xref: /illumos-gate/usr/src/uts/common/inet/tcp/tcp.c (revision 634942f535e93dad348fa175c9bc116e7bf936ba)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, Joyent Inc. All rights reserved.
25  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
26  * Copyright (c) 2013, 2016 by Delphix. All rights reserved.
27  * Copyright 2014, OmniTI Computer Consulting, Inc. All rights reserved.
28  */
29 /* Copyright (c) 1990 Mentat Inc. */
30 
31 #include <sys/types.h>
32 #include <sys/stream.h>
33 #include <sys/strsun.h>
34 #include <sys/strsubr.h>
35 #include <sys/stropts.h>
36 #include <sys/strlog.h>
37 #define	_SUN_TPI_VERSION 2
38 #include <sys/tihdr.h>
39 #include <sys/timod.h>
40 #include <sys/ddi.h>
41 #include <sys/sunddi.h>
42 #include <sys/suntpi.h>
43 #include <sys/xti_inet.h>
44 #include <sys/cmn_err.h>
45 #include <sys/debug.h>
46 #include <sys/sdt.h>
47 #include <sys/vtrace.h>
48 #include <sys/kmem.h>
49 #include <sys/ethernet.h>
50 #include <sys/cpuvar.h>
51 #include <sys/dlpi.h>
52 #include <sys/pattr.h>
53 #include <sys/policy.h>
54 #include <sys/priv.h>
55 #include <sys/zone.h>
56 #include <sys/sunldi.h>
57 
58 #include <sys/errno.h>
59 #include <sys/signal.h>
60 #include <sys/socket.h>
61 #include <sys/socketvar.h>
62 #include <sys/sockio.h>
63 #include <sys/isa_defs.h>
64 #include <sys/md5.h>
65 #include <sys/random.h>
66 #include <sys/uio.h>
67 #include <sys/systm.h>
68 #include <netinet/in.h>
69 #include <netinet/tcp.h>
70 #include <netinet/ip6.h>
71 #include <netinet/icmp6.h>
72 #include <net/if.h>
73 #include <net/route.h>
74 #include <inet/ipsec_impl.h>
75 
76 #include <inet/common.h>
77 #include <inet/ip.h>
78 #include <inet/ip_impl.h>
79 #include <inet/ip6.h>
80 #include <inet/ip_ndp.h>
81 #include <inet/proto_set.h>
82 #include <inet/mib2.h>
83 #include <inet/optcom.h>
84 #include <inet/snmpcom.h>
85 #include <inet/kstatcom.h>
86 #include <inet/tcp.h>
87 #include <inet/tcp_impl.h>
88 #include <inet/tcp_cluster.h>
89 #include <inet/udp_impl.h>
90 #include <net/pfkeyv2.h>
91 #include <inet/ipdrop.h>
92 
93 #include <inet/ipclassifier.h>
94 #include <inet/ip_ire.h>
95 #include <inet/ip_ftable.h>
96 #include <inet/ip_if.h>
97 #include <inet/ipp_common.h>
98 #include <inet/ip_rts.h>
99 #include <inet/ip_netinfo.h>
100 #include <sys/squeue_impl.h>
101 #include <sys/squeue.h>
102 #include <sys/tsol/label.h>
103 #include <sys/tsol/tnet.h>
104 #include <rpc/pmap_prot.h>
105 #include <sys/callo.h>
106 
107 /*
108  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
109  *
110  * (Read the detailed design doc in PSARC case directory)
111  *
112  * The entire tcp state is contained in tcp_t and conn_t structure
113  * which are allocated in tandem using ipcl_conn_create() and passing
114  * IPCL_TCPCONN as a flag. We use 'conn_ref' and 'conn_lock' to protect
115  * the references on the tcp_t. The tcp_t structure is never compressed
116  * and packets always land on the correct TCP perimeter from the time
117  * eager is created till the time tcp_t dies (as such the old mentat
118  * TCP global queue is not used for detached state and no IPSEC checking
119  * is required). The global queue is still allocated to send out resets
120  * for connection which have no listeners and IP directly calls
121  * tcp_xmit_listeners_reset() which does any policy check.
122  *
123  * Protection and Synchronisation mechanism:
124  *
125  * The tcp data structure does not use any kind of lock for protecting
126  * its state but instead uses 'squeues' for mutual exclusion from various
127  * read and write side threads. To access a tcp member, the thread should
128  * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS,
129  * or SQ_NODRAIN). Since the squeues allow a direct function call, caller
130  * can pass any tcp function having prototype of edesc_t as argument
131  * (different from traditional STREAMs model where packets come in only
132  * designated entry points). The list of functions that can be directly
133  * called via squeue are listed before the usual function prototype.
134  *
135  * Referencing:
136  *
137  * TCP is MT-Hot and we use a reference based scheme to make sure that the
138  * tcp structure doesn't disappear when its needed. When the application
139  * creates an outgoing connection or accepts an incoming connection, we
140  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
141  * The IP reference is just a symbolic reference since ip_tcpclose()
142  * looks at tcp structure after tcp_close_output() returns which could
143  * have dropped the last TCP reference. So as long as the connection is
144  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
145  * conn_t. The classifier puts its own reference when the connection is
146  * inserted in listen or connected hash. Anytime a thread needs to enter
147  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
148  * on write side or by doing a classify on read side and then puts a
149  * reference on the conn before doing squeue_enter/tryenter/fill. For
150  * read side, the classifier itself puts the reference under fanout lock
151  * to make sure that tcp can't disappear before it gets processed. The
152  * squeue will drop this reference automatically so the called function
153  * doesn't have to do a DEC_REF.
154  *
155  * Opening a new connection:
156  *
157  * The outgoing connection open is pretty simple. tcp_open() does the
158  * work in creating the conn/tcp structure and initializing it. The
159  * squeue assignment is done based on the CPU the application
160  * is running on. So for outbound connections, processing is always done
161  * on application CPU which might be different from the incoming CPU
162  * being interrupted by the NIC. An optimal way would be to figure out
163  * the NIC <-> CPU binding at listen time, and assign the outgoing
164  * connection to the squeue attached to the CPU that will be interrupted
165  * for incoming packets (we know the NIC based on the bind IP address).
166  * This might seem like a problem if more data is going out but the
167  * fact is that in most cases the transmit is ACK driven transmit where
168  * the outgoing data normally sits on TCP's xmit queue waiting to be
169  * transmitted.
170  *
171  * Accepting a connection:
172  *
173  * This is a more interesting case because of various races involved in
174  * establishing a eager in its own perimeter. Read the meta comment on
175  * top of tcp_input_listener(). But briefly, the squeue is picked by
176  * ip_fanout based on the ring or the sender (if loopback).
177  *
178  * Closing a connection:
179  *
180  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
181  * via squeue to do the close and mark the tcp as detached if the connection
182  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
183  * reference but tcp_close() drop IP's reference always. So if tcp was
184  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
185  * and 1 because it is in classifier's connected hash. This is the condition
186  * we use to determine that its OK to clean up the tcp outside of squeue
187  * when time wait expires (check the ref under fanout and conn_lock and
188  * if it is 2, remove it from fanout hash and kill it).
189  *
190  * Although close just drops the necessary references and marks the
191  * tcp_detached state, tcp_close needs to know the tcp_detached has been
192  * set (under squeue) before letting the STREAM go away (because a
193  * inbound packet might attempt to go up the STREAM while the close
194  * has happened and tcp_detached is not set). So a special lock and
195  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
196  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
197  * tcp_detached.
198  *
199  * Special provisions and fast paths:
200  *
201  * We make special provisions for sockfs by marking tcp_issocket
202  * whenever we have only sockfs on top of TCP. This allows us to skip
203  * putting the tcp in acceptor hash since a sockfs listener can never
204  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
205  * since eager has already been allocated and the accept now happens
206  * on acceptor STREAM. There is a big blob of comment on top of
207  * tcp_input_listener explaining the new accept. When socket is POP'd,
208  * sockfs sends us an ioctl to mark the fact and we go back to old
209  * behaviour. Once tcp_issocket is unset, its never set for the
210  * life of that connection.
211  *
212  * IPsec notes :
213  *
214  * Since a packet is always executed on the correct TCP perimeter
215  * all IPsec processing is defered to IP including checking new
216  * connections and setting IPSEC policies for new connection. The
217  * only exception is tcp_xmit_listeners_reset() which is called
218  * directly from IP and needs to policy check to see if TH_RST
219  * can be sent out.
220  */
221 
222 /*
223  * Values for squeue switch:
224  * 1: SQ_NODRAIN
225  * 2: SQ_PROCESS
226  * 3: SQ_FILL
227  */
228 int tcp_squeue_wput = 2;	/* /etc/systems */
229 int tcp_squeue_flag;
230 
231 /*
232  * To prevent memory hog, limit the number of entries in tcp_free_list
233  * to 1% of available memory / number of cpus
234  */
235 uint_t tcp_free_list_max_cnt = 0;
236 
237 #define	TIDUSZ	4096	/* transport interface data unit size */
238 
239 /*
240  * Size of acceptor hash list.  It has to be a power of 2 for hashing.
241  */
242 #define	TCP_ACCEPTOR_FANOUT_SIZE		512
243 
244 #ifdef	_ILP32
245 #define	TCP_ACCEPTOR_HASH(accid)					\
246 		(((uint_t)(accid) >> 8) & (TCP_ACCEPTOR_FANOUT_SIZE - 1))
247 #else
248 #define	TCP_ACCEPTOR_HASH(accid)					\
249 		((uint_t)(accid) & (TCP_ACCEPTOR_FANOUT_SIZE - 1))
250 #endif	/* _ILP32 */
251 
252 /*
253  * Minimum number of connections which can be created per listener.  Used
254  * when the listener connection count is in effect.
255  */
256 static uint32_t tcp_min_conn_listener = 2;
257 
258 uint32_t tcp_early_abort = 30;
259 
260 /* TCP Timer control structure */
261 typedef struct tcpt_s {
262 	pfv_t	tcpt_pfv;	/* The routine we are to call */
263 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
264 } tcpt_t;
265 
266 /*
267  * Functions called directly via squeue having a prototype of edesc_t.
268  */
269 void		tcp_input_data(void *arg, mblk_t *mp, void *arg2,
270     ip_recv_attr_t *ira);
271 static void	tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2,
272     ip_recv_attr_t *dummy);
273 
274 
275 /* Prototype for TCP functions */
276 static void	tcp_random_init(void);
277 int		tcp_random(void);
278 static int	tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp,
279 		    in_port_t dstport, uint_t srcid);
280 static int	tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp,
281 		    in_port_t dstport, uint32_t flowinfo,
282 		    uint_t srcid, uint32_t scope_id);
283 static void	tcp_iss_init(tcp_t *tcp);
284 static void	tcp_reinit(tcp_t *tcp);
285 static void	tcp_reinit_values(tcp_t *tcp);
286 
287 static int	tcp_wsrv(queue_t *q);
288 static void	tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa);
289 static void	tcp_update_zcopy(tcp_t *tcp);
290 static void	tcp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t,
291     ixa_notify_arg_t);
292 static void	*tcp_stack_init(netstackid_t stackid, netstack_t *ns);
293 static void	tcp_stack_fini(netstackid_t stackid, void *arg);
294 
295 static int	tcp_squeue_switch(int);
296 
297 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t);
298 static int	tcp_openv4(queue_t *, dev_t *, int, int, cred_t *);
299 static int	tcp_openv6(queue_t *, dev_t *, int, int, cred_t *);
300 
301 static void	tcp_squeue_add(squeue_t *);
302 
303 struct module_info tcp_rinfo =  {
304 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
305 };
306 
307 static struct module_info tcp_winfo =  {
308 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
309 };
310 
311 /*
312  * Entry points for TCP as a device. The normal case which supports
313  * the TCP functionality.
314  * We have separate open functions for the /dev/tcp and /dev/tcp6 devices.
315  */
316 struct qinit tcp_rinitv4 = {
317 	NULL, tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo
318 };
319 
320 struct qinit tcp_rinitv6 = {
321 	NULL, tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo
322 };
323 
324 struct qinit tcp_winit = {
325 	tcp_wput, tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
326 };
327 
328 /* Initial entry point for TCP in socket mode. */
329 struct qinit tcp_sock_winit = {
330 	tcp_wput_sock, tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
331 };
332 
333 /* TCP entry point during fallback */
334 struct qinit tcp_fallback_sock_winit = {
335 	tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo
336 };
337 
338 /*
339  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
340  * an accept. Avoid allocating data structures since eager has already
341  * been created.
342  */
343 struct qinit tcp_acceptor_rinit = {
344 	NULL, tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo
345 };
346 
347 struct qinit tcp_acceptor_winit = {
348 	tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo
349 };
350 
351 /* For AF_INET aka /dev/tcp */
352 struct streamtab tcpinfov4 = {
353 	&tcp_rinitv4, &tcp_winit
354 };
355 
356 /* For AF_INET6 aka /dev/tcp6 */
357 struct streamtab tcpinfov6 = {
358 	&tcp_rinitv6, &tcp_winit
359 };
360 
361 /*
362  * Following assumes TPI alignment requirements stay along 32 bit
363  * boundaries
364  */
365 #define	ROUNDUP32(x) \
366 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
367 
368 /* Template for response to info request. */
369 struct T_info_ack tcp_g_t_info_ack = {
370 	T_INFO_ACK,		/* PRIM_type */
371 	0,			/* TSDU_size */
372 	T_INFINITE,		/* ETSDU_size */
373 	T_INVALID,		/* CDATA_size */
374 	T_INVALID,		/* DDATA_size */
375 	sizeof (sin_t),		/* ADDR_size */
376 	0,			/* OPT_size - not initialized here */
377 	TIDUSZ,			/* TIDU_size */
378 	T_COTS_ORD,		/* SERV_type */
379 	TCPS_IDLE,		/* CURRENT_state */
380 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
381 };
382 
383 struct T_info_ack tcp_g_t_info_ack_v6 = {
384 	T_INFO_ACK,		/* PRIM_type */
385 	0,			/* TSDU_size */
386 	T_INFINITE,		/* ETSDU_size */
387 	T_INVALID,		/* CDATA_size */
388 	T_INVALID,		/* DDATA_size */
389 	sizeof (sin6_t),	/* ADDR_size */
390 	0,			/* OPT_size - not initialized here */
391 	TIDUSZ,		/* TIDU_size */
392 	T_COTS_ORD,		/* SERV_type */
393 	TCPS_IDLE,		/* CURRENT_state */
394 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
395 };
396 
397 /*
398  * TCP tunables related declarations. Definitions are in tcp_tunables.c
399  */
400 extern mod_prop_info_t tcp_propinfo_tbl[];
401 extern int tcp_propinfo_count;
402 
403 #define	IS_VMLOANED_MBLK(mp) \
404 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
405 
406 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
407 
408 /*
409  * Forces all connections to obey the value of the tcps_maxpsz_multiplier
410  * tunable settable via NDD.  Otherwise, the per-connection behavior is
411  * determined dynamically during tcp_set_destination(), which is the default.
412  */
413 boolean_t tcp_static_maxpsz = B_FALSE;
414 
415 /*
416  * If the receive buffer size is changed, this function is called to update
417  * the upper socket layer on the new delayed receive wake up threshold.
418  */
419 static void
420 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh)
421 {
422 	uint32_t default_threshold = SOCKET_RECVHIWATER >> 3;
423 
424 	if (IPCL_IS_NONSTR(tcp->tcp_connp)) {
425 		conn_t *connp = tcp->tcp_connp;
426 		struct sock_proto_props sopp;
427 
428 		/*
429 		 * only increase rcvthresh upto default_threshold
430 		 */
431 		if (new_rcvthresh > default_threshold)
432 			new_rcvthresh = default_threshold;
433 
434 		sopp.sopp_flags = SOCKOPT_RCVTHRESH;
435 		sopp.sopp_rcvthresh = new_rcvthresh;
436 
437 		(*connp->conn_upcalls->su_set_proto_props)
438 		    (connp->conn_upper_handle, &sopp);
439 	}
440 }
441 
442 /*
443  * Figure out the value of window scale opton.  Note that the rwnd is
444  * ASSUMED to be rounded up to the nearest MSS before the calculation.
445  * We cannot find the scale value and then do a round up of tcp_rwnd
446  * because the scale value may not be correct after that.
447  *
448  * Set the compiler flag to make this function inline.
449  */
450 void
451 tcp_set_ws_value(tcp_t *tcp)
452 {
453 	int i;
454 	uint32_t rwnd = tcp->tcp_rwnd;
455 
456 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
457 	    i++, rwnd >>= 1)
458 		;
459 	tcp->tcp_rcv_ws = i;
460 }
461 
462 /*
463  * Remove cached/latched IPsec references.
464  */
465 void
466 tcp_ipsec_cleanup(tcp_t *tcp)
467 {
468 	conn_t		*connp = tcp->tcp_connp;
469 
470 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
471 
472 	if (connp->conn_latch != NULL) {
473 		IPLATCH_REFRELE(connp->conn_latch);
474 		connp->conn_latch = NULL;
475 	}
476 	if (connp->conn_latch_in_policy != NULL) {
477 		IPPOL_REFRELE(connp->conn_latch_in_policy);
478 		connp->conn_latch_in_policy = NULL;
479 	}
480 	if (connp->conn_latch_in_action != NULL) {
481 		IPACT_REFRELE(connp->conn_latch_in_action);
482 		connp->conn_latch_in_action = NULL;
483 	}
484 	if (connp->conn_policy != NULL) {
485 		IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
486 		connp->conn_policy = NULL;
487 	}
488 }
489 
490 /*
491  * Cleaup before placing on free list.
492  * Disassociate from the netstack/tcp_stack_t since the freelist
493  * is per squeue and not per netstack.
494  */
495 void
496 tcp_cleanup(tcp_t *tcp)
497 {
498 	mblk_t		*mp;
499 	conn_t		*connp = tcp->tcp_connp;
500 	tcp_stack_t	*tcps = tcp->tcp_tcps;
501 	netstack_t	*ns = tcps->tcps_netstack;
502 	mblk_t		*tcp_rsrv_mp;
503 
504 	tcp_bind_hash_remove(tcp);
505 
506 	/* Cleanup that which needs the netstack first */
507 	tcp_ipsec_cleanup(tcp);
508 	ixa_cleanup(connp->conn_ixa);
509 
510 	if (connp->conn_ht_iphc != NULL) {
511 		kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated);
512 		connp->conn_ht_iphc = NULL;
513 		connp->conn_ht_iphc_allocated = 0;
514 		connp->conn_ht_iphc_len = 0;
515 		connp->conn_ht_ulp = NULL;
516 		connp->conn_ht_ulp_len = 0;
517 		tcp->tcp_ipha = NULL;
518 		tcp->tcp_ip6h = NULL;
519 		tcp->tcp_tcpha = NULL;
520 	}
521 
522 	/* We clear any IP_OPTIONS and extension headers */
523 	ip_pkt_free(&connp->conn_xmit_ipp);
524 
525 	tcp_free(tcp);
526 
527 	/*
528 	 * Since we will bzero the entire structure, we need to
529 	 * remove it and reinsert it in global hash list. We
530 	 * know the walkers can't get to this conn because we
531 	 * had set CONDEMNED flag earlier and checked reference
532 	 * under conn_lock so walker won't pick it and when we
533 	 * go the ipcl_globalhash_remove() below, no walker
534 	 * can get to it.
535 	 */
536 	ipcl_globalhash_remove(connp);
537 
538 	/* Save some state */
539 	mp = tcp->tcp_timercache;
540 
541 	tcp_rsrv_mp = tcp->tcp_rsrv_mp;
542 
543 	if (connp->conn_cred != NULL) {
544 		crfree(connp->conn_cred);
545 		connp->conn_cred = NULL;
546 	}
547 	ipcl_conn_cleanup(connp);
548 	connp->conn_flags = IPCL_TCPCONN;
549 
550 	/*
551 	 * Now it is safe to decrement the reference counts.
552 	 * This might be the last reference on the netstack
553 	 * in which case it will cause the freeing of the IP Instance.
554 	 */
555 	connp->conn_netstack = NULL;
556 	connp->conn_ixa->ixa_ipst = NULL;
557 	netstack_rele(ns);
558 	ASSERT(tcps != NULL);
559 	tcp->tcp_tcps = NULL;
560 
561 	bzero(tcp, sizeof (tcp_t));
562 
563 	/* restore the state */
564 	tcp->tcp_timercache = mp;
565 
566 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
567 
568 	tcp->tcp_connp = connp;
569 
570 	ASSERT(connp->conn_tcp == tcp);
571 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
572 	connp->conn_state_flags = CONN_INCIPIENT;
573 	ASSERT(connp->conn_proto == IPPROTO_TCP);
574 	ASSERT(connp->conn_ref == 1);
575 }
576 
577 /*
578  * Adapt to the information, such as rtt and rtt_sd, provided from the
579  * DCE and IRE maintained by IP.
580  *
581  * Checks for multicast and broadcast destination address.
582  * Returns zero if ok; an errno on failure.
583  *
584  * Note that the MSS calculation here is based on the info given in
585  * the DCE and IRE.  We do not do any calculation based on TCP options.  They
586  * will be handled in tcp_input_data() when TCP knows which options to use.
587  *
588  * Note on how TCP gets its parameters for a connection.
589  *
590  * When a tcp_t structure is allocated, it gets all the default parameters.
591  * In tcp_set_destination(), it gets those metric parameters, like rtt, rtt_sd,
592  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
593  * default.
594  *
595  * An incoming SYN with a multicast or broadcast destination address is dropped
596  * in ip_fanout_v4/v6.
597  *
598  * An incoming SYN with a multicast or broadcast source address is always
599  * dropped in tcp_set_destination, since IPDF_ALLOW_MCBC is not set in
600  * conn_connect.
601  * The same logic in tcp_set_destination also serves to
602  * reject an attempt to connect to a broadcast or multicast (destination)
603  * address.
604  */
605 int
606 tcp_set_destination(tcp_t *tcp)
607 {
608 	uint32_t	mss_max;
609 	uint32_t	mss;
610 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
611 	conn_t		*connp = tcp->tcp_connp;
612 	tcp_stack_t	*tcps = tcp->tcp_tcps;
613 	iulp_t		uinfo;
614 	int		error;
615 	uint32_t	flags;
616 
617 	flags = IPDF_LSO | IPDF_ZCOPY;
618 	/*
619 	 * Make sure we have a dce for the destination to avoid dce_ident
620 	 * contention for connected sockets.
621 	 */
622 	flags |= IPDF_UNIQUE_DCE;
623 
624 	if (!tcps->tcps_ignore_path_mtu)
625 		connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY;
626 
627 	/* Use conn_lock to satify ASSERT; tcp is already serialized */
628 	mutex_enter(&connp->conn_lock);
629 	error = conn_connect(connp, &uinfo, flags);
630 	mutex_exit(&connp->conn_lock);
631 	if (error != 0)
632 		return (error);
633 
634 	error = tcp_build_hdrs(tcp);
635 	if (error != 0)
636 		return (error);
637 
638 	tcp->tcp_localnet = uinfo.iulp_localnet;
639 
640 	if (uinfo.iulp_rtt != 0) {
641 		tcp->tcp_rtt_sa = MSEC2NSEC(uinfo.iulp_rtt);
642 		tcp->tcp_rtt_sd = MSEC2NSEC(uinfo.iulp_rtt_sd);
643 		tcp->tcp_rto = tcp_calculate_rto(tcp, tcps, 0);
644 	}
645 	if (uinfo.iulp_ssthresh != 0)
646 		tcp->tcp_cwnd_ssthresh = uinfo.iulp_ssthresh;
647 	else
648 		tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
649 	if (uinfo.iulp_spipe > 0) {
650 		connp->conn_sndbuf = MIN(uinfo.iulp_spipe,
651 		    tcps->tcps_max_buf);
652 		if (tcps->tcps_snd_lowat_fraction != 0) {
653 			connp->conn_sndlowat = connp->conn_sndbuf /
654 			    tcps->tcps_snd_lowat_fraction;
655 		}
656 		(void) tcp_maxpsz_set(tcp, B_TRUE);
657 	}
658 	/*
659 	 * Note that up till now, acceptor always inherits receive
660 	 * window from the listener.  But if there is a metrics
661 	 * associated with a host, we should use that instead of
662 	 * inheriting it from listener. Thus we need to pass this
663 	 * info back to the caller.
664 	 */
665 	if (uinfo.iulp_rpipe > 0) {
666 		tcp->tcp_rwnd = MIN(uinfo.iulp_rpipe,
667 		    tcps->tcps_max_buf);
668 	}
669 
670 	if (uinfo.iulp_rtomax > 0) {
671 		tcp->tcp_second_timer_threshold =
672 		    uinfo.iulp_rtomax;
673 	}
674 
675 	/*
676 	 * Use the metric option settings, iulp_tstamp_ok and
677 	 * iulp_wscale_ok, only for active open. What this means
678 	 * is that if the other side uses timestamp or window
679 	 * scale option, TCP will also use those options. That
680 	 * is for passive open.  If the application sets a
681 	 * large window, window scale is enabled regardless of
682 	 * the value in iulp_wscale_ok.  This is the behavior
683 	 * since 2.6.  So we keep it.
684 	 * The only case left in passive open processing is the
685 	 * check for SACK.
686 	 * For ECN, it should probably be like SACK.  But the
687 	 * current value is binary, so we treat it like the other
688 	 * cases.  The metric only controls active open.For passive
689 	 * open, the ndd param, tcp_ecn_permitted, controls the
690 	 * behavior.
691 	 */
692 	if (!tcp_detached) {
693 		/*
694 		 * The if check means that the following can only
695 		 * be turned on by the metrics only IRE, but not off.
696 		 */
697 		if (uinfo.iulp_tstamp_ok)
698 			tcp->tcp_snd_ts_ok = B_TRUE;
699 		if (uinfo.iulp_wscale_ok)
700 			tcp->tcp_snd_ws_ok = B_TRUE;
701 		if (uinfo.iulp_sack == 2)
702 			tcp->tcp_snd_sack_ok = B_TRUE;
703 		if (uinfo.iulp_ecn_ok)
704 			tcp->tcp_ecn_ok = B_TRUE;
705 	} else {
706 		/*
707 		 * Passive open.
708 		 *
709 		 * As above, the if check means that SACK can only be
710 		 * turned on by the metric only IRE.
711 		 */
712 		if (uinfo.iulp_sack > 0) {
713 			tcp->tcp_snd_sack_ok = B_TRUE;
714 		}
715 	}
716 
717 	/*
718 	 * XXX Note that currently, iulp_mtu can be as small as 68
719 	 * because of PMTUd.  So tcp_mss may go to negative if combined
720 	 * length of all those options exceeds 28 bytes.  But because
721 	 * of the tcp_mss_min check below, we may not have a problem if
722 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
723 	 * the negative problem still exists.  And the check defeats PMTUd.
724 	 * In fact, if PMTUd finds that the MSS should be smaller than
725 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
726 	 * value.
727 	 *
728 	 * We do not deal with that now.  All those problems related to
729 	 * PMTUd will be fixed later.
730 	 */
731 	ASSERT(uinfo.iulp_mtu != 0);
732 	mss = tcp->tcp_initial_pmtu = uinfo.iulp_mtu;
733 
734 	/* Sanity check for MSS value. */
735 	if (connp->conn_ipversion == IPV4_VERSION)
736 		mss_max = tcps->tcps_mss_max_ipv4;
737 	else
738 		mss_max = tcps->tcps_mss_max_ipv6;
739 
740 	if (tcp->tcp_ipsec_overhead == 0)
741 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
742 
743 	mss -= tcp->tcp_ipsec_overhead;
744 
745 	if (mss < tcps->tcps_mss_min)
746 		mss = tcps->tcps_mss_min;
747 	if (mss > mss_max)
748 		mss = mss_max;
749 
750 	/* Note that this is the maximum MSS, excluding all options. */
751 	tcp->tcp_mss = mss;
752 
753 	/*
754 	 * Update the tcp connection with LSO capability.
755 	 */
756 	tcp_update_lso(tcp, connp->conn_ixa);
757 
758 	/*
759 	 * Initialize the ISS here now that we have the full connection ID.
760 	 * The RFC 1948 method of initial sequence number generation requires
761 	 * knowledge of the full connection ID before setting the ISS.
762 	 */
763 	tcp_iss_init(tcp);
764 
765 	tcp->tcp_loopback = (uinfo.iulp_loopback | uinfo.iulp_local);
766 
767 	/*
768 	 * Make sure that conn is not marked incipient
769 	 * for incoming connections. A blind
770 	 * removal of incipient flag is cheaper than
771 	 * check and removal.
772 	 */
773 	mutex_enter(&connp->conn_lock);
774 	connp->conn_state_flags &= ~CONN_INCIPIENT;
775 	mutex_exit(&connp->conn_lock);
776 	return (0);
777 }
778 
779 /*
780  * tcp_clean_death / tcp_close_detached must not be called more than once
781  * on a tcp. Thus every function that potentially calls tcp_clean_death
782  * must check for the tcp state before calling tcp_clean_death.
783  * Eg. tcp_input_data, tcp_eager_kill, tcp_clean_death_wrapper,
784  * tcp_timer_handler, all check for the tcp state.
785  */
786 /* ARGSUSED */
787 void
788 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2,
789     ip_recv_attr_t *dummy)
790 {
791 	tcp_t	*tcp = ((conn_t *)arg)->conn_tcp;
792 
793 	freemsg(mp);
794 	if (tcp->tcp_state > TCPS_BOUND)
795 		(void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT);
796 }
797 
798 /*
799  * We are dying for some reason.  Try to do it gracefully.  (May be called
800  * as writer.)
801  *
802  * Return -1 if the structure was not cleaned up (if the cleanup had to be
803  * done by a service procedure).
804  * TBD - Should the return value distinguish between the tcp_t being
805  * freed and it being reinitialized?
806  */
807 int
808 tcp_clean_death(tcp_t *tcp, int err)
809 {
810 	mblk_t	*mp;
811 	queue_t	*q;
812 	conn_t	*connp = tcp->tcp_connp;
813 	tcp_stack_t	*tcps = tcp->tcp_tcps;
814 
815 	if (tcp->tcp_fused)
816 		tcp_unfuse(tcp);
817 
818 	if (tcp->tcp_linger_tid != 0 &&
819 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
820 		tcp_stop_lingering(tcp);
821 	}
822 
823 	ASSERT(tcp != NULL);
824 	ASSERT((connp->conn_family == AF_INET &&
825 	    connp->conn_ipversion == IPV4_VERSION) ||
826 	    (connp->conn_family == AF_INET6 &&
827 	    (connp->conn_ipversion == IPV4_VERSION ||
828 	    connp->conn_ipversion == IPV6_VERSION)));
829 
830 	if (TCP_IS_DETACHED(tcp)) {
831 		if (tcp->tcp_hard_binding) {
832 			/*
833 			 * Its an eager that we are dealing with. We close the
834 			 * eager but in case a conn_ind has already gone to the
835 			 * listener, let tcp_accept_finish() send a discon_ind
836 			 * to the listener and drop the last reference. If the
837 			 * listener doesn't even know about the eager i.e. the
838 			 * conn_ind hasn't gone up, blow away the eager and drop
839 			 * the last reference as well. If the conn_ind has gone
840 			 * up, state should be BOUND. tcp_accept_finish
841 			 * will figure out that the connection has received a
842 			 * RST and will send a DISCON_IND to the application.
843 			 */
844 			tcp_closei_local(tcp);
845 			if (!tcp->tcp_tconnind_started) {
846 				CONN_DEC_REF(connp);
847 			} else {
848 				tcp->tcp_state = TCPS_BOUND;
849 				DTRACE_TCP6(state__change, void, NULL,
850 				    ip_xmit_attr_t *, connp->conn_ixa,
851 				    void, NULL, tcp_t *, tcp, void, NULL,
852 				    int32_t, TCPS_CLOSED);
853 			}
854 		} else {
855 			tcp_close_detached(tcp);
856 		}
857 		return (0);
858 	}
859 
860 	TCP_STAT(tcps, tcp_clean_death_nondetached);
861 
862 	/*
863 	 * The connection is dead.  Decrement listener connection counter if
864 	 * necessary.
865 	 */
866 	if (tcp->tcp_listen_cnt != NULL)
867 		TCP_DECR_LISTEN_CNT(tcp);
868 
869 	/*
870 	 * When a connection is moved to TIME_WAIT state, the connection
871 	 * counter is already decremented.  So no need to decrement here
872 	 * again.  See SET_TIME_WAIT() macro.
873 	 */
874 	if (tcp->tcp_state >= TCPS_ESTABLISHED &&
875 	    tcp->tcp_state < TCPS_TIME_WAIT) {
876 		TCPS_CONN_DEC(tcps);
877 	}
878 
879 	q = connp->conn_rq;
880 
881 	/* Trash all inbound data */
882 	if (!IPCL_IS_NONSTR(connp)) {
883 		ASSERT(q != NULL);
884 		flushq(q, FLUSHALL);
885 	}
886 
887 	/*
888 	 * If we are at least part way open and there is error
889 	 * (err==0 implies no error)
890 	 * notify our client by a T_DISCON_IND.
891 	 */
892 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
893 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
894 		    !TCP_IS_SOCKET(tcp)) {
895 			/*
896 			 * Send M_FLUSH according to TPI. Because sockets will
897 			 * (and must) ignore FLUSHR we do that only for TPI
898 			 * endpoints and sockets in STREAMS mode.
899 			 */
900 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
901 		}
902 		if (connp->conn_debug) {
903 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
904 			    "tcp_clean_death: discon err %d", err);
905 		}
906 		if (IPCL_IS_NONSTR(connp)) {
907 			/* Direct socket, use upcall */
908 			(*connp->conn_upcalls->su_disconnected)(
909 			    connp->conn_upper_handle, tcp->tcp_connid, err);
910 		} else {
911 			mp = mi_tpi_discon_ind(NULL, err, 0);
912 			if (mp != NULL) {
913 				putnext(q, mp);
914 			} else {
915 				if (connp->conn_debug) {
916 					(void) strlog(TCP_MOD_ID, 0, 1,
917 					    SL_ERROR|SL_TRACE,
918 					    "tcp_clean_death, sending M_ERROR");
919 				}
920 				(void) putnextctl1(q, M_ERROR, EPROTO);
921 			}
922 		}
923 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
924 			/* SYN_SENT or SYN_RCVD */
925 			TCPS_BUMP_MIB(tcps, tcpAttemptFails);
926 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
927 			/* ESTABLISHED or CLOSE_WAIT */
928 			TCPS_BUMP_MIB(tcps, tcpEstabResets);
929 		}
930 	}
931 
932 	/*
933 	 * ESTABLISHED non-STREAMS eagers are not 'detached' because
934 	 * an upper handle is obtained when the SYN-ACK comes in. So it
935 	 * should receive the 'disconnected' upcall, but tcp_reinit should
936 	 * not be called since this is an eager.
937 	 */
938 	if (tcp->tcp_listener != NULL && IPCL_IS_NONSTR(connp)) {
939 		tcp_closei_local(tcp);
940 		tcp->tcp_state = TCPS_BOUND;
941 		DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
942 		    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
943 		    int32_t, TCPS_CLOSED);
944 		return (0);
945 	}
946 
947 	tcp_reinit(tcp);
948 	if (IPCL_IS_NONSTR(connp))
949 		(void) tcp_do_unbind(connp);
950 
951 	return (-1);
952 }
953 
954 /*
955  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
956  * to expire, stop the wait and finish the close.
957  */
958 void
959 tcp_stop_lingering(tcp_t *tcp)
960 {
961 	clock_t	delta = 0;
962 	tcp_stack_t	*tcps = tcp->tcp_tcps;
963 	conn_t		*connp = tcp->tcp_connp;
964 
965 	tcp->tcp_linger_tid = 0;
966 	if (tcp->tcp_state > TCPS_LISTEN) {
967 		tcp_acceptor_hash_remove(tcp);
968 		mutex_enter(&tcp->tcp_non_sq_lock);
969 		if (tcp->tcp_flow_stopped) {
970 			tcp_clrqfull(tcp);
971 		}
972 		mutex_exit(&tcp->tcp_non_sq_lock);
973 
974 		if (tcp->tcp_timer_tid != 0) {
975 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
976 			tcp->tcp_timer_tid = 0;
977 		}
978 		/*
979 		 * Need to cancel those timers which will not be used when
980 		 * TCP is detached.  This has to be done before the conn_wq
981 		 * is cleared.
982 		 */
983 		tcp_timers_stop(tcp);
984 
985 		tcp->tcp_detached = B_TRUE;
986 		connp->conn_rq = NULL;
987 		connp->conn_wq = NULL;
988 
989 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
990 			tcp_time_wait_append(tcp);
991 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
992 			goto finish;
993 		}
994 
995 		/*
996 		 * If delta is zero the timer event wasn't executed and was
997 		 * successfully canceled. In this case we need to restart it
998 		 * with the minimal delta possible.
999 		 */
1000 		if (delta >= 0) {
1001 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
1002 			    delta ? delta : 1);
1003 		}
1004 	} else {
1005 		tcp_closei_local(tcp);
1006 		CONN_DEC_REF(connp);
1007 	}
1008 finish:
1009 	tcp->tcp_detached = B_TRUE;
1010 	connp->conn_rq = NULL;
1011 	connp->conn_wq = NULL;
1012 
1013 	/* Signal closing thread that it can complete close */
1014 	mutex_enter(&tcp->tcp_closelock);
1015 	tcp->tcp_closed = 1;
1016 	cv_signal(&tcp->tcp_closecv);
1017 	mutex_exit(&tcp->tcp_closelock);
1018 
1019 	/* If we have an upper handle (socket), release it */
1020 	if (IPCL_IS_NONSTR(connp)) {
1021 		ASSERT(connp->conn_upper_handle != NULL);
1022 		(*connp->conn_upcalls->su_closed)(connp->conn_upper_handle);
1023 		connp->conn_upper_handle = NULL;
1024 		connp->conn_upcalls = NULL;
1025 	}
1026 }
1027 
1028 void
1029 tcp_close_common(conn_t *connp, int flags)
1030 {
1031 	tcp_t		*tcp = connp->conn_tcp;
1032 	mblk_t		*mp = &tcp->tcp_closemp;
1033 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
1034 	mblk_t		*bp;
1035 
1036 	ASSERT(connp->conn_ref >= 2);
1037 
1038 	/*
1039 	 * Mark the conn as closing. ipsq_pending_mp_add will not
1040 	 * add any mp to the pending mp list, after this conn has
1041 	 * started closing.
1042 	 */
1043 	mutex_enter(&connp->conn_lock);
1044 	connp->conn_state_flags |= CONN_CLOSING;
1045 	if (connp->conn_oper_pending_ill != NULL)
1046 		conn_ioctl_cleanup_reqd = B_TRUE;
1047 	CONN_INC_REF_LOCKED(connp);
1048 	mutex_exit(&connp->conn_lock);
1049 	tcp->tcp_closeflags = (uint8_t)flags;
1050 	ASSERT(connp->conn_ref >= 3);
1051 
1052 	/*
1053 	 * tcp_closemp_used is used below without any protection of a lock
1054 	 * as we don't expect any one else to use it concurrently at this
1055 	 * point otherwise it would be a major defect.
1056 	 */
1057 
1058 	if (mp->b_prev == NULL)
1059 		tcp->tcp_closemp_used = B_TRUE;
1060 	else
1061 		cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: "
1062 		    "connp %p tcp %p\n", (void *)connp, (void *)tcp);
1063 
1064 	TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1065 
1066 	/*
1067 	 * Cleanup any queued ioctls here. This must be done before the wq/rq
1068 	 * are re-written by tcp_close_output().
1069 	 */
1070 	if (conn_ioctl_cleanup_reqd)
1071 		conn_ioctl_cleanup(connp);
1072 
1073 	/*
1074 	 * As CONN_CLOSING is set, no further ioctls should be passed down to
1075 	 * IP for this conn (see the guards in tcp_ioctl, tcp_wput_ioctl and
1076 	 * tcp_wput_iocdata). If the ioctl was queued on an ipsq,
1077 	 * conn_ioctl_cleanup should have found it and removed it. If the ioctl
1078 	 * was still in flight at the time, we wait for it here. See comments
1079 	 * for CONN_INC_IOCTLREF in ip.h for details.
1080 	 */
1081 	mutex_enter(&connp->conn_lock);
1082 	while (connp->conn_ioctlref > 0)
1083 		cv_wait(&connp->conn_cv, &connp->conn_lock);
1084 	ASSERT(connp->conn_ioctlref == 0);
1085 	ASSERT(connp->conn_oper_pending_ill == NULL);
1086 	mutex_exit(&connp->conn_lock);
1087 
1088 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp,
1089 	    NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
1090 
1091 	/*
1092 	 * For non-STREAMS sockets, the normal case is that the conn makes
1093 	 * an upcall when it's finally closed, so there is no need to wait
1094 	 * in the protocol. But in case of SO_LINGER the thread sleeps here
1095 	 * so it can properly deal with the thread being interrupted.
1096 	 */
1097 	if (IPCL_IS_NONSTR(connp) && connp->conn_linger == 0)
1098 		goto nowait;
1099 
1100 	mutex_enter(&tcp->tcp_closelock);
1101 	while (!tcp->tcp_closed) {
1102 		if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
1103 			/*
1104 			 * The cv_wait_sig() was interrupted. We now do the
1105 			 * following:
1106 			 *
1107 			 * 1) If the endpoint was lingering, we allow this
1108 			 * to be interrupted by cancelling the linger timeout
1109 			 * and closing normally.
1110 			 *
1111 			 * 2) Revert to calling cv_wait()
1112 			 *
1113 			 * We revert to using cv_wait() to avoid an
1114 			 * infinite loop which can occur if the calling
1115 			 * thread is higher priority than the squeue worker
1116 			 * thread and is bound to the same cpu.
1117 			 */
1118 			if (connp->conn_linger && connp->conn_lingertime > 0) {
1119 				mutex_exit(&tcp->tcp_closelock);
1120 				/* Entering squeue, bump ref count. */
1121 				CONN_INC_REF(connp);
1122 				bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
1123 				SQUEUE_ENTER_ONE(connp->conn_sqp, bp,
1124 				    tcp_linger_interrupted, connp, NULL,
1125 				    tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
1126 				mutex_enter(&tcp->tcp_closelock);
1127 			}
1128 			break;
1129 		}
1130 	}
1131 	while (!tcp->tcp_closed)
1132 		cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
1133 	mutex_exit(&tcp->tcp_closelock);
1134 
1135 	/*
1136 	 * In the case of listener streams that have eagers in the q or q0
1137 	 * we wait for the eagers to drop their reference to us. conn_rq and
1138 	 * conn_wq of the eagers point to our queues. By waiting for the
1139 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
1140 	 * up their queue pointers and also dropped their references to us.
1141 	 *
1142 	 * For non-STREAMS sockets we do not have to wait here; the
1143 	 * listener will instead make a su_closed upcall when the last
1144 	 * reference is dropped.
1145 	 */
1146 	if (tcp->tcp_wait_for_eagers && !IPCL_IS_NONSTR(connp)) {
1147 		mutex_enter(&connp->conn_lock);
1148 		while (connp->conn_ref != 1) {
1149 			cv_wait(&connp->conn_cv, &connp->conn_lock);
1150 		}
1151 		mutex_exit(&connp->conn_lock);
1152 	}
1153 
1154 nowait:
1155 	connp->conn_cpid = NOPID;
1156 }
1157 
1158 /*
1159  * Called by tcp_close() routine via squeue when lingering is
1160  * interrupted by a signal.
1161  */
1162 
1163 /* ARGSUSED */
1164 static void
1165 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
1166 {
1167 	conn_t	*connp = (conn_t *)arg;
1168 	tcp_t	*tcp = connp->conn_tcp;
1169 
1170 	freeb(mp);
1171 	if (tcp->tcp_linger_tid != 0 &&
1172 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
1173 		tcp_stop_lingering(tcp);
1174 		tcp->tcp_client_errno = EINTR;
1175 	}
1176 }
1177 
1178 /*
1179  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
1180  * Some stream heads get upset if they see these later on as anything but NULL.
1181  */
1182 void
1183 tcp_close_mpp(mblk_t **mpp)
1184 {
1185 	mblk_t	*mp;
1186 
1187 	if ((mp = *mpp) != NULL) {
1188 		do {
1189 			mp->b_next = NULL;
1190 			mp->b_prev = NULL;
1191 		} while ((mp = mp->b_cont) != NULL);
1192 
1193 		mp = *mpp;
1194 		*mpp = NULL;
1195 		freemsg(mp);
1196 	}
1197 }
1198 
1199 /* Do detached close. */
1200 void
1201 tcp_close_detached(tcp_t *tcp)
1202 {
1203 	if (tcp->tcp_fused)
1204 		tcp_unfuse(tcp);
1205 
1206 	/*
1207 	 * Clustering code serializes TCP disconnect callbacks and
1208 	 * cluster tcp list walks by blocking a TCP disconnect callback
1209 	 * if a cluster tcp list walk is in progress. This ensures
1210 	 * accurate accounting of TCPs in the cluster code even though
1211 	 * the TCP list walk itself is not atomic.
1212 	 */
1213 	tcp_closei_local(tcp);
1214 	CONN_DEC_REF(tcp->tcp_connp);
1215 }
1216 
1217 /*
1218  * The tcp_t is going away. Remove it from all lists and set it
1219  * to TCPS_CLOSED. The freeing up of memory is deferred until
1220  * tcp_inactive. This is needed since a thread in tcp_rput might have
1221  * done a CONN_INC_REF on this structure before it was removed from the
1222  * hashes.
1223  */
1224 void
1225 tcp_closei_local(tcp_t *tcp)
1226 {
1227 	conn_t		*connp = tcp->tcp_connp;
1228 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1229 	int32_t		oldstate;
1230 
1231 	if (!TCP_IS_SOCKET(tcp))
1232 		tcp_acceptor_hash_remove(tcp);
1233 
1234 	/*
1235 	 * This can be called via tcp_time_wait_processing() if TCP gets a
1236 	 * SYN with sequence number outside the TIME-WAIT connection's
1237 	 * window.  So we need to check for TIME-WAIT state here as the
1238 	 * connection counter is already decremented.  See SET_TIME_WAIT()
1239 	 * macro
1240 	 */
1241 	if (tcp->tcp_state >= TCPS_ESTABLISHED &&
1242 	    tcp->tcp_state < TCPS_TIME_WAIT) {
1243 		TCPS_CONN_DEC(tcps);
1244 	}
1245 
1246 	/*
1247 	 * If we are an eager connection hanging off a listener that
1248 	 * hasn't formally accepted the connection yet, get off its
1249 	 * list and blow off any data that we have accumulated.
1250 	 */
1251 	if (tcp->tcp_listener != NULL) {
1252 		tcp_t	*listener = tcp->tcp_listener;
1253 		mutex_enter(&listener->tcp_eager_lock);
1254 		/*
1255 		 * tcp_tconnind_started == B_TRUE means that the
1256 		 * conn_ind has already gone to listener. At
1257 		 * this point, eager will be closed but we
1258 		 * leave it in listeners eager list so that
1259 		 * if listener decides to close without doing
1260 		 * accept, we can clean this up. In tcp_tli_accept
1261 		 * we take care of the case of accept on closed
1262 		 * eager.
1263 		 */
1264 		if (!tcp->tcp_tconnind_started) {
1265 			tcp_eager_unlink(tcp);
1266 			mutex_exit(&listener->tcp_eager_lock);
1267 			/*
1268 			 * We don't want to have any pointers to the
1269 			 * listener queue, after we have released our
1270 			 * reference on the listener
1271 			 */
1272 			ASSERT(tcp->tcp_detached);
1273 			connp->conn_rq = NULL;
1274 			connp->conn_wq = NULL;
1275 			CONN_DEC_REF(listener->tcp_connp);
1276 		} else {
1277 			mutex_exit(&listener->tcp_eager_lock);
1278 		}
1279 	}
1280 
1281 	/* Stop all the timers */
1282 	tcp_timers_stop(tcp);
1283 
1284 	if (tcp->tcp_state == TCPS_LISTEN) {
1285 		if (tcp->tcp_ip_addr_cache) {
1286 			kmem_free((void *)tcp->tcp_ip_addr_cache,
1287 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
1288 			tcp->tcp_ip_addr_cache = NULL;
1289 		}
1290 	}
1291 
1292 	/* Decrement listerner connection counter if necessary. */
1293 	if (tcp->tcp_listen_cnt != NULL)
1294 		TCP_DECR_LISTEN_CNT(tcp);
1295 
1296 	mutex_enter(&tcp->tcp_non_sq_lock);
1297 	if (tcp->tcp_flow_stopped)
1298 		tcp_clrqfull(tcp);
1299 	mutex_exit(&tcp->tcp_non_sq_lock);
1300 
1301 	tcp_bind_hash_remove(tcp);
1302 	/*
1303 	 * If the tcp_time_wait_collector (which runs outside the squeue)
1304 	 * is trying to remove this tcp from the time wait list, we will
1305 	 * block in tcp_time_wait_remove while trying to acquire the
1306 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
1307 	 * requires the ipcl_hash_remove to be ordered after the
1308 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
1309 	 */
1310 	if (tcp->tcp_state == TCPS_TIME_WAIT)
1311 		(void) tcp_time_wait_remove(tcp, NULL);
1312 	CL_INET_DISCONNECT(connp);
1313 	ipcl_hash_remove(connp);
1314 	oldstate = tcp->tcp_state;
1315 	tcp->tcp_state = TCPS_CLOSED;
1316 	/* Need to probe before ixa_cleanup() is called */
1317 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1318 	    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
1319 	    int32_t, oldstate);
1320 	ixa_cleanup(connp->conn_ixa);
1321 
1322 	/*
1323 	 * Mark the conn as CONDEMNED
1324 	 */
1325 	mutex_enter(&connp->conn_lock);
1326 	connp->conn_state_flags |= CONN_CONDEMNED;
1327 	mutex_exit(&connp->conn_lock);
1328 
1329 	ASSERT(tcp->tcp_time_wait_next == NULL);
1330 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1331 	ASSERT(tcp->tcp_time_wait_expire == 0);
1332 
1333 	tcp_ipsec_cleanup(tcp);
1334 }
1335 
1336 /*
1337  * tcp is dying (called from ipcl_conn_destroy and error cases).
1338  * Free the tcp_t in either case.
1339  */
1340 void
1341 tcp_free(tcp_t *tcp)
1342 {
1343 	mblk_t		*mp;
1344 	conn_t		*connp = tcp->tcp_connp;
1345 
1346 	ASSERT(tcp != NULL);
1347 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
1348 
1349 	connp->conn_rq = NULL;
1350 	connp->conn_wq = NULL;
1351 
1352 	tcp_close_mpp(&tcp->tcp_xmit_head);
1353 	tcp_close_mpp(&tcp->tcp_reass_head);
1354 	if (tcp->tcp_rcv_list != NULL) {
1355 		/* Free b_next chain */
1356 		tcp_close_mpp(&tcp->tcp_rcv_list);
1357 	}
1358 	if ((mp = tcp->tcp_urp_mp) != NULL) {
1359 		freemsg(mp);
1360 	}
1361 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
1362 		freemsg(mp);
1363 	}
1364 
1365 	if (tcp->tcp_fused_sigurg_mp != NULL) {
1366 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1367 		freeb(tcp->tcp_fused_sigurg_mp);
1368 		tcp->tcp_fused_sigurg_mp = NULL;
1369 	}
1370 
1371 	if (tcp->tcp_ordrel_mp != NULL) {
1372 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1373 		freeb(tcp->tcp_ordrel_mp);
1374 		tcp->tcp_ordrel_mp = NULL;
1375 	}
1376 
1377 	TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp);
1378 	bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
1379 
1380 	if (tcp->tcp_hopopts != NULL) {
1381 		mi_free(tcp->tcp_hopopts);
1382 		tcp->tcp_hopopts = NULL;
1383 		tcp->tcp_hopoptslen = 0;
1384 	}
1385 	ASSERT(tcp->tcp_hopoptslen == 0);
1386 	if (tcp->tcp_dstopts != NULL) {
1387 		mi_free(tcp->tcp_dstopts);
1388 		tcp->tcp_dstopts = NULL;
1389 		tcp->tcp_dstoptslen = 0;
1390 	}
1391 	ASSERT(tcp->tcp_dstoptslen == 0);
1392 	if (tcp->tcp_rthdrdstopts != NULL) {
1393 		mi_free(tcp->tcp_rthdrdstopts);
1394 		tcp->tcp_rthdrdstopts = NULL;
1395 		tcp->tcp_rthdrdstoptslen = 0;
1396 	}
1397 	ASSERT(tcp->tcp_rthdrdstoptslen == 0);
1398 	if (tcp->tcp_rthdr != NULL) {
1399 		mi_free(tcp->tcp_rthdr);
1400 		tcp->tcp_rthdr = NULL;
1401 		tcp->tcp_rthdrlen = 0;
1402 	}
1403 	ASSERT(tcp->tcp_rthdrlen == 0);
1404 
1405 	/*
1406 	 * Following is really a blowing away a union.
1407 	 * It happens to have exactly two members of identical size
1408 	 * the following code is enough.
1409 	 */
1410 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
1411 
1412 	/*
1413 	 * If this is a non-STREAM socket still holding on to an upper
1414 	 * handle, release it. As a result of fallback we might also see
1415 	 * STREAMS based conns with upper handles, in which case there is
1416 	 * nothing to do other than clearing the field.
1417 	 */
1418 	if (connp->conn_upper_handle != NULL) {
1419 		if (IPCL_IS_NONSTR(connp)) {
1420 			(*connp->conn_upcalls->su_closed)(
1421 			    connp->conn_upper_handle);
1422 			tcp->tcp_detached = B_TRUE;
1423 		}
1424 		connp->conn_upper_handle = NULL;
1425 		connp->conn_upcalls = NULL;
1426 	}
1427 }
1428 
1429 /*
1430  * tcp_get_conn/tcp_free_conn
1431  *
1432  * tcp_get_conn is used to get a clean tcp connection structure.
1433  * It tries to reuse the connections put on the freelist by the
1434  * time_wait_collector failing which it goes to kmem_cache. This
1435  * way has two benefits compared to just allocating from and
1436  * freeing to kmem_cache.
1437  * 1) The time_wait_collector can free (which includes the cleanup)
1438  * outside the squeue. So when the interrupt comes, we have a clean
1439  * connection sitting in the freelist. Obviously, this buys us
1440  * performance.
1441  *
1442  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_input_listener
1443  * has multiple disadvantages - tying up the squeue during alloc.
1444  * But allocating the conn/tcp in IP land is also not the best since
1445  * we can't check the 'q' and 'q0' which are protected by squeue and
1446  * blindly allocate memory which might have to be freed here if we are
1447  * not allowed to accept the connection. By using the freelist and
1448  * putting the conn/tcp back in freelist, we don't pay a penalty for
1449  * allocating memory without checking 'q/q0' and freeing it if we can't
1450  * accept the connection.
1451  *
1452  * Care should be taken to put the conn back in the same squeue's freelist
1453  * from which it was allocated. Best results are obtained if conn is
1454  * allocated from listener's squeue and freed to the same. Time wait
1455  * collector will free up the freelist is the connection ends up sitting
1456  * there for too long.
1457  */
1458 void *
1459 tcp_get_conn(void *arg, tcp_stack_t *tcps)
1460 {
1461 	tcp_t			*tcp = NULL;
1462 	conn_t			*connp = NULL;
1463 	squeue_t		*sqp = (squeue_t *)arg;
1464 	tcp_squeue_priv_t	*tcp_time_wait;
1465 	netstack_t		*ns;
1466 	mblk_t			*tcp_rsrv_mp = NULL;
1467 
1468 	tcp_time_wait =
1469 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1470 
1471 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1472 	tcp = tcp_time_wait->tcp_free_list;
1473 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
1474 	if (tcp != NULL) {
1475 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1476 		tcp_time_wait->tcp_free_list_cnt--;
1477 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1478 		tcp->tcp_time_wait_next = NULL;
1479 		connp = tcp->tcp_connp;
1480 		connp->conn_flags |= IPCL_REUSED;
1481 
1482 		ASSERT(tcp->tcp_tcps == NULL);
1483 		ASSERT(connp->conn_netstack == NULL);
1484 		ASSERT(tcp->tcp_rsrv_mp != NULL);
1485 		ns = tcps->tcps_netstack;
1486 		netstack_hold(ns);
1487 		connp->conn_netstack = ns;
1488 		connp->conn_ixa->ixa_ipst = ns->netstack_ip;
1489 		tcp->tcp_tcps = tcps;
1490 		ipcl_globalhash_insert(connp);
1491 
1492 		connp->conn_ixa->ixa_notify_cookie = tcp;
1493 		ASSERT(connp->conn_ixa->ixa_notify == tcp_notify);
1494 		connp->conn_recv = tcp_input_data;
1495 		ASSERT(connp->conn_recvicmp == tcp_icmp_input);
1496 		ASSERT(connp->conn_verifyicmp == tcp_verifyicmp);
1497 		return ((void *)connp);
1498 	}
1499 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1500 	/*
1501 	 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until
1502 	 * this conn_t/tcp_t is freed at ipcl_conn_destroy().
1503 	 */
1504 	tcp_rsrv_mp = allocb(0, BPRI_HI);
1505 	if (tcp_rsrv_mp == NULL)
1506 		return (NULL);
1507 
1508 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
1509 	    tcps->tcps_netstack)) == NULL) {
1510 		freeb(tcp_rsrv_mp);
1511 		return (NULL);
1512 	}
1513 
1514 	tcp = connp->conn_tcp;
1515 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
1516 	mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL);
1517 
1518 	tcp->tcp_tcps = tcps;
1519 
1520 	connp->conn_recv = tcp_input_data;
1521 	connp->conn_recvicmp = tcp_icmp_input;
1522 	connp->conn_verifyicmp = tcp_verifyicmp;
1523 
1524 	/*
1525 	 * Register tcp_notify to listen to capability changes detected by IP.
1526 	 * This upcall is made in the context of the call to conn_ip_output
1527 	 * thus it is inside the squeue.
1528 	 */
1529 	connp->conn_ixa->ixa_notify = tcp_notify;
1530 	connp->conn_ixa->ixa_notify_cookie = tcp;
1531 
1532 	return ((void *)connp);
1533 }
1534 
1535 /*
1536  * Handle connect to IPv4 destinations, including connections for AF_INET6
1537  * sockets connecting to IPv4 mapped IPv6 destinations.
1538  * Returns zero if OK, a positive errno, or a negative TLI error.
1539  */
1540 static int
1541 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport,
1542     uint_t srcid)
1543 {
1544 	ipaddr_t	dstaddr = *dstaddrp;
1545 	uint16_t	lport;
1546 	conn_t		*connp = tcp->tcp_connp;
1547 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1548 	int		error;
1549 
1550 	ASSERT(connp->conn_ipversion == IPV4_VERSION);
1551 
1552 	/* Check for attempt to connect to INADDR_ANY */
1553 	if (dstaddr == INADDR_ANY)  {
1554 		/*
1555 		 * SunOS 4.x and 4.3 BSD allow an application
1556 		 * to connect a TCP socket to INADDR_ANY.
1557 		 * When they do this, the kernel picks the
1558 		 * address of one interface and uses it
1559 		 * instead.  The kernel usually ends up
1560 		 * picking the address of the loopback
1561 		 * interface.  This is an undocumented feature.
1562 		 * However, we provide the same thing here
1563 		 * in order to have source and binary
1564 		 * compatibility with SunOS 4.x.
1565 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
1566 		 * generate the T_CONN_CON.
1567 		 */
1568 		dstaddr = htonl(INADDR_LOOPBACK);
1569 		*dstaddrp = dstaddr;
1570 	}
1571 
1572 	/* Handle __sin6_src_id if socket not bound to an IP address */
1573 	if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) {
1574 		if (!ip_srcid_find_id(srcid, &connp->conn_laddr_v6,
1575 		    IPCL_ZONEID(connp), B_TRUE, tcps->tcps_netstack)) {
1576 			/* Mismatch - conn_laddr_v6 would be v6 address. */
1577 			return (EADDRNOTAVAIL);
1578 		}
1579 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
1580 	}
1581 
1582 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6);
1583 	connp->conn_fport = dstport;
1584 
1585 	/*
1586 	 * At this point the remote destination address and remote port fields
1587 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
1588 	 * have to see which state tcp was in so we can take appropriate action.
1589 	 */
1590 	if (tcp->tcp_state == TCPS_IDLE) {
1591 		/*
1592 		 * We support a quick connect capability here, allowing
1593 		 * clients to transition directly from IDLE to SYN_SENT
1594 		 * tcp_bindi will pick an unused port, insert the connection
1595 		 * in the bind hash and transition to BOUND state.
1596 		 */
1597 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
1598 		    tcp, B_TRUE);
1599 		lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE,
1600 		    B_FALSE, B_FALSE);
1601 		if (lport == 0)
1602 			return (-TNOADDR);
1603 	}
1604 
1605 	/*
1606 	 * Lookup the route to determine a source address and the uinfo.
1607 	 * Setup TCP parameters based on the metrics/DCE.
1608 	 */
1609 	error = tcp_set_destination(tcp);
1610 	if (error != 0)
1611 		return (error);
1612 
1613 	/*
1614 	 * Don't let an endpoint connect to itself.
1615 	 */
1616 	if (connp->conn_faddr_v4 == connp->conn_laddr_v4 &&
1617 	    connp->conn_fport == connp->conn_lport)
1618 		return (-TBADADDR);
1619 
1620 	tcp->tcp_state = TCPS_SYN_SENT;
1621 
1622 	return (ipcl_conn_insert_v4(connp));
1623 }
1624 
1625 /*
1626  * Handle connect to IPv6 destinations.
1627  * Returns zero if OK, a positive errno, or a negative TLI error.
1628  */
1629 static int
1630 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport,
1631     uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
1632 {
1633 	uint16_t	lport;
1634 	conn_t		*connp = tcp->tcp_connp;
1635 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1636 	int		error;
1637 
1638 	ASSERT(connp->conn_family == AF_INET6);
1639 
1640 	/*
1641 	 * If we're here, it means that the destination address is a native
1642 	 * IPv6 address.  Return an error if conn_ipversion is not IPv6.  A
1643 	 * reason why it might not be IPv6 is if the socket was bound to an
1644 	 * IPv4-mapped IPv6 address.
1645 	 */
1646 	if (connp->conn_ipversion != IPV6_VERSION)
1647 		return (-TBADADDR);
1648 
1649 	/*
1650 	 * Interpret a zero destination to mean loopback.
1651 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
1652 	 * generate the T_CONN_CON.
1653 	 */
1654 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp))
1655 		*dstaddrp = ipv6_loopback;
1656 
1657 	/* Handle __sin6_src_id if socket not bound to an IP address */
1658 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) {
1659 		if (!ip_srcid_find_id(srcid, &connp->conn_laddr_v6,
1660 		    IPCL_ZONEID(connp), B_FALSE, tcps->tcps_netstack)) {
1661 			/* Mismatch - conn_laddr_v6 would be v4-mapped. */
1662 			return (EADDRNOTAVAIL);
1663 		}
1664 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
1665 	}
1666 
1667 	/*
1668 	 * Take care of the scope_id now.
1669 	 */
1670 	if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
1671 		connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET;
1672 		connp->conn_ixa->ixa_scopeid = scope_id;
1673 	} else {
1674 		connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET;
1675 	}
1676 
1677 	connp->conn_flowinfo = flowinfo;
1678 	connp->conn_faddr_v6 = *dstaddrp;
1679 	connp->conn_fport = dstport;
1680 
1681 	/*
1682 	 * At this point the remote destination address and remote port fields
1683 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
1684 	 * have to see which state tcp was in so we can take appropriate action.
1685 	 */
1686 	if (tcp->tcp_state == TCPS_IDLE) {
1687 		/*
1688 		 * We support a quick connect capability here, allowing
1689 		 * clients to transition directly from IDLE to SYN_SENT
1690 		 * tcp_bindi will pick an unused port, insert the connection
1691 		 * in the bind hash and transition to BOUND state.
1692 		 */
1693 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
1694 		    tcp, B_TRUE);
1695 		lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE,
1696 		    B_FALSE, B_FALSE);
1697 		if (lport == 0)
1698 			return (-TNOADDR);
1699 	}
1700 
1701 	/*
1702 	 * Lookup the route to determine a source address and the uinfo.
1703 	 * Setup TCP parameters based on the metrics/DCE.
1704 	 */
1705 	error = tcp_set_destination(tcp);
1706 	if (error != 0)
1707 		return (error);
1708 
1709 	/*
1710 	 * Don't let an endpoint connect to itself.
1711 	 */
1712 	if (IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &connp->conn_laddr_v6) &&
1713 	    connp->conn_fport == connp->conn_lport)
1714 		return (-TBADADDR);
1715 
1716 	tcp->tcp_state = TCPS_SYN_SENT;
1717 
1718 	return (ipcl_conn_insert_v6(connp));
1719 }
1720 
1721 /*
1722  * Disconnect
1723  * Note that unlike other functions this returns a positive tli error
1724  * when it fails; it never returns an errno.
1725  */
1726 static int
1727 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum)
1728 {
1729 	conn_t		*lconnp;
1730 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1731 	conn_t		*connp = tcp->tcp_connp;
1732 
1733 	/*
1734 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
1735 	 * when the stream is in BOUND state. Do not send a reset,
1736 	 * since the destination IP address is not valid, and it can
1737 	 * be the initialized value of all zeros (broadcast address).
1738 	 */
1739 	if (tcp->tcp_state <= TCPS_BOUND) {
1740 		if (connp->conn_debug) {
1741 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
1742 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
1743 		}
1744 		return (TOUTSTATE);
1745 	} else if (tcp->tcp_state >= TCPS_ESTABLISHED) {
1746 		TCPS_CONN_DEC(tcps);
1747 	}
1748 
1749 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
1750 
1751 		/*
1752 		 * According to TPI, for non-listeners, ignore seqnum
1753 		 * and disconnect.
1754 		 * Following interpretation of -1 seqnum is historical
1755 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
1756 		 * a valid seqnum should not be -1).
1757 		 *
1758 		 *	-1 means disconnect everything
1759 		 *	regardless even on a listener.
1760 		 */
1761 
1762 		int old_state = tcp->tcp_state;
1763 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
1764 
1765 		/*
1766 		 * The connection can't be on the tcp_time_wait_head list
1767 		 * since it is not detached.
1768 		 */
1769 		ASSERT(tcp->tcp_time_wait_next == NULL);
1770 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1771 		ASSERT(tcp->tcp_time_wait_expire == 0);
1772 		/*
1773 		 * If it used to be a listener, check to make sure no one else
1774 		 * has taken the port before switching back to LISTEN state.
1775 		 */
1776 		if (connp->conn_ipversion == IPV4_VERSION) {
1777 			lconnp = ipcl_lookup_listener_v4(connp->conn_lport,
1778 			    connp->conn_laddr_v4, IPCL_ZONEID(connp), ipst);
1779 		} else {
1780 			uint_t ifindex = 0;
1781 
1782 			if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)
1783 				ifindex = connp->conn_ixa->ixa_scopeid;
1784 
1785 			/* Allow conn_bound_if listeners? */
1786 			lconnp = ipcl_lookup_listener_v6(connp->conn_lport,
1787 			    &connp->conn_laddr_v6, ifindex, IPCL_ZONEID(connp),
1788 			    ipst);
1789 		}
1790 		if (tcp->tcp_conn_req_max && lconnp == NULL) {
1791 			tcp->tcp_state = TCPS_LISTEN;
1792 			DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1793 			    connp->conn_ixa, void, NULL, tcp_t *, tcp, void,
1794 			    NULL, int32_t, old_state);
1795 		} else if (old_state > TCPS_BOUND) {
1796 			tcp->tcp_conn_req_max = 0;
1797 			tcp->tcp_state = TCPS_BOUND;
1798 			DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1799 			    connp->conn_ixa, void, NULL, tcp_t *, tcp, void,
1800 			    NULL, int32_t, old_state);
1801 
1802 			/*
1803 			 * If this end point is not going to become a listener,
1804 			 * decrement the listener connection count if
1805 			 * necessary.  Note that we do not do this if it is
1806 			 * going to be a listner (the above if case) since
1807 			 * then it may remove the counter struct.
1808 			 */
1809 			if (tcp->tcp_listen_cnt != NULL)
1810 				TCP_DECR_LISTEN_CNT(tcp);
1811 		}
1812 		if (lconnp != NULL)
1813 			CONN_DEC_REF(lconnp);
1814 		switch (old_state) {
1815 		case TCPS_SYN_SENT:
1816 		case TCPS_SYN_RCVD:
1817 			TCPS_BUMP_MIB(tcps, tcpAttemptFails);
1818 			break;
1819 		case TCPS_ESTABLISHED:
1820 		case TCPS_CLOSE_WAIT:
1821 			TCPS_BUMP_MIB(tcps, tcpEstabResets);
1822 			break;
1823 		}
1824 
1825 		if (tcp->tcp_fused)
1826 			tcp_unfuse(tcp);
1827 
1828 		mutex_enter(&tcp->tcp_eager_lock);
1829 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
1830 		    (tcp->tcp_conn_req_cnt_q != 0)) {
1831 			tcp_eager_cleanup(tcp, 0);
1832 		}
1833 		mutex_exit(&tcp->tcp_eager_lock);
1834 
1835 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
1836 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
1837 
1838 		tcp_reinit(tcp);
1839 
1840 		return (0);
1841 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
1842 		return (TBADSEQ);
1843 	}
1844 	return (0);
1845 }
1846 
1847 /*
1848  * Our client hereby directs us to reject the connection request
1849  * that tcp_input_listener() marked with 'seqnum'.  Rejection consists
1850  * of sending the appropriate RST, not an ICMP error.
1851  */
1852 void
1853 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
1854 {
1855 	t_scalar_t seqnum;
1856 	int	error;
1857 	conn_t	*connp = tcp->tcp_connp;
1858 
1859 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
1860 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
1861 		tcp_err_ack(tcp, mp, TPROTO, 0);
1862 		return;
1863 	}
1864 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
1865 	error = tcp_disconnect_common(tcp, seqnum);
1866 	if (error != 0)
1867 		tcp_err_ack(tcp, mp, error, 0);
1868 	else {
1869 		if (tcp->tcp_state >= TCPS_ESTABLISHED) {
1870 			/* Send M_FLUSH according to TPI */
1871 			(void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW);
1872 		}
1873 		mp = mi_tpi_ok_ack_alloc(mp);
1874 		if (mp != NULL)
1875 			putnext(connp->conn_rq, mp);
1876 	}
1877 }
1878 
1879 /*
1880  * Handle reinitialization of a tcp structure.
1881  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
1882  */
1883 static void
1884 tcp_reinit(tcp_t *tcp)
1885 {
1886 	mblk_t		*mp;
1887 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1888 	conn_t		*connp  = tcp->tcp_connp;
1889 	int32_t		oldstate;
1890 
1891 	/* tcp_reinit should never be called for detached tcp_t's */
1892 	ASSERT(tcp->tcp_listener == NULL);
1893 	ASSERT((connp->conn_family == AF_INET &&
1894 	    connp->conn_ipversion == IPV4_VERSION) ||
1895 	    (connp->conn_family == AF_INET6 &&
1896 	    (connp->conn_ipversion == IPV4_VERSION ||
1897 	    connp->conn_ipversion == IPV6_VERSION)));
1898 
1899 	/* Cancel outstanding timers */
1900 	tcp_timers_stop(tcp);
1901 
1902 	tcp_close_mpp(&tcp->tcp_xmit_head);
1903 	if (tcp->tcp_snd_zcopy_aware)
1904 		tcp_zcopy_notify(tcp);
1905 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
1906 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
1907 	mutex_enter(&tcp->tcp_non_sq_lock);
1908 	if (tcp->tcp_flow_stopped &&
1909 	    TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) {
1910 		tcp_clrqfull(tcp);
1911 	}
1912 	mutex_exit(&tcp->tcp_non_sq_lock);
1913 	tcp_close_mpp(&tcp->tcp_reass_head);
1914 	tcp->tcp_reass_tail = NULL;
1915 	if (tcp->tcp_rcv_list != NULL) {
1916 		/* Free b_next chain */
1917 		tcp_close_mpp(&tcp->tcp_rcv_list);
1918 		tcp->tcp_rcv_last_head = NULL;
1919 		tcp->tcp_rcv_last_tail = NULL;
1920 		tcp->tcp_rcv_cnt = 0;
1921 	}
1922 	tcp->tcp_rcv_last_tail = NULL;
1923 
1924 	if ((mp = tcp->tcp_urp_mp) != NULL) {
1925 		freemsg(mp);
1926 		tcp->tcp_urp_mp = NULL;
1927 	}
1928 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
1929 		freemsg(mp);
1930 		tcp->tcp_urp_mark_mp = NULL;
1931 	}
1932 	if (tcp->tcp_fused_sigurg_mp != NULL) {
1933 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1934 		freeb(tcp->tcp_fused_sigurg_mp);
1935 		tcp->tcp_fused_sigurg_mp = NULL;
1936 	}
1937 	if (tcp->tcp_ordrel_mp != NULL) {
1938 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1939 		freeb(tcp->tcp_ordrel_mp);
1940 		tcp->tcp_ordrel_mp = NULL;
1941 	}
1942 
1943 	/*
1944 	 * Following is a union with two members which are
1945 	 * identical types and size so the following cleanup
1946 	 * is enough.
1947 	 */
1948 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
1949 
1950 	CL_INET_DISCONNECT(connp);
1951 
1952 	/*
1953 	 * The connection can't be on the tcp_time_wait_head list
1954 	 * since it is not detached.
1955 	 */
1956 	ASSERT(tcp->tcp_time_wait_next == NULL);
1957 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1958 	ASSERT(tcp->tcp_time_wait_expire == 0);
1959 
1960 	/*
1961 	 * Reset/preserve other values
1962 	 */
1963 	tcp_reinit_values(tcp);
1964 	ipcl_hash_remove(connp);
1965 	/* Note that ixa_cred gets cleared in ixa_cleanup */
1966 	ixa_cleanup(connp->conn_ixa);
1967 	tcp_ipsec_cleanup(tcp);
1968 
1969 	connp->conn_laddr_v6 = connp->conn_bound_addr_v6;
1970 	connp->conn_saddr_v6 = connp->conn_bound_addr_v6;
1971 	oldstate = tcp->tcp_state;
1972 
1973 	if (tcp->tcp_conn_req_max != 0) {
1974 		/*
1975 		 * This is the case when a TLI program uses the same
1976 		 * transport end point to accept a connection.  This
1977 		 * makes the TCP both a listener and acceptor.  When
1978 		 * this connection is closed, we need to set the state
1979 		 * back to TCPS_LISTEN.  Make sure that the eager list
1980 		 * is reinitialized.
1981 		 *
1982 		 * Note that this stream is still bound to the four
1983 		 * tuples of the previous connection in IP.  If a new
1984 		 * SYN with different foreign address comes in, IP will
1985 		 * not find it and will send it to the global queue.  In
1986 		 * the global queue, TCP will do a tcp_lookup_listener()
1987 		 * to find this stream.  This works because this stream
1988 		 * is only removed from connected hash.
1989 		 *
1990 		 */
1991 		tcp->tcp_state = TCPS_LISTEN;
1992 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
1993 		tcp->tcp_eager_next_drop_q0 = tcp;
1994 		tcp->tcp_eager_prev_drop_q0 = tcp;
1995 		/*
1996 		 * Initially set conn_recv to tcp_input_listener_unbound to try
1997 		 * to pick a good squeue for the listener when the first SYN
1998 		 * arrives. tcp_input_listener_unbound sets it to
1999 		 * tcp_input_listener on that first SYN.
2000 		 */
2001 		connp->conn_recv = tcp_input_listener_unbound;
2002 
2003 		connp->conn_proto = IPPROTO_TCP;
2004 		connp->conn_faddr_v6 = ipv6_all_zeros;
2005 		connp->conn_fport = 0;
2006 
2007 		(void) ipcl_bind_insert(connp);
2008 	} else {
2009 		tcp->tcp_state = TCPS_BOUND;
2010 	}
2011 
2012 	/*
2013 	 * Initialize to default values
2014 	 */
2015 	tcp_init_values(tcp, NULL);
2016 
2017 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
2018 	    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
2019 	    int32_t, oldstate);
2020 
2021 	ASSERT(tcp->tcp_ptpbhn != NULL);
2022 	tcp->tcp_rwnd = connp->conn_rcvbuf;
2023 	tcp->tcp_mss = connp->conn_ipversion != IPV4_VERSION ?
2024 	    tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4;
2025 }
2026 
2027 /*
2028  * Force values to zero that need be zero.
2029  * Do not touch values asociated with the BOUND or LISTEN state
2030  * since the connection will end up in that state after the reinit.
2031  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
2032  * structure!
2033  */
2034 static void
2035 tcp_reinit_values(tcp_t *tcp)
2036 {
2037 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2038 	conn_t		*connp = tcp->tcp_connp;
2039 
2040 #ifndef	lint
2041 #define	DONTCARE(x)
2042 #define	PRESERVE(x)
2043 #else
2044 #define	DONTCARE(x)	((x) = (x))
2045 #define	PRESERVE(x)	((x) = (x))
2046 #endif	/* lint */
2047 
2048 	PRESERVE(tcp->tcp_bind_hash_port);
2049 	PRESERVE(tcp->tcp_bind_hash);
2050 	PRESERVE(tcp->tcp_ptpbhn);
2051 	PRESERVE(tcp->tcp_acceptor_hash);
2052 	PRESERVE(tcp->tcp_ptpahn);
2053 
2054 	/* Should be ASSERT NULL on these with new code! */
2055 	ASSERT(tcp->tcp_time_wait_next == NULL);
2056 	ASSERT(tcp->tcp_time_wait_prev == NULL);
2057 	ASSERT(tcp->tcp_time_wait_expire == 0);
2058 	PRESERVE(tcp->tcp_state);
2059 	PRESERVE(connp->conn_rq);
2060 	PRESERVE(connp->conn_wq);
2061 
2062 	ASSERT(tcp->tcp_xmit_head == NULL);
2063 	ASSERT(tcp->tcp_xmit_last == NULL);
2064 	ASSERT(tcp->tcp_unsent == 0);
2065 	ASSERT(tcp->tcp_xmit_tail == NULL);
2066 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
2067 
2068 	tcp->tcp_snxt = 0;			/* Displayed in mib */
2069 	tcp->tcp_suna = 0;			/* Displayed in mib */
2070 	tcp->tcp_swnd = 0;
2071 	DONTCARE(tcp->tcp_cwnd);	/* Init in tcp_process_options */
2072 
2073 	if (connp->conn_ht_iphc != NULL) {
2074 		kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated);
2075 		connp->conn_ht_iphc = NULL;
2076 		connp->conn_ht_iphc_allocated = 0;
2077 		connp->conn_ht_iphc_len = 0;
2078 		connp->conn_ht_ulp = NULL;
2079 		connp->conn_ht_ulp_len = 0;
2080 		tcp->tcp_ipha = NULL;
2081 		tcp->tcp_ip6h = NULL;
2082 		tcp->tcp_tcpha = NULL;
2083 	}
2084 
2085 	/* We clear any IP_OPTIONS and extension headers */
2086 	ip_pkt_free(&connp->conn_xmit_ipp);
2087 
2088 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
2089 	DONTCARE(tcp->tcp_ipha);
2090 	DONTCARE(tcp->tcp_ip6h);
2091 	DONTCARE(tcp->tcp_tcpha);
2092 	tcp->tcp_valid_bits = 0;
2093 
2094 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
2095 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
2096 	tcp->tcp_last_rcv_lbolt = 0;
2097 
2098 	tcp->tcp_init_cwnd = 0;
2099 
2100 	tcp->tcp_urp_last_valid = 0;
2101 	tcp->tcp_hard_binding = 0;
2102 
2103 	tcp->tcp_fin_acked = 0;
2104 	tcp->tcp_fin_rcvd = 0;
2105 	tcp->tcp_fin_sent = 0;
2106 	tcp->tcp_ordrel_done = 0;
2107 
2108 	tcp->tcp_detached = 0;
2109 
2110 	tcp->tcp_snd_ws_ok = B_FALSE;
2111 	tcp->tcp_snd_ts_ok = B_FALSE;
2112 	tcp->tcp_zero_win_probe = 0;
2113 
2114 	tcp->tcp_loopback = 0;
2115 	tcp->tcp_localnet = 0;
2116 	tcp->tcp_syn_defense = 0;
2117 	tcp->tcp_set_timer = 0;
2118 
2119 	tcp->tcp_active_open = 0;
2120 	tcp->tcp_rexmit = B_FALSE;
2121 	tcp->tcp_xmit_zc_clean = B_FALSE;
2122 
2123 	tcp->tcp_snd_sack_ok = B_FALSE;
2124 	tcp->tcp_hwcksum = B_FALSE;
2125 
2126 	DONTCARE(tcp->tcp_maxpsz_multiplier);	/* Init in tcp_init_values */
2127 
2128 	tcp->tcp_conn_def_q0 = 0;
2129 	tcp->tcp_ip_forward_progress = B_FALSE;
2130 	tcp->tcp_ecn_ok = B_FALSE;
2131 
2132 	tcp->tcp_cwr = B_FALSE;
2133 	tcp->tcp_ecn_echo_on = B_FALSE;
2134 	tcp->tcp_is_wnd_shrnk = B_FALSE;
2135 
2136 	TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp);
2137 	bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
2138 
2139 	tcp->tcp_rcv_ws = 0;
2140 	tcp->tcp_snd_ws = 0;
2141 	tcp->tcp_ts_recent = 0;
2142 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
2143 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
2144 	tcp->tcp_initial_pmtu = 0;
2145 
2146 	ASSERT(tcp->tcp_reass_head == NULL);
2147 	ASSERT(tcp->tcp_reass_tail == NULL);
2148 
2149 	tcp->tcp_cwnd_cnt = 0;
2150 
2151 	ASSERT(tcp->tcp_rcv_list == NULL);
2152 	ASSERT(tcp->tcp_rcv_last_head == NULL);
2153 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
2154 	ASSERT(tcp->tcp_rcv_cnt == 0);
2155 
2156 	DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_set_destination */
2157 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
2158 	tcp->tcp_csuna = 0;
2159 
2160 	tcp->tcp_rto = 0;			/* Displayed in MIB */
2161 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
2162 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
2163 	tcp->tcp_rtt_update = 0;
2164 	tcp->tcp_rtt_sum = 0;
2165 	tcp->tcp_rtt_cnt = 0;
2166 
2167 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
2168 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
2169 
2170 	tcp->tcp_rack = 0;			/* Displayed in mib */
2171 	tcp->tcp_rack_cnt = 0;
2172 	tcp->tcp_rack_cur_max = 0;
2173 	tcp->tcp_rack_abs_max = 0;
2174 
2175 	tcp->tcp_max_swnd = 0;
2176 
2177 	ASSERT(tcp->tcp_listener == NULL);
2178 
2179 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
2180 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
2181 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
2182 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
2183 
2184 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
2185 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
2186 	PRESERVE(tcp->tcp_conn_req_max);
2187 	PRESERVE(tcp->tcp_conn_req_seqnum);
2188 
2189 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
2190 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
2191 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
2192 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
2193 
2194 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
2195 	ASSERT(tcp->tcp_urp_mp == NULL);
2196 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
2197 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
2198 
2199 	ASSERT(tcp->tcp_eager_next_q == NULL);
2200 	ASSERT(tcp->tcp_eager_last_q == NULL);
2201 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
2202 	    tcp->tcp_eager_prev_q0 == NULL) ||
2203 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
2204 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
2205 
2206 	ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
2207 	    tcp->tcp_eager_prev_drop_q0 == NULL) ||
2208 	    tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
2209 
2210 	DONTCARE(tcp->tcp_ka_rinterval);	/* Init in tcp_init_values */
2211 	DONTCARE(tcp->tcp_ka_abort_thres);	/* Init in tcp_init_values */
2212 	DONTCARE(tcp->tcp_ka_cnt);		/* Init in tcp_init_values */
2213 
2214 	tcp->tcp_client_errno = 0;
2215 
2216 	DONTCARE(connp->conn_sum);		/* Init in tcp_init_values */
2217 
2218 	connp->conn_faddr_v6 = ipv6_all_zeros;	/* Displayed in MIB */
2219 
2220 	PRESERVE(connp->conn_bound_addr_v6);
2221 	tcp->tcp_last_sent_len = 0;
2222 	tcp->tcp_dupack_cnt = 0;
2223 
2224 	connp->conn_fport = 0;			/* Displayed in MIB */
2225 	PRESERVE(connp->conn_lport);
2226 
2227 	PRESERVE(tcp->tcp_acceptor_lockp);
2228 
2229 	ASSERT(tcp->tcp_ordrel_mp == NULL);
2230 	PRESERVE(tcp->tcp_acceptor_id);
2231 	DONTCARE(tcp->tcp_ipsec_overhead);
2232 
2233 	PRESERVE(connp->conn_family);
2234 	/* Remove any remnants of mapped address binding */
2235 	if (connp->conn_family == AF_INET6) {
2236 		connp->conn_ipversion = IPV6_VERSION;
2237 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
2238 	} else {
2239 		connp->conn_ipversion = IPV4_VERSION;
2240 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
2241 	}
2242 
2243 	connp->conn_bound_if = 0;
2244 	connp->conn_recv_ancillary.crb_all = 0;
2245 	tcp->tcp_recvifindex = 0;
2246 	tcp->tcp_recvhops = 0;
2247 	tcp->tcp_closed = 0;
2248 	if (tcp->tcp_hopopts != NULL) {
2249 		mi_free(tcp->tcp_hopopts);
2250 		tcp->tcp_hopopts = NULL;
2251 		tcp->tcp_hopoptslen = 0;
2252 	}
2253 	ASSERT(tcp->tcp_hopoptslen == 0);
2254 	if (tcp->tcp_dstopts != NULL) {
2255 		mi_free(tcp->tcp_dstopts);
2256 		tcp->tcp_dstopts = NULL;
2257 		tcp->tcp_dstoptslen = 0;
2258 	}
2259 	ASSERT(tcp->tcp_dstoptslen == 0);
2260 	if (tcp->tcp_rthdrdstopts != NULL) {
2261 		mi_free(tcp->tcp_rthdrdstopts);
2262 		tcp->tcp_rthdrdstopts = NULL;
2263 		tcp->tcp_rthdrdstoptslen = 0;
2264 	}
2265 	ASSERT(tcp->tcp_rthdrdstoptslen == 0);
2266 	if (tcp->tcp_rthdr != NULL) {
2267 		mi_free(tcp->tcp_rthdr);
2268 		tcp->tcp_rthdr = NULL;
2269 		tcp->tcp_rthdrlen = 0;
2270 	}
2271 	ASSERT(tcp->tcp_rthdrlen == 0);
2272 
2273 	/* Reset fusion-related fields */
2274 	tcp->tcp_fused = B_FALSE;
2275 	tcp->tcp_unfusable = B_FALSE;
2276 	tcp->tcp_fused_sigurg = B_FALSE;
2277 	tcp->tcp_loopback_peer = NULL;
2278 
2279 	tcp->tcp_lso = B_FALSE;
2280 
2281 	tcp->tcp_in_ack_unsent = 0;
2282 	tcp->tcp_cork = B_FALSE;
2283 	tcp->tcp_tconnind_started = B_FALSE;
2284 
2285 	PRESERVE(tcp->tcp_squeue_bytes);
2286 
2287 	tcp->tcp_closemp_used = B_FALSE;
2288 
2289 	PRESERVE(tcp->tcp_rsrv_mp);
2290 	PRESERVE(tcp->tcp_rsrv_mp_lock);
2291 
2292 #ifdef DEBUG
2293 	DONTCARE(tcp->tcmp_stk[0]);
2294 #endif
2295 
2296 	PRESERVE(tcp->tcp_connid);
2297 
2298 	ASSERT(tcp->tcp_listen_cnt == NULL);
2299 	ASSERT(tcp->tcp_reass_tid == 0);
2300 
2301 #undef	DONTCARE
2302 #undef	PRESERVE
2303 }
2304 
2305 /*
2306  * Initialize the various fields in tcp_t.  If parent (the listener) is non
2307  * NULL, certain values will be inheritted from it.
2308  */
2309 void
2310 tcp_init_values(tcp_t *tcp, tcp_t *parent)
2311 {
2312 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2313 	conn_t		*connp = tcp->tcp_connp;
2314 
2315 	ASSERT((connp->conn_family == AF_INET &&
2316 	    connp->conn_ipversion == IPV4_VERSION) ||
2317 	    (connp->conn_family == AF_INET6 &&
2318 	    (connp->conn_ipversion == IPV4_VERSION ||
2319 	    connp->conn_ipversion == IPV6_VERSION)));
2320 
2321 	if (parent == NULL) {
2322 		tcp->tcp_naglim = tcps->tcps_naglim_def;
2323 
2324 		tcp->tcp_rto_initial = tcps->tcps_rexmit_interval_initial;
2325 		tcp->tcp_rto_min = tcps->tcps_rexmit_interval_min;
2326 		tcp->tcp_rto_max = tcps->tcps_rexmit_interval_max;
2327 
2328 		tcp->tcp_first_ctimer_threshold =
2329 		    tcps->tcps_ip_notify_cinterval;
2330 		tcp->tcp_second_ctimer_threshold =
2331 		    tcps->tcps_ip_abort_cinterval;
2332 		tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval;
2333 		tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval;
2334 
2335 		tcp->tcp_fin_wait_2_flush_interval =
2336 		    tcps->tcps_fin_wait_2_flush_interval;
2337 
2338 		tcp->tcp_ka_interval = tcps->tcps_keepalive_interval;
2339 		tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval;
2340 		tcp->tcp_ka_cnt = 0;
2341 		tcp->tcp_ka_rinterval = 0;
2342 
2343 		/*
2344 		 * Default value of tcp_init_cwnd is 0, so no need to set here
2345 		 * if parent is NULL.  But we need to inherit it from parent.
2346 		 */
2347 	} else {
2348 		/* Inherit various TCP parameters from the parent. */
2349 		tcp->tcp_naglim = parent->tcp_naglim;
2350 
2351 		tcp->tcp_rto_initial = parent->tcp_rto_initial;
2352 		tcp->tcp_rto_min = parent->tcp_rto_min;
2353 		tcp->tcp_rto_max = parent->tcp_rto_max;
2354 
2355 		tcp->tcp_first_ctimer_threshold =
2356 		    parent->tcp_first_ctimer_threshold;
2357 		tcp->tcp_second_ctimer_threshold =
2358 		    parent->tcp_second_ctimer_threshold;
2359 		tcp->tcp_first_timer_threshold =
2360 		    parent->tcp_first_timer_threshold;
2361 		tcp->tcp_second_timer_threshold =
2362 		    parent->tcp_second_timer_threshold;
2363 
2364 		tcp->tcp_fin_wait_2_flush_interval =
2365 		    parent->tcp_fin_wait_2_flush_interval;
2366 
2367 		tcp->tcp_ka_interval = parent->tcp_ka_interval;
2368 		tcp->tcp_ka_abort_thres = parent->tcp_ka_abort_thres;
2369 		tcp->tcp_ka_cnt = parent->tcp_ka_cnt;
2370 		tcp->tcp_ka_rinterval = parent->tcp_ka_rinterval;
2371 
2372 		tcp->tcp_init_cwnd = parent->tcp_init_cwnd;
2373 	}
2374 
2375 	/*
2376 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
2377 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
2378 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
2379 	 * during first few transmissions of a connection as seen in slow
2380 	 * links.
2381 	 */
2382 	tcp->tcp_rtt_sa = MSEC2NSEC(tcp->tcp_rto_initial) << 2;
2383 	tcp->tcp_rtt_sd = MSEC2NSEC(tcp->tcp_rto_initial) >> 1;
2384 	tcp->tcp_rto = tcp_calculate_rto(tcp, tcps,
2385 	    tcps->tcps_conn_grace_period);
2386 
2387 	tcp->tcp_timer_backoff = 0;
2388 	tcp->tcp_ms_we_have_waited = 0;
2389 	tcp->tcp_last_recv_time = ddi_get_lbolt();
2390 	tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_;
2391 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2392 
2393 	tcp->tcp_maxpsz_multiplier = tcps->tcps_maxpsz_multiplier;
2394 
2395 	/* NOTE:  ISS is now set in tcp_set_destination(). */
2396 
2397 	/* Reset fusion-related fields */
2398 	tcp->tcp_fused = B_FALSE;
2399 	tcp->tcp_unfusable = B_FALSE;
2400 	tcp->tcp_fused_sigurg = B_FALSE;
2401 	tcp->tcp_loopback_peer = NULL;
2402 
2403 	/* We rebuild the header template on the next connect/conn_request */
2404 
2405 	connp->conn_mlp_type = mlptSingle;
2406 
2407 	/*
2408 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
2409 	 * down tcp_rwnd. tcp_set_destination() will set the right value later.
2410 	 */
2411 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
2412 	tcp->tcp_rwnd = connp->conn_rcvbuf;
2413 
2414 	tcp->tcp_cork = B_FALSE;
2415 	/*
2416 	 * Init the tcp_debug option if it wasn't already set.  This value
2417 	 * determines whether TCP
2418 	 * calls strlog() to print out debug messages.  Doing this
2419 	 * initialization here means that this value is not inherited thru
2420 	 * tcp_reinit().
2421 	 */
2422 	if (!connp->conn_debug)
2423 		connp->conn_debug = tcps->tcps_dbg;
2424 }
2425 
2426 /*
2427  * Update the TCP connection according to change of PMTU.
2428  *
2429  * Path MTU might have changed by either increase or decrease, so need to
2430  * adjust the MSS based on the value of ixa_pmtu. No need to handle tiny
2431  * or negative MSS, since tcp_mss_set() will do it.
2432  */
2433 void
2434 tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only)
2435 {
2436 	uint32_t	pmtu;
2437 	int32_t		mss;
2438 	conn_t		*connp = tcp->tcp_connp;
2439 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
2440 	iaflags_t	ixaflags;
2441 
2442 	if (tcp->tcp_tcps->tcps_ignore_path_mtu)
2443 		return;
2444 
2445 	if (tcp->tcp_state < TCPS_ESTABLISHED)
2446 		return;
2447 
2448 	/*
2449 	 * Always call ip_get_pmtu() to make sure that IP has updated
2450 	 * ixa_flags properly.
2451 	 */
2452 	pmtu = ip_get_pmtu(ixa);
2453 	ixaflags = ixa->ixa_flags;
2454 
2455 	/*
2456 	 * Calculate the MSS by decreasing the PMTU by conn_ht_iphc_len and
2457 	 * IPsec overhead if applied. Make sure to use the most recent
2458 	 * IPsec information.
2459 	 */
2460 	mss = pmtu - connp->conn_ht_iphc_len - conn_ipsec_length(connp);
2461 
2462 	/*
2463 	 * Nothing to change, so just return.
2464 	 */
2465 	if (mss == tcp->tcp_mss)
2466 		return;
2467 
2468 	/*
2469 	 * Currently, for ICMP errors, only PMTU decrease is handled.
2470 	 */
2471 	if (mss > tcp->tcp_mss && decrease_only)
2472 		return;
2473 
2474 	DTRACE_PROBE2(tcp_update_pmtu, int32_t, tcp->tcp_mss, uint32_t, mss);
2475 
2476 	/*
2477 	 * Update ixa_fragsize and ixa_pmtu.
2478 	 */
2479 	ixa->ixa_fragsize = ixa->ixa_pmtu = pmtu;
2480 
2481 	/*
2482 	 * Adjust MSS and all relevant variables.
2483 	 */
2484 	tcp_mss_set(tcp, mss);
2485 
2486 	/*
2487 	 * If the PMTU is below the min size maintained by IP, then ip_get_pmtu
2488 	 * has set IXAF_PMTU_TOO_SMALL and cleared IXAF_PMTU_IPV4_DF. Since TCP
2489 	 * has a (potentially different) min size we do the same. Make sure to
2490 	 * clear IXAF_DONTFRAG, which is used by IP to decide whether to
2491 	 * fragment the packet.
2492 	 *
2493 	 * LSO over IPv6 can not be fragmented. So need to disable LSO
2494 	 * when IPv6 fragmentation is needed.
2495 	 */
2496 	if (mss < tcp->tcp_tcps->tcps_mss_min)
2497 		ixaflags |= IXAF_PMTU_TOO_SMALL;
2498 
2499 	if (ixaflags & IXAF_PMTU_TOO_SMALL)
2500 		ixaflags &= ~(IXAF_DONTFRAG | IXAF_PMTU_IPV4_DF);
2501 
2502 	if ((connp->conn_ipversion == IPV4_VERSION) &&
2503 	    !(ixaflags & IXAF_PMTU_IPV4_DF)) {
2504 		tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
2505 	}
2506 	ixa->ixa_flags = ixaflags;
2507 }
2508 
2509 int
2510 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
2511 {
2512 	conn_t	*connp = tcp->tcp_connp;
2513 	queue_t	*q = connp->conn_rq;
2514 	int32_t	mss = tcp->tcp_mss;
2515 	int	maxpsz;
2516 
2517 	if (TCP_IS_DETACHED(tcp))
2518 		return (mss);
2519 	if (tcp->tcp_fused) {
2520 		maxpsz = tcp_fuse_maxpsz(tcp);
2521 		mss = INFPSZ;
2522 	} else if (tcp->tcp_maxpsz_multiplier == 0) {
2523 		/*
2524 		 * Set the sd_qn_maxpsz according to the socket send buffer
2525 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
2526 		 * instruct the stream head to copyin user data into contiguous
2527 		 * kernel-allocated buffers without breaking it up into smaller
2528 		 * chunks.  We round up the buffer size to the nearest SMSS.
2529 		 */
2530 		maxpsz = MSS_ROUNDUP(connp->conn_sndbuf, mss);
2531 		mss = INFPSZ;
2532 	} else {
2533 		/*
2534 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
2535 		 * (and a multiple of the mss).  This instructs the stream
2536 		 * head to break down larger than SMSS writes into SMSS-
2537 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
2538 		 */
2539 		maxpsz = tcp->tcp_maxpsz_multiplier * mss;
2540 		if (maxpsz > connp->conn_sndbuf / 2) {
2541 			maxpsz = connp->conn_sndbuf / 2;
2542 			/* Round up to nearest mss */
2543 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
2544 		}
2545 	}
2546 
2547 	(void) proto_set_maxpsz(q, connp, maxpsz);
2548 	if (!(IPCL_IS_NONSTR(connp)))
2549 		connp->conn_wq->q_maxpsz = maxpsz;
2550 	if (set_maxblk)
2551 		(void) proto_set_tx_maxblk(q, connp, mss);
2552 	return (mss);
2553 }
2554 
2555 /* For /dev/tcp aka AF_INET open */
2556 static int
2557 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2558 {
2559 	return (tcp_open(q, devp, flag, sflag, credp, B_FALSE));
2560 }
2561 
2562 /* For /dev/tcp6 aka AF_INET6 open */
2563 static int
2564 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2565 {
2566 	return (tcp_open(q, devp, flag, sflag, credp, B_TRUE));
2567 }
2568 
2569 conn_t *
2570 tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket,
2571     int *errorp)
2572 {
2573 	tcp_t		*tcp = NULL;
2574 	conn_t		*connp;
2575 	zoneid_t	zoneid;
2576 	tcp_stack_t	*tcps;
2577 	squeue_t	*sqp;
2578 
2579 	ASSERT(errorp != NULL);
2580 	/*
2581 	 * Find the proper zoneid and netstack.
2582 	 */
2583 	/*
2584 	 * Special case for install: miniroot needs to be able to
2585 	 * access files via NFS as though it were always in the
2586 	 * global zone.
2587 	 */
2588 	if (credp == kcred && nfs_global_client_only != 0) {
2589 		zoneid = GLOBAL_ZONEID;
2590 		tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
2591 		    netstack_tcp;
2592 		ASSERT(tcps != NULL);
2593 	} else {
2594 		netstack_t *ns;
2595 		int err;
2596 
2597 		if ((err = secpolicy_basic_net_access(credp)) != 0) {
2598 			*errorp = err;
2599 			return (NULL);
2600 		}
2601 
2602 		ns = netstack_find_by_cred(credp);
2603 		ASSERT(ns != NULL);
2604 		tcps = ns->netstack_tcp;
2605 		ASSERT(tcps != NULL);
2606 
2607 		/*
2608 		 * For exclusive stacks we set the zoneid to zero
2609 		 * to make TCP operate as if in the global zone.
2610 		 */
2611 		if (tcps->tcps_netstack->netstack_stackid !=
2612 		    GLOBAL_NETSTACKID)
2613 			zoneid = GLOBAL_ZONEID;
2614 		else
2615 			zoneid = crgetzoneid(credp);
2616 	}
2617 
2618 	sqp = IP_SQUEUE_GET((uint_t)gethrtime());
2619 	connp = (conn_t *)tcp_get_conn(sqp, tcps);
2620 	/*
2621 	 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
2622 	 * so we drop it by one.
2623 	 */
2624 	netstack_rele(tcps->tcps_netstack);
2625 	if (connp == NULL) {
2626 		*errorp = ENOSR;
2627 		return (NULL);
2628 	}
2629 	ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto);
2630 
2631 	connp->conn_sqp = sqp;
2632 	connp->conn_initial_sqp = connp->conn_sqp;
2633 	connp->conn_ixa->ixa_sqp = connp->conn_sqp;
2634 	tcp = connp->conn_tcp;
2635 
2636 	/*
2637 	 * Besides asking IP to set the checksum for us, have conn_ip_output
2638 	 * to do the following checks when necessary:
2639 	 *
2640 	 * IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid
2641 	 * IXAF_VERIFY_PMTU: verify PMTU changes
2642 	 * IXAF_VERIFY_LSO: verify LSO capability changes
2643 	 */
2644 	connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
2645 	    IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO;
2646 
2647 	if (!tcps->tcps_dev_flow_ctl)
2648 		connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL;
2649 
2650 	if (isv6) {
2651 		connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
2652 		connp->conn_ipversion = IPV6_VERSION;
2653 		connp->conn_family = AF_INET6;
2654 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
2655 		connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit;
2656 	} else {
2657 		connp->conn_ipversion = IPV4_VERSION;
2658 		connp->conn_family = AF_INET;
2659 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
2660 		connp->conn_default_ttl = tcps->tcps_ipv4_ttl;
2661 	}
2662 	connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl;
2663 
2664 	crhold(credp);
2665 	connp->conn_cred = credp;
2666 	connp->conn_cpid = curproc->p_pid;
2667 	connp->conn_open_time = ddi_get_lbolt64();
2668 
2669 	/* Cache things in the ixa without any refhold */
2670 	ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
2671 	connp->conn_ixa->ixa_cred = credp;
2672 	connp->conn_ixa->ixa_cpid = connp->conn_cpid;
2673 
2674 	connp->conn_zoneid = zoneid;
2675 	/* conn_allzones can not be set this early, hence no IPCL_ZONEID */
2676 	connp->conn_ixa->ixa_zoneid = zoneid;
2677 	connp->conn_mlp_type = mlptSingle;
2678 	ASSERT(connp->conn_netstack == tcps->tcps_netstack);
2679 	ASSERT(tcp->tcp_tcps == tcps);
2680 
2681 	/*
2682 	 * If the caller has the process-wide flag set, then default to MAC
2683 	 * exempt mode.  This allows read-down to unlabeled hosts.
2684 	 */
2685 	if (getpflags(NET_MAC_AWARE, credp) != 0)
2686 		connp->conn_mac_mode = CONN_MAC_AWARE;
2687 
2688 	connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);
2689 
2690 	if (issocket) {
2691 		tcp->tcp_issocket = 1;
2692 	}
2693 
2694 	connp->conn_rcvbuf = tcps->tcps_recv_hiwat;
2695 	connp->conn_sndbuf = tcps->tcps_xmit_hiwat;
2696 	if (tcps->tcps_snd_lowat_fraction != 0) {
2697 		connp->conn_sndlowat = connp->conn_sndbuf /
2698 		    tcps->tcps_snd_lowat_fraction;
2699 	} else {
2700 		connp->conn_sndlowat = tcps->tcps_xmit_lowat;
2701 	}
2702 	connp->conn_so_type = SOCK_STREAM;
2703 	connp->conn_wroff = connp->conn_ht_iphc_allocated +
2704 	    tcps->tcps_wroff_xtra;
2705 
2706 	SOCK_CONNID_INIT(tcp->tcp_connid);
2707 	/* DTrace ignores this - it isn't a tcp:::state-change */
2708 	tcp->tcp_state = TCPS_IDLE;
2709 	tcp_init_values(tcp, NULL);
2710 	return (connp);
2711 }
2712 
2713 static int
2714 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
2715     boolean_t isv6)
2716 {
2717 	tcp_t		*tcp = NULL;
2718 	conn_t		*connp = NULL;
2719 	int		err;
2720 	vmem_t		*minor_arena = NULL;
2721 	dev_t		conn_dev;
2722 	boolean_t	issocket;
2723 
2724 	if (q->q_ptr != NULL)
2725 		return (0);
2726 
2727 	if (sflag == MODOPEN)
2728 		return (EINVAL);
2729 
2730 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
2731 	    ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
2732 		minor_arena = ip_minor_arena_la;
2733 	} else {
2734 		/*
2735 		 * Either minor numbers in the large arena were exhausted
2736 		 * or a non socket application is doing the open.
2737 		 * Try to allocate from the small arena.
2738 		 */
2739 		if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
2740 			return (EBUSY);
2741 		}
2742 		minor_arena = ip_minor_arena_sa;
2743 	}
2744 
2745 	ASSERT(minor_arena != NULL);
2746 
2747 	*devp = makedevice(getmajor(*devp), (minor_t)conn_dev);
2748 
2749 	if (flag & SO_FALLBACK) {
2750 		/*
2751 		 * Non streams socket needs a stream to fallback to
2752 		 */
2753 		RD(q)->q_ptr = (void *)conn_dev;
2754 		WR(q)->q_qinfo = &tcp_fallback_sock_winit;
2755 		WR(q)->q_ptr = (void *)minor_arena;
2756 		qprocson(q);
2757 		return (0);
2758 	} else if (flag & SO_ACCEPTOR) {
2759 		q->q_qinfo = &tcp_acceptor_rinit;
2760 		/*
2761 		 * the conn_dev and minor_arena will be subsequently used by
2762 		 * tcp_tli_accept() and tcp_tpi_close_accept() to figure out
2763 		 * the minor device number for this connection from the q_ptr.
2764 		 */
2765 		RD(q)->q_ptr = (void *)conn_dev;
2766 		WR(q)->q_qinfo = &tcp_acceptor_winit;
2767 		WR(q)->q_ptr = (void *)minor_arena;
2768 		qprocson(q);
2769 		return (0);
2770 	}
2771 
2772 	issocket = flag & SO_SOCKSTR;
2773 	connp = tcp_create_common(credp, isv6, issocket, &err);
2774 
2775 	if (connp == NULL) {
2776 		inet_minor_free(minor_arena, conn_dev);
2777 		q->q_ptr = WR(q)->q_ptr = NULL;
2778 		return (err);
2779 	}
2780 
2781 	connp->conn_rq = q;
2782 	connp->conn_wq = WR(q);
2783 	q->q_ptr = WR(q)->q_ptr = connp;
2784 
2785 	connp->conn_dev = conn_dev;
2786 	connp->conn_minor_arena = minor_arena;
2787 
2788 	ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6);
2789 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
2790 
2791 	tcp = connp->conn_tcp;
2792 
2793 	if (issocket) {
2794 		WR(q)->q_qinfo = &tcp_sock_winit;
2795 	} else {
2796 #ifdef  _ILP32
2797 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
2798 #else
2799 		tcp->tcp_acceptor_id = conn_dev;
2800 #endif  /* _ILP32 */
2801 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
2802 	}
2803 
2804 	/*
2805 	 * Put the ref for TCP. Ref for IP was already put
2806 	 * by ipcl_conn_create. Also Make the conn_t globally
2807 	 * visible to walkers
2808 	 */
2809 	mutex_enter(&connp->conn_lock);
2810 	CONN_INC_REF_LOCKED(connp);
2811 	ASSERT(connp->conn_ref == 2);
2812 	connp->conn_state_flags &= ~CONN_INCIPIENT;
2813 	mutex_exit(&connp->conn_lock);
2814 
2815 	qprocson(q);
2816 	return (0);
2817 }
2818 
2819 /*
2820  * Build/update the tcp header template (in conn_ht_iphc) based on
2821  * conn_xmit_ipp. The headers include ip6_t, any extension
2822  * headers, and the maximum size tcp header (to avoid reallocation
2823  * on the fly for additional tcp options).
2824  *
2825  * Assumes the caller has already set conn_{faddr,laddr,fport,lport,flowinfo}.
2826  * Returns failure if can't allocate memory.
2827  */
2828 int
2829 tcp_build_hdrs(tcp_t *tcp)
2830 {
2831 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2832 	conn_t		*connp = tcp->tcp_connp;
2833 	char		buf[TCP_MAX_HDR_LENGTH];
2834 	uint_t		buflen;
2835 	uint_t		ulplen = TCP_MIN_HEADER_LENGTH;
2836 	uint_t		extralen = TCP_MAX_TCP_OPTIONS_LENGTH;
2837 	tcpha_t		*tcpha;
2838 	uint32_t	cksum;
2839 	int		error;
2840 
2841 	/*
2842 	 * We might be called after the connection is set up, and we might
2843 	 * have TS options already in the TCP header. Thus we  save any
2844 	 * existing tcp header.
2845 	 */
2846 	buflen = connp->conn_ht_ulp_len;
2847 	if (buflen != 0) {
2848 		bcopy(connp->conn_ht_ulp, buf, buflen);
2849 		extralen -= buflen - ulplen;
2850 		ulplen = buflen;
2851 	}
2852 
2853 	/* Grab lock to satisfy ASSERT; TCP is serialized using squeue */
2854 	mutex_enter(&connp->conn_lock);
2855 	error = conn_build_hdr_template(connp, ulplen, extralen,
2856 	    &connp->conn_laddr_v6, &connp->conn_faddr_v6, connp->conn_flowinfo);
2857 	mutex_exit(&connp->conn_lock);
2858 	if (error != 0)
2859 		return (error);
2860 
2861 	/*
2862 	 * Any routing header/option has been massaged. The checksum difference
2863 	 * is stored in conn_sum for later use.
2864 	 */
2865 	tcpha = (tcpha_t *)connp->conn_ht_ulp;
2866 	tcp->tcp_tcpha = tcpha;
2867 
2868 	/* restore any old tcp header */
2869 	if (buflen != 0) {
2870 		bcopy(buf, connp->conn_ht_ulp, buflen);
2871 	} else {
2872 		tcpha->tha_sum = 0;
2873 		tcpha->tha_urp = 0;
2874 		tcpha->tha_ack = 0;
2875 		tcpha->tha_offset_and_reserved = (5 << 4);
2876 		tcpha->tha_lport = connp->conn_lport;
2877 		tcpha->tha_fport = connp->conn_fport;
2878 	}
2879 
2880 	/*
2881 	 * IP wants our header length in the checksum field to
2882 	 * allow it to perform a single pseudo-header+checksum
2883 	 * calculation on behalf of TCP.
2884 	 * Include the adjustment for a source route once IP_OPTIONS is set.
2885 	 */
2886 	cksum = sizeof (tcpha_t) + connp->conn_sum;
2887 	cksum = (cksum >> 16) + (cksum & 0xFFFF);
2888 	ASSERT(cksum < 0x10000);
2889 	tcpha->tha_sum = htons(cksum);
2890 
2891 	if (connp->conn_ipversion == IPV4_VERSION)
2892 		tcp->tcp_ipha = (ipha_t *)connp->conn_ht_iphc;
2893 	else
2894 		tcp->tcp_ip6h = (ip6_t *)connp->conn_ht_iphc;
2895 
2896 	if (connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra >
2897 	    connp->conn_wroff) {
2898 		connp->conn_wroff = connp->conn_ht_iphc_allocated +
2899 		    tcps->tcps_wroff_xtra;
2900 		(void) proto_set_tx_wroff(connp->conn_rq, connp,
2901 		    connp->conn_wroff);
2902 	}
2903 	return (0);
2904 }
2905 
2906 /*
2907  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
2908  * We do not allow the receive window to shrink.  After setting rwnd,
2909  * set the flow control hiwat of the stream.
2910  *
2911  * This function is called in 2 cases:
2912  *
2913  * 1) Before data transfer begins, in tcp_input_listener() for accepting a
2914  *    connection (passive open) and in tcp_input_data() for active connect.
2915  *    This is called after tcp_mss_set() when the desired MSS value is known.
2916  *    This makes sure that our window size is a mutiple of the other side's
2917  *    MSS.
2918  * 2) Handling SO_RCVBUF option.
2919  *
2920  * It is ASSUMED that the requested size is a multiple of the current MSS.
2921  *
2922  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
2923  * user requests so.
2924  */
2925 int
2926 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
2927 {
2928 	uint32_t	mss = tcp->tcp_mss;
2929 	uint32_t	old_max_rwnd;
2930 	uint32_t	max_transmittable_rwnd;
2931 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2932 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2933 	conn_t		*connp = tcp->tcp_connp;
2934 
2935 	/*
2936 	 * Insist on a receive window that is at least
2937 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
2938 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
2939 	 * and delayed acknowledgement.
2940 	 */
2941 	rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss);
2942 
2943 	if (tcp->tcp_fused) {
2944 		size_t sth_hiwat;
2945 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
2946 
2947 		ASSERT(peer_tcp != NULL);
2948 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
2949 		if (!tcp_detached) {
2950 			(void) proto_set_rx_hiwat(connp->conn_rq, connp,
2951 			    sth_hiwat);
2952 			tcp_set_recv_threshold(tcp, sth_hiwat >> 3);
2953 		}
2954 
2955 		/* Caller could have changed tcp_rwnd; update tha_win */
2956 		if (tcp->tcp_tcpha != NULL) {
2957 			tcp->tcp_tcpha->tha_win =
2958 			    htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
2959 		}
2960 		if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
2961 			tcp->tcp_cwnd_max = rwnd;
2962 
2963 		/*
2964 		 * In the fusion case, the maxpsz stream head value of
2965 		 * our peer is set according to its send buffer size
2966 		 * and our receive buffer size; since the latter may
2967 		 * have changed we need to update the peer's maxpsz.
2968 		 */
2969 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
2970 		return (sth_hiwat);
2971 	}
2972 
2973 	if (tcp_detached)
2974 		old_max_rwnd = tcp->tcp_rwnd;
2975 	else
2976 		old_max_rwnd = connp->conn_rcvbuf;
2977 
2978 
2979 	/*
2980 	 * If window size info has already been exchanged, TCP should not
2981 	 * shrink the window.  Shrinking window is doable if done carefully.
2982 	 * We may add that support later.  But so far there is not a real
2983 	 * need to do that.
2984 	 */
2985 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
2986 		/* MSS may have changed, do a round up again. */
2987 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
2988 	}
2989 
2990 	/*
2991 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
2992 	 * can be applied even before the window scale option is decided.
2993 	 */
2994 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
2995 	if (rwnd > max_transmittable_rwnd) {
2996 		rwnd = max_transmittable_rwnd -
2997 		    (max_transmittable_rwnd % mss);
2998 		if (rwnd < mss)
2999 			rwnd = max_transmittable_rwnd;
3000 		/*
3001 		 * If we're over the limit we may have to back down tcp_rwnd.
3002 		 * The increment below won't work for us. So we set all three
3003 		 * here and the increment below will have no effect.
3004 		 */
3005 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
3006 	}
3007 	if (tcp->tcp_localnet) {
3008 		tcp->tcp_rack_abs_max =
3009 		    MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2);
3010 	} else {
3011 		/*
3012 		 * For a remote host on a different subnet (through a router),
3013 		 * we ack every other packet to be conforming to RFC1122.
3014 		 * tcp_deferred_acks_max is default to 2.
3015 		 */
3016 		tcp->tcp_rack_abs_max =
3017 		    MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2);
3018 	}
3019 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
3020 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
3021 	else
3022 		tcp->tcp_rack_cur_max = 0;
3023 	/*
3024 	 * Increment the current rwnd by the amount the maximum grew (we
3025 	 * can not overwrite it since we might be in the middle of a
3026 	 * connection.)
3027 	 */
3028 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
3029 	connp->conn_rcvbuf = rwnd;
3030 
3031 	/* Are we already connected? */
3032 	if (tcp->tcp_tcpha != NULL) {
3033 		tcp->tcp_tcpha->tha_win =
3034 		    htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
3035 	}
3036 
3037 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
3038 		tcp->tcp_cwnd_max = rwnd;
3039 
3040 	if (tcp_detached)
3041 		return (rwnd);
3042 
3043 	tcp_set_recv_threshold(tcp, rwnd >> 3);
3044 
3045 	(void) proto_set_rx_hiwat(connp->conn_rq, connp, rwnd);
3046 	return (rwnd);
3047 }
3048 
3049 int
3050 tcp_do_unbind(conn_t *connp)
3051 {
3052 	tcp_t *tcp = connp->conn_tcp;
3053 	int32_t oldstate;
3054 
3055 	switch (tcp->tcp_state) {
3056 	case TCPS_BOUND:
3057 	case TCPS_LISTEN:
3058 		break;
3059 	default:
3060 		return (-TOUTSTATE);
3061 	}
3062 
3063 	/*
3064 	 * Need to clean up all the eagers since after the unbind, segments
3065 	 * will no longer be delivered to this listener stream.
3066 	 */
3067 	mutex_enter(&tcp->tcp_eager_lock);
3068 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
3069 		tcp_eager_cleanup(tcp, 0);
3070 	}
3071 	mutex_exit(&tcp->tcp_eager_lock);
3072 
3073 	/* Clean up the listener connection counter if necessary. */
3074 	if (tcp->tcp_listen_cnt != NULL)
3075 		TCP_DECR_LISTEN_CNT(tcp);
3076 	connp->conn_laddr_v6 = ipv6_all_zeros;
3077 	connp->conn_saddr_v6 = ipv6_all_zeros;
3078 	tcp_bind_hash_remove(tcp);
3079 	oldstate = tcp->tcp_state;
3080 	tcp->tcp_state = TCPS_IDLE;
3081 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
3082 	    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
3083 	    int32_t, oldstate);
3084 
3085 	ip_unbind(connp);
3086 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
3087 
3088 	return (0);
3089 }
3090 
3091 /*
3092  * Collect protocol properties to send to the upper handle.
3093  */
3094 void
3095 tcp_get_proto_props(tcp_t *tcp, struct sock_proto_props *sopp)
3096 {
3097 	conn_t *connp = tcp->tcp_connp;
3098 
3099 	sopp->sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF;
3100 	sopp->sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
3101 
3102 	sopp->sopp_rxhiwat = tcp->tcp_fused ?
3103 	    tcp_fuse_set_rcv_hiwat(tcp, connp->conn_rcvbuf) :
3104 	    connp->conn_rcvbuf;
3105 	/*
3106 	 * Determine what write offset value to use depending on SACK and
3107 	 * whether the endpoint is fused or not.
3108 	 */
3109 	if (tcp->tcp_fused) {
3110 		ASSERT(tcp->tcp_loopback);
3111 		ASSERT(tcp->tcp_loopback_peer != NULL);
3112 		/*
3113 		 * For fused tcp loopback, set the stream head's write
3114 		 * offset value to zero since we won't be needing any room
3115 		 * for TCP/IP headers.  This would also improve performance
3116 		 * since it would reduce the amount of work done by kmem.
3117 		 * Non-fused tcp loopback case is handled separately below.
3118 		 */
3119 		sopp->sopp_wroff = 0;
3120 		/*
3121 		 * Update the peer's transmit parameters according to
3122 		 * our recently calculated high water mark value.
3123 		 */
3124 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
3125 	} else if (tcp->tcp_snd_sack_ok) {
3126 		sopp->sopp_wroff = connp->conn_ht_iphc_allocated +
3127 		    (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra);
3128 	} else {
3129 		sopp->sopp_wroff = connp->conn_ht_iphc_len +
3130 		    (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra);
3131 	}
3132 
3133 	if (tcp->tcp_loopback) {
3134 		sopp->sopp_flags |= SOCKOPT_LOOPBACK;
3135 		sopp->sopp_loopback = B_TRUE;
3136 	}
3137 }
3138 
3139 /*
3140  * Check the usability of ZEROCOPY. It's instead checking the flag set by IP.
3141  */
3142 boolean_t
3143 tcp_zcopy_check(tcp_t *tcp)
3144 {
3145 	conn_t		*connp = tcp->tcp_connp;
3146 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
3147 	boolean_t	zc_enabled = B_FALSE;
3148 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3149 
3150 	if (do_tcpzcopy == 2)
3151 		zc_enabled = B_TRUE;
3152 	else if ((do_tcpzcopy == 1) && (ixa->ixa_flags & IXAF_ZCOPY_CAPAB))
3153 		zc_enabled = B_TRUE;
3154 
3155 	tcp->tcp_snd_zcopy_on = zc_enabled;
3156 	if (!TCP_IS_DETACHED(tcp)) {
3157 		if (zc_enabled) {
3158 			ixa->ixa_flags |= IXAF_VERIFY_ZCOPY;
3159 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
3160 			    ZCVMSAFE);
3161 			TCP_STAT(tcps, tcp_zcopy_on);
3162 		} else {
3163 			ixa->ixa_flags &= ~IXAF_VERIFY_ZCOPY;
3164 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
3165 			    ZCVMUNSAFE);
3166 			TCP_STAT(tcps, tcp_zcopy_off);
3167 		}
3168 	}
3169 	return (zc_enabled);
3170 }
3171 
3172 /*
3173  * Backoff from a zero-copy message by copying data to a new allocated
3174  * message and freeing the original desballoca'ed segmapped message.
3175  *
3176  * This function is called by following two callers:
3177  * 1. tcp_timer: fix_xmitlist is set to B_TRUE, because it's safe to free
3178  *    the origial desballoca'ed message and notify sockfs. This is in re-
3179  *    transmit state.
3180  * 2. tcp_output: fix_xmitlist is set to B_FALSE. Flag STRUIO_ZCNOTIFY need
3181  *    to be copied to new message.
3182  */
3183 mblk_t *
3184 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, boolean_t fix_xmitlist)
3185 {
3186 	mblk_t		*nbp;
3187 	mblk_t		*head = NULL;
3188 	mblk_t		*tail = NULL;
3189 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3190 
3191 	ASSERT(bp != NULL);
3192 	while (bp != NULL) {
3193 		if (IS_VMLOANED_MBLK(bp)) {
3194 			TCP_STAT(tcps, tcp_zcopy_backoff);
3195 			if ((nbp = copyb(bp)) == NULL) {
3196 				tcp->tcp_xmit_zc_clean = B_FALSE;
3197 				if (tail != NULL)
3198 					tail->b_cont = bp;
3199 				return ((head == NULL) ? bp : head);
3200 			}
3201 
3202 			if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
3203 				if (fix_xmitlist)
3204 					tcp_zcopy_notify(tcp);
3205 				else
3206 					nbp->b_datap->db_struioflag |=
3207 					    STRUIO_ZCNOTIFY;
3208 			}
3209 			nbp->b_cont = bp->b_cont;
3210 
3211 			/*
3212 			 * Copy saved information and adjust tcp_xmit_tail
3213 			 * if needed.
3214 			 */
3215 			if (fix_xmitlist) {
3216 				nbp->b_prev = bp->b_prev;
3217 				nbp->b_next = bp->b_next;
3218 
3219 				if (tcp->tcp_xmit_tail == bp)
3220 					tcp->tcp_xmit_tail = nbp;
3221 			}
3222 
3223 			/* Free the original message. */
3224 			bp->b_prev = NULL;
3225 			bp->b_next = NULL;
3226 			freeb(bp);
3227 
3228 			bp = nbp;
3229 		}
3230 
3231 		if (head == NULL) {
3232 			head = bp;
3233 		}
3234 		if (tail == NULL) {
3235 			tail = bp;
3236 		} else {
3237 			tail->b_cont = bp;
3238 			tail = bp;
3239 		}
3240 
3241 		/* Move forward. */
3242 		bp = bp->b_cont;
3243 	}
3244 
3245 	if (fix_xmitlist) {
3246 		tcp->tcp_xmit_last = tail;
3247 		tcp->tcp_xmit_zc_clean = B_TRUE;
3248 	}
3249 
3250 	return (head);
3251 }
3252 
3253 void
3254 tcp_zcopy_notify(tcp_t *tcp)
3255 {
3256 	struct stdata	*stp;
3257 	conn_t		*connp;
3258 
3259 	if (tcp->tcp_detached)
3260 		return;
3261 	connp = tcp->tcp_connp;
3262 	if (IPCL_IS_NONSTR(connp)) {
3263 		(*connp->conn_upcalls->su_zcopy_notify)
3264 		    (connp->conn_upper_handle);
3265 		return;
3266 	}
3267 	stp = STREAM(connp->conn_rq);
3268 	mutex_enter(&stp->sd_lock);
3269 	stp->sd_flag |= STZCNOTIFY;
3270 	cv_broadcast(&stp->sd_zcopy_wait);
3271 	mutex_exit(&stp->sd_lock);
3272 }
3273 
3274 /*
3275  * Update the TCP connection according to change of LSO capability.
3276  */
3277 static void
3278 tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa)
3279 {
3280 	/*
3281 	 * We check against IPv4 header length to preserve the old behavior
3282 	 * of only enabling LSO when there are no IP options.
3283 	 * But this restriction might not be necessary at all. Before removing
3284 	 * it, need to verify how LSO is handled for source routing case, with
3285 	 * which IP does software checksum.
3286 	 *
3287 	 * For IPv6, whenever any extension header is needed, LSO is supressed.
3288 	 */
3289 	if (ixa->ixa_ip_hdr_length != ((ixa->ixa_flags & IXAF_IS_IPV4) ?
3290 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN))
3291 		return;
3292 
3293 	/*
3294 	 * Either the LSO capability newly became usable, or it has changed.
3295 	 */
3296 	if (ixa->ixa_flags & IXAF_LSO_CAPAB) {
3297 		ill_lso_capab_t	*lsoc = &ixa->ixa_lso_capab;
3298 
3299 		ASSERT(lsoc->ill_lso_max > 0);
3300 		tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, lsoc->ill_lso_max);
3301 
3302 		DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso,
3303 		    boolean_t, B_TRUE, uint32_t, tcp->tcp_lso_max);
3304 
3305 		/*
3306 		 * If LSO to be enabled, notify the STREAM header with larger
3307 		 * data block.
3308 		 */
3309 		if (!tcp->tcp_lso)
3310 			tcp->tcp_maxpsz_multiplier = 0;
3311 
3312 		tcp->tcp_lso = B_TRUE;
3313 		TCP_STAT(tcp->tcp_tcps, tcp_lso_enabled);
3314 	} else { /* LSO capability is not usable any more. */
3315 		DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso,
3316 		    boolean_t, B_FALSE, uint32_t, tcp->tcp_lso_max);
3317 
3318 		/*
3319 		 * If LSO to be disabled, notify the STREAM header with smaller
3320 		 * data block. And need to restore fragsize to PMTU.
3321 		 */
3322 		if (tcp->tcp_lso) {
3323 			tcp->tcp_maxpsz_multiplier =
3324 			    tcp->tcp_tcps->tcps_maxpsz_multiplier;
3325 			ixa->ixa_fragsize = ixa->ixa_pmtu;
3326 			tcp->tcp_lso = B_FALSE;
3327 			TCP_STAT(tcp->tcp_tcps, tcp_lso_disabled);
3328 		}
3329 	}
3330 
3331 	(void) tcp_maxpsz_set(tcp, B_TRUE);
3332 }
3333 
3334 /*
3335  * Update the TCP connection according to change of ZEROCOPY capability.
3336  */
3337 static void
3338 tcp_update_zcopy(tcp_t *tcp)
3339 {
3340 	conn_t		*connp = tcp->tcp_connp;
3341 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3342 
3343 	if (tcp->tcp_snd_zcopy_on) {
3344 		tcp->tcp_snd_zcopy_on = B_FALSE;
3345 		if (!TCP_IS_DETACHED(tcp)) {
3346 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
3347 			    ZCVMUNSAFE);
3348 			TCP_STAT(tcps, tcp_zcopy_off);
3349 		}
3350 	} else {
3351 		tcp->tcp_snd_zcopy_on = B_TRUE;
3352 		if (!TCP_IS_DETACHED(tcp)) {
3353 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
3354 			    ZCVMSAFE);
3355 			TCP_STAT(tcps, tcp_zcopy_on);
3356 		}
3357 	}
3358 }
3359 
3360 /*
3361  * Notify function registered with ip_xmit_attr_t. It's called in the squeue
3362  * so it's safe to update the TCP connection.
3363  */
3364 /* ARGSUSED1 */
3365 static void
3366 tcp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype,
3367     ixa_notify_arg_t narg)
3368 {
3369 	tcp_t		*tcp = (tcp_t *)arg;
3370 	conn_t		*connp = tcp->tcp_connp;
3371 
3372 	switch (ntype) {
3373 	case IXAN_LSO:
3374 		tcp_update_lso(tcp, connp->conn_ixa);
3375 		break;
3376 	case IXAN_PMTU:
3377 		tcp_update_pmtu(tcp, B_FALSE);
3378 		break;
3379 	case IXAN_ZCOPY:
3380 		tcp_update_zcopy(tcp);
3381 		break;
3382 	default:
3383 		break;
3384 	}
3385 }
3386 
3387 /*
3388  * The TCP write service routine should never be called...
3389  */
3390 /* ARGSUSED */
3391 static int
3392 tcp_wsrv(queue_t *q)
3393 {
3394 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
3395 
3396 	TCP_STAT(tcps, tcp_wsrv_called);
3397 	return (0);
3398 }
3399 
3400 /*
3401  * Hash list lookup routine for tcp_t structures.
3402  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
3403  */
3404 tcp_t *
3405 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps)
3406 {
3407 	tf_t	*tf;
3408 	tcp_t	*tcp;
3409 
3410 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
3411 	mutex_enter(&tf->tf_lock);
3412 	for (tcp = tf->tf_tcp; tcp != NULL;
3413 	    tcp = tcp->tcp_acceptor_hash) {
3414 		if (tcp->tcp_acceptor_id == id) {
3415 			CONN_INC_REF(tcp->tcp_connp);
3416 			mutex_exit(&tf->tf_lock);
3417 			return (tcp);
3418 		}
3419 	}
3420 	mutex_exit(&tf->tf_lock);
3421 	return (NULL);
3422 }
3423 
3424 /*
3425  * Hash list insertion routine for tcp_t structures.
3426  */
3427 void
3428 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
3429 {
3430 	tf_t	*tf;
3431 	tcp_t	**tcpp;
3432 	tcp_t	*tcpnext;
3433 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3434 
3435 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
3436 
3437 	if (tcp->tcp_ptpahn != NULL)
3438 		tcp_acceptor_hash_remove(tcp);
3439 	tcpp = &tf->tf_tcp;
3440 	mutex_enter(&tf->tf_lock);
3441 	tcpnext = tcpp[0];
3442 	if (tcpnext)
3443 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
3444 	tcp->tcp_acceptor_hash = tcpnext;
3445 	tcp->tcp_ptpahn = tcpp;
3446 	tcpp[0] = tcp;
3447 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
3448 	mutex_exit(&tf->tf_lock);
3449 }
3450 
3451 /*
3452  * Hash list removal routine for tcp_t structures.
3453  */
3454 void
3455 tcp_acceptor_hash_remove(tcp_t *tcp)
3456 {
3457 	tcp_t	*tcpnext;
3458 	kmutex_t *lockp;
3459 
3460 	/*
3461 	 * Extract the lock pointer in case there are concurrent
3462 	 * hash_remove's for this instance.
3463 	 */
3464 	lockp = tcp->tcp_acceptor_lockp;
3465 
3466 	if (tcp->tcp_ptpahn == NULL)
3467 		return;
3468 
3469 	ASSERT(lockp != NULL);
3470 	mutex_enter(lockp);
3471 	if (tcp->tcp_ptpahn) {
3472 		tcpnext = tcp->tcp_acceptor_hash;
3473 		if (tcpnext) {
3474 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
3475 			tcp->tcp_acceptor_hash = NULL;
3476 		}
3477 		*tcp->tcp_ptpahn = tcpnext;
3478 		tcp->tcp_ptpahn = NULL;
3479 	}
3480 	mutex_exit(lockp);
3481 	tcp->tcp_acceptor_lockp = NULL;
3482 }
3483 
3484 /*
3485  * Type three generator adapted from the random() function in 4.4 BSD:
3486  */
3487 
3488 /*
3489  * Copyright (c) 1983, 1993
3490  *	The Regents of the University of California.  All rights reserved.
3491  *
3492  * Redistribution and use in source and binary forms, with or without
3493  * modification, are permitted provided that the following conditions
3494  * are met:
3495  * 1. Redistributions of source code must retain the above copyright
3496  *    notice, this list of conditions and the following disclaimer.
3497  * 2. Redistributions in binary form must reproduce the above copyright
3498  *    notice, this list of conditions and the following disclaimer in the
3499  *    documentation and/or other materials provided with the distribution.
3500  * 3. All advertising materials mentioning features or use of this software
3501  *    must display the following acknowledgement:
3502  *	This product includes software developed by the University of
3503  *	California, Berkeley and its contributors.
3504  * 4. Neither the name of the University nor the names of its contributors
3505  *    may be used to endorse or promote products derived from this software
3506  *    without specific prior written permission.
3507  *
3508  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
3509  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
3510  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
3511  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
3512  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
3513  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
3514  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
3515  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
3516  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
3517  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
3518  * SUCH DAMAGE.
3519  */
3520 
3521 /* Type 3 -- x**31 + x**3 + 1 */
3522 #define	DEG_3		31
3523 #define	SEP_3		3
3524 
3525 
3526 /* Protected by tcp_random_lock */
3527 static int tcp_randtbl[DEG_3 + 1];
3528 
3529 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
3530 static int *tcp_random_rptr = &tcp_randtbl[1];
3531 
3532 static int *tcp_random_state = &tcp_randtbl[1];
3533 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
3534 
3535 kmutex_t tcp_random_lock;
3536 
3537 void
3538 tcp_random_init(void)
3539 {
3540 	int i;
3541 	hrtime_t hrt;
3542 	time_t wallclock;
3543 	uint64_t result;
3544 
3545 	/*
3546 	 * Use high-res timer and current time for seed.  Gethrtime() returns
3547 	 * a longlong, which may contain resolution down to nanoseconds.
3548 	 * The current time will either be a 32-bit or a 64-bit quantity.
3549 	 * XOR the two together in a 64-bit result variable.
3550 	 * Convert the result to a 32-bit value by multiplying the high-order
3551 	 * 32-bits by the low-order 32-bits.
3552 	 */
3553 
3554 	hrt = gethrtime();
3555 	(void) drv_getparm(TIME, &wallclock);
3556 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
3557 	mutex_enter(&tcp_random_lock);
3558 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
3559 	    (result & 0xffffffff);
3560 
3561 	for (i = 1; i < DEG_3; i++)
3562 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
3563 		    + 12345;
3564 	tcp_random_fptr = &tcp_random_state[SEP_3];
3565 	tcp_random_rptr = &tcp_random_state[0];
3566 	mutex_exit(&tcp_random_lock);
3567 	for (i = 0; i < 10 * DEG_3; i++)
3568 		(void) tcp_random();
3569 }
3570 
3571 /*
3572  * tcp_random: Return a random number in the range [1 - (128K + 1)].
3573  * This range is selected to be approximately centered on TCP_ISS / 2,
3574  * and easy to compute. We get this value by generating a 32-bit random
3575  * number, selecting out the high-order 17 bits, and then adding one so
3576  * that we never return zero.
3577  */
3578 int
3579 tcp_random(void)
3580 {
3581 	int i;
3582 
3583 	mutex_enter(&tcp_random_lock);
3584 	*tcp_random_fptr += *tcp_random_rptr;
3585 
3586 	/*
3587 	 * The high-order bits are more random than the low-order bits,
3588 	 * so we select out the high-order 17 bits and add one so that
3589 	 * we never return zero.
3590 	 */
3591 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
3592 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
3593 		tcp_random_fptr = tcp_random_state;
3594 		++tcp_random_rptr;
3595 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
3596 		tcp_random_rptr = tcp_random_state;
3597 
3598 	mutex_exit(&tcp_random_lock);
3599 	return (i);
3600 }
3601 
3602 /*
3603  * Split this function out so that if the secret changes, I'm okay.
3604  *
3605  * Initialize the tcp_iss_cookie and tcp_iss_key.
3606  */
3607 
3608 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
3609 
3610 void
3611 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps)
3612 {
3613 	struct {
3614 		int32_t current_time;
3615 		uint32_t randnum;
3616 		uint16_t pad;
3617 		uint8_t ether[6];
3618 		uint8_t passwd[PASSWD_SIZE];
3619 	} tcp_iss_cookie;
3620 	time_t t;
3621 
3622 	/*
3623 	 * Start with the current absolute time.
3624 	 */
3625 	(void) drv_getparm(TIME, &t);
3626 	tcp_iss_cookie.current_time = t;
3627 
3628 	/*
3629 	 * XXX - Need a more random number per RFC 1750, not this crap.
3630 	 * OTOH, if what follows is pretty random, then I'm in better shape.
3631 	 */
3632 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
3633 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
3634 
3635 	/*
3636 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
3637 	 * as a good template.
3638 	 */
3639 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
3640 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
3641 
3642 	/*
3643 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
3644 	 */
3645 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
3646 
3647 	/*
3648 	 * See 4010593 if this section becomes a problem again,
3649 	 * but the local ethernet address is useful here.
3650 	 */
3651 	(void) localetheraddr(NULL,
3652 	    (struct ether_addr *)&tcp_iss_cookie.ether);
3653 
3654 	/*
3655 	 * Hash 'em all together.  The MD5Final is called per-connection.
3656 	 */
3657 	mutex_enter(&tcps->tcps_iss_key_lock);
3658 	MD5Init(&tcps->tcps_iss_key);
3659 	MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie,
3660 	    sizeof (tcp_iss_cookie));
3661 	mutex_exit(&tcps->tcps_iss_key_lock);
3662 }
3663 
3664 /*
3665  * Called by IP when IP is loaded into the kernel
3666  */
3667 void
3668 tcp_ddi_g_init(void)
3669 {
3670 	tcp_timercache = kmem_cache_create("tcp_timercache",
3671 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
3672 	    NULL, NULL, NULL, NULL, NULL, 0);
3673 
3674 	tcp_notsack_blk_cache = kmem_cache_create("tcp_notsack_blk_cache",
3675 	    sizeof (notsack_blk_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3676 
3677 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
3678 
3679 	/* Initialize the random number generator */
3680 	tcp_random_init();
3681 
3682 	/* A single callback independently of how many netstacks we have */
3683 	ip_squeue_init(tcp_squeue_add);
3684 
3685 	tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics);
3686 
3687 	tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput);
3688 
3689 	/*
3690 	 * We want to be informed each time a stack is created or
3691 	 * destroyed in the kernel, so we can maintain the
3692 	 * set of tcp_stack_t's.
3693 	 */
3694 	netstack_register(NS_TCP, tcp_stack_init, NULL, tcp_stack_fini);
3695 }
3696 
3697 
3698 #define	INET_NAME	"ip"
3699 
3700 /*
3701  * Initialize the TCP stack instance.
3702  */
3703 static void *
3704 tcp_stack_init(netstackid_t stackid, netstack_t *ns)
3705 {
3706 	tcp_stack_t	*tcps;
3707 	int		i;
3708 	int		error = 0;
3709 	major_t		major;
3710 	size_t		arrsz;
3711 
3712 	tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP);
3713 	tcps->tcps_netstack = ns;
3714 
3715 	/* Initialize locks */
3716 	mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
3717 	mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
3718 
3719 	tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
3720 	tcps->tcps_g_epriv_ports[0] = ULP_DEF_EPRIV_PORT1;
3721 	tcps->tcps_g_epriv_ports[1] = ULP_DEF_EPRIV_PORT2;
3722 	tcps->tcps_min_anonpriv_port = 512;
3723 
3724 	tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) *
3725 	    TCP_BIND_FANOUT_SIZE, KM_SLEEP);
3726 	tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) *
3727 	    TCP_ACCEPTOR_FANOUT_SIZE, KM_SLEEP);
3728 
3729 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
3730 		mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL,
3731 		    MUTEX_DEFAULT, NULL);
3732 	}
3733 
3734 	for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) {
3735 		mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL,
3736 		    MUTEX_DEFAULT, NULL);
3737 	}
3738 
3739 	/* TCP's IPsec code calls the packet dropper. */
3740 	ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement");
3741 
3742 	arrsz = tcp_propinfo_count * sizeof (mod_prop_info_t);
3743 	tcps->tcps_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz,
3744 	    KM_SLEEP);
3745 	bcopy(tcp_propinfo_tbl, tcps->tcps_propinfo_tbl, arrsz);
3746 
3747 	/*
3748 	 * Note: To really walk the device tree you need the devinfo
3749 	 * pointer to your device which is only available after probe/attach.
3750 	 * The following is safe only because it uses ddi_root_node()
3751 	 */
3752 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
3753 	    tcp_opt_obj.odb_opt_arr_cnt);
3754 
3755 	/*
3756 	 * Initialize RFC 1948 secret values.  This will probably be reset once
3757 	 * by the boot scripts.
3758 	 *
3759 	 * Use NULL name, as the name is caught by the new lockstats.
3760 	 *
3761 	 * Initialize with some random, non-guessable string, like the global
3762 	 * T_INFO_ACK.
3763 	 */
3764 
3765 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
3766 	    sizeof (tcp_g_t_info_ack), tcps);
3767 
3768 	tcps->tcps_kstat = tcp_kstat2_init(stackid);
3769 	tcps->tcps_mibkp = tcp_kstat_init(stackid);
3770 
3771 	major = mod_name_to_major(INET_NAME);
3772 	error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident);
3773 	ASSERT(error == 0);
3774 	tcps->tcps_ixa_cleanup_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL);
3775 	ASSERT(tcps->tcps_ixa_cleanup_mp != NULL);
3776 	cv_init(&tcps->tcps_ixa_cleanup_ready_cv, NULL, CV_DEFAULT, NULL);
3777 	cv_init(&tcps->tcps_ixa_cleanup_done_cv, NULL, CV_DEFAULT, NULL);
3778 	mutex_init(&tcps->tcps_ixa_cleanup_lock, NULL, MUTEX_DEFAULT, NULL);
3779 
3780 	mutex_init(&tcps->tcps_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
3781 	tcps->tcps_reclaim = B_FALSE;
3782 	tcps->tcps_reclaim_tid = 0;
3783 	tcps->tcps_reclaim_period = tcps->tcps_rexmit_interval_max;
3784 
3785 	/*
3786 	 * ncpus is the current number of CPUs, which can be bigger than
3787 	 * boot_ncpus.  But we don't want to use ncpus to allocate all the
3788 	 * tcp_stats_cpu_t at system boot up time since it will be 1.  While
3789 	 * we handle adding CPU in tcp_cpu_update(), it will be slow if
3790 	 * there are many CPUs as we will be adding them 1 by 1.
3791 	 *
3792 	 * Note that tcps_sc_cnt never decreases and the tcps_sc[x] pointers
3793 	 * are not freed until the stack is going away.  So there is no need
3794 	 * to grab a lock to access the per CPU tcps_sc[x] pointer.
3795 	 */
3796 	mutex_enter(&cpu_lock);
3797 	tcps->tcps_sc_cnt = MAX(ncpus, boot_ncpus);
3798 	mutex_exit(&cpu_lock);
3799 	tcps->tcps_sc = kmem_zalloc(max_ncpus  * sizeof (tcp_stats_cpu_t *),
3800 	    KM_SLEEP);
3801 	for (i = 0; i < tcps->tcps_sc_cnt; i++) {
3802 		tcps->tcps_sc[i] = kmem_zalloc(sizeof (tcp_stats_cpu_t),
3803 		    KM_SLEEP);
3804 	}
3805 
3806 	mutex_init(&tcps->tcps_listener_conf_lock, NULL, MUTEX_DEFAULT, NULL);
3807 	list_create(&tcps->tcps_listener_conf, sizeof (tcp_listener_t),
3808 	    offsetof(tcp_listener_t, tl_link));
3809 
3810 	return (tcps);
3811 }
3812 
3813 /*
3814  * Called when the IP module is about to be unloaded.
3815  */
3816 void
3817 tcp_ddi_g_destroy(void)
3818 {
3819 	tcp_g_kstat_fini(tcp_g_kstat);
3820 	tcp_g_kstat = NULL;
3821 	bzero(&tcp_g_statistics, sizeof (tcp_g_statistics));
3822 
3823 	mutex_destroy(&tcp_random_lock);
3824 
3825 	kmem_cache_destroy(tcp_timercache);
3826 	kmem_cache_destroy(tcp_notsack_blk_cache);
3827 
3828 	netstack_unregister(NS_TCP);
3829 }
3830 
3831 /*
3832  * Free the TCP stack instance.
3833  */
3834 static void
3835 tcp_stack_fini(netstackid_t stackid, void *arg)
3836 {
3837 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
3838 	int i;
3839 
3840 	freeb(tcps->tcps_ixa_cleanup_mp);
3841 	tcps->tcps_ixa_cleanup_mp = NULL;
3842 	cv_destroy(&tcps->tcps_ixa_cleanup_ready_cv);
3843 	cv_destroy(&tcps->tcps_ixa_cleanup_done_cv);
3844 	mutex_destroy(&tcps->tcps_ixa_cleanup_lock);
3845 
3846 	/*
3847 	 * Set tcps_reclaim to false tells tcp_reclaim_timer() not to restart
3848 	 * the timer.
3849 	 */
3850 	mutex_enter(&tcps->tcps_reclaim_lock);
3851 	tcps->tcps_reclaim = B_FALSE;
3852 	mutex_exit(&tcps->tcps_reclaim_lock);
3853 	if (tcps->tcps_reclaim_tid != 0)
3854 		(void) untimeout(tcps->tcps_reclaim_tid);
3855 	mutex_destroy(&tcps->tcps_reclaim_lock);
3856 
3857 	tcp_listener_conf_cleanup(tcps);
3858 
3859 	for (i = 0; i < tcps->tcps_sc_cnt; i++)
3860 		kmem_free(tcps->tcps_sc[i], sizeof (tcp_stats_cpu_t));
3861 	kmem_free(tcps->tcps_sc, max_ncpus * sizeof (tcp_stats_cpu_t *));
3862 
3863 	kmem_free(tcps->tcps_propinfo_tbl,
3864 	    tcp_propinfo_count * sizeof (mod_prop_info_t));
3865 	tcps->tcps_propinfo_tbl = NULL;
3866 
3867 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
3868 		ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL);
3869 		mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock);
3870 	}
3871 
3872 	for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) {
3873 		ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL);
3874 		mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock);
3875 	}
3876 
3877 	kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE);
3878 	tcps->tcps_bind_fanout = NULL;
3879 
3880 	kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) *
3881 	    TCP_ACCEPTOR_FANOUT_SIZE);
3882 	tcps->tcps_acceptor_fanout = NULL;
3883 
3884 	mutex_destroy(&tcps->tcps_iss_key_lock);
3885 	mutex_destroy(&tcps->tcps_epriv_port_lock);
3886 
3887 	ip_drop_unregister(&tcps->tcps_dropper);
3888 
3889 	tcp_kstat2_fini(stackid, tcps->tcps_kstat);
3890 	tcps->tcps_kstat = NULL;
3891 
3892 	tcp_kstat_fini(stackid, tcps->tcps_mibkp);
3893 	tcps->tcps_mibkp = NULL;
3894 
3895 	ldi_ident_release(tcps->tcps_ldi_ident);
3896 	kmem_free(tcps, sizeof (*tcps));
3897 }
3898 
3899 /*
3900  * Generate ISS, taking into account NDD changes may happen halfway through.
3901  * (If the iss is not zero, set it.)
3902  */
3903 
3904 static void
3905 tcp_iss_init(tcp_t *tcp)
3906 {
3907 	MD5_CTX context;
3908 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
3909 	uint32_t answer[4];
3910 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3911 	conn_t		*connp = tcp->tcp_connp;
3912 
3913 	tcps->tcps_iss_incr_extra += (tcps->tcps_iss_incr >> 1);
3914 	tcp->tcp_iss = tcps->tcps_iss_incr_extra;
3915 	switch (tcps->tcps_strong_iss) {
3916 	case 2:
3917 		mutex_enter(&tcps->tcps_iss_key_lock);
3918 		context = tcps->tcps_iss_key;
3919 		mutex_exit(&tcps->tcps_iss_key_lock);
3920 		arg.ports = connp->conn_ports;
3921 		arg.src = connp->conn_laddr_v6;
3922 		arg.dst = connp->conn_faddr_v6;
3923 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
3924 		MD5Final((uchar_t *)answer, &context);
3925 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
3926 		/*
3927 		 * Now that we've hashed into a unique per-connection sequence
3928 		 * space, add a random increment per strong_iss == 1.  So I
3929 		 * guess we'll have to...
3930 		 */
3931 		/* FALLTHRU */
3932 	case 1:
3933 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
3934 		break;
3935 	default:
3936 		tcp->tcp_iss += (uint32_t)gethrestime_sec() *
3937 		    tcps->tcps_iss_incr;
3938 		break;
3939 	}
3940 	tcp->tcp_valid_bits = TCP_ISS_VALID;
3941 	tcp->tcp_fss = tcp->tcp_iss - 1;
3942 	tcp->tcp_suna = tcp->tcp_iss;
3943 	tcp->tcp_snxt = tcp->tcp_iss + 1;
3944 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
3945 	tcp->tcp_csuna = tcp->tcp_snxt;
3946 }
3947 
3948 /*
3949  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
3950  * on the specified backing STREAMS q. Note, the caller may make the
3951  * decision to call based on the tcp_t.tcp_flow_stopped value which
3952  * when check outside the q's lock is only an advisory check ...
3953  */
3954 void
3955 tcp_setqfull(tcp_t *tcp)
3956 {
3957 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3958 	conn_t	*connp = tcp->tcp_connp;
3959 
3960 	if (tcp->tcp_closed)
3961 		return;
3962 
3963 	conn_setqfull(connp, &tcp->tcp_flow_stopped);
3964 	if (tcp->tcp_flow_stopped)
3965 		TCP_STAT(tcps, tcp_flwctl_on);
3966 }
3967 
3968 void
3969 tcp_clrqfull(tcp_t *tcp)
3970 {
3971 	conn_t  *connp = tcp->tcp_connp;
3972 
3973 	if (tcp->tcp_closed)
3974 		return;
3975 	conn_clrqfull(connp, &tcp->tcp_flow_stopped);
3976 }
3977 
3978 static int
3979 tcp_squeue_switch(int val)
3980 {
3981 	int rval = SQ_FILL;
3982 
3983 	switch (val) {
3984 	case 1:
3985 		rval = SQ_NODRAIN;
3986 		break;
3987 	case 2:
3988 		rval = SQ_PROCESS;
3989 		break;
3990 	default:
3991 		break;
3992 	}
3993 	return (rval);
3994 }
3995 
3996 /*
3997  * This is called once for each squeue - globally for all stack
3998  * instances.
3999  */
4000 static void
4001 tcp_squeue_add(squeue_t *sqp)
4002 {
4003 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
4004 	    sizeof (tcp_squeue_priv_t), KM_SLEEP);
4005 
4006 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
4007 	if (tcp_free_list_max_cnt == 0) {
4008 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
4009 		    max_ncpus : boot_max_ncpus);
4010 
4011 		/*
4012 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
4013 		 */
4014 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
4015 		    (tcp_ncpus * sizeof (tcp_t) * 100);
4016 	}
4017 	tcp_time_wait->tcp_free_list_cnt = 0;
4018 }
4019 /*
4020  * Return unix error is tli error is TSYSERR, otherwise return a negative
4021  * tli error.
4022  */
4023 int
4024 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,
4025     boolean_t bind_to_req_port_only)
4026 {
4027 	int error;
4028 	tcp_t *tcp = connp->conn_tcp;
4029 
4030 	if (tcp->tcp_state >= TCPS_BOUND) {
4031 		if (connp->conn_debug) {
4032 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
4033 			    "tcp_bind: bad state, %d", tcp->tcp_state);
4034 		}
4035 		return (-TOUTSTATE);
4036 	}
4037 
4038 	error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only);
4039 	if (error != 0)
4040 		return (error);
4041 
4042 	ASSERT(tcp->tcp_state == TCPS_BOUND);
4043 	tcp->tcp_conn_req_max = 0;
4044 	return (0);
4045 }
4046 
4047 /*
4048  * If the return value from this function is positive, it's a UNIX error.
4049  * Otherwise, if it's negative, then the absolute value is a TLI error.
4050  * the TPI routine tcp_tpi_connect() is a wrapper function for this.
4051  */
4052 int
4053 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len,
4054     cred_t *cr, pid_t pid)
4055 {
4056 	tcp_t		*tcp = connp->conn_tcp;
4057 	sin_t		*sin = (sin_t *)sa;
4058 	sin6_t		*sin6 = (sin6_t *)sa;
4059 	ipaddr_t	*dstaddrp;
4060 	in_port_t	dstport;
4061 	uint_t		srcid;
4062 	int		error;
4063 	uint32_t	mss;
4064 	mblk_t		*syn_mp;
4065 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4066 	int32_t		oldstate;
4067 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
4068 
4069 	oldstate = tcp->tcp_state;
4070 
4071 	switch (len) {
4072 	default:
4073 		/*
4074 		 * Should never happen
4075 		 */
4076 		return (EINVAL);
4077 
4078 	case sizeof (sin_t):
4079 		sin = (sin_t *)sa;
4080 		if (sin->sin_port == 0) {
4081 			return (-TBADADDR);
4082 		}
4083 		if (connp->conn_ipv6_v6only) {
4084 			return (EAFNOSUPPORT);
4085 		}
4086 		break;
4087 
4088 	case sizeof (sin6_t):
4089 		sin6 = (sin6_t *)sa;
4090 		if (sin6->sin6_port == 0) {
4091 			return (-TBADADDR);
4092 		}
4093 		break;
4094 	}
4095 	/*
4096 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
4097 	 * make sure that the conn_ipversion is IPV4_VERSION.  We
4098 	 * need to this before we call tcp_bindi() so that the port lookup
4099 	 * code will look for ports in the correct port space (IPv4 and
4100 	 * IPv6 have separate port spaces).
4101 	 */
4102 	if (connp->conn_family == AF_INET6 &&
4103 	    connp->conn_ipversion == IPV6_VERSION &&
4104 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
4105 		if (connp->conn_ipv6_v6only)
4106 			return (EADDRNOTAVAIL);
4107 
4108 		connp->conn_ipversion = IPV4_VERSION;
4109 	}
4110 
4111 	switch (tcp->tcp_state) {
4112 	case TCPS_LISTEN:
4113 		/*
4114 		 * Listening sockets are not allowed to issue connect().
4115 		 */
4116 		if (IPCL_IS_NONSTR(connp))
4117 			return (EOPNOTSUPP);
4118 		/* FALLTHRU */
4119 	case TCPS_IDLE:
4120 		/*
4121 		 * We support quick connect, refer to comments in
4122 		 * tcp_connect_*()
4123 		 */
4124 		/* FALLTHRU */
4125 	case TCPS_BOUND:
4126 		break;
4127 	default:
4128 		return (-TOUTSTATE);
4129 	}
4130 
4131 	/*
4132 	 * We update our cred/cpid based on the caller of connect
4133 	 */
4134 	if (connp->conn_cred != cr) {
4135 		crhold(cr);
4136 		crfree(connp->conn_cred);
4137 		connp->conn_cred = cr;
4138 	}
4139 	connp->conn_cpid = pid;
4140 
4141 	/* Cache things in the ixa without any refhold */
4142 	ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED));
4143 	ixa->ixa_cred = cr;
4144 	ixa->ixa_cpid = pid;
4145 	if (is_system_labeled()) {
4146 		/* We need to restart with a label based on the cred */
4147 		ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred);
4148 	}
4149 
4150 	if (connp->conn_family == AF_INET6) {
4151 		if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
4152 			error = tcp_connect_ipv6(tcp, &sin6->sin6_addr,
4153 			    sin6->sin6_port, sin6->sin6_flowinfo,
4154 			    sin6->__sin6_src_id, sin6->sin6_scope_id);
4155 		} else {
4156 			/*
4157 			 * Destination adress is mapped IPv6 address.
4158 			 * Source bound address should be unspecified or
4159 			 * IPv6 mapped address as well.
4160 			 */
4161 			if (!IN6_IS_ADDR_UNSPECIFIED(
4162 			    &connp->conn_bound_addr_v6) &&
4163 			    !IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) {
4164 				return (EADDRNOTAVAIL);
4165 			}
4166 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
4167 			dstport = sin6->sin6_port;
4168 			srcid = sin6->__sin6_src_id;
4169 			error = tcp_connect_ipv4(tcp, dstaddrp, dstport,
4170 			    srcid);
4171 		}
4172 	} else {
4173 		dstaddrp = &sin->sin_addr.s_addr;
4174 		dstport = sin->sin_port;
4175 		srcid = 0;
4176 		error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid);
4177 	}
4178 
4179 	if (error != 0)
4180 		goto connect_failed;
4181 
4182 	CL_INET_CONNECT(connp, B_TRUE, error);
4183 	if (error != 0)
4184 		goto connect_failed;
4185 
4186 	/* connect succeeded */
4187 	TCPS_BUMP_MIB(tcps, tcpActiveOpens);
4188 	tcp->tcp_active_open = 1;
4189 
4190 	/*
4191 	 * tcp_set_destination() does not adjust for TCP/IP header length.
4192 	 */
4193 	mss = tcp->tcp_mss - connp->conn_ht_iphc_len;
4194 
4195 	/*
4196 	 * Just make sure our rwnd is at least rcvbuf * MSS large, and round up
4197 	 * to the nearest MSS.
4198 	 *
4199 	 * We do the round up here because we need to get the interface MTU
4200 	 * first before we can do the round up.
4201 	 */
4202 	tcp->tcp_rwnd = connp->conn_rcvbuf;
4203 	tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
4204 	    tcps->tcps_recv_hiwat_minmss * mss);
4205 	connp->conn_rcvbuf = tcp->tcp_rwnd;
4206 	tcp_set_ws_value(tcp);
4207 	tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
4208 	if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always)
4209 		tcp->tcp_snd_ws_ok = B_TRUE;
4210 
4211 	/*
4212 	 * Set tcp_snd_ts_ok to true
4213 	 * so that tcp_xmit_mp will
4214 	 * include the timestamp
4215 	 * option in the SYN segment.
4216 	 */
4217 	if (tcps->tcps_tstamp_always ||
4218 	    (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) {
4219 		tcp->tcp_snd_ts_ok = B_TRUE;
4220 	}
4221 
4222 	/*
4223 	 * Note that tcp_snd_sack_ok can be set in tcp_set_destination() if
4224 	 * the SACK metric is set.  So here we just check the per stack SACK
4225 	 * permitted param.
4226 	 */
4227 	if (tcps->tcps_sack_permitted == 2) {
4228 		ASSERT(tcp->tcp_num_sack_blk == 0);
4229 		ASSERT(tcp->tcp_notsack_list == NULL);
4230 		tcp->tcp_snd_sack_ok = B_TRUE;
4231 	}
4232 
4233 	/*
4234 	 * Should we use ECN?  Note that the current
4235 	 * default value (SunOS 5.9) of tcp_ecn_permitted
4236 	 * is 1.  The reason for doing this is that there
4237 	 * are equipments out there that will drop ECN
4238 	 * enabled IP packets.  Setting it to 1 avoids
4239 	 * compatibility problems.
4240 	 */
4241 	if (tcps->tcps_ecn_permitted == 2)
4242 		tcp->tcp_ecn_ok = B_TRUE;
4243 
4244 	/* Trace change from BOUND -> SYN_SENT here */
4245 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4246 	    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
4247 	    int32_t, TCPS_BOUND);
4248 
4249 	TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
4250 	syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
4251 	    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
4252 	if (syn_mp != NULL) {
4253 		/*
4254 		 * We must bump the generation before sending the syn
4255 		 * to ensure that we use the right generation in case
4256 		 * this thread issues a "connected" up call.
4257 		 */
4258 		SOCK_CONNID_BUMP(tcp->tcp_connid);
4259 		/*
4260 		 * DTrace sending the first SYN as a
4261 		 * tcp:::connect-request event.
4262 		 */
4263 		DTRACE_TCP5(connect__request, mblk_t *, NULL,
4264 		    ip_xmit_attr_t *, connp->conn_ixa,
4265 		    void_ip_t *, syn_mp->b_rptr, tcp_t *, tcp,
4266 		    tcph_t *,
4267 		    &syn_mp->b_rptr[connp->conn_ixa->ixa_ip_hdr_length]);
4268 		tcp_send_data(tcp, syn_mp);
4269 	}
4270 
4271 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4272 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4273 	return (0);
4274 
4275 connect_failed:
4276 	connp->conn_faddr_v6 = ipv6_all_zeros;
4277 	connp->conn_fport = 0;
4278 	tcp->tcp_state = oldstate;
4279 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4280 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4281 	return (error);
4282 }
4283 
4284 int
4285 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len,
4286     int backlog, cred_t *cr, boolean_t bind_to_req_port_only)
4287 {
4288 	tcp_t		*tcp = connp->conn_tcp;
4289 	int		error = 0;
4290 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4291 	int32_t		oldstate;
4292 
4293 	/* All Solaris components should pass a cred for this operation. */
4294 	ASSERT(cr != NULL);
4295 
4296 	if (tcp->tcp_state >= TCPS_BOUND) {
4297 		if ((tcp->tcp_state == TCPS_BOUND ||
4298 		    tcp->tcp_state == TCPS_LISTEN) && backlog > 0) {
4299 			/*
4300 			 * Handle listen() increasing backlog.
4301 			 * This is more "liberal" then what the TPI spec
4302 			 * requires but is needed to avoid a t_unbind
4303 			 * when handling listen() since the port number
4304 			 * might be "stolen" between the unbind and bind.
4305 			 */
4306 			goto do_listen;
4307 		}
4308 		if (connp->conn_debug) {
4309 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
4310 			    "tcp_listen: bad state, %d", tcp->tcp_state);
4311 		}
4312 		return (-TOUTSTATE);
4313 	} else {
4314 		if (sa == NULL) {
4315 			sin6_t	addr;
4316 			sin_t *sin;
4317 			sin6_t *sin6;
4318 
4319 			ASSERT(IPCL_IS_NONSTR(connp));
4320 			/* Do an implicit bind: Request for a generic port. */
4321 			if (connp->conn_family == AF_INET) {
4322 				len = sizeof (sin_t);
4323 				sin = (sin_t *)&addr;
4324 				*sin = sin_null;
4325 				sin->sin_family = AF_INET;
4326 			} else {
4327 				ASSERT(connp->conn_family == AF_INET6);
4328 				len = sizeof (sin6_t);
4329 				sin6 = (sin6_t *)&addr;
4330 				*sin6 = sin6_null;
4331 				sin6->sin6_family = AF_INET6;
4332 			}
4333 			sa = (struct sockaddr *)&addr;
4334 		}
4335 
4336 		error = tcp_bind_check(connp, sa, len, cr,
4337 		    bind_to_req_port_only);
4338 		if (error)
4339 			return (error);
4340 		/* Fall through and do the fanout insertion */
4341 	}
4342 
4343 do_listen:
4344 	ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN);
4345 	tcp->tcp_conn_req_max = backlog;
4346 	if (tcp->tcp_conn_req_max) {
4347 		if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min)
4348 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_min;
4349 		if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q)
4350 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q;
4351 		/*
4352 		 * If this is a listener, do not reset the eager list
4353 		 * and other stuffs.  Note that we don't check if the
4354 		 * existing eager list meets the new tcp_conn_req_max
4355 		 * requirement.
4356 		 */
4357 		if (tcp->tcp_state != TCPS_LISTEN) {
4358 			tcp->tcp_state = TCPS_LISTEN;
4359 			DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4360 			    connp->conn_ixa, void, NULL, tcp_t *, tcp,
4361 			    void, NULL, int32_t, TCPS_BOUND);
4362 			/* Initialize the chain. Don't need the eager_lock */
4363 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
4364 			tcp->tcp_eager_next_drop_q0 = tcp;
4365 			tcp->tcp_eager_prev_drop_q0 = tcp;
4366 			tcp->tcp_second_ctimer_threshold =
4367 			    tcps->tcps_ip_abort_linterval;
4368 		}
4369 	}
4370 
4371 	/*
4372 	 * We need to make sure that the conn_recv is set to a non-null
4373 	 * value before we insert the conn into the classifier table.
4374 	 * This is to avoid a race with an incoming packet which does an
4375 	 * ipcl_classify().
4376 	 * We initially set it to tcp_input_listener_unbound to try to
4377 	 * pick a good squeue for the listener when the first SYN arrives.
4378 	 * tcp_input_listener_unbound sets it to tcp_input_listener on that
4379 	 * first SYN.
4380 	 */
4381 	connp->conn_recv = tcp_input_listener_unbound;
4382 
4383 	/* Insert the listener in the classifier table */
4384 	error = ip_laddr_fanout_insert(connp);
4385 	if (error != 0) {
4386 		/* Undo the bind - release the port number */
4387 		oldstate = tcp->tcp_state;
4388 		tcp->tcp_state = TCPS_IDLE;
4389 		DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4390 		    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
4391 		    int32_t, oldstate);
4392 		connp->conn_bound_addr_v6 = ipv6_all_zeros;
4393 
4394 		connp->conn_laddr_v6 = ipv6_all_zeros;
4395 		connp->conn_saddr_v6 = ipv6_all_zeros;
4396 		connp->conn_ports = 0;
4397 
4398 		if (connp->conn_anon_port) {
4399 			zone_t		*zone;
4400 
4401 			zone = crgetzone(cr);
4402 			connp->conn_anon_port = B_FALSE;
4403 			(void) tsol_mlp_anon(zone, connp->conn_mlp_type,
4404 			    connp->conn_proto, connp->conn_lport, B_FALSE);
4405 		}
4406 		connp->conn_mlp_type = mlptSingle;
4407 
4408 		tcp_bind_hash_remove(tcp);
4409 		return (error);
4410 	} else {
4411 		/*
4412 		 * If there is a connection limit, allocate and initialize
4413 		 * the counter struct.  Note that since listen can be called
4414 		 * multiple times, the struct may have been allready allocated.
4415 		 */
4416 		if (!list_is_empty(&tcps->tcps_listener_conf) &&
4417 		    tcp->tcp_listen_cnt == NULL) {
4418 			tcp_listen_cnt_t *tlc;
4419 			uint32_t ratio;
4420 
4421 			ratio = tcp_find_listener_conf(tcps,
4422 			    ntohs(connp->conn_lport));
4423 			if (ratio != 0) {
4424 				uint32_t mem_ratio, tot_buf;
4425 
4426 				tlc = kmem_alloc(sizeof (tcp_listen_cnt_t),
4427 				    KM_SLEEP);
4428 				/*
4429 				 * Calculate the connection limit based on
4430 				 * the configured ratio and maxusers.  Maxusers
4431 				 * are calculated based on memory size,
4432 				 * ~ 1 user per MB.  Note that the conn_rcvbuf
4433 				 * and conn_sndbuf may change after a
4434 				 * connection is accepted.  So what we have
4435 				 * is only an approximation.
4436 				 */
4437 				if ((tot_buf = connp->conn_rcvbuf +
4438 				    connp->conn_sndbuf) < MB) {
4439 					mem_ratio = MB / tot_buf;
4440 					tlc->tlc_max = maxusers / ratio *
4441 					    mem_ratio;
4442 				} else {
4443 					mem_ratio = tot_buf / MB;
4444 					tlc->tlc_max = maxusers / ratio /
4445 					    mem_ratio;
4446 				}
4447 				/* At least we should allow two connections! */
4448 				if (tlc->tlc_max <= tcp_min_conn_listener)
4449 					tlc->tlc_max = tcp_min_conn_listener;
4450 				tlc->tlc_cnt = 1;
4451 				tlc->tlc_drop = 0;
4452 				tcp->tcp_listen_cnt = tlc;
4453 			}
4454 		}
4455 	}
4456 	return (error);
4457 }
4458