvalp, socklen_t optlen, cred_t *cr)
10774 {
10775 	conn_t		*connp = (conn_t *)proto_handle;
10776 	squeue_t	*sqp = connp->conn_sqp;
10777 	int		error;
10778 
10779 	/*
10780 	 * Entering the squeue synchronously can result in a context switch,
10781 	 * which can cause a rather sever performance degradation. So we try to
10782 	 * handle whatever options we can without entering the squeue.
10783 	 */
10784 	if (level == IPPROTO_TCP) {
10785 		switch (option_name) {
10786 		case TCP_NODELAY:
10787 			if (optlen != sizeof (int32_t))
10788 				return (EINVAL);
10789 			mutex_enter(&connp->conn_tcp->tcp_non_sq_lock);
10790 			connp->conn_tcp->tcp_naglim = *(int *)optvalp ? 1 :
10791 			    connp->conn_tcp->tcp_mss;
10792 			mutex_exit(&connp->conn_tcp->tcp_non_sq_lock);
10793 			return (0);
10794 		default:
10795 			break;
10796 		}
10797 	}
10798 
10799 	error = squeue_synch_enter(sqp, connp, 0);
10800 	if (error == ENOMEM) {
10801 		return (ENOMEM);
10802 	}
10803 
10804 	error = proto_opt_check(level, option_name, optlen, NULL,
10805 	    tcp_opt_obj.odb_opt_des_arr,
10806 	    tcp_opt_obj.odb_opt_arr_cnt,
10807 	    tcp_opt_obj.odb_topmost_tpiprovider,
10808 	    B_TRUE, B_FALSE, cr);
10809 
10810 	if (error != 0) {
10811 		if (error < 0) {
10812 			error = proto_tlitosyserr(-error);
10813 		}
10814 		squeue_synch_exit(sqp, connp);
10815 		return (error);
10816 	}
10817 
10818 	error = tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name,
10819 	    optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp,
10820 	    NULL, cr, NULL);
10821 	squeue_synch_exit(sqp, connp);
10822 
10823 	if (error < 0) {
10824 		/*
10825 		 * Pass on to ip
10826 		 */
10827 		error = ip_set_options(connp, level, option_name, optvalp,
10828 		    optlen, cr);
10829 	}
10830 	return (error);
10831 }
10832 
10833 /*
10834  * Update tcp_sticky_hdrs based on tcp_sticky_ipp.
10835  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
10836  * headers, and the maximum size tcp header (to avoid reallocation
10837  * on the fly for additional tcp options).
10838  * Returns failure if can't allocate memory.
10839  */
10840 static int
10841 tcp_build_hdrs(tcp_t *tcp)
10842 {
10843 	char	*hdrs;
10844 	uint_t	hdrs_len;
10845 	ip6i_t	*ip6i;
10846 	char	buf[TCP_MAX_HDR_LENGTH];
10847 	ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
10848 	in6_addr_t src, dst;
10849 	tcp_stack_t	*tcps = tcp->tcp_tcps;
10850 	conn_t *connp = tcp->tcp_connp;
10851 
10852 	/*
10853 	 * save the existing tcp header and source/dest IP addresses
10854 	 */
10855 	bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len);
10856 	src = tcp->tcp_ip6h->ip6_src;
10857 	dst = tcp->tcp_ip6h->ip6_dst;
10858 	hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH;
10859 	ASSERT(hdrs_len != 0);
10860 	if (hdrs_len > tcp->tcp_iphc_len) {
10861 		/* Need to reallocate */
10862 		hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP);
10863 		if (hdrs == NULL)
10864 			return (ENOMEM);
10865 		if (tcp->tcp_iphc != NULL) {
10866 			if (tcp->tcp_hdr_grown) {
10867 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
10868 			} else {
10869 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
10870 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
10871 			}
10872 			tcp->tcp_iphc_len = 0;
10873 		}
10874 		ASSERT(tcp->tcp_iphc_len == 0);
10875 		tcp->tcp_iphc = hdrs;
10876 		tcp->tcp_iphc_len = hdrs_len;
10877 		tcp->tcp_hdr_grown = B_TRUE;
10878 	}
10879 	ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc,
10880 	    hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP);
10881 
10882 	/* Set header fields not in ipp */
10883 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
10884 		ip6i = (ip6i_t *)tcp->tcp_iphc;
10885 		tcp->tcp_ip6h = (ip6_t *)&ip6i[1];
10886 	} else {
10887 		tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
10888 	}
10889 	/*
10890 	 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one.
10891 	 *
10892 	 * tcp->tcp_tcp_hdr_len doesn't change here.
10893 	 */
10894 	tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH;
10895 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len);
10896 	tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len;
10897 
10898 	bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len);
10899 
10900 	tcp->tcp_ip6h->ip6_src = src;
10901 	tcp->tcp_ip6h->ip6_dst = dst;
10902 
10903 	/*
10904 	 * If the hop limit was not set by ip_build_hdrs_v6(), set it to
10905 	 * the default value for TCP.
10906 	 */
10907 	if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS))
10908 		tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit;
10909 
10910 	/*
10911 	 * If we're setting extension headers after a connection
10912 	 * has been established, and if we have a routing header
10913 	 * among the extension headers, call ip_massage_options_v6 to
10914 	 * manipulate the routing header/ip6_dst set the checksum
10915 	 * difference in the tcp header template.
10916 	 * (This happens in tcp_connect_ipv6 if the routing header
10917 	 * is set prior to the connect.)
10918 	 * Set the tcp_sum to zero first in case we've cleared a
10919 	 * routing header or don't have one at all.
10920 	 */
10921 	tcp->tcp_sum = 0;
10922 	if ((tcp->tcp_state >= TCPS_SYN_SENT) &&
10923 	    (tcp->tcp_ipp_fields & IPPF_RTHDR)) {
10924 		ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h,
10925 		    (uint8_t *)tcp->tcp_tcph);
10926 		if (rth != NULL) {
10927 			tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h,
10928 			    rth, tcps->tcps_netstack);
10929 			tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
10930 			    (tcp->tcp_sum >> 16));
10931 		}
10932 	}
10933 
10934 	/* Try to get everything in a single mblk */
10935 	(void) proto_set_tx_wroff(tcp->tcp_rq, connp,
10936 	    hdrs_len + tcps->tcps_wroff_xtra);
10937 	return (0);
10938 }
10939 
10940 /*
10941  * Transfer any source route option from ipha to buf/dst in reversed form.
10942  */
10943 static int
10944 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst)
10945 {
10946 	ipoptp_t	opts;
10947 	uchar_t		*opt;
10948 	uint8_t		optval;
10949 	uint8_t		optlen;
10950 	uint32_t	len = 0;
10951 
10952 	for (optval = ipoptp_first(&opts, ipha);
10953 	    optval != IPOPT_EOL;
10954 	    optval = ipoptp_next(&opts)) {
10955 		opt = opts.ipoptp_cur;
10956 		optlen = opts.ipoptp_len;
10957 		switch (optval) {
10958 			int	off1, off2;
10959 		case IPOPT_SSRR:
10960 		case IPOPT_LSRR:
10961 
10962 			/* Reverse source route */
10963 			/*
10964 			 * First entry should be the next to last one in the
10965 			 * current source route (the last entry is our
10966 			 * address.)
10967 			 * The last entry should be the final destination.
10968 			 */
10969 			buf[IPOPT_OPTVAL] = (uint8_t)optval;
10970 			buf[IPOPT_OLEN] = (uint8_t)optlen;
10971 			off1 = IPOPT_MINOFF_SR - 1;
10972 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
10973 			if (off2 < 0) {
10974 				/* No entries in source route */
10975 				break;
10976 			}
10977 			bcopy(opt + off2, dst, IP_ADDR_LEN);
10978 			/*
10979 			 * Note: use src since ipha has not had its src
10980 			 * and dst reversed (it is in the state it was
10981 			 * received.
10982 			 */
10983 			bcopy(&ipha->ipha_src, buf + off2,
10984 			    IP_ADDR_LEN);
10985 			off2 -= IP_ADDR_LEN;
10986 
10987 			while (off2 > 0) {
10988 				bcopy(opt + off2, buf + off1,
10989 				    IP_ADDR_LEN);
10990 				off1 += IP_ADDR_LEN;
10991 				off2 -= IP_ADDR_LEN;
10992 			}
10993 			buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
10994 			buf += optlen;
10995 			len += optlen;
10996 			break;
10997 		}
10998 	}
10999 done:
11000 	/* Pad the resulting options */
11001 	while (len & 0x3) {
11002 		*buf++ = IPOPT_EOL;
11003 		len++;
11004 	}
11005 	return (len);
11006 }
11007 
11008 
11009 /*
11010  * Extract and revert a source route from ipha (if any)
11011  * and then update the relevant fields in both tcp_t and the standard header.
11012  */
11013 static void
11014 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha)
11015 {
11016 	char	buf[TCP_MAX_HDR_LENGTH];
11017 	uint_t	tcph_len;
11018 	int	len;
11019 
11020 	ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
11021 	len = IPH_HDR_LENGTH(ipha);
11022 	if (len == IP_SIMPLE_HDR_LENGTH)
11023 		/* Nothing to do */
11024 		return;
11025 	if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH ||
11026 	    (len & 0x3))
11027 		return;
11028 
11029 	tcph_len = tcp->tcp_tcp_hdr_len;
11030 	bcopy(tcp->tcp_tcph, buf, tcph_len);
11031 	tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) +
11032 	    (tcp->tcp_ipha->ipha_dst & 0xffff);
11033 	len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha +
11034 	    IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst);
11035 	len += IP_SIMPLE_HDR_LENGTH;
11036 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
11037 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
11038 	if ((int)tcp->tcp_sum < 0)
11039 		tcp->tcp_sum--;
11040 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
11041 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16));
11042 	tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len);
11043 	bcopy(buf, tcp->tcp_tcph, tcph_len);
11044 	tcp->tcp_ip_hdr_len = len;
11045 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11046 	    (IP_VERSION << 4) | (len >> 2);
11047 	len += tcph_len;
11048 	tcp->tcp_hdr_len = len;
11049 }
11050 
11051 /*
11052  * Copy the standard header into its new location,
11053  * lay in the new options and then update the relevant
11054  * fields in both tcp_t and the standard header.
11055  */
11056 static int
11057 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len)
11058 {
11059 	uint_t	tcph_len;
11060 	uint8_t	*ip_optp;
11061 	tcph_t	*new_tcph;
11062 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11063 	conn_t	*connp = tcp->tcp_connp;
11064 
11065 	if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3))
11066 		return (EINVAL);
11067 
11068 	if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len)
11069 		return (EINVAL);
11070 
11071 	if (checkonly) {
11072 		/*
11073 		 * do not really set, just pretend to - T_CHECK
11074 		 */
11075 		return (0);
11076 	}
11077 
11078 	ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH;
11079 	if (tcp->tcp_label_len > 0) {
11080 		int padlen;
11081 		uint8_t opt;
11082 
11083 		/* convert list termination to no-ops */
11084 		padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN];
11085 		ip_optp += ip_optp[IPOPT_OLEN];
11086 		opt = len > 0 ? IPOPT_NOP : IPOPT_EOL;
11087 		while (--padlen >= 0)
11088 			*ip_optp++ = opt;
11089 	}
11090 	tcph_len = tcp->tcp_tcp_hdr_len;
11091 	new_tcph = (tcph_t *)(ip_optp + len);
11092 	ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len);
11093 	tcp->tcp_tcph = new_tcph;
11094 	bcopy(ptr, ip_optp, len);
11095 
11096 	len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len;
11097 
11098 	tcp->tcp_ip_hdr_len = len;
11099 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11100 	    (IP_VERSION << 4) | (len >> 2);
11101 	tcp->tcp_hdr_len = len + tcph_len;
11102 	if (!TCP_IS_DETACHED(tcp)) {
11103 		/* Always allocate room for all options. */
11104 		(void) proto_set_tx_wroff(tcp->tcp_rq, connp,
11105 		    TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra);
11106 	}
11107 	return (0);
11108 }
11109 
11110 /* Get callback routine passed to nd_load by tcp_param_register */
11111 /* ARGSUSED */
11112 static int
11113 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
11114 {
11115 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11116 
11117 	(void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val);
11118 	return (0);
11119 }
11120 
11121 /*
11122  * Walk through the param array specified registering each element with the
11123  * named dispatch handler.
11124  */
11125 static boolean_t
11126 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps)
11127 {
11128 	for (; cnt-- > 0; tcppa++) {
11129 		if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) {
11130 			if (!nd_load(ndp, tcppa->tcp_param_name,
11131 			    tcp_param_get, tcp_param_set,
11132 			    (caddr_t)tcppa)) {
11133 				nd_free(ndp);
11134 				return (B_FALSE);
11135 			}
11136 		}
11137 	}
11138 	tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t),
11139 	    KM_SLEEP);
11140 	bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param,
11141 	    sizeof (tcpparam_t));
11142 	if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name,
11143 	    tcp_param_get, tcp_param_set_aligned,
11144 	    (caddr_t)tcps->tcps_wroff_xtra_param)) {
11145 		nd_free(ndp);
11146 		return (B_FALSE);
11147 	}
11148 	tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t),
11149 	    KM_SLEEP);
11150 	bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param,
11151 	    sizeof (tcpparam_t));
11152 	if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name,
11153 	    tcp_param_get, tcp_param_set_aligned,
11154 	    (caddr_t)tcps->tcps_mdt_head_param)) {
11155 		nd_free(ndp);
11156 		return (B_FALSE);
11157 	}
11158 	tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t),
11159 	    KM_SLEEP);
11160 	bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param,
11161 	    sizeof (tcpparam_t));
11162 	if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name,
11163 	    tcp_param_get, tcp_param_set_aligned,
11164 	    (caddr_t)tcps->tcps_mdt_tail_param)) {
11165 		nd_free(ndp);
11166 		return (B_FALSE);
11167 	}
11168 	tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t),
11169 	    KM_SLEEP);
11170 	bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param,
11171 	    sizeof (tcpparam_t));
11172 	if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name,
11173 	    tcp_param_get, tcp_param_set_aligned,
11174 	    (caddr_t)tcps->tcps_mdt_max_pbufs_param)) {
11175 		nd_free(ndp);
11176 		return (B_FALSE);
11177 	}
11178 	if (!nd_load(ndp, "tcp_extra_priv_ports",
11179 	    tcp_extra_priv_ports_get, NULL, NULL)) {
11180 		nd_free(ndp);
11181 		return (B_FALSE);
11182 	}
11183 	if (!nd_load(ndp, "tcp_extra_priv_ports_add",
11184 	    NULL, tcp_extra_priv_ports_add, NULL)) {
11185 		nd_free(ndp);
11186 		return (B_FALSE);
11187 	}
11188 	if (!nd_load(ndp, "tcp_extra_priv_ports_del",
11189 	    NULL, tcp_extra_priv_ports_del, NULL)) {
11190 		nd_free(ndp);
11191 		return (B_FALSE);
11192 	}
11193 	if (!nd_load(ndp, "tcp_status", tcp_status_report, NULL,
11194 	    NULL)) {
11195 		nd_free(ndp);
11196 		return (B_FALSE);
11197 	}
11198 	if (!nd_load(ndp, "tcp_bind_hash", tcp_bind_hash_report,
11199 	    NULL, NULL)) {
11200 		nd_free(ndp);
11201 		return (B_FALSE);
11202 	}
11203 	if (!nd_load(ndp, "tcp_listen_hash",
11204 	    tcp_listen_hash_report, NULL, NULL)) {
11205 		nd_free(ndp);
11206 		return (B_FALSE);
11207 	}
11208 	if (!nd_load(ndp, "tcp_conn_hash", tcp_conn_hash_report,
11209 	    NULL, NULL)) {
11210 		nd_free(ndp);
11211 		return (B_FALSE);
11212 	}
11213 	if (!nd_load(ndp, "tcp_acceptor_hash",
11214 	    tcp_acceptor_hash_report, NULL, NULL)) {
11215 		nd_free(ndp);
11216 		return (B_FALSE);
11217 	}
11218 	if (!nd_load(ndp, "tcp_1948_phrase", NULL,
11219 	    tcp_1948_phrase_set, NULL)) {
11220 		nd_free(ndp);
11221 		return (B_FALSE);
11222 	}
11223 	/*
11224 	 * Dummy ndd variables - only to convey obsolescence information
11225 	 * through printing of their name (no get or set routines)
11226 	 * XXX Remove in future releases ?
11227 	 */
11228 	if (!nd_load(ndp,
11229 	    "tcp_close_wait_interval(obsoleted - "
11230 	    "use tcp_time_wait_interval)", NULL, NULL, NULL)) {
11231 		nd_free(ndp);
11232 		return (B_FALSE);
11233 	}
11234 	return (B_TRUE);
11235 }
11236 
11237 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */
11238 /* ARGSUSED */
11239 static int
11240 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
11241     cred_t *cr)
11242 {
11243 	long new_value;
11244 	tcpparam_t *tcppa = (tcpparam_t *)cp;
11245 
11246 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11247 	    new_value < tcppa->tcp_param_min ||
11248 	    new_value > tcppa->tcp_param_max) {
11249 		return (EINVAL);
11250 	}
11251 	/*
11252 	 * Need to make sure new_value is a multiple of 4.  If it is not,
11253 	 * round it up.  For future 64 bit requirement, we actually make it
11254 	 * a multiple of 8.
11255 	 */
11256 	if (new_value & 0x7) {
11257 		new_value = (new_value & ~0x7) + 0x8;
11258 	}
11259 	tcppa->tcp_param_val = new_value;
11260 	return (0);
11261 }
11262 
11263 /* Set callback routine passed to nd_load by tcp_param_register */
11264 /* ARGSUSED */
11265 static int
11266 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
11267 {
11268 	long	new_value;
11269 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11270 
11271 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11272 	    new_value < tcppa->tcp_param_min ||
11273 	    new_value > tcppa->tcp_param_max) {
11274 		return (EINVAL);
11275 	}
11276 	tcppa->tcp_param_val = new_value;
11277 	return (0);
11278 }
11279 
11280 /*
11281  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
11282  * is filled, return as much as we can.  The message passed in may be
11283  * multi-part, chained using b_cont.  "start" is the starting sequence
11284  * number for this piece.
11285  */
11286 static mblk_t *
11287 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
11288 {
11289 	uint32_t	end;
11290 	mblk_t		*mp1;
11291 	mblk_t		*mp2;
11292 	mblk_t		*next_mp;
11293 	uint32_t	u1;
11294 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11295 
11296 	/* Walk through all the new pieces. */
11297 	do {
11298 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
11299 		    (uintptr_t)INT_MAX);
11300 		end = start + (int)(mp->b_wptr - mp->b_rptr);
11301 		next_mp = mp->b_cont;
11302 		if (start == end) {
11303 			/* Empty.  Blast it. */
11304 			freeb(mp);
11305 			continue;
11306 		}
11307 		mp->b_cont = NULL;
11308 		TCP_REASS_SET_SEQ(mp, start);
11309 		TCP_REASS_SET_END(mp, end);
11310 		mp1 = tcp->tcp_reass_tail;
11311 		if (!mp1) {
11312 			tcp->tcp_reass_tail = mp;
11313 			tcp->tcp_reass_head = mp;
11314 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11315 			UPDATE_MIB(&tcps->tcps_mib,
11316 			    tcpInDataUnorderBytes, end - start);
11317 			continue;
11318 		}
11319 		/* New stuff completely beyond tail? */
11320 		if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
11321 			/* Link it on end. */
11322 			mp1->b_cont = mp;
11323 			tcp->tcp_reass_tail = mp;
11324 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11325 			UPDATE_MIB(&tcps->tcps_mib,
11326 			    tcpInDataUnorderBytes, end - start);
11327 			continue;
11328 		}
11329 		mp1 = tcp->tcp_reass_head;
11330 		u1 = TCP_REASS_SEQ(mp1);
11331 		/* New stuff at the front? */
11332 		if (SEQ_LT(start, u1)) {
11333 			/* Yes... Check for overlap. */
11334 			mp->b_cont = mp1;
11335 			tcp->tcp_reass_head = mp;
11336 			tcp_reass_elim_overlap(tcp, mp);
11337 			continue;
11338 		}
11339 		/*
11340 		 * The new piece fits somewhere between the head and tail.
11341 		 * We find our slot, where mp1 precedes us and mp2 trails.
11342 		 */
11343 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
11344 			u1 = TCP_REASS_SEQ(mp2);
11345 			if (SEQ_LEQ(start, u1))
11346 				break;
11347 		}
11348 		/* Link ourselves in */
11349 		mp->b_cont = mp2;
11350 		mp1->b_cont = mp;
11351 
11352 		/* Trim overlap with following mblk(s) first */
11353 		tcp_reass_elim_overlap(tcp, mp);
11354 
11355 		/* Trim overlap with preceding mblk */
11356 		tcp_reass_elim_overlap(tcp, mp1);
11357 
11358 	} while (start = end, mp = next_mp);
11359 	mp1 = tcp->tcp_reass_head;
11360 	/* Anything ready to go? */
11361 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
11362 		return (NULL);
11363 	/* Eat what we can off the queue */
11364 	for (;;) {
11365 		mp = mp1->b_cont;
11366 		end = TCP_REASS_END(mp1);
11367 		TCP_REASS_SET_SEQ(mp1, 0);
11368 		TCP_REASS_SET_END(mp1, 0);
11369 		if (!mp) {
11370 			tcp->tcp_reass_tail = NULL;
11371 			break;
11372 		}
11373 		if (end != TCP_REASS_SEQ(mp)) {
11374 			mp1->b_cont = NULL;
11375 			break;
11376 		}
11377 		mp1 = mp;
11378 	}
11379 	mp1 = tcp->tcp_reass_head;
11380 	tcp->tcp_reass_head = mp;
11381 	return (mp1);
11382 }
11383 
11384 /* Eliminate any overlap that mp may have over later mblks */
11385 static void
11386 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
11387 {
11388 	uint32_t	end;
11389 	mblk_t		*mp1;
11390 	uint32_t	u1;
11391 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11392 
11393 	end = TCP_REASS_END(mp);
11394 	while ((mp1 = mp->b_cont) != NULL) {
11395 		u1 = TCP_REASS_SEQ(mp1);
11396 		if (!SEQ_GT(end, u1))
11397 			break;
11398 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
11399 			mp->b_wptr -= end - u1;
11400 			TCP_REASS_SET_END(mp, u1);
11401 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs);
11402 			UPDATE_MIB(&tcps->tcps_mib,
11403 			    tcpInDataPartDupBytes, end - u1);
11404 			break;
11405 		}
11406 		mp->b_cont = mp1->b_cont;
11407 		TCP_REASS_SET_SEQ(mp1, 0);
11408 		TCP_REASS_SET_END(mp1, 0);
11409 		freeb(mp1);
11410 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
11411 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1);
11412 	}
11413 	if (!mp1)
11414 		tcp->tcp_reass_tail = mp;
11415 }
11416 
11417 static uint_t
11418 tcp_rwnd_reopen(tcp_t *tcp)
11419 {
11420 	uint_t ret = 0;
11421 	uint_t thwin;
11422 
11423 	/* Learn the latest rwnd information that we sent to the other side. */
11424 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11425 	    << tcp->tcp_rcv_ws;
11426 	/* This is peer's calculated send window (our receive window). */
11427 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11428 	/*
11429 	 * Increase the receive window to max.  But we need to do receiver
11430 	 * SWS avoidance.  This means that we need to check the increase of
11431 	 * of receive window is at least 1 MSS.
11432 	 */
11433 	if (tcp->tcp_recv_hiwater - thwin >= tcp->tcp_mss) {
11434 		/*
11435 		 * If the window that the other side knows is less than max
11436 		 * deferred acks segments, send an update immediately.
11437 		 */
11438 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11439 			BUMP_MIB(&tcp->tcp_tcps->tcps_mib, tcpOutWinUpdate);
11440 			ret = TH_ACK_NEEDED;
11441 		}
11442 		tcp->tcp_rwnd = tcp->tcp_recv_hiwater;
11443 	}
11444 	return (ret);
11445 }
11446 
11447 /*
11448  * Send up all messages queued on tcp_rcv_list.
11449  */
11450 static uint_t
11451 tcp_rcv_drain(tcp_t *tcp)
11452 {
11453 	mblk_t *mp;
11454 	uint_t ret = 0;
11455 #ifdef DEBUG
11456 	uint_t cnt = 0;
11457 #endif
11458 	queue_t	*q = tcp->tcp_rq;
11459 
11460 	/* Can't drain on an eager connection */
11461 	if (tcp->tcp_listener != NULL)
11462 		return (ret);
11463 
11464 	/* Can't be a non-STREAMS connection or sodirect enabled */
11465 	ASSERT((!IPCL_IS_NONSTR(tcp->tcp_connp)) && SOD_NOT_ENABLED(tcp));
11466 
11467 	/* No need for the push timer now. */
11468 	if (tcp->tcp_push_tid != 0) {
11469 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11470 		tcp->tcp_push_tid = 0;
11471 	}
11472 
11473 	/*
11474 	 * Handle two cases here: we are currently fused or we were
11475 	 * previously fused and have some urgent data to be delivered
11476 	 * upstream.  The latter happens because we either ran out of
11477 	 * memory or were detached and therefore sending the SIGURG was
11478 	 * deferred until this point.  In either case we pass control
11479 	 * over to tcp_fuse_rcv_drain() since it may need to complete
11480 	 * some work.
11481 	 */
11482 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
11483 		ASSERT(IPCL_IS_NONSTR(tcp->tcp_connp) ||
11484 		    tcp->tcp_fused_sigurg_mp != NULL);
11485 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
11486 		    &tcp->tcp_fused_sigurg_mp))
11487 			return (ret);
11488 	}
11489 
11490 	while ((mp = tcp->tcp_rcv_list) != NULL) {
11491 		tcp->tcp_rcv_list = mp->b_next;
11492 		mp->b_next = NULL;
11493 #ifdef DEBUG
11494 		cnt += msgdsize(mp);
11495 #endif
11496 		/* Does this need SSL processing first? */
11497 		if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) {
11498 			DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain,
11499 			    mblk_t *, mp);
11500 			tcp_kssl_input(tcp, mp);
11501 			continue;
11502 		}
11503 		putnext(q, mp);
11504 	}
11505 #ifdef DEBUG
11506 	ASSERT(cnt == tcp->tcp_rcv_cnt);
11507 #endif
11508 	tcp->tcp_rcv_last_head = NULL;
11509 	tcp->tcp_rcv_last_tail = NULL;
11510 	tcp->tcp_rcv_cnt = 0;
11511 
11512 	if (canputnext(q))
11513 		return (tcp_rwnd_reopen(tcp));
11514 
11515 	return (ret);
11516 }
11517 
11518 /*
11519  * Queue data on tcp_rcv_list which is a b_next chain.
11520  * tcp_rcv_last_head/tail is the last element of this chain.
11521  * Each element of the chain is a b_cont chain.
11522  *
11523  * M_DATA messages are added to the current element.
11524  * Other messages are added as new (b_next) elements.
11525  */
11526 void
11527 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len)
11528 {
11529 	ASSERT(seg_len == msgdsize(mp));
11530 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
11531 
11532 	if (tcp->tcp_rcv_list == NULL) {
11533 		ASSERT(tcp->tcp_rcv_last_head == NULL);
11534 		tcp->tcp_rcv_list = mp;
11535 		tcp->tcp_rcv_last_head = mp;
11536 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
11537 		tcp->tcp_rcv_last_tail->b_cont = mp;
11538 	} else {
11539 		tcp->tcp_rcv_last_head->b_next = mp;
11540 		tcp->tcp_rcv_last_head = mp;
11541 	}
11542 
11543 	while (mp->b_cont)
11544 		mp = mp->b_cont;
11545 
11546 	tcp->tcp_rcv_last_tail = mp;
11547 	tcp->tcp_rcv_cnt += seg_len;
11548 	tcp->tcp_rwnd -= seg_len;
11549 }
11550 
11551 /*
11552  * The tcp_rcv_sod_XXX() functions enqueue data directly to the socket
11553  * above, in addition when uioa is enabled schedule an asynchronous uio
11554  * prior to enqueuing. They implement the combinhed semantics of the
11555  * tcp_rcv_XXX() functions, tcp_rcv_list push logic, and STREAMS putnext()
11556  * canputnext(), i.e. flow-control with backenable.
11557  *
11558  * tcp_sod_wakeup() is called where tcp_rcv_drain() would be called in the
11559  * non sodirect connection but as there are no tcp_tcv_list mblk_t's we deal
11560  * with the rcv_wnd and push timer and call the sodirect wakeup function.
11561  *
11562  * Must be called with sodp->sod_lockp held and will return with the lock
11563  * released.
11564  */
11565 static uint_t
11566 tcp_rcv_sod_wakeup(tcp_t *tcp, sodirect_t *sodp)
11567 {
11568 	queue_t		*q = tcp->tcp_rq;
11569 	uint_t		thwin;
11570 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11571 	uint_t		ret = 0;
11572 
11573 	/* Can't be an eager connection */
11574 	ASSERT(tcp->tcp_listener == NULL);
11575 
11576 	/* Caller must have lock held */
11577 	ASSERT(MUTEX_HELD(sodp->sod_lockp));
11578 
11579 	/* Sodirect mode so must not be a tcp_rcv_list */
11580 	ASSERT(tcp->tcp_rcv_list == NULL);
11581 
11582 	if (SOD_QFULL(sodp)) {
11583 		/* Q is full, mark Q for need backenable */
11584 		SOD_QSETBE(sodp);
11585 	}
11586 	/* Last advertised rwnd, i.e. rwnd last sent in a packet */
11587 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11588 	    << tcp->tcp_rcv_ws;
11589 	/* This is peer's calculated send window (our available rwnd). */
11590 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11591 	/*
11592 	 * Increase the receive window to max.  But we need to do receiver
11593 	 * SWS avoidance.  This means that we need to check the increase of
11594 	 * of receive window is at least 1 MSS.
11595 	 */
11596 	if (!SOD_QFULL(sodp) && (q->q_hiwat - thwin >= tcp->tcp_mss)) {
11597 		/*
11598 		 * If the window that the other side knows is less than max
11599 		 * deferred acks segments, send an update immediately.
11600 		 */
11601 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11602 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
11603 			ret = TH_ACK_NEEDED;
11604 		}
11605 		tcp->tcp_rwnd = q->q_hiwat;
11606 	}
11607 
11608 	if (!SOD_QEMPTY(sodp)) {
11609 		/* Wakeup to socket */
11610 		sodp->sod_state &= SOD_WAKE_CLR;
11611 		sodp->sod_state |= SOD_WAKE_DONE;
11612 		(sodp->sod_wakeup)(sodp);
11613 		/* wakeup() does the mutex_ext() */
11614 	} else {
11615 		/* Q is empty, no need to wake */
11616 		sodp->sod_state &= SOD_WAKE_CLR;
11617 		sodp->sod_state |= SOD_WAKE_NOT;
11618 		mutex_exit(sodp->sod_lockp);
11619 	}
11620 
11621 	/* No need for the push timer now. */
11622 	if (tcp->tcp_push_tid != 0) {
11623 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11624 		tcp->tcp_push_tid = 0;
11625 	}
11626 
11627 	return (ret);
11628 }
11629 
11630 /*
11631  * Called where tcp_rcv_enqueue()/putnext(RD(q)) would be. For M_DATA
11632  * mblk_t's if uioa enabled then start a uioa asynchronous copy directly
11633  * to the user-land buffer and flag the mblk_t as such.
11634  *
11635  * Also, handle tcp_rwnd.
11636  */
11637 uint_t
11638 tcp_rcv_sod_enqueue(tcp_t *tcp, sodirect_t *sodp, mblk_t *mp, uint_t seg_len)
11639 {
11640 	uioa_t		*uioap = &sodp->sod_uioa;
11641 	boolean_t	qfull;
11642 	uint_t		thwin;
11643 
11644 	/* Can't be an eager connection */
11645 	ASSERT(tcp->tcp_listener == NULL);
11646 
11647 	/* Caller must have lock held */
11648 	ASSERT(MUTEX_HELD(sodp->sod_lockp));
11649 
11650 	/* Sodirect mode so must not be a tcp_rcv_list */
11651 	ASSERT(tcp->tcp_rcv_list == NULL);
11652 
11653 	/* Passed in segment length must be equal to mblk_t chain data size */
11654 	ASSERT(seg_len == msgdsize(mp));
11655 
11656 	if (DB_TYPE(mp) != M_DATA) {
11657 		/* Only process M_DATA mblk_t's */
11658 		goto enq;
11659 	}
11660 	if (uioap->uioa_state & UIOA_ENABLED) {
11661 		/* Uioa is enabled */
11662 		mblk_t		*mp1 = mp;
11663 		mblk_t		*lmp = NULL;
11664 
11665 		if (seg_len > uioap->uio_resid) {
11666 			/*
11667 			 * There isn't enough uio space for the mblk_t chain
11668 			 * so disable uioa such that this and any additional
11669 			 * mblk_t data is handled by the socket and schedule
11670 			 * the socket for wakeup to finish this uioa.
11671 			 */
11672 			uioap->uioa_state &= UIOA_CLR;
11673 			uioap->uioa_state |= UIOA_FINI;
11674 			if (sodp->sod_state & SOD_WAKE_NOT) {
11675 				sodp->sod_state &= SOD_WAKE_CLR;
11676 				sodp->sod_state |= SOD_WAKE_NEED;
11677 			}
11678 			goto enq;
11679 		}
11680 		do {
11681 			uint32_t	len = MBLKL(mp1);
11682 
11683 			if (!uioamove(mp1->b_rptr, len, UIO_READ, uioap)) {
11684 				/* Scheduled, mark dblk_t as such */
11685 				DB_FLAGS(mp1) |= DBLK_UIOA;
11686 			} else {
11687 				/* Error, turn off async processing */
11688 				uioap->uioa_state &= UIOA_CLR;
11689 				uioap->uioa_state |= UIOA_FINI;
11690 				break;
11691 			}
11692 			lmp = mp1;
11693 		} while ((mp1 = mp1->b_cont) != NULL);
11694 
11695 		if (mp1 != NULL || uioap->uio_resid == 0) {
11696 			/*
11697 			 * Not all mblk_t(s) uioamoved (error) or all uio
11698 			 * space has been consumed so schedule the socket
11699 			 * for wakeup to finish this uio.
11700 			 */
11701 			sodp->sod_state &= SOD_WAKE_CLR;
11702 			sodp->sod_state |= SOD_WAKE_NEED;
11703 
11704 			/* Break the mblk chain if neccessary. */
11705 			if (mp1 != NULL && lmp != NULL) {
11706 				mp->b_next = mp1;
11707 				lmp->b_cont = NULL;
11708 			}
11709 		}
11710 	} else if (uioap->uioa_state & UIOA_FINI) {
11711 		/*
11712 		 * Post UIO_ENABLED waiting for socket to finish processing
11713 		 * so just enqueue and update tcp_rwnd.
11714 		 */
11715 		if (SOD_QFULL(sodp))
11716 			tcp->tcp_rwnd -= seg_len;
11717 	} else if (sodp->sod_want > 0) {
11718 		/*
11719 		 * Uioa isn't enabled but sodirect has a pending read().
11720 		 */
11721 		if (SOD_QCNT(sodp) + seg_len >= sodp->sod_want) {
11722 			if (sodp->sod_state & SOD_WAKE_NOT) {
11723 				/* Schedule socket for wakeup */
11724 				sodp->sod_state &= SOD_WAKE_CLR;
11725 				sodp->sod_state |= SOD_WAKE_NEED;
11726 			}
11727 			tcp->tcp_rwnd -= seg_len;
11728 		}
11729 	} else if (SOD_QCNT(sodp) + seg_len >= tcp->tcp_rq->q_hiwat >> 3) {
11730 		/*
11731 		 * No pending sodirect read() so used the default
11732 		 * TCP push logic to guess that a push is needed.
11733 		 */
11734 		if (sodp->sod_state & SOD_WAKE_NOT) {
11735 			/* Schedule socket for wakeup */
11736 			sodp->sod_state &= SOD_WAKE_CLR;
11737 			sodp->sod_state |= SOD_WAKE_NEED;
11738 		}
11739 		tcp->tcp_rwnd -= seg_len;
11740 	} else {
11741 		/* Just update tcp_rwnd */
11742 		tcp->tcp_rwnd -= seg_len;
11743 	}
11744 enq:
11745 	qfull = SOD_QFULL(sodp);
11746 
11747 	(sodp->sod_enqueue)(sodp, mp);
11748 
11749 	if (! qfull && SOD_QFULL(sodp)) {
11750 		/* Wasn't QFULL, now QFULL, need back-enable */
11751 		SOD_QSETBE(sodp);
11752 	}
11753 
11754 	/*
11755 	 * Check to see if remote avail swnd < mss due to delayed ACK,
11756 	 * first get advertised rwnd.
11757 	 */
11758 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win));
11759 	/* Minus delayed ACK count */
11760 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11761 	if (thwin < tcp->tcp_mss) {
11762 		/* Remote avail swnd < mss, need ACK now */
11763 		return (TH_ACK_NEEDED);
11764 	}
11765 
11766 	return (0);
11767 }
11768 
11769 /*
11770  * DEFAULT TCP ENTRY POINT via squeue on READ side.
11771  *
11772  * This is the default entry function into TCP on the read side. TCP is
11773  * always entered via squeue i.e. using squeue's for mutual exclusion.
11774  * When classifier does a lookup to find the tcp, it also puts a reference
11775  * on the conn structure associated so the tcp is guaranteed to exist
11776  * when we come here. We still need to check the state because it might
11777  * as well has been closed. The squeue processing function i.e. squeue_enter,
11778  * is responsible for doing the CONN_DEC_REF.
11779  *
11780  * Apart from the default entry point, IP also sends packets directly to
11781  * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming
11782  * connections.
11783  */
11784 boolean_t tcp_outbound_squeue_switch = B_FALSE;
11785 void
11786 tcp_input(void *arg, mblk_t *mp, void *arg2)
11787 {
11788 	conn_t	*connp = (conn_t *)arg;
11789 	tcp_t	*tcp = (tcp_t *)connp->conn_tcp;
11790 
11791 	/* arg2 is the sqp */
11792 	ASSERT(arg2 != NULL);
11793 	ASSERT(mp != NULL);
11794 
11795 	/*
11796 	 * Don't accept any input on a closed tcp as this TCP logically does
11797 	 * not exist on the system. Don't proceed further with this TCP.
11798 	 * For eg. this packet could trigger another close of this tcp
11799 	 * which would be disastrous for tcp_refcnt. tcp_close_detached /
11800 	 * tcp_clean_death / tcp_closei_local must be called at most once
11801 	 * on a TCP. In this case we need to refeed the packet into the
11802 	 * classifier and figure out where the packet should go. Need to
11803 	 * preserve the recv_ill somehow. Until we figure that out, for
11804 	 * now just drop the packet if we can't classify the packet.
11805 	 */
11806 	if (tcp->tcp_state == TCPS_CLOSED ||
11807 	    tcp->tcp_state == TCPS_BOUND) {
11808 		conn_t	*new_connp;
11809 		ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip;
11810 
11811 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
11812 		if (new_connp != NULL) {
11813 			tcp_reinput(new_connp, mp, arg2);
11814 			return;
11815 		}
11816 		/* We failed to classify. For now just drop the packet */
11817 		freemsg(mp);
11818 		return;
11819 	}
11820 
11821 	if (DB_TYPE(mp) != M_DATA) {
11822 		tcp_rput_common(tcp, mp);
11823 		return;
11824 	}
11825 
11826 	if (mp->b_datap->db_struioflag & STRUIO_CONNECT) {
11827 		squeue_t	*final_sqp;
11828 
11829 		mp->b_datap->db_struioflag &= ~STRUIO_CONNECT;
11830 		final_sqp = (squeue_t *)DB_CKSUMSTART(mp);
11831 		DB_CKSUMSTART(mp) = 0;
11832 		if (tcp->tcp_state == TCPS_SYN_SENT &&
11833 		    connp->conn_final_sqp == NULL &&
11834 		    tcp_outbound_squeue_switch) {
11835 			ASSERT(connp->conn_initial_sqp == connp->conn_sqp);
11836 			connp->conn_final_sqp = final_sqp;
11837 			if (connp->conn_final_sqp != connp->conn_sqp) {
11838 				CONN_INC_REF(connp);
11839 				SQUEUE_SWITCH(connp, connp->conn_final_sqp);
11840 				SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
11841 				    tcp_rput_data, connp, ip_squeue_flag,
11842 				    SQTAG_CONNECT_FINISH);
11843 				return;
11844 			}
11845 		}
11846 	}
11847 	tcp_rput_data(connp, mp, arg2);
11848 }
11849 
11850 /*
11851  * The read side put procedure.
11852  * The packets passed up by ip are assume to be aligned according to
11853  * OK_32PTR and the IP+TCP headers fitting in the first mblk.
11854  */
11855 static void
11856 tcp_rput_common(tcp_t *tcp, mblk_t *mp)
11857 {
11858 	/*
11859 	 * tcp_rput_data() does not expect M_CTL except for the case
11860 	 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO
11861 	 * type. Need to make sure that any other M_CTLs don't make
11862 	 * it to tcp_rput_data since it is not expecting any and doesn't
11863 	 * check for it.
11864 	 */
11865 	if (DB_TYPE(mp) == M_CTL) {
11866 		switch (*(uint32_t *)(mp->b_rptr)) {
11867 		case TCP_IOC_ABORT_CONN:
11868 			/*
11869 			 * Handle connection abort request.
11870 			 */
11871 			tcp_ioctl_abort_handler(tcp, mp);
11872 			return;
11873 		case IPSEC_IN:
11874 			/*
11875 			 * Only secure icmp arrive in TCP and they
11876 			 * don't go through data path.
11877 			 */
11878 			tcp_icmp_error(tcp, mp);
11879 			return;
11880 		case IN_PKTINFO:
11881 			/*
11882 			 * Handle IPV6_RECVPKTINFO socket option on AF_INET6
11883 			 * sockets that are receiving IPv4 traffic. tcp
11884 			 */
11885 			ASSERT(tcp->tcp_family == AF_INET6);
11886 			ASSERT(tcp->tcp_ipv6_recvancillary &
11887 			    TCP_IPV6_RECVPKTINFO);
11888 			tcp_rput_data(tcp->tcp_connp, mp,
11889 			    tcp->tcp_connp->conn_sqp);
11890 			return;
11891 		case MDT_IOC_INFO_UPDATE:
11892 			/*
11893 			 * Handle Multidata information update; the
11894 			 * following routine will free the message.
11895 			 */
11896 			if (tcp->tcp_connp->conn_mdt_ok) {
11897 				tcp_mdt_update(tcp,
11898 				    &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab,
11899 				    B_FALSE);
11900 			}
11901 			freemsg(mp);
11902 			return;
11903 		case LSO_IOC_INFO_UPDATE:
11904 			/*
11905 			 * Handle LSO information update; the following
11906 			 * routine will free the message.
11907 			 */
11908 			if (tcp->tcp_connp->conn_lso_ok) {
11909 				tcp_lso_update(tcp,
11910 				    &((ip_lso_info_t *)mp->b_rptr)->lso_capab);
11911 			}
11912 			freemsg(mp);
11913 			return;
11914 		default:
11915 			/*
11916 			 * tcp_icmp_err() will process the M_CTL packets.
11917 			 * Non-ICMP packets, if any, will be discarded in
11918 			 * tcp_icmp_err(). We will process the ICMP packet
11919 			 * even if we are TCP_IS_DETACHED_NONEAGER as the
11920 			 * incoming ICMP packet may result in changing
11921 			 * the tcp_mss, which we would need if we have
11922 			 * packets to retransmit.
11923 			 */
11924 			tcp_icmp_error(tcp, mp);
11925 			return;
11926 		}
11927 	}
11928 
11929 	/* No point processing the message if tcp is already closed */
11930 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
11931 		freemsg(mp);
11932 		return;
11933 	}
11934 
11935 	tcp_rput_other(tcp, mp);
11936 }
11937 
11938 
11939 /* The minimum of smoothed mean deviation in RTO calculation. */
11940 #define	TCP_SD_MIN	400
11941 
11942 /*
11943  * Set RTO for this connection.  The formula is from Jacobson and Karels'
11944  * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
11945  * are the same as those in Appendix A.2 of that paper.
11946  *
11947  * m = new measurement
11948  * sa = smoothed RTT average (8 * average estimates).
11949  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
11950  */
11951 static void
11952 tcp_set_rto(tcp_t *tcp, clock_t rtt)
11953 {
11954 	long m = TICK_TO_MSEC(rtt);
11955 	clock_t sa = tcp->tcp_rtt_sa;
11956 	clock_t sv = tcp->tcp_rtt_sd;
11957 	clock_t rto;
11958 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11959 
11960 	BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate);
11961 	tcp->tcp_rtt_update++;
11962 
11963 	/* tcp_rtt_sa is not 0 means this is a new sample. */
11964 	if (sa != 0) {
11965 		/*
11966 		 * Update average estimator:
11967 		 *	new rtt = 7/8 old rtt + 1/8 Error
11968 		 */
11969 
11970 		/* m is now Error in estimate. */
11971 		m -= sa >> 3;
11972 		if ((sa += m) <= 0) {
11973 			/*
11974 			 * Don't allow the smoothed average to be negative.
11975 			 * We use 0 to denote reinitialization of the
11976 			 * variables.
11977 			 */
11978 			sa = 1;
11979 		}
11980 
11981 		/*
11982 		 * Update deviation estimator:
11983 		 *	new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
11984 		 */
11985 		if (m < 0)
11986 			m = -m;
11987 		m -= sv >> 2;
11988 		sv += m;
11989 	} else {
11990 		/*
11991 		 * This follows BSD's implementation.  So the reinitialized
11992 		 * RTO is 3 * m.  We cannot go less than 2 because if the
11993 		 * link is bandwidth dominated, doubling the window size
11994 		 * during slow start means doubling the RTT.  We want to be
11995 		 * more conservative when we reinitialize our estimates.  3
11996 		 * is just a convenient number.
11997 		 */
11998 		sa = m << 3;
11999 		sv = m << 1;
12000 	}
12001 	if (sv < TCP_SD_MIN) {
12002 		/*
12003 		 * We do not know that if sa captures the delay ACK
12004 		 * effect as in a long train of segments, a receiver
12005 		 * does not delay its ACKs.  So set the minimum of sv
12006 		 * to be TCP_SD_MIN, which is default to 400 ms, twice
12007 		 * of BSD DATO.  That means the minimum of mean
12008 		 * deviation is 100 ms.
12009 		 *
12010 		 */
12011 		sv = TCP_SD_MIN;
12012 	}
12013 	tcp->tcp_rtt_sa = sa;
12014 	tcp->tcp_rtt_sd = sv;
12015 	/*
12016 	 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
12017 	 *
12018 	 * Add tcp_rexmit_interval extra in case of extreme environment
12019 	 * where the algorithm fails to work.  The default value of
12020 	 * tcp_rexmit_interval_extra should be 0.
12021 	 *
12022 	 * As we use a finer grained clock than BSD and update
12023 	 * RTO for every ACKs, add in another .25 of RTT to the
12024 	 * deviation of RTO to accomodate burstiness of 1/4 of
12025 	 * window size.
12026 	 */
12027 	rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5);
12028 
12029 	if (rto > tcps->tcps_rexmit_interval_max) {
12030 		tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
12031 	} else if (rto < tcps->tcps_rexmit_interval_min) {
12032 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
12033 	} else {
12034 		tcp->tcp_rto = rto;
12035 	}
12036 
12037 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
12038 	tcp->tcp_timer_backoff = 0;
12039 }
12040 
12041 /*
12042  * tcp_get_seg_mp() is called to get the pointer to a segment in the
12043  * send queue which starts at the given seq. no.
12044  *
12045  * Parameters:
12046  *	tcp_t *tcp: the tcp instance pointer.
12047  *	uint32_t seq: the starting seq. no of the requested segment.
12048  *	int32_t *off: after the execution, *off will be the offset to
12049  *		the returned mblk which points to the requested seq no.
12050  *		It is the caller's responsibility to send in a non-null off.
12051  *
12052  * Return:
12053  *	A mblk_t pointer pointing to the requested segment in send queue.
12054  */
12055 static mblk_t *
12056 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off)
12057 {
12058 	int32_t	cnt;
12059 	mblk_t	*mp;
12060 
12061 	/* Defensive coding.  Make sure we don't send incorrect data. */
12062 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
12063 		return (NULL);
12064 
12065 	cnt = seq - tcp->tcp_suna;
12066 	mp = tcp->tcp_xmit_head;
12067 	while (cnt > 0 && mp != NULL) {
12068 		cnt -= mp->b_wptr - mp->b_rptr;
12069 		if (cnt < 0) {
12070 			cnt += mp->b_wptr - mp->b_rptr;
12071 			break;
12072 		}
12073 		mp = mp->b_cont;
12074 	}
12075 	ASSERT(mp != NULL);
12076 	*off = cnt;
12077 	return (mp);
12078 }
12079 
12080 /*
12081  * This function handles all retransmissions if SACK is enabled for this
12082  * connection.  First it calculates how many segments can be retransmitted
12083  * based on tcp_pipe.  Then it goes thru the notsack list to find eligible
12084  * segments.  A segment is eligible if sack_cnt for that segment is greater
12085  * than or equal tcp_dupack_fast_retransmit.  After it has retransmitted
12086  * all eligible segments, it checks to see if TCP can send some new segments
12087  * (fast recovery).  If it can, set the appropriate flag for tcp_rput_data().
12088  *
12089  * Parameters:
12090  *	tcp_t *tcp: the tcp structure of the connection.
12091  *	uint_t *flags: in return, appropriate value will be set for
12092  *	tcp_rput_data().
12093  */
12094 static void
12095 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags)
12096 {
12097 	notsack_blk_t	*notsack_blk;
12098 	int32_t		usable_swnd;
12099 	int32_t		mss;
12100 	uint32_t	seg_len;
12101 	mblk_t		*xmit_mp;
12102 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12103 
12104 	ASSERT(tcp->tcp_sack_info != NULL);
12105 	ASSERT(tcp->tcp_notsack_list != NULL);
12106 	ASSERT(tcp->tcp_rexmit == B_FALSE);
12107 
12108 	/* Defensive coding in case there is a bug... */
12109 	if (tcp->tcp_notsack_list == NULL) {
12110 		return;
12111 	}
12112 	notsack_blk = tcp->tcp_notsack_list;
12113 	mss = tcp->tcp_mss;
12114 
12115 	/*
12116 	 * Limit the num of outstanding data in the network to be
12117 	 * tcp_cwnd_ssthresh, which is half of the original congestion wnd.
12118 	 */
12119 	usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
12120 
12121 	/* At least retransmit 1 MSS of data. */
12122 	if (usable_swnd <= 0) {
12123 		usable_swnd = mss;
12124 	}
12125 
12126 	/* Make sure no new RTT samples will be taken. */
12127 	tcp->tcp_csuna = tcp->tcp_snxt;
12128 
12129 	notsack_blk = tcp->tcp_notsack_list;
12130 	while (usable_swnd > 0) {
12131 		mblk_t		*snxt_mp, *tmp_mp;
12132 		tcp_seq		begin = tcp->tcp_sack_snxt;
12133 		tcp_seq		end;
12134 		int32_t		off;
12135 
12136 		for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) {
12137 			if (SEQ_GT(notsack_blk->end, begin) &&
12138 			    (notsack_blk->sack_cnt >=
12139 			    tcps->tcps_dupack_fast_retransmit)) {
12140 				end = notsack_blk->end;
12141 				if (SEQ_LT(begin, notsack_blk->begin)) {
12142 					begin = notsack_blk->begin;
12143 				}
12144 				break;
12145 			}
12146 		}
12147 		/*
12148 		 * All holes are filled.  Manipulate tcp_cwnd to send more
12149 		 * if we can.  Note that after the SACK recovery, tcp_cwnd is
12150 		 * set to tcp_cwnd_ssthresh.
12151 		 */
12152 		if (notsack_blk == NULL) {
12153 			usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
12154 			if (usable_swnd <= 0 || tcp->tcp_unsent == 0) {
12155 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna;
12156 				ASSERT(tcp->tcp_cwnd > 0);
12157 				return;
12158 			} else {
12159 				usable_swnd = usable_swnd / mss;
12160 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna +
12161 				    MAX(usable_swnd * mss, mss);
12162 				*flags |= TH_XMIT_NEEDED;
12163 				return;
12164 			}
12165 		}
12166 
12167 		/*
12168 		 * Note that we may send more than usable_swnd allows here
12169 		 * because of round off, but no more than 1 MSS of data.
12170 		 */
12171 		seg_len = end - begin;
12172 		if (seg_len > mss)
12173 			seg_len = mss;
12174 		snxt_mp = tcp_get_seg_mp(tcp, begin, &off);
12175 		ASSERT(snxt_mp != NULL);
12176 		/* This should not happen.  Defensive coding again... */
12177 		if (snxt_mp == NULL) {
12178 			return;
12179 		}
12180 
12181 		xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off,
12182 		    &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE);
12183 		if (xmit_mp == NULL)
12184 			return;
12185 
12186 		usable_swnd -= seg_len;
12187 		tcp->tcp_pipe += seg_len;
12188 		tcp->tcp_sack_snxt = begin + seg_len;
12189 
12190 		tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12191 
12192 		/*
12193 		 * Update the send timestamp to avoid false retransmission.
12194 		 */
12195 		snxt_mp->b_prev = (mblk_t *)lbolt;
12196 
12197 		BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12198 		UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len);
12199 		BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs);
12200 		/*
12201 		 * Update tcp_rexmit_max to extend this SACK recovery phase.
12202 		 * This happens when new data sent during fast recovery is
12203 		 * also lost.  If TCP retransmits those new data, it needs
12204 		 * to extend SACK recover phase to avoid starting another
12205 		 * fast retransmit/recovery unnecessarily.
12206 		 */
12207 		if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) {
12208 			tcp->tcp_rexmit_max = tcp->tcp_sack_snxt;
12209 		}
12210 	}
12211 }
12212 
12213 /*
12214  * This function handles policy checking at TCP level for non-hard_bound/
12215  * detached connections.
12216  */
12217 static boolean_t
12218 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h,
12219     boolean_t secure, boolean_t mctl_present)
12220 {
12221 	ipsec_latch_t *ipl = NULL;
12222 	ipsec_action_t *act = NULL;
12223 	mblk_t *data_mp;
12224 	ipsec_in_t *ii;
12225 	const char *reason;
12226 	kstat_named_t *counter;
12227 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12228 	ipsec_stack_t	*ipss;
12229 	ip_stack_t	*ipst;
12230 
12231 	ASSERT(mctl_present || !secure);
12232 
12233 	ASSERT((ipha == NULL && ip6h != NULL) ||
12234 	    (ip6h == NULL && ipha != NULL));
12235 
12236 	/*
12237 	 * We don't necessarily have an ipsec_in_act action to verify
12238 	 * policy because of assymetrical policy where we have only
12239 	 * outbound policy and no inbound policy (possible with global
12240 	 * policy).
12241 	 */
12242 	if (!secure) {
12243 		if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS ||
12244 		    act->ipa_act.ipa_type == IPSEC_ACT_CLEAR)
12245 			return (B_TRUE);
12246 		ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
12247 		    "tcp_check_policy", ipha, ip6h, secure,
12248 		    tcps->tcps_netstack);
12249 		ipss = tcps->tcps_netstack->netstack_ipsec;
12250 
12251 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12252 		    DROPPER(ipss, ipds_tcp_clear),
12253 		    &tcps->tcps_dropper);
12254 		return (B_FALSE);
12255 	}
12256 
12257 	/*
12258 	 * We have a secure packet.
12259 	 */
12260 	if (act == NULL) {
12261 		ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED,
12262 		    "tcp_check_policy", ipha, ip6h, secure,
12263 		    tcps->tcps_netstack);
12264 		ipss = tcps->tcps_netstack->netstack_ipsec;
12265 
12266 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12267 		    DROPPER(ipss, ipds_tcp_secure),
12268 		    &tcps->tcps_dropper);
12269 		return (B_FALSE);
12270 	}
12271 
12272 	/*
12273 	 * XXX This whole routine is currently incorrect.  ipl should
12274 	 * be set to the latch pointer, but is currently not set, so
12275 	 * we initialize it to NULL to avoid picking up random garbage.
12276 	 */
12277 	if (ipl == NULL)
12278 		return (B_TRUE);
12279 
12280 	data_mp = first_mp->b_cont;
12281 
12282 	ii = (ipsec_in_t *)first_mp->b_rptr;
12283 
12284 	ipst = tcps->tcps_netstack->netstack_ip;
12285 
12286 	if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason,
12287 	    &counter, tcp->tcp_connp)) {
12288 		BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
12289 		return (B_TRUE);
12290 	}
12291 	(void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
12292 	    "tcp inbound policy mismatch: %s, packet dropped\n",
12293 	    reason);
12294 	BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
12295 
12296 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter,
12297 	    &tcps->tcps_dropper);
12298 	return (B_FALSE);
12299 }
12300 
12301 /*
12302  * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start
12303  * retransmission after a timeout.
12304  *
12305  * To limit the number of duplicate segments, we limit the number of segment
12306  * to be sent in one time to tcp_snd_burst, the burst variable.
12307  */
12308 static void
12309 tcp_ss_rexmit(tcp_t *tcp)
12310 {
12311 	uint32_t	snxt;
12312 	uint32_t	smax;
12313 	int32_t		win;
12314 	int32_t		mss;
12315 	int32_t		off;
12316 	int32_t		burst = tcp->tcp_snd_burst;
12317 	mblk_t		*snxt_mp;
12318 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12319 
12320 	/*
12321 	 * Note that tcp_rexmit can be set even though TCP has retransmitted
12322 	 * all unack'ed segments.
12323 	 */
12324 	if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) {
12325 		smax = tcp->tcp_rexmit_max;
12326 		snxt = tcp->tcp_rexmit_nxt;
12327 		if (SEQ_LT(snxt, tcp->tcp_suna)) {
12328 			snxt = tcp->tcp_suna;
12329 		}
12330 		win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd);
12331 		win -= snxt - tcp->tcp_suna;
12332 		mss = tcp->tcp_mss;
12333 		snxt_mp = tcp_get_seg_mp(tcp, snxt, &off);
12334 
12335 		while (SEQ_LT(snxt, smax) && (win > 0) &&
12336 		    (burst > 0) && (snxt_mp != NULL)) {
12337 			mblk_t	*xmit_mp;
12338 			mblk_t	*old_snxt_mp = snxt_mp;
12339 			uint32_t cnt = mss;
12340 
12341 			if (win < cnt) {
12342 				cnt = win;
12343 			}
12344 			if (SEQ_GT(snxt + cnt, smax)) {
12345 				cnt = smax - snxt;
12346 			}
12347 			xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off,
12348 			    &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE);
12349 			if (xmit_mp == NULL)
12350 				return;
12351 
12352 			tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12353 
12354 			snxt += cnt;
12355 			win -= cnt;
12356 			/*
12357 			 * Update the send timestamp to avoid false
12358 			 * retransmission.
12359 			 */
12360 			old_snxt_mp->b_prev = (mblk_t *)lbolt;
12361 			BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12362 			UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt);
12363 
12364 			tcp->tcp_rexmit_nxt = snxt;
12365 			burst--;
12366 		}
12367 		/*
12368 		 * If we have transmitted all we have at the time
12369 		 * we started the retranmission, we can leave
12370 		 * the rest of the job to tcp_wput_data().  But we
12371 		 * need to check the send window first.  If the
12372 		 * win is not 0, go on with tcp_wput_data().
12373 		 */
12374 		if (SEQ_LT(snxt, smax) || win == 0) {
12375 			return;
12376 		}
12377 	}
12378 	/* Only call tcp_wput_data() if there is data to be sent. */
12379 	if (tcp->tcp_unsent) {
12380 		tcp_wput_data(tcp, NULL, B_FALSE);
12381 	}
12382 }
12383 
12384 /*
12385  * Process all TCP option in SYN segment.  Note that this function should
12386  * be called after tcp_adapt_ire() is called so that the necessary info
12387  * from IRE is already set in the tcp structure.
12388  *
12389  * This function sets up the correct tcp_mss value according to the
12390  * MSS option value and our header size.  It also sets up the window scale
12391  * and timestamp values, and initialize SACK info blocks.  But it does not
12392  * change receive window size after setting the tcp_mss value.  The caller
12393  * should do the appropriate change.
12394  */
12395 void
12396 tcp_process_options(tcp_t *tcp, tcph_t *tcph)
12397 {
12398 	int options;
12399 	tcp_opt_t tcpopt;
12400 	uint32_t mss_max;
12401 	char *tmp_tcph;
12402 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12403 
12404 	tcpopt.tcp = NULL;
12405 	options = tcp_parse_options(tcph, &tcpopt);
12406 
12407 	/*
12408 	 * Process MSS option.  Note that MSS option value does not account
12409 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
12410 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
12411 	 * IPv6.
12412 	 */
12413 	if (!(options & TCP_OPT_MSS_PRESENT)) {
12414 		if (tcp->tcp_ipversion == IPV4_VERSION)
12415 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4;
12416 		else
12417 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6;
12418 	} else {
12419 		if (tcp->tcp_ipversion == IPV4_VERSION)
12420 			mss_max = tcps->tcps_mss_max_ipv4;
12421 		else
12422 			mss_max = tcps->tcps_mss_max_ipv6;
12423 		if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min)
12424 			tcpopt.tcp_opt_mss = tcps->tcps_mss_min;
12425 		else if (tcpopt.tcp_opt_mss > mss_max)
12426 			tcpopt.tcp_opt_mss = mss_max;
12427 	}
12428 
12429 	/* Process Window Scale option. */
12430 	if (options & TCP_OPT_WSCALE_PRESENT) {
12431 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
12432 		tcp->tcp_snd_ws_ok = B_TRUE;
12433 	} else {
12434 		tcp->tcp_snd_ws = B_FALSE;
12435 		tcp->tcp_snd_ws_ok = B_FALSE;
12436 		tcp->tcp_rcv_ws = B_FALSE;
12437 	}
12438 
12439 	/* Process Timestamp option. */
12440 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
12441 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
12442 		tmp_tcph = (char *)tcp->tcp_tcph;
12443 
12444 		tcp->tcp_snd_ts_ok = B_TRUE;
12445 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
12446 		tcp->tcp_last_rcv_lbolt = lbolt64;
12447 		ASSERT(OK_32PTR(tmp_tcph));
12448 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
12449 
12450 		/* Fill in our template header with basic timestamp option. */
12451 		tmp_tcph += tcp->tcp_tcp_hdr_len;
12452 		tmp_tcph[0] = TCPOPT_NOP;
12453 		tmp_tcph[1] = TCPOPT_NOP;
12454 		tmp_tcph[2] = TCPOPT_TSTAMP;
12455 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
12456 		tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12457 		tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12458 		tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4);
12459 	} else {
12460 		tcp->tcp_snd_ts_ok = B_FALSE;
12461 	}
12462 
12463 	/*
12464 	 * Process SACK options.  If SACK is enabled for this connection,
12465 	 * then allocate the SACK info structure.  Note the following ways
12466 	 * when tcp_snd_sack_ok is set to true.
12467 	 *
12468 	 * For active connection: in tcp_adapt_ire() called in
12469 	 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted
12470 	 * is checked.
12471 	 *
12472 	 * For passive connection: in tcp_adapt_ire() called in
12473 	 * tcp_accept_comm().
12474 	 *
12475 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
12476 	 * That check makes sure that if we did not send a SACK OK option,
12477 	 * we will not enable SACK for this connection even though the other
12478 	 * side sends us SACK OK option.  For active connection, the SACK
12479 	 * info structure has already been allocated.  So we need to free
12480 	 * it if SACK is disabled.
12481 	 */
12482 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
12483 	    (tcp->tcp_snd_sack_ok ||
12484 	    (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
12485 		/* This should be true only in the passive case. */
12486 		if (tcp->tcp_sack_info == NULL) {
12487 			ASSERT(TCP_IS_DETACHED(tcp));
12488 			tcp->tcp_sack_info =
12489 			    kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP);
12490 		}
12491 		if (tcp->tcp_sack_info == NULL) {
12492 			tcp->tcp_snd_sack_ok = B_FALSE;
12493 		} else {
12494 			tcp->tcp_snd_sack_ok = B_TRUE;
12495 			if (tcp->tcp_snd_ts_ok) {
12496 				tcp->tcp_max_sack_blk = 3;
12497 			} else {
12498 				tcp->tcp_max_sack_blk = 4;
12499 			}
12500 		}
12501 	} else {
12502 		/*
12503 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
12504 		 * no SACK info will be used for this
12505 		 * connection.  This assumes that SACK usage
12506 		 * permission is negotiated.  This may need
12507 		 * to be changed once this is clarified.
12508 		 */
12509 		if (tcp->tcp_sack_info != NULL) {
12510 			ASSERT(tcp->tcp_notsack_list == NULL);
12511 			kmem_cache_free(tcp_sack_info_cache,
12512 			    tcp->tcp_sack_info);
12513 			tcp->tcp_sack_info = NULL;
12514 		}
12515 		tcp->tcp_snd_sack_ok = B_FALSE;
12516 	}
12517 
12518 	/*
12519 	 * Now we know the exact TCP/IP header length, subtract
12520 	 * that from tcp_mss to get our side's MSS.
12521 	 */
12522 	tcp->tcp_mss -= tcp->tcp_hdr_len;
12523 	/*
12524 	 * Here we assume that the other side's header size will be equal to
12525 	 * our header size.  We calculate the real MSS accordingly.  Need to
12526 	 * take into additional stuffs IPsec puts in.
12527 	 *
12528 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
12529 	 */
12530 	tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead -
12531 	    ((tcp->tcp_ipversion == IPV4_VERSION ?
12532 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
12533 
12534 	/*
12535 	 * Set MSS to the smaller one of both ends of the connection.
12536 	 * We should not have called tcp_mss_set() before, but our
12537 	 * side of the MSS should have been set to a proper value
12538 	 * by tcp_adapt_ire().  tcp_mss_set() will also set up the
12539 	 * STREAM head parameters properly.
12540 	 *
12541 	 * If we have a larger-than-16-bit window but the other side
12542 	 * didn't want to do window scale, tcp_rwnd_set() will take
12543 	 * care of that.
12544 	 */
12545 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE);
12546 }
12547 
12548 /*
12549  * Sends the T_CONN_IND to the listener. The caller calls this
12550  * functions via squeue to get inside the listener's perimeter
12551  * once the 3 way hand shake is done a T_CONN_IND needs to be
12552  * sent. As an optimization, the caller can call this directly
12553  * if listener's perimeter is same as eager's.
12554  */
12555 /* ARGSUSED */
12556 void
12557 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2)
12558 {
12559 	conn_t			*lconnp = (conn_t *)arg;
12560 	tcp_t			*listener = lconnp->conn_tcp;
12561 	tcp_t			*tcp;
12562 	struct T_conn_ind	*conn_ind;
12563 	ipaddr_t 		*addr_cache;
12564 	boolean_t		need_send_conn_ind = B_FALSE;
12565 	tcp_stack_t		*tcps = listener->tcp_tcps;
12566 
12567 	/* retrieve the eager */
12568 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
12569 	ASSERT(conn_ind->OPT_offset != 0 &&
12570 	    conn_ind->OPT_length == sizeof (intptr_t));
12571 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
12572 	    conn_ind->OPT_length);
12573 
12574 	/*
12575 	 * TLI/XTI applications will get confused by
12576 	 * sending eager as an option since it violates
12577 	 * the option semantics. So remove the eager as
12578 	 * option since TLI/XTI app doesn't need it anyway.
12579 	 */
12580 	if (!TCP_IS_SOCKET(listener)) {
12581 		conn_ind->OPT_length = 0;
12582 		conn_ind->OPT_offset = 0;
12583 	}
12584 	if (listener->tcp_state == TCPS_CLOSED ||
12585 	    TCP_IS_DETACHED(listener)) {
12586 		/*
12587 		 * If listener has closed, it would have caused a
12588 		 * a cleanup/blowoff to happen for the eager. We
12589 		 * just need to return.
12590 		 */
12591 		freemsg(mp);
12592 		return;
12593 	}
12594 
12595 
12596 	/*
12597 	 * if the conn_req_q is full defer passing up the
12598 	 * T_CONN_IND until space is availabe after t_accept()
12599 	 * processing
12600 	 */
12601 	mutex_enter(&listener->tcp_eager_lock);
12602 
12603 	/*
12604 	 * Take the eager out, if it is in the list of droppable eagers
12605 	 * as we are here because the 3W handshake is over.
12606 	 */
12607 	MAKE_UNDROPPABLE(tcp);
12608 
12609 	if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) {
12610 		tcp_t *tail;
12611 
12612 		/*
12613 		 * The eager already has an extra ref put in tcp_rput_data
12614 		 * so that it stays till accept comes back even though it
12615 		 * might get into TCPS_CLOSED as a result of a TH_RST etc.
12616 		 */
12617 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
12618 		listener->tcp_conn_req_cnt_q0--;
12619 		listener->tcp_conn_req_cnt_q++;
12620 
12621 		/* Move from SYN_RCVD to ESTABLISHED list  */
12622 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12623 		    tcp->tcp_eager_prev_q0;
12624 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12625 		    tcp->tcp_eager_next_q0;
12626 		tcp->tcp_eager_prev_q0 = NULL;
12627 		tcp->tcp_eager_next_q0 = NULL;
12628 
12629 		/*
12630 		 * Insert at end of the queue because sockfs
12631 		 * sends down T_CONN_RES in chronological
12632 		 * order. Leaving the older conn indications
12633 		 * at front of the queue helps reducing search
12634 		 * time.
12635 		 */
12636 		tail = listener->tcp_eager_last_q;
12637 		if (tail != NULL)
12638 			tail->tcp_eager_next_q = tcp;
12639 		else
12640 			listener->tcp_eager_next_q = tcp;
12641 		listener->tcp_eager_last_q = tcp;
12642 		tcp->tcp_eager_next_q = NULL;
12643 		/*
12644 		 * Delay sending up the T_conn_ind until we are
12645 		 * done with the eager. Once we have have sent up
12646 		 * the T_conn_ind, the accept can potentially complete
12647 		 * any time and release the refhold we have on the eager.
12648 		 */
12649 		need_send_conn_ind = B_TRUE;
12650 	} else {
12651 		/*
12652 		 * Defer connection on q0 and set deferred
12653 		 * connection bit true
12654 		 */
12655 		tcp->tcp_conn_def_q0 = B_TRUE;
12656 
12657 		/* take tcp out of q0 ... */
12658 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12659 		    tcp->tcp_eager_next_q0;
12660 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12661 		    tcp->tcp_eager_prev_q0;
12662 
12663 		/* ... and place it at the end of q0 */
12664 		tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0;
12665 		tcp->tcp_eager_next_q0 = listener;
12666 		listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp;
12667 		listener->tcp_eager_prev_q0 = tcp;
12668 		tcp->tcp_conn.tcp_eager_conn_ind = mp;
12669 	}
12670 
12671 	/* we have timed out before */
12672 	if (tcp->tcp_syn_rcvd_timeout != 0) {
12673 		tcp->tcp_syn_rcvd_timeout = 0;
12674 		listener->tcp_syn_rcvd_timeout--;
12675 		if (listener->tcp_syn_defense &&
12676 		    listener->tcp_syn_rcvd_timeout <=
12677 		    (tcps->tcps_conn_req_max_q0 >> 5) &&
12678 		    10*MINUTES < TICK_TO_MSEC(lbolt64 -
12679 		    listener->tcp_last_rcv_lbolt)) {
12680 			/*
12681 			 * Turn off the defense mode if we
12682 			 * believe the SYN attack is over.
12683 			 */
12684 			listener->tcp_syn_defense = B_FALSE;
12685 			if (listener->tcp_ip_addr_cache) {
12686 				kmem_free((void *)listener->tcp_ip_addr_cache,
12687 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
12688 				listener->tcp_ip_addr_cache = NULL;
12689 			}
12690 		}
12691 	}
12692 	addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
12693 	if (addr_cache != NULL) {
12694 		/*
12695 		 * We have finished a 3-way handshake with this
12696 		 * remote host. This proves the IP addr is good.
12697 		 * Cache it!
12698 		 */
12699 		addr_cache[IP_ADDR_CACHE_HASH(
12700 		    tcp->tcp_remote)] = tcp->tcp_remote;
12701 	}
12702 	mutex_exit(&listener->tcp_eager_lock);
12703 	if (need_send_conn_ind) {
12704 		if (IPCL_IS_NONSTR(lconnp)) {
12705 			ASSERT(tcp->tcp_listener == listener);
12706 			ASSERT(tcp->tcp_saved_listener == listener);
12707 			if ((*lconnp->conn_upcalls->su_newconn)
12708 			    (lconnp->conn_upper_handle,
12709 			    (sock_lower_handle_t)tcp->tcp_connp,
12710 			    &sock_tcp_downcalls, DB_CRED(mp), DB_CPID(mp),
12711 			    &tcp->tcp_connp->conn_upcalls) != NULL) {
12712 				/*
12713 				 * Keep the message around
12714 				 * in case of fallback
12715 				 */
12716 				tcp->tcp_conn.tcp_eager_conn_ind = mp;
12717 			} else {
12718 				freemsg(mp);
12719 			}
12720 		} else {
12721 			putnext(listener->tcp_rq, mp);
12722 		}
12723 	}
12724 }
12725 
12726 mblk_t *
12727 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp,
12728     uint_t *ifindexp, ip6_pkt_t *ippp)
12729 {
12730 	ip_pktinfo_t	*pinfo;
12731 	ip6_t		*ip6h;
12732 	uchar_t		*rptr;
12733 	mblk_t		*first_mp = mp;
12734 	boolean_t	mctl_present = B_FALSE;
12735 	uint_t 		ifindex = 0;
12736 	ip6_pkt_t	ipp;
12737 	uint_t		ipvers;
12738 	uint_t		ip_hdr_len;
12739 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12740 
12741 	rptr = mp->b_rptr;
12742 	ASSERT(OK_32PTR(rptr));
12743 	ASSERT(tcp != NULL);
12744 	ipp.ipp_fields = 0;
12745 
12746 	switch DB_TYPE(mp) {
12747 	case M_CTL:
12748 		mp = mp->b_cont;
12749 		if (mp == NULL) {
12750 			freemsg(first_mp);
12751 			return (NULL);
12752 		}
12753 		if (DB_TYPE(mp) != M_DATA) {
12754 			freemsg(first_mp);
12755 			return (NULL);
12756 		}
12757 		mctl_present = B_TRUE;
12758 		break;
12759 	case M_DATA:
12760 		break;
12761 	default:
12762 		cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type");
12763 		freemsg(mp);
12764 		return (NULL);
12765 	}
12766 	ipvers = IPH_HDR_VERSION(rptr);
12767 	if (ipvers == IPV4_VERSION) {
12768 		if (tcp == NULL) {
12769 			ip_hdr_len = IPH_HDR_LENGTH(rptr);
12770 			goto done;
12771 		}
12772 
12773 		ipp.ipp_fields |= IPPF_HOPLIMIT;
12774 		ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl;
12775 
12776 		/*
12777 		 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary
12778 		 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp.
12779 		 */
12780 		if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) &&
12781 		    mctl_present) {
12782 			pinfo = (ip_pktinfo_t *)first_mp->b_rptr;
12783 			if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) &&
12784 			    (pinfo->ip_pkt_ulp_type == IN_PKTINFO) &&
12785 			    (pinfo->ip_pkt_flags & IPF_RECVIF)) {
12786 				ipp.ipp_fields |= IPPF_IFINDEX;
12787 				ipp.ipp_ifindex = pinfo->ip_pkt_ifindex;
12788 				ifindex = pinfo->ip_pkt_ifindex;
12789 			}
12790 			freeb(first_mp);
12791 			mctl_present = B_FALSE;
12792 		}
12793 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12794 	} else {
12795 		ip6h = (ip6_t *)rptr;
12796 
12797 		ASSERT(ipvers == IPV6_VERSION);
12798 		ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS;
12799 		ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20;
12800 		ipp.ipp_hoplimit = ip6h->ip6_hops;
12801 
12802 		if (ip6h->ip6_nxt != IPPROTO_TCP) {
12803 			uint8_t	nexthdrp;
12804 			ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
12805 
12806 			/* Look for ifindex information */
12807 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
12808 				ip6i_t *ip6i = (ip6i_t *)ip6h;
12809 				if ((uchar_t *)&ip6i[1] > mp->b_wptr) {
12810 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12811 					freemsg(first_mp);
12812 					return (NULL);
12813 				}
12814 
12815 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
12816 					ASSERT(ip6i->ip6i_ifindex != 0);
12817 					ipp.ipp_fields |= IPPF_IFINDEX;
12818 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
12819 					ifindex = ip6i->ip6i_ifindex;
12820 				}
12821 				rptr = (uchar_t *)&ip6i[1];
12822 				mp->b_rptr = rptr;
12823 				if (rptr == mp->b_wptr) {
12824 					mblk_t *mp1;
12825 					mp1 = mp->b_cont;
12826 					freeb(mp);
12827 					mp = mp1;
12828 					rptr = mp->b_rptr;
12829 				}
12830 				if (MBLKL(mp) < IPV6_HDR_LEN +
12831 				    sizeof (tcph_t)) {
12832 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12833 					freemsg(first_mp);
12834 					return (NULL);
12835 				}
12836 				ip6h = (ip6_t *)rptr;
12837 			}
12838 
12839 			/*
12840 			 * Find any potentially interesting extension headers
12841 			 * as well as the length of the IPv6 + extension
12842 			 * headers.
12843 			 */
12844 			ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp);
12845 			/* Verify if this is a TCP packet */
12846 			if (nexthdrp != IPPROTO_TCP) {
12847 				BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12848 				freemsg(first_mp);
12849 				return (NULL);
12850 			}
12851 		} else {
12852 			ip_hdr_len = IPV6_HDR_LEN;
12853 		}
12854 	}
12855 
12856 done:
12857 	if (ipversp != NULL)
12858 		*ipversp = ipvers;
12859 	if (ip_hdr_lenp != NULL)
12860 		*ip_hdr_lenp = ip_hdr_len;
12861 	if (ippp != NULL)
12862 		*ippp = ipp;
12863 	if (ifindexp != NULL)
12864 		*ifindexp = ifindex;
12865 	if (mctl_present) {
12866 		freeb(first_mp);
12867 	}
12868 	return (mp);
12869 }
12870 
12871 /*
12872  * Handle M_DATA messages from IP. Its called directly from IP via
12873  * squeue for AF_INET type sockets fast path. No M_CTL are expected
12874  * in this path.
12875  *
12876  * For everything else (including AF_INET6 sockets with 'tcp_ipversion'
12877  * v4 and v6), we are called through tcp_input() and a M_CTL can
12878  * be present for options but tcp_find_pktinfo() deals with it. We
12879  * only expect M_DATA packets after tcp_find_pktinfo() is done.
12880  *
12881  * The first argument is always the connp/tcp to which the mp belongs.
12882  * There are no exceptions to this rule. The caller has already put
12883  * a reference on this connp/tcp and once tcp_rput_data() returns,
12884  * the squeue will do the refrele.
12885  *
12886  * The TH_SYN for the listener directly go to tcp_conn_request via
12887  * squeue.
12888  *
12889  * sqp: NULL = recursive, sqp != NULL means called from squeue
12890  */
12891 void
12892 tcp_rput_data(void *arg, mblk_t *mp, void *arg2)
12893 {
12894 	int32_t		bytes_acked;
12895 	int32_t		gap;
12896 	mblk_t		*mp1;
12897 	uint_t		flags;
12898 	uint32_t	new_swnd = 0;
12899 	uchar_t		*iphdr;
12900 	uchar_t		*rptr;
12901 	int32_t		rgap;
12902 	uint32_t	seg_ack;
12903 	int		seg_len;
12904 	uint_t		ip_hdr_len;
12905 	uint32_t	seg_seq;
12906 	tcph_t		*tcph;
12907 	int		urp;
12908 	tcp_opt_t	tcpopt;
12909 	uint_t		ipvers;
12910 	ip6_pkt_t	ipp;
12911 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
12912 	uint32_t	cwnd;
12913 	uint32_t	add;
12914 	int		npkt;
12915 	int		mss;
12916 	conn_t		*connp = (conn_t *)arg;
12917 	squeue_t	*sqp = (squeue_t *)arg2;
12918 	tcp_t		*tcp = connp->conn_tcp;
12919 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12920 
12921 	/*
12922 	 * RST from fused tcp loopback peer should trigger an unfuse.
12923 	 */
12924 	if (tcp->tcp_fused) {
12925 		TCP_STAT(tcps, tcp_fusion_aborted);
12926 		tcp_unfuse(tcp);
12927 	}
12928 
12929 	iphdr = mp->b_rptr;
12930 	rptr = mp->b_rptr;
12931 	ASSERT(OK_32PTR(rptr));
12932 
12933 	/*
12934 	 * An AF_INET socket is not capable of receiving any pktinfo. Do inline
12935 	 * processing here. For rest call tcp_find_pktinfo to fill up the
12936 	 * necessary information.
12937 	 */
12938 	if (IPCL_IS_TCP4(connp)) {
12939 		ipvers = IPV4_VERSION;
12940 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12941 	} else {
12942 		mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len,
12943 		    NULL, &ipp);
12944 		if (mp == NULL) {
12945 			TCP_STAT(tcps, tcp_rput_v6_error);
12946 			return;
12947 		}
12948 		iphdr = mp->b_rptr;
12949 		rptr = mp->b_rptr;
12950 	}
12951 	ASSERT(DB_TYPE(mp) == M_DATA);
12952 	ASSERT(mp->b_next == NULL);
12953 
12954 	tcph = (tcph_t *)&rptr[ip_hdr_len];
12955 	seg_seq = ABE32_TO_U32(tcph->th_seq);
12956 	seg_ack = ABE32_TO_U32(tcph->th_ack);
12957 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
12958 	seg_len = (int)(mp->b_wptr - rptr) -
12959 	    (ip_hdr_len + TCP_HDR_LENGTH(tcph));
12960 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
12961 		do {
12962 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
12963 			    (uintptr_t)INT_MAX);
12964 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
12965 		} while ((mp1 = mp1->b_cont) != NULL &&
12966 		    mp1->b_datap->db_type == M_DATA);
12967 	}
12968 
12969 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
12970 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
12971 		    seg_len, tcph);
12972 		return;
12973 	}
12974 
12975 	if (sqp != NULL) {
12976 		/*
12977 		 * This is the correct place to update tcp_last_recv_time. Note
12978 		 * that it is also updated for tcp structure that belongs to
12979 		 * global and listener queues which do not really need updating.
12980 		 * But that should not cause any harm.  And it is updated for
12981 		 * all kinds of incoming segments, not only for data segments.
12982 		 */
12983 		tcp->tcp_last_recv_time = lbolt;
12984 	}
12985 
12986 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
12987 
12988 	BUMP_LOCAL(tcp->tcp_ibsegs);
12989 	DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
12990 
12991 	if ((flags & TH_URG) && sqp != NULL) {
12992 		/*
12993 		 * TCP can't handle urgent pointers that arrive before
12994 		 * the connection has been accept()ed since it can't
12995 		 * buffer OOB data.  Discard segment if this happens.
12996 		 *
12997 		 * We can't just rely on a non-null tcp_listener to indicate
12998 		 * that the accept() has completed since unlinking of the
12999 		 * eager and completion of the accept are not atomic.
13000 		 * tcp_detached, when it is not set (B_FALSE) indicates
13001 		 * that the accept() has completed.
13002 		 *
13003 		 * Nor can it reassemble urgent pointers, so discard
13004 		 * if it's not the next segment expected.
13005 		 *
13006 		 * Otherwise, collapse chain into one mblk (discard if
13007 		 * that fails).  This makes sure the headers, retransmitted
13008 		 * data, and new data all are in the same mblk.
13009 		 */
13010 		ASSERT(mp != NULL);
13011 		if (tcp->tcp_detached || !pullupmsg(mp, -1)) {
13012 			freemsg(mp);
13013 			return;
13014 		}
13015 		/* Update pointers into message */
13016 		iphdr = rptr = mp->b_rptr;
13017 		tcph = (tcph_t *)&rptr[ip_hdr_len];
13018 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
13019 			/*
13020 			 * Since we can't handle any data with this urgent
13021 			 * pointer that is out of sequence, we expunge
13022 			 * the data.  This allows us to still register
13023 			 * the urgent mark and generate the M_PCSIG,
13024 			 * which we can do.
13025 			 */
13026 			mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
13027 			seg_len = 0;
13028 		}
13029 	}
13030 
13031 	switch (tcp->tcp_state) {
13032 	case TCPS_SYN_SENT:
13033 		if (flags & TH_ACK) {
13034 			/*
13035 			 * Note that our stack cannot send data before a
13036 			 * connection is established, therefore the
13037 			 * following check is valid.  Otherwise, it has
13038 			 * to be changed.
13039 			 */
13040 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
13041 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13042 				freemsg(mp);
13043 				if (flags & TH_RST)
13044 					return;
13045 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
13046 				    tcp, seg_ack, 0, TH_RST);
13047 				return;
13048 			}
13049 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
13050 		}
13051 		if (flags & TH_RST) {
13052 			freemsg(mp);
13053 			if (flags & TH_ACK)
13054 				(void) tcp_clean_death(tcp,
13055 				    ECONNREFUSED, 13);
13056 			return;
13057 		}
13058 		if (!(flags & TH_SYN)) {
13059 			freemsg(mp);
13060 			return;
13061 		}
13062 
13063 		/* Process all TCP options. */
13064 		tcp_process_options(tcp, tcph);
13065 		/*
13066 		 * The following changes our rwnd to be a multiple of the
13067 		 * MIN(peer MSS, our MSS) for performance reason.
13068 		 */
13069 		(void) tcp_rwnd_set(tcp,
13070 		    MSS_ROUNDUP(tcp->tcp_recv_hiwater, tcp->tcp_mss));
13071 
13072 		/* Is the other end ECN capable? */
13073 		if (tcp->tcp_ecn_ok) {
13074 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
13075 				tcp->tcp_ecn_ok = B_FALSE;
13076 			}
13077 		}
13078 		/*
13079 		 * Clear ECN flags because it may interfere with later
13080 		 * processing.
13081 		 */
13082 		flags &= ~(TH_ECE|TH_CWR);
13083 
13084 		tcp->tcp_irs = seg_seq;
13085 		tcp->tcp_rack = seg_seq;
13086 		tcp->tcp_rnxt = seg_seq + 1;
13087 		U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13088 		if (!TCP_IS_DETACHED(tcp)) {
13089 			/* Allocate room for SACK options if needed. */
13090 			if (tcp->tcp_snd_sack_ok) {
13091 				(void) proto_set_tx_wroff(tcp->tcp_rq, connp,
13092 				    tcp->tcp_hdr_len +
13093 				    TCPOPT_MAX_SACK_LEN +
13094 				    (tcp->tcp_loopback ? 0 :
13095 				    tcps->tcps_wroff_xtra));
13096 			} else {
13097 				(void) proto_set_tx_wroff(tcp->tcp_rq, connp,
13098 				    tcp->tcp_hdr_len +
13099 				    (tcp->tcp_loopback ? 0 :
13100 				    tcps->tcps_wroff_xtra));
13101 			}
13102 		}
13103 		if (flags & TH_ACK) {
13104 			/*
13105 			 * If we can't get the confirmation upstream, pretend
13106 			 * we didn't even see this one.
13107 			 *
13108 			 * XXX: how can we pretend we didn't see it if we
13109 			 * have updated rnxt et. al.
13110 			 *
13111 			 * For loopback we defer sending up the T_CONN_CON
13112 			 * until after some checks below.
13113 			 */
13114 			mp1 = NULL;
13115 			if (!tcp_conn_con(tcp, iphdr, tcph, mp,
13116 			    tcp->tcp_loopback ? &mp1 : NULL)) {
13117 				freemsg(mp);
13118 				return;
13119 			}
13120 			/* SYN was acked - making progress */
13121 			if (tcp->tcp_ipversion == IPV6_VERSION)
13122 				tcp->tcp_ip_forward_progress = B_TRUE;
13123 
13124 			/* One for the SYN */
13125 			tcp->tcp_suna = tcp->tcp_iss + 1;
13126 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
13127 			tcp->tcp_state = TCPS_ESTABLISHED;
13128 
13129 			/*
13130 			 * If SYN was retransmitted, need to reset all
13131 			 * retransmission info.  This is because this
13132 			 * segment will be treated as a dup ACK.
13133 			 */
13134 			if (tcp->tcp_rexmit) {
13135 				tcp->tcp_rexmit = B_FALSE;
13136 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
13137 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
13138 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
13139 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
13140 				tcp->tcp_ms_we_have_waited = 0;
13141 
13142 				/*
13143 				 * Set tcp_cwnd back to 1 MSS, per
13144 				 * recommendation from
13145 				 * draft-floyd-incr-init-win-01.txt,
13146 				 * Increasing TCP's Initial Window.
13147 				 */
13148 				tcp->tcp_cwnd = tcp->tcp_mss;
13149 			}
13150 
13151 			tcp->tcp_swl1 = seg_seq;
13152 			tcp->tcp_swl2 = seg_ack;
13153 
13154 			new_swnd = BE16_TO_U16(tcph->th_win);
13155 			tcp->tcp_swnd = new_swnd;
13156 			if (new_swnd > tcp->tcp_max_swnd)
13157 				tcp->tcp_max_swnd = new_swnd;
13158 
13159 			/*
13160 			 * Always send the three-way handshake ack immediately
13161 			 * in order to make the connection complete as soon as
13162 			 * possible on the accepting host.
13163 			 */
13164 			flags |= TH_ACK_NEEDED;
13165 
13166 			/*
13167 			 * Special case for loopback.  At this point we have
13168 			 * received SYN-ACK from the remote endpoint.  In
13169 			 * order to ensure that both endpoints reach the
13170 			 * fused state prior to any data exchange, the final
13171 			 * ACK needs to be sent before we indicate T_CONN_CON
13172 			 * to the module upstream.
13173 			 */
13174 			if (tcp->tcp_loopback) {
13175 				mblk_t *ack_mp;
13176 
13177 				ASSERT(!tcp->tcp_unfusable);
13178 				ASSERT(mp1 != NULL);
13179 				/*
13180 				 * For loopback, we always get a pure SYN-ACK
13181 				 * and only need to send back the final ACK
13182 				 * with no data (this is because the other
13183 				 * tcp is ours and we don't do T/TCP).  This
13184 				 * final ACK triggers the passive side to
13185 				 * perform fusion in ESTABLISHED state.
13186 				 */
13187 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
13188 					if (tcp->tcp_ack_tid != 0) {
13189 						(void) TCP_TIMER_CANCEL(tcp,
13190 						    tcp->tcp_ack_tid);
13191 						tcp->tcp_ack_tid = 0;
13192 					}
13193 					tcp_send_data(tcp, tcp->tcp_wq, ack_mp);
13194 					BUMP_LOCAL(tcp->tcp_obsegs);
13195 					BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
13196 
13197 					if (!IPCL_IS_NONSTR(connp)) {
13198 						/* Send up T_CONN_CON */
13199 						putnext(tcp->tcp_rq, mp1);
13200 					} else {
13201 						(*connp->conn_upcalls->
13202 						    su_connected)
13203 						    (connp->conn_upper_handle,
13204 						    tcp->tcp_connid,
13205 						    DB_CRED(mp1),
13206 						    DB_CPID(mp1));
13207 						freemsg(mp1);
13208 					}
13209 
13210 					freemsg(mp);
13211 					return;
13212 				}
13213 				/*
13214 				 * Forget fusion; we need to handle more
13215 				 * complex cases below.  Send the deferred
13216 				 * T_CONN_CON message upstream and proceed
13217 				 * as usual.  Mark this tcp as not capable
13218 				 * of fusion.
13219 				 */
13220 				TCP_STAT(tcps, tcp_fusion_unfusable);
13221 				tcp->tcp_unfusable = B_TRUE;
13222 				if (!IPCL_IS_NONSTR(connp)) {
13223 					putnext(tcp->tcp_rq, mp1);
13224 				} else {
13225 					(*connp->conn_upcalls->su_connected)
13226 					    (connp->conn_upper_handle,
13227 					    tcp->tcp_connid, DB_CRED(mp1),
13228 					    DB_CPID(mp1));
13229 					freemsg(mp1);
13230 				}
13231 			}
13232 
13233 			/*
13234 			 * Check to see if there is data to be sent.  If
13235 			 * yes, set the transmit flag.  Then check to see
13236 			 * if received data processing needs to be done.
13237 			 * If not, go straight to xmit_check.  This short
13238 			 * cut is OK as we don't support T/TCP.
13239 			 */
13240 			if (tcp->tcp_unsent)
13241 				flags |= TH_XMIT_NEEDED;
13242 
13243 			if (seg_len == 0 && !(flags & TH_URG)) {
13244 				freemsg(mp);
13245 				goto xmit_check;
13246 			}
13247 
13248 			flags &= ~TH_SYN;
13249 			seg_seq++;
13250 			break;
13251 		}
13252 		tcp->tcp_state = TCPS_SYN_RCVD;
13253 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
13254 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
13255 		if (mp1) {
13256 			DB_CPID(mp1) = tcp->tcp_cpid;
13257 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
13258 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
13259 		}
13260 		freemsg(mp);
13261 		return;
13262 	case TCPS_SYN_RCVD:
13263 		if (flags & TH_ACK) {
13264 			/*
13265 			 * In this state, a SYN|ACK packet is either bogus
13266 			 * because the other side must be ACKing our SYN which
13267 			 * indicates it has seen the ACK for their SYN and
13268 			 * shouldn't retransmit it or we're crossing SYNs
13269 			 * on active open.
13270 			 */
13271 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
13272 				freemsg(mp);
13273 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
13274 				    tcp, seg_ack, 0, TH_RST);
13275 				return;
13276 			}
13277 			/*
13278 			 * NOTE: RFC 793 pg. 72 says this should be
13279 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
13280 			 * but that would mean we have an ack that ignored
13281 			 * our SYN.
13282 			 */
13283 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
13284 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13285 				freemsg(mp);
13286 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
13287 				    tcp, seg_ack, 0, TH_RST);
13288 				return;
13289 			}
13290 		}
13291 		break;
13292 	case TCPS_LISTEN:
13293 		/*
13294 		 * Only a TLI listener can come through this path when a
13295 		 * acceptor is going back to be a listener and a packet
13296 		 * for the acceptor hits the classifier. For a socket
13297 		 * listener, this can never happen because a listener
13298 		 * can never accept connection on itself and hence a
13299 		 * socket acceptor can not go back to being a listener.
13300 		 */
13301 		ASSERT(!TCP_IS_SOCKET(tcp));
13302 		/*FALLTHRU*/
13303 	case TCPS_CLOSED:
13304 	case TCPS_BOUND: {
13305 		conn_t	*new_connp;
13306 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
13307 
13308 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
13309 		if (new_connp != NULL) {
13310 			tcp_reinput(new_connp, mp, connp->conn_sqp);
13311 			return;
13312 		}
13313 		/* We failed to classify. For now just drop the packet */
13314 		freemsg(mp);
13315 		return;
13316 	}
13317 	case TCPS_IDLE:
13318 		/*
13319 		 * Handle the case where the tcp_clean_death() has happened
13320 		 * on a connection (application hasn't closed yet) but a packet
13321 		 * was already queued on squeue before tcp_clean_death()
13322 		 * was processed. Calling tcp_clean_death() twice on same
13323 		 * connection can result in weird behaviour.
13324 		 */
13325 		freemsg(mp);
13326 		return;
13327 	default:
13328 		break;
13329 	}
13330 
13331 	/*
13332 	 * Already on the correct queue/perimeter.
13333 	 * If this is a detached connection and not an eager
13334 	 * connection hanging off a listener then new data
13335 	 * (past the FIN) will cause a reset.
13336 	 * We do a special check here where it
13337 	 * is out of the main line, rather than check
13338 	 * if we are detached every time we see new
13339 	 * data down below.
13340 	 */
13341 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
13342 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
13343 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
13344 		DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
13345 
13346 		freemsg(mp);
13347 		/*
13348 		 * This could be an SSL closure alert. We're detached so just
13349 		 * acknowledge it this last time.
13350 		 */
13351 		if (tcp->tcp_kssl_ctx != NULL) {
13352 			kssl_release_ctx(tcp->tcp_kssl_ctx);
13353 			tcp->tcp_kssl_ctx = NULL;
13354 
13355 			tcp->tcp_rnxt += seg_len;
13356 			U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13357 			flags |= TH_ACK_NEEDED;
13358 			goto ack_check;
13359 		}
13360 
13361 		tcp_xmit_ctl("new data when detached", tcp,
13362 		    tcp->tcp_snxt, 0, TH_RST);
13363 		(void) tcp_clean_death(tcp, EPROTO, 12);
13364 		return;
13365 	}
13366 
13367 	mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
13368 	urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION;
13369 	new_swnd = BE16_TO_U16(tcph->th_win) <<
13370 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
13371 
13372 	if (tcp->tcp_snd_ts_ok) {
13373 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
13374 			/*
13375 			 * This segment is not acceptable.
13376 			 * Drop it and send back an ACK.
13377 			 */
13378 			freemsg(mp);
13379 			flags |= TH_ACK_NEEDED;
13380 			goto ack_check;
13381 		}
13382 	} else if (tcp->tcp_snd_sack_ok) {
13383 		ASSERT(tcp->tcp_sack_info != NULL);
13384 		tcpopt.tcp = tcp;
13385 		/*
13386 		 * SACK info in already updated in tcp_parse_options.  Ignore
13387 		 * all other TCP options...
13388 		 */
13389 		(void) tcp_parse_options(tcph, &tcpopt);
13390 	}
13391 try_again:;
13392 	mss = tcp->tcp_mss;
13393 	gap = seg_seq - tcp->tcp_rnxt;
13394 	rgap = tcp->tcp_rwnd - (gap + seg_len);
13395 	/*
13396 	 * gap is the amount of sequence space between what we expect to see
13397 	 * and what we got for seg_seq.  A positive value for gap means
13398 	 * something got lost.  A negative value means we got some old stuff.
13399 	 */
13400 	if (gap < 0) {
13401 		/* Old stuff present.  Is the SYN in there? */
13402 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
13403 		    (seg_len != 0)) {
13404 			flags &= ~TH_SYN;
13405 			seg_seq++;
13406 			urp--;
13407 			/* Recompute the gaps after noting the SYN. */
13408 			goto try_again;
13409 		}
13410 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
13411 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
13412 		    (seg_len > -gap ? -gap : seg_len));
13413 		/* Remove the old stuff from seg_len. */
13414 		seg_len += gap;
13415 		/*
13416 		 * Anything left?
13417 		 * Make sure to check for unack'd FIN when rest of data
13418 		 * has been previously ack'd.
13419 		 */
13420 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
13421 			/*
13422 			 * Resets are only valid if they lie within our offered
13423 			 * window.  If the RST bit is set, we just ignore this
13424 			 * segment.
13425 			 */
13426 			if (flags & TH_RST) {
13427 				freemsg(mp);
13428 				return;
13429 			}
13430 
13431 			/*
13432 			 * The arriving of dup data packets indicate that we
13433 			 * may have postponed an ack for too long, or the other
13434 			 * side's RTT estimate is out of shape. Start acking
13435 			 * more often.
13436 			 */
13437 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
13438 			    tcp->tcp_rack_cnt >= 1 &&
13439 			    tcp->tcp_rack_abs_max > 2) {
13440 				tcp->tcp_rack_abs_max--;
13441 			}
13442 			tcp->tcp_rack_cur_max = 1;
13443 
13444 			/*
13445 			 * This segment is "unacceptable".  None of its
13446 			 * sequence space lies within our advertized window.
13447 			 *
13448 			 * Adjust seg_len to the original value for tracing.
13449 			 */
13450 			seg_len -= gap;
13451 			if (tcp->tcp_debug) {
13452 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13453 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
13454 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
13455 				    "seg_len %d, rnxt %u, snxt %u, %s",
13456 				    gap, rgap, flags, seg_seq, seg_ack,
13457 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
13458 				    tcp_display(tcp, NULL,
13459 				    DISP_ADDR_AND_PORT));
13460 			}
13461 
13462 			/*
13463 			 * Arrange to send an ACK in response to the
13464 			 * unacceptable segment per RFC 793 page 69. There
13465 			 * is only one small difference between ours and the
13466 			 * acceptability test in the RFC - we accept ACK-only
13467 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
13468 			 * will be generated.
13469 			 *
13470 			 * Note that we have to ACK an ACK-only packet at least
13471 			 * for stacks that send 0-length keep-alives with
13472 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
13473 			 * section 4.2.3.6. As long as we don't ever generate
13474 			 * an unacceptable packet in response to an incoming
13475 			 * packet that is unacceptable, it should not cause
13476 			 * "ACK wars".
13477 			 */
13478 			flags |=  TH_ACK_NEEDED;
13479 
13480 			/*
13481 			 * Continue processing this segment in order to use the
13482 			 * ACK information it contains, but skip all other
13483 			 * sequence-number processing.	Processing the ACK
13484 			 * information is necessary in order to
13485 			 * re-synchronize connections that may have lost
13486 			 * synchronization.
13487 			 *
13488 			 * We clear seg_len and flag fields related to
13489 			 * sequence number processing as they are not
13490 			 * to be trusted for an unacceptable segment.
13491 			 */
13492 			seg_len = 0;
13493 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
13494 			goto process_ack;
13495 		}
13496 
13497 		/* Fix seg_seq, and chew the gap off the front. */
13498 		seg_seq = tcp->tcp_rnxt;
13499 		urp += gap;
13500 		do {
13501 			mblk_t	*mp2;
13502 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13503 			    (uintptr_t)UINT_MAX);
13504 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
13505 			if (gap > 0) {
13506 				mp->b_rptr = mp->b_wptr - gap;
13507 				break;
13508 			}
13509 			mp2 = mp;
13510 			mp = mp->b_cont;
13511 			freeb(mp2);
13512 		} while (gap < 0);
13513 		/*
13514 		 * If the urgent data has already been acknowledged, we
13515 		 * should ignore TH_URG below
13516 		 */
13517 		if (urp < 0)
13518 			flags &= ~TH_URG;
13519 	}
13520 	/*
13521 	 * rgap is the amount of stuff received out of window.  A negative
13522 	 * value is the amount out of window.
13523 	 */
13524 	if (rgap < 0) {
13525 		mblk_t	*mp2;
13526 
13527 		if (tcp->tcp_rwnd == 0) {
13528 			BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe);
13529 		} else {
13530 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
13531 			UPDATE_MIB(&tcps->tcps_mib,
13532 			    tcpInDataPastWinBytes, -rgap);
13533 		}
13534 
13535 		/*
13536 		 * seg_len does not include the FIN, so if more than
13537 		 * just the FIN is out of window, we act like we don't
13538 		 * see it.  (If just the FIN is out of window, rgap
13539 		 * will be zero and we will go ahead and acknowledge
13540 		 * the FIN.)
13541 		 */
13542 		flags &= ~TH_FIN;
13543 
13544 		/* Fix seg_len and make sure there is something left. */
13545 		seg_len += rgap;
13546 		if (seg_len <= 0) {
13547 			/*
13548 			 * Resets are only valid if they lie within our offered
13549 			 * window.  If the RST bit is set, we just ignore this
13550 			 * segment.
13551 			 */
13552 			if (flags & TH_RST) {
13553 				freemsg(mp);
13554 				return;
13555 			}
13556 
13557 			/* Per RFC 793, we need to send back an ACK. */
13558 			flags |= TH_ACK_NEEDED;
13559 
13560 			/*
13561 			 * Send SIGURG as soon as possible i.e. even
13562 			 * if the TH_URG was delivered in a window probe
13563 			 * packet (which will be unacceptable).
13564 			 *
13565 			 * We generate a signal if none has been generated
13566 			 * for this connection or if this is a new urgent
13567 			 * byte. Also send a zero-length "unmarked" message
13568 			 * to inform SIOCATMARK that this is not the mark.
13569 			 *
13570 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
13571 			 * is sent up. This plus the check for old data
13572 			 * (gap >= 0) handles the wraparound of the sequence
13573 			 * number space without having to always track the
13574 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
13575 			 * this max in its rcv_up variable).
13576 			 *
13577 			 * This prevents duplicate SIGURGS due to a "late"
13578 			 * zero-window probe when the T_EXDATA_IND has already
13579 			 * been sent up.
13580 			 */
13581 			if ((flags & TH_URG) &&
13582 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
13583 			    tcp->tcp_urp_last))) {
13584 				if (IPCL_IS_NONSTR(connp)) {
13585 					if (!TCP_IS_DETACHED(tcp)) {
13586 						(*connp->conn_upcalls->
13587 						    su_signal_oob)
13588 						    (connp->conn_upper_handle,
13589 						    urp);
13590 					}
13591 				} else {
13592 					mp1 = allocb(0, BPRI_MED);
13593 					if (mp1 == NULL) {
13594 						freemsg(mp);
13595 						return;
13596 					}
13597 					if (!TCP_IS_DETACHED(tcp) &&
13598 					    !putnextctl1(tcp->tcp_rq,
13599 					    M_PCSIG, SIGURG)) {
13600 						/* Try again on the rexmit. */
13601 						freemsg(mp1);
13602 						freemsg(mp);
13603 						return;
13604 					}
13605 					/*
13606 					 * If the next byte would be the mark
13607 					 * then mark with MARKNEXT else mark
13608 					 * with NOTMARKNEXT.
13609 					 */
13610 					if (gap == 0 && urp == 0)
13611 						mp1->b_flag |= MSGMARKNEXT;
13612 					else
13613 						mp1->b_flag |= MSGNOTMARKNEXT;
13614 					freemsg(tcp->tcp_urp_mark_mp);
13615 					tcp->tcp_urp_mark_mp = mp1;
13616 					flags |= TH_SEND_URP_MARK;
13617 				}
13618 				tcp->tcp_urp_last_valid = B_TRUE;
13619 				tcp->tcp_urp_last = urp + seg_seq;
13620 			}
13621 			/*
13622 			 * If this is a zero window probe, continue to
13623 			 * process the ACK part.  But we need to set seg_len
13624 			 * to 0 to avoid data processing.  Otherwise just
13625 			 * drop the segment and send back an ACK.
13626 			 */
13627 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
13628 				flags &= ~(TH_SYN | TH_URG);
13629 				seg_len = 0;
13630 				goto process_ack;
13631 			} else {
13632 				freemsg(mp);
13633 				goto ack_check;
13634 			}
13635 		}
13636 		/* Pitch out of window stuff off the end. */
13637 		rgap = seg_len;
13638 		mp2 = mp;
13639 		do {
13640 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
13641 			    (uintptr_t)INT_MAX);
13642 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
13643 			if (rgap < 0) {
13644 				mp2->b_wptr += rgap;
13645 				if ((mp1 = mp2->b_cont) != NULL) {
13646 					mp2->b_cont = NULL;
13647 					freemsg(mp1);
13648 				}
13649 				break;
13650 			}
13651 		} while ((mp2 = mp2->b_cont) != NULL);
13652 	}
13653 ok:;
13654 	/*
13655 	 * TCP should check ECN info for segments inside the window only.
13656 	 * Therefore the check should be done here.
13657 	 */
13658 	if (tcp->tcp_ecn_ok) {
13659 		if (flags & TH_CWR) {
13660 			tcp->tcp_ecn_echo_on = B_FALSE;
13661 		}
13662 		/*
13663 		 * Note that both ECN_CE and CWR can be set in the
13664 		 * same segment.  In this case, we once again turn
13665 		 * on ECN_ECHO.
13666 		 */
13667 		if (tcp->tcp_ipversion == IPV4_VERSION) {
13668 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
13669 
13670 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
13671 				tcp->tcp_ecn_echo_on = B_TRUE;
13672 			}
13673 		} else {
13674 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
13675 
13676 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
13677 			    htonl(IPH_ECN_CE << 20)) {
13678 				tcp->tcp_ecn_echo_on = B_TRUE;
13679 			}
13680 		}
13681 	}
13682 
13683 	/*
13684 	 * Check whether we can update tcp_ts_recent.  This test is
13685 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
13686 	 * Extensions for High Performance: An Update", Internet Draft.
13687 	 */
13688 	if (tcp->tcp_snd_ts_ok &&
13689 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
13690 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
13691 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
13692 		tcp->tcp_last_rcv_lbolt = lbolt64;
13693 	}
13694 
13695 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
13696 		/*
13697 		 * FIN in an out of order segment.  We record this in
13698 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
13699 		 * Clear the FIN so that any check on FIN flag will fail.
13700 		 * Remember that FIN also counts in the sequence number
13701 		 * space.  So we need to ack out of order FIN only segments.
13702 		 */
13703 		if (flags & TH_FIN) {
13704 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
13705 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
13706 			flags &= ~TH_FIN;
13707 			flags |= TH_ACK_NEEDED;
13708 		}
13709 		if (seg_len > 0) {
13710 			/* Fill in the SACK blk list. */
13711 			if (tcp->tcp_snd_sack_ok) {
13712 				ASSERT(tcp->tcp_sack_info != NULL);
13713 				tcp_sack_insert(tcp->tcp_sack_list,
13714 				    seg_seq, seg_seq + seg_len,
13715 				    &(tcp->tcp_num_sack_blk));
13716 			}
13717 
13718 			/*
13719 			 * Attempt reassembly and see if we have something
13720 			 * ready to go.
13721 			 */
13722 			mp = tcp_reass(tcp, mp, seg_seq);
13723 			/* Always ack out of order packets */
13724 			flags |= TH_ACK_NEEDED | TH_PUSH;
13725 			if (mp) {
13726 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13727 				    (uintptr_t)INT_MAX);
13728 				seg_len = mp->b_cont ? msgdsize(mp) :
13729 				    (int)(mp->b_wptr - mp->b_rptr);
13730 				seg_seq = tcp->tcp_rnxt;
13731 				/*
13732 				 * A gap is filled and the seq num and len
13733 				 * of the gap match that of a previously
13734 				 * received FIN, put the FIN flag back in.
13735 				 */
13736 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13737 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13738 					flags |= TH_FIN;
13739 					tcp->tcp_valid_bits &=
13740 					    ~TCP_OFO_FIN_VALID;
13741 				}
13742 			} else {
13743 				/*
13744 				 * Keep going even with NULL mp.
13745 				 * There may be a useful ACK or something else
13746 				 * we don't want to miss.
13747 				 *
13748 				 * But TCP should not perform fast retransmit
13749 				 * because of the ack number.  TCP uses
13750 				 * seg_len == 0 to determine if it is a pure
13751 				 * ACK.  And this is not a pure ACK.
13752 				 */
13753 				seg_len = 0;
13754 				ofo_seg = B_TRUE;
13755 			}
13756 		}
13757 	} else if (seg_len > 0) {
13758 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
13759 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
13760 		/*
13761 		 * If an out of order FIN was received before, and the seq
13762 		 * num and len of the new segment match that of the FIN,
13763 		 * put the FIN flag back in.
13764 		 */
13765 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13766 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13767 			flags |= TH_FIN;
13768 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
13769 		}
13770 	}
13771 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
13772 	if (flags & TH_RST) {
13773 		freemsg(mp);
13774 		switch (tcp->tcp_state) {
13775 		case TCPS_SYN_RCVD:
13776 			(void) tcp_clean_death(tcp, ECONNREFUSED, 14);
13777 			break;
13778 		case TCPS_ESTABLISHED:
13779 		case TCPS_FIN_WAIT_1:
13780 		case TCPS_FIN_WAIT_2:
13781 		case TCPS_CLOSE_WAIT:
13782 			(void) tcp_clean_death(tcp, ECONNRESET, 15);
13783 			break;
13784 		case TCPS_CLOSING:
13785 		case TCPS_LAST_ACK:
13786 			(void) tcp_clean_death(tcp, 0, 16);
13787 			break;
13788 		default:
13789 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13790 			(void) tcp_clean_death(tcp, ENXIO, 17);
13791 			break;
13792 		}
13793 		return;
13794 	}
13795 	if (flags & TH_SYN) {
13796 		/*
13797 		 * See RFC 793, Page 71
13798 		 *
13799 		 * The seq number must be in the window as it should
13800 		 * be "fixed" above.  If it is outside window, it should
13801 		 * be already rejected.  Note that we allow seg_seq to be
13802 		 * rnxt + rwnd because we want to accept 0 window probe.
13803 		 */
13804 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
13805 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
13806 		freemsg(mp);
13807 		/*
13808 		 * If the ACK flag is not set, just use our snxt as the
13809 		 * seq number of the RST segment.
13810 		 */
13811 		if (!(flags & TH_ACK)) {
13812 			seg_ack = tcp->tcp_snxt;
13813 		}
13814 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
13815 		    TH_RST|TH_ACK);
13816 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13817 		(void) tcp_clean_death(tcp, ECONNRESET, 18);
13818 		return;
13819 	}
13820 	/*
13821 	 * urp could be -1 when the urp field in the packet is 0
13822 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
13823 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
13824 	 */
13825 	if (flags & TH_URG && urp >= 0) {
13826 		if (!tcp->tcp_urp_last_valid ||
13827 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
13828 			if (IPCL_IS_NONSTR(connp)) {
13829 				if (!TCP_IS_DETACHED(tcp)) {
13830 					(*connp->conn_upcalls->su_signal_oob)
13831 					    (connp->conn_upper_handle, urp);
13832 				}
13833 			} else {
13834 				/*
13835 				 * If we haven't generated the signal yet for
13836 				 * this urgent pointer value, do it now.  Also,
13837 				 * send up a zero-length M_DATA indicating
13838 				 * whether or not this is the mark. The latter
13839 				 * is not needed when a T_EXDATA_IND is sent up.
13840 				 * However, if there are allocation failures
13841 				 * this code relies on the sender retransmitting
13842 				 * and the socket code for determining the mark
13843 				 * should not block waiting for the peer to
13844 				 * transmit. Thus, for simplicity we always
13845 				 * send up the mark indication.
13846 				 */
13847 				mp1 = allocb(0, BPRI_MED);
13848 				if (mp1 == NULL) {
13849 					freemsg(mp);
13850 					return;
13851 				}
13852 				if (!TCP_IS_DETACHED(tcp) &&
13853 				    !putnextctl1(tcp->tcp_rq, M_PCSIG,
13854 				    SIGURG)) {
13855 					/* Try again on the rexmit. */
13856 					freemsg(mp1);
13857 					freemsg(mp);
13858 					return;
13859 				}
13860 				/*
13861 				 * Mark with NOTMARKNEXT for now.
13862 				 * The code below will change this to MARKNEXT
13863 				 * if we are at the mark.
13864 				 *
13865 				 * If there are allocation failures (e.g. in
13866 				 * dupmsg below) the next time tcp_rput_data
13867 				 * sees the urgent segment it will send up the
13868 				 * MSGMARKNEXT message.
13869 				 */
13870 				mp1->b_flag |= MSGNOTMARKNEXT;
13871 				freemsg(tcp->tcp_urp_mark_mp);
13872 				tcp->tcp_urp_mark_mp = mp1;
13873 				flags |= TH_SEND_URP_MARK;
13874 #ifdef DEBUG
13875 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13876 				    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
13877 				    "last %x, %s",
13878 				    seg_seq, urp, tcp->tcp_urp_last,
13879 				    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13880 #endif /* DEBUG */
13881 			}
13882 			tcp->tcp_urp_last_valid = B_TRUE;
13883 			tcp->tcp_urp_last = urp + seg_seq;
13884 		} else if (tcp->tcp_urp_mark_mp != NULL) {
13885 			/*
13886 			 * An allocation failure prevented the previous
13887 			 * tcp_rput_data from sending up the allocated
13888 			 * MSG*MARKNEXT message - send it up this time
13889 			 * around.
13890 			 */
13891 			flags |= TH_SEND_URP_MARK;
13892 		}
13893 
13894 		/*
13895 		 * If the urgent byte is in this segment, make sure that it is
13896 		 * all by itself.  This makes it much easier to deal with the
13897 		 * possibility of an allocation failure on the T_exdata_ind.
13898 		 * Note that seg_len is the number of bytes in the segment, and
13899 		 * urp is the offset into the segment of the urgent byte.
13900 		 * urp < seg_len means that the urgent byte is in this segment.
13901 		 */
13902 		if (urp < seg_len) {
13903 			if (seg_len != 1) {
13904 				uint32_t  tmp_rnxt;
13905 				/*
13906 				 * Break it up and feed it back in.
13907 				 * Re-attach the IP header.
13908 				 */
13909 				mp->b_rptr = iphdr;
13910 				if (urp > 0) {
13911 					/*
13912 					 * There is stuff before the urgent
13913 					 * byte.
13914 					 */
13915 					mp1 = dupmsg(mp);
13916 					if (!mp1) {
13917 						/*
13918 						 * Trim from urgent byte on.
13919 						 * The rest will come back.
13920 						 */
13921 						(void) adjmsg(mp,
13922 						    urp - seg_len);
13923 						tcp_rput_data(connp,
13924 						    mp, NULL);
13925 						return;
13926 					}
13927 					(void) adjmsg(mp1, urp - seg_len);
13928 					/* Feed this piece back in. */
13929 					tmp_rnxt = tcp->tcp_rnxt;
13930 					tcp_rput_data(connp, mp1, NULL);
13931 					/*
13932 					 * If the data passed back in was not
13933 					 * processed (ie: bad ACK) sending
13934 					 * the remainder back in will cause a
13935 					 * loop. In this case, drop the
13936 					 * packet and let the sender try
13937 					 * sending a good packet.
13938 					 */
13939 					if (tmp_rnxt == tcp->tcp_rnxt) {
13940 						freemsg(mp);
13941 						return;
13942 					}
13943 				}
13944 				if (urp != seg_len - 1) {
13945 					uint32_t  tmp_rnxt;
13946 					/*
13947 					 * There is stuff after the urgent
13948 					 * byte.
13949 					 */
13950 					mp1 = dupmsg(mp);
13951 					if (!mp1) {
13952 						/*
13953 						 * Trim everything beyond the
13954 						 * urgent byte.  The rest will
13955 						 * come back.
13956 						 */
13957 						(void) adjmsg(mp,
13958 						    urp + 1 - seg_len);
13959 						tcp_rput_data(connp,
13960 						    mp, NULL);
13961 						return;
13962 					}
13963 					(void) adjmsg(mp1, urp + 1 - seg_len);
13964 					tmp_rnxt = tcp->tcp_rnxt;
13965 					tcp_rput_data(connp, mp1, NULL);
13966 					/*
13967 					 * If the data passed back in was not
13968 					 * processed (ie: bad ACK) sending
13969 					 * the remainder back in will cause a
13970 					 * loop. In this case, drop the
13971 					 * packet and let the sender try
13972 					 * sending a good packet.
13973 					 */
13974 					if (tmp_rnxt == tcp->tcp_rnxt) {
13975 						freemsg(mp);
13976 						return;
13977 					}
13978 				}
13979 				tcp_rput_data(connp, mp, NULL);
13980 				return;
13981 			}
13982 			/*
13983 			 * This segment contains only the urgent byte.  We
13984 			 * have to allocate the T_exdata_ind, if we can.
13985 			 */
13986 			if (IPCL_IS_NONSTR(connp)) {
13987 				int error;
13988 
13989 				(*connp->conn_upcalls->su_recv)
13990 				    (connp->conn_upper_handle, mp, seg_len,
13991 				    MSG_OOB, &error, NULL);
13992 				mp = NULL;
13993 				goto update_ack;
13994 			} else if (!tcp->tcp_urp_mp) {
13995 				struct T_exdata_ind *tei;
13996 				mp1 = allocb(sizeof (struct T_exdata_ind),
13997 				    BPRI_MED);
13998 				if (!mp1) {
13999 					/*
14000 					 * Sigh... It'll be back.
14001 					 * Generate any MSG*MARK message now.
14002 					 */
14003 					freemsg(mp);
14004 					seg_len = 0;
14005 					if (flags & TH_SEND_URP_MARK) {
14006 
14007 
14008 						ASSERT(tcp->tcp_urp_mark_mp);
14009 						tcp->tcp_urp_mark_mp->b_flag &=
14010 						    ~MSGNOTMARKNEXT;
14011 						tcp->tcp_urp_mark_mp->b_flag |=
14012 						    MSGMARKNEXT;
14013 					}
14014 					goto ack_check;
14015 				}
14016 				mp1->b_datap->db_type = M_PROTO;
14017 				tei = (struct T_exdata_ind *)mp1->b_rptr;
14018 				tei->PRIM_type = T_EXDATA_IND;
14019 				tei->MORE_flag = 0;
14020 				mp1->b_wptr = (uchar_t *)&tei[1];
14021 				tcp->tcp_urp_mp = mp1;
14022 #ifdef DEBUG
14023 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14024 				    "tcp_rput: allocated exdata_ind %s",
14025 				    tcp_display(tcp, NULL,
14026 				    DISP_PORT_ONLY));
14027 #endif /* DEBUG */
14028 				/*
14029 				 * There is no need to send a separate MSG*MARK
14030 				 * message since the T_EXDATA_IND will be sent
14031 				 * now.
14032 				 */
14033 				flags &= ~TH_SEND_URP_MARK;
14034 				freemsg(tcp->tcp_urp_mark_mp);
14035 				tcp->tcp_urp_mark_mp = NULL;
14036 			}
14037 			/*
14038 			 * Now we are all set.  On the next putnext upstream,
14039 			 * tcp_urp_mp will be non-NULL and will get prepended
14040 			 * to what has to be this piece containing the urgent
14041 			 * byte.  If for any reason we abort this segment below,
14042 			 * if it comes back, we will have this ready, or it
14043 			 * will get blown off in close.
14044 			 */
14045 		} else if (urp == seg_len) {
14046 			/*
14047 			 * The urgent byte is the next byte after this sequence
14048 			 * number. If there is data it is marked with
14049 			 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded
14050 			 * since it is not needed. Otherwise, if the code
14051 			 * above just allocated a zero-length tcp_urp_mark_mp
14052 			 * message, that message is tagged with MSGMARKNEXT.
14053 			 * Sending up these MSGMARKNEXT messages makes
14054 			 * SIOCATMARK work correctly even though
14055 			 * the T_EXDATA_IND will not be sent up until the
14056 			 * urgent byte arrives.
14057 			 */
14058 			if (seg_len != 0) {
14059 				flags |= TH_MARKNEXT_NEEDED;
14060 				freemsg(tcp->tcp_urp_mark_mp);
14061 				tcp->tcp_urp_mark_mp = NULL;
14062 				flags &= ~TH_SEND_URP_MARK;
14063 			} else if (tcp->tcp_urp_mark_mp != NULL) {
14064 				flags |= TH_SEND_URP_MARK;
14065 				tcp->tcp_urp_mark_mp->b_flag &=
14066 				    ~MSGNOTMARKNEXT;
14067 				tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT;
14068 			}
14069 #ifdef DEBUG
14070 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14071 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
14072 			    seg_len, flags,
14073 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14074 #endif /* DEBUG */
14075 		}
14076 #ifdef DEBUG
14077 		else {
14078 			/* Data left until we hit mark */
14079 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14080 			    "tcp_rput: URP %d bytes left, %s",
14081 			    urp - seg_len, tcp_display(tcp, NULL,
14082 			    DISP_PORT_ONLY));
14083 		}
14084 #endif /* DEBUG */
14085 	}
14086 
14087 process_ack:
14088 	if (!(flags & TH_ACK)) {
14089 		freemsg(mp);
14090 		goto xmit_check;
14091 	}
14092 	}
14093 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
14094 
14095 	if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0)
14096 		tcp->tcp_ip_forward_progress = B_TRUE;
14097 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
14098 		if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) &&
14099 		    ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) {
14100 			/* 3-way handshake complete - pass up the T_CONN_IND */
14101 			tcp_t	*listener = tcp->tcp_listener;
14102 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
14103 
14104 			tcp->tcp_tconnind_started = B_TRUE;
14105 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
14106 			/*
14107 			 * We are here means eager is fine but it can
14108 			 * get a TH_RST at any point between now and till
14109 			 * accept completes and disappear. We need to
14110 			 * ensure that reference to eager is valid after
14111 			 * we get out of eager's perimeter. So we do
14112 			 * an extra refhold.
14113 			 */
14114 			CONN_INC_REF(connp);
14115 
14116 			/*
14117 			 * The listener also exists because of the refhold
14118 			 * done in tcp_conn_request. Its possible that it
14119 			 * might have closed. We will check that once we
14120 			 * get inside listeners context.
14121 			 */
14122 			CONN_INC_REF(listener->tcp_connp);
14123 			if (listener->tcp_connp->conn_sqp ==
14124 			    connp->conn_sqp) {
14125 				/*
14126 				 * We optimize by not calling an SQUEUE_ENTER
14127 				 * on the listener since we know that the
14128 				 * listener and eager squeues are the same.
14129 				 * We are able to make this check safely only
14130 				 * because neither the eager nor the listener
14131 				 * can change its squeue. Only an active connect
14132 				 * can change its squeue
14133 				 */
14134 				tcp_send_conn_ind(listener->tcp_connp, mp,
14135 				    listener->tcp_connp->conn_sqp);
14136 				CONN_DEC_REF(listener->tcp_connp);
14137 			} else if (!tcp->tcp_loopback) {
14138 				SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp,
14139 				    mp, tcp_send_conn_ind,
14140 				    listener->tcp_connp, SQ_FILL,
14141 				    SQTAG_TCP_CONN_IND);
14142 			} else {
14143 				SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp,
14144 				    mp, tcp_send_conn_ind,
14145 				    listener->tcp_connp, SQ_PROCESS,
14146 				    SQTAG_TCP_CONN_IND);
14147 			}
14148 		}
14149 
14150 		if (tcp->tcp_active_open) {
14151 			/*
14152 			 * We are seeing the final ack in the three way
14153 			 * hand shake of a active open'ed connection
14154 			 * so we must send up a T_CONN_CON
14155 			 */
14156 			if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) {
14157 				freemsg(mp);
14158 				return;
14159 			}
14160 			/*
14161 			 * Don't fuse the loopback endpoints for
14162 			 * simultaneous active opens.
14163 			 */
14164 			if (tcp->tcp_loopback) {
14165 				TCP_STAT(tcps, tcp_fusion_unfusable);
14166 				tcp->tcp_unfusable = B_TRUE;
14167 			}
14168 		}
14169 
14170 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
14171 		bytes_acked--;
14172 		/* SYN was acked - making progress */
14173 		if (tcp->tcp_ipversion == IPV6_VERSION)
14174 			tcp->tcp_ip_forward_progress = B_TRUE;
14175 
14176 		/*
14177 		 * If SYN was retransmitted, need to reset all
14178 		 * retransmission info as this segment will be
14179 		 * treated as a dup ACK.
14180 		 */
14181 		if (tcp->tcp_rexmit) {
14182 			tcp->tcp_rexmit = B_FALSE;
14183 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14184 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
14185 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14186 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14187 			tcp->tcp_ms_we_have_waited = 0;
14188 			tcp->tcp_cwnd = mss;
14189 		}
14190 
14191 		/*
14192 		 * We set the send window to zero here.
14193 		 * This is needed if there is data to be
14194 		 * processed already on the queue.
14195 		 * Later (at swnd_update label), the
14196 		 * "new_swnd > tcp_swnd" condition is satisfied
14197 		 * the XMIT_NEEDED flag is set in the current
14198 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
14199 		 * called if there is already data on queue in
14200 		 * this state.
14201 		 */
14202 		tcp->tcp_swnd = 0;
14203 
14204 		if (new_swnd > tcp->tcp_max_swnd)
14205 			tcp->tcp_max_swnd = new_swnd;
14206 		tcp->tcp_swl1 = seg_seq;
14207 		tcp->tcp_swl2 = seg_ack;
14208 		tcp->tcp_state = TCPS_ESTABLISHED;
14209 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
14210 
14211 		/* Fuse when both sides are in ESTABLISHED state */
14212 		if (tcp->tcp_loopback && do_tcp_fusion)
14213 			tcp_fuse(tcp, iphdr, tcph);
14214 
14215 	}
14216 	/* This code follows 4.4BSD-Lite2 mostly. */
14217 	if (bytes_acked < 0)
14218 		goto est;
14219 
14220 	/*
14221 	 * If TCP is ECN capable and the congestion experience bit is
14222 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
14223 	 * done once per window (or more loosely, per RTT).
14224 	 */
14225 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
14226 		tcp->tcp_cwr = B_FALSE;
14227 	if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
14228 		if (!tcp->tcp_cwr) {
14229 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss;
14230 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
14231 			tcp->tcp_cwnd = npkt * mss;
14232 			/*
14233 			 * If the cwnd is 0, use the timer to clock out
14234 			 * new segments.  This is required by the ECN spec.
14235 			 */
14236 			if (npkt == 0) {
14237 				TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14238 				/*
14239 				 * This makes sure that when the ACK comes
14240 				 * back, we will increase tcp_cwnd by 1 MSS.
14241 				 */
14242 				tcp->tcp_cwnd_cnt = 0;
14243 			}
14244 			tcp->tcp_cwr = B_TRUE;
14245 			/*
14246 			 * This marks the end of the current window of in
14247 			 * flight data.  That is why we don't use
14248 			 * tcp_suna + tcp_swnd.  Only data in flight can
14249 			 * provide ECN info.
14250 			 */
14251 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14252 			tcp->tcp_ecn_cwr_sent = B_FALSE;
14253 		}
14254 	}
14255 
14256 	mp1 = tcp->tcp_xmit_head;
14257 	if (bytes_acked == 0) {
14258 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
14259 			int dupack_cnt;
14260 
14261 			BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
14262 			/*
14263 			 * Fast retransmit.  When we have seen exactly three
14264 			 * identical ACKs while we have unacked data
14265 			 * outstanding we take it as a hint that our peer
14266 			 * dropped something.
14267 			 *
14268 			 * If TCP is retransmitting, don't do fast retransmit.
14269 			 */
14270 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
14271 			    ! tcp->tcp_rexmit) {
14272 				/* Do Limited Transmit */
14273 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
14274 				    tcps->tcps_dupack_fast_retransmit) {
14275 					/*
14276 					 * RFC 3042
14277 					 *
14278 					 * What we need to do is temporarily
14279 					 * increase tcp_cwnd so that new
14280 					 * data can be sent if it is allowed
14281 					 * by the receive window (tcp_rwnd).
14282 					 * tcp_wput_data() will take care of
14283 					 * the rest.
14284 					 *
14285 					 * If the connection is SACK capable,
14286 					 * only do limited xmit when there
14287 					 * is SACK info.
14288 					 *
14289 					 * Note how tcp_cwnd is incremented.
14290 					 * The first dup ACK will increase
14291 					 * it by 1 MSS.  The second dup ACK
14292 					 * will increase it by 2 MSS.  This
14293 					 * means that only 1 new segment will
14294 					 * be sent for each dup ACK.
14295 					 */
14296 					if (tcp->tcp_unsent > 0 &&
14297 					    (!tcp->tcp_snd_sack_ok ||
14298 					    (tcp->tcp_snd_sack_ok &&
14299 					    tcp->tcp_notsack_list != NULL))) {
14300 						tcp->tcp_cwnd += mss <<
14301 						    (tcp->tcp_dupack_cnt - 1);
14302 						flags |= TH_LIMIT_XMIT;
14303 					}
14304 				} else if (dupack_cnt ==
14305 				    tcps->tcps_dupack_fast_retransmit) {
14306 
14307 				/*
14308 				 * If we have reduced tcp_ssthresh
14309 				 * because of ECN, do not reduce it again
14310 				 * unless it is already one window of data
14311 				 * away.  After one window of data, tcp_cwr
14312 				 * should then be cleared.  Note that
14313 				 * for non ECN capable connection, tcp_cwr
14314 				 * should always be false.
14315 				 *
14316 				 * Adjust cwnd since the duplicate
14317 				 * ack indicates that a packet was
14318 				 * dropped (due to congestion.)
14319 				 */
14320 				if (!tcp->tcp_cwr) {
14321 					npkt = ((tcp->tcp_snxt -
14322 					    tcp->tcp_suna) >> 1) / mss;
14323 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
14324 					    mss;
14325 					tcp->tcp_cwnd = (npkt +
14326 					    tcp->tcp_dupack_cnt) * mss;
14327 				}
14328 				if (tcp->tcp_ecn_ok) {
14329 					tcp->tcp_cwr = B_TRUE;
14330 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14331 					tcp->tcp_ecn_cwr_sent = B_FALSE;
14332 				}
14333 
14334 				/*
14335 				 * We do Hoe's algorithm.  Refer to her
14336 				 * paper "Improving the Start-up Behavior
14337 				 * of a Congestion Control Scheme for TCP,"
14338 				 * appeared in SIGCOMM'96.
14339 				 *
14340 				 * Save highest seq no we have sent so far.
14341 				 * Be careful about the invisible FIN byte.
14342 				 */
14343 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
14344 				    (tcp->tcp_unsent == 0)) {
14345 					tcp->tcp_rexmit_max = tcp->tcp_fss;
14346 				} else {
14347 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
14348 				}
14349 
14350 				/*
14351 				 * Do not allow bursty traffic during.
14352 				 * fast recovery.  Refer to Fall and Floyd's
14353 				 * paper "Simulation-based Comparisons of
14354 				 * Tahoe, Reno and SACK TCP" (in CCR?)
14355 				 * This is a best current practise.
14356 				 */
14357 				tcp->tcp_snd_burst = TCP_CWND_SS;
14358 
14359 				/*
14360 				 * For SACK:
14361 				 * Calculate tcp_pipe, which is the
14362 				 * estimated number of bytes in
14363 				 * network.
14364 				 *
14365 				 * tcp_fack is the highest sack'ed seq num
14366 				 * TCP has received.
14367 				 *
14368 				 * tcp_pipe is explained in the above quoted
14369 				 * Fall and Floyd's paper.  tcp_fack is
14370 				 * explained in Mathis and Mahdavi's
14371 				 * "Forward Acknowledgment: Refining TCP
14372 				 * Congestion Control" in SIGCOMM '96.
14373 				 */
14374 				if (tcp->tcp_snd_sack_ok) {
14375 					ASSERT(tcp->tcp_sack_info != NULL);
14376 					if (tcp->tcp_notsack_list != NULL) {
14377 						tcp->tcp_pipe = tcp->tcp_snxt -
14378 						    tcp->tcp_fack;
14379 						tcp->tcp_sack_snxt = seg_ack;
14380 						flags |= TH_NEED_SACK_REXMIT;
14381 					} else {
14382 						/*
14383 						 * Always initialize tcp_pipe
14384 						 * even though we don't have
14385 						 * any SACK info.  If later
14386 						 * we get SACK info and
14387 						 * tcp_pipe is not initialized,
14388 						 * funny things will happen.
14389 						 */
14390 						tcp->tcp_pipe =
14391 						    tcp->tcp_cwnd_ssthresh;
14392 					}
14393 				} else {
14394 					flags |= TH_REXMIT_NEEDED;
14395 				} /* tcp_snd_sack_ok */
14396 
14397 				} else {
14398 					/*
14399 					 * Here we perform congestion
14400 					 * avoidance, but NOT slow start.
14401 					 * This is known as the Fast
14402 					 * Recovery Algorithm.
14403 					 */
14404 					if (tcp->tcp_snd_sack_ok &&
14405 					    tcp->tcp_notsack_list != NULL) {
14406 						flags |= TH_NEED_SACK_REXMIT;
14407 						tcp->tcp_pipe -= mss;
14408 						if (tcp->tcp_pipe < 0)
14409 							tcp->tcp_pipe = 0;
14410 					} else {
14411 					/*
14412 					 * We know that one more packet has
14413 					 * left the pipe thus we can update
14414 					 * cwnd.
14415 					 */
14416 					cwnd = tcp->tcp_cwnd + mss;
14417 					if (cwnd > tcp->tcp_cwnd_max)
14418 						cwnd = tcp->tcp_cwnd_max;
14419 					tcp->tcp_cwnd = cwnd;
14420 					if (tcp->tcp_unsent > 0)
14421 						flags |= TH_XMIT_NEEDED;
14422 					}
14423 				}
14424 			}
14425 		} else if (tcp->tcp_zero_win_probe) {
14426 			/*
14427 			 * If the window has opened, need to arrange
14428 			 * to send additional data.
14429 			 */
14430 			if (new_swnd != 0) {
14431 				/* tcp_suna != tcp_snxt */
14432 				/* Packet contains a window update */
14433 				BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate);
14434 				tcp->tcp_zero_win_probe = 0;
14435 				tcp->tcp_timer_backoff = 0;
14436 				tcp->tcp_ms_we_have_waited = 0;
14437 
14438 				/*
14439 				 * Transmit starting with tcp_suna since
14440 				 * the one byte probe is not ack'ed.
14441 				 * If TCP has sent more than one identical
14442 				 * probe, tcp_rexmit will be set.  That means
14443 				 * tcp_ss_rexmit() will send out the one
14444 				 * byte along with new data.  Otherwise,
14445 				 * fake the retransmission.
14446 				 */
14447 				flags |= TH_XMIT_NEEDED;
14448 				if (!tcp->tcp_rexmit) {
14449 					tcp->tcp_rexmit = B_TRUE;
14450 					tcp->tcp_dupack_cnt = 0;
14451 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
14452 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
14453 				}
14454 			}
14455 		}
14456 		goto swnd_update;
14457 	}
14458 
14459 	/*
14460 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
14461 	 * If the ACK value acks something that we have not yet sent, it might
14462 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
14463 	 * other side.
14464 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
14465 	 * state is handled above, so we can always just drop the segment and
14466 	 * send an ACK here.
14467 	 *
14468 	 * Should we send ACKs in response to ACK only segments?
14469 	 */
14470 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
14471 		BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent);
14472 		/* drop the received segment */
14473 		freemsg(mp);
14474 
14475 		/*
14476 		 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
14477 		 * greater than 0, check if the number of such
14478 		 * bogus ACks is greater than that count.  If yes,
14479 		 * don't send back any ACK.  This prevents TCP from
14480 		 * getting into an ACK storm if somehow an attacker
14481 		 * successfully spoofs an acceptable segment to our
14482 		 * peer.
14483 		 */
14484 		if (tcp_drop_ack_unsent_cnt > 0 &&
14485 		    ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) {
14486 			TCP_STAT(tcps, tcp_in_ack_unsent_drop);
14487 			return;
14488 		}
14489 		mp = tcp_ack_mp(tcp);
14490 		if (mp != NULL) {
14491 			BUMP_LOCAL(tcp->tcp_obsegs);
14492 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
14493 			tcp_send_data(tcp, tcp->tcp_wq, mp);
14494 		}
14495 		return;
14496 	}
14497 
14498 	/*
14499 	 * TCP gets a new ACK, update the notsack'ed list to delete those
14500 	 * blocks that are covered by this ACK.
14501 	 */
14502 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
14503 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
14504 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
14505 	}
14506 
14507 	/*
14508 	 * If we got an ACK after fast retransmit, check to see
14509 	 * if it is a partial ACK.  If it is not and the congestion
14510 	 * window was inflated to account for the other side's
14511 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
14512 	 */
14513 	if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) {
14514 		ASSERT(tcp->tcp_rexmit == B_FALSE);
14515 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
14516 			tcp->tcp_dupack_cnt = 0;
14517 			/*
14518 			 * Restore the orig tcp_cwnd_ssthresh after
14519 			 * fast retransmit phase.
14520 			 */
14521 			if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
14522 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
14523 			}
14524 			tcp->tcp_rexmit_max = seg_ack;
14525 			tcp->tcp_cwnd_cnt = 0;
14526 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14527 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14528 
14529 			/*
14530 			 * Remove all notsack info to avoid confusion with
14531 			 * the next fast retrasnmit/recovery phase.
14532 			 */
14533 			if (tcp->tcp_snd_sack_ok &&
14534 			    tcp->tcp_notsack_list != NULL) {
14535 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
14536 			}
14537 		} else {
14538 			if (tcp->tcp_snd_sack_ok &&
14539 			    tcp->tcp_notsack_list != NULL) {
14540 				flags |= TH_NEED_SACK_REXMIT;
14541 				tcp->tcp_pipe -= mss;
14542 				if (tcp->tcp_pipe < 0)
14543 					tcp->tcp_pipe = 0;
14544 			} else {
14545 				/*
14546 				 * Hoe's algorithm:
14547 				 *
14548 				 * Retransmit the unack'ed segment and
14549 				 * restart fast recovery.  Note that we
14550 				 * need to scale back tcp_cwnd to the
14551 				 * original value when we started fast
14552 				 * recovery.  This is to prevent overly
14553 				 * aggressive behaviour in sending new
14554 				 * segments.
14555 				 */
14556 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
14557 				    tcps->tcps_dupack_fast_retransmit * mss;
14558 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
14559 				flags |= TH_REXMIT_NEEDED;
14560 			}
14561 		}
14562 	} else {
14563 		tcp->tcp_dupack_cnt = 0;
14564 		if (tcp->tcp_rexmit) {
14565 			/*
14566 			 * TCP is retranmitting.  If the ACK ack's all
14567 			 * outstanding data, update tcp_rexmit_max and
14568 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
14569 			 * to the correct value.
14570 			 *
14571 			 * Note that SEQ_LEQ() is used.  This is to avoid
14572 			 * unnecessary fast retransmit caused by dup ACKs
14573 			 * received when TCP does slow start retransmission
14574 			 * after a time out.  During this phase, TCP may
14575 			 * send out segments which are already received.
14576 			 * This causes dup ACKs to be sent back.
14577 			 */
14578 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
14579 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
14580 					tcp->tcp_rexmit_nxt = seg_ack;
14581 				}
14582 				if (seg_ack != tcp->tcp_rexmit_max) {
14583 					flags |= TH_XMIT_NEEDED;
14584 				}
14585 			} else {
14586 				tcp->tcp_rexmit = B_FALSE;
14587 				tcp->tcp_xmit_zc_clean = B_FALSE;
14588 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14589 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
14590 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14591 			}
14592 			tcp->tcp_ms_we_have_waited = 0;
14593 		}
14594 	}
14595 
14596 	BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs);
14597 	UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked);
14598 	tcp->tcp_suna = seg_ack;
14599 	if (tcp->tcp_zero_win_probe != 0) {
14600 		tcp->tcp_zero_win_probe = 0;
14601 		tcp->tcp_timer_backoff = 0;
14602 	}
14603 
14604 	/*
14605 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
14606 	 * Note that it cannot be the SYN being ack'ed.  The code flow
14607 	 * will not reach here.
14608 	 */
14609 	if (mp1 == NULL) {
14610 		goto fin_acked;
14611 	}
14612 
14613 	/*
14614 	 * Update the congestion window.
14615 	 *
14616 	 * If TCP is not ECN capable or TCP is ECN capable but the
14617 	 * congestion experience bit is not set, increase the tcp_cwnd as
14618 	 * usual.
14619 	 */
14620 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
14621 		cwnd = tcp->tcp_cwnd;
14622 		add = mss;
14623 
14624 		if (cwnd >= tcp->tcp_cwnd_ssthresh) {
14625 			/*
14626 			 * This is to prevent an increase of less than 1 MSS of
14627 			 * tcp_cwnd.  With partial increase, tcp_wput_data()
14628 			 * may send out tinygrams in order to preserve mblk
14629 			 * boundaries.
14630 			 *
14631 			 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
14632 			 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
14633 			 * increased by 1 MSS for every RTTs.
14634 			 */
14635 			if (tcp->tcp_cwnd_cnt <= 0) {
14636 				tcp->tcp_cwnd_cnt = cwnd + add;
14637 			} else {
14638 				tcp->tcp_cwnd_cnt -= add;
14639 				add = 0;
14640 			}
14641 		}
14642 		tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
14643 	}
14644 
14645 	/* See if the latest urgent data has been acknowledged */
14646 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
14647 	    SEQ_GT(seg_ack, tcp->tcp_urg))
14648 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
14649 
14650 	/* Can we update the RTT estimates? */
14651 	if (tcp->tcp_snd_ts_ok) {
14652 		/* Ignore zero timestamp echo-reply. */
14653 		if (tcpopt.tcp_opt_ts_ecr != 0) {
14654 			tcp_set_rto(tcp, (int32_t)lbolt -
14655 			    (int32_t)tcpopt.tcp_opt_ts_ecr);
14656 		}
14657 
14658 		/* If needed, restart the timer. */
14659 		if (tcp->tcp_set_timer == 1) {
14660 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14661 			tcp->tcp_set_timer = 0;
14662 		}
14663 		/*
14664 		 * Update tcp_csuna in case the other side stops sending
14665 		 * us timestamps.
14666 		 */
14667 		tcp->tcp_csuna = tcp->tcp_snxt;
14668 	} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
14669 		/*
14670 		 * An ACK sequence we haven't seen before, so get the RTT
14671 		 * and update the RTO. But first check if the timestamp is
14672 		 * valid to use.
14673 		 */
14674 		if ((mp1->b_next != NULL) &&
14675 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next)))
14676 			tcp_set_rto(tcp, (int32_t)lbolt -
14677 			    (int32_t)(intptr_t)mp1->b_prev);
14678 		else
14679 			BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14680 
14681 		/* Remeber the last sequence to be ACKed */
14682 		tcp->tcp_csuna = seg_ack;
14683 		if (tcp->tcp_set_timer == 1) {
14684 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14685 			tcp->tcp_set_timer = 0;
14686 		}
14687 	} else {
14688 		BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14689 	}
14690 
14691 	/* Eat acknowledged bytes off the xmit queue. */
14692 	for (;;) {
14693 		mblk_t	*mp2;
14694 		uchar_t	*wptr;
14695 
14696 		wptr = mp1->b_wptr;
14697 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
14698 		bytes_acked -= (int)(wptr - mp1->b_rptr);
14699 		if (bytes_acked < 0) {
14700 			mp1->b_rptr = wptr + bytes_acked;
14701 			/*
14702 			 * Set a new timestamp if all the bytes timed by the
14703 			 * old timestamp have been ack'ed.
14704 			 */
14705 			if (SEQ_GT(seg_ack,
14706 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
14707 				mp1->b_prev = (mblk_t *)(uintptr_t)lbolt;
14708 				mp1->b_next = NULL;
14709 			}
14710 			break;
14711 		}
14712 		mp1->b_next = NULL;
14713 		mp1->b_prev = NULL;
14714 		mp2 = mp1;
14715 		mp1 = mp1->b_cont;
14716 
14717 		/*
14718 		 * This notification is required for some zero-copy
14719 		 * clients to maintain a copy semantic. After the data
14720 		 * is ack'ed, client is safe to modify or reuse the buffer.
14721 		 */
14722 		if (tcp->tcp_snd_zcopy_aware &&
14723 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
14724 			tcp_zcopy_notify(tcp);
14725 		freeb(mp2);
14726 		if (bytes_acked == 0) {
14727 			if (mp1 == NULL) {
14728 				/* Everything is ack'ed, clear the tail. */
14729 				tcp->tcp_xmit_tail = NULL;
14730 				/*
14731 				 * Cancel the timer unless we are still
14732 				 * waiting for an ACK for the FIN packet.
14733 				 */
14734 				if (tcp->tcp_timer_tid != 0 &&
14735 				    tcp->tcp_snxt == tcp->tcp_suna) {
14736 					(void) TCP_TIMER_CANCEL(tcp,
14737 					    tcp->tcp_timer_tid);
14738 					tcp->tcp_timer_tid = 0;
14739 				}
14740 				goto pre_swnd_update;
14741 			}
14742 			if (mp2 != tcp->tcp_xmit_tail)
14743 				break;
14744 			tcp->tcp_xmit_tail = mp1;
14745 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
14746 			    (uintptr_t)INT_MAX);
14747 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
14748 			    mp1->b_rptr);
14749 			break;
14750 		}
14751 		if (mp1 == NULL) {
14752 			/*
14753 			 * More was acked but there is nothing more
14754 			 * outstanding.  This means that the FIN was
14755 			 * just acked or that we're talking to a clown.
14756 			 */
14757 fin_acked:
14758 			ASSERT(tcp->tcp_fin_sent);
14759 			tcp->tcp_xmit_tail = NULL;
14760 			if (tcp->tcp_fin_sent) {
14761 				/* FIN was acked - making progress */
14762 				if (tcp->tcp_ipversion == IPV6_VERSION &&
14763 				    !tcp->tcp_fin_acked)
14764 					tcp->tcp_ip_forward_progress = B_TRUE;
14765 				tcp->tcp_fin_acked = B_TRUE;
14766 				if (tcp->tcp_linger_tid != 0 &&
14767 				    TCP_TIMER_CANCEL(tcp,
14768 				    tcp->tcp_linger_tid) >= 0) {
14769 					tcp_stop_lingering(tcp);
14770 					freemsg(mp);
14771 					mp = NULL;
14772 				}
14773 			} else {
14774 				/*
14775 				 * We should never get here because
14776 				 * we have already checked that the
14777 				 * number of bytes ack'ed should be
14778 				 * smaller than or equal to what we
14779 				 * have sent so far (it is the
14780 				 * acceptability check of the ACK).
14781 				 * We can only get here if the send
14782 				 * queue is corrupted.
14783 				 *
14784 				 * Terminate the connection and
14785 				 * panic the system.  It is better
14786 				 * for us to panic instead of
14787 				 * continuing to avoid other disaster.
14788 				 */
14789 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
14790 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
14791 				panic("Memory corruption "
14792 				    "detected for connection %s.",
14793 				    tcp_display(tcp, NULL,
14794 				    DISP_ADDR_AND_PORT));
14795 				/*NOTREACHED*/
14796 			}
14797 			goto pre_swnd_update;
14798 		}
14799 		ASSERT(mp2 != tcp->tcp_xmit_tail);
14800 	}
14801 	if (tcp->tcp_unsent) {
14802 		flags |= TH_XMIT_NEEDED;
14803 	}
14804 pre_swnd_update:
14805 	tcp->tcp_xmit_head = mp1;
14806 swnd_update:
14807 	/*
14808 	 * The following check is different from most other implementations.
14809 	 * For bi-directional transfer, when segments are dropped, the
14810 	 * "normal" check will not accept a window update in those
14811 	 * retransmitted segemnts.  Failing to do that, TCP may send out
14812 	 * segments which are outside receiver's window.  As TCP accepts
14813 	 * the ack in those retransmitted segments, if the window update in
14814 	 * the same segment is not accepted, TCP will incorrectly calculates
14815 	 * that it can send more segments.  This can create a deadlock
14816 	 * with the receiver if its window becomes zero.
14817 	 */
14818 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
14819 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
14820 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
14821 		/*
14822 		 * The criteria for update is:
14823 		 *
14824 		 * 1. the segment acknowledges some data.  Or
14825 		 * 2. the segment is new, i.e. it has a higher seq num. Or
14826 		 * 3. the segment is not old and the advertised window is
14827 		 * larger than the previous advertised window.
14828 		 */
14829 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
14830 			flags |= TH_XMIT_NEEDED;
14831 		tcp->tcp_swnd = new_swnd;
14832 		if (new_swnd > tcp->tcp_max_swnd)
14833 			tcp->tcp_max_swnd = new_swnd;
14834 		tcp->tcp_swl1 = seg_seq;
14835 		tcp->tcp_swl2 = seg_ack;
14836 	}
14837 est:
14838 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
14839 
14840 		switch (tcp->tcp_state) {
14841 		case TCPS_FIN_WAIT_1:
14842 			if (tcp->tcp_fin_acked) {
14843 				tcp->tcp_state = TCPS_FIN_WAIT_2;
14844 				/*
14845 				 * We implement the non-standard BSD/SunOS
14846 				 * FIN_WAIT_2 flushing algorithm.
14847 				 * If there is no user attached to this
14848 				 * TCP endpoint, then this TCP struct
14849 				 * could hang around forever in FIN_WAIT_2
14850 				 * state if the peer forgets to send us
14851 				 * a FIN.  To prevent this, we wait only
14852 				 * 2*MSL (a convenient time value) for
14853 				 * the FIN to arrive.  If it doesn't show up,
14854 				 * we flush the TCP endpoint.  This algorithm,
14855 				 * though a violation of RFC-793, has worked
14856 				 * for over 10 years in BSD systems.
14857 				 * Note: SunOS 4.x waits 675 seconds before
14858 				 * flushing the FIN_WAIT_2 connection.
14859 				 */
14860 				TCP_TIMER_RESTART(tcp,
14861 				    tcps->tcps_fin_wait_2_flush_interval);
14862 			}
14863 			break;
14864 		case TCPS_FIN_WAIT_2:
14865 			break;	/* Shutdown hook? */
14866 		case TCPS_LAST_ACK:
14867 			freemsg(mp);
14868 			if (tcp->tcp_fin_acked) {
14869 				(void) tcp_clean_death(tcp, 0, 19);
14870 				return;
14871 			}
14872 			goto xmit_check;
14873 		case TCPS_CLOSING:
14874 			if (tcp->tcp_fin_acked) {
14875 				tcp->tcp_state = TCPS_TIME_WAIT;
14876 				/*
14877 				 * Unconditionally clear the exclusive binding
14878 				 * bit so this TIME-WAIT connection won't
14879 				 * interfere with new ones.
14880 				 */
14881 				tcp->tcp_exclbind = 0;
14882 				if (!TCP_IS_DETACHED(tcp)) {
14883 					TCP_TIMER_RESTART(tcp,
14884 					    tcps->tcps_time_wait_interval);
14885 				} else {
14886 					tcp_time_wait_append(tcp);
14887 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
14888 				}
14889 			}
14890 			/*FALLTHRU*/
14891 		case TCPS_CLOSE_WAIT:
14892 			freemsg(mp);
14893 			goto xmit_check;
14894 		default:
14895 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
14896 			break;
14897 		}
14898 	}
14899 	if (flags & TH_FIN) {
14900 		/* Make sure we ack the fin */
14901 		flags |= TH_ACK_NEEDED;
14902 		if (!tcp->tcp_fin_rcvd) {
14903 			tcp->tcp_fin_rcvd = B_TRUE;
14904 			tcp->tcp_rnxt++;
14905 			tcph = tcp->tcp_tcph;
14906 			U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14907 
14908 			/*
14909 			 * Generate the ordrel_ind at the end unless we
14910 			 * are an eager guy.
14911 			 * In the eager case tcp_rsrv will do this when run
14912 			 * after tcp_accept is done.
14913 			 */
14914 			if (tcp->tcp_listener == NULL &&
14915 			    !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding))
14916 				flags |= TH_ORDREL_NEEDED;
14917 			switch (tcp->tcp_state) {
14918 			case TCPS_SYN_RCVD:
14919 			case TCPS_ESTABLISHED:
14920 				tcp->tcp_state = TCPS_CLOSE_WAIT;
14921 				/* Keepalive? */
14922 				break;
14923 			case TCPS_FIN_WAIT_1:
14924 				if (!tcp->tcp_fin_acked) {
14925 					tcp->tcp_state = TCPS_CLOSING;
14926 					break;
14927 				}
14928 				/* FALLTHRU */
14929 			case TCPS_FIN_WAIT_2:
14930 				tcp->tcp_state = TCPS_TIME_WAIT;
14931 				/*
14932 				 * Unconditionally clear the exclusive binding
14933 				 * bit so this TIME-WAIT connection won't
14934 				 * interfere with new ones.
14935 				 */
14936 				tcp->tcp_exclbind = 0;
14937 				if (!TCP_IS_DETACHED(tcp)) {
14938 					TCP_TIMER_RESTART(tcp,
14939 					    tcps->tcps_time_wait_interval);
14940 				} else {
14941 					tcp_time_wait_append(tcp);
14942 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
14943 				}
14944 				if (seg_len) {
14945 					/*
14946 					 * implies data piggybacked on FIN.
14947 					 * break to handle data.
14948 					 */
14949 					break;
14950 				}
14951 				freemsg(mp);
14952 				goto ack_check;
14953 			}
14954 		}
14955 	}
14956 	if (mp == NULL)
14957 		goto xmit_check;
14958 	if (seg_len == 0) {
14959 		freemsg(mp);
14960 		goto xmit_check;
14961 	}
14962 	if (mp->b_rptr == mp->b_wptr) {
14963 		/*
14964 		 * The header has been consumed, so we remove the
14965 		 * zero-length mblk here.
14966 		 */
14967 		mp1 = mp;
14968 		mp = mp->b_cont;
14969 		freeb(mp1);
14970 	}
14971 update_ack:
14972 	tcph = tcp->tcp_tcph;
14973 	tcp->tcp_rack_cnt++;
14974 	{
14975 		uint32_t cur_max;
14976 
14977 		cur_max = tcp->tcp_rack_cur_max;
14978 		if (tcp->tcp_rack_cnt >= cur_max) {
14979 			/*
14980 			 * We have more unacked data than we should - send
14981 			 * an ACK now.
14982 			 */
14983 			flags |= TH_ACK_NEEDED;
14984 			cur_max++;
14985 			if (cur_max > tcp->tcp_rack_abs_max)
14986 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
14987 			else
14988 				tcp->tcp_rack_cur_max = cur_max;
14989 		} else if (TCP_IS_DETACHED(tcp)) {
14990 			/* We don't have an ACK timer for detached TCP. */
14991 			flags |= TH_ACK_NEEDED;
14992 		} else if (seg_len < mss) {
14993 			/*
14994 			 * If we get a segment that is less than an mss, and we
14995 			 * already have unacknowledged data, and the amount
14996 			 * unacknowledged is not a multiple of mss, then we
14997 			 * better generate an ACK now.  Otherwise, this may be
14998 			 * the tail piece of a transaction, and we would rather
14999 			 * wait for the response.
15000 			 */
15001 			uint32_t udif;
15002 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
15003 			    (uintptr_t)INT_MAX);
15004 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
15005 			if (udif && (udif % mss))
15006 				flags |= TH_ACK_NEEDED;
15007 			else
15008 				flags |= TH_ACK_TIMER_NEEDED;
15009 		} else {
15010 			/* Start delayed ack timer */
15011 			flags |= TH_ACK_TIMER_NEEDED;
15012 		}
15013 	}
15014 	tcp->tcp_rnxt += seg_len;
15015 	U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
15016 
15017 	if (mp == NULL)
15018 		goto xmit_check;
15019 
15020 	/* Update SACK list */
15021 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
15022 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
15023 		    &(tcp->tcp_num_sack_blk));
15024 	}
15025 
15026 	if (tcp->tcp_urp_mp) {
15027 		tcp->tcp_urp_mp->b_cont = mp;
15028 		mp = tcp->tcp_urp_mp;
15029 		tcp->tcp_urp_mp = NULL;
15030 		/* Ready for a new signal. */
15031 		tcp->tcp_urp_last_valid = B_FALSE;
15032 #ifdef DEBUG
15033 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15034 		    "tcp_rput: sending exdata_ind %s",
15035 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
15036 #endif /* DEBUG */
15037 	}
15038 
15039 	/*
15040 	 * Check for ancillary data changes compared to last segment.
15041 	 */
15042 	if (tcp->tcp_ipv6_recvancillary != 0) {
15043 		mp = tcp_rput_add_ancillary(tcp, mp, &ipp);
15044 		ASSERT(mp != NULL);
15045 	}
15046 
15047 	if (tcp->tcp_listener || tcp->tcp_hard_binding) {
15048 		/*
15049 		 * Side queue inbound data until the accept happens.
15050 		 * tcp_accept/tcp_rput drains this when the accept happens.
15051 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
15052 		 * T_EXDATA_IND) it is queued on b_next.
15053 		 * XXX Make urgent data use this. Requires:
15054 		 *	Removing tcp_listener check for TH_URG
15055 		 *	Making M_PCPROTO and MARK messages skip the eager case
15056 		 */
15057 
15058 		if (tcp->tcp_kssl_pending) {
15059 			DTRACE_PROBE1(kssl_mblk__ksslinput_pending,
15060 			    mblk_t *, mp);
15061 			tcp_kssl_input(tcp, mp);
15062 		} else {
15063 			tcp_rcv_enqueue(tcp, mp, seg_len);
15064 		}
15065 	} else {
15066 		sodirect_t	*sodp = tcp->tcp_sodirect;
15067 
15068 		/*
15069 		 * If an sodirect connection and an enabled sodirect_t then
15070 		 * sodp will be set to point to the tcp_t/sonode_t shared
15071 		 * sodirect_t and the sodirect_t's lock will be held.
15072 		 */
15073 		if (sodp != NULL) {
15074 			mutex_enter(sodp->sod_lockp);
15075 			if (!(sodp->sod_state & SOD_ENABLED) ||
15076 			    (tcp->tcp_kssl_ctx != NULL &&
15077 			    DB_TYPE(mp) == M_DATA)) {
15078 				sodp = NULL;
15079 			}
15080 			mutex_exit(sodp->sod_lockp);
15081 		}
15082 		if (mp->b_datap->db_type != M_DATA ||
15083 		    (flags & TH_MARKNEXT_NEEDED)) {
15084 			if (IPCL_IS_NONSTR(connp)) {
15085 				int error;
15086 
15087 				if ((*connp->conn_upcalls->su_recv)
15088 				    (connp->conn_upper_handle, mp,
15089 				    seg_len, 0, &error, NULL) <= 0) {
15090 					if (error == ENOSPC) {
15091 						tcp->tcp_rwnd -= seg_len;
15092 					} else if (error == EOPNOTSUPP) {
15093 						tcp_rcv_enqueue(tcp, mp,
15094 						    seg_len);
15095 					}
15096 				}
15097 			} else if (sodp != NULL) {
15098 				mutex_enter(sodp->sod_lockp);
15099 				SOD_UIOAFINI(sodp);
15100 				if (!SOD_QEMPTY(sodp) &&
15101 				    (sodp->sod_state & SOD_WAKE_NOT)) {
15102 					flags |= tcp_rcv_sod_wakeup(tcp, sodp);
15103 					/* sod_wakeup() did the mutex_exit() */
15104 				} else {
15105 					mutex_exit(sodp->sod_lockp);
15106 				}
15107 			} else if (tcp->tcp_rcv_list != NULL) {
15108 				flags |= tcp_rcv_drain(tcp);
15109 			}
15110 			ASSERT(tcp->tcp_rcv_list == NULL ||
15111 			    tcp->tcp_fused_sigurg);
15112 
15113 			if (flags & TH_MARKNEXT_NEEDED) {
15114 #ifdef DEBUG
15115 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15116 				    "tcp_rput: sending MSGMARKNEXT %s",
15117 				    tcp_display(tcp, NULL,
15118 				    DISP_PORT_ONLY));
15119 #endif /* DEBUG */
15120 				mp->b_flag |= MSGMARKNEXT;
15121 				flags &= ~TH_MARKNEXT_NEEDED;
15122 			}
15123 
15124 			/* Does this need SSL processing first? */
15125 			if ((tcp->tcp_kssl_ctx != NULL) &&
15126 			    (DB_TYPE(mp) == M_DATA)) {
15127 				DTRACE_PROBE1(kssl_mblk__ksslinput_data1,
15128 				    mblk_t *, mp);
15129 				tcp_kssl_input(tcp, mp);
15130 			} else if (!IPCL_IS_NONSTR(connp)) {
15131 				/* Already handled non-STREAMS case. */
15132 				putnext(tcp->tcp_rq, mp);
15133 				if (!canputnext(tcp->tcp_rq))
15134 					tcp->tcp_rwnd -= seg_len;
15135 			}
15136 		} else if ((tcp->tcp_kssl_ctx != NULL) &&
15137 		    (DB_TYPE(mp) == M_DATA)) {
15138 			/* Does this need SSL processing first? */
15139 			DTRACE_PROBE1(kssl_mblk__ksslinput_data2, mblk_t *, mp);
15140 			tcp_kssl_input(tcp, mp);
15141 		} else if (IPCL_IS_NONSTR(connp)) {
15142 			/* Non-STREAMS socket */
15143 			boolean_t push = flags & (TH_PUSH|TH_FIN);
15144 			int	error;
15145 
15146 			if ((*connp->conn_upcalls->su_recv)(
15147 			    connp->conn_upper_handle,
15148 			    mp, seg_len, 0, &error, &push) <= 0) {
15149 				if (error == ENOSPC) {
15150 					tcp->tcp_rwnd -= seg_len;
15151 				} else if (error == EOPNOTSUPP) {
15152 					tcp_rcv_enqueue(tcp, mp, seg_len);
15153 				}
15154 			} else if (push) {
15155 				/*
15156 				 * PUSH bit set and sockfs is not
15157 				 * flow controlled
15158 				 */
15159 				flags |= tcp_rwnd_reopen(tcp);
15160 			}
15161 		} else if (sodp != NULL) {
15162 			/*
15163 			 * Sodirect so all mblk_t's are queued on the
15164 			 * socket directly, check for wakeup of blocked
15165 			 * reader (if any), and last if flow-controled.
15166 			 */
15167 			mutex_enter(sodp->sod_lockp);
15168 			flags |= tcp_rcv_sod_enqueue(tcp, sodp, mp, seg_len);
15169 			if ((sodp->sod_state & SOD_WAKE_NEED) ||
15170 			    (flags & (TH_PUSH|TH_FIN))) {
15171 				flags |= tcp_rcv_sod_wakeup(tcp, sodp);
15172 				/* sod_wakeup() did the mutex_exit() */
15173 			} else {
15174 				if (SOD_QFULL(sodp)) {
15175 					/* Q is full, need backenable */
15176 					SOD_QSETBE(sodp);
15177 				}
15178 				mutex_exit(sodp->sod_lockp);
15179 			}
15180 		} else if ((flags & (TH_PUSH|TH_FIN)) ||
15181 		    tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_recv_hiwater >> 3) {
15182 			if (tcp->tcp_rcv_list != NULL) {
15183 				/*
15184 				 * Enqueue the new segment first and then
15185 				 * call tcp_rcv_drain() to send all data
15186 				 * up.  The other way to do this is to
15187 				 * send all queued data up and then call
15188 				 * putnext() to send the new segment up.
15189 				 * This way can remove the else part later
15190 				 * on.
15191 				 *
15192 				 * We don't do this to avoid one more call to
15193 				 * canputnext() as tcp_rcv_drain() needs to
15194 				 * call canputnext().
15195 				 */
15196 				tcp_rcv_enqueue(tcp, mp, seg_len);
15197 				flags |= tcp_rcv_drain(tcp);
15198 			} else {
15199 				putnext(tcp->tcp_rq, mp);
15200 				if (!canputnext(tcp->tcp_rq))
15201 					tcp->tcp_rwnd -= seg_len;
15202 			}
15203 		} else {
15204 			/*
15205 			 * Enqueue all packets when processing an mblk
15206 			 * from the co queue and also enqueue normal packets.
15207 			 * For packets which belong to SSL stream do SSL
15208 			 * processing first.
15209 			 */
15210 			tcp_rcv_enqueue(tcp, mp, seg_len);
15211 		}
15212 		/*
15213 		 * Make sure the timer is running if we have data waiting
15214 		 * for a push bit. This provides resiliency against
15215 		 * implementations that do not correctly generate push bits.
15216 		 *
15217 		 * Note, for sodirect if Q isn't empty and there's not a
15218 		 * pending wakeup then we need a timer. Also note that sodp
15219 		 * is assumed to be still valid after exit()ing the sod_lockp
15220 		 * above and while the SOD state can change it can only change
15221 		 * such that the Q is empty now even though data was added
15222 		 * above.
15223 		 */
15224 		if (!IPCL_IS_NONSTR(connp) &&
15225 		    ((sodp != NULL && !SOD_QEMPTY(sodp) &&
15226 		    (sodp->sod_state & SOD_WAKE_NOT)) ||
15227 		    (sodp == NULL && tcp->tcp_rcv_list != NULL)) &&
15228 		    tcp->tcp_push_tid == 0) {
15229 			/*
15230 			 * The connection may be closed at this point, so don't
15231 			 * do anything for a detached tcp.
15232 			 */
15233 			if (!TCP_IS_DETACHED(tcp))
15234 				tcp->tcp_push_tid = TCP_TIMER(tcp,
15235 				    tcp_push_timer,
15236 				    MSEC_TO_TICK(
15237 				    tcps->tcps_push_timer_interval));
15238 		}
15239 	}
15240 
15241 xmit_check:
15242 	/* Is there anything left to do? */
15243 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15244 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
15245 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
15246 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
15247 		goto done;
15248 
15249 	/* Any transmit work to do and a non-zero window? */
15250 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
15251 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
15252 		if (flags & TH_REXMIT_NEEDED) {
15253 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
15254 
15255 			BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans);
15256 			if (snd_size > mss)
15257 				snd_size = mss;
15258 			if (snd_size > tcp->tcp_swnd)
15259 				snd_size = tcp->tcp_swnd;
15260 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
15261 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
15262 			    B_TRUE);
15263 
15264 			if (mp1 != NULL) {
15265 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
15266 				tcp->tcp_csuna = tcp->tcp_snxt;
15267 				BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
15268 				UPDATE_MIB(&tcps->tcps_mib,
15269 				    tcpRetransBytes, snd_size);
15270 				tcp_send_data(tcp, tcp->tcp_wq, mp1);
15271 			}
15272 		}
15273 		if (flags & TH_NEED_SACK_REXMIT) {
15274 			tcp_sack_rxmit(tcp, &flags);
15275 		}
15276 		/*
15277 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
15278 		 * out new segment.  Note that tcp_rexmit should not be
15279 		 * set, otherwise TH_LIMIT_XMIT should not be set.
15280 		 */
15281 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
15282 			if (!tcp->tcp_rexmit) {
15283 				tcp_wput_data(tcp, NULL, B_FALSE);
15284 			} else {
15285 				tcp_ss_rexmit(tcp);
15286 			}
15287 		}
15288 		/*
15289 		 * Adjust tcp_cwnd back to normal value after sending
15290 		 * new data segments.
15291 		 */
15292 		if (flags & TH_LIMIT_XMIT) {
15293 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
15294 			/*
15295 			 * This will restart the timer.  Restarting the
15296 			 * timer is used to avoid a timeout before the
15297 			 * limited transmitted segment's ACK gets back.
15298 			 */
15299 			if (tcp->tcp_xmit_head != NULL)
15300 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
15301 		}
15302 
15303 		/* Anything more to do? */
15304 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
15305 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
15306 			goto done;
15307 	}
15308 ack_check:
15309 	if (flags & TH_SEND_URP_MARK) {
15310 		ASSERT(tcp->tcp_urp_mark_mp);
15311 		ASSERT(!IPCL_IS_NONSTR(connp));
15312 		/*
15313 		 * Send up any queued data and then send the mark message
15314 		 */
15315 		sodirect_t *sodp;
15316 
15317 		SOD_PTR_ENTER(tcp, sodp);
15318 
15319 		mp1 = tcp->tcp_urp_mark_mp;
15320 		tcp->tcp_urp_mark_mp = NULL;
15321 		if (sodp != NULL) {
15322 			if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) {
15323 				sodp->sod_uioa.uioa_state &= UIOA_CLR;
15324 				sodp->sod_uioa.uioa_state |= UIOA_FINI;
15325 			}
15326 			ASSERT(tcp->tcp_rcv_list == NULL);
15327 
15328 			flags |= tcp_rcv_sod_wakeup(tcp, sodp);
15329 			/* sod_wakeup() does the mutex_exit() */
15330 		} else if (tcp->tcp_rcv_list != NULL) {
15331 			flags |= tcp_rcv_drain(tcp);
15332 
15333 			ASSERT(tcp->tcp_rcv_list == NULL ||
15334 			    tcp->tcp_fused_sigurg);
15335 
15336 		}
15337 		putnext(tcp->tcp_rq, mp1);
15338 #ifdef DEBUG
15339 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15340 		    "tcp_rput: sending zero-length %s %s",
15341 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
15342 		    "MSGNOTMARKNEXT"),
15343 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
15344 #endif /* DEBUG */
15345 		flags &= ~TH_SEND_URP_MARK;
15346 	}
15347 	if (flags & TH_ACK_NEEDED) {
15348 		/*
15349 		 * Time to send an ack for some reason.
15350 		 */
15351 		mp1 = tcp_ack_mp(tcp);
15352 
15353 		if (mp1 != NULL) {
15354 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
15355 			BUMP_LOCAL(tcp->tcp_obsegs);
15356 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
15357 		}
15358 		if (tcp->tcp_ack_tid != 0) {
15359 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
15360 			tcp->tcp_ack_tid = 0;
15361 		}
15362 	}
15363 	if (flags & TH_ACK_TIMER_NEEDED) {
15364 		/*
15365 		 * Arrange for deferred ACK or push wait timeout.
15366 		 * Start timer if it is not already running.
15367 		 */
15368 		if (tcp->tcp_ack_tid == 0) {
15369 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
15370 			    MSEC_TO_TICK(tcp->tcp_localnet ?
15371 			    (clock_t)tcps->tcps_local_dack_interval :
15372 			    (clock_t)tcps->tcps_deferred_ack_interval));
15373 		}
15374 	}
15375 	if (flags & TH_ORDREL_NEEDED) {
15376 		/*
15377 		 * Send up the ordrel_ind unless we are an eager guy.
15378 		 * In the eager case tcp_rsrv will do this when run
15379 		 * after tcp_accept is done.
15380 		 */
15381 		sodirect_t *sodp;
15382 
15383 		ASSERT(tcp->tcp_listener == NULL);
15384 
15385 		if (IPCL_IS_NONSTR(connp)) {
15386 			ASSERT(tcp->tcp_ordrel_mp == NULL);
15387 			tcp->tcp_ordrel_done = B_TRUE;
15388 			(*connp->conn_upcalls->su_opctl)
15389 			    (connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0);
15390 			goto done;
15391 		}
15392 
15393 		SOD_PTR_ENTER(tcp, sodp);
15394 		if (sodp != NULL) {
15395 			if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) {
15396 				sodp->sod_uioa.uioa_state &= UIOA_CLR;
15397 				sodp->sod_uioa.uioa_state |= UIOA_FINI;
15398 			}
15399 			/* No more sodirect */
15400 			tcp->tcp_sodirect = NULL;
15401 			if (!SOD_QEMPTY(sodp)) {
15402 				/* Mblk(s) to process, notify */
15403 				flags |= tcp_rcv_sod_wakeup(tcp, sodp);
15404 				/* sod_wakeup() does the mutex_exit() */
15405 			} else {
15406 				/* Nothing to process */
15407 				mutex_exit(sodp->sod_lockp);
15408 			}
15409 		} else if (tcp->tcp_rcv_list != NULL) {
15410 			/*
15411 			 * Push any mblk(s) enqueued from co processing.
15412 			 */
15413 			flags |= tcp_rcv_drain(tcp);
15414 
15415 			ASSERT(tcp->tcp_rcv_list == NULL ||
15416 			    tcp->tcp_fused_sigurg);
15417 		}
15418 
15419 		mp1 = tcp->tcp_ordrel_mp;
15420 		tcp->tcp_ordrel_mp = NULL;
15421 		tcp->tcp_ordrel_done = B_TRUE;
15422 		putnext(tcp->tcp_rq, mp1);
15423 	}
15424 done:
15425 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15426 }
15427 
15428 /*
15429  * This function does PAWS protection check. Returns B_TRUE if the
15430  * segment passes the PAWS test, else returns B_FALSE.
15431  */
15432 boolean_t
15433 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp)
15434 {
15435 	uint8_t	flags;
15436 	int	options;
15437 	uint8_t *up;
15438 
15439 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
15440 	/*
15441 	 * If timestamp option is aligned nicely, get values inline,
15442 	 * otherwise call general routine to parse.  Only do that
15443 	 * if timestamp is the only option.
15444 	 */
15445 	if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH +
15446 	    TCPOPT_REAL_TS_LEN &&
15447 	    OK_32PTR((up = ((uint8_t *)tcph) +
15448 	    TCP_MIN_HEADER_LENGTH)) &&
15449 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
15450 		tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
15451 		tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
15452 
15453 		options = TCP_OPT_TSTAMP_PRESENT;
15454 	} else {
15455 		if (tcp->tcp_snd_sack_ok) {
15456 			tcpoptp->tcp = tcp;
15457 		} else {
15458 			tcpoptp->tcp = NULL;
15459 		}
15460 		options = tcp_parse_options(tcph, tcpoptp);
15461 	}
15462 
15463 	if (options & TCP_OPT_TSTAMP_PRESENT) {
15464 		/*
15465 		 * Do PAWS per RFC 1323 section 4.2.  Accept RST
15466 		 * regardless of the timestamp, page 18 RFC 1323.bis.
15467 		 */
15468 		if ((flags & TH_RST) == 0 &&
15469 		    TSTMP_LT(tcpoptp->tcp_opt_ts_val,
15470 		    tcp->tcp_ts_recent)) {
15471 			if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt +
15472 			    PAWS_TIMEOUT)) {
15473 				/* This segment is not acceptable. */
15474 				return (B_FALSE);
15475 			} else {
15476 				/*
15477 				 * Connection has been idle for
15478 				 * too long.  Reset the timestamp
15479 				 * and assume the segment is valid.
15480 				 */
15481 				tcp->tcp_ts_recent =
15482 				    tcpoptp->tcp_opt_ts_val;
15483 			}
15484 		}
15485 	} else {
15486 		/*
15487 		 * If we don't get a timestamp on every packet, we
15488 		 * figure we can't really trust 'em, so we stop sending
15489 		 * and parsing them.
15490 		 */
15491 		tcp->tcp_snd_ts_ok = B_FALSE;
15492 
15493 		tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15494 		tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15495 		tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4);
15496 		/*
15497 		 * Adjust the tcp_mss accordingly. We also need to
15498 		 * adjust tcp_cwnd here in accordance with the new mss.
15499 		 * But we avoid doing a slow start here so as to not
15500 		 * to lose on the transfer rate built up so far.
15501 		 */
15502 		tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE);
15503 		if (tcp->tcp_snd_sack_ok) {
15504 			ASSERT(tcp->tcp_sack_info != NULL);
15505 			tcp->tcp_max_sack_blk = 4;
15506 		}
15507 	}
15508 	return (B_TRUE);
15509 }
15510 
15511 /*
15512  * Attach ancillary data to a received TCP segments for the
15513  * ancillary pieces requested by the application that are
15514  * different than they were in the previous data segment.
15515  *
15516  * Save the "current" values once memory allocation is ok so that
15517  * when memory allocation fails we can just wait for the next data segment.
15518  */
15519 static mblk_t *
15520 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp)
15521 {
15522 	struct T_optdata_ind *todi;
15523 	int optlen;
15524 	uchar_t *optptr;
15525 	struct T_opthdr *toh;
15526 	uint_t addflag;	/* Which pieces to add */
15527 	mblk_t *mp1;
15528 
15529 	optlen = 0;
15530 	addflag = 0;
15531 	/* If app asked for pktinfo and the index has changed ... */
15532 	if ((ipp->ipp_fields & IPPF_IFINDEX) &&
15533 	    ipp->ipp_ifindex != tcp->tcp_recvifindex &&
15534 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) {
15535 		optlen += sizeof (struct T_opthdr) +
15536 		    sizeof (struct in6_pktinfo);
15537 		addflag |= TCP_IPV6_RECVPKTINFO;
15538 	}
15539 	/* If app asked for hoplimit and it has changed ... */
15540 	if ((ipp->ipp_fields & IPPF_HOPLIMIT) &&
15541 	    ipp->ipp_hoplimit != tcp->tcp_recvhops &&
15542 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) {
15543 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15544 		addflag |= TCP_IPV6_RECVHOPLIMIT;
15545 	}
15546 	/* If app asked for tclass and it has changed ... */
15547 	if ((ipp->ipp_fields & IPPF_TCLASS) &&
15548 	    ipp->ipp_tclass != tcp->tcp_recvtclass &&
15549 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) {
15550 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15551 		addflag |= TCP_IPV6_RECVTCLASS;
15552 	}
15553 	/*
15554 	 * If app asked for hopbyhop headers and it has changed ...
15555 	 * For security labels, note that (1) security labels can't change on
15556 	 * a connected socket at all, (2) we're connected to at most one peer,
15557 	 * (3) if anything changes, then it must be some other extra option.
15558 	 */
15559 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) &&
15560 	    ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
15561 	    (ipp->ipp_fields & IPPF_HOPOPTS),
15562 	    ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
15563 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen -
15564 		    tcp->tcp_label_len;
15565 		addflag |= TCP_IPV6_RECVHOPOPTS;
15566 		if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
15567 		    &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
15568 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
15569 			return (mp);
15570 	}
15571 	/* If app asked for dst headers before routing headers ... */
15572 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) &&
15573 	    ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen,
15574 	    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15575 	    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) {
15576 		optlen += sizeof (struct T_opthdr) +
15577 		    ipp->ipp_rtdstoptslen;
15578 		addflag |= TCP_IPV6_RECVRTDSTOPTS;
15579 		if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts,
15580 		    &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS),
15581 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen))
15582 			return (mp);
15583 	}
15584 	/* If app asked for routing headers and it has changed ... */
15585 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) &&
15586 	    ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
15587 	    (ipp->ipp_fields & IPPF_RTHDR),
15588 	    ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
15589 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
15590 		addflag |= TCP_IPV6_RECVRTHDR;
15591 		if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
15592 		    &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
15593 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
15594 			return (mp);
15595 	}
15596 	/* If app asked for dest headers and it has changed ... */
15597 	if ((tcp->tcp_ipv6_recvancillary &
15598 	    (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) &&
15599 	    ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
15600 	    (ipp->ipp_fields & IPPF_DSTOPTS),
15601 	    ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
15602 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
15603 		addflag |= TCP_IPV6_RECVDSTOPTS;
15604 		if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
15605 		    &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
15606 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
15607 			return (mp);
15608 	}
15609 
15610 	if (optlen == 0) {
15611 		/* Nothing to add */
15612 		return (mp);
15613 	}
15614 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
15615 	if (mp1 == NULL) {
15616 		/*
15617 		 * Defer sending ancillary data until the next TCP segment
15618 		 * arrives.
15619 		 */
15620 		return (mp);
15621 	}
15622 	mp1->b_cont = mp;
15623 	mp = mp1;
15624 	mp->b_wptr += sizeof (*todi) + optlen;
15625 	mp->b_datap->db_type = M_PROTO;
15626 	todi = (struct T_optdata_ind *)mp->b_rptr;
15627 	todi->PRIM_type = T_OPTDATA_IND;
15628 	todi->DATA_flag = 1;	/* MORE data */
15629 	todi->OPT_length = optlen;
15630 	todi->OPT_offset = sizeof (*todi);
15631 	optptr = (uchar_t *)&todi[1];
15632 	/*
15633 	 * If app asked for pktinfo and the index has changed ...
15634 	 * Note that the local address never changes for the connection.
15635 	 */
15636 	if (addflag & TCP_IPV6_RECVPKTINFO) {
15637 		struct in6_pktinfo *pkti;
15638 
15639 		toh = (struct T_opthdr *)optptr;
15640 		toh->level = IPPROTO_IPV6;
15641 		toh->name = IPV6_PKTINFO;
15642 		toh->len = sizeof (*toh) + sizeof (*pkti);
15643 		toh->status = 0;
15644 		optptr += sizeof (*toh);
15645 		pkti = (struct in6_pktinfo *)optptr;
15646 		if (tcp->tcp_ipversion == IPV6_VERSION)
15647 			pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src;
15648 		else
15649 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
15650 			    &pkti->ipi6_addr);
15651 		pkti->ipi6_ifindex = ipp->ipp_ifindex;
15652 		optptr += sizeof (*pkti);
15653 		ASSERT(OK_32PTR(optptr));
15654 		/* Save as "last" value */
15655 		tcp->tcp_recvifindex = ipp->ipp_ifindex;
15656 	}
15657 	/* If app asked for hoplimit and it has changed ... */
15658 	if (addflag & TCP_IPV6_RECVHOPLIMIT) {
15659 		toh = (struct T_opthdr *)optptr;
15660 		toh->level = IPPROTO_IPV6;
15661 		toh->name = IPV6_HOPLIMIT;
15662 		toh->len = sizeof (*toh) + sizeof (uint_t);
15663 		toh->status = 0;
15664 		optptr += sizeof (*toh);
15665 		*(uint_t *)optptr = ipp->ipp_hoplimit;
15666 		optptr += sizeof (uint_t);
15667 		ASSERT(OK_32PTR(optptr));
15668 		/* Save as "last" value */
15669 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
15670 	}
15671 	/* If app asked for tclass and it has changed ... */
15672 	if (addflag & TCP_IPV6_RECVTCLASS) {
15673 		toh = (struct T_opthdr *)optptr;
15674 		toh->level = IPPROTO_IPV6;
15675 		toh->name = IPV6_TCLASS;
15676 		toh->len = sizeof (*toh) + sizeof (uint_t);
15677 		toh->status = 0;
15678 		optptr += sizeof (*toh);
15679 		*(uint_t *)optptr = ipp->ipp_tclass;
15680 		optptr += sizeof (uint_t);
15681 		ASSERT(OK_32PTR(optptr));
15682 		/* Save as "last" value */
15683 		tcp->tcp_recvtclass = ipp->ipp_tclass;
15684 	}
15685 	if (addflag & TCP_IPV6_RECVHOPOPTS) {
15686 		toh = (struct T_opthdr *)optptr;
15687 		toh->level = IPPROTO_IPV6;
15688 		toh->name = IPV6_HOPOPTS;
15689 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen -
15690 		    tcp->tcp_label_len;
15691 		toh->status = 0;
15692 		optptr += sizeof (*toh);
15693 		bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr,
15694 		    ipp->ipp_hopoptslen - tcp->tcp_label_len);
15695 		optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len;
15696 		ASSERT(OK_32PTR(optptr));
15697 		/* Save as last value */
15698 		ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
15699 		    (ipp->ipp_fields & IPPF_HOPOPTS),
15700 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
15701 	}
15702 	if (addflag & TCP_IPV6_RECVRTDSTOPTS) {
15703 		toh = (struct T_opthdr *)optptr;
15704 		toh->level = IPPROTO_IPV6;
15705 		toh->name = IPV6_RTHDRDSTOPTS;
15706 		toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen;
15707 		toh->status = 0;
15708 		optptr += sizeof (*toh);
15709 		bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen);
15710 		optptr += ipp->ipp_rtdstoptslen;
15711 		ASSERT(OK_32PTR(optptr));
15712 		/* Save as last value */
15713 		ip_savebuf((void **)&tcp->tcp_rtdstopts,
15714 		    &tcp->tcp_rtdstoptslen,
15715 		    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15716 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen);
15717 	}
15718 	if (addflag & TCP_IPV6_RECVRTHDR) {
15719 		toh = (struct T_opthdr *)optptr;
15720 		toh->level = IPPROTO_IPV6;
15721 		toh->name = IPV6_RTHDR;
15722 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
15723 		toh->status = 0;
15724 		optptr += sizeof (*toh);
15725 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
15726 		optptr += ipp->ipp_rthdrlen;
15727 		ASSERT(OK_32PTR(optptr));
15728 		/* Save as last value */
15729 		ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
15730 		    (ipp->ipp_fields & IPPF_RTHDR),
15731 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
15732 	}
15733 	if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) {
15734 		toh = (struct T_opthdr *)optptr;
15735 		toh->level = IPPROTO_IPV6;
15736 		toh->name = IPV6_DSTOPTS;
15737 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
15738 		toh->status = 0;
15739 		optptr += sizeof (*toh);
15740 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
15741 		optptr += ipp->ipp_dstoptslen;
15742 		ASSERT(OK_32PTR(optptr));
15743 		/* Save as last value */
15744 		ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
15745 		    (ipp->ipp_fields & IPPF_DSTOPTS),
15746 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
15747 	}
15748 	ASSERT(optptr == mp->b_wptr);
15749 	return (mp);
15750 }
15751 
15752 /*
15753  * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA
15754  * messages.
15755  */
15756 void
15757 tcp_rput_other(tcp_t *tcp, mblk_t *mp)
15758 {
15759 	uchar_t	*rptr = mp->b_rptr;
15760 	queue_t	*q = tcp->tcp_rq;
15761 	struct T_error_ack *tea;
15762 
15763 	switch (mp->b_datap->db_type) {
15764 	case M_PROTO:
15765 	case M_PCPROTO:
15766 		ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
15767 		if ((mp->b_wptr - rptr) < sizeof (t_scalar_t))
15768 			break;
15769 		tea = (struct T_error_ack *)rptr;
15770 		ASSERT(tea->PRIM_type != T_BIND_ACK);
15771 		ASSERT(tea->ERROR_prim != O_T_BIND_REQ &&
15772 		    tea->ERROR_prim != T_BIND_REQ);
15773 		switch (tea->PRIM_type) {
15774 		case T_ERROR_ACK:
15775 			if (tcp->tcp_debug) {
15776 				(void) strlog(TCP_MOD_ID, 0, 1,
15777 				    SL_TRACE|SL_ERROR,
15778 				    "tcp_rput_other: case T_ERROR_ACK, "
15779 				    "ERROR_prim == %d",
15780 				    tea->ERROR_prim);
15781 			}
15782 			switch (tea->ERROR_prim) {
15783 			case T_SVR4_OPTMGMT_REQ:
15784 				if (tcp->tcp_drop_opt_ack_cnt > 0) {
15785 					/* T_OPTMGMT_REQ generated by TCP */
15786 					printf("T_SVR4_OPTMGMT_REQ failed "
15787 					    "%d/%d - dropped (cnt %d)\n",
15788 					    tea->TLI_error, tea->UNIX_error,
15789 					    tcp->tcp_drop_opt_ack_cnt);
15790 					freemsg(mp);
15791 					tcp->tcp_drop_opt_ack_cnt--;
15792 					return;
15793 				}
15794 				break;
15795 			}
15796 			if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ &&
15797 			    tcp->tcp_drop_opt_ack_cnt > 0) {
15798 				printf("T_SVR4_OPTMGMT_REQ failed %d/%d "
15799 				    "- dropped (cnt %d)\n",
15800 				    tea->TLI_error, tea->UNIX_error,
15801 				    tcp->tcp_drop_opt_ack_cnt);
15802 				freemsg(mp);
15803 				tcp->tcp_drop_opt_ack_cnt--;
15804 				return;
15805 			}
15806 			break;
15807 		case T_OPTMGMT_ACK:
15808 			if (tcp->tcp_drop_opt_ack_cnt > 0) {
15809 				/* T_OPTMGMT_REQ generated by TCP */
15810 				freemsg(mp);
15811 				tcp->tcp_drop_opt_ack_cnt--;
15812 				return;
15813 			}
15814 			break;
15815 		default:
15816 			ASSERT(tea->ERROR_prim != T_UNBIND_REQ);
15817 			break;
15818 		}
15819 		break;
15820 	case M_FLUSH:
15821 		if (*rptr & FLUSHR)
15822 			flushq(q, FLUSHDATA);
15823 		break;
15824 	default:
15825 		/* M_CTL will be directly sent to tcp_icmp_error() */
15826 		ASSERT(DB_TYPE(mp) != M_CTL);
15827 		break;
15828 	}
15829 	/*
15830 	 * Make sure we set this bit before sending the ACK for
15831 	 * bind. Otherwise accept could possibly run and free
15832 	 * this tcp struct.
15833 	 */
15834 	ASSERT(q != NULL);
15835 	putnext(q, mp);
15836 }
15837 
15838 /* ARGSUSED */
15839 static void
15840 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2)
15841 {
15842 	conn_t	*connp = (conn_t *)arg;
15843 	tcp_t	*tcp = connp->conn_tcp;
15844 	queue_t	*q = tcp->tcp_rq;
15845 	uint_t	thwin;
15846 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15847 	sodirect_t	*sodp;
15848 	boolean_t	fc;
15849 
15850 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
15851 	tcp->tcp_rsrv_mp = mp;
15852 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
15853 
15854 	TCP_STAT(tcps, tcp_rsrv_calls);
15855 
15856 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
15857 		return;
15858 	}
15859 
15860 	if (tcp->tcp_fused) {
15861 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
15862 
15863 		ASSERT(tcp->tcp_fused);
15864 		ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused);
15865 		ASSERT(peer_tcp->tcp_loopback_peer == tcp);
15866 		ASSERT(!TCP_IS_DETACHED(tcp));
15867 		ASSERT(tcp->tcp_connp->conn_sqp ==
15868 		    peer_tcp->tcp_connp->conn_sqp);
15869 
15870 		/*
15871 		 * Normally we would not get backenabled in synchronous
15872 		 * streams mode, but in case this happens, we need to plug
15873 		 * synchronous streams during our drain to prevent a race
15874 		 * with tcp_fuse_rrw() or tcp_fuse_rinfop().
15875 		 */
15876 		TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
15877 		if (tcp->tcp_rcv_list != NULL)
15878 			(void) tcp_rcv_drain(tcp);
15879 
15880 		if (peer_tcp > tcp) {
15881 			mutex_enter(&peer_tcp->tcp_non_sq_lock);
15882 			mutex_enter(&tcp->tcp_non_sq_lock);
15883 		} else {
15884 			mutex_enter(&tcp->tcp_non_sq_lock);
15885 			mutex_enter(&peer_tcp->tcp_non_sq_lock);
15886 		}
15887 
15888 		if (peer_tcp->tcp_flow_stopped &&
15889 		    (TCP_UNSENT_BYTES(peer_tcp) <=
15890 		    peer_tcp->tcp_xmit_lowater)) {
15891 			tcp_clrqfull(peer_tcp);
15892 		}
15893 		mutex_exit(&peer_tcp->tcp_non_sq_lock);
15894 		mutex_exit(&tcp->tcp_non_sq_lock);
15895 
15896 		TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
15897 		TCP_STAT(tcps, tcp_fusion_backenabled);
15898 		return;
15899 	}
15900 
15901 	SOD_PTR_ENTER(tcp, sodp);
15902 	if (sodp != NULL) {
15903 		/* An sodirect connection */
15904 		if (SOD_QFULL(sodp)) {
15905 			/* Flow-controlled, need another back-enable */
15906 			fc = B_TRUE;
15907 			SOD_QSETBE(sodp);
15908 		} else {
15909 			/* Not flow-controlled */
15910 			fc = B_FALSE;
15911 		}
15912 		mutex_exit(sodp->sod_lockp);
15913 	} else if (canputnext(q)) {
15914 		/* STREAMS, not flow-controlled */
15915 		fc = B_FALSE;
15916 	} else {
15917 		/* STREAMS, flow-controlled */
15918 		fc = B_TRUE;
15919 	}
15920 	if (!fc) {
15921 		/* Not flow-controlled, open rwnd */
15922 		tcp->tcp_rwnd = q->q_hiwat;
15923 		thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
15924 		    << tcp->tcp_rcv_ws;
15925 		thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
15926 		/*
15927 		 * Send back a window update immediately if TCP is above
15928 		 * ESTABLISHED state and the increase of the rcv window
15929 		 * that the other side knows is at least 1 MSS after flow
15930 		 * control is lifted.
15931 		 */
15932 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
15933 		    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
15934 			tcp_xmit_ctl(NULL, tcp,
15935 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
15936 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
15937 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
15938 		}
15939 	}
15940 }
15941 
15942 /*
15943  * The read side service routine is called mostly when we get back-enabled as a
15944  * result of flow control relief.  Since we don't actually queue anything in
15945  * TCP, we have no data to send out of here.  What we do is clear the receive
15946  * window, and send out a window update.
15947  */
15948 static void
15949 tcp_rsrv(queue_t *q)
15950 {
15951 	conn_t		*connp = Q_TO_CONN(q);
15952 	tcp_t		*tcp = connp->conn_tcp;
15953 	mblk_t		*mp;
15954 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15955 
15956 	/* No code does a putq on the read side */
15957 	ASSERT(q->q_first == NULL);
15958 
15959 	/* Nothing to do for the default queue */
15960 	if (q == tcps->tcps_g_q) {
15961 		return;
15962 	}
15963 
15964 	/*
15965 	 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already
15966 	 * been run.  So just return.
15967 	 */
15968 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
15969 	if ((mp = tcp->tcp_rsrv_mp) == NULL) {
15970 		mutex_exit(&tcp->tcp_rsrv_mp_lock);
15971 		return;
15972 	}
15973 	tcp->tcp_rsrv_mp = NULL;
15974 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
15975 
15976 	CONN_INC_REF(connp);
15977 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp,
15978 	    SQ_PROCESS, SQTAG_TCP_RSRV);
15979 }
15980 
15981 /*
15982  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
15983  * We do not allow the receive window to shrink.  After setting rwnd,
15984  * set the flow control hiwat of the stream.
15985  *
15986  * This function is called in 2 cases:
15987  *
15988  * 1) Before data transfer begins, in tcp_accept_comm() for accepting a
15989  *    connection (passive open) and in tcp_rput_data() for active connect.
15990  *    This is called after tcp_mss_set() when the desired MSS value is known.
15991  *    This makes sure that our window size is a mutiple of the other side's
15992  *    MSS.
15993  * 2) Handling SO_RCVBUF option.
15994  *
15995  * It is ASSUMED that the requested size is a multiple of the current MSS.
15996  *
15997  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
15998  * user requests so.
15999  */
16000 static int
16001 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
16002 {
16003 	uint32_t	mss = tcp->tcp_mss;
16004 	uint32_t	old_max_rwnd;
16005 	uint32_t	max_transmittable_rwnd;
16006 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
16007 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16008 
16009 	if (tcp->tcp_fused) {
16010 		size_t sth_hiwat;
16011 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
16012 
16013 		ASSERT(peer_tcp != NULL);
16014 		/*
16015 		 * Record the stream head's high water mark for
16016 		 * this endpoint; this is used for flow-control
16017 		 * purposes in tcp_fuse_output().
16018 		 */
16019 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
16020 		if (!tcp_detached) {
16021 			(void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp,
16022 			    sth_hiwat);
16023 			if (IPCL_IS_NONSTR(tcp->tcp_connp)) {
16024 				conn_t *connp = tcp->tcp_connp;
16025 				struct sock_proto_props sopp;
16026 
16027 				sopp.sopp_flags = SOCKOPT_RCVTHRESH;
16028 				sopp.sopp_rcvthresh = sth_hiwat >> 3;
16029 
16030 				(*connp->conn_upcalls->su_set_proto_props)
16031 				    (connp->conn_upper_handle, &sopp);
16032 			}
16033 		}
16034 
16035 		/*
16036 		 * In the fusion case, the maxpsz stream head value of
16037 		 * our peer is set according to its send buffer size
16038 		 * and our receive buffer size; since the latter may
16039 		 * have changed we need to update the peer's maxpsz.
16040 		 */
16041 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
16042 		return (rwnd);
16043 	}
16044 
16045 	if (tcp_detached) {
16046 		old_max_rwnd = tcp->tcp_rwnd;
16047 	} else {
16048 		old_max_rwnd = tcp->tcp_recv_hiwater;
16049 	}
16050 
16051 	/*
16052 	 * Insist on a receive window that is at least
16053 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
16054 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
16055 	 * and delayed acknowledgement.
16056 	 */
16057 	rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss);
16058 
16059 	/*
16060 	 * If window size info has already been exchanged, TCP should not
16061 	 * shrink the window.  Shrinking window is doable if done carefully.
16062 	 * We may add that support later.  But so far there is not a real
16063 	 * need to do that.
16064 	 */
16065 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
16066 		/* MSS may have changed, do a round up again. */
16067 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
16068 	}
16069 
16070 	/*
16071 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
16072 	 * can be applied even before the window scale option is decided.
16073 	 */
16074 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
16075 	if (rwnd > max_transmittable_rwnd) {
16076 		rwnd = max_transmittable_rwnd -
16077 		    (max_transmittable_rwnd % mss);
16078 		if (rwnd < mss)
16079 			rwnd = max_transmittable_rwnd;
16080 		/*
16081 		 * If we're over the limit we may have to back down tcp_rwnd.
16082 		 * The increment below won't work for us. So we set all three
16083 		 * here and the increment below will have no effect.
16084 		 */
16085 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
16086 	}
16087 	if (tcp->tcp_localnet) {
16088 		tcp->tcp_rack_abs_max =
16089 		    MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2);
16090 	} else {
16091 		/*
16092 		 * For a remote host on a different subnet (through a router),
16093 		 * we ack every other packet to be conforming to RFC1122.
16094 		 * tcp_deferred_acks_max is default to 2.
16095 		 */
16096 		tcp->tcp_rack_abs_max =
16097 		    MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2);
16098 	}
16099 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
16100 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
16101 	else
16102 		tcp->tcp_rack_cur_max = 0;
16103 	/*
16104 	 * Increment the current rwnd by the amount the maximum grew (we
16105 	 * can not overwrite it since we might be in the middle of a
16106 	 * connection.)
16107 	 */
16108 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
16109 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win);
16110 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
16111 		tcp->tcp_cwnd_max = rwnd;
16112 
16113 	if (tcp_detached)
16114 		return (rwnd);
16115 	/*
16116 	 * We set the maximum receive window into rq->q_hiwat if it is
16117 	 * a STREAMS socket.
16118 	 * This is not actually used for flow control.
16119 	 */
16120 	if (!IPCL_IS_NONSTR(tcp->tcp_connp))
16121 		tcp->tcp_rq->q_hiwat = rwnd;
16122 	tcp->tcp_recv_hiwater = rwnd;
16123 	/*
16124 	 * Set the STREAM head high water mark. This doesn't have to be
16125 	 * here, since we are simply using default values, but we would
16126 	 * prefer to choose these values algorithmically, with a likely
16127 	 * relationship to rwnd.
16128 	 */
16129 	(void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp,
16130 	    MAX(rwnd, tcps->tcps_sth_rcv_hiwat));
16131 	return (rwnd);
16132 }
16133 
16134 /*
16135  * Return SNMP stuff in buffer in mpdata.
16136  */
16137 mblk_t *
16138 tcp_snmp_get(queue_t *q, mblk_t *mpctl)
16139 {
16140 	mblk_t			*mpdata;
16141 	mblk_t			*mp_conn_ctl = NULL;
16142 	mblk_t			*mp_conn_tail;
16143 	mblk_t			*mp_attr_ctl = NULL;
16144 	mblk_t			*mp_attr_tail;
16145 	mblk_t			*mp6_conn_ctl = NULL;
16146 	mblk_t			*mp6_conn_tail;
16147 	mblk_t			*mp6_attr_ctl = NULL;
16148 	mblk_t			*mp6_attr_tail;
16149 	struct opthdr		*optp;
16150 	mib2_tcpConnEntry_t	tce;
16151 	mib2_tcp6ConnEntry_t	tce6;
16152 	mib2_transportMLPEntry_t mlp;
16153 	connf_t			*connfp;
16154 	int			i;
16155 	boolean_t 		ispriv;
16156 	zoneid_t 		zoneid;
16157 	int			v4_conn_idx;
16158 	int			v6_conn_idx;
16159 	conn_t			*connp = Q_TO_CONN(q);
16160 	tcp_stack_t		*tcps;
16161 	ip_stack_t		*ipst;
16162 	mblk_t			*mp2ctl;
16163 
16164 	/*
16165 	 * make a copy of the original message
16166 	 */
16167 	mp2ctl = copymsg(mpctl);
16168 
16169 	if (mpctl == NULL ||
16170 	    (mpdata = mpctl->b_cont) == NULL ||
16171 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
16172 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
16173 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
16174 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
16175 		freemsg(mp_conn_ctl);
16176 		freemsg(mp_attr_ctl);
16177 		freemsg(mp6_conn_ctl);
16178 		freemsg(mp6_attr_ctl);
16179 		freemsg(mpctl);
16180 		freemsg(mp2ctl);
16181 		return (NULL);
16182 	}
16183 
16184 	ipst = connp->conn_netstack->netstack_ip;
16185 	tcps = connp->conn_netstack->netstack_tcp;
16186 
16187 	/* build table of connections -- need count in fixed part */
16188 	SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4);   /* vanj */
16189 	SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min);
16190 	SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max);
16191 	SET_MIB(tcps->tcps_mib.tcpMaxConn, -1);
16192 	SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0);
16193 
16194 	ispriv =
16195 	    secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0;
16196 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16197 
16198 	v4_conn_idx = v6_conn_idx = 0;
16199 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
16200 
16201 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16202 		ipst = tcps->tcps_netstack->netstack_ip;
16203 
16204 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
16205 
16206 		connp = NULL;
16207 
16208 		while ((connp =
16209 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16210 			tcp_t *tcp;
16211 			boolean_t needattr;
16212 
16213 			if (connp->conn_zoneid != zoneid)
16214 				continue;	/* not in this zone */
16215 
16216 			tcp = connp->conn_tcp;
16217 			UPDATE_MIB(&tcps->tcps_mib,
16218 			    tcpHCInSegs, tcp->tcp_ibsegs);
16219 			tcp->tcp_ibsegs = 0;
16220 			UPDATE_MIB(&tcps->tcps_mib,
16221 			    tcpHCOutSegs, tcp->tcp_obsegs);
16222 			tcp->tcp_obsegs = 0;
16223 
16224 			tce6.tcp6ConnState = tce.tcpConnState =
16225 			    tcp_snmp_state(tcp);
16226 			if (tce.tcpConnState == MIB2_TCP_established ||
16227 			    tce.tcpConnState == MIB2_TCP_closeWait)
16228 				BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab);
16229 
16230 			needattr = B_FALSE;
16231 			bzero(&mlp, sizeof (mlp));
16232 			if (connp->conn_mlp_type != mlptSingle) {
16233 				if (connp->conn_mlp_type == mlptShared ||
16234 				    connp->conn_mlp_type == mlptBoth)
16235 					mlp.tme_flags |= MIB2_TMEF_SHARED;
16236 				if (connp->conn_mlp_type == mlptPrivate ||
16237 				    connp->conn_mlp_type == mlptBoth)
16238 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
16239 				needattr = B_TRUE;
16240 			}
16241 			if (connp->conn_peercred != NULL) {
16242 				ts_label_t *tsl;
16243 
16244 				tsl = crgetlabel(connp->conn_peercred);
16245 				mlp.tme_doi = label2doi(tsl);
16246 				mlp.tme_label = *label2bslabel(tsl);
16247 				needattr = B_TRUE;
16248 			}
16249 
16250 			/* Create a message to report on IPv6 entries */
16251 			if (tcp->tcp_ipversion == IPV6_VERSION) {
16252 			tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6;
16253 			tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6;
16254 			tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport);
16255 			tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport);
16256 			tce6.tcp6ConnIfIndex = tcp->tcp_bound_if;
16257 			/* Don't want just anybody seeing these... */
16258 			if (ispriv) {
16259 				tce6.tcp6ConnEntryInfo.ce_snxt =
16260 				    tcp->tcp_snxt;
16261 				tce6.tcp6ConnEntryInfo.ce_suna =
16262 				    tcp->tcp_suna;
16263 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16264 				    tcp->tcp_rnxt;
16265 				tce6.tcp6ConnEntryInfo.ce_rack =
16266 				    tcp->tcp_rack;
16267 			} else {
16268 				/*
16269 				 * Netstat, unfortunately, uses this to
16270 				 * get send/receive queue sizes.  How to fix?
16271 				 * Why not compute the difference only?
16272 				 */
16273 				tce6.tcp6ConnEntryInfo.ce_snxt =
16274 				    tcp->tcp_snxt - tcp->tcp_suna;
16275 				tce6.tcp6ConnEntryInfo.ce_suna = 0;
16276 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16277 				    tcp->tcp_rnxt - tcp->tcp_rack;
16278 				tce6.tcp6ConnEntryInfo.ce_rack = 0;
16279 			}
16280 
16281 			tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16282 			tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16283 			tce6.tcp6ConnEntryInfo.ce_rto =  tcp->tcp_rto;
16284 			tce6.tcp6ConnEntryInfo.ce_mss =  tcp->tcp_mss;
16285 			tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state;
16286 
16287 			tce6.tcp6ConnCreationProcess =
16288 			    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
16289 			    tcp->tcp_cpid;
16290 			tce6.tcp6ConnCreationTime = tcp->tcp_open_time;
16291 
16292 			(void) snmp_append_data2(mp6_conn_ctl->b_cont,
16293 			    &mp6_conn_tail, (char *)&tce6, sizeof (tce6));
16294 
16295 			mlp.tme_connidx = v6_conn_idx++;
16296 			if (needattr)
16297 				(void) snmp_append_data2(mp6_attr_ctl->b_cont,
16298 				    &mp6_attr_tail, (char *)&mlp, sizeof (mlp));
16299 			}
16300 			/*
16301 			 * Create an IPv4 table entry for IPv4 entries and also
16302 			 * for IPv6 entries which are bound to in6addr_any
16303 			 * but don't have IPV6_V6ONLY set.
16304 			 * (i.e. anything an IPv4 peer could connect to)
16305 			 */
16306 			if (tcp->tcp_ipversion == IPV4_VERSION ||
16307 			    (tcp->tcp_state <= TCPS_LISTEN &&
16308 			    !tcp->tcp_connp->conn_ipv6_v6only &&
16309 			    IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) {
16310 				if (tcp->tcp_ipversion == IPV6_VERSION) {
16311 					tce.tcpConnRemAddress = INADDR_ANY;
16312 					tce.tcpConnLocalAddress = INADDR_ANY;
16313 				} else {
16314 					tce.tcpConnRemAddress =
16315 					    tcp->tcp_remote;
16316 					tce.tcpConnLocalAddress =
16317 					    tcp->tcp_ip_src;
16318 				}
16319 				tce.tcpConnLocalPort = ntohs(tcp->tcp_lport);
16320 				tce.tcpConnRemPort = ntohs(tcp->tcp_fport);
16321 				/* Don't want just anybody seeing these... */
16322 				if (ispriv) {
16323 					tce.tcpConnEntryInfo.ce_snxt =
16324 					    tcp->tcp_snxt;
16325 					tce.tcpConnEntryInfo.ce_suna =
16326 					    tcp->tcp_suna;
16327 					tce.tcpConnEntryInfo.ce_rnxt =
16328 					    tcp->tcp_rnxt;
16329 					tce.tcpConnEntryInfo.ce_rack =
16330 					    tcp->tcp_rack;
16331 				} else {
16332 					/*
16333 					 * Netstat, unfortunately, uses this to
16334 					 * get send/receive queue sizes.  How
16335 					 * to fix?
16336 					 * Why not compute the difference only?
16337 					 */
16338 					tce.tcpConnEntryInfo.ce_snxt =
16339 					    tcp->tcp_snxt - tcp->tcp_suna;
16340 					tce.tcpConnEntryInfo.ce_suna = 0;
16341 					tce.tcpConnEntryInfo.ce_rnxt =
16342 					    tcp->tcp_rnxt - tcp->tcp_rack;
16343 					tce.tcpConnEntryInfo.ce_rack = 0;
16344 				}
16345 
16346 				tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16347 				tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16348 				tce.tcpConnEntryInfo.ce_rto =  tcp->tcp_rto;
16349 				tce.tcpConnEntryInfo.ce_mss =  tcp->tcp_mss;
16350 				tce.tcpConnEntryInfo.ce_state =
16351 				    tcp->tcp_state;
16352 
16353 				tce.tcpConnCreationProcess =
16354 				    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
16355 				    tcp->tcp_cpid;
16356 				tce.tcpConnCreationTime = tcp->tcp_open_time;
16357 
16358 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
16359 				    &mp_conn_tail, (char *)&tce, sizeof (tce));
16360 
16361 				mlp.tme_connidx = v4_conn_idx++;
16362 				if (needattr)
16363 					(void) snmp_append_data2(
16364 					    mp_attr_ctl->b_cont,
16365 					    &mp_attr_tail, (char *)&mlp,
16366 					    sizeof (mlp));
16367 			}
16368 		}
16369 	}
16370 
16371 	/* fixed length structure for IPv4 and IPv6 counters */
16372 	SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t));
16373 	SET_MIB(tcps->tcps_mib.tcp6ConnTableSize,
16374 	    sizeof (mib2_tcp6ConnEntry_t));
16375 	/* synchronize 32- and 64-bit counters */
16376 	SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs);
16377 	SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs);
16378 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
16379 	optp->level = MIB2_TCP;
16380 	optp->name = 0;
16381 	(void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib,
16382 	    sizeof (tcps->tcps_mib));
16383 	optp->len = msgdsize(mpdata);
16384 	qreply(q, mpctl);
16385 
16386 	/* table of connections... */
16387 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
16388 	    sizeof (struct T_optmgmt_ack)];
16389 	optp->level = MIB2_TCP;
16390 	optp->name = MIB2_TCP_CONN;
16391 	optp->len = msgdsize(mp_conn_ctl->b_cont);
16392 	qreply(q, mp_conn_ctl);
16393 
16394 	/* table of MLP attributes... */
16395 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
16396 	    sizeof (struct T_optmgmt_ack)];
16397 	optp->level = MIB2_TCP;
16398 	optp->name = EXPER_XPORT_MLP;
16399 	optp->len = msgdsize(mp_attr_ctl->b_cont);
16400 	if (optp->len == 0)
16401 		freemsg(mp_attr_ctl);
16402 	else
16403 		qreply(q, mp_attr_ctl);
16404 
16405 	/* table of IPv6 connections... */
16406 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
16407 	    sizeof (struct T_optmgmt_ack)];
16408 	optp->level = MIB2_TCP6;
16409 	optp->name = MIB2_TCP6_CONN;
16410 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
16411 	qreply(q, mp6_conn_ctl);
16412 
16413 	/* table of IPv6 MLP attributes... */
16414 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
16415 	    sizeof (struct T_optmgmt_ack)];
16416 	optp->level = MIB2_TCP6;
16417 	optp->name = EXPER_XPORT_MLP;
16418 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
16419 	if (optp->len == 0)
16420 		freemsg(mp6_attr_ctl);
16421 	else
16422 		qreply(q, mp6_attr_ctl);
16423 	return (mp2ctl);
16424 }
16425 
16426 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests  */
16427 /* ARGSUSED */
16428 int
16429 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
16430 {
16431 	mib2_tcpConnEntry_t	*tce = (mib2_tcpConnEntry_t *)ptr;
16432 
16433 	switch (level) {
16434 	case MIB2_TCP:
16435 		switch (name) {
16436 		case 13:
16437 			if (tce->tcpConnState != MIB2_TCP_deleteTCB)
16438 				return (0);
16439 			/* TODO: delete entry defined by tce */
16440 			return (1);
16441 		default:
16442 			return (0);
16443 		}
16444 	default:
16445 		return (1);
16446 	}
16447 }
16448 
16449 /* Translate TCP state to MIB2 TCP state. */
16450 static int
16451 tcp_snmp_state(tcp_t *tcp)
16452 {
16453 	if (tcp == NULL)
16454 		return (0);
16455 
16456 	switch (tcp->tcp_state) {
16457 	case TCPS_CLOSED:
16458 	case TCPS_IDLE:	/* RFC1213 doesn't have analogue for IDLE & BOUND */
16459 	case TCPS_BOUND:
16460 		return (MIB2_TCP_closed);
16461 	case TCPS_LISTEN:
16462 		return (MIB2_TCP_listen);
16463 	case TCPS_SYN_SENT:
16464 		return (MIB2_TCP_synSent);
16465 	case TCPS_SYN_RCVD:
16466 		return (MIB2_TCP_synReceived);
16467 	case TCPS_ESTABLISHED:
16468 		return (MIB2_TCP_established);
16469 	case TCPS_CLOSE_WAIT:
16470 		return (MIB2_TCP_closeWait);
16471 	case TCPS_FIN_WAIT_1:
16472 		return (MIB2_TCP_finWait1);
16473 	case TCPS_CLOSING:
16474 		return (MIB2_TCP_closing);
16475 	case TCPS_LAST_ACK:
16476 		return (MIB2_TCP_lastAck);
16477 	case TCPS_FIN_WAIT_2:
16478 		return (MIB2_TCP_finWait2);
16479 	case TCPS_TIME_WAIT:
16480 		return (MIB2_TCP_timeWait);
16481 	default:
16482 		return (0);
16483 	}
16484 }
16485 
16486 static char tcp_report_header[] =
16487 	"TCP     " MI_COL_HDRPAD_STR
16488 	"zone dest	    snxt     suna     "
16489 	"swnd       rnxt     rack     rwnd       rto   mss   w sw rw t "
16490 	"recent   [lport,fport] state";
16491 
16492 /*
16493  * TCP status report triggered via the Named Dispatch mechanism.
16494  */
16495 /* ARGSUSED */
16496 static void
16497 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream,
16498     cred_t *cr)
16499 {
16500 	char hash[10], addrbuf[INET6_ADDRSTRLEN];
16501 	boolean_t ispriv = secpolicy_ip_config(cr, B_TRUE) == 0;
16502 	char cflag;
16503 	in6_addr_t	v6dst;
16504 	char buf[80];
16505 	uint_t print_len, buf_len;
16506 
16507 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16508 	if (buf_len <= 0)
16509 		return;
16510 
16511 	if (hashval >= 0)
16512 		(void) sprintf(hash, "%03d ", hashval);
16513 	else
16514 		hash[0] = '\0';
16515 
16516 	/*
16517 	 * Note that we use the remote address in the tcp_b  structure.
16518 	 * This means that it will print out the real destination address,
16519 	 * not the next hop's address if source routing is used.  This
16520 	 * avoid the confusion on the output because user may not
16521 	 * know that source routing is used for a connection.
16522 	 */
16523 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16524 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst);
16525 	} else {
16526 		v6dst = tcp->tcp_remote_v6;
16527 	}
16528 	(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16529 	/*
16530 	 * the ispriv checks are so that normal users cannot determine
16531 	 * sequence number information using NDD.
16532 	 */
16533 
16534 	if (TCP_IS_DETACHED(tcp))
16535 		cflag = '*';
16536 	else
16537 		cflag = ' ';
16538 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16539 	    "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x "
16540 	    "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n",
16541 	    hash,
16542 	    (void *)tcp,
16543 	    tcp->tcp_connp->conn_zoneid,
16544 	    addrbuf,
16545 	    (ispriv) ? tcp->tcp_snxt : 0,
16546 	    (ispriv) ? tcp->tcp_suna : 0,
16547 	    tcp->tcp_swnd,
16548 	    (ispriv) ? tcp->tcp_rnxt : 0,
16549 	    (ispriv) ? tcp->tcp_rack : 0,
16550 	    tcp->tcp_rwnd,
16551 	    tcp->tcp_rto,
16552 	    tcp->tcp_mss,
16553 	    tcp->tcp_snd_ws_ok,
16554 	    tcp->tcp_snd_ws,
16555 	    tcp->tcp_rcv_ws,
16556 	    tcp->tcp_snd_ts_ok,
16557 	    tcp->tcp_ts_recent,
16558 	    tcp_display(tcp, buf, DISP_PORT_ONLY), cflag);
16559 	if (print_len < buf_len) {
16560 		((mblk_t *)mp)->b_wptr += print_len;
16561 	} else {
16562 		((mblk_t *)mp)->b_wptr += buf_len;
16563 	}
16564 }
16565 
16566 /*
16567  * TCP status report (for listeners only) triggered via the Named Dispatch
16568  * mechanism.
16569  */
16570 /* ARGSUSED */
16571 static void
16572 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval)
16573 {
16574 	char addrbuf[INET6_ADDRSTRLEN];
16575 	in6_addr_t	v6dst;
16576 	uint_t print_len, buf_len;
16577 
16578 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16579 	if (buf_len <= 0)
16580 		return;
16581 
16582 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16583 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst);
16584 		(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16585 	} else {
16586 		(void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src,
16587 		    addrbuf, sizeof (addrbuf));
16588 	}
16589 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16590 	    "%03d "
16591 	    MI_COL_PTRFMT_STR
16592 	    "%d %s %05u %08u %d/%d/%d%c\n",
16593 	    hashval, (void *)tcp,
16594 	    tcp->tcp_connp->conn_zoneid,
16595 	    addrbuf,
16596 	    (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport),
16597 	    tcp->tcp_conn_req_seqnum,
16598 	    tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q,
16599 	    tcp->tcp_conn_req_max,
16600 	    tcp->tcp_syn_defense ? '*' : ' ');
16601 	if (print_len < buf_len) {
16602 		((mblk_t *)mp)->b_wptr += print_len;
16603 	} else {
16604 		((mblk_t *)mp)->b_wptr += buf_len;
16605 	}
16606 }
16607 
16608 /* TCP status report triggered via the Named Dispatch mechanism. */
16609 /* ARGSUSED */
16610 static int
16611 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16612 {
16613 	tcp_t	*tcp;
16614 	int	i;
16615 	conn_t	*connp;
16616 	connf_t	*connfp;
16617 	zoneid_t zoneid;
16618 	tcp_stack_t *tcps;
16619 	ip_stack_t *ipst;
16620 
16621 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16622 	tcps = Q_TO_TCP(q)->tcp_tcps;
16623 
16624 	/*
16625 	 * Because of the ndd constraint, at most we can have 64K buffer
16626 	 * to put in all TCP info.  So to be more efficient, just
16627 	 * allocate a 64K buffer here, assuming we need that large buffer.
16628 	 * This may be a problem as any user can read tcp_status.  Therefore
16629 	 * we limit the rate of doing this using tcp_ndd_get_info_interval.
16630 	 * This should be OK as normal users should not do this too often.
16631 	 */
16632 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16633 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16634 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16635 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16636 			return (0);
16637 		}
16638 	}
16639 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16640 		/* The following may work even if we cannot get a large buf. */
16641 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16642 		return (0);
16643 	}
16644 
16645 	(void) mi_mpprintf(mp, "%s", tcp_report_header);
16646 
16647 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16648 
16649 		ipst = tcps->tcps_netstack->netstack_ip;
16650 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
16651 
16652 		connp = NULL;
16653 
16654 		while ((connp =
16655 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16656 			tcp = connp->conn_tcp;
16657 			if (zoneid != GLOBAL_ZONEID &&
16658 			    zoneid != connp->conn_zoneid)
16659 				continue;
16660 			tcp_report_item(mp->b_cont, tcp, -1, tcp,
16661 			    cr);
16662 		}
16663 
16664 	}
16665 
16666 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16667 	return (0);
16668 }
16669 
16670 /* TCP status report triggered via the Named Dispatch mechanism. */
16671 /* ARGSUSED */
16672 static int
16673 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16674 {
16675 	tf_t	*tbf;
16676 	tcp_t	*tcp, *ltcp;
16677 	int	i;
16678 	zoneid_t zoneid;
16679 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
16680 
16681 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16682 
16683 	/* Refer to comments in tcp_status_report(). */
16684 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16685 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16686 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16687 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16688 			return (0);
16689 		}
16690 	}
16691 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16692 		/* The following may work even if we cannot get a large buf. */
16693 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16694 		return (0);
16695 	}
16696 
16697 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16698 
16699 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
16700 		tbf = &tcps->tcps_bind_fanout[i];
16701 		mutex_enter(&tbf->tf_lock);
16702 		for (ltcp = tbf->tf_tcp; ltcp != NULL;
16703 		    ltcp = ltcp->tcp_bind_hash) {
16704 			for (tcp = ltcp; tcp != NULL;
16705 			    tcp = tcp->tcp_bind_hash_port) {
16706 				if (zoneid != GLOBAL_ZONEID &&
16707 				    zoneid != tcp->tcp_connp->conn_zoneid)
16708 					continue;
16709 				CONN_INC_REF(tcp->tcp_connp);
16710 				tcp_report_item(mp->b_cont, tcp, i,
16711 				    Q_TO_TCP(q), cr);
16712 				CONN_DEC_REF(tcp->tcp_connp);
16713 			}
16714 		}
16715 		mutex_exit(&tbf->tf_lock);
16716 	}
16717 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16718 	return (0);
16719 }
16720 
16721 /* TCP status report triggered via the Named Dispatch mechanism. */
16722 /* ARGSUSED */
16723 static int
16724 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16725 {
16726 	connf_t	*connfp;
16727 	conn_t	*connp;
16728 	tcp_t	*tcp;
16729 	int	i;
16730 	zoneid_t zoneid;
16731 	tcp_stack_t *tcps;
16732 	ip_stack_t	*ipst;
16733 
16734 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16735 	tcps = Q_TO_TCP(q)->tcp_tcps;
16736 
16737 	/* Refer to comments in tcp_status_report(). */
16738 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16739 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16740 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16741 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16742 			return (0);
16743 		}
16744 	}
16745 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16746 		/* The following may work even if we cannot get a large buf. */
16747 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16748 		return (0);
16749 	}
16750 
16751 	(void) mi_mpprintf(mp,
16752 	    "    TCP    " MI_COL_HDRPAD_STR
16753 	    "zone IP addr	 port  seqnum   backlog (q0/q/max)");
16754 
16755 	ipst = tcps->tcps_netstack->netstack_ip;
16756 
16757 	for (i = 0; i < ipst->ips_ipcl_bind_fanout_size; i++) {
16758 		connfp = &ipst->ips_ipcl_bind_fanout[i];
16759 		connp = NULL;
16760 		while ((connp =
16761 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16762 			tcp = connp->conn_tcp;
16763 			if (zoneid != GLOBAL_ZONEID &&
16764 			    zoneid != connp->conn_zoneid)
16765 				continue;
16766 			tcp_report_listener(mp->b_cont, tcp, i);
16767 		}
16768 	}
16769 
16770 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16771 	return (0);
16772 }
16773 
16774 /* TCP status report triggered via the Named Dispatch mechanism. */
16775 /* ARGSUSED */
16776 static int
16777 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16778 {
16779 	connf_t	*connfp;
16780 	conn_t	*connp;
16781 	tcp_t	*tcp;
16782 	int	i;
16783 	zoneid_t zoneid;
16784 	tcp_stack_t *tcps;
16785 	ip_stack_t *ipst;
16786 
16787 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16788 	tcps = Q_TO_TCP(q)->tcp_tcps;
16789 	ipst = tcps->tcps_netstack->netstack_ip;
16790 
16791 	/* Refer to comments in tcp_status_report(). */
16792 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16793 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16794 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16795 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16796 			return (0);
16797 		}
16798 	}
16799 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16800 		/* The following may work even if we cannot get a large buf. */
16801 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16802 		return (0);
16803 	}
16804 
16805 	(void) mi_mpprintf(mp, "tcp_conn_hash_size = %d",
16806 	    ipst->ips_ipcl_conn_fanout_size);
16807 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16808 
16809 	for (i = 0; i < ipst->ips_ipcl_conn_fanout_size; i++) {
16810 		connfp =  &ipst->ips_ipcl_conn_fanout[i];
16811 		connp = NULL;
16812 		while ((connp =
16813 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16814 			tcp = connp->conn_tcp;
16815 			if (zoneid != GLOBAL_ZONEID &&
16816 			    zoneid != connp->conn_zoneid)
16817 				continue;
16818 			tcp_report_item(mp->b_cont, tcp, i,
16819 			    Q_TO_TCP(q), cr);
16820 		}
16821 	}
16822 
16823 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16824 	return (0);
16825 }
16826 
16827 /* TCP status report triggered via the Named Dispatch mechanism. */
16828 /* ARGSUSED */
16829 static int
16830 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16831 {
16832 	tf_t	*tf;
16833 	tcp_t	*tcp;
16834 	int	i;
16835 	zoneid_t zoneid;
16836 	tcp_stack_t	*tcps;
16837 
16838 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16839 	tcps = Q_TO_TCP(q)->tcp_tcps;
16840 
16841 	/* Refer to comments in tcp_status_report(). */
16842 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16843 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16844 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16845 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16846 			return (0);
16847 		}
16848 	}
16849 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16850 		/* The following may work even if we cannot get a large buf. */
16851 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16852 		return (0);
16853 	}
16854 
16855 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16856 
16857 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
16858 		tf = &tcps->tcps_acceptor_fanout[i];
16859 		mutex_enter(&tf->tf_lock);
16860 		for (tcp = tf->tf_tcp; tcp != NULL;
16861 		    tcp = tcp->tcp_acceptor_hash) {
16862 			if (zoneid != GLOBAL_ZONEID &&
16863 			    zoneid != tcp->tcp_connp->conn_zoneid)
16864 				continue;
16865 			tcp_report_item(mp->b_cont, tcp, i,
16866 			    Q_TO_TCP(q), cr);
16867 		}
16868 		mutex_exit(&tf->tf_lock);
16869 	}
16870 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16871 	return (0);
16872 }
16873 
16874 /*
16875  * tcp_timer is the timer service routine.  It handles the retransmission,
16876  * FIN_WAIT_2 flush, and zero window probe timeout events.  It figures out
16877  * from the state of the tcp instance what kind of action needs to be done
16878  * at the time it is called.
16879  */
16880 static void
16881 tcp_timer(void *arg)
16882 {
16883 	mblk_t		*mp;
16884 	clock_t		first_threshold;
16885 	clock_t		second_threshold;
16886 	clock_t		ms;
16887 	uint32_t	mss;
16888 	conn_t		*connp = (conn_t *)arg;
16889 	tcp_t		*tcp = connp->conn_tcp;
16890 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16891 
16892 	tcp->tcp_timer_tid = 0;
16893 
16894 	if (tcp->tcp_fused)
16895 		return;
16896 
16897 	first_threshold =  tcp->tcp_first_timer_threshold;
16898 	second_threshold = tcp->tcp_second_timer_threshold;
16899 	switch (tcp->tcp_state) {
16900 	case TCPS_IDLE:
16901 	case TCPS_BOUND:
16902 	case TCPS_LISTEN:
16903 		return;
16904 	case TCPS_SYN_RCVD: {
16905 		tcp_t	*listener = tcp->tcp_listener;
16906 
16907 		if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) {
16908 			ASSERT(tcp->tcp_rq == listener->tcp_rq);
16909 			/* it's our first timeout */
16910 			tcp->tcp_syn_rcvd_timeout = 1;
16911 			mutex_enter(&listener->tcp_eager_lock);
16912 			listener->tcp_syn_rcvd_timeout++;
16913 			if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) {
16914 				/*
16915 				 * Make this eager available for drop if we
16916 				 * need to drop one to accomodate a new
16917 				 * incoming SYN request.
16918 				 */
16919 				MAKE_DROPPABLE(listener, tcp);
16920 			}
16921 			if (!listener->tcp_syn_defense &&
16922 			    (listener->tcp_syn_rcvd_timeout >
16923 			    (tcps->tcps_conn_req_max_q0 >> 2)) &&
16924 			    (tcps->tcps_conn_req_max_q0 > 200)) {
16925 				/* We may be under attack. Put on a defense. */
16926 				listener->tcp_syn_defense = B_TRUE;
16927 				cmn_err(CE_WARN, "High TCP connect timeout "
16928 				    "rate! System (port %d) may be under a "
16929 				    "SYN flood attack!",
16930 				    BE16_TO_U16(listener->tcp_tcph->th_lport));
16931 
16932 				listener->tcp_ip_addr_cache = kmem_zalloc(
16933 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t),
16934 				    KM_NOSLEEP);
16935 			}
16936 			mutex_exit(&listener->tcp_eager_lock);
16937 		} else if (listener != NULL) {
16938 			mutex_enter(&listener->tcp_eager_lock);
16939 			tcp->tcp_syn_rcvd_timeout++;
16940 			if (tcp->tcp_syn_rcvd_timeout > 1 &&
16941 			    !tcp->tcp_closemp_used) {
16942 				/*
16943 				 * This is our second timeout. Put the tcp in
16944 				 * the list of droppable eagers to allow it to
16945 				 * be dropped, if needed. We don't check
16946 				 * whether tcp_dontdrop is set or not to
16947 				 * protect ourselve from a SYN attack where a
16948 				 * remote host can spoof itself as one of the
16949 				 * good IP source and continue to hold
16950 				 * resources too long.
16951 				 */
16952 				MAKE_DROPPABLE(listener, tcp);
16953 			}
16954 			mutex_exit(&listener->tcp_eager_lock);
16955 		}
16956 	}
16957 		/* FALLTHRU */
16958 	case TCPS_SYN_SENT:
16959 		first_threshold =  tcp->tcp_first_ctimer_threshold;
16960 		second_threshold = tcp->tcp_second_ctimer_threshold;
16961 		break;
16962 	case TCPS_ESTABLISHED:
16963 	case TCPS_FIN_WAIT_1:
16964 	case TCPS_CLOSING:
16965 	case TCPS_CLOSE_WAIT:
16966 	case TCPS_LAST_ACK:
16967 		/* If we have data to rexmit */
16968 		if (tcp->tcp_suna != tcp->tcp_snxt) {
16969 			clock_t	time_to_wait;
16970 
16971 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans);
16972 			if (!tcp->tcp_xmit_head)
16973 				break;
16974 			time_to_wait = lbolt -
16975 			    (clock_t)tcp->tcp_xmit_head->b_prev;
16976 			time_to_wait = tcp->tcp_rto -
16977 			    TICK_TO_MSEC(time_to_wait);
16978 			/*
16979 			 * If the timer fires too early, 1 clock tick earlier,
16980 			 * restart the timer.
16981 			 */
16982 			if (time_to_wait > msec_per_tick) {
16983 				TCP_STAT(tcps, tcp_timer_fire_early);
16984 				TCP_TIMER_RESTART(tcp, time_to_wait);
16985 				return;
16986 			}
16987 			/*
16988 			 * When we probe zero windows, we force the swnd open.
16989 			 * If our peer acks with a closed window swnd will be
16990 			 * set to zero by tcp_rput(). As long as we are
16991 			 * receiving acks tcp_rput will
16992 			 * reset 'tcp_ms_we_have_waited' so as not to trip the
16993 			 * first and second interval actions.  NOTE: the timer
16994 			 * interval is allowed to continue its exponential
16995 			 * backoff.
16996 			 */
16997 			if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) {
16998 				if (tcp->tcp_debug) {
16999 					(void) strlog(TCP_MOD_ID, 0, 1,
17000 					    SL_TRACE, "tcp_timer: zero win");
17001 				}
17002 			} else {
17003 				/*
17004 				 * After retransmission, we need to do
17005 				 * slow start.  Set the ssthresh to one
17006 				 * half of current effective window and
17007 				 * cwnd to one MSS.  Also reset
17008 				 * tcp_cwnd_cnt.
17009 				 *
17010 				 * Note that if tcp_ssthresh is reduced because
17011 				 * of ECN, do not reduce it again unless it is
17012 				 * already one window of data away (tcp_cwr
17013 				 * should then be cleared) or this is a
17014 				 * timeout for a retransmitted segment.
17015 				 */
17016 				uint32_t npkt;
17017 
17018 				if (!tcp->tcp_cwr || tcp->tcp_rexmit) {
17019 					npkt = ((tcp->tcp_timer_backoff ?
17020 					    tcp->tcp_cwnd_ssthresh :
17021 					    tcp->tcp_snxt -
17022 					    tcp->tcp_suna) >> 1) / tcp->tcp_mss;
17023 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
17024 					    tcp->tcp_mss;
17025 				}
17026 				tcp->tcp_cwnd = tcp->tcp_mss;
17027 				tcp->tcp_cwnd_cnt = 0;
17028 				if (tcp->tcp_ecn_ok) {
17029 					tcp->tcp_cwr = B_TRUE;
17030 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
17031 					tcp->tcp_ecn_cwr_sent = B_FALSE;
17032 				}
17033 			}
17034 			break;
17035 		}
17036 		/*
17037 		 * We have something to send yet we cannot send.  The
17038 		 * reason can be:
17039 		 *
17040 		 * 1. Zero send window: we need to do zero window probe.
17041 		 * 2. Zero cwnd: because of ECN, we need to "clock out
17042 		 * segments.
17043 		 * 3. SWS avoidance: receiver may have shrunk window,
17044 		 * reset our knowledge.
17045 		 *
17046 		 * Note that condition 2 can happen with either 1 or
17047 		 * 3.  But 1 and 3 are exclusive.
17048 		 */
17049 		if (tcp->tcp_unsent != 0) {
17050 			if (tcp->tcp_cwnd == 0) {
17051 				/*
17052 				 * Set tcp_cwnd to 1 MSS so that a
17053 				 * new segment can be sent out.  We
17054 				 * are "clocking out" new data when
17055 				 * the network is really congested.
17056 				 */
17057 				ASSERT(tcp->tcp_ecn_ok);
17058 				tcp->tcp_cwnd = tcp->tcp_mss;
17059 			}
17060 			if (tcp->tcp_swnd == 0) {
17061 				/* Extend window for zero window probe */
17062 				tcp->tcp_swnd++;
17063 				tcp->tcp_zero_win_probe = B_TRUE;
17064 				BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe);
17065 			} else {
17066 				/*
17067 				 * Handle timeout from sender SWS avoidance.
17068 				 * Reset our knowledge of the max send window
17069 				 * since the receiver might have reduced its
17070 				 * receive buffer.  Avoid setting tcp_max_swnd
17071 				 * to one since that will essentially disable
17072 				 * the SWS checks.
17073 				 *
17074 				 * Note that since we don't have a SWS
17075 				 * state variable, if the timeout is set
17076 				 * for ECN but not for SWS, this
17077 				 * code will also be executed.  This is
17078 				 * fine as tcp_max_swnd is updated
17079 				 * constantly and it will not affect
17080 				 * anything.
17081 				 */
17082 				tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2);
17083 			}
17084 			tcp_wput_data(tcp, NULL, B_FALSE);
17085 			return;
17086 		}
17087 		/* Is there a FIN that needs to be to re retransmitted? */
17088 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17089 		    !tcp->tcp_fin_acked)
17090 			break;
17091 		/* Nothing to do, return without restarting timer. */
17092 		TCP_STAT(tcps, tcp_timer_fire_miss);
17093 		return;
17094 	case TCPS_FIN_WAIT_2:
17095 		/*
17096 		 * User closed the TCP endpoint and peer ACK'ed our FIN.
17097 		 * We waited some time for for peer's FIN, but it hasn't
17098 		 * arrived.  We flush the connection now to avoid
17099 		 * case where the peer has rebooted.
17100 		 */
17101 		if (TCP_IS_DETACHED(tcp)) {
17102 			(void) tcp_clean_death(tcp, 0, 23);
17103 		} else {
17104 			TCP_TIMER_RESTART(tcp,
17105 			    tcps->tcps_fin_wait_2_flush_interval);
17106 		}
17107 		return;
17108 	case TCPS_TIME_WAIT:
17109 		(void) tcp_clean_death(tcp, 0, 24);
17110 		return;
17111 	default:
17112 		if (tcp->tcp_debug) {
17113 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
17114 			    "tcp_timer: strange state (%d) %s",
17115 			    tcp->tcp_state, tcp_display(tcp, NULL,
17116 			    DISP_PORT_ONLY));
17117 		}
17118 		return;
17119 	}
17120 	if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) {
17121 		/*
17122 		 * For zero window probe, we need to send indefinitely,
17123 		 * unless we have not heard from the other side for some
17124 		 * time...
17125 		 */
17126 		if ((tcp->tcp_zero_win_probe == 0) ||
17127 		    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >
17128 		    second_threshold)) {
17129 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop);
17130 			/*
17131 			 * If TCP is in SYN_RCVD state, send back a
17132 			 * RST|ACK as BSD does.  Note that tcp_zero_win_probe
17133 			 * should be zero in TCPS_SYN_RCVD state.
17134 			 */
17135 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
17136 				tcp_xmit_ctl("tcp_timer: RST sent on timeout "
17137 				    "in SYN_RCVD",
17138 				    tcp, tcp->tcp_snxt,
17139 				    tcp->tcp_rnxt, TH_RST | TH_ACK);
17140 			}
17141 			(void) tcp_clean_death(tcp,
17142 			    tcp->tcp_client_errno ?
17143 			    tcp->tcp_client_errno : ETIMEDOUT, 25);
17144 			return;
17145 		} else {
17146 			/*
17147 			 * Set tcp_ms_we_have_waited to second_threshold
17148 			 * so that in next timeout, we will do the above
17149 			 * check (lbolt - tcp_last_recv_time).  This is
17150 			 * also to avoid overflow.
17151 			 *
17152 			 * We don't need to decrement tcp_timer_backoff
17153 			 * to avoid overflow because it will be decremented
17154 			 * later if new timeout value is greater than
17155 			 * tcp_rexmit_interval_max.  In the case when
17156 			 * tcp_rexmit_interval_max is greater than
17157 			 * second_threshold, it means that we will wait
17158 			 * longer than second_threshold to send the next
17159 			 * window probe.
17160 			 */
17161 			tcp->tcp_ms_we_have_waited = second_threshold;
17162 		}
17163 	} else if (ms > first_threshold) {
17164 		if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) &&
17165 		    tcp->tcp_xmit_head != NULL) {
17166 			tcp->tcp_xmit_head =
17167 			    tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1);
17168 		}
17169 		/*
17170 		 * We have been retransmitting for too long...  The RTT
17171 		 * we calculated is probably incorrect.  Reinitialize it.
17172 		 * Need to compensate for 0 tcp_rtt_sa.  Reset
17173 		 * tcp_rtt_update so that we won't accidentally cache a
17174 		 * bad value.  But only do this if this is not a zero
17175 		 * window probe.
17176 		 */
17177 		if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) {
17178 			tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) +
17179 			    (tcp->tcp_rtt_sa >> 5);
17180 			tcp->tcp_rtt_sa = 0;
17181 			tcp_ip_notify(tcp);
17182 			tcp->tcp_rtt_update = 0;
17183 		}
17184 	}
17185 	tcp->tcp_timer_backoff++;
17186 	if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
17187 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) <
17188 	    tcps->tcps_rexmit_interval_min) {
17189 		/*
17190 		 * This means the original RTO is tcp_rexmit_interval_min.
17191 		 * So we will use tcp_rexmit_interval_min as the RTO value
17192 		 * and do the backoff.
17193 		 */
17194 		ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff;
17195 	} else {
17196 		ms <<= tcp->tcp_timer_backoff;
17197 	}
17198 	if (ms > tcps->tcps_rexmit_interval_max) {
17199 		ms = tcps->tcps_rexmit_interval_max;
17200 		/*
17201 		 * ms is at max, decrement tcp_timer_backoff to avoid
17202 		 * overflow.
17203 		 */
17204 		tcp->tcp_timer_backoff--;
17205 	}
17206 	tcp->tcp_ms_we_have_waited += ms;
17207 	if (tcp->tcp_zero_win_probe == 0) {
17208 		tcp->tcp_rto = ms;
17209 	}
17210 	TCP_TIMER_RESTART(tcp, ms);
17211 	/*
17212 	 * This is after a timeout and tcp_rto is backed off.  Set
17213 	 * tcp_set_timer to 1 so that next time RTO is updated, we will
17214 	 * restart the timer with a correct value.
17215 	 */
17216 	tcp->tcp_set_timer = 1;
17217 	mss = tcp->tcp_snxt - tcp->tcp_suna;
17218 	if (mss > tcp->tcp_mss)
17219 		mss = tcp->tcp_mss;
17220 	if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0)
17221 		mss = tcp->tcp_swnd;
17222 
17223 	if ((mp = tcp->tcp_xmit_head) != NULL)
17224 		mp->b_prev = (mblk_t *)lbolt;
17225 	mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss,
17226 	    B_TRUE);
17227 
17228 	/*
17229 	 * When slow start after retransmission begins, start with
17230 	 * this seq no.  tcp_rexmit_max marks the end of special slow
17231 	 * start phase.  tcp_snd_burst controls how many segments
17232 	 * can be sent because of an ack.
17233 	 */
17234 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
17235 	tcp->tcp_snd_burst = TCP_CWND_SS;
17236 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17237 	    (tcp->tcp_unsent == 0)) {
17238 		tcp->tcp_rexmit_max = tcp->tcp_fss;
17239 	} else {
17240 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
17241 	}
17242 	tcp->tcp_rexmit = B_TRUE;
17243 	tcp->tcp_dupack_cnt = 0;
17244 
17245 	/*
17246 	 * Remove all rexmit SACK blk to start from fresh.
17247 	 */
17248 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
17249 		TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
17250 		tcp->tcp_num_notsack_blk = 0;
17251 		tcp->tcp_cnt_notsack_list = 0;
17252 	}
17253 	if (mp == NULL) {
17254 		return;
17255 	}
17256 	/* Attach credentials to retransmitted initial SYNs. */
17257 	if (tcp->tcp_state == TCPS_SYN_SENT) {
17258 		mblk_setcred(mp, tcp->tcp_cred);
17259 		DB_CPID(mp) = tcp->tcp_cpid;
17260 	}
17261 
17262 	tcp->tcp_csuna = tcp->tcp_snxt;
17263 	BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
17264 	UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss);
17265 	tcp_send_data(tcp, tcp->tcp_wq, mp);
17266 
17267 }
17268 
17269 static int
17270 tcp_do_unbind(conn_t *connp)
17271 {
17272 	tcp_t *tcp = connp->conn_tcp;
17273 	int error = 0;
17274 
17275 	switch (tcp->tcp_state) {
17276 	case TCPS_BOUND:
17277 	case TCPS_LISTEN:
17278 		break;
17279 	default:
17280 		return (-TOUTSTATE);
17281 	}
17282 
17283 	/*
17284 	 * Need to clean up all the eagers since after the unbind, segments
17285 	 * will no longer be delivered to this listener stream.
17286 	 */
17287 	mutex_enter(&tcp->tcp_eager_lock);
17288 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
17289 		tcp_eager_cleanup(tcp, 0);
17290 	}
17291 	mutex_exit(&tcp->tcp_eager_lock);
17292 
17293 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17294 		tcp->tcp_ipha->ipha_src = 0;
17295 	} else {
17296 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
17297 	}
17298 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
17299 	bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport));
17300 	tcp_bind_hash_remove(tcp);
17301 	tcp->tcp_state = TCPS_IDLE;
17302 	tcp->tcp_mdt = B_FALSE;
17303 
17304 	connp = tcp->tcp_connp;
17305 	connp->conn_mdt_ok = B_FALSE;
17306 	ipcl_hash_remove(connp);
17307 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
17308 
17309 	return (error);
17310 }
17311 
17312 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */
17313 static void
17314 tcp_tpi_unbind(tcp_t *tcp, mblk_t *mp)
17315 {
17316 	int error = tcp_do_unbind(tcp->tcp_connp);
17317 
17318 	if (error > 0) {
17319 		tcp_err_ack(tcp, mp, TSYSERR, error);
17320 	} else if (error < 0) {
17321 		tcp_err_ack(tcp, mp, -error, 0);
17322 	} else {
17323 		/* Send M_FLUSH according to TPI */
17324 		(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
17325 
17326 		mp = mi_tpi_ok_ack_alloc(mp);
17327 		putnext(tcp->tcp_rq, mp);
17328 	}
17329 }
17330 
17331 /*
17332  * Don't let port fall into the privileged range.
17333  * Since the extra privileged ports can be arbitrary we also
17334  * ensure that we exclude those from consideration.
17335  * tcp_g_epriv_ports is not sorted thus we loop over it until
17336  * there are no changes.
17337  *
17338  * Note: No locks are held when inspecting tcp_g_*epriv_ports
17339  * but instead the code relies on:
17340  * - the fact that the address of the array and its size never changes
17341  * - the atomic assignment of the elements of the array
17342  *
17343  * Returns 0 if there are no more ports available.
17344  *
17345  * TS note: skip multilevel ports.
17346  */
17347 static in_port_t
17348 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random)
17349 {
17350 	int i;
17351 	boolean_t restart = B_FALSE;
17352 	tcp_stack_t *tcps = tcp->tcp_tcps;
17353 
17354 	if (random && tcp_random_anon_port != 0) {
17355 		(void) random_get_pseudo_bytes((uint8_t *)&port,
17356 		    sizeof (in_port_t));
17357 		/*
17358 		 * Unless changed by a sys admin, the smallest anon port
17359 		 * is 32768 and the largest anon port is 65535.  It is
17360 		 * very likely (50%) for the random port to be smaller
17361 		 * than the smallest anon port.  When that happens,
17362 		 * add port % (anon port range) to the smallest anon
17363 		 * port to get the random port.  It should fall into the
17364 		 * valid anon port range.
17365 		 */
17366 		if (port < tcps->tcps_smallest_anon_port) {
17367 			port = tcps->tcps_smallest_anon_port +
17368 			    port % (tcps->tcps_largest_anon_port -
17369 			    tcps->tcps_smallest_anon_port);
17370 		}
17371 	}
17372 
17373 retry:
17374 	if (port < tcps->tcps_smallest_anon_port)
17375 		port = (in_port_t)tcps->tcps_smallest_anon_port;
17376 
17377 	if (port > tcps->tcps_largest_anon_port) {
17378 		if (restart)
17379 			return (0);
17380 		restart = B_TRUE;
17381 		port = (in_port_t)tcps->tcps_smallest_anon_port;
17382 	}
17383 
17384 	if (port < tcps->tcps_smallest_nonpriv_port)
17385 		port = (in_port_t)tcps->tcps_smallest_nonpriv_port;
17386 
17387 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
17388 		if (port == tcps->tcps_g_epriv_ports[i]) {
17389 			port++;
17390 			/*
17391 			 * Make sure whether the port is in the
17392 			 * valid range.
17393 			 */
17394 			goto retry;
17395 		}
17396 	}
17397 	if (is_system_labeled() &&
17398 	    (i = tsol_next_port(crgetzone(tcp->tcp_cred), port,
17399 	    IPPROTO_TCP, B_TRUE)) != 0) {
17400 		port = i;
17401 		goto retry;
17402 	}
17403 	return (port);
17404 }
17405 
17406 /*
17407  * Return the next anonymous port in the privileged port range for
17408  * bind checking.  It starts at IPPORT_RESERVED - 1 and goes
17409  * downwards.  This is the same behavior as documented in the userland
17410  * library call rresvport(3N).
17411  *
17412  * TS note: skip multilevel ports.
17413  */
17414 static in_port_t
17415 tcp_get_next_priv_port(const tcp_t *tcp)
17416 {
17417 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
17418 	in_port_t nextport;
17419 	boolean_t restart = B_FALSE;
17420 	tcp_stack_t *tcps = tcp->tcp_tcps;
17421 retry:
17422 	if (next_priv_port < tcps->tcps_min_anonpriv_port ||
17423 	    next_priv_port >= IPPORT_RESERVED) {
17424 		next_priv_port = IPPORT_RESERVED - 1;
17425 		if (restart)
17426 			return (0);
17427 		restart = B_TRUE;
17428 	}
17429 	if (is_system_labeled() &&
17430 	    (nextport = tsol_next_port(crgetzone(tcp->tcp_cred),
17431 	    next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) {
17432 		next_priv_port = nextport;
17433 		goto retry;
17434 	}
17435 	return (next_priv_port--);
17436 }
17437 
17438 /* The write side r/w procedure. */
17439 
17440 #if CCS_STATS
17441 struct {
17442 	struct {
17443 		int64_t count, bytes;
17444 	} tot, hit;
17445 } wrw_stats;
17446 #endif
17447 
17448 /*
17449  * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO,
17450  * messages.
17451  */
17452 /* ARGSUSED */
17453 static void
17454 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2)
17455 {
17456 	conn_t	*connp = (conn_t *)arg;
17457 	tcp_t	*tcp = connp->conn_tcp;
17458 	queue_t	*q = tcp->tcp_wq;
17459 
17460 	ASSERT(DB_TYPE(mp) != M_IOCTL);
17461 	/*
17462 	 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close.
17463 	 * Once the close starts, streamhead and sockfs will not let any data
17464 	 * packets come down (close ensures that there are no threads using the
17465 	 * queue and no new threads will come down) but since qprocsoff()
17466 	 * hasn't happened yet, a M_FLUSH or some non data message might
17467 	 * get reflected back (in response to our own FLUSHRW) and get
17468 	 * processed after tcp_close() is done. The conn would still be valid
17469 	 * because a ref would have added but we need to check the state
17470 	 * before actually processing the packet.
17471 	 */
17472 	if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) {
17473 		freemsg(mp);
17474 		return;
17475 	}
17476 
17477 	switch (DB_TYPE(mp)) {
17478 	case M_IOCDATA:
17479 		tcp_wput_iocdata(tcp, mp);
17480 		break;
17481 	case M_FLUSH:
17482 		tcp_wput_flush(tcp, mp);
17483 		break;
17484 	default:
17485 		CALL_IP_WPUT(connp, q, mp);
17486 		break;
17487 	}
17488 }
17489 
17490 /*
17491  * The TCP fast path write put procedure.
17492  * NOTE: the logic of the fast path is duplicated from tcp_wput_data()
17493  */
17494 /* ARGSUSED */
17495 void
17496 tcp_output(void *arg, mblk_t *mp, void *arg2)
17497 {
17498 	int		len;
17499 	int		hdrlen;
17500 	int		plen;
17501 	mblk_t		*mp1;
17502 	uchar_t		*rptr;
17503 	uint32_t	snxt;
17504 	tcph_t		*tcph;
17505 	struct datab	*db;
17506 	uint32_t	suna;
17507 	uint32_t	mss;
17508 	ipaddr_t	*dst;
17509 	ipaddr_t	*src;
17510 	uint32_t	sum;
17511 	int		usable;
17512 	conn_t		*connp = (conn_t *)arg;
17513 	tcp_t		*tcp = connp->conn_tcp;
17514 	uint32_t	msize;
17515 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17516 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
17517 
17518 	/*
17519 	 * Try and ASSERT the minimum possible references on the
17520 	 * conn early enough. Since we are executing on write side,
17521 	 * the connection is obviously not detached and that means
17522 	 * there is a ref each for TCP and IP. Since we are behind
17523 	 * the squeue, the minimum references needed are 3. If the
17524 	 * conn is in classifier hash list, there should be an
17525 	 * extra ref for that (we check both the possibilities).
17526 	 */
17527 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17528 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17529 
17530 	ASSERT(DB_TYPE(mp) == M_DATA);
17531 	msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
17532 
17533 	mutex_enter(&tcp->tcp_non_sq_lock);
17534 	tcp->tcp_squeue_bytes -= msize;
17535 	mutex_exit(&tcp->tcp_non_sq_lock);
17536 
17537 	/* Check to see if this connection wants to be re-fused. */
17538 	if (tcp->tcp_refuse && !ipst->ips_ipobs_enabled) {
17539 		if (tcp->tcp_ipversion == IPV4_VERSION) {
17540 			tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ipha,
17541 			    &tcp->tcp_saved_tcph);
17542 		} else {
17543 			tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ip6h,
17544 			    &tcp->tcp_saved_tcph);
17545 		}
17546 	}
17547 	/* Bypass tcp protocol for fused tcp loopback */
17548 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
17549 		return;
17550 
17551 	mss = tcp->tcp_mss;
17552 	if (tcp->tcp_xmit_zc_clean)
17553 		mp = tcp_zcopy_backoff(tcp, mp, 0);
17554 
17555 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
17556 	len = (int)(mp->b_wptr - mp->b_rptr);
17557 
17558 	/*
17559 	 * Criteria for fast path:
17560 	 *
17561 	 *   1. no unsent data
17562 	 *   2. single mblk in request
17563 	 *   3. connection established
17564 	 *   4. data in mblk
17565 	 *   5. len <= mss
17566 	 *   6. no tcp_valid bits
17567 	 */
17568 	if ((tcp->tcp_unsent != 0) ||
17569 	    (tcp->tcp_cork) ||
17570 	    (mp->b_cont != NULL) ||
17571 	    (tcp->tcp_state != TCPS_ESTABLISHED) ||
17572 	    (len == 0) ||
17573 	    (len > mss) ||
17574 	    (tcp->tcp_valid_bits != 0)) {
17575 		tcp_wput_data(tcp, mp, B_FALSE);
17576 		return;
17577 	}
17578 
17579 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
17580 	ASSERT(tcp->tcp_fin_sent == 0);
17581 
17582 	/* queue new packet onto retransmission queue */
17583 	if (tcp->tcp_xmit_head == NULL) {
17584 		tcp->tcp_xmit_head = mp;
17585 	} else {
17586 		tcp->tcp_xmit_last->b_cont = mp;
17587 	}
17588 	tcp->tcp_xmit_last = mp;
17589 	tcp->tcp_xmit_tail = mp;
17590 
17591 	/* find out how much we can send */
17592 	/* BEGIN CSTYLED */
17593 	/*
17594 	 *    un-acked	   usable
17595 	 *  |--------------|-----------------|
17596 	 *  tcp_suna       tcp_snxt	  tcp_suna+tcp_swnd
17597 	 */
17598 	/* END CSTYLED */
17599 
17600 	/* start sending from tcp_snxt */
17601 	snxt = tcp->tcp_snxt;
17602 
17603 	/*
17604 	 * Check to see if this connection has been idled for some
17605 	 * time and no ACK is expected.  If it is, we need to slow
17606 	 * start again to get back the connection's "self-clock" as
17607 	 * described in VJ's paper.
17608 	 *
17609 	 * Refer to the comment in tcp_mss_set() for the calculation
17610 	 * of tcp_cwnd after idle.
17611 	 */
17612 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
17613 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
17614 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
17615 	}
17616 
17617 	usable = tcp->tcp_swnd;		/* tcp window size */
17618 	if (usable > tcp->tcp_cwnd)
17619 		usable = tcp->tcp_cwnd;	/* congestion window smaller */
17620 	usable -= snxt;		/* subtract stuff already sent */
17621 	suna = tcp->tcp_suna;
17622 	usable += suna;
17623 	/* usable can be < 0 if the congestion window is smaller */
17624 	if (len > usable) {
17625 		/* Can't send complete M_DATA in one shot */
17626 		goto slow;
17627 	}
17628 
17629 	mutex_enter(&tcp->tcp_non_sq_lock);
17630 	if (tcp->tcp_flow_stopped &&
17631 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
17632 		tcp_clrqfull(tcp);
17633 	}
17634 	mutex_exit(&tcp->tcp_non_sq_lock);
17635 
17636 	/*
17637 	 * determine if anything to send (Nagle).
17638 	 *
17639 	 *   1. len < tcp_mss (i.e. small)
17640 	 *   2. unacknowledged data present
17641 	 *   3. len < nagle limit
17642 	 *   4. last packet sent < nagle limit (previous packet sent)
17643 	 */
17644 	if ((len < mss) && (snxt != suna) &&
17645 	    (len < (int)tcp->tcp_naglim) &&
17646 	    (tcp->tcp_last_sent_len < tcp->tcp_naglim)) {
17647 		/*
17648 		 * This was the first unsent packet and normally
17649 		 * mss < xmit_hiwater so there is no need to worry
17650 		 * about flow control. The next packet will go
17651 		 * through the flow control check in tcp_wput_data().
17652 		 */
17653 		/* leftover work from above */
17654 		tcp->tcp_unsent = len;
17655 		tcp->tcp_xmit_tail_unsent = len;
17656 
17657 		return;
17658 	}
17659 
17660 	/* len <= tcp->tcp_mss && len == unsent so no silly window */
17661 
17662 	if (snxt == suna) {
17663 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
17664 	}
17665 
17666 	/* we have always sent something */
17667 	tcp->tcp_rack_cnt = 0;
17668 
17669 	tcp->tcp_snxt = snxt + len;
17670 	tcp->tcp_rack = tcp->tcp_rnxt;
17671 
17672 	if ((mp1 = dupb(mp)) == 0)
17673 		goto no_memory;
17674 	mp->b_prev = (mblk_t *)(uintptr_t)lbolt;
17675 	mp->b_next = (mblk_t *)(uintptr_t)snxt;
17676 
17677 	/* adjust tcp header information */
17678 	tcph = tcp->tcp_tcph;
17679 	tcph->th_flags[0] = (TH_ACK|TH_PUSH);
17680 
17681 	sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
17682 	sum = (sum >> 16) + (sum & 0xFFFF);
17683 	U16_TO_ABE16(sum, tcph->th_sum);
17684 
17685 	U32_TO_ABE32(snxt, tcph->th_seq);
17686 
17687 	BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
17688 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
17689 	BUMP_LOCAL(tcp->tcp_obsegs);
17690 
17691 	/* Update the latest receive window size in TCP header. */
17692 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
17693 	    tcph->th_win);
17694 
17695 	tcp->tcp_last_sent_len = (ushort_t)len;
17696 
17697 	plen = len + tcp->tcp_hdr_len;
17698 
17699 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17700 		tcp->tcp_ipha->ipha_length = htons(plen);
17701 	} else {
17702 		tcp->tcp_ip6h->ip6_plen = htons(plen -
17703 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
17704 	}
17705 
17706 	/* see if we need to allocate a mblk for the headers */
17707 	hdrlen = tcp->tcp_hdr_len;
17708 	rptr = mp1->b_rptr - hdrlen;
17709 	db = mp1->b_datap;
17710 	if ((db->db_ref != 2) || rptr < db->db_base ||
17711 	    (!OK_32PTR(rptr))) {
17712 		/* NOTE: we assume allocb returns an OK_32PTR */
17713 		mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
17714 		    tcps->tcps_wroff_xtra, BPRI_MED);
17715 		if (!mp) {
17716 			freemsg(mp1);
17717 			goto no_memory;
17718 		}
17719 		mp->b_cont = mp1;
17720 		mp1 = mp;
17721 		/* Leave room for Link Level header */
17722 		/* hdrlen = tcp->tcp_hdr_len; */
17723 		rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra];
17724 		mp1->b_wptr = &rptr[hdrlen];
17725 	}
17726 	mp1->b_rptr = rptr;
17727 
17728 	/* Fill in the timestamp option. */
17729 	if (tcp->tcp_snd_ts_ok) {
17730 		U32_TO_BE32((uint32_t)lbolt,
17731 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
17732 		U32_TO_BE32(tcp->tcp_ts_recent,
17733 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
17734 	} else {
17735 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
17736 	}
17737 
17738 	/* copy header into outgoing packet */
17739 	dst = (ipaddr_t *)rptr;
17740 	src = (ipaddr_t *)tcp->tcp_iphc;
17741 	dst[0] = src[0];
17742 	dst[1] = src[1];
17743 	dst[2] = src[2];
17744 	dst[3] = src[3];
17745 	dst[4] = src[4];
17746 	dst[5] = src[5];
17747 	dst[6] = src[6];
17748 	dst[7] = src[7];
17749 	dst[8] = src[8];
17750 	dst[9] = src[9];
17751 	if (hdrlen -= 40) {
17752 		hdrlen >>= 2;
17753 		dst += 10;
17754 		src += 10;
17755 		do {
17756 			*dst++ = *src++;
17757 		} while (--hdrlen);
17758 	}
17759 
17760 	/*
17761 	 * Set the ECN info in the TCP header.  Note that this
17762 	 * is not the template header.
17763 	 */
17764 	if (tcp->tcp_ecn_ok) {
17765 		SET_ECT(tcp, rptr);
17766 
17767 		tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
17768 		if (tcp->tcp_ecn_echo_on)
17769 			tcph->th_flags[0] |= TH_ECE;
17770 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
17771 			tcph->th_flags[0] |= TH_CWR;
17772 			tcp->tcp_ecn_cwr_sent = B_TRUE;
17773 		}
17774 	}
17775 
17776 	if (tcp->tcp_ip_forward_progress) {
17777 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
17778 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
17779 		tcp->tcp_ip_forward_progress = B_FALSE;
17780 	}
17781 	tcp_send_data(tcp, tcp->tcp_wq, mp1);
17782 	return;
17783 
17784 	/*
17785 	 * If we ran out of memory, we pretend to have sent the packet
17786 	 * and that it was lost on the wire.
17787 	 */
17788 no_memory:
17789 	return;
17790 
17791 slow:
17792 	/* leftover work from above */
17793 	tcp->tcp_unsent = len;
17794 	tcp->tcp_xmit_tail_unsent = len;
17795 	tcp_wput_data(tcp, NULL, B_FALSE);
17796 }
17797 
17798 /* ARGSUSED */
17799 void
17800 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2)
17801 {
17802 	conn_t			*connp = (conn_t *)arg;
17803 	tcp_t			*tcp = connp->conn_tcp;
17804 	queue_t			*q = tcp->tcp_rq;
17805 	struct tcp_options	*tcpopt;
17806 	tcp_stack_t		*tcps = tcp->tcp_tcps;
17807 
17808 	/* socket options */
17809 	uint_t 			sopp_flags;
17810 	ssize_t			sopp_rxhiwat;
17811 	ssize_t			sopp_maxblk;
17812 	ushort_t		sopp_wroff;
17813 	ushort_t		sopp_tail;
17814 	ushort_t		sopp_copyopt;
17815 
17816 	tcpopt = (struct tcp_options *)mp->b_rptr;
17817 
17818 	/*
17819 	 * Drop the eager's ref on the listener, that was placed when
17820 	 * this eager began life in tcp_conn_request.
17821 	 */
17822 	CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp);
17823 	if (IPCL_IS_NONSTR(connp)) {
17824 		/* Safe to free conn_ind message */
17825 		freemsg(tcp->tcp_conn.tcp_eager_conn_ind);
17826 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
17827 
17828 		/* The listener tells us which upper handle to use */
17829 		ASSERT(tcpopt->to_flags & TCPOPT_UPPERHANDLE);
17830 		connp->conn_upper_handle = tcpopt->to_handle;
17831 	}
17832 
17833 	tcp->tcp_detached = B_FALSE;
17834 
17835 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) {
17836 		/*
17837 		 * Someone blewoff the eager before we could finish
17838 		 * the accept.
17839 		 *
17840 		 * The only reason eager exists it because we put in
17841 		 * a ref on it when conn ind went up. We need to send
17842 		 * a disconnect indication up while the last reference
17843 		 * on the eager will be dropped by the squeue when we
17844 		 * return.
17845 		 */
17846 		ASSERT(tcp->tcp_listener == NULL);
17847 		if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) {
17848 			if (IPCL_IS_NONSTR(connp)) {
17849 				ASSERT(tcp->tcp_issocket);
17850 				(*connp->conn_upcalls->su_disconnected)(
17851 				    connp->conn_upper_handle, tcp->tcp_connid,
17852 				    ECONNREFUSED);
17853 				freemsg(mp);
17854 			} else {
17855 				struct	T_discon_ind	*tdi;
17856 
17857 				(void) putnextctl1(q, M_FLUSH, FLUSHRW);
17858 				/*
17859 				 * Let us reuse the incoming mblk to avoid
17860 				 * memory allocation failure problems. We know
17861 				 * that the size of the incoming mblk i.e.
17862 				 * stroptions is greater than sizeof
17863 				 * T_discon_ind. So the reallocb below can't
17864 				 * fail.
17865 				 */
17866 				freemsg(mp->b_cont);
17867 				mp->b_cont = NULL;
17868 				ASSERT(DB_REF(mp) == 1);
17869 				mp = reallocb(mp, sizeof (struct T_discon_ind),
17870 				    B_FALSE);
17871 				ASSERT(mp != NULL);
17872 				DB_TYPE(mp) = M_PROTO;
17873 				((union T_primitives *)mp->b_rptr)->type =
17874 				    T_DISCON_IND;
17875 				tdi = (struct T_discon_ind *)mp->b_rptr;
17876 				if (tcp->tcp_issocket) {
17877 					tdi->DISCON_reason = ECONNREFUSED;
17878 					tdi->SEQ_number = 0;
17879 				} else {
17880 					tdi->DISCON_reason = ENOPROTOOPT;
17881 					tdi->SEQ_number =
17882 					    tcp->tcp_conn_req_seqnum;
17883 				}
17884 				mp->b_wptr = mp->b_rptr +
17885 				    sizeof (struct T_discon_ind);
17886 				putnext(q, mp);
17887 				return;
17888 			}
17889 		}
17890 		if (tcp->tcp_hard_binding) {
17891 			tcp->tcp_hard_binding = B_FALSE;
17892 			tcp->tcp_hard_bound = B_TRUE;
17893 		}
17894 		return;
17895 	}
17896 
17897 	if (tcpopt->to_flags & TCPOPT_BOUNDIF) {
17898 		int boundif = tcpopt->to_boundif;
17899 		uint_t len = sizeof (int);
17900 
17901 		(void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6,
17902 		    IPV6_BOUND_IF, len, (uchar_t *)&boundif, &len,
17903 		    (uchar_t *)&boundif, NULL, tcp->tcp_cred, NULL);
17904 	}
17905 	if (tcpopt->to_flags & TCPOPT_RECVPKTINFO) {
17906 		uint_t on = 1;
17907 		uint_t len = sizeof (uint_t);
17908 		(void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6,
17909 		    IPV6_RECVPKTINFO, len, (uchar_t *)&on, &len,
17910 		    (uchar_t *)&on, NULL, tcp->tcp_cred, NULL);
17911 	}
17912 
17913 	/*
17914 	 * For a loopback connection with tcp_direct_sockfs on, note that
17915 	 * we don't have to protect tcp_rcv_list yet because synchronous
17916 	 * streams has not yet been enabled and tcp_fuse_rrw() cannot
17917 	 * possibly race with us.
17918 	 */
17919 
17920 	/*
17921 	 * Set the max window size (tcp_rq->q_hiwat) of the acceptor
17922 	 * properly.  This is the first time we know of the acceptor'
17923 	 * queue.  So we do it here.
17924 	 *
17925 	 * XXX
17926 	 */
17927 	if (tcp->tcp_rcv_list == NULL) {
17928 		/*
17929 		 * Recv queue is empty, tcp_rwnd should not have changed.
17930 		 * That means it should be equal to the listener's tcp_rwnd.
17931 		 */
17932 		if (!IPCL_IS_NONSTR(connp))
17933 			tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd;
17934 		tcp->tcp_recv_hiwater = tcp->tcp_rwnd;
17935 	} else {
17936 #ifdef DEBUG
17937 		mblk_t *tmp;
17938 		mblk_t	*mp1;
17939 		uint_t	cnt = 0;
17940 
17941 		mp1 = tcp->tcp_rcv_list;
17942 		while ((tmp = mp1) != NULL) {
17943 			mp1 = tmp->b_next;
17944 			cnt += msgdsize(tmp);
17945 		}
17946 		ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt);
17947 #endif
17948 		/* There is some data, add them back to get the max. */
17949 		if (!IPCL_IS_NONSTR(connp))
17950 			tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
17951 		tcp->tcp_recv_hiwater = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
17952 	}
17953 	/*
17954 	 * This is the first time we run on the correct
17955 	 * queue after tcp_accept. So fix all the q parameters
17956 	 * here.
17957 	 */
17958 	sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF;
17959 	sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
17960 
17961 	/*
17962 	 * Record the stream head's high water mark for this endpoint;
17963 	 * this is used for flow-control purposes.
17964 	 */
17965 	sopp_rxhiwat = tcp->tcp_fused ?
17966 	    tcp_fuse_set_rcv_hiwat(tcp, tcp->tcp_recv_hiwater) :
17967 	    MAX(tcp->tcp_recv_hiwater, tcps->tcps_sth_rcv_hiwat);
17968 
17969 	/*
17970 	 * Determine what write offset value to use depending on SACK and
17971 	 * whether the endpoint is fused or not.
17972 	 */
17973 	if (tcp->tcp_fused) {
17974 		ASSERT(tcp->tcp_loopback);
17975 		ASSERT(tcp->tcp_loopback_peer != NULL);
17976 		/*
17977 		 * For fused tcp loopback, set the stream head's write
17978 		 * offset value to zero since we won't be needing any room
17979 		 * for TCP/IP headers.  This would also improve performance
17980 		 * since it would reduce the amount of work done by kmem.
17981 		 * Non-fused tcp loopback case is handled separately below.
17982 		 */
17983 		sopp_wroff = 0;
17984 		/*
17985 		 * Update the peer's transmit parameters according to
17986 		 * our recently calculated high water mark value.
17987 		 */
17988 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
17989 	} else if (tcp->tcp_snd_sack_ok) {
17990 		sopp_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
17991 		    (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra);
17992 	} else {
17993 		sopp_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 :
17994 		    tcps->tcps_wroff_xtra);
17995 	}
17996 
17997 	/*
17998 	 * If this is endpoint is handling SSL, then reserve extra
17999 	 * offset and space at the end.
18000 	 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets,
18001 	 * overriding the previous setting. The extra cost of signing and
18002 	 * encrypting multiple MSS-size records (12 of them with Ethernet),
18003 	 * instead of a single contiguous one by the stream head
18004 	 * largely outweighs the statistical reduction of ACKs, when
18005 	 * applicable. The peer will also save on decryption and verification
18006 	 * costs.
18007 	 */
18008 	if (tcp->tcp_kssl_ctx != NULL) {
18009 		sopp_wroff += SSL3_WROFFSET;
18010 
18011 		sopp_flags |= SOCKOPT_TAIL;
18012 		sopp_tail = SSL3_MAX_TAIL_LEN;
18013 
18014 		sopp_flags |= SOCKOPT_ZCOPY;
18015 		sopp_copyopt = ZCVMUNSAFE;
18016 
18017 		sopp_maxblk = SSL3_MAX_RECORD_LEN;
18018 	}
18019 
18020 	/* Send the options up */
18021 	if (IPCL_IS_NONSTR(connp)) {
18022 		struct sock_proto_props sopp;
18023 
18024 		sopp.sopp_flags = sopp_flags;
18025 		sopp.sopp_wroff = sopp_wroff;
18026 		sopp.sopp_maxblk = sopp_maxblk;
18027 		sopp.sopp_rxhiwat = sopp_rxhiwat;
18028 		if (sopp_flags & SOCKOPT_TAIL) {
18029 			ASSERT(tcp->tcp_kssl_ctx != NULL);
18030 			ASSERT(sopp_flags & SOCKOPT_ZCOPY);
18031 			sopp.sopp_tail = sopp_tail;
18032 			sopp.sopp_zcopyflag = sopp_copyopt;
18033 		}
18034 		(*connp->conn_upcalls->su_set_proto_props)
18035 		    (connp->conn_upper_handle, &sopp);
18036 	} else {
18037 		struct stroptions *stropt;
18038 		mblk_t *stropt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
18039 		if (stropt_mp == NULL) {
18040 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
18041 			return;
18042 		}
18043 		DB_TYPE(stropt_mp) = M_SETOPTS;
18044 		stropt = (struct stroptions *)stropt_mp->b_rptr;
18045 		stropt_mp->b_wptr += sizeof (struct stroptions);
18046 		stropt = (struct stroptions *)stropt_mp->b_rptr;
18047 		stropt->so_flags |= SO_HIWAT | SO_WROFF | SO_MAXBLK;
18048 		stropt->so_hiwat = sopp_rxhiwat;
18049 		stropt->so_wroff = sopp_wroff;
18050 		stropt->so_maxblk = sopp_maxblk;
18051 
18052 		if (sopp_flags & SOCKOPT_TAIL) {
18053 			ASSERT(tcp->tcp_kssl_ctx != NULL);
18054 
18055 			stropt->so_flags |= SO_TAIL | SO_COPYOPT;
18056 			stropt->so_tail = sopp_tail;
18057 			stropt->so_copyopt = sopp_copyopt;
18058 		}
18059 
18060 		/* Send the options up */
18061 		putnext(q, stropt_mp);
18062 	}
18063 
18064 	freemsg(mp);
18065 	/*
18066 	 * Pass up any data and/or a fin that has been received.
18067 	 *
18068 	 * Adjust receive window in case it had decreased
18069 	 * (because there is data <=> tcp_rcv_list != NULL)
18070 	 * while the connection was detached. Note that
18071 	 * in case the eager was flow-controlled, w/o this
18072 	 * code, the rwnd may never open up again!
18073 	 */
18074 	if (tcp->tcp_rcv_list != NULL) {
18075 		if (IPCL_IS_NONSTR(connp)) {
18076 			mblk_t *mp;
18077 			int space_left;
18078 			int error;
18079 			boolean_t push = B_TRUE;
18080 
18081 			if (!tcp->tcp_fused && (*connp->conn_upcalls->su_recv)
18082 			    (connp->conn_upper_handle, NULL, 0, 0, &error,
18083 			    &push) >= 0) {
18084 				tcp->tcp_rwnd = tcp->tcp_recv_hiwater;
18085 				if (tcp->tcp_state >= TCPS_ESTABLISHED &&
18086 				    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
18087 					tcp_xmit_ctl(NULL,
18088 					    tcp, (tcp->tcp_swnd == 0) ?
18089 					    tcp->tcp_suna : tcp->tcp_snxt,
18090 					    tcp->tcp_rnxt, TH_ACK);
18091 				}
18092 			}
18093 			while ((mp = tcp->tcp_rcv_list) != NULL) {
18094 				push = B_TRUE;
18095 				tcp->tcp_rcv_list = mp->b_next;
18096 				mp->b_next = NULL;
18097 				space_left = (*connp->conn_upcalls->su_recv)
18098 				    (connp->conn_upper_handle, mp, msgdsize(mp),
18099 				    0, &error, &push);
18100 				if (space_left < 0) {
18101 					/*
18102 					 * At this point the eager is not
18103 					 * visible to anyone, so fallback
18104 					 * can not happen.
18105 					 */
18106 					ASSERT(error != EOPNOTSUPP);
18107 				}
18108 			}
18109 			tcp->tcp_rcv_last_head = NULL;
18110 			tcp->tcp_rcv_last_tail = NULL;
18111 			tcp->tcp_rcv_cnt = 0;
18112 		} else {
18113 			/* We drain directly in case of fused tcp loopback */
18114 			sodirect_t *sodp;
18115 
18116 			if (!tcp->tcp_fused && canputnext(q)) {
18117 				tcp->tcp_rwnd = q->q_hiwat;
18118 				if (tcp->tcp_state >= TCPS_ESTABLISHED &&
18119 				    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
18120 					tcp_xmit_ctl(NULL,
18121 					    tcp, (tcp->tcp_swnd == 0) ?
18122 					    tcp->tcp_suna : tcp->tcp_snxt,
18123 					    tcp->tcp_rnxt, TH_ACK);
18124 				}
18125 			}
18126 
18127 			SOD_PTR_ENTER(tcp, sodp);
18128 			if (sodp != NULL) {
18129 				/* Sodirect, move from rcv_list */
18130 				ASSERT(!tcp->tcp_fused);
18131 				while ((mp = tcp->tcp_rcv_list) != NULL) {
18132 					tcp->tcp_rcv_list = mp->b_next;
18133 					mp->b_next = NULL;
18134 					(void) tcp_rcv_sod_enqueue(tcp, sodp,
18135 					    mp, msgdsize(mp));
18136 				}
18137 				tcp->tcp_rcv_last_head = NULL;
18138 				tcp->tcp_rcv_last_tail = NULL;
18139 				tcp->tcp_rcv_cnt = 0;
18140 				(void) tcp_rcv_sod_wakeup(tcp, sodp);
18141 				/* sod_wakeup() did the mutex_exit() */
18142 			} else {
18143 				/* Not sodirect, drain */
18144 				(void) tcp_rcv_drain(tcp);
18145 			}
18146 		}
18147 
18148 		/*
18149 		 * For fused tcp loopback, back-enable peer endpoint
18150 		 * if it's currently flow-controlled.
18151 		 */
18152 		if (tcp->tcp_fused) {
18153 			tcp_t *peer_tcp = tcp->tcp_loopback_peer;
18154 
18155 			ASSERT(peer_tcp != NULL);
18156 			ASSERT(peer_tcp->tcp_fused);
18157 			/*
18158 			 * In order to change the peer's tcp_flow_stopped,
18159 			 * we need to take locks for both end points. The
18160 			 * highest address is taken first.
18161 			 */
18162 			if (peer_tcp > tcp) {
18163 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
18164 				mutex_enter(&tcp->tcp_non_sq_lock);
18165 			} else {
18166 				mutex_enter(&tcp->tcp_non_sq_lock);
18167 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
18168 			}
18169 			if (peer_tcp->tcp_flow_stopped) {
18170 				tcp_clrqfull(peer_tcp);
18171 				TCP_STAT(tcps, tcp_fusion_backenabled);
18172 			}
18173 			mutex_exit(&peer_tcp->tcp_non_sq_lock);
18174 			mutex_exit(&tcp->tcp_non_sq_lock);
18175 		}
18176 	}
18177 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
18178 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
18179 		tcp->tcp_ordrel_done = B_TRUE;
18180 		if (IPCL_IS_NONSTR(connp)) {
18181 			ASSERT(tcp->tcp_ordrel_mp == NULL);
18182 			(*connp->conn_upcalls->su_opctl)(
18183 			    connp->conn_upper_handle,
18184 			    SOCK_OPCTL_SHUT_RECV, 0);
18185 		} else {
18186 			mp = tcp->tcp_ordrel_mp;
18187 			tcp->tcp_ordrel_mp = NULL;
18188 			putnext(q, mp);
18189 		}
18190 	}
18191 	if (tcp->tcp_hard_binding) {
18192 		tcp->tcp_hard_binding = B_FALSE;
18193 		tcp->tcp_hard_bound = B_TRUE;
18194 	}
18195 
18196 	/* We can enable synchronous streams for STREAMS tcp endpoint now */
18197 	if (tcp->tcp_fused && !IPCL_IS_NONSTR(connp) &&
18198 	    tcp->tcp_loopback_peer != NULL &&
18199 	    !IPCL_IS_NONSTR(tcp->tcp_loopback_peer->tcp_connp)) {
18200 		tcp_fuse_syncstr_enable_pair(tcp);
18201 	}
18202 
18203 	if (tcp->tcp_ka_enabled) {
18204 		tcp->tcp_ka_last_intrvl = 0;
18205 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
18206 		    MSEC_TO_TICK(tcp->tcp_ka_interval));
18207 	}
18208 
18209 	/*
18210 	 * At this point, eager is fully established and will
18211 	 * have the following references -
18212 	 *
18213 	 * 2 references for connection to exist (1 for TCP and 1 for IP).
18214 	 * 1 reference for the squeue which will be dropped by the squeue as
18215 	 *	soon as this function returns.
18216 	 * There will be 1 additonal reference for being in classifier
18217 	 *	hash list provided something bad hasn't happened.
18218 	 */
18219 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
18220 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
18221 }
18222 
18223 /*
18224  * The function called through squeue to get behind listener's perimeter to
18225  * send a deffered conn_ind.
18226  */
18227 /* ARGSUSED */
18228 void
18229 tcp_send_pending(void *arg, mblk_t *mp, void *arg2)
18230 {
18231 	conn_t	*connp = (conn_t *)arg;
18232 	tcp_t *listener = connp->conn_tcp;
18233 	struct T_conn_ind *conn_ind;
18234 	tcp_t *tcp;
18235 
18236 	if (listener->tcp_state == TCPS_CLOSED ||
18237 	    TCP_IS_DETACHED(listener)) {
18238 		/*
18239 		 * If listener has closed, it would have caused a
18240 		 * a cleanup/blowoff to happen for the eager.
18241 		 */
18242 
18243 		conn_ind = (struct T_conn_ind *)mp->b_rptr;
18244 		bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
18245 		    conn_ind->OPT_length);
18246 		/*
18247 		 * We need to drop the ref on eager that was put
18248 		 * tcp_rput_data() before trying to send the conn_ind
18249 		 * to listener. The conn_ind was deferred in tcp_send_conn_ind
18250 		 * and tcp_wput_accept() is sending this deferred conn_ind but
18251 		 * listener is closed so we drop the ref.
18252 		 */
18253 		CONN_DEC_REF(tcp->tcp_connp);
18254 		freemsg(mp);
18255 		return;
18256 	}
18257 	if (IPCL_IS_NONSTR(connp)) {
18258 		conn_ind = (struct T_conn_ind *)mp->b_rptr;
18259 		bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
18260 		    conn_ind->OPT_length);
18261 
18262 		if ((*connp->conn_upcalls->su_newconn)
18263 		    (connp->conn_upper_handle,
18264 		    (sock_lower_handle_t)tcp->tcp_connp,
18265 		    &sock_tcp_downcalls, DB_CRED(mp), DB_CPID(mp),
18266 		    &tcp->tcp_connp->conn_upcalls) != NULL) {
18267 			/* Keep the message around in case of fallback */
18268 			tcp->tcp_conn.tcp_eager_conn_ind = mp;
18269 		} else {
18270 			freemsg(mp);
18271 		}
18272 	} else {
18273 		putnext(listener->tcp_rq, mp);
18274 	}
18275 }
18276 
18277 /* ARGSUSED */
18278 static int
18279 tcp_accept_common(conn_t *lconnp, conn_t *econnp,
18280     sock_upper_handle_t sock_handle, cred_t *cr)
18281 {
18282 	tcp_t *listener, *eager;
18283 	mblk_t *opt_mp;
18284 	struct tcp_options *tcpopt;
18285 
18286 	listener = lconnp->conn_tcp;
18287 	ASSERT(listener->tcp_state == TCPS_LISTEN);
18288 	eager = econnp->conn_tcp;
18289 	ASSERT(eager->tcp_listener != NULL);
18290 
18291 	ASSERT(eager->tcp_rq != NULL);
18292 
18293 	/* If tcp_fused and sodirect enabled disable it */
18294 	if (eager->tcp_fused && eager->tcp_sodirect != NULL) {
18295 		/* Fused, disable sodirect */
18296 		mutex_enter(eager->tcp_sodirect->sod_lockp);
18297 		SOD_DISABLE(eager->tcp_sodirect);
18298 		mutex_exit(eager->tcp_sodirect->sod_lockp);
18299 		eager->tcp_sodirect = NULL;
18300 	}
18301 
18302 	opt_mp = allocb(sizeof (struct tcp_options), BPRI_HI);
18303 	if (opt_mp == NULL) {
18304 		return (-TPROTO);
18305 	}
18306 	bzero((char *)opt_mp->b_rptr, sizeof (struct tcp_options));
18307 	eager->tcp_issocket = B_TRUE;
18308 
18309 	econnp->conn_upcalls = lconnp->conn_upcalls;
18310 	econnp->conn_zoneid = listener->tcp_connp->conn_zoneid;
18311 	econnp->conn_allzones = listener->tcp_connp->conn_allzones;
18312 	ASSERT(econnp->conn_netstack ==
18313 	    listener->tcp_connp->conn_netstack);
18314 	ASSERT(eager->tcp_tcps == listener->tcp_tcps);
18315 
18316 	/* Put the ref for IP */
18317 	CONN_INC_REF(econnp);
18318 
18319 	/*
18320 	 * We should have minimum of 3 references on the conn
18321 	 * at this point. One each for TCP and IP and one for
18322 	 * the T_conn_ind that was sent up when the 3-way handshake
18323 	 * completed. In the normal case we would also have another
18324 	 * reference (making a total of 4) for the conn being in the
18325 	 * classifier hash list. However the eager could have received
18326 	 * an RST subsequently and tcp_closei_local could have removed
18327 	 * the eager from the classifier hash list, hence we can't
18328 	 * assert that reference.
18329 	 */
18330 	ASSERT(econnp->conn_ref >= 3);
18331 
18332 	opt_mp->b_datap->db_type = M_SETOPTS;
18333 	opt_mp->b_wptr += sizeof (struct tcp_options);
18334 
18335 	/*
18336 	 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
18337 	 * from listener to acceptor. In case of non-STREAMS sockets,
18338 	 * we also need to pass the upper handle along.
18339 	 */
18340 	tcpopt = (struct tcp_options *)opt_mp->b_rptr;
18341 	tcpopt->to_flags = 0;
18342 
18343 	if (IPCL_IS_NONSTR(econnp)) {
18344 		ASSERT(sock_handle != NULL);
18345 		tcpopt->to_flags |= TCPOPT_UPPERHANDLE;
18346 		tcpopt->to_handle = sock_handle;
18347 	}
18348 	if (listener->tcp_bound_if != 0) {
18349 		tcpopt->to_flags |= TCPOPT_BOUNDIF;
18350 		tcpopt->to_boundif = listener->tcp_bound_if;
18351 	}
18352 	if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
18353 		tcpopt->to_flags |= TCPOPT_RECVPKTINFO;
18354 	}
18355 
18356 	mutex_enter(&listener->tcp_eager_lock);
18357 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
18358 
18359 		tcp_t *tail;
18360 		tcp_t *tcp;
18361 		mblk_t *mp1;
18362 
18363 		tcp = listener->tcp_eager_prev_q0;
18364 		/*
18365 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
18366 		 * deferred T_conn_ind queue. We need to get to the head
18367 		 * of the queue in order to send up T_conn_ind the same
18368 		 * order as how the 3WHS is completed.
18369 		 */
18370 		while (tcp != listener) {
18371 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 &&
18372 			    !tcp->tcp_kssl_pending)
18373 				break;
18374 			else
18375 				tcp = tcp->tcp_eager_prev_q0;
18376 		}
18377 		/* None of the pending eagers can be sent up now */
18378 		if (tcp == listener)
18379 			goto no_more_eagers;
18380 
18381 		mp1 = tcp->tcp_conn.tcp_eager_conn_ind;
18382 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
18383 		/* Move from q0 to q */
18384 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
18385 		listener->tcp_conn_req_cnt_q0--;
18386 		listener->tcp_conn_req_cnt_q++;
18387 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
18388 		    tcp->tcp_eager_prev_q0;
18389 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
18390 		    tcp->tcp_eager_next_q0;
18391 		tcp->tcp_eager_prev_q0 = NULL;
18392 		tcp->tcp_eager_next_q0 = NULL;
18393 		tcp->tcp_conn_def_q0 = B_FALSE;
18394 
18395 		/* Make sure the tcp isn't in the list of droppables */
18396 		ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
18397 		    tcp->tcp_eager_prev_drop_q0 == NULL);
18398 
18399 		/*
18400 		 * Insert at end of the queue because sockfs sends
18401 		 * down T_CONN_RES in chronological order. Leaving
18402 		 * the older conn indications at front of the queue
18403 		 * helps reducing search time.
18404 		 */
18405 		tail = listener->tcp_eager_last_q;
18406 		if (tail != NULL) {
18407 			tail->tcp_eager_next_q = tcp;
18408 		} else {
18409 			listener->tcp_eager_next_q = tcp;
18410 		}
18411 		listener->tcp_eager_last_q = tcp;
18412 		tcp->tcp_eager_next_q = NULL;
18413 
18414 		/* Need to get inside the listener perimeter */
18415 		CONN_INC_REF(listener->tcp_connp);
18416 		SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp1,
18417 		    tcp_send_pending, listener->tcp_connp, SQ_FILL,
18418 		    SQTAG_TCP_SEND_PENDING);
18419 	}
18420 no_more_eagers:
18421 	tcp_eager_unlink(eager);
18422 	mutex_exit(&listener->tcp_eager_lock);
18423 
18424 	/*
18425 	 * At this point, the eager is detached from the listener
18426 	 * but we still have an extra refs on eager (apart from the
18427 	 * usual tcp references). The ref was placed in tcp_rput_data
18428 	 * before sending the conn_ind in tcp_send_conn_ind.
18429 	 * The ref will be dropped in tcp_accept_finish().
18430 	 */
18431 	SQUEUE_ENTER_ONE(econnp->conn_sqp, opt_mp, tcp_accept_finish,
18432 	    econnp, SQ_NODRAIN, SQTAG_TCP_ACCEPT_FINISH_Q0);
18433 	return (0);
18434 }
18435 
18436 int
18437 tcp_accept(sock_lower_handle_t lproto_handle,
18438     sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle,
18439     cred_t *cr)
18440 {
18441 	conn_t *lconnp, *econnp;
18442 	tcp_t *listener, *eager;
18443 	tcp_stack_t	*tcps;
18444 
18445 	lconnp = (conn_t *)lproto_handle;
18446 	listener = lconnp->conn_tcp;
18447 	ASSERT(listener->tcp_state == TCPS_LISTEN);
18448 	econnp = (conn_t *)eproto_handle;
18449 	eager = econnp->conn_tcp;
18450 	ASSERT(eager->tcp_listener != NULL);
18451 	tcps = eager->tcp_tcps;
18452 
18453 	ASSERT(IPCL_IS_NONSTR(econnp));
18454 	/*
18455 	 * Create helper stream if it is a non-TPI TCP connection.
18456 	 */
18457 	if (ip_create_helper_stream(econnp, tcps->tcps_ldi_ident)) {
18458 		ip1dbg(("tcp_accept: create of IP helper stream"
18459 		    " failed\n"));
18460 		return (EPROTO);
18461 	}
18462 	eager->tcp_rq = econnp->conn_rq;
18463 	eager->tcp_wq = econnp->conn_wq;
18464 
18465 	ASSERT(eager->tcp_rq != NULL);
18466 
18467 	eager->tcp_sodirect = SOD_SOTOSODP(sock_handle);
18468 	return (tcp_accept_common(lconnp, econnp, sock_handle, cr));
18469 }
18470 
18471 
18472 /*
18473  * This is the STREAMS entry point for T_CONN_RES coming down on
18474  * Acceptor STREAM when  sockfs listener does accept processing.
18475  * Read the block comment on top of tcp_conn_request().
18476  */
18477 void
18478 tcp_tpi_accept(queue_t *q, mblk_t *mp)
18479 {
18480 	queue_t *rq = RD(q);
18481 	struct T_conn_res *conn_res;
18482 	tcp_t *eager;
18483 	tcp_t *listener;
18484 	struct T_ok_ack *ok;
18485 	t_scalar_t PRIM_type;
18486 	conn_t *econnp;
18487 
18488 	ASSERT(DB_TYPE(mp) == M_PROTO);
18489 
18490 	conn_res = (struct T_conn_res *)mp->b_rptr;
18491 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
18492 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) {
18493 		mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
18494 		if (mp != NULL)
18495 			putnext(rq, mp);
18496 		return;
18497 	}
18498 	switch (conn_res->PRIM_type) {
18499 	case O_T_CONN_RES:
18500 	case T_CONN_RES:
18501 		/*
18502 		 * We pass up an err ack if allocb fails. This will
18503 		 * cause sockfs to issue a T_DISCON_REQ which will cause
18504 		 * tcp_eager_blowoff to be called. sockfs will then call
18505 		 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream.
18506 		 * we need to do the allocb up here because we have to
18507 		 * make sure rq->q_qinfo->qi_qclose still points to the
18508 		 * correct function (tcpclose_accept) in case allocb
18509 		 * fails.
18510 		 */
18511 		bcopy(mp->b_rptr + conn_res->OPT_offset,
18512 		    &eager, conn_res->OPT_length);
18513 		PRIM_type = conn_res->PRIM_type;
18514 		mp->b_datap->db_type = M_PCPROTO;
18515 		mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack);
18516 		ok = (struct T_ok_ack *)mp->b_rptr;
18517 		ok->PRIM_type = T_OK_ACK;
18518 		ok->CORRECT_prim = PRIM_type;
18519 		econnp = eager->tcp_connp;
18520 		econnp->conn_dev = (dev_t)RD(q)->q_ptr;
18521 		econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr);
18522 		eager->tcp_rq = rq;
18523 		eager->tcp_wq = q;
18524 		rq->q_ptr = econnp;
18525 		rq->q_qinfo = &tcp_rinitv4;	/* No open - same as rinitv6 */
18526 		q->q_ptr = econnp;
18527 		q->q_qinfo = &tcp_winit;
18528 		listener = eager->tcp_listener;
18529 
18530 		/*
18531 		 * TCP is _D_SODIRECT and sockfs is directly above so
18532 		 * save shared sodirect_t pointer (if any).
18533 		 */
18534 		eager->tcp_sodirect = SOD_QTOSODP(eager->tcp_rq);
18535 		if (tcp_accept_common(listener->tcp_connp,
18536 		    econnp, NULL, CRED()) < 0) {
18537 			mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
18538 			if (mp != NULL)
18539 				putnext(rq, mp);
18540 			return;
18541 		}
18542 
18543 		/*
18544 		 * Send the new local address also up to sockfs. There
18545 		 * should already be enough space in the mp that came
18546 		 * down from soaccept().
18547 		 */
18548 		if (eager->tcp_family == AF_INET) {
18549 			sin_t *sin;
18550 
18551 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18552 			    (sizeof (struct T_ok_ack) + sizeof (sin_t)));
18553 			sin = (sin_t *)mp->b_wptr;
18554 			mp->b_wptr += sizeof (sin_t);
18555 			sin->sin_family = AF_INET;
18556 			sin->sin_port = eager->tcp_lport;
18557 			sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src;
18558 		} else {
18559 			sin6_t *sin6;
18560 
18561 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18562 			    sizeof (struct T_ok_ack) + sizeof (sin6_t));
18563 			sin6 = (sin6_t *)mp->b_wptr;
18564 			mp->b_wptr += sizeof (sin6_t);
18565 			sin6->sin6_family = AF_INET6;
18566 			sin6->sin6_port = eager->tcp_lport;
18567 			if (eager->tcp_ipversion == IPV4_VERSION) {
18568 				sin6->sin6_flowinfo = 0;
18569 				IN6_IPADDR_TO_V4MAPPED(
18570 				    eager->tcp_ipha->ipha_src,
18571 				    &sin6->sin6_addr);
18572 			} else {
18573 				ASSERT(eager->tcp_ip6h != NULL);
18574 				sin6->sin6_flowinfo =
18575 				    eager->tcp_ip6h->ip6_vcf &
18576 				    ~IPV6_VERS_AND_FLOW_MASK;
18577 				sin6->sin6_addr = eager->tcp_ip6h->ip6_src;
18578 			}
18579 			sin6->sin6_scope_id = 0;
18580 			sin6->__sin6_src_id = 0;
18581 		}
18582 
18583 		putnext(rq, mp);
18584 		return;
18585 	default:
18586 		mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0);
18587 		if (mp != NULL)
18588 			putnext(rq, mp);
18589 		return;
18590 	}
18591 }
18592 
18593 static int
18594 tcp_getmyname(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp)
18595 {
18596 	sin_t *sin = (sin_t *)sa;
18597 	sin6_t *sin6 = (sin6_t *)sa;
18598 
18599 	switch (tcp->tcp_family) {
18600 	case AF_INET:
18601 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
18602 
18603 		if (*salenp < sizeof (sin_t))
18604 			return (EINVAL);
18605 
18606 		*sin = sin_null;
18607 		sin->sin_family = AF_INET;
18608 		sin->sin_port = tcp->tcp_lport;
18609 		sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
18610 		break;
18611 
18612 	case AF_INET6:
18613 		if (*salenp < sizeof (sin6_t))
18614 			return (EINVAL);
18615 
18616 		*sin6 = sin6_null;
18617 		sin6->sin6_family = AF_INET6;
18618 		sin6->sin6_port = tcp->tcp_lport;
18619 		if (tcp->tcp_ipversion == IPV4_VERSION) {
18620 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
18621 			    &sin6->sin6_addr);
18622 		} else {
18623 			sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
18624 		}
18625 		break;
18626 	}
18627 
18628 	return (0);
18629 }
18630 
18631 static int
18632 i_tcp_getpeername(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp)
18633 {
18634 	sin_t *sin = (sin_t *)sa;
18635 	sin6_t *sin6 = (sin6_t *)sa;
18636 
18637 	if (tcp->tcp_state < TCPS_SYN_RCVD)
18638 		return (ENOTCONN);
18639 
18640 	switch (tcp->tcp_family) {
18641 	case AF_INET:
18642 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
18643 
18644 		if (*salenp < sizeof (sin_t))
18645 			return (EINVAL);
18646 
18647 		*sin = sin_null;
18648 		sin->sin_family = AF_INET;
18649 		sin->sin_port = tcp->tcp_fport;
18650 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6,
18651 		    sin->sin_addr.s_addr);
18652 		*salenp = sizeof (sin_t);
18653 		break;
18654 
18655 	case AF_INET6:
18656 		if (*salenp < sizeof (sin6_t))
18657 			return (EINVAL);
18658 
18659 		*sin6 = sin6_null;
18660 		sin6->sin6_family = AF_INET6;
18661 		sin6->sin6_port = tcp->tcp_fport;
18662 		sin6->sin6_addr = tcp->tcp_remote_v6;
18663 		if (tcp->tcp_ipversion == IPV6_VERSION) {
18664 			sin6->sin6_flowinfo = tcp->tcp_ip6h->ip6_vcf &
18665 			    ~IPV6_VERS_AND_FLOW_MASK;
18666 		}
18667 		*salenp = sizeof (sin6_t);
18668 		break;
18669 	}
18670 
18671 	return (0);
18672 }
18673 
18674 /*
18675  * Handle special out-of-band ioctl requests (see PSARC/2008/265).
18676  */
18677 static void
18678 tcp_wput_cmdblk(queue_t *q, mblk_t *mp)
18679 {
18680 	void	*data;
18681 	mblk_t	*datamp = mp->b_cont;
18682 	tcp_t	*tcp = Q_TO_TCP(q);
18683 	cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr;
18684 
18685 	if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) {
18686 		cmdp->cb_error = EPROTO;
18687 		qreply(q, mp);
18688 		return;
18689 	}
18690 
18691 	data = datamp->b_rptr;
18692 
18693 	switch (cmdp->cb_cmd) {
18694 	case TI_GETPEERNAME:
18695 		cmdp->cb_error = i_tcp_getpeername(tcp, data, &cmdp->cb_len);
18696 		break;
18697 	case TI_GETMYNAME:
18698 		cmdp->cb_error = tcp_getmyname(tcp, data, &cmdp->cb_len);
18699 		break;
18700 	default:
18701 		cmdp->cb_error = EINVAL;
18702 		break;
18703 	}
18704 
18705 	qreply(q, mp);
18706 }
18707 
18708 void
18709 tcp_wput(queue_t *q, mblk_t *mp)
18710 {
18711 	conn_t	*connp = Q_TO_CONN(q);
18712 	tcp_t	*tcp;
18713 	void (*output_proc)();
18714 	t_scalar_t type;
18715 	uchar_t *rptr;
18716 	struct iocblk	*iocp;
18717 	size_t size;
18718 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
18719 
18720 	ASSERT(connp->conn_ref >= 2);
18721 
18722 	switch (DB_TYPE(mp)) {
18723 	case M_DATA:
18724 		tcp = connp->conn_tcp;
18725 		ASSERT(tcp != NULL);
18726 
18727 		size = msgdsize(mp);
18728 
18729 		mutex_enter(&tcp->tcp_non_sq_lock);
18730 		tcp->tcp_squeue_bytes += size;
18731 		if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) {
18732 			tcp_setqfull(tcp);
18733 		}
18734 		mutex_exit(&tcp->tcp_non_sq_lock);
18735 
18736 		CONN_INC_REF(connp);
18737 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, connp,
18738 		    tcp_squeue_flag, SQTAG_TCP_OUTPUT);
18739 		return;
18740 
18741 	case M_CMD:
18742 		tcp_wput_cmdblk(q, mp);
18743 		return;
18744 
18745 	case M_PROTO:
18746 	case M_PCPROTO:
18747 		/*
18748 		 * if it is a snmp message, don't get behind the squeue
18749 		 */
18750 		tcp = connp->conn_tcp;
18751 		rptr = mp->b_rptr;
18752 		if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
18753 			type = ((union T_primitives *)rptr)->type;
18754 		} else {
18755 			if (tcp->tcp_debug) {
18756 				(void) strlog(TCP_MOD_ID, 0, 1,
18757 				    SL_ERROR|SL_TRACE,
18758 				    "tcp_wput_proto, dropping one...");
18759 			}
18760 			freemsg(mp);
18761 			return;
18762 		}
18763 		if (type == T_SVR4_OPTMGMT_REQ) {
18764 			cred_t	*cr = DB_CREDDEF(mp, tcp->tcp_cred);
18765 			if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get,
18766 			    cr)) {
18767 				/*
18768 				 * This was a SNMP request
18769 				 */
18770 				return;
18771 			} else {
18772 				output_proc = tcp_wput_proto;
18773 			}
18774 		} else {
18775 			output_proc = tcp_wput_proto;
18776 		}
18777 		break;
18778 	case M_IOCTL:
18779 		/*
18780 		 * Most ioctls can be processed right away without going via
18781 		 * squeues - process them right here. Those that do require
18782 		 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK)
18783 		 * are processed by tcp_wput_ioctl().
18784 		 */
18785 		iocp = (struct iocblk *)mp->b_rptr;
18786 		tcp = connp->conn_tcp;
18787 
18788 		switch (iocp->ioc_cmd) {
18789 		case TCP_IOC_ABORT_CONN:
18790 			tcp_ioctl_abort_conn(q, mp);
18791 			return;
18792 		case TI_GETPEERNAME:
18793 		case TI_GETMYNAME:
18794 			mi_copyin(q, mp, NULL,
18795 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
18796 			return;
18797 		case ND_SET:
18798 			/* nd_getset does the necessary checks */
18799 		case ND_GET:
18800 			if (!nd_getset(q, tcps->tcps_g_nd, mp)) {
18801 				CALL_IP_WPUT(connp, q, mp);
18802 				return;
18803 			}
18804 			qreply(q, mp);
18805 			return;
18806 		case TCP_IOC_DEFAULT_Q:
18807 			/*
18808 			 * Wants to be the default wq. Check the credentials
18809 			 * first, the rest is executed via squeue.
18810 			 */
18811 			if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
18812 				iocp->ioc_error = EPERM;
18813 				iocp->ioc_count = 0;
18814 				mp->b_datap->db_type = M_IOCACK;
18815 				qreply(q, mp);
18816 				return;
18817 			}
18818 			output_proc = tcp_wput_ioctl;
18819 			break;
18820 		default:
18821 			output_proc = tcp_wput_ioctl;
18822 			break;
18823 		}
18824 		break;
18825 	default:
18826 		output_proc = tcp_wput_nondata;
18827 		break;
18828 	}
18829 
18830 	CONN_INC_REF(connp);
18831 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, output_proc, connp,
18832 	    tcp_squeue_flag, SQTAG_TCP_WPUT_OTHER);
18833 }
18834 
18835 /*
18836  * Initial STREAMS write side put() procedure for sockets. It tries to
18837  * handle the T_CAPABILITY_REQ which sockfs sends down while setting
18838  * up the socket without using the squeue. Non T_CAPABILITY_REQ messages
18839  * are handled by tcp_wput() as usual.
18840  *
18841  * All further messages will also be handled by tcp_wput() because we cannot
18842  * be sure that the above short cut is safe later.
18843  */
18844 static void
18845 tcp_wput_sock(queue_t *wq, mblk_t *mp)
18846 {
18847 	conn_t			*connp = Q_TO_CONN(wq);
18848 	tcp_t			*tcp = connp->conn_tcp;
18849 	struct T_capability_req	*car = (struct T_capability_req *)mp->b_rptr;
18850 
18851 	ASSERT(wq->q_qinfo == &tcp_sock_winit);
18852 	wq->q_qinfo = &tcp_winit;
18853 
18854 	ASSERT(IPCL_IS_TCP(connp));
18855 	ASSERT(TCP_IS_SOCKET(tcp));
18856 
18857 	if (DB_TYPE(mp) == M_PCPROTO &&
18858 	    MBLKL(mp) == sizeof (struct T_capability_req) &&
18859 	    car->PRIM_type == T_CAPABILITY_REQ) {
18860 		tcp_capability_req(tcp, mp);
18861 		return;
18862 	}
18863 
18864 	tcp_wput(wq, mp);
18865 }
18866 
18867 /* ARGSUSED */
18868 static void
18869 tcp_wput_fallback(queue_t *wq, mblk_t *mp)
18870 {
18871 #ifdef DEBUG
18872 	cmn_err(CE_CONT, "tcp_wput_fallback: Message during fallback \n");
18873 #endif
18874 	freemsg(mp);
18875 }
18876 
18877 static boolean_t
18878 tcp_zcopy_check(tcp_t *tcp)
18879 {
18880 	conn_t	*connp = tcp->tcp_connp;
18881 	ire_t	*ire;
18882 	boolean_t	zc_enabled = B_FALSE;
18883 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18884 
18885 	if (do_tcpzcopy == 2)
18886 		zc_enabled = B_TRUE;
18887 	else if (tcp->tcp_ipversion == IPV4_VERSION &&
18888 	    IPCL_IS_CONNECTED(connp) &&
18889 	    (connp->conn_flags & IPCL_CHECK_POLICY) == 0 &&
18890 	    connp->conn_dontroute == 0 &&
18891 	    !connp->conn_nexthop_set &&
18892 	    connp->conn_outgoing_ill == NULL &&
18893 	    do_tcpzcopy == 1) {
18894 		/*
18895 		 * the checks above  closely resemble the fast path checks
18896 		 * in tcp_send_data().
18897 		 */
18898 		mutex_enter(&connp->conn_lock);
18899 		ire = connp->conn_ire_cache;
18900 		ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18901 		if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18902 			IRE_REFHOLD(ire);
18903 			if (ire->ire_stq != NULL) {
18904 				ill_t	*ill = (ill_t *)ire->ire_stq->q_ptr;
18905 
18906 				zc_enabled = ill && (ill->ill_capabilities &
18907 				    ILL_CAPAB_ZEROCOPY) &&
18908 				    (ill->ill_zerocopy_capab->
18909 				    ill_zerocopy_flags != 0);
18910 			}
18911 			IRE_REFRELE(ire);
18912 		}
18913 		mutex_exit(&connp->conn_lock);
18914 	}
18915 	tcp->tcp_snd_zcopy_on = zc_enabled;
18916 	if (!TCP_IS_DETACHED(tcp)) {
18917 		if (zc_enabled) {
18918 			(void) proto_set_tx_copyopt(tcp->tcp_rq, connp,
18919 			    ZCVMSAFE);
18920 			TCP_STAT(tcps, tcp_zcopy_on);
18921 		} else {
18922 			(void) proto_set_tx_copyopt(tcp->tcp_rq, connp,
18923 			    ZCVMUNSAFE);
18924 			TCP_STAT(tcps, tcp_zcopy_off);
18925 		}
18926 	}
18927 	return (zc_enabled);
18928 }
18929 
18930 static mblk_t *
18931 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp)
18932 {
18933 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18934 
18935 	if (do_tcpzcopy == 2)
18936 		return (bp);
18937 	else if (tcp->tcp_snd_zcopy_on) {
18938 		tcp->tcp_snd_zcopy_on = B_FALSE;
18939 		if (!TCP_IS_DETACHED(tcp)) {
18940 			(void) proto_set_tx_copyopt(tcp->tcp_rq, tcp->tcp_connp,
18941 			    ZCVMUNSAFE);
18942 			TCP_STAT(tcps, tcp_zcopy_disable);
18943 		}
18944 	}
18945 	return (tcp_zcopy_backoff(tcp, bp, 0));
18946 }
18947 
18948 /*
18949  * Backoff from a zero-copy mblk by copying data to a new mblk and freeing
18950  * the original desballoca'ed segmapped mblk.
18951  */
18952 static mblk_t *
18953 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist)
18954 {
18955 	mblk_t *head, *tail, *nbp;
18956 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18957 
18958 	if (IS_VMLOANED_MBLK(bp)) {
18959 		TCP_STAT(tcps, tcp_zcopy_backoff);
18960 		if ((head = copyb(bp)) == NULL) {
18961 			/* fail to backoff; leave it for the next backoff */
18962 			tcp->tcp_xmit_zc_clean = B_FALSE;
18963 			return (bp);
18964 		}
18965 		if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18966 			if (fix_xmitlist)
18967 				tcp_zcopy_notify(tcp);
18968 			else
18969 				head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
18970 		}
18971 		nbp = bp->b_cont;
18972 		if (fix_xmitlist) {
18973 			head->b_prev = bp->b_prev;
18974 			head->b_next = bp->b_next;
18975 			if (tcp->tcp_xmit_tail == bp)
18976 				tcp->tcp_xmit_tail = head;
18977 		}
18978 		bp->b_next = NULL;
18979 		bp->b_prev = NULL;
18980 		freeb(bp);
18981 	} else {
18982 		head = bp;
18983 		nbp = bp->b_cont;
18984 	}
18985 	tail = head;
18986 	while (nbp) {
18987 		if (IS_VMLOANED_MBLK(nbp)) {
18988 			TCP_STAT(tcps, tcp_zcopy_backoff);
18989 			if ((tail->b_cont = copyb(nbp)) == NULL) {
18990 				tcp->tcp_xmit_zc_clean = B_FALSE;
18991 				tail->b_cont = nbp;
18992 				return (head);
18993 			}
18994 			tail = tail->b_cont;
18995 			if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18996 				if (fix_xmitlist)
18997 					tcp_zcopy_notify(tcp);
18998 				else
18999 					tail->b_datap->db_struioflag |=
19000 					    STRUIO_ZCNOTIFY;
19001 			}
19002 			bp = nbp;
19003 			nbp = nbp->b_cont;
19004 			if (fix_xmitlist) {
19005 				tail->b_prev = bp->b_prev;
19006 				tail->b_next = bp->b_next;
19007 				if (tcp->tcp_xmit_tail == bp)
19008 					tcp->tcp_xmit_tail = tail;
19009 			}
19010 			bp->b_next = NULL;
19011 			bp->b_prev = NULL;
19012 			freeb(bp);
19013 		} else {
19014 			tail->b_cont = nbp;
19015 			tail = nbp;
19016 			nbp = nbp->b_cont;
19017 		}
19018 	}
19019 	if (fix_xmitlist) {
19020 		tcp->tcp_xmit_last = tail;
19021 		tcp->tcp_xmit_zc_clean = B_TRUE;
19022 	}
19023 	return (head);
19024 }
19025 
19026 static void
19027 tcp_zcopy_notify(tcp_t *tcp)
19028 {
19029 	struct stdata	*stp;
19030 	conn_t *connp;
19031 
19032 	if (tcp->tcp_detached)
19033 		return;
19034 	connp = tcp->tcp_connp;
19035 	if (IPCL_IS_NONSTR(connp)) {
19036 		(*connp->conn_upcalls->su_zcopy_notify)
19037 		    (connp->conn_upper_handle);
19038 		return;
19039 	}
19040 	stp = STREAM(tcp->tcp_rq);
19041 	mutex_enter(&stp->sd_lock);
19042 	stp->sd_flag |= STZCNOTIFY;
19043 	cv_broadcast(&stp->sd_zcopy_wait);
19044 	mutex_exit(&stp->sd_lock);
19045 }
19046 
19047 static boolean_t
19048 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep)
19049 {
19050 	ire_t	*ire;
19051 	conn_t	*connp = tcp->tcp_connp;
19052 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19053 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
19054 
19055 	mutex_enter(&connp->conn_lock);
19056 	ire = connp->conn_ire_cache;
19057 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
19058 
19059 	if ((ire != NULL) &&
19060 	    (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) &&
19061 	    IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) &&
19062 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
19063 		IRE_REFHOLD(ire);
19064 		mutex_exit(&connp->conn_lock);
19065 	} else {
19066 		boolean_t cached = B_FALSE;
19067 		ts_label_t *tsl;
19068 
19069 		/* force a recheck later on */
19070 		tcp->tcp_ire_ill_check_done = B_FALSE;
19071 
19072 		TCP_DBGSTAT(tcps, tcp_ire_null1);
19073 		connp->conn_ire_cache = NULL;
19074 		mutex_exit(&connp->conn_lock);
19075 
19076 		if (ire != NULL)
19077 			IRE_REFRELE_NOTR(ire);
19078 
19079 		tsl = crgetlabel(CONN_CRED(connp));
19080 		ire = (dst ?
19081 		    ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) :
19082 		    ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst,
19083 		    connp->conn_zoneid, tsl, ipst));
19084 
19085 		if (ire == NULL) {
19086 			TCP_STAT(tcps, tcp_ire_null);
19087 			return (B_FALSE);
19088 		}
19089 
19090 		IRE_REFHOLD_NOTR(ire);
19091 
19092 		mutex_enter(&connp->conn_lock);
19093 		if (CONN_CACHE_IRE(connp)) {
19094 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
19095 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
19096 				TCP_CHECK_IREINFO(tcp, ire);
19097 				connp->conn_ire_cache = ire;
19098 				cached = B_TRUE;
19099 			}
19100 			rw_exit(&ire->ire_bucket->irb_lock);
19101 		}
19102 		mutex_exit(&connp->conn_lock);
19103 
19104 		/*
19105 		 * We can continue to use the ire but since it was
19106 		 * not cached, we should drop the extra reference.
19107 		 */
19108 		if (!cached)
19109 			IRE_REFRELE_NOTR(ire);
19110 
19111 		/*
19112 		 * Rampart note: no need to select a new label here, since
19113 		 * labels are not allowed to change during the life of a TCP
19114 		 * connection.
19115 		 */
19116 	}
19117 
19118 	*irep = ire;
19119 
19120 	return (B_TRUE);
19121 }
19122 
19123 /*
19124  * Called from tcp_send() or tcp_send_data() to find workable IRE.
19125  *
19126  * 0 = success;
19127  * 1 = failed to find ire and ill.
19128  */
19129 static boolean_t
19130 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp)
19131 {
19132 	ipha_t		*ipha;
19133 	ipaddr_t	dst;
19134 	ire_t		*ire;
19135 	ill_t		*ill;
19136 	mblk_t		*ire_fp_mp;
19137 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19138 
19139 	if (mp != NULL)
19140 		ipha = (ipha_t *)mp->b_rptr;
19141 	else
19142 		ipha = tcp->tcp_ipha;
19143 	dst = ipha->ipha_dst;
19144 
19145 	if (!tcp_send_find_ire(tcp, &dst, &ire))
19146 		return (B_FALSE);
19147 
19148 	if ((ire->ire_flags & RTF_MULTIRT) ||
19149 	    (ire->ire_stq == NULL) ||
19150 	    (ire->ire_nce == NULL) ||
19151 	    ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) ||
19152 	    ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) ||
19153 	    MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) {
19154 		TCP_STAT(tcps, tcp_ip_ire_send);
19155 		IRE_REFRELE(ire);
19156 		return (B_FALSE);
19157 	}
19158 
19159 	ill = ire_to_ill(ire);
19160 	ASSERT(ill != NULL);
19161 
19162 	if (!tcp->tcp_ire_ill_check_done) {
19163 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
19164 		tcp->tcp_ire_ill_check_done = B_TRUE;
19165 	}
19166 
19167 	*irep = ire;
19168 	*illp = ill;
19169 
19170 	return (B_TRUE);
19171 }
19172 
19173 static void
19174 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp)
19175 {
19176 	ipha_t		*ipha;
19177 	ipaddr_t	src;
19178 	ipaddr_t	dst;
19179 	uint32_t	cksum;
19180 	ire_t		*ire;
19181 	uint16_t	*up;
19182 	ill_t		*ill;
19183 	conn_t		*connp = tcp->tcp_connp;
19184 	uint32_t	hcksum_txflags = 0;
19185 	mblk_t		*ire_fp_mp;
19186 	uint_t		ire_fp_mp_len;
19187 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19188 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
19189 
19190 	ASSERT(DB_TYPE(mp) == M_DATA);
19191 
19192 	if (is_system_labeled() && DB_CRED(mp) == NULL)
19193 		mblk_setcred(mp, CONN_CRED(tcp->tcp_connp));
19194 
19195 	ipha = (ipha_t *)mp->b_rptr;
19196 	src = ipha->ipha_src;
19197 	dst = ipha->ipha_dst;
19198 
19199 	ASSERT(q != NULL);
19200 	DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp);
19201 
19202 	/*
19203 	 * Drop off fast path for IPv6 and also if options are present or
19204 	 * we need to resolve a TS label.
19205 	 */
19206 	if (tcp->tcp_ipversion != IPV4_VERSION ||
19207 	    !IPCL_IS_CONNECTED(connp) ||
19208 	    !CONN_IS_LSO_MD_FASTPATH(connp) ||
19209 	    (connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
19210 	    !connp->conn_ulp_labeled ||
19211 	    ipha->ipha_ident == IP_HDR_INCLUDED ||
19212 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
19213 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst)) {
19214 		if (tcp->tcp_snd_zcopy_aware)
19215 			mp = tcp_zcopy_disable(tcp, mp);
19216 		TCP_STAT(tcps, tcp_ip_send);
19217 		CALL_IP_WPUT(connp, q, mp);
19218 		return;
19219 	}
19220 
19221 	if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) {
19222 		if (tcp->tcp_snd_zcopy_aware)
19223 			mp = tcp_zcopy_backoff(tcp, mp, 0);
19224 		CALL_IP_WPUT(connp, q, mp);
19225 		return;
19226 	}
19227 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
19228 	ire_fp_mp_len = MBLKL(ire_fp_mp);
19229 
19230 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
19231 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
19232 #ifndef _BIG_ENDIAN
19233 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
19234 #endif
19235 
19236 	/*
19237 	 * Check to see if we need to re-enable LSO/MDT for this connection
19238 	 * because it was previously disabled due to changes in the ill;
19239 	 * note that by doing it here, this re-enabling only applies when
19240 	 * the packet is not dispatched through CALL_IP_WPUT().
19241 	 *
19242 	 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath
19243 	 * case, since that's how we ended up here.  For IPv6, we do the
19244 	 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue.
19245 	 */
19246 	if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) {
19247 		/*
19248 		 * Restore LSO for this connection, so that next time around
19249 		 * it is eligible to go through tcp_lsosend() path again.
19250 		 */
19251 		TCP_STAT(tcps, tcp_lso_enabled);
19252 		tcp->tcp_lso = B_TRUE;
19253 		ip1dbg(("tcp_send_data: reenabling LSO for connp %p on "
19254 		    "interface %s\n", (void *)connp, ill->ill_name));
19255 	} else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) {
19256 		/*
19257 		 * Restore MDT for this connection, so that next time around
19258 		 * it is eligible to go through tcp_multisend() path again.
19259 		 */
19260 		TCP_STAT(tcps, tcp_mdt_conn_resumed1);
19261 		tcp->tcp_mdt = B_TRUE;
19262 		ip1dbg(("tcp_send_data: reenabling MDT for connp %p on "
19263 		    "interface %s\n", (void *)connp, ill->ill_name));
19264 	}
19265 
19266 	if (tcp->tcp_snd_zcopy_aware) {
19267 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
19268 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
19269 			mp = tcp_zcopy_disable(tcp, mp);
19270 		/*
19271 		 * we shouldn't need to reset ipha as the mp containing
19272 		 * ipha should never be a zero-copy mp.
19273 		 */
19274 	}
19275 
19276 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
19277 		ASSERT(ill->ill_hcksum_capab != NULL);
19278 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
19279 	}
19280 
19281 	/* pseudo-header checksum (do it in parts for IP header checksum) */
19282 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
19283 
19284 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
19285 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
19286 
19287 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
19288 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
19289 
19290 	/* Software checksum? */
19291 	if (DB_CKSUMFLAGS(mp) == 0) {
19292 		TCP_STAT(tcps, tcp_out_sw_cksum);
19293 		TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
19294 		    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
19295 	}
19296 
19297 	/* Calculate IP header checksum if hardware isn't capable */
19298 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
19299 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
19300 		    ((uint16_t *)ipha)[4]);
19301 	}
19302 
19303 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
19304 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
19305 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
19306 
19307 	UPDATE_OB_PKT_COUNT(ire);
19308 	ire->ire_last_used_time = lbolt;
19309 
19310 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
19311 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
19312 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
19313 	    ntohs(ipha->ipha_length));
19314 
19315 	DTRACE_PROBE4(ip4__physical__out__start,
19316 	    ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp);
19317 	FW_HOOKS(ipst->ips_ip4_physical_out_event,
19318 	    ipst->ips_ipv4firewall_physical_out,
19319 	    NULL, ill, ipha, mp, mp, 0, ipst);
19320 	DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
19321 	DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL);
19322 
19323 	if (mp != NULL) {
19324 		if (ipst->ips_ipobs_enabled) {
19325 			zoneid_t szone;
19326 
19327 			szone = ip_get_zoneid_v4(ipha->ipha_src, mp,
19328 			    ipst, ALL_ZONES);
19329 			ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone,
19330 			    ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, ipst);
19331 		}
19332 
19333 		ILL_SEND_TX(ill, ire, connp, mp, 0);
19334 	}
19335 
19336 	IRE_REFRELE(ire);
19337 }
19338 
19339 /*
19340  * This handles the case when the receiver has shrunk its win. Per RFC 1122
19341  * if the receiver shrinks the window, i.e. moves the right window to the
19342  * left, the we should not send new data, but should retransmit normally the
19343  * old unacked data between suna and suna + swnd. We might has sent data
19344  * that is now outside the new window, pretend that we didn't send  it.
19345  */
19346 static void
19347 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count)
19348 {
19349 	uint32_t	snxt = tcp->tcp_snxt;
19350 	mblk_t		*xmit_tail;
19351 	int32_t		offset;
19352 
19353 	ASSERT(shrunk_count > 0);
19354 
19355 	/* Pretend we didn't send the data outside the window */
19356 	snxt -= shrunk_count;
19357 
19358 	/* Get the mblk and the offset in it per the shrunk window */
19359 	xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset);
19360 
19361 	ASSERT(xmit_tail != NULL);
19362 
19363 	/* Reset all the values per the now shrunk window */
19364 	tcp->tcp_snxt = snxt;
19365 	tcp->tcp_xmit_tail = xmit_tail;
19366 	tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr -
19367 	    offset;
19368 	tcp->tcp_unsent += shrunk_count;
19369 
19370 	if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0)
19371 		/*
19372 		 * Make sure the timer is running so that we will probe a zero
19373 		 * window.
19374 		 */
19375 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19376 }
19377 
19378 
19379 /*
19380  * The TCP normal data output path.
19381  * NOTE: the logic of the fast path is duplicated from this function.
19382  */
19383 static void
19384 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent)
19385 {
19386 	int		len;
19387 	mblk_t		*local_time;
19388 	mblk_t		*mp1;
19389 	uint32_t	snxt;
19390 	int		tail_unsent;
19391 	int		tcpstate;
19392 	int		usable = 0;
19393 	mblk_t		*xmit_tail;
19394 	queue_t		*q = tcp->tcp_wq;
19395 	int32_t		mss;
19396 	int32_t		num_sack_blk = 0;
19397 	int32_t		tcp_hdr_len;
19398 	int32_t		tcp_tcp_hdr_len;
19399 	int		mdt_thres;
19400 	int		rc;
19401 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19402 	ip_stack_t	*ipst;
19403 
19404 	tcpstate = tcp->tcp_state;
19405 	if (mp == NULL) {
19406 		/*
19407 		 * tcp_wput_data() with NULL mp should only be called when
19408 		 * there is unsent data.
19409 		 */
19410 		ASSERT(tcp->tcp_unsent > 0);
19411 		/* Really tacky... but we need this for detached closes. */
19412 		len = tcp->tcp_unsent;
19413 		goto data_null;
19414 	}
19415 
19416 #if CCS_STATS
19417 	wrw_stats.tot.count++;
19418 	wrw_stats.tot.bytes += msgdsize(mp);
19419 #endif
19420 	ASSERT(mp->b_datap->db_type == M_DATA);
19421 	/*
19422 	 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ,
19423 	 * or before a connection attempt has begun.
19424 	 */
19425 	if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT ||
19426 	    (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
19427 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
19428 #ifdef DEBUG
19429 			cmn_err(CE_WARN,
19430 			    "tcp_wput_data: data after ordrel, %s",
19431 			    tcp_display(tcp, NULL,
19432 			    DISP_ADDR_AND_PORT));
19433 #else
19434 			if (tcp->tcp_debug) {
19435 				(void) strlog(TCP_MOD_ID, 0, 1,
19436 				    SL_TRACE|SL_ERROR,
19437 				    "tcp_wput_data: data after ordrel, %s\n",
19438 				    tcp_display(tcp, NULL,
19439 				    DISP_ADDR_AND_PORT));
19440 			}
19441 #endif /* DEBUG */
19442 		}
19443 		if (tcp->tcp_snd_zcopy_aware &&
19444 		    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0)
19445 			tcp_zcopy_notify(tcp);
19446 		freemsg(mp);
19447 		mutex_enter(&tcp->tcp_non_sq_lock);
19448 		if (tcp->tcp_flow_stopped &&
19449 		    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
19450 			tcp_clrqfull(tcp);
19451 		}
19452 		mutex_exit(&tcp->tcp_non_sq_lock);
19453 		return;
19454 	}
19455 
19456 	/* Strip empties */
19457 	for (;;) {
19458 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
19459 		    (uintptr_t)INT_MAX);
19460 		len = (int)(mp->b_wptr - mp->b_rptr);
19461 		if (len > 0)
19462 			break;
19463 		mp1 = mp;
19464 		mp = mp->b_cont;
19465 		freeb(mp1);
19466 		if (!mp) {
19467 			return;
19468 		}
19469 	}
19470 
19471 	/* If we are the first on the list ... */
19472 	if (tcp->tcp_xmit_head == NULL) {
19473 		tcp->tcp_xmit_head = mp;
19474 		tcp->tcp_xmit_tail = mp;
19475 		tcp->tcp_xmit_tail_unsent = len;
19476 	} else {
19477 		/* If tiny tx and room in txq tail, pullup to save mblks. */
19478 		struct datab *dp;
19479 
19480 		mp1 = tcp->tcp_xmit_last;
19481 		if (len < tcp_tx_pull_len &&
19482 		    (dp = mp1->b_datap)->db_ref == 1 &&
19483 		    dp->db_lim - mp1->b_wptr >= len) {
19484 			ASSERT(len > 0);
19485 			ASSERT(!mp1->b_cont);
19486 			if (len == 1) {
19487 				*mp1->b_wptr++ = *mp->b_rptr;
19488 			} else {
19489 				bcopy(mp->b_rptr, mp1->b_wptr, len);
19490 				mp1->b_wptr += len;
19491 			}
19492 			if (mp1 == tcp->tcp_xmit_tail)
19493 				tcp->tcp_xmit_tail_unsent += len;
19494 			mp1->b_cont = mp->b_cont;
19495 			if (tcp->tcp_snd_zcopy_aware &&
19496 			    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
19497 				mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
19498 			freeb(mp);
19499 			mp = mp1;
19500 		} else {
19501 			tcp->tcp_xmit_last->b_cont = mp;
19502 		}
19503 		len += tcp->tcp_unsent;
19504 	}
19505 
19506 	/* Tack on however many more positive length mblks we have */
19507 	if ((mp1 = mp->b_cont) != NULL) {
19508 		do {
19509 			int tlen;
19510 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
19511 			    (uintptr_t)INT_MAX);
19512 			tlen = (int)(mp1->b_wptr - mp1->b_rptr);
19513 			if (tlen <= 0) {
19514 				mp->b_cont = mp1->b_cont;
19515 				freeb(mp1);
19516 			} else {
19517 				len += tlen;
19518 				mp = mp1;
19519 			}
19520 		} while ((mp1 = mp->b_cont) != NULL);
19521 	}
19522 	tcp->tcp_xmit_last = mp;
19523 	tcp->tcp_unsent = len;
19524 
19525 	if (urgent)
19526 		usable = 1;
19527 
19528 data_null:
19529 	snxt = tcp->tcp_snxt;
19530 	xmit_tail = tcp->tcp_xmit_tail;
19531 	tail_unsent = tcp->tcp_xmit_tail_unsent;
19532 
19533 	/*
19534 	 * Note that tcp_mss has been adjusted to take into account the
19535 	 * timestamp option if applicable.  Because SACK options do not
19536 	 * appear in every TCP segments and they are of variable lengths,
19537 	 * they cannot be included in tcp_mss.  Thus we need to calculate
19538 	 * the actual segment length when we need to send a segment which
19539 	 * includes SACK options.
19540 	 */
19541 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
19542 		int32_t	opt_len;
19543 
19544 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
19545 		    tcp->tcp_num_sack_blk);
19546 		opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN *
19547 		    2 + TCPOPT_HEADER_LEN;
19548 		mss = tcp->tcp_mss - opt_len;
19549 		tcp_hdr_len = tcp->tcp_hdr_len + opt_len;
19550 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len;
19551 	} else {
19552 		mss = tcp->tcp_mss;
19553 		tcp_hdr_len = tcp->tcp_hdr_len;
19554 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
19555 	}
19556 
19557 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
19558 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
19559 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
19560 	}
19561 	if (tcpstate == TCPS_SYN_RCVD) {
19562 		/*
19563 		 * The three-way connection establishment handshake is not
19564 		 * complete yet. We want to queue the data for transmission
19565 		 * after entering ESTABLISHED state (RFC793). A jump to
19566 		 * "done" label effectively leaves data on the queue.
19567 		 */
19568 		goto done;
19569 	} else {
19570 		int usable_r;
19571 
19572 		/*
19573 		 * In the special case when cwnd is zero, which can only
19574 		 * happen if the connection is ECN capable, return now.
19575 		 * New segments is sent using tcp_timer().  The timer
19576 		 * is set in tcp_rput_data().
19577 		 */
19578 		if (tcp->tcp_cwnd == 0) {
19579 			/*
19580 			 * Note that tcp_cwnd is 0 before 3-way handshake is
19581 			 * finished.
19582 			 */
19583 			ASSERT(tcp->tcp_ecn_ok ||
19584 			    tcp->tcp_state < TCPS_ESTABLISHED);
19585 			return;
19586 		}
19587 
19588 		/* NOTE: trouble if xmitting while SYN not acked? */
19589 		usable_r = snxt - tcp->tcp_suna;
19590 		usable_r = tcp->tcp_swnd - usable_r;
19591 
19592 		/*
19593 		 * Check if the receiver has shrunk the window.  If
19594 		 * tcp_wput_data() with NULL mp is called, tcp_fin_sent
19595 		 * cannot be set as there is unsent data, so FIN cannot
19596 		 * be sent out.  Otherwise, we need to take into account
19597 		 * of FIN as it consumes an "invisible" sequence number.
19598 		 */
19599 		ASSERT(tcp->tcp_fin_sent == 0);
19600 		if (usable_r < 0) {
19601 			/*
19602 			 * The receiver has shrunk the window and we have sent
19603 			 * -usable_r date beyond the window, re-adjust.
19604 			 *
19605 			 * If TCP window scaling is enabled, there can be
19606 			 * round down error as the advertised receive window
19607 			 * is actually right shifted n bits.  This means that
19608 			 * the lower n bits info is wiped out.  It will look
19609 			 * like the window is shrunk.  Do a check here to
19610 			 * see if the shrunk amount is actually within the
19611 			 * error in window calculation.  If it is, just
19612 			 * return.  Note that this check is inside the
19613 			 * shrunk window check.  This makes sure that even
19614 			 * though tcp_process_shrunk_swnd() is not called,
19615 			 * we will stop further processing.
19616 			 */
19617 			if ((-usable_r >> tcp->tcp_snd_ws) > 0) {
19618 				tcp_process_shrunk_swnd(tcp, -usable_r);
19619 			}
19620 			return;
19621 		}
19622 
19623 		/* usable = MIN(swnd, cwnd) - unacked_bytes */
19624 		if (tcp->tcp_swnd > tcp->tcp_cwnd)
19625 			usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd;
19626 
19627 		/* usable = MIN(usable, unsent) */
19628 		if (usable_r > len)
19629 			usable_r = len;
19630 
19631 		/* usable = MAX(usable, {1 for urgent, 0 for data}) */
19632 		if (usable_r > 0) {
19633 			usable = usable_r;
19634 		} else {
19635 			/* Bypass all other unnecessary processing. */
19636 			goto done;
19637 		}
19638 	}
19639 
19640 	local_time = (mblk_t *)lbolt;
19641 
19642 	/*
19643 	 * "Our" Nagle Algorithm.  This is not the same as in the old
19644 	 * BSD.  This is more in line with the true intent of Nagle.
19645 	 *
19646 	 * The conditions are:
19647 	 * 1. The amount of unsent data (or amount of data which can be
19648 	 *    sent, whichever is smaller) is less than Nagle limit.
19649 	 * 2. The last sent size is also less than Nagle limit.
19650 	 * 3. There is unack'ed data.
19651 	 * 4. Urgent pointer is not set.  Send urgent data ignoring the
19652 	 *    Nagle algorithm.  This reduces the probability that urgent
19653 	 *    bytes get "merged" together.
19654 	 * 5. The app has not closed the connection.  This eliminates the
19655 	 *    wait time of the receiving side waiting for the last piece of
19656 	 *    (small) data.
19657 	 *
19658 	 * If all are satisified, exit without sending anything.  Note
19659 	 * that Nagle limit can be smaller than 1 MSS.  Nagle limit is
19660 	 * the smaller of 1 MSS and global tcp_naglim_def (default to be
19661 	 * 4095).
19662 	 */
19663 	if (usable < (int)tcp->tcp_naglim &&
19664 	    tcp->tcp_naglim > tcp->tcp_last_sent_len &&
19665 	    snxt != tcp->tcp_suna &&
19666 	    !(tcp->tcp_valid_bits & TCP_URG_VALID) &&
19667 	    !(tcp->tcp_valid_bits & TCP_FSS_VALID)) {
19668 		goto done;
19669 	}
19670 
19671 	if (tcp->tcp_cork) {
19672 		/*
19673 		 * if the tcp->tcp_cork option is set, then we have to force
19674 		 * TCP not to send partial segment (smaller than MSS bytes).
19675 		 * We are calculating the usable now based on full mss and
19676 		 * will save the rest of remaining data for later.
19677 		 */
19678 		if (usable < mss)
19679 			goto done;
19680 		usable = (usable / mss) * mss;
19681 	}
19682 
19683 	/* Update the latest receive window size in TCP header. */
19684 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
19685 	    tcp->tcp_tcph->th_win);
19686 
19687 	/*
19688 	 * Determine if it's worthwhile to attempt LSO or MDT, based on:
19689 	 *
19690 	 * 1. Simple TCP/IP{v4,v6} (no options).
19691 	 * 2. IPSEC/IPQoS processing is not needed for the TCP connection.
19692 	 * 3. If the TCP connection is in ESTABLISHED state.
19693 	 * 4. The TCP is not detached.
19694 	 *
19695 	 * If any of the above conditions have changed during the
19696 	 * connection, stop using LSO/MDT and restore the stream head
19697 	 * parameters accordingly.
19698 	 */
19699 	ipst = tcps->tcps_netstack->netstack_ip;
19700 
19701 	if ((tcp->tcp_lso || tcp->tcp_mdt) &&
19702 	    ((tcp->tcp_ipversion == IPV4_VERSION &&
19703 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
19704 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19705 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) ||
19706 	    tcp->tcp_state != TCPS_ESTABLISHED ||
19707 	    TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) ||
19708 	    CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) ||
19709 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst))) {
19710 		if (tcp->tcp_lso) {
19711 			tcp->tcp_connp->conn_lso_ok = B_FALSE;
19712 			tcp->tcp_lso = B_FALSE;
19713 		} else {
19714 			tcp->tcp_connp->conn_mdt_ok = B_FALSE;
19715 			tcp->tcp_mdt = B_FALSE;
19716 		}
19717 
19718 		/* Anything other than detached is considered pathological */
19719 		if (!TCP_IS_DETACHED(tcp)) {
19720 			if (tcp->tcp_lso)
19721 				TCP_STAT(tcps, tcp_lso_disabled);
19722 			else
19723 				TCP_STAT(tcps, tcp_mdt_conn_halted1);
19724 			(void) tcp_maxpsz_set(tcp, B_TRUE);
19725 		}
19726 	}
19727 
19728 	/* Use MDT if sendable amount is greater than the threshold */
19729 	if (tcp->tcp_mdt &&
19730 	    (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) &&
19731 	    (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL &&
19732 	    MBLKL(xmit_tail->b_cont) > mdt_thres)) &&
19733 	    (tcp->tcp_valid_bits == 0 ||
19734 	    tcp->tcp_valid_bits == TCP_FSS_VALID)) {
19735 		ASSERT(tcp->tcp_connp->conn_mdt_ok);
19736 		rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19737 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19738 		    local_time, mdt_thres);
19739 	} else {
19740 		rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19741 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19742 		    local_time, INT_MAX);
19743 	}
19744 
19745 	/* Pretend that all we were trying to send really got sent */
19746 	if (rc < 0 && tail_unsent < 0) {
19747 		do {
19748 			xmit_tail = xmit_tail->b_cont;
19749 			xmit_tail->b_prev = local_time;
19750 			ASSERT((uintptr_t)(xmit_tail->b_wptr -
19751 			    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
19752 			tail_unsent += (int)(xmit_tail->b_wptr -
19753 			    xmit_tail->b_rptr);
19754 		} while (tail_unsent < 0);
19755 	}
19756 done:;
19757 	tcp->tcp_xmit_tail = xmit_tail;
19758 	tcp->tcp_xmit_tail_unsent = tail_unsent;
19759 	len = tcp->tcp_snxt - snxt;
19760 	if (len) {
19761 		/*
19762 		 * If new data was sent, need to update the notsack
19763 		 * list, which is, afterall, data blocks that have
19764 		 * not been sack'ed by the receiver.  New data is
19765 		 * not sack'ed.
19766 		 */
19767 		if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
19768 			/* len is a negative value. */
19769 			tcp->tcp_pipe -= len;
19770 			tcp_notsack_update(&(tcp->tcp_notsack_list),
19771 			    tcp->tcp_snxt, snxt,
19772 			    &(tcp->tcp_num_notsack_blk),
19773 			    &(tcp->tcp_cnt_notsack_list));
19774 		}
19775 		tcp->tcp_snxt = snxt + tcp->tcp_fin_sent;
19776 		tcp->tcp_rack = tcp->tcp_rnxt;
19777 		tcp->tcp_rack_cnt = 0;
19778 		if ((snxt + len) == tcp->tcp_suna) {
19779 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19780 		}
19781 	} else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) {
19782 		/*
19783 		 * Didn't send anything. Make sure the timer is running
19784 		 * so that we will probe a zero window.
19785 		 */
19786 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19787 	}
19788 	/* Note that len is the amount we just sent but with a negative sign */
19789 	tcp->tcp_unsent += len;
19790 	mutex_enter(&tcp->tcp_non_sq_lock);
19791 	if (tcp->tcp_flow_stopped) {
19792 		if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
19793 			tcp_clrqfull(tcp);
19794 		}
19795 	} else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) {
19796 		tcp_setqfull(tcp);
19797 	}
19798 	mutex_exit(&tcp->tcp_non_sq_lock);
19799 }
19800 
19801 /*
19802  * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the
19803  * outgoing TCP header with the template header, as well as other
19804  * options such as time-stamp, ECN and/or SACK.
19805  */
19806 static void
19807 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk)
19808 {
19809 	tcph_t *tcp_tmpl, *tcp_h;
19810 	uint32_t *dst, *src;
19811 	int hdrlen;
19812 
19813 	ASSERT(OK_32PTR(rptr));
19814 
19815 	/* Template header */
19816 	tcp_tmpl = tcp->tcp_tcph;
19817 
19818 	/* Header of outgoing packet */
19819 	tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
19820 
19821 	/* dst and src are opaque 32-bit fields, used for copying */
19822 	dst = (uint32_t *)rptr;
19823 	src = (uint32_t *)tcp->tcp_iphc;
19824 	hdrlen = tcp->tcp_hdr_len;
19825 
19826 	/* Fill time-stamp option if needed */
19827 	if (tcp->tcp_snd_ts_ok) {
19828 		U32_TO_BE32((uint32_t)now,
19829 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4);
19830 		U32_TO_BE32(tcp->tcp_ts_recent,
19831 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8);
19832 	} else {
19833 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
19834 	}
19835 
19836 	/*
19837 	 * Copy the template header; is this really more efficient than
19838 	 * calling bcopy()?  For simple IPv4/TCP, it may be the case,
19839 	 * but perhaps not for other scenarios.
19840 	 */
19841 	dst[0] = src[0];
19842 	dst[1] = src[1];
19843 	dst[2] = src[2];
19844 	dst[3] = src[3];
19845 	dst[4] = src[4];
19846 	dst[5] = src[5];
19847 	dst[6] = src[6];
19848 	dst[7] = src[7];
19849 	dst[8] = src[8];
19850 	dst[9] = src[9];
19851 	if (hdrlen -= 40) {
19852 		hdrlen >>= 2;
19853 		dst += 10;
19854 		src += 10;
19855 		do {
19856 			*dst++ = *src++;
19857 		} while (--hdrlen);
19858 	}
19859 
19860 	/*
19861 	 * Set the ECN info in the TCP header if it is not a zero
19862 	 * window probe.  Zero window probe is only sent in
19863 	 * tcp_wput_data() and tcp_timer().
19864 	 */
19865 	if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) {
19866 		SET_ECT(tcp, rptr);
19867 
19868 		if (tcp->tcp_ecn_echo_on)
19869 			tcp_h->th_flags[0] |= TH_ECE;
19870 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
19871 			tcp_h->th_flags[0] |= TH_CWR;
19872 			tcp->tcp_ecn_cwr_sent = B_TRUE;
19873 		}
19874 	}
19875 
19876 	/* Fill in SACK options */
19877 	if (num_sack_blk > 0) {
19878 		uchar_t *wptr = rptr + tcp->tcp_hdr_len;
19879 		sack_blk_t *tmp;
19880 		int32_t	i;
19881 
19882 		wptr[0] = TCPOPT_NOP;
19883 		wptr[1] = TCPOPT_NOP;
19884 		wptr[2] = TCPOPT_SACK;
19885 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
19886 		    sizeof (sack_blk_t);
19887 		wptr += TCPOPT_REAL_SACK_LEN;
19888 
19889 		tmp = tcp->tcp_sack_list;
19890 		for (i = 0; i < num_sack_blk; i++) {
19891 			U32_TO_BE32(tmp[i].begin, wptr);
19892 			wptr += sizeof (tcp_seq);
19893 			U32_TO_BE32(tmp[i].end, wptr);
19894 			wptr += sizeof (tcp_seq);
19895 		}
19896 		tcp_h->th_offset_and_rsrvd[0] +=
19897 		    ((num_sack_blk * 2 + 1) << 4);
19898 	}
19899 }
19900 
19901 /*
19902  * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach
19903  * the destination address and SAP attribute, and if necessary, the
19904  * hardware checksum offload attribute to a Multidata message.
19905  */
19906 static int
19907 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum,
19908     const uint32_t start, const uint32_t stuff, const uint32_t end,
19909     const uint32_t flags, tcp_stack_t *tcps)
19910 {
19911 	/* Add global destination address & SAP attribute */
19912 	if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) {
19913 		ip1dbg(("tcp_mdt_add_attrs: can't add global physical "
19914 		    "destination address+SAP\n"));
19915 
19916 		if (dlmp != NULL)
19917 			TCP_STAT(tcps, tcp_mdt_allocfail);
19918 		return (-1);
19919 	}
19920 
19921 	/* Add global hwcksum attribute */
19922 	if (hwcksum &&
19923 	    !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) {
19924 		ip1dbg(("tcp_mdt_add_attrs: can't add global hardware "
19925 		    "checksum attribute\n"));
19926 
19927 		TCP_STAT(tcps, tcp_mdt_allocfail);
19928 		return (-1);
19929 	}
19930 
19931 	return (0);
19932 }
19933 
19934 /*
19935  * Smaller and private version of pdescinfo_t used specifically for TCP,
19936  * which allows for only two payload spans per packet.
19937  */
19938 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t;
19939 
19940 /*
19941  * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit
19942  * scheme, and returns one the following:
19943  *
19944  * -1 = failed allocation.
19945  *  0 = success; burst count reached, or usable send window is too small,
19946  *      and that we'd rather wait until later before sending again.
19947  */
19948 static int
19949 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
19950     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
19951     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
19952     const int mdt_thres)
19953 {
19954 	mblk_t		*md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf;
19955 	multidata_t	*mmd;
19956 	uint_t		obsegs, obbytes, hdr_frag_sz;
19957 	uint_t		cur_hdr_off, cur_pld_off, base_pld_off, first_snxt;
19958 	int		num_burst_seg, max_pld;
19959 	pdesc_t		*pkt;
19960 	tcp_pdescinfo_t	tcp_pkt_info;
19961 	pdescinfo_t	*pkt_info;
19962 	int		pbuf_idx, pbuf_idx_nxt;
19963 	int		seg_len, len, spill, af;
19964 	boolean_t	add_buffer, zcopy, clusterwide;
19965 	boolean_t	rconfirm = B_FALSE;
19966 	boolean_t	done = B_FALSE;
19967 	uint32_t	cksum;
19968 	uint32_t	hwcksum_flags;
19969 	ire_t		*ire = NULL;
19970 	ill_t		*ill;
19971 	ipha_t		*ipha;
19972 	ip6_t		*ip6h;
19973 	ipaddr_t	src, dst;
19974 	ill_zerocopy_capab_t *zc_cap = NULL;
19975 	uint16_t	*up;
19976 	int		err;
19977 	conn_t		*connp;
19978 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19979 	ip_stack_t 	*ipst = tcps->tcps_netstack->netstack_ip;
19980 	int		usable_mmd, tail_unsent_mmd;
19981 	uint_t		snxt_mmd, obsegs_mmd, obbytes_mmd;
19982 	mblk_t		*xmit_tail_mmd;
19983 	netstackid_t	stack_id;
19984 
19985 #ifdef	_BIG_ENDIAN
19986 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 28) & 0x7)
19987 #else
19988 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 4) & 0x7)
19989 #endif
19990 
19991 #define	PREP_NEW_MULTIDATA() {			\
19992 	mmd = NULL;				\
19993 	md_mp = md_hbuf = NULL;			\
19994 	cur_hdr_off = 0;			\
19995 	max_pld = tcp->tcp_mdt_max_pld;		\
19996 	pbuf_idx = pbuf_idx_nxt = -1;		\
19997 	add_buffer = B_TRUE;			\
19998 	zcopy = B_FALSE;			\
19999 }
20000 
20001 #define	PREP_NEW_PBUF() {			\
20002 	md_pbuf = md_pbuf_nxt = NULL;		\
20003 	pbuf_idx = pbuf_idx_nxt = -1;		\
20004 	cur_pld_off = 0;			\
20005 	first_snxt = *snxt;			\
20006 	ASSERT(*tail_unsent > 0);		\
20007 	base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \
20008 }
20009 
20010 	ASSERT(mdt_thres >= mss);
20011 	ASSERT(*usable > 0 && *usable > mdt_thres);
20012 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
20013 	ASSERT(!TCP_IS_DETACHED(tcp));
20014 	ASSERT(tcp->tcp_valid_bits == 0 ||
20015 	    tcp->tcp_valid_bits == TCP_FSS_VALID);
20016 	ASSERT((tcp->tcp_ipversion == IPV4_VERSION &&
20017 	    tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) ||
20018 	    (tcp->tcp_ipversion == IPV6_VERSION &&
20019 	    tcp->tcp_ip_hdr_len == IPV6_HDR_LEN));
20020 
20021 	connp = tcp->tcp_connp;
20022 	ASSERT(connp != NULL);
20023 	ASSERT(CONN_IS_LSO_MD_FASTPATH(connp));
20024 	ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp));
20025 
20026 	stack_id = connp->conn_netstack->netstack_stackid;
20027 
20028 	usable_mmd = tail_unsent_mmd = 0;
20029 	snxt_mmd = obsegs_mmd = obbytes_mmd = 0;
20030 	xmit_tail_mmd = NULL;
20031 	/*
20032 	 * Note that tcp will only declare at most 2 payload spans per
20033 	 * packet, which is much lower than the maximum allowable number
20034 	 * of packet spans per Multidata.  For this reason, we use the
20035 	 * privately declared and smaller descriptor info structure, in
20036 	 * order to save some stack space.
20037 	 */
20038 	pkt_info = (pdescinfo_t *)&tcp_pkt_info;
20039 
20040 	af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6;
20041 	if (af == AF_INET) {
20042 		dst = tcp->tcp_ipha->ipha_dst;
20043 		src = tcp->tcp_ipha->ipha_src;
20044 		ASSERT(!CLASSD(dst));
20045 	}
20046 	ASSERT(af == AF_INET ||
20047 	    !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst));
20048 
20049 	obsegs = obbytes = 0;
20050 	num_burst_seg = tcp->tcp_snd_burst;
20051 	md_mp_head = NULL;
20052 	PREP_NEW_MULTIDATA();
20053 
20054 	/*
20055 	 * Before we go on further, make sure there is an IRE that we can
20056 	 * use, and that the ILL supports MDT.  Otherwise, there's no point
20057 	 * in proceeding any further, and we should just hand everything
20058 	 * off to the legacy path.
20059 	 */
20060 	if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire))
20061 		goto legacy_send_no_md;
20062 
20063 	ASSERT(ire != NULL);
20064 	ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION);
20065 	ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6)));
20066 	ASSERT(af == AF_INET || ire->ire_nce != NULL);
20067 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
20068 	/*
20069 	 * If we do support loopback for MDT (which requires modifications
20070 	 * to the receiving paths), the following assertions should go away,
20071 	 * and we would be sending the Multidata to loopback conn later on.
20072 	 */
20073 	ASSERT(!IRE_IS_LOCAL(ire));
20074 	ASSERT(ire->ire_stq != NULL);
20075 
20076 	ill = ire_to_ill(ire);
20077 	ASSERT(ill != NULL);
20078 	ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL);
20079 
20080 	if (!tcp->tcp_ire_ill_check_done) {
20081 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
20082 		tcp->tcp_ire_ill_check_done = B_TRUE;
20083 	}
20084 
20085 	/*
20086 	 * If the underlying interface conditions have changed, or if the
20087 	 * new interface does not support MDT, go back to legacy path.
20088 	 */
20089 	if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) {
20090 		/* don't go through this path anymore for this connection */
20091 		TCP_STAT(tcps, tcp_mdt_conn_halted2);
20092 		tcp->tcp_mdt = B_FALSE;
20093 		ip1dbg(("tcp_multisend: disabling MDT for connp %p on "
20094 		    "interface %s\n", (void *)connp, ill->ill_name));
20095 		/* IRE will be released prior to returning */
20096 		goto legacy_send_no_md;
20097 	}
20098 
20099 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)
20100 		zc_cap = ill->ill_zerocopy_capab;
20101 
20102 	/*
20103 	 * Check if we can take tcp fast-path. Note that "incomplete"
20104 	 * ire's (where the link-layer for next hop is not resolved
20105 	 * or where the fast-path header in nce_fp_mp is not available
20106 	 * yet) are sent down the legacy (slow) path.
20107 	 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA
20108 	 */
20109 	if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) {
20110 		/* IRE will be released prior to returning */
20111 		goto legacy_send_no_md;
20112 	}
20113 
20114 	/* go to legacy path if interface doesn't support zerocopy */
20115 	if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 &&
20116 	    (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) {
20117 		/* IRE will be released prior to returning */
20118 		goto legacy_send_no_md;
20119 	}
20120 
20121 	/* does the interface support hardware checksum offload? */
20122 	hwcksum_flags = 0;
20123 	if (ILL_HCKSUM_CAPABLE(ill) &&
20124 	    (ill->ill_hcksum_capab->ill_hcksum_txflags &
20125 	    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL |
20126 	    HCKSUM_IPHDRCKSUM)) && dohwcksum) {
20127 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
20128 		    HCKSUM_IPHDRCKSUM)
20129 			hwcksum_flags = HCK_IPV4_HDRCKSUM;
20130 
20131 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
20132 		    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6))
20133 			hwcksum_flags |= HCK_FULLCKSUM;
20134 		else if (ill->ill_hcksum_capab->ill_hcksum_txflags &
20135 		    HCKSUM_INET_PARTIAL)
20136 			hwcksum_flags |= HCK_PARTIALCKSUM;
20137 	}
20138 
20139 	/*
20140 	 * Each header fragment consists of the leading extra space,
20141 	 * followed by the TCP/IP header, and the trailing extra space.
20142 	 * We make sure that each header fragment begins on a 32-bit
20143 	 * aligned memory address (tcp_mdt_hdr_head is already 32-bit
20144 	 * aligned in tcp_mdt_update).
20145 	 */
20146 	hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len +
20147 	    tcp->tcp_mdt_hdr_tail), 4);
20148 
20149 	/* are we starting from the beginning of data block? */
20150 	if (*tail_unsent == 0) {
20151 		*xmit_tail = (*xmit_tail)->b_cont;
20152 		ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX);
20153 		*tail_unsent = (int)MBLKL(*xmit_tail);
20154 	}
20155 
20156 	/*
20157 	 * Here we create one or more Multidata messages, each made up of
20158 	 * one header buffer and up to N payload buffers.  This entire
20159 	 * operation is done within two loops:
20160 	 *
20161 	 * The outer loop mostly deals with creating the Multidata message,
20162 	 * as well as the header buffer that gets added to it.  It also
20163 	 * links the Multidata messages together such that all of them can
20164 	 * be sent down to the lower layer in a single putnext call; this
20165 	 * linking behavior depends on the tcp_mdt_chain tunable.
20166 	 *
20167 	 * The inner loop takes an existing Multidata message, and adds
20168 	 * one or more (up to tcp_mdt_max_pld) payload buffers to it.  It
20169 	 * packetizes those buffers by filling up the corresponding header
20170 	 * buffer fragments with the proper IP and TCP headers, and by
20171 	 * describing the layout of each packet in the packet descriptors
20172 	 * that get added to the Multidata.
20173 	 */
20174 	do {
20175 		/*
20176 		 * If usable send window is too small, or data blocks in
20177 		 * transmit list are smaller than our threshold (i.e. app
20178 		 * performs large writes followed by small ones), we hand
20179 		 * off the control over to the legacy path.  Note that we'll
20180 		 * get back the control once it encounters a large block.
20181 		 */
20182 		if (*usable < mss || (*tail_unsent <= mdt_thres &&
20183 		    (*xmit_tail)->b_cont != NULL &&
20184 		    MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) {
20185 			/* send down what we've got so far */
20186 			if (md_mp_head != NULL) {
20187 				tcp_multisend_data(tcp, ire, ill, md_mp_head,
20188 				    obsegs, obbytes, &rconfirm);
20189 			}
20190 			/*
20191 			 * Pass control over to tcp_send(), but tell it to
20192 			 * return to us once a large-size transmission is
20193 			 * possible.
20194 			 */
20195 			TCP_STAT(tcps, tcp_mdt_legacy_small);
20196 			if ((err = tcp_send(q, tcp, mss, tcp_hdr_len,
20197 			    tcp_tcp_hdr_len, num_sack_blk, usable, snxt,
20198 			    tail_unsent, xmit_tail, local_time,
20199 			    mdt_thres)) <= 0) {
20200 				/* burst count reached, or alloc failed */
20201 				IRE_REFRELE(ire);
20202 				return (err);
20203 			}
20204 
20205 			/* tcp_send() may have sent everything, so check */
20206 			if (*usable <= 0) {
20207 				IRE_REFRELE(ire);
20208 				return (0);
20209 			}
20210 
20211 			TCP_STAT(tcps, tcp_mdt_legacy_ret);
20212 			/*
20213 			 * We may have delivered the Multidata, so make sure
20214 			 * to re-initialize before the next round.
20215 			 */
20216 			md_mp_head = NULL;
20217 			obsegs = obbytes = 0;
20218 			num_burst_seg = tcp->tcp_snd_burst;
20219 			PREP_NEW_MULTIDATA();
20220 
20221 			/* are we starting from the beginning of data block? */
20222 			if (*tail_unsent == 0) {
20223 				*xmit_tail = (*xmit_tail)->b_cont;
20224 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20225 				    (uintptr_t)INT_MAX);
20226 				*tail_unsent = (int)MBLKL(*xmit_tail);
20227 			}
20228 		}
20229 		/*
20230 		 * Record current values for parameters we may need to pass
20231 		 * to tcp_send() or tcp_multisend_data(). We checkpoint at
20232 		 * each iteration of the outer loop (each multidata message
20233 		 * creation). If we have a failure in the inner loop, we send
20234 		 * any complete multidata messages we have before reverting
20235 		 * to using the traditional non-md path.
20236 		 */
20237 		snxt_mmd = *snxt;
20238 		usable_mmd = *usable;
20239 		xmit_tail_mmd = *xmit_tail;
20240 		tail_unsent_mmd = *tail_unsent;
20241 		obsegs_mmd = obsegs;
20242 		obbytes_mmd = obbytes;
20243 
20244 		/*
20245 		 * max_pld limits the number of mblks in tcp's transmit
20246 		 * queue that can be added to a Multidata message.  Once
20247 		 * this counter reaches zero, no more additional mblks
20248 		 * can be added to it.  What happens afterwards depends
20249 		 * on whether or not we are set to chain the Multidata
20250 		 * messages.  If we are to link them together, reset
20251 		 * max_pld to its original value (tcp_mdt_max_pld) and
20252 		 * prepare to create a new Multidata message which will
20253 		 * get linked to md_mp_head.  Else, leave it alone and
20254 		 * let the inner loop break on its own.
20255 		 */
20256 		if (tcp_mdt_chain && max_pld == 0)
20257 			PREP_NEW_MULTIDATA();
20258 
20259 		/* adding a payload buffer; re-initialize values */
20260 		if (add_buffer)
20261 			PREP_NEW_PBUF();
20262 
20263 		/*
20264 		 * If we don't have a Multidata, either because we just
20265 		 * (re)entered this outer loop, or after we branched off
20266 		 * to tcp_send above, setup the Multidata and header
20267 		 * buffer to be used.
20268 		 */
20269 		if (md_mp == NULL) {
20270 			int md_hbuflen;
20271 			uint32_t start, stuff;
20272 
20273 			/*
20274 			 * Calculate Multidata header buffer size large enough
20275 			 * to hold all of the headers that can possibly be
20276 			 * sent at this moment.  We'd rather over-estimate
20277 			 * the size than running out of space; this is okay
20278 			 * since this buffer is small anyway.
20279 			 */
20280 			md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz;
20281 
20282 			/*
20283 			 * Start and stuff offset for partial hardware
20284 			 * checksum offload; these are currently for IPv4.
20285 			 * For full checksum offload, they are set to zero.
20286 			 */
20287 			if ((hwcksum_flags & HCK_PARTIALCKSUM)) {
20288 				if (af == AF_INET) {
20289 					start = IP_SIMPLE_HDR_LENGTH;
20290 					stuff = IP_SIMPLE_HDR_LENGTH +
20291 					    TCP_CHECKSUM_OFFSET;
20292 				} else {
20293 					start = IPV6_HDR_LEN;
20294 					stuff = IPV6_HDR_LEN +
20295 					    TCP_CHECKSUM_OFFSET;
20296 				}
20297 			} else {
20298 				start = stuff = 0;
20299 			}
20300 
20301 			/*
20302 			 * Create the header buffer, Multidata, as well as
20303 			 * any necessary attributes (destination address,
20304 			 * SAP and hardware checksum offload) that should
20305 			 * be associated with the Multidata message.
20306 			 */
20307 			ASSERT(cur_hdr_off == 0);
20308 			if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL ||
20309 			    ((md_hbuf->b_wptr += md_hbuflen),
20310 			    (mmd = mmd_alloc(md_hbuf, &md_mp,
20311 			    KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd,
20312 			    /* fastpath mblk */
20313 			    ire->ire_nce->nce_res_mp,
20314 			    /* hardware checksum enabled */
20315 			    (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)),
20316 			    /* hardware checksum offsets */
20317 			    start, stuff, 0,
20318 			    /* hardware checksum flag */
20319 			    hwcksum_flags, tcps) != 0)) {
20320 legacy_send:
20321 				/*
20322 				 * We arrive here from a failure within the
20323 				 * inner (packetizer) loop or we fail one of
20324 				 * the conditionals above. We restore the
20325 				 * previously checkpointed values for:
20326 				 *    xmit_tail
20327 				 *    usable
20328 				 *    tail_unsent
20329 				 *    snxt
20330 				 *    obbytes
20331 				 *    obsegs
20332 				 * We should then be able to dispatch any
20333 				 * complete multidata before reverting to the
20334 				 * traditional path with consistent parameters
20335 				 * (the inner loop updates these as it
20336 				 * iterates).
20337 				 */
20338 				*xmit_tail = xmit_tail_mmd;
20339 				*usable = usable_mmd;
20340 				*tail_unsent = tail_unsent_mmd;
20341 				*snxt = snxt_mmd;
20342 				obbytes = obbytes_mmd;
20343 				obsegs = obsegs_mmd;
20344 				if (md_mp != NULL) {
20345 					/* Unlink message from the chain */
20346 					if (md_mp_head != NULL) {
20347 						err = (intptr_t)rmvb(md_mp_head,
20348 						    md_mp);
20349 						/*
20350 						 * We can't assert that rmvb
20351 						 * did not return -1, since we
20352 						 * may get here before linkb
20353 						 * happens.  We do, however,
20354 						 * check if we just removed the
20355 						 * only element in the list.
20356 						 */
20357 						if (err == 0)
20358 							md_mp_head = NULL;
20359 					}
20360 					/* md_hbuf gets freed automatically */
20361 					TCP_STAT(tcps, tcp_mdt_discarded);
20362 					freeb(md_mp);
20363 				} else {
20364 					/* Either allocb or mmd_alloc failed */
20365 					TCP_STAT(tcps, tcp_mdt_allocfail);
20366 					if (md_hbuf != NULL)
20367 						freeb(md_hbuf);
20368 				}
20369 
20370 				/* send down what we've got so far */
20371 				if (md_mp_head != NULL) {
20372 					tcp_multisend_data(tcp, ire, ill,
20373 					    md_mp_head, obsegs, obbytes,
20374 					    &rconfirm);
20375 				}
20376 legacy_send_no_md:
20377 				if (ire != NULL)
20378 					IRE_REFRELE(ire);
20379 				/*
20380 				 * Too bad; let the legacy path handle this.
20381 				 * We specify INT_MAX for the threshold, since
20382 				 * we gave up with the Multidata processings
20383 				 * and let the old path have it all.
20384 				 */
20385 				TCP_STAT(tcps, tcp_mdt_legacy_all);
20386 				return (tcp_send(q, tcp, mss, tcp_hdr_len,
20387 				    tcp_tcp_hdr_len, num_sack_blk, usable,
20388 				    snxt, tail_unsent, xmit_tail, local_time,
20389 				    INT_MAX));
20390 			}
20391 
20392 			/* link to any existing ones, if applicable */
20393 			TCP_STAT(tcps, tcp_mdt_allocd);
20394 			if (md_mp_head == NULL) {
20395 				md_mp_head = md_mp;
20396 			} else if (tcp_mdt_chain) {
20397 				TCP_STAT(tcps, tcp_mdt_linked);
20398 				linkb(md_mp_head, md_mp);
20399 			}
20400 		}
20401 
20402 		ASSERT(md_mp_head != NULL);
20403 		ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL);
20404 		ASSERT(md_mp != NULL && mmd != NULL);
20405 		ASSERT(md_hbuf != NULL);
20406 
20407 		/*
20408 		 * Packetize the transmittable portion of the data block;
20409 		 * each data block is essentially added to the Multidata
20410 		 * as a payload buffer.  We also deal with adding more
20411 		 * than one payload buffers, which happens when the remaining
20412 		 * packetized portion of the current payload buffer is less
20413 		 * than MSS, while the next data block in transmit queue
20414 		 * has enough data to make up for one.  This "spillover"
20415 		 * case essentially creates a split-packet, where portions
20416 		 * of the packet's payload fragments may span across two
20417 		 * virtually discontiguous address blocks.
20418 		 */
20419 		seg_len = mss;
20420 		do {
20421 			len = seg_len;
20422 
20423 			/* one must remain NULL for DTRACE_IP_FASTPATH */
20424 			ipha = NULL;
20425 			ip6h = NULL;
20426 
20427 			ASSERT(len > 0);
20428 			ASSERT(max_pld >= 0);
20429 			ASSERT(!add_buffer || cur_pld_off == 0);
20430 
20431 			/*
20432 			 * First time around for this payload buffer; note
20433 			 * in the case of a spillover, the following has
20434 			 * been done prior to adding the split-packet
20435 			 * descriptor to Multidata, and we don't want to
20436 			 * repeat the process.
20437 			 */
20438 			if (add_buffer) {
20439 				ASSERT(mmd != NULL);
20440 				ASSERT(md_pbuf == NULL);
20441 				ASSERT(md_pbuf_nxt == NULL);
20442 				ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1);
20443 
20444 				/*
20445 				 * Have we reached the limit?  We'd get to
20446 				 * this case when we're not chaining the
20447 				 * Multidata messages together, and since
20448 				 * we're done, terminate this loop.
20449 				 */
20450 				if (max_pld == 0)
20451 					break; /* done */
20452 
20453 				if ((md_pbuf = dupb(*xmit_tail)) == NULL) {
20454 					TCP_STAT(tcps, tcp_mdt_allocfail);
20455 					goto legacy_send; /* out_of_mem */
20456 				}
20457 
20458 				if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy &&
20459 				    zc_cap != NULL) {
20460 					if (!ip_md_zcopy_attr(mmd, NULL,
20461 					    zc_cap->ill_zerocopy_flags)) {
20462 						freeb(md_pbuf);
20463 						TCP_STAT(tcps,
20464 						    tcp_mdt_allocfail);
20465 						/* out_of_mem */
20466 						goto legacy_send;
20467 					}
20468 					zcopy = B_TRUE;
20469 				}
20470 
20471 				md_pbuf->b_rptr += base_pld_off;
20472 
20473 				/*
20474 				 * Add a payload buffer to the Multidata; this
20475 				 * operation must not fail, or otherwise our
20476 				 * logic in this routine is broken.  There
20477 				 * is no memory allocation done by the
20478 				 * routine, so any returned failure simply
20479 				 * tells us that we've done something wrong.
20480 				 *
20481 				 * A failure tells us that either we're adding
20482 				 * the same payload buffer more than once, or
20483 				 * we're trying to add more buffers than
20484 				 * allowed (max_pld calculation is wrong).
20485 				 * None of the above cases should happen, and
20486 				 * we panic because either there's horrible
20487 				 * heap corruption, and/or programming mistake.
20488 				 */
20489 				pbuf_idx = mmd_addpldbuf(mmd, md_pbuf);
20490 				if (pbuf_idx < 0) {
20491 					cmn_err(CE_PANIC, "tcp_multisend: "
20492 					    "payload buffer logic error "
20493 					    "detected for tcp %p mmd %p "
20494 					    "pbuf %p (%d)\n",
20495 					    (void *)tcp, (void *)mmd,
20496 					    (void *)md_pbuf, pbuf_idx);
20497 				}
20498 
20499 				ASSERT(max_pld > 0);
20500 				--max_pld;
20501 				add_buffer = B_FALSE;
20502 			}
20503 
20504 			ASSERT(md_mp_head != NULL);
20505 			ASSERT(md_pbuf != NULL);
20506 			ASSERT(md_pbuf_nxt == NULL);
20507 			ASSERT(pbuf_idx != -1);
20508 			ASSERT(pbuf_idx_nxt == -1);
20509 			ASSERT(*usable > 0);
20510 
20511 			/*
20512 			 * We spillover to the next payload buffer only
20513 			 * if all of the following is true:
20514 			 *
20515 			 *   1. There is not enough data on the current
20516 			 *	payload buffer to make up `len',
20517 			 *   2. We are allowed to send `len',
20518 			 *   3. The next payload buffer length is large
20519 			 *	enough to accomodate `spill'.
20520 			 */
20521 			if ((spill = len - *tail_unsent) > 0 &&
20522 			    *usable >= len &&
20523 			    MBLKL((*xmit_tail)->b_cont) >= spill &&
20524 			    max_pld > 0) {
20525 				md_pbuf_nxt = dupb((*xmit_tail)->b_cont);
20526 				if (md_pbuf_nxt == NULL) {
20527 					TCP_STAT(tcps, tcp_mdt_allocfail);
20528 					goto legacy_send; /* out_of_mem */
20529 				}
20530 
20531 				if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy &&
20532 				    zc_cap != NULL) {
20533 					if (!ip_md_zcopy_attr(mmd, NULL,
20534 					    zc_cap->ill_zerocopy_flags)) {
20535 						freeb(md_pbuf_nxt);
20536 						TCP_STAT(tcps,
20537 						    tcp_mdt_allocfail);
20538 						/* out_of_mem */
20539 						goto legacy_send;
20540 					}
20541 					zcopy = B_TRUE;
20542 				}
20543 
20544 				/*
20545 				 * See comments above on the first call to
20546 				 * mmd_addpldbuf for explanation on the panic.
20547 				 */
20548 				pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt);
20549 				if (pbuf_idx_nxt < 0) {
20550 					panic("tcp_multisend: "
20551 					    "next payload buffer logic error "
20552 					    "detected for tcp %p mmd %p "
20553 					    "pbuf %p (%d)\n",
20554 					    (void *)tcp, (void *)mmd,
20555 					    (void *)md_pbuf_nxt, pbuf_idx_nxt);
20556 				}
20557 
20558 				ASSERT(max_pld > 0);
20559 				--max_pld;
20560 			} else if (spill > 0) {
20561 				/*
20562 				 * If there's a spillover, but the following
20563 				 * xmit_tail couldn't give us enough octets
20564 				 * to reach "len", then stop the current
20565 				 * Multidata creation and let the legacy
20566 				 * tcp_send() path take over.  We don't want
20567 				 * to send the tiny segment as part of this
20568 				 * Multidata for performance reasons; instead,
20569 				 * we let the legacy path deal with grouping
20570 				 * it with the subsequent small mblks.
20571 				 */
20572 				if (*usable >= len &&
20573 				    MBLKL((*xmit_tail)->b_cont) < spill) {
20574 					max_pld = 0;
20575 					break;	/* done */
20576 				}
20577 
20578 				/*
20579 				 * We can't spillover, and we are near
20580 				 * the end of the current payload buffer,
20581 				 * so send what's left.
20582 				 */
20583 				ASSERT(*tail_unsent > 0);
20584 				len = *tail_unsent;
20585 			}
20586 
20587 			/* tail_unsent is negated if there is a spillover */
20588 			*tail_unsent -= len;
20589 			*usable -= len;
20590 			ASSERT(*usable >= 0);
20591 
20592 			if (*usable < mss)
20593 				seg_len = *usable;
20594 			/*
20595 			 * Sender SWS avoidance; see comments in tcp_send();
20596 			 * everything else is the same, except that we only
20597 			 * do this here if there is no more data to be sent
20598 			 * following the current xmit_tail.  We don't check
20599 			 * for 1-byte urgent data because we shouldn't get
20600 			 * here if TCP_URG_VALID is set.
20601 			 */
20602 			if (*usable > 0 && *usable < mss &&
20603 			    ((md_pbuf_nxt == NULL &&
20604 			    (*xmit_tail)->b_cont == NULL) ||
20605 			    (md_pbuf_nxt != NULL &&
20606 			    (*xmit_tail)->b_cont->b_cont == NULL)) &&
20607 			    seg_len < (tcp->tcp_max_swnd >> 1) &&
20608 			    (tcp->tcp_unsent -
20609 			    ((*snxt + len) - tcp->tcp_snxt)) > seg_len &&
20610 			    !tcp->tcp_zero_win_probe) {
20611 				if ((*snxt + len) == tcp->tcp_snxt &&
20612 				    (*snxt + len) == tcp->tcp_suna) {
20613 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20614 				}
20615 				done = B_TRUE;
20616 			}
20617 
20618 			/*
20619 			 * Prime pump for IP's checksumming on our behalf;
20620 			 * include the adjustment for a source route if any.
20621 			 * Do this only for software/partial hardware checksum
20622 			 * offload, as this field gets zeroed out later for
20623 			 * the full hardware checksum offload case.
20624 			 */
20625 			if (!(hwcksum_flags & HCK_FULLCKSUM)) {
20626 				cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
20627 				cksum = (cksum >> 16) + (cksum & 0xFFFF);
20628 				U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum);
20629 			}
20630 
20631 			U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq);
20632 			*snxt += len;
20633 
20634 			tcp->tcp_tcph->th_flags[0] = TH_ACK;
20635 			/*
20636 			 * We set the PUSH bit only if TCP has no more buffered
20637 			 * data to be transmitted (or if sender SWS avoidance
20638 			 * takes place), as opposed to setting it for every
20639 			 * last packet in the burst.
20640 			 */
20641 			if (done ||
20642 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0)
20643 				tcp->tcp_tcph->th_flags[0] |= TH_PUSH;
20644 
20645 			/*
20646 			 * Set FIN bit if this is our last segment; snxt
20647 			 * already includes its length, and it will not
20648 			 * be adjusted after this point.
20649 			 */
20650 			if (tcp->tcp_valid_bits == TCP_FSS_VALID &&
20651 			    *snxt == tcp->tcp_fss) {
20652 				if (!tcp->tcp_fin_acked) {
20653 					tcp->tcp_tcph->th_flags[0] |= TH_FIN;
20654 					BUMP_MIB(&tcps->tcps_mib,
20655 					    tcpOutControl);
20656 				}
20657 				if (!tcp->tcp_fin_sent) {
20658 					tcp->tcp_fin_sent = B_TRUE;
20659 					/*
20660 					 * tcp state must be ESTABLISHED
20661 					 * in order for us to get here in
20662 					 * the first place.
20663 					 */
20664 					tcp->tcp_state = TCPS_FIN_WAIT_1;
20665 
20666 					/*
20667 					 * Upon returning from this routine,
20668 					 * tcp_wput_data() will set tcp_snxt
20669 					 * to be equal to snxt + tcp_fin_sent.
20670 					 * This is essentially the same as
20671 					 * setting it to tcp_fss + 1.
20672 					 */
20673 				}
20674 			}
20675 
20676 			tcp->tcp_last_sent_len = (ushort_t)len;
20677 
20678 			len += tcp_hdr_len;
20679 			if (tcp->tcp_ipversion == IPV4_VERSION)
20680 				tcp->tcp_ipha->ipha_length = htons(len);
20681 			else
20682 				tcp->tcp_ip6h->ip6_plen = htons(len -
20683 				    ((char *)&tcp->tcp_ip6h[1] -
20684 				    tcp->tcp_iphc));
20685 
20686 			pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF);
20687 
20688 			/* setup header fragment */
20689 			PDESC_HDR_ADD(pkt_info,
20690 			    md_hbuf->b_rptr + cur_hdr_off,	/* base */
20691 			    tcp->tcp_mdt_hdr_head,		/* head room */
20692 			    tcp_hdr_len,			/* len */
20693 			    tcp->tcp_mdt_hdr_tail);		/* tail room */
20694 
20695 			ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base ==
20696 			    hdr_frag_sz);
20697 			ASSERT(MBLKIN(md_hbuf,
20698 			    (pkt_info->hdr_base - md_hbuf->b_rptr),
20699 			    PDESC_HDRSIZE(pkt_info)));
20700 
20701 			/* setup first payload fragment */
20702 			PDESC_PLD_INIT(pkt_info);
20703 			PDESC_PLD_SPAN_ADD(pkt_info,
20704 			    pbuf_idx,				/* index */
20705 			    md_pbuf->b_rptr + cur_pld_off,	/* start */
20706 			    tcp->tcp_last_sent_len);		/* len */
20707 
20708 			/* create a split-packet in case of a spillover */
20709 			if (md_pbuf_nxt != NULL) {
20710 				ASSERT(spill > 0);
20711 				ASSERT(pbuf_idx_nxt > pbuf_idx);
20712 				ASSERT(!add_buffer);
20713 
20714 				md_pbuf = md_pbuf_nxt;
20715 				md_pbuf_nxt = NULL;
20716 				pbuf_idx = pbuf_idx_nxt;
20717 				pbuf_idx_nxt = -1;
20718 				cur_pld_off = spill;
20719 
20720 				/* trim out first payload fragment */
20721 				PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill);
20722 
20723 				/* setup second payload fragment */
20724 				PDESC_PLD_SPAN_ADD(pkt_info,
20725 				    pbuf_idx,			/* index */
20726 				    md_pbuf->b_rptr,		/* start */
20727 				    spill);			/* len */
20728 
20729 				if ((*xmit_tail)->b_next == NULL) {
20730 					/*
20731 					 * Store the lbolt used for RTT
20732 					 * estimation. We can only record one
20733 					 * timestamp per mblk so we do it when
20734 					 * we reach the end of the payload
20735 					 * buffer.  Also we only take a new
20736 					 * timestamp sample when the previous
20737 					 * timed data from the same mblk has
20738 					 * been ack'ed.
20739 					 */
20740 					(*xmit_tail)->b_prev = local_time;
20741 					(*xmit_tail)->b_next =
20742 					    (mblk_t *)(uintptr_t)first_snxt;
20743 				}
20744 
20745 				first_snxt = *snxt - spill;
20746 
20747 				/*
20748 				 * Advance xmit_tail; usable could be 0 by
20749 				 * the time we got here, but we made sure
20750 				 * above that we would only spillover to
20751 				 * the next data block if usable includes
20752 				 * the spilled-over amount prior to the
20753 				 * subtraction.  Therefore, we are sure
20754 				 * that xmit_tail->b_cont can't be NULL.
20755 				 */
20756 				ASSERT((*xmit_tail)->b_cont != NULL);
20757 				*xmit_tail = (*xmit_tail)->b_cont;
20758 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20759 				    (uintptr_t)INT_MAX);
20760 				*tail_unsent = (int)MBLKL(*xmit_tail) - spill;
20761 			} else {
20762 				cur_pld_off += tcp->tcp_last_sent_len;
20763 			}
20764 
20765 			/*
20766 			 * Fill in the header using the template header, and
20767 			 * add options such as time-stamp, ECN and/or SACK,
20768 			 * as needed.
20769 			 */
20770 			tcp_fill_header(tcp, pkt_info->hdr_rptr,
20771 			    (clock_t)local_time, num_sack_blk);
20772 
20773 			/* take care of some IP header businesses */
20774 			if (af == AF_INET) {
20775 				ipha = (ipha_t *)pkt_info->hdr_rptr;
20776 
20777 				ASSERT(OK_32PTR((uchar_t *)ipha));
20778 				ASSERT(PDESC_HDRL(pkt_info) >=
20779 				    IP_SIMPLE_HDR_LENGTH);
20780 				ASSERT(ipha->ipha_version_and_hdr_length ==
20781 				    IP_SIMPLE_HDR_VERSION);
20782 
20783 				/*
20784 				 * Assign ident value for current packet; see
20785 				 * related comments in ip_wput_ire() about the
20786 				 * contract private interface with clustering
20787 				 * group.
20788 				 */
20789 				clusterwide = B_FALSE;
20790 				if (cl_inet_ipident != NULL) {
20791 					ASSERT(cl_inet_isclusterwide != NULL);
20792 					if ((*cl_inet_isclusterwide)(stack_id,
20793 					    IPPROTO_IP, AF_INET,
20794 					    (uint8_t *)(uintptr_t)src, NULL)) {
20795 						ipha->ipha_ident =
20796 						    (*cl_inet_ipident)(stack_id,
20797 						    IPPROTO_IP, AF_INET,
20798 						    (uint8_t *)(uintptr_t)src,
20799 						    (uint8_t *)(uintptr_t)dst,
20800 						    NULL);
20801 						clusterwide = B_TRUE;
20802 					}
20803 				}
20804 
20805 				if (!clusterwide) {
20806 					ipha->ipha_ident = (uint16_t)
20807 					    atomic_add_32_nv(
20808 						&ire->ire_ident, 1);
20809 				}
20810 #ifndef _BIG_ENDIAN
20811 				ipha->ipha_ident = (ipha->ipha_ident << 8) |
20812 				    (ipha->ipha_ident >> 8);
20813 #endif
20814 			} else {
20815 				ip6h = (ip6_t *)pkt_info->hdr_rptr;
20816 
20817 				ASSERT(OK_32PTR((uchar_t *)ip6h));
20818 				ASSERT(IPVER(ip6h) == IPV6_VERSION);
20819 				ASSERT(ip6h->ip6_nxt == IPPROTO_TCP);
20820 				ASSERT(PDESC_HDRL(pkt_info) >=
20821 				    (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET +
20822 				    TCP_CHECKSUM_SIZE));
20823 				ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
20824 
20825 				if (tcp->tcp_ip_forward_progress) {
20826 					rconfirm = B_TRUE;
20827 					tcp->tcp_ip_forward_progress = B_FALSE;
20828 				}
20829 			}
20830 
20831 			/* at least one payload span, and at most two */
20832 			ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3);
20833 
20834 			/* add the packet descriptor to Multidata */
20835 			if ((pkt = mmd_addpdesc(mmd, pkt_info, &err,
20836 			    KM_NOSLEEP)) == NULL) {
20837 				/*
20838 				 * Any failure other than ENOMEM indicates
20839 				 * that we have passed in invalid pkt_info
20840 				 * or parameters to mmd_addpdesc, which must
20841 				 * not happen.
20842 				 *
20843 				 * EINVAL is a result of failure on boundary
20844 				 * checks against the pkt_info contents.  It
20845 				 * should not happen, and we panic because
20846 				 * either there's horrible heap corruption,
20847 				 * and/or programming mistake.
20848 				 */
20849 				if (err != ENOMEM) {
20850 					cmn_err(CE_PANIC, "tcp_multisend: "
20851 					    "pdesc logic error detected for "
20852 					    "tcp %p mmd %p pinfo %p (%d)\n",
20853 					    (void *)tcp, (void *)mmd,
20854 					    (void *)pkt_info, err);
20855 				}
20856 				TCP_STAT(tcps, tcp_mdt_addpdescfail);
20857 				goto legacy_send; /* out_of_mem */
20858 			}
20859 			ASSERT(pkt != NULL);
20860 
20861 			/* calculate IP header and TCP checksums */
20862 			if (af == AF_INET) {
20863 				/* calculate pseudo-header checksum */
20864 				cksum = (dst >> 16) + (dst & 0xFFFF) +
20865 				    (src >> 16) + (src & 0xFFFF);
20866 
20867 				/* offset for TCP header checksum */
20868 				up = IPH_TCPH_CHECKSUMP(ipha,
20869 				    IP_SIMPLE_HDR_LENGTH);
20870 			} else {
20871 				up = (uint16_t *)&ip6h->ip6_src;
20872 
20873 				/* calculate pseudo-header checksum */
20874 				cksum = up[0] + up[1] + up[2] + up[3] +
20875 				    up[4] + up[5] + up[6] + up[7] +
20876 				    up[8] + up[9] + up[10] + up[11] +
20877 				    up[12] + up[13] + up[14] + up[15];
20878 
20879 				/* Fold the initial sum */
20880 				cksum = (cksum & 0xffff) + (cksum >> 16);
20881 
20882 				up = (uint16_t *)(((uchar_t *)ip6h) +
20883 				    IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET);
20884 			}
20885 
20886 			if (hwcksum_flags & HCK_FULLCKSUM) {
20887 				/* clear checksum field for hardware */
20888 				*up = 0;
20889 			} else if (hwcksum_flags & HCK_PARTIALCKSUM) {
20890 				uint32_t sum;
20891 
20892 				/* pseudo-header checksumming */
20893 				sum = *up + cksum + IP_TCP_CSUM_COMP;
20894 				sum = (sum & 0xFFFF) + (sum >> 16);
20895 				*up = (sum & 0xFFFF) + (sum >> 16);
20896 			} else {
20897 				/* software checksumming */
20898 				TCP_STAT(tcps, tcp_out_sw_cksum);
20899 				TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
20900 				    tcp->tcp_hdr_len + tcp->tcp_last_sent_len);
20901 				*up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len,
20902 				    cksum + IP_TCP_CSUM_COMP);
20903 				if (*up == 0)
20904 					*up = 0xFFFF;
20905 			}
20906 
20907 			/* IPv4 header checksum */
20908 			if (af == AF_INET) {
20909 				if (hwcksum_flags & HCK_IPV4_HDRCKSUM) {
20910 					ipha->ipha_hdr_checksum = 0;
20911 				} else {
20912 					IP_HDR_CKSUM(ipha, cksum,
20913 					    ((uint32_t *)ipha)[0],
20914 					    ((uint16_t *)ipha)[4]);
20915 				}
20916 			}
20917 
20918 			if (af == AF_INET &&
20919 			    HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) ||
20920 			    af == AF_INET6 &&
20921 			    HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) {
20922 				mblk_t	*mp, *mp1;
20923 				uchar_t	*hdr_rptr, *hdr_wptr;
20924 				uchar_t	*pld_rptr, *pld_wptr;
20925 
20926 				/*
20927 				 * We reconstruct a pseudo packet for the hooks
20928 				 * framework using mmd_transform_link().
20929 				 * If it is a split packet we pullup the
20930 				 * payload. FW_HOOKS expects a pkt comprising
20931 				 * of two mblks: a header and the payload.
20932 				 */
20933 				if ((mp = mmd_transform_link(pkt)) == NULL) {
20934 					TCP_STAT(tcps, tcp_mdt_allocfail);
20935 					goto legacy_send;
20936 				}
20937 
20938 				if (pkt_info->pld_cnt > 1) {
20939 					/* split payload, more than one pld */
20940 					if ((mp1 = msgpullup(mp->b_cont, -1)) ==
20941 					    NULL) {
20942 						freemsg(mp);
20943 						TCP_STAT(tcps,
20944 						    tcp_mdt_allocfail);
20945 						goto legacy_send;
20946 					}
20947 					freemsg(mp->b_cont);
20948 					mp->b_cont = mp1;
20949 				} else {
20950 					mp1 = mp->b_cont;
20951 				}
20952 				ASSERT(mp1 != NULL && mp1->b_cont == NULL);
20953 
20954 				/*
20955 				 * Remember the message offsets. This is so we
20956 				 * can detect changes when we return from the
20957 				 * FW_HOOKS callbacks.
20958 				 */
20959 				hdr_rptr = mp->b_rptr;
20960 				hdr_wptr = mp->b_wptr;
20961 				pld_rptr = mp->b_cont->b_rptr;
20962 				pld_wptr = mp->b_cont->b_wptr;
20963 
20964 				if (af == AF_INET) {
20965 					DTRACE_PROBE4(
20966 					    ip4__physical__out__start,
20967 					    ill_t *, NULL,
20968 					    ill_t *, ill,
20969 					    ipha_t *, ipha,
20970 					    mblk_t *, mp);
20971 					FW_HOOKS(
20972 					    ipst->ips_ip4_physical_out_event,
20973 					    ipst->ips_ipv4firewall_physical_out,
20974 					    NULL, ill, ipha, mp, mp, 0, ipst);
20975 					DTRACE_PROBE1(
20976 					    ip4__physical__out__end,
20977 					    mblk_t *, mp);
20978 				} else {
20979 					DTRACE_PROBE4(
20980 					    ip6__physical__out_start,
20981 					    ill_t *, NULL,
20982 					    ill_t *, ill,
20983 					    ip6_t *, ip6h,
20984 					    mblk_t *, mp);
20985 					FW_HOOKS6(
20986 					    ipst->ips_ip6_physical_out_event,
20987 					    ipst->ips_ipv6firewall_physical_out,
20988 					    NULL, ill, ip6h, mp, mp, 0, ipst);
20989 					DTRACE_PROBE1(
20990 					    ip6__physical__out__end,
20991 					    mblk_t *, mp);
20992 				}
20993 
20994 				if (mp == NULL ||
20995 				    (mp1 = mp->b_cont) == NULL ||
20996 				    mp->b_rptr != hdr_rptr ||
20997 				    mp->b_wptr != hdr_wptr ||
20998 				    mp1->b_rptr != pld_rptr ||
20999 				    mp1->b_wptr != pld_wptr ||
21000 				    mp1->b_cont != NULL) {
21001 					/*
21002 					 * We abandon multidata processing and
21003 					 * return to the normal path, either
21004 					 * when a packet is blocked, or when
21005 					 * the boundaries of header buffer or
21006 					 * payload buffer have been changed by
21007 					 * FW_HOOKS[6].
21008 					 */
21009 					if (mp != NULL)
21010 						freemsg(mp);
21011 					goto legacy_send;
21012 				}
21013 				/* Finished with the pseudo packet */
21014 				freemsg(mp);
21015 			}
21016 			DTRACE_IP_FASTPATH(md_hbuf, pkt_info->hdr_rptr,
21017 			    ill, ipha, ip6h);
21018 			/* advance header offset */
21019 			cur_hdr_off += hdr_frag_sz;
21020 
21021 			obbytes += tcp->tcp_last_sent_len;
21022 			++obsegs;
21023 		} while (!done && *usable > 0 && --num_burst_seg > 0 &&
21024 		    *tail_unsent > 0);
21025 
21026 		if ((*xmit_tail)->b_next == NULL) {
21027 			/*
21028 			 * Store the lbolt used for RTT estimation. We can only
21029 			 * record one timestamp per mblk so we do it when we
21030 			 * reach the end of the payload buffer. Also we only
21031 			 * take a new timestamp sample when the previous timed
21032 			 * data from the same mblk has been ack'ed.
21033 			 */
21034 			(*xmit_tail)->b_prev = local_time;
21035 			(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt;
21036 		}
21037 
21038 		ASSERT(*tail_unsent >= 0);
21039 		if (*tail_unsent > 0) {
21040 			/*
21041 			 * We got here because we broke out of the above
21042 			 * loop due to of one of the following cases:
21043 			 *
21044 			 *   1. len < adjusted MSS (i.e. small),
21045 			 *   2. Sender SWS avoidance,
21046 			 *   3. max_pld is zero.
21047 			 *
21048 			 * We are done for this Multidata, so trim our
21049 			 * last payload buffer (if any) accordingly.
21050 			 */
21051 			if (md_pbuf != NULL)
21052 				md_pbuf->b_wptr -= *tail_unsent;
21053 		} else if (*usable > 0) {
21054 			*xmit_tail = (*xmit_tail)->b_cont;
21055 			ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
21056 			    (uintptr_t)INT_MAX);
21057 			*tail_unsent = (int)MBLKL(*xmit_tail);
21058 			add_buffer = B_TRUE;
21059 		}
21060 	} while (!done && *usable > 0 && num_burst_seg > 0 &&
21061 	    (tcp_mdt_chain || max_pld > 0));
21062 
21063 	if (md_mp_head != NULL) {
21064 		/* send everything down */
21065 		tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes,
21066 		    &rconfirm);
21067 	}
21068 
21069 #undef PREP_NEW_MULTIDATA
21070 #undef PREP_NEW_PBUF
21071 #undef IPVER
21072 
21073 	IRE_REFRELE(ire);
21074 	return (0);
21075 }
21076 
21077 /*
21078  * A wrapper function for sending one or more Multidata messages down to
21079  * the module below ip; this routine does not release the reference of the
21080  * IRE (caller does that).  This routine is analogous to tcp_send_data().
21081  */
21082 static void
21083 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head,
21084     const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm)
21085 {
21086 	uint64_t delta;
21087 	nce_t *nce;
21088 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21089 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
21090 
21091 	ASSERT(ire != NULL && ill != NULL);
21092 	ASSERT(ire->ire_stq != NULL);
21093 	ASSERT(md_mp_head != NULL);
21094 	ASSERT(rconfirm != NULL);
21095 
21096 	/* adjust MIBs and IRE timestamp */
21097 	DTRACE_PROBE2(tcp__trace__send, mblk_t *, md_mp_head, tcp_t *, tcp);
21098 	tcp->tcp_obsegs += obsegs;
21099 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs);
21100 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes);
21101 	TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs);
21102 
21103 	if (tcp->tcp_ipversion == IPV4_VERSION) {
21104 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs);
21105 	} else {
21106 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs);
21107 	}
21108 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs);
21109 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs);
21110 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes);
21111 
21112 	ire->ire_ob_pkt_count += obsegs;
21113 	if (ire->ire_ipif != NULL)
21114 		atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs);
21115 	ire->ire_last_used_time = lbolt;
21116 
21117 	if (ipst->ips_ipobs_enabled) {
21118 		multidata_t *dlmdp = mmd_getmultidata(md_mp_head);
21119 		pdesc_t *dl_pkt;
21120 		pdescinfo_t pinfo;
21121 		mblk_t *nmp;
21122 		zoneid_t szone = tcp->tcp_connp->conn_zoneid;
21123 
21124 		for (dl_pkt = mmd_getfirstpdesc(dlmdp, &pinfo);
21125 		    (dl_pkt != NULL);
21126 		    dl_pkt = mmd_getnextpdesc(dl_pkt, &pinfo)) {
21127 			if ((nmp = mmd_transform_link(dl_pkt)) == NULL)
21128 				continue;
21129 			ipobs_hook(nmp, IPOBS_HOOK_OUTBOUND, szone,
21130 			    ALL_ZONES, ill, tcp->tcp_ipversion, 0, ipst);
21131 			freemsg(nmp);
21132 		}
21133 	}
21134 
21135 	/* send it down */
21136 	putnext(ire->ire_stq, md_mp_head);
21137 
21138 	/* we're done for TCP/IPv4 */
21139 	if (tcp->tcp_ipversion == IPV4_VERSION)
21140 		return;
21141 
21142 	nce = ire->ire_nce;
21143 
21144 	ASSERT(nce != NULL);
21145 	ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT)));
21146 	ASSERT(nce->nce_state != ND_INCOMPLETE);
21147 
21148 	/* reachability confirmation? */
21149 	if (*rconfirm) {
21150 		nce->nce_last = TICK_TO_MSEC(lbolt64);
21151 		if (nce->nce_state != ND_REACHABLE) {
21152 			mutex_enter(&nce->nce_lock);
21153 			nce->nce_state = ND_REACHABLE;
21154 			nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT;
21155 			mutex_exit(&nce->nce_lock);
21156 			(void) untimeout(nce->nce_timeout_id);
21157 			if (ip_debug > 2) {
21158 				/* ip1dbg */
21159 				pr_addr_dbg("tcp_multisend_data: state "
21160 				    "for %s changed to REACHABLE\n",
21161 				    AF_INET6, &ire->ire_addr_v6);
21162 			}
21163 		}
21164 		/* reset transport reachability confirmation */
21165 		*rconfirm = B_FALSE;
21166 	}
21167 
21168 	delta =  TICK_TO_MSEC(lbolt64) - nce->nce_last;
21169 	ip1dbg(("tcp_multisend_data: delta = %" PRId64
21170 	    " ill_reachable_time = %d \n", delta, ill->ill_reachable_time));
21171 
21172 	if (delta > (uint64_t)ill->ill_reachable_time) {
21173 		mutex_enter(&nce->nce_lock);
21174 		switch (nce->nce_state) {
21175 		case ND_REACHABLE:
21176 		case ND_STALE:
21177 			/*
21178 			 * ND_REACHABLE is identical to ND_STALE in this
21179 			 * specific case. If reachable time has expired for
21180 			 * this neighbor (delta is greater than reachable
21181 			 * time), conceptually, the neighbor cache is no
21182 			 * longer in REACHABLE state, but already in STALE
21183 			 * state.  So the correct transition here is to
21184 			 * ND_DELAY.
21185 			 */
21186 			nce->nce_state = ND_DELAY;
21187 			mutex_exit(&nce->nce_lock);
21188 			NDP_RESTART_TIMER(nce,
21189 			    ipst->ips_delay_first_probe_time);
21190 			if (ip_debug > 3) {
21191 				/* ip2dbg */
21192 				pr_addr_dbg("tcp_multisend_data: state "
21193 				    "for %s changed to DELAY\n",
21194 				    AF_INET6, &ire->ire_addr_v6);
21195 			}
21196 			break;
21197 		case ND_DELAY:
21198 		case ND_PROBE:
21199 			mutex_exit(&nce->nce_lock);
21200 			/* Timers have already started */
21201 			break;
21202 		case ND_UNREACHABLE:
21203 			/*
21204 			 * ndp timer has detected that this nce is
21205 			 * unreachable and initiated deleting this nce
21206 			 * and all its associated IREs. This is a race
21207 			 * where we found the ire before it was deleted
21208 			 * and have just sent out a packet using this
21209 			 * unreachable nce.
21210 			 */
21211 			mutex_exit(&nce->nce_lock);
21212 			break;
21213 		default:
21214 			ASSERT(0);
21215 		}
21216 	}
21217 }
21218 
21219 /*
21220  * Derived from tcp_send_data().
21221  */
21222 static void
21223 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss,
21224     int num_lso_seg)
21225 {
21226 	ipha_t		*ipha;
21227 	mblk_t		*ire_fp_mp;
21228 	uint_t		ire_fp_mp_len;
21229 	uint32_t	hcksum_txflags = 0;
21230 	ipaddr_t	src;
21231 	ipaddr_t	dst;
21232 	uint32_t	cksum;
21233 	uint16_t	*up;
21234 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21235 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
21236 
21237 	ASSERT(DB_TYPE(mp) == M_DATA);
21238 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
21239 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
21240 	ASSERT(tcp->tcp_connp != NULL);
21241 	ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp));
21242 
21243 	ipha = (ipha_t *)mp->b_rptr;
21244 	src = ipha->ipha_src;
21245 	dst = ipha->ipha_dst;
21246 
21247 	DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp);
21248 
21249 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
21250 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident,
21251 	    num_lso_seg);
21252 #ifndef _BIG_ENDIAN
21253 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
21254 #endif
21255 	if (tcp->tcp_snd_zcopy_aware) {
21256 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
21257 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
21258 			mp = tcp_zcopy_disable(tcp, mp);
21259 	}
21260 
21261 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
21262 		ASSERT(ill->ill_hcksum_capab != NULL);
21263 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
21264 	}
21265 
21266 	/*
21267 	 * Since the TCP checksum should be recalculated by h/w, we can just
21268 	 * zero the checksum field for HCK_FULLCKSUM, or calculate partial
21269 	 * pseudo-header checksum for HCK_PARTIALCKSUM.
21270 	 * The partial pseudo-header excludes TCP length, that was calculated
21271 	 * in tcp_send(), so to zero *up before further processing.
21272 	 */
21273 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
21274 
21275 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
21276 	*up = 0;
21277 
21278 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
21279 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
21280 
21281 	/*
21282 	 * Append LSO flags and mss to the mp.
21283 	 */
21284 	lso_info_set(mp, mss, HW_LSO);
21285 
21286 	ipha->ipha_fragment_offset_and_flags |=
21287 	    (uint32_t)htons(ire->ire_frag_flag);
21288 
21289 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
21290 	ire_fp_mp_len = MBLKL(ire_fp_mp);
21291 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
21292 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
21293 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
21294 
21295 	UPDATE_OB_PKT_COUNT(ire);
21296 	ire->ire_last_used_time = lbolt;
21297 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
21298 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
21299 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
21300 	    ntohs(ipha->ipha_length));
21301 
21302 	DTRACE_PROBE4(ip4__physical__out__start,
21303 	    ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp);
21304 	FW_HOOKS(ipst->ips_ip4_physical_out_event,
21305 	    ipst->ips_ipv4firewall_physical_out, NULL,
21306 	    ill, ipha, mp, mp, 0, ipst);
21307 	DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
21308 	DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL);
21309 
21310 	if (mp != NULL) {
21311 		if (ipst->ips_ipobs_enabled) {
21312 			zoneid_t szone;
21313 
21314 			szone = ip_get_zoneid_v4(ipha->ipha_src, mp,
21315 			    ipst, ALL_ZONES);
21316 			ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone,
21317 			    ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, ipst);
21318 		}
21319 
21320 		ILL_SEND_TX(ill, ire, tcp->tcp_connp, mp, 0);
21321 	}
21322 }
21323 
21324 /*
21325  * tcp_send() is called by tcp_wput_data() for non-Multidata transmission
21326  * scheme, and returns one of the following:
21327  *
21328  * -1 = failed allocation.
21329  *  0 = success; burst count reached, or usable send window is too small,
21330  *      and that we'd rather wait until later before sending again.
21331  *  1 = success; we are called from tcp_multisend(), and both usable send
21332  *      window and tail_unsent are greater than the MDT threshold, and thus
21333  *      Multidata Transmit should be used instead.
21334  */
21335 static int
21336 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
21337     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
21338     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
21339     const int mdt_thres)
21340 {
21341 	int num_burst_seg = tcp->tcp_snd_burst;
21342 	ire_t		*ire = NULL;
21343 	ill_t		*ill = NULL;
21344 	mblk_t		*ire_fp_mp = NULL;
21345 	uint_t		ire_fp_mp_len = 0;
21346 	int		num_lso_seg = 1;
21347 	uint_t		lso_usable;
21348 	boolean_t	do_lso_send = B_FALSE;
21349 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21350 
21351 	/*
21352 	 * Check LSO capability before any further work. And the similar check
21353 	 * need to be done in for(;;) loop.
21354 	 * LSO will be deployed when therer is more than one mss of available
21355 	 * data and a burst transmission is allowed.
21356 	 */
21357 	if (tcp->tcp_lso &&
21358 	    (tcp->tcp_valid_bits == 0 ||
21359 	    tcp->tcp_valid_bits == TCP_FSS_VALID) &&
21360 	    num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
21361 		/*
21362 		 * Try to find usable IRE/ILL and do basic check to the ILL.
21363 		 */
21364 		if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill)) {
21365 			/*
21366 			 * Enable LSO with this transmission.
21367 			 * Since IRE has been hold in
21368 			 * tcp_send_find_ire_ill(), IRE_REFRELE(ire)
21369 			 * should be called before return.
21370 			 */
21371 			do_lso_send = B_TRUE;
21372 			ire_fp_mp = ire->ire_nce->nce_fp_mp;
21373 			ire_fp_mp_len = MBLKL(ire_fp_mp);
21374 			/* Round up to multiple of 4 */
21375 			ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4;
21376 		} else {
21377 			do_lso_send = B_FALSE;
21378 			ill = NULL;
21379 		}
21380 	}
21381 
21382 	for (;;) {
21383 		struct datab	*db;
21384 		tcph_t		*tcph;
21385 		uint32_t	sum;
21386 		mblk_t		*mp, *mp1;
21387 		uchar_t		*rptr;
21388 		int		len;
21389 
21390 		/*
21391 		 * If we're called by tcp_multisend(), and the amount of
21392 		 * sendable data as well as the size of current xmit_tail
21393 		 * is beyond the MDT threshold, return to the caller and
21394 		 * let the large data transmit be done using MDT.
21395 		 */
21396 		if (*usable > 0 && *usable > mdt_thres &&
21397 		    (*tail_unsent > mdt_thres || (*tail_unsent == 0 &&
21398 		    MBLKL((*xmit_tail)->b_cont) > mdt_thres))) {
21399 			ASSERT(tcp->tcp_mdt);
21400 			return (1);	/* success; do large send */
21401 		}
21402 
21403 		if (num_burst_seg == 0)
21404 			break;		/* success; burst count reached */
21405 
21406 		/*
21407 		 * Calculate the maximum payload length we can send in *one*
21408 		 * time.
21409 		 */
21410 		if (do_lso_send) {
21411 			/*
21412 			 * Check whether need to do LSO any more.
21413 			 */
21414 			if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
21415 				lso_usable = MIN(tcp->tcp_lso_max, *usable);
21416 				lso_usable = MIN(lso_usable,
21417 				    num_burst_seg * mss);
21418 
21419 				num_lso_seg = lso_usable / mss;
21420 				if (lso_usable % mss) {
21421 					num_lso_seg++;
21422 					tcp->tcp_last_sent_len = (ushort_t)
21423 					    (lso_usable % mss);
21424 				} else {
21425 					tcp->tcp_last_sent_len = (ushort_t)mss;
21426 				}
21427 			} else {
21428 				do_lso_send = B_FALSE;
21429 				num_lso_seg = 1;
21430 				lso_usable = mss;
21431 			}
21432 		}
21433 
21434 		ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1);
21435 
21436 		/*
21437 		 * Adjust num_burst_seg here.
21438 		 */
21439 		num_burst_seg -= num_lso_seg;
21440 
21441 		len = mss;
21442 		if (len > *usable) {
21443 			ASSERT(do_lso_send == B_FALSE);
21444 
21445 			len = *usable;
21446 			if (len <= 0) {
21447 				/* Terminate the loop */
21448 				break;	/* success; too small */
21449 			}
21450 			/*
21451 			 * Sender silly-window avoidance.
21452 			 * Ignore this if we are going to send a
21453 			 * zero window probe out.
21454 			 *
21455 			 * TODO: force data into microscopic window?
21456 			 *	==> (!pushed || (unsent > usable))
21457 			 */
21458 			if (len < (tcp->tcp_max_swnd >> 1) &&
21459 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len &&
21460 			    !((tcp->tcp_valid_bits & TCP_URG_VALID) &&
21461 			    len == 1) && (! tcp->tcp_zero_win_probe)) {
21462 				/*
21463 				 * If the retransmit timer is not running
21464 				 * we start it so that we will retransmit
21465 				 * in the case when the the receiver has
21466 				 * decremented the window.
21467 				 */
21468 				if (*snxt == tcp->tcp_snxt &&
21469 				    *snxt == tcp->tcp_suna) {
21470 					/*
21471 					 * We are not supposed to send
21472 					 * anything.  So let's wait a little
21473 					 * bit longer before breaking SWS
21474 					 * avoidance.
21475 					 *
21476 					 * What should the value be?
21477 					 * Suggestion: MAX(init rexmit time,
21478 					 * tcp->tcp_rto)
21479 					 */
21480 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
21481 				}
21482 				break;	/* success; too small */
21483 			}
21484 		}
21485 
21486 		tcph = tcp->tcp_tcph;
21487 
21488 		/*
21489 		 * The reason to adjust len here is that we need to set flags
21490 		 * and calculate checksum.
21491 		 */
21492 		if (do_lso_send)
21493 			len = lso_usable;
21494 
21495 		*usable -= len; /* Approximate - can be adjusted later */
21496 		if (*usable > 0)
21497 			tcph->th_flags[0] = TH_ACK;
21498 		else
21499 			tcph->th_flags[0] = (TH_ACK | TH_PUSH);
21500 
21501 		/*
21502 		 * Prime pump for IP's checksumming on our behalf
21503 		 * Include the adjustment for a source route if any.
21504 		 */
21505 		sum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
21506 		sum = (sum >> 16) + (sum & 0xFFFF);
21507 		U16_TO_ABE16(sum, tcph->th_sum);
21508 
21509 		U32_TO_ABE32(*snxt, tcph->th_seq);
21510 
21511 		/*
21512 		 * Branch off to tcp_xmit_mp() if any of the VALID bits is
21513 		 * set.  For the case when TCP_FSS_VALID is the only valid
21514 		 * bit (normal active close), branch off only when we think
21515 		 * that the FIN flag needs to be set.  Note for this case,
21516 		 * that (snxt + len) may not reflect the actual seg_len,
21517 		 * as len may be further reduced in tcp_xmit_mp().  If len
21518 		 * gets modified, we will end up here again.
21519 		 */
21520 		if (tcp->tcp_valid_bits != 0 &&
21521 		    (tcp->tcp_valid_bits != TCP_FSS_VALID ||
21522 		    ((*snxt + len) == tcp->tcp_fss))) {
21523 			uchar_t		*prev_rptr;
21524 			uint32_t	prev_snxt = tcp->tcp_snxt;
21525 
21526 			if (*tail_unsent == 0) {
21527 				ASSERT((*xmit_tail)->b_cont != NULL);
21528 				*xmit_tail = (*xmit_tail)->b_cont;
21529 				prev_rptr = (*xmit_tail)->b_rptr;
21530 				*tail_unsent = (int)((*xmit_tail)->b_wptr -
21531 				    (*xmit_tail)->b_rptr);
21532 			} else {
21533 				prev_rptr = (*xmit_tail)->b_rptr;
21534 				(*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr -
21535 				    *tail_unsent;
21536 			}
21537 			mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL,
21538 			    *snxt, B_FALSE, (uint32_t *)&len, B_FALSE);
21539 			/* Restore tcp_snxt so we get amount sent right. */
21540 			tcp->tcp_snxt = prev_snxt;
21541 			if (prev_rptr == (*xmit_tail)->b_rptr) {
21542 				/*
21543 				 * If the previous timestamp is still in use,
21544 				 * don't stomp on it.
21545 				 */
21546 				if ((*xmit_tail)->b_next == NULL) {
21547 					(*xmit_tail)->b_prev = local_time;
21548 					(*xmit_tail)->b_next =
21549 					    (mblk_t *)(uintptr_t)(*snxt);
21550 				}
21551 			} else
21552 				(*xmit_tail)->b_rptr = prev_rptr;
21553 
21554 			if (mp == NULL) {
21555 				if (ire != NULL)
21556 					IRE_REFRELE(ire);
21557 				return (-1);
21558 			}
21559 			mp1 = mp->b_cont;
21560 
21561 			if (len <= mss) /* LSO is unusable (!do_lso_send) */
21562 				tcp->tcp_last_sent_len = (ushort_t)len;
21563 			while (mp1->b_cont) {
21564 				*xmit_tail = (*xmit_tail)->b_cont;
21565 				(*xmit_tail)->b_prev = local_time;
21566 				(*xmit_tail)->b_next =
21567 				    (mblk_t *)(uintptr_t)(*snxt);
21568 				mp1 = mp1->b_cont;
21569 			}
21570 			*snxt += len;
21571 			*tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr;
21572 			BUMP_LOCAL(tcp->tcp_obsegs);
21573 			BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
21574 			UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
21575 			tcp_send_data(tcp, q, mp);
21576 			continue;
21577 		}
21578 
21579 		*snxt += len;	/* Adjust later if we don't send all of len */
21580 		BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
21581 		UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
21582 
21583 		if (*tail_unsent) {
21584 			/* Are the bytes above us in flight? */
21585 			rptr = (*xmit_tail)->b_wptr - *tail_unsent;
21586 			if (rptr != (*xmit_tail)->b_rptr) {
21587 				*tail_unsent -= len;
21588 				if (len <= mss) /* LSO is unusable */
21589 					tcp->tcp_last_sent_len = (ushort_t)len;
21590 				len += tcp_hdr_len;
21591 				if (tcp->tcp_ipversion == IPV4_VERSION)
21592 					tcp->tcp_ipha->ipha_length = htons(len);
21593 				else
21594 					tcp->tcp_ip6h->ip6_plen =
21595 					    htons(len -
21596 					    ((char *)&tcp->tcp_ip6h[1] -
21597 					    tcp->tcp_iphc));
21598 				mp = dupb(*xmit_tail);
21599 				if (mp == NULL) {
21600 					if (ire != NULL)
21601 						IRE_REFRELE(ire);
21602 					return (-1);	/* out_of_mem */
21603 				}
21604 				mp->b_rptr = rptr;
21605 				/*
21606 				 * If the old timestamp is no longer in use,
21607 				 * sample a new timestamp now.
21608 				 */
21609 				if ((*xmit_tail)->b_next == NULL) {
21610 					(*xmit_tail)->b_prev = local_time;
21611 					(*xmit_tail)->b_next =
21612 					    (mblk_t *)(uintptr_t)(*snxt-len);
21613 				}
21614 				goto must_alloc;
21615 			}
21616 		} else {
21617 			*xmit_tail = (*xmit_tail)->b_cont;
21618 			ASSERT((uintptr_t)((*xmit_tail)->b_wptr -
21619 			    (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX);
21620 			*tail_unsent = (int)((*xmit_tail)->b_wptr -
21621 			    (*xmit_tail)->b_rptr);
21622 		}
21623 
21624 		(*xmit_tail)->b_prev = local_time;
21625 		(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len);
21626 
21627 		*tail_unsent -= len;
21628 		if (len <= mss) /* LSO is unusable (!do_lso_send) */
21629 			tcp->tcp_last_sent_len = (ushort_t)len;
21630 
21631 		len += tcp_hdr_len;
21632 		if (tcp->tcp_ipversion == IPV4_VERSION)
21633 			tcp->tcp_ipha->ipha_length = htons(len);
21634 		else
21635 			tcp->tcp_ip6h->ip6_plen = htons(len -
21636 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
21637 
21638 		mp = dupb(*xmit_tail);
21639 		if (mp == NULL) {
21640 			if (ire != NULL)
21641 				IRE_REFRELE(ire);
21642 			return (-1);	/* out_of_mem */
21643 		}
21644 
21645 		len = tcp_hdr_len;
21646 		/*
21647 		 * There are four reasons to allocate a new hdr mblk:
21648 		 *  1) The bytes above us are in use by another packet
21649 		 *  2) We don't have good alignment
21650 		 *  3) The mblk is being shared
21651 		 *  4) We don't have enough room for a header
21652 		 */
21653 		rptr = mp->b_rptr - len;
21654 		if (!OK_32PTR(rptr) ||
21655 		    ((db = mp->b_datap), db->db_ref != 2) ||
21656 		    rptr < db->db_base + ire_fp_mp_len) {
21657 			/* NOTE: we assume allocb returns an OK_32PTR */
21658 
21659 		must_alloc:;
21660 			mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
21661 			    tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED);
21662 			if (mp1 == NULL) {
21663 				freemsg(mp);
21664 				if (ire != NULL)
21665 					IRE_REFRELE(ire);
21666 				return (-1);	/* out_of_mem */
21667 			}
21668 			mp1->b_cont = mp;
21669 			mp = mp1;
21670 			/* Leave room for Link Level header */
21671 			len = tcp_hdr_len;
21672 			rptr =
21673 			    &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len];
21674 			mp->b_wptr = &rptr[len];
21675 		}
21676 
21677 		/*
21678 		 * Fill in the header using the template header, and add
21679 		 * options such as time-stamp, ECN and/or SACK, as needed.
21680 		 */
21681 		tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk);
21682 
21683 		mp->b_rptr = rptr;
21684 
21685 		if (*tail_unsent) {
21686 			int spill = *tail_unsent;
21687 
21688 			mp1 = mp->b_cont;
21689 			if (mp1 == NULL)
21690 				mp1 = mp;
21691 
21692 			/*
21693 			 * If we're a little short, tack on more mblks until
21694 			 * there is no more spillover.
21695 			 */
21696 			while (spill < 0) {
21697 				mblk_t *nmp;
21698 				int nmpsz;
21699 
21700 				nmp = (*xmit_tail)->b_cont;
21701 				nmpsz = MBLKL(nmp);
21702 
21703 				/*
21704 				 * Excess data in mblk; can we split it?
21705 				 * If MDT is enabled for the connection,
21706 				 * keep on splitting as this is a transient
21707 				 * send path.
21708 				 */
21709 				if (!do_lso_send && !tcp->tcp_mdt &&
21710 				    (spill + nmpsz > 0)) {
21711 					/*
21712 					 * Don't split if stream head was
21713 					 * told to break up larger writes
21714 					 * into smaller ones.
21715 					 */
21716 					if (tcp->tcp_maxpsz > 0)
21717 						break;
21718 
21719 					/*
21720 					 * Next mblk is less than SMSS/2
21721 					 * rounded up to nearest 64-byte;
21722 					 * let it get sent as part of the
21723 					 * next segment.
21724 					 */
21725 					if (tcp->tcp_localnet &&
21726 					    !tcp->tcp_cork &&
21727 					    (nmpsz < roundup((mss >> 1), 64)))
21728 						break;
21729 				}
21730 
21731 				*xmit_tail = nmp;
21732 				ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX);
21733 				/* Stash for rtt use later */
21734 				(*xmit_tail)->b_prev = local_time;
21735 				(*xmit_tail)->b_next =
21736 				    (mblk_t *)(uintptr_t)(*snxt - len);
21737 				mp1->b_cont = dupb(*xmit_tail);
21738 				mp1 = mp1->b_cont;
21739 
21740 				spill += nmpsz;
21741 				if (mp1 == NULL) {
21742 					*tail_unsent = spill;
21743 					freemsg(mp);
21744 					if (ire != NULL)
21745 						IRE_REFRELE(ire);
21746 					return (-1);	/* out_of_mem */
21747 				}
21748 			}
21749 
21750 			/* Trim back any surplus on the last mblk */
21751 			if (spill >= 0) {
21752 				mp1->b_wptr -= spill;
21753 				*tail_unsent = spill;
21754 			} else {
21755 				/*
21756 				 * We did not send everything we could in
21757 				 * order to remain within the b_cont limit.
21758 				 */
21759 				*usable -= spill;
21760 				*snxt += spill;
21761 				tcp->tcp_last_sent_len += spill;
21762 				UPDATE_MIB(&tcps->tcps_mib,
21763 				    tcpOutDataBytes, spill);
21764 				/*
21765 				 * Adjust the checksum
21766 				 */
21767 				tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
21768 				sum += spill;
21769 				sum = (sum >> 16) + (sum & 0xFFFF);
21770 				U16_TO_ABE16(sum, tcph->th_sum);
21771 				if (tcp->tcp_ipversion == IPV4_VERSION) {
21772 					sum = ntohs(
21773 					    ((ipha_t *)rptr)->ipha_length) +
21774 					    spill;
21775 					((ipha_t *)rptr)->ipha_length =
21776 					    htons(sum);
21777 				} else {
21778 					sum = ntohs(
21779 					    ((ip6_t *)rptr)->ip6_plen) +
21780 					    spill;
21781 					((ip6_t *)rptr)->ip6_plen =
21782 					    htons(sum);
21783 				}
21784 				*tail_unsent = 0;
21785 			}
21786 		}
21787 		if (tcp->tcp_ip_forward_progress) {
21788 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
21789 			*(uint32_t *)mp->b_rptr  |= IP_FORWARD_PROG;
21790 			tcp->tcp_ip_forward_progress = B_FALSE;
21791 		}
21792 
21793 		if (do_lso_send) {
21794 			tcp_lsosend_data(tcp, mp, ire, ill, mss,
21795 			    num_lso_seg);
21796 			tcp->tcp_obsegs += num_lso_seg;
21797 
21798 			TCP_STAT(tcps, tcp_lso_times);
21799 			TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg);
21800 		} else {
21801 			tcp_send_data(tcp, q, mp);
21802 			BUMP_LOCAL(tcp->tcp_obsegs);
21803 		}
21804 	}
21805 
21806 	if (ire != NULL)
21807 		IRE_REFRELE(ire);
21808 	return (0);
21809 }
21810 
21811 /* Unlink and return any mblk that looks like it contains a MDT info */
21812 static mblk_t *
21813 tcp_mdt_info_mp(mblk_t *mp)
21814 {
21815 	mblk_t	*prev_mp;
21816 
21817 	for (;;) {
21818 		prev_mp = mp;
21819 		/* no more to process? */
21820 		if ((mp = mp->b_cont) == NULL)
21821 			break;
21822 
21823 		switch (DB_TYPE(mp)) {
21824 		case M_CTL:
21825 			if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE)
21826 				continue;
21827 			ASSERT(prev_mp != NULL);
21828 			prev_mp->b_cont = mp->b_cont;
21829 			mp->b_cont = NULL;
21830 			return (mp);
21831 		default:
21832 			break;
21833 		}
21834 	}
21835 	return (mp);
21836 }
21837 
21838 /* MDT info update routine, called when IP notifies us about MDT */
21839 static void
21840 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first)
21841 {
21842 	boolean_t prev_state;
21843 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21844 
21845 	/*
21846 	 * IP is telling us to abort MDT on this connection?  We know
21847 	 * this because the capability is only turned off when IP
21848 	 * encounters some pathological cases, e.g. link-layer change
21849 	 * where the new driver doesn't support MDT, or in situation
21850 	 * where MDT usage on the link-layer has been switched off.
21851 	 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE
21852 	 * if the link-layer doesn't support MDT, and if it does, it
21853 	 * will indicate that the feature is to be turned on.
21854 	 */
21855 	prev_state = tcp->tcp_mdt;
21856 	tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0);
21857 	if (!tcp->tcp_mdt && !first) {
21858 		TCP_STAT(tcps, tcp_mdt_conn_halted3);
21859 		ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n",
21860 		    (void *)tcp->tcp_connp));
21861 	}
21862 
21863 	/*
21864 	 * We currently only support MDT on simple TCP/{IPv4,IPv6},
21865 	 * so disable MDT otherwise.  The checks are done here
21866 	 * and in tcp_wput_data().
21867 	 */
21868 	if (tcp->tcp_mdt &&
21869 	    (tcp->tcp_ipversion == IPV4_VERSION &&
21870 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
21871 	    (tcp->tcp_ipversion == IPV6_VERSION &&
21872 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN))
21873 		tcp->tcp_mdt = B_FALSE;
21874 
21875 	if (tcp->tcp_mdt) {
21876 		if (mdt_capab->ill_mdt_version != MDT_VERSION_2) {
21877 			cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT "
21878 			    "version (%d), expected version is %d",
21879 			    mdt_capab->ill_mdt_version, MDT_VERSION_2);
21880 			tcp->tcp_mdt = B_FALSE;
21881 			return;
21882 		}
21883 
21884 		/*
21885 		 * We need the driver to be able to handle at least three
21886 		 * spans per packet in order for tcp MDT to be utilized.
21887 		 * The first is for the header portion, while the rest are
21888 		 * needed to handle a packet that straddles across two
21889 		 * virtually non-contiguous buffers; a typical tcp packet
21890 		 * therefore consists of only two spans.  Note that we take
21891 		 * a zero as "don't care".
21892 		 */
21893 		if (mdt_capab->ill_mdt_span_limit > 0 &&
21894 		    mdt_capab->ill_mdt_span_limit < 3) {
21895 			tcp->tcp_mdt = B_FALSE;
21896 			return;
21897 		}
21898 
21899 		/* a zero means driver wants default value */
21900 		tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld,
21901 		    tcps->tcps_mdt_max_pbufs);
21902 		if (tcp->tcp_mdt_max_pld == 0)
21903 			tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs;
21904 
21905 		/* ensure 32-bit alignment */
21906 		tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min,
21907 		    mdt_capab->ill_mdt_hdr_head), 4);
21908 		tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min,
21909 		    mdt_capab->ill_mdt_hdr_tail), 4);
21910 
21911 		if (!first && !prev_state) {
21912 			TCP_STAT(tcps, tcp_mdt_conn_resumed2);
21913 			ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n",
21914 			    (void *)tcp->tcp_connp));
21915 		}
21916 	}
21917 }
21918 
21919 /* Unlink and return any mblk that looks like it contains a LSO info */
21920 static mblk_t *
21921 tcp_lso_info_mp(mblk_t *mp)
21922 {
21923 	mblk_t	*prev_mp;
21924 
21925 	for (;;) {
21926 		prev_mp = mp;
21927 		/* no more to process? */
21928 		if ((mp = mp->b_cont) == NULL)
21929 			break;
21930 
21931 		switch (DB_TYPE(mp)) {
21932 		case M_CTL:
21933 			if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE)
21934 				continue;
21935 			ASSERT(prev_mp != NULL);
21936 			prev_mp->b_cont = mp->b_cont;
21937 			mp->b_cont = NULL;
21938 			return (mp);
21939 		default:
21940 			break;
21941 		}
21942 	}
21943 
21944 	return (mp);
21945 }
21946 
21947 /* LSO info update routine, called when IP notifies us about LSO */
21948 static void
21949 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab)
21950 {
21951 	tcp_stack_t *tcps = tcp->tcp_tcps;
21952 
21953 	/*
21954 	 * IP is telling us to abort LSO on this connection?  We know
21955 	 * this because the capability is only turned off when IP
21956 	 * encounters some pathological cases, e.g. link-layer change
21957 	 * where the new NIC/driver doesn't support LSO, or in situation
21958 	 * where LSO usage on the link-layer has been switched off.
21959 	 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE
21960 	 * if the link-layer doesn't support LSO, and if it does, it
21961 	 * will indicate that the feature is to be turned on.
21962 	 */
21963 	tcp->tcp_lso = (lso_capab->ill_lso_on != 0);
21964 	TCP_STAT(tcps, tcp_lso_enabled);
21965 
21966 	/*
21967 	 * We currently only support LSO on simple TCP/IPv4,
21968 	 * so disable LSO otherwise.  The checks are done here
21969 	 * and in tcp_wput_data().
21970 	 */
21971 	if (tcp->tcp_lso &&
21972 	    (tcp->tcp_ipversion == IPV4_VERSION &&
21973 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
21974 	    (tcp->tcp_ipversion == IPV6_VERSION)) {
21975 		tcp->tcp_lso = B_FALSE;
21976 		TCP_STAT(tcps, tcp_lso_disabled);
21977 	} else {
21978 		tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH,
21979 		    lso_capab->ill_lso_max);
21980 	}
21981 }
21982 
21983 static void
21984 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt)
21985 {
21986 	conn_t *connp = tcp->tcp_connp;
21987 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21988 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
21989 
21990 	ASSERT(ire != NULL);
21991 
21992 	/*
21993 	 * We may be in the fastpath here, and although we essentially do
21994 	 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return,
21995 	 * we try to keep things as brief as possible.  After all, these
21996 	 * are only best-effort checks, and we do more thorough ones prior
21997 	 * to calling tcp_send()/tcp_multisend().
21998 	 */
21999 	if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) &&
22000 	    check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) &&
22001 	    ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) &&
22002 	    !(ire->ire_flags & RTF_MULTIRT) &&
22003 	    !IPP_ENABLED(IPP_LOCAL_OUT, ipst) &&
22004 	    CONN_IS_LSO_MD_FASTPATH(connp)) {
22005 		if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) {
22006 			/* Cache the result */
22007 			connp->conn_lso_ok = B_TRUE;
22008 
22009 			ASSERT(ill->ill_lso_capab != NULL);
22010 			if (!ill->ill_lso_capab->ill_lso_on) {
22011 				ill->ill_lso_capab->ill_lso_on = 1;
22012 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
22013 				    "LSO for interface %s\n", (void *)connp,
22014 				    ill->ill_name));
22015 			}
22016 			tcp_lso_update(tcp, ill->ill_lso_capab);
22017 		} else if (ipst->ips_ip_multidata_outbound &&
22018 		    ILL_MDT_CAPABLE(ill)) {
22019 			/* Cache the result */
22020 			connp->conn_mdt_ok = B_TRUE;
22021 
22022 			ASSERT(ill->ill_mdt_capab != NULL);
22023 			if (!ill->ill_mdt_capab->ill_mdt_on) {
22024 				ill->ill_mdt_capab->ill_mdt_on = 1;
22025 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
22026 				    "MDT for interface %s\n", (void *)connp,
22027 				    ill->ill_name));
22028 			}
22029 			tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE);
22030 		}
22031 	}
22032 
22033 	/*
22034 	 * The goal is to reduce the number of generated tcp segments by
22035 	 * setting the maxpsz multiplier to 0; this will have an affect on
22036 	 * tcp_maxpsz_set().  With this behavior, tcp will pack more data
22037 	 * into each packet, up to SMSS bytes.  Doing this reduces the number
22038 	 * of outbound segments and incoming ACKs, thus allowing for better
22039 	 * network and system performance.  In contrast the legacy behavior
22040 	 * may result in sending less than SMSS size, because the last mblk
22041 	 * for some packets may have more data than needed to make up SMSS,
22042 	 * and the legacy code refused to "split" it.
22043 	 *
22044 	 * We apply the new behavior on following situations:
22045 	 *
22046 	 *   1) Loopback connections,
22047 	 *   2) Connections in which the remote peer is not on local subnet,
22048 	 *   3) Local subnet connections over the bge interface (see below).
22049 	 *
22050 	 * Ideally, we would like this behavior to apply for interfaces other
22051 	 * than bge.  However, doing so would negatively impact drivers which
22052 	 * perform dynamic mapping and unmapping of DMA resources, which are
22053 	 * increased by setting the maxpsz multiplier to 0 (more mblks per
22054 	 * packet will be generated by tcp).  The bge driver does not suffer
22055 	 * from this, as it copies the mblks into pre-mapped buffers, and
22056 	 * therefore does not require more I/O resources than before.
22057 	 *
22058 	 * Otherwise, this behavior is present on all network interfaces when
22059 	 * the destination endpoint is non-local, since reducing the number
22060 	 * of packets in general is good for the network.
22061 	 *
22062 	 * TODO We need to remove this hard-coded conditional for bge once
22063 	 *	a better "self-tuning" mechanism, or a way to comprehend
22064 	 *	the driver transmit strategy is devised.  Until the solution
22065 	 *	is found and well understood, we live with this hack.
22066 	 */
22067 	if (!tcp_static_maxpsz &&
22068 	    (tcp->tcp_loopback || !tcp->tcp_localnet ||
22069 	    (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) {
22070 		/* override the default value */
22071 		tcp->tcp_maxpsz = 0;
22072 
22073 		ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on "
22074 		    "interface %s\n", (void *)connp, tcp->tcp_maxpsz,
22075 		    ill != NULL ? ill->ill_name : ipif_loopback_name));
22076 	}
22077 
22078 	/* set the stream head parameters accordingly */
22079 	(void) tcp_maxpsz_set(tcp, B_TRUE);
22080 }
22081 
22082 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */
22083 static void
22084 tcp_wput_flush(tcp_t *tcp, mblk_t *mp)
22085 {
22086 	uchar_t	fval = *mp->b_rptr;
22087 	mblk_t	*tail;
22088 	queue_t	*q = tcp->tcp_wq;
22089 
22090 	/* TODO: How should flush interact with urgent data? */
22091 	if ((fval & FLUSHW) && tcp->tcp_xmit_head &&
22092 	    !(tcp->tcp_valid_bits & TCP_URG_VALID)) {
22093 		/*
22094 		 * Flush only data that has not yet been put on the wire.  If
22095 		 * we flush data that we have already transmitted, life, as we
22096 		 * know it, may come to an end.
22097 		 */
22098 		tail = tcp->tcp_xmit_tail;
22099 		tail->b_wptr -= tcp->tcp_xmit_tail_unsent;
22100 		tcp->tcp_xmit_tail_unsent = 0;
22101 		tcp->tcp_unsent = 0;
22102 		if (tail->b_wptr != tail->b_rptr)
22103 			tail = tail->b_cont;
22104 		if (tail) {
22105 			mblk_t **excess = &tcp->tcp_xmit_head;
22106 			for (;;) {
22107 				mblk_t *mp1 = *excess;
22108 				if (mp1 == tail)
22109 					break;
22110 				tcp->tcp_xmit_tail = mp1;
22111 				tcp->tcp_xmit_last = mp1;
22112 				excess = &mp1->b_cont;
22113 			}
22114 			*excess = NULL;
22115 			tcp_close_mpp(&tail);
22116 			if (tcp->tcp_snd_zcopy_aware)
22117 				tcp_zcopy_notify(tcp);
22118 		}
22119 		/*
22120 		 * We have no unsent data, so unsent must be less than
22121 		 * tcp_xmit_lowater, so re-enable flow.
22122 		 */
22123 		mutex_enter(&tcp->tcp_non_sq_lock);
22124 		if (tcp->tcp_flow_stopped) {
22125 			tcp_clrqfull(tcp);
22126 		}
22127 		mutex_exit(&tcp->tcp_non_sq_lock);
22128 	}
22129 	/*
22130 	 * TODO: you can't just flush these, you have to increase rwnd for one
22131 	 * thing.  For another, how should urgent data interact?
22132 	 */
22133 	if (fval & FLUSHR) {
22134 		*mp->b_rptr = fval & ~FLUSHW;
22135 		/* XXX */
22136 		qreply(q, mp);
22137 		return;
22138 	}
22139 	freemsg(mp);
22140 }
22141 
22142 /*
22143  * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA
22144  * messages.
22145  */
22146 static void
22147 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp)
22148 {
22149 	mblk_t	*mp1;
22150 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
22151 	STRUCT_HANDLE(strbuf, sb);
22152 	queue_t *q = tcp->tcp_wq;
22153 	int	error;
22154 	uint_t	addrlen;
22155 
22156 	/* Make sure it is one of ours. */
22157 	switch (iocp->ioc_cmd) {
22158 	case TI_GETMYNAME:
22159 	case TI_GETPEERNAME:
22160 		break;
22161 	default:
22162 		CALL_IP_WPUT(tcp->tcp_connp, q, mp);
22163 		return;
22164 	}
22165 	switch (mi_copy_state(q, mp, &mp1)) {
22166 	case -1:
22167 		return;
22168 	case MI_COPY_CASE(MI_COPY_IN, 1):
22169 		break;
22170 	case MI_COPY_CASE(MI_COPY_OUT, 1):
22171 		/* Copy out the strbuf. */
22172 		mi_copyout(q, mp);
22173 		return;
22174 	case MI_COPY_CASE(MI_COPY_OUT, 2):
22175 		/* All done. */
22176 		mi_copy_done(q, mp, 0);
22177 		return;
22178 	default:
22179 		mi_copy_done(q, mp, EPROTO);
22180 		return;
22181 	}
22182 	/* Check alignment of the strbuf */
22183 	if (!OK_32PTR(mp1->b_rptr)) {
22184 		mi_copy_done(q, mp, EINVAL);
22185 		return;
22186 	}
22187 
22188 	STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr);
22189 	addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t);
22190 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
22191 		mi_copy_done(q, mp, EINVAL);
22192 		return;
22193 	}
22194 
22195 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
22196 	if (mp1 == NULL)
22197 		return;
22198 
22199 	switch (iocp->ioc_cmd) {
22200 	case TI_GETMYNAME:
22201 		error = tcp_getmyname(tcp, (void *)mp1->b_rptr, &addrlen);
22202 		break;
22203 	case TI_GETPEERNAME:
22204 		error = i_tcp_getpeername(tcp, (void *)mp1->b_rptr, &addrlen);
22205 		break;
22206 	}
22207 
22208 	if (error != 0) {
22209 		mi_copy_done(q, mp, error);
22210 	} else {
22211 		mp1->b_wptr += addrlen;
22212 		STRUCT_FSET(sb, len, addrlen);
22213 
22214 		/* Copy out the address */
22215 		mi_copyout(q, mp);
22216 	}
22217 }
22218 
22219 static void
22220 tcp_disable_direct_sockfs(tcp_t *tcp)
22221 {
22222 #ifdef	_ILP32
22223 	tcp->tcp_acceptor_id = (t_uscalar_t)tcp->tcp_rq;
22224 #else
22225 	tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev;
22226 #endif
22227 	/*
22228 	 * Insert this socket into the acceptor hash.
22229 	 * We might need it for T_CONN_RES message
22230 	 */
22231 	tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
22232 
22233 	if (tcp->tcp_fused) {
22234 		/*
22235 		 * This is a fused loopback tcp; disable
22236 		 * read-side synchronous streams interface
22237 		 * and drain any queued data.  It is okay
22238 		 * to do this for non-synchronous streams
22239 		 * fused tcp as well.
22240 		 */
22241 		tcp_fuse_disable_pair(tcp, B_FALSE);
22242 	}
22243 	tcp->tcp_issocket = B_FALSE;
22244 	tcp->tcp_sodirect = NULL;
22245 	TCP_STAT(tcp->tcp_tcps, tcp_sock_fallback);
22246 }
22247 
22248 /*
22249  * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL
22250  * messages.
22251  */
22252 /* ARGSUSED */
22253 static void
22254 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2)
22255 {
22256 	conn_t 	*connp = (conn_t *)arg;
22257 	tcp_t	*tcp = connp->conn_tcp;
22258 	queue_t	*q = tcp->tcp_wq;
22259 	struct iocblk	*iocp;
22260 
22261 	ASSERT(DB_TYPE(mp) == M_IOCTL);
22262 	/*
22263 	 * Try and ASSERT the minimum possible references on the
22264 	 * conn early enough. Since we are executing on write side,
22265 	 * the connection is obviously not detached and that means
22266 	 * there is a ref each for TCP and IP. Since we are behind
22267 	 * the squeue, the minimum references needed are 3. If the
22268 	 * conn is in classifier hash list, there should be an
22269 	 * extra ref for that (we check both the possibilities).
22270 	 */
22271 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
22272 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
22273 
22274 	iocp = (struct iocblk *)mp->b_rptr;
22275 	switch (iocp->ioc_cmd) {
22276 	case TCP_IOC_DEFAULT_Q:
22277 		/* Wants to be the default wq. */
22278 		if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
22279 			iocp->ioc_error = EPERM;
22280 			iocp->ioc_count = 0;
22281 			mp->b_datap->db_type = M_IOCACK;
22282 			qreply(q, mp);
22283 			return;
22284 		}
22285 		tcp_def_q_set(tcp, mp);
22286 		return;
22287 	case _SIOCSOCKFALLBACK:
22288 		/*
22289 		 * Either sockmod is about to be popped and the socket
22290 		 * would now be treated as a plain stream, or a module
22291 		 * is about to be pushed so we could no longer use read-
22292 		 * side synchronous streams for fused loopback tcp.
22293 		 * Drain any queued data and disable direct sockfs
22294 		 * interface from now on.
22295 		 */
22296 		if (!tcp->tcp_issocket) {
22297 			DB_TYPE(mp) = M_IOCNAK;
22298 			iocp->ioc_error = EINVAL;
22299 		} else {
22300 			tcp_disable_direct_sockfs(tcp);
22301 			DB_TYPE(mp) = M_IOCACK;
22302 			iocp->ioc_error = 0;
22303 		}
22304 		iocp->ioc_count = 0;
22305 		iocp->ioc_rval = 0;
22306 		qreply(q, mp);
22307 		return;
22308 	}
22309 	CALL_IP_WPUT(connp, q, mp);
22310 }
22311 
22312 /*
22313  * This routine is called by tcp_wput() to handle all TPI requests.
22314  */
22315 /* ARGSUSED */
22316 static void
22317 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2)
22318 {
22319 	conn_t 	*connp = (conn_t *)arg;
22320 	tcp_t	*tcp = connp->conn_tcp;
22321 	union T_primitives *tprim = (union T_primitives *)mp->b_rptr;
22322 	uchar_t *rptr;
22323 	t_scalar_t type;
22324 	cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred);
22325 
22326 	/*
22327 	 * Try and ASSERT the minimum possible references on the
22328 	 * conn early enough. Since we are executing on write side,
22329 	 * the connection is obviously not detached and that means
22330 	 * there is a ref each for TCP and IP. Since we are behind
22331 	 * the squeue, the minimum references needed are 3. If the
22332 	 * conn is in classifier hash list, there should be an
22333 	 * extra ref for that (we check both the possibilities).
22334 	 */
22335 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
22336 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
22337 
22338 	rptr = mp->b_rptr;
22339 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
22340 	if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
22341 		type = ((union T_primitives *)rptr)->type;
22342 		if (type == T_EXDATA_REQ) {
22343 			tcp_output_urgent(connp, mp->b_cont, arg2);
22344 			freeb(mp);
22345 		} else if (type != T_DATA_REQ) {
22346 			goto non_urgent_data;
22347 		} else {
22348 			/* TODO: options, flags, ... from user */
22349 			/* Set length to zero for reclamation below */
22350 			tcp_wput_data(tcp, mp->b_cont, B_TRUE);
22351 			freeb(mp);
22352 		}
22353 		return;
22354 	} else {
22355 		if (tcp->tcp_debug) {
22356 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
22357 			    "tcp_wput_proto, dropping one...");
22358 		}
22359 		freemsg(mp);
22360 		return;
22361 	}
22362 
22363 non_urgent_data:
22364 
22365 	switch ((int)tprim->type) {
22366 	case T_SSL_PROXY_BIND_REQ:	/* an SSL proxy endpoint bind request */
22367 		/*
22368 		 * save the kssl_ent_t from the next block, and convert this
22369 		 * back to a normal bind_req.
22370 		 */
22371 		if (mp->b_cont != NULL) {
22372 			ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t));
22373 
22374 			if (tcp->tcp_kssl_ent != NULL) {
22375 				kssl_release_ent(tcp->tcp_kssl_ent, NULL,
22376 				    KSSL_NO_PROXY);
22377 				tcp->tcp_kssl_ent = NULL;
22378 			}
22379 			bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent,
22380 			    sizeof (kssl_ent_t));
22381 			kssl_hold_ent(tcp->tcp_kssl_ent);
22382 			freemsg(mp->b_cont);
22383 			mp->b_cont = NULL;
22384 		}
22385 		tprim->type = T_BIND_REQ;
22386 
22387 	/* FALLTHROUGH */
22388 	case O_T_BIND_REQ:	/* bind request */
22389 	case T_BIND_REQ:	/* new semantics bind request */
22390 		tcp_tpi_bind(tcp, mp);
22391 		break;
22392 	case T_UNBIND_REQ:	/* unbind request */
22393 		tcp_tpi_unbind(tcp, mp);
22394 		break;
22395 	case O_T_CONN_RES:	/* old connection response XXX */
22396 	case T_CONN_RES:	/* connection response */
22397 		tcp_tli_accept(tcp, mp);
22398 		break;
22399 	case T_CONN_REQ:	/* connection request */
22400 		tcp_tpi_connect(tcp, mp);
22401 		break;
22402 	case T_DISCON_REQ:	/* disconnect request */
22403 		tcp_disconnect(tcp, mp);
22404 		break;
22405 	case T_CAPABILITY_REQ:
22406 		tcp_capability_req(tcp, mp);	/* capability request */
22407 		break;
22408 	case T_INFO_REQ:	/* information request */
22409 		tcp_info_req(tcp, mp);
22410 		break;
22411 	case T_SVR4_OPTMGMT_REQ:	/* manage options req */
22412 		(void) svr4_optcom_req(tcp->tcp_wq, mp, cr,
22413 		    &tcp_opt_obj, B_TRUE);
22414 		break;
22415 	case T_OPTMGMT_REQ:
22416 		/*
22417 		 * Note:  no support for snmpcom_req() through new
22418 		 * T_OPTMGMT_REQ. See comments in ip.c
22419 		 */
22420 		/* Only IP is allowed to return meaningful value */
22421 		(void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj,
22422 		    B_TRUE);
22423 		break;
22424 
22425 	case T_UNITDATA_REQ:	/* unitdata request */
22426 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
22427 		break;
22428 	case T_ORDREL_REQ:	/* orderly release req */
22429 		freemsg(mp);
22430 
22431 		if (tcp->tcp_fused)
22432 			tcp_unfuse(tcp);
22433 
22434 		if (tcp_xmit_end(tcp) != 0) {
22435 			/*
22436 			 * We were crossing FINs and got a reset from
22437 			 * the other side. Just ignore it.
22438 			 */
22439 			if (tcp->tcp_debug) {
22440 				(void) strlog(TCP_MOD_ID, 0, 1,
22441 				    SL_ERROR|SL_TRACE,
22442 				    "tcp_wput_proto, T_ORDREL_REQ out of "
22443 				    "state %s",
22444 				    tcp_display(tcp, NULL,
22445 				    DISP_ADDR_AND_PORT));
22446 			}
22447 		}
22448 		break;
22449 	case T_ADDR_REQ:
22450 		tcp_addr_req(tcp, mp);
22451 		break;
22452 	default:
22453 		if (tcp->tcp_debug) {
22454 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
22455 			    "tcp_wput_proto, bogus TPI msg, type %d",
22456 			    tprim->type);
22457 		}
22458 		/*
22459 		 * We used to M_ERROR.  Sending TNOTSUPPORT gives the user
22460 		 * to recover.
22461 		 */
22462 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
22463 		break;
22464 	}
22465 }
22466 
22467 /*
22468  * The TCP write service routine should never be called...
22469  */
22470 /* ARGSUSED */
22471 static void
22472 tcp_wsrv(queue_t *q)
22473 {
22474 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
22475 
22476 	TCP_STAT(tcps, tcp_wsrv_called);
22477 }
22478 
22479 /* Non overlapping byte exchanger */
22480 static void
22481 tcp_xchg(uchar_t *a, uchar_t *b, int len)
22482 {
22483 	uchar_t	uch;
22484 
22485 	while (len-- > 0) {
22486 		uch = a[len];
22487 		a[len] = b[len];
22488 		b[len] = uch;
22489 	}
22490 }
22491 
22492 /*
22493  * Send out a control packet on the tcp connection specified.  This routine
22494  * is typically called where we need a simple ACK or RST generated.
22495  */
22496 static void
22497 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl)
22498 {
22499 	uchar_t		*rptr;
22500 	tcph_t		*tcph;
22501 	ipha_t		*ipha = NULL;
22502 	ip6_t		*ip6h = NULL;
22503 	uint32_t	sum;
22504 	int		tcp_hdr_len;
22505 	int		tcp_ip_hdr_len;
22506 	mblk_t		*mp;
22507 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22508 
22509 	/*
22510 	 * Save sum for use in source route later.
22511 	 */
22512 	ASSERT(tcp != NULL);
22513 	sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
22514 	tcp_hdr_len = tcp->tcp_hdr_len;
22515 	tcp_ip_hdr_len = tcp->tcp_ip_hdr_len;
22516 
22517 	/* If a text string is passed in with the request, pass it to strlog. */
22518 	if (str != NULL && tcp->tcp_debug) {
22519 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
22520 		    "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x",
22521 		    str, seq, ack, ctl);
22522 	}
22523 	mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra,
22524 	    BPRI_MED);
22525 	if (mp == NULL) {
22526 		return;
22527 	}
22528 	rptr = &mp->b_rptr[tcps->tcps_wroff_xtra];
22529 	mp->b_rptr = rptr;
22530 	mp->b_wptr = &rptr[tcp_hdr_len];
22531 	bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len);
22532 
22533 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22534 		ipha = (ipha_t *)rptr;
22535 		ipha->ipha_length = htons(tcp_hdr_len);
22536 	} else {
22537 		ip6h = (ip6_t *)rptr;
22538 		ASSERT(tcp != NULL);
22539 		ip6h->ip6_plen = htons(tcp->tcp_hdr_len -
22540 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22541 	}
22542 	tcph = (tcph_t *)&rptr[tcp_ip_hdr_len];
22543 	tcph->th_flags[0] = (uint8_t)ctl;
22544 	if (ctl & TH_RST) {
22545 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
22546 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22547 		/*
22548 		 * Don't send TSopt w/ TH_RST packets per RFC 1323.
22549 		 */
22550 		if (tcp->tcp_snd_ts_ok &&
22551 		    tcp->tcp_state > TCPS_SYN_SENT) {
22552 			mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN];
22553 			*(mp->b_wptr) = TCPOPT_EOL;
22554 			if (tcp->tcp_ipversion == IPV4_VERSION) {
22555 				ipha->ipha_length = htons(tcp_hdr_len -
22556 				    TCPOPT_REAL_TS_LEN);
22557 			} else {
22558 				ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) -
22559 				    TCPOPT_REAL_TS_LEN);
22560 			}
22561 			tcph->th_offset_and_rsrvd[0] -= (3 << 4);
22562 			sum -= TCPOPT_REAL_TS_LEN;
22563 		}
22564 	}
22565 	if (ctl & TH_ACK) {
22566 		if (tcp->tcp_snd_ts_ok) {
22567 			U32_TO_BE32(lbolt,
22568 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22569 			U32_TO_BE32(tcp->tcp_ts_recent,
22570 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22571 		}
22572 
22573 		/* Update the latest receive window size in TCP header. */
22574 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22575 		    tcph->th_win);
22576 		tcp->tcp_rack = ack;
22577 		tcp->tcp_rack_cnt = 0;
22578 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
22579 	}
22580 	BUMP_LOCAL(tcp->tcp_obsegs);
22581 	U32_TO_BE32(seq, tcph->th_seq);
22582 	U32_TO_BE32(ack, tcph->th_ack);
22583 	/*
22584 	 * Include the adjustment for a source route if any.
22585 	 */
22586 	sum = (sum >> 16) + (sum & 0xFFFF);
22587 	U16_TO_BE16(sum, tcph->th_sum);
22588 	tcp_send_data(tcp, tcp->tcp_wq, mp);
22589 }
22590 
22591 /*
22592  * If this routine returns B_TRUE, TCP can generate a RST in response
22593  * to a segment.  If it returns B_FALSE, TCP should not respond.
22594  */
22595 static boolean_t
22596 tcp_send_rst_chk(tcp_stack_t *tcps)
22597 {
22598 	clock_t	now;
22599 
22600 	/*
22601 	 * TCP needs to protect itself from generating too many RSTs.
22602 	 * This can be a DoS attack by sending us random segments
22603 	 * soliciting RSTs.
22604 	 *
22605 	 * What we do here is to have a limit of tcp_rst_sent_rate RSTs
22606 	 * in each 1 second interval.  In this way, TCP still generate
22607 	 * RSTs in normal cases but when under attack, the impact is
22608 	 * limited.
22609 	 */
22610 	if (tcps->tcps_rst_sent_rate_enabled != 0) {
22611 		now = lbolt;
22612 		/* lbolt can wrap around. */
22613 		if ((tcps->tcps_last_rst_intrvl > now) ||
22614 		    (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) >
22615 		    1*SECONDS)) {
22616 			tcps->tcps_last_rst_intrvl = now;
22617 			tcps->tcps_rst_cnt = 1;
22618 		} else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) {
22619 			return (B_FALSE);
22620 		}
22621 	}
22622 	return (B_TRUE);
22623 }
22624 
22625 /*
22626  * Send down the advice IP ioctl to tell IP to mark an IRE temporary.
22627  */
22628 static void
22629 tcp_ip_ire_mark_advice(tcp_t *tcp)
22630 {
22631 	mblk_t *mp;
22632 	ipic_t *ipic;
22633 
22634 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22635 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
22636 		    &ipic);
22637 	} else {
22638 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
22639 		    &ipic);
22640 	}
22641 	if (mp == NULL)
22642 		return;
22643 	ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
22644 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22645 }
22646 
22647 /*
22648  * Return an IP advice ioctl mblk and set ipic to be the pointer
22649  * to the advice structure.
22650  */
22651 static mblk_t *
22652 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic)
22653 {
22654 	struct iocblk *ioc;
22655 	mblk_t *mp, *mp1;
22656 
22657 	mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI);
22658 	if (mp == NULL)
22659 		return (NULL);
22660 	bzero(mp->b_rptr, sizeof (ipic_t) + addr_len);
22661 	*ipic = (ipic_t *)mp->b_rptr;
22662 	(*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY;
22663 	(*ipic)->ipic_addr_offset = sizeof (ipic_t);
22664 
22665 	bcopy(addr, *ipic + 1, addr_len);
22666 
22667 	(*ipic)->ipic_addr_length = addr_len;
22668 	mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len];
22669 
22670 	mp1 = mkiocb(IP_IOCTL);
22671 	if (mp1 == NULL) {
22672 		freemsg(mp);
22673 		return (NULL);
22674 	}
22675 	mp1->b_cont = mp;
22676 	ioc = (struct iocblk *)mp1->b_rptr;
22677 	ioc->ioc_count = sizeof (ipic_t) + addr_len;
22678 
22679 	return (mp1);
22680 }
22681 
22682 /*
22683  * Generate a reset based on an inbound packet, connp is set by caller
22684  * when RST is in response to an unexpected inbound packet for which
22685  * there is active tcp state in the system.
22686  *
22687  * IPSEC NOTE : Try to send the reply with the same protection as it came
22688  * in.  We still have the ipsec_mp that the packet was attached to. Thus
22689  * the packet will go out at the same level of protection as it came in by
22690  * converting the IPSEC_IN to IPSEC_OUT.
22691  */
22692 static void
22693 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq,
22694     uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid,
22695     tcp_stack_t *tcps, conn_t *connp)
22696 {
22697 	ipha_t		*ipha = NULL;
22698 	ip6_t		*ip6h = NULL;
22699 	ushort_t	len;
22700 	tcph_t		*tcph;
22701 	int		i;
22702 	mblk_t		*ipsec_mp;
22703 	boolean_t	mctl_present;
22704 	ipic_t		*ipic;
22705 	ipaddr_t	v4addr;
22706 	in6_addr_t	v6addr;
22707 	int		addr_len;
22708 	void		*addr;
22709 	queue_t		*q = tcps->tcps_g_q;
22710 	tcp_t		*tcp;
22711 	cred_t		*cr;
22712 	mblk_t		*nmp;
22713 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
22714 
22715 	if (tcps->tcps_g_q == NULL) {
22716 		/*
22717 		 * For non-zero stackids the default queue isn't created
22718 		 * until the first open, thus there can be a need to send
22719 		 * a reset before then. But we can't do that, hence we just
22720 		 * drop the packet. Later during boot, when the default queue
22721 		 * has been setup, a retransmitted packet from the peer
22722 		 * will result in a reset.
22723 		 */
22724 		ASSERT(tcps->tcps_netstack->netstack_stackid !=
22725 		    GLOBAL_NETSTACKID);
22726 		freemsg(mp);
22727 		return;
22728 	}
22729 
22730 	if (connp != NULL)
22731 		tcp = connp->conn_tcp;
22732 	else
22733 		tcp = Q_TO_TCP(q);
22734 
22735 	if (!tcp_send_rst_chk(tcps)) {
22736 		tcps->tcps_rst_unsent++;
22737 		freemsg(mp);
22738 		return;
22739 	}
22740 
22741 	if (mp->b_datap->db_type == M_CTL) {
22742 		ipsec_mp = mp;
22743 		mp = mp->b_cont;
22744 		mctl_present = B_TRUE;
22745 	} else {
22746 		ipsec_mp = mp;
22747 		mctl_present = B_FALSE;
22748 	}
22749 
22750 	if (str && q && tcps->tcps_dbg) {
22751 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
22752 		    "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, "
22753 		    "flags 0x%x",
22754 		    str, seq, ack, ctl);
22755 	}
22756 	if (mp->b_datap->db_ref != 1) {
22757 		mblk_t *mp1 = copyb(mp);
22758 		freemsg(mp);
22759 		mp = mp1;
22760 		if (!mp) {
22761 			if (mctl_present)
22762 				freeb(ipsec_mp);
22763 			return;
22764 		} else {
22765 			if (mctl_present) {
22766 				ipsec_mp->b_cont = mp;
22767 			} else {
22768 				ipsec_mp = mp;
22769 			}
22770 		}
22771 	} else if (mp->b_cont) {
22772 		freemsg(mp->b_cont);
22773 		mp->b_cont = NULL;
22774 	}
22775 	/*
22776 	 * We skip reversing source route here.
22777 	 * (for now we replace all IP options with EOL)
22778 	 */
22779 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22780 		ipha = (ipha_t *)mp->b_rptr;
22781 		for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++)
22782 			mp->b_rptr[i] = IPOPT_EOL;
22783 		/*
22784 		 * Make sure that src address isn't flagrantly invalid.
22785 		 * Not all broadcast address checking for the src address
22786 		 * is possible, since we don't know the netmask of the src
22787 		 * addr.  No check for destination address is done, since
22788 		 * IP will not pass up a packet with a broadcast dest
22789 		 * address to TCP.  Similar checks are done below for IPv6.
22790 		 */
22791 		if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST ||
22792 		    CLASSD(ipha->ipha_src)) {
22793 			freemsg(ipsec_mp);
22794 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
22795 			return;
22796 		}
22797 	} else {
22798 		ip6h = (ip6_t *)mp->b_rptr;
22799 
22800 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) ||
22801 		    IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) {
22802 			freemsg(ipsec_mp);
22803 			BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards);
22804 			return;
22805 		}
22806 
22807 		/* Remove any extension headers assuming partial overlay */
22808 		if (ip_hdr_len > IPV6_HDR_LEN) {
22809 			uint8_t *to;
22810 
22811 			to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN;
22812 			ovbcopy(ip6h, to, IPV6_HDR_LEN);
22813 			mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN;
22814 			ip_hdr_len = IPV6_HDR_LEN;
22815 			ip6h = (ip6_t *)mp->b_rptr;
22816 			ip6h->ip6_nxt = IPPROTO_TCP;
22817 		}
22818 	}
22819 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
22820 	if (tcph->th_flags[0] & TH_RST) {
22821 		freemsg(ipsec_mp);
22822 		return;
22823 	}
22824 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
22825 	len = ip_hdr_len + sizeof (tcph_t);
22826 	mp->b_wptr = &mp->b_rptr[len];
22827 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22828 		ipha->ipha_length = htons(len);
22829 		/* Swap addresses */
22830 		v4addr = ipha->ipha_src;
22831 		ipha->ipha_src = ipha->ipha_dst;
22832 		ipha->ipha_dst = v4addr;
22833 		ipha->ipha_ident = 0;
22834 		ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
22835 		addr_len = IP_ADDR_LEN;
22836 		addr = &v4addr;
22837 	} else {
22838 		/* No ip6i_t in this case */
22839 		ip6h->ip6_plen = htons(len - IPV6_HDR_LEN);
22840 		/* Swap addresses */
22841 		v6addr = ip6h->ip6_src;
22842 		ip6h->ip6_src = ip6h->ip6_dst;
22843 		ip6h->ip6_dst = v6addr;
22844 		ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit;
22845 		addr_len = IPV6_ADDR_LEN;
22846 		addr = &v6addr;
22847 	}
22848 	tcp_xchg(tcph->th_fport, tcph->th_lport, 2);
22849 	U32_TO_BE32(ack, tcph->th_ack);
22850 	U32_TO_BE32(seq, tcph->th_seq);
22851 	U16_TO_BE16(0, tcph->th_win);
22852 	U16_TO_BE16(sizeof (tcph_t), tcph->th_sum);
22853 	tcph->th_flags[0] = (uint8_t)ctl;
22854 	if (ctl & TH_RST) {
22855 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
22856 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22857 	}
22858 
22859 	/* IP trusts us to set up labels when required. */
22860 	if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL &&
22861 	    crgetlabel(cr) != NULL) {
22862 		int err;
22863 
22864 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION)
22865 			err = tsol_check_label(cr, &mp,
22866 			    tcp->tcp_connp->conn_mac_exempt,
22867 			    tcps->tcps_netstack->netstack_ip);
22868 		else
22869 			err = tsol_check_label_v6(cr, &mp,
22870 			    tcp->tcp_connp->conn_mac_exempt,
22871 			    tcps->tcps_netstack->netstack_ip);
22872 		if (mctl_present)
22873 			ipsec_mp->b_cont = mp;
22874 		else
22875 			ipsec_mp = mp;
22876 		if (err != 0) {
22877 			freemsg(ipsec_mp);
22878 			return;
22879 		}
22880 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22881 			ipha = (ipha_t *)mp->b_rptr;
22882 		} else {
22883 			ip6h = (ip6_t *)mp->b_rptr;
22884 		}
22885 	}
22886 
22887 	if (mctl_present) {
22888 		ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
22889 
22890 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
22891 		if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) {
22892 			return;
22893 		}
22894 	}
22895 	if (zoneid == ALL_ZONES)
22896 		zoneid = GLOBAL_ZONEID;
22897 
22898 	/* Add the zoneid so ip_output routes it properly */
22899 	if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) {
22900 		freemsg(ipsec_mp);
22901 		return;
22902 	}
22903 	ipsec_mp = nmp;
22904 
22905 	/*
22906 	 * NOTE:  one might consider tracing a TCP packet here, but
22907 	 * this function has no active TCP state and no tcp structure
22908 	 * that has a trace buffer.  If we traced here, we would have
22909 	 * to keep a local trace buffer in tcp_record_trace().
22910 	 *
22911 	 * TSol note: The mblk that contains the incoming packet was
22912 	 * reused by tcp_xmit_listener_reset, so it already contains
22913 	 * the right credentials and we don't need to call mblk_setcred.
22914 	 * Also the conn's cred is not right since it is associated
22915 	 * with tcps_g_q.
22916 	 */
22917 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp);
22918 
22919 	/*
22920 	 * Tell IP to mark the IRE used for this destination temporary.
22921 	 * This way, we can limit our exposure to DoS attack because IP
22922 	 * creates an IRE for each destination.  If there are too many,
22923 	 * the time to do any routing lookup will be extremely long.  And
22924 	 * the lookup can be in interrupt context.
22925 	 *
22926 	 * Note that in normal circumstances, this marking should not
22927 	 * affect anything.  It would be nice if only 1 message is
22928 	 * needed to inform IP that the IRE created for this RST should
22929 	 * not be added to the cache table.  But there is currently
22930 	 * not such communication mechanism between TCP and IP.  So
22931 	 * the best we can do now is to send the advice ioctl to IP
22932 	 * to mark the IRE temporary.
22933 	 */
22934 	if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) {
22935 		ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
22936 		CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22937 	}
22938 }
22939 
22940 /*
22941  * Initiate closedown sequence on an active connection.  (May be called as
22942  * writer.)  Return value zero for OK return, non-zero for error return.
22943  */
22944 static int
22945 tcp_xmit_end(tcp_t *tcp)
22946 {
22947 	ipic_t	*ipic;
22948 	mblk_t	*mp;
22949 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22950 
22951 	if (tcp->tcp_state < TCPS_SYN_RCVD ||
22952 	    tcp->tcp_state > TCPS_CLOSE_WAIT) {
22953 		/*
22954 		 * Invalid state, only states TCPS_SYN_RCVD,
22955 		 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid
22956 		 */
22957 		return (-1);
22958 	}
22959 
22960 	tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent;
22961 	tcp->tcp_valid_bits |= TCP_FSS_VALID;
22962 	/*
22963 	 * If there is nothing more unsent, send the FIN now.
22964 	 * Otherwise, it will go out with the last segment.
22965 	 */
22966 	if (tcp->tcp_unsent == 0) {
22967 		mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
22968 		    tcp->tcp_fss, B_FALSE, NULL, B_FALSE);
22969 
22970 		if (mp) {
22971 			tcp_send_data(tcp, tcp->tcp_wq, mp);
22972 		} else {
22973 			/*
22974 			 * Couldn't allocate msg.  Pretend we got it out.
22975 			 * Wait for rexmit timeout.
22976 			 */
22977 			tcp->tcp_snxt = tcp->tcp_fss + 1;
22978 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
22979 		}
22980 
22981 		/*
22982 		 * If needed, update tcp_rexmit_snxt as tcp_snxt is
22983 		 * changed.
22984 		 */
22985 		if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) {
22986 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
22987 		}
22988 	} else {
22989 		/*
22990 		 * If tcp->tcp_cork is set, then the data will not get sent,
22991 		 * so we have to check that and unset it first.
22992 		 */
22993 		if (tcp->tcp_cork)
22994 			tcp->tcp_cork = B_FALSE;
22995 		tcp_wput_data(tcp, NULL, B_FALSE);
22996 	}
22997 
22998 	/*
22999 	 * If TCP does not get enough samples of RTT or tcp_rtt_updates
23000 	 * is 0, don't update the cache.
23001 	 */
23002 	if (tcps->tcps_rtt_updates == 0 ||
23003 	    tcp->tcp_rtt_update < tcps->tcps_rtt_updates)
23004 		return (0);
23005 
23006 	/*
23007 	 * NOTE: should not update if source routes i.e. if tcp_remote if
23008 	 * different from the destination.
23009 	 */
23010 	if (tcp->tcp_ipversion == IPV4_VERSION) {
23011 		if (tcp->tcp_remote !=  tcp->tcp_ipha->ipha_dst) {
23012 			return (0);
23013 		}
23014 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
23015 		    &ipic);
23016 	} else {
23017 		if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
23018 		    &tcp->tcp_ip6h->ip6_dst))) {
23019 			return (0);
23020 		}
23021 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
23022 		    &ipic);
23023 	}
23024 
23025 	/* Record route attributes in the IRE for use by future connections. */
23026 	if (mp == NULL)
23027 		return (0);
23028 
23029 	/*
23030 	 * We do not have a good algorithm to update ssthresh at this time.
23031 	 * So don't do any update.
23032 	 */
23033 	ipic->ipic_rtt = tcp->tcp_rtt_sa;
23034 	ipic->ipic_rtt_sd = tcp->tcp_rtt_sd;
23035 
23036 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
23037 
23038 	return (0);
23039 }
23040 
23041 /*
23042  * Generate a "no listener here" RST in response to an "unknown" segment.
23043  * connp is set by caller when RST is in response to an unexpected
23044  * inbound packet for which there is active tcp state in the system.
23045  * Note that we are reusing the incoming mp to construct the outgoing RST.
23046  */
23047 void
23048 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid,
23049     tcp_stack_t *tcps, conn_t *connp)
23050 {
23051 	uchar_t		*rptr;
23052 	uint32_t	seg_len;
23053 	tcph_t		*tcph;
23054 	uint32_t	seg_seq;
23055 	uint32_t	seg_ack;
23056 	uint_t		flags;
23057 	mblk_t		*ipsec_mp;
23058 	ipha_t 		*ipha;
23059 	ip6_t 		*ip6h;
23060 	boolean_t	mctl_present = B_FALSE;
23061 	boolean_t	check = B_TRUE;
23062 	boolean_t	policy_present;
23063 	ipsec_stack_t	*ipss = tcps->tcps_netstack->netstack_ipsec;
23064 
23065 	TCP_STAT(tcps, tcp_no_listener);
23066 
23067 	ipsec_mp = mp;
23068 
23069 	if (mp->b_datap->db_type == M_CTL) {
23070 		ipsec_in_t *ii;
23071 
23072 		mctl_present = B_TRUE;
23073 		mp = mp->b_cont;
23074 
23075 		ii = (ipsec_in_t *)ipsec_mp->b_rptr;
23076 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
23077 		if (ii->ipsec_in_dont_check) {
23078 			check = B_FALSE;
23079 			if (!ii->ipsec_in_secure) {
23080 				freeb(ipsec_mp);
23081 				mctl_present = B_FALSE;
23082 				ipsec_mp = mp;
23083 			}
23084 		}
23085 	}
23086 
23087 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
23088 		policy_present = ipss->ipsec_inbound_v4_policy_present;
23089 		ipha = (ipha_t *)mp->b_rptr;
23090 		ip6h = NULL;
23091 	} else {
23092 		policy_present = ipss->ipsec_inbound_v6_policy_present;
23093 		ipha = NULL;
23094 		ip6h = (ip6_t *)mp->b_rptr;
23095 	}
23096 
23097 	if (check && policy_present) {
23098 		/*
23099 		 * The conn_t parameter is NULL because we already know
23100 		 * nobody's home.
23101 		 */
23102 		ipsec_mp = ipsec_check_global_policy(
23103 		    ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present,
23104 		    tcps->tcps_netstack);
23105 		if (ipsec_mp == NULL)
23106 			return;
23107 	}
23108 	if (is_system_labeled() && !tsol_can_reply_error(mp)) {
23109 		DTRACE_PROBE2(
23110 		    tx__ip__log__error__nolistener__tcp,
23111 		    char *, "Could not reply with RST to mp(1)",
23112 		    mblk_t *, mp);
23113 		ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n"));
23114 		freemsg(ipsec_mp);
23115 		return;
23116 	}
23117 
23118 	rptr = mp->b_rptr;
23119 
23120 	tcph = (tcph_t *)&rptr[ip_hdr_len];
23121 	seg_seq = BE32_TO_U32(tcph->th_seq);
23122 	seg_ack = BE32_TO_U32(tcph->th_ack);
23123 	flags = tcph->th_flags[0];
23124 
23125 	seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len);
23126 	if (flags & TH_RST) {
23127 		freemsg(ipsec_mp);
23128 	} else if (flags & TH_ACK) {
23129 		tcp_xmit_early_reset("no tcp, reset",
23130 		    ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps,
23131 		    connp);
23132 	} else {
23133 		if (flags & TH_SYN) {
23134 			seg_len++;
23135 		} else {
23136 			/*
23137 			 * Here we violate the RFC.  Note that a normal
23138 			 * TCP will never send a segment without the ACK
23139 			 * flag, except for RST or SYN segment.  This
23140 			 * segment is neither.  Just drop it on the
23141 			 * floor.
23142 			 */
23143 			freemsg(ipsec_mp);
23144 			tcps->tcps_rst_unsent++;
23145 			return;
23146 		}
23147 
23148 		tcp_xmit_early_reset("no tcp, reset/ack",
23149 		    ipsec_mp, 0, seg_seq + seg_len,
23150 		    TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps, connp);
23151 	}
23152 }
23153 
23154 /*
23155  * tcp_xmit_mp is called to return a pointer to an mblk chain complete with
23156  * ip and tcp header ready to pass down to IP.  If the mp passed in is
23157  * non-NULL, then up to max_to_send bytes of data will be dup'ed off that
23158  * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary
23159  * otherwise it will dup partial mblks.)
23160  * Otherwise, an appropriate ACK packet will be generated.  This
23161  * routine is not usually called to send new data for the first time.  It
23162  * is mostly called out of the timer for retransmits, and to generate ACKs.
23163  *
23164  * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will
23165  * be adjusted by *offset.  And after dupb(), the offset and the ending mblk
23166  * of the original mblk chain will be returned in *offset and *end_mp.
23167  */
23168 mblk_t *
23169 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset,
23170     mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len,
23171     boolean_t rexmit)
23172 {
23173 	int	data_length;
23174 	int32_t	off = 0;
23175 	uint_t	flags;
23176 	mblk_t	*mp1;
23177 	mblk_t	*mp2;
23178 	uchar_t	*rptr;
23179 	tcph_t	*tcph;
23180 	int32_t	num_sack_blk = 0;
23181 	int32_t	sack_opt_len = 0;
23182 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23183 
23184 	/* Allocate for our maximum TCP header + link-level */
23185 	mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
23186 	    tcps->tcps_wroff_xtra, BPRI_MED);
23187 	if (!mp1)
23188 		return (NULL);
23189 	data_length = 0;
23190 
23191 	/*
23192 	 * Note that tcp_mss has been adjusted to take into account the
23193 	 * timestamp option if applicable.  Because SACK options do not
23194 	 * appear in every TCP segments and they are of variable lengths,
23195 	 * they cannot be included in tcp_mss.  Thus we need to calculate
23196 	 * the actual segment length when we need to send a segment which
23197 	 * includes SACK options.
23198 	 */
23199 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
23200 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
23201 		    tcp->tcp_num_sack_blk);
23202 		sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
23203 		    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
23204 		if (max_to_send + sack_opt_len > tcp->tcp_mss)
23205 			max_to_send -= sack_opt_len;
23206 	}
23207 
23208 	if (offset != NULL) {
23209 		off = *offset;
23210 		/* We use offset as an indicator that end_mp is not NULL. */
23211 		*end_mp = NULL;
23212 	}
23213 	for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) {
23214 		/* This could be faster with cooperation from downstream */
23215 		if (mp2 != mp1 && !sendall &&
23216 		    data_length + (int)(mp->b_wptr - mp->b_rptr) >
23217 		    max_to_send)
23218 			/*
23219 			 * Don't send the next mblk since the whole mblk
23220 			 * does not fit.
23221 			 */
23222 			break;
23223 		mp2->b_cont = dupb(mp);
23224 		mp2 = mp2->b_cont;
23225 		if (!mp2) {
23226 			freemsg(mp1);
23227 			return (NULL);
23228 		}
23229 		mp2->b_rptr += off;
23230 		ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
23231 		    (uintptr_t)INT_MAX);
23232 
23233 		data_length += (int)(mp2->b_wptr - mp2->b_rptr);
23234 		if (data_length > max_to_send) {
23235 			mp2->b_wptr -= data_length - max_to_send;
23236 			data_length = max_to_send;
23237 			off = mp2->b_wptr - mp->b_rptr;
23238 			break;
23239 		} else {
23240 			off = 0;
23241 		}
23242 	}
23243 	if (offset != NULL) {
23244 		*offset = off;
23245 		*end_mp = mp;
23246 	}
23247 	if (seg_len != NULL) {
23248 		*seg_len = data_length;
23249 	}
23250 
23251 	/* Update the latest receive window size in TCP header. */
23252 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
23253 	    tcp->tcp_tcph->th_win);
23254 
23255 	rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
23256 	mp1->b_rptr = rptr;
23257 	mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len;
23258 	bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
23259 	tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
23260 	U32_TO_ABE32(seq, tcph->th_seq);
23261 
23262 	/*
23263 	 * Use tcp_unsent to determine if the PUSH bit should be used assumes
23264 	 * that this function was called from tcp_wput_data. Thus, when called
23265 	 * to retransmit data the setting of the PUSH bit may appear some
23266 	 * what random in that it might get set when it should not. This
23267 	 * should not pose any performance issues.
23268 	 */
23269 	if (data_length != 0 && (tcp->tcp_unsent == 0 ||
23270 	    tcp->tcp_unsent == data_length)) {
23271 		flags = TH_ACK | TH_PUSH;
23272 	} else {
23273 		flags = TH_ACK;
23274 	}
23275 
23276 	if (tcp->tcp_ecn_ok) {
23277 		if (tcp->tcp_ecn_echo_on)
23278 			flags |= TH_ECE;
23279 
23280 		/*
23281 		 * Only set ECT bit and ECN_CWR if a segment contains new data.
23282 		 * There is no TCP flow control for non-data segments, and
23283 		 * only data segment is transmitted reliably.
23284 		 */
23285 		if (data_length > 0 && !rexmit) {
23286 			SET_ECT(tcp, rptr);
23287 			if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
23288 				flags |= TH_CWR;
23289 				tcp->tcp_ecn_cwr_sent = B_TRUE;
23290 			}
23291 		}
23292 	}
23293 
23294 	if (tcp->tcp_valid_bits) {
23295 		uint32_t u1;
23296 
23297 		if ((tcp->tcp_valid_bits & TCP_ISS_VALID) &&
23298 		    seq == tcp->tcp_iss) {
23299 			uchar_t	*wptr;
23300 
23301 			/*
23302 			 * If TCP_ISS_VALID and the seq number is tcp_iss,
23303 			 * TCP can only be in SYN-SENT, SYN-RCVD or
23304 			 * FIN-WAIT-1 state.  It can be FIN-WAIT-1 if
23305 			 * our SYN is not ack'ed but the app closes this
23306 			 * TCP connection.
23307 			 */
23308 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT ||
23309 			    tcp->tcp_state == TCPS_SYN_RCVD ||
23310 			    tcp->tcp_state == TCPS_FIN_WAIT_1);
23311 
23312 			/*
23313 			 * Tack on the MSS option.  It is always needed
23314 			 * for both active and passive open.
23315 			 *
23316 			 * MSS option value should be interface MTU - MIN
23317 			 * TCP/IP header according to RFC 793 as it means
23318 			 * the maximum segment size TCP can receive.  But
23319 			 * to get around some broken middle boxes/end hosts
23320 			 * out there, we allow the option value to be the
23321 			 * same as the MSS option size on the peer side.
23322 			 * In this way, the other side will not send
23323 			 * anything larger than they can receive.
23324 			 *
23325 			 * Note that for SYN_SENT state, the ndd param
23326 			 * tcp_use_smss_as_mss_opt has no effect as we
23327 			 * don't know the peer's MSS option value. So
23328 			 * the only case we need to take care of is in
23329 			 * SYN_RCVD state, which is done later.
23330 			 */
23331 			wptr = mp1->b_wptr;
23332 			wptr[0] = TCPOPT_MAXSEG;
23333 			wptr[1] = TCPOPT_MAXSEG_LEN;
23334 			wptr += 2;
23335 			u1 = tcp->tcp_if_mtu -
23336 			    (tcp->tcp_ipversion == IPV4_VERSION ?
23337 			    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) -
23338 			    TCP_MIN_HEADER_LENGTH;
23339 			U16_TO_BE16(u1, wptr);
23340 			mp1->b_wptr = wptr + 2;
23341 			/* Update the offset to cover the additional word */
23342 			tcph->th_offset_and_rsrvd[0] += (1 << 4);
23343 
23344 			/*
23345 			 * Note that the following way of filling in
23346 			 * TCP options are not optimal.  Some NOPs can
23347 			 * be saved.  But there is no need at this time
23348 			 * to optimize it.  When it is needed, we will
23349 			 * do it.
23350 			 */
23351 			switch (tcp->tcp_state) {
23352 			case TCPS_SYN_SENT:
23353 				flags = TH_SYN;
23354 
23355 				if (tcp->tcp_snd_ts_ok) {
23356 					uint32_t llbolt = (uint32_t)lbolt;
23357 
23358 					wptr = mp1->b_wptr;
23359 					wptr[0] = TCPOPT_NOP;
23360 					wptr[1] = TCPOPT_NOP;
23361 					wptr[2] = TCPOPT_TSTAMP;
23362 					wptr[3] = TCPOPT_TSTAMP_LEN;
23363 					wptr += 4;
23364 					U32_TO_BE32(llbolt, wptr);
23365 					wptr += 4;
23366 					ASSERT(tcp->tcp_ts_recent == 0);
23367 					U32_TO_BE32(0L, wptr);
23368 					mp1->b_wptr += TCPOPT_REAL_TS_LEN;
23369 					tcph->th_offset_and_rsrvd[0] +=
23370 					    (3 << 4);
23371 				}
23372 
23373 				/*
23374 				 * Set up all the bits to tell other side
23375 				 * we are ECN capable.
23376 				 */
23377 				if (tcp->tcp_ecn_ok) {
23378 					flags |= (TH_ECE | TH_CWR);
23379 				}
23380 				break;
23381 			case TCPS_SYN_RCVD:
23382 				flags |= TH_SYN;
23383 
23384 				/*
23385 				 * Reset the MSS option value to be SMSS
23386 				 * We should probably add back the bytes
23387 				 * for timestamp option and IPsec.  We
23388 				 * don't do that as this is a workaround
23389 				 * for broken middle boxes/end hosts, it
23390 				 * is better for us to be more cautious.
23391 				 * They may not take these things into
23392 				 * account in their SMSS calculation.  Thus
23393 				 * the peer's calculated SMSS may be smaller
23394 				 * than what it can be.  This should be OK.
23395 				 */
23396 				if (tcps->tcps_use_smss_as_mss_opt) {
23397 					u1 = tcp->tcp_mss;
23398 					U16_TO_BE16(u1, wptr);
23399 				}
23400 
23401 				/*
23402 				 * If the other side is ECN capable, reply
23403 				 * that we are also ECN capable.
23404 				 */
23405 				if (tcp->tcp_ecn_ok)
23406 					flags |= TH_ECE;
23407 				break;
23408 			default:
23409 				/*
23410 				 * The above ASSERT() makes sure that this
23411 				 * must be FIN-WAIT-1 state.  Our SYN has
23412 				 * not been ack'ed so retransmit it.
23413 				 */
23414 				flags |= TH_SYN;
23415 				break;
23416 			}
23417 
23418 			if (tcp->tcp_snd_ws_ok) {
23419 				wptr = mp1->b_wptr;
23420 				wptr[0] =  TCPOPT_NOP;
23421 				wptr[1] =  TCPOPT_WSCALE;
23422 				wptr[2] =  TCPOPT_WS_LEN;
23423 				wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
23424 				mp1->b_wptr += TCPOPT_REAL_WS_LEN;
23425 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
23426 			}
23427 
23428 			if (tcp->tcp_snd_sack_ok) {
23429 				wptr = mp1->b_wptr;
23430 				wptr[0] = TCPOPT_NOP;
23431 				wptr[1] = TCPOPT_NOP;
23432 				wptr[2] = TCPOPT_SACK_PERMITTED;
23433 				wptr[3] = TCPOPT_SACK_OK_LEN;
23434 				mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
23435 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
23436 			}
23437 
23438 			/* allocb() of adequate mblk assures space */
23439 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
23440 			    (uintptr_t)INT_MAX);
23441 			u1 = (int)(mp1->b_wptr - mp1->b_rptr);
23442 			/*
23443 			 * Get IP set to checksum on our behalf
23444 			 * Include the adjustment for a source route if any.
23445 			 */
23446 			u1 += tcp->tcp_sum;
23447 			u1 = (u1 >> 16) + (u1 & 0xFFFF);
23448 			U16_TO_BE16(u1, tcph->th_sum);
23449 			BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23450 		}
23451 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
23452 		    (seq + data_length) == tcp->tcp_fss) {
23453 			if (!tcp->tcp_fin_acked) {
23454 				flags |= TH_FIN;
23455 				BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23456 			}
23457 			if (!tcp->tcp_fin_sent) {
23458 				tcp->tcp_fin_sent = B_TRUE;
23459 				switch (tcp->tcp_state) {
23460 				case TCPS_SYN_RCVD:
23461 				case TCPS_ESTABLISHED:
23462 					tcp->tcp_state = TCPS_FIN_WAIT_1;
23463 					break;
23464 				case TCPS_CLOSE_WAIT:
23465 					tcp->tcp_state = TCPS_LAST_ACK;
23466 					break;
23467 				}
23468 				if (tcp->tcp_suna == tcp->tcp_snxt)
23469 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
23470 				tcp->tcp_snxt = tcp->tcp_fss + 1;
23471 			}
23472 		}
23473 		/*
23474 		 * Note the trick here.  u1 is unsigned.  When tcp_urg
23475 		 * is smaller than seq, u1 will become a very huge value.
23476 		 * So the comparison will fail.  Also note that tcp_urp
23477 		 * should be positive, see RFC 793 page 17.
23478 		 */
23479 		u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION;
23480 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 &&
23481 		    u1 < (uint32_t)(64 * 1024)) {
23482 			flags |= TH_URG;
23483 			BUMP_MIB(&tcps->tcps_mib, tcpOutUrg);
23484 			U32_TO_ABE16(u1, tcph->th_urp);
23485 		}
23486 	}
23487 	tcph->th_flags[0] = (uchar_t)flags;
23488 	tcp->tcp_rack = tcp->tcp_rnxt;
23489 	tcp->tcp_rack_cnt = 0;
23490 
23491 	if (tcp->tcp_snd_ts_ok) {
23492 		if (tcp->tcp_state != TCPS_SYN_SENT) {
23493 			uint32_t llbolt = (uint32_t)lbolt;
23494 
23495 			U32_TO_BE32(llbolt,
23496 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
23497 			U32_TO_BE32(tcp->tcp_ts_recent,
23498 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
23499 		}
23500 	}
23501 
23502 	if (num_sack_blk > 0) {
23503 		uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
23504 		sack_blk_t *tmp;
23505 		int32_t	i;
23506 
23507 		wptr[0] = TCPOPT_NOP;
23508 		wptr[1] = TCPOPT_NOP;
23509 		wptr[2] = TCPOPT_SACK;
23510 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
23511 		    sizeof (sack_blk_t);
23512 		wptr += TCPOPT_REAL_SACK_LEN;
23513 
23514 		tmp = tcp->tcp_sack_list;
23515 		for (i = 0; i < num_sack_blk; i++) {
23516 			U32_TO_BE32(tmp[i].begin, wptr);
23517 			wptr += sizeof (tcp_seq);
23518 			U32_TO_BE32(tmp[i].end, wptr);
23519 			wptr += sizeof (tcp_seq);
23520 		}
23521 		tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4);
23522 	}
23523 	ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX);
23524 	data_length += (int)(mp1->b_wptr - rptr);
23525 	if (tcp->tcp_ipversion == IPV4_VERSION) {
23526 		((ipha_t *)rptr)->ipha_length = htons(data_length);
23527 	} else {
23528 		ip6_t *ip6 = (ip6_t *)(rptr +
23529 		    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
23530 		    sizeof (ip6i_t) : 0));
23531 
23532 		ip6->ip6_plen = htons(data_length -
23533 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
23534 	}
23535 
23536 	/*
23537 	 * Prime pump for IP
23538 	 * Include the adjustment for a source route if any.
23539 	 */
23540 	data_length -= tcp->tcp_ip_hdr_len;
23541 	data_length += tcp->tcp_sum;
23542 	data_length = (data_length >> 16) + (data_length & 0xFFFF);
23543 	U16_TO_ABE16(data_length, tcph->th_sum);
23544 	if (tcp->tcp_ip_forward_progress) {
23545 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
23546 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
23547 		tcp->tcp_ip_forward_progress = B_FALSE;
23548 	}
23549 	return (mp1);
23550 }
23551 
23552 /* This function handles the push timeout. */
23553 void
23554 tcp_push_timer(void *arg)
23555 {
23556 	conn_t	*connp = (conn_t *)arg;
23557 	tcp_t *tcp = connp->conn_tcp;
23558 	uint_t		flags;
23559 	sodirect_t	*sodp;
23560 
23561 	TCP_DBGSTAT(tcp->tcp_tcps, tcp_push_timer_cnt);
23562 
23563 	ASSERT(tcp->tcp_listener == NULL);
23564 
23565 	ASSERT(!IPCL_IS_NONSTR(connp));
23566 
23567 	/*
23568 	 * We need to plug synchronous streams during our drain to prevent
23569 	 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop().
23570 	 */
23571 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
23572 	tcp->tcp_push_tid = 0;
23573 
23574 	SOD_PTR_ENTER(tcp, sodp);
23575 	if (sodp != NULL) {
23576 		flags = tcp_rcv_sod_wakeup(tcp, sodp);
23577 		/* sod_wakeup() does the mutex_exit() */
23578 	} else if (tcp->tcp_rcv_list != NULL) {
23579 		flags = tcp_rcv_drain(tcp);
23580 	}
23581 	if (flags == TH_ACK_NEEDED)
23582 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
23583 
23584 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
23585 }
23586 
23587 /*
23588  * This function handles delayed ACK timeout.
23589  */
23590 static void
23591 tcp_ack_timer(void *arg)
23592 {
23593 	conn_t	*connp = (conn_t *)arg;
23594 	tcp_t *tcp = connp->conn_tcp;
23595 	mblk_t *mp;
23596 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23597 
23598 	TCP_DBGSTAT(tcps, tcp_ack_timer_cnt);
23599 
23600 	tcp->tcp_ack_tid = 0;
23601 
23602 	if (tcp->tcp_fused)
23603 		return;
23604 
23605 	/*
23606 	 * Do not send ACK if there is no outstanding unack'ed data.
23607 	 */
23608 	if (tcp->tcp_rnxt == tcp->tcp_rack) {
23609 		return;
23610 	}
23611 
23612 	if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) {
23613 		/*
23614 		 * Make sure we don't allow deferred ACKs to result in
23615 		 * timer-based ACKing.  If we have held off an ACK
23616 		 * when there was more than an mss here, and the timer
23617 		 * goes off, we have to worry about the possibility
23618 		 * that the sender isn't doing slow-start, or is out
23619 		 * of step with us for some other reason.  We fall
23620 		 * permanently back in the direction of
23621 		 * ACK-every-other-packet as suggested in RFC 1122.
23622 		 */
23623 		if (tcp->tcp_rack_abs_max > 2)
23624 			tcp->tcp_rack_abs_max--;
23625 		tcp->tcp_rack_cur_max = 2;
23626 	}
23627 	mp = tcp_ack_mp(tcp);
23628 
23629 	if (mp != NULL) {
23630 		BUMP_LOCAL(tcp->tcp_obsegs);
23631 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
23632 		BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed);
23633 		tcp_send_data(tcp, tcp->tcp_wq, mp);
23634 	}
23635 }
23636 
23637 
23638 /* Generate an ACK-only (no data) segment for a TCP endpoint */
23639 static mblk_t *
23640 tcp_ack_mp(tcp_t *tcp)
23641 {
23642 	uint32_t	seq_no;
23643 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23644 
23645 	/*
23646 	 * There are a few cases to be considered while setting the sequence no.
23647 	 * Essentially, we can come here while processing an unacceptable pkt
23648 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
23649 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
23650 	 * If we are here for a zero window probe, stick with suna. In all
23651 	 * other cases, we check if suna + swnd encompasses snxt and set
23652 	 * the sequence number to snxt, if so. If snxt falls outside the
23653 	 * window (the receiver probably shrunk its window), we will go with
23654 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
23655 	 * receiver.
23656 	 */
23657 	if (tcp->tcp_zero_win_probe) {
23658 		seq_no = tcp->tcp_suna;
23659 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
23660 		ASSERT(tcp->tcp_swnd == 0);
23661 		seq_no = tcp->tcp_snxt;
23662 	} else {
23663 		seq_no = SEQ_GT(tcp->tcp_snxt,
23664 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
23665 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
23666 	}
23667 
23668 	if (tcp->tcp_valid_bits) {
23669 		/*
23670 		 * For the complex case where we have to send some
23671 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
23672 		 */
23673 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
23674 		    NULL, B_FALSE));
23675 	} else {
23676 		/* Generate a simple ACK */
23677 		int	data_length;
23678 		uchar_t	*rptr;
23679 		tcph_t	*tcph;
23680 		mblk_t	*mp1;
23681 		int32_t	tcp_hdr_len;
23682 		int32_t	tcp_tcp_hdr_len;
23683 		int32_t	num_sack_blk = 0;
23684 		int32_t sack_opt_len;
23685 
23686 		/*
23687 		 * Allocate space for TCP + IP headers
23688 		 * and link-level header
23689 		 */
23690 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
23691 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
23692 			    tcp->tcp_num_sack_blk);
23693 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
23694 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
23695 			tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len;
23696 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len;
23697 		} else {
23698 			tcp_hdr_len = tcp->tcp_hdr_len;
23699 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
23700 		}
23701 		mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED);
23702 		if (!mp1)
23703 			return (NULL);
23704 
23705 		/* Update the latest receive window size in TCP header. */
23706 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
23707 		    tcp->tcp_tcph->th_win);
23708 		/* copy in prototype TCP + IP header */
23709 		rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
23710 		mp1->b_rptr = rptr;
23711 		mp1->b_wptr = rptr + tcp_hdr_len;
23712 		bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
23713 
23714 		tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
23715 
23716 		/* Set the TCP sequence number. */
23717 		U32_TO_ABE32(seq_no, tcph->th_seq);
23718 
23719 		/* Set up the TCP flag field. */
23720 		tcph->th_flags[0] = (uchar_t)TH_ACK;
23721 		if (tcp->tcp_ecn_echo_on)
23722 			tcph->th_flags[0] |= TH_ECE;
23723 
23724 		tcp->tcp_rack = tcp->tcp_rnxt;
23725 		tcp->tcp_rack_cnt = 0;
23726 
23727 		/* fill in timestamp option if in use */
23728 		if (tcp->tcp_snd_ts_ok) {
23729 			uint32_t llbolt = (uint32_t)lbolt;
23730 
23731 			U32_TO_BE32(llbolt,
23732 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
23733 			U32_TO_BE32(tcp->tcp_ts_recent,
23734 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
23735 		}
23736 
23737 		/* Fill in SACK options */
23738 		if (num_sack_blk > 0) {
23739 			uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
23740 			sack_blk_t *tmp;
23741 			int32_t	i;
23742 
23743 			wptr[0] = TCPOPT_NOP;
23744 			wptr[1] = TCPOPT_NOP;
23745 			wptr[2] = TCPOPT_SACK;
23746 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
23747 			    sizeof (sack_blk_t);
23748 			wptr += TCPOPT_REAL_SACK_LEN;
23749 
23750 			tmp = tcp->tcp_sack_list;
23751 			for (i = 0; i < num_sack_blk; i++) {
23752 				U32_TO_BE32(tmp[i].begin, wptr);
23753 				wptr += sizeof (tcp_seq);
23754 				U32_TO_BE32(tmp[i].end, wptr);
23755 				wptr += sizeof (tcp_seq);
23756 			}
23757 			tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1)
23758 			    << 4);
23759 		}
23760 
23761 		if (tcp->tcp_ipversion == IPV4_VERSION) {
23762 			((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len);
23763 		} else {
23764 			/* Check for ip6i_t header in sticky hdrs */
23765 			ip6_t *ip6 = (ip6_t *)(rptr +
23766 			    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
23767 			    sizeof (ip6i_t) : 0));
23768 
23769 			ip6->ip6_plen = htons(tcp_hdr_len -
23770 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
23771 		}
23772 
23773 		/*
23774 		 * Prime pump for checksum calculation in IP.  Include the
23775 		 * adjustment for a source route if any.
23776 		 */
23777 		data_length = tcp_tcp_hdr_len + tcp->tcp_sum;
23778 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
23779 		U16_TO_ABE16(data_length, tcph->th_sum);
23780 
23781 		if (tcp->tcp_ip_forward_progress) {
23782 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
23783 			*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
23784 			tcp->tcp_ip_forward_progress = B_FALSE;
23785 		}
23786 		return (mp1);
23787 	}
23788 }
23789 
23790 /*
23791  * Hash list insertion routine for tcp_t structures. Each hash bucket
23792  * contains a list of tcp_t entries, and each entry is bound to a unique
23793  * port. If there are multiple tcp_t's that are bound to the same port, then
23794  * one of them will be linked into the hash bucket list, and the rest will
23795  * hang off of that one entry. For each port, entries bound to a specific IP
23796  * address will be inserted before those those bound to INADDR_ANY.
23797  */
23798 static void
23799 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock)
23800 {
23801 	tcp_t	**tcpp;
23802 	tcp_t	*tcpnext;
23803 	tcp_t	*tcphash;
23804 
23805 	if (tcp->tcp_ptpbhn != NULL) {
23806 		ASSERT(!caller_holds_lock);
23807 		tcp_bind_hash_remove(tcp);
23808 	}
23809 	tcpp = &tbf->tf_tcp;
23810 	if (!caller_holds_lock) {
23811 		mutex_enter(&tbf->tf_lock);
23812 	} else {
23813 		ASSERT(MUTEX_HELD(&tbf->tf_lock));
23814 	}
23815 	tcphash = tcpp[0];
23816 	tcpnext = NULL;
23817 	if (tcphash != NULL) {
23818 		/* Look for an entry using the same port */
23819 		while ((tcphash = tcpp[0]) != NULL &&
23820 		    tcp->tcp_lport != tcphash->tcp_lport)
23821 			tcpp = &(tcphash->tcp_bind_hash);
23822 
23823 		/* The port was not found, just add to the end */
23824 		if (tcphash == NULL)
23825 			goto insert;
23826 
23827 		/*
23828 		 * OK, there already exists an entry bound to the
23829 		 * same port.
23830 		 *
23831 		 * If the new tcp bound to the INADDR_ANY address
23832 		 * and the first one in the list is not bound to
23833 		 * INADDR_ANY we skip all entries until we find the
23834 		 * first one bound to INADDR_ANY.
23835 		 * This makes sure that applications binding to a
23836 		 * specific address get preference over those binding to
23837 		 * INADDR_ANY.
23838 		 */
23839 		tcpnext = tcphash;
23840 		tcphash = NULL;
23841 		if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) &&
23842 		    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) {
23843 			while ((tcpnext = tcpp[0]) != NULL &&
23844 			    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6))
23845 				tcpp = &(tcpnext->tcp_bind_hash_port);
23846 
23847 			if (tcpnext) {
23848 				tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port;
23849 				tcphash = tcpnext->tcp_bind_hash;
23850 				if (tcphash != NULL) {
23851 					tcphash->tcp_ptpbhn =
23852 					    &(tcp->tcp_bind_hash);
23853 					tcpnext->tcp_bind_hash = NULL;
23854 				}
23855 			}
23856 		} else {
23857 			tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port;
23858 			tcphash = tcpnext->tcp_bind_hash;
23859 			if (tcphash != NULL) {
23860 				tcphash->tcp_ptpbhn =
23861 				    &(tcp->tcp_bind_hash);
23862 				tcpnext->tcp_bind_hash = NULL;
23863 			}
23864 		}
23865 	}
23866 insert:
23867 	tcp->tcp_bind_hash_port = tcpnext;
23868 	tcp->tcp_bind_hash = tcphash;
23869 	tcp->tcp_ptpbhn = tcpp;
23870 	tcpp[0] = tcp;
23871 	if (!caller_holds_lock)
23872 		mutex_exit(&tbf->tf_lock);
23873 }
23874 
23875 /*
23876  * Hash list removal routine for tcp_t structures.
23877  */
23878 static void
23879 tcp_bind_hash_remove(tcp_t *tcp)
23880 {
23881 	tcp_t	*tcpnext;
23882 	kmutex_t *lockp;
23883 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23884 
23885 	if (tcp->tcp_ptpbhn == NULL)
23886 		return;
23887 
23888 	/*
23889 	 * Extract the lock pointer in case there are concurrent
23890 	 * hash_remove's for this instance.
23891 	 */
23892 	ASSERT(tcp->tcp_lport != 0);
23893 	lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock;
23894 
23895 	ASSERT(lockp != NULL);
23896 	mutex_enter(lockp);
23897 	if (tcp->tcp_ptpbhn) {
23898 		tcpnext = tcp->tcp_bind_hash_port;
23899 		if (tcpnext != NULL) {
23900 			tcp->tcp_bind_hash_port = NULL;
23901 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
23902 			tcpnext->tcp_bind_hash = tcp->tcp_bind_hash;
23903 			if (tcpnext->tcp_bind_hash != NULL) {
23904 				tcpnext->tcp_bind_hash->tcp_ptpbhn =
23905 				    &(tcpnext->tcp_bind_hash);
23906 				tcp->tcp_bind_hash = NULL;
23907 			}
23908 		} else if ((tcpnext = tcp->tcp_bind_hash) != NULL) {
23909 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
23910 			tcp->tcp_bind_hash = NULL;
23911 		}
23912 		*tcp->tcp_ptpbhn = tcpnext;
23913 		tcp->tcp_ptpbhn = NULL;
23914 	}
23915 	mutex_exit(lockp);
23916 }
23917 
23918 
23919 /*
23920  * Hash list lookup routine for tcp_t structures.
23921  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
23922  */
23923 static tcp_t *
23924 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps)
23925 {
23926 	tf_t	*tf;
23927 	tcp_t	*tcp;
23928 
23929 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
23930 	mutex_enter(&tf->tf_lock);
23931 	for (tcp = tf->tf_tcp; tcp != NULL;
23932 	    tcp = tcp->tcp_acceptor_hash) {
23933 		if (tcp->tcp_acceptor_id == id) {
23934 			CONN_INC_REF(tcp->tcp_connp);
23935 			mutex_exit(&tf->tf_lock);
23936 			return (tcp);
23937 		}
23938 	}
23939 	mutex_exit(&tf->tf_lock);
23940 	return (NULL);
23941 }
23942 
23943 
23944 /*
23945  * Hash list insertion routine for tcp_t structures.
23946  */
23947 void
23948 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
23949 {
23950 	tf_t	*tf;
23951 	tcp_t	**tcpp;
23952 	tcp_t	*tcpnext;
23953 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23954 
23955 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
23956 
23957 	if (tcp->tcp_ptpahn != NULL)
23958 		tcp_acceptor_hash_remove(tcp);
23959 	tcpp = &tf->tf_tcp;
23960 	mutex_enter(&tf->tf_lock);
23961 	tcpnext = tcpp[0];
23962 	if (tcpnext)
23963 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
23964 	tcp->tcp_acceptor_hash = tcpnext;
23965 	tcp->tcp_ptpahn = tcpp;
23966 	tcpp[0] = tcp;
23967 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
23968 	mutex_exit(&tf->tf_lock);
23969 }
23970 
23971 /*
23972  * Hash list removal routine for tcp_t structures.
23973  */
23974 static void
23975 tcp_acceptor_hash_remove(tcp_t *tcp)
23976 {
23977 	tcp_t	*tcpnext;
23978 	kmutex_t *lockp;
23979 
23980 	/*
23981 	 * Extract the lock pointer in case there are concurrent
23982 	 * hash_remove's for this instance.
23983 	 */
23984 	lockp = tcp->tcp_acceptor_lockp;
23985 
23986 	if (tcp->tcp_ptpahn == NULL)
23987 		return;
23988 
23989 	ASSERT(lockp != NULL);
23990 	mutex_enter(lockp);
23991 	if (tcp->tcp_ptpahn) {
23992 		tcpnext = tcp->tcp_acceptor_hash;
23993 		if (tcpnext) {
23994 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
23995 			tcp->tcp_acceptor_hash = NULL;
23996 		}
23997 		*tcp->tcp_ptpahn = tcpnext;
23998 		tcp->tcp_ptpahn = NULL;
23999 	}
24000 	mutex_exit(lockp);
24001 	tcp->tcp_acceptor_lockp = NULL;
24002 }
24003 
24004 /* Data for fast netmask macro used by tcp_hsp_lookup */
24005 
24006 static ipaddr_t netmasks[] = {
24007 	IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET,
24008 	IN_CLASSC_NET | IN_CLASSD_NET  /* Class C,D,E */
24009 };
24010 
24011 #define	netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30])
24012 
24013 /*
24014  * XXX This routine should go away and instead we should use the metrics
24015  * associated with the routes to determine the default sndspace and rcvspace.
24016  */
24017 static tcp_hsp_t *
24018 tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *tcps)
24019 {
24020 	tcp_hsp_t *hsp = NULL;
24021 
24022 	/* Quick check without acquiring the lock. */
24023 	if (tcps->tcps_hsp_hash == NULL)
24024 		return (NULL);
24025 
24026 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24027 
24028 	/* This routine finds the best-matching HSP for address addr. */
24029 
24030 	if (tcps->tcps_hsp_hash) {
24031 		int i;
24032 		ipaddr_t srchaddr;
24033 		tcp_hsp_t *hsp_net;
24034 
24035 		/* We do three passes: host, network, and subnet. */
24036 
24037 		srchaddr = addr;
24038 
24039 		for (i = 1; i <= 3; i++) {
24040 			/* Look for exact match on srchaddr */
24041 
24042 			hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(srchaddr)];
24043 			while (hsp) {
24044 				if (hsp->tcp_hsp_vers == IPV4_VERSION &&
24045 				    hsp->tcp_hsp_addr == srchaddr)
24046 					break;
24047 				hsp = hsp->tcp_hsp_next;
24048 			}
24049 			ASSERT(hsp == NULL ||
24050 			    hsp->tcp_hsp_vers == IPV4_VERSION);
24051 
24052 			/*
24053 			 * If this is the first pass:
24054 			 *   If we found a match, great, return it.
24055 			 *   If not, search for the network on the second pass.
24056 			 */
24057 
24058 			if (i == 1)
24059 				if (hsp)
24060 					break;
24061 				else
24062 				{
24063 					srchaddr = addr & netmask(addr);
24064 					continue;
24065 				}
24066 
24067 			/*
24068 			 * If this is the second pass:
24069 			 *   If we found a match, but there's a subnet mask,
24070 			 *    save the match but try again using the subnet
24071 			 *    mask on the third pass.
24072 			 *   Otherwise, return whatever we found.
24073 			 */
24074 
24075 			if (i == 2) {
24076 				if (hsp && hsp->tcp_hsp_subnet) {
24077 					hsp_net = hsp;
24078 					srchaddr = addr & hsp->tcp_hsp_subnet;
24079 					continue;
24080 				} else {
24081 					break;
24082 				}
24083 			}
24084 
24085 			/*
24086 			 * This must be the third pass.  If we didn't find
24087 			 * anything, return the saved network HSP instead.
24088 			 */
24089 
24090 			if (!hsp)
24091 				hsp = hsp_net;
24092 		}
24093 	}
24094 
24095 	rw_exit(&tcps->tcps_hsp_lock);
24096 	return (hsp);
24097 }
24098 
24099 /*
24100  * XXX Equally broken as the IPv4 routine. Doesn't handle longest
24101  * match lookup.
24102  */
24103 static tcp_hsp_t *
24104 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr, tcp_stack_t *tcps)
24105 {
24106 	tcp_hsp_t *hsp = NULL;
24107 
24108 	/* Quick check without acquiring the lock. */
24109 	if (tcps->tcps_hsp_hash == NULL)
24110 		return (NULL);
24111 
24112 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24113 
24114 	/* This routine finds the best-matching HSP for address addr. */
24115 
24116 	if (tcps->tcps_hsp_hash) {
24117 		int i;
24118 		in6_addr_t v6srchaddr;
24119 		tcp_hsp_t *hsp_net;
24120 
24121 		/* We do three passes: host, network, and subnet. */
24122 
24123 		v6srchaddr = *v6addr;
24124 
24125 		for (i = 1; i <= 3; i++) {
24126 			/* Look for exact match on srchaddr */
24127 
24128 			hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(
24129 			    V4_PART_OF_V6(v6srchaddr))];
24130 			while (hsp) {
24131 				if (hsp->tcp_hsp_vers == IPV6_VERSION &&
24132 				    IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
24133 				    &v6srchaddr))
24134 					break;
24135 				hsp = hsp->tcp_hsp_next;
24136 			}
24137 
24138 			/*
24139 			 * If this is the first pass:
24140 			 *   If we found a match, great, return it.
24141 			 *   If not, search for the network on the second pass.
24142 			 */
24143 
24144 			if (i == 1)
24145 				if (hsp)
24146 					break;
24147 				else {
24148 					/* Assume a 64 bit mask */
24149 					v6srchaddr.s6_addr32[0] =
24150 					    v6addr->s6_addr32[0];
24151 					v6srchaddr.s6_addr32[1] =
24152 					    v6addr->s6_addr32[1];
24153 					v6srchaddr.s6_addr32[2] = 0;
24154 					v6srchaddr.s6_addr32[3] = 0;
24155 					continue;
24156 				}
24157 
24158 			/*
24159 			 * If this is the second pass:
24160 			 *   If we found a match, but there's a subnet mask,
24161 			 *    save the match but try again using the subnet
24162 			 *    mask on the third pass.
24163 			 *   Otherwise, return whatever we found.
24164 			 */
24165 
24166 			if (i == 2) {
24167 				ASSERT(hsp == NULL ||
24168 				    hsp->tcp_hsp_vers == IPV6_VERSION);
24169 				if (hsp &&
24170 				    !IN6_IS_ADDR_UNSPECIFIED(
24171 				    &hsp->tcp_hsp_subnet_v6)) {
24172 					hsp_net = hsp;
24173 					V6_MASK_COPY(*v6addr,
24174 					    hsp->tcp_hsp_subnet_v6, v6srchaddr);
24175 					continue;
24176 				} else {
24177 					break;
24178 				}
24179 			}
24180 
24181 			/*
24182 			 * This must be the third pass.  If we didn't find
24183 			 * anything, return the saved network HSP instead.
24184 			 */
24185 
24186 			if (!hsp)
24187 				hsp = hsp_net;
24188 		}
24189 	}
24190 
24191 	rw_exit(&tcps->tcps_hsp_lock);
24192 	return (hsp);
24193 }
24194 
24195 /*
24196  * Type three generator adapted from the random() function in 4.4 BSD:
24197  */
24198 
24199 /*
24200  * Copyright (c) 1983, 1993
24201  *	The Regents of the University of California.  All rights reserved.
24202  *
24203  * Redistribution and use in source and binary forms, with or without
24204  * modification, are permitted provided that the following conditions
24205  * are met:
24206  * 1. Redistributions of source code must retain the above copyright
24207  *    notice, this list of conditions and the following disclaimer.
24208  * 2. Redistributions in binary form must reproduce the above copyright
24209  *    notice, this list of conditions and the following disclaimer in the
24210  *    documentation and/or other materials provided with the distribution.
24211  * 3. All advertising materials mentioning features or use of this software
24212  *    must display the following acknowledgement:
24213  *	This product includes software developed by the University of
24214  *	California, Berkeley and its contributors.
24215  * 4. Neither the name of the University nor the names of its contributors
24216  *    may be used to endorse or promote products derived from this software
24217  *    without specific prior written permission.
24218  *
24219  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24220  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24221  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24222  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24223  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24224  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24225  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24226  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24227  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24228  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24229  * SUCH DAMAGE.
24230  */
24231 
24232 /* Type 3 -- x**31 + x**3 + 1 */
24233 #define	DEG_3		31
24234 #define	SEP_3		3
24235 
24236 
24237 /* Protected by tcp_random_lock */
24238 static int tcp_randtbl[DEG_3 + 1];
24239 
24240 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
24241 static int *tcp_random_rptr = &tcp_randtbl[1];
24242 
24243 static int *tcp_random_state = &tcp_randtbl[1];
24244 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
24245 
24246 kmutex_t tcp_random_lock;
24247 
24248 void
24249 tcp_random_init(void)
24250 {
24251 	int i;
24252 	hrtime_t hrt;
24253 	time_t wallclock;
24254 	uint64_t result;
24255 
24256 	/*
24257 	 * Use high-res timer and current time for seed.  Gethrtime() returns
24258 	 * a longlong, which may contain resolution down to nanoseconds.
24259 	 * The current time will either be a 32-bit or a 64-bit quantity.
24260 	 * XOR the two together in a 64-bit result variable.
24261 	 * Convert the result to a 32-bit value by multiplying the high-order
24262 	 * 32-bits by the low-order 32-bits.
24263 	 */
24264 
24265 	hrt = gethrtime();
24266 	(void) drv_getparm(TIME, &wallclock);
24267 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
24268 	mutex_enter(&tcp_random_lock);
24269 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
24270 	    (result & 0xffffffff);
24271 
24272 	for (i = 1; i < DEG_3; i++)
24273 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
24274 		    + 12345;
24275 	tcp_random_fptr = &tcp_random_state[SEP_3];
24276 	tcp_random_rptr = &tcp_random_state[0];
24277 	mutex_exit(&tcp_random_lock);
24278 	for (i = 0; i < 10 * DEG_3; i++)
24279 		(void) tcp_random();
24280 }
24281 
24282 /*
24283  * tcp_random: Return a random number in the range [1 - (128K + 1)].
24284  * This range is selected to be approximately centered on TCP_ISS / 2,
24285  * and easy to compute. We get this value by generating a 32-bit random
24286  * number, selecting out the high-order 17 bits, and then adding one so
24287  * that we never return zero.
24288  */
24289 int
24290 tcp_random(void)
24291 {
24292 	int i;
24293 
24294 	mutex_enter(&tcp_random_lock);
24295 	*tcp_random_fptr += *tcp_random_rptr;
24296 
24297 	/*
24298 	 * The high-order bits are more random than the low-order bits,
24299 	 * so we select out the high-order 17 bits and add one so that
24300 	 * we never return zero.
24301 	 */
24302 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
24303 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
24304 		tcp_random_fptr = tcp_random_state;
24305 		++tcp_random_rptr;
24306 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
24307 		tcp_random_rptr = tcp_random_state;
24308 
24309 	mutex_exit(&tcp_random_lock);
24310 	return (i);
24311 }
24312 
24313 static int
24314 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp,
24315     int *t_errorp, int *sys_errorp)
24316 {
24317 	int error;
24318 	int is_absreq_failure;
24319 	t_scalar_t *opt_lenp;
24320 	t_scalar_t opt_offset;
24321 	int prim_type;
24322 	struct T_conn_req *tcreqp;
24323 	struct T_conn_res *tcresp;
24324 	cred_t *cr;
24325 
24326 	cr = DB_CREDDEF(mp, tcp->tcp_cred);
24327 
24328 	prim_type = ((union T_primitives *)mp->b_rptr)->type;
24329 	ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES ||
24330 	    prim_type == T_CONN_RES);
24331 
24332 	switch (prim_type) {
24333 	case T_CONN_REQ:
24334 		tcreqp = (struct T_conn_req *)mp->b_rptr;
24335 		opt_offset = tcreqp->OPT_offset;
24336 		opt_lenp = (t_scalar_t *)&tcreqp->OPT_length;
24337 		break;
24338 	case O_T_CONN_RES:
24339 	case T_CONN_RES:
24340 		tcresp = (struct T_conn_res *)mp->b_rptr;
24341 		opt_offset = tcresp->OPT_offset;
24342 		opt_lenp = (t_scalar_t *)&tcresp->OPT_length;
24343 		break;
24344 	}
24345 
24346 	*t_errorp = 0;
24347 	*sys_errorp = 0;
24348 	*do_disconnectp = 0;
24349 
24350 	error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp,
24351 	    opt_offset, cr, &tcp_opt_obj,
24352 	    NULL, &is_absreq_failure);
24353 
24354 	switch (error) {
24355 	case  0:		/* no error */
24356 		ASSERT(is_absreq_failure == 0);
24357 		return (0);
24358 	case ENOPROTOOPT:
24359 		*t_errorp = TBADOPT;
24360 		break;
24361 	case EACCES:
24362 		*t_errorp = TACCES;
24363 		break;
24364 	default:
24365 		*t_errorp = TSYSERR; *sys_errorp = error;
24366 		break;
24367 	}
24368 	if (is_absreq_failure != 0) {
24369 		/*
24370 		 * The connection request should get the local ack
24371 		 * T_OK_ACK and then a T_DISCON_IND.
24372 		 */
24373 		*do_disconnectp = 1;
24374 	}
24375 	return (-1);
24376 }
24377 
24378 /*
24379  * Split this function out so that if the secret changes, I'm okay.
24380  *
24381  * Initialize the tcp_iss_cookie and tcp_iss_key.
24382  */
24383 
24384 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
24385 
24386 static void
24387 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps)
24388 {
24389 	struct {
24390 		int32_t current_time;
24391 		uint32_t randnum;
24392 		uint16_t pad;
24393 		uint8_t ether[6];
24394 		uint8_t passwd[PASSWD_SIZE];
24395 	} tcp_iss_cookie;
24396 	time_t t;
24397 
24398 	/*
24399 	 * Start with the current absolute time.
24400 	 */
24401 	(void) drv_getparm(TIME, &t);
24402 	tcp_iss_cookie.current_time = t;
24403 
24404 	/*
24405 	 * XXX - Need a more random number per RFC 1750, not this crap.
24406 	 * OTOH, if what follows is pretty random, then I'm in better shape.
24407 	 */
24408 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
24409 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
24410 
24411 	/*
24412 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
24413 	 * as a good template.
24414 	 */
24415 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
24416 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
24417 
24418 	/*
24419 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
24420 	 */
24421 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
24422 
24423 	/*
24424 	 * See 4010593 if this section becomes a problem again,
24425 	 * but the local ethernet address is useful here.
24426 	 */
24427 	(void) localetheraddr(NULL,
24428 	    (struct ether_addr *)&tcp_iss_cookie.ether);
24429 
24430 	/*
24431 	 * Hash 'em all together.  The MD5Final is called per-connection.
24432 	 */
24433 	mutex_enter(&tcps->tcps_iss_key_lock);
24434 	MD5Init(&tcps->tcps_iss_key);
24435 	MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie,
24436 	    sizeof (tcp_iss_cookie));
24437 	mutex_exit(&tcps->tcps_iss_key_lock);
24438 }
24439 
24440 /*
24441  * Set the RFC 1948 pass phrase
24442  */
24443 /* ARGSUSED */
24444 static int
24445 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
24446     cred_t *cr)
24447 {
24448 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
24449 
24450 	/*
24451 	 * Basically, value contains a new pass phrase.  Pass it along!
24452 	 */
24453 	tcp_iss_key_init((uint8_t *)value, strlen(value), tcps);
24454 	return (0);
24455 }
24456 
24457 /* ARGSUSED */
24458 static int
24459 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags)
24460 {
24461 	bzero(buf, sizeof (tcp_sack_info_t));
24462 	return (0);
24463 }
24464 
24465 /* ARGSUSED */
24466 static int
24467 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags)
24468 {
24469 	bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH);
24470 	return (0);
24471 }
24472 
24473 /*
24474  * Make sure we wait until the default queue is setup, yet allow
24475  * tcp_g_q_create() to open a TCP stream.
24476  * We need to allow tcp_g_q_create() do do an open
24477  * of tcp, hence we compare curhread.
24478  * All others have to wait until the tcps_g_q has been
24479  * setup.
24480  */
24481 void
24482 tcp_g_q_setup(tcp_stack_t *tcps)
24483 {
24484 	mutex_enter(&tcps->tcps_g_q_lock);
24485 	if (tcps->tcps_g_q != NULL) {
24486 		mutex_exit(&tcps->tcps_g_q_lock);
24487 		return;
24488 	}
24489 	if (tcps->tcps_g_q_creator == NULL) {
24490 		/* This thread will set it up */
24491 		tcps->tcps_g_q_creator = curthread;
24492 		mutex_exit(&tcps->tcps_g_q_lock);
24493 		tcp_g_q_create(tcps);
24494 		mutex_enter(&tcps->tcps_g_q_lock);
24495 		ASSERT(tcps->tcps_g_q_creator == curthread);
24496 		tcps->tcps_g_q_creator = NULL;
24497 		cv_signal(&tcps->tcps_g_q_cv);
24498 		ASSERT(tcps->tcps_g_q != NULL);
24499 		mutex_exit(&tcps->tcps_g_q_lock);
24500 		return;
24501 	}
24502 	/* Everybody but the creator has to wait */
24503 	if (tcps->tcps_g_q_creator != curthread) {
24504 		while (tcps->tcps_g_q == NULL)
24505 			cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock);
24506 	}
24507 	mutex_exit(&tcps->tcps_g_q_lock);
24508 }
24509 
24510 #define	IP	"ip"
24511 
24512 #define	TCP6DEV		"/devices/pseudo/tcp6@0:tcp6"
24513 
24514 /*
24515  * Create a default tcp queue here instead of in strplumb
24516  */
24517 void
24518 tcp_g_q_create(tcp_stack_t *tcps)
24519 {
24520 	int error;
24521 	ldi_handle_t	lh = NULL;
24522 	ldi_ident_t	li = NULL;
24523 	int		rval;
24524 	cred_t		*cr;
24525 	major_t IP_MAJ;
24526 
24527 #ifdef NS_DEBUG
24528 	(void) printf("tcp_g_q_create()\n");
24529 #endif
24530 
24531 	IP_MAJ = ddi_name_to_major(IP);
24532 
24533 	ASSERT(tcps->tcps_g_q_creator == curthread);
24534 
24535 	error = ldi_ident_from_major(IP_MAJ, &li);
24536 	if (error) {
24537 #ifdef DEBUG
24538 		printf("tcp_g_q_create: lyr ident get failed error %d\n",
24539 		    error);
24540 #endif
24541 		return;
24542 	}
24543 
24544 	cr = zone_get_kcred(netstackid_to_zoneid(
24545 	    tcps->tcps_netstack->netstack_stackid));
24546 	ASSERT(cr != NULL);
24547 	/*
24548 	 * We set the tcp default queue to IPv6 because IPv4 falls
24549 	 * back to IPv6 when it can't find a client, but
24550 	 * IPv6 does not fall back to IPv4.
24551 	 */
24552 	error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li);
24553 	if (error) {
24554 #ifdef DEBUG
24555 		printf("tcp_g_q_create: open of TCP6DEV failed error %d\n",
24556 		    error);
24557 #endif
24558 		goto out;
24559 	}
24560 
24561 	/*
24562 	 * This ioctl causes the tcp framework to cache a pointer to
24563 	 * this stream, so we don't want to close the stream after
24564 	 * this operation.
24565 	 * Use the kernel credentials that are for the zone we're in.
24566 	 */
24567 	error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q,
24568 	    (intptr_t)0, FKIOCTL, cr, &rval);
24569 	if (error) {
24570 #ifdef DEBUG
24571 		printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed "
24572 		    "error %d\n", error);
24573 #endif
24574 		goto out;
24575 	}
24576 	tcps->tcps_g_q_lh = lh;	/* For tcp_g_q_close */
24577 	lh = NULL;
24578 out:
24579 	/* Close layered handles */
24580 	if (li)
24581 		ldi_ident_release(li);
24582 	/* Keep cred around until _inactive needs it */
24583 	tcps->tcps_g_q_cr = cr;
24584 }
24585 
24586 /*
24587  * We keep tcp_g_q set until all other tcp_t's in the zone
24588  * has gone away, and then when tcp_g_q_inactive() is called
24589  * we clear it.
24590  */
24591 void
24592 tcp_g_q_destroy(tcp_stack_t *tcps)
24593 {
24594 #ifdef NS_DEBUG
24595 	(void) printf("tcp_g_q_destroy()for stack %d\n",
24596 	    tcps->tcps_netstack->netstack_stackid);
24597 #endif
24598 
24599 	if (tcps->tcps_g_q == NULL) {
24600 		return;	/* Nothing to cleanup */
24601 	}
24602 	/*
24603 	 * Drop reference corresponding to the default queue.
24604 	 * This reference was added from tcp_open when the default queue
24605 	 * was created, hence we compensate for this extra drop in
24606 	 * tcp_g_q_close. If the refcnt drops to zero here it means
24607 	 * the default queue was the last one to be open, in which
24608 	 * case, then tcp_g_q_inactive will be
24609 	 * called as a result of the refrele.
24610 	 */
24611 	TCPS_REFRELE(tcps);
24612 }
24613 
24614 /*
24615  * Called when last tcp_t drops reference count using TCPS_REFRELE.
24616  * Run by tcp_q_q_inactive using a taskq.
24617  */
24618 static void
24619 tcp_g_q_close(void *arg)
24620 {
24621 	tcp_stack_t *tcps = arg;
24622 	int error;
24623 	ldi_handle_t	lh = NULL;
24624 	ldi_ident_t	li = NULL;
24625 	cred_t		*cr;
24626 	major_t IP_MAJ;
24627 
24628 	IP_MAJ = ddi_name_to_major(IP);
24629 
24630 #ifdef NS_DEBUG
24631 	(void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n",
24632 	    tcps->tcps_netstack->netstack_stackid,
24633 	    tcps->tcps_netstack->netstack_refcnt);
24634 #endif
24635 	lh = tcps->tcps_g_q_lh;
24636 	if (lh == NULL)
24637 		return;	/* Nothing to cleanup */
24638 
24639 	ASSERT(tcps->tcps_refcnt == 1);
24640 	ASSERT(tcps->tcps_g_q != NULL);
24641 
24642 	error = ldi_ident_from_major(IP_MAJ, &li);
24643 	if (error) {
24644 #ifdef DEBUG
24645 		printf("tcp_g_q_inactive: lyr ident get failed error %d\n",
24646 		    error);
24647 #endif
24648 		return;
24649 	}
24650 
24651 	cr = tcps->tcps_g_q_cr;
24652 	tcps->tcps_g_q_cr = NULL;
24653 	ASSERT(cr != NULL);
24654 
24655 	/*
24656 	 * Make sure we can break the recursion when tcp_close decrements
24657 	 * the reference count causing g_q_inactive to be called again.
24658 	 */
24659 	tcps->tcps_g_q_lh = NULL;
24660 
24661 	/* close the default queue */
24662 	(void) ldi_close(lh, FREAD|FWRITE, cr);
24663 	/*
24664 	 * At this point in time tcps and the rest of netstack_t might
24665 	 * have been deleted.
24666 	 */
24667 	tcps = NULL;
24668 
24669 	/* Close layered handles */
24670 	ldi_ident_release(li);
24671 	crfree(cr);
24672 }
24673 
24674 /*
24675  * Called when last tcp_t drops reference count using TCPS_REFRELE.
24676  *
24677  * Have to ensure that the ldi routines are not used by an
24678  * interrupt thread by using a taskq.
24679  */
24680 void
24681 tcp_g_q_inactive(tcp_stack_t *tcps)
24682 {
24683 	if (tcps->tcps_g_q_lh == NULL)
24684 		return;	/* Nothing to cleanup */
24685 
24686 	ASSERT(tcps->tcps_refcnt == 0);
24687 	TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */
24688 
24689 	if (servicing_interrupt()) {
24690 		(void) taskq_dispatch(tcp_taskq, tcp_g_q_close,
24691 		    (void *) tcps, TQ_SLEEP);
24692 	} else {
24693 		tcp_g_q_close(tcps);
24694 	}
24695 }
24696 
24697 /*
24698  * Called by IP when IP is loaded into the kernel
24699  */
24700 void
24701 tcp_ddi_g_init(void)
24702 {
24703 	tcp_timercache = kmem_cache_create("tcp_timercache",
24704 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
24705 	    NULL, NULL, NULL, NULL, NULL, 0);
24706 
24707 	tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache",
24708 	    sizeof (tcp_sack_info_t), 0,
24709 	    tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0);
24710 
24711 	tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache",
24712 	    TCP_MAX_COMBINED_HEADER_LENGTH, 0,
24713 	    tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0);
24714 
24715 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
24716 
24717 	/* Initialize the random number generator */
24718 	tcp_random_init();
24719 
24720 	/* A single callback independently of how many netstacks we have */
24721 	ip_squeue_init(tcp_squeue_add);
24722 
24723 	tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics);
24724 
24725 	tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1,
24726 	    TASKQ_PREPOPULATE);
24727 
24728 	tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput);
24729 
24730 	/*
24731 	 * We want to be informed each time a stack is created or
24732 	 * destroyed in the kernel, so we can maintain the
24733 	 * set of tcp_stack_t's.
24734 	 */
24735 	netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown,
24736 	    tcp_stack_fini);
24737 }
24738 
24739 
24740 #define	INET_NAME	"ip"
24741 
24742 /*
24743  * Initialize the TCP stack instance.
24744  */
24745 static void *
24746 tcp_stack_init(netstackid_t stackid, netstack_t *ns)
24747 {
24748 	tcp_stack_t	*tcps;
24749 	tcpparam_t	*pa;
24750 	int		i;
24751 	int		error = 0;
24752 	major_t		major;
24753 
24754 	tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP);
24755 	tcps->tcps_netstack = ns;
24756 
24757 	/* Initialize locks */
24758 	rw_init(&tcps->tcps_hsp_lock, NULL, RW_DEFAULT, NULL);
24759 	mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL);
24760 	cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL);
24761 	mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
24762 	mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
24763 
24764 	tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
24765 	tcps->tcps_g_epriv_ports[0] = 2049;
24766 	tcps->tcps_g_epriv_ports[1] = 4045;
24767 	tcps->tcps_min_anonpriv_port = 512;
24768 
24769 	tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) *
24770 	    TCP_BIND_FANOUT_SIZE, KM_SLEEP);
24771 	tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) *
24772 	    TCP_FANOUT_SIZE, KM_SLEEP);
24773 
24774 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
24775 		mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL,
24776 		    MUTEX_DEFAULT, NULL);
24777 	}
24778 
24779 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
24780 		mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL,
24781 		    MUTEX_DEFAULT, NULL);
24782 	}
24783 
24784 	/* TCP's IPsec code calls the packet dropper. */
24785 	ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement");
24786 
24787 	pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP);
24788 	tcps->tcps_params = pa;
24789 	bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr));
24790 
24791 	(void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params,
24792 	    A_CNT(lcl_tcp_param_arr), tcps);
24793 
24794 	/*
24795 	 * Note: To really walk the device tree you need the devinfo
24796 	 * pointer to your device which is only available after probe/attach.
24797 	 * The following is safe only because it uses ddi_root_node()
24798 	 */
24799 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
24800 	    tcp_opt_obj.odb_opt_arr_cnt);
24801 
24802 	/*
24803 	 * Initialize RFC 1948 secret values.  This will probably be reset once
24804 	 * by the boot scripts.
24805 	 *
24806 	 * Use NULL name, as the name is caught by the new lockstats.
24807 	 *
24808 	 * Initialize with some random, non-guessable string, like the global
24809 	 * T_INFO_ACK.
24810 	 */
24811 
24812 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
24813 	    sizeof (tcp_g_t_info_ack), tcps);
24814 
24815 	tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics);
24816 	tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps);
24817 
24818 	major = mod_name_to_major(INET_NAME);
24819 	error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident);
24820 	ASSERT(error == 0);
24821 	return (tcps);
24822 }
24823 
24824 /*
24825  * Called when the IP module is about to be unloaded.
24826  */
24827 void
24828 tcp_ddi_g_destroy(void)
24829 {
24830 	tcp_g_kstat_fini(tcp_g_kstat);
24831 	tcp_g_kstat = NULL;
24832 	bzero(&tcp_g_statistics, sizeof (tcp_g_statistics));
24833 
24834 	mutex_destroy(&tcp_random_lock);
24835 
24836 	kmem_cache_destroy(tcp_timercache);
24837 	kmem_cache_destroy(tcp_sack_info_cache);
24838 	kmem_cache_destroy(tcp_iphc_cache);
24839 
24840 	netstack_unregister(NS_TCP);
24841 	taskq_destroy(tcp_taskq);
24842 }
24843 
24844 /*
24845  * Shut down the TCP stack instance.
24846  */
24847 /* ARGSUSED */
24848 static void
24849 tcp_stack_shutdown(netstackid_t stackid, void *arg)
24850 {
24851 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
24852 
24853 	tcp_g_q_destroy(tcps);
24854 }
24855 
24856 /*
24857  * Free the TCP stack instance.
24858  */
24859 static void
24860 tcp_stack_fini(netstackid_t stackid, void *arg)
24861 {
24862 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
24863 	int i;
24864 
24865 	nd_free(&tcps->tcps_g_nd);
24866 	kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr));
24867 	tcps->tcps_params = NULL;
24868 	kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t));
24869 	tcps->tcps_wroff_xtra_param = NULL;
24870 	kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t));
24871 	tcps->tcps_mdt_head_param = NULL;
24872 	kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t));
24873 	tcps->tcps_mdt_tail_param = NULL;
24874 	kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t));
24875 	tcps->tcps_mdt_max_pbufs_param = NULL;
24876 
24877 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
24878 		ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL);
24879 		mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock);
24880 	}
24881 
24882 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
24883 		ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL);
24884 		mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock);
24885 	}
24886 
24887 	kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE);
24888 	tcps->tcps_bind_fanout = NULL;
24889 
24890 	kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE);
24891 	tcps->tcps_acceptor_fanout = NULL;
24892 
24893 	mutex_destroy(&tcps->tcps_iss_key_lock);
24894 	rw_destroy(&tcps->tcps_hsp_lock);
24895 	mutex_destroy(&tcps->tcps_g_q_lock);
24896 	cv_destroy(&tcps->tcps_g_q_cv);
24897 	mutex_destroy(&tcps->tcps_epriv_port_lock);
24898 
24899 	ip_drop_unregister(&tcps->tcps_dropper);
24900 
24901 	tcp_kstat2_fini(stackid, tcps->tcps_kstat);
24902 	tcps->tcps_kstat = NULL;
24903 	bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics));
24904 
24905 	tcp_kstat_fini(stackid, tcps->tcps_mibkp);
24906 	tcps->tcps_mibkp = NULL;
24907 
24908 	ldi_ident_release(tcps->tcps_ldi_ident);
24909 	kmem_free(tcps, sizeof (*tcps));
24910 }
24911 
24912 /*
24913  * Generate ISS, taking into account NDD changes may happen halfway through.
24914  * (If the iss is not zero, set it.)
24915  */
24916 
24917 static void
24918 tcp_iss_init(tcp_t *tcp)
24919 {
24920 	MD5_CTX context;
24921 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
24922 	uint32_t answer[4];
24923 	tcp_stack_t	*tcps = tcp->tcp_tcps;
24924 
24925 	tcps->tcps_iss_incr_extra += (ISS_INCR >> 1);
24926 	tcp->tcp_iss = tcps->tcps_iss_incr_extra;
24927 	switch (tcps->tcps_strong_iss) {
24928 	case 2:
24929 		mutex_enter(&tcps->tcps_iss_key_lock);
24930 		context = tcps->tcps_iss_key;
24931 		mutex_exit(&tcps->tcps_iss_key_lock);
24932 		arg.ports = tcp->tcp_ports;
24933 		if (tcp->tcp_ipversion == IPV4_VERSION) {
24934 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
24935 			    &arg.src);
24936 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst,
24937 			    &arg.dst);
24938 		} else {
24939 			arg.src = tcp->tcp_ip6h->ip6_src;
24940 			arg.dst = tcp->tcp_ip6h->ip6_dst;
24941 		}
24942 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
24943 		MD5Final((uchar_t *)answer, &context);
24944 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
24945 		/*
24946 		 * Now that we've hashed into a unique per-connection sequence
24947 		 * space, add a random increment per strong_iss == 1.  So I
24948 		 * guess we'll have to...
24949 		 */
24950 		/* FALLTHRU */
24951 	case 1:
24952 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
24953 		break;
24954 	default:
24955 		tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
24956 		break;
24957 	}
24958 	tcp->tcp_valid_bits = TCP_ISS_VALID;
24959 	tcp->tcp_fss = tcp->tcp_iss - 1;
24960 	tcp->tcp_suna = tcp->tcp_iss;
24961 	tcp->tcp_snxt = tcp->tcp_iss + 1;
24962 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
24963 	tcp->tcp_csuna = tcp->tcp_snxt;
24964 }
24965 
24966 /*
24967  * Exported routine for extracting active tcp connection status.
24968  *
24969  * This is used by the Solaris Cluster Networking software to
24970  * gather a list of connections that need to be forwarded to
24971  * specific nodes in the cluster when configuration changes occur.
24972  *
24973  * The callback is invoked for each tcp_t structure from all netstacks,
24974  * if 'stack_id' is less than 0. Otherwise, only for tcp_t structures
24975  * from the netstack with the specified stack_id. Returning
24976  * non-zero from the callback routine terminates the search.
24977  */
24978 int
24979 cl_tcp_walk_list(netstackid_t stack_id,
24980     int (*cl_callback)(cl_tcp_info_t *, void *), void *arg)
24981 {
24982 	netstack_handle_t nh;
24983 	netstack_t *ns;
24984 	int ret = 0;
24985 
24986 	if (stack_id >= 0) {
24987 		if ((ns = netstack_find_by_stackid(stack_id)) == NULL)
24988 			return (EINVAL);
24989 
24990 		ret = cl_tcp_walk_list_stack(cl_callback, arg,
24991 		    ns->netstack_tcp);
24992 		netstack_rele(ns);
24993 		return (ret);
24994 	}
24995 
24996 	netstack_next_init(&nh);
24997 	while ((ns = netstack_next(&nh)) != NULL) {
24998 		ret = cl_tcp_walk_list_stack(cl_callback, arg,
24999 		    ns->netstack_tcp);
25000 		netstack_rele(ns);
25001 	}
25002 	netstack_next_fini(&nh);
25003 	return (ret);
25004 }
25005 
25006 static int
25007 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg,
25008     tcp_stack_t *tcps)
25009 {
25010 	tcp_t *tcp;
25011 	cl_tcp_info_t	cl_tcpi;
25012 	connf_t	*connfp;
25013 	conn_t	*connp;
25014 	int	i;
25015 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
25016 
25017 	ASSERT(callback != NULL);
25018 
25019 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
25020 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
25021 		connp = NULL;
25022 
25023 		while ((connp =
25024 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
25025 
25026 			tcp = connp->conn_tcp;
25027 			cl_tcpi.cl_tcpi_version = CL_TCPI_V1;
25028 			cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion;
25029 			cl_tcpi.cl_tcpi_state = tcp->tcp_state;
25030 			cl_tcpi.cl_tcpi_lport = tcp->tcp_lport;
25031 			cl_tcpi.cl_tcpi_fport = tcp->tcp_fport;
25032 			/*
25033 			 * The macros tcp_laddr and tcp_faddr give the IPv4
25034 			 * addresses. They are copied implicitly below as
25035 			 * mapped addresses.
25036 			 */
25037 			cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6;
25038 			if (tcp->tcp_ipversion == IPV4_VERSION) {
25039 				cl_tcpi.cl_tcpi_faddr =
25040 				    tcp->tcp_ipha->ipha_dst;
25041 			} else {
25042 				cl_tcpi.cl_tcpi_faddr_v6 =
25043 				    tcp->tcp_ip6h->ip6_dst;
25044 			}
25045 
25046 			/*
25047 			 * If the callback returns non-zero
25048 			 * we terminate the traversal.
25049 			 */
25050 			if ((*callback)(&cl_tcpi, arg) != 0) {
25051 				CONN_DEC_REF(tcp->tcp_connp);
25052 				return (1);
25053 			}
25054 		}
25055 	}
25056 
25057 	return (0);
25058 }
25059 
25060 /*
25061  * Macros used for accessing the different types of sockaddr
25062  * structures inside a tcp_ioc_abort_conn_t.
25063  */
25064 #define	TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local)
25065 #define	TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote)
25066 #define	TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr)
25067 #define	TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr)
25068 #define	TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port)
25069 #define	TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port)
25070 #define	TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local)
25071 #define	TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote)
25072 #define	TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr)
25073 #define	TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr)
25074 #define	TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port)
25075 #define	TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port)
25076 
25077 /*
25078  * Return the correct error code to mimic the behavior
25079  * of a connection reset.
25080  */
25081 #define	TCP_AC_GET_ERRCODE(state, err) {	\
25082 		switch ((state)) {		\
25083 		case TCPS_SYN_SENT:		\
25084 		case TCPS_SYN_RCVD:		\
25085 			(err) = ECONNREFUSED;	\
25086 			break;			\
25087 		case TCPS_ESTABLISHED:		\
25088 		case TCPS_FIN_WAIT_1:		\
25089 		case TCPS_FIN_WAIT_2:		\
25090 		case TCPS_CLOSE_WAIT:		\
25091 			(err) = ECONNRESET;	\
25092 			break;			\
25093 		case TCPS_CLOSING:		\
25094 		case TCPS_LAST_ACK:		\
25095 		case TCPS_TIME_WAIT:		\
25096 			(err) = 0;		\
25097 			break;			\
25098 		default:			\
25099 			(err) = ENXIO;		\
25100 		}				\
25101 	}
25102 
25103 /*
25104  * Check if a tcp structure matches the info in acp.
25105  */
25106 #define	TCP_AC_ADDR_MATCH(acp, tcp)					\
25107 	(((acp)->ac_local.ss_family == AF_INET) ?		\
25108 	((TCP_AC_V4LOCAL((acp)) == INADDR_ANY ||		\
25109 	TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) &&	\
25110 	(TCP_AC_V4REMOTE((acp)) == INADDR_ANY ||		\
25111 	TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) &&	\
25112 	(TCP_AC_V4LPORT((acp)) == 0 ||				\
25113 	TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) &&		\
25114 	(TCP_AC_V4RPORT((acp)) == 0 ||				\
25115 	TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) &&		\
25116 	(acp)->ac_start <= (tcp)->tcp_state &&	\
25117 	(acp)->ac_end >= (tcp)->tcp_state) :		\
25118 	((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) ||	\
25119 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)),		\
25120 	&(tcp)->tcp_ip_src_v6)) &&				\
25121 	(IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) ||	\
25122 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)),		\
25123 	&(tcp)->tcp_remote_v6)) &&				\
25124 	(TCP_AC_V6LPORT((acp)) == 0 ||				\
25125 	TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) &&		\
25126 	(TCP_AC_V6RPORT((acp)) == 0 ||				\
25127 	TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) &&		\
25128 	(acp)->ac_start <= (tcp)->tcp_state &&	\
25129 	(acp)->ac_end >= (tcp)->tcp_state))
25130 
25131 #define	TCP_AC_MATCH(acp, tcp)					\
25132 	(((acp)->ac_zoneid == ALL_ZONES ||			\
25133 	(acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ?	\
25134 	TCP_AC_ADDR_MATCH(acp, tcp) : 0)
25135 
25136 /*
25137  * Build a message containing a tcp_ioc_abort_conn_t structure
25138  * which is filled in with information from acp and tp.
25139  */
25140 static mblk_t *
25141 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp)
25142 {
25143 	mblk_t *mp;
25144 	tcp_ioc_abort_conn_t *tacp;
25145 
25146 	mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO);
25147 	if (mp == NULL)
25148 		return (NULL);
25149 
25150 	mp->b_datap->db_type = M_CTL;
25151 
25152 	*((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN;
25153 	tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr +
25154 	    sizeof (uint32_t));
25155 
25156 	tacp->ac_start = acp->ac_start;
25157 	tacp->ac_end = acp->ac_end;
25158 	tacp->ac_zoneid = acp->ac_zoneid;
25159 
25160 	if (acp->ac_local.ss_family == AF_INET) {
25161 		tacp->ac_local.ss_family = AF_INET;
25162 		tacp->ac_remote.ss_family = AF_INET;
25163 		TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src;
25164 		TCP_AC_V4REMOTE(tacp) = tp->tcp_remote;
25165 		TCP_AC_V4LPORT(tacp) = tp->tcp_lport;
25166 		TCP_AC_V4RPORT(tacp) = tp->tcp_fport;
25167 	} else {
25168 		tacp->ac_local.ss_family = AF_INET6;
25169 		tacp->ac_remote.ss_family = AF_INET6;
25170 		TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6;
25171 		TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6;
25172 		TCP_AC_V6LPORT(tacp) = tp->tcp_lport;
25173 		TCP_AC_V6RPORT(tacp) = tp->tcp_fport;
25174 	}
25175 	mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp);
25176 	return (mp);
25177 }
25178 
25179 /*
25180  * Print a tcp_ioc_abort_conn_t structure.
25181  */
25182 static void
25183 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp)
25184 {
25185 	char lbuf[128];
25186 	char rbuf[128];
25187 	sa_family_t af;
25188 	in_port_t lport, rport;
25189 	ushort_t logflags;
25190 
25191 	af = acp->ac_local.ss_family;
25192 
25193 	if (af == AF_INET) {
25194 		(void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp),
25195 		    lbuf, 128);
25196 		(void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp),
25197 		    rbuf, 128);
25198 		lport = ntohs(TCP_AC_V4LPORT(acp));
25199 		rport = ntohs(TCP_AC_V4RPORT(acp));
25200 	} else {
25201 		(void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp),
25202 		    lbuf, 128);
25203 		(void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp),
25204 		    rbuf, 128);
25205 		lport = ntohs(TCP_AC_V6LPORT(acp));
25206 		rport = ntohs(TCP_AC_V6RPORT(acp));
25207 	}
25208 
25209 	logflags = SL_TRACE | SL_NOTE;
25210 	/*
25211 	 * Don't print this message to the console if the operation was done
25212 	 * to a non-global zone.
25213 	 */
25214 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
25215 		logflags |= SL_CONSOLE;
25216 	(void) strlog(TCP_MOD_ID, 0, 1, logflags,
25217 	    "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, "
25218 	    "start = %d, end = %d\n", lbuf, lport, rbuf, rport,
25219 	    acp->ac_start, acp->ac_end);
25220 }
25221 
25222 /*
25223  * Called inside tcp_rput when a message built using
25224  * tcp_ioctl_abort_build_msg is put into a queue.
25225  * Note that when we get here there is no wildcard in acp any more.
25226  */
25227 static void
25228 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp)
25229 {
25230 	tcp_ioc_abort_conn_t *acp;
25231 
25232 	acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t));
25233 	if (tcp->tcp_state <= acp->ac_end) {
25234 		/*
25235 		 * If we get here, we are already on the correct
25236 		 * squeue. This ioctl follows the following path
25237 		 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn
25238 		 * ->tcp_ioctl_abort->squeue_enter (if on a
25239 		 * different squeue)
25240 		 */
25241 		int errcode;
25242 
25243 		TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode);
25244 		(void) tcp_clean_death(tcp, errcode, 26);
25245 	}
25246 	freemsg(mp);
25247 }
25248 
25249 /*
25250  * Abort all matching connections on a hash chain.
25251  */
25252 static int
25253 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count,
25254     boolean_t exact, tcp_stack_t *tcps)
25255 {
25256 	int nmatch, err = 0;
25257 	tcp_t *tcp;
25258 	MBLKP mp, last, listhead = NULL;
25259 	conn_t	*tconnp;
25260 	connf_t	*connfp;
25261 	ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
25262 
25263 	connfp = &ipst->ips_ipcl_conn_fanout[index];
25264 
25265 startover:
25266 	nmatch = 0;
25267 
25268 	mutex_enter(&connfp->connf_lock);
25269 	for (tconnp = connfp->connf_head; tconnp != NULL;
25270 	    tconnp = tconnp->conn_next) {
25271 		tcp = tconnp->conn_tcp;
25272 		if (TCP_AC_MATCH(acp, tcp)) {
25273 			CONN_INC_REF(tcp->tcp_connp);
25274 			mp = tcp_ioctl_abort_build_msg(acp, tcp);
25275 			if (mp == NULL) {
25276 				err = ENOMEM;
25277 				CONN_DEC_REF(tcp->tcp_connp);
25278 				break;
25279 			}
25280 			mp->b_prev = (mblk_t *)tcp;
25281 
25282 			if (listhead == NULL) {
25283 				listhead = mp;
25284 				last = mp;
25285 			} else {
25286 				last->b_next = mp;
25287 				last = mp;
25288 			}
25289 			nmatch++;
25290 			if (exact)
25291 				break;
25292 		}
25293 
25294 		/* Avoid holding lock for too long. */
25295 		if (nmatch >= 500)
25296 			break;
25297 	}
25298 	mutex_exit(&connfp->connf_lock);
25299 
25300 	/* Pass mp into the correct tcp */
25301 	while ((mp = listhead) != NULL) {
25302 		listhead = listhead->b_next;
25303 		tcp = (tcp_t *)mp->b_prev;
25304 		mp->b_next = mp->b_prev = NULL;
25305 		SQUEUE_ENTER_ONE(tcp->tcp_connp->conn_sqp, mp, tcp_input,
25306 		    tcp->tcp_connp, SQ_FILL, SQTAG_TCP_ABORT_BUCKET);
25307 	}
25308 
25309 	*count += nmatch;
25310 	if (nmatch >= 500 && err == 0)
25311 		goto startover;
25312 	return (err);
25313 }
25314 
25315 /*
25316  * Abort all connections that matches the attributes specified in acp.
25317  */
25318 static int
25319 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps)
25320 {
25321 	sa_family_t af;
25322 	uint32_t  ports;
25323 	uint16_t *pports;
25324 	int err = 0, count = 0;
25325 	boolean_t exact = B_FALSE; /* set when there is no wildcard */
25326 	int index = -1;
25327 	ushort_t logflags;
25328 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
25329 
25330 	af = acp->ac_local.ss_family;
25331 
25332 	if (af == AF_INET) {
25333 		if (TCP_AC_V4REMOTE(acp) != INADDR_ANY &&
25334 		    TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) {
25335 			pports = (uint16_t *)&ports;
25336 			pports[1] = TCP_AC_V4LPORT(acp);
25337 			pports[0] = TCP_AC_V4RPORT(acp);
25338 			exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY);
25339 		}
25340 	} else {
25341 		if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) &&
25342 		    TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) {
25343 			pports = (uint16_t *)&ports;
25344 			pports[1] = TCP_AC_V6LPORT(acp);
25345 			pports[0] = TCP_AC_V6RPORT(acp);
25346 			exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp));
25347 		}
25348 	}
25349 
25350 	/*
25351 	 * For cases where remote addr, local port, and remote port are non-
25352 	 * wildcards, tcp_ioctl_abort_bucket will only be called once.
25353 	 */
25354 	if (index != -1) {
25355 		err = tcp_ioctl_abort_bucket(acp, index,
25356 		    &count, exact, tcps);
25357 	} else {
25358 		/*
25359 		 * loop through all entries for wildcard case
25360 		 */
25361 		for (index = 0;
25362 		    index < ipst->ips_ipcl_conn_fanout_size;
25363 		    index++) {
25364 			err = tcp_ioctl_abort_bucket(acp, index,
25365 			    &count, exact, tcps);
25366 			if (err != 0)
25367 				break;
25368 		}
25369 	}
25370 
25371 	logflags = SL_TRACE | SL_NOTE;
25372 	/*
25373 	 * Don't print this message to the console if the operation was done
25374 	 * to a non-global zone.
25375 	 */
25376 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
25377 		logflags |= SL_CONSOLE;
25378 	(void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: "
25379 	    "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' '));
25380 	if (err == 0 && count == 0)
25381 		err = ENOENT;
25382 	return (err);
25383 }
25384 
25385 /*
25386  * Process the TCP_IOC_ABORT_CONN ioctl request.
25387  */
25388 static void
25389 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp)
25390 {
25391 	int	err;
25392 	IOCP    iocp;
25393 	MBLKP   mp1;
25394 	sa_family_t laf, raf;
25395 	tcp_ioc_abort_conn_t *acp;
25396 	zone_t		*zptr;
25397 	conn_t		*connp = Q_TO_CONN(q);
25398 	zoneid_t	zoneid = connp->conn_zoneid;
25399 	tcp_t		*tcp = connp->conn_tcp;
25400 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25401 
25402 	iocp = (IOCP)mp->b_rptr;
25403 
25404 	if ((mp1 = mp->b_cont) == NULL ||
25405 	    iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) {
25406 		err = EINVAL;
25407 		goto out;
25408 	}
25409 
25410 	/* check permissions */
25411 	if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
25412 		err = EPERM;
25413 		goto out;
25414 	}
25415 
25416 	if (mp1->b_cont != NULL) {
25417 		freemsg(mp1->b_cont);
25418 		mp1->b_cont = NULL;
25419 	}
25420 
25421 	acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr;
25422 	laf = acp->ac_local.ss_family;
25423 	raf = acp->ac_remote.ss_family;
25424 
25425 	/* check that a zone with the supplied zoneid exists */
25426 	if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) {
25427 		zptr = zone_find_by_id(zoneid);
25428 		if (zptr != NULL) {
25429 			zone_rele(zptr);
25430 		} else {
25431 			err = EINVAL;
25432 			goto out;
25433 		}
25434 	}
25435 
25436 	/*
25437 	 * For exclusive stacks we set the zoneid to zero
25438 	 * to make TCP operate as if in the global zone.
25439 	 */
25440 	if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID)
25441 		acp->ac_zoneid = GLOBAL_ZONEID;
25442 
25443 	if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT ||
25444 	    acp->ac_start > acp->ac_end || laf != raf ||
25445 	    (laf != AF_INET && laf != AF_INET6)) {
25446 		err = EINVAL;
25447 		goto out;
25448 	}
25449 
25450 	tcp_ioctl_abort_dump(acp);
25451 	err = tcp_ioctl_abort(acp, tcps);
25452 
25453 out:
25454 	if (mp1 != NULL) {
25455 		freemsg(mp1);
25456 		mp->b_cont = NULL;
25457 	}
25458 
25459 	if (err != 0)
25460 		miocnak(q, mp, 0, err);
25461 	else
25462 		miocack(q, mp, 0, 0);
25463 }
25464 
25465 /*
25466  * tcp_time_wait_processing() handles processing of incoming packets when
25467  * the tcp is in the TIME_WAIT state.
25468  * A TIME_WAIT tcp that has an associated open TCP stream is never put
25469  * on the time wait list.
25470  */
25471 void
25472 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq,
25473     uint32_t seg_ack, int seg_len, tcph_t *tcph)
25474 {
25475 	int32_t		bytes_acked;
25476 	int32_t		gap;
25477 	int32_t		rgap;
25478 	tcp_opt_t	tcpopt;
25479 	uint_t		flags;
25480 	uint32_t	new_swnd = 0;
25481 	conn_t		*connp;
25482 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25483 
25484 	BUMP_LOCAL(tcp->tcp_ibsegs);
25485 	DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
25486 
25487 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
25488 	new_swnd = BE16_TO_U16(tcph->th_win) <<
25489 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
25490 	if (tcp->tcp_snd_ts_ok) {
25491 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
25492 			tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25493 			    tcp->tcp_rnxt, TH_ACK);
25494 			goto done;
25495 		}
25496 	}
25497 	gap = seg_seq - tcp->tcp_rnxt;
25498 	rgap = tcp->tcp_rwnd - (gap + seg_len);
25499 	if (gap < 0) {
25500 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
25501 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
25502 		    (seg_len > -gap ? -gap : seg_len));
25503 		seg_len += gap;
25504 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
25505 			if (flags & TH_RST) {
25506 				goto done;
25507 			}
25508 			if ((flags & TH_FIN) && seg_len == -1) {
25509 				/*
25510 				 * When TCP receives a duplicate FIN in
25511 				 * TIME_WAIT state, restart the 2 MSL timer.
25512 				 * See page 73 in RFC 793. Make sure this TCP
25513 				 * is already on the TIME_WAIT list. If not,
25514 				 * just restart the timer.
25515 				 */
25516 				if (TCP_IS_DETACHED(tcp)) {
25517 					if (tcp_time_wait_remove(tcp, NULL) ==
25518 					    B_TRUE) {
25519 						tcp_time_wait_append(tcp);
25520 						TCP_DBGSTAT(tcps,
25521 						    tcp_rput_time_wait);
25522 					}
25523 				} else {
25524 					ASSERT(tcp != NULL);
25525 					TCP_TIMER_RESTART(tcp,
25526 					    tcps->tcps_time_wait_interval);
25527 				}
25528 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25529 				    tcp->tcp_rnxt, TH_ACK);
25530 				goto done;
25531 			}
25532 			flags |=  TH_ACK_NEEDED;
25533 			seg_len = 0;
25534 			goto process_ack;
25535 		}
25536 
25537 		/* Fix seg_seq, and chew the gap off the front. */
25538 		seg_seq = tcp->tcp_rnxt;
25539 	}
25540 
25541 	if ((flags & TH_SYN) && gap > 0 && rgap < 0) {
25542 		/*
25543 		 * Make sure that when we accept the connection, pick
25544 		 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the
25545 		 * old connection.
25546 		 *
25547 		 * The next ISS generated is equal to tcp_iss_incr_extra
25548 		 * + ISS_INCR/2 + other components depending on the
25549 		 * value of tcp_strong_iss.  We pre-calculate the new
25550 		 * ISS here and compare with tcp_snxt to determine if
25551 		 * we need to make adjustment to tcp_iss_incr_extra.
25552 		 *
25553 		 * The above calculation is ugly and is a
25554 		 * waste of CPU cycles...
25555 		 */
25556 		uint32_t new_iss = tcps->tcps_iss_incr_extra;
25557 		int32_t adj;
25558 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
25559 
25560 		switch (tcps->tcps_strong_iss) {
25561 		case 2: {
25562 			/* Add time and MD5 components. */
25563 			uint32_t answer[4];
25564 			struct {
25565 				uint32_t ports;
25566 				in6_addr_t src;
25567 				in6_addr_t dst;
25568 			} arg;
25569 			MD5_CTX context;
25570 
25571 			mutex_enter(&tcps->tcps_iss_key_lock);
25572 			context = tcps->tcps_iss_key;
25573 			mutex_exit(&tcps->tcps_iss_key_lock);
25574 			arg.ports = tcp->tcp_ports;
25575 			/* We use MAPPED addresses in tcp_iss_init */
25576 			arg.src = tcp->tcp_ip_src_v6;
25577 			if (tcp->tcp_ipversion == IPV4_VERSION) {
25578 				IN6_IPADDR_TO_V4MAPPED(
25579 				    tcp->tcp_ipha->ipha_dst,
25580 				    &arg.dst);
25581 			} else {
25582 				arg.dst =
25583 				    tcp->tcp_ip6h->ip6_dst;
25584 			}
25585 			MD5Update(&context, (uchar_t *)&arg,
25586 			    sizeof (arg));
25587 			MD5Final((uchar_t *)answer, &context);
25588 			answer[0] ^= answer[1] ^ answer[2] ^ answer[3];
25589 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0];
25590 			break;
25591 		}
25592 		case 1:
25593 			/* Add time component and min random (i.e. 1). */
25594 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1;
25595 			break;
25596 		default:
25597 			/* Add only time component. */
25598 			new_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
25599 			break;
25600 		}
25601 		if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) {
25602 			/*
25603 			 * New ISS not guaranteed to be ISS_INCR/2
25604 			 * ahead of the current tcp_snxt, so add the
25605 			 * difference to tcp_iss_incr_extra.
25606 			 */
25607 			tcps->tcps_iss_incr_extra += adj;
25608 		}
25609 		/*
25610 		 * If tcp_clean_death() can not perform the task now,
25611 		 * drop the SYN packet and let the other side re-xmit.
25612 		 * Otherwise pass the SYN packet back in, since the
25613 		 * old tcp state has been cleaned up or freed.
25614 		 */
25615 		if (tcp_clean_death(tcp, 0, 27) == -1)
25616 			goto done;
25617 		/*
25618 		 * We will come back to tcp_rput_data
25619 		 * on the global queue. Packets destined
25620 		 * for the global queue will be checked
25621 		 * with global policy. But the policy for
25622 		 * this packet has already been checked as
25623 		 * this was destined for the detached
25624 		 * connection. We need to bypass policy
25625 		 * check this time by attaching a dummy
25626 		 * ipsec_in with ipsec_in_dont_check set.
25627 		 */
25628 		connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst);
25629 		if (connp != NULL) {
25630 			TCP_STAT(tcps, tcp_time_wait_syn_success);
25631 			tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp);
25632 			return;
25633 		}
25634 		goto done;
25635 	}
25636 
25637 	/*
25638 	 * rgap is the amount of stuff received out of window.  A negative
25639 	 * value is the amount out of window.
25640 	 */
25641 	if (rgap < 0) {
25642 		BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
25643 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap);
25644 		/* Fix seg_len and make sure there is something left. */
25645 		seg_len += rgap;
25646 		if (seg_len <= 0) {
25647 			if (flags & TH_RST) {
25648 				goto done;
25649 			}
25650 			flags |=  TH_ACK_NEEDED;
25651 			seg_len = 0;
25652 			goto process_ack;
25653 		}
25654 	}
25655 	/*
25656 	 * Check whether we can update tcp_ts_recent.  This test is
25657 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
25658 	 * Extensions for High Performance: An Update", Internet Draft.
25659 	 */
25660 	if (tcp->tcp_snd_ts_ok &&
25661 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
25662 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
25663 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
25664 		tcp->tcp_last_rcv_lbolt = lbolt64;
25665 	}
25666 
25667 	if (seg_seq != tcp->tcp_rnxt && seg_len > 0) {
25668 		/* Always ack out of order packets */
25669 		flags |= TH_ACK_NEEDED;
25670 		seg_len = 0;
25671 	} else if (seg_len > 0) {
25672 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
25673 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
25674 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
25675 	}
25676 	if (flags & TH_RST) {
25677 		(void) tcp_clean_death(tcp, 0, 28);
25678 		goto done;
25679 	}
25680 	if (flags & TH_SYN) {
25681 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
25682 		    TH_RST|TH_ACK);
25683 		/*
25684 		 * Do not delete the TCP structure if it is in
25685 		 * TIME_WAIT state.  Refer to RFC 1122, 4.2.2.13.
25686 		 */
25687 		goto done;
25688 	}
25689 process_ack:
25690 	if (flags & TH_ACK) {
25691 		bytes_acked = (int)(seg_ack - tcp->tcp_suna);
25692 		if (bytes_acked <= 0) {
25693 			if (bytes_acked == 0 && seg_len == 0 &&
25694 			    new_swnd == tcp->tcp_swnd)
25695 				BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
25696 		} else {
25697 			/* Acks something not sent */
25698 			flags |= TH_ACK_NEEDED;
25699 		}
25700 	}
25701 	if (flags & TH_ACK_NEEDED) {
25702 		/*
25703 		 * Time to send an ack for some reason.
25704 		 */
25705 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25706 		    tcp->tcp_rnxt, TH_ACK);
25707 	}
25708 done:
25709 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
25710 		DB_CKSUMSTART(mp) = 0;
25711 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
25712 		TCP_STAT(tcps, tcp_time_wait_syn_fail);
25713 	}
25714 	freemsg(mp);
25715 }
25716 
25717 /*
25718  * TCP Timers Implementation.
25719  */
25720 timeout_id_t
25721 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim)
25722 {
25723 	mblk_t *mp;
25724 	tcp_timer_t *tcpt;
25725 	tcp_t *tcp = connp->conn_tcp;
25726 
25727 	ASSERT(connp->conn_sqp != NULL);
25728 
25729 	TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_calls);
25730 
25731 	if (tcp->tcp_timercache == NULL) {
25732 		mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC);
25733 	} else {
25734 		TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_cached_alloc);
25735 		mp = tcp->tcp_timercache;
25736 		tcp->tcp_timercache = mp->b_next;
25737 		mp->b_next = NULL;
25738 		ASSERT(mp->b_wptr == NULL);
25739 	}
25740 
25741 	CONN_INC_REF(connp);
25742 	tcpt = (tcp_timer_t *)mp->b_rptr;
25743 	tcpt->connp = connp;
25744 	tcpt->tcpt_proc = f;
25745 	/*
25746 	 * TCP timers are normal timeouts. Plus, they do not require more than
25747 	 * a 10 millisecond resolution. By choosing a coarser resolution and by
25748 	 * rounding up the expiration to the next resolution boundary, we can
25749 	 * batch timers in the callout subsystem to make TCP timers more
25750 	 * efficient. The roundup also protects short timers from expiring too
25751 	 * early before they have a chance to be cancelled.
25752 	 */
25753 	tcpt->tcpt_tid = timeout_generic(CALLOUT_NORMAL, tcp_timer_callback, mp,
25754 	    TICK_TO_NSEC(tim), CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP);
25755 
25756 	return ((timeout_id_t)mp);
25757 }
25758 
25759 static void
25760 tcp_timer_callback(void *arg)
25761 {
25762 	mblk_t *mp = (mblk_t *)arg;
25763 	tcp_timer_t *tcpt;
25764 	conn_t	*connp;
25765 
25766 	tcpt = (tcp_timer_t *)mp->b_rptr;
25767 	connp = tcpt->connp;
25768 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_timer_handler, connp,
25769 	    SQ_FILL, SQTAG_TCP_TIMER);
25770 }
25771 
25772 static void
25773 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2)
25774 {
25775 	tcp_timer_t *tcpt;
25776 	conn_t *connp = (conn_t *)arg;
25777 	tcp_t *tcp = connp->conn_tcp;
25778 
25779 	tcpt = (tcp_timer_t *)mp->b_rptr;
25780 	ASSERT(connp == tcpt->connp);
25781 	ASSERT((squeue_t *)arg2 == connp->conn_sqp);
25782 
25783 	/*
25784 	 * If the TCP has reached the closed state, don't proceed any
25785 	 * further. This TCP logically does not exist on the system.
25786 	 * tcpt_proc could for example access queues, that have already
25787 	 * been qprocoff'ed off. Also see comments at the start of tcp_input
25788 	 */
25789 	if (tcp->tcp_state != TCPS_CLOSED) {
25790 		(*tcpt->tcpt_proc)(connp);
25791 	} else {
25792 		tcp->tcp_timer_tid = 0;
25793 	}
25794 	tcp_timer_free(connp->conn_tcp, mp);
25795 }
25796 
25797 /*
25798  * There is potential race with untimeout and the handler firing at the same
25799  * time. The mblock may be freed by the handler while we are trying to use
25800  * it. But since both should execute on the same squeue, this race should not
25801  * occur.
25802  */
25803 clock_t
25804 tcp_timeout_cancel(conn_t *connp, timeout_id_t id)
25805 {
25806 	mblk_t	*mp = (mblk_t *)id;
25807 	tcp_timer_t *tcpt;
25808 	clock_t delta;
25809 
25810 	TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_cancel_reqs);
25811 
25812 	if (mp == NULL)
25813 		return (-1);
25814 
25815 	tcpt = (tcp_timer_t *)mp->b_rptr;
25816 	ASSERT(tcpt->connp == connp);
25817 
25818 	delta = untimeout_default(tcpt->tcpt_tid, 0);
25819 
25820 	if (delta >= 0) {
25821 		TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_canceled);
25822 		tcp_timer_free(connp->conn_tcp, mp);
25823 		CONN_DEC_REF(connp);
25824 	}
25825 
25826 	return (delta);
25827 }
25828 
25829 /*
25830  * Allocate space for the timer event. The allocation looks like mblk, but it is
25831  * not a proper mblk. To avoid confusion we set b_wptr to NULL.
25832  *
25833  * Dealing with failures: If we can't allocate from the timer cache we try
25834  * allocating from dblock caches using allocb_tryhard(). In this case b_wptr
25835  * points to b_rptr.
25836  * If we can't allocate anything using allocb_tryhard(), we perform a last
25837  * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and
25838  * save the actual allocation size in b_datap.
25839  */
25840 mblk_t *
25841 tcp_timermp_alloc(int kmflags)
25842 {
25843 	mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache,
25844 	    kmflags & ~KM_PANIC);
25845 
25846 	if (mp != NULL) {
25847 		mp->b_next = mp->b_prev = NULL;
25848 		mp->b_rptr = (uchar_t *)(&mp[1]);
25849 		mp->b_wptr = NULL;
25850 		mp->b_datap = NULL;
25851 		mp->b_queue = NULL;
25852 		mp->b_cont = NULL;
25853 	} else if (kmflags & KM_PANIC) {
25854 		/*
25855 		 * Failed to allocate memory for the timer. Try allocating from
25856 		 * dblock caches.
25857 		 */
25858 		/* ipclassifier calls this from a constructor - hence no tcps */
25859 		TCP_G_STAT(tcp_timermp_allocfail);
25860 		mp = allocb_tryhard(sizeof (tcp_timer_t));
25861 		if (mp == NULL) {
25862 			size_t size = 0;
25863 			/*
25864 			 * Memory is really low. Try tryhard allocation.
25865 			 *
25866 			 * ipclassifier calls this from a constructor -
25867 			 * hence no tcps
25868 			 */
25869 			TCP_G_STAT(tcp_timermp_allocdblfail);
25870 			mp = kmem_alloc_tryhard(sizeof (mblk_t) +
25871 			    sizeof (tcp_timer_t), &size, kmflags);
25872 			mp->b_rptr = (uchar_t *)(&mp[1]);
25873 			mp->b_next = mp->b_prev = NULL;
25874 			mp->b_wptr = (uchar_t *)-1;
25875 			mp->b_datap = (dblk_t *)size;
25876 			mp->b_queue = NULL;
25877 			mp->b_cont = NULL;
25878 		}
25879 		ASSERT(mp->b_wptr != NULL);
25880 	}
25881 	/* ipclassifier calls this from a constructor - hence no tcps */
25882 	TCP_G_DBGSTAT(tcp_timermp_alloced);
25883 
25884 	return (mp);
25885 }
25886 
25887 /*
25888  * Free per-tcp timer cache.
25889  * It can only contain entries from tcp_timercache.
25890  */
25891 void
25892 tcp_timermp_free(tcp_t *tcp)
25893 {
25894 	mblk_t *mp;
25895 
25896 	while ((mp = tcp->tcp_timercache) != NULL) {
25897 		ASSERT(mp->b_wptr == NULL);
25898 		tcp->tcp_timercache = tcp->tcp_timercache->b_next;
25899 		kmem_cache_free(tcp_timercache, mp);
25900 	}
25901 }
25902 
25903 /*
25904  * Free timer event. Put it on the per-tcp timer cache if there is not too many
25905  * events there already (currently at most two events are cached).
25906  * If the event is not allocated from the timer cache, free it right away.
25907  */
25908 static void
25909 tcp_timer_free(tcp_t *tcp, mblk_t *mp)
25910 {
25911 	mblk_t *mp1 = tcp->tcp_timercache;
25912 
25913 	if (mp->b_wptr != NULL) {
25914 		/*
25915 		 * This allocation is not from a timer cache, free it right
25916 		 * away.
25917 		 */
25918 		if (mp->b_wptr != (uchar_t *)-1)
25919 			freeb(mp);
25920 		else
25921 			kmem_free(mp, (size_t)mp->b_datap);
25922 	} else if (mp1 == NULL || mp1->b_next == NULL) {
25923 		/* Cache this timer block for future allocations */
25924 		mp->b_rptr = (uchar_t *)(&mp[1]);
25925 		mp->b_next = mp1;
25926 		tcp->tcp_timercache = mp;
25927 	} else {
25928 		kmem_cache_free(tcp_timercache, mp);
25929 		TCP_DBGSTAT(tcp->tcp_tcps, tcp_timermp_freed);
25930 	}
25931 }
25932 
25933 /*
25934  * End of TCP Timers implementation.
25935  */
25936 
25937 /*
25938  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
25939  * on the specified backing STREAMS q. Note, the caller may make the
25940  * decision to call based on the tcp_t.tcp_flow_stopped value which
25941  * when check outside the q's lock is only an advisory check ...
25942  */
25943 void
25944 tcp_setqfull(tcp_t *tcp)
25945 {
25946 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25947 	conn_t	*connp = tcp->tcp_connp;
25948 
25949 	if (tcp->tcp_closed)
25950 		return;
25951 
25952 	if (IPCL_IS_NONSTR(connp)) {
25953 		(*connp->conn_upcalls->su_txq_full)
25954 		    (tcp->tcp_connp->conn_upper_handle, B_TRUE);
25955 		tcp->tcp_flow_stopped = B_TRUE;
25956 	} else {
25957 		queue_t *q = tcp->tcp_wq;
25958 
25959 		if (!(q->q_flag & QFULL)) {
25960 			mutex_enter(QLOCK(q));
25961 			if (!(q->q_flag & QFULL)) {
25962 				/* still need to set QFULL */
25963 				q->q_flag |= QFULL;
25964 				tcp->tcp_flow_stopped = B_TRUE;
25965 				mutex_exit(QLOCK(q));
25966 				TCP_STAT(tcps, tcp_flwctl_on);
25967 			} else {
25968 				mutex_exit(QLOCK(q));
25969 			}
25970 		}
25971 	}
25972 }
25973 
25974 void
25975 tcp_clrqfull(tcp_t *tcp)
25976 {
25977 	conn_t  *connp = tcp->tcp_connp;
25978 
25979 	if (tcp->tcp_closed)
25980 		return;
25981 
25982 	if (IPCL_IS_NONSTR(connp)) {
25983 		(*connp->conn_upcalls->su_txq_full)
25984 		    (tcp->tcp_connp->conn_upper_handle, B_FALSE);
25985 		tcp->tcp_flow_stopped = B_FALSE;
25986 	} else {
25987 		queue_t *q = tcp->tcp_wq;
25988 
25989 		if (q->q_flag & QFULL) {
25990 			mutex_enter(QLOCK(q));
25991 			if (q->q_flag & QFULL) {
25992 				q->q_flag &= ~QFULL;
25993 				tcp->tcp_flow_stopped = B_FALSE;
25994 				mutex_exit(QLOCK(q));
25995 				if (q->q_flag & QWANTW)
25996 					qbackenable(q, 0);
25997 			} else {
25998 				mutex_exit(QLOCK(q));
25999 			}
26000 		}
26001 	}
26002 }
26003 
26004 /*
26005  * kstats related to squeues i.e. not per IP instance
26006  */
26007 static void *
26008 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp)
26009 {
26010 	kstat_t *ksp;
26011 
26012 	tcp_g_stat_t template = {
26013 		{ "tcp_timermp_alloced",	KSTAT_DATA_UINT64 },
26014 		{ "tcp_timermp_allocfail",	KSTAT_DATA_UINT64 },
26015 		{ "tcp_timermp_allocdblfail",	KSTAT_DATA_UINT64 },
26016 		{ "tcp_freelist_cleanup",	KSTAT_DATA_UINT64 },
26017 	};
26018 
26019 	ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net",
26020 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
26021 	    KSTAT_FLAG_VIRTUAL);
26022 
26023 	if (ksp == NULL)
26024 		return (NULL);
26025 
26026 	bcopy(&template, tcp_g_statp, sizeof (template));
26027 	ksp->ks_data = (void *)tcp_g_statp;
26028 
26029 	kstat_install(ksp);
26030 	return (ksp);
26031 }
26032 
26033 static void
26034 tcp_g_kstat_fini(kstat_t *ksp)
26035 {
26036 	if (ksp != NULL) {
26037 		kstat_delete(ksp);
26038 	}
26039 }
26040 
26041 
26042 static void *
26043 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp)
26044 {
26045 	kstat_t *ksp;
26046 
26047 	tcp_stat_t template = {
26048 		{ "tcp_time_wait",		KSTAT_DATA_UINT64 },
26049 		{ "tcp_time_wait_syn",		KSTAT_DATA_UINT64 },
26050 		{ "tcp_time_wait_success",	KSTAT_DATA_UINT64 },
26051 		{ "tcp_time_wait_fail",		KSTAT_DATA_UINT64 },
26052 		{ "tcp_reinput_syn",		KSTAT_DATA_UINT64 },
26053 		{ "tcp_ip_output",		KSTAT_DATA_UINT64 },
26054 		{ "tcp_detach_non_time_wait",	KSTAT_DATA_UINT64 },
26055 		{ "tcp_detach_time_wait",	KSTAT_DATA_UINT64 },
26056 		{ "tcp_time_wait_reap",		KSTAT_DATA_UINT64 },
26057 		{ "tcp_clean_death_nondetached",	KSTAT_DATA_UINT64 },
26058 		{ "tcp_reinit_calls",		KSTAT_DATA_UINT64 },
26059 		{ "tcp_eager_err1",		KSTAT_DATA_UINT64 },
26060 		{ "tcp_eager_err2",		KSTAT_DATA_UINT64 },
26061 		{ "tcp_eager_blowoff_calls",	KSTAT_DATA_UINT64 },
26062 		{ "tcp_eager_blowoff_q",	KSTAT_DATA_UINT64 },
26063 		{ "tcp_eager_blowoff_q0",	KSTAT_DATA_UINT64 },
26064 		{ "tcp_not_hard_bound",		KSTAT_DATA_UINT64 },
26065 		{ "tcp_no_listener",		KSTAT_DATA_UINT64 },
26066 		{ "tcp_found_eager",		KSTAT_DATA_UINT64 },
26067 		{ "tcp_wrong_queue",		KSTAT_DATA_UINT64 },
26068 		{ "tcp_found_eager_binding1",	KSTAT_DATA_UINT64 },
26069 		{ "tcp_found_eager_bound1",	KSTAT_DATA_UINT64 },
26070 		{ "tcp_eager_has_listener1",	KSTAT_DATA_UINT64 },
26071 		{ "tcp_open_alloc",		KSTAT_DATA_UINT64 },
26072 		{ "tcp_open_detached_alloc",	KSTAT_DATA_UINT64 },
26073 		{ "tcp_rput_time_wait",		KSTAT_DATA_UINT64 },
26074 		{ "tcp_listendrop",		KSTAT_DATA_UINT64 },
26075 		{ "tcp_listendropq0",		KSTAT_DATA_UINT64 },
26076 		{ "tcp_wrong_rq",		KSTAT_DATA_UINT64 },
26077 		{ "tcp_rsrv_calls",		KSTAT_DATA_UINT64 },
26078 		{ "tcp_eagerfree2",		KSTAT_DATA_UINT64 },
26079 		{ "tcp_eagerfree3",		KSTAT_DATA_UINT64 },
26080 		{ "tcp_eagerfree4",		KSTAT_DATA_UINT64 },
26081 		{ "tcp_eagerfree5",		KSTAT_DATA_UINT64 },
26082 		{ "tcp_timewait_syn_fail",	KSTAT_DATA_UINT64 },
26083 		{ "tcp_listen_badflags",	KSTAT_DATA_UINT64 },
26084 		{ "tcp_timeout_calls",		KSTAT_DATA_UINT64 },
26085 		{ "tcp_timeout_cached_alloc",	KSTAT_DATA_UINT64 },
26086 		{ "tcp_timeout_cancel_reqs",	KSTAT_DATA_UINT64 },
26087 		{ "tcp_timeout_canceled",	KSTAT_DATA_UINT64 },
26088 		{ "tcp_timermp_freed",		KSTAT_DATA_UINT64 },
26089 		{ "tcp_push_timer_cnt",		KSTAT_DATA_UINT64 },
26090 		{ "tcp_ack_timer_cnt",		KSTAT_DATA_UINT64 },
26091 		{ "tcp_ire_null1",		KSTAT_DATA_UINT64 },
26092 		{ "tcp_ire_null",		KSTAT_DATA_UINT64 },
26093 		{ "tcp_ip_send",		KSTAT_DATA_UINT64 },
26094 		{ "tcp_ip_ire_send",		KSTAT_DATA_UINT64 },
26095 		{ "tcp_wsrv_called",		KSTAT_DATA_UINT64 },
26096 		{ "tcp_flwctl_on",		KSTAT_DATA_UINT64 },
26097 		{ "tcp_timer_fire_early",	KSTAT_DATA_UINT64 },
26098 		{ "tcp_timer_fire_miss",	KSTAT_DATA_UINT64 },
26099 		{ "tcp_rput_v6_error",		KSTAT_DATA_UINT64 },
26100 		{ "tcp_out_sw_cksum",		KSTAT_DATA_UINT64 },
26101 		{ "tcp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
26102 		{ "tcp_zcopy_on",		KSTAT_DATA_UINT64 },
26103 		{ "tcp_zcopy_off",		KSTAT_DATA_UINT64 },
26104 		{ "tcp_zcopy_backoff",		KSTAT_DATA_UINT64 },
26105 		{ "tcp_zcopy_disable",		KSTAT_DATA_UINT64 },
26106 		{ "tcp_mdt_pkt_out",		KSTAT_DATA_UINT64 },
26107 		{ "tcp_mdt_pkt_out_v4",		KSTAT_DATA_UINT64 },
26108 		{ "tcp_mdt_pkt_out_v6",		KSTAT_DATA_UINT64 },
26109 		{ "tcp_mdt_discarded",		KSTAT_DATA_UINT64 },
26110 		{ "tcp_mdt_conn_halted1",	KSTAT_DATA_UINT64 },
26111 		{ "tcp_mdt_conn_halted2",	KSTAT_DATA_UINT64 },
26112 		{ "tcp_mdt_conn_halted3",	KSTAT_DATA_UINT64 },
26113 		{ "tcp_mdt_conn_resumed1",	KSTAT_DATA_UINT64 },
26114 		{ "tcp_mdt_conn_resumed2",	KSTAT_DATA_UINT64 },
26115 		{ "tcp_mdt_legacy_small",	KSTAT_DATA_UINT64 },
26116 		{ "tcp_mdt_legacy_all",		KSTAT_DATA_UINT64 },
26117 		{ "tcp_mdt_legacy_ret",		KSTAT_DATA_UINT64 },
26118 		{ "tcp_mdt_allocfail",		KSTAT_DATA_UINT64 },
26119 		{ "tcp_mdt_addpdescfail",	KSTAT_DATA_UINT64 },
26120 		{ "tcp_mdt_allocd",		KSTAT_DATA_UINT64 },
26121 		{ "tcp_mdt_linked",		KSTAT_DATA_UINT64 },
26122 		{ "tcp_fusion_flowctl",		KSTAT_DATA_UINT64 },
26123 		{ "tcp_fusion_backenabled",	KSTAT_DATA_UINT64 },
26124 		{ "tcp_fusion_urg",		KSTAT_DATA_UINT64 },
26125 		{ "tcp_fusion_putnext",		KSTAT_DATA_UINT64 },
26126 		{ "tcp_fusion_unfusable",	KSTAT_DATA_UINT64 },
26127 		{ "tcp_fusion_aborted",		KSTAT_DATA_UINT64 },
26128 		{ "tcp_fusion_unqualified",	KSTAT_DATA_UINT64 },
26129 		{ "tcp_fusion_rrw_busy",	KSTAT_DATA_UINT64 },
26130 		{ "tcp_fusion_rrw_msgcnt",	KSTAT_DATA_UINT64 },
26131 		{ "tcp_fusion_rrw_plugged",	KSTAT_DATA_UINT64 },
26132 		{ "tcp_in_ack_unsent_drop",	KSTAT_DATA_UINT64 },
26133 		{ "tcp_sock_fallback",		KSTAT_DATA_UINT64 },
26134 		{ "tcp_lso_enabled",		KSTAT_DATA_UINT64 },
26135 		{ "tcp_lso_disabled",		KSTAT_DATA_UINT64 },
26136 		{ "tcp_lso_times",		KSTAT_DATA_UINT64 },
26137 		{ "tcp_lso_pkt_out",		KSTAT_DATA_UINT64 },
26138 	};
26139 
26140 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net",
26141 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
26142 	    KSTAT_FLAG_VIRTUAL, stackid);
26143 
26144 	if (ksp == NULL)
26145 		return (NULL);
26146 
26147 	bcopy(&template, tcps_statisticsp, sizeof (template));
26148 	ksp->ks_data = (void *)tcps_statisticsp;
26149 	ksp->ks_private = (void *)(uintptr_t)stackid;
26150 
26151 	kstat_install(ksp);
26152 	return (ksp);
26153 }
26154 
26155 static void
26156 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
26157 {
26158 	if (ksp != NULL) {
26159 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
26160 		kstat_delete_netstack(ksp, stackid);
26161 	}
26162 }
26163 
26164 /*
26165  * TCP Kstats implementation
26166  */
26167 static void *
26168 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps)
26169 {
26170 	kstat_t	*ksp;
26171 
26172 	tcp_named_kstat_t template = {
26173 		{ "rtoAlgorithm",	KSTAT_DATA_INT32, 0 },
26174 		{ "rtoMin",		KSTAT_DATA_INT32, 0 },
26175 		{ "rtoMax",		KSTAT_DATA_INT32, 0 },
26176 		{ "maxConn",		KSTAT_DATA_INT32, 0 },
26177 		{ "activeOpens",	KSTAT_DATA_UINT32, 0 },
26178 		{ "passiveOpens",	KSTAT_DATA_UINT32, 0 },
26179 		{ "attemptFails",	KSTAT_DATA_UINT32, 0 },
26180 		{ "estabResets",	KSTAT_DATA_UINT32, 0 },
26181 		{ "currEstab",		KSTAT_DATA_UINT32, 0 },
26182 		{ "inSegs",		KSTAT_DATA_UINT64, 0 },
26183 		{ "outSegs",		KSTAT_DATA_UINT64, 0 },
26184 		{ "retransSegs",	KSTAT_DATA_UINT32, 0 },
26185 		{ "connTableSize",	KSTAT_DATA_INT32, 0 },
26186 		{ "outRsts",		KSTAT_DATA_UINT32, 0 },
26187 		{ "outDataSegs",	KSTAT_DATA_UINT32, 0 },
26188 		{ "outDataBytes",	KSTAT_DATA_UINT32, 0 },
26189 		{ "retransBytes",	KSTAT_DATA_UINT32, 0 },
26190 		{ "outAck",		KSTAT_DATA_UINT32, 0 },
26191 		{ "outAckDelayed",	KSTAT_DATA_UINT32, 0 },
26192 		{ "outUrg",		KSTAT_DATA_UINT32, 0 },
26193 		{ "outWinUpdate",	KSTAT_DATA_UINT32, 0 },
26194 		{ "outWinProbe",	KSTAT_DATA_UINT32, 0 },
26195 		{ "outControl",		KSTAT_DATA_UINT32, 0 },
26196 		{ "outFastRetrans",	KSTAT_DATA_UINT32, 0 },
26197 		{ "inAckSegs",		KSTAT_DATA_UINT32, 0 },
26198 		{ "inAckBytes",		KSTAT_DATA_UINT32, 0 },
26199 		{ "inDupAck",		KSTAT_DATA_UINT32, 0 },
26200 		{ "inAckUnsent",	KSTAT_DATA_UINT32, 0 },
26201 		{ "inDataInorderSegs",	KSTAT_DATA_UINT32, 0 },
26202 		{ "inDataInorderBytes",	KSTAT_DATA_UINT32, 0 },
26203 		{ "inDataUnorderSegs",	KSTAT_DATA_UINT32, 0 },
26204 		{ "inDataUnorderBytes",	KSTAT_DATA_UINT32, 0 },
26205 		{ "inDataDupSegs",	KSTAT_DATA_UINT32, 0 },
26206 		{ "inDataDupBytes",	KSTAT_DATA_UINT32, 0 },
26207 		{ "inDataPartDupSegs",	KSTAT_DATA_UINT32, 0 },
26208 		{ "inDataPartDupBytes",	KSTAT_DATA_UINT32, 0 },
26209 		{ "inDataPastWinSegs",	KSTAT_DATA_UINT32, 0 },
26210 		{ "inDataPastWinBytes",	KSTAT_DATA_UINT32, 0 },
26211 		{ "inWinProbe",		KSTAT_DATA_UINT32, 0 },
26212 		{ "inWinUpdate",	KSTAT_DATA_UINT32, 0 },
26213 		{ "inClosed",		KSTAT_DATA_UINT32, 0 },
26214 		{ "rttUpdate",		KSTAT_DATA_UINT32, 0 },
26215 		{ "rttNoUpdate",	KSTAT_DATA_UINT32, 0 },
26216 		{ "timRetrans",		KSTAT_DATA_UINT32, 0 },
26217 		{ "timRetransDrop",	KSTAT_DATA_UINT32, 0 },
26218 		{ "timKeepalive",	KSTAT_DATA_UINT32, 0 },
26219 		{ "timKeepaliveProbe",	KSTAT_DATA_UINT32, 0 },
26220 		{ "timKeepaliveDrop",	KSTAT_DATA_UINT32, 0 },
26221 		{ "listenDrop",		KSTAT_DATA_UINT32, 0 },
26222 		{ "listenDropQ0",	KSTAT_DATA_UINT32, 0 },
26223 		{ "halfOpenDrop",	KSTAT_DATA_UINT32, 0 },
26224 		{ "outSackRetransSegs",	KSTAT_DATA_UINT32, 0 },
26225 		{ "connTableSize6",	KSTAT_DATA_INT32, 0 }
26226 	};
26227 
26228 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2",
26229 	    KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid);
26230 
26231 	if (ksp == NULL)
26232 		return (NULL);
26233 
26234 	template.rtoAlgorithm.value.ui32 = 4;
26235 	template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min;
26236 	template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max;
26237 	template.maxConn.value.i32 = -1;
26238 
26239 	bcopy(&template, ksp->ks_data, sizeof (template));
26240 	ksp->ks_update = tcp_kstat_update;
26241 	ksp->ks_private = (void *)(uintptr_t)stackid;
26242 
26243 	kstat_install(ksp);
26244 	return (ksp);
26245 }
26246 
26247 static void
26248 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
26249 {
26250 	if (ksp != NULL) {
26251 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
26252 		kstat_delete_netstack(ksp, stackid);
26253 	}
26254 }
26255 
26256 static int
26257 tcp_kstat_update(kstat_t *kp, int rw)
26258 {
26259 	tcp_named_kstat_t *tcpkp;
26260 	tcp_t		*tcp;
26261 	connf_t		*connfp;
26262 	conn_t		*connp;
26263 	int 		i;
26264 	netstackid_t	stackid = (netstackid_t)(uintptr_t)kp->ks_private;
26265 	netstack_t	*ns;
26266 	tcp_stack_t	*tcps;
26267 	ip_stack_t	*ipst;
26268 
26269 	if ((kp == NULL) || (kp->ks_data == NULL))
26270 		return (EIO);
26271 
26272 	if (rw == KSTAT_WRITE)
26273 		return (EACCES);
26274 
26275 	ns = netstack_find_by_stackid(stackid);
26276 	if (ns == NULL)
26277 		return (-1);
26278 	tcps = ns->netstack_tcp;
26279 	if (tcps == NULL) {
26280 		netstack_rele(ns);
26281 		return (-1);
26282 	}
26283 
26284 	tcpkp = (tcp_named_kstat_t *)kp->ks_data;
26285 
26286 	tcpkp->currEstab.value.ui32 = 0;
26287 
26288 	ipst = ns->netstack_ip;
26289 
26290 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
26291 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
26292 		connp = NULL;
26293 		while ((connp =
26294 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
26295 			tcp = connp->conn_tcp;
26296 			switch (tcp_snmp_state(tcp)) {
26297 			case MIB2_TCP_established:
26298 			case MIB2_TCP_closeWait:
26299 				tcpkp->currEstab.value.ui32++;
26300 				break;
26301 			}
26302 		}
26303 	}
26304 
26305 	tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens;
26306 	tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens;
26307 	tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails;
26308 	tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets;
26309 	tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs;
26310 	tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs;
26311 	tcpkp->retransSegs.value.ui32 =	tcps->tcps_mib.tcpRetransSegs;
26312 	tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize;
26313 	tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts;
26314 	tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs;
26315 	tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes;
26316 	tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes;
26317 	tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck;
26318 	tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed;
26319 	tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg;
26320 	tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate;
26321 	tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe;
26322 	tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl;
26323 	tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans;
26324 	tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs;
26325 	tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes;
26326 	tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck;
26327 	tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent;
26328 	tcpkp->inDataInorderSegs.value.ui32 =
26329 	    tcps->tcps_mib.tcpInDataInorderSegs;
26330 	tcpkp->inDataInorderBytes.value.ui32 =
26331 	    tcps->tcps_mib.tcpInDataInorderBytes;
26332 	tcpkp->inDataUnorderSegs.value.ui32 =
26333 	    tcps->tcps_mib.tcpInDataUnorderSegs;
26334 	tcpkp->inDataUnorderBytes.value.ui32 =
26335 	    tcps->tcps_mib.tcpInDataUnorderBytes;
26336 	tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs;
26337 	tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes;
26338 	tcpkp->inDataPartDupSegs.value.ui32 =
26339 	    tcps->tcps_mib.tcpInDataPartDupSegs;
26340 	tcpkp->inDataPartDupBytes.value.ui32 =
26341 	    tcps->tcps_mib.tcpInDataPartDupBytes;
26342 	tcpkp->inDataPastWinSegs.value.ui32 =
26343 	    tcps->tcps_mib.tcpInDataPastWinSegs;
26344 	tcpkp->inDataPastWinBytes.value.ui32 =
26345 	    tcps->tcps_mib.tcpInDataPastWinBytes;
26346 	tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe;
26347 	tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate;
26348 	tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed;
26349 	tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate;
26350 	tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate;
26351 	tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans;
26352 	tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop;
26353 	tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive;
26354 	tcpkp->timKeepaliveProbe.value.ui32 =
26355 	    tcps->tcps_mib.tcpTimKeepaliveProbe;
26356 	tcpkp->timKeepaliveDrop.value.ui32 =
26357 	    tcps->tcps_mib.tcpTimKeepaliveDrop;
26358 	tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop;
26359 	tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0;
26360 	tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop;
26361 	tcpkp->outSackRetransSegs.value.ui32 =
26362 	    tcps->tcps_mib.tcpOutSackRetransSegs;
26363 	tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize;
26364 
26365 	netstack_rele(ns);
26366 	return (0);
26367 }
26368 
26369 void
26370 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp)
26371 {
26372 	uint16_t	hdr_len;
26373 	ipha_t		*ipha;
26374 	uint8_t		*nexthdrp;
26375 	tcph_t		*tcph;
26376 	tcp_stack_t	*tcps = connp->conn_tcp->tcp_tcps;
26377 
26378 	/* Already has an eager */
26379 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
26380 		TCP_STAT(tcps, tcp_reinput_syn);
26381 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp,
26382 		    SQ_PROCESS, SQTAG_TCP_REINPUT_EAGER);
26383 		return;
26384 	}
26385 
26386 	switch (IPH_HDR_VERSION(mp->b_rptr)) {
26387 	case IPV4_VERSION:
26388 		ipha = (ipha_t *)mp->b_rptr;
26389 		hdr_len = IPH_HDR_LENGTH(ipha);
26390 		break;
26391 	case IPV6_VERSION:
26392 		if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr,
26393 		    &hdr_len, &nexthdrp)) {
26394 			CONN_DEC_REF(connp);
26395 			freemsg(mp);
26396 			return;
26397 		}
26398 		break;
26399 	}
26400 
26401 	tcph = (tcph_t *)&mp->b_rptr[hdr_len];
26402 	if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) {
26403 		mp->b_datap->db_struioflag |= STRUIO_EAGER;
26404 		DB_CKSUMSTART(mp) = (intptr_t)sqp;
26405 	}
26406 
26407 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp,
26408 	    SQ_FILL, SQTAG_TCP_REINPUT);
26409 }
26410 
26411 static int
26412 tcp_squeue_switch(int val)
26413 {
26414 	int rval = SQ_FILL;
26415 
26416 	switch (val) {
26417 	case 1:
26418 		rval = SQ_NODRAIN;
26419 		break;
26420 	case 2:
26421 		rval = SQ_PROCESS;
26422 		break;
26423 	default:
26424 		break;
26425 	}
26426 	return (rval);
26427 }
26428 
26429 /*
26430  * This is called once for each squeue - globally for all stack
26431  * instances.
26432  */
26433 static void
26434 tcp_squeue_add(squeue_t *sqp)
26435 {
26436 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
26437 	    sizeof (tcp_squeue_priv_t), KM_SLEEP);
26438 
26439 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
26440 	tcp_time_wait->tcp_time_wait_tid =
26441 	    timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp,
26442 	    TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION,
26443 	    CALLOUT_FLAG_ROUNDUP);
26444 	if (tcp_free_list_max_cnt == 0) {
26445 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
26446 		    max_ncpus : boot_max_ncpus);
26447 
26448 		/*
26449 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
26450 		 */
26451 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
26452 		    (tcp_ncpus * sizeof (tcp_t) * 100);
26453 	}
26454 	tcp_time_wait->tcp_free_list_cnt = 0;
26455 }
26456 
26457 static int
26458 tcp_post_ip_bind(tcp_t *tcp, mblk_t *mp, int error, cred_t *cr, pid_t pid)
26459 {
26460 	mblk_t	*ire_mp = NULL;
26461 	mblk_t	*syn_mp;
26462 	mblk_t	*mdti;
26463 	mblk_t	*lsoi;
26464 	int	retval;
26465 	tcph_t	*tcph;
26466 	uint32_t	mss;
26467 	queue_t	*q = tcp->tcp_rq;
26468 	conn_t	*connp = tcp->tcp_connp;
26469 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26470 
26471 	if (error == 0) {
26472 		/*
26473 		 * Adapt Multidata information, if any.  The
26474 		 * following tcp_mdt_update routine will free
26475 		 * the message.
26476 		 */
26477 		if (mp != NULL && ((mdti = tcp_mdt_info_mp(mp)) != NULL)) {
26478 			tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti->
26479 			    b_rptr)->mdt_capab, B_TRUE);
26480 			freemsg(mdti);
26481 		}
26482 
26483 		/*
26484 		 * Check to update LSO information with tcp, and
26485 		 * tcp_lso_update routine will free the message.
26486 		 */
26487 		if (mp != NULL && ((lsoi = tcp_lso_info_mp(mp)) != NULL)) {
26488 			tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi->
26489 			    b_rptr)->lso_capab);
26490 			freemsg(lsoi);
26491 		}
26492 
26493 		/* Get the IRE, if we had requested for it */
26494 		if (mp != NULL)
26495 			ire_mp = tcp_ire_mp(&mp);
26496 
26497 		if (tcp->tcp_hard_binding) {
26498 			tcp->tcp_hard_binding = B_FALSE;
26499 			tcp->tcp_hard_bound = B_TRUE;
26500 			CL_INET_CONNECT(tcp->tcp_connp, tcp, B_TRUE, retval);
26501 			if (retval != 0) {
26502 				error = EADDRINUSE;
26503 				goto bind_failed;
26504 			}
26505 		} else {
26506 			if (ire_mp != NULL)
26507 				freeb(ire_mp);
26508 			goto after_syn_sent;
26509 		}
26510 
26511 		retval = tcp_adapt_ire(tcp, ire_mp);
26512 		if (ire_mp != NULL)
26513 			freeb(ire_mp);
26514 		if (retval == 0) {
26515 			error = (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
26516 			    ENETUNREACH : EADDRNOTAVAIL);
26517 			goto ipcl_rm;
26518 		}
26519 		/*
26520 		 * Don't let an endpoint connect to itself.
26521 		 * Also checked in tcp_connect() but that
26522 		 * check can't handle the case when the
26523 		 * local IP address is INADDR_ANY.
26524 		 */
26525 		if (tcp->tcp_ipversion == IPV4_VERSION) {
26526 			if ((tcp->tcp_ipha->ipha_dst ==
26527 			    tcp->tcp_ipha->ipha_src) &&
26528 			    (BE16_EQL(tcp->tcp_tcph->th_lport,
26529 			    tcp->tcp_tcph->th_fport))) {
26530 				error = EADDRNOTAVAIL;
26531 				goto ipcl_rm;
26532 			}
26533 		} else {
26534 			if (IN6_ARE_ADDR_EQUAL(
26535 			    &tcp->tcp_ip6h->ip6_dst,
26536 			    &tcp->tcp_ip6h->ip6_src) &&
26537 			    (BE16_EQL(tcp->tcp_tcph->th_lport,
26538 			    tcp->tcp_tcph->th_fport))) {
26539 				error = EADDRNOTAVAIL;
26540 				goto ipcl_rm;
26541 			}
26542 		}
26543 		ASSERT(tcp->tcp_state == TCPS_SYN_SENT);
26544 		/*
26545 		 * This should not be possible!  Just for
26546 		 * defensive coding...
26547 		 */
26548 		if (tcp->tcp_state != TCPS_SYN_SENT)
26549 			goto after_syn_sent;
26550 
26551 		if (is_system_labeled() &&
26552 		    !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) {
26553 			error = EHOSTUNREACH;
26554 			goto ipcl_rm;
26555 		}
26556 
26557 		/*
26558 		 * tcp_adapt_ire() does not adjust
26559 		 * for TCP/IP header length.
26560 		 */
26561 		mss = tcp->tcp_mss - tcp->tcp_hdr_len;
26562 
26563 		/*
26564 		 * Just make sure our rwnd is at
26565 		 * least tcp_recv_hiwat_mss * MSS
26566 		 * large, and round up to the nearest
26567 		 * MSS.
26568 		 *
26569 		 * We do the round up here because
26570 		 * we need to get the interface
26571 		 * MTU first before we can do the
26572 		 * round up.
26573 		 */
26574 		tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
26575 		    tcps->tcps_recv_hiwat_minmss * mss);
26576 		if (!IPCL_IS_NONSTR(connp))
26577 			q->q_hiwat = tcp->tcp_rwnd;
26578 		tcp->tcp_recv_hiwater = tcp->tcp_rwnd;
26579 		tcp_set_ws_value(tcp);
26580 		U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws),
26581 		    tcp->tcp_tcph->th_win);
26582 		if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always)
26583 			tcp->tcp_snd_ws_ok = B_TRUE;
26584 
26585 		/*
26586 		 * Set tcp_snd_ts_ok to true
26587 		 * so that tcp_xmit_mp will
26588 		 * include the timestamp
26589 		 * option in the SYN segment.
26590 		 */
26591 		if (tcps->tcps_tstamp_always ||
26592 		    (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) {
26593 			tcp->tcp_snd_ts_ok = B_TRUE;
26594 		}
26595 
26596 		/*
26597 		 * tcp_snd_sack_ok can be set in
26598 		 * tcp_adapt_ire() if the sack metric
26599 		 * is set.  So check it here also.
26600 		 */
26601 		if (tcps->tcps_sack_permitted == 2 ||
26602 		    tcp->tcp_snd_sack_ok) {
26603 			if (tcp->tcp_sack_info == NULL) {
26604 				tcp->tcp_sack_info =
26605 				    kmem_cache_alloc(tcp_sack_info_cache,
26606 				    KM_SLEEP);
26607 			}
26608 			tcp->tcp_snd_sack_ok = B_TRUE;
26609 		}
26610 
26611 		/*
26612 		 * Should we use ECN?  Note that the current
26613 		 * default value (SunOS 5.9) of tcp_ecn_permitted
26614 		 * is 1.  The reason for doing this is that there
26615 		 * are equipments out there that will drop ECN
26616 		 * enabled IP packets.  Setting it to 1 avoids
26617 		 * compatibility problems.
26618 		 */
26619 		if (tcps->tcps_ecn_permitted == 2)
26620 			tcp->tcp_ecn_ok = B_TRUE;
26621 
26622 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
26623 		syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
26624 		    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
26625 		if (syn_mp) {
26626 			if (cr == NULL) {
26627 				cr = tcp->tcp_cred;
26628 				pid = tcp->tcp_cpid;
26629 			}
26630 			mblk_setcred(syn_mp, cr);
26631 			DB_CPID(syn_mp) = pid;
26632 			tcp_send_data(tcp, tcp->tcp_wq, syn_mp);
26633 		}
26634 	after_syn_sent:
26635 		if (mp != NULL) {
26636 			ASSERT(mp->b_cont == NULL);
26637 			freeb(mp);
26638 		}
26639 		return (error);
26640 	} else {
26641 		/* error */
26642 		if (tcp->tcp_debug) {
26643 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
26644 			    "tcp_post_ip_bind: error == %d", error);
26645 		}
26646 		if (mp != NULL) {
26647 			freeb(mp);
26648 		}
26649 	}
26650 
26651 ipcl_rm:
26652 	/*
26653 	 * Need to unbind with classifier since we were just
26654 	 * told that our bind succeeded. a.k.a error == 0 at the entry.
26655 	 */
26656 	tcp->tcp_hard_bound = B_FALSE;
26657 	tcp->tcp_hard_binding = B_FALSE;
26658 
26659 	ipcl_hash_remove(connp);
26660 
26661 bind_failed:
26662 	tcp->tcp_state = TCPS_IDLE;
26663 	if (tcp->tcp_ipversion == IPV4_VERSION)
26664 		tcp->tcp_ipha->ipha_src = 0;
26665 	else
26666 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
26667 	/*
26668 	 * Copy of the src addr. in tcp_t is needed since
26669 	 * the lookup funcs. can only look at tcp_t
26670 	 */
26671 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
26672 
26673 	tcph = tcp->tcp_tcph;
26674 	tcph->th_lport[0] = 0;
26675 	tcph->th_lport[1] = 0;
26676 	tcp_bind_hash_remove(tcp);
26677 	bzero(&connp->u_port, sizeof (connp->u_port));
26678 	/* blow away saved option results if any */
26679 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
26680 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
26681 
26682 	conn_delete_ire(tcp->tcp_connp, NULL);
26683 
26684 	return (error);
26685 }
26686 
26687 static int
26688 tcp_bind_select_lport(tcp_t *tcp, in_port_t *requested_port_ptr,
26689     boolean_t bind_to_req_port_only, cred_t *cr)
26690 {
26691 	in_port_t	mlp_port;
26692 	mlp_type_t 	addrtype, mlptype;
26693 	boolean_t	user_specified;
26694 	in_port_t	allocated_port;
26695 	in_port_t	requested_port = *requested_port_ptr;
26696 	conn_t		*connp;
26697 	zone_t		*zone;
26698 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26699 	in6_addr_t	v6addr = tcp->tcp_ip_src_v6;
26700 
26701 	/*
26702 	 * XXX It's up to the caller to specify bind_to_req_port_only or not.
26703 	 */
26704 	if (cr == NULL)
26705 		cr = tcp->tcp_cred;
26706 	/*
26707 	 * Get a valid port (within the anonymous range and should not
26708 	 * be a privileged one) to use if the user has not given a port.
26709 	 * If multiple threads are here, they may all start with
26710 	 * with the same initial port. But, it should be fine as long as
26711 	 * tcp_bindi will ensure that no two threads will be assigned
26712 	 * the same port.
26713 	 *
26714 	 * NOTE: XXX If a privileged process asks for an anonymous port, we
26715 	 * still check for ports only in the range > tcp_smallest_non_priv_port,
26716 	 * unless TCP_ANONPRIVBIND option is set.
26717 	 */
26718 	mlptype = mlptSingle;
26719 	mlp_port = requested_port;
26720 	if (requested_port == 0) {
26721 		requested_port = tcp->tcp_anon_priv_bind ?
26722 		    tcp_get_next_priv_port(tcp) :
26723 		    tcp_update_next_port(tcps->tcps_next_port_to_try,
26724 		    tcp, B_TRUE);
26725 		if (requested_port == 0) {
26726 			return (-TNOADDR);
26727 		}
26728 		user_specified = B_FALSE;
26729 
26730 		/*
26731 		 * If the user went through one of the RPC interfaces to create
26732 		 * this socket and RPC is MLP in this zone, then give him an
26733 		 * anonymous MLP.
26734 		 */
26735 		connp = tcp->tcp_connp;
26736 		if (connp->conn_anon_mlp && is_system_labeled()) {
26737 			zone = crgetzone(cr);
26738 			addrtype = tsol_mlp_addr_type(zone->zone_id,
26739 			    IPV6_VERSION, &v6addr,
26740 			    tcps->tcps_netstack->netstack_ip);
26741 			if (addrtype == mlptSingle) {
26742 				return (-TNOADDR);
26743 			}
26744 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
26745 			    PMAPPORT, addrtype);
26746 			mlp_port = PMAPPORT;
26747 		}
26748 	} else {
26749 		int i;
26750 		boolean_t priv = B_FALSE;
26751 
26752 		/*
26753 		 * If the requested_port is in the well-known privileged range,
26754 		 * verify that the stream was opened by a privileged user.
26755 		 * Note: No locks are held when inspecting tcp_g_*epriv_ports
26756 		 * but instead the code relies on:
26757 		 * - the fact that the address of the array and its size never
26758 		 *   changes
26759 		 * - the atomic assignment of the elements of the array
26760 		 */
26761 		if (requested_port < tcps->tcps_smallest_nonpriv_port) {
26762 			priv = B_TRUE;
26763 		} else {
26764 			for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
26765 				if (requested_port ==
26766 				    tcps->tcps_g_epriv_ports[i]) {
26767 					priv = B_TRUE;
26768 					break;
26769 				}
26770 			}
26771 		}
26772 		if (priv) {
26773 			if (secpolicy_net_privaddr(cr, requested_port,
26774 			    IPPROTO_TCP) != 0) {
26775 				if (tcp->tcp_debug) {
26776 					(void) strlog(TCP_MOD_ID, 0, 1,
26777 					    SL_ERROR|SL_TRACE,
26778 					    "tcp_bind: no priv for port %d",
26779 					    requested_port);
26780 				}
26781 				return (-TACCES);
26782 			}
26783 		}
26784 		user_specified = B_TRUE;
26785 
26786 		connp = tcp->tcp_connp;
26787 		if (is_system_labeled()) {
26788 			zone = crgetzone(cr);
26789 			addrtype = tsol_mlp_addr_type(zone->zone_id,
26790 			    IPV6_VERSION, &v6addr,
26791 			    tcps->tcps_netstack->netstack_ip);
26792 			if (addrtype == mlptSingle) {
26793 				return (-TNOADDR);
26794 			}
26795 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
26796 			    requested_port, addrtype);
26797 		}
26798 	}
26799 
26800 	if (mlptype != mlptSingle) {
26801 		if (secpolicy_net_bindmlp(cr) != 0) {
26802 			if (tcp->tcp_debug) {
26803 				(void) strlog(TCP_MOD_ID, 0, 1,
26804 				    SL_ERROR|SL_TRACE,
26805 				    "tcp_bind: no priv for multilevel port %d",
26806 				    requested_port);
26807 			}
26808 			return (-TACCES);
26809 		}
26810 
26811 		/*
26812 		 * If we're specifically binding a shared IP address and the
26813 		 * port is MLP on shared addresses, then check to see if this
26814 		 * zone actually owns the MLP.  Reject if not.
26815 		 */
26816 		if (mlptype == mlptShared && addrtype == mlptShared) {
26817 			/*
26818 			 * No need to handle exclusive-stack zones since
26819 			 * ALL_ZONES only applies to the shared stack.
26820 			 */
26821 			zoneid_t mlpzone;
26822 
26823 			mlpzone = tsol_mlp_findzone(IPPROTO_TCP,
26824 			    htons(mlp_port));
26825 			if (connp->conn_zoneid != mlpzone) {
26826 				if (tcp->tcp_debug) {
26827 					(void) strlog(TCP_MOD_ID, 0, 1,
26828 					    SL_ERROR|SL_TRACE,
26829 					    "tcp_bind: attempt to bind port "
26830 					    "%d on shared addr in zone %d "
26831 					    "(should be %d)",
26832 					    mlp_port, connp->conn_zoneid,
26833 					    mlpzone);
26834 				}
26835 				return (-TACCES);
26836 			}
26837 		}
26838 
26839 		if (!user_specified) {
26840 			int err;
26841 			err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
26842 			    requested_port, B_TRUE);
26843 			if (err != 0) {
26844 				if (tcp->tcp_debug) {
26845 					(void) strlog(TCP_MOD_ID, 0, 1,
26846 					    SL_ERROR|SL_TRACE,
26847 					    "tcp_bind: cannot establish anon "
26848 					    "MLP for port %d",
26849 					    requested_port);
26850 				}
26851 				return (err);
26852 			}
26853 			connp->conn_anon_port = B_TRUE;
26854 		}
26855 		connp->conn_mlp_type = mlptype;
26856 	}
26857 
26858 	allocated_port = tcp_bindi(tcp, requested_port, &v6addr,
26859 	    tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified);
26860 
26861 	if (allocated_port == 0) {
26862 		connp->conn_mlp_type = mlptSingle;
26863 		if (connp->conn_anon_port) {
26864 			connp->conn_anon_port = B_FALSE;
26865 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
26866 			    requested_port, B_FALSE);
26867 		}
26868 		if (bind_to_req_port_only) {
26869 			if (tcp->tcp_debug) {
26870 				(void) strlog(TCP_MOD_ID, 0, 1,
26871 				    SL_ERROR|SL_TRACE,
26872 				    "tcp_bind: requested addr busy");
26873 			}
26874 			return (-TADDRBUSY);
26875 		} else {
26876 			/* If we are out of ports, fail the bind. */
26877 			if (tcp->tcp_debug) {
26878 				(void) strlog(TCP_MOD_ID, 0, 1,
26879 				    SL_ERROR|SL_TRACE,
26880 				    "tcp_bind: out of ports?");
26881 			}
26882 			return (-TNOADDR);
26883 		}
26884 	}
26885 
26886 	/* Pass the allocated port back */
26887 	*requested_port_ptr = allocated_port;
26888 	return (0);
26889 }
26890 
26891 static int
26892 tcp_bind_check(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,
26893     boolean_t bind_to_req_port_only)
26894 {
26895 	tcp_t	*tcp = connp->conn_tcp;
26896 
26897 	sin_t	*sin;
26898 	sin6_t  *sin6;
26899 	sin6_t		sin6addr;
26900 	in_port_t requested_port;
26901 	ipaddr_t	v4addr;
26902 	in6_addr_t	v6addr;
26903 	uint_t	origipversion;
26904 	int	error = 0;
26905 
26906 	ASSERT((uintptr_t)len <= (uintptr_t)INT_MAX);
26907 
26908 	if (tcp->tcp_state == TCPS_BOUND) {
26909 		return (0);
26910 	} else if (tcp->tcp_state > TCPS_BOUND) {
26911 		if (tcp->tcp_debug) {
26912 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
26913 			    "tcp_bind: bad state, %d", tcp->tcp_state);
26914 		}
26915 		return (-TOUTSTATE);
26916 	}
26917 	origipversion = tcp->tcp_ipversion;
26918 
26919 	if (sa != NULL && !OK_32PTR((char *)sa)) {
26920 		if (tcp->tcp_debug) {
26921 			(void) strlog(TCP_MOD_ID, 0, 1,
26922 			    SL_ERROR|SL_TRACE,
26923 			    "tcp_bind: bad address parameter, "
26924 			    "address %p, len %d",
26925 			    (void *)sa, len);
26926 		}
26927 		return (-TPROTO);
26928 	}
26929 
26930 	switch (len) {
26931 	case 0:		/* request for a generic port */
26932 		if (tcp->tcp_family == AF_INET) {
26933 			sin = (sin_t *)&sin6addr;
26934 			*sin = sin_null;
26935 			sin->sin_family = AF_INET;
26936 			tcp->tcp_ipversion = IPV4_VERSION;
26937 			IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr);
26938 		} else {
26939 			ASSERT(tcp->tcp_family == AF_INET6);
26940 			sin6 = (sin6_t *)&sin6addr;
26941 			*sin6 = sin6_null;
26942 			sin6->sin6_family = AF_INET6;
26943 			tcp->tcp_ipversion = IPV6_VERSION;
26944 			V6_SET_ZERO(v6addr);
26945 		}
26946 		requested_port = 0;
26947 		break;
26948 
26949 	case sizeof (sin_t):	/* Complete IPv4 address */
26950 		sin = (sin_t *)sa;
26951 		/*
26952 		 * With sockets sockfs will accept bogus sin_family in
26953 		 * bind() and replace it with the family used in the socket
26954 		 * call.
26955 		 */
26956 		if (sin->sin_family != AF_INET ||
26957 		    tcp->tcp_family != AF_INET) {
26958 			return (EAFNOSUPPORT);
26959 		}
26960 		requested_port = ntohs(sin->sin_port);
26961 		tcp->tcp_ipversion = IPV4_VERSION;
26962 		v4addr = sin->sin_addr.s_addr;
26963 		IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr);
26964 		break;
26965 
26966 	case sizeof (sin6_t): /* Complete IPv6 address */
26967 		sin6 = (sin6_t *)sa;
26968 		if (sin6->sin6_family != AF_INET6 ||
26969 		    tcp->tcp_family != AF_INET6) {
26970 			return (EAFNOSUPPORT);
26971 		}
26972 		requested_port = ntohs(sin6->sin6_port);
26973 		tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ?
26974 		    IPV4_VERSION : IPV6_VERSION;
26975 		v6addr = sin6->sin6_addr;
26976 		break;
26977 
26978 	default:
26979 		if (tcp->tcp_debug) {
26980 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
26981 			    "tcp_bind: bad address length, %d", len);
26982 		}
26983 		return (EAFNOSUPPORT);
26984 		/* return (-TBADADDR); */
26985 	}
26986 
26987 	tcp->tcp_bound_source_v6 = v6addr;
26988 
26989 	/* Check for change in ipversion */
26990 	if (origipversion != tcp->tcp_ipversion) {
26991 		ASSERT(tcp->tcp_family == AF_INET6);
26992 		error = tcp->tcp_ipversion == IPV6_VERSION ?
26993 		    tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp);
26994 		if (error) {
26995 			return (ENOMEM);
26996 		}
26997 	}
26998 
26999 	/*
27000 	 * Initialize family specific fields. Copy of the src addr.
27001 	 * in tcp_t is needed for the lookup funcs.
27002 	 */
27003 	if (tcp->tcp_ipversion == IPV6_VERSION) {
27004 		tcp->tcp_ip6h->ip6_src = v6addr;
27005 	} else {
27006 		IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src);
27007 	}
27008 	tcp->tcp_ip_src_v6 = v6addr;
27009 
27010 	bind_to_req_port_only = requested_port != 0 && bind_to_req_port_only;
27011 
27012 	error = tcp_bind_select_lport(tcp, &requested_port,
27013 	    bind_to_req_port_only, cr);
27014 
27015 	return (error);
27016 }
27017 
27018 /*
27019  * Return unix error is tli error is TSYSERR, otherwise return a negative
27020  * tli error.
27021  */
27022 int
27023 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,
27024     boolean_t bind_to_req_port_only)
27025 {
27026 	int error;
27027 	tcp_t *tcp = connp->conn_tcp;
27028 
27029 	if (tcp->tcp_state >= TCPS_BOUND) {
27030 		if (tcp->tcp_debug) {
27031 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
27032 			    "tcp_bind: bad state, %d", tcp->tcp_state);
27033 		}
27034 		return (-TOUTSTATE);
27035 	}
27036 
27037 	error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only);
27038 	if (error != 0)
27039 		return (error);
27040 
27041 	ASSERT(tcp->tcp_state == TCPS_BOUND);
27042 
27043 	tcp->tcp_conn_req_max = 0;
27044 
27045 	/*
27046 	 * We need to make sure that the conn_recv is set to a non-null
27047 	 * value before we insert the conn into the classifier table.
27048 	 * This is to avoid a race with an incoming packet which does an
27049 	 * ipcl_classify().
27050 	 */
27051 	connp->conn_recv = tcp_conn_request;
27052 
27053 	if (tcp->tcp_family == AF_INET6) {
27054 		ASSERT(tcp->tcp_connp->conn_af_isv6);
27055 		error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP,
27056 		    &tcp->tcp_bound_source_v6, 0, B_FALSE);
27057 	} else {
27058 		ASSERT(!tcp->tcp_connp->conn_af_isv6);
27059 		error = ip_proto_bind_laddr_v4(connp, NULL, IPPROTO_TCP,
27060 		    tcp->tcp_ipha->ipha_src, 0, B_FALSE);
27061 	}
27062 	return (tcp_post_ip_bind(tcp, NULL, error, NULL, 0));
27063 }
27064 
27065 int
27066 tcp_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa,
27067     socklen_t len, cred_t *cr)
27068 {
27069 	int 		error;
27070 	conn_t		*connp = (conn_t *)proto_handle;
27071 	squeue_t	*sqp = connp->conn_sqp;
27072 
27073 	ASSERT(sqp != NULL);
27074 
27075 	error = squeue_synch_enter(sqp, connp, 0);
27076 	if (error != 0) {
27077 		/* failed to enter */
27078 		return (ENOSR);
27079 	}
27080 
27081 	/* binding to a NULL address really means unbind */
27082 	if (sa == NULL) {
27083 		if (connp->conn_tcp->tcp_state < TCPS_LISTEN)
27084 			error = tcp_do_unbind(connp);
27085 		else
27086 			error = EINVAL;
27087 	} else {
27088 		error = tcp_do_bind(connp, sa, len, cr, B_TRUE);
27089 	}
27090 
27091 	squeue_synch_exit(sqp, connp);
27092 
27093 	if (error < 0) {
27094 		if (error == -TOUTSTATE)
27095 			error = EINVAL;
27096 		else
27097 			error = proto_tlitosyserr(-error);
27098 	}
27099 
27100 	return (error);
27101 }
27102 
27103 /*
27104  * If the return value from this function is positive, it's a UNIX error.
27105  * Otherwise, if it's negative, then the absolute value is a TLI error.
27106  * the TPI routine tcp_tpi_connect() is a wrapper function for this.
27107  */
27108 int
27109 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len,
27110     cred_t *cr, pid_t pid)
27111 {
27112 	tcp_t		*tcp = connp->conn_tcp;
27113 	sin_t		*sin = (sin_t *)sa;
27114 	sin6_t		*sin6 = (sin6_t *)sa;
27115 	ipaddr_t	*dstaddrp;
27116 	in_port_t	dstport;
27117 	uint_t		srcid;
27118 	int		error = 0;
27119 
27120 	switch (len) {
27121 	default:
27122 		/*
27123 		 * Should never happen
27124 		 */
27125 		return (EINVAL);
27126 
27127 	case sizeof (sin_t):
27128 		sin = (sin_t *)sa;
27129 		if (sin->sin_port == 0) {
27130 			return (-TBADADDR);
27131 		}
27132 		if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) {
27133 			return (EAFNOSUPPORT);
27134 		}
27135 		break;
27136 
27137 	case sizeof (sin6_t):
27138 		sin6 = (sin6_t *)sa;
27139 		if (sin6->sin6_port == 0) {
27140 			return (-TBADADDR);
27141 		}
27142 		break;
27143 	}
27144 	/*
27145 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
27146 	 * make sure that the template IP header in the tcp structure is an
27147 	 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION.  We
27148 	 * need to this before we call tcp_bindi() so that the port lookup
27149 	 * code will look for ports in the correct port space (IPv4 and
27150 	 * IPv6 have separate port spaces).
27151 	 */
27152 	if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION &&
27153 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
27154 		int err = 0;
27155 
27156 		err = tcp_header_init_ipv4(tcp);
27157 			if (err != 0) {
27158 				error = ENOMEM;
27159 				goto connect_failed;
27160 			}
27161 		if (tcp->tcp_lport != 0)
27162 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
27163 	}
27164 
27165 	switch (tcp->tcp_state) {
27166 	case TCPS_LISTEN:
27167 		/*
27168 		 * Listening sockets are not allowed to issue connect().
27169 		 */
27170 		if (IPCL_IS_NONSTR(connp))
27171 			return (EOPNOTSUPP);
27172 		/* FALLTHRU */
27173 	case TCPS_IDLE:
27174 		/*
27175 		 * We support quick connect, refer to comments in
27176 		 * tcp_connect_*()
27177 		 */
27178 		/* FALLTHRU */
27179 	case TCPS_BOUND:
27180 		/*
27181 		 * We must bump the generation before the operation start.
27182 		 * This is done to ensure that any upcall made later on sends
27183 		 * up the right generation to the socket.
27184 		 */
27185 		SOCK_CONNID_BUMP(tcp->tcp_connid);
27186 
27187 		if (tcp->tcp_family == AF_INET6) {
27188 			if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
27189 				return (tcp_connect_ipv6(tcp,
27190 				    &sin6->sin6_addr,
27191 				    sin6->sin6_port, sin6->sin6_flowinfo,
27192 				    sin6->__sin6_src_id, sin6->sin6_scope_id,
27193 				    cr, pid));
27194 			}
27195 			/*
27196 			 * Destination adress is mapped IPv6 address.
27197 			 * Source bound address should be unspecified or
27198 			 * IPv6 mapped address as well.
27199 			 */
27200 			if (!IN6_IS_ADDR_UNSPECIFIED(
27201 			    &tcp->tcp_bound_source_v6) &&
27202 			    !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) {
27203 				return (EADDRNOTAVAIL);
27204 			}
27205 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
27206 			dstport = sin6->sin6_port;
27207 			srcid = sin6->__sin6_src_id;
27208 		} else {
27209 			dstaddrp = &sin->sin_addr.s_addr;
27210 			dstport = sin->sin_port;
27211 			srcid = 0;
27212 		}
27213 
27214 		error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid, cr,
27215 		    pid);
27216 		break;
27217 	default:
27218 		return (-TOUTSTATE);
27219 	}
27220 	/*
27221 	 * Note: Code below is the "failure" case
27222 	 */
27223 connect_failed:
27224 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
27225 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
27226 	return (error);
27227 }
27228 
27229 int
27230 tcp_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa,
27231     socklen_t len, sock_connid_t *id, cred_t *cr)
27232 {
27233 	conn_t		*connp = (conn_t *)proto_handle;
27234 	tcp_t		*tcp = connp->conn_tcp;
27235 	squeue_t	*sqp = connp->conn_sqp;
27236 	int		error;
27237 
27238 	error = proto_verify_ip_addr(tcp->tcp_family, sa, len);
27239 	if (error != 0) {
27240 		return (error);
27241 	}
27242 
27243 	error = squeue_synch_enter(sqp, connp, 0);
27244 	if (error != 0) {
27245 		/* failed to enter */
27246 		return (ENOSR);
27247 	}
27248 
27249 	/*
27250 	 * TCP supports quick connect, so no need to do an implicit bind
27251 	 */
27252 	error = tcp_do_connect(connp, sa, len, cr, curproc->p_pid);
27253 	if (error == 0) {
27254 		*id = connp->conn_tcp->tcp_connid;
27255 	} else if (error < 0) {
27256 		if (error == -TOUTSTATE) {
27257 			switch (connp->conn_tcp->tcp_state) {
27258 			case TCPS_SYN_SENT:
27259 				error = EALREADY;
27260 				break;
27261 			case TCPS_ESTABLISHED:
27262 				error = EISCONN;
27263 				break;
27264 			case TCPS_LISTEN:
27265 				error = EOPNOTSUPP;
27266 				break;
27267 			default:
27268 				error = EINVAL;
27269 				break;
27270 			}
27271 		} else {
27272 			error = proto_tlitosyserr(-error);
27273 		}
27274 	}
27275 done:
27276 	squeue_synch_exit(sqp, connp);
27277 
27278 	return ((error == 0) ? EINPROGRESS : error);
27279 }
27280 
27281 /* ARGSUSED */
27282 sock_lower_handle_t
27283 tcp_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls,
27284     uint_t *smodep, int *errorp, int flags, cred_t *credp)
27285 {
27286 	conn_t		*connp;
27287 	boolean_t	isv6 = family == AF_INET6;
27288 	if (type != SOCK_STREAM || (family != AF_INET && family != AF_INET6) ||
27289 	    (proto != 0 && proto != IPPROTO_TCP)) {
27290 		*errorp = EPROTONOSUPPORT;
27291 		return (NULL);
27292 	}
27293 
27294 	connp = tcp_create_common(NULL, credp, isv6, B_TRUE, errorp);
27295 	if (connp == NULL) {
27296 		return (NULL);
27297 	}
27298 
27299 	/*
27300 	 * Put the ref for TCP. Ref for IP was already put
27301 	 * by ipcl_conn_create. Also Make the conn_t globally
27302 	 * visible to walkers
27303 	 */
27304 	mutex_enter(&connp->conn_lock);
27305 	CONN_INC_REF_LOCKED(connp);
27306 	ASSERT(connp->conn_ref == 2);
27307 	connp->conn_state_flags &= ~CONN_INCIPIENT;
27308 
27309 	connp->conn_flags |= IPCL_NONSTR;
27310 	mutex_exit(&connp->conn_lock);
27311 
27312 	ASSERT(errorp != NULL);
27313 	*errorp = 0;
27314 	*sock_downcalls = &sock_tcp_downcalls;
27315 	*smodep = SM_CONNREQUIRED | SM_EXDATA | SM_ACCEPTSUPP |
27316 	    SM_SENDFILESUPP;
27317 
27318 	return ((sock_lower_handle_t)connp);
27319 }
27320 
27321 /* ARGSUSED */
27322 void
27323 tcp_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle,
27324     sock_upcalls_t *sock_upcalls, int flags, cred_t *cr)
27325 {
27326 	conn_t *connp = (conn_t *)proto_handle;
27327 	struct sock_proto_props sopp;
27328 
27329 	sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT |
27330 	    SOCKOPT_MAXPSZ | SOCKOPT_MAXBLK | SOCKOPT_RCVTIMER |
27331 	    SOCKOPT_RCVTHRESH | SOCKOPT_MAXADDRLEN | SOCKOPT_MINPSZ;
27332 
27333 	sopp.sopp_rxhiwat = SOCKET_RECVHIWATER;
27334 	sopp.sopp_rxlowat = SOCKET_RECVLOWATER;
27335 	sopp.sopp_maxpsz = INFPSZ;
27336 	sopp.sopp_maxblk = INFPSZ;
27337 	sopp.sopp_rcvtimer = SOCKET_TIMER_INTERVAL;
27338 	sopp.sopp_rcvthresh = SOCKET_RECVHIWATER >> 3;
27339 	sopp.sopp_maxaddrlen = sizeof (sin6_t);
27340 	sopp.sopp_minpsz = (tcp_rinfo.mi_minpsz == 1) ? 0 :
27341 	    tcp_rinfo.mi_minpsz;
27342 
27343 	connp->conn_upcalls = sock_upcalls;
27344 	connp->conn_upper_handle = sock_handle;
27345 
27346 	(*sock_upcalls->su_set_proto_props)(sock_handle, &sopp);
27347 }
27348 
27349 /* ARGSUSED */
27350 int
27351 tcp_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr)
27352 {
27353 	conn_t *connp = (conn_t *)proto_handle;
27354 
27355 	tcp_close_common(connp, flags);
27356 
27357 	ip_free_helper_stream(connp);
27358 
27359 	/*
27360 	 * Drop IP's reference on the conn. This is the last reference
27361 	 * on the connp if the state was less than established. If the
27362 	 * connection has gone into timewait state, then we will have
27363 	 * one ref for the TCP and one more ref (total of two) for the
27364 	 * classifier connected hash list (a timewait connections stays
27365 	 * in connected hash till closed).
27366 	 *
27367 	 * We can't assert the references because there might be other
27368 	 * transient reference places because of some walkers or queued
27369 	 * packets in squeue for the timewait state.
27370 	 */
27371 	CONN_DEC_REF(connp);
27372 	return (0);
27373 }
27374 
27375 /* ARGSUSED */
27376 int
27377 tcp_sendmsg(sock_lower_handle_t proto_handle, mblk_t *mp, struct nmsghdr *msg,
27378     cred_t *cr)
27379 {
27380 	tcp_t		*tcp;
27381 	uint32_t	msize;
27382 	conn_t *connp = (conn_t *)proto_handle;
27383 	int32_t		tcpstate;
27384 
27385 	ASSERT(connp->conn_ref >= 2);
27386 
27387 	if (msg->msg_controllen != 0) {
27388 		return (EOPNOTSUPP);
27389 
27390 	}
27391 	switch (DB_TYPE(mp)) {
27392 	case M_DATA:
27393 		tcp = connp->conn_tcp;
27394 		ASSERT(tcp != NULL);
27395 
27396 		tcpstate = tcp->tcp_state;
27397 		if (tcpstate < TCPS_ESTABLISHED) {
27398 			freemsg(mp);
27399 			return (ENOTCONN);
27400 		} else if (tcpstate > TCPS_CLOSE_WAIT) {
27401 			freemsg(mp);
27402 			return (EPIPE);
27403 		}
27404 
27405 		msize = msgdsize(mp);
27406 
27407 		mutex_enter(&tcp->tcp_non_sq_lock);
27408 		tcp->tcp_squeue_bytes += msize;
27409 		/*
27410 		 * Squeue Flow Control
27411 		 */
27412 		if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) {
27413 			tcp_setqfull(tcp);
27414 		}
27415 		mutex_exit(&tcp->tcp_non_sq_lock);
27416 
27417 		/*
27418 		 * The application may pass in an address in the msghdr, but
27419 		 * we ignore the address on connection-oriented sockets.
27420 		 * Just like BSD this code does not generate an error for
27421 		 * TCP (a CONNREQUIRED socket) when sending to an address
27422 		 * passed in with sendto/sendmsg. Instead the data is
27423 		 * delivered on the connection as if no address had been
27424 		 * supplied.
27425 		 */
27426 		CONN_INC_REF(connp);
27427 
27428 		if (msg != NULL && msg->msg_flags & MSG_OOB) {
27429 			SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
27430 			    tcp_output_urgent, connp, tcp_squeue_flag,
27431 			    SQTAG_TCP_OUTPUT);
27432 		} else {
27433 			SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output,
27434 			    connp, tcp_squeue_flag, SQTAG_TCP_OUTPUT);
27435 		}
27436 
27437 		return (0);
27438 
27439 	default:
27440 		ASSERT(0);
27441 	}
27442 
27443 	freemsg(mp);
27444 	return (0);
27445 }
27446 
27447 /* ARGSUSED */
27448 void
27449 tcp_output_urgent(void *arg, mblk_t *mp, void *arg2)
27450 {
27451 	int len;
27452 	uint32_t msize;
27453 	conn_t *connp = (conn_t *)arg;
27454 	tcp_t *tcp = connp->conn_tcp;
27455 
27456 	msize = msgdsize(mp);
27457 
27458 	len = msize - 1;
27459 	if (len < 0) {
27460 		freemsg(mp);
27461 		return;
27462 	}
27463 
27464 	/*
27465 	 * Try to force urgent data out on the wire.
27466 	 * Even if we have unsent data this will
27467 	 * at least send the urgent flag.
27468 	 * XXX does not handle more flag correctly.
27469 	 */
27470 	len += tcp->tcp_unsent;
27471 	len += tcp->tcp_snxt;
27472 	tcp->tcp_urg = len;
27473 	tcp->tcp_valid_bits |= TCP_URG_VALID;
27474 
27475 	/* Bypass tcp protocol for fused tcp loopback */
27476 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
27477 		return;
27478 	tcp_wput_data(tcp, mp, B_TRUE);
27479 }
27480 
27481 /* ARGSUSED */
27482 int
27483 tcp_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr,
27484     socklen_t *addrlen, cred_t *cr)
27485 {
27486 	sin_t   *sin;
27487 	sin6_t  *sin6;
27488 	conn_t	*connp = (conn_t *)proto_handle;
27489 	tcp_t	*tcp = connp->conn_tcp;
27490 
27491 	ASSERT(tcp != NULL);
27492 	if (tcp->tcp_state < TCPS_SYN_RCVD)
27493 		return (ENOTCONN);
27494 
27495 	addr->sa_family = tcp->tcp_family;
27496 	switch (tcp->tcp_family) {
27497 	case AF_INET:
27498 		if (*addrlen < sizeof (sin_t))
27499 			return (EINVAL);
27500 
27501 		sin = (sin_t *)addr;
27502 		*sin = sin_null;
27503 		sin->sin_family = AF_INET;
27504 		if (tcp->tcp_ipversion == IPV4_VERSION) {
27505 			IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6,
27506 			    sin->sin_addr.s_addr);
27507 		}
27508 		sin->sin_port = tcp->tcp_fport;
27509 		*addrlen = sizeof (struct sockaddr_in);
27510 		break;
27511 	case AF_INET6:
27512 		sin6 = (sin6_t *)addr;
27513 		*sin6 = sin6_null;
27514 		sin6->sin6_family = AF_INET6;
27515 
27516 		if (*addrlen < sizeof (struct sockaddr_in6))
27517 			return (EINVAL);
27518 
27519 		if (tcp->tcp_ipversion == IPV6_VERSION) {
27520 			sin6->sin6_flowinfo = tcp->tcp_ip6h->ip6_vcf &
27521 			    ~IPV6_VERS_AND_FLOW_MASK;
27522 		}
27523 
27524 		sin6->sin6_addr = tcp->tcp_remote_v6;
27525 		sin6->sin6_port = tcp->tcp_fport;
27526 		*addrlen = sizeof (struct sockaddr_in6);
27527 		break;
27528 	}
27529 	return (0);
27530 }
27531 
27532 /* ARGSUSED */
27533 int
27534 tcp_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr,
27535     socklen_t *addrlenp, cred_t *cr)
27536 {
27537 	sin_t   *sin;
27538 	sin6_t  *sin6;
27539 	conn_t	*connp = (conn_t *)proto_handle;
27540 	tcp_t	*tcp = connp->conn_tcp;
27541 
27542 	switch (tcp->tcp_family) {
27543 	case AF_INET:
27544 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
27545 		if (*addrlenp < sizeof (sin_t))
27546 			return (EINVAL);
27547 		sin = (sin_t *)addr;
27548 		*sin = sin_null;
27549 		sin->sin_family = AF_INET;
27550 		*addrlenp = sizeof (sin_t);
27551 		if (tcp->tcp_state >= TCPS_BOUND) {
27552 			sin->sin_addr.s_addr =  tcp->tcp_ipha->ipha_src;
27553 			sin->sin_port = tcp->tcp_lport;
27554 		}
27555 		break;
27556 
27557 	case AF_INET6:
27558 		if (*addrlenp < sizeof (sin6_t))
27559 			return (EINVAL);
27560 		sin6 = (sin6_t *)addr;
27561 		*sin6 = sin6_null;
27562 		sin6->sin6_family = AF_INET6;
27563 		*addrlenp = sizeof (sin6_t);
27564 		if (tcp->tcp_state >= TCPS_BOUND) {
27565 			sin6->sin6_port = tcp->tcp_lport;
27566 			if (tcp->tcp_ipversion == IPV4_VERSION) {
27567 				IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
27568 				    &sin6->sin6_addr);
27569 			} else {
27570 				sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
27571 			}
27572 		}
27573 		break;
27574 	}
27575 	return (0);
27576 }
27577 
27578 /*
27579  * tcp_fallback
27580  *
27581  * A direct socket is falling back to using STREAMS. Hanging
27582  * off of the queue is a temporary tcp_t, which was created using
27583  * tcp_open(). The tcp_open() was called as part of the regular
27584  * sockfs create path, i.e., the SO_SOCKSTR flag is passed down,
27585  * and therefore the temporary tcp_t is marked to be a socket
27586  * (i.e., IPCL_SOCKET, tcp_issocket). So the optimizations
27587  * introduced by FireEngine will be used.
27588  *
27589  * The tcp_t associated with the socket falling back will
27590  * still be marked as a socket, although the direct socket flag
27591  * (IPCL_NONSTR) is removed. A fall back to true TPI semantics
27592  * will not take place until a _SIOCSOCKFALLBACK ioctl is issued.
27593  *
27594  * If the above mentioned behavior, i.e., the tmp tcp_t is created
27595  * as a STREAMS/TPI endpoint, then we will need to do more work here.
27596  * Such as inserting the direct socket into the acceptor hash.
27597  */
27598 void
27599 tcp_fallback(sock_lower_handle_t proto_handle, queue_t *q,
27600     boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb)
27601 {
27602 	tcp_t			*tcp, *eager;
27603 	conn_t 			*connp = (conn_t *)proto_handle;
27604 	int			error;
27605 	struct T_capability_ack tca;
27606 	struct sockaddr_in6	laddr, faddr;
27607 	socklen_t 		laddrlen, faddrlen;
27608 	short			opts;
27609 	struct stroptions	*stropt;
27610 	mblk_t			*stropt_mp;
27611 	mblk_t			*mp;
27612 	mblk_t			*conn_ind_head = NULL;
27613 	mblk_t			*conn_ind_tail = NULL;
27614 	mblk_t			*ordrel_mp;
27615 	mblk_t			*fused_sigurp_mp;
27616 
27617 	tcp = connp->conn_tcp;
27618 	/*
27619 	 * No support for acceptor fallback
27620 	 */
27621 	ASSERT(q->q_qinfo != &tcp_acceptor_rinit);
27622 
27623 	stropt_mp = allocb_wait(sizeof (*stropt), BPRI_HI, STR_NOSIG, NULL);
27624 
27625 	/* Pre-allocate the T_ordrel_ind mblk. */
27626 	ASSERT(tcp->tcp_ordrel_mp == NULL);
27627 	ordrel_mp = allocb_wait(sizeof (struct T_ordrel_ind), BPRI_HI,
27628 	    STR_NOSIG, NULL);
27629 	ordrel_mp->b_datap->db_type = M_PROTO;
27630 	((struct T_ordrel_ind *)ordrel_mp->b_rptr)->PRIM_type = T_ORDREL_IND;
27631 	ordrel_mp->b_wptr += sizeof (struct T_ordrel_ind);
27632 
27633 	/* Pre-allocate the M_PCSIG anyway */
27634 	fused_sigurp_mp = allocb_wait(1, BPRI_HI, STR_NOSIG, NULL);
27635 
27636 	/*
27637 	 * Enter the squeue so that no new packets can come in
27638 	 */
27639 	error = squeue_synch_enter(connp->conn_sqp, connp, 0);
27640 	if (error != 0) {
27641 		/* failed to enter, free all the pre-allocated messages. */
27642 		freeb(stropt_mp);
27643 		freeb(ordrel_mp);
27644 		freeb(fused_sigurp_mp);
27645 		return;
27646 	}
27647 
27648 	/* Disable I/OAT during fallback */
27649 	tcp->tcp_sodirect = NULL;
27650 
27651 	connp->conn_dev = (dev_t)RD(q)->q_ptr;
27652 	connp->conn_minor_arena = WR(q)->q_ptr;
27653 
27654 	RD(q)->q_ptr = WR(q)->q_ptr = connp;
27655 
27656 	connp->conn_tcp->tcp_rq = connp->conn_rq = RD(q);
27657 	connp->conn_tcp->tcp_wq = connp->conn_wq = WR(q);
27658 
27659 	WR(q)->q_qinfo = &tcp_sock_winit;
27660 
27661 	if (!direct_sockfs)
27662 		tcp_disable_direct_sockfs(tcp);
27663 
27664 	/*
27665 	 * free the helper stream
27666 	 */
27667 	ip_free_helper_stream(connp);
27668 
27669 	/*
27670 	 * Notify the STREAM head about options
27671 	 */
27672 	DB_TYPE(stropt_mp) = M_SETOPTS;
27673 	stropt = (struct stroptions *)stropt_mp->b_rptr;
27674 	stropt_mp->b_wptr += sizeof (struct stroptions);
27675 	stropt = (struct stroptions *)stropt_mp->b_rptr;
27676 	stropt->so_flags |= SO_HIWAT | SO_WROFF | SO_MAXBLK;
27677 
27678 	stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 :
27679 	    tcp->tcp_tcps->tcps_wroff_xtra);
27680 	if (tcp->tcp_snd_sack_ok)
27681 		stropt->so_wroff += TCPOPT_MAX_SACK_LEN;
27682 	stropt->so_hiwat = tcp->tcp_fused ?
27683 	    tcp_fuse_set_rcv_hiwat(tcp, tcp->tcp_recv_hiwater) :
27684 	    MAX(tcp->tcp_recv_hiwater, tcp->tcp_tcps->tcps_sth_rcv_hiwat);
27685 	stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
27686 
27687 	putnext(RD(q), stropt_mp);
27688 
27689 	/*
27690 	 * Collect the information needed to sync with the sonode
27691 	 */
27692 	tcp_do_capability_ack(tcp, &tca, TC1_INFO|TC1_ACCEPTOR_ID);
27693 
27694 	laddrlen = faddrlen = sizeof (sin6_t);
27695 	(void) tcp_getsockname(proto_handle, (struct sockaddr *)&laddr,
27696 	    &laddrlen, CRED());
27697 	error = tcp_getpeername(proto_handle, (struct sockaddr *)&faddr,
27698 	    &faddrlen, CRED());
27699 	if (error != 0)
27700 		faddrlen = 0;
27701 
27702 	opts = 0;
27703 	if (tcp->tcp_oobinline)
27704 		opts |= SO_OOBINLINE;
27705 	if (tcp->tcp_dontroute)
27706 		opts |= SO_DONTROUTE;
27707 
27708 	/*
27709 	 * Notify the socket that the protocol is now quiescent,
27710 	 * and it's therefore safe move data from the socket
27711 	 * to the stream head.
27712 	 */
27713 	(*quiesced_cb)(connp->conn_upper_handle, q, &tca,
27714 	    (struct sockaddr *)&laddr, laddrlen,
27715 	    (struct sockaddr *)&faddr, faddrlen, opts);
27716 
27717 	while ((mp = tcp->tcp_rcv_list) != NULL) {
27718 		tcp->tcp_rcv_list = mp->b_next;
27719 		mp->b_next = NULL;
27720 		putnext(q, mp);
27721 	}
27722 	tcp->tcp_rcv_last_head = NULL;
27723 	tcp->tcp_rcv_last_tail = NULL;
27724 	tcp->tcp_rcv_cnt = 0;
27725 
27726 	/*
27727 	 * No longer a direct socket
27728 	 */
27729 	connp->conn_flags &= ~IPCL_NONSTR;
27730 
27731 	tcp->tcp_ordrel_mp = ordrel_mp;
27732 
27733 	if (tcp->tcp_fused) {
27734 		ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
27735 		tcp->tcp_fused_sigurg_mp = fused_sigurp_mp;
27736 	} else {
27737 		freeb(fused_sigurp_mp);
27738 	}
27739 
27740 	/*
27741 	 * Send T_CONN_IND messages for all ESTABLISHED connections.
27742 	 */
27743 	mutex_enter(&tcp->tcp_eager_lock);
27744 	for (eager = tcp->tcp_eager_next_q; eager != NULL;
27745 	    eager = eager->tcp_eager_next_q) {
27746 		mp = eager->tcp_conn.tcp_eager_conn_ind;
27747 
27748 		eager->tcp_conn.tcp_eager_conn_ind = NULL;
27749 		ASSERT(mp != NULL);
27750 		/*
27751 		 * TLI/XTI applications will get confused by
27752 		 * sending eager as an option since it violates
27753 		 * the option semantics. So remove the eager as
27754 		 * option since TLI/XTI app doesn't need it anyway.
27755 		 */
27756 		if (!TCP_IS_SOCKET(tcp)) {
27757 			struct T_conn_ind *conn_ind;
27758 
27759 			conn_ind = (struct T_conn_ind *)mp->b_rptr;
27760 			conn_ind->OPT_length = 0;
27761 			conn_ind->OPT_offset = 0;
27762 		}
27763 		if (conn_ind_head == NULL) {
27764 			conn_ind_head = mp;
27765 		} else {
27766 			conn_ind_tail->b_next = mp;
27767 		}
27768 		conn_ind_tail = mp;
27769 	}
27770 	mutex_exit(&tcp->tcp_eager_lock);
27771 
27772 	mp = conn_ind_head;
27773 	while (mp != NULL) {
27774 		mblk_t *nmp = mp->b_next;
27775 		mp->b_next = NULL;
27776 
27777 		putnext(tcp->tcp_rq, mp);
27778 		mp = nmp;
27779 	}
27780 
27781 	/*
27782 	 * There should be atleast two ref's (IP + TCP)
27783 	 */
27784 	ASSERT(connp->conn_ref >= 2);
27785 	squeue_synch_exit(connp->conn_sqp, connp);
27786 }
27787 
27788 /* ARGSUSED */
27789 static void
27790 tcp_shutdown_output(void *arg, mblk_t *mp, void *arg2)
27791 {
27792 	conn_t 	*connp = (conn_t *)arg;
27793 	tcp_t	*tcp = connp->conn_tcp;
27794 
27795 	freemsg(mp);
27796 
27797 	if (tcp->tcp_fused)
27798 		tcp_unfuse(tcp);
27799 
27800 	if (tcp_xmit_end(tcp) != 0) {
27801 		/*
27802 		 * We were crossing FINs and got a reset from
27803 		 * the other side. Just ignore it.
27804 		 */
27805 		if (tcp->tcp_debug) {
27806 			(void) strlog(TCP_MOD_ID, 0, 1,
27807 			    SL_ERROR|SL_TRACE,
27808 			    "tcp_shutdown_output() out of state %s",
27809 			    tcp_display(tcp, NULL, DISP_ADDR_AND_PORT));
27810 		}
27811 	}
27812 }
27813 
27814 /* ARGSUSED */
27815 int
27816 tcp_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr)
27817 {
27818 	conn_t  *connp = (conn_t *)proto_handle;
27819 	tcp_t   *tcp = connp->conn_tcp;
27820 
27821 	/*
27822 	 * X/Open requires that we check the connected state.
27823 	 */
27824 	if (tcp->tcp_state < TCPS_SYN_SENT)
27825 		return (ENOTCONN);
27826 
27827 	/* shutdown the send side */
27828 	if (how != SHUT_RD) {
27829 		mblk_t *bp;
27830 
27831 		bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
27832 		CONN_INC_REF(connp);
27833 		SQUEUE_ENTER_ONE(connp->conn_sqp, bp, tcp_shutdown_output,
27834 		    connp, SQ_NODRAIN, SQTAG_TCP_SHUTDOWN_OUTPUT);
27835 
27836 		(*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
27837 		    SOCK_OPCTL_SHUT_SEND, 0);
27838 	}
27839 
27840 	/* shutdown the recv side */
27841 	if (how != SHUT_WR)
27842 		(*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
27843 		    SOCK_OPCTL_SHUT_RECV, 0);
27844 
27845 	return (0);
27846 }
27847 
27848 /*
27849  * SOP_LISTEN() calls into tcp_listen().
27850  */
27851 /* ARGSUSED */
27852 int
27853 tcp_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr)
27854 {
27855 	conn_t	*connp = (conn_t *)proto_handle;
27856 	int 	error;
27857 	squeue_t *sqp = connp->conn_sqp;
27858 
27859 	error = squeue_synch_enter(sqp, connp, 0);
27860 	if (error != 0) {
27861 		/* failed to enter */
27862 		return (ENOBUFS);
27863 	}
27864 
27865 	error = tcp_do_listen(connp, backlog, cr);
27866 	if (error == 0) {
27867 		(*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
27868 		    SOCK_OPCTL_ENAB_ACCEPT, (uintptr_t)backlog);
27869 	} else if (error < 0) {
27870 		if (error == -TOUTSTATE)
27871 			error = EINVAL;
27872 		else
27873 			error = proto_tlitosyserr(-error);
27874 	}
27875 	squeue_synch_exit(sqp, connp);
27876 	return (error);
27877 }
27878 
27879 static int
27880 tcp_do_listen(conn_t *connp, int backlog, cred_t *cr)
27881 {
27882 	tcp_t		*tcp = connp->conn_tcp;
27883 	sin_t		*sin;
27884 	sin6_t  	*sin6;
27885 	int		error = 0;
27886 	tcp_stack_t	*tcps = tcp->tcp_tcps;
27887 
27888 	if (tcp->tcp_state >= TCPS_BOUND) {
27889 		if ((tcp->tcp_state == TCPS_BOUND ||
27890 		    tcp->tcp_state == TCPS_LISTEN) && backlog > 0) {
27891 			/*
27892 			 * Handle listen() increasing backlog.
27893 			 * This is more "liberal" then what the TPI spec
27894 			 * requires but is needed to avoid a t_unbind
27895 			 * when handling listen() since the port number
27896 			 * might be "stolen" between the unbind and bind.
27897 			 */
27898 			goto do_listen;
27899 		}
27900 		if (tcp->tcp_debug) {
27901 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
27902 			    "tcp_listen: bad state, %d", tcp->tcp_state);
27903 		}
27904 		return (-TOUTSTATE);
27905 	} else {
27906 		int32_t len;
27907 		sin6_t	addr;
27908 
27909 		/* Do an implicit bind: Request for a generic port. */
27910 		if (tcp->tcp_family == AF_INET) {
27911 			len = sizeof (sin_t);
27912 			sin = (sin_t *)&addr;
27913 			*sin = sin_null;
27914 			sin->sin_family = AF_INET;
27915 			tcp->tcp_ipversion = IPV4_VERSION;
27916 		} else {
27917 			ASSERT(tcp->tcp_family == AF_INET6);
27918 			len = sizeof (sin6_t);
27919 			sin6 = (sin6_t *)&addr;
27920 			*sin6 = sin6_null;
27921 			sin6->sin6_family = AF_INET6;
27922 			tcp->tcp_ipversion = IPV6_VERSION;
27923 		}
27924 
27925 		error = tcp_bind_check(connp, (struct sockaddr *)&addr, len,
27926 		    cr, B_FALSE);
27927 		if (error)
27928 			return (error);
27929 		/* Fall through and do the fanout insertion */
27930 	}
27931 
27932 do_listen:
27933 	ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN);
27934 	tcp->tcp_conn_req_max = backlog;
27935 	if (tcp->tcp_conn_req_max) {
27936 		if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min)
27937 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_min;
27938 		if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q)
27939 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q;
27940 		/*
27941 		 * If this is a listener, do not reset the eager list
27942 		 * and other stuffs.  Note that we don't check if the
27943 		 * existing eager list meets the new tcp_conn_req_max
27944 		 * requirement.
27945 		 */
27946 		if (tcp->tcp_state != TCPS_LISTEN) {
27947 			tcp->tcp_state = TCPS_LISTEN;
27948 			/* Initialize the chain. Don't need the eager_lock */
27949 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
27950 			tcp->tcp_eager_next_drop_q0 = tcp;
27951 			tcp->tcp_eager_prev_drop_q0 = tcp;
27952 			tcp->tcp_second_ctimer_threshold =
27953 			    tcps->tcps_ip_abort_linterval;
27954 		}
27955 	}
27956 
27957 	/*
27958 	 * We can call ip_bind directly, the processing continues
27959 	 * in tcp_post_ip_bind().
27960 	 *
27961 	 * We need to make sure that the conn_recv is set to a non-null
27962 	 * value before we insert the conn into the classifier table.
27963 	 * This is to avoid a race with an incoming packet which does an
27964 	 * ipcl_classify().
27965 	 */
27966 	connp->conn_recv = tcp_conn_request;
27967 	if (tcp->tcp_family == AF_INET) {
27968 		error = ip_proto_bind_laddr_v4(connp, NULL,
27969 		    IPPROTO_TCP, tcp->tcp_bound_source, tcp->tcp_lport, B_TRUE);
27970 	} else {
27971 		error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP,
27972 		    &tcp->tcp_bound_source_v6, tcp->tcp_lport, B_TRUE);
27973 	}
27974 	return (tcp_post_ip_bind(tcp, NULL, error, NULL, 0));
27975 }
27976 
27977 void
27978 tcp_clr_flowctrl(sock_lower_handle_t proto_handle)
27979 {
27980 	conn_t  *connp = (conn_t *)proto_handle;
27981 	tcp_t	*tcp = connp->conn_tcp;
27982 	tcp_stack_t	*tcps = tcp->tcp_tcps;
27983 	uint_t thwin;
27984 
27985 	(void) squeue_synch_enter(connp->conn_sqp, connp, 0);
27986 
27987 	/* Flow control condition has been removed. */
27988 	tcp->tcp_rwnd = tcp->tcp_recv_hiwater;
27989 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
27990 	    << tcp->tcp_rcv_ws;
27991 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
27992 	/*
27993 	 * Send back a window update immediately if TCP is above
27994 	 * ESTABLISHED state and the increase of the rcv window
27995 	 * that the other side knows is at least 1 MSS after flow
27996 	 * control is lifted.
27997 	 */
27998 	if (tcp->tcp_state >= TCPS_ESTABLISHED &&
27999 	    (tcp->tcp_recv_hiwater - thwin >= tcp->tcp_mss)) {
28000 		tcp_xmit_ctl(NULL, tcp,
28001 		    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
28002 		    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
28003 		BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
28004 	}
28005 
28006 	squeue_synch_exit(connp->conn_sqp, connp);
28007 }
28008 
28009 /* ARGSUSED */
28010 int
28011 tcp_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg,
28012     int mode, int32_t *rvalp, cred_t *cr)
28013 {
28014 	conn_t  	*connp = (conn_t *)proto_handle;
28015 	int		error;
28016 
28017 	switch (cmd) {
28018 		case ND_SET:
28019 		case ND_GET:
28020 		case TCP_IOC_DEFAULT_Q:
28021 		case _SIOCSOCKFALLBACK:
28022 		case TCP_IOC_ABORT_CONN:
28023 		case TI_GETPEERNAME:
28024 		case TI_GETMYNAME:
28025 			ip1dbg(("tcp_ioctl: cmd 0x%x on non sreams socket",
28026 			    cmd));
28027 			error = EINVAL;
28028 			break;
28029 		default:
28030 			/*
28031 			 * Pass on to IP using helper stream
28032 			 */
28033 			error = ldi_ioctl(connp->conn_helper_info->iphs_handle,
28034 			    cmd, arg, mode, cr, rvalp);
28035 			break;
28036 	}
28037 	return (error);
28038 }
28039 
28040 sock_downcalls_t sock_tcp_downcalls = {
28041 	tcp_activate,
28042 	tcp_accept,
28043 	tcp_bind,
28044 	tcp_listen,
28045 	tcp_connect,
28046 	tcp_getpeername,
28047 	tcp_getsockname,
28048 	tcp_getsockopt,
28049 	tcp_setsockopt,
28050 	tcp_sendmsg,
28051 	NULL,
28052 	NULL,
28053 	NULL,
28054 	tcp_shutdown,
28055 	tcp_clr_flowctrl,
28056 	tcp_ioctl,
28057 	tcp_close,
28058 };
28059