1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2013, 2017 by Delphix. All rights reserved. 26 * Copyright 2014, OmniTI Computer Consulting, Inc. All rights reserved. 27 * Copyright 2020 Joyent, Inc. 28 * Copyright 2024 Oxide Computer Company 29 */ 30 /* Copyright (c) 1990 Mentat Inc. */ 31 32 #include <sys/types.h> 33 #include <sys/stream.h> 34 #include <sys/strsun.h> 35 #include <sys/strsubr.h> 36 #include <sys/stropts.h> 37 #include <sys/strlog.h> 38 #define _SUN_TPI_VERSION 2 39 #include <sys/tihdr.h> 40 #include <sys/timod.h> 41 #include <sys/ddi.h> 42 #include <sys/sunddi.h> 43 #include <sys/suntpi.h> 44 #include <sys/xti_inet.h> 45 #include <sys/cmn_err.h> 46 #include <sys/debug.h> 47 #include <sys/sdt.h> 48 #include <sys/vtrace.h> 49 #include <sys/kmem.h> 50 #include <sys/ethernet.h> 51 #include <sys/cpuvar.h> 52 #include <sys/dlpi.h> 53 #include <sys/pattr.h> 54 #include <sys/policy.h> 55 #include <sys/priv.h> 56 #include <sys/zone.h> 57 #include <sys/sunldi.h> 58 59 #include <sys/errno.h> 60 #include <sys/signal.h> 61 #include <sys/socket.h> 62 #include <sys/socketvar.h> 63 #include <sys/sockio.h> 64 #include <sys/isa_defs.h> 65 #include <sys/md5.h> 66 #include <sys/random.h> 67 #include <sys/uio.h> 68 #include <sys/systm.h> 69 #include <netinet/in.h> 70 #include <netinet/tcp.h> 71 #include <netinet/ip6.h> 72 #include <netinet/icmp6.h> 73 #include <net/if.h> 74 #include <net/route.h> 75 #include <inet/ipsec_impl.h> 76 #include <inet/tcp_sig.h> 77 78 #include <inet/common.h> 79 #include <inet/cc.h> 80 #include <inet/ip.h> 81 #include <inet/ip_impl.h> 82 #include <inet/ip6.h> 83 #include <inet/ip_ndp.h> 84 #include <inet/proto_set.h> 85 #include <inet/mib2.h> 86 #include <inet/optcom.h> 87 #include <inet/snmpcom.h> 88 #include <inet/kstatcom.h> 89 #include <inet/tcp.h> 90 #include <inet/tcp_impl.h> 91 #include <inet/tcp_cluster.h> 92 #include <inet/udp_impl.h> 93 #include <net/pfkeyv2.h> 94 #include <inet/ipdrop.h> 95 96 #include <inet/ipclassifier.h> 97 #include <inet/ip_ire.h> 98 #include <inet/ip_ftable.h> 99 #include <inet/ip_if.h> 100 #include <inet/ipp_common.h> 101 #include <inet/ip_rts.h> 102 #include <inet/ip_netinfo.h> 103 #include <sys/squeue_impl.h> 104 #include <sys/squeue.h> 105 #include <sys/tsol/label.h> 106 #include <sys/tsol/tnet.h> 107 #include <rpc/pmap_prot.h> 108 #include <sys/callo.h> 109 110 /* 111 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 112 * 113 * (Read the detailed design doc in PSARC case directory) 114 * 115 * The entire tcp state is contained in tcp_t and conn_t structure 116 * which are allocated in tandem using ipcl_conn_create() and passing 117 * IPCL_TCPCONN as a flag. We use 'conn_ref' and 'conn_lock' to protect 118 * the references on the tcp_t. The tcp_t structure is never compressed 119 * and packets always land on the correct TCP perimeter from the time 120 * eager is created till the time tcp_t dies (as such the old mentat 121 * TCP global queue is not used for detached state and no IPSEC checking 122 * is required). The global queue is still allocated to send out resets 123 * for connection which have no listeners and IP directly calls 124 * tcp_xmit_listeners_reset() which does any policy check. 125 * 126 * Protection and Synchronisation mechanism: 127 * 128 * The tcp data structure does not use any kind of lock for protecting 129 * its state but instead uses 'squeues' for mutual exclusion from various 130 * read and write side threads. To access a tcp member, the thread should 131 * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS, 132 * or SQ_NODRAIN). Since the squeues allow a direct function call, caller 133 * can pass any tcp function having prototype of edesc_t as argument 134 * (different from traditional STREAMs model where packets come in only 135 * designated entry points). The list of functions that can be directly 136 * called via squeue are listed before the usual function prototype. 137 * 138 * Referencing: 139 * 140 * TCP is MT-Hot and we use a reference based scheme to make sure that the 141 * tcp structure doesn't disappear when its needed. When the application 142 * creates an outgoing connection or accepts an incoming connection, we 143 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 144 * The IP reference is just a symbolic reference since ip_tcpclose() 145 * looks at tcp structure after tcp_close_output() returns which could 146 * have dropped the last TCP reference. So as long as the connection is 147 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 148 * conn_t. The classifier puts its own reference when the connection is 149 * inserted in listen or connected hash. Anytime a thread needs to enter 150 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 151 * on write side or by doing a classify on read side and then puts a 152 * reference on the conn before doing squeue_enter/tryenter/fill. For 153 * read side, the classifier itself puts the reference under fanout lock 154 * to make sure that tcp can't disappear before it gets processed. The 155 * squeue will drop this reference automatically so the called function 156 * doesn't have to do a DEC_REF. 157 * 158 * Opening a new connection: 159 * 160 * The outgoing connection open is pretty simple. tcp_open() does the 161 * work in creating the conn/tcp structure and initializing it. The 162 * squeue assignment is done based on the CPU the application 163 * is running on. So for outbound connections, processing is always done 164 * on application CPU which might be different from the incoming CPU 165 * being interrupted by the NIC. An optimal way would be to figure out 166 * the NIC <-> CPU binding at listen time, and assign the outgoing 167 * connection to the squeue attached to the CPU that will be interrupted 168 * for incoming packets (we know the NIC based on the bind IP address). 169 * This might seem like a problem if more data is going out but the 170 * fact is that in most cases the transmit is ACK driven transmit where 171 * the outgoing data normally sits on TCP's xmit queue waiting to be 172 * transmitted. 173 * 174 * Accepting a connection: 175 * 176 * This is a more interesting case because of various races involved in 177 * establishing a eager in its own perimeter. Read the meta comment on 178 * top of tcp_input_listener(). But briefly, the squeue is picked by 179 * ip_fanout based on the ring or the sender (if loopback). 180 * 181 * Closing a connection: 182 * 183 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 184 * via squeue to do the close and mark the tcp as detached if the connection 185 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 186 * reference but tcp_close() drop IP's reference always. So if tcp was 187 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 188 * and 1 because it is in classifier's connected hash. This is the condition 189 * we use to determine that its OK to clean up the tcp outside of squeue 190 * when time wait expires (check the ref under fanout and conn_lock and 191 * if it is 2, remove it from fanout hash and kill it). 192 * 193 * Although close just drops the necessary references and marks the 194 * tcp_detached state, tcp_close needs to know the tcp_detached has been 195 * set (under squeue) before letting the STREAM go away (because a 196 * inbound packet might attempt to go up the STREAM while the close 197 * has happened and tcp_detached is not set). So a special lock and 198 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 199 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 200 * tcp_detached. 201 * 202 * Special provisions and fast paths: 203 * 204 * We make special provisions for sockfs by marking tcp_issocket 205 * whenever we have only sockfs on top of TCP. This allows us to skip 206 * putting the tcp in acceptor hash since a sockfs listener can never 207 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 208 * since eager has already been allocated and the accept now happens 209 * on acceptor STREAM. There is a big blob of comment on top of 210 * tcp_input_listener explaining the new accept. When socket is POP'd, 211 * sockfs sends us an ioctl to mark the fact and we go back to old 212 * behaviour. Once tcp_issocket is unset, its never set for the 213 * life of that connection. 214 * 215 * IPsec notes : 216 * 217 * Since a packet is always executed on the correct TCP perimeter 218 * all IPsec processing is defered to IP including checking new 219 * connections and setting IPSEC policies for new connection. The 220 * only exception is tcp_xmit_listeners_reset() which is called 221 * directly from IP and needs to policy check to see if TH_RST 222 * can be sent out. 223 */ 224 225 /* 226 * Values for squeue switch: 227 * 1: SQ_NODRAIN 228 * 2: SQ_PROCESS 229 * 3: SQ_FILL 230 */ 231 int tcp_squeue_wput = 2; /* /etc/systems */ 232 int tcp_squeue_flag; 233 234 /* 235 * To prevent memory hog, limit the number of entries in tcp_free_list 236 * to 1% of available memory / number of cpus 237 */ 238 uint_t tcp_free_list_max_cnt = 0; 239 240 #define TIDUSZ 4096 /* transport interface data unit size */ 241 242 /* 243 * Size of acceptor hash list. It has to be a power of 2 for hashing. 244 */ 245 #define TCP_ACCEPTOR_FANOUT_SIZE 512 246 247 #ifdef _ILP32 248 #define TCP_ACCEPTOR_HASH(accid) \ 249 (((uint_t)(accid) >> 8) & (TCP_ACCEPTOR_FANOUT_SIZE - 1)) 250 #else 251 #define TCP_ACCEPTOR_HASH(accid) \ 252 ((uint_t)(accid) & (TCP_ACCEPTOR_FANOUT_SIZE - 1)) 253 #endif /* _ILP32 */ 254 255 /* 256 * Minimum number of connections which can be created per listener. Used 257 * when the listener connection count is in effect. 258 */ 259 static uint32_t tcp_min_conn_listener = 2; 260 261 uint32_t tcp_early_abort = 30; 262 263 /* TCP Timer control structure */ 264 typedef struct tcpt_s { 265 pfv_t tcpt_pfv; /* The routine we are to call */ 266 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 267 } tcpt_t; 268 269 /* 270 * Functions called directly via squeue having a prototype of edesc_t. 271 */ 272 void tcp_input_data(void *arg, mblk_t *mp, void *arg2, 273 ip_recv_attr_t *ira); 274 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, 275 ip_recv_attr_t *dummy); 276 277 278 /* Prototype for TCP functions */ 279 static void tcp_random_init(void); 280 int tcp_random(void); 281 static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, 282 in_port_t dstport, uint_t srcid); 283 static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, 284 in_port_t dstport, uint32_t flowinfo, 285 uint_t srcid, uint32_t scope_id); 286 static void tcp_iss_init(tcp_t *tcp); 287 static void tcp_reinit(tcp_t *tcp); 288 static void tcp_reinit_values(tcp_t *tcp); 289 290 static int tcp_wsrv(queue_t *q); 291 static void tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa); 292 static void tcp_update_zcopy(tcp_t *tcp); 293 static void tcp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t, 294 ixa_notify_arg_t); 295 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 296 static void tcp_stack_fini(netstackid_t stackid, void *arg); 297 298 static int tcp_squeue_switch(int); 299 300 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 301 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 302 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 303 304 static void tcp_squeue_add(squeue_t *); 305 306 struct module_info tcp_rinfo = { 307 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 308 }; 309 310 static struct module_info tcp_winfo = { 311 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 312 }; 313 314 /* 315 * Entry points for TCP as a device. The normal case which supports 316 * the TCP functionality. 317 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 318 */ 319 struct qinit tcp_rinitv4 = { 320 NULL, tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo 321 }; 322 323 struct qinit tcp_rinitv6 = { 324 NULL, tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo 325 }; 326 327 struct qinit tcp_winit = { 328 tcp_wput, tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 329 }; 330 331 /* Initial entry point for TCP in socket mode. */ 332 struct qinit tcp_sock_winit = { 333 tcp_wput_sock, tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 334 }; 335 336 /* TCP entry point during fallback */ 337 struct qinit tcp_fallback_sock_winit = { 338 tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo 339 }; 340 341 /* 342 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 343 * an accept. Avoid allocating data structures since eager has already 344 * been created. 345 */ 346 struct qinit tcp_acceptor_rinit = { 347 NULL, tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo 348 }; 349 350 struct qinit tcp_acceptor_winit = { 351 tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo 352 }; 353 354 /* For AF_INET aka /dev/tcp */ 355 struct streamtab tcpinfov4 = { 356 &tcp_rinitv4, &tcp_winit 357 }; 358 359 /* For AF_INET6 aka /dev/tcp6 */ 360 struct streamtab tcpinfov6 = { 361 &tcp_rinitv6, &tcp_winit 362 }; 363 364 /* 365 * Following assumes TPI alignment requirements stay along 32 bit 366 * boundaries 367 */ 368 #define ROUNDUP32(x) \ 369 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 370 371 /* Template for response to info request. */ 372 struct T_info_ack tcp_g_t_info_ack = { 373 T_INFO_ACK, /* PRIM_type */ 374 0, /* TSDU_size */ 375 T_INFINITE, /* ETSDU_size */ 376 T_INVALID, /* CDATA_size */ 377 T_INVALID, /* DDATA_size */ 378 sizeof (sin_t), /* ADDR_size */ 379 0, /* OPT_size - not initialized here */ 380 TIDUSZ, /* TIDU_size */ 381 T_COTS_ORD, /* SERV_type */ 382 TCPS_IDLE, /* CURRENT_state */ 383 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 384 }; 385 386 struct T_info_ack tcp_g_t_info_ack_v6 = { 387 T_INFO_ACK, /* PRIM_type */ 388 0, /* TSDU_size */ 389 T_INFINITE, /* ETSDU_size */ 390 T_INVALID, /* CDATA_size */ 391 T_INVALID, /* DDATA_size */ 392 sizeof (sin6_t), /* ADDR_size */ 393 0, /* OPT_size - not initialized here */ 394 TIDUSZ, /* TIDU_size */ 395 T_COTS_ORD, /* SERV_type */ 396 TCPS_IDLE, /* CURRENT_state */ 397 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 398 }; 399 400 /* 401 * TCP tunables related declarations. Definitions are in tcp_tunables.c 402 */ 403 extern mod_prop_info_t tcp_propinfo_tbl[]; 404 extern int tcp_propinfo_count; 405 406 #define IS_VMLOANED_MBLK(mp) \ 407 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 408 409 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 410 411 /* 412 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 413 * tunable settable via NDD. Otherwise, the per-connection behavior is 414 * determined dynamically during tcp_set_destination(), which is the default. 415 */ 416 boolean_t tcp_static_maxpsz = B_FALSE; 417 418 /* 419 * If the receive buffer size is changed, this function is called to update 420 * the upper socket layer on the new delayed receive wake up threshold. 421 */ 422 static void 423 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh) 424 { 425 uint32_t default_threshold = SOCKET_RECVHIWATER >> 3; 426 427 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 428 conn_t *connp = tcp->tcp_connp; 429 struct sock_proto_props sopp; 430 431 /* 432 * only increase rcvthresh upto default_threshold 433 */ 434 if (new_rcvthresh > default_threshold) 435 new_rcvthresh = default_threshold; 436 437 sopp.sopp_flags = SOCKOPT_RCVTHRESH; 438 sopp.sopp_rcvthresh = new_rcvthresh; 439 440 (*connp->conn_upcalls->su_set_proto_props) 441 (connp->conn_upper_handle, &sopp); 442 } 443 } 444 445 /* 446 * Figure out the value of window scale opton. Note that the rwnd is 447 * ASSUMED to be rounded up to the nearest MSS before the calculation. 448 * We cannot find the scale value and then do a round up of tcp_rwnd 449 * because the scale value may not be correct after that. 450 * 451 * Set the compiler flag to make this function inline. 452 */ 453 void 454 tcp_set_ws_value(tcp_t *tcp) 455 { 456 int i; 457 uint32_t rwnd = tcp->tcp_rwnd; 458 459 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 460 i++, rwnd >>= 1) 461 ; 462 tcp->tcp_rcv_ws = i; 463 } 464 465 /* 466 * Remove cached/latched IPsec references. 467 */ 468 void 469 tcp_ipsec_cleanup(tcp_t *tcp) 470 { 471 conn_t *connp = tcp->tcp_connp; 472 473 ASSERT(connp->conn_flags & IPCL_TCPCONN); 474 475 if (connp->conn_latch != NULL) { 476 IPLATCH_REFRELE(connp->conn_latch); 477 connp->conn_latch = NULL; 478 } 479 if (connp->conn_latch_in_policy != NULL) { 480 IPPOL_REFRELE(connp->conn_latch_in_policy); 481 connp->conn_latch_in_policy = NULL; 482 } 483 if (connp->conn_latch_in_action != NULL) { 484 IPACT_REFRELE(connp->conn_latch_in_action); 485 connp->conn_latch_in_action = NULL; 486 } 487 if (connp->conn_policy != NULL) { 488 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 489 connp->conn_policy = NULL; 490 } 491 } 492 493 /* 494 * Cleaup before placing on free list. 495 * Disassociate from the netstack/tcp_stack_t since the freelist 496 * is per squeue and not per netstack. 497 */ 498 void 499 tcp_cleanup(tcp_t *tcp) 500 { 501 mblk_t *mp; 502 conn_t *connp = tcp->tcp_connp; 503 tcp_stack_t *tcps = tcp->tcp_tcps; 504 netstack_t *ns = tcps->tcps_netstack; 505 mblk_t *tcp_rsrv_mp; 506 507 tcp_bind_hash_remove(tcp); 508 509 /* Cleanup that which needs the netstack first */ 510 tcp_ipsec_cleanup(tcp); 511 ixa_cleanup(connp->conn_ixa); 512 513 if (connp->conn_ht_iphc != NULL) { 514 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 515 connp->conn_ht_iphc = NULL; 516 connp->conn_ht_iphc_allocated = 0; 517 connp->conn_ht_iphc_len = 0; 518 connp->conn_ht_ulp = NULL; 519 connp->conn_ht_ulp_len = 0; 520 tcp->tcp_ipha = NULL; 521 tcp->tcp_ip6h = NULL; 522 tcp->tcp_tcpha = NULL; 523 } 524 525 /* We clear any IP_OPTIONS and extension headers */ 526 ip_pkt_free(&connp->conn_xmit_ipp); 527 528 tcp_free(tcp); 529 530 /* 531 * Since we will bzero the entire structure, we need to 532 * remove it and reinsert it in global hash list. We 533 * know the walkers can't get to this conn because we 534 * had set CONDEMNED flag earlier and checked reference 535 * under conn_lock so walker won't pick it and when we 536 * go the ipcl_globalhash_remove() below, no walker 537 * can get to it. 538 */ 539 ipcl_globalhash_remove(connp); 540 541 /* Save some state */ 542 mp = tcp->tcp_timercache; 543 544 tcp_rsrv_mp = tcp->tcp_rsrv_mp; 545 546 if (connp->conn_cred != NULL) { 547 crfree(connp->conn_cred); 548 connp->conn_cred = NULL; 549 } 550 ipcl_conn_cleanup(connp); 551 connp->conn_flags = IPCL_TCPCONN; 552 553 /* 554 * Now it is safe to decrement the reference counts. 555 * This might be the last reference on the netstack 556 * in which case it will cause the freeing of the IP Instance. 557 */ 558 connp->conn_netstack = NULL; 559 connp->conn_ixa->ixa_ipst = NULL; 560 netstack_rele(ns); 561 ASSERT(tcps != NULL); 562 tcp->tcp_tcps = NULL; 563 564 bzero(tcp, sizeof (tcp_t)); 565 566 /* restore the state */ 567 tcp->tcp_timercache = mp; 568 569 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 570 571 tcp->tcp_connp = connp; 572 573 ASSERT(connp->conn_tcp == tcp); 574 ASSERT(connp->conn_flags & IPCL_TCPCONN); 575 connp->conn_state_flags = CONN_INCIPIENT; 576 ASSERT(connp->conn_proto == IPPROTO_TCP); 577 ASSERT(connp->conn_ref == 1); 578 } 579 580 /* 581 * Adapt to the information, such as rtt and rtt_sd, provided from the 582 * DCE and IRE maintained by IP. 583 * 584 * Checks for multicast and broadcast destination address. 585 * Returns zero if ok; an errno on failure. 586 * 587 * Note that the MSS calculation here is based on the info given in 588 * the DCE and IRE. We do not do any calculation based on TCP options. They 589 * will be handled in tcp_input_data() when TCP knows which options to use. 590 * 591 * Note on how TCP gets its parameters for a connection. 592 * 593 * When a tcp_t structure is allocated, it gets all the default parameters. 594 * In tcp_set_destination(), it gets those metric parameters, like rtt, rtt_sd, 595 * spipe, rpipe, ... from the route metrics. Route metric overrides the 596 * default. 597 * 598 * An incoming SYN with a multicast or broadcast destination address is dropped 599 * in ip_fanout_v4/v6. 600 * 601 * An incoming SYN with a multicast or broadcast source address is always 602 * dropped in tcp_set_destination, since IPDF_ALLOW_MCBC is not set in 603 * conn_connect. 604 * The same logic in tcp_set_destination also serves to 605 * reject an attempt to connect to a broadcast or multicast (destination) 606 * address. 607 */ 608 int 609 tcp_set_destination(tcp_t *tcp) 610 { 611 uint32_t mss_max; 612 uint32_t mss; 613 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 614 conn_t *connp = tcp->tcp_connp; 615 tcp_stack_t *tcps = tcp->tcp_tcps; 616 iulp_t uinfo; 617 int error; 618 uint32_t flags; 619 620 flags = IPDF_LSO | IPDF_ZCOPY; 621 /* 622 * Make sure we have a dce for the destination to avoid dce_ident 623 * contention for connected sockets. 624 */ 625 flags |= IPDF_UNIQUE_DCE; 626 627 if (!tcps->tcps_ignore_path_mtu) 628 connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY; 629 630 /* Use conn_lock to satify ASSERT; tcp is already serialized */ 631 mutex_enter(&connp->conn_lock); 632 error = conn_connect(connp, &uinfo, flags); 633 mutex_exit(&connp->conn_lock); 634 if (error != 0) 635 return (error); 636 637 error = tcp_build_hdrs(tcp); 638 if (error != 0) 639 return (error); 640 641 tcp->tcp_localnet = uinfo.iulp_localnet; 642 643 if (uinfo.iulp_rtt != 0) { 644 tcp->tcp_rtt_sa = MSEC2NSEC(uinfo.iulp_rtt); 645 tcp->tcp_rtt_sd = MSEC2NSEC(uinfo.iulp_rtt_sd); 646 tcp->tcp_rto = tcp_calculate_rto(tcp, tcps, 0); 647 } 648 if (uinfo.iulp_ssthresh != 0) 649 tcp->tcp_cwnd_ssthresh = uinfo.iulp_ssthresh; 650 else 651 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 652 if (uinfo.iulp_spipe > 0) { 653 connp->conn_sndbuf = MIN(uinfo.iulp_spipe, 654 tcps->tcps_max_buf); 655 if (tcps->tcps_snd_lowat_fraction != 0) { 656 connp->conn_sndlowat = connp->conn_sndbuf / 657 tcps->tcps_snd_lowat_fraction; 658 } 659 (void) tcp_maxpsz_set(tcp, B_TRUE); 660 } 661 /* 662 * Note that up till now, acceptor always inherits receive 663 * window from the listener. But if there is a metrics 664 * associated with a host, we should use that instead of 665 * inheriting it from listener. Thus we need to pass this 666 * info back to the caller. 667 */ 668 if (uinfo.iulp_rpipe > 0) { 669 tcp->tcp_rwnd = MIN(uinfo.iulp_rpipe, 670 tcps->tcps_max_buf); 671 } 672 673 if (uinfo.iulp_rtomax > 0) { 674 tcp->tcp_second_timer_threshold = 675 uinfo.iulp_rtomax; 676 } 677 678 /* 679 * Use the metric option settings, iulp_tstamp_ok and 680 * iulp_wscale_ok, only for active open. What this means 681 * is that if the other side uses timestamp or window 682 * scale option, TCP will also use those options. That 683 * is for passive open. If the application sets a 684 * large window, window scale is enabled regardless of 685 * the value in iulp_wscale_ok. This is the behavior 686 * since 2.6. So we keep it. 687 * The only case left in passive open processing is the 688 * check for SACK. 689 * For ECN, it should probably be like SACK. But the 690 * current value is binary, so we treat it like the other 691 * cases. The metric only controls active open.For passive 692 * open, the ndd param, tcp_ecn_permitted, controls the 693 * behavior. 694 */ 695 if (!tcp_detached) { 696 /* 697 * The if check means that the following can only 698 * be turned on by the metrics only IRE, but not off. 699 */ 700 if (uinfo.iulp_tstamp_ok) 701 tcp->tcp_snd_ts_ok = B_TRUE; 702 if (uinfo.iulp_wscale_ok) 703 tcp->tcp_snd_ws_ok = B_TRUE; 704 if (uinfo.iulp_sack == 2) 705 tcp->tcp_snd_sack_ok = B_TRUE; 706 if (uinfo.iulp_ecn_ok) 707 tcp->tcp_ecn_ok = B_TRUE; 708 } else { 709 /* 710 * Passive open. 711 * 712 * As above, the if check means that SACK can only be 713 * turned on by the metric only IRE. 714 */ 715 if (uinfo.iulp_sack > 0) { 716 tcp->tcp_snd_sack_ok = B_TRUE; 717 } 718 } 719 720 /* 721 * XXX Note that currently, iulp_mtu can be as small as 68 722 * because of PMTUd. So tcp_mss may go to negative if combined 723 * length of all those options exceeds 28 bytes. But because 724 * of the tcp_mss_min check below, we may not have a problem if 725 * tcp_mss_min is of a reasonable value. The default is 1 so 726 * the negative problem still exists. And the check defeats PMTUd. 727 * In fact, if PMTUd finds that the MSS should be smaller than 728 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 729 * value. 730 * 731 * We do not deal with that now. All those problems related to 732 * PMTUd will be fixed later. 733 */ 734 ASSERT(uinfo.iulp_mtu != 0); 735 mss = tcp->tcp_initial_pmtu = uinfo.iulp_mtu; 736 737 /* Sanity check for MSS value. */ 738 if (connp->conn_ipversion == IPV4_VERSION) 739 mss_max = tcps->tcps_mss_max_ipv4; 740 else 741 mss_max = tcps->tcps_mss_max_ipv6; 742 743 if (tcp->tcp_ipsec_overhead == 0) 744 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 745 746 mss -= tcp->tcp_ipsec_overhead; 747 748 if (mss < tcps->tcps_mss_min) 749 mss = tcps->tcps_mss_min; 750 if (mss > mss_max) 751 mss = mss_max; 752 753 /* Note that this is the maximum MSS, excluding all options. */ 754 tcp->tcp_mss = mss; 755 756 /* 757 * Update the tcp connection with LSO capability. 758 */ 759 tcp_update_lso(tcp, connp->conn_ixa); 760 761 /* 762 * Initialize the ISS here now that we have the full connection ID. 763 * The RFC 1948 method of initial sequence number generation requires 764 * knowledge of the full connection ID before setting the ISS. 765 */ 766 tcp_iss_init(tcp); 767 768 tcp->tcp_loopback = (uinfo.iulp_loopback | uinfo.iulp_local); 769 770 /* 771 * Make sure that conn is not marked incipient 772 * for incoming connections. A blind 773 * removal of incipient flag is cheaper than 774 * check and removal. 775 */ 776 mutex_enter(&connp->conn_lock); 777 connp->conn_state_flags &= ~CONN_INCIPIENT; 778 mutex_exit(&connp->conn_lock); 779 return (0); 780 } 781 782 /* 783 * tcp_clean_death / tcp_close_detached must not be called more than once 784 * on a tcp. Thus every function that potentially calls tcp_clean_death 785 * must check for the tcp state before calling tcp_clean_death. 786 * Eg. tcp_input_data, tcp_eager_kill, tcp_clean_death_wrapper, 787 * tcp_timer_handler, all check for the tcp state. 788 */ 789 /* ARGSUSED */ 790 void 791 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2, 792 ip_recv_attr_t *dummy) 793 { 794 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 795 796 freemsg(mp); 797 if (tcp->tcp_state > TCPS_BOUND) 798 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT); 799 } 800 801 /* 802 * We are dying for some reason. Try to do it gracefully. (May be called 803 * as writer.) 804 * 805 * Return -1 if the structure was not cleaned up (if the cleanup had to be 806 * done by a service procedure). 807 * TBD - Should the return value distinguish between the tcp_t being 808 * freed and it being reinitialized? 809 */ 810 int 811 tcp_clean_death(tcp_t *tcp, int err) 812 { 813 mblk_t *mp; 814 queue_t *q; 815 conn_t *connp = tcp->tcp_connp; 816 tcp_stack_t *tcps = tcp->tcp_tcps; 817 818 if (tcp->tcp_fused) 819 tcp_unfuse(tcp); 820 821 if (tcp->tcp_linger_tid != 0 && 822 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 823 tcp_stop_lingering(tcp); 824 } 825 826 ASSERT(tcp != NULL); 827 ASSERT((connp->conn_family == AF_INET && 828 connp->conn_ipversion == IPV4_VERSION) || 829 (connp->conn_family == AF_INET6 && 830 (connp->conn_ipversion == IPV4_VERSION || 831 connp->conn_ipversion == IPV6_VERSION))); 832 833 if (TCP_IS_DETACHED(tcp)) { 834 if (tcp->tcp_hard_binding) { 835 /* 836 * Its an eager that we are dealing with. We close the 837 * eager but in case a conn_ind has already gone to the 838 * listener, let tcp_accept_finish() send a discon_ind 839 * to the listener and drop the last reference. If the 840 * listener doesn't even know about the eager i.e. the 841 * conn_ind hasn't gone up, blow away the eager and drop 842 * the last reference as well. If the conn_ind has gone 843 * up, state should be BOUND. tcp_accept_finish 844 * will figure out that the connection has received a 845 * RST and will send a DISCON_IND to the application. 846 */ 847 tcp_closei_local(tcp); 848 if (!tcp->tcp_tconnind_started) { 849 CONN_DEC_REF(connp); 850 } else { 851 tcp->tcp_state = TCPS_BOUND; 852 DTRACE_TCP6(state__change, void, NULL, 853 ip_xmit_attr_t *, connp->conn_ixa, 854 void, NULL, tcp_t *, tcp, void, NULL, 855 int32_t, TCPS_CLOSED); 856 } 857 } else { 858 tcp_close_detached(tcp); 859 } 860 return (0); 861 } 862 863 TCP_STAT(tcps, tcp_clean_death_nondetached); 864 865 /* 866 * The connection is dead. Decrement listener connection counter if 867 * necessary. 868 */ 869 if (tcp->tcp_listen_cnt != NULL) 870 TCP_DECR_LISTEN_CNT(tcp); 871 872 /* 873 * When a connection is moved to TIME_WAIT state, the connection 874 * counter is already decremented. So no need to decrement here 875 * again. See SET_TIME_WAIT() macro. 876 */ 877 if (tcp->tcp_state >= TCPS_ESTABLISHED && 878 tcp->tcp_state < TCPS_TIME_WAIT) { 879 TCPS_CONN_DEC(tcps); 880 } 881 882 q = connp->conn_rq; 883 884 /* Trash all inbound data */ 885 if (!IPCL_IS_NONSTR(connp)) { 886 ASSERT(q != NULL); 887 flushq(q, FLUSHALL); 888 } 889 890 /* 891 * If we are at least part way open and there is error 892 * (err==0 implies no error) 893 * notify our client by a T_DISCON_IND. 894 */ 895 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 896 if (tcp->tcp_state >= TCPS_ESTABLISHED && 897 !TCP_IS_SOCKET(tcp)) { 898 /* 899 * Send M_FLUSH according to TPI. Because sockets will 900 * (and must) ignore FLUSHR we do that only for TPI 901 * endpoints and sockets in STREAMS mode. 902 */ 903 (void) putnextctl1(q, M_FLUSH, FLUSHR); 904 } 905 if (connp->conn_debug) { 906 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 907 "tcp_clean_death: discon err %d", err); 908 } 909 if (IPCL_IS_NONSTR(connp)) { 910 /* Direct socket, use upcall */ 911 (*connp->conn_upcalls->su_disconnected)( 912 connp->conn_upper_handle, tcp->tcp_connid, err); 913 } else { 914 mp = mi_tpi_discon_ind(NULL, err, 0); 915 if (mp != NULL) { 916 putnext(q, mp); 917 } else { 918 if (connp->conn_debug) { 919 (void) strlog(TCP_MOD_ID, 0, 1, 920 SL_ERROR|SL_TRACE, 921 "tcp_clean_death, sending M_ERROR"); 922 } 923 (void) putnextctl1(q, M_ERROR, EPROTO); 924 } 925 } 926 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 927 /* SYN_SENT or SYN_RCVD */ 928 TCPS_BUMP_MIB(tcps, tcpAttemptFails); 929 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 930 /* ESTABLISHED or CLOSE_WAIT */ 931 TCPS_BUMP_MIB(tcps, tcpEstabResets); 932 } 933 } 934 935 /* 936 * ESTABLISHED non-STREAMS eagers are not 'detached' because 937 * an upper handle is obtained when the SYN-ACK comes in. So it 938 * should receive the 'disconnected' upcall, but tcp_reinit should 939 * not be called since this is an eager. 940 */ 941 if (tcp->tcp_listener != NULL && IPCL_IS_NONSTR(connp)) { 942 tcp_closei_local(tcp); 943 tcp->tcp_state = TCPS_BOUND; 944 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 945 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 946 int32_t, TCPS_CLOSED); 947 return (0); 948 } 949 950 tcp_reinit(tcp); 951 if (IPCL_IS_NONSTR(connp)) 952 (void) tcp_do_unbind(connp); 953 954 return (-1); 955 } 956 957 /* 958 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 959 * to expire, stop the wait and finish the close. 960 */ 961 void 962 tcp_stop_lingering(tcp_t *tcp) 963 { 964 clock_t delta = 0; 965 tcp_stack_t *tcps = tcp->tcp_tcps; 966 conn_t *connp = tcp->tcp_connp; 967 968 tcp->tcp_linger_tid = 0; 969 if (tcp->tcp_state > TCPS_LISTEN) { 970 tcp_acceptor_hash_remove(tcp); 971 mutex_enter(&tcp->tcp_non_sq_lock); 972 if (tcp->tcp_flow_stopped) { 973 tcp_clrqfull(tcp); 974 } 975 mutex_exit(&tcp->tcp_non_sq_lock); 976 977 if (tcp->tcp_timer_tid != 0) { 978 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 979 tcp->tcp_timer_tid = 0; 980 } 981 /* 982 * Need to cancel those timers which will not be used when 983 * TCP is detached. This has to be done before the conn_wq 984 * is cleared. 985 */ 986 tcp_timers_stop(tcp); 987 988 tcp->tcp_detached = B_TRUE; 989 connp->conn_rq = NULL; 990 connp->conn_wq = NULL; 991 992 if (tcp->tcp_state == TCPS_TIME_WAIT) { 993 tcp_time_wait_append(tcp); 994 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 995 goto finish; 996 } 997 998 /* 999 * If delta is zero the timer event wasn't executed and was 1000 * successfully canceled. In this case we need to restart it 1001 * with the minimal delta possible. 1002 */ 1003 if (delta >= 0) { 1004 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 1005 delta ? delta : 1); 1006 } 1007 } else { 1008 tcp_closei_local(tcp); 1009 CONN_DEC_REF(connp); 1010 } 1011 finish: 1012 tcp->tcp_detached = B_TRUE; 1013 connp->conn_rq = NULL; 1014 connp->conn_wq = NULL; 1015 1016 /* Signal closing thread that it can complete close */ 1017 mutex_enter(&tcp->tcp_closelock); 1018 tcp->tcp_closed = 1; 1019 cv_signal(&tcp->tcp_closecv); 1020 mutex_exit(&tcp->tcp_closelock); 1021 1022 /* If we have an upper handle (socket), release it */ 1023 if (IPCL_IS_NONSTR(connp)) { 1024 sock_upcalls_t *upcalls = connp->conn_upcalls; 1025 sock_upper_handle_t handle = connp->conn_upper_handle; 1026 1027 ASSERT(upcalls != NULL); 1028 ASSERT(upcalls->su_closed != NULL); 1029 ASSERT(handle != NULL); 1030 /* 1031 * Set these to NULL first because closed() will free upper 1032 * structures. Acquire conn_lock because an external caller 1033 * like conn_get_socket_info() will upcall if these are 1034 * non-NULL. 1035 */ 1036 mutex_enter(&connp->conn_lock); 1037 connp->conn_upper_handle = NULL; 1038 connp->conn_upcalls = NULL; 1039 mutex_exit(&connp->conn_lock); 1040 upcalls->su_closed(handle); 1041 } 1042 } 1043 1044 void 1045 tcp_close_common(conn_t *connp, int flags) 1046 { 1047 tcp_t *tcp = connp->conn_tcp; 1048 mblk_t *mp = &tcp->tcp_closemp; 1049 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 1050 mblk_t *bp; 1051 1052 ASSERT(connp->conn_ref >= 2); 1053 1054 /* 1055 * Mark the conn as closing. ipsq_pending_mp_add will not 1056 * add any mp to the pending mp list, after this conn has 1057 * started closing. 1058 */ 1059 mutex_enter(&connp->conn_lock); 1060 connp->conn_state_flags |= CONN_CLOSING; 1061 if (connp->conn_oper_pending_ill != NULL) 1062 conn_ioctl_cleanup_reqd = B_TRUE; 1063 CONN_INC_REF_LOCKED(connp); 1064 mutex_exit(&connp->conn_lock); 1065 tcp->tcp_closeflags = (uint8_t)flags; 1066 ASSERT(connp->conn_ref >= 3); 1067 1068 /* 1069 * tcp_closemp_used is used below without any protection of a lock 1070 * as we don't expect any one else to use it concurrently at this 1071 * point otherwise it would be a major defect. 1072 */ 1073 1074 if (mp->b_prev == NULL) 1075 tcp->tcp_closemp_used = B_TRUE; 1076 else 1077 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 1078 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 1079 1080 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1081 1082 /* 1083 * Cleanup any queued ioctls here. This must be done before the wq/rq 1084 * are re-written by tcp_close_output(). 1085 */ 1086 if (conn_ioctl_cleanup_reqd) 1087 conn_ioctl_cleanup(connp); 1088 1089 /* 1090 * As CONN_CLOSING is set, no further ioctls should be passed down to 1091 * IP for this conn (see the guards in tcp_ioctl, tcp_wput_ioctl and 1092 * tcp_wput_iocdata). If the ioctl was queued on an ipsq, 1093 * conn_ioctl_cleanup should have found it and removed it. If the ioctl 1094 * was still in flight at the time, we wait for it here. See comments 1095 * for CONN_INC_IOCTLREF in ip.h for details. 1096 */ 1097 mutex_enter(&connp->conn_lock); 1098 while (connp->conn_ioctlref > 0) 1099 cv_wait(&connp->conn_cv, &connp->conn_lock); 1100 ASSERT(connp->conn_ioctlref == 0); 1101 ASSERT(connp->conn_oper_pending_ill == NULL); 1102 mutex_exit(&connp->conn_lock); 1103 1104 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp, 1105 NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 1106 1107 /* 1108 * For non-STREAMS sockets, the normal case is that the conn makes 1109 * an upcall when it's finally closed, so there is no need to wait 1110 * in the protocol. But in case of SO_LINGER the thread sleeps here 1111 * so it can properly deal with the thread being interrupted. 1112 */ 1113 if (IPCL_IS_NONSTR(connp) && connp->conn_linger == 0) 1114 goto nowait; 1115 1116 mutex_enter(&tcp->tcp_closelock); 1117 while (!tcp->tcp_closed) { 1118 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 1119 /* 1120 * The cv_wait_sig() was interrupted. We now do the 1121 * following: 1122 * 1123 * 1) If the endpoint was lingering, we allow this 1124 * to be interrupted by cancelling the linger timeout 1125 * and closing normally. 1126 * 1127 * 2) Revert to calling cv_wait() 1128 * 1129 * We revert to using cv_wait() to avoid an 1130 * infinite loop which can occur if the calling 1131 * thread is higher priority than the squeue worker 1132 * thread and is bound to the same cpu. 1133 */ 1134 if (connp->conn_linger && connp->conn_lingertime > 0) { 1135 mutex_exit(&tcp->tcp_closelock); 1136 /* Entering squeue, bump ref count. */ 1137 CONN_INC_REF(connp); 1138 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 1139 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, 1140 tcp_linger_interrupted, connp, NULL, 1141 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 1142 mutex_enter(&tcp->tcp_closelock); 1143 } 1144 break; 1145 } 1146 } 1147 while (!tcp->tcp_closed) 1148 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 1149 mutex_exit(&tcp->tcp_closelock); 1150 1151 /* 1152 * In the case of listener streams that have eagers in the q or q0 1153 * we wait for the eagers to drop their reference to us. conn_rq and 1154 * conn_wq of the eagers point to our queues. By waiting for the 1155 * refcnt to drop to 1, we are sure that the eagers have cleaned 1156 * up their queue pointers and also dropped their references to us. 1157 * 1158 * For non-STREAMS sockets we do not have to wait here; the 1159 * listener will instead make a su_closed upcall when the last 1160 * reference is dropped. 1161 */ 1162 if (tcp->tcp_wait_for_eagers && !IPCL_IS_NONSTR(connp)) { 1163 mutex_enter(&connp->conn_lock); 1164 while (connp->conn_ref != 1) { 1165 cv_wait(&connp->conn_cv, &connp->conn_lock); 1166 } 1167 mutex_exit(&connp->conn_lock); 1168 } 1169 1170 nowait: 1171 connp->conn_cpid = NOPID; 1172 } 1173 1174 /* 1175 * Called by tcp_close() routine via squeue when lingering is 1176 * interrupted by a signal. 1177 */ 1178 1179 /* ARGSUSED */ 1180 static void 1181 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 1182 { 1183 conn_t *connp = (conn_t *)arg; 1184 tcp_t *tcp = connp->conn_tcp; 1185 1186 freeb(mp); 1187 if (tcp->tcp_linger_tid != 0 && 1188 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 1189 tcp_stop_lingering(tcp); 1190 tcp->tcp_client_errno = EINTR; 1191 } 1192 } 1193 1194 /* 1195 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 1196 * Some stream heads get upset if they see these later on as anything but NULL. 1197 */ 1198 void 1199 tcp_close_mpp(mblk_t **mpp) 1200 { 1201 mblk_t *mp; 1202 1203 if ((mp = *mpp) != NULL) { 1204 do { 1205 mp->b_next = NULL; 1206 mp->b_prev = NULL; 1207 } while ((mp = mp->b_cont) != NULL); 1208 1209 mp = *mpp; 1210 *mpp = NULL; 1211 freemsg(mp); 1212 } 1213 } 1214 1215 /* Do detached close. */ 1216 void 1217 tcp_close_detached(tcp_t *tcp) 1218 { 1219 if (tcp->tcp_fused) 1220 tcp_unfuse(tcp); 1221 1222 /* 1223 * Clustering code serializes TCP disconnect callbacks and 1224 * cluster tcp list walks by blocking a TCP disconnect callback 1225 * if a cluster tcp list walk is in progress. This ensures 1226 * accurate accounting of TCPs in the cluster code even though 1227 * the TCP list walk itself is not atomic. 1228 */ 1229 tcp_closei_local(tcp); 1230 CONN_DEC_REF(tcp->tcp_connp); 1231 } 1232 1233 /* 1234 * The tcp_t is going away. Remove it from all lists and set it 1235 * to TCPS_CLOSED. The freeing up of memory is deferred until 1236 * tcp_inactive. This is needed since a thread in tcp_rput might have 1237 * done a CONN_INC_REF on this structure before it was removed from the 1238 * hashes. 1239 */ 1240 void 1241 tcp_closei_local(tcp_t *tcp) 1242 { 1243 conn_t *connp = tcp->tcp_connp; 1244 tcp_stack_t *tcps = tcp->tcp_tcps; 1245 int32_t oldstate; 1246 1247 if (!TCP_IS_SOCKET(tcp)) 1248 tcp_acceptor_hash_remove(tcp); 1249 1250 /* 1251 * This can be called via tcp_time_wait_processing() if TCP gets a 1252 * SYN with sequence number outside the TIME-WAIT connection's 1253 * window. So we need to check for TIME-WAIT state here as the 1254 * connection counter is already decremented. See SET_TIME_WAIT() 1255 * macro 1256 */ 1257 if (tcp->tcp_state >= TCPS_ESTABLISHED && 1258 tcp->tcp_state < TCPS_TIME_WAIT) { 1259 TCPS_CONN_DEC(tcps); 1260 } 1261 1262 /* 1263 * If we are an eager connection hanging off a listener that 1264 * hasn't formally accepted the connection yet, get off its 1265 * list and blow off any data that we have accumulated. 1266 */ 1267 if (tcp->tcp_listener != NULL) { 1268 tcp_t *listener = tcp->tcp_listener; 1269 mutex_enter(&listener->tcp_eager_lock); 1270 /* 1271 * tcp_tconnind_started == B_TRUE means that the 1272 * conn_ind has already gone to listener. At 1273 * this point, eager will be closed but we 1274 * leave it in listeners eager list so that 1275 * if listener decides to close without doing 1276 * accept, we can clean this up. In tcp_tli_accept 1277 * we take care of the case of accept on closed 1278 * eager. 1279 */ 1280 if (!tcp->tcp_tconnind_started) { 1281 tcp_eager_unlink(tcp); 1282 mutex_exit(&listener->tcp_eager_lock); 1283 /* 1284 * We don't want to have any pointers to the 1285 * listener queue, after we have released our 1286 * reference on the listener 1287 */ 1288 ASSERT(tcp->tcp_detached); 1289 connp->conn_rq = NULL; 1290 connp->conn_wq = NULL; 1291 CONN_DEC_REF(listener->tcp_connp); 1292 } else { 1293 mutex_exit(&listener->tcp_eager_lock); 1294 } 1295 } 1296 1297 /* Stop all the timers */ 1298 tcp_timers_stop(tcp); 1299 1300 if (tcp->tcp_state == TCPS_LISTEN) { 1301 if (tcp->tcp_ip_addr_cache) { 1302 kmem_free((void *)tcp->tcp_ip_addr_cache, 1303 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1304 tcp->tcp_ip_addr_cache = NULL; 1305 } 1306 } 1307 1308 /* Decrement listerner connection counter if necessary. */ 1309 if (tcp->tcp_listen_cnt != NULL) 1310 TCP_DECR_LISTEN_CNT(tcp); 1311 1312 mutex_enter(&tcp->tcp_non_sq_lock); 1313 if (tcp->tcp_flow_stopped) 1314 tcp_clrqfull(tcp); 1315 mutex_exit(&tcp->tcp_non_sq_lock); 1316 1317 tcp_bind_hash_remove(tcp); 1318 /* 1319 * If the tcp_time_wait_collector (which runs outside the squeue) 1320 * is trying to remove this tcp from the time wait list, we will 1321 * block in tcp_time_wait_remove while trying to acquire the 1322 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 1323 * requires the ipcl_hash_remove to be ordered after the 1324 * tcp_time_wait_remove for the refcnt checks to work correctly. 1325 */ 1326 if (tcp->tcp_state == TCPS_TIME_WAIT) 1327 (void) tcp_time_wait_remove(tcp, NULL); 1328 CL_INET_DISCONNECT(connp); 1329 ipcl_hash_remove(connp); 1330 oldstate = tcp->tcp_state; 1331 tcp->tcp_state = TCPS_CLOSED; 1332 /* Need to probe before ixa_cleanup() is called */ 1333 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 1334 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 1335 int32_t, oldstate); 1336 ixa_cleanup(connp->conn_ixa); 1337 1338 /* 1339 * Mark the conn as CONDEMNED 1340 */ 1341 mutex_enter(&connp->conn_lock); 1342 connp->conn_state_flags |= CONN_CONDEMNED; 1343 mutex_exit(&connp->conn_lock); 1344 1345 ASSERT(tcp->tcp_time_wait_next == NULL); 1346 ASSERT(tcp->tcp_time_wait_prev == NULL); 1347 ASSERT(tcp->tcp_time_wait_expire == 0); 1348 1349 tcp_ipsec_cleanup(tcp); 1350 } 1351 1352 /* 1353 * tcp is dying (called from ipcl_conn_destroy and error cases). 1354 * Free the tcp_t in either case. 1355 */ 1356 void 1357 tcp_free(tcp_t *tcp) 1358 { 1359 mblk_t *mp; 1360 conn_t *connp = tcp->tcp_connp; 1361 1362 ASSERT(tcp != NULL); 1363 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 1364 1365 connp->conn_rq = NULL; 1366 connp->conn_wq = NULL; 1367 1368 tcp_close_mpp(&tcp->tcp_xmit_head); 1369 tcp_close_mpp(&tcp->tcp_reass_head); 1370 if (tcp->tcp_rcv_list != NULL) { 1371 /* Free b_next chain */ 1372 tcp_close_mpp(&tcp->tcp_rcv_list); 1373 } 1374 if ((mp = tcp->tcp_urp_mp) != NULL) { 1375 freemsg(mp); 1376 } 1377 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 1378 freemsg(mp); 1379 } 1380 1381 if (tcp->tcp_fused_sigurg_mp != NULL) { 1382 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1383 freeb(tcp->tcp_fused_sigurg_mp); 1384 tcp->tcp_fused_sigurg_mp = NULL; 1385 } 1386 1387 if (tcp->tcp_ordrel_mp != NULL) { 1388 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1389 freeb(tcp->tcp_ordrel_mp); 1390 tcp->tcp_ordrel_mp = NULL; 1391 } 1392 1393 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 1394 bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 1395 1396 if (tcp->tcp_hopopts != NULL) { 1397 mi_free(tcp->tcp_hopopts); 1398 tcp->tcp_hopopts = NULL; 1399 tcp->tcp_hopoptslen = 0; 1400 } 1401 ASSERT(tcp->tcp_hopoptslen == 0); 1402 if (tcp->tcp_dstopts != NULL) { 1403 mi_free(tcp->tcp_dstopts); 1404 tcp->tcp_dstopts = NULL; 1405 tcp->tcp_dstoptslen = 0; 1406 } 1407 ASSERT(tcp->tcp_dstoptslen == 0); 1408 if (tcp->tcp_rthdrdstopts != NULL) { 1409 mi_free(tcp->tcp_rthdrdstopts); 1410 tcp->tcp_rthdrdstopts = NULL; 1411 tcp->tcp_rthdrdstoptslen = 0; 1412 } 1413 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 1414 if (tcp->tcp_rthdr != NULL) { 1415 mi_free(tcp->tcp_rthdr); 1416 tcp->tcp_rthdr = NULL; 1417 tcp->tcp_rthdrlen = 0; 1418 } 1419 ASSERT(tcp->tcp_rthdrlen == 0); 1420 1421 /* 1422 * Following is really a blowing away a union. 1423 * It happens to have exactly two members of identical size 1424 * the following code is enough. 1425 */ 1426 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 1427 1428 if (tcp->tcp_sig_sa_in != NULL) { 1429 tcpsig_sa_rele(tcp->tcp_sig_sa_in); 1430 tcp->tcp_sig_sa_in = NULL; 1431 } 1432 if (tcp->tcp_sig_sa_out != NULL) { 1433 tcpsig_sa_rele(tcp->tcp_sig_sa_out); 1434 tcp->tcp_sig_sa_out = NULL; 1435 } 1436 1437 /* Allow the CC algorithm to clean up after itself. */ 1438 if (tcp->tcp_cc_algo != NULL && tcp->tcp_cc_algo->cb_destroy != NULL) 1439 tcp->tcp_cc_algo->cb_destroy(&tcp->tcp_ccv); 1440 1441 /* 1442 * If this is a non-STREAM socket still holding on to an upper 1443 * handle, release it. As a result of fallback we might also see 1444 * STREAMS based conns with upper handles, in which case there is 1445 * nothing to do other than clearing the field. 1446 */ 1447 if (connp->conn_upper_handle != NULL) { 1448 sock_upcalls_t *upcalls = connp->conn_upcalls; 1449 sock_upper_handle_t handle = connp->conn_upper_handle; 1450 1451 /* 1452 * Set these to NULL first because closed() will free upper 1453 * structures. Acquire conn_lock because an external caller 1454 * like conn_get_socket_info() will upcall if these are 1455 * non-NULL. 1456 */ 1457 mutex_enter(&connp->conn_lock); 1458 connp->conn_upper_handle = NULL; 1459 connp->conn_upcalls = NULL; 1460 mutex_exit(&connp->conn_lock); 1461 if (IPCL_IS_NONSTR(connp)) { 1462 ASSERT(upcalls != NULL); 1463 ASSERT(upcalls->su_closed != NULL); 1464 ASSERT(handle != NULL); 1465 upcalls->su_closed(handle); 1466 tcp->tcp_detached = B_TRUE; 1467 } 1468 } 1469 } 1470 1471 /* 1472 * tcp_get_conn/tcp_free_conn 1473 * 1474 * tcp_get_conn is used to get a clean tcp connection structure. 1475 * It tries to reuse the connections put on the freelist by the 1476 * time_wait_collector failing which it goes to kmem_cache. This 1477 * way has two benefits compared to just allocating from and 1478 * freeing to kmem_cache. 1479 * 1) The time_wait_collector can free (which includes the cleanup) 1480 * outside the squeue. So when the interrupt comes, we have a clean 1481 * connection sitting in the freelist. Obviously, this buys us 1482 * performance. 1483 * 1484 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_input_listener 1485 * has multiple disadvantages - tying up the squeue during alloc. 1486 * But allocating the conn/tcp in IP land is also not the best since 1487 * we can't check the 'q' and 'q0' which are protected by squeue and 1488 * blindly allocate memory which might have to be freed here if we are 1489 * not allowed to accept the connection. By using the freelist and 1490 * putting the conn/tcp back in freelist, we don't pay a penalty for 1491 * allocating memory without checking 'q/q0' and freeing it if we can't 1492 * accept the connection. 1493 * 1494 * Care should be taken to put the conn back in the same squeue's freelist 1495 * from which it was allocated. Best results are obtained if conn is 1496 * allocated from listener's squeue and freed to the same. Time wait 1497 * collector will free up the freelist is the connection ends up sitting 1498 * there for too long. 1499 */ 1500 conn_t * 1501 tcp_get_conn(void *arg, tcp_stack_t *tcps) 1502 { 1503 tcp_t *tcp = NULL; 1504 conn_t *connp = NULL; 1505 squeue_t *sqp = (squeue_t *)arg; 1506 tcp_squeue_priv_t *tcp_time_wait; 1507 netstack_t *ns; 1508 mblk_t *tcp_rsrv_mp = NULL; 1509 1510 tcp_time_wait = 1511 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1512 1513 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1514 tcp = tcp_time_wait->tcp_free_list; 1515 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 1516 if (tcp != NULL) { 1517 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1518 tcp_time_wait->tcp_free_list_cnt--; 1519 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1520 tcp->tcp_time_wait_next = NULL; 1521 connp = tcp->tcp_connp; 1522 connp->conn_flags |= IPCL_REUSED; 1523 1524 ASSERT(tcp->tcp_tcps == NULL); 1525 ASSERT(connp->conn_netstack == NULL); 1526 ASSERT(tcp->tcp_rsrv_mp != NULL); 1527 ns = tcps->tcps_netstack; 1528 netstack_hold(ns); 1529 connp->conn_netstack = ns; 1530 connp->conn_ixa->ixa_ipst = ns->netstack_ip; 1531 tcp->tcp_tcps = tcps; 1532 ipcl_globalhash_insert(connp); 1533 1534 connp->conn_ixa->ixa_notify_cookie = tcp; 1535 ASSERT(connp->conn_ixa->ixa_notify == tcp_notify); 1536 connp->conn_recv = tcp_input_data; 1537 ASSERT(connp->conn_recvicmp == tcp_icmp_input); 1538 ASSERT(connp->conn_verifyicmp == tcp_verifyicmp); 1539 return (connp); 1540 } 1541 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1542 /* 1543 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until 1544 * this conn_t/tcp_t is freed at ipcl_conn_destroy(). 1545 */ 1546 tcp_rsrv_mp = allocb(0, BPRI_HI); 1547 if (tcp_rsrv_mp == NULL) 1548 return (NULL); 1549 1550 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 1551 tcps->tcps_netstack)) == NULL) { 1552 freeb(tcp_rsrv_mp); 1553 return (NULL); 1554 } 1555 1556 tcp = connp->conn_tcp; 1557 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 1558 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL); 1559 1560 tcp->tcp_tcps = tcps; 1561 1562 connp->conn_recv = tcp_input_data; 1563 connp->conn_recvicmp = tcp_icmp_input; 1564 connp->conn_verifyicmp = tcp_verifyicmp; 1565 1566 /* 1567 * Register tcp_notify to listen to capability changes detected by IP. 1568 * This upcall is made in the context of the call to conn_ip_output 1569 * thus it is inside the squeue. 1570 */ 1571 connp->conn_ixa->ixa_notify = tcp_notify; 1572 connp->conn_ixa->ixa_notify_cookie = tcp; 1573 1574 return (connp); 1575 } 1576 1577 /* 1578 * Handle connect to IPv4 destinations, including connections for AF_INET6 1579 * sockets connecting to IPv4 mapped IPv6 destinations. 1580 * Returns zero if OK, a positive errno, or a negative TLI error. 1581 */ 1582 static int 1583 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport, 1584 uint_t srcid) 1585 { 1586 ipaddr_t dstaddr = *dstaddrp; 1587 uint16_t lport; 1588 conn_t *connp = tcp->tcp_connp; 1589 tcp_stack_t *tcps = tcp->tcp_tcps; 1590 int error; 1591 1592 ASSERT(connp->conn_ipversion == IPV4_VERSION); 1593 1594 /* Check for attempt to connect to INADDR_ANY */ 1595 if (dstaddr == INADDR_ANY) { 1596 /* 1597 * SunOS 4.x and 4.3 BSD allow an application 1598 * to connect a TCP socket to INADDR_ANY. 1599 * When they do this, the kernel picks the 1600 * address of one interface and uses it 1601 * instead. The kernel usually ends up 1602 * picking the address of the loopback 1603 * interface. This is an undocumented feature. 1604 * However, we provide the same thing here 1605 * in order to have source and binary 1606 * compatibility with SunOS 4.x. 1607 * Update the T_CONN_REQ (sin/sin6) since it is used to 1608 * generate the T_CONN_CON. 1609 */ 1610 dstaddr = htonl(INADDR_LOOPBACK); 1611 *dstaddrp = dstaddr; 1612 } 1613 1614 /* Handle __sin6_src_id if socket not bound to an IP address */ 1615 if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) { 1616 if (!ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 1617 IPCL_ZONEID(connp), B_TRUE, tcps->tcps_netstack)) { 1618 /* Mismatch - conn_laddr_v6 would be v6 address. */ 1619 return (EADDRNOTAVAIL); 1620 } 1621 connp->conn_saddr_v6 = connp->conn_laddr_v6; 1622 } 1623 1624 IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6); 1625 connp->conn_fport = dstport; 1626 1627 /* 1628 * At this point the remote destination address and remote port fields 1629 * in the tcp-four-tuple have been filled in the tcp structure. Now we 1630 * have to see which state tcp was in so we can take appropriate action. 1631 */ 1632 if (tcp->tcp_state == TCPS_IDLE) { 1633 /* 1634 * We support a quick connect capability here, allowing 1635 * clients to transition directly from IDLE to SYN_SENT 1636 * tcp_bindi will pick an unused port, insert the connection 1637 * in the bind hash and transition to BOUND state. 1638 */ 1639 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 1640 tcp, B_TRUE); 1641 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 1642 B_FALSE, B_FALSE); 1643 if (lport == 0) 1644 return (-TNOADDR); 1645 } 1646 1647 /* 1648 * Lookup the route to determine a source address and the uinfo. 1649 * Setup TCP parameters based on the metrics/DCE. 1650 */ 1651 error = tcp_set_destination(tcp); 1652 if (error != 0) 1653 return (error); 1654 1655 /* 1656 * Don't let an endpoint connect to itself. 1657 */ 1658 if (connp->conn_faddr_v4 == connp->conn_laddr_v4 && 1659 connp->conn_fport == connp->conn_lport) 1660 return (-TBADADDR); 1661 1662 tcp->tcp_state = TCPS_SYN_SENT; 1663 1664 return (ipcl_conn_insert_v4(connp)); 1665 } 1666 1667 /* 1668 * Handle connect to IPv6 destinations. 1669 * Returns zero if OK, a positive errno, or a negative TLI error. 1670 */ 1671 static int 1672 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport, 1673 uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 1674 { 1675 uint16_t lport; 1676 conn_t *connp = tcp->tcp_connp; 1677 tcp_stack_t *tcps = tcp->tcp_tcps; 1678 int error; 1679 1680 ASSERT(connp->conn_family == AF_INET6); 1681 1682 /* 1683 * If we're here, it means that the destination address is a native 1684 * IPv6 address. Return an error if conn_ipversion is not IPv6. A 1685 * reason why it might not be IPv6 is if the socket was bound to an 1686 * IPv4-mapped IPv6 address. 1687 */ 1688 if (connp->conn_ipversion != IPV6_VERSION) 1689 return (-TBADADDR); 1690 1691 /* 1692 * Interpret a zero destination to mean loopback. 1693 * Update the T_CONN_REQ (sin/sin6) since it is used to 1694 * generate the T_CONN_CON. 1695 */ 1696 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) 1697 *dstaddrp = ipv6_loopback; 1698 1699 /* Handle __sin6_src_id if socket not bound to an IP address */ 1700 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) { 1701 if (!ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 1702 IPCL_ZONEID(connp), B_FALSE, tcps->tcps_netstack)) { 1703 /* Mismatch - conn_laddr_v6 would be v4-mapped. */ 1704 return (EADDRNOTAVAIL); 1705 } 1706 connp->conn_saddr_v6 = connp->conn_laddr_v6; 1707 } 1708 1709 /* 1710 * Take care of the scope_id now. 1711 */ 1712 if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 1713 connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; 1714 connp->conn_ixa->ixa_scopeid = scope_id; 1715 } else { 1716 connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET; 1717 } 1718 1719 connp->conn_flowinfo = flowinfo; 1720 connp->conn_faddr_v6 = *dstaddrp; 1721 connp->conn_fport = dstport; 1722 1723 /* 1724 * At this point the remote destination address and remote port fields 1725 * in the tcp-four-tuple have been filled in the tcp structure. Now we 1726 * have to see which state tcp was in so we can take appropriate action. 1727 */ 1728 if (tcp->tcp_state == TCPS_IDLE) { 1729 /* 1730 * We support a quick connect capability here, allowing 1731 * clients to transition directly from IDLE to SYN_SENT 1732 * tcp_bindi will pick an unused port, insert the connection 1733 * in the bind hash and transition to BOUND state. 1734 */ 1735 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 1736 tcp, B_TRUE); 1737 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 1738 B_FALSE, B_FALSE); 1739 if (lport == 0) 1740 return (-TNOADDR); 1741 } 1742 1743 /* 1744 * Lookup the route to determine a source address and the uinfo. 1745 * Setup TCP parameters based on the metrics/DCE. 1746 */ 1747 error = tcp_set_destination(tcp); 1748 if (error != 0) 1749 return (error); 1750 1751 /* 1752 * Don't let an endpoint connect to itself. 1753 */ 1754 if (IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &connp->conn_laddr_v6) && 1755 connp->conn_fport == connp->conn_lport) 1756 return (-TBADADDR); 1757 1758 tcp->tcp_state = TCPS_SYN_SENT; 1759 1760 return (ipcl_conn_insert_v6(connp)); 1761 } 1762 1763 /* 1764 * Disconnect 1765 * Note that unlike other functions this returns a positive tli error 1766 * when it fails; it never returns an errno. 1767 */ 1768 static int 1769 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum) 1770 { 1771 conn_t *lconnp; 1772 tcp_stack_t *tcps = tcp->tcp_tcps; 1773 conn_t *connp = tcp->tcp_connp; 1774 1775 /* 1776 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 1777 * when the stream is in BOUND state. Do not send a reset, 1778 * since the destination IP address is not valid, and it can 1779 * be the initialized value of all zeros (broadcast address). 1780 */ 1781 if (tcp->tcp_state <= TCPS_BOUND) { 1782 if (connp->conn_debug) { 1783 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 1784 "tcp_disconnect: bad state, %d", tcp->tcp_state); 1785 } 1786 return (TOUTSTATE); 1787 } else if (tcp->tcp_state >= TCPS_ESTABLISHED) { 1788 TCPS_CONN_DEC(tcps); 1789 } 1790 1791 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 1792 1793 /* 1794 * According to TPI, for non-listeners, ignore seqnum 1795 * and disconnect. 1796 * Following interpretation of -1 seqnum is historical 1797 * and implied TPI ? (TPI only states that for T_CONN_IND, 1798 * a valid seqnum should not be -1). 1799 * 1800 * -1 means disconnect everything 1801 * regardless even on a listener. 1802 */ 1803 1804 int old_state = tcp->tcp_state; 1805 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 1806 1807 /* 1808 * The connection can't be on the tcp_time_wait_head list 1809 * since it is not detached. 1810 */ 1811 ASSERT(tcp->tcp_time_wait_next == NULL); 1812 ASSERT(tcp->tcp_time_wait_prev == NULL); 1813 ASSERT(tcp->tcp_time_wait_expire == 0); 1814 /* 1815 * If it used to be a listener, check to make sure no one else 1816 * has taken the port before switching back to LISTEN state. 1817 */ 1818 if (connp->conn_ipversion == IPV4_VERSION) { 1819 lconnp = ipcl_lookup_listener_v4(connp->conn_lport, 1820 connp->conn_laddr_v4, IPCL_ZONEID(connp), ipst); 1821 } else { 1822 uint_t ifindex = 0; 1823 1824 if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET) 1825 ifindex = connp->conn_ixa->ixa_scopeid; 1826 1827 /* Allow conn_bound_if listeners? */ 1828 lconnp = ipcl_lookup_listener_v6(connp->conn_lport, 1829 &connp->conn_laddr_v6, ifindex, IPCL_ZONEID(connp), 1830 ipst); 1831 } 1832 if (tcp->tcp_conn_req_max && lconnp == NULL) { 1833 tcp->tcp_state = TCPS_LISTEN; 1834 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 1835 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, 1836 NULL, int32_t, old_state); 1837 } else if (old_state > TCPS_BOUND) { 1838 tcp->tcp_conn_req_max = 0; 1839 tcp->tcp_state = TCPS_BOUND; 1840 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 1841 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, 1842 NULL, int32_t, old_state); 1843 1844 /* 1845 * If this end point is not going to become a listener, 1846 * decrement the listener connection count if 1847 * necessary. Note that we do not do this if it is 1848 * going to be a listner (the above if case) since 1849 * then it may remove the counter struct. 1850 */ 1851 if (tcp->tcp_listen_cnt != NULL) 1852 TCP_DECR_LISTEN_CNT(tcp); 1853 } 1854 if (lconnp != NULL) 1855 CONN_DEC_REF(lconnp); 1856 switch (old_state) { 1857 case TCPS_SYN_SENT: 1858 case TCPS_SYN_RCVD: 1859 TCPS_BUMP_MIB(tcps, tcpAttemptFails); 1860 break; 1861 case TCPS_ESTABLISHED: 1862 case TCPS_CLOSE_WAIT: 1863 TCPS_BUMP_MIB(tcps, tcpEstabResets); 1864 break; 1865 } 1866 1867 if (tcp->tcp_fused) 1868 tcp_unfuse(tcp); 1869 1870 mutex_enter(&tcp->tcp_eager_lock); 1871 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 1872 (tcp->tcp_conn_req_cnt_q != 0)) { 1873 tcp_eager_cleanup(tcp, 0); 1874 } 1875 mutex_exit(&tcp->tcp_eager_lock); 1876 1877 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 1878 tcp->tcp_rnxt, TH_RST | TH_ACK); 1879 1880 tcp_reinit(tcp); 1881 1882 return (0); 1883 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 1884 return (TBADSEQ); 1885 } 1886 return (0); 1887 } 1888 1889 /* 1890 * Our client hereby directs us to reject the connection request 1891 * that tcp_input_listener() marked with 'seqnum'. Rejection consists 1892 * of sending the appropriate RST, not an ICMP error. 1893 */ 1894 void 1895 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 1896 { 1897 t_scalar_t seqnum; 1898 int error; 1899 conn_t *connp = tcp->tcp_connp; 1900 1901 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 1902 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 1903 tcp_err_ack(tcp, mp, TPROTO, 0); 1904 return; 1905 } 1906 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 1907 error = tcp_disconnect_common(tcp, seqnum); 1908 if (error != 0) 1909 tcp_err_ack(tcp, mp, error, 0); 1910 else { 1911 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 1912 /* Send M_FLUSH according to TPI */ 1913 (void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW); 1914 } 1915 mp = mi_tpi_ok_ack_alloc(mp); 1916 if (mp != NULL) 1917 putnext(connp->conn_rq, mp); 1918 } 1919 } 1920 1921 /* 1922 * Handle reinitialization of a tcp structure. 1923 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 1924 */ 1925 static void 1926 tcp_reinit(tcp_t *tcp) 1927 { 1928 mblk_t *mp; 1929 tcp_stack_t *tcps = tcp->tcp_tcps; 1930 conn_t *connp = tcp->tcp_connp; 1931 int32_t oldstate; 1932 1933 /* tcp_reinit should never be called for detached tcp_t's */ 1934 ASSERT(tcp->tcp_listener == NULL); 1935 ASSERT((connp->conn_family == AF_INET && 1936 connp->conn_ipversion == IPV4_VERSION) || 1937 (connp->conn_family == AF_INET6 && 1938 (connp->conn_ipversion == IPV4_VERSION || 1939 connp->conn_ipversion == IPV6_VERSION))); 1940 1941 /* Cancel outstanding timers */ 1942 tcp_timers_stop(tcp); 1943 1944 tcp_close_mpp(&tcp->tcp_xmit_head); 1945 if (tcp->tcp_snd_zcopy_aware) 1946 tcp_zcopy_notify(tcp); 1947 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 1948 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 1949 mutex_enter(&tcp->tcp_non_sq_lock); 1950 if (tcp->tcp_flow_stopped && 1951 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 1952 tcp_clrqfull(tcp); 1953 } 1954 mutex_exit(&tcp->tcp_non_sq_lock); 1955 tcp_close_mpp(&tcp->tcp_reass_head); 1956 tcp->tcp_reass_tail = NULL; 1957 if (tcp->tcp_rcv_list != NULL) { 1958 /* Free b_next chain */ 1959 tcp_close_mpp(&tcp->tcp_rcv_list); 1960 tcp->tcp_rcv_last_head = NULL; 1961 tcp->tcp_rcv_last_tail = NULL; 1962 tcp->tcp_rcv_cnt = 0; 1963 } 1964 tcp->tcp_rcv_last_tail = NULL; 1965 1966 if ((mp = tcp->tcp_urp_mp) != NULL) { 1967 freemsg(mp); 1968 tcp->tcp_urp_mp = NULL; 1969 } 1970 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 1971 freemsg(mp); 1972 tcp->tcp_urp_mark_mp = NULL; 1973 } 1974 if (tcp->tcp_fused_sigurg_mp != NULL) { 1975 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1976 freeb(tcp->tcp_fused_sigurg_mp); 1977 tcp->tcp_fused_sigurg_mp = NULL; 1978 } 1979 if (tcp->tcp_ordrel_mp != NULL) { 1980 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1981 freeb(tcp->tcp_ordrel_mp); 1982 tcp->tcp_ordrel_mp = NULL; 1983 } 1984 1985 /* 1986 * Following is a union with two members which are 1987 * identical types and size so the following cleanup 1988 * is enough. 1989 */ 1990 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 1991 1992 CL_INET_DISCONNECT(connp); 1993 1994 /* 1995 * The connection can't be on the tcp_time_wait_head list 1996 * since it is not detached. 1997 */ 1998 ASSERT(tcp->tcp_time_wait_next == NULL); 1999 ASSERT(tcp->tcp_time_wait_prev == NULL); 2000 ASSERT(tcp->tcp_time_wait_expire == 0); 2001 2002 /* 2003 * Reset/preserve other values 2004 */ 2005 tcp_reinit_values(tcp); 2006 ipcl_hash_remove(connp); 2007 /* Note that ixa_cred gets cleared in ixa_cleanup */ 2008 ixa_cleanup(connp->conn_ixa); 2009 tcp_ipsec_cleanup(tcp); 2010 2011 connp->conn_laddr_v6 = connp->conn_bound_addr_v6; 2012 connp->conn_saddr_v6 = connp->conn_bound_addr_v6; 2013 oldstate = tcp->tcp_state; 2014 2015 if (tcp->tcp_conn_req_max != 0) { 2016 /* 2017 * This is the case when a TLI program uses the same 2018 * transport end point to accept a connection. This 2019 * makes the TCP both a listener and acceptor. When 2020 * this connection is closed, we need to set the state 2021 * back to TCPS_LISTEN. Make sure that the eager list 2022 * is reinitialized. 2023 * 2024 * Note that this stream is still bound to the four 2025 * tuples of the previous connection in IP. If a new 2026 * SYN with different foreign address comes in, IP will 2027 * not find it and will send it to the global queue. In 2028 * the global queue, TCP will do a tcp_lookup_listener() 2029 * to find this stream. This works because this stream 2030 * is only removed from connected hash. 2031 * 2032 */ 2033 tcp->tcp_state = TCPS_LISTEN; 2034 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 2035 tcp->tcp_eager_next_drop_q0 = tcp; 2036 tcp->tcp_eager_prev_drop_q0 = tcp; 2037 /* 2038 * Initially set conn_recv to tcp_input_listener_unbound to try 2039 * to pick a good squeue for the listener when the first SYN 2040 * arrives. tcp_input_listener_unbound sets it to 2041 * tcp_input_listener on that first SYN. 2042 */ 2043 connp->conn_recv = tcp_input_listener_unbound; 2044 2045 connp->conn_proto = IPPROTO_TCP; 2046 connp->conn_faddr_v6 = ipv6_all_zeros; 2047 connp->conn_fport = 0; 2048 2049 (void) ipcl_bind_insert(connp); 2050 } else { 2051 tcp->tcp_state = TCPS_BOUND; 2052 } 2053 2054 /* 2055 * Initialize to default values 2056 */ 2057 tcp_init_values(tcp, NULL); 2058 2059 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 2060 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 2061 int32_t, oldstate); 2062 2063 ASSERT(tcp->tcp_ptpbhn != NULL); 2064 tcp->tcp_rwnd = connp->conn_rcvbuf; 2065 tcp->tcp_mss = connp->conn_ipversion != IPV4_VERSION ? 2066 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 2067 } 2068 2069 /* 2070 * Force values to zero that need be zero. 2071 * Do not touch values asociated with the BOUND or LISTEN state 2072 * since the connection will end up in that state after the reinit. 2073 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 2074 * structure! 2075 */ 2076 static void 2077 tcp_reinit_values(tcp_t *tcp) 2078 { 2079 tcp_stack_t *tcps = tcp->tcp_tcps; 2080 conn_t *connp = tcp->tcp_connp; 2081 2082 #define DONTCARE(x) 2083 #define PRESERVE(x) 2084 2085 PRESERVE(tcp->tcp_bind_hash_port); 2086 PRESERVE(tcp->tcp_bind_hash); 2087 PRESERVE(tcp->tcp_ptpbhn); 2088 PRESERVE(tcp->tcp_acceptor_hash); 2089 PRESERVE(tcp->tcp_ptpahn); 2090 2091 /* Should be ASSERT NULL on these with new code! */ 2092 ASSERT(tcp->tcp_time_wait_next == NULL); 2093 ASSERT(tcp->tcp_time_wait_prev == NULL); 2094 ASSERT(tcp->tcp_time_wait_expire == 0); 2095 PRESERVE(tcp->tcp_state); 2096 PRESERVE(connp->conn_rq); 2097 PRESERVE(connp->conn_wq); 2098 2099 ASSERT(tcp->tcp_xmit_head == NULL); 2100 ASSERT(tcp->tcp_xmit_last == NULL); 2101 ASSERT(tcp->tcp_unsent == 0); 2102 ASSERT(tcp->tcp_xmit_tail == NULL); 2103 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 2104 2105 tcp->tcp_snxt = 0; /* Displayed in mib */ 2106 tcp->tcp_suna = 0; /* Displayed in mib */ 2107 tcp->tcp_swnd = 0; 2108 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_process_options */ 2109 2110 if (connp->conn_ht_iphc != NULL) { 2111 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 2112 connp->conn_ht_iphc = NULL; 2113 connp->conn_ht_iphc_allocated = 0; 2114 connp->conn_ht_iphc_len = 0; 2115 connp->conn_ht_ulp = NULL; 2116 connp->conn_ht_ulp_len = 0; 2117 tcp->tcp_ipha = NULL; 2118 tcp->tcp_ip6h = NULL; 2119 tcp->tcp_tcpha = NULL; 2120 } 2121 2122 /* We clear any IP_OPTIONS and extension headers */ 2123 ip_pkt_free(&connp->conn_xmit_ipp); 2124 2125 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 2126 DONTCARE(tcp->tcp_ipha); 2127 DONTCARE(tcp->tcp_ip6h); 2128 DONTCARE(tcp->tcp_tcpha); 2129 tcp->tcp_valid_bits = 0; 2130 2131 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 2132 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 2133 tcp->tcp_last_rcv_lbolt = 0; 2134 2135 tcp->tcp_init_cwnd = 0; 2136 2137 tcp->tcp_urp_last_valid = 0; 2138 tcp->tcp_hard_binding = 0; 2139 2140 tcp->tcp_fin_acked = 0; 2141 tcp->tcp_fin_rcvd = 0; 2142 tcp->tcp_fin_sent = 0; 2143 tcp->tcp_ordrel_done = 0; 2144 2145 tcp->tcp_detached = 0; 2146 2147 tcp->tcp_snd_ws_ok = B_FALSE; 2148 tcp->tcp_snd_ts_ok = B_FALSE; 2149 tcp->tcp_zero_win_probe = 0; 2150 2151 tcp->tcp_loopback = 0; 2152 tcp->tcp_localnet = 0; 2153 tcp->tcp_syn_defense = 0; 2154 tcp->tcp_set_timer = 0; 2155 2156 tcp->tcp_active_open = 0; 2157 tcp->tcp_rexmit = B_FALSE; 2158 tcp->tcp_xmit_zc_clean = B_FALSE; 2159 2160 tcp->tcp_snd_sack_ok = B_FALSE; 2161 tcp->tcp_hwcksum = B_FALSE; 2162 2163 DONTCARE(tcp->tcp_maxpsz_multiplier); /* Init in tcp_init_values */ 2164 2165 tcp->tcp_conn_def_q0 = 0; 2166 tcp->tcp_ip_forward_progress = B_FALSE; 2167 tcp->tcp_ecn_ok = B_FALSE; 2168 2169 tcp->tcp_cwr = B_FALSE; 2170 tcp->tcp_ecn_echo_on = B_FALSE; 2171 tcp->tcp_is_wnd_shrnk = B_FALSE; 2172 2173 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 2174 bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 2175 2176 tcp->tcp_rcv_ws = 0; 2177 tcp->tcp_snd_ws = 0; 2178 tcp->tcp_ts_recent = 0; 2179 tcp->tcp_rnxt = 0; /* Displayed in mib */ 2180 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 2181 tcp->tcp_initial_pmtu = 0; 2182 2183 ASSERT(tcp->tcp_reass_head == NULL); 2184 ASSERT(tcp->tcp_reass_tail == NULL); 2185 2186 tcp->tcp_cwnd_cnt = 0; 2187 2188 ASSERT(tcp->tcp_rcv_list == NULL); 2189 ASSERT(tcp->tcp_rcv_last_head == NULL); 2190 ASSERT(tcp->tcp_rcv_last_tail == NULL); 2191 ASSERT(tcp->tcp_rcv_cnt == 0); 2192 2193 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_set_destination */ 2194 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 2195 tcp->tcp_csuna = 0; 2196 2197 tcp->tcp_rto = 0; /* Displayed in MIB */ 2198 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 2199 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 2200 tcp->tcp_rtt_update = 0; 2201 tcp->tcp_rtt_sum = 0; 2202 tcp->tcp_rtt_cnt = 0; 2203 2204 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 2205 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 2206 2207 tcp->tcp_rack = 0; /* Displayed in mib */ 2208 tcp->tcp_rack_cnt = 0; 2209 tcp->tcp_rack_cur_max = 0; 2210 tcp->tcp_rack_abs_max = 0; 2211 2212 tcp->tcp_max_swnd = 0; 2213 2214 ASSERT(tcp->tcp_listener == NULL); 2215 2216 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 2217 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 2218 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 2219 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 2220 2221 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 2222 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 2223 PRESERVE(tcp->tcp_conn_req_max); 2224 PRESERVE(tcp->tcp_conn_req_seqnum); 2225 2226 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 2227 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 2228 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 2229 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 2230 2231 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 2232 ASSERT(tcp->tcp_urp_mp == NULL); 2233 ASSERT(tcp->tcp_urp_mark_mp == NULL); 2234 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 2235 2236 ASSERT(tcp->tcp_eager_next_q == NULL); 2237 ASSERT(tcp->tcp_eager_last_q == NULL); 2238 ASSERT((tcp->tcp_eager_next_q0 == NULL && 2239 tcp->tcp_eager_prev_q0 == NULL) || 2240 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 2241 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 2242 2243 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 2244 tcp->tcp_eager_prev_drop_q0 == NULL) || 2245 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 2246 2247 DONTCARE(tcp->tcp_ka_rinterval); /* Init in tcp_init_values */ 2248 DONTCARE(tcp->tcp_ka_abort_thres); /* Init in tcp_init_values */ 2249 DONTCARE(tcp->tcp_ka_cnt); /* Init in tcp_init_values */ 2250 2251 tcp->tcp_client_errno = 0; 2252 2253 DONTCARE(connp->conn_sum); /* Init in tcp_init_values */ 2254 2255 connp->conn_faddr_v6 = ipv6_all_zeros; /* Displayed in MIB */ 2256 2257 PRESERVE(connp->conn_bound_addr_v6); 2258 tcp->tcp_last_sent_len = 0; 2259 tcp->tcp_dupack_cnt = 0; 2260 2261 connp->conn_fport = 0; /* Displayed in MIB */ 2262 PRESERVE(connp->conn_lport); 2263 2264 PRESERVE(tcp->tcp_acceptor_lockp); 2265 2266 ASSERT(tcp->tcp_ordrel_mp == NULL); 2267 PRESERVE(tcp->tcp_acceptor_id); 2268 DONTCARE(tcp->tcp_ipsec_overhead); 2269 2270 PRESERVE(connp->conn_family); 2271 /* Remove any remnants of mapped address binding */ 2272 if (connp->conn_family == AF_INET6) { 2273 connp->conn_ipversion = IPV6_VERSION; 2274 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 2275 } else { 2276 connp->conn_ipversion = IPV4_VERSION; 2277 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 2278 } 2279 2280 connp->conn_bound_if = 0; 2281 connp->conn_recv_ancillary.crb_all = 0; 2282 tcp->tcp_recvifindex = 0; 2283 tcp->tcp_recvhops = 0; 2284 tcp->tcp_closed = 0; 2285 if (tcp->tcp_hopopts != NULL) { 2286 mi_free(tcp->tcp_hopopts); 2287 tcp->tcp_hopopts = NULL; 2288 tcp->tcp_hopoptslen = 0; 2289 } 2290 ASSERT(tcp->tcp_hopoptslen == 0); 2291 if (tcp->tcp_dstopts != NULL) { 2292 mi_free(tcp->tcp_dstopts); 2293 tcp->tcp_dstopts = NULL; 2294 tcp->tcp_dstoptslen = 0; 2295 } 2296 ASSERT(tcp->tcp_dstoptslen == 0); 2297 if (tcp->tcp_rthdrdstopts != NULL) { 2298 mi_free(tcp->tcp_rthdrdstopts); 2299 tcp->tcp_rthdrdstopts = NULL; 2300 tcp->tcp_rthdrdstoptslen = 0; 2301 } 2302 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 2303 if (tcp->tcp_rthdr != NULL) { 2304 mi_free(tcp->tcp_rthdr); 2305 tcp->tcp_rthdr = NULL; 2306 tcp->tcp_rthdrlen = 0; 2307 } 2308 ASSERT(tcp->tcp_rthdrlen == 0); 2309 2310 /* Reset fusion-related fields */ 2311 tcp->tcp_fused = B_FALSE; 2312 tcp->tcp_unfusable = B_FALSE; 2313 tcp->tcp_fused_sigurg = B_FALSE; 2314 tcp->tcp_loopback_peer = NULL; 2315 2316 tcp->tcp_lso = B_FALSE; 2317 2318 tcp->tcp_in_ack_unsent = 0; 2319 tcp->tcp_cork = B_FALSE; 2320 tcp->tcp_tconnind_started = B_FALSE; 2321 2322 PRESERVE(tcp->tcp_squeue_bytes); 2323 2324 tcp->tcp_closemp_used = B_FALSE; 2325 2326 PRESERVE(tcp->tcp_rsrv_mp); 2327 PRESERVE(tcp->tcp_rsrv_mp_lock); 2328 2329 #ifdef DEBUG 2330 DONTCARE(tcp->tcmp_stk[0]); 2331 #endif 2332 2333 PRESERVE(tcp->tcp_connid); 2334 2335 if (tcp->tcp_sig_sa_in != NULL) { 2336 tcpsig_sa_rele(tcp->tcp_sig_sa_in); 2337 tcp->tcp_sig_sa_in = NULL; 2338 } 2339 if (tcp->tcp_sig_sa_out != NULL) { 2340 tcpsig_sa_rele(tcp->tcp_sig_sa_out); 2341 tcp->tcp_sig_sa_out = NULL; 2342 } 2343 2344 ASSERT(tcp->tcp_listen_cnt == NULL); 2345 ASSERT(tcp->tcp_reass_tid == 0); 2346 2347 /* Allow the CC algorithm to clean up after itself. */ 2348 if (tcp->tcp_cc_algo->cb_destroy != NULL) 2349 tcp->tcp_cc_algo->cb_destroy(&tcp->tcp_ccv); 2350 tcp->tcp_cc_algo = NULL; 2351 2352 #undef DONTCARE 2353 #undef PRESERVE 2354 } 2355 2356 /* 2357 * Initialize the various fields in tcp_t. If parent (the listener) is non 2358 * NULL, certain values will be inheritted from it. 2359 */ 2360 void 2361 tcp_init_values(tcp_t *tcp, tcp_t *parent) 2362 { 2363 tcp_stack_t *tcps = tcp->tcp_tcps; 2364 conn_t *connp = tcp->tcp_connp; 2365 2366 ASSERT((connp->conn_family == AF_INET && 2367 connp->conn_ipversion == IPV4_VERSION) || 2368 (connp->conn_family == AF_INET6 && 2369 (connp->conn_ipversion == IPV4_VERSION || 2370 connp->conn_ipversion == IPV6_VERSION))); 2371 2372 tcp->tcp_ccv.type = IPPROTO_TCP; 2373 tcp->tcp_ccv.ccvc.tcp = tcp; 2374 2375 if (parent == NULL) { 2376 tcp->tcp_cc_algo = tcps->tcps_default_cc_algo; 2377 2378 tcp->tcp_naglim = tcps->tcps_naglim_def; 2379 2380 tcp->tcp_rto_initial = tcps->tcps_rexmit_interval_initial; 2381 tcp->tcp_rto_min = tcps->tcps_rexmit_interval_min; 2382 tcp->tcp_rto_max = tcps->tcps_rexmit_interval_max; 2383 2384 tcp->tcp_first_ctimer_threshold = 2385 tcps->tcps_ip_notify_cinterval; 2386 tcp->tcp_second_ctimer_threshold = 2387 tcps->tcps_ip_abort_cinterval; 2388 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 2389 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 2390 2391 tcp->tcp_fin_wait_2_flush_interval = 2392 tcps->tcps_fin_wait_2_flush_interval; 2393 2394 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 2395 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 2396 tcp->tcp_ka_cnt = 0; 2397 tcp->tcp_ka_rinterval = 0; 2398 2399 /* 2400 * Default value of tcp_init_cwnd is 0, so no need to set here 2401 * if parent is NULL. But we need to inherit it from parent. 2402 */ 2403 } else { 2404 /* Inherit various TCP parameters from the parent. */ 2405 tcp->tcp_cc_algo = parent->tcp_cc_algo; 2406 2407 tcp->tcp_naglim = parent->tcp_naglim; 2408 2409 tcp->tcp_rto_initial = parent->tcp_rto_initial; 2410 tcp->tcp_rto_min = parent->tcp_rto_min; 2411 tcp->tcp_rto_max = parent->tcp_rto_max; 2412 2413 tcp->tcp_first_ctimer_threshold = 2414 parent->tcp_first_ctimer_threshold; 2415 tcp->tcp_second_ctimer_threshold = 2416 parent->tcp_second_ctimer_threshold; 2417 tcp->tcp_first_timer_threshold = 2418 parent->tcp_first_timer_threshold; 2419 tcp->tcp_second_timer_threshold = 2420 parent->tcp_second_timer_threshold; 2421 2422 tcp->tcp_fin_wait_2_flush_interval = 2423 parent->tcp_fin_wait_2_flush_interval; 2424 tcp->tcp_quickack = parent->tcp_quickack; 2425 tcp->tcp_md5sig = parent->tcp_md5sig; 2426 2427 tcp->tcp_ka_interval = parent->tcp_ka_interval; 2428 tcp->tcp_ka_abort_thres = parent->tcp_ka_abort_thres; 2429 tcp->tcp_ka_cnt = parent->tcp_ka_cnt; 2430 tcp->tcp_ka_rinterval = parent->tcp_ka_rinterval; 2431 2432 tcp->tcp_init_cwnd = parent->tcp_init_cwnd; 2433 } 2434 2435 if (tcp->tcp_cc_algo->cb_init != NULL) 2436 VERIFY(tcp->tcp_cc_algo->cb_init(&tcp->tcp_ccv) == 0); 2437 2438 /* 2439 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 2440 * will be close to tcp_rexmit_interval_initial. By doing this, we 2441 * allow the algorithm to adjust slowly to large fluctuations of RTT 2442 * during first few transmissions of a connection as seen in slow 2443 * links. 2444 */ 2445 tcp->tcp_rtt_sa = MSEC2NSEC(tcp->tcp_rto_initial) << 2; 2446 tcp->tcp_rtt_sd = MSEC2NSEC(tcp->tcp_rto_initial) >> 1; 2447 tcp->tcp_rto = tcp_calculate_rto(tcp, tcps, 2448 tcps->tcps_conn_grace_period); 2449 2450 tcp->tcp_timer_backoff = 0; 2451 tcp->tcp_ms_we_have_waited = 0; 2452 tcp->tcp_last_recv_time = ddi_get_lbolt(); 2453 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 2454 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2455 2456 tcp->tcp_maxpsz_multiplier = tcps->tcps_maxpsz_multiplier; 2457 2458 /* NOTE: ISS is now set in tcp_set_destination(). */ 2459 2460 /* Reset fusion-related fields */ 2461 tcp->tcp_fused = B_FALSE; 2462 tcp->tcp_unfusable = B_FALSE; 2463 tcp->tcp_fused_sigurg = B_FALSE; 2464 tcp->tcp_loopback_peer = NULL; 2465 2466 /* We rebuild the header template on the next connect/conn_request */ 2467 2468 connp->conn_mlp_type = mlptSingle; 2469 2470 /* 2471 * Init the window scale to the max so tcp_rwnd_set() won't pare 2472 * down tcp_rwnd. tcp_set_destination() will set the right value later. 2473 */ 2474 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 2475 tcp->tcp_rwnd = connp->conn_rcvbuf; 2476 2477 tcp->tcp_cork = B_FALSE; 2478 /* 2479 * Init the tcp_debug option if it wasn't already set. This value 2480 * determines whether TCP 2481 * calls strlog() to print out debug messages. Doing this 2482 * initialization here means that this value is not inherited thru 2483 * tcp_reinit(). 2484 */ 2485 if (!connp->conn_debug) 2486 connp->conn_debug = tcps->tcps_dbg; 2487 } 2488 2489 /* 2490 * Update the TCP connection according to change of PMTU. 2491 * 2492 * Path MTU might have changed by either increase or decrease, so need to 2493 * adjust the MSS based on the value of ixa_pmtu. No need to handle tiny 2494 * or negative MSS, since tcp_mss_set() will do it. 2495 */ 2496 void 2497 tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only) 2498 { 2499 uint32_t pmtu; 2500 int32_t mss; 2501 conn_t *connp = tcp->tcp_connp; 2502 ip_xmit_attr_t *ixa = connp->conn_ixa; 2503 iaflags_t ixaflags; 2504 2505 if (tcp->tcp_tcps->tcps_ignore_path_mtu) 2506 return; 2507 2508 if (tcp->tcp_state < TCPS_ESTABLISHED) 2509 return; 2510 2511 /* 2512 * Always call ip_get_pmtu() to make sure that IP has updated 2513 * ixa_flags properly. 2514 */ 2515 pmtu = ip_get_pmtu(ixa); 2516 ixaflags = ixa->ixa_flags; 2517 2518 /* 2519 * Calculate the MSS by decreasing the PMTU by conn_ht_iphc_len and 2520 * IPsec overhead if applied. Make sure to use the most recent 2521 * IPsec information. 2522 */ 2523 mss = pmtu - connp->conn_ht_iphc_len - conn_ipsec_length(connp); 2524 2525 /* 2526 * Nothing to change, so just return. 2527 */ 2528 if (mss == tcp->tcp_mss) 2529 return; 2530 2531 /* 2532 * Currently, for ICMP errors, only PMTU decrease is handled. 2533 */ 2534 if (mss > tcp->tcp_mss && decrease_only) 2535 return; 2536 2537 DTRACE_PROBE2(tcp_update_pmtu, int32_t, tcp->tcp_mss, uint32_t, mss); 2538 2539 /* 2540 * Update ixa_fragsize and ixa_pmtu. 2541 */ 2542 ixa->ixa_fragsize = ixa->ixa_pmtu = pmtu; 2543 2544 /* 2545 * Adjust MSS and all relevant variables. 2546 */ 2547 tcp_mss_set(tcp, mss); 2548 2549 /* 2550 * If the PMTU is below the min size maintained by IP, then ip_get_pmtu 2551 * has set IXAF_PMTU_TOO_SMALL and cleared IXAF_PMTU_IPV4_DF. Since TCP 2552 * has a (potentially different) min size we do the same. Make sure to 2553 * clear IXAF_DONTFRAG, which is used by IP to decide whether to 2554 * fragment the packet. 2555 * 2556 * LSO over IPv6 can not be fragmented. So need to disable LSO 2557 * when IPv6 fragmentation is needed. 2558 */ 2559 if (mss < tcp->tcp_tcps->tcps_mss_min) 2560 ixaflags |= IXAF_PMTU_TOO_SMALL; 2561 2562 if (ixaflags & IXAF_PMTU_TOO_SMALL) 2563 ixaflags &= ~(IXAF_DONTFRAG | IXAF_PMTU_IPV4_DF); 2564 2565 if ((connp->conn_ipversion == IPV4_VERSION) && 2566 !(ixaflags & IXAF_PMTU_IPV4_DF)) { 2567 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 2568 } 2569 ixa->ixa_flags = ixaflags; 2570 } 2571 2572 int 2573 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 2574 { 2575 conn_t *connp = tcp->tcp_connp; 2576 queue_t *q = connp->conn_rq; 2577 int32_t mss = tcp->tcp_mss; 2578 int maxpsz; 2579 2580 if (TCP_IS_DETACHED(tcp)) 2581 return (mss); 2582 if (tcp->tcp_fused) { 2583 maxpsz = tcp_fuse_maxpsz(tcp); 2584 mss = INFPSZ; 2585 } else if (tcp->tcp_maxpsz_multiplier == 0) { 2586 /* 2587 * Set the sd_qn_maxpsz according to the socket send buffer 2588 * size, and sd_maxblk to INFPSZ (-1). This will essentially 2589 * instruct the stream head to copyin user data into contiguous 2590 * kernel-allocated buffers without breaking it up into smaller 2591 * chunks. We round up the buffer size to the nearest SMSS. 2592 */ 2593 maxpsz = MSS_ROUNDUP(connp->conn_sndbuf, mss); 2594 mss = INFPSZ; 2595 } else { 2596 /* 2597 * Set sd_qn_maxpsz to approx half the (receivers) buffer 2598 * (and a multiple of the mss). This instructs the stream 2599 * head to break down larger than SMSS writes into SMSS- 2600 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 2601 */ 2602 maxpsz = tcp->tcp_maxpsz_multiplier * mss; 2603 if (maxpsz > connp->conn_sndbuf / 2) { 2604 maxpsz = connp->conn_sndbuf / 2; 2605 /* Round up to nearest mss */ 2606 maxpsz = MSS_ROUNDUP(maxpsz, mss); 2607 } 2608 } 2609 2610 (void) proto_set_maxpsz(q, connp, maxpsz); 2611 if (!(IPCL_IS_NONSTR(connp))) 2612 connp->conn_wq->q_maxpsz = maxpsz; 2613 if (set_maxblk) 2614 (void) proto_set_tx_maxblk(q, connp, mss); 2615 return (mss); 2616 } 2617 2618 /* For /dev/tcp aka AF_INET open */ 2619 static int 2620 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 2621 { 2622 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 2623 } 2624 2625 /* For /dev/tcp6 aka AF_INET6 open */ 2626 static int 2627 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 2628 { 2629 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 2630 } 2631 2632 conn_t * 2633 tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket, 2634 int *errorp) 2635 { 2636 tcp_t *tcp = NULL; 2637 conn_t *connp; 2638 zoneid_t zoneid; 2639 tcp_stack_t *tcps; 2640 squeue_t *sqp; 2641 2642 ASSERT(errorp != NULL); 2643 /* 2644 * Find the proper zoneid and netstack. 2645 */ 2646 /* 2647 * Special case for install: miniroot needs to be able to 2648 * access files via NFS as though it were always in the 2649 * global zone. 2650 */ 2651 if (credp == kcred && nfs_global_client_only != 0) { 2652 zoneid = GLOBAL_ZONEID; 2653 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 2654 netstack_tcp; 2655 ASSERT(tcps != NULL); 2656 } else { 2657 netstack_t *ns; 2658 int err; 2659 2660 if ((err = secpolicy_basic_net_access(credp)) != 0) { 2661 *errorp = err; 2662 return (NULL); 2663 } 2664 2665 ns = netstack_find_by_cred(credp); 2666 ASSERT(ns != NULL); 2667 tcps = ns->netstack_tcp; 2668 ASSERT(tcps != NULL); 2669 2670 /* 2671 * For exclusive stacks we set the zoneid to zero 2672 * to make TCP operate as if in the global zone. 2673 */ 2674 if (tcps->tcps_netstack->netstack_stackid != 2675 GLOBAL_NETSTACKID) 2676 zoneid = GLOBAL_ZONEID; 2677 else 2678 zoneid = crgetzoneid(credp); 2679 } 2680 2681 sqp = IP_SQUEUE_GET((uint_t)gethrtime()); 2682 connp = tcp_get_conn(sqp, tcps); 2683 /* 2684 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 2685 * so we drop it by one. 2686 */ 2687 netstack_rele(tcps->tcps_netstack); 2688 if (connp == NULL) { 2689 *errorp = ENOSR; 2690 return (NULL); 2691 } 2692 ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto); 2693 2694 connp->conn_sqp = sqp; 2695 connp->conn_initial_sqp = connp->conn_sqp; 2696 connp->conn_ixa->ixa_sqp = connp->conn_sqp; 2697 tcp = connp->conn_tcp; 2698 2699 /* 2700 * Besides asking IP to set the checksum for us, have conn_ip_output 2701 * to do the following checks when necessary: 2702 * 2703 * IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid 2704 * IXAF_VERIFY_PMTU: verify PMTU changes 2705 * IXAF_VERIFY_LSO: verify LSO capability changes 2706 */ 2707 connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 2708 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO; 2709 2710 if (!tcps->tcps_dev_flow_ctl) 2711 connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL; 2712 2713 if (isv6) { 2714 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 2715 connp->conn_ipversion = IPV6_VERSION; 2716 connp->conn_family = AF_INET6; 2717 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 2718 connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit; 2719 } else { 2720 connp->conn_ipversion = IPV4_VERSION; 2721 connp->conn_family = AF_INET; 2722 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 2723 connp->conn_default_ttl = tcps->tcps_ipv4_ttl; 2724 } 2725 connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl; 2726 2727 crhold(credp); 2728 connp->conn_cred = credp; 2729 connp->conn_cpid = curproc->p_pid; 2730 connp->conn_open_time = ddi_get_lbolt64(); 2731 2732 /* Cache things in the ixa without any refhold */ 2733 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED)); 2734 connp->conn_ixa->ixa_cred = credp; 2735 connp->conn_ixa->ixa_cpid = connp->conn_cpid; 2736 2737 connp->conn_zoneid = zoneid; 2738 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 2739 connp->conn_ixa->ixa_zoneid = zoneid; 2740 connp->conn_mlp_type = mlptSingle; 2741 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 2742 ASSERT(tcp->tcp_tcps == tcps); 2743 2744 /* 2745 * If the caller has the process-wide flag set, then default to MAC 2746 * exempt mode. This allows read-down to unlabeled hosts. 2747 */ 2748 if (getpflags(NET_MAC_AWARE, credp) != 0) 2749 connp->conn_mac_mode = CONN_MAC_AWARE; 2750 2751 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 2752 2753 if (issocket) { 2754 tcp->tcp_issocket = 1; 2755 } 2756 2757 connp->conn_rcvbuf = tcps->tcps_recv_hiwat; 2758 connp->conn_sndbuf = tcps->tcps_xmit_hiwat; 2759 if (tcps->tcps_snd_lowat_fraction != 0) { 2760 connp->conn_sndlowat = connp->conn_sndbuf / 2761 tcps->tcps_snd_lowat_fraction; 2762 } else { 2763 connp->conn_sndlowat = tcps->tcps_xmit_lowat; 2764 } 2765 connp->conn_so_type = SOCK_STREAM; 2766 connp->conn_wroff = connp->conn_ht_iphc_allocated + 2767 tcps->tcps_wroff_xtra; 2768 2769 SOCK_CONNID_INIT(tcp->tcp_connid); 2770 /* DTrace ignores this - it isn't a tcp:::state-change */ 2771 tcp->tcp_state = TCPS_IDLE; 2772 tcp_init_values(tcp, NULL); 2773 return (connp); 2774 } 2775 2776 static int 2777 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 2778 boolean_t isv6) 2779 { 2780 tcp_t *tcp = NULL; 2781 conn_t *connp = NULL; 2782 int err; 2783 vmem_t *minor_arena = NULL; 2784 dev_t conn_dev; 2785 boolean_t issocket; 2786 2787 if (q->q_ptr != NULL) 2788 return (0); 2789 2790 if (sflag == MODOPEN) 2791 return (EINVAL); 2792 2793 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 2794 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 2795 minor_arena = ip_minor_arena_la; 2796 } else { 2797 /* 2798 * Either minor numbers in the large arena were exhausted 2799 * or a non socket application is doing the open. 2800 * Try to allocate from the small arena. 2801 */ 2802 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 2803 return (EBUSY); 2804 } 2805 minor_arena = ip_minor_arena_sa; 2806 } 2807 2808 ASSERT(minor_arena != NULL); 2809 2810 *devp = makedevice(getmajor(*devp), (minor_t)conn_dev); 2811 2812 if (flag & SO_FALLBACK) { 2813 /* 2814 * Non streams socket needs a stream to fallback to 2815 */ 2816 RD(q)->q_ptr = (void *)conn_dev; 2817 WR(q)->q_qinfo = &tcp_fallback_sock_winit; 2818 WR(q)->q_ptr = (void *)minor_arena; 2819 qprocson(q); 2820 return (0); 2821 } else if (flag & SO_ACCEPTOR) { 2822 q->q_qinfo = &tcp_acceptor_rinit; 2823 /* 2824 * the conn_dev and minor_arena will be subsequently used by 2825 * tcp_tli_accept() and tcp_tpi_close_accept() to figure out 2826 * the minor device number for this connection from the q_ptr. 2827 */ 2828 RD(q)->q_ptr = (void *)conn_dev; 2829 WR(q)->q_qinfo = &tcp_acceptor_winit; 2830 WR(q)->q_ptr = (void *)minor_arena; 2831 qprocson(q); 2832 return (0); 2833 } 2834 2835 issocket = flag & SO_SOCKSTR; 2836 connp = tcp_create_common(credp, isv6, issocket, &err); 2837 2838 if (connp == NULL) { 2839 inet_minor_free(minor_arena, conn_dev); 2840 q->q_ptr = WR(q)->q_ptr = NULL; 2841 return (err); 2842 } 2843 2844 connp->conn_rq = q; 2845 connp->conn_wq = WR(q); 2846 q->q_ptr = WR(q)->q_ptr = connp; 2847 2848 connp->conn_dev = conn_dev; 2849 connp->conn_minor_arena = minor_arena; 2850 2851 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 2852 ASSERT(WR(q)->q_qinfo == &tcp_winit); 2853 2854 tcp = connp->conn_tcp; 2855 2856 if (issocket) { 2857 WR(q)->q_qinfo = &tcp_sock_winit; 2858 } else { 2859 #ifdef _ILP32 2860 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 2861 #else 2862 tcp->tcp_acceptor_id = conn_dev; 2863 #endif /* _ILP32 */ 2864 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 2865 } 2866 2867 /* 2868 * Put the ref for TCP. Ref for IP was already put 2869 * by ipcl_conn_create. Also Make the conn_t globally 2870 * visible to walkers 2871 */ 2872 mutex_enter(&connp->conn_lock); 2873 CONN_INC_REF_LOCKED(connp); 2874 ASSERT(connp->conn_ref == 2); 2875 connp->conn_state_flags &= ~CONN_INCIPIENT; 2876 mutex_exit(&connp->conn_lock); 2877 2878 qprocson(q); 2879 return (0); 2880 } 2881 2882 /* 2883 * Build/update the tcp header template (in conn_ht_iphc) based on 2884 * conn_xmit_ipp. The headers include ip6_t, any extension 2885 * headers, and the maximum size tcp header (to avoid reallocation 2886 * on the fly for additional tcp options). 2887 * 2888 * Assumes the caller has already set conn_{faddr,laddr,fport,lport,flowinfo}. 2889 * Returns failure if can't allocate memory. 2890 */ 2891 int 2892 tcp_build_hdrs(tcp_t *tcp) 2893 { 2894 tcp_stack_t *tcps = tcp->tcp_tcps; 2895 conn_t *connp = tcp->tcp_connp; 2896 char buf[TCP_MAX_HDR_LENGTH]; 2897 uint_t buflen; 2898 uint_t ulplen = TCP_MIN_HEADER_LENGTH; 2899 uint_t extralen = TCP_MAX_TCP_OPTIONS_LENGTH; 2900 tcpha_t *tcpha; 2901 uint32_t cksum; 2902 int error; 2903 2904 /* 2905 * We might be called after the connection is set up, and we might 2906 * have TS options already in the TCP header. Thus we save any 2907 * existing tcp header. 2908 */ 2909 buflen = connp->conn_ht_ulp_len; 2910 if (buflen != 0) { 2911 bcopy(connp->conn_ht_ulp, buf, buflen); 2912 extralen -= buflen - ulplen; 2913 ulplen = buflen; 2914 } 2915 2916 /* Grab lock to satisfy ASSERT; TCP is serialized using squeue */ 2917 mutex_enter(&connp->conn_lock); 2918 error = conn_build_hdr_template(connp, ulplen, extralen, 2919 &connp->conn_laddr_v6, &connp->conn_faddr_v6, connp->conn_flowinfo); 2920 mutex_exit(&connp->conn_lock); 2921 if (error != 0) 2922 return (error); 2923 2924 /* 2925 * Any routing header/option has been massaged. The checksum difference 2926 * is stored in conn_sum for later use. 2927 */ 2928 tcpha = (tcpha_t *)connp->conn_ht_ulp; 2929 tcp->tcp_tcpha = tcpha; 2930 2931 /* restore any old tcp header */ 2932 if (buflen != 0) { 2933 bcopy(buf, connp->conn_ht_ulp, buflen); 2934 } else { 2935 tcpha->tha_sum = 0; 2936 tcpha->tha_urp = 0; 2937 tcpha->tha_ack = 0; 2938 tcpha->tha_offset_and_reserved = (5 << 4); 2939 tcpha->tha_lport = connp->conn_lport; 2940 tcpha->tha_fport = connp->conn_fport; 2941 } 2942 2943 /* 2944 * IP wants our header length in the checksum field to 2945 * allow it to perform a single pseudo-header+checksum 2946 * calculation on behalf of TCP. 2947 * Include the adjustment for a source route once IP_OPTIONS is set. 2948 */ 2949 cksum = sizeof (tcpha_t) + connp->conn_sum; 2950 cksum = (cksum >> 16) + (cksum & 0xFFFF); 2951 ASSERT(cksum < 0x10000); 2952 tcpha->tha_sum = htons(cksum); 2953 2954 if (connp->conn_ipversion == IPV4_VERSION) 2955 tcp->tcp_ipha = (ipha_t *)connp->conn_ht_iphc; 2956 else 2957 tcp->tcp_ip6h = (ip6_t *)connp->conn_ht_iphc; 2958 2959 if (connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra > 2960 connp->conn_wroff) { 2961 connp->conn_wroff = connp->conn_ht_iphc_allocated + 2962 tcps->tcps_wroff_xtra; 2963 (void) proto_set_tx_wroff(connp->conn_rq, connp, 2964 connp->conn_wroff); 2965 } 2966 return (0); 2967 } 2968 2969 /* 2970 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 2971 * We do not allow the receive window to shrink. After setting rwnd, 2972 * set the flow control hiwat of the stream. 2973 * 2974 * This function is called in 2 cases: 2975 * 2976 * 1) Before data transfer begins, in tcp_input_listener() for accepting a 2977 * connection (passive open) and in tcp_input_data() for active connect. 2978 * This is called after tcp_mss_set() when the desired MSS value is known. 2979 * This makes sure that our window size is a mutiple of the other side's 2980 * MSS. 2981 * 2) Handling SO_RCVBUF option. 2982 * 2983 * It is ASSUMED that the requested size is a multiple of the current MSS. 2984 * 2985 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 2986 * user requests so. 2987 */ 2988 int 2989 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 2990 { 2991 uint32_t mss = tcp->tcp_mss; 2992 uint32_t old_max_rwnd; 2993 uint32_t max_transmittable_rwnd; 2994 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2995 tcp_stack_t *tcps = tcp->tcp_tcps; 2996 conn_t *connp = tcp->tcp_connp; 2997 2998 /* 2999 * Insist on a receive window that is at least 3000 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 3001 * funny TCP interactions of Nagle algorithm, SWS avoidance 3002 * and delayed acknowledgement. 3003 */ 3004 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 3005 3006 if (tcp->tcp_fused) { 3007 size_t sth_hiwat; 3008 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 3009 3010 ASSERT(peer_tcp != NULL); 3011 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 3012 if (!tcp_detached) { 3013 (void) proto_set_rx_hiwat(connp->conn_rq, connp, 3014 sth_hiwat); 3015 tcp_set_recv_threshold(tcp, sth_hiwat >> 3); 3016 } 3017 3018 /* Caller could have changed tcp_rwnd; update tha_win */ 3019 if (tcp->tcp_tcpha != NULL) { 3020 tcp->tcp_tcpha->tha_win = 3021 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 3022 } 3023 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 3024 tcp->tcp_cwnd_max = rwnd; 3025 3026 /* 3027 * In the fusion case, the maxpsz stream head value of 3028 * our peer is set according to its send buffer size 3029 * and our receive buffer size; since the latter may 3030 * have changed we need to update the peer's maxpsz. 3031 */ 3032 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 3033 return (sth_hiwat); 3034 } 3035 3036 if (tcp_detached) 3037 old_max_rwnd = tcp->tcp_rwnd; 3038 else 3039 old_max_rwnd = connp->conn_rcvbuf; 3040 3041 3042 /* 3043 * If window size info has already been exchanged, TCP should not 3044 * shrink the window. Shrinking window is doable if done carefully. 3045 * We may add that support later. But so far there is not a real 3046 * need to do that. 3047 */ 3048 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 3049 /* MSS may have changed, do a round up again. */ 3050 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 3051 } 3052 3053 /* 3054 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 3055 * can be applied even before the window scale option is decided. 3056 */ 3057 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 3058 if (rwnd > max_transmittable_rwnd) { 3059 rwnd = max_transmittable_rwnd - 3060 (max_transmittable_rwnd % mss); 3061 if (rwnd < mss) 3062 rwnd = max_transmittable_rwnd; 3063 /* 3064 * If we're over the limit we may have to back down tcp_rwnd. 3065 * The increment below won't work for us. So we set all three 3066 * here and the increment below will have no effect. 3067 */ 3068 tcp->tcp_rwnd = old_max_rwnd = rwnd; 3069 } 3070 if (tcp->tcp_localnet) { 3071 tcp->tcp_rack_abs_max = 3072 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 3073 } else { 3074 /* 3075 * For a remote host on a different subnet (through a router), 3076 * we ack every other packet to be conforming to RFC1122. 3077 * tcp_deferred_acks_max is default to 2. 3078 */ 3079 tcp->tcp_rack_abs_max = 3080 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 3081 } 3082 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 3083 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 3084 else 3085 tcp->tcp_rack_cur_max = 0; 3086 /* 3087 * Increment the current rwnd by the amount the maximum grew (we 3088 * can not overwrite it since we might be in the middle of a 3089 * connection.) 3090 */ 3091 tcp->tcp_rwnd += rwnd - old_max_rwnd; 3092 connp->conn_rcvbuf = rwnd; 3093 3094 /* Are we already connected? */ 3095 if (tcp->tcp_tcpha != NULL) { 3096 tcp->tcp_tcpha->tha_win = 3097 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 3098 } 3099 3100 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 3101 tcp->tcp_cwnd_max = rwnd; 3102 3103 if (tcp_detached) 3104 return (rwnd); 3105 3106 tcp_set_recv_threshold(tcp, rwnd >> 3); 3107 3108 (void) proto_set_rx_hiwat(connp->conn_rq, connp, rwnd); 3109 return (rwnd); 3110 } 3111 3112 int 3113 tcp_do_unbind(conn_t *connp) 3114 { 3115 tcp_t *tcp = connp->conn_tcp; 3116 int32_t oldstate; 3117 3118 switch (tcp->tcp_state) { 3119 case TCPS_BOUND: 3120 case TCPS_LISTEN: 3121 break; 3122 default: 3123 return (-TOUTSTATE); 3124 } 3125 3126 /* 3127 * Need to clean up all the eagers since after the unbind, segments 3128 * will no longer be delivered to this listener stream. 3129 */ 3130 mutex_enter(&tcp->tcp_eager_lock); 3131 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 3132 tcp_eager_cleanup(tcp, 0); 3133 } 3134 mutex_exit(&tcp->tcp_eager_lock); 3135 3136 /* Clean up the listener connection counter if necessary. */ 3137 if (tcp->tcp_listen_cnt != NULL) 3138 TCP_DECR_LISTEN_CNT(tcp); 3139 connp->conn_laddr_v6 = ipv6_all_zeros; 3140 connp->conn_saddr_v6 = ipv6_all_zeros; 3141 tcp_bind_hash_remove(tcp); 3142 oldstate = tcp->tcp_state; 3143 tcp->tcp_state = TCPS_IDLE; 3144 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 3145 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 3146 int32_t, oldstate); 3147 3148 ip_unbind(connp); 3149 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 3150 3151 return (0); 3152 } 3153 3154 /* 3155 * Collect protocol properties to send to the upper handle. 3156 */ 3157 void 3158 tcp_get_proto_props(tcp_t *tcp, struct sock_proto_props *sopp) 3159 { 3160 conn_t *connp = tcp->tcp_connp; 3161 3162 sopp->sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF; 3163 sopp->sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 3164 3165 sopp->sopp_rxhiwat = tcp->tcp_fused ? 3166 tcp_fuse_set_rcv_hiwat(tcp, connp->conn_rcvbuf) : 3167 connp->conn_rcvbuf; 3168 /* 3169 * Determine what write offset value to use depending on SACK and 3170 * whether the endpoint is fused or not. 3171 */ 3172 if (tcp->tcp_fused) { 3173 ASSERT(tcp->tcp_loopback); 3174 ASSERT(tcp->tcp_loopback_peer != NULL); 3175 /* 3176 * For fused tcp loopback, set the stream head's write 3177 * offset value to zero since we won't be needing any room 3178 * for TCP/IP headers. This would also improve performance 3179 * since it would reduce the amount of work done by kmem. 3180 * Non-fused tcp loopback case is handled separately below. 3181 */ 3182 sopp->sopp_wroff = 0; 3183 /* 3184 * Update the peer's transmit parameters according to 3185 * our recently calculated high water mark value. 3186 */ 3187 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 3188 } else if (tcp->tcp_snd_sack_ok) { 3189 sopp->sopp_wroff = connp->conn_ht_iphc_allocated + 3190 (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra); 3191 } else { 3192 sopp->sopp_wroff = connp->conn_ht_iphc_len + 3193 (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra); 3194 } 3195 3196 if (tcp->tcp_loopback) { 3197 sopp->sopp_flags |= SOCKOPT_LOOPBACK; 3198 sopp->sopp_loopback = B_TRUE; 3199 } 3200 } 3201 3202 /* 3203 * Check the usability of ZEROCOPY. It's instead checking the flag set by IP. 3204 */ 3205 boolean_t 3206 tcp_zcopy_check(tcp_t *tcp) 3207 { 3208 conn_t *connp = tcp->tcp_connp; 3209 ip_xmit_attr_t *ixa = connp->conn_ixa; 3210 boolean_t zc_enabled = B_FALSE; 3211 tcp_stack_t *tcps = tcp->tcp_tcps; 3212 3213 if (do_tcpzcopy == 2) 3214 zc_enabled = B_TRUE; 3215 else if ((do_tcpzcopy == 1) && (ixa->ixa_flags & IXAF_ZCOPY_CAPAB)) 3216 zc_enabled = B_TRUE; 3217 3218 tcp->tcp_snd_zcopy_on = zc_enabled; 3219 if (!TCP_IS_DETACHED(tcp)) { 3220 if (zc_enabled) { 3221 ixa->ixa_flags |= IXAF_VERIFY_ZCOPY; 3222 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3223 ZCVMSAFE); 3224 TCP_STAT(tcps, tcp_zcopy_on); 3225 } else { 3226 ixa->ixa_flags &= ~IXAF_VERIFY_ZCOPY; 3227 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3228 ZCVMUNSAFE); 3229 TCP_STAT(tcps, tcp_zcopy_off); 3230 } 3231 } 3232 return (zc_enabled); 3233 } 3234 3235 /* 3236 * Backoff from a zero-copy message by copying data to a new allocated 3237 * message and freeing the original desballoca'ed segmapped message. 3238 * 3239 * This function is called by following two callers: 3240 * 1. tcp_timer: fix_xmitlist is set to B_TRUE, because it's safe to free 3241 * the origial desballoca'ed message and notify sockfs. This is in re- 3242 * transmit state. 3243 * 2. tcp_output: fix_xmitlist is set to B_FALSE. Flag STRUIO_ZCNOTIFY need 3244 * to be copied to new message. 3245 */ 3246 mblk_t * 3247 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, boolean_t fix_xmitlist) 3248 { 3249 mblk_t *nbp; 3250 mblk_t *head = NULL; 3251 mblk_t *tail = NULL; 3252 tcp_stack_t *tcps = tcp->tcp_tcps; 3253 3254 ASSERT(bp != NULL); 3255 while (bp != NULL) { 3256 if (IS_VMLOANED_MBLK(bp)) { 3257 TCP_STAT(tcps, tcp_zcopy_backoff); 3258 if ((nbp = copyb(bp)) == NULL) { 3259 tcp->tcp_xmit_zc_clean = B_FALSE; 3260 if (tail != NULL) 3261 tail->b_cont = bp; 3262 return ((head == NULL) ? bp : head); 3263 } 3264 3265 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 3266 if (fix_xmitlist) 3267 tcp_zcopy_notify(tcp); 3268 else 3269 nbp->b_datap->db_struioflag |= 3270 STRUIO_ZCNOTIFY; 3271 } 3272 nbp->b_cont = bp->b_cont; 3273 3274 /* 3275 * Copy saved information and adjust tcp_xmit_tail 3276 * if needed. 3277 */ 3278 if (fix_xmitlist) { 3279 nbp->b_prev = bp->b_prev; 3280 nbp->b_next = bp->b_next; 3281 3282 if (tcp->tcp_xmit_tail == bp) 3283 tcp->tcp_xmit_tail = nbp; 3284 } 3285 3286 /* Free the original message. */ 3287 bp->b_prev = NULL; 3288 bp->b_next = NULL; 3289 freeb(bp); 3290 3291 bp = nbp; 3292 } 3293 3294 if (head == NULL) { 3295 head = bp; 3296 } 3297 if (tail == NULL) { 3298 tail = bp; 3299 } else { 3300 tail->b_cont = bp; 3301 tail = bp; 3302 } 3303 3304 /* Move forward. */ 3305 bp = bp->b_cont; 3306 } 3307 3308 if (fix_xmitlist) { 3309 tcp->tcp_xmit_last = tail; 3310 tcp->tcp_xmit_zc_clean = B_TRUE; 3311 } 3312 3313 return (head); 3314 } 3315 3316 void 3317 tcp_zcopy_notify(tcp_t *tcp) 3318 { 3319 struct stdata *stp; 3320 conn_t *connp; 3321 3322 if (tcp->tcp_detached) 3323 return; 3324 connp = tcp->tcp_connp; 3325 if (IPCL_IS_NONSTR(connp)) { 3326 (*connp->conn_upcalls->su_zcopy_notify) 3327 (connp->conn_upper_handle); 3328 return; 3329 } 3330 stp = STREAM(connp->conn_rq); 3331 mutex_enter(&stp->sd_lock); 3332 stp->sd_flag |= STZCNOTIFY; 3333 cv_broadcast(&stp->sd_zcopy_wait); 3334 mutex_exit(&stp->sd_lock); 3335 } 3336 3337 /* 3338 * Update the TCP connection according to change of LSO capability. 3339 */ 3340 static void 3341 tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa) 3342 { 3343 /* 3344 * We check against IPv4 header length to preserve the old behavior 3345 * of only enabling LSO when there are no IP options. 3346 * But this restriction might not be necessary at all. Before removing 3347 * it, need to verify how LSO is handled for source routing case, with 3348 * which IP does software checksum. 3349 * 3350 * For IPv6, whenever any extension header is needed, LSO is supressed. 3351 */ 3352 if (ixa->ixa_ip_hdr_length != ((ixa->ixa_flags & IXAF_IS_IPV4) ? 3353 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN)) 3354 return; 3355 3356 /* 3357 * Either the LSO capability newly became usable, or it has changed. 3358 */ 3359 if (ixa->ixa_flags & IXAF_LSO_CAPAB) { 3360 ill_lso_capab_t *lsoc = &ixa->ixa_lso_capab; 3361 uint_t lso_max = (ixa->ixa_flags & IXAF_IS_IPV4) ? 3362 lsoc->ill_lso_max_tcpv4 : lsoc->ill_lso_max_tcpv6; 3363 3364 ASSERT3U(lso_max, >, 0); 3365 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, lso_max); 3366 3367 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 3368 boolean_t, B_TRUE, uint32_t, tcp->tcp_lso_max); 3369 3370 /* 3371 * If LSO to be enabled, notify the STREAM header with larger 3372 * data block. 3373 */ 3374 if (!tcp->tcp_lso) 3375 tcp->tcp_maxpsz_multiplier = 0; 3376 3377 tcp->tcp_lso = B_TRUE; 3378 TCP_STAT(tcp->tcp_tcps, tcp_lso_enabled); 3379 } else { /* LSO capability is not usable any more. */ 3380 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 3381 boolean_t, B_FALSE, uint32_t, tcp->tcp_lso_max); 3382 3383 /* 3384 * If LSO to be disabled, notify the STREAM header with smaller 3385 * data block. And need to restore fragsize to PMTU. 3386 */ 3387 if (tcp->tcp_lso) { 3388 tcp->tcp_maxpsz_multiplier = 3389 tcp->tcp_tcps->tcps_maxpsz_multiplier; 3390 ixa->ixa_fragsize = ixa->ixa_pmtu; 3391 tcp->tcp_lso = B_FALSE; 3392 TCP_STAT(tcp->tcp_tcps, tcp_lso_disabled); 3393 } 3394 } 3395 3396 (void) tcp_maxpsz_set(tcp, B_TRUE); 3397 } 3398 3399 /* 3400 * Update the TCP connection according to change of ZEROCOPY capability. 3401 */ 3402 static void 3403 tcp_update_zcopy(tcp_t *tcp) 3404 { 3405 conn_t *connp = tcp->tcp_connp; 3406 tcp_stack_t *tcps = tcp->tcp_tcps; 3407 3408 if (tcp->tcp_snd_zcopy_on) { 3409 tcp->tcp_snd_zcopy_on = B_FALSE; 3410 if (!TCP_IS_DETACHED(tcp)) { 3411 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3412 ZCVMUNSAFE); 3413 TCP_STAT(tcps, tcp_zcopy_off); 3414 } 3415 } else { 3416 tcp->tcp_snd_zcopy_on = B_TRUE; 3417 if (!TCP_IS_DETACHED(tcp)) { 3418 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3419 ZCVMSAFE); 3420 TCP_STAT(tcps, tcp_zcopy_on); 3421 } 3422 } 3423 } 3424 3425 /* 3426 * Notify function registered with ip_xmit_attr_t. It's called in the squeue 3427 * so it's safe to update the TCP connection. 3428 */ 3429 /* ARGSUSED1 */ 3430 static void 3431 tcp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype, 3432 ixa_notify_arg_t narg) 3433 { 3434 tcp_t *tcp = (tcp_t *)arg; 3435 conn_t *connp = tcp->tcp_connp; 3436 3437 switch (ntype) { 3438 case IXAN_LSO: 3439 tcp_update_lso(tcp, connp->conn_ixa); 3440 break; 3441 case IXAN_PMTU: 3442 tcp_update_pmtu(tcp, B_FALSE); 3443 break; 3444 case IXAN_ZCOPY: 3445 tcp_update_zcopy(tcp); 3446 break; 3447 default: 3448 break; 3449 } 3450 } 3451 3452 /* 3453 * The TCP write service routine should never be called... 3454 */ 3455 /* ARGSUSED */ 3456 static int 3457 tcp_wsrv(queue_t *q) 3458 { 3459 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 3460 3461 TCP_STAT(tcps, tcp_wsrv_called); 3462 return (0); 3463 } 3464 3465 /* 3466 * Hash list lookup routine for tcp_t structures. 3467 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 3468 */ 3469 tcp_t * 3470 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 3471 { 3472 tf_t *tf; 3473 tcp_t *tcp; 3474 3475 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 3476 mutex_enter(&tf->tf_lock); 3477 for (tcp = tf->tf_tcp; tcp != NULL; 3478 tcp = tcp->tcp_acceptor_hash) { 3479 if (tcp->tcp_acceptor_id == id) { 3480 CONN_INC_REF(tcp->tcp_connp); 3481 mutex_exit(&tf->tf_lock); 3482 return (tcp); 3483 } 3484 } 3485 mutex_exit(&tf->tf_lock); 3486 return (NULL); 3487 } 3488 3489 /* 3490 * Hash list insertion routine for tcp_t structures. 3491 */ 3492 void 3493 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 3494 { 3495 tf_t *tf; 3496 tcp_t **tcpp; 3497 tcp_t *tcpnext; 3498 tcp_stack_t *tcps = tcp->tcp_tcps; 3499 3500 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 3501 3502 if (tcp->tcp_ptpahn != NULL) 3503 tcp_acceptor_hash_remove(tcp); 3504 tcpp = &tf->tf_tcp; 3505 mutex_enter(&tf->tf_lock); 3506 tcpnext = tcpp[0]; 3507 if (tcpnext) 3508 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 3509 tcp->tcp_acceptor_hash = tcpnext; 3510 tcp->tcp_ptpahn = tcpp; 3511 tcpp[0] = tcp; 3512 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 3513 mutex_exit(&tf->tf_lock); 3514 } 3515 3516 /* 3517 * Hash list removal routine for tcp_t structures. 3518 */ 3519 void 3520 tcp_acceptor_hash_remove(tcp_t *tcp) 3521 { 3522 tcp_t *tcpnext; 3523 kmutex_t *lockp; 3524 3525 /* 3526 * Extract the lock pointer in case there are concurrent 3527 * hash_remove's for this instance. 3528 */ 3529 lockp = tcp->tcp_acceptor_lockp; 3530 3531 if (tcp->tcp_ptpahn == NULL) 3532 return; 3533 3534 ASSERT(lockp != NULL); 3535 mutex_enter(lockp); 3536 if (tcp->tcp_ptpahn) { 3537 tcpnext = tcp->tcp_acceptor_hash; 3538 if (tcpnext) { 3539 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 3540 tcp->tcp_acceptor_hash = NULL; 3541 } 3542 *tcp->tcp_ptpahn = tcpnext; 3543 tcp->tcp_ptpahn = NULL; 3544 } 3545 mutex_exit(lockp); 3546 tcp->tcp_acceptor_lockp = NULL; 3547 } 3548 3549 /* 3550 * Type three generator adapted from the random() function in 4.4 BSD: 3551 */ 3552 3553 /* 3554 * Copyright (c) 1983, 1993 3555 * The Regents of the University of California. All rights reserved. 3556 * 3557 * Redistribution and use in source and binary forms, with or without 3558 * modification, are permitted provided that the following conditions 3559 * are met: 3560 * 1. Redistributions of source code must retain the above copyright 3561 * notice, this list of conditions and the following disclaimer. 3562 * 2. Redistributions in binary form must reproduce the above copyright 3563 * notice, this list of conditions and the following disclaimer in the 3564 * documentation and/or other materials provided with the distribution. 3565 * 3. All advertising materials mentioning features or use of this software 3566 * must display the following acknowledgement: 3567 * This product includes software developed by the University of 3568 * California, Berkeley and its contributors. 3569 * 4. Neither the name of the University nor the names of its contributors 3570 * may be used to endorse or promote products derived from this software 3571 * without specific prior written permission. 3572 * 3573 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 3574 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 3575 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 3576 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 3577 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 3578 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 3579 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 3580 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 3581 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 3582 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 3583 * SUCH DAMAGE. 3584 */ 3585 3586 /* Type 3 -- x**31 + x**3 + 1 */ 3587 #define DEG_3 31 3588 #define SEP_3 3 3589 3590 3591 /* Protected by tcp_random_lock */ 3592 static int tcp_randtbl[DEG_3 + 1]; 3593 3594 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 3595 static int *tcp_random_rptr = &tcp_randtbl[1]; 3596 3597 static int *tcp_random_state = &tcp_randtbl[1]; 3598 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 3599 3600 kmutex_t tcp_random_lock; 3601 3602 void 3603 tcp_random_init(void) 3604 { 3605 int i; 3606 hrtime_t hrt; 3607 time_t wallclock; 3608 uint64_t result; 3609 3610 /* 3611 * Use high-res timer and current time for seed. Gethrtime() returns 3612 * a longlong, which may contain resolution down to nanoseconds. 3613 * The current time will either be a 32-bit or a 64-bit quantity. 3614 * XOR the two together in a 64-bit result variable. 3615 * Convert the result to a 32-bit value by multiplying the high-order 3616 * 32-bits by the low-order 32-bits. 3617 */ 3618 3619 hrt = gethrtime(); 3620 (void) drv_getparm(TIME, &wallclock); 3621 result = (uint64_t)wallclock ^ (uint64_t)hrt; 3622 mutex_enter(&tcp_random_lock); 3623 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 3624 (result & 0xffffffff); 3625 3626 for (i = 1; i < DEG_3; i++) 3627 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 3628 + 12345; 3629 tcp_random_fptr = &tcp_random_state[SEP_3]; 3630 tcp_random_rptr = &tcp_random_state[0]; 3631 mutex_exit(&tcp_random_lock); 3632 for (i = 0; i < 10 * DEG_3; i++) 3633 (void) tcp_random(); 3634 } 3635 3636 /* 3637 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 3638 * This range is selected to be approximately centered on TCP_ISS / 2, 3639 * and easy to compute. We get this value by generating a 32-bit random 3640 * number, selecting out the high-order 17 bits, and then adding one so 3641 * that we never return zero. 3642 */ 3643 int 3644 tcp_random(void) 3645 { 3646 int i; 3647 3648 mutex_enter(&tcp_random_lock); 3649 *tcp_random_fptr += *tcp_random_rptr; 3650 3651 /* 3652 * The high-order bits are more random than the low-order bits, 3653 * so we select out the high-order 17 bits and add one so that 3654 * we never return zero. 3655 */ 3656 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 3657 if (++tcp_random_fptr >= tcp_random_end_ptr) { 3658 tcp_random_fptr = tcp_random_state; 3659 ++tcp_random_rptr; 3660 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 3661 tcp_random_rptr = tcp_random_state; 3662 3663 mutex_exit(&tcp_random_lock); 3664 return (i); 3665 } 3666 3667 /* 3668 * Split this function out so that if the secret changes, I'm okay. 3669 * 3670 * Initialize the tcp_iss_cookie and tcp_iss_key. 3671 */ 3672 3673 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 3674 3675 void 3676 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 3677 { 3678 struct { 3679 int32_t current_time; 3680 uint32_t randnum; 3681 uint16_t pad; 3682 uint8_t ether[6]; 3683 uint8_t passwd[PASSWD_SIZE]; 3684 } tcp_iss_cookie; 3685 time_t t; 3686 3687 /* 3688 * Start with the current absolute time. 3689 */ 3690 (void) drv_getparm(TIME, &t); 3691 tcp_iss_cookie.current_time = t; 3692 3693 /* 3694 * XXX - Need a more random number per RFC 1750, not this crap. 3695 * OTOH, if what follows is pretty random, then I'm in better shape. 3696 */ 3697 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 3698 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 3699 3700 /* 3701 * The cpu_type_info is pretty non-random. Ugggh. It does serve 3702 * as a good template. 3703 */ 3704 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 3705 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 3706 3707 /* 3708 * The pass-phrase. Normally this is supplied by user-called NDD. 3709 */ 3710 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 3711 3712 /* 3713 * See 4010593 if this section becomes a problem again, 3714 * but the local ethernet address is useful here. 3715 */ 3716 (void) localetheraddr(NULL, 3717 (struct ether_addr *)&tcp_iss_cookie.ether); 3718 3719 /* 3720 * Hash 'em all together. The MD5Final is called per-connection. 3721 */ 3722 mutex_enter(&tcps->tcps_iss_key_lock); 3723 MD5Init(&tcps->tcps_iss_key); 3724 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 3725 sizeof (tcp_iss_cookie)); 3726 mutex_exit(&tcps->tcps_iss_key_lock); 3727 } 3728 3729 /* 3730 * Called by IP when IP is loaded into the kernel 3731 */ 3732 void 3733 tcp_ddi_g_init(void) 3734 { 3735 tcp_timercache = kmem_cache_create("tcp_timercache", 3736 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 3737 NULL, NULL, NULL, NULL, NULL, 0); 3738 3739 tcp_notsack_blk_cache = kmem_cache_create("tcp_notsack_blk_cache", 3740 sizeof (notsack_blk_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 3741 3742 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 3743 3744 /* Initialize the random number generator */ 3745 tcp_random_init(); 3746 3747 /* A single callback independently of how many netstacks we have */ 3748 ip_squeue_init(tcp_squeue_add); 3749 3750 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 3751 3752 tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput); 3753 3754 /* 3755 * We want to be informed each time a stack is created or 3756 * destroyed in the kernel, so we can maintain the 3757 * set of tcp_stack_t's. 3758 */ 3759 netstack_register(NS_TCP, tcp_stack_init, NULL, tcp_stack_fini); 3760 } 3761 3762 3763 #define INET_NAME "ip" 3764 3765 /* 3766 * Initialize the TCP stack instance. 3767 */ 3768 static void * 3769 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 3770 { 3771 tcp_stack_t *tcps; 3772 int i; 3773 int error = 0; 3774 major_t major; 3775 size_t arrsz; 3776 3777 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 3778 tcps->tcps_netstack = ns; 3779 3780 /* Initialize locks */ 3781 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 3782 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 3783 3784 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 3785 tcps->tcps_g_epriv_ports[0] = ULP_DEF_EPRIV_PORT1; 3786 tcps->tcps_g_epriv_ports[1] = ULP_DEF_EPRIV_PORT2; 3787 tcps->tcps_min_anonpriv_port = 512; 3788 3789 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 3790 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 3791 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 3792 TCP_ACCEPTOR_FANOUT_SIZE, KM_SLEEP); 3793 3794 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 3795 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 3796 MUTEX_DEFAULT, NULL); 3797 } 3798 3799 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) { 3800 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 3801 MUTEX_DEFAULT, NULL); 3802 } 3803 3804 /* TCP's IPsec code calls the packet dropper. */ 3805 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 3806 3807 arrsz = tcp_propinfo_count * sizeof (mod_prop_info_t); 3808 tcps->tcps_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, 3809 KM_SLEEP); 3810 bcopy(tcp_propinfo_tbl, tcps->tcps_propinfo_tbl, arrsz); 3811 3812 /* 3813 * Note: To really walk the device tree you need the devinfo 3814 * pointer to your device which is only available after probe/attach. 3815 * The following is safe only because it uses ddi_root_node() 3816 */ 3817 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 3818 tcp_opt_obj.odb_opt_arr_cnt); 3819 3820 /* 3821 * Initialize RFC 1948 secret values. This will probably be reset once 3822 * by the boot scripts. 3823 * 3824 * Use NULL name, as the name is caught by the new lockstats. 3825 * 3826 * Initialize with some random, non-guessable string, like the global 3827 * T_INFO_ACK. 3828 */ 3829 3830 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 3831 sizeof (tcp_g_t_info_ack), tcps); 3832 3833 tcps->tcps_kstat = tcp_kstat2_init(stackid); 3834 tcps->tcps_mibkp = tcp_kstat_init(stackid); 3835 3836 major = mod_name_to_major(INET_NAME); 3837 error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident); 3838 ASSERT(error == 0); 3839 tcps->tcps_ixa_cleanup_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL); 3840 ASSERT(tcps->tcps_ixa_cleanup_mp != NULL); 3841 cv_init(&tcps->tcps_ixa_cleanup_ready_cv, NULL, CV_DEFAULT, NULL); 3842 cv_init(&tcps->tcps_ixa_cleanup_done_cv, NULL, CV_DEFAULT, NULL); 3843 mutex_init(&tcps->tcps_ixa_cleanup_lock, NULL, MUTEX_DEFAULT, NULL); 3844 3845 mutex_init(&tcps->tcps_reclaim_lock, NULL, MUTEX_DEFAULT, NULL); 3846 tcps->tcps_reclaim = B_FALSE; 3847 tcps->tcps_reclaim_tid = 0; 3848 tcps->tcps_reclaim_period = tcps->tcps_rexmit_interval_max; 3849 3850 /* 3851 * ncpus is the current number of CPUs, which can be bigger than 3852 * boot_ncpus. But we don't want to use ncpus to allocate all the 3853 * tcp_stats_cpu_t at system boot up time since it will be 1. While 3854 * we handle adding CPU in tcp_cpu_update(), it will be slow if 3855 * there are many CPUs as we will be adding them 1 by 1. 3856 * 3857 * Note that tcps_sc_cnt never decreases and the tcps_sc[x] pointers 3858 * are not freed until the stack is going away. So there is no need 3859 * to grab a lock to access the per CPU tcps_sc[x] pointer. 3860 */ 3861 mutex_enter(&cpu_lock); 3862 tcps->tcps_sc_cnt = MAX(ncpus, boot_ncpus); 3863 mutex_exit(&cpu_lock); 3864 tcps->tcps_sc = kmem_zalloc(max_ncpus * sizeof (tcp_stats_cpu_t *), 3865 KM_SLEEP); 3866 for (i = 0; i < tcps->tcps_sc_cnt; i++) { 3867 tcps->tcps_sc[i] = kmem_zalloc(sizeof (tcp_stats_cpu_t), 3868 KM_SLEEP); 3869 } 3870 3871 mutex_init(&tcps->tcps_listener_conf_lock, NULL, MUTEX_DEFAULT, NULL); 3872 list_create(&tcps->tcps_listener_conf, sizeof (tcp_listener_t), 3873 offsetof(tcp_listener_t, tl_link)); 3874 3875 tcps->tcps_default_cc_algo = cc_load_algo(CC_DEFAULT_ALGO_NAME); 3876 VERIFY3P(tcps->tcps_default_cc_algo, !=, NULL); 3877 3878 tcpsig_init(tcps); 3879 3880 return (tcps); 3881 } 3882 3883 /* 3884 * Called when the IP module is about to be unloaded. 3885 */ 3886 void 3887 tcp_ddi_g_destroy(void) 3888 { 3889 tcp_g_kstat_fini(tcp_g_kstat); 3890 tcp_g_kstat = NULL; 3891 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 3892 3893 mutex_destroy(&tcp_random_lock); 3894 3895 kmem_cache_destroy(tcp_timercache); 3896 kmem_cache_destroy(tcp_notsack_blk_cache); 3897 3898 netstack_unregister(NS_TCP); 3899 } 3900 3901 /* 3902 * Free the TCP stack instance. 3903 */ 3904 static void 3905 tcp_stack_fini(netstackid_t stackid, void *arg) 3906 { 3907 tcp_stack_t *tcps = (tcp_stack_t *)arg; 3908 int i; 3909 3910 freeb(tcps->tcps_ixa_cleanup_mp); 3911 tcps->tcps_ixa_cleanup_mp = NULL; 3912 cv_destroy(&tcps->tcps_ixa_cleanup_ready_cv); 3913 cv_destroy(&tcps->tcps_ixa_cleanup_done_cv); 3914 mutex_destroy(&tcps->tcps_ixa_cleanup_lock); 3915 3916 /* 3917 * Set tcps_reclaim to false tells tcp_reclaim_timer() not to restart 3918 * the timer. 3919 */ 3920 mutex_enter(&tcps->tcps_reclaim_lock); 3921 tcps->tcps_reclaim = B_FALSE; 3922 mutex_exit(&tcps->tcps_reclaim_lock); 3923 if (tcps->tcps_reclaim_tid != 0) 3924 (void) untimeout(tcps->tcps_reclaim_tid); 3925 mutex_destroy(&tcps->tcps_reclaim_lock); 3926 3927 tcp_listener_conf_cleanup(tcps); 3928 3929 for (i = 0; i < tcps->tcps_sc_cnt; i++) 3930 kmem_free(tcps->tcps_sc[i], sizeof (tcp_stats_cpu_t)); 3931 kmem_free(tcps->tcps_sc, max_ncpus * sizeof (tcp_stats_cpu_t *)); 3932 3933 kmem_free(tcps->tcps_propinfo_tbl, 3934 tcp_propinfo_count * sizeof (mod_prop_info_t)); 3935 tcps->tcps_propinfo_tbl = NULL; 3936 3937 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 3938 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 3939 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 3940 } 3941 3942 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) { 3943 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 3944 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 3945 } 3946 3947 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 3948 tcps->tcps_bind_fanout = NULL; 3949 3950 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * 3951 TCP_ACCEPTOR_FANOUT_SIZE); 3952 tcps->tcps_acceptor_fanout = NULL; 3953 3954 mutex_destroy(&tcps->tcps_iss_key_lock); 3955 mutex_destroy(&tcps->tcps_epriv_port_lock); 3956 3957 ip_drop_unregister(&tcps->tcps_dropper); 3958 3959 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 3960 tcps->tcps_kstat = NULL; 3961 3962 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 3963 tcps->tcps_mibkp = NULL; 3964 3965 tcpsig_fini(tcps); 3966 3967 ldi_ident_release(tcps->tcps_ldi_ident); 3968 kmem_free(tcps, sizeof (*tcps)); 3969 } 3970 3971 /* 3972 * Generate ISS, taking into account NDD changes may happen halfway through. 3973 * (If the iss is not zero, set it.) 3974 */ 3975 3976 static void 3977 tcp_iss_init(tcp_t *tcp) 3978 { 3979 MD5_CTX context; 3980 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 3981 uint32_t answer[4]; 3982 tcp_stack_t *tcps = tcp->tcp_tcps; 3983 conn_t *connp = tcp->tcp_connp; 3984 3985 tcps->tcps_iss_incr_extra += (tcps->tcps_iss_incr >> 1); 3986 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 3987 switch (tcps->tcps_strong_iss) { 3988 case 2: 3989 mutex_enter(&tcps->tcps_iss_key_lock); 3990 context = tcps->tcps_iss_key; 3991 mutex_exit(&tcps->tcps_iss_key_lock); 3992 arg.ports = connp->conn_ports; 3993 arg.src = connp->conn_laddr_v6; 3994 arg.dst = connp->conn_faddr_v6; 3995 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 3996 MD5Final((uchar_t *)answer, &context); 3997 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 3998 /* 3999 * Now that we've hashed into a unique per-connection sequence 4000 * space, add a random increment per strong_iss == 1. So I 4001 * guess we'll have to... 4002 */ 4003 /* FALLTHRU */ 4004 case 1: 4005 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 4006 break; 4007 default: 4008 tcp->tcp_iss += (uint32_t)gethrestime_sec() * 4009 tcps->tcps_iss_incr; 4010 break; 4011 } 4012 tcp->tcp_valid_bits = TCP_ISS_VALID; 4013 tcp->tcp_fss = tcp->tcp_iss - 1; 4014 tcp->tcp_suna = tcp->tcp_iss; 4015 tcp->tcp_snxt = tcp->tcp_iss + 1; 4016 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 4017 tcp->tcp_csuna = tcp->tcp_snxt; 4018 } 4019 4020 /* 4021 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 4022 * on the specified backing STREAMS q. Note, the caller may make the 4023 * decision to call based on the tcp_t.tcp_flow_stopped value which 4024 * when check outside the q's lock is only an advisory check ... 4025 */ 4026 void 4027 tcp_setqfull(tcp_t *tcp) 4028 { 4029 tcp_stack_t *tcps = tcp->tcp_tcps; 4030 conn_t *connp = tcp->tcp_connp; 4031 4032 if (tcp->tcp_closed) 4033 return; 4034 4035 conn_setqfull(connp, &tcp->tcp_flow_stopped); 4036 if (tcp->tcp_flow_stopped) 4037 TCP_STAT(tcps, tcp_flwctl_on); 4038 } 4039 4040 void 4041 tcp_clrqfull(tcp_t *tcp) 4042 { 4043 conn_t *connp = tcp->tcp_connp; 4044 4045 if (tcp->tcp_closed) 4046 return; 4047 conn_clrqfull(connp, &tcp->tcp_flow_stopped); 4048 } 4049 4050 static int 4051 tcp_squeue_switch(int val) 4052 { 4053 int rval = SQ_FILL; 4054 4055 switch (val) { 4056 case 1: 4057 rval = SQ_NODRAIN; 4058 break; 4059 case 2: 4060 rval = SQ_PROCESS; 4061 break; 4062 default: 4063 break; 4064 } 4065 return (rval); 4066 } 4067 4068 /* 4069 * This is called once for each squeue - globally for all stack 4070 * instances. 4071 */ 4072 static void 4073 tcp_squeue_add(squeue_t *sqp) 4074 { 4075 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 4076 sizeof (tcp_squeue_priv_t), KM_SLEEP); 4077 4078 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 4079 if (tcp_free_list_max_cnt == 0) { 4080 int tcp_ncpus = ((boot_max_ncpus == -1) ? 4081 max_ncpus : boot_max_ncpus); 4082 4083 /* 4084 * Limit number of entries to 1% of availble memory / tcp_ncpus 4085 */ 4086 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 4087 (tcp_ncpus * sizeof (tcp_t) * 100); 4088 } 4089 tcp_time_wait->tcp_free_list_cnt = 0; 4090 } 4091 /* 4092 * Return unix error is tli error is TSYSERR, otherwise return a negative 4093 * tli error. 4094 */ 4095 int 4096 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 4097 boolean_t bind_to_req_port_only) 4098 { 4099 int error; 4100 tcp_t *tcp = connp->conn_tcp; 4101 4102 if (tcp->tcp_state >= TCPS_BOUND) { 4103 if (connp->conn_debug) { 4104 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 4105 "tcp_bind: bad state, %d", tcp->tcp_state); 4106 } 4107 return (-TOUTSTATE); 4108 } 4109 4110 error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only); 4111 if (error != 0) 4112 return (error); 4113 4114 ASSERT(tcp->tcp_state == TCPS_BOUND); 4115 tcp->tcp_conn_req_max = 0; 4116 return (0); 4117 } 4118 4119 /* 4120 * If the return value from this function is positive, it's a UNIX error. 4121 * Otherwise, if it's negative, then the absolute value is a TLI error. 4122 * the TPI routine tcp_tpi_connect() is a wrapper function for this. 4123 */ 4124 int 4125 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len, 4126 cred_t *cr, pid_t pid) 4127 { 4128 tcp_t *tcp = connp->conn_tcp; 4129 sin_t *sin = (sin_t *)sa; 4130 sin6_t *sin6 = (sin6_t *)sa; 4131 ipaddr_t *dstaddrp; 4132 in_port_t dstport; 4133 uint_t srcid; 4134 int error; 4135 uint32_t mss; 4136 mblk_t *syn_mp; 4137 tcp_stack_t *tcps = tcp->tcp_tcps; 4138 int32_t oldstate; 4139 ip_xmit_attr_t *ixa = connp->conn_ixa; 4140 4141 oldstate = tcp->tcp_state; 4142 4143 switch (len) { 4144 default: 4145 /* 4146 * Should never happen 4147 */ 4148 return (EINVAL); 4149 4150 case sizeof (sin_t): 4151 sin = (sin_t *)sa; 4152 if (sin->sin_port == 0) { 4153 return (-TBADADDR); 4154 } 4155 if (connp->conn_ipv6_v6only) { 4156 return (EAFNOSUPPORT); 4157 } 4158 break; 4159 4160 case sizeof (sin6_t): 4161 sin6 = (sin6_t *)sa; 4162 if (sin6->sin6_port == 0) { 4163 return (-TBADADDR); 4164 } 4165 break; 4166 } 4167 /* 4168 * If we're connecting to an IPv4-mapped IPv6 address, we need to 4169 * make sure that the conn_ipversion is IPV4_VERSION. We 4170 * need to this before we call tcp_bindi() so that the port lookup 4171 * code will look for ports in the correct port space (IPv4 and 4172 * IPv6 have separate port spaces). 4173 */ 4174 if (connp->conn_family == AF_INET6 && 4175 connp->conn_ipversion == IPV6_VERSION && 4176 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 4177 if (connp->conn_ipv6_v6only) 4178 return (EADDRNOTAVAIL); 4179 4180 connp->conn_ipversion = IPV4_VERSION; 4181 } 4182 4183 switch (tcp->tcp_state) { 4184 case TCPS_LISTEN: 4185 /* 4186 * Listening sockets are not allowed to issue connect(). 4187 */ 4188 if (IPCL_IS_NONSTR(connp)) 4189 return (EOPNOTSUPP); 4190 /* FALLTHRU */ 4191 case TCPS_IDLE: 4192 /* 4193 * We support quick connect, refer to comments in 4194 * tcp_connect_*() 4195 */ 4196 /* FALLTHRU */ 4197 case TCPS_BOUND: 4198 break; 4199 default: 4200 return (-TOUTSTATE); 4201 } 4202 4203 /* 4204 * We update our cred/cpid based on the caller of connect 4205 */ 4206 if (connp->conn_cred != cr) { 4207 crhold(cr); 4208 crfree(connp->conn_cred); 4209 connp->conn_cred = cr; 4210 } 4211 connp->conn_cpid = pid; 4212 4213 /* Cache things in the ixa without any refhold */ 4214 ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED)); 4215 ixa->ixa_cred = cr; 4216 ixa->ixa_cpid = pid; 4217 if (is_system_labeled()) { 4218 /* We need to restart with a label based on the cred */ 4219 ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred); 4220 } 4221 4222 if (connp->conn_family == AF_INET6) { 4223 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 4224 error = tcp_connect_ipv6(tcp, &sin6->sin6_addr, 4225 sin6->sin6_port, sin6->sin6_flowinfo, 4226 sin6->__sin6_src_id, sin6->sin6_scope_id); 4227 } else { 4228 /* 4229 * Destination adress is mapped IPv6 address. 4230 * Source bound address should be unspecified or 4231 * IPv6 mapped address as well. 4232 */ 4233 if (!IN6_IS_ADDR_UNSPECIFIED( 4234 &connp->conn_bound_addr_v6) && 4235 !IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) { 4236 return (EADDRNOTAVAIL); 4237 } 4238 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 4239 dstport = sin6->sin6_port; 4240 srcid = sin6->__sin6_src_id; 4241 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, 4242 srcid); 4243 } 4244 } else { 4245 dstaddrp = &sin->sin_addr.s_addr; 4246 dstport = sin->sin_port; 4247 srcid = 0; 4248 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid); 4249 } 4250 4251 if (error != 0) 4252 goto connect_failed; 4253 4254 CL_INET_CONNECT(connp, B_TRUE, error); 4255 if (error != 0) 4256 goto connect_failed; 4257 4258 /* connect succeeded */ 4259 TCPS_BUMP_MIB(tcps, tcpActiveOpens); 4260 tcp->tcp_active_open = 1; 4261 4262 /* 4263 * tcp_set_destination() does not adjust for TCP/IP header length. 4264 */ 4265 mss = tcp->tcp_mss - connp->conn_ht_iphc_len; 4266 4267 /* 4268 * Just make sure our rwnd is at least rcvbuf * MSS large, and round up 4269 * to the nearest MSS. 4270 * 4271 * We do the round up here because we need to get the interface MTU 4272 * first before we can do the round up. 4273 */ 4274 tcp->tcp_rwnd = connp->conn_rcvbuf; 4275 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 4276 tcps->tcps_recv_hiwat_minmss * mss); 4277 connp->conn_rcvbuf = tcp->tcp_rwnd; 4278 tcp_set_ws_value(tcp); 4279 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 4280 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 4281 tcp->tcp_snd_ws_ok = B_TRUE; 4282 4283 /* 4284 * Set tcp_snd_ts_ok to true 4285 * so that tcp_xmit_mp will 4286 * include the timestamp 4287 * option in the SYN segment. 4288 */ 4289 if (tcps->tcps_tstamp_always || 4290 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 4291 tcp->tcp_snd_ts_ok = B_TRUE; 4292 } 4293 4294 /* 4295 * Note that tcp_snd_sack_ok can be set in tcp_set_destination() if 4296 * the SACK metric is set. So here we just check the per stack SACK 4297 * permitted param. 4298 */ 4299 if (tcps->tcps_sack_permitted == 2) { 4300 ASSERT(tcp->tcp_num_sack_blk == 0); 4301 ASSERT(tcp->tcp_notsack_list == NULL); 4302 tcp->tcp_snd_sack_ok = B_TRUE; 4303 } 4304 4305 /* 4306 * Should we use ECN? Note that the current 4307 * default value (SunOS 5.9) of tcp_ecn_permitted 4308 * is 1. The reason for doing this is that there 4309 * are equipments out there that will drop ECN 4310 * enabled IP packets. Setting it to 1 avoids 4311 * compatibility problems. 4312 */ 4313 if (tcps->tcps_ecn_permitted == 2) 4314 tcp->tcp_ecn_ok = B_TRUE; 4315 4316 /* Trace change from BOUND -> SYN_SENT here */ 4317 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 4318 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 4319 int32_t, TCPS_BOUND); 4320 4321 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 4322 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 4323 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 4324 if (syn_mp != NULL) { 4325 /* 4326 * We must bump the generation before sending the syn 4327 * to ensure that we use the right generation in case 4328 * this thread issues a "connected" up call. 4329 */ 4330 SOCK_CONNID_BUMP(tcp->tcp_connid); 4331 /* 4332 * DTrace sending the first SYN as a 4333 * tcp:::connect-request event. 4334 */ 4335 DTRACE_TCP5(connect__request, mblk_t *, NULL, 4336 ip_xmit_attr_t *, connp->conn_ixa, 4337 void_ip_t *, syn_mp->b_rptr, tcp_t *, tcp, 4338 tcph_t *, 4339 &syn_mp->b_rptr[connp->conn_ixa->ixa_ip_hdr_length]); 4340 tcp_send_data(tcp, syn_mp); 4341 } 4342 4343 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4344 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4345 return (0); 4346 4347 connect_failed: 4348 connp->conn_faddr_v6 = ipv6_all_zeros; 4349 connp->conn_fport = 0; 4350 tcp->tcp_state = oldstate; 4351 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4352 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4353 return (error); 4354 } 4355 4356 int 4357 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len, 4358 int backlog, cred_t *cr, boolean_t bind_to_req_port_only) 4359 { 4360 tcp_t *tcp = connp->conn_tcp; 4361 int error = 0; 4362 tcp_stack_t *tcps = tcp->tcp_tcps; 4363 int32_t oldstate; 4364 4365 /* All Solaris components should pass a cred for this operation. */ 4366 ASSERT(cr != NULL); 4367 4368 if (tcp->tcp_state >= TCPS_BOUND) { 4369 if ((tcp->tcp_state == TCPS_BOUND || 4370 tcp->tcp_state == TCPS_LISTEN) && backlog > 0) { 4371 /* 4372 * Handle listen() increasing backlog. 4373 * This is more "liberal" then what the TPI spec 4374 * requires but is needed to avoid a t_unbind 4375 * when handling listen() since the port number 4376 * might be "stolen" between the unbind and bind. 4377 */ 4378 goto do_listen; 4379 } 4380 if (connp->conn_debug) { 4381 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 4382 "tcp_listen: bad state, %d", tcp->tcp_state); 4383 } 4384 return (-TOUTSTATE); 4385 } else { 4386 sin6_t addr; 4387 sin_t *sin; 4388 sin6_t *sin6; 4389 4390 if (sa == NULL) { 4391 ASSERT(IPCL_IS_NONSTR(connp)); 4392 /* Do an implicit bind: Request for a generic port. */ 4393 if (connp->conn_family == AF_INET) { 4394 len = sizeof (sin_t); 4395 sin = (sin_t *)&addr; 4396 *sin = sin_null; 4397 sin->sin_family = AF_INET; 4398 } else { 4399 ASSERT(connp->conn_family == AF_INET6); 4400 len = sizeof (sin6_t); 4401 sin6 = (sin6_t *)&addr; 4402 *sin6 = sin6_null; 4403 sin6->sin6_family = AF_INET6; 4404 } 4405 sa = (struct sockaddr *)&addr; 4406 } 4407 4408 error = tcp_bind_check(connp, sa, len, cr, 4409 bind_to_req_port_only); 4410 if (error) 4411 return (error); 4412 /* Fall through and do the fanout insertion */ 4413 } 4414 4415 do_listen: 4416 ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN); 4417 tcp->tcp_conn_req_max = backlog; 4418 if (tcp->tcp_conn_req_max) { 4419 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 4420 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 4421 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 4422 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 4423 /* 4424 * If this is a listener, do not reset the eager list 4425 * and other stuffs. Note that we don't check if the 4426 * existing eager list meets the new tcp_conn_req_max 4427 * requirement. 4428 */ 4429 if (tcp->tcp_state != TCPS_LISTEN) { 4430 tcp->tcp_state = TCPS_LISTEN; 4431 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 4432 connp->conn_ixa, void, NULL, tcp_t *, tcp, 4433 void, NULL, int32_t, TCPS_BOUND); 4434 /* Initialize the chain. Don't need the eager_lock */ 4435 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 4436 tcp->tcp_eager_next_drop_q0 = tcp; 4437 tcp->tcp_eager_prev_drop_q0 = tcp; 4438 tcp->tcp_second_ctimer_threshold = 4439 tcps->tcps_ip_abort_linterval; 4440 } 4441 } 4442 4443 /* 4444 * We need to make sure that the conn_recv is set to a non-null 4445 * value before we insert the conn into the classifier table. 4446 * This is to avoid a race with an incoming packet which does an 4447 * ipcl_classify(). 4448 * We initially set it to tcp_input_listener_unbound to try to 4449 * pick a good squeue for the listener when the first SYN arrives. 4450 * tcp_input_listener_unbound sets it to tcp_input_listener on that 4451 * first SYN. 4452 */ 4453 connp->conn_recv = tcp_input_listener_unbound; 4454 4455 /* Insert the listener in the classifier table */ 4456 error = ip_laddr_fanout_insert(connp); 4457 if (error != 0) { 4458 /* Undo the bind - release the port number */ 4459 oldstate = tcp->tcp_state; 4460 tcp->tcp_state = TCPS_IDLE; 4461 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 4462 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 4463 int32_t, oldstate); 4464 connp->conn_bound_addr_v6 = ipv6_all_zeros; 4465 4466 connp->conn_laddr_v6 = ipv6_all_zeros; 4467 connp->conn_saddr_v6 = ipv6_all_zeros; 4468 connp->conn_ports = 0; 4469 4470 if (connp->conn_anon_port) { 4471 zone_t *zone; 4472 4473 zone = crgetzone(cr); 4474 connp->conn_anon_port = B_FALSE; 4475 (void) tsol_mlp_anon(zone, connp->conn_mlp_type, 4476 connp->conn_proto, connp->conn_lport, B_FALSE); 4477 } 4478 connp->conn_mlp_type = mlptSingle; 4479 4480 tcp_bind_hash_remove(tcp); 4481 return (error); 4482 } else { 4483 /* 4484 * If there is a connection limit, allocate and initialize 4485 * the counter struct. Note that since listen can be called 4486 * multiple times, the struct may have been allready allocated. 4487 */ 4488 if (!list_is_empty(&tcps->tcps_listener_conf) && 4489 tcp->tcp_listen_cnt == NULL) { 4490 tcp_listen_cnt_t *tlc; 4491 uint32_t ratio; 4492 4493 ratio = tcp_find_listener_conf(tcps, 4494 ntohs(connp->conn_lport)); 4495 if (ratio != 0) { 4496 uint32_t mem_ratio, tot_buf; 4497 4498 tlc = kmem_alloc(sizeof (tcp_listen_cnt_t), 4499 KM_SLEEP); 4500 /* 4501 * Calculate the connection limit based on 4502 * the configured ratio and maxusers. Maxusers 4503 * are calculated based on memory size, 4504 * ~ 1 user per MB. Note that the conn_rcvbuf 4505 * and conn_sndbuf may change after a 4506 * connection is accepted. So what we have 4507 * is only an approximation. 4508 */ 4509 if ((tot_buf = connp->conn_rcvbuf + 4510 connp->conn_sndbuf) < MB) { 4511 mem_ratio = MB / tot_buf; 4512 tlc->tlc_max = maxusers / ratio * 4513 mem_ratio; 4514 } else { 4515 mem_ratio = tot_buf / MB; 4516 tlc->tlc_max = maxusers / ratio / 4517 mem_ratio; 4518 } 4519 /* At least we should allow two connections! */ 4520 if (tlc->tlc_max <= tcp_min_conn_listener) 4521 tlc->tlc_max = tcp_min_conn_listener; 4522 tlc->tlc_cnt = 1; 4523 tlc->tlc_drop = 0; 4524 tcp->tcp_listen_cnt = tlc; 4525 } 4526 } 4527 } 4528 return (error); 4529 } 4530