xref: /illumos-gate/usr/src/uts/common/inet/tcp/tcp.c (revision 7f7322febbcfe774b7270abc3b191c094bfcc517)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #pragma ident	"%Z%%M%	%I%	%E% SMI"
29 
30 const char tcp_version[] = "%Z%%M%	%I%	%E% SMI";
31 
32 #include <sys/types.h>
33 #include <sys/stream.h>
34 #include <sys/strsun.h>
35 #include <sys/strsubr.h>
36 #include <sys/stropts.h>
37 #include <sys/strlog.h>
38 #include <sys/strsun.h>
39 #define	_SUN_TPI_VERSION 2
40 #include <sys/tihdr.h>
41 #include <sys/timod.h>
42 #include <sys/ddi.h>
43 #include <sys/sunddi.h>
44 #include <sys/suntpi.h>
45 #include <sys/xti_inet.h>
46 #include <sys/cmn_err.h>
47 #include <sys/debug.h>
48 #include <sys/vtrace.h>
49 #include <sys/kmem.h>
50 #include <sys/ethernet.h>
51 #include <sys/cpuvar.h>
52 #include <sys/dlpi.h>
53 #include <sys/multidata.h>
54 #include <sys/multidata_impl.h>
55 #include <sys/pattr.h>
56 #include <sys/policy.h>
57 #include <sys/zone.h>
58 
59 #include <sys/errno.h>
60 #include <sys/signal.h>
61 #include <sys/socket.h>
62 #include <sys/sockio.h>
63 #include <sys/isa_defs.h>
64 #include <sys/md5.h>
65 #include <sys/random.h>
66 #include <netinet/in.h>
67 #include <netinet/tcp.h>
68 #include <netinet/ip6.h>
69 #include <netinet/icmp6.h>
70 #include <net/if.h>
71 #include <net/route.h>
72 #include <inet/ipsec_impl.h>
73 
74 #include <inet/common.h>
75 #include <inet/ip.h>
76 #include <inet/ip_impl.h>
77 #include <inet/ip6.h>
78 #include <inet/ip_ndp.h>
79 #include <inet/mi.h>
80 #include <inet/mib2.h>
81 #include <inet/nd.h>
82 #include <inet/optcom.h>
83 #include <inet/snmpcom.h>
84 #include <inet/kstatcom.h>
85 #include <inet/tcp.h>
86 #include <inet/tcp_impl.h>
87 #include <net/pfkeyv2.h>
88 #include <inet/ipsec_info.h>
89 #include <inet/ipdrop.h>
90 #include <inet/tcp_trace.h>
91 
92 #include <inet/ipclassifier.h>
93 #include <inet/ip_ire.h>
94 #include <inet/ip_if.h>
95 #include <inet/ipp_common.h>
96 #include <sys/squeue.h>
97 #include <inet/kssl/ksslapi.h>
98 
99 /*
100  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
101  *
102  * (Read the detailed design doc in PSARC case directory)
103  *
104  * The entire tcp state is contained in tcp_t and conn_t structure
105  * which are allocated in tandem using ipcl_conn_create() and passing
106  * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect
107  * the references on the tcp_t. The tcp_t structure is never compressed
108  * and packets always land on the correct TCP perimeter from the time
109  * eager is created till the time tcp_t dies (as such the old mentat
110  * TCP global queue is not used for detached state and no IPSEC checking
111  * is required). The global queue is still allocated to send out resets
112  * for connection which have no listeners and IP directly calls
113  * tcp_xmit_listeners_reset() which does any policy check.
114  *
115  * Protection and Synchronisation mechanism:
116  *
117  * The tcp data structure does not use any kind of lock for protecting
118  * its state but instead uses 'squeues' for mutual exclusion from various
119  * read and write side threads. To access a tcp member, the thread should
120  * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or
121  * squeue_fill). Since the squeues allow a direct function call, caller
122  * can pass any tcp function having prototype of edesc_t as argument
123  * (different from traditional STREAMs model where packets come in only
124  * designated entry points). The list of functions that can be directly
125  * called via squeue are listed before the usual function prototype.
126  *
127  * Referencing:
128  *
129  * TCP is MT-Hot and we use a reference based scheme to make sure that the
130  * tcp structure doesn't disappear when its needed. When the application
131  * creates an outgoing connection or accepts an incoming connection, we
132  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
133  * The IP reference is just a symbolic reference since ip_tcpclose()
134  * looks at tcp structure after tcp_close_output() returns which could
135  * have dropped the last TCP reference. So as long as the connection is
136  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
137  * conn_t. The classifier puts its own reference when the connection is
138  * inserted in listen or connected hash. Anytime a thread needs to enter
139  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
140  * on write side or by doing a classify on read side and then puts a
141  * reference on the conn before doing squeue_enter/tryenter/fill. For
142  * read side, the classifier itself puts the reference under fanout lock
143  * to make sure that tcp can't disappear before it gets processed. The
144  * squeue will drop this reference automatically so the called function
145  * doesn't have to do a DEC_REF.
146  *
147  * Opening a new connection:
148  *
149  * The outgoing connection open is pretty simple. ip_tcpopen() does the
150  * work in creating the conn/tcp structure and initializing it. The
151  * squeue assignment is done based on the CPU the application
152  * is running on. So for outbound connections, processing is always done
153  * on application CPU which might be different from the incoming CPU
154  * being interrupted by the NIC. An optimal way would be to figure out
155  * the NIC <-> CPU binding at listen time, and assign the outgoing
156  * connection to the squeue attached to the CPU that will be interrupted
157  * for incoming packets (we know the NIC based on the bind IP address).
158  * This might seem like a problem if more data is going out but the
159  * fact is that in most cases the transmit is ACK driven transmit where
160  * the outgoing data normally sits on TCP's xmit queue waiting to be
161  * transmitted.
162  *
163  * Accepting a connection:
164  *
165  * This is a more interesting case because of various races involved in
166  * establishing a eager in its own perimeter. Read the meta comment on
167  * top of tcp_conn_request(). But briefly, the squeue is picked by
168  * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU.
169  *
170  * Closing a connection:
171  *
172  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
173  * via squeue to do the close and mark the tcp as detached if the connection
174  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
175  * reference but tcp_close() drop IP's reference always. So if tcp was
176  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
177  * and 1 because it is in classifier's connected hash. This is the condition
178  * we use to determine that its OK to clean up the tcp outside of squeue
179  * when time wait expires (check the ref under fanout and conn_lock and
180  * if it is 2, remove it from fanout hash and kill it).
181  *
182  * Although close just drops the necessary references and marks the
183  * tcp_detached state, tcp_close needs to know the tcp_detached has been
184  * set (under squeue) before letting the STREAM go away (because a
185  * inbound packet might attempt to go up the STREAM while the close
186  * has happened and tcp_detached is not set). So a special lock and
187  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
188  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
189  * tcp_detached.
190  *
191  * Special provisions and fast paths:
192  *
193  * We make special provision for (AF_INET, SOCK_STREAM) sockets which
194  * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP
195  * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles
196  * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY
197  * check to send packets directly to tcp_rput_data via squeue. Everyone
198  * else comes through tcp_input() on the read side.
199  *
200  * We also make special provisions for sockfs by marking tcp_issocket
201  * whenever we have only sockfs on top of TCP. This allows us to skip
202  * putting the tcp in acceptor hash since a sockfs listener can never
203  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
204  * since eager has already been allocated and the accept now happens
205  * on acceptor STREAM. There is a big blob of comment on top of
206  * tcp_conn_request explaining the new accept. When socket is POP'd,
207  * sockfs sends us an ioctl to mark the fact and we go back to old
208  * behaviour. Once tcp_issocket is unset, its never set for the
209  * life of that connection.
210  *
211  * IPsec notes :
212  *
213  * Since a packet is always executed on the correct TCP perimeter
214  * all IPsec processing is defered to IP including checking new
215  * connections and setting IPSEC policies for new connection. The
216  * only exception is tcp_xmit_listeners_reset() which is called
217  * directly from IP and needs to policy check to see if TH_RST
218  * can be sent out.
219  */
220 
221 
222 extern major_t TCP6_MAJ;
223 
224 /*
225  * Values for squeue switch:
226  * 1: squeue_enter_nodrain
227  * 2: squeue_enter
228  * 3: squeue_fill
229  */
230 int tcp_squeue_close = 2;
231 int tcp_squeue_wput = 2;
232 
233 squeue_func_t tcp_squeue_close_proc;
234 squeue_func_t tcp_squeue_wput_proc;
235 
236 /*
237  * This controls how tiny a write must be before we try to copy it
238  * into the the mblk on the tail of the transmit queue.  Not much
239  * speedup is observed for values larger than sixteen.  Zero will
240  * disable the optimisation.
241  */
242 int tcp_tx_pull_len = 16;
243 
244 /*
245  * TCP Statistics.
246  *
247  * How TCP statistics work.
248  *
249  * There are two types of statistics invoked by two macros.
250  *
251  * TCP_STAT(name) does non-atomic increment of a named stat counter. It is
252  * supposed to be used in non MT-hot paths of the code.
253  *
254  * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is
255  * supposed to be used for DEBUG purposes and may be used on a hot path.
256  *
257  * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat
258  * (use "kstat tcp" to get them).
259  *
260  * There is also additional debugging facility that marks tcp_clean_death()
261  * instances and saves them in tcp_t structure. It is triggered by
262  * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for
263  * tcp_clean_death() calls that counts the number of times each tag was hit. It
264  * is triggered by TCP_CLD_COUNTERS define.
265  *
266  * How to add new counters.
267  *
268  * 1) Add a field in the tcp_stat structure describing your counter.
269  * 2) Add a line in tcp_statistics with the name of the counter.
270  *
271  *    IMPORTANT!! - make sure that both are in sync !!
272  * 3) Use either TCP_STAT or TCP_DBGSTAT with the name.
273  *
274  * Please avoid using private counters which are not kstat-exported.
275  *
276  * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances
277  * in tcp_t structure.
278  *
279  * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags.
280  */
281 
282 #ifndef TCP_DEBUG_COUNTER
283 #ifdef DEBUG
284 #define	TCP_DEBUG_COUNTER 1
285 #else
286 #define	TCP_DEBUG_COUNTER 0
287 #endif
288 #endif
289 
290 #define	TCP_CLD_COUNTERS 0
291 
292 #define	TCP_TAG_CLEAN_DEATH 1
293 #define	TCP_MAX_CLEAN_DEATH_TAG 32
294 
295 #ifdef lint
296 static int _lint_dummy_;
297 #endif
298 
299 #if TCP_CLD_COUNTERS
300 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG];
301 #define	TCP_CLD_STAT(x) tcp_clean_death_stat[x]++
302 #elif defined(lint)
303 #define	TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0);
304 #else
305 #define	TCP_CLD_STAT(x)
306 #endif
307 
308 #if TCP_DEBUG_COUNTER
309 #define	TCP_DBGSTAT(x) atomic_add_64(&(tcp_statistics.x.value.ui64), 1)
310 #elif defined(lint)
311 #define	TCP_DBGSTAT(x) ASSERT(_lint_dummy_ == 0);
312 #else
313 #define	TCP_DBGSTAT(x)
314 #endif
315 
316 tcp_stat_t tcp_statistics = {
317 	{ "tcp_time_wait",		KSTAT_DATA_UINT64 },
318 	{ "tcp_time_wait_syn",		KSTAT_DATA_UINT64 },
319 	{ "tcp_time_wait_success",	KSTAT_DATA_UINT64 },
320 	{ "tcp_time_wait_fail",		KSTAT_DATA_UINT64 },
321 	{ "tcp_reinput_syn",		KSTAT_DATA_UINT64 },
322 	{ "tcp_ip_output",		KSTAT_DATA_UINT64 },
323 	{ "tcp_detach_non_time_wait",	KSTAT_DATA_UINT64 },
324 	{ "tcp_detach_time_wait",	KSTAT_DATA_UINT64 },
325 	{ "tcp_time_wait_reap",		KSTAT_DATA_UINT64 },
326 	{ "tcp_clean_death_nondetached",	KSTAT_DATA_UINT64 },
327 	{ "tcp_reinit_calls",		KSTAT_DATA_UINT64 },
328 	{ "tcp_eager_err1",		KSTAT_DATA_UINT64 },
329 	{ "tcp_eager_err2",		KSTAT_DATA_UINT64 },
330 	{ "tcp_eager_blowoff_calls",	KSTAT_DATA_UINT64 },
331 	{ "tcp_eager_blowoff_q",	KSTAT_DATA_UINT64 },
332 	{ "tcp_eager_blowoff_q0",	KSTAT_DATA_UINT64 },
333 	{ "tcp_not_hard_bound",		KSTAT_DATA_UINT64 },
334 	{ "tcp_no_listener",		KSTAT_DATA_UINT64 },
335 	{ "tcp_found_eager",		KSTAT_DATA_UINT64 },
336 	{ "tcp_wrong_queue",		KSTAT_DATA_UINT64 },
337 	{ "tcp_found_eager_binding1",	KSTAT_DATA_UINT64 },
338 	{ "tcp_found_eager_bound1",	KSTAT_DATA_UINT64 },
339 	{ "tcp_eager_has_listener1",	KSTAT_DATA_UINT64 },
340 	{ "tcp_open_alloc",		KSTAT_DATA_UINT64 },
341 	{ "tcp_open_detached_alloc",	KSTAT_DATA_UINT64 },
342 	{ "tcp_rput_time_wait",		KSTAT_DATA_UINT64 },
343 	{ "tcp_listendrop",		KSTAT_DATA_UINT64 },
344 	{ "tcp_listendropq0",		KSTAT_DATA_UINT64 },
345 	{ "tcp_wrong_rq",		KSTAT_DATA_UINT64 },
346 	{ "tcp_rsrv_calls",		KSTAT_DATA_UINT64 },
347 	{ "tcp_eagerfree2",		KSTAT_DATA_UINT64 },
348 	{ "tcp_eagerfree3",		KSTAT_DATA_UINT64 },
349 	{ "tcp_eagerfree4",		KSTAT_DATA_UINT64 },
350 	{ "tcp_eagerfree5",		KSTAT_DATA_UINT64 },
351 	{ "tcp_timewait_syn_fail",	KSTAT_DATA_UINT64 },
352 	{ "tcp_listen_badflags",	KSTAT_DATA_UINT64 },
353 	{ "tcp_timeout_calls",		KSTAT_DATA_UINT64 },
354 	{ "tcp_timeout_cached_alloc",	KSTAT_DATA_UINT64 },
355 	{ "tcp_timeout_cancel_reqs",	KSTAT_DATA_UINT64 },
356 	{ "tcp_timeout_canceled",	KSTAT_DATA_UINT64 },
357 	{ "tcp_timermp_alloced",	KSTAT_DATA_UINT64 },
358 	{ "tcp_timermp_freed",		KSTAT_DATA_UINT64 },
359 	{ "tcp_timermp_allocfail",	KSTAT_DATA_UINT64 },
360 	{ "tcp_timermp_allocdblfail",	KSTAT_DATA_UINT64 },
361 	{ "tcp_push_timer_cnt",		KSTAT_DATA_UINT64 },
362 	{ "tcp_ack_timer_cnt",		KSTAT_DATA_UINT64 },
363 	{ "tcp_ire_null1",		KSTAT_DATA_UINT64 },
364 	{ "tcp_ire_null",		KSTAT_DATA_UINT64 },
365 	{ "tcp_ip_send",		KSTAT_DATA_UINT64 },
366 	{ "tcp_ip_ire_send",		KSTAT_DATA_UINT64 },
367 	{ "tcp_wsrv_called",		KSTAT_DATA_UINT64 },
368 	{ "tcp_flwctl_on",		KSTAT_DATA_UINT64 },
369 	{ "tcp_timer_fire_early",	KSTAT_DATA_UINT64 },
370 	{ "tcp_timer_fire_miss",	KSTAT_DATA_UINT64 },
371 	{ "tcp_freelist_cleanup",	KSTAT_DATA_UINT64 },
372 	{ "tcp_rput_v6_error",		KSTAT_DATA_UINT64 },
373 	{ "tcp_out_sw_cksum",		KSTAT_DATA_UINT64 },
374 	{ "tcp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
375 	{ "tcp_zcopy_on",		KSTAT_DATA_UINT64 },
376 	{ "tcp_zcopy_off",		KSTAT_DATA_UINT64 },
377 	{ "tcp_zcopy_backoff",		KSTAT_DATA_UINT64 },
378 	{ "tcp_zcopy_disable",		KSTAT_DATA_UINT64 },
379 	{ "tcp_mdt_pkt_out",		KSTAT_DATA_UINT64 },
380 	{ "tcp_mdt_pkt_out_v4",		KSTAT_DATA_UINT64 },
381 	{ "tcp_mdt_pkt_out_v6",		KSTAT_DATA_UINT64 },
382 	{ "tcp_mdt_discarded",		KSTAT_DATA_UINT64 },
383 	{ "tcp_mdt_conn_halted1",	KSTAT_DATA_UINT64 },
384 	{ "tcp_mdt_conn_halted2",	KSTAT_DATA_UINT64 },
385 	{ "tcp_mdt_conn_halted3",	KSTAT_DATA_UINT64 },
386 	{ "tcp_mdt_conn_resumed1",	KSTAT_DATA_UINT64 },
387 	{ "tcp_mdt_conn_resumed2",	KSTAT_DATA_UINT64 },
388 	{ "tcp_mdt_legacy_small",	KSTAT_DATA_UINT64 },
389 	{ "tcp_mdt_legacy_all",		KSTAT_DATA_UINT64 },
390 	{ "tcp_mdt_legacy_ret",		KSTAT_DATA_UINT64 },
391 	{ "tcp_mdt_allocfail",		KSTAT_DATA_UINT64 },
392 	{ "tcp_mdt_addpdescfail",	KSTAT_DATA_UINT64 },
393 	{ "tcp_mdt_allocd",		KSTAT_DATA_UINT64 },
394 	{ "tcp_mdt_linked",		KSTAT_DATA_UINT64 },
395 	{ "tcp_fusion_flowctl",		KSTAT_DATA_UINT64 },
396 	{ "tcp_fusion_backenabled",	KSTAT_DATA_UINT64 },
397 	{ "tcp_fusion_urg",		KSTAT_DATA_UINT64 },
398 	{ "tcp_fusion_putnext",		KSTAT_DATA_UINT64 },
399 	{ "tcp_fusion_unfusable",	KSTAT_DATA_UINT64 },
400 	{ "tcp_fusion_aborted",		KSTAT_DATA_UINT64 },
401 	{ "tcp_fusion_unqualified",	KSTAT_DATA_UINT64 },
402 	{ "tcp_fusion_rrw_busy",	KSTAT_DATA_UINT64 },
403 	{ "tcp_fusion_rrw_msgcnt",	KSTAT_DATA_UINT64 },
404 	{ "tcp_in_ack_unsent_drop",	KSTAT_DATA_UINT64 },
405 	{ "tcp_sock_fallback",		KSTAT_DATA_UINT64 },
406 };
407 
408 static kstat_t *tcp_kstat;
409 
410 /*
411  * Call either ip_output or ip_output_v6. This replaces putnext() calls on the
412  * tcp write side.
413  */
414 #define	CALL_IP_WPUT(connp, q, mp) {					\
415 	ASSERT(((q)->q_flag & QREADR) == 0);				\
416 	TCP_DBGSTAT(tcp_ip_output);					\
417 	connp->conn_send(connp, (mp), (q), IP_WPUT);			\
418 }
419 
420 /* Macros for timestamp comparisons */
421 #define	TSTMP_GEQ(a, b)	((int32_t)((a)-(b)) >= 0)
422 #define	TSTMP_LT(a, b)	((int32_t)((a)-(b)) < 0)
423 
424 /*
425  * Parameters for TCP Initial Send Sequence number (ISS) generation.  When
426  * tcp_strong_iss is set to 1, which is the default, the ISS is calculated
427  * by adding three components: a time component which grows by 1 every 4096
428  * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27);
429  * a per-connection component which grows by 125000 for every new connection;
430  * and an "extra" component that grows by a random amount centered
431  * approximately on 64000.  This causes the the ISS generator to cycle every
432  * 4.89 hours if no TCP connections are made, and faster if connections are
433  * made.
434  *
435  * When tcp_strong_iss is set to 0, ISS is calculated by adding two
436  * components: a time component which grows by 250000 every second; and
437  * a per-connection component which grows by 125000 for every new connections.
438  *
439  * A third method, when tcp_strong_iss is set to 2, for generating ISS is
440  * prescribed by Steve Bellovin.  This involves adding time, the 125000 per
441  * connection, and a one-way hash (MD5) of the connection ID <sport, dport,
442  * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered
443  * password.
444  */
445 #define	ISS_INCR	250000
446 #define	ISS_NSEC_SHT	12
447 
448 static uint32_t tcp_iss_incr_extra;	/* Incremented for each connection */
449 static kmutex_t tcp_iss_key_lock;
450 static MD5_CTX tcp_iss_key;
451 static sin_t	sin_null;	/* Zero address for quick clears */
452 static sin6_t	sin6_null;	/* Zero address for quick clears */
453 
454 /* Packet dropper for TCP IPsec policy drops. */
455 static ipdropper_t tcp_dropper;
456 
457 /*
458  * This implementation follows the 4.3BSD interpretation of the urgent
459  * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause
460  * incompatible changes in protocols like telnet and rlogin.
461  */
462 #define	TCP_OLD_URP_INTERPRETATION	1
463 
464 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
465 	(TCP_IS_DETACHED(tcp) && \
466 	    (!(tcp)->tcp_hard_binding))
467 
468 /*
469  * TCP reassembly macros.  We hide starting and ending sequence numbers in
470  * b_next and b_prev of messages on the reassembly queue.  The messages are
471  * chained using b_cont.  These macros are used in tcp_reass() so we don't
472  * have to see the ugly casts and assignments.
473  */
474 #define	TCP_REASS_SEQ(mp)		((uint32_t)(uintptr_t)((mp)->b_next))
475 #define	TCP_REASS_SET_SEQ(mp, u)	((mp)->b_next = \
476 					(mblk_t *)(uintptr_t)(u))
477 #define	TCP_REASS_END(mp)		((uint32_t)(uintptr_t)((mp)->b_prev))
478 #define	TCP_REASS_SET_END(mp, u)	((mp)->b_prev = \
479 					(mblk_t *)(uintptr_t)(u))
480 
481 /*
482  * Implementation of TCP Timers.
483  * =============================
484  *
485  * INTERFACE:
486  *
487  * There are two basic functions dealing with tcp timers:
488  *
489  *	timeout_id_t	tcp_timeout(connp, func, time)
490  * 	clock_t		tcp_timeout_cancel(connp, timeout_id)
491  *	TCP_TIMER_RESTART(tcp, intvl)
492  *
493  * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func'
494  * after 'time' ticks passed. The function called by timeout() must adhere to
495  * the same restrictions as a driver soft interrupt handler - it must not sleep
496  * or call other functions that might sleep. The value returned is the opaque
497  * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to
498  * cancel the request. The call to tcp_timeout() may fail in which case it
499  * returns zero. This is different from the timeout(9F) function which never
500  * fails.
501  *
502  * The call-back function 'func' always receives 'connp' as its single
503  * argument. It is always executed in the squeue corresponding to the tcp
504  * structure. The tcp structure is guaranteed to be present at the time the
505  * call-back is called.
506  *
507  * NOTE: The call-back function 'func' is never called if tcp is in
508  * 	the TCPS_CLOSED state.
509  *
510  * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout()
511  * request. locks acquired by the call-back routine should not be held across
512  * the call to tcp_timeout_cancel() or a deadlock may result.
513  *
514  * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request.
515  * Otherwise, it returns an integer value greater than or equal to 0. In
516  * particular, if the call-back function is already placed on the squeue, it can
517  * not be canceled.
518  *
519  * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called
520  * 	within squeue context corresponding to the tcp instance. Since the
521  *	call-back is also called via the same squeue, there are no race
522  *	conditions described in untimeout(9F) manual page since all calls are
523  *	strictly serialized.
524  *
525  *      TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout
526  *	stored in tcp_timer_tid and starts a new one using
527  *	MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back
528  *	and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid
529  *	field.
530  *
531  * NOTE: since the timeout cancellation is not guaranteed, the cancelled
532  *	call-back may still be called, so it is possible tcp_timer() will be
533  *	called several times. This should not be a problem since tcp_timer()
534  *	should always check the tcp instance state.
535  *
536  *
537  * IMPLEMENTATION:
538  *
539  * TCP timers are implemented using three-stage process. The call to
540  * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function
541  * when the timer expires. The tcp_timer_callback() arranges the call of the
542  * tcp_timer_handler() function via squeue corresponding to the tcp
543  * instance. The tcp_timer_handler() calls actual requested timeout call-back
544  * and passes tcp instance as an argument to it. Information is passed between
545  * stages using the tcp_timer_t structure which contains the connp pointer, the
546  * tcp call-back to call and the timeout id returned by the timeout(9F).
547  *
548  * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t -
549  * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo
550  * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout()
551  * returns the pointer to this mblk.
552  *
553  * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It
554  * looks like a normal mblk without actual dblk attached to it.
555  *
556  * To optimize performance each tcp instance holds a small cache of timer
557  * mblocks. In the current implementation it caches up to two timer mblocks per
558  * tcp instance. The cache is preserved over tcp frees and is only freed when
559  * the whole tcp structure is destroyed by its kmem destructor. Since all tcp
560  * timer processing happens on a corresponding squeue, the cache manipulation
561  * does not require any locks. Experiments show that majority of timer mblocks
562  * allocations are satisfied from the tcp cache and do not involve kmem calls.
563  *
564  * The tcp_timeout() places a refhold on the connp instance which guarantees
565  * that it will be present at the time the call-back function fires. The
566  * tcp_timer_handler() drops the reference after calling the call-back, so the
567  * call-back function does not need to manipulate the references explicitly.
568  */
569 
570 typedef struct tcp_timer_s {
571 	conn_t	*connp;
572 	void 	(*tcpt_proc)(void *);
573 	timeout_id_t   tcpt_tid;
574 } tcp_timer_t;
575 
576 static kmem_cache_t *tcp_timercache;
577 kmem_cache_t	*tcp_sack_info_cache;
578 kmem_cache_t	*tcp_iphc_cache;
579 
580 /*
581  * For scalability, we must not run a timer for every TCP connection
582  * in TIME_WAIT state.  To see why, consider (for time wait interval of
583  * 4 minutes):
584  *	1000 connections/sec * 240 seconds/time wait = 240,000 active conn's
585  *
586  * This list is ordered by time, so you need only delete from the head
587  * until you get to entries which aren't old enough to delete yet.
588  * The list consists of only the detached TIME_WAIT connections.
589  *
590  * Note that the timer (tcp_time_wait_expire) is started when the tcp_t
591  * becomes detached TIME_WAIT (either by changing the state and already
592  * being detached or the other way around). This means that the TIME_WAIT
593  * state can be extended (up to doubled) if the connection doesn't become
594  * detached for a long time.
595  *
596  * The list manipulations (including tcp_time_wait_next/prev)
597  * are protected by the tcp_time_wait_lock. The content of the
598  * detached TIME_WAIT connections is protected by the normal perimeters.
599  */
600 
601 typedef struct tcp_squeue_priv_s {
602 	kmutex_t	tcp_time_wait_lock;
603 				/* Protects the next 3 globals */
604 	timeout_id_t	tcp_time_wait_tid;
605 	tcp_t		*tcp_time_wait_head;
606 	tcp_t		*tcp_time_wait_tail;
607 	tcp_t		*tcp_free_list;
608 	uint_t		tcp_free_list_cnt;
609 } tcp_squeue_priv_t;
610 
611 /*
612  * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs.
613  * Running it every 5 seconds seems to give the best results.
614  */
615 #define	TCP_TIME_WAIT_DELAY drv_usectohz(5000000)
616 
617 /*
618  * To prevent memory hog, limit the number of entries in tcp_free_list
619  * to 1% of available memory / number of cpus
620  */
621 uint_t tcp_free_list_max_cnt = 0;
622 
623 #define	TCP_XMIT_LOWATER	4096
624 #define	TCP_XMIT_HIWATER	49152
625 #define	TCP_RECV_LOWATER	2048
626 #define	TCP_RECV_HIWATER	49152
627 
628 /*
629  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
630  */
631 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
632 
633 #define	TIDUSZ	4096	/* transport interface data unit size */
634 
635 /*
636  * Bind hash list size and has function.  It has to be a power of 2 for
637  * hashing.
638  */
639 #define	TCP_BIND_FANOUT_SIZE	512
640 #define	TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1))
641 /*
642  * Size of listen and acceptor hash list.  It has to be a power of 2 for
643  * hashing.
644  */
645 #define	TCP_FANOUT_SIZE		256
646 
647 #ifdef	_ILP32
648 #define	TCP_ACCEPTOR_HASH(accid)					\
649 		(((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1))
650 #else
651 #define	TCP_ACCEPTOR_HASH(accid)					\
652 		((uint_t)(accid) & (TCP_FANOUT_SIZE - 1))
653 #endif	/* _ILP32 */
654 
655 #define	IP_ADDR_CACHE_SIZE	2048
656 #define	IP_ADDR_CACHE_HASH(faddr)					\
657 	(ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1))
658 
659 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */
660 #define	TCP_HSP_HASH_SIZE 256
661 
662 #define	TCP_HSP_HASH(addr)					\
663 	(((addr>>24) ^ (addr >>16) ^			\
664 	    (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE)
665 
666 /*
667  * TCP options struct returned from tcp_parse_options.
668  */
669 typedef struct tcp_opt_s {
670 	uint32_t	tcp_opt_mss;
671 	uint32_t	tcp_opt_wscale;
672 	uint32_t	tcp_opt_ts_val;
673 	uint32_t	tcp_opt_ts_ecr;
674 	tcp_t		*tcp;
675 } tcp_opt_t;
676 
677 /*
678  * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
679  */
680 
681 #ifdef _BIG_ENDIAN
682 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
683 	(TCPOPT_TSTAMP << 8) | 10)
684 #else
685 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
686 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
687 #endif
688 
689 /*
690  * Flags returned from tcp_parse_options.
691  */
692 #define	TCP_OPT_MSS_PRESENT	1
693 #define	TCP_OPT_WSCALE_PRESENT	2
694 #define	TCP_OPT_TSTAMP_PRESENT	4
695 #define	TCP_OPT_SACK_OK_PRESENT	8
696 #define	TCP_OPT_SACK_PRESENT	16
697 
698 /* TCP option length */
699 #define	TCPOPT_NOP_LEN		1
700 #define	TCPOPT_MAXSEG_LEN	4
701 #define	TCPOPT_WS_LEN		3
702 #define	TCPOPT_REAL_WS_LEN	(TCPOPT_WS_LEN+1)
703 #define	TCPOPT_TSTAMP_LEN	10
704 #define	TCPOPT_REAL_TS_LEN	(TCPOPT_TSTAMP_LEN+2)
705 #define	TCPOPT_SACK_OK_LEN	2
706 #define	TCPOPT_REAL_SACK_OK_LEN	(TCPOPT_SACK_OK_LEN+2)
707 #define	TCPOPT_REAL_SACK_LEN	4
708 #define	TCPOPT_MAX_SACK_LEN	36
709 #define	TCPOPT_HEADER_LEN	2
710 
711 /* TCP cwnd burst factor. */
712 #define	TCP_CWND_INFINITE	65535
713 #define	TCP_CWND_SS		3
714 #define	TCP_CWND_NORMAL		5
715 
716 /* Maximum TCP initial cwin (start/restart). */
717 #define	TCP_MAX_INIT_CWND	8
718 
719 /*
720  * Initialize cwnd according to RFC 3390.  def_max_init_cwnd is
721  * either tcp_slow_start_initial or tcp_slow_start_after idle
722  * depending on the caller.  If the upper layer has not used the
723  * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd
724  * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd.
725  * If the upper layer has changed set the tcp_init_cwnd, just use
726  * it to calculate the tcp_cwnd.
727  */
728 #define	SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd)			\
729 {									\
730 	if ((tcp)->tcp_init_cwnd == 0) {				\
731 		(tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss),	\
732 		    MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \
733 	} else {							\
734 		(tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss);		\
735 	}								\
736 	tcp->tcp_cwnd_cnt = 0;						\
737 }
738 
739 /* TCP Timer control structure */
740 typedef struct tcpt_s {
741 	pfv_t	tcpt_pfv;	/* The routine we are to call */
742 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
743 } tcpt_t;
744 
745 /* Host Specific Parameter structure */
746 typedef struct tcp_hsp {
747 	struct tcp_hsp	*tcp_hsp_next;
748 	in6_addr_t	tcp_hsp_addr_v6;
749 	in6_addr_t	tcp_hsp_subnet_v6;
750 	uint_t		tcp_hsp_vers;	/* IPV4_VERSION | IPV6_VERSION */
751 	int32_t		tcp_hsp_sendspace;
752 	int32_t		tcp_hsp_recvspace;
753 	int32_t		tcp_hsp_tstamp;
754 } tcp_hsp_t;
755 #define	tcp_hsp_addr	V4_PART_OF_V6(tcp_hsp_addr_v6)
756 #define	tcp_hsp_subnet	V4_PART_OF_V6(tcp_hsp_subnet_v6)
757 
758 /*
759  * Functions called directly via squeue having a prototype of edesc_t.
760  */
761 void		tcp_conn_request(void *arg, mblk_t *mp, void *arg2);
762 static void	tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2);
763 void		tcp_accept_finish(void *arg, mblk_t *mp, void *arg2);
764 static void	tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2);
765 static void	tcp_wput_proto(void *arg, mblk_t *mp, void *arg2);
766 void 		tcp_input(void *arg, mblk_t *mp, void *arg2);
767 void		tcp_rput_data(void *arg, mblk_t *mp, void *arg2);
768 static void	tcp_close_output(void *arg, mblk_t *mp, void *arg2);
769 void		tcp_output(void *arg, mblk_t *mp, void *arg2);
770 static void	tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2);
771 static void	tcp_timer_handler(void *arg, mblk_t *mp, void *arg2);
772 
773 
774 /* Prototype for TCP functions */
775 static void	tcp_random_init(void);
776 int		tcp_random(void);
777 static void	tcp_accept(tcp_t *tcp, mblk_t *mp);
778 static void	tcp_accept_swap(tcp_t *listener, tcp_t *acceptor,
779 		    tcp_t *eager);
780 static int	tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp);
781 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
782     int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only,
783     boolean_t user_specified);
784 static void	tcp_closei_local(tcp_t *tcp);
785 static void	tcp_close_detached(tcp_t *tcp);
786 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph,
787 			mblk_t *idmp, mblk_t **defermp);
788 static void	tcp_connect(tcp_t *tcp, mblk_t *mp);
789 static void	tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp,
790 		    in_port_t dstport, uint_t srcid);
791 static void	tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
792 		    in_port_t dstport, uint32_t flowinfo, uint_t srcid,
793 		    uint32_t scope_id);
794 static int	tcp_clean_death(tcp_t *tcp, int err, uint8_t tag);
795 static void	tcp_def_q_set(tcp_t *tcp, mblk_t *mp);
796 static void	tcp_disconnect(tcp_t *tcp, mblk_t *mp);
797 static char	*tcp_display(tcp_t *tcp, char *, char);
798 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum);
799 static void	tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only);
800 static void	tcp_eager_unlink(tcp_t *tcp);
801 static void	tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr,
802 		    int unixerr);
803 static void	tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
804 		    int tlierr, int unixerr);
805 static int	tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
806 		    cred_t *cr);
807 static int	tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
808 		    char *value, caddr_t cp, cred_t *cr);
809 static int	tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
810 		    char *value, caddr_t cp, cred_t *cr);
811 static int	tcp_tpistate(tcp_t *tcp);
812 static void	tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp,
813     int caller_holds_lock);
814 static void	tcp_bind_hash_remove(tcp_t *tcp);
815 static tcp_t	*tcp_acceptor_hash_lookup(t_uscalar_t id);
816 void		tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp);
817 static void	tcp_acceptor_hash_remove(tcp_t *tcp);
818 static void	tcp_capability_req(tcp_t *tcp, mblk_t *mp);
819 static void	tcp_info_req(tcp_t *tcp, mblk_t *mp);
820 static void	tcp_addr_req(tcp_t *tcp, mblk_t *mp);
821 static void	tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp);
822 static int	tcp_header_init_ipv4(tcp_t *tcp);
823 static int	tcp_header_init_ipv6(tcp_t *tcp);
824 int		tcp_init(tcp_t *tcp, queue_t *q);
825 static int	tcp_init_values(tcp_t *tcp);
826 static mblk_t	*tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic);
827 static mblk_t	*tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim,
828 		    t_scalar_t addr_length);
829 static void	tcp_ip_ire_mark_advice(tcp_t *tcp);
830 static void	tcp_ip_notify(tcp_t *tcp);
831 static mblk_t	*tcp_ire_mp(mblk_t *mp);
832 static void	tcp_iss_init(tcp_t *tcp);
833 static void	tcp_keepalive_killer(void *arg);
834 static int	tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt);
835 static void	tcp_mss_set(tcp_t *tcp, uint32_t size);
836 static int	tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp,
837 		    int *do_disconnectp, int *t_errorp, int *sys_errorp);
838 static boolean_t tcp_allow_connopt_set(int level, int name);
839 int		tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr);
840 int		tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr);
841 static int	tcp_opt_get_user(ipha_t *ipha, uchar_t *ptr);
842 int		tcp_opt_set(queue_t *q, uint_t optset_context, int level,
843 		    int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
844 		    uchar_t *outvalp, void *thisdg_attrs, cred_t *cr,
845 		    mblk_t *mblk);
846 static void	tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha);
847 static int	tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly,
848 		    uchar_t *ptr, uint_t len);
849 static int	tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
850 static boolean_t tcp_param_register(tcpparam_t *tcppa, int cnt);
851 static int	tcp_param_set(queue_t *q, mblk_t *mp, char *value,
852 		    caddr_t cp, cred_t *cr);
853 static int	tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value,
854 		    caddr_t cp, cred_t *cr);
855 static void	tcp_iss_key_init(uint8_t *phrase, int len);
856 static int	tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value,
857 		    caddr_t cp, cred_t *cr);
858 static void	tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt);
859 static mblk_t	*tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start);
860 static void	tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp);
861 static void	tcp_reinit(tcp_t *tcp);
862 static void	tcp_reinit_values(tcp_t *tcp);
863 static void	tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval,
864 		    tcp_t *thisstream, cred_t *cr);
865 
866 static uint_t	tcp_rcv_drain(queue_t *q, tcp_t *tcp);
867 static void	tcp_sack_rxmit(tcp_t *tcp, uint_t *flags);
868 static boolean_t tcp_send_rst_chk(void);
869 static void	tcp_ss_rexmit(tcp_t *tcp);
870 static mblk_t	*tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp);
871 static void	tcp_process_options(tcp_t *, tcph_t *);
872 static void	tcp_rput_common(tcp_t *tcp, mblk_t *mp);
873 static void	tcp_rsrv(queue_t *q);
874 static int	tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd);
875 static int	tcp_snmp_state(tcp_t *tcp);
876 static int	tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp,
877 		    cred_t *cr);
878 static int	tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
879 		    cred_t *cr);
880 static int	tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
881 		    cred_t *cr);
882 static int	tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
883 		    cred_t *cr);
884 static int	tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
885 		    cred_t *cr);
886 static int	tcp_host_param_set(queue_t *q, mblk_t *mp, char *value,
887 		    caddr_t cp, cred_t *cr);
888 static int	tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value,
889 		    caddr_t cp, cred_t *cr);
890 static int	tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp,
891 		    cred_t *cr);
892 static void	tcp_timer(void *arg);
893 static void	tcp_timer_callback(void *);
894 static in_port_t tcp_update_next_port(in_port_t port, boolean_t random);
895 static in_port_t tcp_get_next_priv_port(void);
896 static void	tcp_wput_sock(queue_t *q, mblk_t *mp);
897 void		tcp_wput_accept(queue_t *q, mblk_t *mp);
898 static void	tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent);
899 static void	tcp_wput_flush(tcp_t *tcp, mblk_t *mp);
900 static void	tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp);
901 static int	tcp_send(queue_t *q, tcp_t *tcp, const int mss,
902 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
903 		    const int num_sack_blk, int *usable, uint_t *snxt,
904 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
905 		    const int mdt_thres);
906 static int	tcp_multisend(queue_t *q, tcp_t *tcp, const int mss,
907 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
908 		    const int num_sack_blk, int *usable, uint_t *snxt,
909 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
910 		    const int mdt_thres);
911 static void	tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now,
912 		    int num_sack_blk);
913 static void	tcp_wsrv(queue_t *q);
914 static int	tcp_xmit_end(tcp_t *tcp);
915 void		tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len);
916 static mblk_t	*tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send,
917 		    int32_t *offset, mblk_t **end_mp, uint32_t seq,
918 		    boolean_t sendall, uint32_t *seg_len, boolean_t rexmit);
919 static void	tcp_ack_timer(void *arg);
920 static mblk_t	*tcp_ack_mp(tcp_t *tcp);
921 static void	tcp_xmit_early_reset(char *str, mblk_t *mp,
922 		    uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len);
923 static void	tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq,
924 		    uint32_t ack, int ctl);
925 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr);
926 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr);
927 static int	setmaxps(queue_t *q, int maxpsz);
928 static void	tcp_set_rto(tcp_t *, time_t);
929 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *,
930 		    boolean_t, boolean_t);
931 static void	tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp,
932 		    boolean_t ipsec_mctl);
933 static boolean_t tcp_cmpbuf(void *a, uint_t alen,
934 		    boolean_t b_valid, void *b, uint_t blen);
935 static boolean_t tcp_allocbuf(void **dstp, uint_t *dstlenp,
936 		    boolean_t src_valid, void *src, uint_t srclen);
937 static void	tcp_savebuf(void **dstp, uint_t *dstlenp,
938 		    boolean_t src_valid, void *src, uint_t srclen);
939 static mblk_t	*tcp_setsockopt_mp(int level, int cmd,
940 		    char *opt, int optlen);
941 static int	tcp_pkt_set(uchar_t *, uint_t, uchar_t **, uint_t *);
942 static int	tcp_build_hdrs(queue_t *, tcp_t *);
943 static void	tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp,
944 		    uint32_t seg_seq, uint32_t seg_ack, int seg_len,
945 		    tcph_t *tcph);
946 boolean_t	tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp);
947 boolean_t	tcp_reserved_port_add(int, in_port_t *, in_port_t *);
948 boolean_t	tcp_reserved_port_del(in_port_t, in_port_t);
949 boolean_t	tcp_reserved_port_check(in_port_t);
950 static tcp_t	*tcp_alloc_temp_tcp(in_port_t);
951 static int	tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *);
952 static mblk_t	*tcp_mdt_info_mp(mblk_t *);
953 static void	tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t);
954 static int	tcp_mdt_add_attrs(multidata_t *, const mblk_t *,
955 		    const boolean_t, const uint32_t, const uint32_t,
956 		    const uint32_t, const uint32_t);
957 static void	tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *,
958 		    const uint_t, const uint_t, boolean_t *);
959 static void	tcp_send_data(tcp_t *, queue_t *, mblk_t *);
960 extern mblk_t	*tcp_timermp_alloc(int);
961 extern void	tcp_timermp_free(tcp_t *);
962 static void	tcp_timer_free(tcp_t *tcp, mblk_t *mp);
963 static void	tcp_stop_lingering(tcp_t *tcp);
964 static void	tcp_close_linger_timeout(void *arg);
965 void		tcp_ddi_init(void);
966 void		tcp_ddi_destroy(void);
967 static void	tcp_kstat_init(void);
968 static void	tcp_kstat_fini(void);
969 static int	tcp_kstat_update(kstat_t *kp, int rw);
970 void		tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp);
971 static int	tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
972 			tcph_t *tcph, uint_t ipvers, mblk_t *idmp);
973 static int	tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
974 			tcph_t *tcph, mblk_t *idmp);
975 static squeue_func_t tcp_squeue_switch(int);
976 
977 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *);
978 static int	tcp_close(queue_t *, int);
979 static int	tcpclose_accept(queue_t *);
980 static int	tcp_modclose(queue_t *);
981 static void	tcp_wput_mod(queue_t *, mblk_t *);
982 
983 static void	tcp_squeue_add(squeue_t *);
984 static boolean_t tcp_zcopy_check(tcp_t *);
985 static void	tcp_zcopy_notify(tcp_t *);
986 static mblk_t	*tcp_zcopy_disable(tcp_t *, mblk_t *);
987 static mblk_t	*tcp_zcopy_backoff(tcp_t *, mblk_t *, int);
988 static void	tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t);
989 
990 extern void	tcp_kssl_input(tcp_t *, mblk_t *);
991 
992 /*
993  * Routines related to the TCP_IOC_ABORT_CONN ioctl command.
994  *
995  * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting
996  * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure
997  * (defined in tcp.h) needs to be filled in and passed into the kernel
998  * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t
999  * structure contains the four-tuple of a TCP connection and a range of TCP
1000  * states (specified by ac_start and ac_end). The use of wildcard addresses
1001  * and ports is allowed. Connections with a matching four tuple and a state
1002  * within the specified range will be aborted. The valid states for the
1003  * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT,
1004  * inclusive.
1005  *
1006  * An application which has its connection aborted by this ioctl will receive
1007  * an error that is dependent on the connection state at the time of the abort.
1008  * If the connection state is < TCPS_TIME_WAIT, an application should behave as
1009  * though a RST packet has been received.  If the connection state is equal to
1010  * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel
1011  * and all resources associated with the connection will be freed.
1012  */
1013 static mblk_t	*tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *);
1014 static void	tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *);
1015 static void	tcp_ioctl_abort_handler(tcp_t *, mblk_t *);
1016 static int	tcp_ioctl_abort(tcp_ioc_abort_conn_t *);
1017 static void	tcp_ioctl_abort_conn(queue_t *, mblk_t *);
1018 static int	tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *,
1019     boolean_t);
1020 
1021 static struct module_info tcp_rinfo =  {
1022 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
1023 };
1024 
1025 static struct module_info tcp_winfo =  {
1026 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
1027 };
1028 
1029 /*
1030  * Entry points for TCP as a module. It only allows SNMP requests
1031  * to pass through.
1032  */
1033 struct qinit tcp_mod_rinit = {
1034 	(pfi_t)putnext, NULL, tcp_open, ip_snmpmod_close, NULL, &tcp_rinfo,
1035 };
1036 
1037 struct qinit tcp_mod_winit = {
1038 	(pfi_t)ip_snmpmod_wput, NULL, tcp_open, ip_snmpmod_close, NULL,
1039 	&tcp_rinfo
1040 };
1041 
1042 /*
1043  * Entry points for TCP as a device. The normal case which supports
1044  * the TCP functionality.
1045  */
1046 struct qinit tcp_rinit = {
1047 	NULL, (pfi_t)tcp_rsrv, tcp_open, tcp_close, NULL, &tcp_rinfo
1048 };
1049 
1050 struct qinit tcp_winit = {
1051 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
1052 };
1053 
1054 /* Initial entry point for TCP in socket mode. */
1055 struct qinit tcp_sock_winit = {
1056 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
1057 };
1058 
1059 /*
1060  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
1061  * an accept. Avoid allocating data structures since eager has already
1062  * been created.
1063  */
1064 struct qinit tcp_acceptor_rinit = {
1065 	NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo
1066 };
1067 
1068 struct qinit tcp_acceptor_winit = {
1069 	(pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo
1070 };
1071 
1072 /*
1073  * Entry points for TCP loopback (read side only)
1074  */
1075 struct qinit tcp_loopback_rinit = {
1076 	(pfi_t)0, (pfi_t)tcp_rsrv, tcp_open, tcp_close, (pfi_t)0,
1077 	&tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD
1078 };
1079 
1080 struct streamtab tcpinfo = {
1081 	&tcp_rinit, &tcp_winit
1082 };
1083 
1084 extern squeue_func_t tcp_squeue_wput_proc;
1085 extern squeue_func_t tcp_squeue_timer_proc;
1086 
1087 /* Protected by tcp_g_q_lock */
1088 static queue_t	*tcp_g_q;	/* Default queue used during detached closes */
1089 kmutex_t tcp_g_q_lock;
1090 
1091 /* Protected by tcp_hsp_lock */
1092 /*
1093  * XXX The host param mechanism should go away and instead we should use
1094  * the metrics associated with the routes to determine the default sndspace
1095  * and rcvspace.
1096  */
1097 static tcp_hsp_t	**tcp_hsp_hash;	/* Hash table for HSPs */
1098 krwlock_t tcp_hsp_lock;
1099 
1100 /*
1101  * Extra privileged ports. In host byte order.
1102  * Protected by tcp_epriv_port_lock.
1103  */
1104 #define	TCP_NUM_EPRIV_PORTS	64
1105 static int	tcp_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
1106 static uint16_t	tcp_g_epriv_ports[TCP_NUM_EPRIV_PORTS] = { 2049, 4045 };
1107 kmutex_t tcp_epriv_port_lock;
1108 
1109 /*
1110  * The smallest anonymous port in the priviledged port range which TCP
1111  * looks for free port.  Use in the option TCP_ANONPRIVBIND.
1112  */
1113 static in_port_t tcp_min_anonpriv_port = 512;
1114 
1115 /* Only modified during _init and _fini thus no locking is needed. */
1116 static caddr_t	tcp_g_nd;	/* Head of 'named dispatch' variable list */
1117 
1118 /* Hint not protected by any lock */
1119 static uint_t	tcp_next_port_to_try;
1120 
1121 
1122 /* TCP bind hash list - all tcp_t with state >= BOUND. */
1123 tf_t	tcp_bind_fanout[TCP_BIND_FANOUT_SIZE];
1124 
1125 /* TCP queue hash list - all tcp_t in case they will be an acceptor. */
1126 static tf_t	tcp_acceptor_fanout[TCP_FANOUT_SIZE];
1127 
1128 /*
1129  * TCP has a private interface for other kernel modules to reserve a
1130  * port range for them to use.  Once reserved, TCP will not use any ports
1131  * in the range.  This interface relies on the TCP_EXCLBIND feature.  If
1132  * the semantics of TCP_EXCLBIND is changed, implementation of this interface
1133  * has to be verified.
1134  *
1135  * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges.  Each port
1136  * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports.  A port
1137  * range is [port a, port b] inclusive.  And each port range is between
1138  * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive.
1139  *
1140  * Note that the default anonymous port range starts from 32768.  There is
1141  * no port "collision" between that and the reserved port range.  If there
1142  * is port collision (because the default smallest anonymous port is lowered
1143  * or some apps specifically bind to ports in the reserved port range), the
1144  * system may not be able to reserve a port range even there are enough
1145  * unbound ports as a reserved port range contains consecutive ports .
1146  */
1147 #define	TCP_RESERVED_PORTS_ARRAY_MAX_SIZE	5
1148 #define	TCP_RESERVED_PORTS_RANGE_MAX		1000
1149 #define	TCP_SMALLEST_RESERVED_PORT		10240
1150 #define	TCP_LARGEST_RESERVED_PORT		20480
1151 
1152 /* Structure to represent those reserved port ranges. */
1153 typedef struct tcp_rport_s {
1154 	in_port_t	lo_port;
1155 	in_port_t	hi_port;
1156 	tcp_t		**temp_tcp_array;
1157 } tcp_rport_t;
1158 
1159 /* The reserved port array. */
1160 static tcp_rport_t tcp_reserved_port[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE];
1161 
1162 /* Locks to protect the tcp_reserved_ports array. */
1163 static krwlock_t tcp_reserved_port_lock;
1164 
1165 /* The number of ranges in the array. */
1166 uint32_t tcp_reserved_port_array_size = 0;
1167 
1168 /*
1169  * MIB-2 stuff for SNMP
1170  * Note: tcpInErrs {tcp 15} is accumulated in ip.c
1171  */
1172 mib2_tcp_t	tcp_mib;	/* SNMP fixed size info */
1173 kstat_t		*tcp_mibkp;	/* kstat exporting tcp_mib data */
1174 
1175 boolean_t tcp_icmp_source_quench = B_FALSE;
1176 /*
1177  * Following assumes TPI alignment requirements stay along 32 bit
1178  * boundaries
1179  */
1180 #define	ROUNDUP32(x) \
1181 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
1182 
1183 /* Template for response to info request. */
1184 static struct T_info_ack tcp_g_t_info_ack = {
1185 	T_INFO_ACK,		/* PRIM_type */
1186 	0,			/* TSDU_size */
1187 	T_INFINITE,		/* ETSDU_size */
1188 	T_INVALID,		/* CDATA_size */
1189 	T_INVALID,		/* DDATA_size */
1190 	sizeof (sin_t),		/* ADDR_size */
1191 	0,			/* OPT_size - not initialized here */
1192 	TIDUSZ,			/* TIDU_size */
1193 	T_COTS_ORD,		/* SERV_type */
1194 	TCPS_IDLE,		/* CURRENT_state */
1195 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1196 };
1197 
1198 static struct T_info_ack tcp_g_t_info_ack_v6 = {
1199 	T_INFO_ACK,		/* PRIM_type */
1200 	0,			/* TSDU_size */
1201 	T_INFINITE,		/* ETSDU_size */
1202 	T_INVALID,		/* CDATA_size */
1203 	T_INVALID,		/* DDATA_size */
1204 	sizeof (sin6_t),	/* ADDR_size */
1205 	0,			/* OPT_size - not initialized here */
1206 	TIDUSZ,		/* TIDU_size */
1207 	T_COTS_ORD,		/* SERV_type */
1208 	TCPS_IDLE,		/* CURRENT_state */
1209 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1210 };
1211 
1212 #define	MS	1L
1213 #define	SECONDS	(1000 * MS)
1214 #define	MINUTES	(60 * SECONDS)
1215 #define	HOURS	(60 * MINUTES)
1216 #define	DAYS	(24 * HOURS)
1217 
1218 #define	PARAM_MAX (~(uint32_t)0)
1219 
1220 /* Max size IP datagram is 64k - 1 */
1221 #define	TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t)))
1222 #define	TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t)))
1223 /* Max of the above */
1224 #define	TCP_MSS_MAX	TCP_MSS_MAX_IPV4
1225 
1226 /* Largest TCP port number */
1227 #define	TCP_MAX_PORT	(64 * 1024 - 1)
1228 
1229 /*
1230  * tcp_wroff_xtra is the extra space in front of TCP/IP header for link
1231  * layer header.  It has to be a multiple of 4.
1232  */
1233 static tcpparam_t tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" };
1234 #define	tcp_wroff_xtra	tcp_wroff_xtra_param.tcp_param_val
1235 
1236 /*
1237  * All of these are alterable, within the min/max values given, at run time.
1238  * Note that the default value of "tcp_time_wait_interval" is four minutes,
1239  * per the TCP spec.
1240  */
1241 /* BEGIN CSTYLED */
1242 tcpparam_t	tcp_param_arr[] = {
1243  /*min		max		value		name */
1244  { 1*SECONDS,	10*MINUTES,	1*MINUTES,	"tcp_time_wait_interval"},
1245  { 1,		PARAM_MAX,	128,		"tcp_conn_req_max_q" },
1246  { 0,		PARAM_MAX,	1024,		"tcp_conn_req_max_q0" },
1247  { 1,		1024,		1,		"tcp_conn_req_min" },
1248  { 0*MS,	20*SECONDS,	0*MS,		"tcp_conn_grace_period" },
1249  { 128,		(1<<30),	1024*1024,	"tcp_cwnd_max" },
1250  { 0,		10,		0,		"tcp_debug" },
1251  { 1024,	(32*1024),	1024,		"tcp_smallest_nonpriv_port"},
1252  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_cinterval"},
1253  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_linterval"},
1254  { 500*MS,	PARAM_MAX,	8*MINUTES,	"tcp_ip_abort_interval"},
1255  { 1*SECONDS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_cinterval"},
1256  { 500*MS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_interval"},
1257  { 1,		255,		64,		"tcp_ipv4_ttl"},
1258  { 10*SECONDS,	10*DAYS,	2*HOURS,	"tcp_keepalive_interval"},
1259  { 0,		100,		10,		"tcp_maxpsz_multiplier" },
1260  { 1,		TCP_MSS_MAX_IPV4, 536,		"tcp_mss_def_ipv4"},
1261  { 1,		TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"},
1262  { 1,		TCP_MSS_MAX,	108,		"tcp_mss_min"},
1263  { 1,		(64*1024)-1,	(4*1024)-1,	"tcp_naglim_def"},
1264  { 1*MS,	20*SECONDS,	3*SECONDS,	"tcp_rexmit_interval_initial"},
1265  { 1*MS,	2*HOURS,	60*SECONDS,	"tcp_rexmit_interval_max"},
1266  { 1*MS,	2*HOURS,	400*MS,		"tcp_rexmit_interval_min"},
1267  { 1*MS,	1*MINUTES,	100*MS,		"tcp_deferred_ack_interval" },
1268  { 0,		16,		0,		"tcp_snd_lowat_fraction" },
1269  { 0,		128000,		0,		"tcp_sth_rcv_hiwat" },
1270  { 0,		128000,		0,		"tcp_sth_rcv_lowat" },
1271  { 1,		10000,		3,		"tcp_dupack_fast_retransmit" },
1272  { 0,		1,		0,		"tcp_ignore_path_mtu" },
1273  { 1024,	TCP_MAX_PORT,	32*1024,	"tcp_smallest_anon_port"},
1274  { 1024,	TCP_MAX_PORT,	TCP_MAX_PORT,	"tcp_largest_anon_port"},
1275  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"},
1276  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"},
1277  { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"},
1278  { 1,		65536,		4,		"tcp_recv_hiwat_minmss"},
1279  { 1*SECONDS,	PARAM_MAX,	675*SECONDS,	"tcp_fin_wait_2_flush_interval"},
1280  { 0,		TCP_MSS_MAX,	64,		"tcp_co_min"},
1281  { 8192,	(1<<30),	1024*1024,	"tcp_max_buf"},
1282 /*
1283  * Question:  What default value should I set for tcp_strong_iss?
1284  */
1285  { 0,		2,		1,		"tcp_strong_iss"},
1286  { 0,		65536,		20,		"tcp_rtt_updates"},
1287  { 0,		1,		1,		"tcp_wscale_always"},
1288  { 0,		1,		0,		"tcp_tstamp_always"},
1289  { 0,		1,		1,		"tcp_tstamp_if_wscale"},
1290  { 0*MS,	2*HOURS,	0*MS,		"tcp_rexmit_interval_extra"},
1291  { 0,		16,		2,		"tcp_deferred_acks_max"},
1292  { 1,		16384,		4,		"tcp_slow_start_after_idle"},
1293  { 1,		4,		4,		"tcp_slow_start_initial"},
1294  { 10*MS,	50*MS,		20*MS,		"tcp_co_timer_interval"},
1295  { 0,		2,		2,		"tcp_sack_permitted"},
1296  { 0,		1,		0,		"tcp_trace"},
1297  { 0,		1,		1,		"tcp_compression_enabled"},
1298  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS,	"tcp_ipv6_hoplimit"},
1299  { 1,		TCP_MSS_MAX_IPV6, 1220,		"tcp_mss_def_ipv6"},
1300  { 1,		TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"},
1301  { 0,		1,		0,		"tcp_rev_src_routes"},
1302  { 10*MS,	500*MS,		50*MS,		"tcp_local_dack_interval"},
1303  { 100*MS,	60*SECONDS,	1*SECONDS,	"tcp_ndd_get_info_interval"},
1304  { 0,		16,		8,		"tcp_local_dacks_max"},
1305  { 0,		2,		1,		"tcp_ecn_permitted"},
1306  { 0,		1,		1,		"tcp_rst_sent_rate_enabled"},
1307  { 0,		PARAM_MAX,	40,		"tcp_rst_sent_rate"},
1308  { 0,		100*MS,		50*MS,		"tcp_push_timer_interval"},
1309  { 0,		1,		0,		"tcp_use_smss_as_mss_opt"},
1310  { 0,		PARAM_MAX,	8*MINUTES,	"tcp_keepalive_abort_interval"},
1311 };
1312 /* END CSTYLED */
1313 
1314 /*
1315  * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of
1316  * each header fragment in the header buffer.  Each parameter value has
1317  * to be a multiple of 4 (32-bit aligned).
1318  */
1319 static tcpparam_t tcp_mdt_head_param = { 32, 256, 32, "tcp_mdt_hdr_head_min" };
1320 static tcpparam_t tcp_mdt_tail_param = { 0,  256, 32, "tcp_mdt_hdr_tail_min" };
1321 #define	tcp_mdt_hdr_head_min	tcp_mdt_head_param.tcp_param_val
1322 #define	tcp_mdt_hdr_tail_min	tcp_mdt_tail_param.tcp_param_val
1323 
1324 /*
1325  * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out
1326  * the maximum number of payload buffers associated per Multidata.
1327  */
1328 static tcpparam_t tcp_mdt_max_pbufs_param =
1329 	{ 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" };
1330 #define	tcp_mdt_max_pbufs	tcp_mdt_max_pbufs_param.tcp_param_val
1331 
1332 /* Round up the value to the nearest mss. */
1333 #define	MSS_ROUNDUP(value, mss)		((((value) - 1) / (mss) + 1) * (mss))
1334 
1335 /*
1336  * Set ECN capable transport (ECT) code point in IP header.
1337  *
1338  * Note that there are 2 ECT code points '01' and '10', which are called
1339  * ECT(1) and ECT(0) respectively.  Here we follow the original ECT code
1340  * point ECT(0) for TCP as described in RFC 2481.
1341  */
1342 #define	SET_ECT(tcp, iph) \
1343 	if ((tcp)->tcp_ipversion == IPV4_VERSION) { \
1344 		/* We need to clear the code point first. */ \
1345 		((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \
1346 		((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \
1347 	} else { \
1348 		((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \
1349 		((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \
1350 	}
1351 
1352 /*
1353  * The format argument to pass to tcp_display().
1354  * DISP_PORT_ONLY means that the returned string has only port info.
1355  * DISP_ADDR_AND_PORT means that the returned string also contains the
1356  * remote and local IP address.
1357  */
1358 #define	DISP_PORT_ONLY		1
1359 #define	DISP_ADDR_AND_PORT	2
1360 
1361 /*
1362  * This controls the rate some ndd info report functions can be used
1363  * by non-priviledged users.  It stores the last time such info is
1364  * requested.  When those report functions are called again, this
1365  * is checked with the current time and compare with the ndd param
1366  * tcp_ndd_get_info_interval.
1367  */
1368 static clock_t tcp_last_ndd_get_info_time = 0;
1369 #define	NDD_TOO_QUICK_MSG \
1370 	"ndd get info rate too high for non-priviledged users, try again " \
1371 	"later.\n"
1372 #define	NDD_OUT_OF_BUF_MSG	"<< Out of buffer >>\n"
1373 
1374 #define	IS_VMLOANED_MBLK(mp) \
1375 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
1376 
1377 /*
1378  * These two variables control the rate for TCP to generate RSTs in
1379  * response to segments not belonging to any connections.  We limit
1380  * TCP to sent out tcp_rst_sent_rate (ndd param) number of RSTs in
1381  * each 1 second interval.  This is to protect TCP against DoS attack.
1382  */
1383 static clock_t tcp_last_rst_intrvl;
1384 static uint32_t tcp_rst_cnt;
1385 
1386 /* The number of RST not sent because of the rate limit. */
1387 static uint32_t tcp_rst_unsent;
1388 
1389 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */
1390 boolean_t tcp_mdt_chain = B_TRUE;
1391 
1392 /*
1393  * MDT threshold in the form of effective send MSS multiplier; we take
1394  * the MDT path if the amount of unsent data exceeds the threshold value
1395  * (default threshold is 1*SMSS).
1396  */
1397 uint_t tcp_mdt_smss_threshold = 1;
1398 
1399 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
1400 
1401 /*
1402  * Forces all connections to obey the value of the tcp_maxpsz_multiplier
1403  * tunable settable via NDD.  Otherwise, the per-connection behavior is
1404  * determined dynamically during tcp_adapt_ire(), which is the default.
1405  */
1406 boolean_t tcp_static_maxpsz = B_FALSE;
1407 
1408 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
1409 uint32_t tcp_random_anon_port = 1;
1410 
1411 /*
1412  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
1413  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
1414  * data, TCP will not respond with an ACK.  RFC 793 requires that
1415  * TCP responds with an ACK for such a bogus ACK.  By not following
1416  * the RFC, we prevent TCP from getting into an ACK storm if somehow
1417  * an attacker successfully spoofs an acceptable segment to our
1418  * peer; or when our peer is "confused."
1419  */
1420 uint32_t tcp_drop_ack_unsent_cnt = 10;
1421 
1422 /*
1423  * Hook functions to enable cluster networking
1424  * On non-clustered systems these vectors must always be NULL.
1425  */
1426 
1427 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family,
1428 			    uint8_t *laddrp, in_port_t lport) = NULL;
1429 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family,
1430 			    uint8_t *laddrp, in_port_t lport) = NULL;
1431 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family,
1432 			    uint8_t *laddrp, in_port_t lport,
1433 			    uint8_t *faddrp, in_port_t fport) = NULL;
1434 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family,
1435 			    uint8_t *laddrp, in_port_t lport,
1436 			    uint8_t *faddrp, in_port_t fport) = NULL;
1437 
1438 /*
1439  * The following are defined in ip.c
1440  */
1441 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family,
1442 				uint8_t *laddrp);
1443 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family,
1444 				uint8_t *laddrp, uint8_t *faddrp);
1445 
1446 #define	CL_INET_CONNECT(tcp)		{			\
1447 	if (cl_inet_connect != NULL) {				\
1448 		/*						\
1449 		 * Running in cluster mode - register active connection	\
1450 		 * information						\
1451 		 */							\
1452 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1453 			if ((tcp)->tcp_ipha->ipha_src != 0) {		\
1454 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET,\
1455 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\
1456 				    (in_port_t)(tcp)->tcp_lport,	\
1457 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\
1458 				    (in_port_t)(tcp)->tcp_fport);	\
1459 			}						\
1460 		} else {						\
1461 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1462 			    &(tcp)->tcp_ip6h->ip6_src)) {\
1463 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\
1464 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\
1465 				    (in_port_t)(tcp)->tcp_lport,	\
1466 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\
1467 				    (in_port_t)(tcp)->tcp_fport);	\
1468 			}						\
1469 		}							\
1470 	}								\
1471 }
1472 
1473 #define	CL_INET_DISCONNECT(tcp)	{				\
1474 	if (cl_inet_disconnect != NULL) {				\
1475 		/*							\
1476 		 * Running in cluster mode - deregister active		\
1477 		 * connection information				\
1478 		 */							\
1479 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1480 			if ((tcp)->tcp_ip_src != 0) {			\
1481 				(*cl_inet_disconnect)(IPPROTO_TCP,	\
1482 				    AF_INET,				\
1483 				    (uint8_t *)(&((tcp)->tcp_ip_src)),\
1484 				    (in_port_t)(tcp)->tcp_lport,	\
1485 				    (uint8_t *)				\
1486 				    (&((tcp)->tcp_ipha->ipha_dst)),\
1487 				    (in_port_t)(tcp)->tcp_fport);	\
1488 			}						\
1489 		} else {						\
1490 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1491 			    &(tcp)->tcp_ip_src_v6)) {			\
1492 				(*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\
1493 				    (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\
1494 				    (in_port_t)(tcp)->tcp_lport,	\
1495 				    (uint8_t *)				\
1496 				    (&((tcp)->tcp_ip6h->ip6_dst)),\
1497 				    (in_port_t)(tcp)->tcp_fport);	\
1498 			}						\
1499 		}							\
1500 	}								\
1501 }
1502 
1503 /*
1504  * Cluster networking hook for traversing current connection list.
1505  * This routine is used to extract the current list of live connections
1506  * which must continue to to be dispatched to this node.
1507  */
1508 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg);
1509 
1510 /*
1511  * Figure out the value of window scale opton.  Note that the rwnd is
1512  * ASSUMED to be rounded up to the nearest MSS before the calculation.
1513  * We cannot find the scale value and then do a round up of tcp_rwnd
1514  * because the scale value may not be correct after that.
1515  *
1516  * Set the compiler flag to make this function inline.
1517  */
1518 static void
1519 tcp_set_ws_value(tcp_t *tcp)
1520 {
1521 	int i;
1522 	uint32_t rwnd = tcp->tcp_rwnd;
1523 
1524 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
1525 	    i++, rwnd >>= 1)
1526 		;
1527 	tcp->tcp_rcv_ws = i;
1528 }
1529 
1530 /*
1531  * Remove a connection from the list of detached TIME_WAIT connections.
1532  */
1533 static void
1534 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait)
1535 {
1536 	boolean_t	locked = B_FALSE;
1537 
1538 	if (tcp_time_wait == NULL) {
1539 		tcp_time_wait = *((tcp_squeue_priv_t **)
1540 		    squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP));
1541 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1542 		locked = B_TRUE;
1543 	}
1544 
1545 	if (tcp->tcp_time_wait_expire == 0) {
1546 		ASSERT(tcp->tcp_time_wait_next == NULL);
1547 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1548 		if (locked)
1549 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1550 		return;
1551 	}
1552 	ASSERT(TCP_IS_DETACHED(tcp));
1553 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1554 
1555 	if (tcp == tcp_time_wait->tcp_time_wait_head) {
1556 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1557 		tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next;
1558 		if (tcp_time_wait->tcp_time_wait_head != NULL) {
1559 			tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev =
1560 			    NULL;
1561 		} else {
1562 			tcp_time_wait->tcp_time_wait_tail = NULL;
1563 		}
1564 	} else if (tcp == tcp_time_wait->tcp_time_wait_tail) {
1565 		ASSERT(tcp != tcp_time_wait->tcp_time_wait_head);
1566 		ASSERT(tcp->tcp_time_wait_next == NULL);
1567 		tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev;
1568 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1569 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL;
1570 	} else {
1571 		ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp);
1572 		ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp);
1573 		tcp->tcp_time_wait_prev->tcp_time_wait_next =
1574 		    tcp->tcp_time_wait_next;
1575 		tcp->tcp_time_wait_next->tcp_time_wait_prev =
1576 		    tcp->tcp_time_wait_prev;
1577 	}
1578 	tcp->tcp_time_wait_next = NULL;
1579 	tcp->tcp_time_wait_prev = NULL;
1580 	tcp->tcp_time_wait_expire = 0;
1581 
1582 	if (locked)
1583 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1584 }
1585 
1586 /*
1587  * Add a connection to the list of detached TIME_WAIT connections
1588  * and set its time to expire.
1589  */
1590 static void
1591 tcp_time_wait_append(tcp_t *tcp)
1592 {
1593 	tcp_squeue_priv_t *tcp_time_wait =
1594 	    *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp,
1595 		SQPRIVATE_TCP));
1596 
1597 	tcp_timers_stop(tcp);
1598 
1599 	/* Freed above */
1600 	ASSERT(tcp->tcp_timer_tid == 0);
1601 	ASSERT(tcp->tcp_ack_tid == 0);
1602 
1603 	/* must have happened at the time of detaching the tcp */
1604 	ASSERT(tcp->tcp_ptpahn == NULL);
1605 	ASSERT(tcp->tcp_flow_stopped == 0);
1606 	ASSERT(tcp->tcp_time_wait_next == NULL);
1607 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1608 	ASSERT(tcp->tcp_time_wait_expire == NULL);
1609 	ASSERT(tcp->tcp_listener == NULL);
1610 
1611 	tcp->tcp_time_wait_expire = ddi_get_lbolt();
1612 	/*
1613 	 * The value computed below in tcp->tcp_time_wait_expire may
1614 	 * appear negative or wrap around. That is ok since our
1615 	 * interest is only in the difference between the current lbolt
1616 	 * value and tcp->tcp_time_wait_expire. But the value should not
1617 	 * be zero, since it means the tcp is not in the TIME_WAIT list.
1618 	 * The corresponding comparison in tcp_time_wait_collector() uses
1619 	 * modular arithmetic.
1620 	 */
1621 	tcp->tcp_time_wait_expire +=
1622 	    drv_usectohz(tcp_time_wait_interval * 1000);
1623 	if (tcp->tcp_time_wait_expire == 0)
1624 		tcp->tcp_time_wait_expire = 1;
1625 
1626 	ASSERT(TCP_IS_DETACHED(tcp));
1627 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1628 	ASSERT(tcp->tcp_time_wait_next == NULL);
1629 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1630 	TCP_DBGSTAT(tcp_time_wait);
1631 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1632 	if (tcp_time_wait->tcp_time_wait_head == NULL) {
1633 		ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL);
1634 		tcp_time_wait->tcp_time_wait_head = tcp;
1635 	} else {
1636 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1637 		ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state ==
1638 		    TCPS_TIME_WAIT);
1639 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp;
1640 		tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail;
1641 	}
1642 	tcp_time_wait->tcp_time_wait_tail = tcp;
1643 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1644 }
1645 
1646 /* ARGSUSED */
1647 void
1648 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2)
1649 {
1650 	conn_t	*connp = (conn_t *)arg;
1651 	tcp_t	*tcp = connp->conn_tcp;
1652 
1653 	ASSERT(tcp != NULL);
1654 	if (tcp->tcp_state == TCPS_CLOSED) {
1655 		return;
1656 	}
1657 
1658 	ASSERT((tcp->tcp_family == AF_INET &&
1659 	    tcp->tcp_ipversion == IPV4_VERSION) ||
1660 	    (tcp->tcp_family == AF_INET6 &&
1661 	    (tcp->tcp_ipversion == IPV4_VERSION ||
1662 	    tcp->tcp_ipversion == IPV6_VERSION)));
1663 	ASSERT(!tcp->tcp_listener);
1664 
1665 	TCP_STAT(tcp_time_wait_reap);
1666 	ASSERT(TCP_IS_DETACHED(tcp));
1667 
1668 	/*
1669 	 * Because they have no upstream client to rebind or tcp_close()
1670 	 * them later, we axe the connection here and now.
1671 	 */
1672 	tcp_close_detached(tcp);
1673 }
1674 
1675 void
1676 tcp_cleanup(tcp_t *tcp)
1677 {
1678 	mblk_t		*mp;
1679 	char		*tcp_iphc;
1680 	int		tcp_iphc_len;
1681 	int		tcp_hdr_grown;
1682 	tcp_sack_info_t	*tcp_sack_info;
1683 	conn_t		*connp = tcp->tcp_connp;
1684 
1685 	tcp_bind_hash_remove(tcp);
1686 	tcp_free(tcp);
1687 
1688 	/* Release any SSL context */
1689 	if (tcp->tcp_kssl_ent != NULL) {
1690 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
1691 		tcp->tcp_kssl_ent = NULL;
1692 	}
1693 
1694 	if (tcp->tcp_kssl_ctx != NULL) {
1695 		kssl_release_ctx(tcp->tcp_kssl_ctx);
1696 		tcp->tcp_kssl_ctx = NULL;
1697 	}
1698 	tcp->tcp_kssl_pending = B_FALSE;
1699 
1700 	conn_delete_ire(connp, NULL);
1701 	if (connp->conn_flags & IPCL_TCPCONN) {
1702 		if (connp->conn_latch != NULL)
1703 			IPLATCH_REFRELE(connp->conn_latch);
1704 		if (connp->conn_policy != NULL)
1705 			IPPH_REFRELE(connp->conn_policy);
1706 	}
1707 
1708 	/*
1709 	 * Since we will bzero the entire structure, we need to
1710 	 * remove it and reinsert it in global hash list. We
1711 	 * know the walkers can't get to this conn because we
1712 	 * had set CONDEMNED flag earlier and checked reference
1713 	 * under conn_lock so walker won't pick it and when we
1714 	 * go the ipcl_globalhash_remove() below, no walker
1715 	 * can get to it.
1716 	 */
1717 	ipcl_globalhash_remove(connp);
1718 
1719 	/* Save some state */
1720 	mp = tcp->tcp_timercache;
1721 
1722 	tcp_sack_info = tcp->tcp_sack_info;
1723 	tcp_iphc = tcp->tcp_iphc;
1724 	tcp_iphc_len = tcp->tcp_iphc_len;
1725 	tcp_hdr_grown = tcp->tcp_hdr_grown;
1726 
1727 	bzero(connp, sizeof (conn_t));
1728 	bzero(tcp, sizeof (tcp_t));
1729 
1730 	/* restore the state */
1731 	tcp->tcp_timercache = mp;
1732 
1733 	tcp->tcp_sack_info = tcp_sack_info;
1734 	tcp->tcp_iphc = tcp_iphc;
1735 	tcp->tcp_iphc_len = tcp_iphc_len;
1736 	tcp->tcp_hdr_grown = tcp_hdr_grown;
1737 
1738 
1739 	tcp->tcp_connp = connp;
1740 
1741 	connp->conn_tcp = tcp;
1742 	connp->conn_flags = IPCL_TCPCONN;
1743 	connp->conn_state_flags = CONN_INCIPIENT;
1744 	connp->conn_ulp = IPPROTO_TCP;
1745 	connp->conn_ref = 1;
1746 
1747 	ipcl_globalhash_insert(connp);
1748 }
1749 
1750 /*
1751  * Blows away all tcps whose TIME_WAIT has expired. List traversal
1752  * is done forwards from the head.
1753  */
1754 /* ARGSUSED */
1755 void
1756 tcp_time_wait_collector(void *arg)
1757 {
1758 	tcp_t *tcp;
1759 	clock_t now;
1760 	mblk_t *mp;
1761 	conn_t *connp;
1762 	kmutex_t *lock;
1763 
1764 	squeue_t *sqp = (squeue_t *)arg;
1765 	tcp_squeue_priv_t *tcp_time_wait =
1766 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1767 
1768 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1769 	tcp_time_wait->tcp_time_wait_tid = 0;
1770 
1771 	if (tcp_time_wait->tcp_free_list != NULL &&
1772 	    tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) {
1773 		TCP_STAT(tcp_freelist_cleanup);
1774 		while ((tcp = tcp_time_wait->tcp_free_list) != NULL) {
1775 			tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1776 			CONN_DEC_REF(tcp->tcp_connp);
1777 		}
1778 		tcp_time_wait->tcp_free_list_cnt = 0;
1779 	}
1780 
1781 	/*
1782 	 * In order to reap time waits reliably, we should use a
1783 	 * source of time that is not adjustable by the user -- hence
1784 	 * the call to ddi_get_lbolt().
1785 	 */
1786 	now = ddi_get_lbolt();
1787 	while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) {
1788 		/*
1789 		 * Compare times using modular arithmetic, since
1790 		 * lbolt can wrapover.
1791 		 */
1792 		if ((now - tcp->tcp_time_wait_expire) < 0) {
1793 			break;
1794 		}
1795 
1796 		tcp_time_wait_remove(tcp, tcp_time_wait);
1797 
1798 		connp = tcp->tcp_connp;
1799 		ASSERT(connp->conn_fanout != NULL);
1800 		lock = &connp->conn_fanout->connf_lock;
1801 		/*
1802 		 * This is essentially a TW reclaim fast path optimization for
1803 		 * performance where the timewait collector checks under the
1804 		 * fanout lock (so that no one else can get access to the
1805 		 * conn_t) that the refcnt is 2 i.e. one for TCP and one for
1806 		 * the classifier hash list. If ref count is indeed 2, we can
1807 		 * just remove the conn under the fanout lock and avoid
1808 		 * cleaning up the conn under the squeue, provided that
1809 		 * clustering callbacks are not enabled. If clustering is
1810 		 * enabled, we need to make the clustering callback before
1811 		 * setting the CONDEMNED flag and after dropping all locks and
1812 		 * so we forego this optimization and fall back to the slow
1813 		 * path. Also please see the comments in tcp_closei_local
1814 		 * regarding the refcnt logic.
1815 		 *
1816 		 * Since we are holding the tcp_time_wait_lock, its better
1817 		 * not to block on the fanout_lock because other connections
1818 		 * can't add themselves to time_wait list. So we do a
1819 		 * tryenter instead of mutex_enter.
1820 		 */
1821 		if (mutex_tryenter(lock)) {
1822 			mutex_enter(&connp->conn_lock);
1823 			if ((connp->conn_ref == 2) &&
1824 			    (cl_inet_disconnect == NULL)) {
1825 				ipcl_hash_remove_locked(connp,
1826 				    connp->conn_fanout);
1827 				/*
1828 				 * Set the CONDEMNED flag now itself so that
1829 				 * the refcnt cannot increase due to any
1830 				 * walker. But we have still not cleaned up
1831 				 * conn_ire_cache. This is still ok since
1832 				 * we are going to clean it up in tcp_cleanup
1833 				 * immediately and any interface unplumb
1834 				 * thread will wait till the ire is blown away
1835 				 */
1836 				connp->conn_state_flags |= CONN_CONDEMNED;
1837 				mutex_exit(lock);
1838 				mutex_exit(&connp->conn_lock);
1839 				if (tcp_time_wait->tcp_free_list_cnt <
1840 				    tcp_free_list_max_cnt) {
1841 					/* Add to head of tcp_free_list */
1842 					mutex_exit(
1843 					    &tcp_time_wait->tcp_time_wait_lock);
1844 					tcp_cleanup(tcp);
1845 					mutex_enter(
1846 					    &tcp_time_wait->tcp_time_wait_lock);
1847 					tcp->tcp_time_wait_next =
1848 					    tcp_time_wait->tcp_free_list;
1849 					tcp_time_wait->tcp_free_list = tcp;
1850 					tcp_time_wait->tcp_free_list_cnt++;
1851 					continue;
1852 				} else {
1853 					/* Do not add to tcp_free_list */
1854 					mutex_exit(
1855 					    &tcp_time_wait->tcp_time_wait_lock);
1856 					tcp_bind_hash_remove(tcp);
1857 					conn_delete_ire(tcp->tcp_connp, NULL);
1858 					CONN_DEC_REF(tcp->tcp_connp);
1859 				}
1860 			} else {
1861 				CONN_INC_REF_LOCKED(connp);
1862 				mutex_exit(lock);
1863 				mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1864 				mutex_exit(&connp->conn_lock);
1865 				/*
1866 				 * We can reuse the closemp here since conn has
1867 				 * detached (otherwise we wouldn't even be in
1868 				 * time_wait list).
1869 				 */
1870 				mp = &tcp->tcp_closemp;
1871 				squeue_fill(connp->conn_sqp, mp,
1872 				    tcp_timewait_output, connp,
1873 				    SQTAG_TCP_TIMEWAIT);
1874 			}
1875 		} else {
1876 			mutex_enter(&connp->conn_lock);
1877 			CONN_INC_REF_LOCKED(connp);
1878 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1879 			mutex_exit(&connp->conn_lock);
1880 			/*
1881 			 * We can reuse the closemp here since conn has
1882 			 * detached (otherwise we wouldn't even be in
1883 			 * time_wait list).
1884 			 */
1885 			mp = &tcp->tcp_closemp;
1886 			squeue_fill(connp->conn_sqp, mp,
1887 			    tcp_timewait_output, connp, 0);
1888 		}
1889 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1890 	}
1891 
1892 	if (tcp_time_wait->tcp_free_list != NULL)
1893 		tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE;
1894 
1895 	tcp_time_wait->tcp_time_wait_tid =
1896 	    timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY);
1897 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1898 }
1899 
1900 /*
1901  * Reply to a clients T_CONN_RES TPI message. This function
1902  * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES
1903  * on the acceptor STREAM and processed in tcp_wput_accept().
1904  * Read the block comment on top of tcp_conn_request().
1905  */
1906 static void
1907 tcp_accept(tcp_t *listener, mblk_t *mp)
1908 {
1909 	tcp_t	*acceptor;
1910 	tcp_t	*eager;
1911 	tcp_t   *tcp;
1912 	struct T_conn_res	*tcr;
1913 	t_uscalar_t	acceptor_id;
1914 	t_scalar_t	seqnum;
1915 	mblk_t	*opt_mp = NULL;	/* T_OPTMGMT_REQ messages */
1916 	mblk_t	*ok_mp;
1917 	mblk_t	*mp1;
1918 
1919 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
1920 		tcp_err_ack(listener, mp, TPROTO, 0);
1921 		return;
1922 	}
1923 	tcr = (struct T_conn_res *)mp->b_rptr;
1924 
1925 	/*
1926 	 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the
1927 	 * read side queue of the streams device underneath us i.e. the
1928 	 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we
1929 	 * look it up in the queue_hash.  Under LP64 it sends down the
1930 	 * minor_t of the accepting endpoint.
1931 	 *
1932 	 * Once the acceptor/eager are modified (in tcp_accept_swap) the
1933 	 * fanout hash lock is held.
1934 	 * This prevents any thread from entering the acceptor queue from
1935 	 * below (since it has not been hard bound yet i.e. any inbound
1936 	 * packets will arrive on the listener or default tcp queue and
1937 	 * go through tcp_lookup).
1938 	 * The CONN_INC_REF will prevent the acceptor from closing.
1939 	 *
1940 	 * XXX It is still possible for a tli application to send down data
1941 	 * on the accepting stream while another thread calls t_accept.
1942 	 * This should not be a problem for well-behaved applications since
1943 	 * the T_OK_ACK is sent after the queue swapping is completed.
1944 	 *
1945 	 * If the accepting fd is the same as the listening fd, avoid
1946 	 * queue hash lookup since that will return an eager listener in a
1947 	 * already established state.
1948 	 */
1949 	acceptor_id = tcr->ACCEPTOR_id;
1950 	mutex_enter(&listener->tcp_eager_lock);
1951 	if (listener->tcp_acceptor_id == acceptor_id) {
1952 		eager = listener->tcp_eager_next_q;
1953 		/* only count how many T_CONN_INDs so don't count q0 */
1954 		if ((listener->tcp_conn_req_cnt_q != 1) ||
1955 		    (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) {
1956 			mutex_exit(&listener->tcp_eager_lock);
1957 			tcp_err_ack(listener, mp, TBADF, 0);
1958 			return;
1959 		}
1960 		if (listener->tcp_conn_req_cnt_q0 != 0) {
1961 			/* Throw away all the eagers on q0. */
1962 			tcp_eager_cleanup(listener, 1);
1963 		}
1964 		if (listener->tcp_syn_defense) {
1965 			listener->tcp_syn_defense = B_FALSE;
1966 			if (listener->tcp_ip_addr_cache != NULL) {
1967 				kmem_free(listener->tcp_ip_addr_cache,
1968 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
1969 				listener->tcp_ip_addr_cache = NULL;
1970 			}
1971 		}
1972 		/*
1973 		 * Transfer tcp_conn_req_max to the eager so that when
1974 		 * a disconnect occurs we can revert the endpoint to the
1975 		 * listen state.
1976 		 */
1977 		eager->tcp_conn_req_max = listener->tcp_conn_req_max;
1978 		ASSERT(listener->tcp_conn_req_cnt_q0 == 0);
1979 		/*
1980 		 * Get a reference on the acceptor just like the
1981 		 * tcp_acceptor_hash_lookup below.
1982 		 */
1983 		acceptor = listener;
1984 		CONN_INC_REF(acceptor->tcp_connp);
1985 	} else {
1986 		acceptor = tcp_acceptor_hash_lookup(acceptor_id);
1987 		if (acceptor == NULL) {
1988 			if (listener->tcp_debug) {
1989 				(void) strlog(TCP_MOD_ID, 0, 1,
1990 				    SL_ERROR|SL_TRACE,
1991 				    "tcp_accept: did not find acceptor 0x%x\n",
1992 				    acceptor_id);
1993 			}
1994 			mutex_exit(&listener->tcp_eager_lock);
1995 			tcp_err_ack(listener, mp, TPROVMISMATCH, 0);
1996 			return;
1997 		}
1998 		/*
1999 		 * Verify acceptor state. The acceptable states for an acceptor
2000 		 * include TCPS_IDLE and TCPS_BOUND.
2001 		 */
2002 		switch (acceptor->tcp_state) {
2003 		case TCPS_IDLE:
2004 			/* FALLTHRU */
2005 		case TCPS_BOUND:
2006 			break;
2007 		default:
2008 			CONN_DEC_REF(acceptor->tcp_connp);
2009 			mutex_exit(&listener->tcp_eager_lock);
2010 			tcp_err_ack(listener, mp, TOUTSTATE, 0);
2011 			return;
2012 		}
2013 	}
2014 
2015 	/* The listener must be in TCPS_LISTEN */
2016 	if (listener->tcp_state != TCPS_LISTEN) {
2017 		CONN_DEC_REF(acceptor->tcp_connp);
2018 		mutex_exit(&listener->tcp_eager_lock);
2019 		tcp_err_ack(listener, mp, TOUTSTATE, 0);
2020 		return;
2021 	}
2022 
2023 	/*
2024 	 * Rendezvous with an eager connection request packet hanging off
2025 	 * 'tcp' that has the 'seqnum' tag.  We tagged the detached open
2026 	 * tcp structure when the connection packet arrived in
2027 	 * tcp_conn_request().
2028 	 */
2029 	seqnum = tcr->SEQ_number;
2030 	eager = listener;
2031 	do {
2032 		eager = eager->tcp_eager_next_q;
2033 		if (eager == NULL) {
2034 			CONN_DEC_REF(acceptor->tcp_connp);
2035 			mutex_exit(&listener->tcp_eager_lock);
2036 			tcp_err_ack(listener, mp, TBADSEQ, 0);
2037 			return;
2038 		}
2039 	} while (eager->tcp_conn_req_seqnum != seqnum);
2040 	mutex_exit(&listener->tcp_eager_lock);
2041 
2042 	/*
2043 	 * At this point, both acceptor and listener have 2 ref
2044 	 * that they begin with. Acceptor has one additional ref
2045 	 * we placed in lookup while listener has 3 additional
2046 	 * ref for being behind the squeue (tcp_accept() is
2047 	 * done on listener's squeue); being in classifier hash;
2048 	 * and eager's ref on listener.
2049 	 */
2050 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2051 	ASSERT(acceptor->tcp_connp->conn_ref >= 3);
2052 
2053 	/*
2054 	 * The eager at this point is set in its own squeue and
2055 	 * could easily have been killed (tcp_accept_finish will
2056 	 * deal with that) because of a TH_RST so we can only
2057 	 * ASSERT for a single ref.
2058 	 */
2059 	ASSERT(eager->tcp_connp->conn_ref >= 1);
2060 
2061 	/* Pre allocate the stroptions mblk also */
2062 	opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
2063 	if (opt_mp == NULL) {
2064 		CONN_DEC_REF(acceptor->tcp_connp);
2065 		CONN_DEC_REF(eager->tcp_connp);
2066 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2067 		return;
2068 	}
2069 	DB_TYPE(opt_mp) = M_SETOPTS;
2070 	opt_mp->b_wptr += sizeof (struct stroptions);
2071 
2072 	/*
2073 	 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
2074 	 * from listener to acceptor. The message is chained on opt_mp
2075 	 * which will be sent onto eager's squeue.
2076 	 */
2077 	if (listener->tcp_bound_if != 0) {
2078 		/* allocate optmgmt req */
2079 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2080 		    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
2081 		    sizeof (int));
2082 		if (mp1 != NULL)
2083 			linkb(opt_mp, mp1);
2084 	}
2085 	if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
2086 		uint_t on = 1;
2087 
2088 		/* allocate optmgmt req */
2089 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2090 		    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
2091 		if (mp1 != NULL)
2092 			linkb(opt_mp, mp1);
2093 	}
2094 
2095 	/* Re-use mp1 to hold a copy of mp, in case reallocb fails */
2096 	if ((mp1 = copymsg(mp)) == NULL) {
2097 		CONN_DEC_REF(acceptor->tcp_connp);
2098 		CONN_DEC_REF(eager->tcp_connp);
2099 		freemsg(opt_mp);
2100 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2101 		return;
2102 	}
2103 
2104 	tcr = (struct T_conn_res *)mp1->b_rptr;
2105 
2106 	/*
2107 	 * This is an expanded version of mi_tpi_ok_ack_alloc()
2108 	 * which allocates a larger mblk and appends the new
2109 	 * local address to the ok_ack.  The address is copied by
2110 	 * soaccept() for getsockname().
2111 	 */
2112 	{
2113 		int extra;
2114 
2115 		extra = (eager->tcp_family == AF_INET) ?
2116 		    sizeof (sin_t) : sizeof (sin6_t);
2117 
2118 		/*
2119 		 * Try to re-use mp, if possible.  Otherwise, allocate
2120 		 * an mblk and return it as ok_mp.  In any case, mp
2121 		 * is no longer usable upon return.
2122 		 */
2123 		if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) {
2124 			CONN_DEC_REF(acceptor->tcp_connp);
2125 			CONN_DEC_REF(eager->tcp_connp);
2126 			freemsg(opt_mp);
2127 			/* Original mp has been freed by now, so use mp1 */
2128 			tcp_err_ack(listener, mp1, TSYSERR, ENOMEM);
2129 			return;
2130 		}
2131 
2132 		mp = NULL;	/* We should never use mp after this point */
2133 
2134 		switch (extra) {
2135 		case sizeof (sin_t): {
2136 				sin_t *sin = (sin_t *)ok_mp->b_wptr;
2137 
2138 				ok_mp->b_wptr += extra;
2139 				sin->sin_family = AF_INET;
2140 				sin->sin_port = eager->tcp_lport;
2141 				sin->sin_addr.s_addr =
2142 				    eager->tcp_ipha->ipha_src;
2143 				break;
2144 			}
2145 		case sizeof (sin6_t): {
2146 				sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr;
2147 
2148 				ok_mp->b_wptr += extra;
2149 				sin6->sin6_family = AF_INET6;
2150 				sin6->sin6_port = eager->tcp_lport;
2151 				if (eager->tcp_ipversion == IPV4_VERSION) {
2152 					sin6->sin6_flowinfo = 0;
2153 					IN6_IPADDR_TO_V4MAPPED(
2154 					    eager->tcp_ipha->ipha_src,
2155 					    &sin6->sin6_addr);
2156 				} else {
2157 					ASSERT(eager->tcp_ip6h != NULL);
2158 					sin6->sin6_flowinfo =
2159 					    eager->tcp_ip6h->ip6_vcf &
2160 					    ~IPV6_VERS_AND_FLOW_MASK;
2161 					sin6->sin6_addr =
2162 					    eager->tcp_ip6h->ip6_src;
2163 				}
2164 				break;
2165 			}
2166 		default:
2167 			break;
2168 		}
2169 		ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim);
2170 	}
2171 
2172 	/*
2173 	 * If there are no options we know that the T_CONN_RES will
2174 	 * succeed. However, we can't send the T_OK_ACK upstream until
2175 	 * the tcp_accept_swap is done since it would be dangerous to
2176 	 * let the application start using the new fd prior to the swap.
2177 	 */
2178 	tcp_accept_swap(listener, acceptor, eager);
2179 
2180 	/*
2181 	 * tcp_accept_swap unlinks eager from listener but does not drop
2182 	 * the eager's reference on the listener.
2183 	 */
2184 	ASSERT(eager->tcp_listener == NULL);
2185 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2186 
2187 	/*
2188 	 * The eager is now associated with its own queue. Insert in
2189 	 * the hash so that the connection can be reused for a future
2190 	 * T_CONN_RES.
2191 	 */
2192 	tcp_acceptor_hash_insert(acceptor_id, eager);
2193 
2194 	/*
2195 	 * We now do the processing of options with T_CONN_RES.
2196 	 * We delay till now since we wanted to have queue to pass to
2197 	 * option processing routines that points back to the right
2198 	 * instance structure which does not happen until after
2199 	 * tcp_accept_swap().
2200 	 *
2201 	 * Note:
2202 	 * The sanity of the logic here assumes that whatever options
2203 	 * are appropriate to inherit from listner=>eager are done
2204 	 * before this point, and whatever were to be overridden (or not)
2205 	 * in transfer logic from eager=>acceptor in tcp_accept_swap().
2206 	 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it
2207 	 *   before its ACCEPTOR_id comes down in T_CONN_RES ]
2208 	 * This may not be true at this point in time but can be fixed
2209 	 * independently. This option processing code starts with
2210 	 * the instantiated acceptor instance and the final queue at
2211 	 * this point.
2212 	 */
2213 
2214 	if (tcr->OPT_length != 0) {
2215 		/* Options to process */
2216 		int t_error = 0;
2217 		int sys_error = 0;
2218 		int do_disconnect = 0;
2219 
2220 		if (tcp_conprim_opt_process(eager, mp1,
2221 		    &do_disconnect, &t_error, &sys_error) < 0) {
2222 			eager->tcp_accept_error = 1;
2223 			if (do_disconnect) {
2224 				/*
2225 				 * An option failed which does not allow
2226 				 * connection to be accepted.
2227 				 *
2228 				 * We allow T_CONN_RES to succeed and
2229 				 * put a T_DISCON_IND on the eager queue.
2230 				 */
2231 				ASSERT(t_error == 0 && sys_error == 0);
2232 				eager->tcp_send_discon_ind = 1;
2233 			} else {
2234 				ASSERT(t_error != 0);
2235 				freemsg(ok_mp);
2236 				/*
2237 				 * Original mp was either freed or set
2238 				 * to ok_mp above, so use mp1 instead.
2239 				 */
2240 				tcp_err_ack(listener, mp1, t_error, sys_error);
2241 				goto finish;
2242 			}
2243 		}
2244 		/*
2245 		 * Most likely success in setting options (except if
2246 		 * eager->tcp_send_discon_ind set).
2247 		 * mp1 option buffer represented by OPT_length/offset
2248 		 * potentially modified and contains results of setting
2249 		 * options at this point
2250 		 */
2251 	}
2252 
2253 	/* We no longer need mp1, since all options processing has passed */
2254 	freemsg(mp1);
2255 
2256 	putnext(listener->tcp_rq, ok_mp);
2257 
2258 	mutex_enter(&listener->tcp_eager_lock);
2259 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
2260 		tcp_t	*tail;
2261 		mblk_t	*conn_ind;
2262 
2263 		/*
2264 		 * This path should not be executed if listener and
2265 		 * acceptor streams are the same.
2266 		 */
2267 		ASSERT(listener != acceptor);
2268 
2269 		tcp = listener->tcp_eager_prev_q0;
2270 		/*
2271 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
2272 		 * deferred T_conn_ind queue. We need to get to the head of
2273 		 * the queue in order to send up T_conn_ind the same order as
2274 		 * how the 3WHS is completed.
2275 		 */
2276 		while (tcp != listener) {
2277 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0)
2278 				break;
2279 			else
2280 				tcp = tcp->tcp_eager_prev_q0;
2281 		}
2282 		ASSERT(tcp != listener);
2283 		conn_ind = tcp->tcp_conn.tcp_eager_conn_ind;
2284 		ASSERT(conn_ind != NULL);
2285 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
2286 
2287 		/* Move from q0 to q */
2288 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
2289 		listener->tcp_conn_req_cnt_q0--;
2290 		listener->tcp_conn_req_cnt_q++;
2291 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
2292 		    tcp->tcp_eager_prev_q0;
2293 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
2294 		    tcp->tcp_eager_next_q0;
2295 		tcp->tcp_eager_prev_q0 = NULL;
2296 		tcp->tcp_eager_next_q0 = NULL;
2297 		tcp->tcp_conn_def_q0 = B_FALSE;
2298 
2299 		/*
2300 		 * Insert at end of the queue because sockfs sends
2301 		 * down T_CONN_RES in chronological order. Leaving
2302 		 * the older conn indications at front of the queue
2303 		 * helps reducing search time.
2304 		 */
2305 		tail = listener->tcp_eager_last_q;
2306 		if (tail != NULL)
2307 			tail->tcp_eager_next_q = tcp;
2308 		else
2309 			listener->tcp_eager_next_q = tcp;
2310 		listener->tcp_eager_last_q = tcp;
2311 		tcp->tcp_eager_next_q = NULL;
2312 		mutex_exit(&listener->tcp_eager_lock);
2313 		putnext(tcp->tcp_rq, conn_ind);
2314 	} else {
2315 		mutex_exit(&listener->tcp_eager_lock);
2316 	}
2317 
2318 	/*
2319 	 * Done with the acceptor - free it
2320 	 *
2321 	 * Note: from this point on, no access to listener should be made
2322 	 * as listener can be equal to acceptor.
2323 	 */
2324 finish:
2325 	ASSERT(acceptor->tcp_detached);
2326 	acceptor->tcp_rq = tcp_g_q;
2327 	acceptor->tcp_wq = WR(tcp_g_q);
2328 	(void) tcp_clean_death(acceptor, 0, 2);
2329 	CONN_DEC_REF(acceptor->tcp_connp);
2330 
2331 	/*
2332 	 * In case we already received a FIN we have to make tcp_rput send
2333 	 * the ordrel_ind. This will also send up a window update if the window
2334 	 * has opened up.
2335 	 *
2336 	 * In the normal case of a successful connection acceptance
2337 	 * we give the O_T_BIND_REQ to the read side put procedure as an
2338 	 * indication that this was just accepted. This tells tcp_rput to
2339 	 * pass up any data queued in tcp_rcv_list.
2340 	 *
2341 	 * In the fringe case where options sent with T_CONN_RES failed and
2342 	 * we required, we would be indicating a T_DISCON_IND to blow
2343 	 * away this connection.
2344 	 */
2345 
2346 	/*
2347 	 * XXX: we currently have a problem if XTI application closes the
2348 	 * acceptor stream in between. This problem exists in on10-gate also
2349 	 * and is well know but nothing can be done short of major rewrite
2350 	 * to fix it. Now it is possible to take care of it by assigning TLI/XTI
2351 	 * eager same squeue as listener (we can distinguish non socket
2352 	 * listeners at the time of handling a SYN in tcp_conn_request)
2353 	 * and do most of the work that tcp_accept_finish does here itself
2354 	 * and then get behind the acceptor squeue to access the acceptor
2355 	 * queue.
2356 	 */
2357 	/*
2358 	 * We already have a ref on tcp so no need to do one before squeue_fill
2359 	 */
2360 	squeue_fill(eager->tcp_connp->conn_sqp, opt_mp,
2361 	    tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH);
2362 }
2363 
2364 /*
2365  * Swap information between the eager and acceptor for a TLI/XTI client.
2366  * The sockfs accept is done on the acceptor stream and control goes
2367  * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not
2368  * called. In either case, both the eager and listener are in their own
2369  * perimeter (squeue) and the code has to deal with potential race.
2370  *
2371  * See the block comment on top of tcp_accept() and tcp_wput_accept().
2372  */
2373 static void
2374 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager)
2375 {
2376 	conn_t	*econnp, *aconnp;
2377 
2378 	ASSERT(eager->tcp_rq == listener->tcp_rq);
2379 	ASSERT(eager->tcp_detached && !acceptor->tcp_detached);
2380 	ASSERT(!eager->tcp_hard_bound);
2381 	ASSERT(!TCP_IS_SOCKET(acceptor));
2382 	ASSERT(!TCP_IS_SOCKET(eager));
2383 	ASSERT(!TCP_IS_SOCKET(listener));
2384 
2385 	acceptor->tcp_detached = B_TRUE;
2386 	/*
2387 	 * To permit stream re-use by TLI/XTI, the eager needs a copy of
2388 	 * the acceptor id.
2389 	 */
2390 	eager->tcp_acceptor_id = acceptor->tcp_acceptor_id;
2391 
2392 	/* remove eager from listen list... */
2393 	mutex_enter(&listener->tcp_eager_lock);
2394 	tcp_eager_unlink(eager);
2395 	ASSERT(eager->tcp_eager_next_q == NULL &&
2396 	    eager->tcp_eager_last_q == NULL);
2397 	ASSERT(eager->tcp_eager_next_q0 == NULL &&
2398 	    eager->tcp_eager_prev_q0 == NULL);
2399 	mutex_exit(&listener->tcp_eager_lock);
2400 	eager->tcp_rq = acceptor->tcp_rq;
2401 	eager->tcp_wq = acceptor->tcp_wq;
2402 
2403 	econnp = eager->tcp_connp;
2404 	aconnp = acceptor->tcp_connp;
2405 
2406 	eager->tcp_rq->q_ptr = econnp;
2407 	eager->tcp_wq->q_ptr = econnp;
2408 	eager->tcp_detached = B_FALSE;
2409 
2410 	ASSERT(eager->tcp_ack_tid == 0);
2411 
2412 	econnp->conn_dev = aconnp->conn_dev;
2413 	eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred;
2414 	econnp->conn_zoneid = aconnp->conn_zoneid;
2415 	aconnp->conn_cred = NULL;
2416 
2417 	/* Do the IPC initialization */
2418 	CONN_INC_REF(econnp);
2419 
2420 	econnp->conn_multicast_loop = aconnp->conn_multicast_loop;
2421 	econnp->conn_af_isv6 = aconnp->conn_af_isv6;
2422 	econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6;
2423 	econnp->conn_ulp = aconnp->conn_ulp;
2424 
2425 	/* Done with old IPC. Drop its ref on its connp */
2426 	CONN_DEC_REF(aconnp);
2427 }
2428 
2429 
2430 /*
2431  * Adapt to the information, such as rtt and rtt_sd, provided from the
2432  * ire cached in conn_cache_ire. If no ire cached, do a ire lookup.
2433  *
2434  * Checks for multicast and broadcast destination address.
2435  * Returns zero on failure; non-zero if ok.
2436  *
2437  * Note that the MSS calculation here is based on the info given in
2438  * the IRE.  We do not do any calculation based on TCP options.  They
2439  * will be handled in tcp_rput_other() and tcp_rput_data() when TCP
2440  * knows which options to use.
2441  *
2442  * Note on how TCP gets its parameters for a connection.
2443  *
2444  * When a tcp_t structure is allocated, it gets all the default parameters.
2445  * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd,
2446  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
2447  * default.  But if there is an associated tcp_host_param, it will override
2448  * the metrics.
2449  *
2450  * An incoming SYN with a multicast or broadcast destination address, is dropped
2451  * in 1 of 2 places.
2452  *
2453  * 1. If the packet was received over the wire it is dropped in
2454  * ip_rput_process_broadcast()
2455  *
2456  * 2. If the packet was received through internal IP loopback, i.e. the packet
2457  * was generated and received on the same machine, it is dropped in
2458  * ip_wput_local()
2459  *
2460  * An incoming SYN with a multicast or broadcast source address is always
2461  * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to
2462  * reject an attempt to connect to a broadcast or multicast (destination)
2463  * address.
2464  */
2465 static int
2466 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp)
2467 {
2468 	tcp_hsp_t	*hsp;
2469 	ire_t		*ire;
2470 	ire_t		*sire = NULL;
2471 	iulp_t		*ire_uinfo = NULL;
2472 	uint32_t	mss_max;
2473 	uint32_t	mss;
2474 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2475 	conn_t		*connp = tcp->tcp_connp;
2476 	boolean_t	ire_cacheable = B_FALSE;
2477 	zoneid_t	zoneid = connp->conn_zoneid;
2478 	ill_t		*ill = NULL;
2479 	boolean_t	incoming = (ire_mp == NULL);
2480 
2481 	ASSERT(connp->conn_ire_cache == NULL);
2482 
2483 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2484 
2485 		if (CLASSD(tcp->tcp_connp->conn_rem)) {
2486 			BUMP_MIB(&ip_mib, ipInDiscards);
2487 			return (0);
2488 		}
2489 		/*
2490 		 * If IP_NEXTHOP is set, then look for an IRE_CACHE
2491 		 * for the destination with the nexthop as gateway.
2492 		 * ire_ctable_lookup() is used because this particular
2493 		 * ire, if it exists, will be marked private.
2494 		 * If that is not available, use the interface ire
2495 		 * for the nexthop.
2496 		 */
2497 		if (tcp->tcp_connp->conn_nexthop_set) {
2498 			ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem,
2499 			    tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid,
2500 			    MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW);
2501 			if (ire == NULL) {
2502 				ire = ire_ftable_lookup(
2503 				    tcp->tcp_connp->conn_nexthop_v4,
2504 				    0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0,
2505 				    MATCH_IRE_TYPE);
2506 				if (ire == NULL)
2507 					return (0);
2508 			} else {
2509 				ire_uinfo = &ire->ire_uinfo;
2510 			}
2511 		} else {
2512 			ire = ire_cache_lookup(tcp->tcp_connp->conn_rem,
2513 			    zoneid);
2514 			if (ire != NULL) {
2515 				ire_cacheable = B_TRUE;
2516 				ire_uinfo = (ire_mp != NULL) ?
2517 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2518 				    &ire->ire_uinfo;
2519 
2520 			} else {
2521 				if (ire_mp == NULL) {
2522 					ire = ire_ftable_lookup(
2523 					    tcp->tcp_connp->conn_rem,
2524 					    0, 0, 0, NULL, &sire, zoneid, 0,
2525 					    (MATCH_IRE_RECURSIVE |
2526 					    MATCH_IRE_DEFAULT));
2527 					if (ire == NULL)
2528 						return (0);
2529 					ire_uinfo = (sire != NULL) ?
2530 					    &sire->ire_uinfo :
2531 					    &ire->ire_uinfo;
2532 				} else {
2533 					ire = (ire_t *)ire_mp->b_rptr;
2534 					ire_uinfo =
2535 					    &((ire_t *)
2536 					    ire_mp->b_rptr)->ire_uinfo;
2537 				}
2538 			}
2539 		}
2540 		ASSERT(ire != NULL);
2541 
2542 		if ((ire->ire_src_addr == INADDR_ANY) ||
2543 		    (ire->ire_type & IRE_BROADCAST)) {
2544 			/*
2545 			 * ire->ire_mp is non null when ire_mp passed in is used
2546 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2547 			 */
2548 			if (ire->ire_mp == NULL)
2549 				ire_refrele(ire);
2550 			if (sire != NULL)
2551 				ire_refrele(sire);
2552 			return (0);
2553 		}
2554 
2555 		if (tcp->tcp_ipha->ipha_src == INADDR_ANY) {
2556 			ipaddr_t src_addr;
2557 
2558 			/*
2559 			 * ip_bind_connected() has stored the correct source
2560 			 * address in conn_src.
2561 			 */
2562 			src_addr = tcp->tcp_connp->conn_src;
2563 			tcp->tcp_ipha->ipha_src = src_addr;
2564 			/*
2565 			 * Copy of the src addr. in tcp_t is needed
2566 			 * for the lookup funcs.
2567 			 */
2568 			IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6);
2569 		}
2570 		/*
2571 		 * Set the fragment bit so that IP will tell us if the MTU
2572 		 * should change. IP tells us the latest setting of
2573 		 * ip_path_mtu_discovery through ire_frag_flag.
2574 		 */
2575 		if (ip_path_mtu_discovery) {
2576 			tcp->tcp_ipha->ipha_fragment_offset_and_flags =
2577 			    htons(IPH_DF);
2578 		}
2579 		/*
2580 		 * If ire_uinfo is NULL, this is the IRE_INTERFACE case
2581 		 * for IP_NEXTHOP. No cache ire has been found for the
2582 		 * destination and we are working with the nexthop's
2583 		 * interface ire. Since we need to forward all packets
2584 		 * to the nexthop first, we "blindly" set tcp_localnet
2585 		 * to false, eventhough the destination may also be
2586 		 * onlink.
2587 		 */
2588 		if (ire_uinfo == NULL)
2589 			tcp->tcp_localnet = 0;
2590 		else
2591 			tcp->tcp_localnet = (ire->ire_gateway_addr == 0);
2592 	} else {
2593 		/*
2594 		 * For incoming connection ire_mp = NULL
2595 		 * For outgoing connection ire_mp != NULL
2596 		 * Technically we should check conn_incoming_ill
2597 		 * when ire_mp is NULL and conn_outgoing_ill when
2598 		 * ire_mp is non-NULL. But this is performance
2599 		 * critical path and for IPV*_BOUND_IF, outgoing
2600 		 * and incoming ill are always set to the same value.
2601 		 */
2602 		ill_t	*dst_ill = NULL;
2603 		ipif_t  *dst_ipif = NULL;
2604 		int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT;
2605 
2606 		ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
2607 
2608 		if (connp->conn_outgoing_ill != NULL) {
2609 			/* Outgoing or incoming path */
2610 			int   err;
2611 
2612 			dst_ill = conn_get_held_ill(connp,
2613 			    &connp->conn_outgoing_ill, &err);
2614 			if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) {
2615 				ip1dbg(("tcp_adapt_ire: ill_lookup failed\n"));
2616 				return (0);
2617 			}
2618 			match_flags |= MATCH_IRE_ILL;
2619 			dst_ipif = dst_ill->ill_ipif;
2620 		}
2621 		ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6,
2622 		    0, 0, dst_ipif, zoneid, match_flags);
2623 
2624 		if (ire != NULL) {
2625 			ire_cacheable = B_TRUE;
2626 			ire_uinfo = (ire_mp != NULL) ?
2627 			    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2628 			    &ire->ire_uinfo;
2629 		} else {
2630 			if (ire_mp == NULL) {
2631 				ire = ire_ftable_lookup_v6(
2632 				    &tcp->tcp_connp->conn_remv6,
2633 				    0, 0, 0, dst_ipif, &sire, zoneid,
2634 				    0, match_flags);
2635 				if (ire == NULL) {
2636 					if (dst_ill != NULL)
2637 						ill_refrele(dst_ill);
2638 					return (0);
2639 				}
2640 				ire_uinfo = (sire != NULL) ? &sire->ire_uinfo :
2641 				    &ire->ire_uinfo;
2642 			} else {
2643 				ire = (ire_t *)ire_mp->b_rptr;
2644 				ire_uinfo =
2645 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo;
2646 			}
2647 		}
2648 		if (dst_ill != NULL)
2649 			ill_refrele(dst_ill);
2650 
2651 		ASSERT(ire != NULL);
2652 		ASSERT(ire_uinfo != NULL);
2653 
2654 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) ||
2655 		    IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
2656 			/*
2657 			 * ire->ire_mp is non null when ire_mp passed in is used
2658 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2659 			 */
2660 			if (ire->ire_mp == NULL)
2661 				ire_refrele(ire);
2662 			if (sire != NULL)
2663 				ire_refrele(sire);
2664 			return (0);
2665 		}
2666 
2667 		if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
2668 			in6_addr_t	src_addr;
2669 
2670 			/*
2671 			 * ip_bind_connected_v6() has stored the correct source
2672 			 * address per IPv6 addr. selection policy in
2673 			 * conn_src_v6.
2674 			 */
2675 			src_addr = tcp->tcp_connp->conn_srcv6;
2676 
2677 			tcp->tcp_ip6h->ip6_src = src_addr;
2678 			/*
2679 			 * Copy of the src addr. in tcp_t is needed
2680 			 * for the lookup funcs.
2681 			 */
2682 			tcp->tcp_ip_src_v6 = src_addr;
2683 			ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src,
2684 			    &connp->conn_srcv6));
2685 		}
2686 		tcp->tcp_localnet =
2687 		    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6);
2688 	}
2689 
2690 	/*
2691 	 * This allows applications to fail quickly when connections are made
2692 	 * to dead hosts. Hosts can be labeled dead by adding a reject route
2693 	 * with both the RTF_REJECT and RTF_PRIVATE flags set.
2694 	 */
2695 	if ((ire->ire_flags & RTF_REJECT) &&
2696 	    (ire->ire_flags & RTF_PRIVATE))
2697 		goto error;
2698 
2699 	/*
2700 	 * Make use of the cached rtt and rtt_sd values to calculate the
2701 	 * initial RTO.  Note that they are already initialized in
2702 	 * tcp_init_values().
2703 	 * If ire_uinfo is NULL, i.e., we do not have a cache ire for
2704 	 * IP_NEXTHOP, but instead are using the interface ire for the
2705 	 * nexthop, then we do not use the ire_uinfo from that ire to
2706 	 * do any initializations.
2707 	 */
2708 	if (ire_uinfo != NULL) {
2709 		if (ire_uinfo->iulp_rtt != 0) {
2710 			clock_t	rto;
2711 
2712 			tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt;
2713 			tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd;
2714 			rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2715 			    tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5);
2716 
2717 			if (rto > tcp_rexmit_interval_max) {
2718 				tcp->tcp_rto = tcp_rexmit_interval_max;
2719 			} else if (rto < tcp_rexmit_interval_min) {
2720 				tcp->tcp_rto = tcp_rexmit_interval_min;
2721 			} else {
2722 				tcp->tcp_rto = rto;
2723 			}
2724 		}
2725 		if (ire_uinfo->iulp_ssthresh != 0)
2726 			tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh;
2727 		else
2728 			tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2729 		if (ire_uinfo->iulp_spipe > 0) {
2730 			tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe,
2731 			    tcp_max_buf);
2732 			if (tcp_snd_lowat_fraction != 0)
2733 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2734 				    tcp_snd_lowat_fraction;
2735 			(void) tcp_maxpsz_set(tcp, B_TRUE);
2736 		}
2737 		/*
2738 		 * Note that up till now, acceptor always inherits receive
2739 		 * window from the listener.  But if there is a metrics
2740 		 * associated with a host, we should use that instead of
2741 		 * inheriting it from listener. Thus we need to pass this
2742 		 * info back to the caller.
2743 		 */
2744 		if (ire_uinfo->iulp_rpipe > 0) {
2745 			tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, tcp_max_buf);
2746 		}
2747 
2748 		if (ire_uinfo->iulp_rtomax > 0) {
2749 			tcp->tcp_second_timer_threshold =
2750 			    ire_uinfo->iulp_rtomax;
2751 		}
2752 
2753 		/*
2754 		 * Use the metric option settings, iulp_tstamp_ok and
2755 		 * iulp_wscale_ok, only for active open. What this means
2756 		 * is that if the other side uses timestamp or window
2757 		 * scale option, TCP will also use those options. That
2758 		 * is for passive open.  If the application sets a
2759 		 * large window, window scale is enabled regardless of
2760 		 * the value in iulp_wscale_ok.  This is the behavior
2761 		 * since 2.6.  So we keep it.
2762 		 * The only case left in passive open processing is the
2763 		 * check for SACK.
2764 		 * For ECN, it should probably be like SACK.  But the
2765 		 * current value is binary, so we treat it like the other
2766 		 * cases.  The metric only controls active open.For passive
2767 		 * open, the ndd param, tcp_ecn_permitted, controls the
2768 		 * behavior.
2769 		 */
2770 		if (!tcp_detached) {
2771 			/*
2772 			 * The if check means that the following can only
2773 			 * be turned on by the metrics only IRE, but not off.
2774 			 */
2775 			if (ire_uinfo->iulp_tstamp_ok)
2776 				tcp->tcp_snd_ts_ok = B_TRUE;
2777 			if (ire_uinfo->iulp_wscale_ok)
2778 				tcp->tcp_snd_ws_ok = B_TRUE;
2779 			if (ire_uinfo->iulp_sack == 2)
2780 				tcp->tcp_snd_sack_ok = B_TRUE;
2781 			if (ire_uinfo->iulp_ecn_ok)
2782 				tcp->tcp_ecn_ok = B_TRUE;
2783 		} else {
2784 			/*
2785 			 * Passive open.
2786 			 *
2787 			 * As above, the if check means that SACK can only be
2788 			 * turned on by the metric only IRE.
2789 			 */
2790 			if (ire_uinfo->iulp_sack > 0) {
2791 				tcp->tcp_snd_sack_ok = B_TRUE;
2792 			}
2793 		}
2794 	}
2795 
2796 
2797 	/*
2798 	 * XXX: Note that currently, ire_max_frag can be as small as 68
2799 	 * because of PMTUd.  So tcp_mss may go to negative if combined
2800 	 * length of all those options exceeds 28 bytes.  But because
2801 	 * of the tcp_mss_min check below, we may not have a problem if
2802 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
2803 	 * the negative problem still exists.  And the check defeats PMTUd.
2804 	 * In fact, if PMTUd finds that the MSS should be smaller than
2805 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
2806 	 * value.
2807 	 *
2808 	 * We do not deal with that now.  All those problems related to
2809 	 * PMTUd will be fixed later.
2810 	 */
2811 	ASSERT(ire->ire_max_frag != 0);
2812 	mss = tcp->tcp_if_mtu = ire->ire_max_frag;
2813 	if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) {
2814 		if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) {
2815 			mss = MIN(mss, IPV6_MIN_MTU);
2816 		}
2817 	}
2818 
2819 	/* Sanity check for MSS value. */
2820 	if (tcp->tcp_ipversion == IPV4_VERSION)
2821 		mss_max = tcp_mss_max_ipv4;
2822 	else
2823 		mss_max = tcp_mss_max_ipv6;
2824 
2825 	if (tcp->tcp_ipversion == IPV6_VERSION &&
2826 	    (ire->ire_frag_flag & IPH_FRAG_HDR)) {
2827 		/*
2828 		 * After receiving an ICMPv6 "packet too big" message with a
2829 		 * MTU < 1280, and for multirouted IPv6 packets, the IP layer
2830 		 * will insert a 8-byte fragment header in every packet; we
2831 		 * reduce the MSS by that amount here.
2832 		 */
2833 		mss -= sizeof (ip6_frag_t);
2834 	}
2835 
2836 	if (tcp->tcp_ipsec_overhead == 0)
2837 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
2838 
2839 	mss -= tcp->tcp_ipsec_overhead;
2840 
2841 	if (mss < tcp_mss_min)
2842 		mss = tcp_mss_min;
2843 	if (mss > mss_max)
2844 		mss = mss_max;
2845 
2846 	/* Note that this is the maximum MSS, excluding all options. */
2847 	tcp->tcp_mss = mss;
2848 
2849 	/*
2850 	 * Initialize the ISS here now that we have the full connection ID.
2851 	 * The RFC 1948 method of initial sequence number generation requires
2852 	 * knowledge of the full connection ID before setting the ISS.
2853 	 */
2854 
2855 	tcp_iss_init(tcp);
2856 
2857 	if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL))
2858 		tcp->tcp_loopback = B_TRUE;
2859 
2860 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2861 		hsp = tcp_hsp_lookup(tcp->tcp_remote);
2862 	} else {
2863 		hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6);
2864 	}
2865 
2866 	if (hsp != NULL) {
2867 		/* Only modify if we're going to make them bigger */
2868 		if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) {
2869 			tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace;
2870 			if (tcp_snd_lowat_fraction != 0)
2871 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2872 					tcp_snd_lowat_fraction;
2873 		}
2874 
2875 		if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) {
2876 			tcp->tcp_rwnd = hsp->tcp_hsp_recvspace;
2877 		}
2878 
2879 		/* Copy timestamp flag only for active open */
2880 		if (!tcp_detached)
2881 			tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp;
2882 	}
2883 
2884 	if (sire != NULL)
2885 		IRE_REFRELE(sire);
2886 
2887 	/*
2888 	 * If we got an IRE_CACHE and an ILL, go through their properties;
2889 	 * otherwise, this is deferred until later when we have an IRE_CACHE.
2890 	 */
2891 	if (tcp->tcp_loopback ||
2892 	    (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) {
2893 		/*
2894 		 * For incoming, see if this tcp may be MDT-capable.  For
2895 		 * outgoing, this process has been taken care of through
2896 		 * tcp_rput_other.
2897 		 */
2898 		tcp_ire_ill_check(tcp, ire, ill, incoming);
2899 		tcp->tcp_ire_ill_check_done = B_TRUE;
2900 	}
2901 
2902 	mutex_enter(&connp->conn_lock);
2903 	/*
2904 	 * Make sure that conn is not marked incipient
2905 	 * for incoming connections. A blind
2906 	 * removal of incipient flag is cheaper than
2907 	 * check and removal.
2908 	 */
2909 	connp->conn_state_flags &= ~CONN_INCIPIENT;
2910 
2911 	/* Must not cache forwarding table routes. */
2912 	if (ire_cacheable) {
2913 		rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
2914 		if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
2915 			connp->conn_ire_cache = ire;
2916 			IRE_UNTRACE_REF(ire);
2917 			rw_exit(&ire->ire_bucket->irb_lock);
2918 			mutex_exit(&connp->conn_lock);
2919 			return (1);
2920 		}
2921 		rw_exit(&ire->ire_bucket->irb_lock);
2922 	}
2923 	mutex_exit(&connp->conn_lock);
2924 
2925 	if (ire->ire_mp == NULL)
2926 		ire_refrele(ire);
2927 	return (1);
2928 
2929 error:
2930 	if (ire->ire_mp == NULL)
2931 		ire_refrele(ire);
2932 	if (sire != NULL)
2933 		ire_refrele(sire);
2934 	return (0);
2935 }
2936 
2937 /*
2938  * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a
2939  * O_T_BIND_REQ/T_BIND_REQ message.
2940  */
2941 static void
2942 tcp_bind(tcp_t *tcp, mblk_t *mp)
2943 {
2944 	sin_t	*sin;
2945 	sin6_t	*sin6;
2946 	mblk_t	*mp1;
2947 	in_port_t requested_port;
2948 	in_port_t allocated_port;
2949 	struct T_bind_req *tbr;
2950 	boolean_t	bind_to_req_port_only;
2951 	boolean_t	backlog_update = B_FALSE;
2952 	boolean_t	user_specified;
2953 	in6_addr_t	v6addr;
2954 	ipaddr_t	v4addr;
2955 	uint_t	origipversion;
2956 	int	err;
2957 	queue_t *q = tcp->tcp_wq;
2958 
2959 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
2960 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
2961 		if (tcp->tcp_debug) {
2962 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
2963 			    "tcp_bind: bad req, len %u",
2964 			    (uint_t)(mp->b_wptr - mp->b_rptr));
2965 		}
2966 		tcp_err_ack(tcp, mp, TPROTO, 0);
2967 		return;
2968 	}
2969 	/* Make sure the largest address fits */
2970 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
2971 	if (mp1 == NULL) {
2972 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
2973 		return;
2974 	}
2975 	mp = mp1;
2976 	tbr = (struct T_bind_req *)mp->b_rptr;
2977 	if (tcp->tcp_state >= TCPS_BOUND) {
2978 		if ((tcp->tcp_state == TCPS_BOUND ||
2979 		    tcp->tcp_state == TCPS_LISTEN) &&
2980 		    tcp->tcp_conn_req_max != tbr->CONIND_number &&
2981 		    tbr->CONIND_number > 0) {
2982 			/*
2983 			 * Handle listen() increasing CONIND_number.
2984 			 * This is more "liberal" then what the TPI spec
2985 			 * requires but is needed to avoid a t_unbind
2986 			 * when handling listen() since the port number
2987 			 * might be "stolen" between the unbind and bind.
2988 			 */
2989 			backlog_update = B_TRUE;
2990 			goto do_bind;
2991 		}
2992 		if (tcp->tcp_debug) {
2993 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
2994 			    "tcp_bind: bad state, %d", tcp->tcp_state);
2995 		}
2996 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
2997 		return;
2998 	}
2999 	origipversion = tcp->tcp_ipversion;
3000 
3001 	switch (tbr->ADDR_length) {
3002 	case 0:			/* request for a generic port */
3003 		tbr->ADDR_offset = sizeof (struct T_bind_req);
3004 		if (tcp->tcp_family == AF_INET) {
3005 			tbr->ADDR_length = sizeof (sin_t);
3006 			sin = (sin_t *)&tbr[1];
3007 			*sin = sin_null;
3008 			sin->sin_family = AF_INET;
3009 			mp->b_wptr = (uchar_t *)&sin[1];
3010 			tcp->tcp_ipversion = IPV4_VERSION;
3011 			IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr);
3012 		} else {
3013 			ASSERT(tcp->tcp_family == AF_INET6);
3014 			tbr->ADDR_length = sizeof (sin6_t);
3015 			sin6 = (sin6_t *)&tbr[1];
3016 			*sin6 = sin6_null;
3017 			sin6->sin6_family = AF_INET6;
3018 			mp->b_wptr = (uchar_t *)&sin6[1];
3019 			tcp->tcp_ipversion = IPV6_VERSION;
3020 			V6_SET_ZERO(v6addr);
3021 		}
3022 		requested_port = 0;
3023 		break;
3024 
3025 	case sizeof (sin_t):	/* Complete IPv4 address */
3026 		sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset,
3027 		    sizeof (sin_t));
3028 		if (sin == NULL || !OK_32PTR((char *)sin)) {
3029 			if (tcp->tcp_debug) {
3030 				(void) strlog(TCP_MOD_ID, 0, 1,
3031 				    SL_ERROR|SL_TRACE,
3032 				    "tcp_bind: bad address parameter, "
3033 				    "offset %d, len %d",
3034 				    tbr->ADDR_offset, tbr->ADDR_length);
3035 			}
3036 			tcp_err_ack(tcp, mp, TPROTO, 0);
3037 			return;
3038 		}
3039 		/*
3040 		 * With sockets sockfs will accept bogus sin_family in
3041 		 * bind() and replace it with the family used in the socket
3042 		 * call.
3043 		 */
3044 		if (sin->sin_family != AF_INET ||
3045 		    tcp->tcp_family != AF_INET) {
3046 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3047 			return;
3048 		}
3049 		requested_port = ntohs(sin->sin_port);
3050 		tcp->tcp_ipversion = IPV4_VERSION;
3051 		v4addr = sin->sin_addr.s_addr;
3052 		IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr);
3053 		break;
3054 
3055 	case sizeof (sin6_t): /* Complete IPv6 address */
3056 		sin6 = (sin6_t *)mi_offset_param(mp,
3057 		    tbr->ADDR_offset, sizeof (sin6_t));
3058 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
3059 			if (tcp->tcp_debug) {
3060 				(void) strlog(TCP_MOD_ID, 0, 1,
3061 				    SL_ERROR|SL_TRACE,
3062 				    "tcp_bind: bad IPv6 address parameter, "
3063 				    "offset %d, len %d", tbr->ADDR_offset,
3064 				    tbr->ADDR_length);
3065 			}
3066 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
3067 			return;
3068 		}
3069 		if (sin6->sin6_family != AF_INET6 ||
3070 		    tcp->tcp_family != AF_INET6) {
3071 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3072 			return;
3073 		}
3074 		requested_port = ntohs(sin6->sin6_port);
3075 		tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ?
3076 		    IPV4_VERSION : IPV6_VERSION;
3077 		v6addr = sin6->sin6_addr;
3078 		break;
3079 
3080 	default:
3081 		if (tcp->tcp_debug) {
3082 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3083 			    "tcp_bind: bad address length, %d",
3084 			    tbr->ADDR_length);
3085 		}
3086 		tcp_err_ack(tcp, mp, TBADADDR, 0);
3087 		return;
3088 	}
3089 	tcp->tcp_bound_source_v6 = v6addr;
3090 
3091 	/* Check for change in ipversion */
3092 	if (origipversion != tcp->tcp_ipversion) {
3093 		ASSERT(tcp->tcp_family == AF_INET6);
3094 		err = tcp->tcp_ipversion == IPV6_VERSION ?
3095 		    tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp);
3096 		if (err) {
3097 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3098 			return;
3099 		}
3100 	}
3101 
3102 	/*
3103 	 * Initialize family specific fields. Copy of the src addr.
3104 	 * in tcp_t is needed for the lookup funcs.
3105 	 */
3106 	if (tcp->tcp_ipversion == IPV6_VERSION) {
3107 		tcp->tcp_ip6h->ip6_src = v6addr;
3108 	} else {
3109 		IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src);
3110 	}
3111 	tcp->tcp_ip_src_v6 = v6addr;
3112 
3113 	/*
3114 	 * For O_T_BIND_REQ:
3115 	 * Verify that the target port/addr is available, or choose
3116 	 * another.
3117 	 * For  T_BIND_REQ:
3118 	 * Verify that the target port/addr is available or fail.
3119 	 * In both cases when it succeeds the tcp is inserted in the
3120 	 * bind hash table. This ensures that the operation is atomic
3121 	 * under the lock on the hash bucket.
3122 	 */
3123 	bind_to_req_port_only = requested_port != 0 &&
3124 	    tbr->PRIM_type != O_T_BIND_REQ;
3125 	/*
3126 	 * Get a valid port (within the anonymous range and should not
3127 	 * be a privileged one) to use if the user has not given a port.
3128 	 * If multiple threads are here, they may all start with
3129 	 * with the same initial port. But, it should be fine as long as
3130 	 * tcp_bindi will ensure that no two threads will be assigned
3131 	 * the same port.
3132 	 *
3133 	 * NOTE: XXX If a privileged process asks for an anonymous port, we
3134 	 * still check for ports only in the range > tcp_smallest_non_priv_port,
3135 	 * unless TCP_ANONPRIVBIND option is set.
3136 	 */
3137 	if (requested_port == 0) {
3138 		requested_port = tcp->tcp_anon_priv_bind ?
3139 		    tcp_get_next_priv_port() :
3140 		    tcp_update_next_port(tcp_next_port_to_try, B_TRUE);
3141 		user_specified = B_FALSE;
3142 	} else {
3143 		int i;
3144 		boolean_t priv = B_FALSE;
3145 		/*
3146 		 * If the requested_port is in the well-known privileged range,
3147 		 * verify that the stream was opened by a privileged user.
3148 		 * Note: No locks are held when inspecting tcp_g_*epriv_ports
3149 		 * but instead the code relies on:
3150 		 * - the fact that the address of the array and its size never
3151 		 *   changes
3152 		 * - the atomic assignment of the elements of the array
3153 		 */
3154 		if (requested_port < tcp_smallest_nonpriv_port) {
3155 			priv = B_TRUE;
3156 		} else {
3157 			for (i = 0; i < tcp_g_num_epriv_ports; i++) {
3158 				if (requested_port ==
3159 				    tcp_g_epriv_ports[i]) {
3160 					priv = B_TRUE;
3161 					break;
3162 				}
3163 			}
3164 		}
3165 		if (priv) {
3166 			cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred);
3167 
3168 			if (secpolicy_net_privaddr(cr, requested_port) != 0) {
3169 				if (tcp->tcp_debug) {
3170 					(void) strlog(TCP_MOD_ID, 0, 1,
3171 					    SL_ERROR|SL_TRACE,
3172 					    "tcp_bind: no priv for port %d",
3173 					    requested_port);
3174 				}
3175 				tcp_err_ack(tcp, mp, TACCES, 0);
3176 				return;
3177 			}
3178 		}
3179 		user_specified = B_TRUE;
3180 	}
3181 
3182 	allocated_port = tcp_bindi(tcp, requested_port, &v6addr,
3183 	    tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified);
3184 
3185 	if (allocated_port == 0) {
3186 		if (bind_to_req_port_only) {
3187 			if (tcp->tcp_debug) {
3188 				(void) strlog(TCP_MOD_ID, 0, 1,
3189 				    SL_ERROR|SL_TRACE,
3190 				    "tcp_bind: requested addr busy");
3191 			}
3192 			tcp_err_ack(tcp, mp, TADDRBUSY, 0);
3193 		} else {
3194 			/* If we are out of ports, fail the bind. */
3195 			if (tcp->tcp_debug) {
3196 				(void) strlog(TCP_MOD_ID, 0, 1,
3197 				    SL_ERROR|SL_TRACE,
3198 				    "tcp_bind: out of ports?");
3199 			}
3200 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3201 		}
3202 		return;
3203 	}
3204 	ASSERT(tcp->tcp_state == TCPS_BOUND);
3205 do_bind:
3206 	if (!backlog_update) {
3207 		if (tcp->tcp_family == AF_INET)
3208 			sin->sin_port = htons(allocated_port);
3209 		else
3210 			sin6->sin6_port = htons(allocated_port);
3211 	}
3212 	if (tcp->tcp_family == AF_INET) {
3213 		if (tbr->CONIND_number != 0) {
3214 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3215 			    sizeof (sin_t));
3216 		} else {
3217 			/* Just verify the local IP address */
3218 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN);
3219 		}
3220 	} else {
3221 		if (tbr->CONIND_number != 0) {
3222 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3223 			    sizeof (sin6_t));
3224 		} else {
3225 			/* Just verify the local IP address */
3226 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3227 			    IPV6_ADDR_LEN);
3228 		}
3229 	}
3230 	if (!mp1) {
3231 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3232 		return;
3233 	}
3234 
3235 	tbr->PRIM_type = T_BIND_ACK;
3236 	mp->b_datap->db_type = M_PCPROTO;
3237 
3238 	/* Chain in the reply mp for tcp_rput() */
3239 	mp1->b_cont = mp;
3240 	mp = mp1;
3241 
3242 	tcp->tcp_conn_req_max = tbr->CONIND_number;
3243 	if (tcp->tcp_conn_req_max) {
3244 		if (tcp->tcp_conn_req_max < tcp_conn_req_min)
3245 			tcp->tcp_conn_req_max = tcp_conn_req_min;
3246 		if (tcp->tcp_conn_req_max > tcp_conn_req_max_q)
3247 			tcp->tcp_conn_req_max = tcp_conn_req_max_q;
3248 		/*
3249 		 * If this is a listener, do not reset the eager list
3250 		 * and other stuffs.  Note that we don't check if the
3251 		 * existing eager list meets the new tcp_conn_req_max
3252 		 * requirement.
3253 		 */
3254 		if (tcp->tcp_state != TCPS_LISTEN) {
3255 			tcp->tcp_state = TCPS_LISTEN;
3256 			/* Initialize the chain. Don't need the eager_lock */
3257 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
3258 			tcp->tcp_second_ctimer_threshold =
3259 			    tcp_ip_abort_linterval;
3260 		}
3261 	}
3262 
3263 	/*
3264 	 * We can call ip_bind directly which returns a T_BIND_ACK mp. The
3265 	 * processing continues in tcp_rput_other().
3266 	 */
3267 	if (tcp->tcp_family == AF_INET6) {
3268 		ASSERT(tcp->tcp_connp->conn_af_isv6);
3269 		mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp);
3270 	} else {
3271 		ASSERT(!tcp->tcp_connp->conn_af_isv6);
3272 		mp = ip_bind_v4(q, mp, tcp->tcp_connp);
3273 	}
3274 	/*
3275 	 * If the bind cannot complete immediately
3276 	 * IP will arrange to call tcp_rput_other
3277 	 * when the bind completes.
3278 	 */
3279 	if (mp != NULL) {
3280 		tcp_rput_other(tcp, mp);
3281 	} else {
3282 		/*
3283 		 * Bind will be resumed later. Need to ensure
3284 		 * that conn doesn't disappear when that happens.
3285 		 * This will be decremented in ip_resume_tcp_bind().
3286 		 */
3287 		CONN_INC_REF(tcp->tcp_connp);
3288 	}
3289 }
3290 
3291 
3292 /*
3293  * If the "bind_to_req_port_only" parameter is set, if the requested port
3294  * number is available, return it, If not return 0
3295  *
3296  * If "bind_to_req_port_only" parameter is not set and
3297  * If the requested port number is available, return it.  If not, return
3298  * the first anonymous port we happen across.  If no anonymous ports are
3299  * available, return 0. addr is the requested local address, if any.
3300  *
3301  * In either case, when succeeding update the tcp_t to record the port number
3302  * and insert it in the bind hash table.
3303  *
3304  * Note that TCP over IPv4 and IPv6 sockets can use the same port number
3305  * without setting SO_REUSEADDR. This is needed so that they
3306  * can be viewed as two independent transport protocols.
3307  */
3308 static in_port_t
3309 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
3310     int reuseaddr, boolean_t quick_connect,
3311     boolean_t bind_to_req_port_only, boolean_t user_specified)
3312 {
3313 	/* number of times we have run around the loop */
3314 	int count = 0;
3315 	/* maximum number of times to run around the loop */
3316 	int loopmax;
3317 	zoneid_t zoneid = tcp->tcp_connp->conn_zoneid;
3318 
3319 	/*
3320 	 * Lookup for free addresses is done in a loop and "loopmax"
3321 	 * influences how long we spin in the loop
3322 	 */
3323 	if (bind_to_req_port_only) {
3324 		/*
3325 		 * If the requested port is busy, don't bother to look
3326 		 * for a new one. Setting loop maximum count to 1 has
3327 		 * that effect.
3328 		 */
3329 		loopmax = 1;
3330 	} else {
3331 		/*
3332 		 * If the requested port is busy, look for a free one
3333 		 * in the anonymous port range.
3334 		 * Set loopmax appropriately so that one does not look
3335 		 * forever in the case all of the anonymous ports are in use.
3336 		 */
3337 		if (tcp->tcp_anon_priv_bind) {
3338 			/*
3339 			 * loopmax =
3340 			 * 	(IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1
3341 			 */
3342 			loopmax = IPPORT_RESERVED - tcp_min_anonpriv_port;
3343 		} else {
3344 			loopmax = (tcp_largest_anon_port -
3345 			    tcp_smallest_anon_port + 1);
3346 		}
3347 	}
3348 	do {
3349 		uint16_t	lport;
3350 		tf_t		*tbf;
3351 		tcp_t		*ltcp;
3352 
3353 		lport = htons(port);
3354 
3355 		/*
3356 		 * Ensure that the tcp_t is not currently in the bind hash.
3357 		 * Hold the lock on the hash bucket to ensure that
3358 		 * the duplicate check plus the insertion is an atomic
3359 		 * operation.
3360 		 *
3361 		 * This function does an inline lookup on the bind hash list
3362 		 * Make sure that we access only members of tcp_t
3363 		 * and that we don't look at tcp_tcp, since we are not
3364 		 * doing a CONN_INC_REF.
3365 		 */
3366 		tcp_bind_hash_remove(tcp);
3367 		tbf = &tcp_bind_fanout[TCP_BIND_HASH(lport)];
3368 		mutex_enter(&tbf->tf_lock);
3369 		for (ltcp = tbf->tf_tcp; ltcp != NULL;
3370 		    ltcp = ltcp->tcp_bind_hash) {
3371 			if (lport != ltcp->tcp_lport ||
3372 			    ltcp->tcp_connp->conn_zoneid != zoneid) {
3373 				continue;
3374 			}
3375 
3376 			/*
3377 			 * If TCP_EXCLBIND is set for either the bound or
3378 			 * binding endpoint, the semantics of bind
3379 			 * is changed according to the following.
3380 			 *
3381 			 * spec = specified address (v4 or v6)
3382 			 * unspec = unspecified address (v4 or v6)
3383 			 * A = specified addresses are different for endpoints
3384 			 *
3385 			 * bound	bind to		allowed
3386 			 * -------------------------------------
3387 			 * unspec	unspec		no
3388 			 * unspec	spec		no
3389 			 * spec		unspec		no
3390 			 * spec		spec		yes if A
3391 			 *
3392 			 * Note:
3393 			 *
3394 			 * 1. Because of TLI semantics, an endpoint can go
3395 			 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or
3396 			 * TCPS_BOUND, depending on whether it is originally
3397 			 * a listener or not.  That is why we need to check
3398 			 * for states greater than or equal to TCPS_BOUND
3399 			 * here.
3400 			 *
3401 			 * 2. Ideally, we should only check for state equals
3402 			 * to TCPS_LISTEN. And the following check should be
3403 			 * added.
3404 			 *
3405 			 * if (ltcp->tcp_state == TCPS_LISTEN ||
3406 			 *	!reuseaddr || !ltcp->tcp_reuseaddr) {
3407 			 *		...
3408 			 * }
3409 			 *
3410 			 * The semantics will be changed to this.  If the
3411 			 * endpoint on the list is in state not equal to
3412 			 * TCPS_LISTEN and both endpoints have SO_REUSEADDR
3413 			 * set, let the bind succeed.
3414 			 *
3415 			 * But because of (1), we cannot do that now.  If
3416 			 * in future, we can change this going back semantics,
3417 			 * we can add the above check.
3418 			 */
3419 			if (ltcp->tcp_exclbind || tcp->tcp_exclbind) {
3420 				if (V6_OR_V4_INADDR_ANY(
3421 				    ltcp->tcp_bound_source_v6) ||
3422 				    V6_OR_V4_INADDR_ANY(*laddr) ||
3423 				    IN6_ARE_ADDR_EQUAL(laddr,
3424 				    &ltcp->tcp_bound_source_v6)) {
3425 					break;
3426 				}
3427 				continue;
3428 			}
3429 
3430 			/*
3431 			 * Check ipversion to allow IPv4 and IPv6 sockets to
3432 			 * have disjoint port number spaces, if *_EXCLBIND
3433 			 * is not set and only if the application binds to a
3434 			 * specific port. We use the same autoassigned port
3435 			 * number space for IPv4 and IPv6 sockets.
3436 			 */
3437 			if (tcp->tcp_ipversion != ltcp->tcp_ipversion &&
3438 			    bind_to_req_port_only)
3439 				continue;
3440 
3441 			/*
3442 			 * Ideally, we should make sure that the source
3443 			 * address, remote address, and remote port in the
3444 			 * four tuple for this tcp-connection is unique.
3445 			 * However, trying to find out the local source
3446 			 * address would require too much code duplication
3447 			 * with IP, since IP needs needs to have that code
3448 			 * to support userland TCP implementations.
3449 			 */
3450 			if (quick_connect &&
3451 			    (ltcp->tcp_state > TCPS_LISTEN) &&
3452 			    ((tcp->tcp_fport != ltcp->tcp_fport) ||
3453 				!IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
3454 				    &ltcp->tcp_remote_v6)))
3455 				continue;
3456 
3457 			if (!reuseaddr) {
3458 				/*
3459 				 * No socket option SO_REUSEADDR.
3460 				 * If existing port is bound to
3461 				 * a non-wildcard IP address
3462 				 * and the requesting stream is
3463 				 * bound to a distinct
3464 				 * different IP addresses
3465 				 * (non-wildcard, also), keep
3466 				 * going.
3467 				 */
3468 				if (!V6_OR_V4_INADDR_ANY(*laddr) &&
3469 				    !V6_OR_V4_INADDR_ANY(
3470 				    ltcp->tcp_bound_source_v6) &&
3471 				    !IN6_ARE_ADDR_EQUAL(laddr,
3472 					&ltcp->tcp_bound_source_v6))
3473 					continue;
3474 				if (ltcp->tcp_state >= TCPS_BOUND) {
3475 					/*
3476 					 * This port is being used and
3477 					 * its state is >= TCPS_BOUND,
3478 					 * so we can't bind to it.
3479 					 */
3480 					break;
3481 				}
3482 			} else {
3483 				/*
3484 				 * socket option SO_REUSEADDR is set on the
3485 				 * binding tcp_t.
3486 				 *
3487 				 * If two streams are bound to
3488 				 * same IP address or both addr
3489 				 * and bound source are wildcards
3490 				 * (INADDR_ANY), we want to stop
3491 				 * searching.
3492 				 * We have found a match of IP source
3493 				 * address and source port, which is
3494 				 * refused regardless of the
3495 				 * SO_REUSEADDR setting, so we break.
3496 				 */
3497 				if (IN6_ARE_ADDR_EQUAL(laddr,
3498 				    &ltcp->tcp_bound_source_v6) &&
3499 				    (ltcp->tcp_state == TCPS_LISTEN ||
3500 					ltcp->tcp_state == TCPS_BOUND))
3501 					break;
3502 			}
3503 		}
3504 		if (ltcp != NULL) {
3505 			/* The port number is busy */
3506 			mutex_exit(&tbf->tf_lock);
3507 		} else {
3508 			/*
3509 			 * This port is ours. Insert in fanout and mark as
3510 			 * bound to prevent others from getting the port
3511 			 * number.
3512 			 */
3513 			tcp->tcp_state = TCPS_BOUND;
3514 			tcp->tcp_lport = htons(port);
3515 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
3516 
3517 			ASSERT(&tcp_bind_fanout[TCP_BIND_HASH(
3518 			    tcp->tcp_lport)] == tbf);
3519 			tcp_bind_hash_insert(tbf, tcp, 1);
3520 
3521 			mutex_exit(&tbf->tf_lock);
3522 
3523 			/*
3524 			 * We don't want tcp_next_port_to_try to "inherit"
3525 			 * a port number supplied by the user in a bind.
3526 			 */
3527 			if (user_specified)
3528 				return (port);
3529 
3530 			/*
3531 			 * This is the only place where tcp_next_port_to_try
3532 			 * is updated. After the update, it may or may not
3533 			 * be in the valid range.
3534 			 */
3535 			if (!tcp->tcp_anon_priv_bind)
3536 				tcp_next_port_to_try = port + 1;
3537 			return (port);
3538 		}
3539 
3540 		if (tcp->tcp_anon_priv_bind) {
3541 			port = tcp_get_next_priv_port();
3542 		} else {
3543 			if (count == 0 && user_specified) {
3544 				/*
3545 				 * We may have to return an anonymous port. So
3546 				 * get one to start with.
3547 				 */
3548 				port =
3549 				    tcp_update_next_port(tcp_next_port_to_try,
3550 					B_TRUE);
3551 				user_specified = B_FALSE;
3552 			} else {
3553 				port = tcp_update_next_port(port + 1, B_FALSE);
3554 			}
3555 		}
3556 
3557 		/*
3558 		 * Don't let this loop run forever in the case where
3559 		 * all of the anonymous ports are in use.
3560 		 */
3561 	} while (++count < loopmax);
3562 	return (0);
3563 }
3564 
3565 /*
3566  * We are dying for some reason.  Try to do it gracefully.  (May be called
3567  * as writer.)
3568  *
3569  * Return -1 if the structure was not cleaned up (if the cleanup had to be
3570  * done by a service procedure).
3571  * TBD - Should the return value distinguish between the tcp_t being
3572  * freed and it being reinitialized?
3573  */
3574 static int
3575 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag)
3576 {
3577 	mblk_t	*mp;
3578 	queue_t	*q;
3579 
3580 	TCP_CLD_STAT(tag);
3581 
3582 #if TCP_TAG_CLEAN_DEATH
3583 	tcp->tcp_cleandeathtag = tag;
3584 #endif
3585 
3586 	if (tcp->tcp_linger_tid != 0 &&
3587 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3588 		tcp_stop_lingering(tcp);
3589 	}
3590 
3591 	ASSERT(tcp != NULL);
3592 	ASSERT((tcp->tcp_family == AF_INET &&
3593 	    tcp->tcp_ipversion == IPV4_VERSION) ||
3594 	    (tcp->tcp_family == AF_INET6 &&
3595 	    (tcp->tcp_ipversion == IPV4_VERSION ||
3596 	    tcp->tcp_ipversion == IPV6_VERSION)));
3597 
3598 	if (TCP_IS_DETACHED(tcp)) {
3599 		if (tcp->tcp_hard_binding) {
3600 			/*
3601 			 * Its an eager that we are dealing with. We close the
3602 			 * eager but in case a conn_ind has already gone to the
3603 			 * listener, let tcp_accept_finish() send a discon_ind
3604 			 * to the listener and drop the last reference. If the
3605 			 * listener doesn't even know about the eager i.e. the
3606 			 * conn_ind hasn't gone up, blow away the eager and drop
3607 			 * the last reference as well. If the conn_ind has gone
3608 			 * up, state should be BOUND. tcp_accept_finish
3609 			 * will figure out that the connection has received a
3610 			 * RST and will send a DISCON_IND to the application.
3611 			 */
3612 			tcp_closei_local(tcp);
3613 			if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) {
3614 				CONN_DEC_REF(tcp->tcp_connp);
3615 			} else {
3616 				tcp->tcp_state = TCPS_BOUND;
3617 			}
3618 		} else {
3619 			tcp_close_detached(tcp);
3620 		}
3621 		return (0);
3622 	}
3623 
3624 	TCP_STAT(tcp_clean_death_nondetached);
3625 
3626 	/*
3627 	 * If T_ORDREL_IND has not been sent yet (done when service routine
3628 	 * is run) postpone cleaning up the endpoint until service routine
3629 	 * has sent up the T_ORDREL_IND. Avoid clearing out an existing
3630 	 * client_errno since tcp_close uses the client_errno field.
3631 	 */
3632 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
3633 		if (err != 0)
3634 			tcp->tcp_client_errno = err;
3635 
3636 		tcp->tcp_deferred_clean_death = B_TRUE;
3637 		return (-1);
3638 	}
3639 
3640 	q = tcp->tcp_rq;
3641 
3642 	/* Trash all inbound data */
3643 	flushq(q, FLUSHALL);
3644 
3645 	/*
3646 	 * If we are at least part way open and there is error
3647 	 * (err==0 implies no error)
3648 	 * notify our client by a T_DISCON_IND.
3649 	 */
3650 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
3651 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
3652 		    !TCP_IS_SOCKET(tcp)) {
3653 			/*
3654 			 * Send M_FLUSH according to TPI. Because sockets will
3655 			 * (and must) ignore FLUSHR we do that only for TPI
3656 			 * endpoints and sockets in STREAMS mode.
3657 			 */
3658 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
3659 		}
3660 		if (tcp->tcp_debug) {
3661 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
3662 			    "tcp_clean_death: discon err %d", err);
3663 		}
3664 		mp = mi_tpi_discon_ind(NULL, err, 0);
3665 		if (mp != NULL) {
3666 			putnext(q, mp);
3667 		} else {
3668 			if (tcp->tcp_debug) {
3669 				(void) strlog(TCP_MOD_ID, 0, 1,
3670 				    SL_ERROR|SL_TRACE,
3671 				    "tcp_clean_death, sending M_ERROR");
3672 			}
3673 			(void) putnextctl1(q, M_ERROR, EPROTO);
3674 		}
3675 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
3676 			/* SYN_SENT or SYN_RCVD */
3677 			BUMP_MIB(&tcp_mib, tcpAttemptFails);
3678 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
3679 			/* ESTABLISHED or CLOSE_WAIT */
3680 			BUMP_MIB(&tcp_mib, tcpEstabResets);
3681 		}
3682 	}
3683 
3684 	tcp_reinit(tcp);
3685 	return (-1);
3686 }
3687 
3688 /*
3689  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
3690  * to expire, stop the wait and finish the close.
3691  */
3692 static void
3693 tcp_stop_lingering(tcp_t *tcp)
3694 {
3695 	clock_t	delta = 0;
3696 
3697 	tcp->tcp_linger_tid = 0;
3698 	if (tcp->tcp_state > TCPS_LISTEN) {
3699 		tcp_acceptor_hash_remove(tcp);
3700 		if (tcp->tcp_flow_stopped) {
3701 			tcp_clrqfull(tcp);
3702 		}
3703 
3704 		if (tcp->tcp_timer_tid != 0) {
3705 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3706 			tcp->tcp_timer_tid = 0;
3707 		}
3708 		/*
3709 		 * Need to cancel those timers which will not be used when
3710 		 * TCP is detached.  This has to be done before the tcp_wq
3711 		 * is set to the global queue.
3712 		 */
3713 		tcp_timers_stop(tcp);
3714 
3715 
3716 		tcp->tcp_detached = B_TRUE;
3717 		tcp->tcp_rq = tcp_g_q;
3718 		tcp->tcp_wq = WR(tcp_g_q);
3719 
3720 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
3721 			tcp_time_wait_append(tcp);
3722 			TCP_DBGSTAT(tcp_detach_time_wait);
3723 			goto finish;
3724 		}
3725 
3726 		/*
3727 		 * If delta is zero the timer event wasn't executed and was
3728 		 * successfully canceled. In this case we need to restart it
3729 		 * with the minimal delta possible.
3730 		 */
3731 		if (delta >= 0) {
3732 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
3733 			    delta ? delta : 1);
3734 		}
3735 	} else {
3736 		tcp_closei_local(tcp);
3737 		CONN_DEC_REF(tcp->tcp_connp);
3738 	}
3739 finish:
3740 	/* Signal closing thread that it can complete close */
3741 	mutex_enter(&tcp->tcp_closelock);
3742 	tcp->tcp_detached = B_TRUE;
3743 	tcp->tcp_rq = tcp_g_q;
3744 	tcp->tcp_wq = WR(tcp_g_q);
3745 	tcp->tcp_closed = 1;
3746 	cv_signal(&tcp->tcp_closecv);
3747 	mutex_exit(&tcp->tcp_closelock);
3748 }
3749 
3750 /*
3751  * Handle lingering timeouts. This function is called when the SO_LINGER timeout
3752  * expires.
3753  */
3754 static void
3755 tcp_close_linger_timeout(void *arg)
3756 {
3757 	conn_t	*connp = (conn_t *)arg;
3758 	tcp_t 	*tcp = connp->conn_tcp;
3759 
3760 	tcp->tcp_client_errno = ETIMEDOUT;
3761 	tcp_stop_lingering(tcp);
3762 }
3763 
3764 static int
3765 tcp_close(queue_t *q, int flags)
3766 {
3767 	conn_t		*connp = Q_TO_CONN(q);
3768 	tcp_t		*tcp = connp->conn_tcp;
3769 	mblk_t 		*mp = &tcp->tcp_closemp;
3770 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
3771 
3772 	ASSERT(WR(q)->q_next == NULL);
3773 	ASSERT(connp->conn_ref >= 2);
3774 	ASSERT((connp->conn_flags & IPCL_TCPMOD) == 0);
3775 
3776 	/*
3777 	 * We are being closed as /dev/tcp or /dev/tcp6.
3778 	 *
3779 	 * Mark the conn as closing. ill_pending_mp_add will not
3780 	 * add any mp to the pending mp list, after this conn has
3781 	 * started closing. Same for sq_pending_mp_add
3782 	 */
3783 	mutex_enter(&connp->conn_lock);
3784 	connp->conn_state_flags |= CONN_CLOSING;
3785 	if (connp->conn_oper_pending_ill != NULL)
3786 		conn_ioctl_cleanup_reqd = B_TRUE;
3787 	CONN_INC_REF_LOCKED(connp);
3788 	mutex_exit(&connp->conn_lock);
3789 	tcp->tcp_closeflags = (uint8_t)flags;
3790 	ASSERT(connp->conn_ref >= 3);
3791 
3792 	(*tcp_squeue_close_proc)(connp->conn_sqp, mp,
3793 	    tcp_close_output, connp, SQTAG_IP_TCP_CLOSE);
3794 
3795 	mutex_enter(&tcp->tcp_closelock);
3796 
3797 	while (!tcp->tcp_closed)
3798 		cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
3799 	mutex_exit(&tcp->tcp_closelock);
3800 	/*
3801 	 * In the case of listener streams that have eagers in the q or q0
3802 	 * we wait for the eagers to drop their reference to us. tcp_rq and
3803 	 * tcp_wq of the eagers point to our queues. By waiting for the
3804 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
3805 	 * up their queue pointers and also dropped their references to us.
3806 	 */
3807 	if (tcp->tcp_wait_for_eagers) {
3808 		mutex_enter(&connp->conn_lock);
3809 		while (connp->conn_ref != 1) {
3810 			cv_wait(&connp->conn_cv, &connp->conn_lock);
3811 		}
3812 		mutex_exit(&connp->conn_lock);
3813 	}
3814 	/*
3815 	 * ioctl cleanup. The mp is queued in the
3816 	 * ill_pending_mp or in the sq_pending_mp.
3817 	 */
3818 	if (conn_ioctl_cleanup_reqd)
3819 		conn_ioctl_cleanup(connp);
3820 
3821 	qprocsoff(q);
3822 	inet_minor_free(ip_minor_arena, connp->conn_dev);
3823 
3824 	ASSERT(connp->conn_cred != NULL);
3825 	crfree(connp->conn_cred);
3826 	tcp->tcp_cred = connp->conn_cred = NULL;
3827 	tcp->tcp_cpid = -1;
3828 
3829 	/*
3830 	 * Drop IP's reference on the conn. This is the last reference
3831 	 * on the connp if the state was less than established. If the
3832 	 * connection has gone into timewait state, then we will have
3833 	 * one ref for the TCP and one more ref (total of two) for the
3834 	 * classifier connected hash list (a timewait connections stays
3835 	 * in connected hash till closed).
3836 	 *
3837 	 * We can't assert the references because there might be other
3838 	 * transient reference places because of some walkers or queued
3839 	 * packets in squeue for the timewait state.
3840 	 */
3841 	CONN_DEC_REF(connp);
3842 	q->q_ptr = WR(q)->q_ptr = NULL;
3843 	return (0);
3844 }
3845 
3846 static int
3847 tcpclose_accept(queue_t *q)
3848 {
3849 	ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit);
3850 
3851 	/*
3852 	 * We had opened an acceptor STREAM for sockfs which is
3853 	 * now being closed due to some error.
3854 	 */
3855 	qprocsoff(q);
3856 	inet_minor_free(ip_minor_arena, (dev_t)q->q_ptr);
3857 	q->q_ptr = WR(q)->q_ptr = NULL;
3858 	return (0);
3859 }
3860 
3861 
3862 /*
3863  * Called by streams close routine via squeues when our client blows off her
3864  * descriptor, we take this to mean: "close the stream state NOW, close the tcp
3865  * connection politely" When SO_LINGER is set (with a non-zero linger time and
3866  * it is not a nonblocking socket) then this routine sleeps until the FIN is
3867  * acked.
3868  *
3869  * NOTE: tcp_close potentially returns error when lingering.
3870  * However, the stream head currently does not pass these errors
3871  * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK
3872  * errors to the application (from tsleep()) and not errors
3873  * like ECONNRESET caused by receiving a reset packet.
3874  */
3875 
3876 /* ARGSUSED */
3877 static void
3878 tcp_close_output(void *arg, mblk_t *mp, void *arg2)
3879 {
3880 	char	*msg;
3881 	conn_t	*connp = (conn_t *)arg;
3882 	tcp_t	*tcp = connp->conn_tcp;
3883 	clock_t	delta = 0;
3884 
3885 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
3886 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
3887 
3888 	/* Cancel any pending timeout */
3889 	if (tcp->tcp_ordrelid != 0) {
3890 		if (tcp->tcp_timeout) {
3891 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid);
3892 		}
3893 		tcp->tcp_ordrelid = 0;
3894 		tcp->tcp_timeout = B_FALSE;
3895 	}
3896 
3897 	mutex_enter(&tcp->tcp_eager_lock);
3898 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
3899 		/* Cleanup for listener */
3900 		tcp_eager_cleanup(tcp, 0);
3901 		tcp->tcp_wait_for_eagers = 1;
3902 	}
3903 	mutex_exit(&tcp->tcp_eager_lock);
3904 
3905 	connp->conn_mdt_ok = B_FALSE;
3906 	tcp->tcp_mdt = B_FALSE;
3907 
3908 	msg = NULL;
3909 	switch (tcp->tcp_state) {
3910 	case TCPS_CLOSED:
3911 	case TCPS_IDLE:
3912 	case TCPS_BOUND:
3913 	case TCPS_LISTEN:
3914 		break;
3915 	case TCPS_SYN_SENT:
3916 		msg = "tcp_close, during connect";
3917 		break;
3918 	case TCPS_SYN_RCVD:
3919 		/*
3920 		 * Close during the connect 3-way handshake
3921 		 * but here there may or may not be pending data
3922 		 * already on queue. Process almost same as in
3923 		 * the ESTABLISHED state.
3924 		 */
3925 		/* FALLTHRU */
3926 	default:
3927 		if (tcp->tcp_fused)
3928 			tcp_unfuse(tcp);
3929 
3930 		/*
3931 		 * If SO_LINGER has set a zero linger time, abort the
3932 		 * connection with a reset.
3933 		 */
3934 		if (tcp->tcp_linger && tcp->tcp_lingertime == 0) {
3935 			msg = "tcp_close, zero lingertime";
3936 			break;
3937 		}
3938 
3939 		ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding);
3940 		/*
3941 		 * Abort connection if there is unread data queued.
3942 		 */
3943 		if (tcp->tcp_rcv_list || tcp->tcp_reass_head) {
3944 			msg = "tcp_close, unread data";
3945 			break;
3946 		}
3947 		/*
3948 		 * tcp_hard_bound is now cleared thus all packets go through
3949 		 * tcp_lookup. This fact is used by tcp_detach below.
3950 		 *
3951 		 * We have done a qwait() above which could have possibly
3952 		 * drained more messages in turn causing transition to a
3953 		 * different state. Check whether we have to do the rest
3954 		 * of the processing or not.
3955 		 */
3956 		if (tcp->tcp_state <= TCPS_LISTEN)
3957 			break;
3958 
3959 		/*
3960 		 * Transmit the FIN before detaching the tcp_t.
3961 		 * After tcp_detach returns this queue/perimeter
3962 		 * no longer owns the tcp_t thus others can modify it.
3963 		 */
3964 		(void) tcp_xmit_end(tcp);
3965 
3966 		/*
3967 		 * If lingering on close then wait until the fin is acked,
3968 		 * the SO_LINGER time passes, or a reset is sent/received.
3969 		 */
3970 		if (tcp->tcp_linger && tcp->tcp_lingertime > 0 &&
3971 		    !(tcp->tcp_fin_acked) &&
3972 		    tcp->tcp_state >= TCPS_ESTABLISHED) {
3973 			if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) {
3974 				tcp->tcp_client_errno = EWOULDBLOCK;
3975 			} else if (tcp->tcp_client_errno == 0) {
3976 
3977 				ASSERT(tcp->tcp_linger_tid == 0);
3978 
3979 				tcp->tcp_linger_tid = TCP_TIMER(tcp,
3980 				    tcp_close_linger_timeout,
3981 				    tcp->tcp_lingertime * hz);
3982 
3983 				/* tcp_close_linger_timeout will finish close */
3984 				if (tcp->tcp_linger_tid == 0)
3985 					tcp->tcp_client_errno = ENOSR;
3986 				else
3987 					return;
3988 			}
3989 
3990 			/*
3991 			 * Check if we need to detach or just close
3992 			 * the instance.
3993 			 */
3994 			if (tcp->tcp_state <= TCPS_LISTEN)
3995 				break;
3996 		}
3997 
3998 		/*
3999 		 * Make sure that no other thread will access the tcp_rq of
4000 		 * this instance (through lookups etc.) as tcp_rq will go
4001 		 * away shortly.
4002 		 */
4003 		tcp_acceptor_hash_remove(tcp);
4004 
4005 		if (tcp->tcp_flow_stopped) {
4006 			tcp_clrqfull(tcp);
4007 		}
4008 
4009 		if (tcp->tcp_timer_tid != 0) {
4010 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4011 			tcp->tcp_timer_tid = 0;
4012 		}
4013 		/*
4014 		 * Need to cancel those timers which will not be used when
4015 		 * TCP is detached.  This has to be done before the tcp_wq
4016 		 * is set to the global queue.
4017 		 */
4018 		tcp_timers_stop(tcp);
4019 
4020 		tcp->tcp_detached = B_TRUE;
4021 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
4022 			tcp_time_wait_append(tcp);
4023 			TCP_DBGSTAT(tcp_detach_time_wait);
4024 			ASSERT(connp->conn_ref >= 3);
4025 			goto finish;
4026 		}
4027 
4028 		/*
4029 		 * If delta is zero the timer event wasn't executed and was
4030 		 * successfully canceled. In this case we need to restart it
4031 		 * with the minimal delta possible.
4032 		 */
4033 		if (delta >= 0)
4034 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
4035 			    delta ? delta : 1);
4036 
4037 		ASSERT(connp->conn_ref >= 3);
4038 		goto finish;
4039 	}
4040 
4041 	/* Detach did not complete. Still need to remove q from stream. */
4042 	if (msg) {
4043 		if (tcp->tcp_state == TCPS_ESTABLISHED ||
4044 		    tcp->tcp_state == TCPS_CLOSE_WAIT)
4045 			BUMP_MIB(&tcp_mib, tcpEstabResets);
4046 		if (tcp->tcp_state == TCPS_SYN_SENT ||
4047 		    tcp->tcp_state == TCPS_SYN_RCVD)
4048 			BUMP_MIB(&tcp_mib, tcpAttemptFails);
4049 		tcp_xmit_ctl(msg, tcp,  tcp->tcp_snxt, 0, TH_RST);
4050 	}
4051 
4052 	tcp_closei_local(tcp);
4053 	CONN_DEC_REF(connp);
4054 	ASSERT(connp->conn_ref >= 2);
4055 
4056 finish:
4057 	/*
4058 	 * Although packets are always processed on the correct
4059 	 * tcp's perimeter and access is serialized via squeue's,
4060 	 * IP still needs a queue when sending packets in time_wait
4061 	 * state so use WR(tcp_g_q) till ip_output() can be
4062 	 * changed to deal with just connp. For read side, we
4063 	 * could have set tcp_rq to NULL but there are some cases
4064 	 * in tcp_rput_data() from early days of this code which
4065 	 * do a putnext without checking if tcp is closed. Those
4066 	 * need to be identified before both tcp_rq and tcp_wq
4067 	 * can be set to NULL and tcp_q_q can disappear forever.
4068 	 */
4069 	mutex_enter(&tcp->tcp_closelock);
4070 	/*
4071 	 * Don't change the queues in the case of a listener that has
4072 	 * eagers in its q or q0. It could surprise the eagers.
4073 	 * Instead wait for the eagers outside the squeue.
4074 	 */
4075 	if (!tcp->tcp_wait_for_eagers) {
4076 		tcp->tcp_detached = B_TRUE;
4077 		tcp->tcp_rq = tcp_g_q;
4078 		tcp->tcp_wq = WR(tcp_g_q);
4079 	}
4080 
4081 	/* Signal tcp_close() to finish closing. */
4082 	tcp->tcp_closed = 1;
4083 	cv_signal(&tcp->tcp_closecv);
4084 	mutex_exit(&tcp->tcp_closelock);
4085 }
4086 
4087 
4088 /*
4089  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
4090  * Some stream heads get upset if they see these later on as anything but NULL.
4091  */
4092 static void
4093 tcp_close_mpp(mblk_t **mpp)
4094 {
4095 	mblk_t	*mp;
4096 
4097 	if ((mp = *mpp) != NULL) {
4098 		do {
4099 			mp->b_next = NULL;
4100 			mp->b_prev = NULL;
4101 		} while ((mp = mp->b_cont) != NULL);
4102 
4103 		mp = *mpp;
4104 		*mpp = NULL;
4105 		freemsg(mp);
4106 	}
4107 }
4108 
4109 /* Do detached close. */
4110 static void
4111 tcp_close_detached(tcp_t *tcp)
4112 {
4113 	if (tcp->tcp_fused)
4114 		tcp_unfuse(tcp);
4115 
4116 	/*
4117 	 * Clustering code serializes TCP disconnect callbacks and
4118 	 * cluster tcp list walks by blocking a TCP disconnect callback
4119 	 * if a cluster tcp list walk is in progress. This ensures
4120 	 * accurate accounting of TCPs in the cluster code even though
4121 	 * the TCP list walk itself is not atomic.
4122 	 */
4123 	tcp_closei_local(tcp);
4124 	CONN_DEC_REF(tcp->tcp_connp);
4125 }
4126 
4127 /*
4128  * Stop all TCP timers, and free the timer mblks if requested.
4129  */
4130 void
4131 tcp_timers_stop(tcp_t *tcp)
4132 {
4133 	if (tcp->tcp_timer_tid != 0) {
4134 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4135 		tcp->tcp_timer_tid = 0;
4136 	}
4137 	if (tcp->tcp_ka_tid != 0) {
4138 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid);
4139 		tcp->tcp_ka_tid = 0;
4140 	}
4141 	if (tcp->tcp_ack_tid != 0) {
4142 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
4143 		tcp->tcp_ack_tid = 0;
4144 	}
4145 	if (tcp->tcp_push_tid != 0) {
4146 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
4147 		tcp->tcp_push_tid = 0;
4148 	}
4149 }
4150 
4151 /*
4152  * The tcp_t is going away. Remove it from all lists and set it
4153  * to TCPS_CLOSED. The freeing up of memory is deferred until
4154  * tcp_inactive. This is needed since a thread in tcp_rput might have
4155  * done a CONN_INC_REF on this structure before it was removed from the
4156  * hashes.
4157  */
4158 static void
4159 tcp_closei_local(tcp_t *tcp)
4160 {
4161 	ire_t 	*ire;
4162 	conn_t	*connp = tcp->tcp_connp;
4163 
4164 	if (!TCP_IS_SOCKET(tcp))
4165 		tcp_acceptor_hash_remove(tcp);
4166 
4167 	UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs);
4168 	tcp->tcp_ibsegs = 0;
4169 	UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs);
4170 	tcp->tcp_obsegs = 0;
4171 
4172 	/*
4173 	 * If we are an eager connection hanging off a listener that
4174 	 * hasn't formally accepted the connection yet, get off his
4175 	 * list and blow off any data that we have accumulated.
4176 	 */
4177 	if (tcp->tcp_listener != NULL) {
4178 		tcp_t	*listener = tcp->tcp_listener;
4179 		mutex_enter(&listener->tcp_eager_lock);
4180 		/*
4181 		 * tcp_eager_conn_ind == NULL means that the
4182 		 * conn_ind has already gone to listener. At
4183 		 * this point, eager will be closed but we
4184 		 * leave it in listeners eager list so that
4185 		 * if listener decides to close without doing
4186 		 * accept, we can clean this up. In tcp_wput_accept
4187 		 * we take case of the case of accept on closed
4188 		 * eager.
4189 		 */
4190 		if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) {
4191 			tcp_eager_unlink(tcp);
4192 			mutex_exit(&listener->tcp_eager_lock);
4193 			/*
4194 			 * We don't want to have any pointers to the
4195 			 * listener queue, after we have released our
4196 			 * reference on the listener
4197 			 */
4198 			tcp->tcp_rq = tcp_g_q;
4199 			tcp->tcp_wq = WR(tcp_g_q);
4200 			CONN_DEC_REF(listener->tcp_connp);
4201 		} else {
4202 			mutex_exit(&listener->tcp_eager_lock);
4203 		}
4204 	}
4205 
4206 	/* Stop all the timers */
4207 	tcp_timers_stop(tcp);
4208 
4209 	if (tcp->tcp_state == TCPS_LISTEN) {
4210 		if (tcp->tcp_ip_addr_cache) {
4211 			kmem_free((void *)tcp->tcp_ip_addr_cache,
4212 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
4213 			tcp->tcp_ip_addr_cache = NULL;
4214 		}
4215 	}
4216 	if (tcp->tcp_flow_stopped)
4217 		tcp_clrqfull(tcp);
4218 
4219 	tcp_bind_hash_remove(tcp);
4220 	/*
4221 	 * If the tcp_time_wait_collector (which runs outside the squeue)
4222 	 * is trying to remove this tcp from the time wait list, we will
4223 	 * block in tcp_time_wait_remove while trying to acquire the
4224 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
4225 	 * requires the ipcl_hash_remove to be ordered after the
4226 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
4227 	 */
4228 	if (tcp->tcp_state == TCPS_TIME_WAIT)
4229 		tcp_time_wait_remove(tcp, NULL);
4230 	CL_INET_DISCONNECT(tcp);
4231 	ipcl_hash_remove(connp);
4232 
4233 	/*
4234 	 * Delete the cached ire in conn_ire_cache and also mark
4235 	 * the conn as CONDEMNED
4236 	 */
4237 	mutex_enter(&connp->conn_lock);
4238 	connp->conn_state_flags |= CONN_CONDEMNED;
4239 	ire = connp->conn_ire_cache;
4240 	connp->conn_ire_cache = NULL;
4241 	mutex_exit(&connp->conn_lock);
4242 	if (ire != NULL)
4243 		IRE_REFRELE_NOTR(ire);
4244 
4245 	/* Need to cleanup any pending ioctls */
4246 	ASSERT(tcp->tcp_time_wait_next == NULL);
4247 	ASSERT(tcp->tcp_time_wait_prev == NULL);
4248 	ASSERT(tcp->tcp_time_wait_expire == 0);
4249 	tcp->tcp_state = TCPS_CLOSED;
4250 
4251 	/* Release any SSL context */
4252 	if (tcp->tcp_kssl_ent != NULL) {
4253 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
4254 		tcp->tcp_kssl_ent = NULL;
4255 	}
4256 	if (tcp->tcp_kssl_ctx != NULL) {
4257 		kssl_release_ctx(tcp->tcp_kssl_ctx);
4258 		tcp->tcp_kssl_ctx = NULL;
4259 	}
4260 	tcp->tcp_kssl_pending = B_FALSE;
4261 }
4262 
4263 /*
4264  * tcp is dying (called from ipcl_conn_destroy and error cases).
4265  * Free the tcp_t in either case.
4266  */
4267 void
4268 tcp_free(tcp_t *tcp)
4269 {
4270 	mblk_t	*mp;
4271 	ip6_pkt_t	*ipp;
4272 
4273 	ASSERT(tcp != NULL);
4274 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
4275 
4276 	tcp->tcp_rq = NULL;
4277 	tcp->tcp_wq = NULL;
4278 
4279 	tcp_close_mpp(&tcp->tcp_xmit_head);
4280 	tcp_close_mpp(&tcp->tcp_reass_head);
4281 	if (tcp->tcp_rcv_list != NULL) {
4282 		/* Free b_next chain */
4283 		tcp_close_mpp(&tcp->tcp_rcv_list);
4284 	}
4285 	if ((mp = tcp->tcp_urp_mp) != NULL) {
4286 		freemsg(mp);
4287 	}
4288 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
4289 		freemsg(mp);
4290 	}
4291 
4292 	if (tcp->tcp_fused_sigurg_mp != NULL) {
4293 		freeb(tcp->tcp_fused_sigurg_mp);
4294 		tcp->tcp_fused_sigurg_mp = NULL;
4295 	}
4296 
4297 	if (tcp->tcp_sack_info != NULL) {
4298 		if (tcp->tcp_notsack_list != NULL) {
4299 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
4300 		}
4301 		bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
4302 	}
4303 
4304 	if (tcp->tcp_hopopts != NULL) {
4305 		mi_free(tcp->tcp_hopopts);
4306 		tcp->tcp_hopopts = NULL;
4307 		tcp->tcp_hopoptslen = 0;
4308 	}
4309 	ASSERT(tcp->tcp_hopoptslen == 0);
4310 	if (tcp->tcp_dstopts != NULL) {
4311 		mi_free(tcp->tcp_dstopts);
4312 		tcp->tcp_dstopts = NULL;
4313 		tcp->tcp_dstoptslen = 0;
4314 	}
4315 	ASSERT(tcp->tcp_dstoptslen == 0);
4316 	if (tcp->tcp_rtdstopts != NULL) {
4317 		mi_free(tcp->tcp_rtdstopts);
4318 		tcp->tcp_rtdstopts = NULL;
4319 		tcp->tcp_rtdstoptslen = 0;
4320 	}
4321 	ASSERT(tcp->tcp_rtdstoptslen == 0);
4322 	if (tcp->tcp_rthdr != NULL) {
4323 		mi_free(tcp->tcp_rthdr);
4324 		tcp->tcp_rthdr = NULL;
4325 		tcp->tcp_rthdrlen = 0;
4326 	}
4327 	ASSERT(tcp->tcp_rthdrlen == 0);
4328 
4329 	ipp = &tcp->tcp_sticky_ipp;
4330 	if ((ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS |
4331 	    IPPF_DSTOPTS | IPPF_RTHDR)) != 0) {
4332 		if ((ipp->ipp_fields & IPPF_HOPOPTS) != 0) {
4333 			kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen);
4334 			ipp->ipp_hopopts = NULL;
4335 			ipp->ipp_hopoptslen = 0;
4336 		}
4337 		if ((ipp->ipp_fields & IPPF_RTDSTOPTS) != 0) {
4338 			kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen);
4339 			ipp->ipp_rtdstopts = NULL;
4340 			ipp->ipp_rtdstoptslen = 0;
4341 		}
4342 		if ((ipp->ipp_fields & IPPF_DSTOPTS) != 0) {
4343 			kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen);
4344 			ipp->ipp_dstopts = NULL;
4345 			ipp->ipp_dstoptslen = 0;
4346 		}
4347 		if ((ipp->ipp_fields & IPPF_RTHDR) != 0) {
4348 			kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen);
4349 			ipp->ipp_rthdr = NULL;
4350 			ipp->ipp_rthdrlen = 0;
4351 		}
4352 		ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS |
4353 		    IPPF_DSTOPTS | IPPF_RTHDR);
4354 	}
4355 
4356 	/*
4357 	 * Free memory associated with the tcp/ip header template.
4358 	 */
4359 
4360 	if (tcp->tcp_iphc != NULL)
4361 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4362 
4363 	/*
4364 	 * Following is really a blowing away a union.
4365 	 * It happens to have exactly two members of identical size
4366 	 * the following code is enough.
4367 	 */
4368 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
4369 
4370 	if (tcp->tcp_tracebuf != NULL) {
4371 		kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t));
4372 		tcp->tcp_tracebuf = NULL;
4373 	}
4374 }
4375 
4376 
4377 /*
4378  * Put a connection confirmation message upstream built from the
4379  * address information within 'iph' and 'tcph'.  Report our success or failure.
4380  */
4381 static boolean_t
4382 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp,
4383     mblk_t **defermp)
4384 {
4385 	sin_t	sin;
4386 	sin6_t	sin6;
4387 	mblk_t	*mp;
4388 	char	*optp = NULL;
4389 	int	optlen = 0;
4390 	cred_t	*cr;
4391 
4392 	if (defermp != NULL)
4393 		*defermp = NULL;
4394 
4395 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL) {
4396 		/*
4397 		 * Return in T_CONN_CON results of option negotiation through
4398 		 * the T_CONN_REQ. Note: If there is an real end-to-end option
4399 		 * negotiation, then what is received from remote end needs
4400 		 * to be taken into account but there is no such thing (yet?)
4401 		 * in our TCP/IP.
4402 		 * Note: We do not use mi_offset_param() here as
4403 		 * tcp_opts_conn_req contents do not directly come from
4404 		 * an application and are either generated in kernel or
4405 		 * from user input that was already verified.
4406 		 */
4407 		mp = tcp->tcp_conn.tcp_opts_conn_req;
4408 		optp = (char *)(mp->b_rptr +
4409 		    ((struct T_conn_req *)mp->b_rptr)->OPT_offset);
4410 		optlen = (int)
4411 		    ((struct T_conn_req *)mp->b_rptr)->OPT_length;
4412 	}
4413 
4414 	if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) {
4415 		ipha_t *ipha = (ipha_t *)iphdr;
4416 
4417 		/* packet is IPv4 */
4418 		if (tcp->tcp_family == AF_INET) {
4419 			sin = sin_null;
4420 			sin.sin_addr.s_addr = ipha->ipha_src;
4421 			sin.sin_port = *(uint16_t *)tcph->th_lport;
4422 			sin.sin_family = AF_INET;
4423 			mp = mi_tpi_conn_con(NULL, (char *)&sin,
4424 			    (int)sizeof (sin_t), optp, optlen);
4425 		} else {
4426 			sin6 = sin6_null;
4427 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4428 			sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4429 			sin6.sin6_family = AF_INET6;
4430 			mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4431 			    (int)sizeof (sin6_t), optp, optlen);
4432 
4433 		}
4434 	} else {
4435 		ip6_t	*ip6h = (ip6_t *)iphdr;
4436 
4437 		ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION);
4438 		ASSERT(tcp->tcp_family == AF_INET6);
4439 		sin6 = sin6_null;
4440 		sin6.sin6_addr = ip6h->ip6_src;
4441 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4442 		sin6.sin6_family = AF_INET6;
4443 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4444 		mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4445 		    (int)sizeof (sin6_t), optp, optlen);
4446 	}
4447 
4448 	if (!mp)
4449 		return (B_FALSE);
4450 
4451 	if ((cr = DB_CRED(idmp)) != NULL) {
4452 		mblk_setcred(mp, cr);
4453 		DB_CPID(mp) = DB_CPID(idmp);
4454 	}
4455 
4456 	if (defermp == NULL)
4457 		putnext(tcp->tcp_rq, mp);
4458 	else
4459 		*defermp = mp;
4460 
4461 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4462 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4463 	return (B_TRUE);
4464 }
4465 
4466 /*
4467  * Defense for the SYN attack -
4468  * 1. When q0 is full, drop from the tail (tcp_eager_prev_q0) the oldest
4469  *    one that doesn't have the dontdrop bit set.
4470  * 2. Don't drop a SYN request before its first timeout. This gives every
4471  *    request at least til the first timeout to complete its 3-way handshake.
4472  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
4473  *    requests currently on the queue that has timed out. This will be used
4474  *    as an indicator of whether an attack is under way, so that appropriate
4475  *    actions can be taken. (It's incremented in tcp_timer() and decremented
4476  *    either when eager goes into ESTABLISHED, or gets freed up.)
4477  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
4478  *    # of timeout drops back to <= q0len/32 => SYN alert off
4479  */
4480 static boolean_t
4481 tcp_drop_q0(tcp_t *tcp)
4482 {
4483 	tcp_t	*eager;
4484 
4485 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
4486 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
4487 	/*
4488 	 * New one is added after next_q0 so prev_q0 points to the oldest
4489 	 * Also do not drop any established connections that are deferred on
4490 	 * q0 due to q being full
4491 	 */
4492 
4493 	eager = tcp->tcp_eager_prev_q0;
4494 	while (eager->tcp_dontdrop || eager->tcp_conn_def_q0) {
4495 		eager = eager->tcp_eager_prev_q0;
4496 		if (eager == tcp) {
4497 			eager = tcp->tcp_eager_prev_q0;
4498 			break;
4499 		}
4500 	}
4501 	if (eager->tcp_syn_rcvd_timeout == 0)
4502 		return (B_FALSE);
4503 
4504 	if (tcp->tcp_debug) {
4505 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
4506 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
4507 		    " (%d pending) on %s, drop one", tcp_conn_req_max_q0,
4508 		    tcp->tcp_conn_req_cnt_q0,
4509 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4510 	}
4511 
4512 	BUMP_MIB(&tcp_mib, tcpHalfOpenDrop);
4513 
4514 	/*
4515 	 * need to do refhold here because the selected eager could
4516 	 * be removed by someone else if we release the eager lock.
4517 	 */
4518 	CONN_INC_REF(eager->tcp_connp);
4519 	mutex_exit(&tcp->tcp_eager_lock);
4520 
4521 	/* Mark the IRE created for this SYN request temporary */
4522 	tcp_ip_ire_mark_advice(eager);
4523 	(void) tcp_clean_death(eager, ETIMEDOUT, 5);
4524 	CONN_DEC_REF(eager->tcp_connp);
4525 
4526 	mutex_enter(&tcp->tcp_eager_lock);
4527 	return (B_TRUE);
4528 }
4529 
4530 int
4531 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
4532     tcph_t *tcph, uint_t ipvers, mblk_t *idmp)
4533 {
4534 	tcp_t 		*ltcp = lconnp->conn_tcp;
4535 	tcp_t		*tcp = connp->conn_tcp;
4536 	mblk_t		*tpi_mp;
4537 	ipha_t		*ipha;
4538 	ip6_t		*ip6h;
4539 	sin6_t 		sin6;
4540 	in6_addr_t 	v6dst;
4541 	int		err;
4542 	int		ifindex = 0;
4543 	cred_t		*cr;
4544 
4545 	if (ipvers == IPV4_VERSION) {
4546 		ipha = (ipha_t *)mp->b_rptr;
4547 
4548 		connp->conn_send = ip_output;
4549 		connp->conn_recv = tcp_input;
4550 
4551 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4552 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4553 
4554 		sin6 = sin6_null;
4555 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4556 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst);
4557 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4558 		sin6.sin6_family = AF_INET6;
4559 		sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst,
4560 		    lconnp->conn_zoneid);
4561 		if (tcp->tcp_recvdstaddr) {
4562 			sin6_t	sin6d;
4563 
4564 			sin6d = sin6_null;
4565 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst,
4566 			    &sin6d.sin6_addr);
4567 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4568 			sin6d.sin6_family = AF_INET;
4569 			tpi_mp = mi_tpi_extconn_ind(NULL,
4570 			    (char *)&sin6d, sizeof (sin6_t),
4571 			    (char *)&tcp,
4572 			    (t_scalar_t)sizeof (intptr_t),
4573 			    (char *)&sin6d, sizeof (sin6_t),
4574 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4575 		} else {
4576 			tpi_mp = mi_tpi_conn_ind(NULL,
4577 			    (char *)&sin6, sizeof (sin6_t),
4578 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4579 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4580 		}
4581 	} else {
4582 		ip6h = (ip6_t *)mp->b_rptr;
4583 
4584 		connp->conn_send = ip_output_v6;
4585 		connp->conn_recv = tcp_input;
4586 
4587 		connp->conn_srcv6 = ip6h->ip6_dst;
4588 		connp->conn_remv6 = ip6h->ip6_src;
4589 
4590 		/* db_cksumstuff is set at ip_fanout_tcp_v6 */
4591 		ifindex = (int)DB_CKSUMSTUFF(mp);
4592 		DB_CKSUMSTUFF(mp) = 0;
4593 
4594 		sin6 = sin6_null;
4595 		sin6.sin6_addr = ip6h->ip6_src;
4596 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4597 		sin6.sin6_family = AF_INET6;
4598 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4599 		sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst,
4600 		    lconnp->conn_zoneid);
4601 
4602 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4603 			/* Pass up the scope_id of remote addr */
4604 			sin6.sin6_scope_id = ifindex;
4605 		} else {
4606 			sin6.sin6_scope_id = 0;
4607 		}
4608 		if (tcp->tcp_recvdstaddr) {
4609 			sin6_t	sin6d;
4610 
4611 			sin6d = sin6_null;
4612 			sin6.sin6_addr = ip6h->ip6_dst;
4613 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4614 			sin6d.sin6_family = AF_INET;
4615 			tpi_mp = mi_tpi_extconn_ind(NULL,
4616 			    (char *)&sin6d, sizeof (sin6_t),
4617 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4618 			    (char *)&sin6d, sizeof (sin6_t),
4619 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4620 		} else {
4621 			tpi_mp = mi_tpi_conn_ind(NULL,
4622 			    (char *)&sin6, sizeof (sin6_t),
4623 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4624 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4625 		}
4626 	}
4627 
4628 	if (tpi_mp == NULL)
4629 		return (ENOMEM);
4630 
4631 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4632 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4633 	connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER);
4634 	connp->conn_fully_bound = B_FALSE;
4635 
4636 	if (tcp_trace)
4637 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
4638 
4639 	/* Inherit information from the "parent" */
4640 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
4641 	tcp->tcp_family = ltcp->tcp_family;
4642 	tcp->tcp_wq = ltcp->tcp_wq;
4643 	tcp->tcp_rq = ltcp->tcp_rq;
4644 	tcp->tcp_mss = tcp_mss_def_ipv6;
4645 	tcp->tcp_detached = B_TRUE;
4646 	if ((err = tcp_init_values(tcp)) != 0) {
4647 		freemsg(tpi_mp);
4648 		return (err);
4649 	}
4650 
4651 	if (ipvers == IPV4_VERSION) {
4652 		if ((err = tcp_header_init_ipv4(tcp)) != 0) {
4653 			freemsg(tpi_mp);
4654 			return (err);
4655 		}
4656 		ASSERT(tcp->tcp_ipha != NULL);
4657 	} else {
4658 		/* ifindex must be already set */
4659 		ASSERT(ifindex != 0);
4660 
4661 		if (ltcp->tcp_bound_if != 0) {
4662 			/*
4663 			 * Set newtcp's bound_if equal to
4664 			 * listener's value. If ifindex is
4665 			 * not the same as ltcp->tcp_bound_if,
4666 			 * it must be a packet for the ipmp group
4667 			 * of interfaces
4668 			 */
4669 			tcp->tcp_bound_if = ltcp->tcp_bound_if;
4670 		} else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4671 			tcp->tcp_bound_if = ifindex;
4672 		}
4673 
4674 		tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary;
4675 		tcp->tcp_recvifindex = 0;
4676 		tcp->tcp_recvhops = 0xffffffffU;
4677 		ASSERT(tcp->tcp_ip6h != NULL);
4678 	}
4679 
4680 	tcp->tcp_lport = ltcp->tcp_lport;
4681 
4682 	if (ltcp->tcp_ipversion == tcp->tcp_ipversion) {
4683 		if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) {
4684 			/*
4685 			 * Listener had options of some sort; eager inherits.
4686 			 * Free up the eager template and allocate one
4687 			 * of the right size.
4688 			 */
4689 			if (tcp->tcp_hdr_grown) {
4690 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
4691 			} else {
4692 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4693 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
4694 			}
4695 			tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len,
4696 			    KM_NOSLEEP);
4697 			if (tcp->tcp_iphc == NULL) {
4698 				tcp->tcp_iphc_len = 0;
4699 				freemsg(tpi_mp);
4700 				return (ENOMEM);
4701 			}
4702 			tcp->tcp_iphc_len = ltcp->tcp_iphc_len;
4703 			tcp->tcp_hdr_grown = B_TRUE;
4704 		}
4705 		tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
4706 		tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
4707 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
4708 		tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops;
4709 		tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf;
4710 
4711 		/*
4712 		 * Copy the IP+TCP header template from listener to eager
4713 		 */
4714 		bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
4715 		if (tcp->tcp_ipversion == IPV6_VERSION) {
4716 			if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt ==
4717 			    IPPROTO_RAW) {
4718 				tcp->tcp_ip6h =
4719 				    (ip6_t *)(tcp->tcp_iphc +
4720 					sizeof (ip6i_t));
4721 			} else {
4722 				tcp->tcp_ip6h =
4723 				    (ip6_t *)(tcp->tcp_iphc);
4724 			}
4725 			tcp->tcp_ipha = NULL;
4726 		} else {
4727 			tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
4728 			tcp->tcp_ip6h = NULL;
4729 		}
4730 		tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
4731 		    tcp->tcp_ip_hdr_len);
4732 	} else {
4733 		/*
4734 		 * only valid case when ipversion of listener and
4735 		 * eager differ is when listener is IPv6 and
4736 		 * eager is IPv4.
4737 		 * Eager header template has been initialized to the
4738 		 * maximum v4 header sizes, which includes space for
4739 		 * TCP and IP options.
4740 		 */
4741 		ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) &&
4742 		    (tcp->tcp_ipversion == IPV4_VERSION));
4743 		ASSERT(tcp->tcp_iphc_len >=
4744 		    TCP_MAX_COMBINED_HEADER_LENGTH);
4745 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
4746 		/* copy IP header fields individually */
4747 		tcp->tcp_ipha->ipha_ttl =
4748 		    ltcp->tcp_ip6h->ip6_hops;
4749 		bcopy(ltcp->tcp_tcph->th_lport,
4750 		    tcp->tcp_tcph->th_lport, sizeof (ushort_t));
4751 	}
4752 
4753 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
4754 	bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport,
4755 	    sizeof (in_port_t));
4756 
4757 	if (ltcp->tcp_lport == 0) {
4758 		tcp->tcp_lport = *(in_port_t *)tcph->th_fport;
4759 		bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport,
4760 		    sizeof (in_port_t));
4761 	}
4762 
4763 	if (tcp->tcp_ipversion == IPV4_VERSION) {
4764 		ASSERT(ipha != NULL);
4765 		tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
4766 		tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
4767 
4768 		/* Source routing option copyover (reverse it) */
4769 		if (tcp_rev_src_routes)
4770 			tcp_opt_reverse(tcp, ipha);
4771 	} else {
4772 		ASSERT(ip6h != NULL);
4773 		tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src;
4774 		tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst;
4775 	}
4776 
4777 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
4778 	/*
4779 	 * If the SYN contains a credential, it's a loopback packet; attach
4780 	 * the credential to the TPI message.
4781 	 */
4782 	if ((cr = DB_CRED(idmp)) != NULL) {
4783 		mblk_setcred(tpi_mp, cr);
4784 		DB_CPID(tpi_mp) = DB_CPID(idmp);
4785 	}
4786 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
4787 
4788 	/* Inherit the listener's SSL protection state */
4789 
4790 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
4791 		kssl_hold_ent(tcp->tcp_kssl_ent);
4792 		tcp->tcp_kssl_pending = B_TRUE;
4793 	}
4794 
4795 	return (0);
4796 }
4797 
4798 
4799 int
4800 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
4801     tcph_t *tcph, mblk_t *idmp)
4802 {
4803 	tcp_t 		*ltcp = lconnp->conn_tcp;
4804 	tcp_t		*tcp = connp->conn_tcp;
4805 	sin_t		sin;
4806 	mblk_t		*tpi_mp = NULL;
4807 	int		err;
4808 	cred_t		*cr;
4809 
4810 	sin = sin_null;
4811 	sin.sin_addr.s_addr = ipha->ipha_src;
4812 	sin.sin_port = *(uint16_t *)tcph->th_lport;
4813 	sin.sin_family = AF_INET;
4814 	if (ltcp->tcp_recvdstaddr) {
4815 		sin_t	sind;
4816 
4817 		sind = sin_null;
4818 		sind.sin_addr.s_addr = ipha->ipha_dst;
4819 		sind.sin_port = *(uint16_t *)tcph->th_fport;
4820 		sind.sin_family = AF_INET;
4821 		tpi_mp = mi_tpi_extconn_ind(NULL,
4822 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
4823 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
4824 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4825 	} else {
4826 		tpi_mp = mi_tpi_conn_ind(NULL,
4827 		    (char *)&sin, sizeof (sin_t),
4828 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4829 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4830 	}
4831 
4832 	if (tpi_mp == NULL) {
4833 		return (ENOMEM);
4834 	}
4835 
4836 	connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER);
4837 	connp->conn_send = ip_output;
4838 	connp->conn_recv = tcp_input;
4839 	connp->conn_fully_bound = B_FALSE;
4840 
4841 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4842 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4843 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4844 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4845 
4846 	if (tcp_trace) {
4847 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
4848 	}
4849 
4850 	/* Inherit information from the "parent" */
4851 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
4852 	tcp->tcp_family = ltcp->tcp_family;
4853 	tcp->tcp_wq = ltcp->tcp_wq;
4854 	tcp->tcp_rq = ltcp->tcp_rq;
4855 	tcp->tcp_mss = tcp_mss_def_ipv4;
4856 	tcp->tcp_detached = B_TRUE;
4857 	if ((err = tcp_init_values(tcp)) != 0) {
4858 		freemsg(tpi_mp);
4859 		return (err);
4860 	}
4861 
4862 	/*
4863 	 * Let's make sure that eager tcp template has enough space to
4864 	 * copy IPv4 listener's tcp template. Since the conn_t structure is
4865 	 * preserved and tcp_iphc_len is also preserved, an eager conn_t may
4866 	 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or
4867 	 * more (in case of re-allocation of conn_t with tcp-IPv6 template with
4868 	 * extension headers or with ip6i_t struct). Note that bcopy() below
4869 	 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_
4870 	 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener.
4871 	 */
4872 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
4873 	ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH);
4874 
4875 	tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
4876 	tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
4877 	tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
4878 	tcp->tcp_ttl = ltcp->tcp_ttl;
4879 	tcp->tcp_tos = ltcp->tcp_tos;
4880 
4881 	/* Copy the IP+TCP header template from listener to eager */
4882 	bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
4883 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
4884 	tcp->tcp_ip6h = NULL;
4885 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
4886 	    tcp->tcp_ip_hdr_len);
4887 
4888 	/* Initialize the IP addresses and Ports */
4889 	tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
4890 	tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
4891 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
4892 	bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t));
4893 
4894 	/* Source routing option copyover (reverse it) */
4895 	if (tcp_rev_src_routes)
4896 		tcp_opt_reverse(tcp, ipha);
4897 
4898 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
4899 
4900 	/*
4901 	 * If the SYN contains a credential, it's a loopback packet; attach
4902 	 * the credential to the TPI message.
4903 	 */
4904 	if ((cr = DB_CRED(idmp)) != NULL) {
4905 		mblk_setcred(tpi_mp, cr);
4906 		DB_CPID(tpi_mp) = DB_CPID(idmp);
4907 	}
4908 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
4909 
4910 	/* Inherit the listener's SSL protection state */
4911 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
4912 		kssl_hold_ent(tcp->tcp_kssl_ent);
4913 		tcp->tcp_kssl_pending = B_TRUE;
4914 	}
4915 
4916 	return (0);
4917 }
4918 
4919 /*
4920  * sets up conn for ipsec.
4921  * if the first mblk is M_CTL it is consumed and mpp is updated.
4922  * in case of error mpp is freed.
4923  */
4924 conn_t *
4925 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp)
4926 {
4927 	conn_t 		*connp = tcp->tcp_connp;
4928 	conn_t 		*econnp;
4929 	squeue_t 	*new_sqp;
4930 	mblk_t 		*first_mp = *mpp;
4931 	mblk_t		*mp = *mpp;
4932 	boolean_t	mctl_present = B_FALSE;
4933 	uint_t		ipvers;
4934 
4935 	econnp = tcp_get_conn(sqp);
4936 	if (econnp == NULL) {
4937 		freemsg(first_mp);
4938 		return (NULL);
4939 	}
4940 	if (DB_TYPE(mp) == M_CTL) {
4941 		if (mp->b_cont == NULL ||
4942 		    mp->b_cont->b_datap->db_type != M_DATA) {
4943 			freemsg(first_mp);
4944 			return (NULL);
4945 		}
4946 		mp = mp->b_cont;
4947 		if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) {
4948 			freemsg(first_mp);
4949 			return (NULL);
4950 		}
4951 
4952 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
4953 		first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
4954 		mctl_present = B_TRUE;
4955 	} else {
4956 		ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY);
4957 		mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
4958 	}
4959 
4960 	new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
4961 	DB_CKSUMSTART(mp) = 0;
4962 
4963 	ASSERT(OK_32PTR(mp->b_rptr));
4964 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
4965 	if (ipvers == IPV4_VERSION) {
4966 		uint16_t  	*up;
4967 		uint32_t	ports;
4968 		ipha_t		*ipha;
4969 
4970 		ipha = (ipha_t *)mp->b_rptr;
4971 		up = (uint16_t *)((uchar_t *)ipha +
4972 		    IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET);
4973 		ports = *(uint32_t *)up;
4974 		IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP,
4975 		    ipha->ipha_dst, ipha->ipha_src, ports);
4976 	} else {
4977 		uint16_t  	*up;
4978 		uint32_t	ports;
4979 		uint16_t	ip_hdr_len;
4980 		uint8_t		*nexthdrp;
4981 		ip6_t 		*ip6h;
4982 		tcph_t		*tcph;
4983 
4984 		ip6h = (ip6_t *)mp->b_rptr;
4985 		if (ip6h->ip6_nxt == IPPROTO_TCP) {
4986 			ip_hdr_len = IPV6_HDR_LEN;
4987 		} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len,
4988 		    &nexthdrp) || *nexthdrp != IPPROTO_TCP) {
4989 			CONN_DEC_REF(econnp);
4990 			freemsg(first_mp);
4991 			return (NULL);
4992 		}
4993 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
4994 		up = (uint16_t *)tcph->th_lport;
4995 		ports = *(uint32_t *)up;
4996 		IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP,
4997 		    ip6h->ip6_dst, ip6h->ip6_src, ports);
4998 	}
4999 
5000 	/*
5001 	 * The caller already ensured that there is a sqp present.
5002 	 */
5003 	econnp->conn_sqp = new_sqp;
5004 
5005 	if (connp->conn_policy != NULL) {
5006 		ipsec_in_t *ii;
5007 		ii = (ipsec_in_t *)(first_mp->b_rptr);
5008 		ASSERT(ii->ipsec_in_policy == NULL);
5009 		IPPH_REFHOLD(connp->conn_policy);
5010 		ii->ipsec_in_policy = connp->conn_policy;
5011 
5012 		first_mp->b_datap->db_type = IPSEC_POLICY_SET;
5013 		if (!ip_bind_ipsec_policy_set(econnp, first_mp)) {
5014 			CONN_DEC_REF(econnp);
5015 			freemsg(first_mp);
5016 			return (NULL);
5017 		}
5018 	}
5019 
5020 	if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) {
5021 		CONN_DEC_REF(econnp);
5022 		freemsg(first_mp);
5023 		return (NULL);
5024 	}
5025 
5026 	/*
5027 	 * If we know we have some policy, pass the "IPSEC"
5028 	 * options size TCP uses this adjust the MSS.
5029 	 */
5030 	econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp);
5031 	if (mctl_present) {
5032 		freeb(first_mp);
5033 		*mpp = mp;
5034 	}
5035 
5036 	return (econnp);
5037 }
5038 
5039 /*
5040  * tcp_get_conn/tcp_free_conn
5041  *
5042  * tcp_get_conn is used to get a clean tcp connection structure.
5043  * It tries to reuse the connections put on the freelist by the
5044  * time_wait_collector failing which it goes to kmem_cache. This
5045  * way has two benefits compared to just allocating from and
5046  * freeing to kmem_cache.
5047  * 1) The time_wait_collector can free (which includes the cleanup)
5048  * outside the squeue. So when the interrupt comes, we have a clean
5049  * connection sitting in the freelist. Obviously, this buys us
5050  * performance.
5051  *
5052  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request
5053  * has multiple disadvantages - tying up the squeue during alloc, and the
5054  * fact that IPSec policy initialization has to happen here which
5055  * requires us sending a M_CTL and checking for it i.e. real ugliness.
5056  * But allocating the conn/tcp in IP land is also not the best since
5057  * we can't check the 'q' and 'q0' which are protected by squeue and
5058  * blindly allocate memory which might have to be freed here if we are
5059  * not allowed to accept the connection. By using the freelist and
5060  * putting the conn/tcp back in freelist, we don't pay a penalty for
5061  * allocating memory without checking 'q/q0' and freeing it if we can't
5062  * accept the connection.
5063  *
5064  * Care should be taken to put the conn back in the same squeue's freelist
5065  * from which it was allocated. Best results are obtained if conn is
5066  * allocated from listener's squeue and freed to the same. Time wait
5067  * collector will free up the freelist is the connection ends up sitting
5068  * there for too long.
5069  */
5070 void *
5071 tcp_get_conn(void *arg)
5072 {
5073 	tcp_t			*tcp = NULL;
5074 	conn_t			*connp = NULL;
5075 	squeue_t		*sqp = (squeue_t *)arg;
5076 	tcp_squeue_priv_t 	*tcp_time_wait;
5077 
5078 	tcp_time_wait =
5079 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
5080 
5081 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
5082 	tcp = tcp_time_wait->tcp_free_list;
5083 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
5084 	if (tcp != NULL) {
5085 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
5086 		tcp_time_wait->tcp_free_list_cnt--;
5087 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5088 		tcp->tcp_time_wait_next = NULL;
5089 		connp = tcp->tcp_connp;
5090 		connp->conn_flags |= IPCL_REUSED;
5091 		return ((void *)connp);
5092 	}
5093 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5094 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL)
5095 		return (NULL);
5096 	return ((void *)connp);
5097 }
5098 
5099 /* BEGIN CSTYLED */
5100 /*
5101  *
5102  * The sockfs ACCEPT path:
5103  * =======================
5104  *
5105  * The eager is now established in its own perimeter as soon as SYN is
5106  * received in tcp_conn_request(). When sockfs receives conn_ind, it
5107  * completes the accept processing on the acceptor STREAM. The sending
5108  * of conn_ind part is common for both sockfs listener and a TLI/XTI
5109  * listener but a TLI/XTI listener completes the accept processing
5110  * on the listener perimeter.
5111  *
5112  * Common control flow for 3 way handshake:
5113  * ----------------------------------------
5114  *
5115  * incoming SYN (listener perimeter) 	-> tcp_rput_data()
5116  *					-> tcp_conn_request()
5117  *
5118  * incoming SYN-ACK-ACK (eager perim) 	-> tcp_rput_data()
5119  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
5120  *
5121  * Sockfs ACCEPT Path:
5122  * -------------------
5123  *
5124  * open acceptor stream (ip_tcpopen allocates tcp_wput_accept()
5125  * as STREAM entry point)
5126  *
5127  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept()
5128  *
5129  * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager
5130  * association (we are not behind eager's squeue but sockfs is protecting us
5131  * and no one knows about this stream yet. The STREAMS entry point q->q_info
5132  * is changed to point at tcp_wput().
5133  *
5134  * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to
5135  * listener (done on listener's perimeter).
5136  *
5137  * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish
5138  * accept.
5139  *
5140  * TLI/XTI client ACCEPT path:
5141  * ---------------------------
5142  *
5143  * soaccept() sends T_CONN_RES on the listener STREAM.
5144  *
5145  * tcp_accept() -> tcp_accept_swap() complete the processing and send
5146  * the bind_mp to eager perimeter to finish accept (tcp_rput_other()).
5147  *
5148  * Locks:
5149  * ======
5150  *
5151  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
5152  * and listeners->tcp_eager_next_q.
5153  *
5154  * Referencing:
5155  * ============
5156  *
5157  * 1) We start out in tcp_conn_request by eager placing a ref on
5158  * listener and listener adding eager to listeners->tcp_eager_next_q0.
5159  *
5160  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
5161  * doing so we place a ref on the eager. This ref is finally dropped at the
5162  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
5163  * reference is dropped by the squeue framework.
5164  *
5165  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
5166  *
5167  * The reference must be released by the same entity that added the reference
5168  * In the above scheme, the eager is the entity that adds and releases the
5169  * references. Note that tcp_accept_finish executes in the squeue of the eager
5170  * (albeit after it is attached to the acceptor stream). Though 1. executes
5171  * in the listener's squeue, the eager is nascent at this point and the
5172  * reference can be considered to have been added on behalf of the eager.
5173  *
5174  * Eager getting a Reset or listener closing:
5175  * ==========================================
5176  *
5177  * Once the listener and eager are linked, the listener never does the unlink.
5178  * If the listener needs to close, tcp_eager_cleanup() is called which queues
5179  * a message on all eager perimeter. The eager then does the unlink, clears
5180  * any pointers to the listener's queue and drops the reference to the
5181  * listener. The listener waits in tcp_close outside the squeue until its
5182  * refcount has dropped to 1. This ensures that the listener has waited for
5183  * all eagers to clear their association with the listener.
5184  *
5185  * Similarly, if eager decides to go away, it can unlink itself and close.
5186  * When the T_CONN_RES comes down, we check if eager has closed. Note that
5187  * the reference to eager is still valid because of the extra ref we put
5188  * in tcp_send_conn_ind.
5189  *
5190  * Listener can always locate the eager under the protection
5191  * of the listener->tcp_eager_lock, and then do a refhold
5192  * on the eager during the accept processing.
5193  *
5194  * The acceptor stream accesses the eager in the accept processing
5195  * based on the ref placed on eager before sending T_conn_ind.
5196  * The only entity that can negate this refhold is a listener close
5197  * which is mutually exclusive with an active acceptor stream.
5198  *
5199  * Eager's reference on the listener
5200  * ===================================
5201  *
5202  * If the accept happens (even on a closed eager) the eager drops its
5203  * reference on the listener at the start of tcp_accept_finish. If the
5204  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
5205  * the reference is dropped in tcp_closei_local. If the listener closes,
5206  * the reference is dropped in tcp_eager_kill. In all cases the reference
5207  * is dropped while executing in the eager's context (squeue).
5208  */
5209 /* END CSTYLED */
5210 
5211 /* Process the SYN packet, mp, directed at the listener 'tcp' */
5212 
5213 /*
5214  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
5215  * tcp_rput_data will not see any SYN packets.
5216  */
5217 /* ARGSUSED */
5218 void
5219 tcp_conn_request(void *arg, mblk_t *mp, void *arg2)
5220 {
5221 	tcph_t		*tcph;
5222 	uint32_t	seg_seq;
5223 	tcp_t		*eager;
5224 	uint_t		ipvers;
5225 	ipha_t		*ipha;
5226 	ip6_t		*ip6h;
5227 	int		err;
5228 	conn_t		*econnp = NULL;
5229 	squeue_t	*new_sqp;
5230 	mblk_t		*mp1;
5231 	uint_t 		ip_hdr_len;
5232 	conn_t		*connp = (conn_t *)arg;
5233 	tcp_t		*tcp = connp->conn_tcp;
5234 	ire_t		*ire;
5235 
5236 	if (tcp->tcp_state != TCPS_LISTEN)
5237 		goto error2;
5238 
5239 	ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0);
5240 
5241 	mutex_enter(&tcp->tcp_eager_lock);
5242 	if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) {
5243 		mutex_exit(&tcp->tcp_eager_lock);
5244 		TCP_STAT(tcp_listendrop);
5245 		BUMP_MIB(&tcp_mib, tcpListenDrop);
5246 		if (tcp->tcp_debug) {
5247 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
5248 			    "tcp_conn_request: listen backlog (max=%d) "
5249 			    "overflow (%d pending) on %s",
5250 			    tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q,
5251 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
5252 		}
5253 		goto error2;
5254 	}
5255 
5256 	if (tcp->tcp_conn_req_cnt_q0 >=
5257 	    tcp->tcp_conn_req_max + tcp_conn_req_max_q0) {
5258 		/*
5259 		 * Q0 is full. Drop a pending half-open req from the queue
5260 		 * to make room for the new SYN req. Also mark the time we
5261 		 * drop a SYN.
5262 		 *
5263 		 * A more aggressive defense against SYN attack will
5264 		 * be to set the "tcp_syn_defense" flag now.
5265 		 */
5266 		TCP_STAT(tcp_listendropq0);
5267 		tcp->tcp_last_rcv_lbolt = lbolt64;
5268 		if (!tcp_drop_q0(tcp)) {
5269 			mutex_exit(&tcp->tcp_eager_lock);
5270 			BUMP_MIB(&tcp_mib, tcpListenDropQ0);
5271 			if (tcp->tcp_debug) {
5272 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
5273 				    "tcp_conn_request: listen half-open queue "
5274 				    "(max=%d) full (%d pending) on %s",
5275 				    tcp_conn_req_max_q0,
5276 				    tcp->tcp_conn_req_cnt_q0,
5277 				    tcp_display(tcp, NULL,
5278 				    DISP_PORT_ONLY));
5279 			}
5280 			goto error2;
5281 		}
5282 	}
5283 	mutex_exit(&tcp->tcp_eager_lock);
5284 
5285 	/*
5286 	 * IP adds STRUIO_EAGER and ensures that the received packet is
5287 	 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6
5288 	 * link local address.  If IPSec is enabled, db_struioflag has
5289 	 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER);
5290 	 * otherwise an error case if neither of them is set.
5291 	 */
5292 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5293 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5294 		DB_CKSUMSTART(mp) = 0;
5295 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5296 		econnp = (conn_t *)tcp_get_conn(arg2);
5297 		if (econnp == NULL)
5298 			goto error2;
5299 		econnp->conn_sqp = new_sqp;
5300 	} else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) {
5301 		/*
5302 		 * mp is updated in tcp_get_ipsec_conn().
5303 		 */
5304 		econnp = tcp_get_ipsec_conn(tcp, arg2, &mp);
5305 		if (econnp == NULL) {
5306 			/*
5307 			 * mp freed by tcp_get_ipsec_conn.
5308 			 */
5309 			return;
5310 		}
5311 	} else {
5312 		goto error2;
5313 	}
5314 
5315 	ASSERT(DB_TYPE(mp) == M_DATA);
5316 
5317 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5318 	ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION);
5319 	ASSERT(OK_32PTR(mp->b_rptr));
5320 	if (ipvers == IPV4_VERSION) {
5321 		ipha = (ipha_t *)mp->b_rptr;
5322 		ip_hdr_len = IPH_HDR_LENGTH(ipha);
5323 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5324 	} else {
5325 		ip6h = (ip6_t *)mp->b_rptr;
5326 		ip_hdr_len = ip_hdr_length_v6(mp, ip6h);
5327 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5328 	}
5329 
5330 	if (tcp->tcp_family == AF_INET) {
5331 		ASSERT(ipvers == IPV4_VERSION);
5332 		err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp);
5333 	} else {
5334 		err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp);
5335 	}
5336 
5337 	if (err)
5338 		goto error3;
5339 
5340 	eager = econnp->conn_tcp;
5341 
5342 	/* Inherit various TCP parameters from the listener */
5343 	eager->tcp_naglim = tcp->tcp_naglim;
5344 	eager->tcp_first_timer_threshold =
5345 	    tcp->tcp_first_timer_threshold;
5346 	eager->tcp_second_timer_threshold =
5347 	    tcp->tcp_second_timer_threshold;
5348 
5349 	eager->tcp_first_ctimer_threshold =
5350 	    tcp->tcp_first_ctimer_threshold;
5351 	eager->tcp_second_ctimer_threshold =
5352 	    tcp->tcp_second_ctimer_threshold;
5353 
5354 	/*
5355 	 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics.
5356 	 * If it does not, the eager's receive window will be set to the
5357 	 * listener's receive window later in this function.
5358 	 */
5359 	eager->tcp_rwnd = 0;
5360 
5361 	/*
5362 	 * Inherit listener's tcp_init_cwnd.  Need to do this before
5363 	 * calling tcp_process_options() where tcp_mss_set() is called
5364 	 * to set the initial cwnd.
5365 	 */
5366 	eager->tcp_init_cwnd = tcp->tcp_init_cwnd;
5367 
5368 	/*
5369 	 * Zones: tcp_adapt_ire() and tcp_send_data() both need the
5370 	 * zone id before the accept is completed in tcp_wput_accept().
5371 	 */
5372 	econnp->conn_zoneid = connp->conn_zoneid;
5373 
5374 	/* Copy nexthop information from listener to eager */
5375 	if (connp->conn_nexthop_set) {
5376 		econnp->conn_nexthop_set = connp->conn_nexthop_set;
5377 		econnp->conn_nexthop_v4 = connp->conn_nexthop_v4;
5378 	}
5379 
5380 	eager->tcp_hard_binding = B_TRUE;
5381 
5382 	tcp_bind_hash_insert(&tcp_bind_fanout[
5383 	    TCP_BIND_HASH(eager->tcp_lport)], eager, 0);
5384 
5385 	CL_INET_CONNECT(eager);
5386 
5387 	/*
5388 	 * No need to check for multicast destination since ip will only pass
5389 	 * up multicasts to those that have expressed interest
5390 	 * TODO: what about rejecting broadcasts?
5391 	 * Also check that source is not a multicast or broadcast address.
5392 	 */
5393 	eager->tcp_state = TCPS_SYN_RCVD;
5394 
5395 
5396 	/*
5397 	 * There should be no ire in the mp as we are being called after
5398 	 * receiving the SYN.
5399 	 */
5400 	ASSERT(tcp_ire_mp(mp) == NULL);
5401 
5402 	/*
5403 	 * Adapt our mss, ttl, ... according to information provided in IRE.
5404 	 */
5405 
5406 	if (tcp_adapt_ire(eager, NULL) == 0) {
5407 		/* Undo the bind_hash_insert */
5408 		tcp_bind_hash_remove(eager);
5409 		goto error3;
5410 	}
5411 
5412 	/* Process all TCP options. */
5413 	tcp_process_options(eager, tcph);
5414 
5415 	/* Is the other end ECN capable? */
5416 	if (tcp_ecn_permitted >= 1 &&
5417 	    (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
5418 		eager->tcp_ecn_ok = B_TRUE;
5419 	}
5420 
5421 	/*
5422 	 * listener->tcp_rq->q_hiwat should be the default window size or a
5423 	 * window size changed via SO_RCVBUF option.  First round up the
5424 	 * eager's tcp_rwnd to the nearest MSS.  Then find out the window
5425 	 * scale option value if needed.  Call tcp_rwnd_set() to finish the
5426 	 * setting.
5427 	 *
5428 	 * Note if there is a rpipe metric associated with the remote host,
5429 	 * we should not inherit receive window size from listener.
5430 	 */
5431 	eager->tcp_rwnd = MSS_ROUNDUP(
5432 	    (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat :
5433 	    eager->tcp_rwnd), eager->tcp_mss);
5434 	if (eager->tcp_snd_ws_ok)
5435 		tcp_set_ws_value(eager);
5436 	/*
5437 	 * Note that this is the only place tcp_rwnd_set() is called for
5438 	 * accepting a connection.  We need to call it here instead of
5439 	 * after the 3-way handshake because we need to tell the other
5440 	 * side our rwnd in the SYN-ACK segment.
5441 	 */
5442 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
5443 
5444 	/*
5445 	 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ
5446 	 * via soaccept()->soinheritoptions() which essentially applies
5447 	 * all the listener options to the new STREAM. The options that we
5448 	 * need to take care of are:
5449 	 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST,
5450 	 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER,
5451 	 * SO_SNDBUF, SO_RCVBUF.
5452 	 *
5453 	 * SO_RCVBUF:	tcp_rwnd_set() above takes care of it.
5454 	 * SO_SNDBUF:	Set the tcp_xmit_hiwater for the eager. When
5455 	 *		tcp_maxpsz_set() gets called later from
5456 	 *		tcp_accept_finish(), the option takes effect.
5457 	 *
5458 	 */
5459 	/* Set the TCP options */
5460 	eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater;
5461 	eager->tcp_dgram_errind = tcp->tcp_dgram_errind;
5462 	eager->tcp_oobinline = tcp->tcp_oobinline;
5463 	eager->tcp_reuseaddr = tcp->tcp_reuseaddr;
5464 	eager->tcp_broadcast = tcp->tcp_broadcast;
5465 	eager->tcp_useloopback = tcp->tcp_useloopback;
5466 	eager->tcp_dontroute = tcp->tcp_dontroute;
5467 	eager->tcp_linger = tcp->tcp_linger;
5468 	eager->tcp_lingertime = tcp->tcp_lingertime;
5469 	if (tcp->tcp_ka_enabled)
5470 		eager->tcp_ka_enabled = 1;
5471 
5472 	/* Set the IP options */
5473 	econnp->conn_broadcast = connp->conn_broadcast;
5474 	econnp->conn_loopback = connp->conn_loopback;
5475 	econnp->conn_dontroute = connp->conn_dontroute;
5476 	econnp->conn_reuseaddr = connp->conn_reuseaddr;
5477 
5478 	/* Put a ref on the listener for the eager. */
5479 	CONN_INC_REF(connp);
5480 	mutex_enter(&tcp->tcp_eager_lock);
5481 	tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
5482 	eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0;
5483 	tcp->tcp_eager_next_q0 = eager;
5484 	eager->tcp_eager_prev_q0 = tcp;
5485 
5486 	/* Set tcp_listener before adding it to tcp_conn_fanout */
5487 	eager->tcp_listener = tcp;
5488 	eager->tcp_saved_listener = tcp;
5489 
5490 	/*
5491 	 * Tag this detached tcp vector for later retrieval
5492 	 * by our listener client in tcp_accept().
5493 	 */
5494 	eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum;
5495 	tcp->tcp_conn_req_cnt_q0++;
5496 	if (++tcp->tcp_conn_req_seqnum == -1) {
5497 		/*
5498 		 * -1 is "special" and defined in TPI as something
5499 		 * that should never be used in T_CONN_IND
5500 		 */
5501 		++tcp->tcp_conn_req_seqnum;
5502 	}
5503 	mutex_exit(&tcp->tcp_eager_lock);
5504 
5505 	if (tcp->tcp_syn_defense) {
5506 		/* Don't drop the SYN that comes from a good IP source */
5507 		ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache);
5508 		if (addr_cache != NULL && eager->tcp_remote ==
5509 		    addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) {
5510 			eager->tcp_dontdrop = B_TRUE;
5511 		}
5512 	}
5513 
5514 	/*
5515 	 * We need to insert the eager in its own perimeter but as soon
5516 	 * as we do that, we expose the eager to the classifier and
5517 	 * should not touch any field outside the eager's perimeter.
5518 	 * So do all the work necessary before inserting the eager
5519 	 * in its own perimeter. Be optimistic that ipcl_conn_insert()
5520 	 * will succeed but undo everything if it fails.
5521 	 */
5522 	seg_seq = ABE32_TO_U32(tcph->th_seq);
5523 	eager->tcp_irs = seg_seq;
5524 	eager->tcp_rack = seg_seq;
5525 	eager->tcp_rnxt = seg_seq + 1;
5526 	U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack);
5527 	BUMP_MIB(&tcp_mib, tcpPassiveOpens);
5528 	eager->tcp_state = TCPS_SYN_RCVD;
5529 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
5530 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
5531 	if (mp1 == NULL)
5532 		goto error1;
5533 	mblk_setcred(mp1, tcp->tcp_cred);
5534 	DB_CPID(mp1) = tcp->tcp_cpid;
5535 
5536 	/*
5537 	 * We need to start the rto timer. In normal case, we start
5538 	 * the timer after sending the packet on the wire (or at
5539 	 * least believing that packet was sent by waiting for
5540 	 * CALL_IP_WPUT() to return). Since this is the first packet
5541 	 * being sent on the wire for the eager, our initial tcp_rto
5542 	 * is at least tcp_rexmit_interval_min which is a fairly
5543 	 * large value to allow the algorithm to adjust slowly to large
5544 	 * fluctuations of RTT during first few transmissions.
5545 	 *
5546 	 * Starting the timer first and then sending the packet in this
5547 	 * case shouldn't make much difference since tcp_rexmit_interval_min
5548 	 * is of the order of several 100ms and starting the timer
5549 	 * first and then sending the packet will result in difference
5550 	 * of few micro seconds.
5551 	 *
5552 	 * Without this optimization, we are forced to hold the fanout
5553 	 * lock across the ipcl_bind_insert() and sending the packet
5554 	 * so that we don't race against an incoming packet (maybe RST)
5555 	 * for this eager.
5556 	 */
5557 
5558 	TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT);
5559 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
5560 
5561 
5562 	/*
5563 	 * Insert the eager in its own perimeter now. We are ready to deal
5564 	 * with any packets on eager.
5565 	 */
5566 	if (eager->tcp_ipversion == IPV4_VERSION) {
5567 		if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) {
5568 			goto error;
5569 		}
5570 	} else {
5571 		if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) {
5572 			goto error;
5573 		}
5574 	}
5575 
5576 	/* mark conn as fully-bound */
5577 	econnp->conn_fully_bound = B_TRUE;
5578 
5579 	/* Send the SYN-ACK */
5580 	tcp_send_data(eager, eager->tcp_wq, mp1);
5581 	freemsg(mp);
5582 
5583 	return;
5584 error:
5585 	(void) TCP_TIMER_CANCEL(eager, eager->tcp_timer_tid);
5586 	freemsg(mp1);
5587 error1:
5588 	/* Undo what we did above */
5589 	mutex_enter(&tcp->tcp_eager_lock);
5590 	tcp_eager_unlink(eager);
5591 	mutex_exit(&tcp->tcp_eager_lock);
5592 	/* Drop eager's reference on the listener */
5593 	CONN_DEC_REF(connp);
5594 
5595 	/*
5596 	 * Delete the cached ire in conn_ire_cache and also mark
5597 	 * the conn as CONDEMNED
5598 	 */
5599 	mutex_enter(&econnp->conn_lock);
5600 	econnp->conn_state_flags |= CONN_CONDEMNED;
5601 	ire = econnp->conn_ire_cache;
5602 	econnp->conn_ire_cache = NULL;
5603 	mutex_exit(&econnp->conn_lock);
5604 	if (ire != NULL)
5605 		IRE_REFRELE_NOTR(ire);
5606 
5607 	/*
5608 	 * tcp_accept_comm inserts the eager to the bind_hash
5609 	 * we need to remove it from the hash if ipcl_conn_insert
5610 	 * fails.
5611 	 */
5612 	tcp_bind_hash_remove(eager);
5613 	/* Drop the eager ref placed in tcp_open_detached */
5614 	CONN_DEC_REF(econnp);
5615 
5616 	/*
5617 	 * If a connection already exists, send the mp to that connections so
5618 	 * that it can be appropriately dealt with.
5619 	 */
5620 	if ((econnp = ipcl_classify(mp, connp->conn_zoneid)) != NULL) {
5621 		if (!IPCL_IS_CONNECTED(econnp)) {
5622 			/*
5623 			 * Something bad happened. ipcl_conn_insert()
5624 			 * failed because a connection already existed
5625 			 * in connected hash but we can't find it
5626 			 * anymore (someone blew it away). Just
5627 			 * free this message and hopefully remote
5628 			 * will retransmit at which time the SYN can be
5629 			 * treated as a new connection or dealth with
5630 			 * a TH_RST if a connection already exists.
5631 			 */
5632 			freemsg(mp);
5633 		} else {
5634 			squeue_fill(econnp->conn_sqp, mp, tcp_input,
5635 			    econnp, SQTAG_TCP_CONN_REQ);
5636 		}
5637 	} else {
5638 		/* Nobody wants this packet */
5639 		freemsg(mp);
5640 	}
5641 	return;
5642 error2:
5643 	freemsg(mp);
5644 	return;
5645 error3:
5646 	CONN_DEC_REF(econnp);
5647 	freemsg(mp);
5648 }
5649 
5650 /*
5651  * In an ideal case of vertical partition in NUMA architecture, its
5652  * beneficial to have the listener and all the incoming connections
5653  * tied to the same squeue. The other constraint is that incoming
5654  * connections should be tied to the squeue attached to interrupted
5655  * CPU for obvious locality reason so this leaves the listener to
5656  * be tied to the same squeue. Our only problem is that when listener
5657  * is binding, the CPU that will get interrupted by the NIC whose
5658  * IP address the listener is binding to is not even known. So
5659  * the code below allows us to change that binding at the time the
5660  * CPU is interrupted by virtue of incoming connection's squeue.
5661  *
5662  * This is usefull only in case of a listener bound to a specific IP
5663  * address. For other kind of listeners, they get bound the
5664  * very first time and there is no attempt to rebind them.
5665  */
5666 void
5667 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2)
5668 {
5669 	conn_t		*connp = (conn_t *)arg;
5670 	squeue_t	*sqp = (squeue_t *)arg2;
5671 	squeue_t	*new_sqp;
5672 	uint32_t	conn_flags;
5673 
5674 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5675 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5676 	} else {
5677 		goto done;
5678 	}
5679 
5680 	if (connp->conn_fanout == NULL)
5681 		goto done;
5682 
5683 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
5684 		mutex_enter(&connp->conn_fanout->connf_lock);
5685 		mutex_enter(&connp->conn_lock);
5686 		/*
5687 		 * No one from read or write side can access us now
5688 		 * except for already queued packets on this squeue.
5689 		 * But since we haven't changed the squeue yet, they
5690 		 * can't execute. If they are processed after we have
5691 		 * changed the squeue, they are sent back to the
5692 		 * correct squeue down below.
5693 		 */
5694 		if (connp->conn_sqp != new_sqp) {
5695 			while (connp->conn_sqp != new_sqp)
5696 				(void) casptr(&connp->conn_sqp, sqp, new_sqp);
5697 		}
5698 
5699 		do {
5700 			conn_flags = connp->conn_flags;
5701 			conn_flags |= IPCL_FULLY_BOUND;
5702 			(void) cas32(&connp->conn_flags, connp->conn_flags,
5703 			    conn_flags);
5704 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
5705 
5706 		mutex_exit(&connp->conn_fanout->connf_lock);
5707 		mutex_exit(&connp->conn_lock);
5708 	}
5709 
5710 done:
5711 	if (connp->conn_sqp != sqp) {
5712 		CONN_INC_REF(connp);
5713 		squeue_fill(connp->conn_sqp, mp,
5714 		    connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND);
5715 	} else {
5716 		tcp_conn_request(connp, mp, sqp);
5717 	}
5718 }
5719 
5720 /*
5721  * Successful connect request processing begins when our client passes
5722  * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes
5723  * our T_OK_ACK reply message upstream.  The control flow looks like this:
5724  *   upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP
5725  *   upstream <- tcp_rput()                <- IP
5726  * After various error checks are completed, tcp_connect() lays
5727  * the target address and port into the composite header template,
5728  * preallocates the T_OK_ACK reply message, construct a full 12 byte bind
5729  * request followed by an IRE request, and passes the three mblk message
5730  * down to IP looking like this:
5731  *   O_T_BIND_REQ for IP  --> IRE req --> T_OK_ACK for our client
5732  * Processing continues in tcp_rput() when we receive the following message:
5733  *   T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client
5734  * After consuming the first two mblks, tcp_rput() calls tcp_timer(),
5735  * to fire off the connection request, and then passes the T_OK_ACK mblk
5736  * upstream that we filled in below.  There are, of course, numerous
5737  * error conditions along the way which truncate the processing described
5738  * above.
5739  */
5740 static void
5741 tcp_connect(tcp_t *tcp, mblk_t *mp)
5742 {
5743 	sin_t		*sin;
5744 	sin6_t		*sin6;
5745 	queue_t		*q = tcp->tcp_wq;
5746 	struct T_conn_req	*tcr;
5747 	ipaddr_t	*dstaddrp;
5748 	in_port_t	dstport;
5749 	uint_t		srcid;
5750 
5751 	tcr = (struct T_conn_req *)mp->b_rptr;
5752 
5753 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
5754 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
5755 		tcp_err_ack(tcp, mp, TPROTO, 0);
5756 		return;
5757 	}
5758 
5759 	/*
5760 	 * Determine packet type based on type of address passed in
5761 	 * the request should contain an IPv4 or IPv6 address.
5762 	 * Make sure that address family matches the type of
5763 	 * family of the the address passed down
5764 	 */
5765 	switch (tcr->DEST_length) {
5766 	default:
5767 		tcp_err_ack(tcp, mp, TBADADDR, 0);
5768 		return;
5769 
5770 	case (sizeof (sin_t) - sizeof (sin->sin_zero)): {
5771 		/*
5772 		 * XXX: The check for valid DEST_length was not there
5773 		 * in earlier releases and some buggy
5774 		 * TLI apps (e.g Sybase) got away with not feeding
5775 		 * in sin_zero part of address.
5776 		 * We allow that bug to keep those buggy apps humming.
5777 		 * Test suites require the check on DEST_length.
5778 		 * We construct a new mblk with valid DEST_length
5779 		 * free the original so the rest of the code does
5780 		 * not have to keep track of this special shorter
5781 		 * length address case.
5782 		 */
5783 		mblk_t *nmp;
5784 		struct T_conn_req *ntcr;
5785 		sin_t *nsin;
5786 
5787 		nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) +
5788 		    tcr->OPT_length, BPRI_HI);
5789 		if (nmp == NULL) {
5790 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
5791 			return;
5792 		}
5793 		ntcr = (struct T_conn_req *)nmp->b_rptr;
5794 		bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */
5795 		ntcr->PRIM_type = T_CONN_REQ;
5796 		ntcr->DEST_length = sizeof (sin_t);
5797 		ntcr->DEST_offset = sizeof (struct T_conn_req);
5798 
5799 		nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset);
5800 		*nsin = sin_null;
5801 		/* Get pointer to shorter address to copy from original mp */
5802 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
5803 		    tcr->DEST_length); /* extract DEST_length worth of sin_t */
5804 		if (sin == NULL || !OK_32PTR((char *)sin)) {
5805 			freemsg(nmp);
5806 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
5807 			return;
5808 		}
5809 		nsin->sin_family = sin->sin_family;
5810 		nsin->sin_port = sin->sin_port;
5811 		nsin->sin_addr = sin->sin_addr;
5812 		/* Note:nsin->sin_zero zero-fill with sin_null assign above */
5813 		nmp->b_wptr = (uchar_t *)&nsin[1];
5814 		if (tcr->OPT_length != 0) {
5815 			ntcr->OPT_length = tcr->OPT_length;
5816 			ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr;
5817 			bcopy((uchar_t *)tcr + tcr->OPT_offset,
5818 			    (uchar_t *)ntcr + ntcr->OPT_offset,
5819 			    tcr->OPT_length);
5820 			nmp->b_wptr += tcr->OPT_length;
5821 		}
5822 		freemsg(mp);	/* original mp freed */
5823 		mp = nmp;	/* re-initialize original variables */
5824 		tcr = ntcr;
5825 	}
5826 	/* FALLTHRU */
5827 
5828 	case sizeof (sin_t):
5829 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
5830 		    sizeof (sin_t));
5831 		if (sin == NULL || !OK_32PTR((char *)sin)) {
5832 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
5833 			return;
5834 		}
5835 		if (tcp->tcp_family != AF_INET ||
5836 		    sin->sin_family != AF_INET) {
5837 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
5838 			return;
5839 		}
5840 		if (sin->sin_port == 0) {
5841 			tcp_err_ack(tcp, mp, TBADADDR, 0);
5842 			return;
5843 		}
5844 		if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) {
5845 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
5846 			return;
5847 		}
5848 
5849 		break;
5850 
5851 	case sizeof (sin6_t):
5852 		sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset,
5853 		    sizeof (sin6_t));
5854 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
5855 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
5856 			return;
5857 		}
5858 		if (tcp->tcp_family != AF_INET6 ||
5859 		    sin6->sin6_family != AF_INET6) {
5860 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
5861 			return;
5862 		}
5863 		if (sin6->sin6_port == 0) {
5864 			tcp_err_ack(tcp, mp, TBADADDR, 0);
5865 			return;
5866 		}
5867 		break;
5868 	}
5869 	/*
5870 	 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we
5871 	 * should key on their sequence number and cut them loose.
5872 	 */
5873 
5874 	/*
5875 	 * If options passed in, feed it for verification and handling
5876 	 */
5877 	if (tcr->OPT_length != 0) {
5878 		mblk_t	*ok_mp;
5879 		mblk_t	*discon_mp;
5880 		mblk_t  *conn_opts_mp;
5881 		int t_error, sys_error, do_disconnect;
5882 
5883 		conn_opts_mp = NULL;
5884 
5885 		if (tcp_conprim_opt_process(tcp, mp,
5886 			&do_disconnect, &t_error, &sys_error) < 0) {
5887 			if (do_disconnect) {
5888 				ASSERT(t_error == 0 && sys_error == 0);
5889 				discon_mp = mi_tpi_discon_ind(NULL,
5890 				    ECONNREFUSED, 0);
5891 				if (!discon_mp) {
5892 					tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
5893 					    TSYSERR, ENOMEM);
5894 					return;
5895 				}
5896 				ok_mp = mi_tpi_ok_ack_alloc(mp);
5897 				if (!ok_mp) {
5898 					tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
5899 					    TSYSERR, ENOMEM);
5900 					return;
5901 				}
5902 				qreply(q, ok_mp);
5903 				qreply(q, discon_mp); /* no flush! */
5904 			} else {
5905 				ASSERT(t_error != 0);
5906 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error,
5907 				    sys_error);
5908 			}
5909 			return;
5910 		}
5911 		/*
5912 		 * Success in setting options, the mp option buffer represented
5913 		 * by OPT_length/offset has been potentially modified and
5914 		 * contains results of option processing. We copy it in
5915 		 * another mp to save it for potentially influencing returning
5916 		 * it in T_CONN_CONN.
5917 		 */
5918 		if (tcr->OPT_length != 0) { /* there are resulting options */
5919 			conn_opts_mp = copyb(mp);
5920 			if (!conn_opts_mp) {
5921 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
5922 				    TSYSERR, ENOMEM);
5923 				return;
5924 			}
5925 			ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL);
5926 			tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp;
5927 			/*
5928 			 * Note:
5929 			 * These resulting option negotiation can include any
5930 			 * end-to-end negotiation options but there no such
5931 			 * thing (yet?) in our TCP/IP.
5932 			 */
5933 		}
5934 	}
5935 
5936 	/*
5937 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
5938 	 * make sure that the template IP header in the tcp structure is an
5939 	 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION.  We
5940 	 * need to this before we call tcp_bindi() so that the port lookup
5941 	 * code will look for ports in the correct port space (IPv4 and
5942 	 * IPv6 have separate port spaces).
5943 	 */
5944 	if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION &&
5945 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
5946 		int err = 0;
5947 
5948 		err = tcp_header_init_ipv4(tcp);
5949 		if (err != 0) {
5950 			mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
5951 			goto connect_failed;
5952 		}
5953 		if (tcp->tcp_lport != 0)
5954 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
5955 	}
5956 
5957 	switch (tcp->tcp_state) {
5958 	case TCPS_IDLE:
5959 		/*
5960 		 * We support quick connect, refer to comments in
5961 		 * tcp_connect_*()
5962 		 */
5963 		/* FALLTHRU */
5964 	case TCPS_BOUND:
5965 	case TCPS_LISTEN:
5966 		if (tcp->tcp_family == AF_INET6) {
5967 			if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
5968 				tcp_connect_ipv6(tcp, mp,
5969 				    &sin6->sin6_addr,
5970 				    sin6->sin6_port, sin6->sin6_flowinfo,
5971 				    sin6->__sin6_src_id, sin6->sin6_scope_id);
5972 				return;
5973 			}
5974 			/*
5975 			 * Destination adress is mapped IPv6 address.
5976 			 * Source bound address should be unspecified or
5977 			 * IPv6 mapped address as well.
5978 			 */
5979 			if (!IN6_IS_ADDR_UNSPECIFIED(
5980 			    &tcp->tcp_bound_source_v6) &&
5981 			    !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) {
5982 				mp = mi_tpi_err_ack_alloc(mp, TSYSERR,
5983 				    EADDRNOTAVAIL);
5984 				break;
5985 			}
5986 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
5987 			dstport = sin6->sin6_port;
5988 			srcid = sin6->__sin6_src_id;
5989 		} else {
5990 			dstaddrp = &sin->sin_addr.s_addr;
5991 			dstport = sin->sin_port;
5992 			srcid = 0;
5993 		}
5994 
5995 		tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid);
5996 		return;
5997 	default:
5998 		mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0);
5999 		break;
6000 	}
6001 	/*
6002 	 * Note: Code below is the "failure" case
6003 	 */
6004 	/* return error ack and blow away saved option results if any */
6005 connect_failed:
6006 	if (mp != NULL)
6007 		putnext(tcp->tcp_rq, mp);
6008 	else {
6009 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6010 		    TSYSERR, ENOMEM);
6011 	}
6012 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6013 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6014 }
6015 
6016 /*
6017  * Handle connect to IPv4 destinations, including connections for AF_INET6
6018  * sockets connecting to IPv4 mapped IPv6 destinations.
6019  */
6020 static void
6021 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport,
6022     uint_t srcid)
6023 {
6024 	tcph_t	*tcph;
6025 	mblk_t	*mp1;
6026 	ipaddr_t dstaddr = *dstaddrp;
6027 	int32_t	oldstate;
6028 	uint16_t lport;
6029 
6030 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
6031 
6032 	/* Check for attempt to connect to INADDR_ANY */
6033 	if (dstaddr == INADDR_ANY)  {
6034 		/*
6035 		 * SunOS 4.x and 4.3 BSD allow an application
6036 		 * to connect a TCP socket to INADDR_ANY.
6037 		 * When they do this, the kernel picks the
6038 		 * address of one interface and uses it
6039 		 * instead.  The kernel usually ends up
6040 		 * picking the address of the loopback
6041 		 * interface.  This is an undocumented feature.
6042 		 * However, we provide the same thing here
6043 		 * in order to have source and binary
6044 		 * compatibility with SunOS 4.x.
6045 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
6046 		 * generate the T_CONN_CON.
6047 		 */
6048 		dstaddr = htonl(INADDR_LOOPBACK);
6049 		*dstaddrp = dstaddr;
6050 	}
6051 
6052 	/* Handle __sin6_src_id if socket not bound to an IP address */
6053 	if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) {
6054 		ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6,
6055 		    tcp->tcp_connp->conn_zoneid);
6056 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6,
6057 		    tcp->tcp_ipha->ipha_src);
6058 	}
6059 
6060 	/*
6061 	 * Don't let an endpoint connect to itself.  Note that
6062 	 * the test here does not catch the case where the
6063 	 * source IP addr was left unspecified by the user. In
6064 	 * this case, the source addr is set in tcp_adapt_ire()
6065 	 * using the reply to the T_BIND message that we send
6066 	 * down to IP here and the check is repeated in tcp_rput_other.
6067 	 */
6068 	if (dstaddr == tcp->tcp_ipha->ipha_src &&
6069 	    dstport == tcp->tcp_lport) {
6070 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6071 		goto failed;
6072 	}
6073 
6074 	tcp->tcp_ipha->ipha_dst = dstaddr;
6075 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6);
6076 
6077 	/*
6078 	 * Massage a source route if any putting the first hop
6079 	 * in iph_dst. Compute a starting value for the checksum which
6080 	 * takes into account that the original iph_dst should be
6081 	 * included in the checksum but that ip will include the
6082 	 * first hop in the source route in the tcp checksum.
6083 	 */
6084 	tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha);
6085 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6086 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
6087 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
6088 	if ((int)tcp->tcp_sum < 0)
6089 		tcp->tcp_sum--;
6090 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6091 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6092 	    (tcp->tcp_sum >> 16));
6093 	tcph = tcp->tcp_tcph;
6094 	*(uint16_t *)tcph->th_fport = dstport;
6095 	tcp->tcp_fport = dstport;
6096 
6097 	oldstate = tcp->tcp_state;
6098 	/*
6099 	 * At this point the remote destination address and remote port fields
6100 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6101 	 * have to see which state tcp was in so we can take apropriate action.
6102 	 */
6103 	if (oldstate == TCPS_IDLE) {
6104 		/*
6105 		 * We support a quick connect capability here, allowing
6106 		 * clients to transition directly from IDLE to SYN_SENT
6107 		 * tcp_bindi will pick an unused port, insert the connection
6108 		 * in the bind hash and transition to BOUND state.
6109 		 */
6110 		lport = tcp_update_next_port(tcp_next_port_to_try, B_TRUE);
6111 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6112 		    B_FALSE, B_FALSE);
6113 		if (lport == 0) {
6114 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6115 			goto failed;
6116 		}
6117 	}
6118 	tcp->tcp_state = TCPS_SYN_SENT;
6119 
6120 	/*
6121 	 * TODO: allow data with connect requests
6122 	 * by unlinking M_DATA trailers here and
6123 	 * linking them in behind the T_OK_ACK mblk.
6124 	 * The tcp_rput() bind ack handler would then
6125 	 * feed them to tcp_wput_data() rather than call
6126 	 * tcp_timer().
6127 	 */
6128 	mp = mi_tpi_ok_ack_alloc(mp);
6129 	if (!mp) {
6130 		tcp->tcp_state = oldstate;
6131 		goto failed;
6132 	}
6133 	if (tcp->tcp_family == AF_INET) {
6134 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6135 		    sizeof (ipa_conn_t));
6136 	} else {
6137 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6138 		    sizeof (ipa6_conn_t));
6139 	}
6140 	if (mp1) {
6141 		/* Hang onto the T_OK_ACK for later. */
6142 		linkb(mp1, mp);
6143 		if (tcp->tcp_family == AF_INET)
6144 			mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp);
6145 		else {
6146 			mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6147 			    &tcp->tcp_sticky_ipp);
6148 		}
6149 		BUMP_MIB(&tcp_mib, tcpActiveOpens);
6150 		tcp->tcp_active_open = 1;
6151 		/*
6152 		 * If the bind cannot complete immediately
6153 		 * IP will arrange to call tcp_rput_other
6154 		 * when the bind completes.
6155 		 */
6156 		if (mp1 != NULL)
6157 			tcp_rput_other(tcp, mp1);
6158 		return;
6159 	}
6160 	/* Error case */
6161 	tcp->tcp_state = oldstate;
6162 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6163 
6164 failed:
6165 	/* return error ack and blow away saved option results if any */
6166 	if (mp != NULL)
6167 		putnext(tcp->tcp_rq, mp);
6168 	else {
6169 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6170 		    TSYSERR, ENOMEM);
6171 	}
6172 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6173 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6174 
6175 }
6176 
6177 /*
6178  * Handle connect to IPv6 destinations.
6179  */
6180 static void
6181 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
6182     in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
6183 {
6184 	tcph_t	*tcph;
6185 	mblk_t	*mp1;
6186 	ip6_rthdr_t *rth;
6187 	int32_t  oldstate;
6188 	uint16_t lport;
6189 
6190 	ASSERT(tcp->tcp_family == AF_INET6);
6191 
6192 	/*
6193 	 * If we're here, it means that the destination address is a native
6194 	 * IPv6 address.  Return an error if tcp_ipversion is not IPv6.  A
6195 	 * reason why it might not be IPv6 is if the socket was bound to an
6196 	 * IPv4-mapped IPv6 address.
6197 	 */
6198 	if (tcp->tcp_ipversion != IPV6_VERSION) {
6199 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6200 		goto failed;
6201 	}
6202 
6203 	/*
6204 	 * Interpret a zero destination to mean loopback.
6205 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
6206 	 * generate the T_CONN_CON.
6207 	 */
6208 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) {
6209 		*dstaddrp = ipv6_loopback;
6210 	}
6211 
6212 	/* Handle __sin6_src_id if socket not bound to an IP address */
6213 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
6214 		ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src,
6215 		    tcp->tcp_connp->conn_zoneid);
6216 		tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src;
6217 	}
6218 
6219 	/*
6220 	 * Take care of the scope_id now and add ip6i_t
6221 	 * if ip6i_t is not already allocated through TCP
6222 	 * sticky options. At this point tcp_ip6h does not
6223 	 * have dst info, thus use dstaddrp.
6224 	 */
6225 	if (scope_id != 0 &&
6226 	    IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
6227 		ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
6228 		ip6i_t  *ip6i;
6229 
6230 		ipp->ipp_ifindex = scope_id;
6231 		ip6i = (ip6i_t *)tcp->tcp_iphc;
6232 
6233 		if ((ipp->ipp_fields & IPPF_HAS_IP6I) &&
6234 		    ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) {
6235 			/* Already allocated */
6236 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6237 			ip6i->ip6i_ifindex = ipp->ipp_ifindex;
6238 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6239 		} else {
6240 			int reterr;
6241 
6242 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6243 			if (ipp->ipp_fields & IPPF_HAS_IP6I)
6244 				ip2dbg(("tcp_connect_v6: SCOPE_ID set\n"));
6245 			reterr = tcp_build_hdrs(tcp->tcp_rq, tcp);
6246 			if (reterr != 0)
6247 				goto failed;
6248 			ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n"));
6249 		}
6250 	}
6251 
6252 	/*
6253 	 * Don't let an endpoint connect to itself.  Note that
6254 	 * the test here does not catch the case where the
6255 	 * source IP addr was left unspecified by the user. In
6256 	 * this case, the source addr is set in tcp_adapt_ire()
6257 	 * using the reply to the T_BIND message that we send
6258 	 * down to IP here and the check is repeated in tcp_rput_other.
6259 	 */
6260 	if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) &&
6261 	    (dstport == tcp->tcp_lport)) {
6262 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6263 		goto failed;
6264 	}
6265 
6266 	tcp->tcp_ip6h->ip6_dst = *dstaddrp;
6267 	tcp->tcp_remote_v6 = *dstaddrp;
6268 	tcp->tcp_ip6h->ip6_vcf =
6269 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
6270 	    (flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
6271 
6272 
6273 	/*
6274 	 * Massage a routing header (if present) putting the first hop
6275 	 * in ip6_dst. Compute a starting value for the checksum which
6276 	 * takes into account that the original ip6_dst should be
6277 	 * included in the checksum but that ip will include the
6278 	 * first hop in the source route in the tcp checksum.
6279 	 */
6280 	rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph);
6281 	if (rth != NULL) {
6282 
6283 		tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth);
6284 		tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6285 		    (tcp->tcp_sum >> 16));
6286 	} else {
6287 		tcp->tcp_sum = 0;
6288 	}
6289 
6290 	tcph = tcp->tcp_tcph;
6291 	*(uint16_t *)tcph->th_fport = dstport;
6292 	tcp->tcp_fport = dstport;
6293 
6294 	oldstate = tcp->tcp_state;
6295 	/*
6296 	 * At this point the remote destination address and remote port fields
6297 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6298 	 * have to see which state tcp was in so we can take apropriate action.
6299 	 */
6300 	if (oldstate == TCPS_IDLE) {
6301 		/*
6302 		 * We support a quick connect capability here, allowing
6303 		 * clients to transition directly from IDLE to SYN_SENT
6304 		 * tcp_bindi will pick an unused port, insert the connection
6305 		 * in the bind hash and transition to BOUND state.
6306 		 */
6307 		lport = tcp_update_next_port(tcp_next_port_to_try, B_TRUE);
6308 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6309 		    B_FALSE, B_FALSE);
6310 		if (lport == 0) {
6311 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6312 			goto failed;
6313 		}
6314 	}
6315 	tcp->tcp_state = TCPS_SYN_SENT;
6316 	/*
6317 	 * TODO: allow data with connect requests
6318 	 * by unlinking M_DATA trailers here and
6319 	 * linking them in behind the T_OK_ACK mblk.
6320 	 * The tcp_rput() bind ack handler would then
6321 	 * feed them to tcp_wput_data() rather than call
6322 	 * tcp_timer().
6323 	 */
6324 	mp = mi_tpi_ok_ack_alloc(mp);
6325 	if (!mp) {
6326 		tcp->tcp_state = oldstate;
6327 		goto failed;
6328 	}
6329 	mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t));
6330 	if (mp1) {
6331 		/* Hang onto the T_OK_ACK for later. */
6332 		linkb(mp1, mp);
6333 		mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6334 		    &tcp->tcp_sticky_ipp);
6335 		BUMP_MIB(&tcp_mib, tcpActiveOpens);
6336 		tcp->tcp_active_open = 1;
6337 		/* ip_bind_v6() may return ACK or ERROR */
6338 		if (mp1 != NULL)
6339 			tcp_rput_other(tcp, mp1);
6340 		return;
6341 	}
6342 	/* Error case */
6343 	tcp->tcp_state = oldstate;
6344 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6345 
6346 failed:
6347 	/* return error ack and blow away saved option results if any */
6348 	if (mp != NULL)
6349 		putnext(tcp->tcp_rq, mp);
6350 	else {
6351 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6352 		    TSYSERR, ENOMEM);
6353 	}
6354 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6355 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6356 }
6357 
6358 /*
6359  * We need a stream q for detached closing tcp connections
6360  * to use.  Our client hereby indicates that this q is the
6361  * one to use.
6362  */
6363 static void
6364 tcp_def_q_set(tcp_t *tcp, mblk_t *mp)
6365 {
6366 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
6367 	queue_t	*q = tcp->tcp_wq;
6368 
6369 	mp->b_datap->db_type = M_IOCACK;
6370 	iocp->ioc_count = 0;
6371 	mutex_enter(&tcp_g_q_lock);
6372 	if (tcp_g_q != NULL) {
6373 		mutex_exit(&tcp_g_q_lock);
6374 		iocp->ioc_error = EALREADY;
6375 	} else {
6376 		mblk_t *mp1;
6377 
6378 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0);
6379 		if (mp1 == NULL) {
6380 			mutex_exit(&tcp_g_q_lock);
6381 			iocp->ioc_error = ENOMEM;
6382 		} else {
6383 			tcp_g_q = tcp->tcp_rq;
6384 			mutex_exit(&tcp_g_q_lock);
6385 			iocp->ioc_error = 0;
6386 			iocp->ioc_rval = 0;
6387 			/*
6388 			 * We are passing tcp_sticky_ipp as NULL
6389 			 * as it is not useful for tcp_default queue
6390 			 */
6391 			mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL);
6392 			if (mp1 != NULL)
6393 				tcp_rput_other(tcp, mp1);
6394 		}
6395 	}
6396 	qreply(q, mp);
6397 }
6398 
6399 /*
6400  * Our client hereby directs us to reject the connection request
6401  * that tcp_conn_request() marked with 'seqnum'.  Rejection consists
6402  * of sending the appropriate RST, not an ICMP error.
6403  */
6404 static void
6405 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
6406 {
6407 	tcp_t	*ltcp = NULL;
6408 	t_scalar_t seqnum;
6409 	conn_t	*connp;
6410 
6411 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6412 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
6413 		tcp_err_ack(tcp, mp, TPROTO, 0);
6414 		return;
6415 	}
6416 
6417 	/*
6418 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
6419 	 * when the stream is in BOUND state. Do not send a reset,
6420 	 * since the destination IP address is not valid, and it can
6421 	 * be the initialized value of all zeros (broadcast address).
6422 	 *
6423 	 * If TCP has sent down a bind request to IP and has not
6424 	 * received the reply, reject the request.  Otherwise, TCP
6425 	 * will be confused.
6426 	 */
6427 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) {
6428 		if (tcp->tcp_debug) {
6429 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
6430 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
6431 		}
6432 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
6433 		return;
6434 	}
6435 
6436 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
6437 
6438 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
6439 
6440 		/*
6441 		 * According to TPI, for non-listeners, ignore seqnum
6442 		 * and disconnect.
6443 		 * Following interpretation of -1 seqnum is historical
6444 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
6445 		 * a valid seqnum should not be -1).
6446 		 *
6447 		 *	-1 means disconnect everything
6448 		 *	regardless even on a listener.
6449 		 */
6450 
6451 		int old_state = tcp->tcp_state;
6452 
6453 		/*
6454 		 * The connection can't be on the tcp_time_wait_head list
6455 		 * since it is not detached.
6456 		 */
6457 		ASSERT(tcp->tcp_time_wait_next == NULL);
6458 		ASSERT(tcp->tcp_time_wait_prev == NULL);
6459 		ASSERT(tcp->tcp_time_wait_expire == 0);
6460 		ltcp = NULL;
6461 		/*
6462 		 * If it used to be a listener, check to make sure no one else
6463 		 * has taken the port before switching back to LISTEN state.
6464 		 */
6465 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6466 			connp = ipcl_lookup_listener_v4(tcp->tcp_lport,
6467 			    tcp->tcp_ipha->ipha_src,
6468 			    tcp->tcp_connp->conn_zoneid);
6469 			if (connp != NULL)
6470 				ltcp = connp->conn_tcp;
6471 		} else {
6472 			/* Allow tcp_bound_if listeners? */
6473 			connp = ipcl_lookup_listener_v6(tcp->tcp_lport,
6474 			    &tcp->tcp_ip6h->ip6_src, 0,
6475 			    tcp->tcp_connp->conn_zoneid);
6476 			if (connp != NULL)
6477 				ltcp = connp->conn_tcp;
6478 		}
6479 		if (tcp->tcp_conn_req_max && ltcp == NULL) {
6480 			tcp->tcp_state = TCPS_LISTEN;
6481 		} else if (old_state > TCPS_BOUND) {
6482 			tcp->tcp_conn_req_max = 0;
6483 			tcp->tcp_state = TCPS_BOUND;
6484 		}
6485 		if (ltcp != NULL)
6486 			CONN_DEC_REF(ltcp->tcp_connp);
6487 		if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) {
6488 			BUMP_MIB(&tcp_mib, tcpAttemptFails);
6489 		} else if (old_state == TCPS_ESTABLISHED ||
6490 		    old_state == TCPS_CLOSE_WAIT) {
6491 			BUMP_MIB(&tcp_mib, tcpEstabResets);
6492 		}
6493 
6494 		if (tcp->tcp_fused)
6495 			tcp_unfuse(tcp);
6496 
6497 		mutex_enter(&tcp->tcp_eager_lock);
6498 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
6499 		    (tcp->tcp_conn_req_cnt_q != 0)) {
6500 			tcp_eager_cleanup(tcp, 0);
6501 		}
6502 		mutex_exit(&tcp->tcp_eager_lock);
6503 
6504 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
6505 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
6506 
6507 		tcp_reinit(tcp);
6508 
6509 		if (old_state >= TCPS_ESTABLISHED) {
6510 			/* Send M_FLUSH according to TPI */
6511 			(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6512 		}
6513 		mp = mi_tpi_ok_ack_alloc(mp);
6514 		if (mp)
6515 			putnext(tcp->tcp_rq, mp);
6516 		return;
6517 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
6518 		tcp_err_ack(tcp, mp, TBADSEQ, 0);
6519 		return;
6520 	}
6521 	if (tcp->tcp_state >= TCPS_ESTABLISHED) {
6522 		/* Send M_FLUSH according to TPI */
6523 		(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6524 	}
6525 	mp = mi_tpi_ok_ack_alloc(mp);
6526 	if (mp)
6527 		putnext(tcp->tcp_rq, mp);
6528 }
6529 
6530 /*
6531  * Diagnostic routine used to return a string associated with the tcp state.
6532  * Note that if the caller does not supply a buffer, it will use an internal
6533  * static string.  This means that if multiple threads call this function at
6534  * the same time, output can be corrupted...  Note also that this function
6535  * does not check the size of the supplied buffer.  The caller has to make
6536  * sure that it is big enough.
6537  */
6538 static char *
6539 tcp_display(tcp_t *tcp, char *sup_buf, char format)
6540 {
6541 	char		buf1[30];
6542 	static char	priv_buf[INET6_ADDRSTRLEN * 2 + 80];
6543 	char		*buf;
6544 	char		*cp;
6545 	in6_addr_t	local, remote;
6546 	char		local_addrbuf[INET6_ADDRSTRLEN];
6547 	char		remote_addrbuf[INET6_ADDRSTRLEN];
6548 
6549 	if (sup_buf != NULL)
6550 		buf = sup_buf;
6551 	else
6552 		buf = priv_buf;
6553 
6554 	if (tcp == NULL)
6555 		return ("NULL_TCP");
6556 	switch (tcp->tcp_state) {
6557 	case TCPS_CLOSED:
6558 		cp = "TCP_CLOSED";
6559 		break;
6560 	case TCPS_IDLE:
6561 		cp = "TCP_IDLE";
6562 		break;
6563 	case TCPS_BOUND:
6564 		cp = "TCP_BOUND";
6565 		break;
6566 	case TCPS_LISTEN:
6567 		cp = "TCP_LISTEN";
6568 		break;
6569 	case TCPS_SYN_SENT:
6570 		cp = "TCP_SYN_SENT";
6571 		break;
6572 	case TCPS_SYN_RCVD:
6573 		cp = "TCP_SYN_RCVD";
6574 		break;
6575 	case TCPS_ESTABLISHED:
6576 		cp = "TCP_ESTABLISHED";
6577 		break;
6578 	case TCPS_CLOSE_WAIT:
6579 		cp = "TCP_CLOSE_WAIT";
6580 		break;
6581 	case TCPS_FIN_WAIT_1:
6582 		cp = "TCP_FIN_WAIT_1";
6583 		break;
6584 	case TCPS_CLOSING:
6585 		cp = "TCP_CLOSING";
6586 		break;
6587 	case TCPS_LAST_ACK:
6588 		cp = "TCP_LAST_ACK";
6589 		break;
6590 	case TCPS_FIN_WAIT_2:
6591 		cp = "TCP_FIN_WAIT_2";
6592 		break;
6593 	case TCPS_TIME_WAIT:
6594 		cp = "TCP_TIME_WAIT";
6595 		break;
6596 	default:
6597 		(void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state);
6598 		cp = buf1;
6599 		break;
6600 	}
6601 	switch (format) {
6602 	case DISP_ADDR_AND_PORT:
6603 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6604 			/*
6605 			 * Note that we use the remote address in the tcp_b
6606 			 * structure.  This means that it will print out
6607 			 * the real destination address, not the next hop's
6608 			 * address if source routing is used.
6609 			 */
6610 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local);
6611 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote);
6612 
6613 		} else {
6614 			local = tcp->tcp_ip_src_v6;
6615 			remote = tcp->tcp_remote_v6;
6616 		}
6617 		(void) inet_ntop(AF_INET6, &local, local_addrbuf,
6618 		    sizeof (local_addrbuf));
6619 		(void) inet_ntop(AF_INET6, &remote, remote_addrbuf,
6620 		    sizeof (remote_addrbuf));
6621 		(void) mi_sprintf(buf, "[%s.%u, %s.%u] %s",
6622 		    local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf,
6623 		    ntohs(tcp->tcp_fport), cp);
6624 		break;
6625 	case DISP_PORT_ONLY:
6626 	default:
6627 		(void) mi_sprintf(buf, "[%u, %u] %s",
6628 		    ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp);
6629 		break;
6630 	}
6631 
6632 	return (buf);
6633 }
6634 
6635 /*
6636  * Called via squeue to get on to eager's perimeter to send a
6637  * TH_RST. The listener wants the eager to disappear either
6638  * by means of tcp_eager_blowoff() or tcp_eager_cleanup()
6639  * being called.
6640  */
6641 /* ARGSUSED */
6642 void
6643 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2)
6644 {
6645 	conn_t	*econnp = (conn_t *)arg;
6646 	tcp_t	*eager = econnp->conn_tcp;
6647 	tcp_t	*listener = eager->tcp_listener;
6648 
6649 	/*
6650 	 * We could be called because listener is closing. Since
6651 	 * the eager is using listener's queue's, its not safe.
6652 	 * Better use the default queue just to send the TH_RST
6653 	 * out.
6654 	 */
6655 	eager->tcp_rq = tcp_g_q;
6656 	eager->tcp_wq = WR(tcp_g_q);
6657 
6658 	if (eager->tcp_state > TCPS_LISTEN) {
6659 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
6660 		    eager, eager->tcp_snxt, 0, TH_RST);
6661 	}
6662 
6663 	/* We are here because listener wants this eager gone */
6664 	if (listener != NULL) {
6665 		mutex_enter(&listener->tcp_eager_lock);
6666 		tcp_eager_unlink(eager);
6667 		if (eager->tcp_conn.tcp_eager_conn_ind == NULL) {
6668 			/*
6669 			 * The eager has sent a conn_ind up to the
6670 			 * listener but listener decides to close
6671 			 * instead. We need to drop the extra ref
6672 			 * placed on eager in tcp_rput_data() before
6673 			 * sending the conn_ind to listener.
6674 			 */
6675 			CONN_DEC_REF(econnp);
6676 		}
6677 		mutex_exit(&listener->tcp_eager_lock);
6678 		CONN_DEC_REF(listener->tcp_connp);
6679 	}
6680 
6681 	if (eager->tcp_state > TCPS_BOUND)
6682 		tcp_close_detached(eager);
6683 }
6684 
6685 /*
6686  * Reset any eager connection hanging off this listener marked
6687  * with 'seqnum' and then reclaim it's resources.
6688  */
6689 static boolean_t
6690 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
6691 {
6692 	tcp_t	*eager;
6693 	mblk_t 	*mp;
6694 
6695 	TCP_STAT(tcp_eager_blowoff_calls);
6696 	eager = listener;
6697 	mutex_enter(&listener->tcp_eager_lock);
6698 	do {
6699 		eager = eager->tcp_eager_next_q;
6700 		if (eager == NULL) {
6701 			mutex_exit(&listener->tcp_eager_lock);
6702 			return (B_FALSE);
6703 		}
6704 	} while (eager->tcp_conn_req_seqnum != seqnum);
6705 	CONN_INC_REF(eager->tcp_connp);
6706 	mutex_exit(&listener->tcp_eager_lock);
6707 	mp = &eager->tcp_closemp;
6708 	squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
6709 	    eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF);
6710 	return (B_TRUE);
6711 }
6712 
6713 /*
6714  * Reset any eager connection hanging off this listener
6715  * and then reclaim it's resources.
6716  */
6717 static void
6718 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
6719 {
6720 	tcp_t	*eager;
6721 	mblk_t	*mp;
6722 
6723 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
6724 
6725 	if (!q0_only) {
6726 		/* First cleanup q */
6727 		TCP_STAT(tcp_eager_blowoff_q);
6728 		eager = listener->tcp_eager_next_q;
6729 		while (eager != NULL) {
6730 			CONN_INC_REF(eager->tcp_connp);
6731 			mp = &eager->tcp_closemp;
6732 			squeue_fill(eager->tcp_connp->conn_sqp, mp,
6733 			    tcp_eager_kill, eager->tcp_connp,
6734 			    SQTAG_TCP_EAGER_CLEANUP);
6735 			eager = eager->tcp_eager_next_q;
6736 		}
6737 	}
6738 	/* Then cleanup q0 */
6739 	TCP_STAT(tcp_eager_blowoff_q0);
6740 	eager = listener->tcp_eager_next_q0;
6741 	while (eager != listener) {
6742 		CONN_INC_REF(eager->tcp_connp);
6743 		mp = &eager->tcp_closemp;
6744 		squeue_fill(eager->tcp_connp->conn_sqp, mp,
6745 		    tcp_eager_kill, eager->tcp_connp,
6746 		    SQTAG_TCP_EAGER_CLEANUP_Q0);
6747 		eager = eager->tcp_eager_next_q0;
6748 	}
6749 }
6750 
6751 /*
6752  * If we are an eager connection hanging off a listener that hasn't
6753  * formally accepted the connection yet, get off his list and blow off
6754  * any data that we have accumulated.
6755  */
6756 static void
6757 tcp_eager_unlink(tcp_t *tcp)
6758 {
6759 	tcp_t	*listener = tcp->tcp_listener;
6760 
6761 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
6762 	ASSERT(listener != NULL);
6763 	if (tcp->tcp_eager_next_q0 != NULL) {
6764 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
6765 
6766 		/* Remove the eager tcp from q0 */
6767 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
6768 		    tcp->tcp_eager_prev_q0;
6769 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
6770 		    tcp->tcp_eager_next_q0;
6771 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
6772 		listener->tcp_conn_req_cnt_q0--;
6773 
6774 		tcp->tcp_eager_next_q0 = NULL;
6775 		tcp->tcp_eager_prev_q0 = NULL;
6776 
6777 		if (tcp->tcp_syn_rcvd_timeout != 0) {
6778 			/* we have timed out before */
6779 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
6780 			listener->tcp_syn_rcvd_timeout--;
6781 		}
6782 	} else {
6783 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
6784 		tcp_t	*prev = NULL;
6785 
6786 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
6787 			if (tcpp[0] == tcp) {
6788 				if (listener->tcp_eager_last_q == tcp) {
6789 					/*
6790 					 * If we are unlinking the last
6791 					 * element on the list, adjust
6792 					 * tail pointer. Set tail pointer
6793 					 * to nil when list is empty.
6794 					 */
6795 					ASSERT(tcp->tcp_eager_next_q == NULL);
6796 					if (listener->tcp_eager_last_q ==
6797 					    listener->tcp_eager_next_q) {
6798 						listener->tcp_eager_last_q =
6799 						NULL;
6800 					} else {
6801 						/*
6802 						 * We won't get here if there
6803 						 * is only one eager in the
6804 						 * list.
6805 						 */
6806 						ASSERT(prev != NULL);
6807 						listener->tcp_eager_last_q =
6808 						    prev;
6809 					}
6810 				}
6811 				tcpp[0] = tcp->tcp_eager_next_q;
6812 				tcp->tcp_eager_next_q = NULL;
6813 				tcp->tcp_eager_last_q = NULL;
6814 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
6815 				listener->tcp_conn_req_cnt_q--;
6816 				break;
6817 			}
6818 			prev = tcpp[0];
6819 		}
6820 	}
6821 	tcp->tcp_listener = NULL;
6822 }
6823 
6824 /* Shorthand to generate and send TPI error acks to our client */
6825 static void
6826 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error)
6827 {
6828 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
6829 		putnext(tcp->tcp_rq, mp);
6830 }
6831 
6832 /* Shorthand to generate and send TPI error acks to our client */
6833 static void
6834 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
6835     int t_error, int sys_error)
6836 {
6837 	struct T_error_ack	*teackp;
6838 
6839 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
6840 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
6841 		teackp = (struct T_error_ack *)mp->b_rptr;
6842 		teackp->ERROR_prim = primitive;
6843 		teackp->TLI_error = t_error;
6844 		teackp->UNIX_error = sys_error;
6845 		putnext(tcp->tcp_rq, mp);
6846 	}
6847 }
6848 
6849 /*
6850  * Note: No locks are held when inspecting tcp_g_*epriv_ports
6851  * but instead the code relies on:
6852  * - the fact that the address of the array and its size never changes
6853  * - the atomic assignment of the elements of the array
6854  */
6855 /* ARGSUSED */
6856 static int
6857 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
6858 {
6859 	int i;
6860 
6861 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
6862 		if (tcp_g_epriv_ports[i] != 0)
6863 			(void) mi_mpprintf(mp, "%d ", tcp_g_epriv_ports[i]);
6864 	}
6865 	return (0);
6866 }
6867 
6868 /*
6869  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
6870  * threads from changing it at the same time.
6871  */
6872 /* ARGSUSED */
6873 static int
6874 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
6875     cred_t *cr)
6876 {
6877 	long	new_value;
6878 	int	i;
6879 
6880 	/*
6881 	 * Fail the request if the new value does not lie within the
6882 	 * port number limits.
6883 	 */
6884 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
6885 	    new_value <= 0 || new_value >= 65536) {
6886 		return (EINVAL);
6887 	}
6888 
6889 	mutex_enter(&tcp_epriv_port_lock);
6890 	/* Check if the value is already in the list */
6891 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
6892 		if (new_value == tcp_g_epriv_ports[i]) {
6893 			mutex_exit(&tcp_epriv_port_lock);
6894 			return (EEXIST);
6895 		}
6896 	}
6897 	/* Find an empty slot */
6898 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
6899 		if (tcp_g_epriv_ports[i] == 0)
6900 			break;
6901 	}
6902 	if (i == tcp_g_num_epriv_ports) {
6903 		mutex_exit(&tcp_epriv_port_lock);
6904 		return (EOVERFLOW);
6905 	}
6906 	/* Set the new value */
6907 	tcp_g_epriv_ports[i] = (uint16_t)new_value;
6908 	mutex_exit(&tcp_epriv_port_lock);
6909 	return (0);
6910 }
6911 
6912 /*
6913  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
6914  * threads from changing it at the same time.
6915  */
6916 /* ARGSUSED */
6917 static int
6918 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
6919     cred_t *cr)
6920 {
6921 	long	new_value;
6922 	int	i;
6923 
6924 	/*
6925 	 * Fail the request if the new value does not lie within the
6926 	 * port number limits.
6927 	 */
6928 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 ||
6929 	    new_value >= 65536) {
6930 		return (EINVAL);
6931 	}
6932 
6933 	mutex_enter(&tcp_epriv_port_lock);
6934 	/* Check that the value is already in the list */
6935 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
6936 		if (tcp_g_epriv_ports[i] == new_value)
6937 			break;
6938 	}
6939 	if (i == tcp_g_num_epriv_ports) {
6940 		mutex_exit(&tcp_epriv_port_lock);
6941 		return (ESRCH);
6942 	}
6943 	/* Clear the value */
6944 	tcp_g_epriv_ports[i] = 0;
6945 	mutex_exit(&tcp_epriv_port_lock);
6946 	return (0);
6947 }
6948 
6949 /* Return the TPI/TLI equivalent of our current tcp_state */
6950 static int
6951 tcp_tpistate(tcp_t *tcp)
6952 {
6953 	switch (tcp->tcp_state) {
6954 	case TCPS_IDLE:
6955 		return (TS_UNBND);
6956 	case TCPS_LISTEN:
6957 		/*
6958 		 * Return whether there are outstanding T_CONN_IND waiting
6959 		 * for the matching T_CONN_RES. Therefore don't count q0.
6960 		 */
6961 		if (tcp->tcp_conn_req_cnt_q > 0)
6962 			return (TS_WRES_CIND);
6963 		else
6964 			return (TS_IDLE);
6965 	case TCPS_BOUND:
6966 		return (TS_IDLE);
6967 	case TCPS_SYN_SENT:
6968 		return (TS_WCON_CREQ);
6969 	case TCPS_SYN_RCVD:
6970 		/*
6971 		 * Note: assumption: this has to the active open SYN_RCVD.
6972 		 * The passive instance is detached in SYN_RCVD stage of
6973 		 * incoming connection processing so we cannot get request
6974 		 * for T_info_ack on it.
6975 		 */
6976 		return (TS_WACK_CRES);
6977 	case TCPS_ESTABLISHED:
6978 		return (TS_DATA_XFER);
6979 	case TCPS_CLOSE_WAIT:
6980 		return (TS_WREQ_ORDREL);
6981 	case TCPS_FIN_WAIT_1:
6982 		return (TS_WIND_ORDREL);
6983 	case TCPS_FIN_WAIT_2:
6984 		return (TS_WIND_ORDREL);
6985 
6986 	case TCPS_CLOSING:
6987 	case TCPS_LAST_ACK:
6988 	case TCPS_TIME_WAIT:
6989 	case TCPS_CLOSED:
6990 		/*
6991 		 * Following TS_WACK_DREQ7 is a rendition of "not
6992 		 * yet TS_IDLE" TPI state. There is no best match to any
6993 		 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we
6994 		 * choose a value chosen that will map to TLI/XTI level
6995 		 * state of TSTATECHNG (state is process of changing) which
6996 		 * captures what this dummy state represents.
6997 		 */
6998 		return (TS_WACK_DREQ7);
6999 	default:
7000 		cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s",
7001 		    tcp->tcp_state, tcp_display(tcp, NULL,
7002 		    DISP_PORT_ONLY));
7003 		return (TS_UNBND);
7004 	}
7005 }
7006 
7007 static void
7008 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp)
7009 {
7010 	if (tcp->tcp_family == AF_INET6)
7011 		*tia = tcp_g_t_info_ack_v6;
7012 	else
7013 		*tia = tcp_g_t_info_ack;
7014 	tia->CURRENT_state = tcp_tpistate(tcp);
7015 	tia->OPT_size = tcp_max_optsize;
7016 	if (tcp->tcp_mss == 0) {
7017 		/* Not yet set - tcp_open does not set mss */
7018 		if (tcp->tcp_ipversion == IPV4_VERSION)
7019 			tia->TIDU_size = tcp_mss_def_ipv4;
7020 		else
7021 			tia->TIDU_size = tcp_mss_def_ipv6;
7022 	} else {
7023 		tia->TIDU_size = tcp->tcp_mss;
7024 	}
7025 	/* TODO: Default ETSDU is 1.  Is that correct for tcp? */
7026 }
7027 
7028 /*
7029  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
7030  * tcp_wput.  Much of the T_CAPABILITY_ACK information is copied from
7031  * tcp_g_t_info_ack.  The current state of the stream is copied from
7032  * tcp_state.
7033  */
7034 static void
7035 tcp_capability_req(tcp_t *tcp, mblk_t *mp)
7036 {
7037 	t_uscalar_t		cap_bits1;
7038 	struct T_capability_ack	*tcap;
7039 
7040 	if (MBLKL(mp) < sizeof (struct T_capability_req)) {
7041 		freemsg(mp);
7042 		return;
7043 	}
7044 
7045 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
7046 
7047 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
7048 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
7049 	if (mp == NULL)
7050 		return;
7051 
7052 	tcap = (struct T_capability_ack *)mp->b_rptr;
7053 	tcap->CAP_bits1 = 0;
7054 
7055 	if (cap_bits1 & TC1_INFO) {
7056 		tcp_copy_info(&tcap->INFO_ack, tcp);
7057 		tcap->CAP_bits1 |= TC1_INFO;
7058 	}
7059 
7060 	if (cap_bits1 & TC1_ACCEPTOR_ID) {
7061 		tcap->ACCEPTOR_id = tcp->tcp_acceptor_id;
7062 		tcap->CAP_bits1 |= TC1_ACCEPTOR_ID;
7063 	}
7064 
7065 	putnext(tcp->tcp_rq, mp);
7066 }
7067 
7068 /*
7069  * This routine responds to T_INFO_REQ messages.  It is called by tcp_wput.
7070  * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack.
7071  * The current state of the stream is copied from tcp_state.
7072  */
7073 static void
7074 tcp_info_req(tcp_t *tcp, mblk_t *mp)
7075 {
7076 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
7077 	    T_INFO_ACK);
7078 	if (!mp) {
7079 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7080 		return;
7081 	}
7082 	tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp);
7083 	putnext(tcp->tcp_rq, mp);
7084 }
7085 
7086 /* Respond to the TPI addr request */
7087 static void
7088 tcp_addr_req(tcp_t *tcp, mblk_t *mp)
7089 {
7090 	sin_t	*sin;
7091 	mblk_t	*ackmp;
7092 	struct T_addr_ack *taa;
7093 
7094 	/* Make it large enough for worst case */
7095 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
7096 	    2 * sizeof (sin6_t), 1);
7097 	if (ackmp == NULL) {
7098 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7099 		return;
7100 	}
7101 
7102 	if (tcp->tcp_ipversion == IPV6_VERSION) {
7103 		tcp_addr_req_ipv6(tcp, ackmp);
7104 		return;
7105 	}
7106 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7107 
7108 	bzero(taa, sizeof (struct T_addr_ack));
7109 	ackmp->b_wptr = (uchar_t *)&taa[1];
7110 
7111 	taa->PRIM_type = T_ADDR_ACK;
7112 	ackmp->b_datap->db_type = M_PCPROTO;
7113 
7114 	/*
7115 	 * Note: Following code assumes 32 bit alignment of basic
7116 	 * data structures like sin_t and struct T_addr_ack.
7117 	 */
7118 	if (tcp->tcp_state >= TCPS_BOUND) {
7119 		/*
7120 		 * Fill in local address
7121 		 */
7122 		taa->LOCADDR_length = sizeof (sin_t);
7123 		taa->LOCADDR_offset = sizeof (*taa);
7124 
7125 		sin = (sin_t *)&taa[1];
7126 
7127 		/* Fill zeroes and then intialize non-zero fields */
7128 		*sin = sin_null;
7129 
7130 		sin->sin_family = AF_INET;
7131 
7132 		sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
7133 		sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport;
7134 
7135 		ackmp->b_wptr = (uchar_t *)&sin[1];
7136 
7137 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7138 			/*
7139 			 * Fill in Remote address
7140 			 */
7141 			taa->REMADDR_length = sizeof (sin_t);
7142 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7143 						taa->LOCADDR_length);
7144 
7145 			sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7146 			*sin = sin_null;
7147 			sin->sin_family = AF_INET;
7148 			sin->sin_addr.s_addr = tcp->tcp_remote;
7149 			sin->sin_port = tcp->tcp_fport;
7150 
7151 			ackmp->b_wptr = (uchar_t *)&sin[1];
7152 		}
7153 	}
7154 	putnext(tcp->tcp_rq, ackmp);
7155 }
7156 
7157 /* Assumes that tcp_addr_req gets enough space and alignment */
7158 static void
7159 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp)
7160 {
7161 	sin6_t	*sin6;
7162 	struct T_addr_ack *taa;
7163 
7164 	ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
7165 	ASSERT(OK_32PTR(ackmp->b_rptr));
7166 	ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) +
7167 	    2 * sizeof (sin6_t));
7168 
7169 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7170 
7171 	bzero(taa, sizeof (struct T_addr_ack));
7172 	ackmp->b_wptr = (uchar_t *)&taa[1];
7173 
7174 	taa->PRIM_type = T_ADDR_ACK;
7175 	ackmp->b_datap->db_type = M_PCPROTO;
7176 
7177 	/*
7178 	 * Note: Following code assumes 32 bit alignment of basic
7179 	 * data structures like sin6_t and struct T_addr_ack.
7180 	 */
7181 	if (tcp->tcp_state >= TCPS_BOUND) {
7182 		/*
7183 		 * Fill in local address
7184 		 */
7185 		taa->LOCADDR_length = sizeof (sin6_t);
7186 		taa->LOCADDR_offset = sizeof (*taa);
7187 
7188 		sin6 = (sin6_t *)&taa[1];
7189 		*sin6 = sin6_null;
7190 
7191 		sin6->sin6_family = AF_INET6;
7192 		sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
7193 		sin6->sin6_port = tcp->tcp_lport;
7194 
7195 		ackmp->b_wptr = (uchar_t *)&sin6[1];
7196 
7197 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7198 			/*
7199 			 * Fill in Remote address
7200 			 */
7201 			taa->REMADDR_length = sizeof (sin6_t);
7202 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7203 						taa->LOCADDR_length);
7204 
7205 			sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7206 			*sin6 = sin6_null;
7207 			sin6->sin6_family = AF_INET6;
7208 			sin6->sin6_flowinfo =
7209 			    tcp->tcp_ip6h->ip6_vcf &
7210 			    ~IPV6_VERS_AND_FLOW_MASK;
7211 			sin6->sin6_addr = tcp->tcp_remote_v6;
7212 			sin6->sin6_port = tcp->tcp_fport;
7213 
7214 			ackmp->b_wptr = (uchar_t *)&sin6[1];
7215 		}
7216 	}
7217 	putnext(tcp->tcp_rq, ackmp);
7218 }
7219 
7220 /*
7221  * Handle reinitialization of a tcp structure.
7222  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
7223  */
7224 static void
7225 tcp_reinit(tcp_t *tcp)
7226 {
7227 	mblk_t	*mp;
7228 	int 	err;
7229 
7230 	TCP_STAT(tcp_reinit_calls);
7231 
7232 	/* tcp_reinit should never be called for detached tcp_t's */
7233 	ASSERT(tcp->tcp_listener == NULL);
7234 	ASSERT((tcp->tcp_family == AF_INET &&
7235 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7236 	    (tcp->tcp_family == AF_INET6 &&
7237 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7238 	    tcp->tcp_ipversion == IPV6_VERSION)));
7239 
7240 	/* Cancel outstanding timers */
7241 	tcp_timers_stop(tcp);
7242 
7243 	/*
7244 	 * Reset everything in the state vector, after updating global
7245 	 * MIB data from instance counters.
7246 	 */
7247 	UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs);
7248 	tcp->tcp_ibsegs = 0;
7249 	UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs);
7250 	tcp->tcp_obsegs = 0;
7251 
7252 	tcp_close_mpp(&tcp->tcp_xmit_head);
7253 	if (tcp->tcp_snd_zcopy_aware)
7254 		tcp_zcopy_notify(tcp);
7255 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
7256 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
7257 	if (tcp->tcp_flow_stopped &&
7258 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
7259 		tcp_clrqfull(tcp);
7260 	}
7261 	tcp_close_mpp(&tcp->tcp_reass_head);
7262 	tcp->tcp_reass_tail = NULL;
7263 	if (tcp->tcp_rcv_list != NULL) {
7264 		/* Free b_next chain */
7265 		tcp_close_mpp(&tcp->tcp_rcv_list);
7266 		tcp->tcp_rcv_last_head = NULL;
7267 		tcp->tcp_rcv_last_tail = NULL;
7268 		tcp->tcp_rcv_cnt = 0;
7269 	}
7270 	tcp->tcp_rcv_last_tail = NULL;
7271 
7272 	if ((mp = tcp->tcp_urp_mp) != NULL) {
7273 		freemsg(mp);
7274 		tcp->tcp_urp_mp = NULL;
7275 	}
7276 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
7277 		freemsg(mp);
7278 		tcp->tcp_urp_mark_mp = NULL;
7279 	}
7280 	if (tcp->tcp_fused_sigurg_mp != NULL) {
7281 		freeb(tcp->tcp_fused_sigurg_mp);
7282 		tcp->tcp_fused_sigurg_mp = NULL;
7283 	}
7284 
7285 	/*
7286 	 * Following is a union with two members which are
7287 	 * identical types and size so the following cleanup
7288 	 * is enough.
7289 	 */
7290 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
7291 
7292 	CL_INET_DISCONNECT(tcp);
7293 
7294 	/*
7295 	 * The connection can't be on the tcp_time_wait_head list
7296 	 * since it is not detached.
7297 	 */
7298 	ASSERT(tcp->tcp_time_wait_next == NULL);
7299 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7300 	ASSERT(tcp->tcp_time_wait_expire == 0);
7301 
7302 	if (tcp->tcp_kssl_pending) {
7303 		tcp->tcp_kssl_pending = B_FALSE;
7304 
7305 		/* Don't reset if the initialized by bind. */
7306 		if (tcp->tcp_kssl_ent != NULL) {
7307 			kssl_release_ent(tcp->tcp_kssl_ent, NULL,
7308 			    KSSL_NO_PROXY);
7309 		}
7310 	}
7311 	if (tcp->tcp_kssl_ctx != NULL) {
7312 		kssl_release_ctx(tcp->tcp_kssl_ctx);
7313 		tcp->tcp_kssl_ctx = NULL;
7314 	}
7315 
7316 	/*
7317 	 * Reset/preserve other values
7318 	 */
7319 	tcp_reinit_values(tcp);
7320 	ipcl_hash_remove(tcp->tcp_connp);
7321 	conn_delete_ire(tcp->tcp_connp, NULL);
7322 
7323 	if (tcp->tcp_conn_req_max != 0) {
7324 		/*
7325 		 * This is the case when a TLI program uses the same
7326 		 * transport end point to accept a connection.  This
7327 		 * makes the TCP both a listener and acceptor.  When
7328 		 * this connection is closed, we need to set the state
7329 		 * back to TCPS_LISTEN.  Make sure that the eager list
7330 		 * is reinitialized.
7331 		 *
7332 		 * Note that this stream is still bound to the four
7333 		 * tuples of the previous connection in IP.  If a new
7334 		 * SYN with different foreign address comes in, IP will
7335 		 * not find it and will send it to the global queue.  In
7336 		 * the global queue, TCP will do a tcp_lookup_listener()
7337 		 * to find this stream.  This works because this stream
7338 		 * is only removed from connected hash.
7339 		 *
7340 		 */
7341 		tcp->tcp_state = TCPS_LISTEN;
7342 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
7343 		tcp->tcp_connp->conn_recv = tcp_conn_request;
7344 		if (tcp->tcp_family == AF_INET6) {
7345 			ASSERT(tcp->tcp_connp->conn_af_isv6);
7346 			(void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP,
7347 			    &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport);
7348 		} else {
7349 			ASSERT(!tcp->tcp_connp->conn_af_isv6);
7350 			(void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP,
7351 			    tcp->tcp_ipha->ipha_src, tcp->tcp_lport);
7352 		}
7353 	} else {
7354 		tcp->tcp_state = TCPS_BOUND;
7355 	}
7356 
7357 	/*
7358 	 * Initialize to default values
7359 	 * Can't fail since enough header template space already allocated
7360 	 * at open().
7361 	 */
7362 	err = tcp_init_values(tcp);
7363 	ASSERT(err == 0);
7364 	/* Restore state in tcp_tcph */
7365 	bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN);
7366 	if (tcp->tcp_ipversion == IPV4_VERSION)
7367 		tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source;
7368 	else
7369 		tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6;
7370 	/*
7371 	 * Copy of the src addr. in tcp_t is needed in tcp_t
7372 	 * since the lookup funcs can only lookup on tcp_t
7373 	 */
7374 	tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6;
7375 
7376 	ASSERT(tcp->tcp_ptpbhn != NULL);
7377 	tcp->tcp_rq->q_hiwat = tcp_recv_hiwat;
7378 	tcp->tcp_rwnd = tcp_recv_hiwat;
7379 	tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ?
7380 	    tcp_mss_def_ipv6 : tcp_mss_def_ipv4;
7381 }
7382 
7383 /*
7384  * Force values to zero that need be zero.
7385  * Do not touch values asociated with the BOUND or LISTEN state
7386  * since the connection will end up in that state after the reinit.
7387  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
7388  * structure!
7389  */
7390 static void
7391 tcp_reinit_values(tcp)
7392 	tcp_t *tcp;
7393 {
7394 #ifndef	lint
7395 #define	DONTCARE(x)
7396 #define	PRESERVE(x)
7397 #else
7398 #define	DONTCARE(x)	((x) = (x))
7399 #define	PRESERVE(x)	((x) = (x))
7400 #endif	/* lint */
7401 
7402 	PRESERVE(tcp->tcp_bind_hash);
7403 	PRESERVE(tcp->tcp_ptpbhn);
7404 	PRESERVE(tcp->tcp_acceptor_hash);
7405 	PRESERVE(tcp->tcp_ptpahn);
7406 
7407 	/* Should be ASSERT NULL on these with new code! */
7408 	ASSERT(tcp->tcp_time_wait_next == NULL);
7409 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7410 	ASSERT(tcp->tcp_time_wait_expire == 0);
7411 	PRESERVE(tcp->tcp_state);
7412 	PRESERVE(tcp->tcp_rq);
7413 	PRESERVE(tcp->tcp_wq);
7414 
7415 	ASSERT(tcp->tcp_xmit_head == NULL);
7416 	ASSERT(tcp->tcp_xmit_last == NULL);
7417 	ASSERT(tcp->tcp_unsent == 0);
7418 	ASSERT(tcp->tcp_xmit_tail == NULL);
7419 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
7420 
7421 	tcp->tcp_snxt = 0;			/* Displayed in mib */
7422 	tcp->tcp_suna = 0;			/* Displayed in mib */
7423 	tcp->tcp_swnd = 0;
7424 	DONTCARE(tcp->tcp_cwnd);		/* Init in tcp_mss_set */
7425 
7426 	ASSERT(tcp->tcp_ibsegs == 0);
7427 	ASSERT(tcp->tcp_obsegs == 0);
7428 
7429 	if (tcp->tcp_iphc != NULL) {
7430 		ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
7431 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
7432 	}
7433 
7434 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
7435 	DONTCARE(tcp->tcp_hdr_len);		/* Init in tcp_init_values */
7436 	DONTCARE(tcp->tcp_ipha);
7437 	DONTCARE(tcp->tcp_ip6h);
7438 	DONTCARE(tcp->tcp_ip_hdr_len);
7439 	DONTCARE(tcp->tcp_tcph);
7440 	DONTCARE(tcp->tcp_tcp_hdr_len);		/* Init in tcp_init_values */
7441 	tcp->tcp_valid_bits = 0;
7442 
7443 	DONTCARE(tcp->tcp_xmit_hiwater);	/* Init in tcp_init_values */
7444 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
7445 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
7446 	tcp->tcp_last_rcv_lbolt = 0;
7447 
7448 	tcp->tcp_init_cwnd = 0;
7449 
7450 	tcp->tcp_urp_last_valid = 0;
7451 	tcp->tcp_hard_binding = 0;
7452 	tcp->tcp_hard_bound = 0;
7453 	PRESERVE(tcp->tcp_cred);
7454 	PRESERVE(tcp->tcp_cpid);
7455 	PRESERVE(tcp->tcp_exclbind);
7456 
7457 	tcp->tcp_fin_acked = 0;
7458 	tcp->tcp_fin_rcvd = 0;
7459 	tcp->tcp_fin_sent = 0;
7460 	tcp->tcp_ordrel_done = 0;
7461 
7462 	tcp->tcp_debug = 0;
7463 	tcp->tcp_dontroute = 0;
7464 	tcp->tcp_broadcast = 0;
7465 
7466 	tcp->tcp_useloopback = 0;
7467 	tcp->tcp_reuseaddr = 0;
7468 	tcp->tcp_oobinline = 0;
7469 	tcp->tcp_dgram_errind = 0;
7470 
7471 	tcp->tcp_detached = 0;
7472 	tcp->tcp_bind_pending = 0;
7473 	tcp->tcp_unbind_pending = 0;
7474 	tcp->tcp_deferred_clean_death = 0;
7475 
7476 	tcp->tcp_snd_ws_ok = B_FALSE;
7477 	tcp->tcp_snd_ts_ok = B_FALSE;
7478 	tcp->tcp_linger = 0;
7479 	tcp->tcp_ka_enabled = 0;
7480 	tcp->tcp_zero_win_probe = 0;
7481 
7482 	tcp->tcp_loopback = 0;
7483 	tcp->tcp_localnet = 0;
7484 	tcp->tcp_syn_defense = 0;
7485 	tcp->tcp_set_timer = 0;
7486 
7487 	tcp->tcp_active_open = 0;
7488 	ASSERT(tcp->tcp_timeout == B_FALSE);
7489 	tcp->tcp_rexmit = B_FALSE;
7490 	tcp->tcp_xmit_zc_clean = B_FALSE;
7491 
7492 	tcp->tcp_snd_sack_ok = B_FALSE;
7493 	PRESERVE(tcp->tcp_recvdstaddr);
7494 	tcp->tcp_hwcksum = B_FALSE;
7495 
7496 	tcp->tcp_ire_ill_check_done = B_FALSE;
7497 	DONTCARE(tcp->tcp_maxpsz);		/* Init in tcp_init_values */
7498 
7499 	tcp->tcp_mdt = B_FALSE;
7500 	tcp->tcp_mdt_hdr_head = 0;
7501 	tcp->tcp_mdt_hdr_tail = 0;
7502 
7503 	tcp->tcp_conn_def_q0 = 0;
7504 	tcp->tcp_ip_forward_progress = B_FALSE;
7505 	tcp->tcp_anon_priv_bind = 0;
7506 	tcp->tcp_ecn_ok = B_FALSE;
7507 
7508 	tcp->tcp_cwr = B_FALSE;
7509 	tcp->tcp_ecn_echo_on = B_FALSE;
7510 
7511 	if (tcp->tcp_sack_info != NULL) {
7512 		if (tcp->tcp_notsack_list != NULL) {
7513 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
7514 		}
7515 		kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info);
7516 		tcp->tcp_sack_info = NULL;
7517 	}
7518 
7519 	tcp->tcp_rcv_ws = 0;
7520 	tcp->tcp_snd_ws = 0;
7521 	tcp->tcp_ts_recent = 0;
7522 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
7523 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
7524 	tcp->tcp_if_mtu = 0;
7525 
7526 	ASSERT(tcp->tcp_reass_head == NULL);
7527 	ASSERT(tcp->tcp_reass_tail == NULL);
7528 
7529 	tcp->tcp_cwnd_cnt = 0;
7530 
7531 	ASSERT(tcp->tcp_rcv_list == NULL);
7532 	ASSERT(tcp->tcp_rcv_last_head == NULL);
7533 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
7534 	ASSERT(tcp->tcp_rcv_cnt == 0);
7535 
7536 	DONTCARE(tcp->tcp_cwnd_ssthresh);	/* Init in tcp_adapt_ire */
7537 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
7538 	tcp->tcp_csuna = 0;
7539 
7540 	tcp->tcp_rto = 0;			/* Displayed in MIB */
7541 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
7542 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
7543 	tcp->tcp_rtt_update = 0;
7544 
7545 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
7546 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
7547 
7548 	tcp->tcp_rack = 0;			/* Displayed in mib */
7549 	tcp->tcp_rack_cnt = 0;
7550 	tcp->tcp_rack_cur_max = 0;
7551 	tcp->tcp_rack_abs_max = 0;
7552 
7553 	tcp->tcp_max_swnd = 0;
7554 
7555 	ASSERT(tcp->tcp_listener == NULL);
7556 
7557 	DONTCARE(tcp->tcp_xmit_lowater);	/* Init in tcp_init_values */
7558 
7559 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
7560 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
7561 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
7562 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
7563 
7564 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
7565 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
7566 	PRESERVE(tcp->tcp_conn_req_max);
7567 	PRESERVE(tcp->tcp_conn_req_seqnum);
7568 
7569 	DONTCARE(tcp->tcp_ip_hdr_len);		/* Init in tcp_init_values */
7570 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
7571 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
7572 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
7573 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
7574 
7575 	tcp->tcp_lingertime = 0;
7576 
7577 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
7578 	ASSERT(tcp->tcp_urp_mp == NULL);
7579 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
7580 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
7581 
7582 	ASSERT(tcp->tcp_eager_next_q == NULL);
7583 	ASSERT(tcp->tcp_eager_last_q == NULL);
7584 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
7585 	    tcp->tcp_eager_prev_q0 == NULL) ||
7586 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
7587 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
7588 
7589 	tcp->tcp_client_errno = 0;
7590 
7591 	DONTCARE(tcp->tcp_sum);			/* Init in tcp_init_values */
7592 
7593 	tcp->tcp_remote_v6 = ipv6_all_zeros;	/* Displayed in MIB */
7594 
7595 	PRESERVE(tcp->tcp_bound_source_v6);
7596 	tcp->tcp_last_sent_len = 0;
7597 	tcp->tcp_dupack_cnt = 0;
7598 
7599 	tcp->tcp_fport = 0;			/* Displayed in MIB */
7600 	PRESERVE(tcp->tcp_lport);
7601 
7602 	PRESERVE(tcp->tcp_acceptor_lockp);
7603 
7604 	ASSERT(tcp->tcp_ordrelid == 0);
7605 	PRESERVE(tcp->tcp_acceptor_id);
7606 	DONTCARE(tcp->tcp_ipsec_overhead);
7607 
7608 	/*
7609 	 * If tcp_tracing flag is ON (i.e. We have a trace buffer
7610 	 * in tcp structure and now tracing), Re-initialize all
7611 	 * members of tcp_traceinfo.
7612 	 */
7613 	if (tcp->tcp_tracebuf != NULL) {
7614 		bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t));
7615 	}
7616 
7617 	PRESERVE(tcp->tcp_family);
7618 	if (tcp->tcp_family == AF_INET6) {
7619 		tcp->tcp_ipversion = IPV6_VERSION;
7620 		tcp->tcp_mss = tcp_mss_def_ipv6;
7621 	} else {
7622 		tcp->tcp_ipversion = IPV4_VERSION;
7623 		tcp->tcp_mss = tcp_mss_def_ipv4;
7624 	}
7625 
7626 	tcp->tcp_bound_if = 0;
7627 	tcp->tcp_ipv6_recvancillary = 0;
7628 	tcp->tcp_recvifindex = 0;
7629 	tcp->tcp_recvhops = 0;
7630 	tcp->tcp_closed = 0;
7631 	tcp->tcp_cleandeathtag = 0;
7632 	if (tcp->tcp_hopopts != NULL) {
7633 		mi_free(tcp->tcp_hopopts);
7634 		tcp->tcp_hopopts = NULL;
7635 		tcp->tcp_hopoptslen = 0;
7636 	}
7637 	ASSERT(tcp->tcp_hopoptslen == 0);
7638 	if (tcp->tcp_dstopts != NULL) {
7639 		mi_free(tcp->tcp_dstopts);
7640 		tcp->tcp_dstopts = NULL;
7641 		tcp->tcp_dstoptslen = 0;
7642 	}
7643 	ASSERT(tcp->tcp_dstoptslen == 0);
7644 	if (tcp->tcp_rtdstopts != NULL) {
7645 		mi_free(tcp->tcp_rtdstopts);
7646 		tcp->tcp_rtdstopts = NULL;
7647 		tcp->tcp_rtdstoptslen = 0;
7648 	}
7649 	ASSERT(tcp->tcp_rtdstoptslen == 0);
7650 	if (tcp->tcp_rthdr != NULL) {
7651 		mi_free(tcp->tcp_rthdr);
7652 		tcp->tcp_rthdr = NULL;
7653 		tcp->tcp_rthdrlen = 0;
7654 	}
7655 	ASSERT(tcp->tcp_rthdrlen == 0);
7656 	PRESERVE(tcp->tcp_drop_opt_ack_cnt);
7657 
7658 	/* Reset fusion-related fields */
7659 	tcp->tcp_fused = B_FALSE;
7660 	tcp->tcp_unfusable = B_FALSE;
7661 	tcp->tcp_fused_sigurg = B_FALSE;
7662 	tcp->tcp_direct_sockfs = B_FALSE;
7663 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
7664 	tcp->tcp_loopback_peer = NULL;
7665 	tcp->tcp_fuse_rcv_hiwater = 0;
7666 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
7667 	tcp->tcp_fuse_rcv_unread_cnt = 0;
7668 
7669 	tcp->tcp_in_ack_unsent = 0;
7670 	tcp->tcp_cork = B_FALSE;
7671 
7672 	PRESERVE(tcp->tcp_squeue_bytes);
7673 
7674 	ASSERT(tcp->tcp_kssl_ctx == NULL);
7675 	ASSERT(!tcp->tcp_kssl_pending);
7676 	PRESERVE(tcp->tcp_kssl_ent);
7677 
7678 #undef	DONTCARE
7679 #undef	PRESERVE
7680 }
7681 
7682 /*
7683  * Allocate necessary resources and initialize state vector.
7684  * Guaranteed not to fail so that when an error is returned,
7685  * the caller doesn't need to do any additional cleanup.
7686  */
7687 int
7688 tcp_init(tcp_t *tcp, queue_t *q)
7689 {
7690 	int	err;
7691 
7692 	tcp->tcp_rq = q;
7693 	tcp->tcp_wq = WR(q);
7694 	tcp->tcp_state = TCPS_IDLE;
7695 	if ((err = tcp_init_values(tcp)) != 0)
7696 		tcp_timers_stop(tcp);
7697 	return (err);
7698 }
7699 
7700 static int
7701 tcp_init_values(tcp_t *tcp)
7702 {
7703 	int	err;
7704 
7705 	ASSERT((tcp->tcp_family == AF_INET &&
7706 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7707 	    (tcp->tcp_family == AF_INET6 &&
7708 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7709 	    tcp->tcp_ipversion == IPV6_VERSION)));
7710 
7711 	/*
7712 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
7713 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
7714 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
7715 	 * during first few transmissions of a connection as seen in slow
7716 	 * links.
7717 	 */
7718 	tcp->tcp_rtt_sa = tcp_rexmit_interval_initial << 2;
7719 	tcp->tcp_rtt_sd = tcp_rexmit_interval_initial >> 1;
7720 	tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
7721 	    tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
7722 	    tcp_conn_grace_period;
7723 	if (tcp->tcp_rto < tcp_rexmit_interval_min)
7724 		tcp->tcp_rto = tcp_rexmit_interval_min;
7725 	tcp->tcp_timer_backoff = 0;
7726 	tcp->tcp_ms_we_have_waited = 0;
7727 	tcp->tcp_last_recv_time = lbolt;
7728 	tcp->tcp_cwnd_max = tcp_cwnd_max_;
7729 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
7730 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
7731 
7732 	tcp->tcp_maxpsz = tcp_maxpsz_multiplier;
7733 
7734 	tcp->tcp_first_timer_threshold = tcp_ip_notify_interval;
7735 	tcp->tcp_first_ctimer_threshold = tcp_ip_notify_cinterval;
7736 	tcp->tcp_second_timer_threshold = tcp_ip_abort_interval;
7737 	/*
7738 	 * Fix it to tcp_ip_abort_linterval later if it turns out to be a
7739 	 * passive open.
7740 	 */
7741 	tcp->tcp_second_ctimer_threshold = tcp_ip_abort_cinterval;
7742 
7743 	tcp->tcp_naglim = tcp_naglim_def;
7744 
7745 	/* NOTE:  ISS is now set in tcp_adapt_ire(). */
7746 
7747 	tcp->tcp_mdt_hdr_head = 0;
7748 	tcp->tcp_mdt_hdr_tail = 0;
7749 
7750 	/* Reset fusion-related fields */
7751 	tcp->tcp_fused = B_FALSE;
7752 	tcp->tcp_unfusable = B_FALSE;
7753 	tcp->tcp_fused_sigurg = B_FALSE;
7754 	tcp->tcp_direct_sockfs = B_FALSE;
7755 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
7756 	tcp->tcp_loopback_peer = NULL;
7757 	tcp->tcp_fuse_rcv_hiwater = 0;
7758 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
7759 	tcp->tcp_fuse_rcv_unread_cnt = 0;
7760 
7761 	/* Initialize the header template */
7762 	if (tcp->tcp_ipversion == IPV4_VERSION) {
7763 		err = tcp_header_init_ipv4(tcp);
7764 	} else {
7765 		err = tcp_header_init_ipv6(tcp);
7766 	}
7767 	if (err)
7768 		return (err);
7769 
7770 	/*
7771 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
7772 	 * down tcp_rwnd. tcp_adapt_ire() will set the right value later.
7773 	 */
7774 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
7775 	tcp->tcp_xmit_lowater = tcp_xmit_lowat;
7776 	tcp->tcp_xmit_hiwater = tcp_xmit_hiwat;
7777 
7778 	tcp->tcp_cork = B_FALSE;
7779 	/*
7780 	 * Init the tcp_debug option.  This value determines whether TCP
7781 	 * calls strlog() to print out debug messages.  Doing this
7782 	 * initialization here means that this value is not inherited thru
7783 	 * tcp_reinit().
7784 	 */
7785 	tcp->tcp_debug = tcp_dbg;
7786 
7787 	tcp->tcp_ka_interval = tcp_keepalive_interval;
7788 	tcp->tcp_ka_abort_thres = tcp_keepalive_abort_interval;
7789 
7790 	return (0);
7791 }
7792 
7793 /*
7794  * Initialize the IPv4 header. Loses any record of any IP options.
7795  */
7796 static int
7797 tcp_header_init_ipv4(tcp_t *tcp)
7798 {
7799 	tcph_t		*tcph;
7800 	uint32_t	sum;
7801 
7802 	/*
7803 	 * This is a simple initialization. If there's
7804 	 * already a template, it should never be too small,
7805 	 * so reuse it.  Otherwise, allocate space for the new one.
7806 	 */
7807 	if (tcp->tcp_iphc == NULL) {
7808 		ASSERT(tcp->tcp_iphc_len == 0);
7809 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
7810 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
7811 		if (tcp->tcp_iphc == NULL) {
7812 			tcp->tcp_iphc_len = 0;
7813 			return (ENOMEM);
7814 		}
7815 	}
7816 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
7817 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
7818 	tcp->tcp_ip6h = NULL;
7819 	tcp->tcp_ipversion = IPV4_VERSION;
7820 	tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t);
7821 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
7822 	tcp->tcp_ip_hdr_len = sizeof (ipha_t);
7823 	tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t));
7824 	tcp->tcp_ipha->ipha_version_and_hdr_length
7825 		= (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS;
7826 	tcp->tcp_ipha->ipha_ident = 0;
7827 
7828 	tcp->tcp_ttl = (uchar_t)tcp_ipv4_ttl;
7829 	tcp->tcp_tos = 0;
7830 	tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
7831 	tcp->tcp_ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl;
7832 	tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP;
7833 
7834 	tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t));
7835 	tcp->tcp_tcph = tcph;
7836 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
7837 	/*
7838 	 * IP wants our header length in the checksum field to
7839 	 * allow it to perform a single pseudo-header+checksum
7840 	 * calculation on behalf of TCP.
7841 	 * Include the adjustment for a source route once IP_OPTIONS is set.
7842 	 */
7843 	sum = sizeof (tcph_t) + tcp->tcp_sum;
7844 	sum = (sum >> 16) + (sum & 0xFFFF);
7845 	U16_TO_ABE16(sum, tcph->th_sum);
7846 	return (0);
7847 }
7848 
7849 /*
7850  * Initialize the IPv6 header. Loses any record of any IPv6 extension headers.
7851  */
7852 static int
7853 tcp_header_init_ipv6(tcp_t *tcp)
7854 {
7855 	tcph_t	*tcph;
7856 	uint32_t	sum;
7857 
7858 	/*
7859 	 * This is a simple initialization. If there's
7860 	 * already a template, it should never be too small,
7861 	 * so reuse it. Otherwise, allocate space for the new one.
7862 	 * Ensure that there is enough space to "downgrade" the tcp_t
7863 	 * to an IPv4 tcp_t. This requires having space for a full load
7864 	 * of IPv4 options, as well as a full load of TCP options
7865 	 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space
7866 	 * than a v6 header and a TCP header with a full load of TCP options
7867 	 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes).
7868 	 * We want to avoid reallocation in the "downgraded" case when
7869 	 * processing outbound IPv4 options.
7870 	 */
7871 	if (tcp->tcp_iphc == NULL) {
7872 		ASSERT(tcp->tcp_iphc_len == 0);
7873 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
7874 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
7875 		if (tcp->tcp_iphc == NULL) {
7876 			tcp->tcp_iphc_len = 0;
7877 			return (ENOMEM);
7878 		}
7879 	}
7880 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
7881 	tcp->tcp_ipversion = IPV6_VERSION;
7882 	tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t);
7883 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
7884 	tcp->tcp_ip_hdr_len = IPV6_HDR_LEN;
7885 	tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
7886 	tcp->tcp_ipha = NULL;
7887 
7888 	/* Initialize the header template */
7889 
7890 	tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
7891 	tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t));
7892 	tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP;
7893 	tcp->tcp_ip6h->ip6_hops = (uint8_t)tcp_ipv6_hoplimit;
7894 
7895 	tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN);
7896 	tcp->tcp_tcph = tcph;
7897 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
7898 	/*
7899 	 * IP wants our header length in the checksum field to
7900 	 * allow it to perform a single psuedo-header+checksum
7901 	 * calculation on behalf of TCP.
7902 	 * Include the adjustment for a source route when IPV6_RTHDR is set.
7903 	 */
7904 	sum = sizeof (tcph_t) + tcp->tcp_sum;
7905 	sum = (sum >> 16) + (sum & 0xFFFF);
7906 	U16_TO_ABE16(sum, tcph->th_sum);
7907 	return (0);
7908 }
7909 
7910 /* At minimum we need 4 bytes in the TCP header for the lookup */
7911 #define	ICMP_MIN_TCP_HDR	12
7912 
7913 /*
7914  * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages
7915  * passed up by IP. The message is always received on the correct tcp_t.
7916  * Assumes that IP has pulled up everything up to and including the ICMP header.
7917  */
7918 void
7919 tcp_icmp_error(tcp_t *tcp, mblk_t *mp)
7920 {
7921 	icmph_t *icmph;
7922 	ipha_t	*ipha;
7923 	int	iph_hdr_length;
7924 	tcph_t	*tcph;
7925 	boolean_t ipsec_mctl = B_FALSE;
7926 	boolean_t secure;
7927 	mblk_t *first_mp = mp;
7928 	uint32_t new_mss;
7929 	uint32_t ratio;
7930 	size_t mp_size = MBLKL(mp);
7931 	uint32_t seg_ack;
7932 	uint32_t seg_seq;
7933 
7934 	/* Assume IP provides aligned packets - otherwise toss */
7935 	if (!OK_32PTR(mp->b_rptr)) {
7936 		freemsg(mp);
7937 		return;
7938 	}
7939 
7940 	/*
7941 	 * Since ICMP errors are normal data marked with M_CTL when sent
7942 	 * to TCP or UDP, we have to look for a IPSEC_IN value to identify
7943 	 * packets starting with an ipsec_info_t, see ipsec_info.h.
7944 	 */
7945 	if ((mp_size == sizeof (ipsec_info_t)) &&
7946 	    (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) {
7947 		ASSERT(mp->b_cont != NULL);
7948 		mp = mp->b_cont;
7949 		/* IP should have done this */
7950 		ASSERT(OK_32PTR(mp->b_rptr));
7951 		mp_size = MBLKL(mp);
7952 		ipsec_mctl = B_TRUE;
7953 	}
7954 
7955 	/*
7956 	 * Verify that we have a complete outer IP header. If not, drop it.
7957 	 */
7958 	if (mp_size < sizeof (ipha_t)) {
7959 noticmpv4:
7960 		freemsg(first_mp);
7961 		return;
7962 	}
7963 
7964 	ipha = (ipha_t *)mp->b_rptr;
7965 	/*
7966 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
7967 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
7968 	 */
7969 	switch (IPH_HDR_VERSION(ipha)) {
7970 	case IPV6_VERSION:
7971 		tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl);
7972 		return;
7973 	case IPV4_VERSION:
7974 		break;
7975 	default:
7976 		goto noticmpv4;
7977 	}
7978 
7979 	/* Skip past the outer IP and ICMP headers */
7980 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
7981 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
7982 	/*
7983 	 * If we don't have the correct outer IP header length or if the ULP
7984 	 * is not IPPROTO_ICMP or if we don't have a complete inner IP header
7985 	 * send it upstream.
7986 	 */
7987 	if (iph_hdr_length < sizeof (ipha_t) ||
7988 	    ipha->ipha_protocol != IPPROTO_ICMP ||
7989 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
7990 		goto noticmpv4;
7991 	}
7992 	ipha = (ipha_t *)&icmph[1];
7993 
7994 	/* Skip past the inner IP and find the ULP header */
7995 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
7996 	tcph = (tcph_t *)((char *)ipha + iph_hdr_length);
7997 	/*
7998 	 * If we don't have the correct inner IP header length or if the ULP
7999 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
8000 	 * bytes of TCP header, drop it.
8001 	 */
8002 	if (iph_hdr_length < sizeof (ipha_t) ||
8003 	    ipha->ipha_protocol != IPPROTO_TCP ||
8004 	    (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) {
8005 		goto noticmpv4;
8006 	}
8007 
8008 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
8009 		if (ipsec_mctl) {
8010 			secure = ipsec_in_is_secure(first_mp);
8011 		} else {
8012 			secure = B_FALSE;
8013 		}
8014 		if (secure) {
8015 			/*
8016 			 * If we are willing to accept this in clear
8017 			 * we don't have to verify policy.
8018 			 */
8019 			if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) {
8020 				if (!tcp_check_policy(tcp, first_mp,
8021 				    ipha, NULL, secure, ipsec_mctl)) {
8022 					/*
8023 					 * tcp_check_policy called
8024 					 * ip_drop_packet() on failure.
8025 					 */
8026 					return;
8027 				}
8028 			}
8029 		}
8030 	} else if (ipsec_mctl) {
8031 		/*
8032 		 * This is a hard_bound connection. IP has already
8033 		 * verified policy. We don't have to do it again.
8034 		 */
8035 		freeb(first_mp);
8036 		first_mp = mp;
8037 		ipsec_mctl = B_FALSE;
8038 	}
8039 
8040 	seg_ack = ABE32_TO_U32(tcph->th_ack);
8041 	seg_seq = ABE32_TO_U32(tcph->th_seq);
8042 	/*
8043 	 * TCP SHOULD check that the TCP sequence number contained in
8044 	 * payload of the ICMP error message is within the range
8045 	 * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT
8046 	 */
8047 	if (SEQ_LT(seg_seq, tcp->tcp_suna) ||
8048 		SEQ_GEQ(seg_seq, tcp->tcp_snxt) ||
8049 		SEQ_GT(seg_ack, tcp->tcp_rnxt)) {
8050 		/*
8051 		 * If the ICMP message is bogus, should we kill the
8052 		 * connection, or should we just drop the bogus ICMP
8053 		 * message? It would probably make more sense to just
8054 		 * drop the message so that if this one managed to get
8055 		 * in, the real connection should not suffer.
8056 		 */
8057 		goto noticmpv4;
8058 	}
8059 
8060 	switch (icmph->icmph_type) {
8061 	case ICMP_DEST_UNREACHABLE:
8062 		switch (icmph->icmph_code) {
8063 		case ICMP_FRAGMENTATION_NEEDED:
8064 			/*
8065 			 * Reduce the MSS based on the new MTU.  This will
8066 			 * eliminate any fragmentation locally.
8067 			 * N.B.  There may well be some funny side-effects on
8068 			 * the local send policy and the remote receive policy.
8069 			 * Pending further research, we provide
8070 			 * tcp_ignore_path_mtu just in case this proves
8071 			 * disastrous somewhere.
8072 			 *
8073 			 * After updating the MSS, retransmit part of the
8074 			 * dropped segment using the new mss by calling
8075 			 * tcp_wput_data().  Need to adjust all those
8076 			 * params to make sure tcp_wput_data() work properly.
8077 			 */
8078 			if (tcp_ignore_path_mtu)
8079 				break;
8080 
8081 			/*
8082 			 * Decrease the MSS by time stamp options
8083 			 * IP options and IPSEC options. tcp_hdr_len
8084 			 * includes time stamp option and IP option
8085 			 * length.
8086 			 */
8087 
8088 			new_mss = ntohs(icmph->icmph_du_mtu) -
8089 			    tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead;
8090 
8091 			/*
8092 			 * Only update the MSS if the new one is
8093 			 * smaller than the previous one.  This is
8094 			 * to avoid problems when getting multiple
8095 			 * ICMP errors for the same MTU.
8096 			 */
8097 			if (new_mss >= tcp->tcp_mss)
8098 				break;
8099 
8100 			/*
8101 			 * Stop doing PMTU if new_mss is less than 68
8102 			 * or less than tcp_mss_min.
8103 			 * The value 68 comes from rfc 1191.
8104 			 */
8105 			if (new_mss < MAX(68, tcp_mss_min))
8106 				tcp->tcp_ipha->ipha_fragment_offset_and_flags =
8107 				    0;
8108 
8109 			ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8110 			ASSERT(ratio >= 1);
8111 			tcp_mss_set(tcp, new_mss);
8112 
8113 			/*
8114 			 * Make sure we have something to
8115 			 * send.
8116 			 */
8117 			if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8118 			    (tcp->tcp_xmit_head != NULL)) {
8119 				/*
8120 				 * Shrink tcp_cwnd in
8121 				 * proportion to the old MSS/new MSS.
8122 				 */
8123 				tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8124 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8125 				    (tcp->tcp_unsent == 0)) {
8126 					tcp->tcp_rexmit_max = tcp->tcp_fss;
8127 				} else {
8128 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
8129 				}
8130 				tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8131 				tcp->tcp_rexmit = B_TRUE;
8132 				tcp->tcp_dupack_cnt = 0;
8133 				tcp->tcp_snd_burst = TCP_CWND_SS;
8134 				tcp_ss_rexmit(tcp);
8135 			}
8136 			break;
8137 		case ICMP_PORT_UNREACHABLE:
8138 		case ICMP_PROTOCOL_UNREACHABLE:
8139 			switch (tcp->tcp_state) {
8140 			case TCPS_SYN_SENT:
8141 			case TCPS_SYN_RCVD:
8142 				/*
8143 				 * ICMP can snipe away incipient
8144 				 * TCP connections as long as
8145 				 * seq number is same as initial
8146 				 * send seq number.
8147 				 */
8148 				if (seg_seq == tcp->tcp_iss) {
8149 					(void) tcp_clean_death(tcp,
8150 					    ECONNREFUSED, 6);
8151 				}
8152 				break;
8153 			}
8154 			break;
8155 		case ICMP_HOST_UNREACHABLE:
8156 		case ICMP_NET_UNREACHABLE:
8157 			/* Record the error in case we finally time out. */
8158 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
8159 				tcp->tcp_client_errno = EHOSTUNREACH;
8160 			else
8161 				tcp->tcp_client_errno = ENETUNREACH;
8162 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
8163 				if (tcp->tcp_listener != NULL &&
8164 				    tcp->tcp_listener->tcp_syn_defense) {
8165 					/*
8166 					 * Ditch the half-open connection if we
8167 					 * suspect a SYN attack is under way.
8168 					 */
8169 					tcp_ip_ire_mark_advice(tcp);
8170 					(void) tcp_clean_death(tcp,
8171 					    tcp->tcp_client_errno, 7);
8172 				}
8173 			}
8174 			break;
8175 		default:
8176 			break;
8177 		}
8178 		break;
8179 	case ICMP_SOURCE_QUENCH: {
8180 		/*
8181 		 * use a global boolean to control
8182 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
8183 		 * The default is false.
8184 		 */
8185 		if (tcp_icmp_source_quench) {
8186 			/*
8187 			 * Reduce the sending rate as if we got a
8188 			 * retransmit timeout
8189 			 */
8190 			uint32_t npkt;
8191 
8192 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
8193 			    tcp->tcp_mss;
8194 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
8195 			tcp->tcp_cwnd = tcp->tcp_mss;
8196 			tcp->tcp_cwnd_cnt = 0;
8197 		}
8198 		break;
8199 	}
8200 	}
8201 	freemsg(first_mp);
8202 }
8203 
8204 /*
8205  * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6
8206  * error messages passed up by IP.
8207  * Assumes that IP has pulled up all the extension headers as well
8208  * as the ICMPv6 header.
8209  */
8210 static void
8211 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl)
8212 {
8213 	icmp6_t *icmp6;
8214 	ip6_t	*ip6h;
8215 	uint16_t	iph_hdr_length;
8216 	tcpha_t	*tcpha;
8217 	uint8_t	*nexthdrp;
8218 	uint32_t new_mss;
8219 	uint32_t ratio;
8220 	boolean_t secure;
8221 	mblk_t *first_mp = mp;
8222 	size_t mp_size;
8223 	uint32_t seg_ack;
8224 	uint32_t seg_seq;
8225 
8226 	/*
8227 	 * The caller has determined if this is an IPSEC_IN packet and
8228 	 * set ipsec_mctl appropriately (see tcp_icmp_error).
8229 	 */
8230 	if (ipsec_mctl)
8231 		mp = mp->b_cont;
8232 
8233 	mp_size = MBLKL(mp);
8234 
8235 	/*
8236 	 * Verify that we have a complete IP header. If not, send it upstream.
8237 	 */
8238 	if (mp_size < sizeof (ip6_t)) {
8239 noticmpv6:
8240 		freemsg(first_mp);
8241 		return;
8242 	}
8243 
8244 	/*
8245 	 * Verify this is an ICMPV6 packet, else send it upstream.
8246 	 */
8247 	ip6h = (ip6_t *)mp->b_rptr;
8248 	if (ip6h->ip6_nxt == IPPROTO_ICMPV6) {
8249 		iph_hdr_length = IPV6_HDR_LEN;
8250 	} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
8251 	    &nexthdrp) ||
8252 	    *nexthdrp != IPPROTO_ICMPV6) {
8253 		goto noticmpv6;
8254 	}
8255 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
8256 	ip6h = (ip6_t *)&icmp6[1];
8257 	/*
8258 	 * Verify if we have a complete ICMP and inner IP header.
8259 	 */
8260 	if ((uchar_t *)&ip6h[1] > mp->b_wptr)
8261 		goto noticmpv6;
8262 
8263 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
8264 		goto noticmpv6;
8265 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
8266 	/*
8267 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
8268 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
8269 	 * packet.
8270 	 */
8271 	if ((*nexthdrp != IPPROTO_TCP) ||
8272 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
8273 		goto noticmpv6;
8274 	}
8275 
8276 	/*
8277 	 * ICMP errors come on the right queue or come on
8278 	 * listener/global queue for detached connections and
8279 	 * get switched to the right queue. If it comes on the
8280 	 * right queue, policy check has already been done by IP
8281 	 * and thus free the first_mp without verifying the policy.
8282 	 * If it has come for a non-hard bound connection, we need
8283 	 * to verify policy as IP may not have done it.
8284 	 */
8285 	if (!tcp->tcp_hard_bound) {
8286 		if (ipsec_mctl) {
8287 			secure = ipsec_in_is_secure(first_mp);
8288 		} else {
8289 			secure = B_FALSE;
8290 		}
8291 		if (secure) {
8292 			/*
8293 			 * If we are willing to accept this in clear
8294 			 * we don't have to verify policy.
8295 			 */
8296 			if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) {
8297 				if (!tcp_check_policy(tcp, first_mp,
8298 				    NULL, ip6h, secure, ipsec_mctl)) {
8299 					/*
8300 					 * tcp_check_policy called
8301 					 * ip_drop_packet() on failure.
8302 					 */
8303 					return;
8304 				}
8305 			}
8306 		}
8307 	} else if (ipsec_mctl) {
8308 		/*
8309 		 * This is a hard_bound connection. IP has already
8310 		 * verified policy. We don't have to do it again.
8311 		 */
8312 		freeb(first_mp);
8313 		first_mp = mp;
8314 		ipsec_mctl = B_FALSE;
8315 	}
8316 
8317 	seg_ack = ntohl(tcpha->tha_ack);
8318 	seg_seq = ntohl(tcpha->tha_seq);
8319 	/*
8320 	 * TCP SHOULD check that the TCP sequence number contained in
8321 	 * payload of the ICMP error message is within the range
8322 	 * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT
8323 	 */
8324 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt) ||
8325 	    SEQ_GT(seg_ack, tcp->tcp_rnxt)) {
8326 		/*
8327 		 * If the ICMP message is bogus, should we kill the
8328 		 * connection, or should we just drop the bogus ICMP
8329 		 * message? It would probably make more sense to just
8330 		 * drop the message so that if this one managed to get
8331 		 * in, the real connection should not suffer.
8332 		 */
8333 		goto noticmpv6;
8334 	}
8335 
8336 	switch (icmp6->icmp6_type) {
8337 	case ICMP6_PACKET_TOO_BIG:
8338 		/*
8339 		 * Reduce the MSS based on the new MTU.  This will
8340 		 * eliminate any fragmentation locally.
8341 		 * N.B.  There may well be some funny side-effects on
8342 		 * the local send policy and the remote receive policy.
8343 		 * Pending further research, we provide
8344 		 * tcp_ignore_path_mtu just in case this proves
8345 		 * disastrous somewhere.
8346 		 *
8347 		 * After updating the MSS, retransmit part of the
8348 		 * dropped segment using the new mss by calling
8349 		 * tcp_wput_data().  Need to adjust all those
8350 		 * params to make sure tcp_wput_data() work properly.
8351 		 */
8352 		if (tcp_ignore_path_mtu)
8353 			break;
8354 
8355 		/*
8356 		 * Decrease the MSS by time stamp options
8357 		 * IP options and IPSEC options. tcp_hdr_len
8358 		 * includes time stamp option and IP option
8359 		 * length.
8360 		 */
8361 		new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len -
8362 			    tcp->tcp_ipsec_overhead;
8363 
8364 		/*
8365 		 * Only update the MSS if the new one is
8366 		 * smaller than the previous one.  This is
8367 		 * to avoid problems when getting multiple
8368 		 * ICMP errors for the same MTU.
8369 		 */
8370 		if (new_mss >= tcp->tcp_mss)
8371 			break;
8372 
8373 		ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8374 		ASSERT(ratio >= 1);
8375 		tcp_mss_set(tcp, new_mss);
8376 
8377 		/*
8378 		 * Make sure we have something to
8379 		 * send.
8380 		 */
8381 		if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8382 		    (tcp->tcp_xmit_head != NULL)) {
8383 			/*
8384 			 * Shrink tcp_cwnd in
8385 			 * proportion to the old MSS/new MSS.
8386 			 */
8387 			tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8388 			if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8389 			    (tcp->tcp_unsent == 0)) {
8390 				tcp->tcp_rexmit_max = tcp->tcp_fss;
8391 			} else {
8392 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
8393 			}
8394 			tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8395 			tcp->tcp_rexmit = B_TRUE;
8396 			tcp->tcp_dupack_cnt = 0;
8397 			tcp->tcp_snd_burst = TCP_CWND_SS;
8398 			tcp_ss_rexmit(tcp);
8399 		}
8400 		break;
8401 
8402 	case ICMP6_DST_UNREACH:
8403 		switch (icmp6->icmp6_code) {
8404 		case ICMP6_DST_UNREACH_NOPORT:
8405 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8406 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8407 			    (seg_seq == tcp->tcp_iss)) {
8408 				(void) tcp_clean_death(tcp,
8409 				    ECONNREFUSED, 8);
8410 			}
8411 			break;
8412 
8413 		case ICMP6_DST_UNREACH_ADMIN:
8414 		case ICMP6_DST_UNREACH_NOROUTE:
8415 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
8416 		case ICMP6_DST_UNREACH_ADDR:
8417 			/* Record the error in case we finally time out. */
8418 			tcp->tcp_client_errno = EHOSTUNREACH;
8419 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8420 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8421 			    (seg_seq == tcp->tcp_iss)) {
8422 				if (tcp->tcp_listener != NULL &&
8423 				    tcp->tcp_listener->tcp_syn_defense) {
8424 					/*
8425 					 * Ditch the half-open connection if we
8426 					 * suspect a SYN attack is under way.
8427 					 */
8428 					tcp_ip_ire_mark_advice(tcp);
8429 					(void) tcp_clean_death(tcp,
8430 					    tcp->tcp_client_errno, 9);
8431 				}
8432 			}
8433 
8434 
8435 			break;
8436 		default:
8437 			break;
8438 		}
8439 		break;
8440 
8441 	case ICMP6_PARAM_PROB:
8442 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
8443 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
8444 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
8445 		    (uchar_t *)nexthdrp) {
8446 			if (tcp->tcp_state == TCPS_SYN_SENT ||
8447 			    tcp->tcp_state == TCPS_SYN_RCVD) {
8448 				(void) tcp_clean_death(tcp,
8449 				    ECONNREFUSED, 10);
8450 			}
8451 			break;
8452 		}
8453 		break;
8454 
8455 	case ICMP6_TIME_EXCEEDED:
8456 	default:
8457 		break;
8458 	}
8459 	freemsg(first_mp);
8460 }
8461 
8462 /*
8463  * IP recognizes seven kinds of bind requests:
8464  *
8465  * - A zero-length address binds only to the protocol number.
8466  *
8467  * - A 4-byte address is treated as a request to
8468  * validate that the address is a valid local IPv4
8469  * address, appropriate for an application to bind to.
8470  * IP does the verification, but does not make any note
8471  * of the address at this time.
8472  *
8473  * - A 16-byte address contains is treated as a request
8474  * to validate a local IPv6 address, as the 4-byte
8475  * address case above.
8476  *
8477  * - A 16-byte sockaddr_in to validate the local IPv4 address and also
8478  * use it for the inbound fanout of packets.
8479  *
8480  * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also
8481  * use it for the inbound fanout of packets.
8482  *
8483  * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout
8484  * information consisting of local and remote addresses
8485  * and ports.  In this case, the addresses are both
8486  * validated as appropriate for this operation, and, if
8487  * so, the information is retained for use in the
8488  * inbound fanout.
8489  *
8490  * - A 36-byte address address (ipa6_conn_t) containing complete IPv6
8491  * fanout information, like the 12-byte case above.
8492  *
8493  * IP will also fill in the IRE request mblk with information
8494  * regarding our peer.  In all cases, we notify IP of our protocol
8495  * type by appending a single protocol byte to the bind request.
8496  */
8497 static mblk_t *
8498 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length)
8499 {
8500 	char	*cp;
8501 	mblk_t	*mp;
8502 	struct T_bind_req *tbr;
8503 	ipa_conn_t	*ac;
8504 	ipa6_conn_t	*ac6;
8505 	sin_t		*sin;
8506 	sin6_t		*sin6;
8507 
8508 	ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ);
8509 	ASSERT((tcp->tcp_family == AF_INET &&
8510 	    tcp->tcp_ipversion == IPV4_VERSION) ||
8511 	    (tcp->tcp_family == AF_INET6 &&
8512 	    (tcp->tcp_ipversion == IPV4_VERSION ||
8513 	    tcp->tcp_ipversion == IPV6_VERSION)));
8514 
8515 	mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI);
8516 	if (!mp)
8517 		return (mp);
8518 	mp->b_datap->db_type = M_PROTO;
8519 	tbr = (struct T_bind_req *)mp->b_rptr;
8520 	tbr->PRIM_type = bind_prim;
8521 	tbr->ADDR_offset = sizeof (*tbr);
8522 	tbr->CONIND_number = 0;
8523 	tbr->ADDR_length = addr_length;
8524 	cp = (char *)&tbr[1];
8525 	switch (addr_length) {
8526 	case sizeof (ipa_conn_t):
8527 		ASSERT(tcp->tcp_family == AF_INET);
8528 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
8529 
8530 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
8531 		if (mp->b_cont == NULL) {
8532 			freemsg(mp);
8533 			return (NULL);
8534 		}
8535 		mp->b_cont->b_wptr += sizeof (ire_t);
8536 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
8537 
8538 		/* cp known to be 32 bit aligned */
8539 		ac = (ipa_conn_t *)cp;
8540 		ac->ac_laddr = tcp->tcp_ipha->ipha_src;
8541 		ac->ac_faddr = tcp->tcp_remote;
8542 		ac->ac_fport = tcp->tcp_fport;
8543 		ac->ac_lport = tcp->tcp_lport;
8544 		tcp->tcp_hard_binding = 1;
8545 		break;
8546 
8547 	case sizeof (ipa6_conn_t):
8548 		ASSERT(tcp->tcp_family == AF_INET6);
8549 
8550 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
8551 		if (mp->b_cont == NULL) {
8552 			freemsg(mp);
8553 			return (NULL);
8554 		}
8555 		mp->b_cont->b_wptr += sizeof (ire_t);
8556 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
8557 
8558 		/* cp known to be 32 bit aligned */
8559 		ac6 = (ipa6_conn_t *)cp;
8560 		if (tcp->tcp_ipversion == IPV4_VERSION) {
8561 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
8562 			    &ac6->ac6_laddr);
8563 		} else {
8564 			ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src;
8565 		}
8566 		ac6->ac6_faddr = tcp->tcp_remote_v6;
8567 		ac6->ac6_fport = tcp->tcp_fport;
8568 		ac6->ac6_lport = tcp->tcp_lport;
8569 		tcp->tcp_hard_binding = 1;
8570 		break;
8571 
8572 	case sizeof (sin_t):
8573 		/*
8574 		 * NOTE: IPV6_ADDR_LEN also has same size.
8575 		 * Use family to discriminate.
8576 		 */
8577 		if (tcp->tcp_family == AF_INET) {
8578 			sin = (sin_t *)cp;
8579 
8580 			*sin = sin_null;
8581 			sin->sin_family = AF_INET;
8582 			sin->sin_addr.s_addr = tcp->tcp_bound_source;
8583 			sin->sin_port = tcp->tcp_lport;
8584 			break;
8585 		} else {
8586 			*(in6_addr_t *)cp = tcp->tcp_bound_source_v6;
8587 		}
8588 		break;
8589 
8590 	case sizeof (sin6_t):
8591 		ASSERT(tcp->tcp_family == AF_INET6);
8592 		sin6 = (sin6_t *)cp;
8593 
8594 		*sin6 = sin6_null;
8595 		sin6->sin6_family = AF_INET6;
8596 		sin6->sin6_addr = tcp->tcp_bound_source_v6;
8597 		sin6->sin6_port = tcp->tcp_lport;
8598 		break;
8599 
8600 	case IP_ADDR_LEN:
8601 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
8602 		*(uint32_t *)cp = tcp->tcp_ipha->ipha_src;
8603 		break;
8604 
8605 	}
8606 	/* Add protocol number to end */
8607 	cp[addr_length] = (char)IPPROTO_TCP;
8608 	mp->b_wptr = (uchar_t *)&cp[addr_length + 1];
8609 	return (mp);
8610 }
8611 
8612 /*
8613  * Notify IP that we are having trouble with this connection.  IP should
8614  * blow the IRE away and start over.
8615  */
8616 static void
8617 tcp_ip_notify(tcp_t *tcp)
8618 {
8619 	struct iocblk	*iocp;
8620 	ipid_t	*ipid;
8621 	mblk_t	*mp;
8622 
8623 	/* IPv6 has NUD thus notification to delete the IRE is not needed */
8624 	if (tcp->tcp_ipversion == IPV6_VERSION)
8625 		return;
8626 
8627 	mp = mkiocb(IP_IOCTL);
8628 	if (mp == NULL)
8629 		return;
8630 
8631 	iocp = (struct iocblk *)mp->b_rptr;
8632 	iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst);
8633 
8634 	mp->b_cont = allocb(iocp->ioc_count, BPRI_HI);
8635 	if (!mp->b_cont) {
8636 		freeb(mp);
8637 		return;
8638 	}
8639 
8640 	ipid = (ipid_t *)mp->b_cont->b_rptr;
8641 	mp->b_cont->b_wptr += iocp->ioc_count;
8642 	bzero(ipid, sizeof (*ipid));
8643 	ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY;
8644 	ipid->ipid_ire_type = IRE_CACHE;
8645 	ipid->ipid_addr_offset = sizeof (ipid_t);
8646 	ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst);
8647 	/*
8648 	 * Note: in the case of source routing we want to blow away the
8649 	 * route to the first source route hop.
8650 	 */
8651 	bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1],
8652 	    sizeof (tcp->tcp_ipha->ipha_dst));
8653 
8654 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
8655 }
8656 
8657 /* Unlink and return any mblk that looks like it contains an ire */
8658 static mblk_t *
8659 tcp_ire_mp(mblk_t *mp)
8660 {
8661 	mblk_t	*prev_mp;
8662 
8663 	for (;;) {
8664 		prev_mp = mp;
8665 		mp = mp->b_cont;
8666 		if (mp == NULL)
8667 			break;
8668 		switch (DB_TYPE(mp)) {
8669 		case IRE_DB_TYPE:
8670 		case IRE_DB_REQ_TYPE:
8671 			if (prev_mp != NULL)
8672 				prev_mp->b_cont = mp->b_cont;
8673 			mp->b_cont = NULL;
8674 			return (mp);
8675 		default:
8676 			break;
8677 		}
8678 	}
8679 	return (mp);
8680 }
8681 
8682 /*
8683  * Timer callback routine for keepalive probe.  We do a fake resend of
8684  * last ACKed byte.  Then set a timer using RTO.  When the timer expires,
8685  * check to see if we have heard anything from the other end for the last
8686  * RTO period.  If we have, set the timer to expire for another
8687  * tcp_keepalive_intrvl and check again.  If we have not, set a timer using
8688  * RTO << 1 and check again when it expires.  Keep exponentially increasing
8689  * the timeout if we have not heard from the other side.  If for more than
8690  * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything,
8691  * kill the connection unless the keepalive abort threshold is 0.  In
8692  * that case, we will probe "forever."
8693  */
8694 static void
8695 tcp_keepalive_killer(void *arg)
8696 {
8697 	mblk_t	*mp;
8698 	conn_t	*connp = (conn_t *)arg;
8699 	tcp_t  	*tcp = connp->conn_tcp;
8700 	int32_t	firetime;
8701 	int32_t	idletime;
8702 	int32_t	ka_intrvl;
8703 
8704 	tcp->tcp_ka_tid = 0;
8705 
8706 	if (tcp->tcp_fused)
8707 		return;
8708 
8709 	BUMP_MIB(&tcp_mib, tcpTimKeepalive);
8710 	ka_intrvl = tcp->tcp_ka_interval;
8711 
8712 	/*
8713 	 * Keepalive probe should only be sent if the application has not
8714 	 * done a close on the connection.
8715 	 */
8716 	if (tcp->tcp_state > TCPS_CLOSE_WAIT) {
8717 		return;
8718 	}
8719 	/* Timer fired too early, restart it. */
8720 	if (tcp->tcp_state < TCPS_ESTABLISHED) {
8721 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
8722 		    MSEC_TO_TICK(ka_intrvl));
8723 		return;
8724 	}
8725 
8726 	idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time);
8727 	/*
8728 	 * If we have not heard from the other side for a long
8729 	 * time, kill the connection unless the keepalive abort
8730 	 * threshold is 0.  In that case, we will probe "forever."
8731 	 */
8732 	if (tcp->tcp_ka_abort_thres != 0 &&
8733 	    idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) {
8734 		BUMP_MIB(&tcp_mib, tcpTimKeepaliveDrop);
8735 		(void) tcp_clean_death(tcp, tcp->tcp_client_errno ?
8736 		    tcp->tcp_client_errno : ETIMEDOUT, 11);
8737 		return;
8738 	}
8739 
8740 	if (tcp->tcp_snxt == tcp->tcp_suna &&
8741 	    idletime >= ka_intrvl) {
8742 		/* Fake resend of last ACKed byte. */
8743 		mblk_t	*mp1 = allocb(1, BPRI_LO);
8744 
8745 		if (mp1 != NULL) {
8746 			*mp1->b_wptr++ = '\0';
8747 			mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL,
8748 			    tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE);
8749 			freeb(mp1);
8750 			/*
8751 			 * if allocation failed, fall through to start the
8752 			 * timer back.
8753 			 */
8754 			if (mp != NULL) {
8755 				TCP_RECORD_TRACE(tcp, mp,
8756 				    TCP_TRACE_SEND_PKT);
8757 				tcp_send_data(tcp, tcp->tcp_wq, mp);
8758 				BUMP_MIB(&tcp_mib, tcpTimKeepaliveProbe);
8759 				if (tcp->tcp_ka_last_intrvl != 0) {
8760 					/*
8761 					 * We should probe again at least
8762 					 * in ka_intrvl, but not more than
8763 					 * tcp_rexmit_interval_max.
8764 					 */
8765 					firetime = MIN(ka_intrvl - 1,
8766 					    tcp->tcp_ka_last_intrvl << 1);
8767 					if (firetime > tcp_rexmit_interval_max)
8768 						firetime =
8769 						    tcp_rexmit_interval_max;
8770 				} else {
8771 					firetime = tcp->tcp_rto;
8772 				}
8773 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
8774 				    tcp_keepalive_killer,
8775 				    MSEC_TO_TICK(firetime));
8776 				tcp->tcp_ka_last_intrvl = firetime;
8777 				return;
8778 			}
8779 		}
8780 	} else {
8781 		tcp->tcp_ka_last_intrvl = 0;
8782 	}
8783 
8784 	/* firetime can be negative if (mp1 == NULL || mp == NULL) */
8785 	if ((firetime = ka_intrvl - idletime) < 0) {
8786 		firetime = ka_intrvl;
8787 	}
8788 	tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
8789 	    MSEC_TO_TICK(firetime));
8790 }
8791 
8792 int
8793 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
8794 {
8795 	queue_t	*q = tcp->tcp_rq;
8796 	int32_t	mss = tcp->tcp_mss;
8797 	int	maxpsz;
8798 
8799 	if (TCP_IS_DETACHED(tcp))
8800 		return (mss);
8801 
8802 	if (tcp->tcp_fused) {
8803 		maxpsz = tcp_fuse_maxpsz_set(tcp);
8804 		mss = INFPSZ;
8805 	} else if (tcp->tcp_mdt || tcp->tcp_maxpsz == 0) {
8806 		/*
8807 		 * Set the sd_qn_maxpsz according to the socket send buffer
8808 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
8809 		 * instruct the stream head to copyin user data into contiguous
8810 		 * kernel-allocated buffers without breaking it up into smaller
8811 		 * chunks.  We round up the buffer size to the nearest SMSS.
8812 		 */
8813 		maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss);
8814 		if (tcp->tcp_kssl_ctx == NULL)
8815 			mss = INFPSZ;
8816 		else
8817 			mss = SSL3_MAX_RECORD_LEN;
8818 	} else {
8819 		/*
8820 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
8821 		 * (and a multiple of the mss).  This instructs the stream
8822 		 * head to break down larger than SMSS writes into SMSS-
8823 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
8824 		 */
8825 		maxpsz = tcp->tcp_maxpsz * mss;
8826 		if (maxpsz > tcp->tcp_xmit_hiwater/2) {
8827 			maxpsz = tcp->tcp_xmit_hiwater/2;
8828 			/* Round up to nearest mss */
8829 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
8830 		}
8831 	}
8832 	(void) setmaxps(q, maxpsz);
8833 	tcp->tcp_wq->q_maxpsz = maxpsz;
8834 
8835 	if (set_maxblk)
8836 		(void) mi_set_sth_maxblk(q, mss);
8837 
8838 	return (mss);
8839 }
8840 
8841 /*
8842  * Extract option values from a tcp header.  We put any found values into the
8843  * tcpopt struct and return a bitmask saying which options were found.
8844  */
8845 static int
8846 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt)
8847 {
8848 	uchar_t		*endp;
8849 	int		len;
8850 	uint32_t	mss;
8851 	uchar_t		*up = (uchar_t *)tcph;
8852 	int		found = 0;
8853 	int32_t		sack_len;
8854 	tcp_seq		sack_begin, sack_end;
8855 	tcp_t		*tcp;
8856 
8857 	endp = up + TCP_HDR_LENGTH(tcph);
8858 	up += TCP_MIN_HEADER_LENGTH;
8859 	while (up < endp) {
8860 		len = endp - up;
8861 		switch (*up) {
8862 		case TCPOPT_EOL:
8863 			break;
8864 
8865 		case TCPOPT_NOP:
8866 			up++;
8867 			continue;
8868 
8869 		case TCPOPT_MAXSEG:
8870 			if (len < TCPOPT_MAXSEG_LEN ||
8871 			    up[1] != TCPOPT_MAXSEG_LEN)
8872 				break;
8873 
8874 			mss = BE16_TO_U16(up+2);
8875 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
8876 			tcpopt->tcp_opt_mss = mss;
8877 			found |= TCP_OPT_MSS_PRESENT;
8878 
8879 			up += TCPOPT_MAXSEG_LEN;
8880 			continue;
8881 
8882 		case TCPOPT_WSCALE:
8883 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
8884 				break;
8885 
8886 			if (up[2] > TCP_MAX_WINSHIFT)
8887 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
8888 			else
8889 				tcpopt->tcp_opt_wscale = up[2];
8890 			found |= TCP_OPT_WSCALE_PRESENT;
8891 
8892 			up += TCPOPT_WS_LEN;
8893 			continue;
8894 
8895 		case TCPOPT_SACK_PERMITTED:
8896 			if (len < TCPOPT_SACK_OK_LEN ||
8897 			    up[1] != TCPOPT_SACK_OK_LEN)
8898 				break;
8899 			found |= TCP_OPT_SACK_OK_PRESENT;
8900 			up += TCPOPT_SACK_OK_LEN;
8901 			continue;
8902 
8903 		case TCPOPT_SACK:
8904 			if (len <= 2 || up[1] <= 2 || len < up[1])
8905 				break;
8906 
8907 			/* If TCP is not interested in SACK blks... */
8908 			if ((tcp = tcpopt->tcp) == NULL) {
8909 				up += up[1];
8910 				continue;
8911 			}
8912 			sack_len = up[1] - TCPOPT_HEADER_LEN;
8913 			up += TCPOPT_HEADER_LEN;
8914 
8915 			/*
8916 			 * If the list is empty, allocate one and assume
8917 			 * nothing is sack'ed.
8918 			 */
8919 			ASSERT(tcp->tcp_sack_info != NULL);
8920 			if (tcp->tcp_notsack_list == NULL) {
8921 				tcp_notsack_update(&(tcp->tcp_notsack_list),
8922 				    tcp->tcp_suna, tcp->tcp_snxt,
8923 				    &(tcp->tcp_num_notsack_blk),
8924 				    &(tcp->tcp_cnt_notsack_list));
8925 
8926 				/*
8927 				 * Make sure tcp_notsack_list is not NULL.
8928 				 * This happens when kmem_alloc(KM_NOSLEEP)
8929 				 * returns NULL.
8930 				 */
8931 				if (tcp->tcp_notsack_list == NULL) {
8932 					up += sack_len;
8933 					continue;
8934 				}
8935 				tcp->tcp_fack = tcp->tcp_suna;
8936 			}
8937 
8938 			while (sack_len > 0) {
8939 				if (up + 8 > endp) {
8940 					up = endp;
8941 					break;
8942 				}
8943 				sack_begin = BE32_TO_U32(up);
8944 				up += 4;
8945 				sack_end = BE32_TO_U32(up);
8946 				up += 4;
8947 				sack_len -= 8;
8948 				/*
8949 				 * Bounds checking.  Make sure the SACK
8950 				 * info is within tcp_suna and tcp_snxt.
8951 				 * If this SACK blk is out of bound, ignore
8952 				 * it but continue to parse the following
8953 				 * blks.
8954 				 */
8955 				if (SEQ_LEQ(sack_end, sack_begin) ||
8956 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
8957 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
8958 					continue;
8959 				}
8960 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
8961 				    sack_begin, sack_end,
8962 				    &(tcp->tcp_num_notsack_blk),
8963 				    &(tcp->tcp_cnt_notsack_list));
8964 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
8965 					tcp->tcp_fack = sack_end;
8966 				}
8967 			}
8968 			found |= TCP_OPT_SACK_PRESENT;
8969 			continue;
8970 
8971 		case TCPOPT_TSTAMP:
8972 			if (len < TCPOPT_TSTAMP_LEN ||
8973 			    up[1] != TCPOPT_TSTAMP_LEN)
8974 				break;
8975 
8976 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
8977 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
8978 
8979 			found |= TCP_OPT_TSTAMP_PRESENT;
8980 
8981 			up += TCPOPT_TSTAMP_LEN;
8982 			continue;
8983 
8984 		default:
8985 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
8986 				break;
8987 			up += up[1];
8988 			continue;
8989 		}
8990 		break;
8991 	}
8992 	return (found);
8993 }
8994 
8995 /*
8996  * Set the mss associated with a particular tcp based on its current value,
8997  * and a new one passed in. Observe minimums and maximums, and reset
8998  * other state variables that we want to view as multiples of mss.
8999  *
9000  * This function is called in various places mainly because
9001  * 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the
9002  *    other side's SYN/SYN-ACK packet arrives.
9003  * 2) PMTUd may get us a new MSS.
9004  * 3) If the other side stops sending us timestamp option, we need to
9005  *    increase the MSS size to use the extra bytes available.
9006  */
9007 static void
9008 tcp_mss_set(tcp_t *tcp, uint32_t mss)
9009 {
9010 	uint32_t	mss_max;
9011 
9012 	if (tcp->tcp_ipversion == IPV4_VERSION)
9013 		mss_max = tcp_mss_max_ipv4;
9014 	else
9015 		mss_max = tcp_mss_max_ipv6;
9016 
9017 	if (mss < tcp_mss_min)
9018 		mss = tcp_mss_min;
9019 	if (mss > mss_max)
9020 		mss = mss_max;
9021 	/*
9022 	 * Unless naglim has been set by our client to
9023 	 * a non-mss value, force naglim to track mss.
9024 	 * This can help to aggregate small writes.
9025 	 */
9026 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
9027 		tcp->tcp_naglim = mss;
9028 	/*
9029 	 * TCP should be able to buffer at least 4 MSS data for obvious
9030 	 * performance reason.
9031 	 */
9032 	if ((mss << 2) > tcp->tcp_xmit_hiwater)
9033 		tcp->tcp_xmit_hiwater = mss << 2;
9034 
9035 	/*
9036 	 * Check if we need to apply the tcp_init_cwnd here.  If
9037 	 * it is set and the MSS gets bigger (should not happen
9038 	 * normally), we need to adjust the resulting tcp_cwnd properly.
9039 	 * The new tcp_cwnd should not get bigger.
9040 	 */
9041 	if (tcp->tcp_init_cwnd == 0) {
9042 		tcp->tcp_cwnd = MIN(tcp_slow_start_initial * mss,
9043 		    MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss)));
9044 	} else {
9045 		if (tcp->tcp_mss < mss) {
9046 			tcp->tcp_cwnd = MAX(1,
9047 			    (tcp->tcp_init_cwnd * tcp->tcp_mss / mss)) * mss;
9048 		} else {
9049 			tcp->tcp_cwnd = tcp->tcp_init_cwnd * mss;
9050 		}
9051 	}
9052 	tcp->tcp_mss = mss;
9053 	tcp->tcp_cwnd_cnt = 0;
9054 	(void) tcp_maxpsz_set(tcp, B_TRUE);
9055 }
9056 
9057 static int
9058 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9059 {
9060 	tcp_t		*tcp = NULL;
9061 	conn_t		*connp;
9062 	int		err;
9063 	dev_t		conn_dev;
9064 	zoneid_t	zoneid = getzoneid();
9065 
9066 	/*
9067 	 * Special case for install: miniroot needs to be able to access files
9068 	 * via NFS as though it were always in the global zone.
9069 	 */
9070 	if (credp == kcred && nfs_global_client_only != 0)
9071 		zoneid = GLOBAL_ZONEID;
9072 
9073 	if (q->q_ptr != NULL)
9074 		return (0);
9075 
9076 	if (sflag == MODOPEN) {
9077 		/*
9078 		 * This is a special case. The purpose of a modopen
9079 		 * is to allow just the T_SVR4_OPTMGMT_REQ to pass
9080 		 * through for MIB browsers. Everything else is failed.
9081 		 */
9082 		connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt));
9083 
9084 		if (connp == NULL)
9085 			return (ENOMEM);
9086 
9087 		connp->conn_flags |= IPCL_TCPMOD;
9088 		connp->conn_cred = credp;
9089 		connp->conn_zoneid = zoneid;
9090 		q->q_ptr = WR(q)->q_ptr = connp;
9091 		crhold(credp);
9092 		q->q_qinfo = &tcp_mod_rinit;
9093 		WR(q)->q_qinfo = &tcp_mod_winit;
9094 		qprocson(q);
9095 		return (0);
9096 	}
9097 
9098 	if ((conn_dev = inet_minor_alloc(ip_minor_arena)) == 0)
9099 		return (EBUSY);
9100 
9101 	*devp = makedevice(getemajor(*devp), (minor_t)conn_dev);
9102 
9103 	if (flag & SO_ACCEPTOR) {
9104 		q->q_qinfo = &tcp_acceptor_rinit;
9105 		q->q_ptr = (void *)conn_dev;
9106 		WR(q)->q_qinfo = &tcp_acceptor_winit;
9107 		WR(q)->q_ptr = (void *)conn_dev;
9108 		qprocson(q);
9109 		return (0);
9110 	}
9111 
9112 	connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt));
9113 	if (connp == NULL) {
9114 		inet_minor_free(ip_minor_arena, conn_dev);
9115 		q->q_ptr = NULL;
9116 		return (ENOSR);
9117 	}
9118 	connp->conn_sqp = IP_SQUEUE_GET(lbolt);
9119 	tcp = connp->conn_tcp;
9120 
9121 	q->q_ptr = WR(q)->q_ptr = connp;
9122 	if (getmajor(*devp) == TCP6_MAJ) {
9123 		connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6);
9124 		connp->conn_send = ip_output_v6;
9125 		connp->conn_af_isv6 = B_TRUE;
9126 		connp->conn_pkt_isv6 = B_TRUE;
9127 		connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT;
9128 		tcp->tcp_ipversion = IPV6_VERSION;
9129 		tcp->tcp_family = AF_INET6;
9130 		tcp->tcp_mss = tcp_mss_def_ipv6;
9131 	} else {
9132 		connp->conn_flags |= IPCL_TCP4;
9133 		connp->conn_send = ip_output;
9134 		connp->conn_af_isv6 = B_FALSE;
9135 		connp->conn_pkt_isv6 = B_FALSE;
9136 		tcp->tcp_ipversion = IPV4_VERSION;
9137 		tcp->tcp_family = AF_INET;
9138 		tcp->tcp_mss = tcp_mss_def_ipv4;
9139 	}
9140 
9141 	/*
9142 	 * TCP keeps a copy of cred for cache locality reasons but
9143 	 * we put a reference only once. If connp->conn_cred
9144 	 * becomes invalid, tcp_cred should also be set to NULL.
9145 	 */
9146 	tcp->tcp_cred = connp->conn_cred = credp;
9147 	crhold(connp->conn_cred);
9148 	tcp->tcp_cpid = curproc->p_pid;
9149 	connp->conn_zoneid = zoneid;
9150 
9151 	connp->conn_dev = conn_dev;
9152 
9153 	ASSERT(q->q_qinfo == &tcp_rinit);
9154 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
9155 
9156 	if (flag & SO_SOCKSTR) {
9157 		/*
9158 		 * No need to insert a socket in tcp acceptor hash.
9159 		 * If it was a socket acceptor stream, we dealt with
9160 		 * it above. A socket listener can never accept a
9161 		 * connection and doesn't need acceptor_id.
9162 		 */
9163 		connp->conn_flags |= IPCL_SOCKET;
9164 		tcp->tcp_issocket = 1;
9165 		WR(q)->q_qinfo = &tcp_sock_winit;
9166 	} else {
9167 #ifdef	_ILP32
9168 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
9169 #else
9170 		tcp->tcp_acceptor_id = conn_dev;
9171 #endif	/* _ILP32 */
9172 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
9173 	}
9174 
9175 	if (tcp_trace)
9176 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP);
9177 
9178 	err = tcp_init(tcp, q);
9179 	if (err != 0) {
9180 		inet_minor_free(ip_minor_arena, connp->conn_dev);
9181 		tcp_acceptor_hash_remove(tcp);
9182 		CONN_DEC_REF(connp);
9183 		q->q_ptr = WR(q)->q_ptr = NULL;
9184 		return (err);
9185 	}
9186 
9187 	RD(q)->q_hiwat = tcp_recv_hiwat;
9188 	tcp->tcp_rwnd = tcp_recv_hiwat;
9189 
9190 	/* Non-zero default values */
9191 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
9192 	/*
9193 	 * Put the ref for TCP. Ref for IP was already put
9194 	 * by ipcl_conn_create. Also Make the conn_t globally
9195 	 * visible to walkers
9196 	 */
9197 	mutex_enter(&connp->conn_lock);
9198 	CONN_INC_REF_LOCKED(connp);
9199 	ASSERT(connp->conn_ref == 2);
9200 	connp->conn_state_flags &= ~CONN_INCIPIENT;
9201 	mutex_exit(&connp->conn_lock);
9202 
9203 	qprocson(q);
9204 	return (0);
9205 }
9206 
9207 /*
9208  * Some TCP options can be "set" by requesting them in the option
9209  * buffer. This is needed for XTI feature test though we do not
9210  * allow it in general. We interpret that this mechanism is more
9211  * applicable to OSI protocols and need not be allowed in general.
9212  * This routine filters out options for which it is not allowed (most)
9213  * and lets through those (few) for which it is. [ The XTI interface
9214  * test suite specifics will imply that any XTI_GENERIC level XTI_* if
9215  * ever implemented will have to be allowed here ].
9216  */
9217 static boolean_t
9218 tcp_allow_connopt_set(int level, int name)
9219 {
9220 
9221 	switch (level) {
9222 	case IPPROTO_TCP:
9223 		switch (name) {
9224 		case TCP_NODELAY:
9225 			return (B_TRUE);
9226 		default:
9227 			return (B_FALSE);
9228 		}
9229 		/*NOTREACHED*/
9230 	default:
9231 		return (B_FALSE);
9232 	}
9233 	/*NOTREACHED*/
9234 }
9235 
9236 /*
9237  * This routine gets default values of certain options whose default
9238  * values are maintained by protocol specific code
9239  */
9240 /* ARGSUSED */
9241 int
9242 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
9243 {
9244 	int32_t	*i1 = (int32_t *)ptr;
9245 
9246 	switch (level) {
9247 	case IPPROTO_TCP:
9248 		switch (name) {
9249 		case TCP_NOTIFY_THRESHOLD:
9250 			*i1 = tcp_ip_notify_interval;
9251 			break;
9252 		case TCP_ABORT_THRESHOLD:
9253 			*i1 = tcp_ip_abort_interval;
9254 			break;
9255 		case TCP_CONN_NOTIFY_THRESHOLD:
9256 			*i1 = tcp_ip_notify_cinterval;
9257 			break;
9258 		case TCP_CONN_ABORT_THRESHOLD:
9259 			*i1 = tcp_ip_abort_cinterval;
9260 			break;
9261 		default:
9262 			return (-1);
9263 		}
9264 		break;
9265 	case IPPROTO_IP:
9266 		switch (name) {
9267 		case IP_TTL:
9268 			*i1 = tcp_ipv4_ttl;
9269 			break;
9270 		default:
9271 			return (-1);
9272 		}
9273 		break;
9274 	case IPPROTO_IPV6:
9275 		switch (name) {
9276 		case IPV6_UNICAST_HOPS:
9277 			*i1 = tcp_ipv6_hoplimit;
9278 			break;
9279 		default:
9280 			return (-1);
9281 		}
9282 		break;
9283 	default:
9284 		return (-1);
9285 	}
9286 	return (sizeof (int));
9287 }
9288 
9289 
9290 /*
9291  * TCP routine to get the values of options.
9292  */
9293 int
9294 tcp_opt_get(queue_t *q, int level, int	name, uchar_t *ptr)
9295 {
9296 	int		*i1 = (int *)ptr;
9297 	conn_t		*connp = Q_TO_CONN(q);
9298 	tcp_t		*tcp = connp->conn_tcp;
9299 	ip6_pkt_t	*ipp = &tcp->tcp_sticky_ipp;
9300 
9301 	switch (level) {
9302 	case SOL_SOCKET:
9303 		switch (name) {
9304 		case SO_LINGER:	{
9305 			struct linger *lgr = (struct linger *)ptr;
9306 
9307 			lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0;
9308 			lgr->l_linger = tcp->tcp_lingertime;
9309 			}
9310 			return (sizeof (struct linger));
9311 		case SO_DEBUG:
9312 			*i1 = tcp->tcp_debug ? SO_DEBUG : 0;
9313 			break;
9314 		case SO_KEEPALIVE:
9315 			*i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0;
9316 			break;
9317 		case SO_DONTROUTE:
9318 			*i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0;
9319 			break;
9320 		case SO_USELOOPBACK:
9321 			*i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0;
9322 			break;
9323 		case SO_BROADCAST:
9324 			*i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0;
9325 			break;
9326 		case SO_REUSEADDR:
9327 			*i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0;
9328 			break;
9329 		case SO_OOBINLINE:
9330 			*i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0;
9331 			break;
9332 		case SO_DGRAM_ERRIND:
9333 			*i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0;
9334 			break;
9335 		case SO_TYPE:
9336 			*i1 = SOCK_STREAM;
9337 			break;
9338 		case SO_SNDBUF:
9339 			*i1 = tcp->tcp_xmit_hiwater;
9340 			break;
9341 		case SO_RCVBUF:
9342 			*i1 = RD(q)->q_hiwat;
9343 			break;
9344 		case SO_SND_COPYAVOID:
9345 			*i1 = tcp->tcp_snd_zcopy_on ?
9346 			    SO_SND_COPYAVOID : 0;
9347 			break;
9348 		default:
9349 			return (-1);
9350 		}
9351 		break;
9352 	case IPPROTO_TCP:
9353 		switch (name) {
9354 		case TCP_NODELAY:
9355 			*i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0;
9356 			break;
9357 		case TCP_MAXSEG:
9358 			*i1 = tcp->tcp_mss;
9359 			break;
9360 		case TCP_NOTIFY_THRESHOLD:
9361 			*i1 = (int)tcp->tcp_first_timer_threshold;
9362 			break;
9363 		case TCP_ABORT_THRESHOLD:
9364 			*i1 = tcp->tcp_second_timer_threshold;
9365 			break;
9366 		case TCP_CONN_NOTIFY_THRESHOLD:
9367 			*i1 = tcp->tcp_first_ctimer_threshold;
9368 			break;
9369 		case TCP_CONN_ABORT_THRESHOLD:
9370 			*i1 = tcp->tcp_second_ctimer_threshold;
9371 			break;
9372 		case TCP_RECVDSTADDR:
9373 			*i1 = tcp->tcp_recvdstaddr;
9374 			break;
9375 		case TCP_ANONPRIVBIND:
9376 			*i1 = tcp->tcp_anon_priv_bind;
9377 			break;
9378 		case TCP_EXCLBIND:
9379 			*i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0;
9380 			break;
9381 		case TCP_INIT_CWND:
9382 			*i1 = tcp->tcp_init_cwnd;
9383 			break;
9384 		case TCP_KEEPALIVE_THRESHOLD:
9385 			*i1 = tcp->tcp_ka_interval;
9386 			break;
9387 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
9388 			*i1 = tcp->tcp_ka_abort_thres;
9389 			break;
9390 		case TCP_CORK:
9391 			*i1 = tcp->tcp_cork;
9392 			break;
9393 		default:
9394 			return (-1);
9395 		}
9396 		break;
9397 	case IPPROTO_IP:
9398 		if (tcp->tcp_family != AF_INET)
9399 			return (-1);
9400 		switch (name) {
9401 		case IP_OPTIONS:
9402 		case T_IP_OPTIONS: {
9403 			/*
9404 			 * This is compatible with BSD in that in only return
9405 			 * the reverse source route with the final destination
9406 			 * as the last entry. The first 4 bytes of the option
9407 			 * will contain the final destination.
9408 			 */
9409 			char	*opt_ptr;
9410 			int	opt_len;
9411 			opt_ptr = (char *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH;
9412 			opt_len = (char *)tcp->tcp_tcph - opt_ptr;
9413 			/* Caller ensures enough space */
9414 			if (opt_len > 0) {
9415 				/*
9416 				 * TODO: Do we have to handle getsockopt on an
9417 				 * initiator as well?
9418 				 */
9419 				return (tcp_opt_get_user(tcp->tcp_ipha, ptr));
9420 			}
9421 			return (0);
9422 			}
9423 		case IP_TOS:
9424 		case T_IP_TOS:
9425 			*i1 = (int)tcp->tcp_ipha->ipha_type_of_service;
9426 			break;
9427 		case IP_TTL:
9428 			*i1 = (int)tcp->tcp_ipha->ipha_ttl;
9429 			break;
9430 		case IP_NEXTHOP:
9431 			/* Handled at IP level */
9432 			return (-EINVAL);
9433 		default:
9434 			return (-1);
9435 		}
9436 		break;
9437 	case IPPROTO_IPV6:
9438 		/*
9439 		 * IPPROTO_IPV6 options are only supported for sockets
9440 		 * that are using IPv6 on the wire.
9441 		 */
9442 		if (tcp->tcp_ipversion != IPV6_VERSION) {
9443 			return (-1);
9444 		}
9445 		switch (name) {
9446 		case IPV6_UNICAST_HOPS:
9447 			*i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops;
9448 			break;	/* goto sizeof (int) option return */
9449 		case IPV6_BOUND_IF:
9450 			/* Zero if not set */
9451 			*i1 = tcp->tcp_bound_if;
9452 			break;	/* goto sizeof (int) option return */
9453 		case IPV6_RECVPKTINFO:
9454 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)
9455 				*i1 = 1;
9456 			else
9457 				*i1 = 0;
9458 			break;	/* goto sizeof (int) option return */
9459 		case IPV6_RECVTCLASS:
9460 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)
9461 				*i1 = 1;
9462 			else
9463 				*i1 = 0;
9464 			break;	/* goto sizeof (int) option return */
9465 		case IPV6_RECVHOPLIMIT:
9466 			if (tcp->tcp_ipv6_recvancillary &
9467 			    TCP_IPV6_RECVHOPLIMIT)
9468 				*i1 = 1;
9469 			else
9470 				*i1 = 0;
9471 			break;	/* goto sizeof (int) option return */
9472 		case IPV6_RECVHOPOPTS:
9473 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS)
9474 				*i1 = 1;
9475 			else
9476 				*i1 = 0;
9477 			break;	/* goto sizeof (int) option return */
9478 		case IPV6_RECVDSTOPTS:
9479 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS)
9480 				*i1 = 1;
9481 			else
9482 				*i1 = 0;
9483 			break;	/* goto sizeof (int) option return */
9484 		case _OLD_IPV6_RECVDSTOPTS:
9485 			if (tcp->tcp_ipv6_recvancillary &
9486 			    TCP_OLD_IPV6_RECVDSTOPTS)
9487 				*i1 = 1;
9488 			else
9489 				*i1 = 0;
9490 			break;	/* goto sizeof (int) option return */
9491 		case IPV6_RECVRTHDR:
9492 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR)
9493 				*i1 = 1;
9494 			else
9495 				*i1 = 0;
9496 			break;	/* goto sizeof (int) option return */
9497 		case IPV6_RECVRTHDRDSTOPTS:
9498 			if (tcp->tcp_ipv6_recvancillary &
9499 			    TCP_IPV6_RECVRTDSTOPTS)
9500 				*i1 = 1;
9501 			else
9502 				*i1 = 0;
9503 			break;	/* goto sizeof (int) option return */
9504 		case IPV6_PKTINFO: {
9505 			/* XXX assumes that caller has room for max size! */
9506 			struct in6_pktinfo *pkti;
9507 
9508 			pkti = (struct in6_pktinfo *)ptr;
9509 			if (ipp->ipp_fields & IPPF_IFINDEX)
9510 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
9511 			else
9512 				pkti->ipi6_ifindex = 0;
9513 			if (ipp->ipp_fields & IPPF_ADDR)
9514 				pkti->ipi6_addr = ipp->ipp_addr;
9515 			else
9516 				pkti->ipi6_addr = ipv6_all_zeros;
9517 			return (sizeof (struct in6_pktinfo));
9518 		}
9519 		case IPV6_TCLASS:
9520 			if (ipp->ipp_fields & IPPF_TCLASS)
9521 				*i1 = ipp->ipp_tclass;
9522 			else
9523 				*i1 = IPV6_FLOW_TCLASS(
9524 				    IPV6_DEFAULT_VERS_AND_FLOW);
9525 			break;	/* goto sizeof (int) option return */
9526 		case IPV6_NEXTHOP: {
9527 			sin6_t *sin6 = (sin6_t *)ptr;
9528 
9529 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
9530 				return (0);
9531 			*sin6 = sin6_null;
9532 			sin6->sin6_family = AF_INET6;
9533 			sin6->sin6_addr = ipp->ipp_nexthop;
9534 			return (sizeof (sin6_t));
9535 		}
9536 		case IPV6_HOPOPTS:
9537 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
9538 				return (0);
9539 			bcopy(ipp->ipp_hopopts, ptr, ipp->ipp_hopoptslen);
9540 			return (ipp->ipp_hopoptslen);
9541 		case IPV6_RTHDRDSTOPTS:
9542 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
9543 				return (0);
9544 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
9545 			return (ipp->ipp_rtdstoptslen);
9546 		case IPV6_RTHDR:
9547 			if (!(ipp->ipp_fields & IPPF_RTHDR))
9548 				return (0);
9549 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
9550 			return (ipp->ipp_rthdrlen);
9551 		case IPV6_DSTOPTS:
9552 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
9553 				return (0);
9554 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
9555 			return (ipp->ipp_dstoptslen);
9556 		case IPV6_SRC_PREFERENCES:
9557 			return (ip6_get_src_preferences(connp,
9558 			    (uint32_t *)ptr));
9559 		case IPV6_PATHMTU: {
9560 			struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr;
9561 
9562 			if (tcp->tcp_state < TCPS_ESTABLISHED)
9563 				return (-1);
9564 
9565 			return (ip_fill_mtuinfo(&connp->conn_remv6,
9566 				connp->conn_fport, mtuinfo));
9567 		}
9568 		default:
9569 			return (-1);
9570 		}
9571 		break;
9572 	default:
9573 		return (-1);
9574 	}
9575 	return (sizeof (int));
9576 }
9577 
9578 /*
9579  * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements.
9580  * Parameters are assumed to be verified by the caller.
9581  */
9582 /* ARGSUSED */
9583 int
9584 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name,
9585     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
9586     void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
9587 {
9588 	tcp_t	*tcp = Q_TO_TCP(q);
9589 	int	*i1 = (int *)invalp;
9590 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
9591 	boolean_t checkonly;
9592 	int	reterr;
9593 
9594 	switch (optset_context) {
9595 	case SETFN_OPTCOM_CHECKONLY:
9596 		checkonly = B_TRUE;
9597 		/*
9598 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
9599 		 * inlen != 0 implies value supplied and
9600 		 * 	we have to "pretend" to set it.
9601 		 * inlen == 0 implies that there is no
9602 		 * 	value part in T_CHECK request and just validation
9603 		 * done elsewhere should be enough, we just return here.
9604 		 */
9605 		if (inlen == 0) {
9606 			*outlenp = 0;
9607 			return (0);
9608 		}
9609 		break;
9610 	case SETFN_OPTCOM_NEGOTIATE:
9611 		checkonly = B_FALSE;
9612 		break;
9613 	case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */
9614 	case SETFN_CONN_NEGOTIATE:
9615 		checkonly = B_FALSE;
9616 		/*
9617 		 * Negotiating local and "association-related" options
9618 		 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ)
9619 		 * primitives is allowed by XTI, but we choose
9620 		 * to not implement this style negotiation for Internet
9621 		 * protocols (We interpret it is a must for OSI world but
9622 		 * optional for Internet protocols) for all options.
9623 		 * [ Will do only for the few options that enable test
9624 		 * suites that our XTI implementation of this feature
9625 		 * works for transports that do allow it ]
9626 		 */
9627 		if (!tcp_allow_connopt_set(level, name)) {
9628 			*outlenp = 0;
9629 			return (EINVAL);
9630 		}
9631 		break;
9632 	default:
9633 		/*
9634 		 * We should never get here
9635 		 */
9636 		*outlenp = 0;
9637 		return (EINVAL);
9638 	}
9639 
9640 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
9641 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
9642 
9643 	/*
9644 	 * For TCP, we should have no ancillary data sent down
9645 	 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs
9646 	 * has to be zero.
9647 	 */
9648 	ASSERT(thisdg_attrs == NULL);
9649 
9650 	/*
9651 	 * For fixed length options, no sanity check
9652 	 * of passed in length is done. It is assumed *_optcom_req()
9653 	 * routines do the right thing.
9654 	 */
9655 
9656 	switch (level) {
9657 	case SOL_SOCKET:
9658 		switch (name) {
9659 		case SO_LINGER: {
9660 			struct linger *lgr = (struct linger *)invalp;
9661 
9662 			if (!checkonly) {
9663 				if (lgr->l_onoff) {
9664 					tcp->tcp_linger = 1;
9665 					tcp->tcp_lingertime = lgr->l_linger;
9666 				} else {
9667 					tcp->tcp_linger = 0;
9668 					tcp->tcp_lingertime = 0;
9669 				}
9670 				/* struct copy */
9671 				*(struct linger *)outvalp = *lgr;
9672 			} else {
9673 				if (!lgr->l_onoff) {
9674 				    ((struct linger *)outvalp)->l_onoff = 0;
9675 				    ((struct linger *)outvalp)->l_linger = 0;
9676 				} else {
9677 				    /* struct copy */
9678 				    *(struct linger *)outvalp = *lgr;
9679 				}
9680 			}
9681 			*outlenp = sizeof (struct linger);
9682 			return (0);
9683 		}
9684 		case SO_DEBUG:
9685 			if (!checkonly)
9686 				tcp->tcp_debug = onoff;
9687 			break;
9688 		case SO_KEEPALIVE:
9689 			if (checkonly) {
9690 				/* T_CHECK case */
9691 				break;
9692 			}
9693 
9694 			if (!onoff) {
9695 				if (tcp->tcp_ka_enabled) {
9696 					if (tcp->tcp_ka_tid != 0) {
9697 						(void) TCP_TIMER_CANCEL(tcp,
9698 						    tcp->tcp_ka_tid);
9699 						tcp->tcp_ka_tid = 0;
9700 					}
9701 					tcp->tcp_ka_enabled = 0;
9702 				}
9703 				break;
9704 			}
9705 			if (!tcp->tcp_ka_enabled) {
9706 				/* Crank up the keepalive timer */
9707 				tcp->tcp_ka_last_intrvl = 0;
9708 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
9709 				    tcp_keepalive_killer,
9710 				    MSEC_TO_TICK(tcp->tcp_ka_interval));
9711 				tcp->tcp_ka_enabled = 1;
9712 			}
9713 			break;
9714 		case SO_DONTROUTE:
9715 			/*
9716 			 * SO_DONTROUTE, SO_USELOOPBACK and SO_BROADCAST are
9717 			 * only of interest to IP.  We track them here only so
9718 			 * that we can report their current value.
9719 			 */
9720 			if (!checkonly) {
9721 				tcp->tcp_dontroute = onoff;
9722 				tcp->tcp_connp->conn_dontroute = onoff;
9723 			}
9724 			break;
9725 		case SO_USELOOPBACK:
9726 			if (!checkonly) {
9727 				tcp->tcp_useloopback = onoff;
9728 				tcp->tcp_connp->conn_loopback = onoff;
9729 			}
9730 			break;
9731 		case SO_BROADCAST:
9732 			if (!checkonly) {
9733 				tcp->tcp_broadcast = onoff;
9734 				tcp->tcp_connp->conn_broadcast = onoff;
9735 			}
9736 			break;
9737 		case SO_REUSEADDR:
9738 			if (!checkonly) {
9739 				tcp->tcp_reuseaddr = onoff;
9740 				tcp->tcp_connp->conn_reuseaddr = onoff;
9741 			}
9742 			break;
9743 		case SO_OOBINLINE:
9744 			if (!checkonly)
9745 				tcp->tcp_oobinline = onoff;
9746 			break;
9747 		case SO_DGRAM_ERRIND:
9748 			if (!checkonly)
9749 				tcp->tcp_dgram_errind = onoff;
9750 			break;
9751 		case SO_SNDBUF: {
9752 			tcp_t *peer_tcp;
9753 
9754 			if (*i1 > tcp_max_buf) {
9755 				*outlenp = 0;
9756 				return (ENOBUFS);
9757 			}
9758 			if (checkonly)
9759 				break;
9760 
9761 			tcp->tcp_xmit_hiwater = *i1;
9762 			if (tcp_snd_lowat_fraction != 0)
9763 				tcp->tcp_xmit_lowater =
9764 				    tcp->tcp_xmit_hiwater /
9765 				    tcp_snd_lowat_fraction;
9766 			(void) tcp_maxpsz_set(tcp, B_TRUE);
9767 			/*
9768 			 * If we are flow-controlled, recheck the condition.
9769 			 * There are apps that increase SO_SNDBUF size when
9770 			 * flow-controlled (EWOULDBLOCK), and expect the flow
9771 			 * control condition to be lifted right away.
9772 			 *
9773 			 * For the fused tcp loopback case, in order to avoid
9774 			 * a race with the peer's tcp_fuse_rrw() we need to
9775 			 * hold its fuse_lock while accessing tcp_flow_stopped.
9776 			 */
9777 			peer_tcp = tcp->tcp_loopback_peer;
9778 			ASSERT(!tcp->tcp_fused || peer_tcp != NULL);
9779 			if (tcp->tcp_fused)
9780 				mutex_enter(&peer_tcp->tcp_fuse_lock);
9781 
9782 			if (tcp->tcp_flow_stopped &&
9783 			    TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) {
9784 				tcp_clrqfull(tcp);
9785 			}
9786 			if (tcp->tcp_fused)
9787 				mutex_exit(&peer_tcp->tcp_fuse_lock);
9788 			break;
9789 		}
9790 		case SO_RCVBUF:
9791 			if (*i1 > tcp_max_buf) {
9792 				*outlenp = 0;
9793 				return (ENOBUFS);
9794 			}
9795 			/* Silently ignore zero */
9796 			if (!checkonly && *i1 != 0) {
9797 				*i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss);
9798 				(void) tcp_rwnd_set(tcp, *i1);
9799 			}
9800 			/*
9801 			 * XXX should we return the rwnd here
9802 			 * and tcp_opt_get ?
9803 			 */
9804 			break;
9805 		case SO_SND_COPYAVOID:
9806 			if (!checkonly) {
9807 				/* we only allow enable at most once for now */
9808 				if (tcp->tcp_loopback ||
9809 				    (!tcp->tcp_snd_zcopy_aware &&
9810 				    (onoff != 1 || !tcp_zcopy_check(tcp)))) {
9811 					*outlenp = 0;
9812 					return (EOPNOTSUPP);
9813 				}
9814 				tcp->tcp_snd_zcopy_aware = 1;
9815 			}
9816 			break;
9817 		default:
9818 			*outlenp = 0;
9819 			return (EINVAL);
9820 		}
9821 		break;
9822 	case IPPROTO_TCP:
9823 		switch (name) {
9824 		case TCP_NODELAY:
9825 			if (!checkonly)
9826 				tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss;
9827 			break;
9828 		case TCP_NOTIFY_THRESHOLD:
9829 			if (!checkonly)
9830 				tcp->tcp_first_timer_threshold = *i1;
9831 			break;
9832 		case TCP_ABORT_THRESHOLD:
9833 			if (!checkonly)
9834 				tcp->tcp_second_timer_threshold = *i1;
9835 			break;
9836 		case TCP_CONN_NOTIFY_THRESHOLD:
9837 			if (!checkonly)
9838 				tcp->tcp_first_ctimer_threshold = *i1;
9839 			break;
9840 		case TCP_CONN_ABORT_THRESHOLD:
9841 			if (!checkonly)
9842 				tcp->tcp_second_ctimer_threshold = *i1;
9843 			break;
9844 		case TCP_RECVDSTADDR:
9845 			if (tcp->tcp_state > TCPS_LISTEN)
9846 				return (EOPNOTSUPP);
9847 			if (!checkonly)
9848 				tcp->tcp_recvdstaddr = onoff;
9849 			break;
9850 		case TCP_ANONPRIVBIND:
9851 			if ((reterr = secpolicy_net_privaddr(cr, 0)) != 0) {
9852 				*outlenp = 0;
9853 				return (reterr);
9854 			}
9855 			if (!checkonly) {
9856 				tcp->tcp_anon_priv_bind = onoff;
9857 			}
9858 			break;
9859 		case TCP_EXCLBIND:
9860 			if (!checkonly)
9861 				tcp->tcp_exclbind = onoff;
9862 			break;	/* goto sizeof (int) option return */
9863 		case TCP_INIT_CWND: {
9864 			uint32_t init_cwnd = *((uint32_t *)invalp);
9865 
9866 			if (checkonly)
9867 				break;
9868 
9869 			/*
9870 			 * Only allow socket with network configuration
9871 			 * privilege to set the initial cwnd to be larger
9872 			 * than allowed by RFC 3390.
9873 			 */
9874 			if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) {
9875 				tcp->tcp_init_cwnd = init_cwnd;
9876 				break;
9877 			}
9878 			if ((reterr = secpolicy_net_config(cr, B_TRUE)) != 0) {
9879 				*outlenp = 0;
9880 				return (reterr);
9881 			}
9882 			if (init_cwnd > TCP_MAX_INIT_CWND) {
9883 				*outlenp = 0;
9884 				return (EINVAL);
9885 			}
9886 			tcp->tcp_init_cwnd = init_cwnd;
9887 			break;
9888 		}
9889 		case TCP_KEEPALIVE_THRESHOLD:
9890 			if (checkonly)
9891 				break;
9892 
9893 			if (*i1 < tcp_keepalive_interval_low ||
9894 			    *i1 > tcp_keepalive_interval_high) {
9895 				*outlenp = 0;
9896 				return (EINVAL);
9897 			}
9898 			if (*i1 != tcp->tcp_ka_interval) {
9899 				tcp->tcp_ka_interval = *i1;
9900 				/*
9901 				 * Check if we need to restart the
9902 				 * keepalive timer.
9903 				 */
9904 				if (tcp->tcp_ka_tid != 0) {
9905 					ASSERT(tcp->tcp_ka_enabled);
9906 					(void) TCP_TIMER_CANCEL(tcp,
9907 					    tcp->tcp_ka_tid);
9908 					tcp->tcp_ka_last_intrvl = 0;
9909 					tcp->tcp_ka_tid = TCP_TIMER(tcp,
9910 					    tcp_keepalive_killer,
9911 					    MSEC_TO_TICK(tcp->tcp_ka_interval));
9912 				}
9913 			}
9914 			break;
9915 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
9916 			if (!checkonly) {
9917 				if (*i1 < tcp_keepalive_abort_interval_low ||
9918 				    *i1 > tcp_keepalive_abort_interval_high) {
9919 					*outlenp = 0;
9920 					return (EINVAL);
9921 				}
9922 				tcp->tcp_ka_abort_thres = *i1;
9923 			}
9924 			break;
9925 		case TCP_CORK:
9926 			if (!checkonly) {
9927 				/*
9928 				 * if tcp->tcp_cork was set and is now
9929 				 * being unset, we have to make sure that
9930 				 * the remaining data gets sent out. Also
9931 				 * unset tcp->tcp_cork so that tcp_wput_data()
9932 				 * can send data even if it is less than mss
9933 				 */
9934 				if (tcp->tcp_cork && onoff == 0 &&
9935 				    tcp->tcp_unsent > 0) {
9936 					tcp->tcp_cork = B_FALSE;
9937 					tcp_wput_data(tcp, NULL, B_FALSE);
9938 				}
9939 				tcp->tcp_cork = onoff;
9940 			}
9941 			break;
9942 		default:
9943 			*outlenp = 0;
9944 			return (EINVAL);
9945 		}
9946 		break;
9947 	case IPPROTO_IP:
9948 		if (tcp->tcp_family != AF_INET) {
9949 			*outlenp = 0;
9950 			return (ENOPROTOOPT);
9951 		}
9952 		switch (name) {
9953 		case IP_OPTIONS:
9954 		case T_IP_OPTIONS:
9955 			reterr = tcp_opt_set_header(tcp, checkonly,
9956 			    invalp, inlen);
9957 			if (reterr) {
9958 				*outlenp = 0;
9959 				return (reterr);
9960 			}
9961 			/* OK return - copy input buffer into output buffer */
9962 			if (invalp != outvalp) {
9963 				/* don't trust bcopy for identical src/dst */
9964 				bcopy(invalp, outvalp, inlen);
9965 			}
9966 			*outlenp = inlen;
9967 			return (0);
9968 		case IP_TOS:
9969 		case T_IP_TOS:
9970 			if (!checkonly) {
9971 				tcp->tcp_ipha->ipha_type_of_service =
9972 				    (uchar_t)*i1;
9973 				tcp->tcp_tos = (uchar_t)*i1;
9974 			}
9975 			break;
9976 		case IP_TTL:
9977 			if (!checkonly) {
9978 				tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1;
9979 				tcp->tcp_ttl = (uchar_t)*i1;
9980 			}
9981 			break;
9982 		case IP_BOUND_IF:
9983 		case IP_NEXTHOP:
9984 			/* Handled at the IP level */
9985 			return (-EINVAL);
9986 		case IP_SEC_OPT:
9987 			/*
9988 			 * We should not allow policy setting after
9989 			 * we start listening for connections.
9990 			 */
9991 			if (tcp->tcp_state == TCPS_LISTEN) {
9992 				return (EINVAL);
9993 			} else {
9994 				/* Handled at the IP level */
9995 				return (-EINVAL);
9996 			}
9997 		default:
9998 			*outlenp = 0;
9999 			return (EINVAL);
10000 		}
10001 		break;
10002 	case IPPROTO_IPV6: {
10003 		ip6_pkt_t		*ipp;
10004 
10005 		/*
10006 		 * IPPROTO_IPV6 options are only supported for sockets
10007 		 * that are using IPv6 on the wire.
10008 		 */
10009 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10010 			*outlenp = 0;
10011 			return (ENOPROTOOPT);
10012 		}
10013 		/*
10014 		 * Only sticky options; no ancillary data
10015 		 */
10016 		ASSERT(thisdg_attrs == NULL);
10017 		ipp = &tcp->tcp_sticky_ipp;
10018 
10019 		switch (name) {
10020 		case IPV6_UNICAST_HOPS:
10021 			/* -1 means use default */
10022 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
10023 				*outlenp = 0;
10024 				return (EINVAL);
10025 			}
10026 			if (!checkonly) {
10027 				if (*i1 == -1) {
10028 					tcp->tcp_ip6h->ip6_hops =
10029 					    ipp->ipp_unicast_hops =
10030 					    (uint8_t)tcp_ipv6_hoplimit;
10031 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
10032 					/* Pass modified value to IP. */
10033 					*i1 = tcp->tcp_ip6h->ip6_hops;
10034 				} else {
10035 					tcp->tcp_ip6h->ip6_hops =
10036 					    ipp->ipp_unicast_hops =
10037 					    (uint8_t)*i1;
10038 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
10039 				}
10040 				reterr = tcp_build_hdrs(q, tcp);
10041 				if (reterr != 0)
10042 					return (reterr);
10043 			}
10044 			break;
10045 		case IPV6_BOUND_IF:
10046 			if (!checkonly) {
10047 				int error = 0;
10048 
10049 				tcp->tcp_bound_if = *i1;
10050 				error = ip_opt_set_ill(tcp->tcp_connp, *i1,
10051 				    B_TRUE, checkonly, level, name, mblk);
10052 				if (error != 0) {
10053 					*outlenp = 0;
10054 					return (error);
10055 				}
10056 			}
10057 			break;
10058 		/*
10059 		 * Set boolean switches for ancillary data delivery
10060 		 */
10061 		case IPV6_RECVPKTINFO:
10062 			if (!checkonly) {
10063 				if (onoff)
10064 					tcp->tcp_ipv6_recvancillary |=
10065 					    TCP_IPV6_RECVPKTINFO;
10066 				else
10067 					tcp->tcp_ipv6_recvancillary &=
10068 					    ~TCP_IPV6_RECVPKTINFO;
10069 				/* Force it to be sent up with the next msg */
10070 				tcp->tcp_recvifindex = 0;
10071 			}
10072 			break;
10073 		case IPV6_RECVTCLASS:
10074 			if (!checkonly) {
10075 				if (onoff)
10076 					tcp->tcp_ipv6_recvancillary |=
10077 					    TCP_IPV6_RECVTCLASS;
10078 				else
10079 					tcp->tcp_ipv6_recvancillary &=
10080 					    ~TCP_IPV6_RECVTCLASS;
10081 			}
10082 			break;
10083 		case IPV6_RECVHOPLIMIT:
10084 			if (!checkonly) {
10085 				if (onoff)
10086 					tcp->tcp_ipv6_recvancillary |=
10087 					    TCP_IPV6_RECVHOPLIMIT;
10088 				else
10089 					tcp->tcp_ipv6_recvancillary &=
10090 					    ~TCP_IPV6_RECVHOPLIMIT;
10091 				/* Force it to be sent up with the next msg */
10092 				tcp->tcp_recvhops = 0xffffffffU;
10093 			}
10094 			break;
10095 		case IPV6_RECVHOPOPTS:
10096 			if (!checkonly) {
10097 				if (onoff)
10098 					tcp->tcp_ipv6_recvancillary |=
10099 					    TCP_IPV6_RECVHOPOPTS;
10100 				else
10101 					tcp->tcp_ipv6_recvancillary &=
10102 					    ~TCP_IPV6_RECVHOPOPTS;
10103 			}
10104 			break;
10105 		case IPV6_RECVDSTOPTS:
10106 			if (!checkonly) {
10107 				if (onoff)
10108 					tcp->tcp_ipv6_recvancillary |=
10109 					    TCP_IPV6_RECVDSTOPTS;
10110 				else
10111 					tcp->tcp_ipv6_recvancillary &=
10112 					    ~TCP_IPV6_RECVDSTOPTS;
10113 			}
10114 			break;
10115 		case _OLD_IPV6_RECVDSTOPTS:
10116 			if (!checkonly) {
10117 				if (onoff)
10118 					tcp->tcp_ipv6_recvancillary |=
10119 					    TCP_OLD_IPV6_RECVDSTOPTS;
10120 				else
10121 					tcp->tcp_ipv6_recvancillary &=
10122 					    ~TCP_OLD_IPV6_RECVDSTOPTS;
10123 			}
10124 			break;
10125 		case IPV6_RECVRTHDR:
10126 			if (!checkonly) {
10127 				if (onoff)
10128 					tcp->tcp_ipv6_recvancillary |=
10129 					    TCP_IPV6_RECVRTHDR;
10130 				else
10131 					tcp->tcp_ipv6_recvancillary &=
10132 					    ~TCP_IPV6_RECVRTHDR;
10133 			}
10134 			break;
10135 		case IPV6_RECVRTHDRDSTOPTS:
10136 			if (!checkonly) {
10137 				if (onoff)
10138 					tcp->tcp_ipv6_recvancillary |=
10139 					    TCP_IPV6_RECVRTDSTOPTS;
10140 				else
10141 					tcp->tcp_ipv6_recvancillary &=
10142 					    ~TCP_IPV6_RECVRTDSTOPTS;
10143 			}
10144 			break;
10145 		case IPV6_PKTINFO:
10146 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
10147 				return (EINVAL);
10148 			if (checkonly)
10149 				break;
10150 
10151 			if (inlen == 0) {
10152 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
10153 			} else {
10154 				struct in6_pktinfo *pkti;
10155 
10156 				pkti = (struct in6_pktinfo *)invalp;
10157 				/*
10158 				 * RFC 3542 states that ipi6_addr must be
10159 				 * the unspecified address when setting the
10160 				 * IPV6_PKTINFO sticky socket option on a
10161 				 * TCP socket.
10162 				 */
10163 				if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr))
10164 					return (EINVAL);
10165 				/*
10166 				 * ip6_set_pktinfo() validates the source
10167 				 * address and interface index.
10168 				 */
10169 				reterr = ip6_set_pktinfo(cr, tcp->tcp_connp,
10170 				    pkti, mblk);
10171 				if (reterr != 0)
10172 					return (reterr);
10173 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
10174 				ipp->ipp_addr = pkti->ipi6_addr;
10175 				if (ipp->ipp_ifindex != 0)
10176 					ipp->ipp_fields |= IPPF_IFINDEX;
10177 				else
10178 					ipp->ipp_fields &= ~IPPF_IFINDEX;
10179 				if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr))
10180 					ipp->ipp_fields |= IPPF_ADDR;
10181 				else
10182 					ipp->ipp_fields &= ~IPPF_ADDR;
10183 			}
10184 			reterr = tcp_build_hdrs(q, tcp);
10185 			if (reterr != 0)
10186 				return (reterr);
10187 			break;
10188 		case IPV6_TCLASS:
10189 			if (inlen != 0 && inlen != sizeof (int))
10190 				return (EINVAL);
10191 			if (checkonly)
10192 				break;
10193 
10194 			if (inlen == 0) {
10195 				ipp->ipp_fields &= ~IPPF_TCLASS;
10196 			} else {
10197 				if (*i1 > 255 || *i1 < -1)
10198 					return (EINVAL);
10199 				if (*i1 == -1) {
10200 					ipp->ipp_tclass = 0;
10201 					*i1 = 0;
10202 				} else {
10203 					ipp->ipp_tclass = *i1;
10204 				}
10205 				ipp->ipp_fields |= IPPF_TCLASS;
10206 			}
10207 			reterr = tcp_build_hdrs(q, tcp);
10208 			if (reterr != 0)
10209 				return (reterr);
10210 			break;
10211 		case IPV6_NEXTHOP:
10212 			/*
10213 			 * IP will verify that the nexthop is reachable
10214 			 * and fail for sticky options.
10215 			 */
10216 			if (inlen != 0 && inlen != sizeof (sin6_t))
10217 				return (EINVAL);
10218 			if (checkonly)
10219 				break;
10220 
10221 			if (inlen == 0) {
10222 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
10223 			} else {
10224 				sin6_t *sin6 = (sin6_t *)invalp;
10225 
10226 				if (sin6->sin6_family != AF_INET6)
10227 					return (EAFNOSUPPORT);
10228 				if (IN6_IS_ADDR_V4MAPPED(
10229 				    &sin6->sin6_addr))
10230 					return (EADDRNOTAVAIL);
10231 				ipp->ipp_nexthop = sin6->sin6_addr;
10232 				if (!IN6_IS_ADDR_UNSPECIFIED(
10233 				    &ipp->ipp_nexthop))
10234 					ipp->ipp_fields |= IPPF_NEXTHOP;
10235 				else
10236 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
10237 			}
10238 			reterr = tcp_build_hdrs(q, tcp);
10239 			if (reterr != 0)
10240 				return (reterr);
10241 			break;
10242 		case IPV6_HOPOPTS: {
10243 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
10244 			/*
10245 			 * Sanity checks - minimum size, size a multiple of
10246 			 * eight bytes, and matching size passed in.
10247 			 */
10248 			if (inlen != 0 &&
10249 			    inlen != (8 * (hopts->ip6h_len + 1)))
10250 				return (EINVAL);
10251 
10252 			if (checkonly)
10253 				break;
10254 
10255 			if (inlen == 0) {
10256 				if ((ipp->ipp_fields & IPPF_HOPOPTS) != 0) {
10257 					kmem_free(ipp->ipp_hopopts,
10258 					    ipp->ipp_hopoptslen);
10259 					ipp->ipp_hopopts = NULL;
10260 					ipp->ipp_hopoptslen = 0;
10261 				}
10262 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
10263 			} else {
10264 				reterr = tcp_pkt_set(invalp, inlen,
10265 				    (uchar_t **)&ipp->ipp_hopopts,
10266 				    &ipp->ipp_hopoptslen);
10267 				if (reterr != 0)
10268 					return (reterr);
10269 				ipp->ipp_fields |= IPPF_HOPOPTS;
10270 			}
10271 			reterr = tcp_build_hdrs(q, tcp);
10272 			if (reterr != 0)
10273 				return (reterr);
10274 			break;
10275 		}
10276 		case IPV6_RTHDRDSTOPTS: {
10277 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10278 
10279 			/*
10280 			 * Sanity checks - minimum size, size a multiple of
10281 			 * eight bytes, and matching size passed in.
10282 			 */
10283 			if (inlen != 0 &&
10284 			    inlen != (8 * (dopts->ip6d_len + 1)))
10285 				return (EINVAL);
10286 
10287 			if (checkonly)
10288 				break;
10289 
10290 			if (inlen == 0) {
10291 				if ((ipp->ipp_fields & IPPF_RTDSTOPTS) != 0) {
10292 					kmem_free(ipp->ipp_rtdstopts,
10293 					    ipp->ipp_rtdstoptslen);
10294 					ipp->ipp_rtdstopts = NULL;
10295 					ipp->ipp_rtdstoptslen = 0;
10296 				}
10297 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
10298 			} else {
10299 				reterr = tcp_pkt_set(invalp, inlen,
10300 				    (uchar_t **)&ipp->ipp_rtdstopts,
10301 				    &ipp->ipp_rtdstoptslen);
10302 				if (reterr != 0)
10303 					return (reterr);
10304 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
10305 			}
10306 			reterr = tcp_build_hdrs(q, tcp);
10307 			if (reterr != 0)
10308 				return (reterr);
10309 			break;
10310 		}
10311 		case IPV6_DSTOPTS: {
10312 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10313 
10314 			/*
10315 			 * Sanity checks - minimum size, size a multiple of
10316 			 * eight bytes, and matching size passed in.
10317 			 */
10318 			if (inlen != 0 &&
10319 			    inlen != (8 * (dopts->ip6d_len + 1)))
10320 				return (EINVAL);
10321 
10322 			if (checkonly)
10323 				break;
10324 
10325 			if (inlen == 0) {
10326 				if ((ipp->ipp_fields & IPPF_DSTOPTS) != 0) {
10327 					kmem_free(ipp->ipp_dstopts,
10328 					    ipp->ipp_dstoptslen);
10329 					ipp->ipp_dstopts = NULL;
10330 					ipp->ipp_dstoptslen = 0;
10331 				}
10332 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
10333 			} else {
10334 				reterr = tcp_pkt_set(invalp, inlen,
10335 				    (uchar_t **)&ipp->ipp_dstopts,
10336 				    &ipp->ipp_dstoptslen);
10337 				if (reterr != 0)
10338 					return (reterr);
10339 				ipp->ipp_fields |= IPPF_DSTOPTS;
10340 			}
10341 			reterr = tcp_build_hdrs(q, tcp);
10342 			if (reterr != 0)
10343 				return (reterr);
10344 			break;
10345 		}
10346 		case IPV6_RTHDR: {
10347 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
10348 
10349 			/*
10350 			 * Sanity checks - minimum size, size a multiple of
10351 			 * eight bytes, and matching size passed in.
10352 			 */
10353 			if (inlen != 0 &&
10354 			    inlen != (8 * (rt->ip6r_len + 1)))
10355 				return (EINVAL);
10356 
10357 			if (checkonly)
10358 				break;
10359 
10360 			if (inlen == 0) {
10361 				if ((ipp->ipp_fields & IPPF_RTHDR) != 0) {
10362 					kmem_free(ipp->ipp_rthdr,
10363 					    ipp->ipp_rthdrlen);
10364 					ipp->ipp_rthdr = NULL;
10365 					ipp->ipp_rthdrlen = 0;
10366 				}
10367 				ipp->ipp_fields &= ~IPPF_RTHDR;
10368 			} else {
10369 				reterr = tcp_pkt_set(invalp, inlen,
10370 				    (uchar_t **)&ipp->ipp_rthdr,
10371 				    &ipp->ipp_rthdrlen);
10372 				if (reterr != 0)
10373 					return (reterr);
10374 				ipp->ipp_fields |= IPPF_RTHDR;
10375 			}
10376 			reterr = tcp_build_hdrs(q, tcp);
10377 			if (reterr != 0)
10378 				return (reterr);
10379 			break;
10380 		}
10381 		case IPV6_V6ONLY:
10382 			if (!checkonly)
10383 				tcp->tcp_connp->conn_ipv6_v6only = onoff;
10384 			break;
10385 		case IPV6_USE_MIN_MTU:
10386 			if (inlen != sizeof (int))
10387 				return (EINVAL);
10388 
10389 			if (*i1 < -1 || *i1 > 1)
10390 				return (EINVAL);
10391 
10392 			if (checkonly)
10393 				break;
10394 
10395 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
10396 			ipp->ipp_use_min_mtu = *i1;
10397 			break;
10398 		case IPV6_BOUND_PIF:
10399 			/* Handled at the IP level */
10400 			return (-EINVAL);
10401 		case IPV6_SEC_OPT:
10402 			/*
10403 			 * We should not allow policy setting after
10404 			 * we start listening for connections.
10405 			 */
10406 			if (tcp->tcp_state == TCPS_LISTEN) {
10407 				return (EINVAL);
10408 			} else {
10409 				/* Handled at the IP level */
10410 				return (-EINVAL);
10411 			}
10412 		case IPV6_SRC_PREFERENCES:
10413 			if (inlen != sizeof (uint32_t))
10414 				return (EINVAL);
10415 			reterr = ip6_set_src_preferences(tcp->tcp_connp,
10416 			    *(uint32_t *)invalp);
10417 			if (reterr != 0) {
10418 				*outlenp = 0;
10419 				return (reterr);
10420 			}
10421 			break;
10422 		default:
10423 			*outlenp = 0;
10424 			return (EINVAL);
10425 		}
10426 		break;
10427 	}		/* end IPPROTO_IPV6 */
10428 	default:
10429 		*outlenp = 0;
10430 		return (EINVAL);
10431 	}
10432 	/*
10433 	 * Common case of OK return with outval same as inval
10434 	 */
10435 	if (invalp != outvalp) {
10436 		/* don't trust bcopy for identical src/dst */
10437 		(void) bcopy(invalp, outvalp, inlen);
10438 	}
10439 	*outlenp = inlen;
10440 	return (0);
10441 }
10442 
10443 /*
10444  * Update tcp_sticky_hdrs based on tcp_sticky_ipp.
10445  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
10446  * headers, and the maximum size tcp header (to avoid reallocation
10447  * on the fly for additional tcp options).
10448  * Returns failure if can't allocate memory.
10449  */
10450 static int
10451 tcp_build_hdrs(queue_t *q, tcp_t *tcp)
10452 {
10453 	char	*hdrs;
10454 	uint_t	hdrs_len;
10455 	ip6i_t	*ip6i;
10456 	char	buf[TCP_MAX_HDR_LENGTH];
10457 	ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
10458 	in6_addr_t src, dst;
10459 
10460 	/*
10461 	 * save the existing tcp header and source/dest IP addresses
10462 	 */
10463 	bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len);
10464 	src = tcp->tcp_ip6h->ip6_src;
10465 	dst = tcp->tcp_ip6h->ip6_dst;
10466 	hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH;
10467 	ASSERT(hdrs_len != 0);
10468 	if (hdrs_len > tcp->tcp_iphc_len) {
10469 		/* Need to reallocate */
10470 		hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP);
10471 		if (hdrs == NULL)
10472 			return (ENOMEM);
10473 		if (tcp->tcp_iphc != NULL) {
10474 			if (tcp->tcp_hdr_grown) {
10475 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
10476 			} else {
10477 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
10478 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
10479 			}
10480 			tcp->tcp_iphc_len = 0;
10481 		}
10482 		ASSERT(tcp->tcp_iphc_len == 0);
10483 		tcp->tcp_iphc = hdrs;
10484 		tcp->tcp_iphc_len = hdrs_len;
10485 		tcp->tcp_hdr_grown = B_TRUE;
10486 	}
10487 	ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc,
10488 	    hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP);
10489 
10490 	/* Set header fields not in ipp */
10491 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
10492 		ip6i = (ip6i_t *)tcp->tcp_iphc;
10493 		tcp->tcp_ip6h = (ip6_t *)&ip6i[1];
10494 	} else {
10495 		tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
10496 	}
10497 	/*
10498 	 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one.
10499 	 *
10500 	 * tcp->tcp_tcp_hdr_len doesn't change here.
10501 	 */
10502 	tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH;
10503 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len);
10504 	tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len;
10505 
10506 	bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len);
10507 
10508 	tcp->tcp_ip6h->ip6_src = src;
10509 	tcp->tcp_ip6h->ip6_dst = dst;
10510 
10511 	/*
10512 	 * If the hop limit was not set by ip_build_hdrs_v6(), set it to
10513 	 * the default value for TCP.
10514 	 */
10515 	if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS))
10516 		tcp->tcp_ip6h->ip6_hops = tcp_ipv6_hoplimit;
10517 
10518 	/*
10519 	 * If we're setting extension headers after a connection
10520 	 * has been established, and if we have a routing header
10521 	 * among the extension headers, call ip_massage_options_v6 to
10522 	 * manipulate the routing header/ip6_dst set the checksum
10523 	 * difference in the tcp header template.
10524 	 * (This happens in tcp_connect_ipv6 if the routing header
10525 	 * is set prior to the connect.)
10526 	 * Set the tcp_sum to zero first in case we've cleared a
10527 	 * routing header or don't have one at all.
10528 	 */
10529 	tcp->tcp_sum = 0;
10530 	if ((tcp->tcp_state >= TCPS_SYN_SENT) &&
10531 	    (tcp->tcp_ipp_fields & IPPF_RTHDR)) {
10532 		ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h,
10533 		    (uint8_t *)tcp->tcp_tcph);
10534 		if (rth != NULL) {
10535 			tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h,
10536 			    rth);
10537 			tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
10538 			    (tcp->tcp_sum >> 16));
10539 		}
10540 	}
10541 
10542 	/* Try to get everything in a single mblk */
10543 	(void) mi_set_sth_wroff(RD(q), hdrs_len + tcp_wroff_xtra);
10544 	return (0);
10545 }
10546 
10547 /*
10548  * Set optbuf and optlen for the option.
10549  * Allocate memory (if not already present).
10550  * Otherwise just point optbuf and optlen at invalp and inlen.
10551  * Returns failure if memory can not be allocated.
10552  */
10553 static int
10554 tcp_pkt_set(uchar_t *invalp, uint_t inlen, uchar_t **optbufp, uint_t *optlenp)
10555 {
10556 	uchar_t *optbuf;
10557 
10558 	if (inlen == *optlenp) {
10559 		/* Unchanged length - no need to realocate */
10560 		bcopy(invalp, *optbufp, inlen);
10561 		return (0);
10562 	}
10563 	if (inlen != 0) {
10564 		/* Allocate new buffer before free */
10565 		optbuf = kmem_alloc(inlen, KM_NOSLEEP);
10566 		if (optbuf == NULL)
10567 			return (ENOMEM);
10568 	} else {
10569 		optbuf = NULL;
10570 	}
10571 	/* Free old buffer */
10572 	if (*optlenp != 0)
10573 		kmem_free(*optbufp, *optlenp);
10574 
10575 	bcopy(invalp, optbuf, inlen);
10576 	*optbufp = optbuf;
10577 	*optlenp = inlen;
10578 	return (0);
10579 }
10580 
10581 
10582 /*
10583  * Use the outgoing IP header to create an IP_OPTIONS option the way
10584  * it was passed down from the application.
10585  */
10586 static int
10587 tcp_opt_get_user(ipha_t *ipha, uchar_t *buf)
10588 {
10589 	ipoptp_t	opts;
10590 	uchar_t		*opt;
10591 	uint8_t		optval;
10592 	uint8_t		optlen;
10593 	uint32_t	len = 0;
10594 	uchar_t	*buf1 = buf;
10595 
10596 	buf += IP_ADDR_LEN;	/* Leave room for final destination */
10597 	len += IP_ADDR_LEN;
10598 	bzero(buf1, IP_ADDR_LEN);
10599 
10600 	for (optval = ipoptp_first(&opts, ipha);
10601 	    optval != IPOPT_EOL;
10602 	    optval = ipoptp_next(&opts)) {
10603 		opt = opts.ipoptp_cur;
10604 		optlen = opts.ipoptp_len;
10605 		switch (optval) {
10606 			int	off;
10607 		case IPOPT_SSRR:
10608 		case IPOPT_LSRR:
10609 
10610 			/*
10611 			 * Insert ipha_dst as the first entry in the source
10612 			 * route and move down the entries on step.
10613 			 * The last entry gets placed at buf1.
10614 			 */
10615 			buf[IPOPT_OPTVAL] = optval;
10616 			buf[IPOPT_OLEN] = optlen;
10617 			buf[IPOPT_OFFSET] = optlen;
10618 
10619 			off = optlen - IP_ADDR_LEN;
10620 			if (off < 0) {
10621 				/* No entries in source route */
10622 				break;
10623 			}
10624 			/* Last entry in source route */
10625 			bcopy(opt + off, buf1, IP_ADDR_LEN);
10626 			off -= IP_ADDR_LEN;
10627 
10628 			while (off > 0) {
10629 				bcopy(opt + off,
10630 				    buf + off + IP_ADDR_LEN,
10631 				    IP_ADDR_LEN);
10632 				off -= IP_ADDR_LEN;
10633 			}
10634 			/* ipha_dst into first slot */
10635 			bcopy(&ipha->ipha_dst,
10636 			    buf + off + IP_ADDR_LEN,
10637 			    IP_ADDR_LEN);
10638 			buf += optlen;
10639 			len += optlen;
10640 			break;
10641 		default:
10642 			bcopy(opt, buf, optlen);
10643 			buf += optlen;
10644 			len += optlen;
10645 			break;
10646 		}
10647 	}
10648 done:
10649 	/* Pad the resulting options */
10650 	while (len & 0x3) {
10651 		*buf++ = IPOPT_EOL;
10652 		len++;
10653 	}
10654 	return (len);
10655 }
10656 
10657 /*
10658  * Transfer any source route option from ipha to buf/dst in reversed form.
10659  */
10660 static int
10661 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst)
10662 {
10663 	ipoptp_t	opts;
10664 	uchar_t		*opt;
10665 	uint8_t		optval;
10666 	uint8_t		optlen;
10667 	uint32_t	len = 0;
10668 
10669 	for (optval = ipoptp_first(&opts, ipha);
10670 	    optval != IPOPT_EOL;
10671 	    optval = ipoptp_next(&opts)) {
10672 		opt = opts.ipoptp_cur;
10673 		optlen = opts.ipoptp_len;
10674 		switch (optval) {
10675 			int	off1, off2;
10676 		case IPOPT_SSRR:
10677 		case IPOPT_LSRR:
10678 
10679 			/* Reverse source route */
10680 			/*
10681 			 * First entry should be the next to last one in the
10682 			 * current source route (the last entry is our
10683 			 * address.)
10684 			 * The last entry should be the final destination.
10685 			 */
10686 			buf[IPOPT_OPTVAL] = (uint8_t)optval;
10687 			buf[IPOPT_OLEN] = (uint8_t)optlen;
10688 			off1 = IPOPT_MINOFF_SR - 1;
10689 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
10690 			if (off2 < 0) {
10691 				/* No entries in source route */
10692 				break;
10693 			}
10694 			bcopy(opt + off2, dst, IP_ADDR_LEN);
10695 			/*
10696 			 * Note: use src since ipha has not had its src
10697 			 * and dst reversed (it is in the state it was
10698 			 * received.
10699 			 */
10700 			bcopy(&ipha->ipha_src, buf + off2,
10701 			    IP_ADDR_LEN);
10702 			off2 -= IP_ADDR_LEN;
10703 
10704 			while (off2 > 0) {
10705 				bcopy(opt + off2, buf + off1,
10706 				    IP_ADDR_LEN);
10707 				off1 += IP_ADDR_LEN;
10708 				off2 -= IP_ADDR_LEN;
10709 			}
10710 			buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
10711 			buf += optlen;
10712 			len += optlen;
10713 			break;
10714 		}
10715 	}
10716 done:
10717 	/* Pad the resulting options */
10718 	while (len & 0x3) {
10719 		*buf++ = IPOPT_EOL;
10720 		len++;
10721 	}
10722 	return (len);
10723 }
10724 
10725 
10726 /*
10727  * Extract and revert a source route from ipha (if any)
10728  * and then update the relevant fields in both tcp_t and the standard header.
10729  */
10730 static void
10731 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha)
10732 {
10733 	char	buf[TCP_MAX_HDR_LENGTH];
10734 	uint_t	tcph_len;
10735 	int	len;
10736 
10737 	ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
10738 	len = IPH_HDR_LENGTH(ipha);
10739 	if (len == IP_SIMPLE_HDR_LENGTH)
10740 		/* Nothing to do */
10741 		return;
10742 	if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH ||
10743 	    (len & 0x3))
10744 		return;
10745 
10746 	tcph_len = tcp->tcp_tcp_hdr_len;
10747 	bcopy(tcp->tcp_tcph, buf, tcph_len);
10748 	tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) +
10749 		(tcp->tcp_ipha->ipha_dst & 0xffff);
10750 	len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha +
10751 	    IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst);
10752 	len += IP_SIMPLE_HDR_LENGTH;
10753 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
10754 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
10755 	if ((int)tcp->tcp_sum < 0)
10756 		tcp->tcp_sum--;
10757 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
10758 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16));
10759 	tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len);
10760 	bcopy(buf, tcp->tcp_tcph, tcph_len);
10761 	tcp->tcp_ip_hdr_len = len;
10762 	tcp->tcp_ipha->ipha_version_and_hdr_length =
10763 	    (IP_VERSION << 4) | (len >> 2);
10764 	len += tcph_len;
10765 	tcp->tcp_hdr_len = len;
10766 }
10767 
10768 /*
10769  * Copy the standard header into its new location,
10770  * lay in the new options and then update the relevant
10771  * fields in both tcp_t and the standard header.
10772  */
10773 static int
10774 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len)
10775 {
10776 	uint_t	tcph_len;
10777 	char	*ip_optp;
10778 	tcph_t	*new_tcph;
10779 
10780 	if (checkonly) {
10781 		/*
10782 		 * do not really set, just pretend to - T_CHECK
10783 		 */
10784 		if (len != 0) {
10785 			/*
10786 			 * there is value supplied, validate it as if
10787 			 * for a real set operation.
10788 			 */
10789 			if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3))
10790 				return (EINVAL);
10791 		}
10792 		return (0);
10793 	}
10794 
10795 	if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3))
10796 		return (EINVAL);
10797 
10798 	ip_optp = (char *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH;
10799 	tcph_len = tcp->tcp_tcp_hdr_len;
10800 	new_tcph = (tcph_t *)(ip_optp + len);
10801 	ovbcopy((char *)tcp->tcp_tcph, (char *)new_tcph, tcph_len);
10802 	tcp->tcp_tcph = new_tcph;
10803 	bcopy(ptr, ip_optp, len);
10804 
10805 	len += IP_SIMPLE_HDR_LENGTH;
10806 
10807 	tcp->tcp_ip_hdr_len = len;
10808 	tcp->tcp_ipha->ipha_version_and_hdr_length =
10809 		(IP_VERSION << 4) | (len >> 2);
10810 	len += tcph_len;
10811 	tcp->tcp_hdr_len = len;
10812 	if (!TCP_IS_DETACHED(tcp)) {
10813 		/* Always allocate room for all options. */
10814 		(void) mi_set_sth_wroff(tcp->tcp_rq,
10815 		    TCP_MAX_COMBINED_HEADER_LENGTH + tcp_wroff_xtra);
10816 	}
10817 	return (0);
10818 }
10819 
10820 /* Get callback routine passed to nd_load by tcp_param_register */
10821 /* ARGSUSED */
10822 static int
10823 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
10824 {
10825 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
10826 
10827 	(void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val);
10828 	return (0);
10829 }
10830 
10831 /*
10832  * Walk through the param array specified registering each element with the
10833  * named dispatch handler.
10834  */
10835 static boolean_t
10836 tcp_param_register(tcpparam_t *tcppa, int cnt)
10837 {
10838 	for (; cnt-- > 0; tcppa++) {
10839 		if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) {
10840 			if (!nd_load(&tcp_g_nd, tcppa->tcp_param_name,
10841 			    tcp_param_get, tcp_param_set,
10842 			    (caddr_t)tcppa)) {
10843 				nd_free(&tcp_g_nd);
10844 				return (B_FALSE);
10845 			}
10846 		}
10847 	}
10848 	if (!nd_load(&tcp_g_nd, tcp_wroff_xtra_param.tcp_param_name,
10849 	    tcp_param_get, tcp_param_set_aligned,
10850 	    (caddr_t)&tcp_wroff_xtra_param)) {
10851 		nd_free(&tcp_g_nd);
10852 		return (B_FALSE);
10853 	}
10854 	if (!nd_load(&tcp_g_nd, tcp_mdt_head_param.tcp_param_name,
10855 	    tcp_param_get, tcp_param_set_aligned,
10856 	    (caddr_t)&tcp_mdt_head_param)) {
10857 		nd_free(&tcp_g_nd);
10858 		return (B_FALSE);
10859 	}
10860 	if (!nd_load(&tcp_g_nd, tcp_mdt_tail_param.tcp_param_name,
10861 	    tcp_param_get, tcp_param_set_aligned,
10862 	    (caddr_t)&tcp_mdt_tail_param)) {
10863 		nd_free(&tcp_g_nd);
10864 		return (B_FALSE);
10865 	}
10866 	if (!nd_load(&tcp_g_nd, tcp_mdt_max_pbufs_param.tcp_param_name,
10867 	    tcp_param_get, tcp_param_set,
10868 	    (caddr_t)&tcp_mdt_max_pbufs_param)) {
10869 		nd_free(&tcp_g_nd);
10870 		return (B_FALSE);
10871 	}
10872 	if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports",
10873 	    tcp_extra_priv_ports_get, NULL, NULL)) {
10874 		nd_free(&tcp_g_nd);
10875 		return (B_FALSE);
10876 	}
10877 	if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_add",
10878 	    NULL, tcp_extra_priv_ports_add, NULL)) {
10879 		nd_free(&tcp_g_nd);
10880 		return (B_FALSE);
10881 	}
10882 	if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_del",
10883 	    NULL, tcp_extra_priv_ports_del, NULL)) {
10884 		nd_free(&tcp_g_nd);
10885 		return (B_FALSE);
10886 	}
10887 	if (!nd_load(&tcp_g_nd, "tcp_status", tcp_status_report, NULL,
10888 	    NULL)) {
10889 		nd_free(&tcp_g_nd);
10890 		return (B_FALSE);
10891 	}
10892 	if (!nd_load(&tcp_g_nd, "tcp_bind_hash", tcp_bind_hash_report,
10893 	    NULL, NULL)) {
10894 		nd_free(&tcp_g_nd);
10895 		return (B_FALSE);
10896 	}
10897 	if (!nd_load(&tcp_g_nd, "tcp_listen_hash", tcp_listen_hash_report,
10898 	    NULL, NULL)) {
10899 		nd_free(&tcp_g_nd);
10900 		return (B_FALSE);
10901 	}
10902 	if (!nd_load(&tcp_g_nd, "tcp_conn_hash", tcp_conn_hash_report,
10903 	    NULL, NULL)) {
10904 		nd_free(&tcp_g_nd);
10905 		return (B_FALSE);
10906 	}
10907 	if (!nd_load(&tcp_g_nd, "tcp_acceptor_hash", tcp_acceptor_hash_report,
10908 	    NULL, NULL)) {
10909 		nd_free(&tcp_g_nd);
10910 		return (B_FALSE);
10911 	}
10912 	if (!nd_load(&tcp_g_nd, "tcp_host_param", tcp_host_param_report,
10913 	    tcp_host_param_set, NULL)) {
10914 		nd_free(&tcp_g_nd);
10915 		return (B_FALSE);
10916 	}
10917 	if (!nd_load(&tcp_g_nd, "tcp_host_param_ipv6", tcp_host_param_report,
10918 	    tcp_host_param_set_ipv6, NULL)) {
10919 		nd_free(&tcp_g_nd);
10920 		return (B_FALSE);
10921 	}
10922 	if (!nd_load(&tcp_g_nd, "tcp_1948_phrase", NULL, tcp_1948_phrase_set,
10923 	    NULL)) {
10924 		nd_free(&tcp_g_nd);
10925 		return (B_FALSE);
10926 	}
10927 	if (!nd_load(&tcp_g_nd, "tcp_reserved_port_list",
10928 	    tcp_reserved_port_list, NULL, NULL)) {
10929 		nd_free(&tcp_g_nd);
10930 		return (B_FALSE);
10931 	}
10932 	/*
10933 	 * Dummy ndd variables - only to convey obsolescence information
10934 	 * through printing of their name (no get or set routines)
10935 	 * XXX Remove in future releases ?
10936 	 */
10937 	if (!nd_load(&tcp_g_nd,
10938 	    "tcp_close_wait_interval(obsoleted - "
10939 	    "use tcp_time_wait_interval)", NULL, NULL, NULL)) {
10940 		nd_free(&tcp_g_nd);
10941 		return (B_FALSE);
10942 	}
10943 	return (B_TRUE);
10944 }
10945 
10946 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */
10947 /* ARGSUSED */
10948 static int
10949 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
10950     cred_t *cr)
10951 {
10952 	long new_value;
10953 	tcpparam_t *tcppa = (tcpparam_t *)cp;
10954 
10955 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
10956 	    new_value < tcppa->tcp_param_min ||
10957 	    new_value > tcppa->tcp_param_max) {
10958 		return (EINVAL);
10959 	}
10960 	/*
10961 	 * Need to make sure new_value is a multiple of 4.  If it is not,
10962 	 * round it up.  For future 64 bit requirement, we actually make it
10963 	 * a multiple of 8.
10964 	 */
10965 	if (new_value & 0x7) {
10966 		new_value = (new_value & ~0x7) + 0x8;
10967 	}
10968 	tcppa->tcp_param_val = new_value;
10969 	return (0);
10970 }
10971 
10972 /* Set callback routine passed to nd_load by tcp_param_register */
10973 /* ARGSUSED */
10974 static int
10975 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
10976 {
10977 	long	new_value;
10978 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
10979 
10980 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
10981 	    new_value < tcppa->tcp_param_min ||
10982 	    new_value > tcppa->tcp_param_max) {
10983 		return (EINVAL);
10984 	}
10985 	tcppa->tcp_param_val = new_value;
10986 	return (0);
10987 }
10988 
10989 /*
10990  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
10991  * is filled, return as much as we can.  The message passed in may be
10992  * multi-part, chained using b_cont.  "start" is the starting sequence
10993  * number for this piece.
10994  */
10995 static mblk_t *
10996 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
10997 {
10998 	uint32_t	end;
10999 	mblk_t		*mp1;
11000 	mblk_t		*mp2;
11001 	mblk_t		*next_mp;
11002 	uint32_t	u1;
11003 
11004 	/* Walk through all the new pieces. */
11005 	do {
11006 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
11007 		    (uintptr_t)INT_MAX);
11008 		end = start + (int)(mp->b_wptr - mp->b_rptr);
11009 		next_mp = mp->b_cont;
11010 		if (start == end) {
11011 			/* Empty.  Blast it. */
11012 			freeb(mp);
11013 			continue;
11014 		}
11015 		mp->b_cont = NULL;
11016 		TCP_REASS_SET_SEQ(mp, start);
11017 		TCP_REASS_SET_END(mp, end);
11018 		mp1 = tcp->tcp_reass_tail;
11019 		if (!mp1) {
11020 			tcp->tcp_reass_tail = mp;
11021 			tcp->tcp_reass_head = mp;
11022 			BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs);
11023 			UPDATE_MIB(&tcp_mib,
11024 			    tcpInDataUnorderBytes, end - start);
11025 			continue;
11026 		}
11027 		/* New stuff completely beyond tail? */
11028 		if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
11029 			/* Link it on end. */
11030 			mp1->b_cont = mp;
11031 			tcp->tcp_reass_tail = mp;
11032 			BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs);
11033 			UPDATE_MIB(&tcp_mib,
11034 			    tcpInDataUnorderBytes, end - start);
11035 			continue;
11036 		}
11037 		mp1 = tcp->tcp_reass_head;
11038 		u1 = TCP_REASS_SEQ(mp1);
11039 		/* New stuff at the front? */
11040 		if (SEQ_LT(start, u1)) {
11041 			/* Yes... Check for overlap. */
11042 			mp->b_cont = mp1;
11043 			tcp->tcp_reass_head = mp;
11044 			tcp_reass_elim_overlap(tcp, mp);
11045 			continue;
11046 		}
11047 		/*
11048 		 * The new piece fits somewhere between the head and tail.
11049 		 * We find our slot, where mp1 precedes us and mp2 trails.
11050 		 */
11051 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
11052 			u1 = TCP_REASS_SEQ(mp2);
11053 			if (SEQ_LEQ(start, u1))
11054 				break;
11055 		}
11056 		/* Link ourselves in */
11057 		mp->b_cont = mp2;
11058 		mp1->b_cont = mp;
11059 
11060 		/* Trim overlap with following mblk(s) first */
11061 		tcp_reass_elim_overlap(tcp, mp);
11062 
11063 		/* Trim overlap with preceding mblk */
11064 		tcp_reass_elim_overlap(tcp, mp1);
11065 
11066 	} while (start = end, mp = next_mp);
11067 	mp1 = tcp->tcp_reass_head;
11068 	/* Anything ready to go? */
11069 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
11070 		return (NULL);
11071 	/* Eat what we can off the queue */
11072 	for (;;) {
11073 		mp = mp1->b_cont;
11074 		end = TCP_REASS_END(mp1);
11075 		TCP_REASS_SET_SEQ(mp1, 0);
11076 		TCP_REASS_SET_END(mp1, 0);
11077 		if (!mp) {
11078 			tcp->tcp_reass_tail = NULL;
11079 			break;
11080 		}
11081 		if (end != TCP_REASS_SEQ(mp)) {
11082 			mp1->b_cont = NULL;
11083 			break;
11084 		}
11085 		mp1 = mp;
11086 	}
11087 	mp1 = tcp->tcp_reass_head;
11088 	tcp->tcp_reass_head = mp;
11089 	return (mp1);
11090 }
11091 
11092 /* Eliminate any overlap that mp may have over later mblks */
11093 static void
11094 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
11095 {
11096 	uint32_t	end;
11097 	mblk_t		*mp1;
11098 	uint32_t	u1;
11099 
11100 	end = TCP_REASS_END(mp);
11101 	while ((mp1 = mp->b_cont) != NULL) {
11102 		u1 = TCP_REASS_SEQ(mp1);
11103 		if (!SEQ_GT(end, u1))
11104 			break;
11105 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
11106 			mp->b_wptr -= end - u1;
11107 			TCP_REASS_SET_END(mp, u1);
11108 			BUMP_MIB(&tcp_mib, tcpInDataPartDupSegs);
11109 			UPDATE_MIB(&tcp_mib, tcpInDataPartDupBytes, end - u1);
11110 			break;
11111 		}
11112 		mp->b_cont = mp1->b_cont;
11113 		TCP_REASS_SET_SEQ(mp1, 0);
11114 		TCP_REASS_SET_END(mp1, 0);
11115 		freeb(mp1);
11116 		BUMP_MIB(&tcp_mib, tcpInDataDupSegs);
11117 		UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, end - u1);
11118 	}
11119 	if (!mp1)
11120 		tcp->tcp_reass_tail = mp;
11121 }
11122 
11123 /*
11124  * Send up all messages queued on tcp_rcv_list.
11125  */
11126 static uint_t
11127 tcp_rcv_drain(queue_t *q, tcp_t *tcp)
11128 {
11129 	mblk_t *mp;
11130 	uint_t ret = 0;
11131 	uint_t thwin;
11132 #ifdef DEBUG
11133 	uint_t cnt = 0;
11134 #endif
11135 	/* Can't drain on an eager connection */
11136 	if (tcp->tcp_listener != NULL)
11137 		return (ret);
11138 
11139 	/*
11140 	 * Handle two cases here: we are currently fused or we were
11141 	 * previously fused and have some urgent data to be delivered
11142 	 * upstream.  The latter happens because we either ran out of
11143 	 * memory or were detached and therefore sending the SIGURG was
11144 	 * deferred until this point.  In either case we pass control
11145 	 * over to tcp_fuse_rcv_drain() since it may need to complete
11146 	 * some work.
11147 	 */
11148 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
11149 		ASSERT(tcp->tcp_fused_sigurg_mp != NULL);
11150 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
11151 		    &tcp->tcp_fused_sigurg_mp))
11152 			return (ret);
11153 	}
11154 
11155 	while ((mp = tcp->tcp_rcv_list) != NULL) {
11156 		tcp->tcp_rcv_list = mp->b_next;
11157 		mp->b_next = NULL;
11158 #ifdef DEBUG
11159 		cnt += msgdsize(mp);
11160 #endif
11161 		/* Does this need SSL processing first? */
11162 		if ((tcp->tcp_kssl_ctx  != NULL) && (DB_TYPE(mp) == M_DATA)) {
11163 			tcp_kssl_input(tcp, mp);
11164 			continue;
11165 		}
11166 		putnext(q, mp);
11167 	}
11168 	ASSERT(cnt == tcp->tcp_rcv_cnt);
11169 	tcp->tcp_rcv_last_head = NULL;
11170 	tcp->tcp_rcv_last_tail = NULL;
11171 	tcp->tcp_rcv_cnt = 0;
11172 
11173 	/* Learn the latest rwnd information that we sent to the other side. */
11174 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11175 	    << tcp->tcp_rcv_ws;
11176 	/* This is peer's calculated send window (our receive window). */
11177 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11178 	/*
11179 	 * Increase the receive window to max.  But we need to do receiver
11180 	 * SWS avoidance.  This means that we need to check the increase of
11181 	 * of receive window is at least 1 MSS.
11182 	 */
11183 	if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) {
11184 		/*
11185 		 * If the window that the other side knows is less than max
11186 		 * deferred acks segments, send an update immediately.
11187 		 */
11188 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11189 			BUMP_MIB(&tcp_mib, tcpOutWinUpdate);
11190 			ret = TH_ACK_NEEDED;
11191 		}
11192 		tcp->tcp_rwnd = q->q_hiwat;
11193 	}
11194 	/* No need for the push timer now. */
11195 	if (tcp->tcp_push_tid != 0) {
11196 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11197 		tcp->tcp_push_tid = 0;
11198 	}
11199 	return (ret);
11200 }
11201 
11202 /*
11203  * Queue data on tcp_rcv_list which is a b_next chain.
11204  * tcp_rcv_last_head/tail is the last element of this chain.
11205  * Each element of the chain is a b_cont chain.
11206  *
11207  * M_DATA messages are added to the current element.
11208  * Other messages are added as new (b_next) elements.
11209  */
11210 void
11211 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len)
11212 {
11213 	ASSERT(seg_len == msgdsize(mp));
11214 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
11215 
11216 	if (tcp->tcp_rcv_list == NULL) {
11217 		ASSERT(tcp->tcp_rcv_last_head == NULL);
11218 		tcp->tcp_rcv_list = mp;
11219 		tcp->tcp_rcv_last_head = mp;
11220 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
11221 		tcp->tcp_rcv_last_tail->b_cont = mp;
11222 	} else {
11223 		tcp->tcp_rcv_last_head->b_next = mp;
11224 		tcp->tcp_rcv_last_head = mp;
11225 	}
11226 
11227 	while (mp->b_cont)
11228 		mp = mp->b_cont;
11229 
11230 	tcp->tcp_rcv_last_tail = mp;
11231 	tcp->tcp_rcv_cnt += seg_len;
11232 	tcp->tcp_rwnd -= seg_len;
11233 }
11234 
11235 /*
11236  * DEFAULT TCP ENTRY POINT via squeue on READ side.
11237  *
11238  * This is the default entry function into TCP on the read side. TCP is
11239  * always entered via squeue i.e. using squeue's for mutual exclusion.
11240  * When classifier does a lookup to find the tcp, it also puts a reference
11241  * on the conn structure associated so the tcp is guaranteed to exist
11242  * when we come here. We still need to check the state because it might
11243  * as well has been closed. The squeue processing function i.e. squeue_enter,
11244  * squeue_enter_nodrain, or squeue_drain is responsible for doing the
11245  * CONN_DEC_REF.
11246  *
11247  * Apart from the default entry point, IP also sends packets directly to
11248  * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming
11249  * connections.
11250  */
11251 void
11252 tcp_input(void *arg, mblk_t *mp, void *arg2)
11253 {
11254 	conn_t	*connp = (conn_t *)arg;
11255 	tcp_t	*tcp = (tcp_t *)connp->conn_tcp;
11256 
11257 	/* arg2 is the sqp */
11258 	ASSERT(arg2 != NULL);
11259 	ASSERT(mp != NULL);
11260 
11261 	/*
11262 	 * Don't accept any input on a closed tcp as this TCP logically does
11263 	 * not exist on the system. Don't proceed further with this TCP.
11264 	 * For eg. this packet could trigger another close of this tcp
11265 	 * which would be disastrous for tcp_refcnt. tcp_close_detached /
11266 	 * tcp_clean_death / tcp_closei_local must be called at most once
11267 	 * on a TCP. In this case we need to refeed the packet into the
11268 	 * classifier and figure out where the packet should go. Need to
11269 	 * preserve the recv_ill somehow. Until we figure that out, for
11270 	 * now just drop the packet if we can't classify the packet.
11271 	 */
11272 	if (tcp->tcp_state == TCPS_CLOSED ||
11273 	    tcp->tcp_state == TCPS_BOUND) {
11274 		conn_t	*new_connp;
11275 
11276 		new_connp = ipcl_classify(mp, connp->conn_zoneid);
11277 		if (new_connp != NULL) {
11278 			tcp_reinput(new_connp, mp, arg2);
11279 			return;
11280 		}
11281 		/* We failed to classify. For now just drop the packet */
11282 		freemsg(mp);
11283 		return;
11284 	}
11285 
11286 	if (DB_TYPE(mp) == M_DATA)
11287 		tcp_rput_data(connp, mp, arg2);
11288 	else
11289 		tcp_rput_common(tcp, mp);
11290 }
11291 
11292 /*
11293  * The read side put procedure.
11294  * The packets passed up by ip are assume to be aligned according to
11295  * OK_32PTR and the IP+TCP headers fitting in the first mblk.
11296  */
11297 static void
11298 tcp_rput_common(tcp_t *tcp, mblk_t *mp)
11299 {
11300 	/*
11301 	 * tcp_rput_data() does not expect M_CTL except for the case
11302 	 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO
11303 	 * type. Need to make sure that any other M_CTLs don't make
11304 	 * it to tcp_rput_data since it is not expecting any and doesn't
11305 	 * check for it.
11306 	 */
11307 	if (DB_TYPE(mp) == M_CTL) {
11308 		switch (*(uint32_t *)(mp->b_rptr)) {
11309 		case TCP_IOC_ABORT_CONN:
11310 			/*
11311 			 * Handle connection abort request.
11312 			 */
11313 			tcp_ioctl_abort_handler(tcp, mp);
11314 			return;
11315 		case IPSEC_IN:
11316 			/*
11317 			 * Only secure icmp arrive in TCP and they
11318 			 * don't go through data path.
11319 			 */
11320 			tcp_icmp_error(tcp, mp);
11321 			return;
11322 		case IN_PKTINFO:
11323 			/*
11324 			 * Handle IPV6_RECVPKTINFO socket option on AF_INET6
11325 			 * sockets that are receiving IPv4 traffic. tcp
11326 			 */
11327 			ASSERT(tcp->tcp_family == AF_INET6);
11328 			ASSERT(tcp->tcp_ipv6_recvancillary &
11329 			    TCP_IPV6_RECVPKTINFO);
11330 			tcp_rput_data(tcp->tcp_connp, mp,
11331 			    tcp->tcp_connp->conn_sqp);
11332 			return;
11333 		case MDT_IOC_INFO_UPDATE:
11334 			/*
11335 			 * Handle Multidata information update; the
11336 			 * following routine will free the message.
11337 			 */
11338 			if (tcp->tcp_connp->conn_mdt_ok) {
11339 				tcp_mdt_update(tcp,
11340 				    &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab,
11341 				    B_FALSE);
11342 			}
11343 			freemsg(mp);
11344 			return;
11345 		default:
11346 			break;
11347 		}
11348 	}
11349 
11350 	/* No point processing the message if tcp is already closed */
11351 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
11352 		freemsg(mp);
11353 		return;
11354 	}
11355 
11356 	tcp_rput_other(tcp, mp);
11357 }
11358 
11359 
11360 /* The minimum of smoothed mean deviation in RTO calculation. */
11361 #define	TCP_SD_MIN	400
11362 
11363 /*
11364  * Set RTO for this connection.  The formula is from Jacobson and Karels'
11365  * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
11366  * are the same as those in Appendix A.2 of that paper.
11367  *
11368  * m = new measurement
11369  * sa = smoothed RTT average (8 * average estimates).
11370  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
11371  */
11372 static void
11373 tcp_set_rto(tcp_t *tcp, clock_t rtt)
11374 {
11375 	long m = TICK_TO_MSEC(rtt);
11376 	clock_t sa = tcp->tcp_rtt_sa;
11377 	clock_t sv = tcp->tcp_rtt_sd;
11378 	clock_t rto;
11379 
11380 	BUMP_MIB(&tcp_mib, tcpRttUpdate);
11381 	tcp->tcp_rtt_update++;
11382 
11383 	/* tcp_rtt_sa is not 0 means this is a new sample. */
11384 	if (sa != 0) {
11385 		/*
11386 		 * Update average estimator:
11387 		 *	new rtt = 7/8 old rtt + 1/8 Error
11388 		 */
11389 
11390 		/* m is now Error in estimate. */
11391 		m -= sa >> 3;
11392 		if ((sa += m) <= 0) {
11393 			/*
11394 			 * Don't allow the smoothed average to be negative.
11395 			 * We use 0 to denote reinitialization of the
11396 			 * variables.
11397 			 */
11398 			sa = 1;
11399 		}
11400 
11401 		/*
11402 		 * Update deviation estimator:
11403 		 *	new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
11404 		 */
11405 		if (m < 0)
11406 			m = -m;
11407 		m -= sv >> 2;
11408 		sv += m;
11409 	} else {
11410 		/*
11411 		 * This follows BSD's implementation.  So the reinitialized
11412 		 * RTO is 3 * m.  We cannot go less than 2 because if the
11413 		 * link is bandwidth dominated, doubling the window size
11414 		 * during slow start means doubling the RTT.  We want to be
11415 		 * more conservative when we reinitialize our estimates.  3
11416 		 * is just a convenient number.
11417 		 */
11418 		sa = m << 3;
11419 		sv = m << 1;
11420 	}
11421 	if (sv < TCP_SD_MIN) {
11422 		/*
11423 		 * We do not know that if sa captures the delay ACK
11424 		 * effect as in a long train of segments, a receiver
11425 		 * does not delay its ACKs.  So set the minimum of sv
11426 		 * to be TCP_SD_MIN, which is default to 400 ms, twice
11427 		 * of BSD DATO.  That means the minimum of mean
11428 		 * deviation is 100 ms.
11429 		 *
11430 		 */
11431 		sv = TCP_SD_MIN;
11432 	}
11433 	tcp->tcp_rtt_sa = sa;
11434 	tcp->tcp_rtt_sd = sv;
11435 	/*
11436 	 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
11437 	 *
11438 	 * Add tcp_rexmit_interval extra in case of extreme environment
11439 	 * where the algorithm fails to work.  The default value of
11440 	 * tcp_rexmit_interval_extra should be 0.
11441 	 *
11442 	 * As we use a finer grained clock than BSD and update
11443 	 * RTO for every ACKs, add in another .25 of RTT to the
11444 	 * deviation of RTO to accomodate burstiness of 1/4 of
11445 	 * window size.
11446 	 */
11447 	rto = (sa >> 3) + sv + tcp_rexmit_interval_extra + (sa >> 5);
11448 
11449 	if (rto > tcp_rexmit_interval_max) {
11450 		tcp->tcp_rto = tcp_rexmit_interval_max;
11451 	} else if (rto < tcp_rexmit_interval_min) {
11452 		tcp->tcp_rto = tcp_rexmit_interval_min;
11453 	} else {
11454 		tcp->tcp_rto = rto;
11455 	}
11456 
11457 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
11458 	tcp->tcp_timer_backoff = 0;
11459 }
11460 
11461 /*
11462  * tcp_get_seg_mp() is called to get the pointer to a segment in the
11463  * send queue which starts at the given seq. no.
11464  *
11465  * Parameters:
11466  *	tcp_t *tcp: the tcp instance pointer.
11467  *	uint32_t seq: the starting seq. no of the requested segment.
11468  *	int32_t *off: after the execution, *off will be the offset to
11469  *		the returned mblk which points to the requested seq no.
11470  *		It is the caller's responsibility to send in a non-null off.
11471  *
11472  * Return:
11473  *	A mblk_t pointer pointing to the requested segment in send queue.
11474  */
11475 static mblk_t *
11476 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off)
11477 {
11478 	int32_t	cnt;
11479 	mblk_t	*mp;
11480 
11481 	/* Defensive coding.  Make sure we don't send incorrect data. */
11482 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
11483 		return (NULL);
11484 
11485 	cnt = seq - tcp->tcp_suna;
11486 	mp = tcp->tcp_xmit_head;
11487 	while (cnt > 0 && mp != NULL) {
11488 		cnt -= mp->b_wptr - mp->b_rptr;
11489 		if (cnt < 0) {
11490 			cnt += mp->b_wptr - mp->b_rptr;
11491 			break;
11492 		}
11493 		mp = mp->b_cont;
11494 	}
11495 	ASSERT(mp != NULL);
11496 	*off = cnt;
11497 	return (mp);
11498 }
11499 
11500 /*
11501  * This function handles all retransmissions if SACK is enabled for this
11502  * connection.  First it calculates how many segments can be retransmitted
11503  * based on tcp_pipe.  Then it goes thru the notsack list to find eligible
11504  * segments.  A segment is eligible if sack_cnt for that segment is greater
11505  * than or equal tcp_dupack_fast_retransmit.  After it has retransmitted
11506  * all eligible segments, it checks to see if TCP can send some new segments
11507  * (fast recovery).  If it can, set the appropriate flag for tcp_rput_data().
11508  *
11509  * Parameters:
11510  *	tcp_t *tcp: the tcp structure of the connection.
11511  *	uint_t *flags: in return, appropriate value will be set for
11512  *	tcp_rput_data().
11513  */
11514 static void
11515 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags)
11516 {
11517 	notsack_blk_t	*notsack_blk;
11518 	int32_t		usable_swnd;
11519 	int32_t		mss;
11520 	uint32_t	seg_len;
11521 	mblk_t		*xmit_mp;
11522 
11523 	ASSERT(tcp->tcp_sack_info != NULL);
11524 	ASSERT(tcp->tcp_notsack_list != NULL);
11525 	ASSERT(tcp->tcp_rexmit == B_FALSE);
11526 
11527 	/* Defensive coding in case there is a bug... */
11528 	if (tcp->tcp_notsack_list == NULL) {
11529 		return;
11530 	}
11531 	notsack_blk = tcp->tcp_notsack_list;
11532 	mss = tcp->tcp_mss;
11533 
11534 	/*
11535 	 * Limit the num of outstanding data in the network to be
11536 	 * tcp_cwnd_ssthresh, which is half of the original congestion wnd.
11537 	 */
11538 	usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
11539 
11540 	/* At least retransmit 1 MSS of data. */
11541 	if (usable_swnd <= 0) {
11542 		usable_swnd = mss;
11543 	}
11544 
11545 	/* Make sure no new RTT samples will be taken. */
11546 	tcp->tcp_csuna = tcp->tcp_snxt;
11547 
11548 	notsack_blk = tcp->tcp_notsack_list;
11549 	while (usable_swnd > 0) {
11550 		mblk_t		*snxt_mp, *tmp_mp;
11551 		tcp_seq		begin = tcp->tcp_sack_snxt;
11552 		tcp_seq		end;
11553 		int32_t		off;
11554 
11555 		for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) {
11556 			if (SEQ_GT(notsack_blk->end, begin) &&
11557 			    (notsack_blk->sack_cnt >=
11558 			    tcp_dupack_fast_retransmit)) {
11559 				end = notsack_blk->end;
11560 				if (SEQ_LT(begin, notsack_blk->begin)) {
11561 					begin = notsack_blk->begin;
11562 				}
11563 				break;
11564 			}
11565 		}
11566 		/*
11567 		 * All holes are filled.  Manipulate tcp_cwnd to send more
11568 		 * if we can.  Note that after the SACK recovery, tcp_cwnd is
11569 		 * set to tcp_cwnd_ssthresh.
11570 		 */
11571 		if (notsack_blk == NULL) {
11572 			usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
11573 			if (usable_swnd <= 0 || tcp->tcp_unsent == 0) {
11574 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna;
11575 				ASSERT(tcp->tcp_cwnd > 0);
11576 				return;
11577 			} else {
11578 				usable_swnd = usable_swnd / mss;
11579 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna +
11580 				    MAX(usable_swnd * mss, mss);
11581 				*flags |= TH_XMIT_NEEDED;
11582 				return;
11583 			}
11584 		}
11585 
11586 		/*
11587 		 * Note that we may send more than usable_swnd allows here
11588 		 * because of round off, but no more than 1 MSS of data.
11589 		 */
11590 		seg_len = end - begin;
11591 		if (seg_len > mss)
11592 			seg_len = mss;
11593 		snxt_mp = tcp_get_seg_mp(tcp, begin, &off);
11594 		ASSERT(snxt_mp != NULL);
11595 		/* This should not happen.  Defensive coding again... */
11596 		if (snxt_mp == NULL) {
11597 			return;
11598 		}
11599 
11600 		xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off,
11601 		    &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE);
11602 		if (xmit_mp == NULL)
11603 			return;
11604 
11605 		usable_swnd -= seg_len;
11606 		tcp->tcp_pipe += seg_len;
11607 		tcp->tcp_sack_snxt = begin + seg_len;
11608 		TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT);
11609 		tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
11610 
11611 		/*
11612 		 * Update the send timestamp to avoid false retransmission.
11613 		 */
11614 		snxt_mp->b_prev = (mblk_t *)lbolt;
11615 
11616 		BUMP_MIB(&tcp_mib, tcpRetransSegs);
11617 		UPDATE_MIB(&tcp_mib, tcpRetransBytes, seg_len);
11618 		BUMP_MIB(&tcp_mib, tcpOutSackRetransSegs);
11619 		/*
11620 		 * Update tcp_rexmit_max to extend this SACK recovery phase.
11621 		 * This happens when new data sent during fast recovery is
11622 		 * also lost.  If TCP retransmits those new data, it needs
11623 		 * to extend SACK recover phase to avoid starting another
11624 		 * fast retransmit/recovery unnecessarily.
11625 		 */
11626 		if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) {
11627 			tcp->tcp_rexmit_max = tcp->tcp_sack_snxt;
11628 		}
11629 	}
11630 }
11631 
11632 /*
11633  * This function handles policy checking at TCP level for non-hard_bound/
11634  * detached connections.
11635  */
11636 static boolean_t
11637 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h,
11638     boolean_t secure, boolean_t mctl_present)
11639 {
11640 	ipsec_latch_t *ipl = NULL;
11641 	ipsec_action_t *act = NULL;
11642 	mblk_t *data_mp;
11643 	ipsec_in_t *ii;
11644 	const char *reason;
11645 	kstat_named_t *counter;
11646 
11647 	ASSERT(mctl_present || !secure);
11648 
11649 	ASSERT((ipha == NULL && ip6h != NULL) ||
11650 	    (ip6h == NULL && ipha != NULL));
11651 
11652 	/*
11653 	 * We don't necessarily have an ipsec_in_act action to verify
11654 	 * policy because of assymetrical policy where we have only
11655 	 * outbound policy and no inbound policy (possible with global
11656 	 * policy).
11657 	 */
11658 	if (!secure) {
11659 		if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS ||
11660 		    act->ipa_act.ipa_type == IPSEC_ACT_CLEAR)
11661 			return (B_TRUE);
11662 		ipsec_log_policy_failure(tcp->tcp_wq, IPSEC_POLICY_MISMATCH,
11663 		    "tcp_check_policy", ipha, ip6h, secure);
11664 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
11665 		    &ipdrops_tcp_clear, &tcp_dropper);
11666 		return (B_FALSE);
11667 	}
11668 
11669 	/*
11670 	 * We have a secure packet.
11671 	 */
11672 	if (act == NULL) {
11673 		ipsec_log_policy_failure(tcp->tcp_wq,
11674 		    IPSEC_POLICY_NOT_NEEDED, "tcp_check_policy", ipha, ip6h,
11675 		    secure);
11676 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
11677 		    &ipdrops_tcp_secure, &tcp_dropper);
11678 		return (B_FALSE);
11679 	}
11680 
11681 	/*
11682 	 * XXX This whole routine is currently incorrect.  ipl should
11683 	 * be set to the latch pointer, but is currently not set, so
11684 	 * we initialize it to NULL to avoid picking up random garbage.
11685 	 */
11686 	if (ipl == NULL)
11687 		return (B_TRUE);
11688 
11689 	data_mp = first_mp->b_cont;
11690 
11691 	ii = (ipsec_in_t *)first_mp->b_rptr;
11692 
11693 	if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason,
11694 	    &counter)) {
11695 		BUMP_MIB(&ip_mib, ipsecInSucceeded);
11696 		return (B_TRUE);
11697 	}
11698 	(void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
11699 	    "tcp inbound policy mismatch: %s, packet dropped\n",
11700 	    reason);
11701 	BUMP_MIB(&ip_mib, ipsecInFailed);
11702 
11703 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, &tcp_dropper);
11704 	return (B_FALSE);
11705 }
11706 
11707 /*
11708  * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start
11709  * retransmission after a timeout.
11710  *
11711  * To limit the number of duplicate segments, we limit the number of segment
11712  * to be sent in one time to tcp_snd_burst, the burst variable.
11713  */
11714 static void
11715 tcp_ss_rexmit(tcp_t *tcp)
11716 {
11717 	uint32_t	snxt;
11718 	uint32_t	smax;
11719 	int32_t		win;
11720 	int32_t		mss;
11721 	int32_t		off;
11722 	int32_t		burst = tcp->tcp_snd_burst;
11723 	mblk_t		*snxt_mp;
11724 
11725 	/*
11726 	 * Note that tcp_rexmit can be set even though TCP has retransmitted
11727 	 * all unack'ed segments.
11728 	 */
11729 	if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) {
11730 		smax = tcp->tcp_rexmit_max;
11731 		snxt = tcp->tcp_rexmit_nxt;
11732 		if (SEQ_LT(snxt, tcp->tcp_suna)) {
11733 			snxt = tcp->tcp_suna;
11734 		}
11735 		win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd);
11736 		win -= snxt - tcp->tcp_suna;
11737 		mss = tcp->tcp_mss;
11738 		snxt_mp = tcp_get_seg_mp(tcp, snxt, &off);
11739 
11740 		while (SEQ_LT(snxt, smax) && (win > 0) &&
11741 		    (burst > 0) && (snxt_mp != NULL)) {
11742 			mblk_t	*xmit_mp;
11743 			mblk_t	*old_snxt_mp = snxt_mp;
11744 			uint32_t cnt = mss;
11745 
11746 			if (win < cnt) {
11747 				cnt = win;
11748 			}
11749 			if (SEQ_GT(snxt + cnt, smax)) {
11750 				cnt = smax - snxt;
11751 			}
11752 			xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off,
11753 			    &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE);
11754 			if (xmit_mp == NULL)
11755 				return;
11756 
11757 			tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
11758 
11759 			snxt += cnt;
11760 			win -= cnt;
11761 			/*
11762 			 * Update the send timestamp to avoid false
11763 			 * retransmission.
11764 			 */
11765 			old_snxt_mp->b_prev = (mblk_t *)lbolt;
11766 			BUMP_MIB(&tcp_mib, tcpRetransSegs);
11767 			UPDATE_MIB(&tcp_mib, tcpRetransBytes, cnt);
11768 
11769 			tcp->tcp_rexmit_nxt = snxt;
11770 			burst--;
11771 		}
11772 		/*
11773 		 * If we have transmitted all we have at the time
11774 		 * we started the retranmission, we can leave
11775 		 * the rest of the job to tcp_wput_data().  But we
11776 		 * need to check the send window first.  If the
11777 		 * win is not 0, go on with tcp_wput_data().
11778 		 */
11779 		if (SEQ_LT(snxt, smax) || win == 0) {
11780 			return;
11781 		}
11782 	}
11783 	/* Only call tcp_wput_data() if there is data to be sent. */
11784 	if (tcp->tcp_unsent) {
11785 		tcp_wput_data(tcp, NULL, B_FALSE);
11786 	}
11787 }
11788 
11789 /*
11790  * Process all TCP option in SYN segment.  Note that this function should
11791  * be called after tcp_adapt_ire() is called so that the necessary info
11792  * from IRE is already set in the tcp structure.
11793  *
11794  * This function sets up the correct tcp_mss value according to the
11795  * MSS option value and our header size.  It also sets up the window scale
11796  * and timestamp values, and initialize SACK info blocks.  But it does not
11797  * change receive window size after setting the tcp_mss value.  The caller
11798  * should do the appropriate change.
11799  */
11800 void
11801 tcp_process_options(tcp_t *tcp, tcph_t *tcph)
11802 {
11803 	int options;
11804 	tcp_opt_t tcpopt;
11805 	uint32_t mss_max;
11806 	char *tmp_tcph;
11807 
11808 	tcpopt.tcp = NULL;
11809 	options = tcp_parse_options(tcph, &tcpopt);
11810 
11811 	/*
11812 	 * Process MSS option.  Note that MSS option value does not account
11813 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
11814 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
11815 	 * IPv6.
11816 	 */
11817 	if (!(options & TCP_OPT_MSS_PRESENT)) {
11818 		if (tcp->tcp_ipversion == IPV4_VERSION)
11819 			tcpopt.tcp_opt_mss = tcp_mss_def_ipv4;
11820 		else
11821 			tcpopt.tcp_opt_mss = tcp_mss_def_ipv6;
11822 	} else {
11823 		if (tcp->tcp_ipversion == IPV4_VERSION)
11824 			mss_max = tcp_mss_max_ipv4;
11825 		else
11826 			mss_max = tcp_mss_max_ipv6;
11827 		if (tcpopt.tcp_opt_mss < tcp_mss_min)
11828 			tcpopt.tcp_opt_mss = tcp_mss_min;
11829 		else if (tcpopt.tcp_opt_mss > mss_max)
11830 			tcpopt.tcp_opt_mss = mss_max;
11831 	}
11832 
11833 	/* Process Window Scale option. */
11834 	if (options & TCP_OPT_WSCALE_PRESENT) {
11835 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
11836 		tcp->tcp_snd_ws_ok = B_TRUE;
11837 	} else {
11838 		tcp->tcp_snd_ws = B_FALSE;
11839 		tcp->tcp_snd_ws_ok = B_FALSE;
11840 		tcp->tcp_rcv_ws = B_FALSE;
11841 	}
11842 
11843 	/* Process Timestamp option. */
11844 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
11845 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
11846 		tmp_tcph = (char *)tcp->tcp_tcph;
11847 
11848 		tcp->tcp_snd_ts_ok = B_TRUE;
11849 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
11850 		tcp->tcp_last_rcv_lbolt = lbolt64;
11851 		ASSERT(OK_32PTR(tmp_tcph));
11852 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
11853 
11854 		/* Fill in our template header with basic timestamp option. */
11855 		tmp_tcph += tcp->tcp_tcp_hdr_len;
11856 		tmp_tcph[0] = TCPOPT_NOP;
11857 		tmp_tcph[1] = TCPOPT_NOP;
11858 		tmp_tcph[2] = TCPOPT_TSTAMP;
11859 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
11860 		tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN;
11861 		tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN;
11862 		tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4);
11863 	} else {
11864 		tcp->tcp_snd_ts_ok = B_FALSE;
11865 	}
11866 
11867 	/*
11868 	 * Process SACK options.  If SACK is enabled for this connection,
11869 	 * then allocate the SACK info structure.  Note the following ways
11870 	 * when tcp_snd_sack_ok is set to true.
11871 	 *
11872 	 * For active connection: in tcp_adapt_ire() called in
11873 	 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted
11874 	 * is checked.
11875 	 *
11876 	 * For passive connection: in tcp_adapt_ire() called in
11877 	 * tcp_accept_comm().
11878 	 *
11879 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
11880 	 * That check makes sure that if we did not send a SACK OK option,
11881 	 * we will not enable SACK for this connection even though the other
11882 	 * side sends us SACK OK option.  For active connection, the SACK
11883 	 * info structure has already been allocated.  So we need to free
11884 	 * it if SACK is disabled.
11885 	 */
11886 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
11887 	    (tcp->tcp_snd_sack_ok ||
11888 	    (tcp_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
11889 		/* This should be true only in the passive case. */
11890 		if (tcp->tcp_sack_info == NULL) {
11891 			ASSERT(TCP_IS_DETACHED(tcp));
11892 			tcp->tcp_sack_info =
11893 			    kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP);
11894 		}
11895 		if (tcp->tcp_sack_info == NULL) {
11896 			tcp->tcp_snd_sack_ok = B_FALSE;
11897 		} else {
11898 			tcp->tcp_snd_sack_ok = B_TRUE;
11899 			if (tcp->tcp_snd_ts_ok) {
11900 				tcp->tcp_max_sack_blk = 3;
11901 			} else {
11902 				tcp->tcp_max_sack_blk = 4;
11903 			}
11904 		}
11905 	} else {
11906 		/*
11907 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
11908 		 * no SACK info will be used for this
11909 		 * connection.  This assumes that SACK usage
11910 		 * permission is negotiated.  This may need
11911 		 * to be changed once this is clarified.
11912 		 */
11913 		if (tcp->tcp_sack_info != NULL) {
11914 			ASSERT(tcp->tcp_notsack_list == NULL);
11915 			kmem_cache_free(tcp_sack_info_cache,
11916 			    tcp->tcp_sack_info);
11917 			tcp->tcp_sack_info = NULL;
11918 		}
11919 		tcp->tcp_snd_sack_ok = B_FALSE;
11920 	}
11921 
11922 	/*
11923 	 * Now we know the exact TCP/IP header length, subtract
11924 	 * that from tcp_mss to get our side's MSS.
11925 	 */
11926 	tcp->tcp_mss -= tcp->tcp_hdr_len;
11927 	/*
11928 	 * Here we assume that the other side's header size will be equal to
11929 	 * our header size.  We calculate the real MSS accordingly.  Need to
11930 	 * take into additional stuffs IPsec puts in.
11931 	 *
11932 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
11933 	 */
11934 	tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead -
11935 	    ((tcp->tcp_ipversion == IPV4_VERSION ?
11936 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
11937 
11938 	/*
11939 	 * Set MSS to the smaller one of both ends of the connection.
11940 	 * We should not have called tcp_mss_set() before, but our
11941 	 * side of the MSS should have been set to a proper value
11942 	 * by tcp_adapt_ire().  tcp_mss_set() will also set up the
11943 	 * STREAM head parameters properly.
11944 	 *
11945 	 * If we have a larger-than-16-bit window but the other side
11946 	 * didn't want to do window scale, tcp_rwnd_set() will take
11947 	 * care of that.
11948 	 */
11949 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss));
11950 }
11951 
11952 /*
11953  * Sends the T_CONN_IND to the listener. The caller calls this
11954  * functions via squeue to get inside the listener's perimeter
11955  * once the 3 way hand shake is done a T_CONN_IND needs to be
11956  * sent. As an optimization, the caller can call this directly
11957  * if listener's perimeter is same as eager's.
11958  */
11959 /* ARGSUSED */
11960 void
11961 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2)
11962 {
11963 	conn_t			*lconnp = (conn_t *)arg;
11964 	tcp_t			*listener = lconnp->conn_tcp;
11965 	tcp_t			*tcp;
11966 	struct T_conn_ind	*conn_ind;
11967 	ipaddr_t 		*addr_cache;
11968 	boolean_t		need_send_conn_ind = B_FALSE;
11969 
11970 	/* retrieve the eager */
11971 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
11972 	ASSERT(conn_ind->OPT_offset != 0 &&
11973 	    conn_ind->OPT_length == sizeof (intptr_t));
11974 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
11975 		conn_ind->OPT_length);
11976 
11977 	/*
11978 	 * TLI/XTI applications will get confused by
11979 	 * sending eager as an option since it violates
11980 	 * the option semantics. So remove the eager as
11981 	 * option since TLI/XTI app doesn't need it anyway.
11982 	 */
11983 	if (!TCP_IS_SOCKET(listener)) {
11984 		conn_ind->OPT_length = 0;
11985 		conn_ind->OPT_offset = 0;
11986 	}
11987 	if (listener->tcp_state == TCPS_CLOSED ||
11988 	    TCP_IS_DETACHED(listener)) {
11989 		/*
11990 		 * If listener has closed, it would have caused a
11991 		 * a cleanup/blowoff to happen for the eager. We
11992 		 * just need to return.
11993 		 */
11994 		freemsg(mp);
11995 		return;
11996 	}
11997 
11998 
11999 	/*
12000 	 * if the conn_req_q is full defer passing up the
12001 	 * T_CONN_IND until space is availabe after t_accept()
12002 	 * processing
12003 	 */
12004 	mutex_enter(&listener->tcp_eager_lock);
12005 	if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) {
12006 		tcp_t *tail;
12007 
12008 		/*
12009 		 * The eager already has an extra ref put in tcp_rput_data
12010 		 * so that it stays till accept comes back even though it
12011 		 * might get into TCPS_CLOSED as a result of a TH_RST etc.
12012 		 */
12013 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
12014 		listener->tcp_conn_req_cnt_q0--;
12015 		listener->tcp_conn_req_cnt_q++;
12016 
12017 		/* Move from SYN_RCVD to ESTABLISHED list  */
12018 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12019 		    tcp->tcp_eager_prev_q0;
12020 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12021 		    tcp->tcp_eager_next_q0;
12022 		tcp->tcp_eager_prev_q0 = NULL;
12023 		tcp->tcp_eager_next_q0 = NULL;
12024 
12025 		/*
12026 		 * Insert at end of the queue because sockfs
12027 		 * sends down T_CONN_RES in chronological
12028 		 * order. Leaving the older conn indications
12029 		 * at front of the queue helps reducing search
12030 		 * time.
12031 		 */
12032 		tail = listener->tcp_eager_last_q;
12033 		if (tail != NULL)
12034 			tail->tcp_eager_next_q = tcp;
12035 		else
12036 			listener->tcp_eager_next_q = tcp;
12037 		listener->tcp_eager_last_q = tcp;
12038 		tcp->tcp_eager_next_q = NULL;
12039 		/*
12040 		 * Delay sending up the T_conn_ind until we are
12041 		 * done with the eager. Once we have have sent up
12042 		 * the T_conn_ind, the accept can potentially complete
12043 		 * any time and release the refhold we have on the eager.
12044 		 */
12045 		need_send_conn_ind = B_TRUE;
12046 	} else {
12047 		/*
12048 		 * Defer connection on q0 and set deferred
12049 		 * connection bit true
12050 		 */
12051 		tcp->tcp_conn_def_q0 = B_TRUE;
12052 
12053 		/* take tcp out of q0 ... */
12054 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12055 		    tcp->tcp_eager_next_q0;
12056 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12057 		    tcp->tcp_eager_prev_q0;
12058 
12059 		/* ... and place it at the end of q0 */
12060 		tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0;
12061 		tcp->tcp_eager_next_q0 = listener;
12062 		listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp;
12063 		listener->tcp_eager_prev_q0 = tcp;
12064 		tcp->tcp_conn.tcp_eager_conn_ind = mp;
12065 	}
12066 
12067 	/* we have timed out before */
12068 	if (tcp->tcp_syn_rcvd_timeout != 0) {
12069 		tcp->tcp_syn_rcvd_timeout = 0;
12070 		listener->tcp_syn_rcvd_timeout--;
12071 		if (listener->tcp_syn_defense &&
12072 		    listener->tcp_syn_rcvd_timeout <=
12073 		    (tcp_conn_req_max_q0 >> 5) &&
12074 		    10*MINUTES < TICK_TO_MSEC(lbolt64 -
12075 			listener->tcp_last_rcv_lbolt)) {
12076 			/*
12077 			 * Turn off the defense mode if we
12078 			 * believe the SYN attack is over.
12079 			 */
12080 			listener->tcp_syn_defense = B_FALSE;
12081 			if (listener->tcp_ip_addr_cache) {
12082 				kmem_free((void *)listener->tcp_ip_addr_cache,
12083 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
12084 				listener->tcp_ip_addr_cache = NULL;
12085 			}
12086 		}
12087 	}
12088 	addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
12089 	if (addr_cache != NULL) {
12090 		/*
12091 		 * We have finished a 3-way handshake with this
12092 		 * remote host. This proves the IP addr is good.
12093 		 * Cache it!
12094 		 */
12095 		addr_cache[IP_ADDR_CACHE_HASH(
12096 			tcp->tcp_remote)] = tcp->tcp_remote;
12097 	}
12098 	mutex_exit(&listener->tcp_eager_lock);
12099 	if (need_send_conn_ind)
12100 		putnext(listener->tcp_rq, mp);
12101 }
12102 
12103 mblk_t *
12104 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp,
12105     uint_t *ifindexp, ip6_pkt_t *ippp)
12106 {
12107 	in_pktinfo_t	*pinfo;
12108 	ip6_t		*ip6h;
12109 	uchar_t		*rptr;
12110 	mblk_t		*first_mp = mp;
12111 	boolean_t	mctl_present = B_FALSE;
12112 	uint_t 		ifindex = 0;
12113 	ip6_pkt_t	ipp;
12114 	uint_t		ipvers;
12115 	uint_t		ip_hdr_len;
12116 
12117 	rptr = mp->b_rptr;
12118 	ASSERT(OK_32PTR(rptr));
12119 	ASSERT(tcp != NULL);
12120 	ipp.ipp_fields = 0;
12121 
12122 	switch DB_TYPE(mp) {
12123 	case M_CTL:
12124 		mp = mp->b_cont;
12125 		if (mp == NULL) {
12126 			freemsg(first_mp);
12127 			return (NULL);
12128 		}
12129 		if (DB_TYPE(mp) != M_DATA) {
12130 			freemsg(first_mp);
12131 			return (NULL);
12132 		}
12133 		mctl_present = B_TRUE;
12134 		break;
12135 	case M_DATA:
12136 		break;
12137 	default:
12138 		cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type");
12139 		freemsg(mp);
12140 		return (NULL);
12141 	}
12142 	ipvers = IPH_HDR_VERSION(rptr);
12143 	if (ipvers == IPV4_VERSION) {
12144 		if (tcp == NULL) {
12145 			ip_hdr_len = IPH_HDR_LENGTH(rptr);
12146 			goto done;
12147 		}
12148 
12149 		ipp.ipp_fields |= IPPF_HOPLIMIT;
12150 		ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl;
12151 
12152 		/*
12153 		 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary
12154 		 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp.
12155 		 */
12156 		if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) &&
12157 		    mctl_present) {
12158 			pinfo = (in_pktinfo_t *)first_mp->b_rptr;
12159 			if ((MBLKL(first_mp) == sizeof (in_pktinfo_t)) &&
12160 			    (pinfo->in_pkt_ulp_type == IN_PKTINFO) &&
12161 			    (pinfo->in_pkt_flags & IPF_RECVIF)) {
12162 				ipp.ipp_fields |= IPPF_IFINDEX;
12163 				ipp.ipp_ifindex = pinfo->in_pkt_ifindex;
12164 				ifindex = pinfo->in_pkt_ifindex;
12165 			}
12166 			freeb(first_mp);
12167 			mctl_present = B_FALSE;
12168 		}
12169 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12170 	} else {
12171 		ip6h = (ip6_t *)rptr;
12172 
12173 		ASSERT(ipvers == IPV6_VERSION);
12174 		ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS;
12175 		ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20;
12176 		ipp.ipp_hoplimit = ip6h->ip6_hops;
12177 
12178 		if (ip6h->ip6_nxt != IPPROTO_TCP) {
12179 			uint8_t	nexthdrp;
12180 
12181 			/* Look for ifindex information */
12182 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
12183 				ip6i_t *ip6i = (ip6i_t *)ip6h;
12184 				if ((uchar_t *)&ip6i[1] > mp->b_wptr) {
12185 					BUMP_MIB(&ip_mib, tcpInErrs);
12186 					freemsg(first_mp);
12187 					return (NULL);
12188 				}
12189 
12190 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
12191 					ASSERT(ip6i->ip6i_ifindex != 0);
12192 					ipp.ipp_fields |= IPPF_IFINDEX;
12193 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
12194 					ifindex = ip6i->ip6i_ifindex;
12195 				}
12196 				rptr = (uchar_t *)&ip6i[1];
12197 				mp->b_rptr = rptr;
12198 				if (rptr == mp->b_wptr) {
12199 					mblk_t *mp1;
12200 					mp1 = mp->b_cont;
12201 					freeb(mp);
12202 					mp = mp1;
12203 					rptr = mp->b_rptr;
12204 				}
12205 				if (MBLKL(mp) < IPV6_HDR_LEN +
12206 				    sizeof (tcph_t)) {
12207 					BUMP_MIB(&ip_mib, tcpInErrs);
12208 					freemsg(first_mp);
12209 					return (NULL);
12210 				}
12211 				ip6h = (ip6_t *)rptr;
12212 			}
12213 
12214 			/*
12215 			 * Find any potentially interesting extension headers
12216 			 * as well as the length of the IPv6 + extension
12217 			 * headers.
12218 			 */
12219 			ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp);
12220 			/* Verify if this is a TCP packet */
12221 			if (nexthdrp != IPPROTO_TCP) {
12222 				BUMP_MIB(&ip_mib, tcpInErrs);
12223 				freemsg(first_mp);
12224 				return (NULL);
12225 			}
12226 		} else {
12227 			ip_hdr_len = IPV6_HDR_LEN;
12228 		}
12229 	}
12230 
12231 done:
12232 	if (ipversp != NULL)
12233 		*ipversp = ipvers;
12234 	if (ip_hdr_lenp != NULL)
12235 		*ip_hdr_lenp = ip_hdr_len;
12236 	if (ippp != NULL)
12237 		*ippp = ipp;
12238 	if (ifindexp != NULL)
12239 		*ifindexp = ifindex;
12240 	if (mctl_present) {
12241 		freeb(first_mp);
12242 	}
12243 	return (mp);
12244 }
12245 
12246 /*
12247  * Handle M_DATA messages from IP. Its called directly from IP via
12248  * squeue for AF_INET type sockets fast path. No M_CTL are expected
12249  * in this path.
12250  *
12251  * For everything else (including AF_INET6 sockets with 'tcp_ipversion'
12252  * v4 and v6), we are called through tcp_input() and a M_CTL can
12253  * be present for options but tcp_find_pktinfo() deals with it. We
12254  * only expect M_DATA packets after tcp_find_pktinfo() is done.
12255  *
12256  * The first argument is always the connp/tcp to which the mp belongs.
12257  * There are no exceptions to this rule. The caller has already put
12258  * a reference on this connp/tcp and once tcp_rput_data() returns,
12259  * the squeue will do the refrele.
12260  *
12261  * The TH_SYN for the listener directly go to tcp_conn_request via
12262  * squeue.
12263  *
12264  * sqp: NULL = recursive, sqp != NULL means called from squeue
12265  */
12266 void
12267 tcp_rput_data(void *arg, mblk_t *mp, void *arg2)
12268 {
12269 	int32_t		bytes_acked;
12270 	int32_t		gap;
12271 	mblk_t		*mp1;
12272 	uint_t		flags;
12273 	uint32_t	new_swnd = 0;
12274 	uchar_t		*iphdr;
12275 	uchar_t		*rptr;
12276 	int32_t		rgap;
12277 	uint32_t	seg_ack;
12278 	int		seg_len;
12279 	uint_t		ip_hdr_len;
12280 	uint32_t	seg_seq;
12281 	tcph_t		*tcph;
12282 	int		urp;
12283 	tcp_opt_t	tcpopt;
12284 	uint_t		ipvers;
12285 	ip6_pkt_t	ipp;
12286 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
12287 	uint32_t	cwnd;
12288 	uint32_t	add;
12289 	int		npkt;
12290 	int		mss;
12291 	conn_t		*connp = (conn_t *)arg;
12292 	squeue_t	*sqp = (squeue_t *)arg2;
12293 	tcp_t		*tcp = connp->conn_tcp;
12294 
12295 	/*
12296 	 * RST from fused tcp loopback peer should trigger an unfuse.
12297 	 */
12298 	if (tcp->tcp_fused) {
12299 		TCP_STAT(tcp_fusion_aborted);
12300 		tcp_unfuse(tcp);
12301 	}
12302 
12303 	iphdr = mp->b_rptr;
12304 	rptr = mp->b_rptr;
12305 	ASSERT(OK_32PTR(rptr));
12306 
12307 	/*
12308 	 * An AF_INET socket is not capable of receiving any pktinfo. Do inline
12309 	 * processing here. For rest call tcp_find_pktinfo to fill up the
12310 	 * necessary information.
12311 	 */
12312 	if (IPCL_IS_TCP4(connp)) {
12313 		ipvers = IPV4_VERSION;
12314 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12315 	} else {
12316 		mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len,
12317 		    NULL, &ipp);
12318 		if (mp == NULL) {
12319 			TCP_STAT(tcp_rput_v6_error);
12320 			return;
12321 		}
12322 		iphdr = mp->b_rptr;
12323 		rptr = mp->b_rptr;
12324 	}
12325 	ASSERT(DB_TYPE(mp) == M_DATA);
12326 
12327 	tcph = (tcph_t *)&rptr[ip_hdr_len];
12328 	seg_seq = ABE32_TO_U32(tcph->th_seq);
12329 	seg_ack = ABE32_TO_U32(tcph->th_ack);
12330 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
12331 	seg_len = (int)(mp->b_wptr - rptr) -
12332 	    (ip_hdr_len + TCP_HDR_LENGTH(tcph));
12333 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
12334 		do {
12335 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
12336 			    (uintptr_t)INT_MAX);
12337 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
12338 		} while ((mp1 = mp1->b_cont) != NULL &&
12339 		    mp1->b_datap->db_type == M_DATA);
12340 	}
12341 
12342 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
12343 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
12344 		    seg_len, tcph);
12345 		return;
12346 	}
12347 
12348 	if (sqp != NULL) {
12349 		/*
12350 		 * This is the correct place to update tcp_last_recv_time. Note
12351 		 * that it is also updated for tcp structure that belongs to
12352 		 * global and listener queues which do not really need updating.
12353 		 * But that should not cause any harm.  And it is updated for
12354 		 * all kinds of incoming segments, not only for data segments.
12355 		 */
12356 		tcp->tcp_last_recv_time = lbolt;
12357 	}
12358 
12359 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
12360 
12361 	BUMP_LOCAL(tcp->tcp_ibsegs);
12362 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
12363 
12364 	if ((flags & TH_URG) && sqp != NULL) {
12365 		/*
12366 		 * TCP can't handle urgent pointers that arrive before
12367 		 * the connection has been accept()ed since it can't
12368 		 * buffer OOB data.  Discard segment if this happens.
12369 		 *
12370 		 * Nor can it reassemble urgent pointers, so discard
12371 		 * if it's not the next segment expected.
12372 		 *
12373 		 * Otherwise, collapse chain into one mblk (discard if
12374 		 * that fails).  This makes sure the headers, retransmitted
12375 		 * data, and new data all are in the same mblk.
12376 		 */
12377 		ASSERT(mp != NULL);
12378 		if (tcp->tcp_listener || !pullupmsg(mp, -1)) {
12379 			freemsg(mp);
12380 			return;
12381 		}
12382 		/* Update pointers into message */
12383 		iphdr = rptr = mp->b_rptr;
12384 		tcph = (tcph_t *)&rptr[ip_hdr_len];
12385 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
12386 			/*
12387 			 * Since we can't handle any data with this urgent
12388 			 * pointer that is out of sequence, we expunge
12389 			 * the data.  This allows us to still register
12390 			 * the urgent mark and generate the M_PCSIG,
12391 			 * which we can do.
12392 			 */
12393 			mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
12394 			seg_len = 0;
12395 		}
12396 	}
12397 
12398 	switch (tcp->tcp_state) {
12399 	case TCPS_SYN_SENT:
12400 		if (flags & TH_ACK) {
12401 			/*
12402 			 * Note that our stack cannot send data before a
12403 			 * connection is established, therefore the
12404 			 * following check is valid.  Otherwise, it has
12405 			 * to be changed.
12406 			 */
12407 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
12408 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
12409 				freemsg(mp);
12410 				if (flags & TH_RST)
12411 					return;
12412 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
12413 				    tcp, seg_ack, 0, TH_RST);
12414 				return;
12415 			}
12416 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
12417 		}
12418 		if (flags & TH_RST) {
12419 			freemsg(mp);
12420 			if (flags & TH_ACK)
12421 				(void) tcp_clean_death(tcp,
12422 				    ECONNREFUSED, 13);
12423 			return;
12424 		}
12425 		if (!(flags & TH_SYN)) {
12426 			freemsg(mp);
12427 			return;
12428 		}
12429 
12430 		/* Process all TCP options. */
12431 		tcp_process_options(tcp, tcph);
12432 		/*
12433 		 * The following changes our rwnd to be a multiple of the
12434 		 * MIN(peer MSS, our MSS) for performance reason.
12435 		 */
12436 		(void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat,
12437 		    tcp->tcp_mss));
12438 
12439 		/* Is the other end ECN capable? */
12440 		if (tcp->tcp_ecn_ok) {
12441 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
12442 				tcp->tcp_ecn_ok = B_FALSE;
12443 			}
12444 		}
12445 		/*
12446 		 * Clear ECN flags because it may interfere with later
12447 		 * processing.
12448 		 */
12449 		flags &= ~(TH_ECE|TH_CWR);
12450 
12451 		tcp->tcp_irs = seg_seq;
12452 		tcp->tcp_rack = seg_seq;
12453 		tcp->tcp_rnxt = seg_seq + 1;
12454 		U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
12455 		if (!TCP_IS_DETACHED(tcp)) {
12456 			/* Allocate room for SACK options if needed. */
12457 			if (tcp->tcp_snd_sack_ok) {
12458 				(void) mi_set_sth_wroff(tcp->tcp_rq,
12459 				    tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
12460 				    (tcp->tcp_loopback ? 0 : tcp_wroff_xtra));
12461 			} else {
12462 				(void) mi_set_sth_wroff(tcp->tcp_rq,
12463 				    tcp->tcp_hdr_len +
12464 				    (tcp->tcp_loopback ? 0 : tcp_wroff_xtra));
12465 			}
12466 		}
12467 		if (flags & TH_ACK) {
12468 			/*
12469 			 * If we can't get the confirmation upstream, pretend
12470 			 * we didn't even see this one.
12471 			 *
12472 			 * XXX: how can we pretend we didn't see it if we
12473 			 * have updated rnxt et. al.
12474 			 *
12475 			 * For loopback we defer sending up the T_CONN_CON
12476 			 * until after some checks below.
12477 			 */
12478 			mp1 = NULL;
12479 			if (!tcp_conn_con(tcp, iphdr, tcph, mp,
12480 			    tcp->tcp_loopback ? &mp1 : NULL)) {
12481 				freemsg(mp);
12482 				return;
12483 			}
12484 			/* SYN was acked - making progress */
12485 			if (tcp->tcp_ipversion == IPV6_VERSION)
12486 				tcp->tcp_ip_forward_progress = B_TRUE;
12487 
12488 			/* One for the SYN */
12489 			tcp->tcp_suna = tcp->tcp_iss + 1;
12490 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
12491 			tcp->tcp_state = TCPS_ESTABLISHED;
12492 
12493 			/*
12494 			 * If SYN was retransmitted, need to reset all
12495 			 * retransmission info.  This is because this
12496 			 * segment will be treated as a dup ACK.
12497 			 */
12498 			if (tcp->tcp_rexmit) {
12499 				tcp->tcp_rexmit = B_FALSE;
12500 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
12501 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
12502 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
12503 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
12504 				tcp->tcp_ms_we_have_waited = 0;
12505 
12506 				/*
12507 				 * Set tcp_cwnd back to 1 MSS, per
12508 				 * recommendation from
12509 				 * draft-floyd-incr-init-win-01.txt,
12510 				 * Increasing TCP's Initial Window.
12511 				 */
12512 				tcp->tcp_cwnd = tcp->tcp_mss;
12513 			}
12514 
12515 			tcp->tcp_swl1 = seg_seq;
12516 			tcp->tcp_swl2 = seg_ack;
12517 
12518 			new_swnd = BE16_TO_U16(tcph->th_win);
12519 			tcp->tcp_swnd = new_swnd;
12520 			if (new_swnd > tcp->tcp_max_swnd)
12521 				tcp->tcp_max_swnd = new_swnd;
12522 
12523 			/*
12524 			 * Always send the three-way handshake ack immediately
12525 			 * in order to make the connection complete as soon as
12526 			 * possible on the accepting host.
12527 			 */
12528 			flags |= TH_ACK_NEEDED;
12529 
12530 			/*
12531 			 * Special case for loopback.  At this point we have
12532 			 * received SYN-ACK from the remote endpoint.  In
12533 			 * order to ensure that both endpoints reach the
12534 			 * fused state prior to any data exchange, the final
12535 			 * ACK needs to be sent before we indicate T_CONN_CON
12536 			 * to the module upstream.
12537 			 */
12538 			if (tcp->tcp_loopback) {
12539 				mblk_t *ack_mp;
12540 
12541 				ASSERT(!tcp->tcp_unfusable);
12542 				ASSERT(mp1 != NULL);
12543 				/*
12544 				 * For loopback, we always get a pure SYN-ACK
12545 				 * and only need to send back the final ACK
12546 				 * with no data (this is because the other
12547 				 * tcp is ours and we don't do T/TCP).  This
12548 				 * final ACK triggers the passive side to
12549 				 * perform fusion in ESTABLISHED state.
12550 				 */
12551 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
12552 					if (tcp->tcp_ack_tid != 0) {
12553 						(void) TCP_TIMER_CANCEL(tcp,
12554 						    tcp->tcp_ack_tid);
12555 						tcp->tcp_ack_tid = 0;
12556 					}
12557 					TCP_RECORD_TRACE(tcp, ack_mp,
12558 					    TCP_TRACE_SEND_PKT);
12559 					tcp_send_data(tcp, tcp->tcp_wq, ack_mp);
12560 					BUMP_LOCAL(tcp->tcp_obsegs);
12561 					BUMP_MIB(&tcp_mib, tcpOutAck);
12562 
12563 					/* Send up T_CONN_CON */
12564 					putnext(tcp->tcp_rq, mp1);
12565 
12566 					freemsg(mp);
12567 					return;
12568 				}
12569 				/*
12570 				 * Forget fusion; we need to handle more
12571 				 * complex cases below.  Send the deferred
12572 				 * T_CONN_CON message upstream and proceed
12573 				 * as usual.  Mark this tcp as not capable
12574 				 * of fusion.
12575 				 */
12576 				TCP_STAT(tcp_fusion_unfusable);
12577 				tcp->tcp_unfusable = B_TRUE;
12578 				putnext(tcp->tcp_rq, mp1);
12579 			}
12580 
12581 			/*
12582 			 * Check to see if there is data to be sent.  If
12583 			 * yes, set the transmit flag.  Then check to see
12584 			 * if received data processing needs to be done.
12585 			 * If not, go straight to xmit_check.  This short
12586 			 * cut is OK as we don't support T/TCP.
12587 			 */
12588 			if (tcp->tcp_unsent)
12589 				flags |= TH_XMIT_NEEDED;
12590 
12591 			if (seg_len == 0 && !(flags & TH_URG)) {
12592 				freemsg(mp);
12593 				goto xmit_check;
12594 			}
12595 
12596 			flags &= ~TH_SYN;
12597 			seg_seq++;
12598 			break;
12599 		}
12600 		tcp->tcp_state = TCPS_SYN_RCVD;
12601 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
12602 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
12603 		if (mp1) {
12604 			mblk_setcred(mp1, tcp->tcp_cred);
12605 			DB_CPID(mp1) = tcp->tcp_cpid;
12606 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
12607 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
12608 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
12609 		}
12610 		freemsg(mp);
12611 		return;
12612 	case TCPS_SYN_RCVD:
12613 		if (flags & TH_ACK) {
12614 			/*
12615 			 * In this state, a SYN|ACK packet is either bogus
12616 			 * because the other side must be ACKing our SYN which
12617 			 * indicates it has seen the ACK for their SYN and
12618 			 * shouldn't retransmit it or we're crossing SYNs
12619 			 * on active open.
12620 			 */
12621 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
12622 				freemsg(mp);
12623 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
12624 				    tcp, seg_ack, 0, TH_RST);
12625 				return;
12626 			}
12627 			/*
12628 			 * NOTE: RFC 793 pg. 72 says this should be
12629 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
12630 			 * but that would mean we have an ack that ignored
12631 			 * our SYN.
12632 			 */
12633 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
12634 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
12635 				freemsg(mp);
12636 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
12637 				    tcp, seg_ack, 0, TH_RST);
12638 				return;
12639 			}
12640 		}
12641 		break;
12642 	case TCPS_LISTEN:
12643 		/*
12644 		 * Only a TLI listener can come through this path when a
12645 		 * acceptor is going back to be a listener and a packet
12646 		 * for the acceptor hits the classifier. For a socket
12647 		 * listener, this can never happen because a listener
12648 		 * can never accept connection on itself and hence a
12649 		 * socket acceptor can not go back to being a listener.
12650 		 */
12651 		ASSERT(!TCP_IS_SOCKET(tcp));
12652 		/*FALLTHRU*/
12653 	case TCPS_CLOSED:
12654 	case TCPS_BOUND: {
12655 		conn_t	*new_connp;
12656 
12657 		new_connp = ipcl_classify(mp, connp->conn_zoneid);
12658 		if (new_connp != NULL) {
12659 			tcp_reinput(new_connp, mp, connp->conn_sqp);
12660 			return;
12661 		}
12662 		/* We failed to classify. For now just drop the packet */
12663 		freemsg(mp);
12664 		return;
12665 	}
12666 	case TCPS_IDLE:
12667 		/*
12668 		 * Handle the case where the tcp_clean_death() has happened
12669 		 * on a connection (application hasn't closed yet) but a packet
12670 		 * was already queued on squeue before tcp_clean_death()
12671 		 * was processed. Calling tcp_clean_death() twice on same
12672 		 * connection can result in weird behaviour.
12673 		 */
12674 		freemsg(mp);
12675 		return;
12676 	default:
12677 		break;
12678 	}
12679 
12680 	/*
12681 	 * Already on the correct queue/perimeter.
12682 	 * If this is a detached connection and not an eager
12683 	 * connection hanging off a listener then new data
12684 	 * (past the FIN) will cause a reset.
12685 	 * We do a special check here where it
12686 	 * is out of the main line, rather than check
12687 	 * if we are detached every time we see new
12688 	 * data down below.
12689 	 */
12690 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
12691 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
12692 		BUMP_MIB(&tcp_mib, tcpInClosed);
12693 		TCP_RECORD_TRACE(tcp,
12694 		    mp, TCP_TRACE_RECV_PKT);
12695 
12696 		freemsg(mp);
12697 		/*
12698 		 * This could be an SSL closure alert. We're detached so just
12699 		 * acknowledge it this last time.
12700 		 */
12701 		if (tcp->tcp_kssl_ctx != NULL) {
12702 			kssl_release_ctx(tcp->tcp_kssl_ctx);
12703 			tcp->tcp_kssl_ctx = NULL;
12704 
12705 			tcp->tcp_rnxt += seg_len;
12706 			U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
12707 			flags |= TH_ACK_NEEDED;
12708 			goto ack_check;
12709 		}
12710 
12711 		tcp_xmit_ctl("new data when detached", tcp,
12712 		    tcp->tcp_snxt, 0, TH_RST);
12713 		(void) tcp_clean_death(tcp, EPROTO, 12);
12714 		return;
12715 	}
12716 
12717 	mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
12718 	urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION;
12719 	new_swnd = BE16_TO_U16(tcph->th_win) <<
12720 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
12721 	mss = tcp->tcp_mss;
12722 
12723 	if (tcp->tcp_snd_ts_ok) {
12724 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
12725 			/*
12726 			 * This segment is not acceptable.
12727 			 * Drop it and send back an ACK.
12728 			 */
12729 			freemsg(mp);
12730 			flags |= TH_ACK_NEEDED;
12731 			goto ack_check;
12732 		}
12733 	} else if (tcp->tcp_snd_sack_ok) {
12734 		ASSERT(tcp->tcp_sack_info != NULL);
12735 		tcpopt.tcp = tcp;
12736 		/*
12737 		 * SACK info in already updated in tcp_parse_options.  Ignore
12738 		 * all other TCP options...
12739 		 */
12740 		(void) tcp_parse_options(tcph, &tcpopt);
12741 	}
12742 try_again:;
12743 	gap = seg_seq - tcp->tcp_rnxt;
12744 	rgap = tcp->tcp_rwnd - (gap + seg_len);
12745 	/*
12746 	 * gap is the amount of sequence space between what we expect to see
12747 	 * and what we got for seg_seq.  A positive value for gap means
12748 	 * something got lost.  A negative value means we got some old stuff.
12749 	 */
12750 	if (gap < 0) {
12751 		/* Old stuff present.  Is the SYN in there? */
12752 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
12753 		    (seg_len != 0)) {
12754 			flags &= ~TH_SYN;
12755 			seg_seq++;
12756 			urp--;
12757 			/* Recompute the gaps after noting the SYN. */
12758 			goto try_again;
12759 		}
12760 		BUMP_MIB(&tcp_mib, tcpInDataDupSegs);
12761 		UPDATE_MIB(&tcp_mib, tcpInDataDupBytes,
12762 		    (seg_len > -gap ? -gap : seg_len));
12763 		/* Remove the old stuff from seg_len. */
12764 		seg_len += gap;
12765 		/*
12766 		 * Anything left?
12767 		 * Make sure to check for unack'd FIN when rest of data
12768 		 * has been previously ack'd.
12769 		 */
12770 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
12771 			/*
12772 			 * Resets are only valid if they lie within our offered
12773 			 * window.  If the RST bit is set, we just ignore this
12774 			 * segment.
12775 			 */
12776 			if (flags & TH_RST) {
12777 				freemsg(mp);
12778 				return;
12779 			}
12780 
12781 			/*
12782 			 * The arriving of dup data packets indicate that we
12783 			 * may have postponed an ack for too long, or the other
12784 			 * side's RTT estimate is out of shape. Start acking
12785 			 * more often.
12786 			 */
12787 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
12788 			    tcp->tcp_rack_cnt >= 1 &&
12789 			    tcp->tcp_rack_abs_max > 2) {
12790 				tcp->tcp_rack_abs_max--;
12791 			}
12792 			tcp->tcp_rack_cur_max = 1;
12793 
12794 			/*
12795 			 * This segment is "unacceptable".  None of its
12796 			 * sequence space lies within our advertized window.
12797 			 *
12798 			 * Adjust seg_len to the original value for tracing.
12799 			 */
12800 			seg_len -= gap;
12801 			if (tcp->tcp_debug) {
12802 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
12803 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
12804 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
12805 				    "seg_len %d, rnxt %u, snxt %u, %s",
12806 				    gap, rgap, flags, seg_seq, seg_ack,
12807 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
12808 				    tcp_display(tcp, NULL,
12809 				    DISP_ADDR_AND_PORT));
12810 			}
12811 
12812 			/*
12813 			 * Arrange to send an ACK in response to the
12814 			 * unacceptable segment per RFC 793 page 69. There
12815 			 * is only one small difference between ours and the
12816 			 * acceptability test in the RFC - we accept ACK-only
12817 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
12818 			 * will be generated.
12819 			 *
12820 			 * Note that we have to ACK an ACK-only packet at least
12821 			 * for stacks that send 0-length keep-alives with
12822 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
12823 			 * section 4.2.3.6. As long as we don't ever generate
12824 			 * an unacceptable packet in response to an incoming
12825 			 * packet that is unacceptable, it should not cause
12826 			 * "ACK wars".
12827 			 */
12828 			flags |=  TH_ACK_NEEDED;
12829 
12830 			/*
12831 			 * Continue processing this segment in order to use the
12832 			 * ACK information it contains, but skip all other
12833 			 * sequence-number processing.	Processing the ACK
12834 			 * information is necessary in order to
12835 			 * re-synchronize connections that may have lost
12836 			 * synchronization.
12837 			 *
12838 			 * We clear seg_len and flag fields related to
12839 			 * sequence number processing as they are not
12840 			 * to be trusted for an unacceptable segment.
12841 			 */
12842 			seg_len = 0;
12843 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
12844 			goto process_ack;
12845 		}
12846 
12847 		/* Fix seg_seq, and chew the gap off the front. */
12848 		seg_seq = tcp->tcp_rnxt;
12849 		urp += gap;
12850 		do {
12851 			mblk_t	*mp2;
12852 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
12853 			    (uintptr_t)UINT_MAX);
12854 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
12855 			if (gap > 0) {
12856 				mp->b_rptr = mp->b_wptr - gap;
12857 				break;
12858 			}
12859 			mp2 = mp;
12860 			mp = mp->b_cont;
12861 			freeb(mp2);
12862 		} while (gap < 0);
12863 		/*
12864 		 * If the urgent data has already been acknowledged, we
12865 		 * should ignore TH_URG below
12866 		 */
12867 		if (urp < 0)
12868 			flags &= ~TH_URG;
12869 	}
12870 	/*
12871 	 * rgap is the amount of stuff received out of window.  A negative
12872 	 * value is the amount out of window.
12873 	 */
12874 	if (rgap < 0) {
12875 		mblk_t	*mp2;
12876 
12877 		if (tcp->tcp_rwnd == 0) {
12878 			BUMP_MIB(&tcp_mib, tcpInWinProbe);
12879 		} else {
12880 			BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs);
12881 			UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap);
12882 		}
12883 
12884 		/*
12885 		 * seg_len does not include the FIN, so if more than
12886 		 * just the FIN is out of window, we act like we don't
12887 		 * see it.  (If just the FIN is out of window, rgap
12888 		 * will be zero and we will go ahead and acknowledge
12889 		 * the FIN.)
12890 		 */
12891 		flags &= ~TH_FIN;
12892 
12893 		/* Fix seg_len and make sure there is something left. */
12894 		seg_len += rgap;
12895 		if (seg_len <= 0) {
12896 			/*
12897 			 * Resets are only valid if they lie within our offered
12898 			 * window.  If the RST bit is set, we just ignore this
12899 			 * segment.
12900 			 */
12901 			if (flags & TH_RST) {
12902 				freemsg(mp);
12903 				return;
12904 			}
12905 
12906 			/* Per RFC 793, we need to send back an ACK. */
12907 			flags |= TH_ACK_NEEDED;
12908 
12909 			/*
12910 			 * Send SIGURG as soon as possible i.e. even
12911 			 * if the TH_URG was delivered in a window probe
12912 			 * packet (which will be unacceptable).
12913 			 *
12914 			 * We generate a signal if none has been generated
12915 			 * for this connection or if this is a new urgent
12916 			 * byte. Also send a zero-length "unmarked" message
12917 			 * to inform SIOCATMARK that this is not the mark.
12918 			 *
12919 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
12920 			 * is sent up. This plus the check for old data
12921 			 * (gap >= 0) handles the wraparound of the sequence
12922 			 * number space without having to always track the
12923 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
12924 			 * this max in its rcv_up variable).
12925 			 *
12926 			 * This prevents duplicate SIGURGS due to a "late"
12927 			 * zero-window probe when the T_EXDATA_IND has already
12928 			 * been sent up.
12929 			 */
12930 			if ((flags & TH_URG) &&
12931 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
12932 			    tcp->tcp_urp_last))) {
12933 				mp1 = allocb(0, BPRI_MED);
12934 				if (mp1 == NULL) {
12935 					freemsg(mp);
12936 					return;
12937 				}
12938 				if (!TCP_IS_DETACHED(tcp) &&
12939 				    !putnextctl1(tcp->tcp_rq, M_PCSIG,
12940 				    SIGURG)) {
12941 					/* Try again on the rexmit. */
12942 					freemsg(mp1);
12943 					freemsg(mp);
12944 					return;
12945 				}
12946 				/*
12947 				 * If the next byte would be the mark
12948 				 * then mark with MARKNEXT else mark
12949 				 * with NOTMARKNEXT.
12950 				 */
12951 				if (gap == 0 && urp == 0)
12952 					mp1->b_flag |= MSGMARKNEXT;
12953 				else
12954 					mp1->b_flag |= MSGNOTMARKNEXT;
12955 				freemsg(tcp->tcp_urp_mark_mp);
12956 				tcp->tcp_urp_mark_mp = mp1;
12957 				flags |= TH_SEND_URP_MARK;
12958 				tcp->tcp_urp_last_valid = B_TRUE;
12959 				tcp->tcp_urp_last = urp + seg_seq;
12960 			}
12961 			/*
12962 			 * If this is a zero window probe, continue to
12963 			 * process the ACK part.  But we need to set seg_len
12964 			 * to 0 to avoid data processing.  Otherwise just
12965 			 * drop the segment and send back an ACK.
12966 			 */
12967 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
12968 				flags &= ~(TH_SYN | TH_URG);
12969 				seg_len = 0;
12970 				goto process_ack;
12971 			} else {
12972 				freemsg(mp);
12973 				goto ack_check;
12974 			}
12975 		}
12976 		/* Pitch out of window stuff off the end. */
12977 		rgap = seg_len;
12978 		mp2 = mp;
12979 		do {
12980 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
12981 			    (uintptr_t)INT_MAX);
12982 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
12983 			if (rgap < 0) {
12984 				mp2->b_wptr += rgap;
12985 				if ((mp1 = mp2->b_cont) != NULL) {
12986 					mp2->b_cont = NULL;
12987 					freemsg(mp1);
12988 				}
12989 				break;
12990 			}
12991 		} while ((mp2 = mp2->b_cont) != NULL);
12992 	}
12993 ok:;
12994 	/*
12995 	 * TCP should check ECN info for segments inside the window only.
12996 	 * Therefore the check should be done here.
12997 	 */
12998 	if (tcp->tcp_ecn_ok) {
12999 		if (flags & TH_CWR) {
13000 			tcp->tcp_ecn_echo_on = B_FALSE;
13001 		}
13002 		/*
13003 		 * Note that both ECN_CE and CWR can be set in the
13004 		 * same segment.  In this case, we once again turn
13005 		 * on ECN_ECHO.
13006 		 */
13007 		if (tcp->tcp_ipversion == IPV4_VERSION) {
13008 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
13009 
13010 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
13011 				tcp->tcp_ecn_echo_on = B_TRUE;
13012 			}
13013 		} else {
13014 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
13015 
13016 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
13017 			    htonl(IPH_ECN_CE << 20)) {
13018 				tcp->tcp_ecn_echo_on = B_TRUE;
13019 			}
13020 		}
13021 	}
13022 
13023 	/*
13024 	 * Check whether we can update tcp_ts_recent.  This test is
13025 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
13026 	 * Extensions for High Performance: An Update", Internet Draft.
13027 	 */
13028 	if (tcp->tcp_snd_ts_ok &&
13029 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
13030 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
13031 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
13032 		tcp->tcp_last_rcv_lbolt = lbolt64;
13033 	}
13034 
13035 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
13036 		/*
13037 		 * FIN in an out of order segment.  We record this in
13038 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
13039 		 * Clear the FIN so that any check on FIN flag will fail.
13040 		 * Remember that FIN also counts in the sequence number
13041 		 * space.  So we need to ack out of order FIN only segments.
13042 		 */
13043 		if (flags & TH_FIN) {
13044 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
13045 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
13046 			flags &= ~TH_FIN;
13047 			flags |= TH_ACK_NEEDED;
13048 		}
13049 		if (seg_len > 0) {
13050 			/* Fill in the SACK blk list. */
13051 			if (tcp->tcp_snd_sack_ok) {
13052 				ASSERT(tcp->tcp_sack_info != NULL);
13053 				tcp_sack_insert(tcp->tcp_sack_list,
13054 				    seg_seq, seg_seq + seg_len,
13055 				    &(tcp->tcp_num_sack_blk));
13056 			}
13057 
13058 			/*
13059 			 * Attempt reassembly and see if we have something
13060 			 * ready to go.
13061 			 */
13062 			mp = tcp_reass(tcp, mp, seg_seq);
13063 			/* Always ack out of order packets */
13064 			flags |= TH_ACK_NEEDED | TH_PUSH;
13065 			if (mp) {
13066 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13067 				    (uintptr_t)INT_MAX);
13068 				seg_len = mp->b_cont ? msgdsize(mp) :
13069 					(int)(mp->b_wptr - mp->b_rptr);
13070 				seg_seq = tcp->tcp_rnxt;
13071 				/*
13072 				 * A gap is filled and the seq num and len
13073 				 * of the gap match that of a previously
13074 				 * received FIN, put the FIN flag back in.
13075 				 */
13076 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13077 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13078 					flags |= TH_FIN;
13079 					tcp->tcp_valid_bits &=
13080 					    ~TCP_OFO_FIN_VALID;
13081 				}
13082 			} else {
13083 				/*
13084 				 * Keep going even with NULL mp.
13085 				 * There may be a useful ACK or something else
13086 				 * we don't want to miss.
13087 				 *
13088 				 * But TCP should not perform fast retransmit
13089 				 * because of the ack number.  TCP uses
13090 				 * seg_len == 0 to determine if it is a pure
13091 				 * ACK.  And this is not a pure ACK.
13092 				 */
13093 				seg_len = 0;
13094 				ofo_seg = B_TRUE;
13095 			}
13096 		}
13097 	} else if (seg_len > 0) {
13098 		BUMP_MIB(&tcp_mib, tcpInDataInorderSegs);
13099 		UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len);
13100 		/*
13101 		 * If an out of order FIN was received before, and the seq
13102 		 * num and len of the new segment match that of the FIN,
13103 		 * put the FIN flag back in.
13104 		 */
13105 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13106 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13107 			flags |= TH_FIN;
13108 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
13109 		}
13110 	}
13111 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
13112 	if (flags & TH_RST) {
13113 		freemsg(mp);
13114 		switch (tcp->tcp_state) {
13115 		case TCPS_SYN_RCVD:
13116 			(void) tcp_clean_death(tcp, ECONNREFUSED, 14);
13117 			break;
13118 		case TCPS_ESTABLISHED:
13119 		case TCPS_FIN_WAIT_1:
13120 		case TCPS_FIN_WAIT_2:
13121 		case TCPS_CLOSE_WAIT:
13122 			(void) tcp_clean_death(tcp, ECONNRESET, 15);
13123 			break;
13124 		case TCPS_CLOSING:
13125 		case TCPS_LAST_ACK:
13126 			(void) tcp_clean_death(tcp, 0, 16);
13127 			break;
13128 		default:
13129 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13130 			(void) tcp_clean_death(tcp, ENXIO, 17);
13131 			break;
13132 		}
13133 		return;
13134 	}
13135 	if (flags & TH_SYN) {
13136 		/*
13137 		 * See RFC 793, Page 71
13138 		 *
13139 		 * The seq number must be in the window as it should
13140 		 * be "fixed" above.  If it is outside window, it should
13141 		 * be already rejected.  Note that we allow seg_seq to be
13142 		 * rnxt + rwnd because we want to accept 0 window probe.
13143 		 */
13144 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
13145 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
13146 		freemsg(mp);
13147 		/*
13148 		 * If the ACK flag is not set, just use our snxt as the
13149 		 * seq number of the RST segment.
13150 		 */
13151 		if (!(flags & TH_ACK)) {
13152 			seg_ack = tcp->tcp_snxt;
13153 		}
13154 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
13155 		    TH_RST|TH_ACK);
13156 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13157 		(void) tcp_clean_death(tcp, ECONNRESET, 18);
13158 		return;
13159 	}
13160 	/*
13161 	 * urp could be -1 when the urp field in the packet is 0
13162 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
13163 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
13164 	 */
13165 	if (flags & TH_URG && urp >= 0) {
13166 		if (!tcp->tcp_urp_last_valid ||
13167 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
13168 			/*
13169 			 * If we haven't generated the signal yet for this
13170 			 * urgent pointer value, do it now.  Also, send up a
13171 			 * zero-length M_DATA indicating whether or not this is
13172 			 * the mark. The latter is not needed when a
13173 			 * T_EXDATA_IND is sent up. However, if there are
13174 			 * allocation failures this code relies on the sender
13175 			 * retransmitting and the socket code for determining
13176 			 * the mark should not block waiting for the peer to
13177 			 * transmit. Thus, for simplicity we always send up the
13178 			 * mark indication.
13179 			 */
13180 			mp1 = allocb(0, BPRI_MED);
13181 			if (mp1 == NULL) {
13182 				freemsg(mp);
13183 				return;
13184 			}
13185 			if (!TCP_IS_DETACHED(tcp) &&
13186 			    !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) {
13187 				/* Try again on the rexmit. */
13188 				freemsg(mp1);
13189 				freemsg(mp);
13190 				return;
13191 			}
13192 			/*
13193 			 * Mark with NOTMARKNEXT for now.
13194 			 * The code below will change this to MARKNEXT
13195 			 * if we are at the mark.
13196 			 *
13197 			 * If there are allocation failures (e.g. in dupmsg
13198 			 * below) the next time tcp_rput_data sees the urgent
13199 			 * segment it will send up the MSG*MARKNEXT message.
13200 			 */
13201 			mp1->b_flag |= MSGNOTMARKNEXT;
13202 			freemsg(tcp->tcp_urp_mark_mp);
13203 			tcp->tcp_urp_mark_mp = mp1;
13204 			flags |= TH_SEND_URP_MARK;
13205 #ifdef DEBUG
13206 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13207 			    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
13208 			    "last %x, %s",
13209 			    seg_seq, urp, tcp->tcp_urp_last,
13210 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13211 #endif /* DEBUG */
13212 			tcp->tcp_urp_last_valid = B_TRUE;
13213 			tcp->tcp_urp_last = urp + seg_seq;
13214 		} else if (tcp->tcp_urp_mark_mp != NULL) {
13215 			/*
13216 			 * An allocation failure prevented the previous
13217 			 * tcp_rput_data from sending up the allocated
13218 			 * MSG*MARKNEXT message - send it up this time
13219 			 * around.
13220 			 */
13221 			flags |= TH_SEND_URP_MARK;
13222 		}
13223 
13224 		/*
13225 		 * If the urgent byte is in this segment, make sure that it is
13226 		 * all by itself.  This makes it much easier to deal with the
13227 		 * possibility of an allocation failure on the T_exdata_ind.
13228 		 * Note that seg_len is the number of bytes in the segment, and
13229 		 * urp is the offset into the segment of the urgent byte.
13230 		 * urp < seg_len means that the urgent byte is in this segment.
13231 		 */
13232 		if (urp < seg_len) {
13233 			if (seg_len != 1) {
13234 				uint32_t  tmp_rnxt;
13235 				/*
13236 				 * Break it up and feed it back in.
13237 				 * Re-attach the IP header.
13238 				 */
13239 				mp->b_rptr = iphdr;
13240 				if (urp > 0) {
13241 					/*
13242 					 * There is stuff before the urgent
13243 					 * byte.
13244 					 */
13245 					mp1 = dupmsg(mp);
13246 					if (!mp1) {
13247 						/*
13248 						 * Trim from urgent byte on.
13249 						 * The rest will come back.
13250 						 */
13251 						(void) adjmsg(mp,
13252 						    urp - seg_len);
13253 						tcp_rput_data(connp,
13254 						    mp, NULL);
13255 						return;
13256 					}
13257 					(void) adjmsg(mp1, urp - seg_len);
13258 					/* Feed this piece back in. */
13259 					tmp_rnxt = tcp->tcp_rnxt;
13260 					tcp_rput_data(connp, mp1, NULL);
13261 					/*
13262 					 * If the data passed back in was not
13263 					 * processed (ie: bad ACK) sending
13264 					 * the remainder back in will cause a
13265 					 * loop. In this case, drop the
13266 					 * packet and let the sender try
13267 					 * sending a good packet.
13268 					 */
13269 					if (tmp_rnxt == tcp->tcp_rnxt) {
13270 						freemsg(mp);
13271 						return;
13272 					}
13273 				}
13274 				if (urp != seg_len - 1) {
13275 					uint32_t  tmp_rnxt;
13276 					/*
13277 					 * There is stuff after the urgent
13278 					 * byte.
13279 					 */
13280 					mp1 = dupmsg(mp);
13281 					if (!mp1) {
13282 						/*
13283 						 * Trim everything beyond the
13284 						 * urgent byte.  The rest will
13285 						 * come back.
13286 						 */
13287 						(void) adjmsg(mp,
13288 						    urp + 1 - seg_len);
13289 						tcp_rput_data(connp,
13290 						    mp, NULL);
13291 						return;
13292 					}
13293 					(void) adjmsg(mp1, urp + 1 - seg_len);
13294 					tmp_rnxt = tcp->tcp_rnxt;
13295 					tcp_rput_data(connp, mp1, NULL);
13296 					/*
13297 					 * If the data passed back in was not
13298 					 * processed (ie: bad ACK) sending
13299 					 * the remainder back in will cause a
13300 					 * loop. In this case, drop the
13301 					 * packet and let the sender try
13302 					 * sending a good packet.
13303 					 */
13304 					if (tmp_rnxt == tcp->tcp_rnxt) {
13305 						freemsg(mp);
13306 						return;
13307 					}
13308 				}
13309 				tcp_rput_data(connp, mp, NULL);
13310 				return;
13311 			}
13312 			/*
13313 			 * This segment contains only the urgent byte.  We
13314 			 * have to allocate the T_exdata_ind, if we can.
13315 			 */
13316 			if (!tcp->tcp_urp_mp) {
13317 				struct T_exdata_ind *tei;
13318 				mp1 = allocb(sizeof (struct T_exdata_ind),
13319 				    BPRI_MED);
13320 				if (!mp1) {
13321 					/*
13322 					 * Sigh... It'll be back.
13323 					 * Generate any MSG*MARK message now.
13324 					 */
13325 					freemsg(mp);
13326 					seg_len = 0;
13327 					if (flags & TH_SEND_URP_MARK) {
13328 
13329 
13330 						ASSERT(tcp->tcp_urp_mark_mp);
13331 						tcp->tcp_urp_mark_mp->b_flag &=
13332 							~MSGNOTMARKNEXT;
13333 						tcp->tcp_urp_mark_mp->b_flag |=
13334 							MSGMARKNEXT;
13335 					}
13336 					goto ack_check;
13337 				}
13338 				mp1->b_datap->db_type = M_PROTO;
13339 				tei = (struct T_exdata_ind *)mp1->b_rptr;
13340 				tei->PRIM_type = T_EXDATA_IND;
13341 				tei->MORE_flag = 0;
13342 				mp1->b_wptr = (uchar_t *)&tei[1];
13343 				tcp->tcp_urp_mp = mp1;
13344 #ifdef DEBUG
13345 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13346 				    "tcp_rput: allocated exdata_ind %s",
13347 				    tcp_display(tcp, NULL,
13348 				    DISP_PORT_ONLY));
13349 #endif /* DEBUG */
13350 				/*
13351 				 * There is no need to send a separate MSG*MARK
13352 				 * message since the T_EXDATA_IND will be sent
13353 				 * now.
13354 				 */
13355 				flags &= ~TH_SEND_URP_MARK;
13356 				freemsg(tcp->tcp_urp_mark_mp);
13357 				tcp->tcp_urp_mark_mp = NULL;
13358 			}
13359 			/*
13360 			 * Now we are all set.  On the next putnext upstream,
13361 			 * tcp_urp_mp will be non-NULL and will get prepended
13362 			 * to what has to be this piece containing the urgent
13363 			 * byte.  If for any reason we abort this segment below,
13364 			 * if it comes back, we will have this ready, or it
13365 			 * will get blown off in close.
13366 			 */
13367 		} else if (urp == seg_len) {
13368 			/*
13369 			 * The urgent byte is the next byte after this sequence
13370 			 * number. If there is data it is marked with
13371 			 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded
13372 			 * since it is not needed. Otherwise, if the code
13373 			 * above just allocated a zero-length tcp_urp_mark_mp
13374 			 * message, that message is tagged with MSGMARKNEXT.
13375 			 * Sending up these MSGMARKNEXT messages makes
13376 			 * SIOCATMARK work correctly even though
13377 			 * the T_EXDATA_IND will not be sent up until the
13378 			 * urgent byte arrives.
13379 			 */
13380 			if (seg_len != 0) {
13381 				flags |= TH_MARKNEXT_NEEDED;
13382 				freemsg(tcp->tcp_urp_mark_mp);
13383 				tcp->tcp_urp_mark_mp = NULL;
13384 				flags &= ~TH_SEND_URP_MARK;
13385 			} else if (tcp->tcp_urp_mark_mp != NULL) {
13386 				flags |= TH_SEND_URP_MARK;
13387 				tcp->tcp_urp_mark_mp->b_flag &=
13388 					~MSGNOTMARKNEXT;
13389 				tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT;
13390 			}
13391 #ifdef DEBUG
13392 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13393 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
13394 			    seg_len, flags,
13395 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13396 #endif /* DEBUG */
13397 		} else {
13398 			/* Data left until we hit mark */
13399 #ifdef DEBUG
13400 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13401 			    "tcp_rput: URP %d bytes left, %s",
13402 			    urp - seg_len, tcp_display(tcp, NULL,
13403 			    DISP_PORT_ONLY));
13404 #endif /* DEBUG */
13405 		}
13406 	}
13407 
13408 process_ack:
13409 	if (!(flags & TH_ACK)) {
13410 		freemsg(mp);
13411 		goto xmit_check;
13412 	}
13413 	}
13414 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
13415 
13416 	if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0)
13417 		tcp->tcp_ip_forward_progress = B_TRUE;
13418 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
13419 		if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) &&
13420 		    ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) {
13421 			/* 3-way handshake complete - pass up the T_CONN_IND */
13422 			tcp_t	*listener = tcp->tcp_listener;
13423 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
13424 
13425 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
13426 			/*
13427 			 * We are here means eager is fine but it can
13428 			 * get a TH_RST at any point between now and till
13429 			 * accept completes and disappear. We need to
13430 			 * ensure that reference to eager is valid after
13431 			 * we get out of eager's perimeter. So we do
13432 			 * an extra refhold.
13433 			 */
13434 			CONN_INC_REF(connp);
13435 
13436 			/*
13437 			 * The listener also exists because of the refhold
13438 			 * done in tcp_conn_request. Its possible that it
13439 			 * might have closed. We will check that once we
13440 			 * get inside listeners context.
13441 			 */
13442 			CONN_INC_REF(listener->tcp_connp);
13443 			if (listener->tcp_connp->conn_sqp ==
13444 			    connp->conn_sqp) {
13445 				tcp_send_conn_ind(listener->tcp_connp, mp,
13446 				    listener->tcp_connp->conn_sqp);
13447 				CONN_DEC_REF(listener->tcp_connp);
13448 			} else if (!tcp->tcp_loopback) {
13449 				squeue_fill(listener->tcp_connp->conn_sqp, mp,
13450 				    tcp_send_conn_ind,
13451 				    listener->tcp_connp, SQTAG_TCP_CONN_IND);
13452 			} else {
13453 				squeue_enter(listener->tcp_connp->conn_sqp, mp,
13454 				    tcp_send_conn_ind, listener->tcp_connp,
13455 				    SQTAG_TCP_CONN_IND);
13456 			}
13457 		}
13458 
13459 		if (tcp->tcp_active_open) {
13460 			/*
13461 			 * We are seeing the final ack in the three way
13462 			 * hand shake of a active open'ed connection
13463 			 * so we must send up a T_CONN_CON
13464 			 */
13465 			if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) {
13466 				freemsg(mp);
13467 				return;
13468 			}
13469 			/*
13470 			 * Don't fuse the loopback endpoints for
13471 			 * simultaneous active opens.
13472 			 */
13473 			if (tcp->tcp_loopback) {
13474 				TCP_STAT(tcp_fusion_unfusable);
13475 				tcp->tcp_unfusable = B_TRUE;
13476 			}
13477 		}
13478 
13479 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
13480 		bytes_acked--;
13481 		/* SYN was acked - making progress */
13482 		if (tcp->tcp_ipversion == IPV6_VERSION)
13483 			tcp->tcp_ip_forward_progress = B_TRUE;
13484 
13485 		/*
13486 		 * If SYN was retransmitted, need to reset all
13487 		 * retransmission info as this segment will be
13488 		 * treated as a dup ACK.
13489 		 */
13490 		if (tcp->tcp_rexmit) {
13491 			tcp->tcp_rexmit = B_FALSE;
13492 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
13493 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
13494 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
13495 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
13496 			tcp->tcp_ms_we_have_waited = 0;
13497 			tcp->tcp_cwnd = mss;
13498 		}
13499 
13500 		/*
13501 		 * We set the send window to zero here.
13502 		 * This is needed if there is data to be
13503 		 * processed already on the queue.
13504 		 * Later (at swnd_update label), the
13505 		 * "new_swnd > tcp_swnd" condition is satisfied
13506 		 * the XMIT_NEEDED flag is set in the current
13507 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
13508 		 * called if there is already data on queue in
13509 		 * this state.
13510 		 */
13511 		tcp->tcp_swnd = 0;
13512 
13513 		if (new_swnd > tcp->tcp_max_swnd)
13514 			tcp->tcp_max_swnd = new_swnd;
13515 		tcp->tcp_swl1 = seg_seq;
13516 		tcp->tcp_swl2 = seg_ack;
13517 		tcp->tcp_state = TCPS_ESTABLISHED;
13518 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
13519 
13520 		/* Fuse when both sides are in ESTABLISHED state */
13521 		if (tcp->tcp_loopback && do_tcp_fusion)
13522 			tcp_fuse(tcp, iphdr, tcph);
13523 
13524 	}
13525 	/* This code follows 4.4BSD-Lite2 mostly. */
13526 	if (bytes_acked < 0)
13527 		goto est;
13528 
13529 	/*
13530 	 * If TCP is ECN capable and the congestion experience bit is
13531 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
13532 	 * done once per window (or more loosely, per RTT).
13533 	 */
13534 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
13535 		tcp->tcp_cwr = B_FALSE;
13536 	if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
13537 		if (!tcp->tcp_cwr) {
13538 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss;
13539 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
13540 			tcp->tcp_cwnd = npkt * mss;
13541 			/*
13542 			 * If the cwnd is 0, use the timer to clock out
13543 			 * new segments.  This is required by the ECN spec.
13544 			 */
13545 			if (npkt == 0) {
13546 				TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
13547 				/*
13548 				 * This makes sure that when the ACK comes
13549 				 * back, we will increase tcp_cwnd by 1 MSS.
13550 				 */
13551 				tcp->tcp_cwnd_cnt = 0;
13552 			}
13553 			tcp->tcp_cwr = B_TRUE;
13554 			/*
13555 			 * This marks the end of the current window of in
13556 			 * flight data.  That is why we don't use
13557 			 * tcp_suna + tcp_swnd.  Only data in flight can
13558 			 * provide ECN info.
13559 			 */
13560 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
13561 			tcp->tcp_ecn_cwr_sent = B_FALSE;
13562 		}
13563 	}
13564 
13565 	mp1 = tcp->tcp_xmit_head;
13566 	if (bytes_acked == 0) {
13567 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
13568 			int dupack_cnt;
13569 
13570 			BUMP_MIB(&tcp_mib, tcpInDupAck);
13571 			/*
13572 			 * Fast retransmit.  When we have seen exactly three
13573 			 * identical ACKs while we have unacked data
13574 			 * outstanding we take it as a hint that our peer
13575 			 * dropped something.
13576 			 *
13577 			 * If TCP is retransmitting, don't do fast retransmit.
13578 			 */
13579 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
13580 			    ! tcp->tcp_rexmit) {
13581 				/* Do Limited Transmit */
13582 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
13583 				    tcp_dupack_fast_retransmit) {
13584 					/*
13585 					 * RFC 3042
13586 					 *
13587 					 * What we need to do is temporarily
13588 					 * increase tcp_cwnd so that new
13589 					 * data can be sent if it is allowed
13590 					 * by the receive window (tcp_rwnd).
13591 					 * tcp_wput_data() will take care of
13592 					 * the rest.
13593 					 *
13594 					 * If the connection is SACK capable,
13595 					 * only do limited xmit when there
13596 					 * is SACK info.
13597 					 *
13598 					 * Note how tcp_cwnd is incremented.
13599 					 * The first dup ACK will increase
13600 					 * it by 1 MSS.  The second dup ACK
13601 					 * will increase it by 2 MSS.  This
13602 					 * means that only 1 new segment will
13603 					 * be sent for each dup ACK.
13604 					 */
13605 					if (tcp->tcp_unsent > 0 &&
13606 					    (!tcp->tcp_snd_sack_ok ||
13607 					    (tcp->tcp_snd_sack_ok &&
13608 					    tcp->tcp_notsack_list != NULL))) {
13609 						tcp->tcp_cwnd += mss <<
13610 						    (tcp->tcp_dupack_cnt - 1);
13611 						flags |= TH_LIMIT_XMIT;
13612 					}
13613 				} else if (dupack_cnt ==
13614 				    tcp_dupack_fast_retransmit) {
13615 
13616 				/*
13617 				 * If we have reduced tcp_ssthresh
13618 				 * because of ECN, do not reduce it again
13619 				 * unless it is already one window of data
13620 				 * away.  After one window of data, tcp_cwr
13621 				 * should then be cleared.  Note that
13622 				 * for non ECN capable connection, tcp_cwr
13623 				 * should always be false.
13624 				 *
13625 				 * Adjust cwnd since the duplicate
13626 				 * ack indicates that a packet was
13627 				 * dropped (due to congestion.)
13628 				 */
13629 				if (!tcp->tcp_cwr) {
13630 					npkt = ((tcp->tcp_snxt -
13631 					    tcp->tcp_suna) >> 1) / mss;
13632 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
13633 					    mss;
13634 					tcp->tcp_cwnd = (npkt +
13635 					    tcp->tcp_dupack_cnt) * mss;
13636 				}
13637 				if (tcp->tcp_ecn_ok) {
13638 					tcp->tcp_cwr = B_TRUE;
13639 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
13640 					tcp->tcp_ecn_cwr_sent = B_FALSE;
13641 				}
13642 
13643 				/*
13644 				 * We do Hoe's algorithm.  Refer to her
13645 				 * paper "Improving the Start-up Behavior
13646 				 * of a Congestion Control Scheme for TCP,"
13647 				 * appeared in SIGCOMM'96.
13648 				 *
13649 				 * Save highest seq no we have sent so far.
13650 				 * Be careful about the invisible FIN byte.
13651 				 */
13652 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
13653 				    (tcp->tcp_unsent == 0)) {
13654 					tcp->tcp_rexmit_max = tcp->tcp_fss;
13655 				} else {
13656 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
13657 				}
13658 
13659 				/*
13660 				 * Do not allow bursty traffic during.
13661 				 * fast recovery.  Refer to Fall and Floyd's
13662 				 * paper "Simulation-based Comparisons of
13663 				 * Tahoe, Reno and SACK TCP" (in CCR?)
13664 				 * This is a best current practise.
13665 				 */
13666 				tcp->tcp_snd_burst = TCP_CWND_SS;
13667 
13668 				/*
13669 				 * For SACK:
13670 				 * Calculate tcp_pipe, which is the
13671 				 * estimated number of bytes in
13672 				 * network.
13673 				 *
13674 				 * tcp_fack is the highest sack'ed seq num
13675 				 * TCP has received.
13676 				 *
13677 				 * tcp_pipe is explained in the above quoted
13678 				 * Fall and Floyd's paper.  tcp_fack is
13679 				 * explained in Mathis and Mahdavi's
13680 				 * "Forward Acknowledgment: Refining TCP
13681 				 * Congestion Control" in SIGCOMM '96.
13682 				 */
13683 				if (tcp->tcp_snd_sack_ok) {
13684 					ASSERT(tcp->tcp_sack_info != NULL);
13685 					if (tcp->tcp_notsack_list != NULL) {
13686 						tcp->tcp_pipe = tcp->tcp_snxt -
13687 						    tcp->tcp_fack;
13688 						tcp->tcp_sack_snxt = seg_ack;
13689 						flags |= TH_NEED_SACK_REXMIT;
13690 					} else {
13691 						/*
13692 						 * Always initialize tcp_pipe
13693 						 * even though we don't have
13694 						 * any SACK info.  If later
13695 						 * we get SACK info and
13696 						 * tcp_pipe is not initialized,
13697 						 * funny things will happen.
13698 						 */
13699 						tcp->tcp_pipe =
13700 						    tcp->tcp_cwnd_ssthresh;
13701 					}
13702 				} else {
13703 					flags |= TH_REXMIT_NEEDED;
13704 				} /* tcp_snd_sack_ok */
13705 
13706 				} else {
13707 					/*
13708 					 * Here we perform congestion
13709 					 * avoidance, but NOT slow start.
13710 					 * This is known as the Fast
13711 					 * Recovery Algorithm.
13712 					 */
13713 					if (tcp->tcp_snd_sack_ok &&
13714 					    tcp->tcp_notsack_list != NULL) {
13715 						flags |= TH_NEED_SACK_REXMIT;
13716 						tcp->tcp_pipe -= mss;
13717 						if (tcp->tcp_pipe < 0)
13718 							tcp->tcp_pipe = 0;
13719 					} else {
13720 					/*
13721 					 * We know that one more packet has
13722 					 * left the pipe thus we can update
13723 					 * cwnd.
13724 					 */
13725 					cwnd = tcp->tcp_cwnd + mss;
13726 					if (cwnd > tcp->tcp_cwnd_max)
13727 						cwnd = tcp->tcp_cwnd_max;
13728 					tcp->tcp_cwnd = cwnd;
13729 					if (tcp->tcp_unsent > 0)
13730 						flags |= TH_XMIT_NEEDED;
13731 					}
13732 				}
13733 			}
13734 		} else if (tcp->tcp_zero_win_probe) {
13735 			/*
13736 			 * If the window has opened, need to arrange
13737 			 * to send additional data.
13738 			 */
13739 			if (new_swnd != 0) {
13740 				/* tcp_suna != tcp_snxt */
13741 				/* Packet contains a window update */
13742 				BUMP_MIB(&tcp_mib, tcpInWinUpdate);
13743 				tcp->tcp_zero_win_probe = 0;
13744 				tcp->tcp_timer_backoff = 0;
13745 				tcp->tcp_ms_we_have_waited = 0;
13746 
13747 				/*
13748 				 * Transmit starting with tcp_suna since
13749 				 * the one byte probe is not ack'ed.
13750 				 * If TCP has sent more than one identical
13751 				 * probe, tcp_rexmit will be set.  That means
13752 				 * tcp_ss_rexmit() will send out the one
13753 				 * byte along with new data.  Otherwise,
13754 				 * fake the retransmission.
13755 				 */
13756 				flags |= TH_XMIT_NEEDED;
13757 				if (!tcp->tcp_rexmit) {
13758 					tcp->tcp_rexmit = B_TRUE;
13759 					tcp->tcp_dupack_cnt = 0;
13760 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
13761 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
13762 				}
13763 			}
13764 		}
13765 		goto swnd_update;
13766 	}
13767 
13768 	/*
13769 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
13770 	 * If the ACK value acks something that we have not yet sent, it might
13771 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
13772 	 * other side.
13773 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
13774 	 * state is handled above, so we can always just drop the segment and
13775 	 * send an ACK here.
13776 	 *
13777 	 * Should we send ACKs in response to ACK only segments?
13778 	 */
13779 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13780 		BUMP_MIB(&tcp_mib, tcpInAckUnsent);
13781 		/* drop the received segment */
13782 		freemsg(mp);
13783 
13784 		/*
13785 		 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
13786 		 * greater than 0, check if the number of such
13787 		 * bogus ACks is greater than that count.  If yes,
13788 		 * don't send back any ACK.  This prevents TCP from
13789 		 * getting into an ACK storm if somehow an attacker
13790 		 * successfully spoofs an acceptable segment to our
13791 		 * peer.
13792 		 */
13793 		if (tcp_drop_ack_unsent_cnt > 0 &&
13794 		    ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) {
13795 			TCP_STAT(tcp_in_ack_unsent_drop);
13796 			return;
13797 		}
13798 		mp = tcp_ack_mp(tcp);
13799 		if (mp != NULL) {
13800 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
13801 			BUMP_LOCAL(tcp->tcp_obsegs);
13802 			BUMP_MIB(&tcp_mib, tcpOutAck);
13803 			tcp_send_data(tcp, tcp->tcp_wq, mp);
13804 		}
13805 		return;
13806 	}
13807 
13808 	/*
13809 	 * TCP gets a new ACK, update the notsack'ed list to delete those
13810 	 * blocks that are covered by this ACK.
13811 	 */
13812 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
13813 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
13814 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
13815 	}
13816 
13817 	/*
13818 	 * If we got an ACK after fast retransmit, check to see
13819 	 * if it is a partial ACK.  If it is not and the congestion
13820 	 * window was inflated to account for the other side's
13821 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
13822 	 */
13823 	if (tcp->tcp_dupack_cnt >= tcp_dupack_fast_retransmit) {
13824 		ASSERT(tcp->tcp_rexmit == B_FALSE);
13825 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
13826 			tcp->tcp_dupack_cnt = 0;
13827 			/*
13828 			 * Restore the orig tcp_cwnd_ssthresh after
13829 			 * fast retransmit phase.
13830 			 */
13831 			if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
13832 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
13833 			}
13834 			tcp->tcp_rexmit_max = seg_ack;
13835 			tcp->tcp_cwnd_cnt = 0;
13836 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
13837 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
13838 
13839 			/*
13840 			 * Remove all notsack info to avoid confusion with
13841 			 * the next fast retrasnmit/recovery phase.
13842 			 */
13843 			if (tcp->tcp_snd_sack_ok &&
13844 			    tcp->tcp_notsack_list != NULL) {
13845 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
13846 			}
13847 		} else {
13848 			if (tcp->tcp_snd_sack_ok &&
13849 			    tcp->tcp_notsack_list != NULL) {
13850 				flags |= TH_NEED_SACK_REXMIT;
13851 				tcp->tcp_pipe -= mss;
13852 				if (tcp->tcp_pipe < 0)
13853 					tcp->tcp_pipe = 0;
13854 			} else {
13855 				/*
13856 				 * Hoe's algorithm:
13857 				 *
13858 				 * Retransmit the unack'ed segment and
13859 				 * restart fast recovery.  Note that we
13860 				 * need to scale back tcp_cwnd to the
13861 				 * original value when we started fast
13862 				 * recovery.  This is to prevent overly
13863 				 * aggressive behaviour in sending new
13864 				 * segments.
13865 				 */
13866 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
13867 					tcp_dupack_fast_retransmit * mss;
13868 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
13869 				flags |= TH_REXMIT_NEEDED;
13870 			}
13871 		}
13872 	} else {
13873 		tcp->tcp_dupack_cnt = 0;
13874 		if (tcp->tcp_rexmit) {
13875 			/*
13876 			 * TCP is retranmitting.  If the ACK ack's all
13877 			 * outstanding data, update tcp_rexmit_max and
13878 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
13879 			 * to the correct value.
13880 			 *
13881 			 * Note that SEQ_LEQ() is used.  This is to avoid
13882 			 * unnecessary fast retransmit caused by dup ACKs
13883 			 * received when TCP does slow start retransmission
13884 			 * after a time out.  During this phase, TCP may
13885 			 * send out segments which are already received.
13886 			 * This causes dup ACKs to be sent back.
13887 			 */
13888 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
13889 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
13890 					tcp->tcp_rexmit_nxt = seg_ack;
13891 				}
13892 				if (seg_ack != tcp->tcp_rexmit_max) {
13893 					flags |= TH_XMIT_NEEDED;
13894 				}
13895 			} else {
13896 				tcp->tcp_rexmit = B_FALSE;
13897 				tcp->tcp_xmit_zc_clean = B_FALSE;
13898 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
13899 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
13900 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
13901 			}
13902 			tcp->tcp_ms_we_have_waited = 0;
13903 		}
13904 	}
13905 
13906 	BUMP_MIB(&tcp_mib, tcpInAckSegs);
13907 	UPDATE_MIB(&tcp_mib, tcpInAckBytes, bytes_acked);
13908 	tcp->tcp_suna = seg_ack;
13909 	if (tcp->tcp_zero_win_probe != 0) {
13910 		tcp->tcp_zero_win_probe = 0;
13911 		tcp->tcp_timer_backoff = 0;
13912 	}
13913 
13914 	/*
13915 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
13916 	 * Note that it cannot be the SYN being ack'ed.  The code flow
13917 	 * will not reach here.
13918 	 */
13919 	if (mp1 == NULL) {
13920 		goto fin_acked;
13921 	}
13922 
13923 	/*
13924 	 * Update the congestion window.
13925 	 *
13926 	 * If TCP is not ECN capable or TCP is ECN capable but the
13927 	 * congestion experience bit is not set, increase the tcp_cwnd as
13928 	 * usual.
13929 	 */
13930 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
13931 		cwnd = tcp->tcp_cwnd;
13932 		add = mss;
13933 
13934 		if (cwnd >= tcp->tcp_cwnd_ssthresh) {
13935 			/*
13936 			 * This is to prevent an increase of less than 1 MSS of
13937 			 * tcp_cwnd.  With partial increase, tcp_wput_data()
13938 			 * may send out tinygrams in order to preserve mblk
13939 			 * boundaries.
13940 			 *
13941 			 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
13942 			 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
13943 			 * increased by 1 MSS for every RTTs.
13944 			 */
13945 			if (tcp->tcp_cwnd_cnt <= 0) {
13946 				tcp->tcp_cwnd_cnt = cwnd + add;
13947 			} else {
13948 				tcp->tcp_cwnd_cnt -= add;
13949 				add = 0;
13950 			}
13951 		}
13952 		tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
13953 	}
13954 
13955 	/* See if the latest urgent data has been acknowledged */
13956 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
13957 	    SEQ_GT(seg_ack, tcp->tcp_urg))
13958 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
13959 
13960 	/* Can we update the RTT estimates? */
13961 	if (tcp->tcp_snd_ts_ok) {
13962 		/* Ignore zero timestamp echo-reply. */
13963 		if (tcpopt.tcp_opt_ts_ecr != 0) {
13964 			tcp_set_rto(tcp, (int32_t)lbolt -
13965 			    (int32_t)tcpopt.tcp_opt_ts_ecr);
13966 		}
13967 
13968 		/* If needed, restart the timer. */
13969 		if (tcp->tcp_set_timer == 1) {
13970 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
13971 			tcp->tcp_set_timer = 0;
13972 		}
13973 		/*
13974 		 * Update tcp_csuna in case the other side stops sending
13975 		 * us timestamps.
13976 		 */
13977 		tcp->tcp_csuna = tcp->tcp_snxt;
13978 	} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
13979 		/*
13980 		 * An ACK sequence we haven't seen before, so get the RTT
13981 		 * and update the RTO. But first check if the timestamp is
13982 		 * valid to use.
13983 		 */
13984 		if ((mp1->b_next != NULL) &&
13985 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next)))
13986 			tcp_set_rto(tcp, (int32_t)lbolt -
13987 			    (int32_t)(intptr_t)mp1->b_prev);
13988 		else
13989 			BUMP_MIB(&tcp_mib, tcpRttNoUpdate);
13990 
13991 		/* Remeber the last sequence to be ACKed */
13992 		tcp->tcp_csuna = seg_ack;
13993 		if (tcp->tcp_set_timer == 1) {
13994 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
13995 			tcp->tcp_set_timer = 0;
13996 		}
13997 	} else {
13998 		BUMP_MIB(&tcp_mib, tcpRttNoUpdate);
13999 	}
14000 
14001 	/* Eat acknowledged bytes off the xmit queue. */
14002 	for (;;) {
14003 		mblk_t	*mp2;
14004 		uchar_t	*wptr;
14005 
14006 		wptr = mp1->b_wptr;
14007 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
14008 		bytes_acked -= (int)(wptr - mp1->b_rptr);
14009 		if (bytes_acked < 0) {
14010 			mp1->b_rptr = wptr + bytes_acked;
14011 			/*
14012 			 * Set a new timestamp if all the bytes timed by the
14013 			 * old timestamp have been ack'ed.
14014 			 */
14015 			if (SEQ_GT(seg_ack,
14016 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
14017 				mp1->b_prev = (mblk_t *)(uintptr_t)lbolt;
14018 				mp1->b_next = NULL;
14019 			}
14020 			break;
14021 		}
14022 		mp1->b_next = NULL;
14023 		mp1->b_prev = NULL;
14024 		mp2 = mp1;
14025 		mp1 = mp1->b_cont;
14026 
14027 		/*
14028 		 * This notification is required for some zero-copy
14029 		 * clients to maintain a copy semantic. After the data
14030 		 * is ack'ed, client is safe to modify or reuse the buffer.
14031 		 */
14032 		if (tcp->tcp_snd_zcopy_aware &&
14033 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
14034 			tcp_zcopy_notify(tcp);
14035 		freeb(mp2);
14036 		if (bytes_acked == 0) {
14037 			if (mp1 == NULL) {
14038 				/* Everything is ack'ed, clear the tail. */
14039 				tcp->tcp_xmit_tail = NULL;
14040 				/*
14041 				 * Cancel the timer unless we are still
14042 				 * waiting for an ACK for the FIN packet.
14043 				 */
14044 				if (tcp->tcp_timer_tid != 0 &&
14045 				    tcp->tcp_snxt == tcp->tcp_suna) {
14046 					(void) TCP_TIMER_CANCEL(tcp,
14047 					    tcp->tcp_timer_tid);
14048 					tcp->tcp_timer_tid = 0;
14049 				}
14050 				goto pre_swnd_update;
14051 			}
14052 			if (mp2 != tcp->tcp_xmit_tail)
14053 				break;
14054 			tcp->tcp_xmit_tail = mp1;
14055 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
14056 			    (uintptr_t)INT_MAX);
14057 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
14058 			    mp1->b_rptr);
14059 			break;
14060 		}
14061 		if (mp1 == NULL) {
14062 			/*
14063 			 * More was acked but there is nothing more
14064 			 * outstanding.  This means that the FIN was
14065 			 * just acked or that we're talking to a clown.
14066 			 */
14067 fin_acked:
14068 			ASSERT(tcp->tcp_fin_sent);
14069 			tcp->tcp_xmit_tail = NULL;
14070 			if (tcp->tcp_fin_sent) {
14071 				/* FIN was acked - making progress */
14072 				if (tcp->tcp_ipversion == IPV6_VERSION &&
14073 				    !tcp->tcp_fin_acked)
14074 					tcp->tcp_ip_forward_progress = B_TRUE;
14075 				tcp->tcp_fin_acked = B_TRUE;
14076 				if (tcp->tcp_linger_tid != 0 &&
14077 				    TCP_TIMER_CANCEL(tcp,
14078 					tcp->tcp_linger_tid) >= 0) {
14079 					tcp_stop_lingering(tcp);
14080 				}
14081 			} else {
14082 				/*
14083 				 * We should never get here because
14084 				 * we have already checked that the
14085 				 * number of bytes ack'ed should be
14086 				 * smaller than or equal to what we
14087 				 * have sent so far (it is the
14088 				 * acceptability check of the ACK).
14089 				 * We can only get here if the send
14090 				 * queue is corrupted.
14091 				 *
14092 				 * Terminate the connection and
14093 				 * panic the system.  It is better
14094 				 * for us to panic instead of
14095 				 * continuing to avoid other disaster.
14096 				 */
14097 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
14098 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
14099 				panic("Memory corruption "
14100 				    "detected for connection %s.",
14101 				    tcp_display(tcp, NULL,
14102 					DISP_ADDR_AND_PORT));
14103 				/*NOTREACHED*/
14104 			}
14105 			goto pre_swnd_update;
14106 		}
14107 		ASSERT(mp2 != tcp->tcp_xmit_tail);
14108 	}
14109 	if (tcp->tcp_unsent) {
14110 		flags |= TH_XMIT_NEEDED;
14111 	}
14112 pre_swnd_update:
14113 	tcp->tcp_xmit_head = mp1;
14114 swnd_update:
14115 	/*
14116 	 * The following check is different from most other implementations.
14117 	 * For bi-directional transfer, when segments are dropped, the
14118 	 * "normal" check will not accept a window update in those
14119 	 * retransmitted segemnts.  Failing to do that, TCP may send out
14120 	 * segments which are outside receiver's window.  As TCP accepts
14121 	 * the ack in those retransmitted segments, if the window update in
14122 	 * the same segment is not accepted, TCP will incorrectly calculates
14123 	 * that it can send more segments.  This can create a deadlock
14124 	 * with the receiver if its window becomes zero.
14125 	 */
14126 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
14127 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
14128 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
14129 		/*
14130 		 * The criteria for update is:
14131 		 *
14132 		 * 1. the segment acknowledges some data.  Or
14133 		 * 2. the segment is new, i.e. it has a higher seq num. Or
14134 		 * 3. the segment is not old and the advertised window is
14135 		 * larger than the previous advertised window.
14136 		 */
14137 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
14138 			flags |= TH_XMIT_NEEDED;
14139 		tcp->tcp_swnd = new_swnd;
14140 		if (new_swnd > tcp->tcp_max_swnd)
14141 			tcp->tcp_max_swnd = new_swnd;
14142 		tcp->tcp_swl1 = seg_seq;
14143 		tcp->tcp_swl2 = seg_ack;
14144 	}
14145 est:
14146 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
14147 
14148 		switch (tcp->tcp_state) {
14149 		case TCPS_FIN_WAIT_1:
14150 			if (tcp->tcp_fin_acked) {
14151 				tcp->tcp_state = TCPS_FIN_WAIT_2;
14152 				/*
14153 				 * We implement the non-standard BSD/SunOS
14154 				 * FIN_WAIT_2 flushing algorithm.
14155 				 * If there is no user attached to this
14156 				 * TCP endpoint, then this TCP struct
14157 				 * could hang around forever in FIN_WAIT_2
14158 				 * state if the peer forgets to send us
14159 				 * a FIN.  To prevent this, we wait only
14160 				 * 2*MSL (a convenient time value) for
14161 				 * the FIN to arrive.  If it doesn't show up,
14162 				 * we flush the TCP endpoint.  This algorithm,
14163 				 * though a violation of RFC-793, has worked
14164 				 * for over 10 years in BSD systems.
14165 				 * Note: SunOS 4.x waits 675 seconds before
14166 				 * flushing the FIN_WAIT_2 connection.
14167 				 */
14168 				TCP_TIMER_RESTART(tcp,
14169 				    tcp_fin_wait_2_flush_interval);
14170 			}
14171 			break;
14172 		case TCPS_FIN_WAIT_2:
14173 			break;	/* Shutdown hook? */
14174 		case TCPS_LAST_ACK:
14175 			freemsg(mp);
14176 			if (tcp->tcp_fin_acked) {
14177 				(void) tcp_clean_death(tcp, 0, 19);
14178 				return;
14179 			}
14180 			goto xmit_check;
14181 		case TCPS_CLOSING:
14182 			if (tcp->tcp_fin_acked) {
14183 				tcp->tcp_state = TCPS_TIME_WAIT;
14184 				if (!TCP_IS_DETACHED(tcp)) {
14185 					TCP_TIMER_RESTART(tcp,
14186 					    tcp_time_wait_interval);
14187 				} else {
14188 					tcp_time_wait_append(tcp);
14189 					TCP_DBGSTAT(tcp_rput_time_wait);
14190 				}
14191 			}
14192 			/*FALLTHRU*/
14193 		case TCPS_CLOSE_WAIT:
14194 			freemsg(mp);
14195 			goto xmit_check;
14196 		default:
14197 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
14198 			break;
14199 		}
14200 	}
14201 	if (flags & TH_FIN) {
14202 		/* Make sure we ack the fin */
14203 		flags |= TH_ACK_NEEDED;
14204 		if (!tcp->tcp_fin_rcvd) {
14205 			tcp->tcp_fin_rcvd = B_TRUE;
14206 			tcp->tcp_rnxt++;
14207 			tcph = tcp->tcp_tcph;
14208 			U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14209 
14210 			/*
14211 			 * Generate the ordrel_ind at the end unless we
14212 			 * are an eager guy.
14213 			 * In the eager case tcp_rsrv will do this when run
14214 			 * after tcp_accept is done.
14215 			 */
14216 			if (tcp->tcp_listener == NULL &&
14217 			    !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding))
14218 				flags |= TH_ORDREL_NEEDED;
14219 			switch (tcp->tcp_state) {
14220 			case TCPS_SYN_RCVD:
14221 			case TCPS_ESTABLISHED:
14222 				tcp->tcp_state = TCPS_CLOSE_WAIT;
14223 				/* Keepalive? */
14224 				break;
14225 			case TCPS_FIN_WAIT_1:
14226 				if (!tcp->tcp_fin_acked) {
14227 					tcp->tcp_state = TCPS_CLOSING;
14228 					break;
14229 				}
14230 				/* FALLTHRU */
14231 			case TCPS_FIN_WAIT_2:
14232 				tcp->tcp_state = TCPS_TIME_WAIT;
14233 				if (!TCP_IS_DETACHED(tcp)) {
14234 					TCP_TIMER_RESTART(tcp,
14235 					    tcp_time_wait_interval);
14236 				} else {
14237 					tcp_time_wait_append(tcp);
14238 					TCP_DBGSTAT(tcp_rput_time_wait);
14239 				}
14240 				if (seg_len) {
14241 					/*
14242 					 * implies data piggybacked on FIN.
14243 					 * break to handle data.
14244 					 */
14245 					break;
14246 				}
14247 				freemsg(mp);
14248 				goto ack_check;
14249 			}
14250 		}
14251 	}
14252 	if (mp == NULL)
14253 		goto xmit_check;
14254 	if (seg_len == 0) {
14255 		freemsg(mp);
14256 		goto xmit_check;
14257 	}
14258 	if (mp->b_rptr == mp->b_wptr) {
14259 		/*
14260 		 * The header has been consumed, so we remove the
14261 		 * zero-length mblk here.
14262 		 */
14263 		mp1 = mp;
14264 		mp = mp->b_cont;
14265 		freeb(mp1);
14266 	}
14267 	tcph = tcp->tcp_tcph;
14268 	tcp->tcp_rack_cnt++;
14269 	{
14270 		uint32_t cur_max;
14271 
14272 		cur_max = tcp->tcp_rack_cur_max;
14273 		if (tcp->tcp_rack_cnt >= cur_max) {
14274 			/*
14275 			 * We have more unacked data than we should - send
14276 			 * an ACK now.
14277 			 */
14278 			flags |= TH_ACK_NEEDED;
14279 			cur_max++;
14280 			if (cur_max > tcp->tcp_rack_abs_max)
14281 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
14282 			else
14283 				tcp->tcp_rack_cur_max = cur_max;
14284 		} else if (TCP_IS_DETACHED(tcp)) {
14285 			/* We don't have an ACK timer for detached TCP. */
14286 			flags |= TH_ACK_NEEDED;
14287 		} else if (seg_len < mss) {
14288 			/*
14289 			 * If we get a segment that is less than an mss, and we
14290 			 * already have unacknowledged data, and the amount
14291 			 * unacknowledged is not a multiple of mss, then we
14292 			 * better generate an ACK now.  Otherwise, this may be
14293 			 * the tail piece of a transaction, and we would rather
14294 			 * wait for the response.
14295 			 */
14296 			uint32_t udif;
14297 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
14298 			    (uintptr_t)INT_MAX);
14299 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
14300 			if (udif && (udif % mss))
14301 				flags |= TH_ACK_NEEDED;
14302 			else
14303 				flags |= TH_ACK_TIMER_NEEDED;
14304 		} else {
14305 			/* Start delayed ack timer */
14306 			flags |= TH_ACK_TIMER_NEEDED;
14307 		}
14308 	}
14309 	tcp->tcp_rnxt += seg_len;
14310 	U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14311 
14312 	/* Update SACK list */
14313 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
14314 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
14315 		    &(tcp->tcp_num_sack_blk));
14316 	}
14317 
14318 	if (tcp->tcp_urp_mp) {
14319 		tcp->tcp_urp_mp->b_cont = mp;
14320 		mp = tcp->tcp_urp_mp;
14321 		tcp->tcp_urp_mp = NULL;
14322 		/* Ready for a new signal. */
14323 		tcp->tcp_urp_last_valid = B_FALSE;
14324 #ifdef DEBUG
14325 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14326 		    "tcp_rput: sending exdata_ind %s",
14327 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14328 #endif /* DEBUG */
14329 	}
14330 
14331 	/*
14332 	 * Check for ancillary data changes compared to last segment.
14333 	 */
14334 	if (tcp->tcp_ipv6_recvancillary != 0) {
14335 		mp = tcp_rput_add_ancillary(tcp, mp, &ipp);
14336 		if (mp == NULL)
14337 			return;
14338 	}
14339 
14340 	if (tcp->tcp_listener || tcp->tcp_hard_binding) {
14341 		/*
14342 		 * Side queue inbound data until the accept happens.
14343 		 * tcp_accept/tcp_rput drains this when the accept happens.
14344 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
14345 		 * T_EXDATA_IND) it is queued on b_next.
14346 		 * XXX Make urgent data use this. Requires:
14347 		 *	Removing tcp_listener check for TH_URG
14348 		 *	Making M_PCPROTO and MARK messages skip the eager case
14349 		 */
14350 
14351 		if (tcp->tcp_kssl_pending) {
14352 			tcp_kssl_input(tcp, mp);
14353 		} else {
14354 			tcp_rcv_enqueue(tcp, mp, seg_len);
14355 		}
14356 	} else {
14357 		if (mp->b_datap->db_type != M_DATA ||
14358 		    (flags & TH_MARKNEXT_NEEDED)) {
14359 			if (tcp->tcp_rcv_list != NULL) {
14360 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14361 			}
14362 			ASSERT(tcp->tcp_rcv_list == NULL ||
14363 			    tcp->tcp_fused_sigurg);
14364 			if (flags & TH_MARKNEXT_NEEDED) {
14365 #ifdef DEBUG
14366 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14367 				    "tcp_rput: sending MSGMARKNEXT %s",
14368 				    tcp_display(tcp, NULL,
14369 				    DISP_PORT_ONLY));
14370 #endif /* DEBUG */
14371 				mp->b_flag |= MSGMARKNEXT;
14372 				flags &= ~TH_MARKNEXT_NEEDED;
14373 			}
14374 
14375 			/* Does this need SSL processing first? */
14376 			if ((tcp->tcp_kssl_ctx  != NULL) &&
14377 			    (DB_TYPE(mp) == M_DATA)) {
14378 				tcp_kssl_input(tcp, mp);
14379 			} else {
14380 				putnext(tcp->tcp_rq, mp);
14381 				if (!canputnext(tcp->tcp_rq))
14382 					tcp->tcp_rwnd -= seg_len;
14383 			}
14384 		} else if (((flags & (TH_PUSH|TH_FIN)) ||
14385 		    tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) &&
14386 		    (sqp != NULL)) {
14387 			if (tcp->tcp_rcv_list != NULL) {
14388 				/*
14389 				 * Enqueue the new segment first and then
14390 				 * call tcp_rcv_drain() to send all data
14391 				 * up.  The other way to do this is to
14392 				 * send all queued data up and then call
14393 				 * putnext() to send the new segment up.
14394 				 * This way can remove the else part later
14395 				 * on.
14396 				 *
14397 				 * We don't this to avoid one more call to
14398 				 * canputnext() as tcp_rcv_drain() needs to
14399 				 * call canputnext().
14400 				 */
14401 				tcp_rcv_enqueue(tcp, mp, seg_len);
14402 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14403 			} else {
14404 				/* Does this need SSL processing first? */
14405 				if ((tcp->tcp_kssl_ctx  != NULL) &&
14406 				    (DB_TYPE(mp) == M_DATA)) {
14407 					tcp_kssl_input(tcp, mp);
14408 				} else {
14409 					putnext(tcp->tcp_rq, mp);
14410 					if (!canputnext(tcp->tcp_rq))
14411 						tcp->tcp_rwnd -= seg_len;
14412 				}
14413 			}
14414 		} else {
14415 			/*
14416 			 * Enqueue all packets when processing an mblk
14417 			 * from the co queue and also enqueue normal packets.
14418 			 */
14419 			tcp_rcv_enqueue(tcp, mp, seg_len);
14420 		}
14421 		/*
14422 		 * Make sure the timer is running if we have data waiting
14423 		 * for a push bit. This provides resiliency against
14424 		 * implementations that do not correctly generate push bits.
14425 		 */
14426 		if ((sqp != NULL) && tcp->tcp_rcv_list != NULL &&
14427 		    tcp->tcp_push_tid == 0) {
14428 			/*
14429 			 * The connection may be closed at this point, so don't
14430 			 * do anything for a detached tcp.
14431 			 */
14432 			if (!TCP_IS_DETACHED(tcp))
14433 				tcp->tcp_push_tid = TCP_TIMER(tcp,
14434 				    tcp_push_timer,
14435 				    MSEC_TO_TICK(tcp_push_timer_interval));
14436 		}
14437 	}
14438 xmit_check:
14439 	/* Is there anything left to do? */
14440 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
14441 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
14442 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
14443 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
14444 		goto done;
14445 
14446 	/* Any transmit work to do and a non-zero window? */
14447 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
14448 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
14449 		if (flags & TH_REXMIT_NEEDED) {
14450 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
14451 
14452 			BUMP_MIB(&tcp_mib, tcpOutFastRetrans);
14453 			if (snd_size > mss)
14454 				snd_size = mss;
14455 			if (snd_size > tcp->tcp_swnd)
14456 				snd_size = tcp->tcp_swnd;
14457 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
14458 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
14459 			    B_TRUE);
14460 
14461 			if (mp1 != NULL) {
14462 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
14463 				tcp->tcp_csuna = tcp->tcp_snxt;
14464 				BUMP_MIB(&tcp_mib, tcpRetransSegs);
14465 				UPDATE_MIB(&tcp_mib, tcpRetransBytes, snd_size);
14466 				TCP_RECORD_TRACE(tcp, mp1,
14467 				    TCP_TRACE_SEND_PKT);
14468 				tcp_send_data(tcp, tcp->tcp_wq, mp1);
14469 			}
14470 		}
14471 		if (flags & TH_NEED_SACK_REXMIT) {
14472 			tcp_sack_rxmit(tcp, &flags);
14473 		}
14474 		/*
14475 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
14476 		 * out new segment.  Note that tcp_rexmit should not be
14477 		 * set, otherwise TH_LIMIT_XMIT should not be set.
14478 		 */
14479 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
14480 			if (!tcp->tcp_rexmit) {
14481 				tcp_wput_data(tcp, NULL, B_FALSE);
14482 			} else {
14483 				tcp_ss_rexmit(tcp);
14484 			}
14485 		}
14486 		/*
14487 		 * Adjust tcp_cwnd back to normal value after sending
14488 		 * new data segments.
14489 		 */
14490 		if (flags & TH_LIMIT_XMIT) {
14491 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
14492 			/*
14493 			 * This will restart the timer.  Restarting the
14494 			 * timer is used to avoid a timeout before the
14495 			 * limited transmitted segment's ACK gets back.
14496 			 */
14497 			if (tcp->tcp_xmit_head != NULL)
14498 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
14499 		}
14500 
14501 		/* Anything more to do? */
14502 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
14503 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
14504 			goto done;
14505 	}
14506 ack_check:
14507 	if (flags & TH_SEND_URP_MARK) {
14508 		ASSERT(tcp->tcp_urp_mark_mp);
14509 		/*
14510 		 * Send up any queued data and then send the mark message
14511 		 */
14512 		if (tcp->tcp_rcv_list != NULL) {
14513 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14514 		}
14515 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
14516 
14517 		mp1 = tcp->tcp_urp_mark_mp;
14518 		tcp->tcp_urp_mark_mp = NULL;
14519 #ifdef DEBUG
14520 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14521 		    "tcp_rput: sending zero-length %s %s",
14522 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
14523 		    "MSGNOTMARKNEXT"),
14524 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14525 #endif /* DEBUG */
14526 		putnext(tcp->tcp_rq, mp1);
14527 		flags &= ~TH_SEND_URP_MARK;
14528 	}
14529 	if (flags & TH_ACK_NEEDED) {
14530 		/*
14531 		 * Time to send an ack for some reason.
14532 		 */
14533 		mp1 = tcp_ack_mp(tcp);
14534 
14535 		if (mp1 != NULL) {
14536 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
14537 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
14538 			BUMP_LOCAL(tcp->tcp_obsegs);
14539 			BUMP_MIB(&tcp_mib, tcpOutAck);
14540 		}
14541 		if (tcp->tcp_ack_tid != 0) {
14542 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
14543 			tcp->tcp_ack_tid = 0;
14544 		}
14545 	}
14546 	if (flags & TH_ACK_TIMER_NEEDED) {
14547 		/*
14548 		 * Arrange for deferred ACK or push wait timeout.
14549 		 * Start timer if it is not already running.
14550 		 */
14551 		if (tcp->tcp_ack_tid == 0) {
14552 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
14553 			    MSEC_TO_TICK(tcp->tcp_localnet ?
14554 			    (clock_t)tcp_local_dack_interval :
14555 			    (clock_t)tcp_deferred_ack_interval));
14556 		}
14557 	}
14558 	if (flags & TH_ORDREL_NEEDED) {
14559 		/*
14560 		 * Send up the ordrel_ind unless we are an eager guy.
14561 		 * In the eager case tcp_rsrv will do this when run
14562 		 * after tcp_accept is done.
14563 		 */
14564 		ASSERT(tcp->tcp_listener == NULL);
14565 		if (tcp->tcp_rcv_list != NULL) {
14566 			/*
14567 			 * Push any mblk(s) enqueued from co processing.
14568 			 */
14569 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14570 		}
14571 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
14572 		if ((mp1 = mi_tpi_ordrel_ind()) != NULL) {
14573 			tcp->tcp_ordrel_done = B_TRUE;
14574 			putnext(tcp->tcp_rq, mp1);
14575 			if (tcp->tcp_deferred_clean_death) {
14576 				/*
14577 				 * tcp_clean_death was deferred
14578 				 * for T_ORDREL_IND - do it now
14579 				 */
14580 				(void) tcp_clean_death(tcp,
14581 				    tcp->tcp_client_errno, 20);
14582 				tcp->tcp_deferred_clean_death =	B_FALSE;
14583 			}
14584 		} else {
14585 			/*
14586 			 * Run the orderly release in the
14587 			 * service routine.
14588 			 */
14589 			qenable(tcp->tcp_rq);
14590 			/*
14591 			 * Caveat(XXX): The machine may be so
14592 			 * overloaded that tcp_rsrv() is not scheduled
14593 			 * until after the endpoint has transitioned
14594 			 * to TCPS_TIME_WAIT
14595 			 * and tcp_time_wait_interval expires. Then
14596 			 * tcp_timer() will blow away state in tcp_t
14597 			 * and T_ORDREL_IND will never be delivered
14598 			 * upstream. Unlikely but potentially
14599 			 * a problem.
14600 			 */
14601 		}
14602 	}
14603 done:
14604 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
14605 }
14606 
14607 /*
14608  * This function does PAWS protection check. Returns B_TRUE if the
14609  * segment passes the PAWS test, else returns B_FALSE.
14610  */
14611 boolean_t
14612 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp)
14613 {
14614 	uint8_t	flags;
14615 	int	options;
14616 	uint8_t *up;
14617 
14618 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
14619 	/*
14620 	 * If timestamp option is aligned nicely, get values inline,
14621 	 * otherwise call general routine to parse.  Only do that
14622 	 * if timestamp is the only option.
14623 	 */
14624 	if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH +
14625 	    TCPOPT_REAL_TS_LEN &&
14626 	    OK_32PTR((up = ((uint8_t *)tcph) +
14627 	    TCP_MIN_HEADER_LENGTH)) &&
14628 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
14629 		tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
14630 		tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
14631 
14632 		options = TCP_OPT_TSTAMP_PRESENT;
14633 	} else {
14634 		if (tcp->tcp_snd_sack_ok) {
14635 			tcpoptp->tcp = tcp;
14636 		} else {
14637 			tcpoptp->tcp = NULL;
14638 		}
14639 		options = tcp_parse_options(tcph, tcpoptp);
14640 	}
14641 
14642 	if (options & TCP_OPT_TSTAMP_PRESENT) {
14643 		/*
14644 		 * Do PAWS per RFC 1323 section 4.2.  Accept RST
14645 		 * regardless of the timestamp, page 18 RFC 1323.bis.
14646 		 */
14647 		if ((flags & TH_RST) == 0 &&
14648 		    TSTMP_LT(tcpoptp->tcp_opt_ts_val,
14649 		    tcp->tcp_ts_recent)) {
14650 			if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt +
14651 			    PAWS_TIMEOUT)) {
14652 				/* This segment is not acceptable. */
14653 				return (B_FALSE);
14654 			} else {
14655 				/*
14656 				 * Connection has been idle for
14657 				 * too long.  Reset the timestamp
14658 				 * and assume the segment is valid.
14659 				 */
14660 				tcp->tcp_ts_recent =
14661 				    tcpoptp->tcp_opt_ts_val;
14662 			}
14663 		}
14664 	} else {
14665 		/*
14666 		 * If we don't get a timestamp on every packet, we
14667 		 * figure we can't really trust 'em, so we stop sending
14668 		 * and parsing them.
14669 		 */
14670 		tcp->tcp_snd_ts_ok = B_FALSE;
14671 
14672 		tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
14673 		tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
14674 		tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4);
14675 		tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN);
14676 		if (tcp->tcp_snd_sack_ok) {
14677 			ASSERT(tcp->tcp_sack_info != NULL);
14678 			tcp->tcp_max_sack_blk = 4;
14679 		}
14680 	}
14681 	return (B_TRUE);
14682 }
14683 
14684 /*
14685  * Attach ancillary data to a received TCP segments for the
14686  * ancillary pieces requested by the application that are
14687  * different than they were in the previous data segment.
14688  *
14689  * Save the "current" values once memory allocation is ok so that
14690  * when memory allocation fails we can just wait for the next data segment.
14691  */
14692 static mblk_t *
14693 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp)
14694 {
14695 	struct T_optdata_ind *todi;
14696 	int optlen;
14697 	uchar_t *optptr;
14698 	struct T_opthdr *toh;
14699 	uint_t addflag;	/* Which pieces to add */
14700 	mblk_t *mp1;
14701 
14702 	optlen = 0;
14703 	addflag = 0;
14704 	/* If app asked for pktinfo and the index has changed ... */
14705 	if ((ipp->ipp_fields & IPPF_IFINDEX) &&
14706 	    ipp->ipp_ifindex != tcp->tcp_recvifindex &&
14707 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) {
14708 		optlen += sizeof (struct T_opthdr) +
14709 		    sizeof (struct in6_pktinfo);
14710 		addflag |= TCP_IPV6_RECVPKTINFO;
14711 	}
14712 	/* If app asked for hoplimit and it has changed ... */
14713 	if ((ipp->ipp_fields & IPPF_HOPLIMIT) &&
14714 	    ipp->ipp_hoplimit != tcp->tcp_recvhops &&
14715 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) {
14716 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
14717 		addflag |= TCP_IPV6_RECVHOPLIMIT;
14718 	}
14719 	/* If app asked for tclass and it has changed ... */
14720 	if ((ipp->ipp_fields & IPPF_TCLASS) &&
14721 	    ipp->ipp_tclass != tcp->tcp_recvtclass &&
14722 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) {
14723 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
14724 		addflag |= TCP_IPV6_RECVTCLASS;
14725 	}
14726 	/* If app asked for hopbyhop headers and it has changed ... */
14727 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) &&
14728 	    tcp_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
14729 		(ipp->ipp_fields & IPPF_HOPOPTS),
14730 		ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
14731 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen;
14732 		addflag |= TCP_IPV6_RECVHOPOPTS;
14733 		if (!tcp_allocbuf((void **)&tcp->tcp_hopopts,
14734 		    &tcp->tcp_hopoptslen,
14735 		    (ipp->ipp_fields & IPPF_HOPOPTS),
14736 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
14737 			return (mp);
14738 	}
14739 	/* If app asked for dst headers before routing headers ... */
14740 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) &&
14741 	    tcp_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen,
14742 		(ipp->ipp_fields & IPPF_RTDSTOPTS),
14743 		ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) {
14744 		optlen += sizeof (struct T_opthdr) +
14745 		    ipp->ipp_rtdstoptslen;
14746 		addflag |= TCP_IPV6_RECVRTDSTOPTS;
14747 		if (!tcp_allocbuf((void **)&tcp->tcp_rtdstopts,
14748 		    &tcp->tcp_rtdstoptslen,
14749 		    (ipp->ipp_fields & IPPF_RTDSTOPTS),
14750 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen))
14751 			return (mp);
14752 	}
14753 	/* If app asked for routing headers and it has changed ... */
14754 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) &&
14755 	    tcp_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
14756 		(ipp->ipp_fields & IPPF_RTHDR),
14757 		ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
14758 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
14759 		addflag |= TCP_IPV6_RECVRTHDR;
14760 		if (!tcp_allocbuf((void **)&tcp->tcp_rthdr,
14761 		    &tcp->tcp_rthdrlen,
14762 		    (ipp->ipp_fields & IPPF_RTHDR),
14763 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
14764 			return (mp);
14765 	}
14766 	/* If app asked for dest headers and it has changed ... */
14767 	if ((tcp->tcp_ipv6_recvancillary &
14768 		(TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) &&
14769 	    tcp_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
14770 		(ipp->ipp_fields & IPPF_DSTOPTS),
14771 		ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
14772 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
14773 		addflag |= TCP_IPV6_RECVDSTOPTS;
14774 		if (!tcp_allocbuf((void **)&tcp->tcp_dstopts,
14775 		    &tcp->tcp_dstoptslen,
14776 		    (ipp->ipp_fields & IPPF_DSTOPTS),
14777 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
14778 			return (mp);
14779 	}
14780 
14781 	if (optlen == 0) {
14782 		/* Nothing to add */
14783 		return (mp);
14784 	}
14785 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
14786 	if (mp1 == NULL) {
14787 		/*
14788 		 * Defer sending ancillary data until the next TCP segment
14789 		 * arrives.
14790 		 */
14791 		return (mp);
14792 	}
14793 	mp1->b_cont = mp;
14794 	mp = mp1;
14795 	mp->b_wptr += sizeof (*todi) + optlen;
14796 	mp->b_datap->db_type = M_PROTO;
14797 	todi = (struct T_optdata_ind *)mp->b_rptr;
14798 	todi->PRIM_type = T_OPTDATA_IND;
14799 	todi->DATA_flag = 1;	/* MORE data */
14800 	todi->OPT_length = optlen;
14801 	todi->OPT_offset = sizeof (*todi);
14802 	optptr = (uchar_t *)&todi[1];
14803 	/*
14804 	 * If app asked for pktinfo and the index has changed ...
14805 	 * Note that the local address never changes for the connection.
14806 	 */
14807 	if (addflag & TCP_IPV6_RECVPKTINFO) {
14808 		struct in6_pktinfo *pkti;
14809 
14810 		toh = (struct T_opthdr *)optptr;
14811 		toh->level = IPPROTO_IPV6;
14812 		toh->name = IPV6_PKTINFO;
14813 		toh->len = sizeof (*toh) + sizeof (*pkti);
14814 		toh->status = 0;
14815 		optptr += sizeof (*toh);
14816 		pkti = (struct in6_pktinfo *)optptr;
14817 		if (tcp->tcp_ipversion == IPV6_VERSION)
14818 			pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src;
14819 		else
14820 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
14821 			    &pkti->ipi6_addr);
14822 		pkti->ipi6_ifindex = ipp->ipp_ifindex;
14823 		optptr += sizeof (*pkti);
14824 		ASSERT(OK_32PTR(optptr));
14825 		/* Save as "last" value */
14826 		tcp->tcp_recvifindex = ipp->ipp_ifindex;
14827 	}
14828 	/* If app asked for hoplimit and it has changed ... */
14829 	if (addflag & TCP_IPV6_RECVHOPLIMIT) {
14830 		toh = (struct T_opthdr *)optptr;
14831 		toh->level = IPPROTO_IPV6;
14832 		toh->name = IPV6_HOPLIMIT;
14833 		toh->len = sizeof (*toh) + sizeof (uint_t);
14834 		toh->status = 0;
14835 		optptr += sizeof (*toh);
14836 		*(uint_t *)optptr = ipp->ipp_hoplimit;
14837 		optptr += sizeof (uint_t);
14838 		ASSERT(OK_32PTR(optptr));
14839 		/* Save as "last" value */
14840 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
14841 	}
14842 	/* If app asked for tclass and it has changed ... */
14843 	if (addflag & TCP_IPV6_RECVTCLASS) {
14844 		toh = (struct T_opthdr *)optptr;
14845 		toh->level = IPPROTO_IPV6;
14846 		toh->name = IPV6_TCLASS;
14847 		toh->len = sizeof (*toh) + sizeof (uint_t);
14848 		toh->status = 0;
14849 		optptr += sizeof (*toh);
14850 		*(uint_t *)optptr = ipp->ipp_tclass;
14851 		optptr += sizeof (uint_t);
14852 		ASSERT(OK_32PTR(optptr));
14853 		/* Save as "last" value */
14854 		tcp->tcp_recvtclass = ipp->ipp_tclass;
14855 	}
14856 	if (addflag & TCP_IPV6_RECVHOPOPTS) {
14857 		toh = (struct T_opthdr *)optptr;
14858 		toh->level = IPPROTO_IPV6;
14859 		toh->name = IPV6_HOPOPTS;
14860 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen;
14861 		toh->status = 0;
14862 		optptr += sizeof (*toh);
14863 		bcopy(ipp->ipp_hopopts, optptr, ipp->ipp_hopoptslen);
14864 		optptr += ipp->ipp_hopoptslen;
14865 		ASSERT(OK_32PTR(optptr));
14866 		/* Save as last value */
14867 		tcp_savebuf((void **)&tcp->tcp_hopopts,
14868 		    &tcp->tcp_hopoptslen,
14869 		    (ipp->ipp_fields & IPPF_HOPOPTS),
14870 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
14871 	}
14872 	if (addflag & TCP_IPV6_RECVRTDSTOPTS) {
14873 		toh = (struct T_opthdr *)optptr;
14874 		toh->level = IPPROTO_IPV6;
14875 		toh->name = IPV6_RTHDRDSTOPTS;
14876 		toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen;
14877 		toh->status = 0;
14878 		optptr += sizeof (*toh);
14879 		bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen);
14880 		optptr += ipp->ipp_rtdstoptslen;
14881 		ASSERT(OK_32PTR(optptr));
14882 		/* Save as last value */
14883 		tcp_savebuf((void **)&tcp->tcp_rtdstopts,
14884 		    &tcp->tcp_rtdstoptslen,
14885 		    (ipp->ipp_fields & IPPF_RTDSTOPTS),
14886 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen);
14887 	}
14888 	if (addflag & TCP_IPV6_RECVRTHDR) {
14889 		toh = (struct T_opthdr *)optptr;
14890 		toh->level = IPPROTO_IPV6;
14891 		toh->name = IPV6_RTHDR;
14892 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
14893 		toh->status = 0;
14894 		optptr += sizeof (*toh);
14895 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
14896 		optptr += ipp->ipp_rthdrlen;
14897 		ASSERT(OK_32PTR(optptr));
14898 		/* Save as last value */
14899 		tcp_savebuf((void **)&tcp->tcp_rthdr,
14900 		    &tcp->tcp_rthdrlen,
14901 		    (ipp->ipp_fields & IPPF_RTHDR),
14902 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
14903 	}
14904 	if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) {
14905 		toh = (struct T_opthdr *)optptr;
14906 		toh->level = IPPROTO_IPV6;
14907 		toh->name = IPV6_DSTOPTS;
14908 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
14909 		toh->status = 0;
14910 		optptr += sizeof (*toh);
14911 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
14912 		optptr += ipp->ipp_dstoptslen;
14913 		ASSERT(OK_32PTR(optptr));
14914 		/* Save as last value */
14915 		tcp_savebuf((void **)&tcp->tcp_dstopts,
14916 		    &tcp->tcp_dstoptslen,
14917 		    (ipp->ipp_fields & IPPF_DSTOPTS),
14918 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
14919 	}
14920 	ASSERT(optptr == mp->b_wptr);
14921 	return (mp);
14922 }
14923 
14924 
14925 /*
14926  * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK
14927  * or a "bad" IRE detected by tcp_adapt_ire.
14928  * We can't tell if the failure was due to the laddr or the faddr
14929  * thus we clear out all addresses and ports.
14930  */
14931 static void
14932 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error)
14933 {
14934 	queue_t	*q = tcp->tcp_rq;
14935 	tcph_t	*tcph;
14936 	struct T_error_ack *tea;
14937 	conn_t	*connp = tcp->tcp_connp;
14938 
14939 
14940 	ASSERT(mp->b_datap->db_type == M_PCPROTO);
14941 
14942 	if (mp->b_cont) {
14943 		freemsg(mp->b_cont);
14944 		mp->b_cont = NULL;
14945 	}
14946 	tea = (struct T_error_ack *)mp->b_rptr;
14947 	switch (tea->PRIM_type) {
14948 	case T_BIND_ACK:
14949 		/*
14950 		 * Need to unbind with classifier since we were just told that
14951 		 * our bind succeeded.
14952 		 */
14953 		tcp->tcp_hard_bound = B_FALSE;
14954 		tcp->tcp_hard_binding = B_FALSE;
14955 
14956 		ipcl_hash_remove(connp);
14957 		/* Reuse the mblk if possible */
14958 		ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >=
14959 			sizeof (*tea));
14960 		mp->b_rptr = mp->b_datap->db_base;
14961 		mp->b_wptr = mp->b_rptr + sizeof (*tea);
14962 		tea = (struct T_error_ack *)mp->b_rptr;
14963 		tea->PRIM_type = T_ERROR_ACK;
14964 		tea->TLI_error = TSYSERR;
14965 		tea->UNIX_error = error;
14966 		if (tcp->tcp_state >= TCPS_SYN_SENT) {
14967 			tea->ERROR_prim = T_CONN_REQ;
14968 		} else {
14969 			tea->ERROR_prim = O_T_BIND_REQ;
14970 		}
14971 		break;
14972 
14973 	case T_ERROR_ACK:
14974 		if (tcp->tcp_state >= TCPS_SYN_SENT)
14975 			tea->ERROR_prim = T_CONN_REQ;
14976 		break;
14977 	default:
14978 		panic("tcp_bind_failed: unexpected TPI type");
14979 		/*NOTREACHED*/
14980 	}
14981 
14982 	tcp->tcp_state = TCPS_IDLE;
14983 	if (tcp->tcp_ipversion == IPV4_VERSION)
14984 		tcp->tcp_ipha->ipha_src = 0;
14985 	else
14986 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
14987 	/*
14988 	 * Copy of the src addr. in tcp_t is needed since
14989 	 * the lookup funcs. can only look at tcp_t
14990 	 */
14991 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
14992 
14993 	tcph = tcp->tcp_tcph;
14994 	tcph->th_lport[0] = 0;
14995 	tcph->th_lport[1] = 0;
14996 	tcp_bind_hash_remove(tcp);
14997 	bzero(&connp->u_port, sizeof (connp->u_port));
14998 	/* blow away saved option results if any */
14999 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
15000 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
15001 
15002 	conn_delete_ire(tcp->tcp_connp, NULL);
15003 	putnext(q, mp);
15004 }
15005 
15006 /*
15007  * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA
15008  * messages.
15009  */
15010 void
15011 tcp_rput_other(tcp_t *tcp, mblk_t *mp)
15012 {
15013 	mblk_t	*mp1;
15014 	uchar_t	*rptr = mp->b_rptr;
15015 	queue_t	*q = tcp->tcp_rq;
15016 	struct T_error_ack *tea;
15017 	uint32_t mss;
15018 	mblk_t *syn_mp;
15019 	mblk_t *mdti;
15020 	int	retval;
15021 	mblk_t *ire_mp;
15022 
15023 	switch (mp->b_datap->db_type) {
15024 	case M_PROTO:
15025 	case M_PCPROTO:
15026 		ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
15027 		if ((mp->b_wptr - rptr) < sizeof (t_scalar_t))
15028 			break;
15029 		tea = (struct T_error_ack *)rptr;
15030 		switch (tea->PRIM_type) {
15031 		case T_BIND_ACK:
15032 			/*
15033 			 * Adapt Multidata information, if any.  The
15034 			 * following tcp_mdt_update routine will free
15035 			 * the message.
15036 			 */
15037 			if ((mdti = tcp_mdt_info_mp(mp)) != NULL) {
15038 				tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti->
15039 				    b_rptr)->mdt_capab, B_TRUE);
15040 				freemsg(mdti);
15041 			}
15042 
15043 			/* Get the IRE, if we had requested for it */
15044 			ire_mp = tcp_ire_mp(mp);
15045 
15046 			if (tcp->tcp_hard_binding) {
15047 				tcp->tcp_hard_binding = B_FALSE;
15048 				tcp->tcp_hard_bound = B_TRUE;
15049 				CL_INET_CONNECT(tcp);
15050 			} else {
15051 				if (ire_mp != NULL)
15052 					freeb(ire_mp);
15053 				goto after_syn_sent;
15054 			}
15055 
15056 			retval = tcp_adapt_ire(tcp, ire_mp);
15057 			if (ire_mp != NULL)
15058 				freeb(ire_mp);
15059 			if (retval == 0) {
15060 				tcp_bind_failed(tcp, mp,
15061 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15062 				    ENETUNREACH : EADDRNOTAVAIL));
15063 				return;
15064 			}
15065 			/*
15066 			 * Don't let an endpoint connect to itself.
15067 			 * Also checked in tcp_connect() but that
15068 			 * check can't handle the case when the
15069 			 * local IP address is INADDR_ANY.
15070 			 */
15071 			if (tcp->tcp_ipversion == IPV4_VERSION) {
15072 				if ((tcp->tcp_ipha->ipha_dst ==
15073 				    tcp->tcp_ipha->ipha_src) &&
15074 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
15075 				    tcp->tcp_tcph->th_fport))) {
15076 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
15077 					return;
15078 				}
15079 			} else {
15080 				if (IN6_ARE_ADDR_EQUAL(
15081 				    &tcp->tcp_ip6h->ip6_dst,
15082 				    &tcp->tcp_ip6h->ip6_src) &&
15083 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
15084 				    tcp->tcp_tcph->th_fport))) {
15085 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
15086 					return;
15087 				}
15088 			}
15089 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT);
15090 			/*
15091 			 * This should not be possible!  Just for
15092 			 * defensive coding...
15093 			 */
15094 			if (tcp->tcp_state != TCPS_SYN_SENT)
15095 				goto after_syn_sent;
15096 
15097 			ASSERT(q == tcp->tcp_rq);
15098 			/*
15099 			 * tcp_adapt_ire() does not adjust
15100 			 * for TCP/IP header length.
15101 			 */
15102 			mss = tcp->tcp_mss - tcp->tcp_hdr_len;
15103 
15104 			/*
15105 			 * Just make sure our rwnd is at
15106 			 * least tcp_recv_hiwat_mss * MSS
15107 			 * large, and round up to the nearest
15108 			 * MSS.
15109 			 *
15110 			 * We do the round up here because
15111 			 * we need to get the interface
15112 			 * MTU first before we can do the
15113 			 * round up.
15114 			 */
15115 			tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
15116 			    tcp_recv_hiwat_minmss * mss);
15117 			q->q_hiwat = tcp->tcp_rwnd;
15118 			tcp_set_ws_value(tcp);
15119 			U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws),
15120 			    tcp->tcp_tcph->th_win);
15121 			if (tcp->tcp_rcv_ws > 0 || tcp_wscale_always)
15122 				tcp->tcp_snd_ws_ok = B_TRUE;
15123 
15124 			/*
15125 			 * Set tcp_snd_ts_ok to true
15126 			 * so that tcp_xmit_mp will
15127 			 * include the timestamp
15128 			 * option in the SYN segment.
15129 			 */
15130 			if (tcp_tstamp_always ||
15131 			    (tcp->tcp_rcv_ws && tcp_tstamp_if_wscale)) {
15132 				tcp->tcp_snd_ts_ok = B_TRUE;
15133 			}
15134 
15135 			/*
15136 			 * tcp_snd_sack_ok can be set in
15137 			 * tcp_adapt_ire() if the sack metric
15138 			 * is set.  So check it here also.
15139 			 */
15140 			if (tcp_sack_permitted == 2 ||
15141 			    tcp->tcp_snd_sack_ok) {
15142 				if (tcp->tcp_sack_info == NULL) {
15143 					tcp->tcp_sack_info =
15144 					kmem_cache_alloc(tcp_sack_info_cache,
15145 					    KM_SLEEP);
15146 				}
15147 				tcp->tcp_snd_sack_ok = B_TRUE;
15148 			}
15149 
15150 			/*
15151 			 * Should we use ECN?  Note that the current
15152 			 * default value (SunOS 5.9) of tcp_ecn_permitted
15153 			 * is 1.  The reason for doing this is that there
15154 			 * are equipments out there that will drop ECN
15155 			 * enabled IP packets.  Setting it to 1 avoids
15156 			 * compatibility problems.
15157 			 */
15158 			if (tcp_ecn_permitted == 2)
15159 				tcp->tcp_ecn_ok = B_TRUE;
15160 
15161 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
15162 			syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
15163 			    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
15164 			if (syn_mp) {
15165 				cred_t *cr;
15166 				pid_t pid;
15167 
15168 				/*
15169 				 * Obtain the credential from the
15170 				 * thread calling connect(); the credential
15171 				 * lives on in the second mblk which
15172 				 * originated from T_CONN_REQ and is echoed
15173 				 * with the T_BIND_ACK from ip.  If none
15174 				 * can be found, default to the creator
15175 				 * of the socket.
15176 				 */
15177 				if (mp->b_cont == NULL ||
15178 				    (cr = DB_CRED(mp->b_cont)) == NULL) {
15179 					cr = tcp->tcp_cred;
15180 					pid = tcp->tcp_cpid;
15181 				} else {
15182 					pid = DB_CPID(mp->b_cont);
15183 				}
15184 
15185 				TCP_RECORD_TRACE(tcp, syn_mp,
15186 				    TCP_TRACE_SEND_PKT);
15187 				mblk_setcred(syn_mp, cr);
15188 				DB_CPID(syn_mp) = pid;
15189 				tcp_send_data(tcp, tcp->tcp_wq, syn_mp);
15190 			}
15191 		after_syn_sent:
15192 			/*
15193 			 * A trailer mblk indicates a waiting client upstream.
15194 			 * We complete here the processing begun in
15195 			 * either tcp_bind() or tcp_connect() by passing
15196 			 * upstream the reply message they supplied.
15197 			 */
15198 			mp1 = mp;
15199 			mp = mp->b_cont;
15200 			freeb(mp1);
15201 			if (mp)
15202 				break;
15203 			return;
15204 		case T_ERROR_ACK:
15205 			if (tcp->tcp_debug) {
15206 				(void) strlog(TCP_MOD_ID, 0, 1,
15207 				    SL_TRACE|SL_ERROR,
15208 				    "tcp_rput_other: case T_ERROR_ACK, "
15209 				    "ERROR_prim == %d",
15210 				    tea->ERROR_prim);
15211 			}
15212 			switch (tea->ERROR_prim) {
15213 			case O_T_BIND_REQ:
15214 			case T_BIND_REQ:
15215 				tcp_bind_failed(tcp, mp,
15216 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15217 				    ENETUNREACH : EADDRNOTAVAIL));
15218 				return;
15219 			case T_UNBIND_REQ:
15220 				tcp->tcp_hard_binding = B_FALSE;
15221 				tcp->tcp_hard_bound = B_FALSE;
15222 				if (mp->b_cont) {
15223 					freemsg(mp->b_cont);
15224 					mp->b_cont = NULL;
15225 				}
15226 				if (tcp->tcp_unbind_pending)
15227 					tcp->tcp_unbind_pending = 0;
15228 				else {
15229 					/* From tcp_ip_unbind() - free */
15230 					freemsg(mp);
15231 					return;
15232 				}
15233 				break;
15234 			case T_SVR4_OPTMGMT_REQ:
15235 				if (tcp->tcp_drop_opt_ack_cnt > 0) {
15236 					/* T_OPTMGMT_REQ generated by TCP */
15237 					printf("T_SVR4_OPTMGMT_REQ failed "
15238 					    "%d/%d - dropped (cnt %d)\n",
15239 					    tea->TLI_error, tea->UNIX_error,
15240 					    tcp->tcp_drop_opt_ack_cnt);
15241 					freemsg(mp);
15242 					tcp->tcp_drop_opt_ack_cnt--;
15243 					return;
15244 				}
15245 				break;
15246 			}
15247 			if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ &&
15248 			    tcp->tcp_drop_opt_ack_cnt > 0) {
15249 				printf("T_SVR4_OPTMGMT_REQ failed %d/%d "
15250 				    "- dropped (cnt %d)\n",
15251 				    tea->TLI_error, tea->UNIX_error,
15252 				    tcp->tcp_drop_opt_ack_cnt);
15253 				freemsg(mp);
15254 				tcp->tcp_drop_opt_ack_cnt--;
15255 				return;
15256 			}
15257 			break;
15258 		case T_OPTMGMT_ACK:
15259 			if (tcp->tcp_drop_opt_ack_cnt > 0) {
15260 				/* T_OPTMGMT_REQ generated by TCP */
15261 				freemsg(mp);
15262 				tcp->tcp_drop_opt_ack_cnt--;
15263 				return;
15264 			}
15265 			break;
15266 		default:
15267 			break;
15268 		}
15269 		break;
15270 	case M_CTL:
15271 		/*
15272 		 * ICMP messages.
15273 		 */
15274 		tcp_icmp_error(tcp, mp);
15275 		return;
15276 	case M_FLUSH:
15277 		if (*rptr & FLUSHR)
15278 			flushq(q, FLUSHDATA);
15279 		break;
15280 	default:
15281 		break;
15282 	}
15283 	/*
15284 	 * Make sure we set this bit before sending the ACK for
15285 	 * bind. Otherwise accept could possibly run and free
15286 	 * this tcp struct.
15287 	 */
15288 	putnext(q, mp);
15289 }
15290 
15291 /*
15292  * Called as the result of a qbufcall or a qtimeout to remedy a failure
15293  * to allocate a T_ordrel_ind in tcp_rsrv().  qenable(q) will make
15294  * tcp_rsrv() try again.
15295  */
15296 static void
15297 tcp_ordrel_kick(void *arg)
15298 {
15299 	conn_t 	*connp = (conn_t *)arg;
15300 	tcp_t	*tcp = connp->conn_tcp;
15301 
15302 	tcp->tcp_ordrelid = 0;
15303 	tcp->tcp_timeout = B_FALSE;
15304 	if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL &&
15305 	    tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
15306 		qenable(tcp->tcp_rq);
15307 	}
15308 }
15309 
15310 /* ARGSUSED */
15311 static void
15312 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2)
15313 {
15314 	conn_t	*connp = (conn_t *)arg;
15315 	tcp_t	*tcp = connp->conn_tcp;
15316 	queue_t	*q = tcp->tcp_rq;
15317 	uint_t	thwin;
15318 
15319 	freeb(mp);
15320 
15321 	TCP_STAT(tcp_rsrv_calls);
15322 
15323 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
15324 		return;
15325 	}
15326 
15327 	if (tcp->tcp_fused) {
15328 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
15329 
15330 		ASSERT(tcp->tcp_fused);
15331 		ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused);
15332 		ASSERT(peer_tcp->tcp_loopback_peer == tcp);
15333 		ASSERT(!TCP_IS_DETACHED(tcp));
15334 		ASSERT(tcp->tcp_connp->conn_sqp ==
15335 		    peer_tcp->tcp_connp->conn_sqp);
15336 
15337 		/*
15338 		 * Normally we would not get backenabled in synchronous
15339 		 * streams mode, but in case this happens, we need to stop
15340 		 * synchronous streams temporarily to prevent a race with
15341 		 * tcp_fuse_rrw() or tcp_fuse_rinfop().  It is safe to access
15342 		 * tcp_rcv_list here because those entry points will return
15343 		 * right away when synchronous streams is stopped.
15344 		 */
15345 		TCP_FUSE_SYNCSTR_STOP(tcp);
15346 		if (tcp->tcp_rcv_list != NULL)
15347 			(void) tcp_rcv_drain(tcp->tcp_rq, tcp);
15348 
15349 		tcp_clrqfull(peer_tcp);
15350 		TCP_FUSE_SYNCSTR_RESUME(tcp);
15351 		TCP_STAT(tcp_fusion_backenabled);
15352 		return;
15353 	}
15354 
15355 	if (canputnext(q)) {
15356 		tcp->tcp_rwnd = q->q_hiwat;
15357 		thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
15358 		    << tcp->tcp_rcv_ws;
15359 		thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
15360 		/*
15361 		 * Send back a window update immediately if TCP is above
15362 		 * ESTABLISHED state and the increase of the rcv window
15363 		 * that the other side knows is at least 1 MSS after flow
15364 		 * control is lifted.
15365 		 */
15366 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
15367 		    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
15368 			tcp_xmit_ctl(NULL, tcp,
15369 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
15370 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
15371 			BUMP_MIB(&tcp_mib, tcpOutWinUpdate);
15372 		}
15373 	}
15374 	/* Handle a failure to allocate a T_ORDREL_IND here */
15375 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
15376 		ASSERT(tcp->tcp_listener == NULL);
15377 		if (tcp->tcp_rcv_list != NULL) {
15378 			(void) tcp_rcv_drain(q, tcp);
15379 		}
15380 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
15381 		mp = mi_tpi_ordrel_ind();
15382 		if (mp) {
15383 			tcp->tcp_ordrel_done = B_TRUE;
15384 			putnext(q, mp);
15385 			if (tcp->tcp_deferred_clean_death) {
15386 				/*
15387 				 * tcp_clean_death was deferred for
15388 				 * T_ORDREL_IND - do it now
15389 				 */
15390 				tcp->tcp_deferred_clean_death = B_FALSE;
15391 				(void) tcp_clean_death(tcp,
15392 				    tcp->tcp_client_errno, 22);
15393 			}
15394 		} else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
15395 			/*
15396 			 * If there isn't already a timer running
15397 			 * start one.  Use a 4 second
15398 			 * timer as a fallback since it can't fail.
15399 			 */
15400 			tcp->tcp_timeout = B_TRUE;
15401 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
15402 			    MSEC_TO_TICK(4000));
15403 		}
15404 	}
15405 }
15406 
15407 /*
15408  * The read side service routine is called mostly when we get back-enabled as a
15409  * result of flow control relief.  Since we don't actually queue anything in
15410  * TCP, we have no data to send out of here.  What we do is clear the receive
15411  * window, and send out a window update.
15412  * This routine is also called to drive an orderly release message upstream
15413  * if the attempt in tcp_rput failed.
15414  */
15415 static void
15416 tcp_rsrv(queue_t *q)
15417 {
15418 	conn_t *connp = Q_TO_CONN(q);
15419 	tcp_t	*tcp = connp->conn_tcp;
15420 	mblk_t	*mp;
15421 
15422 	/* No code does a putq on the read side */
15423 	ASSERT(q->q_first == NULL);
15424 
15425 	/* Nothing to do for the default queue */
15426 	if (q == tcp_g_q) {
15427 		return;
15428 	}
15429 
15430 	mp = allocb(0, BPRI_HI);
15431 	if (mp == NULL) {
15432 		/*
15433 		 * We are under memory pressure. Return for now and we
15434 		 * we will be called again later.
15435 		 */
15436 		if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
15437 			/*
15438 			 * If there isn't already a timer running
15439 			 * start one.  Use a 4 second
15440 			 * timer as a fallback since it can't fail.
15441 			 */
15442 			tcp->tcp_timeout = B_TRUE;
15443 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
15444 			    MSEC_TO_TICK(4000));
15445 		}
15446 		return;
15447 	}
15448 	CONN_INC_REF(connp);
15449 	squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp,
15450 	    SQTAG_TCP_RSRV);
15451 }
15452 
15453 /*
15454  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
15455  * We do not allow the receive window to shrink.  After setting rwnd,
15456  * set the flow control hiwat of the stream.
15457  *
15458  * This function is called in 2 cases:
15459  *
15460  * 1) Before data transfer begins, in tcp_accept_comm() for accepting a
15461  *    connection (passive open) and in tcp_rput_data() for active connect.
15462  *    This is called after tcp_mss_set() when the desired MSS value is known.
15463  *    This makes sure that our window size is a mutiple of the other side's
15464  *    MSS.
15465  * 2) Handling SO_RCVBUF option.
15466  *
15467  * It is ASSUMED that the requested size is a multiple of the current MSS.
15468  *
15469  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
15470  * user requests so.
15471  */
15472 static int
15473 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
15474 {
15475 	uint32_t	mss = tcp->tcp_mss;
15476 	uint32_t	old_max_rwnd;
15477 	uint32_t	max_transmittable_rwnd;
15478 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
15479 
15480 	if (tcp->tcp_fused) {
15481 		size_t sth_hiwat;
15482 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
15483 
15484 		ASSERT(peer_tcp != NULL);
15485 		/*
15486 		 * Record the stream head's high water mark for
15487 		 * this endpoint; this is used for flow-control
15488 		 * purposes in tcp_fuse_output().
15489 		 */
15490 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
15491 		if (!tcp_detached)
15492 			(void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat);
15493 
15494 		/*
15495 		 * In the fusion case, the maxpsz stream head value of
15496 		 * our peer is set according to its send buffer size
15497 		 * and our receive buffer size; since the latter may
15498 		 * have changed we need to update the peer's maxpsz.
15499 		 */
15500 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
15501 		return (rwnd);
15502 	}
15503 
15504 	if (tcp_detached)
15505 		old_max_rwnd = tcp->tcp_rwnd;
15506 	else
15507 		old_max_rwnd = tcp->tcp_rq->q_hiwat;
15508 
15509 	/*
15510 	 * Insist on a receive window that is at least
15511 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
15512 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
15513 	 * and delayed acknowledgement.
15514 	 */
15515 	rwnd = MAX(rwnd, tcp_recv_hiwat_minmss * mss);
15516 
15517 	/*
15518 	 * If window size info has already been exchanged, TCP should not
15519 	 * shrink the window.  Shrinking window is doable if done carefully.
15520 	 * We may add that support later.  But so far there is not a real
15521 	 * need to do that.
15522 	 */
15523 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
15524 		/* MSS may have changed, do a round up again. */
15525 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
15526 	}
15527 
15528 	/*
15529 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
15530 	 * can be applied even before the window scale option is decided.
15531 	 */
15532 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
15533 	if (rwnd > max_transmittable_rwnd) {
15534 		rwnd = max_transmittable_rwnd -
15535 		    (max_transmittable_rwnd % mss);
15536 		if (rwnd < mss)
15537 			rwnd = max_transmittable_rwnd;
15538 		/*
15539 		 * If we're over the limit we may have to back down tcp_rwnd.
15540 		 * The increment below won't work for us. So we set all three
15541 		 * here and the increment below will have no effect.
15542 		 */
15543 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
15544 	}
15545 	if (tcp->tcp_localnet) {
15546 		tcp->tcp_rack_abs_max =
15547 		    MIN(tcp_local_dacks_max, rwnd / mss / 2);
15548 	} else {
15549 		/*
15550 		 * For a remote host on a different subnet (through a router),
15551 		 * we ack every other packet to be conforming to RFC1122.
15552 		 * tcp_deferred_acks_max is default to 2.
15553 		 */
15554 		tcp->tcp_rack_abs_max =
15555 		    MIN(tcp_deferred_acks_max, rwnd / mss / 2);
15556 	}
15557 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
15558 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
15559 	else
15560 		tcp->tcp_rack_cur_max = 0;
15561 	/*
15562 	 * Increment the current rwnd by the amount the maximum grew (we
15563 	 * can not overwrite it since we might be in the middle of a
15564 	 * connection.)
15565 	 */
15566 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
15567 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win);
15568 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
15569 		tcp->tcp_cwnd_max = rwnd;
15570 
15571 	if (tcp_detached)
15572 		return (rwnd);
15573 	/*
15574 	 * We set the maximum receive window into rq->q_hiwat.
15575 	 * This is not actually used for flow control.
15576 	 */
15577 	tcp->tcp_rq->q_hiwat = rwnd;
15578 	/*
15579 	 * Set the Stream head high water mark. This doesn't have to be
15580 	 * here, since we are simply using default values, but we would
15581 	 * prefer to choose these values algorithmically, with a likely
15582 	 * relationship to rwnd.
15583 	 */
15584 	(void) mi_set_sth_hiwat(tcp->tcp_rq, MAX(rwnd, tcp_sth_rcv_hiwat));
15585 	return (rwnd);
15586 }
15587 
15588 /*
15589  * Return SNMP stuff in buffer in mpdata.
15590  */
15591 int
15592 tcp_snmp_get(queue_t *q, mblk_t *mpctl)
15593 {
15594 	mblk_t			*mpdata;
15595 	mblk_t			*mp_conn_ctl = NULL;
15596 	mblk_t			*mp_conn_data;
15597 	mblk_t			*mp6_conn_ctl = NULL;
15598 	mblk_t			*mp6_conn_data;
15599 	mblk_t			*mp_conn_tail = NULL;
15600 	mblk_t			*mp6_conn_tail = NULL;
15601 	struct opthdr		*optp;
15602 	mib2_tcpConnEntry_t	tce;
15603 	mib2_tcp6ConnEntry_t	tce6;
15604 	connf_t			*connfp;
15605 	conn_t			*connp;
15606 	int			i;
15607 	boolean_t 		ispriv;
15608 	zoneid_t 		zoneid;
15609 
15610 	if (mpctl == NULL ||
15611 	    (mpdata = mpctl->b_cont) == NULL ||
15612 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
15613 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL) {
15614 		if (mp_conn_ctl != NULL)
15615 			freemsg(mp_conn_ctl);
15616 		if (mp6_conn_ctl != NULL)
15617 			freemsg(mp6_conn_ctl);
15618 		return (0);
15619 	}
15620 
15621 	/* build table of connections -- need count in fixed part */
15622 	mp_conn_data = mp_conn_ctl->b_cont;
15623 	mp6_conn_data = mp6_conn_ctl->b_cont;
15624 	SET_MIB(tcp_mib.tcpRtoAlgorithm, 4);   /* vanj */
15625 	SET_MIB(tcp_mib.tcpRtoMin, tcp_rexmit_interval_min);
15626 	SET_MIB(tcp_mib.tcpRtoMax, tcp_rexmit_interval_max);
15627 	SET_MIB(tcp_mib.tcpMaxConn, -1);
15628 	SET_MIB(tcp_mib.tcpCurrEstab, 0);
15629 
15630 	ispriv =
15631 	    secpolicy_net_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0;
15632 	zoneid = Q_TO_CONN(q)->conn_zoneid;
15633 
15634 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
15635 
15636 		connfp = &ipcl_globalhash_fanout[i];
15637 
15638 		connp = NULL;
15639 
15640 		while ((connp =
15641 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
15642 			tcp_t *tcp;
15643 
15644 			if (connp->conn_zoneid != zoneid)
15645 				continue;	/* not in this zone */
15646 
15647 			tcp = connp->conn_tcp;
15648 			UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs);
15649 			tcp->tcp_ibsegs = 0;
15650 			UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs);
15651 			tcp->tcp_obsegs = 0;
15652 
15653 			tce6.tcp6ConnState = tce.tcpConnState =
15654 			    tcp_snmp_state(tcp);
15655 			if (tce.tcpConnState == MIB2_TCP_established ||
15656 			    tce.tcpConnState == MIB2_TCP_closeWait)
15657 				BUMP_MIB(&tcp_mib, tcpCurrEstab);
15658 
15659 			/* Create a message to report on IPv6 entries */
15660 			if (tcp->tcp_ipversion == IPV6_VERSION) {
15661 			tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6;
15662 			tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6;
15663 			tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport);
15664 			tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport);
15665 			tce6.tcp6ConnIfIndex = tcp->tcp_bound_if;
15666 			/* Don't want just anybody seeing these... */
15667 			if (ispriv) {
15668 				tce6.tcp6ConnEntryInfo.ce_snxt =
15669 				    tcp->tcp_snxt;
15670 				tce6.tcp6ConnEntryInfo.ce_suna =
15671 				    tcp->tcp_suna;
15672 				tce6.tcp6ConnEntryInfo.ce_rnxt =
15673 				    tcp->tcp_rnxt;
15674 				tce6.tcp6ConnEntryInfo.ce_rack =
15675 				    tcp->tcp_rack;
15676 			} else {
15677 				/*
15678 				 * Netstat, unfortunately, uses this to
15679 				 * get send/receive queue sizes.  How to fix?
15680 				 * Why not compute the difference only?
15681 				 */
15682 				tce6.tcp6ConnEntryInfo.ce_snxt =
15683 				    tcp->tcp_snxt - tcp->tcp_suna;
15684 				tce6.tcp6ConnEntryInfo.ce_suna = 0;
15685 				tce6.tcp6ConnEntryInfo.ce_rnxt =
15686 				    tcp->tcp_rnxt - tcp->tcp_rack;
15687 				tce6.tcp6ConnEntryInfo.ce_rack = 0;
15688 			}
15689 
15690 			tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd;
15691 			tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
15692 			tce6.tcp6ConnEntryInfo.ce_rto =  tcp->tcp_rto;
15693 			tce6.tcp6ConnEntryInfo.ce_mss =  tcp->tcp_mss;
15694 			tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state;
15695 			(void) snmp_append_data2(mp6_conn_data, &mp6_conn_tail,
15696 			    (char *)&tce6, sizeof (tce6));
15697 			}
15698 			/*
15699 			 * Create an IPv4 table entry for IPv4 entries and also
15700 			 * for IPv6 entries which are bound to in6addr_any
15701 			 * but don't have IPV6_V6ONLY set.
15702 			 * (i.e. anything an IPv4 peer could connect to)
15703 			 */
15704 			if (tcp->tcp_ipversion == IPV4_VERSION ||
15705 			    (tcp->tcp_state <= TCPS_LISTEN &&
15706 			    !tcp->tcp_connp->conn_ipv6_v6only &&
15707 			    IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) {
15708 				if (tcp->tcp_ipversion == IPV6_VERSION) {
15709 					tce.tcpConnRemAddress = INADDR_ANY;
15710 					tce.tcpConnLocalAddress = INADDR_ANY;
15711 				} else {
15712 					tce.tcpConnRemAddress =
15713 					    tcp->tcp_remote;
15714 					tce.tcpConnLocalAddress =
15715 					    tcp->tcp_ip_src;
15716 				}
15717 				tce.tcpConnLocalPort = ntohs(tcp->tcp_lport);
15718 				tce.tcpConnRemPort = ntohs(tcp->tcp_fport);
15719 				/* Don't want just anybody seeing these... */
15720 				if (ispriv) {
15721 					tce.tcpConnEntryInfo.ce_snxt =
15722 					    tcp->tcp_snxt;
15723 					tce.tcpConnEntryInfo.ce_suna =
15724 					    tcp->tcp_suna;
15725 					tce.tcpConnEntryInfo.ce_rnxt =
15726 					    tcp->tcp_rnxt;
15727 					tce.tcpConnEntryInfo.ce_rack =
15728 					    tcp->tcp_rack;
15729 				} else {
15730 					/*
15731 					 * Netstat, unfortunately, uses this to
15732 					 * get send/receive queue sizes.  How
15733 					 * to fix?
15734 					 * Why not compute the difference only?
15735 					 */
15736 					tce.tcpConnEntryInfo.ce_snxt =
15737 					    tcp->tcp_snxt - tcp->tcp_suna;
15738 					tce.tcpConnEntryInfo.ce_suna = 0;
15739 					tce.tcpConnEntryInfo.ce_rnxt =
15740 					    tcp->tcp_rnxt - tcp->tcp_rack;
15741 					tce.tcpConnEntryInfo.ce_rack = 0;
15742 				}
15743 
15744 				tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd;
15745 				tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
15746 				tce.tcpConnEntryInfo.ce_rto =  tcp->tcp_rto;
15747 				tce.tcpConnEntryInfo.ce_mss =  tcp->tcp_mss;
15748 				tce.tcpConnEntryInfo.ce_state =
15749 				    tcp->tcp_state;
15750 				(void) snmp_append_data2(mp_conn_data,
15751 				    &mp_conn_tail, (char *)&tce, sizeof (tce));
15752 			}
15753 		}
15754 	}
15755 
15756 	/* fixed length structure for IPv4 and IPv6 counters */
15757 	SET_MIB(tcp_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t));
15758 	SET_MIB(tcp_mib.tcp6ConnTableSize, sizeof (mib2_tcp6ConnEntry_t));
15759 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
15760 	optp->level = MIB2_TCP;
15761 	optp->name = 0;
15762 	(void) snmp_append_data(mpdata, (char *)&tcp_mib, sizeof (tcp_mib));
15763 	optp->len = msgdsize(mpdata);
15764 	qreply(q, mpctl);
15765 
15766 	/* table of connections... */
15767 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
15768 	    sizeof (struct T_optmgmt_ack)];
15769 	optp->level = MIB2_TCP;
15770 	optp->name = MIB2_TCP_CONN;
15771 	optp->len = msgdsize(mp_conn_data);
15772 	qreply(q, mp_conn_ctl);
15773 
15774 	/* table of IPv6 connections... */
15775 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
15776 	    sizeof (struct T_optmgmt_ack)];
15777 	optp->level = MIB2_TCP6;
15778 	optp->name = MIB2_TCP6_CONN;
15779 	optp->len = msgdsize(mp6_conn_data);
15780 	qreply(q, mp6_conn_ctl);
15781 	return (1);
15782 }
15783 
15784 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests  */
15785 /* ARGSUSED */
15786 int
15787 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
15788 {
15789 	mib2_tcpConnEntry_t	*tce = (mib2_tcpConnEntry_t *)ptr;
15790 
15791 	switch (level) {
15792 	case MIB2_TCP:
15793 		switch (name) {
15794 		case 13:
15795 			if (tce->tcpConnState != MIB2_TCP_deleteTCB)
15796 				return (0);
15797 			/* TODO: delete entry defined by tce */
15798 			return (1);
15799 		default:
15800 			return (0);
15801 		}
15802 	default:
15803 		return (1);
15804 	}
15805 }
15806 
15807 /* Translate TCP state to MIB2 TCP state. */
15808 static int
15809 tcp_snmp_state(tcp_t *tcp)
15810 {
15811 	if (tcp == NULL)
15812 		return (0);
15813 
15814 	switch (tcp->tcp_state) {
15815 	case TCPS_CLOSED:
15816 	case TCPS_IDLE:	/* RFC1213 doesn't have analogue for IDLE & BOUND */
15817 	case TCPS_BOUND:
15818 		return (MIB2_TCP_closed);
15819 	case TCPS_LISTEN:
15820 		return (MIB2_TCP_listen);
15821 	case TCPS_SYN_SENT:
15822 		return (MIB2_TCP_synSent);
15823 	case TCPS_SYN_RCVD:
15824 		return (MIB2_TCP_synReceived);
15825 	case TCPS_ESTABLISHED:
15826 		return (MIB2_TCP_established);
15827 	case TCPS_CLOSE_WAIT:
15828 		return (MIB2_TCP_closeWait);
15829 	case TCPS_FIN_WAIT_1:
15830 		return (MIB2_TCP_finWait1);
15831 	case TCPS_CLOSING:
15832 		return (MIB2_TCP_closing);
15833 	case TCPS_LAST_ACK:
15834 		return (MIB2_TCP_lastAck);
15835 	case TCPS_FIN_WAIT_2:
15836 		return (MIB2_TCP_finWait2);
15837 	case TCPS_TIME_WAIT:
15838 		return (MIB2_TCP_timeWait);
15839 	default:
15840 		return (0);
15841 	}
15842 }
15843 
15844 static char tcp_report_header[] =
15845 	"TCP     " MI_COL_HDRPAD_STR
15846 	"zone dest            snxt     suna     "
15847 	"swnd       rnxt     rack     rwnd       rto   mss   w sw rw t "
15848 	"recent   [lport,fport] state";
15849 
15850 /*
15851  * TCP status report triggered via the Named Dispatch mechanism.
15852  */
15853 /* ARGSUSED */
15854 static void
15855 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream,
15856     cred_t *cr)
15857 {
15858 	char hash[10], addrbuf[INET6_ADDRSTRLEN];
15859 	boolean_t ispriv = secpolicy_net_config(cr, B_TRUE) == 0;
15860 	char cflag;
15861 	in6_addr_t	v6dst;
15862 	char buf[80];
15863 	uint_t print_len, buf_len;
15864 
15865 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
15866 	if (buf_len <= 0)
15867 		return;
15868 
15869 	if (hashval >= 0)
15870 		(void) sprintf(hash, "%03d ", hashval);
15871 	else
15872 		hash[0] = '\0';
15873 
15874 	/*
15875 	 * Note that we use the remote address in the tcp_b  structure.
15876 	 * This means that it will print out the real destination address,
15877 	 * not the next hop's address if source routing is used.  This
15878 	 * avoid the confusion on the output because user may not
15879 	 * know that source routing is used for a connection.
15880 	 */
15881 	if (tcp->tcp_ipversion == IPV4_VERSION) {
15882 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst);
15883 	} else {
15884 		v6dst = tcp->tcp_remote_v6;
15885 	}
15886 	(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
15887 	/*
15888 	 * the ispriv checks are so that normal users cannot determine
15889 	 * sequence number information using NDD.
15890 	 */
15891 
15892 	if (TCP_IS_DETACHED(tcp))
15893 		cflag = '*';
15894 	else
15895 		cflag = ' ';
15896 	print_len = snprintf((char *)mp->b_wptr, buf_len,
15897 	    "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x "
15898 	    "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n",
15899 	    hash,
15900 	    (void *)tcp,
15901 	    tcp->tcp_connp->conn_zoneid,
15902 	    addrbuf,
15903 	    (ispriv) ? tcp->tcp_snxt : 0,
15904 	    (ispriv) ? tcp->tcp_suna : 0,
15905 	    tcp->tcp_swnd,
15906 	    (ispriv) ? tcp->tcp_rnxt : 0,
15907 	    (ispriv) ? tcp->tcp_rack : 0,
15908 	    tcp->tcp_rwnd,
15909 	    tcp->tcp_rto,
15910 	    tcp->tcp_mss,
15911 	    tcp->tcp_snd_ws_ok,
15912 	    tcp->tcp_snd_ws,
15913 	    tcp->tcp_rcv_ws,
15914 	    tcp->tcp_snd_ts_ok,
15915 	    tcp->tcp_ts_recent,
15916 	    tcp_display(tcp, buf, DISP_PORT_ONLY), cflag);
15917 	if (print_len < buf_len) {
15918 		((mblk_t *)mp)->b_wptr += print_len;
15919 	} else {
15920 		((mblk_t *)mp)->b_wptr += buf_len;
15921 	}
15922 }
15923 
15924 /*
15925  * TCP status report (for listeners only) triggered via the Named Dispatch
15926  * mechanism.
15927  */
15928 /* ARGSUSED */
15929 static void
15930 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval)
15931 {
15932 	char addrbuf[INET6_ADDRSTRLEN];
15933 	in6_addr_t	v6dst;
15934 	uint_t print_len, buf_len;
15935 
15936 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
15937 	if (buf_len <= 0)
15938 		return;
15939 
15940 	if (tcp->tcp_ipversion == IPV4_VERSION) {
15941 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst);
15942 		(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
15943 	} else {
15944 		(void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src,
15945 		    addrbuf, sizeof (addrbuf));
15946 	}
15947 	print_len = snprintf((char *)mp->b_wptr, buf_len,
15948 	    "%03d "
15949 	    MI_COL_PTRFMT_STR
15950 	    "%d %s %05u %08u %d/%d/%d%c\n",
15951 	    hashval, (void *)tcp,
15952 	    tcp->tcp_connp->conn_zoneid,
15953 	    addrbuf,
15954 	    (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport),
15955 	    tcp->tcp_conn_req_seqnum,
15956 	    tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q,
15957 	    tcp->tcp_conn_req_max,
15958 	    tcp->tcp_syn_defense ? '*' : ' ');
15959 	if (print_len < buf_len) {
15960 		((mblk_t *)mp)->b_wptr += print_len;
15961 	} else {
15962 		((mblk_t *)mp)->b_wptr += buf_len;
15963 	}
15964 }
15965 
15966 /* TCP status report triggered via the Named Dispatch mechanism. */
15967 /* ARGSUSED */
15968 static int
15969 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
15970 {
15971 	tcp_t	*tcp;
15972 	int	i;
15973 	conn_t	*connp;
15974 	connf_t	*connfp;
15975 	zoneid_t zoneid;
15976 
15977 	/*
15978 	 * Because of the ndd constraint, at most we can have 64K buffer
15979 	 * to put in all TCP info.  So to be more efficient, just
15980 	 * allocate a 64K buffer here, assuming we need that large buffer.
15981 	 * This may be a problem as any user can read tcp_status.  Therefore
15982 	 * we limit the rate of doing this using tcp_ndd_get_info_interval.
15983 	 * This should be OK as normal users should not do this too often.
15984 	 */
15985 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
15986 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
15987 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
15988 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
15989 			return (0);
15990 		}
15991 	}
15992 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
15993 		/* The following may work even if we cannot get a large buf. */
15994 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
15995 		return (0);
15996 	}
15997 
15998 	(void) mi_mpprintf(mp, "%s", tcp_report_header);
15999 
16000 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16001 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16002 
16003 		connfp = &ipcl_globalhash_fanout[i];
16004 
16005 		connp = NULL;
16006 
16007 		while ((connp =
16008 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16009 			tcp = connp->conn_tcp;
16010 			if (zoneid != GLOBAL_ZONEID &&
16011 			    zoneid != connp->conn_zoneid)
16012 				continue;
16013 			tcp_report_item(mp->b_cont, tcp, -1, tcp,
16014 			    cr);
16015 		}
16016 
16017 	}
16018 
16019 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16020 	return (0);
16021 }
16022 
16023 /* TCP status report triggered via the Named Dispatch mechanism. */
16024 /* ARGSUSED */
16025 static int
16026 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16027 {
16028 	tf_t	*tbf;
16029 	tcp_t	*tcp;
16030 	int	i;
16031 	zoneid_t zoneid;
16032 
16033 	/* Refer to comments in tcp_status_report(). */
16034 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16035 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16036 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16037 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16038 			return (0);
16039 		}
16040 	}
16041 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16042 		/* The following may work even if we cannot get a large buf. */
16043 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16044 		return (0);
16045 	}
16046 
16047 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16048 
16049 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16050 
16051 	for (i = 0; i < A_CNT(tcp_bind_fanout); i++) {
16052 		tbf = &tcp_bind_fanout[i];
16053 		mutex_enter(&tbf->tf_lock);
16054 		for (tcp = tbf->tf_tcp; tcp != NULL;
16055 		    tcp = tcp->tcp_bind_hash) {
16056 			if (zoneid != GLOBAL_ZONEID &&
16057 			    zoneid != tcp->tcp_connp->conn_zoneid)
16058 				continue;
16059 			CONN_INC_REF(tcp->tcp_connp);
16060 			tcp_report_item(mp->b_cont, tcp, i,
16061 			    Q_TO_TCP(q), cr);
16062 			CONN_DEC_REF(tcp->tcp_connp);
16063 		}
16064 		mutex_exit(&tbf->tf_lock);
16065 	}
16066 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16067 	return (0);
16068 }
16069 
16070 /* TCP status report triggered via the Named Dispatch mechanism. */
16071 /* ARGSUSED */
16072 static int
16073 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16074 {
16075 	connf_t	*connfp;
16076 	conn_t	*connp;
16077 	tcp_t	*tcp;
16078 	int	i;
16079 	zoneid_t zoneid;
16080 
16081 	/* Refer to comments in tcp_status_report(). */
16082 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16083 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16084 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16085 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16086 			return (0);
16087 		}
16088 	}
16089 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16090 		/* The following may work even if we cannot get a large buf. */
16091 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16092 		return (0);
16093 	}
16094 
16095 	(void) mi_mpprintf(mp,
16096 	    "    TCP    " MI_COL_HDRPAD_STR
16097 	    "zone IP addr         port  seqnum   backlog (q0/q/max)");
16098 
16099 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16100 
16101 	for (i = 0; i < ipcl_bind_fanout_size; i++) {
16102 		connfp =  &ipcl_bind_fanout[i];
16103 		connp = NULL;
16104 		while ((connp =
16105 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16106 			tcp = connp->conn_tcp;
16107 			if (zoneid != GLOBAL_ZONEID &&
16108 			    zoneid != connp->conn_zoneid)
16109 				continue;
16110 			tcp_report_listener(mp->b_cont, tcp, i);
16111 		}
16112 	}
16113 
16114 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16115 	return (0);
16116 }
16117 
16118 /* TCP status report triggered via the Named Dispatch mechanism. */
16119 /* ARGSUSED */
16120 static int
16121 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16122 {
16123 	connf_t	*connfp;
16124 	conn_t	*connp;
16125 	tcp_t	*tcp;
16126 	int	i;
16127 	zoneid_t zoneid;
16128 
16129 	/* Refer to comments in tcp_status_report(). */
16130 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16131 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16132 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16133 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16134 			return (0);
16135 		}
16136 	}
16137 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16138 		/* The following may work even if we cannot get a large buf. */
16139 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16140 		return (0);
16141 	}
16142 
16143 	(void) mi_mpprintf(mp, "tcp_conn_hash_size = %d",
16144 	    ipcl_conn_fanout_size);
16145 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16146 
16147 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16148 
16149 	for (i = 0; i < ipcl_conn_fanout_size; i++) {
16150 		connfp =  &ipcl_conn_fanout[i];
16151 		connp = NULL;
16152 		while ((connp =
16153 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16154 			tcp = connp->conn_tcp;
16155 			if (zoneid != GLOBAL_ZONEID &&
16156 			    zoneid != connp->conn_zoneid)
16157 				continue;
16158 			tcp_report_item(mp->b_cont, tcp, i,
16159 			    Q_TO_TCP(q), cr);
16160 		}
16161 	}
16162 
16163 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16164 	return (0);
16165 }
16166 
16167 /* TCP status report triggered via the Named Dispatch mechanism. */
16168 /* ARGSUSED */
16169 static int
16170 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16171 {
16172 	tf_t	*tf;
16173 	tcp_t	*tcp;
16174 	int	i;
16175 	zoneid_t zoneid;
16176 
16177 	/* Refer to comments in tcp_status_report(). */
16178 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16179 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16180 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16181 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16182 			return (0);
16183 		}
16184 	}
16185 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16186 		/* The following may work even if we cannot get a large buf. */
16187 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16188 		return (0);
16189 	}
16190 
16191 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16192 
16193 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16194 
16195 	for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) {
16196 		tf = &tcp_acceptor_fanout[i];
16197 		mutex_enter(&tf->tf_lock);
16198 		for (tcp = tf->tf_tcp; tcp != NULL;
16199 		    tcp = tcp->tcp_acceptor_hash) {
16200 			if (zoneid != GLOBAL_ZONEID &&
16201 			    zoneid != tcp->tcp_connp->conn_zoneid)
16202 				continue;
16203 			tcp_report_item(mp->b_cont, tcp, i,
16204 			    Q_TO_TCP(q), cr);
16205 		}
16206 		mutex_exit(&tf->tf_lock);
16207 	}
16208 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16209 	return (0);
16210 }
16211 
16212 /*
16213  * tcp_timer is the timer service routine.  It handles the retransmission,
16214  * FIN_WAIT_2 flush, and zero window probe timeout events.  It figures out
16215  * from the state of the tcp instance what kind of action needs to be done
16216  * at the time it is called.
16217  */
16218 static void
16219 tcp_timer(void *arg)
16220 {
16221 	mblk_t		*mp;
16222 	clock_t		first_threshold;
16223 	clock_t		second_threshold;
16224 	clock_t		ms;
16225 	uint32_t	mss;
16226 	conn_t		*connp = (conn_t *)arg;
16227 	tcp_t		*tcp = connp->conn_tcp;
16228 
16229 	tcp->tcp_timer_tid = 0;
16230 
16231 	if (tcp->tcp_fused)
16232 		return;
16233 
16234 	first_threshold =  tcp->tcp_first_timer_threshold;
16235 	second_threshold = tcp->tcp_second_timer_threshold;
16236 	switch (tcp->tcp_state) {
16237 	case TCPS_IDLE:
16238 	case TCPS_BOUND:
16239 	case TCPS_LISTEN:
16240 		return;
16241 	case TCPS_SYN_RCVD: {
16242 		tcp_t	*listener = tcp->tcp_listener;
16243 
16244 		if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) {
16245 			ASSERT(tcp->tcp_rq == listener->tcp_rq);
16246 			/* it's our first timeout */
16247 			tcp->tcp_syn_rcvd_timeout = 1;
16248 			mutex_enter(&listener->tcp_eager_lock);
16249 			listener->tcp_syn_rcvd_timeout++;
16250 			if (!listener->tcp_syn_defense &&
16251 			    (listener->tcp_syn_rcvd_timeout >
16252 			    (tcp_conn_req_max_q0 >> 2)) &&
16253 			    (tcp_conn_req_max_q0 > 200)) {
16254 				/* We may be under attack. Put on a defense. */
16255 				listener->tcp_syn_defense = B_TRUE;
16256 				cmn_err(CE_WARN, "High TCP connect timeout "
16257 				    "rate! System (port %d) may be under a "
16258 				    "SYN flood attack!",
16259 				    BE16_TO_U16(listener->tcp_tcph->th_lport));
16260 
16261 				listener->tcp_ip_addr_cache = kmem_zalloc(
16262 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t),
16263 				    KM_NOSLEEP);
16264 			}
16265 			mutex_exit(&listener->tcp_eager_lock);
16266 		}
16267 	}
16268 		/* FALLTHRU */
16269 	case TCPS_SYN_SENT:
16270 		first_threshold =  tcp->tcp_first_ctimer_threshold;
16271 		second_threshold = tcp->tcp_second_ctimer_threshold;
16272 		break;
16273 	case TCPS_ESTABLISHED:
16274 	case TCPS_FIN_WAIT_1:
16275 	case TCPS_CLOSING:
16276 	case TCPS_CLOSE_WAIT:
16277 	case TCPS_LAST_ACK:
16278 		/* If we have data to rexmit */
16279 		if (tcp->tcp_suna != tcp->tcp_snxt) {
16280 			clock_t	time_to_wait;
16281 
16282 			BUMP_MIB(&tcp_mib, tcpTimRetrans);
16283 			if (!tcp->tcp_xmit_head)
16284 				break;
16285 			time_to_wait = lbolt -
16286 			    (clock_t)tcp->tcp_xmit_head->b_prev;
16287 			time_to_wait = tcp->tcp_rto -
16288 			    TICK_TO_MSEC(time_to_wait);
16289 			/*
16290 			 * If the timer fires too early, 1 clock tick earlier,
16291 			 * restart the timer.
16292 			 */
16293 			if (time_to_wait > msec_per_tick) {
16294 				TCP_STAT(tcp_timer_fire_early);
16295 				TCP_TIMER_RESTART(tcp, time_to_wait);
16296 				return;
16297 			}
16298 			/*
16299 			 * When we probe zero windows, we force the swnd open.
16300 			 * If our peer acks with a closed window swnd will be
16301 			 * set to zero by tcp_rput(). As long as we are
16302 			 * receiving acks tcp_rput will
16303 			 * reset 'tcp_ms_we_have_waited' so as not to trip the
16304 			 * first and second interval actions.  NOTE: the timer
16305 			 * interval is allowed to continue its exponential
16306 			 * backoff.
16307 			 */
16308 			if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) {
16309 				if (tcp->tcp_debug) {
16310 					(void) strlog(TCP_MOD_ID, 0, 1,
16311 					    SL_TRACE, "tcp_timer: zero win");
16312 				}
16313 			} else {
16314 				/*
16315 				 * After retransmission, we need to do
16316 				 * slow start.  Set the ssthresh to one
16317 				 * half of current effective window and
16318 				 * cwnd to one MSS.  Also reset
16319 				 * tcp_cwnd_cnt.
16320 				 *
16321 				 * Note that if tcp_ssthresh is reduced because
16322 				 * of ECN, do not reduce it again unless it is
16323 				 * already one window of data away (tcp_cwr
16324 				 * should then be cleared) or this is a
16325 				 * timeout for a retransmitted segment.
16326 				 */
16327 				uint32_t npkt;
16328 
16329 				if (!tcp->tcp_cwr || tcp->tcp_rexmit) {
16330 					npkt = ((tcp->tcp_timer_backoff ?
16331 					    tcp->tcp_cwnd_ssthresh :
16332 					    tcp->tcp_snxt -
16333 					    tcp->tcp_suna) >> 1) / tcp->tcp_mss;
16334 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
16335 					    tcp->tcp_mss;
16336 				}
16337 				tcp->tcp_cwnd = tcp->tcp_mss;
16338 				tcp->tcp_cwnd_cnt = 0;
16339 				if (tcp->tcp_ecn_ok) {
16340 					tcp->tcp_cwr = B_TRUE;
16341 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
16342 					tcp->tcp_ecn_cwr_sent = B_FALSE;
16343 				}
16344 			}
16345 			break;
16346 		}
16347 		/*
16348 		 * We have something to send yet we cannot send.  The
16349 		 * reason can be:
16350 		 *
16351 		 * 1. Zero send window: we need to do zero window probe.
16352 		 * 2. Zero cwnd: because of ECN, we need to "clock out
16353 		 * segments.
16354 		 * 3. SWS avoidance: receiver may have shrunk window,
16355 		 * reset our knowledge.
16356 		 *
16357 		 * Note that condition 2 can happen with either 1 or
16358 		 * 3.  But 1 and 3 are exclusive.
16359 		 */
16360 		if (tcp->tcp_unsent != 0) {
16361 			if (tcp->tcp_cwnd == 0) {
16362 				/*
16363 				 * Set tcp_cwnd to 1 MSS so that a
16364 				 * new segment can be sent out.  We
16365 				 * are "clocking out" new data when
16366 				 * the network is really congested.
16367 				 */
16368 				ASSERT(tcp->tcp_ecn_ok);
16369 				tcp->tcp_cwnd = tcp->tcp_mss;
16370 			}
16371 			if (tcp->tcp_swnd == 0) {
16372 				/* Extend window for zero window probe */
16373 				tcp->tcp_swnd++;
16374 				tcp->tcp_zero_win_probe = B_TRUE;
16375 				BUMP_MIB(&tcp_mib, tcpOutWinProbe);
16376 			} else {
16377 				/*
16378 				 * Handle timeout from sender SWS avoidance.
16379 				 * Reset our knowledge of the max send window
16380 				 * since the receiver might have reduced its
16381 				 * receive buffer.  Avoid setting tcp_max_swnd
16382 				 * to one since that will essentially disable
16383 				 * the SWS checks.
16384 				 *
16385 				 * Note that since we don't have a SWS
16386 				 * state variable, if the timeout is set
16387 				 * for ECN but not for SWS, this
16388 				 * code will also be executed.  This is
16389 				 * fine as tcp_max_swnd is updated
16390 				 * constantly and it will not affect
16391 				 * anything.
16392 				 */
16393 				tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2);
16394 			}
16395 			tcp_wput_data(tcp, NULL, B_FALSE);
16396 			return;
16397 		}
16398 		/* Is there a FIN that needs to be to re retransmitted? */
16399 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
16400 		    !tcp->tcp_fin_acked)
16401 			break;
16402 		/* Nothing to do, return without restarting timer. */
16403 		TCP_STAT(tcp_timer_fire_miss);
16404 		return;
16405 	case TCPS_FIN_WAIT_2:
16406 		/*
16407 		 * User closed the TCP endpoint and peer ACK'ed our FIN.
16408 		 * We waited some time for for peer's FIN, but it hasn't
16409 		 * arrived.  We flush the connection now to avoid
16410 		 * case where the peer has rebooted.
16411 		 */
16412 		if (TCP_IS_DETACHED(tcp)) {
16413 			(void) tcp_clean_death(tcp, 0, 23);
16414 		} else {
16415 			TCP_TIMER_RESTART(tcp, tcp_fin_wait_2_flush_interval);
16416 		}
16417 		return;
16418 	case TCPS_TIME_WAIT:
16419 		(void) tcp_clean_death(tcp, 0, 24);
16420 		return;
16421 	default:
16422 		if (tcp->tcp_debug) {
16423 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
16424 			    "tcp_timer: strange state (%d) %s",
16425 			    tcp->tcp_state, tcp_display(tcp, NULL,
16426 			    DISP_PORT_ONLY));
16427 		}
16428 		return;
16429 	}
16430 	if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) {
16431 		/*
16432 		 * For zero window probe, we need to send indefinitely,
16433 		 * unless we have not heard from the other side for some
16434 		 * time...
16435 		 */
16436 		if ((tcp->tcp_zero_win_probe == 0) ||
16437 		    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >
16438 		    second_threshold)) {
16439 			BUMP_MIB(&tcp_mib, tcpTimRetransDrop);
16440 			/*
16441 			 * If TCP is in SYN_RCVD state, send back a
16442 			 * RST|ACK as BSD does.  Note that tcp_zero_win_probe
16443 			 * should be zero in TCPS_SYN_RCVD state.
16444 			 */
16445 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
16446 				tcp_xmit_ctl("tcp_timer: RST sent on timeout "
16447 				    "in SYN_RCVD",
16448 				    tcp, tcp->tcp_snxt,
16449 				    tcp->tcp_rnxt, TH_RST | TH_ACK);
16450 			}
16451 			(void) tcp_clean_death(tcp,
16452 			    tcp->tcp_client_errno ?
16453 			    tcp->tcp_client_errno : ETIMEDOUT, 25);
16454 			return;
16455 		} else {
16456 			/*
16457 			 * Set tcp_ms_we_have_waited to second_threshold
16458 			 * so that in next timeout, we will do the above
16459 			 * check (lbolt - tcp_last_recv_time).  This is
16460 			 * also to avoid overflow.
16461 			 *
16462 			 * We don't need to decrement tcp_timer_backoff
16463 			 * to avoid overflow because it will be decremented
16464 			 * later if new timeout value is greater than
16465 			 * tcp_rexmit_interval_max.  In the case when
16466 			 * tcp_rexmit_interval_max is greater than
16467 			 * second_threshold, it means that we will wait
16468 			 * longer than second_threshold to send the next
16469 			 * window probe.
16470 			 */
16471 			tcp->tcp_ms_we_have_waited = second_threshold;
16472 		}
16473 	} else if (ms > first_threshold) {
16474 		if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) &&
16475 		    tcp->tcp_xmit_head != NULL) {
16476 			tcp->tcp_xmit_head =
16477 			    tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1);
16478 		}
16479 		/*
16480 		 * We have been retransmitting for too long...  The RTT
16481 		 * we calculated is probably incorrect.  Reinitialize it.
16482 		 * Need to compensate for 0 tcp_rtt_sa.  Reset
16483 		 * tcp_rtt_update so that we won't accidentally cache a
16484 		 * bad value.  But only do this if this is not a zero
16485 		 * window probe.
16486 		 */
16487 		if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) {
16488 			tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) +
16489 			    (tcp->tcp_rtt_sa >> 5);
16490 			tcp->tcp_rtt_sa = 0;
16491 			tcp_ip_notify(tcp);
16492 			tcp->tcp_rtt_update = 0;
16493 		}
16494 	}
16495 	tcp->tcp_timer_backoff++;
16496 	if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
16497 	    tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) <
16498 	    tcp_rexmit_interval_min) {
16499 		/*
16500 		 * This means the original RTO is tcp_rexmit_interval_min.
16501 		 * So we will use tcp_rexmit_interval_min as the RTO value
16502 		 * and do the backoff.
16503 		 */
16504 		ms = tcp_rexmit_interval_min << tcp->tcp_timer_backoff;
16505 	} else {
16506 		ms <<= tcp->tcp_timer_backoff;
16507 	}
16508 	if (ms > tcp_rexmit_interval_max) {
16509 		ms = tcp_rexmit_interval_max;
16510 		/*
16511 		 * ms is at max, decrement tcp_timer_backoff to avoid
16512 		 * overflow.
16513 		 */
16514 		tcp->tcp_timer_backoff--;
16515 	}
16516 	tcp->tcp_ms_we_have_waited += ms;
16517 	if (tcp->tcp_zero_win_probe == 0) {
16518 		tcp->tcp_rto = ms;
16519 	}
16520 	TCP_TIMER_RESTART(tcp, ms);
16521 	/*
16522 	 * This is after a timeout and tcp_rto is backed off.  Set
16523 	 * tcp_set_timer to 1 so that next time RTO is updated, we will
16524 	 * restart the timer with a correct value.
16525 	 */
16526 	tcp->tcp_set_timer = 1;
16527 	mss = tcp->tcp_snxt - tcp->tcp_suna;
16528 	if (mss > tcp->tcp_mss)
16529 		mss = tcp->tcp_mss;
16530 	if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0)
16531 		mss = tcp->tcp_swnd;
16532 
16533 	if ((mp = tcp->tcp_xmit_head) != NULL)
16534 		mp->b_prev = (mblk_t *)lbolt;
16535 	mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss,
16536 	    B_TRUE);
16537 
16538 	/*
16539 	 * When slow start after retransmission begins, start with
16540 	 * this seq no.  tcp_rexmit_max marks the end of special slow
16541 	 * start phase.  tcp_snd_burst controls how many segments
16542 	 * can be sent because of an ack.
16543 	 */
16544 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
16545 	tcp->tcp_snd_burst = TCP_CWND_SS;
16546 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
16547 	    (tcp->tcp_unsent == 0)) {
16548 		tcp->tcp_rexmit_max = tcp->tcp_fss;
16549 	} else {
16550 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
16551 	}
16552 	tcp->tcp_rexmit = B_TRUE;
16553 	tcp->tcp_dupack_cnt = 0;
16554 
16555 	/*
16556 	 * Remove all rexmit SACK blk to start from fresh.
16557 	 */
16558 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
16559 		TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
16560 		tcp->tcp_num_notsack_blk = 0;
16561 		tcp->tcp_cnt_notsack_list = 0;
16562 	}
16563 	if (mp == NULL) {
16564 		return;
16565 	}
16566 	/* Attach credentials to retransmitted initial SYNs. */
16567 	if (tcp->tcp_state == TCPS_SYN_SENT) {
16568 		mblk_setcred(mp, tcp->tcp_cred);
16569 		DB_CPID(mp) = tcp->tcp_cpid;
16570 	}
16571 
16572 	tcp->tcp_csuna = tcp->tcp_snxt;
16573 	BUMP_MIB(&tcp_mib, tcpRetransSegs);
16574 	UPDATE_MIB(&tcp_mib, tcpRetransBytes, mss);
16575 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
16576 	tcp_send_data(tcp, tcp->tcp_wq, mp);
16577 
16578 }
16579 
16580 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */
16581 static void
16582 tcp_unbind(tcp_t *tcp, mblk_t *mp)
16583 {
16584 	conn_t	*connp;
16585 
16586 	switch (tcp->tcp_state) {
16587 	case TCPS_BOUND:
16588 	case TCPS_LISTEN:
16589 		break;
16590 	default:
16591 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
16592 		return;
16593 	}
16594 
16595 	/*
16596 	 * Need to clean up all the eagers since after the unbind, segments
16597 	 * will no longer be delivered to this listener stream.
16598 	 */
16599 	mutex_enter(&tcp->tcp_eager_lock);
16600 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
16601 		tcp_eager_cleanup(tcp, 0);
16602 	}
16603 	mutex_exit(&tcp->tcp_eager_lock);
16604 
16605 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16606 		tcp->tcp_ipha->ipha_src = 0;
16607 	} else {
16608 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
16609 	}
16610 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
16611 	bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport));
16612 	tcp_bind_hash_remove(tcp);
16613 	tcp->tcp_state = TCPS_IDLE;
16614 	tcp->tcp_mdt = B_FALSE;
16615 	/* Send M_FLUSH according to TPI */
16616 	(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
16617 	connp = tcp->tcp_connp;
16618 	connp->conn_mdt_ok = B_FALSE;
16619 	ipcl_hash_remove(connp);
16620 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
16621 	mp = mi_tpi_ok_ack_alloc(mp);
16622 	putnext(tcp->tcp_rq, mp);
16623 }
16624 
16625 /*
16626  * Don't let port fall into the privileged range.
16627  * Since the extra privileged ports can be arbitrary we also
16628  * ensure that we exclude those from consideration.
16629  * tcp_g_epriv_ports is not sorted thus we loop over it until
16630  * there are no changes.
16631  *
16632  * Note: No locks are held when inspecting tcp_g_*epriv_ports
16633  * but instead the code relies on:
16634  * - the fact that the address of the array and its size never changes
16635  * - the atomic assignment of the elements of the array
16636  */
16637 static in_port_t
16638 tcp_update_next_port(in_port_t port, boolean_t random)
16639 {
16640 	int i;
16641 
16642 	if (random && tcp_random_anon_port != 0) {
16643 		(void) random_get_pseudo_bytes((uint8_t *)&port,
16644 		    sizeof (in_port_t));
16645 		/*
16646 		 * Unless changed by a sys admin, the smallest anon port
16647 		 * is 32768 and the largest anon port is 65535.  It is
16648 		 * very likely (50%) for the random port to be smaller
16649 		 * than the smallest anon port.  When that happens,
16650 		 * add port % (anon port range) to the smallest anon
16651 		 * port to get the random port.  It should fall into the
16652 		 * valid anon port range.
16653 		 */
16654 		if (port < tcp_smallest_anon_port) {
16655 			port = tcp_smallest_anon_port +
16656 			    port % (tcp_largest_anon_port -
16657 				tcp_smallest_anon_port);
16658 		}
16659 	}
16660 
16661 retry:
16662 	if (port < tcp_smallest_anon_port || port > tcp_largest_anon_port)
16663 		port = (in_port_t)tcp_smallest_anon_port;
16664 
16665 	if (port < tcp_smallest_nonpriv_port)
16666 		port = (in_port_t)tcp_smallest_nonpriv_port;
16667 
16668 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
16669 		if (port == tcp_g_epriv_ports[i]) {
16670 			port++;
16671 			/*
16672 			 * Make sure whether the port is in the
16673 			 * valid range.
16674 			 *
16675 			 * XXX Note that if tcp_g_epriv_ports contains
16676 			 * all the anonymous ports this will be an
16677 			 * infinite loop.
16678 			 */
16679 			goto retry;
16680 		}
16681 	}
16682 	return (port);
16683 }
16684 
16685 /*
16686  * Return the next anonymous port in the priviledged port range for
16687  * bind checking.  It starts at IPPORT_RESERVED - 1 and goes
16688  * downwards.  This is the same behavior as documented in the userland
16689  * library call rresvport(3N).
16690  */
16691 static in_port_t
16692 tcp_get_next_priv_port(void)
16693 {
16694 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
16695 
16696 	if (next_priv_port < tcp_min_anonpriv_port) {
16697 		next_priv_port = IPPORT_RESERVED - 1;
16698 	}
16699 	return (next_priv_port--);
16700 }
16701 
16702 /* The write side r/w procedure. */
16703 
16704 #if CCS_STATS
16705 struct {
16706 	struct {
16707 		int64_t count, bytes;
16708 	} tot, hit;
16709 } wrw_stats;
16710 #endif
16711 
16712 /*
16713  * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO,
16714  * messages.
16715  */
16716 /* ARGSUSED */
16717 static void
16718 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2)
16719 {
16720 	conn_t	*connp = (conn_t *)arg;
16721 	tcp_t	*tcp = connp->conn_tcp;
16722 	queue_t	*q = tcp->tcp_wq;
16723 
16724 	ASSERT(DB_TYPE(mp) != M_IOCTL);
16725 	/*
16726 	 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close.
16727 	 * Once the close starts, streamhead and sockfs will not let any data
16728 	 * packets come down (close ensures that there are no threads using the
16729 	 * queue and no new threads will come down) but since qprocsoff()
16730 	 * hasn't happened yet, a M_FLUSH or some non data message might
16731 	 * get reflected back (in response to our own FLUSHRW) and get
16732 	 * processed after tcp_close() is done. The conn would still be valid
16733 	 * because a ref would have added but we need to check the state
16734 	 * before actually processing the packet.
16735 	 */
16736 	if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) {
16737 		freemsg(mp);
16738 		return;
16739 	}
16740 
16741 	switch (DB_TYPE(mp)) {
16742 	case M_IOCDATA:
16743 		tcp_wput_iocdata(tcp, mp);
16744 		break;
16745 	case M_FLUSH:
16746 		tcp_wput_flush(tcp, mp);
16747 		break;
16748 	default:
16749 		CALL_IP_WPUT(connp, q, mp);
16750 		break;
16751 	}
16752 }
16753 
16754 /*
16755  * The TCP fast path write put procedure.
16756  * NOTE: the logic of the fast path is duplicated from tcp_wput_data()
16757  */
16758 /* ARGSUSED */
16759 void
16760 tcp_output(void *arg, mblk_t *mp, void *arg2)
16761 {
16762 	int		len;
16763 	int		hdrlen;
16764 	int		plen;
16765 	mblk_t		*mp1;
16766 	uchar_t		*rptr;
16767 	uint32_t	snxt;
16768 	tcph_t		*tcph;
16769 	struct datab	*db;
16770 	uint32_t	suna;
16771 	uint32_t	mss;
16772 	ipaddr_t	*dst;
16773 	ipaddr_t	*src;
16774 	uint32_t	sum;
16775 	int		usable;
16776 	conn_t		*connp = (conn_t *)arg;
16777 	tcp_t		*tcp = connp->conn_tcp;
16778 	uint32_t	msize;
16779 
16780 	/*
16781 	 * Try and ASSERT the minimum possible references on the
16782 	 * conn early enough. Since we are executing on write side,
16783 	 * the connection is obviously not detached and that means
16784 	 * there is a ref each for TCP and IP. Since we are behind
16785 	 * the squeue, the minimum references needed are 3. If the
16786 	 * conn is in classifier hash list, there should be an
16787 	 * extra ref for that (we check both the possibilities).
16788 	 */
16789 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
16790 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
16791 
16792 	ASSERT(DB_TYPE(mp) == M_DATA);
16793 	msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
16794 
16795 	mutex_enter(&connp->conn_lock);
16796 	tcp->tcp_squeue_bytes -= msize;
16797 	mutex_exit(&connp->conn_lock);
16798 
16799 	/* Bypass tcp protocol for fused tcp loopback */
16800 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
16801 		return;
16802 
16803 	mss = tcp->tcp_mss;
16804 	if (tcp->tcp_xmit_zc_clean)
16805 		mp = tcp_zcopy_backoff(tcp, mp, 0);
16806 
16807 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
16808 	len = (int)(mp->b_wptr - mp->b_rptr);
16809 
16810 	/*
16811 	 * Criteria for fast path:
16812 	 *
16813 	 *   1. no unsent data
16814 	 *   2. single mblk in request
16815 	 *   3. connection established
16816 	 *   4. data in mblk
16817 	 *   5. len <= mss
16818 	 *   6. no tcp_valid bits
16819 	 */
16820 	if ((tcp->tcp_unsent != 0) ||
16821 	    (tcp->tcp_cork) ||
16822 	    (mp->b_cont != NULL) ||
16823 	    (tcp->tcp_state != TCPS_ESTABLISHED) ||
16824 	    (len == 0) ||
16825 	    (len > mss) ||
16826 	    (tcp->tcp_valid_bits != 0)) {
16827 		tcp_wput_data(tcp, mp, B_FALSE);
16828 		return;
16829 	}
16830 
16831 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
16832 	ASSERT(tcp->tcp_fin_sent == 0);
16833 
16834 	/* queue new packet onto retransmission queue */
16835 	if (tcp->tcp_xmit_head == NULL) {
16836 		tcp->tcp_xmit_head = mp;
16837 	} else {
16838 		tcp->tcp_xmit_last->b_cont = mp;
16839 	}
16840 	tcp->tcp_xmit_last = mp;
16841 	tcp->tcp_xmit_tail = mp;
16842 
16843 	/* find out how much we can send */
16844 	/* BEGIN CSTYLED */
16845 	/*
16846 	 *    un-acked           usable
16847 	 *  |--------------|-----------------|
16848 	 *  tcp_suna       tcp_snxt          tcp_suna+tcp_swnd
16849 	 */
16850 	/* END CSTYLED */
16851 
16852 	/* start sending from tcp_snxt */
16853 	snxt = tcp->tcp_snxt;
16854 
16855 	/*
16856 	 * Check to see if this connection has been idled for some
16857 	 * time and no ACK is expected.  If it is, we need to slow
16858 	 * start again to get back the connection's "self-clock" as
16859 	 * described in VJ's paper.
16860 	 *
16861 	 * Refer to the comment in tcp_mss_set() for the calculation
16862 	 * of tcp_cwnd after idle.
16863 	 */
16864 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
16865 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
16866 		SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle);
16867 	}
16868 
16869 	usable = tcp->tcp_swnd;		/* tcp window size */
16870 	if (usable > tcp->tcp_cwnd)
16871 		usable = tcp->tcp_cwnd;	/* congestion window smaller */
16872 	usable -= snxt;		/* subtract stuff already sent */
16873 	suna = tcp->tcp_suna;
16874 	usable += suna;
16875 	/* usable can be < 0 if the congestion window is smaller */
16876 	if (len > usable) {
16877 		/* Can't send complete M_DATA in one shot */
16878 		goto slow;
16879 	}
16880 
16881 	if (tcp->tcp_flow_stopped &&
16882 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
16883 		tcp_clrqfull(tcp);
16884 	}
16885 
16886 	/*
16887 	 * determine if anything to send (Nagle).
16888 	 *
16889 	 *   1. len < tcp_mss (i.e. small)
16890 	 *   2. unacknowledged data present
16891 	 *   3. len < nagle limit
16892 	 *   4. last packet sent < nagle limit (previous packet sent)
16893 	 */
16894 	if ((len < mss) && (snxt != suna) &&
16895 	    (len < (int)tcp->tcp_naglim) &&
16896 	    (tcp->tcp_last_sent_len < tcp->tcp_naglim)) {
16897 		/*
16898 		 * This was the first unsent packet and normally
16899 		 * mss < xmit_hiwater so there is no need to worry
16900 		 * about flow control. The next packet will go
16901 		 * through the flow control check in tcp_wput_data().
16902 		 */
16903 		/* leftover work from above */
16904 		tcp->tcp_unsent = len;
16905 		tcp->tcp_xmit_tail_unsent = len;
16906 
16907 		return;
16908 	}
16909 
16910 	/* len <= tcp->tcp_mss && len == unsent so no silly window */
16911 
16912 	if (snxt == suna) {
16913 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
16914 	}
16915 
16916 	/* we have always sent something */
16917 	tcp->tcp_rack_cnt = 0;
16918 
16919 	tcp->tcp_snxt = snxt + len;
16920 	tcp->tcp_rack = tcp->tcp_rnxt;
16921 
16922 	if ((mp1 = dupb(mp)) == 0)
16923 		goto no_memory;
16924 	mp->b_prev = (mblk_t *)(uintptr_t)lbolt;
16925 	mp->b_next = (mblk_t *)(uintptr_t)snxt;
16926 
16927 	/* adjust tcp header information */
16928 	tcph = tcp->tcp_tcph;
16929 	tcph->th_flags[0] = (TH_ACK|TH_PUSH);
16930 
16931 	sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
16932 	sum = (sum >> 16) + (sum & 0xFFFF);
16933 	U16_TO_ABE16(sum, tcph->th_sum);
16934 
16935 	U32_TO_ABE32(snxt, tcph->th_seq);
16936 
16937 	BUMP_MIB(&tcp_mib, tcpOutDataSegs);
16938 	UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len);
16939 	BUMP_LOCAL(tcp->tcp_obsegs);
16940 
16941 	/* Update the latest receive window size in TCP header. */
16942 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
16943 	    tcph->th_win);
16944 
16945 	tcp->tcp_last_sent_len = (ushort_t)len;
16946 
16947 	plen = len + tcp->tcp_hdr_len;
16948 
16949 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16950 		tcp->tcp_ipha->ipha_length = htons(plen);
16951 	} else {
16952 		tcp->tcp_ip6h->ip6_plen = htons(plen -
16953 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
16954 	}
16955 
16956 	/* see if we need to allocate a mblk for the headers */
16957 	hdrlen = tcp->tcp_hdr_len;
16958 	rptr = mp1->b_rptr - hdrlen;
16959 	db = mp1->b_datap;
16960 	if ((db->db_ref != 2) || rptr < db->db_base ||
16961 	    (!OK_32PTR(rptr))) {
16962 		/* NOTE: we assume allocb returns an OK_32PTR */
16963 		mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
16964 		    tcp_wroff_xtra, BPRI_MED);
16965 		if (!mp) {
16966 			freemsg(mp1);
16967 			goto no_memory;
16968 		}
16969 		mp->b_cont = mp1;
16970 		mp1 = mp;
16971 		/* Leave room for Link Level header */
16972 		/* hdrlen = tcp->tcp_hdr_len; */
16973 		rptr = &mp1->b_rptr[tcp_wroff_xtra];
16974 		mp1->b_wptr = &rptr[hdrlen];
16975 	}
16976 	mp1->b_rptr = rptr;
16977 
16978 	/* Fill in the timestamp option. */
16979 	if (tcp->tcp_snd_ts_ok) {
16980 		U32_TO_BE32((uint32_t)lbolt,
16981 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
16982 		U32_TO_BE32(tcp->tcp_ts_recent,
16983 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
16984 	} else {
16985 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
16986 	}
16987 
16988 	/* copy header into outgoing packet */
16989 	dst = (ipaddr_t *)rptr;
16990 	src = (ipaddr_t *)tcp->tcp_iphc;
16991 	dst[0] = src[0];
16992 	dst[1] = src[1];
16993 	dst[2] = src[2];
16994 	dst[3] = src[3];
16995 	dst[4] = src[4];
16996 	dst[5] = src[5];
16997 	dst[6] = src[6];
16998 	dst[7] = src[7];
16999 	dst[8] = src[8];
17000 	dst[9] = src[9];
17001 	if (hdrlen -= 40) {
17002 		hdrlen >>= 2;
17003 		dst += 10;
17004 		src += 10;
17005 		do {
17006 			*dst++ = *src++;
17007 		} while (--hdrlen);
17008 	}
17009 
17010 	/*
17011 	 * Set the ECN info in the TCP header.  Note that this
17012 	 * is not the template header.
17013 	 */
17014 	if (tcp->tcp_ecn_ok) {
17015 		SET_ECT(tcp, rptr);
17016 
17017 		tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
17018 		if (tcp->tcp_ecn_echo_on)
17019 			tcph->th_flags[0] |= TH_ECE;
17020 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
17021 			tcph->th_flags[0] |= TH_CWR;
17022 			tcp->tcp_ecn_cwr_sent = B_TRUE;
17023 		}
17024 	}
17025 
17026 	if (tcp->tcp_ip_forward_progress) {
17027 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
17028 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
17029 		tcp->tcp_ip_forward_progress = B_FALSE;
17030 	}
17031 	TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
17032 	tcp_send_data(tcp, tcp->tcp_wq, mp1);
17033 	return;
17034 
17035 	/*
17036 	 * If we ran out of memory, we pretend to have sent the packet
17037 	 * and that it was lost on the wire.
17038 	 */
17039 no_memory:
17040 	return;
17041 
17042 slow:
17043 	/* leftover work from above */
17044 	tcp->tcp_unsent = len;
17045 	tcp->tcp_xmit_tail_unsent = len;
17046 	tcp_wput_data(tcp, NULL, B_FALSE);
17047 }
17048 
17049 /*
17050  * The function called through squeue to get behind eager's perimeter to
17051  * finish the accept processing.
17052  */
17053 /* ARGSUSED */
17054 void
17055 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2)
17056 {
17057 	conn_t			*connp = (conn_t *)arg;
17058 	tcp_t			*tcp = connp->conn_tcp;
17059 	queue_t			*q = tcp->tcp_rq;
17060 	mblk_t			*mp1;
17061 	mblk_t			*stropt_mp = mp;
17062 	struct  stroptions	*stropt;
17063 	uint_t			thwin;
17064 
17065 	/*
17066 	 * Drop the eager's ref on the listener, that was placed when
17067 	 * this eager began life in tcp_conn_request.
17068 	 */
17069 	CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp);
17070 
17071 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) {
17072 		/*
17073 		 * Someone blewoff the eager before we could finish
17074 		 * the accept.
17075 		 *
17076 		 * The only reason eager exists it because we put in
17077 		 * a ref on it when conn ind went up. We need to send
17078 		 * a disconnect indication up while the last reference
17079 		 * on the eager will be dropped by the squeue when we
17080 		 * return.
17081 		 */
17082 		ASSERT(tcp->tcp_listener == NULL);
17083 		if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) {
17084 			struct	T_discon_ind	*tdi;
17085 
17086 			(void) putnextctl1(q, M_FLUSH, FLUSHRW);
17087 			/*
17088 			 * Let us reuse the incoming mblk to avoid memory
17089 			 * allocation failure problems. We know that the
17090 			 * size of the incoming mblk i.e. stroptions is greater
17091 			 * than sizeof T_discon_ind. So the reallocb below
17092 			 * can't fail.
17093 			 */
17094 			freemsg(mp->b_cont);
17095 			mp->b_cont = NULL;
17096 			ASSERT(DB_REF(mp) == 1);
17097 			mp = reallocb(mp, sizeof (struct T_discon_ind),
17098 			    B_FALSE);
17099 			ASSERT(mp != NULL);
17100 			DB_TYPE(mp) = M_PROTO;
17101 			((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND;
17102 			tdi = (struct T_discon_ind *)mp->b_rptr;
17103 			if (tcp->tcp_issocket) {
17104 				tdi->DISCON_reason = ECONNREFUSED;
17105 				tdi->SEQ_number = 0;
17106 			} else {
17107 				tdi->DISCON_reason = ENOPROTOOPT;
17108 				tdi->SEQ_number =
17109 				    tcp->tcp_conn_req_seqnum;
17110 			}
17111 			mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind);
17112 			putnext(q, mp);
17113 		} else {
17114 			freemsg(mp);
17115 		}
17116 		if (tcp->tcp_hard_binding) {
17117 			tcp->tcp_hard_binding = B_FALSE;
17118 			tcp->tcp_hard_bound = B_TRUE;
17119 		}
17120 		tcp->tcp_detached = B_FALSE;
17121 		return;
17122 	}
17123 
17124 	mp1 = stropt_mp->b_cont;
17125 	stropt_mp->b_cont = NULL;
17126 	ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS);
17127 	stropt = (struct stroptions *)stropt_mp->b_rptr;
17128 
17129 	while (mp1 != NULL) {
17130 		mp = mp1;
17131 		mp1 = mp1->b_cont;
17132 		mp->b_cont = NULL;
17133 		tcp->tcp_drop_opt_ack_cnt++;
17134 		CALL_IP_WPUT(connp, tcp->tcp_wq, mp);
17135 	}
17136 	mp = NULL;
17137 
17138 	/*
17139 	 * For a loopback connection with tcp_direct_sockfs on, note that
17140 	 * we don't have to protect tcp_rcv_list yet because synchronous
17141 	 * streams has not yet been enabled and tcp_fuse_rrw() cannot
17142 	 * possibly race with us.
17143 	 */
17144 
17145 	/*
17146 	 * Set the max window size (tcp_rq->q_hiwat) of the acceptor
17147 	 * properly.  This is the first time we know of the acceptor'
17148 	 * queue.  So we do it here.
17149 	 */
17150 	if (tcp->tcp_rcv_list == NULL) {
17151 		/*
17152 		 * Recv queue is empty, tcp_rwnd should not have changed.
17153 		 * That means it should be equal to the listener's tcp_rwnd.
17154 		 */
17155 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd;
17156 	} else {
17157 #ifdef DEBUG
17158 		uint_t cnt = 0;
17159 
17160 		mp1 = tcp->tcp_rcv_list;
17161 		while ((mp = mp1) != NULL) {
17162 			mp1 = mp->b_next;
17163 			cnt += msgdsize(mp);
17164 		}
17165 		ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt);
17166 #endif
17167 		/* There is some data, add them back to get the max. */
17168 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
17169 	}
17170 
17171 	stropt->so_flags = SO_HIWAT;
17172 	stropt->so_hiwat = MAX(q->q_hiwat, tcp_sth_rcv_hiwat);
17173 
17174 	stropt->so_flags |= SO_MAXBLK;
17175 	stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
17176 
17177 	/*
17178 	 * This is the first time we run on the correct
17179 	 * queue after tcp_accept. So fix all the q parameters
17180 	 * here.
17181 	 */
17182 	/* Allocate room for SACK options if needed. */
17183 	stropt->so_flags |= SO_WROFF;
17184 	if (tcp->tcp_fused) {
17185 		ASSERT(tcp->tcp_loopback);
17186 		ASSERT(tcp->tcp_loopback_peer != NULL);
17187 		/*
17188 		 * For fused tcp loopback, set the stream head's write
17189 		 * offset value to zero since we won't be needing any room
17190 		 * for TCP/IP headers.  This would also improve performance
17191 		 * since it would reduce the amount of work done by kmem.
17192 		 * Non-fused tcp loopback case is handled separately below.
17193 		 */
17194 		stropt->so_wroff = 0;
17195 		/*
17196 		 * Record the stream head's high water mark for this endpoint;
17197 		 * this is used for flow-control purposes in tcp_fuse_output().
17198 		 */
17199 		stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat);
17200 		/*
17201 		 * Update the peer's transmit parameters according to
17202 		 * our recently calculated high water mark value.
17203 		 */
17204 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
17205 	} else if (tcp->tcp_snd_sack_ok) {
17206 		stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
17207 		    (tcp->tcp_loopback ? 0 : tcp_wroff_xtra);
17208 	} else {
17209 		stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 :
17210 		    tcp_wroff_xtra);
17211 	}
17212 
17213 	/*
17214 	 * If this is endpoint is handling SSL, then reserve extra
17215 	 * offset and space at the end.
17216 	 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets,
17217 	 * overriding the previous setting. The extra cost of signing and
17218 	 * encrypting multiple MSS-size records (12 of them with Ethernet),
17219 	 * instead of a single contiguous one by the stream head
17220 	 * largely outweighs the statistical reduction of ACKs, when
17221 	 * applicable. The peer will also save on decyption and verification
17222 	 * costs.
17223 	 */
17224 	if (tcp->tcp_kssl_ctx != NULL) {
17225 		stropt->so_wroff += SSL3_WROFFSET;
17226 
17227 		stropt->so_flags |= SO_TAIL;
17228 		stropt->so_tail = SSL3_MAX_TAIL_LEN;
17229 
17230 		stropt->so_maxblk = SSL3_MAX_RECORD_LEN;
17231 	}
17232 
17233 	/* Send the options up */
17234 	putnext(q, stropt_mp);
17235 
17236 	/*
17237 	 * Pass up any data and/or a fin that has been received.
17238 	 *
17239 	 * Adjust receive window in case it had decreased
17240 	 * (because there is data <=> tcp_rcv_list != NULL)
17241 	 * while the connection was detached. Note that
17242 	 * in case the eager was flow-controlled, w/o this
17243 	 * code, the rwnd may never open up again!
17244 	 */
17245 	if (tcp->tcp_rcv_list != NULL) {
17246 		/* We drain directly in case of fused tcp loopback */
17247 		if (!tcp->tcp_fused && canputnext(q)) {
17248 			tcp->tcp_rwnd = q->q_hiwat;
17249 			thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
17250 			    << tcp->tcp_rcv_ws;
17251 			thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
17252 			if (tcp->tcp_state >= TCPS_ESTABLISHED &&
17253 			    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
17254 				tcp_xmit_ctl(NULL,
17255 				    tcp, (tcp->tcp_swnd == 0) ?
17256 				    tcp->tcp_suna : tcp->tcp_snxt,
17257 				    tcp->tcp_rnxt, TH_ACK);
17258 				BUMP_MIB(&tcp_mib, tcpOutWinUpdate);
17259 			}
17260 
17261 		}
17262 		(void) tcp_rcv_drain(q, tcp);
17263 
17264 		/*
17265 		 * For fused tcp loopback, back-enable peer endpoint
17266 		 * if it's currently flow-controlled.
17267 		 */
17268 		if (tcp->tcp_fused &&
17269 		    tcp->tcp_loopback_peer->tcp_flow_stopped) {
17270 			tcp_t *peer_tcp = tcp->tcp_loopback_peer;
17271 
17272 			ASSERT(peer_tcp != NULL);
17273 			ASSERT(peer_tcp->tcp_fused);
17274 
17275 			tcp_clrqfull(peer_tcp);
17276 			TCP_STAT(tcp_fusion_backenabled);
17277 		}
17278 	}
17279 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
17280 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
17281 		mp = mi_tpi_ordrel_ind();
17282 		if (mp) {
17283 			tcp->tcp_ordrel_done = B_TRUE;
17284 			putnext(q, mp);
17285 			if (tcp->tcp_deferred_clean_death) {
17286 				/*
17287 				 * tcp_clean_death was deferred
17288 				 * for T_ORDREL_IND - do it now
17289 				 */
17290 				(void) tcp_clean_death(tcp,
17291 				    tcp->tcp_client_errno, 21);
17292 				tcp->tcp_deferred_clean_death = B_FALSE;
17293 			}
17294 		} else {
17295 			/*
17296 			 * Run the orderly release in the
17297 			 * service routine.
17298 			 */
17299 			qenable(q);
17300 		}
17301 	}
17302 	if (tcp->tcp_hard_binding) {
17303 		tcp->tcp_hard_binding = B_FALSE;
17304 		tcp->tcp_hard_bound = B_TRUE;
17305 	}
17306 
17307 	tcp->tcp_detached = B_FALSE;
17308 
17309 	/* We can enable synchronous streams now */
17310 	if (tcp->tcp_fused) {
17311 		tcp_fuse_syncstr_enable_pair(tcp);
17312 	}
17313 
17314 	if (tcp->tcp_ka_enabled) {
17315 		tcp->tcp_ka_last_intrvl = 0;
17316 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
17317 		    MSEC_TO_TICK(tcp->tcp_ka_interval));
17318 	}
17319 
17320 	/*
17321 	 * At this point, eager is fully established and will
17322 	 * have the following references -
17323 	 *
17324 	 * 2 references for connection to exist (1 for TCP and 1 for IP).
17325 	 * 1 reference for the squeue which will be dropped by the squeue as
17326 	 *	soon as this function returns.
17327 	 * There will be 1 additonal reference for being in classifier
17328 	 *	hash list provided something bad hasn't happened.
17329 	 */
17330 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17331 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17332 }
17333 
17334 /*
17335  * The function called through squeue to get behind listener's perimeter to
17336  * send a deffered conn_ind.
17337  */
17338 /* ARGSUSED */
17339 void
17340 tcp_send_pending(void *arg, mblk_t *mp, void *arg2)
17341 {
17342 	conn_t	*connp = (conn_t *)arg;
17343 	tcp_t *listener = connp->conn_tcp;
17344 
17345 	if (listener->tcp_state == TCPS_CLOSED ||
17346 	    TCP_IS_DETACHED(listener)) {
17347 		/*
17348 		 * If listener has closed, it would have caused a
17349 		 * a cleanup/blowoff to happen for the eager.
17350 		 */
17351 		tcp_t *tcp;
17352 		struct T_conn_ind	*conn_ind;
17353 
17354 		conn_ind = (struct T_conn_ind *)mp->b_rptr;
17355 		bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
17356 		    conn_ind->OPT_length);
17357 		/*
17358 		 * We need to drop the ref on eager that was put
17359 		 * tcp_rput_data() before trying to send the conn_ind
17360 		 * to listener. The conn_ind was deferred in tcp_send_conn_ind
17361 		 * and tcp_wput_accept() is sending this deferred conn_ind but
17362 		 * listener is closed so we drop the ref.
17363 		 */
17364 		CONN_DEC_REF(tcp->tcp_connp);
17365 		freemsg(mp);
17366 		return;
17367 	}
17368 	putnext(listener->tcp_rq, mp);
17369 }
17370 
17371 
17372 /*
17373  * This is the STREAMS entry point for T_CONN_RES coming down on
17374  * Acceptor STREAM when  sockfs listener does accept processing.
17375  * Read the block comment on top pf tcp_conn_request().
17376  */
17377 void
17378 tcp_wput_accept(queue_t *q, mblk_t *mp)
17379 {
17380 	queue_t *rq = RD(q);
17381 	struct T_conn_res *conn_res;
17382 	tcp_t *eager;
17383 	tcp_t *listener;
17384 	struct T_ok_ack *ok;
17385 	t_scalar_t PRIM_type;
17386 	mblk_t *opt_mp;
17387 	conn_t *econnp;
17388 
17389 	ASSERT(DB_TYPE(mp) == M_PROTO);
17390 
17391 	conn_res = (struct T_conn_res *)mp->b_rptr;
17392 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
17393 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) {
17394 		mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
17395 		if (mp != NULL)
17396 			putnext(rq, mp);
17397 		return;
17398 	}
17399 	switch (conn_res->PRIM_type) {
17400 	case O_T_CONN_RES:
17401 	case T_CONN_RES:
17402 		/*
17403 		 * We pass up an err ack if allocb fails. This will
17404 		 * cause sockfs to issue a T_DISCON_REQ which will cause
17405 		 * tcp_eager_blowoff to be called. sockfs will then call
17406 		 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream.
17407 		 * we need to do the allocb up here because we have to
17408 		 * make sure rq->q_qinfo->qi_qclose still points to the
17409 		 * correct function (tcpclose_accept) in case allocb
17410 		 * fails.
17411 		 */
17412 		opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
17413 		if (opt_mp == NULL) {
17414 			mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
17415 			if (mp != NULL)
17416 				putnext(rq, mp);
17417 			return;
17418 		}
17419 
17420 		bcopy(mp->b_rptr + conn_res->OPT_offset,
17421 		    &eager, conn_res->OPT_length);
17422 		PRIM_type = conn_res->PRIM_type;
17423 		mp->b_datap->db_type = M_PCPROTO;
17424 		mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack);
17425 		ok = (struct T_ok_ack *)mp->b_rptr;
17426 		ok->PRIM_type = T_OK_ACK;
17427 		ok->CORRECT_prim = PRIM_type;
17428 		econnp = eager->tcp_connp;
17429 		econnp->conn_dev = (dev_t)q->q_ptr;
17430 		eager->tcp_rq = rq;
17431 		eager->tcp_wq = q;
17432 		rq->q_ptr = econnp;
17433 		rq->q_qinfo = &tcp_rinit;
17434 		q->q_ptr = econnp;
17435 		q->q_qinfo = &tcp_winit;
17436 		listener = eager->tcp_listener;
17437 		eager->tcp_issocket = B_TRUE;
17438 		eager->tcp_cred = econnp->conn_cred =
17439 		    listener->tcp_connp->conn_cred;
17440 		crhold(econnp->conn_cred);
17441 		econnp->conn_zoneid = listener->tcp_connp->conn_zoneid;
17442 
17443 		/* Put the ref for IP */
17444 		CONN_INC_REF(econnp);
17445 
17446 		/*
17447 		 * We should have minimum of 3 references on the conn
17448 		 * at this point. One each for TCP and IP and one for
17449 		 * the T_conn_ind that was sent up when the 3-way handshake
17450 		 * completed. In the normal case we would also have another
17451 		 * reference (making a total of 4) for the conn being in the
17452 		 * classifier hash list. However the eager could have received
17453 		 * an RST subsequently and tcp_closei_local could have removed
17454 		 * the eager from the classifier hash list, hence we can't
17455 		 * assert that reference.
17456 		 */
17457 		ASSERT(econnp->conn_ref >= 3);
17458 
17459 		/*
17460 		 * Send the new local address also up to sockfs. There
17461 		 * should already be enough space in the mp that came
17462 		 * down from soaccept().
17463 		 */
17464 		if (eager->tcp_family == AF_INET) {
17465 			sin_t *sin;
17466 
17467 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
17468 			    (sizeof (struct T_ok_ack) + sizeof (sin_t)));
17469 			sin = (sin_t *)mp->b_wptr;
17470 			mp->b_wptr += sizeof (sin_t);
17471 			sin->sin_family = AF_INET;
17472 			sin->sin_port = eager->tcp_lport;
17473 			sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src;
17474 		} else {
17475 			sin6_t *sin6;
17476 
17477 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
17478 			    sizeof (struct T_ok_ack) + sizeof (sin6_t));
17479 			sin6 = (sin6_t *)mp->b_wptr;
17480 			mp->b_wptr += sizeof (sin6_t);
17481 			sin6->sin6_family = AF_INET6;
17482 			sin6->sin6_port = eager->tcp_lport;
17483 			if (eager->tcp_ipversion == IPV4_VERSION) {
17484 				sin6->sin6_flowinfo = 0;
17485 				IN6_IPADDR_TO_V4MAPPED(
17486 					eager->tcp_ipha->ipha_src,
17487 					    &sin6->sin6_addr);
17488 			} else {
17489 				ASSERT(eager->tcp_ip6h != NULL);
17490 				sin6->sin6_flowinfo =
17491 				    eager->tcp_ip6h->ip6_vcf &
17492 				    ~IPV6_VERS_AND_FLOW_MASK;
17493 				sin6->sin6_addr = eager->tcp_ip6h->ip6_src;
17494 			}
17495 			sin6->sin6_scope_id = 0;
17496 			sin6->__sin6_src_id = 0;
17497 		}
17498 
17499 		putnext(rq, mp);
17500 
17501 		opt_mp->b_datap->db_type = M_SETOPTS;
17502 		opt_mp->b_wptr += sizeof (struct stroptions);
17503 
17504 		/*
17505 		 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
17506 		 * from listener to acceptor. The message is chained on the
17507 		 * bind_mp which tcp_rput_other will send down to IP.
17508 		 */
17509 		if (listener->tcp_bound_if != 0) {
17510 			/* allocate optmgmt req */
17511 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
17512 			    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
17513 			    sizeof (int));
17514 			if (mp != NULL)
17515 				linkb(opt_mp, mp);
17516 		}
17517 		if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
17518 			uint_t on = 1;
17519 
17520 			/* allocate optmgmt req */
17521 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
17522 			    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
17523 			if (mp != NULL)
17524 				linkb(opt_mp, mp);
17525 		}
17526 
17527 
17528 		mutex_enter(&listener->tcp_eager_lock);
17529 
17530 		if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
17531 
17532 			tcp_t *tail;
17533 			tcp_t *tcp;
17534 			mblk_t *mp1;
17535 
17536 			tcp = listener->tcp_eager_prev_q0;
17537 			/*
17538 			 * listener->tcp_eager_prev_q0 points to the TAIL of the
17539 			 * deferred T_conn_ind queue. We need to get to the head
17540 			 * of the queue in order to send up T_conn_ind the same
17541 			 * order as how the 3WHS is completed.
17542 			 */
17543 			while (tcp != listener) {
17544 				if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 &&
17545 				    !tcp->tcp_kssl_pending)
17546 					break;
17547 				else
17548 					tcp = tcp->tcp_eager_prev_q0;
17549 			}
17550 			/* None of the pending eagers can be sent up now */
17551 			if (tcp == listener)
17552 				goto no_more_eagers;
17553 
17554 			mp1 = tcp->tcp_conn.tcp_eager_conn_ind;
17555 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
17556 			/* Move from q0 to q */
17557 			ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
17558 			listener->tcp_conn_req_cnt_q0--;
17559 			listener->tcp_conn_req_cnt_q++;
17560 			tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
17561 			    tcp->tcp_eager_prev_q0;
17562 			tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
17563 			    tcp->tcp_eager_next_q0;
17564 			tcp->tcp_eager_prev_q0 = NULL;
17565 			tcp->tcp_eager_next_q0 = NULL;
17566 			tcp->tcp_conn_def_q0 = B_FALSE;
17567 
17568 			/*
17569 			 * Insert at end of the queue because sockfs sends
17570 			 * down T_CONN_RES in chronological order. Leaving
17571 			 * the older conn indications at front of the queue
17572 			 * helps reducing search time.
17573 			 */
17574 			tail = listener->tcp_eager_last_q;
17575 			if (tail != NULL) {
17576 				tail->tcp_eager_next_q = tcp;
17577 			} else {
17578 				listener->tcp_eager_next_q = tcp;
17579 			}
17580 			listener->tcp_eager_last_q = tcp;
17581 			tcp->tcp_eager_next_q = NULL;
17582 
17583 			/* Need to get inside the listener perimeter */
17584 			CONN_INC_REF(listener->tcp_connp);
17585 			squeue_fill(listener->tcp_connp->conn_sqp, mp1,
17586 			    tcp_send_pending, listener->tcp_connp,
17587 			    SQTAG_TCP_SEND_PENDING);
17588 		}
17589 no_more_eagers:
17590 		tcp_eager_unlink(eager);
17591 		mutex_exit(&listener->tcp_eager_lock);
17592 
17593 		/*
17594 		 * At this point, the eager is detached from the listener
17595 		 * but we still have an extra refs on eager (apart from the
17596 		 * usual tcp references). The ref was placed in tcp_rput_data
17597 		 * before sending the conn_ind in tcp_send_conn_ind.
17598 		 * The ref will be dropped in tcp_accept_finish().
17599 		 */
17600 		squeue_enter_nodrain(econnp->conn_sqp, opt_mp,
17601 		    tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0);
17602 		return;
17603 	default:
17604 		mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0);
17605 		if (mp != NULL)
17606 			putnext(rq, mp);
17607 		return;
17608 	}
17609 }
17610 
17611 void
17612 tcp_wput(queue_t *q, mblk_t *mp)
17613 {
17614 	conn_t	*connp = Q_TO_CONN(q);
17615 	tcp_t	*tcp;
17616 	void (*output_proc)();
17617 	t_scalar_t type;
17618 	uchar_t *rptr;
17619 	struct iocblk	*iocp;
17620 	uint32_t	msize;
17621 
17622 	ASSERT(connp->conn_ref >= 2);
17623 
17624 	switch (DB_TYPE(mp)) {
17625 	case M_DATA:
17626 		tcp = connp->conn_tcp;
17627 		ASSERT(tcp != NULL);
17628 
17629 		msize = msgdsize(mp);
17630 
17631 		mutex_enter(&connp->conn_lock);
17632 		CONN_INC_REF_LOCKED(connp);
17633 
17634 		tcp->tcp_squeue_bytes += msize;
17635 		if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) {
17636 			mutex_exit(&connp->conn_lock);
17637 			tcp_setqfull(tcp);
17638 		} else
17639 			mutex_exit(&connp->conn_lock);
17640 
17641 		(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
17642 		    tcp_output, connp, SQTAG_TCP_OUTPUT);
17643 		return;
17644 	case M_PROTO:
17645 	case M_PCPROTO:
17646 		/*
17647 		 * if it is a snmp message, don't get behind the squeue
17648 		 */
17649 		tcp = connp->conn_tcp;
17650 		rptr = mp->b_rptr;
17651 		if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
17652 			type = ((union T_primitives *)rptr)->type;
17653 		} else {
17654 			if (tcp->tcp_debug) {
17655 				(void) strlog(TCP_MOD_ID, 0, 1,
17656 				    SL_ERROR|SL_TRACE,
17657 				    "tcp_wput_proto, dropping one...");
17658 			}
17659 			freemsg(mp);
17660 			return;
17661 		}
17662 		if (type == T_SVR4_OPTMGMT_REQ) {
17663 			cred_t	*cr = DB_CREDDEF(mp,
17664 			    tcp->tcp_cred);
17665 			if (snmpcom_req(q, mp, tcp_snmp_set, tcp_snmp_get,
17666 			    cr)) {
17667 				/*
17668 				 * This was a SNMP request
17669 				 */
17670 				return;
17671 			} else {
17672 				output_proc = tcp_wput_proto;
17673 			}
17674 		} else {
17675 			output_proc = tcp_wput_proto;
17676 		}
17677 		break;
17678 	case M_IOCTL:
17679 		/*
17680 		 * Most ioctls can be processed right away without going via
17681 		 * squeues - process them right here. Those that do require
17682 		 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK)
17683 		 * are processed by tcp_wput_ioctl().
17684 		 */
17685 		iocp = (struct iocblk *)mp->b_rptr;
17686 		tcp = connp->conn_tcp;
17687 
17688 		switch (iocp->ioc_cmd) {
17689 		case TCP_IOC_ABORT_CONN:
17690 			tcp_ioctl_abort_conn(q, mp);
17691 			return;
17692 		case TI_GETPEERNAME:
17693 			if (tcp->tcp_state < TCPS_SYN_RCVD) {
17694 				iocp->ioc_error = ENOTCONN;
17695 				iocp->ioc_count = 0;
17696 				mp->b_datap->db_type = M_IOCACK;
17697 				qreply(q, mp);
17698 				return;
17699 			}
17700 			/* FALLTHRU */
17701 		case TI_GETMYNAME:
17702 			mi_copyin(q, mp, NULL,
17703 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
17704 			return;
17705 		case ND_SET:
17706 			/* nd_getset does the necessary checks */
17707 		case ND_GET:
17708 			if (!nd_getset(q, tcp_g_nd, mp)) {
17709 				CALL_IP_WPUT(connp, q, mp);
17710 				return;
17711 			}
17712 			qreply(q, mp);
17713 			return;
17714 		case TCP_IOC_DEFAULT_Q:
17715 			/*
17716 			 * Wants to be the default wq. Check the credentials
17717 			 * first, the rest is executed via squeue.
17718 			 */
17719 			if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) {
17720 				iocp->ioc_error = EPERM;
17721 				iocp->ioc_count = 0;
17722 				mp->b_datap->db_type = M_IOCACK;
17723 				qreply(q, mp);
17724 				return;
17725 			}
17726 			output_proc = tcp_wput_ioctl;
17727 			break;
17728 		default:
17729 			output_proc = tcp_wput_ioctl;
17730 			break;
17731 		}
17732 		break;
17733 	default:
17734 		output_proc = tcp_wput_nondata;
17735 		break;
17736 	}
17737 
17738 	CONN_INC_REF(connp);
17739 	(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
17740 	    output_proc, connp, SQTAG_TCP_WPUT_OTHER);
17741 }
17742 
17743 /*
17744  * Initial STREAMS write side put() procedure for sockets. It tries to
17745  * handle the T_CAPABILITY_REQ which sockfs sends down while setting
17746  * up the socket without using the squeue. Non T_CAPABILITY_REQ messages
17747  * are handled by tcp_wput() as usual.
17748  *
17749  * All further messages will also be handled by tcp_wput() because we cannot
17750  * be sure that the above short cut is safe later.
17751  */
17752 static void
17753 tcp_wput_sock(queue_t *wq, mblk_t *mp)
17754 {
17755 	conn_t			*connp = Q_TO_CONN(wq);
17756 	tcp_t			*tcp = connp->conn_tcp;
17757 	struct T_capability_req	*car = (struct T_capability_req *)mp->b_rptr;
17758 
17759 	ASSERT(wq->q_qinfo == &tcp_sock_winit);
17760 	wq->q_qinfo = &tcp_winit;
17761 
17762 	ASSERT(IPCL_IS_TCP(connp));
17763 	ASSERT(TCP_IS_SOCKET(tcp));
17764 
17765 	if (DB_TYPE(mp) == M_PCPROTO &&
17766 	    MBLKL(mp) == sizeof (struct T_capability_req) &&
17767 	    car->PRIM_type == T_CAPABILITY_REQ) {
17768 		tcp_capability_req(tcp, mp);
17769 		return;
17770 	}
17771 
17772 	tcp_wput(wq, mp);
17773 }
17774 
17775 static boolean_t
17776 tcp_zcopy_check(tcp_t *tcp)
17777 {
17778 	conn_t	*connp = tcp->tcp_connp;
17779 	ire_t	*ire;
17780 	boolean_t	zc_enabled = B_FALSE;
17781 
17782 	if (do_tcpzcopy == 2)
17783 		zc_enabled = B_TRUE;
17784 	else if (tcp->tcp_ipversion == IPV4_VERSION &&
17785 	    IPCL_IS_CONNECTED(connp) &&
17786 	    (connp->conn_flags & IPCL_CHECK_POLICY) == 0 &&
17787 	    connp->conn_dontroute == 0 &&
17788 	    !connp->conn_nexthop_set &&
17789 	    connp->conn_xmit_if_ill == NULL &&
17790 	    connp->conn_nofailover_ill == NULL &&
17791 	    do_tcpzcopy == 1) {
17792 		/*
17793 		 * the checks above  closely resemble the fast path checks
17794 		 * in tcp_send_data().
17795 		 */
17796 		mutex_enter(&connp->conn_lock);
17797 		ire = connp->conn_ire_cache;
17798 		ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
17799 		if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
17800 			IRE_REFHOLD(ire);
17801 			if (ire->ire_stq != NULL) {
17802 				ill_t	*ill = (ill_t *)ire->ire_stq->q_ptr;
17803 
17804 				zc_enabled = ill && (ill->ill_capabilities &
17805 				    ILL_CAPAB_ZEROCOPY) &&
17806 				    (ill->ill_zerocopy_capab->
17807 				    ill_zerocopy_flags != 0);
17808 			}
17809 			IRE_REFRELE(ire);
17810 		}
17811 		mutex_exit(&connp->conn_lock);
17812 	}
17813 	tcp->tcp_snd_zcopy_on = zc_enabled;
17814 	if (!TCP_IS_DETACHED(tcp)) {
17815 		if (zc_enabled) {
17816 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE);
17817 			TCP_STAT(tcp_zcopy_on);
17818 		} else {
17819 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
17820 			TCP_STAT(tcp_zcopy_off);
17821 		}
17822 	}
17823 	return (zc_enabled);
17824 }
17825 
17826 static mblk_t *
17827 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp)
17828 {
17829 	if (do_tcpzcopy == 2)
17830 		return (bp);
17831 	else if (tcp->tcp_snd_zcopy_on) {
17832 		tcp->tcp_snd_zcopy_on = B_FALSE;
17833 		if (!TCP_IS_DETACHED(tcp)) {
17834 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
17835 			TCP_STAT(tcp_zcopy_disable);
17836 		}
17837 	}
17838 	return (tcp_zcopy_backoff(tcp, bp, 0));
17839 }
17840 
17841 /*
17842  * Backoff from a zero-copy mblk by copying data to a new mblk and freeing
17843  * the original desballoca'ed segmapped mblk.
17844  */
17845 static mblk_t *
17846 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist)
17847 {
17848 	mblk_t *head, *tail, *nbp;
17849 	if (IS_VMLOANED_MBLK(bp)) {
17850 		TCP_STAT(tcp_zcopy_backoff);
17851 		if ((head = copyb(bp)) == NULL) {
17852 			/* fail to backoff; leave it for the next backoff */
17853 			tcp->tcp_xmit_zc_clean = B_FALSE;
17854 			return (bp);
17855 		}
17856 		if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
17857 			if (fix_xmitlist)
17858 				tcp_zcopy_notify(tcp);
17859 			else
17860 				head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
17861 		}
17862 		nbp = bp->b_cont;
17863 		if (fix_xmitlist) {
17864 			head->b_prev = bp->b_prev;
17865 			head->b_next = bp->b_next;
17866 			if (tcp->tcp_xmit_tail == bp)
17867 				tcp->tcp_xmit_tail = head;
17868 		}
17869 		bp->b_next = NULL;
17870 		bp->b_prev = NULL;
17871 		freeb(bp);
17872 	} else {
17873 		head = bp;
17874 		nbp = bp->b_cont;
17875 	}
17876 	tail = head;
17877 	while (nbp) {
17878 		if (IS_VMLOANED_MBLK(nbp)) {
17879 			TCP_STAT(tcp_zcopy_backoff);
17880 			if ((tail->b_cont = copyb(nbp)) == NULL) {
17881 				tcp->tcp_xmit_zc_clean = B_FALSE;
17882 				tail->b_cont = nbp;
17883 				return (head);
17884 			}
17885 			tail = tail->b_cont;
17886 			if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
17887 				if (fix_xmitlist)
17888 					tcp_zcopy_notify(tcp);
17889 				else
17890 					tail->b_datap->db_struioflag |=
17891 					    STRUIO_ZCNOTIFY;
17892 			}
17893 			bp = nbp;
17894 			nbp = nbp->b_cont;
17895 			if (fix_xmitlist) {
17896 				tail->b_prev = bp->b_prev;
17897 				tail->b_next = bp->b_next;
17898 				if (tcp->tcp_xmit_tail == bp)
17899 					tcp->tcp_xmit_tail = tail;
17900 			}
17901 			bp->b_next = NULL;
17902 			bp->b_prev = NULL;
17903 			freeb(bp);
17904 		} else {
17905 			tail->b_cont = nbp;
17906 			tail = nbp;
17907 			nbp = nbp->b_cont;
17908 		}
17909 	}
17910 	if (fix_xmitlist) {
17911 		tcp->tcp_xmit_last = tail;
17912 		tcp->tcp_xmit_zc_clean = B_TRUE;
17913 	}
17914 	return (head);
17915 }
17916 
17917 static void
17918 tcp_zcopy_notify(tcp_t *tcp)
17919 {
17920 	struct stdata	*stp;
17921 
17922 	if (tcp->tcp_detached)
17923 		return;
17924 	stp = STREAM(tcp->tcp_rq);
17925 	mutex_enter(&stp->sd_lock);
17926 	stp->sd_flag |= STZCNOTIFY;
17927 	cv_broadcast(&stp->sd_zcopy_wait);
17928 	mutex_exit(&stp->sd_lock);
17929 }
17930 
17931 static void
17932 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp)
17933 {
17934 	ipha_t		*ipha;
17935 	ipaddr_t	src;
17936 	ipaddr_t	dst;
17937 	uint32_t	cksum;
17938 	ire_t		*ire;
17939 	uint16_t	*up;
17940 	ill_t		*ill;
17941 	conn_t		*connp = tcp->tcp_connp;
17942 	uint32_t	hcksum_txflags = 0;
17943 	mblk_t		*ire_fp_mp;
17944 	uint_t		ire_fp_mp_len;
17945 
17946 	ASSERT(DB_TYPE(mp) == M_DATA);
17947 
17948 	ipha = (ipha_t *)mp->b_rptr;
17949 	src = ipha->ipha_src;
17950 	dst = ipha->ipha_dst;
17951 
17952 	/*
17953 	 * Drop off slow path for IPv6 and also if options are present.
17954 	 */
17955 	if (tcp->tcp_ipversion != IPV4_VERSION ||
17956 	    !IPCL_IS_CONNECTED(connp) ||
17957 	    (connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
17958 	    connp->conn_dontroute ||
17959 	    connp->conn_nexthop_set ||
17960 	    connp->conn_xmit_if_ill != NULL ||
17961 	    connp->conn_nofailover_ill != NULL ||
17962 	    ipha->ipha_ident == IP_HDR_INCLUDED ||
17963 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
17964 	    IPP_ENABLED(IPP_LOCAL_OUT)) {
17965 		if (tcp->tcp_snd_zcopy_aware)
17966 			mp = tcp_zcopy_disable(tcp, mp);
17967 		TCP_STAT(tcp_ip_send);
17968 		CALL_IP_WPUT(connp, q, mp);
17969 		return;
17970 	}
17971 
17972 	mutex_enter(&connp->conn_lock);
17973 	ire = connp->conn_ire_cache;
17974 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
17975 	if (ire != NULL && ire->ire_addr == dst &&
17976 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
17977 		IRE_REFHOLD(ire);
17978 		mutex_exit(&connp->conn_lock);
17979 	} else {
17980 		boolean_t cached = B_FALSE;
17981 
17982 		/* force a recheck later on */
17983 		tcp->tcp_ire_ill_check_done = B_FALSE;
17984 
17985 		TCP_DBGSTAT(tcp_ire_null1);
17986 		connp->conn_ire_cache = NULL;
17987 		mutex_exit(&connp->conn_lock);
17988 		if (ire != NULL)
17989 			IRE_REFRELE_NOTR(ire);
17990 		ire = ire_cache_lookup(dst, connp->conn_zoneid);
17991 		if (ire == NULL) {
17992 			if (tcp->tcp_snd_zcopy_aware)
17993 				mp = tcp_zcopy_backoff(tcp, mp, 0);
17994 			TCP_STAT(tcp_ire_null);
17995 			CALL_IP_WPUT(connp, q, mp);
17996 			return;
17997 		}
17998 		IRE_REFHOLD_NOTR(ire);
17999 		/*
18000 		 * Since we are inside the squeue, there cannot be another
18001 		 * thread in TCP trying to set the conn_ire_cache now.  The
18002 		 * check for IRE_MARK_CONDEMNED ensures that an interface
18003 		 * unplumb thread has not yet started cleaning up the conns.
18004 		 * Hence we don't need to grab the conn lock.
18005 		 */
18006 		if (!(connp->conn_state_flags & CONN_CLOSING)) {
18007 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
18008 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18009 				connp->conn_ire_cache = ire;
18010 				cached = B_TRUE;
18011 			}
18012 			rw_exit(&ire->ire_bucket->irb_lock);
18013 		}
18014 
18015 		/*
18016 		 * We can continue to use the ire but since it was
18017 		 * not cached, we should drop the extra reference.
18018 		 */
18019 		if (!cached)
18020 			IRE_REFRELE_NOTR(ire);
18021 	}
18022 
18023 	if (ire->ire_flags & RTF_MULTIRT ||
18024 	    ire->ire_stq == NULL ||
18025 	    ire->ire_max_frag < ntohs(ipha->ipha_length) ||
18026 	    (ire_fp_mp = ire->ire_fp_mp) == NULL ||
18027 	    (ire_fp_mp_len = MBLKL(ire_fp_mp)) > MBLKHEAD(mp)) {
18028 		if (tcp->tcp_snd_zcopy_aware)
18029 			mp = tcp_zcopy_disable(tcp, mp);
18030 		TCP_STAT(tcp_ip_ire_send);
18031 		IRE_REFRELE(ire);
18032 		CALL_IP_WPUT(connp, q, mp);
18033 		return;
18034 	}
18035 
18036 	ill = ire_to_ill(ire);
18037 	if (connp->conn_outgoing_ill != NULL) {
18038 		ill_t *conn_outgoing_ill = NULL;
18039 		/*
18040 		 * Choose a good ill in the group to send the packets on.
18041 		 */
18042 		ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill);
18043 		ill = ire_to_ill(ire);
18044 	}
18045 	ASSERT(ill != NULL);
18046 
18047 	if (!tcp->tcp_ire_ill_check_done) {
18048 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
18049 		tcp->tcp_ire_ill_check_done = B_TRUE;
18050 	}
18051 
18052 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
18053 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
18054 #ifndef _BIG_ENDIAN
18055 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
18056 #endif
18057 
18058 	/*
18059 	 * Check to see if we need to re-enable MDT for this connection
18060 	 * because it was previously disabled due to changes in the ill;
18061 	 * note that by doing it here, this re-enabling only applies when
18062 	 * the packet is not dispatched through CALL_IP_WPUT().
18063 	 *
18064 	 * That means for IPv4, it is worth re-enabling MDT for the fastpath
18065 	 * case, since that's how we ended up here.  For IPv6, we do the
18066 	 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue.
18067 	 */
18068 	if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) {
18069 		/*
18070 		 * Restore MDT for this connection, so that next time around
18071 		 * it is eligible to go through tcp_multisend() path again.
18072 		 */
18073 		TCP_STAT(tcp_mdt_conn_resumed1);
18074 		tcp->tcp_mdt = B_TRUE;
18075 		ip1dbg(("tcp_send_data: reenabling MDT for connp %p on "
18076 		    "interface %s\n", (void *)connp, ill->ill_name));
18077 	}
18078 
18079 	if (tcp->tcp_snd_zcopy_aware) {
18080 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
18081 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
18082 			mp = tcp_zcopy_disable(tcp, mp);
18083 		/*
18084 		 * we shouldn't need to reset ipha as the mp containing
18085 		 * ipha should never be a zero-copy mp.
18086 		 */
18087 	}
18088 
18089 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
18090 		ASSERT(ill->ill_hcksum_capab != NULL);
18091 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
18092 	}
18093 
18094 	/* pseudo-header checksum (do it in parts for IP header checksum) */
18095 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
18096 
18097 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
18098 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
18099 
18100 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
18101 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
18102 
18103 	/* Software checksum? */
18104 	if (DB_CKSUMFLAGS(mp) == 0) {
18105 		TCP_STAT(tcp_out_sw_cksum);
18106 		TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes,
18107 		    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
18108 	}
18109 
18110 	ipha->ipha_fragment_offset_and_flags |=
18111 	    (uint32_t)htons(ire->ire_frag_flag);
18112 
18113 	/* Calculate IP header checksum if hardware isn't capable */
18114 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
18115 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
18116 		    ((uint16_t *)ipha)[4]);
18117 	}
18118 
18119 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
18120 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
18121 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
18122 
18123 	UPDATE_OB_PKT_COUNT(ire);
18124 	ire->ire_last_used_time = lbolt;
18125 	BUMP_MIB(&ip_mib, ipOutRequests);
18126 
18127 	if (ILL_DLS_CAPABLE(ill)) {
18128 		/*
18129 		 * Send the packet directly to DLD, where it may be queued
18130 		 * depending on the availability of transmit resources at
18131 		 * the media layer.
18132 		 */
18133 		IP_DLS_ILL_TX(ill, mp);
18134 	} else {
18135 		putnext(ire->ire_stq, mp);
18136 	}
18137 	IRE_REFRELE(ire);
18138 }
18139 
18140 /*
18141  * This handles the case when the receiver has shrunk its win. Per RFC 1122
18142  * if the receiver shrinks the window, i.e. moves the right window to the
18143  * left, the we should not send new data, but should retransmit normally the
18144  * old unacked data between suna and suna + swnd. We might has sent data
18145  * that is now outside the new window, pretend that we didn't send  it.
18146  */
18147 static void
18148 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count)
18149 {
18150 	uint32_t	snxt = tcp->tcp_snxt;
18151 	mblk_t		*xmit_tail;
18152 	int32_t		offset;
18153 
18154 	ASSERT(shrunk_count > 0);
18155 
18156 	/* Pretend we didn't send the data outside the window */
18157 	snxt -= shrunk_count;
18158 
18159 	/* Get the mblk and the offset in it per the shrunk window */
18160 	xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset);
18161 
18162 	ASSERT(xmit_tail != NULL);
18163 
18164 	/* Reset all the values per the now shrunk window */
18165 	tcp->tcp_snxt = snxt;
18166 	tcp->tcp_xmit_tail = xmit_tail;
18167 	tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr -
18168 	    offset;
18169 	tcp->tcp_unsent += shrunk_count;
18170 
18171 	if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0)
18172 		/*
18173 		 * Make sure the timer is running so that we will probe a zero
18174 		 * window.
18175 		 */
18176 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
18177 }
18178 
18179 
18180 /*
18181  * The TCP normal data output path.
18182  * NOTE: the logic of the fast path is duplicated from this function.
18183  */
18184 static void
18185 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent)
18186 {
18187 	int		len;
18188 	mblk_t		*local_time;
18189 	mblk_t		*mp1;
18190 	uint32_t	snxt;
18191 	int		tail_unsent;
18192 	int		tcpstate;
18193 	int		usable = 0;
18194 	mblk_t		*xmit_tail;
18195 	queue_t		*q = tcp->tcp_wq;
18196 	int32_t		mss;
18197 	int32_t		num_sack_blk = 0;
18198 	int32_t		tcp_hdr_len;
18199 	int32_t		tcp_tcp_hdr_len;
18200 	int		mdt_thres;
18201 	int		rc;
18202 
18203 	tcpstate = tcp->tcp_state;
18204 	if (mp == NULL) {
18205 		/*
18206 		 * tcp_wput_data() with NULL mp should only be called when
18207 		 * there is unsent data.
18208 		 */
18209 		ASSERT(tcp->tcp_unsent > 0);
18210 		/* Really tacky... but we need this for detached closes. */
18211 		len = tcp->tcp_unsent;
18212 		goto data_null;
18213 	}
18214 
18215 #if CCS_STATS
18216 	wrw_stats.tot.count++;
18217 	wrw_stats.tot.bytes += msgdsize(mp);
18218 #endif
18219 	ASSERT(mp->b_datap->db_type == M_DATA);
18220 	/*
18221 	 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ,
18222 	 * or before a connection attempt has begun.
18223 	 */
18224 	if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT ||
18225 	    (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
18226 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
18227 #ifdef DEBUG
18228 			cmn_err(CE_WARN,
18229 			    "tcp_wput_data: data after ordrel, %s",
18230 			    tcp_display(tcp, NULL,
18231 			    DISP_ADDR_AND_PORT));
18232 #else
18233 			if (tcp->tcp_debug) {
18234 				(void) strlog(TCP_MOD_ID, 0, 1,
18235 				    SL_TRACE|SL_ERROR,
18236 				    "tcp_wput_data: data after ordrel, %s\n",
18237 				    tcp_display(tcp, NULL,
18238 				    DISP_ADDR_AND_PORT));
18239 			}
18240 #endif /* DEBUG */
18241 		}
18242 		if (tcp->tcp_snd_zcopy_aware &&
18243 		    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0)
18244 			tcp_zcopy_notify(tcp);
18245 		freemsg(mp);
18246 		if (tcp->tcp_flow_stopped &&
18247 		    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
18248 			tcp_clrqfull(tcp);
18249 		}
18250 		return;
18251 	}
18252 
18253 	/* Strip empties */
18254 	for (;;) {
18255 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
18256 		    (uintptr_t)INT_MAX);
18257 		len = (int)(mp->b_wptr - mp->b_rptr);
18258 		if (len > 0)
18259 			break;
18260 		mp1 = mp;
18261 		mp = mp->b_cont;
18262 		freeb(mp1);
18263 		if (!mp) {
18264 			return;
18265 		}
18266 	}
18267 
18268 	/* If we are the first on the list ... */
18269 	if (tcp->tcp_xmit_head == NULL) {
18270 		tcp->tcp_xmit_head = mp;
18271 		tcp->tcp_xmit_tail = mp;
18272 		tcp->tcp_xmit_tail_unsent = len;
18273 	} else {
18274 		/* If tiny tx and room in txq tail, pullup to save mblks. */
18275 		struct datab *dp;
18276 
18277 		mp1 = tcp->tcp_xmit_last;
18278 		if (len < tcp_tx_pull_len &&
18279 		    (dp = mp1->b_datap)->db_ref == 1 &&
18280 		    dp->db_lim - mp1->b_wptr >= len) {
18281 			ASSERT(len > 0);
18282 			ASSERT(!mp1->b_cont);
18283 			if (len == 1) {
18284 				*mp1->b_wptr++ = *mp->b_rptr;
18285 			} else {
18286 				bcopy(mp->b_rptr, mp1->b_wptr, len);
18287 				mp1->b_wptr += len;
18288 			}
18289 			if (mp1 == tcp->tcp_xmit_tail)
18290 				tcp->tcp_xmit_tail_unsent += len;
18291 			mp1->b_cont = mp->b_cont;
18292 			if (tcp->tcp_snd_zcopy_aware &&
18293 			    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
18294 				mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
18295 			freeb(mp);
18296 			mp = mp1;
18297 		} else {
18298 			tcp->tcp_xmit_last->b_cont = mp;
18299 		}
18300 		len += tcp->tcp_unsent;
18301 	}
18302 
18303 	/* Tack on however many more positive length mblks we have */
18304 	if ((mp1 = mp->b_cont) != NULL) {
18305 		do {
18306 			int tlen;
18307 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
18308 			    (uintptr_t)INT_MAX);
18309 			tlen = (int)(mp1->b_wptr - mp1->b_rptr);
18310 			if (tlen <= 0) {
18311 				mp->b_cont = mp1->b_cont;
18312 				freeb(mp1);
18313 			} else {
18314 				len += tlen;
18315 				mp = mp1;
18316 			}
18317 		} while ((mp1 = mp->b_cont) != NULL);
18318 	}
18319 	tcp->tcp_xmit_last = mp;
18320 	tcp->tcp_unsent = len;
18321 
18322 	if (urgent)
18323 		usable = 1;
18324 
18325 data_null:
18326 	snxt = tcp->tcp_snxt;
18327 	xmit_tail = tcp->tcp_xmit_tail;
18328 	tail_unsent = tcp->tcp_xmit_tail_unsent;
18329 
18330 	/*
18331 	 * Note that tcp_mss has been adjusted to take into account the
18332 	 * timestamp option if applicable.  Because SACK options do not
18333 	 * appear in every TCP segments and they are of variable lengths,
18334 	 * they cannot be included in tcp_mss.  Thus we need to calculate
18335 	 * the actual segment length when we need to send a segment which
18336 	 * includes SACK options.
18337 	 */
18338 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
18339 		int32_t	opt_len;
18340 
18341 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
18342 		    tcp->tcp_num_sack_blk);
18343 		opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN *
18344 		    2 + TCPOPT_HEADER_LEN;
18345 		mss = tcp->tcp_mss - opt_len;
18346 		tcp_hdr_len = tcp->tcp_hdr_len + opt_len;
18347 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len;
18348 	} else {
18349 		mss = tcp->tcp_mss;
18350 		tcp_hdr_len = tcp->tcp_hdr_len;
18351 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
18352 	}
18353 
18354 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
18355 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
18356 		SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle);
18357 	}
18358 	if (tcpstate == TCPS_SYN_RCVD) {
18359 		/*
18360 		 * The three-way connection establishment handshake is not
18361 		 * complete yet. We want to queue the data for transmission
18362 		 * after entering ESTABLISHED state (RFC793). A jump to
18363 		 * "done" label effectively leaves data on the queue.
18364 		 */
18365 		goto done;
18366 	} else {
18367 		int usable_r = tcp->tcp_swnd;
18368 
18369 		/*
18370 		 * In the special case when cwnd is zero, which can only
18371 		 * happen if the connection is ECN capable, return now.
18372 		 * New segments is sent using tcp_timer().  The timer
18373 		 * is set in tcp_rput_data().
18374 		 */
18375 		if (tcp->tcp_cwnd == 0) {
18376 			/*
18377 			 * Note that tcp_cwnd is 0 before 3-way handshake is
18378 			 * finished.
18379 			 */
18380 			ASSERT(tcp->tcp_ecn_ok ||
18381 			    tcp->tcp_state < TCPS_ESTABLISHED);
18382 			return;
18383 		}
18384 
18385 		/* NOTE: trouble if xmitting while SYN not acked? */
18386 		usable_r -= snxt;
18387 		usable_r += tcp->tcp_suna;
18388 
18389 		/*
18390 		 * Check if the receiver has shrunk the window.  If
18391 		 * tcp_wput_data() with NULL mp is called, tcp_fin_sent
18392 		 * cannot be set as there is unsent data, so FIN cannot
18393 		 * be sent out.  Otherwise, we need to take into account
18394 		 * of FIN as it consumes an "invisible" sequence number.
18395 		 */
18396 		ASSERT(tcp->tcp_fin_sent == 0);
18397 		if (usable_r < 0) {
18398 			/*
18399 			 * The receiver has shrunk the window and we have sent
18400 			 * -usable_r date beyond the window, re-adjust.
18401 			 *
18402 			 * If TCP window scaling is enabled, there can be
18403 			 * round down error as the advertised receive window
18404 			 * is actually right shifted n bits.  This means that
18405 			 * the lower n bits info is wiped out.  It will look
18406 			 * like the window is shrunk.  Do a check here to
18407 			 * see if the shrunk amount is actually within the
18408 			 * error in window calculation.  If it is, just
18409 			 * return.  Note that this check is inside the
18410 			 * shrunk window check.  This makes sure that even
18411 			 * though tcp_process_shrunk_swnd() is not called,
18412 			 * we will stop further processing.
18413 			 */
18414 			if ((-usable_r >> tcp->tcp_snd_ws) > 0) {
18415 				tcp_process_shrunk_swnd(tcp, -usable_r);
18416 			}
18417 			return;
18418 		}
18419 
18420 		/* usable = MIN(swnd, cwnd) - unacked_bytes */
18421 		if (tcp->tcp_swnd > tcp->tcp_cwnd)
18422 			usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd;
18423 
18424 		/* usable = MIN(usable, unsent) */
18425 		if (usable_r > len)
18426 			usable_r = len;
18427 
18428 		/* usable = MAX(usable, {1 for urgent, 0 for data}) */
18429 		if (usable_r > 0) {
18430 			usable = usable_r;
18431 		} else {
18432 			/* Bypass all other unnecessary processing. */
18433 			goto done;
18434 		}
18435 	}
18436 
18437 	local_time = (mblk_t *)lbolt;
18438 
18439 	/*
18440 	 * "Our" Nagle Algorithm.  This is not the same as in the old
18441 	 * BSD.  This is more in line with the true intent of Nagle.
18442 	 *
18443 	 * The conditions are:
18444 	 * 1. The amount of unsent data (or amount of data which can be
18445 	 *    sent, whichever is smaller) is less than Nagle limit.
18446 	 * 2. The last sent size is also less than Nagle limit.
18447 	 * 3. There is unack'ed data.
18448 	 * 4. Urgent pointer is not set.  Send urgent data ignoring the
18449 	 *    Nagle algorithm.  This reduces the probability that urgent
18450 	 *    bytes get "merged" together.
18451 	 * 5. The app has not closed the connection.  This eliminates the
18452 	 *    wait time of the receiving side waiting for the last piece of
18453 	 *    (small) data.
18454 	 *
18455 	 * If all are satisified, exit without sending anything.  Note
18456 	 * that Nagle limit can be smaller than 1 MSS.  Nagle limit is
18457 	 * the smaller of 1 MSS and global tcp_naglim_def (default to be
18458 	 * 4095).
18459 	 */
18460 	if (usable < (int)tcp->tcp_naglim &&
18461 	    tcp->tcp_naglim > tcp->tcp_last_sent_len &&
18462 	    snxt != tcp->tcp_suna &&
18463 	    !(tcp->tcp_valid_bits & TCP_URG_VALID) &&
18464 	    !(tcp->tcp_valid_bits & TCP_FSS_VALID)) {
18465 		goto done;
18466 	}
18467 
18468 	if (tcp->tcp_cork) {
18469 		/*
18470 		 * if the tcp->tcp_cork option is set, then we have to force
18471 		 * TCP not to send partial segment (smaller than MSS bytes).
18472 		 * We are calculating the usable now based on full mss and
18473 		 * will save the rest of remaining data for later.
18474 		 */
18475 		if (usable < mss)
18476 			goto done;
18477 		usable = (usable / mss) * mss;
18478 	}
18479 
18480 	/* Update the latest receive window size in TCP header. */
18481 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
18482 	    tcp->tcp_tcph->th_win);
18483 
18484 	/*
18485 	 * Determine if it's worthwhile to attempt MDT, based on:
18486 	 *
18487 	 * 1. Simple TCP/IP{v4,v6} (no options).
18488 	 * 2. IPSEC/IPQoS processing is not needed for the TCP connection.
18489 	 * 3. If the TCP connection is in ESTABLISHED state.
18490 	 * 4. The TCP is not detached.
18491 	 *
18492 	 * If any of the above conditions have changed during the
18493 	 * connection, stop using MDT and restore the stream head
18494 	 * parameters accordingly.
18495 	 */
18496 	if (tcp->tcp_mdt &&
18497 	    ((tcp->tcp_ipversion == IPV4_VERSION &&
18498 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
18499 	    (tcp->tcp_ipversion == IPV6_VERSION &&
18500 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) ||
18501 	    tcp->tcp_state != TCPS_ESTABLISHED ||
18502 	    TCP_IS_DETACHED(tcp) || !CONN_IS_MD_FASTPATH(tcp->tcp_connp) ||
18503 	    CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) ||
18504 	    IPP_ENABLED(IPP_LOCAL_OUT))) {
18505 		tcp->tcp_connp->conn_mdt_ok = B_FALSE;
18506 		tcp->tcp_mdt = B_FALSE;
18507 
18508 		/* Anything other than detached is considered pathological */
18509 		if (!TCP_IS_DETACHED(tcp)) {
18510 			TCP_STAT(tcp_mdt_conn_halted1);
18511 			(void) tcp_maxpsz_set(tcp, B_TRUE);
18512 		}
18513 	}
18514 
18515 	/* Use MDT if sendable amount is greater than the threshold */
18516 	if (tcp->tcp_mdt &&
18517 	    (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) &&
18518 	    (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL &&
18519 	    MBLKL(xmit_tail->b_cont) > mdt_thres)) &&
18520 	    (tcp->tcp_valid_bits == 0 ||
18521 	    tcp->tcp_valid_bits == TCP_FSS_VALID)) {
18522 		ASSERT(tcp->tcp_connp->conn_mdt_ok);
18523 		rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
18524 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
18525 		    local_time, mdt_thres);
18526 	} else {
18527 		rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
18528 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
18529 		    local_time, INT_MAX);
18530 	}
18531 
18532 	/* Pretend that all we were trying to send really got sent */
18533 	if (rc < 0 && tail_unsent < 0) {
18534 		do {
18535 			xmit_tail = xmit_tail->b_cont;
18536 			xmit_tail->b_prev = local_time;
18537 			ASSERT((uintptr_t)(xmit_tail->b_wptr -
18538 			    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
18539 			tail_unsent += (int)(xmit_tail->b_wptr -
18540 			    xmit_tail->b_rptr);
18541 		} while (tail_unsent < 0);
18542 	}
18543 done:;
18544 	tcp->tcp_xmit_tail = xmit_tail;
18545 	tcp->tcp_xmit_tail_unsent = tail_unsent;
18546 	len = tcp->tcp_snxt - snxt;
18547 	if (len) {
18548 		/*
18549 		 * If new data was sent, need to update the notsack
18550 		 * list, which is, afterall, data blocks that have
18551 		 * not been sack'ed by the receiver.  New data is
18552 		 * not sack'ed.
18553 		 */
18554 		if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
18555 			/* len is a negative value. */
18556 			tcp->tcp_pipe -= len;
18557 			tcp_notsack_update(&(tcp->tcp_notsack_list),
18558 			    tcp->tcp_snxt, snxt,
18559 			    &(tcp->tcp_num_notsack_blk),
18560 			    &(tcp->tcp_cnt_notsack_list));
18561 		}
18562 		tcp->tcp_snxt = snxt + tcp->tcp_fin_sent;
18563 		tcp->tcp_rack = tcp->tcp_rnxt;
18564 		tcp->tcp_rack_cnt = 0;
18565 		if ((snxt + len) == tcp->tcp_suna) {
18566 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
18567 		}
18568 	} else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) {
18569 		/*
18570 		 * Didn't send anything. Make sure the timer is running
18571 		 * so that we will probe a zero window.
18572 		 */
18573 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
18574 	}
18575 	/* Note that len is the amount we just sent but with a negative sign */
18576 	tcp->tcp_unsent += len;
18577 	if (tcp->tcp_flow_stopped) {
18578 		if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
18579 			tcp_clrqfull(tcp);
18580 		}
18581 	} else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) {
18582 		tcp_setqfull(tcp);
18583 	}
18584 }
18585 
18586 /*
18587  * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the
18588  * outgoing TCP header with the template header, as well as other
18589  * options such as time-stamp, ECN and/or SACK.
18590  */
18591 static void
18592 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk)
18593 {
18594 	tcph_t *tcp_tmpl, *tcp_h;
18595 	uint32_t *dst, *src;
18596 	int hdrlen;
18597 
18598 	ASSERT(OK_32PTR(rptr));
18599 
18600 	/* Template header */
18601 	tcp_tmpl = tcp->tcp_tcph;
18602 
18603 	/* Header of outgoing packet */
18604 	tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
18605 
18606 	/* dst and src are opaque 32-bit fields, used for copying */
18607 	dst = (uint32_t *)rptr;
18608 	src = (uint32_t *)tcp->tcp_iphc;
18609 	hdrlen = tcp->tcp_hdr_len;
18610 
18611 	/* Fill time-stamp option if needed */
18612 	if (tcp->tcp_snd_ts_ok) {
18613 		U32_TO_BE32((uint32_t)now,
18614 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4);
18615 		U32_TO_BE32(tcp->tcp_ts_recent,
18616 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8);
18617 	} else {
18618 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
18619 	}
18620 
18621 	/*
18622 	 * Copy the template header; is this really more efficient than
18623 	 * calling bcopy()?  For simple IPv4/TCP, it may be the case,
18624 	 * but perhaps not for other scenarios.
18625 	 */
18626 	dst[0] = src[0];
18627 	dst[1] = src[1];
18628 	dst[2] = src[2];
18629 	dst[3] = src[3];
18630 	dst[4] = src[4];
18631 	dst[5] = src[5];
18632 	dst[6] = src[6];
18633 	dst[7] = src[7];
18634 	dst[8] = src[8];
18635 	dst[9] = src[9];
18636 	if (hdrlen -= 40) {
18637 		hdrlen >>= 2;
18638 		dst += 10;
18639 		src += 10;
18640 		do {
18641 			*dst++ = *src++;
18642 		} while (--hdrlen);
18643 	}
18644 
18645 	/*
18646 	 * Set the ECN info in the TCP header if it is not a zero
18647 	 * window probe.  Zero window probe is only sent in
18648 	 * tcp_wput_data() and tcp_timer().
18649 	 */
18650 	if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) {
18651 		SET_ECT(tcp, rptr);
18652 
18653 		if (tcp->tcp_ecn_echo_on)
18654 			tcp_h->th_flags[0] |= TH_ECE;
18655 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
18656 			tcp_h->th_flags[0] |= TH_CWR;
18657 			tcp->tcp_ecn_cwr_sent = B_TRUE;
18658 		}
18659 	}
18660 
18661 	/* Fill in SACK options */
18662 	if (num_sack_blk > 0) {
18663 		uchar_t *wptr = rptr + tcp->tcp_hdr_len;
18664 		sack_blk_t *tmp;
18665 		int32_t	i;
18666 
18667 		wptr[0] = TCPOPT_NOP;
18668 		wptr[1] = TCPOPT_NOP;
18669 		wptr[2] = TCPOPT_SACK;
18670 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
18671 		    sizeof (sack_blk_t);
18672 		wptr += TCPOPT_REAL_SACK_LEN;
18673 
18674 		tmp = tcp->tcp_sack_list;
18675 		for (i = 0; i < num_sack_blk; i++) {
18676 			U32_TO_BE32(tmp[i].begin, wptr);
18677 			wptr += sizeof (tcp_seq);
18678 			U32_TO_BE32(tmp[i].end, wptr);
18679 			wptr += sizeof (tcp_seq);
18680 		}
18681 		tcp_h->th_offset_and_rsrvd[0] +=
18682 		    ((num_sack_blk * 2 + 1) << 4);
18683 	}
18684 }
18685 
18686 /*
18687  * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach
18688  * the destination address and SAP attribute, and if necessary, the
18689  * hardware checksum offload attribute to a Multidata message.
18690  */
18691 static int
18692 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum,
18693     const uint32_t start, const uint32_t stuff, const uint32_t end,
18694     const uint32_t flags)
18695 {
18696 	/* Add global destination address & SAP attribute */
18697 	if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) {
18698 		ip1dbg(("tcp_mdt_add_attrs: can't add global physical "
18699 		    "destination address+SAP\n"));
18700 
18701 		if (dlmp != NULL)
18702 			TCP_STAT(tcp_mdt_allocfail);
18703 		return (-1);
18704 	}
18705 
18706 	/* Add global hwcksum attribute */
18707 	if (hwcksum &&
18708 	    !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) {
18709 		ip1dbg(("tcp_mdt_add_attrs: can't add global hardware "
18710 		    "checksum attribute\n"));
18711 
18712 		TCP_STAT(tcp_mdt_allocfail);
18713 		return (-1);
18714 	}
18715 
18716 	return (0);
18717 }
18718 
18719 /*
18720  * Smaller and private version of pdescinfo_t used specifically for TCP,
18721  * which allows for only two payload spans per packet.
18722  */
18723 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t;
18724 
18725 /*
18726  * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit
18727  * scheme, and returns one the following:
18728  *
18729  * -1 = failed allocation.
18730  *  0 = success; burst count reached, or usable send window is too small,
18731  *      and that we'd rather wait until later before sending again.
18732  */
18733 static int
18734 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
18735     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
18736     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
18737     const int mdt_thres)
18738 {
18739 	mblk_t		*md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf;
18740 	multidata_t	*mmd;
18741 	uint_t		obsegs, obbytes, hdr_frag_sz;
18742 	uint_t		cur_hdr_off, cur_pld_off, base_pld_off, first_snxt;
18743 	int		num_burst_seg, max_pld;
18744 	pdesc_t		*pkt;
18745 	tcp_pdescinfo_t	tcp_pkt_info;
18746 	pdescinfo_t	*pkt_info;
18747 	int		pbuf_idx, pbuf_idx_nxt;
18748 	int		seg_len, len, spill, af;
18749 	boolean_t	add_buffer, zcopy, clusterwide;
18750 	boolean_t	rconfirm = B_FALSE;
18751 	boolean_t	done = B_FALSE;
18752 	uint32_t	cksum;
18753 	uint32_t	hwcksum_flags;
18754 	ire_t		*ire;
18755 	ill_t		*ill;
18756 	ipha_t		*ipha;
18757 	ip6_t		*ip6h;
18758 	ipaddr_t	src, dst;
18759 	ill_zerocopy_capab_t *zc_cap = NULL;
18760 	uint16_t	*up;
18761 	int		err;
18762 
18763 #ifdef	_BIG_ENDIAN
18764 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 28) & 0x7)
18765 #else
18766 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 4) & 0x7)
18767 #endif
18768 
18769 #define	PREP_NEW_MULTIDATA() {			\
18770 	mmd = NULL;				\
18771 	md_mp = md_hbuf = NULL;			\
18772 	cur_hdr_off = 0;			\
18773 	max_pld = tcp->tcp_mdt_max_pld;		\
18774 	pbuf_idx = pbuf_idx_nxt = -1;		\
18775 	add_buffer = B_TRUE;			\
18776 	zcopy = B_FALSE;			\
18777 }
18778 
18779 #define	PREP_NEW_PBUF() {			\
18780 	md_pbuf = md_pbuf_nxt = NULL;		\
18781 	pbuf_idx = pbuf_idx_nxt = -1;		\
18782 	cur_pld_off = 0;			\
18783 	first_snxt = *snxt;			\
18784 	ASSERT(*tail_unsent > 0);		\
18785 	base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \
18786 }
18787 
18788 	ASSERT(mdt_thres >= mss);
18789 	ASSERT(*usable > 0 && *usable > mdt_thres);
18790 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
18791 	ASSERT(!TCP_IS_DETACHED(tcp));
18792 	ASSERT(tcp->tcp_valid_bits == 0 ||
18793 	    tcp->tcp_valid_bits == TCP_FSS_VALID);
18794 	ASSERT((tcp->tcp_ipversion == IPV4_VERSION &&
18795 	    tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) ||
18796 	    (tcp->tcp_ipversion == IPV6_VERSION &&
18797 	    tcp->tcp_ip_hdr_len == IPV6_HDR_LEN));
18798 	ASSERT(tcp->tcp_connp != NULL);
18799 	ASSERT(CONN_IS_MD_FASTPATH(tcp->tcp_connp));
18800 	ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp));
18801 
18802 	/*
18803 	 * Note that tcp will only declare at most 2 payload spans per
18804 	 * packet, which is much lower than the maximum allowable number
18805 	 * of packet spans per Multidata.  For this reason, we use the
18806 	 * privately declared and smaller descriptor info structure, in
18807 	 * order to save some stack space.
18808 	 */
18809 	pkt_info = (pdescinfo_t *)&tcp_pkt_info;
18810 
18811 	af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6;
18812 	if (af == AF_INET) {
18813 		dst = tcp->tcp_ipha->ipha_dst;
18814 		src = tcp->tcp_ipha->ipha_src;
18815 		ASSERT(!CLASSD(dst));
18816 	}
18817 	ASSERT(af == AF_INET ||
18818 	    !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst));
18819 
18820 	obsegs = obbytes = 0;
18821 	num_burst_seg = tcp->tcp_snd_burst;
18822 	md_mp_head = NULL;
18823 	PREP_NEW_MULTIDATA();
18824 
18825 	/*
18826 	 * Before we go on further, make sure there is an IRE that we can
18827 	 * use, and that the ILL supports MDT.  Otherwise, there's no point
18828 	 * in proceeding any further, and we should just hand everything
18829 	 * off to the legacy path.
18830 	 */
18831 	mutex_enter(&tcp->tcp_connp->conn_lock);
18832 	ire = tcp->tcp_connp->conn_ire_cache;
18833 	ASSERT(!(tcp->tcp_connp->conn_state_flags & CONN_INCIPIENT));
18834 	if (ire != NULL && ((af == AF_INET && ire->ire_addr == dst) ||
18835 	    (af == AF_INET6 && IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6,
18836 	    &tcp->tcp_ip6h->ip6_dst))) &&
18837 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18838 		IRE_REFHOLD(ire);
18839 		mutex_exit(&tcp->tcp_connp->conn_lock);
18840 	} else {
18841 		boolean_t cached = B_FALSE;
18842 
18843 		/* force a recheck later on */
18844 		tcp->tcp_ire_ill_check_done = B_FALSE;
18845 
18846 		TCP_DBGSTAT(tcp_ire_null1);
18847 		tcp->tcp_connp->conn_ire_cache = NULL;
18848 		mutex_exit(&tcp->tcp_connp->conn_lock);
18849 
18850 		/* Release the old ire */
18851 		if (ire != NULL)
18852 			IRE_REFRELE_NOTR(ire);
18853 
18854 		ire = (af == AF_INET) ?
18855 		    ire_cache_lookup(dst, tcp->tcp_connp->conn_zoneid) :
18856 		    ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst,
18857 		    tcp->tcp_connp->conn_zoneid);
18858 
18859 		if (ire == NULL) {
18860 			TCP_STAT(tcp_ire_null);
18861 			goto legacy_send_no_md;
18862 		}
18863 
18864 		IRE_REFHOLD_NOTR(ire);
18865 		/*
18866 		 * Since we are inside the squeue, there cannot be another
18867 		 * thread in TCP trying to set the conn_ire_cache now. The
18868 		 * check for IRE_MARK_CONDEMNED ensures that an interface
18869 		 * unplumb thread has not yet started cleaning up the conns.
18870 		 * Hence we don't need to grab the conn lock.
18871 		 */
18872 		if (!(tcp->tcp_connp->conn_state_flags & CONN_CLOSING)) {
18873 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
18874 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18875 				tcp->tcp_connp->conn_ire_cache = ire;
18876 				cached = B_TRUE;
18877 			}
18878 			rw_exit(&ire->ire_bucket->irb_lock);
18879 		}
18880 
18881 		/*
18882 		 * We can continue to use the ire but since it was not
18883 		 * cached, we should drop the extra reference.
18884 		 */
18885 		if (!cached)
18886 			IRE_REFRELE_NOTR(ire);
18887 	}
18888 
18889 	ASSERT(ire != NULL);
18890 	ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION);
18891 	ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6)));
18892 	ASSERT(af == AF_INET || ire->ire_nce != NULL);
18893 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
18894 	/*
18895 	 * If we do support loopback for MDT (which requires modifications
18896 	 * to the receiving paths), the following assertions should go away,
18897 	 * and we would be sending the Multidata to loopback conn later on.
18898 	 */
18899 	ASSERT(!IRE_IS_LOCAL(ire));
18900 	ASSERT(ire->ire_stq != NULL);
18901 
18902 	ill = ire_to_ill(ire);
18903 	ASSERT(ill != NULL);
18904 	ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL);
18905 
18906 	if (!tcp->tcp_ire_ill_check_done) {
18907 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
18908 		tcp->tcp_ire_ill_check_done = B_TRUE;
18909 	}
18910 
18911 	/*
18912 	 * If the underlying interface conditions have changed, or if the
18913 	 * new interface does not support MDT, go back to legacy path.
18914 	 */
18915 	if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) {
18916 		/* don't go through this path anymore for this connection */
18917 		TCP_STAT(tcp_mdt_conn_halted2);
18918 		tcp->tcp_mdt = B_FALSE;
18919 		ip1dbg(("tcp_multisend: disabling MDT for connp %p on "
18920 		    "interface %s\n", (void *)tcp->tcp_connp, ill->ill_name));
18921 		/* IRE will be released prior to returning */
18922 		goto legacy_send_no_md;
18923 	}
18924 
18925 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)
18926 		zc_cap = ill->ill_zerocopy_capab;
18927 
18928 	/* go to legacy path if interface doesn't support zerocopy */
18929 	if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 &&
18930 	    (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) {
18931 		/* IRE will be released prior to returning */
18932 		goto legacy_send_no_md;
18933 	}
18934 
18935 	/* does the interface support hardware checksum offload? */
18936 	hwcksum_flags = 0;
18937 	if (ILL_HCKSUM_CAPABLE(ill) &&
18938 	    (ill->ill_hcksum_capab->ill_hcksum_txflags &
18939 	    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL |
18940 	    HCKSUM_IPHDRCKSUM)) && dohwcksum) {
18941 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
18942 		    HCKSUM_IPHDRCKSUM)
18943 			hwcksum_flags = HCK_IPV4_HDRCKSUM;
18944 
18945 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
18946 		    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6))
18947 			hwcksum_flags |= HCK_FULLCKSUM;
18948 		else if (ill->ill_hcksum_capab->ill_hcksum_txflags &
18949 		    HCKSUM_INET_PARTIAL)
18950 			hwcksum_flags |= HCK_PARTIALCKSUM;
18951 	}
18952 
18953 	/*
18954 	 * Each header fragment consists of the leading extra space,
18955 	 * followed by the TCP/IP header, and the trailing extra space.
18956 	 * We make sure that each header fragment begins on a 32-bit
18957 	 * aligned memory address (tcp_mdt_hdr_head is already 32-bit
18958 	 * aligned in tcp_mdt_update).
18959 	 */
18960 	hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len +
18961 	    tcp->tcp_mdt_hdr_tail), 4);
18962 
18963 	/* are we starting from the beginning of data block? */
18964 	if (*tail_unsent == 0) {
18965 		*xmit_tail = (*xmit_tail)->b_cont;
18966 		ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX);
18967 		*tail_unsent = (int)MBLKL(*xmit_tail);
18968 	}
18969 
18970 	/*
18971 	 * Here we create one or more Multidata messages, each made up of
18972 	 * one header buffer and up to N payload buffers.  This entire
18973 	 * operation is done within two loops:
18974 	 *
18975 	 * The outer loop mostly deals with creating the Multidata message,
18976 	 * as well as the header buffer that gets added to it.  It also
18977 	 * links the Multidata messages together such that all of them can
18978 	 * be sent down to the lower layer in a single putnext call; this
18979 	 * linking behavior depends on the tcp_mdt_chain tunable.
18980 	 *
18981 	 * The inner loop takes an existing Multidata message, and adds
18982 	 * one or more (up to tcp_mdt_max_pld) payload buffers to it.  It
18983 	 * packetizes those buffers by filling up the corresponding header
18984 	 * buffer fragments with the proper IP and TCP headers, and by
18985 	 * describing the layout of each packet in the packet descriptors
18986 	 * that get added to the Multidata.
18987 	 */
18988 	do {
18989 		/*
18990 		 * If usable send window is too small, or data blocks in
18991 		 * transmit list are smaller than our threshold (i.e. app
18992 		 * performs large writes followed by small ones), we hand
18993 		 * off the control over to the legacy path.  Note that we'll
18994 		 * get back the control once it encounters a large block.
18995 		 */
18996 		if (*usable < mss || (*tail_unsent <= mdt_thres &&
18997 		    (*xmit_tail)->b_cont != NULL &&
18998 		    MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) {
18999 			/* send down what we've got so far */
19000 			if (md_mp_head != NULL) {
19001 				tcp_multisend_data(tcp, ire, ill, md_mp_head,
19002 				    obsegs, obbytes, &rconfirm);
19003 			}
19004 			/*
19005 			 * Pass control over to tcp_send(), but tell it to
19006 			 * return to us once a large-size transmission is
19007 			 * possible.
19008 			 */
19009 			TCP_STAT(tcp_mdt_legacy_small);
19010 			if ((err = tcp_send(q, tcp, mss, tcp_hdr_len,
19011 			    tcp_tcp_hdr_len, num_sack_blk, usable, snxt,
19012 			    tail_unsent, xmit_tail, local_time,
19013 			    mdt_thres)) <= 0) {
19014 				/* burst count reached, or alloc failed */
19015 				IRE_REFRELE(ire);
19016 				return (err);
19017 			}
19018 
19019 			/* tcp_send() may have sent everything, so check */
19020 			if (*usable <= 0) {
19021 				IRE_REFRELE(ire);
19022 				return (0);
19023 			}
19024 
19025 			TCP_STAT(tcp_mdt_legacy_ret);
19026 			/*
19027 			 * We may have delivered the Multidata, so make sure
19028 			 * to re-initialize before the next round.
19029 			 */
19030 			md_mp_head = NULL;
19031 			obsegs = obbytes = 0;
19032 			num_burst_seg = tcp->tcp_snd_burst;
19033 			PREP_NEW_MULTIDATA();
19034 
19035 			/* are we starting from the beginning of data block? */
19036 			if (*tail_unsent == 0) {
19037 				*xmit_tail = (*xmit_tail)->b_cont;
19038 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
19039 				    (uintptr_t)INT_MAX);
19040 				*tail_unsent = (int)MBLKL(*xmit_tail);
19041 			}
19042 		}
19043 
19044 		/*
19045 		 * max_pld limits the number of mblks in tcp's transmit
19046 		 * queue that can be added to a Multidata message.  Once
19047 		 * this counter reaches zero, no more additional mblks
19048 		 * can be added to it.  What happens afterwards depends
19049 		 * on whether or not we are set to chain the Multidata
19050 		 * messages.  If we are to link them together, reset
19051 		 * max_pld to its original value (tcp_mdt_max_pld) and
19052 		 * prepare to create a new Multidata message which will
19053 		 * get linked to md_mp_head.  Else, leave it alone and
19054 		 * let the inner loop break on its own.
19055 		 */
19056 		if (tcp_mdt_chain && max_pld == 0)
19057 			PREP_NEW_MULTIDATA();
19058 
19059 		/* adding a payload buffer; re-initialize values */
19060 		if (add_buffer)
19061 			PREP_NEW_PBUF();
19062 
19063 		/*
19064 		 * If we don't have a Multidata, either because we just
19065 		 * (re)entered this outer loop, or after we branched off
19066 		 * to tcp_send above, setup the Multidata and header
19067 		 * buffer to be used.
19068 		 */
19069 		if (md_mp == NULL) {
19070 			int md_hbuflen;
19071 			uint32_t start, stuff;
19072 
19073 			/*
19074 			 * Calculate Multidata header buffer size large enough
19075 			 * to hold all of the headers that can possibly be
19076 			 * sent at this moment.  We'd rather over-estimate
19077 			 * the size than running out of space; this is okay
19078 			 * since this buffer is small anyway.
19079 			 */
19080 			md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz;
19081 
19082 			/*
19083 			 * Start and stuff offset for partial hardware
19084 			 * checksum offload; these are currently for IPv4.
19085 			 * For full checksum offload, they are set to zero.
19086 			 */
19087 			if ((hwcksum_flags & HCK_PARTIALCKSUM)) {
19088 				if (af == AF_INET) {
19089 					start = IP_SIMPLE_HDR_LENGTH;
19090 					stuff = IP_SIMPLE_HDR_LENGTH +
19091 					    TCP_CHECKSUM_OFFSET;
19092 				} else {
19093 					start = IPV6_HDR_LEN;
19094 					stuff = IPV6_HDR_LEN +
19095 					    TCP_CHECKSUM_OFFSET;
19096 				}
19097 			} else {
19098 				start = stuff = 0;
19099 			}
19100 
19101 			/*
19102 			 * Create the header buffer, Multidata, as well as
19103 			 * any necessary attributes (destination address,
19104 			 * SAP and hardware checksum offload) that should
19105 			 * be associated with the Multidata message.
19106 			 */
19107 			ASSERT(cur_hdr_off == 0);
19108 			if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL ||
19109 			    ((md_hbuf->b_wptr += md_hbuflen),
19110 			    (mmd = mmd_alloc(md_hbuf, &md_mp,
19111 			    KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd,
19112 			    /* fastpath mblk */
19113 			    (af == AF_INET) ? ire->ire_dlureq_mp :
19114 			    ire->ire_nce->nce_res_mp,
19115 			    /* hardware checksum enabled */
19116 			    (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)),
19117 			    /* hardware checksum offsets */
19118 			    start, stuff, 0,
19119 			    /* hardware checksum flag */
19120 			    hwcksum_flags) != 0)) {
19121 legacy_send:
19122 				if (md_mp != NULL) {
19123 					/* Unlink message from the chain */
19124 					if (md_mp_head != NULL) {
19125 						err = (intptr_t)rmvb(md_mp_head,
19126 						    md_mp);
19127 						/*
19128 						 * We can't assert that rmvb
19129 						 * did not return -1, since we
19130 						 * may get here before linkb
19131 						 * happens.  We do, however,
19132 						 * check if we just removed the
19133 						 * only element in the list.
19134 						 */
19135 						if (err == 0)
19136 							md_mp_head = NULL;
19137 					}
19138 					/* md_hbuf gets freed automatically */
19139 					TCP_STAT(tcp_mdt_discarded);
19140 					freeb(md_mp);
19141 				} else {
19142 					/* Either allocb or mmd_alloc failed */
19143 					TCP_STAT(tcp_mdt_allocfail);
19144 					if (md_hbuf != NULL)
19145 						freeb(md_hbuf);
19146 				}
19147 
19148 				/* send down what we've got so far */
19149 				if (md_mp_head != NULL) {
19150 					tcp_multisend_data(tcp, ire, ill,
19151 					    md_mp_head, obsegs, obbytes,
19152 					    &rconfirm);
19153 				}
19154 legacy_send_no_md:
19155 				if (ire != NULL)
19156 					IRE_REFRELE(ire);
19157 				/*
19158 				 * Too bad; let the legacy path handle this.
19159 				 * We specify INT_MAX for the threshold, since
19160 				 * we gave up with the Multidata processings
19161 				 * and let the old path have it all.
19162 				 */
19163 				TCP_STAT(tcp_mdt_legacy_all);
19164 				return (tcp_send(q, tcp, mss, tcp_hdr_len,
19165 				    tcp_tcp_hdr_len, num_sack_blk, usable,
19166 				    snxt, tail_unsent, xmit_tail, local_time,
19167 				    INT_MAX));
19168 			}
19169 
19170 			/* link to any existing ones, if applicable */
19171 			TCP_STAT(tcp_mdt_allocd);
19172 			if (md_mp_head == NULL) {
19173 				md_mp_head = md_mp;
19174 			} else if (tcp_mdt_chain) {
19175 				TCP_STAT(tcp_mdt_linked);
19176 				linkb(md_mp_head, md_mp);
19177 			}
19178 		}
19179 
19180 		ASSERT(md_mp_head != NULL);
19181 		ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL);
19182 		ASSERT(md_mp != NULL && mmd != NULL);
19183 		ASSERT(md_hbuf != NULL);
19184 
19185 		/*
19186 		 * Packetize the transmittable portion of the data block;
19187 		 * each data block is essentially added to the Multidata
19188 		 * as a payload buffer.  We also deal with adding more
19189 		 * than one payload buffers, which happens when the remaining
19190 		 * packetized portion of the current payload buffer is less
19191 		 * than MSS, while the next data block in transmit queue
19192 		 * has enough data to make up for one.  This "spillover"
19193 		 * case essentially creates a split-packet, where portions
19194 		 * of the packet's payload fragments may span across two
19195 		 * virtually discontiguous address blocks.
19196 		 */
19197 		seg_len = mss;
19198 		do {
19199 			len = seg_len;
19200 
19201 			ASSERT(len > 0);
19202 			ASSERT(max_pld >= 0);
19203 			ASSERT(!add_buffer || cur_pld_off == 0);
19204 
19205 			/*
19206 			 * First time around for this payload buffer; note
19207 			 * in the case of a spillover, the following has
19208 			 * been done prior to adding the split-packet
19209 			 * descriptor to Multidata, and we don't want to
19210 			 * repeat the process.
19211 			 */
19212 			if (add_buffer) {
19213 				ASSERT(mmd != NULL);
19214 				ASSERT(md_pbuf == NULL);
19215 				ASSERT(md_pbuf_nxt == NULL);
19216 				ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1);
19217 
19218 				/*
19219 				 * Have we reached the limit?  We'd get to
19220 				 * this case when we're not chaining the
19221 				 * Multidata messages together, and since
19222 				 * we're done, terminate this loop.
19223 				 */
19224 				if (max_pld == 0)
19225 					break; /* done */
19226 
19227 				if ((md_pbuf = dupb(*xmit_tail)) == NULL) {
19228 					TCP_STAT(tcp_mdt_allocfail);
19229 					goto legacy_send; /* out_of_mem */
19230 				}
19231 
19232 				if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy &&
19233 				    zc_cap != NULL) {
19234 					if (!ip_md_zcopy_attr(mmd, NULL,
19235 					    zc_cap->ill_zerocopy_flags)) {
19236 						freeb(md_pbuf);
19237 						TCP_STAT(tcp_mdt_allocfail);
19238 						/* out_of_mem */
19239 						goto legacy_send;
19240 					}
19241 					zcopy = B_TRUE;
19242 				}
19243 
19244 				md_pbuf->b_rptr += base_pld_off;
19245 
19246 				/*
19247 				 * Add a payload buffer to the Multidata; this
19248 				 * operation must not fail, or otherwise our
19249 				 * logic in this routine is broken.  There
19250 				 * is no memory allocation done by the
19251 				 * routine, so any returned failure simply
19252 				 * tells us that we've done something wrong.
19253 				 *
19254 				 * A failure tells us that either we're adding
19255 				 * the same payload buffer more than once, or
19256 				 * we're trying to add more buffers than
19257 				 * allowed (max_pld calculation is wrong).
19258 				 * None of the above cases should happen, and
19259 				 * we panic because either there's horrible
19260 				 * heap corruption, and/or programming mistake.
19261 				 */
19262 				pbuf_idx = mmd_addpldbuf(mmd, md_pbuf);
19263 				if (pbuf_idx < 0) {
19264 					cmn_err(CE_PANIC, "tcp_multisend: "
19265 					    "payload buffer logic error "
19266 					    "detected for tcp %p mmd %p "
19267 					    "pbuf %p (%d)\n",
19268 					    (void *)tcp, (void *)mmd,
19269 					    (void *)md_pbuf, pbuf_idx);
19270 				}
19271 
19272 				ASSERT(max_pld > 0);
19273 				--max_pld;
19274 				add_buffer = B_FALSE;
19275 			}
19276 
19277 			ASSERT(md_mp_head != NULL);
19278 			ASSERT(md_pbuf != NULL);
19279 			ASSERT(md_pbuf_nxt == NULL);
19280 			ASSERT(pbuf_idx != -1);
19281 			ASSERT(pbuf_idx_nxt == -1);
19282 			ASSERT(*usable > 0);
19283 
19284 			/*
19285 			 * We spillover to the next payload buffer only
19286 			 * if all of the following is true:
19287 			 *
19288 			 *   1. There is not enough data on the current
19289 			 *	payload buffer to make up `len',
19290 			 *   2. We are allowed to send `len',
19291 			 *   3. The next payload buffer length is large
19292 			 *	enough to accomodate `spill'.
19293 			 */
19294 			if ((spill = len - *tail_unsent) > 0 &&
19295 			    *usable >= len &&
19296 			    MBLKL((*xmit_tail)->b_cont) >= spill &&
19297 			    max_pld > 0) {
19298 				md_pbuf_nxt = dupb((*xmit_tail)->b_cont);
19299 				if (md_pbuf_nxt == NULL) {
19300 					TCP_STAT(tcp_mdt_allocfail);
19301 					goto legacy_send; /* out_of_mem */
19302 				}
19303 
19304 				if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy &&
19305 				    zc_cap != NULL) {
19306 					if (!ip_md_zcopy_attr(mmd, NULL,
19307 					    zc_cap->ill_zerocopy_flags)) {
19308 						freeb(md_pbuf_nxt);
19309 						TCP_STAT(tcp_mdt_allocfail);
19310 						/* out_of_mem */
19311 						goto legacy_send;
19312 					}
19313 					zcopy = B_TRUE;
19314 				}
19315 
19316 				/*
19317 				 * See comments above on the first call to
19318 				 * mmd_addpldbuf for explanation on the panic.
19319 				 */
19320 				pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt);
19321 				if (pbuf_idx_nxt < 0) {
19322 					panic("tcp_multisend: "
19323 					    "next payload buffer logic error "
19324 					    "detected for tcp %p mmd %p "
19325 					    "pbuf %p (%d)\n",
19326 					    (void *)tcp, (void *)mmd,
19327 					    (void *)md_pbuf_nxt, pbuf_idx_nxt);
19328 				}
19329 
19330 				ASSERT(max_pld > 0);
19331 				--max_pld;
19332 			} else if (spill > 0) {
19333 				/*
19334 				 * If there's a spillover, but the following
19335 				 * xmit_tail couldn't give us enough octets
19336 				 * to reach "len", then stop the current
19337 				 * Multidata creation and let the legacy
19338 				 * tcp_send() path take over.  We don't want
19339 				 * to send the tiny segment as part of this
19340 				 * Multidata for performance reasons; instead,
19341 				 * we let the legacy path deal with grouping
19342 				 * it with the subsequent small mblks.
19343 				 */
19344 				if (*usable >= len &&
19345 				    MBLKL((*xmit_tail)->b_cont) < spill) {
19346 					max_pld = 0;
19347 					break;	/* done */
19348 				}
19349 
19350 				/*
19351 				 * We can't spillover, and we are near
19352 				 * the end of the current payload buffer,
19353 				 * so send what's left.
19354 				 */
19355 				ASSERT(*tail_unsent > 0);
19356 				len = *tail_unsent;
19357 			}
19358 
19359 			/* tail_unsent is negated if there is a spillover */
19360 			*tail_unsent -= len;
19361 			*usable -= len;
19362 			ASSERT(*usable >= 0);
19363 
19364 			if (*usable < mss)
19365 				seg_len = *usable;
19366 			/*
19367 			 * Sender SWS avoidance; see comments in tcp_send();
19368 			 * everything else is the same, except that we only
19369 			 * do this here if there is no more data to be sent
19370 			 * following the current xmit_tail.  We don't check
19371 			 * for 1-byte urgent data because we shouldn't get
19372 			 * here if TCP_URG_VALID is set.
19373 			 */
19374 			if (*usable > 0 && *usable < mss &&
19375 			    ((md_pbuf_nxt == NULL &&
19376 			    (*xmit_tail)->b_cont == NULL) ||
19377 			    (md_pbuf_nxt != NULL &&
19378 			    (*xmit_tail)->b_cont->b_cont == NULL)) &&
19379 			    seg_len < (tcp->tcp_max_swnd >> 1) &&
19380 			    (tcp->tcp_unsent -
19381 			    ((*snxt + len) - tcp->tcp_snxt)) > seg_len &&
19382 			    !tcp->tcp_zero_win_probe) {
19383 				if ((*snxt + len) == tcp->tcp_snxt &&
19384 				    (*snxt + len) == tcp->tcp_suna) {
19385 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19386 				}
19387 				done = B_TRUE;
19388 			}
19389 
19390 			/*
19391 			 * Prime pump for IP's checksumming on our behalf;
19392 			 * include the adjustment for a source route if any.
19393 			 * Do this only for software/partial hardware checksum
19394 			 * offload, as this field gets zeroed out later for
19395 			 * the full hardware checksum offload case.
19396 			 */
19397 			if (!(hwcksum_flags & HCK_FULLCKSUM)) {
19398 				cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
19399 				cksum = (cksum >> 16) + (cksum & 0xFFFF);
19400 				U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum);
19401 			}
19402 
19403 			U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq);
19404 			*snxt += len;
19405 
19406 			tcp->tcp_tcph->th_flags[0] = TH_ACK;
19407 			/*
19408 			 * We set the PUSH bit only if TCP has no more buffered
19409 			 * data to be transmitted (or if sender SWS avoidance
19410 			 * takes place), as opposed to setting it for every
19411 			 * last packet in the burst.
19412 			 */
19413 			if (done ||
19414 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0)
19415 				tcp->tcp_tcph->th_flags[0] |= TH_PUSH;
19416 
19417 			/*
19418 			 * Set FIN bit if this is our last segment; snxt
19419 			 * already includes its length, and it will not
19420 			 * be adjusted after this point.
19421 			 */
19422 			if (tcp->tcp_valid_bits == TCP_FSS_VALID &&
19423 			    *snxt == tcp->tcp_fss) {
19424 				if (!tcp->tcp_fin_acked) {
19425 					tcp->tcp_tcph->th_flags[0] |= TH_FIN;
19426 					BUMP_MIB(&tcp_mib, tcpOutControl);
19427 				}
19428 				if (!tcp->tcp_fin_sent) {
19429 					tcp->tcp_fin_sent = B_TRUE;
19430 					/*
19431 					 * tcp state must be ESTABLISHED
19432 					 * in order for us to get here in
19433 					 * the first place.
19434 					 */
19435 					tcp->tcp_state = TCPS_FIN_WAIT_1;
19436 
19437 					/*
19438 					 * Upon returning from this routine,
19439 					 * tcp_wput_data() will set tcp_snxt
19440 					 * to be equal to snxt + tcp_fin_sent.
19441 					 * This is essentially the same as
19442 					 * setting it to tcp_fss + 1.
19443 					 */
19444 				}
19445 			}
19446 
19447 			tcp->tcp_last_sent_len = (ushort_t)len;
19448 
19449 			len += tcp_hdr_len;
19450 			if (tcp->tcp_ipversion == IPV4_VERSION)
19451 				tcp->tcp_ipha->ipha_length = htons(len);
19452 			else
19453 				tcp->tcp_ip6h->ip6_plen = htons(len -
19454 				    ((char *)&tcp->tcp_ip6h[1] -
19455 				    tcp->tcp_iphc));
19456 
19457 			pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF);
19458 
19459 			/* setup header fragment */
19460 			PDESC_HDR_ADD(pkt_info,
19461 			    md_hbuf->b_rptr + cur_hdr_off,	/* base */
19462 			    tcp->tcp_mdt_hdr_head,		/* head room */
19463 			    tcp_hdr_len,			/* len */
19464 			    tcp->tcp_mdt_hdr_tail);		/* tail room */
19465 
19466 			ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base ==
19467 			    hdr_frag_sz);
19468 			ASSERT(MBLKIN(md_hbuf,
19469 			    (pkt_info->hdr_base - md_hbuf->b_rptr),
19470 			    PDESC_HDRSIZE(pkt_info)));
19471 
19472 			/* setup first payload fragment */
19473 			PDESC_PLD_INIT(pkt_info);
19474 			PDESC_PLD_SPAN_ADD(pkt_info,
19475 			    pbuf_idx,				/* index */
19476 			    md_pbuf->b_rptr + cur_pld_off,	/* start */
19477 			    tcp->tcp_last_sent_len);		/* len */
19478 
19479 			/* create a split-packet in case of a spillover */
19480 			if (md_pbuf_nxt != NULL) {
19481 				ASSERT(spill > 0);
19482 				ASSERT(pbuf_idx_nxt > pbuf_idx);
19483 				ASSERT(!add_buffer);
19484 
19485 				md_pbuf = md_pbuf_nxt;
19486 				md_pbuf_nxt = NULL;
19487 				pbuf_idx = pbuf_idx_nxt;
19488 				pbuf_idx_nxt = -1;
19489 				cur_pld_off = spill;
19490 
19491 				/* trim out first payload fragment */
19492 				PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill);
19493 
19494 				/* setup second payload fragment */
19495 				PDESC_PLD_SPAN_ADD(pkt_info,
19496 				    pbuf_idx,			/* index */
19497 				    md_pbuf->b_rptr,		/* start */
19498 				    spill);			/* len */
19499 
19500 				if ((*xmit_tail)->b_next == NULL) {
19501 					/*
19502 					 * Store the lbolt used for RTT
19503 					 * estimation. We can only record one
19504 					 * timestamp per mblk so we do it when
19505 					 * we reach the end of the payload
19506 					 * buffer.  Also we only take a new
19507 					 * timestamp sample when the previous
19508 					 * timed data from the same mblk has
19509 					 * been ack'ed.
19510 					 */
19511 					(*xmit_tail)->b_prev = local_time;
19512 					(*xmit_tail)->b_next =
19513 					    (mblk_t *)(uintptr_t)first_snxt;
19514 				}
19515 
19516 				first_snxt = *snxt - spill;
19517 
19518 				/*
19519 				 * Advance xmit_tail; usable could be 0 by
19520 				 * the time we got here, but we made sure
19521 				 * above that we would only spillover to
19522 				 * the next data block if usable includes
19523 				 * the spilled-over amount prior to the
19524 				 * subtraction.  Therefore, we are sure
19525 				 * that xmit_tail->b_cont can't be NULL.
19526 				 */
19527 				ASSERT((*xmit_tail)->b_cont != NULL);
19528 				*xmit_tail = (*xmit_tail)->b_cont;
19529 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
19530 				    (uintptr_t)INT_MAX);
19531 				*tail_unsent = (int)MBLKL(*xmit_tail) - spill;
19532 			} else {
19533 				cur_pld_off += tcp->tcp_last_sent_len;
19534 			}
19535 
19536 			/*
19537 			 * Fill in the header using the template header, and
19538 			 * add options such as time-stamp, ECN and/or SACK,
19539 			 * as needed.
19540 			 */
19541 			tcp_fill_header(tcp, pkt_info->hdr_rptr,
19542 			    (clock_t)local_time, num_sack_blk);
19543 
19544 			/* take care of some IP header businesses */
19545 			if (af == AF_INET) {
19546 				ipha = (ipha_t *)pkt_info->hdr_rptr;
19547 
19548 				ASSERT(OK_32PTR((uchar_t *)ipha));
19549 				ASSERT(PDESC_HDRL(pkt_info) >=
19550 				    IP_SIMPLE_HDR_LENGTH);
19551 				ASSERT(ipha->ipha_version_and_hdr_length ==
19552 				    IP_SIMPLE_HDR_VERSION);
19553 
19554 				/*
19555 				 * Assign ident value for current packet; see
19556 				 * related comments in ip_wput_ire() about the
19557 				 * contract private interface with clustering
19558 				 * group.
19559 				 */
19560 				clusterwide = B_FALSE;
19561 				if (cl_inet_ipident != NULL) {
19562 					ASSERT(cl_inet_isclusterwide != NULL);
19563 					if ((*cl_inet_isclusterwide)(IPPROTO_IP,
19564 					    AF_INET,
19565 					    (uint8_t *)(uintptr_t)src)) {
19566 						ipha->ipha_ident =
19567 						    (*cl_inet_ipident)
19568 						    (IPPROTO_IP, AF_INET,
19569 						    (uint8_t *)(uintptr_t)src,
19570 						    (uint8_t *)(uintptr_t)dst);
19571 						clusterwide = B_TRUE;
19572 					}
19573 				}
19574 
19575 				if (!clusterwide) {
19576 					ipha->ipha_ident = (uint16_t)
19577 					    atomic_add_32_nv(
19578 						&ire->ire_ident, 1);
19579 				}
19580 #ifndef _BIG_ENDIAN
19581 				ipha->ipha_ident = (ipha->ipha_ident << 8) |
19582 				    (ipha->ipha_ident >> 8);
19583 #endif
19584 			} else {
19585 				ip6h = (ip6_t *)pkt_info->hdr_rptr;
19586 
19587 				ASSERT(OK_32PTR((uchar_t *)ip6h));
19588 				ASSERT(IPVER(ip6h) == IPV6_VERSION);
19589 				ASSERT(ip6h->ip6_nxt == IPPROTO_TCP);
19590 				ASSERT(PDESC_HDRL(pkt_info) >=
19591 				    (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET +
19592 				    TCP_CHECKSUM_SIZE));
19593 				ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
19594 
19595 				if (tcp->tcp_ip_forward_progress) {
19596 					rconfirm = B_TRUE;
19597 					tcp->tcp_ip_forward_progress = B_FALSE;
19598 				}
19599 			}
19600 
19601 			/* at least one payload span, and at most two */
19602 			ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3);
19603 
19604 			/* add the packet descriptor to Multidata */
19605 			if ((pkt = mmd_addpdesc(mmd, pkt_info, &err,
19606 			    KM_NOSLEEP)) == NULL) {
19607 				/*
19608 				 * Any failure other than ENOMEM indicates
19609 				 * that we have passed in invalid pkt_info
19610 				 * or parameters to mmd_addpdesc, which must
19611 				 * not happen.
19612 				 *
19613 				 * EINVAL is a result of failure on boundary
19614 				 * checks against the pkt_info contents.  It
19615 				 * should not happen, and we panic because
19616 				 * either there's horrible heap corruption,
19617 				 * and/or programming mistake.
19618 				 */
19619 				if (err != ENOMEM) {
19620 					cmn_err(CE_PANIC, "tcp_multisend: "
19621 					    "pdesc logic error detected for "
19622 					    "tcp %p mmd %p pinfo %p (%d)\n",
19623 					    (void *)tcp, (void *)mmd,
19624 					    (void *)pkt_info, err);
19625 				}
19626 				TCP_STAT(tcp_mdt_addpdescfail);
19627 				goto legacy_send; /* out_of_mem */
19628 			}
19629 			ASSERT(pkt != NULL);
19630 
19631 			/* calculate IP header and TCP checksums */
19632 			if (af == AF_INET) {
19633 				/* calculate pseudo-header checksum */
19634 				cksum = (dst >> 16) + (dst & 0xFFFF) +
19635 				    (src >> 16) + (src & 0xFFFF);
19636 
19637 				/* offset for TCP header checksum */
19638 				up = IPH_TCPH_CHECKSUMP(ipha,
19639 				    IP_SIMPLE_HDR_LENGTH);
19640 			} else {
19641 				up = (uint16_t *)&ip6h->ip6_src;
19642 
19643 				/* calculate pseudo-header checksum */
19644 				cksum = up[0] + up[1] + up[2] + up[3] +
19645 				    up[4] + up[5] + up[6] + up[7] +
19646 				    up[8] + up[9] + up[10] + up[11] +
19647 				    up[12] + up[13] + up[14] + up[15];
19648 
19649 				/* Fold the initial sum */
19650 				cksum = (cksum & 0xffff) + (cksum >> 16);
19651 
19652 				up = (uint16_t *)(((uchar_t *)ip6h) +
19653 				    IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET);
19654 			}
19655 
19656 			if (hwcksum_flags & HCK_FULLCKSUM) {
19657 				/* clear checksum field for hardware */
19658 				*up = 0;
19659 			} else if (hwcksum_flags & HCK_PARTIALCKSUM) {
19660 				uint32_t sum;
19661 
19662 				/* pseudo-header checksumming */
19663 				sum = *up + cksum + IP_TCP_CSUM_COMP;
19664 				sum = (sum & 0xFFFF) + (sum >> 16);
19665 				*up = (sum & 0xFFFF) + (sum >> 16);
19666 			} else {
19667 				/* software checksumming */
19668 				TCP_STAT(tcp_out_sw_cksum);
19669 				TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes,
19670 				    tcp->tcp_hdr_len + tcp->tcp_last_sent_len);
19671 				*up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len,
19672 				    cksum + IP_TCP_CSUM_COMP);
19673 				if (*up == 0)
19674 					*up = 0xFFFF;
19675 			}
19676 
19677 			/* IPv4 header checksum */
19678 			if (af == AF_INET) {
19679 				ipha->ipha_fragment_offset_and_flags |=
19680 				    (uint32_t)htons(ire->ire_frag_flag);
19681 
19682 				if (hwcksum_flags & HCK_IPV4_HDRCKSUM) {
19683 					ipha->ipha_hdr_checksum = 0;
19684 				} else {
19685 					IP_HDR_CKSUM(ipha, cksum,
19686 					    ((uint32_t *)ipha)[0],
19687 					    ((uint16_t *)ipha)[4]);
19688 				}
19689 			}
19690 
19691 			/* advance header offset */
19692 			cur_hdr_off += hdr_frag_sz;
19693 
19694 			obbytes += tcp->tcp_last_sent_len;
19695 			++obsegs;
19696 		} while (!done && *usable > 0 && --num_burst_seg > 0 &&
19697 		    *tail_unsent > 0);
19698 
19699 		if ((*xmit_tail)->b_next == NULL) {
19700 			/*
19701 			 * Store the lbolt used for RTT estimation. We can only
19702 			 * record one timestamp per mblk so we do it when we
19703 			 * reach the end of the payload buffer. Also we only
19704 			 * take a new timestamp sample when the previous timed
19705 			 * data from the same mblk has been ack'ed.
19706 			 */
19707 			(*xmit_tail)->b_prev = local_time;
19708 			(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt;
19709 		}
19710 
19711 		ASSERT(*tail_unsent >= 0);
19712 		if (*tail_unsent > 0) {
19713 			/*
19714 			 * We got here because we broke out of the above
19715 			 * loop due to of one of the following cases:
19716 			 *
19717 			 *   1. len < adjusted MSS (i.e. small),
19718 			 *   2. Sender SWS avoidance,
19719 			 *   3. max_pld is zero.
19720 			 *
19721 			 * We are done for this Multidata, so trim our
19722 			 * last payload buffer (if any) accordingly.
19723 			 */
19724 			if (md_pbuf != NULL)
19725 				md_pbuf->b_wptr -= *tail_unsent;
19726 		} else if (*usable > 0) {
19727 			*xmit_tail = (*xmit_tail)->b_cont;
19728 			ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
19729 			    (uintptr_t)INT_MAX);
19730 			*tail_unsent = (int)MBLKL(*xmit_tail);
19731 			add_buffer = B_TRUE;
19732 		}
19733 	} while (!done && *usable > 0 && num_burst_seg > 0 &&
19734 	    (tcp_mdt_chain || max_pld > 0));
19735 
19736 	/* send everything down */
19737 	tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes,
19738 	    &rconfirm);
19739 
19740 #undef PREP_NEW_MULTIDATA
19741 #undef PREP_NEW_PBUF
19742 #undef IPVER
19743 
19744 	IRE_REFRELE(ire);
19745 	return (0);
19746 }
19747 
19748 /*
19749  * A wrapper function for sending one or more Multidata messages down to
19750  * the module below ip; this routine does not release the reference of the
19751  * IRE (caller does that).  This routine is analogous to tcp_send_data().
19752  */
19753 static void
19754 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head,
19755     const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm)
19756 {
19757 	uint64_t delta;
19758 	nce_t *nce;
19759 
19760 	ASSERT(ire != NULL && ill != NULL);
19761 	ASSERT(ire->ire_stq != NULL);
19762 	ASSERT(md_mp_head != NULL);
19763 	ASSERT(rconfirm != NULL);
19764 
19765 	/* adjust MIBs and IRE timestamp */
19766 	TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT);
19767 	tcp->tcp_obsegs += obsegs;
19768 	UPDATE_MIB(&tcp_mib, tcpOutDataSegs, obsegs);
19769 	UPDATE_MIB(&tcp_mib, tcpOutDataBytes, obbytes);
19770 	TCP_STAT_UPDATE(tcp_mdt_pkt_out, obsegs);
19771 
19772 	if (tcp->tcp_ipversion == IPV4_VERSION) {
19773 		TCP_STAT_UPDATE(tcp_mdt_pkt_out_v4, obsegs);
19774 		UPDATE_MIB(&ip_mib, ipOutRequests, obsegs);
19775 	} else {
19776 		TCP_STAT_UPDATE(tcp_mdt_pkt_out_v6, obsegs);
19777 		UPDATE_MIB(&ip6_mib, ipv6OutRequests, obsegs);
19778 	}
19779 
19780 	ire->ire_ob_pkt_count += obsegs;
19781 	if (ire->ire_ipif != NULL)
19782 		atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs);
19783 	ire->ire_last_used_time = lbolt;
19784 
19785 	/* send it down */
19786 	putnext(ire->ire_stq, md_mp_head);
19787 
19788 	/* we're done for TCP/IPv4 */
19789 	if (tcp->tcp_ipversion == IPV4_VERSION)
19790 		return;
19791 
19792 	nce = ire->ire_nce;
19793 
19794 	ASSERT(nce != NULL);
19795 	ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT)));
19796 	ASSERT(nce->nce_state != ND_INCOMPLETE);
19797 
19798 	/* reachability confirmation? */
19799 	if (*rconfirm) {
19800 		nce->nce_last = TICK_TO_MSEC(lbolt64);
19801 		if (nce->nce_state != ND_REACHABLE) {
19802 			mutex_enter(&nce->nce_lock);
19803 			nce->nce_state = ND_REACHABLE;
19804 			nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT;
19805 			mutex_exit(&nce->nce_lock);
19806 			(void) untimeout(nce->nce_timeout_id);
19807 			if (ip_debug > 2) {
19808 				/* ip1dbg */
19809 				pr_addr_dbg("tcp_multisend_data: state "
19810 				    "for %s changed to REACHABLE\n",
19811 				    AF_INET6, &ire->ire_addr_v6);
19812 			}
19813 		}
19814 		/* reset transport reachability confirmation */
19815 		*rconfirm = B_FALSE;
19816 	}
19817 
19818 	delta =  TICK_TO_MSEC(lbolt64) - nce->nce_last;
19819 	ip1dbg(("tcp_multisend_data: delta = %" PRId64
19820 	    " ill_reachable_time = %d \n", delta, ill->ill_reachable_time));
19821 
19822 	if (delta > (uint64_t)ill->ill_reachable_time) {
19823 		mutex_enter(&nce->nce_lock);
19824 		switch (nce->nce_state) {
19825 		case ND_REACHABLE:
19826 		case ND_STALE:
19827 			/*
19828 			 * ND_REACHABLE is identical to ND_STALE in this
19829 			 * specific case. If reachable time has expired for
19830 			 * this neighbor (delta is greater than reachable
19831 			 * time), conceptually, the neighbor cache is no
19832 			 * longer in REACHABLE state, but already in STALE
19833 			 * state.  So the correct transition here is to
19834 			 * ND_DELAY.
19835 			 */
19836 			nce->nce_state = ND_DELAY;
19837 			mutex_exit(&nce->nce_lock);
19838 			NDP_RESTART_TIMER(nce, delay_first_probe_time);
19839 			if (ip_debug > 3) {
19840 				/* ip2dbg */
19841 				pr_addr_dbg("tcp_multisend_data: state "
19842 				    "for %s changed to DELAY\n",
19843 				    AF_INET6, &ire->ire_addr_v6);
19844 			}
19845 			break;
19846 		case ND_DELAY:
19847 		case ND_PROBE:
19848 			mutex_exit(&nce->nce_lock);
19849 			/* Timers have already started */
19850 			break;
19851 		case ND_UNREACHABLE:
19852 			/*
19853 			 * ndp timer has detected that this nce is
19854 			 * unreachable and initiated deleting this nce
19855 			 * and all its associated IREs. This is a race
19856 			 * where we found the ire before it was deleted
19857 			 * and have just sent out a packet using this
19858 			 * unreachable nce.
19859 			 */
19860 			mutex_exit(&nce->nce_lock);
19861 			break;
19862 		default:
19863 			ASSERT(0);
19864 		}
19865 	}
19866 }
19867 
19868 /*
19869  * tcp_send() is called by tcp_wput_data() for non-Multidata transmission
19870  * scheme, and returns one of the following:
19871  *
19872  * -1 = failed allocation.
19873  *  0 = success; burst count reached, or usable send window is too small,
19874  *      and that we'd rather wait until later before sending again.
19875  *  1 = success; we are called from tcp_multisend(), and both usable send
19876  *      window and tail_unsent are greater than the MDT threshold, and thus
19877  *      Multidata Transmit should be used instead.
19878  */
19879 static int
19880 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
19881     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
19882     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
19883     const int mdt_thres)
19884 {
19885 	int num_burst_seg = tcp->tcp_snd_burst;
19886 
19887 	for (;;) {
19888 		struct datab	*db;
19889 		tcph_t		*tcph;
19890 		uint32_t	sum;
19891 		mblk_t		*mp, *mp1;
19892 		uchar_t		*rptr;
19893 		int		len;
19894 
19895 		/*
19896 		 * If we're called by tcp_multisend(), and the amount of
19897 		 * sendable data as well as the size of current xmit_tail
19898 		 * is beyond the MDT threshold, return to the caller and
19899 		 * let the large data transmit be done using MDT.
19900 		 */
19901 		if (*usable > 0 && *usable > mdt_thres &&
19902 		    (*tail_unsent > mdt_thres || (*tail_unsent == 0 &&
19903 		    MBLKL((*xmit_tail)->b_cont) > mdt_thres))) {
19904 			ASSERT(tcp->tcp_mdt);
19905 			return (1);	/* success; do large send */
19906 		}
19907 
19908 		if (num_burst_seg-- == 0)
19909 			break;		/* success; burst count reached */
19910 
19911 		len = mss;
19912 		if (len > *usable) {
19913 			len = *usable;
19914 			if (len <= 0) {
19915 				/* Terminate the loop */
19916 				break;	/* success; too small */
19917 			}
19918 			/*
19919 			 * Sender silly-window avoidance.
19920 			 * Ignore this if we are going to send a
19921 			 * zero window probe out.
19922 			 *
19923 			 * TODO: force data into microscopic window?
19924 			 *	==> (!pushed || (unsent > usable))
19925 			 */
19926 			if (len < (tcp->tcp_max_swnd >> 1) &&
19927 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len &&
19928 			    !((tcp->tcp_valid_bits & TCP_URG_VALID) &&
19929 			    len == 1) && (! tcp->tcp_zero_win_probe)) {
19930 				/*
19931 				 * If the retransmit timer is not running
19932 				 * we start it so that we will retransmit
19933 				 * in the case when the the receiver has
19934 				 * decremented the window.
19935 				 */
19936 				if (*snxt == tcp->tcp_snxt &&
19937 				    *snxt == tcp->tcp_suna) {
19938 					/*
19939 					 * We are not supposed to send
19940 					 * anything.  So let's wait a little
19941 					 * bit longer before breaking SWS
19942 					 * avoidance.
19943 					 *
19944 					 * What should the value be?
19945 					 * Suggestion: MAX(init rexmit time,
19946 					 * tcp->tcp_rto)
19947 					 */
19948 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19949 				}
19950 				break;	/* success; too small */
19951 			}
19952 		}
19953 
19954 		tcph = tcp->tcp_tcph;
19955 
19956 		*usable -= len; /* Approximate - can be adjusted later */
19957 		if (*usable > 0)
19958 			tcph->th_flags[0] = TH_ACK;
19959 		else
19960 			tcph->th_flags[0] = (TH_ACK | TH_PUSH);
19961 
19962 		/*
19963 		 * Prime pump for IP's checksumming on our behalf
19964 		 * Include the adjustment for a source route if any.
19965 		 */
19966 		sum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
19967 		sum = (sum >> 16) + (sum & 0xFFFF);
19968 		U16_TO_ABE16(sum, tcph->th_sum);
19969 
19970 		U32_TO_ABE32(*snxt, tcph->th_seq);
19971 
19972 		/*
19973 		 * Branch off to tcp_xmit_mp() if any of the VALID bits is
19974 		 * set.  For the case when TCP_FSS_VALID is the only valid
19975 		 * bit (normal active close), branch off only when we think
19976 		 * that the FIN flag needs to be set.  Note for this case,
19977 		 * that (snxt + len) may not reflect the actual seg_len,
19978 		 * as len may be further reduced in tcp_xmit_mp().  If len
19979 		 * gets modified, we will end up here again.
19980 		 */
19981 		if (tcp->tcp_valid_bits != 0 &&
19982 		    (tcp->tcp_valid_bits != TCP_FSS_VALID ||
19983 		    ((*snxt + len) == tcp->tcp_fss))) {
19984 			uchar_t		*prev_rptr;
19985 			uint32_t	prev_snxt = tcp->tcp_snxt;
19986 
19987 			if (*tail_unsent == 0) {
19988 				ASSERT((*xmit_tail)->b_cont != NULL);
19989 				*xmit_tail = (*xmit_tail)->b_cont;
19990 				prev_rptr = (*xmit_tail)->b_rptr;
19991 				*tail_unsent = (int)((*xmit_tail)->b_wptr -
19992 				    (*xmit_tail)->b_rptr);
19993 			} else {
19994 				prev_rptr = (*xmit_tail)->b_rptr;
19995 				(*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr -
19996 				    *tail_unsent;
19997 			}
19998 			mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL,
19999 			    *snxt, B_FALSE, (uint32_t *)&len, B_FALSE);
20000 			/* Restore tcp_snxt so we get amount sent right. */
20001 			tcp->tcp_snxt = prev_snxt;
20002 			if (prev_rptr == (*xmit_tail)->b_rptr) {
20003 				/*
20004 				 * If the previous timestamp is still in use,
20005 				 * don't stomp on it.
20006 				 */
20007 				if ((*xmit_tail)->b_next == NULL) {
20008 					(*xmit_tail)->b_prev = local_time;
20009 					(*xmit_tail)->b_next =
20010 					    (mblk_t *)(uintptr_t)(*snxt);
20011 				}
20012 			} else
20013 				(*xmit_tail)->b_rptr = prev_rptr;
20014 
20015 			if (mp == NULL)
20016 				return (-1);
20017 			mp1 = mp->b_cont;
20018 
20019 			tcp->tcp_last_sent_len = (ushort_t)len;
20020 			while (mp1->b_cont) {
20021 				*xmit_tail = (*xmit_tail)->b_cont;
20022 				(*xmit_tail)->b_prev = local_time;
20023 				(*xmit_tail)->b_next =
20024 				    (mblk_t *)(uintptr_t)(*snxt);
20025 				mp1 = mp1->b_cont;
20026 			}
20027 			*snxt += len;
20028 			*tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr;
20029 			BUMP_LOCAL(tcp->tcp_obsegs);
20030 			BUMP_MIB(&tcp_mib, tcpOutDataSegs);
20031 			UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len);
20032 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
20033 			tcp_send_data(tcp, q, mp);
20034 			continue;
20035 		}
20036 
20037 		*snxt += len;	/* Adjust later if we don't send all of len */
20038 		BUMP_MIB(&tcp_mib, tcpOutDataSegs);
20039 		UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len);
20040 
20041 		if (*tail_unsent) {
20042 			/* Are the bytes above us in flight? */
20043 			rptr = (*xmit_tail)->b_wptr - *tail_unsent;
20044 			if (rptr != (*xmit_tail)->b_rptr) {
20045 				*tail_unsent -= len;
20046 				tcp->tcp_last_sent_len = (ushort_t)len;
20047 				len += tcp_hdr_len;
20048 				if (tcp->tcp_ipversion == IPV4_VERSION)
20049 					tcp->tcp_ipha->ipha_length = htons(len);
20050 				else
20051 					tcp->tcp_ip6h->ip6_plen =
20052 					    htons(len -
20053 					    ((char *)&tcp->tcp_ip6h[1] -
20054 					    tcp->tcp_iphc));
20055 				mp = dupb(*xmit_tail);
20056 				if (!mp)
20057 					return (-1);	/* out_of_mem */
20058 				mp->b_rptr = rptr;
20059 				/*
20060 				 * If the old timestamp is no longer in use,
20061 				 * sample a new timestamp now.
20062 				 */
20063 				if ((*xmit_tail)->b_next == NULL) {
20064 					(*xmit_tail)->b_prev = local_time;
20065 					(*xmit_tail)->b_next =
20066 					    (mblk_t *)(uintptr_t)(*snxt-len);
20067 				}
20068 				goto must_alloc;
20069 			}
20070 		} else {
20071 			*xmit_tail = (*xmit_tail)->b_cont;
20072 			ASSERT((uintptr_t)((*xmit_tail)->b_wptr -
20073 			    (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX);
20074 			*tail_unsent = (int)((*xmit_tail)->b_wptr -
20075 			    (*xmit_tail)->b_rptr);
20076 		}
20077 
20078 		(*xmit_tail)->b_prev = local_time;
20079 		(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len);
20080 
20081 		*tail_unsent -= len;
20082 		tcp->tcp_last_sent_len = (ushort_t)len;
20083 
20084 		len += tcp_hdr_len;
20085 		if (tcp->tcp_ipversion == IPV4_VERSION)
20086 			tcp->tcp_ipha->ipha_length = htons(len);
20087 		else
20088 			tcp->tcp_ip6h->ip6_plen = htons(len -
20089 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
20090 
20091 		mp = dupb(*xmit_tail);
20092 		if (!mp)
20093 			return (-1);	/* out_of_mem */
20094 
20095 		len = tcp_hdr_len;
20096 		/*
20097 		 * There are four reasons to allocate a new hdr mblk:
20098 		 *  1) The bytes above us are in use by another packet
20099 		 *  2) We don't have good alignment
20100 		 *  3) The mblk is being shared
20101 		 *  4) We don't have enough room for a header
20102 		 */
20103 		rptr = mp->b_rptr - len;
20104 		if (!OK_32PTR(rptr) ||
20105 		    ((db = mp->b_datap), db->db_ref != 2) ||
20106 		    rptr < db->db_base) {
20107 			/* NOTE: we assume allocb returns an OK_32PTR */
20108 
20109 		must_alloc:;
20110 			mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
20111 			    tcp_wroff_xtra, BPRI_MED);
20112 			if (!mp1) {
20113 				freemsg(mp);
20114 				return (-1);	/* out_of_mem */
20115 			}
20116 			mp1->b_cont = mp;
20117 			mp = mp1;
20118 			/* Leave room for Link Level header */
20119 			len = tcp_hdr_len;
20120 			rptr = &mp->b_rptr[tcp_wroff_xtra];
20121 			mp->b_wptr = &rptr[len];
20122 		}
20123 
20124 		/*
20125 		 * Fill in the header using the template header, and add
20126 		 * options such as time-stamp, ECN and/or SACK, as needed.
20127 		 */
20128 		tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk);
20129 
20130 		mp->b_rptr = rptr;
20131 
20132 		if (*tail_unsent) {
20133 			int spill = *tail_unsent;
20134 
20135 			mp1 = mp->b_cont;
20136 			if (!mp1)
20137 				mp1 = mp;
20138 
20139 			/*
20140 			 * If we're a little short, tack on more mblks until
20141 			 * there is no more spillover.
20142 			 */
20143 			while (spill < 0) {
20144 				mblk_t *nmp;
20145 				int nmpsz;
20146 
20147 				nmp = (*xmit_tail)->b_cont;
20148 				nmpsz = MBLKL(nmp);
20149 
20150 				/*
20151 				 * Excess data in mblk; can we split it?
20152 				 * If MDT is enabled for the connection,
20153 				 * keep on splitting as this is a transient
20154 				 * send path.
20155 				 */
20156 				if (!tcp->tcp_mdt && (spill + nmpsz > 0)) {
20157 					/*
20158 					 * Don't split if stream head was
20159 					 * told to break up larger writes
20160 					 * into smaller ones.
20161 					 */
20162 					if (tcp->tcp_maxpsz > 0)
20163 						break;
20164 
20165 					/*
20166 					 * Next mblk is less than SMSS/2
20167 					 * rounded up to nearest 64-byte;
20168 					 * let it get sent as part of the
20169 					 * next segment.
20170 					 */
20171 					if (tcp->tcp_localnet &&
20172 					    !tcp->tcp_cork &&
20173 					    (nmpsz < roundup((mss >> 1), 64)))
20174 						break;
20175 				}
20176 
20177 				*xmit_tail = nmp;
20178 				ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX);
20179 				/* Stash for rtt use later */
20180 				(*xmit_tail)->b_prev = local_time;
20181 				(*xmit_tail)->b_next =
20182 				    (mblk_t *)(uintptr_t)(*snxt - len);
20183 				mp1->b_cont = dupb(*xmit_tail);
20184 				mp1 = mp1->b_cont;
20185 
20186 				spill += nmpsz;
20187 				if (mp1 == NULL) {
20188 					*tail_unsent = spill;
20189 					freemsg(mp);
20190 					return (-1);	/* out_of_mem */
20191 				}
20192 			}
20193 
20194 			/* Trim back any surplus on the last mblk */
20195 			if (spill >= 0) {
20196 				mp1->b_wptr -= spill;
20197 				*tail_unsent = spill;
20198 			} else {
20199 				/*
20200 				 * We did not send everything we could in
20201 				 * order to remain within the b_cont limit.
20202 				 */
20203 				*usable -= spill;
20204 				*snxt += spill;
20205 				tcp->tcp_last_sent_len += spill;
20206 				UPDATE_MIB(&tcp_mib, tcpOutDataBytes, spill);
20207 				/*
20208 				 * Adjust the checksum
20209 				 */
20210 				tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
20211 				sum += spill;
20212 				sum = (sum >> 16) + (sum & 0xFFFF);
20213 				U16_TO_ABE16(sum, tcph->th_sum);
20214 				if (tcp->tcp_ipversion == IPV4_VERSION) {
20215 					sum = ntohs(
20216 					    ((ipha_t *)rptr)->ipha_length) +
20217 					    spill;
20218 					((ipha_t *)rptr)->ipha_length =
20219 					    htons(sum);
20220 				} else {
20221 					sum = ntohs(
20222 					    ((ip6_t *)rptr)->ip6_plen) +
20223 					    spill;
20224 					((ip6_t *)rptr)->ip6_plen =
20225 					    htons(sum);
20226 				}
20227 				*tail_unsent = 0;
20228 			}
20229 		}
20230 		if (tcp->tcp_ip_forward_progress) {
20231 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
20232 			*(uint32_t *)mp->b_rptr  |= IP_FORWARD_PROG;
20233 			tcp->tcp_ip_forward_progress = B_FALSE;
20234 		}
20235 
20236 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
20237 		tcp_send_data(tcp, q, mp);
20238 		BUMP_LOCAL(tcp->tcp_obsegs);
20239 	}
20240 
20241 	return (0);
20242 }
20243 
20244 /* Unlink and return any mblk that looks like it contains a MDT info */
20245 static mblk_t *
20246 tcp_mdt_info_mp(mblk_t *mp)
20247 {
20248 	mblk_t	*prev_mp;
20249 
20250 	for (;;) {
20251 		prev_mp = mp;
20252 		/* no more to process? */
20253 		if ((mp = mp->b_cont) == NULL)
20254 			break;
20255 
20256 		switch (DB_TYPE(mp)) {
20257 		case M_CTL:
20258 			if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE)
20259 				continue;
20260 			ASSERT(prev_mp != NULL);
20261 			prev_mp->b_cont = mp->b_cont;
20262 			mp->b_cont = NULL;
20263 			return (mp);
20264 		default:
20265 			break;
20266 		}
20267 	}
20268 	return (mp);
20269 }
20270 
20271 /* MDT info update routine, called when IP notifies us about MDT */
20272 static void
20273 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first)
20274 {
20275 	boolean_t prev_state;
20276 
20277 	/*
20278 	 * IP is telling us to abort MDT on this connection?  We know
20279 	 * this because the capability is only turned off when IP
20280 	 * encounters some pathological cases, e.g. link-layer change
20281 	 * where the new driver doesn't support MDT, or in situation
20282 	 * where MDT usage on the link-layer has been switched off.
20283 	 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE
20284 	 * if the link-layer doesn't support MDT, and if it does, it
20285 	 * will indicate that the feature is to be turned on.
20286 	 */
20287 	prev_state = tcp->tcp_mdt;
20288 	tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0);
20289 	if (!tcp->tcp_mdt && !first) {
20290 		TCP_STAT(tcp_mdt_conn_halted3);
20291 		ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n",
20292 		    (void *)tcp->tcp_connp));
20293 	}
20294 
20295 	/*
20296 	 * We currently only support MDT on simple TCP/{IPv4,IPv6},
20297 	 * so disable MDT otherwise.  The checks are done here
20298 	 * and in tcp_wput_data().
20299 	 */
20300 	if (tcp->tcp_mdt &&
20301 	    (tcp->tcp_ipversion == IPV4_VERSION &&
20302 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
20303 	    (tcp->tcp_ipversion == IPV6_VERSION &&
20304 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN))
20305 		tcp->tcp_mdt = B_FALSE;
20306 
20307 	if (tcp->tcp_mdt) {
20308 		if (mdt_capab->ill_mdt_version != MDT_VERSION_2) {
20309 			cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT "
20310 			    "version (%d), expected version is %d",
20311 			    mdt_capab->ill_mdt_version, MDT_VERSION_2);
20312 			tcp->tcp_mdt = B_FALSE;
20313 			return;
20314 		}
20315 
20316 		/*
20317 		 * We need the driver to be able to handle at least three
20318 		 * spans per packet in order for tcp MDT to be utilized.
20319 		 * The first is for the header portion, while the rest are
20320 		 * needed to handle a packet that straddles across two
20321 		 * virtually non-contiguous buffers; a typical tcp packet
20322 		 * therefore consists of only two spans.  Note that we take
20323 		 * a zero as "don't care".
20324 		 */
20325 		if (mdt_capab->ill_mdt_span_limit > 0 &&
20326 		    mdt_capab->ill_mdt_span_limit < 3) {
20327 			tcp->tcp_mdt = B_FALSE;
20328 			return;
20329 		}
20330 
20331 		/* a zero means driver wants default value */
20332 		tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld,
20333 		    tcp_mdt_max_pbufs);
20334 		if (tcp->tcp_mdt_max_pld == 0)
20335 			tcp->tcp_mdt_max_pld = tcp_mdt_max_pbufs;
20336 
20337 		/* ensure 32-bit alignment */
20338 		tcp->tcp_mdt_hdr_head = roundup(MAX(tcp_mdt_hdr_head_min,
20339 		    mdt_capab->ill_mdt_hdr_head), 4);
20340 		tcp->tcp_mdt_hdr_tail = roundup(MAX(tcp_mdt_hdr_tail_min,
20341 		    mdt_capab->ill_mdt_hdr_tail), 4);
20342 
20343 		if (!first && !prev_state) {
20344 			TCP_STAT(tcp_mdt_conn_resumed2);
20345 			ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n",
20346 			    (void *)tcp->tcp_connp));
20347 		}
20348 	}
20349 }
20350 
20351 static void
20352 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_mdt)
20353 {
20354 	conn_t *connp = tcp->tcp_connp;
20355 
20356 	ASSERT(ire != NULL);
20357 
20358 	/*
20359 	 * We may be in the fastpath here, and although we essentially do
20360 	 * similar checks as in ip_bind_connected{_v6}/ip_mdinfo_return,
20361 	 * we try to keep things as brief as possible.  After all, these
20362 	 * are only best-effort checks, and we do more thorough ones prior
20363 	 * to calling tcp_multisend().
20364 	 */
20365 	if (ip_multidata_outbound && check_mdt &&
20366 	    !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) &&
20367 	    ill != NULL && ILL_MDT_CAPABLE(ill) &&
20368 	    !CONN_IPSEC_OUT_ENCAPSULATED(connp) &&
20369 	    !(ire->ire_flags & RTF_MULTIRT) &&
20370 	    !IPP_ENABLED(IPP_LOCAL_OUT) &&
20371 	    CONN_IS_MD_FASTPATH(connp)) {
20372 		/* Remember the result */
20373 		connp->conn_mdt_ok = B_TRUE;
20374 
20375 		ASSERT(ill->ill_mdt_capab != NULL);
20376 		if (!ill->ill_mdt_capab->ill_mdt_on) {
20377 			/*
20378 			 * If MDT has been previously turned off in the past,
20379 			 * and we currently can do MDT (due to IPQoS policy
20380 			 * removal, etc.) then enable it for this interface.
20381 			 */
20382 			ill->ill_mdt_capab->ill_mdt_on = 1;
20383 			ip1dbg(("tcp_ire_ill_check: connp %p enables MDT for "
20384 			    "interface %s\n", (void *)connp, ill->ill_name));
20385 		}
20386 		tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE);
20387 	}
20388 
20389 	/*
20390 	 * The goal is to reduce the number of generated tcp segments by
20391 	 * setting the maxpsz multiplier to 0; this will have an affect on
20392 	 * tcp_maxpsz_set().  With this behavior, tcp will pack more data
20393 	 * into each packet, up to SMSS bytes.  Doing this reduces the number
20394 	 * of outbound segments and incoming ACKs, thus allowing for better
20395 	 * network and system performance.  In contrast the legacy behavior
20396 	 * may result in sending less than SMSS size, because the last mblk
20397 	 * for some packets may have more data than needed to make up SMSS,
20398 	 * and the legacy code refused to "split" it.
20399 	 *
20400 	 * We apply the new behavior on following situations:
20401 	 *
20402 	 *   1) Loopback connections,
20403 	 *   2) Connections in which the remote peer is not on local subnet,
20404 	 *   3) Local subnet connections over the bge interface (see below).
20405 	 *
20406 	 * Ideally, we would like this behavior to apply for interfaces other
20407 	 * than bge.  However, doing so would negatively impact drivers which
20408 	 * perform dynamic mapping and unmapping of DMA resources, which are
20409 	 * increased by setting the maxpsz multiplier to 0 (more mblks per
20410 	 * packet will be generated by tcp).  The bge driver does not suffer
20411 	 * from this, as it copies the mblks into pre-mapped buffers, and
20412 	 * therefore does not require more I/O resources than before.
20413 	 *
20414 	 * Otherwise, this behavior is present on all network interfaces when
20415 	 * the destination endpoint is non-local, since reducing the number
20416 	 * of packets in general is good for the network.
20417 	 *
20418 	 * TODO We need to remove this hard-coded conditional for bge once
20419 	 *	a better "self-tuning" mechanism, or a way to comprehend
20420 	 *	the driver transmit strategy is devised.  Until the solution
20421 	 *	is found and well understood, we live with this hack.
20422 	 */
20423 	if (!tcp_static_maxpsz &&
20424 	    (tcp->tcp_loopback || !tcp->tcp_localnet ||
20425 	    (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) {
20426 		/* override the default value */
20427 		tcp->tcp_maxpsz = 0;
20428 
20429 		ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on "
20430 		    "interface %s\n", (void *)connp, tcp->tcp_maxpsz,
20431 		    ill != NULL ? ill->ill_name : ipif_loopback_name));
20432 	}
20433 
20434 	/* set the stream head parameters accordingly */
20435 	(void) tcp_maxpsz_set(tcp, B_TRUE);
20436 }
20437 
20438 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */
20439 static void
20440 tcp_wput_flush(tcp_t *tcp, mblk_t *mp)
20441 {
20442 	uchar_t	fval = *mp->b_rptr;
20443 	mblk_t	*tail;
20444 	queue_t	*q = tcp->tcp_wq;
20445 
20446 	/* TODO: How should flush interact with urgent data? */
20447 	if ((fval & FLUSHW) && tcp->tcp_xmit_head &&
20448 	    !(tcp->tcp_valid_bits & TCP_URG_VALID)) {
20449 		/*
20450 		 * Flush only data that has not yet been put on the wire.  If
20451 		 * we flush data that we have already transmitted, life, as we
20452 		 * know it, may come to an end.
20453 		 */
20454 		tail = tcp->tcp_xmit_tail;
20455 		tail->b_wptr -= tcp->tcp_xmit_tail_unsent;
20456 		tcp->tcp_xmit_tail_unsent = 0;
20457 		tcp->tcp_unsent = 0;
20458 		if (tail->b_wptr != tail->b_rptr)
20459 			tail = tail->b_cont;
20460 		if (tail) {
20461 			mblk_t **excess = &tcp->tcp_xmit_head;
20462 			for (;;) {
20463 				mblk_t *mp1 = *excess;
20464 				if (mp1 == tail)
20465 					break;
20466 				tcp->tcp_xmit_tail = mp1;
20467 				tcp->tcp_xmit_last = mp1;
20468 				excess = &mp1->b_cont;
20469 			}
20470 			*excess = NULL;
20471 			tcp_close_mpp(&tail);
20472 			if (tcp->tcp_snd_zcopy_aware)
20473 				tcp_zcopy_notify(tcp);
20474 		}
20475 		/*
20476 		 * We have no unsent data, so unsent must be less than
20477 		 * tcp_xmit_lowater, so re-enable flow.
20478 		 */
20479 		if (tcp->tcp_flow_stopped) {
20480 			tcp_clrqfull(tcp);
20481 		}
20482 	}
20483 	/*
20484 	 * TODO: you can't just flush these, you have to increase rwnd for one
20485 	 * thing.  For another, how should urgent data interact?
20486 	 */
20487 	if (fval & FLUSHR) {
20488 		*mp->b_rptr = fval & ~FLUSHW;
20489 		/* XXX */
20490 		qreply(q, mp);
20491 		return;
20492 	}
20493 	freemsg(mp);
20494 }
20495 
20496 /*
20497  * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA
20498  * messages.
20499  */
20500 static void
20501 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp)
20502 {
20503 	mblk_t	*mp1;
20504 	STRUCT_HANDLE(strbuf, sb);
20505 	uint16_t port;
20506 	queue_t 	*q = tcp->tcp_wq;
20507 	in6_addr_t	v6addr;
20508 	ipaddr_t	v4addr;
20509 	uint32_t	flowinfo = 0;
20510 	int		addrlen;
20511 
20512 	/* Make sure it is one of ours. */
20513 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
20514 	case TI_GETMYNAME:
20515 	case TI_GETPEERNAME:
20516 		break;
20517 	default:
20518 		CALL_IP_WPUT(tcp->tcp_connp, q, mp);
20519 		return;
20520 	}
20521 	switch (mi_copy_state(q, mp, &mp1)) {
20522 	case -1:
20523 		return;
20524 	case MI_COPY_CASE(MI_COPY_IN, 1):
20525 		break;
20526 	case MI_COPY_CASE(MI_COPY_OUT, 1):
20527 		/* Copy out the strbuf. */
20528 		mi_copyout(q, mp);
20529 		return;
20530 	case MI_COPY_CASE(MI_COPY_OUT, 2):
20531 		/* All done. */
20532 		mi_copy_done(q, mp, 0);
20533 		return;
20534 	default:
20535 		mi_copy_done(q, mp, EPROTO);
20536 		return;
20537 	}
20538 	/* Check alignment of the strbuf */
20539 	if (!OK_32PTR(mp1->b_rptr)) {
20540 		mi_copy_done(q, mp, EINVAL);
20541 		return;
20542 	}
20543 
20544 	STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag,
20545 	    (void *)mp1->b_rptr);
20546 	addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t);
20547 
20548 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
20549 		mi_copy_done(q, mp, EINVAL);
20550 		return;
20551 	}
20552 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
20553 	case TI_GETMYNAME:
20554 		if (tcp->tcp_family == AF_INET) {
20555 			if (tcp->tcp_ipversion == IPV4_VERSION) {
20556 				v4addr = tcp->tcp_ipha->ipha_src;
20557 			} else {
20558 				/* can't return an address in this case */
20559 				v4addr = 0;
20560 			}
20561 		} else {
20562 			/* tcp->tcp_family == AF_INET6 */
20563 			if (tcp->tcp_ipversion == IPV4_VERSION) {
20564 				IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
20565 				    &v6addr);
20566 			} else {
20567 				v6addr = tcp->tcp_ip6h->ip6_src;
20568 			}
20569 		}
20570 		port = tcp->tcp_lport;
20571 		break;
20572 	case TI_GETPEERNAME:
20573 		if (tcp->tcp_family == AF_INET) {
20574 			if (tcp->tcp_ipversion == IPV4_VERSION) {
20575 				IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6,
20576 				    v4addr);
20577 			} else {
20578 				/* can't return an address in this case */
20579 				v4addr = 0;
20580 			}
20581 		} else {
20582 			/* tcp->tcp_family == AF_INET6) */
20583 			v6addr = tcp->tcp_remote_v6;
20584 			if (tcp->tcp_ipversion == IPV6_VERSION) {
20585 				/*
20586 				 * No flowinfo if tcp->tcp_ipversion is v4.
20587 				 *
20588 				 * flowinfo was already initialized to zero
20589 				 * where it was declared above, so only
20590 				 * set it if ipversion is v6.
20591 				 */
20592 				flowinfo = tcp->tcp_ip6h->ip6_vcf &
20593 				    ~IPV6_VERS_AND_FLOW_MASK;
20594 			}
20595 		}
20596 		port = tcp->tcp_fport;
20597 		break;
20598 	default:
20599 		mi_copy_done(q, mp, EPROTO);
20600 		return;
20601 	}
20602 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
20603 	if (!mp1)
20604 		return;
20605 
20606 	if (tcp->tcp_family == AF_INET) {
20607 		sin_t *sin;
20608 
20609 		STRUCT_FSET(sb, len, (int)sizeof (sin_t));
20610 		sin = (sin_t *)mp1->b_rptr;
20611 		mp1->b_wptr = (uchar_t *)&sin[1];
20612 		*sin = sin_null;
20613 		sin->sin_family = AF_INET;
20614 		sin->sin_addr.s_addr = v4addr;
20615 		sin->sin_port = port;
20616 	} else {
20617 		/* tcp->tcp_family == AF_INET6 */
20618 		sin6_t *sin6;
20619 
20620 		STRUCT_FSET(sb, len, (int)sizeof (sin6_t));
20621 		sin6 = (sin6_t *)mp1->b_rptr;
20622 		mp1->b_wptr = (uchar_t *)&sin6[1];
20623 		*sin6 = sin6_null;
20624 		sin6->sin6_family = AF_INET6;
20625 		sin6->sin6_flowinfo = flowinfo;
20626 		sin6->sin6_addr = v6addr;
20627 		sin6->sin6_port = port;
20628 	}
20629 	/* Copy out the address */
20630 	mi_copyout(q, mp);
20631 }
20632 
20633 /*
20634  * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL
20635  * messages.
20636  */
20637 /* ARGSUSED */
20638 static void
20639 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2)
20640 {
20641 	conn_t 	*connp = (conn_t *)arg;
20642 	tcp_t	*tcp = connp->conn_tcp;
20643 	queue_t	*q = tcp->tcp_wq;
20644 	struct iocblk	*iocp;
20645 
20646 	ASSERT(DB_TYPE(mp) == M_IOCTL);
20647 	/*
20648 	 * Try and ASSERT the minimum possible references on the
20649 	 * conn early enough. Since we are executing on write side,
20650 	 * the connection is obviously not detached and that means
20651 	 * there is a ref each for TCP and IP. Since we are behind
20652 	 * the squeue, the minimum references needed are 3. If the
20653 	 * conn is in classifier hash list, there should be an
20654 	 * extra ref for that (we check both the possibilities).
20655 	 */
20656 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
20657 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
20658 
20659 	iocp = (struct iocblk *)mp->b_rptr;
20660 	switch (iocp->ioc_cmd) {
20661 	case TCP_IOC_DEFAULT_Q:
20662 		/* Wants to be the default wq. */
20663 		if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) {
20664 			iocp->ioc_error = EPERM;
20665 			iocp->ioc_count = 0;
20666 			mp->b_datap->db_type = M_IOCACK;
20667 			qreply(q, mp);
20668 			return;
20669 		}
20670 		tcp_def_q_set(tcp, mp);
20671 		return;
20672 	case _SIOCSOCKFALLBACK:
20673 		/*
20674 		 * Either sockmod is about to be popped and the socket
20675 		 * would now be treated as a plain stream, or a module
20676 		 * is about to be pushed so we could no longer use read-
20677 		 * side synchronous streams for fused loopback tcp.
20678 		 * Drain any queued data and disable direct sockfs
20679 		 * interface from now on.
20680 		 */
20681 		if (!tcp->tcp_issocket) {
20682 			DB_TYPE(mp) = M_IOCNAK;
20683 			iocp->ioc_error = EINVAL;
20684 		} else {
20685 #ifdef	_ILP32
20686 			tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
20687 #else
20688 			tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev;
20689 #endif
20690 			/*
20691 			 * Insert this socket into the acceptor hash.
20692 			 * We might need it for T_CONN_RES message
20693 			 */
20694 			tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
20695 
20696 			if (tcp->tcp_fused) {
20697 				/*
20698 				 * This is a fused loopback tcp; disable
20699 				 * read-side synchronous streams interface
20700 				 * and drain any queued data.  It is okay
20701 				 * to do this for non-synchronous streams
20702 				 * fused tcp as well.
20703 				 */
20704 				tcp_fuse_disable_pair(tcp, B_FALSE);
20705 			}
20706 			tcp->tcp_issocket = B_FALSE;
20707 			TCP_STAT(tcp_sock_fallback);
20708 
20709 			DB_TYPE(mp) = M_IOCACK;
20710 			iocp->ioc_error = 0;
20711 		}
20712 		iocp->ioc_count = 0;
20713 		iocp->ioc_rval = 0;
20714 		qreply(q, mp);
20715 		return;
20716 	}
20717 	CALL_IP_WPUT(connp, q, mp);
20718 }
20719 
20720 /*
20721  * This routine is called by tcp_wput() to handle all TPI requests.
20722  */
20723 /* ARGSUSED */
20724 static void
20725 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2)
20726 {
20727 	conn_t 	*connp = (conn_t *)arg;
20728 	tcp_t	*tcp = connp->conn_tcp;
20729 	union T_primitives *tprim = (union T_primitives *)mp->b_rptr;
20730 	uchar_t *rptr;
20731 	t_scalar_t type;
20732 	int len;
20733 	cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred);
20734 
20735 	/*
20736 	 * Try and ASSERT the minimum possible references on the
20737 	 * conn early enough. Since we are executing on write side,
20738 	 * the connection is obviously not detached and that means
20739 	 * there is a ref each for TCP and IP. Since we are behind
20740 	 * the squeue, the minimum references needed are 3. If the
20741 	 * conn is in classifier hash list, there should be an
20742 	 * extra ref for that (we check both the possibilities).
20743 	 */
20744 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
20745 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
20746 
20747 	rptr = mp->b_rptr;
20748 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
20749 	if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
20750 		type = ((union T_primitives *)rptr)->type;
20751 		if (type == T_EXDATA_REQ) {
20752 			uint32_t msize = msgdsize(mp->b_cont);
20753 
20754 			len = msize - 1;
20755 			if (len < 0) {
20756 				freemsg(mp);
20757 				return;
20758 			}
20759 			/*
20760 			 * Try to force urgent data out on the wire.
20761 			 * Even if we have unsent data this will
20762 			 * at least send the urgent flag.
20763 			 * XXX does not handle more flag correctly.
20764 			 */
20765 			len += tcp->tcp_unsent;
20766 			len += tcp->tcp_snxt;
20767 			tcp->tcp_urg = len;
20768 			tcp->tcp_valid_bits |= TCP_URG_VALID;
20769 
20770 			/* Bypass tcp protocol for fused tcp loopback */
20771 			if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
20772 				return;
20773 		} else if (type != T_DATA_REQ) {
20774 			goto non_urgent_data;
20775 		}
20776 		/* TODO: options, flags, ... from user */
20777 		/* Set length to zero for reclamation below */
20778 		tcp_wput_data(tcp, mp->b_cont, B_TRUE);
20779 		freeb(mp);
20780 		return;
20781 	} else {
20782 		if (tcp->tcp_debug) {
20783 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
20784 			    "tcp_wput_proto, dropping one...");
20785 		}
20786 		freemsg(mp);
20787 		return;
20788 	}
20789 
20790 non_urgent_data:
20791 
20792 	switch ((int)tprim->type) {
20793 	case T_SSL_PROXY_BIND_REQ:	/* an SSL proxy endpoint bind request */
20794 		/*
20795 		 * save the kssl_ent_t from the next block, and convert this
20796 		 * back to a normal bind_req.
20797 		 */
20798 		if (mp->b_cont != NULL) {
20799 		    ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t));
20800 
20801 			if (tcp->tcp_kssl_ent != NULL) {
20802 				kssl_release_ent(tcp->tcp_kssl_ent, NULL,
20803 				    KSSL_NO_PROXY);
20804 				tcp->tcp_kssl_ent = NULL;
20805 			}
20806 			bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent,
20807 			    sizeof (kssl_ent_t));
20808 			kssl_hold_ent(tcp->tcp_kssl_ent);
20809 			freemsg(mp->b_cont);
20810 			mp->b_cont = NULL;
20811 		}
20812 		tprim->type = T_BIND_REQ;
20813 
20814 	/* FALLTHROUGH */
20815 	case O_T_BIND_REQ:	/* bind request */
20816 	case T_BIND_REQ:	/* new semantics bind request */
20817 		tcp_bind(tcp, mp);
20818 		break;
20819 	case T_UNBIND_REQ:	/* unbind request */
20820 		tcp_unbind(tcp, mp);
20821 		break;
20822 	case O_T_CONN_RES:	/* old connection response XXX */
20823 	case T_CONN_RES:	/* connection response */
20824 		tcp_accept(tcp, mp);
20825 		break;
20826 	case T_CONN_REQ:	/* connection request */
20827 		tcp_connect(tcp, mp);
20828 		break;
20829 	case T_DISCON_REQ:	/* disconnect request */
20830 		tcp_disconnect(tcp, mp);
20831 		break;
20832 	case T_CAPABILITY_REQ:
20833 		tcp_capability_req(tcp, mp);	/* capability request */
20834 		break;
20835 	case T_INFO_REQ:	/* information request */
20836 		tcp_info_req(tcp, mp);
20837 		break;
20838 	case T_SVR4_OPTMGMT_REQ:	/* manage options req */
20839 		/* Only IP is allowed to return meaningful value */
20840 		(void) svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj);
20841 		break;
20842 	case T_OPTMGMT_REQ:
20843 		/*
20844 		 * Note:  no support for snmpcom_req() through new
20845 		 * T_OPTMGMT_REQ. See comments in ip.c
20846 		 */
20847 		/* Only IP is allowed to return meaningful value */
20848 		(void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj);
20849 		break;
20850 
20851 	case T_UNITDATA_REQ:	/* unitdata request */
20852 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
20853 		break;
20854 	case T_ORDREL_REQ:	/* orderly release req */
20855 		freemsg(mp);
20856 
20857 		if (tcp->tcp_fused)
20858 			tcp_unfuse(tcp);
20859 
20860 		if (tcp_xmit_end(tcp) != 0) {
20861 			/*
20862 			 * We were crossing FINs and got a reset from
20863 			 * the other side. Just ignore it.
20864 			 */
20865 			if (tcp->tcp_debug) {
20866 				(void) strlog(TCP_MOD_ID, 0, 1,
20867 				    SL_ERROR|SL_TRACE,
20868 				    "tcp_wput_proto, T_ORDREL_REQ out of "
20869 				    "state %s",
20870 				    tcp_display(tcp, NULL,
20871 				    DISP_ADDR_AND_PORT));
20872 			}
20873 		}
20874 		break;
20875 	case T_ADDR_REQ:
20876 		tcp_addr_req(tcp, mp);
20877 		break;
20878 	default:
20879 		if (tcp->tcp_debug) {
20880 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
20881 			    "tcp_wput_proto, bogus TPI msg, type %d",
20882 			    tprim->type);
20883 		}
20884 		/*
20885 		 * We used to M_ERROR.  Sending TNOTSUPPORT gives the user
20886 		 * to recover.
20887 		 */
20888 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
20889 		break;
20890 	}
20891 }
20892 
20893 /*
20894  * The TCP write service routine should never be called...
20895  */
20896 /* ARGSUSED */
20897 static void
20898 tcp_wsrv(queue_t *q)
20899 {
20900 	TCP_STAT(tcp_wsrv_called);
20901 }
20902 
20903 /* Non overlapping byte exchanger */
20904 static void
20905 tcp_xchg(uchar_t *a, uchar_t *b, int len)
20906 {
20907 	uchar_t	uch;
20908 
20909 	while (len-- > 0) {
20910 		uch = a[len];
20911 		a[len] = b[len];
20912 		b[len] = uch;
20913 	}
20914 }
20915 
20916 /*
20917  * Send out a control packet on the tcp connection specified.  This routine
20918  * is typically called where we need a simple ACK or RST generated.
20919  */
20920 static void
20921 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl)
20922 {
20923 	uchar_t		*rptr;
20924 	tcph_t		*tcph;
20925 	ipha_t		*ipha = NULL;
20926 	ip6_t		*ip6h = NULL;
20927 	uint32_t	sum;
20928 	int		tcp_hdr_len;
20929 	int		tcp_ip_hdr_len;
20930 	mblk_t		*mp;
20931 
20932 	/*
20933 	 * Save sum for use in source route later.
20934 	 */
20935 	ASSERT(tcp != NULL);
20936 	sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
20937 	tcp_hdr_len = tcp->tcp_hdr_len;
20938 	tcp_ip_hdr_len = tcp->tcp_ip_hdr_len;
20939 
20940 	/* If a text string is passed in with the request, pass it to strlog. */
20941 	if (str != NULL && tcp->tcp_debug) {
20942 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
20943 		    "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x",
20944 		    str, seq, ack, ctl);
20945 	}
20946 	mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra,
20947 	    BPRI_MED);
20948 	if (mp == NULL) {
20949 		return;
20950 	}
20951 	rptr = &mp->b_rptr[tcp_wroff_xtra];
20952 	mp->b_rptr = rptr;
20953 	mp->b_wptr = &rptr[tcp_hdr_len];
20954 	bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len);
20955 
20956 	if (tcp->tcp_ipversion == IPV4_VERSION) {
20957 		ipha = (ipha_t *)rptr;
20958 		ipha->ipha_length = htons(tcp_hdr_len);
20959 	} else {
20960 		ip6h = (ip6_t *)rptr;
20961 		ASSERT(tcp != NULL);
20962 		ip6h->ip6_plen = htons(tcp->tcp_hdr_len -
20963 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
20964 	}
20965 	tcph = (tcph_t *)&rptr[tcp_ip_hdr_len];
20966 	tcph->th_flags[0] = (uint8_t)ctl;
20967 	if (ctl & TH_RST) {
20968 		BUMP_MIB(&tcp_mib, tcpOutRsts);
20969 		BUMP_MIB(&tcp_mib, tcpOutControl);
20970 		/*
20971 		 * Don't send TSopt w/ TH_RST packets per RFC 1323.
20972 		 */
20973 		if (tcp->tcp_snd_ts_ok &&
20974 		    tcp->tcp_state > TCPS_SYN_SENT) {
20975 			mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN];
20976 			*(mp->b_wptr) = TCPOPT_EOL;
20977 			if (tcp->tcp_ipversion == IPV4_VERSION) {
20978 				ipha->ipha_length = htons(tcp_hdr_len -
20979 				    TCPOPT_REAL_TS_LEN);
20980 			} else {
20981 				ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) -
20982 				    TCPOPT_REAL_TS_LEN);
20983 			}
20984 			tcph->th_offset_and_rsrvd[0] -= (3 << 4);
20985 			sum -= TCPOPT_REAL_TS_LEN;
20986 		}
20987 	}
20988 	if (ctl & TH_ACK) {
20989 		if (tcp->tcp_snd_ts_ok) {
20990 			U32_TO_BE32(lbolt,
20991 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
20992 			U32_TO_BE32(tcp->tcp_ts_recent,
20993 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
20994 		}
20995 
20996 		/* Update the latest receive window size in TCP header. */
20997 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
20998 		    tcph->th_win);
20999 		tcp->tcp_rack = ack;
21000 		tcp->tcp_rack_cnt = 0;
21001 		BUMP_MIB(&tcp_mib, tcpOutAck);
21002 	}
21003 	BUMP_LOCAL(tcp->tcp_obsegs);
21004 	U32_TO_BE32(seq, tcph->th_seq);
21005 	U32_TO_BE32(ack, tcph->th_ack);
21006 	/*
21007 	 * Include the adjustment for a source route if any.
21008 	 */
21009 	sum = (sum >> 16) + (sum & 0xFFFF);
21010 	U16_TO_BE16(sum, tcph->th_sum);
21011 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
21012 	tcp_send_data(tcp, tcp->tcp_wq, mp);
21013 }
21014 
21015 /*
21016  * If this routine returns B_TRUE, TCP can generate a RST in response
21017  * to a segment.  If it returns B_FALSE, TCP should not respond.
21018  */
21019 static boolean_t
21020 tcp_send_rst_chk(void)
21021 {
21022 	clock_t	now;
21023 
21024 	/*
21025 	 * TCP needs to protect itself from generating too many RSTs.
21026 	 * This can be a DoS attack by sending us random segments
21027 	 * soliciting RSTs.
21028 	 *
21029 	 * What we do here is to have a limit of tcp_rst_sent_rate RSTs
21030 	 * in each 1 second interval.  In this way, TCP still generate
21031 	 * RSTs in normal cases but when under attack, the impact is
21032 	 * limited.
21033 	 */
21034 	if (tcp_rst_sent_rate_enabled != 0) {
21035 		now = lbolt;
21036 		/* lbolt can wrap around. */
21037 		if ((tcp_last_rst_intrvl > now) ||
21038 		    (TICK_TO_MSEC(now - tcp_last_rst_intrvl) > 1*SECONDS)) {
21039 			tcp_last_rst_intrvl = now;
21040 			tcp_rst_cnt = 1;
21041 		} else if (++tcp_rst_cnt > tcp_rst_sent_rate) {
21042 			return (B_FALSE);
21043 		}
21044 	}
21045 	return (B_TRUE);
21046 }
21047 
21048 /*
21049  * Send down the advice IP ioctl to tell IP to mark an IRE temporary.
21050  */
21051 static void
21052 tcp_ip_ire_mark_advice(tcp_t *tcp)
21053 {
21054 	mblk_t *mp;
21055 	ipic_t *ipic;
21056 
21057 	if (tcp->tcp_ipversion == IPV4_VERSION) {
21058 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
21059 		    &ipic);
21060 	} else {
21061 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
21062 		    &ipic);
21063 	}
21064 	if (mp == NULL)
21065 		return;
21066 	ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
21067 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
21068 }
21069 
21070 /*
21071  * Return an IP advice ioctl mblk and set ipic to be the pointer
21072  * to the advice structure.
21073  */
21074 static mblk_t *
21075 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic)
21076 {
21077 	struct iocblk *ioc;
21078 	mblk_t *mp, *mp1;
21079 
21080 	mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI);
21081 	if (mp == NULL)
21082 		return (NULL);
21083 	bzero(mp->b_rptr, sizeof (ipic_t) + addr_len);
21084 	*ipic = (ipic_t *)mp->b_rptr;
21085 	(*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY;
21086 	(*ipic)->ipic_addr_offset = sizeof (ipic_t);
21087 
21088 	bcopy(addr, *ipic + 1, addr_len);
21089 
21090 	(*ipic)->ipic_addr_length = addr_len;
21091 	mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len];
21092 
21093 	mp1 = mkiocb(IP_IOCTL);
21094 	if (mp1 == NULL) {
21095 		freemsg(mp);
21096 		return (NULL);
21097 	}
21098 	mp1->b_cont = mp;
21099 	ioc = (struct iocblk *)mp1->b_rptr;
21100 	ioc->ioc_count = sizeof (ipic_t) + addr_len;
21101 
21102 	return (mp1);
21103 }
21104 
21105 /*
21106  * Generate a reset based on an inbound packet for which there is no active
21107  * tcp state that we can find.
21108  *
21109  * IPSEC NOTE : Try to send the reply with the same protection as it came
21110  * in.  We still have the ipsec_mp that the packet was attached to. Thus
21111  * the packet will go out at the same level of protection as it came in by
21112  * converting the IPSEC_IN to IPSEC_OUT.
21113  */
21114 static void
21115 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq,
21116     uint32_t ack, int ctl, uint_t ip_hdr_len)
21117 {
21118 	ipha_t		*ipha = NULL;
21119 	ip6_t		*ip6h = NULL;
21120 	ushort_t	len;
21121 	tcph_t		*tcph;
21122 	int		i;
21123 	mblk_t		*ipsec_mp;
21124 	boolean_t	mctl_present;
21125 	ipic_t		*ipic;
21126 	ipaddr_t	v4addr;
21127 	in6_addr_t	v6addr;
21128 	int		addr_len;
21129 	void		*addr;
21130 	queue_t		*q = tcp_g_q;
21131 	tcp_t		*tcp = Q_TO_TCP(q);
21132 
21133 	if (!tcp_send_rst_chk()) {
21134 		tcp_rst_unsent++;
21135 		freemsg(mp);
21136 		return;
21137 	}
21138 
21139 	if (mp->b_datap->db_type == M_CTL) {
21140 		ipsec_mp = mp;
21141 		mp = mp->b_cont;
21142 		mctl_present = B_TRUE;
21143 	} else {
21144 		ipsec_mp = mp;
21145 		mctl_present = B_FALSE;
21146 	}
21147 
21148 	if (str && q && tcp_dbg) {
21149 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
21150 		    "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, "
21151 		    "flags 0x%x",
21152 		    str, seq, ack, ctl);
21153 	}
21154 	if (mp->b_datap->db_ref != 1) {
21155 		mblk_t *mp1 = copyb(mp);
21156 		freemsg(mp);
21157 		mp = mp1;
21158 		if (!mp) {
21159 			if (mctl_present)
21160 				freeb(ipsec_mp);
21161 			return;
21162 		} else {
21163 			if (mctl_present) {
21164 				ipsec_mp->b_cont = mp;
21165 			} else {
21166 				ipsec_mp = mp;
21167 			}
21168 		}
21169 	} else if (mp->b_cont) {
21170 		freemsg(mp->b_cont);
21171 		mp->b_cont = NULL;
21172 	}
21173 	/*
21174 	 * We skip reversing source route here.
21175 	 * (for now we replace all IP options with EOL)
21176 	 */
21177 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
21178 		ipha = (ipha_t *)mp->b_rptr;
21179 		for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++)
21180 			mp->b_rptr[i] = IPOPT_EOL;
21181 		/*
21182 		 * Make sure that src address isn't flagrantly invalid.
21183 		 * Not all broadcast address checking for the src address
21184 		 * is possible, since we don't know the netmask of the src
21185 		 * addr.  No check for destination address is done, since
21186 		 * IP will not pass up a packet with a broadcast dest
21187 		 * address to TCP.  Similar checks are done below for IPv6.
21188 		 */
21189 		if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST ||
21190 		    CLASSD(ipha->ipha_src)) {
21191 			freemsg(ipsec_mp);
21192 			BUMP_MIB(&ip_mib, ipInDiscards);
21193 			return;
21194 		}
21195 	} else {
21196 		ip6h = (ip6_t *)mp->b_rptr;
21197 
21198 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) ||
21199 		    IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) {
21200 			freemsg(ipsec_mp);
21201 			BUMP_MIB(&ip6_mib, ipv6InDiscards);
21202 			return;
21203 		}
21204 
21205 		/* Remove any extension headers assuming partial overlay */
21206 		if (ip_hdr_len > IPV6_HDR_LEN) {
21207 			uint8_t *to;
21208 
21209 			to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN;
21210 			ovbcopy(ip6h, to, IPV6_HDR_LEN);
21211 			mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN;
21212 			ip_hdr_len = IPV6_HDR_LEN;
21213 			ip6h = (ip6_t *)mp->b_rptr;
21214 			ip6h->ip6_nxt = IPPROTO_TCP;
21215 		}
21216 	}
21217 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
21218 	if (tcph->th_flags[0] & TH_RST) {
21219 		freemsg(ipsec_mp);
21220 		return;
21221 	}
21222 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
21223 	len = ip_hdr_len + sizeof (tcph_t);
21224 	mp->b_wptr = &mp->b_rptr[len];
21225 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
21226 		ipha->ipha_length = htons(len);
21227 		/* Swap addresses */
21228 		v4addr = ipha->ipha_src;
21229 		ipha->ipha_src = ipha->ipha_dst;
21230 		ipha->ipha_dst = v4addr;
21231 		ipha->ipha_ident = 0;
21232 		ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl;
21233 		addr_len = IP_ADDR_LEN;
21234 		addr = &v4addr;
21235 	} else {
21236 		/* No ip6i_t in this case */
21237 		ip6h->ip6_plen = htons(len - IPV6_HDR_LEN);
21238 		/* Swap addresses */
21239 		v6addr = ip6h->ip6_src;
21240 		ip6h->ip6_src = ip6h->ip6_dst;
21241 		ip6h->ip6_dst = v6addr;
21242 		ip6h->ip6_hops = (uchar_t)tcp_ipv6_hoplimit;
21243 		addr_len = IPV6_ADDR_LEN;
21244 		addr = &v6addr;
21245 	}
21246 	tcp_xchg(tcph->th_fport, tcph->th_lport, 2);
21247 	U32_TO_BE32(ack, tcph->th_ack);
21248 	U32_TO_BE32(seq, tcph->th_seq);
21249 	U16_TO_BE16(0, tcph->th_win);
21250 	U16_TO_BE16(sizeof (tcph_t), tcph->th_sum);
21251 	tcph->th_flags[0] = (uint8_t)ctl;
21252 	if (ctl & TH_RST) {
21253 		BUMP_MIB(&tcp_mib, tcpOutRsts);
21254 		BUMP_MIB(&tcp_mib, tcpOutControl);
21255 	}
21256 	if (mctl_present) {
21257 		ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
21258 
21259 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
21260 		if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) {
21261 			return;
21262 		}
21263 	}
21264 	/*
21265 	 * NOTE:  one might consider tracing a TCP packet here, but
21266 	 * this function has no active TCP state nd no tcp structure
21267 	 * which has trace buffer.  If we traced here, we would have
21268 	 * to keep a local trace buffer in tcp_record_trace().
21269 	 */
21270 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp);
21271 
21272 	/*
21273 	 * Tell IP to mark the IRE used for this destination temporary.
21274 	 * This way, we can limit our exposure to DoS attack because IP
21275 	 * creates an IRE for each destination.  If there are too many,
21276 	 * the time to do any routing lookup will be extremely long.  And
21277 	 * the lookup can be in interrupt context.
21278 	 *
21279 	 * Note that in normal circumstances, this marking should not
21280 	 * affect anything.  It would be nice if only 1 message is
21281 	 * needed to inform IP that the IRE created for this RST should
21282 	 * not be added to the cache table.  But there is currently
21283 	 * not such communication mechanism between TCP and IP.  So
21284 	 * the best we can do now is to send the advice ioctl to IP
21285 	 * to mark the IRE temporary.
21286 	 */
21287 	if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) {
21288 		ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
21289 		CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
21290 	}
21291 }
21292 
21293 /*
21294  * Initiate closedown sequence on an active connection.  (May be called as
21295  * writer.)  Return value zero for OK return, non-zero for error return.
21296  */
21297 static int
21298 tcp_xmit_end(tcp_t *tcp)
21299 {
21300 	ipic_t	*ipic;
21301 	mblk_t	*mp;
21302 
21303 	if (tcp->tcp_state < TCPS_SYN_RCVD ||
21304 	    tcp->tcp_state > TCPS_CLOSE_WAIT) {
21305 		/*
21306 		 * Invalid state, only states TCPS_SYN_RCVD,
21307 		 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid
21308 		 */
21309 		return (-1);
21310 	}
21311 
21312 	tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent;
21313 	tcp->tcp_valid_bits |= TCP_FSS_VALID;
21314 	/*
21315 	 * If there is nothing more unsent, send the FIN now.
21316 	 * Otherwise, it will go out with the last segment.
21317 	 */
21318 	if (tcp->tcp_unsent == 0) {
21319 		mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
21320 		    tcp->tcp_fss, B_FALSE, NULL, B_FALSE);
21321 
21322 		if (mp) {
21323 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
21324 			tcp_send_data(tcp, tcp->tcp_wq, mp);
21325 		} else {
21326 			/*
21327 			 * Couldn't allocate msg.  Pretend we got it out.
21328 			 * Wait for rexmit timeout.
21329 			 */
21330 			tcp->tcp_snxt = tcp->tcp_fss + 1;
21331 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
21332 		}
21333 
21334 		/*
21335 		 * If needed, update tcp_rexmit_snxt as tcp_snxt is
21336 		 * changed.
21337 		 */
21338 		if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) {
21339 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
21340 		}
21341 	} else {
21342 		/*
21343 		 * If tcp->tcp_cork is set, then the data will not get sent,
21344 		 * so we have to check that and unset it first.
21345 		 */
21346 		if (tcp->tcp_cork)
21347 			tcp->tcp_cork = B_FALSE;
21348 		tcp_wput_data(tcp, NULL, B_FALSE);
21349 	}
21350 
21351 	/*
21352 	 * If TCP does not get enough samples of RTT or tcp_rtt_updates
21353 	 * is 0, don't update the cache.
21354 	 */
21355 	if (tcp_rtt_updates == 0 || tcp->tcp_rtt_update < tcp_rtt_updates)
21356 		return (0);
21357 
21358 	/*
21359 	 * NOTE: should not update if source routes i.e. if tcp_remote if
21360 	 * different from the destination.
21361 	 */
21362 	if (tcp->tcp_ipversion == IPV4_VERSION) {
21363 		if (tcp->tcp_remote !=  tcp->tcp_ipha->ipha_dst) {
21364 			return (0);
21365 		}
21366 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
21367 		    &ipic);
21368 	} else {
21369 		if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
21370 		    &tcp->tcp_ip6h->ip6_dst))) {
21371 			return (0);
21372 		}
21373 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
21374 		    &ipic);
21375 	}
21376 
21377 	/* Record route attributes in the IRE for use by future connections. */
21378 	if (mp == NULL)
21379 		return (0);
21380 
21381 	/*
21382 	 * We do not have a good algorithm to update ssthresh at this time.
21383 	 * So don't do any update.
21384 	 */
21385 	ipic->ipic_rtt = tcp->tcp_rtt_sa;
21386 	ipic->ipic_rtt_sd = tcp->tcp_rtt_sd;
21387 
21388 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
21389 	return (0);
21390 }
21391 
21392 /*
21393  * Generate a "no listener here" RST in response to an "unknown" segment.
21394  * Note that we are reusing the incoming mp to construct the outgoing
21395  * RST.
21396  */
21397 void
21398 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len)
21399 {
21400 	uchar_t		*rptr;
21401 	uint32_t	seg_len;
21402 	tcph_t		*tcph;
21403 	uint32_t	seg_seq;
21404 	uint32_t	seg_ack;
21405 	uint_t		flags;
21406 	mblk_t		*ipsec_mp;
21407 	ipha_t 		*ipha;
21408 	ip6_t 		*ip6h;
21409 	boolean_t	mctl_present = B_FALSE;
21410 	boolean_t	check = B_TRUE;
21411 	boolean_t	policy_present;
21412 
21413 	TCP_STAT(tcp_no_listener);
21414 
21415 	ipsec_mp = mp;
21416 
21417 	if (mp->b_datap->db_type == M_CTL) {
21418 		ipsec_in_t *ii;
21419 
21420 		mctl_present = B_TRUE;
21421 		mp = mp->b_cont;
21422 
21423 		ii = (ipsec_in_t *)ipsec_mp->b_rptr;
21424 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
21425 		if (ii->ipsec_in_dont_check) {
21426 			check = B_FALSE;
21427 			if (!ii->ipsec_in_secure) {
21428 				freeb(ipsec_mp);
21429 				mctl_present = B_FALSE;
21430 				ipsec_mp = mp;
21431 			}
21432 		}
21433 	}
21434 
21435 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
21436 		policy_present = ipsec_inbound_v4_policy_present;
21437 		ipha = (ipha_t *)mp->b_rptr;
21438 		ip6h = NULL;
21439 	} else {
21440 		policy_present = ipsec_inbound_v6_policy_present;
21441 		ipha = NULL;
21442 		ip6h = (ip6_t *)mp->b_rptr;
21443 	}
21444 
21445 	if (check && policy_present) {
21446 		/*
21447 		 * The conn_t parameter is NULL because we already know
21448 		 * nobody's home.
21449 		 */
21450 		ipsec_mp = ipsec_check_global_policy(
21451 			ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present);
21452 		if (ipsec_mp == NULL)
21453 			return;
21454 	}
21455 
21456 
21457 	rptr = mp->b_rptr;
21458 
21459 	tcph = (tcph_t *)&rptr[ip_hdr_len];
21460 	seg_seq = BE32_TO_U32(tcph->th_seq);
21461 	seg_ack = BE32_TO_U32(tcph->th_ack);
21462 	flags = tcph->th_flags[0];
21463 
21464 	seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len);
21465 	if (flags & TH_RST) {
21466 		freemsg(ipsec_mp);
21467 	} else if (flags & TH_ACK) {
21468 		tcp_xmit_early_reset("no tcp, reset",
21469 		    ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len);
21470 	} else {
21471 		if (flags & TH_SYN) {
21472 			seg_len++;
21473 		} else {
21474 			/*
21475 			 * Here we violate the RFC.  Note that a normal
21476 			 * TCP will never send a segment without the ACK
21477 			 * flag, except for RST or SYN segment.  This
21478 			 * segment is neither.  Just drop it on the
21479 			 * floor.
21480 			 */
21481 			freemsg(ipsec_mp);
21482 			tcp_rst_unsent++;
21483 			return;
21484 		}
21485 
21486 		tcp_xmit_early_reset("no tcp, reset/ack",
21487 		    ipsec_mp, 0, seg_seq + seg_len,
21488 		    TH_RST | TH_ACK, ip_hdr_len);
21489 	}
21490 }
21491 
21492 /*
21493  * tcp_xmit_mp is called to return a pointer to an mblk chain complete with
21494  * ip and tcp header ready to pass down to IP.  If the mp passed in is
21495  * non-NULL, then up to max_to_send bytes of data will be dup'ed off that
21496  * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary
21497  * otherwise it will dup partial mblks.)
21498  * Otherwise, an appropriate ACK packet will be generated.  This
21499  * routine is not usually called to send new data for the first time.  It
21500  * is mostly called out of the timer for retransmits, and to generate ACKs.
21501  *
21502  * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will
21503  * be adjusted by *offset.  And after dupb(), the offset and the ending mblk
21504  * of the original mblk chain will be returned in *offset and *end_mp.
21505  */
21506 static mblk_t *
21507 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset,
21508     mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len,
21509     boolean_t rexmit)
21510 {
21511 	int	data_length;
21512 	int32_t	off = 0;
21513 	uint_t	flags;
21514 	mblk_t	*mp1;
21515 	mblk_t	*mp2;
21516 	uchar_t	*rptr;
21517 	tcph_t	*tcph;
21518 	int32_t	num_sack_blk = 0;
21519 	int32_t	sack_opt_len = 0;
21520 
21521 	/* Allocate for our maximum TCP header + link-level */
21522 	mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra,
21523 	    BPRI_MED);
21524 	if (!mp1)
21525 		return (NULL);
21526 	data_length = 0;
21527 
21528 	/*
21529 	 * Note that tcp_mss has been adjusted to take into account the
21530 	 * timestamp option if applicable.  Because SACK options do not
21531 	 * appear in every TCP segments and they are of variable lengths,
21532 	 * they cannot be included in tcp_mss.  Thus we need to calculate
21533 	 * the actual segment length when we need to send a segment which
21534 	 * includes SACK options.
21535 	 */
21536 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
21537 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
21538 		    tcp->tcp_num_sack_blk);
21539 		sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
21540 		    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
21541 		if (max_to_send + sack_opt_len > tcp->tcp_mss)
21542 			max_to_send -= sack_opt_len;
21543 	}
21544 
21545 	if (offset != NULL) {
21546 		off = *offset;
21547 		/* We use offset as an indicator that end_mp is not NULL. */
21548 		*end_mp = NULL;
21549 	}
21550 	for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) {
21551 		/* This could be faster with cooperation from downstream */
21552 		if (mp2 != mp1 && !sendall &&
21553 		    data_length + (int)(mp->b_wptr - mp->b_rptr) >
21554 		    max_to_send)
21555 			/*
21556 			 * Don't send the next mblk since the whole mblk
21557 			 * does not fit.
21558 			 */
21559 			break;
21560 		mp2->b_cont = dupb(mp);
21561 		mp2 = mp2->b_cont;
21562 		if (!mp2) {
21563 			freemsg(mp1);
21564 			return (NULL);
21565 		}
21566 		mp2->b_rptr += off;
21567 		ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
21568 		    (uintptr_t)INT_MAX);
21569 
21570 		data_length += (int)(mp2->b_wptr - mp2->b_rptr);
21571 		if (data_length > max_to_send) {
21572 			mp2->b_wptr -= data_length - max_to_send;
21573 			data_length = max_to_send;
21574 			off = mp2->b_wptr - mp->b_rptr;
21575 			break;
21576 		} else {
21577 			off = 0;
21578 		}
21579 	}
21580 	if (offset != NULL) {
21581 		*offset = off;
21582 		*end_mp = mp;
21583 	}
21584 	if (seg_len != NULL) {
21585 		*seg_len = data_length;
21586 	}
21587 
21588 	/* Update the latest receive window size in TCP header. */
21589 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
21590 	    tcp->tcp_tcph->th_win);
21591 
21592 	rptr = mp1->b_rptr + tcp_wroff_xtra;
21593 	mp1->b_rptr = rptr;
21594 	mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len;
21595 	bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
21596 	tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
21597 	U32_TO_ABE32(seq, tcph->th_seq);
21598 
21599 	/*
21600 	 * Use tcp_unsent to determine if the PUSH bit should be used assumes
21601 	 * that this function was called from tcp_wput_data. Thus, when called
21602 	 * to retransmit data the setting of the PUSH bit may appear some
21603 	 * what random in that it might get set when it should not. This
21604 	 * should not pose any performance issues.
21605 	 */
21606 	if (data_length != 0 && (tcp->tcp_unsent == 0 ||
21607 	    tcp->tcp_unsent == data_length)) {
21608 		flags = TH_ACK | TH_PUSH;
21609 	} else {
21610 		flags = TH_ACK;
21611 	}
21612 
21613 	if (tcp->tcp_ecn_ok) {
21614 		if (tcp->tcp_ecn_echo_on)
21615 			flags |= TH_ECE;
21616 
21617 		/*
21618 		 * Only set ECT bit and ECN_CWR if a segment contains new data.
21619 		 * There is no TCP flow control for non-data segments, and
21620 		 * only data segment is transmitted reliably.
21621 		 */
21622 		if (data_length > 0 && !rexmit) {
21623 			SET_ECT(tcp, rptr);
21624 			if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
21625 				flags |= TH_CWR;
21626 				tcp->tcp_ecn_cwr_sent = B_TRUE;
21627 			}
21628 		}
21629 	}
21630 
21631 	if (tcp->tcp_valid_bits) {
21632 		uint32_t u1;
21633 
21634 		if ((tcp->tcp_valid_bits & TCP_ISS_VALID) &&
21635 		    seq == tcp->tcp_iss) {
21636 			uchar_t	*wptr;
21637 
21638 			/*
21639 			 * If TCP_ISS_VALID and the seq number is tcp_iss,
21640 			 * TCP can only be in SYN-SENT, SYN-RCVD or
21641 			 * FIN-WAIT-1 state.  It can be FIN-WAIT-1 if
21642 			 * our SYN is not ack'ed but the app closes this
21643 			 * TCP connection.
21644 			 */
21645 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT ||
21646 			    tcp->tcp_state == TCPS_SYN_RCVD ||
21647 			    tcp->tcp_state == TCPS_FIN_WAIT_1);
21648 
21649 			/*
21650 			 * Tack on the MSS option.  It is always needed
21651 			 * for both active and passive open.
21652 			 *
21653 			 * MSS option value should be interface MTU - MIN
21654 			 * TCP/IP header according to RFC 793 as it means
21655 			 * the maximum segment size TCP can receive.  But
21656 			 * to get around some broken middle boxes/end hosts
21657 			 * out there, we allow the option value to be the
21658 			 * same as the MSS option size on the peer side.
21659 			 * In this way, the other side will not send
21660 			 * anything larger than they can receive.
21661 			 *
21662 			 * Note that for SYN_SENT state, the ndd param
21663 			 * tcp_use_smss_as_mss_opt has no effect as we
21664 			 * don't know the peer's MSS option value. So
21665 			 * the only case we need to take care of is in
21666 			 * SYN_RCVD state, which is done later.
21667 			 */
21668 			wptr = mp1->b_wptr;
21669 			wptr[0] = TCPOPT_MAXSEG;
21670 			wptr[1] = TCPOPT_MAXSEG_LEN;
21671 			wptr += 2;
21672 			u1 = tcp->tcp_if_mtu -
21673 			    (tcp->tcp_ipversion == IPV4_VERSION ?
21674 			    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) -
21675 			    TCP_MIN_HEADER_LENGTH;
21676 			U16_TO_BE16(u1, wptr);
21677 			mp1->b_wptr = wptr + 2;
21678 			/* Update the offset to cover the additional word */
21679 			tcph->th_offset_and_rsrvd[0] += (1 << 4);
21680 
21681 			/*
21682 			 * Note that the following way of filling in
21683 			 * TCP options are not optimal.  Some NOPs can
21684 			 * be saved.  But there is no need at this time
21685 			 * to optimize it.  When it is needed, we will
21686 			 * do it.
21687 			 */
21688 			switch (tcp->tcp_state) {
21689 			case TCPS_SYN_SENT:
21690 				flags = TH_SYN;
21691 
21692 				if (tcp->tcp_snd_ts_ok) {
21693 					uint32_t llbolt = (uint32_t)lbolt;
21694 
21695 					wptr = mp1->b_wptr;
21696 					wptr[0] = TCPOPT_NOP;
21697 					wptr[1] = TCPOPT_NOP;
21698 					wptr[2] = TCPOPT_TSTAMP;
21699 					wptr[3] = TCPOPT_TSTAMP_LEN;
21700 					wptr += 4;
21701 					U32_TO_BE32(llbolt, wptr);
21702 					wptr += 4;
21703 					ASSERT(tcp->tcp_ts_recent == 0);
21704 					U32_TO_BE32(0L, wptr);
21705 					mp1->b_wptr += TCPOPT_REAL_TS_LEN;
21706 					tcph->th_offset_and_rsrvd[0] +=
21707 					    (3 << 4);
21708 				}
21709 
21710 				/*
21711 				 * Set up all the bits to tell other side
21712 				 * we are ECN capable.
21713 				 */
21714 				if (tcp->tcp_ecn_ok) {
21715 					flags |= (TH_ECE | TH_CWR);
21716 				}
21717 				break;
21718 			case TCPS_SYN_RCVD:
21719 				flags |= TH_SYN;
21720 
21721 				/*
21722 				 * Reset the MSS option value to be SMSS
21723 				 * We should probably add back the bytes
21724 				 * for timestamp option and IPsec.  We
21725 				 * don't do that as this is a workaround
21726 				 * for broken middle boxes/end hosts, it
21727 				 * is better for us to be more cautious.
21728 				 * They may not take these things into
21729 				 * account in their SMSS calculation.  Thus
21730 				 * the peer's calculated SMSS may be smaller
21731 				 * than what it can be.  This should be OK.
21732 				 */
21733 				if (tcp_use_smss_as_mss_opt) {
21734 					u1 = tcp->tcp_mss;
21735 					U16_TO_BE16(u1, wptr);
21736 				}
21737 
21738 				/*
21739 				 * If the other side is ECN capable, reply
21740 				 * that we are also ECN capable.
21741 				 */
21742 				if (tcp->tcp_ecn_ok)
21743 					flags |= TH_ECE;
21744 				break;
21745 			default:
21746 				/*
21747 				 * The above ASSERT() makes sure that this
21748 				 * must be FIN-WAIT-1 state.  Our SYN has
21749 				 * not been ack'ed so retransmit it.
21750 				 */
21751 				flags |= TH_SYN;
21752 				break;
21753 			}
21754 
21755 			if (tcp->tcp_snd_ws_ok) {
21756 				wptr = mp1->b_wptr;
21757 				wptr[0] =  TCPOPT_NOP;
21758 				wptr[1] =  TCPOPT_WSCALE;
21759 				wptr[2] =  TCPOPT_WS_LEN;
21760 				wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
21761 				mp1->b_wptr += TCPOPT_REAL_WS_LEN;
21762 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
21763 			}
21764 
21765 			if (tcp->tcp_snd_sack_ok) {
21766 				wptr = mp1->b_wptr;
21767 				wptr[0] = TCPOPT_NOP;
21768 				wptr[1] = TCPOPT_NOP;
21769 				wptr[2] = TCPOPT_SACK_PERMITTED;
21770 				wptr[3] = TCPOPT_SACK_OK_LEN;
21771 				mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
21772 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
21773 			}
21774 
21775 			/* allocb() of adequate mblk assures space */
21776 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
21777 			    (uintptr_t)INT_MAX);
21778 			u1 = (int)(mp1->b_wptr - mp1->b_rptr);
21779 			/*
21780 			 * Get IP set to checksum on our behalf
21781 			 * Include the adjustment for a source route if any.
21782 			 */
21783 			u1 += tcp->tcp_sum;
21784 			u1 = (u1 >> 16) + (u1 & 0xFFFF);
21785 			U16_TO_BE16(u1, tcph->th_sum);
21786 			BUMP_MIB(&tcp_mib, tcpOutControl);
21787 		}
21788 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
21789 		    (seq + data_length) == tcp->tcp_fss) {
21790 			if (!tcp->tcp_fin_acked) {
21791 				flags |= TH_FIN;
21792 				BUMP_MIB(&tcp_mib, tcpOutControl);
21793 			}
21794 			if (!tcp->tcp_fin_sent) {
21795 				tcp->tcp_fin_sent = B_TRUE;
21796 				switch (tcp->tcp_state) {
21797 				case TCPS_SYN_RCVD:
21798 				case TCPS_ESTABLISHED:
21799 					tcp->tcp_state = TCPS_FIN_WAIT_1;
21800 					break;
21801 				case TCPS_CLOSE_WAIT:
21802 					tcp->tcp_state = TCPS_LAST_ACK;
21803 					break;
21804 				}
21805 				if (tcp->tcp_suna == tcp->tcp_snxt)
21806 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
21807 				tcp->tcp_snxt = tcp->tcp_fss + 1;
21808 			}
21809 		}
21810 		/*
21811 		 * Note the trick here.  u1 is unsigned.  When tcp_urg
21812 		 * is smaller than seq, u1 will become a very huge value.
21813 		 * So the comparison will fail.  Also note that tcp_urp
21814 		 * should be positive, see RFC 793 page 17.
21815 		 */
21816 		u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION;
21817 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 &&
21818 		    u1 < (uint32_t)(64 * 1024)) {
21819 			flags |= TH_URG;
21820 			BUMP_MIB(&tcp_mib, tcpOutUrg);
21821 			U32_TO_ABE16(u1, tcph->th_urp);
21822 		}
21823 	}
21824 	tcph->th_flags[0] = (uchar_t)flags;
21825 	tcp->tcp_rack = tcp->tcp_rnxt;
21826 	tcp->tcp_rack_cnt = 0;
21827 
21828 	if (tcp->tcp_snd_ts_ok) {
21829 		if (tcp->tcp_state != TCPS_SYN_SENT) {
21830 			uint32_t llbolt = (uint32_t)lbolt;
21831 
21832 			U32_TO_BE32(llbolt,
21833 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
21834 			U32_TO_BE32(tcp->tcp_ts_recent,
21835 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
21836 		}
21837 	}
21838 
21839 	if (num_sack_blk > 0) {
21840 		uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
21841 		sack_blk_t *tmp;
21842 		int32_t	i;
21843 
21844 		wptr[0] = TCPOPT_NOP;
21845 		wptr[1] = TCPOPT_NOP;
21846 		wptr[2] = TCPOPT_SACK;
21847 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
21848 		    sizeof (sack_blk_t);
21849 		wptr += TCPOPT_REAL_SACK_LEN;
21850 
21851 		tmp = tcp->tcp_sack_list;
21852 		for (i = 0; i < num_sack_blk; i++) {
21853 			U32_TO_BE32(tmp[i].begin, wptr);
21854 			wptr += sizeof (tcp_seq);
21855 			U32_TO_BE32(tmp[i].end, wptr);
21856 			wptr += sizeof (tcp_seq);
21857 		}
21858 		tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4);
21859 	}
21860 	ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX);
21861 	data_length += (int)(mp1->b_wptr - rptr);
21862 	if (tcp->tcp_ipversion == IPV4_VERSION) {
21863 		((ipha_t *)rptr)->ipha_length = htons(data_length);
21864 	} else {
21865 		ip6_t *ip6 = (ip6_t *)(rptr +
21866 		    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
21867 		    sizeof (ip6i_t) : 0));
21868 
21869 		ip6->ip6_plen = htons(data_length -
21870 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
21871 	}
21872 
21873 	/*
21874 	 * Prime pump for IP
21875 	 * Include the adjustment for a source route if any.
21876 	 */
21877 	data_length -= tcp->tcp_ip_hdr_len;
21878 	data_length += tcp->tcp_sum;
21879 	data_length = (data_length >> 16) + (data_length & 0xFFFF);
21880 	U16_TO_ABE16(data_length, tcph->th_sum);
21881 	if (tcp->tcp_ip_forward_progress) {
21882 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
21883 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
21884 		tcp->tcp_ip_forward_progress = B_FALSE;
21885 	}
21886 	return (mp1);
21887 }
21888 
21889 /* This function handles the push timeout. */
21890 void
21891 tcp_push_timer(void *arg)
21892 {
21893 	conn_t	*connp = (conn_t *)arg;
21894 	tcp_t *tcp = connp->conn_tcp;
21895 
21896 	TCP_DBGSTAT(tcp_push_timer_cnt);
21897 
21898 	ASSERT(tcp->tcp_listener == NULL);
21899 
21900 	/*
21901 	 * We need to stop synchronous streams temporarily to prevent a race
21902 	 * with tcp_fuse_rrw() or tcp_fusion rinfop().  It is safe to access
21903 	 * tcp_rcv_list here because those entry points will return right
21904 	 * away when synchronous streams is stopped.
21905 	 */
21906 	TCP_FUSE_SYNCSTR_STOP(tcp);
21907 	tcp->tcp_push_tid = 0;
21908 	if ((tcp->tcp_rcv_list != NULL) &&
21909 	    (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED))
21910 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
21911 	TCP_FUSE_SYNCSTR_RESUME(tcp);
21912 }
21913 
21914 /*
21915  * This function handles delayed ACK timeout.
21916  */
21917 static void
21918 tcp_ack_timer(void *arg)
21919 {
21920 	conn_t	*connp = (conn_t *)arg;
21921 	tcp_t *tcp = connp->conn_tcp;
21922 	mblk_t *mp;
21923 
21924 	TCP_DBGSTAT(tcp_ack_timer_cnt);
21925 
21926 	tcp->tcp_ack_tid = 0;
21927 
21928 	if (tcp->tcp_fused)
21929 		return;
21930 
21931 	/*
21932 	 * Do not send ACK if there is no outstanding unack'ed data.
21933 	 */
21934 	if (tcp->tcp_rnxt == tcp->tcp_rack) {
21935 		return;
21936 	}
21937 
21938 	if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) {
21939 		/*
21940 		 * Make sure we don't allow deferred ACKs to result in
21941 		 * timer-based ACKing.  If we have held off an ACK
21942 		 * when there was more than an mss here, and the timer
21943 		 * goes off, we have to worry about the possibility
21944 		 * that the sender isn't doing slow-start, or is out
21945 		 * of step with us for some other reason.  We fall
21946 		 * permanently back in the direction of
21947 		 * ACK-every-other-packet as suggested in RFC 1122.
21948 		 */
21949 		if (tcp->tcp_rack_abs_max > 2)
21950 			tcp->tcp_rack_abs_max--;
21951 		tcp->tcp_rack_cur_max = 2;
21952 	}
21953 	mp = tcp_ack_mp(tcp);
21954 
21955 	if (mp != NULL) {
21956 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
21957 		BUMP_LOCAL(tcp->tcp_obsegs);
21958 		BUMP_MIB(&tcp_mib, tcpOutAck);
21959 		BUMP_MIB(&tcp_mib, tcpOutAckDelayed);
21960 		tcp_send_data(tcp, tcp->tcp_wq, mp);
21961 	}
21962 }
21963 
21964 
21965 /* Generate an ACK-only (no data) segment for a TCP endpoint */
21966 static mblk_t *
21967 tcp_ack_mp(tcp_t *tcp)
21968 {
21969 	uint32_t	seq_no;
21970 
21971 	/*
21972 	 * There are a few cases to be considered while setting the sequence no.
21973 	 * Essentially, we can come here while processing an unacceptable pkt
21974 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
21975 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
21976 	 * If we are here for a zero window probe, stick with suna. In all
21977 	 * other cases, we check if suna + swnd encompasses snxt and set
21978 	 * the sequence number to snxt, if so. If snxt falls outside the
21979 	 * window (the receiver probably shrunk its window), we will go with
21980 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
21981 	 * receiver.
21982 	 */
21983 	if (tcp->tcp_zero_win_probe) {
21984 		seq_no = tcp->tcp_suna;
21985 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
21986 		ASSERT(tcp->tcp_swnd == 0);
21987 		seq_no = tcp->tcp_snxt;
21988 	} else {
21989 		seq_no = SEQ_GT(tcp->tcp_snxt,
21990 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
21991 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
21992 	}
21993 
21994 	if (tcp->tcp_valid_bits) {
21995 		/*
21996 		 * For the complex case where we have to send some
21997 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
21998 		 */
21999 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
22000 		    NULL, B_FALSE));
22001 	} else {
22002 		/* Generate a simple ACK */
22003 		int	data_length;
22004 		uchar_t	*rptr;
22005 		tcph_t	*tcph;
22006 		mblk_t	*mp1;
22007 		int32_t	tcp_hdr_len;
22008 		int32_t	tcp_tcp_hdr_len;
22009 		int32_t	num_sack_blk = 0;
22010 		int32_t sack_opt_len;
22011 
22012 		/*
22013 		 * Allocate space for TCP + IP headers
22014 		 * and link-level header
22015 		 */
22016 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
22017 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
22018 			    tcp->tcp_num_sack_blk);
22019 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
22020 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
22021 			tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len;
22022 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len;
22023 		} else {
22024 			tcp_hdr_len = tcp->tcp_hdr_len;
22025 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
22026 		}
22027 		mp1 = allocb(tcp_hdr_len + tcp_wroff_xtra, BPRI_MED);
22028 		if (!mp1)
22029 			return (NULL);
22030 
22031 		/* Update the latest receive window size in TCP header. */
22032 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22033 		    tcp->tcp_tcph->th_win);
22034 		/* copy in prototype TCP + IP header */
22035 		rptr = mp1->b_rptr + tcp_wroff_xtra;
22036 		mp1->b_rptr = rptr;
22037 		mp1->b_wptr = rptr + tcp_hdr_len;
22038 		bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
22039 
22040 		tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
22041 
22042 		/* Set the TCP sequence number. */
22043 		U32_TO_ABE32(seq_no, tcph->th_seq);
22044 
22045 		/* Set up the TCP flag field. */
22046 		tcph->th_flags[0] = (uchar_t)TH_ACK;
22047 		if (tcp->tcp_ecn_echo_on)
22048 			tcph->th_flags[0] |= TH_ECE;
22049 
22050 		tcp->tcp_rack = tcp->tcp_rnxt;
22051 		tcp->tcp_rack_cnt = 0;
22052 
22053 		/* fill in timestamp option if in use */
22054 		if (tcp->tcp_snd_ts_ok) {
22055 			uint32_t llbolt = (uint32_t)lbolt;
22056 
22057 			U32_TO_BE32(llbolt,
22058 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22059 			U32_TO_BE32(tcp->tcp_ts_recent,
22060 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22061 		}
22062 
22063 		/* Fill in SACK options */
22064 		if (num_sack_blk > 0) {
22065 			uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
22066 			sack_blk_t *tmp;
22067 			int32_t	i;
22068 
22069 			wptr[0] = TCPOPT_NOP;
22070 			wptr[1] = TCPOPT_NOP;
22071 			wptr[2] = TCPOPT_SACK;
22072 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
22073 			    sizeof (sack_blk_t);
22074 			wptr += TCPOPT_REAL_SACK_LEN;
22075 
22076 			tmp = tcp->tcp_sack_list;
22077 			for (i = 0; i < num_sack_blk; i++) {
22078 				U32_TO_BE32(tmp[i].begin, wptr);
22079 				wptr += sizeof (tcp_seq);
22080 				U32_TO_BE32(tmp[i].end, wptr);
22081 				wptr += sizeof (tcp_seq);
22082 			}
22083 			tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1)
22084 			    << 4);
22085 		}
22086 
22087 		if (tcp->tcp_ipversion == IPV4_VERSION) {
22088 			((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len);
22089 		} else {
22090 			/* Check for ip6i_t header in sticky hdrs */
22091 			ip6_t *ip6 = (ip6_t *)(rptr +
22092 			    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
22093 			    sizeof (ip6i_t) : 0));
22094 
22095 			ip6->ip6_plen = htons(tcp_hdr_len -
22096 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22097 		}
22098 
22099 		/*
22100 		 * Prime pump for checksum calculation in IP.  Include the
22101 		 * adjustment for a source route if any.
22102 		 */
22103 		data_length = tcp_tcp_hdr_len + tcp->tcp_sum;
22104 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
22105 		U16_TO_ABE16(data_length, tcph->th_sum);
22106 
22107 		if (tcp->tcp_ip_forward_progress) {
22108 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
22109 			*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
22110 			tcp->tcp_ip_forward_progress = B_FALSE;
22111 		}
22112 		return (mp1);
22113 	}
22114 }
22115 
22116 /*
22117  * To create a temporary tcp structure for inserting into bind hash list.
22118  * The parameter is assumed to be in network byte order, ready for use.
22119  */
22120 /* ARGSUSED */
22121 static tcp_t *
22122 tcp_alloc_temp_tcp(in_port_t port)
22123 {
22124 	conn_t	*connp;
22125 	tcp_t	*tcp;
22126 
22127 	connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP);
22128 	if (connp == NULL)
22129 		return (NULL);
22130 
22131 	tcp = connp->conn_tcp;
22132 
22133 	/*
22134 	 * Only initialize the necessary info in those structures.  Note
22135 	 * that since INADDR_ANY is all 0, we do not need to set
22136 	 * tcp_bound_source to INADDR_ANY here.
22137 	 */
22138 	tcp->tcp_state = TCPS_BOUND;
22139 	tcp->tcp_lport = port;
22140 	tcp->tcp_exclbind = 1;
22141 	tcp->tcp_reserved_port = 1;
22142 
22143 	/* Just for place holding... */
22144 	tcp->tcp_ipversion = IPV4_VERSION;
22145 
22146 	return (tcp);
22147 }
22148 
22149 /*
22150  * To remove a port range specified by lo_port and hi_port from the
22151  * reserved port ranges.  This is one of the three public functions of
22152  * the reserved port interface.  Note that a port range has to be removed
22153  * as a whole.  Ports in a range cannot be removed individually.
22154  *
22155  * Params:
22156  *	in_port_t lo_port: the beginning port of the reserved port range to
22157  *		be deleted.
22158  *	in_port_t hi_port: the ending port of the reserved port range to
22159  *		be deleted.
22160  *
22161  * Return:
22162  *	B_TRUE if the deletion is successful, B_FALSE otherwise.
22163  */
22164 boolean_t
22165 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port)
22166 {
22167 	int	i, j;
22168 	int	size;
22169 	tcp_t	**temp_tcp_array;
22170 	tcp_t	*tcp;
22171 
22172 	rw_enter(&tcp_reserved_port_lock, RW_WRITER);
22173 
22174 	/* First make sure that the port ranage is indeed reserved. */
22175 	for (i = 0; i < tcp_reserved_port_array_size; i++) {
22176 		if (tcp_reserved_port[i].lo_port == lo_port) {
22177 			hi_port = tcp_reserved_port[i].hi_port;
22178 			temp_tcp_array = tcp_reserved_port[i].temp_tcp_array;
22179 			break;
22180 		}
22181 	}
22182 	if (i == tcp_reserved_port_array_size) {
22183 		rw_exit(&tcp_reserved_port_lock);
22184 		return (B_FALSE);
22185 	}
22186 
22187 	/*
22188 	 * Remove the range from the array.  This simple loop is possible
22189 	 * because port ranges are inserted in ascending order.
22190 	 */
22191 	for (j = i; j < tcp_reserved_port_array_size - 1; j++) {
22192 		tcp_reserved_port[j].lo_port = tcp_reserved_port[j+1].lo_port;
22193 		tcp_reserved_port[j].hi_port = tcp_reserved_port[j+1].hi_port;
22194 		tcp_reserved_port[j].temp_tcp_array =
22195 		    tcp_reserved_port[j+1].temp_tcp_array;
22196 	}
22197 
22198 	/* Remove all the temporary tcp structures. */
22199 	size = hi_port - lo_port + 1;
22200 	while (size > 0) {
22201 		tcp = temp_tcp_array[size - 1];
22202 		ASSERT(tcp != NULL);
22203 		tcp_bind_hash_remove(tcp);
22204 		CONN_DEC_REF(tcp->tcp_connp);
22205 		size--;
22206 	}
22207 	kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *));
22208 	tcp_reserved_port_array_size--;
22209 	rw_exit(&tcp_reserved_port_lock);
22210 	return (B_TRUE);
22211 }
22212 
22213 /*
22214  * Macro to remove temporary tcp structure from the bind hash list.  The
22215  * first parameter is the list of tcp to be removed.  The second parameter
22216  * is the number of tcps in the array.
22217  */
22218 #define	TCP_TMP_TCP_REMOVE(tcp_array, num) \
22219 { \
22220 	while ((num) > 0) { \
22221 		tcp_t *tcp = (tcp_array)[(num) - 1]; \
22222 		tf_t *tbf; \
22223 		tcp_t *tcpnext; \
22224 		tbf = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \
22225 		mutex_enter(&tbf->tf_lock); \
22226 		tcpnext = tcp->tcp_bind_hash; \
22227 		if (tcpnext) { \
22228 			tcpnext->tcp_ptpbhn = \
22229 				tcp->tcp_ptpbhn; \
22230 		} \
22231 		*tcp->tcp_ptpbhn = tcpnext; \
22232 		mutex_exit(&tbf->tf_lock); \
22233 		kmem_free(tcp, sizeof (tcp_t)); \
22234 		(tcp_array)[(num) - 1] = NULL; \
22235 		(num)--; \
22236 	} \
22237 }
22238 
22239 /*
22240  * The public interface for other modules to call to reserve a port range
22241  * in TCP.  The caller passes in how large a port range it wants.  TCP
22242  * will try to find a range and return it via lo_port and hi_port.  This is
22243  * used by NCA's nca_conn_init.
22244  * NCA can only be used in the global zone so this only affects the global
22245  * zone's ports.
22246  *
22247  * Params:
22248  *	int size: the size of the port range to be reserved.
22249  *	in_port_t *lo_port (referenced): returns the beginning port of the
22250  *		reserved port range added.
22251  *	in_port_t *hi_port (referenced): returns the ending port of the
22252  *		reserved port range added.
22253  *
22254  * Return:
22255  *	B_TRUE if the port reservation is successful, B_FALSE otherwise.
22256  */
22257 boolean_t
22258 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port)
22259 {
22260 	tcp_t		*tcp;
22261 	tcp_t		*tmp_tcp;
22262 	tcp_t		**temp_tcp_array;
22263 	tf_t		*tbf;
22264 	in_port_t	net_port;
22265 	in_port_t	port;
22266 	int32_t		cur_size;
22267 	int		i, j;
22268 	boolean_t	used;
22269 	tcp_rport_t 	tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE];
22270 	zoneid_t	zoneid = GLOBAL_ZONEID;
22271 
22272 	/* Sanity check. */
22273 	if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) {
22274 		return (B_FALSE);
22275 	}
22276 
22277 	rw_enter(&tcp_reserved_port_lock, RW_WRITER);
22278 	if (tcp_reserved_port_array_size == TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) {
22279 		rw_exit(&tcp_reserved_port_lock);
22280 		return (B_FALSE);
22281 	}
22282 
22283 	/*
22284 	 * Find the starting port to try.  Since the port ranges are ordered
22285 	 * in the reserved port array, we can do a simple search here.
22286 	 */
22287 	*lo_port = TCP_SMALLEST_RESERVED_PORT;
22288 	*hi_port = TCP_LARGEST_RESERVED_PORT;
22289 	for (i = 0; i < tcp_reserved_port_array_size;
22290 	    *lo_port = tcp_reserved_port[i].hi_port + 1, i++) {
22291 		if (tcp_reserved_port[i].lo_port - *lo_port >= size) {
22292 			*hi_port = tcp_reserved_port[i].lo_port - 1;
22293 			break;
22294 		}
22295 	}
22296 	/* No available port range. */
22297 	if (i == tcp_reserved_port_array_size && *hi_port - *lo_port < size) {
22298 		rw_exit(&tcp_reserved_port_lock);
22299 		return (B_FALSE);
22300 	}
22301 
22302 	temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP);
22303 	if (temp_tcp_array == NULL) {
22304 		rw_exit(&tcp_reserved_port_lock);
22305 		return (B_FALSE);
22306 	}
22307 
22308 	/* Go thru the port range to see if some ports are already bound. */
22309 	for (port = *lo_port, cur_size = 0;
22310 	    cur_size < size && port <= *hi_port;
22311 	    cur_size++, port++) {
22312 		used = B_FALSE;
22313 		net_port = htons(port);
22314 		tbf = &tcp_bind_fanout[TCP_BIND_HASH(net_port)];
22315 		mutex_enter(&tbf->tf_lock);
22316 		for (tcp = tbf->tf_tcp; tcp != NULL;
22317 		    tcp = tcp->tcp_bind_hash) {
22318 			if (zoneid == tcp->tcp_connp->conn_zoneid &&
22319 			    net_port == tcp->tcp_lport) {
22320 				/*
22321 				 * A port is already bound.  Search again
22322 				 * starting from port + 1.  Release all
22323 				 * temporary tcps.
22324 				 */
22325 				mutex_exit(&tbf->tf_lock);
22326 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size);
22327 				*lo_port = port + 1;
22328 				cur_size = -1;
22329 				used = B_TRUE;
22330 				break;
22331 			}
22332 		}
22333 		if (!used) {
22334 			if ((tmp_tcp = tcp_alloc_temp_tcp(net_port)) == NULL) {
22335 				/*
22336 				 * Allocation failure.  Just fail the request.
22337 				 * Need to remove all those temporary tcp
22338 				 * structures.
22339 				 */
22340 				mutex_exit(&tbf->tf_lock);
22341 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size);
22342 				rw_exit(&tcp_reserved_port_lock);
22343 				kmem_free(temp_tcp_array,
22344 				    (hi_port - lo_port + 1) *
22345 				    sizeof (tcp_t *));
22346 				return (B_FALSE);
22347 			}
22348 			temp_tcp_array[cur_size] = tmp_tcp;
22349 			tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE);
22350 			mutex_exit(&tbf->tf_lock);
22351 		}
22352 	}
22353 
22354 	/*
22355 	 * The current range is not large enough.  We can actually do another
22356 	 * search if this search is done between 2 reserved port ranges.  But
22357 	 * for first release, we just stop here and return saying that no port
22358 	 * range is available.
22359 	 */
22360 	if (cur_size < size) {
22361 		TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size);
22362 		rw_exit(&tcp_reserved_port_lock);
22363 		kmem_free(temp_tcp_array, size * sizeof (tcp_t *));
22364 		return (B_FALSE);
22365 	}
22366 	*hi_port = port - 1;
22367 
22368 	/*
22369 	 * Insert range into array in ascending order.  Since this function
22370 	 * must not be called often, we choose to use the simplest method.
22371 	 * The above array should not consume excessive stack space as
22372 	 * the size must be very small.  If in future releases, we find
22373 	 * that we should provide more reserved port ranges, this function
22374 	 * has to be modified to be more efficient.
22375 	 */
22376 	if (tcp_reserved_port_array_size == 0) {
22377 		tcp_reserved_port[0].lo_port = *lo_port;
22378 		tcp_reserved_port[0].hi_port = *hi_port;
22379 		tcp_reserved_port[0].temp_tcp_array = temp_tcp_array;
22380 	} else {
22381 		for (i = 0, j = 0; i < tcp_reserved_port_array_size; i++, j++) {
22382 			if (*lo_port < tcp_reserved_port[i].lo_port && i == j) {
22383 				tmp_ports[j].lo_port = *lo_port;
22384 				tmp_ports[j].hi_port = *hi_port;
22385 				tmp_ports[j].temp_tcp_array = temp_tcp_array;
22386 				j++;
22387 			}
22388 			tmp_ports[j].lo_port = tcp_reserved_port[i].lo_port;
22389 			tmp_ports[j].hi_port = tcp_reserved_port[i].hi_port;
22390 			tmp_ports[j].temp_tcp_array =
22391 			    tcp_reserved_port[i].temp_tcp_array;
22392 		}
22393 		if (j == i) {
22394 			tmp_ports[j].lo_port = *lo_port;
22395 			tmp_ports[j].hi_port = *hi_port;
22396 			tmp_ports[j].temp_tcp_array = temp_tcp_array;
22397 		}
22398 		bcopy(tmp_ports, tcp_reserved_port, sizeof (tmp_ports));
22399 	}
22400 	tcp_reserved_port_array_size++;
22401 	rw_exit(&tcp_reserved_port_lock);
22402 	return (B_TRUE);
22403 }
22404 
22405 /*
22406  * Check to see if a port is in any reserved port range.
22407  *
22408  * Params:
22409  *	in_port_t port: the port to be verified.
22410  *
22411  * Return:
22412  *	B_TRUE is the port is inside a reserved port range, B_FALSE otherwise.
22413  */
22414 boolean_t
22415 tcp_reserved_port_check(in_port_t port)
22416 {
22417 	int i;
22418 
22419 	rw_enter(&tcp_reserved_port_lock, RW_READER);
22420 	for (i = 0; i < tcp_reserved_port_array_size; i++) {
22421 		if (port >= tcp_reserved_port[i].lo_port ||
22422 		    port <= tcp_reserved_port[i].hi_port) {
22423 			rw_exit(&tcp_reserved_port_lock);
22424 			return (B_TRUE);
22425 		}
22426 	}
22427 	rw_exit(&tcp_reserved_port_lock);
22428 	return (B_FALSE);
22429 }
22430 
22431 /*
22432  * To list all reserved port ranges.  This is the function to handle
22433  * ndd tcp_reserved_port_list.
22434  */
22435 /* ARGSUSED */
22436 static int
22437 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
22438 {
22439 	int i;
22440 
22441 	rw_enter(&tcp_reserved_port_lock, RW_READER);
22442 	if (tcp_reserved_port_array_size > 0)
22443 		(void) mi_mpprintf(mp, "The following ports are reserved:");
22444 	else
22445 		(void) mi_mpprintf(mp, "No port is reserved.");
22446 	for (i = 0; i < tcp_reserved_port_array_size; i++) {
22447 		(void) mi_mpprintf(mp, "%d-%d",
22448 		    tcp_reserved_port[i].lo_port, tcp_reserved_port[i].hi_port);
22449 	}
22450 	rw_exit(&tcp_reserved_port_lock);
22451 	return (0);
22452 }
22453 
22454 /*
22455  * Hash list insertion routine for tcp_t structures.
22456  * Inserts entries with the ones bound to a specific IP address first
22457  * followed by those bound to INADDR_ANY.
22458  */
22459 static void
22460 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock)
22461 {
22462 	tcp_t	**tcpp;
22463 	tcp_t	*tcpnext;
22464 
22465 	if (tcp->tcp_ptpbhn != NULL) {
22466 		ASSERT(!caller_holds_lock);
22467 		tcp_bind_hash_remove(tcp);
22468 	}
22469 	tcpp = &tbf->tf_tcp;
22470 	if (!caller_holds_lock) {
22471 		mutex_enter(&tbf->tf_lock);
22472 	} else {
22473 		ASSERT(MUTEX_HELD(&tbf->tf_lock));
22474 	}
22475 	tcpnext = tcpp[0];
22476 	if (tcpnext) {
22477 		/*
22478 		 * If the new tcp bound to the INADDR_ANY address
22479 		 * and the first one in the list is not bound to
22480 		 * INADDR_ANY we skip all entries until we find the
22481 		 * first one bound to INADDR_ANY.
22482 		 * This makes sure that applications binding to a
22483 		 * specific address get preference over those binding to
22484 		 * INADDR_ANY.
22485 		 */
22486 		if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) &&
22487 		    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) {
22488 			while ((tcpnext = tcpp[0]) != NULL &&
22489 			    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6))
22490 				tcpp = &(tcpnext->tcp_bind_hash);
22491 			if (tcpnext)
22492 				tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
22493 		} else
22494 			tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
22495 	}
22496 	tcp->tcp_bind_hash = tcpnext;
22497 	tcp->tcp_ptpbhn = tcpp;
22498 	tcpp[0] = tcp;
22499 	if (!caller_holds_lock)
22500 		mutex_exit(&tbf->tf_lock);
22501 }
22502 
22503 /*
22504  * Hash list removal routine for tcp_t structures.
22505  */
22506 static void
22507 tcp_bind_hash_remove(tcp_t *tcp)
22508 {
22509 	tcp_t	*tcpnext;
22510 	kmutex_t *lockp;
22511 
22512 	if (tcp->tcp_ptpbhn == NULL)
22513 		return;
22514 
22515 	/*
22516 	 * Extract the lock pointer in case there are concurrent
22517 	 * hash_remove's for this instance.
22518 	 */
22519 	ASSERT(tcp->tcp_lport != 0);
22520 	lockp = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock;
22521 
22522 	ASSERT(lockp != NULL);
22523 	mutex_enter(lockp);
22524 	if (tcp->tcp_ptpbhn) {
22525 		tcpnext = tcp->tcp_bind_hash;
22526 		if (tcpnext) {
22527 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
22528 			tcp->tcp_bind_hash = NULL;
22529 		}
22530 		*tcp->tcp_ptpbhn = tcpnext;
22531 		tcp->tcp_ptpbhn = NULL;
22532 	}
22533 	mutex_exit(lockp);
22534 }
22535 
22536 
22537 /*
22538  * Hash list lookup routine for tcp_t structures.
22539  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
22540  */
22541 static tcp_t *
22542 tcp_acceptor_hash_lookup(t_uscalar_t id)
22543 {
22544 	tf_t	*tf;
22545 	tcp_t	*tcp;
22546 
22547 	tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
22548 	mutex_enter(&tf->tf_lock);
22549 	for (tcp = tf->tf_tcp; tcp != NULL;
22550 	    tcp = tcp->tcp_acceptor_hash) {
22551 		if (tcp->tcp_acceptor_id == id) {
22552 			CONN_INC_REF(tcp->tcp_connp);
22553 			mutex_exit(&tf->tf_lock);
22554 			return (tcp);
22555 		}
22556 	}
22557 	mutex_exit(&tf->tf_lock);
22558 	return (NULL);
22559 }
22560 
22561 
22562 /*
22563  * Hash list insertion routine for tcp_t structures.
22564  */
22565 void
22566 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
22567 {
22568 	tf_t	*tf;
22569 	tcp_t	**tcpp;
22570 	tcp_t	*tcpnext;
22571 
22572 	tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
22573 
22574 	if (tcp->tcp_ptpahn != NULL)
22575 		tcp_acceptor_hash_remove(tcp);
22576 	tcpp = &tf->tf_tcp;
22577 	mutex_enter(&tf->tf_lock);
22578 	tcpnext = tcpp[0];
22579 	if (tcpnext)
22580 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
22581 	tcp->tcp_acceptor_hash = tcpnext;
22582 	tcp->tcp_ptpahn = tcpp;
22583 	tcpp[0] = tcp;
22584 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
22585 	mutex_exit(&tf->tf_lock);
22586 }
22587 
22588 /*
22589  * Hash list removal routine for tcp_t structures.
22590  */
22591 static void
22592 tcp_acceptor_hash_remove(tcp_t *tcp)
22593 {
22594 	tcp_t	*tcpnext;
22595 	kmutex_t *lockp;
22596 
22597 	/*
22598 	 * Extract the lock pointer in case there are concurrent
22599 	 * hash_remove's for this instance.
22600 	 */
22601 	lockp = tcp->tcp_acceptor_lockp;
22602 
22603 	if (tcp->tcp_ptpahn == NULL)
22604 		return;
22605 
22606 	ASSERT(lockp != NULL);
22607 	mutex_enter(lockp);
22608 	if (tcp->tcp_ptpahn) {
22609 		tcpnext = tcp->tcp_acceptor_hash;
22610 		if (tcpnext) {
22611 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
22612 			tcp->tcp_acceptor_hash = NULL;
22613 		}
22614 		*tcp->tcp_ptpahn = tcpnext;
22615 		tcp->tcp_ptpahn = NULL;
22616 	}
22617 	mutex_exit(lockp);
22618 	tcp->tcp_acceptor_lockp = NULL;
22619 }
22620 
22621 /* ARGSUSED */
22622 static int
22623 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af)
22624 {
22625 	int error = 0;
22626 	int retval;
22627 	char *end;
22628 
22629 	tcp_hsp_t *hsp;
22630 	tcp_hsp_t *hspprev;
22631 
22632 	ipaddr_t addr = 0;		/* Address we're looking for */
22633 	in6_addr_t v6addr;		/* Address we're looking for */
22634 	uint32_t hash;			/* Hash of that address */
22635 
22636 	/*
22637 	 * If the following variables are still zero after parsing the input
22638 	 * string, the user didn't specify them and we don't change them in
22639 	 * the HSP.
22640 	 */
22641 
22642 	ipaddr_t mask = 0;		/* Subnet mask */
22643 	in6_addr_t v6mask;
22644 	long sendspace = 0;		/* Send buffer size */
22645 	long recvspace = 0;		/* Receive buffer size */
22646 	long timestamp = 0;	/* Originate TCP TSTAMP option, 1 = yes */
22647 	boolean_t delete = B_FALSE;	/* User asked to delete this HSP */
22648 
22649 	rw_enter(&tcp_hsp_lock, RW_WRITER);
22650 
22651 	/* Parse and validate address */
22652 	if (af == AF_INET) {
22653 		retval = inet_pton(af, value, &addr);
22654 		if (retval == 1)
22655 			IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
22656 	} else if (af == AF_INET6) {
22657 		retval = inet_pton(af, value, &v6addr);
22658 	} else {
22659 		error = EINVAL;
22660 		goto done;
22661 	}
22662 	if (retval == 0) {
22663 		error = EINVAL;
22664 		goto done;
22665 	}
22666 
22667 	while ((*value) && *value != ' ')
22668 		value++;
22669 
22670 	/* Parse individual keywords, set variables if found */
22671 	while (*value) {
22672 		/* Skip leading blanks */
22673 
22674 		while (*value == ' ' || *value == '\t')
22675 			value++;
22676 
22677 		/* If at end of string, we're done */
22678 
22679 		if (!*value)
22680 			break;
22681 
22682 		/* We have a word, figure out what it is */
22683 
22684 		if (strncmp("mask", value, 4) == 0) {
22685 			value += 4;
22686 			while (*value == ' ' || *value == '\t')
22687 				value++;
22688 			/* Parse subnet mask */
22689 			if (af == AF_INET) {
22690 				retval = inet_pton(af, value, &mask);
22691 				if (retval == 1) {
22692 					V4MASK_TO_V6(mask, v6mask);
22693 				}
22694 			} else if (af == AF_INET6) {
22695 				retval = inet_pton(af, value, &v6mask);
22696 			}
22697 			if (retval != 1) {
22698 				error = EINVAL;
22699 				goto done;
22700 			}
22701 			while ((*value) && *value != ' ')
22702 				value++;
22703 		} else if (strncmp("sendspace", value, 9) == 0) {
22704 			value += 9;
22705 
22706 			if (ddi_strtol(value, &end, 0, &sendspace) != 0 ||
22707 			    sendspace < TCP_XMIT_HIWATER ||
22708 			    sendspace >= (1L<<30)) {
22709 				error = EINVAL;
22710 				goto done;
22711 			}
22712 			value = end;
22713 		} else if (strncmp("recvspace", value, 9) == 0) {
22714 			value += 9;
22715 
22716 			if (ddi_strtol(value, &end, 0, &recvspace) != 0 ||
22717 			    recvspace < TCP_RECV_HIWATER ||
22718 			    recvspace >= (1L<<30)) {
22719 				error = EINVAL;
22720 				goto done;
22721 			}
22722 			value = end;
22723 		} else if (strncmp("timestamp", value, 9) == 0) {
22724 			value += 9;
22725 
22726 			if (ddi_strtol(value, &end, 0, &timestamp) != 0 ||
22727 			    timestamp < 0 || timestamp > 1) {
22728 				error = EINVAL;
22729 				goto done;
22730 			}
22731 
22732 			/*
22733 			 * We increment timestamp so we know it's been set;
22734 			 * this is undone when we put it in the HSP
22735 			 */
22736 			timestamp++;
22737 			value = end;
22738 		} else if (strncmp("delete", value, 6) == 0) {
22739 			value += 6;
22740 			delete = B_TRUE;
22741 		} else {
22742 			error = EINVAL;
22743 			goto done;
22744 		}
22745 	}
22746 
22747 	/* Hash address for lookup */
22748 
22749 	hash = TCP_HSP_HASH(addr);
22750 
22751 	if (delete) {
22752 		/*
22753 		 * Note that deletes don't return an error if the thing
22754 		 * we're trying to delete isn't there.
22755 		 */
22756 		if (tcp_hsp_hash == NULL)
22757 			goto done;
22758 		hsp = tcp_hsp_hash[hash];
22759 
22760 		if (hsp) {
22761 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
22762 			    &v6addr)) {
22763 				tcp_hsp_hash[hash] = hsp->tcp_hsp_next;
22764 				mi_free((char *)hsp);
22765 			} else {
22766 				hspprev = hsp;
22767 				while ((hsp = hsp->tcp_hsp_next) != NULL) {
22768 					if (IN6_ARE_ADDR_EQUAL(
22769 					    &hsp->tcp_hsp_addr_v6, &v6addr)) {
22770 						hspprev->tcp_hsp_next =
22771 						    hsp->tcp_hsp_next;
22772 						mi_free((char *)hsp);
22773 						break;
22774 					}
22775 					hspprev = hsp;
22776 				}
22777 			}
22778 		}
22779 	} else {
22780 		/*
22781 		 * We're adding/modifying an HSP.  If we haven't already done
22782 		 * so, allocate the hash table.
22783 		 */
22784 
22785 		if (!tcp_hsp_hash) {
22786 			tcp_hsp_hash = (tcp_hsp_t **)
22787 			    mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE);
22788 			if (!tcp_hsp_hash) {
22789 				error = EINVAL;
22790 				goto done;
22791 			}
22792 		}
22793 
22794 		/* Get head of hash chain */
22795 
22796 		hsp = tcp_hsp_hash[hash];
22797 
22798 		/* Try to find pre-existing hsp on hash chain */
22799 		/* Doesn't handle CIDR prefixes. */
22800 		while (hsp) {
22801 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr))
22802 				break;
22803 			hsp = hsp->tcp_hsp_next;
22804 		}
22805 
22806 		/*
22807 		 * If we didn't, create one with default values and put it
22808 		 * at head of hash chain
22809 		 */
22810 
22811 		if (!hsp) {
22812 			hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t));
22813 			if (!hsp) {
22814 				error = EINVAL;
22815 				goto done;
22816 			}
22817 			hsp->tcp_hsp_next = tcp_hsp_hash[hash];
22818 			tcp_hsp_hash[hash] = hsp;
22819 		}
22820 
22821 		/* Set values that the user asked us to change */
22822 
22823 		hsp->tcp_hsp_addr_v6 = v6addr;
22824 		if (IN6_IS_ADDR_V4MAPPED(&v6addr))
22825 			hsp->tcp_hsp_vers = IPV4_VERSION;
22826 		else
22827 			hsp->tcp_hsp_vers = IPV6_VERSION;
22828 		hsp->tcp_hsp_subnet_v6 = v6mask;
22829 		if (sendspace > 0)
22830 			hsp->tcp_hsp_sendspace = sendspace;
22831 		if (recvspace > 0)
22832 			hsp->tcp_hsp_recvspace = recvspace;
22833 		if (timestamp > 0)
22834 			hsp->tcp_hsp_tstamp = timestamp - 1;
22835 	}
22836 
22837 done:
22838 	rw_exit(&tcp_hsp_lock);
22839 	return (error);
22840 }
22841 
22842 /* Set callback routine passed to nd_load by tcp_param_register. */
22843 /* ARGSUSED */
22844 static int
22845 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
22846 {
22847 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET));
22848 }
22849 /* ARGSUSED */
22850 static int
22851 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
22852     cred_t *cr)
22853 {
22854 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6));
22855 }
22856 
22857 /* TCP host parameters report triggered via the Named Dispatch mechanism. */
22858 /* ARGSUSED */
22859 static int
22860 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
22861 {
22862 	tcp_hsp_t *hsp;
22863 	int i;
22864 	char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN];
22865 
22866 	rw_enter(&tcp_hsp_lock, RW_READER);
22867 	(void) mi_mpprintf(mp,
22868 	    "Hash HSP     " MI_COL_HDRPAD_STR
22869 	    "Address         Subnet Mask     Send       Receive    TStamp");
22870 	if (tcp_hsp_hash) {
22871 		for (i = 0; i < TCP_HSP_HASH_SIZE; i++) {
22872 			hsp = tcp_hsp_hash[i];
22873 			while (hsp) {
22874 				if (hsp->tcp_hsp_vers == IPV4_VERSION) {
22875 					(void) inet_ntop(AF_INET,
22876 					    &hsp->tcp_hsp_addr,
22877 					    addrbuf, sizeof (addrbuf));
22878 					(void) inet_ntop(AF_INET,
22879 					    &hsp->tcp_hsp_subnet,
22880 					    subnetbuf, sizeof (subnetbuf));
22881 				} else {
22882 					(void) inet_ntop(AF_INET6,
22883 					    &hsp->tcp_hsp_addr_v6,
22884 					    addrbuf, sizeof (addrbuf));
22885 					(void) inet_ntop(AF_INET6,
22886 					    &hsp->tcp_hsp_subnet_v6,
22887 					    subnetbuf, sizeof (subnetbuf));
22888 				}
22889 				(void) mi_mpprintf(mp,
22890 				    " %03d " MI_COL_PTRFMT_STR
22891 				    "%s %s %010d %010d      %d",
22892 				    i,
22893 				    (void *)hsp,
22894 				    addrbuf,
22895 				    subnetbuf,
22896 				    hsp->tcp_hsp_sendspace,
22897 				    hsp->tcp_hsp_recvspace,
22898 				    hsp->tcp_hsp_tstamp);
22899 
22900 				hsp = hsp->tcp_hsp_next;
22901 			}
22902 		}
22903 	}
22904 	rw_exit(&tcp_hsp_lock);
22905 	return (0);
22906 }
22907 
22908 
22909 /* Data for fast netmask macro used by tcp_hsp_lookup */
22910 
22911 static ipaddr_t netmasks[] = {
22912 	IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET,
22913 	IN_CLASSC_NET | IN_CLASSD_NET  /* Class C,D,E */
22914 };
22915 
22916 #define	netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30])
22917 
22918 /*
22919  * XXX This routine should go away and instead we should use the metrics
22920  * associated with the routes to determine the default sndspace and rcvspace.
22921  */
22922 static tcp_hsp_t *
22923 tcp_hsp_lookup(ipaddr_t addr)
22924 {
22925 	tcp_hsp_t *hsp = NULL;
22926 
22927 	/* Quick check without acquiring the lock. */
22928 	if (tcp_hsp_hash == NULL)
22929 		return (NULL);
22930 
22931 	rw_enter(&tcp_hsp_lock, RW_READER);
22932 
22933 	/* This routine finds the best-matching HSP for address addr. */
22934 
22935 	if (tcp_hsp_hash) {
22936 		int i;
22937 		ipaddr_t srchaddr;
22938 		tcp_hsp_t *hsp_net;
22939 
22940 		/* We do three passes: host, network, and subnet. */
22941 
22942 		srchaddr = addr;
22943 
22944 		for (i = 1; i <= 3; i++) {
22945 			/* Look for exact match on srchaddr */
22946 
22947 			hsp = tcp_hsp_hash[TCP_HSP_HASH(srchaddr)];
22948 			while (hsp) {
22949 				if (hsp->tcp_hsp_vers == IPV4_VERSION &&
22950 				    hsp->tcp_hsp_addr == srchaddr)
22951 					break;
22952 				hsp = hsp->tcp_hsp_next;
22953 			}
22954 			ASSERT(hsp == NULL ||
22955 			    hsp->tcp_hsp_vers == IPV4_VERSION);
22956 
22957 			/*
22958 			 * If this is the first pass:
22959 			 *   If we found a match, great, return it.
22960 			 *   If not, search for the network on the second pass.
22961 			 */
22962 
22963 			if (i == 1)
22964 				if (hsp)
22965 					break;
22966 				else
22967 				{
22968 					srchaddr = addr & netmask(addr);
22969 					continue;
22970 				}
22971 
22972 			/*
22973 			 * If this is the second pass:
22974 			 *   If we found a match, but there's a subnet mask,
22975 			 *    save the match but try again using the subnet
22976 			 *    mask on the third pass.
22977 			 *   Otherwise, return whatever we found.
22978 			 */
22979 
22980 			if (i == 2) {
22981 				if (hsp && hsp->tcp_hsp_subnet) {
22982 					hsp_net = hsp;
22983 					srchaddr = addr & hsp->tcp_hsp_subnet;
22984 					continue;
22985 				} else {
22986 					break;
22987 				}
22988 			}
22989 
22990 			/*
22991 			 * This must be the third pass.  If we didn't find
22992 			 * anything, return the saved network HSP instead.
22993 			 */
22994 
22995 			if (!hsp)
22996 				hsp = hsp_net;
22997 		}
22998 	}
22999 
23000 	rw_exit(&tcp_hsp_lock);
23001 	return (hsp);
23002 }
23003 
23004 /*
23005  * XXX Equally broken as the IPv4 routine. Doesn't handle longest
23006  * match lookup.
23007  */
23008 static tcp_hsp_t *
23009 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr)
23010 {
23011 	tcp_hsp_t *hsp = NULL;
23012 
23013 	/* Quick check without acquiring the lock. */
23014 	if (tcp_hsp_hash == NULL)
23015 		return (NULL);
23016 
23017 	rw_enter(&tcp_hsp_lock, RW_READER);
23018 
23019 	/* This routine finds the best-matching HSP for address addr. */
23020 
23021 	if (tcp_hsp_hash) {
23022 		int i;
23023 		in6_addr_t v6srchaddr;
23024 		tcp_hsp_t *hsp_net;
23025 
23026 		/* We do three passes: host, network, and subnet. */
23027 
23028 		v6srchaddr = *v6addr;
23029 
23030 		for (i = 1; i <= 3; i++) {
23031 			/* Look for exact match on srchaddr */
23032 
23033 			hsp = tcp_hsp_hash[TCP_HSP_HASH(
23034 			    V4_PART_OF_V6(v6srchaddr))];
23035 			while (hsp) {
23036 				if (hsp->tcp_hsp_vers == IPV6_VERSION &&
23037 				    IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
23038 				    &v6srchaddr))
23039 					break;
23040 				hsp = hsp->tcp_hsp_next;
23041 			}
23042 
23043 			/*
23044 			 * If this is the first pass:
23045 			 *   If we found a match, great, return it.
23046 			 *   If not, search for the network on the second pass.
23047 			 */
23048 
23049 			if (i == 1)
23050 				if (hsp)
23051 					break;
23052 				else {
23053 					/* Assume a 64 bit mask */
23054 					v6srchaddr.s6_addr32[0] =
23055 					    v6addr->s6_addr32[0];
23056 					v6srchaddr.s6_addr32[1] =
23057 					    v6addr->s6_addr32[1];
23058 					v6srchaddr.s6_addr32[2] = 0;
23059 					v6srchaddr.s6_addr32[3] = 0;
23060 					continue;
23061 				}
23062 
23063 			/*
23064 			 * If this is the second pass:
23065 			 *   If we found a match, but there's a subnet mask,
23066 			 *    save the match but try again using the subnet
23067 			 *    mask on the third pass.
23068 			 *   Otherwise, return whatever we found.
23069 			 */
23070 
23071 			if (i == 2) {
23072 				ASSERT(hsp == NULL ||
23073 				    hsp->tcp_hsp_vers == IPV6_VERSION);
23074 				if (hsp &&
23075 				    !IN6_IS_ADDR_UNSPECIFIED(
23076 				    &hsp->tcp_hsp_subnet_v6)) {
23077 					hsp_net = hsp;
23078 					V6_MASK_COPY(*v6addr,
23079 					    hsp->tcp_hsp_subnet_v6, v6srchaddr);
23080 					continue;
23081 				} else {
23082 					break;
23083 				}
23084 			}
23085 
23086 			/*
23087 			 * This must be the third pass.  If we didn't find
23088 			 * anything, return the saved network HSP instead.
23089 			 */
23090 
23091 			if (!hsp)
23092 				hsp = hsp_net;
23093 		}
23094 	}
23095 
23096 	rw_exit(&tcp_hsp_lock);
23097 	return (hsp);
23098 }
23099 
23100 /*
23101  * Type three generator adapted from the random() function in 4.4 BSD:
23102  */
23103 
23104 /*
23105  * Copyright (c) 1983, 1993
23106  *	The Regents of the University of California.  All rights reserved.
23107  *
23108  * Redistribution and use in source and binary forms, with or without
23109  * modification, are permitted provided that the following conditions
23110  * are met:
23111  * 1. Redistributions of source code must retain the above copyright
23112  *    notice, this list of conditions and the following disclaimer.
23113  * 2. Redistributions in binary form must reproduce the above copyright
23114  *    notice, this list of conditions and the following disclaimer in the
23115  *    documentation and/or other materials provided with the distribution.
23116  * 3. All advertising materials mentioning features or use of this software
23117  *    must display the following acknowledgement:
23118  *	This product includes software developed by the University of
23119  *	California, Berkeley and its contributors.
23120  * 4. Neither the name of the University nor the names of its contributors
23121  *    may be used to endorse or promote products derived from this software
23122  *    without specific prior written permission.
23123  *
23124  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23125  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23126  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23127  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23128  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23129  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23130  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23131  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23132  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23133  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23134  * SUCH DAMAGE.
23135  */
23136 
23137 /* Type 3 -- x**31 + x**3 + 1 */
23138 #define	DEG_3		31
23139 #define	SEP_3		3
23140 
23141 
23142 /* Protected by tcp_random_lock */
23143 static int tcp_randtbl[DEG_3 + 1];
23144 
23145 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
23146 static int *tcp_random_rptr = &tcp_randtbl[1];
23147 
23148 static int *tcp_random_state = &tcp_randtbl[1];
23149 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
23150 
23151 kmutex_t tcp_random_lock;
23152 
23153 void
23154 tcp_random_init(void)
23155 {
23156 	int i;
23157 	hrtime_t hrt;
23158 	time_t wallclock;
23159 	uint64_t result;
23160 
23161 	/*
23162 	 * Use high-res timer and current time for seed.  Gethrtime() returns
23163 	 * a longlong, which may contain resolution down to nanoseconds.
23164 	 * The current time will either be a 32-bit or a 64-bit quantity.
23165 	 * XOR the two together in a 64-bit result variable.
23166 	 * Convert the result to a 32-bit value by multiplying the high-order
23167 	 * 32-bits by the low-order 32-bits.
23168 	 */
23169 
23170 	hrt = gethrtime();
23171 	(void) drv_getparm(TIME, &wallclock);
23172 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
23173 	mutex_enter(&tcp_random_lock);
23174 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
23175 	    (result & 0xffffffff);
23176 
23177 	for (i = 1; i < DEG_3; i++)
23178 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
23179 			+ 12345;
23180 	tcp_random_fptr = &tcp_random_state[SEP_3];
23181 	tcp_random_rptr = &tcp_random_state[0];
23182 	mutex_exit(&tcp_random_lock);
23183 	for (i = 0; i < 10 * DEG_3; i++)
23184 		(void) tcp_random();
23185 }
23186 
23187 /*
23188  * tcp_random: Return a random number in the range [1 - (128K + 1)].
23189  * This range is selected to be approximately centered on TCP_ISS / 2,
23190  * and easy to compute. We get this value by generating a 32-bit random
23191  * number, selecting out the high-order 17 bits, and then adding one so
23192  * that we never return zero.
23193  */
23194 int
23195 tcp_random(void)
23196 {
23197 	int i;
23198 
23199 	mutex_enter(&tcp_random_lock);
23200 	*tcp_random_fptr += *tcp_random_rptr;
23201 
23202 	/*
23203 	 * The high-order bits are more random than the low-order bits,
23204 	 * so we select out the high-order 17 bits and add one so that
23205 	 * we never return zero.
23206 	 */
23207 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
23208 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
23209 		tcp_random_fptr = tcp_random_state;
23210 		++tcp_random_rptr;
23211 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
23212 		tcp_random_rptr = tcp_random_state;
23213 
23214 	mutex_exit(&tcp_random_lock);
23215 	return (i);
23216 }
23217 
23218 /*
23219  * XXX This will go away when TPI is extended to send
23220  * info reqs to sockfs/timod .....
23221  * Given a queue, set the max packet size for the write
23222  * side of the queue below stream head.  This value is
23223  * cached on the stream head.
23224  * Returns 1 on success, 0 otherwise.
23225  */
23226 static int
23227 setmaxps(queue_t *q, int maxpsz)
23228 {
23229 	struct stdata	*stp;
23230 	queue_t		*wq;
23231 	stp = STREAM(q);
23232 
23233 	/*
23234 	 * At this point change of a queue parameter is not allowed
23235 	 * when a multiplexor is sitting on top.
23236 	 */
23237 	if (stp->sd_flag & STPLEX)
23238 		return (0);
23239 
23240 	claimstr(stp->sd_wrq);
23241 	wq = stp->sd_wrq->q_next;
23242 	ASSERT(wq != NULL);
23243 	(void) strqset(wq, QMAXPSZ, 0, maxpsz);
23244 	releasestr(stp->sd_wrq);
23245 	return (1);
23246 }
23247 
23248 static int
23249 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp,
23250     int *t_errorp, int *sys_errorp)
23251 {
23252 	int error;
23253 	int is_absreq_failure;
23254 	t_scalar_t *opt_lenp;
23255 	t_scalar_t opt_offset;
23256 	int prim_type;
23257 	struct T_conn_req *tcreqp;
23258 	struct T_conn_res *tcresp;
23259 	cred_t *cr;
23260 
23261 	cr = DB_CREDDEF(mp, tcp->tcp_cred);
23262 
23263 	prim_type = ((union T_primitives *)mp->b_rptr)->type;
23264 	ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES ||
23265 	    prim_type == T_CONN_RES);
23266 
23267 	switch (prim_type) {
23268 	case T_CONN_REQ:
23269 		tcreqp = (struct T_conn_req *)mp->b_rptr;
23270 		opt_offset = tcreqp->OPT_offset;
23271 		opt_lenp = (t_scalar_t *)&tcreqp->OPT_length;
23272 		break;
23273 	case O_T_CONN_RES:
23274 	case T_CONN_RES:
23275 		tcresp = (struct T_conn_res *)mp->b_rptr;
23276 		opt_offset = tcresp->OPT_offset;
23277 		opt_lenp = (t_scalar_t *)&tcresp->OPT_length;
23278 		break;
23279 	}
23280 
23281 	*t_errorp = 0;
23282 	*sys_errorp = 0;
23283 	*do_disconnectp = 0;
23284 
23285 	error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp,
23286 	    opt_offset, cr, &tcp_opt_obj,
23287 	    NULL, &is_absreq_failure);
23288 
23289 	switch (error) {
23290 	case  0:		/* no error */
23291 		ASSERT(is_absreq_failure == 0);
23292 		return (0);
23293 	case ENOPROTOOPT:
23294 		*t_errorp = TBADOPT;
23295 		break;
23296 	case EACCES:
23297 		*t_errorp = TACCES;
23298 		break;
23299 	default:
23300 		*t_errorp = TSYSERR; *sys_errorp = error;
23301 		break;
23302 	}
23303 	if (is_absreq_failure != 0) {
23304 		/*
23305 		 * The connection request should get the local ack
23306 		 * T_OK_ACK and then a T_DISCON_IND.
23307 		 */
23308 		*do_disconnectp = 1;
23309 	}
23310 	return (-1);
23311 }
23312 
23313 /*
23314  * Split this function out so that if the secret changes, I'm okay.
23315  *
23316  * Initialize the tcp_iss_cookie and tcp_iss_key.
23317  */
23318 
23319 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
23320 
23321 static void
23322 tcp_iss_key_init(uint8_t *phrase, int len)
23323 {
23324 	struct {
23325 		int32_t current_time;
23326 		uint32_t randnum;
23327 		uint16_t pad;
23328 		uint8_t ether[6];
23329 		uint8_t passwd[PASSWD_SIZE];
23330 	} tcp_iss_cookie;
23331 	time_t t;
23332 
23333 	/*
23334 	 * Start with the current absolute time.
23335 	 */
23336 	(void) drv_getparm(TIME, &t);
23337 	tcp_iss_cookie.current_time = t;
23338 
23339 	/*
23340 	 * XXX - Need a more random number per RFC 1750, not this crap.
23341 	 * OTOH, if what follows is pretty random, then I'm in better shape.
23342 	 */
23343 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
23344 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
23345 
23346 	/*
23347 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
23348 	 * as a good template.
23349 	 */
23350 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
23351 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
23352 
23353 	/*
23354 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
23355 	 */
23356 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
23357 
23358 	/*
23359 	 * See 4010593 if this section becomes a problem again,
23360 	 * but the local ethernet address is useful here.
23361 	 */
23362 	(void) localetheraddr(NULL,
23363 	    (struct ether_addr *)&tcp_iss_cookie.ether);
23364 
23365 	/*
23366 	 * Hash 'em all together.  The MD5Final is called per-connection.
23367 	 */
23368 	mutex_enter(&tcp_iss_key_lock);
23369 	MD5Init(&tcp_iss_key);
23370 	MD5Update(&tcp_iss_key, (uchar_t *)&tcp_iss_cookie,
23371 	    sizeof (tcp_iss_cookie));
23372 	mutex_exit(&tcp_iss_key_lock);
23373 }
23374 
23375 /*
23376  * Set the RFC 1948 pass phrase
23377  */
23378 /* ARGSUSED */
23379 static int
23380 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
23381     cred_t *cr)
23382 {
23383 	/*
23384 	 * Basically, value contains a new pass phrase.  Pass it along!
23385 	 */
23386 	tcp_iss_key_init((uint8_t *)value, strlen(value));
23387 	return (0);
23388 }
23389 
23390 /* ARGSUSED */
23391 static int
23392 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags)
23393 {
23394 	bzero(buf, sizeof (tcp_sack_info_t));
23395 	return (0);
23396 }
23397 
23398 /* ARGSUSED */
23399 static int
23400 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags)
23401 {
23402 	bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH);
23403 	return (0);
23404 }
23405 
23406 void
23407 tcp_ddi_init(void)
23408 {
23409 	int i;
23410 
23411 	/* Initialize locks */
23412 	rw_init(&tcp_hsp_lock, NULL, RW_DEFAULT, NULL);
23413 	mutex_init(&tcp_g_q_lock, NULL, MUTEX_DEFAULT, NULL);
23414 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
23415 	mutex_init(&tcp_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
23416 	mutex_init(&tcp_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
23417 	rw_init(&tcp_reserved_port_lock, NULL, RW_DEFAULT, NULL);
23418 
23419 	for (i = 0; i < A_CNT(tcp_bind_fanout); i++) {
23420 		mutex_init(&tcp_bind_fanout[i].tf_lock, NULL,
23421 		    MUTEX_DEFAULT, NULL);
23422 	}
23423 
23424 	for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) {
23425 		mutex_init(&tcp_acceptor_fanout[i].tf_lock, NULL,
23426 		    MUTEX_DEFAULT, NULL);
23427 	}
23428 
23429 	/* TCP's IPsec code calls the packet dropper. */
23430 	ip_drop_register(&tcp_dropper, "TCP IPsec policy enforcement");
23431 
23432 	if (!tcp_g_nd) {
23433 		if (!tcp_param_register(tcp_param_arr, A_CNT(tcp_param_arr))) {
23434 			nd_free(&tcp_g_nd);
23435 		}
23436 	}
23437 
23438 	/*
23439 	 * Note: To really walk the device tree you need the devinfo
23440 	 * pointer to your device which is only available after probe/attach.
23441 	 * The following is safe only because it uses ddi_root_node()
23442 	 */
23443 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
23444 	    tcp_opt_obj.odb_opt_arr_cnt);
23445 
23446 	tcp_timercache = kmem_cache_create("tcp_timercache",
23447 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
23448 	    NULL, NULL, NULL, NULL, NULL, 0);
23449 
23450 	tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache",
23451 	    sizeof (tcp_sack_info_t), 0,
23452 	    tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0);
23453 
23454 	tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache",
23455 	    TCP_MAX_COMBINED_HEADER_LENGTH, 0,
23456 	    tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0);
23457 
23458 	tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput);
23459 	tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close);
23460 
23461 	ip_squeue_init(tcp_squeue_add);
23462 
23463 	/* Initialize the random number generator */
23464 	tcp_random_init();
23465 
23466 	/*
23467 	 * Initialize RFC 1948 secret values.  This will probably be reset once
23468 	 * by the boot scripts.
23469 	 *
23470 	 * Use NULL name, as the name is caught by the new lockstats.
23471 	 *
23472 	 * Initialize with some random, non-guessable string, like the global
23473 	 * T_INFO_ACK.
23474 	 */
23475 
23476 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
23477 	    sizeof (tcp_g_t_info_ack));
23478 
23479 	if ((tcp_kstat = kstat_create(TCP_MOD_NAME, 0, "tcpstat",
23480 		"net", KSTAT_TYPE_NAMED,
23481 		sizeof (tcp_statistics) / sizeof (kstat_named_t),
23482 		KSTAT_FLAG_VIRTUAL)) != NULL) {
23483 		tcp_kstat->ks_data = &tcp_statistics;
23484 		kstat_install(tcp_kstat);
23485 	}
23486 
23487 	tcp_kstat_init();
23488 }
23489 
23490 void
23491 tcp_ddi_destroy(void)
23492 {
23493 	int i;
23494 
23495 	nd_free(&tcp_g_nd);
23496 
23497 	for (i = 0; i < A_CNT(tcp_bind_fanout); i++) {
23498 		mutex_destroy(&tcp_bind_fanout[i].tf_lock);
23499 	}
23500 
23501 	for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) {
23502 		mutex_destroy(&tcp_acceptor_fanout[i].tf_lock);
23503 	}
23504 
23505 	mutex_destroy(&tcp_iss_key_lock);
23506 	rw_destroy(&tcp_hsp_lock);
23507 	mutex_destroy(&tcp_g_q_lock);
23508 	mutex_destroy(&tcp_random_lock);
23509 	mutex_destroy(&tcp_epriv_port_lock);
23510 	rw_destroy(&tcp_reserved_port_lock);
23511 
23512 	ip_drop_unregister(&tcp_dropper);
23513 
23514 	kmem_cache_destroy(tcp_timercache);
23515 	kmem_cache_destroy(tcp_sack_info_cache);
23516 	kmem_cache_destroy(tcp_iphc_cache);
23517 
23518 	tcp_kstat_fini();
23519 }
23520 
23521 /*
23522  * Generate ISS, taking into account NDD changes may happen halfway through.
23523  * (If the iss is not zero, set it.)
23524  */
23525 
23526 static void
23527 tcp_iss_init(tcp_t *tcp)
23528 {
23529 	MD5_CTX context;
23530 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
23531 	uint32_t answer[4];
23532 
23533 	tcp_iss_incr_extra += (ISS_INCR >> 1);
23534 	tcp->tcp_iss = tcp_iss_incr_extra;
23535 	switch (tcp_strong_iss) {
23536 	case 2:
23537 		mutex_enter(&tcp_iss_key_lock);
23538 		context = tcp_iss_key;
23539 		mutex_exit(&tcp_iss_key_lock);
23540 		arg.ports = tcp->tcp_ports;
23541 		if (tcp->tcp_ipversion == IPV4_VERSION) {
23542 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
23543 			    &arg.src);
23544 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst,
23545 			    &arg.dst);
23546 		} else {
23547 			arg.src = tcp->tcp_ip6h->ip6_src;
23548 			arg.dst = tcp->tcp_ip6h->ip6_dst;
23549 		}
23550 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
23551 		MD5Final((uchar_t *)answer, &context);
23552 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
23553 		/*
23554 		 * Now that we've hashed into a unique per-connection sequence
23555 		 * space, add a random increment per strong_iss == 1.  So I
23556 		 * guess we'll have to...
23557 		 */
23558 		/* FALLTHRU */
23559 	case 1:
23560 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
23561 		break;
23562 	default:
23563 		tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
23564 		break;
23565 	}
23566 	tcp->tcp_valid_bits = TCP_ISS_VALID;
23567 	tcp->tcp_fss = tcp->tcp_iss - 1;
23568 	tcp->tcp_suna = tcp->tcp_iss;
23569 	tcp->tcp_snxt = tcp->tcp_iss + 1;
23570 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
23571 	tcp->tcp_csuna = tcp->tcp_snxt;
23572 }
23573 
23574 /*
23575  * Exported routine for extracting active tcp connection status.
23576  *
23577  * This is used by the Solaris Cluster Networking software to
23578  * gather a list of connections that need to be forwarded to
23579  * specific nodes in the cluster when configuration changes occur.
23580  *
23581  * The callback is invoked for each tcp_t structure. Returning
23582  * non-zero from the callback routine terminates the search.
23583  */
23584 int
23585 cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg)
23586 {
23587 	tcp_t *tcp;
23588 	cl_tcp_info_t	cl_tcpi;
23589 	connf_t	*connfp;
23590 	conn_t	*connp;
23591 	int	i;
23592 
23593 	ASSERT(callback != NULL);
23594 
23595 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
23596 
23597 		connfp = &ipcl_globalhash_fanout[i];
23598 		connp = NULL;
23599 
23600 		while ((connp =
23601 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
23602 
23603 			tcp = connp->conn_tcp;
23604 			cl_tcpi.cl_tcpi_version = CL_TCPI_V1;
23605 			cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion;
23606 			cl_tcpi.cl_tcpi_state = tcp->tcp_state;
23607 			cl_tcpi.cl_tcpi_lport = tcp->tcp_lport;
23608 			cl_tcpi.cl_tcpi_fport = tcp->tcp_fport;
23609 			/*
23610 			 * The macros tcp_laddr and tcp_faddr give the IPv4
23611 			 * addresses. They are copied implicitly below as
23612 			 * mapped addresses.
23613 			 */
23614 			cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6;
23615 			if (tcp->tcp_ipversion == IPV4_VERSION) {
23616 				cl_tcpi.cl_tcpi_faddr =
23617 				    tcp->tcp_ipha->ipha_dst;
23618 			} else {
23619 				cl_tcpi.cl_tcpi_faddr_v6 =
23620 				    tcp->tcp_ip6h->ip6_dst;
23621 			}
23622 
23623 			/*
23624 			 * If the callback returns non-zero
23625 			 * we terminate the traversal.
23626 			 */
23627 			if ((*callback)(&cl_tcpi, arg) != 0) {
23628 				CONN_DEC_REF(tcp->tcp_connp);
23629 				return (1);
23630 			}
23631 		}
23632 	}
23633 
23634 	return (0);
23635 }
23636 
23637 /*
23638  * Macros used for accessing the different types of sockaddr
23639  * structures inside a tcp_ioc_abort_conn_t.
23640  */
23641 #define	TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local)
23642 #define	TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote)
23643 #define	TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr)
23644 #define	TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr)
23645 #define	TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port)
23646 #define	TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port)
23647 #define	TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local)
23648 #define	TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote)
23649 #define	TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr)
23650 #define	TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr)
23651 #define	TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port)
23652 #define	TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port)
23653 
23654 /*
23655  * Return the correct error code to mimic the behavior
23656  * of a connection reset.
23657  */
23658 #define	TCP_AC_GET_ERRCODE(state, err) {	\
23659 		switch ((state)) {		\
23660 		case TCPS_SYN_SENT:		\
23661 		case TCPS_SYN_RCVD:		\
23662 			(err) = ECONNREFUSED;	\
23663 			break;			\
23664 		case TCPS_ESTABLISHED:		\
23665 		case TCPS_FIN_WAIT_1:		\
23666 		case TCPS_FIN_WAIT_2:		\
23667 		case TCPS_CLOSE_WAIT:		\
23668 			(err) = ECONNRESET;	\
23669 			break;			\
23670 		case TCPS_CLOSING:		\
23671 		case TCPS_LAST_ACK:		\
23672 		case TCPS_TIME_WAIT:		\
23673 			(err) = 0;		\
23674 			break;			\
23675 		default:			\
23676 			(err) = ENXIO;		\
23677 		}				\
23678 	}
23679 
23680 /*
23681  * Check if a tcp structure matches the info in acp.
23682  */
23683 #define	TCP_AC_ADDR_MATCH(acp, tcp)					\
23684 	(((acp)->ac_local.ss_family == AF_INET) ?		\
23685 	((TCP_AC_V4LOCAL((acp)) == INADDR_ANY ||		\
23686 	TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) &&	\
23687 	(TCP_AC_V4REMOTE((acp)) == INADDR_ANY ||		\
23688 	TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) &&	\
23689 	(TCP_AC_V4LPORT((acp)) == 0 ||				\
23690 	TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) &&		\
23691 	(TCP_AC_V4RPORT((acp)) == 0 ||				\
23692 	TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) &&		\
23693 	(acp)->ac_start <= (tcp)->tcp_state &&	\
23694 	(acp)->ac_end >= (tcp)->tcp_state) :		\
23695 	((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) ||	\
23696 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)),		\
23697 	&(tcp)->tcp_ip_src_v6)) &&				\
23698 	(IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) ||	\
23699 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)),		\
23700 	&(tcp)->tcp_remote_v6)) &&				\
23701 	(TCP_AC_V6LPORT((acp)) == 0 ||				\
23702 	TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) &&		\
23703 	(TCP_AC_V6RPORT((acp)) == 0 ||				\
23704 	TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) &&		\
23705 	(acp)->ac_start <= (tcp)->tcp_state &&	\
23706 	(acp)->ac_end >= (tcp)->tcp_state))
23707 
23708 #define	TCP_AC_MATCH(acp, tcp)					\
23709 	(((acp)->ac_zoneid == ALL_ZONES ||			\
23710 	(acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ?	\
23711 	TCP_AC_ADDR_MATCH(acp, tcp) : 0)
23712 
23713 /*
23714  * Build a message containing a tcp_ioc_abort_conn_t structure
23715  * which is filled in with information from acp and tp.
23716  */
23717 static mblk_t *
23718 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp)
23719 {
23720 	mblk_t *mp;
23721 	tcp_ioc_abort_conn_t *tacp;
23722 
23723 	mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO);
23724 	if (mp == NULL)
23725 		return (NULL);
23726 
23727 	mp->b_datap->db_type = M_CTL;
23728 
23729 	*((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN;
23730 	tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr +
23731 		sizeof (uint32_t));
23732 
23733 	tacp->ac_start = acp->ac_start;
23734 	tacp->ac_end = acp->ac_end;
23735 	tacp->ac_zoneid = acp->ac_zoneid;
23736 
23737 	if (acp->ac_local.ss_family == AF_INET) {
23738 		tacp->ac_local.ss_family = AF_INET;
23739 		tacp->ac_remote.ss_family = AF_INET;
23740 		TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src;
23741 		TCP_AC_V4REMOTE(tacp) = tp->tcp_remote;
23742 		TCP_AC_V4LPORT(tacp) = tp->tcp_lport;
23743 		TCP_AC_V4RPORT(tacp) = tp->tcp_fport;
23744 	} else {
23745 		tacp->ac_local.ss_family = AF_INET6;
23746 		tacp->ac_remote.ss_family = AF_INET6;
23747 		TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6;
23748 		TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6;
23749 		TCP_AC_V6LPORT(tacp) = tp->tcp_lport;
23750 		TCP_AC_V6RPORT(tacp) = tp->tcp_fport;
23751 	}
23752 	mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp);
23753 	return (mp);
23754 }
23755 
23756 /*
23757  * Print a tcp_ioc_abort_conn_t structure.
23758  */
23759 static void
23760 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp)
23761 {
23762 	char lbuf[128];
23763 	char rbuf[128];
23764 	sa_family_t af;
23765 	in_port_t lport, rport;
23766 	ushort_t logflags;
23767 
23768 	af = acp->ac_local.ss_family;
23769 
23770 	if (af == AF_INET) {
23771 		(void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp),
23772 				lbuf, 128);
23773 		(void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp),
23774 				rbuf, 128);
23775 		lport = ntohs(TCP_AC_V4LPORT(acp));
23776 		rport = ntohs(TCP_AC_V4RPORT(acp));
23777 	} else {
23778 		(void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp),
23779 				lbuf, 128);
23780 		(void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp),
23781 				rbuf, 128);
23782 		lport = ntohs(TCP_AC_V6LPORT(acp));
23783 		rport = ntohs(TCP_AC_V6RPORT(acp));
23784 	}
23785 
23786 	logflags = SL_TRACE | SL_NOTE;
23787 	/*
23788 	 * Don't print this message to the console if the operation was done
23789 	 * to a non-global zone.
23790 	 */
23791 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
23792 		logflags |= SL_CONSOLE;
23793 	(void) strlog(TCP_MOD_ID, 0, 1, logflags,
23794 		"TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, "
23795 		"start = %d, end = %d\n", lbuf, lport, rbuf, rport,
23796 		acp->ac_start, acp->ac_end);
23797 }
23798 
23799 /*
23800  * Called inside tcp_rput when a message built using
23801  * tcp_ioctl_abort_build_msg is put into a queue.
23802  * Note that when we get here there is no wildcard in acp any more.
23803  */
23804 static void
23805 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp)
23806 {
23807 	tcp_ioc_abort_conn_t *acp;
23808 
23809 	acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t));
23810 	if (tcp->tcp_state <= acp->ac_end) {
23811 		/*
23812 		 * If we get here, we are already on the correct
23813 		 * squeue. This ioctl follows the following path
23814 		 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn
23815 		 * ->tcp_ioctl_abort->squeue_fill (if on a
23816 		 * different squeue)
23817 		 */
23818 		int errcode;
23819 
23820 		TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode);
23821 		(void) tcp_clean_death(tcp, errcode, 26);
23822 	}
23823 	freemsg(mp);
23824 }
23825 
23826 /*
23827  * Abort all matching connections on a hash chain.
23828  */
23829 static int
23830 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count,
23831     boolean_t exact)
23832 {
23833 	int nmatch, err = 0;
23834 	tcp_t *tcp;
23835 	MBLKP mp, last, listhead = NULL;
23836 	conn_t	*tconnp;
23837 	connf_t	*connfp = &ipcl_conn_fanout[index];
23838 
23839 startover:
23840 	nmatch = 0;
23841 
23842 	mutex_enter(&connfp->connf_lock);
23843 	for (tconnp = connfp->connf_head; tconnp != NULL;
23844 	    tconnp = tconnp->conn_next) {
23845 		tcp = tconnp->conn_tcp;
23846 		if (TCP_AC_MATCH(acp, tcp)) {
23847 			CONN_INC_REF(tcp->tcp_connp);
23848 			mp = tcp_ioctl_abort_build_msg(acp, tcp);
23849 			if (mp == NULL) {
23850 				err = ENOMEM;
23851 				CONN_DEC_REF(tcp->tcp_connp);
23852 				break;
23853 			}
23854 			mp->b_prev = (mblk_t *)tcp;
23855 
23856 			if (listhead == NULL) {
23857 				listhead = mp;
23858 				last = mp;
23859 			} else {
23860 				last->b_next = mp;
23861 				last = mp;
23862 			}
23863 			nmatch++;
23864 			if (exact)
23865 				break;
23866 		}
23867 
23868 		/* Avoid holding lock for too long. */
23869 		if (nmatch >= 500)
23870 			break;
23871 	}
23872 	mutex_exit(&connfp->connf_lock);
23873 
23874 	/* Pass mp into the correct tcp */
23875 	while ((mp = listhead) != NULL) {
23876 		listhead = listhead->b_next;
23877 		tcp = (tcp_t *)mp->b_prev;
23878 		mp->b_next = mp->b_prev = NULL;
23879 		squeue_fill(tcp->tcp_connp->conn_sqp, mp,
23880 		    tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET);
23881 	}
23882 
23883 	*count += nmatch;
23884 	if (nmatch >= 500 && err == 0)
23885 		goto startover;
23886 	return (err);
23887 }
23888 
23889 /*
23890  * Abort all connections that matches the attributes specified in acp.
23891  */
23892 static int
23893 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp)
23894 {
23895 	sa_family_t af;
23896 	uint32_t  ports;
23897 	uint16_t *pports;
23898 	int err = 0, count = 0;
23899 	boolean_t exact = B_FALSE; /* set when there is no wildcard */
23900 	int index = -1;
23901 	ushort_t logflags;
23902 
23903 	af = acp->ac_local.ss_family;
23904 
23905 	if (af == AF_INET) {
23906 		if (TCP_AC_V4REMOTE(acp) != INADDR_ANY &&
23907 		    TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) {
23908 			pports = (uint16_t *)&ports;
23909 			pports[1] = TCP_AC_V4LPORT(acp);
23910 			pports[0] = TCP_AC_V4RPORT(acp);
23911 			exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY);
23912 		}
23913 	} else {
23914 		if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) &&
23915 		    TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) {
23916 			pports = (uint16_t *)&ports;
23917 			pports[1] = TCP_AC_V6LPORT(acp);
23918 			pports[0] = TCP_AC_V6RPORT(acp);
23919 			exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp));
23920 		}
23921 	}
23922 
23923 	/*
23924 	 * For cases where remote addr, local port, and remote port are non-
23925 	 * wildcards, tcp_ioctl_abort_bucket will only be called once.
23926 	 */
23927 	if (index != -1) {
23928 		err = tcp_ioctl_abort_bucket(acp, index,
23929 			    &count, exact);
23930 	} else {
23931 		/*
23932 		 * loop through all entries for wildcard case
23933 		 */
23934 		for (index = 0; index < ipcl_conn_fanout_size; index++) {
23935 			err = tcp_ioctl_abort_bucket(acp, index,
23936 			    &count, exact);
23937 			if (err != 0)
23938 				break;
23939 		}
23940 	}
23941 
23942 	logflags = SL_TRACE | SL_NOTE;
23943 	/*
23944 	 * Don't print this message to the console if the operation was done
23945 	 * to a non-global zone.
23946 	 */
23947 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
23948 		logflags |= SL_CONSOLE;
23949 	(void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: "
23950 	    "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' '));
23951 	if (err == 0 && count == 0)
23952 		err = ENOENT;
23953 	return (err);
23954 }
23955 
23956 /*
23957  * Process the TCP_IOC_ABORT_CONN ioctl request.
23958  */
23959 static void
23960 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp)
23961 {
23962 	int	err;
23963 	IOCP    iocp;
23964 	MBLKP   mp1;
23965 	sa_family_t laf, raf;
23966 	tcp_ioc_abort_conn_t *acp;
23967 	zone_t *zptr;
23968 	zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid;
23969 
23970 	iocp = (IOCP)mp->b_rptr;
23971 
23972 	if ((mp1 = mp->b_cont) == NULL ||
23973 	    iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) {
23974 		err = EINVAL;
23975 		goto out;
23976 	}
23977 
23978 	/* check permissions */
23979 	if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) {
23980 		err = EPERM;
23981 		goto out;
23982 	}
23983 
23984 	if (mp1->b_cont != NULL) {
23985 		freemsg(mp1->b_cont);
23986 		mp1->b_cont = NULL;
23987 	}
23988 
23989 	acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr;
23990 	laf = acp->ac_local.ss_family;
23991 	raf = acp->ac_remote.ss_family;
23992 
23993 	/* check that a zone with the supplied zoneid exists */
23994 	if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) {
23995 		zptr = zone_find_by_id(zoneid);
23996 		if (zptr != NULL) {
23997 			zone_rele(zptr);
23998 		} else {
23999 			err = EINVAL;
24000 			goto out;
24001 		}
24002 	}
24003 
24004 	if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT ||
24005 	    acp->ac_start > acp->ac_end || laf != raf ||
24006 	    (laf != AF_INET && laf != AF_INET6)) {
24007 		err = EINVAL;
24008 		goto out;
24009 	}
24010 
24011 	tcp_ioctl_abort_dump(acp);
24012 	err = tcp_ioctl_abort(acp);
24013 
24014 out:
24015 	if (mp1 != NULL) {
24016 		freemsg(mp1);
24017 		mp->b_cont = NULL;
24018 	}
24019 
24020 	if (err != 0)
24021 		miocnak(q, mp, 0, err);
24022 	else
24023 		miocack(q, mp, 0, 0);
24024 }
24025 
24026 /*
24027  * tcp_time_wait_processing() handles processing of incoming packets when
24028  * the tcp is in the TIME_WAIT state.
24029  * A TIME_WAIT tcp that has an associated open TCP stream is never put
24030  * on the time wait list.
24031  */
24032 void
24033 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq,
24034     uint32_t seg_ack, int seg_len, tcph_t *tcph)
24035 {
24036 	int32_t		bytes_acked;
24037 	int32_t		gap;
24038 	int32_t		rgap;
24039 	tcp_opt_t	tcpopt;
24040 	uint_t		flags;
24041 	uint32_t	new_swnd = 0;
24042 	conn_t		*connp;
24043 
24044 	BUMP_LOCAL(tcp->tcp_ibsegs);
24045 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
24046 
24047 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
24048 	new_swnd = BE16_TO_U16(tcph->th_win) <<
24049 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
24050 	if (tcp->tcp_snd_ts_ok) {
24051 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
24052 			tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
24053 			    tcp->tcp_rnxt, TH_ACK);
24054 			goto done;
24055 		}
24056 	}
24057 	gap = seg_seq - tcp->tcp_rnxt;
24058 	rgap = tcp->tcp_rwnd - (gap + seg_len);
24059 	if (gap < 0) {
24060 		BUMP_MIB(&tcp_mib, tcpInDataDupSegs);
24061 		UPDATE_MIB(&tcp_mib, tcpInDataDupBytes,
24062 		    (seg_len > -gap ? -gap : seg_len));
24063 		seg_len += gap;
24064 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
24065 			if (flags & TH_RST) {
24066 				goto done;
24067 			}
24068 			if ((flags & TH_FIN) && seg_len == -1) {
24069 				/*
24070 				 * When TCP receives a duplicate FIN in
24071 				 * TIME_WAIT state, restart the 2 MSL timer.
24072 				 * See page 73 in RFC 793. Make sure this TCP
24073 				 * is already on the TIME_WAIT list. If not,
24074 				 * just restart the timer.
24075 				 */
24076 				if (TCP_IS_DETACHED(tcp)) {
24077 					tcp_time_wait_remove(tcp, NULL);
24078 					tcp_time_wait_append(tcp);
24079 					TCP_DBGSTAT(tcp_rput_time_wait);
24080 				} else {
24081 					ASSERT(tcp != NULL);
24082 					TCP_TIMER_RESTART(tcp,
24083 					    tcp_time_wait_interval);
24084 				}
24085 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
24086 				    tcp->tcp_rnxt, TH_ACK);
24087 				goto done;
24088 			}
24089 			flags |=  TH_ACK_NEEDED;
24090 			seg_len = 0;
24091 			goto process_ack;
24092 		}
24093 
24094 		/* Fix seg_seq, and chew the gap off the front. */
24095 		seg_seq = tcp->tcp_rnxt;
24096 	}
24097 
24098 	if ((flags & TH_SYN) && gap > 0 && rgap < 0) {
24099 		/*
24100 		 * Make sure that when we accept the connection, pick
24101 		 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the
24102 		 * old connection.
24103 		 *
24104 		 * The next ISS generated is equal to tcp_iss_incr_extra
24105 		 * + ISS_INCR/2 + other components depending on the
24106 		 * value of tcp_strong_iss.  We pre-calculate the new
24107 		 * ISS here and compare with tcp_snxt to determine if
24108 		 * we need to make adjustment to tcp_iss_incr_extra.
24109 		 *
24110 		 * The above calculation is ugly and is a
24111 		 * waste of CPU cycles...
24112 		 */
24113 		uint32_t new_iss = tcp_iss_incr_extra;
24114 		int32_t adj;
24115 
24116 		switch (tcp_strong_iss) {
24117 		case 2: {
24118 			/* Add time and MD5 components. */
24119 			uint32_t answer[4];
24120 			struct {
24121 				uint32_t ports;
24122 				in6_addr_t src;
24123 				in6_addr_t dst;
24124 			} arg;
24125 			MD5_CTX context;
24126 
24127 			mutex_enter(&tcp_iss_key_lock);
24128 			context = tcp_iss_key;
24129 			mutex_exit(&tcp_iss_key_lock);
24130 			arg.ports = tcp->tcp_ports;
24131 			/* We use MAPPED addresses in tcp_iss_init */
24132 			arg.src = tcp->tcp_ip_src_v6;
24133 			if (tcp->tcp_ipversion == IPV4_VERSION) {
24134 				IN6_IPADDR_TO_V4MAPPED(
24135 					tcp->tcp_ipha->ipha_dst,
24136 					    &arg.dst);
24137 			} else {
24138 				arg.dst =
24139 				    tcp->tcp_ip6h->ip6_dst;
24140 			}
24141 			MD5Update(&context, (uchar_t *)&arg,
24142 			    sizeof (arg));
24143 			MD5Final((uchar_t *)answer, &context);
24144 			answer[0] ^= answer[1] ^ answer[2] ^ answer[3];
24145 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0];
24146 			break;
24147 		}
24148 		case 1:
24149 			/* Add time component and min random (i.e. 1). */
24150 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1;
24151 			break;
24152 		default:
24153 			/* Add only time component. */
24154 			new_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
24155 			break;
24156 		}
24157 		if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) {
24158 			/*
24159 			 * New ISS not guaranteed to be ISS_INCR/2
24160 			 * ahead of the current tcp_snxt, so add the
24161 			 * difference to tcp_iss_incr_extra.
24162 			 */
24163 			tcp_iss_incr_extra += adj;
24164 		}
24165 		/*
24166 		 * If tcp_clean_death() can not perform the task now,
24167 		 * drop the SYN packet and let the other side re-xmit.
24168 		 * Otherwise pass the SYN packet back in, since the
24169 		 * old tcp state has been cleaned up or freed.
24170 		 */
24171 		if (tcp_clean_death(tcp, 0, 27) == -1)
24172 			goto done;
24173 		/*
24174 		 * We will come back to tcp_rput_data
24175 		 * on the global queue. Packets destined
24176 		 * for the global queue will be checked
24177 		 * with global policy. But the policy for
24178 		 * this packet has already been checked as
24179 		 * this was destined for the detached
24180 		 * connection. We need to bypass policy
24181 		 * check this time by attaching a dummy
24182 		 * ipsec_in with ipsec_in_dont_check set.
24183 		 */
24184 		if ((connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid)) !=
24185 		    NULL) {
24186 			TCP_STAT(tcp_time_wait_syn_success);
24187 			tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp);
24188 			return;
24189 		}
24190 		goto done;
24191 	}
24192 
24193 	/*
24194 	 * rgap is the amount of stuff received out of window.  A negative
24195 	 * value is the amount out of window.
24196 	 */
24197 	if (rgap < 0) {
24198 		BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs);
24199 		UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap);
24200 		/* Fix seg_len and make sure there is something left. */
24201 		seg_len += rgap;
24202 		if (seg_len <= 0) {
24203 			if (flags & TH_RST) {
24204 				goto done;
24205 			}
24206 			flags |=  TH_ACK_NEEDED;
24207 			seg_len = 0;
24208 			goto process_ack;
24209 		}
24210 	}
24211 	/*
24212 	 * Check whether we can update tcp_ts_recent.  This test is
24213 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
24214 	 * Extensions for High Performance: An Update", Internet Draft.
24215 	 */
24216 	if (tcp->tcp_snd_ts_ok &&
24217 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
24218 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
24219 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
24220 		tcp->tcp_last_rcv_lbolt = lbolt64;
24221 	}
24222 
24223 	if (seg_seq != tcp->tcp_rnxt && seg_len > 0) {
24224 		/* Always ack out of order packets */
24225 		flags |= TH_ACK_NEEDED;
24226 		seg_len = 0;
24227 	} else if (seg_len > 0) {
24228 		BUMP_MIB(&tcp_mib, tcpInClosed);
24229 		BUMP_MIB(&tcp_mib, tcpInDataInorderSegs);
24230 		UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len);
24231 	}
24232 	if (flags & TH_RST) {
24233 		(void) tcp_clean_death(tcp, 0, 28);
24234 		goto done;
24235 	}
24236 	if (flags & TH_SYN) {
24237 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
24238 		    TH_RST|TH_ACK);
24239 		/*
24240 		 * Do not delete the TCP structure if it is in
24241 		 * TIME_WAIT state.  Refer to RFC 1122, 4.2.2.13.
24242 		 */
24243 		goto done;
24244 	}
24245 process_ack:
24246 	if (flags & TH_ACK) {
24247 		bytes_acked = (int)(seg_ack - tcp->tcp_suna);
24248 		if (bytes_acked <= 0) {
24249 			if (bytes_acked == 0 && seg_len == 0 &&
24250 			    new_swnd == tcp->tcp_swnd)
24251 				BUMP_MIB(&tcp_mib, tcpInDupAck);
24252 		} else {
24253 			/* Acks something not sent */
24254 			flags |= TH_ACK_NEEDED;
24255 		}
24256 	}
24257 	if (flags & TH_ACK_NEEDED) {
24258 		/*
24259 		 * Time to send an ack for some reason.
24260 		 */
24261 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
24262 		    tcp->tcp_rnxt, TH_ACK);
24263 	}
24264 done:
24265 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
24266 		DB_CKSUMSTART(mp) = 0;
24267 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
24268 		TCP_STAT(tcp_time_wait_syn_fail);
24269 	}
24270 	freemsg(mp);
24271 }
24272 
24273 /*
24274  * Return zero if the buffers are identical in length and content.
24275  * This is used for comparing extension header buffers.
24276  * Note that an extension header would be declared different
24277  * even if all that changed was the next header value in that header i.e.
24278  * what really changed is the next extension header.
24279  */
24280 static boolean_t
24281 tcp_cmpbuf(void *a, uint_t alen, boolean_t b_valid, void *b, uint_t blen)
24282 {
24283 	if (!b_valid)
24284 		blen = 0;
24285 
24286 	if (alen != blen)
24287 		return (B_TRUE);
24288 	if (alen == 0)
24289 		return (B_FALSE);	/* Both zero length */
24290 	return (bcmp(a, b, alen));
24291 }
24292 
24293 /*
24294  * Preallocate memory for tcp_savebuf(). Returns B_TRUE if ok.
24295  * Return B_FALSE if memory allocation fails - don't change any state!
24296  */
24297 static boolean_t
24298 tcp_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
24299     void *src, uint_t srclen)
24300 {
24301 	void *dst;
24302 
24303 	if (!src_valid)
24304 		srclen = 0;
24305 
24306 	ASSERT(*dstlenp == 0);
24307 	if (src != NULL && srclen != 0) {
24308 		dst = mi_alloc(srclen, BPRI_MED);
24309 		if (dst == NULL)
24310 			return (B_FALSE);
24311 	} else {
24312 		dst = NULL;
24313 	}
24314 	if (*dstp != NULL) {
24315 		mi_free(*dstp);
24316 		*dstp = NULL;
24317 		*dstlenp = 0;
24318 	}
24319 	*dstp = dst;
24320 	if (dst != NULL)
24321 		*dstlenp = srclen;
24322 	else
24323 		*dstlenp = 0;
24324 	return (B_TRUE);
24325 }
24326 
24327 /*
24328  * Replace what is in *dst, *dstlen with the source.
24329  * Assumes tcp_allocbuf has already been called.
24330  */
24331 static void
24332 tcp_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
24333     void *src, uint_t srclen)
24334 {
24335 	if (!src_valid)
24336 		srclen = 0;
24337 
24338 	ASSERT(*dstlenp == srclen);
24339 	if (src != NULL && srclen != 0) {
24340 		bcopy(src, *dstp, srclen);
24341 	}
24342 }
24343 
24344 /*
24345  * Allocate a T_SVR4_OPTMGMT_REQ.
24346  * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so
24347  * that tcp_rput_other can drop the acks.
24348  */
24349 static mblk_t *
24350 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen)
24351 {
24352 	mblk_t *mp;
24353 	struct T_optmgmt_req *tor;
24354 	struct opthdr *oh;
24355 	uint_t size;
24356 	char *optptr;
24357 
24358 	size = sizeof (*tor) + sizeof (*oh) + optlen;
24359 	mp = allocb(size, BPRI_MED);
24360 	if (mp == NULL)
24361 		return (NULL);
24362 
24363 	mp->b_wptr += size;
24364 	mp->b_datap->db_type = M_PROTO;
24365 	tor = (struct T_optmgmt_req *)mp->b_rptr;
24366 	tor->PRIM_type = T_SVR4_OPTMGMT_REQ;
24367 	tor->MGMT_flags = T_NEGOTIATE;
24368 	tor->OPT_length = sizeof (*oh) + optlen;
24369 	tor->OPT_offset = (t_scalar_t)sizeof (*tor);
24370 
24371 	oh = (struct opthdr *)&tor[1];
24372 	oh->level = level;
24373 	oh->name = cmd;
24374 	oh->len = optlen;
24375 	if (optlen != 0) {
24376 		optptr = (char *)&oh[1];
24377 		bcopy(opt, optptr, optlen);
24378 	}
24379 	return (mp);
24380 }
24381 
24382 /*
24383  * TCP Timers Implementation.
24384  */
24385 timeout_id_t
24386 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim)
24387 {
24388 	mblk_t *mp;
24389 	tcp_timer_t *tcpt;
24390 	tcp_t *tcp = connp->conn_tcp;
24391 
24392 	ASSERT(connp->conn_sqp != NULL);
24393 
24394 	TCP_DBGSTAT(tcp_timeout_calls);
24395 
24396 	if (tcp->tcp_timercache == NULL) {
24397 		mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC);
24398 	} else {
24399 		TCP_DBGSTAT(tcp_timeout_cached_alloc);
24400 		mp = tcp->tcp_timercache;
24401 		tcp->tcp_timercache = mp->b_next;
24402 		mp->b_next = NULL;
24403 		ASSERT(mp->b_wptr == NULL);
24404 	}
24405 
24406 	CONN_INC_REF(connp);
24407 	tcpt = (tcp_timer_t *)mp->b_rptr;
24408 	tcpt->connp = connp;
24409 	tcpt->tcpt_proc = f;
24410 	tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim);
24411 	return ((timeout_id_t)mp);
24412 }
24413 
24414 static void
24415 tcp_timer_callback(void *arg)
24416 {
24417 	mblk_t *mp = (mblk_t *)arg;
24418 	tcp_timer_t *tcpt;
24419 	conn_t	*connp;
24420 
24421 	tcpt = (tcp_timer_t *)mp->b_rptr;
24422 	connp = tcpt->connp;
24423 	squeue_fill(connp->conn_sqp, mp,
24424 	    tcp_timer_handler, connp, SQTAG_TCP_TIMER);
24425 }
24426 
24427 static void
24428 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2)
24429 {
24430 	tcp_timer_t *tcpt;
24431 	conn_t *connp = (conn_t *)arg;
24432 	tcp_t *tcp = connp->conn_tcp;
24433 
24434 	tcpt = (tcp_timer_t *)mp->b_rptr;
24435 	ASSERT(connp == tcpt->connp);
24436 	ASSERT((squeue_t *)arg2 == connp->conn_sqp);
24437 
24438 	/*
24439 	 * If the TCP has reached the closed state, don't proceed any
24440 	 * further. This TCP logically does not exist on the system.
24441 	 * tcpt_proc could for example access queues, that have already
24442 	 * been qprocoff'ed off. Also see comments at the start of tcp_input
24443 	 */
24444 	if (tcp->tcp_state != TCPS_CLOSED) {
24445 		(*tcpt->tcpt_proc)(connp);
24446 	} else {
24447 		tcp->tcp_timer_tid = 0;
24448 	}
24449 	tcp_timer_free(connp->conn_tcp, mp);
24450 }
24451 
24452 /*
24453  * There is potential race with untimeout and the handler firing at the same
24454  * time. The mblock may be freed by the handler while we are trying to use
24455  * it. But since both should execute on the same squeue, this race should not
24456  * occur.
24457  */
24458 clock_t
24459 tcp_timeout_cancel(conn_t *connp, timeout_id_t id)
24460 {
24461 	mblk_t	*mp = (mblk_t *)id;
24462 	tcp_timer_t *tcpt;
24463 	clock_t delta;
24464 
24465 	TCP_DBGSTAT(tcp_timeout_cancel_reqs);
24466 
24467 	if (mp == NULL)
24468 		return (-1);
24469 
24470 	tcpt = (tcp_timer_t *)mp->b_rptr;
24471 	ASSERT(tcpt->connp == connp);
24472 
24473 	delta = untimeout(tcpt->tcpt_tid);
24474 
24475 	if (delta >= 0) {
24476 		TCP_DBGSTAT(tcp_timeout_canceled);
24477 		tcp_timer_free(connp->conn_tcp, mp);
24478 		CONN_DEC_REF(connp);
24479 	}
24480 
24481 	return (delta);
24482 }
24483 
24484 /*
24485  * Allocate space for the timer event. The allocation looks like mblk, but it is
24486  * not a proper mblk. To avoid confusion we set b_wptr to NULL.
24487  *
24488  * Dealing with failures: If we can't allocate from the timer cache we try
24489  * allocating from dblock caches using allocb_tryhard(). In this case b_wptr
24490  * points to b_rptr.
24491  * If we can't allocate anything using allocb_tryhard(), we perform a last
24492  * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and
24493  * save the actual allocation size in b_datap.
24494  */
24495 mblk_t *
24496 tcp_timermp_alloc(int kmflags)
24497 {
24498 	mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache,
24499 	    kmflags & ~KM_PANIC);
24500 
24501 	if (mp != NULL) {
24502 		mp->b_next = mp->b_prev = NULL;
24503 		mp->b_rptr = (uchar_t *)(&mp[1]);
24504 		mp->b_wptr = NULL;
24505 		mp->b_datap = NULL;
24506 		mp->b_queue = NULL;
24507 	} else if (kmflags & KM_PANIC) {
24508 		/*
24509 		 * Failed to allocate memory for the timer. Try allocating from
24510 		 * dblock caches.
24511 		 */
24512 		TCP_STAT(tcp_timermp_allocfail);
24513 		mp = allocb_tryhard(sizeof (tcp_timer_t));
24514 		if (mp == NULL) {
24515 			size_t size = 0;
24516 			/*
24517 			 * Memory is really low. Try tryhard allocation.
24518 			 */
24519 			TCP_STAT(tcp_timermp_allocdblfail);
24520 			mp = kmem_alloc_tryhard(sizeof (mblk_t) +
24521 			    sizeof (tcp_timer_t), &size, kmflags);
24522 			mp->b_rptr = (uchar_t *)(&mp[1]);
24523 			mp->b_next = mp->b_prev = NULL;
24524 			mp->b_wptr = (uchar_t *)-1;
24525 			mp->b_datap = (dblk_t *)size;
24526 			mp->b_queue = NULL;
24527 		}
24528 		ASSERT(mp->b_wptr != NULL);
24529 	}
24530 	TCP_DBGSTAT(tcp_timermp_alloced);
24531 
24532 	return (mp);
24533 }
24534 
24535 /*
24536  * Free per-tcp timer cache.
24537  * It can only contain entries from tcp_timercache.
24538  */
24539 void
24540 tcp_timermp_free(tcp_t *tcp)
24541 {
24542 	mblk_t *mp;
24543 
24544 	while ((mp = tcp->tcp_timercache) != NULL) {
24545 		ASSERT(mp->b_wptr == NULL);
24546 		tcp->tcp_timercache = tcp->tcp_timercache->b_next;
24547 		kmem_cache_free(tcp_timercache, mp);
24548 	}
24549 }
24550 
24551 /*
24552  * Free timer event. Put it on the per-tcp timer cache if there is not too many
24553  * events there already (currently at most two events are cached).
24554  * If the event is not allocated from the timer cache, free it right away.
24555  */
24556 static void
24557 tcp_timer_free(tcp_t *tcp, mblk_t *mp)
24558 {
24559 	mblk_t *mp1 = tcp->tcp_timercache;
24560 
24561 	if (mp->b_wptr != NULL) {
24562 		/*
24563 		 * This allocation is not from a timer cache, free it right
24564 		 * away.
24565 		 */
24566 		if (mp->b_wptr != (uchar_t *)-1)
24567 			freeb(mp);
24568 		else
24569 			kmem_free(mp, (size_t)mp->b_datap);
24570 	} else if (mp1 == NULL || mp1->b_next == NULL) {
24571 		/* Cache this timer block for future allocations */
24572 		mp->b_rptr = (uchar_t *)(&mp[1]);
24573 		mp->b_next = mp1;
24574 		tcp->tcp_timercache = mp;
24575 	} else {
24576 		kmem_cache_free(tcp_timercache, mp);
24577 		TCP_DBGSTAT(tcp_timermp_freed);
24578 	}
24579 }
24580 
24581 /*
24582  * End of TCP Timers implementation.
24583  */
24584 
24585 /*
24586  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
24587  * on the specified backing STREAMS q. Note, the caller may make the
24588  * decision to call based on the tcp_t.tcp_flow_stopped value which
24589  * when check outside the q's lock is only an advisory check ...
24590  */
24591 
24592 void
24593 tcp_setqfull(tcp_t *tcp)
24594 {
24595 	queue_t *q = tcp->tcp_wq;
24596 
24597 	if (!(q->q_flag & QFULL)) {
24598 		mutex_enter(QLOCK(q));
24599 		if (!(q->q_flag & QFULL)) {
24600 			/* still need to set QFULL */
24601 			q->q_flag |= QFULL;
24602 			tcp->tcp_flow_stopped = B_TRUE;
24603 			mutex_exit(QLOCK(q));
24604 			TCP_STAT(tcp_flwctl_on);
24605 		} else {
24606 			mutex_exit(QLOCK(q));
24607 		}
24608 	}
24609 }
24610 
24611 void
24612 tcp_clrqfull(tcp_t *tcp)
24613 {
24614 	queue_t *q = tcp->tcp_wq;
24615 
24616 	if (q->q_flag & QFULL) {
24617 		mutex_enter(QLOCK(q));
24618 		if (q->q_flag & QFULL) {
24619 			q->q_flag &= ~QFULL;
24620 			tcp->tcp_flow_stopped = B_FALSE;
24621 			mutex_exit(QLOCK(q));
24622 			if (q->q_flag & QWANTW)
24623 				qbackenable(q, 0);
24624 		} else {
24625 			mutex_exit(QLOCK(q));
24626 		}
24627 	}
24628 }
24629 
24630 /*
24631  * TCP Kstats implementation
24632  */
24633 static void
24634 tcp_kstat_init(void)
24635 {
24636 	tcp_named_kstat_t template = {
24637 		{ "rtoAlgorithm",	KSTAT_DATA_INT32, 0 },
24638 		{ "rtoMin",		KSTAT_DATA_INT32, 0 },
24639 		{ "rtoMax",		KSTAT_DATA_INT32, 0 },
24640 		{ "maxConn",		KSTAT_DATA_INT32, 0 },
24641 		{ "activeOpens",	KSTAT_DATA_UINT32, 0 },
24642 		{ "passiveOpens",	KSTAT_DATA_UINT32, 0 },
24643 		{ "attemptFails",	KSTAT_DATA_UINT32, 0 },
24644 		{ "estabResets",	KSTAT_DATA_UINT32, 0 },
24645 		{ "currEstab",		KSTAT_DATA_UINT32, 0 },
24646 		{ "inSegs",		KSTAT_DATA_UINT32, 0 },
24647 		{ "outSegs",		KSTAT_DATA_UINT32, 0 },
24648 		{ "retransSegs",	KSTAT_DATA_UINT32, 0 },
24649 		{ "connTableSize",	KSTAT_DATA_INT32, 0 },
24650 		{ "outRsts",		KSTAT_DATA_UINT32, 0 },
24651 		{ "outDataSegs",	KSTAT_DATA_UINT32, 0 },
24652 		{ "outDataBytes",	KSTAT_DATA_UINT32, 0 },
24653 		{ "retransBytes",	KSTAT_DATA_UINT32, 0 },
24654 		{ "outAck",		KSTAT_DATA_UINT32, 0 },
24655 		{ "outAckDelayed",	KSTAT_DATA_UINT32, 0 },
24656 		{ "outUrg",		KSTAT_DATA_UINT32, 0 },
24657 		{ "outWinUpdate",	KSTAT_DATA_UINT32, 0 },
24658 		{ "outWinProbe",	KSTAT_DATA_UINT32, 0 },
24659 		{ "outControl",		KSTAT_DATA_UINT32, 0 },
24660 		{ "outFastRetrans",	KSTAT_DATA_UINT32, 0 },
24661 		{ "inAckSegs",		KSTAT_DATA_UINT32, 0 },
24662 		{ "inAckBytes",		KSTAT_DATA_UINT32, 0 },
24663 		{ "inDupAck",		KSTAT_DATA_UINT32, 0 },
24664 		{ "inAckUnsent",	KSTAT_DATA_UINT32, 0 },
24665 		{ "inDataInorderSegs",	KSTAT_DATA_UINT32, 0 },
24666 		{ "inDataInorderBytes",	KSTAT_DATA_UINT32, 0 },
24667 		{ "inDataUnorderSegs",	KSTAT_DATA_UINT32, 0 },
24668 		{ "inDataUnorderBytes",	KSTAT_DATA_UINT32, 0 },
24669 		{ "inDataDupSegs",	KSTAT_DATA_UINT32, 0 },
24670 		{ "inDataDupBytes",	KSTAT_DATA_UINT32, 0 },
24671 		{ "inDataPartDupSegs",	KSTAT_DATA_UINT32, 0 },
24672 		{ "inDataPartDupBytes",	KSTAT_DATA_UINT32, 0 },
24673 		{ "inDataPastWinSegs",	KSTAT_DATA_UINT32, 0 },
24674 		{ "inDataPastWinBytes",	KSTAT_DATA_UINT32, 0 },
24675 		{ "inWinProbe",		KSTAT_DATA_UINT32, 0 },
24676 		{ "inWinUpdate",	KSTAT_DATA_UINT32, 0 },
24677 		{ "inClosed",		KSTAT_DATA_UINT32, 0 },
24678 		{ "rttUpdate",		KSTAT_DATA_UINT32, 0 },
24679 		{ "rttNoUpdate",	KSTAT_DATA_UINT32, 0 },
24680 		{ "timRetrans",		KSTAT_DATA_UINT32, 0 },
24681 		{ "timRetransDrop",	KSTAT_DATA_UINT32, 0 },
24682 		{ "timKeepalive",	KSTAT_DATA_UINT32, 0 },
24683 		{ "timKeepaliveProbe",	KSTAT_DATA_UINT32, 0 },
24684 		{ "timKeepaliveDrop",	KSTAT_DATA_UINT32, 0 },
24685 		{ "listenDrop",		KSTAT_DATA_UINT32, 0 },
24686 		{ "listenDropQ0",	KSTAT_DATA_UINT32, 0 },
24687 		{ "halfOpenDrop",	KSTAT_DATA_UINT32, 0 },
24688 		{ "outSackRetransSegs",	KSTAT_DATA_UINT32, 0 },
24689 		{ "connTableSize6",	KSTAT_DATA_INT32, 0 }
24690 	};
24691 
24692 	tcp_mibkp = kstat_create(TCP_MOD_NAME, 0, TCP_MOD_NAME,
24693 	    "mib2", KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0);
24694 
24695 	if (tcp_mibkp == NULL)
24696 		return;
24697 
24698 	template.rtoAlgorithm.value.ui32 = 4;
24699 	template.rtoMin.value.ui32 = tcp_rexmit_interval_min;
24700 	template.rtoMax.value.ui32 = tcp_rexmit_interval_max;
24701 	template.maxConn.value.i32 = -1;
24702 
24703 	bcopy(&template, tcp_mibkp->ks_data, sizeof (template));
24704 
24705 	tcp_mibkp->ks_update = tcp_kstat_update;
24706 
24707 	kstat_install(tcp_mibkp);
24708 }
24709 
24710 static void
24711 tcp_kstat_fini(void)
24712 {
24713 
24714 	if (tcp_mibkp != NULL) {
24715 		kstat_delete(tcp_mibkp);
24716 		tcp_mibkp = NULL;
24717 	}
24718 }
24719 
24720 static int
24721 tcp_kstat_update(kstat_t *kp, int rw)
24722 {
24723 	tcp_named_kstat_t	*tcpkp;
24724 	tcp_t			*tcp;
24725 	connf_t			*connfp;
24726 	conn_t			*connp;
24727 	int 			i;
24728 
24729 	if (!kp || !kp->ks_data)
24730 		return (EIO);
24731 
24732 	if (rw == KSTAT_WRITE)
24733 		return (EACCES);
24734 
24735 	tcpkp = (tcp_named_kstat_t *)kp->ks_data;
24736 
24737 	tcpkp->currEstab.value.ui32 = 0;
24738 
24739 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
24740 		connfp = &ipcl_globalhash_fanout[i];
24741 		connp = NULL;
24742 		while ((connp =
24743 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
24744 			tcp = connp->conn_tcp;
24745 			switch (tcp_snmp_state(tcp)) {
24746 			case MIB2_TCP_established:
24747 			case MIB2_TCP_closeWait:
24748 				tcpkp->currEstab.value.ui32++;
24749 				break;
24750 			}
24751 		}
24752 	}
24753 
24754 	tcpkp->activeOpens.value.ui32 = tcp_mib.tcpActiveOpens;
24755 	tcpkp->passiveOpens.value.ui32 = tcp_mib.tcpPassiveOpens;
24756 	tcpkp->attemptFails.value.ui32 = tcp_mib.tcpAttemptFails;
24757 	tcpkp->estabResets.value.ui32 = tcp_mib.tcpEstabResets;
24758 	tcpkp->inSegs.value.ui32 = tcp_mib.tcpInSegs;
24759 	tcpkp->outSegs.value.ui32 = tcp_mib.tcpOutSegs;
24760 	tcpkp->retransSegs.value.ui32 =	tcp_mib.tcpRetransSegs;
24761 	tcpkp->connTableSize.value.i32 = tcp_mib.tcpConnTableSize;
24762 	tcpkp->outRsts.value.ui32 = tcp_mib.tcpOutRsts;
24763 	tcpkp->outDataSegs.value.ui32 = tcp_mib.tcpOutDataSegs;
24764 	tcpkp->outDataBytes.value.ui32 = tcp_mib.tcpOutDataBytes;
24765 	tcpkp->retransBytes.value.ui32 = tcp_mib.tcpRetransBytes;
24766 	tcpkp->outAck.value.ui32 = tcp_mib.tcpOutAck;
24767 	tcpkp->outAckDelayed.value.ui32 = tcp_mib.tcpOutAckDelayed;
24768 	tcpkp->outUrg.value.ui32 = tcp_mib.tcpOutUrg;
24769 	tcpkp->outWinUpdate.value.ui32 = tcp_mib.tcpOutWinUpdate;
24770 	tcpkp->outWinProbe.value.ui32 = tcp_mib.tcpOutWinProbe;
24771 	tcpkp->outControl.value.ui32 = tcp_mib.tcpOutControl;
24772 	tcpkp->outFastRetrans.value.ui32 = tcp_mib.tcpOutFastRetrans;
24773 	tcpkp->inAckSegs.value.ui32 = tcp_mib.tcpInAckSegs;
24774 	tcpkp->inAckBytes.value.ui32 = tcp_mib.tcpInAckBytes;
24775 	tcpkp->inDupAck.value.ui32 = tcp_mib.tcpInDupAck;
24776 	tcpkp->inAckUnsent.value.ui32 = tcp_mib.tcpInAckUnsent;
24777 	tcpkp->inDataInorderSegs.value.ui32 = tcp_mib.tcpInDataInorderSegs;
24778 	tcpkp->inDataInorderBytes.value.ui32 = tcp_mib.tcpInDataInorderBytes;
24779 	tcpkp->inDataUnorderSegs.value.ui32 = tcp_mib.tcpInDataUnorderSegs;
24780 	tcpkp->inDataUnorderBytes.value.ui32 = tcp_mib.tcpInDataUnorderBytes;
24781 	tcpkp->inDataDupSegs.value.ui32 = tcp_mib.tcpInDataDupSegs;
24782 	tcpkp->inDataDupBytes.value.ui32 = tcp_mib.tcpInDataDupBytes;
24783 	tcpkp->inDataPartDupSegs.value.ui32 = tcp_mib.tcpInDataPartDupSegs;
24784 	tcpkp->inDataPartDupBytes.value.ui32 = tcp_mib.tcpInDataPartDupBytes;
24785 	tcpkp->inDataPastWinSegs.value.ui32 = tcp_mib.tcpInDataPastWinSegs;
24786 	tcpkp->inDataPastWinBytes.value.ui32 = tcp_mib.tcpInDataPastWinBytes;
24787 	tcpkp->inWinProbe.value.ui32 = tcp_mib.tcpInWinProbe;
24788 	tcpkp->inWinUpdate.value.ui32 = tcp_mib.tcpInWinUpdate;
24789 	tcpkp->inClosed.value.ui32 = tcp_mib.tcpInClosed;
24790 	tcpkp->rttNoUpdate.value.ui32 = tcp_mib.tcpRttNoUpdate;
24791 	tcpkp->rttUpdate.value.ui32 = tcp_mib.tcpRttUpdate;
24792 	tcpkp->timRetrans.value.ui32 = tcp_mib.tcpTimRetrans;
24793 	tcpkp->timRetransDrop.value.ui32 = tcp_mib.tcpTimRetransDrop;
24794 	tcpkp->timKeepalive.value.ui32 = tcp_mib.tcpTimKeepalive;
24795 	tcpkp->timKeepaliveProbe.value.ui32 = tcp_mib.tcpTimKeepaliveProbe;
24796 	tcpkp->timKeepaliveDrop.value.ui32 = tcp_mib.tcpTimKeepaliveDrop;
24797 	tcpkp->listenDrop.value.ui32 = tcp_mib.tcpListenDrop;
24798 	tcpkp->listenDropQ0.value.ui32 = tcp_mib.tcpListenDropQ0;
24799 	tcpkp->halfOpenDrop.value.ui32 = tcp_mib.tcpHalfOpenDrop;
24800 	tcpkp->outSackRetransSegs.value.ui32 = tcp_mib.tcpOutSackRetransSegs;
24801 	tcpkp->connTableSize6.value.i32 = tcp_mib.tcp6ConnTableSize;
24802 
24803 	return (0);
24804 }
24805 
24806 void
24807 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp)
24808 {
24809 	uint16_t	hdr_len;
24810 	ipha_t		*ipha;
24811 	uint8_t		*nexthdrp;
24812 	tcph_t		*tcph;
24813 
24814 	/* Already has an eager */
24815 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
24816 		TCP_STAT(tcp_reinput_syn);
24817 		squeue_enter(connp->conn_sqp, mp, connp->conn_recv,
24818 		    connp, SQTAG_TCP_REINPUT_EAGER);
24819 		return;
24820 	}
24821 
24822 	switch (IPH_HDR_VERSION(mp->b_rptr)) {
24823 	case IPV4_VERSION:
24824 		ipha = (ipha_t *)mp->b_rptr;
24825 		hdr_len = IPH_HDR_LENGTH(ipha);
24826 		break;
24827 	case IPV6_VERSION:
24828 		if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr,
24829 		    &hdr_len, &nexthdrp)) {
24830 			CONN_DEC_REF(connp);
24831 			freemsg(mp);
24832 			return;
24833 		}
24834 		break;
24835 	}
24836 
24837 	tcph = (tcph_t *)&mp->b_rptr[hdr_len];
24838 	if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) {
24839 		mp->b_datap->db_struioflag |= STRUIO_EAGER;
24840 		DB_CKSUMSTART(mp) = (intptr_t)sqp;
24841 	}
24842 
24843 	squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp,
24844 	    SQTAG_TCP_REINPUT);
24845 }
24846 
24847 static squeue_func_t
24848 tcp_squeue_switch(int val)
24849 {
24850 	squeue_func_t rval = squeue_fill;
24851 
24852 	switch (val) {
24853 	case 1:
24854 		rval = squeue_enter_nodrain;
24855 		break;
24856 	case 2:
24857 		rval = squeue_enter;
24858 		break;
24859 	default:
24860 		break;
24861 	}
24862 	return (rval);
24863 }
24864 
24865 static void
24866 tcp_squeue_add(squeue_t *sqp)
24867 {
24868 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
24869 		sizeof (tcp_squeue_priv_t), KM_SLEEP);
24870 
24871 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
24872 	tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector,
24873 	    sqp, TCP_TIME_WAIT_DELAY);
24874 	if (tcp_free_list_max_cnt == 0) {
24875 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
24876 			max_ncpus : boot_max_ncpus);
24877 
24878 		/*
24879 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
24880 		 */
24881 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
24882 			(tcp_ncpus * sizeof (tcp_t) * 100);
24883 	}
24884 	tcp_time_wait->tcp_free_list_cnt = 0;
24885 }
24886