xref: /illumos-gate/usr/src/uts/common/inet/tcp/tcp.c (revision a0e56b0eb1fdc159ff8348ca0e77d884bb7d126b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #pragma ident	"%Z%%M%	%I%	%E% SMI"
29 const char tcp_version[] = "%Z%%M%	%I%	%E% SMI";
30 
31 
32 #include <sys/types.h>
33 #include <sys/stream.h>
34 #include <sys/strsun.h>
35 #include <sys/strsubr.h>
36 #include <sys/stropts.h>
37 #include <sys/strlog.h>
38 #include <sys/strsun.h>
39 #define	_SUN_TPI_VERSION 2
40 #include <sys/tihdr.h>
41 #include <sys/timod.h>
42 #include <sys/ddi.h>
43 #include <sys/sunddi.h>
44 #include <sys/suntpi.h>
45 #include <sys/xti_inet.h>
46 #include <sys/cmn_err.h>
47 #include <sys/debug.h>
48 #include <sys/vtrace.h>
49 #include <sys/kmem.h>
50 #include <sys/ethernet.h>
51 #include <sys/cpuvar.h>
52 #include <sys/dlpi.h>
53 #include <sys/multidata.h>
54 #include <sys/multidata_impl.h>
55 #include <sys/pattr.h>
56 #include <sys/policy.h>
57 #include <sys/priv.h>
58 #include <sys/zone.h>
59 
60 #include <sys/errno.h>
61 #include <sys/signal.h>
62 #include <sys/socket.h>
63 #include <sys/sockio.h>
64 #include <sys/isa_defs.h>
65 #include <sys/md5.h>
66 #include <sys/random.h>
67 #include <netinet/in.h>
68 #include <netinet/tcp.h>
69 #include <netinet/ip6.h>
70 #include <netinet/icmp6.h>
71 #include <net/if.h>
72 #include <net/route.h>
73 #include <inet/ipsec_impl.h>
74 
75 #include <inet/common.h>
76 #include <inet/ip.h>
77 #include <inet/ip_impl.h>
78 #include <inet/ip6.h>
79 #include <inet/ip_ndp.h>
80 #include <inet/mi.h>
81 #include <inet/mib2.h>
82 #include <inet/nd.h>
83 #include <inet/optcom.h>
84 #include <inet/snmpcom.h>
85 #include <inet/kstatcom.h>
86 #include <inet/tcp.h>
87 #include <inet/tcp_impl.h>
88 #include <net/pfkeyv2.h>
89 #include <inet/ipsec_info.h>
90 #include <inet/ipdrop.h>
91 #include <inet/tcp_trace.h>
92 
93 #include <inet/ipclassifier.h>
94 #include <inet/ip_ire.h>
95 #include <inet/ip_ftable.h>
96 #include <inet/ip_if.h>
97 #include <inet/ipp_common.h>
98 #include <sys/squeue.h>
99 #include <inet/kssl/ksslapi.h>
100 #include <sys/tsol/label.h>
101 #include <sys/tsol/tnet.h>
102 #include <sys/sdt.h>
103 #include <rpc/pmap_prot.h>
104 
105 /*
106  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
107  *
108  * (Read the detailed design doc in PSARC case directory)
109  *
110  * The entire tcp state is contained in tcp_t and conn_t structure
111  * which are allocated in tandem using ipcl_conn_create() and passing
112  * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect
113  * the references on the tcp_t. The tcp_t structure is never compressed
114  * and packets always land on the correct TCP perimeter from the time
115  * eager is created till the time tcp_t dies (as such the old mentat
116  * TCP global queue is not used for detached state and no IPSEC checking
117  * is required). The global queue is still allocated to send out resets
118  * for connection which have no listeners and IP directly calls
119  * tcp_xmit_listeners_reset() which does any policy check.
120  *
121  * Protection and Synchronisation mechanism:
122  *
123  * The tcp data structure does not use any kind of lock for protecting
124  * its state but instead uses 'squeues' for mutual exclusion from various
125  * read and write side threads. To access a tcp member, the thread should
126  * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or
127  * squeue_fill). Since the squeues allow a direct function call, caller
128  * can pass any tcp function having prototype of edesc_t as argument
129  * (different from traditional STREAMs model where packets come in only
130  * designated entry points). The list of functions that can be directly
131  * called via squeue are listed before the usual function prototype.
132  *
133  * Referencing:
134  *
135  * TCP is MT-Hot and we use a reference based scheme to make sure that the
136  * tcp structure doesn't disappear when its needed. When the application
137  * creates an outgoing connection or accepts an incoming connection, we
138  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
139  * The IP reference is just a symbolic reference since ip_tcpclose()
140  * looks at tcp structure after tcp_close_output() returns which could
141  * have dropped the last TCP reference. So as long as the connection is
142  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
143  * conn_t. The classifier puts its own reference when the connection is
144  * inserted in listen or connected hash. Anytime a thread needs to enter
145  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
146  * on write side or by doing a classify on read side and then puts a
147  * reference on the conn before doing squeue_enter/tryenter/fill. For
148  * read side, the classifier itself puts the reference under fanout lock
149  * to make sure that tcp can't disappear before it gets processed. The
150  * squeue will drop this reference automatically so the called function
151  * doesn't have to do a DEC_REF.
152  *
153  * Opening a new connection:
154  *
155  * The outgoing connection open is pretty simple. ip_tcpopen() does the
156  * work in creating the conn/tcp structure and initializing it. The
157  * squeue assignment is done based on the CPU the application
158  * is running on. So for outbound connections, processing is always done
159  * on application CPU which might be different from the incoming CPU
160  * being interrupted by the NIC. An optimal way would be to figure out
161  * the NIC <-> CPU binding at listen time, and assign the outgoing
162  * connection to the squeue attached to the CPU that will be interrupted
163  * for incoming packets (we know the NIC based on the bind IP address).
164  * This might seem like a problem if more data is going out but the
165  * fact is that in most cases the transmit is ACK driven transmit where
166  * the outgoing data normally sits on TCP's xmit queue waiting to be
167  * transmitted.
168  *
169  * Accepting a connection:
170  *
171  * This is a more interesting case because of various races involved in
172  * establishing a eager in its own perimeter. Read the meta comment on
173  * top of tcp_conn_request(). But briefly, the squeue is picked by
174  * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU.
175  *
176  * Closing a connection:
177  *
178  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
179  * via squeue to do the close and mark the tcp as detached if the connection
180  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
181  * reference but tcp_close() drop IP's reference always. So if tcp was
182  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
183  * and 1 because it is in classifier's connected hash. This is the condition
184  * we use to determine that its OK to clean up the tcp outside of squeue
185  * when time wait expires (check the ref under fanout and conn_lock and
186  * if it is 2, remove it from fanout hash and kill it).
187  *
188  * Although close just drops the necessary references and marks the
189  * tcp_detached state, tcp_close needs to know the tcp_detached has been
190  * set (under squeue) before letting the STREAM go away (because a
191  * inbound packet might attempt to go up the STREAM while the close
192  * has happened and tcp_detached is not set). So a special lock and
193  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
194  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
195  * tcp_detached.
196  *
197  * Special provisions and fast paths:
198  *
199  * We make special provision for (AF_INET, SOCK_STREAM) sockets which
200  * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP
201  * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles
202  * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY
203  * check to send packets directly to tcp_rput_data via squeue. Everyone
204  * else comes through tcp_input() on the read side.
205  *
206  * We also make special provisions for sockfs by marking tcp_issocket
207  * whenever we have only sockfs on top of TCP. This allows us to skip
208  * putting the tcp in acceptor hash since a sockfs listener can never
209  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
210  * since eager has already been allocated and the accept now happens
211  * on acceptor STREAM. There is a big blob of comment on top of
212  * tcp_conn_request explaining the new accept. When socket is POP'd,
213  * sockfs sends us an ioctl to mark the fact and we go back to old
214  * behaviour. Once tcp_issocket is unset, its never set for the
215  * life of that connection.
216  *
217  * IPsec notes :
218  *
219  * Since a packet is always executed on the correct TCP perimeter
220  * all IPsec processing is defered to IP including checking new
221  * connections and setting IPSEC policies for new connection. The
222  * only exception is tcp_xmit_listeners_reset() which is called
223  * directly from IP and needs to policy check to see if TH_RST
224  * can be sent out.
225  */
226 
227 extern major_t TCP6_MAJ;
228 
229 /*
230  * Values for squeue switch:
231  * 1: squeue_enter_nodrain
232  * 2: squeue_enter
233  * 3: squeue_fill
234  */
235 int tcp_squeue_close = 2;
236 int tcp_squeue_wput = 2;
237 
238 squeue_func_t tcp_squeue_close_proc;
239 squeue_func_t tcp_squeue_wput_proc;
240 
241 /*
242  * This controls how tiny a write must be before we try to copy it
243  * into the the mblk on the tail of the transmit queue.  Not much
244  * speedup is observed for values larger than sixteen.  Zero will
245  * disable the optimisation.
246  */
247 int tcp_tx_pull_len = 16;
248 
249 /*
250  * TCP Statistics.
251  *
252  * How TCP statistics work.
253  *
254  * There are two types of statistics invoked by two macros.
255  *
256  * TCP_STAT(name) does non-atomic increment of a named stat counter. It is
257  * supposed to be used in non MT-hot paths of the code.
258  *
259  * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is
260  * supposed to be used for DEBUG purposes and may be used on a hot path.
261  *
262  * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat
263  * (use "kstat tcp" to get them).
264  *
265  * There is also additional debugging facility that marks tcp_clean_death()
266  * instances and saves them in tcp_t structure. It is triggered by
267  * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for
268  * tcp_clean_death() calls that counts the number of times each tag was hit. It
269  * is triggered by TCP_CLD_COUNTERS define.
270  *
271  * How to add new counters.
272  *
273  * 1) Add a field in the tcp_stat structure describing your counter.
274  * 2) Add a line in tcp_statistics with the name of the counter.
275  *
276  *    IMPORTANT!! - make sure that both are in sync !!
277  * 3) Use either TCP_STAT or TCP_DBGSTAT with the name.
278  *
279  * Please avoid using private counters which are not kstat-exported.
280  *
281  * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances
282  * in tcp_t structure.
283  *
284  * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags.
285  */
286 
287 #ifndef TCP_DEBUG_COUNTER
288 #ifdef DEBUG
289 #define	TCP_DEBUG_COUNTER 1
290 #else
291 #define	TCP_DEBUG_COUNTER 0
292 #endif
293 #endif
294 
295 #define	TCP_CLD_COUNTERS 0
296 
297 #define	TCP_TAG_CLEAN_DEATH 1
298 #define	TCP_MAX_CLEAN_DEATH_TAG 32
299 
300 #ifdef lint
301 static int _lint_dummy_;
302 #endif
303 
304 #if TCP_CLD_COUNTERS
305 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG];
306 #define	TCP_CLD_STAT(x) tcp_clean_death_stat[x]++
307 #elif defined(lint)
308 #define	TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0);
309 #else
310 #define	TCP_CLD_STAT(x)
311 #endif
312 
313 #if TCP_DEBUG_COUNTER
314 #define	TCP_DBGSTAT(x) atomic_add_64(&(tcp_statistics.x.value.ui64), 1)
315 #elif defined(lint)
316 #define	TCP_DBGSTAT(x) ASSERT(_lint_dummy_ == 0);
317 #else
318 #define	TCP_DBGSTAT(x)
319 #endif
320 
321 tcp_stat_t tcp_statistics = {
322 	{ "tcp_time_wait",		KSTAT_DATA_UINT64 },
323 	{ "tcp_time_wait_syn",		KSTAT_DATA_UINT64 },
324 	{ "tcp_time_wait_success",	KSTAT_DATA_UINT64 },
325 	{ "tcp_time_wait_fail",		KSTAT_DATA_UINT64 },
326 	{ "tcp_reinput_syn",		KSTAT_DATA_UINT64 },
327 	{ "tcp_ip_output",		KSTAT_DATA_UINT64 },
328 	{ "tcp_detach_non_time_wait",	KSTAT_DATA_UINT64 },
329 	{ "tcp_detach_time_wait",	KSTAT_DATA_UINT64 },
330 	{ "tcp_time_wait_reap",		KSTAT_DATA_UINT64 },
331 	{ "tcp_clean_death_nondetached",	KSTAT_DATA_UINT64 },
332 	{ "tcp_reinit_calls",		KSTAT_DATA_UINT64 },
333 	{ "tcp_eager_err1",		KSTAT_DATA_UINT64 },
334 	{ "tcp_eager_err2",		KSTAT_DATA_UINT64 },
335 	{ "tcp_eager_blowoff_calls",	KSTAT_DATA_UINT64 },
336 	{ "tcp_eager_blowoff_q",	KSTAT_DATA_UINT64 },
337 	{ "tcp_eager_blowoff_q0",	KSTAT_DATA_UINT64 },
338 	{ "tcp_not_hard_bound",		KSTAT_DATA_UINT64 },
339 	{ "tcp_no_listener",		KSTAT_DATA_UINT64 },
340 	{ "tcp_found_eager",		KSTAT_DATA_UINT64 },
341 	{ "tcp_wrong_queue",		KSTAT_DATA_UINT64 },
342 	{ "tcp_found_eager_binding1",	KSTAT_DATA_UINT64 },
343 	{ "tcp_found_eager_bound1",	KSTAT_DATA_UINT64 },
344 	{ "tcp_eager_has_listener1",	KSTAT_DATA_UINT64 },
345 	{ "tcp_open_alloc",		KSTAT_DATA_UINT64 },
346 	{ "tcp_open_detached_alloc",	KSTAT_DATA_UINT64 },
347 	{ "tcp_rput_time_wait",		KSTAT_DATA_UINT64 },
348 	{ "tcp_listendrop",		KSTAT_DATA_UINT64 },
349 	{ "tcp_listendropq0",		KSTAT_DATA_UINT64 },
350 	{ "tcp_wrong_rq",		KSTAT_DATA_UINT64 },
351 	{ "tcp_rsrv_calls",		KSTAT_DATA_UINT64 },
352 	{ "tcp_eagerfree2",		KSTAT_DATA_UINT64 },
353 	{ "tcp_eagerfree3",		KSTAT_DATA_UINT64 },
354 	{ "tcp_eagerfree4",		KSTAT_DATA_UINT64 },
355 	{ "tcp_eagerfree5",		KSTAT_DATA_UINT64 },
356 	{ "tcp_timewait_syn_fail",	KSTAT_DATA_UINT64 },
357 	{ "tcp_listen_badflags",	KSTAT_DATA_UINT64 },
358 	{ "tcp_timeout_calls",		KSTAT_DATA_UINT64 },
359 	{ "tcp_timeout_cached_alloc",	KSTAT_DATA_UINT64 },
360 	{ "tcp_timeout_cancel_reqs",	KSTAT_DATA_UINT64 },
361 	{ "tcp_timeout_canceled",	KSTAT_DATA_UINT64 },
362 	{ "tcp_timermp_alloced",	KSTAT_DATA_UINT64 },
363 	{ "tcp_timermp_freed",		KSTAT_DATA_UINT64 },
364 	{ "tcp_timermp_allocfail",	KSTAT_DATA_UINT64 },
365 	{ "tcp_timermp_allocdblfail",	KSTAT_DATA_UINT64 },
366 	{ "tcp_push_timer_cnt",		KSTAT_DATA_UINT64 },
367 	{ "tcp_ack_timer_cnt",		KSTAT_DATA_UINT64 },
368 	{ "tcp_ire_null1",		KSTAT_DATA_UINT64 },
369 	{ "tcp_ire_null",		KSTAT_DATA_UINT64 },
370 	{ "tcp_ip_send",		KSTAT_DATA_UINT64 },
371 	{ "tcp_ip_ire_send",		KSTAT_DATA_UINT64 },
372 	{ "tcp_wsrv_called",		KSTAT_DATA_UINT64 },
373 	{ "tcp_flwctl_on",		KSTAT_DATA_UINT64 },
374 	{ "tcp_timer_fire_early",	KSTAT_DATA_UINT64 },
375 	{ "tcp_timer_fire_miss",	KSTAT_DATA_UINT64 },
376 	{ "tcp_freelist_cleanup",	KSTAT_DATA_UINT64 },
377 	{ "tcp_rput_v6_error",		KSTAT_DATA_UINT64 },
378 	{ "tcp_out_sw_cksum",		KSTAT_DATA_UINT64 },
379 	{ "tcp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
380 	{ "tcp_zcopy_on",		KSTAT_DATA_UINT64 },
381 	{ "tcp_zcopy_off",		KSTAT_DATA_UINT64 },
382 	{ "tcp_zcopy_backoff",		KSTAT_DATA_UINT64 },
383 	{ "tcp_zcopy_disable",		KSTAT_DATA_UINT64 },
384 	{ "tcp_mdt_pkt_out",		KSTAT_DATA_UINT64 },
385 	{ "tcp_mdt_pkt_out_v4",		KSTAT_DATA_UINT64 },
386 	{ "tcp_mdt_pkt_out_v6",		KSTAT_DATA_UINT64 },
387 	{ "tcp_mdt_discarded",		KSTAT_DATA_UINT64 },
388 	{ "tcp_mdt_conn_halted1",	KSTAT_DATA_UINT64 },
389 	{ "tcp_mdt_conn_halted2",	KSTAT_DATA_UINT64 },
390 	{ "tcp_mdt_conn_halted3",	KSTAT_DATA_UINT64 },
391 	{ "tcp_mdt_conn_resumed1",	KSTAT_DATA_UINT64 },
392 	{ "tcp_mdt_conn_resumed2",	KSTAT_DATA_UINT64 },
393 	{ "tcp_mdt_legacy_small",	KSTAT_DATA_UINT64 },
394 	{ "tcp_mdt_legacy_all",		KSTAT_DATA_UINT64 },
395 	{ "tcp_mdt_legacy_ret",		KSTAT_DATA_UINT64 },
396 	{ "tcp_mdt_allocfail",		KSTAT_DATA_UINT64 },
397 	{ "tcp_mdt_addpdescfail",	KSTAT_DATA_UINT64 },
398 	{ "tcp_mdt_allocd",		KSTAT_DATA_UINT64 },
399 	{ "tcp_mdt_linked",		KSTAT_DATA_UINT64 },
400 	{ "tcp_fusion_flowctl",		KSTAT_DATA_UINT64 },
401 	{ "tcp_fusion_backenabled",	KSTAT_DATA_UINT64 },
402 	{ "tcp_fusion_urg",		KSTAT_DATA_UINT64 },
403 	{ "tcp_fusion_putnext",		KSTAT_DATA_UINT64 },
404 	{ "tcp_fusion_unfusable",	KSTAT_DATA_UINT64 },
405 	{ "tcp_fusion_aborted",		KSTAT_DATA_UINT64 },
406 	{ "tcp_fusion_unqualified",	KSTAT_DATA_UINT64 },
407 	{ "tcp_fusion_rrw_busy",	KSTAT_DATA_UINT64 },
408 	{ "tcp_fusion_rrw_msgcnt",	KSTAT_DATA_UINT64 },
409 	{ "tcp_fusion_rrw_plugged",	KSTAT_DATA_UINT64 },
410 	{ "tcp_in_ack_unsent_drop",	KSTAT_DATA_UINT64 },
411 	{ "tcp_sock_fallback",		KSTAT_DATA_UINT64 },
412 };
413 
414 static kstat_t *tcp_kstat;
415 
416 /*
417  * Call either ip_output or ip_output_v6. This replaces putnext() calls on the
418  * tcp write side.
419  */
420 #define	CALL_IP_WPUT(connp, q, mp) {					\
421 	ASSERT(((q)->q_flag & QREADR) == 0);				\
422 	TCP_DBGSTAT(tcp_ip_output);					\
423 	connp->conn_send(connp, (mp), (q), IP_WPUT);			\
424 }
425 
426 /* Macros for timestamp comparisons */
427 #define	TSTMP_GEQ(a, b)	((int32_t)((a)-(b)) >= 0)
428 #define	TSTMP_LT(a, b)	((int32_t)((a)-(b)) < 0)
429 
430 /*
431  * Parameters for TCP Initial Send Sequence number (ISS) generation.  When
432  * tcp_strong_iss is set to 1, which is the default, the ISS is calculated
433  * by adding three components: a time component which grows by 1 every 4096
434  * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27);
435  * a per-connection component which grows by 125000 for every new connection;
436  * and an "extra" component that grows by a random amount centered
437  * approximately on 64000.  This causes the the ISS generator to cycle every
438  * 4.89 hours if no TCP connections are made, and faster if connections are
439  * made.
440  *
441  * When tcp_strong_iss is set to 0, ISS is calculated by adding two
442  * components: a time component which grows by 250000 every second; and
443  * a per-connection component which grows by 125000 for every new connections.
444  *
445  * A third method, when tcp_strong_iss is set to 2, for generating ISS is
446  * prescribed by Steve Bellovin.  This involves adding time, the 125000 per
447  * connection, and a one-way hash (MD5) of the connection ID <sport, dport,
448  * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered
449  * password.
450  */
451 #define	ISS_INCR	250000
452 #define	ISS_NSEC_SHT	12
453 
454 static uint32_t tcp_iss_incr_extra;	/* Incremented for each connection */
455 static kmutex_t tcp_iss_key_lock;
456 static MD5_CTX tcp_iss_key;
457 static sin_t	sin_null;	/* Zero address for quick clears */
458 static sin6_t	sin6_null;	/* Zero address for quick clears */
459 
460 /* Packet dropper for TCP IPsec policy drops. */
461 static ipdropper_t tcp_dropper;
462 
463 /*
464  * This implementation follows the 4.3BSD interpretation of the urgent
465  * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause
466  * incompatible changes in protocols like telnet and rlogin.
467  */
468 #define	TCP_OLD_URP_INTERPRETATION	1
469 
470 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
471 	(TCP_IS_DETACHED(tcp) && \
472 	    (!(tcp)->tcp_hard_binding))
473 
474 /*
475  * TCP reassembly macros.  We hide starting and ending sequence numbers in
476  * b_next and b_prev of messages on the reassembly queue.  The messages are
477  * chained using b_cont.  These macros are used in tcp_reass() so we don't
478  * have to see the ugly casts and assignments.
479  */
480 #define	TCP_REASS_SEQ(mp)		((uint32_t)(uintptr_t)((mp)->b_next))
481 #define	TCP_REASS_SET_SEQ(mp, u)	((mp)->b_next = \
482 					(mblk_t *)(uintptr_t)(u))
483 #define	TCP_REASS_END(mp)		((uint32_t)(uintptr_t)((mp)->b_prev))
484 #define	TCP_REASS_SET_END(mp, u)	((mp)->b_prev = \
485 					(mblk_t *)(uintptr_t)(u))
486 
487 /*
488  * Implementation of TCP Timers.
489  * =============================
490  *
491  * INTERFACE:
492  *
493  * There are two basic functions dealing with tcp timers:
494  *
495  *	timeout_id_t	tcp_timeout(connp, func, time)
496  * 	clock_t		tcp_timeout_cancel(connp, timeout_id)
497  *	TCP_TIMER_RESTART(tcp, intvl)
498  *
499  * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func'
500  * after 'time' ticks passed. The function called by timeout() must adhere to
501  * the same restrictions as a driver soft interrupt handler - it must not sleep
502  * or call other functions that might sleep. The value returned is the opaque
503  * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to
504  * cancel the request. The call to tcp_timeout() may fail in which case it
505  * returns zero. This is different from the timeout(9F) function which never
506  * fails.
507  *
508  * The call-back function 'func' always receives 'connp' as its single
509  * argument. It is always executed in the squeue corresponding to the tcp
510  * structure. The tcp structure is guaranteed to be present at the time the
511  * call-back is called.
512  *
513  * NOTE: The call-back function 'func' is never called if tcp is in
514  * 	the TCPS_CLOSED state.
515  *
516  * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout()
517  * request. locks acquired by the call-back routine should not be held across
518  * the call to tcp_timeout_cancel() or a deadlock may result.
519  *
520  * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request.
521  * Otherwise, it returns an integer value greater than or equal to 0. In
522  * particular, if the call-back function is already placed on the squeue, it can
523  * not be canceled.
524  *
525  * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called
526  * 	within squeue context corresponding to the tcp instance. Since the
527  *	call-back is also called via the same squeue, there are no race
528  *	conditions described in untimeout(9F) manual page since all calls are
529  *	strictly serialized.
530  *
531  *      TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout
532  *	stored in tcp_timer_tid and starts a new one using
533  *	MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back
534  *	and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid
535  *	field.
536  *
537  * NOTE: since the timeout cancellation is not guaranteed, the cancelled
538  *	call-back may still be called, so it is possible tcp_timer() will be
539  *	called several times. This should not be a problem since tcp_timer()
540  *	should always check the tcp instance state.
541  *
542  *
543  * IMPLEMENTATION:
544  *
545  * TCP timers are implemented using three-stage process. The call to
546  * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function
547  * when the timer expires. The tcp_timer_callback() arranges the call of the
548  * tcp_timer_handler() function via squeue corresponding to the tcp
549  * instance. The tcp_timer_handler() calls actual requested timeout call-back
550  * and passes tcp instance as an argument to it. Information is passed between
551  * stages using the tcp_timer_t structure which contains the connp pointer, the
552  * tcp call-back to call and the timeout id returned by the timeout(9F).
553  *
554  * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t -
555  * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo
556  * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout()
557  * returns the pointer to this mblk.
558  *
559  * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It
560  * looks like a normal mblk without actual dblk attached to it.
561  *
562  * To optimize performance each tcp instance holds a small cache of timer
563  * mblocks. In the current implementation it caches up to two timer mblocks per
564  * tcp instance. The cache is preserved over tcp frees and is only freed when
565  * the whole tcp structure is destroyed by its kmem destructor. Since all tcp
566  * timer processing happens on a corresponding squeue, the cache manipulation
567  * does not require any locks. Experiments show that majority of timer mblocks
568  * allocations are satisfied from the tcp cache and do not involve kmem calls.
569  *
570  * The tcp_timeout() places a refhold on the connp instance which guarantees
571  * that it will be present at the time the call-back function fires. The
572  * tcp_timer_handler() drops the reference after calling the call-back, so the
573  * call-back function does not need to manipulate the references explicitly.
574  */
575 
576 typedef struct tcp_timer_s {
577 	conn_t	*connp;
578 	void 	(*tcpt_proc)(void *);
579 	timeout_id_t   tcpt_tid;
580 } tcp_timer_t;
581 
582 static kmem_cache_t *tcp_timercache;
583 kmem_cache_t	*tcp_sack_info_cache;
584 kmem_cache_t	*tcp_iphc_cache;
585 
586 /*
587  * For scalability, we must not run a timer for every TCP connection
588  * in TIME_WAIT state.  To see why, consider (for time wait interval of
589  * 4 minutes):
590  *	1000 connections/sec * 240 seconds/time wait = 240,000 active conn's
591  *
592  * This list is ordered by time, so you need only delete from the head
593  * until you get to entries which aren't old enough to delete yet.
594  * The list consists of only the detached TIME_WAIT connections.
595  *
596  * Note that the timer (tcp_time_wait_expire) is started when the tcp_t
597  * becomes detached TIME_WAIT (either by changing the state and already
598  * being detached or the other way around). This means that the TIME_WAIT
599  * state can be extended (up to doubled) if the connection doesn't become
600  * detached for a long time.
601  *
602  * The list manipulations (including tcp_time_wait_next/prev)
603  * are protected by the tcp_time_wait_lock. The content of the
604  * detached TIME_WAIT connections is protected by the normal perimeters.
605  */
606 
607 typedef struct tcp_squeue_priv_s {
608 	kmutex_t	tcp_time_wait_lock;
609 				/* Protects the next 3 globals */
610 	timeout_id_t	tcp_time_wait_tid;
611 	tcp_t		*tcp_time_wait_head;
612 	tcp_t		*tcp_time_wait_tail;
613 	tcp_t		*tcp_free_list;
614 	uint_t		tcp_free_list_cnt;
615 } tcp_squeue_priv_t;
616 
617 /*
618  * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs.
619  * Running it every 5 seconds seems to give the best results.
620  */
621 #define	TCP_TIME_WAIT_DELAY drv_usectohz(5000000)
622 
623 /*
624  * To prevent memory hog, limit the number of entries in tcp_free_list
625  * to 1% of available memory / number of cpus
626  */
627 uint_t tcp_free_list_max_cnt = 0;
628 
629 #define	TCP_XMIT_LOWATER	4096
630 #define	TCP_XMIT_HIWATER	49152
631 #define	TCP_RECV_LOWATER	2048
632 #define	TCP_RECV_HIWATER	49152
633 
634 /*
635  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
636  */
637 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
638 
639 #define	TIDUSZ	4096	/* transport interface data unit size */
640 
641 /*
642  * Bind hash list size and has function.  It has to be a power of 2 for
643  * hashing.
644  */
645 #define	TCP_BIND_FANOUT_SIZE	512
646 #define	TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1))
647 /*
648  * Size of listen and acceptor hash list.  It has to be a power of 2 for
649  * hashing.
650  */
651 #define	TCP_FANOUT_SIZE		256
652 
653 #ifdef	_ILP32
654 #define	TCP_ACCEPTOR_HASH(accid)					\
655 		(((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1))
656 #else
657 #define	TCP_ACCEPTOR_HASH(accid)					\
658 		((uint_t)(accid) & (TCP_FANOUT_SIZE - 1))
659 #endif	/* _ILP32 */
660 
661 #define	IP_ADDR_CACHE_SIZE	2048
662 #define	IP_ADDR_CACHE_HASH(faddr)					\
663 	(ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1))
664 
665 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */
666 #define	TCP_HSP_HASH_SIZE 256
667 
668 #define	TCP_HSP_HASH(addr)					\
669 	(((addr>>24) ^ (addr >>16) ^			\
670 	    (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE)
671 
672 /*
673  * TCP options struct returned from tcp_parse_options.
674  */
675 typedef struct tcp_opt_s {
676 	uint32_t	tcp_opt_mss;
677 	uint32_t	tcp_opt_wscale;
678 	uint32_t	tcp_opt_ts_val;
679 	uint32_t	tcp_opt_ts_ecr;
680 	tcp_t		*tcp;
681 } tcp_opt_t;
682 
683 /*
684  * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
685  */
686 
687 #ifdef _BIG_ENDIAN
688 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
689 	(TCPOPT_TSTAMP << 8) | 10)
690 #else
691 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
692 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
693 #endif
694 
695 /*
696  * Flags returned from tcp_parse_options.
697  */
698 #define	TCP_OPT_MSS_PRESENT	1
699 #define	TCP_OPT_WSCALE_PRESENT	2
700 #define	TCP_OPT_TSTAMP_PRESENT	4
701 #define	TCP_OPT_SACK_OK_PRESENT	8
702 #define	TCP_OPT_SACK_PRESENT	16
703 
704 /* TCP option length */
705 #define	TCPOPT_NOP_LEN		1
706 #define	TCPOPT_MAXSEG_LEN	4
707 #define	TCPOPT_WS_LEN		3
708 #define	TCPOPT_REAL_WS_LEN	(TCPOPT_WS_LEN+1)
709 #define	TCPOPT_TSTAMP_LEN	10
710 #define	TCPOPT_REAL_TS_LEN	(TCPOPT_TSTAMP_LEN+2)
711 #define	TCPOPT_SACK_OK_LEN	2
712 #define	TCPOPT_REAL_SACK_OK_LEN	(TCPOPT_SACK_OK_LEN+2)
713 #define	TCPOPT_REAL_SACK_LEN	4
714 #define	TCPOPT_MAX_SACK_LEN	36
715 #define	TCPOPT_HEADER_LEN	2
716 
717 /* TCP cwnd burst factor. */
718 #define	TCP_CWND_INFINITE	65535
719 #define	TCP_CWND_SS		3
720 #define	TCP_CWND_NORMAL		5
721 
722 /* Maximum TCP initial cwin (start/restart). */
723 #define	TCP_MAX_INIT_CWND	8
724 
725 /*
726  * Initialize cwnd according to RFC 3390.  def_max_init_cwnd is
727  * either tcp_slow_start_initial or tcp_slow_start_after idle
728  * depending on the caller.  If the upper layer has not used the
729  * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd
730  * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd.
731  * If the upper layer has changed set the tcp_init_cwnd, just use
732  * it to calculate the tcp_cwnd.
733  */
734 #define	SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd)			\
735 {									\
736 	if ((tcp)->tcp_init_cwnd == 0) {				\
737 		(tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss),	\
738 		    MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \
739 	} else {							\
740 		(tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss);		\
741 	}								\
742 	tcp->tcp_cwnd_cnt = 0;						\
743 }
744 
745 /* TCP Timer control structure */
746 typedef struct tcpt_s {
747 	pfv_t	tcpt_pfv;	/* The routine we are to call */
748 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
749 } tcpt_t;
750 
751 /* Host Specific Parameter structure */
752 typedef struct tcp_hsp {
753 	struct tcp_hsp	*tcp_hsp_next;
754 	in6_addr_t	tcp_hsp_addr_v6;
755 	in6_addr_t	tcp_hsp_subnet_v6;
756 	uint_t		tcp_hsp_vers;	/* IPV4_VERSION | IPV6_VERSION */
757 	int32_t		tcp_hsp_sendspace;
758 	int32_t		tcp_hsp_recvspace;
759 	int32_t		tcp_hsp_tstamp;
760 } tcp_hsp_t;
761 #define	tcp_hsp_addr	V4_PART_OF_V6(tcp_hsp_addr_v6)
762 #define	tcp_hsp_subnet	V4_PART_OF_V6(tcp_hsp_subnet_v6)
763 
764 /*
765  * Functions called directly via squeue having a prototype of edesc_t.
766  */
767 void		tcp_conn_request(void *arg, mblk_t *mp, void *arg2);
768 static void	tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2);
769 void		tcp_accept_finish(void *arg, mblk_t *mp, void *arg2);
770 static void	tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2);
771 static void	tcp_wput_proto(void *arg, mblk_t *mp, void *arg2);
772 void 		tcp_input(void *arg, mblk_t *mp, void *arg2);
773 void		tcp_rput_data(void *arg, mblk_t *mp, void *arg2);
774 static void	tcp_close_output(void *arg, mblk_t *mp, void *arg2);
775 void		tcp_output(void *arg, mblk_t *mp, void *arg2);
776 static void	tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2);
777 static void	tcp_timer_handler(void *arg, mblk_t *mp, void *arg2);
778 
779 
780 /* Prototype for TCP functions */
781 static void	tcp_random_init(void);
782 int		tcp_random(void);
783 static void	tcp_accept(tcp_t *tcp, mblk_t *mp);
784 static void	tcp_accept_swap(tcp_t *listener, tcp_t *acceptor,
785 		    tcp_t *eager);
786 static int	tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp);
787 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
788     int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only,
789     boolean_t user_specified);
790 static void	tcp_closei_local(tcp_t *tcp);
791 static void	tcp_close_detached(tcp_t *tcp);
792 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph,
793 			mblk_t *idmp, mblk_t **defermp);
794 static void	tcp_connect(tcp_t *tcp, mblk_t *mp);
795 static void	tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp,
796 		    in_port_t dstport, uint_t srcid);
797 static void	tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
798 		    in_port_t dstport, uint32_t flowinfo, uint_t srcid,
799 		    uint32_t scope_id);
800 static int	tcp_clean_death(tcp_t *tcp, int err, uint8_t tag);
801 static void	tcp_def_q_set(tcp_t *tcp, mblk_t *mp);
802 static void	tcp_disconnect(tcp_t *tcp, mblk_t *mp);
803 static char	*tcp_display(tcp_t *tcp, char *, char);
804 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum);
805 static void	tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only);
806 static void	tcp_eager_unlink(tcp_t *tcp);
807 static void	tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr,
808 		    int unixerr);
809 static void	tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
810 		    int tlierr, int unixerr);
811 static int	tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
812 		    cred_t *cr);
813 static int	tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
814 		    char *value, caddr_t cp, cred_t *cr);
815 static int	tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
816 		    char *value, caddr_t cp, cred_t *cr);
817 static int	tcp_tpistate(tcp_t *tcp);
818 static void	tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp,
819     int caller_holds_lock);
820 static void	tcp_bind_hash_remove(tcp_t *tcp);
821 static tcp_t	*tcp_acceptor_hash_lookup(t_uscalar_t id);
822 void		tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp);
823 static void	tcp_acceptor_hash_remove(tcp_t *tcp);
824 static void	tcp_capability_req(tcp_t *tcp, mblk_t *mp);
825 static void	tcp_info_req(tcp_t *tcp, mblk_t *mp);
826 static void	tcp_addr_req(tcp_t *tcp, mblk_t *mp);
827 static void	tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp);
828 static int	tcp_header_init_ipv4(tcp_t *tcp);
829 static int	tcp_header_init_ipv6(tcp_t *tcp);
830 int		tcp_init(tcp_t *tcp, queue_t *q);
831 static int	tcp_init_values(tcp_t *tcp);
832 static mblk_t	*tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic);
833 static mblk_t	*tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim,
834 		    t_scalar_t addr_length);
835 static void	tcp_ip_ire_mark_advice(tcp_t *tcp);
836 static void	tcp_ip_notify(tcp_t *tcp);
837 static mblk_t	*tcp_ire_mp(mblk_t *mp);
838 static void	tcp_iss_init(tcp_t *tcp);
839 static void	tcp_keepalive_killer(void *arg);
840 static int	tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt);
841 static void	tcp_mss_set(tcp_t *tcp, uint32_t size);
842 static int	tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp,
843 		    int *do_disconnectp, int *t_errorp, int *sys_errorp);
844 static boolean_t tcp_allow_connopt_set(int level, int name);
845 int		tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr);
846 int		tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr);
847 int		tcp_opt_set(queue_t *q, uint_t optset_context, int level,
848 		    int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
849 		    uchar_t *outvalp, void *thisdg_attrs, cred_t *cr,
850 		    mblk_t *mblk);
851 static void	tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha);
852 static int	tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly,
853 		    uchar_t *ptr, uint_t len);
854 static int	tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
855 static boolean_t tcp_param_register(tcpparam_t *tcppa, int cnt);
856 static int	tcp_param_set(queue_t *q, mblk_t *mp, char *value,
857 		    caddr_t cp, cred_t *cr);
858 static int	tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value,
859 		    caddr_t cp, cred_t *cr);
860 static void	tcp_iss_key_init(uint8_t *phrase, int len);
861 static int	tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value,
862 		    caddr_t cp, cred_t *cr);
863 static void	tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt);
864 static mblk_t	*tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start);
865 static void	tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp);
866 static void	tcp_reinit(tcp_t *tcp);
867 static void	tcp_reinit_values(tcp_t *tcp);
868 static void	tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval,
869 		    tcp_t *thisstream, cred_t *cr);
870 
871 static uint_t	tcp_rcv_drain(queue_t *q, tcp_t *tcp);
872 static void	tcp_sack_rxmit(tcp_t *tcp, uint_t *flags);
873 static boolean_t tcp_send_rst_chk(void);
874 static void	tcp_ss_rexmit(tcp_t *tcp);
875 static mblk_t	*tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp);
876 static void	tcp_process_options(tcp_t *, tcph_t *);
877 static void	tcp_rput_common(tcp_t *tcp, mblk_t *mp);
878 static void	tcp_rsrv(queue_t *q);
879 static int	tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd);
880 static int	tcp_snmp_state(tcp_t *tcp);
881 static int	tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp,
882 		    cred_t *cr);
883 static int	tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
884 		    cred_t *cr);
885 static int	tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
886 		    cred_t *cr);
887 static int	tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
888 		    cred_t *cr);
889 static int	tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
890 		    cred_t *cr);
891 static int	tcp_host_param_set(queue_t *q, mblk_t *mp, char *value,
892 		    caddr_t cp, cred_t *cr);
893 static int	tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value,
894 		    caddr_t cp, cred_t *cr);
895 static int	tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp,
896 		    cred_t *cr);
897 static void	tcp_timer(void *arg);
898 static void	tcp_timer_callback(void *);
899 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp,
900     boolean_t random);
901 static in_port_t tcp_get_next_priv_port(const tcp_t *);
902 static void	tcp_wput_sock(queue_t *q, mblk_t *mp);
903 void		tcp_wput_accept(queue_t *q, mblk_t *mp);
904 static void	tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent);
905 static void	tcp_wput_flush(tcp_t *tcp, mblk_t *mp);
906 static void	tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp);
907 static int	tcp_send(queue_t *q, tcp_t *tcp, const int mss,
908 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
909 		    const int num_sack_blk, int *usable, uint_t *snxt,
910 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
911 		    const int mdt_thres);
912 static int	tcp_multisend(queue_t *q, tcp_t *tcp, const int mss,
913 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
914 		    const int num_sack_blk, int *usable, uint_t *snxt,
915 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
916 		    const int mdt_thres);
917 static void	tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now,
918 		    int num_sack_blk);
919 static void	tcp_wsrv(queue_t *q);
920 static int	tcp_xmit_end(tcp_t *tcp);
921 static mblk_t	*tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send,
922 		    int32_t *offset, mblk_t **end_mp, uint32_t seq,
923 		    boolean_t sendall, uint32_t *seg_len, boolean_t rexmit);
924 static void	tcp_ack_timer(void *arg);
925 static mblk_t	*tcp_ack_mp(tcp_t *tcp);
926 static void	tcp_xmit_early_reset(char *str, mblk_t *mp,
927 		    uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len,
928 		    zoneid_t zoneid);
929 static void	tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq,
930 		    uint32_t ack, int ctl);
931 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr);
932 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr);
933 static int	setmaxps(queue_t *q, int maxpsz);
934 static void	tcp_set_rto(tcp_t *, time_t);
935 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *,
936 		    boolean_t, boolean_t);
937 static void	tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp,
938 		    boolean_t ipsec_mctl);
939 static mblk_t	*tcp_setsockopt_mp(int level, int cmd,
940 		    char *opt, int optlen);
941 static int	tcp_build_hdrs(queue_t *, tcp_t *);
942 static void	tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp,
943 		    uint32_t seg_seq, uint32_t seg_ack, int seg_len,
944 		    tcph_t *tcph);
945 boolean_t	tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp);
946 boolean_t	tcp_reserved_port_add(int, in_port_t *, in_port_t *);
947 boolean_t	tcp_reserved_port_del(in_port_t, in_port_t);
948 boolean_t	tcp_reserved_port_check(in_port_t);
949 static tcp_t	*tcp_alloc_temp_tcp(in_port_t);
950 static int	tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *);
951 static mblk_t	*tcp_mdt_info_mp(mblk_t *);
952 static void	tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t);
953 static int	tcp_mdt_add_attrs(multidata_t *, const mblk_t *,
954 		    const boolean_t, const uint32_t, const uint32_t,
955 		    const uint32_t, const uint32_t);
956 static void	tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *,
957 		    const uint_t, const uint_t, boolean_t *);
958 static void	tcp_send_data(tcp_t *, queue_t *, mblk_t *);
959 extern mblk_t	*tcp_timermp_alloc(int);
960 extern void	tcp_timermp_free(tcp_t *);
961 static void	tcp_timer_free(tcp_t *tcp, mblk_t *mp);
962 static void	tcp_stop_lingering(tcp_t *tcp);
963 static void	tcp_close_linger_timeout(void *arg);
964 void		tcp_ddi_init(void);
965 void		tcp_ddi_destroy(void);
966 static void	tcp_kstat_init(void);
967 static void	tcp_kstat_fini(void);
968 static int	tcp_kstat_update(kstat_t *kp, int rw);
969 void		tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp);
970 static int	tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
971 			tcph_t *tcph, uint_t ipvers, mblk_t *idmp);
972 static int	tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
973 			tcph_t *tcph, mblk_t *idmp);
974 static squeue_func_t tcp_squeue_switch(int);
975 
976 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *);
977 static int	tcp_close(queue_t *, int);
978 static int	tcpclose_accept(queue_t *);
979 static int	tcp_modclose(queue_t *);
980 static void	tcp_wput_mod(queue_t *, mblk_t *);
981 
982 static void	tcp_squeue_add(squeue_t *);
983 static boolean_t tcp_zcopy_check(tcp_t *);
984 static void	tcp_zcopy_notify(tcp_t *);
985 static mblk_t	*tcp_zcopy_disable(tcp_t *, mblk_t *);
986 static mblk_t	*tcp_zcopy_backoff(tcp_t *, mblk_t *, int);
987 static void	tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t);
988 
989 extern void	tcp_kssl_input(tcp_t *, mblk_t *);
990 
991 /*
992  * Routines related to the TCP_IOC_ABORT_CONN ioctl command.
993  *
994  * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting
995  * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure
996  * (defined in tcp.h) needs to be filled in and passed into the kernel
997  * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t
998  * structure contains the four-tuple of a TCP connection and a range of TCP
999  * states (specified by ac_start and ac_end). The use of wildcard addresses
1000  * and ports is allowed. Connections with a matching four tuple and a state
1001  * within the specified range will be aborted. The valid states for the
1002  * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT,
1003  * inclusive.
1004  *
1005  * An application which has its connection aborted by this ioctl will receive
1006  * an error that is dependent on the connection state at the time of the abort.
1007  * If the connection state is < TCPS_TIME_WAIT, an application should behave as
1008  * though a RST packet has been received.  If the connection state is equal to
1009  * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel
1010  * and all resources associated with the connection will be freed.
1011  */
1012 static mblk_t	*tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *);
1013 static void	tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *);
1014 static void	tcp_ioctl_abort_handler(tcp_t *, mblk_t *);
1015 static int	tcp_ioctl_abort(tcp_ioc_abort_conn_t *);
1016 static void	tcp_ioctl_abort_conn(queue_t *, mblk_t *);
1017 static int	tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *,
1018     boolean_t);
1019 
1020 static struct module_info tcp_rinfo =  {
1021 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
1022 };
1023 
1024 static struct module_info tcp_winfo =  {
1025 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
1026 };
1027 
1028 /*
1029  * Entry points for TCP as a module. It only allows SNMP requests
1030  * to pass through.
1031  */
1032 struct qinit tcp_mod_rinit = {
1033 	(pfi_t)putnext, NULL, tcp_open, ip_snmpmod_close, NULL, &tcp_rinfo,
1034 };
1035 
1036 struct qinit tcp_mod_winit = {
1037 	(pfi_t)ip_snmpmod_wput, NULL, tcp_open, ip_snmpmod_close, NULL,
1038 	&tcp_rinfo
1039 };
1040 
1041 /*
1042  * Entry points for TCP as a device. The normal case which supports
1043  * the TCP functionality.
1044  */
1045 struct qinit tcp_rinit = {
1046 	NULL, (pfi_t)tcp_rsrv, tcp_open, tcp_close, NULL, &tcp_rinfo
1047 };
1048 
1049 struct qinit tcp_winit = {
1050 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
1051 };
1052 
1053 /* Initial entry point for TCP in socket mode. */
1054 struct qinit tcp_sock_winit = {
1055 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
1056 };
1057 
1058 /*
1059  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
1060  * an accept. Avoid allocating data structures since eager has already
1061  * been created.
1062  */
1063 struct qinit tcp_acceptor_rinit = {
1064 	NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo
1065 };
1066 
1067 struct qinit tcp_acceptor_winit = {
1068 	(pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo
1069 };
1070 
1071 /*
1072  * Entry points for TCP loopback (read side only)
1073  */
1074 struct qinit tcp_loopback_rinit = {
1075 	(pfi_t)0, (pfi_t)tcp_rsrv, tcp_open, tcp_close, (pfi_t)0,
1076 	&tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD
1077 };
1078 
1079 struct streamtab tcpinfo = {
1080 	&tcp_rinit, &tcp_winit
1081 };
1082 
1083 extern squeue_func_t tcp_squeue_wput_proc;
1084 extern squeue_func_t tcp_squeue_timer_proc;
1085 
1086 /* Protected by tcp_g_q_lock */
1087 static queue_t	*tcp_g_q;	/* Default queue used during detached closes */
1088 kmutex_t tcp_g_q_lock;
1089 
1090 /* Protected by tcp_hsp_lock */
1091 /*
1092  * XXX The host param mechanism should go away and instead we should use
1093  * the metrics associated with the routes to determine the default sndspace
1094  * and rcvspace.
1095  */
1096 static tcp_hsp_t	**tcp_hsp_hash;	/* Hash table for HSPs */
1097 krwlock_t tcp_hsp_lock;
1098 
1099 /*
1100  * Extra privileged ports. In host byte order.
1101  * Protected by tcp_epriv_port_lock.
1102  */
1103 #define	TCP_NUM_EPRIV_PORTS	64
1104 static int	tcp_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
1105 static uint16_t	tcp_g_epriv_ports[TCP_NUM_EPRIV_PORTS] = { 2049, 4045 };
1106 kmutex_t tcp_epriv_port_lock;
1107 
1108 /*
1109  * The smallest anonymous port in the privileged port range which TCP
1110  * looks for free port.  Use in the option TCP_ANONPRIVBIND.
1111  */
1112 static in_port_t tcp_min_anonpriv_port = 512;
1113 
1114 /* Only modified during _init and _fini thus no locking is needed. */
1115 static caddr_t	tcp_g_nd;	/* Head of 'named dispatch' variable list */
1116 
1117 /* Hint not protected by any lock */
1118 static uint_t	tcp_next_port_to_try;
1119 
1120 
1121 /* TCP bind hash list - all tcp_t with state >= BOUND. */
1122 tf_t	tcp_bind_fanout[TCP_BIND_FANOUT_SIZE];
1123 
1124 /* TCP queue hash list - all tcp_t in case they will be an acceptor. */
1125 static tf_t	tcp_acceptor_fanout[TCP_FANOUT_SIZE];
1126 
1127 /*
1128  * TCP has a private interface for other kernel modules to reserve a
1129  * port range for them to use.  Once reserved, TCP will not use any ports
1130  * in the range.  This interface relies on the TCP_EXCLBIND feature.  If
1131  * the semantics of TCP_EXCLBIND is changed, implementation of this interface
1132  * has to be verified.
1133  *
1134  * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges.  Each port
1135  * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports.  A port
1136  * range is [port a, port b] inclusive.  And each port range is between
1137  * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive.
1138  *
1139  * Note that the default anonymous port range starts from 32768.  There is
1140  * no port "collision" between that and the reserved port range.  If there
1141  * is port collision (because the default smallest anonymous port is lowered
1142  * or some apps specifically bind to ports in the reserved port range), the
1143  * system may not be able to reserve a port range even there are enough
1144  * unbound ports as a reserved port range contains consecutive ports .
1145  */
1146 #define	TCP_RESERVED_PORTS_ARRAY_MAX_SIZE	5
1147 #define	TCP_RESERVED_PORTS_RANGE_MAX		1000
1148 #define	TCP_SMALLEST_RESERVED_PORT		10240
1149 #define	TCP_LARGEST_RESERVED_PORT		20480
1150 
1151 /* Structure to represent those reserved port ranges. */
1152 typedef struct tcp_rport_s {
1153 	in_port_t	lo_port;
1154 	in_port_t	hi_port;
1155 	tcp_t		**temp_tcp_array;
1156 } tcp_rport_t;
1157 
1158 /* The reserved port array. */
1159 static tcp_rport_t tcp_reserved_port[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE];
1160 
1161 /* Locks to protect the tcp_reserved_ports array. */
1162 static krwlock_t tcp_reserved_port_lock;
1163 
1164 /* The number of ranges in the array. */
1165 uint32_t tcp_reserved_port_array_size = 0;
1166 
1167 /*
1168  * MIB-2 stuff for SNMP
1169  * Note: tcpInErrs {tcp 15} is accumulated in ip.c
1170  */
1171 mib2_tcp_t	tcp_mib;	/* SNMP fixed size info */
1172 kstat_t		*tcp_mibkp;	/* kstat exporting tcp_mib data */
1173 
1174 boolean_t tcp_icmp_source_quench = B_FALSE;
1175 /*
1176  * Following assumes TPI alignment requirements stay along 32 bit
1177  * boundaries
1178  */
1179 #define	ROUNDUP32(x) \
1180 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
1181 
1182 /* Template for response to info request. */
1183 static struct T_info_ack tcp_g_t_info_ack = {
1184 	T_INFO_ACK,		/* PRIM_type */
1185 	0,			/* TSDU_size */
1186 	T_INFINITE,		/* ETSDU_size */
1187 	T_INVALID,		/* CDATA_size */
1188 	T_INVALID,		/* DDATA_size */
1189 	sizeof (sin_t),		/* ADDR_size */
1190 	0,			/* OPT_size - not initialized here */
1191 	TIDUSZ,			/* TIDU_size */
1192 	T_COTS_ORD,		/* SERV_type */
1193 	TCPS_IDLE,		/* CURRENT_state */
1194 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1195 };
1196 
1197 static struct T_info_ack tcp_g_t_info_ack_v6 = {
1198 	T_INFO_ACK,		/* PRIM_type */
1199 	0,			/* TSDU_size */
1200 	T_INFINITE,		/* ETSDU_size */
1201 	T_INVALID,		/* CDATA_size */
1202 	T_INVALID,		/* DDATA_size */
1203 	sizeof (sin6_t),	/* ADDR_size */
1204 	0,			/* OPT_size - not initialized here */
1205 	TIDUSZ,		/* TIDU_size */
1206 	T_COTS_ORD,		/* SERV_type */
1207 	TCPS_IDLE,		/* CURRENT_state */
1208 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1209 };
1210 
1211 #define	MS	1L
1212 #define	SECONDS	(1000 * MS)
1213 #define	MINUTES	(60 * SECONDS)
1214 #define	HOURS	(60 * MINUTES)
1215 #define	DAYS	(24 * HOURS)
1216 
1217 #define	PARAM_MAX (~(uint32_t)0)
1218 
1219 /* Max size IP datagram is 64k - 1 */
1220 #define	TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t)))
1221 #define	TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t)))
1222 /* Max of the above */
1223 #define	TCP_MSS_MAX	TCP_MSS_MAX_IPV4
1224 
1225 /* Largest TCP port number */
1226 #define	TCP_MAX_PORT	(64 * 1024 - 1)
1227 
1228 /*
1229  * tcp_wroff_xtra is the extra space in front of TCP/IP header for link
1230  * layer header.  It has to be a multiple of 4.
1231  */
1232 static tcpparam_t tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" };
1233 #define	tcp_wroff_xtra	tcp_wroff_xtra_param.tcp_param_val
1234 
1235 /*
1236  * All of these are alterable, within the min/max values given, at run time.
1237  * Note that the default value of "tcp_time_wait_interval" is four minutes,
1238  * per the TCP spec.
1239  */
1240 /* BEGIN CSTYLED */
1241 tcpparam_t	tcp_param_arr[] = {
1242  /*min		max		value		name */
1243  { 1*SECONDS,	10*MINUTES,	1*MINUTES,	"tcp_time_wait_interval"},
1244  { 1,		PARAM_MAX,	128,		"tcp_conn_req_max_q" },
1245  { 0,		PARAM_MAX,	1024,		"tcp_conn_req_max_q0" },
1246  { 1,		1024,		1,		"tcp_conn_req_min" },
1247  { 0*MS,	20*SECONDS,	0*MS,		"tcp_conn_grace_period" },
1248  { 128,		(1<<30),	1024*1024,	"tcp_cwnd_max" },
1249  { 0,		10,		0,		"tcp_debug" },
1250  { 1024,	(32*1024),	1024,		"tcp_smallest_nonpriv_port"},
1251  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_cinterval"},
1252  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_linterval"},
1253  { 500*MS,	PARAM_MAX,	8*MINUTES,	"tcp_ip_abort_interval"},
1254  { 1*SECONDS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_cinterval"},
1255  { 500*MS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_interval"},
1256  { 1,		255,		64,		"tcp_ipv4_ttl"},
1257  { 10*SECONDS,	10*DAYS,	2*HOURS,	"tcp_keepalive_interval"},
1258  { 0,		100,		10,		"tcp_maxpsz_multiplier" },
1259  { 1,		TCP_MSS_MAX_IPV4, 536,		"tcp_mss_def_ipv4"},
1260  { 1,		TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"},
1261  { 1,		TCP_MSS_MAX,	108,		"tcp_mss_min"},
1262  { 1,		(64*1024)-1,	(4*1024)-1,	"tcp_naglim_def"},
1263  { 1*MS,	20*SECONDS,	3*SECONDS,	"tcp_rexmit_interval_initial"},
1264  { 1*MS,	2*HOURS,	60*SECONDS,	"tcp_rexmit_interval_max"},
1265  { 1*MS,	2*HOURS,	400*MS,		"tcp_rexmit_interval_min"},
1266  { 1*MS,	1*MINUTES,	100*MS,		"tcp_deferred_ack_interval" },
1267  { 0,		16,		0,		"tcp_snd_lowat_fraction" },
1268  { 0,		128000,		0,		"tcp_sth_rcv_hiwat" },
1269  { 0,		128000,		0,		"tcp_sth_rcv_lowat" },
1270  { 1,		10000,		3,		"tcp_dupack_fast_retransmit" },
1271  { 0,		1,		0,		"tcp_ignore_path_mtu" },
1272  { 1024,	TCP_MAX_PORT,	32*1024,	"tcp_smallest_anon_port"},
1273  { 1024,	TCP_MAX_PORT,	TCP_MAX_PORT,	"tcp_largest_anon_port"},
1274  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"},
1275  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"},
1276  { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"},
1277  { 1,		65536,		4,		"tcp_recv_hiwat_minmss"},
1278  { 1*SECONDS,	PARAM_MAX,	675*SECONDS,	"tcp_fin_wait_2_flush_interval"},
1279  { 0,		TCP_MSS_MAX,	64,		"tcp_co_min"},
1280  { 8192,	(1<<30),	1024*1024,	"tcp_max_buf"},
1281 /*
1282  * Question:  What default value should I set for tcp_strong_iss?
1283  */
1284  { 0,		2,		1,		"tcp_strong_iss"},
1285  { 0,		65536,		20,		"tcp_rtt_updates"},
1286  { 0,		1,		1,		"tcp_wscale_always"},
1287  { 0,		1,		0,		"tcp_tstamp_always"},
1288  { 0,		1,		1,		"tcp_tstamp_if_wscale"},
1289  { 0*MS,	2*HOURS,	0*MS,		"tcp_rexmit_interval_extra"},
1290  { 0,		16,		2,		"tcp_deferred_acks_max"},
1291  { 1,		16384,		4,		"tcp_slow_start_after_idle"},
1292  { 1,		4,		4,		"tcp_slow_start_initial"},
1293  { 10*MS,	50*MS,		20*MS,		"tcp_co_timer_interval"},
1294  { 0,		2,		2,		"tcp_sack_permitted"},
1295  { 0,		1,		0,		"tcp_trace"},
1296  { 0,		1,		1,		"tcp_compression_enabled"},
1297  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS,	"tcp_ipv6_hoplimit"},
1298  { 1,		TCP_MSS_MAX_IPV6, 1220,		"tcp_mss_def_ipv6"},
1299  { 1,		TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"},
1300  { 0,		1,		0,		"tcp_rev_src_routes"},
1301  { 10*MS,	500*MS,		50*MS,		"tcp_local_dack_interval"},
1302  { 100*MS,	60*SECONDS,	1*SECONDS,	"tcp_ndd_get_info_interval"},
1303  { 0,		16,		8,		"tcp_local_dacks_max"},
1304  { 0,		2,		1,		"tcp_ecn_permitted"},
1305  { 0,		1,		1,		"tcp_rst_sent_rate_enabled"},
1306  { 0,		PARAM_MAX,	40,		"tcp_rst_sent_rate"},
1307  { 0,		100*MS,		50*MS,		"tcp_push_timer_interval"},
1308  { 0,		1,		0,		"tcp_use_smss_as_mss_opt"},
1309  { 0,		PARAM_MAX,	8*MINUTES,	"tcp_keepalive_abort_interval"},
1310 };
1311 /* END CSTYLED */
1312 
1313 /*
1314  * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of
1315  * each header fragment in the header buffer.  Each parameter value has
1316  * to be a multiple of 4 (32-bit aligned).
1317  */
1318 static tcpparam_t tcp_mdt_head_param = { 32, 256, 32, "tcp_mdt_hdr_head_min" };
1319 static tcpparam_t tcp_mdt_tail_param = { 0,  256, 32, "tcp_mdt_hdr_tail_min" };
1320 #define	tcp_mdt_hdr_head_min	tcp_mdt_head_param.tcp_param_val
1321 #define	tcp_mdt_hdr_tail_min	tcp_mdt_tail_param.tcp_param_val
1322 
1323 /*
1324  * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out
1325  * the maximum number of payload buffers associated per Multidata.
1326  */
1327 static tcpparam_t tcp_mdt_max_pbufs_param =
1328 	{ 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" };
1329 #define	tcp_mdt_max_pbufs	tcp_mdt_max_pbufs_param.tcp_param_val
1330 
1331 /* Round up the value to the nearest mss. */
1332 #define	MSS_ROUNDUP(value, mss)		((((value) - 1) / (mss) + 1) * (mss))
1333 
1334 /*
1335  * Set ECN capable transport (ECT) code point in IP header.
1336  *
1337  * Note that there are 2 ECT code points '01' and '10', which are called
1338  * ECT(1) and ECT(0) respectively.  Here we follow the original ECT code
1339  * point ECT(0) for TCP as described in RFC 2481.
1340  */
1341 #define	SET_ECT(tcp, iph) \
1342 	if ((tcp)->tcp_ipversion == IPV4_VERSION) { \
1343 		/* We need to clear the code point first. */ \
1344 		((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \
1345 		((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \
1346 	} else { \
1347 		((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \
1348 		((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \
1349 	}
1350 
1351 /*
1352  * The format argument to pass to tcp_display().
1353  * DISP_PORT_ONLY means that the returned string has only port info.
1354  * DISP_ADDR_AND_PORT means that the returned string also contains the
1355  * remote and local IP address.
1356  */
1357 #define	DISP_PORT_ONLY		1
1358 #define	DISP_ADDR_AND_PORT	2
1359 
1360 /*
1361  * This controls the rate some ndd info report functions can be used
1362  * by non-privileged users.  It stores the last time such info is
1363  * requested.  When those report functions are called again, this
1364  * is checked with the current time and compare with the ndd param
1365  * tcp_ndd_get_info_interval.
1366  */
1367 static clock_t tcp_last_ndd_get_info_time = 0;
1368 #define	NDD_TOO_QUICK_MSG \
1369 	"ndd get info rate too high for non-privileged users, try again " \
1370 	"later.\n"
1371 #define	NDD_OUT_OF_BUF_MSG	"<< Out of buffer >>\n"
1372 
1373 #define	IS_VMLOANED_MBLK(mp) \
1374 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
1375 
1376 /*
1377  * These two variables control the rate for TCP to generate RSTs in
1378  * response to segments not belonging to any connections.  We limit
1379  * TCP to sent out tcp_rst_sent_rate (ndd param) number of RSTs in
1380  * each 1 second interval.  This is to protect TCP against DoS attack.
1381  */
1382 static clock_t tcp_last_rst_intrvl;
1383 static uint32_t tcp_rst_cnt;
1384 
1385 /* The number of RST not sent because of the rate limit. */
1386 static uint32_t tcp_rst_unsent;
1387 
1388 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */
1389 boolean_t tcp_mdt_chain = B_TRUE;
1390 
1391 /*
1392  * MDT threshold in the form of effective send MSS multiplier; we take
1393  * the MDT path if the amount of unsent data exceeds the threshold value
1394  * (default threshold is 1*SMSS).
1395  */
1396 uint_t tcp_mdt_smss_threshold = 1;
1397 
1398 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
1399 
1400 /*
1401  * Forces all connections to obey the value of the tcp_maxpsz_multiplier
1402  * tunable settable via NDD.  Otherwise, the per-connection behavior is
1403  * determined dynamically during tcp_adapt_ire(), which is the default.
1404  */
1405 boolean_t tcp_static_maxpsz = B_FALSE;
1406 
1407 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
1408 uint32_t tcp_random_anon_port = 1;
1409 
1410 /*
1411  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
1412  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
1413  * data, TCP will not respond with an ACK.  RFC 793 requires that
1414  * TCP responds with an ACK for such a bogus ACK.  By not following
1415  * the RFC, we prevent TCP from getting into an ACK storm if somehow
1416  * an attacker successfully spoofs an acceptable segment to our
1417  * peer; or when our peer is "confused."
1418  */
1419 uint32_t tcp_drop_ack_unsent_cnt = 10;
1420 
1421 /*
1422  * Hook functions to enable cluster networking
1423  * On non-clustered systems these vectors must always be NULL.
1424  */
1425 
1426 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family,
1427 			    uint8_t *laddrp, in_port_t lport) = NULL;
1428 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family,
1429 			    uint8_t *laddrp, in_port_t lport) = NULL;
1430 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family,
1431 			    uint8_t *laddrp, in_port_t lport,
1432 			    uint8_t *faddrp, in_port_t fport) = NULL;
1433 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family,
1434 			    uint8_t *laddrp, in_port_t lport,
1435 			    uint8_t *faddrp, in_port_t fport) = NULL;
1436 
1437 /*
1438  * The following are defined in ip.c
1439  */
1440 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family,
1441 				uint8_t *laddrp);
1442 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family,
1443 				uint8_t *laddrp, uint8_t *faddrp);
1444 
1445 #define	CL_INET_CONNECT(tcp)		{			\
1446 	if (cl_inet_connect != NULL) {				\
1447 		/*						\
1448 		 * Running in cluster mode - register active connection	\
1449 		 * information						\
1450 		 */							\
1451 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1452 			if ((tcp)->tcp_ipha->ipha_src != 0) {		\
1453 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET,\
1454 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\
1455 				    (in_port_t)(tcp)->tcp_lport,	\
1456 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\
1457 				    (in_port_t)(tcp)->tcp_fport);	\
1458 			}						\
1459 		} else {						\
1460 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1461 			    &(tcp)->tcp_ip6h->ip6_src)) {\
1462 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\
1463 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\
1464 				    (in_port_t)(tcp)->tcp_lport,	\
1465 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\
1466 				    (in_port_t)(tcp)->tcp_fport);	\
1467 			}						\
1468 		}							\
1469 	}								\
1470 }
1471 
1472 #define	CL_INET_DISCONNECT(tcp)	{				\
1473 	if (cl_inet_disconnect != NULL) {				\
1474 		/*							\
1475 		 * Running in cluster mode - deregister active		\
1476 		 * connection information				\
1477 		 */							\
1478 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1479 			if ((tcp)->tcp_ip_src != 0) {			\
1480 				(*cl_inet_disconnect)(IPPROTO_TCP,	\
1481 				    AF_INET,				\
1482 				    (uint8_t *)(&((tcp)->tcp_ip_src)),\
1483 				    (in_port_t)(tcp)->tcp_lport,	\
1484 				    (uint8_t *)				\
1485 				    (&((tcp)->tcp_ipha->ipha_dst)),\
1486 				    (in_port_t)(tcp)->tcp_fport);	\
1487 			}						\
1488 		} else {						\
1489 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1490 			    &(tcp)->tcp_ip_src_v6)) {			\
1491 				(*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\
1492 				    (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\
1493 				    (in_port_t)(tcp)->tcp_lport,	\
1494 				    (uint8_t *)				\
1495 				    (&((tcp)->tcp_ip6h->ip6_dst)),\
1496 				    (in_port_t)(tcp)->tcp_fport);	\
1497 			}						\
1498 		}							\
1499 	}								\
1500 }
1501 
1502 /*
1503  * Cluster networking hook for traversing current connection list.
1504  * This routine is used to extract the current list of live connections
1505  * which must continue to to be dispatched to this node.
1506  */
1507 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg);
1508 
1509 /*
1510  * Figure out the value of window scale opton.  Note that the rwnd is
1511  * ASSUMED to be rounded up to the nearest MSS before the calculation.
1512  * We cannot find the scale value and then do a round up of tcp_rwnd
1513  * because the scale value may not be correct after that.
1514  *
1515  * Set the compiler flag to make this function inline.
1516  */
1517 static void
1518 tcp_set_ws_value(tcp_t *tcp)
1519 {
1520 	int i;
1521 	uint32_t rwnd = tcp->tcp_rwnd;
1522 
1523 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
1524 	    i++, rwnd >>= 1)
1525 		;
1526 	tcp->tcp_rcv_ws = i;
1527 }
1528 
1529 /*
1530  * Remove a connection from the list of detached TIME_WAIT connections.
1531  */
1532 static void
1533 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait)
1534 {
1535 	boolean_t	locked = B_FALSE;
1536 
1537 	if (tcp_time_wait == NULL) {
1538 		tcp_time_wait = *((tcp_squeue_priv_t **)
1539 		    squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP));
1540 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1541 		locked = B_TRUE;
1542 	}
1543 
1544 	if (tcp->tcp_time_wait_expire == 0) {
1545 		ASSERT(tcp->tcp_time_wait_next == NULL);
1546 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1547 		if (locked)
1548 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1549 		return;
1550 	}
1551 	ASSERT(TCP_IS_DETACHED(tcp));
1552 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1553 
1554 	if (tcp == tcp_time_wait->tcp_time_wait_head) {
1555 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1556 		tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next;
1557 		if (tcp_time_wait->tcp_time_wait_head != NULL) {
1558 			tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev =
1559 			    NULL;
1560 		} else {
1561 			tcp_time_wait->tcp_time_wait_tail = NULL;
1562 		}
1563 	} else if (tcp == tcp_time_wait->tcp_time_wait_tail) {
1564 		ASSERT(tcp != tcp_time_wait->tcp_time_wait_head);
1565 		ASSERT(tcp->tcp_time_wait_next == NULL);
1566 		tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev;
1567 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1568 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL;
1569 	} else {
1570 		ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp);
1571 		ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp);
1572 		tcp->tcp_time_wait_prev->tcp_time_wait_next =
1573 		    tcp->tcp_time_wait_next;
1574 		tcp->tcp_time_wait_next->tcp_time_wait_prev =
1575 		    tcp->tcp_time_wait_prev;
1576 	}
1577 	tcp->tcp_time_wait_next = NULL;
1578 	tcp->tcp_time_wait_prev = NULL;
1579 	tcp->tcp_time_wait_expire = 0;
1580 
1581 	if (locked)
1582 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1583 }
1584 
1585 /*
1586  * Add a connection to the list of detached TIME_WAIT connections
1587  * and set its time to expire.
1588  */
1589 static void
1590 tcp_time_wait_append(tcp_t *tcp)
1591 {
1592 	tcp_squeue_priv_t *tcp_time_wait =
1593 	    *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp,
1594 		SQPRIVATE_TCP));
1595 
1596 	tcp_timers_stop(tcp);
1597 
1598 	/* Freed above */
1599 	ASSERT(tcp->tcp_timer_tid == 0);
1600 	ASSERT(tcp->tcp_ack_tid == 0);
1601 
1602 	/* must have happened at the time of detaching the tcp */
1603 	ASSERT(tcp->tcp_ptpahn == NULL);
1604 	ASSERT(tcp->tcp_flow_stopped == 0);
1605 	ASSERT(tcp->tcp_time_wait_next == NULL);
1606 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1607 	ASSERT(tcp->tcp_time_wait_expire == NULL);
1608 	ASSERT(tcp->tcp_listener == NULL);
1609 
1610 	tcp->tcp_time_wait_expire = ddi_get_lbolt();
1611 	/*
1612 	 * The value computed below in tcp->tcp_time_wait_expire may
1613 	 * appear negative or wrap around. That is ok since our
1614 	 * interest is only in the difference between the current lbolt
1615 	 * value and tcp->tcp_time_wait_expire. But the value should not
1616 	 * be zero, since it means the tcp is not in the TIME_WAIT list.
1617 	 * The corresponding comparison in tcp_time_wait_collector() uses
1618 	 * modular arithmetic.
1619 	 */
1620 	tcp->tcp_time_wait_expire +=
1621 	    drv_usectohz(tcp_time_wait_interval * 1000);
1622 	if (tcp->tcp_time_wait_expire == 0)
1623 		tcp->tcp_time_wait_expire = 1;
1624 
1625 	ASSERT(TCP_IS_DETACHED(tcp));
1626 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1627 	ASSERT(tcp->tcp_time_wait_next == NULL);
1628 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1629 	TCP_DBGSTAT(tcp_time_wait);
1630 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1631 	if (tcp_time_wait->tcp_time_wait_head == NULL) {
1632 		ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL);
1633 		tcp_time_wait->tcp_time_wait_head = tcp;
1634 	} else {
1635 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1636 		ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state ==
1637 		    TCPS_TIME_WAIT);
1638 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp;
1639 		tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail;
1640 	}
1641 	tcp_time_wait->tcp_time_wait_tail = tcp;
1642 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1643 }
1644 
1645 /* ARGSUSED */
1646 void
1647 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2)
1648 {
1649 	conn_t	*connp = (conn_t *)arg;
1650 	tcp_t	*tcp = connp->conn_tcp;
1651 
1652 	ASSERT(tcp != NULL);
1653 	if (tcp->tcp_state == TCPS_CLOSED) {
1654 		return;
1655 	}
1656 
1657 	ASSERT((tcp->tcp_family == AF_INET &&
1658 	    tcp->tcp_ipversion == IPV4_VERSION) ||
1659 	    (tcp->tcp_family == AF_INET6 &&
1660 	    (tcp->tcp_ipversion == IPV4_VERSION ||
1661 	    tcp->tcp_ipversion == IPV6_VERSION)));
1662 	ASSERT(!tcp->tcp_listener);
1663 
1664 	TCP_STAT(tcp_time_wait_reap);
1665 	ASSERT(TCP_IS_DETACHED(tcp));
1666 
1667 	/*
1668 	 * Because they have no upstream client to rebind or tcp_close()
1669 	 * them later, we axe the connection here and now.
1670 	 */
1671 	tcp_close_detached(tcp);
1672 }
1673 
1674 void
1675 tcp_cleanup(tcp_t *tcp)
1676 {
1677 	mblk_t		*mp;
1678 	char		*tcp_iphc;
1679 	int		tcp_iphc_len;
1680 	int		tcp_hdr_grown;
1681 	tcp_sack_info_t	*tcp_sack_info;
1682 	conn_t		*connp = tcp->tcp_connp;
1683 
1684 	tcp_bind_hash_remove(tcp);
1685 	tcp_free(tcp);
1686 
1687 	/* Release any SSL context */
1688 	if (tcp->tcp_kssl_ent != NULL) {
1689 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
1690 		tcp->tcp_kssl_ent = NULL;
1691 	}
1692 
1693 	if (tcp->tcp_kssl_ctx != NULL) {
1694 		kssl_release_ctx(tcp->tcp_kssl_ctx);
1695 		tcp->tcp_kssl_ctx = NULL;
1696 	}
1697 	tcp->tcp_kssl_pending = B_FALSE;
1698 
1699 	conn_delete_ire(connp, NULL);
1700 	if (connp->conn_flags & IPCL_TCPCONN) {
1701 		if (connp->conn_latch != NULL)
1702 			IPLATCH_REFRELE(connp->conn_latch);
1703 		if (connp->conn_policy != NULL)
1704 			IPPH_REFRELE(connp->conn_policy);
1705 	}
1706 
1707 	/*
1708 	 * Since we will bzero the entire structure, we need to
1709 	 * remove it and reinsert it in global hash list. We
1710 	 * know the walkers can't get to this conn because we
1711 	 * had set CONDEMNED flag earlier and checked reference
1712 	 * under conn_lock so walker won't pick it and when we
1713 	 * go the ipcl_globalhash_remove() below, no walker
1714 	 * can get to it.
1715 	 */
1716 	ipcl_globalhash_remove(connp);
1717 
1718 	/* Save some state */
1719 	mp = tcp->tcp_timercache;
1720 
1721 	tcp_sack_info = tcp->tcp_sack_info;
1722 	tcp_iphc = tcp->tcp_iphc;
1723 	tcp_iphc_len = tcp->tcp_iphc_len;
1724 	tcp_hdr_grown = tcp->tcp_hdr_grown;
1725 
1726 	if (connp->conn_cred != NULL)
1727 		crfree(connp->conn_cred);
1728 	if (connp->conn_peercred != NULL)
1729 		crfree(connp->conn_peercred);
1730 	bzero(connp, sizeof (conn_t));
1731 	bzero(tcp, sizeof (tcp_t));
1732 
1733 	/* restore the state */
1734 	tcp->tcp_timercache = mp;
1735 
1736 	tcp->tcp_sack_info = tcp_sack_info;
1737 	tcp->tcp_iphc = tcp_iphc;
1738 	tcp->tcp_iphc_len = tcp_iphc_len;
1739 	tcp->tcp_hdr_grown = tcp_hdr_grown;
1740 
1741 
1742 	tcp->tcp_connp = connp;
1743 
1744 	connp->conn_tcp = tcp;
1745 	connp->conn_flags = IPCL_TCPCONN;
1746 	connp->conn_state_flags = CONN_INCIPIENT;
1747 	connp->conn_ulp = IPPROTO_TCP;
1748 	connp->conn_ref = 1;
1749 
1750 	ipcl_globalhash_insert(connp);
1751 }
1752 
1753 /*
1754  * Blows away all tcps whose TIME_WAIT has expired. List traversal
1755  * is done forwards from the head.
1756  */
1757 /* ARGSUSED */
1758 void
1759 tcp_time_wait_collector(void *arg)
1760 {
1761 	tcp_t *tcp;
1762 	clock_t now;
1763 	mblk_t *mp;
1764 	conn_t *connp;
1765 	kmutex_t *lock;
1766 
1767 	squeue_t *sqp = (squeue_t *)arg;
1768 	tcp_squeue_priv_t *tcp_time_wait =
1769 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1770 
1771 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1772 	tcp_time_wait->tcp_time_wait_tid = 0;
1773 
1774 	if (tcp_time_wait->tcp_free_list != NULL &&
1775 	    tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) {
1776 		TCP_STAT(tcp_freelist_cleanup);
1777 		while ((tcp = tcp_time_wait->tcp_free_list) != NULL) {
1778 			tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1779 			CONN_DEC_REF(tcp->tcp_connp);
1780 		}
1781 		tcp_time_wait->tcp_free_list_cnt = 0;
1782 	}
1783 
1784 	/*
1785 	 * In order to reap time waits reliably, we should use a
1786 	 * source of time that is not adjustable by the user -- hence
1787 	 * the call to ddi_get_lbolt().
1788 	 */
1789 	now = ddi_get_lbolt();
1790 	while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) {
1791 		/*
1792 		 * Compare times using modular arithmetic, since
1793 		 * lbolt can wrapover.
1794 		 */
1795 		if ((now - tcp->tcp_time_wait_expire) < 0) {
1796 			break;
1797 		}
1798 
1799 		tcp_time_wait_remove(tcp, tcp_time_wait);
1800 
1801 		connp = tcp->tcp_connp;
1802 		ASSERT(connp->conn_fanout != NULL);
1803 		lock = &connp->conn_fanout->connf_lock;
1804 		/*
1805 		 * This is essentially a TW reclaim fast path optimization for
1806 		 * performance where the timewait collector checks under the
1807 		 * fanout lock (so that no one else can get access to the
1808 		 * conn_t) that the refcnt is 2 i.e. one for TCP and one for
1809 		 * the classifier hash list. If ref count is indeed 2, we can
1810 		 * just remove the conn under the fanout lock and avoid
1811 		 * cleaning up the conn under the squeue, provided that
1812 		 * clustering callbacks are not enabled. If clustering is
1813 		 * enabled, we need to make the clustering callback before
1814 		 * setting the CONDEMNED flag and after dropping all locks and
1815 		 * so we forego this optimization and fall back to the slow
1816 		 * path. Also please see the comments in tcp_closei_local
1817 		 * regarding the refcnt logic.
1818 		 *
1819 		 * Since we are holding the tcp_time_wait_lock, its better
1820 		 * not to block on the fanout_lock because other connections
1821 		 * can't add themselves to time_wait list. So we do a
1822 		 * tryenter instead of mutex_enter.
1823 		 */
1824 		if (mutex_tryenter(lock)) {
1825 			mutex_enter(&connp->conn_lock);
1826 			if ((connp->conn_ref == 2) &&
1827 			    (cl_inet_disconnect == NULL)) {
1828 				ipcl_hash_remove_locked(connp,
1829 				    connp->conn_fanout);
1830 				/*
1831 				 * Set the CONDEMNED flag now itself so that
1832 				 * the refcnt cannot increase due to any
1833 				 * walker. But we have still not cleaned up
1834 				 * conn_ire_cache. This is still ok since
1835 				 * we are going to clean it up in tcp_cleanup
1836 				 * immediately and any interface unplumb
1837 				 * thread will wait till the ire is blown away
1838 				 */
1839 				connp->conn_state_flags |= CONN_CONDEMNED;
1840 				mutex_exit(lock);
1841 				mutex_exit(&connp->conn_lock);
1842 				if (tcp_time_wait->tcp_free_list_cnt <
1843 				    tcp_free_list_max_cnt) {
1844 					/* Add to head of tcp_free_list */
1845 					mutex_exit(
1846 					    &tcp_time_wait->tcp_time_wait_lock);
1847 					tcp_cleanup(tcp);
1848 					mutex_enter(
1849 					    &tcp_time_wait->tcp_time_wait_lock);
1850 					tcp->tcp_time_wait_next =
1851 					    tcp_time_wait->tcp_free_list;
1852 					tcp_time_wait->tcp_free_list = tcp;
1853 					tcp_time_wait->tcp_free_list_cnt++;
1854 					continue;
1855 				} else {
1856 					/* Do not add to tcp_free_list */
1857 					mutex_exit(
1858 					    &tcp_time_wait->tcp_time_wait_lock);
1859 					tcp_bind_hash_remove(tcp);
1860 					conn_delete_ire(tcp->tcp_connp, NULL);
1861 					CONN_DEC_REF(tcp->tcp_connp);
1862 				}
1863 			} else {
1864 				CONN_INC_REF_LOCKED(connp);
1865 				mutex_exit(lock);
1866 				mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1867 				mutex_exit(&connp->conn_lock);
1868 				/*
1869 				 * We can reuse the closemp here since conn has
1870 				 * detached (otherwise we wouldn't even be in
1871 				 * time_wait list).
1872 				 */
1873 				mp = &tcp->tcp_closemp;
1874 				squeue_fill(connp->conn_sqp, mp,
1875 				    tcp_timewait_output, connp,
1876 				    SQTAG_TCP_TIMEWAIT);
1877 			}
1878 		} else {
1879 			mutex_enter(&connp->conn_lock);
1880 			CONN_INC_REF_LOCKED(connp);
1881 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1882 			mutex_exit(&connp->conn_lock);
1883 			/*
1884 			 * We can reuse the closemp here since conn has
1885 			 * detached (otherwise we wouldn't even be in
1886 			 * time_wait list).
1887 			 */
1888 			mp = &tcp->tcp_closemp;
1889 			squeue_fill(connp->conn_sqp, mp,
1890 			    tcp_timewait_output, connp, 0);
1891 		}
1892 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1893 	}
1894 
1895 	if (tcp_time_wait->tcp_free_list != NULL)
1896 		tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE;
1897 
1898 	tcp_time_wait->tcp_time_wait_tid =
1899 	    timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY);
1900 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1901 }
1902 
1903 /*
1904  * Reply to a clients T_CONN_RES TPI message. This function
1905  * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES
1906  * on the acceptor STREAM and processed in tcp_wput_accept().
1907  * Read the block comment on top of tcp_conn_request().
1908  */
1909 static void
1910 tcp_accept(tcp_t *listener, mblk_t *mp)
1911 {
1912 	tcp_t	*acceptor;
1913 	tcp_t	*eager;
1914 	tcp_t   *tcp;
1915 	struct T_conn_res	*tcr;
1916 	t_uscalar_t	acceptor_id;
1917 	t_scalar_t	seqnum;
1918 	mblk_t	*opt_mp = NULL;	/* T_OPTMGMT_REQ messages */
1919 	mblk_t	*ok_mp;
1920 	mblk_t	*mp1;
1921 
1922 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
1923 		tcp_err_ack(listener, mp, TPROTO, 0);
1924 		return;
1925 	}
1926 	tcr = (struct T_conn_res *)mp->b_rptr;
1927 
1928 	/*
1929 	 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the
1930 	 * read side queue of the streams device underneath us i.e. the
1931 	 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we
1932 	 * look it up in the queue_hash.  Under LP64 it sends down the
1933 	 * minor_t of the accepting endpoint.
1934 	 *
1935 	 * Once the acceptor/eager are modified (in tcp_accept_swap) the
1936 	 * fanout hash lock is held.
1937 	 * This prevents any thread from entering the acceptor queue from
1938 	 * below (since it has not been hard bound yet i.e. any inbound
1939 	 * packets will arrive on the listener or default tcp queue and
1940 	 * go through tcp_lookup).
1941 	 * The CONN_INC_REF will prevent the acceptor from closing.
1942 	 *
1943 	 * XXX It is still possible for a tli application to send down data
1944 	 * on the accepting stream while another thread calls t_accept.
1945 	 * This should not be a problem for well-behaved applications since
1946 	 * the T_OK_ACK is sent after the queue swapping is completed.
1947 	 *
1948 	 * If the accepting fd is the same as the listening fd, avoid
1949 	 * queue hash lookup since that will return an eager listener in a
1950 	 * already established state.
1951 	 */
1952 	acceptor_id = tcr->ACCEPTOR_id;
1953 	mutex_enter(&listener->tcp_eager_lock);
1954 	if (listener->tcp_acceptor_id == acceptor_id) {
1955 		eager = listener->tcp_eager_next_q;
1956 		/* only count how many T_CONN_INDs so don't count q0 */
1957 		if ((listener->tcp_conn_req_cnt_q != 1) ||
1958 		    (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) {
1959 			mutex_exit(&listener->tcp_eager_lock);
1960 			tcp_err_ack(listener, mp, TBADF, 0);
1961 			return;
1962 		}
1963 		if (listener->tcp_conn_req_cnt_q0 != 0) {
1964 			/* Throw away all the eagers on q0. */
1965 			tcp_eager_cleanup(listener, 1);
1966 		}
1967 		if (listener->tcp_syn_defense) {
1968 			listener->tcp_syn_defense = B_FALSE;
1969 			if (listener->tcp_ip_addr_cache != NULL) {
1970 				kmem_free(listener->tcp_ip_addr_cache,
1971 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
1972 				listener->tcp_ip_addr_cache = NULL;
1973 			}
1974 		}
1975 		/*
1976 		 * Transfer tcp_conn_req_max to the eager so that when
1977 		 * a disconnect occurs we can revert the endpoint to the
1978 		 * listen state.
1979 		 */
1980 		eager->tcp_conn_req_max = listener->tcp_conn_req_max;
1981 		ASSERT(listener->tcp_conn_req_cnt_q0 == 0);
1982 		/*
1983 		 * Get a reference on the acceptor just like the
1984 		 * tcp_acceptor_hash_lookup below.
1985 		 */
1986 		acceptor = listener;
1987 		CONN_INC_REF(acceptor->tcp_connp);
1988 	} else {
1989 		acceptor = tcp_acceptor_hash_lookup(acceptor_id);
1990 		if (acceptor == NULL) {
1991 			if (listener->tcp_debug) {
1992 				(void) strlog(TCP_MOD_ID, 0, 1,
1993 				    SL_ERROR|SL_TRACE,
1994 				    "tcp_accept: did not find acceptor 0x%x\n",
1995 				    acceptor_id);
1996 			}
1997 			mutex_exit(&listener->tcp_eager_lock);
1998 			tcp_err_ack(listener, mp, TPROVMISMATCH, 0);
1999 			return;
2000 		}
2001 		/*
2002 		 * Verify acceptor state. The acceptable states for an acceptor
2003 		 * include TCPS_IDLE and TCPS_BOUND.
2004 		 */
2005 		switch (acceptor->tcp_state) {
2006 		case TCPS_IDLE:
2007 			/* FALLTHRU */
2008 		case TCPS_BOUND:
2009 			break;
2010 		default:
2011 			CONN_DEC_REF(acceptor->tcp_connp);
2012 			mutex_exit(&listener->tcp_eager_lock);
2013 			tcp_err_ack(listener, mp, TOUTSTATE, 0);
2014 			return;
2015 		}
2016 	}
2017 
2018 	/* The listener must be in TCPS_LISTEN */
2019 	if (listener->tcp_state != TCPS_LISTEN) {
2020 		CONN_DEC_REF(acceptor->tcp_connp);
2021 		mutex_exit(&listener->tcp_eager_lock);
2022 		tcp_err_ack(listener, mp, TOUTSTATE, 0);
2023 		return;
2024 	}
2025 
2026 	/*
2027 	 * Rendezvous with an eager connection request packet hanging off
2028 	 * 'tcp' that has the 'seqnum' tag.  We tagged the detached open
2029 	 * tcp structure when the connection packet arrived in
2030 	 * tcp_conn_request().
2031 	 */
2032 	seqnum = tcr->SEQ_number;
2033 	eager = listener;
2034 	do {
2035 		eager = eager->tcp_eager_next_q;
2036 		if (eager == NULL) {
2037 			CONN_DEC_REF(acceptor->tcp_connp);
2038 			mutex_exit(&listener->tcp_eager_lock);
2039 			tcp_err_ack(listener, mp, TBADSEQ, 0);
2040 			return;
2041 		}
2042 	} while (eager->tcp_conn_req_seqnum != seqnum);
2043 	mutex_exit(&listener->tcp_eager_lock);
2044 
2045 	/*
2046 	 * At this point, both acceptor and listener have 2 ref
2047 	 * that they begin with. Acceptor has one additional ref
2048 	 * we placed in lookup while listener has 3 additional
2049 	 * ref for being behind the squeue (tcp_accept() is
2050 	 * done on listener's squeue); being in classifier hash;
2051 	 * and eager's ref on listener.
2052 	 */
2053 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2054 	ASSERT(acceptor->tcp_connp->conn_ref >= 3);
2055 
2056 	/*
2057 	 * The eager at this point is set in its own squeue and
2058 	 * could easily have been killed (tcp_accept_finish will
2059 	 * deal with that) because of a TH_RST so we can only
2060 	 * ASSERT for a single ref.
2061 	 */
2062 	ASSERT(eager->tcp_connp->conn_ref >= 1);
2063 
2064 	/* Pre allocate the stroptions mblk also */
2065 	opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
2066 	if (opt_mp == NULL) {
2067 		CONN_DEC_REF(acceptor->tcp_connp);
2068 		CONN_DEC_REF(eager->tcp_connp);
2069 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2070 		return;
2071 	}
2072 	DB_TYPE(opt_mp) = M_SETOPTS;
2073 	opt_mp->b_wptr += sizeof (struct stroptions);
2074 
2075 	/*
2076 	 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
2077 	 * from listener to acceptor. The message is chained on opt_mp
2078 	 * which will be sent onto eager's squeue.
2079 	 */
2080 	if (listener->tcp_bound_if != 0) {
2081 		/* allocate optmgmt req */
2082 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2083 		    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
2084 		    sizeof (int));
2085 		if (mp1 != NULL)
2086 			linkb(opt_mp, mp1);
2087 	}
2088 	if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
2089 		uint_t on = 1;
2090 
2091 		/* allocate optmgmt req */
2092 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2093 		    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
2094 		if (mp1 != NULL)
2095 			linkb(opt_mp, mp1);
2096 	}
2097 
2098 	/* Re-use mp1 to hold a copy of mp, in case reallocb fails */
2099 	if ((mp1 = copymsg(mp)) == NULL) {
2100 		CONN_DEC_REF(acceptor->tcp_connp);
2101 		CONN_DEC_REF(eager->tcp_connp);
2102 		freemsg(opt_mp);
2103 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2104 		return;
2105 	}
2106 
2107 	tcr = (struct T_conn_res *)mp1->b_rptr;
2108 
2109 	/*
2110 	 * This is an expanded version of mi_tpi_ok_ack_alloc()
2111 	 * which allocates a larger mblk and appends the new
2112 	 * local address to the ok_ack.  The address is copied by
2113 	 * soaccept() for getsockname().
2114 	 */
2115 	{
2116 		int extra;
2117 
2118 		extra = (eager->tcp_family == AF_INET) ?
2119 		    sizeof (sin_t) : sizeof (sin6_t);
2120 
2121 		/*
2122 		 * Try to re-use mp, if possible.  Otherwise, allocate
2123 		 * an mblk and return it as ok_mp.  In any case, mp
2124 		 * is no longer usable upon return.
2125 		 */
2126 		if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) {
2127 			CONN_DEC_REF(acceptor->tcp_connp);
2128 			CONN_DEC_REF(eager->tcp_connp);
2129 			freemsg(opt_mp);
2130 			/* Original mp has been freed by now, so use mp1 */
2131 			tcp_err_ack(listener, mp1, TSYSERR, ENOMEM);
2132 			return;
2133 		}
2134 
2135 		mp = NULL;	/* We should never use mp after this point */
2136 
2137 		switch (extra) {
2138 		case sizeof (sin_t): {
2139 				sin_t *sin = (sin_t *)ok_mp->b_wptr;
2140 
2141 				ok_mp->b_wptr += extra;
2142 				sin->sin_family = AF_INET;
2143 				sin->sin_port = eager->tcp_lport;
2144 				sin->sin_addr.s_addr =
2145 				    eager->tcp_ipha->ipha_src;
2146 				break;
2147 			}
2148 		case sizeof (sin6_t): {
2149 				sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr;
2150 
2151 				ok_mp->b_wptr += extra;
2152 				sin6->sin6_family = AF_INET6;
2153 				sin6->sin6_port = eager->tcp_lport;
2154 				if (eager->tcp_ipversion == IPV4_VERSION) {
2155 					sin6->sin6_flowinfo = 0;
2156 					IN6_IPADDR_TO_V4MAPPED(
2157 					    eager->tcp_ipha->ipha_src,
2158 					    &sin6->sin6_addr);
2159 				} else {
2160 					ASSERT(eager->tcp_ip6h != NULL);
2161 					sin6->sin6_flowinfo =
2162 					    eager->tcp_ip6h->ip6_vcf &
2163 					    ~IPV6_VERS_AND_FLOW_MASK;
2164 					sin6->sin6_addr =
2165 					    eager->tcp_ip6h->ip6_src;
2166 				}
2167 				break;
2168 			}
2169 		default:
2170 			break;
2171 		}
2172 		ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim);
2173 	}
2174 
2175 	/*
2176 	 * If there are no options we know that the T_CONN_RES will
2177 	 * succeed. However, we can't send the T_OK_ACK upstream until
2178 	 * the tcp_accept_swap is done since it would be dangerous to
2179 	 * let the application start using the new fd prior to the swap.
2180 	 */
2181 	tcp_accept_swap(listener, acceptor, eager);
2182 
2183 	/*
2184 	 * tcp_accept_swap unlinks eager from listener but does not drop
2185 	 * the eager's reference on the listener.
2186 	 */
2187 	ASSERT(eager->tcp_listener == NULL);
2188 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2189 
2190 	/*
2191 	 * The eager is now associated with its own queue. Insert in
2192 	 * the hash so that the connection can be reused for a future
2193 	 * T_CONN_RES.
2194 	 */
2195 	tcp_acceptor_hash_insert(acceptor_id, eager);
2196 
2197 	/*
2198 	 * We now do the processing of options with T_CONN_RES.
2199 	 * We delay till now since we wanted to have queue to pass to
2200 	 * option processing routines that points back to the right
2201 	 * instance structure which does not happen until after
2202 	 * tcp_accept_swap().
2203 	 *
2204 	 * Note:
2205 	 * The sanity of the logic here assumes that whatever options
2206 	 * are appropriate to inherit from listner=>eager are done
2207 	 * before this point, and whatever were to be overridden (or not)
2208 	 * in transfer logic from eager=>acceptor in tcp_accept_swap().
2209 	 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it
2210 	 *   before its ACCEPTOR_id comes down in T_CONN_RES ]
2211 	 * This may not be true at this point in time but can be fixed
2212 	 * independently. This option processing code starts with
2213 	 * the instantiated acceptor instance and the final queue at
2214 	 * this point.
2215 	 */
2216 
2217 	if (tcr->OPT_length != 0) {
2218 		/* Options to process */
2219 		int t_error = 0;
2220 		int sys_error = 0;
2221 		int do_disconnect = 0;
2222 
2223 		if (tcp_conprim_opt_process(eager, mp1,
2224 		    &do_disconnect, &t_error, &sys_error) < 0) {
2225 			eager->tcp_accept_error = 1;
2226 			if (do_disconnect) {
2227 				/*
2228 				 * An option failed which does not allow
2229 				 * connection to be accepted.
2230 				 *
2231 				 * We allow T_CONN_RES to succeed and
2232 				 * put a T_DISCON_IND on the eager queue.
2233 				 */
2234 				ASSERT(t_error == 0 && sys_error == 0);
2235 				eager->tcp_send_discon_ind = 1;
2236 			} else {
2237 				ASSERT(t_error != 0);
2238 				freemsg(ok_mp);
2239 				/*
2240 				 * Original mp was either freed or set
2241 				 * to ok_mp above, so use mp1 instead.
2242 				 */
2243 				tcp_err_ack(listener, mp1, t_error, sys_error);
2244 				goto finish;
2245 			}
2246 		}
2247 		/*
2248 		 * Most likely success in setting options (except if
2249 		 * eager->tcp_send_discon_ind set).
2250 		 * mp1 option buffer represented by OPT_length/offset
2251 		 * potentially modified and contains results of setting
2252 		 * options at this point
2253 		 */
2254 	}
2255 
2256 	/* We no longer need mp1, since all options processing has passed */
2257 	freemsg(mp1);
2258 
2259 	putnext(listener->tcp_rq, ok_mp);
2260 
2261 	mutex_enter(&listener->tcp_eager_lock);
2262 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
2263 		tcp_t	*tail;
2264 		mblk_t	*conn_ind;
2265 
2266 		/*
2267 		 * This path should not be executed if listener and
2268 		 * acceptor streams are the same.
2269 		 */
2270 		ASSERT(listener != acceptor);
2271 
2272 		tcp = listener->tcp_eager_prev_q0;
2273 		/*
2274 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
2275 		 * deferred T_conn_ind queue. We need to get to the head of
2276 		 * the queue in order to send up T_conn_ind the same order as
2277 		 * how the 3WHS is completed.
2278 		 */
2279 		while (tcp != listener) {
2280 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0)
2281 				break;
2282 			else
2283 				tcp = tcp->tcp_eager_prev_q0;
2284 		}
2285 		ASSERT(tcp != listener);
2286 		conn_ind = tcp->tcp_conn.tcp_eager_conn_ind;
2287 		ASSERT(conn_ind != NULL);
2288 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
2289 
2290 		/* Move from q0 to q */
2291 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
2292 		listener->tcp_conn_req_cnt_q0--;
2293 		listener->tcp_conn_req_cnt_q++;
2294 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
2295 		    tcp->tcp_eager_prev_q0;
2296 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
2297 		    tcp->tcp_eager_next_q0;
2298 		tcp->tcp_eager_prev_q0 = NULL;
2299 		tcp->tcp_eager_next_q0 = NULL;
2300 		tcp->tcp_conn_def_q0 = B_FALSE;
2301 
2302 		/*
2303 		 * Insert at end of the queue because sockfs sends
2304 		 * down T_CONN_RES in chronological order. Leaving
2305 		 * the older conn indications at front of the queue
2306 		 * helps reducing search time.
2307 		 */
2308 		tail = listener->tcp_eager_last_q;
2309 		if (tail != NULL)
2310 			tail->tcp_eager_next_q = tcp;
2311 		else
2312 			listener->tcp_eager_next_q = tcp;
2313 		listener->tcp_eager_last_q = tcp;
2314 		tcp->tcp_eager_next_q = NULL;
2315 		mutex_exit(&listener->tcp_eager_lock);
2316 		putnext(tcp->tcp_rq, conn_ind);
2317 	} else {
2318 		mutex_exit(&listener->tcp_eager_lock);
2319 	}
2320 
2321 	/*
2322 	 * Done with the acceptor - free it
2323 	 *
2324 	 * Note: from this point on, no access to listener should be made
2325 	 * as listener can be equal to acceptor.
2326 	 */
2327 finish:
2328 	ASSERT(acceptor->tcp_detached);
2329 	acceptor->tcp_rq = tcp_g_q;
2330 	acceptor->tcp_wq = WR(tcp_g_q);
2331 	(void) tcp_clean_death(acceptor, 0, 2);
2332 	CONN_DEC_REF(acceptor->tcp_connp);
2333 
2334 	/*
2335 	 * In case we already received a FIN we have to make tcp_rput send
2336 	 * the ordrel_ind. This will also send up a window update if the window
2337 	 * has opened up.
2338 	 *
2339 	 * In the normal case of a successful connection acceptance
2340 	 * we give the O_T_BIND_REQ to the read side put procedure as an
2341 	 * indication that this was just accepted. This tells tcp_rput to
2342 	 * pass up any data queued in tcp_rcv_list.
2343 	 *
2344 	 * In the fringe case where options sent with T_CONN_RES failed and
2345 	 * we required, we would be indicating a T_DISCON_IND to blow
2346 	 * away this connection.
2347 	 */
2348 
2349 	/*
2350 	 * XXX: we currently have a problem if XTI application closes the
2351 	 * acceptor stream in between. This problem exists in on10-gate also
2352 	 * and is well know but nothing can be done short of major rewrite
2353 	 * to fix it. Now it is possible to take care of it by assigning TLI/XTI
2354 	 * eager same squeue as listener (we can distinguish non socket
2355 	 * listeners at the time of handling a SYN in tcp_conn_request)
2356 	 * and do most of the work that tcp_accept_finish does here itself
2357 	 * and then get behind the acceptor squeue to access the acceptor
2358 	 * queue.
2359 	 */
2360 	/*
2361 	 * We already have a ref on tcp so no need to do one before squeue_fill
2362 	 */
2363 	squeue_fill(eager->tcp_connp->conn_sqp, opt_mp,
2364 	    tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH);
2365 }
2366 
2367 /*
2368  * Swap information between the eager and acceptor for a TLI/XTI client.
2369  * The sockfs accept is done on the acceptor stream and control goes
2370  * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not
2371  * called. In either case, both the eager and listener are in their own
2372  * perimeter (squeue) and the code has to deal with potential race.
2373  *
2374  * See the block comment on top of tcp_accept() and tcp_wput_accept().
2375  */
2376 static void
2377 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager)
2378 {
2379 	conn_t	*econnp, *aconnp;
2380 
2381 	ASSERT(eager->tcp_rq == listener->tcp_rq);
2382 	ASSERT(eager->tcp_detached && !acceptor->tcp_detached);
2383 	ASSERT(!eager->tcp_hard_bound);
2384 	ASSERT(!TCP_IS_SOCKET(acceptor));
2385 	ASSERT(!TCP_IS_SOCKET(eager));
2386 	ASSERT(!TCP_IS_SOCKET(listener));
2387 
2388 	acceptor->tcp_detached = B_TRUE;
2389 	/*
2390 	 * To permit stream re-use by TLI/XTI, the eager needs a copy of
2391 	 * the acceptor id.
2392 	 */
2393 	eager->tcp_acceptor_id = acceptor->tcp_acceptor_id;
2394 
2395 	/* remove eager from listen list... */
2396 	mutex_enter(&listener->tcp_eager_lock);
2397 	tcp_eager_unlink(eager);
2398 	ASSERT(eager->tcp_eager_next_q == NULL &&
2399 	    eager->tcp_eager_last_q == NULL);
2400 	ASSERT(eager->tcp_eager_next_q0 == NULL &&
2401 	    eager->tcp_eager_prev_q0 == NULL);
2402 	mutex_exit(&listener->tcp_eager_lock);
2403 	eager->tcp_rq = acceptor->tcp_rq;
2404 	eager->tcp_wq = acceptor->tcp_wq;
2405 
2406 	econnp = eager->tcp_connp;
2407 	aconnp = acceptor->tcp_connp;
2408 
2409 	eager->tcp_rq->q_ptr = econnp;
2410 	eager->tcp_wq->q_ptr = econnp;
2411 
2412 	/*
2413 	 * In the TLI/XTI loopback case, we are inside the listener's squeue,
2414 	 * which might be a different squeue from our peer TCP instance.
2415 	 * For TCP Fusion, the peer expects that whenever tcp_detached is
2416 	 * clear, our TCP queues point to the acceptor's queues.  Thus, use
2417 	 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq
2418 	 * above reach global visibility prior to the clearing of tcp_detached.
2419 	 */
2420 	membar_producer();
2421 	eager->tcp_detached = B_FALSE;
2422 
2423 	ASSERT(eager->tcp_ack_tid == 0);
2424 
2425 	econnp->conn_dev = aconnp->conn_dev;
2426 	if (eager->tcp_cred != NULL)
2427 		crfree(eager->tcp_cred);
2428 	eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred;
2429 	econnp->conn_zoneid = aconnp->conn_zoneid;
2430 	aconnp->conn_cred = NULL;
2431 
2432 	econnp->conn_mac_exempt = aconnp->conn_mac_exempt;
2433 	aconnp->conn_mac_exempt = B_FALSE;
2434 
2435 	ASSERT(aconnp->conn_peercred == NULL);
2436 
2437 	/* Do the IPC initialization */
2438 	CONN_INC_REF(econnp);
2439 
2440 	econnp->conn_multicast_loop = aconnp->conn_multicast_loop;
2441 	econnp->conn_af_isv6 = aconnp->conn_af_isv6;
2442 	econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6;
2443 	econnp->conn_ulp = aconnp->conn_ulp;
2444 
2445 	/* Done with old IPC. Drop its ref on its connp */
2446 	CONN_DEC_REF(aconnp);
2447 }
2448 
2449 
2450 /*
2451  * Adapt to the information, such as rtt and rtt_sd, provided from the
2452  * ire cached in conn_cache_ire. If no ire cached, do a ire lookup.
2453  *
2454  * Checks for multicast and broadcast destination address.
2455  * Returns zero on failure; non-zero if ok.
2456  *
2457  * Note that the MSS calculation here is based on the info given in
2458  * the IRE.  We do not do any calculation based on TCP options.  They
2459  * will be handled in tcp_rput_other() and tcp_rput_data() when TCP
2460  * knows which options to use.
2461  *
2462  * Note on how TCP gets its parameters for a connection.
2463  *
2464  * When a tcp_t structure is allocated, it gets all the default parameters.
2465  * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd,
2466  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
2467  * default.  But if there is an associated tcp_host_param, it will override
2468  * the metrics.
2469  *
2470  * An incoming SYN with a multicast or broadcast destination address, is dropped
2471  * in 1 of 2 places.
2472  *
2473  * 1. If the packet was received over the wire it is dropped in
2474  * ip_rput_process_broadcast()
2475  *
2476  * 2. If the packet was received through internal IP loopback, i.e. the packet
2477  * was generated and received on the same machine, it is dropped in
2478  * ip_wput_local()
2479  *
2480  * An incoming SYN with a multicast or broadcast source address is always
2481  * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to
2482  * reject an attempt to connect to a broadcast or multicast (destination)
2483  * address.
2484  */
2485 static int
2486 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp)
2487 {
2488 	tcp_hsp_t	*hsp;
2489 	ire_t		*ire;
2490 	ire_t		*sire = NULL;
2491 	iulp_t		*ire_uinfo = NULL;
2492 	uint32_t	mss_max;
2493 	uint32_t	mss;
2494 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2495 	conn_t		*connp = tcp->tcp_connp;
2496 	boolean_t	ire_cacheable = B_FALSE;
2497 	zoneid_t	zoneid = connp->conn_zoneid;
2498 	int		match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
2499 			    MATCH_IRE_SECATTR;
2500 	ts_label_t	*tsl = crgetlabel(CONN_CRED(connp));
2501 	ill_t		*ill = NULL;
2502 	boolean_t	incoming = (ire_mp == NULL);
2503 
2504 	ASSERT(connp->conn_ire_cache == NULL);
2505 
2506 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2507 
2508 		if (CLASSD(tcp->tcp_connp->conn_rem)) {
2509 			BUMP_MIB(&ip_mib, ipInDiscards);
2510 			return (0);
2511 		}
2512 		/*
2513 		 * If IP_NEXTHOP is set, then look for an IRE_CACHE
2514 		 * for the destination with the nexthop as gateway.
2515 		 * ire_ctable_lookup() is used because this particular
2516 		 * ire, if it exists, will be marked private.
2517 		 * If that is not available, use the interface ire
2518 		 * for the nexthop.
2519 		 *
2520 		 * TSol: tcp_update_label will detect label mismatches based
2521 		 * only on the destination's label, but that would not
2522 		 * detect label mismatches based on the security attributes
2523 		 * of routes or next hop gateway. Hence we need to pass the
2524 		 * label to ire_ftable_lookup below in order to locate the
2525 		 * right prefix (and/or) ire cache. Similarly we also need
2526 		 * pass the label to the ire_cache_lookup below to locate
2527 		 * the right ire that also matches on the label.
2528 		 */
2529 		if (tcp->tcp_connp->conn_nexthop_set) {
2530 			ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem,
2531 			    tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid,
2532 			    tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW);
2533 			if (ire == NULL) {
2534 				ire = ire_ftable_lookup(
2535 				    tcp->tcp_connp->conn_nexthop_v4,
2536 				    0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0,
2537 				    tsl, match_flags);
2538 				if (ire == NULL)
2539 					return (0);
2540 			} else {
2541 				ire_uinfo = &ire->ire_uinfo;
2542 			}
2543 		} else {
2544 			ire = ire_cache_lookup(tcp->tcp_connp->conn_rem,
2545 			    zoneid, tsl);
2546 			if (ire != NULL) {
2547 				ire_cacheable = B_TRUE;
2548 				ire_uinfo = (ire_mp != NULL) ?
2549 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2550 				    &ire->ire_uinfo;
2551 
2552 			} else {
2553 				if (ire_mp == NULL) {
2554 					ire = ire_ftable_lookup(
2555 					    tcp->tcp_connp->conn_rem,
2556 					    0, 0, 0, NULL, &sire, zoneid, 0,
2557 					    tsl, (MATCH_IRE_RECURSIVE |
2558 					    MATCH_IRE_DEFAULT));
2559 					if (ire == NULL)
2560 						return (0);
2561 					ire_uinfo = (sire != NULL) ?
2562 					    &sire->ire_uinfo :
2563 					    &ire->ire_uinfo;
2564 				} else {
2565 					ire = (ire_t *)ire_mp->b_rptr;
2566 					ire_uinfo =
2567 					    &((ire_t *)
2568 					    ire_mp->b_rptr)->ire_uinfo;
2569 				}
2570 			}
2571 		}
2572 		ASSERT(ire != NULL);
2573 
2574 		if ((ire->ire_src_addr == INADDR_ANY) ||
2575 		    (ire->ire_type & IRE_BROADCAST)) {
2576 			/*
2577 			 * ire->ire_mp is non null when ire_mp passed in is used
2578 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2579 			 */
2580 			if (ire->ire_mp == NULL)
2581 				ire_refrele(ire);
2582 			if (sire != NULL)
2583 				ire_refrele(sire);
2584 			return (0);
2585 		}
2586 
2587 		if (tcp->tcp_ipha->ipha_src == INADDR_ANY) {
2588 			ipaddr_t src_addr;
2589 
2590 			/*
2591 			 * ip_bind_connected() has stored the correct source
2592 			 * address in conn_src.
2593 			 */
2594 			src_addr = tcp->tcp_connp->conn_src;
2595 			tcp->tcp_ipha->ipha_src = src_addr;
2596 			/*
2597 			 * Copy of the src addr. in tcp_t is needed
2598 			 * for the lookup funcs.
2599 			 */
2600 			IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6);
2601 		}
2602 		/*
2603 		 * Set the fragment bit so that IP will tell us if the MTU
2604 		 * should change. IP tells us the latest setting of
2605 		 * ip_path_mtu_discovery through ire_frag_flag.
2606 		 */
2607 		if (ip_path_mtu_discovery) {
2608 			tcp->tcp_ipha->ipha_fragment_offset_and_flags =
2609 			    htons(IPH_DF);
2610 		}
2611 		/*
2612 		 * If ire_uinfo is NULL, this is the IRE_INTERFACE case
2613 		 * for IP_NEXTHOP. No cache ire has been found for the
2614 		 * destination and we are working with the nexthop's
2615 		 * interface ire. Since we need to forward all packets
2616 		 * to the nexthop first, we "blindly" set tcp_localnet
2617 		 * to false, eventhough the destination may also be
2618 		 * onlink.
2619 		 */
2620 		if (ire_uinfo == NULL)
2621 			tcp->tcp_localnet = 0;
2622 		else
2623 			tcp->tcp_localnet = (ire->ire_gateway_addr == 0);
2624 	} else {
2625 		/*
2626 		 * For incoming connection ire_mp = NULL
2627 		 * For outgoing connection ire_mp != NULL
2628 		 * Technically we should check conn_incoming_ill
2629 		 * when ire_mp is NULL and conn_outgoing_ill when
2630 		 * ire_mp is non-NULL. But this is performance
2631 		 * critical path and for IPV*_BOUND_IF, outgoing
2632 		 * and incoming ill are always set to the same value.
2633 		 */
2634 		ill_t	*dst_ill = NULL;
2635 		ipif_t  *dst_ipif = NULL;
2636 
2637 		ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
2638 
2639 		if (connp->conn_outgoing_ill != NULL) {
2640 			/* Outgoing or incoming path */
2641 			int   err;
2642 
2643 			dst_ill = conn_get_held_ill(connp,
2644 			    &connp->conn_outgoing_ill, &err);
2645 			if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) {
2646 				ip1dbg(("tcp_adapt_ire: ill_lookup failed\n"));
2647 				return (0);
2648 			}
2649 			match_flags |= MATCH_IRE_ILL;
2650 			dst_ipif = dst_ill->ill_ipif;
2651 		}
2652 		ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6,
2653 		    0, 0, dst_ipif, zoneid, tsl, match_flags);
2654 
2655 		if (ire != NULL) {
2656 			ire_cacheable = B_TRUE;
2657 			ire_uinfo = (ire_mp != NULL) ?
2658 			    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2659 			    &ire->ire_uinfo;
2660 		} else {
2661 			if (ire_mp == NULL) {
2662 				ire = ire_ftable_lookup_v6(
2663 				    &tcp->tcp_connp->conn_remv6,
2664 				    0, 0, 0, dst_ipif, &sire, zoneid,
2665 				    0, tsl, match_flags);
2666 				if (ire == NULL) {
2667 					if (dst_ill != NULL)
2668 						ill_refrele(dst_ill);
2669 					return (0);
2670 				}
2671 				ire_uinfo = (sire != NULL) ? &sire->ire_uinfo :
2672 				    &ire->ire_uinfo;
2673 			} else {
2674 				ire = (ire_t *)ire_mp->b_rptr;
2675 				ire_uinfo =
2676 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo;
2677 			}
2678 		}
2679 		if (dst_ill != NULL)
2680 			ill_refrele(dst_ill);
2681 
2682 		ASSERT(ire != NULL);
2683 		ASSERT(ire_uinfo != NULL);
2684 
2685 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) ||
2686 		    IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
2687 			/*
2688 			 * ire->ire_mp is non null when ire_mp passed in is used
2689 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2690 			 */
2691 			if (ire->ire_mp == NULL)
2692 				ire_refrele(ire);
2693 			if (sire != NULL)
2694 				ire_refrele(sire);
2695 			return (0);
2696 		}
2697 
2698 		if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
2699 			in6_addr_t	src_addr;
2700 
2701 			/*
2702 			 * ip_bind_connected_v6() has stored the correct source
2703 			 * address per IPv6 addr. selection policy in
2704 			 * conn_src_v6.
2705 			 */
2706 			src_addr = tcp->tcp_connp->conn_srcv6;
2707 
2708 			tcp->tcp_ip6h->ip6_src = src_addr;
2709 			/*
2710 			 * Copy of the src addr. in tcp_t is needed
2711 			 * for the lookup funcs.
2712 			 */
2713 			tcp->tcp_ip_src_v6 = src_addr;
2714 			ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src,
2715 			    &connp->conn_srcv6));
2716 		}
2717 		tcp->tcp_localnet =
2718 		    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6);
2719 	}
2720 
2721 	/*
2722 	 * This allows applications to fail quickly when connections are made
2723 	 * to dead hosts. Hosts can be labeled dead by adding a reject route
2724 	 * with both the RTF_REJECT and RTF_PRIVATE flags set.
2725 	 */
2726 	if ((ire->ire_flags & RTF_REJECT) &&
2727 	    (ire->ire_flags & RTF_PRIVATE))
2728 		goto error;
2729 
2730 	/*
2731 	 * Make use of the cached rtt and rtt_sd values to calculate the
2732 	 * initial RTO.  Note that they are already initialized in
2733 	 * tcp_init_values().
2734 	 * If ire_uinfo is NULL, i.e., we do not have a cache ire for
2735 	 * IP_NEXTHOP, but instead are using the interface ire for the
2736 	 * nexthop, then we do not use the ire_uinfo from that ire to
2737 	 * do any initializations.
2738 	 */
2739 	if (ire_uinfo != NULL) {
2740 		if (ire_uinfo->iulp_rtt != 0) {
2741 			clock_t	rto;
2742 
2743 			tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt;
2744 			tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd;
2745 			rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2746 			    tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5);
2747 
2748 			if (rto > tcp_rexmit_interval_max) {
2749 				tcp->tcp_rto = tcp_rexmit_interval_max;
2750 			} else if (rto < tcp_rexmit_interval_min) {
2751 				tcp->tcp_rto = tcp_rexmit_interval_min;
2752 			} else {
2753 				tcp->tcp_rto = rto;
2754 			}
2755 		}
2756 		if (ire_uinfo->iulp_ssthresh != 0)
2757 			tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh;
2758 		else
2759 			tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2760 		if (ire_uinfo->iulp_spipe > 0) {
2761 			tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe,
2762 			    tcp_max_buf);
2763 			if (tcp_snd_lowat_fraction != 0)
2764 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2765 				    tcp_snd_lowat_fraction;
2766 			(void) tcp_maxpsz_set(tcp, B_TRUE);
2767 		}
2768 		/*
2769 		 * Note that up till now, acceptor always inherits receive
2770 		 * window from the listener.  But if there is a metrics
2771 		 * associated with a host, we should use that instead of
2772 		 * inheriting it from listener. Thus we need to pass this
2773 		 * info back to the caller.
2774 		 */
2775 		if (ire_uinfo->iulp_rpipe > 0) {
2776 			tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, tcp_max_buf);
2777 		}
2778 
2779 		if (ire_uinfo->iulp_rtomax > 0) {
2780 			tcp->tcp_second_timer_threshold =
2781 			    ire_uinfo->iulp_rtomax;
2782 		}
2783 
2784 		/*
2785 		 * Use the metric option settings, iulp_tstamp_ok and
2786 		 * iulp_wscale_ok, only for active open. What this means
2787 		 * is that if the other side uses timestamp or window
2788 		 * scale option, TCP will also use those options. That
2789 		 * is for passive open.  If the application sets a
2790 		 * large window, window scale is enabled regardless of
2791 		 * the value in iulp_wscale_ok.  This is the behavior
2792 		 * since 2.6.  So we keep it.
2793 		 * The only case left in passive open processing is the
2794 		 * check for SACK.
2795 		 * For ECN, it should probably be like SACK.  But the
2796 		 * current value is binary, so we treat it like the other
2797 		 * cases.  The metric only controls active open.For passive
2798 		 * open, the ndd param, tcp_ecn_permitted, controls the
2799 		 * behavior.
2800 		 */
2801 		if (!tcp_detached) {
2802 			/*
2803 			 * The if check means that the following can only
2804 			 * be turned on by the metrics only IRE, but not off.
2805 			 */
2806 			if (ire_uinfo->iulp_tstamp_ok)
2807 				tcp->tcp_snd_ts_ok = B_TRUE;
2808 			if (ire_uinfo->iulp_wscale_ok)
2809 				tcp->tcp_snd_ws_ok = B_TRUE;
2810 			if (ire_uinfo->iulp_sack == 2)
2811 				tcp->tcp_snd_sack_ok = B_TRUE;
2812 			if (ire_uinfo->iulp_ecn_ok)
2813 				tcp->tcp_ecn_ok = B_TRUE;
2814 		} else {
2815 			/*
2816 			 * Passive open.
2817 			 *
2818 			 * As above, the if check means that SACK can only be
2819 			 * turned on by the metric only IRE.
2820 			 */
2821 			if (ire_uinfo->iulp_sack > 0) {
2822 				tcp->tcp_snd_sack_ok = B_TRUE;
2823 			}
2824 		}
2825 	}
2826 
2827 
2828 	/*
2829 	 * XXX: Note that currently, ire_max_frag can be as small as 68
2830 	 * because of PMTUd.  So tcp_mss may go to negative if combined
2831 	 * length of all those options exceeds 28 bytes.  But because
2832 	 * of the tcp_mss_min check below, we may not have a problem if
2833 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
2834 	 * the negative problem still exists.  And the check defeats PMTUd.
2835 	 * In fact, if PMTUd finds that the MSS should be smaller than
2836 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
2837 	 * value.
2838 	 *
2839 	 * We do not deal with that now.  All those problems related to
2840 	 * PMTUd will be fixed later.
2841 	 */
2842 	ASSERT(ire->ire_max_frag != 0);
2843 	mss = tcp->tcp_if_mtu = ire->ire_max_frag;
2844 	if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) {
2845 		if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) {
2846 			mss = MIN(mss, IPV6_MIN_MTU);
2847 		}
2848 	}
2849 
2850 	/* Sanity check for MSS value. */
2851 	if (tcp->tcp_ipversion == IPV4_VERSION)
2852 		mss_max = tcp_mss_max_ipv4;
2853 	else
2854 		mss_max = tcp_mss_max_ipv6;
2855 
2856 	if (tcp->tcp_ipversion == IPV6_VERSION &&
2857 	    (ire->ire_frag_flag & IPH_FRAG_HDR)) {
2858 		/*
2859 		 * After receiving an ICMPv6 "packet too big" message with a
2860 		 * MTU < 1280, and for multirouted IPv6 packets, the IP layer
2861 		 * will insert a 8-byte fragment header in every packet; we
2862 		 * reduce the MSS by that amount here.
2863 		 */
2864 		mss -= sizeof (ip6_frag_t);
2865 	}
2866 
2867 	if (tcp->tcp_ipsec_overhead == 0)
2868 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
2869 
2870 	mss -= tcp->tcp_ipsec_overhead;
2871 
2872 	if (mss < tcp_mss_min)
2873 		mss = tcp_mss_min;
2874 	if (mss > mss_max)
2875 		mss = mss_max;
2876 
2877 	/* Note that this is the maximum MSS, excluding all options. */
2878 	tcp->tcp_mss = mss;
2879 
2880 	/*
2881 	 * Initialize the ISS here now that we have the full connection ID.
2882 	 * The RFC 1948 method of initial sequence number generation requires
2883 	 * knowledge of the full connection ID before setting the ISS.
2884 	 */
2885 
2886 	tcp_iss_init(tcp);
2887 
2888 	if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL))
2889 		tcp->tcp_loopback = B_TRUE;
2890 
2891 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2892 		hsp = tcp_hsp_lookup(tcp->tcp_remote);
2893 	} else {
2894 		hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6);
2895 	}
2896 
2897 	if (hsp != NULL) {
2898 		/* Only modify if we're going to make them bigger */
2899 		if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) {
2900 			tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace;
2901 			if (tcp_snd_lowat_fraction != 0)
2902 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2903 					tcp_snd_lowat_fraction;
2904 		}
2905 
2906 		if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) {
2907 			tcp->tcp_rwnd = hsp->tcp_hsp_recvspace;
2908 		}
2909 
2910 		/* Copy timestamp flag only for active open */
2911 		if (!tcp_detached)
2912 			tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp;
2913 	}
2914 
2915 	if (sire != NULL)
2916 		IRE_REFRELE(sire);
2917 
2918 	/*
2919 	 * If we got an IRE_CACHE and an ILL, go through their properties;
2920 	 * otherwise, this is deferred until later when we have an IRE_CACHE.
2921 	 */
2922 	if (tcp->tcp_loopback ||
2923 	    (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) {
2924 		/*
2925 		 * For incoming, see if this tcp may be MDT-capable.  For
2926 		 * outgoing, this process has been taken care of through
2927 		 * tcp_rput_other.
2928 		 */
2929 		tcp_ire_ill_check(tcp, ire, ill, incoming);
2930 		tcp->tcp_ire_ill_check_done = B_TRUE;
2931 	}
2932 
2933 	mutex_enter(&connp->conn_lock);
2934 	/*
2935 	 * Make sure that conn is not marked incipient
2936 	 * for incoming connections. A blind
2937 	 * removal of incipient flag is cheaper than
2938 	 * check and removal.
2939 	 */
2940 	connp->conn_state_flags &= ~CONN_INCIPIENT;
2941 
2942 	/* Must not cache forwarding table routes. */
2943 	if (ire_cacheable) {
2944 		rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
2945 		if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
2946 			connp->conn_ire_cache = ire;
2947 			IRE_UNTRACE_REF(ire);
2948 			rw_exit(&ire->ire_bucket->irb_lock);
2949 			mutex_exit(&connp->conn_lock);
2950 			return (1);
2951 		}
2952 		rw_exit(&ire->ire_bucket->irb_lock);
2953 	}
2954 	mutex_exit(&connp->conn_lock);
2955 
2956 	if (ire->ire_mp == NULL)
2957 		ire_refrele(ire);
2958 	return (1);
2959 
2960 error:
2961 	if (ire->ire_mp == NULL)
2962 		ire_refrele(ire);
2963 	if (sire != NULL)
2964 		ire_refrele(sire);
2965 	return (0);
2966 }
2967 
2968 /*
2969  * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a
2970  * O_T_BIND_REQ/T_BIND_REQ message.
2971  */
2972 static void
2973 tcp_bind(tcp_t *tcp, mblk_t *mp)
2974 {
2975 	sin_t	*sin;
2976 	sin6_t	*sin6;
2977 	mblk_t	*mp1;
2978 	in_port_t requested_port;
2979 	in_port_t allocated_port;
2980 	struct T_bind_req *tbr;
2981 	boolean_t	bind_to_req_port_only;
2982 	boolean_t	backlog_update = B_FALSE;
2983 	boolean_t	user_specified;
2984 	in6_addr_t	v6addr;
2985 	ipaddr_t	v4addr;
2986 	uint_t	origipversion;
2987 	int	err;
2988 	queue_t *q = tcp->tcp_wq;
2989 	conn_t	*connp;
2990 	mlp_type_t addrtype, mlptype;
2991 	zone_t	*zone;
2992 	cred_t	*cr;
2993 	in_port_t mlp_port;
2994 
2995 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
2996 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
2997 		if (tcp->tcp_debug) {
2998 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
2999 			    "tcp_bind: bad req, len %u",
3000 			    (uint_t)(mp->b_wptr - mp->b_rptr));
3001 		}
3002 		tcp_err_ack(tcp, mp, TPROTO, 0);
3003 		return;
3004 	}
3005 	/* Make sure the largest address fits */
3006 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
3007 	if (mp1 == NULL) {
3008 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3009 		return;
3010 	}
3011 	mp = mp1;
3012 	tbr = (struct T_bind_req *)mp->b_rptr;
3013 	if (tcp->tcp_state >= TCPS_BOUND) {
3014 		if ((tcp->tcp_state == TCPS_BOUND ||
3015 		    tcp->tcp_state == TCPS_LISTEN) &&
3016 		    tcp->tcp_conn_req_max != tbr->CONIND_number &&
3017 		    tbr->CONIND_number > 0) {
3018 			/*
3019 			 * Handle listen() increasing CONIND_number.
3020 			 * This is more "liberal" then what the TPI spec
3021 			 * requires but is needed to avoid a t_unbind
3022 			 * when handling listen() since the port number
3023 			 * might be "stolen" between the unbind and bind.
3024 			 */
3025 			backlog_update = B_TRUE;
3026 			goto do_bind;
3027 		}
3028 		if (tcp->tcp_debug) {
3029 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3030 			    "tcp_bind: bad state, %d", tcp->tcp_state);
3031 		}
3032 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
3033 		return;
3034 	}
3035 	origipversion = tcp->tcp_ipversion;
3036 
3037 	switch (tbr->ADDR_length) {
3038 	case 0:			/* request for a generic port */
3039 		tbr->ADDR_offset = sizeof (struct T_bind_req);
3040 		if (tcp->tcp_family == AF_INET) {
3041 			tbr->ADDR_length = sizeof (sin_t);
3042 			sin = (sin_t *)&tbr[1];
3043 			*sin = sin_null;
3044 			sin->sin_family = AF_INET;
3045 			mp->b_wptr = (uchar_t *)&sin[1];
3046 			tcp->tcp_ipversion = IPV4_VERSION;
3047 			IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr);
3048 		} else {
3049 			ASSERT(tcp->tcp_family == AF_INET6);
3050 			tbr->ADDR_length = sizeof (sin6_t);
3051 			sin6 = (sin6_t *)&tbr[1];
3052 			*sin6 = sin6_null;
3053 			sin6->sin6_family = AF_INET6;
3054 			mp->b_wptr = (uchar_t *)&sin6[1];
3055 			tcp->tcp_ipversion = IPV6_VERSION;
3056 			V6_SET_ZERO(v6addr);
3057 		}
3058 		requested_port = 0;
3059 		break;
3060 
3061 	case sizeof (sin_t):	/* Complete IPv4 address */
3062 		sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset,
3063 		    sizeof (sin_t));
3064 		if (sin == NULL || !OK_32PTR((char *)sin)) {
3065 			if (tcp->tcp_debug) {
3066 				(void) strlog(TCP_MOD_ID, 0, 1,
3067 				    SL_ERROR|SL_TRACE,
3068 				    "tcp_bind: bad address parameter, "
3069 				    "offset %d, len %d",
3070 				    tbr->ADDR_offset, tbr->ADDR_length);
3071 			}
3072 			tcp_err_ack(tcp, mp, TPROTO, 0);
3073 			return;
3074 		}
3075 		/*
3076 		 * With sockets sockfs will accept bogus sin_family in
3077 		 * bind() and replace it with the family used in the socket
3078 		 * call.
3079 		 */
3080 		if (sin->sin_family != AF_INET ||
3081 		    tcp->tcp_family != AF_INET) {
3082 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3083 			return;
3084 		}
3085 		requested_port = ntohs(sin->sin_port);
3086 		tcp->tcp_ipversion = IPV4_VERSION;
3087 		v4addr = sin->sin_addr.s_addr;
3088 		IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr);
3089 		break;
3090 
3091 	case sizeof (sin6_t): /* Complete IPv6 address */
3092 		sin6 = (sin6_t *)mi_offset_param(mp,
3093 		    tbr->ADDR_offset, sizeof (sin6_t));
3094 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
3095 			if (tcp->tcp_debug) {
3096 				(void) strlog(TCP_MOD_ID, 0, 1,
3097 				    SL_ERROR|SL_TRACE,
3098 				    "tcp_bind: bad IPv6 address parameter, "
3099 				    "offset %d, len %d", tbr->ADDR_offset,
3100 				    tbr->ADDR_length);
3101 			}
3102 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
3103 			return;
3104 		}
3105 		if (sin6->sin6_family != AF_INET6 ||
3106 		    tcp->tcp_family != AF_INET6) {
3107 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3108 			return;
3109 		}
3110 		requested_port = ntohs(sin6->sin6_port);
3111 		tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ?
3112 		    IPV4_VERSION : IPV6_VERSION;
3113 		v6addr = sin6->sin6_addr;
3114 		break;
3115 
3116 	default:
3117 		if (tcp->tcp_debug) {
3118 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3119 			    "tcp_bind: bad address length, %d",
3120 			    tbr->ADDR_length);
3121 		}
3122 		tcp_err_ack(tcp, mp, TBADADDR, 0);
3123 		return;
3124 	}
3125 	tcp->tcp_bound_source_v6 = v6addr;
3126 
3127 	/* Check for change in ipversion */
3128 	if (origipversion != tcp->tcp_ipversion) {
3129 		ASSERT(tcp->tcp_family == AF_INET6);
3130 		err = tcp->tcp_ipversion == IPV6_VERSION ?
3131 		    tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp);
3132 		if (err) {
3133 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3134 			return;
3135 		}
3136 	}
3137 
3138 	/*
3139 	 * Initialize family specific fields. Copy of the src addr.
3140 	 * in tcp_t is needed for the lookup funcs.
3141 	 */
3142 	if (tcp->tcp_ipversion == IPV6_VERSION) {
3143 		tcp->tcp_ip6h->ip6_src = v6addr;
3144 	} else {
3145 		IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src);
3146 	}
3147 	tcp->tcp_ip_src_v6 = v6addr;
3148 
3149 	/*
3150 	 * For O_T_BIND_REQ:
3151 	 * Verify that the target port/addr is available, or choose
3152 	 * another.
3153 	 * For  T_BIND_REQ:
3154 	 * Verify that the target port/addr is available or fail.
3155 	 * In both cases when it succeeds the tcp is inserted in the
3156 	 * bind hash table. This ensures that the operation is atomic
3157 	 * under the lock on the hash bucket.
3158 	 */
3159 	bind_to_req_port_only = requested_port != 0 &&
3160 	    tbr->PRIM_type != O_T_BIND_REQ;
3161 	/*
3162 	 * Get a valid port (within the anonymous range and should not
3163 	 * be a privileged one) to use if the user has not given a port.
3164 	 * If multiple threads are here, they may all start with
3165 	 * with the same initial port. But, it should be fine as long as
3166 	 * tcp_bindi will ensure that no two threads will be assigned
3167 	 * the same port.
3168 	 *
3169 	 * NOTE: XXX If a privileged process asks for an anonymous port, we
3170 	 * still check for ports only in the range > tcp_smallest_non_priv_port,
3171 	 * unless TCP_ANONPRIVBIND option is set.
3172 	 */
3173 	mlptype = mlptSingle;
3174 	mlp_port = requested_port;
3175 	if (requested_port == 0) {
3176 		requested_port = tcp->tcp_anon_priv_bind ?
3177 		    tcp_get_next_priv_port(tcp) :
3178 		    tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE);
3179 		if (requested_port == 0) {
3180 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3181 			return;
3182 		}
3183 		user_specified = B_FALSE;
3184 
3185 		/*
3186 		 * If the user went through one of the RPC interfaces to create
3187 		 * this socket and RPC is MLP in this zone, then give him an
3188 		 * anonymous MLP.
3189 		 */
3190 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3191 		connp = tcp->tcp_connp;
3192 		if (connp->conn_anon_mlp && is_system_labeled()) {
3193 			zone = crgetzone(cr);
3194 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3195 			    IPV6_VERSION, &v6addr);
3196 			if (addrtype == mlptSingle) {
3197 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3198 				return;
3199 			}
3200 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3201 			    PMAPPORT, addrtype);
3202 			mlp_port = PMAPPORT;
3203 		}
3204 	} else {
3205 		int i;
3206 		boolean_t priv = B_FALSE;
3207 
3208 		/*
3209 		 * If the requested_port is in the well-known privileged range,
3210 		 * verify that the stream was opened by a privileged user.
3211 		 * Note: No locks are held when inspecting tcp_g_*epriv_ports
3212 		 * but instead the code relies on:
3213 		 * - the fact that the address of the array and its size never
3214 		 *   changes
3215 		 * - the atomic assignment of the elements of the array
3216 		 */
3217 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3218 		if (requested_port < tcp_smallest_nonpriv_port) {
3219 			priv = B_TRUE;
3220 		} else {
3221 			for (i = 0; i < tcp_g_num_epriv_ports; i++) {
3222 				if (requested_port ==
3223 				    tcp_g_epriv_ports[i]) {
3224 					priv = B_TRUE;
3225 					break;
3226 				}
3227 			}
3228 		}
3229 		if (priv) {
3230 			if (secpolicy_net_privaddr(cr, requested_port) != 0) {
3231 				if (tcp->tcp_debug) {
3232 					(void) strlog(TCP_MOD_ID, 0, 1,
3233 					    SL_ERROR|SL_TRACE,
3234 					    "tcp_bind: no priv for port %d",
3235 					    requested_port);
3236 				}
3237 				tcp_err_ack(tcp, mp, TACCES, 0);
3238 				return;
3239 			}
3240 		}
3241 		user_specified = B_TRUE;
3242 
3243 		connp = tcp->tcp_connp;
3244 		if (is_system_labeled()) {
3245 			zone = crgetzone(cr);
3246 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3247 			    IPV6_VERSION, &v6addr);
3248 			if (addrtype == mlptSingle) {
3249 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3250 				return;
3251 			}
3252 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3253 			    requested_port, addrtype);
3254 		}
3255 	}
3256 
3257 	if (mlptype != mlptSingle) {
3258 		if (secpolicy_net_bindmlp(cr) != 0) {
3259 			if (tcp->tcp_debug) {
3260 				(void) strlog(TCP_MOD_ID, 0, 1,
3261 				    SL_ERROR|SL_TRACE,
3262 				    "tcp_bind: no priv for multilevel port %d",
3263 				    requested_port);
3264 			}
3265 			tcp_err_ack(tcp, mp, TACCES, 0);
3266 			return;
3267 		}
3268 
3269 		/*
3270 		 * If we're specifically binding a shared IP address and the
3271 		 * port is MLP on shared addresses, then check to see if this
3272 		 * zone actually owns the MLP.  Reject if not.
3273 		 */
3274 		if (mlptype == mlptShared && addrtype == mlptShared) {
3275 			zoneid_t mlpzone;
3276 
3277 			mlpzone = tsol_mlp_findzone(IPPROTO_TCP,
3278 			    htons(mlp_port));
3279 			if (connp->conn_zoneid != mlpzone) {
3280 				if (tcp->tcp_debug) {
3281 					(void) strlog(TCP_MOD_ID, 0, 1,
3282 					    SL_ERROR|SL_TRACE,
3283 					    "tcp_bind: attempt to bind port "
3284 					    "%d on shared addr in zone %d "
3285 					    "(should be %d)",
3286 					    mlp_port, connp->conn_zoneid,
3287 					    mlpzone);
3288 				}
3289 				tcp_err_ack(tcp, mp, TACCES, 0);
3290 				return;
3291 			}
3292 		}
3293 
3294 		if (!user_specified) {
3295 			err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3296 			    requested_port, B_TRUE);
3297 			if (err != 0) {
3298 				if (tcp->tcp_debug) {
3299 					(void) strlog(TCP_MOD_ID, 0, 1,
3300 					    SL_ERROR|SL_TRACE,
3301 					    "tcp_bind: cannot establish anon "
3302 					    "MLP for port %d",
3303 					    requested_port);
3304 				}
3305 				tcp_err_ack(tcp, mp, TSYSERR, err);
3306 				return;
3307 			}
3308 			connp->conn_anon_port = B_TRUE;
3309 		}
3310 		connp->conn_mlp_type = mlptype;
3311 	}
3312 
3313 	allocated_port = tcp_bindi(tcp, requested_port, &v6addr,
3314 	    tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified);
3315 
3316 	if (allocated_port == 0) {
3317 		connp->conn_mlp_type = mlptSingle;
3318 		if (connp->conn_anon_port) {
3319 			connp->conn_anon_port = B_FALSE;
3320 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3321 			    requested_port, B_FALSE);
3322 		}
3323 		if (bind_to_req_port_only) {
3324 			if (tcp->tcp_debug) {
3325 				(void) strlog(TCP_MOD_ID, 0, 1,
3326 				    SL_ERROR|SL_TRACE,
3327 				    "tcp_bind: requested addr busy");
3328 			}
3329 			tcp_err_ack(tcp, mp, TADDRBUSY, 0);
3330 		} else {
3331 			/* If we are out of ports, fail the bind. */
3332 			if (tcp->tcp_debug) {
3333 				(void) strlog(TCP_MOD_ID, 0, 1,
3334 				    SL_ERROR|SL_TRACE,
3335 				    "tcp_bind: out of ports?");
3336 			}
3337 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3338 		}
3339 		return;
3340 	}
3341 	ASSERT(tcp->tcp_state == TCPS_BOUND);
3342 do_bind:
3343 	if (!backlog_update) {
3344 		if (tcp->tcp_family == AF_INET)
3345 			sin->sin_port = htons(allocated_port);
3346 		else
3347 			sin6->sin6_port = htons(allocated_port);
3348 	}
3349 	if (tcp->tcp_family == AF_INET) {
3350 		if (tbr->CONIND_number != 0) {
3351 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3352 			    sizeof (sin_t));
3353 		} else {
3354 			/* Just verify the local IP address */
3355 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN);
3356 		}
3357 	} else {
3358 		if (tbr->CONIND_number != 0) {
3359 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3360 			    sizeof (sin6_t));
3361 		} else {
3362 			/* Just verify the local IP address */
3363 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3364 			    IPV6_ADDR_LEN);
3365 		}
3366 	}
3367 	if (mp1 == NULL) {
3368 		if (connp->conn_anon_port) {
3369 			connp->conn_anon_port = B_FALSE;
3370 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3371 			    requested_port, B_FALSE);
3372 		}
3373 		connp->conn_mlp_type = mlptSingle;
3374 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3375 		return;
3376 	}
3377 
3378 	tbr->PRIM_type = T_BIND_ACK;
3379 	mp->b_datap->db_type = M_PCPROTO;
3380 
3381 	/* Chain in the reply mp for tcp_rput() */
3382 	mp1->b_cont = mp;
3383 	mp = mp1;
3384 
3385 	tcp->tcp_conn_req_max = tbr->CONIND_number;
3386 	if (tcp->tcp_conn_req_max) {
3387 		if (tcp->tcp_conn_req_max < tcp_conn_req_min)
3388 			tcp->tcp_conn_req_max = tcp_conn_req_min;
3389 		if (tcp->tcp_conn_req_max > tcp_conn_req_max_q)
3390 			tcp->tcp_conn_req_max = tcp_conn_req_max_q;
3391 		/*
3392 		 * If this is a listener, do not reset the eager list
3393 		 * and other stuffs.  Note that we don't check if the
3394 		 * existing eager list meets the new tcp_conn_req_max
3395 		 * requirement.
3396 		 */
3397 		if (tcp->tcp_state != TCPS_LISTEN) {
3398 			tcp->tcp_state = TCPS_LISTEN;
3399 			/* Initialize the chain. Don't need the eager_lock */
3400 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
3401 			tcp->tcp_second_ctimer_threshold =
3402 			    tcp_ip_abort_linterval;
3403 		}
3404 	}
3405 
3406 	/*
3407 	 * We can call ip_bind directly which returns a T_BIND_ACK mp. The
3408 	 * processing continues in tcp_rput_other().
3409 	 */
3410 	if (tcp->tcp_family == AF_INET6) {
3411 		ASSERT(tcp->tcp_connp->conn_af_isv6);
3412 		mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp);
3413 	} else {
3414 		ASSERT(!tcp->tcp_connp->conn_af_isv6);
3415 		mp = ip_bind_v4(q, mp, tcp->tcp_connp);
3416 	}
3417 	/*
3418 	 * If the bind cannot complete immediately
3419 	 * IP will arrange to call tcp_rput_other
3420 	 * when the bind completes.
3421 	 */
3422 	if (mp != NULL) {
3423 		tcp_rput_other(tcp, mp);
3424 	} else {
3425 		/*
3426 		 * Bind will be resumed later. Need to ensure
3427 		 * that conn doesn't disappear when that happens.
3428 		 * This will be decremented in ip_resume_tcp_bind().
3429 		 */
3430 		CONN_INC_REF(tcp->tcp_connp);
3431 	}
3432 }
3433 
3434 
3435 /*
3436  * If the "bind_to_req_port_only" parameter is set, if the requested port
3437  * number is available, return it, If not return 0
3438  *
3439  * If "bind_to_req_port_only" parameter is not set and
3440  * If the requested port number is available, return it.  If not, return
3441  * the first anonymous port we happen across.  If no anonymous ports are
3442  * available, return 0. addr is the requested local address, if any.
3443  *
3444  * In either case, when succeeding update the tcp_t to record the port number
3445  * and insert it in the bind hash table.
3446  *
3447  * Note that TCP over IPv4 and IPv6 sockets can use the same port number
3448  * without setting SO_REUSEADDR. This is needed so that they
3449  * can be viewed as two independent transport protocols.
3450  */
3451 static in_port_t
3452 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
3453     int reuseaddr, boolean_t quick_connect,
3454     boolean_t bind_to_req_port_only, boolean_t user_specified)
3455 {
3456 	/* number of times we have run around the loop */
3457 	int count = 0;
3458 	/* maximum number of times to run around the loop */
3459 	int loopmax;
3460 	conn_t *connp = tcp->tcp_connp;
3461 	zoneid_t zoneid = connp->conn_zoneid;
3462 
3463 	/*
3464 	 * Lookup for free addresses is done in a loop and "loopmax"
3465 	 * influences how long we spin in the loop
3466 	 */
3467 	if (bind_to_req_port_only) {
3468 		/*
3469 		 * If the requested port is busy, don't bother to look
3470 		 * for a new one. Setting loop maximum count to 1 has
3471 		 * that effect.
3472 		 */
3473 		loopmax = 1;
3474 	} else {
3475 		/*
3476 		 * If the requested port is busy, look for a free one
3477 		 * in the anonymous port range.
3478 		 * Set loopmax appropriately so that one does not look
3479 		 * forever in the case all of the anonymous ports are in use.
3480 		 */
3481 		if (tcp->tcp_anon_priv_bind) {
3482 			/*
3483 			 * loopmax =
3484 			 * 	(IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1
3485 			 */
3486 			loopmax = IPPORT_RESERVED - tcp_min_anonpriv_port;
3487 		} else {
3488 			loopmax = (tcp_largest_anon_port -
3489 			    tcp_smallest_anon_port + 1);
3490 		}
3491 	}
3492 	do {
3493 		uint16_t	lport;
3494 		tf_t		*tbf;
3495 		tcp_t		*ltcp;
3496 		conn_t		*lconnp;
3497 
3498 		lport = htons(port);
3499 
3500 		/*
3501 		 * Ensure that the tcp_t is not currently in the bind hash.
3502 		 * Hold the lock on the hash bucket to ensure that
3503 		 * the duplicate check plus the insertion is an atomic
3504 		 * operation.
3505 		 *
3506 		 * This function does an inline lookup on the bind hash list
3507 		 * Make sure that we access only members of tcp_t
3508 		 * and that we don't look at tcp_tcp, since we are not
3509 		 * doing a CONN_INC_REF.
3510 		 */
3511 		tcp_bind_hash_remove(tcp);
3512 		tbf = &tcp_bind_fanout[TCP_BIND_HASH(lport)];
3513 		mutex_enter(&tbf->tf_lock);
3514 		for (ltcp = tbf->tf_tcp; ltcp != NULL;
3515 		    ltcp = ltcp->tcp_bind_hash) {
3516 			boolean_t not_socket;
3517 			boolean_t exclbind;
3518 
3519 			if (lport != ltcp->tcp_lport)
3520 				continue;
3521 
3522 			lconnp = ltcp->tcp_connp;
3523 
3524 			/*
3525 			 * On a labeled system, we must treat bindings to ports
3526 			 * on shared IP addresses by sockets with MAC exemption
3527 			 * privilege as being in all zones, as there's
3528 			 * otherwise no way to identify the right receiver.
3529 			 */
3530 			if (!IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) &&
3531 			    !lconnp->conn_mac_exempt &&
3532 			    !connp->conn_mac_exempt)
3533 				continue;
3534 
3535 			/*
3536 			 * If TCP_EXCLBIND is set for either the bound or
3537 			 * binding endpoint, the semantics of bind
3538 			 * is changed according to the following.
3539 			 *
3540 			 * spec = specified address (v4 or v6)
3541 			 * unspec = unspecified address (v4 or v6)
3542 			 * A = specified addresses are different for endpoints
3543 			 *
3544 			 * bound	bind to		allowed
3545 			 * -------------------------------------
3546 			 * unspec	unspec		no
3547 			 * unspec	spec		no
3548 			 * spec		unspec		no
3549 			 * spec		spec		yes if A
3550 			 *
3551 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
3552 			 * as TCP_EXCLBIND, except that zoneid is ignored.
3553 			 *
3554 			 * Note:
3555 			 *
3556 			 * 1. Because of TLI semantics, an endpoint can go
3557 			 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or
3558 			 * TCPS_BOUND, depending on whether it is originally
3559 			 * a listener or not.  That is why we need to check
3560 			 * for states greater than or equal to TCPS_BOUND
3561 			 * here.
3562 			 *
3563 			 * 2. Ideally, we should only check for state equals
3564 			 * to TCPS_LISTEN. And the following check should be
3565 			 * added.
3566 			 *
3567 			 * if (ltcp->tcp_state == TCPS_LISTEN ||
3568 			 *	!reuseaddr || !ltcp->tcp_reuseaddr) {
3569 			 *		...
3570 			 * }
3571 			 *
3572 			 * The semantics will be changed to this.  If the
3573 			 * endpoint on the list is in state not equal to
3574 			 * TCPS_LISTEN and both endpoints have SO_REUSEADDR
3575 			 * set, let the bind succeed.
3576 			 *
3577 			 * Because of (1), we cannot do that for TLI
3578 			 * endpoints.  But we can do that for socket endpoints.
3579 			 * If in future, we can change this going back
3580 			 * semantics, we can use the above check for TLI also.
3581 			 */
3582 			not_socket = !(TCP_IS_SOCKET(ltcp) &&
3583 			    TCP_IS_SOCKET(tcp));
3584 			exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind;
3585 
3586 			if (lconnp->conn_mac_exempt || connp->conn_mac_exempt ||
3587 			    (exclbind && (not_socket ||
3588 			    ltcp->tcp_state <= TCPS_ESTABLISHED))) {
3589 				if (V6_OR_V4_INADDR_ANY(
3590 				    ltcp->tcp_bound_source_v6) ||
3591 				    V6_OR_V4_INADDR_ANY(*laddr) ||
3592 				    IN6_ARE_ADDR_EQUAL(laddr,
3593 				    &ltcp->tcp_bound_source_v6)) {
3594 					break;
3595 				}
3596 				continue;
3597 			}
3598 
3599 			/*
3600 			 * Check ipversion to allow IPv4 and IPv6 sockets to
3601 			 * have disjoint port number spaces, if *_EXCLBIND
3602 			 * is not set and only if the application binds to a
3603 			 * specific port. We use the same autoassigned port
3604 			 * number space for IPv4 and IPv6 sockets.
3605 			 */
3606 			if (tcp->tcp_ipversion != ltcp->tcp_ipversion &&
3607 			    bind_to_req_port_only)
3608 				continue;
3609 
3610 			/*
3611 			 * Ideally, we should make sure that the source
3612 			 * address, remote address, and remote port in the
3613 			 * four tuple for this tcp-connection is unique.
3614 			 * However, trying to find out the local source
3615 			 * address would require too much code duplication
3616 			 * with IP, since IP needs needs to have that code
3617 			 * to support userland TCP implementations.
3618 			 */
3619 			if (quick_connect &&
3620 			    (ltcp->tcp_state > TCPS_LISTEN) &&
3621 			    ((tcp->tcp_fport != ltcp->tcp_fport) ||
3622 				!IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
3623 				    &ltcp->tcp_remote_v6)))
3624 				continue;
3625 
3626 			if (!reuseaddr) {
3627 				/*
3628 				 * No socket option SO_REUSEADDR.
3629 				 * If existing port is bound to
3630 				 * a non-wildcard IP address
3631 				 * and the requesting stream is
3632 				 * bound to a distinct
3633 				 * different IP addresses
3634 				 * (non-wildcard, also), keep
3635 				 * going.
3636 				 */
3637 				if (!V6_OR_V4_INADDR_ANY(*laddr) &&
3638 				    !V6_OR_V4_INADDR_ANY(
3639 				    ltcp->tcp_bound_source_v6) &&
3640 				    !IN6_ARE_ADDR_EQUAL(laddr,
3641 					&ltcp->tcp_bound_source_v6))
3642 					continue;
3643 				if (ltcp->tcp_state >= TCPS_BOUND) {
3644 					/*
3645 					 * This port is being used and
3646 					 * its state is >= TCPS_BOUND,
3647 					 * so we can't bind to it.
3648 					 */
3649 					break;
3650 				}
3651 			} else {
3652 				/*
3653 				 * socket option SO_REUSEADDR is set on the
3654 				 * binding tcp_t.
3655 				 *
3656 				 * If two streams are bound to
3657 				 * same IP address or both addr
3658 				 * and bound source are wildcards
3659 				 * (INADDR_ANY), we want to stop
3660 				 * searching.
3661 				 * We have found a match of IP source
3662 				 * address and source port, which is
3663 				 * refused regardless of the
3664 				 * SO_REUSEADDR setting, so we break.
3665 				 */
3666 				if (IN6_ARE_ADDR_EQUAL(laddr,
3667 				    &ltcp->tcp_bound_source_v6) &&
3668 				    (ltcp->tcp_state == TCPS_LISTEN ||
3669 					ltcp->tcp_state == TCPS_BOUND))
3670 					break;
3671 			}
3672 		}
3673 		if (ltcp != NULL) {
3674 			/* The port number is busy */
3675 			mutex_exit(&tbf->tf_lock);
3676 		} else {
3677 			/*
3678 			 * This port is ours. Insert in fanout and mark as
3679 			 * bound to prevent others from getting the port
3680 			 * number.
3681 			 */
3682 			tcp->tcp_state = TCPS_BOUND;
3683 			tcp->tcp_lport = htons(port);
3684 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
3685 
3686 			ASSERT(&tcp_bind_fanout[TCP_BIND_HASH(
3687 			    tcp->tcp_lport)] == tbf);
3688 			tcp_bind_hash_insert(tbf, tcp, 1);
3689 
3690 			mutex_exit(&tbf->tf_lock);
3691 
3692 			/*
3693 			 * We don't want tcp_next_port_to_try to "inherit"
3694 			 * a port number supplied by the user in a bind.
3695 			 */
3696 			if (user_specified)
3697 				return (port);
3698 
3699 			/*
3700 			 * This is the only place where tcp_next_port_to_try
3701 			 * is updated. After the update, it may or may not
3702 			 * be in the valid range.
3703 			 */
3704 			if (!tcp->tcp_anon_priv_bind)
3705 				tcp_next_port_to_try = port + 1;
3706 			return (port);
3707 		}
3708 
3709 		if (tcp->tcp_anon_priv_bind) {
3710 			port = tcp_get_next_priv_port(tcp);
3711 		} else {
3712 			if (count == 0 && user_specified) {
3713 				/*
3714 				 * We may have to return an anonymous port. So
3715 				 * get one to start with.
3716 				 */
3717 				port =
3718 				    tcp_update_next_port(tcp_next_port_to_try,
3719 					tcp, B_TRUE);
3720 				user_specified = B_FALSE;
3721 			} else {
3722 				port = tcp_update_next_port(port + 1, tcp,
3723 				    B_FALSE);
3724 			}
3725 		}
3726 		if (port == 0)
3727 			break;
3728 
3729 		/*
3730 		 * Don't let this loop run forever in the case where
3731 		 * all of the anonymous ports are in use.
3732 		 */
3733 	} while (++count < loopmax);
3734 	return (0);
3735 }
3736 
3737 /*
3738  * We are dying for some reason.  Try to do it gracefully.  (May be called
3739  * as writer.)
3740  *
3741  * Return -1 if the structure was not cleaned up (if the cleanup had to be
3742  * done by a service procedure).
3743  * TBD - Should the return value distinguish between the tcp_t being
3744  * freed and it being reinitialized?
3745  */
3746 static int
3747 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag)
3748 {
3749 	mblk_t	*mp;
3750 	queue_t	*q;
3751 
3752 	TCP_CLD_STAT(tag);
3753 
3754 #if TCP_TAG_CLEAN_DEATH
3755 	tcp->tcp_cleandeathtag = tag;
3756 #endif
3757 
3758 	if (tcp->tcp_fused)
3759 		tcp_unfuse(tcp);
3760 
3761 	if (tcp->tcp_linger_tid != 0 &&
3762 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3763 		tcp_stop_lingering(tcp);
3764 	}
3765 
3766 	ASSERT(tcp != NULL);
3767 	ASSERT((tcp->tcp_family == AF_INET &&
3768 	    tcp->tcp_ipversion == IPV4_VERSION) ||
3769 	    (tcp->tcp_family == AF_INET6 &&
3770 	    (tcp->tcp_ipversion == IPV4_VERSION ||
3771 	    tcp->tcp_ipversion == IPV6_VERSION)));
3772 
3773 	if (TCP_IS_DETACHED(tcp)) {
3774 		if (tcp->tcp_hard_binding) {
3775 			/*
3776 			 * Its an eager that we are dealing with. We close the
3777 			 * eager but in case a conn_ind has already gone to the
3778 			 * listener, let tcp_accept_finish() send a discon_ind
3779 			 * to the listener and drop the last reference. If the
3780 			 * listener doesn't even know about the eager i.e. the
3781 			 * conn_ind hasn't gone up, blow away the eager and drop
3782 			 * the last reference as well. If the conn_ind has gone
3783 			 * up, state should be BOUND. tcp_accept_finish
3784 			 * will figure out that the connection has received a
3785 			 * RST and will send a DISCON_IND to the application.
3786 			 */
3787 			tcp_closei_local(tcp);
3788 			if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) {
3789 				CONN_DEC_REF(tcp->tcp_connp);
3790 			} else {
3791 				tcp->tcp_state = TCPS_BOUND;
3792 			}
3793 		} else {
3794 			tcp_close_detached(tcp);
3795 		}
3796 		return (0);
3797 	}
3798 
3799 	TCP_STAT(tcp_clean_death_nondetached);
3800 
3801 	/*
3802 	 * If T_ORDREL_IND has not been sent yet (done when service routine
3803 	 * is run) postpone cleaning up the endpoint until service routine
3804 	 * has sent up the T_ORDREL_IND. Avoid clearing out an existing
3805 	 * client_errno since tcp_close uses the client_errno field.
3806 	 */
3807 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
3808 		if (err != 0)
3809 			tcp->tcp_client_errno = err;
3810 
3811 		tcp->tcp_deferred_clean_death = B_TRUE;
3812 		return (-1);
3813 	}
3814 
3815 	q = tcp->tcp_rq;
3816 
3817 	/* Trash all inbound data */
3818 	flushq(q, FLUSHALL);
3819 
3820 	/*
3821 	 * If we are at least part way open and there is error
3822 	 * (err==0 implies no error)
3823 	 * notify our client by a T_DISCON_IND.
3824 	 */
3825 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
3826 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
3827 		    !TCP_IS_SOCKET(tcp)) {
3828 			/*
3829 			 * Send M_FLUSH according to TPI. Because sockets will
3830 			 * (and must) ignore FLUSHR we do that only for TPI
3831 			 * endpoints and sockets in STREAMS mode.
3832 			 */
3833 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
3834 		}
3835 		if (tcp->tcp_debug) {
3836 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
3837 			    "tcp_clean_death: discon err %d", err);
3838 		}
3839 		mp = mi_tpi_discon_ind(NULL, err, 0);
3840 		if (mp != NULL) {
3841 			putnext(q, mp);
3842 		} else {
3843 			if (tcp->tcp_debug) {
3844 				(void) strlog(TCP_MOD_ID, 0, 1,
3845 				    SL_ERROR|SL_TRACE,
3846 				    "tcp_clean_death, sending M_ERROR");
3847 			}
3848 			(void) putnextctl1(q, M_ERROR, EPROTO);
3849 		}
3850 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
3851 			/* SYN_SENT or SYN_RCVD */
3852 			BUMP_MIB(&tcp_mib, tcpAttemptFails);
3853 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
3854 			/* ESTABLISHED or CLOSE_WAIT */
3855 			BUMP_MIB(&tcp_mib, tcpEstabResets);
3856 		}
3857 	}
3858 
3859 	tcp_reinit(tcp);
3860 	return (-1);
3861 }
3862 
3863 /*
3864  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
3865  * to expire, stop the wait and finish the close.
3866  */
3867 static void
3868 tcp_stop_lingering(tcp_t *tcp)
3869 {
3870 	clock_t	delta = 0;
3871 
3872 	tcp->tcp_linger_tid = 0;
3873 	if (tcp->tcp_state > TCPS_LISTEN) {
3874 		tcp_acceptor_hash_remove(tcp);
3875 		if (tcp->tcp_flow_stopped) {
3876 			tcp_clrqfull(tcp);
3877 		}
3878 
3879 		if (tcp->tcp_timer_tid != 0) {
3880 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3881 			tcp->tcp_timer_tid = 0;
3882 		}
3883 		/*
3884 		 * Need to cancel those timers which will not be used when
3885 		 * TCP is detached.  This has to be done before the tcp_wq
3886 		 * is set to the global queue.
3887 		 */
3888 		tcp_timers_stop(tcp);
3889 
3890 
3891 		tcp->tcp_detached = B_TRUE;
3892 		tcp->tcp_rq = tcp_g_q;
3893 		tcp->tcp_wq = WR(tcp_g_q);
3894 
3895 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
3896 			tcp_time_wait_append(tcp);
3897 			TCP_DBGSTAT(tcp_detach_time_wait);
3898 			goto finish;
3899 		}
3900 
3901 		/*
3902 		 * If delta is zero the timer event wasn't executed and was
3903 		 * successfully canceled. In this case we need to restart it
3904 		 * with the minimal delta possible.
3905 		 */
3906 		if (delta >= 0) {
3907 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
3908 			    delta ? delta : 1);
3909 		}
3910 	} else {
3911 		tcp_closei_local(tcp);
3912 		CONN_DEC_REF(tcp->tcp_connp);
3913 	}
3914 finish:
3915 	/* Signal closing thread that it can complete close */
3916 	mutex_enter(&tcp->tcp_closelock);
3917 	tcp->tcp_detached = B_TRUE;
3918 	tcp->tcp_rq = tcp_g_q;
3919 	tcp->tcp_wq = WR(tcp_g_q);
3920 	tcp->tcp_closed = 1;
3921 	cv_signal(&tcp->tcp_closecv);
3922 	mutex_exit(&tcp->tcp_closelock);
3923 }
3924 
3925 /*
3926  * Handle lingering timeouts. This function is called when the SO_LINGER timeout
3927  * expires.
3928  */
3929 static void
3930 tcp_close_linger_timeout(void *arg)
3931 {
3932 	conn_t	*connp = (conn_t *)arg;
3933 	tcp_t 	*tcp = connp->conn_tcp;
3934 
3935 	tcp->tcp_client_errno = ETIMEDOUT;
3936 	tcp_stop_lingering(tcp);
3937 }
3938 
3939 static int
3940 tcp_close(queue_t *q, int flags)
3941 {
3942 	conn_t		*connp = Q_TO_CONN(q);
3943 	tcp_t		*tcp = connp->conn_tcp;
3944 	mblk_t 		*mp = &tcp->tcp_closemp;
3945 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
3946 
3947 	ASSERT(WR(q)->q_next == NULL);
3948 	ASSERT(connp->conn_ref >= 2);
3949 	ASSERT((connp->conn_flags & IPCL_TCPMOD) == 0);
3950 
3951 	/*
3952 	 * We are being closed as /dev/tcp or /dev/tcp6.
3953 	 *
3954 	 * Mark the conn as closing. ill_pending_mp_add will not
3955 	 * add any mp to the pending mp list, after this conn has
3956 	 * started closing. Same for sq_pending_mp_add
3957 	 */
3958 	mutex_enter(&connp->conn_lock);
3959 	connp->conn_state_flags |= CONN_CLOSING;
3960 	if (connp->conn_oper_pending_ill != NULL)
3961 		conn_ioctl_cleanup_reqd = B_TRUE;
3962 	CONN_INC_REF_LOCKED(connp);
3963 	mutex_exit(&connp->conn_lock);
3964 	tcp->tcp_closeflags = (uint8_t)flags;
3965 	ASSERT(connp->conn_ref >= 3);
3966 
3967 	(*tcp_squeue_close_proc)(connp->conn_sqp, mp,
3968 	    tcp_close_output, connp, SQTAG_IP_TCP_CLOSE);
3969 
3970 	mutex_enter(&tcp->tcp_closelock);
3971 
3972 	while (!tcp->tcp_closed)
3973 		cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
3974 	mutex_exit(&tcp->tcp_closelock);
3975 	/*
3976 	 * In the case of listener streams that have eagers in the q or q0
3977 	 * we wait for the eagers to drop their reference to us. tcp_rq and
3978 	 * tcp_wq of the eagers point to our queues. By waiting for the
3979 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
3980 	 * up their queue pointers and also dropped their references to us.
3981 	 */
3982 	if (tcp->tcp_wait_for_eagers) {
3983 		mutex_enter(&connp->conn_lock);
3984 		while (connp->conn_ref != 1) {
3985 			cv_wait(&connp->conn_cv, &connp->conn_lock);
3986 		}
3987 		mutex_exit(&connp->conn_lock);
3988 	}
3989 	/*
3990 	 * ioctl cleanup. The mp is queued in the
3991 	 * ill_pending_mp or in the sq_pending_mp.
3992 	 */
3993 	if (conn_ioctl_cleanup_reqd)
3994 		conn_ioctl_cleanup(connp);
3995 
3996 	qprocsoff(q);
3997 	inet_minor_free(ip_minor_arena, connp->conn_dev);
3998 
3999 	tcp->tcp_cpid = -1;
4000 
4001 	/*
4002 	 * Drop IP's reference on the conn. This is the last reference
4003 	 * on the connp if the state was less than established. If the
4004 	 * connection has gone into timewait state, then we will have
4005 	 * one ref for the TCP and one more ref (total of two) for the
4006 	 * classifier connected hash list (a timewait connections stays
4007 	 * in connected hash till closed).
4008 	 *
4009 	 * We can't assert the references because there might be other
4010 	 * transient reference places because of some walkers or queued
4011 	 * packets in squeue for the timewait state.
4012 	 */
4013 	CONN_DEC_REF(connp);
4014 	q->q_ptr = WR(q)->q_ptr = NULL;
4015 	return (0);
4016 }
4017 
4018 static int
4019 tcpclose_accept(queue_t *q)
4020 {
4021 	ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit);
4022 
4023 	/*
4024 	 * We had opened an acceptor STREAM for sockfs which is
4025 	 * now being closed due to some error.
4026 	 */
4027 	qprocsoff(q);
4028 	inet_minor_free(ip_minor_arena, (dev_t)q->q_ptr);
4029 	q->q_ptr = WR(q)->q_ptr = NULL;
4030 	return (0);
4031 }
4032 
4033 
4034 /*
4035  * Called by streams close routine via squeues when our client blows off her
4036  * descriptor, we take this to mean: "close the stream state NOW, close the tcp
4037  * connection politely" When SO_LINGER is set (with a non-zero linger time and
4038  * it is not a nonblocking socket) then this routine sleeps until the FIN is
4039  * acked.
4040  *
4041  * NOTE: tcp_close potentially returns error when lingering.
4042  * However, the stream head currently does not pass these errors
4043  * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK
4044  * errors to the application (from tsleep()) and not errors
4045  * like ECONNRESET caused by receiving a reset packet.
4046  */
4047 
4048 /* ARGSUSED */
4049 static void
4050 tcp_close_output(void *arg, mblk_t *mp, void *arg2)
4051 {
4052 	char	*msg;
4053 	conn_t	*connp = (conn_t *)arg;
4054 	tcp_t	*tcp = connp->conn_tcp;
4055 	clock_t	delta = 0;
4056 
4057 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
4058 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
4059 
4060 	/* Cancel any pending timeout */
4061 	if (tcp->tcp_ordrelid != 0) {
4062 		if (tcp->tcp_timeout) {
4063 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid);
4064 		}
4065 		tcp->tcp_ordrelid = 0;
4066 		tcp->tcp_timeout = B_FALSE;
4067 	}
4068 
4069 	mutex_enter(&tcp->tcp_eager_lock);
4070 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
4071 		/* Cleanup for listener */
4072 		tcp_eager_cleanup(tcp, 0);
4073 		tcp->tcp_wait_for_eagers = 1;
4074 	}
4075 	mutex_exit(&tcp->tcp_eager_lock);
4076 
4077 	connp->conn_mdt_ok = B_FALSE;
4078 	tcp->tcp_mdt = B_FALSE;
4079 
4080 	msg = NULL;
4081 	switch (tcp->tcp_state) {
4082 	case TCPS_CLOSED:
4083 	case TCPS_IDLE:
4084 	case TCPS_BOUND:
4085 	case TCPS_LISTEN:
4086 		break;
4087 	case TCPS_SYN_SENT:
4088 		msg = "tcp_close, during connect";
4089 		break;
4090 	case TCPS_SYN_RCVD:
4091 		/*
4092 		 * Close during the connect 3-way handshake
4093 		 * but here there may or may not be pending data
4094 		 * already on queue. Process almost same as in
4095 		 * the ESTABLISHED state.
4096 		 */
4097 		/* FALLTHRU */
4098 	default:
4099 		if (tcp->tcp_fused)
4100 			tcp_unfuse(tcp);
4101 
4102 		/*
4103 		 * If SO_LINGER has set a zero linger time, abort the
4104 		 * connection with a reset.
4105 		 */
4106 		if (tcp->tcp_linger && tcp->tcp_lingertime == 0) {
4107 			msg = "tcp_close, zero lingertime";
4108 			break;
4109 		}
4110 
4111 		ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding);
4112 		/*
4113 		 * Abort connection if there is unread data queued.
4114 		 */
4115 		if (tcp->tcp_rcv_list || tcp->tcp_reass_head) {
4116 			msg = "tcp_close, unread data";
4117 			break;
4118 		}
4119 		/*
4120 		 * tcp_hard_bound is now cleared thus all packets go through
4121 		 * tcp_lookup. This fact is used by tcp_detach below.
4122 		 *
4123 		 * We have done a qwait() above which could have possibly
4124 		 * drained more messages in turn causing transition to a
4125 		 * different state. Check whether we have to do the rest
4126 		 * of the processing or not.
4127 		 */
4128 		if (tcp->tcp_state <= TCPS_LISTEN)
4129 			break;
4130 
4131 		/*
4132 		 * Transmit the FIN before detaching the tcp_t.
4133 		 * After tcp_detach returns this queue/perimeter
4134 		 * no longer owns the tcp_t thus others can modify it.
4135 		 */
4136 		(void) tcp_xmit_end(tcp);
4137 
4138 		/*
4139 		 * If lingering on close then wait until the fin is acked,
4140 		 * the SO_LINGER time passes, or a reset is sent/received.
4141 		 */
4142 		if (tcp->tcp_linger && tcp->tcp_lingertime > 0 &&
4143 		    !(tcp->tcp_fin_acked) &&
4144 		    tcp->tcp_state >= TCPS_ESTABLISHED) {
4145 			if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) {
4146 				tcp->tcp_client_errno = EWOULDBLOCK;
4147 			} else if (tcp->tcp_client_errno == 0) {
4148 
4149 				ASSERT(tcp->tcp_linger_tid == 0);
4150 
4151 				tcp->tcp_linger_tid = TCP_TIMER(tcp,
4152 				    tcp_close_linger_timeout,
4153 				    tcp->tcp_lingertime * hz);
4154 
4155 				/* tcp_close_linger_timeout will finish close */
4156 				if (tcp->tcp_linger_tid == 0)
4157 					tcp->tcp_client_errno = ENOSR;
4158 				else
4159 					return;
4160 			}
4161 
4162 			/*
4163 			 * Check if we need to detach or just close
4164 			 * the instance.
4165 			 */
4166 			if (tcp->tcp_state <= TCPS_LISTEN)
4167 				break;
4168 		}
4169 
4170 		/*
4171 		 * Make sure that no other thread will access the tcp_rq of
4172 		 * this instance (through lookups etc.) as tcp_rq will go
4173 		 * away shortly.
4174 		 */
4175 		tcp_acceptor_hash_remove(tcp);
4176 
4177 		if (tcp->tcp_flow_stopped) {
4178 			tcp_clrqfull(tcp);
4179 		}
4180 
4181 		if (tcp->tcp_timer_tid != 0) {
4182 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4183 			tcp->tcp_timer_tid = 0;
4184 		}
4185 		/*
4186 		 * Need to cancel those timers which will not be used when
4187 		 * TCP is detached.  This has to be done before the tcp_wq
4188 		 * is set to the global queue.
4189 		 */
4190 		tcp_timers_stop(tcp);
4191 
4192 		tcp->tcp_detached = B_TRUE;
4193 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
4194 			tcp_time_wait_append(tcp);
4195 			TCP_DBGSTAT(tcp_detach_time_wait);
4196 			ASSERT(connp->conn_ref >= 3);
4197 			goto finish;
4198 		}
4199 
4200 		/*
4201 		 * If delta is zero the timer event wasn't executed and was
4202 		 * successfully canceled. In this case we need to restart it
4203 		 * with the minimal delta possible.
4204 		 */
4205 		if (delta >= 0)
4206 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
4207 			    delta ? delta : 1);
4208 
4209 		ASSERT(connp->conn_ref >= 3);
4210 		goto finish;
4211 	}
4212 
4213 	/* Detach did not complete. Still need to remove q from stream. */
4214 	if (msg) {
4215 		if (tcp->tcp_state == TCPS_ESTABLISHED ||
4216 		    tcp->tcp_state == TCPS_CLOSE_WAIT)
4217 			BUMP_MIB(&tcp_mib, tcpEstabResets);
4218 		if (tcp->tcp_state == TCPS_SYN_SENT ||
4219 		    tcp->tcp_state == TCPS_SYN_RCVD)
4220 			BUMP_MIB(&tcp_mib, tcpAttemptFails);
4221 		tcp_xmit_ctl(msg, tcp,  tcp->tcp_snxt, 0, TH_RST);
4222 	}
4223 
4224 	tcp_closei_local(tcp);
4225 	CONN_DEC_REF(connp);
4226 	ASSERT(connp->conn_ref >= 2);
4227 
4228 finish:
4229 	/*
4230 	 * Although packets are always processed on the correct
4231 	 * tcp's perimeter and access is serialized via squeue's,
4232 	 * IP still needs a queue when sending packets in time_wait
4233 	 * state so use WR(tcp_g_q) till ip_output() can be
4234 	 * changed to deal with just connp. For read side, we
4235 	 * could have set tcp_rq to NULL but there are some cases
4236 	 * in tcp_rput_data() from early days of this code which
4237 	 * do a putnext without checking if tcp is closed. Those
4238 	 * need to be identified before both tcp_rq and tcp_wq
4239 	 * can be set to NULL and tcp_q_q can disappear forever.
4240 	 */
4241 	mutex_enter(&tcp->tcp_closelock);
4242 	/*
4243 	 * Don't change the queues in the case of a listener that has
4244 	 * eagers in its q or q0. It could surprise the eagers.
4245 	 * Instead wait for the eagers outside the squeue.
4246 	 */
4247 	if (!tcp->tcp_wait_for_eagers) {
4248 		tcp->tcp_detached = B_TRUE;
4249 		tcp->tcp_rq = tcp_g_q;
4250 		tcp->tcp_wq = WR(tcp_g_q);
4251 	}
4252 
4253 	/* Signal tcp_close() to finish closing. */
4254 	tcp->tcp_closed = 1;
4255 	cv_signal(&tcp->tcp_closecv);
4256 	mutex_exit(&tcp->tcp_closelock);
4257 }
4258 
4259 
4260 /*
4261  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
4262  * Some stream heads get upset if they see these later on as anything but NULL.
4263  */
4264 static void
4265 tcp_close_mpp(mblk_t **mpp)
4266 {
4267 	mblk_t	*mp;
4268 
4269 	if ((mp = *mpp) != NULL) {
4270 		do {
4271 			mp->b_next = NULL;
4272 			mp->b_prev = NULL;
4273 		} while ((mp = mp->b_cont) != NULL);
4274 
4275 		mp = *mpp;
4276 		*mpp = NULL;
4277 		freemsg(mp);
4278 	}
4279 }
4280 
4281 /* Do detached close. */
4282 static void
4283 tcp_close_detached(tcp_t *tcp)
4284 {
4285 	if (tcp->tcp_fused)
4286 		tcp_unfuse(tcp);
4287 
4288 	/*
4289 	 * Clustering code serializes TCP disconnect callbacks and
4290 	 * cluster tcp list walks by blocking a TCP disconnect callback
4291 	 * if a cluster tcp list walk is in progress. This ensures
4292 	 * accurate accounting of TCPs in the cluster code even though
4293 	 * the TCP list walk itself is not atomic.
4294 	 */
4295 	tcp_closei_local(tcp);
4296 	CONN_DEC_REF(tcp->tcp_connp);
4297 }
4298 
4299 /*
4300  * Stop all TCP timers, and free the timer mblks if requested.
4301  */
4302 void
4303 tcp_timers_stop(tcp_t *tcp)
4304 {
4305 	if (tcp->tcp_timer_tid != 0) {
4306 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4307 		tcp->tcp_timer_tid = 0;
4308 	}
4309 	if (tcp->tcp_ka_tid != 0) {
4310 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid);
4311 		tcp->tcp_ka_tid = 0;
4312 	}
4313 	if (tcp->tcp_ack_tid != 0) {
4314 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
4315 		tcp->tcp_ack_tid = 0;
4316 	}
4317 	if (tcp->tcp_push_tid != 0) {
4318 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
4319 		tcp->tcp_push_tid = 0;
4320 	}
4321 }
4322 
4323 /*
4324  * The tcp_t is going away. Remove it from all lists and set it
4325  * to TCPS_CLOSED. The freeing up of memory is deferred until
4326  * tcp_inactive. This is needed since a thread in tcp_rput might have
4327  * done a CONN_INC_REF on this structure before it was removed from the
4328  * hashes.
4329  */
4330 static void
4331 tcp_closei_local(tcp_t *tcp)
4332 {
4333 	ire_t 	*ire;
4334 	conn_t	*connp = tcp->tcp_connp;
4335 
4336 	if (!TCP_IS_SOCKET(tcp))
4337 		tcp_acceptor_hash_remove(tcp);
4338 
4339 	UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs);
4340 	tcp->tcp_ibsegs = 0;
4341 	UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs);
4342 	tcp->tcp_obsegs = 0;
4343 
4344 	/*
4345 	 * If we are an eager connection hanging off a listener that
4346 	 * hasn't formally accepted the connection yet, get off his
4347 	 * list and blow off any data that we have accumulated.
4348 	 */
4349 	if (tcp->tcp_listener != NULL) {
4350 		tcp_t	*listener = tcp->tcp_listener;
4351 		mutex_enter(&listener->tcp_eager_lock);
4352 		/*
4353 		 * tcp_eager_conn_ind == NULL means that the
4354 		 * conn_ind has already gone to listener. At
4355 		 * this point, eager will be closed but we
4356 		 * leave it in listeners eager list so that
4357 		 * if listener decides to close without doing
4358 		 * accept, we can clean this up. In tcp_wput_accept
4359 		 * we take case of the case of accept on closed
4360 		 * eager.
4361 		 */
4362 		if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) {
4363 			tcp_eager_unlink(tcp);
4364 			mutex_exit(&listener->tcp_eager_lock);
4365 			/*
4366 			 * We don't want to have any pointers to the
4367 			 * listener queue, after we have released our
4368 			 * reference on the listener
4369 			 */
4370 			tcp->tcp_rq = tcp_g_q;
4371 			tcp->tcp_wq = WR(tcp_g_q);
4372 			CONN_DEC_REF(listener->tcp_connp);
4373 		} else {
4374 			mutex_exit(&listener->tcp_eager_lock);
4375 		}
4376 	}
4377 
4378 	/* Stop all the timers */
4379 	tcp_timers_stop(tcp);
4380 
4381 	if (tcp->tcp_state == TCPS_LISTEN) {
4382 		if (tcp->tcp_ip_addr_cache) {
4383 			kmem_free((void *)tcp->tcp_ip_addr_cache,
4384 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
4385 			tcp->tcp_ip_addr_cache = NULL;
4386 		}
4387 	}
4388 	if (tcp->tcp_flow_stopped)
4389 		tcp_clrqfull(tcp);
4390 
4391 	tcp_bind_hash_remove(tcp);
4392 	/*
4393 	 * If the tcp_time_wait_collector (which runs outside the squeue)
4394 	 * is trying to remove this tcp from the time wait list, we will
4395 	 * block in tcp_time_wait_remove while trying to acquire the
4396 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
4397 	 * requires the ipcl_hash_remove to be ordered after the
4398 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
4399 	 */
4400 	if (tcp->tcp_state == TCPS_TIME_WAIT)
4401 		tcp_time_wait_remove(tcp, NULL);
4402 	CL_INET_DISCONNECT(tcp);
4403 	ipcl_hash_remove(connp);
4404 
4405 	/*
4406 	 * Delete the cached ire in conn_ire_cache and also mark
4407 	 * the conn as CONDEMNED
4408 	 */
4409 	mutex_enter(&connp->conn_lock);
4410 	connp->conn_state_flags |= CONN_CONDEMNED;
4411 	ire = connp->conn_ire_cache;
4412 	connp->conn_ire_cache = NULL;
4413 	mutex_exit(&connp->conn_lock);
4414 	if (ire != NULL)
4415 		IRE_REFRELE_NOTR(ire);
4416 
4417 	/* Need to cleanup any pending ioctls */
4418 	ASSERT(tcp->tcp_time_wait_next == NULL);
4419 	ASSERT(tcp->tcp_time_wait_prev == NULL);
4420 	ASSERT(tcp->tcp_time_wait_expire == 0);
4421 	tcp->tcp_state = TCPS_CLOSED;
4422 
4423 	/* Release any SSL context */
4424 	if (tcp->tcp_kssl_ent != NULL) {
4425 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
4426 		tcp->tcp_kssl_ent = NULL;
4427 	}
4428 	if (tcp->tcp_kssl_ctx != NULL) {
4429 		kssl_release_ctx(tcp->tcp_kssl_ctx);
4430 		tcp->tcp_kssl_ctx = NULL;
4431 	}
4432 	tcp->tcp_kssl_pending = B_FALSE;
4433 }
4434 
4435 /*
4436  * tcp is dying (called from ipcl_conn_destroy and error cases).
4437  * Free the tcp_t in either case.
4438  */
4439 void
4440 tcp_free(tcp_t *tcp)
4441 {
4442 	mblk_t	*mp;
4443 	ip6_pkt_t	*ipp;
4444 
4445 	ASSERT(tcp != NULL);
4446 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
4447 
4448 	tcp->tcp_rq = NULL;
4449 	tcp->tcp_wq = NULL;
4450 
4451 	tcp_close_mpp(&tcp->tcp_xmit_head);
4452 	tcp_close_mpp(&tcp->tcp_reass_head);
4453 	if (tcp->tcp_rcv_list != NULL) {
4454 		/* Free b_next chain */
4455 		tcp_close_mpp(&tcp->tcp_rcv_list);
4456 	}
4457 	if ((mp = tcp->tcp_urp_mp) != NULL) {
4458 		freemsg(mp);
4459 	}
4460 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
4461 		freemsg(mp);
4462 	}
4463 
4464 	if (tcp->tcp_fused_sigurg_mp != NULL) {
4465 		freeb(tcp->tcp_fused_sigurg_mp);
4466 		tcp->tcp_fused_sigurg_mp = NULL;
4467 	}
4468 
4469 	if (tcp->tcp_sack_info != NULL) {
4470 		if (tcp->tcp_notsack_list != NULL) {
4471 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
4472 		}
4473 		bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
4474 	}
4475 
4476 	if (tcp->tcp_hopopts != NULL) {
4477 		mi_free(tcp->tcp_hopopts);
4478 		tcp->tcp_hopopts = NULL;
4479 		tcp->tcp_hopoptslen = 0;
4480 	}
4481 	ASSERT(tcp->tcp_hopoptslen == 0);
4482 	if (tcp->tcp_dstopts != NULL) {
4483 		mi_free(tcp->tcp_dstopts);
4484 		tcp->tcp_dstopts = NULL;
4485 		tcp->tcp_dstoptslen = 0;
4486 	}
4487 	ASSERT(tcp->tcp_dstoptslen == 0);
4488 	if (tcp->tcp_rtdstopts != NULL) {
4489 		mi_free(tcp->tcp_rtdstopts);
4490 		tcp->tcp_rtdstopts = NULL;
4491 		tcp->tcp_rtdstoptslen = 0;
4492 	}
4493 	ASSERT(tcp->tcp_rtdstoptslen == 0);
4494 	if (tcp->tcp_rthdr != NULL) {
4495 		mi_free(tcp->tcp_rthdr);
4496 		tcp->tcp_rthdr = NULL;
4497 		tcp->tcp_rthdrlen = 0;
4498 	}
4499 	ASSERT(tcp->tcp_rthdrlen == 0);
4500 
4501 	ipp = &tcp->tcp_sticky_ipp;
4502 	if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS |
4503 	    IPPF_RTHDR))
4504 		ip6_pkt_free(ipp);
4505 
4506 	/*
4507 	 * Free memory associated with the tcp/ip header template.
4508 	 */
4509 
4510 	if (tcp->tcp_iphc != NULL)
4511 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4512 
4513 	/*
4514 	 * Following is really a blowing away a union.
4515 	 * It happens to have exactly two members of identical size
4516 	 * the following code is enough.
4517 	 */
4518 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
4519 
4520 	if (tcp->tcp_tracebuf != NULL) {
4521 		kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t));
4522 		tcp->tcp_tracebuf = NULL;
4523 	}
4524 }
4525 
4526 
4527 /*
4528  * Put a connection confirmation message upstream built from the
4529  * address information within 'iph' and 'tcph'.  Report our success or failure.
4530  */
4531 static boolean_t
4532 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp,
4533     mblk_t **defermp)
4534 {
4535 	sin_t	sin;
4536 	sin6_t	sin6;
4537 	mblk_t	*mp;
4538 	char	*optp = NULL;
4539 	int	optlen = 0;
4540 	cred_t	*cr;
4541 
4542 	if (defermp != NULL)
4543 		*defermp = NULL;
4544 
4545 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL) {
4546 		/*
4547 		 * Return in T_CONN_CON results of option negotiation through
4548 		 * the T_CONN_REQ. Note: If there is an real end-to-end option
4549 		 * negotiation, then what is received from remote end needs
4550 		 * to be taken into account but there is no such thing (yet?)
4551 		 * in our TCP/IP.
4552 		 * Note: We do not use mi_offset_param() here as
4553 		 * tcp_opts_conn_req contents do not directly come from
4554 		 * an application and are either generated in kernel or
4555 		 * from user input that was already verified.
4556 		 */
4557 		mp = tcp->tcp_conn.tcp_opts_conn_req;
4558 		optp = (char *)(mp->b_rptr +
4559 		    ((struct T_conn_req *)mp->b_rptr)->OPT_offset);
4560 		optlen = (int)
4561 		    ((struct T_conn_req *)mp->b_rptr)->OPT_length;
4562 	}
4563 
4564 	if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) {
4565 		ipha_t *ipha = (ipha_t *)iphdr;
4566 
4567 		/* packet is IPv4 */
4568 		if (tcp->tcp_family == AF_INET) {
4569 			sin = sin_null;
4570 			sin.sin_addr.s_addr = ipha->ipha_src;
4571 			sin.sin_port = *(uint16_t *)tcph->th_lport;
4572 			sin.sin_family = AF_INET;
4573 			mp = mi_tpi_conn_con(NULL, (char *)&sin,
4574 			    (int)sizeof (sin_t), optp, optlen);
4575 		} else {
4576 			sin6 = sin6_null;
4577 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4578 			sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4579 			sin6.sin6_family = AF_INET6;
4580 			mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4581 			    (int)sizeof (sin6_t), optp, optlen);
4582 
4583 		}
4584 	} else {
4585 		ip6_t	*ip6h = (ip6_t *)iphdr;
4586 
4587 		ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION);
4588 		ASSERT(tcp->tcp_family == AF_INET6);
4589 		sin6 = sin6_null;
4590 		sin6.sin6_addr = ip6h->ip6_src;
4591 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4592 		sin6.sin6_family = AF_INET6;
4593 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4594 		mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4595 		    (int)sizeof (sin6_t), optp, optlen);
4596 	}
4597 
4598 	if (!mp)
4599 		return (B_FALSE);
4600 
4601 	if ((cr = DB_CRED(idmp)) != NULL) {
4602 		mblk_setcred(mp, cr);
4603 		DB_CPID(mp) = DB_CPID(idmp);
4604 	}
4605 
4606 	if (defermp == NULL)
4607 		putnext(tcp->tcp_rq, mp);
4608 	else
4609 		*defermp = mp;
4610 
4611 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4612 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4613 	return (B_TRUE);
4614 }
4615 
4616 /*
4617  * Defense for the SYN attack -
4618  * 1. When q0 is full, drop from the tail (tcp_eager_prev_q0) the oldest
4619  *    one that doesn't have the dontdrop bit set.
4620  * 2. Don't drop a SYN request before its first timeout. This gives every
4621  *    request at least til the first timeout to complete its 3-way handshake.
4622  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
4623  *    requests currently on the queue that has timed out. This will be used
4624  *    as an indicator of whether an attack is under way, so that appropriate
4625  *    actions can be taken. (It's incremented in tcp_timer() and decremented
4626  *    either when eager goes into ESTABLISHED, or gets freed up.)
4627  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
4628  *    # of timeout drops back to <= q0len/32 => SYN alert off
4629  */
4630 static boolean_t
4631 tcp_drop_q0(tcp_t *tcp)
4632 {
4633 	tcp_t	*eager;
4634 
4635 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
4636 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
4637 	/*
4638 	 * New one is added after next_q0 so prev_q0 points to the oldest
4639 	 * Also do not drop any established connections that are deferred on
4640 	 * q0 due to q being full
4641 	 */
4642 
4643 	eager = tcp->tcp_eager_prev_q0;
4644 	while (eager->tcp_dontdrop || eager->tcp_conn_def_q0) {
4645 		eager = eager->tcp_eager_prev_q0;
4646 		if (eager == tcp) {
4647 			eager = tcp->tcp_eager_prev_q0;
4648 			break;
4649 		}
4650 	}
4651 	if (eager->tcp_syn_rcvd_timeout == 0)
4652 		return (B_FALSE);
4653 
4654 	if (tcp->tcp_debug) {
4655 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
4656 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
4657 		    " (%d pending) on %s, drop one", tcp_conn_req_max_q0,
4658 		    tcp->tcp_conn_req_cnt_q0,
4659 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4660 	}
4661 
4662 	BUMP_MIB(&tcp_mib, tcpHalfOpenDrop);
4663 
4664 	/*
4665 	 * need to do refhold here because the selected eager could
4666 	 * be removed by someone else if we release the eager lock.
4667 	 */
4668 	CONN_INC_REF(eager->tcp_connp);
4669 	mutex_exit(&tcp->tcp_eager_lock);
4670 
4671 	/* Mark the IRE created for this SYN request temporary */
4672 	tcp_ip_ire_mark_advice(eager);
4673 	(void) tcp_clean_death(eager, ETIMEDOUT, 5);
4674 	CONN_DEC_REF(eager->tcp_connp);
4675 
4676 	mutex_enter(&tcp->tcp_eager_lock);
4677 	return (B_TRUE);
4678 }
4679 
4680 int
4681 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
4682     tcph_t *tcph, uint_t ipvers, mblk_t *idmp)
4683 {
4684 	tcp_t 		*ltcp = lconnp->conn_tcp;
4685 	tcp_t		*tcp = connp->conn_tcp;
4686 	mblk_t		*tpi_mp;
4687 	ipha_t		*ipha;
4688 	ip6_t		*ip6h;
4689 	sin6_t 		sin6;
4690 	in6_addr_t 	v6dst;
4691 	int		err;
4692 	int		ifindex = 0;
4693 	cred_t		*cr;
4694 
4695 	if (ipvers == IPV4_VERSION) {
4696 		ipha = (ipha_t *)mp->b_rptr;
4697 
4698 		connp->conn_send = ip_output;
4699 		connp->conn_recv = tcp_input;
4700 
4701 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4702 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4703 
4704 		sin6 = sin6_null;
4705 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4706 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst);
4707 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4708 		sin6.sin6_family = AF_INET6;
4709 		sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst,
4710 		    lconnp->conn_zoneid);
4711 		if (tcp->tcp_recvdstaddr) {
4712 			sin6_t	sin6d;
4713 
4714 			sin6d = sin6_null;
4715 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst,
4716 			    &sin6d.sin6_addr);
4717 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4718 			sin6d.sin6_family = AF_INET;
4719 			tpi_mp = mi_tpi_extconn_ind(NULL,
4720 			    (char *)&sin6d, sizeof (sin6_t),
4721 			    (char *)&tcp,
4722 			    (t_scalar_t)sizeof (intptr_t),
4723 			    (char *)&sin6d, sizeof (sin6_t),
4724 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4725 		} else {
4726 			tpi_mp = mi_tpi_conn_ind(NULL,
4727 			    (char *)&sin6, sizeof (sin6_t),
4728 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4729 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4730 		}
4731 	} else {
4732 		ip6h = (ip6_t *)mp->b_rptr;
4733 
4734 		connp->conn_send = ip_output_v6;
4735 		connp->conn_recv = tcp_input;
4736 
4737 		connp->conn_srcv6 = ip6h->ip6_dst;
4738 		connp->conn_remv6 = ip6h->ip6_src;
4739 
4740 		/* db_cksumstuff is set at ip_fanout_tcp_v6 */
4741 		ifindex = (int)DB_CKSUMSTUFF(mp);
4742 		DB_CKSUMSTUFF(mp) = 0;
4743 
4744 		sin6 = sin6_null;
4745 		sin6.sin6_addr = ip6h->ip6_src;
4746 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4747 		sin6.sin6_family = AF_INET6;
4748 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4749 		sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst,
4750 		    lconnp->conn_zoneid);
4751 
4752 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4753 			/* Pass up the scope_id of remote addr */
4754 			sin6.sin6_scope_id = ifindex;
4755 		} else {
4756 			sin6.sin6_scope_id = 0;
4757 		}
4758 		if (tcp->tcp_recvdstaddr) {
4759 			sin6_t	sin6d;
4760 
4761 			sin6d = sin6_null;
4762 			sin6.sin6_addr = ip6h->ip6_dst;
4763 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4764 			sin6d.sin6_family = AF_INET;
4765 			tpi_mp = mi_tpi_extconn_ind(NULL,
4766 			    (char *)&sin6d, sizeof (sin6_t),
4767 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4768 			    (char *)&sin6d, sizeof (sin6_t),
4769 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4770 		} else {
4771 			tpi_mp = mi_tpi_conn_ind(NULL,
4772 			    (char *)&sin6, sizeof (sin6_t),
4773 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4774 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4775 		}
4776 	}
4777 
4778 	if (tpi_mp == NULL)
4779 		return (ENOMEM);
4780 
4781 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4782 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4783 	connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER);
4784 	connp->conn_fully_bound = B_FALSE;
4785 
4786 	if (tcp_trace)
4787 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
4788 
4789 	/* Inherit information from the "parent" */
4790 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
4791 	tcp->tcp_family = ltcp->tcp_family;
4792 	tcp->tcp_wq = ltcp->tcp_wq;
4793 	tcp->tcp_rq = ltcp->tcp_rq;
4794 	tcp->tcp_mss = tcp_mss_def_ipv6;
4795 	tcp->tcp_detached = B_TRUE;
4796 	if ((err = tcp_init_values(tcp)) != 0) {
4797 		freemsg(tpi_mp);
4798 		return (err);
4799 	}
4800 
4801 	if (ipvers == IPV4_VERSION) {
4802 		if ((err = tcp_header_init_ipv4(tcp)) != 0) {
4803 			freemsg(tpi_mp);
4804 			return (err);
4805 		}
4806 		ASSERT(tcp->tcp_ipha != NULL);
4807 	} else {
4808 		/* ifindex must be already set */
4809 		ASSERT(ifindex != 0);
4810 
4811 		if (ltcp->tcp_bound_if != 0) {
4812 			/*
4813 			 * Set newtcp's bound_if equal to
4814 			 * listener's value. If ifindex is
4815 			 * not the same as ltcp->tcp_bound_if,
4816 			 * it must be a packet for the ipmp group
4817 			 * of interfaces
4818 			 */
4819 			tcp->tcp_bound_if = ltcp->tcp_bound_if;
4820 		} else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4821 			tcp->tcp_bound_if = ifindex;
4822 		}
4823 
4824 		tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary;
4825 		tcp->tcp_recvifindex = 0;
4826 		tcp->tcp_recvhops = 0xffffffffU;
4827 		ASSERT(tcp->tcp_ip6h != NULL);
4828 	}
4829 
4830 	tcp->tcp_lport = ltcp->tcp_lport;
4831 
4832 	if (ltcp->tcp_ipversion == tcp->tcp_ipversion) {
4833 		if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) {
4834 			/*
4835 			 * Listener had options of some sort; eager inherits.
4836 			 * Free up the eager template and allocate one
4837 			 * of the right size.
4838 			 */
4839 			if (tcp->tcp_hdr_grown) {
4840 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
4841 			} else {
4842 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4843 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
4844 			}
4845 			tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len,
4846 			    KM_NOSLEEP);
4847 			if (tcp->tcp_iphc == NULL) {
4848 				tcp->tcp_iphc_len = 0;
4849 				freemsg(tpi_mp);
4850 				return (ENOMEM);
4851 			}
4852 			tcp->tcp_iphc_len = ltcp->tcp_iphc_len;
4853 			tcp->tcp_hdr_grown = B_TRUE;
4854 		}
4855 		tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
4856 		tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
4857 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
4858 		tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops;
4859 		tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf;
4860 
4861 		/*
4862 		 * Copy the IP+TCP header template from listener to eager
4863 		 */
4864 		bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
4865 		if (tcp->tcp_ipversion == IPV6_VERSION) {
4866 			if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt ==
4867 			    IPPROTO_RAW) {
4868 				tcp->tcp_ip6h =
4869 				    (ip6_t *)(tcp->tcp_iphc +
4870 					sizeof (ip6i_t));
4871 			} else {
4872 				tcp->tcp_ip6h =
4873 				    (ip6_t *)(tcp->tcp_iphc);
4874 			}
4875 			tcp->tcp_ipha = NULL;
4876 		} else {
4877 			tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
4878 			tcp->tcp_ip6h = NULL;
4879 		}
4880 		tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
4881 		    tcp->tcp_ip_hdr_len);
4882 	} else {
4883 		/*
4884 		 * only valid case when ipversion of listener and
4885 		 * eager differ is when listener is IPv6 and
4886 		 * eager is IPv4.
4887 		 * Eager header template has been initialized to the
4888 		 * maximum v4 header sizes, which includes space for
4889 		 * TCP and IP options.
4890 		 */
4891 		ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) &&
4892 		    (tcp->tcp_ipversion == IPV4_VERSION));
4893 		ASSERT(tcp->tcp_iphc_len >=
4894 		    TCP_MAX_COMBINED_HEADER_LENGTH);
4895 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
4896 		/* copy IP header fields individually */
4897 		tcp->tcp_ipha->ipha_ttl =
4898 		    ltcp->tcp_ip6h->ip6_hops;
4899 		bcopy(ltcp->tcp_tcph->th_lport,
4900 		    tcp->tcp_tcph->th_lport, sizeof (ushort_t));
4901 	}
4902 
4903 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
4904 	bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport,
4905 	    sizeof (in_port_t));
4906 
4907 	if (ltcp->tcp_lport == 0) {
4908 		tcp->tcp_lport = *(in_port_t *)tcph->th_fport;
4909 		bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport,
4910 		    sizeof (in_port_t));
4911 	}
4912 
4913 	if (tcp->tcp_ipversion == IPV4_VERSION) {
4914 		ASSERT(ipha != NULL);
4915 		tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
4916 		tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
4917 
4918 		/* Source routing option copyover (reverse it) */
4919 		if (tcp_rev_src_routes)
4920 			tcp_opt_reverse(tcp, ipha);
4921 	} else {
4922 		ASSERT(ip6h != NULL);
4923 		tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src;
4924 		tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst;
4925 	}
4926 
4927 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
4928 	/*
4929 	 * If the SYN contains a credential, it's a loopback packet; attach
4930 	 * the credential to the TPI message.
4931 	 */
4932 	if ((cr = DB_CRED(idmp)) != NULL) {
4933 		mblk_setcred(tpi_mp, cr);
4934 		DB_CPID(tpi_mp) = DB_CPID(idmp);
4935 	}
4936 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
4937 
4938 	/* Inherit the listener's SSL protection state */
4939 
4940 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
4941 		kssl_hold_ent(tcp->tcp_kssl_ent);
4942 		tcp->tcp_kssl_pending = B_TRUE;
4943 	}
4944 
4945 	return (0);
4946 }
4947 
4948 
4949 int
4950 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
4951     tcph_t *tcph, mblk_t *idmp)
4952 {
4953 	tcp_t 		*ltcp = lconnp->conn_tcp;
4954 	tcp_t		*tcp = connp->conn_tcp;
4955 	sin_t		sin;
4956 	mblk_t		*tpi_mp = NULL;
4957 	int		err;
4958 	cred_t		*cr;
4959 
4960 	sin = sin_null;
4961 	sin.sin_addr.s_addr = ipha->ipha_src;
4962 	sin.sin_port = *(uint16_t *)tcph->th_lport;
4963 	sin.sin_family = AF_INET;
4964 	if (ltcp->tcp_recvdstaddr) {
4965 		sin_t	sind;
4966 
4967 		sind = sin_null;
4968 		sind.sin_addr.s_addr = ipha->ipha_dst;
4969 		sind.sin_port = *(uint16_t *)tcph->th_fport;
4970 		sind.sin_family = AF_INET;
4971 		tpi_mp = mi_tpi_extconn_ind(NULL,
4972 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
4973 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
4974 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4975 	} else {
4976 		tpi_mp = mi_tpi_conn_ind(NULL,
4977 		    (char *)&sin, sizeof (sin_t),
4978 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4979 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4980 	}
4981 
4982 	if (tpi_mp == NULL) {
4983 		return (ENOMEM);
4984 	}
4985 
4986 	connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER);
4987 	connp->conn_send = ip_output;
4988 	connp->conn_recv = tcp_input;
4989 	connp->conn_fully_bound = B_FALSE;
4990 
4991 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4992 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4993 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4994 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4995 
4996 	if (tcp_trace) {
4997 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
4998 	}
4999 
5000 	/* Inherit information from the "parent" */
5001 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
5002 	tcp->tcp_family = ltcp->tcp_family;
5003 	tcp->tcp_wq = ltcp->tcp_wq;
5004 	tcp->tcp_rq = ltcp->tcp_rq;
5005 	tcp->tcp_mss = tcp_mss_def_ipv4;
5006 	tcp->tcp_detached = B_TRUE;
5007 	if ((err = tcp_init_values(tcp)) != 0) {
5008 		freemsg(tpi_mp);
5009 		return (err);
5010 	}
5011 
5012 	/*
5013 	 * Let's make sure that eager tcp template has enough space to
5014 	 * copy IPv4 listener's tcp template. Since the conn_t structure is
5015 	 * preserved and tcp_iphc_len is also preserved, an eager conn_t may
5016 	 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or
5017 	 * more (in case of re-allocation of conn_t with tcp-IPv6 template with
5018 	 * extension headers or with ip6i_t struct). Note that bcopy() below
5019 	 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_
5020 	 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener.
5021 	 */
5022 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
5023 	ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH);
5024 
5025 	tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
5026 	tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
5027 	tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5028 	tcp->tcp_ttl = ltcp->tcp_ttl;
5029 	tcp->tcp_tos = ltcp->tcp_tos;
5030 
5031 	/* Copy the IP+TCP header template from listener to eager */
5032 	bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
5033 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5034 	tcp->tcp_ip6h = NULL;
5035 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5036 	    tcp->tcp_ip_hdr_len);
5037 
5038 	/* Initialize the IP addresses and Ports */
5039 	tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5040 	tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5041 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5042 	bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t));
5043 
5044 	/* Source routing option copyover (reverse it) */
5045 	if (tcp_rev_src_routes)
5046 		tcp_opt_reverse(tcp, ipha);
5047 
5048 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5049 
5050 	/*
5051 	 * If the SYN contains a credential, it's a loopback packet; attach
5052 	 * the credential to the TPI message.
5053 	 */
5054 	if ((cr = DB_CRED(idmp)) != NULL) {
5055 		mblk_setcred(tpi_mp, cr);
5056 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5057 	}
5058 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5059 
5060 	/* Inherit the listener's SSL protection state */
5061 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5062 		kssl_hold_ent(tcp->tcp_kssl_ent);
5063 		tcp->tcp_kssl_pending = B_TRUE;
5064 	}
5065 
5066 	return (0);
5067 }
5068 
5069 /*
5070  * sets up conn for ipsec.
5071  * if the first mblk is M_CTL it is consumed and mpp is updated.
5072  * in case of error mpp is freed.
5073  */
5074 conn_t *
5075 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp)
5076 {
5077 	conn_t 		*connp = tcp->tcp_connp;
5078 	conn_t 		*econnp;
5079 	squeue_t 	*new_sqp;
5080 	mblk_t 		*first_mp = *mpp;
5081 	mblk_t		*mp = *mpp;
5082 	boolean_t	mctl_present = B_FALSE;
5083 	uint_t		ipvers;
5084 
5085 	econnp = tcp_get_conn(sqp);
5086 	if (econnp == NULL) {
5087 		freemsg(first_mp);
5088 		return (NULL);
5089 	}
5090 	if (DB_TYPE(mp) == M_CTL) {
5091 		if (mp->b_cont == NULL ||
5092 		    mp->b_cont->b_datap->db_type != M_DATA) {
5093 			freemsg(first_mp);
5094 			return (NULL);
5095 		}
5096 		mp = mp->b_cont;
5097 		if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) {
5098 			freemsg(first_mp);
5099 			return (NULL);
5100 		}
5101 
5102 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5103 		first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5104 		mctl_present = B_TRUE;
5105 	} else {
5106 		ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY);
5107 		mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5108 	}
5109 
5110 	new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5111 	DB_CKSUMSTART(mp) = 0;
5112 
5113 	ASSERT(OK_32PTR(mp->b_rptr));
5114 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5115 	if (ipvers == IPV4_VERSION) {
5116 		uint16_t  	*up;
5117 		uint32_t	ports;
5118 		ipha_t		*ipha;
5119 
5120 		ipha = (ipha_t *)mp->b_rptr;
5121 		up = (uint16_t *)((uchar_t *)ipha +
5122 		    IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET);
5123 		ports = *(uint32_t *)up;
5124 		IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP,
5125 		    ipha->ipha_dst, ipha->ipha_src, ports);
5126 	} else {
5127 		uint16_t  	*up;
5128 		uint32_t	ports;
5129 		uint16_t	ip_hdr_len;
5130 		uint8_t		*nexthdrp;
5131 		ip6_t 		*ip6h;
5132 		tcph_t		*tcph;
5133 
5134 		ip6h = (ip6_t *)mp->b_rptr;
5135 		if (ip6h->ip6_nxt == IPPROTO_TCP) {
5136 			ip_hdr_len = IPV6_HDR_LEN;
5137 		} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len,
5138 		    &nexthdrp) || *nexthdrp != IPPROTO_TCP) {
5139 			CONN_DEC_REF(econnp);
5140 			freemsg(first_mp);
5141 			return (NULL);
5142 		}
5143 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5144 		up = (uint16_t *)tcph->th_lport;
5145 		ports = *(uint32_t *)up;
5146 		IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP,
5147 		    ip6h->ip6_dst, ip6h->ip6_src, ports);
5148 	}
5149 
5150 	/*
5151 	 * The caller already ensured that there is a sqp present.
5152 	 */
5153 	econnp->conn_sqp = new_sqp;
5154 
5155 	if (connp->conn_policy != NULL) {
5156 		ipsec_in_t *ii;
5157 		ii = (ipsec_in_t *)(first_mp->b_rptr);
5158 		ASSERT(ii->ipsec_in_policy == NULL);
5159 		IPPH_REFHOLD(connp->conn_policy);
5160 		ii->ipsec_in_policy = connp->conn_policy;
5161 
5162 		first_mp->b_datap->db_type = IPSEC_POLICY_SET;
5163 		if (!ip_bind_ipsec_policy_set(econnp, first_mp)) {
5164 			CONN_DEC_REF(econnp);
5165 			freemsg(first_mp);
5166 			return (NULL);
5167 		}
5168 	}
5169 
5170 	if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) {
5171 		CONN_DEC_REF(econnp);
5172 		freemsg(first_mp);
5173 		return (NULL);
5174 	}
5175 
5176 	/*
5177 	 * If we know we have some policy, pass the "IPSEC"
5178 	 * options size TCP uses this adjust the MSS.
5179 	 */
5180 	econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp);
5181 	if (mctl_present) {
5182 		freeb(first_mp);
5183 		*mpp = mp;
5184 	}
5185 
5186 	return (econnp);
5187 }
5188 
5189 /*
5190  * tcp_get_conn/tcp_free_conn
5191  *
5192  * tcp_get_conn is used to get a clean tcp connection structure.
5193  * It tries to reuse the connections put on the freelist by the
5194  * time_wait_collector failing which it goes to kmem_cache. This
5195  * way has two benefits compared to just allocating from and
5196  * freeing to kmem_cache.
5197  * 1) The time_wait_collector can free (which includes the cleanup)
5198  * outside the squeue. So when the interrupt comes, we have a clean
5199  * connection sitting in the freelist. Obviously, this buys us
5200  * performance.
5201  *
5202  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request
5203  * has multiple disadvantages - tying up the squeue during alloc, and the
5204  * fact that IPSec policy initialization has to happen here which
5205  * requires us sending a M_CTL and checking for it i.e. real ugliness.
5206  * But allocating the conn/tcp in IP land is also not the best since
5207  * we can't check the 'q' and 'q0' which are protected by squeue and
5208  * blindly allocate memory which might have to be freed here if we are
5209  * not allowed to accept the connection. By using the freelist and
5210  * putting the conn/tcp back in freelist, we don't pay a penalty for
5211  * allocating memory without checking 'q/q0' and freeing it if we can't
5212  * accept the connection.
5213  *
5214  * Care should be taken to put the conn back in the same squeue's freelist
5215  * from which it was allocated. Best results are obtained if conn is
5216  * allocated from listener's squeue and freed to the same. Time wait
5217  * collector will free up the freelist is the connection ends up sitting
5218  * there for too long.
5219  */
5220 void *
5221 tcp_get_conn(void *arg)
5222 {
5223 	tcp_t			*tcp = NULL;
5224 	conn_t			*connp = NULL;
5225 	squeue_t		*sqp = (squeue_t *)arg;
5226 	tcp_squeue_priv_t 	*tcp_time_wait;
5227 
5228 	tcp_time_wait =
5229 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
5230 
5231 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
5232 	tcp = tcp_time_wait->tcp_free_list;
5233 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
5234 	if (tcp != NULL) {
5235 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
5236 		tcp_time_wait->tcp_free_list_cnt--;
5237 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5238 		tcp->tcp_time_wait_next = NULL;
5239 		connp = tcp->tcp_connp;
5240 		connp->conn_flags |= IPCL_REUSED;
5241 		return ((void *)connp);
5242 	}
5243 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5244 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL)
5245 		return (NULL);
5246 	return ((void *)connp);
5247 }
5248 
5249 /*
5250  * Update the cached label for the given tcp_t.  This should be called once per
5251  * connection, and before any packets are sent or tcp_process_options is
5252  * invoked.  Returns B_FALSE if the correct label could not be constructed.
5253  */
5254 static boolean_t
5255 tcp_update_label(tcp_t *tcp, const cred_t *cr)
5256 {
5257 	conn_t *connp = tcp->tcp_connp;
5258 
5259 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5260 		uchar_t optbuf[IP_MAX_OPT_LENGTH];
5261 		int added;
5262 
5263 		if (tsol_compute_label(cr, tcp->tcp_remote, optbuf,
5264 		    connp->conn_mac_exempt) != 0)
5265 			return (B_FALSE);
5266 
5267 		added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len);
5268 		if (added == -1)
5269 			return (B_FALSE);
5270 		tcp->tcp_hdr_len += added;
5271 		tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added);
5272 		tcp->tcp_ip_hdr_len += added;
5273 		if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) {
5274 			tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3;
5275 			added = tsol_prepend_option(optbuf, tcp->tcp_ipha,
5276 			    tcp->tcp_hdr_len);
5277 			if (added == -1)
5278 				return (B_FALSE);
5279 			tcp->tcp_hdr_len += added;
5280 			tcp->tcp_tcph = (tcph_t *)
5281 			    ((uchar_t *)tcp->tcp_tcph + added);
5282 			tcp->tcp_ip_hdr_len += added;
5283 		}
5284 	} else {
5285 		uchar_t optbuf[TSOL_MAX_IPV6_OPTION];
5286 
5287 		if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf,
5288 		    connp->conn_mac_exempt) != 0)
5289 			return (B_FALSE);
5290 		if (tsol_update_sticky(&tcp->tcp_sticky_ipp,
5291 		    &tcp->tcp_label_len, optbuf) != 0)
5292 			return (B_FALSE);
5293 		if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0)
5294 			return (B_FALSE);
5295 	}
5296 
5297 	connp->conn_ulp_labeled = 1;
5298 
5299 	return (B_TRUE);
5300 }
5301 
5302 /* BEGIN CSTYLED */
5303 /*
5304  *
5305  * The sockfs ACCEPT path:
5306  * =======================
5307  *
5308  * The eager is now established in its own perimeter as soon as SYN is
5309  * received in tcp_conn_request(). When sockfs receives conn_ind, it
5310  * completes the accept processing on the acceptor STREAM. The sending
5311  * of conn_ind part is common for both sockfs listener and a TLI/XTI
5312  * listener but a TLI/XTI listener completes the accept processing
5313  * on the listener perimeter.
5314  *
5315  * Common control flow for 3 way handshake:
5316  * ----------------------------------------
5317  *
5318  * incoming SYN (listener perimeter) 	-> tcp_rput_data()
5319  *					-> tcp_conn_request()
5320  *
5321  * incoming SYN-ACK-ACK (eager perim) 	-> tcp_rput_data()
5322  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
5323  *
5324  * Sockfs ACCEPT Path:
5325  * -------------------
5326  *
5327  * open acceptor stream (ip_tcpopen allocates tcp_wput_accept()
5328  * as STREAM entry point)
5329  *
5330  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept()
5331  *
5332  * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager
5333  * association (we are not behind eager's squeue but sockfs is protecting us
5334  * and no one knows about this stream yet. The STREAMS entry point q->q_info
5335  * is changed to point at tcp_wput().
5336  *
5337  * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to
5338  * listener (done on listener's perimeter).
5339  *
5340  * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish
5341  * accept.
5342  *
5343  * TLI/XTI client ACCEPT path:
5344  * ---------------------------
5345  *
5346  * soaccept() sends T_CONN_RES on the listener STREAM.
5347  *
5348  * tcp_accept() -> tcp_accept_swap() complete the processing and send
5349  * the bind_mp to eager perimeter to finish accept (tcp_rput_other()).
5350  *
5351  * Locks:
5352  * ======
5353  *
5354  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
5355  * and listeners->tcp_eager_next_q.
5356  *
5357  * Referencing:
5358  * ============
5359  *
5360  * 1) We start out in tcp_conn_request by eager placing a ref on
5361  * listener and listener adding eager to listeners->tcp_eager_next_q0.
5362  *
5363  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
5364  * doing so we place a ref on the eager. This ref is finally dropped at the
5365  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
5366  * reference is dropped by the squeue framework.
5367  *
5368  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
5369  *
5370  * The reference must be released by the same entity that added the reference
5371  * In the above scheme, the eager is the entity that adds and releases the
5372  * references. Note that tcp_accept_finish executes in the squeue of the eager
5373  * (albeit after it is attached to the acceptor stream). Though 1. executes
5374  * in the listener's squeue, the eager is nascent at this point and the
5375  * reference can be considered to have been added on behalf of the eager.
5376  *
5377  * Eager getting a Reset or listener closing:
5378  * ==========================================
5379  *
5380  * Once the listener and eager are linked, the listener never does the unlink.
5381  * If the listener needs to close, tcp_eager_cleanup() is called which queues
5382  * a message on all eager perimeter. The eager then does the unlink, clears
5383  * any pointers to the listener's queue and drops the reference to the
5384  * listener. The listener waits in tcp_close outside the squeue until its
5385  * refcount has dropped to 1. This ensures that the listener has waited for
5386  * all eagers to clear their association with the listener.
5387  *
5388  * Similarly, if eager decides to go away, it can unlink itself and close.
5389  * When the T_CONN_RES comes down, we check if eager has closed. Note that
5390  * the reference to eager is still valid because of the extra ref we put
5391  * in tcp_send_conn_ind.
5392  *
5393  * Listener can always locate the eager under the protection
5394  * of the listener->tcp_eager_lock, and then do a refhold
5395  * on the eager during the accept processing.
5396  *
5397  * The acceptor stream accesses the eager in the accept processing
5398  * based on the ref placed on eager before sending T_conn_ind.
5399  * The only entity that can negate this refhold is a listener close
5400  * which is mutually exclusive with an active acceptor stream.
5401  *
5402  * Eager's reference on the listener
5403  * ===================================
5404  *
5405  * If the accept happens (even on a closed eager) the eager drops its
5406  * reference on the listener at the start of tcp_accept_finish. If the
5407  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
5408  * the reference is dropped in tcp_closei_local. If the listener closes,
5409  * the reference is dropped in tcp_eager_kill. In all cases the reference
5410  * is dropped while executing in the eager's context (squeue).
5411  */
5412 /* END CSTYLED */
5413 
5414 /* Process the SYN packet, mp, directed at the listener 'tcp' */
5415 
5416 /*
5417  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
5418  * tcp_rput_data will not see any SYN packets.
5419  */
5420 /* ARGSUSED */
5421 void
5422 tcp_conn_request(void *arg, mblk_t *mp, void *arg2)
5423 {
5424 	tcph_t		*tcph;
5425 	uint32_t	seg_seq;
5426 	tcp_t		*eager;
5427 	uint_t		ipvers;
5428 	ipha_t		*ipha;
5429 	ip6_t		*ip6h;
5430 	int		err;
5431 	conn_t		*econnp = NULL;
5432 	squeue_t	*new_sqp;
5433 	mblk_t		*mp1;
5434 	uint_t 		ip_hdr_len;
5435 	conn_t		*connp = (conn_t *)arg;
5436 	tcp_t		*tcp = connp->conn_tcp;
5437 	ire_t		*ire;
5438 	cred_t		*credp;
5439 
5440 	if (tcp->tcp_state != TCPS_LISTEN)
5441 		goto error2;
5442 
5443 	ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0);
5444 
5445 	mutex_enter(&tcp->tcp_eager_lock);
5446 	if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) {
5447 		mutex_exit(&tcp->tcp_eager_lock);
5448 		TCP_STAT(tcp_listendrop);
5449 		BUMP_MIB(&tcp_mib, tcpListenDrop);
5450 		if (tcp->tcp_debug) {
5451 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
5452 			    "tcp_conn_request: listen backlog (max=%d) "
5453 			    "overflow (%d pending) on %s",
5454 			    tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q,
5455 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
5456 		}
5457 		goto error2;
5458 	}
5459 
5460 	if (tcp->tcp_conn_req_cnt_q0 >=
5461 	    tcp->tcp_conn_req_max + tcp_conn_req_max_q0) {
5462 		/*
5463 		 * Q0 is full. Drop a pending half-open req from the queue
5464 		 * to make room for the new SYN req. Also mark the time we
5465 		 * drop a SYN.
5466 		 *
5467 		 * A more aggressive defense against SYN attack will
5468 		 * be to set the "tcp_syn_defense" flag now.
5469 		 */
5470 		TCP_STAT(tcp_listendropq0);
5471 		tcp->tcp_last_rcv_lbolt = lbolt64;
5472 		if (!tcp_drop_q0(tcp)) {
5473 			mutex_exit(&tcp->tcp_eager_lock);
5474 			BUMP_MIB(&tcp_mib, tcpListenDropQ0);
5475 			if (tcp->tcp_debug) {
5476 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
5477 				    "tcp_conn_request: listen half-open queue "
5478 				    "(max=%d) full (%d pending) on %s",
5479 				    tcp_conn_req_max_q0,
5480 				    tcp->tcp_conn_req_cnt_q0,
5481 				    tcp_display(tcp, NULL,
5482 				    DISP_PORT_ONLY));
5483 			}
5484 			goto error2;
5485 		}
5486 	}
5487 	mutex_exit(&tcp->tcp_eager_lock);
5488 
5489 	/*
5490 	 * IP adds STRUIO_EAGER and ensures that the received packet is
5491 	 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6
5492 	 * link local address.  If IPSec is enabled, db_struioflag has
5493 	 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER);
5494 	 * otherwise an error case if neither of them is set.
5495 	 */
5496 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5497 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5498 		DB_CKSUMSTART(mp) = 0;
5499 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5500 		econnp = (conn_t *)tcp_get_conn(arg2);
5501 		if (econnp == NULL)
5502 			goto error2;
5503 		econnp->conn_sqp = new_sqp;
5504 	} else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) {
5505 		/*
5506 		 * mp is updated in tcp_get_ipsec_conn().
5507 		 */
5508 		econnp = tcp_get_ipsec_conn(tcp, arg2, &mp);
5509 		if (econnp == NULL) {
5510 			/*
5511 			 * mp freed by tcp_get_ipsec_conn.
5512 			 */
5513 			return;
5514 		}
5515 	} else {
5516 		goto error2;
5517 	}
5518 
5519 	ASSERT(DB_TYPE(mp) == M_DATA);
5520 
5521 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5522 	ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION);
5523 	ASSERT(OK_32PTR(mp->b_rptr));
5524 	if (ipvers == IPV4_VERSION) {
5525 		ipha = (ipha_t *)mp->b_rptr;
5526 		ip_hdr_len = IPH_HDR_LENGTH(ipha);
5527 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5528 	} else {
5529 		ip6h = (ip6_t *)mp->b_rptr;
5530 		ip_hdr_len = ip_hdr_length_v6(mp, ip6h);
5531 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5532 	}
5533 
5534 	if (tcp->tcp_family == AF_INET) {
5535 		ASSERT(ipvers == IPV4_VERSION);
5536 		err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp);
5537 	} else {
5538 		err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp);
5539 	}
5540 
5541 	if (err)
5542 		goto error3;
5543 
5544 	eager = econnp->conn_tcp;
5545 
5546 	/* Inherit various TCP parameters from the listener */
5547 	eager->tcp_naglim = tcp->tcp_naglim;
5548 	eager->tcp_first_timer_threshold =
5549 	    tcp->tcp_first_timer_threshold;
5550 	eager->tcp_second_timer_threshold =
5551 	    tcp->tcp_second_timer_threshold;
5552 
5553 	eager->tcp_first_ctimer_threshold =
5554 	    tcp->tcp_first_ctimer_threshold;
5555 	eager->tcp_second_ctimer_threshold =
5556 	    tcp->tcp_second_ctimer_threshold;
5557 
5558 	/*
5559 	 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics.
5560 	 * If it does not, the eager's receive window will be set to the
5561 	 * listener's receive window later in this function.
5562 	 */
5563 	eager->tcp_rwnd = 0;
5564 
5565 	/*
5566 	 * Inherit listener's tcp_init_cwnd.  Need to do this before
5567 	 * calling tcp_process_options() where tcp_mss_set() is called
5568 	 * to set the initial cwnd.
5569 	 */
5570 	eager->tcp_init_cwnd = tcp->tcp_init_cwnd;
5571 
5572 	/*
5573 	 * Zones: tcp_adapt_ire() and tcp_send_data() both need the
5574 	 * zone id before the accept is completed in tcp_wput_accept().
5575 	 */
5576 	econnp->conn_zoneid = connp->conn_zoneid;
5577 
5578 	/* Copy nexthop information from listener to eager */
5579 	if (connp->conn_nexthop_set) {
5580 		econnp->conn_nexthop_set = connp->conn_nexthop_set;
5581 		econnp->conn_nexthop_v4 = connp->conn_nexthop_v4;
5582 	}
5583 
5584 	/*
5585 	 * TSOL: tsol_input_proc() needs the eager's cred before the
5586 	 * eager is accepted
5587 	 */
5588 	econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred;
5589 	crhold(credp);
5590 
5591 	/*
5592 	 * If the caller has the process-wide flag set, then default to MAC
5593 	 * exempt mode.  This allows read-down to unlabeled hosts.
5594 	 */
5595 	if (getpflags(NET_MAC_AWARE, credp) != 0)
5596 		econnp->conn_mac_exempt = B_TRUE;
5597 
5598 	if (is_system_labeled()) {
5599 		cred_t *cr;
5600 
5601 		if (connp->conn_mlp_type != mlptSingle) {
5602 			cr = econnp->conn_peercred = DB_CRED(mp);
5603 			if (cr != NULL)
5604 				crhold(cr);
5605 			else
5606 				cr = econnp->conn_cred;
5607 			DTRACE_PROBE2(mlp_syn_accept, conn_t *,
5608 			    econnp, cred_t *, cr)
5609 		} else {
5610 			cr = econnp->conn_cred;
5611 			DTRACE_PROBE2(syn_accept, conn_t *,
5612 			    econnp, cred_t *, cr)
5613 		}
5614 
5615 		if (!tcp_update_label(eager, cr)) {
5616 			DTRACE_PROBE3(
5617 			    tx__ip__log__error__connrequest__tcp,
5618 			    char *, "eager connp(1) label on SYN mp(2) failed",
5619 			    conn_t *, econnp, mblk_t *, mp);
5620 			goto error3;
5621 		}
5622 	}
5623 
5624 	eager->tcp_hard_binding = B_TRUE;
5625 
5626 	tcp_bind_hash_insert(&tcp_bind_fanout[
5627 	    TCP_BIND_HASH(eager->tcp_lport)], eager, 0);
5628 
5629 	CL_INET_CONNECT(eager);
5630 
5631 	/*
5632 	 * No need to check for multicast destination since ip will only pass
5633 	 * up multicasts to those that have expressed interest
5634 	 * TODO: what about rejecting broadcasts?
5635 	 * Also check that source is not a multicast or broadcast address.
5636 	 */
5637 	eager->tcp_state = TCPS_SYN_RCVD;
5638 
5639 
5640 	/*
5641 	 * There should be no ire in the mp as we are being called after
5642 	 * receiving the SYN.
5643 	 */
5644 	ASSERT(tcp_ire_mp(mp) == NULL);
5645 
5646 	/*
5647 	 * Adapt our mss, ttl, ... according to information provided in IRE.
5648 	 */
5649 
5650 	if (tcp_adapt_ire(eager, NULL) == 0) {
5651 		/* Undo the bind_hash_insert */
5652 		tcp_bind_hash_remove(eager);
5653 		goto error3;
5654 	}
5655 
5656 	/* Process all TCP options. */
5657 	tcp_process_options(eager, tcph);
5658 
5659 	/* Is the other end ECN capable? */
5660 	if (tcp_ecn_permitted >= 1 &&
5661 	    (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
5662 		eager->tcp_ecn_ok = B_TRUE;
5663 	}
5664 
5665 	/*
5666 	 * listener->tcp_rq->q_hiwat should be the default window size or a
5667 	 * window size changed via SO_RCVBUF option.  First round up the
5668 	 * eager's tcp_rwnd to the nearest MSS.  Then find out the window
5669 	 * scale option value if needed.  Call tcp_rwnd_set() to finish the
5670 	 * setting.
5671 	 *
5672 	 * Note if there is a rpipe metric associated with the remote host,
5673 	 * we should not inherit receive window size from listener.
5674 	 */
5675 	eager->tcp_rwnd = MSS_ROUNDUP(
5676 	    (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat :
5677 	    eager->tcp_rwnd), eager->tcp_mss);
5678 	if (eager->tcp_snd_ws_ok)
5679 		tcp_set_ws_value(eager);
5680 	/*
5681 	 * Note that this is the only place tcp_rwnd_set() is called for
5682 	 * accepting a connection.  We need to call it here instead of
5683 	 * after the 3-way handshake because we need to tell the other
5684 	 * side our rwnd in the SYN-ACK segment.
5685 	 */
5686 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
5687 
5688 	/*
5689 	 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ
5690 	 * via soaccept()->soinheritoptions() which essentially applies
5691 	 * all the listener options to the new STREAM. The options that we
5692 	 * need to take care of are:
5693 	 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST,
5694 	 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER,
5695 	 * SO_SNDBUF, SO_RCVBUF.
5696 	 *
5697 	 * SO_RCVBUF:	tcp_rwnd_set() above takes care of it.
5698 	 * SO_SNDBUF:	Set the tcp_xmit_hiwater for the eager. When
5699 	 *		tcp_maxpsz_set() gets called later from
5700 	 *		tcp_accept_finish(), the option takes effect.
5701 	 *
5702 	 */
5703 	/* Set the TCP options */
5704 	eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater;
5705 	eager->tcp_dgram_errind = tcp->tcp_dgram_errind;
5706 	eager->tcp_oobinline = tcp->tcp_oobinline;
5707 	eager->tcp_reuseaddr = tcp->tcp_reuseaddr;
5708 	eager->tcp_broadcast = tcp->tcp_broadcast;
5709 	eager->tcp_useloopback = tcp->tcp_useloopback;
5710 	eager->tcp_dontroute = tcp->tcp_dontroute;
5711 	eager->tcp_linger = tcp->tcp_linger;
5712 	eager->tcp_lingertime = tcp->tcp_lingertime;
5713 	if (tcp->tcp_ka_enabled)
5714 		eager->tcp_ka_enabled = 1;
5715 
5716 	/* Set the IP options */
5717 	econnp->conn_broadcast = connp->conn_broadcast;
5718 	econnp->conn_loopback = connp->conn_loopback;
5719 	econnp->conn_dontroute = connp->conn_dontroute;
5720 	econnp->conn_reuseaddr = connp->conn_reuseaddr;
5721 
5722 	/* Put a ref on the listener for the eager. */
5723 	CONN_INC_REF(connp);
5724 	mutex_enter(&tcp->tcp_eager_lock);
5725 	tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
5726 	eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0;
5727 	tcp->tcp_eager_next_q0 = eager;
5728 	eager->tcp_eager_prev_q0 = tcp;
5729 
5730 	/* Set tcp_listener before adding it to tcp_conn_fanout */
5731 	eager->tcp_listener = tcp;
5732 	eager->tcp_saved_listener = tcp;
5733 
5734 	/*
5735 	 * Tag this detached tcp vector for later retrieval
5736 	 * by our listener client in tcp_accept().
5737 	 */
5738 	eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum;
5739 	tcp->tcp_conn_req_cnt_q0++;
5740 	if (++tcp->tcp_conn_req_seqnum == -1) {
5741 		/*
5742 		 * -1 is "special" and defined in TPI as something
5743 		 * that should never be used in T_CONN_IND
5744 		 */
5745 		++tcp->tcp_conn_req_seqnum;
5746 	}
5747 	mutex_exit(&tcp->tcp_eager_lock);
5748 
5749 	if (tcp->tcp_syn_defense) {
5750 		/* Don't drop the SYN that comes from a good IP source */
5751 		ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache);
5752 		if (addr_cache != NULL && eager->tcp_remote ==
5753 		    addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) {
5754 			eager->tcp_dontdrop = B_TRUE;
5755 		}
5756 	}
5757 
5758 	/*
5759 	 * We need to insert the eager in its own perimeter but as soon
5760 	 * as we do that, we expose the eager to the classifier and
5761 	 * should not touch any field outside the eager's perimeter.
5762 	 * So do all the work necessary before inserting the eager
5763 	 * in its own perimeter. Be optimistic that ipcl_conn_insert()
5764 	 * will succeed but undo everything if it fails.
5765 	 */
5766 	seg_seq = ABE32_TO_U32(tcph->th_seq);
5767 	eager->tcp_irs = seg_seq;
5768 	eager->tcp_rack = seg_seq;
5769 	eager->tcp_rnxt = seg_seq + 1;
5770 	U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack);
5771 	BUMP_MIB(&tcp_mib, tcpPassiveOpens);
5772 	eager->tcp_state = TCPS_SYN_RCVD;
5773 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
5774 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
5775 	if (mp1 == NULL)
5776 		goto error1;
5777 	DB_CPID(mp1) = tcp->tcp_cpid;
5778 
5779 	/*
5780 	 * We need to start the rto timer. In normal case, we start
5781 	 * the timer after sending the packet on the wire (or at
5782 	 * least believing that packet was sent by waiting for
5783 	 * CALL_IP_WPUT() to return). Since this is the first packet
5784 	 * being sent on the wire for the eager, our initial tcp_rto
5785 	 * is at least tcp_rexmit_interval_min which is a fairly
5786 	 * large value to allow the algorithm to adjust slowly to large
5787 	 * fluctuations of RTT during first few transmissions.
5788 	 *
5789 	 * Starting the timer first and then sending the packet in this
5790 	 * case shouldn't make much difference since tcp_rexmit_interval_min
5791 	 * is of the order of several 100ms and starting the timer
5792 	 * first and then sending the packet will result in difference
5793 	 * of few micro seconds.
5794 	 *
5795 	 * Without this optimization, we are forced to hold the fanout
5796 	 * lock across the ipcl_bind_insert() and sending the packet
5797 	 * so that we don't race against an incoming packet (maybe RST)
5798 	 * for this eager.
5799 	 */
5800 
5801 	TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT);
5802 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
5803 
5804 
5805 	/*
5806 	 * Insert the eager in its own perimeter now. We are ready to deal
5807 	 * with any packets on eager.
5808 	 */
5809 	if (eager->tcp_ipversion == IPV4_VERSION) {
5810 		if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) {
5811 			goto error;
5812 		}
5813 	} else {
5814 		if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) {
5815 			goto error;
5816 		}
5817 	}
5818 
5819 	/* mark conn as fully-bound */
5820 	econnp->conn_fully_bound = B_TRUE;
5821 
5822 	/* Send the SYN-ACK */
5823 	tcp_send_data(eager, eager->tcp_wq, mp1);
5824 	freemsg(mp);
5825 
5826 	return;
5827 error:
5828 	(void) TCP_TIMER_CANCEL(eager, eager->tcp_timer_tid);
5829 	freemsg(mp1);
5830 error1:
5831 	/* Undo what we did above */
5832 	mutex_enter(&tcp->tcp_eager_lock);
5833 	tcp_eager_unlink(eager);
5834 	mutex_exit(&tcp->tcp_eager_lock);
5835 	/* Drop eager's reference on the listener */
5836 	CONN_DEC_REF(connp);
5837 
5838 	/*
5839 	 * Delete the cached ire in conn_ire_cache and also mark
5840 	 * the conn as CONDEMNED
5841 	 */
5842 	mutex_enter(&econnp->conn_lock);
5843 	econnp->conn_state_flags |= CONN_CONDEMNED;
5844 	ire = econnp->conn_ire_cache;
5845 	econnp->conn_ire_cache = NULL;
5846 	mutex_exit(&econnp->conn_lock);
5847 	if (ire != NULL)
5848 		IRE_REFRELE_NOTR(ire);
5849 
5850 	/*
5851 	 * tcp_accept_comm inserts the eager to the bind_hash
5852 	 * we need to remove it from the hash if ipcl_conn_insert
5853 	 * fails.
5854 	 */
5855 	tcp_bind_hash_remove(eager);
5856 	/* Drop the eager ref placed in tcp_open_detached */
5857 	CONN_DEC_REF(econnp);
5858 
5859 	/*
5860 	 * If a connection already exists, send the mp to that connections so
5861 	 * that it can be appropriately dealt with.
5862 	 */
5863 	if ((econnp = ipcl_classify(mp, connp->conn_zoneid)) != NULL) {
5864 		if (!IPCL_IS_CONNECTED(econnp)) {
5865 			/*
5866 			 * Something bad happened. ipcl_conn_insert()
5867 			 * failed because a connection already existed
5868 			 * in connected hash but we can't find it
5869 			 * anymore (someone blew it away). Just
5870 			 * free this message and hopefully remote
5871 			 * will retransmit at which time the SYN can be
5872 			 * treated as a new connection or dealth with
5873 			 * a TH_RST if a connection already exists.
5874 			 */
5875 			freemsg(mp);
5876 		} else {
5877 			squeue_fill(econnp->conn_sqp, mp, tcp_input,
5878 			    econnp, SQTAG_TCP_CONN_REQ);
5879 		}
5880 	} else {
5881 		/* Nobody wants this packet */
5882 		freemsg(mp);
5883 	}
5884 	return;
5885 error2:
5886 	freemsg(mp);
5887 	return;
5888 error3:
5889 	CONN_DEC_REF(econnp);
5890 	freemsg(mp);
5891 }
5892 
5893 /*
5894  * In an ideal case of vertical partition in NUMA architecture, its
5895  * beneficial to have the listener and all the incoming connections
5896  * tied to the same squeue. The other constraint is that incoming
5897  * connections should be tied to the squeue attached to interrupted
5898  * CPU for obvious locality reason so this leaves the listener to
5899  * be tied to the same squeue. Our only problem is that when listener
5900  * is binding, the CPU that will get interrupted by the NIC whose
5901  * IP address the listener is binding to is not even known. So
5902  * the code below allows us to change that binding at the time the
5903  * CPU is interrupted by virtue of incoming connection's squeue.
5904  *
5905  * This is usefull only in case of a listener bound to a specific IP
5906  * address. For other kind of listeners, they get bound the
5907  * very first time and there is no attempt to rebind them.
5908  */
5909 void
5910 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2)
5911 {
5912 	conn_t		*connp = (conn_t *)arg;
5913 	squeue_t	*sqp = (squeue_t *)arg2;
5914 	squeue_t	*new_sqp;
5915 	uint32_t	conn_flags;
5916 
5917 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5918 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5919 	} else {
5920 		goto done;
5921 	}
5922 
5923 	if (connp->conn_fanout == NULL)
5924 		goto done;
5925 
5926 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
5927 		mutex_enter(&connp->conn_fanout->connf_lock);
5928 		mutex_enter(&connp->conn_lock);
5929 		/*
5930 		 * No one from read or write side can access us now
5931 		 * except for already queued packets on this squeue.
5932 		 * But since we haven't changed the squeue yet, they
5933 		 * can't execute. If they are processed after we have
5934 		 * changed the squeue, they are sent back to the
5935 		 * correct squeue down below.
5936 		 */
5937 		if (connp->conn_sqp != new_sqp) {
5938 			while (connp->conn_sqp != new_sqp)
5939 				(void) casptr(&connp->conn_sqp, sqp, new_sqp);
5940 		}
5941 
5942 		do {
5943 			conn_flags = connp->conn_flags;
5944 			conn_flags |= IPCL_FULLY_BOUND;
5945 			(void) cas32(&connp->conn_flags, connp->conn_flags,
5946 			    conn_flags);
5947 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
5948 
5949 		mutex_exit(&connp->conn_fanout->connf_lock);
5950 		mutex_exit(&connp->conn_lock);
5951 	}
5952 
5953 done:
5954 	if (connp->conn_sqp != sqp) {
5955 		CONN_INC_REF(connp);
5956 		squeue_fill(connp->conn_sqp, mp,
5957 		    connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND);
5958 	} else {
5959 		tcp_conn_request(connp, mp, sqp);
5960 	}
5961 }
5962 
5963 /*
5964  * Successful connect request processing begins when our client passes
5965  * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes
5966  * our T_OK_ACK reply message upstream.  The control flow looks like this:
5967  *   upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP
5968  *   upstream <- tcp_rput()                <- IP
5969  * After various error checks are completed, tcp_connect() lays
5970  * the target address and port into the composite header template,
5971  * preallocates the T_OK_ACK reply message, construct a full 12 byte bind
5972  * request followed by an IRE request, and passes the three mblk message
5973  * down to IP looking like this:
5974  *   O_T_BIND_REQ for IP  --> IRE req --> T_OK_ACK for our client
5975  * Processing continues in tcp_rput() when we receive the following message:
5976  *   T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client
5977  * After consuming the first two mblks, tcp_rput() calls tcp_timer(),
5978  * to fire off the connection request, and then passes the T_OK_ACK mblk
5979  * upstream that we filled in below.  There are, of course, numerous
5980  * error conditions along the way which truncate the processing described
5981  * above.
5982  */
5983 static void
5984 tcp_connect(tcp_t *tcp, mblk_t *mp)
5985 {
5986 	sin_t		*sin;
5987 	sin6_t		*sin6;
5988 	queue_t		*q = tcp->tcp_wq;
5989 	struct T_conn_req	*tcr;
5990 	ipaddr_t	*dstaddrp;
5991 	in_port_t	dstport;
5992 	uint_t		srcid;
5993 
5994 	tcr = (struct T_conn_req *)mp->b_rptr;
5995 
5996 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
5997 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
5998 		tcp_err_ack(tcp, mp, TPROTO, 0);
5999 		return;
6000 	}
6001 
6002 	/*
6003 	 * Determine packet type based on type of address passed in
6004 	 * the request should contain an IPv4 or IPv6 address.
6005 	 * Make sure that address family matches the type of
6006 	 * family of the the address passed down
6007 	 */
6008 	switch (tcr->DEST_length) {
6009 	default:
6010 		tcp_err_ack(tcp, mp, TBADADDR, 0);
6011 		return;
6012 
6013 	case (sizeof (sin_t) - sizeof (sin->sin_zero)): {
6014 		/*
6015 		 * XXX: The check for valid DEST_length was not there
6016 		 * in earlier releases and some buggy
6017 		 * TLI apps (e.g Sybase) got away with not feeding
6018 		 * in sin_zero part of address.
6019 		 * We allow that bug to keep those buggy apps humming.
6020 		 * Test suites require the check on DEST_length.
6021 		 * We construct a new mblk with valid DEST_length
6022 		 * free the original so the rest of the code does
6023 		 * not have to keep track of this special shorter
6024 		 * length address case.
6025 		 */
6026 		mblk_t *nmp;
6027 		struct T_conn_req *ntcr;
6028 		sin_t *nsin;
6029 
6030 		nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) +
6031 		    tcr->OPT_length, BPRI_HI);
6032 		if (nmp == NULL) {
6033 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
6034 			return;
6035 		}
6036 		ntcr = (struct T_conn_req *)nmp->b_rptr;
6037 		bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */
6038 		ntcr->PRIM_type = T_CONN_REQ;
6039 		ntcr->DEST_length = sizeof (sin_t);
6040 		ntcr->DEST_offset = sizeof (struct T_conn_req);
6041 
6042 		nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset);
6043 		*nsin = sin_null;
6044 		/* Get pointer to shorter address to copy from original mp */
6045 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6046 		    tcr->DEST_length); /* extract DEST_length worth of sin_t */
6047 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6048 			freemsg(nmp);
6049 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6050 			return;
6051 		}
6052 		nsin->sin_family = sin->sin_family;
6053 		nsin->sin_port = sin->sin_port;
6054 		nsin->sin_addr = sin->sin_addr;
6055 		/* Note:nsin->sin_zero zero-fill with sin_null assign above */
6056 		nmp->b_wptr = (uchar_t *)&nsin[1];
6057 		if (tcr->OPT_length != 0) {
6058 			ntcr->OPT_length = tcr->OPT_length;
6059 			ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr;
6060 			bcopy((uchar_t *)tcr + tcr->OPT_offset,
6061 			    (uchar_t *)ntcr + ntcr->OPT_offset,
6062 			    tcr->OPT_length);
6063 			nmp->b_wptr += tcr->OPT_length;
6064 		}
6065 		freemsg(mp);	/* original mp freed */
6066 		mp = nmp;	/* re-initialize original variables */
6067 		tcr = ntcr;
6068 	}
6069 	/* FALLTHRU */
6070 
6071 	case sizeof (sin_t):
6072 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6073 		    sizeof (sin_t));
6074 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6075 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6076 			return;
6077 		}
6078 		if (tcp->tcp_family != AF_INET ||
6079 		    sin->sin_family != AF_INET) {
6080 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6081 			return;
6082 		}
6083 		if (sin->sin_port == 0) {
6084 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6085 			return;
6086 		}
6087 		if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) {
6088 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6089 			return;
6090 		}
6091 
6092 		break;
6093 
6094 	case sizeof (sin6_t):
6095 		sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset,
6096 		    sizeof (sin6_t));
6097 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
6098 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6099 			return;
6100 		}
6101 		if (tcp->tcp_family != AF_INET6 ||
6102 		    sin6->sin6_family != AF_INET6) {
6103 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6104 			return;
6105 		}
6106 		if (sin6->sin6_port == 0) {
6107 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6108 			return;
6109 		}
6110 		break;
6111 	}
6112 	/*
6113 	 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we
6114 	 * should key on their sequence number and cut them loose.
6115 	 */
6116 
6117 	/*
6118 	 * If options passed in, feed it for verification and handling
6119 	 */
6120 	if (tcr->OPT_length != 0) {
6121 		mblk_t	*ok_mp;
6122 		mblk_t	*discon_mp;
6123 		mblk_t  *conn_opts_mp;
6124 		int t_error, sys_error, do_disconnect;
6125 
6126 		conn_opts_mp = NULL;
6127 
6128 		if (tcp_conprim_opt_process(tcp, mp,
6129 			&do_disconnect, &t_error, &sys_error) < 0) {
6130 			if (do_disconnect) {
6131 				ASSERT(t_error == 0 && sys_error == 0);
6132 				discon_mp = mi_tpi_discon_ind(NULL,
6133 				    ECONNREFUSED, 0);
6134 				if (!discon_mp) {
6135 					tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6136 					    TSYSERR, ENOMEM);
6137 					return;
6138 				}
6139 				ok_mp = mi_tpi_ok_ack_alloc(mp);
6140 				if (!ok_mp) {
6141 					tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6142 					    TSYSERR, ENOMEM);
6143 					return;
6144 				}
6145 				qreply(q, ok_mp);
6146 				qreply(q, discon_mp); /* no flush! */
6147 			} else {
6148 				ASSERT(t_error != 0);
6149 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error,
6150 				    sys_error);
6151 			}
6152 			return;
6153 		}
6154 		/*
6155 		 * Success in setting options, the mp option buffer represented
6156 		 * by OPT_length/offset has been potentially modified and
6157 		 * contains results of option processing. We copy it in
6158 		 * another mp to save it for potentially influencing returning
6159 		 * it in T_CONN_CONN.
6160 		 */
6161 		if (tcr->OPT_length != 0) { /* there are resulting options */
6162 			conn_opts_mp = copyb(mp);
6163 			if (!conn_opts_mp) {
6164 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6165 				    TSYSERR, ENOMEM);
6166 				return;
6167 			}
6168 			ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL);
6169 			tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp;
6170 			/*
6171 			 * Note:
6172 			 * These resulting option negotiation can include any
6173 			 * end-to-end negotiation options but there no such
6174 			 * thing (yet?) in our TCP/IP.
6175 			 */
6176 		}
6177 	}
6178 
6179 	/*
6180 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
6181 	 * make sure that the template IP header in the tcp structure is an
6182 	 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION.  We
6183 	 * need to this before we call tcp_bindi() so that the port lookup
6184 	 * code will look for ports in the correct port space (IPv4 and
6185 	 * IPv6 have separate port spaces).
6186 	 */
6187 	if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION &&
6188 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6189 		int err = 0;
6190 
6191 		err = tcp_header_init_ipv4(tcp);
6192 		if (err != 0) {
6193 			mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6194 			goto connect_failed;
6195 		}
6196 		if (tcp->tcp_lport != 0)
6197 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
6198 	}
6199 
6200 	switch (tcp->tcp_state) {
6201 	case TCPS_IDLE:
6202 		/*
6203 		 * We support quick connect, refer to comments in
6204 		 * tcp_connect_*()
6205 		 */
6206 		/* FALLTHRU */
6207 	case TCPS_BOUND:
6208 	case TCPS_LISTEN:
6209 		if (tcp->tcp_family == AF_INET6) {
6210 			if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6211 				tcp_connect_ipv6(tcp, mp,
6212 				    &sin6->sin6_addr,
6213 				    sin6->sin6_port, sin6->sin6_flowinfo,
6214 				    sin6->__sin6_src_id, sin6->sin6_scope_id);
6215 				return;
6216 			}
6217 			/*
6218 			 * Destination adress is mapped IPv6 address.
6219 			 * Source bound address should be unspecified or
6220 			 * IPv6 mapped address as well.
6221 			 */
6222 			if (!IN6_IS_ADDR_UNSPECIFIED(
6223 			    &tcp->tcp_bound_source_v6) &&
6224 			    !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) {
6225 				mp = mi_tpi_err_ack_alloc(mp, TSYSERR,
6226 				    EADDRNOTAVAIL);
6227 				break;
6228 			}
6229 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
6230 			dstport = sin6->sin6_port;
6231 			srcid = sin6->__sin6_src_id;
6232 		} else {
6233 			dstaddrp = &sin->sin_addr.s_addr;
6234 			dstport = sin->sin_port;
6235 			srcid = 0;
6236 		}
6237 
6238 		tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid);
6239 		return;
6240 	default:
6241 		mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0);
6242 		break;
6243 	}
6244 	/*
6245 	 * Note: Code below is the "failure" case
6246 	 */
6247 	/* return error ack and blow away saved option results if any */
6248 connect_failed:
6249 	if (mp != NULL)
6250 		putnext(tcp->tcp_rq, mp);
6251 	else {
6252 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6253 		    TSYSERR, ENOMEM);
6254 	}
6255 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6256 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6257 }
6258 
6259 /*
6260  * Handle connect to IPv4 destinations, including connections for AF_INET6
6261  * sockets connecting to IPv4 mapped IPv6 destinations.
6262  */
6263 static void
6264 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport,
6265     uint_t srcid)
6266 {
6267 	tcph_t	*tcph;
6268 	mblk_t	*mp1;
6269 	ipaddr_t dstaddr = *dstaddrp;
6270 	int32_t	oldstate;
6271 	uint16_t lport;
6272 
6273 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
6274 
6275 	/* Check for attempt to connect to INADDR_ANY */
6276 	if (dstaddr == INADDR_ANY)  {
6277 		/*
6278 		 * SunOS 4.x and 4.3 BSD allow an application
6279 		 * to connect a TCP socket to INADDR_ANY.
6280 		 * When they do this, the kernel picks the
6281 		 * address of one interface and uses it
6282 		 * instead.  The kernel usually ends up
6283 		 * picking the address of the loopback
6284 		 * interface.  This is an undocumented feature.
6285 		 * However, we provide the same thing here
6286 		 * in order to have source and binary
6287 		 * compatibility with SunOS 4.x.
6288 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
6289 		 * generate the T_CONN_CON.
6290 		 */
6291 		dstaddr = htonl(INADDR_LOOPBACK);
6292 		*dstaddrp = dstaddr;
6293 	}
6294 
6295 	/* Handle __sin6_src_id if socket not bound to an IP address */
6296 	if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) {
6297 		ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6,
6298 		    tcp->tcp_connp->conn_zoneid);
6299 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6,
6300 		    tcp->tcp_ipha->ipha_src);
6301 	}
6302 
6303 	/*
6304 	 * Don't let an endpoint connect to itself.  Note that
6305 	 * the test here does not catch the case where the
6306 	 * source IP addr was left unspecified by the user. In
6307 	 * this case, the source addr is set in tcp_adapt_ire()
6308 	 * using the reply to the T_BIND message that we send
6309 	 * down to IP here and the check is repeated in tcp_rput_other.
6310 	 */
6311 	if (dstaddr == tcp->tcp_ipha->ipha_src &&
6312 	    dstport == tcp->tcp_lport) {
6313 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6314 		goto failed;
6315 	}
6316 
6317 	tcp->tcp_ipha->ipha_dst = dstaddr;
6318 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6);
6319 
6320 	/*
6321 	 * Massage a source route if any putting the first hop
6322 	 * in iph_dst. Compute a starting value for the checksum which
6323 	 * takes into account that the original iph_dst should be
6324 	 * included in the checksum but that ip will include the
6325 	 * first hop in the source route in the tcp checksum.
6326 	 */
6327 	tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha);
6328 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6329 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
6330 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
6331 	if ((int)tcp->tcp_sum < 0)
6332 		tcp->tcp_sum--;
6333 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6334 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6335 	    (tcp->tcp_sum >> 16));
6336 	tcph = tcp->tcp_tcph;
6337 	*(uint16_t *)tcph->th_fport = dstport;
6338 	tcp->tcp_fport = dstport;
6339 
6340 	oldstate = tcp->tcp_state;
6341 	/*
6342 	 * At this point the remote destination address and remote port fields
6343 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6344 	 * have to see which state tcp was in so we can take apropriate action.
6345 	 */
6346 	if (oldstate == TCPS_IDLE) {
6347 		/*
6348 		 * We support a quick connect capability here, allowing
6349 		 * clients to transition directly from IDLE to SYN_SENT
6350 		 * tcp_bindi will pick an unused port, insert the connection
6351 		 * in the bind hash and transition to BOUND state.
6352 		 */
6353 		lport = tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE);
6354 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6355 		    B_FALSE, B_FALSE);
6356 		if (lport == 0) {
6357 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6358 			goto failed;
6359 		}
6360 	}
6361 	tcp->tcp_state = TCPS_SYN_SENT;
6362 
6363 	/*
6364 	 * TODO: allow data with connect requests
6365 	 * by unlinking M_DATA trailers here and
6366 	 * linking them in behind the T_OK_ACK mblk.
6367 	 * The tcp_rput() bind ack handler would then
6368 	 * feed them to tcp_wput_data() rather than call
6369 	 * tcp_timer().
6370 	 */
6371 	mp = mi_tpi_ok_ack_alloc(mp);
6372 	if (!mp) {
6373 		tcp->tcp_state = oldstate;
6374 		goto failed;
6375 	}
6376 	if (tcp->tcp_family == AF_INET) {
6377 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6378 		    sizeof (ipa_conn_t));
6379 	} else {
6380 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6381 		    sizeof (ipa6_conn_t));
6382 	}
6383 	if (mp1) {
6384 		/* Hang onto the T_OK_ACK for later. */
6385 		linkb(mp1, mp);
6386 		mblk_setcred(mp1, tcp->tcp_cred);
6387 		if (tcp->tcp_family == AF_INET)
6388 			mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp);
6389 		else {
6390 			mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6391 			    &tcp->tcp_sticky_ipp);
6392 		}
6393 		BUMP_MIB(&tcp_mib, tcpActiveOpens);
6394 		tcp->tcp_active_open = 1;
6395 		/*
6396 		 * If the bind cannot complete immediately
6397 		 * IP will arrange to call tcp_rput_other
6398 		 * when the bind completes.
6399 		 */
6400 		if (mp1 != NULL)
6401 			tcp_rput_other(tcp, mp1);
6402 		return;
6403 	}
6404 	/* Error case */
6405 	tcp->tcp_state = oldstate;
6406 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6407 
6408 failed:
6409 	/* return error ack and blow away saved option results if any */
6410 	if (mp != NULL)
6411 		putnext(tcp->tcp_rq, mp);
6412 	else {
6413 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6414 		    TSYSERR, ENOMEM);
6415 	}
6416 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6417 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6418 
6419 }
6420 
6421 /*
6422  * Handle connect to IPv6 destinations.
6423  */
6424 static void
6425 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
6426     in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
6427 {
6428 	tcph_t	*tcph;
6429 	mblk_t	*mp1;
6430 	ip6_rthdr_t *rth;
6431 	int32_t  oldstate;
6432 	uint16_t lport;
6433 
6434 	ASSERT(tcp->tcp_family == AF_INET6);
6435 
6436 	/*
6437 	 * If we're here, it means that the destination address is a native
6438 	 * IPv6 address.  Return an error if tcp_ipversion is not IPv6.  A
6439 	 * reason why it might not be IPv6 is if the socket was bound to an
6440 	 * IPv4-mapped IPv6 address.
6441 	 */
6442 	if (tcp->tcp_ipversion != IPV6_VERSION) {
6443 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6444 		goto failed;
6445 	}
6446 
6447 	/*
6448 	 * Interpret a zero destination to mean loopback.
6449 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
6450 	 * generate the T_CONN_CON.
6451 	 */
6452 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) {
6453 		*dstaddrp = ipv6_loopback;
6454 	}
6455 
6456 	/* Handle __sin6_src_id if socket not bound to an IP address */
6457 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
6458 		ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src,
6459 		    tcp->tcp_connp->conn_zoneid);
6460 		tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src;
6461 	}
6462 
6463 	/*
6464 	 * Take care of the scope_id now and add ip6i_t
6465 	 * if ip6i_t is not already allocated through TCP
6466 	 * sticky options. At this point tcp_ip6h does not
6467 	 * have dst info, thus use dstaddrp.
6468 	 */
6469 	if (scope_id != 0 &&
6470 	    IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
6471 		ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
6472 		ip6i_t  *ip6i;
6473 
6474 		ipp->ipp_ifindex = scope_id;
6475 		ip6i = (ip6i_t *)tcp->tcp_iphc;
6476 
6477 		if ((ipp->ipp_fields & IPPF_HAS_IP6I) &&
6478 		    ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) {
6479 			/* Already allocated */
6480 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6481 			ip6i->ip6i_ifindex = ipp->ipp_ifindex;
6482 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6483 		} else {
6484 			int reterr;
6485 
6486 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6487 			if (ipp->ipp_fields & IPPF_HAS_IP6I)
6488 				ip2dbg(("tcp_connect_v6: SCOPE_ID set\n"));
6489 			reterr = tcp_build_hdrs(tcp->tcp_rq, tcp);
6490 			if (reterr != 0)
6491 				goto failed;
6492 			ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n"));
6493 		}
6494 	}
6495 
6496 	/*
6497 	 * Don't let an endpoint connect to itself.  Note that
6498 	 * the test here does not catch the case where the
6499 	 * source IP addr was left unspecified by the user. In
6500 	 * this case, the source addr is set in tcp_adapt_ire()
6501 	 * using the reply to the T_BIND message that we send
6502 	 * down to IP here and the check is repeated in tcp_rput_other.
6503 	 */
6504 	if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) &&
6505 	    (dstport == tcp->tcp_lport)) {
6506 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6507 		goto failed;
6508 	}
6509 
6510 	tcp->tcp_ip6h->ip6_dst = *dstaddrp;
6511 	tcp->tcp_remote_v6 = *dstaddrp;
6512 	tcp->tcp_ip6h->ip6_vcf =
6513 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
6514 	    (flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
6515 
6516 
6517 	/*
6518 	 * Massage a routing header (if present) putting the first hop
6519 	 * in ip6_dst. Compute a starting value for the checksum which
6520 	 * takes into account that the original ip6_dst should be
6521 	 * included in the checksum but that ip will include the
6522 	 * first hop in the source route in the tcp checksum.
6523 	 */
6524 	rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph);
6525 	if (rth != NULL) {
6526 
6527 		tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth);
6528 		tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6529 		    (tcp->tcp_sum >> 16));
6530 	} else {
6531 		tcp->tcp_sum = 0;
6532 	}
6533 
6534 	tcph = tcp->tcp_tcph;
6535 	*(uint16_t *)tcph->th_fport = dstport;
6536 	tcp->tcp_fport = dstport;
6537 
6538 	oldstate = tcp->tcp_state;
6539 	/*
6540 	 * At this point the remote destination address and remote port fields
6541 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6542 	 * have to see which state tcp was in so we can take apropriate action.
6543 	 */
6544 	if (oldstate == TCPS_IDLE) {
6545 		/*
6546 		 * We support a quick connect capability here, allowing
6547 		 * clients to transition directly from IDLE to SYN_SENT
6548 		 * tcp_bindi will pick an unused port, insert the connection
6549 		 * in the bind hash and transition to BOUND state.
6550 		 */
6551 		lport = tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE);
6552 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6553 		    B_FALSE, B_FALSE);
6554 		if (lport == 0) {
6555 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6556 			goto failed;
6557 		}
6558 	}
6559 	tcp->tcp_state = TCPS_SYN_SENT;
6560 	/*
6561 	 * TODO: allow data with connect requests
6562 	 * by unlinking M_DATA trailers here and
6563 	 * linking them in behind the T_OK_ACK mblk.
6564 	 * The tcp_rput() bind ack handler would then
6565 	 * feed them to tcp_wput_data() rather than call
6566 	 * tcp_timer().
6567 	 */
6568 	mp = mi_tpi_ok_ack_alloc(mp);
6569 	if (!mp) {
6570 		tcp->tcp_state = oldstate;
6571 		goto failed;
6572 	}
6573 	mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t));
6574 	if (mp1) {
6575 		/* Hang onto the T_OK_ACK for later. */
6576 		linkb(mp1, mp);
6577 		mblk_setcred(mp1, tcp->tcp_cred);
6578 		mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6579 		    &tcp->tcp_sticky_ipp);
6580 		BUMP_MIB(&tcp_mib, tcpActiveOpens);
6581 		tcp->tcp_active_open = 1;
6582 		/* ip_bind_v6() may return ACK or ERROR */
6583 		if (mp1 != NULL)
6584 			tcp_rput_other(tcp, mp1);
6585 		return;
6586 	}
6587 	/* Error case */
6588 	tcp->tcp_state = oldstate;
6589 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6590 
6591 failed:
6592 	/* return error ack and blow away saved option results if any */
6593 	if (mp != NULL)
6594 		putnext(tcp->tcp_rq, mp);
6595 	else {
6596 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6597 		    TSYSERR, ENOMEM);
6598 	}
6599 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6600 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6601 }
6602 
6603 /*
6604  * We need a stream q for detached closing tcp connections
6605  * to use.  Our client hereby indicates that this q is the
6606  * one to use.
6607  */
6608 static void
6609 tcp_def_q_set(tcp_t *tcp, mblk_t *mp)
6610 {
6611 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
6612 	queue_t	*q = tcp->tcp_wq;
6613 
6614 	mp->b_datap->db_type = M_IOCACK;
6615 	iocp->ioc_count = 0;
6616 	mutex_enter(&tcp_g_q_lock);
6617 	if (tcp_g_q != NULL) {
6618 		mutex_exit(&tcp_g_q_lock);
6619 		iocp->ioc_error = EALREADY;
6620 	} else {
6621 		mblk_t *mp1;
6622 
6623 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0);
6624 		if (mp1 == NULL) {
6625 			mutex_exit(&tcp_g_q_lock);
6626 			iocp->ioc_error = ENOMEM;
6627 		} else {
6628 			tcp_g_q = tcp->tcp_rq;
6629 			mutex_exit(&tcp_g_q_lock);
6630 			iocp->ioc_error = 0;
6631 			iocp->ioc_rval = 0;
6632 			/*
6633 			 * We are passing tcp_sticky_ipp as NULL
6634 			 * as it is not useful for tcp_default queue
6635 			 */
6636 			mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL);
6637 			if (mp1 != NULL)
6638 				tcp_rput_other(tcp, mp1);
6639 		}
6640 	}
6641 	qreply(q, mp);
6642 }
6643 
6644 /*
6645  * Our client hereby directs us to reject the connection request
6646  * that tcp_conn_request() marked with 'seqnum'.  Rejection consists
6647  * of sending the appropriate RST, not an ICMP error.
6648  */
6649 static void
6650 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
6651 {
6652 	tcp_t	*ltcp = NULL;
6653 	t_scalar_t seqnum;
6654 	conn_t	*connp;
6655 
6656 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6657 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
6658 		tcp_err_ack(tcp, mp, TPROTO, 0);
6659 		return;
6660 	}
6661 
6662 	/*
6663 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
6664 	 * when the stream is in BOUND state. Do not send a reset,
6665 	 * since the destination IP address is not valid, and it can
6666 	 * be the initialized value of all zeros (broadcast address).
6667 	 *
6668 	 * If TCP has sent down a bind request to IP and has not
6669 	 * received the reply, reject the request.  Otherwise, TCP
6670 	 * will be confused.
6671 	 */
6672 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) {
6673 		if (tcp->tcp_debug) {
6674 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
6675 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
6676 		}
6677 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
6678 		return;
6679 	}
6680 
6681 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
6682 
6683 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
6684 
6685 		/*
6686 		 * According to TPI, for non-listeners, ignore seqnum
6687 		 * and disconnect.
6688 		 * Following interpretation of -1 seqnum is historical
6689 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
6690 		 * a valid seqnum should not be -1).
6691 		 *
6692 		 *	-1 means disconnect everything
6693 		 *	regardless even on a listener.
6694 		 */
6695 
6696 		int old_state = tcp->tcp_state;
6697 
6698 		/*
6699 		 * The connection can't be on the tcp_time_wait_head list
6700 		 * since it is not detached.
6701 		 */
6702 		ASSERT(tcp->tcp_time_wait_next == NULL);
6703 		ASSERT(tcp->tcp_time_wait_prev == NULL);
6704 		ASSERT(tcp->tcp_time_wait_expire == 0);
6705 		ltcp = NULL;
6706 		/*
6707 		 * If it used to be a listener, check to make sure no one else
6708 		 * has taken the port before switching back to LISTEN state.
6709 		 */
6710 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6711 			connp = ipcl_lookup_listener_v4(tcp->tcp_lport,
6712 			    tcp->tcp_ipha->ipha_src,
6713 			    tcp->tcp_connp->conn_zoneid);
6714 			if (connp != NULL)
6715 				ltcp = connp->conn_tcp;
6716 		} else {
6717 			/* Allow tcp_bound_if listeners? */
6718 			connp = ipcl_lookup_listener_v6(tcp->tcp_lport,
6719 			    &tcp->tcp_ip6h->ip6_src, 0,
6720 			    tcp->tcp_connp->conn_zoneid);
6721 			if (connp != NULL)
6722 				ltcp = connp->conn_tcp;
6723 		}
6724 		if (tcp->tcp_conn_req_max && ltcp == NULL) {
6725 			tcp->tcp_state = TCPS_LISTEN;
6726 		} else if (old_state > TCPS_BOUND) {
6727 			tcp->tcp_conn_req_max = 0;
6728 			tcp->tcp_state = TCPS_BOUND;
6729 		}
6730 		if (ltcp != NULL)
6731 			CONN_DEC_REF(ltcp->tcp_connp);
6732 		if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) {
6733 			BUMP_MIB(&tcp_mib, tcpAttemptFails);
6734 		} else if (old_state == TCPS_ESTABLISHED ||
6735 		    old_state == TCPS_CLOSE_WAIT) {
6736 			BUMP_MIB(&tcp_mib, tcpEstabResets);
6737 		}
6738 
6739 		if (tcp->tcp_fused)
6740 			tcp_unfuse(tcp);
6741 
6742 		mutex_enter(&tcp->tcp_eager_lock);
6743 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
6744 		    (tcp->tcp_conn_req_cnt_q != 0)) {
6745 			tcp_eager_cleanup(tcp, 0);
6746 		}
6747 		mutex_exit(&tcp->tcp_eager_lock);
6748 
6749 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
6750 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
6751 
6752 		tcp_reinit(tcp);
6753 
6754 		if (old_state >= TCPS_ESTABLISHED) {
6755 			/* Send M_FLUSH according to TPI */
6756 			(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6757 		}
6758 		mp = mi_tpi_ok_ack_alloc(mp);
6759 		if (mp)
6760 			putnext(tcp->tcp_rq, mp);
6761 		return;
6762 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
6763 		tcp_err_ack(tcp, mp, TBADSEQ, 0);
6764 		return;
6765 	}
6766 	if (tcp->tcp_state >= TCPS_ESTABLISHED) {
6767 		/* Send M_FLUSH according to TPI */
6768 		(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6769 	}
6770 	mp = mi_tpi_ok_ack_alloc(mp);
6771 	if (mp)
6772 		putnext(tcp->tcp_rq, mp);
6773 }
6774 
6775 /*
6776  * Diagnostic routine used to return a string associated with the tcp state.
6777  * Note that if the caller does not supply a buffer, it will use an internal
6778  * static string.  This means that if multiple threads call this function at
6779  * the same time, output can be corrupted...  Note also that this function
6780  * does not check the size of the supplied buffer.  The caller has to make
6781  * sure that it is big enough.
6782  */
6783 static char *
6784 tcp_display(tcp_t *tcp, char *sup_buf, char format)
6785 {
6786 	char		buf1[30];
6787 	static char	priv_buf[INET6_ADDRSTRLEN * 2 + 80];
6788 	char		*buf;
6789 	char		*cp;
6790 	in6_addr_t	local, remote;
6791 	char		local_addrbuf[INET6_ADDRSTRLEN];
6792 	char		remote_addrbuf[INET6_ADDRSTRLEN];
6793 
6794 	if (sup_buf != NULL)
6795 		buf = sup_buf;
6796 	else
6797 		buf = priv_buf;
6798 
6799 	if (tcp == NULL)
6800 		return ("NULL_TCP");
6801 	switch (tcp->tcp_state) {
6802 	case TCPS_CLOSED:
6803 		cp = "TCP_CLOSED";
6804 		break;
6805 	case TCPS_IDLE:
6806 		cp = "TCP_IDLE";
6807 		break;
6808 	case TCPS_BOUND:
6809 		cp = "TCP_BOUND";
6810 		break;
6811 	case TCPS_LISTEN:
6812 		cp = "TCP_LISTEN";
6813 		break;
6814 	case TCPS_SYN_SENT:
6815 		cp = "TCP_SYN_SENT";
6816 		break;
6817 	case TCPS_SYN_RCVD:
6818 		cp = "TCP_SYN_RCVD";
6819 		break;
6820 	case TCPS_ESTABLISHED:
6821 		cp = "TCP_ESTABLISHED";
6822 		break;
6823 	case TCPS_CLOSE_WAIT:
6824 		cp = "TCP_CLOSE_WAIT";
6825 		break;
6826 	case TCPS_FIN_WAIT_1:
6827 		cp = "TCP_FIN_WAIT_1";
6828 		break;
6829 	case TCPS_CLOSING:
6830 		cp = "TCP_CLOSING";
6831 		break;
6832 	case TCPS_LAST_ACK:
6833 		cp = "TCP_LAST_ACK";
6834 		break;
6835 	case TCPS_FIN_WAIT_2:
6836 		cp = "TCP_FIN_WAIT_2";
6837 		break;
6838 	case TCPS_TIME_WAIT:
6839 		cp = "TCP_TIME_WAIT";
6840 		break;
6841 	default:
6842 		(void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state);
6843 		cp = buf1;
6844 		break;
6845 	}
6846 	switch (format) {
6847 	case DISP_ADDR_AND_PORT:
6848 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6849 			/*
6850 			 * Note that we use the remote address in the tcp_b
6851 			 * structure.  This means that it will print out
6852 			 * the real destination address, not the next hop's
6853 			 * address if source routing is used.
6854 			 */
6855 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local);
6856 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote);
6857 
6858 		} else {
6859 			local = tcp->tcp_ip_src_v6;
6860 			remote = tcp->tcp_remote_v6;
6861 		}
6862 		(void) inet_ntop(AF_INET6, &local, local_addrbuf,
6863 		    sizeof (local_addrbuf));
6864 		(void) inet_ntop(AF_INET6, &remote, remote_addrbuf,
6865 		    sizeof (remote_addrbuf));
6866 		(void) mi_sprintf(buf, "[%s.%u, %s.%u] %s",
6867 		    local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf,
6868 		    ntohs(tcp->tcp_fport), cp);
6869 		break;
6870 	case DISP_PORT_ONLY:
6871 	default:
6872 		(void) mi_sprintf(buf, "[%u, %u] %s",
6873 		    ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp);
6874 		break;
6875 	}
6876 
6877 	return (buf);
6878 }
6879 
6880 /*
6881  * Called via squeue to get on to eager's perimeter to send a
6882  * TH_RST. The listener wants the eager to disappear either
6883  * by means of tcp_eager_blowoff() or tcp_eager_cleanup()
6884  * being called.
6885  */
6886 /* ARGSUSED */
6887 void
6888 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2)
6889 {
6890 	conn_t	*econnp = (conn_t *)arg;
6891 	tcp_t	*eager = econnp->conn_tcp;
6892 	tcp_t	*listener = eager->tcp_listener;
6893 
6894 	/*
6895 	 * We could be called because listener is closing. Since
6896 	 * the eager is using listener's queue's, its not safe.
6897 	 * Better use the default queue just to send the TH_RST
6898 	 * out.
6899 	 */
6900 	eager->tcp_rq = tcp_g_q;
6901 	eager->tcp_wq = WR(tcp_g_q);
6902 
6903 	if (eager->tcp_state > TCPS_LISTEN) {
6904 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
6905 		    eager, eager->tcp_snxt, 0, TH_RST);
6906 	}
6907 
6908 	/* We are here because listener wants this eager gone */
6909 	if (listener != NULL) {
6910 		mutex_enter(&listener->tcp_eager_lock);
6911 		tcp_eager_unlink(eager);
6912 		if (eager->tcp_conn.tcp_eager_conn_ind == NULL) {
6913 			/*
6914 			 * The eager has sent a conn_ind up to the
6915 			 * listener but listener decides to close
6916 			 * instead. We need to drop the extra ref
6917 			 * placed on eager in tcp_rput_data() before
6918 			 * sending the conn_ind to listener.
6919 			 */
6920 			CONN_DEC_REF(econnp);
6921 		}
6922 		mutex_exit(&listener->tcp_eager_lock);
6923 		CONN_DEC_REF(listener->tcp_connp);
6924 	}
6925 
6926 	if (eager->tcp_state > TCPS_BOUND)
6927 		tcp_close_detached(eager);
6928 }
6929 
6930 /*
6931  * Reset any eager connection hanging off this listener marked
6932  * with 'seqnum' and then reclaim it's resources.
6933  */
6934 static boolean_t
6935 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
6936 {
6937 	tcp_t	*eager;
6938 	mblk_t 	*mp;
6939 
6940 	TCP_STAT(tcp_eager_blowoff_calls);
6941 	eager = listener;
6942 	mutex_enter(&listener->tcp_eager_lock);
6943 	do {
6944 		eager = eager->tcp_eager_next_q;
6945 		if (eager == NULL) {
6946 			mutex_exit(&listener->tcp_eager_lock);
6947 			return (B_FALSE);
6948 		}
6949 	} while (eager->tcp_conn_req_seqnum != seqnum);
6950 	CONN_INC_REF(eager->tcp_connp);
6951 	mutex_exit(&listener->tcp_eager_lock);
6952 	mp = &eager->tcp_closemp;
6953 	squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
6954 	    eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF);
6955 	return (B_TRUE);
6956 }
6957 
6958 /*
6959  * Reset any eager connection hanging off this listener
6960  * and then reclaim it's resources.
6961  */
6962 static void
6963 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
6964 {
6965 	tcp_t	*eager;
6966 	mblk_t	*mp;
6967 
6968 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
6969 
6970 	if (!q0_only) {
6971 		/* First cleanup q */
6972 		TCP_STAT(tcp_eager_blowoff_q);
6973 		eager = listener->tcp_eager_next_q;
6974 		while (eager != NULL) {
6975 			CONN_INC_REF(eager->tcp_connp);
6976 			mp = &eager->tcp_closemp;
6977 			squeue_fill(eager->tcp_connp->conn_sqp, mp,
6978 			    tcp_eager_kill, eager->tcp_connp,
6979 			    SQTAG_TCP_EAGER_CLEANUP);
6980 			eager = eager->tcp_eager_next_q;
6981 		}
6982 	}
6983 	/* Then cleanup q0 */
6984 	TCP_STAT(tcp_eager_blowoff_q0);
6985 	eager = listener->tcp_eager_next_q0;
6986 	while (eager != listener) {
6987 		CONN_INC_REF(eager->tcp_connp);
6988 		mp = &eager->tcp_closemp;
6989 		squeue_fill(eager->tcp_connp->conn_sqp, mp,
6990 		    tcp_eager_kill, eager->tcp_connp,
6991 		    SQTAG_TCP_EAGER_CLEANUP_Q0);
6992 		eager = eager->tcp_eager_next_q0;
6993 	}
6994 }
6995 
6996 /*
6997  * If we are an eager connection hanging off a listener that hasn't
6998  * formally accepted the connection yet, get off his list and blow off
6999  * any data that we have accumulated.
7000  */
7001 static void
7002 tcp_eager_unlink(tcp_t *tcp)
7003 {
7004 	tcp_t	*listener = tcp->tcp_listener;
7005 
7006 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7007 	ASSERT(listener != NULL);
7008 	if (tcp->tcp_eager_next_q0 != NULL) {
7009 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
7010 
7011 		/* Remove the eager tcp from q0 */
7012 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
7013 		    tcp->tcp_eager_prev_q0;
7014 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
7015 		    tcp->tcp_eager_next_q0;
7016 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
7017 		listener->tcp_conn_req_cnt_q0--;
7018 
7019 		tcp->tcp_eager_next_q0 = NULL;
7020 		tcp->tcp_eager_prev_q0 = NULL;
7021 
7022 		if (tcp->tcp_syn_rcvd_timeout != 0) {
7023 			/* we have timed out before */
7024 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
7025 			listener->tcp_syn_rcvd_timeout--;
7026 		}
7027 	} else {
7028 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
7029 		tcp_t	*prev = NULL;
7030 
7031 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
7032 			if (tcpp[0] == tcp) {
7033 				if (listener->tcp_eager_last_q == tcp) {
7034 					/*
7035 					 * If we are unlinking the last
7036 					 * element on the list, adjust
7037 					 * tail pointer. Set tail pointer
7038 					 * to nil when list is empty.
7039 					 */
7040 					ASSERT(tcp->tcp_eager_next_q == NULL);
7041 					if (listener->tcp_eager_last_q ==
7042 					    listener->tcp_eager_next_q) {
7043 						listener->tcp_eager_last_q =
7044 						NULL;
7045 					} else {
7046 						/*
7047 						 * We won't get here if there
7048 						 * is only one eager in the
7049 						 * list.
7050 						 */
7051 						ASSERT(prev != NULL);
7052 						listener->tcp_eager_last_q =
7053 						    prev;
7054 					}
7055 				}
7056 				tcpp[0] = tcp->tcp_eager_next_q;
7057 				tcp->tcp_eager_next_q = NULL;
7058 				tcp->tcp_eager_last_q = NULL;
7059 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
7060 				listener->tcp_conn_req_cnt_q--;
7061 				break;
7062 			}
7063 			prev = tcpp[0];
7064 		}
7065 	}
7066 	tcp->tcp_listener = NULL;
7067 }
7068 
7069 /* Shorthand to generate and send TPI error acks to our client */
7070 static void
7071 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error)
7072 {
7073 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
7074 		putnext(tcp->tcp_rq, mp);
7075 }
7076 
7077 /* Shorthand to generate and send TPI error acks to our client */
7078 static void
7079 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
7080     int t_error, int sys_error)
7081 {
7082 	struct T_error_ack	*teackp;
7083 
7084 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
7085 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
7086 		teackp = (struct T_error_ack *)mp->b_rptr;
7087 		teackp->ERROR_prim = primitive;
7088 		teackp->TLI_error = t_error;
7089 		teackp->UNIX_error = sys_error;
7090 		putnext(tcp->tcp_rq, mp);
7091 	}
7092 }
7093 
7094 /*
7095  * Note: No locks are held when inspecting tcp_g_*epriv_ports
7096  * but instead the code relies on:
7097  * - the fact that the address of the array and its size never changes
7098  * - the atomic assignment of the elements of the array
7099  */
7100 /* ARGSUSED */
7101 static int
7102 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
7103 {
7104 	int i;
7105 
7106 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
7107 		if (tcp_g_epriv_ports[i] != 0)
7108 			(void) mi_mpprintf(mp, "%d ", tcp_g_epriv_ports[i]);
7109 	}
7110 	return (0);
7111 }
7112 
7113 /*
7114  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7115  * threads from changing it at the same time.
7116  */
7117 /* ARGSUSED */
7118 static int
7119 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7120     cred_t *cr)
7121 {
7122 	long	new_value;
7123 	int	i;
7124 
7125 	/*
7126 	 * Fail the request if the new value does not lie within the
7127 	 * port number limits.
7128 	 */
7129 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
7130 	    new_value <= 0 || new_value >= 65536) {
7131 		return (EINVAL);
7132 	}
7133 
7134 	mutex_enter(&tcp_epriv_port_lock);
7135 	/* Check if the value is already in the list */
7136 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
7137 		if (new_value == tcp_g_epriv_ports[i]) {
7138 			mutex_exit(&tcp_epriv_port_lock);
7139 			return (EEXIST);
7140 		}
7141 	}
7142 	/* Find an empty slot */
7143 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
7144 		if (tcp_g_epriv_ports[i] == 0)
7145 			break;
7146 	}
7147 	if (i == tcp_g_num_epriv_ports) {
7148 		mutex_exit(&tcp_epriv_port_lock);
7149 		return (EOVERFLOW);
7150 	}
7151 	/* Set the new value */
7152 	tcp_g_epriv_ports[i] = (uint16_t)new_value;
7153 	mutex_exit(&tcp_epriv_port_lock);
7154 	return (0);
7155 }
7156 
7157 /*
7158  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7159  * threads from changing it at the same time.
7160  */
7161 /* ARGSUSED */
7162 static int
7163 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7164     cred_t *cr)
7165 {
7166 	long	new_value;
7167 	int	i;
7168 
7169 	/*
7170 	 * Fail the request if the new value does not lie within the
7171 	 * port number limits.
7172 	 */
7173 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 ||
7174 	    new_value >= 65536) {
7175 		return (EINVAL);
7176 	}
7177 
7178 	mutex_enter(&tcp_epriv_port_lock);
7179 	/* Check that the value is already in the list */
7180 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
7181 		if (tcp_g_epriv_ports[i] == new_value)
7182 			break;
7183 	}
7184 	if (i == tcp_g_num_epriv_ports) {
7185 		mutex_exit(&tcp_epriv_port_lock);
7186 		return (ESRCH);
7187 	}
7188 	/* Clear the value */
7189 	tcp_g_epriv_ports[i] = 0;
7190 	mutex_exit(&tcp_epriv_port_lock);
7191 	return (0);
7192 }
7193 
7194 /* Return the TPI/TLI equivalent of our current tcp_state */
7195 static int
7196 tcp_tpistate(tcp_t *tcp)
7197 {
7198 	switch (tcp->tcp_state) {
7199 	case TCPS_IDLE:
7200 		return (TS_UNBND);
7201 	case TCPS_LISTEN:
7202 		/*
7203 		 * Return whether there are outstanding T_CONN_IND waiting
7204 		 * for the matching T_CONN_RES. Therefore don't count q0.
7205 		 */
7206 		if (tcp->tcp_conn_req_cnt_q > 0)
7207 			return (TS_WRES_CIND);
7208 		else
7209 			return (TS_IDLE);
7210 	case TCPS_BOUND:
7211 		return (TS_IDLE);
7212 	case TCPS_SYN_SENT:
7213 		return (TS_WCON_CREQ);
7214 	case TCPS_SYN_RCVD:
7215 		/*
7216 		 * Note: assumption: this has to the active open SYN_RCVD.
7217 		 * The passive instance is detached in SYN_RCVD stage of
7218 		 * incoming connection processing so we cannot get request
7219 		 * for T_info_ack on it.
7220 		 */
7221 		return (TS_WACK_CRES);
7222 	case TCPS_ESTABLISHED:
7223 		return (TS_DATA_XFER);
7224 	case TCPS_CLOSE_WAIT:
7225 		return (TS_WREQ_ORDREL);
7226 	case TCPS_FIN_WAIT_1:
7227 		return (TS_WIND_ORDREL);
7228 	case TCPS_FIN_WAIT_2:
7229 		return (TS_WIND_ORDREL);
7230 
7231 	case TCPS_CLOSING:
7232 	case TCPS_LAST_ACK:
7233 	case TCPS_TIME_WAIT:
7234 	case TCPS_CLOSED:
7235 		/*
7236 		 * Following TS_WACK_DREQ7 is a rendition of "not
7237 		 * yet TS_IDLE" TPI state. There is no best match to any
7238 		 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we
7239 		 * choose a value chosen that will map to TLI/XTI level
7240 		 * state of TSTATECHNG (state is process of changing) which
7241 		 * captures what this dummy state represents.
7242 		 */
7243 		return (TS_WACK_DREQ7);
7244 	default:
7245 		cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s",
7246 		    tcp->tcp_state, tcp_display(tcp, NULL,
7247 		    DISP_PORT_ONLY));
7248 		return (TS_UNBND);
7249 	}
7250 }
7251 
7252 static void
7253 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp)
7254 {
7255 	if (tcp->tcp_family == AF_INET6)
7256 		*tia = tcp_g_t_info_ack_v6;
7257 	else
7258 		*tia = tcp_g_t_info_ack;
7259 	tia->CURRENT_state = tcp_tpistate(tcp);
7260 	tia->OPT_size = tcp_max_optsize;
7261 	if (tcp->tcp_mss == 0) {
7262 		/* Not yet set - tcp_open does not set mss */
7263 		if (tcp->tcp_ipversion == IPV4_VERSION)
7264 			tia->TIDU_size = tcp_mss_def_ipv4;
7265 		else
7266 			tia->TIDU_size = tcp_mss_def_ipv6;
7267 	} else {
7268 		tia->TIDU_size = tcp->tcp_mss;
7269 	}
7270 	/* TODO: Default ETSDU is 1.  Is that correct for tcp? */
7271 }
7272 
7273 /*
7274  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
7275  * tcp_wput.  Much of the T_CAPABILITY_ACK information is copied from
7276  * tcp_g_t_info_ack.  The current state of the stream is copied from
7277  * tcp_state.
7278  */
7279 static void
7280 tcp_capability_req(tcp_t *tcp, mblk_t *mp)
7281 {
7282 	t_uscalar_t		cap_bits1;
7283 	struct T_capability_ack	*tcap;
7284 
7285 	if (MBLKL(mp) < sizeof (struct T_capability_req)) {
7286 		freemsg(mp);
7287 		return;
7288 	}
7289 
7290 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
7291 
7292 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
7293 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
7294 	if (mp == NULL)
7295 		return;
7296 
7297 	tcap = (struct T_capability_ack *)mp->b_rptr;
7298 	tcap->CAP_bits1 = 0;
7299 
7300 	if (cap_bits1 & TC1_INFO) {
7301 		tcp_copy_info(&tcap->INFO_ack, tcp);
7302 		tcap->CAP_bits1 |= TC1_INFO;
7303 	}
7304 
7305 	if (cap_bits1 & TC1_ACCEPTOR_ID) {
7306 		tcap->ACCEPTOR_id = tcp->tcp_acceptor_id;
7307 		tcap->CAP_bits1 |= TC1_ACCEPTOR_ID;
7308 	}
7309 
7310 	putnext(tcp->tcp_rq, mp);
7311 }
7312 
7313 /*
7314  * This routine responds to T_INFO_REQ messages.  It is called by tcp_wput.
7315  * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack.
7316  * The current state of the stream is copied from tcp_state.
7317  */
7318 static void
7319 tcp_info_req(tcp_t *tcp, mblk_t *mp)
7320 {
7321 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
7322 	    T_INFO_ACK);
7323 	if (!mp) {
7324 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7325 		return;
7326 	}
7327 	tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp);
7328 	putnext(tcp->tcp_rq, mp);
7329 }
7330 
7331 /* Respond to the TPI addr request */
7332 static void
7333 tcp_addr_req(tcp_t *tcp, mblk_t *mp)
7334 {
7335 	sin_t	*sin;
7336 	mblk_t	*ackmp;
7337 	struct T_addr_ack *taa;
7338 
7339 	/* Make it large enough for worst case */
7340 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
7341 	    2 * sizeof (sin6_t), 1);
7342 	if (ackmp == NULL) {
7343 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7344 		return;
7345 	}
7346 
7347 	if (tcp->tcp_ipversion == IPV6_VERSION) {
7348 		tcp_addr_req_ipv6(tcp, ackmp);
7349 		return;
7350 	}
7351 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7352 
7353 	bzero(taa, sizeof (struct T_addr_ack));
7354 	ackmp->b_wptr = (uchar_t *)&taa[1];
7355 
7356 	taa->PRIM_type = T_ADDR_ACK;
7357 	ackmp->b_datap->db_type = M_PCPROTO;
7358 
7359 	/*
7360 	 * Note: Following code assumes 32 bit alignment of basic
7361 	 * data structures like sin_t and struct T_addr_ack.
7362 	 */
7363 	if (tcp->tcp_state >= TCPS_BOUND) {
7364 		/*
7365 		 * Fill in local address
7366 		 */
7367 		taa->LOCADDR_length = sizeof (sin_t);
7368 		taa->LOCADDR_offset = sizeof (*taa);
7369 
7370 		sin = (sin_t *)&taa[1];
7371 
7372 		/* Fill zeroes and then intialize non-zero fields */
7373 		*sin = sin_null;
7374 
7375 		sin->sin_family = AF_INET;
7376 
7377 		sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
7378 		sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport;
7379 
7380 		ackmp->b_wptr = (uchar_t *)&sin[1];
7381 
7382 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7383 			/*
7384 			 * Fill in Remote address
7385 			 */
7386 			taa->REMADDR_length = sizeof (sin_t);
7387 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7388 						taa->LOCADDR_length);
7389 
7390 			sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7391 			*sin = sin_null;
7392 			sin->sin_family = AF_INET;
7393 			sin->sin_addr.s_addr = tcp->tcp_remote;
7394 			sin->sin_port = tcp->tcp_fport;
7395 
7396 			ackmp->b_wptr = (uchar_t *)&sin[1];
7397 		}
7398 	}
7399 	putnext(tcp->tcp_rq, ackmp);
7400 }
7401 
7402 /* Assumes that tcp_addr_req gets enough space and alignment */
7403 static void
7404 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp)
7405 {
7406 	sin6_t	*sin6;
7407 	struct T_addr_ack *taa;
7408 
7409 	ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
7410 	ASSERT(OK_32PTR(ackmp->b_rptr));
7411 	ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) +
7412 	    2 * sizeof (sin6_t));
7413 
7414 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7415 
7416 	bzero(taa, sizeof (struct T_addr_ack));
7417 	ackmp->b_wptr = (uchar_t *)&taa[1];
7418 
7419 	taa->PRIM_type = T_ADDR_ACK;
7420 	ackmp->b_datap->db_type = M_PCPROTO;
7421 
7422 	/*
7423 	 * Note: Following code assumes 32 bit alignment of basic
7424 	 * data structures like sin6_t and struct T_addr_ack.
7425 	 */
7426 	if (tcp->tcp_state >= TCPS_BOUND) {
7427 		/*
7428 		 * Fill in local address
7429 		 */
7430 		taa->LOCADDR_length = sizeof (sin6_t);
7431 		taa->LOCADDR_offset = sizeof (*taa);
7432 
7433 		sin6 = (sin6_t *)&taa[1];
7434 		*sin6 = sin6_null;
7435 
7436 		sin6->sin6_family = AF_INET6;
7437 		sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
7438 		sin6->sin6_port = tcp->tcp_lport;
7439 
7440 		ackmp->b_wptr = (uchar_t *)&sin6[1];
7441 
7442 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7443 			/*
7444 			 * Fill in Remote address
7445 			 */
7446 			taa->REMADDR_length = sizeof (sin6_t);
7447 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7448 						taa->LOCADDR_length);
7449 
7450 			sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7451 			*sin6 = sin6_null;
7452 			sin6->sin6_family = AF_INET6;
7453 			sin6->sin6_flowinfo =
7454 			    tcp->tcp_ip6h->ip6_vcf &
7455 			    ~IPV6_VERS_AND_FLOW_MASK;
7456 			sin6->sin6_addr = tcp->tcp_remote_v6;
7457 			sin6->sin6_port = tcp->tcp_fport;
7458 
7459 			ackmp->b_wptr = (uchar_t *)&sin6[1];
7460 		}
7461 	}
7462 	putnext(tcp->tcp_rq, ackmp);
7463 }
7464 
7465 /*
7466  * Handle reinitialization of a tcp structure.
7467  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
7468  */
7469 static void
7470 tcp_reinit(tcp_t *tcp)
7471 {
7472 	mblk_t	*mp;
7473 	int 	err;
7474 
7475 	TCP_STAT(tcp_reinit_calls);
7476 
7477 	/* tcp_reinit should never be called for detached tcp_t's */
7478 	ASSERT(tcp->tcp_listener == NULL);
7479 	ASSERT((tcp->tcp_family == AF_INET &&
7480 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7481 	    (tcp->tcp_family == AF_INET6 &&
7482 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7483 	    tcp->tcp_ipversion == IPV6_VERSION)));
7484 
7485 	/* Cancel outstanding timers */
7486 	tcp_timers_stop(tcp);
7487 
7488 	/*
7489 	 * Reset everything in the state vector, after updating global
7490 	 * MIB data from instance counters.
7491 	 */
7492 	UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs);
7493 	tcp->tcp_ibsegs = 0;
7494 	UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs);
7495 	tcp->tcp_obsegs = 0;
7496 
7497 	tcp_close_mpp(&tcp->tcp_xmit_head);
7498 	if (tcp->tcp_snd_zcopy_aware)
7499 		tcp_zcopy_notify(tcp);
7500 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
7501 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
7502 	if (tcp->tcp_flow_stopped &&
7503 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
7504 		tcp_clrqfull(tcp);
7505 	}
7506 	tcp_close_mpp(&tcp->tcp_reass_head);
7507 	tcp->tcp_reass_tail = NULL;
7508 	if (tcp->tcp_rcv_list != NULL) {
7509 		/* Free b_next chain */
7510 		tcp_close_mpp(&tcp->tcp_rcv_list);
7511 		tcp->tcp_rcv_last_head = NULL;
7512 		tcp->tcp_rcv_last_tail = NULL;
7513 		tcp->tcp_rcv_cnt = 0;
7514 	}
7515 	tcp->tcp_rcv_last_tail = NULL;
7516 
7517 	if ((mp = tcp->tcp_urp_mp) != NULL) {
7518 		freemsg(mp);
7519 		tcp->tcp_urp_mp = NULL;
7520 	}
7521 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
7522 		freemsg(mp);
7523 		tcp->tcp_urp_mark_mp = NULL;
7524 	}
7525 	if (tcp->tcp_fused_sigurg_mp != NULL) {
7526 		freeb(tcp->tcp_fused_sigurg_mp);
7527 		tcp->tcp_fused_sigurg_mp = NULL;
7528 	}
7529 
7530 	/*
7531 	 * Following is a union with two members which are
7532 	 * identical types and size so the following cleanup
7533 	 * is enough.
7534 	 */
7535 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
7536 
7537 	CL_INET_DISCONNECT(tcp);
7538 
7539 	/*
7540 	 * The connection can't be on the tcp_time_wait_head list
7541 	 * since it is not detached.
7542 	 */
7543 	ASSERT(tcp->tcp_time_wait_next == NULL);
7544 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7545 	ASSERT(tcp->tcp_time_wait_expire == 0);
7546 
7547 	if (tcp->tcp_kssl_pending) {
7548 		tcp->tcp_kssl_pending = B_FALSE;
7549 
7550 		/* Don't reset if the initialized by bind. */
7551 		if (tcp->tcp_kssl_ent != NULL) {
7552 			kssl_release_ent(tcp->tcp_kssl_ent, NULL,
7553 			    KSSL_NO_PROXY);
7554 		}
7555 	}
7556 	if (tcp->tcp_kssl_ctx != NULL) {
7557 		kssl_release_ctx(tcp->tcp_kssl_ctx);
7558 		tcp->tcp_kssl_ctx = NULL;
7559 	}
7560 
7561 	/*
7562 	 * Reset/preserve other values
7563 	 */
7564 	tcp_reinit_values(tcp);
7565 	ipcl_hash_remove(tcp->tcp_connp);
7566 	conn_delete_ire(tcp->tcp_connp, NULL);
7567 
7568 	if (tcp->tcp_conn_req_max != 0) {
7569 		/*
7570 		 * This is the case when a TLI program uses the same
7571 		 * transport end point to accept a connection.  This
7572 		 * makes the TCP both a listener and acceptor.  When
7573 		 * this connection is closed, we need to set the state
7574 		 * back to TCPS_LISTEN.  Make sure that the eager list
7575 		 * is reinitialized.
7576 		 *
7577 		 * Note that this stream is still bound to the four
7578 		 * tuples of the previous connection in IP.  If a new
7579 		 * SYN with different foreign address comes in, IP will
7580 		 * not find it and will send it to the global queue.  In
7581 		 * the global queue, TCP will do a tcp_lookup_listener()
7582 		 * to find this stream.  This works because this stream
7583 		 * is only removed from connected hash.
7584 		 *
7585 		 */
7586 		tcp->tcp_state = TCPS_LISTEN;
7587 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
7588 		tcp->tcp_connp->conn_recv = tcp_conn_request;
7589 		if (tcp->tcp_family == AF_INET6) {
7590 			ASSERT(tcp->tcp_connp->conn_af_isv6);
7591 			(void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP,
7592 			    &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport);
7593 		} else {
7594 			ASSERT(!tcp->tcp_connp->conn_af_isv6);
7595 			(void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP,
7596 			    tcp->tcp_ipha->ipha_src, tcp->tcp_lport);
7597 		}
7598 	} else {
7599 		tcp->tcp_state = TCPS_BOUND;
7600 	}
7601 
7602 	/*
7603 	 * Initialize to default values
7604 	 * Can't fail since enough header template space already allocated
7605 	 * at open().
7606 	 */
7607 	err = tcp_init_values(tcp);
7608 	ASSERT(err == 0);
7609 	/* Restore state in tcp_tcph */
7610 	bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN);
7611 	if (tcp->tcp_ipversion == IPV4_VERSION)
7612 		tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source;
7613 	else
7614 		tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6;
7615 	/*
7616 	 * Copy of the src addr. in tcp_t is needed in tcp_t
7617 	 * since the lookup funcs can only lookup on tcp_t
7618 	 */
7619 	tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6;
7620 
7621 	ASSERT(tcp->tcp_ptpbhn != NULL);
7622 	tcp->tcp_rq->q_hiwat = tcp_recv_hiwat;
7623 	tcp->tcp_rwnd = tcp_recv_hiwat;
7624 	tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ?
7625 	    tcp_mss_def_ipv6 : tcp_mss_def_ipv4;
7626 }
7627 
7628 /*
7629  * Force values to zero that need be zero.
7630  * Do not touch values asociated with the BOUND or LISTEN state
7631  * since the connection will end up in that state after the reinit.
7632  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
7633  * structure!
7634  */
7635 static void
7636 tcp_reinit_values(tcp)
7637 	tcp_t *tcp;
7638 {
7639 #ifndef	lint
7640 #define	DONTCARE(x)
7641 #define	PRESERVE(x)
7642 #else
7643 #define	DONTCARE(x)	((x) = (x))
7644 #define	PRESERVE(x)	((x) = (x))
7645 #endif	/* lint */
7646 
7647 	PRESERVE(tcp->tcp_bind_hash);
7648 	PRESERVE(tcp->tcp_ptpbhn);
7649 	PRESERVE(tcp->tcp_acceptor_hash);
7650 	PRESERVE(tcp->tcp_ptpahn);
7651 
7652 	/* Should be ASSERT NULL on these with new code! */
7653 	ASSERT(tcp->tcp_time_wait_next == NULL);
7654 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7655 	ASSERT(tcp->tcp_time_wait_expire == 0);
7656 	PRESERVE(tcp->tcp_state);
7657 	PRESERVE(tcp->tcp_rq);
7658 	PRESERVE(tcp->tcp_wq);
7659 
7660 	ASSERT(tcp->tcp_xmit_head == NULL);
7661 	ASSERT(tcp->tcp_xmit_last == NULL);
7662 	ASSERT(tcp->tcp_unsent == 0);
7663 	ASSERT(tcp->tcp_xmit_tail == NULL);
7664 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
7665 
7666 	tcp->tcp_snxt = 0;			/* Displayed in mib */
7667 	tcp->tcp_suna = 0;			/* Displayed in mib */
7668 	tcp->tcp_swnd = 0;
7669 	DONTCARE(tcp->tcp_cwnd);		/* Init in tcp_mss_set */
7670 
7671 	ASSERT(tcp->tcp_ibsegs == 0);
7672 	ASSERT(tcp->tcp_obsegs == 0);
7673 
7674 	if (tcp->tcp_iphc != NULL) {
7675 		ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
7676 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
7677 	}
7678 
7679 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
7680 	DONTCARE(tcp->tcp_hdr_len);		/* Init in tcp_init_values */
7681 	DONTCARE(tcp->tcp_ipha);
7682 	DONTCARE(tcp->tcp_ip6h);
7683 	DONTCARE(tcp->tcp_ip_hdr_len);
7684 	DONTCARE(tcp->tcp_tcph);
7685 	DONTCARE(tcp->tcp_tcp_hdr_len);		/* Init in tcp_init_values */
7686 	tcp->tcp_valid_bits = 0;
7687 
7688 	DONTCARE(tcp->tcp_xmit_hiwater);	/* Init in tcp_init_values */
7689 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
7690 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
7691 	tcp->tcp_last_rcv_lbolt = 0;
7692 
7693 	tcp->tcp_init_cwnd = 0;
7694 
7695 	tcp->tcp_urp_last_valid = 0;
7696 	tcp->tcp_hard_binding = 0;
7697 	tcp->tcp_hard_bound = 0;
7698 	PRESERVE(tcp->tcp_cred);
7699 	PRESERVE(tcp->tcp_cpid);
7700 	PRESERVE(tcp->tcp_exclbind);
7701 
7702 	tcp->tcp_fin_acked = 0;
7703 	tcp->tcp_fin_rcvd = 0;
7704 	tcp->tcp_fin_sent = 0;
7705 	tcp->tcp_ordrel_done = 0;
7706 
7707 	tcp->tcp_debug = 0;
7708 	tcp->tcp_dontroute = 0;
7709 	tcp->tcp_broadcast = 0;
7710 
7711 	tcp->tcp_useloopback = 0;
7712 	tcp->tcp_reuseaddr = 0;
7713 	tcp->tcp_oobinline = 0;
7714 	tcp->tcp_dgram_errind = 0;
7715 
7716 	tcp->tcp_detached = 0;
7717 	tcp->tcp_bind_pending = 0;
7718 	tcp->tcp_unbind_pending = 0;
7719 	tcp->tcp_deferred_clean_death = 0;
7720 
7721 	tcp->tcp_snd_ws_ok = B_FALSE;
7722 	tcp->tcp_snd_ts_ok = B_FALSE;
7723 	tcp->tcp_linger = 0;
7724 	tcp->tcp_ka_enabled = 0;
7725 	tcp->tcp_zero_win_probe = 0;
7726 
7727 	tcp->tcp_loopback = 0;
7728 	tcp->tcp_localnet = 0;
7729 	tcp->tcp_syn_defense = 0;
7730 	tcp->tcp_set_timer = 0;
7731 
7732 	tcp->tcp_active_open = 0;
7733 	ASSERT(tcp->tcp_timeout == B_FALSE);
7734 	tcp->tcp_rexmit = B_FALSE;
7735 	tcp->tcp_xmit_zc_clean = B_FALSE;
7736 
7737 	tcp->tcp_snd_sack_ok = B_FALSE;
7738 	PRESERVE(tcp->tcp_recvdstaddr);
7739 	tcp->tcp_hwcksum = B_FALSE;
7740 
7741 	tcp->tcp_ire_ill_check_done = B_FALSE;
7742 	DONTCARE(tcp->tcp_maxpsz);		/* Init in tcp_init_values */
7743 
7744 	tcp->tcp_mdt = B_FALSE;
7745 	tcp->tcp_mdt_hdr_head = 0;
7746 	tcp->tcp_mdt_hdr_tail = 0;
7747 
7748 	tcp->tcp_conn_def_q0 = 0;
7749 	tcp->tcp_ip_forward_progress = B_FALSE;
7750 	tcp->tcp_anon_priv_bind = 0;
7751 	tcp->tcp_ecn_ok = B_FALSE;
7752 
7753 	tcp->tcp_cwr = B_FALSE;
7754 	tcp->tcp_ecn_echo_on = B_FALSE;
7755 
7756 	if (tcp->tcp_sack_info != NULL) {
7757 		if (tcp->tcp_notsack_list != NULL) {
7758 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
7759 		}
7760 		kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info);
7761 		tcp->tcp_sack_info = NULL;
7762 	}
7763 
7764 	tcp->tcp_rcv_ws = 0;
7765 	tcp->tcp_snd_ws = 0;
7766 	tcp->tcp_ts_recent = 0;
7767 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
7768 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
7769 	tcp->tcp_if_mtu = 0;
7770 
7771 	ASSERT(tcp->tcp_reass_head == NULL);
7772 	ASSERT(tcp->tcp_reass_tail == NULL);
7773 
7774 	tcp->tcp_cwnd_cnt = 0;
7775 
7776 	ASSERT(tcp->tcp_rcv_list == NULL);
7777 	ASSERT(tcp->tcp_rcv_last_head == NULL);
7778 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
7779 	ASSERT(tcp->tcp_rcv_cnt == 0);
7780 
7781 	DONTCARE(tcp->tcp_cwnd_ssthresh);	/* Init in tcp_adapt_ire */
7782 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
7783 	tcp->tcp_csuna = 0;
7784 
7785 	tcp->tcp_rto = 0;			/* Displayed in MIB */
7786 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
7787 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
7788 	tcp->tcp_rtt_update = 0;
7789 
7790 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
7791 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
7792 
7793 	tcp->tcp_rack = 0;			/* Displayed in mib */
7794 	tcp->tcp_rack_cnt = 0;
7795 	tcp->tcp_rack_cur_max = 0;
7796 	tcp->tcp_rack_abs_max = 0;
7797 
7798 	tcp->tcp_max_swnd = 0;
7799 
7800 	ASSERT(tcp->tcp_listener == NULL);
7801 
7802 	DONTCARE(tcp->tcp_xmit_lowater);	/* Init in tcp_init_values */
7803 
7804 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
7805 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
7806 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
7807 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
7808 
7809 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
7810 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
7811 	PRESERVE(tcp->tcp_conn_req_max);
7812 	PRESERVE(tcp->tcp_conn_req_seqnum);
7813 
7814 	DONTCARE(tcp->tcp_ip_hdr_len);		/* Init in tcp_init_values */
7815 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
7816 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
7817 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
7818 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
7819 
7820 	tcp->tcp_lingertime = 0;
7821 
7822 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
7823 	ASSERT(tcp->tcp_urp_mp == NULL);
7824 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
7825 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
7826 
7827 	ASSERT(tcp->tcp_eager_next_q == NULL);
7828 	ASSERT(tcp->tcp_eager_last_q == NULL);
7829 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
7830 	    tcp->tcp_eager_prev_q0 == NULL) ||
7831 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
7832 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
7833 
7834 	tcp->tcp_client_errno = 0;
7835 
7836 	DONTCARE(tcp->tcp_sum);			/* Init in tcp_init_values */
7837 
7838 	tcp->tcp_remote_v6 = ipv6_all_zeros;	/* Displayed in MIB */
7839 
7840 	PRESERVE(tcp->tcp_bound_source_v6);
7841 	tcp->tcp_last_sent_len = 0;
7842 	tcp->tcp_dupack_cnt = 0;
7843 
7844 	tcp->tcp_fport = 0;			/* Displayed in MIB */
7845 	PRESERVE(tcp->tcp_lport);
7846 
7847 	PRESERVE(tcp->tcp_acceptor_lockp);
7848 
7849 	ASSERT(tcp->tcp_ordrelid == 0);
7850 	PRESERVE(tcp->tcp_acceptor_id);
7851 	DONTCARE(tcp->tcp_ipsec_overhead);
7852 
7853 	/*
7854 	 * If tcp_tracing flag is ON (i.e. We have a trace buffer
7855 	 * in tcp structure and now tracing), Re-initialize all
7856 	 * members of tcp_traceinfo.
7857 	 */
7858 	if (tcp->tcp_tracebuf != NULL) {
7859 		bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t));
7860 	}
7861 
7862 	PRESERVE(tcp->tcp_family);
7863 	if (tcp->tcp_family == AF_INET6) {
7864 		tcp->tcp_ipversion = IPV6_VERSION;
7865 		tcp->tcp_mss = tcp_mss_def_ipv6;
7866 	} else {
7867 		tcp->tcp_ipversion = IPV4_VERSION;
7868 		tcp->tcp_mss = tcp_mss_def_ipv4;
7869 	}
7870 
7871 	tcp->tcp_bound_if = 0;
7872 	tcp->tcp_ipv6_recvancillary = 0;
7873 	tcp->tcp_recvifindex = 0;
7874 	tcp->tcp_recvhops = 0;
7875 	tcp->tcp_closed = 0;
7876 	tcp->tcp_cleandeathtag = 0;
7877 	if (tcp->tcp_hopopts != NULL) {
7878 		mi_free(tcp->tcp_hopopts);
7879 		tcp->tcp_hopopts = NULL;
7880 		tcp->tcp_hopoptslen = 0;
7881 	}
7882 	ASSERT(tcp->tcp_hopoptslen == 0);
7883 	if (tcp->tcp_dstopts != NULL) {
7884 		mi_free(tcp->tcp_dstopts);
7885 		tcp->tcp_dstopts = NULL;
7886 		tcp->tcp_dstoptslen = 0;
7887 	}
7888 	ASSERT(tcp->tcp_dstoptslen == 0);
7889 	if (tcp->tcp_rtdstopts != NULL) {
7890 		mi_free(tcp->tcp_rtdstopts);
7891 		tcp->tcp_rtdstopts = NULL;
7892 		tcp->tcp_rtdstoptslen = 0;
7893 	}
7894 	ASSERT(tcp->tcp_rtdstoptslen == 0);
7895 	if (tcp->tcp_rthdr != NULL) {
7896 		mi_free(tcp->tcp_rthdr);
7897 		tcp->tcp_rthdr = NULL;
7898 		tcp->tcp_rthdrlen = 0;
7899 	}
7900 	ASSERT(tcp->tcp_rthdrlen == 0);
7901 	PRESERVE(tcp->tcp_drop_opt_ack_cnt);
7902 
7903 	/* Reset fusion-related fields */
7904 	tcp->tcp_fused = B_FALSE;
7905 	tcp->tcp_unfusable = B_FALSE;
7906 	tcp->tcp_fused_sigurg = B_FALSE;
7907 	tcp->tcp_direct_sockfs = B_FALSE;
7908 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
7909 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
7910 	tcp->tcp_loopback_peer = NULL;
7911 	tcp->tcp_fuse_rcv_hiwater = 0;
7912 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
7913 	tcp->tcp_fuse_rcv_unread_cnt = 0;
7914 
7915 	tcp->tcp_in_ack_unsent = 0;
7916 	tcp->tcp_cork = B_FALSE;
7917 
7918 	PRESERVE(tcp->tcp_squeue_bytes);
7919 
7920 	ASSERT(tcp->tcp_kssl_ctx == NULL);
7921 	ASSERT(!tcp->tcp_kssl_pending);
7922 	PRESERVE(tcp->tcp_kssl_ent);
7923 
7924 #undef	DONTCARE
7925 #undef	PRESERVE
7926 }
7927 
7928 /*
7929  * Allocate necessary resources and initialize state vector.
7930  * Guaranteed not to fail so that when an error is returned,
7931  * the caller doesn't need to do any additional cleanup.
7932  */
7933 int
7934 tcp_init(tcp_t *tcp, queue_t *q)
7935 {
7936 	int	err;
7937 
7938 	tcp->tcp_rq = q;
7939 	tcp->tcp_wq = WR(q);
7940 	tcp->tcp_state = TCPS_IDLE;
7941 	if ((err = tcp_init_values(tcp)) != 0)
7942 		tcp_timers_stop(tcp);
7943 	return (err);
7944 }
7945 
7946 static int
7947 tcp_init_values(tcp_t *tcp)
7948 {
7949 	int	err;
7950 
7951 	ASSERT((tcp->tcp_family == AF_INET &&
7952 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7953 	    (tcp->tcp_family == AF_INET6 &&
7954 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7955 	    tcp->tcp_ipversion == IPV6_VERSION)));
7956 
7957 	/*
7958 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
7959 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
7960 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
7961 	 * during first few transmissions of a connection as seen in slow
7962 	 * links.
7963 	 */
7964 	tcp->tcp_rtt_sa = tcp_rexmit_interval_initial << 2;
7965 	tcp->tcp_rtt_sd = tcp_rexmit_interval_initial >> 1;
7966 	tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
7967 	    tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
7968 	    tcp_conn_grace_period;
7969 	if (tcp->tcp_rto < tcp_rexmit_interval_min)
7970 		tcp->tcp_rto = tcp_rexmit_interval_min;
7971 	tcp->tcp_timer_backoff = 0;
7972 	tcp->tcp_ms_we_have_waited = 0;
7973 	tcp->tcp_last_recv_time = lbolt;
7974 	tcp->tcp_cwnd_max = tcp_cwnd_max_;
7975 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
7976 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
7977 
7978 	tcp->tcp_maxpsz = tcp_maxpsz_multiplier;
7979 
7980 	tcp->tcp_first_timer_threshold = tcp_ip_notify_interval;
7981 	tcp->tcp_first_ctimer_threshold = tcp_ip_notify_cinterval;
7982 	tcp->tcp_second_timer_threshold = tcp_ip_abort_interval;
7983 	/*
7984 	 * Fix it to tcp_ip_abort_linterval later if it turns out to be a
7985 	 * passive open.
7986 	 */
7987 	tcp->tcp_second_ctimer_threshold = tcp_ip_abort_cinterval;
7988 
7989 	tcp->tcp_naglim = tcp_naglim_def;
7990 
7991 	/* NOTE:  ISS is now set in tcp_adapt_ire(). */
7992 
7993 	tcp->tcp_mdt_hdr_head = 0;
7994 	tcp->tcp_mdt_hdr_tail = 0;
7995 
7996 	/* Reset fusion-related fields */
7997 	tcp->tcp_fused = B_FALSE;
7998 	tcp->tcp_unfusable = B_FALSE;
7999 	tcp->tcp_fused_sigurg = B_FALSE;
8000 	tcp->tcp_direct_sockfs = B_FALSE;
8001 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
8002 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
8003 	tcp->tcp_loopback_peer = NULL;
8004 	tcp->tcp_fuse_rcv_hiwater = 0;
8005 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
8006 	tcp->tcp_fuse_rcv_unread_cnt = 0;
8007 
8008 	/* Initialize the header template */
8009 	if (tcp->tcp_ipversion == IPV4_VERSION) {
8010 		err = tcp_header_init_ipv4(tcp);
8011 	} else {
8012 		err = tcp_header_init_ipv6(tcp);
8013 	}
8014 	if (err)
8015 		return (err);
8016 
8017 	/*
8018 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
8019 	 * down tcp_rwnd. tcp_adapt_ire() will set the right value later.
8020 	 */
8021 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
8022 	tcp->tcp_xmit_lowater = tcp_xmit_lowat;
8023 	tcp->tcp_xmit_hiwater = tcp_xmit_hiwat;
8024 
8025 	tcp->tcp_cork = B_FALSE;
8026 	/*
8027 	 * Init the tcp_debug option.  This value determines whether TCP
8028 	 * calls strlog() to print out debug messages.  Doing this
8029 	 * initialization here means that this value is not inherited thru
8030 	 * tcp_reinit().
8031 	 */
8032 	tcp->tcp_debug = tcp_dbg;
8033 
8034 	tcp->tcp_ka_interval = tcp_keepalive_interval;
8035 	tcp->tcp_ka_abort_thres = tcp_keepalive_abort_interval;
8036 
8037 	return (0);
8038 }
8039 
8040 /*
8041  * Initialize the IPv4 header. Loses any record of any IP options.
8042  */
8043 static int
8044 tcp_header_init_ipv4(tcp_t *tcp)
8045 {
8046 	tcph_t		*tcph;
8047 	uint32_t	sum;
8048 	conn_t		*connp;
8049 
8050 	/*
8051 	 * This is a simple initialization. If there's
8052 	 * already a template, it should never be too small,
8053 	 * so reuse it.  Otherwise, allocate space for the new one.
8054 	 */
8055 	if (tcp->tcp_iphc == NULL) {
8056 		ASSERT(tcp->tcp_iphc_len == 0);
8057 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8058 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8059 		if (tcp->tcp_iphc == NULL) {
8060 			tcp->tcp_iphc_len = 0;
8061 			return (ENOMEM);
8062 		}
8063 	}
8064 
8065 	/* options are gone; may need a new label */
8066 	connp = tcp->tcp_connp;
8067 	connp->conn_mlp_type = mlptSingle;
8068 	connp->conn_ulp_labeled = !is_system_labeled();
8069 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8070 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
8071 	tcp->tcp_ip6h = NULL;
8072 	tcp->tcp_ipversion = IPV4_VERSION;
8073 	tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t);
8074 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8075 	tcp->tcp_ip_hdr_len = sizeof (ipha_t);
8076 	tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t));
8077 	tcp->tcp_ipha->ipha_version_and_hdr_length
8078 		= (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS;
8079 	tcp->tcp_ipha->ipha_ident = 0;
8080 
8081 	tcp->tcp_ttl = (uchar_t)tcp_ipv4_ttl;
8082 	tcp->tcp_tos = 0;
8083 	tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
8084 	tcp->tcp_ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl;
8085 	tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP;
8086 
8087 	tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t));
8088 	tcp->tcp_tcph = tcph;
8089 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8090 	/*
8091 	 * IP wants our header length in the checksum field to
8092 	 * allow it to perform a single pseudo-header+checksum
8093 	 * calculation on behalf of TCP.
8094 	 * Include the adjustment for a source route once IP_OPTIONS is set.
8095 	 */
8096 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8097 	sum = (sum >> 16) + (sum & 0xFFFF);
8098 	U16_TO_ABE16(sum, tcph->th_sum);
8099 	return (0);
8100 }
8101 
8102 /*
8103  * Initialize the IPv6 header. Loses any record of any IPv6 extension headers.
8104  */
8105 static int
8106 tcp_header_init_ipv6(tcp_t *tcp)
8107 {
8108 	tcph_t	*tcph;
8109 	uint32_t	sum;
8110 	conn_t	*connp;
8111 
8112 	/*
8113 	 * This is a simple initialization. If there's
8114 	 * already a template, it should never be too small,
8115 	 * so reuse it. Otherwise, allocate space for the new one.
8116 	 * Ensure that there is enough space to "downgrade" the tcp_t
8117 	 * to an IPv4 tcp_t. This requires having space for a full load
8118 	 * of IPv4 options, as well as a full load of TCP options
8119 	 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space
8120 	 * than a v6 header and a TCP header with a full load of TCP options
8121 	 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes).
8122 	 * We want to avoid reallocation in the "downgraded" case when
8123 	 * processing outbound IPv4 options.
8124 	 */
8125 	if (tcp->tcp_iphc == NULL) {
8126 		ASSERT(tcp->tcp_iphc_len == 0);
8127 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8128 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8129 		if (tcp->tcp_iphc == NULL) {
8130 			tcp->tcp_iphc_len = 0;
8131 			return (ENOMEM);
8132 		}
8133 	}
8134 
8135 	/* options are gone; may need a new label */
8136 	connp = tcp->tcp_connp;
8137 	connp->conn_mlp_type = mlptSingle;
8138 	connp->conn_ulp_labeled = !is_system_labeled();
8139 
8140 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8141 	tcp->tcp_ipversion = IPV6_VERSION;
8142 	tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t);
8143 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8144 	tcp->tcp_ip_hdr_len = IPV6_HDR_LEN;
8145 	tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
8146 	tcp->tcp_ipha = NULL;
8147 
8148 	/* Initialize the header template */
8149 
8150 	tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
8151 	tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t));
8152 	tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP;
8153 	tcp->tcp_ip6h->ip6_hops = (uint8_t)tcp_ipv6_hoplimit;
8154 
8155 	tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN);
8156 	tcp->tcp_tcph = tcph;
8157 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8158 	/*
8159 	 * IP wants our header length in the checksum field to
8160 	 * allow it to perform a single psuedo-header+checksum
8161 	 * calculation on behalf of TCP.
8162 	 * Include the adjustment for a source route when IPV6_RTHDR is set.
8163 	 */
8164 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8165 	sum = (sum >> 16) + (sum & 0xFFFF);
8166 	U16_TO_ABE16(sum, tcph->th_sum);
8167 	return (0);
8168 }
8169 
8170 /* At minimum we need 4 bytes in the TCP header for the lookup */
8171 #define	ICMP_MIN_TCP_HDR	12
8172 
8173 /*
8174  * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages
8175  * passed up by IP. The message is always received on the correct tcp_t.
8176  * Assumes that IP has pulled up everything up to and including the ICMP header.
8177  */
8178 void
8179 tcp_icmp_error(tcp_t *tcp, mblk_t *mp)
8180 {
8181 	icmph_t *icmph;
8182 	ipha_t	*ipha;
8183 	int	iph_hdr_length;
8184 	tcph_t	*tcph;
8185 	boolean_t ipsec_mctl = B_FALSE;
8186 	boolean_t secure;
8187 	mblk_t *first_mp = mp;
8188 	uint32_t new_mss;
8189 	uint32_t ratio;
8190 	size_t mp_size = MBLKL(mp);
8191 	uint32_t seg_ack;
8192 	uint32_t seg_seq;
8193 
8194 	/* Assume IP provides aligned packets - otherwise toss */
8195 	if (!OK_32PTR(mp->b_rptr)) {
8196 		freemsg(mp);
8197 		return;
8198 	}
8199 
8200 	/*
8201 	 * Since ICMP errors are normal data marked with M_CTL when sent
8202 	 * to TCP or UDP, we have to look for a IPSEC_IN value to identify
8203 	 * packets starting with an ipsec_info_t, see ipsec_info.h.
8204 	 */
8205 	if ((mp_size == sizeof (ipsec_info_t)) &&
8206 	    (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) {
8207 		ASSERT(mp->b_cont != NULL);
8208 		mp = mp->b_cont;
8209 		/* IP should have done this */
8210 		ASSERT(OK_32PTR(mp->b_rptr));
8211 		mp_size = MBLKL(mp);
8212 		ipsec_mctl = B_TRUE;
8213 	}
8214 
8215 	/*
8216 	 * Verify that we have a complete outer IP header. If not, drop it.
8217 	 */
8218 	if (mp_size < sizeof (ipha_t)) {
8219 noticmpv4:
8220 		freemsg(first_mp);
8221 		return;
8222 	}
8223 
8224 	ipha = (ipha_t *)mp->b_rptr;
8225 	/*
8226 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
8227 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
8228 	 */
8229 	switch (IPH_HDR_VERSION(ipha)) {
8230 	case IPV6_VERSION:
8231 		tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl);
8232 		return;
8233 	case IPV4_VERSION:
8234 		break;
8235 	default:
8236 		goto noticmpv4;
8237 	}
8238 
8239 	/* Skip past the outer IP and ICMP headers */
8240 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8241 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
8242 	/*
8243 	 * If we don't have the correct outer IP header length or if the ULP
8244 	 * is not IPPROTO_ICMP or if we don't have a complete inner IP header
8245 	 * send it upstream.
8246 	 */
8247 	if (iph_hdr_length < sizeof (ipha_t) ||
8248 	    ipha->ipha_protocol != IPPROTO_ICMP ||
8249 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
8250 		goto noticmpv4;
8251 	}
8252 	ipha = (ipha_t *)&icmph[1];
8253 
8254 	/* Skip past the inner IP and find the ULP header */
8255 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8256 	tcph = (tcph_t *)((char *)ipha + iph_hdr_length);
8257 	/*
8258 	 * If we don't have the correct inner IP header length or if the ULP
8259 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
8260 	 * bytes of TCP header, drop it.
8261 	 */
8262 	if (iph_hdr_length < sizeof (ipha_t) ||
8263 	    ipha->ipha_protocol != IPPROTO_TCP ||
8264 	    (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) {
8265 		goto noticmpv4;
8266 	}
8267 
8268 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
8269 		if (ipsec_mctl) {
8270 			secure = ipsec_in_is_secure(first_mp);
8271 		} else {
8272 			secure = B_FALSE;
8273 		}
8274 		if (secure) {
8275 			/*
8276 			 * If we are willing to accept this in clear
8277 			 * we don't have to verify policy.
8278 			 */
8279 			if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) {
8280 				if (!tcp_check_policy(tcp, first_mp,
8281 				    ipha, NULL, secure, ipsec_mctl)) {
8282 					/*
8283 					 * tcp_check_policy called
8284 					 * ip_drop_packet() on failure.
8285 					 */
8286 					return;
8287 				}
8288 			}
8289 		}
8290 	} else if (ipsec_mctl) {
8291 		/*
8292 		 * This is a hard_bound connection. IP has already
8293 		 * verified policy. We don't have to do it again.
8294 		 */
8295 		freeb(first_mp);
8296 		first_mp = mp;
8297 		ipsec_mctl = B_FALSE;
8298 	}
8299 
8300 	seg_ack = ABE32_TO_U32(tcph->th_ack);
8301 	seg_seq = ABE32_TO_U32(tcph->th_seq);
8302 	/*
8303 	 * TCP SHOULD check that the TCP sequence number contained in
8304 	 * payload of the ICMP error message is within the range
8305 	 * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT
8306 	 */
8307 	if (SEQ_LT(seg_seq, tcp->tcp_suna) ||
8308 		SEQ_GEQ(seg_seq, tcp->tcp_snxt) ||
8309 		SEQ_GT(seg_ack, tcp->tcp_rnxt)) {
8310 		/*
8311 		 * If the ICMP message is bogus, should we kill the
8312 		 * connection, or should we just drop the bogus ICMP
8313 		 * message? It would probably make more sense to just
8314 		 * drop the message so that if this one managed to get
8315 		 * in, the real connection should not suffer.
8316 		 */
8317 		goto noticmpv4;
8318 	}
8319 
8320 	switch (icmph->icmph_type) {
8321 	case ICMP_DEST_UNREACHABLE:
8322 		switch (icmph->icmph_code) {
8323 		case ICMP_FRAGMENTATION_NEEDED:
8324 			/*
8325 			 * Reduce the MSS based on the new MTU.  This will
8326 			 * eliminate any fragmentation locally.
8327 			 * N.B.  There may well be some funny side-effects on
8328 			 * the local send policy and the remote receive policy.
8329 			 * Pending further research, we provide
8330 			 * tcp_ignore_path_mtu just in case this proves
8331 			 * disastrous somewhere.
8332 			 *
8333 			 * After updating the MSS, retransmit part of the
8334 			 * dropped segment using the new mss by calling
8335 			 * tcp_wput_data().  Need to adjust all those
8336 			 * params to make sure tcp_wput_data() work properly.
8337 			 */
8338 			if (tcp_ignore_path_mtu)
8339 				break;
8340 
8341 			/*
8342 			 * Decrease the MSS by time stamp options
8343 			 * IP options and IPSEC options. tcp_hdr_len
8344 			 * includes time stamp option and IP option
8345 			 * length.
8346 			 */
8347 
8348 			new_mss = ntohs(icmph->icmph_du_mtu) -
8349 			    tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead;
8350 
8351 			/*
8352 			 * Only update the MSS if the new one is
8353 			 * smaller than the previous one.  This is
8354 			 * to avoid problems when getting multiple
8355 			 * ICMP errors for the same MTU.
8356 			 */
8357 			if (new_mss >= tcp->tcp_mss)
8358 				break;
8359 
8360 			/*
8361 			 * Stop doing PMTU if new_mss is less than 68
8362 			 * or less than tcp_mss_min.
8363 			 * The value 68 comes from rfc 1191.
8364 			 */
8365 			if (new_mss < MAX(68, tcp_mss_min))
8366 				tcp->tcp_ipha->ipha_fragment_offset_and_flags =
8367 				    0;
8368 
8369 			ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8370 			ASSERT(ratio >= 1);
8371 			tcp_mss_set(tcp, new_mss);
8372 
8373 			/*
8374 			 * Make sure we have something to
8375 			 * send.
8376 			 */
8377 			if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8378 			    (tcp->tcp_xmit_head != NULL)) {
8379 				/*
8380 				 * Shrink tcp_cwnd in
8381 				 * proportion to the old MSS/new MSS.
8382 				 */
8383 				tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8384 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8385 				    (tcp->tcp_unsent == 0)) {
8386 					tcp->tcp_rexmit_max = tcp->tcp_fss;
8387 				} else {
8388 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
8389 				}
8390 				tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8391 				tcp->tcp_rexmit = B_TRUE;
8392 				tcp->tcp_dupack_cnt = 0;
8393 				tcp->tcp_snd_burst = TCP_CWND_SS;
8394 				tcp_ss_rexmit(tcp);
8395 			}
8396 			break;
8397 		case ICMP_PORT_UNREACHABLE:
8398 		case ICMP_PROTOCOL_UNREACHABLE:
8399 			switch (tcp->tcp_state) {
8400 			case TCPS_SYN_SENT:
8401 			case TCPS_SYN_RCVD:
8402 				/*
8403 				 * ICMP can snipe away incipient
8404 				 * TCP connections as long as
8405 				 * seq number is same as initial
8406 				 * send seq number.
8407 				 */
8408 				if (seg_seq == tcp->tcp_iss) {
8409 					(void) tcp_clean_death(tcp,
8410 					    ECONNREFUSED, 6);
8411 				}
8412 				break;
8413 			}
8414 			break;
8415 		case ICMP_HOST_UNREACHABLE:
8416 		case ICMP_NET_UNREACHABLE:
8417 			/* Record the error in case we finally time out. */
8418 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
8419 				tcp->tcp_client_errno = EHOSTUNREACH;
8420 			else
8421 				tcp->tcp_client_errno = ENETUNREACH;
8422 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
8423 				if (tcp->tcp_listener != NULL &&
8424 				    tcp->tcp_listener->tcp_syn_defense) {
8425 					/*
8426 					 * Ditch the half-open connection if we
8427 					 * suspect a SYN attack is under way.
8428 					 */
8429 					tcp_ip_ire_mark_advice(tcp);
8430 					(void) tcp_clean_death(tcp,
8431 					    tcp->tcp_client_errno, 7);
8432 				}
8433 			}
8434 			break;
8435 		default:
8436 			break;
8437 		}
8438 		break;
8439 	case ICMP_SOURCE_QUENCH: {
8440 		/*
8441 		 * use a global boolean to control
8442 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
8443 		 * The default is false.
8444 		 */
8445 		if (tcp_icmp_source_quench) {
8446 			/*
8447 			 * Reduce the sending rate as if we got a
8448 			 * retransmit timeout
8449 			 */
8450 			uint32_t npkt;
8451 
8452 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
8453 			    tcp->tcp_mss;
8454 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
8455 			tcp->tcp_cwnd = tcp->tcp_mss;
8456 			tcp->tcp_cwnd_cnt = 0;
8457 		}
8458 		break;
8459 	}
8460 	}
8461 	freemsg(first_mp);
8462 }
8463 
8464 /*
8465  * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6
8466  * error messages passed up by IP.
8467  * Assumes that IP has pulled up all the extension headers as well
8468  * as the ICMPv6 header.
8469  */
8470 static void
8471 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl)
8472 {
8473 	icmp6_t *icmp6;
8474 	ip6_t	*ip6h;
8475 	uint16_t	iph_hdr_length;
8476 	tcpha_t	*tcpha;
8477 	uint8_t	*nexthdrp;
8478 	uint32_t new_mss;
8479 	uint32_t ratio;
8480 	boolean_t secure;
8481 	mblk_t *first_mp = mp;
8482 	size_t mp_size;
8483 	uint32_t seg_ack;
8484 	uint32_t seg_seq;
8485 
8486 	/*
8487 	 * The caller has determined if this is an IPSEC_IN packet and
8488 	 * set ipsec_mctl appropriately (see tcp_icmp_error).
8489 	 */
8490 	if (ipsec_mctl)
8491 		mp = mp->b_cont;
8492 
8493 	mp_size = MBLKL(mp);
8494 
8495 	/*
8496 	 * Verify that we have a complete IP header. If not, send it upstream.
8497 	 */
8498 	if (mp_size < sizeof (ip6_t)) {
8499 noticmpv6:
8500 		freemsg(first_mp);
8501 		return;
8502 	}
8503 
8504 	/*
8505 	 * Verify this is an ICMPV6 packet, else send it upstream.
8506 	 */
8507 	ip6h = (ip6_t *)mp->b_rptr;
8508 	if (ip6h->ip6_nxt == IPPROTO_ICMPV6) {
8509 		iph_hdr_length = IPV6_HDR_LEN;
8510 	} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
8511 	    &nexthdrp) ||
8512 	    *nexthdrp != IPPROTO_ICMPV6) {
8513 		goto noticmpv6;
8514 	}
8515 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
8516 	ip6h = (ip6_t *)&icmp6[1];
8517 	/*
8518 	 * Verify if we have a complete ICMP and inner IP header.
8519 	 */
8520 	if ((uchar_t *)&ip6h[1] > mp->b_wptr)
8521 		goto noticmpv6;
8522 
8523 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
8524 		goto noticmpv6;
8525 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
8526 	/*
8527 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
8528 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
8529 	 * packet.
8530 	 */
8531 	if ((*nexthdrp != IPPROTO_TCP) ||
8532 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
8533 		goto noticmpv6;
8534 	}
8535 
8536 	/*
8537 	 * ICMP errors come on the right queue or come on
8538 	 * listener/global queue for detached connections and
8539 	 * get switched to the right queue. If it comes on the
8540 	 * right queue, policy check has already been done by IP
8541 	 * and thus free the first_mp without verifying the policy.
8542 	 * If it has come for a non-hard bound connection, we need
8543 	 * to verify policy as IP may not have done it.
8544 	 */
8545 	if (!tcp->tcp_hard_bound) {
8546 		if (ipsec_mctl) {
8547 			secure = ipsec_in_is_secure(first_mp);
8548 		} else {
8549 			secure = B_FALSE;
8550 		}
8551 		if (secure) {
8552 			/*
8553 			 * If we are willing to accept this in clear
8554 			 * we don't have to verify policy.
8555 			 */
8556 			if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) {
8557 				if (!tcp_check_policy(tcp, first_mp,
8558 				    NULL, ip6h, secure, ipsec_mctl)) {
8559 					/*
8560 					 * tcp_check_policy called
8561 					 * ip_drop_packet() on failure.
8562 					 */
8563 					return;
8564 				}
8565 			}
8566 		}
8567 	} else if (ipsec_mctl) {
8568 		/*
8569 		 * This is a hard_bound connection. IP has already
8570 		 * verified policy. We don't have to do it again.
8571 		 */
8572 		freeb(first_mp);
8573 		first_mp = mp;
8574 		ipsec_mctl = B_FALSE;
8575 	}
8576 
8577 	seg_ack = ntohl(tcpha->tha_ack);
8578 	seg_seq = ntohl(tcpha->tha_seq);
8579 	/*
8580 	 * TCP SHOULD check that the TCP sequence number contained in
8581 	 * payload of the ICMP error message is within the range
8582 	 * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT
8583 	 */
8584 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt) ||
8585 	    SEQ_GT(seg_ack, tcp->tcp_rnxt)) {
8586 		/*
8587 		 * If the ICMP message is bogus, should we kill the
8588 		 * connection, or should we just drop the bogus ICMP
8589 		 * message? It would probably make more sense to just
8590 		 * drop the message so that if this one managed to get
8591 		 * in, the real connection should not suffer.
8592 		 */
8593 		goto noticmpv6;
8594 	}
8595 
8596 	switch (icmp6->icmp6_type) {
8597 	case ICMP6_PACKET_TOO_BIG:
8598 		/*
8599 		 * Reduce the MSS based on the new MTU.  This will
8600 		 * eliminate any fragmentation locally.
8601 		 * N.B.  There may well be some funny side-effects on
8602 		 * the local send policy and the remote receive policy.
8603 		 * Pending further research, we provide
8604 		 * tcp_ignore_path_mtu just in case this proves
8605 		 * disastrous somewhere.
8606 		 *
8607 		 * After updating the MSS, retransmit part of the
8608 		 * dropped segment using the new mss by calling
8609 		 * tcp_wput_data().  Need to adjust all those
8610 		 * params to make sure tcp_wput_data() work properly.
8611 		 */
8612 		if (tcp_ignore_path_mtu)
8613 			break;
8614 
8615 		/*
8616 		 * Decrease the MSS by time stamp options
8617 		 * IP options and IPSEC options. tcp_hdr_len
8618 		 * includes time stamp option and IP option
8619 		 * length.
8620 		 */
8621 		new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len -
8622 			    tcp->tcp_ipsec_overhead;
8623 
8624 		/*
8625 		 * Only update the MSS if the new one is
8626 		 * smaller than the previous one.  This is
8627 		 * to avoid problems when getting multiple
8628 		 * ICMP errors for the same MTU.
8629 		 */
8630 		if (new_mss >= tcp->tcp_mss)
8631 			break;
8632 
8633 		ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8634 		ASSERT(ratio >= 1);
8635 		tcp_mss_set(tcp, new_mss);
8636 
8637 		/*
8638 		 * Make sure we have something to
8639 		 * send.
8640 		 */
8641 		if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8642 		    (tcp->tcp_xmit_head != NULL)) {
8643 			/*
8644 			 * Shrink tcp_cwnd in
8645 			 * proportion to the old MSS/new MSS.
8646 			 */
8647 			tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8648 			if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8649 			    (tcp->tcp_unsent == 0)) {
8650 				tcp->tcp_rexmit_max = tcp->tcp_fss;
8651 			} else {
8652 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
8653 			}
8654 			tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8655 			tcp->tcp_rexmit = B_TRUE;
8656 			tcp->tcp_dupack_cnt = 0;
8657 			tcp->tcp_snd_burst = TCP_CWND_SS;
8658 			tcp_ss_rexmit(tcp);
8659 		}
8660 		break;
8661 
8662 	case ICMP6_DST_UNREACH:
8663 		switch (icmp6->icmp6_code) {
8664 		case ICMP6_DST_UNREACH_NOPORT:
8665 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8666 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8667 			    (seg_seq == tcp->tcp_iss)) {
8668 				(void) tcp_clean_death(tcp,
8669 				    ECONNREFUSED, 8);
8670 			}
8671 			break;
8672 
8673 		case ICMP6_DST_UNREACH_ADMIN:
8674 		case ICMP6_DST_UNREACH_NOROUTE:
8675 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
8676 		case ICMP6_DST_UNREACH_ADDR:
8677 			/* Record the error in case we finally time out. */
8678 			tcp->tcp_client_errno = EHOSTUNREACH;
8679 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8680 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8681 			    (seg_seq == tcp->tcp_iss)) {
8682 				if (tcp->tcp_listener != NULL &&
8683 				    tcp->tcp_listener->tcp_syn_defense) {
8684 					/*
8685 					 * Ditch the half-open connection if we
8686 					 * suspect a SYN attack is under way.
8687 					 */
8688 					tcp_ip_ire_mark_advice(tcp);
8689 					(void) tcp_clean_death(tcp,
8690 					    tcp->tcp_client_errno, 9);
8691 				}
8692 			}
8693 
8694 
8695 			break;
8696 		default:
8697 			break;
8698 		}
8699 		break;
8700 
8701 	case ICMP6_PARAM_PROB:
8702 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
8703 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
8704 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
8705 		    (uchar_t *)nexthdrp) {
8706 			if (tcp->tcp_state == TCPS_SYN_SENT ||
8707 			    tcp->tcp_state == TCPS_SYN_RCVD) {
8708 				(void) tcp_clean_death(tcp,
8709 				    ECONNREFUSED, 10);
8710 			}
8711 			break;
8712 		}
8713 		break;
8714 
8715 	case ICMP6_TIME_EXCEEDED:
8716 	default:
8717 		break;
8718 	}
8719 	freemsg(first_mp);
8720 }
8721 
8722 /*
8723  * IP recognizes seven kinds of bind requests:
8724  *
8725  * - A zero-length address binds only to the protocol number.
8726  *
8727  * - A 4-byte address is treated as a request to
8728  * validate that the address is a valid local IPv4
8729  * address, appropriate for an application to bind to.
8730  * IP does the verification, but does not make any note
8731  * of the address at this time.
8732  *
8733  * - A 16-byte address contains is treated as a request
8734  * to validate a local IPv6 address, as the 4-byte
8735  * address case above.
8736  *
8737  * - A 16-byte sockaddr_in to validate the local IPv4 address and also
8738  * use it for the inbound fanout of packets.
8739  *
8740  * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also
8741  * use it for the inbound fanout of packets.
8742  *
8743  * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout
8744  * information consisting of local and remote addresses
8745  * and ports.  In this case, the addresses are both
8746  * validated as appropriate for this operation, and, if
8747  * so, the information is retained for use in the
8748  * inbound fanout.
8749  *
8750  * - A 36-byte address address (ipa6_conn_t) containing complete IPv6
8751  * fanout information, like the 12-byte case above.
8752  *
8753  * IP will also fill in the IRE request mblk with information
8754  * regarding our peer.  In all cases, we notify IP of our protocol
8755  * type by appending a single protocol byte to the bind request.
8756  */
8757 static mblk_t *
8758 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length)
8759 {
8760 	char	*cp;
8761 	mblk_t	*mp;
8762 	struct T_bind_req *tbr;
8763 	ipa_conn_t	*ac;
8764 	ipa6_conn_t	*ac6;
8765 	sin_t		*sin;
8766 	sin6_t		*sin6;
8767 
8768 	ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ);
8769 	ASSERT((tcp->tcp_family == AF_INET &&
8770 	    tcp->tcp_ipversion == IPV4_VERSION) ||
8771 	    (tcp->tcp_family == AF_INET6 &&
8772 	    (tcp->tcp_ipversion == IPV4_VERSION ||
8773 	    tcp->tcp_ipversion == IPV6_VERSION)));
8774 
8775 	mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI);
8776 	if (!mp)
8777 		return (mp);
8778 	mp->b_datap->db_type = M_PROTO;
8779 	tbr = (struct T_bind_req *)mp->b_rptr;
8780 	tbr->PRIM_type = bind_prim;
8781 	tbr->ADDR_offset = sizeof (*tbr);
8782 	tbr->CONIND_number = 0;
8783 	tbr->ADDR_length = addr_length;
8784 	cp = (char *)&tbr[1];
8785 	switch (addr_length) {
8786 	case sizeof (ipa_conn_t):
8787 		ASSERT(tcp->tcp_family == AF_INET);
8788 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
8789 
8790 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
8791 		if (mp->b_cont == NULL) {
8792 			freemsg(mp);
8793 			return (NULL);
8794 		}
8795 		mp->b_cont->b_wptr += sizeof (ire_t);
8796 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
8797 
8798 		/* cp known to be 32 bit aligned */
8799 		ac = (ipa_conn_t *)cp;
8800 		ac->ac_laddr = tcp->tcp_ipha->ipha_src;
8801 		ac->ac_faddr = tcp->tcp_remote;
8802 		ac->ac_fport = tcp->tcp_fport;
8803 		ac->ac_lport = tcp->tcp_lport;
8804 		tcp->tcp_hard_binding = 1;
8805 		break;
8806 
8807 	case sizeof (ipa6_conn_t):
8808 		ASSERT(tcp->tcp_family == AF_INET6);
8809 
8810 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
8811 		if (mp->b_cont == NULL) {
8812 			freemsg(mp);
8813 			return (NULL);
8814 		}
8815 		mp->b_cont->b_wptr += sizeof (ire_t);
8816 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
8817 
8818 		/* cp known to be 32 bit aligned */
8819 		ac6 = (ipa6_conn_t *)cp;
8820 		if (tcp->tcp_ipversion == IPV4_VERSION) {
8821 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
8822 			    &ac6->ac6_laddr);
8823 		} else {
8824 			ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src;
8825 		}
8826 		ac6->ac6_faddr = tcp->tcp_remote_v6;
8827 		ac6->ac6_fport = tcp->tcp_fport;
8828 		ac6->ac6_lport = tcp->tcp_lport;
8829 		tcp->tcp_hard_binding = 1;
8830 		break;
8831 
8832 	case sizeof (sin_t):
8833 		/*
8834 		 * NOTE: IPV6_ADDR_LEN also has same size.
8835 		 * Use family to discriminate.
8836 		 */
8837 		if (tcp->tcp_family == AF_INET) {
8838 			sin = (sin_t *)cp;
8839 
8840 			*sin = sin_null;
8841 			sin->sin_family = AF_INET;
8842 			sin->sin_addr.s_addr = tcp->tcp_bound_source;
8843 			sin->sin_port = tcp->tcp_lport;
8844 			break;
8845 		} else {
8846 			*(in6_addr_t *)cp = tcp->tcp_bound_source_v6;
8847 		}
8848 		break;
8849 
8850 	case sizeof (sin6_t):
8851 		ASSERT(tcp->tcp_family == AF_INET6);
8852 		sin6 = (sin6_t *)cp;
8853 
8854 		*sin6 = sin6_null;
8855 		sin6->sin6_family = AF_INET6;
8856 		sin6->sin6_addr = tcp->tcp_bound_source_v6;
8857 		sin6->sin6_port = tcp->tcp_lport;
8858 		break;
8859 
8860 	case IP_ADDR_LEN:
8861 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
8862 		*(uint32_t *)cp = tcp->tcp_ipha->ipha_src;
8863 		break;
8864 
8865 	}
8866 	/* Add protocol number to end */
8867 	cp[addr_length] = (char)IPPROTO_TCP;
8868 	mp->b_wptr = (uchar_t *)&cp[addr_length + 1];
8869 	return (mp);
8870 }
8871 
8872 /*
8873  * Notify IP that we are having trouble with this connection.  IP should
8874  * blow the IRE away and start over.
8875  */
8876 static void
8877 tcp_ip_notify(tcp_t *tcp)
8878 {
8879 	struct iocblk	*iocp;
8880 	ipid_t	*ipid;
8881 	mblk_t	*mp;
8882 
8883 	/* IPv6 has NUD thus notification to delete the IRE is not needed */
8884 	if (tcp->tcp_ipversion == IPV6_VERSION)
8885 		return;
8886 
8887 	mp = mkiocb(IP_IOCTL);
8888 	if (mp == NULL)
8889 		return;
8890 
8891 	iocp = (struct iocblk *)mp->b_rptr;
8892 	iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst);
8893 
8894 	mp->b_cont = allocb(iocp->ioc_count, BPRI_HI);
8895 	if (!mp->b_cont) {
8896 		freeb(mp);
8897 		return;
8898 	}
8899 
8900 	ipid = (ipid_t *)mp->b_cont->b_rptr;
8901 	mp->b_cont->b_wptr += iocp->ioc_count;
8902 	bzero(ipid, sizeof (*ipid));
8903 	ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY;
8904 	ipid->ipid_ire_type = IRE_CACHE;
8905 	ipid->ipid_addr_offset = sizeof (ipid_t);
8906 	ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst);
8907 	/*
8908 	 * Note: in the case of source routing we want to blow away the
8909 	 * route to the first source route hop.
8910 	 */
8911 	bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1],
8912 	    sizeof (tcp->tcp_ipha->ipha_dst));
8913 
8914 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
8915 }
8916 
8917 /* Unlink and return any mblk that looks like it contains an ire */
8918 static mblk_t *
8919 tcp_ire_mp(mblk_t *mp)
8920 {
8921 	mblk_t	*prev_mp;
8922 
8923 	for (;;) {
8924 		prev_mp = mp;
8925 		mp = mp->b_cont;
8926 		if (mp == NULL)
8927 			break;
8928 		switch (DB_TYPE(mp)) {
8929 		case IRE_DB_TYPE:
8930 		case IRE_DB_REQ_TYPE:
8931 			if (prev_mp != NULL)
8932 				prev_mp->b_cont = mp->b_cont;
8933 			mp->b_cont = NULL;
8934 			return (mp);
8935 		default:
8936 			break;
8937 		}
8938 	}
8939 	return (mp);
8940 }
8941 
8942 /*
8943  * Timer callback routine for keepalive probe.  We do a fake resend of
8944  * last ACKed byte.  Then set a timer using RTO.  When the timer expires,
8945  * check to see if we have heard anything from the other end for the last
8946  * RTO period.  If we have, set the timer to expire for another
8947  * tcp_keepalive_intrvl and check again.  If we have not, set a timer using
8948  * RTO << 1 and check again when it expires.  Keep exponentially increasing
8949  * the timeout if we have not heard from the other side.  If for more than
8950  * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything,
8951  * kill the connection unless the keepalive abort threshold is 0.  In
8952  * that case, we will probe "forever."
8953  */
8954 static void
8955 tcp_keepalive_killer(void *arg)
8956 {
8957 	mblk_t	*mp;
8958 	conn_t	*connp = (conn_t *)arg;
8959 	tcp_t  	*tcp = connp->conn_tcp;
8960 	int32_t	firetime;
8961 	int32_t	idletime;
8962 	int32_t	ka_intrvl;
8963 
8964 	tcp->tcp_ka_tid = 0;
8965 
8966 	if (tcp->tcp_fused)
8967 		return;
8968 
8969 	BUMP_MIB(&tcp_mib, tcpTimKeepalive);
8970 	ka_intrvl = tcp->tcp_ka_interval;
8971 
8972 	/*
8973 	 * Keepalive probe should only be sent if the application has not
8974 	 * done a close on the connection.
8975 	 */
8976 	if (tcp->tcp_state > TCPS_CLOSE_WAIT) {
8977 		return;
8978 	}
8979 	/* Timer fired too early, restart it. */
8980 	if (tcp->tcp_state < TCPS_ESTABLISHED) {
8981 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
8982 		    MSEC_TO_TICK(ka_intrvl));
8983 		return;
8984 	}
8985 
8986 	idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time);
8987 	/*
8988 	 * If we have not heard from the other side for a long
8989 	 * time, kill the connection unless the keepalive abort
8990 	 * threshold is 0.  In that case, we will probe "forever."
8991 	 */
8992 	if (tcp->tcp_ka_abort_thres != 0 &&
8993 	    idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) {
8994 		BUMP_MIB(&tcp_mib, tcpTimKeepaliveDrop);
8995 		(void) tcp_clean_death(tcp, tcp->tcp_client_errno ?
8996 		    tcp->tcp_client_errno : ETIMEDOUT, 11);
8997 		return;
8998 	}
8999 
9000 	if (tcp->tcp_snxt == tcp->tcp_suna &&
9001 	    idletime >= ka_intrvl) {
9002 		/* Fake resend of last ACKed byte. */
9003 		mblk_t	*mp1 = allocb(1, BPRI_LO);
9004 
9005 		if (mp1 != NULL) {
9006 			*mp1->b_wptr++ = '\0';
9007 			mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL,
9008 			    tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE);
9009 			freeb(mp1);
9010 			/*
9011 			 * if allocation failed, fall through to start the
9012 			 * timer back.
9013 			 */
9014 			if (mp != NULL) {
9015 				TCP_RECORD_TRACE(tcp, mp,
9016 				    TCP_TRACE_SEND_PKT);
9017 				tcp_send_data(tcp, tcp->tcp_wq, mp);
9018 				BUMP_MIB(&tcp_mib, tcpTimKeepaliveProbe);
9019 				if (tcp->tcp_ka_last_intrvl != 0) {
9020 					/*
9021 					 * We should probe again at least
9022 					 * in ka_intrvl, but not more than
9023 					 * tcp_rexmit_interval_max.
9024 					 */
9025 					firetime = MIN(ka_intrvl - 1,
9026 					    tcp->tcp_ka_last_intrvl << 1);
9027 					if (firetime > tcp_rexmit_interval_max)
9028 						firetime =
9029 						    tcp_rexmit_interval_max;
9030 				} else {
9031 					firetime = tcp->tcp_rto;
9032 				}
9033 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
9034 				    tcp_keepalive_killer,
9035 				    MSEC_TO_TICK(firetime));
9036 				tcp->tcp_ka_last_intrvl = firetime;
9037 				return;
9038 			}
9039 		}
9040 	} else {
9041 		tcp->tcp_ka_last_intrvl = 0;
9042 	}
9043 
9044 	/* firetime can be negative if (mp1 == NULL || mp == NULL) */
9045 	if ((firetime = ka_intrvl - idletime) < 0) {
9046 		firetime = ka_intrvl;
9047 	}
9048 	tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9049 	    MSEC_TO_TICK(firetime));
9050 }
9051 
9052 int
9053 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
9054 {
9055 	queue_t	*q = tcp->tcp_rq;
9056 	int32_t	mss = tcp->tcp_mss;
9057 	int	maxpsz;
9058 
9059 	if (TCP_IS_DETACHED(tcp))
9060 		return (mss);
9061 
9062 	if (tcp->tcp_fused) {
9063 		maxpsz = tcp_fuse_maxpsz_set(tcp);
9064 		mss = INFPSZ;
9065 	} else if (tcp->tcp_mdt || tcp->tcp_maxpsz == 0) {
9066 		/*
9067 		 * Set the sd_qn_maxpsz according to the socket send buffer
9068 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
9069 		 * instruct the stream head to copyin user data into contiguous
9070 		 * kernel-allocated buffers without breaking it up into smaller
9071 		 * chunks.  We round up the buffer size to the nearest SMSS.
9072 		 */
9073 		maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss);
9074 		if (tcp->tcp_kssl_ctx == NULL)
9075 			mss = INFPSZ;
9076 		else
9077 			mss = SSL3_MAX_RECORD_LEN;
9078 	} else {
9079 		/*
9080 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
9081 		 * (and a multiple of the mss).  This instructs the stream
9082 		 * head to break down larger than SMSS writes into SMSS-
9083 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
9084 		 */
9085 		maxpsz = tcp->tcp_maxpsz * mss;
9086 		if (maxpsz > tcp->tcp_xmit_hiwater/2) {
9087 			maxpsz = tcp->tcp_xmit_hiwater/2;
9088 			/* Round up to nearest mss */
9089 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
9090 		}
9091 	}
9092 	(void) setmaxps(q, maxpsz);
9093 	tcp->tcp_wq->q_maxpsz = maxpsz;
9094 
9095 	if (set_maxblk)
9096 		(void) mi_set_sth_maxblk(q, mss);
9097 
9098 	return (mss);
9099 }
9100 
9101 /*
9102  * Extract option values from a tcp header.  We put any found values into the
9103  * tcpopt struct and return a bitmask saying which options were found.
9104  */
9105 static int
9106 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt)
9107 {
9108 	uchar_t		*endp;
9109 	int		len;
9110 	uint32_t	mss;
9111 	uchar_t		*up = (uchar_t *)tcph;
9112 	int		found = 0;
9113 	int32_t		sack_len;
9114 	tcp_seq		sack_begin, sack_end;
9115 	tcp_t		*tcp;
9116 
9117 	endp = up + TCP_HDR_LENGTH(tcph);
9118 	up += TCP_MIN_HEADER_LENGTH;
9119 	while (up < endp) {
9120 		len = endp - up;
9121 		switch (*up) {
9122 		case TCPOPT_EOL:
9123 			break;
9124 
9125 		case TCPOPT_NOP:
9126 			up++;
9127 			continue;
9128 
9129 		case TCPOPT_MAXSEG:
9130 			if (len < TCPOPT_MAXSEG_LEN ||
9131 			    up[1] != TCPOPT_MAXSEG_LEN)
9132 				break;
9133 
9134 			mss = BE16_TO_U16(up+2);
9135 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
9136 			tcpopt->tcp_opt_mss = mss;
9137 			found |= TCP_OPT_MSS_PRESENT;
9138 
9139 			up += TCPOPT_MAXSEG_LEN;
9140 			continue;
9141 
9142 		case TCPOPT_WSCALE:
9143 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
9144 				break;
9145 
9146 			if (up[2] > TCP_MAX_WINSHIFT)
9147 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
9148 			else
9149 				tcpopt->tcp_opt_wscale = up[2];
9150 			found |= TCP_OPT_WSCALE_PRESENT;
9151 
9152 			up += TCPOPT_WS_LEN;
9153 			continue;
9154 
9155 		case TCPOPT_SACK_PERMITTED:
9156 			if (len < TCPOPT_SACK_OK_LEN ||
9157 			    up[1] != TCPOPT_SACK_OK_LEN)
9158 				break;
9159 			found |= TCP_OPT_SACK_OK_PRESENT;
9160 			up += TCPOPT_SACK_OK_LEN;
9161 			continue;
9162 
9163 		case TCPOPT_SACK:
9164 			if (len <= 2 || up[1] <= 2 || len < up[1])
9165 				break;
9166 
9167 			/* If TCP is not interested in SACK blks... */
9168 			if ((tcp = tcpopt->tcp) == NULL) {
9169 				up += up[1];
9170 				continue;
9171 			}
9172 			sack_len = up[1] - TCPOPT_HEADER_LEN;
9173 			up += TCPOPT_HEADER_LEN;
9174 
9175 			/*
9176 			 * If the list is empty, allocate one and assume
9177 			 * nothing is sack'ed.
9178 			 */
9179 			ASSERT(tcp->tcp_sack_info != NULL);
9180 			if (tcp->tcp_notsack_list == NULL) {
9181 				tcp_notsack_update(&(tcp->tcp_notsack_list),
9182 				    tcp->tcp_suna, tcp->tcp_snxt,
9183 				    &(tcp->tcp_num_notsack_blk),
9184 				    &(tcp->tcp_cnt_notsack_list));
9185 
9186 				/*
9187 				 * Make sure tcp_notsack_list is not NULL.
9188 				 * This happens when kmem_alloc(KM_NOSLEEP)
9189 				 * returns NULL.
9190 				 */
9191 				if (tcp->tcp_notsack_list == NULL) {
9192 					up += sack_len;
9193 					continue;
9194 				}
9195 				tcp->tcp_fack = tcp->tcp_suna;
9196 			}
9197 
9198 			while (sack_len > 0) {
9199 				if (up + 8 > endp) {
9200 					up = endp;
9201 					break;
9202 				}
9203 				sack_begin = BE32_TO_U32(up);
9204 				up += 4;
9205 				sack_end = BE32_TO_U32(up);
9206 				up += 4;
9207 				sack_len -= 8;
9208 				/*
9209 				 * Bounds checking.  Make sure the SACK
9210 				 * info is within tcp_suna and tcp_snxt.
9211 				 * If this SACK blk is out of bound, ignore
9212 				 * it but continue to parse the following
9213 				 * blks.
9214 				 */
9215 				if (SEQ_LEQ(sack_end, sack_begin) ||
9216 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
9217 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
9218 					continue;
9219 				}
9220 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
9221 				    sack_begin, sack_end,
9222 				    &(tcp->tcp_num_notsack_blk),
9223 				    &(tcp->tcp_cnt_notsack_list));
9224 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
9225 					tcp->tcp_fack = sack_end;
9226 				}
9227 			}
9228 			found |= TCP_OPT_SACK_PRESENT;
9229 			continue;
9230 
9231 		case TCPOPT_TSTAMP:
9232 			if (len < TCPOPT_TSTAMP_LEN ||
9233 			    up[1] != TCPOPT_TSTAMP_LEN)
9234 				break;
9235 
9236 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
9237 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
9238 
9239 			found |= TCP_OPT_TSTAMP_PRESENT;
9240 
9241 			up += TCPOPT_TSTAMP_LEN;
9242 			continue;
9243 
9244 		default:
9245 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
9246 				break;
9247 			up += up[1];
9248 			continue;
9249 		}
9250 		break;
9251 	}
9252 	return (found);
9253 }
9254 
9255 /*
9256  * Set the mss associated with a particular tcp based on its current value,
9257  * and a new one passed in. Observe minimums and maximums, and reset
9258  * other state variables that we want to view as multiples of mss.
9259  *
9260  * This function is called in various places mainly because
9261  * 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the
9262  *    other side's SYN/SYN-ACK packet arrives.
9263  * 2) PMTUd may get us a new MSS.
9264  * 3) If the other side stops sending us timestamp option, we need to
9265  *    increase the MSS size to use the extra bytes available.
9266  */
9267 static void
9268 tcp_mss_set(tcp_t *tcp, uint32_t mss)
9269 {
9270 	uint32_t	mss_max;
9271 
9272 	if (tcp->tcp_ipversion == IPV4_VERSION)
9273 		mss_max = tcp_mss_max_ipv4;
9274 	else
9275 		mss_max = tcp_mss_max_ipv6;
9276 
9277 	if (mss < tcp_mss_min)
9278 		mss = tcp_mss_min;
9279 	if (mss > mss_max)
9280 		mss = mss_max;
9281 	/*
9282 	 * Unless naglim has been set by our client to
9283 	 * a non-mss value, force naglim to track mss.
9284 	 * This can help to aggregate small writes.
9285 	 */
9286 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
9287 		tcp->tcp_naglim = mss;
9288 	/*
9289 	 * TCP should be able to buffer at least 4 MSS data for obvious
9290 	 * performance reason.
9291 	 */
9292 	if ((mss << 2) > tcp->tcp_xmit_hiwater)
9293 		tcp->tcp_xmit_hiwater = mss << 2;
9294 
9295 	/*
9296 	 * Check if we need to apply the tcp_init_cwnd here.  If
9297 	 * it is set and the MSS gets bigger (should not happen
9298 	 * normally), we need to adjust the resulting tcp_cwnd properly.
9299 	 * The new tcp_cwnd should not get bigger.
9300 	 */
9301 	if (tcp->tcp_init_cwnd == 0) {
9302 		tcp->tcp_cwnd = MIN(tcp_slow_start_initial * mss,
9303 		    MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss)));
9304 	} else {
9305 		if (tcp->tcp_mss < mss) {
9306 			tcp->tcp_cwnd = MAX(1,
9307 			    (tcp->tcp_init_cwnd * tcp->tcp_mss / mss)) * mss;
9308 		} else {
9309 			tcp->tcp_cwnd = tcp->tcp_init_cwnd * mss;
9310 		}
9311 	}
9312 	tcp->tcp_mss = mss;
9313 	tcp->tcp_cwnd_cnt = 0;
9314 	(void) tcp_maxpsz_set(tcp, B_TRUE);
9315 }
9316 
9317 static int
9318 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9319 {
9320 	tcp_t		*tcp = NULL;
9321 	conn_t		*connp;
9322 	int		err;
9323 	dev_t		conn_dev;
9324 	zoneid_t	zoneid = getzoneid();
9325 
9326 	/*
9327 	 * Special case for install: miniroot needs to be able to access files
9328 	 * via NFS as though it were always in the global zone.
9329 	 */
9330 	if (credp == kcred && nfs_global_client_only != 0)
9331 		zoneid = GLOBAL_ZONEID;
9332 
9333 	if (q->q_ptr != NULL)
9334 		return (0);
9335 
9336 	if (sflag == MODOPEN) {
9337 		/*
9338 		 * This is a special case. The purpose of a modopen
9339 		 * is to allow just the T_SVR4_OPTMGMT_REQ to pass
9340 		 * through for MIB browsers. Everything else is failed.
9341 		 */
9342 		connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt));
9343 
9344 		if (connp == NULL)
9345 			return (ENOMEM);
9346 
9347 		connp->conn_flags |= IPCL_TCPMOD;
9348 		connp->conn_cred = credp;
9349 		connp->conn_zoneid = zoneid;
9350 		q->q_ptr = WR(q)->q_ptr = connp;
9351 		crhold(credp);
9352 		q->q_qinfo = &tcp_mod_rinit;
9353 		WR(q)->q_qinfo = &tcp_mod_winit;
9354 		qprocson(q);
9355 		return (0);
9356 	}
9357 
9358 	if ((conn_dev = inet_minor_alloc(ip_minor_arena)) == 0)
9359 		return (EBUSY);
9360 
9361 	*devp = makedevice(getemajor(*devp), (minor_t)conn_dev);
9362 
9363 	if (flag & SO_ACCEPTOR) {
9364 		q->q_qinfo = &tcp_acceptor_rinit;
9365 		q->q_ptr = (void *)conn_dev;
9366 		WR(q)->q_qinfo = &tcp_acceptor_winit;
9367 		WR(q)->q_ptr = (void *)conn_dev;
9368 		qprocson(q);
9369 		return (0);
9370 	}
9371 
9372 	connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt));
9373 	if (connp == NULL) {
9374 		inet_minor_free(ip_minor_arena, conn_dev);
9375 		q->q_ptr = NULL;
9376 		return (ENOSR);
9377 	}
9378 	connp->conn_sqp = IP_SQUEUE_GET(lbolt);
9379 	tcp = connp->conn_tcp;
9380 
9381 	q->q_ptr = WR(q)->q_ptr = connp;
9382 	if (getmajor(*devp) == TCP6_MAJ) {
9383 		connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6);
9384 		connp->conn_send = ip_output_v6;
9385 		connp->conn_af_isv6 = B_TRUE;
9386 		connp->conn_pkt_isv6 = B_TRUE;
9387 		connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT;
9388 		tcp->tcp_ipversion = IPV6_VERSION;
9389 		tcp->tcp_family = AF_INET6;
9390 		tcp->tcp_mss = tcp_mss_def_ipv6;
9391 	} else {
9392 		connp->conn_flags |= IPCL_TCP4;
9393 		connp->conn_send = ip_output;
9394 		connp->conn_af_isv6 = B_FALSE;
9395 		connp->conn_pkt_isv6 = B_FALSE;
9396 		tcp->tcp_ipversion = IPV4_VERSION;
9397 		tcp->tcp_family = AF_INET;
9398 		tcp->tcp_mss = tcp_mss_def_ipv4;
9399 	}
9400 
9401 	/*
9402 	 * TCP keeps a copy of cred for cache locality reasons but
9403 	 * we put a reference only once. If connp->conn_cred
9404 	 * becomes invalid, tcp_cred should also be set to NULL.
9405 	 */
9406 	tcp->tcp_cred = connp->conn_cred = credp;
9407 	crhold(connp->conn_cred);
9408 	tcp->tcp_cpid = curproc->p_pid;
9409 	connp->conn_zoneid = zoneid;
9410 	connp->conn_mlp_type = mlptSingle;
9411 	connp->conn_ulp_labeled = !is_system_labeled();
9412 
9413 	/*
9414 	 * If the caller has the process-wide flag set, then default to MAC
9415 	 * exempt mode.  This allows read-down to unlabeled hosts.
9416 	 */
9417 	if (getpflags(NET_MAC_AWARE, credp) != 0)
9418 		connp->conn_mac_exempt = B_TRUE;
9419 
9420 	connp->conn_dev = conn_dev;
9421 
9422 	ASSERT(q->q_qinfo == &tcp_rinit);
9423 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
9424 
9425 	if (flag & SO_SOCKSTR) {
9426 		/*
9427 		 * No need to insert a socket in tcp acceptor hash.
9428 		 * If it was a socket acceptor stream, we dealt with
9429 		 * it above. A socket listener can never accept a
9430 		 * connection and doesn't need acceptor_id.
9431 		 */
9432 		connp->conn_flags |= IPCL_SOCKET;
9433 		tcp->tcp_issocket = 1;
9434 		WR(q)->q_qinfo = &tcp_sock_winit;
9435 	} else {
9436 #ifdef	_ILP32
9437 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
9438 #else
9439 		tcp->tcp_acceptor_id = conn_dev;
9440 #endif	/* _ILP32 */
9441 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
9442 	}
9443 
9444 	if (tcp_trace)
9445 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP);
9446 
9447 	err = tcp_init(tcp, q);
9448 	if (err != 0) {
9449 		inet_minor_free(ip_minor_arena, connp->conn_dev);
9450 		tcp_acceptor_hash_remove(tcp);
9451 		CONN_DEC_REF(connp);
9452 		q->q_ptr = WR(q)->q_ptr = NULL;
9453 		return (err);
9454 	}
9455 
9456 	RD(q)->q_hiwat = tcp_recv_hiwat;
9457 	tcp->tcp_rwnd = tcp_recv_hiwat;
9458 
9459 	/* Non-zero default values */
9460 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
9461 	/*
9462 	 * Put the ref for TCP. Ref for IP was already put
9463 	 * by ipcl_conn_create. Also Make the conn_t globally
9464 	 * visible to walkers
9465 	 */
9466 	mutex_enter(&connp->conn_lock);
9467 	CONN_INC_REF_LOCKED(connp);
9468 	ASSERT(connp->conn_ref == 2);
9469 	connp->conn_state_flags &= ~CONN_INCIPIENT;
9470 	mutex_exit(&connp->conn_lock);
9471 
9472 	qprocson(q);
9473 	return (0);
9474 }
9475 
9476 /*
9477  * Some TCP options can be "set" by requesting them in the option
9478  * buffer. This is needed for XTI feature test though we do not
9479  * allow it in general. We interpret that this mechanism is more
9480  * applicable to OSI protocols and need not be allowed in general.
9481  * This routine filters out options for which it is not allowed (most)
9482  * and lets through those (few) for which it is. [ The XTI interface
9483  * test suite specifics will imply that any XTI_GENERIC level XTI_* if
9484  * ever implemented will have to be allowed here ].
9485  */
9486 static boolean_t
9487 tcp_allow_connopt_set(int level, int name)
9488 {
9489 
9490 	switch (level) {
9491 	case IPPROTO_TCP:
9492 		switch (name) {
9493 		case TCP_NODELAY:
9494 			return (B_TRUE);
9495 		default:
9496 			return (B_FALSE);
9497 		}
9498 		/*NOTREACHED*/
9499 	default:
9500 		return (B_FALSE);
9501 	}
9502 	/*NOTREACHED*/
9503 }
9504 
9505 /*
9506  * This routine gets default values of certain options whose default
9507  * values are maintained by protocol specific code
9508  */
9509 /* ARGSUSED */
9510 int
9511 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
9512 {
9513 	int32_t	*i1 = (int32_t *)ptr;
9514 
9515 	switch (level) {
9516 	case IPPROTO_TCP:
9517 		switch (name) {
9518 		case TCP_NOTIFY_THRESHOLD:
9519 			*i1 = tcp_ip_notify_interval;
9520 			break;
9521 		case TCP_ABORT_THRESHOLD:
9522 			*i1 = tcp_ip_abort_interval;
9523 			break;
9524 		case TCP_CONN_NOTIFY_THRESHOLD:
9525 			*i1 = tcp_ip_notify_cinterval;
9526 			break;
9527 		case TCP_CONN_ABORT_THRESHOLD:
9528 			*i1 = tcp_ip_abort_cinterval;
9529 			break;
9530 		default:
9531 			return (-1);
9532 		}
9533 		break;
9534 	case IPPROTO_IP:
9535 		switch (name) {
9536 		case IP_TTL:
9537 			*i1 = tcp_ipv4_ttl;
9538 			break;
9539 		default:
9540 			return (-1);
9541 		}
9542 		break;
9543 	case IPPROTO_IPV6:
9544 		switch (name) {
9545 		case IPV6_UNICAST_HOPS:
9546 			*i1 = tcp_ipv6_hoplimit;
9547 			break;
9548 		default:
9549 			return (-1);
9550 		}
9551 		break;
9552 	default:
9553 		return (-1);
9554 	}
9555 	return (sizeof (int));
9556 }
9557 
9558 
9559 /*
9560  * TCP routine to get the values of options.
9561  */
9562 int
9563 tcp_opt_get(queue_t *q, int level, int	name, uchar_t *ptr)
9564 {
9565 	int		*i1 = (int *)ptr;
9566 	conn_t		*connp = Q_TO_CONN(q);
9567 	tcp_t		*tcp = connp->conn_tcp;
9568 	ip6_pkt_t	*ipp = &tcp->tcp_sticky_ipp;
9569 
9570 	switch (level) {
9571 	case SOL_SOCKET:
9572 		switch (name) {
9573 		case SO_LINGER:	{
9574 			struct linger *lgr = (struct linger *)ptr;
9575 
9576 			lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0;
9577 			lgr->l_linger = tcp->tcp_lingertime;
9578 			}
9579 			return (sizeof (struct linger));
9580 		case SO_DEBUG:
9581 			*i1 = tcp->tcp_debug ? SO_DEBUG : 0;
9582 			break;
9583 		case SO_KEEPALIVE:
9584 			*i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0;
9585 			break;
9586 		case SO_DONTROUTE:
9587 			*i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0;
9588 			break;
9589 		case SO_USELOOPBACK:
9590 			*i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0;
9591 			break;
9592 		case SO_BROADCAST:
9593 			*i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0;
9594 			break;
9595 		case SO_REUSEADDR:
9596 			*i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0;
9597 			break;
9598 		case SO_OOBINLINE:
9599 			*i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0;
9600 			break;
9601 		case SO_DGRAM_ERRIND:
9602 			*i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0;
9603 			break;
9604 		case SO_TYPE:
9605 			*i1 = SOCK_STREAM;
9606 			break;
9607 		case SO_SNDBUF:
9608 			*i1 = tcp->tcp_xmit_hiwater;
9609 			break;
9610 		case SO_RCVBUF:
9611 			*i1 = RD(q)->q_hiwat;
9612 			break;
9613 		case SO_SND_COPYAVOID:
9614 			*i1 = tcp->tcp_snd_zcopy_on ?
9615 			    SO_SND_COPYAVOID : 0;
9616 			break;
9617 		case SO_ALLZONES:
9618 			*i1 = connp->conn_allzones ? 1 : 0;
9619 			break;
9620 		case SO_ANON_MLP:
9621 			*i1 = connp->conn_anon_mlp;
9622 			break;
9623 		case SO_MAC_EXEMPT:
9624 			*i1 = connp->conn_mac_exempt;
9625 			break;
9626 		case SO_EXCLBIND:
9627 			*i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0;
9628 			break;
9629 		default:
9630 			return (-1);
9631 		}
9632 		break;
9633 	case IPPROTO_TCP:
9634 		switch (name) {
9635 		case TCP_NODELAY:
9636 			*i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0;
9637 			break;
9638 		case TCP_MAXSEG:
9639 			*i1 = tcp->tcp_mss;
9640 			break;
9641 		case TCP_NOTIFY_THRESHOLD:
9642 			*i1 = (int)tcp->tcp_first_timer_threshold;
9643 			break;
9644 		case TCP_ABORT_THRESHOLD:
9645 			*i1 = tcp->tcp_second_timer_threshold;
9646 			break;
9647 		case TCP_CONN_NOTIFY_THRESHOLD:
9648 			*i1 = tcp->tcp_first_ctimer_threshold;
9649 			break;
9650 		case TCP_CONN_ABORT_THRESHOLD:
9651 			*i1 = tcp->tcp_second_ctimer_threshold;
9652 			break;
9653 		case TCP_RECVDSTADDR:
9654 			*i1 = tcp->tcp_recvdstaddr;
9655 			break;
9656 		case TCP_ANONPRIVBIND:
9657 			*i1 = tcp->tcp_anon_priv_bind;
9658 			break;
9659 		case TCP_EXCLBIND:
9660 			*i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0;
9661 			break;
9662 		case TCP_INIT_CWND:
9663 			*i1 = tcp->tcp_init_cwnd;
9664 			break;
9665 		case TCP_KEEPALIVE_THRESHOLD:
9666 			*i1 = tcp->tcp_ka_interval;
9667 			break;
9668 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
9669 			*i1 = tcp->tcp_ka_abort_thres;
9670 			break;
9671 		case TCP_CORK:
9672 			*i1 = tcp->tcp_cork;
9673 			break;
9674 		default:
9675 			return (-1);
9676 		}
9677 		break;
9678 	case IPPROTO_IP:
9679 		if (tcp->tcp_family != AF_INET)
9680 			return (-1);
9681 		switch (name) {
9682 		case IP_OPTIONS:
9683 		case T_IP_OPTIONS: {
9684 			/*
9685 			 * This is compatible with BSD in that in only return
9686 			 * the reverse source route with the final destination
9687 			 * as the last entry. The first 4 bytes of the option
9688 			 * will contain the final destination.
9689 			 */
9690 			int	opt_len;
9691 
9692 			opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha;
9693 			opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH;
9694 			ASSERT(opt_len >= 0);
9695 			/* Caller ensures enough space */
9696 			if (opt_len > 0) {
9697 				/*
9698 				 * TODO: Do we have to handle getsockopt on an
9699 				 * initiator as well?
9700 				 */
9701 				return (ip_opt_get_user(tcp->tcp_ipha, ptr));
9702 			}
9703 			return (0);
9704 			}
9705 		case IP_TOS:
9706 		case T_IP_TOS:
9707 			*i1 = (int)tcp->tcp_ipha->ipha_type_of_service;
9708 			break;
9709 		case IP_TTL:
9710 			*i1 = (int)tcp->tcp_ipha->ipha_ttl;
9711 			break;
9712 		case IP_NEXTHOP:
9713 			/* Handled at IP level */
9714 			return (-EINVAL);
9715 		default:
9716 			return (-1);
9717 		}
9718 		break;
9719 	case IPPROTO_IPV6:
9720 		/*
9721 		 * IPPROTO_IPV6 options are only supported for sockets
9722 		 * that are using IPv6 on the wire.
9723 		 */
9724 		if (tcp->tcp_ipversion != IPV6_VERSION) {
9725 			return (-1);
9726 		}
9727 		switch (name) {
9728 		case IPV6_UNICAST_HOPS:
9729 			*i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops;
9730 			break;	/* goto sizeof (int) option return */
9731 		case IPV6_BOUND_IF:
9732 			/* Zero if not set */
9733 			*i1 = tcp->tcp_bound_if;
9734 			break;	/* goto sizeof (int) option return */
9735 		case IPV6_RECVPKTINFO:
9736 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)
9737 				*i1 = 1;
9738 			else
9739 				*i1 = 0;
9740 			break;	/* goto sizeof (int) option return */
9741 		case IPV6_RECVTCLASS:
9742 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)
9743 				*i1 = 1;
9744 			else
9745 				*i1 = 0;
9746 			break;	/* goto sizeof (int) option return */
9747 		case IPV6_RECVHOPLIMIT:
9748 			if (tcp->tcp_ipv6_recvancillary &
9749 			    TCP_IPV6_RECVHOPLIMIT)
9750 				*i1 = 1;
9751 			else
9752 				*i1 = 0;
9753 			break;	/* goto sizeof (int) option return */
9754 		case IPV6_RECVHOPOPTS:
9755 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS)
9756 				*i1 = 1;
9757 			else
9758 				*i1 = 0;
9759 			break;	/* goto sizeof (int) option return */
9760 		case IPV6_RECVDSTOPTS:
9761 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS)
9762 				*i1 = 1;
9763 			else
9764 				*i1 = 0;
9765 			break;	/* goto sizeof (int) option return */
9766 		case _OLD_IPV6_RECVDSTOPTS:
9767 			if (tcp->tcp_ipv6_recvancillary &
9768 			    TCP_OLD_IPV6_RECVDSTOPTS)
9769 				*i1 = 1;
9770 			else
9771 				*i1 = 0;
9772 			break;	/* goto sizeof (int) option return */
9773 		case IPV6_RECVRTHDR:
9774 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR)
9775 				*i1 = 1;
9776 			else
9777 				*i1 = 0;
9778 			break;	/* goto sizeof (int) option return */
9779 		case IPV6_RECVRTHDRDSTOPTS:
9780 			if (tcp->tcp_ipv6_recvancillary &
9781 			    TCP_IPV6_RECVRTDSTOPTS)
9782 				*i1 = 1;
9783 			else
9784 				*i1 = 0;
9785 			break;	/* goto sizeof (int) option return */
9786 		case IPV6_PKTINFO: {
9787 			/* XXX assumes that caller has room for max size! */
9788 			struct in6_pktinfo *pkti;
9789 
9790 			pkti = (struct in6_pktinfo *)ptr;
9791 			if (ipp->ipp_fields & IPPF_IFINDEX)
9792 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
9793 			else
9794 				pkti->ipi6_ifindex = 0;
9795 			if (ipp->ipp_fields & IPPF_ADDR)
9796 				pkti->ipi6_addr = ipp->ipp_addr;
9797 			else
9798 				pkti->ipi6_addr = ipv6_all_zeros;
9799 			return (sizeof (struct in6_pktinfo));
9800 		}
9801 		case IPV6_TCLASS:
9802 			if (ipp->ipp_fields & IPPF_TCLASS)
9803 				*i1 = ipp->ipp_tclass;
9804 			else
9805 				*i1 = IPV6_FLOW_TCLASS(
9806 				    IPV6_DEFAULT_VERS_AND_FLOW);
9807 			break;	/* goto sizeof (int) option return */
9808 		case IPV6_NEXTHOP: {
9809 			sin6_t *sin6 = (sin6_t *)ptr;
9810 
9811 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
9812 				return (0);
9813 			*sin6 = sin6_null;
9814 			sin6->sin6_family = AF_INET6;
9815 			sin6->sin6_addr = ipp->ipp_nexthop;
9816 			return (sizeof (sin6_t));
9817 		}
9818 		case IPV6_HOPOPTS:
9819 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
9820 				return (0);
9821 			if (ipp->ipp_hopoptslen <= tcp->tcp_label_len)
9822 				return (0);
9823 			bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len,
9824 			    ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len);
9825 			if (tcp->tcp_label_len > 0) {
9826 				ptr[0] = ((char *)ipp->ipp_hopopts)[0];
9827 				ptr[1] = (ipp->ipp_hopoptslen -
9828 				    tcp->tcp_label_len + 7) / 8 - 1;
9829 			}
9830 			return (ipp->ipp_hopoptslen - tcp->tcp_label_len);
9831 		case IPV6_RTHDRDSTOPTS:
9832 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
9833 				return (0);
9834 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
9835 			return (ipp->ipp_rtdstoptslen);
9836 		case IPV6_RTHDR:
9837 			if (!(ipp->ipp_fields & IPPF_RTHDR))
9838 				return (0);
9839 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
9840 			return (ipp->ipp_rthdrlen);
9841 		case IPV6_DSTOPTS:
9842 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
9843 				return (0);
9844 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
9845 			return (ipp->ipp_dstoptslen);
9846 		case IPV6_SRC_PREFERENCES:
9847 			return (ip6_get_src_preferences(connp,
9848 			    (uint32_t *)ptr));
9849 		case IPV6_PATHMTU: {
9850 			struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr;
9851 
9852 			if (tcp->tcp_state < TCPS_ESTABLISHED)
9853 				return (-1);
9854 
9855 			return (ip_fill_mtuinfo(&connp->conn_remv6,
9856 				connp->conn_fport, mtuinfo));
9857 		}
9858 		default:
9859 			return (-1);
9860 		}
9861 		break;
9862 	default:
9863 		return (-1);
9864 	}
9865 	return (sizeof (int));
9866 }
9867 
9868 /*
9869  * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements.
9870  * Parameters are assumed to be verified by the caller.
9871  */
9872 /* ARGSUSED */
9873 int
9874 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name,
9875     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
9876     void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
9877 {
9878 	conn_t	*connp = Q_TO_CONN(q);
9879 	tcp_t	*tcp = connp->conn_tcp;
9880 	int	*i1 = (int *)invalp;
9881 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
9882 	boolean_t checkonly;
9883 	int	reterr;
9884 
9885 	switch (optset_context) {
9886 	case SETFN_OPTCOM_CHECKONLY:
9887 		checkonly = B_TRUE;
9888 		/*
9889 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
9890 		 * inlen != 0 implies value supplied and
9891 		 * 	we have to "pretend" to set it.
9892 		 * inlen == 0 implies that there is no
9893 		 * 	value part in T_CHECK request and just validation
9894 		 * done elsewhere should be enough, we just return here.
9895 		 */
9896 		if (inlen == 0) {
9897 			*outlenp = 0;
9898 			return (0);
9899 		}
9900 		break;
9901 	case SETFN_OPTCOM_NEGOTIATE:
9902 		checkonly = B_FALSE;
9903 		break;
9904 	case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */
9905 	case SETFN_CONN_NEGOTIATE:
9906 		checkonly = B_FALSE;
9907 		/*
9908 		 * Negotiating local and "association-related" options
9909 		 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ)
9910 		 * primitives is allowed by XTI, but we choose
9911 		 * to not implement this style negotiation for Internet
9912 		 * protocols (We interpret it is a must for OSI world but
9913 		 * optional for Internet protocols) for all options.
9914 		 * [ Will do only for the few options that enable test
9915 		 * suites that our XTI implementation of this feature
9916 		 * works for transports that do allow it ]
9917 		 */
9918 		if (!tcp_allow_connopt_set(level, name)) {
9919 			*outlenp = 0;
9920 			return (EINVAL);
9921 		}
9922 		break;
9923 	default:
9924 		/*
9925 		 * We should never get here
9926 		 */
9927 		*outlenp = 0;
9928 		return (EINVAL);
9929 	}
9930 
9931 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
9932 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
9933 
9934 	/*
9935 	 * For TCP, we should have no ancillary data sent down
9936 	 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs
9937 	 * has to be zero.
9938 	 */
9939 	ASSERT(thisdg_attrs == NULL);
9940 
9941 	/*
9942 	 * For fixed length options, no sanity check
9943 	 * of passed in length is done. It is assumed *_optcom_req()
9944 	 * routines do the right thing.
9945 	 */
9946 
9947 	switch (level) {
9948 	case SOL_SOCKET:
9949 		switch (name) {
9950 		case SO_LINGER: {
9951 			struct linger *lgr = (struct linger *)invalp;
9952 
9953 			if (!checkonly) {
9954 				if (lgr->l_onoff) {
9955 					tcp->tcp_linger = 1;
9956 					tcp->tcp_lingertime = lgr->l_linger;
9957 				} else {
9958 					tcp->tcp_linger = 0;
9959 					tcp->tcp_lingertime = 0;
9960 				}
9961 				/* struct copy */
9962 				*(struct linger *)outvalp = *lgr;
9963 			} else {
9964 				if (!lgr->l_onoff) {
9965 				    ((struct linger *)outvalp)->l_onoff = 0;
9966 				    ((struct linger *)outvalp)->l_linger = 0;
9967 				} else {
9968 				    /* struct copy */
9969 				    *(struct linger *)outvalp = *lgr;
9970 				}
9971 			}
9972 			*outlenp = sizeof (struct linger);
9973 			return (0);
9974 		}
9975 		case SO_DEBUG:
9976 			if (!checkonly)
9977 				tcp->tcp_debug = onoff;
9978 			break;
9979 		case SO_KEEPALIVE:
9980 			if (checkonly) {
9981 				/* T_CHECK case */
9982 				break;
9983 			}
9984 
9985 			if (!onoff) {
9986 				if (tcp->tcp_ka_enabled) {
9987 					if (tcp->tcp_ka_tid != 0) {
9988 						(void) TCP_TIMER_CANCEL(tcp,
9989 						    tcp->tcp_ka_tid);
9990 						tcp->tcp_ka_tid = 0;
9991 					}
9992 					tcp->tcp_ka_enabled = 0;
9993 				}
9994 				break;
9995 			}
9996 			if (!tcp->tcp_ka_enabled) {
9997 				/* Crank up the keepalive timer */
9998 				tcp->tcp_ka_last_intrvl = 0;
9999 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
10000 				    tcp_keepalive_killer,
10001 				    MSEC_TO_TICK(tcp->tcp_ka_interval));
10002 				tcp->tcp_ka_enabled = 1;
10003 			}
10004 			break;
10005 		case SO_DONTROUTE:
10006 			/*
10007 			 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are
10008 			 * only of interest to IP.  We track them here only so
10009 			 * that we can report their current value.
10010 			 */
10011 			if (!checkonly) {
10012 				tcp->tcp_dontroute = onoff;
10013 				tcp->tcp_connp->conn_dontroute = onoff;
10014 			}
10015 			break;
10016 		case SO_USELOOPBACK:
10017 			if (!checkonly) {
10018 				tcp->tcp_useloopback = onoff;
10019 				tcp->tcp_connp->conn_loopback = onoff;
10020 			}
10021 			break;
10022 		case SO_BROADCAST:
10023 			if (!checkonly) {
10024 				tcp->tcp_broadcast = onoff;
10025 				tcp->tcp_connp->conn_broadcast = onoff;
10026 			}
10027 			break;
10028 		case SO_REUSEADDR:
10029 			if (!checkonly) {
10030 				tcp->tcp_reuseaddr = onoff;
10031 				tcp->tcp_connp->conn_reuseaddr = onoff;
10032 			}
10033 			break;
10034 		case SO_OOBINLINE:
10035 			if (!checkonly)
10036 				tcp->tcp_oobinline = onoff;
10037 			break;
10038 		case SO_DGRAM_ERRIND:
10039 			if (!checkonly)
10040 				tcp->tcp_dgram_errind = onoff;
10041 			break;
10042 		case SO_SNDBUF: {
10043 			tcp_t *peer_tcp;
10044 
10045 			if (*i1 > tcp_max_buf) {
10046 				*outlenp = 0;
10047 				return (ENOBUFS);
10048 			}
10049 			if (checkonly)
10050 				break;
10051 
10052 			tcp->tcp_xmit_hiwater = *i1;
10053 			if (tcp_snd_lowat_fraction != 0)
10054 				tcp->tcp_xmit_lowater =
10055 				    tcp->tcp_xmit_hiwater /
10056 				    tcp_snd_lowat_fraction;
10057 			(void) tcp_maxpsz_set(tcp, B_TRUE);
10058 			/*
10059 			 * If we are flow-controlled, recheck the condition.
10060 			 * There are apps that increase SO_SNDBUF size when
10061 			 * flow-controlled (EWOULDBLOCK), and expect the flow
10062 			 * control condition to be lifted right away.
10063 			 *
10064 			 * For the fused tcp loopback case, in order to avoid
10065 			 * a race with the peer's tcp_fuse_rrw() we need to
10066 			 * hold its fuse_lock while accessing tcp_flow_stopped.
10067 			 */
10068 			peer_tcp = tcp->tcp_loopback_peer;
10069 			ASSERT(!tcp->tcp_fused || peer_tcp != NULL);
10070 			if (tcp->tcp_fused)
10071 				mutex_enter(&peer_tcp->tcp_fuse_lock);
10072 
10073 			if (tcp->tcp_flow_stopped &&
10074 			    TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) {
10075 				tcp_clrqfull(tcp);
10076 			}
10077 			if (tcp->tcp_fused)
10078 				mutex_exit(&peer_tcp->tcp_fuse_lock);
10079 			break;
10080 		}
10081 		case SO_RCVBUF:
10082 			if (*i1 > tcp_max_buf) {
10083 				*outlenp = 0;
10084 				return (ENOBUFS);
10085 			}
10086 			/* Silently ignore zero */
10087 			if (!checkonly && *i1 != 0) {
10088 				*i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss);
10089 				(void) tcp_rwnd_set(tcp, *i1);
10090 			}
10091 			/*
10092 			 * XXX should we return the rwnd here
10093 			 * and tcp_opt_get ?
10094 			 */
10095 			break;
10096 		case SO_SND_COPYAVOID:
10097 			if (!checkonly) {
10098 				/* we only allow enable at most once for now */
10099 				if (tcp->tcp_loopback ||
10100 				    (!tcp->tcp_snd_zcopy_aware &&
10101 				    (onoff != 1 || !tcp_zcopy_check(tcp)))) {
10102 					*outlenp = 0;
10103 					return (EOPNOTSUPP);
10104 				}
10105 				tcp->tcp_snd_zcopy_aware = 1;
10106 			}
10107 			break;
10108 		case SO_ALLZONES:
10109 			/* Handled at the IP level */
10110 			return (-EINVAL);
10111 		case SO_ANON_MLP:
10112 			if (!checkonly) {
10113 				mutex_enter(&connp->conn_lock);
10114 				connp->conn_anon_mlp = onoff;
10115 				mutex_exit(&connp->conn_lock);
10116 			}
10117 			break;
10118 		case SO_MAC_EXEMPT:
10119 			if (secpolicy_net_mac_aware(cr) != 0 ||
10120 			    IPCL_IS_BOUND(connp))
10121 				return (EACCES);
10122 			if (!checkonly) {
10123 				mutex_enter(&connp->conn_lock);
10124 				connp->conn_mac_exempt = onoff;
10125 				mutex_exit(&connp->conn_lock);
10126 			}
10127 			break;
10128 		case SO_EXCLBIND:
10129 			if (!checkonly)
10130 				tcp->tcp_exclbind = onoff;
10131 			break;
10132 		default:
10133 			*outlenp = 0;
10134 			return (EINVAL);
10135 		}
10136 		break;
10137 	case IPPROTO_TCP:
10138 		switch (name) {
10139 		case TCP_NODELAY:
10140 			if (!checkonly)
10141 				tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss;
10142 			break;
10143 		case TCP_NOTIFY_THRESHOLD:
10144 			if (!checkonly)
10145 				tcp->tcp_first_timer_threshold = *i1;
10146 			break;
10147 		case TCP_ABORT_THRESHOLD:
10148 			if (!checkonly)
10149 				tcp->tcp_second_timer_threshold = *i1;
10150 			break;
10151 		case TCP_CONN_NOTIFY_THRESHOLD:
10152 			if (!checkonly)
10153 				tcp->tcp_first_ctimer_threshold = *i1;
10154 			break;
10155 		case TCP_CONN_ABORT_THRESHOLD:
10156 			if (!checkonly)
10157 				tcp->tcp_second_ctimer_threshold = *i1;
10158 			break;
10159 		case TCP_RECVDSTADDR:
10160 			if (tcp->tcp_state > TCPS_LISTEN)
10161 				return (EOPNOTSUPP);
10162 			if (!checkonly)
10163 				tcp->tcp_recvdstaddr = onoff;
10164 			break;
10165 		case TCP_ANONPRIVBIND:
10166 			if ((reterr = secpolicy_net_privaddr(cr, 0)) != 0) {
10167 				*outlenp = 0;
10168 				return (reterr);
10169 			}
10170 			if (!checkonly) {
10171 				tcp->tcp_anon_priv_bind = onoff;
10172 			}
10173 			break;
10174 		case TCP_EXCLBIND:
10175 			if (!checkonly)
10176 				tcp->tcp_exclbind = onoff;
10177 			break;	/* goto sizeof (int) option return */
10178 		case TCP_INIT_CWND: {
10179 			uint32_t init_cwnd = *((uint32_t *)invalp);
10180 
10181 			if (checkonly)
10182 				break;
10183 
10184 			/*
10185 			 * Only allow socket with network configuration
10186 			 * privilege to set the initial cwnd to be larger
10187 			 * than allowed by RFC 3390.
10188 			 */
10189 			if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) {
10190 				tcp->tcp_init_cwnd = init_cwnd;
10191 				break;
10192 			}
10193 			if ((reterr = secpolicy_net_config(cr, B_TRUE)) != 0) {
10194 				*outlenp = 0;
10195 				return (reterr);
10196 			}
10197 			if (init_cwnd > TCP_MAX_INIT_CWND) {
10198 				*outlenp = 0;
10199 				return (EINVAL);
10200 			}
10201 			tcp->tcp_init_cwnd = init_cwnd;
10202 			break;
10203 		}
10204 		case TCP_KEEPALIVE_THRESHOLD:
10205 			if (checkonly)
10206 				break;
10207 
10208 			if (*i1 < tcp_keepalive_interval_low ||
10209 			    *i1 > tcp_keepalive_interval_high) {
10210 				*outlenp = 0;
10211 				return (EINVAL);
10212 			}
10213 			if (*i1 != tcp->tcp_ka_interval) {
10214 				tcp->tcp_ka_interval = *i1;
10215 				/*
10216 				 * Check if we need to restart the
10217 				 * keepalive timer.
10218 				 */
10219 				if (tcp->tcp_ka_tid != 0) {
10220 					ASSERT(tcp->tcp_ka_enabled);
10221 					(void) TCP_TIMER_CANCEL(tcp,
10222 					    tcp->tcp_ka_tid);
10223 					tcp->tcp_ka_last_intrvl = 0;
10224 					tcp->tcp_ka_tid = TCP_TIMER(tcp,
10225 					    tcp_keepalive_killer,
10226 					    MSEC_TO_TICK(tcp->tcp_ka_interval));
10227 				}
10228 			}
10229 			break;
10230 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10231 			if (!checkonly) {
10232 				if (*i1 < tcp_keepalive_abort_interval_low ||
10233 				    *i1 > tcp_keepalive_abort_interval_high) {
10234 					*outlenp = 0;
10235 					return (EINVAL);
10236 				}
10237 				tcp->tcp_ka_abort_thres = *i1;
10238 			}
10239 			break;
10240 		case TCP_CORK:
10241 			if (!checkonly) {
10242 				/*
10243 				 * if tcp->tcp_cork was set and is now
10244 				 * being unset, we have to make sure that
10245 				 * the remaining data gets sent out. Also
10246 				 * unset tcp->tcp_cork so that tcp_wput_data()
10247 				 * can send data even if it is less than mss
10248 				 */
10249 				if (tcp->tcp_cork && onoff == 0 &&
10250 				    tcp->tcp_unsent > 0) {
10251 					tcp->tcp_cork = B_FALSE;
10252 					tcp_wput_data(tcp, NULL, B_FALSE);
10253 				}
10254 				tcp->tcp_cork = onoff;
10255 			}
10256 			break;
10257 		default:
10258 			*outlenp = 0;
10259 			return (EINVAL);
10260 		}
10261 		break;
10262 	case IPPROTO_IP:
10263 		if (tcp->tcp_family != AF_INET) {
10264 			*outlenp = 0;
10265 			return (ENOPROTOOPT);
10266 		}
10267 		switch (name) {
10268 		case IP_OPTIONS:
10269 		case T_IP_OPTIONS:
10270 			reterr = tcp_opt_set_header(tcp, checkonly,
10271 			    invalp, inlen);
10272 			if (reterr) {
10273 				*outlenp = 0;
10274 				return (reterr);
10275 			}
10276 			/* OK return - copy input buffer into output buffer */
10277 			if (invalp != outvalp) {
10278 				/* don't trust bcopy for identical src/dst */
10279 				bcopy(invalp, outvalp, inlen);
10280 			}
10281 			*outlenp = inlen;
10282 			return (0);
10283 		case IP_TOS:
10284 		case T_IP_TOS:
10285 			if (!checkonly) {
10286 				tcp->tcp_ipha->ipha_type_of_service =
10287 				    (uchar_t)*i1;
10288 				tcp->tcp_tos = (uchar_t)*i1;
10289 			}
10290 			break;
10291 		case IP_TTL:
10292 			if (!checkonly) {
10293 				tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1;
10294 				tcp->tcp_ttl = (uchar_t)*i1;
10295 			}
10296 			break;
10297 		case IP_BOUND_IF:
10298 		case IP_NEXTHOP:
10299 			/* Handled at the IP level */
10300 			return (-EINVAL);
10301 		case IP_SEC_OPT:
10302 			/*
10303 			 * We should not allow policy setting after
10304 			 * we start listening for connections.
10305 			 */
10306 			if (tcp->tcp_state == TCPS_LISTEN) {
10307 				return (EINVAL);
10308 			} else {
10309 				/* Handled at the IP level */
10310 				return (-EINVAL);
10311 			}
10312 		default:
10313 			*outlenp = 0;
10314 			return (EINVAL);
10315 		}
10316 		break;
10317 	case IPPROTO_IPV6: {
10318 		ip6_pkt_t		*ipp;
10319 
10320 		/*
10321 		 * IPPROTO_IPV6 options are only supported for sockets
10322 		 * that are using IPv6 on the wire.
10323 		 */
10324 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10325 			*outlenp = 0;
10326 			return (ENOPROTOOPT);
10327 		}
10328 		/*
10329 		 * Only sticky options; no ancillary data
10330 		 */
10331 		ASSERT(thisdg_attrs == NULL);
10332 		ipp = &tcp->tcp_sticky_ipp;
10333 
10334 		switch (name) {
10335 		case IPV6_UNICAST_HOPS:
10336 			/* -1 means use default */
10337 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
10338 				*outlenp = 0;
10339 				return (EINVAL);
10340 			}
10341 			if (!checkonly) {
10342 				if (*i1 == -1) {
10343 					tcp->tcp_ip6h->ip6_hops =
10344 					    ipp->ipp_unicast_hops =
10345 					    (uint8_t)tcp_ipv6_hoplimit;
10346 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
10347 					/* Pass modified value to IP. */
10348 					*i1 = tcp->tcp_ip6h->ip6_hops;
10349 				} else {
10350 					tcp->tcp_ip6h->ip6_hops =
10351 					    ipp->ipp_unicast_hops =
10352 					    (uint8_t)*i1;
10353 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
10354 				}
10355 				reterr = tcp_build_hdrs(q, tcp);
10356 				if (reterr != 0)
10357 					return (reterr);
10358 			}
10359 			break;
10360 		case IPV6_BOUND_IF:
10361 			if (!checkonly) {
10362 				int error = 0;
10363 
10364 				tcp->tcp_bound_if = *i1;
10365 				error = ip_opt_set_ill(tcp->tcp_connp, *i1,
10366 				    B_TRUE, checkonly, level, name, mblk);
10367 				if (error != 0) {
10368 					*outlenp = 0;
10369 					return (error);
10370 				}
10371 			}
10372 			break;
10373 		/*
10374 		 * Set boolean switches for ancillary data delivery
10375 		 */
10376 		case IPV6_RECVPKTINFO:
10377 			if (!checkonly) {
10378 				if (onoff)
10379 					tcp->tcp_ipv6_recvancillary |=
10380 					    TCP_IPV6_RECVPKTINFO;
10381 				else
10382 					tcp->tcp_ipv6_recvancillary &=
10383 					    ~TCP_IPV6_RECVPKTINFO;
10384 				/* Force it to be sent up with the next msg */
10385 				tcp->tcp_recvifindex = 0;
10386 			}
10387 			break;
10388 		case IPV6_RECVTCLASS:
10389 			if (!checkonly) {
10390 				if (onoff)
10391 					tcp->tcp_ipv6_recvancillary |=
10392 					    TCP_IPV6_RECVTCLASS;
10393 				else
10394 					tcp->tcp_ipv6_recvancillary &=
10395 					    ~TCP_IPV6_RECVTCLASS;
10396 			}
10397 			break;
10398 		case IPV6_RECVHOPLIMIT:
10399 			if (!checkonly) {
10400 				if (onoff)
10401 					tcp->tcp_ipv6_recvancillary |=
10402 					    TCP_IPV6_RECVHOPLIMIT;
10403 				else
10404 					tcp->tcp_ipv6_recvancillary &=
10405 					    ~TCP_IPV6_RECVHOPLIMIT;
10406 				/* Force it to be sent up with the next msg */
10407 				tcp->tcp_recvhops = 0xffffffffU;
10408 			}
10409 			break;
10410 		case IPV6_RECVHOPOPTS:
10411 			if (!checkonly) {
10412 				if (onoff)
10413 					tcp->tcp_ipv6_recvancillary |=
10414 					    TCP_IPV6_RECVHOPOPTS;
10415 				else
10416 					tcp->tcp_ipv6_recvancillary &=
10417 					    ~TCP_IPV6_RECVHOPOPTS;
10418 			}
10419 			break;
10420 		case IPV6_RECVDSTOPTS:
10421 			if (!checkonly) {
10422 				if (onoff)
10423 					tcp->tcp_ipv6_recvancillary |=
10424 					    TCP_IPV6_RECVDSTOPTS;
10425 				else
10426 					tcp->tcp_ipv6_recvancillary &=
10427 					    ~TCP_IPV6_RECVDSTOPTS;
10428 			}
10429 			break;
10430 		case _OLD_IPV6_RECVDSTOPTS:
10431 			if (!checkonly) {
10432 				if (onoff)
10433 					tcp->tcp_ipv6_recvancillary |=
10434 					    TCP_OLD_IPV6_RECVDSTOPTS;
10435 				else
10436 					tcp->tcp_ipv6_recvancillary &=
10437 					    ~TCP_OLD_IPV6_RECVDSTOPTS;
10438 			}
10439 			break;
10440 		case IPV6_RECVRTHDR:
10441 			if (!checkonly) {
10442 				if (onoff)
10443 					tcp->tcp_ipv6_recvancillary |=
10444 					    TCP_IPV6_RECVRTHDR;
10445 				else
10446 					tcp->tcp_ipv6_recvancillary &=
10447 					    ~TCP_IPV6_RECVRTHDR;
10448 			}
10449 			break;
10450 		case IPV6_RECVRTHDRDSTOPTS:
10451 			if (!checkonly) {
10452 				if (onoff)
10453 					tcp->tcp_ipv6_recvancillary |=
10454 					    TCP_IPV6_RECVRTDSTOPTS;
10455 				else
10456 					tcp->tcp_ipv6_recvancillary &=
10457 					    ~TCP_IPV6_RECVRTDSTOPTS;
10458 			}
10459 			break;
10460 		case IPV6_PKTINFO:
10461 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
10462 				return (EINVAL);
10463 			if (checkonly)
10464 				break;
10465 
10466 			if (inlen == 0) {
10467 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
10468 			} else {
10469 				struct in6_pktinfo *pkti;
10470 
10471 				pkti = (struct in6_pktinfo *)invalp;
10472 				/*
10473 				 * RFC 3542 states that ipi6_addr must be
10474 				 * the unspecified address when setting the
10475 				 * IPV6_PKTINFO sticky socket option on a
10476 				 * TCP socket.
10477 				 */
10478 				if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr))
10479 					return (EINVAL);
10480 				/*
10481 				 * ip6_set_pktinfo() validates the source
10482 				 * address and interface index.
10483 				 */
10484 				reterr = ip6_set_pktinfo(cr, tcp->tcp_connp,
10485 				    pkti, mblk);
10486 				if (reterr != 0)
10487 					return (reterr);
10488 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
10489 				ipp->ipp_addr = pkti->ipi6_addr;
10490 				if (ipp->ipp_ifindex != 0)
10491 					ipp->ipp_fields |= IPPF_IFINDEX;
10492 				else
10493 					ipp->ipp_fields &= ~IPPF_IFINDEX;
10494 				if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr))
10495 					ipp->ipp_fields |= IPPF_ADDR;
10496 				else
10497 					ipp->ipp_fields &= ~IPPF_ADDR;
10498 			}
10499 			reterr = tcp_build_hdrs(q, tcp);
10500 			if (reterr != 0)
10501 				return (reterr);
10502 			break;
10503 		case IPV6_TCLASS:
10504 			if (inlen != 0 && inlen != sizeof (int))
10505 				return (EINVAL);
10506 			if (checkonly)
10507 				break;
10508 
10509 			if (inlen == 0) {
10510 				ipp->ipp_fields &= ~IPPF_TCLASS;
10511 			} else {
10512 				if (*i1 > 255 || *i1 < -1)
10513 					return (EINVAL);
10514 				if (*i1 == -1) {
10515 					ipp->ipp_tclass = 0;
10516 					*i1 = 0;
10517 				} else {
10518 					ipp->ipp_tclass = *i1;
10519 				}
10520 				ipp->ipp_fields |= IPPF_TCLASS;
10521 			}
10522 			reterr = tcp_build_hdrs(q, tcp);
10523 			if (reterr != 0)
10524 				return (reterr);
10525 			break;
10526 		case IPV6_NEXTHOP:
10527 			/*
10528 			 * IP will verify that the nexthop is reachable
10529 			 * and fail for sticky options.
10530 			 */
10531 			if (inlen != 0 && inlen != sizeof (sin6_t))
10532 				return (EINVAL);
10533 			if (checkonly)
10534 				break;
10535 
10536 			if (inlen == 0) {
10537 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
10538 			} else {
10539 				sin6_t *sin6 = (sin6_t *)invalp;
10540 
10541 				if (sin6->sin6_family != AF_INET6)
10542 					return (EAFNOSUPPORT);
10543 				if (IN6_IS_ADDR_V4MAPPED(
10544 				    &sin6->sin6_addr))
10545 					return (EADDRNOTAVAIL);
10546 				ipp->ipp_nexthop = sin6->sin6_addr;
10547 				if (!IN6_IS_ADDR_UNSPECIFIED(
10548 				    &ipp->ipp_nexthop))
10549 					ipp->ipp_fields |= IPPF_NEXTHOP;
10550 				else
10551 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
10552 			}
10553 			reterr = tcp_build_hdrs(q, tcp);
10554 			if (reterr != 0)
10555 				return (reterr);
10556 			break;
10557 		case IPV6_HOPOPTS: {
10558 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
10559 
10560 			/*
10561 			 * Sanity checks - minimum size, size a multiple of
10562 			 * eight bytes, and matching size passed in.
10563 			 */
10564 			if (inlen != 0 &&
10565 			    inlen != (8 * (hopts->ip6h_len + 1)))
10566 				return (EINVAL);
10567 
10568 			if (checkonly)
10569 				break;
10570 
10571 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10572 			    (uchar_t **)&ipp->ipp_hopopts,
10573 			    &ipp->ipp_hopoptslen, tcp->tcp_label_len);
10574 			if (reterr != 0)
10575 				return (reterr);
10576 			if (ipp->ipp_hopoptslen == 0)
10577 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
10578 			else
10579 				ipp->ipp_fields |= IPPF_HOPOPTS;
10580 			reterr = tcp_build_hdrs(q, tcp);
10581 			if (reterr != 0)
10582 				return (reterr);
10583 			break;
10584 		}
10585 		case IPV6_RTHDRDSTOPTS: {
10586 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10587 
10588 			/*
10589 			 * Sanity checks - minimum size, size a multiple of
10590 			 * eight bytes, and matching size passed in.
10591 			 */
10592 			if (inlen != 0 &&
10593 			    inlen != (8 * (dopts->ip6d_len + 1)))
10594 				return (EINVAL);
10595 
10596 			if (checkonly)
10597 				break;
10598 
10599 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10600 			    (uchar_t **)&ipp->ipp_rtdstopts,
10601 			    &ipp->ipp_rtdstoptslen, 0);
10602 			if (reterr != 0)
10603 				return (reterr);
10604 			if (ipp->ipp_rtdstoptslen == 0)
10605 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
10606 			else
10607 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
10608 			reterr = tcp_build_hdrs(q, tcp);
10609 			if (reterr != 0)
10610 				return (reterr);
10611 			break;
10612 		}
10613 		case IPV6_DSTOPTS: {
10614 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10615 
10616 			/*
10617 			 * Sanity checks - minimum size, size a multiple of
10618 			 * eight bytes, and matching size passed in.
10619 			 */
10620 			if (inlen != 0 &&
10621 			    inlen != (8 * (dopts->ip6d_len + 1)))
10622 				return (EINVAL);
10623 
10624 			if (checkonly)
10625 				break;
10626 
10627 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10628 			    (uchar_t **)&ipp->ipp_dstopts,
10629 			    &ipp->ipp_dstoptslen, 0);
10630 			if (reterr != 0)
10631 				return (reterr);
10632 			if (ipp->ipp_dstoptslen == 0)
10633 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
10634 			else
10635 				ipp->ipp_fields |= IPPF_DSTOPTS;
10636 			reterr = tcp_build_hdrs(q, tcp);
10637 			if (reterr != 0)
10638 				return (reterr);
10639 			break;
10640 		}
10641 		case IPV6_RTHDR: {
10642 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
10643 
10644 			/*
10645 			 * Sanity checks - minimum size, size a multiple of
10646 			 * eight bytes, and matching size passed in.
10647 			 */
10648 			if (inlen != 0 &&
10649 			    inlen != (8 * (rt->ip6r_len + 1)))
10650 				return (EINVAL);
10651 
10652 			if (checkonly)
10653 				break;
10654 
10655 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10656 			    (uchar_t **)&ipp->ipp_rthdr,
10657 			    &ipp->ipp_rthdrlen, 0);
10658 			if (reterr != 0)
10659 				return (reterr);
10660 			if (ipp->ipp_rthdrlen == 0)
10661 				ipp->ipp_fields &= ~IPPF_RTHDR;
10662 			else
10663 				ipp->ipp_fields |= IPPF_RTHDR;
10664 			reterr = tcp_build_hdrs(q, tcp);
10665 			if (reterr != 0)
10666 				return (reterr);
10667 			break;
10668 		}
10669 		case IPV6_V6ONLY:
10670 			if (!checkonly)
10671 				tcp->tcp_connp->conn_ipv6_v6only = onoff;
10672 			break;
10673 		case IPV6_USE_MIN_MTU:
10674 			if (inlen != sizeof (int))
10675 				return (EINVAL);
10676 
10677 			if (*i1 < -1 || *i1 > 1)
10678 				return (EINVAL);
10679 
10680 			if (checkonly)
10681 				break;
10682 
10683 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
10684 			ipp->ipp_use_min_mtu = *i1;
10685 			break;
10686 		case IPV6_BOUND_PIF:
10687 			/* Handled at the IP level */
10688 			return (-EINVAL);
10689 		case IPV6_SEC_OPT:
10690 			/*
10691 			 * We should not allow policy setting after
10692 			 * we start listening for connections.
10693 			 */
10694 			if (tcp->tcp_state == TCPS_LISTEN) {
10695 				return (EINVAL);
10696 			} else {
10697 				/* Handled at the IP level */
10698 				return (-EINVAL);
10699 			}
10700 		case IPV6_SRC_PREFERENCES:
10701 			if (inlen != sizeof (uint32_t))
10702 				return (EINVAL);
10703 			reterr = ip6_set_src_preferences(tcp->tcp_connp,
10704 			    *(uint32_t *)invalp);
10705 			if (reterr != 0) {
10706 				*outlenp = 0;
10707 				return (reterr);
10708 			}
10709 			break;
10710 		default:
10711 			*outlenp = 0;
10712 			return (EINVAL);
10713 		}
10714 		break;
10715 	}		/* end IPPROTO_IPV6 */
10716 	default:
10717 		*outlenp = 0;
10718 		return (EINVAL);
10719 	}
10720 	/*
10721 	 * Common case of OK return with outval same as inval
10722 	 */
10723 	if (invalp != outvalp) {
10724 		/* don't trust bcopy for identical src/dst */
10725 		(void) bcopy(invalp, outvalp, inlen);
10726 	}
10727 	*outlenp = inlen;
10728 	return (0);
10729 }
10730 
10731 /*
10732  * Update tcp_sticky_hdrs based on tcp_sticky_ipp.
10733  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
10734  * headers, and the maximum size tcp header (to avoid reallocation
10735  * on the fly for additional tcp options).
10736  * Returns failure if can't allocate memory.
10737  */
10738 static int
10739 tcp_build_hdrs(queue_t *q, tcp_t *tcp)
10740 {
10741 	char	*hdrs;
10742 	uint_t	hdrs_len;
10743 	ip6i_t	*ip6i;
10744 	char	buf[TCP_MAX_HDR_LENGTH];
10745 	ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
10746 	in6_addr_t src, dst;
10747 
10748 	/*
10749 	 * save the existing tcp header and source/dest IP addresses
10750 	 */
10751 	bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len);
10752 	src = tcp->tcp_ip6h->ip6_src;
10753 	dst = tcp->tcp_ip6h->ip6_dst;
10754 	hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH;
10755 	ASSERT(hdrs_len != 0);
10756 	if (hdrs_len > tcp->tcp_iphc_len) {
10757 		/* Need to reallocate */
10758 		hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP);
10759 		if (hdrs == NULL)
10760 			return (ENOMEM);
10761 		if (tcp->tcp_iphc != NULL) {
10762 			if (tcp->tcp_hdr_grown) {
10763 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
10764 			} else {
10765 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
10766 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
10767 			}
10768 			tcp->tcp_iphc_len = 0;
10769 		}
10770 		ASSERT(tcp->tcp_iphc_len == 0);
10771 		tcp->tcp_iphc = hdrs;
10772 		tcp->tcp_iphc_len = hdrs_len;
10773 		tcp->tcp_hdr_grown = B_TRUE;
10774 	}
10775 	ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc,
10776 	    hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP);
10777 
10778 	/* Set header fields not in ipp */
10779 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
10780 		ip6i = (ip6i_t *)tcp->tcp_iphc;
10781 		tcp->tcp_ip6h = (ip6_t *)&ip6i[1];
10782 	} else {
10783 		tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
10784 	}
10785 	/*
10786 	 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one.
10787 	 *
10788 	 * tcp->tcp_tcp_hdr_len doesn't change here.
10789 	 */
10790 	tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH;
10791 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len);
10792 	tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len;
10793 
10794 	bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len);
10795 
10796 	tcp->tcp_ip6h->ip6_src = src;
10797 	tcp->tcp_ip6h->ip6_dst = dst;
10798 
10799 	/*
10800 	 * If the hop limit was not set by ip_build_hdrs_v6(), set it to
10801 	 * the default value for TCP.
10802 	 */
10803 	if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS))
10804 		tcp->tcp_ip6h->ip6_hops = tcp_ipv6_hoplimit;
10805 
10806 	/*
10807 	 * If we're setting extension headers after a connection
10808 	 * has been established, and if we have a routing header
10809 	 * among the extension headers, call ip_massage_options_v6 to
10810 	 * manipulate the routing header/ip6_dst set the checksum
10811 	 * difference in the tcp header template.
10812 	 * (This happens in tcp_connect_ipv6 if the routing header
10813 	 * is set prior to the connect.)
10814 	 * Set the tcp_sum to zero first in case we've cleared a
10815 	 * routing header or don't have one at all.
10816 	 */
10817 	tcp->tcp_sum = 0;
10818 	if ((tcp->tcp_state >= TCPS_SYN_SENT) &&
10819 	    (tcp->tcp_ipp_fields & IPPF_RTHDR)) {
10820 		ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h,
10821 		    (uint8_t *)tcp->tcp_tcph);
10822 		if (rth != NULL) {
10823 			tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h,
10824 			    rth);
10825 			tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
10826 			    (tcp->tcp_sum >> 16));
10827 		}
10828 	}
10829 
10830 	/* Try to get everything in a single mblk */
10831 	(void) mi_set_sth_wroff(RD(q), hdrs_len + tcp_wroff_xtra);
10832 	return (0);
10833 }
10834 
10835 /*
10836  * Transfer any source route option from ipha to buf/dst in reversed form.
10837  */
10838 static int
10839 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst)
10840 {
10841 	ipoptp_t	opts;
10842 	uchar_t		*opt;
10843 	uint8_t		optval;
10844 	uint8_t		optlen;
10845 	uint32_t	len = 0;
10846 
10847 	for (optval = ipoptp_first(&opts, ipha);
10848 	    optval != IPOPT_EOL;
10849 	    optval = ipoptp_next(&opts)) {
10850 		opt = opts.ipoptp_cur;
10851 		optlen = opts.ipoptp_len;
10852 		switch (optval) {
10853 			int	off1, off2;
10854 		case IPOPT_SSRR:
10855 		case IPOPT_LSRR:
10856 
10857 			/* Reverse source route */
10858 			/*
10859 			 * First entry should be the next to last one in the
10860 			 * current source route (the last entry is our
10861 			 * address.)
10862 			 * The last entry should be the final destination.
10863 			 */
10864 			buf[IPOPT_OPTVAL] = (uint8_t)optval;
10865 			buf[IPOPT_OLEN] = (uint8_t)optlen;
10866 			off1 = IPOPT_MINOFF_SR - 1;
10867 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
10868 			if (off2 < 0) {
10869 				/* No entries in source route */
10870 				break;
10871 			}
10872 			bcopy(opt + off2, dst, IP_ADDR_LEN);
10873 			/*
10874 			 * Note: use src since ipha has not had its src
10875 			 * and dst reversed (it is in the state it was
10876 			 * received.
10877 			 */
10878 			bcopy(&ipha->ipha_src, buf + off2,
10879 			    IP_ADDR_LEN);
10880 			off2 -= IP_ADDR_LEN;
10881 
10882 			while (off2 > 0) {
10883 				bcopy(opt + off2, buf + off1,
10884 				    IP_ADDR_LEN);
10885 				off1 += IP_ADDR_LEN;
10886 				off2 -= IP_ADDR_LEN;
10887 			}
10888 			buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
10889 			buf += optlen;
10890 			len += optlen;
10891 			break;
10892 		}
10893 	}
10894 done:
10895 	/* Pad the resulting options */
10896 	while (len & 0x3) {
10897 		*buf++ = IPOPT_EOL;
10898 		len++;
10899 	}
10900 	return (len);
10901 }
10902 
10903 
10904 /*
10905  * Extract and revert a source route from ipha (if any)
10906  * and then update the relevant fields in both tcp_t and the standard header.
10907  */
10908 static void
10909 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha)
10910 {
10911 	char	buf[TCP_MAX_HDR_LENGTH];
10912 	uint_t	tcph_len;
10913 	int	len;
10914 
10915 	ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
10916 	len = IPH_HDR_LENGTH(ipha);
10917 	if (len == IP_SIMPLE_HDR_LENGTH)
10918 		/* Nothing to do */
10919 		return;
10920 	if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH ||
10921 	    (len & 0x3))
10922 		return;
10923 
10924 	tcph_len = tcp->tcp_tcp_hdr_len;
10925 	bcopy(tcp->tcp_tcph, buf, tcph_len);
10926 	tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) +
10927 		(tcp->tcp_ipha->ipha_dst & 0xffff);
10928 	len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha +
10929 	    IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst);
10930 	len += IP_SIMPLE_HDR_LENGTH;
10931 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
10932 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
10933 	if ((int)tcp->tcp_sum < 0)
10934 		tcp->tcp_sum--;
10935 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
10936 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16));
10937 	tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len);
10938 	bcopy(buf, tcp->tcp_tcph, tcph_len);
10939 	tcp->tcp_ip_hdr_len = len;
10940 	tcp->tcp_ipha->ipha_version_and_hdr_length =
10941 	    (IP_VERSION << 4) | (len >> 2);
10942 	len += tcph_len;
10943 	tcp->tcp_hdr_len = len;
10944 }
10945 
10946 /*
10947  * Copy the standard header into its new location,
10948  * lay in the new options and then update the relevant
10949  * fields in both tcp_t and the standard header.
10950  */
10951 static int
10952 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len)
10953 {
10954 	uint_t	tcph_len;
10955 	uint8_t	*ip_optp;
10956 	tcph_t	*new_tcph;
10957 
10958 	if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3))
10959 		return (EINVAL);
10960 
10961 	if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len)
10962 		return (EINVAL);
10963 
10964 	if (checkonly) {
10965 		/*
10966 		 * do not really set, just pretend to - T_CHECK
10967 		 */
10968 		return (0);
10969 	}
10970 
10971 	ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH;
10972 	if (tcp->tcp_label_len > 0) {
10973 		int padlen;
10974 		uint8_t opt;
10975 
10976 		/* convert list termination to no-ops */
10977 		padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN];
10978 		ip_optp += ip_optp[IPOPT_OLEN];
10979 		opt = len > 0 ? IPOPT_NOP : IPOPT_EOL;
10980 		while (--padlen >= 0)
10981 			*ip_optp++ = opt;
10982 	}
10983 	tcph_len = tcp->tcp_tcp_hdr_len;
10984 	new_tcph = (tcph_t *)(ip_optp + len);
10985 	ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len);
10986 	tcp->tcp_tcph = new_tcph;
10987 	bcopy(ptr, ip_optp, len);
10988 
10989 	len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len;
10990 
10991 	tcp->tcp_ip_hdr_len = len;
10992 	tcp->tcp_ipha->ipha_version_and_hdr_length =
10993 	    (IP_VERSION << 4) | (len >> 2);
10994 	tcp->tcp_hdr_len = len + tcph_len;
10995 	if (!TCP_IS_DETACHED(tcp)) {
10996 		/* Always allocate room for all options. */
10997 		(void) mi_set_sth_wroff(tcp->tcp_rq,
10998 		    TCP_MAX_COMBINED_HEADER_LENGTH + tcp_wroff_xtra);
10999 	}
11000 	return (0);
11001 }
11002 
11003 /* Get callback routine passed to nd_load by tcp_param_register */
11004 /* ARGSUSED */
11005 static int
11006 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
11007 {
11008 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11009 
11010 	(void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val);
11011 	return (0);
11012 }
11013 
11014 /*
11015  * Walk through the param array specified registering each element with the
11016  * named dispatch handler.
11017  */
11018 static boolean_t
11019 tcp_param_register(tcpparam_t *tcppa, int cnt)
11020 {
11021 	for (; cnt-- > 0; tcppa++) {
11022 		if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) {
11023 			if (!nd_load(&tcp_g_nd, tcppa->tcp_param_name,
11024 			    tcp_param_get, tcp_param_set,
11025 			    (caddr_t)tcppa)) {
11026 				nd_free(&tcp_g_nd);
11027 				return (B_FALSE);
11028 			}
11029 		}
11030 	}
11031 	if (!nd_load(&tcp_g_nd, tcp_wroff_xtra_param.tcp_param_name,
11032 	    tcp_param_get, tcp_param_set_aligned,
11033 	    (caddr_t)&tcp_wroff_xtra_param)) {
11034 		nd_free(&tcp_g_nd);
11035 		return (B_FALSE);
11036 	}
11037 	if (!nd_load(&tcp_g_nd, tcp_mdt_head_param.tcp_param_name,
11038 	    tcp_param_get, tcp_param_set_aligned,
11039 	    (caddr_t)&tcp_mdt_head_param)) {
11040 		nd_free(&tcp_g_nd);
11041 		return (B_FALSE);
11042 	}
11043 	if (!nd_load(&tcp_g_nd, tcp_mdt_tail_param.tcp_param_name,
11044 	    tcp_param_get, tcp_param_set_aligned,
11045 	    (caddr_t)&tcp_mdt_tail_param)) {
11046 		nd_free(&tcp_g_nd);
11047 		return (B_FALSE);
11048 	}
11049 	if (!nd_load(&tcp_g_nd, tcp_mdt_max_pbufs_param.tcp_param_name,
11050 	    tcp_param_get, tcp_param_set,
11051 	    (caddr_t)&tcp_mdt_max_pbufs_param)) {
11052 		nd_free(&tcp_g_nd);
11053 		return (B_FALSE);
11054 	}
11055 	if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports",
11056 	    tcp_extra_priv_ports_get, NULL, NULL)) {
11057 		nd_free(&tcp_g_nd);
11058 		return (B_FALSE);
11059 	}
11060 	if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_add",
11061 	    NULL, tcp_extra_priv_ports_add, NULL)) {
11062 		nd_free(&tcp_g_nd);
11063 		return (B_FALSE);
11064 	}
11065 	if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_del",
11066 	    NULL, tcp_extra_priv_ports_del, NULL)) {
11067 		nd_free(&tcp_g_nd);
11068 		return (B_FALSE);
11069 	}
11070 	if (!nd_load(&tcp_g_nd, "tcp_status", tcp_status_report, NULL,
11071 	    NULL)) {
11072 		nd_free(&tcp_g_nd);
11073 		return (B_FALSE);
11074 	}
11075 	if (!nd_load(&tcp_g_nd, "tcp_bind_hash", tcp_bind_hash_report,
11076 	    NULL, NULL)) {
11077 		nd_free(&tcp_g_nd);
11078 		return (B_FALSE);
11079 	}
11080 	if (!nd_load(&tcp_g_nd, "tcp_listen_hash", tcp_listen_hash_report,
11081 	    NULL, NULL)) {
11082 		nd_free(&tcp_g_nd);
11083 		return (B_FALSE);
11084 	}
11085 	if (!nd_load(&tcp_g_nd, "tcp_conn_hash", tcp_conn_hash_report,
11086 	    NULL, NULL)) {
11087 		nd_free(&tcp_g_nd);
11088 		return (B_FALSE);
11089 	}
11090 	if (!nd_load(&tcp_g_nd, "tcp_acceptor_hash", tcp_acceptor_hash_report,
11091 	    NULL, NULL)) {
11092 		nd_free(&tcp_g_nd);
11093 		return (B_FALSE);
11094 	}
11095 	if (!nd_load(&tcp_g_nd, "tcp_host_param", tcp_host_param_report,
11096 	    tcp_host_param_set, NULL)) {
11097 		nd_free(&tcp_g_nd);
11098 		return (B_FALSE);
11099 	}
11100 	if (!nd_load(&tcp_g_nd, "tcp_host_param_ipv6", tcp_host_param_report,
11101 	    tcp_host_param_set_ipv6, NULL)) {
11102 		nd_free(&tcp_g_nd);
11103 		return (B_FALSE);
11104 	}
11105 	if (!nd_load(&tcp_g_nd, "tcp_1948_phrase", NULL, tcp_1948_phrase_set,
11106 	    NULL)) {
11107 		nd_free(&tcp_g_nd);
11108 		return (B_FALSE);
11109 	}
11110 	if (!nd_load(&tcp_g_nd, "tcp_reserved_port_list",
11111 	    tcp_reserved_port_list, NULL, NULL)) {
11112 		nd_free(&tcp_g_nd);
11113 		return (B_FALSE);
11114 	}
11115 	/*
11116 	 * Dummy ndd variables - only to convey obsolescence information
11117 	 * through printing of their name (no get or set routines)
11118 	 * XXX Remove in future releases ?
11119 	 */
11120 	if (!nd_load(&tcp_g_nd,
11121 	    "tcp_close_wait_interval(obsoleted - "
11122 	    "use tcp_time_wait_interval)", NULL, NULL, NULL)) {
11123 		nd_free(&tcp_g_nd);
11124 		return (B_FALSE);
11125 	}
11126 	return (B_TRUE);
11127 }
11128 
11129 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */
11130 /* ARGSUSED */
11131 static int
11132 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
11133     cred_t *cr)
11134 {
11135 	long new_value;
11136 	tcpparam_t *tcppa = (tcpparam_t *)cp;
11137 
11138 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11139 	    new_value < tcppa->tcp_param_min ||
11140 	    new_value > tcppa->tcp_param_max) {
11141 		return (EINVAL);
11142 	}
11143 	/*
11144 	 * Need to make sure new_value is a multiple of 4.  If it is not,
11145 	 * round it up.  For future 64 bit requirement, we actually make it
11146 	 * a multiple of 8.
11147 	 */
11148 	if (new_value & 0x7) {
11149 		new_value = (new_value & ~0x7) + 0x8;
11150 	}
11151 	tcppa->tcp_param_val = new_value;
11152 	return (0);
11153 }
11154 
11155 /* Set callback routine passed to nd_load by tcp_param_register */
11156 /* ARGSUSED */
11157 static int
11158 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
11159 {
11160 	long	new_value;
11161 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11162 
11163 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11164 	    new_value < tcppa->tcp_param_min ||
11165 	    new_value > tcppa->tcp_param_max) {
11166 		return (EINVAL);
11167 	}
11168 	tcppa->tcp_param_val = new_value;
11169 	return (0);
11170 }
11171 
11172 /*
11173  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
11174  * is filled, return as much as we can.  The message passed in may be
11175  * multi-part, chained using b_cont.  "start" is the starting sequence
11176  * number for this piece.
11177  */
11178 static mblk_t *
11179 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
11180 {
11181 	uint32_t	end;
11182 	mblk_t		*mp1;
11183 	mblk_t		*mp2;
11184 	mblk_t		*next_mp;
11185 	uint32_t	u1;
11186 
11187 	/* Walk through all the new pieces. */
11188 	do {
11189 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
11190 		    (uintptr_t)INT_MAX);
11191 		end = start + (int)(mp->b_wptr - mp->b_rptr);
11192 		next_mp = mp->b_cont;
11193 		if (start == end) {
11194 			/* Empty.  Blast it. */
11195 			freeb(mp);
11196 			continue;
11197 		}
11198 		mp->b_cont = NULL;
11199 		TCP_REASS_SET_SEQ(mp, start);
11200 		TCP_REASS_SET_END(mp, end);
11201 		mp1 = tcp->tcp_reass_tail;
11202 		if (!mp1) {
11203 			tcp->tcp_reass_tail = mp;
11204 			tcp->tcp_reass_head = mp;
11205 			BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs);
11206 			UPDATE_MIB(&tcp_mib,
11207 			    tcpInDataUnorderBytes, end - start);
11208 			continue;
11209 		}
11210 		/* New stuff completely beyond tail? */
11211 		if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
11212 			/* Link it on end. */
11213 			mp1->b_cont = mp;
11214 			tcp->tcp_reass_tail = mp;
11215 			BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs);
11216 			UPDATE_MIB(&tcp_mib,
11217 			    tcpInDataUnorderBytes, end - start);
11218 			continue;
11219 		}
11220 		mp1 = tcp->tcp_reass_head;
11221 		u1 = TCP_REASS_SEQ(mp1);
11222 		/* New stuff at the front? */
11223 		if (SEQ_LT(start, u1)) {
11224 			/* Yes... Check for overlap. */
11225 			mp->b_cont = mp1;
11226 			tcp->tcp_reass_head = mp;
11227 			tcp_reass_elim_overlap(tcp, mp);
11228 			continue;
11229 		}
11230 		/*
11231 		 * The new piece fits somewhere between the head and tail.
11232 		 * We find our slot, where mp1 precedes us and mp2 trails.
11233 		 */
11234 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
11235 			u1 = TCP_REASS_SEQ(mp2);
11236 			if (SEQ_LEQ(start, u1))
11237 				break;
11238 		}
11239 		/* Link ourselves in */
11240 		mp->b_cont = mp2;
11241 		mp1->b_cont = mp;
11242 
11243 		/* Trim overlap with following mblk(s) first */
11244 		tcp_reass_elim_overlap(tcp, mp);
11245 
11246 		/* Trim overlap with preceding mblk */
11247 		tcp_reass_elim_overlap(tcp, mp1);
11248 
11249 	} while (start = end, mp = next_mp);
11250 	mp1 = tcp->tcp_reass_head;
11251 	/* Anything ready to go? */
11252 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
11253 		return (NULL);
11254 	/* Eat what we can off the queue */
11255 	for (;;) {
11256 		mp = mp1->b_cont;
11257 		end = TCP_REASS_END(mp1);
11258 		TCP_REASS_SET_SEQ(mp1, 0);
11259 		TCP_REASS_SET_END(mp1, 0);
11260 		if (!mp) {
11261 			tcp->tcp_reass_tail = NULL;
11262 			break;
11263 		}
11264 		if (end != TCP_REASS_SEQ(mp)) {
11265 			mp1->b_cont = NULL;
11266 			break;
11267 		}
11268 		mp1 = mp;
11269 	}
11270 	mp1 = tcp->tcp_reass_head;
11271 	tcp->tcp_reass_head = mp;
11272 	return (mp1);
11273 }
11274 
11275 /* Eliminate any overlap that mp may have over later mblks */
11276 static void
11277 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
11278 {
11279 	uint32_t	end;
11280 	mblk_t		*mp1;
11281 	uint32_t	u1;
11282 
11283 	end = TCP_REASS_END(mp);
11284 	while ((mp1 = mp->b_cont) != NULL) {
11285 		u1 = TCP_REASS_SEQ(mp1);
11286 		if (!SEQ_GT(end, u1))
11287 			break;
11288 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
11289 			mp->b_wptr -= end - u1;
11290 			TCP_REASS_SET_END(mp, u1);
11291 			BUMP_MIB(&tcp_mib, tcpInDataPartDupSegs);
11292 			UPDATE_MIB(&tcp_mib, tcpInDataPartDupBytes, end - u1);
11293 			break;
11294 		}
11295 		mp->b_cont = mp1->b_cont;
11296 		TCP_REASS_SET_SEQ(mp1, 0);
11297 		TCP_REASS_SET_END(mp1, 0);
11298 		freeb(mp1);
11299 		BUMP_MIB(&tcp_mib, tcpInDataDupSegs);
11300 		UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, end - u1);
11301 	}
11302 	if (!mp1)
11303 		tcp->tcp_reass_tail = mp;
11304 }
11305 
11306 /*
11307  * Send up all messages queued on tcp_rcv_list.
11308  */
11309 static uint_t
11310 tcp_rcv_drain(queue_t *q, tcp_t *tcp)
11311 {
11312 	mblk_t *mp;
11313 	uint_t ret = 0;
11314 	uint_t thwin;
11315 #ifdef DEBUG
11316 	uint_t cnt = 0;
11317 #endif
11318 	/* Can't drain on an eager connection */
11319 	if (tcp->tcp_listener != NULL)
11320 		return (ret);
11321 
11322 	/*
11323 	 * Handle two cases here: we are currently fused or we were
11324 	 * previously fused and have some urgent data to be delivered
11325 	 * upstream.  The latter happens because we either ran out of
11326 	 * memory or were detached and therefore sending the SIGURG was
11327 	 * deferred until this point.  In either case we pass control
11328 	 * over to tcp_fuse_rcv_drain() since it may need to complete
11329 	 * some work.
11330 	 */
11331 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
11332 		ASSERT(tcp->tcp_fused_sigurg_mp != NULL);
11333 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
11334 		    &tcp->tcp_fused_sigurg_mp))
11335 			return (ret);
11336 	}
11337 
11338 	while ((mp = tcp->tcp_rcv_list) != NULL) {
11339 		tcp->tcp_rcv_list = mp->b_next;
11340 		mp->b_next = NULL;
11341 #ifdef DEBUG
11342 		cnt += msgdsize(mp);
11343 #endif
11344 		/* Does this need SSL processing first? */
11345 		if ((tcp->tcp_kssl_ctx  != NULL) && (DB_TYPE(mp) == M_DATA)) {
11346 			tcp_kssl_input(tcp, mp);
11347 			continue;
11348 		}
11349 		putnext(q, mp);
11350 	}
11351 	ASSERT(cnt == tcp->tcp_rcv_cnt);
11352 	tcp->tcp_rcv_last_head = NULL;
11353 	tcp->tcp_rcv_last_tail = NULL;
11354 	tcp->tcp_rcv_cnt = 0;
11355 
11356 	/* Learn the latest rwnd information that we sent to the other side. */
11357 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11358 	    << tcp->tcp_rcv_ws;
11359 	/* This is peer's calculated send window (our receive window). */
11360 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11361 	/*
11362 	 * Increase the receive window to max.  But we need to do receiver
11363 	 * SWS avoidance.  This means that we need to check the increase of
11364 	 * of receive window is at least 1 MSS.
11365 	 */
11366 	if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) {
11367 		/*
11368 		 * If the window that the other side knows is less than max
11369 		 * deferred acks segments, send an update immediately.
11370 		 */
11371 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11372 			BUMP_MIB(&tcp_mib, tcpOutWinUpdate);
11373 			ret = TH_ACK_NEEDED;
11374 		}
11375 		tcp->tcp_rwnd = q->q_hiwat;
11376 	}
11377 	/* No need for the push timer now. */
11378 	if (tcp->tcp_push_tid != 0) {
11379 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11380 		tcp->tcp_push_tid = 0;
11381 	}
11382 	return (ret);
11383 }
11384 
11385 /*
11386  * Queue data on tcp_rcv_list which is a b_next chain.
11387  * tcp_rcv_last_head/tail is the last element of this chain.
11388  * Each element of the chain is a b_cont chain.
11389  *
11390  * M_DATA messages are added to the current element.
11391  * Other messages are added as new (b_next) elements.
11392  */
11393 void
11394 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len)
11395 {
11396 	ASSERT(seg_len == msgdsize(mp));
11397 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
11398 
11399 	if (tcp->tcp_rcv_list == NULL) {
11400 		ASSERT(tcp->tcp_rcv_last_head == NULL);
11401 		tcp->tcp_rcv_list = mp;
11402 		tcp->tcp_rcv_last_head = mp;
11403 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
11404 		tcp->tcp_rcv_last_tail->b_cont = mp;
11405 	} else {
11406 		tcp->tcp_rcv_last_head->b_next = mp;
11407 		tcp->tcp_rcv_last_head = mp;
11408 	}
11409 
11410 	while (mp->b_cont)
11411 		mp = mp->b_cont;
11412 
11413 	tcp->tcp_rcv_last_tail = mp;
11414 	tcp->tcp_rcv_cnt += seg_len;
11415 	tcp->tcp_rwnd -= seg_len;
11416 }
11417 
11418 /*
11419  * DEFAULT TCP ENTRY POINT via squeue on READ side.
11420  *
11421  * This is the default entry function into TCP on the read side. TCP is
11422  * always entered via squeue i.e. using squeue's for mutual exclusion.
11423  * When classifier does a lookup to find the tcp, it also puts a reference
11424  * on the conn structure associated so the tcp is guaranteed to exist
11425  * when we come here. We still need to check the state because it might
11426  * as well has been closed. The squeue processing function i.e. squeue_enter,
11427  * squeue_enter_nodrain, or squeue_drain is responsible for doing the
11428  * CONN_DEC_REF.
11429  *
11430  * Apart from the default entry point, IP also sends packets directly to
11431  * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming
11432  * connections.
11433  */
11434 void
11435 tcp_input(void *arg, mblk_t *mp, void *arg2)
11436 {
11437 	conn_t	*connp = (conn_t *)arg;
11438 	tcp_t	*tcp = (tcp_t *)connp->conn_tcp;
11439 
11440 	/* arg2 is the sqp */
11441 	ASSERT(arg2 != NULL);
11442 	ASSERT(mp != NULL);
11443 
11444 	/*
11445 	 * Don't accept any input on a closed tcp as this TCP logically does
11446 	 * not exist on the system. Don't proceed further with this TCP.
11447 	 * For eg. this packet could trigger another close of this tcp
11448 	 * which would be disastrous for tcp_refcnt. tcp_close_detached /
11449 	 * tcp_clean_death / tcp_closei_local must be called at most once
11450 	 * on a TCP. In this case we need to refeed the packet into the
11451 	 * classifier and figure out where the packet should go. Need to
11452 	 * preserve the recv_ill somehow. Until we figure that out, for
11453 	 * now just drop the packet if we can't classify the packet.
11454 	 */
11455 	if (tcp->tcp_state == TCPS_CLOSED ||
11456 	    tcp->tcp_state == TCPS_BOUND) {
11457 		conn_t	*new_connp;
11458 
11459 		new_connp = ipcl_classify(mp, connp->conn_zoneid);
11460 		if (new_connp != NULL) {
11461 			tcp_reinput(new_connp, mp, arg2);
11462 			return;
11463 		}
11464 		/* We failed to classify. For now just drop the packet */
11465 		freemsg(mp);
11466 		return;
11467 	}
11468 
11469 	if (DB_TYPE(mp) == M_DATA)
11470 		tcp_rput_data(connp, mp, arg2);
11471 	else
11472 		tcp_rput_common(tcp, mp);
11473 }
11474 
11475 /*
11476  * The read side put procedure.
11477  * The packets passed up by ip are assume to be aligned according to
11478  * OK_32PTR and the IP+TCP headers fitting in the first mblk.
11479  */
11480 static void
11481 tcp_rput_common(tcp_t *tcp, mblk_t *mp)
11482 {
11483 	/*
11484 	 * tcp_rput_data() does not expect M_CTL except for the case
11485 	 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO
11486 	 * type. Need to make sure that any other M_CTLs don't make
11487 	 * it to tcp_rput_data since it is not expecting any and doesn't
11488 	 * check for it.
11489 	 */
11490 	if (DB_TYPE(mp) == M_CTL) {
11491 		switch (*(uint32_t *)(mp->b_rptr)) {
11492 		case TCP_IOC_ABORT_CONN:
11493 			/*
11494 			 * Handle connection abort request.
11495 			 */
11496 			tcp_ioctl_abort_handler(tcp, mp);
11497 			return;
11498 		case IPSEC_IN:
11499 			/*
11500 			 * Only secure icmp arrive in TCP and they
11501 			 * don't go through data path.
11502 			 */
11503 			tcp_icmp_error(tcp, mp);
11504 			return;
11505 		case IN_PKTINFO:
11506 			/*
11507 			 * Handle IPV6_RECVPKTINFO socket option on AF_INET6
11508 			 * sockets that are receiving IPv4 traffic. tcp
11509 			 */
11510 			ASSERT(tcp->tcp_family == AF_INET6);
11511 			ASSERT(tcp->tcp_ipv6_recvancillary &
11512 			    TCP_IPV6_RECVPKTINFO);
11513 			tcp_rput_data(tcp->tcp_connp, mp,
11514 			    tcp->tcp_connp->conn_sqp);
11515 			return;
11516 		case MDT_IOC_INFO_UPDATE:
11517 			/*
11518 			 * Handle Multidata information update; the
11519 			 * following routine will free the message.
11520 			 */
11521 			if (tcp->tcp_connp->conn_mdt_ok) {
11522 				tcp_mdt_update(tcp,
11523 				    &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab,
11524 				    B_FALSE);
11525 			}
11526 			freemsg(mp);
11527 			return;
11528 		default:
11529 			break;
11530 		}
11531 	}
11532 
11533 	/* No point processing the message if tcp is already closed */
11534 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
11535 		freemsg(mp);
11536 		return;
11537 	}
11538 
11539 	tcp_rput_other(tcp, mp);
11540 }
11541 
11542 
11543 /* The minimum of smoothed mean deviation in RTO calculation. */
11544 #define	TCP_SD_MIN	400
11545 
11546 /*
11547  * Set RTO for this connection.  The formula is from Jacobson and Karels'
11548  * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
11549  * are the same as those in Appendix A.2 of that paper.
11550  *
11551  * m = new measurement
11552  * sa = smoothed RTT average (8 * average estimates).
11553  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
11554  */
11555 static void
11556 tcp_set_rto(tcp_t *tcp, clock_t rtt)
11557 {
11558 	long m = TICK_TO_MSEC(rtt);
11559 	clock_t sa = tcp->tcp_rtt_sa;
11560 	clock_t sv = tcp->tcp_rtt_sd;
11561 	clock_t rto;
11562 
11563 	BUMP_MIB(&tcp_mib, tcpRttUpdate);
11564 	tcp->tcp_rtt_update++;
11565 
11566 	/* tcp_rtt_sa is not 0 means this is a new sample. */
11567 	if (sa != 0) {
11568 		/*
11569 		 * Update average estimator:
11570 		 *	new rtt = 7/8 old rtt + 1/8 Error
11571 		 */
11572 
11573 		/* m is now Error in estimate. */
11574 		m -= sa >> 3;
11575 		if ((sa += m) <= 0) {
11576 			/*
11577 			 * Don't allow the smoothed average to be negative.
11578 			 * We use 0 to denote reinitialization of the
11579 			 * variables.
11580 			 */
11581 			sa = 1;
11582 		}
11583 
11584 		/*
11585 		 * Update deviation estimator:
11586 		 *	new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
11587 		 */
11588 		if (m < 0)
11589 			m = -m;
11590 		m -= sv >> 2;
11591 		sv += m;
11592 	} else {
11593 		/*
11594 		 * This follows BSD's implementation.  So the reinitialized
11595 		 * RTO is 3 * m.  We cannot go less than 2 because if the
11596 		 * link is bandwidth dominated, doubling the window size
11597 		 * during slow start means doubling the RTT.  We want to be
11598 		 * more conservative when we reinitialize our estimates.  3
11599 		 * is just a convenient number.
11600 		 */
11601 		sa = m << 3;
11602 		sv = m << 1;
11603 	}
11604 	if (sv < TCP_SD_MIN) {
11605 		/*
11606 		 * We do not know that if sa captures the delay ACK
11607 		 * effect as in a long train of segments, a receiver
11608 		 * does not delay its ACKs.  So set the minimum of sv
11609 		 * to be TCP_SD_MIN, which is default to 400 ms, twice
11610 		 * of BSD DATO.  That means the minimum of mean
11611 		 * deviation is 100 ms.
11612 		 *
11613 		 */
11614 		sv = TCP_SD_MIN;
11615 	}
11616 	tcp->tcp_rtt_sa = sa;
11617 	tcp->tcp_rtt_sd = sv;
11618 	/*
11619 	 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
11620 	 *
11621 	 * Add tcp_rexmit_interval extra in case of extreme environment
11622 	 * where the algorithm fails to work.  The default value of
11623 	 * tcp_rexmit_interval_extra should be 0.
11624 	 *
11625 	 * As we use a finer grained clock than BSD and update
11626 	 * RTO for every ACKs, add in another .25 of RTT to the
11627 	 * deviation of RTO to accomodate burstiness of 1/4 of
11628 	 * window size.
11629 	 */
11630 	rto = (sa >> 3) + sv + tcp_rexmit_interval_extra + (sa >> 5);
11631 
11632 	if (rto > tcp_rexmit_interval_max) {
11633 		tcp->tcp_rto = tcp_rexmit_interval_max;
11634 	} else if (rto < tcp_rexmit_interval_min) {
11635 		tcp->tcp_rto = tcp_rexmit_interval_min;
11636 	} else {
11637 		tcp->tcp_rto = rto;
11638 	}
11639 
11640 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
11641 	tcp->tcp_timer_backoff = 0;
11642 }
11643 
11644 /*
11645  * tcp_get_seg_mp() is called to get the pointer to a segment in the
11646  * send queue which starts at the given seq. no.
11647  *
11648  * Parameters:
11649  *	tcp_t *tcp: the tcp instance pointer.
11650  *	uint32_t seq: the starting seq. no of the requested segment.
11651  *	int32_t *off: after the execution, *off will be the offset to
11652  *		the returned mblk which points to the requested seq no.
11653  *		It is the caller's responsibility to send in a non-null off.
11654  *
11655  * Return:
11656  *	A mblk_t pointer pointing to the requested segment in send queue.
11657  */
11658 static mblk_t *
11659 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off)
11660 {
11661 	int32_t	cnt;
11662 	mblk_t	*mp;
11663 
11664 	/* Defensive coding.  Make sure we don't send incorrect data. */
11665 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
11666 		return (NULL);
11667 
11668 	cnt = seq - tcp->tcp_suna;
11669 	mp = tcp->tcp_xmit_head;
11670 	while (cnt > 0 && mp != NULL) {
11671 		cnt -= mp->b_wptr - mp->b_rptr;
11672 		if (cnt < 0) {
11673 			cnt += mp->b_wptr - mp->b_rptr;
11674 			break;
11675 		}
11676 		mp = mp->b_cont;
11677 	}
11678 	ASSERT(mp != NULL);
11679 	*off = cnt;
11680 	return (mp);
11681 }
11682 
11683 /*
11684  * This function handles all retransmissions if SACK is enabled for this
11685  * connection.  First it calculates how many segments can be retransmitted
11686  * based on tcp_pipe.  Then it goes thru the notsack list to find eligible
11687  * segments.  A segment is eligible if sack_cnt for that segment is greater
11688  * than or equal tcp_dupack_fast_retransmit.  After it has retransmitted
11689  * all eligible segments, it checks to see if TCP can send some new segments
11690  * (fast recovery).  If it can, set the appropriate flag for tcp_rput_data().
11691  *
11692  * Parameters:
11693  *	tcp_t *tcp: the tcp structure of the connection.
11694  *	uint_t *flags: in return, appropriate value will be set for
11695  *	tcp_rput_data().
11696  */
11697 static void
11698 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags)
11699 {
11700 	notsack_blk_t	*notsack_blk;
11701 	int32_t		usable_swnd;
11702 	int32_t		mss;
11703 	uint32_t	seg_len;
11704 	mblk_t		*xmit_mp;
11705 
11706 	ASSERT(tcp->tcp_sack_info != NULL);
11707 	ASSERT(tcp->tcp_notsack_list != NULL);
11708 	ASSERT(tcp->tcp_rexmit == B_FALSE);
11709 
11710 	/* Defensive coding in case there is a bug... */
11711 	if (tcp->tcp_notsack_list == NULL) {
11712 		return;
11713 	}
11714 	notsack_blk = tcp->tcp_notsack_list;
11715 	mss = tcp->tcp_mss;
11716 
11717 	/*
11718 	 * Limit the num of outstanding data in the network to be
11719 	 * tcp_cwnd_ssthresh, which is half of the original congestion wnd.
11720 	 */
11721 	usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
11722 
11723 	/* At least retransmit 1 MSS of data. */
11724 	if (usable_swnd <= 0) {
11725 		usable_swnd = mss;
11726 	}
11727 
11728 	/* Make sure no new RTT samples will be taken. */
11729 	tcp->tcp_csuna = tcp->tcp_snxt;
11730 
11731 	notsack_blk = tcp->tcp_notsack_list;
11732 	while (usable_swnd > 0) {
11733 		mblk_t		*snxt_mp, *tmp_mp;
11734 		tcp_seq		begin = tcp->tcp_sack_snxt;
11735 		tcp_seq		end;
11736 		int32_t		off;
11737 
11738 		for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) {
11739 			if (SEQ_GT(notsack_blk->end, begin) &&
11740 			    (notsack_blk->sack_cnt >=
11741 			    tcp_dupack_fast_retransmit)) {
11742 				end = notsack_blk->end;
11743 				if (SEQ_LT(begin, notsack_blk->begin)) {
11744 					begin = notsack_blk->begin;
11745 				}
11746 				break;
11747 			}
11748 		}
11749 		/*
11750 		 * All holes are filled.  Manipulate tcp_cwnd to send more
11751 		 * if we can.  Note that after the SACK recovery, tcp_cwnd is
11752 		 * set to tcp_cwnd_ssthresh.
11753 		 */
11754 		if (notsack_blk == NULL) {
11755 			usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
11756 			if (usable_swnd <= 0 || tcp->tcp_unsent == 0) {
11757 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna;
11758 				ASSERT(tcp->tcp_cwnd > 0);
11759 				return;
11760 			} else {
11761 				usable_swnd = usable_swnd / mss;
11762 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna +
11763 				    MAX(usable_swnd * mss, mss);
11764 				*flags |= TH_XMIT_NEEDED;
11765 				return;
11766 			}
11767 		}
11768 
11769 		/*
11770 		 * Note that we may send more than usable_swnd allows here
11771 		 * because of round off, but no more than 1 MSS of data.
11772 		 */
11773 		seg_len = end - begin;
11774 		if (seg_len > mss)
11775 			seg_len = mss;
11776 		snxt_mp = tcp_get_seg_mp(tcp, begin, &off);
11777 		ASSERT(snxt_mp != NULL);
11778 		/* This should not happen.  Defensive coding again... */
11779 		if (snxt_mp == NULL) {
11780 			return;
11781 		}
11782 
11783 		xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off,
11784 		    &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE);
11785 		if (xmit_mp == NULL)
11786 			return;
11787 
11788 		usable_swnd -= seg_len;
11789 		tcp->tcp_pipe += seg_len;
11790 		tcp->tcp_sack_snxt = begin + seg_len;
11791 		TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT);
11792 		tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
11793 
11794 		/*
11795 		 * Update the send timestamp to avoid false retransmission.
11796 		 */
11797 		snxt_mp->b_prev = (mblk_t *)lbolt;
11798 
11799 		BUMP_MIB(&tcp_mib, tcpRetransSegs);
11800 		UPDATE_MIB(&tcp_mib, tcpRetransBytes, seg_len);
11801 		BUMP_MIB(&tcp_mib, tcpOutSackRetransSegs);
11802 		/*
11803 		 * Update tcp_rexmit_max to extend this SACK recovery phase.
11804 		 * This happens when new data sent during fast recovery is
11805 		 * also lost.  If TCP retransmits those new data, it needs
11806 		 * to extend SACK recover phase to avoid starting another
11807 		 * fast retransmit/recovery unnecessarily.
11808 		 */
11809 		if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) {
11810 			tcp->tcp_rexmit_max = tcp->tcp_sack_snxt;
11811 		}
11812 	}
11813 }
11814 
11815 /*
11816  * This function handles policy checking at TCP level for non-hard_bound/
11817  * detached connections.
11818  */
11819 static boolean_t
11820 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h,
11821     boolean_t secure, boolean_t mctl_present)
11822 {
11823 	ipsec_latch_t *ipl = NULL;
11824 	ipsec_action_t *act = NULL;
11825 	mblk_t *data_mp;
11826 	ipsec_in_t *ii;
11827 	const char *reason;
11828 	kstat_named_t *counter;
11829 
11830 	ASSERT(mctl_present || !secure);
11831 
11832 	ASSERT((ipha == NULL && ip6h != NULL) ||
11833 	    (ip6h == NULL && ipha != NULL));
11834 
11835 	/*
11836 	 * We don't necessarily have an ipsec_in_act action to verify
11837 	 * policy because of assymetrical policy where we have only
11838 	 * outbound policy and no inbound policy (possible with global
11839 	 * policy).
11840 	 */
11841 	if (!secure) {
11842 		if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS ||
11843 		    act->ipa_act.ipa_type == IPSEC_ACT_CLEAR)
11844 			return (B_TRUE);
11845 		ipsec_log_policy_failure(tcp->tcp_wq, IPSEC_POLICY_MISMATCH,
11846 		    "tcp_check_policy", ipha, ip6h, secure);
11847 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
11848 		    &ipdrops_tcp_clear, &tcp_dropper);
11849 		return (B_FALSE);
11850 	}
11851 
11852 	/*
11853 	 * We have a secure packet.
11854 	 */
11855 	if (act == NULL) {
11856 		ipsec_log_policy_failure(tcp->tcp_wq,
11857 		    IPSEC_POLICY_NOT_NEEDED, "tcp_check_policy", ipha, ip6h,
11858 		    secure);
11859 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
11860 		    &ipdrops_tcp_secure, &tcp_dropper);
11861 		return (B_FALSE);
11862 	}
11863 
11864 	/*
11865 	 * XXX This whole routine is currently incorrect.  ipl should
11866 	 * be set to the latch pointer, but is currently not set, so
11867 	 * we initialize it to NULL to avoid picking up random garbage.
11868 	 */
11869 	if (ipl == NULL)
11870 		return (B_TRUE);
11871 
11872 	data_mp = first_mp->b_cont;
11873 
11874 	ii = (ipsec_in_t *)first_mp->b_rptr;
11875 
11876 	if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason,
11877 	    &counter)) {
11878 		BUMP_MIB(&ip_mib, ipsecInSucceeded);
11879 		return (B_TRUE);
11880 	}
11881 	(void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
11882 	    "tcp inbound policy mismatch: %s, packet dropped\n",
11883 	    reason);
11884 	BUMP_MIB(&ip_mib, ipsecInFailed);
11885 
11886 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, &tcp_dropper);
11887 	return (B_FALSE);
11888 }
11889 
11890 /*
11891  * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start
11892  * retransmission after a timeout.
11893  *
11894  * To limit the number of duplicate segments, we limit the number of segment
11895  * to be sent in one time to tcp_snd_burst, the burst variable.
11896  */
11897 static void
11898 tcp_ss_rexmit(tcp_t *tcp)
11899 {
11900 	uint32_t	snxt;
11901 	uint32_t	smax;
11902 	int32_t		win;
11903 	int32_t		mss;
11904 	int32_t		off;
11905 	int32_t		burst = tcp->tcp_snd_burst;
11906 	mblk_t		*snxt_mp;
11907 
11908 	/*
11909 	 * Note that tcp_rexmit can be set even though TCP has retransmitted
11910 	 * all unack'ed segments.
11911 	 */
11912 	if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) {
11913 		smax = tcp->tcp_rexmit_max;
11914 		snxt = tcp->tcp_rexmit_nxt;
11915 		if (SEQ_LT(snxt, tcp->tcp_suna)) {
11916 			snxt = tcp->tcp_suna;
11917 		}
11918 		win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd);
11919 		win -= snxt - tcp->tcp_suna;
11920 		mss = tcp->tcp_mss;
11921 		snxt_mp = tcp_get_seg_mp(tcp, snxt, &off);
11922 
11923 		while (SEQ_LT(snxt, smax) && (win > 0) &&
11924 		    (burst > 0) && (snxt_mp != NULL)) {
11925 			mblk_t	*xmit_mp;
11926 			mblk_t	*old_snxt_mp = snxt_mp;
11927 			uint32_t cnt = mss;
11928 
11929 			if (win < cnt) {
11930 				cnt = win;
11931 			}
11932 			if (SEQ_GT(snxt + cnt, smax)) {
11933 				cnt = smax - snxt;
11934 			}
11935 			xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off,
11936 			    &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE);
11937 			if (xmit_mp == NULL)
11938 				return;
11939 
11940 			tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
11941 
11942 			snxt += cnt;
11943 			win -= cnt;
11944 			/*
11945 			 * Update the send timestamp to avoid false
11946 			 * retransmission.
11947 			 */
11948 			old_snxt_mp->b_prev = (mblk_t *)lbolt;
11949 			BUMP_MIB(&tcp_mib, tcpRetransSegs);
11950 			UPDATE_MIB(&tcp_mib, tcpRetransBytes, cnt);
11951 
11952 			tcp->tcp_rexmit_nxt = snxt;
11953 			burst--;
11954 		}
11955 		/*
11956 		 * If we have transmitted all we have at the time
11957 		 * we started the retranmission, we can leave
11958 		 * the rest of the job to tcp_wput_data().  But we
11959 		 * need to check the send window first.  If the
11960 		 * win is not 0, go on with tcp_wput_data().
11961 		 */
11962 		if (SEQ_LT(snxt, smax) || win == 0) {
11963 			return;
11964 		}
11965 	}
11966 	/* Only call tcp_wput_data() if there is data to be sent. */
11967 	if (tcp->tcp_unsent) {
11968 		tcp_wput_data(tcp, NULL, B_FALSE);
11969 	}
11970 }
11971 
11972 /*
11973  * Process all TCP option in SYN segment.  Note that this function should
11974  * be called after tcp_adapt_ire() is called so that the necessary info
11975  * from IRE is already set in the tcp structure.
11976  *
11977  * This function sets up the correct tcp_mss value according to the
11978  * MSS option value and our header size.  It also sets up the window scale
11979  * and timestamp values, and initialize SACK info blocks.  But it does not
11980  * change receive window size after setting the tcp_mss value.  The caller
11981  * should do the appropriate change.
11982  */
11983 void
11984 tcp_process_options(tcp_t *tcp, tcph_t *tcph)
11985 {
11986 	int options;
11987 	tcp_opt_t tcpopt;
11988 	uint32_t mss_max;
11989 	char *tmp_tcph;
11990 
11991 	tcpopt.tcp = NULL;
11992 	options = tcp_parse_options(tcph, &tcpopt);
11993 
11994 	/*
11995 	 * Process MSS option.  Note that MSS option value does not account
11996 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
11997 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
11998 	 * IPv6.
11999 	 */
12000 	if (!(options & TCP_OPT_MSS_PRESENT)) {
12001 		if (tcp->tcp_ipversion == IPV4_VERSION)
12002 			tcpopt.tcp_opt_mss = tcp_mss_def_ipv4;
12003 		else
12004 			tcpopt.tcp_opt_mss = tcp_mss_def_ipv6;
12005 	} else {
12006 		if (tcp->tcp_ipversion == IPV4_VERSION)
12007 			mss_max = tcp_mss_max_ipv4;
12008 		else
12009 			mss_max = tcp_mss_max_ipv6;
12010 		if (tcpopt.tcp_opt_mss < tcp_mss_min)
12011 			tcpopt.tcp_opt_mss = tcp_mss_min;
12012 		else if (tcpopt.tcp_opt_mss > mss_max)
12013 			tcpopt.tcp_opt_mss = mss_max;
12014 	}
12015 
12016 	/* Process Window Scale option. */
12017 	if (options & TCP_OPT_WSCALE_PRESENT) {
12018 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
12019 		tcp->tcp_snd_ws_ok = B_TRUE;
12020 	} else {
12021 		tcp->tcp_snd_ws = B_FALSE;
12022 		tcp->tcp_snd_ws_ok = B_FALSE;
12023 		tcp->tcp_rcv_ws = B_FALSE;
12024 	}
12025 
12026 	/* Process Timestamp option. */
12027 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
12028 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
12029 		tmp_tcph = (char *)tcp->tcp_tcph;
12030 
12031 		tcp->tcp_snd_ts_ok = B_TRUE;
12032 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
12033 		tcp->tcp_last_rcv_lbolt = lbolt64;
12034 		ASSERT(OK_32PTR(tmp_tcph));
12035 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
12036 
12037 		/* Fill in our template header with basic timestamp option. */
12038 		tmp_tcph += tcp->tcp_tcp_hdr_len;
12039 		tmp_tcph[0] = TCPOPT_NOP;
12040 		tmp_tcph[1] = TCPOPT_NOP;
12041 		tmp_tcph[2] = TCPOPT_TSTAMP;
12042 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
12043 		tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12044 		tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12045 		tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4);
12046 	} else {
12047 		tcp->tcp_snd_ts_ok = B_FALSE;
12048 	}
12049 
12050 	/*
12051 	 * Process SACK options.  If SACK is enabled for this connection,
12052 	 * then allocate the SACK info structure.  Note the following ways
12053 	 * when tcp_snd_sack_ok is set to true.
12054 	 *
12055 	 * For active connection: in tcp_adapt_ire() called in
12056 	 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted
12057 	 * is checked.
12058 	 *
12059 	 * For passive connection: in tcp_adapt_ire() called in
12060 	 * tcp_accept_comm().
12061 	 *
12062 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
12063 	 * That check makes sure that if we did not send a SACK OK option,
12064 	 * we will not enable SACK for this connection even though the other
12065 	 * side sends us SACK OK option.  For active connection, the SACK
12066 	 * info structure has already been allocated.  So we need to free
12067 	 * it if SACK is disabled.
12068 	 */
12069 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
12070 	    (tcp->tcp_snd_sack_ok ||
12071 	    (tcp_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
12072 		/* This should be true only in the passive case. */
12073 		if (tcp->tcp_sack_info == NULL) {
12074 			ASSERT(TCP_IS_DETACHED(tcp));
12075 			tcp->tcp_sack_info =
12076 			    kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP);
12077 		}
12078 		if (tcp->tcp_sack_info == NULL) {
12079 			tcp->tcp_snd_sack_ok = B_FALSE;
12080 		} else {
12081 			tcp->tcp_snd_sack_ok = B_TRUE;
12082 			if (tcp->tcp_snd_ts_ok) {
12083 				tcp->tcp_max_sack_blk = 3;
12084 			} else {
12085 				tcp->tcp_max_sack_blk = 4;
12086 			}
12087 		}
12088 	} else {
12089 		/*
12090 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
12091 		 * no SACK info will be used for this
12092 		 * connection.  This assumes that SACK usage
12093 		 * permission is negotiated.  This may need
12094 		 * to be changed once this is clarified.
12095 		 */
12096 		if (tcp->tcp_sack_info != NULL) {
12097 			ASSERT(tcp->tcp_notsack_list == NULL);
12098 			kmem_cache_free(tcp_sack_info_cache,
12099 			    tcp->tcp_sack_info);
12100 			tcp->tcp_sack_info = NULL;
12101 		}
12102 		tcp->tcp_snd_sack_ok = B_FALSE;
12103 	}
12104 
12105 	/*
12106 	 * Now we know the exact TCP/IP header length, subtract
12107 	 * that from tcp_mss to get our side's MSS.
12108 	 */
12109 	tcp->tcp_mss -= tcp->tcp_hdr_len;
12110 	/*
12111 	 * Here we assume that the other side's header size will be equal to
12112 	 * our header size.  We calculate the real MSS accordingly.  Need to
12113 	 * take into additional stuffs IPsec puts in.
12114 	 *
12115 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
12116 	 */
12117 	tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead -
12118 	    ((tcp->tcp_ipversion == IPV4_VERSION ?
12119 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
12120 
12121 	/*
12122 	 * Set MSS to the smaller one of both ends of the connection.
12123 	 * We should not have called tcp_mss_set() before, but our
12124 	 * side of the MSS should have been set to a proper value
12125 	 * by tcp_adapt_ire().  tcp_mss_set() will also set up the
12126 	 * STREAM head parameters properly.
12127 	 *
12128 	 * If we have a larger-than-16-bit window but the other side
12129 	 * didn't want to do window scale, tcp_rwnd_set() will take
12130 	 * care of that.
12131 	 */
12132 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss));
12133 }
12134 
12135 /*
12136  * Sends the T_CONN_IND to the listener. The caller calls this
12137  * functions via squeue to get inside the listener's perimeter
12138  * once the 3 way hand shake is done a T_CONN_IND needs to be
12139  * sent. As an optimization, the caller can call this directly
12140  * if listener's perimeter is same as eager's.
12141  */
12142 /* ARGSUSED */
12143 void
12144 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2)
12145 {
12146 	conn_t			*lconnp = (conn_t *)arg;
12147 	tcp_t			*listener = lconnp->conn_tcp;
12148 	tcp_t			*tcp;
12149 	struct T_conn_ind	*conn_ind;
12150 	ipaddr_t 		*addr_cache;
12151 	boolean_t		need_send_conn_ind = B_FALSE;
12152 
12153 	/* retrieve the eager */
12154 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
12155 	ASSERT(conn_ind->OPT_offset != 0 &&
12156 	    conn_ind->OPT_length == sizeof (intptr_t));
12157 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
12158 		conn_ind->OPT_length);
12159 
12160 	/*
12161 	 * TLI/XTI applications will get confused by
12162 	 * sending eager as an option since it violates
12163 	 * the option semantics. So remove the eager as
12164 	 * option since TLI/XTI app doesn't need it anyway.
12165 	 */
12166 	if (!TCP_IS_SOCKET(listener)) {
12167 		conn_ind->OPT_length = 0;
12168 		conn_ind->OPT_offset = 0;
12169 	}
12170 	if (listener->tcp_state == TCPS_CLOSED ||
12171 	    TCP_IS_DETACHED(listener)) {
12172 		/*
12173 		 * If listener has closed, it would have caused a
12174 		 * a cleanup/blowoff to happen for the eager. We
12175 		 * just need to return.
12176 		 */
12177 		freemsg(mp);
12178 		return;
12179 	}
12180 
12181 
12182 	/*
12183 	 * if the conn_req_q is full defer passing up the
12184 	 * T_CONN_IND until space is availabe after t_accept()
12185 	 * processing
12186 	 */
12187 	mutex_enter(&listener->tcp_eager_lock);
12188 	if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) {
12189 		tcp_t *tail;
12190 
12191 		/*
12192 		 * The eager already has an extra ref put in tcp_rput_data
12193 		 * so that it stays till accept comes back even though it
12194 		 * might get into TCPS_CLOSED as a result of a TH_RST etc.
12195 		 */
12196 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
12197 		listener->tcp_conn_req_cnt_q0--;
12198 		listener->tcp_conn_req_cnt_q++;
12199 
12200 		/* Move from SYN_RCVD to ESTABLISHED list  */
12201 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12202 		    tcp->tcp_eager_prev_q0;
12203 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12204 		    tcp->tcp_eager_next_q0;
12205 		tcp->tcp_eager_prev_q0 = NULL;
12206 		tcp->tcp_eager_next_q0 = NULL;
12207 
12208 		/*
12209 		 * Insert at end of the queue because sockfs
12210 		 * sends down T_CONN_RES in chronological
12211 		 * order. Leaving the older conn indications
12212 		 * at front of the queue helps reducing search
12213 		 * time.
12214 		 */
12215 		tail = listener->tcp_eager_last_q;
12216 		if (tail != NULL)
12217 			tail->tcp_eager_next_q = tcp;
12218 		else
12219 			listener->tcp_eager_next_q = tcp;
12220 		listener->tcp_eager_last_q = tcp;
12221 		tcp->tcp_eager_next_q = NULL;
12222 		/*
12223 		 * Delay sending up the T_conn_ind until we are
12224 		 * done with the eager. Once we have have sent up
12225 		 * the T_conn_ind, the accept can potentially complete
12226 		 * any time and release the refhold we have on the eager.
12227 		 */
12228 		need_send_conn_ind = B_TRUE;
12229 	} else {
12230 		/*
12231 		 * Defer connection on q0 and set deferred
12232 		 * connection bit true
12233 		 */
12234 		tcp->tcp_conn_def_q0 = B_TRUE;
12235 
12236 		/* take tcp out of q0 ... */
12237 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12238 		    tcp->tcp_eager_next_q0;
12239 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12240 		    tcp->tcp_eager_prev_q0;
12241 
12242 		/* ... and place it at the end of q0 */
12243 		tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0;
12244 		tcp->tcp_eager_next_q0 = listener;
12245 		listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp;
12246 		listener->tcp_eager_prev_q0 = tcp;
12247 		tcp->tcp_conn.tcp_eager_conn_ind = mp;
12248 	}
12249 
12250 	/* we have timed out before */
12251 	if (tcp->tcp_syn_rcvd_timeout != 0) {
12252 		tcp->tcp_syn_rcvd_timeout = 0;
12253 		listener->tcp_syn_rcvd_timeout--;
12254 		if (listener->tcp_syn_defense &&
12255 		    listener->tcp_syn_rcvd_timeout <=
12256 		    (tcp_conn_req_max_q0 >> 5) &&
12257 		    10*MINUTES < TICK_TO_MSEC(lbolt64 -
12258 			listener->tcp_last_rcv_lbolt)) {
12259 			/*
12260 			 * Turn off the defense mode if we
12261 			 * believe the SYN attack is over.
12262 			 */
12263 			listener->tcp_syn_defense = B_FALSE;
12264 			if (listener->tcp_ip_addr_cache) {
12265 				kmem_free((void *)listener->tcp_ip_addr_cache,
12266 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
12267 				listener->tcp_ip_addr_cache = NULL;
12268 			}
12269 		}
12270 	}
12271 	addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
12272 	if (addr_cache != NULL) {
12273 		/*
12274 		 * We have finished a 3-way handshake with this
12275 		 * remote host. This proves the IP addr is good.
12276 		 * Cache it!
12277 		 */
12278 		addr_cache[IP_ADDR_CACHE_HASH(
12279 			tcp->tcp_remote)] = tcp->tcp_remote;
12280 	}
12281 	mutex_exit(&listener->tcp_eager_lock);
12282 	if (need_send_conn_ind)
12283 		putnext(listener->tcp_rq, mp);
12284 }
12285 
12286 mblk_t *
12287 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp,
12288     uint_t *ifindexp, ip6_pkt_t *ippp)
12289 {
12290 	in_pktinfo_t	*pinfo;
12291 	ip6_t		*ip6h;
12292 	uchar_t		*rptr;
12293 	mblk_t		*first_mp = mp;
12294 	boolean_t	mctl_present = B_FALSE;
12295 	uint_t 		ifindex = 0;
12296 	ip6_pkt_t	ipp;
12297 	uint_t		ipvers;
12298 	uint_t		ip_hdr_len;
12299 
12300 	rptr = mp->b_rptr;
12301 	ASSERT(OK_32PTR(rptr));
12302 	ASSERT(tcp != NULL);
12303 	ipp.ipp_fields = 0;
12304 
12305 	switch DB_TYPE(mp) {
12306 	case M_CTL:
12307 		mp = mp->b_cont;
12308 		if (mp == NULL) {
12309 			freemsg(first_mp);
12310 			return (NULL);
12311 		}
12312 		if (DB_TYPE(mp) != M_DATA) {
12313 			freemsg(first_mp);
12314 			return (NULL);
12315 		}
12316 		mctl_present = B_TRUE;
12317 		break;
12318 	case M_DATA:
12319 		break;
12320 	default:
12321 		cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type");
12322 		freemsg(mp);
12323 		return (NULL);
12324 	}
12325 	ipvers = IPH_HDR_VERSION(rptr);
12326 	if (ipvers == IPV4_VERSION) {
12327 		if (tcp == NULL) {
12328 			ip_hdr_len = IPH_HDR_LENGTH(rptr);
12329 			goto done;
12330 		}
12331 
12332 		ipp.ipp_fields |= IPPF_HOPLIMIT;
12333 		ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl;
12334 
12335 		/*
12336 		 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary
12337 		 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp.
12338 		 */
12339 		if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) &&
12340 		    mctl_present) {
12341 			pinfo = (in_pktinfo_t *)first_mp->b_rptr;
12342 			if ((MBLKL(first_mp) == sizeof (in_pktinfo_t)) &&
12343 			    (pinfo->in_pkt_ulp_type == IN_PKTINFO) &&
12344 			    (pinfo->in_pkt_flags & IPF_RECVIF)) {
12345 				ipp.ipp_fields |= IPPF_IFINDEX;
12346 				ipp.ipp_ifindex = pinfo->in_pkt_ifindex;
12347 				ifindex = pinfo->in_pkt_ifindex;
12348 			}
12349 			freeb(first_mp);
12350 			mctl_present = B_FALSE;
12351 		}
12352 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12353 	} else {
12354 		ip6h = (ip6_t *)rptr;
12355 
12356 		ASSERT(ipvers == IPV6_VERSION);
12357 		ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS;
12358 		ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20;
12359 		ipp.ipp_hoplimit = ip6h->ip6_hops;
12360 
12361 		if (ip6h->ip6_nxt != IPPROTO_TCP) {
12362 			uint8_t	nexthdrp;
12363 
12364 			/* Look for ifindex information */
12365 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
12366 				ip6i_t *ip6i = (ip6i_t *)ip6h;
12367 				if ((uchar_t *)&ip6i[1] > mp->b_wptr) {
12368 					BUMP_MIB(&ip_mib, tcpInErrs);
12369 					freemsg(first_mp);
12370 					return (NULL);
12371 				}
12372 
12373 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
12374 					ASSERT(ip6i->ip6i_ifindex != 0);
12375 					ipp.ipp_fields |= IPPF_IFINDEX;
12376 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
12377 					ifindex = ip6i->ip6i_ifindex;
12378 				}
12379 				rptr = (uchar_t *)&ip6i[1];
12380 				mp->b_rptr = rptr;
12381 				if (rptr == mp->b_wptr) {
12382 					mblk_t *mp1;
12383 					mp1 = mp->b_cont;
12384 					freeb(mp);
12385 					mp = mp1;
12386 					rptr = mp->b_rptr;
12387 				}
12388 				if (MBLKL(mp) < IPV6_HDR_LEN +
12389 				    sizeof (tcph_t)) {
12390 					BUMP_MIB(&ip_mib, tcpInErrs);
12391 					freemsg(first_mp);
12392 					return (NULL);
12393 				}
12394 				ip6h = (ip6_t *)rptr;
12395 			}
12396 
12397 			/*
12398 			 * Find any potentially interesting extension headers
12399 			 * as well as the length of the IPv6 + extension
12400 			 * headers.
12401 			 */
12402 			ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp);
12403 			/* Verify if this is a TCP packet */
12404 			if (nexthdrp != IPPROTO_TCP) {
12405 				BUMP_MIB(&ip_mib, tcpInErrs);
12406 				freemsg(first_mp);
12407 				return (NULL);
12408 			}
12409 		} else {
12410 			ip_hdr_len = IPV6_HDR_LEN;
12411 		}
12412 	}
12413 
12414 done:
12415 	if (ipversp != NULL)
12416 		*ipversp = ipvers;
12417 	if (ip_hdr_lenp != NULL)
12418 		*ip_hdr_lenp = ip_hdr_len;
12419 	if (ippp != NULL)
12420 		*ippp = ipp;
12421 	if (ifindexp != NULL)
12422 		*ifindexp = ifindex;
12423 	if (mctl_present) {
12424 		freeb(first_mp);
12425 	}
12426 	return (mp);
12427 }
12428 
12429 /*
12430  * Handle M_DATA messages from IP. Its called directly from IP via
12431  * squeue for AF_INET type sockets fast path. No M_CTL are expected
12432  * in this path.
12433  *
12434  * For everything else (including AF_INET6 sockets with 'tcp_ipversion'
12435  * v4 and v6), we are called through tcp_input() and a M_CTL can
12436  * be present for options but tcp_find_pktinfo() deals with it. We
12437  * only expect M_DATA packets after tcp_find_pktinfo() is done.
12438  *
12439  * The first argument is always the connp/tcp to which the mp belongs.
12440  * There are no exceptions to this rule. The caller has already put
12441  * a reference on this connp/tcp and once tcp_rput_data() returns,
12442  * the squeue will do the refrele.
12443  *
12444  * The TH_SYN for the listener directly go to tcp_conn_request via
12445  * squeue.
12446  *
12447  * sqp: NULL = recursive, sqp != NULL means called from squeue
12448  */
12449 void
12450 tcp_rput_data(void *arg, mblk_t *mp, void *arg2)
12451 {
12452 	int32_t		bytes_acked;
12453 	int32_t		gap;
12454 	mblk_t		*mp1;
12455 	uint_t		flags;
12456 	uint32_t	new_swnd = 0;
12457 	uchar_t		*iphdr;
12458 	uchar_t		*rptr;
12459 	int32_t		rgap;
12460 	uint32_t	seg_ack;
12461 	int		seg_len;
12462 	uint_t		ip_hdr_len;
12463 	uint32_t	seg_seq;
12464 	tcph_t		*tcph;
12465 	int		urp;
12466 	tcp_opt_t	tcpopt;
12467 	uint_t		ipvers;
12468 	ip6_pkt_t	ipp;
12469 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
12470 	uint32_t	cwnd;
12471 	uint32_t	add;
12472 	int		npkt;
12473 	int		mss;
12474 	conn_t		*connp = (conn_t *)arg;
12475 	squeue_t	*sqp = (squeue_t *)arg2;
12476 	tcp_t		*tcp = connp->conn_tcp;
12477 
12478 	/*
12479 	 * RST from fused tcp loopback peer should trigger an unfuse.
12480 	 */
12481 	if (tcp->tcp_fused) {
12482 		TCP_STAT(tcp_fusion_aborted);
12483 		tcp_unfuse(tcp);
12484 	}
12485 
12486 	iphdr = mp->b_rptr;
12487 	rptr = mp->b_rptr;
12488 	ASSERT(OK_32PTR(rptr));
12489 
12490 	/*
12491 	 * An AF_INET socket is not capable of receiving any pktinfo. Do inline
12492 	 * processing here. For rest call tcp_find_pktinfo to fill up the
12493 	 * necessary information.
12494 	 */
12495 	if (IPCL_IS_TCP4(connp)) {
12496 		ipvers = IPV4_VERSION;
12497 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12498 	} else {
12499 		mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len,
12500 		    NULL, &ipp);
12501 		if (mp == NULL) {
12502 			TCP_STAT(tcp_rput_v6_error);
12503 			return;
12504 		}
12505 		iphdr = mp->b_rptr;
12506 		rptr = mp->b_rptr;
12507 	}
12508 	ASSERT(DB_TYPE(mp) == M_DATA);
12509 
12510 	tcph = (tcph_t *)&rptr[ip_hdr_len];
12511 	seg_seq = ABE32_TO_U32(tcph->th_seq);
12512 	seg_ack = ABE32_TO_U32(tcph->th_ack);
12513 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
12514 	seg_len = (int)(mp->b_wptr - rptr) -
12515 	    (ip_hdr_len + TCP_HDR_LENGTH(tcph));
12516 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
12517 		do {
12518 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
12519 			    (uintptr_t)INT_MAX);
12520 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
12521 		} while ((mp1 = mp1->b_cont) != NULL &&
12522 		    mp1->b_datap->db_type == M_DATA);
12523 	}
12524 
12525 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
12526 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
12527 		    seg_len, tcph);
12528 		return;
12529 	}
12530 
12531 	if (sqp != NULL) {
12532 		/*
12533 		 * This is the correct place to update tcp_last_recv_time. Note
12534 		 * that it is also updated for tcp structure that belongs to
12535 		 * global and listener queues which do not really need updating.
12536 		 * But that should not cause any harm.  And it is updated for
12537 		 * all kinds of incoming segments, not only for data segments.
12538 		 */
12539 		tcp->tcp_last_recv_time = lbolt;
12540 	}
12541 
12542 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
12543 
12544 	BUMP_LOCAL(tcp->tcp_ibsegs);
12545 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
12546 
12547 	if ((flags & TH_URG) && sqp != NULL) {
12548 		/*
12549 		 * TCP can't handle urgent pointers that arrive before
12550 		 * the connection has been accept()ed since it can't
12551 		 * buffer OOB data.  Discard segment if this happens.
12552 		 *
12553 		 * Nor can it reassemble urgent pointers, so discard
12554 		 * if it's not the next segment expected.
12555 		 *
12556 		 * Otherwise, collapse chain into one mblk (discard if
12557 		 * that fails).  This makes sure the headers, retransmitted
12558 		 * data, and new data all are in the same mblk.
12559 		 */
12560 		ASSERT(mp != NULL);
12561 		if (tcp->tcp_listener || !pullupmsg(mp, -1)) {
12562 			freemsg(mp);
12563 			return;
12564 		}
12565 		/* Update pointers into message */
12566 		iphdr = rptr = mp->b_rptr;
12567 		tcph = (tcph_t *)&rptr[ip_hdr_len];
12568 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
12569 			/*
12570 			 * Since we can't handle any data with this urgent
12571 			 * pointer that is out of sequence, we expunge
12572 			 * the data.  This allows us to still register
12573 			 * the urgent mark and generate the M_PCSIG,
12574 			 * which we can do.
12575 			 */
12576 			mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
12577 			seg_len = 0;
12578 		}
12579 	}
12580 
12581 	switch (tcp->tcp_state) {
12582 	case TCPS_SYN_SENT:
12583 		if (flags & TH_ACK) {
12584 			/*
12585 			 * Note that our stack cannot send data before a
12586 			 * connection is established, therefore the
12587 			 * following check is valid.  Otherwise, it has
12588 			 * to be changed.
12589 			 */
12590 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
12591 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
12592 				freemsg(mp);
12593 				if (flags & TH_RST)
12594 					return;
12595 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
12596 				    tcp, seg_ack, 0, TH_RST);
12597 				return;
12598 			}
12599 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
12600 		}
12601 		if (flags & TH_RST) {
12602 			freemsg(mp);
12603 			if (flags & TH_ACK)
12604 				(void) tcp_clean_death(tcp,
12605 				    ECONNREFUSED, 13);
12606 			return;
12607 		}
12608 		if (!(flags & TH_SYN)) {
12609 			freemsg(mp);
12610 			return;
12611 		}
12612 
12613 		/* Process all TCP options. */
12614 		tcp_process_options(tcp, tcph);
12615 		/*
12616 		 * The following changes our rwnd to be a multiple of the
12617 		 * MIN(peer MSS, our MSS) for performance reason.
12618 		 */
12619 		(void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat,
12620 		    tcp->tcp_mss));
12621 
12622 		/* Is the other end ECN capable? */
12623 		if (tcp->tcp_ecn_ok) {
12624 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
12625 				tcp->tcp_ecn_ok = B_FALSE;
12626 			}
12627 		}
12628 		/*
12629 		 * Clear ECN flags because it may interfere with later
12630 		 * processing.
12631 		 */
12632 		flags &= ~(TH_ECE|TH_CWR);
12633 
12634 		tcp->tcp_irs = seg_seq;
12635 		tcp->tcp_rack = seg_seq;
12636 		tcp->tcp_rnxt = seg_seq + 1;
12637 		U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
12638 		if (!TCP_IS_DETACHED(tcp)) {
12639 			/* Allocate room for SACK options if needed. */
12640 			if (tcp->tcp_snd_sack_ok) {
12641 				(void) mi_set_sth_wroff(tcp->tcp_rq,
12642 				    tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
12643 				    (tcp->tcp_loopback ? 0 : tcp_wroff_xtra));
12644 			} else {
12645 				(void) mi_set_sth_wroff(tcp->tcp_rq,
12646 				    tcp->tcp_hdr_len +
12647 				    (tcp->tcp_loopback ? 0 : tcp_wroff_xtra));
12648 			}
12649 		}
12650 		if (flags & TH_ACK) {
12651 			/*
12652 			 * If we can't get the confirmation upstream, pretend
12653 			 * we didn't even see this one.
12654 			 *
12655 			 * XXX: how can we pretend we didn't see it if we
12656 			 * have updated rnxt et. al.
12657 			 *
12658 			 * For loopback we defer sending up the T_CONN_CON
12659 			 * until after some checks below.
12660 			 */
12661 			mp1 = NULL;
12662 			if (!tcp_conn_con(tcp, iphdr, tcph, mp,
12663 			    tcp->tcp_loopback ? &mp1 : NULL)) {
12664 				freemsg(mp);
12665 				return;
12666 			}
12667 			/* SYN was acked - making progress */
12668 			if (tcp->tcp_ipversion == IPV6_VERSION)
12669 				tcp->tcp_ip_forward_progress = B_TRUE;
12670 
12671 			/* One for the SYN */
12672 			tcp->tcp_suna = tcp->tcp_iss + 1;
12673 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
12674 			tcp->tcp_state = TCPS_ESTABLISHED;
12675 
12676 			/*
12677 			 * If SYN was retransmitted, need to reset all
12678 			 * retransmission info.  This is because this
12679 			 * segment will be treated as a dup ACK.
12680 			 */
12681 			if (tcp->tcp_rexmit) {
12682 				tcp->tcp_rexmit = B_FALSE;
12683 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
12684 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
12685 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
12686 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
12687 				tcp->tcp_ms_we_have_waited = 0;
12688 
12689 				/*
12690 				 * Set tcp_cwnd back to 1 MSS, per
12691 				 * recommendation from
12692 				 * draft-floyd-incr-init-win-01.txt,
12693 				 * Increasing TCP's Initial Window.
12694 				 */
12695 				tcp->tcp_cwnd = tcp->tcp_mss;
12696 			}
12697 
12698 			tcp->tcp_swl1 = seg_seq;
12699 			tcp->tcp_swl2 = seg_ack;
12700 
12701 			new_swnd = BE16_TO_U16(tcph->th_win);
12702 			tcp->tcp_swnd = new_swnd;
12703 			if (new_swnd > tcp->tcp_max_swnd)
12704 				tcp->tcp_max_swnd = new_swnd;
12705 
12706 			/*
12707 			 * Always send the three-way handshake ack immediately
12708 			 * in order to make the connection complete as soon as
12709 			 * possible on the accepting host.
12710 			 */
12711 			flags |= TH_ACK_NEEDED;
12712 
12713 			/*
12714 			 * Special case for loopback.  At this point we have
12715 			 * received SYN-ACK from the remote endpoint.  In
12716 			 * order to ensure that both endpoints reach the
12717 			 * fused state prior to any data exchange, the final
12718 			 * ACK needs to be sent before we indicate T_CONN_CON
12719 			 * to the module upstream.
12720 			 */
12721 			if (tcp->tcp_loopback) {
12722 				mblk_t *ack_mp;
12723 
12724 				ASSERT(!tcp->tcp_unfusable);
12725 				ASSERT(mp1 != NULL);
12726 				/*
12727 				 * For loopback, we always get a pure SYN-ACK
12728 				 * and only need to send back the final ACK
12729 				 * with no data (this is because the other
12730 				 * tcp is ours and we don't do T/TCP).  This
12731 				 * final ACK triggers the passive side to
12732 				 * perform fusion in ESTABLISHED state.
12733 				 */
12734 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
12735 					if (tcp->tcp_ack_tid != 0) {
12736 						(void) TCP_TIMER_CANCEL(tcp,
12737 						    tcp->tcp_ack_tid);
12738 						tcp->tcp_ack_tid = 0;
12739 					}
12740 					TCP_RECORD_TRACE(tcp, ack_mp,
12741 					    TCP_TRACE_SEND_PKT);
12742 					tcp_send_data(tcp, tcp->tcp_wq, ack_mp);
12743 					BUMP_LOCAL(tcp->tcp_obsegs);
12744 					BUMP_MIB(&tcp_mib, tcpOutAck);
12745 
12746 					/* Send up T_CONN_CON */
12747 					putnext(tcp->tcp_rq, mp1);
12748 
12749 					freemsg(mp);
12750 					return;
12751 				}
12752 				/*
12753 				 * Forget fusion; we need to handle more
12754 				 * complex cases below.  Send the deferred
12755 				 * T_CONN_CON message upstream and proceed
12756 				 * as usual.  Mark this tcp as not capable
12757 				 * of fusion.
12758 				 */
12759 				TCP_STAT(tcp_fusion_unfusable);
12760 				tcp->tcp_unfusable = B_TRUE;
12761 				putnext(tcp->tcp_rq, mp1);
12762 			}
12763 
12764 			/*
12765 			 * Check to see if there is data to be sent.  If
12766 			 * yes, set the transmit flag.  Then check to see
12767 			 * if received data processing needs to be done.
12768 			 * If not, go straight to xmit_check.  This short
12769 			 * cut is OK as we don't support T/TCP.
12770 			 */
12771 			if (tcp->tcp_unsent)
12772 				flags |= TH_XMIT_NEEDED;
12773 
12774 			if (seg_len == 0 && !(flags & TH_URG)) {
12775 				freemsg(mp);
12776 				goto xmit_check;
12777 			}
12778 
12779 			flags &= ~TH_SYN;
12780 			seg_seq++;
12781 			break;
12782 		}
12783 		tcp->tcp_state = TCPS_SYN_RCVD;
12784 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
12785 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
12786 		if (mp1) {
12787 			DB_CPID(mp1) = tcp->tcp_cpid;
12788 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
12789 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
12790 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
12791 		}
12792 		freemsg(mp);
12793 		return;
12794 	case TCPS_SYN_RCVD:
12795 		if (flags & TH_ACK) {
12796 			/*
12797 			 * In this state, a SYN|ACK packet is either bogus
12798 			 * because the other side must be ACKing our SYN which
12799 			 * indicates it has seen the ACK for their SYN and
12800 			 * shouldn't retransmit it or we're crossing SYNs
12801 			 * on active open.
12802 			 */
12803 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
12804 				freemsg(mp);
12805 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
12806 				    tcp, seg_ack, 0, TH_RST);
12807 				return;
12808 			}
12809 			/*
12810 			 * NOTE: RFC 793 pg. 72 says this should be
12811 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
12812 			 * but that would mean we have an ack that ignored
12813 			 * our SYN.
12814 			 */
12815 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
12816 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
12817 				freemsg(mp);
12818 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
12819 				    tcp, seg_ack, 0, TH_RST);
12820 				return;
12821 			}
12822 		}
12823 		break;
12824 	case TCPS_LISTEN:
12825 		/*
12826 		 * Only a TLI listener can come through this path when a
12827 		 * acceptor is going back to be a listener and a packet
12828 		 * for the acceptor hits the classifier. For a socket
12829 		 * listener, this can never happen because a listener
12830 		 * can never accept connection on itself and hence a
12831 		 * socket acceptor can not go back to being a listener.
12832 		 */
12833 		ASSERT(!TCP_IS_SOCKET(tcp));
12834 		/*FALLTHRU*/
12835 	case TCPS_CLOSED:
12836 	case TCPS_BOUND: {
12837 		conn_t	*new_connp;
12838 
12839 		new_connp = ipcl_classify(mp, connp->conn_zoneid);
12840 		if (new_connp != NULL) {
12841 			tcp_reinput(new_connp, mp, connp->conn_sqp);
12842 			return;
12843 		}
12844 		/* We failed to classify. For now just drop the packet */
12845 		freemsg(mp);
12846 		return;
12847 	}
12848 	case TCPS_IDLE:
12849 		/*
12850 		 * Handle the case where the tcp_clean_death() has happened
12851 		 * on a connection (application hasn't closed yet) but a packet
12852 		 * was already queued on squeue before tcp_clean_death()
12853 		 * was processed. Calling tcp_clean_death() twice on same
12854 		 * connection can result in weird behaviour.
12855 		 */
12856 		freemsg(mp);
12857 		return;
12858 	default:
12859 		break;
12860 	}
12861 
12862 	/*
12863 	 * Already on the correct queue/perimeter.
12864 	 * If this is a detached connection and not an eager
12865 	 * connection hanging off a listener then new data
12866 	 * (past the FIN) will cause a reset.
12867 	 * We do a special check here where it
12868 	 * is out of the main line, rather than check
12869 	 * if we are detached every time we see new
12870 	 * data down below.
12871 	 */
12872 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
12873 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
12874 		BUMP_MIB(&tcp_mib, tcpInClosed);
12875 		TCP_RECORD_TRACE(tcp,
12876 		    mp, TCP_TRACE_RECV_PKT);
12877 
12878 		freemsg(mp);
12879 		/*
12880 		 * This could be an SSL closure alert. We're detached so just
12881 		 * acknowledge it this last time.
12882 		 */
12883 		if (tcp->tcp_kssl_ctx != NULL) {
12884 			kssl_release_ctx(tcp->tcp_kssl_ctx);
12885 			tcp->tcp_kssl_ctx = NULL;
12886 
12887 			tcp->tcp_rnxt += seg_len;
12888 			U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
12889 			flags |= TH_ACK_NEEDED;
12890 			goto ack_check;
12891 		}
12892 
12893 		tcp_xmit_ctl("new data when detached", tcp,
12894 		    tcp->tcp_snxt, 0, TH_RST);
12895 		(void) tcp_clean_death(tcp, EPROTO, 12);
12896 		return;
12897 	}
12898 
12899 	mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
12900 	urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION;
12901 	new_swnd = BE16_TO_U16(tcph->th_win) <<
12902 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
12903 	mss = tcp->tcp_mss;
12904 
12905 	if (tcp->tcp_snd_ts_ok) {
12906 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
12907 			/*
12908 			 * This segment is not acceptable.
12909 			 * Drop it and send back an ACK.
12910 			 */
12911 			freemsg(mp);
12912 			flags |= TH_ACK_NEEDED;
12913 			goto ack_check;
12914 		}
12915 	} else if (tcp->tcp_snd_sack_ok) {
12916 		ASSERT(tcp->tcp_sack_info != NULL);
12917 		tcpopt.tcp = tcp;
12918 		/*
12919 		 * SACK info in already updated in tcp_parse_options.  Ignore
12920 		 * all other TCP options...
12921 		 */
12922 		(void) tcp_parse_options(tcph, &tcpopt);
12923 	}
12924 try_again:;
12925 	gap = seg_seq - tcp->tcp_rnxt;
12926 	rgap = tcp->tcp_rwnd - (gap + seg_len);
12927 	/*
12928 	 * gap is the amount of sequence space between what we expect to see
12929 	 * and what we got for seg_seq.  A positive value for gap means
12930 	 * something got lost.  A negative value means we got some old stuff.
12931 	 */
12932 	if (gap < 0) {
12933 		/* Old stuff present.  Is the SYN in there? */
12934 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
12935 		    (seg_len != 0)) {
12936 			flags &= ~TH_SYN;
12937 			seg_seq++;
12938 			urp--;
12939 			/* Recompute the gaps after noting the SYN. */
12940 			goto try_again;
12941 		}
12942 		BUMP_MIB(&tcp_mib, tcpInDataDupSegs);
12943 		UPDATE_MIB(&tcp_mib, tcpInDataDupBytes,
12944 		    (seg_len > -gap ? -gap : seg_len));
12945 		/* Remove the old stuff from seg_len. */
12946 		seg_len += gap;
12947 		/*
12948 		 * Anything left?
12949 		 * Make sure to check for unack'd FIN when rest of data
12950 		 * has been previously ack'd.
12951 		 */
12952 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
12953 			/*
12954 			 * Resets are only valid if they lie within our offered
12955 			 * window.  If the RST bit is set, we just ignore this
12956 			 * segment.
12957 			 */
12958 			if (flags & TH_RST) {
12959 				freemsg(mp);
12960 				return;
12961 			}
12962 
12963 			/*
12964 			 * The arriving of dup data packets indicate that we
12965 			 * may have postponed an ack for too long, or the other
12966 			 * side's RTT estimate is out of shape. Start acking
12967 			 * more often.
12968 			 */
12969 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
12970 			    tcp->tcp_rack_cnt >= 1 &&
12971 			    tcp->tcp_rack_abs_max > 2) {
12972 				tcp->tcp_rack_abs_max--;
12973 			}
12974 			tcp->tcp_rack_cur_max = 1;
12975 
12976 			/*
12977 			 * This segment is "unacceptable".  None of its
12978 			 * sequence space lies within our advertized window.
12979 			 *
12980 			 * Adjust seg_len to the original value for tracing.
12981 			 */
12982 			seg_len -= gap;
12983 			if (tcp->tcp_debug) {
12984 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
12985 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
12986 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
12987 				    "seg_len %d, rnxt %u, snxt %u, %s",
12988 				    gap, rgap, flags, seg_seq, seg_ack,
12989 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
12990 				    tcp_display(tcp, NULL,
12991 				    DISP_ADDR_AND_PORT));
12992 			}
12993 
12994 			/*
12995 			 * Arrange to send an ACK in response to the
12996 			 * unacceptable segment per RFC 793 page 69. There
12997 			 * is only one small difference between ours and the
12998 			 * acceptability test in the RFC - we accept ACK-only
12999 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
13000 			 * will be generated.
13001 			 *
13002 			 * Note that we have to ACK an ACK-only packet at least
13003 			 * for stacks that send 0-length keep-alives with
13004 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
13005 			 * section 4.2.3.6. As long as we don't ever generate
13006 			 * an unacceptable packet in response to an incoming
13007 			 * packet that is unacceptable, it should not cause
13008 			 * "ACK wars".
13009 			 */
13010 			flags |=  TH_ACK_NEEDED;
13011 
13012 			/*
13013 			 * Continue processing this segment in order to use the
13014 			 * ACK information it contains, but skip all other
13015 			 * sequence-number processing.	Processing the ACK
13016 			 * information is necessary in order to
13017 			 * re-synchronize connections that may have lost
13018 			 * synchronization.
13019 			 *
13020 			 * We clear seg_len and flag fields related to
13021 			 * sequence number processing as they are not
13022 			 * to be trusted for an unacceptable segment.
13023 			 */
13024 			seg_len = 0;
13025 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
13026 			goto process_ack;
13027 		}
13028 
13029 		/* Fix seg_seq, and chew the gap off the front. */
13030 		seg_seq = tcp->tcp_rnxt;
13031 		urp += gap;
13032 		do {
13033 			mblk_t	*mp2;
13034 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13035 			    (uintptr_t)UINT_MAX);
13036 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
13037 			if (gap > 0) {
13038 				mp->b_rptr = mp->b_wptr - gap;
13039 				break;
13040 			}
13041 			mp2 = mp;
13042 			mp = mp->b_cont;
13043 			freeb(mp2);
13044 		} while (gap < 0);
13045 		/*
13046 		 * If the urgent data has already been acknowledged, we
13047 		 * should ignore TH_URG below
13048 		 */
13049 		if (urp < 0)
13050 			flags &= ~TH_URG;
13051 	}
13052 	/*
13053 	 * rgap is the amount of stuff received out of window.  A negative
13054 	 * value is the amount out of window.
13055 	 */
13056 	if (rgap < 0) {
13057 		mblk_t	*mp2;
13058 
13059 		if (tcp->tcp_rwnd == 0) {
13060 			BUMP_MIB(&tcp_mib, tcpInWinProbe);
13061 		} else {
13062 			BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs);
13063 			UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap);
13064 		}
13065 
13066 		/*
13067 		 * seg_len does not include the FIN, so if more than
13068 		 * just the FIN is out of window, we act like we don't
13069 		 * see it.  (If just the FIN is out of window, rgap
13070 		 * will be zero and we will go ahead and acknowledge
13071 		 * the FIN.)
13072 		 */
13073 		flags &= ~TH_FIN;
13074 
13075 		/* Fix seg_len and make sure there is something left. */
13076 		seg_len += rgap;
13077 		if (seg_len <= 0) {
13078 			/*
13079 			 * Resets are only valid if they lie within our offered
13080 			 * window.  If the RST bit is set, we just ignore this
13081 			 * segment.
13082 			 */
13083 			if (flags & TH_RST) {
13084 				freemsg(mp);
13085 				return;
13086 			}
13087 
13088 			/* Per RFC 793, we need to send back an ACK. */
13089 			flags |= TH_ACK_NEEDED;
13090 
13091 			/*
13092 			 * Send SIGURG as soon as possible i.e. even
13093 			 * if the TH_URG was delivered in a window probe
13094 			 * packet (which will be unacceptable).
13095 			 *
13096 			 * We generate a signal if none has been generated
13097 			 * for this connection or if this is a new urgent
13098 			 * byte. Also send a zero-length "unmarked" message
13099 			 * to inform SIOCATMARK that this is not the mark.
13100 			 *
13101 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
13102 			 * is sent up. This plus the check for old data
13103 			 * (gap >= 0) handles the wraparound of the sequence
13104 			 * number space without having to always track the
13105 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
13106 			 * this max in its rcv_up variable).
13107 			 *
13108 			 * This prevents duplicate SIGURGS due to a "late"
13109 			 * zero-window probe when the T_EXDATA_IND has already
13110 			 * been sent up.
13111 			 */
13112 			if ((flags & TH_URG) &&
13113 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
13114 			    tcp->tcp_urp_last))) {
13115 				mp1 = allocb(0, BPRI_MED);
13116 				if (mp1 == NULL) {
13117 					freemsg(mp);
13118 					return;
13119 				}
13120 				if (!TCP_IS_DETACHED(tcp) &&
13121 				    !putnextctl1(tcp->tcp_rq, M_PCSIG,
13122 				    SIGURG)) {
13123 					/* Try again on the rexmit. */
13124 					freemsg(mp1);
13125 					freemsg(mp);
13126 					return;
13127 				}
13128 				/*
13129 				 * If the next byte would be the mark
13130 				 * then mark with MARKNEXT else mark
13131 				 * with NOTMARKNEXT.
13132 				 */
13133 				if (gap == 0 && urp == 0)
13134 					mp1->b_flag |= MSGMARKNEXT;
13135 				else
13136 					mp1->b_flag |= MSGNOTMARKNEXT;
13137 				freemsg(tcp->tcp_urp_mark_mp);
13138 				tcp->tcp_urp_mark_mp = mp1;
13139 				flags |= TH_SEND_URP_MARK;
13140 				tcp->tcp_urp_last_valid = B_TRUE;
13141 				tcp->tcp_urp_last = urp + seg_seq;
13142 			}
13143 			/*
13144 			 * If this is a zero window probe, continue to
13145 			 * process the ACK part.  But we need to set seg_len
13146 			 * to 0 to avoid data processing.  Otherwise just
13147 			 * drop the segment and send back an ACK.
13148 			 */
13149 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
13150 				flags &= ~(TH_SYN | TH_URG);
13151 				seg_len = 0;
13152 				goto process_ack;
13153 			} else {
13154 				freemsg(mp);
13155 				goto ack_check;
13156 			}
13157 		}
13158 		/* Pitch out of window stuff off the end. */
13159 		rgap = seg_len;
13160 		mp2 = mp;
13161 		do {
13162 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
13163 			    (uintptr_t)INT_MAX);
13164 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
13165 			if (rgap < 0) {
13166 				mp2->b_wptr += rgap;
13167 				if ((mp1 = mp2->b_cont) != NULL) {
13168 					mp2->b_cont = NULL;
13169 					freemsg(mp1);
13170 				}
13171 				break;
13172 			}
13173 		} while ((mp2 = mp2->b_cont) != NULL);
13174 	}
13175 ok:;
13176 	/*
13177 	 * TCP should check ECN info for segments inside the window only.
13178 	 * Therefore the check should be done here.
13179 	 */
13180 	if (tcp->tcp_ecn_ok) {
13181 		if (flags & TH_CWR) {
13182 			tcp->tcp_ecn_echo_on = B_FALSE;
13183 		}
13184 		/*
13185 		 * Note that both ECN_CE and CWR can be set in the
13186 		 * same segment.  In this case, we once again turn
13187 		 * on ECN_ECHO.
13188 		 */
13189 		if (tcp->tcp_ipversion == IPV4_VERSION) {
13190 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
13191 
13192 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
13193 				tcp->tcp_ecn_echo_on = B_TRUE;
13194 			}
13195 		} else {
13196 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
13197 
13198 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
13199 			    htonl(IPH_ECN_CE << 20)) {
13200 				tcp->tcp_ecn_echo_on = B_TRUE;
13201 			}
13202 		}
13203 	}
13204 
13205 	/*
13206 	 * Check whether we can update tcp_ts_recent.  This test is
13207 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
13208 	 * Extensions for High Performance: An Update", Internet Draft.
13209 	 */
13210 	if (tcp->tcp_snd_ts_ok &&
13211 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
13212 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
13213 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
13214 		tcp->tcp_last_rcv_lbolt = lbolt64;
13215 	}
13216 
13217 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
13218 		/*
13219 		 * FIN in an out of order segment.  We record this in
13220 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
13221 		 * Clear the FIN so that any check on FIN flag will fail.
13222 		 * Remember that FIN also counts in the sequence number
13223 		 * space.  So we need to ack out of order FIN only segments.
13224 		 */
13225 		if (flags & TH_FIN) {
13226 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
13227 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
13228 			flags &= ~TH_FIN;
13229 			flags |= TH_ACK_NEEDED;
13230 		}
13231 		if (seg_len > 0) {
13232 			/* Fill in the SACK blk list. */
13233 			if (tcp->tcp_snd_sack_ok) {
13234 				ASSERT(tcp->tcp_sack_info != NULL);
13235 				tcp_sack_insert(tcp->tcp_sack_list,
13236 				    seg_seq, seg_seq + seg_len,
13237 				    &(tcp->tcp_num_sack_blk));
13238 			}
13239 
13240 			/*
13241 			 * Attempt reassembly and see if we have something
13242 			 * ready to go.
13243 			 */
13244 			mp = tcp_reass(tcp, mp, seg_seq);
13245 			/* Always ack out of order packets */
13246 			flags |= TH_ACK_NEEDED | TH_PUSH;
13247 			if (mp) {
13248 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13249 				    (uintptr_t)INT_MAX);
13250 				seg_len = mp->b_cont ? msgdsize(mp) :
13251 					(int)(mp->b_wptr - mp->b_rptr);
13252 				seg_seq = tcp->tcp_rnxt;
13253 				/*
13254 				 * A gap is filled and the seq num and len
13255 				 * of the gap match that of a previously
13256 				 * received FIN, put the FIN flag back in.
13257 				 */
13258 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13259 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13260 					flags |= TH_FIN;
13261 					tcp->tcp_valid_bits &=
13262 					    ~TCP_OFO_FIN_VALID;
13263 				}
13264 			} else {
13265 				/*
13266 				 * Keep going even with NULL mp.
13267 				 * There may be a useful ACK or something else
13268 				 * we don't want to miss.
13269 				 *
13270 				 * But TCP should not perform fast retransmit
13271 				 * because of the ack number.  TCP uses
13272 				 * seg_len == 0 to determine if it is a pure
13273 				 * ACK.  And this is not a pure ACK.
13274 				 */
13275 				seg_len = 0;
13276 				ofo_seg = B_TRUE;
13277 			}
13278 		}
13279 	} else if (seg_len > 0) {
13280 		BUMP_MIB(&tcp_mib, tcpInDataInorderSegs);
13281 		UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len);
13282 		/*
13283 		 * If an out of order FIN was received before, and the seq
13284 		 * num and len of the new segment match that of the FIN,
13285 		 * put the FIN flag back in.
13286 		 */
13287 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13288 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13289 			flags |= TH_FIN;
13290 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
13291 		}
13292 	}
13293 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
13294 	if (flags & TH_RST) {
13295 		freemsg(mp);
13296 		switch (tcp->tcp_state) {
13297 		case TCPS_SYN_RCVD:
13298 			(void) tcp_clean_death(tcp, ECONNREFUSED, 14);
13299 			break;
13300 		case TCPS_ESTABLISHED:
13301 		case TCPS_FIN_WAIT_1:
13302 		case TCPS_FIN_WAIT_2:
13303 		case TCPS_CLOSE_WAIT:
13304 			(void) tcp_clean_death(tcp, ECONNRESET, 15);
13305 			break;
13306 		case TCPS_CLOSING:
13307 		case TCPS_LAST_ACK:
13308 			(void) tcp_clean_death(tcp, 0, 16);
13309 			break;
13310 		default:
13311 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13312 			(void) tcp_clean_death(tcp, ENXIO, 17);
13313 			break;
13314 		}
13315 		return;
13316 	}
13317 	if (flags & TH_SYN) {
13318 		/*
13319 		 * See RFC 793, Page 71
13320 		 *
13321 		 * The seq number must be in the window as it should
13322 		 * be "fixed" above.  If it is outside window, it should
13323 		 * be already rejected.  Note that we allow seg_seq to be
13324 		 * rnxt + rwnd because we want to accept 0 window probe.
13325 		 */
13326 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
13327 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
13328 		freemsg(mp);
13329 		/*
13330 		 * If the ACK flag is not set, just use our snxt as the
13331 		 * seq number of the RST segment.
13332 		 */
13333 		if (!(flags & TH_ACK)) {
13334 			seg_ack = tcp->tcp_snxt;
13335 		}
13336 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
13337 		    TH_RST|TH_ACK);
13338 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13339 		(void) tcp_clean_death(tcp, ECONNRESET, 18);
13340 		return;
13341 	}
13342 	/*
13343 	 * urp could be -1 when the urp field in the packet is 0
13344 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
13345 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
13346 	 */
13347 	if (flags & TH_URG && urp >= 0) {
13348 		if (!tcp->tcp_urp_last_valid ||
13349 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
13350 			/*
13351 			 * If we haven't generated the signal yet for this
13352 			 * urgent pointer value, do it now.  Also, send up a
13353 			 * zero-length M_DATA indicating whether or not this is
13354 			 * the mark. The latter is not needed when a
13355 			 * T_EXDATA_IND is sent up. However, if there are
13356 			 * allocation failures this code relies on the sender
13357 			 * retransmitting and the socket code for determining
13358 			 * the mark should not block waiting for the peer to
13359 			 * transmit. Thus, for simplicity we always send up the
13360 			 * mark indication.
13361 			 */
13362 			mp1 = allocb(0, BPRI_MED);
13363 			if (mp1 == NULL) {
13364 				freemsg(mp);
13365 				return;
13366 			}
13367 			if (!TCP_IS_DETACHED(tcp) &&
13368 			    !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) {
13369 				/* Try again on the rexmit. */
13370 				freemsg(mp1);
13371 				freemsg(mp);
13372 				return;
13373 			}
13374 			/*
13375 			 * Mark with NOTMARKNEXT for now.
13376 			 * The code below will change this to MARKNEXT
13377 			 * if we are at the mark.
13378 			 *
13379 			 * If there are allocation failures (e.g. in dupmsg
13380 			 * below) the next time tcp_rput_data sees the urgent
13381 			 * segment it will send up the MSG*MARKNEXT message.
13382 			 */
13383 			mp1->b_flag |= MSGNOTMARKNEXT;
13384 			freemsg(tcp->tcp_urp_mark_mp);
13385 			tcp->tcp_urp_mark_mp = mp1;
13386 			flags |= TH_SEND_URP_MARK;
13387 #ifdef DEBUG
13388 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13389 			    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
13390 			    "last %x, %s",
13391 			    seg_seq, urp, tcp->tcp_urp_last,
13392 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13393 #endif /* DEBUG */
13394 			tcp->tcp_urp_last_valid = B_TRUE;
13395 			tcp->tcp_urp_last = urp + seg_seq;
13396 		} else if (tcp->tcp_urp_mark_mp != NULL) {
13397 			/*
13398 			 * An allocation failure prevented the previous
13399 			 * tcp_rput_data from sending up the allocated
13400 			 * MSG*MARKNEXT message - send it up this time
13401 			 * around.
13402 			 */
13403 			flags |= TH_SEND_URP_MARK;
13404 		}
13405 
13406 		/*
13407 		 * If the urgent byte is in this segment, make sure that it is
13408 		 * all by itself.  This makes it much easier to deal with the
13409 		 * possibility of an allocation failure on the T_exdata_ind.
13410 		 * Note that seg_len is the number of bytes in the segment, and
13411 		 * urp is the offset into the segment of the urgent byte.
13412 		 * urp < seg_len means that the urgent byte is in this segment.
13413 		 */
13414 		if (urp < seg_len) {
13415 			if (seg_len != 1) {
13416 				uint32_t  tmp_rnxt;
13417 				/*
13418 				 * Break it up and feed it back in.
13419 				 * Re-attach the IP header.
13420 				 */
13421 				mp->b_rptr = iphdr;
13422 				if (urp > 0) {
13423 					/*
13424 					 * There is stuff before the urgent
13425 					 * byte.
13426 					 */
13427 					mp1 = dupmsg(mp);
13428 					if (!mp1) {
13429 						/*
13430 						 * Trim from urgent byte on.
13431 						 * The rest will come back.
13432 						 */
13433 						(void) adjmsg(mp,
13434 						    urp - seg_len);
13435 						tcp_rput_data(connp,
13436 						    mp, NULL);
13437 						return;
13438 					}
13439 					(void) adjmsg(mp1, urp - seg_len);
13440 					/* Feed this piece back in. */
13441 					tmp_rnxt = tcp->tcp_rnxt;
13442 					tcp_rput_data(connp, mp1, NULL);
13443 					/*
13444 					 * If the data passed back in was not
13445 					 * processed (ie: bad ACK) sending
13446 					 * the remainder back in will cause a
13447 					 * loop. In this case, drop the
13448 					 * packet and let the sender try
13449 					 * sending a good packet.
13450 					 */
13451 					if (tmp_rnxt == tcp->tcp_rnxt) {
13452 						freemsg(mp);
13453 						return;
13454 					}
13455 				}
13456 				if (urp != seg_len - 1) {
13457 					uint32_t  tmp_rnxt;
13458 					/*
13459 					 * There is stuff after the urgent
13460 					 * byte.
13461 					 */
13462 					mp1 = dupmsg(mp);
13463 					if (!mp1) {
13464 						/*
13465 						 * Trim everything beyond the
13466 						 * urgent byte.  The rest will
13467 						 * come back.
13468 						 */
13469 						(void) adjmsg(mp,
13470 						    urp + 1 - seg_len);
13471 						tcp_rput_data(connp,
13472 						    mp, NULL);
13473 						return;
13474 					}
13475 					(void) adjmsg(mp1, urp + 1 - seg_len);
13476 					tmp_rnxt = tcp->tcp_rnxt;
13477 					tcp_rput_data(connp, mp1, NULL);
13478 					/*
13479 					 * If the data passed back in was not
13480 					 * processed (ie: bad ACK) sending
13481 					 * the remainder back in will cause a
13482 					 * loop. In this case, drop the
13483 					 * packet and let the sender try
13484 					 * sending a good packet.
13485 					 */
13486 					if (tmp_rnxt == tcp->tcp_rnxt) {
13487 						freemsg(mp);
13488 						return;
13489 					}
13490 				}
13491 				tcp_rput_data(connp, mp, NULL);
13492 				return;
13493 			}
13494 			/*
13495 			 * This segment contains only the urgent byte.  We
13496 			 * have to allocate the T_exdata_ind, if we can.
13497 			 */
13498 			if (!tcp->tcp_urp_mp) {
13499 				struct T_exdata_ind *tei;
13500 				mp1 = allocb(sizeof (struct T_exdata_ind),
13501 				    BPRI_MED);
13502 				if (!mp1) {
13503 					/*
13504 					 * Sigh... It'll be back.
13505 					 * Generate any MSG*MARK message now.
13506 					 */
13507 					freemsg(mp);
13508 					seg_len = 0;
13509 					if (flags & TH_SEND_URP_MARK) {
13510 
13511 
13512 						ASSERT(tcp->tcp_urp_mark_mp);
13513 						tcp->tcp_urp_mark_mp->b_flag &=
13514 							~MSGNOTMARKNEXT;
13515 						tcp->tcp_urp_mark_mp->b_flag |=
13516 							MSGMARKNEXT;
13517 					}
13518 					goto ack_check;
13519 				}
13520 				mp1->b_datap->db_type = M_PROTO;
13521 				tei = (struct T_exdata_ind *)mp1->b_rptr;
13522 				tei->PRIM_type = T_EXDATA_IND;
13523 				tei->MORE_flag = 0;
13524 				mp1->b_wptr = (uchar_t *)&tei[1];
13525 				tcp->tcp_urp_mp = mp1;
13526 #ifdef DEBUG
13527 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13528 				    "tcp_rput: allocated exdata_ind %s",
13529 				    tcp_display(tcp, NULL,
13530 				    DISP_PORT_ONLY));
13531 #endif /* DEBUG */
13532 				/*
13533 				 * There is no need to send a separate MSG*MARK
13534 				 * message since the T_EXDATA_IND will be sent
13535 				 * now.
13536 				 */
13537 				flags &= ~TH_SEND_URP_MARK;
13538 				freemsg(tcp->tcp_urp_mark_mp);
13539 				tcp->tcp_urp_mark_mp = NULL;
13540 			}
13541 			/*
13542 			 * Now we are all set.  On the next putnext upstream,
13543 			 * tcp_urp_mp will be non-NULL and will get prepended
13544 			 * to what has to be this piece containing the urgent
13545 			 * byte.  If for any reason we abort this segment below,
13546 			 * if it comes back, we will have this ready, or it
13547 			 * will get blown off in close.
13548 			 */
13549 		} else if (urp == seg_len) {
13550 			/*
13551 			 * The urgent byte is the next byte after this sequence
13552 			 * number. If there is data it is marked with
13553 			 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded
13554 			 * since it is not needed. Otherwise, if the code
13555 			 * above just allocated a zero-length tcp_urp_mark_mp
13556 			 * message, that message is tagged with MSGMARKNEXT.
13557 			 * Sending up these MSGMARKNEXT messages makes
13558 			 * SIOCATMARK work correctly even though
13559 			 * the T_EXDATA_IND will not be sent up until the
13560 			 * urgent byte arrives.
13561 			 */
13562 			if (seg_len != 0) {
13563 				flags |= TH_MARKNEXT_NEEDED;
13564 				freemsg(tcp->tcp_urp_mark_mp);
13565 				tcp->tcp_urp_mark_mp = NULL;
13566 				flags &= ~TH_SEND_URP_MARK;
13567 			} else if (tcp->tcp_urp_mark_mp != NULL) {
13568 				flags |= TH_SEND_URP_MARK;
13569 				tcp->tcp_urp_mark_mp->b_flag &=
13570 					~MSGNOTMARKNEXT;
13571 				tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT;
13572 			}
13573 #ifdef DEBUG
13574 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13575 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
13576 			    seg_len, flags,
13577 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13578 #endif /* DEBUG */
13579 		} else {
13580 			/* Data left until we hit mark */
13581 #ifdef DEBUG
13582 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13583 			    "tcp_rput: URP %d bytes left, %s",
13584 			    urp - seg_len, tcp_display(tcp, NULL,
13585 			    DISP_PORT_ONLY));
13586 #endif /* DEBUG */
13587 		}
13588 	}
13589 
13590 process_ack:
13591 	if (!(flags & TH_ACK)) {
13592 		freemsg(mp);
13593 		goto xmit_check;
13594 	}
13595 	}
13596 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
13597 
13598 	if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0)
13599 		tcp->tcp_ip_forward_progress = B_TRUE;
13600 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
13601 		if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) &&
13602 		    ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) {
13603 			/* 3-way handshake complete - pass up the T_CONN_IND */
13604 			tcp_t	*listener = tcp->tcp_listener;
13605 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
13606 
13607 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
13608 			/*
13609 			 * We are here means eager is fine but it can
13610 			 * get a TH_RST at any point between now and till
13611 			 * accept completes and disappear. We need to
13612 			 * ensure that reference to eager is valid after
13613 			 * we get out of eager's perimeter. So we do
13614 			 * an extra refhold.
13615 			 */
13616 			CONN_INC_REF(connp);
13617 
13618 			/*
13619 			 * The listener also exists because of the refhold
13620 			 * done in tcp_conn_request. Its possible that it
13621 			 * might have closed. We will check that once we
13622 			 * get inside listeners context.
13623 			 */
13624 			CONN_INC_REF(listener->tcp_connp);
13625 			if (listener->tcp_connp->conn_sqp ==
13626 			    connp->conn_sqp) {
13627 				tcp_send_conn_ind(listener->tcp_connp, mp,
13628 				    listener->tcp_connp->conn_sqp);
13629 				CONN_DEC_REF(listener->tcp_connp);
13630 			} else if (!tcp->tcp_loopback) {
13631 				squeue_fill(listener->tcp_connp->conn_sqp, mp,
13632 				    tcp_send_conn_ind,
13633 				    listener->tcp_connp, SQTAG_TCP_CONN_IND);
13634 			} else {
13635 				squeue_enter(listener->tcp_connp->conn_sqp, mp,
13636 				    tcp_send_conn_ind, listener->tcp_connp,
13637 				    SQTAG_TCP_CONN_IND);
13638 			}
13639 		}
13640 
13641 		if (tcp->tcp_active_open) {
13642 			/*
13643 			 * We are seeing the final ack in the three way
13644 			 * hand shake of a active open'ed connection
13645 			 * so we must send up a T_CONN_CON
13646 			 */
13647 			if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) {
13648 				freemsg(mp);
13649 				return;
13650 			}
13651 			/*
13652 			 * Don't fuse the loopback endpoints for
13653 			 * simultaneous active opens.
13654 			 */
13655 			if (tcp->tcp_loopback) {
13656 				TCP_STAT(tcp_fusion_unfusable);
13657 				tcp->tcp_unfusable = B_TRUE;
13658 			}
13659 		}
13660 
13661 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
13662 		bytes_acked--;
13663 		/* SYN was acked - making progress */
13664 		if (tcp->tcp_ipversion == IPV6_VERSION)
13665 			tcp->tcp_ip_forward_progress = B_TRUE;
13666 
13667 		/*
13668 		 * If SYN was retransmitted, need to reset all
13669 		 * retransmission info as this segment will be
13670 		 * treated as a dup ACK.
13671 		 */
13672 		if (tcp->tcp_rexmit) {
13673 			tcp->tcp_rexmit = B_FALSE;
13674 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
13675 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
13676 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
13677 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
13678 			tcp->tcp_ms_we_have_waited = 0;
13679 			tcp->tcp_cwnd = mss;
13680 		}
13681 
13682 		/*
13683 		 * We set the send window to zero here.
13684 		 * This is needed if there is data to be
13685 		 * processed already on the queue.
13686 		 * Later (at swnd_update label), the
13687 		 * "new_swnd > tcp_swnd" condition is satisfied
13688 		 * the XMIT_NEEDED flag is set in the current
13689 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
13690 		 * called if there is already data on queue in
13691 		 * this state.
13692 		 */
13693 		tcp->tcp_swnd = 0;
13694 
13695 		if (new_swnd > tcp->tcp_max_swnd)
13696 			tcp->tcp_max_swnd = new_swnd;
13697 		tcp->tcp_swl1 = seg_seq;
13698 		tcp->tcp_swl2 = seg_ack;
13699 		tcp->tcp_state = TCPS_ESTABLISHED;
13700 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
13701 
13702 		/* Fuse when both sides are in ESTABLISHED state */
13703 		if (tcp->tcp_loopback && do_tcp_fusion)
13704 			tcp_fuse(tcp, iphdr, tcph);
13705 
13706 	}
13707 	/* This code follows 4.4BSD-Lite2 mostly. */
13708 	if (bytes_acked < 0)
13709 		goto est;
13710 
13711 	/*
13712 	 * If TCP is ECN capable and the congestion experience bit is
13713 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
13714 	 * done once per window (or more loosely, per RTT).
13715 	 */
13716 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
13717 		tcp->tcp_cwr = B_FALSE;
13718 	if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
13719 		if (!tcp->tcp_cwr) {
13720 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss;
13721 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
13722 			tcp->tcp_cwnd = npkt * mss;
13723 			/*
13724 			 * If the cwnd is 0, use the timer to clock out
13725 			 * new segments.  This is required by the ECN spec.
13726 			 */
13727 			if (npkt == 0) {
13728 				TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
13729 				/*
13730 				 * This makes sure that when the ACK comes
13731 				 * back, we will increase tcp_cwnd by 1 MSS.
13732 				 */
13733 				tcp->tcp_cwnd_cnt = 0;
13734 			}
13735 			tcp->tcp_cwr = B_TRUE;
13736 			/*
13737 			 * This marks the end of the current window of in
13738 			 * flight data.  That is why we don't use
13739 			 * tcp_suna + tcp_swnd.  Only data in flight can
13740 			 * provide ECN info.
13741 			 */
13742 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
13743 			tcp->tcp_ecn_cwr_sent = B_FALSE;
13744 		}
13745 	}
13746 
13747 	mp1 = tcp->tcp_xmit_head;
13748 	if (bytes_acked == 0) {
13749 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
13750 			int dupack_cnt;
13751 
13752 			BUMP_MIB(&tcp_mib, tcpInDupAck);
13753 			/*
13754 			 * Fast retransmit.  When we have seen exactly three
13755 			 * identical ACKs while we have unacked data
13756 			 * outstanding we take it as a hint that our peer
13757 			 * dropped something.
13758 			 *
13759 			 * If TCP is retransmitting, don't do fast retransmit.
13760 			 */
13761 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
13762 			    ! tcp->tcp_rexmit) {
13763 				/* Do Limited Transmit */
13764 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
13765 				    tcp_dupack_fast_retransmit) {
13766 					/*
13767 					 * RFC 3042
13768 					 *
13769 					 * What we need to do is temporarily
13770 					 * increase tcp_cwnd so that new
13771 					 * data can be sent if it is allowed
13772 					 * by the receive window (tcp_rwnd).
13773 					 * tcp_wput_data() will take care of
13774 					 * the rest.
13775 					 *
13776 					 * If the connection is SACK capable,
13777 					 * only do limited xmit when there
13778 					 * is SACK info.
13779 					 *
13780 					 * Note how tcp_cwnd is incremented.
13781 					 * The first dup ACK will increase
13782 					 * it by 1 MSS.  The second dup ACK
13783 					 * will increase it by 2 MSS.  This
13784 					 * means that only 1 new segment will
13785 					 * be sent for each dup ACK.
13786 					 */
13787 					if (tcp->tcp_unsent > 0 &&
13788 					    (!tcp->tcp_snd_sack_ok ||
13789 					    (tcp->tcp_snd_sack_ok &&
13790 					    tcp->tcp_notsack_list != NULL))) {
13791 						tcp->tcp_cwnd += mss <<
13792 						    (tcp->tcp_dupack_cnt - 1);
13793 						flags |= TH_LIMIT_XMIT;
13794 					}
13795 				} else if (dupack_cnt ==
13796 				    tcp_dupack_fast_retransmit) {
13797 
13798 				/*
13799 				 * If we have reduced tcp_ssthresh
13800 				 * because of ECN, do not reduce it again
13801 				 * unless it is already one window of data
13802 				 * away.  After one window of data, tcp_cwr
13803 				 * should then be cleared.  Note that
13804 				 * for non ECN capable connection, tcp_cwr
13805 				 * should always be false.
13806 				 *
13807 				 * Adjust cwnd since the duplicate
13808 				 * ack indicates that a packet was
13809 				 * dropped (due to congestion.)
13810 				 */
13811 				if (!tcp->tcp_cwr) {
13812 					npkt = ((tcp->tcp_snxt -
13813 					    tcp->tcp_suna) >> 1) / mss;
13814 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
13815 					    mss;
13816 					tcp->tcp_cwnd = (npkt +
13817 					    tcp->tcp_dupack_cnt) * mss;
13818 				}
13819 				if (tcp->tcp_ecn_ok) {
13820 					tcp->tcp_cwr = B_TRUE;
13821 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
13822 					tcp->tcp_ecn_cwr_sent = B_FALSE;
13823 				}
13824 
13825 				/*
13826 				 * We do Hoe's algorithm.  Refer to her
13827 				 * paper "Improving the Start-up Behavior
13828 				 * of a Congestion Control Scheme for TCP,"
13829 				 * appeared in SIGCOMM'96.
13830 				 *
13831 				 * Save highest seq no we have sent so far.
13832 				 * Be careful about the invisible FIN byte.
13833 				 */
13834 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
13835 				    (tcp->tcp_unsent == 0)) {
13836 					tcp->tcp_rexmit_max = tcp->tcp_fss;
13837 				} else {
13838 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
13839 				}
13840 
13841 				/*
13842 				 * Do not allow bursty traffic during.
13843 				 * fast recovery.  Refer to Fall and Floyd's
13844 				 * paper "Simulation-based Comparisons of
13845 				 * Tahoe, Reno and SACK TCP" (in CCR?)
13846 				 * This is a best current practise.
13847 				 */
13848 				tcp->tcp_snd_burst = TCP_CWND_SS;
13849 
13850 				/*
13851 				 * For SACK:
13852 				 * Calculate tcp_pipe, which is the
13853 				 * estimated number of bytes in
13854 				 * network.
13855 				 *
13856 				 * tcp_fack is the highest sack'ed seq num
13857 				 * TCP has received.
13858 				 *
13859 				 * tcp_pipe is explained in the above quoted
13860 				 * Fall and Floyd's paper.  tcp_fack is
13861 				 * explained in Mathis and Mahdavi's
13862 				 * "Forward Acknowledgment: Refining TCP
13863 				 * Congestion Control" in SIGCOMM '96.
13864 				 */
13865 				if (tcp->tcp_snd_sack_ok) {
13866 					ASSERT(tcp->tcp_sack_info != NULL);
13867 					if (tcp->tcp_notsack_list != NULL) {
13868 						tcp->tcp_pipe = tcp->tcp_snxt -
13869 						    tcp->tcp_fack;
13870 						tcp->tcp_sack_snxt = seg_ack;
13871 						flags |= TH_NEED_SACK_REXMIT;
13872 					} else {
13873 						/*
13874 						 * Always initialize tcp_pipe
13875 						 * even though we don't have
13876 						 * any SACK info.  If later
13877 						 * we get SACK info and
13878 						 * tcp_pipe is not initialized,
13879 						 * funny things will happen.
13880 						 */
13881 						tcp->tcp_pipe =
13882 						    tcp->tcp_cwnd_ssthresh;
13883 					}
13884 				} else {
13885 					flags |= TH_REXMIT_NEEDED;
13886 				} /* tcp_snd_sack_ok */
13887 
13888 				} else {
13889 					/*
13890 					 * Here we perform congestion
13891 					 * avoidance, but NOT slow start.
13892 					 * This is known as the Fast
13893 					 * Recovery Algorithm.
13894 					 */
13895 					if (tcp->tcp_snd_sack_ok &&
13896 					    tcp->tcp_notsack_list != NULL) {
13897 						flags |= TH_NEED_SACK_REXMIT;
13898 						tcp->tcp_pipe -= mss;
13899 						if (tcp->tcp_pipe < 0)
13900 							tcp->tcp_pipe = 0;
13901 					} else {
13902 					/*
13903 					 * We know that one more packet has
13904 					 * left the pipe thus we can update
13905 					 * cwnd.
13906 					 */
13907 					cwnd = tcp->tcp_cwnd + mss;
13908 					if (cwnd > tcp->tcp_cwnd_max)
13909 						cwnd = tcp->tcp_cwnd_max;
13910 					tcp->tcp_cwnd = cwnd;
13911 					if (tcp->tcp_unsent > 0)
13912 						flags |= TH_XMIT_NEEDED;
13913 					}
13914 				}
13915 			}
13916 		} else if (tcp->tcp_zero_win_probe) {
13917 			/*
13918 			 * If the window has opened, need to arrange
13919 			 * to send additional data.
13920 			 */
13921 			if (new_swnd != 0) {
13922 				/* tcp_suna != tcp_snxt */
13923 				/* Packet contains a window update */
13924 				BUMP_MIB(&tcp_mib, tcpInWinUpdate);
13925 				tcp->tcp_zero_win_probe = 0;
13926 				tcp->tcp_timer_backoff = 0;
13927 				tcp->tcp_ms_we_have_waited = 0;
13928 
13929 				/*
13930 				 * Transmit starting with tcp_suna since
13931 				 * the one byte probe is not ack'ed.
13932 				 * If TCP has sent more than one identical
13933 				 * probe, tcp_rexmit will be set.  That means
13934 				 * tcp_ss_rexmit() will send out the one
13935 				 * byte along with new data.  Otherwise,
13936 				 * fake the retransmission.
13937 				 */
13938 				flags |= TH_XMIT_NEEDED;
13939 				if (!tcp->tcp_rexmit) {
13940 					tcp->tcp_rexmit = B_TRUE;
13941 					tcp->tcp_dupack_cnt = 0;
13942 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
13943 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
13944 				}
13945 			}
13946 		}
13947 		goto swnd_update;
13948 	}
13949 
13950 	/*
13951 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
13952 	 * If the ACK value acks something that we have not yet sent, it might
13953 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
13954 	 * other side.
13955 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
13956 	 * state is handled above, so we can always just drop the segment and
13957 	 * send an ACK here.
13958 	 *
13959 	 * Should we send ACKs in response to ACK only segments?
13960 	 */
13961 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13962 		BUMP_MIB(&tcp_mib, tcpInAckUnsent);
13963 		/* drop the received segment */
13964 		freemsg(mp);
13965 
13966 		/*
13967 		 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
13968 		 * greater than 0, check if the number of such
13969 		 * bogus ACks is greater than that count.  If yes,
13970 		 * don't send back any ACK.  This prevents TCP from
13971 		 * getting into an ACK storm if somehow an attacker
13972 		 * successfully spoofs an acceptable segment to our
13973 		 * peer.
13974 		 */
13975 		if (tcp_drop_ack_unsent_cnt > 0 &&
13976 		    ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) {
13977 			TCP_STAT(tcp_in_ack_unsent_drop);
13978 			return;
13979 		}
13980 		mp = tcp_ack_mp(tcp);
13981 		if (mp != NULL) {
13982 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
13983 			BUMP_LOCAL(tcp->tcp_obsegs);
13984 			BUMP_MIB(&tcp_mib, tcpOutAck);
13985 			tcp_send_data(tcp, tcp->tcp_wq, mp);
13986 		}
13987 		return;
13988 	}
13989 
13990 	/*
13991 	 * TCP gets a new ACK, update the notsack'ed list to delete those
13992 	 * blocks that are covered by this ACK.
13993 	 */
13994 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
13995 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
13996 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
13997 	}
13998 
13999 	/*
14000 	 * If we got an ACK after fast retransmit, check to see
14001 	 * if it is a partial ACK.  If it is not and the congestion
14002 	 * window was inflated to account for the other side's
14003 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
14004 	 */
14005 	if (tcp->tcp_dupack_cnt >= tcp_dupack_fast_retransmit) {
14006 		ASSERT(tcp->tcp_rexmit == B_FALSE);
14007 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
14008 			tcp->tcp_dupack_cnt = 0;
14009 			/*
14010 			 * Restore the orig tcp_cwnd_ssthresh after
14011 			 * fast retransmit phase.
14012 			 */
14013 			if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
14014 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
14015 			}
14016 			tcp->tcp_rexmit_max = seg_ack;
14017 			tcp->tcp_cwnd_cnt = 0;
14018 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14019 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14020 
14021 			/*
14022 			 * Remove all notsack info to avoid confusion with
14023 			 * the next fast retrasnmit/recovery phase.
14024 			 */
14025 			if (tcp->tcp_snd_sack_ok &&
14026 			    tcp->tcp_notsack_list != NULL) {
14027 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
14028 			}
14029 		} else {
14030 			if (tcp->tcp_snd_sack_ok &&
14031 			    tcp->tcp_notsack_list != NULL) {
14032 				flags |= TH_NEED_SACK_REXMIT;
14033 				tcp->tcp_pipe -= mss;
14034 				if (tcp->tcp_pipe < 0)
14035 					tcp->tcp_pipe = 0;
14036 			} else {
14037 				/*
14038 				 * Hoe's algorithm:
14039 				 *
14040 				 * Retransmit the unack'ed segment and
14041 				 * restart fast recovery.  Note that we
14042 				 * need to scale back tcp_cwnd to the
14043 				 * original value when we started fast
14044 				 * recovery.  This is to prevent overly
14045 				 * aggressive behaviour in sending new
14046 				 * segments.
14047 				 */
14048 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
14049 					tcp_dupack_fast_retransmit * mss;
14050 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
14051 				flags |= TH_REXMIT_NEEDED;
14052 			}
14053 		}
14054 	} else {
14055 		tcp->tcp_dupack_cnt = 0;
14056 		if (tcp->tcp_rexmit) {
14057 			/*
14058 			 * TCP is retranmitting.  If the ACK ack's all
14059 			 * outstanding data, update tcp_rexmit_max and
14060 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
14061 			 * to the correct value.
14062 			 *
14063 			 * Note that SEQ_LEQ() is used.  This is to avoid
14064 			 * unnecessary fast retransmit caused by dup ACKs
14065 			 * received when TCP does slow start retransmission
14066 			 * after a time out.  During this phase, TCP may
14067 			 * send out segments which are already received.
14068 			 * This causes dup ACKs to be sent back.
14069 			 */
14070 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
14071 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
14072 					tcp->tcp_rexmit_nxt = seg_ack;
14073 				}
14074 				if (seg_ack != tcp->tcp_rexmit_max) {
14075 					flags |= TH_XMIT_NEEDED;
14076 				}
14077 			} else {
14078 				tcp->tcp_rexmit = B_FALSE;
14079 				tcp->tcp_xmit_zc_clean = B_FALSE;
14080 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14081 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
14082 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14083 			}
14084 			tcp->tcp_ms_we_have_waited = 0;
14085 		}
14086 	}
14087 
14088 	BUMP_MIB(&tcp_mib, tcpInAckSegs);
14089 	UPDATE_MIB(&tcp_mib, tcpInAckBytes, bytes_acked);
14090 	tcp->tcp_suna = seg_ack;
14091 	if (tcp->tcp_zero_win_probe != 0) {
14092 		tcp->tcp_zero_win_probe = 0;
14093 		tcp->tcp_timer_backoff = 0;
14094 	}
14095 
14096 	/*
14097 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
14098 	 * Note that it cannot be the SYN being ack'ed.  The code flow
14099 	 * will not reach here.
14100 	 */
14101 	if (mp1 == NULL) {
14102 		goto fin_acked;
14103 	}
14104 
14105 	/*
14106 	 * Update the congestion window.
14107 	 *
14108 	 * If TCP is not ECN capable or TCP is ECN capable but the
14109 	 * congestion experience bit is not set, increase the tcp_cwnd as
14110 	 * usual.
14111 	 */
14112 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
14113 		cwnd = tcp->tcp_cwnd;
14114 		add = mss;
14115 
14116 		if (cwnd >= tcp->tcp_cwnd_ssthresh) {
14117 			/*
14118 			 * This is to prevent an increase of less than 1 MSS of
14119 			 * tcp_cwnd.  With partial increase, tcp_wput_data()
14120 			 * may send out tinygrams in order to preserve mblk
14121 			 * boundaries.
14122 			 *
14123 			 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
14124 			 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
14125 			 * increased by 1 MSS for every RTTs.
14126 			 */
14127 			if (tcp->tcp_cwnd_cnt <= 0) {
14128 				tcp->tcp_cwnd_cnt = cwnd + add;
14129 			} else {
14130 				tcp->tcp_cwnd_cnt -= add;
14131 				add = 0;
14132 			}
14133 		}
14134 		tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
14135 	}
14136 
14137 	/* See if the latest urgent data has been acknowledged */
14138 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
14139 	    SEQ_GT(seg_ack, tcp->tcp_urg))
14140 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
14141 
14142 	/* Can we update the RTT estimates? */
14143 	if (tcp->tcp_snd_ts_ok) {
14144 		/* Ignore zero timestamp echo-reply. */
14145 		if (tcpopt.tcp_opt_ts_ecr != 0) {
14146 			tcp_set_rto(tcp, (int32_t)lbolt -
14147 			    (int32_t)tcpopt.tcp_opt_ts_ecr);
14148 		}
14149 
14150 		/* If needed, restart the timer. */
14151 		if (tcp->tcp_set_timer == 1) {
14152 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14153 			tcp->tcp_set_timer = 0;
14154 		}
14155 		/*
14156 		 * Update tcp_csuna in case the other side stops sending
14157 		 * us timestamps.
14158 		 */
14159 		tcp->tcp_csuna = tcp->tcp_snxt;
14160 	} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
14161 		/*
14162 		 * An ACK sequence we haven't seen before, so get the RTT
14163 		 * and update the RTO. But first check if the timestamp is
14164 		 * valid to use.
14165 		 */
14166 		if ((mp1->b_next != NULL) &&
14167 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next)))
14168 			tcp_set_rto(tcp, (int32_t)lbolt -
14169 			    (int32_t)(intptr_t)mp1->b_prev);
14170 		else
14171 			BUMP_MIB(&tcp_mib, tcpRttNoUpdate);
14172 
14173 		/* Remeber the last sequence to be ACKed */
14174 		tcp->tcp_csuna = seg_ack;
14175 		if (tcp->tcp_set_timer == 1) {
14176 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14177 			tcp->tcp_set_timer = 0;
14178 		}
14179 	} else {
14180 		BUMP_MIB(&tcp_mib, tcpRttNoUpdate);
14181 	}
14182 
14183 	/* Eat acknowledged bytes off the xmit queue. */
14184 	for (;;) {
14185 		mblk_t	*mp2;
14186 		uchar_t	*wptr;
14187 
14188 		wptr = mp1->b_wptr;
14189 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
14190 		bytes_acked -= (int)(wptr - mp1->b_rptr);
14191 		if (bytes_acked < 0) {
14192 			mp1->b_rptr = wptr + bytes_acked;
14193 			/*
14194 			 * Set a new timestamp if all the bytes timed by the
14195 			 * old timestamp have been ack'ed.
14196 			 */
14197 			if (SEQ_GT(seg_ack,
14198 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
14199 				mp1->b_prev = (mblk_t *)(uintptr_t)lbolt;
14200 				mp1->b_next = NULL;
14201 			}
14202 			break;
14203 		}
14204 		mp1->b_next = NULL;
14205 		mp1->b_prev = NULL;
14206 		mp2 = mp1;
14207 		mp1 = mp1->b_cont;
14208 
14209 		/*
14210 		 * This notification is required for some zero-copy
14211 		 * clients to maintain a copy semantic. After the data
14212 		 * is ack'ed, client is safe to modify or reuse the buffer.
14213 		 */
14214 		if (tcp->tcp_snd_zcopy_aware &&
14215 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
14216 			tcp_zcopy_notify(tcp);
14217 		freeb(mp2);
14218 		if (bytes_acked == 0) {
14219 			if (mp1 == NULL) {
14220 				/* Everything is ack'ed, clear the tail. */
14221 				tcp->tcp_xmit_tail = NULL;
14222 				/*
14223 				 * Cancel the timer unless we are still
14224 				 * waiting for an ACK for the FIN packet.
14225 				 */
14226 				if (tcp->tcp_timer_tid != 0 &&
14227 				    tcp->tcp_snxt == tcp->tcp_suna) {
14228 					(void) TCP_TIMER_CANCEL(tcp,
14229 					    tcp->tcp_timer_tid);
14230 					tcp->tcp_timer_tid = 0;
14231 				}
14232 				goto pre_swnd_update;
14233 			}
14234 			if (mp2 != tcp->tcp_xmit_tail)
14235 				break;
14236 			tcp->tcp_xmit_tail = mp1;
14237 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
14238 			    (uintptr_t)INT_MAX);
14239 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
14240 			    mp1->b_rptr);
14241 			break;
14242 		}
14243 		if (mp1 == NULL) {
14244 			/*
14245 			 * More was acked but there is nothing more
14246 			 * outstanding.  This means that the FIN was
14247 			 * just acked or that we're talking to a clown.
14248 			 */
14249 fin_acked:
14250 			ASSERT(tcp->tcp_fin_sent);
14251 			tcp->tcp_xmit_tail = NULL;
14252 			if (tcp->tcp_fin_sent) {
14253 				/* FIN was acked - making progress */
14254 				if (tcp->tcp_ipversion == IPV6_VERSION &&
14255 				    !tcp->tcp_fin_acked)
14256 					tcp->tcp_ip_forward_progress = B_TRUE;
14257 				tcp->tcp_fin_acked = B_TRUE;
14258 				if (tcp->tcp_linger_tid != 0 &&
14259 				    TCP_TIMER_CANCEL(tcp,
14260 					tcp->tcp_linger_tid) >= 0) {
14261 					tcp_stop_lingering(tcp);
14262 				}
14263 			} else {
14264 				/*
14265 				 * We should never get here because
14266 				 * we have already checked that the
14267 				 * number of bytes ack'ed should be
14268 				 * smaller than or equal to what we
14269 				 * have sent so far (it is the
14270 				 * acceptability check of the ACK).
14271 				 * We can only get here if the send
14272 				 * queue is corrupted.
14273 				 *
14274 				 * Terminate the connection and
14275 				 * panic the system.  It is better
14276 				 * for us to panic instead of
14277 				 * continuing to avoid other disaster.
14278 				 */
14279 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
14280 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
14281 				panic("Memory corruption "
14282 				    "detected for connection %s.",
14283 				    tcp_display(tcp, NULL,
14284 					DISP_ADDR_AND_PORT));
14285 				/*NOTREACHED*/
14286 			}
14287 			goto pre_swnd_update;
14288 		}
14289 		ASSERT(mp2 != tcp->tcp_xmit_tail);
14290 	}
14291 	if (tcp->tcp_unsent) {
14292 		flags |= TH_XMIT_NEEDED;
14293 	}
14294 pre_swnd_update:
14295 	tcp->tcp_xmit_head = mp1;
14296 swnd_update:
14297 	/*
14298 	 * The following check is different from most other implementations.
14299 	 * For bi-directional transfer, when segments are dropped, the
14300 	 * "normal" check will not accept a window update in those
14301 	 * retransmitted segemnts.  Failing to do that, TCP may send out
14302 	 * segments which are outside receiver's window.  As TCP accepts
14303 	 * the ack in those retransmitted segments, if the window update in
14304 	 * the same segment is not accepted, TCP will incorrectly calculates
14305 	 * that it can send more segments.  This can create a deadlock
14306 	 * with the receiver if its window becomes zero.
14307 	 */
14308 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
14309 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
14310 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
14311 		/*
14312 		 * The criteria for update is:
14313 		 *
14314 		 * 1. the segment acknowledges some data.  Or
14315 		 * 2. the segment is new, i.e. it has a higher seq num. Or
14316 		 * 3. the segment is not old and the advertised window is
14317 		 * larger than the previous advertised window.
14318 		 */
14319 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
14320 			flags |= TH_XMIT_NEEDED;
14321 		tcp->tcp_swnd = new_swnd;
14322 		if (new_swnd > tcp->tcp_max_swnd)
14323 			tcp->tcp_max_swnd = new_swnd;
14324 		tcp->tcp_swl1 = seg_seq;
14325 		tcp->tcp_swl2 = seg_ack;
14326 	}
14327 est:
14328 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
14329 
14330 		switch (tcp->tcp_state) {
14331 		case TCPS_FIN_WAIT_1:
14332 			if (tcp->tcp_fin_acked) {
14333 				tcp->tcp_state = TCPS_FIN_WAIT_2;
14334 				/*
14335 				 * We implement the non-standard BSD/SunOS
14336 				 * FIN_WAIT_2 flushing algorithm.
14337 				 * If there is no user attached to this
14338 				 * TCP endpoint, then this TCP struct
14339 				 * could hang around forever in FIN_WAIT_2
14340 				 * state if the peer forgets to send us
14341 				 * a FIN.  To prevent this, we wait only
14342 				 * 2*MSL (a convenient time value) for
14343 				 * the FIN to arrive.  If it doesn't show up,
14344 				 * we flush the TCP endpoint.  This algorithm,
14345 				 * though a violation of RFC-793, has worked
14346 				 * for over 10 years in BSD systems.
14347 				 * Note: SunOS 4.x waits 675 seconds before
14348 				 * flushing the FIN_WAIT_2 connection.
14349 				 */
14350 				TCP_TIMER_RESTART(tcp,
14351 				    tcp_fin_wait_2_flush_interval);
14352 			}
14353 			break;
14354 		case TCPS_FIN_WAIT_2:
14355 			break;	/* Shutdown hook? */
14356 		case TCPS_LAST_ACK:
14357 			freemsg(mp);
14358 			if (tcp->tcp_fin_acked) {
14359 				(void) tcp_clean_death(tcp, 0, 19);
14360 				return;
14361 			}
14362 			goto xmit_check;
14363 		case TCPS_CLOSING:
14364 			if (tcp->tcp_fin_acked) {
14365 				tcp->tcp_state = TCPS_TIME_WAIT;
14366 				/*
14367 				 * Unconditionally clear the exclusive binding
14368 				 * bit so this TIME-WAIT connection won't
14369 				 * interfere with new ones.
14370 				 */
14371 				tcp->tcp_exclbind = 0;
14372 				if (!TCP_IS_DETACHED(tcp)) {
14373 					TCP_TIMER_RESTART(tcp,
14374 					    tcp_time_wait_interval);
14375 				} else {
14376 					tcp_time_wait_append(tcp);
14377 					TCP_DBGSTAT(tcp_rput_time_wait);
14378 				}
14379 			}
14380 			/*FALLTHRU*/
14381 		case TCPS_CLOSE_WAIT:
14382 			freemsg(mp);
14383 			goto xmit_check;
14384 		default:
14385 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
14386 			break;
14387 		}
14388 	}
14389 	if (flags & TH_FIN) {
14390 		/* Make sure we ack the fin */
14391 		flags |= TH_ACK_NEEDED;
14392 		if (!tcp->tcp_fin_rcvd) {
14393 			tcp->tcp_fin_rcvd = B_TRUE;
14394 			tcp->tcp_rnxt++;
14395 			tcph = tcp->tcp_tcph;
14396 			U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14397 
14398 			/*
14399 			 * Generate the ordrel_ind at the end unless we
14400 			 * are an eager guy.
14401 			 * In the eager case tcp_rsrv will do this when run
14402 			 * after tcp_accept is done.
14403 			 */
14404 			if (tcp->tcp_listener == NULL &&
14405 			    !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding))
14406 				flags |= TH_ORDREL_NEEDED;
14407 			switch (tcp->tcp_state) {
14408 			case TCPS_SYN_RCVD:
14409 			case TCPS_ESTABLISHED:
14410 				tcp->tcp_state = TCPS_CLOSE_WAIT;
14411 				/* Keepalive? */
14412 				break;
14413 			case TCPS_FIN_WAIT_1:
14414 				if (!tcp->tcp_fin_acked) {
14415 					tcp->tcp_state = TCPS_CLOSING;
14416 					break;
14417 				}
14418 				/* FALLTHRU */
14419 			case TCPS_FIN_WAIT_2:
14420 				tcp->tcp_state = TCPS_TIME_WAIT;
14421 				/*
14422 				 * Unconditionally clear the exclusive binding
14423 				 * bit so this TIME-WAIT connection won't
14424 				 * interfere with new ones.
14425 				 */
14426 				tcp->tcp_exclbind = 0;
14427 				if (!TCP_IS_DETACHED(tcp)) {
14428 					TCP_TIMER_RESTART(tcp,
14429 					    tcp_time_wait_interval);
14430 				} else {
14431 					tcp_time_wait_append(tcp);
14432 					TCP_DBGSTAT(tcp_rput_time_wait);
14433 				}
14434 				if (seg_len) {
14435 					/*
14436 					 * implies data piggybacked on FIN.
14437 					 * break to handle data.
14438 					 */
14439 					break;
14440 				}
14441 				freemsg(mp);
14442 				goto ack_check;
14443 			}
14444 		}
14445 	}
14446 	if (mp == NULL)
14447 		goto xmit_check;
14448 	if (seg_len == 0) {
14449 		freemsg(mp);
14450 		goto xmit_check;
14451 	}
14452 	if (mp->b_rptr == mp->b_wptr) {
14453 		/*
14454 		 * The header has been consumed, so we remove the
14455 		 * zero-length mblk here.
14456 		 */
14457 		mp1 = mp;
14458 		mp = mp->b_cont;
14459 		freeb(mp1);
14460 	}
14461 	tcph = tcp->tcp_tcph;
14462 	tcp->tcp_rack_cnt++;
14463 	{
14464 		uint32_t cur_max;
14465 
14466 		cur_max = tcp->tcp_rack_cur_max;
14467 		if (tcp->tcp_rack_cnt >= cur_max) {
14468 			/*
14469 			 * We have more unacked data than we should - send
14470 			 * an ACK now.
14471 			 */
14472 			flags |= TH_ACK_NEEDED;
14473 			cur_max++;
14474 			if (cur_max > tcp->tcp_rack_abs_max)
14475 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
14476 			else
14477 				tcp->tcp_rack_cur_max = cur_max;
14478 		} else if (TCP_IS_DETACHED(tcp)) {
14479 			/* We don't have an ACK timer for detached TCP. */
14480 			flags |= TH_ACK_NEEDED;
14481 		} else if (seg_len < mss) {
14482 			/*
14483 			 * If we get a segment that is less than an mss, and we
14484 			 * already have unacknowledged data, and the amount
14485 			 * unacknowledged is not a multiple of mss, then we
14486 			 * better generate an ACK now.  Otherwise, this may be
14487 			 * the tail piece of a transaction, and we would rather
14488 			 * wait for the response.
14489 			 */
14490 			uint32_t udif;
14491 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
14492 			    (uintptr_t)INT_MAX);
14493 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
14494 			if (udif && (udif % mss))
14495 				flags |= TH_ACK_NEEDED;
14496 			else
14497 				flags |= TH_ACK_TIMER_NEEDED;
14498 		} else {
14499 			/* Start delayed ack timer */
14500 			flags |= TH_ACK_TIMER_NEEDED;
14501 		}
14502 	}
14503 	tcp->tcp_rnxt += seg_len;
14504 	U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14505 
14506 	/* Update SACK list */
14507 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
14508 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
14509 		    &(tcp->tcp_num_sack_blk));
14510 	}
14511 
14512 	if (tcp->tcp_urp_mp) {
14513 		tcp->tcp_urp_mp->b_cont = mp;
14514 		mp = tcp->tcp_urp_mp;
14515 		tcp->tcp_urp_mp = NULL;
14516 		/* Ready for a new signal. */
14517 		tcp->tcp_urp_last_valid = B_FALSE;
14518 #ifdef DEBUG
14519 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14520 		    "tcp_rput: sending exdata_ind %s",
14521 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14522 #endif /* DEBUG */
14523 	}
14524 
14525 	/*
14526 	 * Check for ancillary data changes compared to last segment.
14527 	 */
14528 	if (tcp->tcp_ipv6_recvancillary != 0) {
14529 		mp = tcp_rput_add_ancillary(tcp, mp, &ipp);
14530 		if (mp == NULL)
14531 			return;
14532 	}
14533 
14534 	if (tcp->tcp_listener || tcp->tcp_hard_binding) {
14535 		/*
14536 		 * Side queue inbound data until the accept happens.
14537 		 * tcp_accept/tcp_rput drains this when the accept happens.
14538 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
14539 		 * T_EXDATA_IND) it is queued on b_next.
14540 		 * XXX Make urgent data use this. Requires:
14541 		 *	Removing tcp_listener check for TH_URG
14542 		 *	Making M_PCPROTO and MARK messages skip the eager case
14543 		 */
14544 
14545 		if (tcp->tcp_kssl_pending) {
14546 			tcp_kssl_input(tcp, mp);
14547 		} else {
14548 			tcp_rcv_enqueue(tcp, mp, seg_len);
14549 		}
14550 	} else {
14551 		if (mp->b_datap->db_type != M_DATA ||
14552 		    (flags & TH_MARKNEXT_NEEDED)) {
14553 			if (tcp->tcp_rcv_list != NULL) {
14554 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14555 			}
14556 			ASSERT(tcp->tcp_rcv_list == NULL ||
14557 			    tcp->tcp_fused_sigurg);
14558 			if (flags & TH_MARKNEXT_NEEDED) {
14559 #ifdef DEBUG
14560 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14561 				    "tcp_rput: sending MSGMARKNEXT %s",
14562 				    tcp_display(tcp, NULL,
14563 				    DISP_PORT_ONLY));
14564 #endif /* DEBUG */
14565 				mp->b_flag |= MSGMARKNEXT;
14566 				flags &= ~TH_MARKNEXT_NEEDED;
14567 			}
14568 
14569 			/* Does this need SSL processing first? */
14570 			if ((tcp->tcp_kssl_ctx  != NULL) &&
14571 			    (DB_TYPE(mp) == M_DATA)) {
14572 				tcp_kssl_input(tcp, mp);
14573 			} else {
14574 				putnext(tcp->tcp_rq, mp);
14575 				if (!canputnext(tcp->tcp_rq))
14576 					tcp->tcp_rwnd -= seg_len;
14577 			}
14578 		} else if ((flags & (TH_PUSH|TH_FIN)) ||
14579 		    tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) {
14580 			if (tcp->tcp_rcv_list != NULL) {
14581 				/*
14582 				 * Enqueue the new segment first and then
14583 				 * call tcp_rcv_drain() to send all data
14584 				 * up.  The other way to do this is to
14585 				 * send all queued data up and then call
14586 				 * putnext() to send the new segment up.
14587 				 * This way can remove the else part later
14588 				 * on.
14589 				 *
14590 				 * We don't this to avoid one more call to
14591 				 * canputnext() as tcp_rcv_drain() needs to
14592 				 * call canputnext().
14593 				 */
14594 				tcp_rcv_enqueue(tcp, mp, seg_len);
14595 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14596 			} else {
14597 				/* Does this need SSL processing first? */
14598 				if ((tcp->tcp_kssl_ctx  != NULL) &&
14599 				    (DB_TYPE(mp) == M_DATA)) {
14600 					tcp_kssl_input(tcp, mp);
14601 				} else {
14602 					putnext(tcp->tcp_rq, mp);
14603 					if (!canputnext(tcp->tcp_rq))
14604 						tcp->tcp_rwnd -= seg_len;
14605 				}
14606 			}
14607 		} else {
14608 			/*
14609 			 * Enqueue all packets when processing an mblk
14610 			 * from the co queue and also enqueue normal packets.
14611 			 */
14612 			tcp_rcv_enqueue(tcp, mp, seg_len);
14613 		}
14614 		/*
14615 		 * Make sure the timer is running if we have data waiting
14616 		 * for a push bit. This provides resiliency against
14617 		 * implementations that do not correctly generate push bits.
14618 		 */
14619 		if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) {
14620 			/*
14621 			 * The connection may be closed at this point, so don't
14622 			 * do anything for a detached tcp.
14623 			 */
14624 			if (!TCP_IS_DETACHED(tcp))
14625 				tcp->tcp_push_tid = TCP_TIMER(tcp,
14626 				    tcp_push_timer,
14627 				    MSEC_TO_TICK(tcp_push_timer_interval));
14628 		}
14629 	}
14630 xmit_check:
14631 	/* Is there anything left to do? */
14632 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
14633 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
14634 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
14635 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
14636 		goto done;
14637 
14638 	/* Any transmit work to do and a non-zero window? */
14639 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
14640 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
14641 		if (flags & TH_REXMIT_NEEDED) {
14642 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
14643 
14644 			BUMP_MIB(&tcp_mib, tcpOutFastRetrans);
14645 			if (snd_size > mss)
14646 				snd_size = mss;
14647 			if (snd_size > tcp->tcp_swnd)
14648 				snd_size = tcp->tcp_swnd;
14649 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
14650 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
14651 			    B_TRUE);
14652 
14653 			if (mp1 != NULL) {
14654 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
14655 				tcp->tcp_csuna = tcp->tcp_snxt;
14656 				BUMP_MIB(&tcp_mib, tcpRetransSegs);
14657 				UPDATE_MIB(&tcp_mib, tcpRetransBytes, snd_size);
14658 				TCP_RECORD_TRACE(tcp, mp1,
14659 				    TCP_TRACE_SEND_PKT);
14660 				tcp_send_data(tcp, tcp->tcp_wq, mp1);
14661 			}
14662 		}
14663 		if (flags & TH_NEED_SACK_REXMIT) {
14664 			tcp_sack_rxmit(tcp, &flags);
14665 		}
14666 		/*
14667 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
14668 		 * out new segment.  Note that tcp_rexmit should not be
14669 		 * set, otherwise TH_LIMIT_XMIT should not be set.
14670 		 */
14671 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
14672 			if (!tcp->tcp_rexmit) {
14673 				tcp_wput_data(tcp, NULL, B_FALSE);
14674 			} else {
14675 				tcp_ss_rexmit(tcp);
14676 			}
14677 		}
14678 		/*
14679 		 * Adjust tcp_cwnd back to normal value after sending
14680 		 * new data segments.
14681 		 */
14682 		if (flags & TH_LIMIT_XMIT) {
14683 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
14684 			/*
14685 			 * This will restart the timer.  Restarting the
14686 			 * timer is used to avoid a timeout before the
14687 			 * limited transmitted segment's ACK gets back.
14688 			 */
14689 			if (tcp->tcp_xmit_head != NULL)
14690 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
14691 		}
14692 
14693 		/* Anything more to do? */
14694 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
14695 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
14696 			goto done;
14697 	}
14698 ack_check:
14699 	if (flags & TH_SEND_URP_MARK) {
14700 		ASSERT(tcp->tcp_urp_mark_mp);
14701 		/*
14702 		 * Send up any queued data and then send the mark message
14703 		 */
14704 		if (tcp->tcp_rcv_list != NULL) {
14705 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14706 		}
14707 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
14708 
14709 		mp1 = tcp->tcp_urp_mark_mp;
14710 		tcp->tcp_urp_mark_mp = NULL;
14711 #ifdef DEBUG
14712 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14713 		    "tcp_rput: sending zero-length %s %s",
14714 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
14715 		    "MSGNOTMARKNEXT"),
14716 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14717 #endif /* DEBUG */
14718 		putnext(tcp->tcp_rq, mp1);
14719 		flags &= ~TH_SEND_URP_MARK;
14720 	}
14721 	if (flags & TH_ACK_NEEDED) {
14722 		/*
14723 		 * Time to send an ack for some reason.
14724 		 */
14725 		mp1 = tcp_ack_mp(tcp);
14726 
14727 		if (mp1 != NULL) {
14728 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
14729 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
14730 			BUMP_LOCAL(tcp->tcp_obsegs);
14731 			BUMP_MIB(&tcp_mib, tcpOutAck);
14732 		}
14733 		if (tcp->tcp_ack_tid != 0) {
14734 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
14735 			tcp->tcp_ack_tid = 0;
14736 		}
14737 	}
14738 	if (flags & TH_ACK_TIMER_NEEDED) {
14739 		/*
14740 		 * Arrange for deferred ACK or push wait timeout.
14741 		 * Start timer if it is not already running.
14742 		 */
14743 		if (tcp->tcp_ack_tid == 0) {
14744 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
14745 			    MSEC_TO_TICK(tcp->tcp_localnet ?
14746 			    (clock_t)tcp_local_dack_interval :
14747 			    (clock_t)tcp_deferred_ack_interval));
14748 		}
14749 	}
14750 	if (flags & TH_ORDREL_NEEDED) {
14751 		/*
14752 		 * Send up the ordrel_ind unless we are an eager guy.
14753 		 * In the eager case tcp_rsrv will do this when run
14754 		 * after tcp_accept is done.
14755 		 */
14756 		ASSERT(tcp->tcp_listener == NULL);
14757 		if (tcp->tcp_rcv_list != NULL) {
14758 			/*
14759 			 * Push any mblk(s) enqueued from co processing.
14760 			 */
14761 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14762 		}
14763 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
14764 		if ((mp1 = mi_tpi_ordrel_ind()) != NULL) {
14765 			tcp->tcp_ordrel_done = B_TRUE;
14766 			putnext(tcp->tcp_rq, mp1);
14767 			if (tcp->tcp_deferred_clean_death) {
14768 				/*
14769 				 * tcp_clean_death was deferred
14770 				 * for T_ORDREL_IND - do it now
14771 				 */
14772 				(void) tcp_clean_death(tcp,
14773 				    tcp->tcp_client_errno, 20);
14774 				tcp->tcp_deferred_clean_death =	B_FALSE;
14775 			}
14776 		} else {
14777 			/*
14778 			 * Run the orderly release in the
14779 			 * service routine.
14780 			 */
14781 			qenable(tcp->tcp_rq);
14782 			/*
14783 			 * Caveat(XXX): The machine may be so
14784 			 * overloaded that tcp_rsrv() is not scheduled
14785 			 * until after the endpoint has transitioned
14786 			 * to TCPS_TIME_WAIT
14787 			 * and tcp_time_wait_interval expires. Then
14788 			 * tcp_timer() will blow away state in tcp_t
14789 			 * and T_ORDREL_IND will never be delivered
14790 			 * upstream. Unlikely but potentially
14791 			 * a problem.
14792 			 */
14793 		}
14794 	}
14795 done:
14796 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
14797 }
14798 
14799 /*
14800  * This function does PAWS protection check. Returns B_TRUE if the
14801  * segment passes the PAWS test, else returns B_FALSE.
14802  */
14803 boolean_t
14804 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp)
14805 {
14806 	uint8_t	flags;
14807 	int	options;
14808 	uint8_t *up;
14809 
14810 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
14811 	/*
14812 	 * If timestamp option is aligned nicely, get values inline,
14813 	 * otherwise call general routine to parse.  Only do that
14814 	 * if timestamp is the only option.
14815 	 */
14816 	if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH +
14817 	    TCPOPT_REAL_TS_LEN &&
14818 	    OK_32PTR((up = ((uint8_t *)tcph) +
14819 	    TCP_MIN_HEADER_LENGTH)) &&
14820 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
14821 		tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
14822 		tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
14823 
14824 		options = TCP_OPT_TSTAMP_PRESENT;
14825 	} else {
14826 		if (tcp->tcp_snd_sack_ok) {
14827 			tcpoptp->tcp = tcp;
14828 		} else {
14829 			tcpoptp->tcp = NULL;
14830 		}
14831 		options = tcp_parse_options(tcph, tcpoptp);
14832 	}
14833 
14834 	if (options & TCP_OPT_TSTAMP_PRESENT) {
14835 		/*
14836 		 * Do PAWS per RFC 1323 section 4.2.  Accept RST
14837 		 * regardless of the timestamp, page 18 RFC 1323.bis.
14838 		 */
14839 		if ((flags & TH_RST) == 0 &&
14840 		    TSTMP_LT(tcpoptp->tcp_opt_ts_val,
14841 		    tcp->tcp_ts_recent)) {
14842 			if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt +
14843 			    PAWS_TIMEOUT)) {
14844 				/* This segment is not acceptable. */
14845 				return (B_FALSE);
14846 			} else {
14847 				/*
14848 				 * Connection has been idle for
14849 				 * too long.  Reset the timestamp
14850 				 * and assume the segment is valid.
14851 				 */
14852 				tcp->tcp_ts_recent =
14853 				    tcpoptp->tcp_opt_ts_val;
14854 			}
14855 		}
14856 	} else {
14857 		/*
14858 		 * If we don't get a timestamp on every packet, we
14859 		 * figure we can't really trust 'em, so we stop sending
14860 		 * and parsing them.
14861 		 */
14862 		tcp->tcp_snd_ts_ok = B_FALSE;
14863 
14864 		tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
14865 		tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
14866 		tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4);
14867 		tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN);
14868 		if (tcp->tcp_snd_sack_ok) {
14869 			ASSERT(tcp->tcp_sack_info != NULL);
14870 			tcp->tcp_max_sack_blk = 4;
14871 		}
14872 	}
14873 	return (B_TRUE);
14874 }
14875 
14876 /*
14877  * Attach ancillary data to a received TCP segments for the
14878  * ancillary pieces requested by the application that are
14879  * different than they were in the previous data segment.
14880  *
14881  * Save the "current" values once memory allocation is ok so that
14882  * when memory allocation fails we can just wait for the next data segment.
14883  */
14884 static mblk_t *
14885 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp)
14886 {
14887 	struct T_optdata_ind *todi;
14888 	int optlen;
14889 	uchar_t *optptr;
14890 	struct T_opthdr *toh;
14891 	uint_t addflag;	/* Which pieces to add */
14892 	mblk_t *mp1;
14893 
14894 	optlen = 0;
14895 	addflag = 0;
14896 	/* If app asked for pktinfo and the index has changed ... */
14897 	if ((ipp->ipp_fields & IPPF_IFINDEX) &&
14898 	    ipp->ipp_ifindex != tcp->tcp_recvifindex &&
14899 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) {
14900 		optlen += sizeof (struct T_opthdr) +
14901 		    sizeof (struct in6_pktinfo);
14902 		addflag |= TCP_IPV6_RECVPKTINFO;
14903 	}
14904 	/* If app asked for hoplimit and it has changed ... */
14905 	if ((ipp->ipp_fields & IPPF_HOPLIMIT) &&
14906 	    ipp->ipp_hoplimit != tcp->tcp_recvhops &&
14907 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) {
14908 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
14909 		addflag |= TCP_IPV6_RECVHOPLIMIT;
14910 	}
14911 	/* If app asked for tclass and it has changed ... */
14912 	if ((ipp->ipp_fields & IPPF_TCLASS) &&
14913 	    ipp->ipp_tclass != tcp->tcp_recvtclass &&
14914 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) {
14915 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
14916 		addflag |= TCP_IPV6_RECVTCLASS;
14917 	}
14918 	/*
14919 	 * If app asked for hopbyhop headers and it has changed ...
14920 	 * For security labels, note that (1) security labels can't change on
14921 	 * a connected socket at all, (2) we're connected to at most one peer,
14922 	 * (3) if anything changes, then it must be some other extra option.
14923 	 */
14924 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) &&
14925 	    ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
14926 	    (ipp->ipp_fields & IPPF_HOPOPTS),
14927 	    ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
14928 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen -
14929 		    tcp->tcp_label_len;
14930 		addflag |= TCP_IPV6_RECVHOPOPTS;
14931 		if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
14932 		    &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
14933 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
14934 			return (mp);
14935 	}
14936 	/* If app asked for dst headers before routing headers ... */
14937 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) &&
14938 	    ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen,
14939 		(ipp->ipp_fields & IPPF_RTDSTOPTS),
14940 		ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) {
14941 		optlen += sizeof (struct T_opthdr) +
14942 		    ipp->ipp_rtdstoptslen;
14943 		addflag |= TCP_IPV6_RECVRTDSTOPTS;
14944 		if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts,
14945 		    &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS),
14946 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen))
14947 			return (mp);
14948 	}
14949 	/* If app asked for routing headers and it has changed ... */
14950 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) &&
14951 	    ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
14952 	    (ipp->ipp_fields & IPPF_RTHDR),
14953 	    ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
14954 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
14955 		addflag |= TCP_IPV6_RECVRTHDR;
14956 		if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
14957 		    &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
14958 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
14959 			return (mp);
14960 	}
14961 	/* If app asked for dest headers and it has changed ... */
14962 	if ((tcp->tcp_ipv6_recvancillary &
14963 	    (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) &&
14964 	    ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
14965 	    (ipp->ipp_fields & IPPF_DSTOPTS),
14966 	    ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
14967 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
14968 		addflag |= TCP_IPV6_RECVDSTOPTS;
14969 		if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
14970 		    &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
14971 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
14972 			return (mp);
14973 	}
14974 
14975 	if (optlen == 0) {
14976 		/* Nothing to add */
14977 		return (mp);
14978 	}
14979 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
14980 	if (mp1 == NULL) {
14981 		/*
14982 		 * Defer sending ancillary data until the next TCP segment
14983 		 * arrives.
14984 		 */
14985 		return (mp);
14986 	}
14987 	mp1->b_cont = mp;
14988 	mp = mp1;
14989 	mp->b_wptr += sizeof (*todi) + optlen;
14990 	mp->b_datap->db_type = M_PROTO;
14991 	todi = (struct T_optdata_ind *)mp->b_rptr;
14992 	todi->PRIM_type = T_OPTDATA_IND;
14993 	todi->DATA_flag = 1;	/* MORE data */
14994 	todi->OPT_length = optlen;
14995 	todi->OPT_offset = sizeof (*todi);
14996 	optptr = (uchar_t *)&todi[1];
14997 	/*
14998 	 * If app asked for pktinfo and the index has changed ...
14999 	 * Note that the local address never changes for the connection.
15000 	 */
15001 	if (addflag & TCP_IPV6_RECVPKTINFO) {
15002 		struct in6_pktinfo *pkti;
15003 
15004 		toh = (struct T_opthdr *)optptr;
15005 		toh->level = IPPROTO_IPV6;
15006 		toh->name = IPV6_PKTINFO;
15007 		toh->len = sizeof (*toh) + sizeof (*pkti);
15008 		toh->status = 0;
15009 		optptr += sizeof (*toh);
15010 		pkti = (struct in6_pktinfo *)optptr;
15011 		if (tcp->tcp_ipversion == IPV6_VERSION)
15012 			pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src;
15013 		else
15014 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
15015 			    &pkti->ipi6_addr);
15016 		pkti->ipi6_ifindex = ipp->ipp_ifindex;
15017 		optptr += sizeof (*pkti);
15018 		ASSERT(OK_32PTR(optptr));
15019 		/* Save as "last" value */
15020 		tcp->tcp_recvifindex = ipp->ipp_ifindex;
15021 	}
15022 	/* If app asked for hoplimit and it has changed ... */
15023 	if (addflag & TCP_IPV6_RECVHOPLIMIT) {
15024 		toh = (struct T_opthdr *)optptr;
15025 		toh->level = IPPROTO_IPV6;
15026 		toh->name = IPV6_HOPLIMIT;
15027 		toh->len = sizeof (*toh) + sizeof (uint_t);
15028 		toh->status = 0;
15029 		optptr += sizeof (*toh);
15030 		*(uint_t *)optptr = ipp->ipp_hoplimit;
15031 		optptr += sizeof (uint_t);
15032 		ASSERT(OK_32PTR(optptr));
15033 		/* Save as "last" value */
15034 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
15035 	}
15036 	/* If app asked for tclass and it has changed ... */
15037 	if (addflag & TCP_IPV6_RECVTCLASS) {
15038 		toh = (struct T_opthdr *)optptr;
15039 		toh->level = IPPROTO_IPV6;
15040 		toh->name = IPV6_TCLASS;
15041 		toh->len = sizeof (*toh) + sizeof (uint_t);
15042 		toh->status = 0;
15043 		optptr += sizeof (*toh);
15044 		*(uint_t *)optptr = ipp->ipp_tclass;
15045 		optptr += sizeof (uint_t);
15046 		ASSERT(OK_32PTR(optptr));
15047 		/* Save as "last" value */
15048 		tcp->tcp_recvtclass = ipp->ipp_tclass;
15049 	}
15050 	if (addflag & TCP_IPV6_RECVHOPOPTS) {
15051 		toh = (struct T_opthdr *)optptr;
15052 		toh->level = IPPROTO_IPV6;
15053 		toh->name = IPV6_HOPOPTS;
15054 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen -
15055 		    tcp->tcp_label_len;
15056 		toh->status = 0;
15057 		optptr += sizeof (*toh);
15058 		bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr,
15059 		    ipp->ipp_hopoptslen - tcp->tcp_label_len);
15060 		optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len;
15061 		ASSERT(OK_32PTR(optptr));
15062 		/* Save as last value */
15063 		ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
15064 		    (ipp->ipp_fields & IPPF_HOPOPTS),
15065 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
15066 	}
15067 	if (addflag & TCP_IPV6_RECVRTDSTOPTS) {
15068 		toh = (struct T_opthdr *)optptr;
15069 		toh->level = IPPROTO_IPV6;
15070 		toh->name = IPV6_RTHDRDSTOPTS;
15071 		toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen;
15072 		toh->status = 0;
15073 		optptr += sizeof (*toh);
15074 		bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen);
15075 		optptr += ipp->ipp_rtdstoptslen;
15076 		ASSERT(OK_32PTR(optptr));
15077 		/* Save as last value */
15078 		ip_savebuf((void **)&tcp->tcp_rtdstopts,
15079 		    &tcp->tcp_rtdstoptslen,
15080 		    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15081 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen);
15082 	}
15083 	if (addflag & TCP_IPV6_RECVRTHDR) {
15084 		toh = (struct T_opthdr *)optptr;
15085 		toh->level = IPPROTO_IPV6;
15086 		toh->name = IPV6_RTHDR;
15087 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
15088 		toh->status = 0;
15089 		optptr += sizeof (*toh);
15090 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
15091 		optptr += ipp->ipp_rthdrlen;
15092 		ASSERT(OK_32PTR(optptr));
15093 		/* Save as last value */
15094 		ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
15095 		    (ipp->ipp_fields & IPPF_RTHDR),
15096 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
15097 	}
15098 	if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) {
15099 		toh = (struct T_opthdr *)optptr;
15100 		toh->level = IPPROTO_IPV6;
15101 		toh->name = IPV6_DSTOPTS;
15102 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
15103 		toh->status = 0;
15104 		optptr += sizeof (*toh);
15105 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
15106 		optptr += ipp->ipp_dstoptslen;
15107 		ASSERT(OK_32PTR(optptr));
15108 		/* Save as last value */
15109 		ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
15110 		    (ipp->ipp_fields & IPPF_DSTOPTS),
15111 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
15112 	}
15113 	ASSERT(optptr == mp->b_wptr);
15114 	return (mp);
15115 }
15116 
15117 
15118 /*
15119  * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK
15120  * or a "bad" IRE detected by tcp_adapt_ire.
15121  * We can't tell if the failure was due to the laddr or the faddr
15122  * thus we clear out all addresses and ports.
15123  */
15124 static void
15125 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error)
15126 {
15127 	queue_t	*q = tcp->tcp_rq;
15128 	tcph_t	*tcph;
15129 	struct T_error_ack *tea;
15130 	conn_t	*connp = tcp->tcp_connp;
15131 
15132 
15133 	ASSERT(mp->b_datap->db_type == M_PCPROTO);
15134 
15135 	if (mp->b_cont) {
15136 		freemsg(mp->b_cont);
15137 		mp->b_cont = NULL;
15138 	}
15139 	tea = (struct T_error_ack *)mp->b_rptr;
15140 	switch (tea->PRIM_type) {
15141 	case T_BIND_ACK:
15142 		/*
15143 		 * Need to unbind with classifier since we were just told that
15144 		 * our bind succeeded.
15145 		 */
15146 		tcp->tcp_hard_bound = B_FALSE;
15147 		tcp->tcp_hard_binding = B_FALSE;
15148 
15149 		ipcl_hash_remove(connp);
15150 		/* Reuse the mblk if possible */
15151 		ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >=
15152 			sizeof (*tea));
15153 		mp->b_rptr = mp->b_datap->db_base;
15154 		mp->b_wptr = mp->b_rptr + sizeof (*tea);
15155 		tea = (struct T_error_ack *)mp->b_rptr;
15156 		tea->PRIM_type = T_ERROR_ACK;
15157 		tea->TLI_error = TSYSERR;
15158 		tea->UNIX_error = error;
15159 		if (tcp->tcp_state >= TCPS_SYN_SENT) {
15160 			tea->ERROR_prim = T_CONN_REQ;
15161 		} else {
15162 			tea->ERROR_prim = O_T_BIND_REQ;
15163 		}
15164 		break;
15165 
15166 	case T_ERROR_ACK:
15167 		if (tcp->tcp_state >= TCPS_SYN_SENT)
15168 			tea->ERROR_prim = T_CONN_REQ;
15169 		break;
15170 	default:
15171 		panic("tcp_bind_failed: unexpected TPI type");
15172 		/*NOTREACHED*/
15173 	}
15174 
15175 	tcp->tcp_state = TCPS_IDLE;
15176 	if (tcp->tcp_ipversion == IPV4_VERSION)
15177 		tcp->tcp_ipha->ipha_src = 0;
15178 	else
15179 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
15180 	/*
15181 	 * Copy of the src addr. in tcp_t is needed since
15182 	 * the lookup funcs. can only look at tcp_t
15183 	 */
15184 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
15185 
15186 	tcph = tcp->tcp_tcph;
15187 	tcph->th_lport[0] = 0;
15188 	tcph->th_lport[1] = 0;
15189 	tcp_bind_hash_remove(tcp);
15190 	bzero(&connp->u_port, sizeof (connp->u_port));
15191 	/* blow away saved option results if any */
15192 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
15193 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
15194 
15195 	conn_delete_ire(tcp->tcp_connp, NULL);
15196 	putnext(q, mp);
15197 }
15198 
15199 /*
15200  * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA
15201  * messages.
15202  */
15203 void
15204 tcp_rput_other(tcp_t *tcp, mblk_t *mp)
15205 {
15206 	mblk_t	*mp1;
15207 	uchar_t	*rptr = mp->b_rptr;
15208 	queue_t	*q = tcp->tcp_rq;
15209 	struct T_error_ack *tea;
15210 	uint32_t mss;
15211 	mblk_t *syn_mp;
15212 	mblk_t *mdti;
15213 	int	retval;
15214 	mblk_t *ire_mp;
15215 
15216 	switch (mp->b_datap->db_type) {
15217 	case M_PROTO:
15218 	case M_PCPROTO:
15219 		ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
15220 		if ((mp->b_wptr - rptr) < sizeof (t_scalar_t))
15221 			break;
15222 		tea = (struct T_error_ack *)rptr;
15223 		switch (tea->PRIM_type) {
15224 		case T_BIND_ACK:
15225 			/*
15226 			 * Adapt Multidata information, if any.  The
15227 			 * following tcp_mdt_update routine will free
15228 			 * the message.
15229 			 */
15230 			if ((mdti = tcp_mdt_info_mp(mp)) != NULL) {
15231 				tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti->
15232 				    b_rptr)->mdt_capab, B_TRUE);
15233 				freemsg(mdti);
15234 			}
15235 
15236 			/* Get the IRE, if we had requested for it */
15237 			ire_mp = tcp_ire_mp(mp);
15238 
15239 			if (tcp->tcp_hard_binding) {
15240 				tcp->tcp_hard_binding = B_FALSE;
15241 				tcp->tcp_hard_bound = B_TRUE;
15242 				CL_INET_CONNECT(tcp);
15243 			} else {
15244 				if (ire_mp != NULL)
15245 					freeb(ire_mp);
15246 				goto after_syn_sent;
15247 			}
15248 
15249 			retval = tcp_adapt_ire(tcp, ire_mp);
15250 			if (ire_mp != NULL)
15251 				freeb(ire_mp);
15252 			if (retval == 0) {
15253 				tcp_bind_failed(tcp, mp,
15254 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15255 				    ENETUNREACH : EADDRNOTAVAIL));
15256 				return;
15257 			}
15258 			/*
15259 			 * Don't let an endpoint connect to itself.
15260 			 * Also checked in tcp_connect() but that
15261 			 * check can't handle the case when the
15262 			 * local IP address is INADDR_ANY.
15263 			 */
15264 			if (tcp->tcp_ipversion == IPV4_VERSION) {
15265 				if ((tcp->tcp_ipha->ipha_dst ==
15266 				    tcp->tcp_ipha->ipha_src) &&
15267 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
15268 				    tcp->tcp_tcph->th_fport))) {
15269 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
15270 					return;
15271 				}
15272 			} else {
15273 				if (IN6_ARE_ADDR_EQUAL(
15274 				    &tcp->tcp_ip6h->ip6_dst,
15275 				    &tcp->tcp_ip6h->ip6_src) &&
15276 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
15277 				    tcp->tcp_tcph->th_fport))) {
15278 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
15279 					return;
15280 				}
15281 			}
15282 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT);
15283 			/*
15284 			 * This should not be possible!  Just for
15285 			 * defensive coding...
15286 			 */
15287 			if (tcp->tcp_state != TCPS_SYN_SENT)
15288 				goto after_syn_sent;
15289 
15290 			if (is_system_labeled() &&
15291 			    !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) {
15292 				tcp_bind_failed(tcp, mp, EHOSTUNREACH);
15293 				return;
15294 			}
15295 
15296 			ASSERT(q == tcp->tcp_rq);
15297 			/*
15298 			 * tcp_adapt_ire() does not adjust
15299 			 * for TCP/IP header length.
15300 			 */
15301 			mss = tcp->tcp_mss - tcp->tcp_hdr_len;
15302 
15303 			/*
15304 			 * Just make sure our rwnd is at
15305 			 * least tcp_recv_hiwat_mss * MSS
15306 			 * large, and round up to the nearest
15307 			 * MSS.
15308 			 *
15309 			 * We do the round up here because
15310 			 * we need to get the interface
15311 			 * MTU first before we can do the
15312 			 * round up.
15313 			 */
15314 			tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
15315 			    tcp_recv_hiwat_minmss * mss);
15316 			q->q_hiwat = tcp->tcp_rwnd;
15317 			tcp_set_ws_value(tcp);
15318 			U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws),
15319 			    tcp->tcp_tcph->th_win);
15320 			if (tcp->tcp_rcv_ws > 0 || tcp_wscale_always)
15321 				tcp->tcp_snd_ws_ok = B_TRUE;
15322 
15323 			/*
15324 			 * Set tcp_snd_ts_ok to true
15325 			 * so that tcp_xmit_mp will
15326 			 * include the timestamp
15327 			 * option in the SYN segment.
15328 			 */
15329 			if (tcp_tstamp_always ||
15330 			    (tcp->tcp_rcv_ws && tcp_tstamp_if_wscale)) {
15331 				tcp->tcp_snd_ts_ok = B_TRUE;
15332 			}
15333 
15334 			/*
15335 			 * tcp_snd_sack_ok can be set in
15336 			 * tcp_adapt_ire() if the sack metric
15337 			 * is set.  So check it here also.
15338 			 */
15339 			if (tcp_sack_permitted == 2 ||
15340 			    tcp->tcp_snd_sack_ok) {
15341 				if (tcp->tcp_sack_info == NULL) {
15342 					tcp->tcp_sack_info =
15343 					kmem_cache_alloc(tcp_sack_info_cache,
15344 					    KM_SLEEP);
15345 				}
15346 				tcp->tcp_snd_sack_ok = B_TRUE;
15347 			}
15348 
15349 			/*
15350 			 * Should we use ECN?  Note that the current
15351 			 * default value (SunOS 5.9) of tcp_ecn_permitted
15352 			 * is 1.  The reason for doing this is that there
15353 			 * are equipments out there that will drop ECN
15354 			 * enabled IP packets.  Setting it to 1 avoids
15355 			 * compatibility problems.
15356 			 */
15357 			if (tcp_ecn_permitted == 2)
15358 				tcp->tcp_ecn_ok = B_TRUE;
15359 
15360 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
15361 			syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
15362 			    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
15363 			if (syn_mp) {
15364 				cred_t *cr;
15365 				pid_t pid;
15366 
15367 				/*
15368 				 * Obtain the credential from the
15369 				 * thread calling connect(); the credential
15370 				 * lives on in the second mblk which
15371 				 * originated from T_CONN_REQ and is echoed
15372 				 * with the T_BIND_ACK from ip.  If none
15373 				 * can be found, default to the creator
15374 				 * of the socket.
15375 				 */
15376 				if (mp->b_cont == NULL ||
15377 				    (cr = DB_CRED(mp->b_cont)) == NULL) {
15378 					cr = tcp->tcp_cred;
15379 					pid = tcp->tcp_cpid;
15380 				} else {
15381 					pid = DB_CPID(mp->b_cont);
15382 				}
15383 
15384 				TCP_RECORD_TRACE(tcp, syn_mp,
15385 				    TCP_TRACE_SEND_PKT);
15386 				mblk_setcred(syn_mp, cr);
15387 				DB_CPID(syn_mp) = pid;
15388 				tcp_send_data(tcp, tcp->tcp_wq, syn_mp);
15389 			}
15390 		after_syn_sent:
15391 			/*
15392 			 * A trailer mblk indicates a waiting client upstream.
15393 			 * We complete here the processing begun in
15394 			 * either tcp_bind() or tcp_connect() by passing
15395 			 * upstream the reply message they supplied.
15396 			 */
15397 			mp1 = mp;
15398 			mp = mp->b_cont;
15399 			freeb(mp1);
15400 			if (mp)
15401 				break;
15402 			return;
15403 		case T_ERROR_ACK:
15404 			if (tcp->tcp_debug) {
15405 				(void) strlog(TCP_MOD_ID, 0, 1,
15406 				    SL_TRACE|SL_ERROR,
15407 				    "tcp_rput_other: case T_ERROR_ACK, "
15408 				    "ERROR_prim == %d",
15409 				    tea->ERROR_prim);
15410 			}
15411 			switch (tea->ERROR_prim) {
15412 			case O_T_BIND_REQ:
15413 			case T_BIND_REQ:
15414 				tcp_bind_failed(tcp, mp,
15415 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15416 				    ENETUNREACH : EADDRNOTAVAIL));
15417 				return;
15418 			case T_UNBIND_REQ:
15419 				tcp->tcp_hard_binding = B_FALSE;
15420 				tcp->tcp_hard_bound = B_FALSE;
15421 				if (mp->b_cont) {
15422 					freemsg(mp->b_cont);
15423 					mp->b_cont = NULL;
15424 				}
15425 				if (tcp->tcp_unbind_pending)
15426 					tcp->tcp_unbind_pending = 0;
15427 				else {
15428 					/* From tcp_ip_unbind() - free */
15429 					freemsg(mp);
15430 					return;
15431 				}
15432 				break;
15433 			case T_SVR4_OPTMGMT_REQ:
15434 				if (tcp->tcp_drop_opt_ack_cnt > 0) {
15435 					/* T_OPTMGMT_REQ generated by TCP */
15436 					printf("T_SVR4_OPTMGMT_REQ failed "
15437 					    "%d/%d - dropped (cnt %d)\n",
15438 					    tea->TLI_error, tea->UNIX_error,
15439 					    tcp->tcp_drop_opt_ack_cnt);
15440 					freemsg(mp);
15441 					tcp->tcp_drop_opt_ack_cnt--;
15442 					return;
15443 				}
15444 				break;
15445 			}
15446 			if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ &&
15447 			    tcp->tcp_drop_opt_ack_cnt > 0) {
15448 				printf("T_SVR4_OPTMGMT_REQ failed %d/%d "
15449 				    "- dropped (cnt %d)\n",
15450 				    tea->TLI_error, tea->UNIX_error,
15451 				    tcp->tcp_drop_opt_ack_cnt);
15452 				freemsg(mp);
15453 				tcp->tcp_drop_opt_ack_cnt--;
15454 				return;
15455 			}
15456 			break;
15457 		case T_OPTMGMT_ACK:
15458 			if (tcp->tcp_drop_opt_ack_cnt > 0) {
15459 				/* T_OPTMGMT_REQ generated by TCP */
15460 				freemsg(mp);
15461 				tcp->tcp_drop_opt_ack_cnt--;
15462 				return;
15463 			}
15464 			break;
15465 		default:
15466 			break;
15467 		}
15468 		break;
15469 	case M_CTL:
15470 		/*
15471 		 * ICMP messages.
15472 		 */
15473 		tcp_icmp_error(tcp, mp);
15474 		return;
15475 	case M_FLUSH:
15476 		if (*rptr & FLUSHR)
15477 			flushq(q, FLUSHDATA);
15478 		break;
15479 	default:
15480 		break;
15481 	}
15482 	/*
15483 	 * Make sure we set this bit before sending the ACK for
15484 	 * bind. Otherwise accept could possibly run and free
15485 	 * this tcp struct.
15486 	 */
15487 	putnext(q, mp);
15488 }
15489 
15490 /*
15491  * Called as the result of a qbufcall or a qtimeout to remedy a failure
15492  * to allocate a T_ordrel_ind in tcp_rsrv().  qenable(q) will make
15493  * tcp_rsrv() try again.
15494  */
15495 static void
15496 tcp_ordrel_kick(void *arg)
15497 {
15498 	conn_t 	*connp = (conn_t *)arg;
15499 	tcp_t	*tcp = connp->conn_tcp;
15500 
15501 	tcp->tcp_ordrelid = 0;
15502 	tcp->tcp_timeout = B_FALSE;
15503 	if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL &&
15504 	    tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
15505 		qenable(tcp->tcp_rq);
15506 	}
15507 }
15508 
15509 /* ARGSUSED */
15510 static void
15511 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2)
15512 {
15513 	conn_t	*connp = (conn_t *)arg;
15514 	tcp_t	*tcp = connp->conn_tcp;
15515 	queue_t	*q = tcp->tcp_rq;
15516 	uint_t	thwin;
15517 
15518 	freeb(mp);
15519 
15520 	TCP_STAT(tcp_rsrv_calls);
15521 
15522 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
15523 		return;
15524 	}
15525 
15526 	if (tcp->tcp_fused) {
15527 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
15528 
15529 		ASSERT(tcp->tcp_fused);
15530 		ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused);
15531 		ASSERT(peer_tcp->tcp_loopback_peer == tcp);
15532 		ASSERT(!TCP_IS_DETACHED(tcp));
15533 		ASSERT(tcp->tcp_connp->conn_sqp ==
15534 		    peer_tcp->tcp_connp->conn_sqp);
15535 
15536 		/*
15537 		 * Normally we would not get backenabled in synchronous
15538 		 * streams mode, but in case this happens, we need to plug
15539 		 * synchronous streams during our drain to prevent a race
15540 		 * with tcp_fuse_rrw() or tcp_fuse_rinfop().
15541 		 */
15542 		TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
15543 		if (tcp->tcp_rcv_list != NULL)
15544 			(void) tcp_rcv_drain(tcp->tcp_rq, tcp);
15545 
15546 		tcp_clrqfull(peer_tcp);
15547 		TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
15548 		TCP_STAT(tcp_fusion_backenabled);
15549 		return;
15550 	}
15551 
15552 	if (canputnext(q)) {
15553 		tcp->tcp_rwnd = q->q_hiwat;
15554 		thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
15555 		    << tcp->tcp_rcv_ws;
15556 		thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
15557 		/*
15558 		 * Send back a window update immediately if TCP is above
15559 		 * ESTABLISHED state and the increase of the rcv window
15560 		 * that the other side knows is at least 1 MSS after flow
15561 		 * control is lifted.
15562 		 */
15563 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
15564 		    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
15565 			tcp_xmit_ctl(NULL, tcp,
15566 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
15567 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
15568 			BUMP_MIB(&tcp_mib, tcpOutWinUpdate);
15569 		}
15570 	}
15571 	/* Handle a failure to allocate a T_ORDREL_IND here */
15572 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
15573 		ASSERT(tcp->tcp_listener == NULL);
15574 		if (tcp->tcp_rcv_list != NULL) {
15575 			(void) tcp_rcv_drain(q, tcp);
15576 		}
15577 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
15578 		mp = mi_tpi_ordrel_ind();
15579 		if (mp) {
15580 			tcp->tcp_ordrel_done = B_TRUE;
15581 			putnext(q, mp);
15582 			if (tcp->tcp_deferred_clean_death) {
15583 				/*
15584 				 * tcp_clean_death was deferred for
15585 				 * T_ORDREL_IND - do it now
15586 				 */
15587 				tcp->tcp_deferred_clean_death = B_FALSE;
15588 				(void) tcp_clean_death(tcp,
15589 				    tcp->tcp_client_errno, 22);
15590 			}
15591 		} else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
15592 			/*
15593 			 * If there isn't already a timer running
15594 			 * start one.  Use a 4 second
15595 			 * timer as a fallback since it can't fail.
15596 			 */
15597 			tcp->tcp_timeout = B_TRUE;
15598 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
15599 			    MSEC_TO_TICK(4000));
15600 		}
15601 	}
15602 }
15603 
15604 /*
15605  * The read side service routine is called mostly when we get back-enabled as a
15606  * result of flow control relief.  Since we don't actually queue anything in
15607  * TCP, we have no data to send out of here.  What we do is clear the receive
15608  * window, and send out a window update.
15609  * This routine is also called to drive an orderly release message upstream
15610  * if the attempt in tcp_rput failed.
15611  */
15612 static void
15613 tcp_rsrv(queue_t *q)
15614 {
15615 	conn_t *connp = Q_TO_CONN(q);
15616 	tcp_t	*tcp = connp->conn_tcp;
15617 	mblk_t	*mp;
15618 
15619 	/* No code does a putq on the read side */
15620 	ASSERT(q->q_first == NULL);
15621 
15622 	/* Nothing to do for the default queue */
15623 	if (q == tcp_g_q) {
15624 		return;
15625 	}
15626 
15627 	mp = allocb(0, BPRI_HI);
15628 	if (mp == NULL) {
15629 		/*
15630 		 * We are under memory pressure. Return for now and we
15631 		 * we will be called again later.
15632 		 */
15633 		if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
15634 			/*
15635 			 * If there isn't already a timer running
15636 			 * start one.  Use a 4 second
15637 			 * timer as a fallback since it can't fail.
15638 			 */
15639 			tcp->tcp_timeout = B_TRUE;
15640 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
15641 			    MSEC_TO_TICK(4000));
15642 		}
15643 		return;
15644 	}
15645 	CONN_INC_REF(connp);
15646 	squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp,
15647 	    SQTAG_TCP_RSRV);
15648 }
15649 
15650 /*
15651  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
15652  * We do not allow the receive window to shrink.  After setting rwnd,
15653  * set the flow control hiwat of the stream.
15654  *
15655  * This function is called in 2 cases:
15656  *
15657  * 1) Before data transfer begins, in tcp_accept_comm() for accepting a
15658  *    connection (passive open) and in tcp_rput_data() for active connect.
15659  *    This is called after tcp_mss_set() when the desired MSS value is known.
15660  *    This makes sure that our window size is a mutiple of the other side's
15661  *    MSS.
15662  * 2) Handling SO_RCVBUF option.
15663  *
15664  * It is ASSUMED that the requested size is a multiple of the current MSS.
15665  *
15666  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
15667  * user requests so.
15668  */
15669 static int
15670 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
15671 {
15672 	uint32_t	mss = tcp->tcp_mss;
15673 	uint32_t	old_max_rwnd;
15674 	uint32_t	max_transmittable_rwnd;
15675 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
15676 
15677 	if (tcp->tcp_fused) {
15678 		size_t sth_hiwat;
15679 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
15680 
15681 		ASSERT(peer_tcp != NULL);
15682 		/*
15683 		 * Record the stream head's high water mark for
15684 		 * this endpoint; this is used for flow-control
15685 		 * purposes in tcp_fuse_output().
15686 		 */
15687 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
15688 		if (!tcp_detached)
15689 			(void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat);
15690 
15691 		/*
15692 		 * In the fusion case, the maxpsz stream head value of
15693 		 * our peer is set according to its send buffer size
15694 		 * and our receive buffer size; since the latter may
15695 		 * have changed we need to update the peer's maxpsz.
15696 		 */
15697 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
15698 		return (rwnd);
15699 	}
15700 
15701 	if (tcp_detached)
15702 		old_max_rwnd = tcp->tcp_rwnd;
15703 	else
15704 		old_max_rwnd = tcp->tcp_rq->q_hiwat;
15705 
15706 	/*
15707 	 * Insist on a receive window that is at least
15708 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
15709 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
15710 	 * and delayed acknowledgement.
15711 	 */
15712 	rwnd = MAX(rwnd, tcp_recv_hiwat_minmss * mss);
15713 
15714 	/*
15715 	 * If window size info has already been exchanged, TCP should not
15716 	 * shrink the window.  Shrinking window is doable if done carefully.
15717 	 * We may add that support later.  But so far there is not a real
15718 	 * need to do that.
15719 	 */
15720 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
15721 		/* MSS may have changed, do a round up again. */
15722 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
15723 	}
15724 
15725 	/*
15726 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
15727 	 * can be applied even before the window scale option is decided.
15728 	 */
15729 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
15730 	if (rwnd > max_transmittable_rwnd) {
15731 		rwnd = max_transmittable_rwnd -
15732 		    (max_transmittable_rwnd % mss);
15733 		if (rwnd < mss)
15734 			rwnd = max_transmittable_rwnd;
15735 		/*
15736 		 * If we're over the limit we may have to back down tcp_rwnd.
15737 		 * The increment below won't work for us. So we set all three
15738 		 * here and the increment below will have no effect.
15739 		 */
15740 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
15741 	}
15742 	if (tcp->tcp_localnet) {
15743 		tcp->tcp_rack_abs_max =
15744 		    MIN(tcp_local_dacks_max, rwnd / mss / 2);
15745 	} else {
15746 		/*
15747 		 * For a remote host on a different subnet (through a router),
15748 		 * we ack every other packet to be conforming to RFC1122.
15749 		 * tcp_deferred_acks_max is default to 2.
15750 		 */
15751 		tcp->tcp_rack_abs_max =
15752 		    MIN(tcp_deferred_acks_max, rwnd / mss / 2);
15753 	}
15754 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
15755 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
15756 	else
15757 		tcp->tcp_rack_cur_max = 0;
15758 	/*
15759 	 * Increment the current rwnd by the amount the maximum grew (we
15760 	 * can not overwrite it since we might be in the middle of a
15761 	 * connection.)
15762 	 */
15763 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
15764 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win);
15765 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
15766 		tcp->tcp_cwnd_max = rwnd;
15767 
15768 	if (tcp_detached)
15769 		return (rwnd);
15770 	/*
15771 	 * We set the maximum receive window into rq->q_hiwat.
15772 	 * This is not actually used for flow control.
15773 	 */
15774 	tcp->tcp_rq->q_hiwat = rwnd;
15775 	/*
15776 	 * Set the Stream head high water mark. This doesn't have to be
15777 	 * here, since we are simply using default values, but we would
15778 	 * prefer to choose these values algorithmically, with a likely
15779 	 * relationship to rwnd.
15780 	 */
15781 	(void) mi_set_sth_hiwat(tcp->tcp_rq, MAX(rwnd, tcp_sth_rcv_hiwat));
15782 	return (rwnd);
15783 }
15784 
15785 /*
15786  * Return SNMP stuff in buffer in mpdata.
15787  */
15788 int
15789 tcp_snmp_get(queue_t *q, mblk_t *mpctl)
15790 {
15791 	mblk_t			*mpdata;
15792 	mblk_t			*mp_conn_ctl = NULL;
15793 	mblk_t			*mp_conn_tail;
15794 	mblk_t			*mp_attr_ctl = NULL;
15795 	mblk_t			*mp_attr_tail;
15796 	mblk_t			*mp6_conn_ctl = NULL;
15797 	mblk_t			*mp6_conn_tail;
15798 	mblk_t			*mp6_attr_ctl = NULL;
15799 	mblk_t			*mp6_attr_tail;
15800 	struct opthdr		*optp;
15801 	mib2_tcpConnEntry_t	tce;
15802 	mib2_tcp6ConnEntry_t	tce6;
15803 	mib2_transportMLPEntry_t mlp;
15804 	connf_t			*connfp;
15805 	conn_t			*connp;
15806 	int			i;
15807 	boolean_t 		ispriv;
15808 	zoneid_t 		zoneid;
15809 	int			v4_conn_idx;
15810 	int			v6_conn_idx;
15811 
15812 	if (mpctl == NULL ||
15813 	    (mpdata = mpctl->b_cont) == NULL ||
15814 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
15815 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
15816 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
15817 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
15818 		freemsg(mp_conn_ctl);
15819 		freemsg(mp_attr_ctl);
15820 		freemsg(mp6_conn_ctl);
15821 		freemsg(mp6_attr_ctl);
15822 		return (0);
15823 	}
15824 
15825 	/* build table of connections -- need count in fixed part */
15826 	SET_MIB(tcp_mib.tcpRtoAlgorithm, 4);   /* vanj */
15827 	SET_MIB(tcp_mib.tcpRtoMin, tcp_rexmit_interval_min);
15828 	SET_MIB(tcp_mib.tcpRtoMax, tcp_rexmit_interval_max);
15829 	SET_MIB(tcp_mib.tcpMaxConn, -1);
15830 	SET_MIB(tcp_mib.tcpCurrEstab, 0);
15831 
15832 	ispriv =
15833 	    secpolicy_net_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0;
15834 	zoneid = Q_TO_CONN(q)->conn_zoneid;
15835 
15836 	v4_conn_idx = v6_conn_idx = 0;
15837 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
15838 
15839 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
15840 
15841 		connfp = &ipcl_globalhash_fanout[i];
15842 
15843 		connp = NULL;
15844 
15845 		while ((connp =
15846 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
15847 			tcp_t *tcp;
15848 			boolean_t needattr;
15849 
15850 			if (connp->conn_zoneid != zoneid)
15851 				continue;	/* not in this zone */
15852 
15853 			tcp = connp->conn_tcp;
15854 			UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs);
15855 			tcp->tcp_ibsegs = 0;
15856 			UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs);
15857 			tcp->tcp_obsegs = 0;
15858 
15859 			tce6.tcp6ConnState = tce.tcpConnState =
15860 			    tcp_snmp_state(tcp);
15861 			if (tce.tcpConnState == MIB2_TCP_established ||
15862 			    tce.tcpConnState == MIB2_TCP_closeWait)
15863 				BUMP_MIB(&tcp_mib, tcpCurrEstab);
15864 
15865 			needattr = B_FALSE;
15866 			bzero(&mlp, sizeof (mlp));
15867 			if (connp->conn_mlp_type != mlptSingle) {
15868 				if (connp->conn_mlp_type == mlptShared ||
15869 				    connp->conn_mlp_type == mlptBoth)
15870 					mlp.tme_flags |= MIB2_TMEF_SHARED;
15871 				if (connp->conn_mlp_type == mlptPrivate ||
15872 				    connp->conn_mlp_type == mlptBoth)
15873 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
15874 				needattr = B_TRUE;
15875 			}
15876 			if (connp->conn_peercred != NULL) {
15877 				ts_label_t *tsl;
15878 
15879 				tsl = crgetlabel(connp->conn_peercred);
15880 				mlp.tme_doi = label2doi(tsl);
15881 				mlp.tme_label = *label2bslabel(tsl);
15882 				needattr = B_TRUE;
15883 			}
15884 
15885 			/* Create a message to report on IPv6 entries */
15886 			if (tcp->tcp_ipversion == IPV6_VERSION) {
15887 			tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6;
15888 			tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6;
15889 			tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport);
15890 			tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport);
15891 			tce6.tcp6ConnIfIndex = tcp->tcp_bound_if;
15892 			/* Don't want just anybody seeing these... */
15893 			if (ispriv) {
15894 				tce6.tcp6ConnEntryInfo.ce_snxt =
15895 				    tcp->tcp_snxt;
15896 				tce6.tcp6ConnEntryInfo.ce_suna =
15897 				    tcp->tcp_suna;
15898 				tce6.tcp6ConnEntryInfo.ce_rnxt =
15899 				    tcp->tcp_rnxt;
15900 				tce6.tcp6ConnEntryInfo.ce_rack =
15901 				    tcp->tcp_rack;
15902 			} else {
15903 				/*
15904 				 * Netstat, unfortunately, uses this to
15905 				 * get send/receive queue sizes.  How to fix?
15906 				 * Why not compute the difference only?
15907 				 */
15908 				tce6.tcp6ConnEntryInfo.ce_snxt =
15909 				    tcp->tcp_snxt - tcp->tcp_suna;
15910 				tce6.tcp6ConnEntryInfo.ce_suna = 0;
15911 				tce6.tcp6ConnEntryInfo.ce_rnxt =
15912 				    tcp->tcp_rnxt - tcp->tcp_rack;
15913 				tce6.tcp6ConnEntryInfo.ce_rack = 0;
15914 			}
15915 
15916 			tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd;
15917 			tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
15918 			tce6.tcp6ConnEntryInfo.ce_rto =  tcp->tcp_rto;
15919 			tce6.tcp6ConnEntryInfo.ce_mss =  tcp->tcp_mss;
15920 			tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state;
15921 
15922 			(void) snmp_append_data2(mp6_conn_ctl->b_cont,
15923 			    &mp6_conn_tail, (char *)&tce6, sizeof (tce6));
15924 
15925 			mlp.tme_connidx = v6_conn_idx++;
15926 			if (needattr)
15927 				(void) snmp_append_data2(mp6_attr_ctl->b_cont,
15928 				    &mp6_attr_tail, (char *)&mlp, sizeof (mlp));
15929 			}
15930 			/*
15931 			 * Create an IPv4 table entry for IPv4 entries and also
15932 			 * for IPv6 entries which are bound to in6addr_any
15933 			 * but don't have IPV6_V6ONLY set.
15934 			 * (i.e. anything an IPv4 peer could connect to)
15935 			 */
15936 			if (tcp->tcp_ipversion == IPV4_VERSION ||
15937 			    (tcp->tcp_state <= TCPS_LISTEN &&
15938 			    !tcp->tcp_connp->conn_ipv6_v6only &&
15939 			    IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) {
15940 				if (tcp->tcp_ipversion == IPV6_VERSION) {
15941 					tce.tcpConnRemAddress = INADDR_ANY;
15942 					tce.tcpConnLocalAddress = INADDR_ANY;
15943 				} else {
15944 					tce.tcpConnRemAddress =
15945 					    tcp->tcp_remote;
15946 					tce.tcpConnLocalAddress =
15947 					    tcp->tcp_ip_src;
15948 				}
15949 				tce.tcpConnLocalPort = ntohs(tcp->tcp_lport);
15950 				tce.tcpConnRemPort = ntohs(tcp->tcp_fport);
15951 				/* Don't want just anybody seeing these... */
15952 				if (ispriv) {
15953 					tce.tcpConnEntryInfo.ce_snxt =
15954 					    tcp->tcp_snxt;
15955 					tce.tcpConnEntryInfo.ce_suna =
15956 					    tcp->tcp_suna;
15957 					tce.tcpConnEntryInfo.ce_rnxt =
15958 					    tcp->tcp_rnxt;
15959 					tce.tcpConnEntryInfo.ce_rack =
15960 					    tcp->tcp_rack;
15961 				} else {
15962 					/*
15963 					 * Netstat, unfortunately, uses this to
15964 					 * get send/receive queue sizes.  How
15965 					 * to fix?
15966 					 * Why not compute the difference only?
15967 					 */
15968 					tce.tcpConnEntryInfo.ce_snxt =
15969 					    tcp->tcp_snxt - tcp->tcp_suna;
15970 					tce.tcpConnEntryInfo.ce_suna = 0;
15971 					tce.tcpConnEntryInfo.ce_rnxt =
15972 					    tcp->tcp_rnxt - tcp->tcp_rack;
15973 					tce.tcpConnEntryInfo.ce_rack = 0;
15974 				}
15975 
15976 				tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd;
15977 				tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
15978 				tce.tcpConnEntryInfo.ce_rto =  tcp->tcp_rto;
15979 				tce.tcpConnEntryInfo.ce_mss =  tcp->tcp_mss;
15980 				tce.tcpConnEntryInfo.ce_state =
15981 				    tcp->tcp_state;
15982 
15983 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
15984 				    &mp_conn_tail, (char *)&tce, sizeof (tce));
15985 
15986 				mlp.tme_connidx = v4_conn_idx++;
15987 				if (needattr)
15988 					(void) snmp_append_data2(
15989 					    mp_attr_ctl->b_cont,
15990 					    &mp_attr_tail, (char *)&mlp,
15991 					    sizeof (mlp));
15992 			}
15993 		}
15994 	}
15995 
15996 	/* fixed length structure for IPv4 and IPv6 counters */
15997 	SET_MIB(tcp_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t));
15998 	SET_MIB(tcp_mib.tcp6ConnTableSize, sizeof (mib2_tcp6ConnEntry_t));
15999 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
16000 	optp->level = MIB2_TCP;
16001 	optp->name = 0;
16002 	(void) snmp_append_data(mpdata, (char *)&tcp_mib, sizeof (tcp_mib));
16003 	optp->len = msgdsize(mpdata);
16004 	qreply(q, mpctl);
16005 
16006 	/* table of connections... */
16007 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
16008 	    sizeof (struct T_optmgmt_ack)];
16009 	optp->level = MIB2_TCP;
16010 	optp->name = MIB2_TCP_CONN;
16011 	optp->len = msgdsize(mp_conn_ctl->b_cont);
16012 	qreply(q, mp_conn_ctl);
16013 
16014 	/* table of MLP attributes... */
16015 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
16016 	    sizeof (struct T_optmgmt_ack)];
16017 	optp->level = MIB2_TCP;
16018 	optp->name = EXPER_XPORT_MLP;
16019 	optp->len = msgdsize(mp_attr_ctl->b_cont);
16020 	if (optp->len == 0)
16021 		freemsg(mp_attr_ctl);
16022 	else
16023 		qreply(q, mp_attr_ctl);
16024 
16025 	/* table of IPv6 connections... */
16026 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
16027 	    sizeof (struct T_optmgmt_ack)];
16028 	optp->level = MIB2_TCP6;
16029 	optp->name = MIB2_TCP6_CONN;
16030 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
16031 	qreply(q, mp6_conn_ctl);
16032 
16033 	/* table of IPv6 MLP attributes... */
16034 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
16035 	    sizeof (struct T_optmgmt_ack)];
16036 	optp->level = MIB2_TCP6;
16037 	optp->name = EXPER_XPORT_MLP;
16038 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
16039 	if (optp->len == 0)
16040 		freemsg(mp6_attr_ctl);
16041 	else
16042 		qreply(q, mp6_attr_ctl);
16043 	return (1);
16044 }
16045 
16046 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests  */
16047 /* ARGSUSED */
16048 int
16049 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
16050 {
16051 	mib2_tcpConnEntry_t	*tce = (mib2_tcpConnEntry_t *)ptr;
16052 
16053 	switch (level) {
16054 	case MIB2_TCP:
16055 		switch (name) {
16056 		case 13:
16057 			if (tce->tcpConnState != MIB2_TCP_deleteTCB)
16058 				return (0);
16059 			/* TODO: delete entry defined by tce */
16060 			return (1);
16061 		default:
16062 			return (0);
16063 		}
16064 	default:
16065 		return (1);
16066 	}
16067 }
16068 
16069 /* Translate TCP state to MIB2 TCP state. */
16070 static int
16071 tcp_snmp_state(tcp_t *tcp)
16072 {
16073 	if (tcp == NULL)
16074 		return (0);
16075 
16076 	switch (tcp->tcp_state) {
16077 	case TCPS_CLOSED:
16078 	case TCPS_IDLE:	/* RFC1213 doesn't have analogue for IDLE & BOUND */
16079 	case TCPS_BOUND:
16080 		return (MIB2_TCP_closed);
16081 	case TCPS_LISTEN:
16082 		return (MIB2_TCP_listen);
16083 	case TCPS_SYN_SENT:
16084 		return (MIB2_TCP_synSent);
16085 	case TCPS_SYN_RCVD:
16086 		return (MIB2_TCP_synReceived);
16087 	case TCPS_ESTABLISHED:
16088 		return (MIB2_TCP_established);
16089 	case TCPS_CLOSE_WAIT:
16090 		return (MIB2_TCP_closeWait);
16091 	case TCPS_FIN_WAIT_1:
16092 		return (MIB2_TCP_finWait1);
16093 	case TCPS_CLOSING:
16094 		return (MIB2_TCP_closing);
16095 	case TCPS_LAST_ACK:
16096 		return (MIB2_TCP_lastAck);
16097 	case TCPS_FIN_WAIT_2:
16098 		return (MIB2_TCP_finWait2);
16099 	case TCPS_TIME_WAIT:
16100 		return (MIB2_TCP_timeWait);
16101 	default:
16102 		return (0);
16103 	}
16104 }
16105 
16106 static char tcp_report_header[] =
16107 	"TCP     " MI_COL_HDRPAD_STR
16108 	"zone dest            snxt     suna     "
16109 	"swnd       rnxt     rack     rwnd       rto   mss   w sw rw t "
16110 	"recent   [lport,fport] state";
16111 
16112 /*
16113  * TCP status report triggered via the Named Dispatch mechanism.
16114  */
16115 /* ARGSUSED */
16116 static void
16117 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream,
16118     cred_t *cr)
16119 {
16120 	char hash[10], addrbuf[INET6_ADDRSTRLEN];
16121 	boolean_t ispriv = secpolicy_net_config(cr, B_TRUE) == 0;
16122 	char cflag;
16123 	in6_addr_t	v6dst;
16124 	char buf[80];
16125 	uint_t print_len, buf_len;
16126 
16127 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16128 	if (buf_len <= 0)
16129 		return;
16130 
16131 	if (hashval >= 0)
16132 		(void) sprintf(hash, "%03d ", hashval);
16133 	else
16134 		hash[0] = '\0';
16135 
16136 	/*
16137 	 * Note that we use the remote address in the tcp_b  structure.
16138 	 * This means that it will print out the real destination address,
16139 	 * not the next hop's address if source routing is used.  This
16140 	 * avoid the confusion on the output because user may not
16141 	 * know that source routing is used for a connection.
16142 	 */
16143 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16144 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst);
16145 	} else {
16146 		v6dst = tcp->tcp_remote_v6;
16147 	}
16148 	(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16149 	/*
16150 	 * the ispriv checks are so that normal users cannot determine
16151 	 * sequence number information using NDD.
16152 	 */
16153 
16154 	if (TCP_IS_DETACHED(tcp))
16155 		cflag = '*';
16156 	else
16157 		cflag = ' ';
16158 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16159 	    "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x "
16160 	    "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n",
16161 	    hash,
16162 	    (void *)tcp,
16163 	    tcp->tcp_connp->conn_zoneid,
16164 	    addrbuf,
16165 	    (ispriv) ? tcp->tcp_snxt : 0,
16166 	    (ispriv) ? tcp->tcp_suna : 0,
16167 	    tcp->tcp_swnd,
16168 	    (ispriv) ? tcp->tcp_rnxt : 0,
16169 	    (ispriv) ? tcp->tcp_rack : 0,
16170 	    tcp->tcp_rwnd,
16171 	    tcp->tcp_rto,
16172 	    tcp->tcp_mss,
16173 	    tcp->tcp_snd_ws_ok,
16174 	    tcp->tcp_snd_ws,
16175 	    tcp->tcp_rcv_ws,
16176 	    tcp->tcp_snd_ts_ok,
16177 	    tcp->tcp_ts_recent,
16178 	    tcp_display(tcp, buf, DISP_PORT_ONLY), cflag);
16179 	if (print_len < buf_len) {
16180 		((mblk_t *)mp)->b_wptr += print_len;
16181 	} else {
16182 		((mblk_t *)mp)->b_wptr += buf_len;
16183 	}
16184 }
16185 
16186 /*
16187  * TCP status report (for listeners only) triggered via the Named Dispatch
16188  * mechanism.
16189  */
16190 /* ARGSUSED */
16191 static void
16192 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval)
16193 {
16194 	char addrbuf[INET6_ADDRSTRLEN];
16195 	in6_addr_t	v6dst;
16196 	uint_t print_len, buf_len;
16197 
16198 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16199 	if (buf_len <= 0)
16200 		return;
16201 
16202 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16203 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst);
16204 		(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16205 	} else {
16206 		(void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src,
16207 		    addrbuf, sizeof (addrbuf));
16208 	}
16209 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16210 	    "%03d "
16211 	    MI_COL_PTRFMT_STR
16212 	    "%d %s %05u %08u %d/%d/%d%c\n",
16213 	    hashval, (void *)tcp,
16214 	    tcp->tcp_connp->conn_zoneid,
16215 	    addrbuf,
16216 	    (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport),
16217 	    tcp->tcp_conn_req_seqnum,
16218 	    tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q,
16219 	    tcp->tcp_conn_req_max,
16220 	    tcp->tcp_syn_defense ? '*' : ' ');
16221 	if (print_len < buf_len) {
16222 		((mblk_t *)mp)->b_wptr += print_len;
16223 	} else {
16224 		((mblk_t *)mp)->b_wptr += buf_len;
16225 	}
16226 }
16227 
16228 /* TCP status report triggered via the Named Dispatch mechanism. */
16229 /* ARGSUSED */
16230 static int
16231 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16232 {
16233 	tcp_t	*tcp;
16234 	int	i;
16235 	conn_t	*connp;
16236 	connf_t	*connfp;
16237 	zoneid_t zoneid;
16238 
16239 	/*
16240 	 * Because of the ndd constraint, at most we can have 64K buffer
16241 	 * to put in all TCP info.  So to be more efficient, just
16242 	 * allocate a 64K buffer here, assuming we need that large buffer.
16243 	 * This may be a problem as any user can read tcp_status.  Therefore
16244 	 * we limit the rate of doing this using tcp_ndd_get_info_interval.
16245 	 * This should be OK as normal users should not do this too often.
16246 	 */
16247 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16248 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16249 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16250 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16251 			return (0);
16252 		}
16253 	}
16254 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16255 		/* The following may work even if we cannot get a large buf. */
16256 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16257 		return (0);
16258 	}
16259 
16260 	(void) mi_mpprintf(mp, "%s", tcp_report_header);
16261 
16262 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16263 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16264 
16265 		connfp = &ipcl_globalhash_fanout[i];
16266 
16267 		connp = NULL;
16268 
16269 		while ((connp =
16270 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16271 			tcp = connp->conn_tcp;
16272 			if (zoneid != GLOBAL_ZONEID &&
16273 			    zoneid != connp->conn_zoneid)
16274 				continue;
16275 			tcp_report_item(mp->b_cont, tcp, -1, tcp,
16276 			    cr);
16277 		}
16278 
16279 	}
16280 
16281 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16282 	return (0);
16283 }
16284 
16285 /* TCP status report triggered via the Named Dispatch mechanism. */
16286 /* ARGSUSED */
16287 static int
16288 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16289 {
16290 	tf_t	*tbf;
16291 	tcp_t	*tcp;
16292 	int	i;
16293 	zoneid_t zoneid;
16294 
16295 	/* Refer to comments in tcp_status_report(). */
16296 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16297 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16298 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16299 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16300 			return (0);
16301 		}
16302 	}
16303 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16304 		/* The following may work even if we cannot get a large buf. */
16305 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16306 		return (0);
16307 	}
16308 
16309 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16310 
16311 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16312 
16313 	for (i = 0; i < A_CNT(tcp_bind_fanout); i++) {
16314 		tbf = &tcp_bind_fanout[i];
16315 		mutex_enter(&tbf->tf_lock);
16316 		for (tcp = tbf->tf_tcp; tcp != NULL;
16317 		    tcp = tcp->tcp_bind_hash) {
16318 			if (zoneid != GLOBAL_ZONEID &&
16319 			    zoneid != tcp->tcp_connp->conn_zoneid)
16320 				continue;
16321 			CONN_INC_REF(tcp->tcp_connp);
16322 			tcp_report_item(mp->b_cont, tcp, i,
16323 			    Q_TO_TCP(q), cr);
16324 			CONN_DEC_REF(tcp->tcp_connp);
16325 		}
16326 		mutex_exit(&tbf->tf_lock);
16327 	}
16328 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16329 	return (0);
16330 }
16331 
16332 /* TCP status report triggered via the Named Dispatch mechanism. */
16333 /* ARGSUSED */
16334 static int
16335 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16336 {
16337 	connf_t	*connfp;
16338 	conn_t	*connp;
16339 	tcp_t	*tcp;
16340 	int	i;
16341 	zoneid_t zoneid;
16342 
16343 	/* Refer to comments in tcp_status_report(). */
16344 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16345 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16346 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16347 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16348 			return (0);
16349 		}
16350 	}
16351 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16352 		/* The following may work even if we cannot get a large buf. */
16353 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16354 		return (0);
16355 	}
16356 
16357 	(void) mi_mpprintf(mp,
16358 	    "    TCP    " MI_COL_HDRPAD_STR
16359 	    "zone IP addr         port  seqnum   backlog (q0/q/max)");
16360 
16361 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16362 
16363 	for (i = 0; i < ipcl_bind_fanout_size; i++) {
16364 		connfp =  &ipcl_bind_fanout[i];
16365 		connp = NULL;
16366 		while ((connp =
16367 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16368 			tcp = connp->conn_tcp;
16369 			if (zoneid != GLOBAL_ZONEID &&
16370 			    zoneid != connp->conn_zoneid)
16371 				continue;
16372 			tcp_report_listener(mp->b_cont, tcp, i);
16373 		}
16374 	}
16375 
16376 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16377 	return (0);
16378 }
16379 
16380 /* TCP status report triggered via the Named Dispatch mechanism. */
16381 /* ARGSUSED */
16382 static int
16383 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16384 {
16385 	connf_t	*connfp;
16386 	conn_t	*connp;
16387 	tcp_t	*tcp;
16388 	int	i;
16389 	zoneid_t zoneid;
16390 
16391 	/* Refer to comments in tcp_status_report(). */
16392 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16393 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16394 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16395 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16396 			return (0);
16397 		}
16398 	}
16399 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16400 		/* The following may work even if we cannot get a large buf. */
16401 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16402 		return (0);
16403 	}
16404 
16405 	(void) mi_mpprintf(mp, "tcp_conn_hash_size = %d",
16406 	    ipcl_conn_fanout_size);
16407 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16408 
16409 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16410 
16411 	for (i = 0; i < ipcl_conn_fanout_size; i++) {
16412 		connfp =  &ipcl_conn_fanout[i];
16413 		connp = NULL;
16414 		while ((connp =
16415 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16416 			tcp = connp->conn_tcp;
16417 			if (zoneid != GLOBAL_ZONEID &&
16418 			    zoneid != connp->conn_zoneid)
16419 				continue;
16420 			tcp_report_item(mp->b_cont, tcp, i,
16421 			    Q_TO_TCP(q), cr);
16422 		}
16423 	}
16424 
16425 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16426 	return (0);
16427 }
16428 
16429 /* TCP status report triggered via the Named Dispatch mechanism. */
16430 /* ARGSUSED */
16431 static int
16432 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16433 {
16434 	tf_t	*tf;
16435 	tcp_t	*tcp;
16436 	int	i;
16437 	zoneid_t zoneid;
16438 
16439 	/* Refer to comments in tcp_status_report(). */
16440 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16441 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16442 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16443 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16444 			return (0);
16445 		}
16446 	}
16447 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16448 		/* The following may work even if we cannot get a large buf. */
16449 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16450 		return (0);
16451 	}
16452 
16453 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16454 
16455 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16456 
16457 	for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) {
16458 		tf = &tcp_acceptor_fanout[i];
16459 		mutex_enter(&tf->tf_lock);
16460 		for (tcp = tf->tf_tcp; tcp != NULL;
16461 		    tcp = tcp->tcp_acceptor_hash) {
16462 			if (zoneid != GLOBAL_ZONEID &&
16463 			    zoneid != tcp->tcp_connp->conn_zoneid)
16464 				continue;
16465 			tcp_report_item(mp->b_cont, tcp, i,
16466 			    Q_TO_TCP(q), cr);
16467 		}
16468 		mutex_exit(&tf->tf_lock);
16469 	}
16470 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16471 	return (0);
16472 }
16473 
16474 /*
16475  * tcp_timer is the timer service routine.  It handles the retransmission,
16476  * FIN_WAIT_2 flush, and zero window probe timeout events.  It figures out
16477  * from the state of the tcp instance what kind of action needs to be done
16478  * at the time it is called.
16479  */
16480 static void
16481 tcp_timer(void *arg)
16482 {
16483 	mblk_t		*mp;
16484 	clock_t		first_threshold;
16485 	clock_t		second_threshold;
16486 	clock_t		ms;
16487 	uint32_t	mss;
16488 	conn_t		*connp = (conn_t *)arg;
16489 	tcp_t		*tcp = connp->conn_tcp;
16490 
16491 	tcp->tcp_timer_tid = 0;
16492 
16493 	if (tcp->tcp_fused)
16494 		return;
16495 
16496 	first_threshold =  tcp->tcp_first_timer_threshold;
16497 	second_threshold = tcp->tcp_second_timer_threshold;
16498 	switch (tcp->tcp_state) {
16499 	case TCPS_IDLE:
16500 	case TCPS_BOUND:
16501 	case TCPS_LISTEN:
16502 		return;
16503 	case TCPS_SYN_RCVD: {
16504 		tcp_t	*listener = tcp->tcp_listener;
16505 
16506 		if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) {
16507 			ASSERT(tcp->tcp_rq == listener->tcp_rq);
16508 			/* it's our first timeout */
16509 			tcp->tcp_syn_rcvd_timeout = 1;
16510 			mutex_enter(&listener->tcp_eager_lock);
16511 			listener->tcp_syn_rcvd_timeout++;
16512 			if (!listener->tcp_syn_defense &&
16513 			    (listener->tcp_syn_rcvd_timeout >
16514 			    (tcp_conn_req_max_q0 >> 2)) &&
16515 			    (tcp_conn_req_max_q0 > 200)) {
16516 				/* We may be under attack. Put on a defense. */
16517 				listener->tcp_syn_defense = B_TRUE;
16518 				cmn_err(CE_WARN, "High TCP connect timeout "
16519 				    "rate! System (port %d) may be under a "
16520 				    "SYN flood attack!",
16521 				    BE16_TO_U16(listener->tcp_tcph->th_lport));
16522 
16523 				listener->tcp_ip_addr_cache = kmem_zalloc(
16524 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t),
16525 				    KM_NOSLEEP);
16526 			}
16527 			mutex_exit(&listener->tcp_eager_lock);
16528 		}
16529 	}
16530 		/* FALLTHRU */
16531 	case TCPS_SYN_SENT:
16532 		first_threshold =  tcp->tcp_first_ctimer_threshold;
16533 		second_threshold = tcp->tcp_second_ctimer_threshold;
16534 		break;
16535 	case TCPS_ESTABLISHED:
16536 	case TCPS_FIN_WAIT_1:
16537 	case TCPS_CLOSING:
16538 	case TCPS_CLOSE_WAIT:
16539 	case TCPS_LAST_ACK:
16540 		/* If we have data to rexmit */
16541 		if (tcp->tcp_suna != tcp->tcp_snxt) {
16542 			clock_t	time_to_wait;
16543 
16544 			BUMP_MIB(&tcp_mib, tcpTimRetrans);
16545 			if (!tcp->tcp_xmit_head)
16546 				break;
16547 			time_to_wait = lbolt -
16548 			    (clock_t)tcp->tcp_xmit_head->b_prev;
16549 			time_to_wait = tcp->tcp_rto -
16550 			    TICK_TO_MSEC(time_to_wait);
16551 			/*
16552 			 * If the timer fires too early, 1 clock tick earlier,
16553 			 * restart the timer.
16554 			 */
16555 			if (time_to_wait > msec_per_tick) {
16556 				TCP_STAT(tcp_timer_fire_early);
16557 				TCP_TIMER_RESTART(tcp, time_to_wait);
16558 				return;
16559 			}
16560 			/*
16561 			 * When we probe zero windows, we force the swnd open.
16562 			 * If our peer acks with a closed window swnd will be
16563 			 * set to zero by tcp_rput(). As long as we are
16564 			 * receiving acks tcp_rput will
16565 			 * reset 'tcp_ms_we_have_waited' so as not to trip the
16566 			 * first and second interval actions.  NOTE: the timer
16567 			 * interval is allowed to continue its exponential
16568 			 * backoff.
16569 			 */
16570 			if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) {
16571 				if (tcp->tcp_debug) {
16572 					(void) strlog(TCP_MOD_ID, 0, 1,
16573 					    SL_TRACE, "tcp_timer: zero win");
16574 				}
16575 			} else {
16576 				/*
16577 				 * After retransmission, we need to do
16578 				 * slow start.  Set the ssthresh to one
16579 				 * half of current effective window and
16580 				 * cwnd to one MSS.  Also reset
16581 				 * tcp_cwnd_cnt.
16582 				 *
16583 				 * Note that if tcp_ssthresh is reduced because
16584 				 * of ECN, do not reduce it again unless it is
16585 				 * already one window of data away (tcp_cwr
16586 				 * should then be cleared) or this is a
16587 				 * timeout for a retransmitted segment.
16588 				 */
16589 				uint32_t npkt;
16590 
16591 				if (!tcp->tcp_cwr || tcp->tcp_rexmit) {
16592 					npkt = ((tcp->tcp_timer_backoff ?
16593 					    tcp->tcp_cwnd_ssthresh :
16594 					    tcp->tcp_snxt -
16595 					    tcp->tcp_suna) >> 1) / tcp->tcp_mss;
16596 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
16597 					    tcp->tcp_mss;
16598 				}
16599 				tcp->tcp_cwnd = tcp->tcp_mss;
16600 				tcp->tcp_cwnd_cnt = 0;
16601 				if (tcp->tcp_ecn_ok) {
16602 					tcp->tcp_cwr = B_TRUE;
16603 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
16604 					tcp->tcp_ecn_cwr_sent = B_FALSE;
16605 				}
16606 			}
16607 			break;
16608 		}
16609 		/*
16610 		 * We have something to send yet we cannot send.  The
16611 		 * reason can be:
16612 		 *
16613 		 * 1. Zero send window: we need to do zero window probe.
16614 		 * 2. Zero cwnd: because of ECN, we need to "clock out
16615 		 * segments.
16616 		 * 3. SWS avoidance: receiver may have shrunk window,
16617 		 * reset our knowledge.
16618 		 *
16619 		 * Note that condition 2 can happen with either 1 or
16620 		 * 3.  But 1 and 3 are exclusive.
16621 		 */
16622 		if (tcp->tcp_unsent != 0) {
16623 			if (tcp->tcp_cwnd == 0) {
16624 				/*
16625 				 * Set tcp_cwnd to 1 MSS so that a
16626 				 * new segment can be sent out.  We
16627 				 * are "clocking out" new data when
16628 				 * the network is really congested.
16629 				 */
16630 				ASSERT(tcp->tcp_ecn_ok);
16631 				tcp->tcp_cwnd = tcp->tcp_mss;
16632 			}
16633 			if (tcp->tcp_swnd == 0) {
16634 				/* Extend window for zero window probe */
16635 				tcp->tcp_swnd++;
16636 				tcp->tcp_zero_win_probe = B_TRUE;
16637 				BUMP_MIB(&tcp_mib, tcpOutWinProbe);
16638 			} else {
16639 				/*
16640 				 * Handle timeout from sender SWS avoidance.
16641 				 * Reset our knowledge of the max send window
16642 				 * since the receiver might have reduced its
16643 				 * receive buffer.  Avoid setting tcp_max_swnd
16644 				 * to one since that will essentially disable
16645 				 * the SWS checks.
16646 				 *
16647 				 * Note that since we don't have a SWS
16648 				 * state variable, if the timeout is set
16649 				 * for ECN but not for SWS, this
16650 				 * code will also be executed.  This is
16651 				 * fine as tcp_max_swnd is updated
16652 				 * constantly and it will not affect
16653 				 * anything.
16654 				 */
16655 				tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2);
16656 			}
16657 			tcp_wput_data(tcp, NULL, B_FALSE);
16658 			return;
16659 		}
16660 		/* Is there a FIN that needs to be to re retransmitted? */
16661 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
16662 		    !tcp->tcp_fin_acked)
16663 			break;
16664 		/* Nothing to do, return without restarting timer. */
16665 		TCP_STAT(tcp_timer_fire_miss);
16666 		return;
16667 	case TCPS_FIN_WAIT_2:
16668 		/*
16669 		 * User closed the TCP endpoint and peer ACK'ed our FIN.
16670 		 * We waited some time for for peer's FIN, but it hasn't
16671 		 * arrived.  We flush the connection now to avoid
16672 		 * case where the peer has rebooted.
16673 		 */
16674 		if (TCP_IS_DETACHED(tcp)) {
16675 			(void) tcp_clean_death(tcp, 0, 23);
16676 		} else {
16677 			TCP_TIMER_RESTART(tcp, tcp_fin_wait_2_flush_interval);
16678 		}
16679 		return;
16680 	case TCPS_TIME_WAIT:
16681 		(void) tcp_clean_death(tcp, 0, 24);
16682 		return;
16683 	default:
16684 		if (tcp->tcp_debug) {
16685 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
16686 			    "tcp_timer: strange state (%d) %s",
16687 			    tcp->tcp_state, tcp_display(tcp, NULL,
16688 			    DISP_PORT_ONLY));
16689 		}
16690 		return;
16691 	}
16692 	if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) {
16693 		/*
16694 		 * For zero window probe, we need to send indefinitely,
16695 		 * unless we have not heard from the other side for some
16696 		 * time...
16697 		 */
16698 		if ((tcp->tcp_zero_win_probe == 0) ||
16699 		    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >
16700 		    second_threshold)) {
16701 			BUMP_MIB(&tcp_mib, tcpTimRetransDrop);
16702 			/*
16703 			 * If TCP is in SYN_RCVD state, send back a
16704 			 * RST|ACK as BSD does.  Note that tcp_zero_win_probe
16705 			 * should be zero in TCPS_SYN_RCVD state.
16706 			 */
16707 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
16708 				tcp_xmit_ctl("tcp_timer: RST sent on timeout "
16709 				    "in SYN_RCVD",
16710 				    tcp, tcp->tcp_snxt,
16711 				    tcp->tcp_rnxt, TH_RST | TH_ACK);
16712 			}
16713 			(void) tcp_clean_death(tcp,
16714 			    tcp->tcp_client_errno ?
16715 			    tcp->tcp_client_errno : ETIMEDOUT, 25);
16716 			return;
16717 		} else {
16718 			/*
16719 			 * Set tcp_ms_we_have_waited to second_threshold
16720 			 * so that in next timeout, we will do the above
16721 			 * check (lbolt - tcp_last_recv_time).  This is
16722 			 * also to avoid overflow.
16723 			 *
16724 			 * We don't need to decrement tcp_timer_backoff
16725 			 * to avoid overflow because it will be decremented
16726 			 * later if new timeout value is greater than
16727 			 * tcp_rexmit_interval_max.  In the case when
16728 			 * tcp_rexmit_interval_max is greater than
16729 			 * second_threshold, it means that we will wait
16730 			 * longer than second_threshold to send the next
16731 			 * window probe.
16732 			 */
16733 			tcp->tcp_ms_we_have_waited = second_threshold;
16734 		}
16735 	} else if (ms > first_threshold) {
16736 		if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) &&
16737 		    tcp->tcp_xmit_head != NULL) {
16738 			tcp->tcp_xmit_head =
16739 			    tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1);
16740 		}
16741 		/*
16742 		 * We have been retransmitting for too long...  The RTT
16743 		 * we calculated is probably incorrect.  Reinitialize it.
16744 		 * Need to compensate for 0 tcp_rtt_sa.  Reset
16745 		 * tcp_rtt_update so that we won't accidentally cache a
16746 		 * bad value.  But only do this if this is not a zero
16747 		 * window probe.
16748 		 */
16749 		if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) {
16750 			tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) +
16751 			    (tcp->tcp_rtt_sa >> 5);
16752 			tcp->tcp_rtt_sa = 0;
16753 			tcp_ip_notify(tcp);
16754 			tcp->tcp_rtt_update = 0;
16755 		}
16756 	}
16757 	tcp->tcp_timer_backoff++;
16758 	if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
16759 	    tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) <
16760 	    tcp_rexmit_interval_min) {
16761 		/*
16762 		 * This means the original RTO is tcp_rexmit_interval_min.
16763 		 * So we will use tcp_rexmit_interval_min as the RTO value
16764 		 * and do the backoff.
16765 		 */
16766 		ms = tcp_rexmit_interval_min << tcp->tcp_timer_backoff;
16767 	} else {
16768 		ms <<= tcp->tcp_timer_backoff;
16769 	}
16770 	if (ms > tcp_rexmit_interval_max) {
16771 		ms = tcp_rexmit_interval_max;
16772 		/*
16773 		 * ms is at max, decrement tcp_timer_backoff to avoid
16774 		 * overflow.
16775 		 */
16776 		tcp->tcp_timer_backoff--;
16777 	}
16778 	tcp->tcp_ms_we_have_waited += ms;
16779 	if (tcp->tcp_zero_win_probe == 0) {
16780 		tcp->tcp_rto = ms;
16781 	}
16782 	TCP_TIMER_RESTART(tcp, ms);
16783 	/*
16784 	 * This is after a timeout and tcp_rto is backed off.  Set
16785 	 * tcp_set_timer to 1 so that next time RTO is updated, we will
16786 	 * restart the timer with a correct value.
16787 	 */
16788 	tcp->tcp_set_timer = 1;
16789 	mss = tcp->tcp_snxt - tcp->tcp_suna;
16790 	if (mss > tcp->tcp_mss)
16791 		mss = tcp->tcp_mss;
16792 	if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0)
16793 		mss = tcp->tcp_swnd;
16794 
16795 	if ((mp = tcp->tcp_xmit_head) != NULL)
16796 		mp->b_prev = (mblk_t *)lbolt;
16797 	mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss,
16798 	    B_TRUE);
16799 
16800 	/*
16801 	 * When slow start after retransmission begins, start with
16802 	 * this seq no.  tcp_rexmit_max marks the end of special slow
16803 	 * start phase.  tcp_snd_burst controls how many segments
16804 	 * can be sent because of an ack.
16805 	 */
16806 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
16807 	tcp->tcp_snd_burst = TCP_CWND_SS;
16808 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
16809 	    (tcp->tcp_unsent == 0)) {
16810 		tcp->tcp_rexmit_max = tcp->tcp_fss;
16811 	} else {
16812 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
16813 	}
16814 	tcp->tcp_rexmit = B_TRUE;
16815 	tcp->tcp_dupack_cnt = 0;
16816 
16817 	/*
16818 	 * Remove all rexmit SACK blk to start from fresh.
16819 	 */
16820 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
16821 		TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
16822 		tcp->tcp_num_notsack_blk = 0;
16823 		tcp->tcp_cnt_notsack_list = 0;
16824 	}
16825 	if (mp == NULL) {
16826 		return;
16827 	}
16828 	/* Attach credentials to retransmitted initial SYNs. */
16829 	if (tcp->tcp_state == TCPS_SYN_SENT) {
16830 		mblk_setcred(mp, tcp->tcp_cred);
16831 		DB_CPID(mp) = tcp->tcp_cpid;
16832 	}
16833 
16834 	tcp->tcp_csuna = tcp->tcp_snxt;
16835 	BUMP_MIB(&tcp_mib, tcpRetransSegs);
16836 	UPDATE_MIB(&tcp_mib, tcpRetransBytes, mss);
16837 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
16838 	tcp_send_data(tcp, tcp->tcp_wq, mp);
16839 
16840 }
16841 
16842 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */
16843 static void
16844 tcp_unbind(tcp_t *tcp, mblk_t *mp)
16845 {
16846 	conn_t	*connp;
16847 
16848 	switch (tcp->tcp_state) {
16849 	case TCPS_BOUND:
16850 	case TCPS_LISTEN:
16851 		break;
16852 	default:
16853 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
16854 		return;
16855 	}
16856 
16857 	/*
16858 	 * Need to clean up all the eagers since after the unbind, segments
16859 	 * will no longer be delivered to this listener stream.
16860 	 */
16861 	mutex_enter(&tcp->tcp_eager_lock);
16862 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
16863 		tcp_eager_cleanup(tcp, 0);
16864 	}
16865 	mutex_exit(&tcp->tcp_eager_lock);
16866 
16867 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16868 		tcp->tcp_ipha->ipha_src = 0;
16869 	} else {
16870 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
16871 	}
16872 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
16873 	bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport));
16874 	tcp_bind_hash_remove(tcp);
16875 	tcp->tcp_state = TCPS_IDLE;
16876 	tcp->tcp_mdt = B_FALSE;
16877 	/* Send M_FLUSH according to TPI */
16878 	(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
16879 	connp = tcp->tcp_connp;
16880 	connp->conn_mdt_ok = B_FALSE;
16881 	ipcl_hash_remove(connp);
16882 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
16883 	mp = mi_tpi_ok_ack_alloc(mp);
16884 	putnext(tcp->tcp_rq, mp);
16885 }
16886 
16887 /*
16888  * Don't let port fall into the privileged range.
16889  * Since the extra privileged ports can be arbitrary we also
16890  * ensure that we exclude those from consideration.
16891  * tcp_g_epriv_ports is not sorted thus we loop over it until
16892  * there are no changes.
16893  *
16894  * Note: No locks are held when inspecting tcp_g_*epriv_ports
16895  * but instead the code relies on:
16896  * - the fact that the address of the array and its size never changes
16897  * - the atomic assignment of the elements of the array
16898  *
16899  * Returns 0 if there are no more ports available.
16900  *
16901  * TS note: skip multilevel ports.
16902  */
16903 static in_port_t
16904 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random)
16905 {
16906 	int i;
16907 	boolean_t restart = B_FALSE;
16908 
16909 	if (random && tcp_random_anon_port != 0) {
16910 		(void) random_get_pseudo_bytes((uint8_t *)&port,
16911 		    sizeof (in_port_t));
16912 		/*
16913 		 * Unless changed by a sys admin, the smallest anon port
16914 		 * is 32768 and the largest anon port is 65535.  It is
16915 		 * very likely (50%) for the random port to be smaller
16916 		 * than the smallest anon port.  When that happens,
16917 		 * add port % (anon port range) to the smallest anon
16918 		 * port to get the random port.  It should fall into the
16919 		 * valid anon port range.
16920 		 */
16921 		if (port < tcp_smallest_anon_port) {
16922 			port = tcp_smallest_anon_port +
16923 			    port % (tcp_largest_anon_port -
16924 				tcp_smallest_anon_port);
16925 		}
16926 	}
16927 
16928 retry:
16929 	if (port < tcp_smallest_anon_port)
16930 		port = (in_port_t)tcp_smallest_anon_port;
16931 
16932 	if (port > tcp_largest_anon_port) {
16933 		if (restart)
16934 			return (0);
16935 		restart = B_TRUE;
16936 		port = (in_port_t)tcp_smallest_anon_port;
16937 	}
16938 
16939 	if (port < tcp_smallest_nonpriv_port)
16940 		port = (in_port_t)tcp_smallest_nonpriv_port;
16941 
16942 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
16943 		if (port == tcp_g_epriv_ports[i]) {
16944 			port++;
16945 			/*
16946 			 * Make sure whether the port is in the
16947 			 * valid range.
16948 			 */
16949 			goto retry;
16950 		}
16951 	}
16952 	if (is_system_labeled() &&
16953 	    (i = tsol_next_port(crgetzone(tcp->tcp_cred), port,
16954 	    IPPROTO_TCP, B_TRUE)) != 0) {
16955 		port = i;
16956 		goto retry;
16957 	}
16958 	return (port);
16959 }
16960 
16961 /*
16962  * Return the next anonymous port in the privileged port range for
16963  * bind checking.  It starts at IPPORT_RESERVED - 1 and goes
16964  * downwards.  This is the same behavior as documented in the userland
16965  * library call rresvport(3N).
16966  *
16967  * TS note: skip multilevel ports.
16968  */
16969 static in_port_t
16970 tcp_get_next_priv_port(const tcp_t *tcp)
16971 {
16972 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
16973 	in_port_t nextport;
16974 	boolean_t restart = B_FALSE;
16975 
16976 retry:
16977 	if (next_priv_port < tcp_min_anonpriv_port ||
16978 	    next_priv_port >= IPPORT_RESERVED) {
16979 		next_priv_port = IPPORT_RESERVED - 1;
16980 		if (restart)
16981 			return (0);
16982 		restart = B_TRUE;
16983 	}
16984 	if (is_system_labeled() &&
16985 	    (nextport = tsol_next_port(crgetzone(tcp->tcp_cred),
16986 	    next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) {
16987 		next_priv_port = nextport;
16988 		goto retry;
16989 	}
16990 	return (next_priv_port--);
16991 }
16992 
16993 /* The write side r/w procedure. */
16994 
16995 #if CCS_STATS
16996 struct {
16997 	struct {
16998 		int64_t count, bytes;
16999 	} tot, hit;
17000 } wrw_stats;
17001 #endif
17002 
17003 /*
17004  * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO,
17005  * messages.
17006  */
17007 /* ARGSUSED */
17008 static void
17009 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2)
17010 {
17011 	conn_t	*connp = (conn_t *)arg;
17012 	tcp_t	*tcp = connp->conn_tcp;
17013 	queue_t	*q = tcp->tcp_wq;
17014 
17015 	ASSERT(DB_TYPE(mp) != M_IOCTL);
17016 	/*
17017 	 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close.
17018 	 * Once the close starts, streamhead and sockfs will not let any data
17019 	 * packets come down (close ensures that there are no threads using the
17020 	 * queue and no new threads will come down) but since qprocsoff()
17021 	 * hasn't happened yet, a M_FLUSH or some non data message might
17022 	 * get reflected back (in response to our own FLUSHRW) and get
17023 	 * processed after tcp_close() is done. The conn would still be valid
17024 	 * because a ref would have added but we need to check the state
17025 	 * before actually processing the packet.
17026 	 */
17027 	if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) {
17028 		freemsg(mp);
17029 		return;
17030 	}
17031 
17032 	switch (DB_TYPE(mp)) {
17033 	case M_IOCDATA:
17034 		tcp_wput_iocdata(tcp, mp);
17035 		break;
17036 	case M_FLUSH:
17037 		tcp_wput_flush(tcp, mp);
17038 		break;
17039 	default:
17040 		CALL_IP_WPUT(connp, q, mp);
17041 		break;
17042 	}
17043 }
17044 
17045 /*
17046  * The TCP fast path write put procedure.
17047  * NOTE: the logic of the fast path is duplicated from tcp_wput_data()
17048  */
17049 /* ARGSUSED */
17050 void
17051 tcp_output(void *arg, mblk_t *mp, void *arg2)
17052 {
17053 	int		len;
17054 	int		hdrlen;
17055 	int		plen;
17056 	mblk_t		*mp1;
17057 	uchar_t		*rptr;
17058 	uint32_t	snxt;
17059 	tcph_t		*tcph;
17060 	struct datab	*db;
17061 	uint32_t	suna;
17062 	uint32_t	mss;
17063 	ipaddr_t	*dst;
17064 	ipaddr_t	*src;
17065 	uint32_t	sum;
17066 	int		usable;
17067 	conn_t		*connp = (conn_t *)arg;
17068 	tcp_t		*tcp = connp->conn_tcp;
17069 	uint32_t	msize;
17070 
17071 	/*
17072 	 * Try and ASSERT the minimum possible references on the
17073 	 * conn early enough. Since we are executing on write side,
17074 	 * the connection is obviously not detached and that means
17075 	 * there is a ref each for TCP and IP. Since we are behind
17076 	 * the squeue, the minimum references needed are 3. If the
17077 	 * conn is in classifier hash list, there should be an
17078 	 * extra ref for that (we check both the possibilities).
17079 	 */
17080 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17081 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17082 
17083 	ASSERT(DB_TYPE(mp) == M_DATA);
17084 	msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
17085 
17086 	mutex_enter(&connp->conn_lock);
17087 	tcp->tcp_squeue_bytes -= msize;
17088 	mutex_exit(&connp->conn_lock);
17089 
17090 	/* Bypass tcp protocol for fused tcp loopback */
17091 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
17092 		return;
17093 
17094 	mss = tcp->tcp_mss;
17095 	if (tcp->tcp_xmit_zc_clean)
17096 		mp = tcp_zcopy_backoff(tcp, mp, 0);
17097 
17098 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
17099 	len = (int)(mp->b_wptr - mp->b_rptr);
17100 
17101 	/*
17102 	 * Criteria for fast path:
17103 	 *
17104 	 *   1. no unsent data
17105 	 *   2. single mblk in request
17106 	 *   3. connection established
17107 	 *   4. data in mblk
17108 	 *   5. len <= mss
17109 	 *   6. no tcp_valid bits
17110 	 */
17111 	if ((tcp->tcp_unsent != 0) ||
17112 	    (tcp->tcp_cork) ||
17113 	    (mp->b_cont != NULL) ||
17114 	    (tcp->tcp_state != TCPS_ESTABLISHED) ||
17115 	    (len == 0) ||
17116 	    (len > mss) ||
17117 	    (tcp->tcp_valid_bits != 0)) {
17118 		tcp_wput_data(tcp, mp, B_FALSE);
17119 		return;
17120 	}
17121 
17122 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
17123 	ASSERT(tcp->tcp_fin_sent == 0);
17124 
17125 	/* queue new packet onto retransmission queue */
17126 	if (tcp->tcp_xmit_head == NULL) {
17127 		tcp->tcp_xmit_head = mp;
17128 	} else {
17129 		tcp->tcp_xmit_last->b_cont = mp;
17130 	}
17131 	tcp->tcp_xmit_last = mp;
17132 	tcp->tcp_xmit_tail = mp;
17133 
17134 	/* find out how much we can send */
17135 	/* BEGIN CSTYLED */
17136 	/*
17137 	 *    un-acked           usable
17138 	 *  |--------------|-----------------|
17139 	 *  tcp_suna       tcp_snxt          tcp_suna+tcp_swnd
17140 	 */
17141 	/* END CSTYLED */
17142 
17143 	/* start sending from tcp_snxt */
17144 	snxt = tcp->tcp_snxt;
17145 
17146 	/*
17147 	 * Check to see if this connection has been idled for some
17148 	 * time and no ACK is expected.  If it is, we need to slow
17149 	 * start again to get back the connection's "self-clock" as
17150 	 * described in VJ's paper.
17151 	 *
17152 	 * Refer to the comment in tcp_mss_set() for the calculation
17153 	 * of tcp_cwnd after idle.
17154 	 */
17155 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
17156 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
17157 		SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle);
17158 	}
17159 
17160 	usable = tcp->tcp_swnd;		/* tcp window size */
17161 	if (usable > tcp->tcp_cwnd)
17162 		usable = tcp->tcp_cwnd;	/* congestion window smaller */
17163 	usable -= snxt;		/* subtract stuff already sent */
17164 	suna = tcp->tcp_suna;
17165 	usable += suna;
17166 	/* usable can be < 0 if the congestion window is smaller */
17167 	if (len > usable) {
17168 		/* Can't send complete M_DATA in one shot */
17169 		goto slow;
17170 	}
17171 
17172 	if (tcp->tcp_flow_stopped &&
17173 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
17174 		tcp_clrqfull(tcp);
17175 	}
17176 
17177 	/*
17178 	 * determine if anything to send (Nagle).
17179 	 *
17180 	 *   1. len < tcp_mss (i.e. small)
17181 	 *   2. unacknowledged data present
17182 	 *   3. len < nagle limit
17183 	 *   4. last packet sent < nagle limit (previous packet sent)
17184 	 */
17185 	if ((len < mss) && (snxt != suna) &&
17186 	    (len < (int)tcp->tcp_naglim) &&
17187 	    (tcp->tcp_last_sent_len < tcp->tcp_naglim)) {
17188 		/*
17189 		 * This was the first unsent packet and normally
17190 		 * mss < xmit_hiwater so there is no need to worry
17191 		 * about flow control. The next packet will go
17192 		 * through the flow control check in tcp_wput_data().
17193 		 */
17194 		/* leftover work from above */
17195 		tcp->tcp_unsent = len;
17196 		tcp->tcp_xmit_tail_unsent = len;
17197 
17198 		return;
17199 	}
17200 
17201 	/* len <= tcp->tcp_mss && len == unsent so no silly window */
17202 
17203 	if (snxt == suna) {
17204 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
17205 	}
17206 
17207 	/* we have always sent something */
17208 	tcp->tcp_rack_cnt = 0;
17209 
17210 	tcp->tcp_snxt = snxt + len;
17211 	tcp->tcp_rack = tcp->tcp_rnxt;
17212 
17213 	if ((mp1 = dupb(mp)) == 0)
17214 		goto no_memory;
17215 	mp->b_prev = (mblk_t *)(uintptr_t)lbolt;
17216 	mp->b_next = (mblk_t *)(uintptr_t)snxt;
17217 
17218 	/* adjust tcp header information */
17219 	tcph = tcp->tcp_tcph;
17220 	tcph->th_flags[0] = (TH_ACK|TH_PUSH);
17221 
17222 	sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
17223 	sum = (sum >> 16) + (sum & 0xFFFF);
17224 	U16_TO_ABE16(sum, tcph->th_sum);
17225 
17226 	U32_TO_ABE32(snxt, tcph->th_seq);
17227 
17228 	BUMP_MIB(&tcp_mib, tcpOutDataSegs);
17229 	UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len);
17230 	BUMP_LOCAL(tcp->tcp_obsegs);
17231 
17232 	/* Update the latest receive window size in TCP header. */
17233 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
17234 	    tcph->th_win);
17235 
17236 	tcp->tcp_last_sent_len = (ushort_t)len;
17237 
17238 	plen = len + tcp->tcp_hdr_len;
17239 
17240 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17241 		tcp->tcp_ipha->ipha_length = htons(plen);
17242 	} else {
17243 		tcp->tcp_ip6h->ip6_plen = htons(plen -
17244 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
17245 	}
17246 
17247 	/* see if we need to allocate a mblk for the headers */
17248 	hdrlen = tcp->tcp_hdr_len;
17249 	rptr = mp1->b_rptr - hdrlen;
17250 	db = mp1->b_datap;
17251 	if ((db->db_ref != 2) || rptr < db->db_base ||
17252 	    (!OK_32PTR(rptr))) {
17253 		/* NOTE: we assume allocb returns an OK_32PTR */
17254 		mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
17255 		    tcp_wroff_xtra, BPRI_MED);
17256 		if (!mp) {
17257 			freemsg(mp1);
17258 			goto no_memory;
17259 		}
17260 		mp->b_cont = mp1;
17261 		mp1 = mp;
17262 		/* Leave room for Link Level header */
17263 		/* hdrlen = tcp->tcp_hdr_len; */
17264 		rptr = &mp1->b_rptr[tcp_wroff_xtra];
17265 		mp1->b_wptr = &rptr[hdrlen];
17266 	}
17267 	mp1->b_rptr = rptr;
17268 
17269 	/* Fill in the timestamp option. */
17270 	if (tcp->tcp_snd_ts_ok) {
17271 		U32_TO_BE32((uint32_t)lbolt,
17272 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
17273 		U32_TO_BE32(tcp->tcp_ts_recent,
17274 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
17275 	} else {
17276 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
17277 	}
17278 
17279 	/* copy header into outgoing packet */
17280 	dst = (ipaddr_t *)rptr;
17281 	src = (ipaddr_t *)tcp->tcp_iphc;
17282 	dst[0] = src[0];
17283 	dst[1] = src[1];
17284 	dst[2] = src[2];
17285 	dst[3] = src[3];
17286 	dst[4] = src[4];
17287 	dst[5] = src[5];
17288 	dst[6] = src[6];
17289 	dst[7] = src[7];
17290 	dst[8] = src[8];
17291 	dst[9] = src[9];
17292 	if (hdrlen -= 40) {
17293 		hdrlen >>= 2;
17294 		dst += 10;
17295 		src += 10;
17296 		do {
17297 			*dst++ = *src++;
17298 		} while (--hdrlen);
17299 	}
17300 
17301 	/*
17302 	 * Set the ECN info in the TCP header.  Note that this
17303 	 * is not the template header.
17304 	 */
17305 	if (tcp->tcp_ecn_ok) {
17306 		SET_ECT(tcp, rptr);
17307 
17308 		tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
17309 		if (tcp->tcp_ecn_echo_on)
17310 			tcph->th_flags[0] |= TH_ECE;
17311 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
17312 			tcph->th_flags[0] |= TH_CWR;
17313 			tcp->tcp_ecn_cwr_sent = B_TRUE;
17314 		}
17315 	}
17316 
17317 	if (tcp->tcp_ip_forward_progress) {
17318 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
17319 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
17320 		tcp->tcp_ip_forward_progress = B_FALSE;
17321 	}
17322 	TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
17323 	tcp_send_data(tcp, tcp->tcp_wq, mp1);
17324 	return;
17325 
17326 	/*
17327 	 * If we ran out of memory, we pretend to have sent the packet
17328 	 * and that it was lost on the wire.
17329 	 */
17330 no_memory:
17331 	return;
17332 
17333 slow:
17334 	/* leftover work from above */
17335 	tcp->tcp_unsent = len;
17336 	tcp->tcp_xmit_tail_unsent = len;
17337 	tcp_wput_data(tcp, NULL, B_FALSE);
17338 }
17339 
17340 /*
17341  * The function called through squeue to get behind eager's perimeter to
17342  * finish the accept processing.
17343  */
17344 /* ARGSUSED */
17345 void
17346 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2)
17347 {
17348 	conn_t			*connp = (conn_t *)arg;
17349 	tcp_t			*tcp = connp->conn_tcp;
17350 	queue_t			*q = tcp->tcp_rq;
17351 	mblk_t			*mp1;
17352 	mblk_t			*stropt_mp = mp;
17353 	struct  stroptions	*stropt;
17354 	uint_t			thwin;
17355 
17356 	/*
17357 	 * Drop the eager's ref on the listener, that was placed when
17358 	 * this eager began life in tcp_conn_request.
17359 	 */
17360 	CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp);
17361 
17362 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) {
17363 		/*
17364 		 * Someone blewoff the eager before we could finish
17365 		 * the accept.
17366 		 *
17367 		 * The only reason eager exists it because we put in
17368 		 * a ref on it when conn ind went up. We need to send
17369 		 * a disconnect indication up while the last reference
17370 		 * on the eager will be dropped by the squeue when we
17371 		 * return.
17372 		 */
17373 		ASSERT(tcp->tcp_listener == NULL);
17374 		if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) {
17375 			struct	T_discon_ind	*tdi;
17376 
17377 			(void) putnextctl1(q, M_FLUSH, FLUSHRW);
17378 			/*
17379 			 * Let us reuse the incoming mblk to avoid memory
17380 			 * allocation failure problems. We know that the
17381 			 * size of the incoming mblk i.e. stroptions is greater
17382 			 * than sizeof T_discon_ind. So the reallocb below
17383 			 * can't fail.
17384 			 */
17385 			freemsg(mp->b_cont);
17386 			mp->b_cont = NULL;
17387 			ASSERT(DB_REF(mp) == 1);
17388 			mp = reallocb(mp, sizeof (struct T_discon_ind),
17389 			    B_FALSE);
17390 			ASSERT(mp != NULL);
17391 			DB_TYPE(mp) = M_PROTO;
17392 			((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND;
17393 			tdi = (struct T_discon_ind *)mp->b_rptr;
17394 			if (tcp->tcp_issocket) {
17395 				tdi->DISCON_reason = ECONNREFUSED;
17396 				tdi->SEQ_number = 0;
17397 			} else {
17398 				tdi->DISCON_reason = ENOPROTOOPT;
17399 				tdi->SEQ_number =
17400 				    tcp->tcp_conn_req_seqnum;
17401 			}
17402 			mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind);
17403 			putnext(q, mp);
17404 		} else {
17405 			freemsg(mp);
17406 		}
17407 		if (tcp->tcp_hard_binding) {
17408 			tcp->tcp_hard_binding = B_FALSE;
17409 			tcp->tcp_hard_bound = B_TRUE;
17410 		}
17411 		tcp->tcp_detached = B_FALSE;
17412 		return;
17413 	}
17414 
17415 	mp1 = stropt_mp->b_cont;
17416 	stropt_mp->b_cont = NULL;
17417 	ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS);
17418 	stropt = (struct stroptions *)stropt_mp->b_rptr;
17419 
17420 	while (mp1 != NULL) {
17421 		mp = mp1;
17422 		mp1 = mp1->b_cont;
17423 		mp->b_cont = NULL;
17424 		tcp->tcp_drop_opt_ack_cnt++;
17425 		CALL_IP_WPUT(connp, tcp->tcp_wq, mp);
17426 	}
17427 	mp = NULL;
17428 
17429 	/*
17430 	 * For a loopback connection with tcp_direct_sockfs on, note that
17431 	 * we don't have to protect tcp_rcv_list yet because synchronous
17432 	 * streams has not yet been enabled and tcp_fuse_rrw() cannot
17433 	 * possibly race with us.
17434 	 */
17435 
17436 	/*
17437 	 * Set the max window size (tcp_rq->q_hiwat) of the acceptor
17438 	 * properly.  This is the first time we know of the acceptor'
17439 	 * queue.  So we do it here.
17440 	 */
17441 	if (tcp->tcp_rcv_list == NULL) {
17442 		/*
17443 		 * Recv queue is empty, tcp_rwnd should not have changed.
17444 		 * That means it should be equal to the listener's tcp_rwnd.
17445 		 */
17446 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd;
17447 	} else {
17448 #ifdef DEBUG
17449 		uint_t cnt = 0;
17450 
17451 		mp1 = tcp->tcp_rcv_list;
17452 		while ((mp = mp1) != NULL) {
17453 			mp1 = mp->b_next;
17454 			cnt += msgdsize(mp);
17455 		}
17456 		ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt);
17457 #endif
17458 		/* There is some data, add them back to get the max. */
17459 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
17460 	}
17461 
17462 	stropt->so_flags = SO_HIWAT;
17463 	stropt->so_hiwat = MAX(q->q_hiwat, tcp_sth_rcv_hiwat);
17464 
17465 	stropt->so_flags |= SO_MAXBLK;
17466 	stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
17467 
17468 	/*
17469 	 * This is the first time we run on the correct
17470 	 * queue after tcp_accept. So fix all the q parameters
17471 	 * here.
17472 	 */
17473 	/* Allocate room for SACK options if needed. */
17474 	stropt->so_flags |= SO_WROFF;
17475 	if (tcp->tcp_fused) {
17476 		ASSERT(tcp->tcp_loopback);
17477 		ASSERT(tcp->tcp_loopback_peer != NULL);
17478 		/*
17479 		 * For fused tcp loopback, set the stream head's write
17480 		 * offset value to zero since we won't be needing any room
17481 		 * for TCP/IP headers.  This would also improve performance
17482 		 * since it would reduce the amount of work done by kmem.
17483 		 * Non-fused tcp loopback case is handled separately below.
17484 		 */
17485 		stropt->so_wroff = 0;
17486 		/*
17487 		 * Record the stream head's high water mark for this endpoint;
17488 		 * this is used for flow-control purposes in tcp_fuse_output().
17489 		 */
17490 		stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat);
17491 		/*
17492 		 * Update the peer's transmit parameters according to
17493 		 * our recently calculated high water mark value.
17494 		 */
17495 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
17496 	} else if (tcp->tcp_snd_sack_ok) {
17497 		stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
17498 		    (tcp->tcp_loopback ? 0 : tcp_wroff_xtra);
17499 	} else {
17500 		stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 :
17501 		    tcp_wroff_xtra);
17502 	}
17503 
17504 	/*
17505 	 * If this is endpoint is handling SSL, then reserve extra
17506 	 * offset and space at the end.
17507 	 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets,
17508 	 * overriding the previous setting. The extra cost of signing and
17509 	 * encrypting multiple MSS-size records (12 of them with Ethernet),
17510 	 * instead of a single contiguous one by the stream head
17511 	 * largely outweighs the statistical reduction of ACKs, when
17512 	 * applicable. The peer will also save on decyption and verification
17513 	 * costs.
17514 	 */
17515 	if (tcp->tcp_kssl_ctx != NULL) {
17516 		stropt->so_wroff += SSL3_WROFFSET;
17517 
17518 		stropt->so_flags |= SO_TAIL;
17519 		stropt->so_tail = SSL3_MAX_TAIL_LEN;
17520 
17521 		stropt->so_maxblk = SSL3_MAX_RECORD_LEN;
17522 	}
17523 
17524 	/* Send the options up */
17525 	putnext(q, stropt_mp);
17526 
17527 	/*
17528 	 * Pass up any data and/or a fin that has been received.
17529 	 *
17530 	 * Adjust receive window in case it had decreased
17531 	 * (because there is data <=> tcp_rcv_list != NULL)
17532 	 * while the connection was detached. Note that
17533 	 * in case the eager was flow-controlled, w/o this
17534 	 * code, the rwnd may never open up again!
17535 	 */
17536 	if (tcp->tcp_rcv_list != NULL) {
17537 		/* We drain directly in case of fused tcp loopback */
17538 		if (!tcp->tcp_fused && canputnext(q)) {
17539 			tcp->tcp_rwnd = q->q_hiwat;
17540 			thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
17541 			    << tcp->tcp_rcv_ws;
17542 			thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
17543 			if (tcp->tcp_state >= TCPS_ESTABLISHED &&
17544 			    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
17545 				tcp_xmit_ctl(NULL,
17546 				    tcp, (tcp->tcp_swnd == 0) ?
17547 				    tcp->tcp_suna : tcp->tcp_snxt,
17548 				    tcp->tcp_rnxt, TH_ACK);
17549 				BUMP_MIB(&tcp_mib, tcpOutWinUpdate);
17550 			}
17551 
17552 		}
17553 		(void) tcp_rcv_drain(q, tcp);
17554 
17555 		/*
17556 		 * For fused tcp loopback, back-enable peer endpoint
17557 		 * if it's currently flow-controlled.
17558 		 */
17559 		if (tcp->tcp_fused &&
17560 		    tcp->tcp_loopback_peer->tcp_flow_stopped) {
17561 			tcp_t *peer_tcp = tcp->tcp_loopback_peer;
17562 
17563 			ASSERT(peer_tcp != NULL);
17564 			ASSERT(peer_tcp->tcp_fused);
17565 
17566 			tcp_clrqfull(peer_tcp);
17567 			TCP_STAT(tcp_fusion_backenabled);
17568 		}
17569 	}
17570 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
17571 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
17572 		mp = mi_tpi_ordrel_ind();
17573 		if (mp) {
17574 			tcp->tcp_ordrel_done = B_TRUE;
17575 			putnext(q, mp);
17576 			if (tcp->tcp_deferred_clean_death) {
17577 				/*
17578 				 * tcp_clean_death was deferred
17579 				 * for T_ORDREL_IND - do it now
17580 				 */
17581 				(void) tcp_clean_death(tcp,
17582 				    tcp->tcp_client_errno, 21);
17583 				tcp->tcp_deferred_clean_death = B_FALSE;
17584 			}
17585 		} else {
17586 			/*
17587 			 * Run the orderly release in the
17588 			 * service routine.
17589 			 */
17590 			qenable(q);
17591 		}
17592 	}
17593 	if (tcp->tcp_hard_binding) {
17594 		tcp->tcp_hard_binding = B_FALSE;
17595 		tcp->tcp_hard_bound = B_TRUE;
17596 	}
17597 
17598 	tcp->tcp_detached = B_FALSE;
17599 
17600 	/* We can enable synchronous streams now */
17601 	if (tcp->tcp_fused) {
17602 		tcp_fuse_syncstr_enable_pair(tcp);
17603 	}
17604 
17605 	if (tcp->tcp_ka_enabled) {
17606 		tcp->tcp_ka_last_intrvl = 0;
17607 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
17608 		    MSEC_TO_TICK(tcp->tcp_ka_interval));
17609 	}
17610 
17611 	/*
17612 	 * At this point, eager is fully established and will
17613 	 * have the following references -
17614 	 *
17615 	 * 2 references for connection to exist (1 for TCP and 1 for IP).
17616 	 * 1 reference for the squeue which will be dropped by the squeue as
17617 	 *	soon as this function returns.
17618 	 * There will be 1 additonal reference for being in classifier
17619 	 *	hash list provided something bad hasn't happened.
17620 	 */
17621 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17622 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17623 }
17624 
17625 /*
17626  * The function called through squeue to get behind listener's perimeter to
17627  * send a deffered conn_ind.
17628  */
17629 /* ARGSUSED */
17630 void
17631 tcp_send_pending(void *arg, mblk_t *mp, void *arg2)
17632 {
17633 	conn_t	*connp = (conn_t *)arg;
17634 	tcp_t *listener = connp->conn_tcp;
17635 
17636 	if (listener->tcp_state == TCPS_CLOSED ||
17637 	    TCP_IS_DETACHED(listener)) {
17638 		/*
17639 		 * If listener has closed, it would have caused a
17640 		 * a cleanup/blowoff to happen for the eager.
17641 		 */
17642 		tcp_t *tcp;
17643 		struct T_conn_ind	*conn_ind;
17644 
17645 		conn_ind = (struct T_conn_ind *)mp->b_rptr;
17646 		bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
17647 		    conn_ind->OPT_length);
17648 		/*
17649 		 * We need to drop the ref on eager that was put
17650 		 * tcp_rput_data() before trying to send the conn_ind
17651 		 * to listener. The conn_ind was deferred in tcp_send_conn_ind
17652 		 * and tcp_wput_accept() is sending this deferred conn_ind but
17653 		 * listener is closed so we drop the ref.
17654 		 */
17655 		CONN_DEC_REF(tcp->tcp_connp);
17656 		freemsg(mp);
17657 		return;
17658 	}
17659 	putnext(listener->tcp_rq, mp);
17660 }
17661 
17662 
17663 /*
17664  * This is the STREAMS entry point for T_CONN_RES coming down on
17665  * Acceptor STREAM when  sockfs listener does accept processing.
17666  * Read the block comment on top pf tcp_conn_request().
17667  */
17668 void
17669 tcp_wput_accept(queue_t *q, mblk_t *mp)
17670 {
17671 	queue_t *rq = RD(q);
17672 	struct T_conn_res *conn_res;
17673 	tcp_t *eager;
17674 	tcp_t *listener;
17675 	struct T_ok_ack *ok;
17676 	t_scalar_t PRIM_type;
17677 	mblk_t *opt_mp;
17678 	conn_t *econnp;
17679 
17680 	ASSERT(DB_TYPE(mp) == M_PROTO);
17681 
17682 	conn_res = (struct T_conn_res *)mp->b_rptr;
17683 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
17684 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) {
17685 		mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
17686 		if (mp != NULL)
17687 			putnext(rq, mp);
17688 		return;
17689 	}
17690 	switch (conn_res->PRIM_type) {
17691 	case O_T_CONN_RES:
17692 	case T_CONN_RES:
17693 		/*
17694 		 * We pass up an err ack if allocb fails. This will
17695 		 * cause sockfs to issue a T_DISCON_REQ which will cause
17696 		 * tcp_eager_blowoff to be called. sockfs will then call
17697 		 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream.
17698 		 * we need to do the allocb up here because we have to
17699 		 * make sure rq->q_qinfo->qi_qclose still points to the
17700 		 * correct function (tcpclose_accept) in case allocb
17701 		 * fails.
17702 		 */
17703 		opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
17704 		if (opt_mp == NULL) {
17705 			mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
17706 			if (mp != NULL)
17707 				putnext(rq, mp);
17708 			return;
17709 		}
17710 
17711 		bcopy(mp->b_rptr + conn_res->OPT_offset,
17712 		    &eager, conn_res->OPT_length);
17713 		PRIM_type = conn_res->PRIM_type;
17714 		mp->b_datap->db_type = M_PCPROTO;
17715 		mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack);
17716 		ok = (struct T_ok_ack *)mp->b_rptr;
17717 		ok->PRIM_type = T_OK_ACK;
17718 		ok->CORRECT_prim = PRIM_type;
17719 		econnp = eager->tcp_connp;
17720 		econnp->conn_dev = (dev_t)q->q_ptr;
17721 		eager->tcp_rq = rq;
17722 		eager->tcp_wq = q;
17723 		rq->q_ptr = econnp;
17724 		rq->q_qinfo = &tcp_rinit;
17725 		q->q_ptr = econnp;
17726 		q->q_qinfo = &tcp_winit;
17727 		listener = eager->tcp_listener;
17728 		eager->tcp_issocket = B_TRUE;
17729 		econnp->conn_zoneid = listener->tcp_connp->conn_zoneid;
17730 
17731 		/* Put the ref for IP */
17732 		CONN_INC_REF(econnp);
17733 
17734 		/*
17735 		 * We should have minimum of 3 references on the conn
17736 		 * at this point. One each for TCP and IP and one for
17737 		 * the T_conn_ind that was sent up when the 3-way handshake
17738 		 * completed. In the normal case we would also have another
17739 		 * reference (making a total of 4) for the conn being in the
17740 		 * classifier hash list. However the eager could have received
17741 		 * an RST subsequently and tcp_closei_local could have removed
17742 		 * the eager from the classifier hash list, hence we can't
17743 		 * assert that reference.
17744 		 */
17745 		ASSERT(econnp->conn_ref >= 3);
17746 
17747 		/*
17748 		 * Send the new local address also up to sockfs. There
17749 		 * should already be enough space in the mp that came
17750 		 * down from soaccept().
17751 		 */
17752 		if (eager->tcp_family == AF_INET) {
17753 			sin_t *sin;
17754 
17755 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
17756 			    (sizeof (struct T_ok_ack) + sizeof (sin_t)));
17757 			sin = (sin_t *)mp->b_wptr;
17758 			mp->b_wptr += sizeof (sin_t);
17759 			sin->sin_family = AF_INET;
17760 			sin->sin_port = eager->tcp_lport;
17761 			sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src;
17762 		} else {
17763 			sin6_t *sin6;
17764 
17765 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
17766 			    sizeof (struct T_ok_ack) + sizeof (sin6_t));
17767 			sin6 = (sin6_t *)mp->b_wptr;
17768 			mp->b_wptr += sizeof (sin6_t);
17769 			sin6->sin6_family = AF_INET6;
17770 			sin6->sin6_port = eager->tcp_lport;
17771 			if (eager->tcp_ipversion == IPV4_VERSION) {
17772 				sin6->sin6_flowinfo = 0;
17773 				IN6_IPADDR_TO_V4MAPPED(
17774 					eager->tcp_ipha->ipha_src,
17775 					    &sin6->sin6_addr);
17776 			} else {
17777 				ASSERT(eager->tcp_ip6h != NULL);
17778 				sin6->sin6_flowinfo =
17779 				    eager->tcp_ip6h->ip6_vcf &
17780 				    ~IPV6_VERS_AND_FLOW_MASK;
17781 				sin6->sin6_addr = eager->tcp_ip6h->ip6_src;
17782 			}
17783 			sin6->sin6_scope_id = 0;
17784 			sin6->__sin6_src_id = 0;
17785 		}
17786 
17787 		putnext(rq, mp);
17788 
17789 		opt_mp->b_datap->db_type = M_SETOPTS;
17790 		opt_mp->b_wptr += sizeof (struct stroptions);
17791 
17792 		/*
17793 		 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
17794 		 * from listener to acceptor. The message is chained on the
17795 		 * bind_mp which tcp_rput_other will send down to IP.
17796 		 */
17797 		if (listener->tcp_bound_if != 0) {
17798 			/* allocate optmgmt req */
17799 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
17800 			    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
17801 			    sizeof (int));
17802 			if (mp != NULL)
17803 				linkb(opt_mp, mp);
17804 		}
17805 		if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
17806 			uint_t on = 1;
17807 
17808 			/* allocate optmgmt req */
17809 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
17810 			    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
17811 			if (mp != NULL)
17812 				linkb(opt_mp, mp);
17813 		}
17814 
17815 
17816 		mutex_enter(&listener->tcp_eager_lock);
17817 
17818 		if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
17819 
17820 			tcp_t *tail;
17821 			tcp_t *tcp;
17822 			mblk_t *mp1;
17823 
17824 			tcp = listener->tcp_eager_prev_q0;
17825 			/*
17826 			 * listener->tcp_eager_prev_q0 points to the TAIL of the
17827 			 * deferred T_conn_ind queue. We need to get to the head
17828 			 * of the queue in order to send up T_conn_ind the same
17829 			 * order as how the 3WHS is completed.
17830 			 */
17831 			while (tcp != listener) {
17832 				if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 &&
17833 				    !tcp->tcp_kssl_pending)
17834 					break;
17835 				else
17836 					tcp = tcp->tcp_eager_prev_q0;
17837 			}
17838 			/* None of the pending eagers can be sent up now */
17839 			if (tcp == listener)
17840 				goto no_more_eagers;
17841 
17842 			mp1 = tcp->tcp_conn.tcp_eager_conn_ind;
17843 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
17844 			/* Move from q0 to q */
17845 			ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
17846 			listener->tcp_conn_req_cnt_q0--;
17847 			listener->tcp_conn_req_cnt_q++;
17848 			tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
17849 			    tcp->tcp_eager_prev_q0;
17850 			tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
17851 			    tcp->tcp_eager_next_q0;
17852 			tcp->tcp_eager_prev_q0 = NULL;
17853 			tcp->tcp_eager_next_q0 = NULL;
17854 			tcp->tcp_conn_def_q0 = B_FALSE;
17855 
17856 			/*
17857 			 * Insert at end of the queue because sockfs sends
17858 			 * down T_CONN_RES in chronological order. Leaving
17859 			 * the older conn indications at front of the queue
17860 			 * helps reducing search time.
17861 			 */
17862 			tail = listener->tcp_eager_last_q;
17863 			if (tail != NULL) {
17864 				tail->tcp_eager_next_q = tcp;
17865 			} else {
17866 				listener->tcp_eager_next_q = tcp;
17867 			}
17868 			listener->tcp_eager_last_q = tcp;
17869 			tcp->tcp_eager_next_q = NULL;
17870 
17871 			/* Need to get inside the listener perimeter */
17872 			CONN_INC_REF(listener->tcp_connp);
17873 			squeue_fill(listener->tcp_connp->conn_sqp, mp1,
17874 			    tcp_send_pending, listener->tcp_connp,
17875 			    SQTAG_TCP_SEND_PENDING);
17876 		}
17877 no_more_eagers:
17878 		tcp_eager_unlink(eager);
17879 		mutex_exit(&listener->tcp_eager_lock);
17880 
17881 		/*
17882 		 * At this point, the eager is detached from the listener
17883 		 * but we still have an extra refs on eager (apart from the
17884 		 * usual tcp references). The ref was placed in tcp_rput_data
17885 		 * before sending the conn_ind in tcp_send_conn_ind.
17886 		 * The ref will be dropped in tcp_accept_finish().
17887 		 */
17888 		squeue_enter_nodrain(econnp->conn_sqp, opt_mp,
17889 		    tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0);
17890 		return;
17891 	default:
17892 		mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0);
17893 		if (mp != NULL)
17894 			putnext(rq, mp);
17895 		return;
17896 	}
17897 }
17898 
17899 void
17900 tcp_wput(queue_t *q, mblk_t *mp)
17901 {
17902 	conn_t	*connp = Q_TO_CONN(q);
17903 	tcp_t	*tcp;
17904 	void (*output_proc)();
17905 	t_scalar_t type;
17906 	uchar_t *rptr;
17907 	struct iocblk	*iocp;
17908 	uint32_t	msize;
17909 
17910 	ASSERT(connp->conn_ref >= 2);
17911 
17912 	switch (DB_TYPE(mp)) {
17913 	case M_DATA:
17914 		tcp = connp->conn_tcp;
17915 		ASSERT(tcp != NULL);
17916 
17917 		msize = msgdsize(mp);
17918 
17919 		mutex_enter(&connp->conn_lock);
17920 		CONN_INC_REF_LOCKED(connp);
17921 
17922 		tcp->tcp_squeue_bytes += msize;
17923 		if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) {
17924 			mutex_exit(&connp->conn_lock);
17925 			tcp_setqfull(tcp);
17926 		} else
17927 			mutex_exit(&connp->conn_lock);
17928 
17929 		(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
17930 		    tcp_output, connp, SQTAG_TCP_OUTPUT);
17931 		return;
17932 	case M_PROTO:
17933 	case M_PCPROTO:
17934 		/*
17935 		 * if it is a snmp message, don't get behind the squeue
17936 		 */
17937 		tcp = connp->conn_tcp;
17938 		rptr = mp->b_rptr;
17939 		if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
17940 			type = ((union T_primitives *)rptr)->type;
17941 		} else {
17942 			if (tcp->tcp_debug) {
17943 				(void) strlog(TCP_MOD_ID, 0, 1,
17944 				    SL_ERROR|SL_TRACE,
17945 				    "tcp_wput_proto, dropping one...");
17946 			}
17947 			freemsg(mp);
17948 			return;
17949 		}
17950 		if (type == T_SVR4_OPTMGMT_REQ) {
17951 			cred_t	*cr = DB_CREDDEF(mp, tcp->tcp_cred);
17952 			if (snmpcom_req(q, mp, tcp_snmp_set, tcp_snmp_get,
17953 			    cr)) {
17954 				/*
17955 				 * This was a SNMP request
17956 				 */
17957 				return;
17958 			} else {
17959 				output_proc = tcp_wput_proto;
17960 			}
17961 		} else {
17962 			output_proc = tcp_wput_proto;
17963 		}
17964 		break;
17965 	case M_IOCTL:
17966 		/*
17967 		 * Most ioctls can be processed right away without going via
17968 		 * squeues - process them right here. Those that do require
17969 		 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK)
17970 		 * are processed by tcp_wput_ioctl().
17971 		 */
17972 		iocp = (struct iocblk *)mp->b_rptr;
17973 		tcp = connp->conn_tcp;
17974 
17975 		switch (iocp->ioc_cmd) {
17976 		case TCP_IOC_ABORT_CONN:
17977 			tcp_ioctl_abort_conn(q, mp);
17978 			return;
17979 		case TI_GETPEERNAME:
17980 			if (tcp->tcp_state < TCPS_SYN_RCVD) {
17981 				iocp->ioc_error = ENOTCONN;
17982 				iocp->ioc_count = 0;
17983 				mp->b_datap->db_type = M_IOCACK;
17984 				qreply(q, mp);
17985 				return;
17986 			}
17987 			/* FALLTHRU */
17988 		case TI_GETMYNAME:
17989 			mi_copyin(q, mp, NULL,
17990 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
17991 			return;
17992 		case ND_SET:
17993 			/* nd_getset does the necessary checks */
17994 		case ND_GET:
17995 			if (!nd_getset(q, tcp_g_nd, mp)) {
17996 				CALL_IP_WPUT(connp, q, mp);
17997 				return;
17998 			}
17999 			qreply(q, mp);
18000 			return;
18001 		case TCP_IOC_DEFAULT_Q:
18002 			/*
18003 			 * Wants to be the default wq. Check the credentials
18004 			 * first, the rest is executed via squeue.
18005 			 */
18006 			if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) {
18007 				iocp->ioc_error = EPERM;
18008 				iocp->ioc_count = 0;
18009 				mp->b_datap->db_type = M_IOCACK;
18010 				qreply(q, mp);
18011 				return;
18012 			}
18013 			output_proc = tcp_wput_ioctl;
18014 			break;
18015 		default:
18016 			output_proc = tcp_wput_ioctl;
18017 			break;
18018 		}
18019 		break;
18020 	default:
18021 		output_proc = tcp_wput_nondata;
18022 		break;
18023 	}
18024 
18025 	CONN_INC_REF(connp);
18026 	(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
18027 	    output_proc, connp, SQTAG_TCP_WPUT_OTHER);
18028 }
18029 
18030 /*
18031  * Initial STREAMS write side put() procedure for sockets. It tries to
18032  * handle the T_CAPABILITY_REQ which sockfs sends down while setting
18033  * up the socket without using the squeue. Non T_CAPABILITY_REQ messages
18034  * are handled by tcp_wput() as usual.
18035  *
18036  * All further messages will also be handled by tcp_wput() because we cannot
18037  * be sure that the above short cut is safe later.
18038  */
18039 static void
18040 tcp_wput_sock(queue_t *wq, mblk_t *mp)
18041 {
18042 	conn_t			*connp = Q_TO_CONN(wq);
18043 	tcp_t			*tcp = connp->conn_tcp;
18044 	struct T_capability_req	*car = (struct T_capability_req *)mp->b_rptr;
18045 
18046 	ASSERT(wq->q_qinfo == &tcp_sock_winit);
18047 	wq->q_qinfo = &tcp_winit;
18048 
18049 	ASSERT(IPCL_IS_TCP(connp));
18050 	ASSERT(TCP_IS_SOCKET(tcp));
18051 
18052 	if (DB_TYPE(mp) == M_PCPROTO &&
18053 	    MBLKL(mp) == sizeof (struct T_capability_req) &&
18054 	    car->PRIM_type == T_CAPABILITY_REQ) {
18055 		tcp_capability_req(tcp, mp);
18056 		return;
18057 	}
18058 
18059 	tcp_wput(wq, mp);
18060 }
18061 
18062 static boolean_t
18063 tcp_zcopy_check(tcp_t *tcp)
18064 {
18065 	conn_t	*connp = tcp->tcp_connp;
18066 	ire_t	*ire;
18067 	boolean_t	zc_enabled = B_FALSE;
18068 
18069 	if (do_tcpzcopy == 2)
18070 		zc_enabled = B_TRUE;
18071 	else if (tcp->tcp_ipversion == IPV4_VERSION &&
18072 	    IPCL_IS_CONNECTED(connp) &&
18073 	    (connp->conn_flags & IPCL_CHECK_POLICY) == 0 &&
18074 	    connp->conn_dontroute == 0 &&
18075 	    !connp->conn_nexthop_set &&
18076 	    connp->conn_xmit_if_ill == NULL &&
18077 	    connp->conn_nofailover_ill == NULL &&
18078 	    do_tcpzcopy == 1) {
18079 		/*
18080 		 * the checks above  closely resemble the fast path checks
18081 		 * in tcp_send_data().
18082 		 */
18083 		mutex_enter(&connp->conn_lock);
18084 		ire = connp->conn_ire_cache;
18085 		ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18086 		if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18087 			IRE_REFHOLD(ire);
18088 			if (ire->ire_stq != NULL) {
18089 				ill_t	*ill = (ill_t *)ire->ire_stq->q_ptr;
18090 
18091 				zc_enabled = ill && (ill->ill_capabilities &
18092 				    ILL_CAPAB_ZEROCOPY) &&
18093 				    (ill->ill_zerocopy_capab->
18094 				    ill_zerocopy_flags != 0);
18095 			}
18096 			IRE_REFRELE(ire);
18097 		}
18098 		mutex_exit(&connp->conn_lock);
18099 	}
18100 	tcp->tcp_snd_zcopy_on = zc_enabled;
18101 	if (!TCP_IS_DETACHED(tcp)) {
18102 		if (zc_enabled) {
18103 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE);
18104 			TCP_STAT(tcp_zcopy_on);
18105 		} else {
18106 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
18107 			TCP_STAT(tcp_zcopy_off);
18108 		}
18109 	}
18110 	return (zc_enabled);
18111 }
18112 
18113 static mblk_t *
18114 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp)
18115 {
18116 	if (do_tcpzcopy == 2)
18117 		return (bp);
18118 	else if (tcp->tcp_snd_zcopy_on) {
18119 		tcp->tcp_snd_zcopy_on = B_FALSE;
18120 		if (!TCP_IS_DETACHED(tcp)) {
18121 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
18122 			TCP_STAT(tcp_zcopy_disable);
18123 		}
18124 	}
18125 	return (tcp_zcopy_backoff(tcp, bp, 0));
18126 }
18127 
18128 /*
18129  * Backoff from a zero-copy mblk by copying data to a new mblk and freeing
18130  * the original desballoca'ed segmapped mblk.
18131  */
18132 static mblk_t *
18133 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist)
18134 {
18135 	mblk_t *head, *tail, *nbp;
18136 	if (IS_VMLOANED_MBLK(bp)) {
18137 		TCP_STAT(tcp_zcopy_backoff);
18138 		if ((head = copyb(bp)) == NULL) {
18139 			/* fail to backoff; leave it for the next backoff */
18140 			tcp->tcp_xmit_zc_clean = B_FALSE;
18141 			return (bp);
18142 		}
18143 		if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18144 			if (fix_xmitlist)
18145 				tcp_zcopy_notify(tcp);
18146 			else
18147 				head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
18148 		}
18149 		nbp = bp->b_cont;
18150 		if (fix_xmitlist) {
18151 			head->b_prev = bp->b_prev;
18152 			head->b_next = bp->b_next;
18153 			if (tcp->tcp_xmit_tail == bp)
18154 				tcp->tcp_xmit_tail = head;
18155 		}
18156 		bp->b_next = NULL;
18157 		bp->b_prev = NULL;
18158 		freeb(bp);
18159 	} else {
18160 		head = bp;
18161 		nbp = bp->b_cont;
18162 	}
18163 	tail = head;
18164 	while (nbp) {
18165 		if (IS_VMLOANED_MBLK(nbp)) {
18166 			TCP_STAT(tcp_zcopy_backoff);
18167 			if ((tail->b_cont = copyb(nbp)) == NULL) {
18168 				tcp->tcp_xmit_zc_clean = B_FALSE;
18169 				tail->b_cont = nbp;
18170 				return (head);
18171 			}
18172 			tail = tail->b_cont;
18173 			if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18174 				if (fix_xmitlist)
18175 					tcp_zcopy_notify(tcp);
18176 				else
18177 					tail->b_datap->db_struioflag |=
18178 					    STRUIO_ZCNOTIFY;
18179 			}
18180 			bp = nbp;
18181 			nbp = nbp->b_cont;
18182 			if (fix_xmitlist) {
18183 				tail->b_prev = bp->b_prev;
18184 				tail->b_next = bp->b_next;
18185 				if (tcp->tcp_xmit_tail == bp)
18186 					tcp->tcp_xmit_tail = tail;
18187 			}
18188 			bp->b_next = NULL;
18189 			bp->b_prev = NULL;
18190 			freeb(bp);
18191 		} else {
18192 			tail->b_cont = nbp;
18193 			tail = nbp;
18194 			nbp = nbp->b_cont;
18195 		}
18196 	}
18197 	if (fix_xmitlist) {
18198 		tcp->tcp_xmit_last = tail;
18199 		tcp->tcp_xmit_zc_clean = B_TRUE;
18200 	}
18201 	return (head);
18202 }
18203 
18204 static void
18205 tcp_zcopy_notify(tcp_t *tcp)
18206 {
18207 	struct stdata	*stp;
18208 
18209 	if (tcp->tcp_detached)
18210 		return;
18211 	stp = STREAM(tcp->tcp_rq);
18212 	mutex_enter(&stp->sd_lock);
18213 	stp->sd_flag |= STZCNOTIFY;
18214 	cv_broadcast(&stp->sd_zcopy_wait);
18215 	mutex_exit(&stp->sd_lock);
18216 }
18217 
18218 static void
18219 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp)
18220 {
18221 	ipha_t		*ipha;
18222 	ipaddr_t	src;
18223 	ipaddr_t	dst;
18224 	uint32_t	cksum;
18225 	ire_t		*ire;
18226 	uint16_t	*up;
18227 	ill_t		*ill;
18228 	conn_t		*connp = tcp->tcp_connp;
18229 	uint32_t	hcksum_txflags = 0;
18230 	mblk_t		*ire_fp_mp;
18231 	uint_t		ire_fp_mp_len;
18232 
18233 	ASSERT(DB_TYPE(mp) == M_DATA);
18234 
18235 	if (DB_CRED(mp) == NULL)
18236 		mblk_setcred(mp, CONN_CRED(connp));
18237 
18238 	ipha = (ipha_t *)mp->b_rptr;
18239 	src = ipha->ipha_src;
18240 	dst = ipha->ipha_dst;
18241 
18242 	/*
18243 	 * Drop off fast path for IPv6 and also if options are present or
18244 	 * we need to resolve a TS label.
18245 	 */
18246 	if (tcp->tcp_ipversion != IPV4_VERSION ||
18247 	    !IPCL_IS_CONNECTED(connp) ||
18248 	    (connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
18249 	    connp->conn_dontroute ||
18250 	    connp->conn_nexthop_set ||
18251 	    connp->conn_xmit_if_ill != NULL ||
18252 	    connp->conn_nofailover_ill != NULL ||
18253 	    !connp->conn_ulp_labeled ||
18254 	    ipha->ipha_ident == IP_HDR_INCLUDED ||
18255 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
18256 	    IPP_ENABLED(IPP_LOCAL_OUT)) {
18257 		if (tcp->tcp_snd_zcopy_aware)
18258 			mp = tcp_zcopy_disable(tcp, mp);
18259 		TCP_STAT(tcp_ip_send);
18260 		CALL_IP_WPUT(connp, q, mp);
18261 		return;
18262 	}
18263 
18264 	mutex_enter(&connp->conn_lock);
18265 	ire = connp->conn_ire_cache;
18266 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18267 	if (ire != NULL && ire->ire_addr == dst &&
18268 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18269 		IRE_REFHOLD(ire);
18270 		mutex_exit(&connp->conn_lock);
18271 	} else {
18272 		boolean_t cached = B_FALSE;
18273 
18274 		/* force a recheck later on */
18275 		tcp->tcp_ire_ill_check_done = B_FALSE;
18276 
18277 		TCP_DBGSTAT(tcp_ire_null1);
18278 		connp->conn_ire_cache = NULL;
18279 		mutex_exit(&connp->conn_lock);
18280 		if (ire != NULL)
18281 			IRE_REFRELE_NOTR(ire);
18282 		ire = ire_cache_lookup(dst, connp->conn_zoneid,
18283 		    MBLK_GETLABEL(mp));
18284 		if (ire == NULL) {
18285 			if (tcp->tcp_snd_zcopy_aware)
18286 				mp = tcp_zcopy_backoff(tcp, mp, 0);
18287 			TCP_STAT(tcp_ire_null);
18288 			CALL_IP_WPUT(connp, q, mp);
18289 			return;
18290 		}
18291 		IRE_REFHOLD_NOTR(ire);
18292 		/*
18293 		 * Since we are inside the squeue, there cannot be another
18294 		 * thread in TCP trying to set the conn_ire_cache now.  The
18295 		 * check for IRE_MARK_CONDEMNED ensures that an interface
18296 		 * unplumb thread has not yet started cleaning up the conns.
18297 		 * Hence we don't need to grab the conn lock.
18298 		 */
18299 		if (!(connp->conn_state_flags & CONN_CLOSING)) {
18300 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
18301 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18302 				connp->conn_ire_cache = ire;
18303 				cached = B_TRUE;
18304 			}
18305 			rw_exit(&ire->ire_bucket->irb_lock);
18306 		}
18307 
18308 		/*
18309 		 * We can continue to use the ire but since it was
18310 		 * not cached, we should drop the extra reference.
18311 		 */
18312 		if (!cached)
18313 			IRE_REFRELE_NOTR(ire);
18314 
18315 		/*
18316 		 * Rampart note: no need to select a new label here, since
18317 		 * labels are not allowed to change during the life of a TCP
18318 		 * connection.
18319 		 */
18320 	}
18321 
18322 	/*
18323 	 * The following if case identifies whether or not
18324 	 * we are forced to take the slowpath.
18325 	 */
18326 	if (ire->ire_flags & RTF_MULTIRT ||
18327 	    ire->ire_stq == NULL ||
18328 	    ire->ire_max_frag < ntohs(ipha->ipha_length) ||
18329 	    (ire->ire_nce != NULL &&
18330 	    (ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) ||
18331 	    (ire_fp_mp_len = MBLKL(ire_fp_mp)) > MBLKHEAD(mp)) {
18332 		if (tcp->tcp_snd_zcopy_aware)
18333 			mp = tcp_zcopy_disable(tcp, mp);
18334 		TCP_STAT(tcp_ip_ire_send);
18335 		IRE_REFRELE(ire);
18336 		CALL_IP_WPUT(connp, q, mp);
18337 		return;
18338 	}
18339 
18340 	ill = ire_to_ill(ire);
18341 	if (connp->conn_outgoing_ill != NULL) {
18342 		ill_t *conn_outgoing_ill = NULL;
18343 		/*
18344 		 * Choose a good ill in the group to send the packets on.
18345 		 */
18346 		ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill);
18347 		ill = ire_to_ill(ire);
18348 	}
18349 	ASSERT(ill != NULL);
18350 
18351 	if (!tcp->tcp_ire_ill_check_done) {
18352 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
18353 		tcp->tcp_ire_ill_check_done = B_TRUE;
18354 	}
18355 
18356 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
18357 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
18358 #ifndef _BIG_ENDIAN
18359 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
18360 #endif
18361 
18362 	/*
18363 	 * Check to see if we need to re-enable MDT for this connection
18364 	 * because it was previously disabled due to changes in the ill;
18365 	 * note that by doing it here, this re-enabling only applies when
18366 	 * the packet is not dispatched through CALL_IP_WPUT().
18367 	 *
18368 	 * That means for IPv4, it is worth re-enabling MDT for the fastpath
18369 	 * case, since that's how we ended up here.  For IPv6, we do the
18370 	 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue.
18371 	 */
18372 	if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) {
18373 		/*
18374 		 * Restore MDT for this connection, so that next time around
18375 		 * it is eligible to go through tcp_multisend() path again.
18376 		 */
18377 		TCP_STAT(tcp_mdt_conn_resumed1);
18378 		tcp->tcp_mdt = B_TRUE;
18379 		ip1dbg(("tcp_send_data: reenabling MDT for connp %p on "
18380 		    "interface %s\n", (void *)connp, ill->ill_name));
18381 	}
18382 
18383 	if (tcp->tcp_snd_zcopy_aware) {
18384 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
18385 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
18386 			mp = tcp_zcopy_disable(tcp, mp);
18387 		/*
18388 		 * we shouldn't need to reset ipha as the mp containing
18389 		 * ipha should never be a zero-copy mp.
18390 		 */
18391 	}
18392 
18393 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
18394 		ASSERT(ill->ill_hcksum_capab != NULL);
18395 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
18396 	}
18397 
18398 	/* pseudo-header checksum (do it in parts for IP header checksum) */
18399 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
18400 
18401 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
18402 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
18403 
18404 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
18405 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
18406 
18407 	/* Software checksum? */
18408 	if (DB_CKSUMFLAGS(mp) == 0) {
18409 		TCP_STAT(tcp_out_sw_cksum);
18410 		TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes,
18411 		    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
18412 	}
18413 
18414 	ipha->ipha_fragment_offset_and_flags |=
18415 	    (uint32_t)htons(ire->ire_frag_flag);
18416 
18417 	/* Calculate IP header checksum if hardware isn't capable */
18418 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
18419 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
18420 		    ((uint16_t *)ipha)[4]);
18421 	}
18422 
18423 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
18424 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
18425 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
18426 
18427 	UPDATE_OB_PKT_COUNT(ire);
18428 	ire->ire_last_used_time = lbolt;
18429 	BUMP_MIB(&ip_mib, ipOutRequests);
18430 
18431 	if (ILL_DLS_CAPABLE(ill)) {
18432 		/*
18433 		 * Send the packet directly to DLD, where it may be queued
18434 		 * depending on the availability of transmit resources at
18435 		 * the media layer.
18436 		 */
18437 		IP_DLS_ILL_TX(ill, mp);
18438 	} else {
18439 		putnext(ire->ire_stq, mp);
18440 	}
18441 	IRE_REFRELE(ire);
18442 }
18443 
18444 /*
18445  * This handles the case when the receiver has shrunk its win. Per RFC 1122
18446  * if the receiver shrinks the window, i.e. moves the right window to the
18447  * left, the we should not send new data, but should retransmit normally the
18448  * old unacked data between suna and suna + swnd. We might has sent data
18449  * that is now outside the new window, pretend that we didn't send  it.
18450  */
18451 static void
18452 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count)
18453 {
18454 	uint32_t	snxt = tcp->tcp_snxt;
18455 	mblk_t		*xmit_tail;
18456 	int32_t		offset;
18457 
18458 	ASSERT(shrunk_count > 0);
18459 
18460 	/* Pretend we didn't send the data outside the window */
18461 	snxt -= shrunk_count;
18462 
18463 	/* Get the mblk and the offset in it per the shrunk window */
18464 	xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset);
18465 
18466 	ASSERT(xmit_tail != NULL);
18467 
18468 	/* Reset all the values per the now shrunk window */
18469 	tcp->tcp_snxt = snxt;
18470 	tcp->tcp_xmit_tail = xmit_tail;
18471 	tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr -
18472 	    offset;
18473 	tcp->tcp_unsent += shrunk_count;
18474 
18475 	if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0)
18476 		/*
18477 		 * Make sure the timer is running so that we will probe a zero
18478 		 * window.
18479 		 */
18480 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
18481 }
18482 
18483 
18484 /*
18485  * The TCP normal data output path.
18486  * NOTE: the logic of the fast path is duplicated from this function.
18487  */
18488 static void
18489 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent)
18490 {
18491 	int		len;
18492 	mblk_t		*local_time;
18493 	mblk_t		*mp1;
18494 	uint32_t	snxt;
18495 	int		tail_unsent;
18496 	int		tcpstate;
18497 	int		usable = 0;
18498 	mblk_t		*xmit_tail;
18499 	queue_t		*q = tcp->tcp_wq;
18500 	int32_t		mss;
18501 	int32_t		num_sack_blk = 0;
18502 	int32_t		tcp_hdr_len;
18503 	int32_t		tcp_tcp_hdr_len;
18504 	int		mdt_thres;
18505 	int		rc;
18506 
18507 	tcpstate = tcp->tcp_state;
18508 	if (mp == NULL) {
18509 		/*
18510 		 * tcp_wput_data() with NULL mp should only be called when
18511 		 * there is unsent data.
18512 		 */
18513 		ASSERT(tcp->tcp_unsent > 0);
18514 		/* Really tacky... but we need this for detached closes. */
18515 		len = tcp->tcp_unsent;
18516 		goto data_null;
18517 	}
18518 
18519 #if CCS_STATS
18520 	wrw_stats.tot.count++;
18521 	wrw_stats.tot.bytes += msgdsize(mp);
18522 #endif
18523 	ASSERT(mp->b_datap->db_type == M_DATA);
18524 	/*
18525 	 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ,
18526 	 * or before a connection attempt has begun.
18527 	 */
18528 	if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT ||
18529 	    (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
18530 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
18531 #ifdef DEBUG
18532 			cmn_err(CE_WARN,
18533 			    "tcp_wput_data: data after ordrel, %s",
18534 			    tcp_display(tcp, NULL,
18535 			    DISP_ADDR_AND_PORT));
18536 #else
18537 			if (tcp->tcp_debug) {
18538 				(void) strlog(TCP_MOD_ID, 0, 1,
18539 				    SL_TRACE|SL_ERROR,
18540 				    "tcp_wput_data: data after ordrel, %s\n",
18541 				    tcp_display(tcp, NULL,
18542 				    DISP_ADDR_AND_PORT));
18543 			}
18544 #endif /* DEBUG */
18545 		}
18546 		if (tcp->tcp_snd_zcopy_aware &&
18547 		    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0)
18548 			tcp_zcopy_notify(tcp);
18549 		freemsg(mp);
18550 		if (tcp->tcp_flow_stopped &&
18551 		    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
18552 			tcp_clrqfull(tcp);
18553 		}
18554 		return;
18555 	}
18556 
18557 	/* Strip empties */
18558 	for (;;) {
18559 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
18560 		    (uintptr_t)INT_MAX);
18561 		len = (int)(mp->b_wptr - mp->b_rptr);
18562 		if (len > 0)
18563 			break;
18564 		mp1 = mp;
18565 		mp = mp->b_cont;
18566 		freeb(mp1);
18567 		if (!mp) {
18568 			return;
18569 		}
18570 	}
18571 
18572 	/* If we are the first on the list ... */
18573 	if (tcp->tcp_xmit_head == NULL) {
18574 		tcp->tcp_xmit_head = mp;
18575 		tcp->tcp_xmit_tail = mp;
18576 		tcp->tcp_xmit_tail_unsent = len;
18577 	} else {
18578 		/* If tiny tx and room in txq tail, pullup to save mblks. */
18579 		struct datab *dp;
18580 
18581 		mp1 = tcp->tcp_xmit_last;
18582 		if (len < tcp_tx_pull_len &&
18583 		    (dp = mp1->b_datap)->db_ref == 1 &&
18584 		    dp->db_lim - mp1->b_wptr >= len) {
18585 			ASSERT(len > 0);
18586 			ASSERT(!mp1->b_cont);
18587 			if (len == 1) {
18588 				*mp1->b_wptr++ = *mp->b_rptr;
18589 			} else {
18590 				bcopy(mp->b_rptr, mp1->b_wptr, len);
18591 				mp1->b_wptr += len;
18592 			}
18593 			if (mp1 == tcp->tcp_xmit_tail)
18594 				tcp->tcp_xmit_tail_unsent += len;
18595 			mp1->b_cont = mp->b_cont;
18596 			if (tcp->tcp_snd_zcopy_aware &&
18597 			    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
18598 				mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
18599 			freeb(mp);
18600 			mp = mp1;
18601 		} else {
18602 			tcp->tcp_xmit_last->b_cont = mp;
18603 		}
18604 		len += tcp->tcp_unsent;
18605 	}
18606 
18607 	/* Tack on however many more positive length mblks we have */
18608 	if ((mp1 = mp->b_cont) != NULL) {
18609 		do {
18610 			int tlen;
18611 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
18612 			    (uintptr_t)INT_MAX);
18613 			tlen = (int)(mp1->b_wptr - mp1->b_rptr);
18614 			if (tlen <= 0) {
18615 				mp->b_cont = mp1->b_cont;
18616 				freeb(mp1);
18617 			} else {
18618 				len += tlen;
18619 				mp = mp1;
18620 			}
18621 		} while ((mp1 = mp->b_cont) != NULL);
18622 	}
18623 	tcp->tcp_xmit_last = mp;
18624 	tcp->tcp_unsent = len;
18625 
18626 	if (urgent)
18627 		usable = 1;
18628 
18629 data_null:
18630 	snxt = tcp->tcp_snxt;
18631 	xmit_tail = tcp->tcp_xmit_tail;
18632 	tail_unsent = tcp->tcp_xmit_tail_unsent;
18633 
18634 	/*
18635 	 * Note that tcp_mss has been adjusted to take into account the
18636 	 * timestamp option if applicable.  Because SACK options do not
18637 	 * appear in every TCP segments and they are of variable lengths,
18638 	 * they cannot be included in tcp_mss.  Thus we need to calculate
18639 	 * the actual segment length when we need to send a segment which
18640 	 * includes SACK options.
18641 	 */
18642 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
18643 		int32_t	opt_len;
18644 
18645 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
18646 		    tcp->tcp_num_sack_blk);
18647 		opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN *
18648 		    2 + TCPOPT_HEADER_LEN;
18649 		mss = tcp->tcp_mss - opt_len;
18650 		tcp_hdr_len = tcp->tcp_hdr_len + opt_len;
18651 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len;
18652 	} else {
18653 		mss = tcp->tcp_mss;
18654 		tcp_hdr_len = tcp->tcp_hdr_len;
18655 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
18656 	}
18657 
18658 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
18659 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
18660 		SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle);
18661 	}
18662 	if (tcpstate == TCPS_SYN_RCVD) {
18663 		/*
18664 		 * The three-way connection establishment handshake is not
18665 		 * complete yet. We want to queue the data for transmission
18666 		 * after entering ESTABLISHED state (RFC793). A jump to
18667 		 * "done" label effectively leaves data on the queue.
18668 		 */
18669 		goto done;
18670 	} else {
18671 		int usable_r;
18672 
18673 		/*
18674 		 * In the special case when cwnd is zero, which can only
18675 		 * happen if the connection is ECN capable, return now.
18676 		 * New segments is sent using tcp_timer().  The timer
18677 		 * is set in tcp_rput_data().
18678 		 */
18679 		if (tcp->tcp_cwnd == 0) {
18680 			/*
18681 			 * Note that tcp_cwnd is 0 before 3-way handshake is
18682 			 * finished.
18683 			 */
18684 			ASSERT(tcp->tcp_ecn_ok ||
18685 			    tcp->tcp_state < TCPS_ESTABLISHED);
18686 			return;
18687 		}
18688 
18689 		/* NOTE: trouble if xmitting while SYN not acked? */
18690 		usable_r = snxt - tcp->tcp_suna;
18691 		usable_r = tcp->tcp_swnd - usable_r;
18692 
18693 		/*
18694 		 * Check if the receiver has shrunk the window.  If
18695 		 * tcp_wput_data() with NULL mp is called, tcp_fin_sent
18696 		 * cannot be set as there is unsent data, so FIN cannot
18697 		 * be sent out.  Otherwise, we need to take into account
18698 		 * of FIN as it consumes an "invisible" sequence number.
18699 		 */
18700 		ASSERT(tcp->tcp_fin_sent == 0);
18701 		if (usable_r < 0) {
18702 			/*
18703 			 * The receiver has shrunk the window and we have sent
18704 			 * -usable_r date beyond the window, re-adjust.
18705 			 *
18706 			 * If TCP window scaling is enabled, there can be
18707 			 * round down error as the advertised receive window
18708 			 * is actually right shifted n bits.  This means that
18709 			 * the lower n bits info is wiped out.  It will look
18710 			 * like the window is shrunk.  Do a check here to
18711 			 * see if the shrunk amount is actually within the
18712 			 * error in window calculation.  If it is, just
18713 			 * return.  Note that this check is inside the
18714 			 * shrunk window check.  This makes sure that even
18715 			 * though tcp_process_shrunk_swnd() is not called,
18716 			 * we will stop further processing.
18717 			 */
18718 			if ((-usable_r >> tcp->tcp_snd_ws) > 0) {
18719 				tcp_process_shrunk_swnd(tcp, -usable_r);
18720 			}
18721 			return;
18722 		}
18723 
18724 		/* usable = MIN(swnd, cwnd) - unacked_bytes */
18725 		if (tcp->tcp_swnd > tcp->tcp_cwnd)
18726 			usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd;
18727 
18728 		/* usable = MIN(usable, unsent) */
18729 		if (usable_r > len)
18730 			usable_r = len;
18731 
18732 		/* usable = MAX(usable, {1 for urgent, 0 for data}) */
18733 		if (usable_r > 0) {
18734 			usable = usable_r;
18735 		} else {
18736 			/* Bypass all other unnecessary processing. */
18737 			goto done;
18738 		}
18739 	}
18740 
18741 	local_time = (mblk_t *)lbolt;
18742 
18743 	/*
18744 	 * "Our" Nagle Algorithm.  This is not the same as in the old
18745 	 * BSD.  This is more in line with the true intent of Nagle.
18746 	 *
18747 	 * The conditions are:
18748 	 * 1. The amount of unsent data (or amount of data which can be
18749 	 *    sent, whichever is smaller) is less than Nagle limit.
18750 	 * 2. The last sent size is also less than Nagle limit.
18751 	 * 3. There is unack'ed data.
18752 	 * 4. Urgent pointer is not set.  Send urgent data ignoring the
18753 	 *    Nagle algorithm.  This reduces the probability that urgent
18754 	 *    bytes get "merged" together.
18755 	 * 5. The app has not closed the connection.  This eliminates the
18756 	 *    wait time of the receiving side waiting for the last piece of
18757 	 *    (small) data.
18758 	 *
18759 	 * If all are satisified, exit without sending anything.  Note
18760 	 * that Nagle limit can be smaller than 1 MSS.  Nagle limit is
18761 	 * the smaller of 1 MSS and global tcp_naglim_def (default to be
18762 	 * 4095).
18763 	 */
18764 	if (usable < (int)tcp->tcp_naglim &&
18765 	    tcp->tcp_naglim > tcp->tcp_last_sent_len &&
18766 	    snxt != tcp->tcp_suna &&
18767 	    !(tcp->tcp_valid_bits & TCP_URG_VALID) &&
18768 	    !(tcp->tcp_valid_bits & TCP_FSS_VALID)) {
18769 		goto done;
18770 	}
18771 
18772 	if (tcp->tcp_cork) {
18773 		/*
18774 		 * if the tcp->tcp_cork option is set, then we have to force
18775 		 * TCP not to send partial segment (smaller than MSS bytes).
18776 		 * We are calculating the usable now based on full mss and
18777 		 * will save the rest of remaining data for later.
18778 		 */
18779 		if (usable < mss)
18780 			goto done;
18781 		usable = (usable / mss) * mss;
18782 	}
18783 
18784 	/* Update the latest receive window size in TCP header. */
18785 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
18786 	    tcp->tcp_tcph->th_win);
18787 
18788 	/*
18789 	 * Determine if it's worthwhile to attempt MDT, based on:
18790 	 *
18791 	 * 1. Simple TCP/IP{v4,v6} (no options).
18792 	 * 2. IPSEC/IPQoS processing is not needed for the TCP connection.
18793 	 * 3. If the TCP connection is in ESTABLISHED state.
18794 	 * 4. The TCP is not detached.
18795 	 *
18796 	 * If any of the above conditions have changed during the
18797 	 * connection, stop using MDT and restore the stream head
18798 	 * parameters accordingly.
18799 	 */
18800 	if (tcp->tcp_mdt &&
18801 	    ((tcp->tcp_ipversion == IPV4_VERSION &&
18802 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
18803 	    (tcp->tcp_ipversion == IPV6_VERSION &&
18804 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) ||
18805 	    tcp->tcp_state != TCPS_ESTABLISHED ||
18806 	    TCP_IS_DETACHED(tcp) || !CONN_IS_MD_FASTPATH(tcp->tcp_connp) ||
18807 	    CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) ||
18808 	    IPP_ENABLED(IPP_LOCAL_OUT))) {
18809 		tcp->tcp_connp->conn_mdt_ok = B_FALSE;
18810 		tcp->tcp_mdt = B_FALSE;
18811 
18812 		/* Anything other than detached is considered pathological */
18813 		if (!TCP_IS_DETACHED(tcp)) {
18814 			TCP_STAT(tcp_mdt_conn_halted1);
18815 			(void) tcp_maxpsz_set(tcp, B_TRUE);
18816 		}
18817 	}
18818 
18819 	/* Use MDT if sendable amount is greater than the threshold */
18820 	if (tcp->tcp_mdt &&
18821 	    (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) &&
18822 	    (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL &&
18823 	    MBLKL(xmit_tail->b_cont) > mdt_thres)) &&
18824 	    (tcp->tcp_valid_bits == 0 ||
18825 	    tcp->tcp_valid_bits == TCP_FSS_VALID)) {
18826 		ASSERT(tcp->tcp_connp->conn_mdt_ok);
18827 		rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
18828 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
18829 		    local_time, mdt_thres);
18830 	} else {
18831 		rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
18832 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
18833 		    local_time, INT_MAX);
18834 	}
18835 
18836 	/* Pretend that all we were trying to send really got sent */
18837 	if (rc < 0 && tail_unsent < 0) {
18838 		do {
18839 			xmit_tail = xmit_tail->b_cont;
18840 			xmit_tail->b_prev = local_time;
18841 			ASSERT((uintptr_t)(xmit_tail->b_wptr -
18842 			    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
18843 			tail_unsent += (int)(xmit_tail->b_wptr -
18844 			    xmit_tail->b_rptr);
18845 		} while (tail_unsent < 0);
18846 	}
18847 done:;
18848 	tcp->tcp_xmit_tail = xmit_tail;
18849 	tcp->tcp_xmit_tail_unsent = tail_unsent;
18850 	len = tcp->tcp_snxt - snxt;
18851 	if (len) {
18852 		/*
18853 		 * If new data was sent, need to update the notsack
18854 		 * list, which is, afterall, data blocks that have
18855 		 * not been sack'ed by the receiver.  New data is
18856 		 * not sack'ed.
18857 		 */
18858 		if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
18859 			/* len is a negative value. */
18860 			tcp->tcp_pipe -= len;
18861 			tcp_notsack_update(&(tcp->tcp_notsack_list),
18862 			    tcp->tcp_snxt, snxt,
18863 			    &(tcp->tcp_num_notsack_blk),
18864 			    &(tcp->tcp_cnt_notsack_list));
18865 		}
18866 		tcp->tcp_snxt = snxt + tcp->tcp_fin_sent;
18867 		tcp->tcp_rack = tcp->tcp_rnxt;
18868 		tcp->tcp_rack_cnt = 0;
18869 		if ((snxt + len) == tcp->tcp_suna) {
18870 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
18871 		}
18872 	} else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) {
18873 		/*
18874 		 * Didn't send anything. Make sure the timer is running
18875 		 * so that we will probe a zero window.
18876 		 */
18877 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
18878 	}
18879 	/* Note that len is the amount we just sent but with a negative sign */
18880 	tcp->tcp_unsent += len;
18881 	if (tcp->tcp_flow_stopped) {
18882 		if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
18883 			tcp_clrqfull(tcp);
18884 		}
18885 	} else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) {
18886 		tcp_setqfull(tcp);
18887 	}
18888 }
18889 
18890 /*
18891  * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the
18892  * outgoing TCP header with the template header, as well as other
18893  * options such as time-stamp, ECN and/or SACK.
18894  */
18895 static void
18896 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk)
18897 {
18898 	tcph_t *tcp_tmpl, *tcp_h;
18899 	uint32_t *dst, *src;
18900 	int hdrlen;
18901 
18902 	ASSERT(OK_32PTR(rptr));
18903 
18904 	/* Template header */
18905 	tcp_tmpl = tcp->tcp_tcph;
18906 
18907 	/* Header of outgoing packet */
18908 	tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
18909 
18910 	/* dst and src are opaque 32-bit fields, used for copying */
18911 	dst = (uint32_t *)rptr;
18912 	src = (uint32_t *)tcp->tcp_iphc;
18913 	hdrlen = tcp->tcp_hdr_len;
18914 
18915 	/* Fill time-stamp option if needed */
18916 	if (tcp->tcp_snd_ts_ok) {
18917 		U32_TO_BE32((uint32_t)now,
18918 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4);
18919 		U32_TO_BE32(tcp->tcp_ts_recent,
18920 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8);
18921 	} else {
18922 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
18923 	}
18924 
18925 	/*
18926 	 * Copy the template header; is this really more efficient than
18927 	 * calling bcopy()?  For simple IPv4/TCP, it may be the case,
18928 	 * but perhaps not for other scenarios.
18929 	 */
18930 	dst[0] = src[0];
18931 	dst[1] = src[1];
18932 	dst[2] = src[2];
18933 	dst[3] = src[3];
18934 	dst[4] = src[4];
18935 	dst[5] = src[5];
18936 	dst[6] = src[6];
18937 	dst[7] = src[7];
18938 	dst[8] = src[8];
18939 	dst[9] = src[9];
18940 	if (hdrlen -= 40) {
18941 		hdrlen >>= 2;
18942 		dst += 10;
18943 		src += 10;
18944 		do {
18945 			*dst++ = *src++;
18946 		} while (--hdrlen);
18947 	}
18948 
18949 	/*
18950 	 * Set the ECN info in the TCP header if it is not a zero
18951 	 * window probe.  Zero window probe is only sent in
18952 	 * tcp_wput_data() and tcp_timer().
18953 	 */
18954 	if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) {
18955 		SET_ECT(tcp, rptr);
18956 
18957 		if (tcp->tcp_ecn_echo_on)
18958 			tcp_h->th_flags[0] |= TH_ECE;
18959 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
18960 			tcp_h->th_flags[0] |= TH_CWR;
18961 			tcp->tcp_ecn_cwr_sent = B_TRUE;
18962 		}
18963 	}
18964 
18965 	/* Fill in SACK options */
18966 	if (num_sack_blk > 0) {
18967 		uchar_t *wptr = rptr + tcp->tcp_hdr_len;
18968 		sack_blk_t *tmp;
18969 		int32_t	i;
18970 
18971 		wptr[0] = TCPOPT_NOP;
18972 		wptr[1] = TCPOPT_NOP;
18973 		wptr[2] = TCPOPT_SACK;
18974 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
18975 		    sizeof (sack_blk_t);
18976 		wptr += TCPOPT_REAL_SACK_LEN;
18977 
18978 		tmp = tcp->tcp_sack_list;
18979 		for (i = 0; i < num_sack_blk; i++) {
18980 			U32_TO_BE32(tmp[i].begin, wptr);
18981 			wptr += sizeof (tcp_seq);
18982 			U32_TO_BE32(tmp[i].end, wptr);
18983 			wptr += sizeof (tcp_seq);
18984 		}
18985 		tcp_h->th_offset_and_rsrvd[0] +=
18986 		    ((num_sack_blk * 2 + 1) << 4);
18987 	}
18988 }
18989 
18990 /*
18991  * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach
18992  * the destination address and SAP attribute, and if necessary, the
18993  * hardware checksum offload attribute to a Multidata message.
18994  */
18995 static int
18996 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum,
18997     const uint32_t start, const uint32_t stuff, const uint32_t end,
18998     const uint32_t flags)
18999 {
19000 	/* Add global destination address & SAP attribute */
19001 	if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) {
19002 		ip1dbg(("tcp_mdt_add_attrs: can't add global physical "
19003 		    "destination address+SAP\n"));
19004 
19005 		if (dlmp != NULL)
19006 			TCP_STAT(tcp_mdt_allocfail);
19007 		return (-1);
19008 	}
19009 
19010 	/* Add global hwcksum attribute */
19011 	if (hwcksum &&
19012 	    !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) {
19013 		ip1dbg(("tcp_mdt_add_attrs: can't add global hardware "
19014 		    "checksum attribute\n"));
19015 
19016 		TCP_STAT(tcp_mdt_allocfail);
19017 		return (-1);
19018 	}
19019 
19020 	return (0);
19021 }
19022 
19023 /*
19024  * Smaller and private version of pdescinfo_t used specifically for TCP,
19025  * which allows for only two payload spans per packet.
19026  */
19027 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t;
19028 
19029 /*
19030  * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit
19031  * scheme, and returns one the following:
19032  *
19033  * -1 = failed allocation.
19034  *  0 = success; burst count reached, or usable send window is too small,
19035  *      and that we'd rather wait until later before sending again.
19036  */
19037 static int
19038 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
19039     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
19040     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
19041     const int mdt_thres)
19042 {
19043 	mblk_t		*md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf;
19044 	multidata_t	*mmd;
19045 	uint_t		obsegs, obbytes, hdr_frag_sz;
19046 	uint_t		cur_hdr_off, cur_pld_off, base_pld_off, first_snxt;
19047 	int		num_burst_seg, max_pld;
19048 	pdesc_t		*pkt;
19049 	tcp_pdescinfo_t	tcp_pkt_info;
19050 	pdescinfo_t	*pkt_info;
19051 	int		pbuf_idx, pbuf_idx_nxt;
19052 	int		seg_len, len, spill, af;
19053 	boolean_t	add_buffer, zcopy, clusterwide;
19054 	boolean_t	rconfirm = B_FALSE;
19055 	boolean_t	done = B_FALSE;
19056 	uint32_t	cksum;
19057 	uint32_t	hwcksum_flags;
19058 	ire_t		*ire;
19059 	ill_t		*ill;
19060 	ipha_t		*ipha;
19061 	ip6_t		*ip6h;
19062 	ipaddr_t	src, dst;
19063 	ill_zerocopy_capab_t *zc_cap = NULL;
19064 	uint16_t	*up;
19065 	int		err;
19066 	conn_t		*connp;
19067 
19068 #ifdef	_BIG_ENDIAN
19069 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 28) & 0x7)
19070 #else
19071 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 4) & 0x7)
19072 #endif
19073 
19074 #define	PREP_NEW_MULTIDATA() {			\
19075 	mmd = NULL;				\
19076 	md_mp = md_hbuf = NULL;			\
19077 	cur_hdr_off = 0;			\
19078 	max_pld = tcp->tcp_mdt_max_pld;		\
19079 	pbuf_idx = pbuf_idx_nxt = -1;		\
19080 	add_buffer = B_TRUE;			\
19081 	zcopy = B_FALSE;			\
19082 }
19083 
19084 #define	PREP_NEW_PBUF() {			\
19085 	md_pbuf = md_pbuf_nxt = NULL;		\
19086 	pbuf_idx = pbuf_idx_nxt = -1;		\
19087 	cur_pld_off = 0;			\
19088 	first_snxt = *snxt;			\
19089 	ASSERT(*tail_unsent > 0);		\
19090 	base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \
19091 }
19092 
19093 	ASSERT(mdt_thres >= mss);
19094 	ASSERT(*usable > 0 && *usable > mdt_thres);
19095 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
19096 	ASSERT(!TCP_IS_DETACHED(tcp));
19097 	ASSERT(tcp->tcp_valid_bits == 0 ||
19098 	    tcp->tcp_valid_bits == TCP_FSS_VALID);
19099 	ASSERT((tcp->tcp_ipversion == IPV4_VERSION &&
19100 	    tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) ||
19101 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19102 	    tcp->tcp_ip_hdr_len == IPV6_HDR_LEN));
19103 
19104 	connp = tcp->tcp_connp;
19105 	ASSERT(connp != NULL);
19106 	ASSERT(CONN_IS_MD_FASTPATH(connp));
19107 	ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp));
19108 
19109 	/*
19110 	 * Note that tcp will only declare at most 2 payload spans per
19111 	 * packet, which is much lower than the maximum allowable number
19112 	 * of packet spans per Multidata.  For this reason, we use the
19113 	 * privately declared and smaller descriptor info structure, in
19114 	 * order to save some stack space.
19115 	 */
19116 	pkt_info = (pdescinfo_t *)&tcp_pkt_info;
19117 
19118 	af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6;
19119 	if (af == AF_INET) {
19120 		dst = tcp->tcp_ipha->ipha_dst;
19121 		src = tcp->tcp_ipha->ipha_src;
19122 		ASSERT(!CLASSD(dst));
19123 	}
19124 	ASSERT(af == AF_INET ||
19125 	    !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst));
19126 
19127 	obsegs = obbytes = 0;
19128 	num_burst_seg = tcp->tcp_snd_burst;
19129 	md_mp_head = NULL;
19130 	PREP_NEW_MULTIDATA();
19131 
19132 	/*
19133 	 * Before we go on further, make sure there is an IRE that we can
19134 	 * use, and that the ILL supports MDT.  Otherwise, there's no point
19135 	 * in proceeding any further, and we should just hand everything
19136 	 * off to the legacy path.
19137 	 */
19138 	mutex_enter(&connp->conn_lock);
19139 	ire = connp->conn_ire_cache;
19140 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
19141 	if (ire != NULL && ((af == AF_INET && ire->ire_addr == dst) ||
19142 	    (af == AF_INET6 && IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6,
19143 	    &tcp->tcp_ip6h->ip6_dst))) &&
19144 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
19145 		IRE_REFHOLD(ire);
19146 		mutex_exit(&connp->conn_lock);
19147 	} else {
19148 		boolean_t cached = B_FALSE;
19149 		ts_label_t *tsl;
19150 
19151 		/* force a recheck later on */
19152 		tcp->tcp_ire_ill_check_done = B_FALSE;
19153 
19154 		TCP_DBGSTAT(tcp_ire_null1);
19155 		connp->conn_ire_cache = NULL;
19156 		mutex_exit(&connp->conn_lock);
19157 
19158 		/* Release the old ire */
19159 		if (ire != NULL)
19160 			IRE_REFRELE_NOTR(ire);
19161 
19162 		tsl = crgetlabel(CONN_CRED(connp));
19163 		ire = (af == AF_INET) ?
19164 		    ire_cache_lookup(dst, connp->conn_zoneid, tsl) :
19165 		    ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst,
19166 		    connp->conn_zoneid, tsl);
19167 
19168 		if (ire == NULL) {
19169 			TCP_STAT(tcp_ire_null);
19170 			goto legacy_send_no_md;
19171 		}
19172 
19173 		IRE_REFHOLD_NOTR(ire);
19174 		/*
19175 		 * Since we are inside the squeue, there cannot be another
19176 		 * thread in TCP trying to set the conn_ire_cache now. The
19177 		 * check for IRE_MARK_CONDEMNED ensures that an interface
19178 		 * unplumb thread has not yet started cleaning up the conns.
19179 		 * Hence we don't need to grab the conn lock.
19180 		 */
19181 		if (!(connp->conn_state_flags & CONN_CLOSING)) {
19182 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
19183 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
19184 				connp->conn_ire_cache = ire;
19185 				cached = B_TRUE;
19186 			}
19187 			rw_exit(&ire->ire_bucket->irb_lock);
19188 		}
19189 
19190 		/*
19191 		 * We can continue to use the ire but since it was not
19192 		 * cached, we should drop the extra reference.
19193 		 */
19194 		if (!cached)
19195 			IRE_REFRELE_NOTR(ire);
19196 	}
19197 
19198 	ASSERT(ire != NULL);
19199 	ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION);
19200 	ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6)));
19201 	ASSERT(af == AF_INET || ire->ire_nce != NULL);
19202 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
19203 	/*
19204 	 * If we do support loopback for MDT (which requires modifications
19205 	 * to the receiving paths), the following assertions should go away,
19206 	 * and we would be sending the Multidata to loopback conn later on.
19207 	 */
19208 	ASSERT(!IRE_IS_LOCAL(ire));
19209 	ASSERT(ire->ire_stq != NULL);
19210 
19211 	ill = ire_to_ill(ire);
19212 	ASSERT(ill != NULL);
19213 	ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL);
19214 
19215 	if (!tcp->tcp_ire_ill_check_done) {
19216 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
19217 		tcp->tcp_ire_ill_check_done = B_TRUE;
19218 	}
19219 
19220 	/*
19221 	 * If the underlying interface conditions have changed, or if the
19222 	 * new interface does not support MDT, go back to legacy path.
19223 	 */
19224 	if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) {
19225 		/* don't go through this path anymore for this connection */
19226 		TCP_STAT(tcp_mdt_conn_halted2);
19227 		tcp->tcp_mdt = B_FALSE;
19228 		ip1dbg(("tcp_multisend: disabling MDT for connp %p on "
19229 		    "interface %s\n", (void *)connp, ill->ill_name));
19230 		/* IRE will be released prior to returning */
19231 		goto legacy_send_no_md;
19232 	}
19233 
19234 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)
19235 		zc_cap = ill->ill_zerocopy_capab;
19236 
19237 	/*
19238 	 * Check if we can take tcp fast-path. Note that "incomplete"
19239 	 * ire's (where the link-layer for next hop is not resolved
19240 	 * or where the fast-path header in nce_fp_mp is not available
19241 	 * yet) are sent down the legacy (slow) path.
19242 	 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA
19243 	 */
19244 	if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) {
19245 		/* IRE will be released prior to returning */
19246 		goto legacy_send_no_md;
19247 	}
19248 
19249 	/* go to legacy path if interface doesn't support zerocopy */
19250 	if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 &&
19251 	    (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) {
19252 		/* IRE will be released prior to returning */
19253 		goto legacy_send_no_md;
19254 	}
19255 
19256 	/* does the interface support hardware checksum offload? */
19257 	hwcksum_flags = 0;
19258 	if (ILL_HCKSUM_CAPABLE(ill) &&
19259 	    (ill->ill_hcksum_capab->ill_hcksum_txflags &
19260 	    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL |
19261 	    HCKSUM_IPHDRCKSUM)) && dohwcksum) {
19262 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19263 		    HCKSUM_IPHDRCKSUM)
19264 			hwcksum_flags = HCK_IPV4_HDRCKSUM;
19265 
19266 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19267 		    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6))
19268 			hwcksum_flags |= HCK_FULLCKSUM;
19269 		else if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19270 		    HCKSUM_INET_PARTIAL)
19271 			hwcksum_flags |= HCK_PARTIALCKSUM;
19272 	}
19273 
19274 	/*
19275 	 * Each header fragment consists of the leading extra space,
19276 	 * followed by the TCP/IP header, and the trailing extra space.
19277 	 * We make sure that each header fragment begins on a 32-bit
19278 	 * aligned memory address (tcp_mdt_hdr_head is already 32-bit
19279 	 * aligned in tcp_mdt_update).
19280 	 */
19281 	hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len +
19282 	    tcp->tcp_mdt_hdr_tail), 4);
19283 
19284 	/* are we starting from the beginning of data block? */
19285 	if (*tail_unsent == 0) {
19286 		*xmit_tail = (*xmit_tail)->b_cont;
19287 		ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX);
19288 		*tail_unsent = (int)MBLKL(*xmit_tail);
19289 	}
19290 
19291 	/*
19292 	 * Here we create one or more Multidata messages, each made up of
19293 	 * one header buffer and up to N payload buffers.  This entire
19294 	 * operation is done within two loops:
19295 	 *
19296 	 * The outer loop mostly deals with creating the Multidata message,
19297 	 * as well as the header buffer that gets added to it.  It also
19298 	 * links the Multidata messages together such that all of them can
19299 	 * be sent down to the lower layer in a single putnext call; this
19300 	 * linking behavior depends on the tcp_mdt_chain tunable.
19301 	 *
19302 	 * The inner loop takes an existing Multidata message, and adds
19303 	 * one or more (up to tcp_mdt_max_pld) payload buffers to it.  It
19304 	 * packetizes those buffers by filling up the corresponding header
19305 	 * buffer fragments with the proper IP and TCP headers, and by
19306 	 * describing the layout of each packet in the packet descriptors
19307 	 * that get added to the Multidata.
19308 	 */
19309 	do {
19310 		/*
19311 		 * If usable send window is too small, or data blocks in
19312 		 * transmit list are smaller than our threshold (i.e. app
19313 		 * performs large writes followed by small ones), we hand
19314 		 * off the control over to the legacy path.  Note that we'll
19315 		 * get back the control once it encounters a large block.
19316 		 */
19317 		if (*usable < mss || (*tail_unsent <= mdt_thres &&
19318 		    (*xmit_tail)->b_cont != NULL &&
19319 		    MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) {
19320 			/* send down what we've got so far */
19321 			if (md_mp_head != NULL) {
19322 				tcp_multisend_data(tcp, ire, ill, md_mp_head,
19323 				    obsegs, obbytes, &rconfirm);
19324 			}
19325 			/*
19326 			 * Pass control over to tcp_send(), but tell it to
19327 			 * return to us once a large-size transmission is
19328 			 * possible.
19329 			 */
19330 			TCP_STAT(tcp_mdt_legacy_small);
19331 			if ((err = tcp_send(q, tcp, mss, tcp_hdr_len,
19332 			    tcp_tcp_hdr_len, num_sack_blk, usable, snxt,
19333 			    tail_unsent, xmit_tail, local_time,
19334 			    mdt_thres)) <= 0) {
19335 				/* burst count reached, or alloc failed */
19336 				IRE_REFRELE(ire);
19337 				return (err);
19338 			}
19339 
19340 			/* tcp_send() may have sent everything, so check */
19341 			if (*usable <= 0) {
19342 				IRE_REFRELE(ire);
19343 				return (0);
19344 			}
19345 
19346 			TCP_STAT(tcp_mdt_legacy_ret);
19347 			/*
19348 			 * We may have delivered the Multidata, so make sure
19349 			 * to re-initialize before the next round.
19350 			 */
19351 			md_mp_head = NULL;
19352 			obsegs = obbytes = 0;
19353 			num_burst_seg = tcp->tcp_snd_burst;
19354 			PREP_NEW_MULTIDATA();
19355 
19356 			/* are we starting from the beginning of data block? */
19357 			if (*tail_unsent == 0) {
19358 				*xmit_tail = (*xmit_tail)->b_cont;
19359 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
19360 				    (uintptr_t)INT_MAX);
19361 				*tail_unsent = (int)MBLKL(*xmit_tail);
19362 			}
19363 		}
19364 
19365 		/*
19366 		 * max_pld limits the number of mblks in tcp's transmit
19367 		 * queue that can be added to a Multidata message.  Once
19368 		 * this counter reaches zero, no more additional mblks
19369 		 * can be added to it.  What happens afterwards depends
19370 		 * on whether or not we are set to chain the Multidata
19371 		 * messages.  If we are to link them together, reset
19372 		 * max_pld to its original value (tcp_mdt_max_pld) and
19373 		 * prepare to create a new Multidata message which will
19374 		 * get linked to md_mp_head.  Else, leave it alone and
19375 		 * let the inner loop break on its own.
19376 		 */
19377 		if (tcp_mdt_chain && max_pld == 0)
19378 			PREP_NEW_MULTIDATA();
19379 
19380 		/* adding a payload buffer; re-initialize values */
19381 		if (add_buffer)
19382 			PREP_NEW_PBUF();
19383 
19384 		/*
19385 		 * If we don't have a Multidata, either because we just
19386 		 * (re)entered this outer loop, or after we branched off
19387 		 * to tcp_send above, setup the Multidata and header
19388 		 * buffer to be used.
19389 		 */
19390 		if (md_mp == NULL) {
19391 			int md_hbuflen;
19392 			uint32_t start, stuff;
19393 
19394 			/*
19395 			 * Calculate Multidata header buffer size large enough
19396 			 * to hold all of the headers that can possibly be
19397 			 * sent at this moment.  We'd rather over-estimate
19398 			 * the size than running out of space; this is okay
19399 			 * since this buffer is small anyway.
19400 			 */
19401 			md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz;
19402 
19403 			/*
19404 			 * Start and stuff offset for partial hardware
19405 			 * checksum offload; these are currently for IPv4.
19406 			 * For full checksum offload, they are set to zero.
19407 			 */
19408 			if ((hwcksum_flags & HCK_PARTIALCKSUM)) {
19409 				if (af == AF_INET) {
19410 					start = IP_SIMPLE_HDR_LENGTH;
19411 					stuff = IP_SIMPLE_HDR_LENGTH +
19412 					    TCP_CHECKSUM_OFFSET;
19413 				} else {
19414 					start = IPV6_HDR_LEN;
19415 					stuff = IPV6_HDR_LEN +
19416 					    TCP_CHECKSUM_OFFSET;
19417 				}
19418 			} else {
19419 				start = stuff = 0;
19420 			}
19421 
19422 			/*
19423 			 * Create the header buffer, Multidata, as well as
19424 			 * any necessary attributes (destination address,
19425 			 * SAP and hardware checksum offload) that should
19426 			 * be associated with the Multidata message.
19427 			 */
19428 			ASSERT(cur_hdr_off == 0);
19429 			if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL ||
19430 			    ((md_hbuf->b_wptr += md_hbuflen),
19431 			    (mmd = mmd_alloc(md_hbuf, &md_mp,
19432 			    KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd,
19433 			    /* fastpath mblk */
19434 			    ire->ire_nce->nce_res_mp,
19435 			    /* hardware checksum enabled */
19436 			    (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)),
19437 			    /* hardware checksum offsets */
19438 			    start, stuff, 0,
19439 			    /* hardware checksum flag */
19440 			    hwcksum_flags) != 0)) {
19441 legacy_send:
19442 				if (md_mp != NULL) {
19443 					/* Unlink message from the chain */
19444 					if (md_mp_head != NULL) {
19445 						err = (intptr_t)rmvb(md_mp_head,
19446 						    md_mp);
19447 						/*
19448 						 * We can't assert that rmvb
19449 						 * did not return -1, since we
19450 						 * may get here before linkb
19451 						 * happens.  We do, however,
19452 						 * check if we just removed the
19453 						 * only element in the list.
19454 						 */
19455 						if (err == 0)
19456 							md_mp_head = NULL;
19457 					}
19458 					/* md_hbuf gets freed automatically */
19459 					TCP_STAT(tcp_mdt_discarded);
19460 					freeb(md_mp);
19461 				} else {
19462 					/* Either allocb or mmd_alloc failed */
19463 					TCP_STAT(tcp_mdt_allocfail);
19464 					if (md_hbuf != NULL)
19465 						freeb(md_hbuf);
19466 				}
19467 
19468 				/* send down what we've got so far */
19469 				if (md_mp_head != NULL) {
19470 					tcp_multisend_data(tcp, ire, ill,
19471 					    md_mp_head, obsegs, obbytes,
19472 					    &rconfirm);
19473 				}
19474 legacy_send_no_md:
19475 				if (ire != NULL)
19476 					IRE_REFRELE(ire);
19477 				/*
19478 				 * Too bad; let the legacy path handle this.
19479 				 * We specify INT_MAX for the threshold, since
19480 				 * we gave up with the Multidata processings
19481 				 * and let the old path have it all.
19482 				 */
19483 				TCP_STAT(tcp_mdt_legacy_all);
19484 				return (tcp_send(q, tcp, mss, tcp_hdr_len,
19485 				    tcp_tcp_hdr_len, num_sack_blk, usable,
19486 				    snxt, tail_unsent, xmit_tail, local_time,
19487 				    INT_MAX));
19488 			}
19489 
19490 			/* link to any existing ones, if applicable */
19491 			TCP_STAT(tcp_mdt_allocd);
19492 			if (md_mp_head == NULL) {
19493 				md_mp_head = md_mp;
19494 			} else if (tcp_mdt_chain) {
19495 				TCP_STAT(tcp_mdt_linked);
19496 				linkb(md_mp_head, md_mp);
19497 			}
19498 		}
19499 
19500 		ASSERT(md_mp_head != NULL);
19501 		ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL);
19502 		ASSERT(md_mp != NULL && mmd != NULL);
19503 		ASSERT(md_hbuf != NULL);
19504 
19505 		/*
19506 		 * Packetize the transmittable portion of the data block;
19507 		 * each data block is essentially added to the Multidata
19508 		 * as a payload buffer.  We also deal with adding more
19509 		 * than one payload buffers, which happens when the remaining
19510 		 * packetized portion of the current payload buffer is less
19511 		 * than MSS, while the next data block in transmit queue
19512 		 * has enough data to make up for one.  This "spillover"
19513 		 * case essentially creates a split-packet, where portions
19514 		 * of the packet's payload fragments may span across two
19515 		 * virtually discontiguous address blocks.
19516 		 */
19517 		seg_len = mss;
19518 		do {
19519 			len = seg_len;
19520 
19521 			ASSERT(len > 0);
19522 			ASSERT(max_pld >= 0);
19523 			ASSERT(!add_buffer || cur_pld_off == 0);
19524 
19525 			/*
19526 			 * First time around for this payload buffer; note
19527 			 * in the case of a spillover, the following has
19528 			 * been done prior to adding the split-packet
19529 			 * descriptor to Multidata, and we don't want to
19530 			 * repeat the process.
19531 			 */
19532 			if (add_buffer) {
19533 				ASSERT(mmd != NULL);
19534 				ASSERT(md_pbuf == NULL);
19535 				ASSERT(md_pbuf_nxt == NULL);
19536 				ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1);
19537 
19538 				/*
19539 				 * Have we reached the limit?  We'd get to
19540 				 * this case when we're not chaining the
19541 				 * Multidata messages together, and since
19542 				 * we're done, terminate this loop.
19543 				 */
19544 				if (max_pld == 0)
19545 					break; /* done */
19546 
19547 				if ((md_pbuf = dupb(*xmit_tail)) == NULL) {
19548 					TCP_STAT(tcp_mdt_allocfail);
19549 					goto legacy_send; /* out_of_mem */
19550 				}
19551 
19552 				if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy &&
19553 				    zc_cap != NULL) {
19554 					if (!ip_md_zcopy_attr(mmd, NULL,
19555 					    zc_cap->ill_zerocopy_flags)) {
19556 						freeb(md_pbuf);
19557 						TCP_STAT(tcp_mdt_allocfail);
19558 						/* out_of_mem */
19559 						goto legacy_send;
19560 					}
19561 					zcopy = B_TRUE;
19562 				}
19563 
19564 				md_pbuf->b_rptr += base_pld_off;
19565 
19566 				/*
19567 				 * Add a payload buffer to the Multidata; this
19568 				 * operation must not fail, or otherwise our
19569 				 * logic in this routine is broken.  There
19570 				 * is no memory allocation done by the
19571 				 * routine, so any returned failure simply
19572 				 * tells us that we've done something wrong.
19573 				 *
19574 				 * A failure tells us that either we're adding
19575 				 * the same payload buffer more than once, or
19576 				 * we're trying to add more buffers than
19577 				 * allowed (max_pld calculation is wrong).
19578 				 * None of the above cases should happen, and
19579 				 * we panic because either there's horrible
19580 				 * heap corruption, and/or programming mistake.
19581 				 */
19582 				pbuf_idx = mmd_addpldbuf(mmd, md_pbuf);
19583 				if (pbuf_idx < 0) {
19584 					cmn_err(CE_PANIC, "tcp_multisend: "
19585 					    "payload buffer logic error "
19586 					    "detected for tcp %p mmd %p "
19587 					    "pbuf %p (%d)\n",
19588 					    (void *)tcp, (void *)mmd,
19589 					    (void *)md_pbuf, pbuf_idx);
19590 				}
19591 
19592 				ASSERT(max_pld > 0);
19593 				--max_pld;
19594 				add_buffer = B_FALSE;
19595 			}
19596 
19597 			ASSERT(md_mp_head != NULL);
19598 			ASSERT(md_pbuf != NULL);
19599 			ASSERT(md_pbuf_nxt == NULL);
19600 			ASSERT(pbuf_idx != -1);
19601 			ASSERT(pbuf_idx_nxt == -1);
19602 			ASSERT(*usable > 0);
19603 
19604 			/*
19605 			 * We spillover to the next payload buffer only
19606 			 * if all of the following is true:
19607 			 *
19608 			 *   1. There is not enough data on the current
19609 			 *	payload buffer to make up `len',
19610 			 *   2. We are allowed to send `len',
19611 			 *   3. The next payload buffer length is large
19612 			 *	enough to accomodate `spill'.
19613 			 */
19614 			if ((spill = len - *tail_unsent) > 0 &&
19615 			    *usable >= len &&
19616 			    MBLKL((*xmit_tail)->b_cont) >= spill &&
19617 			    max_pld > 0) {
19618 				md_pbuf_nxt = dupb((*xmit_tail)->b_cont);
19619 				if (md_pbuf_nxt == NULL) {
19620 					TCP_STAT(tcp_mdt_allocfail);
19621 					goto legacy_send; /* out_of_mem */
19622 				}
19623 
19624 				if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy &&
19625 				    zc_cap != NULL) {
19626 					if (!ip_md_zcopy_attr(mmd, NULL,
19627 					    zc_cap->ill_zerocopy_flags)) {
19628 						freeb(md_pbuf_nxt);
19629 						TCP_STAT(tcp_mdt_allocfail);
19630 						/* out_of_mem */
19631 						goto legacy_send;
19632 					}
19633 					zcopy = B_TRUE;
19634 				}
19635 
19636 				/*
19637 				 * See comments above on the first call to
19638 				 * mmd_addpldbuf for explanation on the panic.
19639 				 */
19640 				pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt);
19641 				if (pbuf_idx_nxt < 0) {
19642 					panic("tcp_multisend: "
19643 					    "next payload buffer logic error "
19644 					    "detected for tcp %p mmd %p "
19645 					    "pbuf %p (%d)\n",
19646 					    (void *)tcp, (void *)mmd,
19647 					    (void *)md_pbuf_nxt, pbuf_idx_nxt);
19648 				}
19649 
19650 				ASSERT(max_pld > 0);
19651 				--max_pld;
19652 			} else if (spill > 0) {
19653 				/*
19654 				 * If there's a spillover, but the following
19655 				 * xmit_tail couldn't give us enough octets
19656 				 * to reach "len", then stop the current
19657 				 * Multidata creation and let the legacy
19658 				 * tcp_send() path take over.  We don't want
19659 				 * to send the tiny segment as part of this
19660 				 * Multidata for performance reasons; instead,
19661 				 * we let the legacy path deal with grouping
19662 				 * it with the subsequent small mblks.
19663 				 */
19664 				if (*usable >= len &&
19665 				    MBLKL((*xmit_tail)->b_cont) < spill) {
19666 					max_pld = 0;
19667 					break;	/* done */
19668 				}
19669 
19670 				/*
19671 				 * We can't spillover, and we are near
19672 				 * the end of the current payload buffer,
19673 				 * so send what's left.
19674 				 */
19675 				ASSERT(*tail_unsent > 0);
19676 				len = *tail_unsent;
19677 			}
19678 
19679 			/* tail_unsent is negated if there is a spillover */
19680 			*tail_unsent -= len;
19681 			*usable -= len;
19682 			ASSERT(*usable >= 0);
19683 
19684 			if (*usable < mss)
19685 				seg_len = *usable;
19686 			/*
19687 			 * Sender SWS avoidance; see comments in tcp_send();
19688 			 * everything else is the same, except that we only
19689 			 * do this here if there is no more data to be sent
19690 			 * following the current xmit_tail.  We don't check
19691 			 * for 1-byte urgent data because we shouldn't get
19692 			 * here if TCP_URG_VALID is set.
19693 			 */
19694 			if (*usable > 0 && *usable < mss &&
19695 			    ((md_pbuf_nxt == NULL &&
19696 			    (*xmit_tail)->b_cont == NULL) ||
19697 			    (md_pbuf_nxt != NULL &&
19698 			    (*xmit_tail)->b_cont->b_cont == NULL)) &&
19699 			    seg_len < (tcp->tcp_max_swnd >> 1) &&
19700 			    (tcp->tcp_unsent -
19701 			    ((*snxt + len) - tcp->tcp_snxt)) > seg_len &&
19702 			    !tcp->tcp_zero_win_probe) {
19703 				if ((*snxt + len) == tcp->tcp_snxt &&
19704 				    (*snxt + len) == tcp->tcp_suna) {
19705 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19706 				}
19707 				done = B_TRUE;
19708 			}
19709 
19710 			/*
19711 			 * Prime pump for IP's checksumming on our behalf;
19712 			 * include the adjustment for a source route if any.
19713 			 * Do this only for software/partial hardware checksum
19714 			 * offload, as this field gets zeroed out later for
19715 			 * the full hardware checksum offload case.
19716 			 */
19717 			if (!(hwcksum_flags & HCK_FULLCKSUM)) {
19718 				cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
19719 				cksum = (cksum >> 16) + (cksum & 0xFFFF);
19720 				U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum);
19721 			}
19722 
19723 			U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq);
19724 			*snxt += len;
19725 
19726 			tcp->tcp_tcph->th_flags[0] = TH_ACK;
19727 			/*
19728 			 * We set the PUSH bit only if TCP has no more buffered
19729 			 * data to be transmitted (or if sender SWS avoidance
19730 			 * takes place), as opposed to setting it for every
19731 			 * last packet in the burst.
19732 			 */
19733 			if (done ||
19734 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0)
19735 				tcp->tcp_tcph->th_flags[0] |= TH_PUSH;
19736 
19737 			/*
19738 			 * Set FIN bit if this is our last segment; snxt
19739 			 * already includes its length, and it will not
19740 			 * be adjusted after this point.
19741 			 */
19742 			if (tcp->tcp_valid_bits == TCP_FSS_VALID &&
19743 			    *snxt == tcp->tcp_fss) {
19744 				if (!tcp->tcp_fin_acked) {
19745 					tcp->tcp_tcph->th_flags[0] |= TH_FIN;
19746 					BUMP_MIB(&tcp_mib, tcpOutControl);
19747 				}
19748 				if (!tcp->tcp_fin_sent) {
19749 					tcp->tcp_fin_sent = B_TRUE;
19750 					/*
19751 					 * tcp state must be ESTABLISHED
19752 					 * in order for us to get here in
19753 					 * the first place.
19754 					 */
19755 					tcp->tcp_state = TCPS_FIN_WAIT_1;
19756 
19757 					/*
19758 					 * Upon returning from this routine,
19759 					 * tcp_wput_data() will set tcp_snxt
19760 					 * to be equal to snxt + tcp_fin_sent.
19761 					 * This is essentially the same as
19762 					 * setting it to tcp_fss + 1.
19763 					 */
19764 				}
19765 			}
19766 
19767 			tcp->tcp_last_sent_len = (ushort_t)len;
19768 
19769 			len += tcp_hdr_len;
19770 			if (tcp->tcp_ipversion == IPV4_VERSION)
19771 				tcp->tcp_ipha->ipha_length = htons(len);
19772 			else
19773 				tcp->tcp_ip6h->ip6_plen = htons(len -
19774 				    ((char *)&tcp->tcp_ip6h[1] -
19775 				    tcp->tcp_iphc));
19776 
19777 			pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF);
19778 
19779 			/* setup header fragment */
19780 			PDESC_HDR_ADD(pkt_info,
19781 			    md_hbuf->b_rptr + cur_hdr_off,	/* base */
19782 			    tcp->tcp_mdt_hdr_head,		/* head room */
19783 			    tcp_hdr_len,			/* len */
19784 			    tcp->tcp_mdt_hdr_tail);		/* tail room */
19785 
19786 			ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base ==
19787 			    hdr_frag_sz);
19788 			ASSERT(MBLKIN(md_hbuf,
19789 			    (pkt_info->hdr_base - md_hbuf->b_rptr),
19790 			    PDESC_HDRSIZE(pkt_info)));
19791 
19792 			/* setup first payload fragment */
19793 			PDESC_PLD_INIT(pkt_info);
19794 			PDESC_PLD_SPAN_ADD(pkt_info,
19795 			    pbuf_idx,				/* index */
19796 			    md_pbuf->b_rptr + cur_pld_off,	/* start */
19797 			    tcp->tcp_last_sent_len);		/* len */
19798 
19799 			/* create a split-packet in case of a spillover */
19800 			if (md_pbuf_nxt != NULL) {
19801 				ASSERT(spill > 0);
19802 				ASSERT(pbuf_idx_nxt > pbuf_idx);
19803 				ASSERT(!add_buffer);
19804 
19805 				md_pbuf = md_pbuf_nxt;
19806 				md_pbuf_nxt = NULL;
19807 				pbuf_idx = pbuf_idx_nxt;
19808 				pbuf_idx_nxt = -1;
19809 				cur_pld_off = spill;
19810 
19811 				/* trim out first payload fragment */
19812 				PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill);
19813 
19814 				/* setup second payload fragment */
19815 				PDESC_PLD_SPAN_ADD(pkt_info,
19816 				    pbuf_idx,			/* index */
19817 				    md_pbuf->b_rptr,		/* start */
19818 				    spill);			/* len */
19819 
19820 				if ((*xmit_tail)->b_next == NULL) {
19821 					/*
19822 					 * Store the lbolt used for RTT
19823 					 * estimation. We can only record one
19824 					 * timestamp per mblk so we do it when
19825 					 * we reach the end of the payload
19826 					 * buffer.  Also we only take a new
19827 					 * timestamp sample when the previous
19828 					 * timed data from the same mblk has
19829 					 * been ack'ed.
19830 					 */
19831 					(*xmit_tail)->b_prev = local_time;
19832 					(*xmit_tail)->b_next =
19833 					    (mblk_t *)(uintptr_t)first_snxt;
19834 				}
19835 
19836 				first_snxt = *snxt - spill;
19837 
19838 				/*
19839 				 * Advance xmit_tail; usable could be 0 by
19840 				 * the time we got here, but we made sure
19841 				 * above that we would only spillover to
19842 				 * the next data block if usable includes
19843 				 * the spilled-over amount prior to the
19844 				 * subtraction.  Therefore, we are sure
19845 				 * that xmit_tail->b_cont can't be NULL.
19846 				 */
19847 				ASSERT((*xmit_tail)->b_cont != NULL);
19848 				*xmit_tail = (*xmit_tail)->b_cont;
19849 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
19850 				    (uintptr_t)INT_MAX);
19851 				*tail_unsent = (int)MBLKL(*xmit_tail) - spill;
19852 			} else {
19853 				cur_pld_off += tcp->tcp_last_sent_len;
19854 			}
19855 
19856 			/*
19857 			 * Fill in the header using the template header, and
19858 			 * add options such as time-stamp, ECN and/or SACK,
19859 			 * as needed.
19860 			 */
19861 			tcp_fill_header(tcp, pkt_info->hdr_rptr,
19862 			    (clock_t)local_time, num_sack_blk);
19863 
19864 			/* take care of some IP header businesses */
19865 			if (af == AF_INET) {
19866 				ipha = (ipha_t *)pkt_info->hdr_rptr;
19867 
19868 				ASSERT(OK_32PTR((uchar_t *)ipha));
19869 				ASSERT(PDESC_HDRL(pkt_info) >=
19870 				    IP_SIMPLE_HDR_LENGTH);
19871 				ASSERT(ipha->ipha_version_and_hdr_length ==
19872 				    IP_SIMPLE_HDR_VERSION);
19873 
19874 				/*
19875 				 * Assign ident value for current packet; see
19876 				 * related comments in ip_wput_ire() about the
19877 				 * contract private interface with clustering
19878 				 * group.
19879 				 */
19880 				clusterwide = B_FALSE;
19881 				if (cl_inet_ipident != NULL) {
19882 					ASSERT(cl_inet_isclusterwide != NULL);
19883 					if ((*cl_inet_isclusterwide)(IPPROTO_IP,
19884 					    AF_INET,
19885 					    (uint8_t *)(uintptr_t)src)) {
19886 						ipha->ipha_ident =
19887 						    (*cl_inet_ipident)
19888 						    (IPPROTO_IP, AF_INET,
19889 						    (uint8_t *)(uintptr_t)src,
19890 						    (uint8_t *)(uintptr_t)dst);
19891 						clusterwide = B_TRUE;
19892 					}
19893 				}
19894 
19895 				if (!clusterwide) {
19896 					ipha->ipha_ident = (uint16_t)
19897 					    atomic_add_32_nv(
19898 						&ire->ire_ident, 1);
19899 				}
19900 #ifndef _BIG_ENDIAN
19901 				ipha->ipha_ident = (ipha->ipha_ident << 8) |
19902 				    (ipha->ipha_ident >> 8);
19903 #endif
19904 			} else {
19905 				ip6h = (ip6_t *)pkt_info->hdr_rptr;
19906 
19907 				ASSERT(OK_32PTR((uchar_t *)ip6h));
19908 				ASSERT(IPVER(ip6h) == IPV6_VERSION);
19909 				ASSERT(ip6h->ip6_nxt == IPPROTO_TCP);
19910 				ASSERT(PDESC_HDRL(pkt_info) >=
19911 				    (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET +
19912 				    TCP_CHECKSUM_SIZE));
19913 				ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
19914 
19915 				if (tcp->tcp_ip_forward_progress) {
19916 					rconfirm = B_TRUE;
19917 					tcp->tcp_ip_forward_progress = B_FALSE;
19918 				}
19919 			}
19920 
19921 			/* at least one payload span, and at most two */
19922 			ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3);
19923 
19924 			/* add the packet descriptor to Multidata */
19925 			if ((pkt = mmd_addpdesc(mmd, pkt_info, &err,
19926 			    KM_NOSLEEP)) == NULL) {
19927 				/*
19928 				 * Any failure other than ENOMEM indicates
19929 				 * that we have passed in invalid pkt_info
19930 				 * or parameters to mmd_addpdesc, which must
19931 				 * not happen.
19932 				 *
19933 				 * EINVAL is a result of failure on boundary
19934 				 * checks against the pkt_info contents.  It
19935 				 * should not happen, and we panic because
19936 				 * either there's horrible heap corruption,
19937 				 * and/or programming mistake.
19938 				 */
19939 				if (err != ENOMEM) {
19940 					cmn_err(CE_PANIC, "tcp_multisend: "
19941 					    "pdesc logic error detected for "
19942 					    "tcp %p mmd %p pinfo %p (%d)\n",
19943 					    (void *)tcp, (void *)mmd,
19944 					    (void *)pkt_info, err);
19945 				}
19946 				TCP_STAT(tcp_mdt_addpdescfail);
19947 				goto legacy_send; /* out_of_mem */
19948 			}
19949 			ASSERT(pkt != NULL);
19950 
19951 			/* calculate IP header and TCP checksums */
19952 			if (af == AF_INET) {
19953 				/* calculate pseudo-header checksum */
19954 				cksum = (dst >> 16) + (dst & 0xFFFF) +
19955 				    (src >> 16) + (src & 0xFFFF);
19956 
19957 				/* offset for TCP header checksum */
19958 				up = IPH_TCPH_CHECKSUMP(ipha,
19959 				    IP_SIMPLE_HDR_LENGTH);
19960 			} else {
19961 				up = (uint16_t *)&ip6h->ip6_src;
19962 
19963 				/* calculate pseudo-header checksum */
19964 				cksum = up[0] + up[1] + up[2] + up[3] +
19965 				    up[4] + up[5] + up[6] + up[7] +
19966 				    up[8] + up[9] + up[10] + up[11] +
19967 				    up[12] + up[13] + up[14] + up[15];
19968 
19969 				/* Fold the initial sum */
19970 				cksum = (cksum & 0xffff) + (cksum >> 16);
19971 
19972 				up = (uint16_t *)(((uchar_t *)ip6h) +
19973 				    IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET);
19974 			}
19975 
19976 			if (hwcksum_flags & HCK_FULLCKSUM) {
19977 				/* clear checksum field for hardware */
19978 				*up = 0;
19979 			} else if (hwcksum_flags & HCK_PARTIALCKSUM) {
19980 				uint32_t sum;
19981 
19982 				/* pseudo-header checksumming */
19983 				sum = *up + cksum + IP_TCP_CSUM_COMP;
19984 				sum = (sum & 0xFFFF) + (sum >> 16);
19985 				*up = (sum & 0xFFFF) + (sum >> 16);
19986 			} else {
19987 				/* software checksumming */
19988 				TCP_STAT(tcp_out_sw_cksum);
19989 				TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes,
19990 				    tcp->tcp_hdr_len + tcp->tcp_last_sent_len);
19991 				*up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len,
19992 				    cksum + IP_TCP_CSUM_COMP);
19993 				if (*up == 0)
19994 					*up = 0xFFFF;
19995 			}
19996 
19997 			/* IPv4 header checksum */
19998 			if (af == AF_INET) {
19999 				ipha->ipha_fragment_offset_and_flags |=
20000 				    (uint32_t)htons(ire->ire_frag_flag);
20001 
20002 				if (hwcksum_flags & HCK_IPV4_HDRCKSUM) {
20003 					ipha->ipha_hdr_checksum = 0;
20004 				} else {
20005 					IP_HDR_CKSUM(ipha, cksum,
20006 					    ((uint32_t *)ipha)[0],
20007 					    ((uint16_t *)ipha)[4]);
20008 				}
20009 			}
20010 
20011 			/* advance header offset */
20012 			cur_hdr_off += hdr_frag_sz;
20013 
20014 			obbytes += tcp->tcp_last_sent_len;
20015 			++obsegs;
20016 		} while (!done && *usable > 0 && --num_burst_seg > 0 &&
20017 		    *tail_unsent > 0);
20018 
20019 		if ((*xmit_tail)->b_next == NULL) {
20020 			/*
20021 			 * Store the lbolt used for RTT estimation. We can only
20022 			 * record one timestamp per mblk so we do it when we
20023 			 * reach the end of the payload buffer. Also we only
20024 			 * take a new timestamp sample when the previous timed
20025 			 * data from the same mblk has been ack'ed.
20026 			 */
20027 			(*xmit_tail)->b_prev = local_time;
20028 			(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt;
20029 		}
20030 
20031 		ASSERT(*tail_unsent >= 0);
20032 		if (*tail_unsent > 0) {
20033 			/*
20034 			 * We got here because we broke out of the above
20035 			 * loop due to of one of the following cases:
20036 			 *
20037 			 *   1. len < adjusted MSS (i.e. small),
20038 			 *   2. Sender SWS avoidance,
20039 			 *   3. max_pld is zero.
20040 			 *
20041 			 * We are done for this Multidata, so trim our
20042 			 * last payload buffer (if any) accordingly.
20043 			 */
20044 			if (md_pbuf != NULL)
20045 				md_pbuf->b_wptr -= *tail_unsent;
20046 		} else if (*usable > 0) {
20047 			*xmit_tail = (*xmit_tail)->b_cont;
20048 			ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20049 			    (uintptr_t)INT_MAX);
20050 			*tail_unsent = (int)MBLKL(*xmit_tail);
20051 			add_buffer = B_TRUE;
20052 		}
20053 	} while (!done && *usable > 0 && num_burst_seg > 0 &&
20054 	    (tcp_mdt_chain || max_pld > 0));
20055 
20056 	/* send everything down */
20057 	tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes,
20058 	    &rconfirm);
20059 
20060 #undef PREP_NEW_MULTIDATA
20061 #undef PREP_NEW_PBUF
20062 #undef IPVER
20063 
20064 	IRE_REFRELE(ire);
20065 	return (0);
20066 }
20067 
20068 /*
20069  * A wrapper function for sending one or more Multidata messages down to
20070  * the module below ip; this routine does not release the reference of the
20071  * IRE (caller does that).  This routine is analogous to tcp_send_data().
20072  */
20073 static void
20074 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head,
20075     const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm)
20076 {
20077 	uint64_t delta;
20078 	nce_t *nce;
20079 
20080 	ASSERT(ire != NULL && ill != NULL);
20081 	ASSERT(ire->ire_stq != NULL);
20082 	ASSERT(md_mp_head != NULL);
20083 	ASSERT(rconfirm != NULL);
20084 
20085 	/* adjust MIBs and IRE timestamp */
20086 	TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT);
20087 	tcp->tcp_obsegs += obsegs;
20088 	UPDATE_MIB(&tcp_mib, tcpOutDataSegs, obsegs);
20089 	UPDATE_MIB(&tcp_mib, tcpOutDataBytes, obbytes);
20090 	TCP_STAT_UPDATE(tcp_mdt_pkt_out, obsegs);
20091 
20092 	if (tcp->tcp_ipversion == IPV4_VERSION) {
20093 		TCP_STAT_UPDATE(tcp_mdt_pkt_out_v4, obsegs);
20094 		UPDATE_MIB(&ip_mib, ipOutRequests, obsegs);
20095 	} else {
20096 		TCP_STAT_UPDATE(tcp_mdt_pkt_out_v6, obsegs);
20097 		UPDATE_MIB(&ip6_mib, ipv6OutRequests, obsegs);
20098 	}
20099 
20100 	ire->ire_ob_pkt_count += obsegs;
20101 	if (ire->ire_ipif != NULL)
20102 		atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs);
20103 	ire->ire_last_used_time = lbolt;
20104 
20105 	/* send it down */
20106 	putnext(ire->ire_stq, md_mp_head);
20107 
20108 	/* we're done for TCP/IPv4 */
20109 	if (tcp->tcp_ipversion == IPV4_VERSION)
20110 		return;
20111 
20112 	nce = ire->ire_nce;
20113 
20114 	ASSERT(nce != NULL);
20115 	ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT)));
20116 	ASSERT(nce->nce_state != ND_INCOMPLETE);
20117 
20118 	/* reachability confirmation? */
20119 	if (*rconfirm) {
20120 		nce->nce_last = TICK_TO_MSEC(lbolt64);
20121 		if (nce->nce_state != ND_REACHABLE) {
20122 			mutex_enter(&nce->nce_lock);
20123 			nce->nce_state = ND_REACHABLE;
20124 			nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT;
20125 			mutex_exit(&nce->nce_lock);
20126 			(void) untimeout(nce->nce_timeout_id);
20127 			if (ip_debug > 2) {
20128 				/* ip1dbg */
20129 				pr_addr_dbg("tcp_multisend_data: state "
20130 				    "for %s changed to REACHABLE\n",
20131 				    AF_INET6, &ire->ire_addr_v6);
20132 			}
20133 		}
20134 		/* reset transport reachability confirmation */
20135 		*rconfirm = B_FALSE;
20136 	}
20137 
20138 	delta =  TICK_TO_MSEC(lbolt64) - nce->nce_last;
20139 	ip1dbg(("tcp_multisend_data: delta = %" PRId64
20140 	    " ill_reachable_time = %d \n", delta, ill->ill_reachable_time));
20141 
20142 	if (delta > (uint64_t)ill->ill_reachable_time) {
20143 		mutex_enter(&nce->nce_lock);
20144 		switch (nce->nce_state) {
20145 		case ND_REACHABLE:
20146 		case ND_STALE:
20147 			/*
20148 			 * ND_REACHABLE is identical to ND_STALE in this
20149 			 * specific case. If reachable time has expired for
20150 			 * this neighbor (delta is greater than reachable
20151 			 * time), conceptually, the neighbor cache is no
20152 			 * longer in REACHABLE state, but already in STALE
20153 			 * state.  So the correct transition here is to
20154 			 * ND_DELAY.
20155 			 */
20156 			nce->nce_state = ND_DELAY;
20157 			mutex_exit(&nce->nce_lock);
20158 			NDP_RESTART_TIMER(nce, delay_first_probe_time);
20159 			if (ip_debug > 3) {
20160 				/* ip2dbg */
20161 				pr_addr_dbg("tcp_multisend_data: state "
20162 				    "for %s changed to DELAY\n",
20163 				    AF_INET6, &ire->ire_addr_v6);
20164 			}
20165 			break;
20166 		case ND_DELAY:
20167 		case ND_PROBE:
20168 			mutex_exit(&nce->nce_lock);
20169 			/* Timers have already started */
20170 			break;
20171 		case ND_UNREACHABLE:
20172 			/*
20173 			 * ndp timer has detected that this nce is
20174 			 * unreachable and initiated deleting this nce
20175 			 * and all its associated IREs. This is a race
20176 			 * where we found the ire before it was deleted
20177 			 * and have just sent out a packet using this
20178 			 * unreachable nce.
20179 			 */
20180 			mutex_exit(&nce->nce_lock);
20181 			break;
20182 		default:
20183 			ASSERT(0);
20184 		}
20185 	}
20186 }
20187 
20188 /*
20189  * tcp_send() is called by tcp_wput_data() for non-Multidata transmission
20190  * scheme, and returns one of the following:
20191  *
20192  * -1 = failed allocation.
20193  *  0 = success; burst count reached, or usable send window is too small,
20194  *      and that we'd rather wait until later before sending again.
20195  *  1 = success; we are called from tcp_multisend(), and both usable send
20196  *      window and tail_unsent are greater than the MDT threshold, and thus
20197  *      Multidata Transmit should be used instead.
20198  */
20199 static int
20200 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
20201     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
20202     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
20203     const int mdt_thres)
20204 {
20205 	int num_burst_seg = tcp->tcp_snd_burst;
20206 
20207 	for (;;) {
20208 		struct datab	*db;
20209 		tcph_t		*tcph;
20210 		uint32_t	sum;
20211 		mblk_t		*mp, *mp1;
20212 		uchar_t		*rptr;
20213 		int		len;
20214 
20215 		/*
20216 		 * If we're called by tcp_multisend(), and the amount of
20217 		 * sendable data as well as the size of current xmit_tail
20218 		 * is beyond the MDT threshold, return to the caller and
20219 		 * let the large data transmit be done using MDT.
20220 		 */
20221 		if (*usable > 0 && *usable > mdt_thres &&
20222 		    (*tail_unsent > mdt_thres || (*tail_unsent == 0 &&
20223 		    MBLKL((*xmit_tail)->b_cont) > mdt_thres))) {
20224 			ASSERT(tcp->tcp_mdt);
20225 			return (1);	/* success; do large send */
20226 		}
20227 
20228 		if (num_burst_seg-- == 0)
20229 			break;		/* success; burst count reached */
20230 
20231 		len = mss;
20232 		if (len > *usable) {
20233 			len = *usable;
20234 			if (len <= 0) {
20235 				/* Terminate the loop */
20236 				break;	/* success; too small */
20237 			}
20238 			/*
20239 			 * Sender silly-window avoidance.
20240 			 * Ignore this if we are going to send a
20241 			 * zero window probe out.
20242 			 *
20243 			 * TODO: force data into microscopic window?
20244 			 *	==> (!pushed || (unsent > usable))
20245 			 */
20246 			if (len < (tcp->tcp_max_swnd >> 1) &&
20247 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len &&
20248 			    !((tcp->tcp_valid_bits & TCP_URG_VALID) &&
20249 			    len == 1) && (! tcp->tcp_zero_win_probe)) {
20250 				/*
20251 				 * If the retransmit timer is not running
20252 				 * we start it so that we will retransmit
20253 				 * in the case when the the receiver has
20254 				 * decremented the window.
20255 				 */
20256 				if (*snxt == tcp->tcp_snxt &&
20257 				    *snxt == tcp->tcp_suna) {
20258 					/*
20259 					 * We are not supposed to send
20260 					 * anything.  So let's wait a little
20261 					 * bit longer before breaking SWS
20262 					 * avoidance.
20263 					 *
20264 					 * What should the value be?
20265 					 * Suggestion: MAX(init rexmit time,
20266 					 * tcp->tcp_rto)
20267 					 */
20268 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20269 				}
20270 				break;	/* success; too small */
20271 			}
20272 		}
20273 
20274 		tcph = tcp->tcp_tcph;
20275 
20276 		*usable -= len; /* Approximate - can be adjusted later */
20277 		if (*usable > 0)
20278 			tcph->th_flags[0] = TH_ACK;
20279 		else
20280 			tcph->th_flags[0] = (TH_ACK | TH_PUSH);
20281 
20282 		/*
20283 		 * Prime pump for IP's checksumming on our behalf
20284 		 * Include the adjustment for a source route if any.
20285 		 */
20286 		sum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
20287 		sum = (sum >> 16) + (sum & 0xFFFF);
20288 		U16_TO_ABE16(sum, tcph->th_sum);
20289 
20290 		U32_TO_ABE32(*snxt, tcph->th_seq);
20291 
20292 		/*
20293 		 * Branch off to tcp_xmit_mp() if any of the VALID bits is
20294 		 * set.  For the case when TCP_FSS_VALID is the only valid
20295 		 * bit (normal active close), branch off only when we think
20296 		 * that the FIN flag needs to be set.  Note for this case,
20297 		 * that (snxt + len) may not reflect the actual seg_len,
20298 		 * as len may be further reduced in tcp_xmit_mp().  If len
20299 		 * gets modified, we will end up here again.
20300 		 */
20301 		if (tcp->tcp_valid_bits != 0 &&
20302 		    (tcp->tcp_valid_bits != TCP_FSS_VALID ||
20303 		    ((*snxt + len) == tcp->tcp_fss))) {
20304 			uchar_t		*prev_rptr;
20305 			uint32_t	prev_snxt = tcp->tcp_snxt;
20306 
20307 			if (*tail_unsent == 0) {
20308 				ASSERT((*xmit_tail)->b_cont != NULL);
20309 				*xmit_tail = (*xmit_tail)->b_cont;
20310 				prev_rptr = (*xmit_tail)->b_rptr;
20311 				*tail_unsent = (int)((*xmit_tail)->b_wptr -
20312 				    (*xmit_tail)->b_rptr);
20313 			} else {
20314 				prev_rptr = (*xmit_tail)->b_rptr;
20315 				(*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr -
20316 				    *tail_unsent;
20317 			}
20318 			mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL,
20319 			    *snxt, B_FALSE, (uint32_t *)&len, B_FALSE);
20320 			/* Restore tcp_snxt so we get amount sent right. */
20321 			tcp->tcp_snxt = prev_snxt;
20322 			if (prev_rptr == (*xmit_tail)->b_rptr) {
20323 				/*
20324 				 * If the previous timestamp is still in use,
20325 				 * don't stomp on it.
20326 				 */
20327 				if ((*xmit_tail)->b_next == NULL) {
20328 					(*xmit_tail)->b_prev = local_time;
20329 					(*xmit_tail)->b_next =
20330 					    (mblk_t *)(uintptr_t)(*snxt);
20331 				}
20332 			} else
20333 				(*xmit_tail)->b_rptr = prev_rptr;
20334 
20335 			if (mp == NULL)
20336 				return (-1);
20337 			mp1 = mp->b_cont;
20338 
20339 			tcp->tcp_last_sent_len = (ushort_t)len;
20340 			while (mp1->b_cont) {
20341 				*xmit_tail = (*xmit_tail)->b_cont;
20342 				(*xmit_tail)->b_prev = local_time;
20343 				(*xmit_tail)->b_next =
20344 				    (mblk_t *)(uintptr_t)(*snxt);
20345 				mp1 = mp1->b_cont;
20346 			}
20347 			*snxt += len;
20348 			*tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr;
20349 			BUMP_LOCAL(tcp->tcp_obsegs);
20350 			BUMP_MIB(&tcp_mib, tcpOutDataSegs);
20351 			UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len);
20352 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
20353 			tcp_send_data(tcp, q, mp);
20354 			continue;
20355 		}
20356 
20357 		*snxt += len;	/* Adjust later if we don't send all of len */
20358 		BUMP_MIB(&tcp_mib, tcpOutDataSegs);
20359 		UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len);
20360 
20361 		if (*tail_unsent) {
20362 			/* Are the bytes above us in flight? */
20363 			rptr = (*xmit_tail)->b_wptr - *tail_unsent;
20364 			if (rptr != (*xmit_tail)->b_rptr) {
20365 				*tail_unsent -= len;
20366 				tcp->tcp_last_sent_len = (ushort_t)len;
20367 				len += tcp_hdr_len;
20368 				if (tcp->tcp_ipversion == IPV4_VERSION)
20369 					tcp->tcp_ipha->ipha_length = htons(len);
20370 				else
20371 					tcp->tcp_ip6h->ip6_plen =
20372 					    htons(len -
20373 					    ((char *)&tcp->tcp_ip6h[1] -
20374 					    tcp->tcp_iphc));
20375 				mp = dupb(*xmit_tail);
20376 				if (!mp)
20377 					return (-1);	/* out_of_mem */
20378 				mp->b_rptr = rptr;
20379 				/*
20380 				 * If the old timestamp is no longer in use,
20381 				 * sample a new timestamp now.
20382 				 */
20383 				if ((*xmit_tail)->b_next == NULL) {
20384 					(*xmit_tail)->b_prev = local_time;
20385 					(*xmit_tail)->b_next =
20386 					    (mblk_t *)(uintptr_t)(*snxt-len);
20387 				}
20388 				goto must_alloc;
20389 			}
20390 		} else {
20391 			*xmit_tail = (*xmit_tail)->b_cont;
20392 			ASSERT((uintptr_t)((*xmit_tail)->b_wptr -
20393 			    (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX);
20394 			*tail_unsent = (int)((*xmit_tail)->b_wptr -
20395 			    (*xmit_tail)->b_rptr);
20396 		}
20397 
20398 		(*xmit_tail)->b_prev = local_time;
20399 		(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len);
20400 
20401 		*tail_unsent -= len;
20402 		tcp->tcp_last_sent_len = (ushort_t)len;
20403 
20404 		len += tcp_hdr_len;
20405 		if (tcp->tcp_ipversion == IPV4_VERSION)
20406 			tcp->tcp_ipha->ipha_length = htons(len);
20407 		else
20408 			tcp->tcp_ip6h->ip6_plen = htons(len -
20409 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
20410 
20411 		mp = dupb(*xmit_tail);
20412 		if (!mp)
20413 			return (-1);	/* out_of_mem */
20414 
20415 		len = tcp_hdr_len;
20416 		/*
20417 		 * There are four reasons to allocate a new hdr mblk:
20418 		 *  1) The bytes above us are in use by another packet
20419 		 *  2) We don't have good alignment
20420 		 *  3) The mblk is being shared
20421 		 *  4) We don't have enough room for a header
20422 		 */
20423 		rptr = mp->b_rptr - len;
20424 		if (!OK_32PTR(rptr) ||
20425 		    ((db = mp->b_datap), db->db_ref != 2) ||
20426 		    rptr < db->db_base) {
20427 			/* NOTE: we assume allocb returns an OK_32PTR */
20428 
20429 		must_alloc:;
20430 			mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
20431 			    tcp_wroff_xtra, BPRI_MED);
20432 			if (!mp1) {
20433 				freemsg(mp);
20434 				return (-1);	/* out_of_mem */
20435 			}
20436 			mp1->b_cont = mp;
20437 			mp = mp1;
20438 			/* Leave room for Link Level header */
20439 			len = tcp_hdr_len;
20440 			rptr = &mp->b_rptr[tcp_wroff_xtra];
20441 			mp->b_wptr = &rptr[len];
20442 		}
20443 
20444 		/*
20445 		 * Fill in the header using the template header, and add
20446 		 * options such as time-stamp, ECN and/or SACK, as needed.
20447 		 */
20448 		tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk);
20449 
20450 		mp->b_rptr = rptr;
20451 
20452 		if (*tail_unsent) {
20453 			int spill = *tail_unsent;
20454 
20455 			mp1 = mp->b_cont;
20456 			if (!mp1)
20457 				mp1 = mp;
20458 
20459 			/*
20460 			 * If we're a little short, tack on more mblks until
20461 			 * there is no more spillover.
20462 			 */
20463 			while (spill < 0) {
20464 				mblk_t *nmp;
20465 				int nmpsz;
20466 
20467 				nmp = (*xmit_tail)->b_cont;
20468 				nmpsz = MBLKL(nmp);
20469 
20470 				/*
20471 				 * Excess data in mblk; can we split it?
20472 				 * If MDT is enabled for the connection,
20473 				 * keep on splitting as this is a transient
20474 				 * send path.
20475 				 */
20476 				if (!tcp->tcp_mdt && (spill + nmpsz > 0)) {
20477 					/*
20478 					 * Don't split if stream head was
20479 					 * told to break up larger writes
20480 					 * into smaller ones.
20481 					 */
20482 					if (tcp->tcp_maxpsz > 0)
20483 						break;
20484 
20485 					/*
20486 					 * Next mblk is less than SMSS/2
20487 					 * rounded up to nearest 64-byte;
20488 					 * let it get sent as part of the
20489 					 * next segment.
20490 					 */
20491 					if (tcp->tcp_localnet &&
20492 					    !tcp->tcp_cork &&
20493 					    (nmpsz < roundup((mss >> 1), 64)))
20494 						break;
20495 				}
20496 
20497 				*xmit_tail = nmp;
20498 				ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX);
20499 				/* Stash for rtt use later */
20500 				(*xmit_tail)->b_prev = local_time;
20501 				(*xmit_tail)->b_next =
20502 				    (mblk_t *)(uintptr_t)(*snxt - len);
20503 				mp1->b_cont = dupb(*xmit_tail);
20504 				mp1 = mp1->b_cont;
20505 
20506 				spill += nmpsz;
20507 				if (mp1 == NULL) {
20508 					*tail_unsent = spill;
20509 					freemsg(mp);
20510 					return (-1);	/* out_of_mem */
20511 				}
20512 			}
20513 
20514 			/* Trim back any surplus on the last mblk */
20515 			if (spill >= 0) {
20516 				mp1->b_wptr -= spill;
20517 				*tail_unsent = spill;
20518 			} else {
20519 				/*
20520 				 * We did not send everything we could in
20521 				 * order to remain within the b_cont limit.
20522 				 */
20523 				*usable -= spill;
20524 				*snxt += spill;
20525 				tcp->tcp_last_sent_len += spill;
20526 				UPDATE_MIB(&tcp_mib, tcpOutDataBytes, spill);
20527 				/*
20528 				 * Adjust the checksum
20529 				 */
20530 				tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
20531 				sum += spill;
20532 				sum = (sum >> 16) + (sum & 0xFFFF);
20533 				U16_TO_ABE16(sum, tcph->th_sum);
20534 				if (tcp->tcp_ipversion == IPV4_VERSION) {
20535 					sum = ntohs(
20536 					    ((ipha_t *)rptr)->ipha_length) +
20537 					    spill;
20538 					((ipha_t *)rptr)->ipha_length =
20539 					    htons(sum);
20540 				} else {
20541 					sum = ntohs(
20542 					    ((ip6_t *)rptr)->ip6_plen) +
20543 					    spill;
20544 					((ip6_t *)rptr)->ip6_plen =
20545 					    htons(sum);
20546 				}
20547 				*tail_unsent = 0;
20548 			}
20549 		}
20550 		if (tcp->tcp_ip_forward_progress) {
20551 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
20552 			*(uint32_t *)mp->b_rptr  |= IP_FORWARD_PROG;
20553 			tcp->tcp_ip_forward_progress = B_FALSE;
20554 		}
20555 
20556 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
20557 		tcp_send_data(tcp, q, mp);
20558 		BUMP_LOCAL(tcp->tcp_obsegs);
20559 	}
20560 
20561 	return (0);
20562 }
20563 
20564 /* Unlink and return any mblk that looks like it contains a MDT info */
20565 static mblk_t *
20566 tcp_mdt_info_mp(mblk_t *mp)
20567 {
20568 	mblk_t	*prev_mp;
20569 
20570 	for (;;) {
20571 		prev_mp = mp;
20572 		/* no more to process? */
20573 		if ((mp = mp->b_cont) == NULL)
20574 			break;
20575 
20576 		switch (DB_TYPE(mp)) {
20577 		case M_CTL:
20578 			if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE)
20579 				continue;
20580 			ASSERT(prev_mp != NULL);
20581 			prev_mp->b_cont = mp->b_cont;
20582 			mp->b_cont = NULL;
20583 			return (mp);
20584 		default:
20585 			break;
20586 		}
20587 	}
20588 	return (mp);
20589 }
20590 
20591 /* MDT info update routine, called when IP notifies us about MDT */
20592 static void
20593 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first)
20594 {
20595 	boolean_t prev_state;
20596 
20597 	/*
20598 	 * IP is telling us to abort MDT on this connection?  We know
20599 	 * this because the capability is only turned off when IP
20600 	 * encounters some pathological cases, e.g. link-layer change
20601 	 * where the new driver doesn't support MDT, or in situation
20602 	 * where MDT usage on the link-layer has been switched off.
20603 	 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE
20604 	 * if the link-layer doesn't support MDT, and if it does, it
20605 	 * will indicate that the feature is to be turned on.
20606 	 */
20607 	prev_state = tcp->tcp_mdt;
20608 	tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0);
20609 	if (!tcp->tcp_mdt && !first) {
20610 		TCP_STAT(tcp_mdt_conn_halted3);
20611 		ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n",
20612 		    (void *)tcp->tcp_connp));
20613 	}
20614 
20615 	/*
20616 	 * We currently only support MDT on simple TCP/{IPv4,IPv6},
20617 	 * so disable MDT otherwise.  The checks are done here
20618 	 * and in tcp_wput_data().
20619 	 */
20620 	if (tcp->tcp_mdt &&
20621 	    (tcp->tcp_ipversion == IPV4_VERSION &&
20622 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
20623 	    (tcp->tcp_ipversion == IPV6_VERSION &&
20624 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN))
20625 		tcp->tcp_mdt = B_FALSE;
20626 
20627 	if (tcp->tcp_mdt) {
20628 		if (mdt_capab->ill_mdt_version != MDT_VERSION_2) {
20629 			cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT "
20630 			    "version (%d), expected version is %d",
20631 			    mdt_capab->ill_mdt_version, MDT_VERSION_2);
20632 			tcp->tcp_mdt = B_FALSE;
20633 			return;
20634 		}
20635 
20636 		/*
20637 		 * We need the driver to be able to handle at least three
20638 		 * spans per packet in order for tcp MDT to be utilized.
20639 		 * The first is for the header portion, while the rest are
20640 		 * needed to handle a packet that straddles across two
20641 		 * virtually non-contiguous buffers; a typical tcp packet
20642 		 * therefore consists of only two spans.  Note that we take
20643 		 * a zero as "don't care".
20644 		 */
20645 		if (mdt_capab->ill_mdt_span_limit > 0 &&
20646 		    mdt_capab->ill_mdt_span_limit < 3) {
20647 			tcp->tcp_mdt = B_FALSE;
20648 			return;
20649 		}
20650 
20651 		/* a zero means driver wants default value */
20652 		tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld,
20653 		    tcp_mdt_max_pbufs);
20654 		if (tcp->tcp_mdt_max_pld == 0)
20655 			tcp->tcp_mdt_max_pld = tcp_mdt_max_pbufs;
20656 
20657 		/* ensure 32-bit alignment */
20658 		tcp->tcp_mdt_hdr_head = roundup(MAX(tcp_mdt_hdr_head_min,
20659 		    mdt_capab->ill_mdt_hdr_head), 4);
20660 		tcp->tcp_mdt_hdr_tail = roundup(MAX(tcp_mdt_hdr_tail_min,
20661 		    mdt_capab->ill_mdt_hdr_tail), 4);
20662 
20663 		if (!first && !prev_state) {
20664 			TCP_STAT(tcp_mdt_conn_resumed2);
20665 			ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n",
20666 			    (void *)tcp->tcp_connp));
20667 		}
20668 	}
20669 }
20670 
20671 static void
20672 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_mdt)
20673 {
20674 	conn_t *connp = tcp->tcp_connp;
20675 
20676 	ASSERT(ire != NULL);
20677 
20678 	/*
20679 	 * We may be in the fastpath here, and although we essentially do
20680 	 * similar checks as in ip_bind_connected{_v6}/ip_mdinfo_return,
20681 	 * we try to keep things as brief as possible.  After all, these
20682 	 * are only best-effort checks, and we do more thorough ones prior
20683 	 * to calling tcp_multisend().
20684 	 */
20685 	if (ip_multidata_outbound && check_mdt &&
20686 	    !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) &&
20687 	    ill != NULL && ILL_MDT_CAPABLE(ill) &&
20688 	    !CONN_IPSEC_OUT_ENCAPSULATED(connp) &&
20689 	    !(ire->ire_flags & RTF_MULTIRT) &&
20690 	    !IPP_ENABLED(IPP_LOCAL_OUT) &&
20691 	    CONN_IS_MD_FASTPATH(connp)) {
20692 		/* Remember the result */
20693 		connp->conn_mdt_ok = B_TRUE;
20694 
20695 		ASSERT(ill->ill_mdt_capab != NULL);
20696 		if (!ill->ill_mdt_capab->ill_mdt_on) {
20697 			/*
20698 			 * If MDT has been previously turned off in the past,
20699 			 * and we currently can do MDT (due to IPQoS policy
20700 			 * removal, etc.) then enable it for this interface.
20701 			 */
20702 			ill->ill_mdt_capab->ill_mdt_on = 1;
20703 			ip1dbg(("tcp_ire_ill_check: connp %p enables MDT for "
20704 			    "interface %s\n", (void *)connp, ill->ill_name));
20705 		}
20706 		tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE);
20707 	}
20708 
20709 	/*
20710 	 * The goal is to reduce the number of generated tcp segments by
20711 	 * setting the maxpsz multiplier to 0; this will have an affect on
20712 	 * tcp_maxpsz_set().  With this behavior, tcp will pack more data
20713 	 * into each packet, up to SMSS bytes.  Doing this reduces the number
20714 	 * of outbound segments and incoming ACKs, thus allowing for better
20715 	 * network and system performance.  In contrast the legacy behavior
20716 	 * may result in sending less than SMSS size, because the last mblk
20717 	 * for some packets may have more data than needed to make up SMSS,
20718 	 * and the legacy code refused to "split" it.
20719 	 *
20720 	 * We apply the new behavior on following situations:
20721 	 *
20722 	 *   1) Loopback connections,
20723 	 *   2) Connections in which the remote peer is not on local subnet,
20724 	 *   3) Local subnet connections over the bge interface (see below).
20725 	 *
20726 	 * Ideally, we would like this behavior to apply for interfaces other
20727 	 * than bge.  However, doing so would negatively impact drivers which
20728 	 * perform dynamic mapping and unmapping of DMA resources, which are
20729 	 * increased by setting the maxpsz multiplier to 0 (more mblks per
20730 	 * packet will be generated by tcp).  The bge driver does not suffer
20731 	 * from this, as it copies the mblks into pre-mapped buffers, and
20732 	 * therefore does not require more I/O resources than before.
20733 	 *
20734 	 * Otherwise, this behavior is present on all network interfaces when
20735 	 * the destination endpoint is non-local, since reducing the number
20736 	 * of packets in general is good for the network.
20737 	 *
20738 	 * TODO We need to remove this hard-coded conditional for bge once
20739 	 *	a better "self-tuning" mechanism, or a way to comprehend
20740 	 *	the driver transmit strategy is devised.  Until the solution
20741 	 *	is found and well understood, we live with this hack.
20742 	 */
20743 	if (!tcp_static_maxpsz &&
20744 	    (tcp->tcp_loopback || !tcp->tcp_localnet ||
20745 	    (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) {
20746 		/* override the default value */
20747 		tcp->tcp_maxpsz = 0;
20748 
20749 		ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on "
20750 		    "interface %s\n", (void *)connp, tcp->tcp_maxpsz,
20751 		    ill != NULL ? ill->ill_name : ipif_loopback_name));
20752 	}
20753 
20754 	/* set the stream head parameters accordingly */
20755 	(void) tcp_maxpsz_set(tcp, B_TRUE);
20756 }
20757 
20758 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */
20759 static void
20760 tcp_wput_flush(tcp_t *tcp, mblk_t *mp)
20761 {
20762 	uchar_t	fval = *mp->b_rptr;
20763 	mblk_t	*tail;
20764 	queue_t	*q = tcp->tcp_wq;
20765 
20766 	/* TODO: How should flush interact with urgent data? */
20767 	if ((fval & FLUSHW) && tcp->tcp_xmit_head &&
20768 	    !(tcp->tcp_valid_bits & TCP_URG_VALID)) {
20769 		/*
20770 		 * Flush only data that has not yet been put on the wire.  If
20771 		 * we flush data that we have already transmitted, life, as we
20772 		 * know it, may come to an end.
20773 		 */
20774 		tail = tcp->tcp_xmit_tail;
20775 		tail->b_wptr -= tcp->tcp_xmit_tail_unsent;
20776 		tcp->tcp_xmit_tail_unsent = 0;
20777 		tcp->tcp_unsent = 0;
20778 		if (tail->b_wptr != tail->b_rptr)
20779 			tail = tail->b_cont;
20780 		if (tail) {
20781 			mblk_t **excess = &tcp->tcp_xmit_head;
20782 			for (;;) {
20783 				mblk_t *mp1 = *excess;
20784 				if (mp1 == tail)
20785 					break;
20786 				tcp->tcp_xmit_tail = mp1;
20787 				tcp->tcp_xmit_last = mp1;
20788 				excess = &mp1->b_cont;
20789 			}
20790 			*excess = NULL;
20791 			tcp_close_mpp(&tail);
20792 			if (tcp->tcp_snd_zcopy_aware)
20793 				tcp_zcopy_notify(tcp);
20794 		}
20795 		/*
20796 		 * We have no unsent data, so unsent must be less than
20797 		 * tcp_xmit_lowater, so re-enable flow.
20798 		 */
20799 		if (tcp->tcp_flow_stopped) {
20800 			tcp_clrqfull(tcp);
20801 		}
20802 	}
20803 	/*
20804 	 * TODO: you can't just flush these, you have to increase rwnd for one
20805 	 * thing.  For another, how should urgent data interact?
20806 	 */
20807 	if (fval & FLUSHR) {
20808 		*mp->b_rptr = fval & ~FLUSHW;
20809 		/* XXX */
20810 		qreply(q, mp);
20811 		return;
20812 	}
20813 	freemsg(mp);
20814 }
20815 
20816 /*
20817  * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA
20818  * messages.
20819  */
20820 static void
20821 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp)
20822 {
20823 	mblk_t	*mp1;
20824 	STRUCT_HANDLE(strbuf, sb);
20825 	uint16_t port;
20826 	queue_t 	*q = tcp->tcp_wq;
20827 	in6_addr_t	v6addr;
20828 	ipaddr_t	v4addr;
20829 	uint32_t	flowinfo = 0;
20830 	int		addrlen;
20831 
20832 	/* Make sure it is one of ours. */
20833 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
20834 	case TI_GETMYNAME:
20835 	case TI_GETPEERNAME:
20836 		break;
20837 	default:
20838 		CALL_IP_WPUT(tcp->tcp_connp, q, mp);
20839 		return;
20840 	}
20841 	switch (mi_copy_state(q, mp, &mp1)) {
20842 	case -1:
20843 		return;
20844 	case MI_COPY_CASE(MI_COPY_IN, 1):
20845 		break;
20846 	case MI_COPY_CASE(MI_COPY_OUT, 1):
20847 		/* Copy out the strbuf. */
20848 		mi_copyout(q, mp);
20849 		return;
20850 	case MI_COPY_CASE(MI_COPY_OUT, 2):
20851 		/* All done. */
20852 		mi_copy_done(q, mp, 0);
20853 		return;
20854 	default:
20855 		mi_copy_done(q, mp, EPROTO);
20856 		return;
20857 	}
20858 	/* Check alignment of the strbuf */
20859 	if (!OK_32PTR(mp1->b_rptr)) {
20860 		mi_copy_done(q, mp, EINVAL);
20861 		return;
20862 	}
20863 
20864 	STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag,
20865 	    (void *)mp1->b_rptr);
20866 	addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t);
20867 
20868 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
20869 		mi_copy_done(q, mp, EINVAL);
20870 		return;
20871 	}
20872 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
20873 	case TI_GETMYNAME:
20874 		if (tcp->tcp_family == AF_INET) {
20875 			if (tcp->tcp_ipversion == IPV4_VERSION) {
20876 				v4addr = tcp->tcp_ipha->ipha_src;
20877 			} else {
20878 				/* can't return an address in this case */
20879 				v4addr = 0;
20880 			}
20881 		} else {
20882 			/* tcp->tcp_family == AF_INET6 */
20883 			if (tcp->tcp_ipversion == IPV4_VERSION) {
20884 				IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
20885 				    &v6addr);
20886 			} else {
20887 				v6addr = tcp->tcp_ip6h->ip6_src;
20888 			}
20889 		}
20890 		port = tcp->tcp_lport;
20891 		break;
20892 	case TI_GETPEERNAME:
20893 		if (tcp->tcp_family == AF_INET) {
20894 			if (tcp->tcp_ipversion == IPV4_VERSION) {
20895 				IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6,
20896 				    v4addr);
20897 			} else {
20898 				/* can't return an address in this case */
20899 				v4addr = 0;
20900 			}
20901 		} else {
20902 			/* tcp->tcp_family == AF_INET6) */
20903 			v6addr = tcp->tcp_remote_v6;
20904 			if (tcp->tcp_ipversion == IPV6_VERSION) {
20905 				/*
20906 				 * No flowinfo if tcp->tcp_ipversion is v4.
20907 				 *
20908 				 * flowinfo was already initialized to zero
20909 				 * where it was declared above, so only
20910 				 * set it if ipversion is v6.
20911 				 */
20912 				flowinfo = tcp->tcp_ip6h->ip6_vcf &
20913 				    ~IPV6_VERS_AND_FLOW_MASK;
20914 			}
20915 		}
20916 		port = tcp->tcp_fport;
20917 		break;
20918 	default:
20919 		mi_copy_done(q, mp, EPROTO);
20920 		return;
20921 	}
20922 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
20923 	if (!mp1)
20924 		return;
20925 
20926 	if (tcp->tcp_family == AF_INET) {
20927 		sin_t *sin;
20928 
20929 		STRUCT_FSET(sb, len, (int)sizeof (sin_t));
20930 		sin = (sin_t *)mp1->b_rptr;
20931 		mp1->b_wptr = (uchar_t *)&sin[1];
20932 		*sin = sin_null;
20933 		sin->sin_family = AF_INET;
20934 		sin->sin_addr.s_addr = v4addr;
20935 		sin->sin_port = port;
20936 	} else {
20937 		/* tcp->tcp_family == AF_INET6 */
20938 		sin6_t *sin6;
20939 
20940 		STRUCT_FSET(sb, len, (int)sizeof (sin6_t));
20941 		sin6 = (sin6_t *)mp1->b_rptr;
20942 		mp1->b_wptr = (uchar_t *)&sin6[1];
20943 		*sin6 = sin6_null;
20944 		sin6->sin6_family = AF_INET6;
20945 		sin6->sin6_flowinfo = flowinfo;
20946 		sin6->sin6_addr = v6addr;
20947 		sin6->sin6_port = port;
20948 	}
20949 	/* Copy out the address */
20950 	mi_copyout(q, mp);
20951 }
20952 
20953 /*
20954  * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL
20955  * messages.
20956  */
20957 /* ARGSUSED */
20958 static void
20959 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2)
20960 {
20961 	conn_t 	*connp = (conn_t *)arg;
20962 	tcp_t	*tcp = connp->conn_tcp;
20963 	queue_t	*q = tcp->tcp_wq;
20964 	struct iocblk	*iocp;
20965 
20966 	ASSERT(DB_TYPE(mp) == M_IOCTL);
20967 	/*
20968 	 * Try and ASSERT the minimum possible references on the
20969 	 * conn early enough. Since we are executing on write side,
20970 	 * the connection is obviously not detached and that means
20971 	 * there is a ref each for TCP and IP. Since we are behind
20972 	 * the squeue, the minimum references needed are 3. If the
20973 	 * conn is in classifier hash list, there should be an
20974 	 * extra ref for that (we check both the possibilities).
20975 	 */
20976 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
20977 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
20978 
20979 	iocp = (struct iocblk *)mp->b_rptr;
20980 	switch (iocp->ioc_cmd) {
20981 	case TCP_IOC_DEFAULT_Q:
20982 		/* Wants to be the default wq. */
20983 		if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) {
20984 			iocp->ioc_error = EPERM;
20985 			iocp->ioc_count = 0;
20986 			mp->b_datap->db_type = M_IOCACK;
20987 			qreply(q, mp);
20988 			return;
20989 		}
20990 		tcp_def_q_set(tcp, mp);
20991 		return;
20992 	case _SIOCSOCKFALLBACK:
20993 		/*
20994 		 * Either sockmod is about to be popped and the socket
20995 		 * would now be treated as a plain stream, or a module
20996 		 * is about to be pushed so we could no longer use read-
20997 		 * side synchronous streams for fused loopback tcp.
20998 		 * Drain any queued data and disable direct sockfs
20999 		 * interface from now on.
21000 		 */
21001 		if (!tcp->tcp_issocket) {
21002 			DB_TYPE(mp) = M_IOCNAK;
21003 			iocp->ioc_error = EINVAL;
21004 		} else {
21005 #ifdef	_ILP32
21006 			tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
21007 #else
21008 			tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev;
21009 #endif
21010 			/*
21011 			 * Insert this socket into the acceptor hash.
21012 			 * We might need it for T_CONN_RES message
21013 			 */
21014 			tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
21015 
21016 			if (tcp->tcp_fused) {
21017 				/*
21018 				 * This is a fused loopback tcp; disable
21019 				 * read-side synchronous streams interface
21020 				 * and drain any queued data.  It is okay
21021 				 * to do this for non-synchronous streams
21022 				 * fused tcp as well.
21023 				 */
21024 				tcp_fuse_disable_pair(tcp, B_FALSE);
21025 			}
21026 			tcp->tcp_issocket = B_FALSE;
21027 			TCP_STAT(tcp_sock_fallback);
21028 
21029 			DB_TYPE(mp) = M_IOCACK;
21030 			iocp->ioc_error = 0;
21031 		}
21032 		iocp->ioc_count = 0;
21033 		iocp->ioc_rval = 0;
21034 		qreply(q, mp);
21035 		return;
21036 	}
21037 	CALL_IP_WPUT(connp, q, mp);
21038 }
21039 
21040 /*
21041  * This routine is called by tcp_wput() to handle all TPI requests.
21042  */
21043 /* ARGSUSED */
21044 static void
21045 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2)
21046 {
21047 	conn_t 	*connp = (conn_t *)arg;
21048 	tcp_t	*tcp = connp->conn_tcp;
21049 	union T_primitives *tprim = (union T_primitives *)mp->b_rptr;
21050 	uchar_t *rptr;
21051 	t_scalar_t type;
21052 	int len;
21053 	cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred);
21054 
21055 	/*
21056 	 * Try and ASSERT the minimum possible references on the
21057 	 * conn early enough. Since we are executing on write side,
21058 	 * the connection is obviously not detached and that means
21059 	 * there is a ref each for TCP and IP. Since we are behind
21060 	 * the squeue, the minimum references needed are 3. If the
21061 	 * conn is in classifier hash list, there should be an
21062 	 * extra ref for that (we check both the possibilities).
21063 	 */
21064 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
21065 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
21066 
21067 	rptr = mp->b_rptr;
21068 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
21069 	if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
21070 		type = ((union T_primitives *)rptr)->type;
21071 		if (type == T_EXDATA_REQ) {
21072 			uint32_t msize = msgdsize(mp->b_cont);
21073 
21074 			len = msize - 1;
21075 			if (len < 0) {
21076 				freemsg(mp);
21077 				return;
21078 			}
21079 			/*
21080 			 * Try to force urgent data out on the wire.
21081 			 * Even if we have unsent data this will
21082 			 * at least send the urgent flag.
21083 			 * XXX does not handle more flag correctly.
21084 			 */
21085 			len += tcp->tcp_unsent;
21086 			len += tcp->tcp_snxt;
21087 			tcp->tcp_urg = len;
21088 			tcp->tcp_valid_bits |= TCP_URG_VALID;
21089 
21090 			/* Bypass tcp protocol for fused tcp loopback */
21091 			if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
21092 				return;
21093 		} else if (type != T_DATA_REQ) {
21094 			goto non_urgent_data;
21095 		}
21096 		/* TODO: options, flags, ... from user */
21097 		/* Set length to zero for reclamation below */
21098 		tcp_wput_data(tcp, mp->b_cont, B_TRUE);
21099 		freeb(mp);
21100 		return;
21101 	} else {
21102 		if (tcp->tcp_debug) {
21103 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
21104 			    "tcp_wput_proto, dropping one...");
21105 		}
21106 		freemsg(mp);
21107 		return;
21108 	}
21109 
21110 non_urgent_data:
21111 
21112 	switch ((int)tprim->type) {
21113 	case T_SSL_PROXY_BIND_REQ:	/* an SSL proxy endpoint bind request */
21114 		/*
21115 		 * save the kssl_ent_t from the next block, and convert this
21116 		 * back to a normal bind_req.
21117 		 */
21118 		if (mp->b_cont != NULL) {
21119 		    ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t));
21120 
21121 			if (tcp->tcp_kssl_ent != NULL) {
21122 				kssl_release_ent(tcp->tcp_kssl_ent, NULL,
21123 				    KSSL_NO_PROXY);
21124 				tcp->tcp_kssl_ent = NULL;
21125 			}
21126 			bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent,
21127 			    sizeof (kssl_ent_t));
21128 			kssl_hold_ent(tcp->tcp_kssl_ent);
21129 			freemsg(mp->b_cont);
21130 			mp->b_cont = NULL;
21131 		}
21132 		tprim->type = T_BIND_REQ;
21133 
21134 	/* FALLTHROUGH */
21135 	case O_T_BIND_REQ:	/* bind request */
21136 	case T_BIND_REQ:	/* new semantics bind request */
21137 		tcp_bind(tcp, mp);
21138 		break;
21139 	case T_UNBIND_REQ:	/* unbind request */
21140 		tcp_unbind(tcp, mp);
21141 		break;
21142 	case O_T_CONN_RES:	/* old connection response XXX */
21143 	case T_CONN_RES:	/* connection response */
21144 		tcp_accept(tcp, mp);
21145 		break;
21146 	case T_CONN_REQ:	/* connection request */
21147 		tcp_connect(tcp, mp);
21148 		break;
21149 	case T_DISCON_REQ:	/* disconnect request */
21150 		tcp_disconnect(tcp, mp);
21151 		break;
21152 	case T_CAPABILITY_REQ:
21153 		tcp_capability_req(tcp, mp);	/* capability request */
21154 		break;
21155 	case T_INFO_REQ:	/* information request */
21156 		tcp_info_req(tcp, mp);
21157 		break;
21158 	case T_SVR4_OPTMGMT_REQ:	/* manage options req */
21159 		/* Only IP is allowed to return meaningful value */
21160 		(void) svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj);
21161 		break;
21162 	case T_OPTMGMT_REQ:
21163 		/*
21164 		 * Note:  no support for snmpcom_req() through new
21165 		 * T_OPTMGMT_REQ. See comments in ip.c
21166 		 */
21167 		/* Only IP is allowed to return meaningful value */
21168 		(void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj);
21169 		break;
21170 
21171 	case T_UNITDATA_REQ:	/* unitdata request */
21172 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
21173 		break;
21174 	case T_ORDREL_REQ:	/* orderly release req */
21175 		freemsg(mp);
21176 
21177 		if (tcp->tcp_fused)
21178 			tcp_unfuse(tcp);
21179 
21180 		if (tcp_xmit_end(tcp) != 0) {
21181 			/*
21182 			 * We were crossing FINs and got a reset from
21183 			 * the other side. Just ignore it.
21184 			 */
21185 			if (tcp->tcp_debug) {
21186 				(void) strlog(TCP_MOD_ID, 0, 1,
21187 				    SL_ERROR|SL_TRACE,
21188 				    "tcp_wput_proto, T_ORDREL_REQ out of "
21189 				    "state %s",
21190 				    tcp_display(tcp, NULL,
21191 				    DISP_ADDR_AND_PORT));
21192 			}
21193 		}
21194 		break;
21195 	case T_ADDR_REQ:
21196 		tcp_addr_req(tcp, mp);
21197 		break;
21198 	default:
21199 		if (tcp->tcp_debug) {
21200 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
21201 			    "tcp_wput_proto, bogus TPI msg, type %d",
21202 			    tprim->type);
21203 		}
21204 		/*
21205 		 * We used to M_ERROR.  Sending TNOTSUPPORT gives the user
21206 		 * to recover.
21207 		 */
21208 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
21209 		break;
21210 	}
21211 }
21212 
21213 /*
21214  * The TCP write service routine should never be called...
21215  */
21216 /* ARGSUSED */
21217 static void
21218 tcp_wsrv(queue_t *q)
21219 {
21220 	TCP_STAT(tcp_wsrv_called);
21221 }
21222 
21223 /* Non overlapping byte exchanger */
21224 static void
21225 tcp_xchg(uchar_t *a, uchar_t *b, int len)
21226 {
21227 	uchar_t	uch;
21228 
21229 	while (len-- > 0) {
21230 		uch = a[len];
21231 		a[len] = b[len];
21232 		b[len] = uch;
21233 	}
21234 }
21235 
21236 /*
21237  * Send out a control packet on the tcp connection specified.  This routine
21238  * is typically called where we need a simple ACK or RST generated.
21239  */
21240 static void
21241 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl)
21242 {
21243 	uchar_t		*rptr;
21244 	tcph_t		*tcph;
21245 	ipha_t		*ipha = NULL;
21246 	ip6_t		*ip6h = NULL;
21247 	uint32_t	sum;
21248 	int		tcp_hdr_len;
21249 	int		tcp_ip_hdr_len;
21250 	mblk_t		*mp;
21251 
21252 	/*
21253 	 * Save sum for use in source route later.
21254 	 */
21255 	ASSERT(tcp != NULL);
21256 	sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
21257 	tcp_hdr_len = tcp->tcp_hdr_len;
21258 	tcp_ip_hdr_len = tcp->tcp_ip_hdr_len;
21259 
21260 	/* If a text string is passed in with the request, pass it to strlog. */
21261 	if (str != NULL && tcp->tcp_debug) {
21262 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
21263 		    "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x",
21264 		    str, seq, ack, ctl);
21265 	}
21266 	mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra,
21267 	    BPRI_MED);
21268 	if (mp == NULL) {
21269 		return;
21270 	}
21271 	rptr = &mp->b_rptr[tcp_wroff_xtra];
21272 	mp->b_rptr = rptr;
21273 	mp->b_wptr = &rptr[tcp_hdr_len];
21274 	bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len);
21275 
21276 	if (tcp->tcp_ipversion == IPV4_VERSION) {
21277 		ipha = (ipha_t *)rptr;
21278 		ipha->ipha_length = htons(tcp_hdr_len);
21279 	} else {
21280 		ip6h = (ip6_t *)rptr;
21281 		ASSERT(tcp != NULL);
21282 		ip6h->ip6_plen = htons(tcp->tcp_hdr_len -
21283 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
21284 	}
21285 	tcph = (tcph_t *)&rptr[tcp_ip_hdr_len];
21286 	tcph->th_flags[0] = (uint8_t)ctl;
21287 	if (ctl & TH_RST) {
21288 		BUMP_MIB(&tcp_mib, tcpOutRsts);
21289 		BUMP_MIB(&tcp_mib, tcpOutControl);
21290 		/*
21291 		 * Don't send TSopt w/ TH_RST packets per RFC 1323.
21292 		 */
21293 		if (tcp->tcp_snd_ts_ok &&
21294 		    tcp->tcp_state > TCPS_SYN_SENT) {
21295 			mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN];
21296 			*(mp->b_wptr) = TCPOPT_EOL;
21297 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21298 				ipha->ipha_length = htons(tcp_hdr_len -
21299 				    TCPOPT_REAL_TS_LEN);
21300 			} else {
21301 				ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) -
21302 				    TCPOPT_REAL_TS_LEN);
21303 			}
21304 			tcph->th_offset_and_rsrvd[0] -= (3 << 4);
21305 			sum -= TCPOPT_REAL_TS_LEN;
21306 		}
21307 	}
21308 	if (ctl & TH_ACK) {
21309 		if (tcp->tcp_snd_ts_ok) {
21310 			U32_TO_BE32(lbolt,
21311 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
21312 			U32_TO_BE32(tcp->tcp_ts_recent,
21313 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
21314 		}
21315 
21316 		/* Update the latest receive window size in TCP header. */
21317 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
21318 		    tcph->th_win);
21319 		tcp->tcp_rack = ack;
21320 		tcp->tcp_rack_cnt = 0;
21321 		BUMP_MIB(&tcp_mib, tcpOutAck);
21322 	}
21323 	BUMP_LOCAL(tcp->tcp_obsegs);
21324 	U32_TO_BE32(seq, tcph->th_seq);
21325 	U32_TO_BE32(ack, tcph->th_ack);
21326 	/*
21327 	 * Include the adjustment for a source route if any.
21328 	 */
21329 	sum = (sum >> 16) + (sum & 0xFFFF);
21330 	U16_TO_BE16(sum, tcph->th_sum);
21331 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
21332 	tcp_send_data(tcp, tcp->tcp_wq, mp);
21333 }
21334 
21335 /*
21336  * If this routine returns B_TRUE, TCP can generate a RST in response
21337  * to a segment.  If it returns B_FALSE, TCP should not respond.
21338  */
21339 static boolean_t
21340 tcp_send_rst_chk(void)
21341 {
21342 	clock_t	now;
21343 
21344 	/*
21345 	 * TCP needs to protect itself from generating too many RSTs.
21346 	 * This can be a DoS attack by sending us random segments
21347 	 * soliciting RSTs.
21348 	 *
21349 	 * What we do here is to have a limit of tcp_rst_sent_rate RSTs
21350 	 * in each 1 second interval.  In this way, TCP still generate
21351 	 * RSTs in normal cases but when under attack, the impact is
21352 	 * limited.
21353 	 */
21354 	if (tcp_rst_sent_rate_enabled != 0) {
21355 		now = lbolt;
21356 		/* lbolt can wrap around. */
21357 		if ((tcp_last_rst_intrvl > now) ||
21358 		    (TICK_TO_MSEC(now - tcp_last_rst_intrvl) > 1*SECONDS)) {
21359 			tcp_last_rst_intrvl = now;
21360 			tcp_rst_cnt = 1;
21361 		} else if (++tcp_rst_cnt > tcp_rst_sent_rate) {
21362 			return (B_FALSE);
21363 		}
21364 	}
21365 	return (B_TRUE);
21366 }
21367 
21368 /*
21369  * Send down the advice IP ioctl to tell IP to mark an IRE temporary.
21370  */
21371 static void
21372 tcp_ip_ire_mark_advice(tcp_t *tcp)
21373 {
21374 	mblk_t *mp;
21375 	ipic_t *ipic;
21376 
21377 	if (tcp->tcp_ipversion == IPV4_VERSION) {
21378 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
21379 		    &ipic);
21380 	} else {
21381 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
21382 		    &ipic);
21383 	}
21384 	if (mp == NULL)
21385 		return;
21386 	ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
21387 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
21388 }
21389 
21390 /*
21391  * Return an IP advice ioctl mblk and set ipic to be the pointer
21392  * to the advice structure.
21393  */
21394 static mblk_t *
21395 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic)
21396 {
21397 	struct iocblk *ioc;
21398 	mblk_t *mp, *mp1;
21399 
21400 	mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI);
21401 	if (mp == NULL)
21402 		return (NULL);
21403 	bzero(mp->b_rptr, sizeof (ipic_t) + addr_len);
21404 	*ipic = (ipic_t *)mp->b_rptr;
21405 	(*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY;
21406 	(*ipic)->ipic_addr_offset = sizeof (ipic_t);
21407 
21408 	bcopy(addr, *ipic + 1, addr_len);
21409 
21410 	(*ipic)->ipic_addr_length = addr_len;
21411 	mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len];
21412 
21413 	mp1 = mkiocb(IP_IOCTL);
21414 	if (mp1 == NULL) {
21415 		freemsg(mp);
21416 		return (NULL);
21417 	}
21418 	mp1->b_cont = mp;
21419 	ioc = (struct iocblk *)mp1->b_rptr;
21420 	ioc->ioc_count = sizeof (ipic_t) + addr_len;
21421 
21422 	return (mp1);
21423 }
21424 
21425 /*
21426  * Generate a reset based on an inbound packet for which there is no active
21427  * tcp state that we can find.
21428  *
21429  * IPSEC NOTE : Try to send the reply with the same protection as it came
21430  * in.  We still have the ipsec_mp that the packet was attached to. Thus
21431  * the packet will go out at the same level of protection as it came in by
21432  * converting the IPSEC_IN to IPSEC_OUT.
21433  */
21434 static void
21435 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq,
21436     uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid)
21437 {
21438 	ipha_t		*ipha = NULL;
21439 	ip6_t		*ip6h = NULL;
21440 	ushort_t	len;
21441 	tcph_t		*tcph;
21442 	int		i;
21443 	mblk_t		*ipsec_mp;
21444 	boolean_t	mctl_present;
21445 	ipic_t		*ipic;
21446 	ipaddr_t	v4addr;
21447 	in6_addr_t	v6addr;
21448 	int		addr_len;
21449 	void		*addr;
21450 	queue_t		*q = tcp_g_q;
21451 	tcp_t		*tcp = Q_TO_TCP(q);
21452 	cred_t		*cr;
21453 	mblk_t		*nmp;
21454 
21455 	if (!tcp_send_rst_chk()) {
21456 		tcp_rst_unsent++;
21457 		freemsg(mp);
21458 		return;
21459 	}
21460 
21461 	if (mp->b_datap->db_type == M_CTL) {
21462 		ipsec_mp = mp;
21463 		mp = mp->b_cont;
21464 		mctl_present = B_TRUE;
21465 	} else {
21466 		ipsec_mp = mp;
21467 		mctl_present = B_FALSE;
21468 	}
21469 
21470 	if (str && q && tcp_dbg) {
21471 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
21472 		    "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, "
21473 		    "flags 0x%x",
21474 		    str, seq, ack, ctl);
21475 	}
21476 	if (mp->b_datap->db_ref != 1) {
21477 		mblk_t *mp1 = copyb(mp);
21478 		freemsg(mp);
21479 		mp = mp1;
21480 		if (!mp) {
21481 			if (mctl_present)
21482 				freeb(ipsec_mp);
21483 			return;
21484 		} else {
21485 			if (mctl_present) {
21486 				ipsec_mp->b_cont = mp;
21487 			} else {
21488 				ipsec_mp = mp;
21489 			}
21490 		}
21491 	} else if (mp->b_cont) {
21492 		freemsg(mp->b_cont);
21493 		mp->b_cont = NULL;
21494 	}
21495 	/*
21496 	 * We skip reversing source route here.
21497 	 * (for now we replace all IP options with EOL)
21498 	 */
21499 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
21500 		ipha = (ipha_t *)mp->b_rptr;
21501 		for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++)
21502 			mp->b_rptr[i] = IPOPT_EOL;
21503 		/*
21504 		 * Make sure that src address isn't flagrantly invalid.
21505 		 * Not all broadcast address checking for the src address
21506 		 * is possible, since we don't know the netmask of the src
21507 		 * addr.  No check for destination address is done, since
21508 		 * IP will not pass up a packet with a broadcast dest
21509 		 * address to TCP.  Similar checks are done below for IPv6.
21510 		 */
21511 		if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST ||
21512 		    CLASSD(ipha->ipha_src)) {
21513 			freemsg(ipsec_mp);
21514 			BUMP_MIB(&ip_mib, ipInDiscards);
21515 			return;
21516 		}
21517 	} else {
21518 		ip6h = (ip6_t *)mp->b_rptr;
21519 
21520 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) ||
21521 		    IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) {
21522 			freemsg(ipsec_mp);
21523 			BUMP_MIB(&ip6_mib, ipv6InDiscards);
21524 			return;
21525 		}
21526 
21527 		/* Remove any extension headers assuming partial overlay */
21528 		if (ip_hdr_len > IPV6_HDR_LEN) {
21529 			uint8_t *to;
21530 
21531 			to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN;
21532 			ovbcopy(ip6h, to, IPV6_HDR_LEN);
21533 			mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN;
21534 			ip_hdr_len = IPV6_HDR_LEN;
21535 			ip6h = (ip6_t *)mp->b_rptr;
21536 			ip6h->ip6_nxt = IPPROTO_TCP;
21537 		}
21538 	}
21539 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
21540 	if (tcph->th_flags[0] & TH_RST) {
21541 		freemsg(ipsec_mp);
21542 		return;
21543 	}
21544 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
21545 	len = ip_hdr_len + sizeof (tcph_t);
21546 	mp->b_wptr = &mp->b_rptr[len];
21547 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
21548 		ipha->ipha_length = htons(len);
21549 		/* Swap addresses */
21550 		v4addr = ipha->ipha_src;
21551 		ipha->ipha_src = ipha->ipha_dst;
21552 		ipha->ipha_dst = v4addr;
21553 		ipha->ipha_ident = 0;
21554 		ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl;
21555 		addr_len = IP_ADDR_LEN;
21556 		addr = &v4addr;
21557 	} else {
21558 		/* No ip6i_t in this case */
21559 		ip6h->ip6_plen = htons(len - IPV6_HDR_LEN);
21560 		/* Swap addresses */
21561 		v6addr = ip6h->ip6_src;
21562 		ip6h->ip6_src = ip6h->ip6_dst;
21563 		ip6h->ip6_dst = v6addr;
21564 		ip6h->ip6_hops = (uchar_t)tcp_ipv6_hoplimit;
21565 		addr_len = IPV6_ADDR_LEN;
21566 		addr = &v6addr;
21567 	}
21568 	tcp_xchg(tcph->th_fport, tcph->th_lport, 2);
21569 	U32_TO_BE32(ack, tcph->th_ack);
21570 	U32_TO_BE32(seq, tcph->th_seq);
21571 	U16_TO_BE16(0, tcph->th_win);
21572 	U16_TO_BE16(sizeof (tcph_t), tcph->th_sum);
21573 	tcph->th_flags[0] = (uint8_t)ctl;
21574 	if (ctl & TH_RST) {
21575 		BUMP_MIB(&tcp_mib, tcpOutRsts);
21576 		BUMP_MIB(&tcp_mib, tcpOutControl);
21577 	}
21578 
21579 	/* IP trusts us to set up labels when required. */
21580 	if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL &&
21581 	    crgetlabel(cr) != NULL) {
21582 		int err, adjust;
21583 
21584 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION)
21585 			err = tsol_check_label(cr, &mp, &adjust,
21586 			    tcp->tcp_connp->conn_mac_exempt);
21587 		else
21588 			err = tsol_check_label_v6(cr, &mp, &adjust,
21589 			    tcp->tcp_connp->conn_mac_exempt);
21590 		if (mctl_present)
21591 			ipsec_mp->b_cont = mp;
21592 		else
21593 			ipsec_mp = mp;
21594 		if (err != 0) {
21595 			freemsg(ipsec_mp);
21596 			return;
21597 		}
21598 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
21599 			ipha = (ipha_t *)mp->b_rptr;
21600 			adjust += ntohs(ipha->ipha_length);
21601 			ipha->ipha_length = htons(adjust);
21602 		} else {
21603 			ip6h = (ip6_t *)mp->b_rptr;
21604 		}
21605 	}
21606 
21607 	if (mctl_present) {
21608 		ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
21609 
21610 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
21611 		if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) {
21612 			return;
21613 		}
21614 	}
21615 	if (zoneid == ALL_ZONES)
21616 		zoneid = GLOBAL_ZONEID;
21617 
21618 	/* Add the zoneid so ip_output routes it properly */
21619 	if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid)) == NULL) {
21620 		freemsg(ipsec_mp);
21621 		return;
21622 	}
21623 	ipsec_mp = nmp;
21624 
21625 	/*
21626 	 * NOTE:  one might consider tracing a TCP packet here, but
21627 	 * this function has no active TCP state and no tcp structure
21628 	 * that has a trace buffer.  If we traced here, we would have
21629 	 * to keep a local trace buffer in tcp_record_trace().
21630 	 *
21631 	 * TSol note: The mblk that contains the incoming packet was
21632 	 * reused by tcp_xmit_listener_reset, so it already contains
21633 	 * the right credentials and we don't need to call mblk_setcred.
21634 	 * Also the conn's cred is not right since it is associated
21635 	 * with tcp_g_q.
21636 	 */
21637 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp);
21638 
21639 	/*
21640 	 * Tell IP to mark the IRE used for this destination temporary.
21641 	 * This way, we can limit our exposure to DoS attack because IP
21642 	 * creates an IRE for each destination.  If there are too many,
21643 	 * the time to do any routing lookup will be extremely long.  And
21644 	 * the lookup can be in interrupt context.
21645 	 *
21646 	 * Note that in normal circumstances, this marking should not
21647 	 * affect anything.  It would be nice if only 1 message is
21648 	 * needed to inform IP that the IRE created for this RST should
21649 	 * not be added to the cache table.  But there is currently
21650 	 * not such communication mechanism between TCP and IP.  So
21651 	 * the best we can do now is to send the advice ioctl to IP
21652 	 * to mark the IRE temporary.
21653 	 */
21654 	if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) {
21655 		ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
21656 		CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
21657 	}
21658 }
21659 
21660 /*
21661  * Initiate closedown sequence on an active connection.  (May be called as
21662  * writer.)  Return value zero for OK return, non-zero for error return.
21663  */
21664 static int
21665 tcp_xmit_end(tcp_t *tcp)
21666 {
21667 	ipic_t	*ipic;
21668 	mblk_t	*mp;
21669 
21670 	if (tcp->tcp_state < TCPS_SYN_RCVD ||
21671 	    tcp->tcp_state > TCPS_CLOSE_WAIT) {
21672 		/*
21673 		 * Invalid state, only states TCPS_SYN_RCVD,
21674 		 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid
21675 		 */
21676 		return (-1);
21677 	}
21678 
21679 	tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent;
21680 	tcp->tcp_valid_bits |= TCP_FSS_VALID;
21681 	/*
21682 	 * If there is nothing more unsent, send the FIN now.
21683 	 * Otherwise, it will go out with the last segment.
21684 	 */
21685 	if (tcp->tcp_unsent == 0) {
21686 		mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
21687 		    tcp->tcp_fss, B_FALSE, NULL, B_FALSE);
21688 
21689 		if (mp) {
21690 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
21691 			tcp_send_data(tcp, tcp->tcp_wq, mp);
21692 		} else {
21693 			/*
21694 			 * Couldn't allocate msg.  Pretend we got it out.
21695 			 * Wait for rexmit timeout.
21696 			 */
21697 			tcp->tcp_snxt = tcp->tcp_fss + 1;
21698 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
21699 		}
21700 
21701 		/*
21702 		 * If needed, update tcp_rexmit_snxt as tcp_snxt is
21703 		 * changed.
21704 		 */
21705 		if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) {
21706 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
21707 		}
21708 	} else {
21709 		/*
21710 		 * If tcp->tcp_cork is set, then the data will not get sent,
21711 		 * so we have to check that and unset it first.
21712 		 */
21713 		if (tcp->tcp_cork)
21714 			tcp->tcp_cork = B_FALSE;
21715 		tcp_wput_data(tcp, NULL, B_FALSE);
21716 	}
21717 
21718 	/*
21719 	 * If TCP does not get enough samples of RTT or tcp_rtt_updates
21720 	 * is 0, don't update the cache.
21721 	 */
21722 	if (tcp_rtt_updates == 0 || tcp->tcp_rtt_update < tcp_rtt_updates)
21723 		return (0);
21724 
21725 	/*
21726 	 * NOTE: should not update if source routes i.e. if tcp_remote if
21727 	 * different from the destination.
21728 	 */
21729 	if (tcp->tcp_ipversion == IPV4_VERSION) {
21730 		if (tcp->tcp_remote !=  tcp->tcp_ipha->ipha_dst) {
21731 			return (0);
21732 		}
21733 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
21734 		    &ipic);
21735 	} else {
21736 		if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
21737 		    &tcp->tcp_ip6h->ip6_dst))) {
21738 			return (0);
21739 		}
21740 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
21741 		    &ipic);
21742 	}
21743 
21744 	/* Record route attributes in the IRE for use by future connections. */
21745 	if (mp == NULL)
21746 		return (0);
21747 
21748 	/*
21749 	 * We do not have a good algorithm to update ssthresh at this time.
21750 	 * So don't do any update.
21751 	 */
21752 	ipic->ipic_rtt = tcp->tcp_rtt_sa;
21753 	ipic->ipic_rtt_sd = tcp->tcp_rtt_sd;
21754 
21755 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
21756 	return (0);
21757 }
21758 
21759 /*
21760  * Generate a "no listener here" RST in response to an "unknown" segment.
21761  * Note that we are reusing the incoming mp to construct the outgoing
21762  * RST.
21763  */
21764 void
21765 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid)
21766 {
21767 	uchar_t		*rptr;
21768 	uint32_t	seg_len;
21769 	tcph_t		*tcph;
21770 	uint32_t	seg_seq;
21771 	uint32_t	seg_ack;
21772 	uint_t		flags;
21773 	mblk_t		*ipsec_mp;
21774 	ipha_t 		*ipha;
21775 	ip6_t 		*ip6h;
21776 	boolean_t	mctl_present = B_FALSE;
21777 	boolean_t	check = B_TRUE;
21778 	boolean_t	policy_present;
21779 
21780 	TCP_STAT(tcp_no_listener);
21781 
21782 	ipsec_mp = mp;
21783 
21784 	if (mp->b_datap->db_type == M_CTL) {
21785 		ipsec_in_t *ii;
21786 
21787 		mctl_present = B_TRUE;
21788 		mp = mp->b_cont;
21789 
21790 		ii = (ipsec_in_t *)ipsec_mp->b_rptr;
21791 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
21792 		if (ii->ipsec_in_dont_check) {
21793 			check = B_FALSE;
21794 			if (!ii->ipsec_in_secure) {
21795 				freeb(ipsec_mp);
21796 				mctl_present = B_FALSE;
21797 				ipsec_mp = mp;
21798 			}
21799 		}
21800 	}
21801 
21802 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
21803 		policy_present = ipsec_inbound_v4_policy_present;
21804 		ipha = (ipha_t *)mp->b_rptr;
21805 		ip6h = NULL;
21806 	} else {
21807 		policy_present = ipsec_inbound_v6_policy_present;
21808 		ipha = NULL;
21809 		ip6h = (ip6_t *)mp->b_rptr;
21810 	}
21811 
21812 	if (check && policy_present) {
21813 		/*
21814 		 * The conn_t parameter is NULL because we already know
21815 		 * nobody's home.
21816 		 */
21817 		ipsec_mp = ipsec_check_global_policy(
21818 			ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present);
21819 		if (ipsec_mp == NULL)
21820 			return;
21821 	}
21822 	if (is_system_labeled() && !tsol_can_reply_error(mp)) {
21823 		DTRACE_PROBE2(
21824 		    tx__ip__log__error__nolistener__tcp,
21825 		    char *, "Could not reply with RST to mp(1)",
21826 		    mblk_t *, mp);
21827 		ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n"));
21828 		freemsg(ipsec_mp);
21829 		return;
21830 	}
21831 
21832 	rptr = mp->b_rptr;
21833 
21834 	tcph = (tcph_t *)&rptr[ip_hdr_len];
21835 	seg_seq = BE32_TO_U32(tcph->th_seq);
21836 	seg_ack = BE32_TO_U32(tcph->th_ack);
21837 	flags = tcph->th_flags[0];
21838 
21839 	seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len);
21840 	if (flags & TH_RST) {
21841 		freemsg(ipsec_mp);
21842 	} else if (flags & TH_ACK) {
21843 		tcp_xmit_early_reset("no tcp, reset",
21844 		    ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid);
21845 	} else {
21846 		if (flags & TH_SYN) {
21847 			seg_len++;
21848 		} else {
21849 			/*
21850 			 * Here we violate the RFC.  Note that a normal
21851 			 * TCP will never send a segment without the ACK
21852 			 * flag, except for RST or SYN segment.  This
21853 			 * segment is neither.  Just drop it on the
21854 			 * floor.
21855 			 */
21856 			freemsg(ipsec_mp);
21857 			tcp_rst_unsent++;
21858 			return;
21859 		}
21860 
21861 		tcp_xmit_early_reset("no tcp, reset/ack",
21862 		    ipsec_mp, 0, seg_seq + seg_len,
21863 		    TH_RST | TH_ACK, ip_hdr_len, zoneid);
21864 	}
21865 }
21866 
21867 /*
21868  * tcp_xmit_mp is called to return a pointer to an mblk chain complete with
21869  * ip and tcp header ready to pass down to IP.  If the mp passed in is
21870  * non-NULL, then up to max_to_send bytes of data will be dup'ed off that
21871  * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary
21872  * otherwise it will dup partial mblks.)
21873  * Otherwise, an appropriate ACK packet will be generated.  This
21874  * routine is not usually called to send new data for the first time.  It
21875  * is mostly called out of the timer for retransmits, and to generate ACKs.
21876  *
21877  * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will
21878  * be adjusted by *offset.  And after dupb(), the offset and the ending mblk
21879  * of the original mblk chain will be returned in *offset and *end_mp.
21880  */
21881 static mblk_t *
21882 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset,
21883     mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len,
21884     boolean_t rexmit)
21885 {
21886 	int	data_length;
21887 	int32_t	off = 0;
21888 	uint_t	flags;
21889 	mblk_t	*mp1;
21890 	mblk_t	*mp2;
21891 	uchar_t	*rptr;
21892 	tcph_t	*tcph;
21893 	int32_t	num_sack_blk = 0;
21894 	int32_t	sack_opt_len = 0;
21895 
21896 	/* Allocate for our maximum TCP header + link-level */
21897 	mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra,
21898 	    BPRI_MED);
21899 	if (!mp1)
21900 		return (NULL);
21901 	data_length = 0;
21902 
21903 	/*
21904 	 * Note that tcp_mss has been adjusted to take into account the
21905 	 * timestamp option if applicable.  Because SACK options do not
21906 	 * appear in every TCP segments and they are of variable lengths,
21907 	 * they cannot be included in tcp_mss.  Thus we need to calculate
21908 	 * the actual segment length when we need to send a segment which
21909 	 * includes SACK options.
21910 	 */
21911 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
21912 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
21913 		    tcp->tcp_num_sack_blk);
21914 		sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
21915 		    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
21916 		if (max_to_send + sack_opt_len > tcp->tcp_mss)
21917 			max_to_send -= sack_opt_len;
21918 	}
21919 
21920 	if (offset != NULL) {
21921 		off = *offset;
21922 		/* We use offset as an indicator that end_mp is not NULL. */
21923 		*end_mp = NULL;
21924 	}
21925 	for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) {
21926 		/* This could be faster with cooperation from downstream */
21927 		if (mp2 != mp1 && !sendall &&
21928 		    data_length + (int)(mp->b_wptr - mp->b_rptr) >
21929 		    max_to_send)
21930 			/*
21931 			 * Don't send the next mblk since the whole mblk
21932 			 * does not fit.
21933 			 */
21934 			break;
21935 		mp2->b_cont = dupb(mp);
21936 		mp2 = mp2->b_cont;
21937 		if (!mp2) {
21938 			freemsg(mp1);
21939 			return (NULL);
21940 		}
21941 		mp2->b_rptr += off;
21942 		ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
21943 		    (uintptr_t)INT_MAX);
21944 
21945 		data_length += (int)(mp2->b_wptr - mp2->b_rptr);
21946 		if (data_length > max_to_send) {
21947 			mp2->b_wptr -= data_length - max_to_send;
21948 			data_length = max_to_send;
21949 			off = mp2->b_wptr - mp->b_rptr;
21950 			break;
21951 		} else {
21952 			off = 0;
21953 		}
21954 	}
21955 	if (offset != NULL) {
21956 		*offset = off;
21957 		*end_mp = mp;
21958 	}
21959 	if (seg_len != NULL) {
21960 		*seg_len = data_length;
21961 	}
21962 
21963 	/* Update the latest receive window size in TCP header. */
21964 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
21965 	    tcp->tcp_tcph->th_win);
21966 
21967 	rptr = mp1->b_rptr + tcp_wroff_xtra;
21968 	mp1->b_rptr = rptr;
21969 	mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len;
21970 	bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
21971 	tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
21972 	U32_TO_ABE32(seq, tcph->th_seq);
21973 
21974 	/*
21975 	 * Use tcp_unsent to determine if the PUSH bit should be used assumes
21976 	 * that this function was called from tcp_wput_data. Thus, when called
21977 	 * to retransmit data the setting of the PUSH bit may appear some
21978 	 * what random in that it might get set when it should not. This
21979 	 * should not pose any performance issues.
21980 	 */
21981 	if (data_length != 0 && (tcp->tcp_unsent == 0 ||
21982 	    tcp->tcp_unsent == data_length)) {
21983 		flags = TH_ACK | TH_PUSH;
21984 	} else {
21985 		flags = TH_ACK;
21986 	}
21987 
21988 	if (tcp->tcp_ecn_ok) {
21989 		if (tcp->tcp_ecn_echo_on)
21990 			flags |= TH_ECE;
21991 
21992 		/*
21993 		 * Only set ECT bit and ECN_CWR if a segment contains new data.
21994 		 * There is no TCP flow control for non-data segments, and
21995 		 * only data segment is transmitted reliably.
21996 		 */
21997 		if (data_length > 0 && !rexmit) {
21998 			SET_ECT(tcp, rptr);
21999 			if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
22000 				flags |= TH_CWR;
22001 				tcp->tcp_ecn_cwr_sent = B_TRUE;
22002 			}
22003 		}
22004 	}
22005 
22006 	if (tcp->tcp_valid_bits) {
22007 		uint32_t u1;
22008 
22009 		if ((tcp->tcp_valid_bits & TCP_ISS_VALID) &&
22010 		    seq == tcp->tcp_iss) {
22011 			uchar_t	*wptr;
22012 
22013 			/*
22014 			 * If TCP_ISS_VALID and the seq number is tcp_iss,
22015 			 * TCP can only be in SYN-SENT, SYN-RCVD or
22016 			 * FIN-WAIT-1 state.  It can be FIN-WAIT-1 if
22017 			 * our SYN is not ack'ed but the app closes this
22018 			 * TCP connection.
22019 			 */
22020 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT ||
22021 			    tcp->tcp_state == TCPS_SYN_RCVD ||
22022 			    tcp->tcp_state == TCPS_FIN_WAIT_1);
22023 
22024 			/*
22025 			 * Tack on the MSS option.  It is always needed
22026 			 * for both active and passive open.
22027 			 *
22028 			 * MSS option value should be interface MTU - MIN
22029 			 * TCP/IP header according to RFC 793 as it means
22030 			 * the maximum segment size TCP can receive.  But
22031 			 * to get around some broken middle boxes/end hosts
22032 			 * out there, we allow the option value to be the
22033 			 * same as the MSS option size on the peer side.
22034 			 * In this way, the other side will not send
22035 			 * anything larger than they can receive.
22036 			 *
22037 			 * Note that for SYN_SENT state, the ndd param
22038 			 * tcp_use_smss_as_mss_opt has no effect as we
22039 			 * don't know the peer's MSS option value. So
22040 			 * the only case we need to take care of is in
22041 			 * SYN_RCVD state, which is done later.
22042 			 */
22043 			wptr = mp1->b_wptr;
22044 			wptr[0] = TCPOPT_MAXSEG;
22045 			wptr[1] = TCPOPT_MAXSEG_LEN;
22046 			wptr += 2;
22047 			u1 = tcp->tcp_if_mtu -
22048 			    (tcp->tcp_ipversion == IPV4_VERSION ?
22049 			    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) -
22050 			    TCP_MIN_HEADER_LENGTH;
22051 			U16_TO_BE16(u1, wptr);
22052 			mp1->b_wptr = wptr + 2;
22053 			/* Update the offset to cover the additional word */
22054 			tcph->th_offset_and_rsrvd[0] += (1 << 4);
22055 
22056 			/*
22057 			 * Note that the following way of filling in
22058 			 * TCP options are not optimal.  Some NOPs can
22059 			 * be saved.  But there is no need at this time
22060 			 * to optimize it.  When it is needed, we will
22061 			 * do it.
22062 			 */
22063 			switch (tcp->tcp_state) {
22064 			case TCPS_SYN_SENT:
22065 				flags = TH_SYN;
22066 
22067 				if (tcp->tcp_snd_ts_ok) {
22068 					uint32_t llbolt = (uint32_t)lbolt;
22069 
22070 					wptr = mp1->b_wptr;
22071 					wptr[0] = TCPOPT_NOP;
22072 					wptr[1] = TCPOPT_NOP;
22073 					wptr[2] = TCPOPT_TSTAMP;
22074 					wptr[3] = TCPOPT_TSTAMP_LEN;
22075 					wptr += 4;
22076 					U32_TO_BE32(llbolt, wptr);
22077 					wptr += 4;
22078 					ASSERT(tcp->tcp_ts_recent == 0);
22079 					U32_TO_BE32(0L, wptr);
22080 					mp1->b_wptr += TCPOPT_REAL_TS_LEN;
22081 					tcph->th_offset_and_rsrvd[0] +=
22082 					    (3 << 4);
22083 				}
22084 
22085 				/*
22086 				 * Set up all the bits to tell other side
22087 				 * we are ECN capable.
22088 				 */
22089 				if (tcp->tcp_ecn_ok) {
22090 					flags |= (TH_ECE | TH_CWR);
22091 				}
22092 				break;
22093 			case TCPS_SYN_RCVD:
22094 				flags |= TH_SYN;
22095 
22096 				/*
22097 				 * Reset the MSS option value to be SMSS
22098 				 * We should probably add back the bytes
22099 				 * for timestamp option and IPsec.  We
22100 				 * don't do that as this is a workaround
22101 				 * for broken middle boxes/end hosts, it
22102 				 * is better for us to be more cautious.
22103 				 * They may not take these things into
22104 				 * account in their SMSS calculation.  Thus
22105 				 * the peer's calculated SMSS may be smaller
22106 				 * than what it can be.  This should be OK.
22107 				 */
22108 				if (tcp_use_smss_as_mss_opt) {
22109 					u1 = tcp->tcp_mss;
22110 					U16_TO_BE16(u1, wptr);
22111 				}
22112 
22113 				/*
22114 				 * If the other side is ECN capable, reply
22115 				 * that we are also ECN capable.
22116 				 */
22117 				if (tcp->tcp_ecn_ok)
22118 					flags |= TH_ECE;
22119 				break;
22120 			default:
22121 				/*
22122 				 * The above ASSERT() makes sure that this
22123 				 * must be FIN-WAIT-1 state.  Our SYN has
22124 				 * not been ack'ed so retransmit it.
22125 				 */
22126 				flags |= TH_SYN;
22127 				break;
22128 			}
22129 
22130 			if (tcp->tcp_snd_ws_ok) {
22131 				wptr = mp1->b_wptr;
22132 				wptr[0] =  TCPOPT_NOP;
22133 				wptr[1] =  TCPOPT_WSCALE;
22134 				wptr[2] =  TCPOPT_WS_LEN;
22135 				wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
22136 				mp1->b_wptr += TCPOPT_REAL_WS_LEN;
22137 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
22138 			}
22139 
22140 			if (tcp->tcp_snd_sack_ok) {
22141 				wptr = mp1->b_wptr;
22142 				wptr[0] = TCPOPT_NOP;
22143 				wptr[1] = TCPOPT_NOP;
22144 				wptr[2] = TCPOPT_SACK_PERMITTED;
22145 				wptr[3] = TCPOPT_SACK_OK_LEN;
22146 				mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
22147 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
22148 			}
22149 
22150 			/* allocb() of adequate mblk assures space */
22151 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
22152 			    (uintptr_t)INT_MAX);
22153 			u1 = (int)(mp1->b_wptr - mp1->b_rptr);
22154 			/*
22155 			 * Get IP set to checksum on our behalf
22156 			 * Include the adjustment for a source route if any.
22157 			 */
22158 			u1 += tcp->tcp_sum;
22159 			u1 = (u1 >> 16) + (u1 & 0xFFFF);
22160 			U16_TO_BE16(u1, tcph->th_sum);
22161 			BUMP_MIB(&tcp_mib, tcpOutControl);
22162 		}
22163 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
22164 		    (seq + data_length) == tcp->tcp_fss) {
22165 			if (!tcp->tcp_fin_acked) {
22166 				flags |= TH_FIN;
22167 				BUMP_MIB(&tcp_mib, tcpOutControl);
22168 			}
22169 			if (!tcp->tcp_fin_sent) {
22170 				tcp->tcp_fin_sent = B_TRUE;
22171 				switch (tcp->tcp_state) {
22172 				case TCPS_SYN_RCVD:
22173 				case TCPS_ESTABLISHED:
22174 					tcp->tcp_state = TCPS_FIN_WAIT_1;
22175 					break;
22176 				case TCPS_CLOSE_WAIT:
22177 					tcp->tcp_state = TCPS_LAST_ACK;
22178 					break;
22179 				}
22180 				if (tcp->tcp_suna == tcp->tcp_snxt)
22181 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
22182 				tcp->tcp_snxt = tcp->tcp_fss + 1;
22183 			}
22184 		}
22185 		/*
22186 		 * Note the trick here.  u1 is unsigned.  When tcp_urg
22187 		 * is smaller than seq, u1 will become a very huge value.
22188 		 * So the comparison will fail.  Also note that tcp_urp
22189 		 * should be positive, see RFC 793 page 17.
22190 		 */
22191 		u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION;
22192 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 &&
22193 		    u1 < (uint32_t)(64 * 1024)) {
22194 			flags |= TH_URG;
22195 			BUMP_MIB(&tcp_mib, tcpOutUrg);
22196 			U32_TO_ABE16(u1, tcph->th_urp);
22197 		}
22198 	}
22199 	tcph->th_flags[0] = (uchar_t)flags;
22200 	tcp->tcp_rack = tcp->tcp_rnxt;
22201 	tcp->tcp_rack_cnt = 0;
22202 
22203 	if (tcp->tcp_snd_ts_ok) {
22204 		if (tcp->tcp_state != TCPS_SYN_SENT) {
22205 			uint32_t llbolt = (uint32_t)lbolt;
22206 
22207 			U32_TO_BE32(llbolt,
22208 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22209 			U32_TO_BE32(tcp->tcp_ts_recent,
22210 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22211 		}
22212 	}
22213 
22214 	if (num_sack_blk > 0) {
22215 		uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
22216 		sack_blk_t *tmp;
22217 		int32_t	i;
22218 
22219 		wptr[0] = TCPOPT_NOP;
22220 		wptr[1] = TCPOPT_NOP;
22221 		wptr[2] = TCPOPT_SACK;
22222 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
22223 		    sizeof (sack_blk_t);
22224 		wptr += TCPOPT_REAL_SACK_LEN;
22225 
22226 		tmp = tcp->tcp_sack_list;
22227 		for (i = 0; i < num_sack_blk; i++) {
22228 			U32_TO_BE32(tmp[i].begin, wptr);
22229 			wptr += sizeof (tcp_seq);
22230 			U32_TO_BE32(tmp[i].end, wptr);
22231 			wptr += sizeof (tcp_seq);
22232 		}
22233 		tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4);
22234 	}
22235 	ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX);
22236 	data_length += (int)(mp1->b_wptr - rptr);
22237 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22238 		((ipha_t *)rptr)->ipha_length = htons(data_length);
22239 	} else {
22240 		ip6_t *ip6 = (ip6_t *)(rptr +
22241 		    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
22242 		    sizeof (ip6i_t) : 0));
22243 
22244 		ip6->ip6_plen = htons(data_length -
22245 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22246 	}
22247 
22248 	/*
22249 	 * Prime pump for IP
22250 	 * Include the adjustment for a source route if any.
22251 	 */
22252 	data_length -= tcp->tcp_ip_hdr_len;
22253 	data_length += tcp->tcp_sum;
22254 	data_length = (data_length >> 16) + (data_length & 0xFFFF);
22255 	U16_TO_ABE16(data_length, tcph->th_sum);
22256 	if (tcp->tcp_ip_forward_progress) {
22257 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
22258 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
22259 		tcp->tcp_ip_forward_progress = B_FALSE;
22260 	}
22261 	return (mp1);
22262 }
22263 
22264 /* This function handles the push timeout. */
22265 void
22266 tcp_push_timer(void *arg)
22267 {
22268 	conn_t	*connp = (conn_t *)arg;
22269 	tcp_t *tcp = connp->conn_tcp;
22270 
22271 	TCP_DBGSTAT(tcp_push_timer_cnt);
22272 
22273 	ASSERT(tcp->tcp_listener == NULL);
22274 
22275 	/*
22276 	 * We need to plug synchronous streams during our drain to prevent
22277 	 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop().
22278 	 */
22279 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
22280 	tcp->tcp_push_tid = 0;
22281 	if ((tcp->tcp_rcv_list != NULL) &&
22282 	    (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED))
22283 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
22284 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
22285 }
22286 
22287 /*
22288  * This function handles delayed ACK timeout.
22289  */
22290 static void
22291 tcp_ack_timer(void *arg)
22292 {
22293 	conn_t	*connp = (conn_t *)arg;
22294 	tcp_t *tcp = connp->conn_tcp;
22295 	mblk_t *mp;
22296 
22297 	TCP_DBGSTAT(tcp_ack_timer_cnt);
22298 
22299 	tcp->tcp_ack_tid = 0;
22300 
22301 	if (tcp->tcp_fused)
22302 		return;
22303 
22304 	/*
22305 	 * Do not send ACK if there is no outstanding unack'ed data.
22306 	 */
22307 	if (tcp->tcp_rnxt == tcp->tcp_rack) {
22308 		return;
22309 	}
22310 
22311 	if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) {
22312 		/*
22313 		 * Make sure we don't allow deferred ACKs to result in
22314 		 * timer-based ACKing.  If we have held off an ACK
22315 		 * when there was more than an mss here, and the timer
22316 		 * goes off, we have to worry about the possibility
22317 		 * that the sender isn't doing slow-start, or is out
22318 		 * of step with us for some other reason.  We fall
22319 		 * permanently back in the direction of
22320 		 * ACK-every-other-packet as suggested in RFC 1122.
22321 		 */
22322 		if (tcp->tcp_rack_abs_max > 2)
22323 			tcp->tcp_rack_abs_max--;
22324 		tcp->tcp_rack_cur_max = 2;
22325 	}
22326 	mp = tcp_ack_mp(tcp);
22327 
22328 	if (mp != NULL) {
22329 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
22330 		BUMP_LOCAL(tcp->tcp_obsegs);
22331 		BUMP_MIB(&tcp_mib, tcpOutAck);
22332 		BUMP_MIB(&tcp_mib, tcpOutAckDelayed);
22333 		tcp_send_data(tcp, tcp->tcp_wq, mp);
22334 	}
22335 }
22336 
22337 
22338 /* Generate an ACK-only (no data) segment for a TCP endpoint */
22339 static mblk_t *
22340 tcp_ack_mp(tcp_t *tcp)
22341 {
22342 	uint32_t	seq_no;
22343 
22344 	/*
22345 	 * There are a few cases to be considered while setting the sequence no.
22346 	 * Essentially, we can come here while processing an unacceptable pkt
22347 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
22348 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
22349 	 * If we are here for a zero window probe, stick with suna. In all
22350 	 * other cases, we check if suna + swnd encompasses snxt and set
22351 	 * the sequence number to snxt, if so. If snxt falls outside the
22352 	 * window (the receiver probably shrunk its window), we will go with
22353 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
22354 	 * receiver.
22355 	 */
22356 	if (tcp->tcp_zero_win_probe) {
22357 		seq_no = tcp->tcp_suna;
22358 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
22359 		ASSERT(tcp->tcp_swnd == 0);
22360 		seq_no = tcp->tcp_snxt;
22361 	} else {
22362 		seq_no = SEQ_GT(tcp->tcp_snxt,
22363 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
22364 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
22365 	}
22366 
22367 	if (tcp->tcp_valid_bits) {
22368 		/*
22369 		 * For the complex case where we have to send some
22370 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
22371 		 */
22372 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
22373 		    NULL, B_FALSE));
22374 	} else {
22375 		/* Generate a simple ACK */
22376 		int	data_length;
22377 		uchar_t	*rptr;
22378 		tcph_t	*tcph;
22379 		mblk_t	*mp1;
22380 		int32_t	tcp_hdr_len;
22381 		int32_t	tcp_tcp_hdr_len;
22382 		int32_t	num_sack_blk = 0;
22383 		int32_t sack_opt_len;
22384 
22385 		/*
22386 		 * Allocate space for TCP + IP headers
22387 		 * and link-level header
22388 		 */
22389 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
22390 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
22391 			    tcp->tcp_num_sack_blk);
22392 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
22393 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
22394 			tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len;
22395 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len;
22396 		} else {
22397 			tcp_hdr_len = tcp->tcp_hdr_len;
22398 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
22399 		}
22400 		mp1 = allocb(tcp_hdr_len + tcp_wroff_xtra, BPRI_MED);
22401 		if (!mp1)
22402 			return (NULL);
22403 
22404 		/* Update the latest receive window size in TCP header. */
22405 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22406 		    tcp->tcp_tcph->th_win);
22407 		/* copy in prototype TCP + IP header */
22408 		rptr = mp1->b_rptr + tcp_wroff_xtra;
22409 		mp1->b_rptr = rptr;
22410 		mp1->b_wptr = rptr + tcp_hdr_len;
22411 		bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
22412 
22413 		tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
22414 
22415 		/* Set the TCP sequence number. */
22416 		U32_TO_ABE32(seq_no, tcph->th_seq);
22417 
22418 		/* Set up the TCP flag field. */
22419 		tcph->th_flags[0] = (uchar_t)TH_ACK;
22420 		if (tcp->tcp_ecn_echo_on)
22421 			tcph->th_flags[0] |= TH_ECE;
22422 
22423 		tcp->tcp_rack = tcp->tcp_rnxt;
22424 		tcp->tcp_rack_cnt = 0;
22425 
22426 		/* fill in timestamp option if in use */
22427 		if (tcp->tcp_snd_ts_ok) {
22428 			uint32_t llbolt = (uint32_t)lbolt;
22429 
22430 			U32_TO_BE32(llbolt,
22431 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22432 			U32_TO_BE32(tcp->tcp_ts_recent,
22433 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22434 		}
22435 
22436 		/* Fill in SACK options */
22437 		if (num_sack_blk > 0) {
22438 			uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
22439 			sack_blk_t *tmp;
22440 			int32_t	i;
22441 
22442 			wptr[0] = TCPOPT_NOP;
22443 			wptr[1] = TCPOPT_NOP;
22444 			wptr[2] = TCPOPT_SACK;
22445 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
22446 			    sizeof (sack_blk_t);
22447 			wptr += TCPOPT_REAL_SACK_LEN;
22448 
22449 			tmp = tcp->tcp_sack_list;
22450 			for (i = 0; i < num_sack_blk; i++) {
22451 				U32_TO_BE32(tmp[i].begin, wptr);
22452 				wptr += sizeof (tcp_seq);
22453 				U32_TO_BE32(tmp[i].end, wptr);
22454 				wptr += sizeof (tcp_seq);
22455 			}
22456 			tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1)
22457 			    << 4);
22458 		}
22459 
22460 		if (tcp->tcp_ipversion == IPV4_VERSION) {
22461 			((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len);
22462 		} else {
22463 			/* Check for ip6i_t header in sticky hdrs */
22464 			ip6_t *ip6 = (ip6_t *)(rptr +
22465 			    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
22466 			    sizeof (ip6i_t) : 0));
22467 
22468 			ip6->ip6_plen = htons(tcp_hdr_len -
22469 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22470 		}
22471 
22472 		/*
22473 		 * Prime pump for checksum calculation in IP.  Include the
22474 		 * adjustment for a source route if any.
22475 		 */
22476 		data_length = tcp_tcp_hdr_len + tcp->tcp_sum;
22477 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
22478 		U16_TO_ABE16(data_length, tcph->th_sum);
22479 
22480 		if (tcp->tcp_ip_forward_progress) {
22481 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
22482 			*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
22483 			tcp->tcp_ip_forward_progress = B_FALSE;
22484 		}
22485 		return (mp1);
22486 	}
22487 }
22488 
22489 /*
22490  * To create a temporary tcp structure for inserting into bind hash list.
22491  * The parameter is assumed to be in network byte order, ready for use.
22492  */
22493 /* ARGSUSED */
22494 static tcp_t *
22495 tcp_alloc_temp_tcp(in_port_t port)
22496 {
22497 	conn_t	*connp;
22498 	tcp_t	*tcp;
22499 
22500 	connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP);
22501 	if (connp == NULL)
22502 		return (NULL);
22503 
22504 	tcp = connp->conn_tcp;
22505 
22506 	/*
22507 	 * Only initialize the necessary info in those structures.  Note
22508 	 * that since INADDR_ANY is all 0, we do not need to set
22509 	 * tcp_bound_source to INADDR_ANY here.
22510 	 */
22511 	tcp->tcp_state = TCPS_BOUND;
22512 	tcp->tcp_lport = port;
22513 	tcp->tcp_exclbind = 1;
22514 	tcp->tcp_reserved_port = 1;
22515 
22516 	/* Just for place holding... */
22517 	tcp->tcp_ipversion = IPV4_VERSION;
22518 
22519 	return (tcp);
22520 }
22521 
22522 /*
22523  * To remove a port range specified by lo_port and hi_port from the
22524  * reserved port ranges.  This is one of the three public functions of
22525  * the reserved port interface.  Note that a port range has to be removed
22526  * as a whole.  Ports in a range cannot be removed individually.
22527  *
22528  * Params:
22529  *	in_port_t lo_port: the beginning port of the reserved port range to
22530  *		be deleted.
22531  *	in_port_t hi_port: the ending port of the reserved port range to
22532  *		be deleted.
22533  *
22534  * Return:
22535  *	B_TRUE if the deletion is successful, B_FALSE otherwise.
22536  */
22537 boolean_t
22538 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port)
22539 {
22540 	int	i, j;
22541 	int	size;
22542 	tcp_t	**temp_tcp_array;
22543 	tcp_t	*tcp;
22544 
22545 	rw_enter(&tcp_reserved_port_lock, RW_WRITER);
22546 
22547 	/* First make sure that the port ranage is indeed reserved. */
22548 	for (i = 0; i < tcp_reserved_port_array_size; i++) {
22549 		if (tcp_reserved_port[i].lo_port == lo_port) {
22550 			hi_port = tcp_reserved_port[i].hi_port;
22551 			temp_tcp_array = tcp_reserved_port[i].temp_tcp_array;
22552 			break;
22553 		}
22554 	}
22555 	if (i == tcp_reserved_port_array_size) {
22556 		rw_exit(&tcp_reserved_port_lock);
22557 		return (B_FALSE);
22558 	}
22559 
22560 	/*
22561 	 * Remove the range from the array.  This simple loop is possible
22562 	 * because port ranges are inserted in ascending order.
22563 	 */
22564 	for (j = i; j < tcp_reserved_port_array_size - 1; j++) {
22565 		tcp_reserved_port[j].lo_port = tcp_reserved_port[j+1].lo_port;
22566 		tcp_reserved_port[j].hi_port = tcp_reserved_port[j+1].hi_port;
22567 		tcp_reserved_port[j].temp_tcp_array =
22568 		    tcp_reserved_port[j+1].temp_tcp_array;
22569 	}
22570 
22571 	/* Remove all the temporary tcp structures. */
22572 	size = hi_port - lo_port + 1;
22573 	while (size > 0) {
22574 		tcp = temp_tcp_array[size - 1];
22575 		ASSERT(tcp != NULL);
22576 		tcp_bind_hash_remove(tcp);
22577 		CONN_DEC_REF(tcp->tcp_connp);
22578 		size--;
22579 	}
22580 	kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *));
22581 	tcp_reserved_port_array_size--;
22582 	rw_exit(&tcp_reserved_port_lock);
22583 	return (B_TRUE);
22584 }
22585 
22586 /*
22587  * Macro to remove temporary tcp structure from the bind hash list.  The
22588  * first parameter is the list of tcp to be removed.  The second parameter
22589  * is the number of tcps in the array.
22590  */
22591 #define	TCP_TMP_TCP_REMOVE(tcp_array, num) \
22592 { \
22593 	while ((num) > 0) { \
22594 		tcp_t *tcp = (tcp_array)[(num) - 1]; \
22595 		tf_t *tbf; \
22596 		tcp_t *tcpnext; \
22597 		tbf = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \
22598 		mutex_enter(&tbf->tf_lock); \
22599 		tcpnext = tcp->tcp_bind_hash; \
22600 		if (tcpnext) { \
22601 			tcpnext->tcp_ptpbhn = \
22602 				tcp->tcp_ptpbhn; \
22603 		} \
22604 		*tcp->tcp_ptpbhn = tcpnext; \
22605 		mutex_exit(&tbf->tf_lock); \
22606 		kmem_free(tcp, sizeof (tcp_t)); \
22607 		(tcp_array)[(num) - 1] = NULL; \
22608 		(num)--; \
22609 	} \
22610 }
22611 
22612 /*
22613  * The public interface for other modules to call to reserve a port range
22614  * in TCP.  The caller passes in how large a port range it wants.  TCP
22615  * will try to find a range and return it via lo_port and hi_port.  This is
22616  * used by NCA's nca_conn_init.
22617  * NCA can only be used in the global zone so this only affects the global
22618  * zone's ports.
22619  *
22620  * Params:
22621  *	int size: the size of the port range to be reserved.
22622  *	in_port_t *lo_port (referenced): returns the beginning port of the
22623  *		reserved port range added.
22624  *	in_port_t *hi_port (referenced): returns the ending port of the
22625  *		reserved port range added.
22626  *
22627  * Return:
22628  *	B_TRUE if the port reservation is successful, B_FALSE otherwise.
22629  */
22630 boolean_t
22631 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port)
22632 {
22633 	tcp_t		*tcp;
22634 	tcp_t		*tmp_tcp;
22635 	tcp_t		**temp_tcp_array;
22636 	tf_t		*tbf;
22637 	in_port_t	net_port;
22638 	in_port_t	port;
22639 	int32_t		cur_size;
22640 	int		i, j;
22641 	boolean_t	used;
22642 	tcp_rport_t 	tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE];
22643 	zoneid_t	zoneid = GLOBAL_ZONEID;
22644 
22645 	/* Sanity check. */
22646 	if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) {
22647 		return (B_FALSE);
22648 	}
22649 
22650 	rw_enter(&tcp_reserved_port_lock, RW_WRITER);
22651 	if (tcp_reserved_port_array_size == TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) {
22652 		rw_exit(&tcp_reserved_port_lock);
22653 		return (B_FALSE);
22654 	}
22655 
22656 	/*
22657 	 * Find the starting port to try.  Since the port ranges are ordered
22658 	 * in the reserved port array, we can do a simple search here.
22659 	 */
22660 	*lo_port = TCP_SMALLEST_RESERVED_PORT;
22661 	*hi_port = TCP_LARGEST_RESERVED_PORT;
22662 	for (i = 0; i < tcp_reserved_port_array_size;
22663 	    *lo_port = tcp_reserved_port[i].hi_port + 1, i++) {
22664 		if (tcp_reserved_port[i].lo_port - *lo_port >= size) {
22665 			*hi_port = tcp_reserved_port[i].lo_port - 1;
22666 			break;
22667 		}
22668 	}
22669 	/* No available port range. */
22670 	if (i == tcp_reserved_port_array_size && *hi_port - *lo_port < size) {
22671 		rw_exit(&tcp_reserved_port_lock);
22672 		return (B_FALSE);
22673 	}
22674 
22675 	temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP);
22676 	if (temp_tcp_array == NULL) {
22677 		rw_exit(&tcp_reserved_port_lock);
22678 		return (B_FALSE);
22679 	}
22680 
22681 	/* Go thru the port range to see if some ports are already bound. */
22682 	for (port = *lo_port, cur_size = 0;
22683 	    cur_size < size && port <= *hi_port;
22684 	    cur_size++, port++) {
22685 		used = B_FALSE;
22686 		net_port = htons(port);
22687 		tbf = &tcp_bind_fanout[TCP_BIND_HASH(net_port)];
22688 		mutex_enter(&tbf->tf_lock);
22689 		for (tcp = tbf->tf_tcp; tcp != NULL;
22690 		    tcp = tcp->tcp_bind_hash) {
22691 			if (IPCL_ZONE_MATCH(tcp->tcp_connp, zoneid) &&
22692 			    net_port == tcp->tcp_lport) {
22693 				/*
22694 				 * A port is already bound.  Search again
22695 				 * starting from port + 1.  Release all
22696 				 * temporary tcps.
22697 				 */
22698 				mutex_exit(&tbf->tf_lock);
22699 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size);
22700 				*lo_port = port + 1;
22701 				cur_size = -1;
22702 				used = B_TRUE;
22703 				break;
22704 			}
22705 		}
22706 		if (!used) {
22707 			if ((tmp_tcp = tcp_alloc_temp_tcp(net_port)) == NULL) {
22708 				/*
22709 				 * Allocation failure.  Just fail the request.
22710 				 * Need to remove all those temporary tcp
22711 				 * structures.
22712 				 */
22713 				mutex_exit(&tbf->tf_lock);
22714 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size);
22715 				rw_exit(&tcp_reserved_port_lock);
22716 				kmem_free(temp_tcp_array,
22717 				    (hi_port - lo_port + 1) *
22718 				    sizeof (tcp_t *));
22719 				return (B_FALSE);
22720 			}
22721 			temp_tcp_array[cur_size] = tmp_tcp;
22722 			tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE);
22723 			mutex_exit(&tbf->tf_lock);
22724 		}
22725 	}
22726 
22727 	/*
22728 	 * The current range is not large enough.  We can actually do another
22729 	 * search if this search is done between 2 reserved port ranges.  But
22730 	 * for first release, we just stop here and return saying that no port
22731 	 * range is available.
22732 	 */
22733 	if (cur_size < size) {
22734 		TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size);
22735 		rw_exit(&tcp_reserved_port_lock);
22736 		kmem_free(temp_tcp_array, size * sizeof (tcp_t *));
22737 		return (B_FALSE);
22738 	}
22739 	*hi_port = port - 1;
22740 
22741 	/*
22742 	 * Insert range into array in ascending order.  Since this function
22743 	 * must not be called often, we choose to use the simplest method.
22744 	 * The above array should not consume excessive stack space as
22745 	 * the size must be very small.  If in future releases, we find
22746 	 * that we should provide more reserved port ranges, this function
22747 	 * has to be modified to be more efficient.
22748 	 */
22749 	if (tcp_reserved_port_array_size == 0) {
22750 		tcp_reserved_port[0].lo_port = *lo_port;
22751 		tcp_reserved_port[0].hi_port = *hi_port;
22752 		tcp_reserved_port[0].temp_tcp_array = temp_tcp_array;
22753 	} else {
22754 		for (i = 0, j = 0; i < tcp_reserved_port_array_size; i++, j++) {
22755 			if (*lo_port < tcp_reserved_port[i].lo_port && i == j) {
22756 				tmp_ports[j].lo_port = *lo_port;
22757 				tmp_ports[j].hi_port = *hi_port;
22758 				tmp_ports[j].temp_tcp_array = temp_tcp_array;
22759 				j++;
22760 			}
22761 			tmp_ports[j].lo_port = tcp_reserved_port[i].lo_port;
22762 			tmp_ports[j].hi_port = tcp_reserved_port[i].hi_port;
22763 			tmp_ports[j].temp_tcp_array =
22764 			    tcp_reserved_port[i].temp_tcp_array;
22765 		}
22766 		if (j == i) {
22767 			tmp_ports[j].lo_port = *lo_port;
22768 			tmp_ports[j].hi_port = *hi_port;
22769 			tmp_ports[j].temp_tcp_array = temp_tcp_array;
22770 		}
22771 		bcopy(tmp_ports, tcp_reserved_port, sizeof (tmp_ports));
22772 	}
22773 	tcp_reserved_port_array_size++;
22774 	rw_exit(&tcp_reserved_port_lock);
22775 	return (B_TRUE);
22776 }
22777 
22778 /*
22779  * Check to see if a port is in any reserved port range.
22780  *
22781  * Params:
22782  *	in_port_t port: the port to be verified.
22783  *
22784  * Return:
22785  *	B_TRUE is the port is inside a reserved port range, B_FALSE otherwise.
22786  */
22787 boolean_t
22788 tcp_reserved_port_check(in_port_t port)
22789 {
22790 	int i;
22791 
22792 	rw_enter(&tcp_reserved_port_lock, RW_READER);
22793 	for (i = 0; i < tcp_reserved_port_array_size; i++) {
22794 		if (port >= tcp_reserved_port[i].lo_port ||
22795 		    port <= tcp_reserved_port[i].hi_port) {
22796 			rw_exit(&tcp_reserved_port_lock);
22797 			return (B_TRUE);
22798 		}
22799 	}
22800 	rw_exit(&tcp_reserved_port_lock);
22801 	return (B_FALSE);
22802 }
22803 
22804 /*
22805  * To list all reserved port ranges.  This is the function to handle
22806  * ndd tcp_reserved_port_list.
22807  */
22808 /* ARGSUSED */
22809 static int
22810 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
22811 {
22812 	int i;
22813 
22814 	rw_enter(&tcp_reserved_port_lock, RW_READER);
22815 	if (tcp_reserved_port_array_size > 0)
22816 		(void) mi_mpprintf(mp, "The following ports are reserved:");
22817 	else
22818 		(void) mi_mpprintf(mp, "No port is reserved.");
22819 	for (i = 0; i < tcp_reserved_port_array_size; i++) {
22820 		(void) mi_mpprintf(mp, "%d-%d",
22821 		    tcp_reserved_port[i].lo_port, tcp_reserved_port[i].hi_port);
22822 	}
22823 	rw_exit(&tcp_reserved_port_lock);
22824 	return (0);
22825 }
22826 
22827 /*
22828  * Hash list insertion routine for tcp_t structures.
22829  * Inserts entries with the ones bound to a specific IP address first
22830  * followed by those bound to INADDR_ANY.
22831  */
22832 static void
22833 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock)
22834 {
22835 	tcp_t	**tcpp;
22836 	tcp_t	*tcpnext;
22837 
22838 	if (tcp->tcp_ptpbhn != NULL) {
22839 		ASSERT(!caller_holds_lock);
22840 		tcp_bind_hash_remove(tcp);
22841 	}
22842 	tcpp = &tbf->tf_tcp;
22843 	if (!caller_holds_lock) {
22844 		mutex_enter(&tbf->tf_lock);
22845 	} else {
22846 		ASSERT(MUTEX_HELD(&tbf->tf_lock));
22847 	}
22848 	tcpnext = tcpp[0];
22849 	if (tcpnext) {
22850 		/*
22851 		 * If the new tcp bound to the INADDR_ANY address
22852 		 * and the first one in the list is not bound to
22853 		 * INADDR_ANY we skip all entries until we find the
22854 		 * first one bound to INADDR_ANY.
22855 		 * This makes sure that applications binding to a
22856 		 * specific address get preference over those binding to
22857 		 * INADDR_ANY.
22858 		 */
22859 		if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) &&
22860 		    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) {
22861 			while ((tcpnext = tcpp[0]) != NULL &&
22862 			    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6))
22863 				tcpp = &(tcpnext->tcp_bind_hash);
22864 			if (tcpnext)
22865 				tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
22866 		} else
22867 			tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
22868 	}
22869 	tcp->tcp_bind_hash = tcpnext;
22870 	tcp->tcp_ptpbhn = tcpp;
22871 	tcpp[0] = tcp;
22872 	if (!caller_holds_lock)
22873 		mutex_exit(&tbf->tf_lock);
22874 }
22875 
22876 /*
22877  * Hash list removal routine for tcp_t structures.
22878  */
22879 static void
22880 tcp_bind_hash_remove(tcp_t *tcp)
22881 {
22882 	tcp_t	*tcpnext;
22883 	kmutex_t *lockp;
22884 
22885 	if (tcp->tcp_ptpbhn == NULL)
22886 		return;
22887 
22888 	/*
22889 	 * Extract the lock pointer in case there are concurrent
22890 	 * hash_remove's for this instance.
22891 	 */
22892 	ASSERT(tcp->tcp_lport != 0);
22893 	lockp = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock;
22894 
22895 	ASSERT(lockp != NULL);
22896 	mutex_enter(lockp);
22897 	if (tcp->tcp_ptpbhn) {
22898 		tcpnext = tcp->tcp_bind_hash;
22899 		if (tcpnext) {
22900 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
22901 			tcp->tcp_bind_hash = NULL;
22902 		}
22903 		*tcp->tcp_ptpbhn = tcpnext;
22904 		tcp->tcp_ptpbhn = NULL;
22905 	}
22906 	mutex_exit(lockp);
22907 }
22908 
22909 
22910 /*
22911  * Hash list lookup routine for tcp_t structures.
22912  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
22913  */
22914 static tcp_t *
22915 tcp_acceptor_hash_lookup(t_uscalar_t id)
22916 {
22917 	tf_t	*tf;
22918 	tcp_t	*tcp;
22919 
22920 	tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
22921 	mutex_enter(&tf->tf_lock);
22922 	for (tcp = tf->tf_tcp; tcp != NULL;
22923 	    tcp = tcp->tcp_acceptor_hash) {
22924 		if (tcp->tcp_acceptor_id == id) {
22925 			CONN_INC_REF(tcp->tcp_connp);
22926 			mutex_exit(&tf->tf_lock);
22927 			return (tcp);
22928 		}
22929 	}
22930 	mutex_exit(&tf->tf_lock);
22931 	return (NULL);
22932 }
22933 
22934 
22935 /*
22936  * Hash list insertion routine for tcp_t structures.
22937  */
22938 void
22939 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
22940 {
22941 	tf_t	*tf;
22942 	tcp_t	**tcpp;
22943 	tcp_t	*tcpnext;
22944 
22945 	tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
22946 
22947 	if (tcp->tcp_ptpahn != NULL)
22948 		tcp_acceptor_hash_remove(tcp);
22949 	tcpp = &tf->tf_tcp;
22950 	mutex_enter(&tf->tf_lock);
22951 	tcpnext = tcpp[0];
22952 	if (tcpnext)
22953 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
22954 	tcp->tcp_acceptor_hash = tcpnext;
22955 	tcp->tcp_ptpahn = tcpp;
22956 	tcpp[0] = tcp;
22957 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
22958 	mutex_exit(&tf->tf_lock);
22959 }
22960 
22961 /*
22962  * Hash list removal routine for tcp_t structures.
22963  */
22964 static void
22965 tcp_acceptor_hash_remove(tcp_t *tcp)
22966 {
22967 	tcp_t	*tcpnext;
22968 	kmutex_t *lockp;
22969 
22970 	/*
22971 	 * Extract the lock pointer in case there are concurrent
22972 	 * hash_remove's for this instance.
22973 	 */
22974 	lockp = tcp->tcp_acceptor_lockp;
22975 
22976 	if (tcp->tcp_ptpahn == NULL)
22977 		return;
22978 
22979 	ASSERT(lockp != NULL);
22980 	mutex_enter(lockp);
22981 	if (tcp->tcp_ptpahn) {
22982 		tcpnext = tcp->tcp_acceptor_hash;
22983 		if (tcpnext) {
22984 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
22985 			tcp->tcp_acceptor_hash = NULL;
22986 		}
22987 		*tcp->tcp_ptpahn = tcpnext;
22988 		tcp->tcp_ptpahn = NULL;
22989 	}
22990 	mutex_exit(lockp);
22991 	tcp->tcp_acceptor_lockp = NULL;
22992 }
22993 
22994 /* ARGSUSED */
22995 static int
22996 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af)
22997 {
22998 	int error = 0;
22999 	int retval;
23000 	char *end;
23001 
23002 	tcp_hsp_t *hsp;
23003 	tcp_hsp_t *hspprev;
23004 
23005 	ipaddr_t addr = 0;		/* Address we're looking for */
23006 	in6_addr_t v6addr;		/* Address we're looking for */
23007 	uint32_t hash;			/* Hash of that address */
23008 
23009 	/*
23010 	 * If the following variables are still zero after parsing the input
23011 	 * string, the user didn't specify them and we don't change them in
23012 	 * the HSP.
23013 	 */
23014 
23015 	ipaddr_t mask = 0;		/* Subnet mask */
23016 	in6_addr_t v6mask;
23017 	long sendspace = 0;		/* Send buffer size */
23018 	long recvspace = 0;		/* Receive buffer size */
23019 	long timestamp = 0;	/* Originate TCP TSTAMP option, 1 = yes */
23020 	boolean_t delete = B_FALSE;	/* User asked to delete this HSP */
23021 
23022 	rw_enter(&tcp_hsp_lock, RW_WRITER);
23023 
23024 	/* Parse and validate address */
23025 	if (af == AF_INET) {
23026 		retval = inet_pton(af, value, &addr);
23027 		if (retval == 1)
23028 			IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
23029 	} else if (af == AF_INET6) {
23030 		retval = inet_pton(af, value, &v6addr);
23031 	} else {
23032 		error = EINVAL;
23033 		goto done;
23034 	}
23035 	if (retval == 0) {
23036 		error = EINVAL;
23037 		goto done;
23038 	}
23039 
23040 	while ((*value) && *value != ' ')
23041 		value++;
23042 
23043 	/* Parse individual keywords, set variables if found */
23044 	while (*value) {
23045 		/* Skip leading blanks */
23046 
23047 		while (*value == ' ' || *value == '\t')
23048 			value++;
23049 
23050 		/* If at end of string, we're done */
23051 
23052 		if (!*value)
23053 			break;
23054 
23055 		/* We have a word, figure out what it is */
23056 
23057 		if (strncmp("mask", value, 4) == 0) {
23058 			value += 4;
23059 			while (*value == ' ' || *value == '\t')
23060 				value++;
23061 			/* Parse subnet mask */
23062 			if (af == AF_INET) {
23063 				retval = inet_pton(af, value, &mask);
23064 				if (retval == 1) {
23065 					V4MASK_TO_V6(mask, v6mask);
23066 				}
23067 			} else if (af == AF_INET6) {
23068 				retval = inet_pton(af, value, &v6mask);
23069 			}
23070 			if (retval != 1) {
23071 				error = EINVAL;
23072 				goto done;
23073 			}
23074 			while ((*value) && *value != ' ')
23075 				value++;
23076 		} else if (strncmp("sendspace", value, 9) == 0) {
23077 			value += 9;
23078 
23079 			if (ddi_strtol(value, &end, 0, &sendspace) != 0 ||
23080 			    sendspace < TCP_XMIT_HIWATER ||
23081 			    sendspace >= (1L<<30)) {
23082 				error = EINVAL;
23083 				goto done;
23084 			}
23085 			value = end;
23086 		} else if (strncmp("recvspace", value, 9) == 0) {
23087 			value += 9;
23088 
23089 			if (ddi_strtol(value, &end, 0, &recvspace) != 0 ||
23090 			    recvspace < TCP_RECV_HIWATER ||
23091 			    recvspace >= (1L<<30)) {
23092 				error = EINVAL;
23093 				goto done;
23094 			}
23095 			value = end;
23096 		} else if (strncmp("timestamp", value, 9) == 0) {
23097 			value += 9;
23098 
23099 			if (ddi_strtol(value, &end, 0, &timestamp) != 0 ||
23100 			    timestamp < 0 || timestamp > 1) {
23101 				error = EINVAL;
23102 				goto done;
23103 			}
23104 
23105 			/*
23106 			 * We increment timestamp so we know it's been set;
23107 			 * this is undone when we put it in the HSP
23108 			 */
23109 			timestamp++;
23110 			value = end;
23111 		} else if (strncmp("delete", value, 6) == 0) {
23112 			value += 6;
23113 			delete = B_TRUE;
23114 		} else {
23115 			error = EINVAL;
23116 			goto done;
23117 		}
23118 	}
23119 
23120 	/* Hash address for lookup */
23121 
23122 	hash = TCP_HSP_HASH(addr);
23123 
23124 	if (delete) {
23125 		/*
23126 		 * Note that deletes don't return an error if the thing
23127 		 * we're trying to delete isn't there.
23128 		 */
23129 		if (tcp_hsp_hash == NULL)
23130 			goto done;
23131 		hsp = tcp_hsp_hash[hash];
23132 
23133 		if (hsp) {
23134 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
23135 			    &v6addr)) {
23136 				tcp_hsp_hash[hash] = hsp->tcp_hsp_next;
23137 				mi_free((char *)hsp);
23138 			} else {
23139 				hspprev = hsp;
23140 				while ((hsp = hsp->tcp_hsp_next) != NULL) {
23141 					if (IN6_ARE_ADDR_EQUAL(
23142 					    &hsp->tcp_hsp_addr_v6, &v6addr)) {
23143 						hspprev->tcp_hsp_next =
23144 						    hsp->tcp_hsp_next;
23145 						mi_free((char *)hsp);
23146 						break;
23147 					}
23148 					hspprev = hsp;
23149 				}
23150 			}
23151 		}
23152 	} else {
23153 		/*
23154 		 * We're adding/modifying an HSP.  If we haven't already done
23155 		 * so, allocate the hash table.
23156 		 */
23157 
23158 		if (!tcp_hsp_hash) {
23159 			tcp_hsp_hash = (tcp_hsp_t **)
23160 			    mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE);
23161 			if (!tcp_hsp_hash) {
23162 				error = EINVAL;
23163 				goto done;
23164 			}
23165 		}
23166 
23167 		/* Get head of hash chain */
23168 
23169 		hsp = tcp_hsp_hash[hash];
23170 
23171 		/* Try to find pre-existing hsp on hash chain */
23172 		/* Doesn't handle CIDR prefixes. */
23173 		while (hsp) {
23174 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr))
23175 				break;
23176 			hsp = hsp->tcp_hsp_next;
23177 		}
23178 
23179 		/*
23180 		 * If we didn't, create one with default values and put it
23181 		 * at head of hash chain
23182 		 */
23183 
23184 		if (!hsp) {
23185 			hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t));
23186 			if (!hsp) {
23187 				error = EINVAL;
23188 				goto done;
23189 			}
23190 			hsp->tcp_hsp_next = tcp_hsp_hash[hash];
23191 			tcp_hsp_hash[hash] = hsp;
23192 		}
23193 
23194 		/* Set values that the user asked us to change */
23195 
23196 		hsp->tcp_hsp_addr_v6 = v6addr;
23197 		if (IN6_IS_ADDR_V4MAPPED(&v6addr))
23198 			hsp->tcp_hsp_vers = IPV4_VERSION;
23199 		else
23200 			hsp->tcp_hsp_vers = IPV6_VERSION;
23201 		hsp->tcp_hsp_subnet_v6 = v6mask;
23202 		if (sendspace > 0)
23203 			hsp->tcp_hsp_sendspace = sendspace;
23204 		if (recvspace > 0)
23205 			hsp->tcp_hsp_recvspace = recvspace;
23206 		if (timestamp > 0)
23207 			hsp->tcp_hsp_tstamp = timestamp - 1;
23208 	}
23209 
23210 done:
23211 	rw_exit(&tcp_hsp_lock);
23212 	return (error);
23213 }
23214 
23215 /* Set callback routine passed to nd_load by tcp_param_register. */
23216 /* ARGSUSED */
23217 static int
23218 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
23219 {
23220 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET));
23221 }
23222 /* ARGSUSED */
23223 static int
23224 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
23225     cred_t *cr)
23226 {
23227 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6));
23228 }
23229 
23230 /* TCP host parameters report triggered via the Named Dispatch mechanism. */
23231 /* ARGSUSED */
23232 static int
23233 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
23234 {
23235 	tcp_hsp_t *hsp;
23236 	int i;
23237 	char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN];
23238 
23239 	rw_enter(&tcp_hsp_lock, RW_READER);
23240 	(void) mi_mpprintf(mp,
23241 	    "Hash HSP     " MI_COL_HDRPAD_STR
23242 	    "Address         Subnet Mask     Send       Receive    TStamp");
23243 	if (tcp_hsp_hash) {
23244 		for (i = 0; i < TCP_HSP_HASH_SIZE; i++) {
23245 			hsp = tcp_hsp_hash[i];
23246 			while (hsp) {
23247 				if (hsp->tcp_hsp_vers == IPV4_VERSION) {
23248 					(void) inet_ntop(AF_INET,
23249 					    &hsp->tcp_hsp_addr,
23250 					    addrbuf, sizeof (addrbuf));
23251 					(void) inet_ntop(AF_INET,
23252 					    &hsp->tcp_hsp_subnet,
23253 					    subnetbuf, sizeof (subnetbuf));
23254 				} else {
23255 					(void) inet_ntop(AF_INET6,
23256 					    &hsp->tcp_hsp_addr_v6,
23257 					    addrbuf, sizeof (addrbuf));
23258 					(void) inet_ntop(AF_INET6,
23259 					    &hsp->tcp_hsp_subnet_v6,
23260 					    subnetbuf, sizeof (subnetbuf));
23261 				}
23262 				(void) mi_mpprintf(mp,
23263 				    " %03d " MI_COL_PTRFMT_STR
23264 				    "%s %s %010d %010d      %d",
23265 				    i,
23266 				    (void *)hsp,
23267 				    addrbuf,
23268 				    subnetbuf,
23269 				    hsp->tcp_hsp_sendspace,
23270 				    hsp->tcp_hsp_recvspace,
23271 				    hsp->tcp_hsp_tstamp);
23272 
23273 				hsp = hsp->tcp_hsp_next;
23274 			}
23275 		}
23276 	}
23277 	rw_exit(&tcp_hsp_lock);
23278 	return (0);
23279 }
23280 
23281 
23282 /* Data for fast netmask macro used by tcp_hsp_lookup */
23283 
23284 static ipaddr_t netmasks[] = {
23285 	IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET,
23286 	IN_CLASSC_NET | IN_CLASSD_NET  /* Class C,D,E */
23287 };
23288 
23289 #define	netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30])
23290 
23291 /*
23292  * XXX This routine should go away and instead we should use the metrics
23293  * associated with the routes to determine the default sndspace and rcvspace.
23294  */
23295 static tcp_hsp_t *
23296 tcp_hsp_lookup(ipaddr_t addr)
23297 {
23298 	tcp_hsp_t *hsp = NULL;
23299 
23300 	/* Quick check without acquiring the lock. */
23301 	if (tcp_hsp_hash == NULL)
23302 		return (NULL);
23303 
23304 	rw_enter(&tcp_hsp_lock, RW_READER);
23305 
23306 	/* This routine finds the best-matching HSP for address addr. */
23307 
23308 	if (tcp_hsp_hash) {
23309 		int i;
23310 		ipaddr_t srchaddr;
23311 		tcp_hsp_t *hsp_net;
23312 
23313 		/* We do three passes: host, network, and subnet. */
23314 
23315 		srchaddr = addr;
23316 
23317 		for (i = 1; i <= 3; i++) {
23318 			/* Look for exact match on srchaddr */
23319 
23320 			hsp = tcp_hsp_hash[TCP_HSP_HASH(srchaddr)];
23321 			while (hsp) {
23322 				if (hsp->tcp_hsp_vers == IPV4_VERSION &&
23323 				    hsp->tcp_hsp_addr == srchaddr)
23324 					break;
23325 				hsp = hsp->tcp_hsp_next;
23326 			}
23327 			ASSERT(hsp == NULL ||
23328 			    hsp->tcp_hsp_vers == IPV4_VERSION);
23329 
23330 			/*
23331 			 * If this is the first pass:
23332 			 *   If we found a match, great, return it.
23333 			 *   If not, search for the network on the second pass.
23334 			 */
23335 
23336 			if (i == 1)
23337 				if (hsp)
23338 					break;
23339 				else
23340 				{
23341 					srchaddr = addr & netmask(addr);
23342 					continue;
23343 				}
23344 
23345 			/*
23346 			 * If this is the second pass:
23347 			 *   If we found a match, but there's a subnet mask,
23348 			 *    save the match but try again using the subnet
23349 			 *    mask on the third pass.
23350 			 *   Otherwise, return whatever we found.
23351 			 */
23352 
23353 			if (i == 2) {
23354 				if (hsp && hsp->tcp_hsp_subnet) {
23355 					hsp_net = hsp;
23356 					srchaddr = addr & hsp->tcp_hsp_subnet;
23357 					continue;
23358 				} else {
23359 					break;
23360 				}
23361 			}
23362 
23363 			/*
23364 			 * This must be the third pass.  If we didn't find
23365 			 * anything, return the saved network HSP instead.
23366 			 */
23367 
23368 			if (!hsp)
23369 				hsp = hsp_net;
23370 		}
23371 	}
23372 
23373 	rw_exit(&tcp_hsp_lock);
23374 	return (hsp);
23375 }
23376 
23377 /*
23378  * XXX Equally broken as the IPv4 routine. Doesn't handle longest
23379  * match lookup.
23380  */
23381 static tcp_hsp_t *
23382 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr)
23383 {
23384 	tcp_hsp_t *hsp = NULL;
23385 
23386 	/* Quick check without acquiring the lock. */
23387 	if (tcp_hsp_hash == NULL)
23388 		return (NULL);
23389 
23390 	rw_enter(&tcp_hsp_lock, RW_READER);
23391 
23392 	/* This routine finds the best-matching HSP for address addr. */
23393 
23394 	if (tcp_hsp_hash) {
23395 		int i;
23396 		in6_addr_t v6srchaddr;
23397 		tcp_hsp_t *hsp_net;
23398 
23399 		/* We do three passes: host, network, and subnet. */
23400 
23401 		v6srchaddr = *v6addr;
23402 
23403 		for (i = 1; i <= 3; i++) {
23404 			/* Look for exact match on srchaddr */
23405 
23406 			hsp = tcp_hsp_hash[TCP_HSP_HASH(
23407 			    V4_PART_OF_V6(v6srchaddr))];
23408 			while (hsp) {
23409 				if (hsp->tcp_hsp_vers == IPV6_VERSION &&
23410 				    IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
23411 				    &v6srchaddr))
23412 					break;
23413 				hsp = hsp->tcp_hsp_next;
23414 			}
23415 
23416 			/*
23417 			 * If this is the first pass:
23418 			 *   If we found a match, great, return it.
23419 			 *   If not, search for the network on the second pass.
23420 			 */
23421 
23422 			if (i == 1)
23423 				if (hsp)
23424 					break;
23425 				else {
23426 					/* Assume a 64 bit mask */
23427 					v6srchaddr.s6_addr32[0] =
23428 					    v6addr->s6_addr32[0];
23429 					v6srchaddr.s6_addr32[1] =
23430 					    v6addr->s6_addr32[1];
23431 					v6srchaddr.s6_addr32[2] = 0;
23432 					v6srchaddr.s6_addr32[3] = 0;
23433 					continue;
23434 				}
23435 
23436 			/*
23437 			 * If this is the second pass:
23438 			 *   If we found a match, but there's a subnet mask,
23439 			 *    save the match but try again using the subnet
23440 			 *    mask on the third pass.
23441 			 *   Otherwise, return whatever we found.
23442 			 */
23443 
23444 			if (i == 2) {
23445 				ASSERT(hsp == NULL ||
23446 				    hsp->tcp_hsp_vers == IPV6_VERSION);
23447 				if (hsp &&
23448 				    !IN6_IS_ADDR_UNSPECIFIED(
23449 				    &hsp->tcp_hsp_subnet_v6)) {
23450 					hsp_net = hsp;
23451 					V6_MASK_COPY(*v6addr,
23452 					    hsp->tcp_hsp_subnet_v6, v6srchaddr);
23453 					continue;
23454 				} else {
23455 					break;
23456 				}
23457 			}
23458 
23459 			/*
23460 			 * This must be the third pass.  If we didn't find
23461 			 * anything, return the saved network HSP instead.
23462 			 */
23463 
23464 			if (!hsp)
23465 				hsp = hsp_net;
23466 		}
23467 	}
23468 
23469 	rw_exit(&tcp_hsp_lock);
23470 	return (hsp);
23471 }
23472 
23473 /*
23474  * Type three generator adapted from the random() function in 4.4 BSD:
23475  */
23476 
23477 /*
23478  * Copyright (c) 1983, 1993
23479  *	The Regents of the University of California.  All rights reserved.
23480  *
23481  * Redistribution and use in source and binary forms, with or without
23482  * modification, are permitted provided that the following conditions
23483  * are met:
23484  * 1. Redistributions of source code must retain the above copyright
23485  *    notice, this list of conditions and the following disclaimer.
23486  * 2. Redistributions in binary form must reproduce the above copyright
23487  *    notice, this list of conditions and the following disclaimer in the
23488  *    documentation and/or other materials provided with the distribution.
23489  * 3. All advertising materials mentioning features or use of this software
23490  *    must display the following acknowledgement:
23491  *	This product includes software developed by the University of
23492  *	California, Berkeley and its contributors.
23493  * 4. Neither the name of the University nor the names of its contributors
23494  *    may be used to endorse or promote products derived from this software
23495  *    without specific prior written permission.
23496  *
23497  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23498  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23499  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23500  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23501  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23502  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23503  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23504  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23505  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23506  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23507  * SUCH DAMAGE.
23508  */
23509 
23510 /* Type 3 -- x**31 + x**3 + 1 */
23511 #define	DEG_3		31
23512 #define	SEP_3		3
23513 
23514 
23515 /* Protected by tcp_random_lock */
23516 static int tcp_randtbl[DEG_3 + 1];
23517 
23518 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
23519 static int *tcp_random_rptr = &tcp_randtbl[1];
23520 
23521 static int *tcp_random_state = &tcp_randtbl[1];
23522 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
23523 
23524 kmutex_t tcp_random_lock;
23525 
23526 void
23527 tcp_random_init(void)
23528 {
23529 	int i;
23530 	hrtime_t hrt;
23531 	time_t wallclock;
23532 	uint64_t result;
23533 
23534 	/*
23535 	 * Use high-res timer and current time for seed.  Gethrtime() returns
23536 	 * a longlong, which may contain resolution down to nanoseconds.
23537 	 * The current time will either be a 32-bit or a 64-bit quantity.
23538 	 * XOR the two together in a 64-bit result variable.
23539 	 * Convert the result to a 32-bit value by multiplying the high-order
23540 	 * 32-bits by the low-order 32-bits.
23541 	 */
23542 
23543 	hrt = gethrtime();
23544 	(void) drv_getparm(TIME, &wallclock);
23545 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
23546 	mutex_enter(&tcp_random_lock);
23547 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
23548 	    (result & 0xffffffff);
23549 
23550 	for (i = 1; i < DEG_3; i++)
23551 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
23552 			+ 12345;
23553 	tcp_random_fptr = &tcp_random_state[SEP_3];
23554 	tcp_random_rptr = &tcp_random_state[0];
23555 	mutex_exit(&tcp_random_lock);
23556 	for (i = 0; i < 10 * DEG_3; i++)
23557 		(void) tcp_random();
23558 }
23559 
23560 /*
23561  * tcp_random: Return a random number in the range [1 - (128K + 1)].
23562  * This range is selected to be approximately centered on TCP_ISS / 2,
23563  * and easy to compute. We get this value by generating a 32-bit random
23564  * number, selecting out the high-order 17 bits, and then adding one so
23565  * that we never return zero.
23566  */
23567 int
23568 tcp_random(void)
23569 {
23570 	int i;
23571 
23572 	mutex_enter(&tcp_random_lock);
23573 	*tcp_random_fptr += *tcp_random_rptr;
23574 
23575 	/*
23576 	 * The high-order bits are more random than the low-order bits,
23577 	 * so we select out the high-order 17 bits and add one so that
23578 	 * we never return zero.
23579 	 */
23580 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
23581 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
23582 		tcp_random_fptr = tcp_random_state;
23583 		++tcp_random_rptr;
23584 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
23585 		tcp_random_rptr = tcp_random_state;
23586 
23587 	mutex_exit(&tcp_random_lock);
23588 	return (i);
23589 }
23590 
23591 /*
23592  * XXX This will go away when TPI is extended to send
23593  * info reqs to sockfs/timod .....
23594  * Given a queue, set the max packet size for the write
23595  * side of the queue below stream head.  This value is
23596  * cached on the stream head.
23597  * Returns 1 on success, 0 otherwise.
23598  */
23599 static int
23600 setmaxps(queue_t *q, int maxpsz)
23601 {
23602 	struct stdata	*stp;
23603 	queue_t		*wq;
23604 	stp = STREAM(q);
23605 
23606 	/*
23607 	 * At this point change of a queue parameter is not allowed
23608 	 * when a multiplexor is sitting on top.
23609 	 */
23610 	if (stp->sd_flag & STPLEX)
23611 		return (0);
23612 
23613 	claimstr(stp->sd_wrq);
23614 	wq = stp->sd_wrq->q_next;
23615 	ASSERT(wq != NULL);
23616 	(void) strqset(wq, QMAXPSZ, 0, maxpsz);
23617 	releasestr(stp->sd_wrq);
23618 	return (1);
23619 }
23620 
23621 static int
23622 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp,
23623     int *t_errorp, int *sys_errorp)
23624 {
23625 	int error;
23626 	int is_absreq_failure;
23627 	t_scalar_t *opt_lenp;
23628 	t_scalar_t opt_offset;
23629 	int prim_type;
23630 	struct T_conn_req *tcreqp;
23631 	struct T_conn_res *tcresp;
23632 	cred_t *cr;
23633 
23634 	cr = DB_CREDDEF(mp, tcp->tcp_cred);
23635 
23636 	prim_type = ((union T_primitives *)mp->b_rptr)->type;
23637 	ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES ||
23638 	    prim_type == T_CONN_RES);
23639 
23640 	switch (prim_type) {
23641 	case T_CONN_REQ:
23642 		tcreqp = (struct T_conn_req *)mp->b_rptr;
23643 		opt_offset = tcreqp->OPT_offset;
23644 		opt_lenp = (t_scalar_t *)&tcreqp->OPT_length;
23645 		break;
23646 	case O_T_CONN_RES:
23647 	case T_CONN_RES:
23648 		tcresp = (struct T_conn_res *)mp->b_rptr;
23649 		opt_offset = tcresp->OPT_offset;
23650 		opt_lenp = (t_scalar_t *)&tcresp->OPT_length;
23651 		break;
23652 	}
23653 
23654 	*t_errorp = 0;
23655 	*sys_errorp = 0;
23656 	*do_disconnectp = 0;
23657 
23658 	error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp,
23659 	    opt_offset, cr, &tcp_opt_obj,
23660 	    NULL, &is_absreq_failure);
23661 
23662 	switch (error) {
23663 	case  0:		/* no error */
23664 		ASSERT(is_absreq_failure == 0);
23665 		return (0);
23666 	case ENOPROTOOPT:
23667 		*t_errorp = TBADOPT;
23668 		break;
23669 	case EACCES:
23670 		*t_errorp = TACCES;
23671 		break;
23672 	default:
23673 		*t_errorp = TSYSERR; *sys_errorp = error;
23674 		break;
23675 	}
23676 	if (is_absreq_failure != 0) {
23677 		/*
23678 		 * The connection request should get the local ack
23679 		 * T_OK_ACK and then a T_DISCON_IND.
23680 		 */
23681 		*do_disconnectp = 1;
23682 	}
23683 	return (-1);
23684 }
23685 
23686 /*
23687  * Split this function out so that if the secret changes, I'm okay.
23688  *
23689  * Initialize the tcp_iss_cookie and tcp_iss_key.
23690  */
23691 
23692 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
23693 
23694 static void
23695 tcp_iss_key_init(uint8_t *phrase, int len)
23696 {
23697 	struct {
23698 		int32_t current_time;
23699 		uint32_t randnum;
23700 		uint16_t pad;
23701 		uint8_t ether[6];
23702 		uint8_t passwd[PASSWD_SIZE];
23703 	} tcp_iss_cookie;
23704 	time_t t;
23705 
23706 	/*
23707 	 * Start with the current absolute time.
23708 	 */
23709 	(void) drv_getparm(TIME, &t);
23710 	tcp_iss_cookie.current_time = t;
23711 
23712 	/*
23713 	 * XXX - Need a more random number per RFC 1750, not this crap.
23714 	 * OTOH, if what follows is pretty random, then I'm in better shape.
23715 	 */
23716 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
23717 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
23718 
23719 	/*
23720 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
23721 	 * as a good template.
23722 	 */
23723 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
23724 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
23725 
23726 	/*
23727 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
23728 	 */
23729 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
23730 
23731 	/*
23732 	 * See 4010593 if this section becomes a problem again,
23733 	 * but the local ethernet address is useful here.
23734 	 */
23735 	(void) localetheraddr(NULL,
23736 	    (struct ether_addr *)&tcp_iss_cookie.ether);
23737 
23738 	/*
23739 	 * Hash 'em all together.  The MD5Final is called per-connection.
23740 	 */
23741 	mutex_enter(&tcp_iss_key_lock);
23742 	MD5Init(&tcp_iss_key);
23743 	MD5Update(&tcp_iss_key, (uchar_t *)&tcp_iss_cookie,
23744 	    sizeof (tcp_iss_cookie));
23745 	mutex_exit(&tcp_iss_key_lock);
23746 }
23747 
23748 /*
23749  * Set the RFC 1948 pass phrase
23750  */
23751 /* ARGSUSED */
23752 static int
23753 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
23754     cred_t *cr)
23755 {
23756 	/*
23757 	 * Basically, value contains a new pass phrase.  Pass it along!
23758 	 */
23759 	tcp_iss_key_init((uint8_t *)value, strlen(value));
23760 	return (0);
23761 }
23762 
23763 /* ARGSUSED */
23764 static int
23765 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags)
23766 {
23767 	bzero(buf, sizeof (tcp_sack_info_t));
23768 	return (0);
23769 }
23770 
23771 /* ARGSUSED */
23772 static int
23773 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags)
23774 {
23775 	bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH);
23776 	return (0);
23777 }
23778 
23779 void
23780 tcp_ddi_init(void)
23781 {
23782 	int i;
23783 
23784 	/* Initialize locks */
23785 	rw_init(&tcp_hsp_lock, NULL, RW_DEFAULT, NULL);
23786 	mutex_init(&tcp_g_q_lock, NULL, MUTEX_DEFAULT, NULL);
23787 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
23788 	mutex_init(&tcp_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
23789 	mutex_init(&tcp_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
23790 	rw_init(&tcp_reserved_port_lock, NULL, RW_DEFAULT, NULL);
23791 
23792 	for (i = 0; i < A_CNT(tcp_bind_fanout); i++) {
23793 		mutex_init(&tcp_bind_fanout[i].tf_lock, NULL,
23794 		    MUTEX_DEFAULT, NULL);
23795 	}
23796 
23797 	for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) {
23798 		mutex_init(&tcp_acceptor_fanout[i].tf_lock, NULL,
23799 		    MUTEX_DEFAULT, NULL);
23800 	}
23801 
23802 	/* TCP's IPsec code calls the packet dropper. */
23803 	ip_drop_register(&tcp_dropper, "TCP IPsec policy enforcement");
23804 
23805 	if (!tcp_g_nd) {
23806 		if (!tcp_param_register(tcp_param_arr, A_CNT(tcp_param_arr))) {
23807 			nd_free(&tcp_g_nd);
23808 		}
23809 	}
23810 
23811 	/*
23812 	 * Note: To really walk the device tree you need the devinfo
23813 	 * pointer to your device which is only available after probe/attach.
23814 	 * The following is safe only because it uses ddi_root_node()
23815 	 */
23816 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
23817 	    tcp_opt_obj.odb_opt_arr_cnt);
23818 
23819 	tcp_timercache = kmem_cache_create("tcp_timercache",
23820 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
23821 	    NULL, NULL, NULL, NULL, NULL, 0);
23822 
23823 	tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache",
23824 	    sizeof (tcp_sack_info_t), 0,
23825 	    tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0);
23826 
23827 	tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache",
23828 	    TCP_MAX_COMBINED_HEADER_LENGTH, 0,
23829 	    tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0);
23830 
23831 	tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput);
23832 	tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close);
23833 
23834 	ip_squeue_init(tcp_squeue_add);
23835 
23836 	/* Initialize the random number generator */
23837 	tcp_random_init();
23838 
23839 	/*
23840 	 * Initialize RFC 1948 secret values.  This will probably be reset once
23841 	 * by the boot scripts.
23842 	 *
23843 	 * Use NULL name, as the name is caught by the new lockstats.
23844 	 *
23845 	 * Initialize with some random, non-guessable string, like the global
23846 	 * T_INFO_ACK.
23847 	 */
23848 
23849 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
23850 	    sizeof (tcp_g_t_info_ack));
23851 
23852 	if ((tcp_kstat = kstat_create(TCP_MOD_NAME, 0, "tcpstat",
23853 		"net", KSTAT_TYPE_NAMED,
23854 		sizeof (tcp_statistics) / sizeof (kstat_named_t),
23855 		KSTAT_FLAG_VIRTUAL)) != NULL) {
23856 		tcp_kstat->ks_data = &tcp_statistics;
23857 		kstat_install(tcp_kstat);
23858 	}
23859 
23860 	tcp_kstat_init();
23861 }
23862 
23863 void
23864 tcp_ddi_destroy(void)
23865 {
23866 	int i;
23867 
23868 	nd_free(&tcp_g_nd);
23869 
23870 	for (i = 0; i < A_CNT(tcp_bind_fanout); i++) {
23871 		mutex_destroy(&tcp_bind_fanout[i].tf_lock);
23872 	}
23873 
23874 	for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) {
23875 		mutex_destroy(&tcp_acceptor_fanout[i].tf_lock);
23876 	}
23877 
23878 	mutex_destroy(&tcp_iss_key_lock);
23879 	rw_destroy(&tcp_hsp_lock);
23880 	mutex_destroy(&tcp_g_q_lock);
23881 	mutex_destroy(&tcp_random_lock);
23882 	mutex_destroy(&tcp_epriv_port_lock);
23883 	rw_destroy(&tcp_reserved_port_lock);
23884 
23885 	ip_drop_unregister(&tcp_dropper);
23886 
23887 	kmem_cache_destroy(tcp_timercache);
23888 	kmem_cache_destroy(tcp_sack_info_cache);
23889 	kmem_cache_destroy(tcp_iphc_cache);
23890 
23891 	tcp_kstat_fini();
23892 }
23893 
23894 /*
23895  * Generate ISS, taking into account NDD changes may happen halfway through.
23896  * (If the iss is not zero, set it.)
23897  */
23898 
23899 static void
23900 tcp_iss_init(tcp_t *tcp)
23901 {
23902 	MD5_CTX context;
23903 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
23904 	uint32_t answer[4];
23905 
23906 	tcp_iss_incr_extra += (ISS_INCR >> 1);
23907 	tcp->tcp_iss = tcp_iss_incr_extra;
23908 	switch (tcp_strong_iss) {
23909 	case 2:
23910 		mutex_enter(&tcp_iss_key_lock);
23911 		context = tcp_iss_key;
23912 		mutex_exit(&tcp_iss_key_lock);
23913 		arg.ports = tcp->tcp_ports;
23914 		if (tcp->tcp_ipversion == IPV4_VERSION) {
23915 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
23916 			    &arg.src);
23917 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst,
23918 			    &arg.dst);
23919 		} else {
23920 			arg.src = tcp->tcp_ip6h->ip6_src;
23921 			arg.dst = tcp->tcp_ip6h->ip6_dst;
23922 		}
23923 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
23924 		MD5Final((uchar_t *)answer, &context);
23925 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
23926 		/*
23927 		 * Now that we've hashed into a unique per-connection sequence
23928 		 * space, add a random increment per strong_iss == 1.  So I
23929 		 * guess we'll have to...
23930 		 */
23931 		/* FALLTHRU */
23932 	case 1:
23933 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
23934 		break;
23935 	default:
23936 		tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
23937 		break;
23938 	}
23939 	tcp->tcp_valid_bits = TCP_ISS_VALID;
23940 	tcp->tcp_fss = tcp->tcp_iss - 1;
23941 	tcp->tcp_suna = tcp->tcp_iss;
23942 	tcp->tcp_snxt = tcp->tcp_iss + 1;
23943 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
23944 	tcp->tcp_csuna = tcp->tcp_snxt;
23945 }
23946 
23947 /*
23948  * Exported routine for extracting active tcp connection status.
23949  *
23950  * This is used by the Solaris Cluster Networking software to
23951  * gather a list of connections that need to be forwarded to
23952  * specific nodes in the cluster when configuration changes occur.
23953  *
23954  * The callback is invoked for each tcp_t structure. Returning
23955  * non-zero from the callback routine terminates the search.
23956  */
23957 int
23958 cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg)
23959 {
23960 	tcp_t *tcp;
23961 	cl_tcp_info_t	cl_tcpi;
23962 	connf_t	*connfp;
23963 	conn_t	*connp;
23964 	int	i;
23965 
23966 	ASSERT(callback != NULL);
23967 
23968 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
23969 
23970 		connfp = &ipcl_globalhash_fanout[i];
23971 		connp = NULL;
23972 
23973 		while ((connp =
23974 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
23975 
23976 			tcp = connp->conn_tcp;
23977 			cl_tcpi.cl_tcpi_version = CL_TCPI_V1;
23978 			cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion;
23979 			cl_tcpi.cl_tcpi_state = tcp->tcp_state;
23980 			cl_tcpi.cl_tcpi_lport = tcp->tcp_lport;
23981 			cl_tcpi.cl_tcpi_fport = tcp->tcp_fport;
23982 			/*
23983 			 * The macros tcp_laddr and tcp_faddr give the IPv4
23984 			 * addresses. They are copied implicitly below as
23985 			 * mapped addresses.
23986 			 */
23987 			cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6;
23988 			if (tcp->tcp_ipversion == IPV4_VERSION) {
23989 				cl_tcpi.cl_tcpi_faddr =
23990 				    tcp->tcp_ipha->ipha_dst;
23991 			} else {
23992 				cl_tcpi.cl_tcpi_faddr_v6 =
23993 				    tcp->tcp_ip6h->ip6_dst;
23994 			}
23995 
23996 			/*
23997 			 * If the callback returns non-zero
23998 			 * we terminate the traversal.
23999 			 */
24000 			if ((*callback)(&cl_tcpi, arg) != 0) {
24001 				CONN_DEC_REF(tcp->tcp_connp);
24002 				return (1);
24003 			}
24004 		}
24005 	}
24006 
24007 	return (0);
24008 }
24009 
24010 /*
24011  * Macros used for accessing the different types of sockaddr
24012  * structures inside a tcp_ioc_abort_conn_t.
24013  */
24014 #define	TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local)
24015 #define	TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote)
24016 #define	TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr)
24017 #define	TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr)
24018 #define	TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port)
24019 #define	TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port)
24020 #define	TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local)
24021 #define	TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote)
24022 #define	TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr)
24023 #define	TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr)
24024 #define	TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port)
24025 #define	TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port)
24026 
24027 /*
24028  * Return the correct error code to mimic the behavior
24029  * of a connection reset.
24030  */
24031 #define	TCP_AC_GET_ERRCODE(state, err) {	\
24032 		switch ((state)) {		\
24033 		case TCPS_SYN_SENT:		\
24034 		case TCPS_SYN_RCVD:		\
24035 			(err) = ECONNREFUSED;	\
24036 			break;			\
24037 		case TCPS_ESTABLISHED:		\
24038 		case TCPS_FIN_WAIT_1:		\
24039 		case TCPS_FIN_WAIT_2:		\
24040 		case TCPS_CLOSE_WAIT:		\
24041 			(err) = ECONNRESET;	\
24042 			break;			\
24043 		case TCPS_CLOSING:		\
24044 		case TCPS_LAST_ACK:		\
24045 		case TCPS_TIME_WAIT:		\
24046 			(err) = 0;		\
24047 			break;			\
24048 		default:			\
24049 			(err) = ENXIO;		\
24050 		}				\
24051 	}
24052 
24053 /*
24054  * Check if a tcp structure matches the info in acp.
24055  */
24056 #define	TCP_AC_ADDR_MATCH(acp, tcp)					\
24057 	(((acp)->ac_local.ss_family == AF_INET) ?		\
24058 	((TCP_AC_V4LOCAL((acp)) == INADDR_ANY ||		\
24059 	TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) &&	\
24060 	(TCP_AC_V4REMOTE((acp)) == INADDR_ANY ||		\
24061 	TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) &&	\
24062 	(TCP_AC_V4LPORT((acp)) == 0 ||				\
24063 	TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) &&		\
24064 	(TCP_AC_V4RPORT((acp)) == 0 ||				\
24065 	TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) &&		\
24066 	(acp)->ac_start <= (tcp)->tcp_state &&	\
24067 	(acp)->ac_end >= (tcp)->tcp_state) :		\
24068 	((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) ||	\
24069 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)),		\
24070 	&(tcp)->tcp_ip_src_v6)) &&				\
24071 	(IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) ||	\
24072 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)),		\
24073 	&(tcp)->tcp_remote_v6)) &&				\
24074 	(TCP_AC_V6LPORT((acp)) == 0 ||				\
24075 	TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) &&		\
24076 	(TCP_AC_V6RPORT((acp)) == 0 ||				\
24077 	TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) &&		\
24078 	(acp)->ac_start <= (tcp)->tcp_state &&	\
24079 	(acp)->ac_end >= (tcp)->tcp_state))
24080 
24081 #define	TCP_AC_MATCH(acp, tcp)					\
24082 	(((acp)->ac_zoneid == ALL_ZONES ||			\
24083 	(acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ?	\
24084 	TCP_AC_ADDR_MATCH(acp, tcp) : 0)
24085 
24086 /*
24087  * Build a message containing a tcp_ioc_abort_conn_t structure
24088  * which is filled in with information from acp and tp.
24089  */
24090 static mblk_t *
24091 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp)
24092 {
24093 	mblk_t *mp;
24094 	tcp_ioc_abort_conn_t *tacp;
24095 
24096 	mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO);
24097 	if (mp == NULL)
24098 		return (NULL);
24099 
24100 	mp->b_datap->db_type = M_CTL;
24101 
24102 	*((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN;
24103 	tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr +
24104 		sizeof (uint32_t));
24105 
24106 	tacp->ac_start = acp->ac_start;
24107 	tacp->ac_end = acp->ac_end;
24108 	tacp->ac_zoneid = acp->ac_zoneid;
24109 
24110 	if (acp->ac_local.ss_family == AF_INET) {
24111 		tacp->ac_local.ss_family = AF_INET;
24112 		tacp->ac_remote.ss_family = AF_INET;
24113 		TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src;
24114 		TCP_AC_V4REMOTE(tacp) = tp->tcp_remote;
24115 		TCP_AC_V4LPORT(tacp) = tp->tcp_lport;
24116 		TCP_AC_V4RPORT(tacp) = tp->tcp_fport;
24117 	} else {
24118 		tacp->ac_local.ss_family = AF_INET6;
24119 		tacp->ac_remote.ss_family = AF_INET6;
24120 		TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6;
24121 		TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6;
24122 		TCP_AC_V6LPORT(tacp) = tp->tcp_lport;
24123 		TCP_AC_V6RPORT(tacp) = tp->tcp_fport;
24124 	}
24125 	mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp);
24126 	return (mp);
24127 }
24128 
24129 /*
24130  * Print a tcp_ioc_abort_conn_t structure.
24131  */
24132 static void
24133 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp)
24134 {
24135 	char lbuf[128];
24136 	char rbuf[128];
24137 	sa_family_t af;
24138 	in_port_t lport, rport;
24139 	ushort_t logflags;
24140 
24141 	af = acp->ac_local.ss_family;
24142 
24143 	if (af == AF_INET) {
24144 		(void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp),
24145 				lbuf, 128);
24146 		(void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp),
24147 				rbuf, 128);
24148 		lport = ntohs(TCP_AC_V4LPORT(acp));
24149 		rport = ntohs(TCP_AC_V4RPORT(acp));
24150 	} else {
24151 		(void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp),
24152 				lbuf, 128);
24153 		(void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp),
24154 				rbuf, 128);
24155 		lport = ntohs(TCP_AC_V6LPORT(acp));
24156 		rport = ntohs(TCP_AC_V6RPORT(acp));
24157 	}
24158 
24159 	logflags = SL_TRACE | SL_NOTE;
24160 	/*
24161 	 * Don't print this message to the console if the operation was done
24162 	 * to a non-global zone.
24163 	 */
24164 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
24165 		logflags |= SL_CONSOLE;
24166 	(void) strlog(TCP_MOD_ID, 0, 1, logflags,
24167 		"TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, "
24168 		"start = %d, end = %d\n", lbuf, lport, rbuf, rport,
24169 		acp->ac_start, acp->ac_end);
24170 }
24171 
24172 /*
24173  * Called inside tcp_rput when a message built using
24174  * tcp_ioctl_abort_build_msg is put into a queue.
24175  * Note that when we get here there is no wildcard in acp any more.
24176  */
24177 static void
24178 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp)
24179 {
24180 	tcp_ioc_abort_conn_t *acp;
24181 
24182 	acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t));
24183 	if (tcp->tcp_state <= acp->ac_end) {
24184 		/*
24185 		 * If we get here, we are already on the correct
24186 		 * squeue. This ioctl follows the following path
24187 		 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn
24188 		 * ->tcp_ioctl_abort->squeue_fill (if on a
24189 		 * different squeue)
24190 		 */
24191 		int errcode;
24192 
24193 		TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode);
24194 		(void) tcp_clean_death(tcp, errcode, 26);
24195 	}
24196 	freemsg(mp);
24197 }
24198 
24199 /*
24200  * Abort all matching connections on a hash chain.
24201  */
24202 static int
24203 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count,
24204     boolean_t exact)
24205 {
24206 	int nmatch, err = 0;
24207 	tcp_t *tcp;
24208 	MBLKP mp, last, listhead = NULL;
24209 	conn_t	*tconnp;
24210 	connf_t	*connfp = &ipcl_conn_fanout[index];
24211 
24212 startover:
24213 	nmatch = 0;
24214 
24215 	mutex_enter(&connfp->connf_lock);
24216 	for (tconnp = connfp->connf_head; tconnp != NULL;
24217 	    tconnp = tconnp->conn_next) {
24218 		tcp = tconnp->conn_tcp;
24219 		if (TCP_AC_MATCH(acp, tcp)) {
24220 			CONN_INC_REF(tcp->tcp_connp);
24221 			mp = tcp_ioctl_abort_build_msg(acp, tcp);
24222 			if (mp == NULL) {
24223 				err = ENOMEM;
24224 				CONN_DEC_REF(tcp->tcp_connp);
24225 				break;
24226 			}
24227 			mp->b_prev = (mblk_t *)tcp;
24228 
24229 			if (listhead == NULL) {
24230 				listhead = mp;
24231 				last = mp;
24232 			} else {
24233 				last->b_next = mp;
24234 				last = mp;
24235 			}
24236 			nmatch++;
24237 			if (exact)
24238 				break;
24239 		}
24240 
24241 		/* Avoid holding lock for too long. */
24242 		if (nmatch >= 500)
24243 			break;
24244 	}
24245 	mutex_exit(&connfp->connf_lock);
24246 
24247 	/* Pass mp into the correct tcp */
24248 	while ((mp = listhead) != NULL) {
24249 		listhead = listhead->b_next;
24250 		tcp = (tcp_t *)mp->b_prev;
24251 		mp->b_next = mp->b_prev = NULL;
24252 		squeue_fill(tcp->tcp_connp->conn_sqp, mp,
24253 		    tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET);
24254 	}
24255 
24256 	*count += nmatch;
24257 	if (nmatch >= 500 && err == 0)
24258 		goto startover;
24259 	return (err);
24260 }
24261 
24262 /*
24263  * Abort all connections that matches the attributes specified in acp.
24264  */
24265 static int
24266 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp)
24267 {
24268 	sa_family_t af;
24269 	uint32_t  ports;
24270 	uint16_t *pports;
24271 	int err = 0, count = 0;
24272 	boolean_t exact = B_FALSE; /* set when there is no wildcard */
24273 	int index = -1;
24274 	ushort_t logflags;
24275 
24276 	af = acp->ac_local.ss_family;
24277 
24278 	if (af == AF_INET) {
24279 		if (TCP_AC_V4REMOTE(acp) != INADDR_ANY &&
24280 		    TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) {
24281 			pports = (uint16_t *)&ports;
24282 			pports[1] = TCP_AC_V4LPORT(acp);
24283 			pports[0] = TCP_AC_V4RPORT(acp);
24284 			exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY);
24285 		}
24286 	} else {
24287 		if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) &&
24288 		    TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) {
24289 			pports = (uint16_t *)&ports;
24290 			pports[1] = TCP_AC_V6LPORT(acp);
24291 			pports[0] = TCP_AC_V6RPORT(acp);
24292 			exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp));
24293 		}
24294 	}
24295 
24296 	/*
24297 	 * For cases where remote addr, local port, and remote port are non-
24298 	 * wildcards, tcp_ioctl_abort_bucket will only be called once.
24299 	 */
24300 	if (index != -1) {
24301 		err = tcp_ioctl_abort_bucket(acp, index,
24302 			    &count, exact);
24303 	} else {
24304 		/*
24305 		 * loop through all entries for wildcard case
24306 		 */
24307 		for (index = 0; index < ipcl_conn_fanout_size; index++) {
24308 			err = tcp_ioctl_abort_bucket(acp, index,
24309 			    &count, exact);
24310 			if (err != 0)
24311 				break;
24312 		}
24313 	}
24314 
24315 	logflags = SL_TRACE | SL_NOTE;
24316 	/*
24317 	 * Don't print this message to the console if the operation was done
24318 	 * to a non-global zone.
24319 	 */
24320 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
24321 		logflags |= SL_CONSOLE;
24322 	(void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: "
24323 	    "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' '));
24324 	if (err == 0 && count == 0)
24325 		err = ENOENT;
24326 	return (err);
24327 }
24328 
24329 /*
24330  * Process the TCP_IOC_ABORT_CONN ioctl request.
24331  */
24332 static void
24333 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp)
24334 {
24335 	int	err;
24336 	IOCP    iocp;
24337 	MBLKP   mp1;
24338 	sa_family_t laf, raf;
24339 	tcp_ioc_abort_conn_t *acp;
24340 	zone_t *zptr;
24341 	zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid;
24342 
24343 	iocp = (IOCP)mp->b_rptr;
24344 
24345 	if ((mp1 = mp->b_cont) == NULL ||
24346 	    iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) {
24347 		err = EINVAL;
24348 		goto out;
24349 	}
24350 
24351 	/* check permissions */
24352 	if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) {
24353 		err = EPERM;
24354 		goto out;
24355 	}
24356 
24357 	if (mp1->b_cont != NULL) {
24358 		freemsg(mp1->b_cont);
24359 		mp1->b_cont = NULL;
24360 	}
24361 
24362 	acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr;
24363 	laf = acp->ac_local.ss_family;
24364 	raf = acp->ac_remote.ss_family;
24365 
24366 	/* check that a zone with the supplied zoneid exists */
24367 	if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) {
24368 		zptr = zone_find_by_id(zoneid);
24369 		if (zptr != NULL) {
24370 			zone_rele(zptr);
24371 		} else {
24372 			err = EINVAL;
24373 			goto out;
24374 		}
24375 	}
24376 
24377 	if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT ||
24378 	    acp->ac_start > acp->ac_end || laf != raf ||
24379 	    (laf != AF_INET && laf != AF_INET6)) {
24380 		err = EINVAL;
24381 		goto out;
24382 	}
24383 
24384 	tcp_ioctl_abort_dump(acp);
24385 	err = tcp_ioctl_abort(acp);
24386 
24387 out:
24388 	if (mp1 != NULL) {
24389 		freemsg(mp1);
24390 		mp->b_cont = NULL;
24391 	}
24392 
24393 	if (err != 0)
24394 		miocnak(q, mp, 0, err);
24395 	else
24396 		miocack(q, mp, 0, 0);
24397 }
24398 
24399 /*
24400  * tcp_time_wait_processing() handles processing of incoming packets when
24401  * the tcp is in the TIME_WAIT state.
24402  * A TIME_WAIT tcp that has an associated open TCP stream is never put
24403  * on the time wait list.
24404  */
24405 void
24406 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq,
24407     uint32_t seg_ack, int seg_len, tcph_t *tcph)
24408 {
24409 	int32_t		bytes_acked;
24410 	int32_t		gap;
24411 	int32_t		rgap;
24412 	tcp_opt_t	tcpopt;
24413 	uint_t		flags;
24414 	uint32_t	new_swnd = 0;
24415 	conn_t		*connp;
24416 
24417 	BUMP_LOCAL(tcp->tcp_ibsegs);
24418 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
24419 
24420 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
24421 	new_swnd = BE16_TO_U16(tcph->th_win) <<
24422 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
24423 	if (tcp->tcp_snd_ts_ok) {
24424 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
24425 			tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
24426 			    tcp->tcp_rnxt, TH_ACK);
24427 			goto done;
24428 		}
24429 	}
24430 	gap = seg_seq - tcp->tcp_rnxt;
24431 	rgap = tcp->tcp_rwnd - (gap + seg_len);
24432 	if (gap < 0) {
24433 		BUMP_MIB(&tcp_mib, tcpInDataDupSegs);
24434 		UPDATE_MIB(&tcp_mib, tcpInDataDupBytes,
24435 		    (seg_len > -gap ? -gap : seg_len));
24436 		seg_len += gap;
24437 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
24438 			if (flags & TH_RST) {
24439 				goto done;
24440 			}
24441 			if ((flags & TH_FIN) && seg_len == -1) {
24442 				/*
24443 				 * When TCP receives a duplicate FIN in
24444 				 * TIME_WAIT state, restart the 2 MSL timer.
24445 				 * See page 73 in RFC 793. Make sure this TCP
24446 				 * is already on the TIME_WAIT list. If not,
24447 				 * just restart the timer.
24448 				 */
24449 				if (TCP_IS_DETACHED(tcp)) {
24450 					tcp_time_wait_remove(tcp, NULL);
24451 					tcp_time_wait_append(tcp);
24452 					TCP_DBGSTAT(tcp_rput_time_wait);
24453 				} else {
24454 					ASSERT(tcp != NULL);
24455 					TCP_TIMER_RESTART(tcp,
24456 					    tcp_time_wait_interval);
24457 				}
24458 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
24459 				    tcp->tcp_rnxt, TH_ACK);
24460 				goto done;
24461 			}
24462 			flags |=  TH_ACK_NEEDED;
24463 			seg_len = 0;
24464 			goto process_ack;
24465 		}
24466 
24467 		/* Fix seg_seq, and chew the gap off the front. */
24468 		seg_seq = tcp->tcp_rnxt;
24469 	}
24470 
24471 	if ((flags & TH_SYN) && gap > 0 && rgap < 0) {
24472 		/*
24473 		 * Make sure that when we accept the connection, pick
24474 		 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the
24475 		 * old connection.
24476 		 *
24477 		 * The next ISS generated is equal to tcp_iss_incr_extra
24478 		 * + ISS_INCR/2 + other components depending on the
24479 		 * value of tcp_strong_iss.  We pre-calculate the new
24480 		 * ISS here and compare with tcp_snxt to determine if
24481 		 * we need to make adjustment to tcp_iss_incr_extra.
24482 		 *
24483 		 * The above calculation is ugly and is a
24484 		 * waste of CPU cycles...
24485 		 */
24486 		uint32_t new_iss = tcp_iss_incr_extra;
24487 		int32_t adj;
24488 
24489 		switch (tcp_strong_iss) {
24490 		case 2: {
24491 			/* Add time and MD5 components. */
24492 			uint32_t answer[4];
24493 			struct {
24494 				uint32_t ports;
24495 				in6_addr_t src;
24496 				in6_addr_t dst;
24497 			} arg;
24498 			MD5_CTX context;
24499 
24500 			mutex_enter(&tcp_iss_key_lock);
24501 			context = tcp_iss_key;
24502 			mutex_exit(&tcp_iss_key_lock);
24503 			arg.ports = tcp->tcp_ports;
24504 			/* We use MAPPED addresses in tcp_iss_init */
24505 			arg.src = tcp->tcp_ip_src_v6;
24506 			if (tcp->tcp_ipversion == IPV4_VERSION) {
24507 				IN6_IPADDR_TO_V4MAPPED(
24508 					tcp->tcp_ipha->ipha_dst,
24509 					    &arg.dst);
24510 			} else {
24511 				arg.dst =
24512 				    tcp->tcp_ip6h->ip6_dst;
24513 			}
24514 			MD5Update(&context, (uchar_t *)&arg,
24515 			    sizeof (arg));
24516 			MD5Final((uchar_t *)answer, &context);
24517 			answer[0] ^= answer[1] ^ answer[2] ^ answer[3];
24518 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0];
24519 			break;
24520 		}
24521 		case 1:
24522 			/* Add time component and min random (i.e. 1). */
24523 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1;
24524 			break;
24525 		default:
24526 			/* Add only time component. */
24527 			new_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
24528 			break;
24529 		}
24530 		if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) {
24531 			/*
24532 			 * New ISS not guaranteed to be ISS_INCR/2
24533 			 * ahead of the current tcp_snxt, so add the
24534 			 * difference to tcp_iss_incr_extra.
24535 			 */
24536 			tcp_iss_incr_extra += adj;
24537 		}
24538 		/*
24539 		 * If tcp_clean_death() can not perform the task now,
24540 		 * drop the SYN packet and let the other side re-xmit.
24541 		 * Otherwise pass the SYN packet back in, since the
24542 		 * old tcp state has been cleaned up or freed.
24543 		 */
24544 		if (tcp_clean_death(tcp, 0, 27) == -1)
24545 			goto done;
24546 		/*
24547 		 * We will come back to tcp_rput_data
24548 		 * on the global queue. Packets destined
24549 		 * for the global queue will be checked
24550 		 * with global policy. But the policy for
24551 		 * this packet has already been checked as
24552 		 * this was destined for the detached
24553 		 * connection. We need to bypass policy
24554 		 * check this time by attaching a dummy
24555 		 * ipsec_in with ipsec_in_dont_check set.
24556 		 */
24557 		if ((connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid)) !=
24558 		    NULL) {
24559 			TCP_STAT(tcp_time_wait_syn_success);
24560 			tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp);
24561 			return;
24562 		}
24563 		goto done;
24564 	}
24565 
24566 	/*
24567 	 * rgap is the amount of stuff received out of window.  A negative
24568 	 * value is the amount out of window.
24569 	 */
24570 	if (rgap < 0) {
24571 		BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs);
24572 		UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap);
24573 		/* Fix seg_len and make sure there is something left. */
24574 		seg_len += rgap;
24575 		if (seg_len <= 0) {
24576 			if (flags & TH_RST) {
24577 				goto done;
24578 			}
24579 			flags |=  TH_ACK_NEEDED;
24580 			seg_len = 0;
24581 			goto process_ack;
24582 		}
24583 	}
24584 	/*
24585 	 * Check whether we can update tcp_ts_recent.  This test is
24586 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
24587 	 * Extensions for High Performance: An Update", Internet Draft.
24588 	 */
24589 	if (tcp->tcp_snd_ts_ok &&
24590 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
24591 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
24592 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
24593 		tcp->tcp_last_rcv_lbolt = lbolt64;
24594 	}
24595 
24596 	if (seg_seq != tcp->tcp_rnxt && seg_len > 0) {
24597 		/* Always ack out of order packets */
24598 		flags |= TH_ACK_NEEDED;
24599 		seg_len = 0;
24600 	} else if (seg_len > 0) {
24601 		BUMP_MIB(&tcp_mib, tcpInClosed);
24602 		BUMP_MIB(&tcp_mib, tcpInDataInorderSegs);
24603 		UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len);
24604 	}
24605 	if (flags & TH_RST) {
24606 		(void) tcp_clean_death(tcp, 0, 28);
24607 		goto done;
24608 	}
24609 	if (flags & TH_SYN) {
24610 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
24611 		    TH_RST|TH_ACK);
24612 		/*
24613 		 * Do not delete the TCP structure if it is in
24614 		 * TIME_WAIT state.  Refer to RFC 1122, 4.2.2.13.
24615 		 */
24616 		goto done;
24617 	}
24618 process_ack:
24619 	if (flags & TH_ACK) {
24620 		bytes_acked = (int)(seg_ack - tcp->tcp_suna);
24621 		if (bytes_acked <= 0) {
24622 			if (bytes_acked == 0 && seg_len == 0 &&
24623 			    new_swnd == tcp->tcp_swnd)
24624 				BUMP_MIB(&tcp_mib, tcpInDupAck);
24625 		} else {
24626 			/* Acks something not sent */
24627 			flags |= TH_ACK_NEEDED;
24628 		}
24629 	}
24630 	if (flags & TH_ACK_NEEDED) {
24631 		/*
24632 		 * Time to send an ack for some reason.
24633 		 */
24634 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
24635 		    tcp->tcp_rnxt, TH_ACK);
24636 	}
24637 done:
24638 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
24639 		DB_CKSUMSTART(mp) = 0;
24640 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
24641 		TCP_STAT(tcp_time_wait_syn_fail);
24642 	}
24643 	freemsg(mp);
24644 }
24645 
24646 /*
24647  * Allocate a T_SVR4_OPTMGMT_REQ.
24648  * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so
24649  * that tcp_rput_other can drop the acks.
24650  */
24651 static mblk_t *
24652 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen)
24653 {
24654 	mblk_t *mp;
24655 	struct T_optmgmt_req *tor;
24656 	struct opthdr *oh;
24657 	uint_t size;
24658 	char *optptr;
24659 
24660 	size = sizeof (*tor) + sizeof (*oh) + optlen;
24661 	mp = allocb(size, BPRI_MED);
24662 	if (mp == NULL)
24663 		return (NULL);
24664 
24665 	mp->b_wptr += size;
24666 	mp->b_datap->db_type = M_PROTO;
24667 	tor = (struct T_optmgmt_req *)mp->b_rptr;
24668 	tor->PRIM_type = T_SVR4_OPTMGMT_REQ;
24669 	tor->MGMT_flags = T_NEGOTIATE;
24670 	tor->OPT_length = sizeof (*oh) + optlen;
24671 	tor->OPT_offset = (t_scalar_t)sizeof (*tor);
24672 
24673 	oh = (struct opthdr *)&tor[1];
24674 	oh->level = level;
24675 	oh->name = cmd;
24676 	oh->len = optlen;
24677 	if (optlen != 0) {
24678 		optptr = (char *)&oh[1];
24679 		bcopy(opt, optptr, optlen);
24680 	}
24681 	return (mp);
24682 }
24683 
24684 /*
24685  * TCP Timers Implementation.
24686  */
24687 timeout_id_t
24688 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim)
24689 {
24690 	mblk_t *mp;
24691 	tcp_timer_t *tcpt;
24692 	tcp_t *tcp = connp->conn_tcp;
24693 
24694 	ASSERT(connp->conn_sqp != NULL);
24695 
24696 	TCP_DBGSTAT(tcp_timeout_calls);
24697 
24698 	if (tcp->tcp_timercache == NULL) {
24699 		mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC);
24700 	} else {
24701 		TCP_DBGSTAT(tcp_timeout_cached_alloc);
24702 		mp = tcp->tcp_timercache;
24703 		tcp->tcp_timercache = mp->b_next;
24704 		mp->b_next = NULL;
24705 		ASSERT(mp->b_wptr == NULL);
24706 	}
24707 
24708 	CONN_INC_REF(connp);
24709 	tcpt = (tcp_timer_t *)mp->b_rptr;
24710 	tcpt->connp = connp;
24711 	tcpt->tcpt_proc = f;
24712 	tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim);
24713 	return ((timeout_id_t)mp);
24714 }
24715 
24716 static void
24717 tcp_timer_callback(void *arg)
24718 {
24719 	mblk_t *mp = (mblk_t *)arg;
24720 	tcp_timer_t *tcpt;
24721 	conn_t	*connp;
24722 
24723 	tcpt = (tcp_timer_t *)mp->b_rptr;
24724 	connp = tcpt->connp;
24725 	squeue_fill(connp->conn_sqp, mp,
24726 	    tcp_timer_handler, connp, SQTAG_TCP_TIMER);
24727 }
24728 
24729 static void
24730 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2)
24731 {
24732 	tcp_timer_t *tcpt;
24733 	conn_t *connp = (conn_t *)arg;
24734 	tcp_t *tcp = connp->conn_tcp;
24735 
24736 	tcpt = (tcp_timer_t *)mp->b_rptr;
24737 	ASSERT(connp == tcpt->connp);
24738 	ASSERT((squeue_t *)arg2 == connp->conn_sqp);
24739 
24740 	/*
24741 	 * If the TCP has reached the closed state, don't proceed any
24742 	 * further. This TCP logically does not exist on the system.
24743 	 * tcpt_proc could for example access queues, that have already
24744 	 * been qprocoff'ed off. Also see comments at the start of tcp_input
24745 	 */
24746 	if (tcp->tcp_state != TCPS_CLOSED) {
24747 		(*tcpt->tcpt_proc)(connp);
24748 	} else {
24749 		tcp->tcp_timer_tid = 0;
24750 	}
24751 	tcp_timer_free(connp->conn_tcp, mp);
24752 }
24753 
24754 /*
24755  * There is potential race with untimeout and the handler firing at the same
24756  * time. The mblock may be freed by the handler while we are trying to use
24757  * it. But since both should execute on the same squeue, this race should not
24758  * occur.
24759  */
24760 clock_t
24761 tcp_timeout_cancel(conn_t *connp, timeout_id_t id)
24762 {
24763 	mblk_t	*mp = (mblk_t *)id;
24764 	tcp_timer_t *tcpt;
24765 	clock_t delta;
24766 
24767 	TCP_DBGSTAT(tcp_timeout_cancel_reqs);
24768 
24769 	if (mp == NULL)
24770 		return (-1);
24771 
24772 	tcpt = (tcp_timer_t *)mp->b_rptr;
24773 	ASSERT(tcpt->connp == connp);
24774 
24775 	delta = untimeout(tcpt->tcpt_tid);
24776 
24777 	if (delta >= 0) {
24778 		TCP_DBGSTAT(tcp_timeout_canceled);
24779 		tcp_timer_free(connp->conn_tcp, mp);
24780 		CONN_DEC_REF(connp);
24781 	}
24782 
24783 	return (delta);
24784 }
24785 
24786 /*
24787  * Allocate space for the timer event. The allocation looks like mblk, but it is
24788  * not a proper mblk. To avoid confusion we set b_wptr to NULL.
24789  *
24790  * Dealing with failures: If we can't allocate from the timer cache we try
24791  * allocating from dblock caches using allocb_tryhard(). In this case b_wptr
24792  * points to b_rptr.
24793  * If we can't allocate anything using allocb_tryhard(), we perform a last
24794  * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and
24795  * save the actual allocation size in b_datap.
24796  */
24797 mblk_t *
24798 tcp_timermp_alloc(int kmflags)
24799 {
24800 	mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache,
24801 	    kmflags & ~KM_PANIC);
24802 
24803 	if (mp != NULL) {
24804 		mp->b_next = mp->b_prev = NULL;
24805 		mp->b_rptr = (uchar_t *)(&mp[1]);
24806 		mp->b_wptr = NULL;
24807 		mp->b_datap = NULL;
24808 		mp->b_queue = NULL;
24809 	} else if (kmflags & KM_PANIC) {
24810 		/*
24811 		 * Failed to allocate memory for the timer. Try allocating from
24812 		 * dblock caches.
24813 		 */
24814 		TCP_STAT(tcp_timermp_allocfail);
24815 		mp = allocb_tryhard(sizeof (tcp_timer_t));
24816 		if (mp == NULL) {
24817 			size_t size = 0;
24818 			/*
24819 			 * Memory is really low. Try tryhard allocation.
24820 			 */
24821 			TCP_STAT(tcp_timermp_allocdblfail);
24822 			mp = kmem_alloc_tryhard(sizeof (mblk_t) +
24823 			    sizeof (tcp_timer_t), &size, kmflags);
24824 			mp->b_rptr = (uchar_t *)(&mp[1]);
24825 			mp->b_next = mp->b_prev = NULL;
24826 			mp->b_wptr = (uchar_t *)-1;
24827 			mp->b_datap = (dblk_t *)size;
24828 			mp->b_queue = NULL;
24829 		}
24830 		ASSERT(mp->b_wptr != NULL);
24831 	}
24832 	TCP_DBGSTAT(tcp_timermp_alloced);
24833 
24834 	return (mp);
24835 }
24836 
24837 /*
24838  * Free per-tcp timer cache.
24839  * It can only contain entries from tcp_timercache.
24840  */
24841 void
24842 tcp_timermp_free(tcp_t *tcp)
24843 {
24844 	mblk_t *mp;
24845 
24846 	while ((mp = tcp->tcp_timercache) != NULL) {
24847 		ASSERT(mp->b_wptr == NULL);
24848 		tcp->tcp_timercache = tcp->tcp_timercache->b_next;
24849 		kmem_cache_free(tcp_timercache, mp);
24850 	}
24851 }
24852 
24853 /*
24854  * Free timer event. Put it on the per-tcp timer cache if there is not too many
24855  * events there already (currently at most two events are cached).
24856  * If the event is not allocated from the timer cache, free it right away.
24857  */
24858 static void
24859 tcp_timer_free(tcp_t *tcp, mblk_t *mp)
24860 {
24861 	mblk_t *mp1 = tcp->tcp_timercache;
24862 
24863 	if (mp->b_wptr != NULL) {
24864 		/*
24865 		 * This allocation is not from a timer cache, free it right
24866 		 * away.
24867 		 */
24868 		if (mp->b_wptr != (uchar_t *)-1)
24869 			freeb(mp);
24870 		else
24871 			kmem_free(mp, (size_t)mp->b_datap);
24872 	} else if (mp1 == NULL || mp1->b_next == NULL) {
24873 		/* Cache this timer block for future allocations */
24874 		mp->b_rptr = (uchar_t *)(&mp[1]);
24875 		mp->b_next = mp1;
24876 		tcp->tcp_timercache = mp;
24877 	} else {
24878 		kmem_cache_free(tcp_timercache, mp);
24879 		TCP_DBGSTAT(tcp_timermp_freed);
24880 	}
24881 }
24882 
24883 /*
24884  * End of TCP Timers implementation.
24885  */
24886 
24887 /*
24888  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
24889  * on the specified backing STREAMS q. Note, the caller may make the
24890  * decision to call based on the tcp_t.tcp_flow_stopped value which
24891  * when check outside the q's lock is only an advisory check ...
24892  */
24893 
24894 void
24895 tcp_setqfull(tcp_t *tcp)
24896 {
24897 	queue_t *q = tcp->tcp_wq;
24898 
24899 	if (!(q->q_flag & QFULL)) {
24900 		mutex_enter(QLOCK(q));
24901 		if (!(q->q_flag & QFULL)) {
24902 			/* still need to set QFULL */
24903 			q->q_flag |= QFULL;
24904 			tcp->tcp_flow_stopped = B_TRUE;
24905 			mutex_exit(QLOCK(q));
24906 			TCP_STAT(tcp_flwctl_on);
24907 		} else {
24908 			mutex_exit(QLOCK(q));
24909 		}
24910 	}
24911 }
24912 
24913 void
24914 tcp_clrqfull(tcp_t *tcp)
24915 {
24916 	queue_t *q = tcp->tcp_wq;
24917 
24918 	if (q->q_flag & QFULL) {
24919 		mutex_enter(QLOCK(q));
24920 		if (q->q_flag & QFULL) {
24921 			q->q_flag &= ~QFULL;
24922 			tcp->tcp_flow_stopped = B_FALSE;
24923 			mutex_exit(QLOCK(q));
24924 			if (q->q_flag & QWANTW)
24925 				qbackenable(q, 0);
24926 		} else {
24927 			mutex_exit(QLOCK(q));
24928 		}
24929 	}
24930 }
24931 
24932 /*
24933  * TCP Kstats implementation
24934  */
24935 static void
24936 tcp_kstat_init(void)
24937 {
24938 	tcp_named_kstat_t template = {
24939 		{ "rtoAlgorithm",	KSTAT_DATA_INT32, 0 },
24940 		{ "rtoMin",		KSTAT_DATA_INT32, 0 },
24941 		{ "rtoMax",		KSTAT_DATA_INT32, 0 },
24942 		{ "maxConn",		KSTAT_DATA_INT32, 0 },
24943 		{ "activeOpens",	KSTAT_DATA_UINT32, 0 },
24944 		{ "passiveOpens",	KSTAT_DATA_UINT32, 0 },
24945 		{ "attemptFails",	KSTAT_DATA_UINT32, 0 },
24946 		{ "estabResets",	KSTAT_DATA_UINT32, 0 },
24947 		{ "currEstab",		KSTAT_DATA_UINT32, 0 },
24948 		{ "inSegs",		KSTAT_DATA_UINT32, 0 },
24949 		{ "outSegs",		KSTAT_DATA_UINT32, 0 },
24950 		{ "retransSegs",	KSTAT_DATA_UINT32, 0 },
24951 		{ "connTableSize",	KSTAT_DATA_INT32, 0 },
24952 		{ "outRsts",		KSTAT_DATA_UINT32, 0 },
24953 		{ "outDataSegs",	KSTAT_DATA_UINT32, 0 },
24954 		{ "outDataBytes",	KSTAT_DATA_UINT32, 0 },
24955 		{ "retransBytes",	KSTAT_DATA_UINT32, 0 },
24956 		{ "outAck",		KSTAT_DATA_UINT32, 0 },
24957 		{ "outAckDelayed",	KSTAT_DATA_UINT32, 0 },
24958 		{ "outUrg",		KSTAT_DATA_UINT32, 0 },
24959 		{ "outWinUpdate",	KSTAT_DATA_UINT32, 0 },
24960 		{ "outWinProbe",	KSTAT_DATA_UINT32, 0 },
24961 		{ "outControl",		KSTAT_DATA_UINT32, 0 },
24962 		{ "outFastRetrans",	KSTAT_DATA_UINT32, 0 },
24963 		{ "inAckSegs",		KSTAT_DATA_UINT32, 0 },
24964 		{ "inAckBytes",		KSTAT_DATA_UINT32, 0 },
24965 		{ "inDupAck",		KSTAT_DATA_UINT32, 0 },
24966 		{ "inAckUnsent",	KSTAT_DATA_UINT32, 0 },
24967 		{ "inDataInorderSegs",	KSTAT_DATA_UINT32, 0 },
24968 		{ "inDataInorderBytes",	KSTAT_DATA_UINT32, 0 },
24969 		{ "inDataUnorderSegs",	KSTAT_DATA_UINT32, 0 },
24970 		{ "inDataUnorderBytes",	KSTAT_DATA_UINT32, 0 },
24971 		{ "inDataDupSegs",	KSTAT_DATA_UINT32, 0 },
24972 		{ "inDataDupBytes",	KSTAT_DATA_UINT32, 0 },
24973 		{ "inDataPartDupSegs",	KSTAT_DATA_UINT32, 0 },
24974 		{ "inDataPartDupBytes",	KSTAT_DATA_UINT32, 0 },
24975 		{ "inDataPastWinSegs",	KSTAT_DATA_UINT32, 0 },
24976 		{ "inDataPastWinBytes",	KSTAT_DATA_UINT32, 0 },
24977 		{ "inWinProbe",		KSTAT_DATA_UINT32, 0 },
24978 		{ "inWinUpdate",	KSTAT_DATA_UINT32, 0 },
24979 		{ "inClosed",		KSTAT_DATA_UINT32, 0 },
24980 		{ "rttUpdate",		KSTAT_DATA_UINT32, 0 },
24981 		{ "rttNoUpdate",	KSTAT_DATA_UINT32, 0 },
24982 		{ "timRetrans",		KSTAT_DATA_UINT32, 0 },
24983 		{ "timRetransDrop",	KSTAT_DATA_UINT32, 0 },
24984 		{ "timKeepalive",	KSTAT_DATA_UINT32, 0 },
24985 		{ "timKeepaliveProbe",	KSTAT_DATA_UINT32, 0 },
24986 		{ "timKeepaliveDrop",	KSTAT_DATA_UINT32, 0 },
24987 		{ "listenDrop",		KSTAT_DATA_UINT32, 0 },
24988 		{ "listenDropQ0",	KSTAT_DATA_UINT32, 0 },
24989 		{ "halfOpenDrop",	KSTAT_DATA_UINT32, 0 },
24990 		{ "outSackRetransSegs",	KSTAT_DATA_UINT32, 0 },
24991 		{ "connTableSize6",	KSTAT_DATA_INT32, 0 }
24992 	};
24993 
24994 	tcp_mibkp = kstat_create(TCP_MOD_NAME, 0, TCP_MOD_NAME,
24995 	    "mib2", KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0);
24996 
24997 	if (tcp_mibkp == NULL)
24998 		return;
24999 
25000 	template.rtoAlgorithm.value.ui32 = 4;
25001 	template.rtoMin.value.ui32 = tcp_rexmit_interval_min;
25002 	template.rtoMax.value.ui32 = tcp_rexmit_interval_max;
25003 	template.maxConn.value.i32 = -1;
25004 
25005 	bcopy(&template, tcp_mibkp->ks_data, sizeof (template));
25006 
25007 	tcp_mibkp->ks_update = tcp_kstat_update;
25008 
25009 	kstat_install(tcp_mibkp);
25010 }
25011 
25012 static void
25013 tcp_kstat_fini(void)
25014 {
25015 
25016 	if (tcp_mibkp != NULL) {
25017 		kstat_delete(tcp_mibkp);
25018 		tcp_mibkp = NULL;
25019 	}
25020 }
25021 
25022 static int
25023 tcp_kstat_update(kstat_t *kp, int rw)
25024 {
25025 	tcp_named_kstat_t	*tcpkp;
25026 	tcp_t			*tcp;
25027 	connf_t			*connfp;
25028 	conn_t			*connp;
25029 	int 			i;
25030 
25031 	if (!kp || !kp->ks_data)
25032 		return (EIO);
25033 
25034 	if (rw == KSTAT_WRITE)
25035 		return (EACCES);
25036 
25037 	tcpkp = (tcp_named_kstat_t *)kp->ks_data;
25038 
25039 	tcpkp->currEstab.value.ui32 = 0;
25040 
25041 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
25042 		connfp = &ipcl_globalhash_fanout[i];
25043 		connp = NULL;
25044 		while ((connp =
25045 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
25046 			tcp = connp->conn_tcp;
25047 			switch (tcp_snmp_state(tcp)) {
25048 			case MIB2_TCP_established:
25049 			case MIB2_TCP_closeWait:
25050 				tcpkp->currEstab.value.ui32++;
25051 				break;
25052 			}
25053 		}
25054 	}
25055 
25056 	tcpkp->activeOpens.value.ui32 = tcp_mib.tcpActiveOpens;
25057 	tcpkp->passiveOpens.value.ui32 = tcp_mib.tcpPassiveOpens;
25058 	tcpkp->attemptFails.value.ui32 = tcp_mib.tcpAttemptFails;
25059 	tcpkp->estabResets.value.ui32 = tcp_mib.tcpEstabResets;
25060 	tcpkp->inSegs.value.ui32 = tcp_mib.tcpInSegs;
25061 	tcpkp->outSegs.value.ui32 = tcp_mib.tcpOutSegs;
25062 	tcpkp->retransSegs.value.ui32 =	tcp_mib.tcpRetransSegs;
25063 	tcpkp->connTableSize.value.i32 = tcp_mib.tcpConnTableSize;
25064 	tcpkp->outRsts.value.ui32 = tcp_mib.tcpOutRsts;
25065 	tcpkp->outDataSegs.value.ui32 = tcp_mib.tcpOutDataSegs;
25066 	tcpkp->outDataBytes.value.ui32 = tcp_mib.tcpOutDataBytes;
25067 	tcpkp->retransBytes.value.ui32 = tcp_mib.tcpRetransBytes;
25068 	tcpkp->outAck.value.ui32 = tcp_mib.tcpOutAck;
25069 	tcpkp->outAckDelayed.value.ui32 = tcp_mib.tcpOutAckDelayed;
25070 	tcpkp->outUrg.value.ui32 = tcp_mib.tcpOutUrg;
25071 	tcpkp->outWinUpdate.value.ui32 = tcp_mib.tcpOutWinUpdate;
25072 	tcpkp->outWinProbe.value.ui32 = tcp_mib.tcpOutWinProbe;
25073 	tcpkp->outControl.value.ui32 = tcp_mib.tcpOutControl;
25074 	tcpkp->outFastRetrans.value.ui32 = tcp_mib.tcpOutFastRetrans;
25075 	tcpkp->inAckSegs.value.ui32 = tcp_mib.tcpInAckSegs;
25076 	tcpkp->inAckBytes.value.ui32 = tcp_mib.tcpInAckBytes;
25077 	tcpkp->inDupAck.value.ui32 = tcp_mib.tcpInDupAck;
25078 	tcpkp->inAckUnsent.value.ui32 = tcp_mib.tcpInAckUnsent;
25079 	tcpkp->inDataInorderSegs.value.ui32 = tcp_mib.tcpInDataInorderSegs;
25080 	tcpkp->inDataInorderBytes.value.ui32 = tcp_mib.tcpInDataInorderBytes;
25081 	tcpkp->inDataUnorderSegs.value.ui32 = tcp_mib.tcpInDataUnorderSegs;
25082 	tcpkp->inDataUnorderBytes.value.ui32 = tcp_mib.tcpInDataUnorderBytes;
25083 	tcpkp->inDataDupSegs.value.ui32 = tcp_mib.tcpInDataDupSegs;
25084 	tcpkp->inDataDupBytes.value.ui32 = tcp_mib.tcpInDataDupBytes;
25085 	tcpkp->inDataPartDupSegs.value.ui32 = tcp_mib.tcpInDataPartDupSegs;
25086 	tcpkp->inDataPartDupBytes.value.ui32 = tcp_mib.tcpInDataPartDupBytes;
25087 	tcpkp->inDataPastWinSegs.value.ui32 = tcp_mib.tcpInDataPastWinSegs;
25088 	tcpkp->inDataPastWinBytes.value.ui32 = tcp_mib.tcpInDataPastWinBytes;
25089 	tcpkp->inWinProbe.value.ui32 = tcp_mib.tcpInWinProbe;
25090 	tcpkp->inWinUpdate.value.ui32 = tcp_mib.tcpInWinUpdate;
25091 	tcpkp->inClosed.value.ui32 = tcp_mib.tcpInClosed;
25092 	tcpkp->rttNoUpdate.value.ui32 = tcp_mib.tcpRttNoUpdate;
25093 	tcpkp->rttUpdate.value.ui32 = tcp_mib.tcpRttUpdate;
25094 	tcpkp->timRetrans.value.ui32 = tcp_mib.tcpTimRetrans;
25095 	tcpkp->timRetransDrop.value.ui32 = tcp_mib.tcpTimRetransDrop;
25096 	tcpkp->timKeepalive.value.ui32 = tcp_mib.tcpTimKeepalive;
25097 	tcpkp->timKeepaliveProbe.value.ui32 = tcp_mib.tcpTimKeepaliveProbe;
25098 	tcpkp->timKeepaliveDrop.value.ui32 = tcp_mib.tcpTimKeepaliveDrop;
25099 	tcpkp->listenDrop.value.ui32 = tcp_mib.tcpListenDrop;
25100 	tcpkp->listenDropQ0.value.ui32 = tcp_mib.tcpListenDropQ0;
25101 	tcpkp->halfOpenDrop.value.ui32 = tcp_mib.tcpHalfOpenDrop;
25102 	tcpkp->outSackRetransSegs.value.ui32 = tcp_mib.tcpOutSackRetransSegs;
25103 	tcpkp->connTableSize6.value.i32 = tcp_mib.tcp6ConnTableSize;
25104 
25105 	return (0);
25106 }
25107 
25108 void
25109 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp)
25110 {
25111 	uint16_t	hdr_len;
25112 	ipha_t		*ipha;
25113 	uint8_t		*nexthdrp;
25114 	tcph_t		*tcph;
25115 
25116 	/* Already has an eager */
25117 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
25118 		TCP_STAT(tcp_reinput_syn);
25119 		squeue_enter(connp->conn_sqp, mp, connp->conn_recv,
25120 		    connp, SQTAG_TCP_REINPUT_EAGER);
25121 		return;
25122 	}
25123 
25124 	switch (IPH_HDR_VERSION(mp->b_rptr)) {
25125 	case IPV4_VERSION:
25126 		ipha = (ipha_t *)mp->b_rptr;
25127 		hdr_len = IPH_HDR_LENGTH(ipha);
25128 		break;
25129 	case IPV6_VERSION:
25130 		if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr,
25131 		    &hdr_len, &nexthdrp)) {
25132 			CONN_DEC_REF(connp);
25133 			freemsg(mp);
25134 			return;
25135 		}
25136 		break;
25137 	}
25138 
25139 	tcph = (tcph_t *)&mp->b_rptr[hdr_len];
25140 	if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) {
25141 		mp->b_datap->db_struioflag |= STRUIO_EAGER;
25142 		DB_CKSUMSTART(mp) = (intptr_t)sqp;
25143 	}
25144 
25145 	squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp,
25146 	    SQTAG_TCP_REINPUT);
25147 }
25148 
25149 static squeue_func_t
25150 tcp_squeue_switch(int val)
25151 {
25152 	squeue_func_t rval = squeue_fill;
25153 
25154 	switch (val) {
25155 	case 1:
25156 		rval = squeue_enter_nodrain;
25157 		break;
25158 	case 2:
25159 		rval = squeue_enter;
25160 		break;
25161 	default:
25162 		break;
25163 	}
25164 	return (rval);
25165 }
25166 
25167 static void
25168 tcp_squeue_add(squeue_t *sqp)
25169 {
25170 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
25171 		sizeof (tcp_squeue_priv_t), KM_SLEEP);
25172 
25173 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
25174 	tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector,
25175 	    sqp, TCP_TIME_WAIT_DELAY);
25176 	if (tcp_free_list_max_cnt == 0) {
25177 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
25178 			max_ncpus : boot_max_ncpus);
25179 
25180 		/*
25181 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
25182 		 */
25183 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
25184 			(tcp_ncpus * sizeof (tcp_t) * 100);
25185 	}
25186 	tcp_time_wait->tcp_free_list_cnt = 0;
25187 }
25188