1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, Joyent Inc. All rights reserved. 25 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2013,2014 by Delphix. All rights reserved. 27 * Copyright 2014, OmniTI Computer Consulting, Inc. All rights reserved. 28 */ 29 /* Copyright (c) 1990 Mentat Inc. */ 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/strsun.h> 34 #include <sys/strsubr.h> 35 #include <sys/stropts.h> 36 #include <sys/strlog.h> 37 #define _SUN_TPI_VERSION 2 38 #include <sys/tihdr.h> 39 #include <sys/timod.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/suntpi.h> 43 #include <sys/xti_inet.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/sdt.h> 47 #include <sys/vtrace.h> 48 #include <sys/kmem.h> 49 #include <sys/ethernet.h> 50 #include <sys/cpuvar.h> 51 #include <sys/dlpi.h> 52 #include <sys/pattr.h> 53 #include <sys/policy.h> 54 #include <sys/priv.h> 55 #include <sys/zone.h> 56 #include <sys/sunldi.h> 57 58 #include <sys/errno.h> 59 #include <sys/signal.h> 60 #include <sys/socket.h> 61 #include <sys/socketvar.h> 62 #include <sys/sockio.h> 63 #include <sys/isa_defs.h> 64 #include <sys/md5.h> 65 #include <sys/random.h> 66 #include <sys/uio.h> 67 #include <sys/systm.h> 68 #include <netinet/in.h> 69 #include <netinet/tcp.h> 70 #include <netinet/ip6.h> 71 #include <netinet/icmp6.h> 72 #include <net/if.h> 73 #include <net/route.h> 74 #include <inet/ipsec_impl.h> 75 76 #include <inet/common.h> 77 #include <inet/ip.h> 78 #include <inet/ip_impl.h> 79 #include <inet/ip6.h> 80 #include <inet/ip_ndp.h> 81 #include <inet/proto_set.h> 82 #include <inet/mib2.h> 83 #include <inet/optcom.h> 84 #include <inet/snmpcom.h> 85 #include <inet/kstatcom.h> 86 #include <inet/tcp.h> 87 #include <inet/tcp_impl.h> 88 #include <inet/tcp_cluster.h> 89 #include <inet/udp_impl.h> 90 #include <net/pfkeyv2.h> 91 #include <inet/ipdrop.h> 92 93 #include <inet/ipclassifier.h> 94 #include <inet/ip_ire.h> 95 #include <inet/ip_ftable.h> 96 #include <inet/ip_if.h> 97 #include <inet/ipp_common.h> 98 #include <inet/ip_rts.h> 99 #include <inet/ip_netinfo.h> 100 #include <sys/squeue_impl.h> 101 #include <sys/squeue.h> 102 #include <sys/tsol/label.h> 103 #include <sys/tsol/tnet.h> 104 #include <rpc/pmap_prot.h> 105 #include <sys/callo.h> 106 107 /* 108 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 109 * 110 * (Read the detailed design doc in PSARC case directory) 111 * 112 * The entire tcp state is contained in tcp_t and conn_t structure 113 * which are allocated in tandem using ipcl_conn_create() and passing 114 * IPCL_TCPCONN as a flag. We use 'conn_ref' and 'conn_lock' to protect 115 * the references on the tcp_t. The tcp_t structure is never compressed 116 * and packets always land on the correct TCP perimeter from the time 117 * eager is created till the time tcp_t dies (as such the old mentat 118 * TCP global queue is not used for detached state and no IPSEC checking 119 * is required). The global queue is still allocated to send out resets 120 * for connection which have no listeners and IP directly calls 121 * tcp_xmit_listeners_reset() which does any policy check. 122 * 123 * Protection and Synchronisation mechanism: 124 * 125 * The tcp data structure does not use any kind of lock for protecting 126 * its state but instead uses 'squeues' for mutual exclusion from various 127 * read and write side threads. To access a tcp member, the thread should 128 * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS, 129 * or SQ_NODRAIN). Since the squeues allow a direct function call, caller 130 * can pass any tcp function having prototype of edesc_t as argument 131 * (different from traditional STREAMs model where packets come in only 132 * designated entry points). The list of functions that can be directly 133 * called via squeue are listed before the usual function prototype. 134 * 135 * Referencing: 136 * 137 * TCP is MT-Hot and we use a reference based scheme to make sure that the 138 * tcp structure doesn't disappear when its needed. When the application 139 * creates an outgoing connection or accepts an incoming connection, we 140 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 141 * The IP reference is just a symbolic reference since ip_tcpclose() 142 * looks at tcp structure after tcp_close_output() returns which could 143 * have dropped the last TCP reference. So as long as the connection is 144 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 145 * conn_t. The classifier puts its own reference when the connection is 146 * inserted in listen or connected hash. Anytime a thread needs to enter 147 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 148 * on write side or by doing a classify on read side and then puts a 149 * reference on the conn before doing squeue_enter/tryenter/fill. For 150 * read side, the classifier itself puts the reference under fanout lock 151 * to make sure that tcp can't disappear before it gets processed. The 152 * squeue will drop this reference automatically so the called function 153 * doesn't have to do a DEC_REF. 154 * 155 * Opening a new connection: 156 * 157 * The outgoing connection open is pretty simple. tcp_open() does the 158 * work in creating the conn/tcp structure and initializing it. The 159 * squeue assignment is done based on the CPU the application 160 * is running on. So for outbound connections, processing is always done 161 * on application CPU which might be different from the incoming CPU 162 * being interrupted by the NIC. An optimal way would be to figure out 163 * the NIC <-> CPU binding at listen time, and assign the outgoing 164 * connection to the squeue attached to the CPU that will be interrupted 165 * for incoming packets (we know the NIC based on the bind IP address). 166 * This might seem like a problem if more data is going out but the 167 * fact is that in most cases the transmit is ACK driven transmit where 168 * the outgoing data normally sits on TCP's xmit queue waiting to be 169 * transmitted. 170 * 171 * Accepting a connection: 172 * 173 * This is a more interesting case because of various races involved in 174 * establishing a eager in its own perimeter. Read the meta comment on 175 * top of tcp_input_listener(). But briefly, the squeue is picked by 176 * ip_fanout based on the ring or the sender (if loopback). 177 * 178 * Closing a connection: 179 * 180 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 181 * via squeue to do the close and mark the tcp as detached if the connection 182 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 183 * reference but tcp_close() drop IP's reference always. So if tcp was 184 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 185 * and 1 because it is in classifier's connected hash. This is the condition 186 * we use to determine that its OK to clean up the tcp outside of squeue 187 * when time wait expires (check the ref under fanout and conn_lock and 188 * if it is 2, remove it from fanout hash and kill it). 189 * 190 * Although close just drops the necessary references and marks the 191 * tcp_detached state, tcp_close needs to know the tcp_detached has been 192 * set (under squeue) before letting the STREAM go away (because a 193 * inbound packet might attempt to go up the STREAM while the close 194 * has happened and tcp_detached is not set). So a special lock and 195 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 196 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 197 * tcp_detached. 198 * 199 * Special provisions and fast paths: 200 * 201 * We make special provisions for sockfs by marking tcp_issocket 202 * whenever we have only sockfs on top of TCP. This allows us to skip 203 * putting the tcp in acceptor hash since a sockfs listener can never 204 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 205 * since eager has already been allocated and the accept now happens 206 * on acceptor STREAM. There is a big blob of comment on top of 207 * tcp_input_listener explaining the new accept. When socket is POP'd, 208 * sockfs sends us an ioctl to mark the fact and we go back to old 209 * behaviour. Once tcp_issocket is unset, its never set for the 210 * life of that connection. 211 * 212 * IPsec notes : 213 * 214 * Since a packet is always executed on the correct TCP perimeter 215 * all IPsec processing is defered to IP including checking new 216 * connections and setting IPSEC policies for new connection. The 217 * only exception is tcp_xmit_listeners_reset() which is called 218 * directly from IP and needs to policy check to see if TH_RST 219 * can be sent out. 220 */ 221 222 /* 223 * Values for squeue switch: 224 * 1: SQ_NODRAIN 225 * 2: SQ_PROCESS 226 * 3: SQ_FILL 227 */ 228 int tcp_squeue_wput = 2; /* /etc/systems */ 229 int tcp_squeue_flag; 230 231 /* 232 * To prevent memory hog, limit the number of entries in tcp_free_list 233 * to 1% of available memory / number of cpus 234 */ 235 uint_t tcp_free_list_max_cnt = 0; 236 237 #define TIDUSZ 4096 /* transport interface data unit size */ 238 239 /* 240 * Size of acceptor hash list. It has to be a power of 2 for hashing. 241 */ 242 #define TCP_ACCEPTOR_FANOUT_SIZE 512 243 244 #ifdef _ILP32 245 #define TCP_ACCEPTOR_HASH(accid) \ 246 (((uint_t)(accid) >> 8) & (TCP_ACCEPTOR_FANOUT_SIZE - 1)) 247 #else 248 #define TCP_ACCEPTOR_HASH(accid) \ 249 ((uint_t)(accid) & (TCP_ACCEPTOR_FANOUT_SIZE - 1)) 250 #endif /* _ILP32 */ 251 252 /* 253 * Minimum number of connections which can be created per listener. Used 254 * when the listener connection count is in effect. 255 */ 256 static uint32_t tcp_min_conn_listener = 2; 257 258 uint32_t tcp_early_abort = 30; 259 260 /* TCP Timer control structure */ 261 typedef struct tcpt_s { 262 pfv_t tcpt_pfv; /* The routine we are to call */ 263 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 264 } tcpt_t; 265 266 /* 267 * Functions called directly via squeue having a prototype of edesc_t. 268 */ 269 void tcp_input_listener(void *arg, mblk_t *mp, void *arg2, 270 ip_recv_attr_t *ira); 271 void tcp_input_data(void *arg, mblk_t *mp, void *arg2, 272 ip_recv_attr_t *ira); 273 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, 274 ip_recv_attr_t *dummy); 275 276 277 /* Prototype for TCP functions */ 278 static void tcp_random_init(void); 279 int tcp_random(void); 280 static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, 281 in_port_t dstport, uint_t srcid); 282 static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, 283 in_port_t dstport, uint32_t flowinfo, 284 uint_t srcid, uint32_t scope_id); 285 static void tcp_iss_init(tcp_t *tcp); 286 static void tcp_reinit(tcp_t *tcp); 287 static void tcp_reinit_values(tcp_t *tcp); 288 289 static void tcp_wsrv(queue_t *q); 290 static void tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa); 291 static void tcp_update_zcopy(tcp_t *tcp); 292 static void tcp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t, 293 ixa_notify_arg_t); 294 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 295 static void tcp_stack_fini(netstackid_t stackid, void *arg); 296 297 static int tcp_squeue_switch(int); 298 299 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 300 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 301 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 302 303 static void tcp_squeue_add(squeue_t *); 304 305 struct module_info tcp_rinfo = { 306 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 307 }; 308 309 static struct module_info tcp_winfo = { 310 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 311 }; 312 313 /* 314 * Entry points for TCP as a device. The normal case which supports 315 * the TCP functionality. 316 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 317 */ 318 struct qinit tcp_rinitv4 = { 319 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo 320 }; 321 322 struct qinit tcp_rinitv6 = { 323 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo 324 }; 325 326 struct qinit tcp_winit = { 327 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 328 }; 329 330 /* Initial entry point for TCP in socket mode. */ 331 struct qinit tcp_sock_winit = { 332 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 333 }; 334 335 /* TCP entry point during fallback */ 336 struct qinit tcp_fallback_sock_winit = { 337 (pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo 338 }; 339 340 /* 341 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 342 * an accept. Avoid allocating data structures since eager has already 343 * been created. 344 */ 345 struct qinit tcp_acceptor_rinit = { 346 NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo 347 }; 348 349 struct qinit tcp_acceptor_winit = { 350 (pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo 351 }; 352 353 /* For AF_INET aka /dev/tcp */ 354 struct streamtab tcpinfov4 = { 355 &tcp_rinitv4, &tcp_winit 356 }; 357 358 /* For AF_INET6 aka /dev/tcp6 */ 359 struct streamtab tcpinfov6 = { 360 &tcp_rinitv6, &tcp_winit 361 }; 362 363 /* 364 * Following assumes TPI alignment requirements stay along 32 bit 365 * boundaries 366 */ 367 #define ROUNDUP32(x) \ 368 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 369 370 /* Template for response to info request. */ 371 struct T_info_ack tcp_g_t_info_ack = { 372 T_INFO_ACK, /* PRIM_type */ 373 0, /* TSDU_size */ 374 T_INFINITE, /* ETSDU_size */ 375 T_INVALID, /* CDATA_size */ 376 T_INVALID, /* DDATA_size */ 377 sizeof (sin_t), /* ADDR_size */ 378 0, /* OPT_size - not initialized here */ 379 TIDUSZ, /* TIDU_size */ 380 T_COTS_ORD, /* SERV_type */ 381 TCPS_IDLE, /* CURRENT_state */ 382 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 383 }; 384 385 struct T_info_ack tcp_g_t_info_ack_v6 = { 386 T_INFO_ACK, /* PRIM_type */ 387 0, /* TSDU_size */ 388 T_INFINITE, /* ETSDU_size */ 389 T_INVALID, /* CDATA_size */ 390 T_INVALID, /* DDATA_size */ 391 sizeof (sin6_t), /* ADDR_size */ 392 0, /* OPT_size - not initialized here */ 393 TIDUSZ, /* TIDU_size */ 394 T_COTS_ORD, /* SERV_type */ 395 TCPS_IDLE, /* CURRENT_state */ 396 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 397 }; 398 399 /* 400 * TCP tunables related declarations. Definitions are in tcp_tunables.c 401 */ 402 extern mod_prop_info_t tcp_propinfo_tbl[]; 403 extern int tcp_propinfo_count; 404 405 #define IS_VMLOANED_MBLK(mp) \ 406 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 407 408 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 409 410 /* 411 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 412 * tunable settable via NDD. Otherwise, the per-connection behavior is 413 * determined dynamically during tcp_set_destination(), which is the default. 414 */ 415 boolean_t tcp_static_maxpsz = B_FALSE; 416 417 /* 418 * If the receive buffer size is changed, this function is called to update 419 * the upper socket layer on the new delayed receive wake up threshold. 420 */ 421 static void 422 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh) 423 { 424 uint32_t default_threshold = SOCKET_RECVHIWATER >> 3; 425 426 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 427 conn_t *connp = tcp->tcp_connp; 428 struct sock_proto_props sopp; 429 430 /* 431 * only increase rcvthresh upto default_threshold 432 */ 433 if (new_rcvthresh > default_threshold) 434 new_rcvthresh = default_threshold; 435 436 sopp.sopp_flags = SOCKOPT_RCVTHRESH; 437 sopp.sopp_rcvthresh = new_rcvthresh; 438 439 (*connp->conn_upcalls->su_set_proto_props) 440 (connp->conn_upper_handle, &sopp); 441 } 442 } 443 444 /* 445 * Figure out the value of window scale opton. Note that the rwnd is 446 * ASSUMED to be rounded up to the nearest MSS before the calculation. 447 * We cannot find the scale value and then do a round up of tcp_rwnd 448 * because the scale value may not be correct after that. 449 * 450 * Set the compiler flag to make this function inline. 451 */ 452 void 453 tcp_set_ws_value(tcp_t *tcp) 454 { 455 int i; 456 uint32_t rwnd = tcp->tcp_rwnd; 457 458 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 459 i++, rwnd >>= 1) 460 ; 461 tcp->tcp_rcv_ws = i; 462 } 463 464 /* 465 * Remove cached/latched IPsec references. 466 */ 467 void 468 tcp_ipsec_cleanup(tcp_t *tcp) 469 { 470 conn_t *connp = tcp->tcp_connp; 471 472 ASSERT(connp->conn_flags & IPCL_TCPCONN); 473 474 if (connp->conn_latch != NULL) { 475 IPLATCH_REFRELE(connp->conn_latch); 476 connp->conn_latch = NULL; 477 } 478 if (connp->conn_latch_in_policy != NULL) { 479 IPPOL_REFRELE(connp->conn_latch_in_policy); 480 connp->conn_latch_in_policy = NULL; 481 } 482 if (connp->conn_latch_in_action != NULL) { 483 IPACT_REFRELE(connp->conn_latch_in_action); 484 connp->conn_latch_in_action = NULL; 485 } 486 if (connp->conn_policy != NULL) { 487 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 488 connp->conn_policy = NULL; 489 } 490 } 491 492 /* 493 * Cleaup before placing on free list. 494 * Disassociate from the netstack/tcp_stack_t since the freelist 495 * is per squeue and not per netstack. 496 */ 497 void 498 tcp_cleanup(tcp_t *tcp) 499 { 500 mblk_t *mp; 501 conn_t *connp = tcp->tcp_connp; 502 tcp_stack_t *tcps = tcp->tcp_tcps; 503 netstack_t *ns = tcps->tcps_netstack; 504 mblk_t *tcp_rsrv_mp; 505 506 tcp_bind_hash_remove(tcp); 507 508 /* Cleanup that which needs the netstack first */ 509 tcp_ipsec_cleanup(tcp); 510 ixa_cleanup(connp->conn_ixa); 511 512 if (connp->conn_ht_iphc != NULL) { 513 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 514 connp->conn_ht_iphc = NULL; 515 connp->conn_ht_iphc_allocated = 0; 516 connp->conn_ht_iphc_len = 0; 517 connp->conn_ht_ulp = NULL; 518 connp->conn_ht_ulp_len = 0; 519 tcp->tcp_ipha = NULL; 520 tcp->tcp_ip6h = NULL; 521 tcp->tcp_tcpha = NULL; 522 } 523 524 /* We clear any IP_OPTIONS and extension headers */ 525 ip_pkt_free(&connp->conn_xmit_ipp); 526 527 tcp_free(tcp); 528 529 /* 530 * Since we will bzero the entire structure, we need to 531 * remove it and reinsert it in global hash list. We 532 * know the walkers can't get to this conn because we 533 * had set CONDEMNED flag earlier and checked reference 534 * under conn_lock so walker won't pick it and when we 535 * go the ipcl_globalhash_remove() below, no walker 536 * can get to it. 537 */ 538 ipcl_globalhash_remove(connp); 539 540 /* Save some state */ 541 mp = tcp->tcp_timercache; 542 543 tcp_rsrv_mp = tcp->tcp_rsrv_mp; 544 545 if (connp->conn_cred != NULL) { 546 crfree(connp->conn_cred); 547 connp->conn_cred = NULL; 548 } 549 ipcl_conn_cleanup(connp); 550 connp->conn_flags = IPCL_TCPCONN; 551 552 /* 553 * Now it is safe to decrement the reference counts. 554 * This might be the last reference on the netstack 555 * in which case it will cause the freeing of the IP Instance. 556 */ 557 connp->conn_netstack = NULL; 558 connp->conn_ixa->ixa_ipst = NULL; 559 netstack_rele(ns); 560 ASSERT(tcps != NULL); 561 tcp->tcp_tcps = NULL; 562 563 bzero(tcp, sizeof (tcp_t)); 564 565 /* restore the state */ 566 tcp->tcp_timercache = mp; 567 568 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 569 570 tcp->tcp_connp = connp; 571 572 ASSERT(connp->conn_tcp == tcp); 573 ASSERT(connp->conn_flags & IPCL_TCPCONN); 574 connp->conn_state_flags = CONN_INCIPIENT; 575 ASSERT(connp->conn_proto == IPPROTO_TCP); 576 ASSERT(connp->conn_ref == 1); 577 } 578 579 /* 580 * Adapt to the information, such as rtt and rtt_sd, provided from the 581 * DCE and IRE maintained by IP. 582 * 583 * Checks for multicast and broadcast destination address. 584 * Returns zero if ok; an errno on failure. 585 * 586 * Note that the MSS calculation here is based on the info given in 587 * the DCE and IRE. We do not do any calculation based on TCP options. They 588 * will be handled in tcp_input_data() when TCP knows which options to use. 589 * 590 * Note on how TCP gets its parameters for a connection. 591 * 592 * When a tcp_t structure is allocated, it gets all the default parameters. 593 * In tcp_set_destination(), it gets those metric parameters, like rtt, rtt_sd, 594 * spipe, rpipe, ... from the route metrics. Route metric overrides the 595 * default. 596 * 597 * An incoming SYN with a multicast or broadcast destination address is dropped 598 * in ip_fanout_v4/v6. 599 * 600 * An incoming SYN with a multicast or broadcast source address is always 601 * dropped in tcp_set_destination, since IPDF_ALLOW_MCBC is not set in 602 * conn_connect. 603 * The same logic in tcp_set_destination also serves to 604 * reject an attempt to connect to a broadcast or multicast (destination) 605 * address. 606 */ 607 int 608 tcp_set_destination(tcp_t *tcp) 609 { 610 uint32_t mss_max; 611 uint32_t mss; 612 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 613 conn_t *connp = tcp->tcp_connp; 614 tcp_stack_t *tcps = tcp->tcp_tcps; 615 iulp_t uinfo; 616 int error; 617 uint32_t flags; 618 619 flags = IPDF_LSO | IPDF_ZCOPY; 620 /* 621 * Make sure we have a dce for the destination to avoid dce_ident 622 * contention for connected sockets. 623 */ 624 flags |= IPDF_UNIQUE_DCE; 625 626 if (!tcps->tcps_ignore_path_mtu) 627 connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY; 628 629 /* Use conn_lock to satify ASSERT; tcp is already serialized */ 630 mutex_enter(&connp->conn_lock); 631 error = conn_connect(connp, &uinfo, flags); 632 mutex_exit(&connp->conn_lock); 633 if (error != 0) 634 return (error); 635 636 error = tcp_build_hdrs(tcp); 637 if (error != 0) 638 return (error); 639 640 tcp->tcp_localnet = uinfo.iulp_localnet; 641 642 if (uinfo.iulp_rtt != 0) { 643 clock_t rto; 644 645 tcp->tcp_rtt_sa = uinfo.iulp_rtt; 646 tcp->tcp_rtt_sd = uinfo.iulp_rtt_sd; 647 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 648 tcps->tcps_rexmit_interval_extra + 649 (tcp->tcp_rtt_sa >> 5); 650 651 TCP_SET_RTO(tcp, rto); 652 } 653 if (uinfo.iulp_ssthresh != 0) 654 tcp->tcp_cwnd_ssthresh = uinfo.iulp_ssthresh; 655 else 656 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 657 if (uinfo.iulp_spipe > 0) { 658 connp->conn_sndbuf = MIN(uinfo.iulp_spipe, 659 tcps->tcps_max_buf); 660 if (tcps->tcps_snd_lowat_fraction != 0) { 661 connp->conn_sndlowat = connp->conn_sndbuf / 662 tcps->tcps_snd_lowat_fraction; 663 } 664 (void) tcp_maxpsz_set(tcp, B_TRUE); 665 } 666 /* 667 * Note that up till now, acceptor always inherits receive 668 * window from the listener. But if there is a metrics 669 * associated with a host, we should use that instead of 670 * inheriting it from listener. Thus we need to pass this 671 * info back to the caller. 672 */ 673 if (uinfo.iulp_rpipe > 0) { 674 tcp->tcp_rwnd = MIN(uinfo.iulp_rpipe, 675 tcps->tcps_max_buf); 676 } 677 678 if (uinfo.iulp_rtomax > 0) { 679 tcp->tcp_second_timer_threshold = 680 uinfo.iulp_rtomax; 681 } 682 683 /* 684 * Use the metric option settings, iulp_tstamp_ok and 685 * iulp_wscale_ok, only for active open. What this means 686 * is that if the other side uses timestamp or window 687 * scale option, TCP will also use those options. That 688 * is for passive open. If the application sets a 689 * large window, window scale is enabled regardless of 690 * the value in iulp_wscale_ok. This is the behavior 691 * since 2.6. So we keep it. 692 * The only case left in passive open processing is the 693 * check for SACK. 694 * For ECN, it should probably be like SACK. But the 695 * current value is binary, so we treat it like the other 696 * cases. The metric only controls active open.For passive 697 * open, the ndd param, tcp_ecn_permitted, controls the 698 * behavior. 699 */ 700 if (!tcp_detached) { 701 /* 702 * The if check means that the following can only 703 * be turned on by the metrics only IRE, but not off. 704 */ 705 if (uinfo.iulp_tstamp_ok) 706 tcp->tcp_snd_ts_ok = B_TRUE; 707 if (uinfo.iulp_wscale_ok) 708 tcp->tcp_snd_ws_ok = B_TRUE; 709 if (uinfo.iulp_sack == 2) 710 tcp->tcp_snd_sack_ok = B_TRUE; 711 if (uinfo.iulp_ecn_ok) 712 tcp->tcp_ecn_ok = B_TRUE; 713 } else { 714 /* 715 * Passive open. 716 * 717 * As above, the if check means that SACK can only be 718 * turned on by the metric only IRE. 719 */ 720 if (uinfo.iulp_sack > 0) { 721 tcp->tcp_snd_sack_ok = B_TRUE; 722 } 723 } 724 725 /* 726 * XXX Note that currently, iulp_mtu can be as small as 68 727 * because of PMTUd. So tcp_mss may go to negative if combined 728 * length of all those options exceeds 28 bytes. But because 729 * of the tcp_mss_min check below, we may not have a problem if 730 * tcp_mss_min is of a reasonable value. The default is 1 so 731 * the negative problem still exists. And the check defeats PMTUd. 732 * In fact, if PMTUd finds that the MSS should be smaller than 733 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 734 * value. 735 * 736 * We do not deal with that now. All those problems related to 737 * PMTUd will be fixed later. 738 */ 739 ASSERT(uinfo.iulp_mtu != 0); 740 mss = tcp->tcp_initial_pmtu = uinfo.iulp_mtu; 741 742 /* Sanity check for MSS value. */ 743 if (connp->conn_ipversion == IPV4_VERSION) 744 mss_max = tcps->tcps_mss_max_ipv4; 745 else 746 mss_max = tcps->tcps_mss_max_ipv6; 747 748 if (tcp->tcp_ipsec_overhead == 0) 749 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 750 751 mss -= tcp->tcp_ipsec_overhead; 752 753 if (mss < tcps->tcps_mss_min) 754 mss = tcps->tcps_mss_min; 755 if (mss > mss_max) 756 mss = mss_max; 757 758 /* Note that this is the maximum MSS, excluding all options. */ 759 tcp->tcp_mss = mss; 760 761 /* 762 * Update the tcp connection with LSO capability. 763 */ 764 tcp_update_lso(tcp, connp->conn_ixa); 765 766 /* 767 * Initialize the ISS here now that we have the full connection ID. 768 * The RFC 1948 method of initial sequence number generation requires 769 * knowledge of the full connection ID before setting the ISS. 770 */ 771 tcp_iss_init(tcp); 772 773 tcp->tcp_loopback = (uinfo.iulp_loopback | uinfo.iulp_local); 774 775 /* 776 * Make sure that conn is not marked incipient 777 * for incoming connections. A blind 778 * removal of incipient flag is cheaper than 779 * check and removal. 780 */ 781 mutex_enter(&connp->conn_lock); 782 connp->conn_state_flags &= ~CONN_INCIPIENT; 783 mutex_exit(&connp->conn_lock); 784 return (0); 785 } 786 787 /* 788 * tcp_clean_death / tcp_close_detached must not be called more than once 789 * on a tcp. Thus every function that potentially calls tcp_clean_death 790 * must check for the tcp state before calling tcp_clean_death. 791 * Eg. tcp_input_data, tcp_eager_kill, tcp_clean_death_wrapper, 792 * tcp_timer_handler, all check for the tcp state. 793 */ 794 /* ARGSUSED */ 795 void 796 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2, 797 ip_recv_attr_t *dummy) 798 { 799 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 800 801 freemsg(mp); 802 if (tcp->tcp_state > TCPS_BOUND) 803 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT); 804 } 805 806 /* 807 * We are dying for some reason. Try to do it gracefully. (May be called 808 * as writer.) 809 * 810 * Return -1 if the structure was not cleaned up (if the cleanup had to be 811 * done by a service procedure). 812 * TBD - Should the return value distinguish between the tcp_t being 813 * freed and it being reinitialized? 814 */ 815 int 816 tcp_clean_death(tcp_t *tcp, int err) 817 { 818 mblk_t *mp; 819 queue_t *q; 820 conn_t *connp = tcp->tcp_connp; 821 tcp_stack_t *tcps = tcp->tcp_tcps; 822 823 if (tcp->tcp_fused) 824 tcp_unfuse(tcp); 825 826 if (tcp->tcp_linger_tid != 0 && 827 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 828 tcp_stop_lingering(tcp); 829 } 830 831 ASSERT(tcp != NULL); 832 ASSERT((connp->conn_family == AF_INET && 833 connp->conn_ipversion == IPV4_VERSION) || 834 (connp->conn_family == AF_INET6 && 835 (connp->conn_ipversion == IPV4_VERSION || 836 connp->conn_ipversion == IPV6_VERSION))); 837 838 if (TCP_IS_DETACHED(tcp)) { 839 if (tcp->tcp_hard_binding) { 840 /* 841 * Its an eager that we are dealing with. We close the 842 * eager but in case a conn_ind has already gone to the 843 * listener, let tcp_accept_finish() send a discon_ind 844 * to the listener and drop the last reference. If the 845 * listener doesn't even know about the eager i.e. the 846 * conn_ind hasn't gone up, blow away the eager and drop 847 * the last reference as well. If the conn_ind has gone 848 * up, state should be BOUND. tcp_accept_finish 849 * will figure out that the connection has received a 850 * RST and will send a DISCON_IND to the application. 851 */ 852 tcp_closei_local(tcp); 853 if (!tcp->tcp_tconnind_started) { 854 CONN_DEC_REF(connp); 855 } else { 856 tcp->tcp_state = TCPS_BOUND; 857 DTRACE_TCP6(state__change, void, NULL, 858 ip_xmit_attr_t *, connp->conn_ixa, 859 void, NULL, tcp_t *, tcp, void, NULL, 860 int32_t, TCPS_CLOSED); 861 } 862 } else { 863 tcp_close_detached(tcp); 864 } 865 return (0); 866 } 867 868 TCP_STAT(tcps, tcp_clean_death_nondetached); 869 870 /* 871 * The connection is dead. Decrement listener connection counter if 872 * necessary. 873 */ 874 if (tcp->tcp_listen_cnt != NULL) 875 TCP_DECR_LISTEN_CNT(tcp); 876 877 /* 878 * When a connection is moved to TIME_WAIT state, the connection 879 * counter is already decremented. So no need to decrement here 880 * again. See SET_TIME_WAIT() macro. 881 */ 882 if (tcp->tcp_state >= TCPS_ESTABLISHED && 883 tcp->tcp_state < TCPS_TIME_WAIT) { 884 TCPS_CONN_DEC(tcps); 885 } 886 887 q = connp->conn_rq; 888 889 /* Trash all inbound data */ 890 if (!IPCL_IS_NONSTR(connp)) { 891 ASSERT(q != NULL); 892 flushq(q, FLUSHALL); 893 } 894 895 /* 896 * If we are at least part way open and there is error 897 * (err==0 implies no error) 898 * notify our client by a T_DISCON_IND. 899 */ 900 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 901 if (tcp->tcp_state >= TCPS_ESTABLISHED && 902 !TCP_IS_SOCKET(tcp)) { 903 /* 904 * Send M_FLUSH according to TPI. Because sockets will 905 * (and must) ignore FLUSHR we do that only for TPI 906 * endpoints and sockets in STREAMS mode. 907 */ 908 (void) putnextctl1(q, M_FLUSH, FLUSHR); 909 } 910 if (connp->conn_debug) { 911 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 912 "tcp_clean_death: discon err %d", err); 913 } 914 if (IPCL_IS_NONSTR(connp)) { 915 /* Direct socket, use upcall */ 916 (*connp->conn_upcalls->su_disconnected)( 917 connp->conn_upper_handle, tcp->tcp_connid, err); 918 } else { 919 mp = mi_tpi_discon_ind(NULL, err, 0); 920 if (mp != NULL) { 921 putnext(q, mp); 922 } else { 923 if (connp->conn_debug) { 924 (void) strlog(TCP_MOD_ID, 0, 1, 925 SL_ERROR|SL_TRACE, 926 "tcp_clean_death, sending M_ERROR"); 927 } 928 (void) putnextctl1(q, M_ERROR, EPROTO); 929 } 930 } 931 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 932 /* SYN_SENT or SYN_RCVD */ 933 TCPS_BUMP_MIB(tcps, tcpAttemptFails); 934 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 935 /* ESTABLISHED or CLOSE_WAIT */ 936 TCPS_BUMP_MIB(tcps, tcpEstabResets); 937 } 938 } 939 940 /* 941 * ESTABLISHED non-STREAMS eagers are not 'detached' because 942 * an upper handle is obtained when the SYN-ACK comes in. So it 943 * should receive the 'disconnected' upcall, but tcp_reinit should 944 * not be called since this is an eager. 945 */ 946 if (tcp->tcp_listener != NULL && IPCL_IS_NONSTR(connp)) { 947 tcp_closei_local(tcp); 948 tcp->tcp_state = TCPS_BOUND; 949 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 950 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 951 int32_t, TCPS_CLOSED); 952 return (0); 953 } 954 955 tcp_reinit(tcp); 956 if (IPCL_IS_NONSTR(connp)) 957 (void) tcp_do_unbind(connp); 958 959 return (-1); 960 } 961 962 /* 963 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 964 * to expire, stop the wait and finish the close. 965 */ 966 void 967 tcp_stop_lingering(tcp_t *tcp) 968 { 969 clock_t delta = 0; 970 tcp_stack_t *tcps = tcp->tcp_tcps; 971 conn_t *connp = tcp->tcp_connp; 972 973 tcp->tcp_linger_tid = 0; 974 if (tcp->tcp_state > TCPS_LISTEN) { 975 tcp_acceptor_hash_remove(tcp); 976 mutex_enter(&tcp->tcp_non_sq_lock); 977 if (tcp->tcp_flow_stopped) { 978 tcp_clrqfull(tcp); 979 } 980 mutex_exit(&tcp->tcp_non_sq_lock); 981 982 if (tcp->tcp_timer_tid != 0) { 983 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 984 tcp->tcp_timer_tid = 0; 985 } 986 /* 987 * Need to cancel those timers which will not be used when 988 * TCP is detached. This has to be done before the conn_wq 989 * is cleared. 990 */ 991 tcp_timers_stop(tcp); 992 993 tcp->tcp_detached = B_TRUE; 994 connp->conn_rq = NULL; 995 connp->conn_wq = NULL; 996 997 if (tcp->tcp_state == TCPS_TIME_WAIT) { 998 tcp_time_wait_append(tcp); 999 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 1000 goto finish; 1001 } 1002 1003 /* 1004 * If delta is zero the timer event wasn't executed and was 1005 * successfully canceled. In this case we need to restart it 1006 * with the minimal delta possible. 1007 */ 1008 if (delta >= 0) { 1009 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 1010 delta ? delta : 1); 1011 } 1012 } else { 1013 tcp_closei_local(tcp); 1014 CONN_DEC_REF(connp); 1015 } 1016 finish: 1017 tcp->tcp_detached = B_TRUE; 1018 connp->conn_rq = NULL; 1019 connp->conn_wq = NULL; 1020 1021 /* Signal closing thread that it can complete close */ 1022 mutex_enter(&tcp->tcp_closelock); 1023 tcp->tcp_closed = 1; 1024 cv_signal(&tcp->tcp_closecv); 1025 mutex_exit(&tcp->tcp_closelock); 1026 1027 /* If we have an upper handle (socket), release it */ 1028 if (IPCL_IS_NONSTR(connp)) { 1029 ASSERT(connp->conn_upper_handle != NULL); 1030 (*connp->conn_upcalls->su_closed)(connp->conn_upper_handle); 1031 connp->conn_upper_handle = NULL; 1032 connp->conn_upcalls = NULL; 1033 } 1034 } 1035 1036 void 1037 tcp_close_common(conn_t *connp, int flags) 1038 { 1039 tcp_t *tcp = connp->conn_tcp; 1040 mblk_t *mp = &tcp->tcp_closemp; 1041 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 1042 mblk_t *bp; 1043 1044 ASSERT(connp->conn_ref >= 2); 1045 1046 /* 1047 * Mark the conn as closing. ipsq_pending_mp_add will not 1048 * add any mp to the pending mp list, after this conn has 1049 * started closing. 1050 */ 1051 mutex_enter(&connp->conn_lock); 1052 connp->conn_state_flags |= CONN_CLOSING; 1053 if (connp->conn_oper_pending_ill != NULL) 1054 conn_ioctl_cleanup_reqd = B_TRUE; 1055 CONN_INC_REF_LOCKED(connp); 1056 mutex_exit(&connp->conn_lock); 1057 tcp->tcp_closeflags = (uint8_t)flags; 1058 ASSERT(connp->conn_ref >= 3); 1059 1060 /* 1061 * tcp_closemp_used is used below without any protection of a lock 1062 * as we don't expect any one else to use it concurrently at this 1063 * point otherwise it would be a major defect. 1064 */ 1065 1066 if (mp->b_prev == NULL) 1067 tcp->tcp_closemp_used = B_TRUE; 1068 else 1069 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 1070 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 1071 1072 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1073 1074 /* 1075 * Cleanup any queued ioctls here. This must be done before the wq/rq 1076 * are re-written by tcp_close_output(). 1077 */ 1078 if (conn_ioctl_cleanup_reqd) 1079 conn_ioctl_cleanup(connp); 1080 1081 /* 1082 * As CONN_CLOSING is set, no further ioctls should be passed down to 1083 * IP for this conn (see the guards in tcp_ioctl, tcp_wput_ioctl and 1084 * tcp_wput_iocdata). If the ioctl was queued on an ipsq, 1085 * conn_ioctl_cleanup should have found it and removed it. If the ioctl 1086 * was still in flight at the time, we wait for it here. See comments 1087 * for CONN_INC_IOCTLREF in ip.h for details. 1088 */ 1089 mutex_enter(&connp->conn_lock); 1090 while (connp->conn_ioctlref > 0) 1091 cv_wait(&connp->conn_cv, &connp->conn_lock); 1092 ASSERT(connp->conn_ioctlref == 0); 1093 ASSERT(connp->conn_oper_pending_ill == NULL); 1094 mutex_exit(&connp->conn_lock); 1095 1096 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp, 1097 NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 1098 1099 /* 1100 * For non-STREAMS sockets, the normal case is that the conn makes 1101 * an upcall when it's finally closed, so there is no need to wait 1102 * in the protocol. But in case of SO_LINGER the thread sleeps here 1103 * so it can properly deal with the thread being interrupted. 1104 */ 1105 if (IPCL_IS_NONSTR(connp) && connp->conn_linger == 0) 1106 goto nowait; 1107 1108 mutex_enter(&tcp->tcp_closelock); 1109 while (!tcp->tcp_closed) { 1110 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 1111 /* 1112 * The cv_wait_sig() was interrupted. We now do the 1113 * following: 1114 * 1115 * 1) If the endpoint was lingering, we allow this 1116 * to be interrupted by cancelling the linger timeout 1117 * and closing normally. 1118 * 1119 * 2) Revert to calling cv_wait() 1120 * 1121 * We revert to using cv_wait() to avoid an 1122 * infinite loop which can occur if the calling 1123 * thread is higher priority than the squeue worker 1124 * thread and is bound to the same cpu. 1125 */ 1126 if (connp->conn_linger && connp->conn_lingertime > 0) { 1127 mutex_exit(&tcp->tcp_closelock); 1128 /* Entering squeue, bump ref count. */ 1129 CONN_INC_REF(connp); 1130 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 1131 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, 1132 tcp_linger_interrupted, connp, NULL, 1133 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 1134 mutex_enter(&tcp->tcp_closelock); 1135 } 1136 break; 1137 } 1138 } 1139 while (!tcp->tcp_closed) 1140 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 1141 mutex_exit(&tcp->tcp_closelock); 1142 1143 /* 1144 * In the case of listener streams that have eagers in the q or q0 1145 * we wait for the eagers to drop their reference to us. conn_rq and 1146 * conn_wq of the eagers point to our queues. By waiting for the 1147 * refcnt to drop to 1, we are sure that the eagers have cleaned 1148 * up their queue pointers and also dropped their references to us. 1149 * 1150 * For non-STREAMS sockets we do not have to wait here; the 1151 * listener will instead make a su_closed upcall when the last 1152 * reference is dropped. 1153 */ 1154 if (tcp->tcp_wait_for_eagers && !IPCL_IS_NONSTR(connp)) { 1155 mutex_enter(&connp->conn_lock); 1156 while (connp->conn_ref != 1) { 1157 cv_wait(&connp->conn_cv, &connp->conn_lock); 1158 } 1159 mutex_exit(&connp->conn_lock); 1160 } 1161 1162 nowait: 1163 connp->conn_cpid = NOPID; 1164 } 1165 1166 /* 1167 * Called by tcp_close() routine via squeue when lingering is 1168 * interrupted by a signal. 1169 */ 1170 1171 /* ARGSUSED */ 1172 static void 1173 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 1174 { 1175 conn_t *connp = (conn_t *)arg; 1176 tcp_t *tcp = connp->conn_tcp; 1177 1178 freeb(mp); 1179 if (tcp->tcp_linger_tid != 0 && 1180 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 1181 tcp_stop_lingering(tcp); 1182 tcp->tcp_client_errno = EINTR; 1183 } 1184 } 1185 1186 /* 1187 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 1188 * Some stream heads get upset if they see these later on as anything but NULL. 1189 */ 1190 void 1191 tcp_close_mpp(mblk_t **mpp) 1192 { 1193 mblk_t *mp; 1194 1195 if ((mp = *mpp) != NULL) { 1196 do { 1197 mp->b_next = NULL; 1198 mp->b_prev = NULL; 1199 } while ((mp = mp->b_cont) != NULL); 1200 1201 mp = *mpp; 1202 *mpp = NULL; 1203 freemsg(mp); 1204 } 1205 } 1206 1207 /* Do detached close. */ 1208 void 1209 tcp_close_detached(tcp_t *tcp) 1210 { 1211 if (tcp->tcp_fused) 1212 tcp_unfuse(tcp); 1213 1214 /* 1215 * Clustering code serializes TCP disconnect callbacks and 1216 * cluster tcp list walks by blocking a TCP disconnect callback 1217 * if a cluster tcp list walk is in progress. This ensures 1218 * accurate accounting of TCPs in the cluster code even though 1219 * the TCP list walk itself is not atomic. 1220 */ 1221 tcp_closei_local(tcp); 1222 CONN_DEC_REF(tcp->tcp_connp); 1223 } 1224 1225 /* 1226 * The tcp_t is going away. Remove it from all lists and set it 1227 * to TCPS_CLOSED. The freeing up of memory is deferred until 1228 * tcp_inactive. This is needed since a thread in tcp_rput might have 1229 * done a CONN_INC_REF on this structure before it was removed from the 1230 * hashes. 1231 */ 1232 void 1233 tcp_closei_local(tcp_t *tcp) 1234 { 1235 conn_t *connp = tcp->tcp_connp; 1236 tcp_stack_t *tcps = tcp->tcp_tcps; 1237 int32_t oldstate; 1238 1239 if (!TCP_IS_SOCKET(tcp)) 1240 tcp_acceptor_hash_remove(tcp); 1241 1242 TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs); 1243 tcp->tcp_ibsegs = 0; 1244 TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs); 1245 tcp->tcp_obsegs = 0; 1246 1247 /* 1248 * This can be called via tcp_time_wait_processing() if TCP gets a 1249 * SYN with sequence number outside the TIME-WAIT connection's 1250 * window. So we need to check for TIME-WAIT state here as the 1251 * connection counter is already decremented. See SET_TIME_WAIT() 1252 * macro 1253 */ 1254 if (tcp->tcp_state >= TCPS_ESTABLISHED && 1255 tcp->tcp_state < TCPS_TIME_WAIT) { 1256 TCPS_CONN_DEC(tcps); 1257 } 1258 1259 /* 1260 * If we are an eager connection hanging off a listener that 1261 * hasn't formally accepted the connection yet, get off its 1262 * list and blow off any data that we have accumulated. 1263 */ 1264 if (tcp->tcp_listener != NULL) { 1265 tcp_t *listener = tcp->tcp_listener; 1266 mutex_enter(&listener->tcp_eager_lock); 1267 /* 1268 * tcp_tconnind_started == B_TRUE means that the 1269 * conn_ind has already gone to listener. At 1270 * this point, eager will be closed but we 1271 * leave it in listeners eager list so that 1272 * if listener decides to close without doing 1273 * accept, we can clean this up. In tcp_tli_accept 1274 * we take care of the case of accept on closed 1275 * eager. 1276 */ 1277 if (!tcp->tcp_tconnind_started) { 1278 tcp_eager_unlink(tcp); 1279 mutex_exit(&listener->tcp_eager_lock); 1280 /* 1281 * We don't want to have any pointers to the 1282 * listener queue, after we have released our 1283 * reference on the listener 1284 */ 1285 ASSERT(tcp->tcp_detached); 1286 connp->conn_rq = NULL; 1287 connp->conn_wq = NULL; 1288 CONN_DEC_REF(listener->tcp_connp); 1289 } else { 1290 mutex_exit(&listener->tcp_eager_lock); 1291 } 1292 } 1293 1294 /* Stop all the timers */ 1295 tcp_timers_stop(tcp); 1296 1297 if (tcp->tcp_state == TCPS_LISTEN) { 1298 if (tcp->tcp_ip_addr_cache) { 1299 kmem_free((void *)tcp->tcp_ip_addr_cache, 1300 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1301 tcp->tcp_ip_addr_cache = NULL; 1302 } 1303 } 1304 1305 /* Decrement listerner connection counter if necessary. */ 1306 if (tcp->tcp_listen_cnt != NULL) 1307 TCP_DECR_LISTEN_CNT(tcp); 1308 1309 mutex_enter(&tcp->tcp_non_sq_lock); 1310 if (tcp->tcp_flow_stopped) 1311 tcp_clrqfull(tcp); 1312 mutex_exit(&tcp->tcp_non_sq_lock); 1313 1314 tcp_bind_hash_remove(tcp); 1315 /* 1316 * If the tcp_time_wait_collector (which runs outside the squeue) 1317 * is trying to remove this tcp from the time wait list, we will 1318 * block in tcp_time_wait_remove while trying to acquire the 1319 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 1320 * requires the ipcl_hash_remove to be ordered after the 1321 * tcp_time_wait_remove for the refcnt checks to work correctly. 1322 */ 1323 if (tcp->tcp_state == TCPS_TIME_WAIT) 1324 (void) tcp_time_wait_remove(tcp, NULL); 1325 CL_INET_DISCONNECT(connp); 1326 ipcl_hash_remove(connp); 1327 oldstate = tcp->tcp_state; 1328 tcp->tcp_state = TCPS_CLOSED; 1329 /* Need to probe before ixa_cleanup() is called */ 1330 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 1331 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 1332 int32_t, oldstate); 1333 ixa_cleanup(connp->conn_ixa); 1334 1335 /* 1336 * Mark the conn as CONDEMNED 1337 */ 1338 mutex_enter(&connp->conn_lock); 1339 connp->conn_state_flags |= CONN_CONDEMNED; 1340 mutex_exit(&connp->conn_lock); 1341 1342 ASSERT(tcp->tcp_time_wait_next == NULL); 1343 ASSERT(tcp->tcp_time_wait_prev == NULL); 1344 ASSERT(tcp->tcp_time_wait_expire == 0); 1345 1346 tcp_ipsec_cleanup(tcp); 1347 } 1348 1349 /* 1350 * tcp is dying (called from ipcl_conn_destroy and error cases). 1351 * Free the tcp_t in either case. 1352 */ 1353 void 1354 tcp_free(tcp_t *tcp) 1355 { 1356 mblk_t *mp; 1357 conn_t *connp = tcp->tcp_connp; 1358 1359 ASSERT(tcp != NULL); 1360 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 1361 1362 connp->conn_rq = NULL; 1363 connp->conn_wq = NULL; 1364 1365 tcp_close_mpp(&tcp->tcp_xmit_head); 1366 tcp_close_mpp(&tcp->tcp_reass_head); 1367 if (tcp->tcp_rcv_list != NULL) { 1368 /* Free b_next chain */ 1369 tcp_close_mpp(&tcp->tcp_rcv_list); 1370 } 1371 if ((mp = tcp->tcp_urp_mp) != NULL) { 1372 freemsg(mp); 1373 } 1374 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 1375 freemsg(mp); 1376 } 1377 1378 if (tcp->tcp_fused_sigurg_mp != NULL) { 1379 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1380 freeb(tcp->tcp_fused_sigurg_mp); 1381 tcp->tcp_fused_sigurg_mp = NULL; 1382 } 1383 1384 if (tcp->tcp_ordrel_mp != NULL) { 1385 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1386 freeb(tcp->tcp_ordrel_mp); 1387 tcp->tcp_ordrel_mp = NULL; 1388 } 1389 1390 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 1391 bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 1392 1393 if (tcp->tcp_hopopts != NULL) { 1394 mi_free(tcp->tcp_hopopts); 1395 tcp->tcp_hopopts = NULL; 1396 tcp->tcp_hopoptslen = 0; 1397 } 1398 ASSERT(tcp->tcp_hopoptslen == 0); 1399 if (tcp->tcp_dstopts != NULL) { 1400 mi_free(tcp->tcp_dstopts); 1401 tcp->tcp_dstopts = NULL; 1402 tcp->tcp_dstoptslen = 0; 1403 } 1404 ASSERT(tcp->tcp_dstoptslen == 0); 1405 if (tcp->tcp_rthdrdstopts != NULL) { 1406 mi_free(tcp->tcp_rthdrdstopts); 1407 tcp->tcp_rthdrdstopts = NULL; 1408 tcp->tcp_rthdrdstoptslen = 0; 1409 } 1410 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 1411 if (tcp->tcp_rthdr != NULL) { 1412 mi_free(tcp->tcp_rthdr); 1413 tcp->tcp_rthdr = NULL; 1414 tcp->tcp_rthdrlen = 0; 1415 } 1416 ASSERT(tcp->tcp_rthdrlen == 0); 1417 1418 /* 1419 * Following is really a blowing away a union. 1420 * It happens to have exactly two members of identical size 1421 * the following code is enough. 1422 */ 1423 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 1424 1425 /* 1426 * If this is a non-STREAM socket still holding on to an upper 1427 * handle, release it. As a result of fallback we might also see 1428 * STREAMS based conns with upper handles, in which case there is 1429 * nothing to do other than clearing the field. 1430 */ 1431 if (connp->conn_upper_handle != NULL) { 1432 if (IPCL_IS_NONSTR(connp)) { 1433 (*connp->conn_upcalls->su_closed)( 1434 connp->conn_upper_handle); 1435 tcp->tcp_detached = B_TRUE; 1436 } 1437 connp->conn_upper_handle = NULL; 1438 connp->conn_upcalls = NULL; 1439 } 1440 } 1441 1442 /* 1443 * tcp_get_conn/tcp_free_conn 1444 * 1445 * tcp_get_conn is used to get a clean tcp connection structure. 1446 * It tries to reuse the connections put on the freelist by the 1447 * time_wait_collector failing which it goes to kmem_cache. This 1448 * way has two benefits compared to just allocating from and 1449 * freeing to kmem_cache. 1450 * 1) The time_wait_collector can free (which includes the cleanup) 1451 * outside the squeue. So when the interrupt comes, we have a clean 1452 * connection sitting in the freelist. Obviously, this buys us 1453 * performance. 1454 * 1455 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_input_listener 1456 * has multiple disadvantages - tying up the squeue during alloc. 1457 * But allocating the conn/tcp in IP land is also not the best since 1458 * we can't check the 'q' and 'q0' which are protected by squeue and 1459 * blindly allocate memory which might have to be freed here if we are 1460 * not allowed to accept the connection. By using the freelist and 1461 * putting the conn/tcp back in freelist, we don't pay a penalty for 1462 * allocating memory without checking 'q/q0' and freeing it if we can't 1463 * accept the connection. 1464 * 1465 * Care should be taken to put the conn back in the same squeue's freelist 1466 * from which it was allocated. Best results are obtained if conn is 1467 * allocated from listener's squeue and freed to the same. Time wait 1468 * collector will free up the freelist is the connection ends up sitting 1469 * there for too long. 1470 */ 1471 void * 1472 tcp_get_conn(void *arg, tcp_stack_t *tcps) 1473 { 1474 tcp_t *tcp = NULL; 1475 conn_t *connp = NULL; 1476 squeue_t *sqp = (squeue_t *)arg; 1477 tcp_squeue_priv_t *tcp_time_wait; 1478 netstack_t *ns; 1479 mblk_t *tcp_rsrv_mp = NULL; 1480 1481 tcp_time_wait = 1482 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1483 1484 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1485 tcp = tcp_time_wait->tcp_free_list; 1486 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 1487 if (tcp != NULL) { 1488 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1489 tcp_time_wait->tcp_free_list_cnt--; 1490 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1491 tcp->tcp_time_wait_next = NULL; 1492 connp = tcp->tcp_connp; 1493 connp->conn_flags |= IPCL_REUSED; 1494 1495 ASSERT(tcp->tcp_tcps == NULL); 1496 ASSERT(connp->conn_netstack == NULL); 1497 ASSERT(tcp->tcp_rsrv_mp != NULL); 1498 ns = tcps->tcps_netstack; 1499 netstack_hold(ns); 1500 connp->conn_netstack = ns; 1501 connp->conn_ixa->ixa_ipst = ns->netstack_ip; 1502 tcp->tcp_tcps = tcps; 1503 ipcl_globalhash_insert(connp); 1504 1505 connp->conn_ixa->ixa_notify_cookie = tcp; 1506 ASSERT(connp->conn_ixa->ixa_notify == tcp_notify); 1507 connp->conn_recv = tcp_input_data; 1508 ASSERT(connp->conn_recvicmp == tcp_icmp_input); 1509 ASSERT(connp->conn_verifyicmp == tcp_verifyicmp); 1510 return ((void *)connp); 1511 } 1512 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1513 /* 1514 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until 1515 * this conn_t/tcp_t is freed at ipcl_conn_destroy(). 1516 */ 1517 tcp_rsrv_mp = allocb(0, BPRI_HI); 1518 if (tcp_rsrv_mp == NULL) 1519 return (NULL); 1520 1521 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 1522 tcps->tcps_netstack)) == NULL) { 1523 freeb(tcp_rsrv_mp); 1524 return (NULL); 1525 } 1526 1527 tcp = connp->conn_tcp; 1528 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 1529 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL); 1530 1531 tcp->tcp_tcps = tcps; 1532 1533 connp->conn_recv = tcp_input_data; 1534 connp->conn_recvicmp = tcp_icmp_input; 1535 connp->conn_verifyicmp = tcp_verifyicmp; 1536 1537 /* 1538 * Register tcp_notify to listen to capability changes detected by IP. 1539 * This upcall is made in the context of the call to conn_ip_output 1540 * thus it is inside the squeue. 1541 */ 1542 connp->conn_ixa->ixa_notify = tcp_notify; 1543 connp->conn_ixa->ixa_notify_cookie = tcp; 1544 1545 return ((void *)connp); 1546 } 1547 1548 /* 1549 * Handle connect to IPv4 destinations, including connections for AF_INET6 1550 * sockets connecting to IPv4 mapped IPv6 destinations. 1551 * Returns zero if OK, a positive errno, or a negative TLI error. 1552 */ 1553 static int 1554 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport, 1555 uint_t srcid) 1556 { 1557 ipaddr_t dstaddr = *dstaddrp; 1558 uint16_t lport; 1559 conn_t *connp = tcp->tcp_connp; 1560 tcp_stack_t *tcps = tcp->tcp_tcps; 1561 int error; 1562 1563 ASSERT(connp->conn_ipversion == IPV4_VERSION); 1564 1565 /* Check for attempt to connect to INADDR_ANY */ 1566 if (dstaddr == INADDR_ANY) { 1567 /* 1568 * SunOS 4.x and 4.3 BSD allow an application 1569 * to connect a TCP socket to INADDR_ANY. 1570 * When they do this, the kernel picks the 1571 * address of one interface and uses it 1572 * instead. The kernel usually ends up 1573 * picking the address of the loopback 1574 * interface. This is an undocumented feature. 1575 * However, we provide the same thing here 1576 * in order to have source and binary 1577 * compatibility with SunOS 4.x. 1578 * Update the T_CONN_REQ (sin/sin6) since it is used to 1579 * generate the T_CONN_CON. 1580 */ 1581 dstaddr = htonl(INADDR_LOOPBACK); 1582 *dstaddrp = dstaddr; 1583 } 1584 1585 /* Handle __sin6_src_id if socket not bound to an IP address */ 1586 if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) { 1587 if (!ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 1588 IPCL_ZONEID(connp), B_TRUE, tcps->tcps_netstack)) { 1589 /* Mismatch - conn_laddr_v6 would be v6 address. */ 1590 return (EADDRNOTAVAIL); 1591 } 1592 connp->conn_saddr_v6 = connp->conn_laddr_v6; 1593 } 1594 1595 IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6); 1596 connp->conn_fport = dstport; 1597 1598 /* 1599 * At this point the remote destination address and remote port fields 1600 * in the tcp-four-tuple have been filled in the tcp structure. Now we 1601 * have to see which state tcp was in so we can take appropriate action. 1602 */ 1603 if (tcp->tcp_state == TCPS_IDLE) { 1604 /* 1605 * We support a quick connect capability here, allowing 1606 * clients to transition directly from IDLE to SYN_SENT 1607 * tcp_bindi will pick an unused port, insert the connection 1608 * in the bind hash and transition to BOUND state. 1609 */ 1610 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 1611 tcp, B_TRUE); 1612 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 1613 B_FALSE, B_FALSE); 1614 if (lport == 0) 1615 return (-TNOADDR); 1616 } 1617 1618 /* 1619 * Lookup the route to determine a source address and the uinfo. 1620 * Setup TCP parameters based on the metrics/DCE. 1621 */ 1622 error = tcp_set_destination(tcp); 1623 if (error != 0) 1624 return (error); 1625 1626 /* 1627 * Don't let an endpoint connect to itself. 1628 */ 1629 if (connp->conn_faddr_v4 == connp->conn_laddr_v4 && 1630 connp->conn_fport == connp->conn_lport) 1631 return (-TBADADDR); 1632 1633 tcp->tcp_state = TCPS_SYN_SENT; 1634 1635 return (ipcl_conn_insert_v4(connp)); 1636 } 1637 1638 /* 1639 * Handle connect to IPv6 destinations. 1640 * Returns zero if OK, a positive errno, or a negative TLI error. 1641 */ 1642 static int 1643 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport, 1644 uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 1645 { 1646 uint16_t lport; 1647 conn_t *connp = tcp->tcp_connp; 1648 tcp_stack_t *tcps = tcp->tcp_tcps; 1649 int error; 1650 1651 ASSERT(connp->conn_family == AF_INET6); 1652 1653 /* 1654 * If we're here, it means that the destination address is a native 1655 * IPv6 address. Return an error if conn_ipversion is not IPv6. A 1656 * reason why it might not be IPv6 is if the socket was bound to an 1657 * IPv4-mapped IPv6 address. 1658 */ 1659 if (connp->conn_ipversion != IPV6_VERSION) 1660 return (-TBADADDR); 1661 1662 /* 1663 * Interpret a zero destination to mean loopback. 1664 * Update the T_CONN_REQ (sin/sin6) since it is used to 1665 * generate the T_CONN_CON. 1666 */ 1667 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) 1668 *dstaddrp = ipv6_loopback; 1669 1670 /* Handle __sin6_src_id if socket not bound to an IP address */ 1671 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) { 1672 if (!ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 1673 IPCL_ZONEID(connp), B_FALSE, tcps->tcps_netstack)) { 1674 /* Mismatch - conn_laddr_v6 would be v4-mapped. */ 1675 return (EADDRNOTAVAIL); 1676 } 1677 connp->conn_saddr_v6 = connp->conn_laddr_v6; 1678 } 1679 1680 /* 1681 * Take care of the scope_id now. 1682 */ 1683 if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 1684 connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; 1685 connp->conn_ixa->ixa_scopeid = scope_id; 1686 } else { 1687 connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET; 1688 } 1689 1690 connp->conn_flowinfo = flowinfo; 1691 connp->conn_faddr_v6 = *dstaddrp; 1692 connp->conn_fport = dstport; 1693 1694 /* 1695 * At this point the remote destination address and remote port fields 1696 * in the tcp-four-tuple have been filled in the tcp structure. Now we 1697 * have to see which state tcp was in so we can take appropriate action. 1698 */ 1699 if (tcp->tcp_state == TCPS_IDLE) { 1700 /* 1701 * We support a quick connect capability here, allowing 1702 * clients to transition directly from IDLE to SYN_SENT 1703 * tcp_bindi will pick an unused port, insert the connection 1704 * in the bind hash and transition to BOUND state. 1705 */ 1706 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 1707 tcp, B_TRUE); 1708 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 1709 B_FALSE, B_FALSE); 1710 if (lport == 0) 1711 return (-TNOADDR); 1712 } 1713 1714 /* 1715 * Lookup the route to determine a source address and the uinfo. 1716 * Setup TCP parameters based on the metrics/DCE. 1717 */ 1718 error = tcp_set_destination(tcp); 1719 if (error != 0) 1720 return (error); 1721 1722 /* 1723 * Don't let an endpoint connect to itself. 1724 */ 1725 if (IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &connp->conn_laddr_v6) && 1726 connp->conn_fport == connp->conn_lport) 1727 return (-TBADADDR); 1728 1729 tcp->tcp_state = TCPS_SYN_SENT; 1730 1731 return (ipcl_conn_insert_v6(connp)); 1732 } 1733 1734 /* 1735 * Disconnect 1736 * Note that unlike other functions this returns a positive tli error 1737 * when it fails; it never returns an errno. 1738 */ 1739 static int 1740 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum) 1741 { 1742 conn_t *lconnp; 1743 tcp_stack_t *tcps = tcp->tcp_tcps; 1744 conn_t *connp = tcp->tcp_connp; 1745 1746 /* 1747 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 1748 * when the stream is in BOUND state. Do not send a reset, 1749 * since the destination IP address is not valid, and it can 1750 * be the initialized value of all zeros (broadcast address). 1751 */ 1752 if (tcp->tcp_state <= TCPS_BOUND) { 1753 if (connp->conn_debug) { 1754 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 1755 "tcp_disconnect: bad state, %d", tcp->tcp_state); 1756 } 1757 return (TOUTSTATE); 1758 } else if (tcp->tcp_state >= TCPS_ESTABLISHED) { 1759 TCPS_CONN_DEC(tcps); 1760 } 1761 1762 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 1763 1764 /* 1765 * According to TPI, for non-listeners, ignore seqnum 1766 * and disconnect. 1767 * Following interpretation of -1 seqnum is historical 1768 * and implied TPI ? (TPI only states that for T_CONN_IND, 1769 * a valid seqnum should not be -1). 1770 * 1771 * -1 means disconnect everything 1772 * regardless even on a listener. 1773 */ 1774 1775 int old_state = tcp->tcp_state; 1776 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 1777 1778 /* 1779 * The connection can't be on the tcp_time_wait_head list 1780 * since it is not detached. 1781 */ 1782 ASSERT(tcp->tcp_time_wait_next == NULL); 1783 ASSERT(tcp->tcp_time_wait_prev == NULL); 1784 ASSERT(tcp->tcp_time_wait_expire == 0); 1785 /* 1786 * If it used to be a listener, check to make sure no one else 1787 * has taken the port before switching back to LISTEN state. 1788 */ 1789 if (connp->conn_ipversion == IPV4_VERSION) { 1790 lconnp = ipcl_lookup_listener_v4(connp->conn_lport, 1791 connp->conn_laddr_v4, IPCL_ZONEID(connp), ipst); 1792 } else { 1793 uint_t ifindex = 0; 1794 1795 if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET) 1796 ifindex = connp->conn_ixa->ixa_scopeid; 1797 1798 /* Allow conn_bound_if listeners? */ 1799 lconnp = ipcl_lookup_listener_v6(connp->conn_lport, 1800 &connp->conn_laddr_v6, ifindex, IPCL_ZONEID(connp), 1801 ipst); 1802 } 1803 if (tcp->tcp_conn_req_max && lconnp == NULL) { 1804 tcp->tcp_state = TCPS_LISTEN; 1805 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 1806 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, 1807 NULL, int32_t, old_state); 1808 } else if (old_state > TCPS_BOUND) { 1809 tcp->tcp_conn_req_max = 0; 1810 tcp->tcp_state = TCPS_BOUND; 1811 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 1812 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, 1813 NULL, int32_t, old_state); 1814 1815 /* 1816 * If this end point is not going to become a listener, 1817 * decrement the listener connection count if 1818 * necessary. Note that we do not do this if it is 1819 * going to be a listner (the above if case) since 1820 * then it may remove the counter struct. 1821 */ 1822 if (tcp->tcp_listen_cnt != NULL) 1823 TCP_DECR_LISTEN_CNT(tcp); 1824 } 1825 if (lconnp != NULL) 1826 CONN_DEC_REF(lconnp); 1827 switch (old_state) { 1828 case TCPS_SYN_SENT: 1829 case TCPS_SYN_RCVD: 1830 TCPS_BUMP_MIB(tcps, tcpAttemptFails); 1831 break; 1832 case TCPS_ESTABLISHED: 1833 case TCPS_CLOSE_WAIT: 1834 TCPS_BUMP_MIB(tcps, tcpEstabResets); 1835 break; 1836 } 1837 1838 if (tcp->tcp_fused) 1839 tcp_unfuse(tcp); 1840 1841 mutex_enter(&tcp->tcp_eager_lock); 1842 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 1843 (tcp->tcp_conn_req_cnt_q != 0)) { 1844 tcp_eager_cleanup(tcp, 0); 1845 } 1846 mutex_exit(&tcp->tcp_eager_lock); 1847 1848 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 1849 tcp->tcp_rnxt, TH_RST | TH_ACK); 1850 1851 tcp_reinit(tcp); 1852 1853 return (0); 1854 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 1855 return (TBADSEQ); 1856 } 1857 return (0); 1858 } 1859 1860 /* 1861 * Our client hereby directs us to reject the connection request 1862 * that tcp_input_listener() marked with 'seqnum'. Rejection consists 1863 * of sending the appropriate RST, not an ICMP error. 1864 */ 1865 void 1866 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 1867 { 1868 t_scalar_t seqnum; 1869 int error; 1870 conn_t *connp = tcp->tcp_connp; 1871 1872 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 1873 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 1874 tcp_err_ack(tcp, mp, TPROTO, 0); 1875 return; 1876 } 1877 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 1878 error = tcp_disconnect_common(tcp, seqnum); 1879 if (error != 0) 1880 tcp_err_ack(tcp, mp, error, 0); 1881 else { 1882 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 1883 /* Send M_FLUSH according to TPI */ 1884 (void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW); 1885 } 1886 mp = mi_tpi_ok_ack_alloc(mp); 1887 if (mp != NULL) 1888 putnext(connp->conn_rq, mp); 1889 } 1890 } 1891 1892 /* 1893 * Handle reinitialization of a tcp structure. 1894 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 1895 */ 1896 static void 1897 tcp_reinit(tcp_t *tcp) 1898 { 1899 mblk_t *mp; 1900 tcp_stack_t *tcps = tcp->tcp_tcps; 1901 conn_t *connp = tcp->tcp_connp; 1902 int32_t oldstate; 1903 1904 /* tcp_reinit should never be called for detached tcp_t's */ 1905 ASSERT(tcp->tcp_listener == NULL); 1906 ASSERT((connp->conn_family == AF_INET && 1907 connp->conn_ipversion == IPV4_VERSION) || 1908 (connp->conn_family == AF_INET6 && 1909 (connp->conn_ipversion == IPV4_VERSION || 1910 connp->conn_ipversion == IPV6_VERSION))); 1911 1912 /* Cancel outstanding timers */ 1913 tcp_timers_stop(tcp); 1914 1915 /* 1916 * Reset everything in the state vector, after updating global 1917 * MIB data from instance counters. 1918 */ 1919 TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs); 1920 tcp->tcp_ibsegs = 0; 1921 TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs); 1922 tcp->tcp_obsegs = 0; 1923 1924 tcp_close_mpp(&tcp->tcp_xmit_head); 1925 if (tcp->tcp_snd_zcopy_aware) 1926 tcp_zcopy_notify(tcp); 1927 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 1928 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 1929 mutex_enter(&tcp->tcp_non_sq_lock); 1930 if (tcp->tcp_flow_stopped && 1931 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 1932 tcp_clrqfull(tcp); 1933 } 1934 mutex_exit(&tcp->tcp_non_sq_lock); 1935 tcp_close_mpp(&tcp->tcp_reass_head); 1936 tcp->tcp_reass_tail = NULL; 1937 if (tcp->tcp_rcv_list != NULL) { 1938 /* Free b_next chain */ 1939 tcp_close_mpp(&tcp->tcp_rcv_list); 1940 tcp->tcp_rcv_last_head = NULL; 1941 tcp->tcp_rcv_last_tail = NULL; 1942 tcp->tcp_rcv_cnt = 0; 1943 } 1944 tcp->tcp_rcv_last_tail = NULL; 1945 1946 if ((mp = tcp->tcp_urp_mp) != NULL) { 1947 freemsg(mp); 1948 tcp->tcp_urp_mp = NULL; 1949 } 1950 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 1951 freemsg(mp); 1952 tcp->tcp_urp_mark_mp = NULL; 1953 } 1954 if (tcp->tcp_fused_sigurg_mp != NULL) { 1955 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1956 freeb(tcp->tcp_fused_sigurg_mp); 1957 tcp->tcp_fused_sigurg_mp = NULL; 1958 } 1959 if (tcp->tcp_ordrel_mp != NULL) { 1960 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1961 freeb(tcp->tcp_ordrel_mp); 1962 tcp->tcp_ordrel_mp = NULL; 1963 } 1964 1965 /* 1966 * Following is a union with two members which are 1967 * identical types and size so the following cleanup 1968 * is enough. 1969 */ 1970 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 1971 1972 CL_INET_DISCONNECT(connp); 1973 1974 /* 1975 * The connection can't be on the tcp_time_wait_head list 1976 * since it is not detached. 1977 */ 1978 ASSERT(tcp->tcp_time_wait_next == NULL); 1979 ASSERT(tcp->tcp_time_wait_prev == NULL); 1980 ASSERT(tcp->tcp_time_wait_expire == 0); 1981 1982 /* 1983 * Reset/preserve other values 1984 */ 1985 tcp_reinit_values(tcp); 1986 ipcl_hash_remove(connp); 1987 /* Note that ixa_cred gets cleared in ixa_cleanup */ 1988 ixa_cleanup(connp->conn_ixa); 1989 tcp_ipsec_cleanup(tcp); 1990 1991 connp->conn_laddr_v6 = connp->conn_bound_addr_v6; 1992 connp->conn_saddr_v6 = connp->conn_bound_addr_v6; 1993 oldstate = tcp->tcp_state; 1994 1995 if (tcp->tcp_conn_req_max != 0) { 1996 /* 1997 * This is the case when a TLI program uses the same 1998 * transport end point to accept a connection. This 1999 * makes the TCP both a listener and acceptor. When 2000 * this connection is closed, we need to set the state 2001 * back to TCPS_LISTEN. Make sure that the eager list 2002 * is reinitialized. 2003 * 2004 * Note that this stream is still bound to the four 2005 * tuples of the previous connection in IP. If a new 2006 * SYN with different foreign address comes in, IP will 2007 * not find it and will send it to the global queue. In 2008 * the global queue, TCP will do a tcp_lookup_listener() 2009 * to find this stream. This works because this stream 2010 * is only removed from connected hash. 2011 * 2012 */ 2013 tcp->tcp_state = TCPS_LISTEN; 2014 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 2015 tcp->tcp_eager_next_drop_q0 = tcp; 2016 tcp->tcp_eager_prev_drop_q0 = tcp; 2017 /* 2018 * Initially set conn_recv to tcp_input_listener_unbound to try 2019 * to pick a good squeue for the listener when the first SYN 2020 * arrives. tcp_input_listener_unbound sets it to 2021 * tcp_input_listener on that first SYN. 2022 */ 2023 connp->conn_recv = tcp_input_listener_unbound; 2024 2025 connp->conn_proto = IPPROTO_TCP; 2026 connp->conn_faddr_v6 = ipv6_all_zeros; 2027 connp->conn_fport = 0; 2028 2029 (void) ipcl_bind_insert(connp); 2030 } else { 2031 tcp->tcp_state = TCPS_BOUND; 2032 } 2033 2034 /* 2035 * Initialize to default values 2036 */ 2037 tcp_init_values(tcp, NULL); 2038 2039 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 2040 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 2041 int32_t, oldstate); 2042 2043 ASSERT(tcp->tcp_ptpbhn != NULL); 2044 tcp->tcp_rwnd = connp->conn_rcvbuf; 2045 tcp->tcp_mss = connp->conn_ipversion != IPV4_VERSION ? 2046 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 2047 } 2048 2049 /* 2050 * Force values to zero that need be zero. 2051 * Do not touch values asociated with the BOUND or LISTEN state 2052 * since the connection will end up in that state after the reinit. 2053 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 2054 * structure! 2055 */ 2056 static void 2057 tcp_reinit_values(tcp) 2058 tcp_t *tcp; 2059 { 2060 tcp_stack_t *tcps = tcp->tcp_tcps; 2061 conn_t *connp = tcp->tcp_connp; 2062 2063 #ifndef lint 2064 #define DONTCARE(x) 2065 #define PRESERVE(x) 2066 #else 2067 #define DONTCARE(x) ((x) = (x)) 2068 #define PRESERVE(x) ((x) = (x)) 2069 #endif /* lint */ 2070 2071 PRESERVE(tcp->tcp_bind_hash_port); 2072 PRESERVE(tcp->tcp_bind_hash); 2073 PRESERVE(tcp->tcp_ptpbhn); 2074 PRESERVE(tcp->tcp_acceptor_hash); 2075 PRESERVE(tcp->tcp_ptpahn); 2076 2077 /* Should be ASSERT NULL on these with new code! */ 2078 ASSERT(tcp->tcp_time_wait_next == NULL); 2079 ASSERT(tcp->tcp_time_wait_prev == NULL); 2080 ASSERT(tcp->tcp_time_wait_expire == 0); 2081 PRESERVE(tcp->tcp_state); 2082 PRESERVE(connp->conn_rq); 2083 PRESERVE(connp->conn_wq); 2084 2085 ASSERT(tcp->tcp_xmit_head == NULL); 2086 ASSERT(tcp->tcp_xmit_last == NULL); 2087 ASSERT(tcp->tcp_unsent == 0); 2088 ASSERT(tcp->tcp_xmit_tail == NULL); 2089 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 2090 2091 tcp->tcp_snxt = 0; /* Displayed in mib */ 2092 tcp->tcp_suna = 0; /* Displayed in mib */ 2093 tcp->tcp_swnd = 0; 2094 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_process_options */ 2095 2096 ASSERT(tcp->tcp_ibsegs == 0); 2097 ASSERT(tcp->tcp_obsegs == 0); 2098 2099 if (connp->conn_ht_iphc != NULL) { 2100 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 2101 connp->conn_ht_iphc = NULL; 2102 connp->conn_ht_iphc_allocated = 0; 2103 connp->conn_ht_iphc_len = 0; 2104 connp->conn_ht_ulp = NULL; 2105 connp->conn_ht_ulp_len = 0; 2106 tcp->tcp_ipha = NULL; 2107 tcp->tcp_ip6h = NULL; 2108 tcp->tcp_tcpha = NULL; 2109 } 2110 2111 /* We clear any IP_OPTIONS and extension headers */ 2112 ip_pkt_free(&connp->conn_xmit_ipp); 2113 2114 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 2115 DONTCARE(tcp->tcp_ipha); 2116 DONTCARE(tcp->tcp_ip6h); 2117 DONTCARE(tcp->tcp_tcpha); 2118 tcp->tcp_valid_bits = 0; 2119 2120 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 2121 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 2122 tcp->tcp_last_rcv_lbolt = 0; 2123 2124 tcp->tcp_init_cwnd = 0; 2125 2126 tcp->tcp_urp_last_valid = 0; 2127 tcp->tcp_hard_binding = 0; 2128 2129 tcp->tcp_fin_acked = 0; 2130 tcp->tcp_fin_rcvd = 0; 2131 tcp->tcp_fin_sent = 0; 2132 tcp->tcp_ordrel_done = 0; 2133 2134 tcp->tcp_detached = 0; 2135 2136 tcp->tcp_snd_ws_ok = B_FALSE; 2137 tcp->tcp_snd_ts_ok = B_FALSE; 2138 tcp->tcp_zero_win_probe = 0; 2139 2140 tcp->tcp_loopback = 0; 2141 tcp->tcp_localnet = 0; 2142 tcp->tcp_syn_defense = 0; 2143 tcp->tcp_set_timer = 0; 2144 2145 tcp->tcp_active_open = 0; 2146 tcp->tcp_rexmit = B_FALSE; 2147 tcp->tcp_xmit_zc_clean = B_FALSE; 2148 2149 tcp->tcp_snd_sack_ok = B_FALSE; 2150 tcp->tcp_hwcksum = B_FALSE; 2151 2152 DONTCARE(tcp->tcp_maxpsz_multiplier); /* Init in tcp_init_values */ 2153 2154 tcp->tcp_conn_def_q0 = 0; 2155 tcp->tcp_ip_forward_progress = B_FALSE; 2156 tcp->tcp_ecn_ok = B_FALSE; 2157 2158 tcp->tcp_cwr = B_FALSE; 2159 tcp->tcp_ecn_echo_on = B_FALSE; 2160 tcp->tcp_is_wnd_shrnk = B_FALSE; 2161 2162 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 2163 bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 2164 2165 tcp->tcp_rcv_ws = 0; 2166 tcp->tcp_snd_ws = 0; 2167 tcp->tcp_ts_recent = 0; 2168 tcp->tcp_rnxt = 0; /* Displayed in mib */ 2169 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 2170 tcp->tcp_initial_pmtu = 0; 2171 2172 ASSERT(tcp->tcp_reass_head == NULL); 2173 ASSERT(tcp->tcp_reass_tail == NULL); 2174 2175 tcp->tcp_cwnd_cnt = 0; 2176 2177 ASSERT(tcp->tcp_rcv_list == NULL); 2178 ASSERT(tcp->tcp_rcv_last_head == NULL); 2179 ASSERT(tcp->tcp_rcv_last_tail == NULL); 2180 ASSERT(tcp->tcp_rcv_cnt == 0); 2181 2182 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_set_destination */ 2183 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 2184 tcp->tcp_csuna = 0; 2185 2186 tcp->tcp_rto = 0; /* Displayed in MIB */ 2187 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 2188 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 2189 tcp->tcp_rtt_update = 0; 2190 2191 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 2192 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 2193 2194 tcp->tcp_rack = 0; /* Displayed in mib */ 2195 tcp->tcp_rack_cnt = 0; 2196 tcp->tcp_rack_cur_max = 0; 2197 tcp->tcp_rack_abs_max = 0; 2198 2199 tcp->tcp_max_swnd = 0; 2200 2201 ASSERT(tcp->tcp_listener == NULL); 2202 2203 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 2204 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 2205 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 2206 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 2207 2208 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 2209 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 2210 PRESERVE(tcp->tcp_conn_req_max); 2211 PRESERVE(tcp->tcp_conn_req_seqnum); 2212 2213 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 2214 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 2215 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 2216 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 2217 2218 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 2219 ASSERT(tcp->tcp_urp_mp == NULL); 2220 ASSERT(tcp->tcp_urp_mark_mp == NULL); 2221 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 2222 2223 ASSERT(tcp->tcp_eager_next_q == NULL); 2224 ASSERT(tcp->tcp_eager_last_q == NULL); 2225 ASSERT((tcp->tcp_eager_next_q0 == NULL && 2226 tcp->tcp_eager_prev_q0 == NULL) || 2227 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 2228 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 2229 2230 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 2231 tcp->tcp_eager_prev_drop_q0 == NULL) || 2232 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 2233 2234 DONTCARE(tcp->tcp_ka_rinterval); /* Init in tcp_init_values */ 2235 DONTCARE(tcp->tcp_ka_abort_thres); /* Init in tcp_init_values */ 2236 DONTCARE(tcp->tcp_ka_cnt); /* Init in tcp_init_values */ 2237 2238 tcp->tcp_client_errno = 0; 2239 2240 DONTCARE(connp->conn_sum); /* Init in tcp_init_values */ 2241 2242 connp->conn_faddr_v6 = ipv6_all_zeros; /* Displayed in MIB */ 2243 2244 PRESERVE(connp->conn_bound_addr_v6); 2245 tcp->tcp_last_sent_len = 0; 2246 tcp->tcp_dupack_cnt = 0; 2247 2248 connp->conn_fport = 0; /* Displayed in MIB */ 2249 PRESERVE(connp->conn_lport); 2250 2251 PRESERVE(tcp->tcp_acceptor_lockp); 2252 2253 ASSERT(tcp->tcp_ordrel_mp == NULL); 2254 PRESERVE(tcp->tcp_acceptor_id); 2255 DONTCARE(tcp->tcp_ipsec_overhead); 2256 2257 PRESERVE(connp->conn_family); 2258 /* Remove any remnants of mapped address binding */ 2259 if (connp->conn_family == AF_INET6) { 2260 connp->conn_ipversion = IPV6_VERSION; 2261 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 2262 } else { 2263 connp->conn_ipversion = IPV4_VERSION; 2264 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 2265 } 2266 2267 connp->conn_bound_if = 0; 2268 connp->conn_recv_ancillary.crb_all = 0; 2269 tcp->tcp_recvifindex = 0; 2270 tcp->tcp_recvhops = 0; 2271 tcp->tcp_closed = 0; 2272 if (tcp->tcp_hopopts != NULL) { 2273 mi_free(tcp->tcp_hopopts); 2274 tcp->tcp_hopopts = NULL; 2275 tcp->tcp_hopoptslen = 0; 2276 } 2277 ASSERT(tcp->tcp_hopoptslen == 0); 2278 if (tcp->tcp_dstopts != NULL) { 2279 mi_free(tcp->tcp_dstopts); 2280 tcp->tcp_dstopts = NULL; 2281 tcp->tcp_dstoptslen = 0; 2282 } 2283 ASSERT(tcp->tcp_dstoptslen == 0); 2284 if (tcp->tcp_rthdrdstopts != NULL) { 2285 mi_free(tcp->tcp_rthdrdstopts); 2286 tcp->tcp_rthdrdstopts = NULL; 2287 tcp->tcp_rthdrdstoptslen = 0; 2288 } 2289 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 2290 if (tcp->tcp_rthdr != NULL) { 2291 mi_free(tcp->tcp_rthdr); 2292 tcp->tcp_rthdr = NULL; 2293 tcp->tcp_rthdrlen = 0; 2294 } 2295 ASSERT(tcp->tcp_rthdrlen == 0); 2296 2297 /* Reset fusion-related fields */ 2298 tcp->tcp_fused = B_FALSE; 2299 tcp->tcp_unfusable = B_FALSE; 2300 tcp->tcp_fused_sigurg = B_FALSE; 2301 tcp->tcp_loopback_peer = NULL; 2302 2303 tcp->tcp_lso = B_FALSE; 2304 2305 tcp->tcp_in_ack_unsent = 0; 2306 tcp->tcp_cork = B_FALSE; 2307 tcp->tcp_tconnind_started = B_FALSE; 2308 2309 PRESERVE(tcp->tcp_squeue_bytes); 2310 2311 tcp->tcp_closemp_used = B_FALSE; 2312 2313 PRESERVE(tcp->tcp_rsrv_mp); 2314 PRESERVE(tcp->tcp_rsrv_mp_lock); 2315 2316 #ifdef DEBUG 2317 DONTCARE(tcp->tcmp_stk[0]); 2318 #endif 2319 2320 PRESERVE(tcp->tcp_connid); 2321 2322 ASSERT(tcp->tcp_listen_cnt == NULL); 2323 ASSERT(tcp->tcp_reass_tid == 0); 2324 2325 #undef DONTCARE 2326 #undef PRESERVE 2327 } 2328 2329 /* 2330 * Initialize the various fields in tcp_t. If parent (the listener) is non 2331 * NULL, certain values will be inheritted from it. 2332 */ 2333 void 2334 tcp_init_values(tcp_t *tcp, tcp_t *parent) 2335 { 2336 tcp_stack_t *tcps = tcp->tcp_tcps; 2337 conn_t *connp = tcp->tcp_connp; 2338 clock_t rto; 2339 2340 ASSERT((connp->conn_family == AF_INET && 2341 connp->conn_ipversion == IPV4_VERSION) || 2342 (connp->conn_family == AF_INET6 && 2343 (connp->conn_ipversion == IPV4_VERSION || 2344 connp->conn_ipversion == IPV6_VERSION))); 2345 2346 if (parent == NULL) { 2347 tcp->tcp_naglim = tcps->tcps_naglim_def; 2348 2349 tcp->tcp_rto_initial = tcps->tcps_rexmit_interval_initial; 2350 tcp->tcp_rto_min = tcps->tcps_rexmit_interval_min; 2351 tcp->tcp_rto_max = tcps->tcps_rexmit_interval_max; 2352 2353 tcp->tcp_first_ctimer_threshold = 2354 tcps->tcps_ip_notify_cinterval; 2355 tcp->tcp_second_ctimer_threshold = 2356 tcps->tcps_ip_abort_cinterval; 2357 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 2358 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 2359 2360 tcp->tcp_fin_wait_2_flush_interval = 2361 tcps->tcps_fin_wait_2_flush_interval; 2362 2363 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 2364 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 2365 tcp->tcp_ka_cnt = 0; 2366 tcp->tcp_ka_rinterval = 0; 2367 2368 /* 2369 * Default value of tcp_init_cwnd is 0, so no need to set here 2370 * if parent is NULL. But we need to inherit it from parent. 2371 */ 2372 } else { 2373 /* Inherit various TCP parameters from the parent. */ 2374 tcp->tcp_naglim = parent->tcp_naglim; 2375 2376 tcp->tcp_rto_initial = parent->tcp_rto_initial; 2377 tcp->tcp_rto_min = parent->tcp_rto_min; 2378 tcp->tcp_rto_max = parent->tcp_rto_max; 2379 2380 tcp->tcp_first_ctimer_threshold = 2381 parent->tcp_first_ctimer_threshold; 2382 tcp->tcp_second_ctimer_threshold = 2383 parent->tcp_second_ctimer_threshold; 2384 tcp->tcp_first_timer_threshold = 2385 parent->tcp_first_timer_threshold; 2386 tcp->tcp_second_timer_threshold = 2387 parent->tcp_second_timer_threshold; 2388 2389 tcp->tcp_fin_wait_2_flush_interval = 2390 parent->tcp_fin_wait_2_flush_interval; 2391 2392 tcp->tcp_ka_interval = parent->tcp_ka_interval; 2393 tcp->tcp_ka_abort_thres = parent->tcp_ka_abort_thres; 2394 tcp->tcp_ka_cnt = parent->tcp_ka_cnt; 2395 tcp->tcp_ka_rinterval = parent->tcp_ka_rinterval; 2396 2397 tcp->tcp_init_cwnd = parent->tcp_init_cwnd; 2398 } 2399 2400 /* 2401 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 2402 * will be close to tcp_rexmit_interval_initial. By doing this, we 2403 * allow the algorithm to adjust slowly to large fluctuations of RTT 2404 * during first few transmissions of a connection as seen in slow 2405 * links. 2406 */ 2407 tcp->tcp_rtt_sa = tcp->tcp_rto_initial << 2; 2408 tcp->tcp_rtt_sd = tcp->tcp_rto_initial >> 1; 2409 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2410 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 2411 tcps->tcps_conn_grace_period; 2412 TCP_SET_RTO(tcp, rto); 2413 2414 tcp->tcp_timer_backoff = 0; 2415 tcp->tcp_ms_we_have_waited = 0; 2416 tcp->tcp_last_recv_time = ddi_get_lbolt(); 2417 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 2418 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2419 2420 tcp->tcp_maxpsz_multiplier = tcps->tcps_maxpsz_multiplier; 2421 2422 /* NOTE: ISS is now set in tcp_set_destination(). */ 2423 2424 /* Reset fusion-related fields */ 2425 tcp->tcp_fused = B_FALSE; 2426 tcp->tcp_unfusable = B_FALSE; 2427 tcp->tcp_fused_sigurg = B_FALSE; 2428 tcp->tcp_loopback_peer = NULL; 2429 2430 /* We rebuild the header template on the next connect/conn_request */ 2431 2432 connp->conn_mlp_type = mlptSingle; 2433 2434 /* 2435 * Init the window scale to the max so tcp_rwnd_set() won't pare 2436 * down tcp_rwnd. tcp_set_destination() will set the right value later. 2437 */ 2438 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 2439 tcp->tcp_rwnd = connp->conn_rcvbuf; 2440 2441 tcp->tcp_cork = B_FALSE; 2442 /* 2443 * Init the tcp_debug option if it wasn't already set. This value 2444 * determines whether TCP 2445 * calls strlog() to print out debug messages. Doing this 2446 * initialization here means that this value is not inherited thru 2447 * tcp_reinit(). 2448 */ 2449 if (!connp->conn_debug) 2450 connp->conn_debug = tcps->tcps_dbg; 2451 } 2452 2453 /* 2454 * Update the TCP connection according to change of PMTU. 2455 * 2456 * Path MTU might have changed by either increase or decrease, so need to 2457 * adjust the MSS based on the value of ixa_pmtu. No need to handle tiny 2458 * or negative MSS, since tcp_mss_set() will do it. 2459 */ 2460 void 2461 tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only) 2462 { 2463 uint32_t pmtu; 2464 int32_t mss; 2465 conn_t *connp = tcp->tcp_connp; 2466 ip_xmit_attr_t *ixa = connp->conn_ixa; 2467 iaflags_t ixaflags; 2468 2469 if (tcp->tcp_tcps->tcps_ignore_path_mtu) 2470 return; 2471 2472 if (tcp->tcp_state < TCPS_ESTABLISHED) 2473 return; 2474 2475 /* 2476 * Always call ip_get_pmtu() to make sure that IP has updated 2477 * ixa_flags properly. 2478 */ 2479 pmtu = ip_get_pmtu(ixa); 2480 ixaflags = ixa->ixa_flags; 2481 2482 /* 2483 * Calculate the MSS by decreasing the PMTU by conn_ht_iphc_len and 2484 * IPsec overhead if applied. Make sure to use the most recent 2485 * IPsec information. 2486 */ 2487 mss = pmtu - connp->conn_ht_iphc_len - conn_ipsec_length(connp); 2488 2489 /* 2490 * Nothing to change, so just return. 2491 */ 2492 if (mss == tcp->tcp_mss) 2493 return; 2494 2495 /* 2496 * Currently, for ICMP errors, only PMTU decrease is handled. 2497 */ 2498 if (mss > tcp->tcp_mss && decrease_only) 2499 return; 2500 2501 DTRACE_PROBE2(tcp_update_pmtu, int32_t, tcp->tcp_mss, uint32_t, mss); 2502 2503 /* 2504 * Update ixa_fragsize and ixa_pmtu. 2505 */ 2506 ixa->ixa_fragsize = ixa->ixa_pmtu = pmtu; 2507 2508 /* 2509 * Adjust MSS and all relevant variables. 2510 */ 2511 tcp_mss_set(tcp, mss); 2512 2513 /* 2514 * If the PMTU is below the min size maintained by IP, then ip_get_pmtu 2515 * has set IXAF_PMTU_TOO_SMALL and cleared IXAF_PMTU_IPV4_DF. Since TCP 2516 * has a (potentially different) min size we do the same. Make sure to 2517 * clear IXAF_DONTFRAG, which is used by IP to decide whether to 2518 * fragment the packet. 2519 * 2520 * LSO over IPv6 can not be fragmented. So need to disable LSO 2521 * when IPv6 fragmentation is needed. 2522 */ 2523 if (mss < tcp->tcp_tcps->tcps_mss_min) 2524 ixaflags |= IXAF_PMTU_TOO_SMALL; 2525 2526 if (ixaflags & IXAF_PMTU_TOO_SMALL) 2527 ixaflags &= ~(IXAF_DONTFRAG | IXAF_PMTU_IPV4_DF); 2528 2529 if ((connp->conn_ipversion == IPV4_VERSION) && 2530 !(ixaflags & IXAF_PMTU_IPV4_DF)) { 2531 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 2532 } 2533 ixa->ixa_flags = ixaflags; 2534 } 2535 2536 int 2537 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 2538 { 2539 conn_t *connp = tcp->tcp_connp; 2540 queue_t *q = connp->conn_rq; 2541 int32_t mss = tcp->tcp_mss; 2542 int maxpsz; 2543 2544 if (TCP_IS_DETACHED(tcp)) 2545 return (mss); 2546 if (tcp->tcp_fused) { 2547 maxpsz = tcp_fuse_maxpsz(tcp); 2548 mss = INFPSZ; 2549 } else if (tcp->tcp_maxpsz_multiplier == 0) { 2550 /* 2551 * Set the sd_qn_maxpsz according to the socket send buffer 2552 * size, and sd_maxblk to INFPSZ (-1). This will essentially 2553 * instruct the stream head to copyin user data into contiguous 2554 * kernel-allocated buffers without breaking it up into smaller 2555 * chunks. We round up the buffer size to the nearest SMSS. 2556 */ 2557 maxpsz = MSS_ROUNDUP(connp->conn_sndbuf, mss); 2558 mss = INFPSZ; 2559 } else { 2560 /* 2561 * Set sd_qn_maxpsz to approx half the (receivers) buffer 2562 * (and a multiple of the mss). This instructs the stream 2563 * head to break down larger than SMSS writes into SMSS- 2564 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 2565 */ 2566 maxpsz = tcp->tcp_maxpsz_multiplier * mss; 2567 if (maxpsz > connp->conn_sndbuf / 2) { 2568 maxpsz = connp->conn_sndbuf / 2; 2569 /* Round up to nearest mss */ 2570 maxpsz = MSS_ROUNDUP(maxpsz, mss); 2571 } 2572 } 2573 2574 (void) proto_set_maxpsz(q, connp, maxpsz); 2575 if (!(IPCL_IS_NONSTR(connp))) 2576 connp->conn_wq->q_maxpsz = maxpsz; 2577 if (set_maxblk) 2578 (void) proto_set_tx_maxblk(q, connp, mss); 2579 return (mss); 2580 } 2581 2582 /* For /dev/tcp aka AF_INET open */ 2583 static int 2584 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 2585 { 2586 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 2587 } 2588 2589 /* For /dev/tcp6 aka AF_INET6 open */ 2590 static int 2591 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 2592 { 2593 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 2594 } 2595 2596 conn_t * 2597 tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket, 2598 int *errorp) 2599 { 2600 tcp_t *tcp = NULL; 2601 conn_t *connp; 2602 zoneid_t zoneid; 2603 tcp_stack_t *tcps; 2604 squeue_t *sqp; 2605 2606 ASSERT(errorp != NULL); 2607 /* 2608 * Find the proper zoneid and netstack. 2609 */ 2610 /* 2611 * Special case for install: miniroot needs to be able to 2612 * access files via NFS as though it were always in the 2613 * global zone. 2614 */ 2615 if (credp == kcred && nfs_global_client_only != 0) { 2616 zoneid = GLOBAL_ZONEID; 2617 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 2618 netstack_tcp; 2619 ASSERT(tcps != NULL); 2620 } else { 2621 netstack_t *ns; 2622 int err; 2623 2624 if ((err = secpolicy_basic_net_access(credp)) != 0) { 2625 *errorp = err; 2626 return (NULL); 2627 } 2628 2629 ns = netstack_find_by_cred(credp); 2630 ASSERT(ns != NULL); 2631 tcps = ns->netstack_tcp; 2632 ASSERT(tcps != NULL); 2633 2634 /* 2635 * For exclusive stacks we set the zoneid to zero 2636 * to make TCP operate as if in the global zone. 2637 */ 2638 if (tcps->tcps_netstack->netstack_stackid != 2639 GLOBAL_NETSTACKID) 2640 zoneid = GLOBAL_ZONEID; 2641 else 2642 zoneid = crgetzoneid(credp); 2643 } 2644 2645 sqp = IP_SQUEUE_GET((uint_t)gethrtime()); 2646 connp = (conn_t *)tcp_get_conn(sqp, tcps); 2647 /* 2648 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 2649 * so we drop it by one. 2650 */ 2651 netstack_rele(tcps->tcps_netstack); 2652 if (connp == NULL) { 2653 *errorp = ENOSR; 2654 return (NULL); 2655 } 2656 ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto); 2657 2658 connp->conn_sqp = sqp; 2659 connp->conn_initial_sqp = connp->conn_sqp; 2660 connp->conn_ixa->ixa_sqp = connp->conn_sqp; 2661 tcp = connp->conn_tcp; 2662 2663 /* 2664 * Besides asking IP to set the checksum for us, have conn_ip_output 2665 * to do the following checks when necessary: 2666 * 2667 * IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid 2668 * IXAF_VERIFY_PMTU: verify PMTU changes 2669 * IXAF_VERIFY_LSO: verify LSO capability changes 2670 */ 2671 connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 2672 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO; 2673 2674 if (!tcps->tcps_dev_flow_ctl) 2675 connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL; 2676 2677 if (isv6) { 2678 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 2679 connp->conn_ipversion = IPV6_VERSION; 2680 connp->conn_family = AF_INET6; 2681 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 2682 connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit; 2683 } else { 2684 connp->conn_ipversion = IPV4_VERSION; 2685 connp->conn_family = AF_INET; 2686 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 2687 connp->conn_default_ttl = tcps->tcps_ipv4_ttl; 2688 } 2689 connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl; 2690 2691 crhold(credp); 2692 connp->conn_cred = credp; 2693 connp->conn_cpid = curproc->p_pid; 2694 connp->conn_open_time = ddi_get_lbolt64(); 2695 2696 /* Cache things in the ixa without any refhold */ 2697 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED)); 2698 connp->conn_ixa->ixa_cred = credp; 2699 connp->conn_ixa->ixa_cpid = connp->conn_cpid; 2700 2701 connp->conn_zoneid = zoneid; 2702 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 2703 connp->conn_ixa->ixa_zoneid = zoneid; 2704 connp->conn_mlp_type = mlptSingle; 2705 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 2706 ASSERT(tcp->tcp_tcps == tcps); 2707 2708 /* 2709 * If the caller has the process-wide flag set, then default to MAC 2710 * exempt mode. This allows read-down to unlabeled hosts. 2711 */ 2712 if (getpflags(NET_MAC_AWARE, credp) != 0) 2713 connp->conn_mac_mode = CONN_MAC_AWARE; 2714 2715 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 2716 2717 if (issocket) { 2718 tcp->tcp_issocket = 1; 2719 } 2720 2721 connp->conn_rcvbuf = tcps->tcps_recv_hiwat; 2722 connp->conn_sndbuf = tcps->tcps_xmit_hiwat; 2723 if (tcps->tcps_snd_lowat_fraction != 0) { 2724 connp->conn_sndlowat = connp->conn_sndbuf / 2725 tcps->tcps_snd_lowat_fraction; 2726 } else { 2727 connp->conn_sndlowat = tcps->tcps_xmit_lowat; 2728 } 2729 connp->conn_so_type = SOCK_STREAM; 2730 connp->conn_wroff = connp->conn_ht_iphc_allocated + 2731 tcps->tcps_wroff_xtra; 2732 2733 SOCK_CONNID_INIT(tcp->tcp_connid); 2734 /* DTrace ignores this - it isn't a tcp:::state-change */ 2735 tcp->tcp_state = TCPS_IDLE; 2736 tcp_init_values(tcp, NULL); 2737 return (connp); 2738 } 2739 2740 static int 2741 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 2742 boolean_t isv6) 2743 { 2744 tcp_t *tcp = NULL; 2745 conn_t *connp = NULL; 2746 int err; 2747 vmem_t *minor_arena = NULL; 2748 dev_t conn_dev; 2749 boolean_t issocket; 2750 2751 if (q->q_ptr != NULL) 2752 return (0); 2753 2754 if (sflag == MODOPEN) 2755 return (EINVAL); 2756 2757 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 2758 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 2759 minor_arena = ip_minor_arena_la; 2760 } else { 2761 /* 2762 * Either minor numbers in the large arena were exhausted 2763 * or a non socket application is doing the open. 2764 * Try to allocate from the small arena. 2765 */ 2766 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 2767 return (EBUSY); 2768 } 2769 minor_arena = ip_minor_arena_sa; 2770 } 2771 2772 ASSERT(minor_arena != NULL); 2773 2774 *devp = makedevice(getmajor(*devp), (minor_t)conn_dev); 2775 2776 if (flag & SO_FALLBACK) { 2777 /* 2778 * Non streams socket needs a stream to fallback to 2779 */ 2780 RD(q)->q_ptr = (void *)conn_dev; 2781 WR(q)->q_qinfo = &tcp_fallback_sock_winit; 2782 WR(q)->q_ptr = (void *)minor_arena; 2783 qprocson(q); 2784 return (0); 2785 } else if (flag & SO_ACCEPTOR) { 2786 q->q_qinfo = &tcp_acceptor_rinit; 2787 /* 2788 * the conn_dev and minor_arena will be subsequently used by 2789 * tcp_tli_accept() and tcp_tpi_close_accept() to figure out 2790 * the minor device number for this connection from the q_ptr. 2791 */ 2792 RD(q)->q_ptr = (void *)conn_dev; 2793 WR(q)->q_qinfo = &tcp_acceptor_winit; 2794 WR(q)->q_ptr = (void *)minor_arena; 2795 qprocson(q); 2796 return (0); 2797 } 2798 2799 issocket = flag & SO_SOCKSTR; 2800 connp = tcp_create_common(credp, isv6, issocket, &err); 2801 2802 if (connp == NULL) { 2803 inet_minor_free(minor_arena, conn_dev); 2804 q->q_ptr = WR(q)->q_ptr = NULL; 2805 return (err); 2806 } 2807 2808 connp->conn_rq = q; 2809 connp->conn_wq = WR(q); 2810 q->q_ptr = WR(q)->q_ptr = connp; 2811 2812 connp->conn_dev = conn_dev; 2813 connp->conn_minor_arena = minor_arena; 2814 2815 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 2816 ASSERT(WR(q)->q_qinfo == &tcp_winit); 2817 2818 tcp = connp->conn_tcp; 2819 2820 if (issocket) { 2821 WR(q)->q_qinfo = &tcp_sock_winit; 2822 } else { 2823 #ifdef _ILP32 2824 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 2825 #else 2826 tcp->tcp_acceptor_id = conn_dev; 2827 #endif /* _ILP32 */ 2828 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 2829 } 2830 2831 /* 2832 * Put the ref for TCP. Ref for IP was already put 2833 * by ipcl_conn_create. Also Make the conn_t globally 2834 * visible to walkers 2835 */ 2836 mutex_enter(&connp->conn_lock); 2837 CONN_INC_REF_LOCKED(connp); 2838 ASSERT(connp->conn_ref == 2); 2839 connp->conn_state_flags &= ~CONN_INCIPIENT; 2840 mutex_exit(&connp->conn_lock); 2841 2842 qprocson(q); 2843 return (0); 2844 } 2845 2846 /* 2847 * Build/update the tcp header template (in conn_ht_iphc) based on 2848 * conn_xmit_ipp. The headers include ip6_t, any extension 2849 * headers, and the maximum size tcp header (to avoid reallocation 2850 * on the fly for additional tcp options). 2851 * 2852 * Assumes the caller has already set conn_{faddr,laddr,fport,lport,flowinfo}. 2853 * Returns failure if can't allocate memory. 2854 */ 2855 int 2856 tcp_build_hdrs(tcp_t *tcp) 2857 { 2858 tcp_stack_t *tcps = tcp->tcp_tcps; 2859 conn_t *connp = tcp->tcp_connp; 2860 char buf[TCP_MAX_HDR_LENGTH]; 2861 uint_t buflen; 2862 uint_t ulplen = TCP_MIN_HEADER_LENGTH; 2863 uint_t extralen = TCP_MAX_TCP_OPTIONS_LENGTH; 2864 tcpha_t *tcpha; 2865 uint32_t cksum; 2866 int error; 2867 2868 /* 2869 * We might be called after the connection is set up, and we might 2870 * have TS options already in the TCP header. Thus we save any 2871 * existing tcp header. 2872 */ 2873 buflen = connp->conn_ht_ulp_len; 2874 if (buflen != 0) { 2875 bcopy(connp->conn_ht_ulp, buf, buflen); 2876 extralen -= buflen - ulplen; 2877 ulplen = buflen; 2878 } 2879 2880 /* Grab lock to satisfy ASSERT; TCP is serialized using squeue */ 2881 mutex_enter(&connp->conn_lock); 2882 error = conn_build_hdr_template(connp, ulplen, extralen, 2883 &connp->conn_laddr_v6, &connp->conn_faddr_v6, connp->conn_flowinfo); 2884 mutex_exit(&connp->conn_lock); 2885 if (error != 0) 2886 return (error); 2887 2888 /* 2889 * Any routing header/option has been massaged. The checksum difference 2890 * is stored in conn_sum for later use. 2891 */ 2892 tcpha = (tcpha_t *)connp->conn_ht_ulp; 2893 tcp->tcp_tcpha = tcpha; 2894 2895 /* restore any old tcp header */ 2896 if (buflen != 0) { 2897 bcopy(buf, connp->conn_ht_ulp, buflen); 2898 } else { 2899 tcpha->tha_sum = 0; 2900 tcpha->tha_urp = 0; 2901 tcpha->tha_ack = 0; 2902 tcpha->tha_offset_and_reserved = (5 << 4); 2903 tcpha->tha_lport = connp->conn_lport; 2904 tcpha->tha_fport = connp->conn_fport; 2905 } 2906 2907 /* 2908 * IP wants our header length in the checksum field to 2909 * allow it to perform a single pseudo-header+checksum 2910 * calculation on behalf of TCP. 2911 * Include the adjustment for a source route once IP_OPTIONS is set. 2912 */ 2913 cksum = sizeof (tcpha_t) + connp->conn_sum; 2914 cksum = (cksum >> 16) + (cksum & 0xFFFF); 2915 ASSERT(cksum < 0x10000); 2916 tcpha->tha_sum = htons(cksum); 2917 2918 if (connp->conn_ipversion == IPV4_VERSION) 2919 tcp->tcp_ipha = (ipha_t *)connp->conn_ht_iphc; 2920 else 2921 tcp->tcp_ip6h = (ip6_t *)connp->conn_ht_iphc; 2922 2923 if (connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra > 2924 connp->conn_wroff) { 2925 connp->conn_wroff = connp->conn_ht_iphc_allocated + 2926 tcps->tcps_wroff_xtra; 2927 (void) proto_set_tx_wroff(connp->conn_rq, connp, 2928 connp->conn_wroff); 2929 } 2930 return (0); 2931 } 2932 2933 /* 2934 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 2935 * We do not allow the receive window to shrink. After setting rwnd, 2936 * set the flow control hiwat of the stream. 2937 * 2938 * This function is called in 2 cases: 2939 * 2940 * 1) Before data transfer begins, in tcp_input_listener() for accepting a 2941 * connection (passive open) and in tcp_input_data() for active connect. 2942 * This is called after tcp_mss_set() when the desired MSS value is known. 2943 * This makes sure that our window size is a mutiple of the other side's 2944 * MSS. 2945 * 2) Handling SO_RCVBUF option. 2946 * 2947 * It is ASSUMED that the requested size is a multiple of the current MSS. 2948 * 2949 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 2950 * user requests so. 2951 */ 2952 int 2953 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 2954 { 2955 uint32_t mss = tcp->tcp_mss; 2956 uint32_t old_max_rwnd; 2957 uint32_t max_transmittable_rwnd; 2958 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2959 tcp_stack_t *tcps = tcp->tcp_tcps; 2960 conn_t *connp = tcp->tcp_connp; 2961 2962 /* 2963 * Insist on a receive window that is at least 2964 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 2965 * funny TCP interactions of Nagle algorithm, SWS avoidance 2966 * and delayed acknowledgement. 2967 */ 2968 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 2969 2970 if (tcp->tcp_fused) { 2971 size_t sth_hiwat; 2972 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 2973 2974 ASSERT(peer_tcp != NULL); 2975 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 2976 if (!tcp_detached) { 2977 (void) proto_set_rx_hiwat(connp->conn_rq, connp, 2978 sth_hiwat); 2979 tcp_set_recv_threshold(tcp, sth_hiwat >> 3); 2980 } 2981 2982 /* Caller could have changed tcp_rwnd; update tha_win */ 2983 if (tcp->tcp_tcpha != NULL) { 2984 tcp->tcp_tcpha->tha_win = 2985 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 2986 } 2987 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 2988 tcp->tcp_cwnd_max = rwnd; 2989 2990 /* 2991 * In the fusion case, the maxpsz stream head value of 2992 * our peer is set according to its send buffer size 2993 * and our receive buffer size; since the latter may 2994 * have changed we need to update the peer's maxpsz. 2995 */ 2996 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 2997 return (sth_hiwat); 2998 } 2999 3000 if (tcp_detached) 3001 old_max_rwnd = tcp->tcp_rwnd; 3002 else 3003 old_max_rwnd = connp->conn_rcvbuf; 3004 3005 3006 /* 3007 * If window size info has already been exchanged, TCP should not 3008 * shrink the window. Shrinking window is doable if done carefully. 3009 * We may add that support later. But so far there is not a real 3010 * need to do that. 3011 */ 3012 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 3013 /* MSS may have changed, do a round up again. */ 3014 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 3015 } 3016 3017 /* 3018 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 3019 * can be applied even before the window scale option is decided. 3020 */ 3021 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 3022 if (rwnd > max_transmittable_rwnd) { 3023 rwnd = max_transmittable_rwnd - 3024 (max_transmittable_rwnd % mss); 3025 if (rwnd < mss) 3026 rwnd = max_transmittable_rwnd; 3027 /* 3028 * If we're over the limit we may have to back down tcp_rwnd. 3029 * The increment below won't work for us. So we set all three 3030 * here and the increment below will have no effect. 3031 */ 3032 tcp->tcp_rwnd = old_max_rwnd = rwnd; 3033 } 3034 if (tcp->tcp_localnet) { 3035 tcp->tcp_rack_abs_max = 3036 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 3037 } else { 3038 /* 3039 * For a remote host on a different subnet (through a router), 3040 * we ack every other packet to be conforming to RFC1122. 3041 * tcp_deferred_acks_max is default to 2. 3042 */ 3043 tcp->tcp_rack_abs_max = 3044 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 3045 } 3046 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 3047 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 3048 else 3049 tcp->tcp_rack_cur_max = 0; 3050 /* 3051 * Increment the current rwnd by the amount the maximum grew (we 3052 * can not overwrite it since we might be in the middle of a 3053 * connection.) 3054 */ 3055 tcp->tcp_rwnd += rwnd - old_max_rwnd; 3056 connp->conn_rcvbuf = rwnd; 3057 3058 /* Are we already connected? */ 3059 if (tcp->tcp_tcpha != NULL) { 3060 tcp->tcp_tcpha->tha_win = 3061 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 3062 } 3063 3064 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 3065 tcp->tcp_cwnd_max = rwnd; 3066 3067 if (tcp_detached) 3068 return (rwnd); 3069 3070 tcp_set_recv_threshold(tcp, rwnd >> 3); 3071 3072 (void) proto_set_rx_hiwat(connp->conn_rq, connp, rwnd); 3073 return (rwnd); 3074 } 3075 3076 int 3077 tcp_do_unbind(conn_t *connp) 3078 { 3079 tcp_t *tcp = connp->conn_tcp; 3080 int32_t oldstate; 3081 3082 switch (tcp->tcp_state) { 3083 case TCPS_BOUND: 3084 case TCPS_LISTEN: 3085 break; 3086 default: 3087 return (-TOUTSTATE); 3088 } 3089 3090 /* 3091 * Need to clean up all the eagers since after the unbind, segments 3092 * will no longer be delivered to this listener stream. 3093 */ 3094 mutex_enter(&tcp->tcp_eager_lock); 3095 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 3096 tcp_eager_cleanup(tcp, 0); 3097 } 3098 mutex_exit(&tcp->tcp_eager_lock); 3099 3100 /* Clean up the listener connection counter if necessary. */ 3101 if (tcp->tcp_listen_cnt != NULL) 3102 TCP_DECR_LISTEN_CNT(tcp); 3103 connp->conn_laddr_v6 = ipv6_all_zeros; 3104 connp->conn_saddr_v6 = ipv6_all_zeros; 3105 tcp_bind_hash_remove(tcp); 3106 oldstate = tcp->tcp_state; 3107 tcp->tcp_state = TCPS_IDLE; 3108 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 3109 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 3110 int32_t, oldstate); 3111 3112 ip_unbind(connp); 3113 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 3114 3115 return (0); 3116 } 3117 3118 /* 3119 * Collect protocol properties to send to the upper handle. 3120 */ 3121 void 3122 tcp_get_proto_props(tcp_t *tcp, struct sock_proto_props *sopp) 3123 { 3124 conn_t *connp = tcp->tcp_connp; 3125 3126 sopp->sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF; 3127 sopp->sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 3128 3129 sopp->sopp_rxhiwat = tcp->tcp_fused ? 3130 tcp_fuse_set_rcv_hiwat(tcp, connp->conn_rcvbuf) : 3131 connp->conn_rcvbuf; 3132 /* 3133 * Determine what write offset value to use depending on SACK and 3134 * whether the endpoint is fused or not. 3135 */ 3136 if (tcp->tcp_fused) { 3137 ASSERT(tcp->tcp_loopback); 3138 ASSERT(tcp->tcp_loopback_peer != NULL); 3139 /* 3140 * For fused tcp loopback, set the stream head's write 3141 * offset value to zero since we won't be needing any room 3142 * for TCP/IP headers. This would also improve performance 3143 * since it would reduce the amount of work done by kmem. 3144 * Non-fused tcp loopback case is handled separately below. 3145 */ 3146 sopp->sopp_wroff = 0; 3147 /* 3148 * Update the peer's transmit parameters according to 3149 * our recently calculated high water mark value. 3150 */ 3151 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 3152 } else if (tcp->tcp_snd_sack_ok) { 3153 sopp->sopp_wroff = connp->conn_ht_iphc_allocated + 3154 (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra); 3155 } else { 3156 sopp->sopp_wroff = connp->conn_ht_iphc_len + 3157 (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra); 3158 } 3159 3160 if (tcp->tcp_loopback) { 3161 sopp->sopp_flags |= SOCKOPT_LOOPBACK; 3162 sopp->sopp_loopback = B_TRUE; 3163 } 3164 } 3165 3166 /* 3167 * Check the usability of ZEROCOPY. It's instead checking the flag set by IP. 3168 */ 3169 boolean_t 3170 tcp_zcopy_check(tcp_t *tcp) 3171 { 3172 conn_t *connp = tcp->tcp_connp; 3173 ip_xmit_attr_t *ixa = connp->conn_ixa; 3174 boolean_t zc_enabled = B_FALSE; 3175 tcp_stack_t *tcps = tcp->tcp_tcps; 3176 3177 if (do_tcpzcopy == 2) 3178 zc_enabled = B_TRUE; 3179 else if ((do_tcpzcopy == 1) && (ixa->ixa_flags & IXAF_ZCOPY_CAPAB)) 3180 zc_enabled = B_TRUE; 3181 3182 tcp->tcp_snd_zcopy_on = zc_enabled; 3183 if (!TCP_IS_DETACHED(tcp)) { 3184 if (zc_enabled) { 3185 ixa->ixa_flags |= IXAF_VERIFY_ZCOPY; 3186 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3187 ZCVMSAFE); 3188 TCP_STAT(tcps, tcp_zcopy_on); 3189 } else { 3190 ixa->ixa_flags &= ~IXAF_VERIFY_ZCOPY; 3191 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3192 ZCVMUNSAFE); 3193 TCP_STAT(tcps, tcp_zcopy_off); 3194 } 3195 } 3196 return (zc_enabled); 3197 } 3198 3199 /* 3200 * Backoff from a zero-copy message by copying data to a new allocated 3201 * message and freeing the original desballoca'ed segmapped message. 3202 * 3203 * This function is called by following two callers: 3204 * 1. tcp_timer: fix_xmitlist is set to B_TRUE, because it's safe to free 3205 * the origial desballoca'ed message and notify sockfs. This is in re- 3206 * transmit state. 3207 * 2. tcp_output: fix_xmitlist is set to B_FALSE. Flag STRUIO_ZCNOTIFY need 3208 * to be copied to new message. 3209 */ 3210 mblk_t * 3211 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, boolean_t fix_xmitlist) 3212 { 3213 mblk_t *nbp; 3214 mblk_t *head = NULL; 3215 mblk_t *tail = NULL; 3216 tcp_stack_t *tcps = tcp->tcp_tcps; 3217 3218 ASSERT(bp != NULL); 3219 while (bp != NULL) { 3220 if (IS_VMLOANED_MBLK(bp)) { 3221 TCP_STAT(tcps, tcp_zcopy_backoff); 3222 if ((nbp = copyb(bp)) == NULL) { 3223 tcp->tcp_xmit_zc_clean = B_FALSE; 3224 if (tail != NULL) 3225 tail->b_cont = bp; 3226 return ((head == NULL) ? bp : head); 3227 } 3228 3229 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 3230 if (fix_xmitlist) 3231 tcp_zcopy_notify(tcp); 3232 else 3233 nbp->b_datap->db_struioflag |= 3234 STRUIO_ZCNOTIFY; 3235 } 3236 nbp->b_cont = bp->b_cont; 3237 3238 /* 3239 * Copy saved information and adjust tcp_xmit_tail 3240 * if needed. 3241 */ 3242 if (fix_xmitlist) { 3243 nbp->b_prev = bp->b_prev; 3244 nbp->b_next = bp->b_next; 3245 3246 if (tcp->tcp_xmit_tail == bp) 3247 tcp->tcp_xmit_tail = nbp; 3248 } 3249 3250 /* Free the original message. */ 3251 bp->b_prev = NULL; 3252 bp->b_next = NULL; 3253 freeb(bp); 3254 3255 bp = nbp; 3256 } 3257 3258 if (head == NULL) { 3259 head = bp; 3260 } 3261 if (tail == NULL) { 3262 tail = bp; 3263 } else { 3264 tail->b_cont = bp; 3265 tail = bp; 3266 } 3267 3268 /* Move forward. */ 3269 bp = bp->b_cont; 3270 } 3271 3272 if (fix_xmitlist) { 3273 tcp->tcp_xmit_last = tail; 3274 tcp->tcp_xmit_zc_clean = B_TRUE; 3275 } 3276 3277 return (head); 3278 } 3279 3280 void 3281 tcp_zcopy_notify(tcp_t *tcp) 3282 { 3283 struct stdata *stp; 3284 conn_t *connp; 3285 3286 if (tcp->tcp_detached) 3287 return; 3288 connp = tcp->tcp_connp; 3289 if (IPCL_IS_NONSTR(connp)) { 3290 (*connp->conn_upcalls->su_zcopy_notify) 3291 (connp->conn_upper_handle); 3292 return; 3293 } 3294 stp = STREAM(connp->conn_rq); 3295 mutex_enter(&stp->sd_lock); 3296 stp->sd_flag |= STZCNOTIFY; 3297 cv_broadcast(&stp->sd_zcopy_wait); 3298 mutex_exit(&stp->sd_lock); 3299 } 3300 3301 /* 3302 * Update the TCP connection according to change of LSO capability. 3303 */ 3304 static void 3305 tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa) 3306 { 3307 /* 3308 * We check against IPv4 header length to preserve the old behavior 3309 * of only enabling LSO when there are no IP options. 3310 * But this restriction might not be necessary at all. Before removing 3311 * it, need to verify how LSO is handled for source routing case, with 3312 * which IP does software checksum. 3313 * 3314 * For IPv6, whenever any extension header is needed, LSO is supressed. 3315 */ 3316 if (ixa->ixa_ip_hdr_length != ((ixa->ixa_flags & IXAF_IS_IPV4) ? 3317 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN)) 3318 return; 3319 3320 /* 3321 * Either the LSO capability newly became usable, or it has changed. 3322 */ 3323 if (ixa->ixa_flags & IXAF_LSO_CAPAB) { 3324 ill_lso_capab_t *lsoc = &ixa->ixa_lso_capab; 3325 3326 ASSERT(lsoc->ill_lso_max > 0); 3327 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, lsoc->ill_lso_max); 3328 3329 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 3330 boolean_t, B_TRUE, uint32_t, tcp->tcp_lso_max); 3331 3332 /* 3333 * If LSO to be enabled, notify the STREAM header with larger 3334 * data block. 3335 */ 3336 if (!tcp->tcp_lso) 3337 tcp->tcp_maxpsz_multiplier = 0; 3338 3339 tcp->tcp_lso = B_TRUE; 3340 TCP_STAT(tcp->tcp_tcps, tcp_lso_enabled); 3341 } else { /* LSO capability is not usable any more. */ 3342 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 3343 boolean_t, B_FALSE, uint32_t, tcp->tcp_lso_max); 3344 3345 /* 3346 * If LSO to be disabled, notify the STREAM header with smaller 3347 * data block. And need to restore fragsize to PMTU. 3348 */ 3349 if (tcp->tcp_lso) { 3350 tcp->tcp_maxpsz_multiplier = 3351 tcp->tcp_tcps->tcps_maxpsz_multiplier; 3352 ixa->ixa_fragsize = ixa->ixa_pmtu; 3353 tcp->tcp_lso = B_FALSE; 3354 TCP_STAT(tcp->tcp_tcps, tcp_lso_disabled); 3355 } 3356 } 3357 3358 (void) tcp_maxpsz_set(tcp, B_TRUE); 3359 } 3360 3361 /* 3362 * Update the TCP connection according to change of ZEROCOPY capability. 3363 */ 3364 static void 3365 tcp_update_zcopy(tcp_t *tcp) 3366 { 3367 conn_t *connp = tcp->tcp_connp; 3368 tcp_stack_t *tcps = tcp->tcp_tcps; 3369 3370 if (tcp->tcp_snd_zcopy_on) { 3371 tcp->tcp_snd_zcopy_on = B_FALSE; 3372 if (!TCP_IS_DETACHED(tcp)) { 3373 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3374 ZCVMUNSAFE); 3375 TCP_STAT(tcps, tcp_zcopy_off); 3376 } 3377 } else { 3378 tcp->tcp_snd_zcopy_on = B_TRUE; 3379 if (!TCP_IS_DETACHED(tcp)) { 3380 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3381 ZCVMSAFE); 3382 TCP_STAT(tcps, tcp_zcopy_on); 3383 } 3384 } 3385 } 3386 3387 /* 3388 * Notify function registered with ip_xmit_attr_t. It's called in the squeue 3389 * so it's safe to update the TCP connection. 3390 */ 3391 /* ARGSUSED1 */ 3392 static void 3393 tcp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype, 3394 ixa_notify_arg_t narg) 3395 { 3396 tcp_t *tcp = (tcp_t *)arg; 3397 conn_t *connp = tcp->tcp_connp; 3398 3399 switch (ntype) { 3400 case IXAN_LSO: 3401 tcp_update_lso(tcp, connp->conn_ixa); 3402 break; 3403 case IXAN_PMTU: 3404 tcp_update_pmtu(tcp, B_FALSE); 3405 break; 3406 case IXAN_ZCOPY: 3407 tcp_update_zcopy(tcp); 3408 break; 3409 default: 3410 break; 3411 } 3412 } 3413 3414 /* 3415 * The TCP write service routine should never be called... 3416 */ 3417 /* ARGSUSED */ 3418 static void 3419 tcp_wsrv(queue_t *q) 3420 { 3421 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 3422 3423 TCP_STAT(tcps, tcp_wsrv_called); 3424 } 3425 3426 /* 3427 * Hash list lookup routine for tcp_t structures. 3428 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 3429 */ 3430 tcp_t * 3431 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 3432 { 3433 tf_t *tf; 3434 tcp_t *tcp; 3435 3436 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 3437 mutex_enter(&tf->tf_lock); 3438 for (tcp = tf->tf_tcp; tcp != NULL; 3439 tcp = tcp->tcp_acceptor_hash) { 3440 if (tcp->tcp_acceptor_id == id) { 3441 CONN_INC_REF(tcp->tcp_connp); 3442 mutex_exit(&tf->tf_lock); 3443 return (tcp); 3444 } 3445 } 3446 mutex_exit(&tf->tf_lock); 3447 return (NULL); 3448 } 3449 3450 /* 3451 * Hash list insertion routine for tcp_t structures. 3452 */ 3453 void 3454 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 3455 { 3456 tf_t *tf; 3457 tcp_t **tcpp; 3458 tcp_t *tcpnext; 3459 tcp_stack_t *tcps = tcp->tcp_tcps; 3460 3461 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 3462 3463 if (tcp->tcp_ptpahn != NULL) 3464 tcp_acceptor_hash_remove(tcp); 3465 tcpp = &tf->tf_tcp; 3466 mutex_enter(&tf->tf_lock); 3467 tcpnext = tcpp[0]; 3468 if (tcpnext) 3469 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 3470 tcp->tcp_acceptor_hash = tcpnext; 3471 tcp->tcp_ptpahn = tcpp; 3472 tcpp[0] = tcp; 3473 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 3474 mutex_exit(&tf->tf_lock); 3475 } 3476 3477 /* 3478 * Hash list removal routine for tcp_t structures. 3479 */ 3480 void 3481 tcp_acceptor_hash_remove(tcp_t *tcp) 3482 { 3483 tcp_t *tcpnext; 3484 kmutex_t *lockp; 3485 3486 /* 3487 * Extract the lock pointer in case there are concurrent 3488 * hash_remove's for this instance. 3489 */ 3490 lockp = tcp->tcp_acceptor_lockp; 3491 3492 if (tcp->tcp_ptpahn == NULL) 3493 return; 3494 3495 ASSERT(lockp != NULL); 3496 mutex_enter(lockp); 3497 if (tcp->tcp_ptpahn) { 3498 tcpnext = tcp->tcp_acceptor_hash; 3499 if (tcpnext) { 3500 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 3501 tcp->tcp_acceptor_hash = NULL; 3502 } 3503 *tcp->tcp_ptpahn = tcpnext; 3504 tcp->tcp_ptpahn = NULL; 3505 } 3506 mutex_exit(lockp); 3507 tcp->tcp_acceptor_lockp = NULL; 3508 } 3509 3510 /* 3511 * Type three generator adapted from the random() function in 4.4 BSD: 3512 */ 3513 3514 /* 3515 * Copyright (c) 1983, 1993 3516 * The Regents of the University of California. All rights reserved. 3517 * 3518 * Redistribution and use in source and binary forms, with or without 3519 * modification, are permitted provided that the following conditions 3520 * are met: 3521 * 1. Redistributions of source code must retain the above copyright 3522 * notice, this list of conditions and the following disclaimer. 3523 * 2. Redistributions in binary form must reproduce the above copyright 3524 * notice, this list of conditions and the following disclaimer in the 3525 * documentation and/or other materials provided with the distribution. 3526 * 3. All advertising materials mentioning features or use of this software 3527 * must display the following acknowledgement: 3528 * This product includes software developed by the University of 3529 * California, Berkeley and its contributors. 3530 * 4. Neither the name of the University nor the names of its contributors 3531 * may be used to endorse or promote products derived from this software 3532 * without specific prior written permission. 3533 * 3534 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 3535 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 3536 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 3537 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 3538 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 3539 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 3540 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 3541 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 3542 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 3543 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 3544 * SUCH DAMAGE. 3545 */ 3546 3547 /* Type 3 -- x**31 + x**3 + 1 */ 3548 #define DEG_3 31 3549 #define SEP_3 3 3550 3551 3552 /* Protected by tcp_random_lock */ 3553 static int tcp_randtbl[DEG_3 + 1]; 3554 3555 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 3556 static int *tcp_random_rptr = &tcp_randtbl[1]; 3557 3558 static int *tcp_random_state = &tcp_randtbl[1]; 3559 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 3560 3561 kmutex_t tcp_random_lock; 3562 3563 void 3564 tcp_random_init(void) 3565 { 3566 int i; 3567 hrtime_t hrt; 3568 time_t wallclock; 3569 uint64_t result; 3570 3571 /* 3572 * Use high-res timer and current time for seed. Gethrtime() returns 3573 * a longlong, which may contain resolution down to nanoseconds. 3574 * The current time will either be a 32-bit or a 64-bit quantity. 3575 * XOR the two together in a 64-bit result variable. 3576 * Convert the result to a 32-bit value by multiplying the high-order 3577 * 32-bits by the low-order 32-bits. 3578 */ 3579 3580 hrt = gethrtime(); 3581 (void) drv_getparm(TIME, &wallclock); 3582 result = (uint64_t)wallclock ^ (uint64_t)hrt; 3583 mutex_enter(&tcp_random_lock); 3584 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 3585 (result & 0xffffffff); 3586 3587 for (i = 1; i < DEG_3; i++) 3588 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 3589 + 12345; 3590 tcp_random_fptr = &tcp_random_state[SEP_3]; 3591 tcp_random_rptr = &tcp_random_state[0]; 3592 mutex_exit(&tcp_random_lock); 3593 for (i = 0; i < 10 * DEG_3; i++) 3594 (void) tcp_random(); 3595 } 3596 3597 /* 3598 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 3599 * This range is selected to be approximately centered on TCP_ISS / 2, 3600 * and easy to compute. We get this value by generating a 32-bit random 3601 * number, selecting out the high-order 17 bits, and then adding one so 3602 * that we never return zero. 3603 */ 3604 int 3605 tcp_random(void) 3606 { 3607 int i; 3608 3609 mutex_enter(&tcp_random_lock); 3610 *tcp_random_fptr += *tcp_random_rptr; 3611 3612 /* 3613 * The high-order bits are more random than the low-order bits, 3614 * so we select out the high-order 17 bits and add one so that 3615 * we never return zero. 3616 */ 3617 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 3618 if (++tcp_random_fptr >= tcp_random_end_ptr) { 3619 tcp_random_fptr = tcp_random_state; 3620 ++tcp_random_rptr; 3621 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 3622 tcp_random_rptr = tcp_random_state; 3623 3624 mutex_exit(&tcp_random_lock); 3625 return (i); 3626 } 3627 3628 /* 3629 * Split this function out so that if the secret changes, I'm okay. 3630 * 3631 * Initialize the tcp_iss_cookie and tcp_iss_key. 3632 */ 3633 3634 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 3635 3636 void 3637 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 3638 { 3639 struct { 3640 int32_t current_time; 3641 uint32_t randnum; 3642 uint16_t pad; 3643 uint8_t ether[6]; 3644 uint8_t passwd[PASSWD_SIZE]; 3645 } tcp_iss_cookie; 3646 time_t t; 3647 3648 /* 3649 * Start with the current absolute time. 3650 */ 3651 (void) drv_getparm(TIME, &t); 3652 tcp_iss_cookie.current_time = t; 3653 3654 /* 3655 * XXX - Need a more random number per RFC 1750, not this crap. 3656 * OTOH, if what follows is pretty random, then I'm in better shape. 3657 */ 3658 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 3659 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 3660 3661 /* 3662 * The cpu_type_info is pretty non-random. Ugggh. It does serve 3663 * as a good template. 3664 */ 3665 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 3666 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 3667 3668 /* 3669 * The pass-phrase. Normally this is supplied by user-called NDD. 3670 */ 3671 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 3672 3673 /* 3674 * See 4010593 if this section becomes a problem again, 3675 * but the local ethernet address is useful here. 3676 */ 3677 (void) localetheraddr(NULL, 3678 (struct ether_addr *)&tcp_iss_cookie.ether); 3679 3680 /* 3681 * Hash 'em all together. The MD5Final is called per-connection. 3682 */ 3683 mutex_enter(&tcps->tcps_iss_key_lock); 3684 MD5Init(&tcps->tcps_iss_key); 3685 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 3686 sizeof (tcp_iss_cookie)); 3687 mutex_exit(&tcps->tcps_iss_key_lock); 3688 } 3689 3690 /* 3691 * Called by IP when IP is loaded into the kernel 3692 */ 3693 void 3694 tcp_ddi_g_init(void) 3695 { 3696 tcp_timercache = kmem_cache_create("tcp_timercache", 3697 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 3698 NULL, NULL, NULL, NULL, NULL, 0); 3699 3700 tcp_notsack_blk_cache = kmem_cache_create("tcp_notsack_blk_cache", 3701 sizeof (notsack_blk_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 3702 3703 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 3704 3705 /* Initialize the random number generator */ 3706 tcp_random_init(); 3707 3708 /* A single callback independently of how many netstacks we have */ 3709 ip_squeue_init(tcp_squeue_add); 3710 3711 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 3712 3713 tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput); 3714 3715 /* 3716 * We want to be informed each time a stack is created or 3717 * destroyed in the kernel, so we can maintain the 3718 * set of tcp_stack_t's. 3719 */ 3720 netstack_register(NS_TCP, tcp_stack_init, NULL, tcp_stack_fini); 3721 } 3722 3723 3724 #define INET_NAME "ip" 3725 3726 /* 3727 * Initialize the TCP stack instance. 3728 */ 3729 static void * 3730 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 3731 { 3732 tcp_stack_t *tcps; 3733 int i; 3734 int error = 0; 3735 major_t major; 3736 size_t arrsz; 3737 3738 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 3739 tcps->tcps_netstack = ns; 3740 3741 /* Initialize locks */ 3742 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 3743 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 3744 3745 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 3746 tcps->tcps_g_epriv_ports[0] = ULP_DEF_EPRIV_PORT1; 3747 tcps->tcps_g_epriv_ports[1] = ULP_DEF_EPRIV_PORT2; 3748 tcps->tcps_min_anonpriv_port = 512; 3749 3750 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 3751 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 3752 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 3753 TCP_ACCEPTOR_FANOUT_SIZE, KM_SLEEP); 3754 3755 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 3756 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 3757 MUTEX_DEFAULT, NULL); 3758 } 3759 3760 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) { 3761 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 3762 MUTEX_DEFAULT, NULL); 3763 } 3764 3765 /* TCP's IPsec code calls the packet dropper. */ 3766 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 3767 3768 arrsz = tcp_propinfo_count * sizeof (mod_prop_info_t); 3769 tcps->tcps_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, 3770 KM_SLEEP); 3771 bcopy(tcp_propinfo_tbl, tcps->tcps_propinfo_tbl, arrsz); 3772 3773 /* 3774 * Note: To really walk the device tree you need the devinfo 3775 * pointer to your device which is only available after probe/attach. 3776 * The following is safe only because it uses ddi_root_node() 3777 */ 3778 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 3779 tcp_opt_obj.odb_opt_arr_cnt); 3780 3781 /* 3782 * Initialize RFC 1948 secret values. This will probably be reset once 3783 * by the boot scripts. 3784 * 3785 * Use NULL name, as the name is caught by the new lockstats. 3786 * 3787 * Initialize with some random, non-guessable string, like the global 3788 * T_INFO_ACK. 3789 */ 3790 3791 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 3792 sizeof (tcp_g_t_info_ack), tcps); 3793 3794 tcps->tcps_kstat = tcp_kstat2_init(stackid); 3795 tcps->tcps_mibkp = tcp_kstat_init(stackid); 3796 3797 major = mod_name_to_major(INET_NAME); 3798 error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident); 3799 ASSERT(error == 0); 3800 tcps->tcps_ixa_cleanup_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL); 3801 ASSERT(tcps->tcps_ixa_cleanup_mp != NULL); 3802 cv_init(&tcps->tcps_ixa_cleanup_ready_cv, NULL, CV_DEFAULT, NULL); 3803 cv_init(&tcps->tcps_ixa_cleanup_done_cv, NULL, CV_DEFAULT, NULL); 3804 mutex_init(&tcps->tcps_ixa_cleanup_lock, NULL, MUTEX_DEFAULT, NULL); 3805 3806 mutex_init(&tcps->tcps_reclaim_lock, NULL, MUTEX_DEFAULT, NULL); 3807 tcps->tcps_reclaim = B_FALSE; 3808 tcps->tcps_reclaim_tid = 0; 3809 tcps->tcps_reclaim_period = tcps->tcps_rexmit_interval_max; 3810 3811 /* 3812 * ncpus is the current number of CPUs, which can be bigger than 3813 * boot_ncpus. But we don't want to use ncpus to allocate all the 3814 * tcp_stats_cpu_t at system boot up time since it will be 1. While 3815 * we handle adding CPU in tcp_cpu_update(), it will be slow if 3816 * there are many CPUs as we will be adding them 1 by 1. 3817 * 3818 * Note that tcps_sc_cnt never decreases and the tcps_sc[x] pointers 3819 * are not freed until the stack is going away. So there is no need 3820 * to grab a lock to access the per CPU tcps_sc[x] pointer. 3821 */ 3822 mutex_enter(&cpu_lock); 3823 tcps->tcps_sc_cnt = MAX(ncpus, boot_ncpus); 3824 mutex_exit(&cpu_lock); 3825 tcps->tcps_sc = kmem_zalloc(max_ncpus * sizeof (tcp_stats_cpu_t *), 3826 KM_SLEEP); 3827 for (i = 0; i < tcps->tcps_sc_cnt; i++) { 3828 tcps->tcps_sc[i] = kmem_zalloc(sizeof (tcp_stats_cpu_t), 3829 KM_SLEEP); 3830 } 3831 3832 mutex_init(&tcps->tcps_listener_conf_lock, NULL, MUTEX_DEFAULT, NULL); 3833 list_create(&tcps->tcps_listener_conf, sizeof (tcp_listener_t), 3834 offsetof(tcp_listener_t, tl_link)); 3835 3836 return (tcps); 3837 } 3838 3839 /* 3840 * Called when the IP module is about to be unloaded. 3841 */ 3842 void 3843 tcp_ddi_g_destroy(void) 3844 { 3845 tcp_g_kstat_fini(tcp_g_kstat); 3846 tcp_g_kstat = NULL; 3847 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 3848 3849 mutex_destroy(&tcp_random_lock); 3850 3851 kmem_cache_destroy(tcp_timercache); 3852 kmem_cache_destroy(tcp_notsack_blk_cache); 3853 3854 netstack_unregister(NS_TCP); 3855 } 3856 3857 /* 3858 * Free the TCP stack instance. 3859 */ 3860 static void 3861 tcp_stack_fini(netstackid_t stackid, void *arg) 3862 { 3863 tcp_stack_t *tcps = (tcp_stack_t *)arg; 3864 int i; 3865 3866 freeb(tcps->tcps_ixa_cleanup_mp); 3867 tcps->tcps_ixa_cleanup_mp = NULL; 3868 cv_destroy(&tcps->tcps_ixa_cleanup_ready_cv); 3869 cv_destroy(&tcps->tcps_ixa_cleanup_done_cv); 3870 mutex_destroy(&tcps->tcps_ixa_cleanup_lock); 3871 3872 /* 3873 * Set tcps_reclaim to false tells tcp_reclaim_timer() not to restart 3874 * the timer. 3875 */ 3876 mutex_enter(&tcps->tcps_reclaim_lock); 3877 tcps->tcps_reclaim = B_FALSE; 3878 mutex_exit(&tcps->tcps_reclaim_lock); 3879 if (tcps->tcps_reclaim_tid != 0) 3880 (void) untimeout(tcps->tcps_reclaim_tid); 3881 mutex_destroy(&tcps->tcps_reclaim_lock); 3882 3883 tcp_listener_conf_cleanup(tcps); 3884 3885 for (i = 0; i < tcps->tcps_sc_cnt; i++) 3886 kmem_free(tcps->tcps_sc[i], sizeof (tcp_stats_cpu_t)); 3887 kmem_free(tcps->tcps_sc, max_ncpus * sizeof (tcp_stats_cpu_t *)); 3888 3889 kmem_free(tcps->tcps_propinfo_tbl, 3890 tcp_propinfo_count * sizeof (mod_prop_info_t)); 3891 tcps->tcps_propinfo_tbl = NULL; 3892 3893 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 3894 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 3895 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 3896 } 3897 3898 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) { 3899 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 3900 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 3901 } 3902 3903 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 3904 tcps->tcps_bind_fanout = NULL; 3905 3906 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * 3907 TCP_ACCEPTOR_FANOUT_SIZE); 3908 tcps->tcps_acceptor_fanout = NULL; 3909 3910 mutex_destroy(&tcps->tcps_iss_key_lock); 3911 mutex_destroy(&tcps->tcps_epriv_port_lock); 3912 3913 ip_drop_unregister(&tcps->tcps_dropper); 3914 3915 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 3916 tcps->tcps_kstat = NULL; 3917 3918 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 3919 tcps->tcps_mibkp = NULL; 3920 3921 ldi_ident_release(tcps->tcps_ldi_ident); 3922 kmem_free(tcps, sizeof (*tcps)); 3923 } 3924 3925 /* 3926 * Generate ISS, taking into account NDD changes may happen halfway through. 3927 * (If the iss is not zero, set it.) 3928 */ 3929 3930 static void 3931 tcp_iss_init(tcp_t *tcp) 3932 { 3933 MD5_CTX context; 3934 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 3935 uint32_t answer[4]; 3936 tcp_stack_t *tcps = tcp->tcp_tcps; 3937 conn_t *connp = tcp->tcp_connp; 3938 3939 tcps->tcps_iss_incr_extra += (tcps->tcps_iss_incr >> 1); 3940 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 3941 switch (tcps->tcps_strong_iss) { 3942 case 2: 3943 mutex_enter(&tcps->tcps_iss_key_lock); 3944 context = tcps->tcps_iss_key; 3945 mutex_exit(&tcps->tcps_iss_key_lock); 3946 arg.ports = connp->conn_ports; 3947 arg.src = connp->conn_laddr_v6; 3948 arg.dst = connp->conn_faddr_v6; 3949 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 3950 MD5Final((uchar_t *)answer, &context); 3951 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 3952 /* 3953 * Now that we've hashed into a unique per-connection sequence 3954 * space, add a random increment per strong_iss == 1. So I 3955 * guess we'll have to... 3956 */ 3957 /* FALLTHRU */ 3958 case 1: 3959 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 3960 break; 3961 default: 3962 tcp->tcp_iss += (uint32_t)gethrestime_sec() * 3963 tcps->tcps_iss_incr; 3964 break; 3965 } 3966 tcp->tcp_valid_bits = TCP_ISS_VALID; 3967 tcp->tcp_fss = tcp->tcp_iss - 1; 3968 tcp->tcp_suna = tcp->tcp_iss; 3969 tcp->tcp_snxt = tcp->tcp_iss + 1; 3970 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 3971 tcp->tcp_csuna = tcp->tcp_snxt; 3972 } 3973 3974 /* 3975 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 3976 * on the specified backing STREAMS q. Note, the caller may make the 3977 * decision to call based on the tcp_t.tcp_flow_stopped value which 3978 * when check outside the q's lock is only an advisory check ... 3979 */ 3980 void 3981 tcp_setqfull(tcp_t *tcp) 3982 { 3983 tcp_stack_t *tcps = tcp->tcp_tcps; 3984 conn_t *connp = tcp->tcp_connp; 3985 3986 if (tcp->tcp_closed) 3987 return; 3988 3989 conn_setqfull(connp, &tcp->tcp_flow_stopped); 3990 if (tcp->tcp_flow_stopped) 3991 TCP_STAT(tcps, tcp_flwctl_on); 3992 } 3993 3994 void 3995 tcp_clrqfull(tcp_t *tcp) 3996 { 3997 conn_t *connp = tcp->tcp_connp; 3998 3999 if (tcp->tcp_closed) 4000 return; 4001 conn_clrqfull(connp, &tcp->tcp_flow_stopped); 4002 } 4003 4004 static int 4005 tcp_squeue_switch(int val) 4006 { 4007 int rval = SQ_FILL; 4008 4009 switch (val) { 4010 case 1: 4011 rval = SQ_NODRAIN; 4012 break; 4013 case 2: 4014 rval = SQ_PROCESS; 4015 break; 4016 default: 4017 break; 4018 } 4019 return (rval); 4020 } 4021 4022 /* 4023 * This is called once for each squeue - globally for all stack 4024 * instances. 4025 */ 4026 static void 4027 tcp_squeue_add(squeue_t *sqp) 4028 { 4029 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 4030 sizeof (tcp_squeue_priv_t), KM_SLEEP); 4031 4032 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 4033 if (tcp_free_list_max_cnt == 0) { 4034 int tcp_ncpus = ((boot_max_ncpus == -1) ? 4035 max_ncpus : boot_max_ncpus); 4036 4037 /* 4038 * Limit number of entries to 1% of availble memory / tcp_ncpus 4039 */ 4040 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 4041 (tcp_ncpus * sizeof (tcp_t) * 100); 4042 } 4043 tcp_time_wait->tcp_free_list_cnt = 0; 4044 } 4045 /* 4046 * Return unix error is tli error is TSYSERR, otherwise return a negative 4047 * tli error. 4048 */ 4049 int 4050 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 4051 boolean_t bind_to_req_port_only) 4052 { 4053 int error; 4054 tcp_t *tcp = connp->conn_tcp; 4055 4056 if (tcp->tcp_state >= TCPS_BOUND) { 4057 if (connp->conn_debug) { 4058 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 4059 "tcp_bind: bad state, %d", tcp->tcp_state); 4060 } 4061 return (-TOUTSTATE); 4062 } 4063 4064 error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only); 4065 if (error != 0) 4066 return (error); 4067 4068 ASSERT(tcp->tcp_state == TCPS_BOUND); 4069 tcp->tcp_conn_req_max = 0; 4070 return (0); 4071 } 4072 4073 /* 4074 * If the return value from this function is positive, it's a UNIX error. 4075 * Otherwise, if it's negative, then the absolute value is a TLI error. 4076 * the TPI routine tcp_tpi_connect() is a wrapper function for this. 4077 */ 4078 int 4079 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len, 4080 cred_t *cr, pid_t pid) 4081 { 4082 tcp_t *tcp = connp->conn_tcp; 4083 sin_t *sin = (sin_t *)sa; 4084 sin6_t *sin6 = (sin6_t *)sa; 4085 ipaddr_t *dstaddrp; 4086 in_port_t dstport; 4087 uint_t srcid; 4088 int error; 4089 uint32_t mss; 4090 mblk_t *syn_mp; 4091 tcp_stack_t *tcps = tcp->tcp_tcps; 4092 int32_t oldstate; 4093 ip_xmit_attr_t *ixa = connp->conn_ixa; 4094 4095 oldstate = tcp->tcp_state; 4096 4097 switch (len) { 4098 default: 4099 /* 4100 * Should never happen 4101 */ 4102 return (EINVAL); 4103 4104 case sizeof (sin_t): 4105 sin = (sin_t *)sa; 4106 if (sin->sin_port == 0) { 4107 return (-TBADADDR); 4108 } 4109 if (connp->conn_ipv6_v6only) { 4110 return (EAFNOSUPPORT); 4111 } 4112 break; 4113 4114 case sizeof (sin6_t): 4115 sin6 = (sin6_t *)sa; 4116 if (sin6->sin6_port == 0) { 4117 return (-TBADADDR); 4118 } 4119 break; 4120 } 4121 /* 4122 * If we're connecting to an IPv4-mapped IPv6 address, we need to 4123 * make sure that the conn_ipversion is IPV4_VERSION. We 4124 * need to this before we call tcp_bindi() so that the port lookup 4125 * code will look for ports in the correct port space (IPv4 and 4126 * IPv6 have separate port spaces). 4127 */ 4128 if (connp->conn_family == AF_INET6 && 4129 connp->conn_ipversion == IPV6_VERSION && 4130 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 4131 if (connp->conn_ipv6_v6only) 4132 return (EADDRNOTAVAIL); 4133 4134 connp->conn_ipversion = IPV4_VERSION; 4135 } 4136 4137 switch (tcp->tcp_state) { 4138 case TCPS_LISTEN: 4139 /* 4140 * Listening sockets are not allowed to issue connect(). 4141 */ 4142 if (IPCL_IS_NONSTR(connp)) 4143 return (EOPNOTSUPP); 4144 /* FALLTHRU */ 4145 case TCPS_IDLE: 4146 /* 4147 * We support quick connect, refer to comments in 4148 * tcp_connect_*() 4149 */ 4150 /* FALLTHRU */ 4151 case TCPS_BOUND: 4152 break; 4153 default: 4154 return (-TOUTSTATE); 4155 } 4156 4157 /* 4158 * We update our cred/cpid based on the caller of connect 4159 */ 4160 if (connp->conn_cred != cr) { 4161 crhold(cr); 4162 crfree(connp->conn_cred); 4163 connp->conn_cred = cr; 4164 } 4165 connp->conn_cpid = pid; 4166 4167 /* Cache things in the ixa without any refhold */ 4168 ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED)); 4169 ixa->ixa_cred = cr; 4170 ixa->ixa_cpid = pid; 4171 if (is_system_labeled()) { 4172 /* We need to restart with a label based on the cred */ 4173 ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred); 4174 } 4175 4176 if (connp->conn_family == AF_INET6) { 4177 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 4178 error = tcp_connect_ipv6(tcp, &sin6->sin6_addr, 4179 sin6->sin6_port, sin6->sin6_flowinfo, 4180 sin6->__sin6_src_id, sin6->sin6_scope_id); 4181 } else { 4182 /* 4183 * Destination adress is mapped IPv6 address. 4184 * Source bound address should be unspecified or 4185 * IPv6 mapped address as well. 4186 */ 4187 if (!IN6_IS_ADDR_UNSPECIFIED( 4188 &connp->conn_bound_addr_v6) && 4189 !IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) { 4190 return (EADDRNOTAVAIL); 4191 } 4192 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 4193 dstport = sin6->sin6_port; 4194 srcid = sin6->__sin6_src_id; 4195 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, 4196 srcid); 4197 } 4198 } else { 4199 dstaddrp = &sin->sin_addr.s_addr; 4200 dstport = sin->sin_port; 4201 srcid = 0; 4202 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid); 4203 } 4204 4205 if (error != 0) 4206 goto connect_failed; 4207 4208 CL_INET_CONNECT(connp, B_TRUE, error); 4209 if (error != 0) 4210 goto connect_failed; 4211 4212 /* connect succeeded */ 4213 TCPS_BUMP_MIB(tcps, tcpActiveOpens); 4214 tcp->tcp_active_open = 1; 4215 4216 /* 4217 * tcp_set_destination() does not adjust for TCP/IP header length. 4218 */ 4219 mss = tcp->tcp_mss - connp->conn_ht_iphc_len; 4220 4221 /* 4222 * Just make sure our rwnd is at least rcvbuf * MSS large, and round up 4223 * to the nearest MSS. 4224 * 4225 * We do the round up here because we need to get the interface MTU 4226 * first before we can do the round up. 4227 */ 4228 tcp->tcp_rwnd = connp->conn_rcvbuf; 4229 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 4230 tcps->tcps_recv_hiwat_minmss * mss); 4231 connp->conn_rcvbuf = tcp->tcp_rwnd; 4232 tcp_set_ws_value(tcp); 4233 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 4234 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 4235 tcp->tcp_snd_ws_ok = B_TRUE; 4236 4237 /* 4238 * Set tcp_snd_ts_ok to true 4239 * so that tcp_xmit_mp will 4240 * include the timestamp 4241 * option in the SYN segment. 4242 */ 4243 if (tcps->tcps_tstamp_always || 4244 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 4245 tcp->tcp_snd_ts_ok = B_TRUE; 4246 } 4247 4248 /* 4249 * Note that tcp_snd_sack_ok can be set in tcp_set_destination() if 4250 * the SACK metric is set. So here we just check the per stack SACK 4251 * permitted param. 4252 */ 4253 if (tcps->tcps_sack_permitted == 2) { 4254 ASSERT(tcp->tcp_num_sack_blk == 0); 4255 ASSERT(tcp->tcp_notsack_list == NULL); 4256 tcp->tcp_snd_sack_ok = B_TRUE; 4257 } 4258 4259 /* 4260 * Should we use ECN? Note that the current 4261 * default value (SunOS 5.9) of tcp_ecn_permitted 4262 * is 1. The reason for doing this is that there 4263 * are equipments out there that will drop ECN 4264 * enabled IP packets. Setting it to 1 avoids 4265 * compatibility problems. 4266 */ 4267 if (tcps->tcps_ecn_permitted == 2) 4268 tcp->tcp_ecn_ok = B_TRUE; 4269 4270 /* Trace change from BOUND -> SYN_SENT here */ 4271 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 4272 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 4273 int32_t, TCPS_BOUND); 4274 4275 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 4276 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 4277 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 4278 if (syn_mp != NULL) { 4279 /* 4280 * We must bump the generation before sending the syn 4281 * to ensure that we use the right generation in case 4282 * this thread issues a "connected" up call. 4283 */ 4284 SOCK_CONNID_BUMP(tcp->tcp_connid); 4285 /* 4286 * DTrace sending the first SYN as a 4287 * tcp:::connect-request event. 4288 */ 4289 DTRACE_TCP5(connect__request, mblk_t *, NULL, 4290 ip_xmit_attr_t *, connp->conn_ixa, 4291 void_ip_t *, syn_mp->b_rptr, tcp_t *, tcp, 4292 tcph_t *, 4293 &syn_mp->b_rptr[connp->conn_ixa->ixa_ip_hdr_length]); 4294 tcp_send_data(tcp, syn_mp); 4295 } 4296 4297 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4298 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4299 return (0); 4300 4301 connect_failed: 4302 connp->conn_faddr_v6 = ipv6_all_zeros; 4303 connp->conn_fport = 0; 4304 tcp->tcp_state = oldstate; 4305 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4306 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4307 return (error); 4308 } 4309 4310 int 4311 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len, 4312 int backlog, cred_t *cr, boolean_t bind_to_req_port_only) 4313 { 4314 tcp_t *tcp = connp->conn_tcp; 4315 int error = 0; 4316 tcp_stack_t *tcps = tcp->tcp_tcps; 4317 int32_t oldstate; 4318 4319 /* All Solaris components should pass a cred for this operation. */ 4320 ASSERT(cr != NULL); 4321 4322 if (tcp->tcp_state >= TCPS_BOUND) { 4323 if ((tcp->tcp_state == TCPS_BOUND || 4324 tcp->tcp_state == TCPS_LISTEN) && backlog > 0) { 4325 /* 4326 * Handle listen() increasing backlog. 4327 * This is more "liberal" then what the TPI spec 4328 * requires but is needed to avoid a t_unbind 4329 * when handling listen() since the port number 4330 * might be "stolen" between the unbind and bind. 4331 */ 4332 goto do_listen; 4333 } 4334 if (connp->conn_debug) { 4335 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 4336 "tcp_listen: bad state, %d", tcp->tcp_state); 4337 } 4338 return (-TOUTSTATE); 4339 } else { 4340 if (sa == NULL) { 4341 sin6_t addr; 4342 sin_t *sin; 4343 sin6_t *sin6; 4344 4345 ASSERT(IPCL_IS_NONSTR(connp)); 4346 /* Do an implicit bind: Request for a generic port. */ 4347 if (connp->conn_family == AF_INET) { 4348 len = sizeof (sin_t); 4349 sin = (sin_t *)&addr; 4350 *sin = sin_null; 4351 sin->sin_family = AF_INET; 4352 } else { 4353 ASSERT(connp->conn_family == AF_INET6); 4354 len = sizeof (sin6_t); 4355 sin6 = (sin6_t *)&addr; 4356 *sin6 = sin6_null; 4357 sin6->sin6_family = AF_INET6; 4358 } 4359 sa = (struct sockaddr *)&addr; 4360 } 4361 4362 error = tcp_bind_check(connp, sa, len, cr, 4363 bind_to_req_port_only); 4364 if (error) 4365 return (error); 4366 /* Fall through and do the fanout insertion */ 4367 } 4368 4369 do_listen: 4370 ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN); 4371 tcp->tcp_conn_req_max = backlog; 4372 if (tcp->tcp_conn_req_max) { 4373 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 4374 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 4375 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 4376 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 4377 /* 4378 * If this is a listener, do not reset the eager list 4379 * and other stuffs. Note that we don't check if the 4380 * existing eager list meets the new tcp_conn_req_max 4381 * requirement. 4382 */ 4383 if (tcp->tcp_state != TCPS_LISTEN) { 4384 tcp->tcp_state = TCPS_LISTEN; 4385 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 4386 connp->conn_ixa, void, NULL, tcp_t *, tcp, 4387 void, NULL, int32_t, TCPS_BOUND); 4388 /* Initialize the chain. Don't need the eager_lock */ 4389 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 4390 tcp->tcp_eager_next_drop_q0 = tcp; 4391 tcp->tcp_eager_prev_drop_q0 = tcp; 4392 tcp->tcp_second_ctimer_threshold = 4393 tcps->tcps_ip_abort_linterval; 4394 } 4395 } 4396 4397 /* 4398 * We need to make sure that the conn_recv is set to a non-null 4399 * value before we insert the conn into the classifier table. 4400 * This is to avoid a race with an incoming packet which does an 4401 * ipcl_classify(). 4402 * We initially set it to tcp_input_listener_unbound to try to 4403 * pick a good squeue for the listener when the first SYN arrives. 4404 * tcp_input_listener_unbound sets it to tcp_input_listener on that 4405 * first SYN. 4406 */ 4407 connp->conn_recv = tcp_input_listener_unbound; 4408 4409 /* Insert the listener in the classifier table */ 4410 error = ip_laddr_fanout_insert(connp); 4411 if (error != 0) { 4412 /* Undo the bind - release the port number */ 4413 oldstate = tcp->tcp_state; 4414 tcp->tcp_state = TCPS_IDLE; 4415 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 4416 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 4417 int32_t, oldstate); 4418 connp->conn_bound_addr_v6 = ipv6_all_zeros; 4419 4420 connp->conn_laddr_v6 = ipv6_all_zeros; 4421 connp->conn_saddr_v6 = ipv6_all_zeros; 4422 connp->conn_ports = 0; 4423 4424 if (connp->conn_anon_port) { 4425 zone_t *zone; 4426 4427 zone = crgetzone(cr); 4428 connp->conn_anon_port = B_FALSE; 4429 (void) tsol_mlp_anon(zone, connp->conn_mlp_type, 4430 connp->conn_proto, connp->conn_lport, B_FALSE); 4431 } 4432 connp->conn_mlp_type = mlptSingle; 4433 4434 tcp_bind_hash_remove(tcp); 4435 return (error); 4436 } else { 4437 /* 4438 * If there is a connection limit, allocate and initialize 4439 * the counter struct. Note that since listen can be called 4440 * multiple times, the struct may have been allready allocated. 4441 */ 4442 if (!list_is_empty(&tcps->tcps_listener_conf) && 4443 tcp->tcp_listen_cnt == NULL) { 4444 tcp_listen_cnt_t *tlc; 4445 uint32_t ratio; 4446 4447 ratio = tcp_find_listener_conf(tcps, 4448 ntohs(connp->conn_lport)); 4449 if (ratio != 0) { 4450 uint32_t mem_ratio, tot_buf; 4451 4452 tlc = kmem_alloc(sizeof (tcp_listen_cnt_t), 4453 KM_SLEEP); 4454 /* 4455 * Calculate the connection limit based on 4456 * the configured ratio and maxusers. Maxusers 4457 * are calculated based on memory size, 4458 * ~ 1 user per MB. Note that the conn_rcvbuf 4459 * and conn_sndbuf may change after a 4460 * connection is accepted. So what we have 4461 * is only an approximation. 4462 */ 4463 if ((tot_buf = connp->conn_rcvbuf + 4464 connp->conn_sndbuf) < MB) { 4465 mem_ratio = MB / tot_buf; 4466 tlc->tlc_max = maxusers / ratio * 4467 mem_ratio; 4468 } else { 4469 mem_ratio = tot_buf / MB; 4470 tlc->tlc_max = maxusers / ratio / 4471 mem_ratio; 4472 } 4473 /* At least we should allow two connections! */ 4474 if (tlc->tlc_max <= tcp_min_conn_listener) 4475 tlc->tlc_max = tcp_min_conn_listener; 4476 tlc->tlc_cnt = 1; 4477 tlc->tlc_drop = 0; 4478 tcp->tcp_listen_cnt = tlc; 4479 } 4480 } 4481 } 4482 return (error); 4483 } 4484