1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 const char tcp_version[] = "%Z%%M% %I% %E% SMI"; 30 31 32 #include <sys/types.h> 33 #include <sys/stream.h> 34 #include <sys/strsun.h> 35 #include <sys/strsubr.h> 36 #include <sys/stropts.h> 37 #include <sys/strlog.h> 38 #include <sys/strsun.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/timod.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/suntpi.h> 45 #include <sys/xti_inet.h> 46 #include <sys/cmn_err.h> 47 #include <sys/debug.h> 48 #include <sys/sdt.h> 49 #include <sys/vtrace.h> 50 #include <sys/kmem.h> 51 #include <sys/ethernet.h> 52 #include <sys/cpuvar.h> 53 #include <sys/dlpi.h> 54 #include <sys/multidata.h> 55 #include <sys/multidata_impl.h> 56 #include <sys/pattr.h> 57 #include <sys/policy.h> 58 #include <sys/priv.h> 59 #include <sys/zone.h> 60 #include <sys/sunldi.h> 61 62 #include <sys/errno.h> 63 #include <sys/signal.h> 64 #include <sys/socket.h> 65 #include <sys/sockio.h> 66 #include <sys/isa_defs.h> 67 #include <sys/md5.h> 68 #include <sys/random.h> 69 #include <netinet/in.h> 70 #include <netinet/tcp.h> 71 #include <netinet/ip6.h> 72 #include <netinet/icmp6.h> 73 #include <net/if.h> 74 #include <net/route.h> 75 #include <inet/ipsec_impl.h> 76 77 #include <inet/common.h> 78 #include <inet/ip.h> 79 #include <inet/ip_impl.h> 80 #include <inet/ip6.h> 81 #include <inet/ip_ndp.h> 82 #include <inet/mi.h> 83 #include <inet/mib2.h> 84 #include <inet/nd.h> 85 #include <inet/optcom.h> 86 #include <inet/snmpcom.h> 87 #include <inet/kstatcom.h> 88 #include <inet/tcp.h> 89 #include <inet/tcp_impl.h> 90 #include <net/pfkeyv2.h> 91 #include <inet/ipsec_info.h> 92 #include <inet/ipdrop.h> 93 #include <inet/tcp_trace.h> 94 95 #include <inet/ipclassifier.h> 96 #include <inet/ip_ire.h> 97 #include <inet/ip_ftable.h> 98 #include <inet/ip_if.h> 99 #include <inet/ipp_common.h> 100 #include <inet/ip_netinfo.h> 101 #include <sys/squeue.h> 102 #include <inet/kssl/ksslapi.h> 103 #include <sys/tsol/label.h> 104 #include <sys/tsol/tnet.h> 105 #include <sys/sdt.h> 106 #include <rpc/pmap_prot.h> 107 108 /* 109 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 110 * 111 * (Read the detailed design doc in PSARC case directory) 112 * 113 * The entire tcp state is contained in tcp_t and conn_t structure 114 * which are allocated in tandem using ipcl_conn_create() and passing 115 * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect 116 * the references on the tcp_t. The tcp_t structure is never compressed 117 * and packets always land on the correct TCP perimeter from the time 118 * eager is created till the time tcp_t dies (as such the old mentat 119 * TCP global queue is not used for detached state and no IPSEC checking 120 * is required). The global queue is still allocated to send out resets 121 * for connection which have no listeners and IP directly calls 122 * tcp_xmit_listeners_reset() which does any policy check. 123 * 124 * Protection and Synchronisation mechanism: 125 * 126 * The tcp data structure does not use any kind of lock for protecting 127 * its state but instead uses 'squeues' for mutual exclusion from various 128 * read and write side threads. To access a tcp member, the thread should 129 * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or 130 * squeue_fill). Since the squeues allow a direct function call, caller 131 * can pass any tcp function having prototype of edesc_t as argument 132 * (different from traditional STREAMs model where packets come in only 133 * designated entry points). The list of functions that can be directly 134 * called via squeue are listed before the usual function prototype. 135 * 136 * Referencing: 137 * 138 * TCP is MT-Hot and we use a reference based scheme to make sure that the 139 * tcp structure doesn't disappear when its needed. When the application 140 * creates an outgoing connection or accepts an incoming connection, we 141 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 142 * The IP reference is just a symbolic reference since ip_tcpclose() 143 * looks at tcp structure after tcp_close_output() returns which could 144 * have dropped the last TCP reference. So as long as the connection is 145 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 146 * conn_t. The classifier puts its own reference when the connection is 147 * inserted in listen or connected hash. Anytime a thread needs to enter 148 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 149 * on write side or by doing a classify on read side and then puts a 150 * reference on the conn before doing squeue_enter/tryenter/fill. For 151 * read side, the classifier itself puts the reference under fanout lock 152 * to make sure that tcp can't disappear before it gets processed. The 153 * squeue will drop this reference automatically so the called function 154 * doesn't have to do a DEC_REF. 155 * 156 * Opening a new connection: 157 * 158 * The outgoing connection open is pretty simple. tcp_open() does the 159 * work in creating the conn/tcp structure and initializing it. The 160 * squeue assignment is done based on the CPU the application 161 * is running on. So for outbound connections, processing is always done 162 * on application CPU which might be different from the incoming CPU 163 * being interrupted by the NIC. An optimal way would be to figure out 164 * the NIC <-> CPU binding at listen time, and assign the outgoing 165 * connection to the squeue attached to the CPU that will be interrupted 166 * for incoming packets (we know the NIC based on the bind IP address). 167 * This might seem like a problem if more data is going out but the 168 * fact is that in most cases the transmit is ACK driven transmit where 169 * the outgoing data normally sits on TCP's xmit queue waiting to be 170 * transmitted. 171 * 172 * Accepting a connection: 173 * 174 * This is a more interesting case because of various races involved in 175 * establishing a eager in its own perimeter. Read the meta comment on 176 * top of tcp_conn_request(). But briefly, the squeue is picked by 177 * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU. 178 * 179 * Closing a connection: 180 * 181 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 182 * via squeue to do the close and mark the tcp as detached if the connection 183 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 184 * reference but tcp_close() drop IP's reference always. So if tcp was 185 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 186 * and 1 because it is in classifier's connected hash. This is the condition 187 * we use to determine that its OK to clean up the tcp outside of squeue 188 * when time wait expires (check the ref under fanout and conn_lock and 189 * if it is 2, remove it from fanout hash and kill it). 190 * 191 * Although close just drops the necessary references and marks the 192 * tcp_detached state, tcp_close needs to know the tcp_detached has been 193 * set (under squeue) before letting the STREAM go away (because a 194 * inbound packet might attempt to go up the STREAM while the close 195 * has happened and tcp_detached is not set). So a special lock and 196 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 197 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 198 * tcp_detached. 199 * 200 * Special provisions and fast paths: 201 * 202 * We make special provision for (AF_INET, SOCK_STREAM) sockets which 203 * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP 204 * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles 205 * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY 206 * check to send packets directly to tcp_rput_data via squeue. Everyone 207 * else comes through tcp_input() on the read side. 208 * 209 * We also make special provisions for sockfs by marking tcp_issocket 210 * whenever we have only sockfs on top of TCP. This allows us to skip 211 * putting the tcp in acceptor hash since a sockfs listener can never 212 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 213 * since eager has already been allocated and the accept now happens 214 * on acceptor STREAM. There is a big blob of comment on top of 215 * tcp_conn_request explaining the new accept. When socket is POP'd, 216 * sockfs sends us an ioctl to mark the fact and we go back to old 217 * behaviour. Once tcp_issocket is unset, its never set for the 218 * life of that connection. 219 * 220 * IPsec notes : 221 * 222 * Since a packet is always executed on the correct TCP perimeter 223 * all IPsec processing is defered to IP including checking new 224 * connections and setting IPSEC policies for new connection. The 225 * only exception is tcp_xmit_listeners_reset() which is called 226 * directly from IP and needs to policy check to see if TH_RST 227 * can be sent out. 228 * 229 * PFHooks notes : 230 * 231 * For mdt case, one meta buffer contains multiple packets. Mblks for every 232 * packet are assembled and passed to the hooks. When packets are blocked, 233 * or boundary of any packet is changed, the mdt processing is stopped, and 234 * packets of the meta buffer are send to the IP path one by one. 235 */ 236 237 extern major_t TCP6_MAJ; 238 239 /* 240 * Values for squeue switch: 241 * 1: squeue_enter_nodrain 242 * 2: squeue_enter 243 * 3: squeue_fill 244 */ 245 int tcp_squeue_close = 2; /* Setable in /etc/system */ 246 int tcp_squeue_wput = 2; 247 248 squeue_func_t tcp_squeue_close_proc; 249 squeue_func_t tcp_squeue_wput_proc; 250 251 /* 252 * This controls how tiny a write must be before we try to copy it 253 * into the the mblk on the tail of the transmit queue. Not much 254 * speedup is observed for values larger than sixteen. Zero will 255 * disable the optimisation. 256 */ 257 int tcp_tx_pull_len = 16; 258 259 /* 260 * TCP Statistics. 261 * 262 * How TCP statistics work. 263 * 264 * There are two types of statistics invoked by two macros. 265 * 266 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 267 * supposed to be used in non MT-hot paths of the code. 268 * 269 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 270 * supposed to be used for DEBUG purposes and may be used on a hot path. 271 * 272 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 273 * (use "kstat tcp" to get them). 274 * 275 * There is also additional debugging facility that marks tcp_clean_death() 276 * instances and saves them in tcp_t structure. It is triggered by 277 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 278 * tcp_clean_death() calls that counts the number of times each tag was hit. It 279 * is triggered by TCP_CLD_COUNTERS define. 280 * 281 * How to add new counters. 282 * 283 * 1) Add a field in the tcp_stat structure describing your counter. 284 * 2) Add a line in the template in tcp_kstat2_init() with the name 285 * of the counter. 286 * 287 * IMPORTANT!! - make sure that both are in sync !! 288 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 289 * 290 * Please avoid using private counters which are not kstat-exported. 291 * 292 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 293 * in tcp_t structure. 294 * 295 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 296 */ 297 298 #ifndef TCP_DEBUG_COUNTER 299 #ifdef DEBUG 300 #define TCP_DEBUG_COUNTER 1 301 #else 302 #define TCP_DEBUG_COUNTER 0 303 #endif 304 #endif 305 306 #define TCP_CLD_COUNTERS 0 307 308 #define TCP_TAG_CLEAN_DEATH 1 309 #define TCP_MAX_CLEAN_DEATH_TAG 32 310 311 #ifdef lint 312 static int _lint_dummy_; 313 #endif 314 315 #if TCP_CLD_COUNTERS 316 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 317 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 318 #elif defined(lint) 319 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 320 #else 321 #define TCP_CLD_STAT(x) 322 #endif 323 324 #if TCP_DEBUG_COUNTER 325 #define TCP_DBGSTAT(tcps, x) \ 326 atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1) 327 #define TCP_G_DBGSTAT(x) \ 328 atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1) 329 #elif defined(lint) 330 #define TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0); 331 #define TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 332 #else 333 #define TCP_DBGSTAT(tcps, x) 334 #define TCP_G_DBGSTAT(x) 335 #endif 336 337 #define TCP_G_STAT(x) (tcp_g_statistics.x.value.ui64++) 338 339 tcp_g_stat_t tcp_g_statistics; 340 kstat_t *tcp_g_kstat; 341 342 /* 343 * Call either ip_output or ip_output_v6. This replaces putnext() calls on the 344 * tcp write side. 345 */ 346 #define CALL_IP_WPUT(connp, q, mp) { \ 347 tcp_stack_t *tcps; \ 348 \ 349 tcps = connp->conn_netstack->netstack_tcp; \ 350 ASSERT(((q)->q_flag & QREADR) == 0); \ 351 TCP_DBGSTAT(tcps, tcp_ip_output); \ 352 connp->conn_send(connp, (mp), (q), IP_WPUT); \ 353 } 354 355 /* Macros for timestamp comparisons */ 356 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 357 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 358 359 /* 360 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 361 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 362 * by adding three components: a time component which grows by 1 every 4096 363 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 364 * a per-connection component which grows by 125000 for every new connection; 365 * and an "extra" component that grows by a random amount centered 366 * approximately on 64000. This causes the the ISS generator to cycle every 367 * 4.89 hours if no TCP connections are made, and faster if connections are 368 * made. 369 * 370 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 371 * components: a time component which grows by 250000 every second; and 372 * a per-connection component which grows by 125000 for every new connections. 373 * 374 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 375 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 376 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 377 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 378 * password. 379 */ 380 #define ISS_INCR 250000 381 #define ISS_NSEC_SHT 12 382 383 static sin_t sin_null; /* Zero address for quick clears */ 384 static sin6_t sin6_null; /* Zero address for quick clears */ 385 386 /* 387 * This implementation follows the 4.3BSD interpretation of the urgent 388 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 389 * incompatible changes in protocols like telnet and rlogin. 390 */ 391 #define TCP_OLD_URP_INTERPRETATION 1 392 393 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 394 (TCP_IS_DETACHED(tcp) && \ 395 (!(tcp)->tcp_hard_binding)) 396 397 /* 398 * TCP reassembly macros. We hide starting and ending sequence numbers in 399 * b_next and b_prev of messages on the reassembly queue. The messages are 400 * chained using b_cont. These macros are used in tcp_reass() so we don't 401 * have to see the ugly casts and assignments. 402 */ 403 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 404 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 405 (mblk_t *)(uintptr_t)(u)) 406 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 407 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 408 (mblk_t *)(uintptr_t)(u)) 409 410 /* 411 * Implementation of TCP Timers. 412 * ============================= 413 * 414 * INTERFACE: 415 * 416 * There are two basic functions dealing with tcp timers: 417 * 418 * timeout_id_t tcp_timeout(connp, func, time) 419 * clock_t tcp_timeout_cancel(connp, timeout_id) 420 * TCP_TIMER_RESTART(tcp, intvl) 421 * 422 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 423 * after 'time' ticks passed. The function called by timeout() must adhere to 424 * the same restrictions as a driver soft interrupt handler - it must not sleep 425 * or call other functions that might sleep. The value returned is the opaque 426 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 427 * cancel the request. The call to tcp_timeout() may fail in which case it 428 * returns zero. This is different from the timeout(9F) function which never 429 * fails. 430 * 431 * The call-back function 'func' always receives 'connp' as its single 432 * argument. It is always executed in the squeue corresponding to the tcp 433 * structure. The tcp structure is guaranteed to be present at the time the 434 * call-back is called. 435 * 436 * NOTE: The call-back function 'func' is never called if tcp is in 437 * the TCPS_CLOSED state. 438 * 439 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 440 * request. locks acquired by the call-back routine should not be held across 441 * the call to tcp_timeout_cancel() or a deadlock may result. 442 * 443 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 444 * Otherwise, it returns an integer value greater than or equal to 0. In 445 * particular, if the call-back function is already placed on the squeue, it can 446 * not be canceled. 447 * 448 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 449 * within squeue context corresponding to the tcp instance. Since the 450 * call-back is also called via the same squeue, there are no race 451 * conditions described in untimeout(9F) manual page since all calls are 452 * strictly serialized. 453 * 454 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 455 * stored in tcp_timer_tid and starts a new one using 456 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 457 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 458 * field. 459 * 460 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 461 * call-back may still be called, so it is possible tcp_timer() will be 462 * called several times. This should not be a problem since tcp_timer() 463 * should always check the tcp instance state. 464 * 465 * 466 * IMPLEMENTATION: 467 * 468 * TCP timers are implemented using three-stage process. The call to 469 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 470 * when the timer expires. The tcp_timer_callback() arranges the call of the 471 * tcp_timer_handler() function via squeue corresponding to the tcp 472 * instance. The tcp_timer_handler() calls actual requested timeout call-back 473 * and passes tcp instance as an argument to it. Information is passed between 474 * stages using the tcp_timer_t structure which contains the connp pointer, the 475 * tcp call-back to call and the timeout id returned by the timeout(9F). 476 * 477 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 478 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 479 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 480 * returns the pointer to this mblk. 481 * 482 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 483 * looks like a normal mblk without actual dblk attached to it. 484 * 485 * To optimize performance each tcp instance holds a small cache of timer 486 * mblocks. In the current implementation it caches up to two timer mblocks per 487 * tcp instance. The cache is preserved over tcp frees and is only freed when 488 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 489 * timer processing happens on a corresponding squeue, the cache manipulation 490 * does not require any locks. Experiments show that majority of timer mblocks 491 * allocations are satisfied from the tcp cache and do not involve kmem calls. 492 * 493 * The tcp_timeout() places a refhold on the connp instance which guarantees 494 * that it will be present at the time the call-back function fires. The 495 * tcp_timer_handler() drops the reference after calling the call-back, so the 496 * call-back function does not need to manipulate the references explicitly. 497 */ 498 499 typedef struct tcp_timer_s { 500 conn_t *connp; 501 void (*tcpt_proc)(void *); 502 timeout_id_t tcpt_tid; 503 } tcp_timer_t; 504 505 static kmem_cache_t *tcp_timercache; 506 kmem_cache_t *tcp_sack_info_cache; 507 kmem_cache_t *tcp_iphc_cache; 508 509 /* 510 * For scalability, we must not run a timer for every TCP connection 511 * in TIME_WAIT state. To see why, consider (for time wait interval of 512 * 4 minutes): 513 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 514 * 515 * This list is ordered by time, so you need only delete from the head 516 * until you get to entries which aren't old enough to delete yet. 517 * The list consists of only the detached TIME_WAIT connections. 518 * 519 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 520 * becomes detached TIME_WAIT (either by changing the state and already 521 * being detached or the other way around). This means that the TIME_WAIT 522 * state can be extended (up to doubled) if the connection doesn't become 523 * detached for a long time. 524 * 525 * The list manipulations (including tcp_time_wait_next/prev) 526 * are protected by the tcp_time_wait_lock. The content of the 527 * detached TIME_WAIT connections is protected by the normal perimeters. 528 * 529 * This list is per squeue and squeues are shared across the tcp_stack_t's. 530 * Things on tcp_time_wait_head remain associated with the tcp_stack_t 531 * and conn_netstack. 532 * The tcp_t's that are added to tcp_free_list are disassociated and 533 * have NULL tcp_tcps and conn_netstack pointers. 534 */ 535 typedef struct tcp_squeue_priv_s { 536 kmutex_t tcp_time_wait_lock; 537 timeout_id_t tcp_time_wait_tid; 538 tcp_t *tcp_time_wait_head; 539 tcp_t *tcp_time_wait_tail; 540 tcp_t *tcp_free_list; 541 uint_t tcp_free_list_cnt; 542 } tcp_squeue_priv_t; 543 544 /* 545 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 546 * Running it every 5 seconds seems to give the best results. 547 */ 548 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 549 550 /* 551 * To prevent memory hog, limit the number of entries in tcp_free_list 552 * to 1% of available memory / number of cpus 553 */ 554 uint_t tcp_free_list_max_cnt = 0; 555 556 #define TCP_XMIT_LOWATER 4096 557 #define TCP_XMIT_HIWATER 49152 558 #define TCP_RECV_LOWATER 2048 559 #define TCP_RECV_HIWATER 49152 560 561 /* 562 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 563 */ 564 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 565 566 #define TIDUSZ 4096 /* transport interface data unit size */ 567 568 /* 569 * Bind hash list size and has function. It has to be a power of 2 for 570 * hashing. 571 */ 572 #define TCP_BIND_FANOUT_SIZE 512 573 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 574 /* 575 * Size of listen and acceptor hash list. It has to be a power of 2 for 576 * hashing. 577 */ 578 #define TCP_FANOUT_SIZE 256 579 580 #ifdef _ILP32 581 #define TCP_ACCEPTOR_HASH(accid) \ 582 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 583 #else 584 #define TCP_ACCEPTOR_HASH(accid) \ 585 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 586 #endif /* _ILP32 */ 587 588 #define IP_ADDR_CACHE_SIZE 2048 589 #define IP_ADDR_CACHE_HASH(faddr) \ 590 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 591 592 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */ 593 #define TCP_HSP_HASH_SIZE 256 594 595 #define TCP_HSP_HASH(addr) \ 596 (((addr>>24) ^ (addr >>16) ^ \ 597 (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE) 598 599 /* 600 * TCP options struct returned from tcp_parse_options. 601 */ 602 typedef struct tcp_opt_s { 603 uint32_t tcp_opt_mss; 604 uint32_t tcp_opt_wscale; 605 uint32_t tcp_opt_ts_val; 606 uint32_t tcp_opt_ts_ecr; 607 tcp_t *tcp; 608 } tcp_opt_t; 609 610 /* 611 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 612 */ 613 614 #ifdef _BIG_ENDIAN 615 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 616 (TCPOPT_TSTAMP << 8) | 10) 617 #else 618 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 619 (TCPOPT_NOP << 8) | TCPOPT_NOP) 620 #endif 621 622 /* 623 * Flags returned from tcp_parse_options. 624 */ 625 #define TCP_OPT_MSS_PRESENT 1 626 #define TCP_OPT_WSCALE_PRESENT 2 627 #define TCP_OPT_TSTAMP_PRESENT 4 628 #define TCP_OPT_SACK_OK_PRESENT 8 629 #define TCP_OPT_SACK_PRESENT 16 630 631 /* TCP option length */ 632 #define TCPOPT_NOP_LEN 1 633 #define TCPOPT_MAXSEG_LEN 4 634 #define TCPOPT_WS_LEN 3 635 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 636 #define TCPOPT_TSTAMP_LEN 10 637 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 638 #define TCPOPT_SACK_OK_LEN 2 639 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 640 #define TCPOPT_REAL_SACK_LEN 4 641 #define TCPOPT_MAX_SACK_LEN 36 642 #define TCPOPT_HEADER_LEN 2 643 644 /* TCP cwnd burst factor. */ 645 #define TCP_CWND_INFINITE 65535 646 #define TCP_CWND_SS 3 647 #define TCP_CWND_NORMAL 5 648 649 /* Maximum TCP initial cwin (start/restart). */ 650 #define TCP_MAX_INIT_CWND 8 651 652 /* 653 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 654 * either tcp_slow_start_initial or tcp_slow_start_after idle 655 * depending on the caller. If the upper layer has not used the 656 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 657 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 658 * If the upper layer has changed set the tcp_init_cwnd, just use 659 * it to calculate the tcp_cwnd. 660 */ 661 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 662 { \ 663 if ((tcp)->tcp_init_cwnd == 0) { \ 664 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 665 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 666 } else { \ 667 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 668 } \ 669 tcp->tcp_cwnd_cnt = 0; \ 670 } 671 672 /* TCP Timer control structure */ 673 typedef struct tcpt_s { 674 pfv_t tcpt_pfv; /* The routine we are to call */ 675 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 676 } tcpt_t; 677 678 /* Host Specific Parameter structure */ 679 typedef struct tcp_hsp { 680 struct tcp_hsp *tcp_hsp_next; 681 in6_addr_t tcp_hsp_addr_v6; 682 in6_addr_t tcp_hsp_subnet_v6; 683 uint_t tcp_hsp_vers; /* IPV4_VERSION | IPV6_VERSION */ 684 int32_t tcp_hsp_sendspace; 685 int32_t tcp_hsp_recvspace; 686 int32_t tcp_hsp_tstamp; 687 } tcp_hsp_t; 688 #define tcp_hsp_addr V4_PART_OF_V6(tcp_hsp_addr_v6) 689 #define tcp_hsp_subnet V4_PART_OF_V6(tcp_hsp_subnet_v6) 690 691 /* 692 * Functions called directly via squeue having a prototype of edesc_t. 693 */ 694 void tcp_conn_request(void *arg, mblk_t *mp, void *arg2); 695 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2); 696 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2); 697 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2); 698 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2); 699 void tcp_input(void *arg, mblk_t *mp, void *arg2); 700 void tcp_rput_data(void *arg, mblk_t *mp, void *arg2); 701 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2); 702 void tcp_output(void *arg, mblk_t *mp, void *arg2); 703 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2); 704 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2); 705 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2); 706 707 708 /* Prototype for TCP functions */ 709 static void tcp_random_init(void); 710 int tcp_random(void); 711 static void tcp_accept(tcp_t *tcp, mblk_t *mp); 712 static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 713 tcp_t *eager); 714 static int tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp); 715 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 716 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 717 boolean_t user_specified); 718 static void tcp_closei_local(tcp_t *tcp); 719 static void tcp_close_detached(tcp_t *tcp); 720 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, 721 mblk_t *idmp, mblk_t **defermp); 722 static void tcp_connect(tcp_t *tcp, mblk_t *mp); 723 static void tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, 724 in_port_t dstport, uint_t srcid); 725 static void tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 726 in_port_t dstport, uint32_t flowinfo, uint_t srcid, 727 uint32_t scope_id); 728 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 729 static void tcp_def_q_set(tcp_t *tcp, mblk_t *mp); 730 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 731 static char *tcp_display(tcp_t *tcp, char *, char); 732 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 733 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 734 static void tcp_eager_unlink(tcp_t *tcp); 735 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 736 int unixerr); 737 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 738 int tlierr, int unixerr); 739 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 740 cred_t *cr); 741 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 742 char *value, caddr_t cp, cred_t *cr); 743 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 744 char *value, caddr_t cp, cred_t *cr); 745 static int tcp_tpistate(tcp_t *tcp); 746 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 747 int caller_holds_lock); 748 static void tcp_bind_hash_remove(tcp_t *tcp); 749 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *); 750 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 751 static void tcp_acceptor_hash_remove(tcp_t *tcp); 752 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 753 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 754 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 755 static void tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp); 756 void tcp_g_q_setup(tcp_stack_t *); 757 void tcp_g_q_create(tcp_stack_t *); 758 void tcp_g_q_destroy(tcp_stack_t *); 759 static int tcp_header_init_ipv4(tcp_t *tcp); 760 static int tcp_header_init_ipv6(tcp_t *tcp); 761 int tcp_init(tcp_t *tcp, queue_t *q); 762 static int tcp_init_values(tcp_t *tcp); 763 static mblk_t *tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic); 764 static mblk_t *tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, 765 t_scalar_t addr_length); 766 static void tcp_ip_ire_mark_advice(tcp_t *tcp); 767 static void tcp_ip_notify(tcp_t *tcp); 768 static mblk_t *tcp_ire_mp(mblk_t *mp); 769 static void tcp_iss_init(tcp_t *tcp); 770 static void tcp_keepalive_killer(void *arg); 771 static int tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt); 772 static void tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss); 773 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 774 int *do_disconnectp, int *t_errorp, int *sys_errorp); 775 static boolean_t tcp_allow_connopt_set(int level, int name); 776 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 777 int tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr); 778 int tcp_opt_set(queue_t *q, uint_t optset_context, int level, 779 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 780 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, 781 mblk_t *mblk); 782 static void tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha); 783 static int tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, 784 uchar_t *ptr, uint_t len); 785 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 786 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, 787 tcp_stack_t *); 788 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 789 caddr_t cp, cred_t *cr); 790 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 791 caddr_t cp, cred_t *cr); 792 static void tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *); 793 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 794 caddr_t cp, cred_t *cr); 795 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 796 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 797 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 798 static void tcp_reinit(tcp_t *tcp); 799 static void tcp_reinit_values(tcp_t *tcp); 800 static void tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, 801 tcp_t *thisstream, cred_t *cr); 802 803 static uint_t tcp_rcv_drain(queue_t *q, tcp_t *tcp); 804 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 805 static boolean_t tcp_send_rst_chk(tcp_stack_t *); 806 static void tcp_ss_rexmit(tcp_t *tcp); 807 static mblk_t *tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp); 808 static void tcp_process_options(tcp_t *, tcph_t *); 809 static void tcp_rput_common(tcp_t *tcp, mblk_t *mp); 810 static void tcp_rsrv(queue_t *q); 811 static int tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd); 812 static int tcp_snmp_state(tcp_t *tcp); 813 static int tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, 814 cred_t *cr); 815 static int tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 816 cred_t *cr); 817 static int tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 818 cred_t *cr); 819 static int tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 820 cred_t *cr); 821 static int tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 822 cred_t *cr); 823 static int tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, 824 caddr_t cp, cred_t *cr); 825 static int tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, 826 caddr_t cp, cred_t *cr); 827 static int tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, 828 cred_t *cr); 829 static void tcp_timer(void *arg); 830 static void tcp_timer_callback(void *); 831 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, 832 boolean_t random); 833 static in_port_t tcp_get_next_priv_port(const tcp_t *); 834 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 835 void tcp_wput_accept(queue_t *q, mblk_t *mp); 836 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 837 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 838 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 839 static int tcp_send(queue_t *q, tcp_t *tcp, const int mss, 840 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 841 const int num_sack_blk, int *usable, uint_t *snxt, 842 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 843 const int mdt_thres); 844 static int tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, 845 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 846 const int num_sack_blk, int *usable, uint_t *snxt, 847 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 848 const int mdt_thres); 849 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 850 int num_sack_blk); 851 static void tcp_wsrv(queue_t *q); 852 static int tcp_xmit_end(tcp_t *tcp); 853 static void tcp_ack_timer(void *arg); 854 static mblk_t *tcp_ack_mp(tcp_t *tcp); 855 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 856 uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len, 857 zoneid_t zoneid, tcp_stack_t *); 858 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 859 uint32_t ack, int ctl); 860 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *); 861 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr, tcp_stack_t *); 862 static int setmaxps(queue_t *q, int maxpsz); 863 static void tcp_set_rto(tcp_t *, time_t); 864 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *, 865 boolean_t, boolean_t); 866 static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, 867 boolean_t ipsec_mctl); 868 static mblk_t *tcp_setsockopt_mp(int level, int cmd, 869 char *opt, int optlen); 870 static int tcp_build_hdrs(queue_t *, tcp_t *); 871 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 872 uint32_t seg_seq, uint32_t seg_ack, int seg_len, 873 tcph_t *tcph); 874 boolean_t tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp); 875 boolean_t tcp_reserved_port_add(int, in_port_t *, in_port_t *); 876 boolean_t tcp_reserved_port_del(in_port_t, in_port_t); 877 boolean_t tcp_reserved_port_check(in_port_t, tcp_stack_t *); 878 static tcp_t *tcp_alloc_temp_tcp(in_port_t, tcp_stack_t *); 879 static int tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *); 880 static mblk_t *tcp_mdt_info_mp(mblk_t *); 881 static void tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t); 882 static int tcp_mdt_add_attrs(multidata_t *, const mblk_t *, 883 const boolean_t, const uint32_t, const uint32_t, 884 const uint32_t, const uint32_t, tcp_stack_t *); 885 static void tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *, 886 const uint_t, const uint_t, boolean_t *); 887 static mblk_t *tcp_lso_info_mp(mblk_t *); 888 static void tcp_lso_update(tcp_t *, ill_lso_capab_t *); 889 static void tcp_send_data(tcp_t *, queue_t *, mblk_t *); 890 extern mblk_t *tcp_timermp_alloc(int); 891 extern void tcp_timermp_free(tcp_t *); 892 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 893 static void tcp_stop_lingering(tcp_t *tcp); 894 static void tcp_close_linger_timeout(void *arg); 895 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 896 static void tcp_stack_shutdown(netstackid_t stackid, void *arg); 897 static void tcp_stack_fini(netstackid_t stackid, void *arg); 898 static void *tcp_g_kstat_init(tcp_g_stat_t *); 899 static void tcp_g_kstat_fini(kstat_t *); 900 static void *tcp_kstat_init(netstackid_t, tcp_stack_t *); 901 static void tcp_kstat_fini(netstackid_t, kstat_t *); 902 static void *tcp_kstat2_init(netstackid_t, tcp_stat_t *); 903 static void tcp_kstat2_fini(netstackid_t, kstat_t *); 904 static int tcp_kstat_update(kstat_t *kp, int rw); 905 void tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp); 906 static int tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 907 tcph_t *tcph, uint_t ipvers, mblk_t *idmp); 908 static int tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 909 tcph_t *tcph, mblk_t *idmp); 910 static squeue_func_t tcp_squeue_switch(int); 911 912 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *); 913 static int tcp_close(queue_t *, int); 914 static int tcpclose_accept(queue_t *); 915 static int tcp_modclose(queue_t *); 916 static void tcp_wput_mod(queue_t *, mblk_t *); 917 918 static void tcp_squeue_add(squeue_t *); 919 static boolean_t tcp_zcopy_check(tcp_t *); 920 static void tcp_zcopy_notify(tcp_t *); 921 static mblk_t *tcp_zcopy_disable(tcp_t *, mblk_t *); 922 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, int); 923 static void tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t); 924 925 extern void tcp_kssl_input(tcp_t *, mblk_t *); 926 927 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2); 928 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2); 929 930 /* 931 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 932 * 933 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 934 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 935 * (defined in tcp.h) needs to be filled in and passed into the kernel 936 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 937 * structure contains the four-tuple of a TCP connection and a range of TCP 938 * states (specified by ac_start and ac_end). The use of wildcard addresses 939 * and ports is allowed. Connections with a matching four tuple and a state 940 * within the specified range will be aborted. The valid states for the 941 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 942 * inclusive. 943 * 944 * An application which has its connection aborted by this ioctl will receive 945 * an error that is dependent on the connection state at the time of the abort. 946 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 947 * though a RST packet has been received. If the connection state is equal to 948 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 949 * and all resources associated with the connection will be freed. 950 */ 951 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 952 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 953 static void tcp_ioctl_abort_handler(tcp_t *, mblk_t *); 954 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps); 955 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 956 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 957 boolean_t, tcp_stack_t *); 958 959 static struct module_info tcp_rinfo = { 960 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 961 }; 962 963 static struct module_info tcp_winfo = { 964 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 965 }; 966 967 /* 968 * Entry points for TCP as a module. It only allows SNMP requests 969 * to pass through. 970 */ 971 struct qinit tcp_mod_rinit = { 972 (pfi_t)putnext, NULL, tcp_open, ip_snmpmod_close, NULL, &tcp_rinfo, 973 }; 974 975 struct qinit tcp_mod_winit = { 976 (pfi_t)ip_snmpmod_wput, NULL, tcp_open, ip_snmpmod_close, NULL, 977 &tcp_rinfo 978 }; 979 980 /* 981 * Entry points for TCP as a device. The normal case which supports 982 * the TCP functionality. 983 */ 984 struct qinit tcp_rinit = { 985 NULL, (pfi_t)tcp_rsrv, tcp_open, tcp_close, NULL, &tcp_rinfo 986 }; 987 988 struct qinit tcp_winit = { 989 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 990 }; 991 992 /* Initial entry point for TCP in socket mode. */ 993 struct qinit tcp_sock_winit = { 994 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 995 }; 996 997 /* 998 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 999 * an accept. Avoid allocating data structures since eager has already 1000 * been created. 1001 */ 1002 struct qinit tcp_acceptor_rinit = { 1003 NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo 1004 }; 1005 1006 struct qinit tcp_acceptor_winit = { 1007 (pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo 1008 }; 1009 1010 /* 1011 * Entry points for TCP loopback (read side only) 1012 */ 1013 struct qinit tcp_loopback_rinit = { 1014 (pfi_t)0, (pfi_t)tcp_rsrv, tcp_open, tcp_close, (pfi_t)0, 1015 &tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD 1016 }; 1017 1018 struct streamtab tcpinfo = { 1019 &tcp_rinit, &tcp_winit 1020 }; 1021 1022 /* 1023 * Have to ensure that tcp_g_q_close is not done by an 1024 * interrupt thread. 1025 */ 1026 static taskq_t *tcp_taskq; 1027 1028 /* 1029 * TCP has a private interface for other kernel modules to reserve a 1030 * port range for them to use. Once reserved, TCP will not use any ports 1031 * in the range. This interface relies on the TCP_EXCLBIND feature. If 1032 * the semantics of TCP_EXCLBIND is changed, implementation of this interface 1033 * has to be verified. 1034 * 1035 * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges. Each port 1036 * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports. A port 1037 * range is [port a, port b] inclusive. And each port range is between 1038 * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive. 1039 * 1040 * Note that the default anonymous port range starts from 32768. There is 1041 * no port "collision" between that and the reserved port range. If there 1042 * is port collision (because the default smallest anonymous port is lowered 1043 * or some apps specifically bind to ports in the reserved port range), the 1044 * system may not be able to reserve a port range even there are enough 1045 * unbound ports as a reserved port range contains consecutive ports . 1046 */ 1047 #define TCP_RESERVED_PORTS_ARRAY_MAX_SIZE 5 1048 #define TCP_RESERVED_PORTS_RANGE_MAX 1000 1049 #define TCP_SMALLEST_RESERVED_PORT 10240 1050 #define TCP_LARGEST_RESERVED_PORT 20480 1051 1052 /* Structure to represent those reserved port ranges. */ 1053 typedef struct tcp_rport_s { 1054 in_port_t lo_port; 1055 in_port_t hi_port; 1056 tcp_t **temp_tcp_array; 1057 } tcp_rport_t; 1058 1059 /* Setable only in /etc/system. Move to ndd? */ 1060 boolean_t tcp_icmp_source_quench = B_FALSE; 1061 1062 /* 1063 * Following assumes TPI alignment requirements stay along 32 bit 1064 * boundaries 1065 */ 1066 #define ROUNDUP32(x) \ 1067 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1068 1069 /* Template for response to info request. */ 1070 static struct T_info_ack tcp_g_t_info_ack = { 1071 T_INFO_ACK, /* PRIM_type */ 1072 0, /* TSDU_size */ 1073 T_INFINITE, /* ETSDU_size */ 1074 T_INVALID, /* CDATA_size */ 1075 T_INVALID, /* DDATA_size */ 1076 sizeof (sin_t), /* ADDR_size */ 1077 0, /* OPT_size - not initialized here */ 1078 TIDUSZ, /* TIDU_size */ 1079 T_COTS_ORD, /* SERV_type */ 1080 TCPS_IDLE, /* CURRENT_state */ 1081 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1082 }; 1083 1084 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1085 T_INFO_ACK, /* PRIM_type */ 1086 0, /* TSDU_size */ 1087 T_INFINITE, /* ETSDU_size */ 1088 T_INVALID, /* CDATA_size */ 1089 T_INVALID, /* DDATA_size */ 1090 sizeof (sin6_t), /* ADDR_size */ 1091 0, /* OPT_size - not initialized here */ 1092 TIDUSZ, /* TIDU_size */ 1093 T_COTS_ORD, /* SERV_type */ 1094 TCPS_IDLE, /* CURRENT_state */ 1095 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1096 }; 1097 1098 #define MS 1L 1099 #define SECONDS (1000 * MS) 1100 #define MINUTES (60 * SECONDS) 1101 #define HOURS (60 * MINUTES) 1102 #define DAYS (24 * HOURS) 1103 1104 #define PARAM_MAX (~(uint32_t)0) 1105 1106 /* Max size IP datagram is 64k - 1 */ 1107 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t))) 1108 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t))) 1109 /* Max of the above */ 1110 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1111 1112 /* Largest TCP port number */ 1113 #define TCP_MAX_PORT (64 * 1024 - 1) 1114 1115 /* 1116 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1117 * layer header. It has to be a multiple of 4. 1118 */ 1119 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1120 #define tcps_wroff_xtra tcps_wroff_xtra_param->tcp_param_val 1121 1122 /* 1123 * All of these are alterable, within the min/max values given, at run time. 1124 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1125 * per the TCP spec. 1126 */ 1127 /* BEGIN CSTYLED */ 1128 static tcpparam_t lcl_tcp_param_arr[] = { 1129 /*min max value name */ 1130 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1131 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1132 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1133 { 1, 1024, 1, "tcp_conn_req_min" }, 1134 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1135 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1136 { 0, 10, 0, "tcp_debug" }, 1137 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1138 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1139 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1140 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1141 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1142 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1143 { 1, 255, 64, "tcp_ipv4_ttl"}, 1144 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1145 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1146 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1147 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1148 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1149 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1150 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1151 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1152 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1153 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1154 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1155 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1156 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1157 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1158 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1159 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1160 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1161 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1162 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1163 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1164 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1165 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1166 { 0, TCP_MSS_MAX, 64, "tcp_co_min"}, 1167 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1168 /* 1169 * Question: What default value should I set for tcp_strong_iss? 1170 */ 1171 { 0, 2, 1, "tcp_strong_iss"}, 1172 { 0, 65536, 20, "tcp_rtt_updates"}, 1173 { 0, 1, 1, "tcp_wscale_always"}, 1174 { 0, 1, 0, "tcp_tstamp_always"}, 1175 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1176 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1177 { 0, 16, 2, "tcp_deferred_acks_max"}, 1178 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1179 { 1, 4, 4, "tcp_slow_start_initial"}, 1180 { 10*MS, 50*MS, 20*MS, "tcp_co_timer_interval"}, 1181 { 0, 2, 2, "tcp_sack_permitted"}, 1182 { 0, 1, 0, "tcp_trace"}, 1183 { 0, 1, 1, "tcp_compression_enabled"}, 1184 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1185 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1186 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1187 { 0, 1, 0, "tcp_rev_src_routes"}, 1188 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1189 { 100*MS, 60*SECONDS, 1*SECONDS, "tcp_ndd_get_info_interval"}, 1190 { 0, 16, 8, "tcp_local_dacks_max"}, 1191 { 0, 2, 1, "tcp_ecn_permitted"}, 1192 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1193 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1194 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1195 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1196 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1197 }; 1198 /* END CSTYLED */ 1199 1200 /* 1201 * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of 1202 * each header fragment in the header buffer. Each parameter value has 1203 * to be a multiple of 4 (32-bit aligned). 1204 */ 1205 static tcpparam_t lcl_tcp_mdt_head_param = 1206 { 32, 256, 32, "tcp_mdt_hdr_head_min" }; 1207 static tcpparam_t lcl_tcp_mdt_tail_param = 1208 { 0, 256, 32, "tcp_mdt_hdr_tail_min" }; 1209 #define tcps_mdt_hdr_head_min tcps_mdt_head_param->tcp_param_val 1210 #define tcps_mdt_hdr_tail_min tcps_mdt_tail_param->tcp_param_val 1211 1212 /* 1213 * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out 1214 * the maximum number of payload buffers associated per Multidata. 1215 */ 1216 static tcpparam_t lcl_tcp_mdt_max_pbufs_param = 1217 { 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" }; 1218 #define tcps_mdt_max_pbufs tcps_mdt_max_pbufs_param->tcp_param_val 1219 1220 /* Round up the value to the nearest mss. */ 1221 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1222 1223 /* 1224 * Set ECN capable transport (ECT) code point in IP header. 1225 * 1226 * Note that there are 2 ECT code points '01' and '10', which are called 1227 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1228 * point ECT(0) for TCP as described in RFC 2481. 1229 */ 1230 #define SET_ECT(tcp, iph) \ 1231 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1232 /* We need to clear the code point first. */ \ 1233 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1234 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1235 } else { \ 1236 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1237 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1238 } 1239 1240 /* 1241 * The format argument to pass to tcp_display(). 1242 * DISP_PORT_ONLY means that the returned string has only port info. 1243 * DISP_ADDR_AND_PORT means that the returned string also contains the 1244 * remote and local IP address. 1245 */ 1246 #define DISP_PORT_ONLY 1 1247 #define DISP_ADDR_AND_PORT 2 1248 1249 #define NDD_TOO_QUICK_MSG \ 1250 "ndd get info rate too high for non-privileged users, try again " \ 1251 "later.\n" 1252 #define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n" 1253 1254 #define IS_VMLOANED_MBLK(mp) \ 1255 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1256 1257 1258 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */ 1259 boolean_t tcp_mdt_chain = B_TRUE; 1260 1261 /* 1262 * MDT threshold in the form of effective send MSS multiplier; we take 1263 * the MDT path if the amount of unsent data exceeds the threshold value 1264 * (default threshold is 1*SMSS). 1265 */ 1266 uint_t tcp_mdt_smss_threshold = 1; 1267 1268 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1269 1270 /* 1271 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 1272 * tunable settable via NDD. Otherwise, the per-connection behavior is 1273 * determined dynamically during tcp_adapt_ire(), which is the default. 1274 */ 1275 boolean_t tcp_static_maxpsz = B_FALSE; 1276 1277 /* Setable in /etc/system */ 1278 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1279 uint32_t tcp_random_anon_port = 1; 1280 1281 /* 1282 * To reach to an eager in Q0 which can be dropped due to an incoming 1283 * new SYN request when Q0 is full, a new doubly linked list is 1284 * introduced. This list allows to select an eager from Q0 in O(1) time. 1285 * This is needed to avoid spending too much time walking through the 1286 * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of 1287 * this new list has to be a member of Q0. 1288 * This list is headed by listener's tcp_t. When the list is empty, 1289 * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0, 1290 * of listener's tcp_t point to listener's tcp_t itself. 1291 * 1292 * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager 1293 * in the list. MAKE_UNDROPPABLE() takes the eager out of the list. 1294 * These macros do not affect the eager's membership to Q0. 1295 */ 1296 1297 1298 #define MAKE_DROPPABLE(listener, eager) \ 1299 if ((eager)->tcp_eager_next_drop_q0 == NULL) { \ 1300 (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\ 1301 = (eager); \ 1302 (eager)->tcp_eager_prev_drop_q0 = (listener); \ 1303 (eager)->tcp_eager_next_drop_q0 = \ 1304 (listener)->tcp_eager_next_drop_q0; \ 1305 (listener)->tcp_eager_next_drop_q0 = (eager); \ 1306 } 1307 1308 #define MAKE_UNDROPPABLE(eager) \ 1309 if ((eager)->tcp_eager_next_drop_q0 != NULL) { \ 1310 (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \ 1311 = (eager)->tcp_eager_prev_drop_q0; \ 1312 (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \ 1313 = (eager)->tcp_eager_next_drop_q0; \ 1314 (eager)->tcp_eager_prev_drop_q0 = NULL; \ 1315 (eager)->tcp_eager_next_drop_q0 = NULL; \ 1316 } 1317 1318 /* 1319 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1320 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1321 * data, TCP will not respond with an ACK. RFC 793 requires that 1322 * TCP responds with an ACK for such a bogus ACK. By not following 1323 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1324 * an attacker successfully spoofs an acceptable segment to our 1325 * peer; or when our peer is "confused." 1326 */ 1327 uint32_t tcp_drop_ack_unsent_cnt = 10; 1328 1329 /* 1330 * Hook functions to enable cluster networking 1331 * On non-clustered systems these vectors must always be NULL. 1332 */ 1333 1334 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family, 1335 uint8_t *laddrp, in_port_t lport) = NULL; 1336 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family, 1337 uint8_t *laddrp, in_port_t lport) = NULL; 1338 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family, 1339 uint8_t *laddrp, in_port_t lport, 1340 uint8_t *faddrp, in_port_t fport) = NULL; 1341 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family, 1342 uint8_t *laddrp, in_port_t lport, 1343 uint8_t *faddrp, in_port_t fport) = NULL; 1344 1345 /* 1346 * The following are defined in ip.c 1347 */ 1348 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family, 1349 uint8_t *laddrp); 1350 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 1351 uint8_t *laddrp, uint8_t *faddrp); 1352 1353 #define CL_INET_CONNECT(tcp) { \ 1354 if (cl_inet_connect != NULL) { \ 1355 /* \ 1356 * Running in cluster mode - register active connection \ 1357 * information \ 1358 */ \ 1359 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1360 if ((tcp)->tcp_ipha->ipha_src != 0) { \ 1361 (*cl_inet_connect)(IPPROTO_TCP, AF_INET,\ 1362 (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\ 1363 (in_port_t)(tcp)->tcp_lport, \ 1364 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1365 (in_port_t)(tcp)->tcp_fport); \ 1366 } \ 1367 } else { \ 1368 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1369 &(tcp)->tcp_ip6h->ip6_src)) {\ 1370 (*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\ 1371 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\ 1372 (in_port_t)(tcp)->tcp_lport, \ 1373 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1374 (in_port_t)(tcp)->tcp_fport); \ 1375 } \ 1376 } \ 1377 } \ 1378 } 1379 1380 #define CL_INET_DISCONNECT(tcp) { \ 1381 if (cl_inet_disconnect != NULL) { \ 1382 /* \ 1383 * Running in cluster mode - deregister active \ 1384 * connection information \ 1385 */ \ 1386 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1387 if ((tcp)->tcp_ip_src != 0) { \ 1388 (*cl_inet_disconnect)(IPPROTO_TCP, \ 1389 AF_INET, \ 1390 (uint8_t *)(&((tcp)->tcp_ip_src)),\ 1391 (in_port_t)(tcp)->tcp_lport, \ 1392 (uint8_t *) \ 1393 (&((tcp)->tcp_ipha->ipha_dst)),\ 1394 (in_port_t)(tcp)->tcp_fport); \ 1395 } \ 1396 } else { \ 1397 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1398 &(tcp)->tcp_ip_src_v6)) { \ 1399 (*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\ 1400 (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\ 1401 (in_port_t)(tcp)->tcp_lport, \ 1402 (uint8_t *) \ 1403 (&((tcp)->tcp_ip6h->ip6_dst)),\ 1404 (in_port_t)(tcp)->tcp_fport); \ 1405 } \ 1406 } \ 1407 } \ 1408 } 1409 1410 /* 1411 * Cluster networking hook for traversing current connection list. 1412 * This routine is used to extract the current list of live connections 1413 * which must continue to to be dispatched to this node. 1414 */ 1415 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg); 1416 1417 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), 1418 void *arg, tcp_stack_t *tcps); 1419 1420 /* 1421 * Figure out the value of window scale opton. Note that the rwnd is 1422 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1423 * We cannot find the scale value and then do a round up of tcp_rwnd 1424 * because the scale value may not be correct after that. 1425 * 1426 * Set the compiler flag to make this function inline. 1427 */ 1428 static void 1429 tcp_set_ws_value(tcp_t *tcp) 1430 { 1431 int i; 1432 uint32_t rwnd = tcp->tcp_rwnd; 1433 1434 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1435 i++, rwnd >>= 1) 1436 ; 1437 tcp->tcp_rcv_ws = i; 1438 } 1439 1440 /* 1441 * Remove a connection from the list of detached TIME_WAIT connections. 1442 * It returns B_FALSE if it can't remove the connection from the list 1443 * as the connection has already been removed from the list due to an 1444 * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE. 1445 */ 1446 static boolean_t 1447 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1448 { 1449 boolean_t locked = B_FALSE; 1450 1451 if (tcp_time_wait == NULL) { 1452 tcp_time_wait = *((tcp_squeue_priv_t **) 1453 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1454 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1455 locked = B_TRUE; 1456 } else { 1457 ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock)); 1458 } 1459 1460 if (tcp->tcp_time_wait_expire == 0) { 1461 ASSERT(tcp->tcp_time_wait_next == NULL); 1462 ASSERT(tcp->tcp_time_wait_prev == NULL); 1463 if (locked) 1464 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1465 return (B_FALSE); 1466 } 1467 ASSERT(TCP_IS_DETACHED(tcp)); 1468 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1469 1470 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1471 ASSERT(tcp->tcp_time_wait_prev == NULL); 1472 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1473 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1474 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1475 NULL; 1476 } else { 1477 tcp_time_wait->tcp_time_wait_tail = NULL; 1478 } 1479 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1480 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1481 ASSERT(tcp->tcp_time_wait_next == NULL); 1482 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1483 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1484 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1485 } else { 1486 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1487 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1488 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1489 tcp->tcp_time_wait_next; 1490 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1491 tcp->tcp_time_wait_prev; 1492 } 1493 tcp->tcp_time_wait_next = NULL; 1494 tcp->tcp_time_wait_prev = NULL; 1495 tcp->tcp_time_wait_expire = 0; 1496 1497 if (locked) 1498 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1499 return (B_TRUE); 1500 } 1501 1502 /* 1503 * Add a connection to the list of detached TIME_WAIT connections 1504 * and set its time to expire. 1505 */ 1506 static void 1507 tcp_time_wait_append(tcp_t *tcp) 1508 { 1509 tcp_stack_t *tcps = tcp->tcp_tcps; 1510 tcp_squeue_priv_t *tcp_time_wait = 1511 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1512 SQPRIVATE_TCP)); 1513 1514 tcp_timers_stop(tcp); 1515 1516 /* Freed above */ 1517 ASSERT(tcp->tcp_timer_tid == 0); 1518 ASSERT(tcp->tcp_ack_tid == 0); 1519 1520 /* must have happened at the time of detaching the tcp */ 1521 ASSERT(tcp->tcp_ptpahn == NULL); 1522 ASSERT(tcp->tcp_flow_stopped == 0); 1523 ASSERT(tcp->tcp_time_wait_next == NULL); 1524 ASSERT(tcp->tcp_time_wait_prev == NULL); 1525 ASSERT(tcp->tcp_time_wait_expire == NULL); 1526 ASSERT(tcp->tcp_listener == NULL); 1527 1528 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1529 /* 1530 * The value computed below in tcp->tcp_time_wait_expire may 1531 * appear negative or wrap around. That is ok since our 1532 * interest is only in the difference between the current lbolt 1533 * value and tcp->tcp_time_wait_expire. But the value should not 1534 * be zero, since it means the tcp is not in the TIME_WAIT list. 1535 * The corresponding comparison in tcp_time_wait_collector() uses 1536 * modular arithmetic. 1537 */ 1538 tcp->tcp_time_wait_expire += 1539 drv_usectohz(tcps->tcps_time_wait_interval * 1000); 1540 if (tcp->tcp_time_wait_expire == 0) 1541 tcp->tcp_time_wait_expire = 1; 1542 1543 ASSERT(TCP_IS_DETACHED(tcp)); 1544 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1545 ASSERT(tcp->tcp_time_wait_next == NULL); 1546 ASSERT(tcp->tcp_time_wait_prev == NULL); 1547 TCP_DBGSTAT(tcps, tcp_time_wait); 1548 1549 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1550 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1551 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1552 tcp_time_wait->tcp_time_wait_head = tcp; 1553 } else { 1554 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1555 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1556 TCPS_TIME_WAIT); 1557 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1558 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1559 } 1560 tcp_time_wait->tcp_time_wait_tail = tcp; 1561 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1562 } 1563 1564 /* ARGSUSED */ 1565 void 1566 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2) 1567 { 1568 conn_t *connp = (conn_t *)arg; 1569 tcp_t *tcp = connp->conn_tcp; 1570 tcp_stack_t *tcps = tcp->tcp_tcps; 1571 1572 ASSERT(tcp != NULL); 1573 if (tcp->tcp_state == TCPS_CLOSED) { 1574 return; 1575 } 1576 1577 ASSERT((tcp->tcp_family == AF_INET && 1578 tcp->tcp_ipversion == IPV4_VERSION) || 1579 (tcp->tcp_family == AF_INET6 && 1580 (tcp->tcp_ipversion == IPV4_VERSION || 1581 tcp->tcp_ipversion == IPV6_VERSION))); 1582 ASSERT(!tcp->tcp_listener); 1583 1584 TCP_STAT(tcps, tcp_time_wait_reap); 1585 ASSERT(TCP_IS_DETACHED(tcp)); 1586 1587 /* 1588 * Because they have no upstream client to rebind or tcp_close() 1589 * them later, we axe the connection here and now. 1590 */ 1591 tcp_close_detached(tcp); 1592 } 1593 1594 /* 1595 * Remove cached/latched IPsec references. 1596 */ 1597 void 1598 tcp_ipsec_cleanup(tcp_t *tcp) 1599 { 1600 conn_t *connp = tcp->tcp_connp; 1601 1602 if (connp->conn_flags & IPCL_TCPCONN) { 1603 if (connp->conn_latch != NULL) { 1604 IPLATCH_REFRELE(connp->conn_latch, 1605 connp->conn_netstack); 1606 connp->conn_latch = NULL; 1607 } 1608 if (connp->conn_policy != NULL) { 1609 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 1610 connp->conn_policy = NULL; 1611 } 1612 } 1613 } 1614 1615 /* 1616 * Cleaup before placing on free list. 1617 * Disassociate from the netstack/tcp_stack_t since the freelist 1618 * is per squeue and not per netstack. 1619 */ 1620 void 1621 tcp_cleanup(tcp_t *tcp) 1622 { 1623 mblk_t *mp; 1624 char *tcp_iphc; 1625 int tcp_iphc_len; 1626 int tcp_hdr_grown; 1627 tcp_sack_info_t *tcp_sack_info; 1628 conn_t *connp = tcp->tcp_connp; 1629 tcp_stack_t *tcps = tcp->tcp_tcps; 1630 netstack_t *ns = tcps->tcps_netstack; 1631 1632 tcp_bind_hash_remove(tcp); 1633 1634 /* Cleanup that which needs the netstack first */ 1635 tcp_ipsec_cleanup(tcp); 1636 1637 tcp_free(tcp); 1638 1639 /* Release any SSL context */ 1640 if (tcp->tcp_kssl_ent != NULL) { 1641 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1642 tcp->tcp_kssl_ent = NULL; 1643 } 1644 1645 if (tcp->tcp_kssl_ctx != NULL) { 1646 kssl_release_ctx(tcp->tcp_kssl_ctx); 1647 tcp->tcp_kssl_ctx = NULL; 1648 } 1649 tcp->tcp_kssl_pending = B_FALSE; 1650 1651 conn_delete_ire(connp, NULL); 1652 1653 /* 1654 * Since we will bzero the entire structure, we need to 1655 * remove it and reinsert it in global hash list. We 1656 * know the walkers can't get to this conn because we 1657 * had set CONDEMNED flag earlier and checked reference 1658 * under conn_lock so walker won't pick it and when we 1659 * go the ipcl_globalhash_remove() below, no walker 1660 * can get to it. 1661 */ 1662 ipcl_globalhash_remove(connp); 1663 1664 /* 1665 * Now it is safe to decrement the reference counts. 1666 * This might be the last reference on the netstack and TCPS 1667 * in which case it will cause the tcp_g_q_close and 1668 * the freeing of the IP Instance. 1669 */ 1670 connp->conn_netstack = NULL; 1671 netstack_rele(ns); 1672 ASSERT(tcps != NULL); 1673 tcp->tcp_tcps = NULL; 1674 TCPS_REFRELE(tcps); 1675 1676 /* Save some state */ 1677 mp = tcp->tcp_timercache; 1678 1679 tcp_sack_info = tcp->tcp_sack_info; 1680 tcp_iphc = tcp->tcp_iphc; 1681 tcp_iphc_len = tcp->tcp_iphc_len; 1682 tcp_hdr_grown = tcp->tcp_hdr_grown; 1683 1684 if (connp->conn_cred != NULL) 1685 crfree(connp->conn_cred); 1686 if (connp->conn_peercred != NULL) 1687 crfree(connp->conn_peercred); 1688 bzero(connp, sizeof (conn_t)); 1689 bzero(tcp, sizeof (tcp_t)); 1690 1691 /* restore the state */ 1692 tcp->tcp_timercache = mp; 1693 1694 tcp->tcp_sack_info = tcp_sack_info; 1695 tcp->tcp_iphc = tcp_iphc; 1696 tcp->tcp_iphc_len = tcp_iphc_len; 1697 tcp->tcp_hdr_grown = tcp_hdr_grown; 1698 1699 1700 tcp->tcp_connp = connp; 1701 1702 connp->conn_tcp = tcp; 1703 connp->conn_flags = IPCL_TCPCONN; 1704 connp->conn_state_flags = CONN_INCIPIENT; 1705 connp->conn_ulp = IPPROTO_TCP; 1706 connp->conn_ref = 1; 1707 } 1708 1709 /* 1710 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1711 * is done forwards from the head. 1712 * This walks all stack instances since 1713 * tcp_time_wait remains global across all stacks. 1714 */ 1715 /* ARGSUSED */ 1716 void 1717 tcp_time_wait_collector(void *arg) 1718 { 1719 tcp_t *tcp; 1720 clock_t now; 1721 mblk_t *mp; 1722 conn_t *connp; 1723 kmutex_t *lock; 1724 boolean_t removed; 1725 1726 squeue_t *sqp = (squeue_t *)arg; 1727 tcp_squeue_priv_t *tcp_time_wait = 1728 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1729 1730 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1731 tcp_time_wait->tcp_time_wait_tid = 0; 1732 1733 if (tcp_time_wait->tcp_free_list != NULL && 1734 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1735 TCP_G_STAT(tcp_freelist_cleanup); 1736 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1737 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1738 tcp->tcp_time_wait_next = NULL; 1739 tcp_time_wait->tcp_free_list_cnt--; 1740 ASSERT(tcp->tcp_tcps == NULL); 1741 CONN_DEC_REF(tcp->tcp_connp); 1742 } 1743 ASSERT(tcp_time_wait->tcp_free_list_cnt == 0); 1744 } 1745 1746 /* 1747 * In order to reap time waits reliably, we should use a 1748 * source of time that is not adjustable by the user -- hence 1749 * the call to ddi_get_lbolt(). 1750 */ 1751 now = ddi_get_lbolt(); 1752 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1753 /* 1754 * Compare times using modular arithmetic, since 1755 * lbolt can wrapover. 1756 */ 1757 if ((now - tcp->tcp_time_wait_expire) < 0) { 1758 break; 1759 } 1760 1761 removed = tcp_time_wait_remove(tcp, tcp_time_wait); 1762 ASSERT(removed); 1763 1764 connp = tcp->tcp_connp; 1765 ASSERT(connp->conn_fanout != NULL); 1766 lock = &connp->conn_fanout->connf_lock; 1767 /* 1768 * This is essentially a TW reclaim fast path optimization for 1769 * performance where the timewait collector checks under the 1770 * fanout lock (so that no one else can get access to the 1771 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1772 * the classifier hash list. If ref count is indeed 2, we can 1773 * just remove the conn under the fanout lock and avoid 1774 * cleaning up the conn under the squeue, provided that 1775 * clustering callbacks are not enabled. If clustering is 1776 * enabled, we need to make the clustering callback before 1777 * setting the CONDEMNED flag and after dropping all locks and 1778 * so we forego this optimization and fall back to the slow 1779 * path. Also please see the comments in tcp_closei_local 1780 * regarding the refcnt logic. 1781 * 1782 * Since we are holding the tcp_time_wait_lock, its better 1783 * not to block on the fanout_lock because other connections 1784 * can't add themselves to time_wait list. So we do a 1785 * tryenter instead of mutex_enter. 1786 */ 1787 if (mutex_tryenter(lock)) { 1788 mutex_enter(&connp->conn_lock); 1789 if ((connp->conn_ref == 2) && 1790 (cl_inet_disconnect == NULL)) { 1791 ipcl_hash_remove_locked(connp, 1792 connp->conn_fanout); 1793 /* 1794 * Set the CONDEMNED flag now itself so that 1795 * the refcnt cannot increase due to any 1796 * walker. But we have still not cleaned up 1797 * conn_ire_cache. This is still ok since 1798 * we are going to clean it up in tcp_cleanup 1799 * immediately and any interface unplumb 1800 * thread will wait till the ire is blown away 1801 */ 1802 connp->conn_state_flags |= CONN_CONDEMNED; 1803 mutex_exit(lock); 1804 mutex_exit(&connp->conn_lock); 1805 if (tcp_time_wait->tcp_free_list_cnt < 1806 tcp_free_list_max_cnt) { 1807 /* Add to head of tcp_free_list */ 1808 mutex_exit( 1809 &tcp_time_wait->tcp_time_wait_lock); 1810 tcp_cleanup(tcp); 1811 ASSERT(connp->conn_latch == NULL); 1812 ASSERT(connp->conn_policy == NULL); 1813 ASSERT(tcp->tcp_tcps == NULL); 1814 ASSERT(connp->conn_netstack == NULL); 1815 1816 mutex_enter( 1817 &tcp_time_wait->tcp_time_wait_lock); 1818 tcp->tcp_time_wait_next = 1819 tcp_time_wait->tcp_free_list; 1820 tcp_time_wait->tcp_free_list = tcp; 1821 tcp_time_wait->tcp_free_list_cnt++; 1822 continue; 1823 } else { 1824 /* Do not add to tcp_free_list */ 1825 mutex_exit( 1826 &tcp_time_wait->tcp_time_wait_lock); 1827 tcp_bind_hash_remove(tcp); 1828 conn_delete_ire(tcp->tcp_connp, NULL); 1829 tcp_ipsec_cleanup(tcp); 1830 CONN_DEC_REF(tcp->tcp_connp); 1831 } 1832 } else { 1833 CONN_INC_REF_LOCKED(connp); 1834 mutex_exit(lock); 1835 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1836 mutex_exit(&connp->conn_lock); 1837 /* 1838 * We can reuse the closemp here since conn has 1839 * detached (otherwise we wouldn't even be in 1840 * time_wait list). tcp_closemp_used can safely 1841 * be changed without taking a lock as no other 1842 * thread can concurrently access it at this 1843 * point in the connection lifecycle. 1844 */ 1845 1846 if (tcp->tcp_closemp.b_prev == NULL) 1847 tcp->tcp_closemp_used = B_TRUE; 1848 else 1849 cmn_err(CE_PANIC, 1850 "tcp_timewait_collector: " 1851 "concurrent use of tcp_closemp: " 1852 "connp %p tcp %p\n", (void *)connp, 1853 (void *)tcp); 1854 1855 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1856 mp = &tcp->tcp_closemp; 1857 squeue_fill(connp->conn_sqp, mp, 1858 tcp_timewait_output, connp, 1859 SQTAG_TCP_TIMEWAIT); 1860 } 1861 } else { 1862 mutex_enter(&connp->conn_lock); 1863 CONN_INC_REF_LOCKED(connp); 1864 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1865 mutex_exit(&connp->conn_lock); 1866 /* 1867 * We can reuse the closemp here since conn has 1868 * detached (otherwise we wouldn't even be in 1869 * time_wait list). tcp_closemp_used can safely 1870 * be changed without taking a lock as no other 1871 * thread can concurrently access it at this 1872 * point in the connection lifecycle. 1873 */ 1874 1875 if (tcp->tcp_closemp.b_prev == NULL) 1876 tcp->tcp_closemp_used = B_TRUE; 1877 else 1878 cmn_err(CE_PANIC, "tcp_timewait_collector: " 1879 "concurrent use of tcp_closemp: " 1880 "connp %p tcp %p\n", (void *)connp, 1881 (void *)tcp); 1882 1883 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1884 mp = &tcp->tcp_closemp; 1885 squeue_fill(connp->conn_sqp, mp, 1886 tcp_timewait_output, connp, 0); 1887 } 1888 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1889 } 1890 1891 if (tcp_time_wait->tcp_free_list != NULL) 1892 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1893 1894 tcp_time_wait->tcp_time_wait_tid = 1895 timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY); 1896 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1897 } 1898 /* 1899 * Reply to a clients T_CONN_RES TPI message. This function 1900 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1901 * on the acceptor STREAM and processed in tcp_wput_accept(). 1902 * Read the block comment on top of tcp_conn_request(). 1903 */ 1904 static void 1905 tcp_accept(tcp_t *listener, mblk_t *mp) 1906 { 1907 tcp_t *acceptor; 1908 tcp_t *eager; 1909 tcp_t *tcp; 1910 struct T_conn_res *tcr; 1911 t_uscalar_t acceptor_id; 1912 t_scalar_t seqnum; 1913 mblk_t *opt_mp = NULL; /* T_OPTMGMT_REQ messages */ 1914 mblk_t *ok_mp; 1915 mblk_t *mp1; 1916 tcp_stack_t *tcps = listener->tcp_tcps; 1917 1918 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 1919 tcp_err_ack(listener, mp, TPROTO, 0); 1920 return; 1921 } 1922 tcr = (struct T_conn_res *)mp->b_rptr; 1923 1924 /* 1925 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 1926 * read side queue of the streams device underneath us i.e. the 1927 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 1928 * look it up in the queue_hash. Under LP64 it sends down the 1929 * minor_t of the accepting endpoint. 1930 * 1931 * Once the acceptor/eager are modified (in tcp_accept_swap) the 1932 * fanout hash lock is held. 1933 * This prevents any thread from entering the acceptor queue from 1934 * below (since it has not been hard bound yet i.e. any inbound 1935 * packets will arrive on the listener or default tcp queue and 1936 * go through tcp_lookup). 1937 * The CONN_INC_REF will prevent the acceptor from closing. 1938 * 1939 * XXX It is still possible for a tli application to send down data 1940 * on the accepting stream while another thread calls t_accept. 1941 * This should not be a problem for well-behaved applications since 1942 * the T_OK_ACK is sent after the queue swapping is completed. 1943 * 1944 * If the accepting fd is the same as the listening fd, avoid 1945 * queue hash lookup since that will return an eager listener in a 1946 * already established state. 1947 */ 1948 acceptor_id = tcr->ACCEPTOR_id; 1949 mutex_enter(&listener->tcp_eager_lock); 1950 if (listener->tcp_acceptor_id == acceptor_id) { 1951 eager = listener->tcp_eager_next_q; 1952 /* only count how many T_CONN_INDs so don't count q0 */ 1953 if ((listener->tcp_conn_req_cnt_q != 1) || 1954 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 1955 mutex_exit(&listener->tcp_eager_lock); 1956 tcp_err_ack(listener, mp, TBADF, 0); 1957 return; 1958 } 1959 if (listener->tcp_conn_req_cnt_q0 != 0) { 1960 /* Throw away all the eagers on q0. */ 1961 tcp_eager_cleanup(listener, 1); 1962 } 1963 if (listener->tcp_syn_defense) { 1964 listener->tcp_syn_defense = B_FALSE; 1965 if (listener->tcp_ip_addr_cache != NULL) { 1966 kmem_free(listener->tcp_ip_addr_cache, 1967 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1968 listener->tcp_ip_addr_cache = NULL; 1969 } 1970 } 1971 /* 1972 * Transfer tcp_conn_req_max to the eager so that when 1973 * a disconnect occurs we can revert the endpoint to the 1974 * listen state. 1975 */ 1976 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 1977 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 1978 /* 1979 * Get a reference on the acceptor just like the 1980 * tcp_acceptor_hash_lookup below. 1981 */ 1982 acceptor = listener; 1983 CONN_INC_REF(acceptor->tcp_connp); 1984 } else { 1985 acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps); 1986 if (acceptor == NULL) { 1987 if (listener->tcp_debug) { 1988 (void) strlog(TCP_MOD_ID, 0, 1, 1989 SL_ERROR|SL_TRACE, 1990 "tcp_accept: did not find acceptor 0x%x\n", 1991 acceptor_id); 1992 } 1993 mutex_exit(&listener->tcp_eager_lock); 1994 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 1995 return; 1996 } 1997 /* 1998 * Verify acceptor state. The acceptable states for an acceptor 1999 * include TCPS_IDLE and TCPS_BOUND. 2000 */ 2001 switch (acceptor->tcp_state) { 2002 case TCPS_IDLE: 2003 /* FALLTHRU */ 2004 case TCPS_BOUND: 2005 break; 2006 default: 2007 CONN_DEC_REF(acceptor->tcp_connp); 2008 mutex_exit(&listener->tcp_eager_lock); 2009 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2010 return; 2011 } 2012 } 2013 2014 /* The listener must be in TCPS_LISTEN */ 2015 if (listener->tcp_state != TCPS_LISTEN) { 2016 CONN_DEC_REF(acceptor->tcp_connp); 2017 mutex_exit(&listener->tcp_eager_lock); 2018 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2019 return; 2020 } 2021 2022 /* 2023 * Rendezvous with an eager connection request packet hanging off 2024 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2025 * tcp structure when the connection packet arrived in 2026 * tcp_conn_request(). 2027 */ 2028 seqnum = tcr->SEQ_number; 2029 eager = listener; 2030 do { 2031 eager = eager->tcp_eager_next_q; 2032 if (eager == NULL) { 2033 CONN_DEC_REF(acceptor->tcp_connp); 2034 mutex_exit(&listener->tcp_eager_lock); 2035 tcp_err_ack(listener, mp, TBADSEQ, 0); 2036 return; 2037 } 2038 } while (eager->tcp_conn_req_seqnum != seqnum); 2039 mutex_exit(&listener->tcp_eager_lock); 2040 2041 /* 2042 * At this point, both acceptor and listener have 2 ref 2043 * that they begin with. Acceptor has one additional ref 2044 * we placed in lookup while listener has 3 additional 2045 * ref for being behind the squeue (tcp_accept() is 2046 * done on listener's squeue); being in classifier hash; 2047 * and eager's ref on listener. 2048 */ 2049 ASSERT(listener->tcp_connp->conn_ref >= 5); 2050 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2051 2052 /* 2053 * The eager at this point is set in its own squeue and 2054 * could easily have been killed (tcp_accept_finish will 2055 * deal with that) because of a TH_RST so we can only 2056 * ASSERT for a single ref. 2057 */ 2058 ASSERT(eager->tcp_connp->conn_ref >= 1); 2059 2060 /* Pre allocate the stroptions mblk also */ 2061 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 2062 if (opt_mp == NULL) { 2063 CONN_DEC_REF(acceptor->tcp_connp); 2064 CONN_DEC_REF(eager->tcp_connp); 2065 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2066 return; 2067 } 2068 DB_TYPE(opt_mp) = M_SETOPTS; 2069 opt_mp->b_wptr += sizeof (struct stroptions); 2070 2071 /* 2072 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 2073 * from listener to acceptor. The message is chained on opt_mp 2074 * which will be sent onto eager's squeue. 2075 */ 2076 if (listener->tcp_bound_if != 0) { 2077 /* allocate optmgmt req */ 2078 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2079 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 2080 sizeof (int)); 2081 if (mp1 != NULL) 2082 linkb(opt_mp, mp1); 2083 } 2084 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 2085 uint_t on = 1; 2086 2087 /* allocate optmgmt req */ 2088 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2089 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 2090 if (mp1 != NULL) 2091 linkb(opt_mp, mp1); 2092 } 2093 2094 /* Re-use mp1 to hold a copy of mp, in case reallocb fails */ 2095 if ((mp1 = copymsg(mp)) == NULL) { 2096 CONN_DEC_REF(acceptor->tcp_connp); 2097 CONN_DEC_REF(eager->tcp_connp); 2098 freemsg(opt_mp); 2099 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2100 return; 2101 } 2102 2103 tcr = (struct T_conn_res *)mp1->b_rptr; 2104 2105 /* 2106 * This is an expanded version of mi_tpi_ok_ack_alloc() 2107 * which allocates a larger mblk and appends the new 2108 * local address to the ok_ack. The address is copied by 2109 * soaccept() for getsockname(). 2110 */ 2111 { 2112 int extra; 2113 2114 extra = (eager->tcp_family == AF_INET) ? 2115 sizeof (sin_t) : sizeof (sin6_t); 2116 2117 /* 2118 * Try to re-use mp, if possible. Otherwise, allocate 2119 * an mblk and return it as ok_mp. In any case, mp 2120 * is no longer usable upon return. 2121 */ 2122 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2123 CONN_DEC_REF(acceptor->tcp_connp); 2124 CONN_DEC_REF(eager->tcp_connp); 2125 freemsg(opt_mp); 2126 /* Original mp has been freed by now, so use mp1 */ 2127 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2128 return; 2129 } 2130 2131 mp = NULL; /* We should never use mp after this point */ 2132 2133 switch (extra) { 2134 case sizeof (sin_t): { 2135 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2136 2137 ok_mp->b_wptr += extra; 2138 sin->sin_family = AF_INET; 2139 sin->sin_port = eager->tcp_lport; 2140 sin->sin_addr.s_addr = 2141 eager->tcp_ipha->ipha_src; 2142 break; 2143 } 2144 case sizeof (sin6_t): { 2145 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2146 2147 ok_mp->b_wptr += extra; 2148 sin6->sin6_family = AF_INET6; 2149 sin6->sin6_port = eager->tcp_lport; 2150 if (eager->tcp_ipversion == IPV4_VERSION) { 2151 sin6->sin6_flowinfo = 0; 2152 IN6_IPADDR_TO_V4MAPPED( 2153 eager->tcp_ipha->ipha_src, 2154 &sin6->sin6_addr); 2155 } else { 2156 ASSERT(eager->tcp_ip6h != NULL); 2157 sin6->sin6_flowinfo = 2158 eager->tcp_ip6h->ip6_vcf & 2159 ~IPV6_VERS_AND_FLOW_MASK; 2160 sin6->sin6_addr = 2161 eager->tcp_ip6h->ip6_src; 2162 } 2163 sin6->sin6_scope_id = 0; 2164 sin6->__sin6_src_id = 0; 2165 break; 2166 } 2167 default: 2168 break; 2169 } 2170 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2171 } 2172 2173 /* 2174 * If there are no options we know that the T_CONN_RES will 2175 * succeed. However, we can't send the T_OK_ACK upstream until 2176 * the tcp_accept_swap is done since it would be dangerous to 2177 * let the application start using the new fd prior to the swap. 2178 */ 2179 tcp_accept_swap(listener, acceptor, eager); 2180 2181 /* 2182 * tcp_accept_swap unlinks eager from listener but does not drop 2183 * the eager's reference on the listener. 2184 */ 2185 ASSERT(eager->tcp_listener == NULL); 2186 ASSERT(listener->tcp_connp->conn_ref >= 5); 2187 2188 /* 2189 * The eager is now associated with its own queue. Insert in 2190 * the hash so that the connection can be reused for a future 2191 * T_CONN_RES. 2192 */ 2193 tcp_acceptor_hash_insert(acceptor_id, eager); 2194 2195 /* 2196 * We now do the processing of options with T_CONN_RES. 2197 * We delay till now since we wanted to have queue to pass to 2198 * option processing routines that points back to the right 2199 * instance structure which does not happen until after 2200 * tcp_accept_swap(). 2201 * 2202 * Note: 2203 * The sanity of the logic here assumes that whatever options 2204 * are appropriate to inherit from listner=>eager are done 2205 * before this point, and whatever were to be overridden (or not) 2206 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2207 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2208 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2209 * This may not be true at this point in time but can be fixed 2210 * independently. This option processing code starts with 2211 * the instantiated acceptor instance and the final queue at 2212 * this point. 2213 */ 2214 2215 if (tcr->OPT_length != 0) { 2216 /* Options to process */ 2217 int t_error = 0; 2218 int sys_error = 0; 2219 int do_disconnect = 0; 2220 2221 if (tcp_conprim_opt_process(eager, mp1, 2222 &do_disconnect, &t_error, &sys_error) < 0) { 2223 eager->tcp_accept_error = 1; 2224 if (do_disconnect) { 2225 /* 2226 * An option failed which does not allow 2227 * connection to be accepted. 2228 * 2229 * We allow T_CONN_RES to succeed and 2230 * put a T_DISCON_IND on the eager queue. 2231 */ 2232 ASSERT(t_error == 0 && sys_error == 0); 2233 eager->tcp_send_discon_ind = 1; 2234 } else { 2235 ASSERT(t_error != 0); 2236 freemsg(ok_mp); 2237 /* 2238 * Original mp was either freed or set 2239 * to ok_mp above, so use mp1 instead. 2240 */ 2241 tcp_err_ack(listener, mp1, t_error, sys_error); 2242 goto finish; 2243 } 2244 } 2245 /* 2246 * Most likely success in setting options (except if 2247 * eager->tcp_send_discon_ind set). 2248 * mp1 option buffer represented by OPT_length/offset 2249 * potentially modified and contains results of setting 2250 * options at this point 2251 */ 2252 } 2253 2254 /* We no longer need mp1, since all options processing has passed */ 2255 freemsg(mp1); 2256 2257 putnext(listener->tcp_rq, ok_mp); 2258 2259 mutex_enter(&listener->tcp_eager_lock); 2260 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2261 tcp_t *tail; 2262 mblk_t *conn_ind; 2263 2264 /* 2265 * This path should not be executed if listener and 2266 * acceptor streams are the same. 2267 */ 2268 ASSERT(listener != acceptor); 2269 2270 tcp = listener->tcp_eager_prev_q0; 2271 /* 2272 * listener->tcp_eager_prev_q0 points to the TAIL of the 2273 * deferred T_conn_ind queue. We need to get to the head of 2274 * the queue in order to send up T_conn_ind the same order as 2275 * how the 3WHS is completed. 2276 */ 2277 while (tcp != listener) { 2278 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2279 break; 2280 else 2281 tcp = tcp->tcp_eager_prev_q0; 2282 } 2283 ASSERT(tcp != listener); 2284 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2285 ASSERT(conn_ind != NULL); 2286 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2287 2288 /* Move from q0 to q */ 2289 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2290 listener->tcp_conn_req_cnt_q0--; 2291 listener->tcp_conn_req_cnt_q++; 2292 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2293 tcp->tcp_eager_prev_q0; 2294 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2295 tcp->tcp_eager_next_q0; 2296 tcp->tcp_eager_prev_q0 = NULL; 2297 tcp->tcp_eager_next_q0 = NULL; 2298 tcp->tcp_conn_def_q0 = B_FALSE; 2299 2300 /* Make sure the tcp isn't in the list of droppables */ 2301 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 2302 tcp->tcp_eager_prev_drop_q0 == NULL); 2303 2304 /* 2305 * Insert at end of the queue because sockfs sends 2306 * down T_CONN_RES in chronological order. Leaving 2307 * the older conn indications at front of the queue 2308 * helps reducing search time. 2309 */ 2310 tail = listener->tcp_eager_last_q; 2311 if (tail != NULL) 2312 tail->tcp_eager_next_q = tcp; 2313 else 2314 listener->tcp_eager_next_q = tcp; 2315 listener->tcp_eager_last_q = tcp; 2316 tcp->tcp_eager_next_q = NULL; 2317 mutex_exit(&listener->tcp_eager_lock); 2318 putnext(tcp->tcp_rq, conn_ind); 2319 } else { 2320 mutex_exit(&listener->tcp_eager_lock); 2321 } 2322 2323 /* 2324 * Done with the acceptor - free it 2325 * 2326 * Note: from this point on, no access to listener should be made 2327 * as listener can be equal to acceptor. 2328 */ 2329 finish: 2330 ASSERT(acceptor->tcp_detached); 2331 ASSERT(tcps->tcps_g_q != NULL); 2332 acceptor->tcp_rq = tcps->tcps_g_q; 2333 acceptor->tcp_wq = WR(tcps->tcps_g_q); 2334 (void) tcp_clean_death(acceptor, 0, 2); 2335 CONN_DEC_REF(acceptor->tcp_connp); 2336 2337 /* 2338 * In case we already received a FIN we have to make tcp_rput send 2339 * the ordrel_ind. This will also send up a window update if the window 2340 * has opened up. 2341 * 2342 * In the normal case of a successful connection acceptance 2343 * we give the O_T_BIND_REQ to the read side put procedure as an 2344 * indication that this was just accepted. This tells tcp_rput to 2345 * pass up any data queued in tcp_rcv_list. 2346 * 2347 * In the fringe case where options sent with T_CONN_RES failed and 2348 * we required, we would be indicating a T_DISCON_IND to blow 2349 * away this connection. 2350 */ 2351 2352 /* 2353 * XXX: we currently have a problem if XTI application closes the 2354 * acceptor stream in between. This problem exists in on10-gate also 2355 * and is well know but nothing can be done short of major rewrite 2356 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2357 * eager same squeue as listener (we can distinguish non socket 2358 * listeners at the time of handling a SYN in tcp_conn_request) 2359 * and do most of the work that tcp_accept_finish does here itself 2360 * and then get behind the acceptor squeue to access the acceptor 2361 * queue. 2362 */ 2363 /* 2364 * We already have a ref on tcp so no need to do one before squeue_fill 2365 */ 2366 squeue_fill(eager->tcp_connp->conn_sqp, opt_mp, 2367 tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH); 2368 } 2369 2370 /* 2371 * Swap information between the eager and acceptor for a TLI/XTI client. 2372 * The sockfs accept is done on the acceptor stream and control goes 2373 * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not 2374 * called. In either case, both the eager and listener are in their own 2375 * perimeter (squeue) and the code has to deal with potential race. 2376 * 2377 * See the block comment on top of tcp_accept() and tcp_wput_accept(). 2378 */ 2379 static void 2380 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2381 { 2382 conn_t *econnp, *aconnp; 2383 2384 ASSERT(eager->tcp_rq == listener->tcp_rq); 2385 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2386 ASSERT(!eager->tcp_hard_bound); 2387 ASSERT(!TCP_IS_SOCKET(acceptor)); 2388 ASSERT(!TCP_IS_SOCKET(eager)); 2389 ASSERT(!TCP_IS_SOCKET(listener)); 2390 2391 acceptor->tcp_detached = B_TRUE; 2392 /* 2393 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2394 * the acceptor id. 2395 */ 2396 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2397 2398 /* remove eager from listen list... */ 2399 mutex_enter(&listener->tcp_eager_lock); 2400 tcp_eager_unlink(eager); 2401 ASSERT(eager->tcp_eager_next_q == NULL && 2402 eager->tcp_eager_last_q == NULL); 2403 ASSERT(eager->tcp_eager_next_q0 == NULL && 2404 eager->tcp_eager_prev_q0 == NULL); 2405 mutex_exit(&listener->tcp_eager_lock); 2406 eager->tcp_rq = acceptor->tcp_rq; 2407 eager->tcp_wq = acceptor->tcp_wq; 2408 2409 econnp = eager->tcp_connp; 2410 aconnp = acceptor->tcp_connp; 2411 2412 eager->tcp_rq->q_ptr = econnp; 2413 eager->tcp_wq->q_ptr = econnp; 2414 2415 /* 2416 * In the TLI/XTI loopback case, we are inside the listener's squeue, 2417 * which might be a different squeue from our peer TCP instance. 2418 * For TCP Fusion, the peer expects that whenever tcp_detached is 2419 * clear, our TCP queues point to the acceptor's queues. Thus, use 2420 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq 2421 * above reach global visibility prior to the clearing of tcp_detached. 2422 */ 2423 membar_producer(); 2424 eager->tcp_detached = B_FALSE; 2425 2426 ASSERT(eager->tcp_ack_tid == 0); 2427 2428 econnp->conn_dev = aconnp->conn_dev; 2429 if (eager->tcp_cred != NULL) 2430 crfree(eager->tcp_cred); 2431 eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred; 2432 ASSERT(econnp->conn_netstack == aconnp->conn_netstack); 2433 ASSERT(eager->tcp_tcps == acceptor->tcp_tcps); 2434 2435 aconnp->conn_cred = NULL; 2436 2437 econnp->conn_zoneid = aconnp->conn_zoneid; 2438 econnp->conn_allzones = aconnp->conn_allzones; 2439 2440 econnp->conn_mac_exempt = aconnp->conn_mac_exempt; 2441 aconnp->conn_mac_exempt = B_FALSE; 2442 2443 ASSERT(aconnp->conn_peercred == NULL); 2444 2445 /* Do the IPC initialization */ 2446 CONN_INC_REF(econnp); 2447 2448 econnp->conn_multicast_loop = aconnp->conn_multicast_loop; 2449 econnp->conn_af_isv6 = aconnp->conn_af_isv6; 2450 econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6; 2451 econnp->conn_ulp = aconnp->conn_ulp; 2452 2453 /* Done with old IPC. Drop its ref on its connp */ 2454 CONN_DEC_REF(aconnp); 2455 } 2456 2457 2458 /* 2459 * Adapt to the information, such as rtt and rtt_sd, provided from the 2460 * ire cached in conn_cache_ire. If no ire cached, do a ire lookup. 2461 * 2462 * Checks for multicast and broadcast destination address. 2463 * Returns zero on failure; non-zero if ok. 2464 * 2465 * Note that the MSS calculation here is based on the info given in 2466 * the IRE. We do not do any calculation based on TCP options. They 2467 * will be handled in tcp_rput_other() and tcp_rput_data() when TCP 2468 * knows which options to use. 2469 * 2470 * Note on how TCP gets its parameters for a connection. 2471 * 2472 * When a tcp_t structure is allocated, it gets all the default parameters. 2473 * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd, 2474 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2475 * default. But if there is an associated tcp_host_param, it will override 2476 * the metrics. 2477 * 2478 * An incoming SYN with a multicast or broadcast destination address, is dropped 2479 * in 1 of 2 places. 2480 * 2481 * 1. If the packet was received over the wire it is dropped in 2482 * ip_rput_process_broadcast() 2483 * 2484 * 2. If the packet was received through internal IP loopback, i.e. the packet 2485 * was generated and received on the same machine, it is dropped in 2486 * ip_wput_local() 2487 * 2488 * An incoming SYN with a multicast or broadcast source address is always 2489 * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to 2490 * reject an attempt to connect to a broadcast or multicast (destination) 2491 * address. 2492 */ 2493 static int 2494 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp) 2495 { 2496 tcp_hsp_t *hsp; 2497 ire_t *ire; 2498 ire_t *sire = NULL; 2499 iulp_t *ire_uinfo = NULL; 2500 uint32_t mss_max; 2501 uint32_t mss; 2502 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2503 conn_t *connp = tcp->tcp_connp; 2504 boolean_t ire_cacheable = B_FALSE; 2505 zoneid_t zoneid = connp->conn_zoneid; 2506 int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 2507 MATCH_IRE_SECATTR; 2508 ts_label_t *tsl = crgetlabel(CONN_CRED(connp)); 2509 ill_t *ill = NULL; 2510 boolean_t incoming = (ire_mp == NULL); 2511 tcp_stack_t *tcps = tcp->tcp_tcps; 2512 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 2513 2514 ASSERT(connp->conn_ire_cache == NULL); 2515 2516 if (tcp->tcp_ipversion == IPV4_VERSION) { 2517 2518 if (CLASSD(tcp->tcp_connp->conn_rem)) { 2519 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 2520 return (0); 2521 } 2522 /* 2523 * If IP_NEXTHOP is set, then look for an IRE_CACHE 2524 * for the destination with the nexthop as gateway. 2525 * ire_ctable_lookup() is used because this particular 2526 * ire, if it exists, will be marked private. 2527 * If that is not available, use the interface ire 2528 * for the nexthop. 2529 * 2530 * TSol: tcp_update_label will detect label mismatches based 2531 * only on the destination's label, but that would not 2532 * detect label mismatches based on the security attributes 2533 * of routes or next hop gateway. Hence we need to pass the 2534 * label to ire_ftable_lookup below in order to locate the 2535 * right prefix (and/or) ire cache. Similarly we also need 2536 * pass the label to the ire_cache_lookup below to locate 2537 * the right ire that also matches on the label. 2538 */ 2539 if (tcp->tcp_connp->conn_nexthop_set) { 2540 ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem, 2541 tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid, 2542 tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, 2543 ipst); 2544 if (ire == NULL) { 2545 ire = ire_ftable_lookup( 2546 tcp->tcp_connp->conn_nexthop_v4, 2547 0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0, 2548 tsl, match_flags, ipst); 2549 if (ire == NULL) 2550 return (0); 2551 } else { 2552 ire_uinfo = &ire->ire_uinfo; 2553 } 2554 } else { 2555 ire = ire_cache_lookup(tcp->tcp_connp->conn_rem, 2556 zoneid, tsl, ipst); 2557 if (ire != NULL) { 2558 ire_cacheable = B_TRUE; 2559 ire_uinfo = (ire_mp != NULL) ? 2560 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2561 &ire->ire_uinfo; 2562 2563 } else { 2564 if (ire_mp == NULL) { 2565 ire = ire_ftable_lookup( 2566 tcp->tcp_connp->conn_rem, 2567 0, 0, 0, NULL, &sire, zoneid, 0, 2568 tsl, (MATCH_IRE_RECURSIVE | 2569 MATCH_IRE_DEFAULT), ipst); 2570 if (ire == NULL) 2571 return (0); 2572 ire_uinfo = (sire != NULL) ? 2573 &sire->ire_uinfo : 2574 &ire->ire_uinfo; 2575 } else { 2576 ire = (ire_t *)ire_mp->b_rptr; 2577 ire_uinfo = 2578 &((ire_t *) 2579 ire_mp->b_rptr)->ire_uinfo; 2580 } 2581 } 2582 } 2583 ASSERT(ire != NULL); 2584 2585 if ((ire->ire_src_addr == INADDR_ANY) || 2586 (ire->ire_type & IRE_BROADCAST)) { 2587 /* 2588 * ire->ire_mp is non null when ire_mp passed in is used 2589 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2590 */ 2591 if (ire->ire_mp == NULL) 2592 ire_refrele(ire); 2593 if (sire != NULL) 2594 ire_refrele(sire); 2595 return (0); 2596 } 2597 2598 if (tcp->tcp_ipha->ipha_src == INADDR_ANY) { 2599 ipaddr_t src_addr; 2600 2601 /* 2602 * ip_bind_connected() has stored the correct source 2603 * address in conn_src. 2604 */ 2605 src_addr = tcp->tcp_connp->conn_src; 2606 tcp->tcp_ipha->ipha_src = src_addr; 2607 /* 2608 * Copy of the src addr. in tcp_t is needed 2609 * for the lookup funcs. 2610 */ 2611 IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6); 2612 } 2613 /* 2614 * Set the fragment bit so that IP will tell us if the MTU 2615 * should change. IP tells us the latest setting of 2616 * ip_path_mtu_discovery through ire_frag_flag. 2617 */ 2618 if (ipst->ips_ip_path_mtu_discovery) { 2619 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 2620 htons(IPH_DF); 2621 } 2622 /* 2623 * If ire_uinfo is NULL, this is the IRE_INTERFACE case 2624 * for IP_NEXTHOP. No cache ire has been found for the 2625 * destination and we are working with the nexthop's 2626 * interface ire. Since we need to forward all packets 2627 * to the nexthop first, we "blindly" set tcp_localnet 2628 * to false, eventhough the destination may also be 2629 * onlink. 2630 */ 2631 if (ire_uinfo == NULL) 2632 tcp->tcp_localnet = 0; 2633 else 2634 tcp->tcp_localnet = (ire->ire_gateway_addr == 0); 2635 } else { 2636 /* 2637 * For incoming connection ire_mp = NULL 2638 * For outgoing connection ire_mp != NULL 2639 * Technically we should check conn_incoming_ill 2640 * when ire_mp is NULL and conn_outgoing_ill when 2641 * ire_mp is non-NULL. But this is performance 2642 * critical path and for IPV*_BOUND_IF, outgoing 2643 * and incoming ill are always set to the same value. 2644 */ 2645 ill_t *dst_ill = NULL; 2646 ipif_t *dst_ipif = NULL; 2647 2648 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 2649 2650 if (connp->conn_outgoing_ill != NULL) { 2651 /* Outgoing or incoming path */ 2652 int err; 2653 2654 dst_ill = conn_get_held_ill(connp, 2655 &connp->conn_outgoing_ill, &err); 2656 if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) { 2657 ip1dbg(("tcp_adapt_ire: ill_lookup failed\n")); 2658 return (0); 2659 } 2660 match_flags |= MATCH_IRE_ILL; 2661 dst_ipif = dst_ill->ill_ipif; 2662 } 2663 ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6, 2664 0, 0, dst_ipif, zoneid, tsl, match_flags, ipst); 2665 2666 if (ire != NULL) { 2667 ire_cacheable = B_TRUE; 2668 ire_uinfo = (ire_mp != NULL) ? 2669 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2670 &ire->ire_uinfo; 2671 } else { 2672 if (ire_mp == NULL) { 2673 ire = ire_ftable_lookup_v6( 2674 &tcp->tcp_connp->conn_remv6, 2675 0, 0, 0, dst_ipif, &sire, zoneid, 2676 0, tsl, match_flags, ipst); 2677 if (ire == NULL) { 2678 if (dst_ill != NULL) 2679 ill_refrele(dst_ill); 2680 return (0); 2681 } 2682 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 2683 &ire->ire_uinfo; 2684 } else { 2685 ire = (ire_t *)ire_mp->b_rptr; 2686 ire_uinfo = 2687 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 2688 } 2689 } 2690 if (dst_ill != NULL) 2691 ill_refrele(dst_ill); 2692 2693 ASSERT(ire != NULL); 2694 ASSERT(ire_uinfo != NULL); 2695 2696 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) || 2697 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 2698 /* 2699 * ire->ire_mp is non null when ire_mp passed in is used 2700 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2701 */ 2702 if (ire->ire_mp == NULL) 2703 ire_refrele(ire); 2704 if (sire != NULL) 2705 ire_refrele(sire); 2706 return (0); 2707 } 2708 2709 if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 2710 in6_addr_t src_addr; 2711 2712 /* 2713 * ip_bind_connected_v6() has stored the correct source 2714 * address per IPv6 addr. selection policy in 2715 * conn_src_v6. 2716 */ 2717 src_addr = tcp->tcp_connp->conn_srcv6; 2718 2719 tcp->tcp_ip6h->ip6_src = src_addr; 2720 /* 2721 * Copy of the src addr. in tcp_t is needed 2722 * for the lookup funcs. 2723 */ 2724 tcp->tcp_ip_src_v6 = src_addr; 2725 ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src, 2726 &connp->conn_srcv6)); 2727 } 2728 tcp->tcp_localnet = 2729 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); 2730 } 2731 2732 /* 2733 * This allows applications to fail quickly when connections are made 2734 * to dead hosts. Hosts can be labeled dead by adding a reject route 2735 * with both the RTF_REJECT and RTF_PRIVATE flags set. 2736 */ 2737 if ((ire->ire_flags & RTF_REJECT) && 2738 (ire->ire_flags & RTF_PRIVATE)) 2739 goto error; 2740 2741 /* 2742 * Make use of the cached rtt and rtt_sd values to calculate the 2743 * initial RTO. Note that they are already initialized in 2744 * tcp_init_values(). 2745 * If ire_uinfo is NULL, i.e., we do not have a cache ire for 2746 * IP_NEXTHOP, but instead are using the interface ire for the 2747 * nexthop, then we do not use the ire_uinfo from that ire to 2748 * do any initializations. 2749 */ 2750 if (ire_uinfo != NULL) { 2751 if (ire_uinfo->iulp_rtt != 0) { 2752 clock_t rto; 2753 2754 tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt; 2755 tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd; 2756 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2757 tcps->tcps_rexmit_interval_extra + 2758 (tcp->tcp_rtt_sa >> 5); 2759 2760 if (rto > tcps->tcps_rexmit_interval_max) { 2761 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 2762 } else if (rto < tcps->tcps_rexmit_interval_min) { 2763 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 2764 } else { 2765 tcp->tcp_rto = rto; 2766 } 2767 } 2768 if (ire_uinfo->iulp_ssthresh != 0) 2769 tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh; 2770 else 2771 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2772 if (ire_uinfo->iulp_spipe > 0) { 2773 tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe, 2774 tcps->tcps_max_buf); 2775 if (tcps->tcps_snd_lowat_fraction != 0) 2776 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2777 tcps->tcps_snd_lowat_fraction; 2778 (void) tcp_maxpsz_set(tcp, B_TRUE); 2779 } 2780 /* 2781 * Note that up till now, acceptor always inherits receive 2782 * window from the listener. But if there is a metrics 2783 * associated with a host, we should use that instead of 2784 * inheriting it from listener. Thus we need to pass this 2785 * info back to the caller. 2786 */ 2787 if (ire_uinfo->iulp_rpipe > 0) { 2788 tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, 2789 tcps->tcps_max_buf); 2790 } 2791 2792 if (ire_uinfo->iulp_rtomax > 0) { 2793 tcp->tcp_second_timer_threshold = 2794 ire_uinfo->iulp_rtomax; 2795 } 2796 2797 /* 2798 * Use the metric option settings, iulp_tstamp_ok and 2799 * iulp_wscale_ok, only for active open. What this means 2800 * is that if the other side uses timestamp or window 2801 * scale option, TCP will also use those options. That 2802 * is for passive open. If the application sets a 2803 * large window, window scale is enabled regardless of 2804 * the value in iulp_wscale_ok. This is the behavior 2805 * since 2.6. So we keep it. 2806 * The only case left in passive open processing is the 2807 * check for SACK. 2808 * For ECN, it should probably be like SACK. But the 2809 * current value is binary, so we treat it like the other 2810 * cases. The metric only controls active open.For passive 2811 * open, the ndd param, tcp_ecn_permitted, controls the 2812 * behavior. 2813 */ 2814 if (!tcp_detached) { 2815 /* 2816 * The if check means that the following can only 2817 * be turned on by the metrics only IRE, but not off. 2818 */ 2819 if (ire_uinfo->iulp_tstamp_ok) 2820 tcp->tcp_snd_ts_ok = B_TRUE; 2821 if (ire_uinfo->iulp_wscale_ok) 2822 tcp->tcp_snd_ws_ok = B_TRUE; 2823 if (ire_uinfo->iulp_sack == 2) 2824 tcp->tcp_snd_sack_ok = B_TRUE; 2825 if (ire_uinfo->iulp_ecn_ok) 2826 tcp->tcp_ecn_ok = B_TRUE; 2827 } else { 2828 /* 2829 * Passive open. 2830 * 2831 * As above, the if check means that SACK can only be 2832 * turned on by the metric only IRE. 2833 */ 2834 if (ire_uinfo->iulp_sack > 0) { 2835 tcp->tcp_snd_sack_ok = B_TRUE; 2836 } 2837 } 2838 } 2839 2840 2841 /* 2842 * XXX: Note that currently, ire_max_frag can be as small as 68 2843 * because of PMTUd. So tcp_mss may go to negative if combined 2844 * length of all those options exceeds 28 bytes. But because 2845 * of the tcp_mss_min check below, we may not have a problem if 2846 * tcp_mss_min is of a reasonable value. The default is 1 so 2847 * the negative problem still exists. And the check defeats PMTUd. 2848 * In fact, if PMTUd finds that the MSS should be smaller than 2849 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2850 * value. 2851 * 2852 * We do not deal with that now. All those problems related to 2853 * PMTUd will be fixed later. 2854 */ 2855 ASSERT(ire->ire_max_frag != 0); 2856 mss = tcp->tcp_if_mtu = ire->ire_max_frag; 2857 if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) { 2858 if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) { 2859 mss = MIN(mss, IPV6_MIN_MTU); 2860 } 2861 } 2862 2863 /* Sanity check for MSS value. */ 2864 if (tcp->tcp_ipversion == IPV4_VERSION) 2865 mss_max = tcps->tcps_mss_max_ipv4; 2866 else 2867 mss_max = tcps->tcps_mss_max_ipv6; 2868 2869 if (tcp->tcp_ipversion == IPV6_VERSION && 2870 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 2871 /* 2872 * After receiving an ICMPv6 "packet too big" message with a 2873 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 2874 * will insert a 8-byte fragment header in every packet; we 2875 * reduce the MSS by that amount here. 2876 */ 2877 mss -= sizeof (ip6_frag_t); 2878 } 2879 2880 if (tcp->tcp_ipsec_overhead == 0) 2881 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2882 2883 mss -= tcp->tcp_ipsec_overhead; 2884 2885 if (mss < tcps->tcps_mss_min) 2886 mss = tcps->tcps_mss_min; 2887 if (mss > mss_max) 2888 mss = mss_max; 2889 2890 /* Note that this is the maximum MSS, excluding all options. */ 2891 tcp->tcp_mss = mss; 2892 2893 /* 2894 * Initialize the ISS here now that we have the full connection ID. 2895 * The RFC 1948 method of initial sequence number generation requires 2896 * knowledge of the full connection ID before setting the ISS. 2897 */ 2898 2899 tcp_iss_init(tcp); 2900 2901 if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL)) 2902 tcp->tcp_loopback = B_TRUE; 2903 2904 if (tcp->tcp_ipversion == IPV4_VERSION) { 2905 hsp = tcp_hsp_lookup(tcp->tcp_remote, tcps); 2906 } else { 2907 hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6, tcps); 2908 } 2909 2910 if (hsp != NULL) { 2911 /* Only modify if we're going to make them bigger */ 2912 if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) { 2913 tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace; 2914 if (tcps->tcps_snd_lowat_fraction != 0) 2915 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2916 tcps->tcps_snd_lowat_fraction; 2917 } 2918 2919 if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) { 2920 tcp->tcp_rwnd = hsp->tcp_hsp_recvspace; 2921 } 2922 2923 /* Copy timestamp flag only for active open */ 2924 if (!tcp_detached) 2925 tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp; 2926 } 2927 2928 if (sire != NULL) 2929 IRE_REFRELE(sire); 2930 2931 /* 2932 * If we got an IRE_CACHE and an ILL, go through their properties; 2933 * otherwise, this is deferred until later when we have an IRE_CACHE. 2934 */ 2935 if (tcp->tcp_loopback || 2936 (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) { 2937 /* 2938 * For incoming, see if this tcp may be MDT-capable. For 2939 * outgoing, this process has been taken care of through 2940 * tcp_rput_other. 2941 */ 2942 tcp_ire_ill_check(tcp, ire, ill, incoming); 2943 tcp->tcp_ire_ill_check_done = B_TRUE; 2944 } 2945 2946 mutex_enter(&connp->conn_lock); 2947 /* 2948 * Make sure that conn is not marked incipient 2949 * for incoming connections. A blind 2950 * removal of incipient flag is cheaper than 2951 * check and removal. 2952 */ 2953 connp->conn_state_flags &= ~CONN_INCIPIENT; 2954 2955 /* 2956 * Must not cache forwarding table routes 2957 * or recache an IRE after the conn_t has 2958 * had conn_ire_cache cleared and is flagged 2959 * unusable, (see the CONN_CACHE_IRE() macro). 2960 */ 2961 if (ire_cacheable && CONN_CACHE_IRE(connp)) { 2962 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 2963 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 2964 connp->conn_ire_cache = ire; 2965 IRE_UNTRACE_REF(ire); 2966 rw_exit(&ire->ire_bucket->irb_lock); 2967 mutex_exit(&connp->conn_lock); 2968 return (1); 2969 } 2970 rw_exit(&ire->ire_bucket->irb_lock); 2971 } 2972 mutex_exit(&connp->conn_lock); 2973 2974 if (ire->ire_mp == NULL) 2975 ire_refrele(ire); 2976 return (1); 2977 2978 error: 2979 if (ire->ire_mp == NULL) 2980 ire_refrele(ire); 2981 if (sire != NULL) 2982 ire_refrele(sire); 2983 return (0); 2984 } 2985 2986 /* 2987 * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a 2988 * O_T_BIND_REQ/T_BIND_REQ message. 2989 */ 2990 static void 2991 tcp_bind(tcp_t *tcp, mblk_t *mp) 2992 { 2993 sin_t *sin; 2994 sin6_t *sin6; 2995 mblk_t *mp1; 2996 in_port_t requested_port; 2997 in_port_t allocated_port; 2998 struct T_bind_req *tbr; 2999 boolean_t bind_to_req_port_only; 3000 boolean_t backlog_update = B_FALSE; 3001 boolean_t user_specified; 3002 in6_addr_t v6addr; 3003 ipaddr_t v4addr; 3004 uint_t origipversion; 3005 int err; 3006 queue_t *q = tcp->tcp_wq; 3007 conn_t *connp; 3008 mlp_type_t addrtype, mlptype; 3009 zone_t *zone; 3010 cred_t *cr; 3011 in_port_t mlp_port; 3012 tcp_stack_t *tcps = tcp->tcp_tcps; 3013 3014 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 3015 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 3016 if (tcp->tcp_debug) { 3017 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3018 "tcp_bind: bad req, len %u", 3019 (uint_t)(mp->b_wptr - mp->b_rptr)); 3020 } 3021 tcp_err_ack(tcp, mp, TPROTO, 0); 3022 return; 3023 } 3024 /* Make sure the largest address fits */ 3025 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 3026 if (mp1 == NULL) { 3027 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3028 return; 3029 } 3030 mp = mp1; 3031 tbr = (struct T_bind_req *)mp->b_rptr; 3032 if (tcp->tcp_state >= TCPS_BOUND) { 3033 if ((tcp->tcp_state == TCPS_BOUND || 3034 tcp->tcp_state == TCPS_LISTEN) && 3035 tcp->tcp_conn_req_max != tbr->CONIND_number && 3036 tbr->CONIND_number > 0) { 3037 /* 3038 * Handle listen() increasing CONIND_number. 3039 * This is more "liberal" then what the TPI spec 3040 * requires but is needed to avoid a t_unbind 3041 * when handling listen() since the port number 3042 * might be "stolen" between the unbind and bind. 3043 */ 3044 backlog_update = B_TRUE; 3045 goto do_bind; 3046 } 3047 if (tcp->tcp_debug) { 3048 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3049 "tcp_bind: bad state, %d", tcp->tcp_state); 3050 } 3051 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 3052 return; 3053 } 3054 origipversion = tcp->tcp_ipversion; 3055 3056 switch (tbr->ADDR_length) { 3057 case 0: /* request for a generic port */ 3058 tbr->ADDR_offset = sizeof (struct T_bind_req); 3059 if (tcp->tcp_family == AF_INET) { 3060 tbr->ADDR_length = sizeof (sin_t); 3061 sin = (sin_t *)&tbr[1]; 3062 *sin = sin_null; 3063 sin->sin_family = AF_INET; 3064 mp->b_wptr = (uchar_t *)&sin[1]; 3065 tcp->tcp_ipversion = IPV4_VERSION; 3066 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr); 3067 } else { 3068 ASSERT(tcp->tcp_family == AF_INET6); 3069 tbr->ADDR_length = sizeof (sin6_t); 3070 sin6 = (sin6_t *)&tbr[1]; 3071 *sin6 = sin6_null; 3072 sin6->sin6_family = AF_INET6; 3073 mp->b_wptr = (uchar_t *)&sin6[1]; 3074 tcp->tcp_ipversion = IPV6_VERSION; 3075 V6_SET_ZERO(v6addr); 3076 } 3077 requested_port = 0; 3078 break; 3079 3080 case sizeof (sin_t): /* Complete IPv4 address */ 3081 sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset, 3082 sizeof (sin_t)); 3083 if (sin == NULL || !OK_32PTR((char *)sin)) { 3084 if (tcp->tcp_debug) { 3085 (void) strlog(TCP_MOD_ID, 0, 1, 3086 SL_ERROR|SL_TRACE, 3087 "tcp_bind: bad address parameter, " 3088 "offset %d, len %d", 3089 tbr->ADDR_offset, tbr->ADDR_length); 3090 } 3091 tcp_err_ack(tcp, mp, TPROTO, 0); 3092 return; 3093 } 3094 /* 3095 * With sockets sockfs will accept bogus sin_family in 3096 * bind() and replace it with the family used in the socket 3097 * call. 3098 */ 3099 if (sin->sin_family != AF_INET || 3100 tcp->tcp_family != AF_INET) { 3101 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3102 return; 3103 } 3104 requested_port = ntohs(sin->sin_port); 3105 tcp->tcp_ipversion = IPV4_VERSION; 3106 v4addr = sin->sin_addr.s_addr; 3107 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 3108 break; 3109 3110 case sizeof (sin6_t): /* Complete IPv6 address */ 3111 sin6 = (sin6_t *)mi_offset_param(mp, 3112 tbr->ADDR_offset, sizeof (sin6_t)); 3113 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 3114 if (tcp->tcp_debug) { 3115 (void) strlog(TCP_MOD_ID, 0, 1, 3116 SL_ERROR|SL_TRACE, 3117 "tcp_bind: bad IPv6 address parameter, " 3118 "offset %d, len %d", tbr->ADDR_offset, 3119 tbr->ADDR_length); 3120 } 3121 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 3122 return; 3123 } 3124 if (sin6->sin6_family != AF_INET6 || 3125 tcp->tcp_family != AF_INET6) { 3126 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3127 return; 3128 } 3129 requested_port = ntohs(sin6->sin6_port); 3130 tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 3131 IPV4_VERSION : IPV6_VERSION; 3132 v6addr = sin6->sin6_addr; 3133 break; 3134 3135 default: 3136 if (tcp->tcp_debug) { 3137 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3138 "tcp_bind: bad address length, %d", 3139 tbr->ADDR_length); 3140 } 3141 tcp_err_ack(tcp, mp, TBADADDR, 0); 3142 return; 3143 } 3144 tcp->tcp_bound_source_v6 = v6addr; 3145 3146 /* Check for change in ipversion */ 3147 if (origipversion != tcp->tcp_ipversion) { 3148 ASSERT(tcp->tcp_family == AF_INET6); 3149 err = tcp->tcp_ipversion == IPV6_VERSION ? 3150 tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp); 3151 if (err) { 3152 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3153 return; 3154 } 3155 } 3156 3157 /* 3158 * Initialize family specific fields. Copy of the src addr. 3159 * in tcp_t is needed for the lookup funcs. 3160 */ 3161 if (tcp->tcp_ipversion == IPV6_VERSION) { 3162 tcp->tcp_ip6h->ip6_src = v6addr; 3163 } else { 3164 IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src); 3165 } 3166 tcp->tcp_ip_src_v6 = v6addr; 3167 3168 /* 3169 * For O_T_BIND_REQ: 3170 * Verify that the target port/addr is available, or choose 3171 * another. 3172 * For T_BIND_REQ: 3173 * Verify that the target port/addr is available or fail. 3174 * In both cases when it succeeds the tcp is inserted in the 3175 * bind hash table. This ensures that the operation is atomic 3176 * under the lock on the hash bucket. 3177 */ 3178 bind_to_req_port_only = requested_port != 0 && 3179 tbr->PRIM_type != O_T_BIND_REQ; 3180 /* 3181 * Get a valid port (within the anonymous range and should not 3182 * be a privileged one) to use if the user has not given a port. 3183 * If multiple threads are here, they may all start with 3184 * with the same initial port. But, it should be fine as long as 3185 * tcp_bindi will ensure that no two threads will be assigned 3186 * the same port. 3187 * 3188 * NOTE: XXX If a privileged process asks for an anonymous port, we 3189 * still check for ports only in the range > tcp_smallest_non_priv_port, 3190 * unless TCP_ANONPRIVBIND option is set. 3191 */ 3192 mlptype = mlptSingle; 3193 mlp_port = requested_port; 3194 if (requested_port == 0) { 3195 requested_port = tcp->tcp_anon_priv_bind ? 3196 tcp_get_next_priv_port(tcp) : 3197 tcp_update_next_port(tcps->tcps_next_port_to_try, 3198 tcp, B_TRUE); 3199 if (requested_port == 0) { 3200 tcp_err_ack(tcp, mp, TNOADDR, 0); 3201 return; 3202 } 3203 user_specified = B_FALSE; 3204 3205 /* 3206 * If the user went through one of the RPC interfaces to create 3207 * this socket and RPC is MLP in this zone, then give him an 3208 * anonymous MLP. 3209 */ 3210 cr = DB_CREDDEF(mp, tcp->tcp_cred); 3211 connp = tcp->tcp_connp; 3212 if (connp->conn_anon_mlp && is_system_labeled()) { 3213 zone = crgetzone(cr); 3214 addrtype = tsol_mlp_addr_type(zone->zone_id, 3215 IPV6_VERSION, &v6addr, 3216 tcps->tcps_netstack->netstack_ip); 3217 if (addrtype == mlptSingle) { 3218 tcp_err_ack(tcp, mp, TNOADDR, 0); 3219 return; 3220 } 3221 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 3222 PMAPPORT, addrtype); 3223 mlp_port = PMAPPORT; 3224 } 3225 } else { 3226 int i; 3227 boolean_t priv = B_FALSE; 3228 3229 /* 3230 * If the requested_port is in the well-known privileged range, 3231 * verify that the stream was opened by a privileged user. 3232 * Note: No locks are held when inspecting tcp_g_*epriv_ports 3233 * but instead the code relies on: 3234 * - the fact that the address of the array and its size never 3235 * changes 3236 * - the atomic assignment of the elements of the array 3237 */ 3238 cr = DB_CREDDEF(mp, tcp->tcp_cred); 3239 if (requested_port < tcps->tcps_smallest_nonpriv_port) { 3240 priv = B_TRUE; 3241 } else { 3242 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 3243 if (requested_port == 3244 tcps->tcps_g_epriv_ports[i]) { 3245 priv = B_TRUE; 3246 break; 3247 } 3248 } 3249 } 3250 if (priv) { 3251 if (secpolicy_net_privaddr(cr, requested_port) != 0) { 3252 if (tcp->tcp_debug) { 3253 (void) strlog(TCP_MOD_ID, 0, 1, 3254 SL_ERROR|SL_TRACE, 3255 "tcp_bind: no priv for port %d", 3256 requested_port); 3257 } 3258 tcp_err_ack(tcp, mp, TACCES, 0); 3259 return; 3260 } 3261 } 3262 user_specified = B_TRUE; 3263 3264 connp = tcp->tcp_connp; 3265 if (is_system_labeled()) { 3266 zone = crgetzone(cr); 3267 addrtype = tsol_mlp_addr_type(zone->zone_id, 3268 IPV6_VERSION, &v6addr, 3269 tcps->tcps_netstack->netstack_ip); 3270 if (addrtype == mlptSingle) { 3271 tcp_err_ack(tcp, mp, TNOADDR, 0); 3272 return; 3273 } 3274 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 3275 requested_port, addrtype); 3276 } 3277 } 3278 3279 if (mlptype != mlptSingle) { 3280 if (secpolicy_net_bindmlp(cr) != 0) { 3281 if (tcp->tcp_debug) { 3282 (void) strlog(TCP_MOD_ID, 0, 1, 3283 SL_ERROR|SL_TRACE, 3284 "tcp_bind: no priv for multilevel port %d", 3285 requested_port); 3286 } 3287 tcp_err_ack(tcp, mp, TACCES, 0); 3288 return; 3289 } 3290 3291 /* 3292 * If we're specifically binding a shared IP address and the 3293 * port is MLP on shared addresses, then check to see if this 3294 * zone actually owns the MLP. Reject if not. 3295 */ 3296 if (mlptype == mlptShared && addrtype == mlptShared) { 3297 /* 3298 * No need to handle exclusive-stack zones since 3299 * ALL_ZONES only applies to the shared stack. 3300 */ 3301 zoneid_t mlpzone; 3302 3303 mlpzone = tsol_mlp_findzone(IPPROTO_TCP, 3304 htons(mlp_port)); 3305 if (connp->conn_zoneid != mlpzone) { 3306 if (tcp->tcp_debug) { 3307 (void) strlog(TCP_MOD_ID, 0, 1, 3308 SL_ERROR|SL_TRACE, 3309 "tcp_bind: attempt to bind port " 3310 "%d on shared addr in zone %d " 3311 "(should be %d)", 3312 mlp_port, connp->conn_zoneid, 3313 mlpzone); 3314 } 3315 tcp_err_ack(tcp, mp, TACCES, 0); 3316 return; 3317 } 3318 } 3319 3320 if (!user_specified) { 3321 err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3322 requested_port, B_TRUE); 3323 if (err != 0) { 3324 if (tcp->tcp_debug) { 3325 (void) strlog(TCP_MOD_ID, 0, 1, 3326 SL_ERROR|SL_TRACE, 3327 "tcp_bind: cannot establish anon " 3328 "MLP for port %d", 3329 requested_port); 3330 } 3331 tcp_err_ack(tcp, mp, TSYSERR, err); 3332 return; 3333 } 3334 connp->conn_anon_port = B_TRUE; 3335 } 3336 connp->conn_mlp_type = mlptype; 3337 } 3338 3339 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 3340 tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified); 3341 3342 if (allocated_port == 0) { 3343 connp->conn_mlp_type = mlptSingle; 3344 if (connp->conn_anon_port) { 3345 connp->conn_anon_port = B_FALSE; 3346 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3347 requested_port, B_FALSE); 3348 } 3349 if (bind_to_req_port_only) { 3350 if (tcp->tcp_debug) { 3351 (void) strlog(TCP_MOD_ID, 0, 1, 3352 SL_ERROR|SL_TRACE, 3353 "tcp_bind: requested addr busy"); 3354 } 3355 tcp_err_ack(tcp, mp, TADDRBUSY, 0); 3356 } else { 3357 /* If we are out of ports, fail the bind. */ 3358 if (tcp->tcp_debug) { 3359 (void) strlog(TCP_MOD_ID, 0, 1, 3360 SL_ERROR|SL_TRACE, 3361 "tcp_bind: out of ports?"); 3362 } 3363 tcp_err_ack(tcp, mp, TNOADDR, 0); 3364 } 3365 return; 3366 } 3367 ASSERT(tcp->tcp_state == TCPS_BOUND); 3368 do_bind: 3369 if (!backlog_update) { 3370 if (tcp->tcp_family == AF_INET) 3371 sin->sin_port = htons(allocated_port); 3372 else 3373 sin6->sin6_port = htons(allocated_port); 3374 } 3375 if (tcp->tcp_family == AF_INET) { 3376 if (tbr->CONIND_number != 0) { 3377 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3378 sizeof (sin_t)); 3379 } else { 3380 /* Just verify the local IP address */ 3381 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN); 3382 } 3383 } else { 3384 if (tbr->CONIND_number != 0) { 3385 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3386 sizeof (sin6_t)); 3387 } else { 3388 /* Just verify the local IP address */ 3389 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3390 IPV6_ADDR_LEN); 3391 } 3392 } 3393 if (mp1 == NULL) { 3394 if (connp->conn_anon_port) { 3395 connp->conn_anon_port = B_FALSE; 3396 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3397 requested_port, B_FALSE); 3398 } 3399 connp->conn_mlp_type = mlptSingle; 3400 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3401 return; 3402 } 3403 3404 tbr->PRIM_type = T_BIND_ACK; 3405 mp->b_datap->db_type = M_PCPROTO; 3406 3407 /* Chain in the reply mp for tcp_rput() */ 3408 mp1->b_cont = mp; 3409 mp = mp1; 3410 3411 tcp->tcp_conn_req_max = tbr->CONIND_number; 3412 if (tcp->tcp_conn_req_max) { 3413 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 3414 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 3415 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 3416 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 3417 /* 3418 * If this is a listener, do not reset the eager list 3419 * and other stuffs. Note that we don't check if the 3420 * existing eager list meets the new tcp_conn_req_max 3421 * requirement. 3422 */ 3423 if (tcp->tcp_state != TCPS_LISTEN) { 3424 tcp->tcp_state = TCPS_LISTEN; 3425 /* Initialize the chain. Don't need the eager_lock */ 3426 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 3427 tcp->tcp_eager_next_drop_q0 = tcp; 3428 tcp->tcp_eager_prev_drop_q0 = tcp; 3429 tcp->tcp_second_ctimer_threshold = 3430 tcps->tcps_ip_abort_linterval; 3431 } 3432 } 3433 3434 /* 3435 * We can call ip_bind directly which returns a T_BIND_ACK mp. The 3436 * processing continues in tcp_rput_other(). 3437 */ 3438 if (tcp->tcp_family == AF_INET6) { 3439 ASSERT(tcp->tcp_connp->conn_af_isv6); 3440 mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp); 3441 } else { 3442 ASSERT(!tcp->tcp_connp->conn_af_isv6); 3443 mp = ip_bind_v4(q, mp, tcp->tcp_connp); 3444 } 3445 /* 3446 * If the bind cannot complete immediately 3447 * IP will arrange to call tcp_rput_other 3448 * when the bind completes. 3449 */ 3450 if (mp != NULL) { 3451 tcp_rput_other(tcp, mp); 3452 } else { 3453 /* 3454 * Bind will be resumed later. Need to ensure 3455 * that conn doesn't disappear when that happens. 3456 * This will be decremented in ip_resume_tcp_bind(). 3457 */ 3458 CONN_INC_REF(tcp->tcp_connp); 3459 } 3460 } 3461 3462 3463 /* 3464 * If the "bind_to_req_port_only" parameter is set, if the requested port 3465 * number is available, return it, If not return 0 3466 * 3467 * If "bind_to_req_port_only" parameter is not set and 3468 * If the requested port number is available, return it. If not, return 3469 * the first anonymous port we happen across. If no anonymous ports are 3470 * available, return 0. addr is the requested local address, if any. 3471 * 3472 * In either case, when succeeding update the tcp_t to record the port number 3473 * and insert it in the bind hash table. 3474 * 3475 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 3476 * without setting SO_REUSEADDR. This is needed so that they 3477 * can be viewed as two independent transport protocols. 3478 */ 3479 static in_port_t 3480 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 3481 int reuseaddr, boolean_t quick_connect, 3482 boolean_t bind_to_req_port_only, boolean_t user_specified) 3483 { 3484 /* number of times we have run around the loop */ 3485 int count = 0; 3486 /* maximum number of times to run around the loop */ 3487 int loopmax; 3488 conn_t *connp = tcp->tcp_connp; 3489 zoneid_t zoneid = connp->conn_zoneid; 3490 tcp_stack_t *tcps = tcp->tcp_tcps; 3491 3492 /* 3493 * Lookup for free addresses is done in a loop and "loopmax" 3494 * influences how long we spin in the loop 3495 */ 3496 if (bind_to_req_port_only) { 3497 /* 3498 * If the requested port is busy, don't bother to look 3499 * for a new one. Setting loop maximum count to 1 has 3500 * that effect. 3501 */ 3502 loopmax = 1; 3503 } else { 3504 /* 3505 * If the requested port is busy, look for a free one 3506 * in the anonymous port range. 3507 * Set loopmax appropriately so that one does not look 3508 * forever in the case all of the anonymous ports are in use. 3509 */ 3510 if (tcp->tcp_anon_priv_bind) { 3511 /* 3512 * loopmax = 3513 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 3514 */ 3515 loopmax = IPPORT_RESERVED - 3516 tcps->tcps_min_anonpriv_port; 3517 } else { 3518 loopmax = (tcps->tcps_largest_anon_port - 3519 tcps->tcps_smallest_anon_port + 1); 3520 } 3521 } 3522 do { 3523 uint16_t lport; 3524 tf_t *tbf; 3525 tcp_t *ltcp; 3526 conn_t *lconnp; 3527 3528 lport = htons(port); 3529 3530 /* 3531 * Ensure that the tcp_t is not currently in the bind hash. 3532 * Hold the lock on the hash bucket to ensure that 3533 * the duplicate check plus the insertion is an atomic 3534 * operation. 3535 * 3536 * This function does an inline lookup on the bind hash list 3537 * Make sure that we access only members of tcp_t 3538 * and that we don't look at tcp_tcp, since we are not 3539 * doing a CONN_INC_REF. 3540 */ 3541 tcp_bind_hash_remove(tcp); 3542 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)]; 3543 mutex_enter(&tbf->tf_lock); 3544 for (ltcp = tbf->tf_tcp; ltcp != NULL; 3545 ltcp = ltcp->tcp_bind_hash) { 3546 boolean_t not_socket; 3547 boolean_t exclbind; 3548 3549 if (lport != ltcp->tcp_lport) 3550 continue; 3551 3552 lconnp = ltcp->tcp_connp; 3553 3554 /* 3555 * On a labeled system, we must treat bindings to ports 3556 * on shared IP addresses by sockets with MAC exemption 3557 * privilege as being in all zones, as there's 3558 * otherwise no way to identify the right receiver. 3559 */ 3560 if (!(IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) || 3561 IPCL_ZONE_MATCH(connp, 3562 ltcp->tcp_connp->conn_zoneid)) && 3563 !lconnp->conn_mac_exempt && 3564 !connp->conn_mac_exempt) 3565 continue; 3566 3567 /* 3568 * If TCP_EXCLBIND is set for either the bound or 3569 * binding endpoint, the semantics of bind 3570 * is changed according to the following. 3571 * 3572 * spec = specified address (v4 or v6) 3573 * unspec = unspecified address (v4 or v6) 3574 * A = specified addresses are different for endpoints 3575 * 3576 * bound bind to allowed 3577 * ------------------------------------- 3578 * unspec unspec no 3579 * unspec spec no 3580 * spec unspec no 3581 * spec spec yes if A 3582 * 3583 * For labeled systems, SO_MAC_EXEMPT behaves the same 3584 * as TCP_EXCLBIND, except that zoneid is ignored. 3585 * 3586 * Note: 3587 * 3588 * 1. Because of TLI semantics, an endpoint can go 3589 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 3590 * TCPS_BOUND, depending on whether it is originally 3591 * a listener or not. That is why we need to check 3592 * for states greater than or equal to TCPS_BOUND 3593 * here. 3594 * 3595 * 2. Ideally, we should only check for state equals 3596 * to TCPS_LISTEN. And the following check should be 3597 * added. 3598 * 3599 * if (ltcp->tcp_state == TCPS_LISTEN || 3600 * !reuseaddr || !ltcp->tcp_reuseaddr) { 3601 * ... 3602 * } 3603 * 3604 * The semantics will be changed to this. If the 3605 * endpoint on the list is in state not equal to 3606 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 3607 * set, let the bind succeed. 3608 * 3609 * Because of (1), we cannot do that for TLI 3610 * endpoints. But we can do that for socket endpoints. 3611 * If in future, we can change this going back 3612 * semantics, we can use the above check for TLI also. 3613 */ 3614 not_socket = !(TCP_IS_SOCKET(ltcp) && 3615 TCP_IS_SOCKET(tcp)); 3616 exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind; 3617 3618 if (lconnp->conn_mac_exempt || connp->conn_mac_exempt || 3619 (exclbind && (not_socket || 3620 ltcp->tcp_state <= TCPS_ESTABLISHED))) { 3621 if (V6_OR_V4_INADDR_ANY( 3622 ltcp->tcp_bound_source_v6) || 3623 V6_OR_V4_INADDR_ANY(*laddr) || 3624 IN6_ARE_ADDR_EQUAL(laddr, 3625 <cp->tcp_bound_source_v6)) { 3626 break; 3627 } 3628 continue; 3629 } 3630 3631 /* 3632 * Check ipversion to allow IPv4 and IPv6 sockets to 3633 * have disjoint port number spaces, if *_EXCLBIND 3634 * is not set and only if the application binds to a 3635 * specific port. We use the same autoassigned port 3636 * number space for IPv4 and IPv6 sockets. 3637 */ 3638 if (tcp->tcp_ipversion != ltcp->tcp_ipversion && 3639 bind_to_req_port_only) 3640 continue; 3641 3642 /* 3643 * Ideally, we should make sure that the source 3644 * address, remote address, and remote port in the 3645 * four tuple for this tcp-connection is unique. 3646 * However, trying to find out the local source 3647 * address would require too much code duplication 3648 * with IP, since IP needs needs to have that code 3649 * to support userland TCP implementations. 3650 */ 3651 if (quick_connect && 3652 (ltcp->tcp_state > TCPS_LISTEN) && 3653 ((tcp->tcp_fport != ltcp->tcp_fport) || 3654 !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 3655 <cp->tcp_remote_v6))) 3656 continue; 3657 3658 if (!reuseaddr) { 3659 /* 3660 * No socket option SO_REUSEADDR. 3661 * If existing port is bound to 3662 * a non-wildcard IP address 3663 * and the requesting stream is 3664 * bound to a distinct 3665 * different IP addresses 3666 * (non-wildcard, also), keep 3667 * going. 3668 */ 3669 if (!V6_OR_V4_INADDR_ANY(*laddr) && 3670 !V6_OR_V4_INADDR_ANY( 3671 ltcp->tcp_bound_source_v6) && 3672 !IN6_ARE_ADDR_EQUAL(laddr, 3673 <cp->tcp_bound_source_v6)) 3674 continue; 3675 if (ltcp->tcp_state >= TCPS_BOUND) { 3676 /* 3677 * This port is being used and 3678 * its state is >= TCPS_BOUND, 3679 * so we can't bind to it. 3680 */ 3681 break; 3682 } 3683 } else { 3684 /* 3685 * socket option SO_REUSEADDR is set on the 3686 * binding tcp_t. 3687 * 3688 * If two streams are bound to 3689 * same IP address or both addr 3690 * and bound source are wildcards 3691 * (INADDR_ANY), we want to stop 3692 * searching. 3693 * We have found a match of IP source 3694 * address and source port, which is 3695 * refused regardless of the 3696 * SO_REUSEADDR setting, so we break. 3697 */ 3698 if (IN6_ARE_ADDR_EQUAL(laddr, 3699 <cp->tcp_bound_source_v6) && 3700 (ltcp->tcp_state == TCPS_LISTEN || 3701 ltcp->tcp_state == TCPS_BOUND)) 3702 break; 3703 } 3704 } 3705 if (ltcp != NULL) { 3706 /* The port number is busy */ 3707 mutex_exit(&tbf->tf_lock); 3708 } else { 3709 /* 3710 * This port is ours. Insert in fanout and mark as 3711 * bound to prevent others from getting the port 3712 * number. 3713 */ 3714 tcp->tcp_state = TCPS_BOUND; 3715 tcp->tcp_lport = htons(port); 3716 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 3717 3718 ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH( 3719 tcp->tcp_lport)] == tbf); 3720 tcp_bind_hash_insert(tbf, tcp, 1); 3721 3722 mutex_exit(&tbf->tf_lock); 3723 3724 /* 3725 * We don't want tcp_next_port_to_try to "inherit" 3726 * a port number supplied by the user in a bind. 3727 */ 3728 if (user_specified) 3729 return (port); 3730 3731 /* 3732 * This is the only place where tcp_next_port_to_try 3733 * is updated. After the update, it may or may not 3734 * be in the valid range. 3735 */ 3736 if (!tcp->tcp_anon_priv_bind) 3737 tcps->tcps_next_port_to_try = port + 1; 3738 return (port); 3739 } 3740 3741 if (tcp->tcp_anon_priv_bind) { 3742 port = tcp_get_next_priv_port(tcp); 3743 } else { 3744 if (count == 0 && user_specified) { 3745 /* 3746 * We may have to return an anonymous port. So 3747 * get one to start with. 3748 */ 3749 port = 3750 tcp_update_next_port( 3751 tcps->tcps_next_port_to_try, 3752 tcp, B_TRUE); 3753 user_specified = B_FALSE; 3754 } else { 3755 port = tcp_update_next_port(port + 1, tcp, 3756 B_FALSE); 3757 } 3758 } 3759 if (port == 0) 3760 break; 3761 3762 /* 3763 * Don't let this loop run forever in the case where 3764 * all of the anonymous ports are in use. 3765 */ 3766 } while (++count < loopmax); 3767 return (0); 3768 } 3769 3770 /* 3771 * tcp_clean_death / tcp_close_detached must not be called more than once 3772 * on a tcp. Thus every function that potentially calls tcp_clean_death 3773 * must check for the tcp state before calling tcp_clean_death. 3774 * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper, 3775 * tcp_timer_handler, all check for the tcp state. 3776 */ 3777 /* ARGSUSED */ 3778 void 3779 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2) 3780 { 3781 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 3782 3783 freemsg(mp); 3784 if (tcp->tcp_state > TCPS_BOUND) 3785 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT, 5); 3786 } 3787 3788 /* 3789 * We are dying for some reason. Try to do it gracefully. (May be called 3790 * as writer.) 3791 * 3792 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3793 * done by a service procedure). 3794 * TBD - Should the return value distinguish between the tcp_t being 3795 * freed and it being reinitialized? 3796 */ 3797 static int 3798 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3799 { 3800 mblk_t *mp; 3801 queue_t *q; 3802 tcp_stack_t *tcps = tcp->tcp_tcps; 3803 3804 TCP_CLD_STAT(tag); 3805 3806 #if TCP_TAG_CLEAN_DEATH 3807 tcp->tcp_cleandeathtag = tag; 3808 #endif 3809 3810 if (tcp->tcp_fused) 3811 tcp_unfuse(tcp); 3812 3813 if (tcp->tcp_linger_tid != 0 && 3814 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3815 tcp_stop_lingering(tcp); 3816 } 3817 3818 ASSERT(tcp != NULL); 3819 ASSERT((tcp->tcp_family == AF_INET && 3820 tcp->tcp_ipversion == IPV4_VERSION) || 3821 (tcp->tcp_family == AF_INET6 && 3822 (tcp->tcp_ipversion == IPV4_VERSION || 3823 tcp->tcp_ipversion == IPV6_VERSION))); 3824 3825 if (TCP_IS_DETACHED(tcp)) { 3826 if (tcp->tcp_hard_binding) { 3827 /* 3828 * Its an eager that we are dealing with. We close the 3829 * eager but in case a conn_ind has already gone to the 3830 * listener, let tcp_accept_finish() send a discon_ind 3831 * to the listener and drop the last reference. If the 3832 * listener doesn't even know about the eager i.e. the 3833 * conn_ind hasn't gone up, blow away the eager and drop 3834 * the last reference as well. If the conn_ind has gone 3835 * up, state should be BOUND. tcp_accept_finish 3836 * will figure out that the connection has received a 3837 * RST and will send a DISCON_IND to the application. 3838 */ 3839 tcp_closei_local(tcp); 3840 if (!tcp->tcp_tconnind_started) { 3841 CONN_DEC_REF(tcp->tcp_connp); 3842 } else { 3843 tcp->tcp_state = TCPS_BOUND; 3844 } 3845 } else { 3846 tcp_close_detached(tcp); 3847 } 3848 return (0); 3849 } 3850 3851 TCP_STAT(tcps, tcp_clean_death_nondetached); 3852 3853 /* 3854 * If T_ORDREL_IND has not been sent yet (done when service routine 3855 * is run) postpone cleaning up the endpoint until service routine 3856 * has sent up the T_ORDREL_IND. Avoid clearing out an existing 3857 * client_errno since tcp_close uses the client_errno field. 3858 */ 3859 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 3860 if (err != 0) 3861 tcp->tcp_client_errno = err; 3862 3863 tcp->tcp_deferred_clean_death = B_TRUE; 3864 return (-1); 3865 } 3866 3867 q = tcp->tcp_rq; 3868 3869 /* Trash all inbound data */ 3870 flushq(q, FLUSHALL); 3871 3872 /* 3873 * If we are at least part way open and there is error 3874 * (err==0 implies no error) 3875 * notify our client by a T_DISCON_IND. 3876 */ 3877 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3878 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3879 !TCP_IS_SOCKET(tcp)) { 3880 /* 3881 * Send M_FLUSH according to TPI. Because sockets will 3882 * (and must) ignore FLUSHR we do that only for TPI 3883 * endpoints and sockets in STREAMS mode. 3884 */ 3885 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3886 } 3887 if (tcp->tcp_debug) { 3888 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3889 "tcp_clean_death: discon err %d", err); 3890 } 3891 mp = mi_tpi_discon_ind(NULL, err, 0); 3892 if (mp != NULL) { 3893 putnext(q, mp); 3894 } else { 3895 if (tcp->tcp_debug) { 3896 (void) strlog(TCP_MOD_ID, 0, 1, 3897 SL_ERROR|SL_TRACE, 3898 "tcp_clean_death, sending M_ERROR"); 3899 } 3900 (void) putnextctl1(q, M_ERROR, EPROTO); 3901 } 3902 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3903 /* SYN_SENT or SYN_RCVD */ 3904 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3905 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3906 /* ESTABLISHED or CLOSE_WAIT */ 3907 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3908 } 3909 } 3910 3911 tcp_reinit(tcp); 3912 return (-1); 3913 } 3914 3915 /* 3916 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3917 * to expire, stop the wait and finish the close. 3918 */ 3919 static void 3920 tcp_stop_lingering(tcp_t *tcp) 3921 { 3922 clock_t delta = 0; 3923 tcp_stack_t *tcps = tcp->tcp_tcps; 3924 3925 tcp->tcp_linger_tid = 0; 3926 if (tcp->tcp_state > TCPS_LISTEN) { 3927 tcp_acceptor_hash_remove(tcp); 3928 mutex_enter(&tcp->tcp_non_sq_lock); 3929 if (tcp->tcp_flow_stopped) { 3930 tcp_clrqfull(tcp); 3931 } 3932 mutex_exit(&tcp->tcp_non_sq_lock); 3933 3934 if (tcp->tcp_timer_tid != 0) { 3935 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3936 tcp->tcp_timer_tid = 0; 3937 } 3938 /* 3939 * Need to cancel those timers which will not be used when 3940 * TCP is detached. This has to be done before the tcp_wq 3941 * is set to the global queue. 3942 */ 3943 tcp_timers_stop(tcp); 3944 3945 3946 tcp->tcp_detached = B_TRUE; 3947 ASSERT(tcps->tcps_g_q != NULL); 3948 tcp->tcp_rq = tcps->tcps_g_q; 3949 tcp->tcp_wq = WR(tcps->tcps_g_q); 3950 3951 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3952 tcp_time_wait_append(tcp); 3953 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3954 goto finish; 3955 } 3956 3957 /* 3958 * If delta is zero the timer event wasn't executed and was 3959 * successfully canceled. In this case we need to restart it 3960 * with the minimal delta possible. 3961 */ 3962 if (delta >= 0) { 3963 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3964 delta ? delta : 1); 3965 } 3966 } else { 3967 tcp_closei_local(tcp); 3968 CONN_DEC_REF(tcp->tcp_connp); 3969 } 3970 finish: 3971 /* Signal closing thread that it can complete close */ 3972 mutex_enter(&tcp->tcp_closelock); 3973 tcp->tcp_detached = B_TRUE; 3974 ASSERT(tcps->tcps_g_q != NULL); 3975 tcp->tcp_rq = tcps->tcps_g_q; 3976 tcp->tcp_wq = WR(tcps->tcps_g_q); 3977 tcp->tcp_closed = 1; 3978 cv_signal(&tcp->tcp_closecv); 3979 mutex_exit(&tcp->tcp_closelock); 3980 } 3981 3982 /* 3983 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 3984 * expires. 3985 */ 3986 static void 3987 tcp_close_linger_timeout(void *arg) 3988 { 3989 conn_t *connp = (conn_t *)arg; 3990 tcp_t *tcp = connp->conn_tcp; 3991 3992 tcp->tcp_client_errno = ETIMEDOUT; 3993 tcp_stop_lingering(tcp); 3994 } 3995 3996 static int 3997 tcp_close(queue_t *q, int flags) 3998 { 3999 conn_t *connp = Q_TO_CONN(q); 4000 tcp_t *tcp = connp->conn_tcp; 4001 mblk_t *mp = &tcp->tcp_closemp; 4002 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4003 boolean_t linger_interrupted = B_FALSE; 4004 mblk_t *bp; 4005 4006 ASSERT(WR(q)->q_next == NULL); 4007 ASSERT(connp->conn_ref >= 2); 4008 ASSERT((connp->conn_flags & IPCL_TCPMOD) == 0); 4009 4010 /* 4011 * We are being closed as /dev/tcp or /dev/tcp6. 4012 * 4013 * Mark the conn as closing. ill_pending_mp_add will not 4014 * add any mp to the pending mp list, after this conn has 4015 * started closing. Same for sq_pending_mp_add 4016 */ 4017 mutex_enter(&connp->conn_lock); 4018 connp->conn_state_flags |= CONN_CLOSING; 4019 if (connp->conn_oper_pending_ill != NULL) 4020 conn_ioctl_cleanup_reqd = B_TRUE; 4021 CONN_INC_REF_LOCKED(connp); 4022 mutex_exit(&connp->conn_lock); 4023 tcp->tcp_closeflags = (uint8_t)flags; 4024 ASSERT(connp->conn_ref >= 3); 4025 4026 /* 4027 * tcp_closemp_used is used below without any protection of a lock 4028 * as we don't expect any one else to use it concurrently at this 4029 * point otherwise it would be a major defect. 4030 */ 4031 4032 if (mp->b_prev == NULL) 4033 tcp->tcp_closemp_used = B_TRUE; 4034 else 4035 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 4036 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 4037 4038 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 4039 4040 (*tcp_squeue_close_proc)(connp->conn_sqp, mp, 4041 tcp_close_output, connp, SQTAG_IP_TCP_CLOSE); 4042 4043 mutex_enter(&tcp->tcp_closelock); 4044 while (!tcp->tcp_closed) { 4045 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 4046 /* 4047 * We got interrupted. Check if we are lingering, 4048 * if yes, post a message to stop and wait until 4049 * tcp_closed is set. If we aren't lingering, 4050 * just go back around. 4051 */ 4052 if (tcp->tcp_linger && 4053 tcp->tcp_lingertime > 0 && 4054 !linger_interrupted) { 4055 mutex_exit(&tcp->tcp_closelock); 4056 /* Entering squeue, bump ref count. */ 4057 CONN_INC_REF(connp); 4058 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 4059 squeue_enter(connp->conn_sqp, bp, 4060 tcp_linger_interrupted, connp, 4061 SQTAG_IP_TCP_CLOSE); 4062 linger_interrupted = B_TRUE; 4063 mutex_enter(&tcp->tcp_closelock); 4064 } 4065 } 4066 } 4067 mutex_exit(&tcp->tcp_closelock); 4068 4069 /* 4070 * In the case of listener streams that have eagers in the q or q0 4071 * we wait for the eagers to drop their reference to us. tcp_rq and 4072 * tcp_wq of the eagers point to our queues. By waiting for the 4073 * refcnt to drop to 1, we are sure that the eagers have cleaned 4074 * up their queue pointers and also dropped their references to us. 4075 */ 4076 if (tcp->tcp_wait_for_eagers) { 4077 mutex_enter(&connp->conn_lock); 4078 while (connp->conn_ref != 1) { 4079 cv_wait(&connp->conn_cv, &connp->conn_lock); 4080 } 4081 mutex_exit(&connp->conn_lock); 4082 } 4083 /* 4084 * ioctl cleanup. The mp is queued in the 4085 * ill_pending_mp or in the sq_pending_mp. 4086 */ 4087 if (conn_ioctl_cleanup_reqd) 4088 conn_ioctl_cleanup(connp); 4089 4090 qprocsoff(q); 4091 inet_minor_free(ip_minor_arena, connp->conn_dev); 4092 4093 tcp->tcp_cpid = -1; 4094 4095 /* 4096 * Drop IP's reference on the conn. This is the last reference 4097 * on the connp if the state was less than established. If the 4098 * connection has gone into timewait state, then we will have 4099 * one ref for the TCP and one more ref (total of two) for the 4100 * classifier connected hash list (a timewait connections stays 4101 * in connected hash till closed). 4102 * 4103 * We can't assert the references because there might be other 4104 * transient reference places because of some walkers or queued 4105 * packets in squeue for the timewait state. 4106 */ 4107 CONN_DEC_REF(connp); 4108 q->q_ptr = WR(q)->q_ptr = NULL; 4109 return (0); 4110 } 4111 4112 static int 4113 tcpclose_accept(queue_t *q) 4114 { 4115 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 4116 4117 /* 4118 * We had opened an acceptor STREAM for sockfs which is 4119 * now being closed due to some error. 4120 */ 4121 qprocsoff(q); 4122 inet_minor_free(ip_minor_arena, (dev_t)q->q_ptr); 4123 q->q_ptr = WR(q)->q_ptr = NULL; 4124 return (0); 4125 } 4126 4127 /* 4128 * Called by tcp_close() routine via squeue when lingering is 4129 * interrupted by a signal. 4130 */ 4131 4132 /* ARGSUSED */ 4133 static void 4134 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2) 4135 { 4136 conn_t *connp = (conn_t *)arg; 4137 tcp_t *tcp = connp->conn_tcp; 4138 4139 freeb(mp); 4140 if (tcp->tcp_linger_tid != 0 && 4141 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 4142 tcp_stop_lingering(tcp); 4143 tcp->tcp_client_errno = EINTR; 4144 } 4145 } 4146 4147 /* 4148 * Called by streams close routine via squeues when our client blows off her 4149 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 4150 * connection politely" When SO_LINGER is set (with a non-zero linger time and 4151 * it is not a nonblocking socket) then this routine sleeps until the FIN is 4152 * acked. 4153 * 4154 * NOTE: tcp_close potentially returns error when lingering. 4155 * However, the stream head currently does not pass these errors 4156 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 4157 * errors to the application (from tsleep()) and not errors 4158 * like ECONNRESET caused by receiving a reset packet. 4159 */ 4160 4161 /* ARGSUSED */ 4162 static void 4163 tcp_close_output(void *arg, mblk_t *mp, void *arg2) 4164 { 4165 char *msg; 4166 conn_t *connp = (conn_t *)arg; 4167 tcp_t *tcp = connp->conn_tcp; 4168 clock_t delta = 0; 4169 tcp_stack_t *tcps = tcp->tcp_tcps; 4170 4171 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 4172 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 4173 4174 /* Cancel any pending timeout */ 4175 if (tcp->tcp_ordrelid != 0) { 4176 if (tcp->tcp_timeout) { 4177 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid); 4178 } 4179 tcp->tcp_ordrelid = 0; 4180 tcp->tcp_timeout = B_FALSE; 4181 } 4182 4183 mutex_enter(&tcp->tcp_eager_lock); 4184 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 4185 /* Cleanup for listener */ 4186 tcp_eager_cleanup(tcp, 0); 4187 tcp->tcp_wait_for_eagers = 1; 4188 } 4189 mutex_exit(&tcp->tcp_eager_lock); 4190 4191 connp->conn_mdt_ok = B_FALSE; 4192 tcp->tcp_mdt = B_FALSE; 4193 4194 connp->conn_lso_ok = B_FALSE; 4195 tcp->tcp_lso = B_FALSE; 4196 4197 msg = NULL; 4198 switch (tcp->tcp_state) { 4199 case TCPS_CLOSED: 4200 case TCPS_IDLE: 4201 case TCPS_BOUND: 4202 case TCPS_LISTEN: 4203 break; 4204 case TCPS_SYN_SENT: 4205 msg = "tcp_close, during connect"; 4206 break; 4207 case TCPS_SYN_RCVD: 4208 /* 4209 * Close during the connect 3-way handshake 4210 * but here there may or may not be pending data 4211 * already on queue. Process almost same as in 4212 * the ESTABLISHED state. 4213 */ 4214 /* FALLTHRU */ 4215 default: 4216 if (tcp->tcp_fused) 4217 tcp_unfuse(tcp); 4218 4219 /* 4220 * If SO_LINGER has set a zero linger time, abort the 4221 * connection with a reset. 4222 */ 4223 if (tcp->tcp_linger && tcp->tcp_lingertime == 0) { 4224 msg = "tcp_close, zero lingertime"; 4225 break; 4226 } 4227 4228 ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding); 4229 /* 4230 * Abort connection if there is unread data queued. 4231 */ 4232 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 4233 msg = "tcp_close, unread data"; 4234 break; 4235 } 4236 /* 4237 * tcp_hard_bound is now cleared thus all packets go through 4238 * tcp_lookup. This fact is used by tcp_detach below. 4239 * 4240 * We have done a qwait() above which could have possibly 4241 * drained more messages in turn causing transition to a 4242 * different state. Check whether we have to do the rest 4243 * of the processing or not. 4244 */ 4245 if (tcp->tcp_state <= TCPS_LISTEN) 4246 break; 4247 4248 /* 4249 * Transmit the FIN before detaching the tcp_t. 4250 * After tcp_detach returns this queue/perimeter 4251 * no longer owns the tcp_t thus others can modify it. 4252 */ 4253 (void) tcp_xmit_end(tcp); 4254 4255 /* 4256 * If lingering on close then wait until the fin is acked, 4257 * the SO_LINGER time passes, or a reset is sent/received. 4258 */ 4259 if (tcp->tcp_linger && tcp->tcp_lingertime > 0 && 4260 !(tcp->tcp_fin_acked) && 4261 tcp->tcp_state >= TCPS_ESTABLISHED) { 4262 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 4263 tcp->tcp_client_errno = EWOULDBLOCK; 4264 } else if (tcp->tcp_client_errno == 0) { 4265 4266 ASSERT(tcp->tcp_linger_tid == 0); 4267 4268 tcp->tcp_linger_tid = TCP_TIMER(tcp, 4269 tcp_close_linger_timeout, 4270 tcp->tcp_lingertime * hz); 4271 4272 /* tcp_close_linger_timeout will finish close */ 4273 if (tcp->tcp_linger_tid == 0) 4274 tcp->tcp_client_errno = ENOSR; 4275 else 4276 return; 4277 } 4278 4279 /* 4280 * Check if we need to detach or just close 4281 * the instance. 4282 */ 4283 if (tcp->tcp_state <= TCPS_LISTEN) 4284 break; 4285 } 4286 4287 /* 4288 * Make sure that no other thread will access the tcp_rq of 4289 * this instance (through lookups etc.) as tcp_rq will go 4290 * away shortly. 4291 */ 4292 tcp_acceptor_hash_remove(tcp); 4293 4294 mutex_enter(&tcp->tcp_non_sq_lock); 4295 if (tcp->tcp_flow_stopped) { 4296 tcp_clrqfull(tcp); 4297 } 4298 mutex_exit(&tcp->tcp_non_sq_lock); 4299 4300 if (tcp->tcp_timer_tid != 0) { 4301 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4302 tcp->tcp_timer_tid = 0; 4303 } 4304 /* 4305 * Need to cancel those timers which will not be used when 4306 * TCP is detached. This has to be done before the tcp_wq 4307 * is set to the global queue. 4308 */ 4309 tcp_timers_stop(tcp); 4310 4311 tcp->tcp_detached = B_TRUE; 4312 if (tcp->tcp_state == TCPS_TIME_WAIT) { 4313 tcp_time_wait_append(tcp); 4314 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 4315 ASSERT(connp->conn_ref >= 3); 4316 goto finish; 4317 } 4318 4319 /* 4320 * If delta is zero the timer event wasn't executed and was 4321 * successfully canceled. In this case we need to restart it 4322 * with the minimal delta possible. 4323 */ 4324 if (delta >= 0) 4325 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 4326 delta ? delta : 1); 4327 4328 ASSERT(connp->conn_ref >= 3); 4329 goto finish; 4330 } 4331 4332 /* Detach did not complete. Still need to remove q from stream. */ 4333 if (msg) { 4334 if (tcp->tcp_state == TCPS_ESTABLISHED || 4335 tcp->tcp_state == TCPS_CLOSE_WAIT) 4336 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 4337 if (tcp->tcp_state == TCPS_SYN_SENT || 4338 tcp->tcp_state == TCPS_SYN_RCVD) 4339 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 4340 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 4341 } 4342 4343 tcp_closei_local(tcp); 4344 CONN_DEC_REF(connp); 4345 ASSERT(connp->conn_ref >= 2); 4346 4347 finish: 4348 /* 4349 * Although packets are always processed on the correct 4350 * tcp's perimeter and access is serialized via squeue's, 4351 * IP still needs a queue when sending packets in time_wait 4352 * state so use WR(tcps_g_q) till ip_output() can be 4353 * changed to deal with just connp. For read side, we 4354 * could have set tcp_rq to NULL but there are some cases 4355 * in tcp_rput_data() from early days of this code which 4356 * do a putnext without checking if tcp is closed. Those 4357 * need to be identified before both tcp_rq and tcp_wq 4358 * can be set to NULL and tcps_g_q can disappear forever. 4359 */ 4360 mutex_enter(&tcp->tcp_closelock); 4361 /* 4362 * Don't change the queues in the case of a listener that has 4363 * eagers in its q or q0. It could surprise the eagers. 4364 * Instead wait for the eagers outside the squeue. 4365 */ 4366 if (!tcp->tcp_wait_for_eagers) { 4367 tcp->tcp_detached = B_TRUE; 4368 /* 4369 * When default queue is closing we set tcps_g_q to NULL 4370 * after the close is done. 4371 */ 4372 ASSERT(tcps->tcps_g_q != NULL); 4373 tcp->tcp_rq = tcps->tcps_g_q; 4374 tcp->tcp_wq = WR(tcps->tcps_g_q); 4375 } 4376 4377 /* Signal tcp_close() to finish closing. */ 4378 tcp->tcp_closed = 1; 4379 cv_signal(&tcp->tcp_closecv); 4380 mutex_exit(&tcp->tcp_closelock); 4381 } 4382 4383 4384 /* 4385 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 4386 * Some stream heads get upset if they see these later on as anything but NULL. 4387 */ 4388 static void 4389 tcp_close_mpp(mblk_t **mpp) 4390 { 4391 mblk_t *mp; 4392 4393 if ((mp = *mpp) != NULL) { 4394 do { 4395 mp->b_next = NULL; 4396 mp->b_prev = NULL; 4397 } while ((mp = mp->b_cont) != NULL); 4398 4399 mp = *mpp; 4400 *mpp = NULL; 4401 freemsg(mp); 4402 } 4403 } 4404 4405 /* Do detached close. */ 4406 static void 4407 tcp_close_detached(tcp_t *tcp) 4408 { 4409 if (tcp->tcp_fused) 4410 tcp_unfuse(tcp); 4411 4412 /* 4413 * Clustering code serializes TCP disconnect callbacks and 4414 * cluster tcp list walks by blocking a TCP disconnect callback 4415 * if a cluster tcp list walk is in progress. This ensures 4416 * accurate accounting of TCPs in the cluster code even though 4417 * the TCP list walk itself is not atomic. 4418 */ 4419 tcp_closei_local(tcp); 4420 CONN_DEC_REF(tcp->tcp_connp); 4421 } 4422 4423 /* 4424 * Stop all TCP timers, and free the timer mblks if requested. 4425 */ 4426 void 4427 tcp_timers_stop(tcp_t *tcp) 4428 { 4429 if (tcp->tcp_timer_tid != 0) { 4430 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4431 tcp->tcp_timer_tid = 0; 4432 } 4433 if (tcp->tcp_ka_tid != 0) { 4434 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 4435 tcp->tcp_ka_tid = 0; 4436 } 4437 if (tcp->tcp_ack_tid != 0) { 4438 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4439 tcp->tcp_ack_tid = 0; 4440 } 4441 if (tcp->tcp_push_tid != 0) { 4442 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 4443 tcp->tcp_push_tid = 0; 4444 } 4445 } 4446 4447 /* 4448 * The tcp_t is going away. Remove it from all lists and set it 4449 * to TCPS_CLOSED. The freeing up of memory is deferred until 4450 * tcp_inactive. This is needed since a thread in tcp_rput might have 4451 * done a CONN_INC_REF on this structure before it was removed from the 4452 * hashes. 4453 */ 4454 static void 4455 tcp_closei_local(tcp_t *tcp) 4456 { 4457 ire_t *ire; 4458 conn_t *connp = tcp->tcp_connp; 4459 tcp_stack_t *tcps = tcp->tcp_tcps; 4460 4461 if (!TCP_IS_SOCKET(tcp)) 4462 tcp_acceptor_hash_remove(tcp); 4463 4464 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 4465 tcp->tcp_ibsegs = 0; 4466 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 4467 tcp->tcp_obsegs = 0; 4468 4469 /* 4470 * If we are an eager connection hanging off a listener that 4471 * hasn't formally accepted the connection yet, get off his 4472 * list and blow off any data that we have accumulated. 4473 */ 4474 if (tcp->tcp_listener != NULL) { 4475 tcp_t *listener = tcp->tcp_listener; 4476 mutex_enter(&listener->tcp_eager_lock); 4477 /* 4478 * tcp_tconnind_started == B_TRUE means that the 4479 * conn_ind has already gone to listener. At 4480 * this point, eager will be closed but we 4481 * leave it in listeners eager list so that 4482 * if listener decides to close without doing 4483 * accept, we can clean this up. In tcp_wput_accept 4484 * we take care of the case of accept on closed 4485 * eager. 4486 */ 4487 if (!tcp->tcp_tconnind_started) { 4488 tcp_eager_unlink(tcp); 4489 mutex_exit(&listener->tcp_eager_lock); 4490 /* 4491 * We don't want to have any pointers to the 4492 * listener queue, after we have released our 4493 * reference on the listener 4494 */ 4495 ASSERT(tcps->tcps_g_q != NULL); 4496 tcp->tcp_rq = tcps->tcps_g_q; 4497 tcp->tcp_wq = WR(tcps->tcps_g_q); 4498 CONN_DEC_REF(listener->tcp_connp); 4499 } else { 4500 mutex_exit(&listener->tcp_eager_lock); 4501 } 4502 } 4503 4504 /* Stop all the timers */ 4505 tcp_timers_stop(tcp); 4506 4507 if (tcp->tcp_state == TCPS_LISTEN) { 4508 if (tcp->tcp_ip_addr_cache) { 4509 kmem_free((void *)tcp->tcp_ip_addr_cache, 4510 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 4511 tcp->tcp_ip_addr_cache = NULL; 4512 } 4513 } 4514 mutex_enter(&tcp->tcp_non_sq_lock); 4515 if (tcp->tcp_flow_stopped) 4516 tcp_clrqfull(tcp); 4517 mutex_exit(&tcp->tcp_non_sq_lock); 4518 4519 tcp_bind_hash_remove(tcp); 4520 /* 4521 * If the tcp_time_wait_collector (which runs outside the squeue) 4522 * is trying to remove this tcp from the time wait list, we will 4523 * block in tcp_time_wait_remove while trying to acquire the 4524 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 4525 * requires the ipcl_hash_remove to be ordered after the 4526 * tcp_time_wait_remove for the refcnt checks to work correctly. 4527 */ 4528 if (tcp->tcp_state == TCPS_TIME_WAIT) 4529 (void) tcp_time_wait_remove(tcp, NULL); 4530 CL_INET_DISCONNECT(tcp); 4531 ipcl_hash_remove(connp); 4532 4533 /* 4534 * Delete the cached ire in conn_ire_cache and also mark 4535 * the conn as CONDEMNED 4536 */ 4537 mutex_enter(&connp->conn_lock); 4538 connp->conn_state_flags |= CONN_CONDEMNED; 4539 ire = connp->conn_ire_cache; 4540 connp->conn_ire_cache = NULL; 4541 mutex_exit(&connp->conn_lock); 4542 if (ire != NULL) 4543 IRE_REFRELE_NOTR(ire); 4544 4545 /* Need to cleanup any pending ioctls */ 4546 ASSERT(tcp->tcp_time_wait_next == NULL); 4547 ASSERT(tcp->tcp_time_wait_prev == NULL); 4548 ASSERT(tcp->tcp_time_wait_expire == 0); 4549 tcp->tcp_state = TCPS_CLOSED; 4550 4551 /* Release any SSL context */ 4552 if (tcp->tcp_kssl_ent != NULL) { 4553 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 4554 tcp->tcp_kssl_ent = NULL; 4555 } 4556 if (tcp->tcp_kssl_ctx != NULL) { 4557 kssl_release_ctx(tcp->tcp_kssl_ctx); 4558 tcp->tcp_kssl_ctx = NULL; 4559 } 4560 tcp->tcp_kssl_pending = B_FALSE; 4561 4562 tcp_ipsec_cleanup(tcp); 4563 } 4564 4565 /* 4566 * tcp is dying (called from ipcl_conn_destroy and error cases). 4567 * Free the tcp_t in either case. 4568 */ 4569 void 4570 tcp_free(tcp_t *tcp) 4571 { 4572 mblk_t *mp; 4573 ip6_pkt_t *ipp; 4574 4575 ASSERT(tcp != NULL); 4576 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 4577 4578 tcp->tcp_rq = NULL; 4579 tcp->tcp_wq = NULL; 4580 4581 tcp_close_mpp(&tcp->tcp_xmit_head); 4582 tcp_close_mpp(&tcp->tcp_reass_head); 4583 if (tcp->tcp_rcv_list != NULL) { 4584 /* Free b_next chain */ 4585 tcp_close_mpp(&tcp->tcp_rcv_list); 4586 } 4587 if ((mp = tcp->tcp_urp_mp) != NULL) { 4588 freemsg(mp); 4589 } 4590 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 4591 freemsg(mp); 4592 } 4593 4594 if (tcp->tcp_fused_sigurg_mp != NULL) { 4595 freeb(tcp->tcp_fused_sigurg_mp); 4596 tcp->tcp_fused_sigurg_mp = NULL; 4597 } 4598 4599 if (tcp->tcp_sack_info != NULL) { 4600 if (tcp->tcp_notsack_list != NULL) { 4601 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 4602 } 4603 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 4604 } 4605 4606 if (tcp->tcp_hopopts != NULL) { 4607 mi_free(tcp->tcp_hopopts); 4608 tcp->tcp_hopopts = NULL; 4609 tcp->tcp_hopoptslen = 0; 4610 } 4611 ASSERT(tcp->tcp_hopoptslen == 0); 4612 if (tcp->tcp_dstopts != NULL) { 4613 mi_free(tcp->tcp_dstopts); 4614 tcp->tcp_dstopts = NULL; 4615 tcp->tcp_dstoptslen = 0; 4616 } 4617 ASSERT(tcp->tcp_dstoptslen == 0); 4618 if (tcp->tcp_rtdstopts != NULL) { 4619 mi_free(tcp->tcp_rtdstopts); 4620 tcp->tcp_rtdstopts = NULL; 4621 tcp->tcp_rtdstoptslen = 0; 4622 } 4623 ASSERT(tcp->tcp_rtdstoptslen == 0); 4624 if (tcp->tcp_rthdr != NULL) { 4625 mi_free(tcp->tcp_rthdr); 4626 tcp->tcp_rthdr = NULL; 4627 tcp->tcp_rthdrlen = 0; 4628 } 4629 ASSERT(tcp->tcp_rthdrlen == 0); 4630 4631 ipp = &tcp->tcp_sticky_ipp; 4632 if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 4633 IPPF_RTHDR)) 4634 ip6_pkt_free(ipp); 4635 4636 /* 4637 * Free memory associated with the tcp/ip header template. 4638 */ 4639 4640 if (tcp->tcp_iphc != NULL) 4641 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4642 4643 /* 4644 * Following is really a blowing away a union. 4645 * It happens to have exactly two members of identical size 4646 * the following code is enough. 4647 */ 4648 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 4649 4650 if (tcp->tcp_tracebuf != NULL) { 4651 kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 4652 tcp->tcp_tracebuf = NULL; 4653 } 4654 } 4655 4656 4657 /* 4658 * Put a connection confirmation message upstream built from the 4659 * address information within 'iph' and 'tcph'. Report our success or failure. 4660 */ 4661 static boolean_t 4662 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp, 4663 mblk_t **defermp) 4664 { 4665 sin_t sin; 4666 sin6_t sin6; 4667 mblk_t *mp; 4668 char *optp = NULL; 4669 int optlen = 0; 4670 cred_t *cr; 4671 4672 if (defermp != NULL) 4673 *defermp = NULL; 4674 4675 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 4676 /* 4677 * Return in T_CONN_CON results of option negotiation through 4678 * the T_CONN_REQ. Note: If there is an real end-to-end option 4679 * negotiation, then what is received from remote end needs 4680 * to be taken into account but there is no such thing (yet?) 4681 * in our TCP/IP. 4682 * Note: We do not use mi_offset_param() here as 4683 * tcp_opts_conn_req contents do not directly come from 4684 * an application and are either generated in kernel or 4685 * from user input that was already verified. 4686 */ 4687 mp = tcp->tcp_conn.tcp_opts_conn_req; 4688 optp = (char *)(mp->b_rptr + 4689 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4690 optlen = (int) 4691 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4692 } 4693 4694 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4695 ipha_t *ipha = (ipha_t *)iphdr; 4696 4697 /* packet is IPv4 */ 4698 if (tcp->tcp_family == AF_INET) { 4699 sin = sin_null; 4700 sin.sin_addr.s_addr = ipha->ipha_src; 4701 sin.sin_port = *(uint16_t *)tcph->th_lport; 4702 sin.sin_family = AF_INET; 4703 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4704 (int)sizeof (sin_t), optp, optlen); 4705 } else { 4706 sin6 = sin6_null; 4707 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4708 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4709 sin6.sin6_family = AF_INET6; 4710 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4711 (int)sizeof (sin6_t), optp, optlen); 4712 4713 } 4714 } else { 4715 ip6_t *ip6h = (ip6_t *)iphdr; 4716 4717 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4718 ASSERT(tcp->tcp_family == AF_INET6); 4719 sin6 = sin6_null; 4720 sin6.sin6_addr = ip6h->ip6_src; 4721 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4722 sin6.sin6_family = AF_INET6; 4723 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4724 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4725 (int)sizeof (sin6_t), optp, optlen); 4726 } 4727 4728 if (!mp) 4729 return (B_FALSE); 4730 4731 if ((cr = DB_CRED(idmp)) != NULL) { 4732 mblk_setcred(mp, cr); 4733 DB_CPID(mp) = DB_CPID(idmp); 4734 } 4735 4736 if (defermp == NULL) 4737 putnext(tcp->tcp_rq, mp); 4738 else 4739 *defermp = mp; 4740 4741 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4742 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4743 return (B_TRUE); 4744 } 4745 4746 /* 4747 * Defense for the SYN attack - 4748 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 4749 * one from the list of droppable eagers. This list is a subset of q0. 4750 * see comments before the definition of MAKE_DROPPABLE(). 4751 * 2. Don't drop a SYN request before its first timeout. This gives every 4752 * request at least til the first timeout to complete its 3-way handshake. 4753 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4754 * requests currently on the queue that has timed out. This will be used 4755 * as an indicator of whether an attack is under way, so that appropriate 4756 * actions can be taken. (It's incremented in tcp_timer() and decremented 4757 * either when eager goes into ESTABLISHED, or gets freed up.) 4758 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4759 * # of timeout drops back to <= q0len/32 => SYN alert off 4760 */ 4761 static boolean_t 4762 tcp_drop_q0(tcp_t *tcp) 4763 { 4764 tcp_t *eager; 4765 mblk_t *mp; 4766 tcp_stack_t *tcps = tcp->tcp_tcps; 4767 4768 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4769 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4770 4771 /* Pick oldest eager from the list of droppable eagers */ 4772 eager = tcp->tcp_eager_prev_drop_q0; 4773 4774 /* If list is empty. return B_FALSE */ 4775 if (eager == tcp) { 4776 return (B_FALSE); 4777 } 4778 4779 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 4780 if ((mp = allocb(0, BPRI_HI)) == NULL) 4781 return (B_FALSE); 4782 4783 /* 4784 * Take this eager out from the list of droppable eagers since we are 4785 * going to drop it. 4786 */ 4787 MAKE_UNDROPPABLE(eager); 4788 4789 if (tcp->tcp_debug) { 4790 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4791 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4792 " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, 4793 tcp->tcp_conn_req_cnt_q0, 4794 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4795 } 4796 4797 BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop); 4798 4799 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 4800 CONN_INC_REF(eager->tcp_connp); 4801 4802 /* Mark the IRE created for this SYN request temporary */ 4803 tcp_ip_ire_mark_advice(eager); 4804 squeue_fill(eager->tcp_connp->conn_sqp, mp, 4805 tcp_clean_death_wrapper, eager->tcp_connp, SQTAG_TCP_DROP_Q0); 4806 4807 return (B_TRUE); 4808 } 4809 4810 int 4811 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4812 tcph_t *tcph, uint_t ipvers, mblk_t *idmp) 4813 { 4814 tcp_t *ltcp = lconnp->conn_tcp; 4815 tcp_t *tcp = connp->conn_tcp; 4816 mblk_t *tpi_mp; 4817 ipha_t *ipha; 4818 ip6_t *ip6h; 4819 sin6_t sin6; 4820 in6_addr_t v6dst; 4821 int err; 4822 int ifindex = 0; 4823 cred_t *cr; 4824 tcp_stack_t *tcps = tcp->tcp_tcps; 4825 4826 if (ipvers == IPV4_VERSION) { 4827 ipha = (ipha_t *)mp->b_rptr; 4828 4829 connp->conn_send = ip_output; 4830 connp->conn_recv = tcp_input; 4831 4832 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4833 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4834 4835 sin6 = sin6_null; 4836 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4837 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst); 4838 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4839 sin6.sin6_family = AF_INET6; 4840 sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst, 4841 lconnp->conn_zoneid, tcps->tcps_netstack); 4842 if (tcp->tcp_recvdstaddr) { 4843 sin6_t sin6d; 4844 4845 sin6d = sin6_null; 4846 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4847 &sin6d.sin6_addr); 4848 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4849 sin6d.sin6_family = AF_INET; 4850 tpi_mp = mi_tpi_extconn_ind(NULL, 4851 (char *)&sin6d, sizeof (sin6_t), 4852 (char *)&tcp, 4853 (t_scalar_t)sizeof (intptr_t), 4854 (char *)&sin6d, sizeof (sin6_t), 4855 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4856 } else { 4857 tpi_mp = mi_tpi_conn_ind(NULL, 4858 (char *)&sin6, sizeof (sin6_t), 4859 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4860 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4861 } 4862 } else { 4863 ip6h = (ip6_t *)mp->b_rptr; 4864 4865 connp->conn_send = ip_output_v6; 4866 connp->conn_recv = tcp_input; 4867 4868 connp->conn_srcv6 = ip6h->ip6_dst; 4869 connp->conn_remv6 = ip6h->ip6_src; 4870 4871 /* db_cksumstuff is set at ip_fanout_tcp_v6 */ 4872 ifindex = (int)DB_CKSUMSTUFF(mp); 4873 DB_CKSUMSTUFF(mp) = 0; 4874 4875 sin6 = sin6_null; 4876 sin6.sin6_addr = ip6h->ip6_src; 4877 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4878 sin6.sin6_family = AF_INET6; 4879 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4880 sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst, 4881 lconnp->conn_zoneid, tcps->tcps_netstack); 4882 4883 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4884 /* Pass up the scope_id of remote addr */ 4885 sin6.sin6_scope_id = ifindex; 4886 } else { 4887 sin6.sin6_scope_id = 0; 4888 } 4889 if (tcp->tcp_recvdstaddr) { 4890 sin6_t sin6d; 4891 4892 sin6d = sin6_null; 4893 sin6.sin6_addr = ip6h->ip6_dst; 4894 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4895 sin6d.sin6_family = AF_INET; 4896 tpi_mp = mi_tpi_extconn_ind(NULL, 4897 (char *)&sin6d, sizeof (sin6_t), 4898 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4899 (char *)&sin6d, sizeof (sin6_t), 4900 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4901 } else { 4902 tpi_mp = mi_tpi_conn_ind(NULL, 4903 (char *)&sin6, sizeof (sin6_t), 4904 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4905 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4906 } 4907 } 4908 4909 if (tpi_mp == NULL) 4910 return (ENOMEM); 4911 4912 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4913 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4914 connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER); 4915 connp->conn_fully_bound = B_FALSE; 4916 4917 if (tcps->tcps_trace) 4918 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 4919 4920 /* Inherit information from the "parent" */ 4921 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4922 tcp->tcp_family = ltcp->tcp_family; 4923 tcp->tcp_wq = ltcp->tcp_wq; 4924 tcp->tcp_rq = ltcp->tcp_rq; 4925 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 4926 tcp->tcp_detached = B_TRUE; 4927 if ((err = tcp_init_values(tcp)) != 0) { 4928 freemsg(tpi_mp); 4929 return (err); 4930 } 4931 4932 if (ipvers == IPV4_VERSION) { 4933 if ((err = tcp_header_init_ipv4(tcp)) != 0) { 4934 freemsg(tpi_mp); 4935 return (err); 4936 } 4937 ASSERT(tcp->tcp_ipha != NULL); 4938 } else { 4939 /* ifindex must be already set */ 4940 ASSERT(ifindex != 0); 4941 4942 if (ltcp->tcp_bound_if != 0) { 4943 /* 4944 * Set newtcp's bound_if equal to 4945 * listener's value. If ifindex is 4946 * not the same as ltcp->tcp_bound_if, 4947 * it must be a packet for the ipmp group 4948 * of interfaces 4949 */ 4950 tcp->tcp_bound_if = ltcp->tcp_bound_if; 4951 } else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4952 tcp->tcp_bound_if = ifindex; 4953 } 4954 4955 tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary; 4956 tcp->tcp_recvifindex = 0; 4957 tcp->tcp_recvhops = 0xffffffffU; 4958 ASSERT(tcp->tcp_ip6h != NULL); 4959 } 4960 4961 tcp->tcp_lport = ltcp->tcp_lport; 4962 4963 if (ltcp->tcp_ipversion == tcp->tcp_ipversion) { 4964 if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) { 4965 /* 4966 * Listener had options of some sort; eager inherits. 4967 * Free up the eager template and allocate one 4968 * of the right size. 4969 */ 4970 if (tcp->tcp_hdr_grown) { 4971 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 4972 } else { 4973 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4974 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 4975 } 4976 tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len, 4977 KM_NOSLEEP); 4978 if (tcp->tcp_iphc == NULL) { 4979 tcp->tcp_iphc_len = 0; 4980 freemsg(tpi_mp); 4981 return (ENOMEM); 4982 } 4983 tcp->tcp_iphc_len = ltcp->tcp_iphc_len; 4984 tcp->tcp_hdr_grown = B_TRUE; 4985 } 4986 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4987 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4988 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4989 tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops; 4990 tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf; 4991 4992 /* 4993 * Copy the IP+TCP header template from listener to eager 4994 */ 4995 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4996 if (tcp->tcp_ipversion == IPV6_VERSION) { 4997 if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt == 4998 IPPROTO_RAW) { 4999 tcp->tcp_ip6h = 5000 (ip6_t *)(tcp->tcp_iphc + 5001 sizeof (ip6i_t)); 5002 } else { 5003 tcp->tcp_ip6h = 5004 (ip6_t *)(tcp->tcp_iphc); 5005 } 5006 tcp->tcp_ipha = NULL; 5007 } else { 5008 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 5009 tcp->tcp_ip6h = NULL; 5010 } 5011 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 5012 tcp->tcp_ip_hdr_len); 5013 } else { 5014 /* 5015 * only valid case when ipversion of listener and 5016 * eager differ is when listener is IPv6 and 5017 * eager is IPv4. 5018 * Eager header template has been initialized to the 5019 * maximum v4 header sizes, which includes space for 5020 * TCP and IP options. 5021 */ 5022 ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) && 5023 (tcp->tcp_ipversion == IPV4_VERSION)); 5024 ASSERT(tcp->tcp_iphc_len >= 5025 TCP_MAX_COMBINED_HEADER_LENGTH); 5026 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5027 /* copy IP header fields individually */ 5028 tcp->tcp_ipha->ipha_ttl = 5029 ltcp->tcp_ip6h->ip6_hops; 5030 bcopy(ltcp->tcp_tcph->th_lport, 5031 tcp->tcp_tcph->th_lport, sizeof (ushort_t)); 5032 } 5033 5034 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 5035 bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport, 5036 sizeof (in_port_t)); 5037 5038 if (ltcp->tcp_lport == 0) { 5039 tcp->tcp_lport = *(in_port_t *)tcph->th_fport; 5040 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, 5041 sizeof (in_port_t)); 5042 } 5043 5044 if (tcp->tcp_ipversion == IPV4_VERSION) { 5045 ASSERT(ipha != NULL); 5046 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 5047 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 5048 5049 /* Source routing option copyover (reverse it) */ 5050 if (tcps->tcps_rev_src_routes) 5051 tcp_opt_reverse(tcp, ipha); 5052 } else { 5053 ASSERT(ip6h != NULL); 5054 tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src; 5055 tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst; 5056 } 5057 5058 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 5059 ASSERT(!tcp->tcp_tconnind_started); 5060 /* 5061 * If the SYN contains a credential, it's a loopback packet; attach 5062 * the credential to the TPI message. 5063 */ 5064 if ((cr = DB_CRED(idmp)) != NULL) { 5065 mblk_setcred(tpi_mp, cr); 5066 DB_CPID(tpi_mp) = DB_CPID(idmp); 5067 } 5068 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 5069 5070 /* Inherit the listener's SSL protection state */ 5071 5072 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 5073 kssl_hold_ent(tcp->tcp_kssl_ent); 5074 tcp->tcp_kssl_pending = B_TRUE; 5075 } 5076 5077 return (0); 5078 } 5079 5080 5081 int 5082 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 5083 tcph_t *tcph, mblk_t *idmp) 5084 { 5085 tcp_t *ltcp = lconnp->conn_tcp; 5086 tcp_t *tcp = connp->conn_tcp; 5087 sin_t sin; 5088 mblk_t *tpi_mp = NULL; 5089 int err; 5090 cred_t *cr; 5091 tcp_stack_t *tcps = tcp->tcp_tcps; 5092 5093 sin = sin_null; 5094 sin.sin_addr.s_addr = ipha->ipha_src; 5095 sin.sin_port = *(uint16_t *)tcph->th_lport; 5096 sin.sin_family = AF_INET; 5097 if (ltcp->tcp_recvdstaddr) { 5098 sin_t sind; 5099 5100 sind = sin_null; 5101 sind.sin_addr.s_addr = ipha->ipha_dst; 5102 sind.sin_port = *(uint16_t *)tcph->th_fport; 5103 sind.sin_family = AF_INET; 5104 tpi_mp = mi_tpi_extconn_ind(NULL, 5105 (char *)&sind, sizeof (sin_t), (char *)&tcp, 5106 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 5107 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5108 } else { 5109 tpi_mp = mi_tpi_conn_ind(NULL, 5110 (char *)&sin, sizeof (sin_t), 5111 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 5112 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5113 } 5114 5115 if (tpi_mp == NULL) { 5116 return (ENOMEM); 5117 } 5118 5119 connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER); 5120 connp->conn_send = ip_output; 5121 connp->conn_recv = tcp_input; 5122 connp->conn_fully_bound = B_FALSE; 5123 5124 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 5125 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 5126 connp->conn_fport = *(uint16_t *)tcph->th_lport; 5127 connp->conn_lport = *(uint16_t *)tcph->th_fport; 5128 5129 if (tcps->tcps_trace) { 5130 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 5131 } 5132 5133 /* Inherit information from the "parent" */ 5134 tcp->tcp_ipversion = ltcp->tcp_ipversion; 5135 tcp->tcp_family = ltcp->tcp_family; 5136 tcp->tcp_wq = ltcp->tcp_wq; 5137 tcp->tcp_rq = ltcp->tcp_rq; 5138 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 5139 tcp->tcp_detached = B_TRUE; 5140 if ((err = tcp_init_values(tcp)) != 0) { 5141 freemsg(tpi_mp); 5142 return (err); 5143 } 5144 5145 /* 5146 * Let's make sure that eager tcp template has enough space to 5147 * copy IPv4 listener's tcp template. Since the conn_t structure is 5148 * preserved and tcp_iphc_len is also preserved, an eager conn_t may 5149 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or 5150 * more (in case of re-allocation of conn_t with tcp-IPv6 template with 5151 * extension headers or with ip6i_t struct). Note that bcopy() below 5152 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_ 5153 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener. 5154 */ 5155 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 5156 ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH); 5157 5158 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 5159 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 5160 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5161 tcp->tcp_ttl = ltcp->tcp_ttl; 5162 tcp->tcp_tos = ltcp->tcp_tos; 5163 5164 /* Copy the IP+TCP header template from listener to eager */ 5165 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 5166 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 5167 tcp->tcp_ip6h = NULL; 5168 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 5169 tcp->tcp_ip_hdr_len); 5170 5171 /* Initialize the IP addresses and Ports */ 5172 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 5173 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 5174 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 5175 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t)); 5176 5177 /* Source routing option copyover (reverse it) */ 5178 if (tcps->tcps_rev_src_routes) 5179 tcp_opt_reverse(tcp, ipha); 5180 5181 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 5182 ASSERT(!tcp->tcp_tconnind_started); 5183 5184 /* 5185 * If the SYN contains a credential, it's a loopback packet; attach 5186 * the credential to the TPI message. 5187 */ 5188 if ((cr = DB_CRED(idmp)) != NULL) { 5189 mblk_setcred(tpi_mp, cr); 5190 DB_CPID(tpi_mp) = DB_CPID(idmp); 5191 } 5192 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 5193 5194 /* Inherit the listener's SSL protection state */ 5195 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 5196 kssl_hold_ent(tcp->tcp_kssl_ent); 5197 tcp->tcp_kssl_pending = B_TRUE; 5198 } 5199 5200 return (0); 5201 } 5202 5203 /* 5204 * sets up conn for ipsec. 5205 * if the first mblk is M_CTL it is consumed and mpp is updated. 5206 * in case of error mpp is freed. 5207 */ 5208 conn_t * 5209 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp) 5210 { 5211 conn_t *connp = tcp->tcp_connp; 5212 conn_t *econnp; 5213 squeue_t *new_sqp; 5214 mblk_t *first_mp = *mpp; 5215 mblk_t *mp = *mpp; 5216 boolean_t mctl_present = B_FALSE; 5217 uint_t ipvers; 5218 5219 econnp = tcp_get_conn(sqp, tcp->tcp_tcps); 5220 if (econnp == NULL) { 5221 freemsg(first_mp); 5222 return (NULL); 5223 } 5224 if (DB_TYPE(mp) == M_CTL) { 5225 if (mp->b_cont == NULL || 5226 mp->b_cont->b_datap->db_type != M_DATA) { 5227 freemsg(first_mp); 5228 return (NULL); 5229 } 5230 mp = mp->b_cont; 5231 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) { 5232 freemsg(first_mp); 5233 return (NULL); 5234 } 5235 5236 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5237 first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 5238 mctl_present = B_TRUE; 5239 } else { 5240 ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY); 5241 mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 5242 } 5243 5244 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5245 DB_CKSUMSTART(mp) = 0; 5246 5247 ASSERT(OK_32PTR(mp->b_rptr)); 5248 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5249 if (ipvers == IPV4_VERSION) { 5250 uint16_t *up; 5251 uint32_t ports; 5252 ipha_t *ipha; 5253 5254 ipha = (ipha_t *)mp->b_rptr; 5255 up = (uint16_t *)((uchar_t *)ipha + 5256 IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET); 5257 ports = *(uint32_t *)up; 5258 IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP, 5259 ipha->ipha_dst, ipha->ipha_src, ports); 5260 } else { 5261 uint16_t *up; 5262 uint32_t ports; 5263 uint16_t ip_hdr_len; 5264 uint8_t *nexthdrp; 5265 ip6_t *ip6h; 5266 tcph_t *tcph; 5267 5268 ip6h = (ip6_t *)mp->b_rptr; 5269 if (ip6h->ip6_nxt == IPPROTO_TCP) { 5270 ip_hdr_len = IPV6_HDR_LEN; 5271 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len, 5272 &nexthdrp) || *nexthdrp != IPPROTO_TCP) { 5273 CONN_DEC_REF(econnp); 5274 freemsg(first_mp); 5275 return (NULL); 5276 } 5277 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5278 up = (uint16_t *)tcph->th_lport; 5279 ports = *(uint32_t *)up; 5280 IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP, 5281 ip6h->ip6_dst, ip6h->ip6_src, ports); 5282 } 5283 5284 /* 5285 * The caller already ensured that there is a sqp present. 5286 */ 5287 econnp->conn_sqp = new_sqp; 5288 5289 if (connp->conn_policy != NULL) { 5290 ipsec_in_t *ii; 5291 ii = (ipsec_in_t *)(first_mp->b_rptr); 5292 ASSERT(ii->ipsec_in_policy == NULL); 5293 IPPH_REFHOLD(connp->conn_policy); 5294 ii->ipsec_in_policy = connp->conn_policy; 5295 5296 first_mp->b_datap->db_type = IPSEC_POLICY_SET; 5297 if (!ip_bind_ipsec_policy_set(econnp, first_mp)) { 5298 CONN_DEC_REF(econnp); 5299 freemsg(first_mp); 5300 return (NULL); 5301 } 5302 } 5303 5304 if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) { 5305 CONN_DEC_REF(econnp); 5306 freemsg(first_mp); 5307 return (NULL); 5308 } 5309 5310 /* 5311 * If we know we have some policy, pass the "IPSEC" 5312 * options size TCP uses this adjust the MSS. 5313 */ 5314 econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp); 5315 if (mctl_present) { 5316 freeb(first_mp); 5317 *mpp = mp; 5318 } 5319 5320 return (econnp); 5321 } 5322 5323 /* 5324 * tcp_get_conn/tcp_free_conn 5325 * 5326 * tcp_get_conn is used to get a clean tcp connection structure. 5327 * It tries to reuse the connections put on the freelist by the 5328 * time_wait_collector failing which it goes to kmem_cache. This 5329 * way has two benefits compared to just allocating from and 5330 * freeing to kmem_cache. 5331 * 1) The time_wait_collector can free (which includes the cleanup) 5332 * outside the squeue. So when the interrupt comes, we have a clean 5333 * connection sitting in the freelist. Obviously, this buys us 5334 * performance. 5335 * 5336 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request 5337 * has multiple disadvantages - tying up the squeue during alloc, and the 5338 * fact that IPSec policy initialization has to happen here which 5339 * requires us sending a M_CTL and checking for it i.e. real ugliness. 5340 * But allocating the conn/tcp in IP land is also not the best since 5341 * we can't check the 'q' and 'q0' which are protected by squeue and 5342 * blindly allocate memory which might have to be freed here if we are 5343 * not allowed to accept the connection. By using the freelist and 5344 * putting the conn/tcp back in freelist, we don't pay a penalty for 5345 * allocating memory without checking 'q/q0' and freeing it if we can't 5346 * accept the connection. 5347 * 5348 * Care should be taken to put the conn back in the same squeue's freelist 5349 * from which it was allocated. Best results are obtained if conn is 5350 * allocated from listener's squeue and freed to the same. Time wait 5351 * collector will free up the freelist is the connection ends up sitting 5352 * there for too long. 5353 */ 5354 void * 5355 tcp_get_conn(void *arg, tcp_stack_t *tcps) 5356 { 5357 tcp_t *tcp = NULL; 5358 conn_t *connp = NULL; 5359 squeue_t *sqp = (squeue_t *)arg; 5360 tcp_squeue_priv_t *tcp_time_wait; 5361 netstack_t *ns; 5362 5363 tcp_time_wait = 5364 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 5365 5366 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 5367 tcp = tcp_time_wait->tcp_free_list; 5368 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 5369 if (tcp != NULL) { 5370 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 5371 tcp_time_wait->tcp_free_list_cnt--; 5372 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5373 tcp->tcp_time_wait_next = NULL; 5374 connp = tcp->tcp_connp; 5375 connp->conn_flags |= IPCL_REUSED; 5376 5377 ASSERT(tcp->tcp_tcps == NULL); 5378 ASSERT(connp->conn_netstack == NULL); 5379 ns = tcps->tcps_netstack; 5380 netstack_hold(ns); 5381 connp->conn_netstack = ns; 5382 tcp->tcp_tcps = tcps; 5383 TCPS_REFHOLD(tcps); 5384 ipcl_globalhash_insert(connp); 5385 return ((void *)connp); 5386 } 5387 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5388 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 5389 tcps->tcps_netstack)) == NULL) 5390 return (NULL); 5391 tcp = connp->conn_tcp; 5392 tcp->tcp_tcps = tcps; 5393 TCPS_REFHOLD(tcps); 5394 return ((void *)connp); 5395 } 5396 5397 /* 5398 * Update the cached label for the given tcp_t. This should be called once per 5399 * connection, and before any packets are sent or tcp_process_options is 5400 * invoked. Returns B_FALSE if the correct label could not be constructed. 5401 */ 5402 static boolean_t 5403 tcp_update_label(tcp_t *tcp, const cred_t *cr) 5404 { 5405 conn_t *connp = tcp->tcp_connp; 5406 5407 if (tcp->tcp_ipversion == IPV4_VERSION) { 5408 uchar_t optbuf[IP_MAX_OPT_LENGTH]; 5409 int added; 5410 5411 if (tsol_compute_label(cr, tcp->tcp_remote, optbuf, 5412 connp->conn_mac_exempt, 5413 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5414 return (B_FALSE); 5415 5416 added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len); 5417 if (added == -1) 5418 return (B_FALSE); 5419 tcp->tcp_hdr_len += added; 5420 tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added); 5421 tcp->tcp_ip_hdr_len += added; 5422 if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) { 5423 tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3; 5424 added = tsol_prepend_option(optbuf, tcp->tcp_ipha, 5425 tcp->tcp_hdr_len); 5426 if (added == -1) 5427 return (B_FALSE); 5428 tcp->tcp_hdr_len += added; 5429 tcp->tcp_tcph = (tcph_t *) 5430 ((uchar_t *)tcp->tcp_tcph + added); 5431 tcp->tcp_ip_hdr_len += added; 5432 } 5433 } else { 5434 uchar_t optbuf[TSOL_MAX_IPV6_OPTION]; 5435 5436 if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf, 5437 connp->conn_mac_exempt, 5438 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5439 return (B_FALSE); 5440 if (tsol_update_sticky(&tcp->tcp_sticky_ipp, 5441 &tcp->tcp_label_len, optbuf) != 0) 5442 return (B_FALSE); 5443 if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0) 5444 return (B_FALSE); 5445 } 5446 5447 connp->conn_ulp_labeled = 1; 5448 5449 return (B_TRUE); 5450 } 5451 5452 /* BEGIN CSTYLED */ 5453 /* 5454 * 5455 * The sockfs ACCEPT path: 5456 * ======================= 5457 * 5458 * The eager is now established in its own perimeter as soon as SYN is 5459 * received in tcp_conn_request(). When sockfs receives conn_ind, it 5460 * completes the accept processing on the acceptor STREAM. The sending 5461 * of conn_ind part is common for both sockfs listener and a TLI/XTI 5462 * listener but a TLI/XTI listener completes the accept processing 5463 * on the listener perimeter. 5464 * 5465 * Common control flow for 3 way handshake: 5466 * ---------------------------------------- 5467 * 5468 * incoming SYN (listener perimeter) -> tcp_rput_data() 5469 * -> tcp_conn_request() 5470 * 5471 * incoming SYN-ACK-ACK (eager perim) -> tcp_rput_data() 5472 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 5473 * 5474 * Sockfs ACCEPT Path: 5475 * ------------------- 5476 * 5477 * open acceptor stream (tcp_open allocates tcp_wput_accept() 5478 * as STREAM entry point) 5479 * 5480 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept() 5481 * 5482 * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager 5483 * association (we are not behind eager's squeue but sockfs is protecting us 5484 * and no one knows about this stream yet. The STREAMS entry point q->q_info 5485 * is changed to point at tcp_wput(). 5486 * 5487 * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to 5488 * listener (done on listener's perimeter). 5489 * 5490 * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish 5491 * accept. 5492 * 5493 * TLI/XTI client ACCEPT path: 5494 * --------------------------- 5495 * 5496 * soaccept() sends T_CONN_RES on the listener STREAM. 5497 * 5498 * tcp_accept() -> tcp_accept_swap() complete the processing and send 5499 * the bind_mp to eager perimeter to finish accept (tcp_rput_other()). 5500 * 5501 * Locks: 5502 * ====== 5503 * 5504 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 5505 * and listeners->tcp_eager_next_q. 5506 * 5507 * Referencing: 5508 * ============ 5509 * 5510 * 1) We start out in tcp_conn_request by eager placing a ref on 5511 * listener and listener adding eager to listeners->tcp_eager_next_q0. 5512 * 5513 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 5514 * doing so we place a ref on the eager. This ref is finally dropped at the 5515 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 5516 * reference is dropped by the squeue framework. 5517 * 5518 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 5519 * 5520 * The reference must be released by the same entity that added the reference 5521 * In the above scheme, the eager is the entity that adds and releases the 5522 * references. Note that tcp_accept_finish executes in the squeue of the eager 5523 * (albeit after it is attached to the acceptor stream). Though 1. executes 5524 * in the listener's squeue, the eager is nascent at this point and the 5525 * reference can be considered to have been added on behalf of the eager. 5526 * 5527 * Eager getting a Reset or listener closing: 5528 * ========================================== 5529 * 5530 * Once the listener and eager are linked, the listener never does the unlink. 5531 * If the listener needs to close, tcp_eager_cleanup() is called which queues 5532 * a message on all eager perimeter. The eager then does the unlink, clears 5533 * any pointers to the listener's queue and drops the reference to the 5534 * listener. The listener waits in tcp_close outside the squeue until its 5535 * refcount has dropped to 1. This ensures that the listener has waited for 5536 * all eagers to clear their association with the listener. 5537 * 5538 * Similarly, if eager decides to go away, it can unlink itself and close. 5539 * When the T_CONN_RES comes down, we check if eager has closed. Note that 5540 * the reference to eager is still valid because of the extra ref we put 5541 * in tcp_send_conn_ind. 5542 * 5543 * Listener can always locate the eager under the protection 5544 * of the listener->tcp_eager_lock, and then do a refhold 5545 * on the eager during the accept processing. 5546 * 5547 * The acceptor stream accesses the eager in the accept processing 5548 * based on the ref placed on eager before sending T_conn_ind. 5549 * The only entity that can negate this refhold is a listener close 5550 * which is mutually exclusive with an active acceptor stream. 5551 * 5552 * Eager's reference on the listener 5553 * =================================== 5554 * 5555 * If the accept happens (even on a closed eager) the eager drops its 5556 * reference on the listener at the start of tcp_accept_finish. If the 5557 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 5558 * the reference is dropped in tcp_closei_local. If the listener closes, 5559 * the reference is dropped in tcp_eager_kill. In all cases the reference 5560 * is dropped while executing in the eager's context (squeue). 5561 */ 5562 /* END CSTYLED */ 5563 5564 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 5565 5566 /* 5567 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 5568 * tcp_rput_data will not see any SYN packets. 5569 */ 5570 /* ARGSUSED */ 5571 void 5572 tcp_conn_request(void *arg, mblk_t *mp, void *arg2) 5573 { 5574 tcph_t *tcph; 5575 uint32_t seg_seq; 5576 tcp_t *eager; 5577 uint_t ipvers; 5578 ipha_t *ipha; 5579 ip6_t *ip6h; 5580 int err; 5581 conn_t *econnp = NULL; 5582 squeue_t *new_sqp; 5583 mblk_t *mp1; 5584 uint_t ip_hdr_len; 5585 conn_t *connp = (conn_t *)arg; 5586 tcp_t *tcp = connp->conn_tcp; 5587 cred_t *credp; 5588 tcp_stack_t *tcps = tcp->tcp_tcps; 5589 ip_stack_t *ipst; 5590 5591 if (tcp->tcp_state != TCPS_LISTEN) 5592 goto error2; 5593 5594 ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0); 5595 5596 mutex_enter(&tcp->tcp_eager_lock); 5597 if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) { 5598 mutex_exit(&tcp->tcp_eager_lock); 5599 TCP_STAT(tcps, tcp_listendrop); 5600 BUMP_MIB(&tcps->tcps_mib, tcpListenDrop); 5601 if (tcp->tcp_debug) { 5602 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 5603 "tcp_conn_request: listen backlog (max=%d) " 5604 "overflow (%d pending) on %s", 5605 tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q, 5606 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5607 } 5608 goto error2; 5609 } 5610 5611 if (tcp->tcp_conn_req_cnt_q0 >= 5612 tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { 5613 /* 5614 * Q0 is full. Drop a pending half-open req from the queue 5615 * to make room for the new SYN req. Also mark the time we 5616 * drop a SYN. 5617 * 5618 * A more aggressive defense against SYN attack will 5619 * be to set the "tcp_syn_defense" flag now. 5620 */ 5621 TCP_STAT(tcps, tcp_listendropq0); 5622 tcp->tcp_last_rcv_lbolt = lbolt64; 5623 if (!tcp_drop_q0(tcp)) { 5624 mutex_exit(&tcp->tcp_eager_lock); 5625 BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0); 5626 if (tcp->tcp_debug) { 5627 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 5628 "tcp_conn_request: listen half-open queue " 5629 "(max=%d) full (%d pending) on %s", 5630 tcps->tcps_conn_req_max_q0, 5631 tcp->tcp_conn_req_cnt_q0, 5632 tcp_display(tcp, NULL, 5633 DISP_PORT_ONLY)); 5634 } 5635 goto error2; 5636 } 5637 } 5638 mutex_exit(&tcp->tcp_eager_lock); 5639 5640 /* 5641 * IP adds STRUIO_EAGER and ensures that the received packet is 5642 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6 5643 * link local address. If IPSec is enabled, db_struioflag has 5644 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER); 5645 * otherwise an error case if neither of them is set. 5646 */ 5647 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5648 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5649 DB_CKSUMSTART(mp) = 0; 5650 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5651 econnp = (conn_t *)tcp_get_conn(arg2, tcps); 5652 if (econnp == NULL) 5653 goto error2; 5654 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5655 econnp->conn_sqp = new_sqp; 5656 } else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) { 5657 /* 5658 * mp is updated in tcp_get_ipsec_conn(). 5659 */ 5660 econnp = tcp_get_ipsec_conn(tcp, arg2, &mp); 5661 if (econnp == NULL) { 5662 /* 5663 * mp freed by tcp_get_ipsec_conn. 5664 */ 5665 return; 5666 } 5667 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5668 } else { 5669 goto error2; 5670 } 5671 5672 ASSERT(DB_TYPE(mp) == M_DATA); 5673 5674 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5675 ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION); 5676 ASSERT(OK_32PTR(mp->b_rptr)); 5677 if (ipvers == IPV4_VERSION) { 5678 ipha = (ipha_t *)mp->b_rptr; 5679 ip_hdr_len = IPH_HDR_LENGTH(ipha); 5680 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5681 } else { 5682 ip6h = (ip6_t *)mp->b_rptr; 5683 ip_hdr_len = ip_hdr_length_v6(mp, ip6h); 5684 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5685 } 5686 5687 if (tcp->tcp_family == AF_INET) { 5688 ASSERT(ipvers == IPV4_VERSION); 5689 err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp); 5690 } else { 5691 err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp); 5692 } 5693 5694 if (err) 5695 goto error3; 5696 5697 eager = econnp->conn_tcp; 5698 5699 /* Inherit various TCP parameters from the listener */ 5700 eager->tcp_naglim = tcp->tcp_naglim; 5701 eager->tcp_first_timer_threshold = 5702 tcp->tcp_first_timer_threshold; 5703 eager->tcp_second_timer_threshold = 5704 tcp->tcp_second_timer_threshold; 5705 5706 eager->tcp_first_ctimer_threshold = 5707 tcp->tcp_first_ctimer_threshold; 5708 eager->tcp_second_ctimer_threshold = 5709 tcp->tcp_second_ctimer_threshold; 5710 5711 /* 5712 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics. 5713 * If it does not, the eager's receive window will be set to the 5714 * listener's receive window later in this function. 5715 */ 5716 eager->tcp_rwnd = 0; 5717 5718 /* 5719 * Inherit listener's tcp_init_cwnd. Need to do this before 5720 * calling tcp_process_options() where tcp_mss_set() is called 5721 * to set the initial cwnd. 5722 */ 5723 eager->tcp_init_cwnd = tcp->tcp_init_cwnd; 5724 5725 /* 5726 * Zones: tcp_adapt_ire() and tcp_send_data() both need the 5727 * zone id before the accept is completed in tcp_wput_accept(). 5728 */ 5729 econnp->conn_zoneid = connp->conn_zoneid; 5730 econnp->conn_allzones = connp->conn_allzones; 5731 5732 /* Copy nexthop information from listener to eager */ 5733 if (connp->conn_nexthop_set) { 5734 econnp->conn_nexthop_set = connp->conn_nexthop_set; 5735 econnp->conn_nexthop_v4 = connp->conn_nexthop_v4; 5736 } 5737 5738 /* 5739 * TSOL: tsol_input_proc() needs the eager's cred before the 5740 * eager is accepted 5741 */ 5742 econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred; 5743 crhold(credp); 5744 5745 /* 5746 * If the caller has the process-wide flag set, then default to MAC 5747 * exempt mode. This allows read-down to unlabeled hosts. 5748 */ 5749 if (getpflags(NET_MAC_AWARE, credp) != 0) 5750 econnp->conn_mac_exempt = B_TRUE; 5751 5752 if (is_system_labeled()) { 5753 cred_t *cr; 5754 5755 if (connp->conn_mlp_type != mlptSingle) { 5756 cr = econnp->conn_peercred = DB_CRED(mp); 5757 if (cr != NULL) 5758 crhold(cr); 5759 else 5760 cr = econnp->conn_cred; 5761 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 5762 econnp, cred_t *, cr) 5763 } else { 5764 cr = econnp->conn_cred; 5765 DTRACE_PROBE2(syn_accept, conn_t *, 5766 econnp, cred_t *, cr) 5767 } 5768 5769 if (!tcp_update_label(eager, cr)) { 5770 DTRACE_PROBE3( 5771 tx__ip__log__error__connrequest__tcp, 5772 char *, "eager connp(1) label on SYN mp(2) failed", 5773 conn_t *, econnp, mblk_t *, mp); 5774 goto error3; 5775 } 5776 } 5777 5778 eager->tcp_hard_binding = B_TRUE; 5779 5780 tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ 5781 TCP_BIND_HASH(eager->tcp_lport)], eager, 0); 5782 5783 CL_INET_CONNECT(eager); 5784 5785 /* 5786 * No need to check for multicast destination since ip will only pass 5787 * up multicasts to those that have expressed interest 5788 * TODO: what about rejecting broadcasts? 5789 * Also check that source is not a multicast or broadcast address. 5790 */ 5791 eager->tcp_state = TCPS_SYN_RCVD; 5792 5793 5794 /* 5795 * There should be no ire in the mp as we are being called after 5796 * receiving the SYN. 5797 */ 5798 ASSERT(tcp_ire_mp(mp) == NULL); 5799 5800 /* 5801 * Adapt our mss, ttl, ... according to information provided in IRE. 5802 */ 5803 5804 if (tcp_adapt_ire(eager, NULL) == 0) { 5805 /* Undo the bind_hash_insert */ 5806 tcp_bind_hash_remove(eager); 5807 goto error3; 5808 } 5809 5810 /* Process all TCP options. */ 5811 tcp_process_options(eager, tcph); 5812 5813 /* Is the other end ECN capable? */ 5814 if (tcps->tcps_ecn_permitted >= 1 && 5815 (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 5816 eager->tcp_ecn_ok = B_TRUE; 5817 } 5818 5819 /* 5820 * listener->tcp_rq->q_hiwat should be the default window size or a 5821 * window size changed via SO_RCVBUF option. First round up the 5822 * eager's tcp_rwnd to the nearest MSS. Then find out the window 5823 * scale option value if needed. Call tcp_rwnd_set() to finish the 5824 * setting. 5825 * 5826 * Note if there is a rpipe metric associated with the remote host, 5827 * we should not inherit receive window size from listener. 5828 */ 5829 eager->tcp_rwnd = MSS_ROUNDUP( 5830 (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat : 5831 eager->tcp_rwnd), eager->tcp_mss); 5832 if (eager->tcp_snd_ws_ok) 5833 tcp_set_ws_value(eager); 5834 /* 5835 * Note that this is the only place tcp_rwnd_set() is called for 5836 * accepting a connection. We need to call it here instead of 5837 * after the 3-way handshake because we need to tell the other 5838 * side our rwnd in the SYN-ACK segment. 5839 */ 5840 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 5841 5842 /* 5843 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ 5844 * via soaccept()->soinheritoptions() which essentially applies 5845 * all the listener options to the new STREAM. The options that we 5846 * need to take care of are: 5847 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST, 5848 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER, 5849 * SO_SNDBUF, SO_RCVBUF. 5850 * 5851 * SO_RCVBUF: tcp_rwnd_set() above takes care of it. 5852 * SO_SNDBUF: Set the tcp_xmit_hiwater for the eager. When 5853 * tcp_maxpsz_set() gets called later from 5854 * tcp_accept_finish(), the option takes effect. 5855 * 5856 */ 5857 /* Set the TCP options */ 5858 eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater; 5859 eager->tcp_dgram_errind = tcp->tcp_dgram_errind; 5860 eager->tcp_oobinline = tcp->tcp_oobinline; 5861 eager->tcp_reuseaddr = tcp->tcp_reuseaddr; 5862 eager->tcp_broadcast = tcp->tcp_broadcast; 5863 eager->tcp_useloopback = tcp->tcp_useloopback; 5864 eager->tcp_dontroute = tcp->tcp_dontroute; 5865 eager->tcp_linger = tcp->tcp_linger; 5866 eager->tcp_lingertime = tcp->tcp_lingertime; 5867 if (tcp->tcp_ka_enabled) 5868 eager->tcp_ka_enabled = 1; 5869 5870 /* Set the IP options */ 5871 econnp->conn_broadcast = connp->conn_broadcast; 5872 econnp->conn_loopback = connp->conn_loopback; 5873 econnp->conn_dontroute = connp->conn_dontroute; 5874 econnp->conn_reuseaddr = connp->conn_reuseaddr; 5875 5876 /* Put a ref on the listener for the eager. */ 5877 CONN_INC_REF(connp); 5878 mutex_enter(&tcp->tcp_eager_lock); 5879 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 5880 eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; 5881 tcp->tcp_eager_next_q0 = eager; 5882 eager->tcp_eager_prev_q0 = tcp; 5883 5884 /* Set tcp_listener before adding it to tcp_conn_fanout */ 5885 eager->tcp_listener = tcp; 5886 eager->tcp_saved_listener = tcp; 5887 5888 /* 5889 * Tag this detached tcp vector for later retrieval 5890 * by our listener client in tcp_accept(). 5891 */ 5892 eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum; 5893 tcp->tcp_conn_req_cnt_q0++; 5894 if (++tcp->tcp_conn_req_seqnum == -1) { 5895 /* 5896 * -1 is "special" and defined in TPI as something 5897 * that should never be used in T_CONN_IND 5898 */ 5899 ++tcp->tcp_conn_req_seqnum; 5900 } 5901 mutex_exit(&tcp->tcp_eager_lock); 5902 5903 if (tcp->tcp_syn_defense) { 5904 /* Don't drop the SYN that comes from a good IP source */ 5905 ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache); 5906 if (addr_cache != NULL && eager->tcp_remote == 5907 addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) { 5908 eager->tcp_dontdrop = B_TRUE; 5909 } 5910 } 5911 5912 /* 5913 * We need to insert the eager in its own perimeter but as soon 5914 * as we do that, we expose the eager to the classifier and 5915 * should not touch any field outside the eager's perimeter. 5916 * So do all the work necessary before inserting the eager 5917 * in its own perimeter. Be optimistic that ipcl_conn_insert() 5918 * will succeed but undo everything if it fails. 5919 */ 5920 seg_seq = ABE32_TO_U32(tcph->th_seq); 5921 eager->tcp_irs = seg_seq; 5922 eager->tcp_rack = seg_seq; 5923 eager->tcp_rnxt = seg_seq + 1; 5924 U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack); 5925 BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens); 5926 eager->tcp_state = TCPS_SYN_RCVD; 5927 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 5928 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 5929 if (mp1 == NULL) { 5930 /* 5931 * Increment the ref count as we are going to 5932 * enqueueing an mp in squeue 5933 */ 5934 CONN_INC_REF(econnp); 5935 goto error; 5936 } 5937 DB_CPID(mp1) = tcp->tcp_cpid; 5938 eager->tcp_cpid = tcp->tcp_cpid; 5939 eager->tcp_open_time = lbolt64; 5940 5941 /* 5942 * We need to start the rto timer. In normal case, we start 5943 * the timer after sending the packet on the wire (or at 5944 * least believing that packet was sent by waiting for 5945 * CALL_IP_WPUT() to return). Since this is the first packet 5946 * being sent on the wire for the eager, our initial tcp_rto 5947 * is at least tcp_rexmit_interval_min which is a fairly 5948 * large value to allow the algorithm to adjust slowly to large 5949 * fluctuations of RTT during first few transmissions. 5950 * 5951 * Starting the timer first and then sending the packet in this 5952 * case shouldn't make much difference since tcp_rexmit_interval_min 5953 * is of the order of several 100ms and starting the timer 5954 * first and then sending the packet will result in difference 5955 * of few micro seconds. 5956 * 5957 * Without this optimization, we are forced to hold the fanout 5958 * lock across the ipcl_bind_insert() and sending the packet 5959 * so that we don't race against an incoming packet (maybe RST) 5960 * for this eager. 5961 * 5962 * It is necessary to acquire an extra reference on the eager 5963 * at this point and hold it until after tcp_send_data() to 5964 * ensure against an eager close race. 5965 */ 5966 5967 CONN_INC_REF(eager->tcp_connp); 5968 5969 TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT); 5970 TCP_TIMER_RESTART(eager, eager->tcp_rto); 5971 5972 5973 /* 5974 * Insert the eager in its own perimeter now. We are ready to deal 5975 * with any packets on eager. 5976 */ 5977 if (eager->tcp_ipversion == IPV4_VERSION) { 5978 if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) { 5979 goto error; 5980 } 5981 } else { 5982 if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) { 5983 goto error; 5984 } 5985 } 5986 5987 /* mark conn as fully-bound */ 5988 econnp->conn_fully_bound = B_TRUE; 5989 5990 /* Send the SYN-ACK */ 5991 tcp_send_data(eager, eager->tcp_wq, mp1); 5992 CONN_DEC_REF(eager->tcp_connp); 5993 freemsg(mp); 5994 5995 return; 5996 error: 5997 freemsg(mp1); 5998 eager->tcp_closemp_used = B_TRUE; 5999 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6000 squeue_fill(econnp->conn_sqp, &eager->tcp_closemp, tcp_eager_kill, 6001 econnp, SQTAG_TCP_CONN_REQ_2); 6002 6003 /* 6004 * If a connection already exists, send the mp to that connections so 6005 * that it can be appropriately dealt with. 6006 */ 6007 ipst = tcps->tcps_netstack->netstack_ip; 6008 6009 if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) { 6010 if (!IPCL_IS_CONNECTED(econnp)) { 6011 /* 6012 * Something bad happened. ipcl_conn_insert() 6013 * failed because a connection already existed 6014 * in connected hash but we can't find it 6015 * anymore (someone blew it away). Just 6016 * free this message and hopefully remote 6017 * will retransmit at which time the SYN can be 6018 * treated as a new connection or dealth with 6019 * a TH_RST if a connection already exists. 6020 */ 6021 CONN_DEC_REF(econnp); 6022 freemsg(mp); 6023 } else { 6024 squeue_fill(econnp->conn_sqp, mp, tcp_input, 6025 econnp, SQTAG_TCP_CONN_REQ_1); 6026 } 6027 } else { 6028 /* Nobody wants this packet */ 6029 freemsg(mp); 6030 } 6031 return; 6032 error3: 6033 CONN_DEC_REF(econnp); 6034 error2: 6035 freemsg(mp); 6036 } 6037 6038 /* 6039 * In an ideal case of vertical partition in NUMA architecture, its 6040 * beneficial to have the listener and all the incoming connections 6041 * tied to the same squeue. The other constraint is that incoming 6042 * connections should be tied to the squeue attached to interrupted 6043 * CPU for obvious locality reason so this leaves the listener to 6044 * be tied to the same squeue. Our only problem is that when listener 6045 * is binding, the CPU that will get interrupted by the NIC whose 6046 * IP address the listener is binding to is not even known. So 6047 * the code below allows us to change that binding at the time the 6048 * CPU is interrupted by virtue of incoming connection's squeue. 6049 * 6050 * This is usefull only in case of a listener bound to a specific IP 6051 * address. For other kind of listeners, they get bound the 6052 * very first time and there is no attempt to rebind them. 6053 */ 6054 void 6055 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2) 6056 { 6057 conn_t *connp = (conn_t *)arg; 6058 squeue_t *sqp = (squeue_t *)arg2; 6059 squeue_t *new_sqp; 6060 uint32_t conn_flags; 6061 6062 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 6063 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 6064 } else { 6065 goto done; 6066 } 6067 6068 if (connp->conn_fanout == NULL) 6069 goto done; 6070 6071 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 6072 mutex_enter(&connp->conn_fanout->connf_lock); 6073 mutex_enter(&connp->conn_lock); 6074 /* 6075 * No one from read or write side can access us now 6076 * except for already queued packets on this squeue. 6077 * But since we haven't changed the squeue yet, they 6078 * can't execute. If they are processed after we have 6079 * changed the squeue, they are sent back to the 6080 * correct squeue down below. 6081 * But a listner close can race with processing of 6082 * incoming SYN. If incoming SYN processing changes 6083 * the squeue then the listener close which is waiting 6084 * to enter the squeue would operate on the wrong 6085 * squeue. Hence we don't change the squeue here unless 6086 * the refcount is exactly the minimum refcount. The 6087 * minimum refcount of 4 is counted as - 1 each for 6088 * TCP and IP, 1 for being in the classifier hash, and 6089 * 1 for the mblk being processed. 6090 */ 6091 6092 if (connp->conn_ref != 4 || 6093 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 6094 mutex_exit(&connp->conn_lock); 6095 mutex_exit(&connp->conn_fanout->connf_lock); 6096 goto done; 6097 } 6098 if (connp->conn_sqp != new_sqp) { 6099 while (connp->conn_sqp != new_sqp) 6100 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 6101 } 6102 6103 do { 6104 conn_flags = connp->conn_flags; 6105 conn_flags |= IPCL_FULLY_BOUND; 6106 (void) cas32(&connp->conn_flags, connp->conn_flags, 6107 conn_flags); 6108 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 6109 6110 mutex_exit(&connp->conn_fanout->connf_lock); 6111 mutex_exit(&connp->conn_lock); 6112 } 6113 6114 done: 6115 if (connp->conn_sqp != sqp) { 6116 CONN_INC_REF(connp); 6117 squeue_fill(connp->conn_sqp, mp, 6118 connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND); 6119 } else { 6120 tcp_conn_request(connp, mp, sqp); 6121 } 6122 } 6123 6124 /* 6125 * Successful connect request processing begins when our client passes 6126 * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes 6127 * our T_OK_ACK reply message upstream. The control flow looks like this: 6128 * upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP 6129 * upstream <- tcp_rput() <- IP 6130 * After various error checks are completed, tcp_connect() lays 6131 * the target address and port into the composite header template, 6132 * preallocates the T_OK_ACK reply message, construct a full 12 byte bind 6133 * request followed by an IRE request, and passes the three mblk message 6134 * down to IP looking like this: 6135 * O_T_BIND_REQ for IP --> IRE req --> T_OK_ACK for our client 6136 * Processing continues in tcp_rput() when we receive the following message: 6137 * T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client 6138 * After consuming the first two mblks, tcp_rput() calls tcp_timer(), 6139 * to fire off the connection request, and then passes the T_OK_ACK mblk 6140 * upstream that we filled in below. There are, of course, numerous 6141 * error conditions along the way which truncate the processing described 6142 * above. 6143 */ 6144 static void 6145 tcp_connect(tcp_t *tcp, mblk_t *mp) 6146 { 6147 sin_t *sin; 6148 sin6_t *sin6; 6149 queue_t *q = tcp->tcp_wq; 6150 struct T_conn_req *tcr; 6151 ipaddr_t *dstaddrp; 6152 in_port_t dstport; 6153 uint_t srcid; 6154 6155 tcr = (struct T_conn_req *)mp->b_rptr; 6156 6157 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6158 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 6159 tcp_err_ack(tcp, mp, TPROTO, 0); 6160 return; 6161 } 6162 6163 /* 6164 * Determine packet type based on type of address passed in 6165 * the request should contain an IPv4 or IPv6 address. 6166 * Make sure that address family matches the type of 6167 * family of the the address passed down 6168 */ 6169 switch (tcr->DEST_length) { 6170 default: 6171 tcp_err_ack(tcp, mp, TBADADDR, 0); 6172 return; 6173 6174 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 6175 /* 6176 * XXX: The check for valid DEST_length was not there 6177 * in earlier releases and some buggy 6178 * TLI apps (e.g Sybase) got away with not feeding 6179 * in sin_zero part of address. 6180 * We allow that bug to keep those buggy apps humming. 6181 * Test suites require the check on DEST_length. 6182 * We construct a new mblk with valid DEST_length 6183 * free the original so the rest of the code does 6184 * not have to keep track of this special shorter 6185 * length address case. 6186 */ 6187 mblk_t *nmp; 6188 struct T_conn_req *ntcr; 6189 sin_t *nsin; 6190 6191 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 6192 tcr->OPT_length, BPRI_HI); 6193 if (nmp == NULL) { 6194 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6195 return; 6196 } 6197 ntcr = (struct T_conn_req *)nmp->b_rptr; 6198 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 6199 ntcr->PRIM_type = T_CONN_REQ; 6200 ntcr->DEST_length = sizeof (sin_t); 6201 ntcr->DEST_offset = sizeof (struct T_conn_req); 6202 6203 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 6204 *nsin = sin_null; 6205 /* Get pointer to shorter address to copy from original mp */ 6206 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6207 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 6208 if (sin == NULL || !OK_32PTR((char *)sin)) { 6209 freemsg(nmp); 6210 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6211 return; 6212 } 6213 nsin->sin_family = sin->sin_family; 6214 nsin->sin_port = sin->sin_port; 6215 nsin->sin_addr = sin->sin_addr; 6216 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 6217 nmp->b_wptr = (uchar_t *)&nsin[1]; 6218 if (tcr->OPT_length != 0) { 6219 ntcr->OPT_length = tcr->OPT_length; 6220 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 6221 bcopy((uchar_t *)tcr + tcr->OPT_offset, 6222 (uchar_t *)ntcr + ntcr->OPT_offset, 6223 tcr->OPT_length); 6224 nmp->b_wptr += tcr->OPT_length; 6225 } 6226 freemsg(mp); /* original mp freed */ 6227 mp = nmp; /* re-initialize original variables */ 6228 tcr = ntcr; 6229 } 6230 /* FALLTHRU */ 6231 6232 case sizeof (sin_t): 6233 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6234 sizeof (sin_t)); 6235 if (sin == NULL || !OK_32PTR((char *)sin)) { 6236 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6237 return; 6238 } 6239 if (tcp->tcp_family != AF_INET || 6240 sin->sin_family != AF_INET) { 6241 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6242 return; 6243 } 6244 if (sin->sin_port == 0) { 6245 tcp_err_ack(tcp, mp, TBADADDR, 0); 6246 return; 6247 } 6248 if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) { 6249 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6250 return; 6251 } 6252 6253 break; 6254 6255 case sizeof (sin6_t): 6256 sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset, 6257 sizeof (sin6_t)); 6258 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 6259 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6260 return; 6261 } 6262 if (tcp->tcp_family != AF_INET6 || 6263 sin6->sin6_family != AF_INET6) { 6264 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6265 return; 6266 } 6267 if (sin6->sin6_port == 0) { 6268 tcp_err_ack(tcp, mp, TBADADDR, 0); 6269 return; 6270 } 6271 break; 6272 } 6273 /* 6274 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 6275 * should key on their sequence number and cut them loose. 6276 */ 6277 6278 /* 6279 * If options passed in, feed it for verification and handling 6280 */ 6281 if (tcr->OPT_length != 0) { 6282 mblk_t *ok_mp; 6283 mblk_t *discon_mp; 6284 mblk_t *conn_opts_mp; 6285 int t_error, sys_error, do_disconnect; 6286 6287 conn_opts_mp = NULL; 6288 6289 if (tcp_conprim_opt_process(tcp, mp, 6290 &do_disconnect, &t_error, &sys_error) < 0) { 6291 if (do_disconnect) { 6292 ASSERT(t_error == 0 && sys_error == 0); 6293 discon_mp = mi_tpi_discon_ind(NULL, 6294 ECONNREFUSED, 0); 6295 if (!discon_mp) { 6296 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6297 TSYSERR, ENOMEM); 6298 return; 6299 } 6300 ok_mp = mi_tpi_ok_ack_alloc(mp); 6301 if (!ok_mp) { 6302 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6303 TSYSERR, ENOMEM); 6304 return; 6305 } 6306 qreply(q, ok_mp); 6307 qreply(q, discon_mp); /* no flush! */ 6308 } else { 6309 ASSERT(t_error != 0); 6310 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 6311 sys_error); 6312 } 6313 return; 6314 } 6315 /* 6316 * Success in setting options, the mp option buffer represented 6317 * by OPT_length/offset has been potentially modified and 6318 * contains results of option processing. We copy it in 6319 * another mp to save it for potentially influencing returning 6320 * it in T_CONN_CONN. 6321 */ 6322 if (tcr->OPT_length != 0) { /* there are resulting options */ 6323 conn_opts_mp = copyb(mp); 6324 if (!conn_opts_mp) { 6325 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6326 TSYSERR, ENOMEM); 6327 return; 6328 } 6329 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 6330 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 6331 /* 6332 * Note: 6333 * These resulting option negotiation can include any 6334 * end-to-end negotiation options but there no such 6335 * thing (yet?) in our TCP/IP. 6336 */ 6337 } 6338 } 6339 6340 /* 6341 * If we're connecting to an IPv4-mapped IPv6 address, we need to 6342 * make sure that the template IP header in the tcp structure is an 6343 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION. We 6344 * need to this before we call tcp_bindi() so that the port lookup 6345 * code will look for ports in the correct port space (IPv4 and 6346 * IPv6 have separate port spaces). 6347 */ 6348 if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION && 6349 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6350 int err = 0; 6351 6352 err = tcp_header_init_ipv4(tcp); 6353 if (err != 0) { 6354 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6355 goto connect_failed; 6356 } 6357 if (tcp->tcp_lport != 0) 6358 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 6359 } 6360 6361 switch (tcp->tcp_state) { 6362 case TCPS_IDLE: 6363 /* 6364 * We support quick connect, refer to comments in 6365 * tcp_connect_*() 6366 */ 6367 /* FALLTHRU */ 6368 case TCPS_BOUND: 6369 case TCPS_LISTEN: 6370 if (tcp->tcp_family == AF_INET6) { 6371 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6372 tcp_connect_ipv6(tcp, mp, 6373 &sin6->sin6_addr, 6374 sin6->sin6_port, sin6->sin6_flowinfo, 6375 sin6->__sin6_src_id, sin6->sin6_scope_id); 6376 return; 6377 } 6378 /* 6379 * Destination adress is mapped IPv6 address. 6380 * Source bound address should be unspecified or 6381 * IPv6 mapped address as well. 6382 */ 6383 if (!IN6_IS_ADDR_UNSPECIFIED( 6384 &tcp->tcp_bound_source_v6) && 6385 !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) { 6386 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, 6387 EADDRNOTAVAIL); 6388 break; 6389 } 6390 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 6391 dstport = sin6->sin6_port; 6392 srcid = sin6->__sin6_src_id; 6393 } else { 6394 dstaddrp = &sin->sin_addr.s_addr; 6395 dstport = sin->sin_port; 6396 srcid = 0; 6397 } 6398 6399 tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid); 6400 return; 6401 default: 6402 mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0); 6403 break; 6404 } 6405 /* 6406 * Note: Code below is the "failure" case 6407 */ 6408 /* return error ack and blow away saved option results if any */ 6409 connect_failed: 6410 if (mp != NULL) 6411 putnext(tcp->tcp_rq, mp); 6412 else { 6413 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6414 TSYSERR, ENOMEM); 6415 } 6416 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6417 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6418 } 6419 6420 /* 6421 * Handle connect to IPv4 destinations, including connections for AF_INET6 6422 * sockets connecting to IPv4 mapped IPv6 destinations. 6423 */ 6424 static void 6425 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport, 6426 uint_t srcid) 6427 { 6428 tcph_t *tcph; 6429 mblk_t *mp1; 6430 ipaddr_t dstaddr = *dstaddrp; 6431 int32_t oldstate; 6432 uint16_t lport; 6433 tcp_stack_t *tcps = tcp->tcp_tcps; 6434 6435 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 6436 6437 /* Check for attempt to connect to INADDR_ANY */ 6438 if (dstaddr == INADDR_ANY) { 6439 /* 6440 * SunOS 4.x and 4.3 BSD allow an application 6441 * to connect a TCP socket to INADDR_ANY. 6442 * When they do this, the kernel picks the 6443 * address of one interface and uses it 6444 * instead. The kernel usually ends up 6445 * picking the address of the loopback 6446 * interface. This is an undocumented feature. 6447 * However, we provide the same thing here 6448 * in order to have source and binary 6449 * compatibility with SunOS 4.x. 6450 * Update the T_CONN_REQ (sin/sin6) since it is used to 6451 * generate the T_CONN_CON. 6452 */ 6453 dstaddr = htonl(INADDR_LOOPBACK); 6454 *dstaddrp = dstaddr; 6455 } 6456 6457 /* Handle __sin6_src_id if socket not bound to an IP address */ 6458 if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) { 6459 ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6, 6460 tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack); 6461 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6, 6462 tcp->tcp_ipha->ipha_src); 6463 } 6464 6465 /* 6466 * Don't let an endpoint connect to itself. Note that 6467 * the test here does not catch the case where the 6468 * source IP addr was left unspecified by the user. In 6469 * this case, the source addr is set in tcp_adapt_ire() 6470 * using the reply to the T_BIND message that we send 6471 * down to IP here and the check is repeated in tcp_rput_other. 6472 */ 6473 if (dstaddr == tcp->tcp_ipha->ipha_src && 6474 dstport == tcp->tcp_lport) { 6475 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6476 goto failed; 6477 } 6478 6479 tcp->tcp_ipha->ipha_dst = dstaddr; 6480 IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6); 6481 6482 /* 6483 * Massage a source route if any putting the first hop 6484 * in iph_dst. Compute a starting value for the checksum which 6485 * takes into account that the original iph_dst should be 6486 * included in the checksum but that ip will include the 6487 * first hop in the source route in the tcp checksum. 6488 */ 6489 tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack); 6490 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6491 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 6492 (tcp->tcp_ipha->ipha_dst & 0xffff)); 6493 if ((int)tcp->tcp_sum < 0) 6494 tcp->tcp_sum--; 6495 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6496 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6497 (tcp->tcp_sum >> 16)); 6498 tcph = tcp->tcp_tcph; 6499 *(uint16_t *)tcph->th_fport = dstport; 6500 tcp->tcp_fport = dstport; 6501 6502 oldstate = tcp->tcp_state; 6503 /* 6504 * At this point the remote destination address and remote port fields 6505 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6506 * have to see which state tcp was in so we can take apropriate action. 6507 */ 6508 if (oldstate == TCPS_IDLE) { 6509 /* 6510 * We support a quick connect capability here, allowing 6511 * clients to transition directly from IDLE to SYN_SENT 6512 * tcp_bindi will pick an unused port, insert the connection 6513 * in the bind hash and transition to BOUND state. 6514 */ 6515 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6516 tcp, B_TRUE); 6517 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6518 B_FALSE, B_FALSE); 6519 if (lport == 0) { 6520 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6521 goto failed; 6522 } 6523 } 6524 tcp->tcp_state = TCPS_SYN_SENT; 6525 6526 /* 6527 * TODO: allow data with connect requests 6528 * by unlinking M_DATA trailers here and 6529 * linking them in behind the T_OK_ACK mblk. 6530 * The tcp_rput() bind ack handler would then 6531 * feed them to tcp_wput_data() rather than call 6532 * tcp_timer(). 6533 */ 6534 mp = mi_tpi_ok_ack_alloc(mp); 6535 if (!mp) { 6536 tcp->tcp_state = oldstate; 6537 goto failed; 6538 } 6539 if (tcp->tcp_family == AF_INET) { 6540 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6541 sizeof (ipa_conn_t)); 6542 } else { 6543 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6544 sizeof (ipa6_conn_t)); 6545 } 6546 if (mp1) { 6547 /* Hang onto the T_OK_ACK for later. */ 6548 linkb(mp1, mp); 6549 mblk_setcred(mp1, tcp->tcp_cred); 6550 if (tcp->tcp_family == AF_INET) 6551 mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp); 6552 else { 6553 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6554 &tcp->tcp_sticky_ipp); 6555 } 6556 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6557 tcp->tcp_active_open = 1; 6558 /* 6559 * If the bind cannot complete immediately 6560 * IP will arrange to call tcp_rput_other 6561 * when the bind completes. 6562 */ 6563 if (mp1 != NULL) 6564 tcp_rput_other(tcp, mp1); 6565 return; 6566 } 6567 /* Error case */ 6568 tcp->tcp_state = oldstate; 6569 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6570 6571 failed: 6572 /* return error ack and blow away saved option results if any */ 6573 if (mp != NULL) 6574 putnext(tcp->tcp_rq, mp); 6575 else { 6576 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6577 TSYSERR, ENOMEM); 6578 } 6579 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6580 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6581 6582 } 6583 6584 /* 6585 * Handle connect to IPv6 destinations. 6586 */ 6587 static void 6588 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 6589 in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 6590 { 6591 tcph_t *tcph; 6592 mblk_t *mp1; 6593 ip6_rthdr_t *rth; 6594 int32_t oldstate; 6595 uint16_t lport; 6596 tcp_stack_t *tcps = tcp->tcp_tcps; 6597 6598 ASSERT(tcp->tcp_family == AF_INET6); 6599 6600 /* 6601 * If we're here, it means that the destination address is a native 6602 * IPv6 address. Return an error if tcp_ipversion is not IPv6. A 6603 * reason why it might not be IPv6 is if the socket was bound to an 6604 * IPv4-mapped IPv6 address. 6605 */ 6606 if (tcp->tcp_ipversion != IPV6_VERSION) { 6607 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6608 goto failed; 6609 } 6610 6611 /* 6612 * Interpret a zero destination to mean loopback. 6613 * Update the T_CONN_REQ (sin/sin6) since it is used to 6614 * generate the T_CONN_CON. 6615 */ 6616 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) { 6617 *dstaddrp = ipv6_loopback; 6618 } 6619 6620 /* Handle __sin6_src_id if socket not bound to an IP address */ 6621 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 6622 ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src, 6623 tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack); 6624 tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src; 6625 } 6626 6627 /* 6628 * Take care of the scope_id now and add ip6i_t 6629 * if ip6i_t is not already allocated through TCP 6630 * sticky options. At this point tcp_ip6h does not 6631 * have dst info, thus use dstaddrp. 6632 */ 6633 if (scope_id != 0 && 6634 IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 6635 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 6636 ip6i_t *ip6i; 6637 6638 ipp->ipp_ifindex = scope_id; 6639 ip6i = (ip6i_t *)tcp->tcp_iphc; 6640 6641 if ((ipp->ipp_fields & IPPF_HAS_IP6I) && 6642 ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) { 6643 /* Already allocated */ 6644 ip6i->ip6i_flags |= IP6I_IFINDEX; 6645 ip6i->ip6i_ifindex = ipp->ipp_ifindex; 6646 ipp->ipp_fields |= IPPF_SCOPE_ID; 6647 } else { 6648 int reterr; 6649 6650 ipp->ipp_fields |= IPPF_SCOPE_ID; 6651 if (ipp->ipp_fields & IPPF_HAS_IP6I) 6652 ip2dbg(("tcp_connect_v6: SCOPE_ID set\n")); 6653 reterr = tcp_build_hdrs(tcp->tcp_rq, tcp); 6654 if (reterr != 0) 6655 goto failed; 6656 ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n")); 6657 } 6658 } 6659 6660 /* 6661 * Don't let an endpoint connect to itself. Note that 6662 * the test here does not catch the case where the 6663 * source IP addr was left unspecified by the user. In 6664 * this case, the source addr is set in tcp_adapt_ire() 6665 * using the reply to the T_BIND message that we send 6666 * down to IP here and the check is repeated in tcp_rput_other. 6667 */ 6668 if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) && 6669 (dstport == tcp->tcp_lport)) { 6670 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6671 goto failed; 6672 } 6673 6674 tcp->tcp_ip6h->ip6_dst = *dstaddrp; 6675 tcp->tcp_remote_v6 = *dstaddrp; 6676 tcp->tcp_ip6h->ip6_vcf = 6677 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 6678 (flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 6679 6680 6681 /* 6682 * Massage a routing header (if present) putting the first hop 6683 * in ip6_dst. Compute a starting value for the checksum which 6684 * takes into account that the original ip6_dst should be 6685 * included in the checksum but that ip will include the 6686 * first hop in the source route in the tcp checksum. 6687 */ 6688 rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph); 6689 if (rth != NULL) { 6690 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth, 6691 tcps->tcps_netstack); 6692 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6693 (tcp->tcp_sum >> 16)); 6694 } else { 6695 tcp->tcp_sum = 0; 6696 } 6697 6698 tcph = tcp->tcp_tcph; 6699 *(uint16_t *)tcph->th_fport = dstport; 6700 tcp->tcp_fport = dstport; 6701 6702 oldstate = tcp->tcp_state; 6703 /* 6704 * At this point the remote destination address and remote port fields 6705 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6706 * have to see which state tcp was in so we can take apropriate action. 6707 */ 6708 if (oldstate == TCPS_IDLE) { 6709 /* 6710 * We support a quick connect capability here, allowing 6711 * clients to transition directly from IDLE to SYN_SENT 6712 * tcp_bindi will pick an unused port, insert the connection 6713 * in the bind hash and transition to BOUND state. 6714 */ 6715 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6716 tcp, B_TRUE); 6717 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6718 B_FALSE, B_FALSE); 6719 if (lport == 0) { 6720 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6721 goto failed; 6722 } 6723 } 6724 tcp->tcp_state = TCPS_SYN_SENT; 6725 /* 6726 * TODO: allow data with connect requests 6727 * by unlinking M_DATA trailers here and 6728 * linking them in behind the T_OK_ACK mblk. 6729 * The tcp_rput() bind ack handler would then 6730 * feed them to tcp_wput_data() rather than call 6731 * tcp_timer(). 6732 */ 6733 mp = mi_tpi_ok_ack_alloc(mp); 6734 if (!mp) { 6735 tcp->tcp_state = oldstate; 6736 goto failed; 6737 } 6738 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t)); 6739 if (mp1) { 6740 /* Hang onto the T_OK_ACK for later. */ 6741 linkb(mp1, mp); 6742 mblk_setcred(mp1, tcp->tcp_cred); 6743 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6744 &tcp->tcp_sticky_ipp); 6745 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6746 tcp->tcp_active_open = 1; 6747 /* ip_bind_v6() may return ACK or ERROR */ 6748 if (mp1 != NULL) 6749 tcp_rput_other(tcp, mp1); 6750 return; 6751 } 6752 /* Error case */ 6753 tcp->tcp_state = oldstate; 6754 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6755 6756 failed: 6757 /* return error ack and blow away saved option results if any */ 6758 if (mp != NULL) 6759 putnext(tcp->tcp_rq, mp); 6760 else { 6761 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6762 TSYSERR, ENOMEM); 6763 } 6764 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6765 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6766 } 6767 6768 /* 6769 * We need a stream q for detached closing tcp connections 6770 * to use. Our client hereby indicates that this q is the 6771 * one to use. 6772 */ 6773 static void 6774 tcp_def_q_set(tcp_t *tcp, mblk_t *mp) 6775 { 6776 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 6777 queue_t *q = tcp->tcp_wq; 6778 tcp_stack_t *tcps = tcp->tcp_tcps; 6779 6780 #ifdef NS_DEBUG 6781 (void) printf("TCP_IOC_DEFAULT_Q for stack %d\n", 6782 tcps->tcps_netstack->netstack_stackid); 6783 #endif 6784 mp->b_datap->db_type = M_IOCACK; 6785 iocp->ioc_count = 0; 6786 mutex_enter(&tcps->tcps_g_q_lock); 6787 if (tcps->tcps_g_q != NULL) { 6788 mutex_exit(&tcps->tcps_g_q_lock); 6789 iocp->ioc_error = EALREADY; 6790 } else { 6791 mblk_t *mp1; 6792 6793 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0); 6794 if (mp1 == NULL) { 6795 mutex_exit(&tcps->tcps_g_q_lock); 6796 iocp->ioc_error = ENOMEM; 6797 } else { 6798 tcps->tcps_g_q = tcp->tcp_rq; 6799 mutex_exit(&tcps->tcps_g_q_lock); 6800 iocp->ioc_error = 0; 6801 iocp->ioc_rval = 0; 6802 /* 6803 * We are passing tcp_sticky_ipp as NULL 6804 * as it is not useful for tcp_default queue 6805 */ 6806 mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL); 6807 if (mp1 != NULL) 6808 tcp_rput_other(tcp, mp1); 6809 } 6810 } 6811 qreply(q, mp); 6812 } 6813 6814 /* 6815 * Our client hereby directs us to reject the connection request 6816 * that tcp_conn_request() marked with 'seqnum'. Rejection consists 6817 * of sending the appropriate RST, not an ICMP error. 6818 */ 6819 static void 6820 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 6821 { 6822 tcp_t *ltcp = NULL; 6823 t_scalar_t seqnum; 6824 conn_t *connp; 6825 tcp_stack_t *tcps = tcp->tcp_tcps; 6826 6827 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6828 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 6829 tcp_err_ack(tcp, mp, TPROTO, 0); 6830 return; 6831 } 6832 6833 /* 6834 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 6835 * when the stream is in BOUND state. Do not send a reset, 6836 * since the destination IP address is not valid, and it can 6837 * be the initialized value of all zeros (broadcast address). 6838 * 6839 * If TCP has sent down a bind request to IP and has not 6840 * received the reply, reject the request. Otherwise, TCP 6841 * will be confused. 6842 */ 6843 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) { 6844 if (tcp->tcp_debug) { 6845 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 6846 "tcp_disconnect: bad state, %d", tcp->tcp_state); 6847 } 6848 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 6849 return; 6850 } 6851 6852 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 6853 6854 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 6855 6856 /* 6857 * According to TPI, for non-listeners, ignore seqnum 6858 * and disconnect. 6859 * Following interpretation of -1 seqnum is historical 6860 * and implied TPI ? (TPI only states that for T_CONN_IND, 6861 * a valid seqnum should not be -1). 6862 * 6863 * -1 means disconnect everything 6864 * regardless even on a listener. 6865 */ 6866 6867 int old_state = tcp->tcp_state; 6868 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 6869 6870 /* 6871 * The connection can't be on the tcp_time_wait_head list 6872 * since it is not detached. 6873 */ 6874 ASSERT(tcp->tcp_time_wait_next == NULL); 6875 ASSERT(tcp->tcp_time_wait_prev == NULL); 6876 ASSERT(tcp->tcp_time_wait_expire == 0); 6877 ltcp = NULL; 6878 /* 6879 * If it used to be a listener, check to make sure no one else 6880 * has taken the port before switching back to LISTEN state. 6881 */ 6882 if (tcp->tcp_ipversion == IPV4_VERSION) { 6883 connp = ipcl_lookup_listener_v4(tcp->tcp_lport, 6884 tcp->tcp_ipha->ipha_src, 6885 tcp->tcp_connp->conn_zoneid, ipst); 6886 if (connp != NULL) 6887 ltcp = connp->conn_tcp; 6888 } else { 6889 /* Allow tcp_bound_if listeners? */ 6890 connp = ipcl_lookup_listener_v6(tcp->tcp_lport, 6891 &tcp->tcp_ip6h->ip6_src, 0, 6892 tcp->tcp_connp->conn_zoneid, ipst); 6893 if (connp != NULL) 6894 ltcp = connp->conn_tcp; 6895 } 6896 if (tcp->tcp_conn_req_max && ltcp == NULL) { 6897 tcp->tcp_state = TCPS_LISTEN; 6898 } else if (old_state > TCPS_BOUND) { 6899 tcp->tcp_conn_req_max = 0; 6900 tcp->tcp_state = TCPS_BOUND; 6901 } 6902 if (ltcp != NULL) 6903 CONN_DEC_REF(ltcp->tcp_connp); 6904 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 6905 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 6906 } else if (old_state == TCPS_ESTABLISHED || 6907 old_state == TCPS_CLOSE_WAIT) { 6908 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 6909 } 6910 6911 if (tcp->tcp_fused) 6912 tcp_unfuse(tcp); 6913 6914 mutex_enter(&tcp->tcp_eager_lock); 6915 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 6916 (tcp->tcp_conn_req_cnt_q != 0)) { 6917 tcp_eager_cleanup(tcp, 0); 6918 } 6919 mutex_exit(&tcp->tcp_eager_lock); 6920 6921 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 6922 tcp->tcp_rnxt, TH_RST | TH_ACK); 6923 6924 tcp_reinit(tcp); 6925 6926 if (old_state >= TCPS_ESTABLISHED) { 6927 /* Send M_FLUSH according to TPI */ 6928 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6929 } 6930 mp = mi_tpi_ok_ack_alloc(mp); 6931 if (mp) 6932 putnext(tcp->tcp_rq, mp); 6933 return; 6934 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 6935 tcp_err_ack(tcp, mp, TBADSEQ, 0); 6936 return; 6937 } 6938 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 6939 /* Send M_FLUSH according to TPI */ 6940 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6941 } 6942 mp = mi_tpi_ok_ack_alloc(mp); 6943 if (mp) 6944 putnext(tcp->tcp_rq, mp); 6945 } 6946 6947 /* 6948 * Diagnostic routine used to return a string associated with the tcp state. 6949 * Note that if the caller does not supply a buffer, it will use an internal 6950 * static string. This means that if multiple threads call this function at 6951 * the same time, output can be corrupted... Note also that this function 6952 * does not check the size of the supplied buffer. The caller has to make 6953 * sure that it is big enough. 6954 */ 6955 static char * 6956 tcp_display(tcp_t *tcp, char *sup_buf, char format) 6957 { 6958 char buf1[30]; 6959 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 6960 char *buf; 6961 char *cp; 6962 in6_addr_t local, remote; 6963 char local_addrbuf[INET6_ADDRSTRLEN]; 6964 char remote_addrbuf[INET6_ADDRSTRLEN]; 6965 6966 if (sup_buf != NULL) 6967 buf = sup_buf; 6968 else 6969 buf = priv_buf; 6970 6971 if (tcp == NULL) 6972 return ("NULL_TCP"); 6973 switch (tcp->tcp_state) { 6974 case TCPS_CLOSED: 6975 cp = "TCP_CLOSED"; 6976 break; 6977 case TCPS_IDLE: 6978 cp = "TCP_IDLE"; 6979 break; 6980 case TCPS_BOUND: 6981 cp = "TCP_BOUND"; 6982 break; 6983 case TCPS_LISTEN: 6984 cp = "TCP_LISTEN"; 6985 break; 6986 case TCPS_SYN_SENT: 6987 cp = "TCP_SYN_SENT"; 6988 break; 6989 case TCPS_SYN_RCVD: 6990 cp = "TCP_SYN_RCVD"; 6991 break; 6992 case TCPS_ESTABLISHED: 6993 cp = "TCP_ESTABLISHED"; 6994 break; 6995 case TCPS_CLOSE_WAIT: 6996 cp = "TCP_CLOSE_WAIT"; 6997 break; 6998 case TCPS_FIN_WAIT_1: 6999 cp = "TCP_FIN_WAIT_1"; 7000 break; 7001 case TCPS_CLOSING: 7002 cp = "TCP_CLOSING"; 7003 break; 7004 case TCPS_LAST_ACK: 7005 cp = "TCP_LAST_ACK"; 7006 break; 7007 case TCPS_FIN_WAIT_2: 7008 cp = "TCP_FIN_WAIT_2"; 7009 break; 7010 case TCPS_TIME_WAIT: 7011 cp = "TCP_TIME_WAIT"; 7012 break; 7013 default: 7014 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 7015 cp = buf1; 7016 break; 7017 } 7018 switch (format) { 7019 case DISP_ADDR_AND_PORT: 7020 if (tcp->tcp_ipversion == IPV4_VERSION) { 7021 /* 7022 * Note that we use the remote address in the tcp_b 7023 * structure. This means that it will print out 7024 * the real destination address, not the next hop's 7025 * address if source routing is used. 7026 */ 7027 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local); 7028 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote); 7029 7030 } else { 7031 local = tcp->tcp_ip_src_v6; 7032 remote = tcp->tcp_remote_v6; 7033 } 7034 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 7035 sizeof (local_addrbuf)); 7036 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 7037 sizeof (remote_addrbuf)); 7038 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 7039 local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf, 7040 ntohs(tcp->tcp_fport), cp); 7041 break; 7042 case DISP_PORT_ONLY: 7043 default: 7044 (void) mi_sprintf(buf, "[%u, %u] %s", 7045 ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp); 7046 break; 7047 } 7048 7049 return (buf); 7050 } 7051 7052 /* 7053 * Called via squeue to get on to eager's perimeter. It sends a 7054 * TH_RST if eager is in the fanout table. The listener wants the 7055 * eager to disappear either by means of tcp_eager_blowoff() or 7056 * tcp_eager_cleanup() being called. tcp_eager_kill() can also be 7057 * called (via squeue) if the eager cannot be inserted in the 7058 * fanout table in tcp_conn_request(). 7059 */ 7060 /* ARGSUSED */ 7061 void 7062 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2) 7063 { 7064 conn_t *econnp = (conn_t *)arg; 7065 tcp_t *eager = econnp->conn_tcp; 7066 tcp_t *listener = eager->tcp_listener; 7067 tcp_stack_t *tcps = eager->tcp_tcps; 7068 7069 /* 7070 * We could be called because listener is closing. Since 7071 * the eager is using listener's queue's, its not safe. 7072 * Better use the default queue just to send the TH_RST 7073 * out. 7074 */ 7075 ASSERT(tcps->tcps_g_q != NULL); 7076 eager->tcp_rq = tcps->tcps_g_q; 7077 eager->tcp_wq = WR(tcps->tcps_g_q); 7078 7079 /* 7080 * An eager's conn_fanout will be NULL if it's a duplicate 7081 * for an existing 4-tuples in the conn fanout table. 7082 * We don't want to send an RST out in such case. 7083 */ 7084 if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { 7085 tcp_xmit_ctl("tcp_eager_kill, can't wait", 7086 eager, eager->tcp_snxt, 0, TH_RST); 7087 } 7088 7089 /* We are here because listener wants this eager gone */ 7090 if (listener != NULL) { 7091 mutex_enter(&listener->tcp_eager_lock); 7092 tcp_eager_unlink(eager); 7093 if (eager->tcp_tconnind_started) { 7094 /* 7095 * The eager has sent a conn_ind up to the 7096 * listener but listener decides to close 7097 * instead. We need to drop the extra ref 7098 * placed on eager in tcp_rput_data() before 7099 * sending the conn_ind to listener. 7100 */ 7101 CONN_DEC_REF(econnp); 7102 } 7103 mutex_exit(&listener->tcp_eager_lock); 7104 CONN_DEC_REF(listener->tcp_connp); 7105 } 7106 7107 if (eager->tcp_state > TCPS_BOUND) 7108 tcp_close_detached(eager); 7109 } 7110 7111 /* 7112 * Reset any eager connection hanging off this listener marked 7113 * with 'seqnum' and then reclaim it's resources. 7114 */ 7115 static boolean_t 7116 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 7117 { 7118 tcp_t *eager; 7119 mblk_t *mp; 7120 tcp_stack_t *tcps = listener->tcp_tcps; 7121 7122 TCP_STAT(tcps, tcp_eager_blowoff_calls); 7123 eager = listener; 7124 mutex_enter(&listener->tcp_eager_lock); 7125 do { 7126 eager = eager->tcp_eager_next_q; 7127 if (eager == NULL) { 7128 mutex_exit(&listener->tcp_eager_lock); 7129 return (B_FALSE); 7130 } 7131 } while (eager->tcp_conn_req_seqnum != seqnum); 7132 7133 if (eager->tcp_closemp_used) { 7134 mutex_exit(&listener->tcp_eager_lock); 7135 return (B_TRUE); 7136 } 7137 eager->tcp_closemp_used = B_TRUE; 7138 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7139 CONN_INC_REF(eager->tcp_connp); 7140 mutex_exit(&listener->tcp_eager_lock); 7141 mp = &eager->tcp_closemp; 7142 squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 7143 eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF); 7144 return (B_TRUE); 7145 } 7146 7147 /* 7148 * Reset any eager connection hanging off this listener 7149 * and then reclaim it's resources. 7150 */ 7151 static void 7152 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 7153 { 7154 tcp_t *eager; 7155 mblk_t *mp; 7156 tcp_stack_t *tcps = listener->tcp_tcps; 7157 7158 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 7159 7160 if (!q0_only) { 7161 /* First cleanup q */ 7162 TCP_STAT(tcps, tcp_eager_blowoff_q); 7163 eager = listener->tcp_eager_next_q; 7164 while (eager != NULL) { 7165 if (!eager->tcp_closemp_used) { 7166 eager->tcp_closemp_used = B_TRUE; 7167 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7168 CONN_INC_REF(eager->tcp_connp); 7169 mp = &eager->tcp_closemp; 7170 squeue_fill(eager->tcp_connp->conn_sqp, mp, 7171 tcp_eager_kill, eager->tcp_connp, 7172 SQTAG_TCP_EAGER_CLEANUP); 7173 } 7174 eager = eager->tcp_eager_next_q; 7175 } 7176 } 7177 /* Then cleanup q0 */ 7178 TCP_STAT(tcps, tcp_eager_blowoff_q0); 7179 eager = listener->tcp_eager_next_q0; 7180 while (eager != listener) { 7181 if (!eager->tcp_closemp_used) { 7182 eager->tcp_closemp_used = B_TRUE; 7183 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7184 CONN_INC_REF(eager->tcp_connp); 7185 mp = &eager->tcp_closemp; 7186 squeue_fill(eager->tcp_connp->conn_sqp, mp, 7187 tcp_eager_kill, eager->tcp_connp, 7188 SQTAG_TCP_EAGER_CLEANUP_Q0); 7189 } 7190 eager = eager->tcp_eager_next_q0; 7191 } 7192 } 7193 7194 /* 7195 * If we are an eager connection hanging off a listener that hasn't 7196 * formally accepted the connection yet, get off his list and blow off 7197 * any data that we have accumulated. 7198 */ 7199 static void 7200 tcp_eager_unlink(tcp_t *tcp) 7201 { 7202 tcp_t *listener = tcp->tcp_listener; 7203 7204 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 7205 ASSERT(listener != NULL); 7206 if (tcp->tcp_eager_next_q0 != NULL) { 7207 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 7208 7209 /* Remove the eager tcp from q0 */ 7210 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 7211 tcp->tcp_eager_prev_q0; 7212 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 7213 tcp->tcp_eager_next_q0; 7214 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 7215 listener->tcp_conn_req_cnt_q0--; 7216 7217 tcp->tcp_eager_next_q0 = NULL; 7218 tcp->tcp_eager_prev_q0 = NULL; 7219 7220 /* 7221 * Take the eager out, if it is in the list of droppable 7222 * eagers. 7223 */ 7224 MAKE_UNDROPPABLE(tcp); 7225 7226 if (tcp->tcp_syn_rcvd_timeout != 0) { 7227 /* we have timed out before */ 7228 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 7229 listener->tcp_syn_rcvd_timeout--; 7230 } 7231 } else { 7232 tcp_t **tcpp = &listener->tcp_eager_next_q; 7233 tcp_t *prev = NULL; 7234 7235 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 7236 if (tcpp[0] == tcp) { 7237 if (listener->tcp_eager_last_q == tcp) { 7238 /* 7239 * If we are unlinking the last 7240 * element on the list, adjust 7241 * tail pointer. Set tail pointer 7242 * to nil when list is empty. 7243 */ 7244 ASSERT(tcp->tcp_eager_next_q == NULL); 7245 if (listener->tcp_eager_last_q == 7246 listener->tcp_eager_next_q) { 7247 listener->tcp_eager_last_q = 7248 NULL; 7249 } else { 7250 /* 7251 * We won't get here if there 7252 * is only one eager in the 7253 * list. 7254 */ 7255 ASSERT(prev != NULL); 7256 listener->tcp_eager_last_q = 7257 prev; 7258 } 7259 } 7260 tcpp[0] = tcp->tcp_eager_next_q; 7261 tcp->tcp_eager_next_q = NULL; 7262 tcp->tcp_eager_last_q = NULL; 7263 ASSERT(listener->tcp_conn_req_cnt_q > 0); 7264 listener->tcp_conn_req_cnt_q--; 7265 break; 7266 } 7267 prev = tcpp[0]; 7268 } 7269 } 7270 tcp->tcp_listener = NULL; 7271 } 7272 7273 /* Shorthand to generate and send TPI error acks to our client */ 7274 static void 7275 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 7276 { 7277 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 7278 putnext(tcp->tcp_rq, mp); 7279 } 7280 7281 /* Shorthand to generate and send TPI error acks to our client */ 7282 static void 7283 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 7284 int t_error, int sys_error) 7285 { 7286 struct T_error_ack *teackp; 7287 7288 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 7289 M_PCPROTO, T_ERROR_ACK)) != NULL) { 7290 teackp = (struct T_error_ack *)mp->b_rptr; 7291 teackp->ERROR_prim = primitive; 7292 teackp->TLI_error = t_error; 7293 teackp->UNIX_error = sys_error; 7294 putnext(tcp->tcp_rq, mp); 7295 } 7296 } 7297 7298 /* 7299 * Note: No locks are held when inspecting tcp_g_*epriv_ports 7300 * but instead the code relies on: 7301 * - the fact that the address of the array and its size never changes 7302 * - the atomic assignment of the elements of the array 7303 */ 7304 /* ARGSUSED */ 7305 static int 7306 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 7307 { 7308 int i; 7309 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7310 7311 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7312 if (tcps->tcps_g_epriv_ports[i] != 0) 7313 (void) mi_mpprintf(mp, "%d ", 7314 tcps->tcps_g_epriv_ports[i]); 7315 } 7316 return (0); 7317 } 7318 7319 /* 7320 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7321 * threads from changing it at the same time. 7322 */ 7323 /* ARGSUSED */ 7324 static int 7325 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7326 cred_t *cr) 7327 { 7328 long new_value; 7329 int i; 7330 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7331 7332 /* 7333 * Fail the request if the new value does not lie within the 7334 * port number limits. 7335 */ 7336 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 7337 new_value <= 0 || new_value >= 65536) { 7338 return (EINVAL); 7339 } 7340 7341 mutex_enter(&tcps->tcps_epriv_port_lock); 7342 /* Check if the value is already in the list */ 7343 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7344 if (new_value == tcps->tcps_g_epriv_ports[i]) { 7345 mutex_exit(&tcps->tcps_epriv_port_lock); 7346 return (EEXIST); 7347 } 7348 } 7349 /* Find an empty slot */ 7350 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7351 if (tcps->tcps_g_epriv_ports[i] == 0) 7352 break; 7353 } 7354 if (i == tcps->tcps_g_num_epriv_ports) { 7355 mutex_exit(&tcps->tcps_epriv_port_lock); 7356 return (EOVERFLOW); 7357 } 7358 /* Set the new value */ 7359 tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value; 7360 mutex_exit(&tcps->tcps_epriv_port_lock); 7361 return (0); 7362 } 7363 7364 /* 7365 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7366 * threads from changing it at the same time. 7367 */ 7368 /* ARGSUSED */ 7369 static int 7370 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7371 cred_t *cr) 7372 { 7373 long new_value; 7374 int i; 7375 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7376 7377 /* 7378 * Fail the request if the new value does not lie within the 7379 * port number limits. 7380 */ 7381 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 7382 new_value >= 65536) { 7383 return (EINVAL); 7384 } 7385 7386 mutex_enter(&tcps->tcps_epriv_port_lock); 7387 /* Check that the value is already in the list */ 7388 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7389 if (tcps->tcps_g_epriv_ports[i] == new_value) 7390 break; 7391 } 7392 if (i == tcps->tcps_g_num_epriv_ports) { 7393 mutex_exit(&tcps->tcps_epriv_port_lock); 7394 return (ESRCH); 7395 } 7396 /* Clear the value */ 7397 tcps->tcps_g_epriv_ports[i] = 0; 7398 mutex_exit(&tcps->tcps_epriv_port_lock); 7399 return (0); 7400 } 7401 7402 /* Return the TPI/TLI equivalent of our current tcp_state */ 7403 static int 7404 tcp_tpistate(tcp_t *tcp) 7405 { 7406 switch (tcp->tcp_state) { 7407 case TCPS_IDLE: 7408 return (TS_UNBND); 7409 case TCPS_LISTEN: 7410 /* 7411 * Return whether there are outstanding T_CONN_IND waiting 7412 * for the matching T_CONN_RES. Therefore don't count q0. 7413 */ 7414 if (tcp->tcp_conn_req_cnt_q > 0) 7415 return (TS_WRES_CIND); 7416 else 7417 return (TS_IDLE); 7418 case TCPS_BOUND: 7419 return (TS_IDLE); 7420 case TCPS_SYN_SENT: 7421 return (TS_WCON_CREQ); 7422 case TCPS_SYN_RCVD: 7423 /* 7424 * Note: assumption: this has to the active open SYN_RCVD. 7425 * The passive instance is detached in SYN_RCVD stage of 7426 * incoming connection processing so we cannot get request 7427 * for T_info_ack on it. 7428 */ 7429 return (TS_WACK_CRES); 7430 case TCPS_ESTABLISHED: 7431 return (TS_DATA_XFER); 7432 case TCPS_CLOSE_WAIT: 7433 return (TS_WREQ_ORDREL); 7434 case TCPS_FIN_WAIT_1: 7435 return (TS_WIND_ORDREL); 7436 case TCPS_FIN_WAIT_2: 7437 return (TS_WIND_ORDREL); 7438 7439 case TCPS_CLOSING: 7440 case TCPS_LAST_ACK: 7441 case TCPS_TIME_WAIT: 7442 case TCPS_CLOSED: 7443 /* 7444 * Following TS_WACK_DREQ7 is a rendition of "not 7445 * yet TS_IDLE" TPI state. There is no best match to any 7446 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 7447 * choose a value chosen that will map to TLI/XTI level 7448 * state of TSTATECHNG (state is process of changing) which 7449 * captures what this dummy state represents. 7450 */ 7451 return (TS_WACK_DREQ7); 7452 default: 7453 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 7454 tcp->tcp_state, tcp_display(tcp, NULL, 7455 DISP_PORT_ONLY)); 7456 return (TS_UNBND); 7457 } 7458 } 7459 7460 static void 7461 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 7462 { 7463 tcp_stack_t *tcps = tcp->tcp_tcps; 7464 7465 if (tcp->tcp_family == AF_INET6) 7466 *tia = tcp_g_t_info_ack_v6; 7467 else 7468 *tia = tcp_g_t_info_ack; 7469 tia->CURRENT_state = tcp_tpistate(tcp); 7470 tia->OPT_size = tcp_max_optsize; 7471 if (tcp->tcp_mss == 0) { 7472 /* Not yet set - tcp_open does not set mss */ 7473 if (tcp->tcp_ipversion == IPV4_VERSION) 7474 tia->TIDU_size = tcps->tcps_mss_def_ipv4; 7475 else 7476 tia->TIDU_size = tcps->tcps_mss_def_ipv6; 7477 } else { 7478 tia->TIDU_size = tcp->tcp_mss; 7479 } 7480 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 7481 } 7482 7483 /* 7484 * This routine responds to T_CAPABILITY_REQ messages. It is called by 7485 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 7486 * tcp_g_t_info_ack. The current state of the stream is copied from 7487 * tcp_state. 7488 */ 7489 static void 7490 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 7491 { 7492 t_uscalar_t cap_bits1; 7493 struct T_capability_ack *tcap; 7494 7495 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 7496 freemsg(mp); 7497 return; 7498 } 7499 7500 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 7501 7502 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 7503 mp->b_datap->db_type, T_CAPABILITY_ACK); 7504 if (mp == NULL) 7505 return; 7506 7507 tcap = (struct T_capability_ack *)mp->b_rptr; 7508 tcap->CAP_bits1 = 0; 7509 7510 if (cap_bits1 & TC1_INFO) { 7511 tcp_copy_info(&tcap->INFO_ack, tcp); 7512 tcap->CAP_bits1 |= TC1_INFO; 7513 } 7514 7515 if (cap_bits1 & TC1_ACCEPTOR_ID) { 7516 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 7517 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 7518 } 7519 7520 putnext(tcp->tcp_rq, mp); 7521 } 7522 7523 /* 7524 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 7525 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 7526 * The current state of the stream is copied from tcp_state. 7527 */ 7528 static void 7529 tcp_info_req(tcp_t *tcp, mblk_t *mp) 7530 { 7531 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 7532 T_INFO_ACK); 7533 if (!mp) { 7534 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7535 return; 7536 } 7537 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 7538 putnext(tcp->tcp_rq, mp); 7539 } 7540 7541 /* Respond to the TPI addr request */ 7542 static void 7543 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 7544 { 7545 sin_t *sin; 7546 mblk_t *ackmp; 7547 struct T_addr_ack *taa; 7548 7549 /* Make it large enough for worst case */ 7550 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 7551 2 * sizeof (sin6_t), 1); 7552 if (ackmp == NULL) { 7553 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7554 return; 7555 } 7556 7557 if (tcp->tcp_ipversion == IPV6_VERSION) { 7558 tcp_addr_req_ipv6(tcp, ackmp); 7559 return; 7560 } 7561 taa = (struct T_addr_ack *)ackmp->b_rptr; 7562 7563 bzero(taa, sizeof (struct T_addr_ack)); 7564 ackmp->b_wptr = (uchar_t *)&taa[1]; 7565 7566 taa->PRIM_type = T_ADDR_ACK; 7567 ackmp->b_datap->db_type = M_PCPROTO; 7568 7569 /* 7570 * Note: Following code assumes 32 bit alignment of basic 7571 * data structures like sin_t and struct T_addr_ack. 7572 */ 7573 if (tcp->tcp_state >= TCPS_BOUND) { 7574 /* 7575 * Fill in local address 7576 */ 7577 taa->LOCADDR_length = sizeof (sin_t); 7578 taa->LOCADDR_offset = sizeof (*taa); 7579 7580 sin = (sin_t *)&taa[1]; 7581 7582 /* Fill zeroes and then intialize non-zero fields */ 7583 *sin = sin_null; 7584 7585 sin->sin_family = AF_INET; 7586 7587 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 7588 sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport; 7589 7590 ackmp->b_wptr = (uchar_t *)&sin[1]; 7591 7592 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7593 /* 7594 * Fill in Remote address 7595 */ 7596 taa->REMADDR_length = sizeof (sin_t); 7597 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7598 taa->LOCADDR_length); 7599 7600 sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7601 *sin = sin_null; 7602 sin->sin_family = AF_INET; 7603 sin->sin_addr.s_addr = tcp->tcp_remote; 7604 sin->sin_port = tcp->tcp_fport; 7605 7606 ackmp->b_wptr = (uchar_t *)&sin[1]; 7607 } 7608 } 7609 putnext(tcp->tcp_rq, ackmp); 7610 } 7611 7612 /* Assumes that tcp_addr_req gets enough space and alignment */ 7613 static void 7614 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp) 7615 { 7616 sin6_t *sin6; 7617 struct T_addr_ack *taa; 7618 7619 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 7620 ASSERT(OK_32PTR(ackmp->b_rptr)); 7621 ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) + 7622 2 * sizeof (sin6_t)); 7623 7624 taa = (struct T_addr_ack *)ackmp->b_rptr; 7625 7626 bzero(taa, sizeof (struct T_addr_ack)); 7627 ackmp->b_wptr = (uchar_t *)&taa[1]; 7628 7629 taa->PRIM_type = T_ADDR_ACK; 7630 ackmp->b_datap->db_type = M_PCPROTO; 7631 7632 /* 7633 * Note: Following code assumes 32 bit alignment of basic 7634 * data structures like sin6_t and struct T_addr_ack. 7635 */ 7636 if (tcp->tcp_state >= TCPS_BOUND) { 7637 /* 7638 * Fill in local address 7639 */ 7640 taa->LOCADDR_length = sizeof (sin6_t); 7641 taa->LOCADDR_offset = sizeof (*taa); 7642 7643 sin6 = (sin6_t *)&taa[1]; 7644 *sin6 = sin6_null; 7645 7646 sin6->sin6_family = AF_INET6; 7647 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 7648 sin6->sin6_port = tcp->tcp_lport; 7649 7650 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7651 7652 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7653 /* 7654 * Fill in Remote address 7655 */ 7656 taa->REMADDR_length = sizeof (sin6_t); 7657 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7658 taa->LOCADDR_length); 7659 7660 sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7661 *sin6 = sin6_null; 7662 sin6->sin6_family = AF_INET6; 7663 sin6->sin6_flowinfo = 7664 tcp->tcp_ip6h->ip6_vcf & 7665 ~IPV6_VERS_AND_FLOW_MASK; 7666 sin6->sin6_addr = tcp->tcp_remote_v6; 7667 sin6->sin6_port = tcp->tcp_fport; 7668 7669 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7670 } 7671 } 7672 putnext(tcp->tcp_rq, ackmp); 7673 } 7674 7675 /* 7676 * Handle reinitialization of a tcp structure. 7677 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 7678 */ 7679 static void 7680 tcp_reinit(tcp_t *tcp) 7681 { 7682 mblk_t *mp; 7683 int err; 7684 tcp_stack_t *tcps = tcp->tcp_tcps; 7685 7686 TCP_STAT(tcps, tcp_reinit_calls); 7687 7688 /* tcp_reinit should never be called for detached tcp_t's */ 7689 ASSERT(tcp->tcp_listener == NULL); 7690 ASSERT((tcp->tcp_family == AF_INET && 7691 tcp->tcp_ipversion == IPV4_VERSION) || 7692 (tcp->tcp_family == AF_INET6 && 7693 (tcp->tcp_ipversion == IPV4_VERSION || 7694 tcp->tcp_ipversion == IPV6_VERSION))); 7695 7696 /* Cancel outstanding timers */ 7697 tcp_timers_stop(tcp); 7698 7699 /* 7700 * Reset everything in the state vector, after updating global 7701 * MIB data from instance counters. 7702 */ 7703 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 7704 tcp->tcp_ibsegs = 0; 7705 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 7706 tcp->tcp_obsegs = 0; 7707 7708 tcp_close_mpp(&tcp->tcp_xmit_head); 7709 if (tcp->tcp_snd_zcopy_aware) 7710 tcp_zcopy_notify(tcp); 7711 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 7712 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 7713 mutex_enter(&tcp->tcp_non_sq_lock); 7714 if (tcp->tcp_flow_stopped && 7715 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 7716 tcp_clrqfull(tcp); 7717 } 7718 mutex_exit(&tcp->tcp_non_sq_lock); 7719 tcp_close_mpp(&tcp->tcp_reass_head); 7720 tcp->tcp_reass_tail = NULL; 7721 if (tcp->tcp_rcv_list != NULL) { 7722 /* Free b_next chain */ 7723 tcp_close_mpp(&tcp->tcp_rcv_list); 7724 tcp->tcp_rcv_last_head = NULL; 7725 tcp->tcp_rcv_last_tail = NULL; 7726 tcp->tcp_rcv_cnt = 0; 7727 } 7728 tcp->tcp_rcv_last_tail = NULL; 7729 7730 if ((mp = tcp->tcp_urp_mp) != NULL) { 7731 freemsg(mp); 7732 tcp->tcp_urp_mp = NULL; 7733 } 7734 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 7735 freemsg(mp); 7736 tcp->tcp_urp_mark_mp = NULL; 7737 } 7738 if (tcp->tcp_fused_sigurg_mp != NULL) { 7739 freeb(tcp->tcp_fused_sigurg_mp); 7740 tcp->tcp_fused_sigurg_mp = NULL; 7741 } 7742 7743 /* 7744 * Following is a union with two members which are 7745 * identical types and size so the following cleanup 7746 * is enough. 7747 */ 7748 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 7749 7750 CL_INET_DISCONNECT(tcp); 7751 7752 /* 7753 * The connection can't be on the tcp_time_wait_head list 7754 * since it is not detached. 7755 */ 7756 ASSERT(tcp->tcp_time_wait_next == NULL); 7757 ASSERT(tcp->tcp_time_wait_prev == NULL); 7758 ASSERT(tcp->tcp_time_wait_expire == 0); 7759 7760 if (tcp->tcp_kssl_pending) { 7761 tcp->tcp_kssl_pending = B_FALSE; 7762 7763 /* Don't reset if the initialized by bind. */ 7764 if (tcp->tcp_kssl_ent != NULL) { 7765 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 7766 KSSL_NO_PROXY); 7767 } 7768 } 7769 if (tcp->tcp_kssl_ctx != NULL) { 7770 kssl_release_ctx(tcp->tcp_kssl_ctx); 7771 tcp->tcp_kssl_ctx = NULL; 7772 } 7773 7774 /* 7775 * Reset/preserve other values 7776 */ 7777 tcp_reinit_values(tcp); 7778 ipcl_hash_remove(tcp->tcp_connp); 7779 conn_delete_ire(tcp->tcp_connp, NULL); 7780 tcp_ipsec_cleanup(tcp); 7781 7782 if (tcp->tcp_conn_req_max != 0) { 7783 /* 7784 * This is the case when a TLI program uses the same 7785 * transport end point to accept a connection. This 7786 * makes the TCP both a listener and acceptor. When 7787 * this connection is closed, we need to set the state 7788 * back to TCPS_LISTEN. Make sure that the eager list 7789 * is reinitialized. 7790 * 7791 * Note that this stream is still bound to the four 7792 * tuples of the previous connection in IP. If a new 7793 * SYN with different foreign address comes in, IP will 7794 * not find it and will send it to the global queue. In 7795 * the global queue, TCP will do a tcp_lookup_listener() 7796 * to find this stream. This works because this stream 7797 * is only removed from connected hash. 7798 * 7799 */ 7800 tcp->tcp_state = TCPS_LISTEN; 7801 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 7802 tcp->tcp_eager_next_drop_q0 = tcp; 7803 tcp->tcp_eager_prev_drop_q0 = tcp; 7804 tcp->tcp_connp->conn_recv = tcp_conn_request; 7805 if (tcp->tcp_family == AF_INET6) { 7806 ASSERT(tcp->tcp_connp->conn_af_isv6); 7807 (void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP, 7808 &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport); 7809 } else { 7810 ASSERT(!tcp->tcp_connp->conn_af_isv6); 7811 (void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP, 7812 tcp->tcp_ipha->ipha_src, tcp->tcp_lport); 7813 } 7814 } else { 7815 tcp->tcp_state = TCPS_BOUND; 7816 } 7817 7818 /* 7819 * Initialize to default values 7820 * Can't fail since enough header template space already allocated 7821 * at open(). 7822 */ 7823 err = tcp_init_values(tcp); 7824 ASSERT(err == 0); 7825 /* Restore state in tcp_tcph */ 7826 bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN); 7827 if (tcp->tcp_ipversion == IPV4_VERSION) 7828 tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source; 7829 else 7830 tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6; 7831 /* 7832 * Copy of the src addr. in tcp_t is needed in tcp_t 7833 * since the lookup funcs can only lookup on tcp_t 7834 */ 7835 tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6; 7836 7837 ASSERT(tcp->tcp_ptpbhn != NULL); 7838 tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat; 7839 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 7840 tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ? 7841 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 7842 } 7843 7844 /* 7845 * Force values to zero that need be zero. 7846 * Do not touch values asociated with the BOUND or LISTEN state 7847 * since the connection will end up in that state after the reinit. 7848 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 7849 * structure! 7850 */ 7851 static void 7852 tcp_reinit_values(tcp) 7853 tcp_t *tcp; 7854 { 7855 tcp_stack_t *tcps = tcp->tcp_tcps; 7856 7857 #ifndef lint 7858 #define DONTCARE(x) 7859 #define PRESERVE(x) 7860 #else 7861 #define DONTCARE(x) ((x) = (x)) 7862 #define PRESERVE(x) ((x) = (x)) 7863 #endif /* lint */ 7864 7865 PRESERVE(tcp->tcp_bind_hash); 7866 PRESERVE(tcp->tcp_ptpbhn); 7867 PRESERVE(tcp->tcp_acceptor_hash); 7868 PRESERVE(tcp->tcp_ptpahn); 7869 7870 /* Should be ASSERT NULL on these with new code! */ 7871 ASSERT(tcp->tcp_time_wait_next == NULL); 7872 ASSERT(tcp->tcp_time_wait_prev == NULL); 7873 ASSERT(tcp->tcp_time_wait_expire == 0); 7874 PRESERVE(tcp->tcp_state); 7875 PRESERVE(tcp->tcp_rq); 7876 PRESERVE(tcp->tcp_wq); 7877 7878 ASSERT(tcp->tcp_xmit_head == NULL); 7879 ASSERT(tcp->tcp_xmit_last == NULL); 7880 ASSERT(tcp->tcp_unsent == 0); 7881 ASSERT(tcp->tcp_xmit_tail == NULL); 7882 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 7883 7884 tcp->tcp_snxt = 0; /* Displayed in mib */ 7885 tcp->tcp_suna = 0; /* Displayed in mib */ 7886 tcp->tcp_swnd = 0; 7887 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_mss_set */ 7888 7889 ASSERT(tcp->tcp_ibsegs == 0); 7890 ASSERT(tcp->tcp_obsegs == 0); 7891 7892 if (tcp->tcp_iphc != NULL) { 7893 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7894 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 7895 } 7896 7897 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 7898 DONTCARE(tcp->tcp_hdr_len); /* Init in tcp_init_values */ 7899 DONTCARE(tcp->tcp_ipha); 7900 DONTCARE(tcp->tcp_ip6h); 7901 DONTCARE(tcp->tcp_ip_hdr_len); 7902 DONTCARE(tcp->tcp_tcph); 7903 DONTCARE(tcp->tcp_tcp_hdr_len); /* Init in tcp_init_values */ 7904 tcp->tcp_valid_bits = 0; 7905 7906 DONTCARE(tcp->tcp_xmit_hiwater); /* Init in tcp_init_values */ 7907 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 7908 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 7909 tcp->tcp_last_rcv_lbolt = 0; 7910 7911 tcp->tcp_init_cwnd = 0; 7912 7913 tcp->tcp_urp_last_valid = 0; 7914 tcp->tcp_hard_binding = 0; 7915 tcp->tcp_hard_bound = 0; 7916 PRESERVE(tcp->tcp_cred); 7917 PRESERVE(tcp->tcp_cpid); 7918 PRESERVE(tcp->tcp_open_time); 7919 PRESERVE(tcp->tcp_exclbind); 7920 7921 tcp->tcp_fin_acked = 0; 7922 tcp->tcp_fin_rcvd = 0; 7923 tcp->tcp_fin_sent = 0; 7924 tcp->tcp_ordrel_done = 0; 7925 7926 tcp->tcp_debug = 0; 7927 tcp->tcp_dontroute = 0; 7928 tcp->tcp_broadcast = 0; 7929 7930 tcp->tcp_useloopback = 0; 7931 tcp->tcp_reuseaddr = 0; 7932 tcp->tcp_oobinline = 0; 7933 tcp->tcp_dgram_errind = 0; 7934 7935 tcp->tcp_detached = 0; 7936 tcp->tcp_bind_pending = 0; 7937 tcp->tcp_unbind_pending = 0; 7938 tcp->tcp_deferred_clean_death = 0; 7939 7940 tcp->tcp_snd_ws_ok = B_FALSE; 7941 tcp->tcp_snd_ts_ok = B_FALSE; 7942 tcp->tcp_linger = 0; 7943 tcp->tcp_ka_enabled = 0; 7944 tcp->tcp_zero_win_probe = 0; 7945 7946 tcp->tcp_loopback = 0; 7947 tcp->tcp_localnet = 0; 7948 tcp->tcp_syn_defense = 0; 7949 tcp->tcp_set_timer = 0; 7950 7951 tcp->tcp_active_open = 0; 7952 ASSERT(tcp->tcp_timeout == B_FALSE); 7953 tcp->tcp_rexmit = B_FALSE; 7954 tcp->tcp_xmit_zc_clean = B_FALSE; 7955 7956 tcp->tcp_snd_sack_ok = B_FALSE; 7957 PRESERVE(tcp->tcp_recvdstaddr); 7958 tcp->tcp_hwcksum = B_FALSE; 7959 7960 tcp->tcp_ire_ill_check_done = B_FALSE; 7961 DONTCARE(tcp->tcp_maxpsz); /* Init in tcp_init_values */ 7962 7963 tcp->tcp_mdt = B_FALSE; 7964 tcp->tcp_mdt_hdr_head = 0; 7965 tcp->tcp_mdt_hdr_tail = 0; 7966 7967 tcp->tcp_conn_def_q0 = 0; 7968 tcp->tcp_ip_forward_progress = B_FALSE; 7969 tcp->tcp_anon_priv_bind = 0; 7970 tcp->tcp_ecn_ok = B_FALSE; 7971 7972 tcp->tcp_cwr = B_FALSE; 7973 tcp->tcp_ecn_echo_on = B_FALSE; 7974 7975 if (tcp->tcp_sack_info != NULL) { 7976 if (tcp->tcp_notsack_list != NULL) { 7977 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 7978 } 7979 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 7980 tcp->tcp_sack_info = NULL; 7981 } 7982 7983 tcp->tcp_rcv_ws = 0; 7984 tcp->tcp_snd_ws = 0; 7985 tcp->tcp_ts_recent = 0; 7986 tcp->tcp_rnxt = 0; /* Displayed in mib */ 7987 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 7988 tcp->tcp_if_mtu = 0; 7989 7990 ASSERT(tcp->tcp_reass_head == NULL); 7991 ASSERT(tcp->tcp_reass_tail == NULL); 7992 7993 tcp->tcp_cwnd_cnt = 0; 7994 7995 ASSERT(tcp->tcp_rcv_list == NULL); 7996 ASSERT(tcp->tcp_rcv_last_head == NULL); 7997 ASSERT(tcp->tcp_rcv_last_tail == NULL); 7998 ASSERT(tcp->tcp_rcv_cnt == 0); 7999 8000 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_adapt_ire */ 8001 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 8002 tcp->tcp_csuna = 0; 8003 8004 tcp->tcp_rto = 0; /* Displayed in MIB */ 8005 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 8006 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 8007 tcp->tcp_rtt_update = 0; 8008 8009 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 8010 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 8011 8012 tcp->tcp_rack = 0; /* Displayed in mib */ 8013 tcp->tcp_rack_cnt = 0; 8014 tcp->tcp_rack_cur_max = 0; 8015 tcp->tcp_rack_abs_max = 0; 8016 8017 tcp->tcp_max_swnd = 0; 8018 8019 ASSERT(tcp->tcp_listener == NULL); 8020 8021 DONTCARE(tcp->tcp_xmit_lowater); /* Init in tcp_init_values */ 8022 8023 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 8024 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 8025 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 8026 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 8027 8028 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 8029 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 8030 PRESERVE(tcp->tcp_conn_req_max); 8031 PRESERVE(tcp->tcp_conn_req_seqnum); 8032 8033 DONTCARE(tcp->tcp_ip_hdr_len); /* Init in tcp_init_values */ 8034 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 8035 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 8036 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 8037 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 8038 8039 tcp->tcp_lingertime = 0; 8040 8041 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 8042 ASSERT(tcp->tcp_urp_mp == NULL); 8043 ASSERT(tcp->tcp_urp_mark_mp == NULL); 8044 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 8045 8046 ASSERT(tcp->tcp_eager_next_q == NULL); 8047 ASSERT(tcp->tcp_eager_last_q == NULL); 8048 ASSERT((tcp->tcp_eager_next_q0 == NULL && 8049 tcp->tcp_eager_prev_q0 == NULL) || 8050 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 8051 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 8052 8053 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 8054 tcp->tcp_eager_prev_drop_q0 == NULL) || 8055 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 8056 8057 tcp->tcp_client_errno = 0; 8058 8059 DONTCARE(tcp->tcp_sum); /* Init in tcp_init_values */ 8060 8061 tcp->tcp_remote_v6 = ipv6_all_zeros; /* Displayed in MIB */ 8062 8063 PRESERVE(tcp->tcp_bound_source_v6); 8064 tcp->tcp_last_sent_len = 0; 8065 tcp->tcp_dupack_cnt = 0; 8066 8067 tcp->tcp_fport = 0; /* Displayed in MIB */ 8068 PRESERVE(tcp->tcp_lport); 8069 8070 PRESERVE(tcp->tcp_acceptor_lockp); 8071 8072 ASSERT(tcp->tcp_ordrelid == 0); 8073 PRESERVE(tcp->tcp_acceptor_id); 8074 DONTCARE(tcp->tcp_ipsec_overhead); 8075 8076 /* 8077 * If tcp_tracing flag is ON (i.e. We have a trace buffer 8078 * in tcp structure and now tracing), Re-initialize all 8079 * members of tcp_traceinfo. 8080 */ 8081 if (tcp->tcp_tracebuf != NULL) { 8082 bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 8083 } 8084 8085 PRESERVE(tcp->tcp_family); 8086 if (tcp->tcp_family == AF_INET6) { 8087 tcp->tcp_ipversion = IPV6_VERSION; 8088 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 8089 } else { 8090 tcp->tcp_ipversion = IPV4_VERSION; 8091 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 8092 } 8093 8094 tcp->tcp_bound_if = 0; 8095 tcp->tcp_ipv6_recvancillary = 0; 8096 tcp->tcp_recvifindex = 0; 8097 tcp->tcp_recvhops = 0; 8098 tcp->tcp_closed = 0; 8099 tcp->tcp_cleandeathtag = 0; 8100 if (tcp->tcp_hopopts != NULL) { 8101 mi_free(tcp->tcp_hopopts); 8102 tcp->tcp_hopopts = NULL; 8103 tcp->tcp_hopoptslen = 0; 8104 } 8105 ASSERT(tcp->tcp_hopoptslen == 0); 8106 if (tcp->tcp_dstopts != NULL) { 8107 mi_free(tcp->tcp_dstopts); 8108 tcp->tcp_dstopts = NULL; 8109 tcp->tcp_dstoptslen = 0; 8110 } 8111 ASSERT(tcp->tcp_dstoptslen == 0); 8112 if (tcp->tcp_rtdstopts != NULL) { 8113 mi_free(tcp->tcp_rtdstopts); 8114 tcp->tcp_rtdstopts = NULL; 8115 tcp->tcp_rtdstoptslen = 0; 8116 } 8117 ASSERT(tcp->tcp_rtdstoptslen == 0); 8118 if (tcp->tcp_rthdr != NULL) { 8119 mi_free(tcp->tcp_rthdr); 8120 tcp->tcp_rthdr = NULL; 8121 tcp->tcp_rthdrlen = 0; 8122 } 8123 ASSERT(tcp->tcp_rthdrlen == 0); 8124 PRESERVE(tcp->tcp_drop_opt_ack_cnt); 8125 8126 /* Reset fusion-related fields */ 8127 tcp->tcp_fused = B_FALSE; 8128 tcp->tcp_unfusable = B_FALSE; 8129 tcp->tcp_fused_sigurg = B_FALSE; 8130 tcp->tcp_direct_sockfs = B_FALSE; 8131 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 8132 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 8133 tcp->tcp_loopback_peer = NULL; 8134 tcp->tcp_fuse_rcv_hiwater = 0; 8135 tcp->tcp_fuse_rcv_unread_hiwater = 0; 8136 tcp->tcp_fuse_rcv_unread_cnt = 0; 8137 8138 tcp->tcp_lso = B_FALSE; 8139 8140 tcp->tcp_in_ack_unsent = 0; 8141 tcp->tcp_cork = B_FALSE; 8142 tcp->tcp_tconnind_started = B_FALSE; 8143 8144 PRESERVE(tcp->tcp_squeue_bytes); 8145 8146 ASSERT(tcp->tcp_kssl_ctx == NULL); 8147 ASSERT(!tcp->tcp_kssl_pending); 8148 PRESERVE(tcp->tcp_kssl_ent); 8149 8150 tcp->tcp_closemp_used = B_FALSE; 8151 8152 #ifdef DEBUG 8153 DONTCARE(tcp->tcmp_stk[0]); 8154 #endif 8155 8156 8157 #undef DONTCARE 8158 #undef PRESERVE 8159 } 8160 8161 /* 8162 * Allocate necessary resources and initialize state vector. 8163 * Guaranteed not to fail so that when an error is returned, 8164 * the caller doesn't need to do any additional cleanup. 8165 */ 8166 int 8167 tcp_init(tcp_t *tcp, queue_t *q) 8168 { 8169 int err; 8170 8171 tcp->tcp_rq = q; 8172 tcp->tcp_wq = WR(q); 8173 tcp->tcp_state = TCPS_IDLE; 8174 if ((err = tcp_init_values(tcp)) != 0) 8175 tcp_timers_stop(tcp); 8176 return (err); 8177 } 8178 8179 static int 8180 tcp_init_values(tcp_t *tcp) 8181 { 8182 int err; 8183 tcp_stack_t *tcps = tcp->tcp_tcps; 8184 8185 ASSERT((tcp->tcp_family == AF_INET && 8186 tcp->tcp_ipversion == IPV4_VERSION) || 8187 (tcp->tcp_family == AF_INET6 && 8188 (tcp->tcp_ipversion == IPV4_VERSION || 8189 tcp->tcp_ipversion == IPV6_VERSION))); 8190 8191 /* 8192 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 8193 * will be close to tcp_rexmit_interval_initial. By doing this, we 8194 * allow the algorithm to adjust slowly to large fluctuations of RTT 8195 * during first few transmissions of a connection as seen in slow 8196 * links. 8197 */ 8198 tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2; 8199 tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1; 8200 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 8201 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 8202 tcps->tcps_conn_grace_period; 8203 if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min) 8204 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 8205 tcp->tcp_timer_backoff = 0; 8206 tcp->tcp_ms_we_have_waited = 0; 8207 tcp->tcp_last_recv_time = lbolt; 8208 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 8209 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 8210 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 8211 8212 tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier; 8213 8214 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 8215 tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval; 8216 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 8217 /* 8218 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 8219 * passive open. 8220 */ 8221 tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval; 8222 8223 tcp->tcp_naglim = tcps->tcps_naglim_def; 8224 8225 /* NOTE: ISS is now set in tcp_adapt_ire(). */ 8226 8227 tcp->tcp_mdt_hdr_head = 0; 8228 tcp->tcp_mdt_hdr_tail = 0; 8229 8230 /* Reset fusion-related fields */ 8231 tcp->tcp_fused = B_FALSE; 8232 tcp->tcp_unfusable = B_FALSE; 8233 tcp->tcp_fused_sigurg = B_FALSE; 8234 tcp->tcp_direct_sockfs = B_FALSE; 8235 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 8236 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 8237 tcp->tcp_loopback_peer = NULL; 8238 tcp->tcp_fuse_rcv_hiwater = 0; 8239 tcp->tcp_fuse_rcv_unread_hiwater = 0; 8240 tcp->tcp_fuse_rcv_unread_cnt = 0; 8241 8242 /* Initialize the header template */ 8243 if (tcp->tcp_ipversion == IPV4_VERSION) { 8244 err = tcp_header_init_ipv4(tcp); 8245 } else { 8246 err = tcp_header_init_ipv6(tcp); 8247 } 8248 if (err) 8249 return (err); 8250 8251 /* 8252 * Init the window scale to the max so tcp_rwnd_set() won't pare 8253 * down tcp_rwnd. tcp_adapt_ire() will set the right value later. 8254 */ 8255 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 8256 tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat; 8257 tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat; 8258 8259 tcp->tcp_cork = B_FALSE; 8260 /* 8261 * Init the tcp_debug option. This value determines whether TCP 8262 * calls strlog() to print out debug messages. Doing this 8263 * initialization here means that this value is not inherited thru 8264 * tcp_reinit(). 8265 */ 8266 tcp->tcp_debug = tcps->tcps_dbg; 8267 8268 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 8269 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 8270 8271 return (0); 8272 } 8273 8274 /* 8275 * Initialize the IPv4 header. Loses any record of any IP options. 8276 */ 8277 static int 8278 tcp_header_init_ipv4(tcp_t *tcp) 8279 { 8280 tcph_t *tcph; 8281 uint32_t sum; 8282 conn_t *connp; 8283 tcp_stack_t *tcps = tcp->tcp_tcps; 8284 8285 /* 8286 * This is a simple initialization. If there's 8287 * already a template, it should never be too small, 8288 * so reuse it. Otherwise, allocate space for the new one. 8289 */ 8290 if (tcp->tcp_iphc == NULL) { 8291 ASSERT(tcp->tcp_iphc_len == 0); 8292 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8293 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8294 if (tcp->tcp_iphc == NULL) { 8295 tcp->tcp_iphc_len = 0; 8296 return (ENOMEM); 8297 } 8298 } 8299 8300 /* options are gone; may need a new label */ 8301 connp = tcp->tcp_connp; 8302 connp->conn_mlp_type = mlptSingle; 8303 connp->conn_ulp_labeled = !is_system_labeled(); 8304 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8305 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 8306 tcp->tcp_ip6h = NULL; 8307 tcp->tcp_ipversion = IPV4_VERSION; 8308 tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t); 8309 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8310 tcp->tcp_ip_hdr_len = sizeof (ipha_t); 8311 tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t)); 8312 tcp->tcp_ipha->ipha_version_and_hdr_length 8313 = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; 8314 tcp->tcp_ipha->ipha_ident = 0; 8315 8316 tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8317 tcp->tcp_tos = 0; 8318 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 8319 tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8320 tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP; 8321 8322 tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t)); 8323 tcp->tcp_tcph = tcph; 8324 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8325 /* 8326 * IP wants our header length in the checksum field to 8327 * allow it to perform a single pseudo-header+checksum 8328 * calculation on behalf of TCP. 8329 * Include the adjustment for a source route once IP_OPTIONS is set. 8330 */ 8331 sum = sizeof (tcph_t) + tcp->tcp_sum; 8332 sum = (sum >> 16) + (sum & 0xFFFF); 8333 U16_TO_ABE16(sum, tcph->th_sum); 8334 return (0); 8335 } 8336 8337 /* 8338 * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. 8339 */ 8340 static int 8341 tcp_header_init_ipv6(tcp_t *tcp) 8342 { 8343 tcph_t *tcph; 8344 uint32_t sum; 8345 conn_t *connp; 8346 tcp_stack_t *tcps = tcp->tcp_tcps; 8347 8348 /* 8349 * This is a simple initialization. If there's 8350 * already a template, it should never be too small, 8351 * so reuse it. Otherwise, allocate space for the new one. 8352 * Ensure that there is enough space to "downgrade" the tcp_t 8353 * to an IPv4 tcp_t. This requires having space for a full load 8354 * of IPv4 options, as well as a full load of TCP options 8355 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space 8356 * than a v6 header and a TCP header with a full load of TCP options 8357 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes). 8358 * We want to avoid reallocation in the "downgraded" case when 8359 * processing outbound IPv4 options. 8360 */ 8361 if (tcp->tcp_iphc == NULL) { 8362 ASSERT(tcp->tcp_iphc_len == 0); 8363 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8364 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8365 if (tcp->tcp_iphc == NULL) { 8366 tcp->tcp_iphc_len = 0; 8367 return (ENOMEM); 8368 } 8369 } 8370 8371 /* options are gone; may need a new label */ 8372 connp = tcp->tcp_connp; 8373 connp->conn_mlp_type = mlptSingle; 8374 connp->conn_ulp_labeled = !is_system_labeled(); 8375 8376 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8377 tcp->tcp_ipversion = IPV6_VERSION; 8378 tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t); 8379 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8380 tcp->tcp_ip_hdr_len = IPV6_HDR_LEN; 8381 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 8382 tcp->tcp_ipha = NULL; 8383 8384 /* Initialize the header template */ 8385 8386 tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 8387 tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t)); 8388 tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP; 8389 tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit; 8390 8391 tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN); 8392 tcp->tcp_tcph = tcph; 8393 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8394 /* 8395 * IP wants our header length in the checksum field to 8396 * allow it to perform a single psuedo-header+checksum 8397 * calculation on behalf of TCP. 8398 * Include the adjustment for a source route when IPV6_RTHDR is set. 8399 */ 8400 sum = sizeof (tcph_t) + tcp->tcp_sum; 8401 sum = (sum >> 16) + (sum & 0xFFFF); 8402 U16_TO_ABE16(sum, tcph->th_sum); 8403 return (0); 8404 } 8405 8406 /* At minimum we need 8 bytes in the TCP header for the lookup */ 8407 #define ICMP_MIN_TCP_HDR 8 8408 8409 /* 8410 * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages 8411 * passed up by IP. The message is always received on the correct tcp_t. 8412 * Assumes that IP has pulled up everything up to and including the ICMP header. 8413 */ 8414 void 8415 tcp_icmp_error(tcp_t *tcp, mblk_t *mp) 8416 { 8417 icmph_t *icmph; 8418 ipha_t *ipha; 8419 int iph_hdr_length; 8420 tcph_t *tcph; 8421 boolean_t ipsec_mctl = B_FALSE; 8422 boolean_t secure; 8423 mblk_t *first_mp = mp; 8424 uint32_t new_mss; 8425 uint32_t ratio; 8426 size_t mp_size = MBLKL(mp); 8427 uint32_t seg_seq; 8428 tcp_stack_t *tcps = tcp->tcp_tcps; 8429 8430 /* Assume IP provides aligned packets - otherwise toss */ 8431 if (!OK_32PTR(mp->b_rptr)) { 8432 freemsg(mp); 8433 return; 8434 } 8435 8436 /* 8437 * Since ICMP errors are normal data marked with M_CTL when sent 8438 * to TCP or UDP, we have to look for a IPSEC_IN value to identify 8439 * packets starting with an ipsec_info_t, see ipsec_info.h. 8440 */ 8441 if ((mp_size == sizeof (ipsec_info_t)) && 8442 (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) { 8443 ASSERT(mp->b_cont != NULL); 8444 mp = mp->b_cont; 8445 /* IP should have done this */ 8446 ASSERT(OK_32PTR(mp->b_rptr)); 8447 mp_size = MBLKL(mp); 8448 ipsec_mctl = B_TRUE; 8449 } 8450 8451 /* 8452 * Verify that we have a complete outer IP header. If not, drop it. 8453 */ 8454 if (mp_size < sizeof (ipha_t)) { 8455 noticmpv4: 8456 freemsg(first_mp); 8457 return; 8458 } 8459 8460 ipha = (ipha_t *)mp->b_rptr; 8461 /* 8462 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 8463 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 8464 */ 8465 switch (IPH_HDR_VERSION(ipha)) { 8466 case IPV6_VERSION: 8467 tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl); 8468 return; 8469 case IPV4_VERSION: 8470 break; 8471 default: 8472 goto noticmpv4; 8473 } 8474 8475 /* Skip past the outer IP and ICMP headers */ 8476 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8477 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 8478 /* 8479 * If we don't have the correct outer IP header length or if the ULP 8480 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 8481 * send it upstream. 8482 */ 8483 if (iph_hdr_length < sizeof (ipha_t) || 8484 ipha->ipha_protocol != IPPROTO_ICMP || 8485 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 8486 goto noticmpv4; 8487 } 8488 ipha = (ipha_t *)&icmph[1]; 8489 8490 /* Skip past the inner IP and find the ULP header */ 8491 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8492 tcph = (tcph_t *)((char *)ipha + iph_hdr_length); 8493 /* 8494 * If we don't have the correct inner IP header length or if the ULP 8495 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 8496 * bytes of TCP header, drop it. 8497 */ 8498 if (iph_hdr_length < sizeof (ipha_t) || 8499 ipha->ipha_protocol != IPPROTO_TCP || 8500 (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) { 8501 goto noticmpv4; 8502 } 8503 8504 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 8505 if (ipsec_mctl) { 8506 secure = ipsec_in_is_secure(first_mp); 8507 } else { 8508 secure = B_FALSE; 8509 } 8510 if (secure) { 8511 /* 8512 * If we are willing to accept this in clear 8513 * we don't have to verify policy. 8514 */ 8515 if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) { 8516 if (!tcp_check_policy(tcp, first_mp, 8517 ipha, NULL, secure, ipsec_mctl)) { 8518 /* 8519 * tcp_check_policy called 8520 * ip_drop_packet() on failure. 8521 */ 8522 return; 8523 } 8524 } 8525 } 8526 } else if (ipsec_mctl) { 8527 /* 8528 * This is a hard_bound connection. IP has already 8529 * verified policy. We don't have to do it again. 8530 */ 8531 freeb(first_mp); 8532 first_mp = mp; 8533 ipsec_mctl = B_FALSE; 8534 } 8535 8536 seg_seq = ABE32_TO_U32(tcph->th_seq); 8537 /* 8538 * TCP SHOULD check that the TCP sequence number contained in 8539 * payload of the ICMP error message is within the range 8540 * SND.UNA <= SEG.SEQ < SND.NXT. 8541 */ 8542 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8543 /* 8544 * If the ICMP message is bogus, should we kill the 8545 * connection, or should we just drop the bogus ICMP 8546 * message? It would probably make more sense to just 8547 * drop the message so that if this one managed to get 8548 * in, the real connection should not suffer. 8549 */ 8550 goto noticmpv4; 8551 } 8552 8553 switch (icmph->icmph_type) { 8554 case ICMP_DEST_UNREACHABLE: 8555 switch (icmph->icmph_code) { 8556 case ICMP_FRAGMENTATION_NEEDED: 8557 /* 8558 * Reduce the MSS based on the new MTU. This will 8559 * eliminate any fragmentation locally. 8560 * N.B. There may well be some funny side-effects on 8561 * the local send policy and the remote receive policy. 8562 * Pending further research, we provide 8563 * tcp_ignore_path_mtu just in case this proves 8564 * disastrous somewhere. 8565 * 8566 * After updating the MSS, retransmit part of the 8567 * dropped segment using the new mss by calling 8568 * tcp_wput_data(). Need to adjust all those 8569 * params to make sure tcp_wput_data() work properly. 8570 */ 8571 if (tcps->tcps_ignore_path_mtu) 8572 break; 8573 8574 /* 8575 * Decrease the MSS by time stamp options 8576 * IP options and IPSEC options. tcp_hdr_len 8577 * includes time stamp option and IP option 8578 * length. 8579 */ 8580 8581 new_mss = ntohs(icmph->icmph_du_mtu) - 8582 tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead; 8583 8584 /* 8585 * Only update the MSS if the new one is 8586 * smaller than the previous one. This is 8587 * to avoid problems when getting multiple 8588 * ICMP errors for the same MTU. 8589 */ 8590 if (new_mss >= tcp->tcp_mss) 8591 break; 8592 8593 /* 8594 * Stop doing PMTU if new_mss is less than 68 8595 * or less than tcp_mss_min. 8596 * The value 68 comes from rfc 1191. 8597 */ 8598 if (new_mss < MAX(68, tcps->tcps_mss_min)) 8599 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 8600 0; 8601 8602 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8603 ASSERT(ratio >= 1); 8604 tcp_mss_set(tcp, new_mss, B_TRUE); 8605 8606 /* 8607 * Make sure we have something to 8608 * send. 8609 */ 8610 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8611 (tcp->tcp_xmit_head != NULL)) { 8612 /* 8613 * Shrink tcp_cwnd in 8614 * proportion to the old MSS/new MSS. 8615 */ 8616 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8617 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8618 (tcp->tcp_unsent == 0)) { 8619 tcp->tcp_rexmit_max = tcp->tcp_fss; 8620 } else { 8621 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8622 } 8623 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8624 tcp->tcp_rexmit = B_TRUE; 8625 tcp->tcp_dupack_cnt = 0; 8626 tcp->tcp_snd_burst = TCP_CWND_SS; 8627 tcp_ss_rexmit(tcp); 8628 } 8629 break; 8630 case ICMP_PORT_UNREACHABLE: 8631 case ICMP_PROTOCOL_UNREACHABLE: 8632 switch (tcp->tcp_state) { 8633 case TCPS_SYN_SENT: 8634 case TCPS_SYN_RCVD: 8635 /* 8636 * ICMP can snipe away incipient 8637 * TCP connections as long as 8638 * seq number is same as initial 8639 * send seq number. 8640 */ 8641 if (seg_seq == tcp->tcp_iss) { 8642 (void) tcp_clean_death(tcp, 8643 ECONNREFUSED, 6); 8644 } 8645 break; 8646 } 8647 break; 8648 case ICMP_HOST_UNREACHABLE: 8649 case ICMP_NET_UNREACHABLE: 8650 /* Record the error in case we finally time out. */ 8651 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 8652 tcp->tcp_client_errno = EHOSTUNREACH; 8653 else 8654 tcp->tcp_client_errno = ENETUNREACH; 8655 if (tcp->tcp_state == TCPS_SYN_RCVD) { 8656 if (tcp->tcp_listener != NULL && 8657 tcp->tcp_listener->tcp_syn_defense) { 8658 /* 8659 * Ditch the half-open connection if we 8660 * suspect a SYN attack is under way. 8661 */ 8662 tcp_ip_ire_mark_advice(tcp); 8663 (void) tcp_clean_death(tcp, 8664 tcp->tcp_client_errno, 7); 8665 } 8666 } 8667 break; 8668 default: 8669 break; 8670 } 8671 break; 8672 case ICMP_SOURCE_QUENCH: { 8673 /* 8674 * use a global boolean to control 8675 * whether TCP should respond to ICMP_SOURCE_QUENCH. 8676 * The default is false. 8677 */ 8678 if (tcp_icmp_source_quench) { 8679 /* 8680 * Reduce the sending rate as if we got a 8681 * retransmit timeout 8682 */ 8683 uint32_t npkt; 8684 8685 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 8686 tcp->tcp_mss; 8687 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 8688 tcp->tcp_cwnd = tcp->tcp_mss; 8689 tcp->tcp_cwnd_cnt = 0; 8690 } 8691 break; 8692 } 8693 } 8694 freemsg(first_mp); 8695 } 8696 8697 /* 8698 * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6 8699 * error messages passed up by IP. 8700 * Assumes that IP has pulled up all the extension headers as well 8701 * as the ICMPv6 header. 8702 */ 8703 static void 8704 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl) 8705 { 8706 icmp6_t *icmp6; 8707 ip6_t *ip6h; 8708 uint16_t iph_hdr_length; 8709 tcpha_t *tcpha; 8710 uint8_t *nexthdrp; 8711 uint32_t new_mss; 8712 uint32_t ratio; 8713 boolean_t secure; 8714 mblk_t *first_mp = mp; 8715 size_t mp_size; 8716 uint32_t seg_seq; 8717 tcp_stack_t *tcps = tcp->tcp_tcps; 8718 8719 /* 8720 * The caller has determined if this is an IPSEC_IN packet and 8721 * set ipsec_mctl appropriately (see tcp_icmp_error). 8722 */ 8723 if (ipsec_mctl) 8724 mp = mp->b_cont; 8725 8726 mp_size = MBLKL(mp); 8727 8728 /* 8729 * Verify that we have a complete IP header. If not, send it upstream. 8730 */ 8731 if (mp_size < sizeof (ip6_t)) { 8732 noticmpv6: 8733 freemsg(first_mp); 8734 return; 8735 } 8736 8737 /* 8738 * Verify this is an ICMPV6 packet, else send it upstream. 8739 */ 8740 ip6h = (ip6_t *)mp->b_rptr; 8741 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 8742 iph_hdr_length = IPV6_HDR_LEN; 8743 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 8744 &nexthdrp) || 8745 *nexthdrp != IPPROTO_ICMPV6) { 8746 goto noticmpv6; 8747 } 8748 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 8749 ip6h = (ip6_t *)&icmp6[1]; 8750 /* 8751 * Verify if we have a complete ICMP and inner IP header. 8752 */ 8753 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 8754 goto noticmpv6; 8755 8756 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 8757 goto noticmpv6; 8758 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 8759 /* 8760 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 8761 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 8762 * packet. 8763 */ 8764 if ((*nexthdrp != IPPROTO_TCP) || 8765 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 8766 goto noticmpv6; 8767 } 8768 8769 /* 8770 * ICMP errors come on the right queue or come on 8771 * listener/global queue for detached connections and 8772 * get switched to the right queue. If it comes on the 8773 * right queue, policy check has already been done by IP 8774 * and thus free the first_mp without verifying the policy. 8775 * If it has come for a non-hard bound connection, we need 8776 * to verify policy as IP may not have done it. 8777 */ 8778 if (!tcp->tcp_hard_bound) { 8779 if (ipsec_mctl) { 8780 secure = ipsec_in_is_secure(first_mp); 8781 } else { 8782 secure = B_FALSE; 8783 } 8784 if (secure) { 8785 /* 8786 * If we are willing to accept this in clear 8787 * we don't have to verify policy. 8788 */ 8789 if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) { 8790 if (!tcp_check_policy(tcp, first_mp, 8791 NULL, ip6h, secure, ipsec_mctl)) { 8792 /* 8793 * tcp_check_policy called 8794 * ip_drop_packet() on failure. 8795 */ 8796 return; 8797 } 8798 } 8799 } 8800 } else if (ipsec_mctl) { 8801 /* 8802 * This is a hard_bound connection. IP has already 8803 * verified policy. We don't have to do it again. 8804 */ 8805 freeb(first_mp); 8806 first_mp = mp; 8807 ipsec_mctl = B_FALSE; 8808 } 8809 8810 seg_seq = ntohl(tcpha->tha_seq); 8811 /* 8812 * TCP SHOULD check that the TCP sequence number contained in 8813 * payload of the ICMP error message is within the range 8814 * SND.UNA <= SEG.SEQ < SND.NXT. 8815 */ 8816 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8817 /* 8818 * If the ICMP message is bogus, should we kill the 8819 * connection, or should we just drop the bogus ICMP 8820 * message? It would probably make more sense to just 8821 * drop the message so that if this one managed to get 8822 * in, the real connection should not suffer. 8823 */ 8824 goto noticmpv6; 8825 } 8826 8827 switch (icmp6->icmp6_type) { 8828 case ICMP6_PACKET_TOO_BIG: 8829 /* 8830 * Reduce the MSS based on the new MTU. This will 8831 * eliminate any fragmentation locally. 8832 * N.B. There may well be some funny side-effects on 8833 * the local send policy and the remote receive policy. 8834 * Pending further research, we provide 8835 * tcp_ignore_path_mtu just in case this proves 8836 * disastrous somewhere. 8837 * 8838 * After updating the MSS, retransmit part of the 8839 * dropped segment using the new mss by calling 8840 * tcp_wput_data(). Need to adjust all those 8841 * params to make sure tcp_wput_data() work properly. 8842 */ 8843 if (tcps->tcps_ignore_path_mtu) 8844 break; 8845 8846 /* 8847 * Decrease the MSS by time stamp options 8848 * IP options and IPSEC options. tcp_hdr_len 8849 * includes time stamp option and IP option 8850 * length. 8851 */ 8852 new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len - 8853 tcp->tcp_ipsec_overhead; 8854 8855 /* 8856 * Only update the MSS if the new one is 8857 * smaller than the previous one. This is 8858 * to avoid problems when getting multiple 8859 * ICMP errors for the same MTU. 8860 */ 8861 if (new_mss >= tcp->tcp_mss) 8862 break; 8863 8864 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8865 ASSERT(ratio >= 1); 8866 tcp_mss_set(tcp, new_mss, B_TRUE); 8867 8868 /* 8869 * Make sure we have something to 8870 * send. 8871 */ 8872 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8873 (tcp->tcp_xmit_head != NULL)) { 8874 /* 8875 * Shrink tcp_cwnd in 8876 * proportion to the old MSS/new MSS. 8877 */ 8878 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8879 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8880 (tcp->tcp_unsent == 0)) { 8881 tcp->tcp_rexmit_max = tcp->tcp_fss; 8882 } else { 8883 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8884 } 8885 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8886 tcp->tcp_rexmit = B_TRUE; 8887 tcp->tcp_dupack_cnt = 0; 8888 tcp->tcp_snd_burst = TCP_CWND_SS; 8889 tcp_ss_rexmit(tcp); 8890 } 8891 break; 8892 8893 case ICMP6_DST_UNREACH: 8894 switch (icmp6->icmp6_code) { 8895 case ICMP6_DST_UNREACH_NOPORT: 8896 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8897 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8898 (seg_seq == tcp->tcp_iss)) { 8899 (void) tcp_clean_death(tcp, 8900 ECONNREFUSED, 8); 8901 } 8902 break; 8903 8904 case ICMP6_DST_UNREACH_ADMIN: 8905 case ICMP6_DST_UNREACH_NOROUTE: 8906 case ICMP6_DST_UNREACH_BEYONDSCOPE: 8907 case ICMP6_DST_UNREACH_ADDR: 8908 /* Record the error in case we finally time out. */ 8909 tcp->tcp_client_errno = EHOSTUNREACH; 8910 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8911 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8912 (seg_seq == tcp->tcp_iss)) { 8913 if (tcp->tcp_listener != NULL && 8914 tcp->tcp_listener->tcp_syn_defense) { 8915 /* 8916 * Ditch the half-open connection if we 8917 * suspect a SYN attack is under way. 8918 */ 8919 tcp_ip_ire_mark_advice(tcp); 8920 (void) tcp_clean_death(tcp, 8921 tcp->tcp_client_errno, 9); 8922 } 8923 } 8924 8925 8926 break; 8927 default: 8928 break; 8929 } 8930 break; 8931 8932 case ICMP6_PARAM_PROB: 8933 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 8934 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 8935 (uchar_t *)ip6h + icmp6->icmp6_pptr == 8936 (uchar_t *)nexthdrp) { 8937 if (tcp->tcp_state == TCPS_SYN_SENT || 8938 tcp->tcp_state == TCPS_SYN_RCVD) { 8939 (void) tcp_clean_death(tcp, 8940 ECONNREFUSED, 10); 8941 } 8942 break; 8943 } 8944 break; 8945 8946 case ICMP6_TIME_EXCEEDED: 8947 default: 8948 break; 8949 } 8950 freemsg(first_mp); 8951 } 8952 8953 /* 8954 * IP recognizes seven kinds of bind requests: 8955 * 8956 * - A zero-length address binds only to the protocol number. 8957 * 8958 * - A 4-byte address is treated as a request to 8959 * validate that the address is a valid local IPv4 8960 * address, appropriate for an application to bind to. 8961 * IP does the verification, but does not make any note 8962 * of the address at this time. 8963 * 8964 * - A 16-byte address contains is treated as a request 8965 * to validate a local IPv6 address, as the 4-byte 8966 * address case above. 8967 * 8968 * - A 16-byte sockaddr_in to validate the local IPv4 address and also 8969 * use it for the inbound fanout of packets. 8970 * 8971 * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also 8972 * use it for the inbound fanout of packets. 8973 * 8974 * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout 8975 * information consisting of local and remote addresses 8976 * and ports. In this case, the addresses are both 8977 * validated as appropriate for this operation, and, if 8978 * so, the information is retained for use in the 8979 * inbound fanout. 8980 * 8981 * - A 36-byte address address (ipa6_conn_t) containing complete IPv6 8982 * fanout information, like the 12-byte case above. 8983 * 8984 * IP will also fill in the IRE request mblk with information 8985 * regarding our peer. In all cases, we notify IP of our protocol 8986 * type by appending a single protocol byte to the bind request. 8987 */ 8988 static mblk_t * 8989 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length) 8990 { 8991 char *cp; 8992 mblk_t *mp; 8993 struct T_bind_req *tbr; 8994 ipa_conn_t *ac; 8995 ipa6_conn_t *ac6; 8996 sin_t *sin; 8997 sin6_t *sin6; 8998 8999 ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ); 9000 ASSERT((tcp->tcp_family == AF_INET && 9001 tcp->tcp_ipversion == IPV4_VERSION) || 9002 (tcp->tcp_family == AF_INET6 && 9003 (tcp->tcp_ipversion == IPV4_VERSION || 9004 tcp->tcp_ipversion == IPV6_VERSION))); 9005 9006 mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI); 9007 if (!mp) 9008 return (mp); 9009 mp->b_datap->db_type = M_PROTO; 9010 tbr = (struct T_bind_req *)mp->b_rptr; 9011 tbr->PRIM_type = bind_prim; 9012 tbr->ADDR_offset = sizeof (*tbr); 9013 tbr->CONIND_number = 0; 9014 tbr->ADDR_length = addr_length; 9015 cp = (char *)&tbr[1]; 9016 switch (addr_length) { 9017 case sizeof (ipa_conn_t): 9018 ASSERT(tcp->tcp_family == AF_INET); 9019 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 9020 9021 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 9022 if (mp->b_cont == NULL) { 9023 freemsg(mp); 9024 return (NULL); 9025 } 9026 mp->b_cont->b_wptr += sizeof (ire_t); 9027 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 9028 9029 /* cp known to be 32 bit aligned */ 9030 ac = (ipa_conn_t *)cp; 9031 ac->ac_laddr = tcp->tcp_ipha->ipha_src; 9032 ac->ac_faddr = tcp->tcp_remote; 9033 ac->ac_fport = tcp->tcp_fport; 9034 ac->ac_lport = tcp->tcp_lport; 9035 tcp->tcp_hard_binding = 1; 9036 break; 9037 9038 case sizeof (ipa6_conn_t): 9039 ASSERT(tcp->tcp_family == AF_INET6); 9040 9041 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 9042 if (mp->b_cont == NULL) { 9043 freemsg(mp); 9044 return (NULL); 9045 } 9046 mp->b_cont->b_wptr += sizeof (ire_t); 9047 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 9048 9049 /* cp known to be 32 bit aligned */ 9050 ac6 = (ipa6_conn_t *)cp; 9051 if (tcp->tcp_ipversion == IPV4_VERSION) { 9052 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 9053 &ac6->ac6_laddr); 9054 } else { 9055 ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src; 9056 } 9057 ac6->ac6_faddr = tcp->tcp_remote_v6; 9058 ac6->ac6_fport = tcp->tcp_fport; 9059 ac6->ac6_lport = tcp->tcp_lport; 9060 tcp->tcp_hard_binding = 1; 9061 break; 9062 9063 case sizeof (sin_t): 9064 /* 9065 * NOTE: IPV6_ADDR_LEN also has same size. 9066 * Use family to discriminate. 9067 */ 9068 if (tcp->tcp_family == AF_INET) { 9069 sin = (sin_t *)cp; 9070 9071 *sin = sin_null; 9072 sin->sin_family = AF_INET; 9073 sin->sin_addr.s_addr = tcp->tcp_bound_source; 9074 sin->sin_port = tcp->tcp_lport; 9075 break; 9076 } else { 9077 *(in6_addr_t *)cp = tcp->tcp_bound_source_v6; 9078 } 9079 break; 9080 9081 case sizeof (sin6_t): 9082 ASSERT(tcp->tcp_family == AF_INET6); 9083 sin6 = (sin6_t *)cp; 9084 9085 *sin6 = sin6_null; 9086 sin6->sin6_family = AF_INET6; 9087 sin6->sin6_addr = tcp->tcp_bound_source_v6; 9088 sin6->sin6_port = tcp->tcp_lport; 9089 break; 9090 9091 case IP_ADDR_LEN: 9092 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 9093 *(uint32_t *)cp = tcp->tcp_ipha->ipha_src; 9094 break; 9095 9096 } 9097 /* Add protocol number to end */ 9098 cp[addr_length] = (char)IPPROTO_TCP; 9099 mp->b_wptr = (uchar_t *)&cp[addr_length + 1]; 9100 return (mp); 9101 } 9102 9103 /* 9104 * Notify IP that we are having trouble with this connection. IP should 9105 * blow the IRE away and start over. 9106 */ 9107 static void 9108 tcp_ip_notify(tcp_t *tcp) 9109 { 9110 struct iocblk *iocp; 9111 ipid_t *ipid; 9112 mblk_t *mp; 9113 9114 /* IPv6 has NUD thus notification to delete the IRE is not needed */ 9115 if (tcp->tcp_ipversion == IPV6_VERSION) 9116 return; 9117 9118 mp = mkiocb(IP_IOCTL); 9119 if (mp == NULL) 9120 return; 9121 9122 iocp = (struct iocblk *)mp->b_rptr; 9123 iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst); 9124 9125 mp->b_cont = allocb(iocp->ioc_count, BPRI_HI); 9126 if (!mp->b_cont) { 9127 freeb(mp); 9128 return; 9129 } 9130 9131 ipid = (ipid_t *)mp->b_cont->b_rptr; 9132 mp->b_cont->b_wptr += iocp->ioc_count; 9133 bzero(ipid, sizeof (*ipid)); 9134 ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY; 9135 ipid->ipid_ire_type = IRE_CACHE; 9136 ipid->ipid_addr_offset = sizeof (ipid_t); 9137 ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst); 9138 /* 9139 * Note: in the case of source routing we want to blow away the 9140 * route to the first source route hop. 9141 */ 9142 bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1], 9143 sizeof (tcp->tcp_ipha->ipha_dst)); 9144 9145 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 9146 } 9147 9148 /* Unlink and return any mblk that looks like it contains an ire */ 9149 static mblk_t * 9150 tcp_ire_mp(mblk_t *mp) 9151 { 9152 mblk_t *prev_mp; 9153 9154 for (;;) { 9155 prev_mp = mp; 9156 mp = mp->b_cont; 9157 if (mp == NULL) 9158 break; 9159 switch (DB_TYPE(mp)) { 9160 case IRE_DB_TYPE: 9161 case IRE_DB_REQ_TYPE: 9162 if (prev_mp != NULL) 9163 prev_mp->b_cont = mp->b_cont; 9164 mp->b_cont = NULL; 9165 return (mp); 9166 default: 9167 break; 9168 } 9169 } 9170 return (mp); 9171 } 9172 9173 /* 9174 * Timer callback routine for keepalive probe. We do a fake resend of 9175 * last ACKed byte. Then set a timer using RTO. When the timer expires, 9176 * check to see if we have heard anything from the other end for the last 9177 * RTO period. If we have, set the timer to expire for another 9178 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 9179 * RTO << 1 and check again when it expires. Keep exponentially increasing 9180 * the timeout if we have not heard from the other side. If for more than 9181 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 9182 * kill the connection unless the keepalive abort threshold is 0. In 9183 * that case, we will probe "forever." 9184 */ 9185 static void 9186 tcp_keepalive_killer(void *arg) 9187 { 9188 mblk_t *mp; 9189 conn_t *connp = (conn_t *)arg; 9190 tcp_t *tcp = connp->conn_tcp; 9191 int32_t firetime; 9192 int32_t idletime; 9193 int32_t ka_intrvl; 9194 tcp_stack_t *tcps = tcp->tcp_tcps; 9195 9196 tcp->tcp_ka_tid = 0; 9197 9198 if (tcp->tcp_fused) 9199 return; 9200 9201 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive); 9202 ka_intrvl = tcp->tcp_ka_interval; 9203 9204 /* 9205 * Keepalive probe should only be sent if the application has not 9206 * done a close on the connection. 9207 */ 9208 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 9209 return; 9210 } 9211 /* Timer fired too early, restart it. */ 9212 if (tcp->tcp_state < TCPS_ESTABLISHED) { 9213 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 9214 MSEC_TO_TICK(ka_intrvl)); 9215 return; 9216 } 9217 9218 idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time); 9219 /* 9220 * If we have not heard from the other side for a long 9221 * time, kill the connection unless the keepalive abort 9222 * threshold is 0. In that case, we will probe "forever." 9223 */ 9224 if (tcp->tcp_ka_abort_thres != 0 && 9225 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 9226 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop); 9227 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 9228 tcp->tcp_client_errno : ETIMEDOUT, 11); 9229 return; 9230 } 9231 9232 if (tcp->tcp_snxt == tcp->tcp_suna && 9233 idletime >= ka_intrvl) { 9234 /* Fake resend of last ACKed byte. */ 9235 mblk_t *mp1 = allocb(1, BPRI_LO); 9236 9237 if (mp1 != NULL) { 9238 *mp1->b_wptr++ = '\0'; 9239 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 9240 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 9241 freeb(mp1); 9242 /* 9243 * if allocation failed, fall through to start the 9244 * timer back. 9245 */ 9246 if (mp != NULL) { 9247 TCP_RECORD_TRACE(tcp, mp, 9248 TCP_TRACE_SEND_PKT); 9249 tcp_send_data(tcp, tcp->tcp_wq, mp); 9250 BUMP_MIB(&tcps->tcps_mib, 9251 tcpTimKeepaliveProbe); 9252 if (tcp->tcp_ka_last_intrvl != 0) { 9253 int max; 9254 /* 9255 * We should probe again at least 9256 * in ka_intrvl, but not more than 9257 * tcp_rexmit_interval_max. 9258 */ 9259 max = tcps->tcps_rexmit_interval_max; 9260 firetime = MIN(ka_intrvl - 1, 9261 tcp->tcp_ka_last_intrvl << 1); 9262 if (firetime > max) 9263 firetime = max; 9264 } else { 9265 firetime = tcp->tcp_rto; 9266 } 9267 tcp->tcp_ka_tid = TCP_TIMER(tcp, 9268 tcp_keepalive_killer, 9269 MSEC_TO_TICK(firetime)); 9270 tcp->tcp_ka_last_intrvl = firetime; 9271 return; 9272 } 9273 } 9274 } else { 9275 tcp->tcp_ka_last_intrvl = 0; 9276 } 9277 9278 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 9279 if ((firetime = ka_intrvl - idletime) < 0) { 9280 firetime = ka_intrvl; 9281 } 9282 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 9283 MSEC_TO_TICK(firetime)); 9284 } 9285 9286 int 9287 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 9288 { 9289 queue_t *q = tcp->tcp_rq; 9290 int32_t mss = tcp->tcp_mss; 9291 int maxpsz; 9292 9293 if (TCP_IS_DETACHED(tcp)) 9294 return (mss); 9295 9296 if (tcp->tcp_fused) { 9297 maxpsz = tcp_fuse_maxpsz_set(tcp); 9298 mss = INFPSZ; 9299 } else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) { 9300 /* 9301 * Set the sd_qn_maxpsz according to the socket send buffer 9302 * size, and sd_maxblk to INFPSZ (-1). This will essentially 9303 * instruct the stream head to copyin user data into contiguous 9304 * kernel-allocated buffers without breaking it up into smaller 9305 * chunks. We round up the buffer size to the nearest SMSS. 9306 */ 9307 maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss); 9308 if (tcp->tcp_kssl_ctx == NULL) 9309 mss = INFPSZ; 9310 else 9311 mss = SSL3_MAX_RECORD_LEN; 9312 } else { 9313 /* 9314 * Set sd_qn_maxpsz to approx half the (receivers) buffer 9315 * (and a multiple of the mss). This instructs the stream 9316 * head to break down larger than SMSS writes into SMSS- 9317 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 9318 */ 9319 maxpsz = tcp->tcp_maxpsz * mss; 9320 if (maxpsz > tcp->tcp_xmit_hiwater/2) { 9321 maxpsz = tcp->tcp_xmit_hiwater/2; 9322 /* Round up to nearest mss */ 9323 maxpsz = MSS_ROUNDUP(maxpsz, mss); 9324 } 9325 } 9326 (void) setmaxps(q, maxpsz); 9327 tcp->tcp_wq->q_maxpsz = maxpsz; 9328 9329 if (set_maxblk) 9330 (void) mi_set_sth_maxblk(q, mss); 9331 9332 return (mss); 9333 } 9334 9335 /* 9336 * Extract option values from a tcp header. We put any found values into the 9337 * tcpopt struct and return a bitmask saying which options were found. 9338 */ 9339 static int 9340 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt) 9341 { 9342 uchar_t *endp; 9343 int len; 9344 uint32_t mss; 9345 uchar_t *up = (uchar_t *)tcph; 9346 int found = 0; 9347 int32_t sack_len; 9348 tcp_seq sack_begin, sack_end; 9349 tcp_t *tcp; 9350 9351 endp = up + TCP_HDR_LENGTH(tcph); 9352 up += TCP_MIN_HEADER_LENGTH; 9353 while (up < endp) { 9354 len = endp - up; 9355 switch (*up) { 9356 case TCPOPT_EOL: 9357 break; 9358 9359 case TCPOPT_NOP: 9360 up++; 9361 continue; 9362 9363 case TCPOPT_MAXSEG: 9364 if (len < TCPOPT_MAXSEG_LEN || 9365 up[1] != TCPOPT_MAXSEG_LEN) 9366 break; 9367 9368 mss = BE16_TO_U16(up+2); 9369 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 9370 tcpopt->tcp_opt_mss = mss; 9371 found |= TCP_OPT_MSS_PRESENT; 9372 9373 up += TCPOPT_MAXSEG_LEN; 9374 continue; 9375 9376 case TCPOPT_WSCALE: 9377 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 9378 break; 9379 9380 if (up[2] > TCP_MAX_WINSHIFT) 9381 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 9382 else 9383 tcpopt->tcp_opt_wscale = up[2]; 9384 found |= TCP_OPT_WSCALE_PRESENT; 9385 9386 up += TCPOPT_WS_LEN; 9387 continue; 9388 9389 case TCPOPT_SACK_PERMITTED: 9390 if (len < TCPOPT_SACK_OK_LEN || 9391 up[1] != TCPOPT_SACK_OK_LEN) 9392 break; 9393 found |= TCP_OPT_SACK_OK_PRESENT; 9394 up += TCPOPT_SACK_OK_LEN; 9395 continue; 9396 9397 case TCPOPT_SACK: 9398 if (len <= 2 || up[1] <= 2 || len < up[1]) 9399 break; 9400 9401 /* If TCP is not interested in SACK blks... */ 9402 if ((tcp = tcpopt->tcp) == NULL) { 9403 up += up[1]; 9404 continue; 9405 } 9406 sack_len = up[1] - TCPOPT_HEADER_LEN; 9407 up += TCPOPT_HEADER_LEN; 9408 9409 /* 9410 * If the list is empty, allocate one and assume 9411 * nothing is sack'ed. 9412 */ 9413 ASSERT(tcp->tcp_sack_info != NULL); 9414 if (tcp->tcp_notsack_list == NULL) { 9415 tcp_notsack_update(&(tcp->tcp_notsack_list), 9416 tcp->tcp_suna, tcp->tcp_snxt, 9417 &(tcp->tcp_num_notsack_blk), 9418 &(tcp->tcp_cnt_notsack_list)); 9419 9420 /* 9421 * Make sure tcp_notsack_list is not NULL. 9422 * This happens when kmem_alloc(KM_NOSLEEP) 9423 * returns NULL. 9424 */ 9425 if (tcp->tcp_notsack_list == NULL) { 9426 up += sack_len; 9427 continue; 9428 } 9429 tcp->tcp_fack = tcp->tcp_suna; 9430 } 9431 9432 while (sack_len > 0) { 9433 if (up + 8 > endp) { 9434 up = endp; 9435 break; 9436 } 9437 sack_begin = BE32_TO_U32(up); 9438 up += 4; 9439 sack_end = BE32_TO_U32(up); 9440 up += 4; 9441 sack_len -= 8; 9442 /* 9443 * Bounds checking. Make sure the SACK 9444 * info is within tcp_suna and tcp_snxt. 9445 * If this SACK blk is out of bound, ignore 9446 * it but continue to parse the following 9447 * blks. 9448 */ 9449 if (SEQ_LEQ(sack_end, sack_begin) || 9450 SEQ_LT(sack_begin, tcp->tcp_suna) || 9451 SEQ_GT(sack_end, tcp->tcp_snxt)) { 9452 continue; 9453 } 9454 tcp_notsack_insert(&(tcp->tcp_notsack_list), 9455 sack_begin, sack_end, 9456 &(tcp->tcp_num_notsack_blk), 9457 &(tcp->tcp_cnt_notsack_list)); 9458 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 9459 tcp->tcp_fack = sack_end; 9460 } 9461 } 9462 found |= TCP_OPT_SACK_PRESENT; 9463 continue; 9464 9465 case TCPOPT_TSTAMP: 9466 if (len < TCPOPT_TSTAMP_LEN || 9467 up[1] != TCPOPT_TSTAMP_LEN) 9468 break; 9469 9470 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 9471 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 9472 9473 found |= TCP_OPT_TSTAMP_PRESENT; 9474 9475 up += TCPOPT_TSTAMP_LEN; 9476 continue; 9477 9478 default: 9479 if (len <= 1 || len < (int)up[1] || up[1] == 0) 9480 break; 9481 up += up[1]; 9482 continue; 9483 } 9484 break; 9485 } 9486 return (found); 9487 } 9488 9489 /* 9490 * Set the mss associated with a particular tcp based on its current value, 9491 * and a new one passed in. Observe minimums and maximums, and reset 9492 * other state variables that we want to view as multiples of mss. 9493 * 9494 * This function is called in various places mainly because 9495 * 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the 9496 * other side's SYN/SYN-ACK packet arrives. 9497 * 2) PMTUd may get us a new MSS. 9498 * 3) If the other side stops sending us timestamp option, we need to 9499 * increase the MSS size to use the extra bytes available. 9500 * 9501 * do_ss is used to control whether we will be doing slow start or 9502 * not if there is a change in the mss. Note that for some events like 9503 * tcp_paws_check() we allow the tcp_cwnd to adjust to the new mss but 9504 * do not perform a slow start specifically. 9505 */ 9506 static void 9507 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss) 9508 { 9509 uint32_t mss_max; 9510 tcp_stack_t *tcps = tcp->tcp_tcps; 9511 9512 if (tcp->tcp_ipversion == IPV4_VERSION) 9513 mss_max = tcps->tcps_mss_max_ipv4; 9514 else 9515 mss_max = tcps->tcps_mss_max_ipv6; 9516 9517 if (mss < tcps->tcps_mss_min) 9518 mss = tcps->tcps_mss_min; 9519 if (mss > mss_max) 9520 mss = mss_max; 9521 /* 9522 * Unless naglim has been set by our client to 9523 * a non-mss value, force naglim to track mss. 9524 * This can help to aggregate small writes. 9525 */ 9526 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 9527 tcp->tcp_naglim = mss; 9528 /* 9529 * TCP should be able to buffer at least 4 MSS data for obvious 9530 * performance reason. 9531 */ 9532 if ((mss << 2) > tcp->tcp_xmit_hiwater) 9533 tcp->tcp_xmit_hiwater = mss << 2; 9534 9535 /* 9536 * Check if we need to apply the tcp_init_cwnd here. If 9537 * it is set and the MSS gets bigger (should not happen 9538 * normally), we need to adjust the resulting tcp_cwnd properly. 9539 * The new tcp_cwnd should not get bigger. 9540 */ 9541 /* 9542 * We need to avoid setting tcp_cwnd to its slow start value 9543 * unnecessarily. However we have to let the tcp_cwnd adjust 9544 * to the modified mss. 9545 */ 9546 if (tcp->tcp_init_cwnd == 0 && do_ss) { 9547 tcp->tcp_cwnd = MIN(tcps->tcps_slow_start_initial * 9548 mss, MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss))); 9549 } else { 9550 if (tcp->tcp_mss < mss) { 9551 tcp->tcp_cwnd = MAX(1, 9552 (tcp->tcp_init_cwnd * tcp->tcp_mss / 9553 mss)) * mss; 9554 } else { 9555 tcp->tcp_cwnd = tcp->tcp_init_cwnd * mss; 9556 } 9557 } 9558 tcp->tcp_mss = mss; 9559 tcp->tcp_cwnd_cnt = 0; 9560 (void) tcp_maxpsz_set(tcp, B_TRUE); 9561 } 9562 9563 static int 9564 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9565 { 9566 tcp_t *tcp = NULL; 9567 conn_t *connp; 9568 int err; 9569 dev_t conn_dev; 9570 zoneid_t zoneid; 9571 tcp_stack_t *tcps = NULL; 9572 9573 if (q->q_ptr != NULL) 9574 return (0); 9575 9576 if (!(flag & SO_ACCEPTOR)) { 9577 /* 9578 * Special case for install: miniroot needs to be able to 9579 * access files via NFS as though it were always in the 9580 * global zone. 9581 */ 9582 if (credp == kcred && nfs_global_client_only != 0) { 9583 zoneid = GLOBAL_ZONEID; 9584 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 9585 netstack_tcp; 9586 ASSERT(tcps != NULL); 9587 } else { 9588 netstack_t *ns; 9589 9590 ns = netstack_find_by_cred(credp); 9591 ASSERT(ns != NULL); 9592 tcps = ns->netstack_tcp; 9593 ASSERT(tcps != NULL); 9594 9595 /* 9596 * For exclusive stacks we set the zoneid to zero 9597 * to make TCP operate as if in the global zone. 9598 */ 9599 if (tcps->tcps_netstack->netstack_stackid != 9600 GLOBAL_NETSTACKID) 9601 zoneid = GLOBAL_ZONEID; 9602 else 9603 zoneid = crgetzoneid(credp); 9604 } 9605 /* 9606 * For stackid zero this is done from strplumb.c, but 9607 * non-zero stackids are handled here. 9608 */ 9609 if (tcps->tcps_g_q == NULL && 9610 tcps->tcps_netstack->netstack_stackid != 9611 GLOBAL_NETSTACKID) { 9612 tcp_g_q_setup(tcps); 9613 } 9614 } 9615 if (sflag == MODOPEN) { 9616 /* 9617 * This is a special case. The purpose of a modopen 9618 * is to allow just the T_SVR4_OPTMGMT_REQ to pass 9619 * through for MIB browsers. Everything else is failed. 9620 */ 9621 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt), tcps); 9622 /* tcp_get_conn incremented refcnt */ 9623 netstack_rele(tcps->tcps_netstack); 9624 9625 if (connp == NULL) 9626 return (ENOMEM); 9627 9628 connp->conn_flags |= IPCL_TCPMOD; 9629 connp->conn_cred = credp; 9630 connp->conn_zoneid = zoneid; 9631 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 9632 ASSERT(connp->conn_netstack->netstack_tcp == tcps); 9633 q->q_ptr = WR(q)->q_ptr = connp; 9634 crhold(credp); 9635 q->q_qinfo = &tcp_mod_rinit; 9636 WR(q)->q_qinfo = &tcp_mod_winit; 9637 qprocson(q); 9638 return (0); 9639 } 9640 if ((conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 9641 if (tcps != NULL) 9642 netstack_rele(tcps->tcps_netstack); 9643 return (EBUSY); 9644 } 9645 9646 *devp = makedevice(getemajor(*devp), (minor_t)conn_dev); 9647 9648 if (flag & SO_ACCEPTOR) { 9649 /* No netstack_find_by_cred, hence no netstack_rele needed */ 9650 ASSERT(tcps == NULL); 9651 q->q_qinfo = &tcp_acceptor_rinit; 9652 q->q_ptr = (void *)conn_dev; 9653 WR(q)->q_qinfo = &tcp_acceptor_winit; 9654 WR(q)->q_ptr = (void *)conn_dev; 9655 qprocson(q); 9656 return (0); 9657 } 9658 9659 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt), tcps); 9660 /* 9661 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 9662 * so we drop it by one. 9663 */ 9664 netstack_rele(tcps->tcps_netstack); 9665 if (connp == NULL) { 9666 inet_minor_free(ip_minor_arena, conn_dev); 9667 q->q_ptr = NULL; 9668 return (ENOSR); 9669 } 9670 connp->conn_sqp = IP_SQUEUE_GET(lbolt); 9671 tcp = connp->conn_tcp; 9672 9673 q->q_ptr = WR(q)->q_ptr = connp; 9674 if (getmajor(*devp) == TCP6_MAJ) { 9675 connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6); 9676 connp->conn_send = ip_output_v6; 9677 connp->conn_af_isv6 = B_TRUE; 9678 connp->conn_pkt_isv6 = B_TRUE; 9679 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9680 tcp->tcp_ipversion = IPV6_VERSION; 9681 tcp->tcp_family = AF_INET6; 9682 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 9683 } else { 9684 connp->conn_flags |= IPCL_TCP4; 9685 connp->conn_send = ip_output; 9686 connp->conn_af_isv6 = B_FALSE; 9687 connp->conn_pkt_isv6 = B_FALSE; 9688 tcp->tcp_ipversion = IPV4_VERSION; 9689 tcp->tcp_family = AF_INET; 9690 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 9691 } 9692 9693 /* 9694 * TCP keeps a copy of cred for cache locality reasons but 9695 * we put a reference only once. If connp->conn_cred 9696 * becomes invalid, tcp_cred should also be set to NULL. 9697 */ 9698 tcp->tcp_cred = connp->conn_cred = credp; 9699 crhold(connp->conn_cred); 9700 tcp->tcp_cpid = curproc->p_pid; 9701 tcp->tcp_open_time = lbolt64; 9702 connp->conn_zoneid = zoneid; 9703 connp->conn_mlp_type = mlptSingle; 9704 connp->conn_ulp_labeled = !is_system_labeled(); 9705 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 9706 ASSERT(tcp->tcp_tcps == tcps); 9707 9708 /* 9709 * If the caller has the process-wide flag set, then default to MAC 9710 * exempt mode. This allows read-down to unlabeled hosts. 9711 */ 9712 if (getpflags(NET_MAC_AWARE, credp) != 0) 9713 connp->conn_mac_exempt = B_TRUE; 9714 9715 connp->conn_dev = conn_dev; 9716 9717 ASSERT(q->q_qinfo == &tcp_rinit); 9718 ASSERT(WR(q)->q_qinfo == &tcp_winit); 9719 9720 if (flag & SO_SOCKSTR) { 9721 /* 9722 * No need to insert a socket in tcp acceptor hash. 9723 * If it was a socket acceptor stream, we dealt with 9724 * it above. A socket listener can never accept a 9725 * connection and doesn't need acceptor_id. 9726 */ 9727 connp->conn_flags |= IPCL_SOCKET; 9728 tcp->tcp_issocket = 1; 9729 WR(q)->q_qinfo = &tcp_sock_winit; 9730 } else { 9731 #ifdef _ILP32 9732 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 9733 #else 9734 tcp->tcp_acceptor_id = conn_dev; 9735 #endif /* _ILP32 */ 9736 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 9737 } 9738 9739 if (tcps->tcps_trace) 9740 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP); 9741 9742 err = tcp_init(tcp, q); 9743 if (err != 0) { 9744 inet_minor_free(ip_minor_arena, connp->conn_dev); 9745 tcp_acceptor_hash_remove(tcp); 9746 CONN_DEC_REF(connp); 9747 q->q_ptr = WR(q)->q_ptr = NULL; 9748 return (err); 9749 } 9750 9751 RD(q)->q_hiwat = tcps->tcps_recv_hiwat; 9752 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 9753 9754 /* Non-zero default values */ 9755 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9756 /* 9757 * Put the ref for TCP. Ref for IP was already put 9758 * by ipcl_conn_create. Also Make the conn_t globally 9759 * visible to walkers 9760 */ 9761 mutex_enter(&connp->conn_lock); 9762 CONN_INC_REF_LOCKED(connp); 9763 ASSERT(connp->conn_ref == 2); 9764 connp->conn_state_flags &= ~CONN_INCIPIENT; 9765 mutex_exit(&connp->conn_lock); 9766 9767 qprocson(q); 9768 return (0); 9769 } 9770 9771 /* 9772 * Some TCP options can be "set" by requesting them in the option 9773 * buffer. This is needed for XTI feature test though we do not 9774 * allow it in general. We interpret that this mechanism is more 9775 * applicable to OSI protocols and need not be allowed in general. 9776 * This routine filters out options for which it is not allowed (most) 9777 * and lets through those (few) for which it is. [ The XTI interface 9778 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 9779 * ever implemented will have to be allowed here ]. 9780 */ 9781 static boolean_t 9782 tcp_allow_connopt_set(int level, int name) 9783 { 9784 9785 switch (level) { 9786 case IPPROTO_TCP: 9787 switch (name) { 9788 case TCP_NODELAY: 9789 return (B_TRUE); 9790 default: 9791 return (B_FALSE); 9792 } 9793 /*NOTREACHED*/ 9794 default: 9795 return (B_FALSE); 9796 } 9797 /*NOTREACHED*/ 9798 } 9799 9800 /* 9801 * This routine gets default values of certain options whose default 9802 * values are maintained by protocol specific code 9803 */ 9804 /* ARGSUSED */ 9805 int 9806 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 9807 { 9808 int32_t *i1 = (int32_t *)ptr; 9809 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 9810 9811 switch (level) { 9812 case IPPROTO_TCP: 9813 switch (name) { 9814 case TCP_NOTIFY_THRESHOLD: 9815 *i1 = tcps->tcps_ip_notify_interval; 9816 break; 9817 case TCP_ABORT_THRESHOLD: 9818 *i1 = tcps->tcps_ip_abort_interval; 9819 break; 9820 case TCP_CONN_NOTIFY_THRESHOLD: 9821 *i1 = tcps->tcps_ip_notify_cinterval; 9822 break; 9823 case TCP_CONN_ABORT_THRESHOLD: 9824 *i1 = tcps->tcps_ip_abort_cinterval; 9825 break; 9826 default: 9827 return (-1); 9828 } 9829 break; 9830 case IPPROTO_IP: 9831 switch (name) { 9832 case IP_TTL: 9833 *i1 = tcps->tcps_ipv4_ttl; 9834 break; 9835 default: 9836 return (-1); 9837 } 9838 break; 9839 case IPPROTO_IPV6: 9840 switch (name) { 9841 case IPV6_UNICAST_HOPS: 9842 *i1 = tcps->tcps_ipv6_hoplimit; 9843 break; 9844 default: 9845 return (-1); 9846 } 9847 break; 9848 default: 9849 return (-1); 9850 } 9851 return (sizeof (int)); 9852 } 9853 9854 9855 /* 9856 * TCP routine to get the values of options. 9857 */ 9858 int 9859 tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 9860 { 9861 int *i1 = (int *)ptr; 9862 conn_t *connp = Q_TO_CONN(q); 9863 tcp_t *tcp = connp->conn_tcp; 9864 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 9865 9866 switch (level) { 9867 case SOL_SOCKET: 9868 switch (name) { 9869 case SO_LINGER: { 9870 struct linger *lgr = (struct linger *)ptr; 9871 9872 lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0; 9873 lgr->l_linger = tcp->tcp_lingertime; 9874 } 9875 return (sizeof (struct linger)); 9876 case SO_DEBUG: 9877 *i1 = tcp->tcp_debug ? SO_DEBUG : 0; 9878 break; 9879 case SO_KEEPALIVE: 9880 *i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0; 9881 break; 9882 case SO_DONTROUTE: 9883 *i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0; 9884 break; 9885 case SO_USELOOPBACK: 9886 *i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0; 9887 break; 9888 case SO_BROADCAST: 9889 *i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0; 9890 break; 9891 case SO_REUSEADDR: 9892 *i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0; 9893 break; 9894 case SO_OOBINLINE: 9895 *i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0; 9896 break; 9897 case SO_DGRAM_ERRIND: 9898 *i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0; 9899 break; 9900 case SO_TYPE: 9901 *i1 = SOCK_STREAM; 9902 break; 9903 case SO_SNDBUF: 9904 *i1 = tcp->tcp_xmit_hiwater; 9905 break; 9906 case SO_RCVBUF: 9907 *i1 = RD(q)->q_hiwat; 9908 break; 9909 case SO_SND_COPYAVOID: 9910 *i1 = tcp->tcp_snd_zcopy_on ? 9911 SO_SND_COPYAVOID : 0; 9912 break; 9913 case SO_ALLZONES: 9914 *i1 = connp->conn_allzones ? 1 : 0; 9915 break; 9916 case SO_ANON_MLP: 9917 *i1 = connp->conn_anon_mlp; 9918 break; 9919 case SO_MAC_EXEMPT: 9920 *i1 = connp->conn_mac_exempt; 9921 break; 9922 case SO_EXCLBIND: 9923 *i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0; 9924 break; 9925 case SO_PROTOTYPE: 9926 *i1 = IPPROTO_TCP; 9927 break; 9928 case SO_DOMAIN: 9929 *i1 = tcp->tcp_family; 9930 break; 9931 default: 9932 return (-1); 9933 } 9934 break; 9935 case IPPROTO_TCP: 9936 switch (name) { 9937 case TCP_NODELAY: 9938 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 9939 break; 9940 case TCP_MAXSEG: 9941 *i1 = tcp->tcp_mss; 9942 break; 9943 case TCP_NOTIFY_THRESHOLD: 9944 *i1 = (int)tcp->tcp_first_timer_threshold; 9945 break; 9946 case TCP_ABORT_THRESHOLD: 9947 *i1 = tcp->tcp_second_timer_threshold; 9948 break; 9949 case TCP_CONN_NOTIFY_THRESHOLD: 9950 *i1 = tcp->tcp_first_ctimer_threshold; 9951 break; 9952 case TCP_CONN_ABORT_THRESHOLD: 9953 *i1 = tcp->tcp_second_ctimer_threshold; 9954 break; 9955 case TCP_RECVDSTADDR: 9956 *i1 = tcp->tcp_recvdstaddr; 9957 break; 9958 case TCP_ANONPRIVBIND: 9959 *i1 = tcp->tcp_anon_priv_bind; 9960 break; 9961 case TCP_EXCLBIND: 9962 *i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0; 9963 break; 9964 case TCP_INIT_CWND: 9965 *i1 = tcp->tcp_init_cwnd; 9966 break; 9967 case TCP_KEEPALIVE_THRESHOLD: 9968 *i1 = tcp->tcp_ka_interval; 9969 break; 9970 case TCP_KEEPALIVE_ABORT_THRESHOLD: 9971 *i1 = tcp->tcp_ka_abort_thres; 9972 break; 9973 case TCP_CORK: 9974 *i1 = tcp->tcp_cork; 9975 break; 9976 default: 9977 return (-1); 9978 } 9979 break; 9980 case IPPROTO_IP: 9981 if (tcp->tcp_family != AF_INET) 9982 return (-1); 9983 switch (name) { 9984 case IP_OPTIONS: 9985 case T_IP_OPTIONS: { 9986 /* 9987 * This is compatible with BSD in that in only return 9988 * the reverse source route with the final destination 9989 * as the last entry. The first 4 bytes of the option 9990 * will contain the final destination. 9991 */ 9992 int opt_len; 9993 9994 opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha; 9995 opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH; 9996 ASSERT(opt_len >= 0); 9997 /* Caller ensures enough space */ 9998 if (opt_len > 0) { 9999 /* 10000 * TODO: Do we have to handle getsockopt on an 10001 * initiator as well? 10002 */ 10003 return (ip_opt_get_user(tcp->tcp_ipha, ptr)); 10004 } 10005 return (0); 10006 } 10007 case IP_TOS: 10008 case T_IP_TOS: 10009 *i1 = (int)tcp->tcp_ipha->ipha_type_of_service; 10010 break; 10011 case IP_TTL: 10012 *i1 = (int)tcp->tcp_ipha->ipha_ttl; 10013 break; 10014 case IP_NEXTHOP: 10015 /* Handled at IP level */ 10016 return (-EINVAL); 10017 default: 10018 return (-1); 10019 } 10020 break; 10021 case IPPROTO_IPV6: 10022 /* 10023 * IPPROTO_IPV6 options are only supported for sockets 10024 * that are using IPv6 on the wire. 10025 */ 10026 if (tcp->tcp_ipversion != IPV6_VERSION) { 10027 return (-1); 10028 } 10029 switch (name) { 10030 case IPV6_UNICAST_HOPS: 10031 *i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops; 10032 break; /* goto sizeof (int) option return */ 10033 case IPV6_BOUND_IF: 10034 /* Zero if not set */ 10035 *i1 = tcp->tcp_bound_if; 10036 break; /* goto sizeof (int) option return */ 10037 case IPV6_RECVPKTINFO: 10038 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) 10039 *i1 = 1; 10040 else 10041 *i1 = 0; 10042 break; /* goto sizeof (int) option return */ 10043 case IPV6_RECVTCLASS: 10044 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS) 10045 *i1 = 1; 10046 else 10047 *i1 = 0; 10048 break; /* goto sizeof (int) option return */ 10049 case IPV6_RECVHOPLIMIT: 10050 if (tcp->tcp_ipv6_recvancillary & 10051 TCP_IPV6_RECVHOPLIMIT) 10052 *i1 = 1; 10053 else 10054 *i1 = 0; 10055 break; /* goto sizeof (int) option return */ 10056 case IPV6_RECVHOPOPTS: 10057 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) 10058 *i1 = 1; 10059 else 10060 *i1 = 0; 10061 break; /* goto sizeof (int) option return */ 10062 case IPV6_RECVDSTOPTS: 10063 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS) 10064 *i1 = 1; 10065 else 10066 *i1 = 0; 10067 break; /* goto sizeof (int) option return */ 10068 case _OLD_IPV6_RECVDSTOPTS: 10069 if (tcp->tcp_ipv6_recvancillary & 10070 TCP_OLD_IPV6_RECVDSTOPTS) 10071 *i1 = 1; 10072 else 10073 *i1 = 0; 10074 break; /* goto sizeof (int) option return */ 10075 case IPV6_RECVRTHDR: 10076 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) 10077 *i1 = 1; 10078 else 10079 *i1 = 0; 10080 break; /* goto sizeof (int) option return */ 10081 case IPV6_RECVRTHDRDSTOPTS: 10082 if (tcp->tcp_ipv6_recvancillary & 10083 TCP_IPV6_RECVRTDSTOPTS) 10084 *i1 = 1; 10085 else 10086 *i1 = 0; 10087 break; /* goto sizeof (int) option return */ 10088 case IPV6_PKTINFO: { 10089 /* XXX assumes that caller has room for max size! */ 10090 struct in6_pktinfo *pkti; 10091 10092 pkti = (struct in6_pktinfo *)ptr; 10093 if (ipp->ipp_fields & IPPF_IFINDEX) 10094 pkti->ipi6_ifindex = ipp->ipp_ifindex; 10095 else 10096 pkti->ipi6_ifindex = 0; 10097 if (ipp->ipp_fields & IPPF_ADDR) 10098 pkti->ipi6_addr = ipp->ipp_addr; 10099 else 10100 pkti->ipi6_addr = ipv6_all_zeros; 10101 return (sizeof (struct in6_pktinfo)); 10102 } 10103 case IPV6_TCLASS: 10104 if (ipp->ipp_fields & IPPF_TCLASS) 10105 *i1 = ipp->ipp_tclass; 10106 else 10107 *i1 = IPV6_FLOW_TCLASS( 10108 IPV6_DEFAULT_VERS_AND_FLOW); 10109 break; /* goto sizeof (int) option return */ 10110 case IPV6_NEXTHOP: { 10111 sin6_t *sin6 = (sin6_t *)ptr; 10112 10113 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 10114 return (0); 10115 *sin6 = sin6_null; 10116 sin6->sin6_family = AF_INET6; 10117 sin6->sin6_addr = ipp->ipp_nexthop; 10118 return (sizeof (sin6_t)); 10119 } 10120 case IPV6_HOPOPTS: 10121 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 10122 return (0); 10123 if (ipp->ipp_hopoptslen <= tcp->tcp_label_len) 10124 return (0); 10125 bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len, 10126 ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len); 10127 if (tcp->tcp_label_len > 0) { 10128 ptr[0] = ((char *)ipp->ipp_hopopts)[0]; 10129 ptr[1] = (ipp->ipp_hopoptslen - 10130 tcp->tcp_label_len + 7) / 8 - 1; 10131 } 10132 return (ipp->ipp_hopoptslen - tcp->tcp_label_len); 10133 case IPV6_RTHDRDSTOPTS: 10134 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 10135 return (0); 10136 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 10137 return (ipp->ipp_rtdstoptslen); 10138 case IPV6_RTHDR: 10139 if (!(ipp->ipp_fields & IPPF_RTHDR)) 10140 return (0); 10141 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 10142 return (ipp->ipp_rthdrlen); 10143 case IPV6_DSTOPTS: 10144 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 10145 return (0); 10146 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 10147 return (ipp->ipp_dstoptslen); 10148 case IPV6_SRC_PREFERENCES: 10149 return (ip6_get_src_preferences(connp, 10150 (uint32_t *)ptr)); 10151 case IPV6_PATHMTU: { 10152 struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr; 10153 10154 if (tcp->tcp_state < TCPS_ESTABLISHED) 10155 return (-1); 10156 10157 return (ip_fill_mtuinfo(&connp->conn_remv6, 10158 connp->conn_fport, mtuinfo, 10159 connp->conn_netstack)); 10160 } 10161 default: 10162 return (-1); 10163 } 10164 break; 10165 default: 10166 return (-1); 10167 } 10168 return (sizeof (int)); 10169 } 10170 10171 /* 10172 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 10173 * Parameters are assumed to be verified by the caller. 10174 */ 10175 /* ARGSUSED */ 10176 int 10177 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10178 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10179 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 10180 { 10181 conn_t *connp = Q_TO_CONN(q); 10182 tcp_t *tcp = connp->conn_tcp; 10183 int *i1 = (int *)invalp; 10184 boolean_t onoff = (*i1 == 0) ? 0 : 1; 10185 boolean_t checkonly; 10186 int reterr; 10187 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 10188 10189 switch (optset_context) { 10190 case SETFN_OPTCOM_CHECKONLY: 10191 checkonly = B_TRUE; 10192 /* 10193 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10194 * inlen != 0 implies value supplied and 10195 * we have to "pretend" to set it. 10196 * inlen == 0 implies that there is no 10197 * value part in T_CHECK request and just validation 10198 * done elsewhere should be enough, we just return here. 10199 */ 10200 if (inlen == 0) { 10201 *outlenp = 0; 10202 return (0); 10203 } 10204 break; 10205 case SETFN_OPTCOM_NEGOTIATE: 10206 checkonly = B_FALSE; 10207 break; 10208 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 10209 case SETFN_CONN_NEGOTIATE: 10210 checkonly = B_FALSE; 10211 /* 10212 * Negotiating local and "association-related" options 10213 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 10214 * primitives is allowed by XTI, but we choose 10215 * to not implement this style negotiation for Internet 10216 * protocols (We interpret it is a must for OSI world but 10217 * optional for Internet protocols) for all options. 10218 * [ Will do only for the few options that enable test 10219 * suites that our XTI implementation of this feature 10220 * works for transports that do allow it ] 10221 */ 10222 if (!tcp_allow_connopt_set(level, name)) { 10223 *outlenp = 0; 10224 return (EINVAL); 10225 } 10226 break; 10227 default: 10228 /* 10229 * We should never get here 10230 */ 10231 *outlenp = 0; 10232 return (EINVAL); 10233 } 10234 10235 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10236 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10237 10238 /* 10239 * For TCP, we should have no ancillary data sent down 10240 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 10241 * has to be zero. 10242 */ 10243 ASSERT(thisdg_attrs == NULL); 10244 10245 /* 10246 * For fixed length options, no sanity check 10247 * of passed in length is done. It is assumed *_optcom_req() 10248 * routines do the right thing. 10249 */ 10250 10251 switch (level) { 10252 case SOL_SOCKET: 10253 switch (name) { 10254 case SO_LINGER: { 10255 struct linger *lgr = (struct linger *)invalp; 10256 10257 if (!checkonly) { 10258 if (lgr->l_onoff) { 10259 tcp->tcp_linger = 1; 10260 tcp->tcp_lingertime = lgr->l_linger; 10261 } else { 10262 tcp->tcp_linger = 0; 10263 tcp->tcp_lingertime = 0; 10264 } 10265 /* struct copy */ 10266 *(struct linger *)outvalp = *lgr; 10267 } else { 10268 if (!lgr->l_onoff) { 10269 ((struct linger *)outvalp)->l_onoff = 0; 10270 ((struct linger *)outvalp)->l_linger = 0; 10271 } else { 10272 /* struct copy */ 10273 *(struct linger *)outvalp = *lgr; 10274 } 10275 } 10276 *outlenp = sizeof (struct linger); 10277 return (0); 10278 } 10279 case SO_DEBUG: 10280 if (!checkonly) 10281 tcp->tcp_debug = onoff; 10282 break; 10283 case SO_KEEPALIVE: 10284 if (checkonly) { 10285 /* T_CHECK case */ 10286 break; 10287 } 10288 10289 if (!onoff) { 10290 if (tcp->tcp_ka_enabled) { 10291 if (tcp->tcp_ka_tid != 0) { 10292 (void) TCP_TIMER_CANCEL(tcp, 10293 tcp->tcp_ka_tid); 10294 tcp->tcp_ka_tid = 0; 10295 } 10296 tcp->tcp_ka_enabled = 0; 10297 } 10298 break; 10299 } 10300 if (!tcp->tcp_ka_enabled) { 10301 /* Crank up the keepalive timer */ 10302 tcp->tcp_ka_last_intrvl = 0; 10303 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10304 tcp_keepalive_killer, 10305 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10306 tcp->tcp_ka_enabled = 1; 10307 } 10308 break; 10309 case SO_DONTROUTE: 10310 /* 10311 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are 10312 * only of interest to IP. We track them here only so 10313 * that we can report their current value. 10314 */ 10315 if (!checkonly) { 10316 tcp->tcp_dontroute = onoff; 10317 tcp->tcp_connp->conn_dontroute = onoff; 10318 } 10319 break; 10320 case SO_USELOOPBACK: 10321 if (!checkonly) { 10322 tcp->tcp_useloopback = onoff; 10323 tcp->tcp_connp->conn_loopback = onoff; 10324 } 10325 break; 10326 case SO_BROADCAST: 10327 if (!checkonly) { 10328 tcp->tcp_broadcast = onoff; 10329 tcp->tcp_connp->conn_broadcast = onoff; 10330 } 10331 break; 10332 case SO_REUSEADDR: 10333 if (!checkonly) { 10334 tcp->tcp_reuseaddr = onoff; 10335 tcp->tcp_connp->conn_reuseaddr = onoff; 10336 } 10337 break; 10338 case SO_OOBINLINE: 10339 if (!checkonly) 10340 tcp->tcp_oobinline = onoff; 10341 break; 10342 case SO_DGRAM_ERRIND: 10343 if (!checkonly) 10344 tcp->tcp_dgram_errind = onoff; 10345 break; 10346 case SO_SNDBUF: { 10347 if (*i1 > tcps->tcps_max_buf) { 10348 *outlenp = 0; 10349 return (ENOBUFS); 10350 } 10351 if (checkonly) 10352 break; 10353 10354 tcp->tcp_xmit_hiwater = *i1; 10355 if (tcps->tcps_snd_lowat_fraction != 0) 10356 tcp->tcp_xmit_lowater = 10357 tcp->tcp_xmit_hiwater / 10358 tcps->tcps_snd_lowat_fraction; 10359 (void) tcp_maxpsz_set(tcp, B_TRUE); 10360 /* 10361 * If we are flow-controlled, recheck the condition. 10362 * There are apps that increase SO_SNDBUF size when 10363 * flow-controlled (EWOULDBLOCK), and expect the flow 10364 * control condition to be lifted right away. 10365 */ 10366 mutex_enter(&tcp->tcp_non_sq_lock); 10367 if (tcp->tcp_flow_stopped && 10368 TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) { 10369 tcp_clrqfull(tcp); 10370 } 10371 mutex_exit(&tcp->tcp_non_sq_lock); 10372 break; 10373 } 10374 case SO_RCVBUF: 10375 if (*i1 > tcps->tcps_max_buf) { 10376 *outlenp = 0; 10377 return (ENOBUFS); 10378 } 10379 /* Silently ignore zero */ 10380 if (!checkonly && *i1 != 0) { 10381 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 10382 (void) tcp_rwnd_set(tcp, *i1); 10383 } 10384 /* 10385 * XXX should we return the rwnd here 10386 * and tcp_opt_get ? 10387 */ 10388 break; 10389 case SO_SND_COPYAVOID: 10390 if (!checkonly) { 10391 /* we only allow enable at most once for now */ 10392 if (tcp->tcp_loopback || 10393 (!tcp->tcp_snd_zcopy_aware && 10394 (onoff != 1 || !tcp_zcopy_check(tcp)))) { 10395 *outlenp = 0; 10396 return (EOPNOTSUPP); 10397 } 10398 tcp->tcp_snd_zcopy_aware = 1; 10399 } 10400 break; 10401 case SO_ALLZONES: 10402 /* Handled at the IP level */ 10403 return (-EINVAL); 10404 case SO_ANON_MLP: 10405 if (!checkonly) { 10406 mutex_enter(&connp->conn_lock); 10407 connp->conn_anon_mlp = onoff; 10408 mutex_exit(&connp->conn_lock); 10409 } 10410 break; 10411 case SO_MAC_EXEMPT: 10412 if (secpolicy_net_mac_aware(cr) != 0 || 10413 IPCL_IS_BOUND(connp)) 10414 return (EACCES); 10415 if (!checkonly) { 10416 mutex_enter(&connp->conn_lock); 10417 connp->conn_mac_exempt = onoff; 10418 mutex_exit(&connp->conn_lock); 10419 } 10420 break; 10421 case SO_EXCLBIND: 10422 if (!checkonly) 10423 tcp->tcp_exclbind = onoff; 10424 break; 10425 default: 10426 *outlenp = 0; 10427 return (EINVAL); 10428 } 10429 break; 10430 case IPPROTO_TCP: 10431 switch (name) { 10432 case TCP_NODELAY: 10433 if (!checkonly) 10434 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 10435 break; 10436 case TCP_NOTIFY_THRESHOLD: 10437 if (!checkonly) 10438 tcp->tcp_first_timer_threshold = *i1; 10439 break; 10440 case TCP_ABORT_THRESHOLD: 10441 if (!checkonly) 10442 tcp->tcp_second_timer_threshold = *i1; 10443 break; 10444 case TCP_CONN_NOTIFY_THRESHOLD: 10445 if (!checkonly) 10446 tcp->tcp_first_ctimer_threshold = *i1; 10447 break; 10448 case TCP_CONN_ABORT_THRESHOLD: 10449 if (!checkonly) 10450 tcp->tcp_second_ctimer_threshold = *i1; 10451 break; 10452 case TCP_RECVDSTADDR: 10453 if (tcp->tcp_state > TCPS_LISTEN) 10454 return (EOPNOTSUPP); 10455 if (!checkonly) 10456 tcp->tcp_recvdstaddr = onoff; 10457 break; 10458 case TCP_ANONPRIVBIND: 10459 if ((reterr = secpolicy_net_privaddr(cr, 0)) != 0) { 10460 *outlenp = 0; 10461 return (reterr); 10462 } 10463 if (!checkonly) { 10464 tcp->tcp_anon_priv_bind = onoff; 10465 } 10466 break; 10467 case TCP_EXCLBIND: 10468 if (!checkonly) 10469 tcp->tcp_exclbind = onoff; 10470 break; /* goto sizeof (int) option return */ 10471 case TCP_INIT_CWND: { 10472 uint32_t init_cwnd = *((uint32_t *)invalp); 10473 10474 if (checkonly) 10475 break; 10476 10477 /* 10478 * Only allow socket with network configuration 10479 * privilege to set the initial cwnd to be larger 10480 * than allowed by RFC 3390. 10481 */ 10482 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 10483 tcp->tcp_init_cwnd = init_cwnd; 10484 break; 10485 } 10486 if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) { 10487 *outlenp = 0; 10488 return (reterr); 10489 } 10490 if (init_cwnd > TCP_MAX_INIT_CWND) { 10491 *outlenp = 0; 10492 return (EINVAL); 10493 } 10494 tcp->tcp_init_cwnd = init_cwnd; 10495 break; 10496 } 10497 case TCP_KEEPALIVE_THRESHOLD: 10498 if (checkonly) 10499 break; 10500 10501 if (*i1 < tcps->tcps_keepalive_interval_low || 10502 *i1 > tcps->tcps_keepalive_interval_high) { 10503 *outlenp = 0; 10504 return (EINVAL); 10505 } 10506 if (*i1 != tcp->tcp_ka_interval) { 10507 tcp->tcp_ka_interval = *i1; 10508 /* 10509 * Check if we need to restart the 10510 * keepalive timer. 10511 */ 10512 if (tcp->tcp_ka_tid != 0) { 10513 ASSERT(tcp->tcp_ka_enabled); 10514 (void) TCP_TIMER_CANCEL(tcp, 10515 tcp->tcp_ka_tid); 10516 tcp->tcp_ka_last_intrvl = 0; 10517 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10518 tcp_keepalive_killer, 10519 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10520 } 10521 } 10522 break; 10523 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10524 if (!checkonly) { 10525 if (*i1 < 10526 tcps->tcps_keepalive_abort_interval_low || 10527 *i1 > 10528 tcps->tcps_keepalive_abort_interval_high) { 10529 *outlenp = 0; 10530 return (EINVAL); 10531 } 10532 tcp->tcp_ka_abort_thres = *i1; 10533 } 10534 break; 10535 case TCP_CORK: 10536 if (!checkonly) { 10537 /* 10538 * if tcp->tcp_cork was set and is now 10539 * being unset, we have to make sure that 10540 * the remaining data gets sent out. Also 10541 * unset tcp->tcp_cork so that tcp_wput_data() 10542 * can send data even if it is less than mss 10543 */ 10544 if (tcp->tcp_cork && onoff == 0 && 10545 tcp->tcp_unsent > 0) { 10546 tcp->tcp_cork = B_FALSE; 10547 tcp_wput_data(tcp, NULL, B_FALSE); 10548 } 10549 tcp->tcp_cork = onoff; 10550 } 10551 break; 10552 default: 10553 *outlenp = 0; 10554 return (EINVAL); 10555 } 10556 break; 10557 case IPPROTO_IP: 10558 if (tcp->tcp_family != AF_INET) { 10559 *outlenp = 0; 10560 return (ENOPROTOOPT); 10561 } 10562 switch (name) { 10563 case IP_OPTIONS: 10564 case T_IP_OPTIONS: 10565 reterr = tcp_opt_set_header(tcp, checkonly, 10566 invalp, inlen); 10567 if (reterr) { 10568 *outlenp = 0; 10569 return (reterr); 10570 } 10571 /* OK return - copy input buffer into output buffer */ 10572 if (invalp != outvalp) { 10573 /* don't trust bcopy for identical src/dst */ 10574 bcopy(invalp, outvalp, inlen); 10575 } 10576 *outlenp = inlen; 10577 return (0); 10578 case IP_TOS: 10579 case T_IP_TOS: 10580 if (!checkonly) { 10581 tcp->tcp_ipha->ipha_type_of_service = 10582 (uchar_t)*i1; 10583 tcp->tcp_tos = (uchar_t)*i1; 10584 } 10585 break; 10586 case IP_TTL: 10587 if (!checkonly) { 10588 tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1; 10589 tcp->tcp_ttl = (uchar_t)*i1; 10590 } 10591 break; 10592 case IP_BOUND_IF: 10593 case IP_NEXTHOP: 10594 /* Handled at the IP level */ 10595 return (-EINVAL); 10596 case IP_SEC_OPT: 10597 /* 10598 * We should not allow policy setting after 10599 * we start listening for connections. 10600 */ 10601 if (tcp->tcp_state == TCPS_LISTEN) { 10602 return (EINVAL); 10603 } else { 10604 /* Handled at the IP level */ 10605 return (-EINVAL); 10606 } 10607 default: 10608 *outlenp = 0; 10609 return (EINVAL); 10610 } 10611 break; 10612 case IPPROTO_IPV6: { 10613 ip6_pkt_t *ipp; 10614 10615 /* 10616 * IPPROTO_IPV6 options are only supported for sockets 10617 * that are using IPv6 on the wire. 10618 */ 10619 if (tcp->tcp_ipversion != IPV6_VERSION) { 10620 *outlenp = 0; 10621 return (ENOPROTOOPT); 10622 } 10623 /* 10624 * Only sticky options; no ancillary data 10625 */ 10626 ASSERT(thisdg_attrs == NULL); 10627 ipp = &tcp->tcp_sticky_ipp; 10628 10629 switch (name) { 10630 case IPV6_UNICAST_HOPS: 10631 /* -1 means use default */ 10632 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 10633 *outlenp = 0; 10634 return (EINVAL); 10635 } 10636 if (!checkonly) { 10637 if (*i1 == -1) { 10638 tcp->tcp_ip6h->ip6_hops = 10639 ipp->ipp_unicast_hops = 10640 (uint8_t)tcps->tcps_ipv6_hoplimit; 10641 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 10642 /* Pass modified value to IP. */ 10643 *i1 = tcp->tcp_ip6h->ip6_hops; 10644 } else { 10645 tcp->tcp_ip6h->ip6_hops = 10646 ipp->ipp_unicast_hops = 10647 (uint8_t)*i1; 10648 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 10649 } 10650 reterr = tcp_build_hdrs(q, tcp); 10651 if (reterr != 0) 10652 return (reterr); 10653 } 10654 break; 10655 case IPV6_BOUND_IF: 10656 if (!checkonly) { 10657 int error = 0; 10658 10659 tcp->tcp_bound_if = *i1; 10660 error = ip_opt_set_ill(tcp->tcp_connp, *i1, 10661 B_TRUE, checkonly, level, name, mblk); 10662 if (error != 0) { 10663 *outlenp = 0; 10664 return (error); 10665 } 10666 } 10667 break; 10668 /* 10669 * Set boolean switches for ancillary data delivery 10670 */ 10671 case IPV6_RECVPKTINFO: 10672 if (!checkonly) { 10673 if (onoff) 10674 tcp->tcp_ipv6_recvancillary |= 10675 TCP_IPV6_RECVPKTINFO; 10676 else 10677 tcp->tcp_ipv6_recvancillary &= 10678 ~TCP_IPV6_RECVPKTINFO; 10679 /* Force it to be sent up with the next msg */ 10680 tcp->tcp_recvifindex = 0; 10681 } 10682 break; 10683 case IPV6_RECVTCLASS: 10684 if (!checkonly) { 10685 if (onoff) 10686 tcp->tcp_ipv6_recvancillary |= 10687 TCP_IPV6_RECVTCLASS; 10688 else 10689 tcp->tcp_ipv6_recvancillary &= 10690 ~TCP_IPV6_RECVTCLASS; 10691 } 10692 break; 10693 case IPV6_RECVHOPLIMIT: 10694 if (!checkonly) { 10695 if (onoff) 10696 tcp->tcp_ipv6_recvancillary |= 10697 TCP_IPV6_RECVHOPLIMIT; 10698 else 10699 tcp->tcp_ipv6_recvancillary &= 10700 ~TCP_IPV6_RECVHOPLIMIT; 10701 /* Force it to be sent up with the next msg */ 10702 tcp->tcp_recvhops = 0xffffffffU; 10703 } 10704 break; 10705 case IPV6_RECVHOPOPTS: 10706 if (!checkonly) { 10707 if (onoff) 10708 tcp->tcp_ipv6_recvancillary |= 10709 TCP_IPV6_RECVHOPOPTS; 10710 else 10711 tcp->tcp_ipv6_recvancillary &= 10712 ~TCP_IPV6_RECVHOPOPTS; 10713 } 10714 break; 10715 case IPV6_RECVDSTOPTS: 10716 if (!checkonly) { 10717 if (onoff) 10718 tcp->tcp_ipv6_recvancillary |= 10719 TCP_IPV6_RECVDSTOPTS; 10720 else 10721 tcp->tcp_ipv6_recvancillary &= 10722 ~TCP_IPV6_RECVDSTOPTS; 10723 } 10724 break; 10725 case _OLD_IPV6_RECVDSTOPTS: 10726 if (!checkonly) { 10727 if (onoff) 10728 tcp->tcp_ipv6_recvancillary |= 10729 TCP_OLD_IPV6_RECVDSTOPTS; 10730 else 10731 tcp->tcp_ipv6_recvancillary &= 10732 ~TCP_OLD_IPV6_RECVDSTOPTS; 10733 } 10734 break; 10735 case IPV6_RECVRTHDR: 10736 if (!checkonly) { 10737 if (onoff) 10738 tcp->tcp_ipv6_recvancillary |= 10739 TCP_IPV6_RECVRTHDR; 10740 else 10741 tcp->tcp_ipv6_recvancillary &= 10742 ~TCP_IPV6_RECVRTHDR; 10743 } 10744 break; 10745 case IPV6_RECVRTHDRDSTOPTS: 10746 if (!checkonly) { 10747 if (onoff) 10748 tcp->tcp_ipv6_recvancillary |= 10749 TCP_IPV6_RECVRTDSTOPTS; 10750 else 10751 tcp->tcp_ipv6_recvancillary &= 10752 ~TCP_IPV6_RECVRTDSTOPTS; 10753 } 10754 break; 10755 case IPV6_PKTINFO: 10756 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 10757 return (EINVAL); 10758 if (checkonly) 10759 break; 10760 10761 if (inlen == 0) { 10762 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 10763 } else { 10764 struct in6_pktinfo *pkti; 10765 10766 pkti = (struct in6_pktinfo *)invalp; 10767 /* 10768 * RFC 3542 states that ipi6_addr must be 10769 * the unspecified address when setting the 10770 * IPV6_PKTINFO sticky socket option on a 10771 * TCP socket. 10772 */ 10773 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 10774 return (EINVAL); 10775 /* 10776 * ip6_set_pktinfo() validates the source 10777 * address and interface index. 10778 */ 10779 reterr = ip6_set_pktinfo(cr, tcp->tcp_connp, 10780 pkti, mblk); 10781 if (reterr != 0) 10782 return (reterr); 10783 ipp->ipp_ifindex = pkti->ipi6_ifindex; 10784 ipp->ipp_addr = pkti->ipi6_addr; 10785 if (ipp->ipp_ifindex != 0) 10786 ipp->ipp_fields |= IPPF_IFINDEX; 10787 else 10788 ipp->ipp_fields &= ~IPPF_IFINDEX; 10789 if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr)) 10790 ipp->ipp_fields |= IPPF_ADDR; 10791 else 10792 ipp->ipp_fields &= ~IPPF_ADDR; 10793 } 10794 reterr = tcp_build_hdrs(q, tcp); 10795 if (reterr != 0) 10796 return (reterr); 10797 break; 10798 case IPV6_TCLASS: 10799 if (inlen != 0 && inlen != sizeof (int)) 10800 return (EINVAL); 10801 if (checkonly) 10802 break; 10803 10804 if (inlen == 0) { 10805 ipp->ipp_fields &= ~IPPF_TCLASS; 10806 } else { 10807 if (*i1 > 255 || *i1 < -1) 10808 return (EINVAL); 10809 if (*i1 == -1) { 10810 ipp->ipp_tclass = 0; 10811 *i1 = 0; 10812 } else { 10813 ipp->ipp_tclass = *i1; 10814 } 10815 ipp->ipp_fields |= IPPF_TCLASS; 10816 } 10817 reterr = tcp_build_hdrs(q, tcp); 10818 if (reterr != 0) 10819 return (reterr); 10820 break; 10821 case IPV6_NEXTHOP: 10822 /* 10823 * IP will verify that the nexthop is reachable 10824 * and fail for sticky options. 10825 */ 10826 if (inlen != 0 && inlen != sizeof (sin6_t)) 10827 return (EINVAL); 10828 if (checkonly) 10829 break; 10830 10831 if (inlen == 0) { 10832 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10833 } else { 10834 sin6_t *sin6 = (sin6_t *)invalp; 10835 10836 if (sin6->sin6_family != AF_INET6) 10837 return (EAFNOSUPPORT); 10838 if (IN6_IS_ADDR_V4MAPPED( 10839 &sin6->sin6_addr)) 10840 return (EADDRNOTAVAIL); 10841 ipp->ipp_nexthop = sin6->sin6_addr; 10842 if (!IN6_IS_ADDR_UNSPECIFIED( 10843 &ipp->ipp_nexthop)) 10844 ipp->ipp_fields |= IPPF_NEXTHOP; 10845 else 10846 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10847 } 10848 reterr = tcp_build_hdrs(q, tcp); 10849 if (reterr != 0) 10850 return (reterr); 10851 break; 10852 case IPV6_HOPOPTS: { 10853 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 10854 10855 /* 10856 * Sanity checks - minimum size, size a multiple of 10857 * eight bytes, and matching size passed in. 10858 */ 10859 if (inlen != 0 && 10860 inlen != (8 * (hopts->ip6h_len + 1))) 10861 return (EINVAL); 10862 10863 if (checkonly) 10864 break; 10865 10866 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10867 (uchar_t **)&ipp->ipp_hopopts, 10868 &ipp->ipp_hopoptslen, tcp->tcp_label_len); 10869 if (reterr != 0) 10870 return (reterr); 10871 if (ipp->ipp_hopoptslen == 0) 10872 ipp->ipp_fields &= ~IPPF_HOPOPTS; 10873 else 10874 ipp->ipp_fields |= IPPF_HOPOPTS; 10875 reterr = tcp_build_hdrs(q, tcp); 10876 if (reterr != 0) 10877 return (reterr); 10878 break; 10879 } 10880 case IPV6_RTHDRDSTOPTS: { 10881 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10882 10883 /* 10884 * Sanity checks - minimum size, size a multiple of 10885 * eight bytes, and matching size passed in. 10886 */ 10887 if (inlen != 0 && 10888 inlen != (8 * (dopts->ip6d_len + 1))) 10889 return (EINVAL); 10890 10891 if (checkonly) 10892 break; 10893 10894 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10895 (uchar_t **)&ipp->ipp_rtdstopts, 10896 &ipp->ipp_rtdstoptslen, 0); 10897 if (reterr != 0) 10898 return (reterr); 10899 if (ipp->ipp_rtdstoptslen == 0) 10900 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 10901 else 10902 ipp->ipp_fields |= IPPF_RTDSTOPTS; 10903 reterr = tcp_build_hdrs(q, tcp); 10904 if (reterr != 0) 10905 return (reterr); 10906 break; 10907 } 10908 case IPV6_DSTOPTS: { 10909 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10910 10911 /* 10912 * Sanity checks - minimum size, size a multiple of 10913 * eight bytes, and matching size passed in. 10914 */ 10915 if (inlen != 0 && 10916 inlen != (8 * (dopts->ip6d_len + 1))) 10917 return (EINVAL); 10918 10919 if (checkonly) 10920 break; 10921 10922 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10923 (uchar_t **)&ipp->ipp_dstopts, 10924 &ipp->ipp_dstoptslen, 0); 10925 if (reterr != 0) 10926 return (reterr); 10927 if (ipp->ipp_dstoptslen == 0) 10928 ipp->ipp_fields &= ~IPPF_DSTOPTS; 10929 else 10930 ipp->ipp_fields |= IPPF_DSTOPTS; 10931 reterr = tcp_build_hdrs(q, tcp); 10932 if (reterr != 0) 10933 return (reterr); 10934 break; 10935 } 10936 case IPV6_RTHDR: { 10937 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 10938 10939 /* 10940 * Sanity checks - minimum size, size a multiple of 10941 * eight bytes, and matching size passed in. 10942 */ 10943 if (inlen != 0 && 10944 inlen != (8 * (rt->ip6r_len + 1))) 10945 return (EINVAL); 10946 10947 if (checkonly) 10948 break; 10949 10950 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10951 (uchar_t **)&ipp->ipp_rthdr, 10952 &ipp->ipp_rthdrlen, 0); 10953 if (reterr != 0) 10954 return (reterr); 10955 if (ipp->ipp_rthdrlen == 0) 10956 ipp->ipp_fields &= ~IPPF_RTHDR; 10957 else 10958 ipp->ipp_fields |= IPPF_RTHDR; 10959 reterr = tcp_build_hdrs(q, tcp); 10960 if (reterr != 0) 10961 return (reterr); 10962 break; 10963 } 10964 case IPV6_V6ONLY: 10965 if (!checkonly) 10966 tcp->tcp_connp->conn_ipv6_v6only = onoff; 10967 break; 10968 case IPV6_USE_MIN_MTU: 10969 if (inlen != sizeof (int)) 10970 return (EINVAL); 10971 10972 if (*i1 < -1 || *i1 > 1) 10973 return (EINVAL); 10974 10975 if (checkonly) 10976 break; 10977 10978 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 10979 ipp->ipp_use_min_mtu = *i1; 10980 break; 10981 case IPV6_BOUND_PIF: 10982 /* Handled at the IP level */ 10983 return (-EINVAL); 10984 case IPV6_SEC_OPT: 10985 /* 10986 * We should not allow policy setting after 10987 * we start listening for connections. 10988 */ 10989 if (tcp->tcp_state == TCPS_LISTEN) { 10990 return (EINVAL); 10991 } else { 10992 /* Handled at the IP level */ 10993 return (-EINVAL); 10994 } 10995 case IPV6_SRC_PREFERENCES: 10996 if (inlen != sizeof (uint32_t)) 10997 return (EINVAL); 10998 reterr = ip6_set_src_preferences(tcp->tcp_connp, 10999 *(uint32_t *)invalp); 11000 if (reterr != 0) { 11001 *outlenp = 0; 11002 return (reterr); 11003 } 11004 break; 11005 default: 11006 *outlenp = 0; 11007 return (EINVAL); 11008 } 11009 break; 11010 } /* end IPPROTO_IPV6 */ 11011 default: 11012 *outlenp = 0; 11013 return (EINVAL); 11014 } 11015 /* 11016 * Common case of OK return with outval same as inval 11017 */ 11018 if (invalp != outvalp) { 11019 /* don't trust bcopy for identical src/dst */ 11020 (void) bcopy(invalp, outvalp, inlen); 11021 } 11022 *outlenp = inlen; 11023 return (0); 11024 } 11025 11026 /* 11027 * Update tcp_sticky_hdrs based on tcp_sticky_ipp. 11028 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 11029 * headers, and the maximum size tcp header (to avoid reallocation 11030 * on the fly for additional tcp options). 11031 * Returns failure if can't allocate memory. 11032 */ 11033 static int 11034 tcp_build_hdrs(queue_t *q, tcp_t *tcp) 11035 { 11036 char *hdrs; 11037 uint_t hdrs_len; 11038 ip6i_t *ip6i; 11039 char buf[TCP_MAX_HDR_LENGTH]; 11040 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 11041 in6_addr_t src, dst; 11042 tcp_stack_t *tcps = tcp->tcp_tcps; 11043 11044 /* 11045 * save the existing tcp header and source/dest IP addresses 11046 */ 11047 bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len); 11048 src = tcp->tcp_ip6h->ip6_src; 11049 dst = tcp->tcp_ip6h->ip6_dst; 11050 hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH; 11051 ASSERT(hdrs_len != 0); 11052 if (hdrs_len > tcp->tcp_iphc_len) { 11053 /* Need to reallocate */ 11054 hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); 11055 if (hdrs == NULL) 11056 return (ENOMEM); 11057 if (tcp->tcp_iphc != NULL) { 11058 if (tcp->tcp_hdr_grown) { 11059 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 11060 } else { 11061 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 11062 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 11063 } 11064 tcp->tcp_iphc_len = 0; 11065 } 11066 ASSERT(tcp->tcp_iphc_len == 0); 11067 tcp->tcp_iphc = hdrs; 11068 tcp->tcp_iphc_len = hdrs_len; 11069 tcp->tcp_hdr_grown = B_TRUE; 11070 } 11071 ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc, 11072 hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP); 11073 11074 /* Set header fields not in ipp */ 11075 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 11076 ip6i = (ip6i_t *)tcp->tcp_iphc; 11077 tcp->tcp_ip6h = (ip6_t *)&ip6i[1]; 11078 } else { 11079 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 11080 } 11081 /* 11082 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one. 11083 * 11084 * tcp->tcp_tcp_hdr_len doesn't change here. 11085 */ 11086 tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH; 11087 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); 11088 tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len; 11089 11090 bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len); 11091 11092 tcp->tcp_ip6h->ip6_src = src; 11093 tcp->tcp_ip6h->ip6_dst = dst; 11094 11095 /* 11096 * If the hop limit was not set by ip_build_hdrs_v6(), set it to 11097 * the default value for TCP. 11098 */ 11099 if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) 11100 tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit; 11101 11102 /* 11103 * If we're setting extension headers after a connection 11104 * has been established, and if we have a routing header 11105 * among the extension headers, call ip_massage_options_v6 to 11106 * manipulate the routing header/ip6_dst set the checksum 11107 * difference in the tcp header template. 11108 * (This happens in tcp_connect_ipv6 if the routing header 11109 * is set prior to the connect.) 11110 * Set the tcp_sum to zero first in case we've cleared a 11111 * routing header or don't have one at all. 11112 */ 11113 tcp->tcp_sum = 0; 11114 if ((tcp->tcp_state >= TCPS_SYN_SENT) && 11115 (tcp->tcp_ipp_fields & IPPF_RTHDR)) { 11116 ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h, 11117 (uint8_t *)tcp->tcp_tcph); 11118 if (rth != NULL) { 11119 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, 11120 rth, tcps->tcps_netstack); 11121 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 11122 (tcp->tcp_sum >> 16)); 11123 } 11124 } 11125 11126 /* Try to get everything in a single mblk */ 11127 (void) mi_set_sth_wroff(RD(q), hdrs_len + tcps->tcps_wroff_xtra); 11128 return (0); 11129 } 11130 11131 /* 11132 * Transfer any source route option from ipha to buf/dst in reversed form. 11133 */ 11134 static int 11135 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst) 11136 { 11137 ipoptp_t opts; 11138 uchar_t *opt; 11139 uint8_t optval; 11140 uint8_t optlen; 11141 uint32_t len = 0; 11142 11143 for (optval = ipoptp_first(&opts, ipha); 11144 optval != IPOPT_EOL; 11145 optval = ipoptp_next(&opts)) { 11146 opt = opts.ipoptp_cur; 11147 optlen = opts.ipoptp_len; 11148 switch (optval) { 11149 int off1, off2; 11150 case IPOPT_SSRR: 11151 case IPOPT_LSRR: 11152 11153 /* Reverse source route */ 11154 /* 11155 * First entry should be the next to last one in the 11156 * current source route (the last entry is our 11157 * address.) 11158 * The last entry should be the final destination. 11159 */ 11160 buf[IPOPT_OPTVAL] = (uint8_t)optval; 11161 buf[IPOPT_OLEN] = (uint8_t)optlen; 11162 off1 = IPOPT_MINOFF_SR - 1; 11163 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 11164 if (off2 < 0) { 11165 /* No entries in source route */ 11166 break; 11167 } 11168 bcopy(opt + off2, dst, IP_ADDR_LEN); 11169 /* 11170 * Note: use src since ipha has not had its src 11171 * and dst reversed (it is in the state it was 11172 * received. 11173 */ 11174 bcopy(&ipha->ipha_src, buf + off2, 11175 IP_ADDR_LEN); 11176 off2 -= IP_ADDR_LEN; 11177 11178 while (off2 > 0) { 11179 bcopy(opt + off2, buf + off1, 11180 IP_ADDR_LEN); 11181 off1 += IP_ADDR_LEN; 11182 off2 -= IP_ADDR_LEN; 11183 } 11184 buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 11185 buf += optlen; 11186 len += optlen; 11187 break; 11188 } 11189 } 11190 done: 11191 /* Pad the resulting options */ 11192 while (len & 0x3) { 11193 *buf++ = IPOPT_EOL; 11194 len++; 11195 } 11196 return (len); 11197 } 11198 11199 11200 /* 11201 * Extract and revert a source route from ipha (if any) 11202 * and then update the relevant fields in both tcp_t and the standard header. 11203 */ 11204 static void 11205 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha) 11206 { 11207 char buf[TCP_MAX_HDR_LENGTH]; 11208 uint_t tcph_len; 11209 int len; 11210 11211 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 11212 len = IPH_HDR_LENGTH(ipha); 11213 if (len == IP_SIMPLE_HDR_LENGTH) 11214 /* Nothing to do */ 11215 return; 11216 if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH || 11217 (len & 0x3)) 11218 return; 11219 11220 tcph_len = tcp->tcp_tcp_hdr_len; 11221 bcopy(tcp->tcp_tcph, buf, tcph_len); 11222 tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) + 11223 (tcp->tcp_ipha->ipha_dst & 0xffff); 11224 len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha + 11225 IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst); 11226 len += IP_SIMPLE_HDR_LENGTH; 11227 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 11228 (tcp->tcp_ipha->ipha_dst & 0xffff)); 11229 if ((int)tcp->tcp_sum < 0) 11230 tcp->tcp_sum--; 11231 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 11232 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); 11233 tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len); 11234 bcopy(buf, tcp->tcp_tcph, tcph_len); 11235 tcp->tcp_ip_hdr_len = len; 11236 tcp->tcp_ipha->ipha_version_and_hdr_length = 11237 (IP_VERSION << 4) | (len >> 2); 11238 len += tcph_len; 11239 tcp->tcp_hdr_len = len; 11240 } 11241 11242 /* 11243 * Copy the standard header into its new location, 11244 * lay in the new options and then update the relevant 11245 * fields in both tcp_t and the standard header. 11246 */ 11247 static int 11248 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len) 11249 { 11250 uint_t tcph_len; 11251 uint8_t *ip_optp; 11252 tcph_t *new_tcph; 11253 tcp_stack_t *tcps = tcp->tcp_tcps; 11254 11255 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 11256 return (EINVAL); 11257 11258 if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len) 11259 return (EINVAL); 11260 11261 if (checkonly) { 11262 /* 11263 * do not really set, just pretend to - T_CHECK 11264 */ 11265 return (0); 11266 } 11267 11268 ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 11269 if (tcp->tcp_label_len > 0) { 11270 int padlen; 11271 uint8_t opt; 11272 11273 /* convert list termination to no-ops */ 11274 padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN]; 11275 ip_optp += ip_optp[IPOPT_OLEN]; 11276 opt = len > 0 ? IPOPT_NOP : IPOPT_EOL; 11277 while (--padlen >= 0) 11278 *ip_optp++ = opt; 11279 } 11280 tcph_len = tcp->tcp_tcp_hdr_len; 11281 new_tcph = (tcph_t *)(ip_optp + len); 11282 ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len); 11283 tcp->tcp_tcph = new_tcph; 11284 bcopy(ptr, ip_optp, len); 11285 11286 len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len; 11287 11288 tcp->tcp_ip_hdr_len = len; 11289 tcp->tcp_ipha->ipha_version_and_hdr_length = 11290 (IP_VERSION << 4) | (len >> 2); 11291 tcp->tcp_hdr_len = len + tcph_len; 11292 if (!TCP_IS_DETACHED(tcp)) { 11293 /* Always allocate room for all options. */ 11294 (void) mi_set_sth_wroff(tcp->tcp_rq, 11295 TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra); 11296 } 11297 return (0); 11298 } 11299 11300 /* Get callback routine passed to nd_load by tcp_param_register */ 11301 /* ARGSUSED */ 11302 static int 11303 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 11304 { 11305 tcpparam_t *tcppa = (tcpparam_t *)cp; 11306 11307 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 11308 return (0); 11309 } 11310 11311 /* 11312 * Walk through the param array specified registering each element with the 11313 * named dispatch handler. 11314 */ 11315 static boolean_t 11316 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps) 11317 { 11318 for (; cnt-- > 0; tcppa++) { 11319 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 11320 if (!nd_load(ndp, tcppa->tcp_param_name, 11321 tcp_param_get, tcp_param_set, 11322 (caddr_t)tcppa)) { 11323 nd_free(ndp); 11324 return (B_FALSE); 11325 } 11326 } 11327 } 11328 tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t), 11329 KM_SLEEP); 11330 bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param, 11331 sizeof (tcpparam_t)); 11332 if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name, 11333 tcp_param_get, tcp_param_set_aligned, 11334 (caddr_t)tcps->tcps_wroff_xtra_param)) { 11335 nd_free(ndp); 11336 return (B_FALSE); 11337 } 11338 tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t), 11339 KM_SLEEP); 11340 bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param, 11341 sizeof (tcpparam_t)); 11342 if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name, 11343 tcp_param_get, tcp_param_set_aligned, 11344 (caddr_t)tcps->tcps_mdt_head_param)) { 11345 nd_free(ndp); 11346 return (B_FALSE); 11347 } 11348 tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t), 11349 KM_SLEEP); 11350 bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param, 11351 sizeof (tcpparam_t)); 11352 if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name, 11353 tcp_param_get, tcp_param_set_aligned, 11354 (caddr_t)tcps->tcps_mdt_tail_param)) { 11355 nd_free(ndp); 11356 return (B_FALSE); 11357 } 11358 tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t), 11359 KM_SLEEP); 11360 bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param, 11361 sizeof (tcpparam_t)); 11362 if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name, 11363 tcp_param_get, tcp_param_set_aligned, 11364 (caddr_t)tcps->tcps_mdt_max_pbufs_param)) { 11365 nd_free(ndp); 11366 return (B_FALSE); 11367 } 11368 if (!nd_load(ndp, "tcp_extra_priv_ports", 11369 tcp_extra_priv_ports_get, NULL, NULL)) { 11370 nd_free(ndp); 11371 return (B_FALSE); 11372 } 11373 if (!nd_load(ndp, "tcp_extra_priv_ports_add", 11374 NULL, tcp_extra_priv_ports_add, NULL)) { 11375 nd_free(ndp); 11376 return (B_FALSE); 11377 } 11378 if (!nd_load(ndp, "tcp_extra_priv_ports_del", 11379 NULL, tcp_extra_priv_ports_del, NULL)) { 11380 nd_free(ndp); 11381 return (B_FALSE); 11382 } 11383 if (!nd_load(ndp, "tcp_status", tcp_status_report, NULL, 11384 NULL)) { 11385 nd_free(ndp); 11386 return (B_FALSE); 11387 } 11388 if (!nd_load(ndp, "tcp_bind_hash", tcp_bind_hash_report, 11389 NULL, NULL)) { 11390 nd_free(ndp); 11391 return (B_FALSE); 11392 } 11393 if (!nd_load(ndp, "tcp_listen_hash", 11394 tcp_listen_hash_report, NULL, NULL)) { 11395 nd_free(ndp); 11396 return (B_FALSE); 11397 } 11398 if (!nd_load(ndp, "tcp_conn_hash", tcp_conn_hash_report, 11399 NULL, NULL)) { 11400 nd_free(ndp); 11401 return (B_FALSE); 11402 } 11403 if (!nd_load(ndp, "tcp_acceptor_hash", 11404 tcp_acceptor_hash_report, NULL, NULL)) { 11405 nd_free(ndp); 11406 return (B_FALSE); 11407 } 11408 if (!nd_load(ndp, "tcp_host_param", tcp_host_param_report, 11409 tcp_host_param_set, NULL)) { 11410 nd_free(ndp); 11411 return (B_FALSE); 11412 } 11413 if (!nd_load(ndp, "tcp_host_param_ipv6", 11414 tcp_host_param_report, tcp_host_param_set_ipv6, NULL)) { 11415 nd_free(ndp); 11416 return (B_FALSE); 11417 } 11418 if (!nd_load(ndp, "tcp_1948_phrase", NULL, 11419 tcp_1948_phrase_set, NULL)) { 11420 nd_free(ndp); 11421 return (B_FALSE); 11422 } 11423 if (!nd_load(ndp, "tcp_reserved_port_list", 11424 tcp_reserved_port_list, NULL, NULL)) { 11425 nd_free(ndp); 11426 return (B_FALSE); 11427 } 11428 /* 11429 * Dummy ndd variables - only to convey obsolescence information 11430 * through printing of their name (no get or set routines) 11431 * XXX Remove in future releases ? 11432 */ 11433 if (!nd_load(ndp, 11434 "tcp_close_wait_interval(obsoleted - " 11435 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 11436 nd_free(ndp); 11437 return (B_FALSE); 11438 } 11439 return (B_TRUE); 11440 } 11441 11442 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */ 11443 /* ARGSUSED */ 11444 static int 11445 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 11446 cred_t *cr) 11447 { 11448 long new_value; 11449 tcpparam_t *tcppa = (tcpparam_t *)cp; 11450 11451 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11452 new_value < tcppa->tcp_param_min || 11453 new_value > tcppa->tcp_param_max) { 11454 return (EINVAL); 11455 } 11456 /* 11457 * Need to make sure new_value is a multiple of 4. If it is not, 11458 * round it up. For future 64 bit requirement, we actually make it 11459 * a multiple of 8. 11460 */ 11461 if (new_value & 0x7) { 11462 new_value = (new_value & ~0x7) + 0x8; 11463 } 11464 tcppa->tcp_param_val = new_value; 11465 return (0); 11466 } 11467 11468 /* Set callback routine passed to nd_load by tcp_param_register */ 11469 /* ARGSUSED */ 11470 static int 11471 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 11472 { 11473 long new_value; 11474 tcpparam_t *tcppa = (tcpparam_t *)cp; 11475 11476 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11477 new_value < tcppa->tcp_param_min || 11478 new_value > tcppa->tcp_param_max) { 11479 return (EINVAL); 11480 } 11481 tcppa->tcp_param_val = new_value; 11482 return (0); 11483 } 11484 11485 /* 11486 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 11487 * is filled, return as much as we can. The message passed in may be 11488 * multi-part, chained using b_cont. "start" is the starting sequence 11489 * number for this piece. 11490 */ 11491 static mblk_t * 11492 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 11493 { 11494 uint32_t end; 11495 mblk_t *mp1; 11496 mblk_t *mp2; 11497 mblk_t *next_mp; 11498 uint32_t u1; 11499 tcp_stack_t *tcps = tcp->tcp_tcps; 11500 11501 /* Walk through all the new pieces. */ 11502 do { 11503 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 11504 (uintptr_t)INT_MAX); 11505 end = start + (int)(mp->b_wptr - mp->b_rptr); 11506 next_mp = mp->b_cont; 11507 if (start == end) { 11508 /* Empty. Blast it. */ 11509 freeb(mp); 11510 continue; 11511 } 11512 mp->b_cont = NULL; 11513 TCP_REASS_SET_SEQ(mp, start); 11514 TCP_REASS_SET_END(mp, end); 11515 mp1 = tcp->tcp_reass_tail; 11516 if (!mp1) { 11517 tcp->tcp_reass_tail = mp; 11518 tcp->tcp_reass_head = mp; 11519 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11520 UPDATE_MIB(&tcps->tcps_mib, 11521 tcpInDataUnorderBytes, end - start); 11522 continue; 11523 } 11524 /* New stuff completely beyond tail? */ 11525 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 11526 /* Link it on end. */ 11527 mp1->b_cont = mp; 11528 tcp->tcp_reass_tail = mp; 11529 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11530 UPDATE_MIB(&tcps->tcps_mib, 11531 tcpInDataUnorderBytes, end - start); 11532 continue; 11533 } 11534 mp1 = tcp->tcp_reass_head; 11535 u1 = TCP_REASS_SEQ(mp1); 11536 /* New stuff at the front? */ 11537 if (SEQ_LT(start, u1)) { 11538 /* Yes... Check for overlap. */ 11539 mp->b_cont = mp1; 11540 tcp->tcp_reass_head = mp; 11541 tcp_reass_elim_overlap(tcp, mp); 11542 continue; 11543 } 11544 /* 11545 * The new piece fits somewhere between the head and tail. 11546 * We find our slot, where mp1 precedes us and mp2 trails. 11547 */ 11548 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 11549 u1 = TCP_REASS_SEQ(mp2); 11550 if (SEQ_LEQ(start, u1)) 11551 break; 11552 } 11553 /* Link ourselves in */ 11554 mp->b_cont = mp2; 11555 mp1->b_cont = mp; 11556 11557 /* Trim overlap with following mblk(s) first */ 11558 tcp_reass_elim_overlap(tcp, mp); 11559 11560 /* Trim overlap with preceding mblk */ 11561 tcp_reass_elim_overlap(tcp, mp1); 11562 11563 } while (start = end, mp = next_mp); 11564 mp1 = tcp->tcp_reass_head; 11565 /* Anything ready to go? */ 11566 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 11567 return (NULL); 11568 /* Eat what we can off the queue */ 11569 for (;;) { 11570 mp = mp1->b_cont; 11571 end = TCP_REASS_END(mp1); 11572 TCP_REASS_SET_SEQ(mp1, 0); 11573 TCP_REASS_SET_END(mp1, 0); 11574 if (!mp) { 11575 tcp->tcp_reass_tail = NULL; 11576 break; 11577 } 11578 if (end != TCP_REASS_SEQ(mp)) { 11579 mp1->b_cont = NULL; 11580 break; 11581 } 11582 mp1 = mp; 11583 } 11584 mp1 = tcp->tcp_reass_head; 11585 tcp->tcp_reass_head = mp; 11586 return (mp1); 11587 } 11588 11589 /* Eliminate any overlap that mp may have over later mblks */ 11590 static void 11591 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 11592 { 11593 uint32_t end; 11594 mblk_t *mp1; 11595 uint32_t u1; 11596 tcp_stack_t *tcps = tcp->tcp_tcps; 11597 11598 end = TCP_REASS_END(mp); 11599 while ((mp1 = mp->b_cont) != NULL) { 11600 u1 = TCP_REASS_SEQ(mp1); 11601 if (!SEQ_GT(end, u1)) 11602 break; 11603 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 11604 mp->b_wptr -= end - u1; 11605 TCP_REASS_SET_END(mp, u1); 11606 BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs); 11607 UPDATE_MIB(&tcps->tcps_mib, 11608 tcpInDataPartDupBytes, end - u1); 11609 break; 11610 } 11611 mp->b_cont = mp1->b_cont; 11612 TCP_REASS_SET_SEQ(mp1, 0); 11613 TCP_REASS_SET_END(mp1, 0); 11614 freeb(mp1); 11615 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 11616 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1); 11617 } 11618 if (!mp1) 11619 tcp->tcp_reass_tail = mp; 11620 } 11621 11622 /* 11623 * Send up all messages queued on tcp_rcv_list. 11624 */ 11625 static uint_t 11626 tcp_rcv_drain(queue_t *q, tcp_t *tcp) 11627 { 11628 mblk_t *mp; 11629 uint_t ret = 0; 11630 uint_t thwin; 11631 #ifdef DEBUG 11632 uint_t cnt = 0; 11633 #endif 11634 tcp_stack_t *tcps = tcp->tcp_tcps; 11635 11636 /* Can't drain on an eager connection */ 11637 if (tcp->tcp_listener != NULL) 11638 return (ret); 11639 11640 /* 11641 * Handle two cases here: we are currently fused or we were 11642 * previously fused and have some urgent data to be delivered 11643 * upstream. The latter happens because we either ran out of 11644 * memory or were detached and therefore sending the SIGURG was 11645 * deferred until this point. In either case we pass control 11646 * over to tcp_fuse_rcv_drain() since it may need to complete 11647 * some work. 11648 */ 11649 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 11650 ASSERT(tcp->tcp_fused_sigurg_mp != NULL); 11651 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 11652 &tcp->tcp_fused_sigurg_mp)) 11653 return (ret); 11654 } 11655 11656 while ((mp = tcp->tcp_rcv_list) != NULL) { 11657 tcp->tcp_rcv_list = mp->b_next; 11658 mp->b_next = NULL; 11659 #ifdef DEBUG 11660 cnt += msgdsize(mp); 11661 #endif 11662 /* Does this need SSL processing first? */ 11663 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 11664 tcp_kssl_input(tcp, mp); 11665 continue; 11666 } 11667 putnext(q, mp); 11668 } 11669 ASSERT(cnt == tcp->tcp_rcv_cnt); 11670 tcp->tcp_rcv_last_head = NULL; 11671 tcp->tcp_rcv_last_tail = NULL; 11672 tcp->tcp_rcv_cnt = 0; 11673 11674 /* Learn the latest rwnd information that we sent to the other side. */ 11675 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11676 << tcp->tcp_rcv_ws; 11677 /* This is peer's calculated send window (our receive window). */ 11678 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11679 /* 11680 * Increase the receive window to max. But we need to do receiver 11681 * SWS avoidance. This means that we need to check the increase of 11682 * of receive window is at least 1 MSS. 11683 */ 11684 if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) { 11685 /* 11686 * If the window that the other side knows is less than max 11687 * deferred acks segments, send an update immediately. 11688 */ 11689 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11690 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 11691 ret = TH_ACK_NEEDED; 11692 } 11693 tcp->tcp_rwnd = q->q_hiwat; 11694 } 11695 /* No need for the push timer now. */ 11696 if (tcp->tcp_push_tid != 0) { 11697 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11698 tcp->tcp_push_tid = 0; 11699 } 11700 return (ret); 11701 } 11702 11703 /* 11704 * Queue data on tcp_rcv_list which is a b_next chain. 11705 * tcp_rcv_last_head/tail is the last element of this chain. 11706 * Each element of the chain is a b_cont chain. 11707 * 11708 * M_DATA messages are added to the current element. 11709 * Other messages are added as new (b_next) elements. 11710 */ 11711 void 11712 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len) 11713 { 11714 ASSERT(seg_len == msgdsize(mp)); 11715 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 11716 11717 if (tcp->tcp_rcv_list == NULL) { 11718 ASSERT(tcp->tcp_rcv_last_head == NULL); 11719 tcp->tcp_rcv_list = mp; 11720 tcp->tcp_rcv_last_head = mp; 11721 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 11722 tcp->tcp_rcv_last_tail->b_cont = mp; 11723 } else { 11724 tcp->tcp_rcv_last_head->b_next = mp; 11725 tcp->tcp_rcv_last_head = mp; 11726 } 11727 11728 while (mp->b_cont) 11729 mp = mp->b_cont; 11730 11731 tcp->tcp_rcv_last_tail = mp; 11732 tcp->tcp_rcv_cnt += seg_len; 11733 tcp->tcp_rwnd -= seg_len; 11734 } 11735 11736 /* 11737 * DEFAULT TCP ENTRY POINT via squeue on READ side. 11738 * 11739 * This is the default entry function into TCP on the read side. TCP is 11740 * always entered via squeue i.e. using squeue's for mutual exclusion. 11741 * When classifier does a lookup to find the tcp, it also puts a reference 11742 * on the conn structure associated so the tcp is guaranteed to exist 11743 * when we come here. We still need to check the state because it might 11744 * as well has been closed. The squeue processing function i.e. squeue_enter, 11745 * squeue_enter_nodrain, or squeue_drain is responsible for doing the 11746 * CONN_DEC_REF. 11747 * 11748 * Apart from the default entry point, IP also sends packets directly to 11749 * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming 11750 * connections. 11751 */ 11752 void 11753 tcp_input(void *arg, mblk_t *mp, void *arg2) 11754 { 11755 conn_t *connp = (conn_t *)arg; 11756 tcp_t *tcp = (tcp_t *)connp->conn_tcp; 11757 11758 /* arg2 is the sqp */ 11759 ASSERT(arg2 != NULL); 11760 ASSERT(mp != NULL); 11761 11762 /* 11763 * Don't accept any input on a closed tcp as this TCP logically does 11764 * not exist on the system. Don't proceed further with this TCP. 11765 * For eg. this packet could trigger another close of this tcp 11766 * which would be disastrous for tcp_refcnt. tcp_close_detached / 11767 * tcp_clean_death / tcp_closei_local must be called at most once 11768 * on a TCP. In this case we need to refeed the packet into the 11769 * classifier and figure out where the packet should go. Need to 11770 * preserve the recv_ill somehow. Until we figure that out, for 11771 * now just drop the packet if we can't classify the packet. 11772 */ 11773 if (tcp->tcp_state == TCPS_CLOSED || 11774 tcp->tcp_state == TCPS_BOUND) { 11775 conn_t *new_connp; 11776 ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip; 11777 11778 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 11779 if (new_connp != NULL) { 11780 tcp_reinput(new_connp, mp, arg2); 11781 return; 11782 } 11783 /* We failed to classify. For now just drop the packet */ 11784 freemsg(mp); 11785 return; 11786 } 11787 11788 if (DB_TYPE(mp) == M_DATA) 11789 tcp_rput_data(connp, mp, arg2); 11790 else 11791 tcp_rput_common(tcp, mp); 11792 } 11793 11794 /* 11795 * The read side put procedure. 11796 * The packets passed up by ip are assume to be aligned according to 11797 * OK_32PTR and the IP+TCP headers fitting in the first mblk. 11798 */ 11799 static void 11800 tcp_rput_common(tcp_t *tcp, mblk_t *mp) 11801 { 11802 /* 11803 * tcp_rput_data() does not expect M_CTL except for the case 11804 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO 11805 * type. Need to make sure that any other M_CTLs don't make 11806 * it to tcp_rput_data since it is not expecting any and doesn't 11807 * check for it. 11808 */ 11809 if (DB_TYPE(mp) == M_CTL) { 11810 switch (*(uint32_t *)(mp->b_rptr)) { 11811 case TCP_IOC_ABORT_CONN: 11812 /* 11813 * Handle connection abort request. 11814 */ 11815 tcp_ioctl_abort_handler(tcp, mp); 11816 return; 11817 case IPSEC_IN: 11818 /* 11819 * Only secure icmp arrive in TCP and they 11820 * don't go through data path. 11821 */ 11822 tcp_icmp_error(tcp, mp); 11823 return; 11824 case IN_PKTINFO: 11825 /* 11826 * Handle IPV6_RECVPKTINFO socket option on AF_INET6 11827 * sockets that are receiving IPv4 traffic. tcp 11828 */ 11829 ASSERT(tcp->tcp_family == AF_INET6); 11830 ASSERT(tcp->tcp_ipv6_recvancillary & 11831 TCP_IPV6_RECVPKTINFO); 11832 tcp_rput_data(tcp->tcp_connp, mp, 11833 tcp->tcp_connp->conn_sqp); 11834 return; 11835 case MDT_IOC_INFO_UPDATE: 11836 /* 11837 * Handle Multidata information update; the 11838 * following routine will free the message. 11839 */ 11840 if (tcp->tcp_connp->conn_mdt_ok) { 11841 tcp_mdt_update(tcp, 11842 &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab, 11843 B_FALSE); 11844 } 11845 freemsg(mp); 11846 return; 11847 case LSO_IOC_INFO_UPDATE: 11848 /* 11849 * Handle LSO information update; the following 11850 * routine will free the message. 11851 */ 11852 if (tcp->tcp_connp->conn_lso_ok) { 11853 tcp_lso_update(tcp, 11854 &((ip_lso_info_t *)mp->b_rptr)->lso_capab); 11855 } 11856 freemsg(mp); 11857 return; 11858 default: 11859 /* 11860 * tcp_icmp_err() will process the M_CTL packets. 11861 * Non-ICMP packets, if any, will be discarded in 11862 * tcp_icmp_err(). We will process the ICMP packet 11863 * even if we are TCP_IS_DETACHED_NONEAGER as the 11864 * incoming ICMP packet may result in changing 11865 * the tcp_mss, which we would need if we have 11866 * packets to retransmit. 11867 */ 11868 tcp_icmp_error(tcp, mp); 11869 return; 11870 } 11871 } 11872 11873 /* No point processing the message if tcp is already closed */ 11874 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 11875 freemsg(mp); 11876 return; 11877 } 11878 11879 tcp_rput_other(tcp, mp); 11880 } 11881 11882 11883 /* The minimum of smoothed mean deviation in RTO calculation. */ 11884 #define TCP_SD_MIN 400 11885 11886 /* 11887 * Set RTO for this connection. The formula is from Jacobson and Karels' 11888 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 11889 * are the same as those in Appendix A.2 of that paper. 11890 * 11891 * m = new measurement 11892 * sa = smoothed RTT average (8 * average estimates). 11893 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 11894 */ 11895 static void 11896 tcp_set_rto(tcp_t *tcp, clock_t rtt) 11897 { 11898 long m = TICK_TO_MSEC(rtt); 11899 clock_t sa = tcp->tcp_rtt_sa; 11900 clock_t sv = tcp->tcp_rtt_sd; 11901 clock_t rto; 11902 tcp_stack_t *tcps = tcp->tcp_tcps; 11903 11904 BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate); 11905 tcp->tcp_rtt_update++; 11906 11907 /* tcp_rtt_sa is not 0 means this is a new sample. */ 11908 if (sa != 0) { 11909 /* 11910 * Update average estimator: 11911 * new rtt = 7/8 old rtt + 1/8 Error 11912 */ 11913 11914 /* m is now Error in estimate. */ 11915 m -= sa >> 3; 11916 if ((sa += m) <= 0) { 11917 /* 11918 * Don't allow the smoothed average to be negative. 11919 * We use 0 to denote reinitialization of the 11920 * variables. 11921 */ 11922 sa = 1; 11923 } 11924 11925 /* 11926 * Update deviation estimator: 11927 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 11928 */ 11929 if (m < 0) 11930 m = -m; 11931 m -= sv >> 2; 11932 sv += m; 11933 } else { 11934 /* 11935 * This follows BSD's implementation. So the reinitialized 11936 * RTO is 3 * m. We cannot go less than 2 because if the 11937 * link is bandwidth dominated, doubling the window size 11938 * during slow start means doubling the RTT. We want to be 11939 * more conservative when we reinitialize our estimates. 3 11940 * is just a convenient number. 11941 */ 11942 sa = m << 3; 11943 sv = m << 1; 11944 } 11945 if (sv < TCP_SD_MIN) { 11946 /* 11947 * We do not know that if sa captures the delay ACK 11948 * effect as in a long train of segments, a receiver 11949 * does not delay its ACKs. So set the minimum of sv 11950 * to be TCP_SD_MIN, which is default to 400 ms, twice 11951 * of BSD DATO. That means the minimum of mean 11952 * deviation is 100 ms. 11953 * 11954 */ 11955 sv = TCP_SD_MIN; 11956 } 11957 tcp->tcp_rtt_sa = sa; 11958 tcp->tcp_rtt_sd = sv; 11959 /* 11960 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 11961 * 11962 * Add tcp_rexmit_interval extra in case of extreme environment 11963 * where the algorithm fails to work. The default value of 11964 * tcp_rexmit_interval_extra should be 0. 11965 * 11966 * As we use a finer grained clock than BSD and update 11967 * RTO for every ACKs, add in another .25 of RTT to the 11968 * deviation of RTO to accomodate burstiness of 1/4 of 11969 * window size. 11970 */ 11971 rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5); 11972 11973 if (rto > tcps->tcps_rexmit_interval_max) { 11974 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 11975 } else if (rto < tcps->tcps_rexmit_interval_min) { 11976 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 11977 } else { 11978 tcp->tcp_rto = rto; 11979 } 11980 11981 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 11982 tcp->tcp_timer_backoff = 0; 11983 } 11984 11985 /* 11986 * tcp_get_seg_mp() is called to get the pointer to a segment in the 11987 * send queue which starts at the given seq. no. 11988 * 11989 * Parameters: 11990 * tcp_t *tcp: the tcp instance pointer. 11991 * uint32_t seq: the starting seq. no of the requested segment. 11992 * int32_t *off: after the execution, *off will be the offset to 11993 * the returned mblk which points to the requested seq no. 11994 * It is the caller's responsibility to send in a non-null off. 11995 * 11996 * Return: 11997 * A mblk_t pointer pointing to the requested segment in send queue. 11998 */ 11999 static mblk_t * 12000 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 12001 { 12002 int32_t cnt; 12003 mblk_t *mp; 12004 12005 /* Defensive coding. Make sure we don't send incorrect data. */ 12006 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 12007 return (NULL); 12008 12009 cnt = seq - tcp->tcp_suna; 12010 mp = tcp->tcp_xmit_head; 12011 while (cnt > 0 && mp != NULL) { 12012 cnt -= mp->b_wptr - mp->b_rptr; 12013 if (cnt < 0) { 12014 cnt += mp->b_wptr - mp->b_rptr; 12015 break; 12016 } 12017 mp = mp->b_cont; 12018 } 12019 ASSERT(mp != NULL); 12020 *off = cnt; 12021 return (mp); 12022 } 12023 12024 /* 12025 * This function handles all retransmissions if SACK is enabled for this 12026 * connection. First it calculates how many segments can be retransmitted 12027 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 12028 * segments. A segment is eligible if sack_cnt for that segment is greater 12029 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 12030 * all eligible segments, it checks to see if TCP can send some new segments 12031 * (fast recovery). If it can, set the appropriate flag for tcp_rput_data(). 12032 * 12033 * Parameters: 12034 * tcp_t *tcp: the tcp structure of the connection. 12035 * uint_t *flags: in return, appropriate value will be set for 12036 * tcp_rput_data(). 12037 */ 12038 static void 12039 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 12040 { 12041 notsack_blk_t *notsack_blk; 12042 int32_t usable_swnd; 12043 int32_t mss; 12044 uint32_t seg_len; 12045 mblk_t *xmit_mp; 12046 tcp_stack_t *tcps = tcp->tcp_tcps; 12047 12048 ASSERT(tcp->tcp_sack_info != NULL); 12049 ASSERT(tcp->tcp_notsack_list != NULL); 12050 ASSERT(tcp->tcp_rexmit == B_FALSE); 12051 12052 /* Defensive coding in case there is a bug... */ 12053 if (tcp->tcp_notsack_list == NULL) { 12054 return; 12055 } 12056 notsack_blk = tcp->tcp_notsack_list; 12057 mss = tcp->tcp_mss; 12058 12059 /* 12060 * Limit the num of outstanding data in the network to be 12061 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 12062 */ 12063 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 12064 12065 /* At least retransmit 1 MSS of data. */ 12066 if (usable_swnd <= 0) { 12067 usable_swnd = mss; 12068 } 12069 12070 /* Make sure no new RTT samples will be taken. */ 12071 tcp->tcp_csuna = tcp->tcp_snxt; 12072 12073 notsack_blk = tcp->tcp_notsack_list; 12074 while (usable_swnd > 0) { 12075 mblk_t *snxt_mp, *tmp_mp; 12076 tcp_seq begin = tcp->tcp_sack_snxt; 12077 tcp_seq end; 12078 int32_t off; 12079 12080 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 12081 if (SEQ_GT(notsack_blk->end, begin) && 12082 (notsack_blk->sack_cnt >= 12083 tcps->tcps_dupack_fast_retransmit)) { 12084 end = notsack_blk->end; 12085 if (SEQ_LT(begin, notsack_blk->begin)) { 12086 begin = notsack_blk->begin; 12087 } 12088 break; 12089 } 12090 } 12091 /* 12092 * All holes are filled. Manipulate tcp_cwnd to send more 12093 * if we can. Note that after the SACK recovery, tcp_cwnd is 12094 * set to tcp_cwnd_ssthresh. 12095 */ 12096 if (notsack_blk == NULL) { 12097 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 12098 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 12099 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 12100 ASSERT(tcp->tcp_cwnd > 0); 12101 return; 12102 } else { 12103 usable_swnd = usable_swnd / mss; 12104 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 12105 MAX(usable_swnd * mss, mss); 12106 *flags |= TH_XMIT_NEEDED; 12107 return; 12108 } 12109 } 12110 12111 /* 12112 * Note that we may send more than usable_swnd allows here 12113 * because of round off, but no more than 1 MSS of data. 12114 */ 12115 seg_len = end - begin; 12116 if (seg_len > mss) 12117 seg_len = mss; 12118 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 12119 ASSERT(snxt_mp != NULL); 12120 /* This should not happen. Defensive coding again... */ 12121 if (snxt_mp == NULL) { 12122 return; 12123 } 12124 12125 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 12126 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 12127 if (xmit_mp == NULL) 12128 return; 12129 12130 usable_swnd -= seg_len; 12131 tcp->tcp_pipe += seg_len; 12132 tcp->tcp_sack_snxt = begin + seg_len; 12133 TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT); 12134 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12135 12136 /* 12137 * Update the send timestamp to avoid false retransmission. 12138 */ 12139 snxt_mp->b_prev = (mblk_t *)lbolt; 12140 12141 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12142 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len); 12143 BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs); 12144 /* 12145 * Update tcp_rexmit_max to extend this SACK recovery phase. 12146 * This happens when new data sent during fast recovery is 12147 * also lost. If TCP retransmits those new data, it needs 12148 * to extend SACK recover phase to avoid starting another 12149 * fast retransmit/recovery unnecessarily. 12150 */ 12151 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 12152 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 12153 } 12154 } 12155 } 12156 12157 /* 12158 * This function handles policy checking at TCP level for non-hard_bound/ 12159 * detached connections. 12160 */ 12161 static boolean_t 12162 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h, 12163 boolean_t secure, boolean_t mctl_present) 12164 { 12165 ipsec_latch_t *ipl = NULL; 12166 ipsec_action_t *act = NULL; 12167 mblk_t *data_mp; 12168 ipsec_in_t *ii; 12169 const char *reason; 12170 kstat_named_t *counter; 12171 tcp_stack_t *tcps = tcp->tcp_tcps; 12172 ipsec_stack_t *ipss; 12173 ip_stack_t *ipst; 12174 12175 ASSERT(mctl_present || !secure); 12176 12177 ASSERT((ipha == NULL && ip6h != NULL) || 12178 (ip6h == NULL && ipha != NULL)); 12179 12180 /* 12181 * We don't necessarily have an ipsec_in_act action to verify 12182 * policy because of assymetrical policy where we have only 12183 * outbound policy and no inbound policy (possible with global 12184 * policy). 12185 */ 12186 if (!secure) { 12187 if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS || 12188 act->ipa_act.ipa_type == IPSEC_ACT_CLEAR) 12189 return (B_TRUE); 12190 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH, 12191 "tcp_check_policy", ipha, ip6h, secure, 12192 tcps->tcps_netstack); 12193 ipss = tcps->tcps_netstack->netstack_ipsec; 12194 12195 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12196 DROPPER(ipss, ipds_tcp_clear), 12197 &tcps->tcps_dropper); 12198 return (B_FALSE); 12199 } 12200 12201 /* 12202 * We have a secure packet. 12203 */ 12204 if (act == NULL) { 12205 ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED, 12206 "tcp_check_policy", ipha, ip6h, secure, 12207 tcps->tcps_netstack); 12208 ipss = tcps->tcps_netstack->netstack_ipsec; 12209 12210 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12211 DROPPER(ipss, ipds_tcp_secure), 12212 &tcps->tcps_dropper); 12213 return (B_FALSE); 12214 } 12215 12216 /* 12217 * XXX This whole routine is currently incorrect. ipl should 12218 * be set to the latch pointer, but is currently not set, so 12219 * we initialize it to NULL to avoid picking up random garbage. 12220 */ 12221 if (ipl == NULL) 12222 return (B_TRUE); 12223 12224 data_mp = first_mp->b_cont; 12225 12226 ii = (ipsec_in_t *)first_mp->b_rptr; 12227 12228 ipst = tcps->tcps_netstack->netstack_ip; 12229 12230 if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason, 12231 &counter, tcp->tcp_connp)) { 12232 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 12233 return (B_TRUE); 12234 } 12235 (void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 12236 "tcp inbound policy mismatch: %s, packet dropped\n", 12237 reason); 12238 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 12239 12240 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, 12241 &tcps->tcps_dropper); 12242 return (B_FALSE); 12243 } 12244 12245 /* 12246 * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start 12247 * retransmission after a timeout. 12248 * 12249 * To limit the number of duplicate segments, we limit the number of segment 12250 * to be sent in one time to tcp_snd_burst, the burst variable. 12251 */ 12252 static void 12253 tcp_ss_rexmit(tcp_t *tcp) 12254 { 12255 uint32_t snxt; 12256 uint32_t smax; 12257 int32_t win; 12258 int32_t mss; 12259 int32_t off; 12260 int32_t burst = tcp->tcp_snd_burst; 12261 mblk_t *snxt_mp; 12262 tcp_stack_t *tcps = tcp->tcp_tcps; 12263 12264 /* 12265 * Note that tcp_rexmit can be set even though TCP has retransmitted 12266 * all unack'ed segments. 12267 */ 12268 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 12269 smax = tcp->tcp_rexmit_max; 12270 snxt = tcp->tcp_rexmit_nxt; 12271 if (SEQ_LT(snxt, tcp->tcp_suna)) { 12272 snxt = tcp->tcp_suna; 12273 } 12274 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 12275 win -= snxt - tcp->tcp_suna; 12276 mss = tcp->tcp_mss; 12277 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 12278 12279 while (SEQ_LT(snxt, smax) && (win > 0) && 12280 (burst > 0) && (snxt_mp != NULL)) { 12281 mblk_t *xmit_mp; 12282 mblk_t *old_snxt_mp = snxt_mp; 12283 uint32_t cnt = mss; 12284 12285 if (win < cnt) { 12286 cnt = win; 12287 } 12288 if (SEQ_GT(snxt + cnt, smax)) { 12289 cnt = smax - snxt; 12290 } 12291 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 12292 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 12293 if (xmit_mp == NULL) 12294 return; 12295 12296 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12297 12298 snxt += cnt; 12299 win -= cnt; 12300 /* 12301 * Update the send timestamp to avoid false 12302 * retransmission. 12303 */ 12304 old_snxt_mp->b_prev = (mblk_t *)lbolt; 12305 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12306 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt); 12307 12308 tcp->tcp_rexmit_nxt = snxt; 12309 burst--; 12310 } 12311 /* 12312 * If we have transmitted all we have at the time 12313 * we started the retranmission, we can leave 12314 * the rest of the job to tcp_wput_data(). But we 12315 * need to check the send window first. If the 12316 * win is not 0, go on with tcp_wput_data(). 12317 */ 12318 if (SEQ_LT(snxt, smax) || win == 0) { 12319 return; 12320 } 12321 } 12322 /* Only call tcp_wput_data() if there is data to be sent. */ 12323 if (tcp->tcp_unsent) { 12324 tcp_wput_data(tcp, NULL, B_FALSE); 12325 } 12326 } 12327 12328 /* 12329 * Process all TCP option in SYN segment. Note that this function should 12330 * be called after tcp_adapt_ire() is called so that the necessary info 12331 * from IRE is already set in the tcp structure. 12332 * 12333 * This function sets up the correct tcp_mss value according to the 12334 * MSS option value and our header size. It also sets up the window scale 12335 * and timestamp values, and initialize SACK info blocks. But it does not 12336 * change receive window size after setting the tcp_mss value. The caller 12337 * should do the appropriate change. 12338 */ 12339 void 12340 tcp_process_options(tcp_t *tcp, tcph_t *tcph) 12341 { 12342 int options; 12343 tcp_opt_t tcpopt; 12344 uint32_t mss_max; 12345 char *tmp_tcph; 12346 tcp_stack_t *tcps = tcp->tcp_tcps; 12347 12348 tcpopt.tcp = NULL; 12349 options = tcp_parse_options(tcph, &tcpopt); 12350 12351 /* 12352 * Process MSS option. Note that MSS option value does not account 12353 * for IP or TCP options. This means that it is equal to MTU - minimum 12354 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 12355 * IPv6. 12356 */ 12357 if (!(options & TCP_OPT_MSS_PRESENT)) { 12358 if (tcp->tcp_ipversion == IPV4_VERSION) 12359 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; 12360 else 12361 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; 12362 } else { 12363 if (tcp->tcp_ipversion == IPV4_VERSION) 12364 mss_max = tcps->tcps_mss_max_ipv4; 12365 else 12366 mss_max = tcps->tcps_mss_max_ipv6; 12367 if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) 12368 tcpopt.tcp_opt_mss = tcps->tcps_mss_min; 12369 else if (tcpopt.tcp_opt_mss > mss_max) 12370 tcpopt.tcp_opt_mss = mss_max; 12371 } 12372 12373 /* Process Window Scale option. */ 12374 if (options & TCP_OPT_WSCALE_PRESENT) { 12375 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 12376 tcp->tcp_snd_ws_ok = B_TRUE; 12377 } else { 12378 tcp->tcp_snd_ws = B_FALSE; 12379 tcp->tcp_snd_ws_ok = B_FALSE; 12380 tcp->tcp_rcv_ws = B_FALSE; 12381 } 12382 12383 /* Process Timestamp option. */ 12384 if ((options & TCP_OPT_TSTAMP_PRESENT) && 12385 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 12386 tmp_tcph = (char *)tcp->tcp_tcph; 12387 12388 tcp->tcp_snd_ts_ok = B_TRUE; 12389 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 12390 tcp->tcp_last_rcv_lbolt = lbolt64; 12391 ASSERT(OK_32PTR(tmp_tcph)); 12392 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 12393 12394 /* Fill in our template header with basic timestamp option. */ 12395 tmp_tcph += tcp->tcp_tcp_hdr_len; 12396 tmp_tcph[0] = TCPOPT_NOP; 12397 tmp_tcph[1] = TCPOPT_NOP; 12398 tmp_tcph[2] = TCPOPT_TSTAMP; 12399 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 12400 tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12401 tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12402 tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4); 12403 } else { 12404 tcp->tcp_snd_ts_ok = B_FALSE; 12405 } 12406 12407 /* 12408 * Process SACK options. If SACK is enabled for this connection, 12409 * then allocate the SACK info structure. Note the following ways 12410 * when tcp_snd_sack_ok is set to true. 12411 * 12412 * For active connection: in tcp_adapt_ire() called in 12413 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted 12414 * is checked. 12415 * 12416 * For passive connection: in tcp_adapt_ire() called in 12417 * tcp_accept_comm(). 12418 * 12419 * That's the reason why the extra TCP_IS_DETACHED() check is there. 12420 * That check makes sure that if we did not send a SACK OK option, 12421 * we will not enable SACK for this connection even though the other 12422 * side sends us SACK OK option. For active connection, the SACK 12423 * info structure has already been allocated. So we need to free 12424 * it if SACK is disabled. 12425 */ 12426 if ((options & TCP_OPT_SACK_OK_PRESENT) && 12427 (tcp->tcp_snd_sack_ok || 12428 (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 12429 /* This should be true only in the passive case. */ 12430 if (tcp->tcp_sack_info == NULL) { 12431 ASSERT(TCP_IS_DETACHED(tcp)); 12432 tcp->tcp_sack_info = 12433 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 12434 } 12435 if (tcp->tcp_sack_info == NULL) { 12436 tcp->tcp_snd_sack_ok = B_FALSE; 12437 } else { 12438 tcp->tcp_snd_sack_ok = B_TRUE; 12439 if (tcp->tcp_snd_ts_ok) { 12440 tcp->tcp_max_sack_blk = 3; 12441 } else { 12442 tcp->tcp_max_sack_blk = 4; 12443 } 12444 } 12445 } else { 12446 /* 12447 * Resetting tcp_snd_sack_ok to B_FALSE so that 12448 * no SACK info will be used for this 12449 * connection. This assumes that SACK usage 12450 * permission is negotiated. This may need 12451 * to be changed once this is clarified. 12452 */ 12453 if (tcp->tcp_sack_info != NULL) { 12454 ASSERT(tcp->tcp_notsack_list == NULL); 12455 kmem_cache_free(tcp_sack_info_cache, 12456 tcp->tcp_sack_info); 12457 tcp->tcp_sack_info = NULL; 12458 } 12459 tcp->tcp_snd_sack_ok = B_FALSE; 12460 } 12461 12462 /* 12463 * Now we know the exact TCP/IP header length, subtract 12464 * that from tcp_mss to get our side's MSS. 12465 */ 12466 tcp->tcp_mss -= tcp->tcp_hdr_len; 12467 /* 12468 * Here we assume that the other side's header size will be equal to 12469 * our header size. We calculate the real MSS accordingly. Need to 12470 * take into additional stuffs IPsec puts in. 12471 * 12472 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 12473 */ 12474 tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead - 12475 ((tcp->tcp_ipversion == IPV4_VERSION ? 12476 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 12477 12478 /* 12479 * Set MSS to the smaller one of both ends of the connection. 12480 * We should not have called tcp_mss_set() before, but our 12481 * side of the MSS should have been set to a proper value 12482 * by tcp_adapt_ire(). tcp_mss_set() will also set up the 12483 * STREAM head parameters properly. 12484 * 12485 * If we have a larger-than-16-bit window but the other side 12486 * didn't want to do window scale, tcp_rwnd_set() will take 12487 * care of that. 12488 */ 12489 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE); 12490 } 12491 12492 /* 12493 * Sends the T_CONN_IND to the listener. The caller calls this 12494 * functions via squeue to get inside the listener's perimeter 12495 * once the 3 way hand shake is done a T_CONN_IND needs to be 12496 * sent. As an optimization, the caller can call this directly 12497 * if listener's perimeter is same as eager's. 12498 */ 12499 /* ARGSUSED */ 12500 void 12501 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 12502 { 12503 conn_t *lconnp = (conn_t *)arg; 12504 tcp_t *listener = lconnp->conn_tcp; 12505 tcp_t *tcp; 12506 struct T_conn_ind *conn_ind; 12507 ipaddr_t *addr_cache; 12508 boolean_t need_send_conn_ind = B_FALSE; 12509 tcp_stack_t *tcps = listener->tcp_tcps; 12510 12511 /* retrieve the eager */ 12512 conn_ind = (struct T_conn_ind *)mp->b_rptr; 12513 ASSERT(conn_ind->OPT_offset != 0 && 12514 conn_ind->OPT_length == sizeof (intptr_t)); 12515 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 12516 conn_ind->OPT_length); 12517 12518 /* 12519 * TLI/XTI applications will get confused by 12520 * sending eager as an option since it violates 12521 * the option semantics. So remove the eager as 12522 * option since TLI/XTI app doesn't need it anyway. 12523 */ 12524 if (!TCP_IS_SOCKET(listener)) { 12525 conn_ind->OPT_length = 0; 12526 conn_ind->OPT_offset = 0; 12527 } 12528 if (listener->tcp_state == TCPS_CLOSED || 12529 TCP_IS_DETACHED(listener)) { 12530 /* 12531 * If listener has closed, it would have caused a 12532 * a cleanup/blowoff to happen for the eager. We 12533 * just need to return. 12534 */ 12535 freemsg(mp); 12536 return; 12537 } 12538 12539 12540 /* 12541 * if the conn_req_q is full defer passing up the 12542 * T_CONN_IND until space is availabe after t_accept() 12543 * processing 12544 */ 12545 mutex_enter(&listener->tcp_eager_lock); 12546 12547 /* 12548 * Take the eager out, if it is in the list of droppable eagers 12549 * as we are here because the 3W handshake is over. 12550 */ 12551 MAKE_UNDROPPABLE(tcp); 12552 12553 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 12554 tcp_t *tail; 12555 12556 /* 12557 * The eager already has an extra ref put in tcp_rput_data 12558 * so that it stays till accept comes back even though it 12559 * might get into TCPS_CLOSED as a result of a TH_RST etc. 12560 */ 12561 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 12562 listener->tcp_conn_req_cnt_q0--; 12563 listener->tcp_conn_req_cnt_q++; 12564 12565 /* Move from SYN_RCVD to ESTABLISHED list */ 12566 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12567 tcp->tcp_eager_prev_q0; 12568 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12569 tcp->tcp_eager_next_q0; 12570 tcp->tcp_eager_prev_q0 = NULL; 12571 tcp->tcp_eager_next_q0 = NULL; 12572 12573 /* 12574 * Insert at end of the queue because sockfs 12575 * sends down T_CONN_RES in chronological 12576 * order. Leaving the older conn indications 12577 * at front of the queue helps reducing search 12578 * time. 12579 */ 12580 tail = listener->tcp_eager_last_q; 12581 if (tail != NULL) 12582 tail->tcp_eager_next_q = tcp; 12583 else 12584 listener->tcp_eager_next_q = tcp; 12585 listener->tcp_eager_last_q = tcp; 12586 tcp->tcp_eager_next_q = NULL; 12587 /* 12588 * Delay sending up the T_conn_ind until we are 12589 * done with the eager. Once we have have sent up 12590 * the T_conn_ind, the accept can potentially complete 12591 * any time and release the refhold we have on the eager. 12592 */ 12593 need_send_conn_ind = B_TRUE; 12594 } else { 12595 /* 12596 * Defer connection on q0 and set deferred 12597 * connection bit true 12598 */ 12599 tcp->tcp_conn_def_q0 = B_TRUE; 12600 12601 /* take tcp out of q0 ... */ 12602 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12603 tcp->tcp_eager_next_q0; 12604 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12605 tcp->tcp_eager_prev_q0; 12606 12607 /* ... and place it at the end of q0 */ 12608 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 12609 tcp->tcp_eager_next_q0 = listener; 12610 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 12611 listener->tcp_eager_prev_q0 = tcp; 12612 tcp->tcp_conn.tcp_eager_conn_ind = mp; 12613 } 12614 12615 /* we have timed out before */ 12616 if (tcp->tcp_syn_rcvd_timeout != 0) { 12617 tcp->tcp_syn_rcvd_timeout = 0; 12618 listener->tcp_syn_rcvd_timeout--; 12619 if (listener->tcp_syn_defense && 12620 listener->tcp_syn_rcvd_timeout <= 12621 (tcps->tcps_conn_req_max_q0 >> 5) && 12622 10*MINUTES < TICK_TO_MSEC(lbolt64 - 12623 listener->tcp_last_rcv_lbolt)) { 12624 /* 12625 * Turn off the defense mode if we 12626 * believe the SYN attack is over. 12627 */ 12628 listener->tcp_syn_defense = B_FALSE; 12629 if (listener->tcp_ip_addr_cache) { 12630 kmem_free((void *)listener->tcp_ip_addr_cache, 12631 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 12632 listener->tcp_ip_addr_cache = NULL; 12633 } 12634 } 12635 } 12636 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 12637 if (addr_cache != NULL) { 12638 /* 12639 * We have finished a 3-way handshake with this 12640 * remote host. This proves the IP addr is good. 12641 * Cache it! 12642 */ 12643 addr_cache[IP_ADDR_CACHE_HASH( 12644 tcp->tcp_remote)] = tcp->tcp_remote; 12645 } 12646 mutex_exit(&listener->tcp_eager_lock); 12647 if (need_send_conn_ind) 12648 putnext(listener->tcp_rq, mp); 12649 } 12650 12651 mblk_t * 12652 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp, 12653 uint_t *ifindexp, ip6_pkt_t *ippp) 12654 { 12655 ip_pktinfo_t *pinfo; 12656 ip6_t *ip6h; 12657 uchar_t *rptr; 12658 mblk_t *first_mp = mp; 12659 boolean_t mctl_present = B_FALSE; 12660 uint_t ifindex = 0; 12661 ip6_pkt_t ipp; 12662 uint_t ipvers; 12663 uint_t ip_hdr_len; 12664 tcp_stack_t *tcps = tcp->tcp_tcps; 12665 12666 rptr = mp->b_rptr; 12667 ASSERT(OK_32PTR(rptr)); 12668 ASSERT(tcp != NULL); 12669 ipp.ipp_fields = 0; 12670 12671 switch DB_TYPE(mp) { 12672 case M_CTL: 12673 mp = mp->b_cont; 12674 if (mp == NULL) { 12675 freemsg(first_mp); 12676 return (NULL); 12677 } 12678 if (DB_TYPE(mp) != M_DATA) { 12679 freemsg(first_mp); 12680 return (NULL); 12681 } 12682 mctl_present = B_TRUE; 12683 break; 12684 case M_DATA: 12685 break; 12686 default: 12687 cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type"); 12688 freemsg(mp); 12689 return (NULL); 12690 } 12691 ipvers = IPH_HDR_VERSION(rptr); 12692 if (ipvers == IPV4_VERSION) { 12693 if (tcp == NULL) { 12694 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12695 goto done; 12696 } 12697 12698 ipp.ipp_fields |= IPPF_HOPLIMIT; 12699 ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl; 12700 12701 /* 12702 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary 12703 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp. 12704 */ 12705 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) && 12706 mctl_present) { 12707 pinfo = (ip_pktinfo_t *)first_mp->b_rptr; 12708 if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) && 12709 (pinfo->ip_pkt_ulp_type == IN_PKTINFO) && 12710 (pinfo->ip_pkt_flags & IPF_RECVIF)) { 12711 ipp.ipp_fields |= IPPF_IFINDEX; 12712 ipp.ipp_ifindex = pinfo->ip_pkt_ifindex; 12713 ifindex = pinfo->ip_pkt_ifindex; 12714 } 12715 freeb(first_mp); 12716 mctl_present = B_FALSE; 12717 } 12718 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12719 } else { 12720 ip6h = (ip6_t *)rptr; 12721 12722 ASSERT(ipvers == IPV6_VERSION); 12723 ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS; 12724 ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20; 12725 ipp.ipp_hoplimit = ip6h->ip6_hops; 12726 12727 if (ip6h->ip6_nxt != IPPROTO_TCP) { 12728 uint8_t nexthdrp; 12729 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 12730 12731 /* Look for ifindex information */ 12732 if (ip6h->ip6_nxt == IPPROTO_RAW) { 12733 ip6i_t *ip6i = (ip6i_t *)ip6h; 12734 if ((uchar_t *)&ip6i[1] > mp->b_wptr) { 12735 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12736 freemsg(first_mp); 12737 return (NULL); 12738 } 12739 12740 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 12741 ASSERT(ip6i->ip6i_ifindex != 0); 12742 ipp.ipp_fields |= IPPF_IFINDEX; 12743 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 12744 ifindex = ip6i->ip6i_ifindex; 12745 } 12746 rptr = (uchar_t *)&ip6i[1]; 12747 mp->b_rptr = rptr; 12748 if (rptr == mp->b_wptr) { 12749 mblk_t *mp1; 12750 mp1 = mp->b_cont; 12751 freeb(mp); 12752 mp = mp1; 12753 rptr = mp->b_rptr; 12754 } 12755 if (MBLKL(mp) < IPV6_HDR_LEN + 12756 sizeof (tcph_t)) { 12757 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12758 freemsg(first_mp); 12759 return (NULL); 12760 } 12761 ip6h = (ip6_t *)rptr; 12762 } 12763 12764 /* 12765 * Find any potentially interesting extension headers 12766 * as well as the length of the IPv6 + extension 12767 * headers. 12768 */ 12769 ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp); 12770 /* Verify if this is a TCP packet */ 12771 if (nexthdrp != IPPROTO_TCP) { 12772 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12773 freemsg(first_mp); 12774 return (NULL); 12775 } 12776 } else { 12777 ip_hdr_len = IPV6_HDR_LEN; 12778 } 12779 } 12780 12781 done: 12782 if (ipversp != NULL) 12783 *ipversp = ipvers; 12784 if (ip_hdr_lenp != NULL) 12785 *ip_hdr_lenp = ip_hdr_len; 12786 if (ippp != NULL) 12787 *ippp = ipp; 12788 if (ifindexp != NULL) 12789 *ifindexp = ifindex; 12790 if (mctl_present) { 12791 freeb(first_mp); 12792 } 12793 return (mp); 12794 } 12795 12796 /* 12797 * Handle M_DATA messages from IP. Its called directly from IP via 12798 * squeue for AF_INET type sockets fast path. No M_CTL are expected 12799 * in this path. 12800 * 12801 * For everything else (including AF_INET6 sockets with 'tcp_ipversion' 12802 * v4 and v6), we are called through tcp_input() and a M_CTL can 12803 * be present for options but tcp_find_pktinfo() deals with it. We 12804 * only expect M_DATA packets after tcp_find_pktinfo() is done. 12805 * 12806 * The first argument is always the connp/tcp to which the mp belongs. 12807 * There are no exceptions to this rule. The caller has already put 12808 * a reference on this connp/tcp and once tcp_rput_data() returns, 12809 * the squeue will do the refrele. 12810 * 12811 * The TH_SYN for the listener directly go to tcp_conn_request via 12812 * squeue. 12813 * 12814 * sqp: NULL = recursive, sqp != NULL means called from squeue 12815 */ 12816 void 12817 tcp_rput_data(void *arg, mblk_t *mp, void *arg2) 12818 { 12819 int32_t bytes_acked; 12820 int32_t gap; 12821 mblk_t *mp1; 12822 uint_t flags; 12823 uint32_t new_swnd = 0; 12824 uchar_t *iphdr; 12825 uchar_t *rptr; 12826 int32_t rgap; 12827 uint32_t seg_ack; 12828 int seg_len; 12829 uint_t ip_hdr_len; 12830 uint32_t seg_seq; 12831 tcph_t *tcph; 12832 int urp; 12833 tcp_opt_t tcpopt; 12834 uint_t ipvers; 12835 ip6_pkt_t ipp; 12836 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 12837 uint32_t cwnd; 12838 uint32_t add; 12839 int npkt; 12840 int mss; 12841 conn_t *connp = (conn_t *)arg; 12842 squeue_t *sqp = (squeue_t *)arg2; 12843 tcp_t *tcp = connp->conn_tcp; 12844 tcp_stack_t *tcps = tcp->tcp_tcps; 12845 12846 /* 12847 * RST from fused tcp loopback peer should trigger an unfuse. 12848 */ 12849 if (tcp->tcp_fused) { 12850 TCP_STAT(tcps, tcp_fusion_aborted); 12851 tcp_unfuse(tcp); 12852 } 12853 12854 iphdr = mp->b_rptr; 12855 rptr = mp->b_rptr; 12856 ASSERT(OK_32PTR(rptr)); 12857 12858 /* 12859 * An AF_INET socket is not capable of receiving any pktinfo. Do inline 12860 * processing here. For rest call tcp_find_pktinfo to fill up the 12861 * necessary information. 12862 */ 12863 if (IPCL_IS_TCP4(connp)) { 12864 ipvers = IPV4_VERSION; 12865 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12866 } else { 12867 mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len, 12868 NULL, &ipp); 12869 if (mp == NULL) { 12870 TCP_STAT(tcps, tcp_rput_v6_error); 12871 return; 12872 } 12873 iphdr = mp->b_rptr; 12874 rptr = mp->b_rptr; 12875 } 12876 ASSERT(DB_TYPE(mp) == M_DATA); 12877 12878 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12879 seg_seq = ABE32_TO_U32(tcph->th_seq); 12880 seg_ack = ABE32_TO_U32(tcph->th_ack); 12881 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 12882 seg_len = (int)(mp->b_wptr - rptr) - 12883 (ip_hdr_len + TCP_HDR_LENGTH(tcph)); 12884 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 12885 do { 12886 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 12887 (uintptr_t)INT_MAX); 12888 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 12889 } while ((mp1 = mp1->b_cont) != NULL && 12890 mp1->b_datap->db_type == M_DATA); 12891 } 12892 12893 if (tcp->tcp_state == TCPS_TIME_WAIT) { 12894 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 12895 seg_len, tcph); 12896 return; 12897 } 12898 12899 if (sqp != NULL) { 12900 /* 12901 * This is the correct place to update tcp_last_recv_time. Note 12902 * that it is also updated for tcp structure that belongs to 12903 * global and listener queues which do not really need updating. 12904 * But that should not cause any harm. And it is updated for 12905 * all kinds of incoming segments, not only for data segments. 12906 */ 12907 tcp->tcp_last_recv_time = lbolt; 12908 } 12909 12910 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12911 12912 BUMP_LOCAL(tcp->tcp_ibsegs); 12913 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 12914 12915 if ((flags & TH_URG) && sqp != NULL) { 12916 /* 12917 * TCP can't handle urgent pointers that arrive before 12918 * the connection has been accept()ed since it can't 12919 * buffer OOB data. Discard segment if this happens. 12920 * 12921 * We can't just rely on a non-null tcp_listener to indicate 12922 * that the accept() has completed since unlinking of the 12923 * eager and completion of the accept are not atomic. 12924 * tcp_detached, when it is not set (B_FALSE) indicates 12925 * that the accept() has completed. 12926 * 12927 * Nor can it reassemble urgent pointers, so discard 12928 * if it's not the next segment expected. 12929 * 12930 * Otherwise, collapse chain into one mblk (discard if 12931 * that fails). This makes sure the headers, retransmitted 12932 * data, and new data all are in the same mblk. 12933 */ 12934 ASSERT(mp != NULL); 12935 if (tcp->tcp_detached || !pullupmsg(mp, -1)) { 12936 freemsg(mp); 12937 return; 12938 } 12939 /* Update pointers into message */ 12940 iphdr = rptr = mp->b_rptr; 12941 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12942 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 12943 /* 12944 * Since we can't handle any data with this urgent 12945 * pointer that is out of sequence, we expunge 12946 * the data. This allows us to still register 12947 * the urgent mark and generate the M_PCSIG, 12948 * which we can do. 12949 */ 12950 mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 12951 seg_len = 0; 12952 } 12953 } 12954 12955 switch (tcp->tcp_state) { 12956 case TCPS_SYN_SENT: 12957 if (flags & TH_ACK) { 12958 /* 12959 * Note that our stack cannot send data before a 12960 * connection is established, therefore the 12961 * following check is valid. Otherwise, it has 12962 * to be changed. 12963 */ 12964 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 12965 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 12966 freemsg(mp); 12967 if (flags & TH_RST) 12968 return; 12969 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 12970 tcp, seg_ack, 0, TH_RST); 12971 return; 12972 } 12973 ASSERT(tcp->tcp_suna + 1 == seg_ack); 12974 } 12975 if (flags & TH_RST) { 12976 freemsg(mp); 12977 if (flags & TH_ACK) 12978 (void) tcp_clean_death(tcp, 12979 ECONNREFUSED, 13); 12980 return; 12981 } 12982 if (!(flags & TH_SYN)) { 12983 freemsg(mp); 12984 return; 12985 } 12986 12987 /* Process all TCP options. */ 12988 tcp_process_options(tcp, tcph); 12989 /* 12990 * The following changes our rwnd to be a multiple of the 12991 * MIN(peer MSS, our MSS) for performance reason. 12992 */ 12993 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat, 12994 tcp->tcp_mss)); 12995 12996 /* Is the other end ECN capable? */ 12997 if (tcp->tcp_ecn_ok) { 12998 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 12999 tcp->tcp_ecn_ok = B_FALSE; 13000 } 13001 } 13002 /* 13003 * Clear ECN flags because it may interfere with later 13004 * processing. 13005 */ 13006 flags &= ~(TH_ECE|TH_CWR); 13007 13008 tcp->tcp_irs = seg_seq; 13009 tcp->tcp_rack = seg_seq; 13010 tcp->tcp_rnxt = seg_seq + 1; 13011 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13012 if (!TCP_IS_DETACHED(tcp)) { 13013 /* Allocate room for SACK options if needed. */ 13014 if (tcp->tcp_snd_sack_ok) { 13015 (void) mi_set_sth_wroff(tcp->tcp_rq, 13016 tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 13017 (tcp->tcp_loopback ? 0 : 13018 tcps->tcps_wroff_xtra)); 13019 } else { 13020 (void) mi_set_sth_wroff(tcp->tcp_rq, 13021 tcp->tcp_hdr_len + 13022 (tcp->tcp_loopback ? 0 : 13023 tcps->tcps_wroff_xtra)); 13024 } 13025 } 13026 if (flags & TH_ACK) { 13027 /* 13028 * If we can't get the confirmation upstream, pretend 13029 * we didn't even see this one. 13030 * 13031 * XXX: how can we pretend we didn't see it if we 13032 * have updated rnxt et. al. 13033 * 13034 * For loopback we defer sending up the T_CONN_CON 13035 * until after some checks below. 13036 */ 13037 mp1 = NULL; 13038 if (!tcp_conn_con(tcp, iphdr, tcph, mp, 13039 tcp->tcp_loopback ? &mp1 : NULL)) { 13040 freemsg(mp); 13041 return; 13042 } 13043 /* SYN was acked - making progress */ 13044 if (tcp->tcp_ipversion == IPV6_VERSION) 13045 tcp->tcp_ip_forward_progress = B_TRUE; 13046 13047 /* One for the SYN */ 13048 tcp->tcp_suna = tcp->tcp_iss + 1; 13049 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 13050 tcp->tcp_state = TCPS_ESTABLISHED; 13051 13052 /* 13053 * If SYN was retransmitted, need to reset all 13054 * retransmission info. This is because this 13055 * segment will be treated as a dup ACK. 13056 */ 13057 if (tcp->tcp_rexmit) { 13058 tcp->tcp_rexmit = B_FALSE; 13059 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 13060 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13061 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13062 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13063 tcp->tcp_ms_we_have_waited = 0; 13064 13065 /* 13066 * Set tcp_cwnd back to 1 MSS, per 13067 * recommendation from 13068 * draft-floyd-incr-init-win-01.txt, 13069 * Increasing TCP's Initial Window. 13070 */ 13071 tcp->tcp_cwnd = tcp->tcp_mss; 13072 } 13073 13074 tcp->tcp_swl1 = seg_seq; 13075 tcp->tcp_swl2 = seg_ack; 13076 13077 new_swnd = BE16_TO_U16(tcph->th_win); 13078 tcp->tcp_swnd = new_swnd; 13079 if (new_swnd > tcp->tcp_max_swnd) 13080 tcp->tcp_max_swnd = new_swnd; 13081 13082 /* 13083 * Always send the three-way handshake ack immediately 13084 * in order to make the connection complete as soon as 13085 * possible on the accepting host. 13086 */ 13087 flags |= TH_ACK_NEEDED; 13088 13089 /* 13090 * Special case for loopback. At this point we have 13091 * received SYN-ACK from the remote endpoint. In 13092 * order to ensure that both endpoints reach the 13093 * fused state prior to any data exchange, the final 13094 * ACK needs to be sent before we indicate T_CONN_CON 13095 * to the module upstream. 13096 */ 13097 if (tcp->tcp_loopback) { 13098 mblk_t *ack_mp; 13099 13100 ASSERT(!tcp->tcp_unfusable); 13101 ASSERT(mp1 != NULL); 13102 /* 13103 * For loopback, we always get a pure SYN-ACK 13104 * and only need to send back the final ACK 13105 * with no data (this is because the other 13106 * tcp is ours and we don't do T/TCP). This 13107 * final ACK triggers the passive side to 13108 * perform fusion in ESTABLISHED state. 13109 */ 13110 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 13111 if (tcp->tcp_ack_tid != 0) { 13112 (void) TCP_TIMER_CANCEL(tcp, 13113 tcp->tcp_ack_tid); 13114 tcp->tcp_ack_tid = 0; 13115 } 13116 TCP_RECORD_TRACE(tcp, ack_mp, 13117 TCP_TRACE_SEND_PKT); 13118 tcp_send_data(tcp, tcp->tcp_wq, ack_mp); 13119 BUMP_LOCAL(tcp->tcp_obsegs); 13120 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 13121 13122 /* Send up T_CONN_CON */ 13123 putnext(tcp->tcp_rq, mp1); 13124 13125 freemsg(mp); 13126 return; 13127 } 13128 /* 13129 * Forget fusion; we need to handle more 13130 * complex cases below. Send the deferred 13131 * T_CONN_CON message upstream and proceed 13132 * as usual. Mark this tcp as not capable 13133 * of fusion. 13134 */ 13135 TCP_STAT(tcps, tcp_fusion_unfusable); 13136 tcp->tcp_unfusable = B_TRUE; 13137 putnext(tcp->tcp_rq, mp1); 13138 } 13139 13140 /* 13141 * Check to see if there is data to be sent. If 13142 * yes, set the transmit flag. Then check to see 13143 * if received data processing needs to be done. 13144 * If not, go straight to xmit_check. This short 13145 * cut is OK as we don't support T/TCP. 13146 */ 13147 if (tcp->tcp_unsent) 13148 flags |= TH_XMIT_NEEDED; 13149 13150 if (seg_len == 0 && !(flags & TH_URG)) { 13151 freemsg(mp); 13152 goto xmit_check; 13153 } 13154 13155 flags &= ~TH_SYN; 13156 seg_seq++; 13157 break; 13158 } 13159 tcp->tcp_state = TCPS_SYN_RCVD; 13160 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 13161 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 13162 if (mp1) { 13163 DB_CPID(mp1) = tcp->tcp_cpid; 13164 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 13165 tcp_send_data(tcp, tcp->tcp_wq, mp1); 13166 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13167 } 13168 freemsg(mp); 13169 return; 13170 case TCPS_SYN_RCVD: 13171 if (flags & TH_ACK) { 13172 /* 13173 * In this state, a SYN|ACK packet is either bogus 13174 * because the other side must be ACKing our SYN which 13175 * indicates it has seen the ACK for their SYN and 13176 * shouldn't retransmit it or we're crossing SYNs 13177 * on active open. 13178 */ 13179 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 13180 freemsg(mp); 13181 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 13182 tcp, seg_ack, 0, TH_RST); 13183 return; 13184 } 13185 /* 13186 * NOTE: RFC 793 pg. 72 says this should be 13187 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 13188 * but that would mean we have an ack that ignored 13189 * our SYN. 13190 */ 13191 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 13192 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13193 freemsg(mp); 13194 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 13195 tcp, seg_ack, 0, TH_RST); 13196 return; 13197 } 13198 } 13199 break; 13200 case TCPS_LISTEN: 13201 /* 13202 * Only a TLI listener can come through this path when a 13203 * acceptor is going back to be a listener and a packet 13204 * for the acceptor hits the classifier. For a socket 13205 * listener, this can never happen because a listener 13206 * can never accept connection on itself and hence a 13207 * socket acceptor can not go back to being a listener. 13208 */ 13209 ASSERT(!TCP_IS_SOCKET(tcp)); 13210 /*FALLTHRU*/ 13211 case TCPS_CLOSED: 13212 case TCPS_BOUND: { 13213 conn_t *new_connp; 13214 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 13215 13216 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 13217 if (new_connp != NULL) { 13218 tcp_reinput(new_connp, mp, connp->conn_sqp); 13219 return; 13220 } 13221 /* We failed to classify. For now just drop the packet */ 13222 freemsg(mp); 13223 return; 13224 } 13225 case TCPS_IDLE: 13226 /* 13227 * Handle the case where the tcp_clean_death() has happened 13228 * on a connection (application hasn't closed yet) but a packet 13229 * was already queued on squeue before tcp_clean_death() 13230 * was processed. Calling tcp_clean_death() twice on same 13231 * connection can result in weird behaviour. 13232 */ 13233 freemsg(mp); 13234 return; 13235 default: 13236 break; 13237 } 13238 13239 /* 13240 * Already on the correct queue/perimeter. 13241 * If this is a detached connection and not an eager 13242 * connection hanging off a listener then new data 13243 * (past the FIN) will cause a reset. 13244 * We do a special check here where it 13245 * is out of the main line, rather than check 13246 * if we are detached every time we see new 13247 * data down below. 13248 */ 13249 if (TCP_IS_DETACHED_NONEAGER(tcp) && 13250 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 13251 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 13252 TCP_RECORD_TRACE(tcp, 13253 mp, TCP_TRACE_RECV_PKT); 13254 13255 freemsg(mp); 13256 /* 13257 * This could be an SSL closure alert. We're detached so just 13258 * acknowledge it this last time. 13259 */ 13260 if (tcp->tcp_kssl_ctx != NULL) { 13261 kssl_release_ctx(tcp->tcp_kssl_ctx); 13262 tcp->tcp_kssl_ctx = NULL; 13263 13264 tcp->tcp_rnxt += seg_len; 13265 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13266 flags |= TH_ACK_NEEDED; 13267 goto ack_check; 13268 } 13269 13270 tcp_xmit_ctl("new data when detached", tcp, 13271 tcp->tcp_snxt, 0, TH_RST); 13272 (void) tcp_clean_death(tcp, EPROTO, 12); 13273 return; 13274 } 13275 13276 mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13277 urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION; 13278 new_swnd = BE16_TO_U16(tcph->th_win) << 13279 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 13280 13281 if (tcp->tcp_snd_ts_ok) { 13282 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 13283 /* 13284 * This segment is not acceptable. 13285 * Drop it and send back an ACK. 13286 */ 13287 freemsg(mp); 13288 flags |= TH_ACK_NEEDED; 13289 goto ack_check; 13290 } 13291 } else if (tcp->tcp_snd_sack_ok) { 13292 ASSERT(tcp->tcp_sack_info != NULL); 13293 tcpopt.tcp = tcp; 13294 /* 13295 * SACK info in already updated in tcp_parse_options. Ignore 13296 * all other TCP options... 13297 */ 13298 (void) tcp_parse_options(tcph, &tcpopt); 13299 } 13300 try_again:; 13301 mss = tcp->tcp_mss; 13302 gap = seg_seq - tcp->tcp_rnxt; 13303 rgap = tcp->tcp_rwnd - (gap + seg_len); 13304 /* 13305 * gap is the amount of sequence space between what we expect to see 13306 * and what we got for seg_seq. A positive value for gap means 13307 * something got lost. A negative value means we got some old stuff. 13308 */ 13309 if (gap < 0) { 13310 /* Old stuff present. Is the SYN in there? */ 13311 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 13312 (seg_len != 0)) { 13313 flags &= ~TH_SYN; 13314 seg_seq++; 13315 urp--; 13316 /* Recompute the gaps after noting the SYN. */ 13317 goto try_again; 13318 } 13319 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 13320 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 13321 (seg_len > -gap ? -gap : seg_len)); 13322 /* Remove the old stuff from seg_len. */ 13323 seg_len += gap; 13324 /* 13325 * Anything left? 13326 * Make sure to check for unack'd FIN when rest of data 13327 * has been previously ack'd. 13328 */ 13329 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 13330 /* 13331 * Resets are only valid if they lie within our offered 13332 * window. If the RST bit is set, we just ignore this 13333 * segment. 13334 */ 13335 if (flags & TH_RST) { 13336 freemsg(mp); 13337 return; 13338 } 13339 13340 /* 13341 * The arriving of dup data packets indicate that we 13342 * may have postponed an ack for too long, or the other 13343 * side's RTT estimate is out of shape. Start acking 13344 * more often. 13345 */ 13346 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 13347 tcp->tcp_rack_cnt >= 1 && 13348 tcp->tcp_rack_abs_max > 2) { 13349 tcp->tcp_rack_abs_max--; 13350 } 13351 tcp->tcp_rack_cur_max = 1; 13352 13353 /* 13354 * This segment is "unacceptable". None of its 13355 * sequence space lies within our advertized window. 13356 * 13357 * Adjust seg_len to the original value for tracing. 13358 */ 13359 seg_len -= gap; 13360 if (tcp->tcp_debug) { 13361 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13362 "tcp_rput: unacceptable, gap %d, rgap %d, " 13363 "flags 0x%x, seg_seq %u, seg_ack %u, " 13364 "seg_len %d, rnxt %u, snxt %u, %s", 13365 gap, rgap, flags, seg_seq, seg_ack, 13366 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 13367 tcp_display(tcp, NULL, 13368 DISP_ADDR_AND_PORT)); 13369 } 13370 13371 /* 13372 * Arrange to send an ACK in response to the 13373 * unacceptable segment per RFC 793 page 69. There 13374 * is only one small difference between ours and the 13375 * acceptability test in the RFC - we accept ACK-only 13376 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 13377 * will be generated. 13378 * 13379 * Note that we have to ACK an ACK-only packet at least 13380 * for stacks that send 0-length keep-alives with 13381 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 13382 * section 4.2.3.6. As long as we don't ever generate 13383 * an unacceptable packet in response to an incoming 13384 * packet that is unacceptable, it should not cause 13385 * "ACK wars". 13386 */ 13387 flags |= TH_ACK_NEEDED; 13388 13389 /* 13390 * Continue processing this segment in order to use the 13391 * ACK information it contains, but skip all other 13392 * sequence-number processing. Processing the ACK 13393 * information is necessary in order to 13394 * re-synchronize connections that may have lost 13395 * synchronization. 13396 * 13397 * We clear seg_len and flag fields related to 13398 * sequence number processing as they are not 13399 * to be trusted for an unacceptable segment. 13400 */ 13401 seg_len = 0; 13402 flags &= ~(TH_SYN | TH_FIN | TH_URG); 13403 goto process_ack; 13404 } 13405 13406 /* Fix seg_seq, and chew the gap off the front. */ 13407 seg_seq = tcp->tcp_rnxt; 13408 urp += gap; 13409 do { 13410 mblk_t *mp2; 13411 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13412 (uintptr_t)UINT_MAX); 13413 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 13414 if (gap > 0) { 13415 mp->b_rptr = mp->b_wptr - gap; 13416 break; 13417 } 13418 mp2 = mp; 13419 mp = mp->b_cont; 13420 freeb(mp2); 13421 } while (gap < 0); 13422 /* 13423 * If the urgent data has already been acknowledged, we 13424 * should ignore TH_URG below 13425 */ 13426 if (urp < 0) 13427 flags &= ~TH_URG; 13428 } 13429 /* 13430 * rgap is the amount of stuff received out of window. A negative 13431 * value is the amount out of window. 13432 */ 13433 if (rgap < 0) { 13434 mblk_t *mp2; 13435 13436 if (tcp->tcp_rwnd == 0) { 13437 BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe); 13438 } else { 13439 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 13440 UPDATE_MIB(&tcps->tcps_mib, 13441 tcpInDataPastWinBytes, -rgap); 13442 } 13443 13444 /* 13445 * seg_len does not include the FIN, so if more than 13446 * just the FIN is out of window, we act like we don't 13447 * see it. (If just the FIN is out of window, rgap 13448 * will be zero and we will go ahead and acknowledge 13449 * the FIN.) 13450 */ 13451 flags &= ~TH_FIN; 13452 13453 /* Fix seg_len and make sure there is something left. */ 13454 seg_len += rgap; 13455 if (seg_len <= 0) { 13456 /* 13457 * Resets are only valid if they lie within our offered 13458 * window. If the RST bit is set, we just ignore this 13459 * segment. 13460 */ 13461 if (flags & TH_RST) { 13462 freemsg(mp); 13463 return; 13464 } 13465 13466 /* Per RFC 793, we need to send back an ACK. */ 13467 flags |= TH_ACK_NEEDED; 13468 13469 /* 13470 * Send SIGURG as soon as possible i.e. even 13471 * if the TH_URG was delivered in a window probe 13472 * packet (which will be unacceptable). 13473 * 13474 * We generate a signal if none has been generated 13475 * for this connection or if this is a new urgent 13476 * byte. Also send a zero-length "unmarked" message 13477 * to inform SIOCATMARK that this is not the mark. 13478 * 13479 * tcp_urp_last_valid is cleared when the T_exdata_ind 13480 * is sent up. This plus the check for old data 13481 * (gap >= 0) handles the wraparound of the sequence 13482 * number space without having to always track the 13483 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 13484 * this max in its rcv_up variable). 13485 * 13486 * This prevents duplicate SIGURGS due to a "late" 13487 * zero-window probe when the T_EXDATA_IND has already 13488 * been sent up. 13489 */ 13490 if ((flags & TH_URG) && 13491 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 13492 tcp->tcp_urp_last))) { 13493 mp1 = allocb(0, BPRI_MED); 13494 if (mp1 == NULL) { 13495 freemsg(mp); 13496 return; 13497 } 13498 if (!TCP_IS_DETACHED(tcp) && 13499 !putnextctl1(tcp->tcp_rq, M_PCSIG, 13500 SIGURG)) { 13501 /* Try again on the rexmit. */ 13502 freemsg(mp1); 13503 freemsg(mp); 13504 return; 13505 } 13506 /* 13507 * If the next byte would be the mark 13508 * then mark with MARKNEXT else mark 13509 * with NOTMARKNEXT. 13510 */ 13511 if (gap == 0 && urp == 0) 13512 mp1->b_flag |= MSGMARKNEXT; 13513 else 13514 mp1->b_flag |= MSGNOTMARKNEXT; 13515 freemsg(tcp->tcp_urp_mark_mp); 13516 tcp->tcp_urp_mark_mp = mp1; 13517 flags |= TH_SEND_URP_MARK; 13518 tcp->tcp_urp_last_valid = B_TRUE; 13519 tcp->tcp_urp_last = urp + seg_seq; 13520 } 13521 /* 13522 * If this is a zero window probe, continue to 13523 * process the ACK part. But we need to set seg_len 13524 * to 0 to avoid data processing. Otherwise just 13525 * drop the segment and send back an ACK. 13526 */ 13527 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 13528 flags &= ~(TH_SYN | TH_URG); 13529 seg_len = 0; 13530 goto process_ack; 13531 } else { 13532 freemsg(mp); 13533 goto ack_check; 13534 } 13535 } 13536 /* Pitch out of window stuff off the end. */ 13537 rgap = seg_len; 13538 mp2 = mp; 13539 do { 13540 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 13541 (uintptr_t)INT_MAX); 13542 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 13543 if (rgap < 0) { 13544 mp2->b_wptr += rgap; 13545 if ((mp1 = mp2->b_cont) != NULL) { 13546 mp2->b_cont = NULL; 13547 freemsg(mp1); 13548 } 13549 break; 13550 } 13551 } while ((mp2 = mp2->b_cont) != NULL); 13552 } 13553 ok:; 13554 /* 13555 * TCP should check ECN info for segments inside the window only. 13556 * Therefore the check should be done here. 13557 */ 13558 if (tcp->tcp_ecn_ok) { 13559 if (flags & TH_CWR) { 13560 tcp->tcp_ecn_echo_on = B_FALSE; 13561 } 13562 /* 13563 * Note that both ECN_CE and CWR can be set in the 13564 * same segment. In this case, we once again turn 13565 * on ECN_ECHO. 13566 */ 13567 if (tcp->tcp_ipversion == IPV4_VERSION) { 13568 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 13569 13570 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 13571 tcp->tcp_ecn_echo_on = B_TRUE; 13572 } 13573 } else { 13574 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 13575 13576 if ((vcf & htonl(IPH_ECN_CE << 20)) == 13577 htonl(IPH_ECN_CE << 20)) { 13578 tcp->tcp_ecn_echo_on = B_TRUE; 13579 } 13580 } 13581 } 13582 13583 /* 13584 * Check whether we can update tcp_ts_recent. This test is 13585 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 13586 * Extensions for High Performance: An Update", Internet Draft. 13587 */ 13588 if (tcp->tcp_snd_ts_ok && 13589 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 13590 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 13591 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 13592 tcp->tcp_last_rcv_lbolt = lbolt64; 13593 } 13594 13595 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 13596 /* 13597 * FIN in an out of order segment. We record this in 13598 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 13599 * Clear the FIN so that any check on FIN flag will fail. 13600 * Remember that FIN also counts in the sequence number 13601 * space. So we need to ack out of order FIN only segments. 13602 */ 13603 if (flags & TH_FIN) { 13604 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 13605 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 13606 flags &= ~TH_FIN; 13607 flags |= TH_ACK_NEEDED; 13608 } 13609 if (seg_len > 0) { 13610 /* Fill in the SACK blk list. */ 13611 if (tcp->tcp_snd_sack_ok) { 13612 ASSERT(tcp->tcp_sack_info != NULL); 13613 tcp_sack_insert(tcp->tcp_sack_list, 13614 seg_seq, seg_seq + seg_len, 13615 &(tcp->tcp_num_sack_blk)); 13616 } 13617 13618 /* 13619 * Attempt reassembly and see if we have something 13620 * ready to go. 13621 */ 13622 mp = tcp_reass(tcp, mp, seg_seq); 13623 /* Always ack out of order packets */ 13624 flags |= TH_ACK_NEEDED | TH_PUSH; 13625 if (mp) { 13626 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13627 (uintptr_t)INT_MAX); 13628 seg_len = mp->b_cont ? msgdsize(mp) : 13629 (int)(mp->b_wptr - mp->b_rptr); 13630 seg_seq = tcp->tcp_rnxt; 13631 /* 13632 * A gap is filled and the seq num and len 13633 * of the gap match that of a previously 13634 * received FIN, put the FIN flag back in. 13635 */ 13636 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13637 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13638 flags |= TH_FIN; 13639 tcp->tcp_valid_bits &= 13640 ~TCP_OFO_FIN_VALID; 13641 } 13642 } else { 13643 /* 13644 * Keep going even with NULL mp. 13645 * There may be a useful ACK or something else 13646 * we don't want to miss. 13647 * 13648 * But TCP should not perform fast retransmit 13649 * because of the ack number. TCP uses 13650 * seg_len == 0 to determine if it is a pure 13651 * ACK. And this is not a pure ACK. 13652 */ 13653 seg_len = 0; 13654 ofo_seg = B_TRUE; 13655 } 13656 } 13657 } else if (seg_len > 0) { 13658 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 13659 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 13660 /* 13661 * If an out of order FIN was received before, and the seq 13662 * num and len of the new segment match that of the FIN, 13663 * put the FIN flag back in. 13664 */ 13665 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13666 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13667 flags |= TH_FIN; 13668 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 13669 } 13670 } 13671 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 13672 if (flags & TH_RST) { 13673 freemsg(mp); 13674 switch (tcp->tcp_state) { 13675 case TCPS_SYN_RCVD: 13676 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 13677 break; 13678 case TCPS_ESTABLISHED: 13679 case TCPS_FIN_WAIT_1: 13680 case TCPS_FIN_WAIT_2: 13681 case TCPS_CLOSE_WAIT: 13682 (void) tcp_clean_death(tcp, ECONNRESET, 15); 13683 break; 13684 case TCPS_CLOSING: 13685 case TCPS_LAST_ACK: 13686 (void) tcp_clean_death(tcp, 0, 16); 13687 break; 13688 default: 13689 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13690 (void) tcp_clean_death(tcp, ENXIO, 17); 13691 break; 13692 } 13693 return; 13694 } 13695 if (flags & TH_SYN) { 13696 /* 13697 * See RFC 793, Page 71 13698 * 13699 * The seq number must be in the window as it should 13700 * be "fixed" above. If it is outside window, it should 13701 * be already rejected. Note that we allow seg_seq to be 13702 * rnxt + rwnd because we want to accept 0 window probe. 13703 */ 13704 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 13705 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 13706 freemsg(mp); 13707 /* 13708 * If the ACK flag is not set, just use our snxt as the 13709 * seq number of the RST segment. 13710 */ 13711 if (!(flags & TH_ACK)) { 13712 seg_ack = tcp->tcp_snxt; 13713 } 13714 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 13715 TH_RST|TH_ACK); 13716 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13717 (void) tcp_clean_death(tcp, ECONNRESET, 18); 13718 return; 13719 } 13720 /* 13721 * urp could be -1 when the urp field in the packet is 0 13722 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 13723 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 13724 */ 13725 if (flags & TH_URG && urp >= 0) { 13726 if (!tcp->tcp_urp_last_valid || 13727 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 13728 /* 13729 * If we haven't generated the signal yet for this 13730 * urgent pointer value, do it now. Also, send up a 13731 * zero-length M_DATA indicating whether or not this is 13732 * the mark. The latter is not needed when a 13733 * T_EXDATA_IND is sent up. However, if there are 13734 * allocation failures this code relies on the sender 13735 * retransmitting and the socket code for determining 13736 * the mark should not block waiting for the peer to 13737 * transmit. Thus, for simplicity we always send up the 13738 * mark indication. 13739 */ 13740 mp1 = allocb(0, BPRI_MED); 13741 if (mp1 == NULL) { 13742 freemsg(mp); 13743 return; 13744 } 13745 if (!TCP_IS_DETACHED(tcp) && 13746 !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) { 13747 /* Try again on the rexmit. */ 13748 freemsg(mp1); 13749 freemsg(mp); 13750 return; 13751 } 13752 /* 13753 * Mark with NOTMARKNEXT for now. 13754 * The code below will change this to MARKNEXT 13755 * if we are at the mark. 13756 * 13757 * If there are allocation failures (e.g. in dupmsg 13758 * below) the next time tcp_rput_data sees the urgent 13759 * segment it will send up the MSG*MARKNEXT message. 13760 */ 13761 mp1->b_flag |= MSGNOTMARKNEXT; 13762 freemsg(tcp->tcp_urp_mark_mp); 13763 tcp->tcp_urp_mark_mp = mp1; 13764 flags |= TH_SEND_URP_MARK; 13765 #ifdef DEBUG 13766 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13767 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 13768 "last %x, %s", 13769 seg_seq, urp, tcp->tcp_urp_last, 13770 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13771 #endif /* DEBUG */ 13772 tcp->tcp_urp_last_valid = B_TRUE; 13773 tcp->tcp_urp_last = urp + seg_seq; 13774 } else if (tcp->tcp_urp_mark_mp != NULL) { 13775 /* 13776 * An allocation failure prevented the previous 13777 * tcp_rput_data from sending up the allocated 13778 * MSG*MARKNEXT message - send it up this time 13779 * around. 13780 */ 13781 flags |= TH_SEND_URP_MARK; 13782 } 13783 13784 /* 13785 * If the urgent byte is in this segment, make sure that it is 13786 * all by itself. This makes it much easier to deal with the 13787 * possibility of an allocation failure on the T_exdata_ind. 13788 * Note that seg_len is the number of bytes in the segment, and 13789 * urp is the offset into the segment of the urgent byte. 13790 * urp < seg_len means that the urgent byte is in this segment. 13791 */ 13792 if (urp < seg_len) { 13793 if (seg_len != 1) { 13794 uint32_t tmp_rnxt; 13795 /* 13796 * Break it up and feed it back in. 13797 * Re-attach the IP header. 13798 */ 13799 mp->b_rptr = iphdr; 13800 if (urp > 0) { 13801 /* 13802 * There is stuff before the urgent 13803 * byte. 13804 */ 13805 mp1 = dupmsg(mp); 13806 if (!mp1) { 13807 /* 13808 * Trim from urgent byte on. 13809 * The rest will come back. 13810 */ 13811 (void) adjmsg(mp, 13812 urp - seg_len); 13813 tcp_rput_data(connp, 13814 mp, NULL); 13815 return; 13816 } 13817 (void) adjmsg(mp1, urp - seg_len); 13818 /* Feed this piece back in. */ 13819 tmp_rnxt = tcp->tcp_rnxt; 13820 tcp_rput_data(connp, mp1, NULL); 13821 /* 13822 * If the data passed back in was not 13823 * processed (ie: bad ACK) sending 13824 * the remainder back in will cause a 13825 * loop. In this case, drop the 13826 * packet and let the sender try 13827 * sending a good packet. 13828 */ 13829 if (tmp_rnxt == tcp->tcp_rnxt) { 13830 freemsg(mp); 13831 return; 13832 } 13833 } 13834 if (urp != seg_len - 1) { 13835 uint32_t tmp_rnxt; 13836 /* 13837 * There is stuff after the urgent 13838 * byte. 13839 */ 13840 mp1 = dupmsg(mp); 13841 if (!mp1) { 13842 /* 13843 * Trim everything beyond the 13844 * urgent byte. The rest will 13845 * come back. 13846 */ 13847 (void) adjmsg(mp, 13848 urp + 1 - seg_len); 13849 tcp_rput_data(connp, 13850 mp, NULL); 13851 return; 13852 } 13853 (void) adjmsg(mp1, urp + 1 - seg_len); 13854 tmp_rnxt = tcp->tcp_rnxt; 13855 tcp_rput_data(connp, mp1, NULL); 13856 /* 13857 * If the data passed back in was not 13858 * processed (ie: bad ACK) sending 13859 * the remainder back in will cause a 13860 * loop. In this case, drop the 13861 * packet and let the sender try 13862 * sending a good packet. 13863 */ 13864 if (tmp_rnxt == tcp->tcp_rnxt) { 13865 freemsg(mp); 13866 return; 13867 } 13868 } 13869 tcp_rput_data(connp, mp, NULL); 13870 return; 13871 } 13872 /* 13873 * This segment contains only the urgent byte. We 13874 * have to allocate the T_exdata_ind, if we can. 13875 */ 13876 if (!tcp->tcp_urp_mp) { 13877 struct T_exdata_ind *tei; 13878 mp1 = allocb(sizeof (struct T_exdata_ind), 13879 BPRI_MED); 13880 if (!mp1) { 13881 /* 13882 * Sigh... It'll be back. 13883 * Generate any MSG*MARK message now. 13884 */ 13885 freemsg(mp); 13886 seg_len = 0; 13887 if (flags & TH_SEND_URP_MARK) { 13888 13889 13890 ASSERT(tcp->tcp_urp_mark_mp); 13891 tcp->tcp_urp_mark_mp->b_flag &= 13892 ~MSGNOTMARKNEXT; 13893 tcp->tcp_urp_mark_mp->b_flag |= 13894 MSGMARKNEXT; 13895 } 13896 goto ack_check; 13897 } 13898 mp1->b_datap->db_type = M_PROTO; 13899 tei = (struct T_exdata_ind *)mp1->b_rptr; 13900 tei->PRIM_type = T_EXDATA_IND; 13901 tei->MORE_flag = 0; 13902 mp1->b_wptr = (uchar_t *)&tei[1]; 13903 tcp->tcp_urp_mp = mp1; 13904 #ifdef DEBUG 13905 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13906 "tcp_rput: allocated exdata_ind %s", 13907 tcp_display(tcp, NULL, 13908 DISP_PORT_ONLY)); 13909 #endif /* DEBUG */ 13910 /* 13911 * There is no need to send a separate MSG*MARK 13912 * message since the T_EXDATA_IND will be sent 13913 * now. 13914 */ 13915 flags &= ~TH_SEND_URP_MARK; 13916 freemsg(tcp->tcp_urp_mark_mp); 13917 tcp->tcp_urp_mark_mp = NULL; 13918 } 13919 /* 13920 * Now we are all set. On the next putnext upstream, 13921 * tcp_urp_mp will be non-NULL and will get prepended 13922 * to what has to be this piece containing the urgent 13923 * byte. If for any reason we abort this segment below, 13924 * if it comes back, we will have this ready, or it 13925 * will get blown off in close. 13926 */ 13927 } else if (urp == seg_len) { 13928 /* 13929 * The urgent byte is the next byte after this sequence 13930 * number. If there is data it is marked with 13931 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded 13932 * since it is not needed. Otherwise, if the code 13933 * above just allocated a zero-length tcp_urp_mark_mp 13934 * message, that message is tagged with MSGMARKNEXT. 13935 * Sending up these MSGMARKNEXT messages makes 13936 * SIOCATMARK work correctly even though 13937 * the T_EXDATA_IND will not be sent up until the 13938 * urgent byte arrives. 13939 */ 13940 if (seg_len != 0) { 13941 flags |= TH_MARKNEXT_NEEDED; 13942 freemsg(tcp->tcp_urp_mark_mp); 13943 tcp->tcp_urp_mark_mp = NULL; 13944 flags &= ~TH_SEND_URP_MARK; 13945 } else if (tcp->tcp_urp_mark_mp != NULL) { 13946 flags |= TH_SEND_URP_MARK; 13947 tcp->tcp_urp_mark_mp->b_flag &= 13948 ~MSGNOTMARKNEXT; 13949 tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT; 13950 } 13951 #ifdef DEBUG 13952 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13953 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 13954 seg_len, flags, 13955 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13956 #endif /* DEBUG */ 13957 } else { 13958 /* Data left until we hit mark */ 13959 #ifdef DEBUG 13960 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13961 "tcp_rput: URP %d bytes left, %s", 13962 urp - seg_len, tcp_display(tcp, NULL, 13963 DISP_PORT_ONLY)); 13964 #endif /* DEBUG */ 13965 } 13966 } 13967 13968 process_ack: 13969 if (!(flags & TH_ACK)) { 13970 freemsg(mp); 13971 goto xmit_check; 13972 } 13973 } 13974 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 13975 13976 if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0) 13977 tcp->tcp_ip_forward_progress = B_TRUE; 13978 if (tcp->tcp_state == TCPS_SYN_RCVD) { 13979 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 13980 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 13981 /* 3-way handshake complete - pass up the T_CONN_IND */ 13982 tcp_t *listener = tcp->tcp_listener; 13983 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 13984 13985 tcp->tcp_tconnind_started = B_TRUE; 13986 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 13987 /* 13988 * We are here means eager is fine but it can 13989 * get a TH_RST at any point between now and till 13990 * accept completes and disappear. We need to 13991 * ensure that reference to eager is valid after 13992 * we get out of eager's perimeter. So we do 13993 * an extra refhold. 13994 */ 13995 CONN_INC_REF(connp); 13996 13997 /* 13998 * The listener also exists because of the refhold 13999 * done in tcp_conn_request. Its possible that it 14000 * might have closed. We will check that once we 14001 * get inside listeners context. 14002 */ 14003 CONN_INC_REF(listener->tcp_connp); 14004 if (listener->tcp_connp->conn_sqp == 14005 connp->conn_sqp) { 14006 tcp_send_conn_ind(listener->tcp_connp, mp, 14007 listener->tcp_connp->conn_sqp); 14008 CONN_DEC_REF(listener->tcp_connp); 14009 } else if (!tcp->tcp_loopback) { 14010 squeue_fill(listener->tcp_connp->conn_sqp, mp, 14011 tcp_send_conn_ind, 14012 listener->tcp_connp, SQTAG_TCP_CONN_IND); 14013 } else { 14014 squeue_enter(listener->tcp_connp->conn_sqp, mp, 14015 tcp_send_conn_ind, listener->tcp_connp, 14016 SQTAG_TCP_CONN_IND); 14017 } 14018 } 14019 14020 if (tcp->tcp_active_open) { 14021 /* 14022 * We are seeing the final ack in the three way 14023 * hand shake of a active open'ed connection 14024 * so we must send up a T_CONN_CON 14025 */ 14026 if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) { 14027 freemsg(mp); 14028 return; 14029 } 14030 /* 14031 * Don't fuse the loopback endpoints for 14032 * simultaneous active opens. 14033 */ 14034 if (tcp->tcp_loopback) { 14035 TCP_STAT(tcps, tcp_fusion_unfusable); 14036 tcp->tcp_unfusable = B_TRUE; 14037 } 14038 } 14039 14040 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 14041 bytes_acked--; 14042 /* SYN was acked - making progress */ 14043 if (tcp->tcp_ipversion == IPV6_VERSION) 14044 tcp->tcp_ip_forward_progress = B_TRUE; 14045 14046 /* 14047 * If SYN was retransmitted, need to reset all 14048 * retransmission info as this segment will be 14049 * treated as a dup ACK. 14050 */ 14051 if (tcp->tcp_rexmit) { 14052 tcp->tcp_rexmit = B_FALSE; 14053 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14054 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14055 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14056 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14057 tcp->tcp_ms_we_have_waited = 0; 14058 tcp->tcp_cwnd = mss; 14059 } 14060 14061 /* 14062 * We set the send window to zero here. 14063 * This is needed if there is data to be 14064 * processed already on the queue. 14065 * Later (at swnd_update label), the 14066 * "new_swnd > tcp_swnd" condition is satisfied 14067 * the XMIT_NEEDED flag is set in the current 14068 * (SYN_RCVD) state. This ensures tcp_wput_data() is 14069 * called if there is already data on queue in 14070 * this state. 14071 */ 14072 tcp->tcp_swnd = 0; 14073 14074 if (new_swnd > tcp->tcp_max_swnd) 14075 tcp->tcp_max_swnd = new_swnd; 14076 tcp->tcp_swl1 = seg_seq; 14077 tcp->tcp_swl2 = seg_ack; 14078 tcp->tcp_state = TCPS_ESTABLISHED; 14079 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 14080 14081 /* Fuse when both sides are in ESTABLISHED state */ 14082 if (tcp->tcp_loopback && do_tcp_fusion) 14083 tcp_fuse(tcp, iphdr, tcph); 14084 14085 } 14086 /* This code follows 4.4BSD-Lite2 mostly. */ 14087 if (bytes_acked < 0) 14088 goto est; 14089 14090 /* 14091 * If TCP is ECN capable and the congestion experience bit is 14092 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 14093 * done once per window (or more loosely, per RTT). 14094 */ 14095 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 14096 tcp->tcp_cwr = B_FALSE; 14097 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 14098 if (!tcp->tcp_cwr) { 14099 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 14100 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 14101 tcp->tcp_cwnd = npkt * mss; 14102 /* 14103 * If the cwnd is 0, use the timer to clock out 14104 * new segments. This is required by the ECN spec. 14105 */ 14106 if (npkt == 0) { 14107 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14108 /* 14109 * This makes sure that when the ACK comes 14110 * back, we will increase tcp_cwnd by 1 MSS. 14111 */ 14112 tcp->tcp_cwnd_cnt = 0; 14113 } 14114 tcp->tcp_cwr = B_TRUE; 14115 /* 14116 * This marks the end of the current window of in 14117 * flight data. That is why we don't use 14118 * tcp_suna + tcp_swnd. Only data in flight can 14119 * provide ECN info. 14120 */ 14121 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14122 tcp->tcp_ecn_cwr_sent = B_FALSE; 14123 } 14124 } 14125 14126 mp1 = tcp->tcp_xmit_head; 14127 if (bytes_acked == 0) { 14128 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 14129 int dupack_cnt; 14130 14131 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 14132 /* 14133 * Fast retransmit. When we have seen exactly three 14134 * identical ACKs while we have unacked data 14135 * outstanding we take it as a hint that our peer 14136 * dropped something. 14137 * 14138 * If TCP is retransmitting, don't do fast retransmit. 14139 */ 14140 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 14141 ! tcp->tcp_rexmit) { 14142 /* Do Limited Transmit */ 14143 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 14144 tcps->tcps_dupack_fast_retransmit) { 14145 /* 14146 * RFC 3042 14147 * 14148 * What we need to do is temporarily 14149 * increase tcp_cwnd so that new 14150 * data can be sent if it is allowed 14151 * by the receive window (tcp_rwnd). 14152 * tcp_wput_data() will take care of 14153 * the rest. 14154 * 14155 * If the connection is SACK capable, 14156 * only do limited xmit when there 14157 * is SACK info. 14158 * 14159 * Note how tcp_cwnd is incremented. 14160 * The first dup ACK will increase 14161 * it by 1 MSS. The second dup ACK 14162 * will increase it by 2 MSS. This 14163 * means that only 1 new segment will 14164 * be sent for each dup ACK. 14165 */ 14166 if (tcp->tcp_unsent > 0 && 14167 (!tcp->tcp_snd_sack_ok || 14168 (tcp->tcp_snd_sack_ok && 14169 tcp->tcp_notsack_list != NULL))) { 14170 tcp->tcp_cwnd += mss << 14171 (tcp->tcp_dupack_cnt - 1); 14172 flags |= TH_LIMIT_XMIT; 14173 } 14174 } else if (dupack_cnt == 14175 tcps->tcps_dupack_fast_retransmit) { 14176 14177 /* 14178 * If we have reduced tcp_ssthresh 14179 * because of ECN, do not reduce it again 14180 * unless it is already one window of data 14181 * away. After one window of data, tcp_cwr 14182 * should then be cleared. Note that 14183 * for non ECN capable connection, tcp_cwr 14184 * should always be false. 14185 * 14186 * Adjust cwnd since the duplicate 14187 * ack indicates that a packet was 14188 * dropped (due to congestion.) 14189 */ 14190 if (!tcp->tcp_cwr) { 14191 npkt = ((tcp->tcp_snxt - 14192 tcp->tcp_suna) >> 1) / mss; 14193 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 14194 mss; 14195 tcp->tcp_cwnd = (npkt + 14196 tcp->tcp_dupack_cnt) * mss; 14197 } 14198 if (tcp->tcp_ecn_ok) { 14199 tcp->tcp_cwr = B_TRUE; 14200 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14201 tcp->tcp_ecn_cwr_sent = B_FALSE; 14202 } 14203 14204 /* 14205 * We do Hoe's algorithm. Refer to her 14206 * paper "Improving the Start-up Behavior 14207 * of a Congestion Control Scheme for TCP," 14208 * appeared in SIGCOMM'96. 14209 * 14210 * Save highest seq no we have sent so far. 14211 * Be careful about the invisible FIN byte. 14212 */ 14213 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 14214 (tcp->tcp_unsent == 0)) { 14215 tcp->tcp_rexmit_max = tcp->tcp_fss; 14216 } else { 14217 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14218 } 14219 14220 /* 14221 * Do not allow bursty traffic during. 14222 * fast recovery. Refer to Fall and Floyd's 14223 * paper "Simulation-based Comparisons of 14224 * Tahoe, Reno and SACK TCP" (in CCR?) 14225 * This is a best current practise. 14226 */ 14227 tcp->tcp_snd_burst = TCP_CWND_SS; 14228 14229 /* 14230 * For SACK: 14231 * Calculate tcp_pipe, which is the 14232 * estimated number of bytes in 14233 * network. 14234 * 14235 * tcp_fack is the highest sack'ed seq num 14236 * TCP has received. 14237 * 14238 * tcp_pipe is explained in the above quoted 14239 * Fall and Floyd's paper. tcp_fack is 14240 * explained in Mathis and Mahdavi's 14241 * "Forward Acknowledgment: Refining TCP 14242 * Congestion Control" in SIGCOMM '96. 14243 */ 14244 if (tcp->tcp_snd_sack_ok) { 14245 ASSERT(tcp->tcp_sack_info != NULL); 14246 if (tcp->tcp_notsack_list != NULL) { 14247 tcp->tcp_pipe = tcp->tcp_snxt - 14248 tcp->tcp_fack; 14249 tcp->tcp_sack_snxt = seg_ack; 14250 flags |= TH_NEED_SACK_REXMIT; 14251 } else { 14252 /* 14253 * Always initialize tcp_pipe 14254 * even though we don't have 14255 * any SACK info. If later 14256 * we get SACK info and 14257 * tcp_pipe is not initialized, 14258 * funny things will happen. 14259 */ 14260 tcp->tcp_pipe = 14261 tcp->tcp_cwnd_ssthresh; 14262 } 14263 } else { 14264 flags |= TH_REXMIT_NEEDED; 14265 } /* tcp_snd_sack_ok */ 14266 14267 } else { 14268 /* 14269 * Here we perform congestion 14270 * avoidance, but NOT slow start. 14271 * This is known as the Fast 14272 * Recovery Algorithm. 14273 */ 14274 if (tcp->tcp_snd_sack_ok && 14275 tcp->tcp_notsack_list != NULL) { 14276 flags |= TH_NEED_SACK_REXMIT; 14277 tcp->tcp_pipe -= mss; 14278 if (tcp->tcp_pipe < 0) 14279 tcp->tcp_pipe = 0; 14280 } else { 14281 /* 14282 * We know that one more packet has 14283 * left the pipe thus we can update 14284 * cwnd. 14285 */ 14286 cwnd = tcp->tcp_cwnd + mss; 14287 if (cwnd > tcp->tcp_cwnd_max) 14288 cwnd = tcp->tcp_cwnd_max; 14289 tcp->tcp_cwnd = cwnd; 14290 if (tcp->tcp_unsent > 0) 14291 flags |= TH_XMIT_NEEDED; 14292 } 14293 } 14294 } 14295 } else if (tcp->tcp_zero_win_probe) { 14296 /* 14297 * If the window has opened, need to arrange 14298 * to send additional data. 14299 */ 14300 if (new_swnd != 0) { 14301 /* tcp_suna != tcp_snxt */ 14302 /* Packet contains a window update */ 14303 BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate); 14304 tcp->tcp_zero_win_probe = 0; 14305 tcp->tcp_timer_backoff = 0; 14306 tcp->tcp_ms_we_have_waited = 0; 14307 14308 /* 14309 * Transmit starting with tcp_suna since 14310 * the one byte probe is not ack'ed. 14311 * If TCP has sent more than one identical 14312 * probe, tcp_rexmit will be set. That means 14313 * tcp_ss_rexmit() will send out the one 14314 * byte along with new data. Otherwise, 14315 * fake the retransmission. 14316 */ 14317 flags |= TH_XMIT_NEEDED; 14318 if (!tcp->tcp_rexmit) { 14319 tcp->tcp_rexmit = B_TRUE; 14320 tcp->tcp_dupack_cnt = 0; 14321 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 14322 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 14323 } 14324 } 14325 } 14326 goto swnd_update; 14327 } 14328 14329 /* 14330 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 14331 * If the ACK value acks something that we have not yet sent, it might 14332 * be an old duplicate segment. Send an ACK to re-synchronize the 14333 * other side. 14334 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 14335 * state is handled above, so we can always just drop the segment and 14336 * send an ACK here. 14337 * 14338 * Should we send ACKs in response to ACK only segments? 14339 */ 14340 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 14341 BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent); 14342 /* drop the received segment */ 14343 freemsg(mp); 14344 14345 /* 14346 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 14347 * greater than 0, check if the number of such 14348 * bogus ACks is greater than that count. If yes, 14349 * don't send back any ACK. This prevents TCP from 14350 * getting into an ACK storm if somehow an attacker 14351 * successfully spoofs an acceptable segment to our 14352 * peer. 14353 */ 14354 if (tcp_drop_ack_unsent_cnt > 0 && 14355 ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) { 14356 TCP_STAT(tcps, tcp_in_ack_unsent_drop); 14357 return; 14358 } 14359 mp = tcp_ack_mp(tcp); 14360 if (mp != NULL) { 14361 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 14362 BUMP_LOCAL(tcp->tcp_obsegs); 14363 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 14364 tcp_send_data(tcp, tcp->tcp_wq, mp); 14365 } 14366 return; 14367 } 14368 14369 /* 14370 * TCP gets a new ACK, update the notsack'ed list to delete those 14371 * blocks that are covered by this ACK. 14372 */ 14373 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 14374 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 14375 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 14376 } 14377 14378 /* 14379 * If we got an ACK after fast retransmit, check to see 14380 * if it is a partial ACK. If it is not and the congestion 14381 * window was inflated to account for the other side's 14382 * cached packets, retract it. If it is, do Hoe's algorithm. 14383 */ 14384 if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { 14385 ASSERT(tcp->tcp_rexmit == B_FALSE); 14386 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 14387 tcp->tcp_dupack_cnt = 0; 14388 /* 14389 * Restore the orig tcp_cwnd_ssthresh after 14390 * fast retransmit phase. 14391 */ 14392 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 14393 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 14394 } 14395 tcp->tcp_rexmit_max = seg_ack; 14396 tcp->tcp_cwnd_cnt = 0; 14397 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14398 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14399 14400 /* 14401 * Remove all notsack info to avoid confusion with 14402 * the next fast retrasnmit/recovery phase. 14403 */ 14404 if (tcp->tcp_snd_sack_ok && 14405 tcp->tcp_notsack_list != NULL) { 14406 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 14407 } 14408 } else { 14409 if (tcp->tcp_snd_sack_ok && 14410 tcp->tcp_notsack_list != NULL) { 14411 flags |= TH_NEED_SACK_REXMIT; 14412 tcp->tcp_pipe -= mss; 14413 if (tcp->tcp_pipe < 0) 14414 tcp->tcp_pipe = 0; 14415 } else { 14416 /* 14417 * Hoe's algorithm: 14418 * 14419 * Retransmit the unack'ed segment and 14420 * restart fast recovery. Note that we 14421 * need to scale back tcp_cwnd to the 14422 * original value when we started fast 14423 * recovery. This is to prevent overly 14424 * aggressive behaviour in sending new 14425 * segments. 14426 */ 14427 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 14428 tcps->tcps_dupack_fast_retransmit * mss; 14429 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 14430 flags |= TH_REXMIT_NEEDED; 14431 } 14432 } 14433 } else { 14434 tcp->tcp_dupack_cnt = 0; 14435 if (tcp->tcp_rexmit) { 14436 /* 14437 * TCP is retranmitting. If the ACK ack's all 14438 * outstanding data, update tcp_rexmit_max and 14439 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 14440 * to the correct value. 14441 * 14442 * Note that SEQ_LEQ() is used. This is to avoid 14443 * unnecessary fast retransmit caused by dup ACKs 14444 * received when TCP does slow start retransmission 14445 * after a time out. During this phase, TCP may 14446 * send out segments which are already received. 14447 * This causes dup ACKs to be sent back. 14448 */ 14449 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 14450 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 14451 tcp->tcp_rexmit_nxt = seg_ack; 14452 } 14453 if (seg_ack != tcp->tcp_rexmit_max) { 14454 flags |= TH_XMIT_NEEDED; 14455 } 14456 } else { 14457 tcp->tcp_rexmit = B_FALSE; 14458 tcp->tcp_xmit_zc_clean = B_FALSE; 14459 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14460 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14461 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14462 } 14463 tcp->tcp_ms_we_have_waited = 0; 14464 } 14465 } 14466 14467 BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs); 14468 UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked); 14469 tcp->tcp_suna = seg_ack; 14470 if (tcp->tcp_zero_win_probe != 0) { 14471 tcp->tcp_zero_win_probe = 0; 14472 tcp->tcp_timer_backoff = 0; 14473 } 14474 14475 /* 14476 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 14477 * Note that it cannot be the SYN being ack'ed. The code flow 14478 * will not reach here. 14479 */ 14480 if (mp1 == NULL) { 14481 goto fin_acked; 14482 } 14483 14484 /* 14485 * Update the congestion window. 14486 * 14487 * If TCP is not ECN capable or TCP is ECN capable but the 14488 * congestion experience bit is not set, increase the tcp_cwnd as 14489 * usual. 14490 */ 14491 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 14492 cwnd = tcp->tcp_cwnd; 14493 add = mss; 14494 14495 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 14496 /* 14497 * This is to prevent an increase of less than 1 MSS of 14498 * tcp_cwnd. With partial increase, tcp_wput_data() 14499 * may send out tinygrams in order to preserve mblk 14500 * boundaries. 14501 * 14502 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 14503 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 14504 * increased by 1 MSS for every RTTs. 14505 */ 14506 if (tcp->tcp_cwnd_cnt <= 0) { 14507 tcp->tcp_cwnd_cnt = cwnd + add; 14508 } else { 14509 tcp->tcp_cwnd_cnt -= add; 14510 add = 0; 14511 } 14512 } 14513 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 14514 } 14515 14516 /* See if the latest urgent data has been acknowledged */ 14517 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 14518 SEQ_GT(seg_ack, tcp->tcp_urg)) 14519 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 14520 14521 /* Can we update the RTT estimates? */ 14522 if (tcp->tcp_snd_ts_ok) { 14523 /* Ignore zero timestamp echo-reply. */ 14524 if (tcpopt.tcp_opt_ts_ecr != 0) { 14525 tcp_set_rto(tcp, (int32_t)lbolt - 14526 (int32_t)tcpopt.tcp_opt_ts_ecr); 14527 } 14528 14529 /* If needed, restart the timer. */ 14530 if (tcp->tcp_set_timer == 1) { 14531 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14532 tcp->tcp_set_timer = 0; 14533 } 14534 /* 14535 * Update tcp_csuna in case the other side stops sending 14536 * us timestamps. 14537 */ 14538 tcp->tcp_csuna = tcp->tcp_snxt; 14539 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 14540 /* 14541 * An ACK sequence we haven't seen before, so get the RTT 14542 * and update the RTO. But first check if the timestamp is 14543 * valid to use. 14544 */ 14545 if ((mp1->b_next != NULL) && 14546 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 14547 tcp_set_rto(tcp, (int32_t)lbolt - 14548 (int32_t)(intptr_t)mp1->b_prev); 14549 else 14550 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14551 14552 /* Remeber the last sequence to be ACKed */ 14553 tcp->tcp_csuna = seg_ack; 14554 if (tcp->tcp_set_timer == 1) { 14555 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14556 tcp->tcp_set_timer = 0; 14557 } 14558 } else { 14559 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14560 } 14561 14562 /* Eat acknowledged bytes off the xmit queue. */ 14563 for (;;) { 14564 mblk_t *mp2; 14565 uchar_t *wptr; 14566 14567 wptr = mp1->b_wptr; 14568 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 14569 bytes_acked -= (int)(wptr - mp1->b_rptr); 14570 if (bytes_acked < 0) { 14571 mp1->b_rptr = wptr + bytes_acked; 14572 /* 14573 * Set a new timestamp if all the bytes timed by the 14574 * old timestamp have been ack'ed. 14575 */ 14576 if (SEQ_GT(seg_ack, 14577 (uint32_t)(uintptr_t)(mp1->b_next))) { 14578 mp1->b_prev = (mblk_t *)(uintptr_t)lbolt; 14579 mp1->b_next = NULL; 14580 } 14581 break; 14582 } 14583 mp1->b_next = NULL; 14584 mp1->b_prev = NULL; 14585 mp2 = mp1; 14586 mp1 = mp1->b_cont; 14587 14588 /* 14589 * This notification is required for some zero-copy 14590 * clients to maintain a copy semantic. After the data 14591 * is ack'ed, client is safe to modify or reuse the buffer. 14592 */ 14593 if (tcp->tcp_snd_zcopy_aware && 14594 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 14595 tcp_zcopy_notify(tcp); 14596 freeb(mp2); 14597 if (bytes_acked == 0) { 14598 if (mp1 == NULL) { 14599 /* Everything is ack'ed, clear the tail. */ 14600 tcp->tcp_xmit_tail = NULL; 14601 /* 14602 * Cancel the timer unless we are still 14603 * waiting for an ACK for the FIN packet. 14604 */ 14605 if (tcp->tcp_timer_tid != 0 && 14606 tcp->tcp_snxt == tcp->tcp_suna) { 14607 (void) TCP_TIMER_CANCEL(tcp, 14608 tcp->tcp_timer_tid); 14609 tcp->tcp_timer_tid = 0; 14610 } 14611 goto pre_swnd_update; 14612 } 14613 if (mp2 != tcp->tcp_xmit_tail) 14614 break; 14615 tcp->tcp_xmit_tail = mp1; 14616 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 14617 (uintptr_t)INT_MAX); 14618 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 14619 mp1->b_rptr); 14620 break; 14621 } 14622 if (mp1 == NULL) { 14623 /* 14624 * More was acked but there is nothing more 14625 * outstanding. This means that the FIN was 14626 * just acked or that we're talking to a clown. 14627 */ 14628 fin_acked: 14629 ASSERT(tcp->tcp_fin_sent); 14630 tcp->tcp_xmit_tail = NULL; 14631 if (tcp->tcp_fin_sent) { 14632 /* FIN was acked - making progress */ 14633 if (tcp->tcp_ipversion == IPV6_VERSION && 14634 !tcp->tcp_fin_acked) 14635 tcp->tcp_ip_forward_progress = B_TRUE; 14636 tcp->tcp_fin_acked = B_TRUE; 14637 if (tcp->tcp_linger_tid != 0 && 14638 TCP_TIMER_CANCEL(tcp, 14639 tcp->tcp_linger_tid) >= 0) { 14640 tcp_stop_lingering(tcp); 14641 freemsg(mp); 14642 mp = NULL; 14643 } 14644 } else { 14645 /* 14646 * We should never get here because 14647 * we have already checked that the 14648 * number of bytes ack'ed should be 14649 * smaller than or equal to what we 14650 * have sent so far (it is the 14651 * acceptability check of the ACK). 14652 * We can only get here if the send 14653 * queue is corrupted. 14654 * 14655 * Terminate the connection and 14656 * panic the system. It is better 14657 * for us to panic instead of 14658 * continuing to avoid other disaster. 14659 */ 14660 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 14661 tcp->tcp_rnxt, TH_RST|TH_ACK); 14662 panic("Memory corruption " 14663 "detected for connection %s.", 14664 tcp_display(tcp, NULL, 14665 DISP_ADDR_AND_PORT)); 14666 /*NOTREACHED*/ 14667 } 14668 goto pre_swnd_update; 14669 } 14670 ASSERT(mp2 != tcp->tcp_xmit_tail); 14671 } 14672 if (tcp->tcp_unsent) { 14673 flags |= TH_XMIT_NEEDED; 14674 } 14675 pre_swnd_update: 14676 tcp->tcp_xmit_head = mp1; 14677 swnd_update: 14678 /* 14679 * The following check is different from most other implementations. 14680 * For bi-directional transfer, when segments are dropped, the 14681 * "normal" check will not accept a window update in those 14682 * retransmitted segemnts. Failing to do that, TCP may send out 14683 * segments which are outside receiver's window. As TCP accepts 14684 * the ack in those retransmitted segments, if the window update in 14685 * the same segment is not accepted, TCP will incorrectly calculates 14686 * that it can send more segments. This can create a deadlock 14687 * with the receiver if its window becomes zero. 14688 */ 14689 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 14690 SEQ_LT(tcp->tcp_swl1, seg_seq) || 14691 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 14692 /* 14693 * The criteria for update is: 14694 * 14695 * 1. the segment acknowledges some data. Or 14696 * 2. the segment is new, i.e. it has a higher seq num. Or 14697 * 3. the segment is not old and the advertised window is 14698 * larger than the previous advertised window. 14699 */ 14700 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 14701 flags |= TH_XMIT_NEEDED; 14702 tcp->tcp_swnd = new_swnd; 14703 if (new_swnd > tcp->tcp_max_swnd) 14704 tcp->tcp_max_swnd = new_swnd; 14705 tcp->tcp_swl1 = seg_seq; 14706 tcp->tcp_swl2 = seg_ack; 14707 } 14708 est: 14709 if (tcp->tcp_state > TCPS_ESTABLISHED) { 14710 14711 switch (tcp->tcp_state) { 14712 case TCPS_FIN_WAIT_1: 14713 if (tcp->tcp_fin_acked) { 14714 tcp->tcp_state = TCPS_FIN_WAIT_2; 14715 /* 14716 * We implement the non-standard BSD/SunOS 14717 * FIN_WAIT_2 flushing algorithm. 14718 * If there is no user attached to this 14719 * TCP endpoint, then this TCP struct 14720 * could hang around forever in FIN_WAIT_2 14721 * state if the peer forgets to send us 14722 * a FIN. To prevent this, we wait only 14723 * 2*MSL (a convenient time value) for 14724 * the FIN to arrive. If it doesn't show up, 14725 * we flush the TCP endpoint. This algorithm, 14726 * though a violation of RFC-793, has worked 14727 * for over 10 years in BSD systems. 14728 * Note: SunOS 4.x waits 675 seconds before 14729 * flushing the FIN_WAIT_2 connection. 14730 */ 14731 TCP_TIMER_RESTART(tcp, 14732 tcps->tcps_fin_wait_2_flush_interval); 14733 } 14734 break; 14735 case TCPS_FIN_WAIT_2: 14736 break; /* Shutdown hook? */ 14737 case TCPS_LAST_ACK: 14738 freemsg(mp); 14739 if (tcp->tcp_fin_acked) { 14740 (void) tcp_clean_death(tcp, 0, 19); 14741 return; 14742 } 14743 goto xmit_check; 14744 case TCPS_CLOSING: 14745 if (tcp->tcp_fin_acked) { 14746 tcp->tcp_state = TCPS_TIME_WAIT; 14747 /* 14748 * Unconditionally clear the exclusive binding 14749 * bit so this TIME-WAIT connection won't 14750 * interfere with new ones. 14751 */ 14752 tcp->tcp_exclbind = 0; 14753 if (!TCP_IS_DETACHED(tcp)) { 14754 TCP_TIMER_RESTART(tcp, 14755 tcps->tcps_time_wait_interval); 14756 } else { 14757 tcp_time_wait_append(tcp); 14758 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 14759 } 14760 } 14761 /*FALLTHRU*/ 14762 case TCPS_CLOSE_WAIT: 14763 freemsg(mp); 14764 goto xmit_check; 14765 default: 14766 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 14767 break; 14768 } 14769 } 14770 if (flags & TH_FIN) { 14771 /* Make sure we ack the fin */ 14772 flags |= TH_ACK_NEEDED; 14773 if (!tcp->tcp_fin_rcvd) { 14774 tcp->tcp_fin_rcvd = B_TRUE; 14775 tcp->tcp_rnxt++; 14776 tcph = tcp->tcp_tcph; 14777 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14778 14779 /* 14780 * Generate the ordrel_ind at the end unless we 14781 * are an eager guy. 14782 * In the eager case tcp_rsrv will do this when run 14783 * after tcp_accept is done. 14784 */ 14785 if (tcp->tcp_listener == NULL && 14786 !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding)) 14787 flags |= TH_ORDREL_NEEDED; 14788 switch (tcp->tcp_state) { 14789 case TCPS_SYN_RCVD: 14790 case TCPS_ESTABLISHED: 14791 tcp->tcp_state = TCPS_CLOSE_WAIT; 14792 /* Keepalive? */ 14793 break; 14794 case TCPS_FIN_WAIT_1: 14795 if (!tcp->tcp_fin_acked) { 14796 tcp->tcp_state = TCPS_CLOSING; 14797 break; 14798 } 14799 /* FALLTHRU */ 14800 case TCPS_FIN_WAIT_2: 14801 tcp->tcp_state = TCPS_TIME_WAIT; 14802 /* 14803 * Unconditionally clear the exclusive binding 14804 * bit so this TIME-WAIT connection won't 14805 * interfere with new ones. 14806 */ 14807 tcp->tcp_exclbind = 0; 14808 if (!TCP_IS_DETACHED(tcp)) { 14809 TCP_TIMER_RESTART(tcp, 14810 tcps->tcps_time_wait_interval); 14811 } else { 14812 tcp_time_wait_append(tcp); 14813 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 14814 } 14815 if (seg_len) { 14816 /* 14817 * implies data piggybacked on FIN. 14818 * break to handle data. 14819 */ 14820 break; 14821 } 14822 freemsg(mp); 14823 goto ack_check; 14824 } 14825 } 14826 } 14827 if (mp == NULL) 14828 goto xmit_check; 14829 if (seg_len == 0) { 14830 freemsg(mp); 14831 goto xmit_check; 14832 } 14833 if (mp->b_rptr == mp->b_wptr) { 14834 /* 14835 * The header has been consumed, so we remove the 14836 * zero-length mblk here. 14837 */ 14838 mp1 = mp; 14839 mp = mp->b_cont; 14840 freeb(mp1); 14841 } 14842 tcph = tcp->tcp_tcph; 14843 tcp->tcp_rack_cnt++; 14844 { 14845 uint32_t cur_max; 14846 14847 cur_max = tcp->tcp_rack_cur_max; 14848 if (tcp->tcp_rack_cnt >= cur_max) { 14849 /* 14850 * We have more unacked data than we should - send 14851 * an ACK now. 14852 */ 14853 flags |= TH_ACK_NEEDED; 14854 cur_max++; 14855 if (cur_max > tcp->tcp_rack_abs_max) 14856 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 14857 else 14858 tcp->tcp_rack_cur_max = cur_max; 14859 } else if (TCP_IS_DETACHED(tcp)) { 14860 /* We don't have an ACK timer for detached TCP. */ 14861 flags |= TH_ACK_NEEDED; 14862 } else if (seg_len < mss) { 14863 /* 14864 * If we get a segment that is less than an mss, and we 14865 * already have unacknowledged data, and the amount 14866 * unacknowledged is not a multiple of mss, then we 14867 * better generate an ACK now. Otherwise, this may be 14868 * the tail piece of a transaction, and we would rather 14869 * wait for the response. 14870 */ 14871 uint32_t udif; 14872 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 14873 (uintptr_t)INT_MAX); 14874 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 14875 if (udif && (udif % mss)) 14876 flags |= TH_ACK_NEEDED; 14877 else 14878 flags |= TH_ACK_TIMER_NEEDED; 14879 } else { 14880 /* Start delayed ack timer */ 14881 flags |= TH_ACK_TIMER_NEEDED; 14882 } 14883 } 14884 tcp->tcp_rnxt += seg_len; 14885 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14886 14887 /* Update SACK list */ 14888 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 14889 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 14890 &(tcp->tcp_num_sack_blk)); 14891 } 14892 14893 if (tcp->tcp_urp_mp) { 14894 tcp->tcp_urp_mp->b_cont = mp; 14895 mp = tcp->tcp_urp_mp; 14896 tcp->tcp_urp_mp = NULL; 14897 /* Ready for a new signal. */ 14898 tcp->tcp_urp_last_valid = B_FALSE; 14899 #ifdef DEBUG 14900 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14901 "tcp_rput: sending exdata_ind %s", 14902 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14903 #endif /* DEBUG */ 14904 } 14905 14906 /* 14907 * Check for ancillary data changes compared to last segment. 14908 */ 14909 if (tcp->tcp_ipv6_recvancillary != 0) { 14910 mp = tcp_rput_add_ancillary(tcp, mp, &ipp); 14911 if (mp == NULL) 14912 return; 14913 } 14914 14915 if (tcp->tcp_listener || tcp->tcp_hard_binding) { 14916 /* 14917 * Side queue inbound data until the accept happens. 14918 * tcp_accept/tcp_rput drains this when the accept happens. 14919 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 14920 * T_EXDATA_IND) it is queued on b_next. 14921 * XXX Make urgent data use this. Requires: 14922 * Removing tcp_listener check for TH_URG 14923 * Making M_PCPROTO and MARK messages skip the eager case 14924 */ 14925 14926 if (tcp->tcp_kssl_pending) { 14927 tcp_kssl_input(tcp, mp); 14928 } else { 14929 tcp_rcv_enqueue(tcp, mp, seg_len); 14930 } 14931 } else { 14932 if (mp->b_datap->db_type != M_DATA || 14933 (flags & TH_MARKNEXT_NEEDED)) { 14934 if (tcp->tcp_rcv_list != NULL) { 14935 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14936 } 14937 ASSERT(tcp->tcp_rcv_list == NULL || 14938 tcp->tcp_fused_sigurg); 14939 if (flags & TH_MARKNEXT_NEEDED) { 14940 #ifdef DEBUG 14941 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14942 "tcp_rput: sending MSGMARKNEXT %s", 14943 tcp_display(tcp, NULL, 14944 DISP_PORT_ONLY)); 14945 #endif /* DEBUG */ 14946 mp->b_flag |= MSGMARKNEXT; 14947 flags &= ~TH_MARKNEXT_NEEDED; 14948 } 14949 14950 /* Does this need SSL processing first? */ 14951 if ((tcp->tcp_kssl_ctx != NULL) && 14952 (DB_TYPE(mp) == M_DATA)) { 14953 tcp_kssl_input(tcp, mp); 14954 } else { 14955 putnext(tcp->tcp_rq, mp); 14956 if (!canputnext(tcp->tcp_rq)) 14957 tcp->tcp_rwnd -= seg_len; 14958 } 14959 } else if ((flags & (TH_PUSH|TH_FIN)) || 14960 tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) { 14961 if (tcp->tcp_rcv_list != NULL) { 14962 /* 14963 * Enqueue the new segment first and then 14964 * call tcp_rcv_drain() to send all data 14965 * up. The other way to do this is to 14966 * send all queued data up and then call 14967 * putnext() to send the new segment up. 14968 * This way can remove the else part later 14969 * on. 14970 * 14971 * We don't this to avoid one more call to 14972 * canputnext() as tcp_rcv_drain() needs to 14973 * call canputnext(). 14974 */ 14975 tcp_rcv_enqueue(tcp, mp, seg_len); 14976 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14977 } else { 14978 /* Does this need SSL processing first? */ 14979 if ((tcp->tcp_kssl_ctx != NULL) && 14980 (DB_TYPE(mp) == M_DATA)) { 14981 tcp_kssl_input(tcp, mp); 14982 } else { 14983 putnext(tcp->tcp_rq, mp); 14984 if (!canputnext(tcp->tcp_rq)) 14985 tcp->tcp_rwnd -= seg_len; 14986 } 14987 } 14988 } else { 14989 /* 14990 * Enqueue all packets when processing an mblk 14991 * from the co queue and also enqueue normal packets. 14992 * For packets which belong to SSL stream do SSL 14993 * processing first. 14994 */ 14995 if ((tcp->tcp_kssl_ctx != NULL) && 14996 (DB_TYPE(mp) == M_DATA)) { 14997 tcp_kssl_input(tcp, mp); 14998 } else { 14999 tcp_rcv_enqueue(tcp, mp, seg_len); 15000 } 15001 } 15002 /* 15003 * Make sure the timer is running if we have data waiting 15004 * for a push bit. This provides resiliency against 15005 * implementations that do not correctly generate push bits. 15006 */ 15007 if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) { 15008 /* 15009 * The connection may be closed at this point, so don't 15010 * do anything for a detached tcp. 15011 */ 15012 if (!TCP_IS_DETACHED(tcp)) 15013 tcp->tcp_push_tid = TCP_TIMER(tcp, 15014 tcp_push_timer, 15015 MSEC_TO_TICK(tcps->tcps_push_timer_interval)); 15016 } 15017 } 15018 xmit_check: 15019 /* Is there anything left to do? */ 15020 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15021 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 15022 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 15023 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15024 goto done; 15025 15026 /* Any transmit work to do and a non-zero window? */ 15027 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 15028 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 15029 if (flags & TH_REXMIT_NEEDED) { 15030 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 15031 15032 BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans); 15033 if (snd_size > mss) 15034 snd_size = mss; 15035 if (snd_size > tcp->tcp_swnd) 15036 snd_size = tcp->tcp_swnd; 15037 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 15038 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 15039 B_TRUE); 15040 15041 if (mp1 != NULL) { 15042 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15043 tcp->tcp_csuna = tcp->tcp_snxt; 15044 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 15045 UPDATE_MIB(&tcps->tcps_mib, 15046 tcpRetransBytes, snd_size); 15047 TCP_RECORD_TRACE(tcp, mp1, 15048 TCP_TRACE_SEND_PKT); 15049 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15050 } 15051 } 15052 if (flags & TH_NEED_SACK_REXMIT) { 15053 tcp_sack_rxmit(tcp, &flags); 15054 } 15055 /* 15056 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 15057 * out new segment. Note that tcp_rexmit should not be 15058 * set, otherwise TH_LIMIT_XMIT should not be set. 15059 */ 15060 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 15061 if (!tcp->tcp_rexmit) { 15062 tcp_wput_data(tcp, NULL, B_FALSE); 15063 } else { 15064 tcp_ss_rexmit(tcp); 15065 } 15066 } 15067 /* 15068 * Adjust tcp_cwnd back to normal value after sending 15069 * new data segments. 15070 */ 15071 if (flags & TH_LIMIT_XMIT) { 15072 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 15073 /* 15074 * This will restart the timer. Restarting the 15075 * timer is used to avoid a timeout before the 15076 * limited transmitted segment's ACK gets back. 15077 */ 15078 if (tcp->tcp_xmit_head != NULL) 15079 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15080 } 15081 15082 /* Anything more to do? */ 15083 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 15084 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15085 goto done; 15086 } 15087 ack_check: 15088 if (flags & TH_SEND_URP_MARK) { 15089 ASSERT(tcp->tcp_urp_mark_mp); 15090 /* 15091 * Send up any queued data and then send the mark message 15092 */ 15093 if (tcp->tcp_rcv_list != NULL) { 15094 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15095 } 15096 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15097 15098 mp1 = tcp->tcp_urp_mark_mp; 15099 tcp->tcp_urp_mark_mp = NULL; 15100 #ifdef DEBUG 15101 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15102 "tcp_rput: sending zero-length %s %s", 15103 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 15104 "MSGNOTMARKNEXT"), 15105 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 15106 #endif /* DEBUG */ 15107 putnext(tcp->tcp_rq, mp1); 15108 flags &= ~TH_SEND_URP_MARK; 15109 } 15110 if (flags & TH_ACK_NEEDED) { 15111 /* 15112 * Time to send an ack for some reason. 15113 */ 15114 mp1 = tcp_ack_mp(tcp); 15115 15116 if (mp1 != NULL) { 15117 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 15118 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15119 BUMP_LOCAL(tcp->tcp_obsegs); 15120 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 15121 } 15122 if (tcp->tcp_ack_tid != 0) { 15123 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 15124 tcp->tcp_ack_tid = 0; 15125 } 15126 } 15127 if (flags & TH_ACK_TIMER_NEEDED) { 15128 /* 15129 * Arrange for deferred ACK or push wait timeout. 15130 * Start timer if it is not already running. 15131 */ 15132 if (tcp->tcp_ack_tid == 0) { 15133 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 15134 MSEC_TO_TICK(tcp->tcp_localnet ? 15135 (clock_t)tcps->tcps_local_dack_interval : 15136 (clock_t)tcps->tcps_deferred_ack_interval)); 15137 } 15138 } 15139 if (flags & TH_ORDREL_NEEDED) { 15140 /* 15141 * Send up the ordrel_ind unless we are an eager guy. 15142 * In the eager case tcp_rsrv will do this when run 15143 * after tcp_accept is done. 15144 */ 15145 ASSERT(tcp->tcp_listener == NULL); 15146 if (tcp->tcp_rcv_list != NULL) { 15147 /* 15148 * Push any mblk(s) enqueued from co processing. 15149 */ 15150 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15151 } 15152 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15153 if ((mp1 = mi_tpi_ordrel_ind()) != NULL) { 15154 tcp->tcp_ordrel_done = B_TRUE; 15155 putnext(tcp->tcp_rq, mp1); 15156 if (tcp->tcp_deferred_clean_death) { 15157 /* 15158 * tcp_clean_death was deferred 15159 * for T_ORDREL_IND - do it now 15160 */ 15161 (void) tcp_clean_death(tcp, 15162 tcp->tcp_client_errno, 20); 15163 tcp->tcp_deferred_clean_death = B_FALSE; 15164 } 15165 } else { 15166 /* 15167 * Run the orderly release in the 15168 * service routine. 15169 */ 15170 qenable(tcp->tcp_rq); 15171 /* 15172 * Caveat(XXX): The machine may be so 15173 * overloaded that tcp_rsrv() is not scheduled 15174 * until after the endpoint has transitioned 15175 * to TCPS_TIME_WAIT 15176 * and tcp_time_wait_interval expires. Then 15177 * tcp_timer() will blow away state in tcp_t 15178 * and T_ORDREL_IND will never be delivered 15179 * upstream. Unlikely but potentially 15180 * a problem. 15181 */ 15182 } 15183 } 15184 done: 15185 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15186 } 15187 15188 /* 15189 * This function does PAWS protection check. Returns B_TRUE if the 15190 * segment passes the PAWS test, else returns B_FALSE. 15191 */ 15192 boolean_t 15193 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp) 15194 { 15195 uint8_t flags; 15196 int options; 15197 uint8_t *up; 15198 15199 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 15200 /* 15201 * If timestamp option is aligned nicely, get values inline, 15202 * otherwise call general routine to parse. Only do that 15203 * if timestamp is the only option. 15204 */ 15205 if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH + 15206 TCPOPT_REAL_TS_LEN && 15207 OK_32PTR((up = ((uint8_t *)tcph) + 15208 TCP_MIN_HEADER_LENGTH)) && 15209 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 15210 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 15211 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 15212 15213 options = TCP_OPT_TSTAMP_PRESENT; 15214 } else { 15215 if (tcp->tcp_snd_sack_ok) { 15216 tcpoptp->tcp = tcp; 15217 } else { 15218 tcpoptp->tcp = NULL; 15219 } 15220 options = tcp_parse_options(tcph, tcpoptp); 15221 } 15222 15223 if (options & TCP_OPT_TSTAMP_PRESENT) { 15224 /* 15225 * Do PAWS per RFC 1323 section 4.2. Accept RST 15226 * regardless of the timestamp, page 18 RFC 1323.bis. 15227 */ 15228 if ((flags & TH_RST) == 0 && 15229 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 15230 tcp->tcp_ts_recent)) { 15231 if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt + 15232 PAWS_TIMEOUT)) { 15233 /* This segment is not acceptable. */ 15234 return (B_FALSE); 15235 } else { 15236 /* 15237 * Connection has been idle for 15238 * too long. Reset the timestamp 15239 * and assume the segment is valid. 15240 */ 15241 tcp->tcp_ts_recent = 15242 tcpoptp->tcp_opt_ts_val; 15243 } 15244 } 15245 } else { 15246 /* 15247 * If we don't get a timestamp on every packet, we 15248 * figure we can't really trust 'em, so we stop sending 15249 * and parsing them. 15250 */ 15251 tcp->tcp_snd_ts_ok = B_FALSE; 15252 15253 tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15254 tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15255 tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4); 15256 /* 15257 * Adjust the tcp_mss accordingly. We also need to 15258 * adjust tcp_cwnd here in accordance with the new mss. 15259 * But we avoid doing a slow start here so as to not 15260 * to lose on the transfer rate built up so far. 15261 */ 15262 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE); 15263 if (tcp->tcp_snd_sack_ok) { 15264 ASSERT(tcp->tcp_sack_info != NULL); 15265 tcp->tcp_max_sack_blk = 4; 15266 } 15267 } 15268 return (B_TRUE); 15269 } 15270 15271 /* 15272 * Attach ancillary data to a received TCP segments for the 15273 * ancillary pieces requested by the application that are 15274 * different than they were in the previous data segment. 15275 * 15276 * Save the "current" values once memory allocation is ok so that 15277 * when memory allocation fails we can just wait for the next data segment. 15278 */ 15279 static mblk_t * 15280 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp) 15281 { 15282 struct T_optdata_ind *todi; 15283 int optlen; 15284 uchar_t *optptr; 15285 struct T_opthdr *toh; 15286 uint_t addflag; /* Which pieces to add */ 15287 mblk_t *mp1; 15288 15289 optlen = 0; 15290 addflag = 0; 15291 /* If app asked for pktinfo and the index has changed ... */ 15292 if ((ipp->ipp_fields & IPPF_IFINDEX) && 15293 ipp->ipp_ifindex != tcp->tcp_recvifindex && 15294 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) { 15295 optlen += sizeof (struct T_opthdr) + 15296 sizeof (struct in6_pktinfo); 15297 addflag |= TCP_IPV6_RECVPKTINFO; 15298 } 15299 /* If app asked for hoplimit and it has changed ... */ 15300 if ((ipp->ipp_fields & IPPF_HOPLIMIT) && 15301 ipp->ipp_hoplimit != tcp->tcp_recvhops && 15302 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) { 15303 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15304 addflag |= TCP_IPV6_RECVHOPLIMIT; 15305 } 15306 /* If app asked for tclass and it has changed ... */ 15307 if ((ipp->ipp_fields & IPPF_TCLASS) && 15308 ipp->ipp_tclass != tcp->tcp_recvtclass && 15309 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) { 15310 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15311 addflag |= TCP_IPV6_RECVTCLASS; 15312 } 15313 /* 15314 * If app asked for hopbyhop headers and it has changed ... 15315 * For security labels, note that (1) security labels can't change on 15316 * a connected socket at all, (2) we're connected to at most one peer, 15317 * (3) if anything changes, then it must be some other extra option. 15318 */ 15319 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) && 15320 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 15321 (ipp->ipp_fields & IPPF_HOPOPTS), 15322 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 15323 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen - 15324 tcp->tcp_label_len; 15325 addflag |= TCP_IPV6_RECVHOPOPTS; 15326 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 15327 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 15328 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 15329 return (mp); 15330 } 15331 /* If app asked for dst headers before routing headers ... */ 15332 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) && 15333 ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen, 15334 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15335 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) { 15336 optlen += sizeof (struct T_opthdr) + 15337 ipp->ipp_rtdstoptslen; 15338 addflag |= TCP_IPV6_RECVRTDSTOPTS; 15339 if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts, 15340 &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS), 15341 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) 15342 return (mp); 15343 } 15344 /* If app asked for routing headers and it has changed ... */ 15345 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) && 15346 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 15347 (ipp->ipp_fields & IPPF_RTHDR), 15348 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 15349 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 15350 addflag |= TCP_IPV6_RECVRTHDR; 15351 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 15352 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 15353 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 15354 return (mp); 15355 } 15356 /* If app asked for dest headers and it has changed ... */ 15357 if ((tcp->tcp_ipv6_recvancillary & 15358 (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) && 15359 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 15360 (ipp->ipp_fields & IPPF_DSTOPTS), 15361 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 15362 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 15363 addflag |= TCP_IPV6_RECVDSTOPTS; 15364 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 15365 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 15366 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 15367 return (mp); 15368 } 15369 15370 if (optlen == 0) { 15371 /* Nothing to add */ 15372 return (mp); 15373 } 15374 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 15375 if (mp1 == NULL) { 15376 /* 15377 * Defer sending ancillary data until the next TCP segment 15378 * arrives. 15379 */ 15380 return (mp); 15381 } 15382 mp1->b_cont = mp; 15383 mp = mp1; 15384 mp->b_wptr += sizeof (*todi) + optlen; 15385 mp->b_datap->db_type = M_PROTO; 15386 todi = (struct T_optdata_ind *)mp->b_rptr; 15387 todi->PRIM_type = T_OPTDATA_IND; 15388 todi->DATA_flag = 1; /* MORE data */ 15389 todi->OPT_length = optlen; 15390 todi->OPT_offset = sizeof (*todi); 15391 optptr = (uchar_t *)&todi[1]; 15392 /* 15393 * If app asked for pktinfo and the index has changed ... 15394 * Note that the local address never changes for the connection. 15395 */ 15396 if (addflag & TCP_IPV6_RECVPKTINFO) { 15397 struct in6_pktinfo *pkti; 15398 15399 toh = (struct T_opthdr *)optptr; 15400 toh->level = IPPROTO_IPV6; 15401 toh->name = IPV6_PKTINFO; 15402 toh->len = sizeof (*toh) + sizeof (*pkti); 15403 toh->status = 0; 15404 optptr += sizeof (*toh); 15405 pkti = (struct in6_pktinfo *)optptr; 15406 if (tcp->tcp_ipversion == IPV6_VERSION) 15407 pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src; 15408 else 15409 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 15410 &pkti->ipi6_addr); 15411 pkti->ipi6_ifindex = ipp->ipp_ifindex; 15412 optptr += sizeof (*pkti); 15413 ASSERT(OK_32PTR(optptr)); 15414 /* Save as "last" value */ 15415 tcp->tcp_recvifindex = ipp->ipp_ifindex; 15416 } 15417 /* If app asked for hoplimit and it has changed ... */ 15418 if (addflag & TCP_IPV6_RECVHOPLIMIT) { 15419 toh = (struct T_opthdr *)optptr; 15420 toh->level = IPPROTO_IPV6; 15421 toh->name = IPV6_HOPLIMIT; 15422 toh->len = sizeof (*toh) + sizeof (uint_t); 15423 toh->status = 0; 15424 optptr += sizeof (*toh); 15425 *(uint_t *)optptr = ipp->ipp_hoplimit; 15426 optptr += sizeof (uint_t); 15427 ASSERT(OK_32PTR(optptr)); 15428 /* Save as "last" value */ 15429 tcp->tcp_recvhops = ipp->ipp_hoplimit; 15430 } 15431 /* If app asked for tclass and it has changed ... */ 15432 if (addflag & TCP_IPV6_RECVTCLASS) { 15433 toh = (struct T_opthdr *)optptr; 15434 toh->level = IPPROTO_IPV6; 15435 toh->name = IPV6_TCLASS; 15436 toh->len = sizeof (*toh) + sizeof (uint_t); 15437 toh->status = 0; 15438 optptr += sizeof (*toh); 15439 *(uint_t *)optptr = ipp->ipp_tclass; 15440 optptr += sizeof (uint_t); 15441 ASSERT(OK_32PTR(optptr)); 15442 /* Save as "last" value */ 15443 tcp->tcp_recvtclass = ipp->ipp_tclass; 15444 } 15445 if (addflag & TCP_IPV6_RECVHOPOPTS) { 15446 toh = (struct T_opthdr *)optptr; 15447 toh->level = IPPROTO_IPV6; 15448 toh->name = IPV6_HOPOPTS; 15449 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen - 15450 tcp->tcp_label_len; 15451 toh->status = 0; 15452 optptr += sizeof (*toh); 15453 bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr, 15454 ipp->ipp_hopoptslen - tcp->tcp_label_len); 15455 optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len; 15456 ASSERT(OK_32PTR(optptr)); 15457 /* Save as last value */ 15458 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 15459 (ipp->ipp_fields & IPPF_HOPOPTS), 15460 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 15461 } 15462 if (addflag & TCP_IPV6_RECVRTDSTOPTS) { 15463 toh = (struct T_opthdr *)optptr; 15464 toh->level = IPPROTO_IPV6; 15465 toh->name = IPV6_RTHDRDSTOPTS; 15466 toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen; 15467 toh->status = 0; 15468 optptr += sizeof (*toh); 15469 bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen); 15470 optptr += ipp->ipp_rtdstoptslen; 15471 ASSERT(OK_32PTR(optptr)); 15472 /* Save as last value */ 15473 ip_savebuf((void **)&tcp->tcp_rtdstopts, 15474 &tcp->tcp_rtdstoptslen, 15475 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15476 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 15477 } 15478 if (addflag & TCP_IPV6_RECVRTHDR) { 15479 toh = (struct T_opthdr *)optptr; 15480 toh->level = IPPROTO_IPV6; 15481 toh->name = IPV6_RTHDR; 15482 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 15483 toh->status = 0; 15484 optptr += sizeof (*toh); 15485 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 15486 optptr += ipp->ipp_rthdrlen; 15487 ASSERT(OK_32PTR(optptr)); 15488 /* Save as last value */ 15489 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 15490 (ipp->ipp_fields & IPPF_RTHDR), 15491 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 15492 } 15493 if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) { 15494 toh = (struct T_opthdr *)optptr; 15495 toh->level = IPPROTO_IPV6; 15496 toh->name = IPV6_DSTOPTS; 15497 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 15498 toh->status = 0; 15499 optptr += sizeof (*toh); 15500 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 15501 optptr += ipp->ipp_dstoptslen; 15502 ASSERT(OK_32PTR(optptr)); 15503 /* Save as last value */ 15504 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 15505 (ipp->ipp_fields & IPPF_DSTOPTS), 15506 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 15507 } 15508 ASSERT(optptr == mp->b_wptr); 15509 return (mp); 15510 } 15511 15512 15513 /* 15514 * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK 15515 * or a "bad" IRE detected by tcp_adapt_ire. 15516 * We can't tell if the failure was due to the laddr or the faddr 15517 * thus we clear out all addresses and ports. 15518 */ 15519 static void 15520 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error) 15521 { 15522 queue_t *q = tcp->tcp_rq; 15523 tcph_t *tcph; 15524 struct T_error_ack *tea; 15525 conn_t *connp = tcp->tcp_connp; 15526 15527 15528 ASSERT(mp->b_datap->db_type == M_PCPROTO); 15529 15530 if (mp->b_cont) { 15531 freemsg(mp->b_cont); 15532 mp->b_cont = NULL; 15533 } 15534 tea = (struct T_error_ack *)mp->b_rptr; 15535 switch (tea->PRIM_type) { 15536 case T_BIND_ACK: 15537 /* 15538 * Need to unbind with classifier since we were just told that 15539 * our bind succeeded. 15540 */ 15541 tcp->tcp_hard_bound = B_FALSE; 15542 tcp->tcp_hard_binding = B_FALSE; 15543 15544 ipcl_hash_remove(connp); 15545 /* Reuse the mblk if possible */ 15546 ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >= 15547 sizeof (*tea)); 15548 mp->b_rptr = mp->b_datap->db_base; 15549 mp->b_wptr = mp->b_rptr + sizeof (*tea); 15550 tea = (struct T_error_ack *)mp->b_rptr; 15551 tea->PRIM_type = T_ERROR_ACK; 15552 tea->TLI_error = TSYSERR; 15553 tea->UNIX_error = error; 15554 if (tcp->tcp_state >= TCPS_SYN_SENT) { 15555 tea->ERROR_prim = T_CONN_REQ; 15556 } else { 15557 tea->ERROR_prim = O_T_BIND_REQ; 15558 } 15559 break; 15560 15561 case T_ERROR_ACK: 15562 if (tcp->tcp_state >= TCPS_SYN_SENT) 15563 tea->ERROR_prim = T_CONN_REQ; 15564 break; 15565 default: 15566 panic("tcp_bind_failed: unexpected TPI type"); 15567 /*NOTREACHED*/ 15568 } 15569 15570 tcp->tcp_state = TCPS_IDLE; 15571 if (tcp->tcp_ipversion == IPV4_VERSION) 15572 tcp->tcp_ipha->ipha_src = 0; 15573 else 15574 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 15575 /* 15576 * Copy of the src addr. in tcp_t is needed since 15577 * the lookup funcs. can only look at tcp_t 15578 */ 15579 V6_SET_ZERO(tcp->tcp_ip_src_v6); 15580 15581 tcph = tcp->tcp_tcph; 15582 tcph->th_lport[0] = 0; 15583 tcph->th_lport[1] = 0; 15584 tcp_bind_hash_remove(tcp); 15585 bzero(&connp->u_port, sizeof (connp->u_port)); 15586 /* blow away saved option results if any */ 15587 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 15588 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 15589 15590 conn_delete_ire(tcp->tcp_connp, NULL); 15591 putnext(q, mp); 15592 } 15593 15594 /* 15595 * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA 15596 * messages. 15597 */ 15598 void 15599 tcp_rput_other(tcp_t *tcp, mblk_t *mp) 15600 { 15601 mblk_t *mp1; 15602 uchar_t *rptr = mp->b_rptr; 15603 queue_t *q = tcp->tcp_rq; 15604 struct T_error_ack *tea; 15605 uint32_t mss; 15606 mblk_t *syn_mp; 15607 mblk_t *mdti; 15608 mblk_t *lsoi; 15609 int retval; 15610 mblk_t *ire_mp; 15611 tcp_stack_t *tcps = tcp->tcp_tcps; 15612 15613 switch (mp->b_datap->db_type) { 15614 case M_PROTO: 15615 case M_PCPROTO: 15616 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 15617 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) 15618 break; 15619 tea = (struct T_error_ack *)rptr; 15620 switch (tea->PRIM_type) { 15621 case T_BIND_ACK: 15622 /* 15623 * Adapt Multidata information, if any. The 15624 * following tcp_mdt_update routine will free 15625 * the message. 15626 */ 15627 if ((mdti = tcp_mdt_info_mp(mp)) != NULL) { 15628 tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti-> 15629 b_rptr)->mdt_capab, B_TRUE); 15630 freemsg(mdti); 15631 } 15632 15633 /* 15634 * Check to update LSO information with tcp, and 15635 * tcp_lso_update routine will free the message. 15636 */ 15637 if ((lsoi = tcp_lso_info_mp(mp)) != NULL) { 15638 tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi-> 15639 b_rptr)->lso_capab); 15640 freemsg(lsoi); 15641 } 15642 15643 /* Get the IRE, if we had requested for it */ 15644 ire_mp = tcp_ire_mp(mp); 15645 15646 if (tcp->tcp_hard_binding) { 15647 tcp->tcp_hard_binding = B_FALSE; 15648 tcp->tcp_hard_bound = B_TRUE; 15649 CL_INET_CONNECT(tcp); 15650 } else { 15651 if (ire_mp != NULL) 15652 freeb(ire_mp); 15653 goto after_syn_sent; 15654 } 15655 15656 retval = tcp_adapt_ire(tcp, ire_mp); 15657 if (ire_mp != NULL) 15658 freeb(ire_mp); 15659 if (retval == 0) { 15660 tcp_bind_failed(tcp, mp, 15661 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15662 ENETUNREACH : EADDRNOTAVAIL)); 15663 return; 15664 } 15665 /* 15666 * Don't let an endpoint connect to itself. 15667 * Also checked in tcp_connect() but that 15668 * check can't handle the case when the 15669 * local IP address is INADDR_ANY. 15670 */ 15671 if (tcp->tcp_ipversion == IPV4_VERSION) { 15672 if ((tcp->tcp_ipha->ipha_dst == 15673 tcp->tcp_ipha->ipha_src) && 15674 (BE16_EQL(tcp->tcp_tcph->th_lport, 15675 tcp->tcp_tcph->th_fport))) { 15676 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 15677 return; 15678 } 15679 } else { 15680 if (IN6_ARE_ADDR_EQUAL( 15681 &tcp->tcp_ip6h->ip6_dst, 15682 &tcp->tcp_ip6h->ip6_src) && 15683 (BE16_EQL(tcp->tcp_tcph->th_lport, 15684 tcp->tcp_tcph->th_fport))) { 15685 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 15686 return; 15687 } 15688 } 15689 ASSERT(tcp->tcp_state == TCPS_SYN_SENT); 15690 /* 15691 * This should not be possible! Just for 15692 * defensive coding... 15693 */ 15694 if (tcp->tcp_state != TCPS_SYN_SENT) 15695 goto after_syn_sent; 15696 15697 if (is_system_labeled() && 15698 !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) { 15699 tcp_bind_failed(tcp, mp, EHOSTUNREACH); 15700 return; 15701 } 15702 15703 ASSERT(q == tcp->tcp_rq); 15704 /* 15705 * tcp_adapt_ire() does not adjust 15706 * for TCP/IP header length. 15707 */ 15708 mss = tcp->tcp_mss - tcp->tcp_hdr_len; 15709 15710 /* 15711 * Just make sure our rwnd is at 15712 * least tcp_recv_hiwat_mss * MSS 15713 * large, and round up to the nearest 15714 * MSS. 15715 * 15716 * We do the round up here because 15717 * we need to get the interface 15718 * MTU first before we can do the 15719 * round up. 15720 */ 15721 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 15722 tcps->tcps_recv_hiwat_minmss * mss); 15723 q->q_hiwat = tcp->tcp_rwnd; 15724 tcp_set_ws_value(tcp); 15725 U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws), 15726 tcp->tcp_tcph->th_win); 15727 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 15728 tcp->tcp_snd_ws_ok = B_TRUE; 15729 15730 /* 15731 * Set tcp_snd_ts_ok to true 15732 * so that tcp_xmit_mp will 15733 * include the timestamp 15734 * option in the SYN segment. 15735 */ 15736 if (tcps->tcps_tstamp_always || 15737 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 15738 tcp->tcp_snd_ts_ok = B_TRUE; 15739 } 15740 15741 /* 15742 * tcp_snd_sack_ok can be set in 15743 * tcp_adapt_ire() if the sack metric 15744 * is set. So check it here also. 15745 */ 15746 if (tcps->tcps_sack_permitted == 2 || 15747 tcp->tcp_snd_sack_ok) { 15748 if (tcp->tcp_sack_info == NULL) { 15749 tcp->tcp_sack_info = 15750 kmem_cache_alloc(tcp_sack_info_cache, 15751 KM_SLEEP); 15752 } 15753 tcp->tcp_snd_sack_ok = B_TRUE; 15754 } 15755 15756 /* 15757 * Should we use ECN? Note that the current 15758 * default value (SunOS 5.9) of tcp_ecn_permitted 15759 * is 1. The reason for doing this is that there 15760 * are equipments out there that will drop ECN 15761 * enabled IP packets. Setting it to 1 avoids 15762 * compatibility problems. 15763 */ 15764 if (tcps->tcps_ecn_permitted == 2) 15765 tcp->tcp_ecn_ok = B_TRUE; 15766 15767 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 15768 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 15769 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 15770 if (syn_mp) { 15771 cred_t *cr; 15772 pid_t pid; 15773 15774 /* 15775 * Obtain the credential from the 15776 * thread calling connect(); the credential 15777 * lives on in the second mblk which 15778 * originated from T_CONN_REQ and is echoed 15779 * with the T_BIND_ACK from ip. If none 15780 * can be found, default to the creator 15781 * of the socket. 15782 */ 15783 if (mp->b_cont == NULL || 15784 (cr = DB_CRED(mp->b_cont)) == NULL) { 15785 cr = tcp->tcp_cred; 15786 pid = tcp->tcp_cpid; 15787 } else { 15788 pid = DB_CPID(mp->b_cont); 15789 } 15790 15791 TCP_RECORD_TRACE(tcp, syn_mp, 15792 TCP_TRACE_SEND_PKT); 15793 mblk_setcred(syn_mp, cr); 15794 DB_CPID(syn_mp) = pid; 15795 tcp_send_data(tcp, tcp->tcp_wq, syn_mp); 15796 } 15797 after_syn_sent: 15798 /* 15799 * A trailer mblk indicates a waiting client upstream. 15800 * We complete here the processing begun in 15801 * either tcp_bind() or tcp_connect() by passing 15802 * upstream the reply message they supplied. 15803 */ 15804 mp1 = mp; 15805 mp = mp->b_cont; 15806 freeb(mp1); 15807 if (mp) 15808 break; 15809 return; 15810 case T_ERROR_ACK: 15811 if (tcp->tcp_debug) { 15812 (void) strlog(TCP_MOD_ID, 0, 1, 15813 SL_TRACE|SL_ERROR, 15814 "tcp_rput_other: case T_ERROR_ACK, " 15815 "ERROR_prim == %d", 15816 tea->ERROR_prim); 15817 } 15818 switch (tea->ERROR_prim) { 15819 case O_T_BIND_REQ: 15820 case T_BIND_REQ: 15821 tcp_bind_failed(tcp, mp, 15822 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15823 ENETUNREACH : EADDRNOTAVAIL)); 15824 return; 15825 case T_UNBIND_REQ: 15826 tcp->tcp_hard_binding = B_FALSE; 15827 tcp->tcp_hard_bound = B_FALSE; 15828 if (mp->b_cont) { 15829 freemsg(mp->b_cont); 15830 mp->b_cont = NULL; 15831 } 15832 if (tcp->tcp_unbind_pending) 15833 tcp->tcp_unbind_pending = 0; 15834 else { 15835 /* From tcp_ip_unbind() - free */ 15836 freemsg(mp); 15837 return; 15838 } 15839 break; 15840 case T_SVR4_OPTMGMT_REQ: 15841 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15842 /* T_OPTMGMT_REQ generated by TCP */ 15843 printf("T_SVR4_OPTMGMT_REQ failed " 15844 "%d/%d - dropped (cnt %d)\n", 15845 tea->TLI_error, tea->UNIX_error, 15846 tcp->tcp_drop_opt_ack_cnt); 15847 freemsg(mp); 15848 tcp->tcp_drop_opt_ack_cnt--; 15849 return; 15850 } 15851 break; 15852 } 15853 if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ && 15854 tcp->tcp_drop_opt_ack_cnt > 0) { 15855 printf("T_SVR4_OPTMGMT_REQ failed %d/%d " 15856 "- dropped (cnt %d)\n", 15857 tea->TLI_error, tea->UNIX_error, 15858 tcp->tcp_drop_opt_ack_cnt); 15859 freemsg(mp); 15860 tcp->tcp_drop_opt_ack_cnt--; 15861 return; 15862 } 15863 break; 15864 case T_OPTMGMT_ACK: 15865 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15866 /* T_OPTMGMT_REQ generated by TCP */ 15867 freemsg(mp); 15868 tcp->tcp_drop_opt_ack_cnt--; 15869 return; 15870 } 15871 break; 15872 default: 15873 break; 15874 } 15875 break; 15876 case M_FLUSH: 15877 if (*rptr & FLUSHR) 15878 flushq(q, FLUSHDATA); 15879 break; 15880 default: 15881 /* M_CTL will be directly sent to tcp_icmp_error() */ 15882 ASSERT(DB_TYPE(mp) != M_CTL); 15883 break; 15884 } 15885 /* 15886 * Make sure we set this bit before sending the ACK for 15887 * bind. Otherwise accept could possibly run and free 15888 * this tcp struct. 15889 */ 15890 putnext(q, mp); 15891 } 15892 15893 /* 15894 * Called as the result of a qbufcall or a qtimeout to remedy a failure 15895 * to allocate a T_ordrel_ind in tcp_rsrv(). qenable(q) will make 15896 * tcp_rsrv() try again. 15897 */ 15898 static void 15899 tcp_ordrel_kick(void *arg) 15900 { 15901 conn_t *connp = (conn_t *)arg; 15902 tcp_t *tcp = connp->conn_tcp; 15903 15904 tcp->tcp_ordrelid = 0; 15905 tcp->tcp_timeout = B_FALSE; 15906 if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL && 15907 tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 15908 qenable(tcp->tcp_rq); 15909 } 15910 } 15911 15912 /* ARGSUSED */ 15913 static void 15914 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2) 15915 { 15916 conn_t *connp = (conn_t *)arg; 15917 tcp_t *tcp = connp->conn_tcp; 15918 queue_t *q = tcp->tcp_rq; 15919 uint_t thwin; 15920 tcp_stack_t *tcps = tcp->tcp_tcps; 15921 15922 freeb(mp); 15923 15924 TCP_STAT(tcps, tcp_rsrv_calls); 15925 15926 if (TCP_IS_DETACHED(tcp) || q == NULL) { 15927 return; 15928 } 15929 15930 if (tcp->tcp_fused) { 15931 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15932 15933 ASSERT(tcp->tcp_fused); 15934 ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused); 15935 ASSERT(peer_tcp->tcp_loopback_peer == tcp); 15936 ASSERT(!TCP_IS_DETACHED(tcp)); 15937 ASSERT(tcp->tcp_connp->conn_sqp == 15938 peer_tcp->tcp_connp->conn_sqp); 15939 15940 /* 15941 * Normally we would not get backenabled in synchronous 15942 * streams mode, but in case this happens, we need to plug 15943 * synchronous streams during our drain to prevent a race 15944 * with tcp_fuse_rrw() or tcp_fuse_rinfop(). 15945 */ 15946 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 15947 if (tcp->tcp_rcv_list != NULL) 15948 (void) tcp_rcv_drain(tcp->tcp_rq, tcp); 15949 15950 if (peer_tcp > tcp) { 15951 mutex_enter(&peer_tcp->tcp_non_sq_lock); 15952 mutex_enter(&tcp->tcp_non_sq_lock); 15953 } else { 15954 mutex_enter(&tcp->tcp_non_sq_lock); 15955 mutex_enter(&peer_tcp->tcp_non_sq_lock); 15956 } 15957 15958 if (peer_tcp->tcp_flow_stopped && 15959 (TCP_UNSENT_BYTES(peer_tcp) <= 15960 peer_tcp->tcp_xmit_lowater)) { 15961 tcp_clrqfull(peer_tcp); 15962 } 15963 mutex_exit(&peer_tcp->tcp_non_sq_lock); 15964 mutex_exit(&tcp->tcp_non_sq_lock); 15965 15966 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 15967 TCP_STAT(tcps, tcp_fusion_backenabled); 15968 return; 15969 } 15970 15971 if (canputnext(q)) { 15972 tcp->tcp_rwnd = q->q_hiwat; 15973 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 15974 << tcp->tcp_rcv_ws; 15975 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 15976 /* 15977 * Send back a window update immediately if TCP is above 15978 * ESTABLISHED state and the increase of the rcv window 15979 * that the other side knows is at least 1 MSS after flow 15980 * control is lifted. 15981 */ 15982 if (tcp->tcp_state >= TCPS_ESTABLISHED && 15983 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 15984 tcp_xmit_ctl(NULL, tcp, 15985 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 15986 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 15987 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 15988 } 15989 } 15990 /* Handle a failure to allocate a T_ORDREL_IND here */ 15991 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 15992 ASSERT(tcp->tcp_listener == NULL); 15993 if (tcp->tcp_rcv_list != NULL) { 15994 (void) tcp_rcv_drain(q, tcp); 15995 } 15996 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15997 mp = mi_tpi_ordrel_ind(); 15998 if (mp) { 15999 tcp->tcp_ordrel_done = B_TRUE; 16000 putnext(q, mp); 16001 if (tcp->tcp_deferred_clean_death) { 16002 /* 16003 * tcp_clean_death was deferred for 16004 * T_ORDREL_IND - do it now 16005 */ 16006 tcp->tcp_deferred_clean_death = B_FALSE; 16007 (void) tcp_clean_death(tcp, 16008 tcp->tcp_client_errno, 22); 16009 } 16010 } else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 16011 /* 16012 * If there isn't already a timer running 16013 * start one. Use a 4 second 16014 * timer as a fallback since it can't fail. 16015 */ 16016 tcp->tcp_timeout = B_TRUE; 16017 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 16018 MSEC_TO_TICK(4000)); 16019 } 16020 } 16021 } 16022 16023 /* 16024 * The read side service routine is called mostly when we get back-enabled as a 16025 * result of flow control relief. Since we don't actually queue anything in 16026 * TCP, we have no data to send out of here. What we do is clear the receive 16027 * window, and send out a window update. 16028 * This routine is also called to drive an orderly release message upstream 16029 * if the attempt in tcp_rput failed. 16030 */ 16031 static void 16032 tcp_rsrv(queue_t *q) 16033 { 16034 conn_t *connp = Q_TO_CONN(q); 16035 tcp_t *tcp = connp->conn_tcp; 16036 mblk_t *mp; 16037 tcp_stack_t *tcps = tcp->tcp_tcps; 16038 16039 /* No code does a putq on the read side */ 16040 ASSERT(q->q_first == NULL); 16041 16042 /* Nothing to do for the default queue */ 16043 if (q == tcps->tcps_g_q) { 16044 return; 16045 } 16046 16047 mp = allocb(0, BPRI_HI); 16048 if (mp == NULL) { 16049 /* 16050 * We are under memory pressure. Return for now and we 16051 * we will be called again later. 16052 */ 16053 if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 16054 /* 16055 * If there isn't already a timer running 16056 * start one. Use a 4 second 16057 * timer as a fallback since it can't fail. 16058 */ 16059 tcp->tcp_timeout = B_TRUE; 16060 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 16061 MSEC_TO_TICK(4000)); 16062 } 16063 return; 16064 } 16065 CONN_INC_REF(connp); 16066 squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp, 16067 SQTAG_TCP_RSRV); 16068 } 16069 16070 /* 16071 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 16072 * We do not allow the receive window to shrink. After setting rwnd, 16073 * set the flow control hiwat of the stream. 16074 * 16075 * This function is called in 2 cases: 16076 * 16077 * 1) Before data transfer begins, in tcp_accept_comm() for accepting a 16078 * connection (passive open) and in tcp_rput_data() for active connect. 16079 * This is called after tcp_mss_set() when the desired MSS value is known. 16080 * This makes sure that our window size is a mutiple of the other side's 16081 * MSS. 16082 * 2) Handling SO_RCVBUF option. 16083 * 16084 * It is ASSUMED that the requested size is a multiple of the current MSS. 16085 * 16086 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 16087 * user requests so. 16088 */ 16089 static int 16090 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 16091 { 16092 uint32_t mss = tcp->tcp_mss; 16093 uint32_t old_max_rwnd; 16094 uint32_t max_transmittable_rwnd; 16095 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 16096 tcp_stack_t *tcps = tcp->tcp_tcps; 16097 16098 if (tcp->tcp_fused) { 16099 size_t sth_hiwat; 16100 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 16101 16102 ASSERT(peer_tcp != NULL); 16103 /* 16104 * Record the stream head's high water mark for 16105 * this endpoint; this is used for flow-control 16106 * purposes in tcp_fuse_output(). 16107 */ 16108 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 16109 if (!tcp_detached) 16110 (void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat); 16111 16112 /* 16113 * In the fusion case, the maxpsz stream head value of 16114 * our peer is set according to its send buffer size 16115 * and our receive buffer size; since the latter may 16116 * have changed we need to update the peer's maxpsz. 16117 */ 16118 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 16119 return (rwnd); 16120 } 16121 16122 if (tcp_detached) 16123 old_max_rwnd = tcp->tcp_rwnd; 16124 else 16125 old_max_rwnd = tcp->tcp_rq->q_hiwat; 16126 16127 /* 16128 * Insist on a receive window that is at least 16129 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 16130 * funny TCP interactions of Nagle algorithm, SWS avoidance 16131 * and delayed acknowledgement. 16132 */ 16133 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 16134 16135 /* 16136 * If window size info has already been exchanged, TCP should not 16137 * shrink the window. Shrinking window is doable if done carefully. 16138 * We may add that support later. But so far there is not a real 16139 * need to do that. 16140 */ 16141 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 16142 /* MSS may have changed, do a round up again. */ 16143 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 16144 } 16145 16146 /* 16147 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 16148 * can be applied even before the window scale option is decided. 16149 */ 16150 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 16151 if (rwnd > max_transmittable_rwnd) { 16152 rwnd = max_transmittable_rwnd - 16153 (max_transmittable_rwnd % mss); 16154 if (rwnd < mss) 16155 rwnd = max_transmittable_rwnd; 16156 /* 16157 * If we're over the limit we may have to back down tcp_rwnd. 16158 * The increment below won't work for us. So we set all three 16159 * here and the increment below will have no effect. 16160 */ 16161 tcp->tcp_rwnd = old_max_rwnd = rwnd; 16162 } 16163 if (tcp->tcp_localnet) { 16164 tcp->tcp_rack_abs_max = 16165 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 16166 } else { 16167 /* 16168 * For a remote host on a different subnet (through a router), 16169 * we ack every other packet to be conforming to RFC1122. 16170 * tcp_deferred_acks_max is default to 2. 16171 */ 16172 tcp->tcp_rack_abs_max = 16173 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 16174 } 16175 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 16176 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 16177 else 16178 tcp->tcp_rack_cur_max = 0; 16179 /* 16180 * Increment the current rwnd by the amount the maximum grew (we 16181 * can not overwrite it since we might be in the middle of a 16182 * connection.) 16183 */ 16184 tcp->tcp_rwnd += rwnd - old_max_rwnd; 16185 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); 16186 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 16187 tcp->tcp_cwnd_max = rwnd; 16188 16189 if (tcp_detached) 16190 return (rwnd); 16191 /* 16192 * We set the maximum receive window into rq->q_hiwat. 16193 * This is not actually used for flow control. 16194 */ 16195 tcp->tcp_rq->q_hiwat = rwnd; 16196 /* 16197 * Set the Stream head high water mark. This doesn't have to be 16198 * here, since we are simply using default values, but we would 16199 * prefer to choose these values algorithmically, with a likely 16200 * relationship to rwnd. 16201 */ 16202 (void) mi_set_sth_hiwat(tcp->tcp_rq, 16203 MAX(rwnd, tcps->tcps_sth_rcv_hiwat)); 16204 return (rwnd); 16205 } 16206 16207 /* 16208 * Return SNMP stuff in buffer in mpdata. 16209 */ 16210 int 16211 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 16212 { 16213 mblk_t *mpdata; 16214 mblk_t *mp_conn_ctl = NULL; 16215 mblk_t *mp_conn_tail; 16216 mblk_t *mp_attr_ctl = NULL; 16217 mblk_t *mp_attr_tail; 16218 mblk_t *mp6_conn_ctl = NULL; 16219 mblk_t *mp6_conn_tail; 16220 mblk_t *mp6_attr_ctl = NULL; 16221 mblk_t *mp6_attr_tail; 16222 struct opthdr *optp; 16223 mib2_tcpConnEntry_t tce; 16224 mib2_tcp6ConnEntry_t tce6; 16225 mib2_transportMLPEntry_t mlp; 16226 connf_t *connfp; 16227 conn_t *connp; 16228 int i; 16229 boolean_t ispriv; 16230 zoneid_t zoneid; 16231 int v4_conn_idx; 16232 int v6_conn_idx; 16233 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 16234 ip_stack_t *ipst; 16235 16236 if (mpctl == NULL || 16237 (mpdata = mpctl->b_cont) == NULL || 16238 (mp_conn_ctl = copymsg(mpctl)) == NULL || 16239 (mp_attr_ctl = copymsg(mpctl)) == NULL || 16240 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 16241 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 16242 freemsg(mp_conn_ctl); 16243 freemsg(mp_attr_ctl); 16244 freemsg(mp6_conn_ctl); 16245 freemsg(mp6_attr_ctl); 16246 return (0); 16247 } 16248 16249 /* build table of connections -- need count in fixed part */ 16250 SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4); /* vanj */ 16251 SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min); 16252 SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max); 16253 SET_MIB(tcps->tcps_mib.tcpMaxConn, -1); 16254 SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0); 16255 16256 ispriv = 16257 secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 16258 zoneid = Q_TO_CONN(q)->conn_zoneid; 16259 16260 v4_conn_idx = v6_conn_idx = 0; 16261 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 16262 16263 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16264 ipst = tcps->tcps_netstack->netstack_ip; 16265 16266 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 16267 16268 connp = NULL; 16269 16270 while ((connp = 16271 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16272 tcp_t *tcp; 16273 boolean_t needattr; 16274 16275 if (connp->conn_zoneid != zoneid) 16276 continue; /* not in this zone */ 16277 16278 tcp = connp->conn_tcp; 16279 UPDATE_MIB(&tcps->tcps_mib, 16280 tcpHCInSegs, tcp->tcp_ibsegs); 16281 tcp->tcp_ibsegs = 0; 16282 UPDATE_MIB(&tcps->tcps_mib, 16283 tcpHCOutSegs, tcp->tcp_obsegs); 16284 tcp->tcp_obsegs = 0; 16285 16286 tce6.tcp6ConnState = tce.tcpConnState = 16287 tcp_snmp_state(tcp); 16288 if (tce.tcpConnState == MIB2_TCP_established || 16289 tce.tcpConnState == MIB2_TCP_closeWait) 16290 BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab); 16291 16292 needattr = B_FALSE; 16293 bzero(&mlp, sizeof (mlp)); 16294 if (connp->conn_mlp_type != mlptSingle) { 16295 if (connp->conn_mlp_type == mlptShared || 16296 connp->conn_mlp_type == mlptBoth) 16297 mlp.tme_flags |= MIB2_TMEF_SHARED; 16298 if (connp->conn_mlp_type == mlptPrivate || 16299 connp->conn_mlp_type == mlptBoth) 16300 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 16301 needattr = B_TRUE; 16302 } 16303 if (connp->conn_peercred != NULL) { 16304 ts_label_t *tsl; 16305 16306 tsl = crgetlabel(connp->conn_peercred); 16307 mlp.tme_doi = label2doi(tsl); 16308 mlp.tme_label = *label2bslabel(tsl); 16309 needattr = B_TRUE; 16310 } 16311 16312 /* Create a message to report on IPv6 entries */ 16313 if (tcp->tcp_ipversion == IPV6_VERSION) { 16314 tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6; 16315 tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6; 16316 tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport); 16317 tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport); 16318 tce6.tcp6ConnIfIndex = tcp->tcp_bound_if; 16319 /* Don't want just anybody seeing these... */ 16320 if (ispriv) { 16321 tce6.tcp6ConnEntryInfo.ce_snxt = 16322 tcp->tcp_snxt; 16323 tce6.tcp6ConnEntryInfo.ce_suna = 16324 tcp->tcp_suna; 16325 tce6.tcp6ConnEntryInfo.ce_rnxt = 16326 tcp->tcp_rnxt; 16327 tce6.tcp6ConnEntryInfo.ce_rack = 16328 tcp->tcp_rack; 16329 } else { 16330 /* 16331 * Netstat, unfortunately, uses this to 16332 * get send/receive queue sizes. How to fix? 16333 * Why not compute the difference only? 16334 */ 16335 tce6.tcp6ConnEntryInfo.ce_snxt = 16336 tcp->tcp_snxt - tcp->tcp_suna; 16337 tce6.tcp6ConnEntryInfo.ce_suna = 0; 16338 tce6.tcp6ConnEntryInfo.ce_rnxt = 16339 tcp->tcp_rnxt - tcp->tcp_rack; 16340 tce6.tcp6ConnEntryInfo.ce_rack = 0; 16341 } 16342 16343 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16344 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16345 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 16346 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 16347 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 16348 16349 tce6.tcp6ConnCreationProcess = 16350 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16351 tcp->tcp_cpid; 16352 tce6.tcp6ConnCreationTime = tcp->tcp_open_time; 16353 16354 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 16355 &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); 16356 16357 mlp.tme_connidx = v6_conn_idx++; 16358 if (needattr) 16359 (void) snmp_append_data2(mp6_attr_ctl->b_cont, 16360 &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); 16361 } 16362 /* 16363 * Create an IPv4 table entry for IPv4 entries and also 16364 * for IPv6 entries which are bound to in6addr_any 16365 * but don't have IPV6_V6ONLY set. 16366 * (i.e. anything an IPv4 peer could connect to) 16367 */ 16368 if (tcp->tcp_ipversion == IPV4_VERSION || 16369 (tcp->tcp_state <= TCPS_LISTEN && 16370 !tcp->tcp_connp->conn_ipv6_v6only && 16371 IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) { 16372 if (tcp->tcp_ipversion == IPV6_VERSION) { 16373 tce.tcpConnRemAddress = INADDR_ANY; 16374 tce.tcpConnLocalAddress = INADDR_ANY; 16375 } else { 16376 tce.tcpConnRemAddress = 16377 tcp->tcp_remote; 16378 tce.tcpConnLocalAddress = 16379 tcp->tcp_ip_src; 16380 } 16381 tce.tcpConnLocalPort = ntohs(tcp->tcp_lport); 16382 tce.tcpConnRemPort = ntohs(tcp->tcp_fport); 16383 /* Don't want just anybody seeing these... */ 16384 if (ispriv) { 16385 tce.tcpConnEntryInfo.ce_snxt = 16386 tcp->tcp_snxt; 16387 tce.tcpConnEntryInfo.ce_suna = 16388 tcp->tcp_suna; 16389 tce.tcpConnEntryInfo.ce_rnxt = 16390 tcp->tcp_rnxt; 16391 tce.tcpConnEntryInfo.ce_rack = 16392 tcp->tcp_rack; 16393 } else { 16394 /* 16395 * Netstat, unfortunately, uses this to 16396 * get send/receive queue sizes. How 16397 * to fix? 16398 * Why not compute the difference only? 16399 */ 16400 tce.tcpConnEntryInfo.ce_snxt = 16401 tcp->tcp_snxt - tcp->tcp_suna; 16402 tce.tcpConnEntryInfo.ce_suna = 0; 16403 tce.tcpConnEntryInfo.ce_rnxt = 16404 tcp->tcp_rnxt - tcp->tcp_rack; 16405 tce.tcpConnEntryInfo.ce_rack = 0; 16406 } 16407 16408 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16409 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16410 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 16411 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 16412 tce.tcpConnEntryInfo.ce_state = 16413 tcp->tcp_state; 16414 16415 tce.tcpConnCreationProcess = 16416 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16417 tcp->tcp_cpid; 16418 tce.tcpConnCreationTime = tcp->tcp_open_time; 16419 16420 (void) snmp_append_data2(mp_conn_ctl->b_cont, 16421 &mp_conn_tail, (char *)&tce, sizeof (tce)); 16422 16423 mlp.tme_connidx = v4_conn_idx++; 16424 if (needattr) 16425 (void) snmp_append_data2( 16426 mp_attr_ctl->b_cont, 16427 &mp_attr_tail, (char *)&mlp, 16428 sizeof (mlp)); 16429 } 16430 } 16431 } 16432 16433 /* fixed length structure for IPv4 and IPv6 counters */ 16434 SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 16435 SET_MIB(tcps->tcps_mib.tcp6ConnTableSize, 16436 sizeof (mib2_tcp6ConnEntry_t)); 16437 /* synchronize 32- and 64-bit counters */ 16438 SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs); 16439 SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs); 16440 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16441 optp->level = MIB2_TCP; 16442 optp->name = 0; 16443 (void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib, 16444 sizeof (tcps->tcps_mib)); 16445 optp->len = msgdsize(mpdata); 16446 qreply(q, mpctl); 16447 16448 /* table of connections... */ 16449 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 16450 sizeof (struct T_optmgmt_ack)]; 16451 optp->level = MIB2_TCP; 16452 optp->name = MIB2_TCP_CONN; 16453 optp->len = msgdsize(mp_conn_ctl->b_cont); 16454 qreply(q, mp_conn_ctl); 16455 16456 /* table of MLP attributes... */ 16457 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 16458 sizeof (struct T_optmgmt_ack)]; 16459 optp->level = MIB2_TCP; 16460 optp->name = EXPER_XPORT_MLP; 16461 optp->len = msgdsize(mp_attr_ctl->b_cont); 16462 if (optp->len == 0) 16463 freemsg(mp_attr_ctl); 16464 else 16465 qreply(q, mp_attr_ctl); 16466 16467 /* table of IPv6 connections... */ 16468 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 16469 sizeof (struct T_optmgmt_ack)]; 16470 optp->level = MIB2_TCP6; 16471 optp->name = MIB2_TCP6_CONN; 16472 optp->len = msgdsize(mp6_conn_ctl->b_cont); 16473 qreply(q, mp6_conn_ctl); 16474 16475 /* table of IPv6 MLP attributes... */ 16476 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 16477 sizeof (struct T_optmgmt_ack)]; 16478 optp->level = MIB2_TCP6; 16479 optp->name = EXPER_XPORT_MLP; 16480 optp->len = msgdsize(mp6_attr_ctl->b_cont); 16481 if (optp->len == 0) 16482 freemsg(mp6_attr_ctl); 16483 else 16484 qreply(q, mp6_attr_ctl); 16485 return (1); 16486 } 16487 16488 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 16489 /* ARGSUSED */ 16490 int 16491 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 16492 { 16493 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 16494 16495 switch (level) { 16496 case MIB2_TCP: 16497 switch (name) { 16498 case 13: 16499 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 16500 return (0); 16501 /* TODO: delete entry defined by tce */ 16502 return (1); 16503 default: 16504 return (0); 16505 } 16506 default: 16507 return (1); 16508 } 16509 } 16510 16511 /* Translate TCP state to MIB2 TCP state. */ 16512 static int 16513 tcp_snmp_state(tcp_t *tcp) 16514 { 16515 if (tcp == NULL) 16516 return (0); 16517 16518 switch (tcp->tcp_state) { 16519 case TCPS_CLOSED: 16520 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 16521 case TCPS_BOUND: 16522 return (MIB2_TCP_closed); 16523 case TCPS_LISTEN: 16524 return (MIB2_TCP_listen); 16525 case TCPS_SYN_SENT: 16526 return (MIB2_TCP_synSent); 16527 case TCPS_SYN_RCVD: 16528 return (MIB2_TCP_synReceived); 16529 case TCPS_ESTABLISHED: 16530 return (MIB2_TCP_established); 16531 case TCPS_CLOSE_WAIT: 16532 return (MIB2_TCP_closeWait); 16533 case TCPS_FIN_WAIT_1: 16534 return (MIB2_TCP_finWait1); 16535 case TCPS_CLOSING: 16536 return (MIB2_TCP_closing); 16537 case TCPS_LAST_ACK: 16538 return (MIB2_TCP_lastAck); 16539 case TCPS_FIN_WAIT_2: 16540 return (MIB2_TCP_finWait2); 16541 case TCPS_TIME_WAIT: 16542 return (MIB2_TCP_timeWait); 16543 default: 16544 return (0); 16545 } 16546 } 16547 16548 static char tcp_report_header[] = 16549 "TCP " MI_COL_HDRPAD_STR 16550 "zone dest snxt suna " 16551 "swnd rnxt rack rwnd rto mss w sw rw t " 16552 "recent [lport,fport] state"; 16553 16554 /* 16555 * TCP status report triggered via the Named Dispatch mechanism. 16556 */ 16557 /* ARGSUSED */ 16558 static void 16559 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream, 16560 cred_t *cr) 16561 { 16562 char hash[10], addrbuf[INET6_ADDRSTRLEN]; 16563 boolean_t ispriv = secpolicy_ip_config(cr, B_TRUE) == 0; 16564 char cflag; 16565 in6_addr_t v6dst; 16566 char buf[80]; 16567 uint_t print_len, buf_len; 16568 16569 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16570 if (buf_len <= 0) 16571 return; 16572 16573 if (hashval >= 0) 16574 (void) sprintf(hash, "%03d ", hashval); 16575 else 16576 hash[0] = '\0'; 16577 16578 /* 16579 * Note that we use the remote address in the tcp_b structure. 16580 * This means that it will print out the real destination address, 16581 * not the next hop's address if source routing is used. This 16582 * avoid the confusion on the output because user may not 16583 * know that source routing is used for a connection. 16584 */ 16585 if (tcp->tcp_ipversion == IPV4_VERSION) { 16586 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst); 16587 } else { 16588 v6dst = tcp->tcp_remote_v6; 16589 } 16590 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16591 /* 16592 * the ispriv checks are so that normal users cannot determine 16593 * sequence number information using NDD. 16594 */ 16595 16596 if (TCP_IS_DETACHED(tcp)) 16597 cflag = '*'; 16598 else 16599 cflag = ' '; 16600 print_len = snprintf((char *)mp->b_wptr, buf_len, 16601 "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x " 16602 "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n", 16603 hash, 16604 (void *)tcp, 16605 tcp->tcp_connp->conn_zoneid, 16606 addrbuf, 16607 (ispriv) ? tcp->tcp_snxt : 0, 16608 (ispriv) ? tcp->tcp_suna : 0, 16609 tcp->tcp_swnd, 16610 (ispriv) ? tcp->tcp_rnxt : 0, 16611 (ispriv) ? tcp->tcp_rack : 0, 16612 tcp->tcp_rwnd, 16613 tcp->tcp_rto, 16614 tcp->tcp_mss, 16615 tcp->tcp_snd_ws_ok, 16616 tcp->tcp_snd_ws, 16617 tcp->tcp_rcv_ws, 16618 tcp->tcp_snd_ts_ok, 16619 tcp->tcp_ts_recent, 16620 tcp_display(tcp, buf, DISP_PORT_ONLY), cflag); 16621 if (print_len < buf_len) { 16622 ((mblk_t *)mp)->b_wptr += print_len; 16623 } else { 16624 ((mblk_t *)mp)->b_wptr += buf_len; 16625 } 16626 } 16627 16628 /* 16629 * TCP status report (for listeners only) triggered via the Named Dispatch 16630 * mechanism. 16631 */ 16632 /* ARGSUSED */ 16633 static void 16634 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval) 16635 { 16636 char addrbuf[INET6_ADDRSTRLEN]; 16637 in6_addr_t v6dst; 16638 uint_t print_len, buf_len; 16639 16640 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16641 if (buf_len <= 0) 16642 return; 16643 16644 if (tcp->tcp_ipversion == IPV4_VERSION) { 16645 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst); 16646 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16647 } else { 16648 (void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src, 16649 addrbuf, sizeof (addrbuf)); 16650 } 16651 print_len = snprintf((char *)mp->b_wptr, buf_len, 16652 "%03d " 16653 MI_COL_PTRFMT_STR 16654 "%d %s %05u %08u %d/%d/%d%c\n", 16655 hashval, (void *)tcp, 16656 tcp->tcp_connp->conn_zoneid, 16657 addrbuf, 16658 (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport), 16659 tcp->tcp_conn_req_seqnum, 16660 tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q, 16661 tcp->tcp_conn_req_max, 16662 tcp->tcp_syn_defense ? '*' : ' '); 16663 if (print_len < buf_len) { 16664 ((mblk_t *)mp)->b_wptr += print_len; 16665 } else { 16666 ((mblk_t *)mp)->b_wptr += buf_len; 16667 } 16668 } 16669 16670 /* TCP status report triggered via the Named Dispatch mechanism. */ 16671 /* ARGSUSED */ 16672 static int 16673 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16674 { 16675 tcp_t *tcp; 16676 int i; 16677 conn_t *connp; 16678 connf_t *connfp; 16679 zoneid_t zoneid; 16680 tcp_stack_t *tcps; 16681 ip_stack_t *ipst; 16682 16683 zoneid = Q_TO_CONN(q)->conn_zoneid; 16684 tcps = Q_TO_TCP(q)->tcp_tcps; 16685 16686 /* 16687 * Because of the ndd constraint, at most we can have 64K buffer 16688 * to put in all TCP info. So to be more efficient, just 16689 * allocate a 64K buffer here, assuming we need that large buffer. 16690 * This may be a problem as any user can read tcp_status. Therefore 16691 * we limit the rate of doing this using tcp_ndd_get_info_interval. 16692 * This should be OK as normal users should not do this too often. 16693 */ 16694 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16695 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16696 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16697 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16698 return (0); 16699 } 16700 } 16701 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16702 /* The following may work even if we cannot get a large buf. */ 16703 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16704 return (0); 16705 } 16706 16707 (void) mi_mpprintf(mp, "%s", tcp_report_header); 16708 16709 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16710 16711 ipst = tcps->tcps_netstack->netstack_ip; 16712 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 16713 16714 connp = NULL; 16715 16716 while ((connp = 16717 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16718 tcp = connp->conn_tcp; 16719 if (zoneid != GLOBAL_ZONEID && 16720 zoneid != connp->conn_zoneid) 16721 continue; 16722 tcp_report_item(mp->b_cont, tcp, -1, tcp, 16723 cr); 16724 } 16725 16726 } 16727 16728 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16729 return (0); 16730 } 16731 16732 /* TCP status report triggered via the Named Dispatch mechanism. */ 16733 /* ARGSUSED */ 16734 static int 16735 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16736 { 16737 tf_t *tbf; 16738 tcp_t *tcp; 16739 int i; 16740 zoneid_t zoneid; 16741 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 16742 16743 zoneid = Q_TO_CONN(q)->conn_zoneid; 16744 16745 /* Refer to comments in tcp_status_report(). */ 16746 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16747 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16748 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16749 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16750 return (0); 16751 } 16752 } 16753 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16754 /* The following may work even if we cannot get a large buf. */ 16755 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16756 return (0); 16757 } 16758 16759 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16760 16761 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 16762 tbf = &tcps->tcps_bind_fanout[i]; 16763 mutex_enter(&tbf->tf_lock); 16764 for (tcp = tbf->tf_tcp; tcp != NULL; 16765 tcp = tcp->tcp_bind_hash) { 16766 if (zoneid != GLOBAL_ZONEID && 16767 zoneid != tcp->tcp_connp->conn_zoneid) 16768 continue; 16769 CONN_INC_REF(tcp->tcp_connp); 16770 tcp_report_item(mp->b_cont, tcp, i, 16771 Q_TO_TCP(q), cr); 16772 CONN_DEC_REF(tcp->tcp_connp); 16773 } 16774 mutex_exit(&tbf->tf_lock); 16775 } 16776 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16777 return (0); 16778 } 16779 16780 /* TCP status report triggered via the Named Dispatch mechanism. */ 16781 /* ARGSUSED */ 16782 static int 16783 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16784 { 16785 connf_t *connfp; 16786 conn_t *connp; 16787 tcp_t *tcp; 16788 int i; 16789 zoneid_t zoneid; 16790 tcp_stack_t *tcps; 16791 ip_stack_t *ipst; 16792 16793 zoneid = Q_TO_CONN(q)->conn_zoneid; 16794 tcps = Q_TO_TCP(q)->tcp_tcps; 16795 16796 /* Refer to comments in tcp_status_report(). */ 16797 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16798 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16799 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16800 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16801 return (0); 16802 } 16803 } 16804 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16805 /* The following may work even if we cannot get a large buf. */ 16806 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16807 return (0); 16808 } 16809 16810 (void) mi_mpprintf(mp, 16811 " TCP " MI_COL_HDRPAD_STR 16812 "zone IP addr port seqnum backlog (q0/q/max)"); 16813 16814 ipst = tcps->tcps_netstack->netstack_ip; 16815 16816 for (i = 0; i < ipst->ips_ipcl_bind_fanout_size; i++) { 16817 connfp = &ipst->ips_ipcl_bind_fanout[i]; 16818 connp = NULL; 16819 while ((connp = 16820 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16821 tcp = connp->conn_tcp; 16822 if (zoneid != GLOBAL_ZONEID && 16823 zoneid != connp->conn_zoneid) 16824 continue; 16825 tcp_report_listener(mp->b_cont, tcp, i); 16826 } 16827 } 16828 16829 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16830 return (0); 16831 } 16832 16833 /* TCP status report triggered via the Named Dispatch mechanism. */ 16834 /* ARGSUSED */ 16835 static int 16836 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16837 { 16838 connf_t *connfp; 16839 conn_t *connp; 16840 tcp_t *tcp; 16841 int i; 16842 zoneid_t zoneid; 16843 tcp_stack_t *tcps; 16844 ip_stack_t *ipst; 16845 16846 zoneid = Q_TO_CONN(q)->conn_zoneid; 16847 tcps = Q_TO_TCP(q)->tcp_tcps; 16848 ipst = tcps->tcps_netstack->netstack_ip; 16849 16850 /* Refer to comments in tcp_status_report(). */ 16851 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16852 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16853 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16854 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16855 return (0); 16856 } 16857 } 16858 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16859 /* The following may work even if we cannot get a large buf. */ 16860 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16861 return (0); 16862 } 16863 16864 (void) mi_mpprintf(mp, "tcp_conn_hash_size = %d", 16865 ipst->ips_ipcl_conn_fanout_size); 16866 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16867 16868 for (i = 0; i < ipst->ips_ipcl_conn_fanout_size; i++) { 16869 connfp = &ipst->ips_ipcl_conn_fanout[i]; 16870 connp = NULL; 16871 while ((connp = 16872 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16873 tcp = connp->conn_tcp; 16874 if (zoneid != GLOBAL_ZONEID && 16875 zoneid != connp->conn_zoneid) 16876 continue; 16877 tcp_report_item(mp->b_cont, tcp, i, 16878 Q_TO_TCP(q), cr); 16879 } 16880 } 16881 16882 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16883 return (0); 16884 } 16885 16886 /* TCP status report triggered via the Named Dispatch mechanism. */ 16887 /* ARGSUSED */ 16888 static int 16889 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16890 { 16891 tf_t *tf; 16892 tcp_t *tcp; 16893 int i; 16894 zoneid_t zoneid; 16895 tcp_stack_t *tcps; 16896 16897 zoneid = Q_TO_CONN(q)->conn_zoneid; 16898 tcps = Q_TO_TCP(q)->tcp_tcps; 16899 16900 /* Refer to comments in tcp_status_report(). */ 16901 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16902 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16903 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16904 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16905 return (0); 16906 } 16907 } 16908 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16909 /* The following may work even if we cannot get a large buf. */ 16910 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16911 return (0); 16912 } 16913 16914 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16915 16916 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 16917 tf = &tcps->tcps_acceptor_fanout[i]; 16918 mutex_enter(&tf->tf_lock); 16919 for (tcp = tf->tf_tcp; tcp != NULL; 16920 tcp = tcp->tcp_acceptor_hash) { 16921 if (zoneid != GLOBAL_ZONEID && 16922 zoneid != tcp->tcp_connp->conn_zoneid) 16923 continue; 16924 tcp_report_item(mp->b_cont, tcp, i, 16925 Q_TO_TCP(q), cr); 16926 } 16927 mutex_exit(&tf->tf_lock); 16928 } 16929 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16930 return (0); 16931 } 16932 16933 /* 16934 * tcp_timer is the timer service routine. It handles the retransmission, 16935 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 16936 * from the state of the tcp instance what kind of action needs to be done 16937 * at the time it is called. 16938 */ 16939 static void 16940 tcp_timer(void *arg) 16941 { 16942 mblk_t *mp; 16943 clock_t first_threshold; 16944 clock_t second_threshold; 16945 clock_t ms; 16946 uint32_t mss; 16947 conn_t *connp = (conn_t *)arg; 16948 tcp_t *tcp = connp->conn_tcp; 16949 tcp_stack_t *tcps = tcp->tcp_tcps; 16950 16951 tcp->tcp_timer_tid = 0; 16952 16953 if (tcp->tcp_fused) 16954 return; 16955 16956 first_threshold = tcp->tcp_first_timer_threshold; 16957 second_threshold = tcp->tcp_second_timer_threshold; 16958 switch (tcp->tcp_state) { 16959 case TCPS_IDLE: 16960 case TCPS_BOUND: 16961 case TCPS_LISTEN: 16962 return; 16963 case TCPS_SYN_RCVD: { 16964 tcp_t *listener = tcp->tcp_listener; 16965 16966 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 16967 ASSERT(tcp->tcp_rq == listener->tcp_rq); 16968 /* it's our first timeout */ 16969 tcp->tcp_syn_rcvd_timeout = 1; 16970 mutex_enter(&listener->tcp_eager_lock); 16971 listener->tcp_syn_rcvd_timeout++; 16972 if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) { 16973 /* 16974 * Make this eager available for drop if we 16975 * need to drop one to accomodate a new 16976 * incoming SYN request. 16977 */ 16978 MAKE_DROPPABLE(listener, tcp); 16979 } 16980 if (!listener->tcp_syn_defense && 16981 (listener->tcp_syn_rcvd_timeout > 16982 (tcps->tcps_conn_req_max_q0 >> 2)) && 16983 (tcps->tcps_conn_req_max_q0 > 200)) { 16984 /* We may be under attack. Put on a defense. */ 16985 listener->tcp_syn_defense = B_TRUE; 16986 cmn_err(CE_WARN, "High TCP connect timeout " 16987 "rate! System (port %d) may be under a " 16988 "SYN flood attack!", 16989 BE16_TO_U16(listener->tcp_tcph->th_lport)); 16990 16991 listener->tcp_ip_addr_cache = kmem_zalloc( 16992 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 16993 KM_NOSLEEP); 16994 } 16995 mutex_exit(&listener->tcp_eager_lock); 16996 } else if (listener != NULL) { 16997 mutex_enter(&listener->tcp_eager_lock); 16998 tcp->tcp_syn_rcvd_timeout++; 16999 if (tcp->tcp_syn_rcvd_timeout > 1 && 17000 !tcp->tcp_closemp_used) { 17001 /* 17002 * This is our second timeout. Put the tcp in 17003 * the list of droppable eagers to allow it to 17004 * be dropped, if needed. We don't check 17005 * whether tcp_dontdrop is set or not to 17006 * protect ourselve from a SYN attack where a 17007 * remote host can spoof itself as one of the 17008 * good IP source and continue to hold 17009 * resources too long. 17010 */ 17011 MAKE_DROPPABLE(listener, tcp); 17012 } 17013 mutex_exit(&listener->tcp_eager_lock); 17014 } 17015 } 17016 /* FALLTHRU */ 17017 case TCPS_SYN_SENT: 17018 first_threshold = tcp->tcp_first_ctimer_threshold; 17019 second_threshold = tcp->tcp_second_ctimer_threshold; 17020 break; 17021 case TCPS_ESTABLISHED: 17022 case TCPS_FIN_WAIT_1: 17023 case TCPS_CLOSING: 17024 case TCPS_CLOSE_WAIT: 17025 case TCPS_LAST_ACK: 17026 /* If we have data to rexmit */ 17027 if (tcp->tcp_suna != tcp->tcp_snxt) { 17028 clock_t time_to_wait; 17029 17030 BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans); 17031 if (!tcp->tcp_xmit_head) 17032 break; 17033 time_to_wait = lbolt - 17034 (clock_t)tcp->tcp_xmit_head->b_prev; 17035 time_to_wait = tcp->tcp_rto - 17036 TICK_TO_MSEC(time_to_wait); 17037 /* 17038 * If the timer fires too early, 1 clock tick earlier, 17039 * restart the timer. 17040 */ 17041 if (time_to_wait > msec_per_tick) { 17042 TCP_STAT(tcps, tcp_timer_fire_early); 17043 TCP_TIMER_RESTART(tcp, time_to_wait); 17044 return; 17045 } 17046 /* 17047 * When we probe zero windows, we force the swnd open. 17048 * If our peer acks with a closed window swnd will be 17049 * set to zero by tcp_rput(). As long as we are 17050 * receiving acks tcp_rput will 17051 * reset 'tcp_ms_we_have_waited' so as not to trip the 17052 * first and second interval actions. NOTE: the timer 17053 * interval is allowed to continue its exponential 17054 * backoff. 17055 */ 17056 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 17057 if (tcp->tcp_debug) { 17058 (void) strlog(TCP_MOD_ID, 0, 1, 17059 SL_TRACE, "tcp_timer: zero win"); 17060 } 17061 } else { 17062 /* 17063 * After retransmission, we need to do 17064 * slow start. Set the ssthresh to one 17065 * half of current effective window and 17066 * cwnd to one MSS. Also reset 17067 * tcp_cwnd_cnt. 17068 * 17069 * Note that if tcp_ssthresh is reduced because 17070 * of ECN, do not reduce it again unless it is 17071 * already one window of data away (tcp_cwr 17072 * should then be cleared) or this is a 17073 * timeout for a retransmitted segment. 17074 */ 17075 uint32_t npkt; 17076 17077 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 17078 npkt = ((tcp->tcp_timer_backoff ? 17079 tcp->tcp_cwnd_ssthresh : 17080 tcp->tcp_snxt - 17081 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 17082 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 17083 tcp->tcp_mss; 17084 } 17085 tcp->tcp_cwnd = tcp->tcp_mss; 17086 tcp->tcp_cwnd_cnt = 0; 17087 if (tcp->tcp_ecn_ok) { 17088 tcp->tcp_cwr = B_TRUE; 17089 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 17090 tcp->tcp_ecn_cwr_sent = B_FALSE; 17091 } 17092 } 17093 break; 17094 } 17095 /* 17096 * We have something to send yet we cannot send. The 17097 * reason can be: 17098 * 17099 * 1. Zero send window: we need to do zero window probe. 17100 * 2. Zero cwnd: because of ECN, we need to "clock out 17101 * segments. 17102 * 3. SWS avoidance: receiver may have shrunk window, 17103 * reset our knowledge. 17104 * 17105 * Note that condition 2 can happen with either 1 or 17106 * 3. But 1 and 3 are exclusive. 17107 */ 17108 if (tcp->tcp_unsent != 0) { 17109 if (tcp->tcp_cwnd == 0) { 17110 /* 17111 * Set tcp_cwnd to 1 MSS so that a 17112 * new segment can be sent out. We 17113 * are "clocking out" new data when 17114 * the network is really congested. 17115 */ 17116 ASSERT(tcp->tcp_ecn_ok); 17117 tcp->tcp_cwnd = tcp->tcp_mss; 17118 } 17119 if (tcp->tcp_swnd == 0) { 17120 /* Extend window for zero window probe */ 17121 tcp->tcp_swnd++; 17122 tcp->tcp_zero_win_probe = B_TRUE; 17123 BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe); 17124 } else { 17125 /* 17126 * Handle timeout from sender SWS avoidance. 17127 * Reset our knowledge of the max send window 17128 * since the receiver might have reduced its 17129 * receive buffer. Avoid setting tcp_max_swnd 17130 * to one since that will essentially disable 17131 * the SWS checks. 17132 * 17133 * Note that since we don't have a SWS 17134 * state variable, if the timeout is set 17135 * for ECN but not for SWS, this 17136 * code will also be executed. This is 17137 * fine as tcp_max_swnd is updated 17138 * constantly and it will not affect 17139 * anything. 17140 */ 17141 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 17142 } 17143 tcp_wput_data(tcp, NULL, B_FALSE); 17144 return; 17145 } 17146 /* Is there a FIN that needs to be to re retransmitted? */ 17147 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17148 !tcp->tcp_fin_acked) 17149 break; 17150 /* Nothing to do, return without restarting timer. */ 17151 TCP_STAT(tcps, tcp_timer_fire_miss); 17152 return; 17153 case TCPS_FIN_WAIT_2: 17154 /* 17155 * User closed the TCP endpoint and peer ACK'ed our FIN. 17156 * We waited some time for for peer's FIN, but it hasn't 17157 * arrived. We flush the connection now to avoid 17158 * case where the peer has rebooted. 17159 */ 17160 if (TCP_IS_DETACHED(tcp)) { 17161 (void) tcp_clean_death(tcp, 0, 23); 17162 } else { 17163 TCP_TIMER_RESTART(tcp, 17164 tcps->tcps_fin_wait_2_flush_interval); 17165 } 17166 return; 17167 case TCPS_TIME_WAIT: 17168 (void) tcp_clean_death(tcp, 0, 24); 17169 return; 17170 default: 17171 if (tcp->tcp_debug) { 17172 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 17173 "tcp_timer: strange state (%d) %s", 17174 tcp->tcp_state, tcp_display(tcp, NULL, 17175 DISP_PORT_ONLY)); 17176 } 17177 return; 17178 } 17179 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 17180 /* 17181 * For zero window probe, we need to send indefinitely, 17182 * unless we have not heard from the other side for some 17183 * time... 17184 */ 17185 if ((tcp->tcp_zero_win_probe == 0) || 17186 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) > 17187 second_threshold)) { 17188 BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop); 17189 /* 17190 * If TCP is in SYN_RCVD state, send back a 17191 * RST|ACK as BSD does. Note that tcp_zero_win_probe 17192 * should be zero in TCPS_SYN_RCVD state. 17193 */ 17194 if (tcp->tcp_state == TCPS_SYN_RCVD) { 17195 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 17196 "in SYN_RCVD", 17197 tcp, tcp->tcp_snxt, 17198 tcp->tcp_rnxt, TH_RST | TH_ACK); 17199 } 17200 (void) tcp_clean_death(tcp, 17201 tcp->tcp_client_errno ? 17202 tcp->tcp_client_errno : ETIMEDOUT, 25); 17203 return; 17204 } else { 17205 /* 17206 * Set tcp_ms_we_have_waited to second_threshold 17207 * so that in next timeout, we will do the above 17208 * check (lbolt - tcp_last_recv_time). This is 17209 * also to avoid overflow. 17210 * 17211 * We don't need to decrement tcp_timer_backoff 17212 * to avoid overflow because it will be decremented 17213 * later if new timeout value is greater than 17214 * tcp_rexmit_interval_max. In the case when 17215 * tcp_rexmit_interval_max is greater than 17216 * second_threshold, it means that we will wait 17217 * longer than second_threshold to send the next 17218 * window probe. 17219 */ 17220 tcp->tcp_ms_we_have_waited = second_threshold; 17221 } 17222 } else if (ms > first_threshold) { 17223 if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) && 17224 tcp->tcp_xmit_head != NULL) { 17225 tcp->tcp_xmit_head = 17226 tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1); 17227 } 17228 /* 17229 * We have been retransmitting for too long... The RTT 17230 * we calculated is probably incorrect. Reinitialize it. 17231 * Need to compensate for 0 tcp_rtt_sa. Reset 17232 * tcp_rtt_update so that we won't accidentally cache a 17233 * bad value. But only do this if this is not a zero 17234 * window probe. 17235 */ 17236 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 17237 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 17238 (tcp->tcp_rtt_sa >> 5); 17239 tcp->tcp_rtt_sa = 0; 17240 tcp_ip_notify(tcp); 17241 tcp->tcp_rtt_update = 0; 17242 } 17243 } 17244 tcp->tcp_timer_backoff++; 17245 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 17246 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 17247 tcps->tcps_rexmit_interval_min) { 17248 /* 17249 * This means the original RTO is tcp_rexmit_interval_min. 17250 * So we will use tcp_rexmit_interval_min as the RTO value 17251 * and do the backoff. 17252 */ 17253 ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff; 17254 } else { 17255 ms <<= tcp->tcp_timer_backoff; 17256 } 17257 if (ms > tcps->tcps_rexmit_interval_max) { 17258 ms = tcps->tcps_rexmit_interval_max; 17259 /* 17260 * ms is at max, decrement tcp_timer_backoff to avoid 17261 * overflow. 17262 */ 17263 tcp->tcp_timer_backoff--; 17264 } 17265 tcp->tcp_ms_we_have_waited += ms; 17266 if (tcp->tcp_zero_win_probe == 0) { 17267 tcp->tcp_rto = ms; 17268 } 17269 TCP_TIMER_RESTART(tcp, ms); 17270 /* 17271 * This is after a timeout and tcp_rto is backed off. Set 17272 * tcp_set_timer to 1 so that next time RTO is updated, we will 17273 * restart the timer with a correct value. 17274 */ 17275 tcp->tcp_set_timer = 1; 17276 mss = tcp->tcp_snxt - tcp->tcp_suna; 17277 if (mss > tcp->tcp_mss) 17278 mss = tcp->tcp_mss; 17279 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 17280 mss = tcp->tcp_swnd; 17281 17282 if ((mp = tcp->tcp_xmit_head) != NULL) 17283 mp->b_prev = (mblk_t *)lbolt; 17284 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 17285 B_TRUE); 17286 17287 /* 17288 * When slow start after retransmission begins, start with 17289 * this seq no. tcp_rexmit_max marks the end of special slow 17290 * start phase. tcp_snd_burst controls how many segments 17291 * can be sent because of an ack. 17292 */ 17293 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 17294 tcp->tcp_snd_burst = TCP_CWND_SS; 17295 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17296 (tcp->tcp_unsent == 0)) { 17297 tcp->tcp_rexmit_max = tcp->tcp_fss; 17298 } else { 17299 tcp->tcp_rexmit_max = tcp->tcp_snxt; 17300 } 17301 tcp->tcp_rexmit = B_TRUE; 17302 tcp->tcp_dupack_cnt = 0; 17303 17304 /* 17305 * Remove all rexmit SACK blk to start from fresh. 17306 */ 17307 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 17308 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 17309 tcp->tcp_num_notsack_blk = 0; 17310 tcp->tcp_cnt_notsack_list = 0; 17311 } 17312 if (mp == NULL) { 17313 return; 17314 } 17315 /* Attach credentials to retransmitted initial SYNs. */ 17316 if (tcp->tcp_state == TCPS_SYN_SENT) { 17317 mblk_setcred(mp, tcp->tcp_cred); 17318 DB_CPID(mp) = tcp->tcp_cpid; 17319 } 17320 17321 tcp->tcp_csuna = tcp->tcp_snxt; 17322 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 17323 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss); 17324 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 17325 tcp_send_data(tcp, tcp->tcp_wq, mp); 17326 17327 } 17328 17329 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 17330 static void 17331 tcp_unbind(tcp_t *tcp, mblk_t *mp) 17332 { 17333 conn_t *connp; 17334 17335 switch (tcp->tcp_state) { 17336 case TCPS_BOUND: 17337 case TCPS_LISTEN: 17338 break; 17339 default: 17340 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 17341 return; 17342 } 17343 17344 /* 17345 * Need to clean up all the eagers since after the unbind, segments 17346 * will no longer be delivered to this listener stream. 17347 */ 17348 mutex_enter(&tcp->tcp_eager_lock); 17349 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 17350 tcp_eager_cleanup(tcp, 0); 17351 } 17352 mutex_exit(&tcp->tcp_eager_lock); 17353 17354 if (tcp->tcp_ipversion == IPV4_VERSION) { 17355 tcp->tcp_ipha->ipha_src = 0; 17356 } else { 17357 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 17358 } 17359 V6_SET_ZERO(tcp->tcp_ip_src_v6); 17360 bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport)); 17361 tcp_bind_hash_remove(tcp); 17362 tcp->tcp_state = TCPS_IDLE; 17363 tcp->tcp_mdt = B_FALSE; 17364 /* Send M_FLUSH according to TPI */ 17365 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 17366 connp = tcp->tcp_connp; 17367 connp->conn_mdt_ok = B_FALSE; 17368 ipcl_hash_remove(connp); 17369 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 17370 mp = mi_tpi_ok_ack_alloc(mp); 17371 putnext(tcp->tcp_rq, mp); 17372 } 17373 17374 /* 17375 * Don't let port fall into the privileged range. 17376 * Since the extra privileged ports can be arbitrary we also 17377 * ensure that we exclude those from consideration. 17378 * tcp_g_epriv_ports is not sorted thus we loop over it until 17379 * there are no changes. 17380 * 17381 * Note: No locks are held when inspecting tcp_g_*epriv_ports 17382 * but instead the code relies on: 17383 * - the fact that the address of the array and its size never changes 17384 * - the atomic assignment of the elements of the array 17385 * 17386 * Returns 0 if there are no more ports available. 17387 * 17388 * TS note: skip multilevel ports. 17389 */ 17390 static in_port_t 17391 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) 17392 { 17393 int i; 17394 boolean_t restart = B_FALSE; 17395 tcp_stack_t *tcps = tcp->tcp_tcps; 17396 17397 if (random && tcp_random_anon_port != 0) { 17398 (void) random_get_pseudo_bytes((uint8_t *)&port, 17399 sizeof (in_port_t)); 17400 /* 17401 * Unless changed by a sys admin, the smallest anon port 17402 * is 32768 and the largest anon port is 65535. It is 17403 * very likely (50%) for the random port to be smaller 17404 * than the smallest anon port. When that happens, 17405 * add port % (anon port range) to the smallest anon 17406 * port to get the random port. It should fall into the 17407 * valid anon port range. 17408 */ 17409 if (port < tcps->tcps_smallest_anon_port) { 17410 port = tcps->tcps_smallest_anon_port + 17411 port % (tcps->tcps_largest_anon_port - 17412 tcps->tcps_smallest_anon_port); 17413 } 17414 } 17415 17416 retry: 17417 if (port < tcps->tcps_smallest_anon_port) 17418 port = (in_port_t)tcps->tcps_smallest_anon_port; 17419 17420 if (port > tcps->tcps_largest_anon_port) { 17421 if (restart) 17422 return (0); 17423 restart = B_TRUE; 17424 port = (in_port_t)tcps->tcps_smallest_anon_port; 17425 } 17426 17427 if (port < tcps->tcps_smallest_nonpriv_port) 17428 port = (in_port_t)tcps->tcps_smallest_nonpriv_port; 17429 17430 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 17431 if (port == tcps->tcps_g_epriv_ports[i]) { 17432 port++; 17433 /* 17434 * Make sure whether the port is in the 17435 * valid range. 17436 */ 17437 goto retry; 17438 } 17439 } 17440 if (is_system_labeled() && 17441 (i = tsol_next_port(crgetzone(tcp->tcp_cred), port, 17442 IPPROTO_TCP, B_TRUE)) != 0) { 17443 port = i; 17444 goto retry; 17445 } 17446 return (port); 17447 } 17448 17449 /* 17450 * Return the next anonymous port in the privileged port range for 17451 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 17452 * downwards. This is the same behavior as documented in the userland 17453 * library call rresvport(3N). 17454 * 17455 * TS note: skip multilevel ports. 17456 */ 17457 static in_port_t 17458 tcp_get_next_priv_port(const tcp_t *tcp) 17459 { 17460 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 17461 in_port_t nextport; 17462 boolean_t restart = B_FALSE; 17463 tcp_stack_t *tcps = tcp->tcp_tcps; 17464 retry: 17465 if (next_priv_port < tcps->tcps_min_anonpriv_port || 17466 next_priv_port >= IPPORT_RESERVED) { 17467 next_priv_port = IPPORT_RESERVED - 1; 17468 if (restart) 17469 return (0); 17470 restart = B_TRUE; 17471 } 17472 if (is_system_labeled() && 17473 (nextport = tsol_next_port(crgetzone(tcp->tcp_cred), 17474 next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { 17475 next_priv_port = nextport; 17476 goto retry; 17477 } 17478 return (next_priv_port--); 17479 } 17480 17481 /* The write side r/w procedure. */ 17482 17483 #if CCS_STATS 17484 struct { 17485 struct { 17486 int64_t count, bytes; 17487 } tot, hit; 17488 } wrw_stats; 17489 #endif 17490 17491 /* 17492 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 17493 * messages. 17494 */ 17495 /* ARGSUSED */ 17496 static void 17497 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2) 17498 { 17499 conn_t *connp = (conn_t *)arg; 17500 tcp_t *tcp = connp->conn_tcp; 17501 queue_t *q = tcp->tcp_wq; 17502 17503 ASSERT(DB_TYPE(mp) != M_IOCTL); 17504 /* 17505 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 17506 * Once the close starts, streamhead and sockfs will not let any data 17507 * packets come down (close ensures that there are no threads using the 17508 * queue and no new threads will come down) but since qprocsoff() 17509 * hasn't happened yet, a M_FLUSH or some non data message might 17510 * get reflected back (in response to our own FLUSHRW) and get 17511 * processed after tcp_close() is done. The conn would still be valid 17512 * because a ref would have added but we need to check the state 17513 * before actually processing the packet. 17514 */ 17515 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 17516 freemsg(mp); 17517 return; 17518 } 17519 17520 switch (DB_TYPE(mp)) { 17521 case M_IOCDATA: 17522 tcp_wput_iocdata(tcp, mp); 17523 break; 17524 case M_FLUSH: 17525 tcp_wput_flush(tcp, mp); 17526 break; 17527 default: 17528 CALL_IP_WPUT(connp, q, mp); 17529 break; 17530 } 17531 } 17532 17533 /* 17534 * The TCP fast path write put procedure. 17535 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 17536 */ 17537 /* ARGSUSED */ 17538 void 17539 tcp_output(void *arg, mblk_t *mp, void *arg2) 17540 { 17541 int len; 17542 int hdrlen; 17543 int plen; 17544 mblk_t *mp1; 17545 uchar_t *rptr; 17546 uint32_t snxt; 17547 tcph_t *tcph; 17548 struct datab *db; 17549 uint32_t suna; 17550 uint32_t mss; 17551 ipaddr_t *dst; 17552 ipaddr_t *src; 17553 uint32_t sum; 17554 int usable; 17555 conn_t *connp = (conn_t *)arg; 17556 tcp_t *tcp = connp->conn_tcp; 17557 uint32_t msize; 17558 tcp_stack_t *tcps = tcp->tcp_tcps; 17559 17560 /* 17561 * Try and ASSERT the minimum possible references on the 17562 * conn early enough. Since we are executing on write side, 17563 * the connection is obviously not detached and that means 17564 * there is a ref each for TCP and IP. Since we are behind 17565 * the squeue, the minimum references needed are 3. If the 17566 * conn is in classifier hash list, there should be an 17567 * extra ref for that (we check both the possibilities). 17568 */ 17569 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17570 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17571 17572 ASSERT(DB_TYPE(mp) == M_DATA); 17573 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 17574 17575 mutex_enter(&tcp->tcp_non_sq_lock); 17576 tcp->tcp_squeue_bytes -= msize; 17577 mutex_exit(&tcp->tcp_non_sq_lock); 17578 17579 /* Bypass tcp protocol for fused tcp loopback */ 17580 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 17581 return; 17582 17583 mss = tcp->tcp_mss; 17584 if (tcp->tcp_xmit_zc_clean) 17585 mp = tcp_zcopy_backoff(tcp, mp, 0); 17586 17587 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17588 len = (int)(mp->b_wptr - mp->b_rptr); 17589 17590 /* 17591 * Criteria for fast path: 17592 * 17593 * 1. no unsent data 17594 * 2. single mblk in request 17595 * 3. connection established 17596 * 4. data in mblk 17597 * 5. len <= mss 17598 * 6. no tcp_valid bits 17599 */ 17600 if ((tcp->tcp_unsent != 0) || 17601 (tcp->tcp_cork) || 17602 (mp->b_cont != NULL) || 17603 (tcp->tcp_state != TCPS_ESTABLISHED) || 17604 (len == 0) || 17605 (len > mss) || 17606 (tcp->tcp_valid_bits != 0)) { 17607 tcp_wput_data(tcp, mp, B_FALSE); 17608 return; 17609 } 17610 17611 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 17612 ASSERT(tcp->tcp_fin_sent == 0); 17613 17614 /* queue new packet onto retransmission queue */ 17615 if (tcp->tcp_xmit_head == NULL) { 17616 tcp->tcp_xmit_head = mp; 17617 } else { 17618 tcp->tcp_xmit_last->b_cont = mp; 17619 } 17620 tcp->tcp_xmit_last = mp; 17621 tcp->tcp_xmit_tail = mp; 17622 17623 /* find out how much we can send */ 17624 /* BEGIN CSTYLED */ 17625 /* 17626 * un-acked usable 17627 * |--------------|-----------------| 17628 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 17629 */ 17630 /* END CSTYLED */ 17631 17632 /* start sending from tcp_snxt */ 17633 snxt = tcp->tcp_snxt; 17634 17635 /* 17636 * Check to see if this connection has been idled for some 17637 * time and no ACK is expected. If it is, we need to slow 17638 * start again to get back the connection's "self-clock" as 17639 * described in VJ's paper. 17640 * 17641 * Refer to the comment in tcp_mss_set() for the calculation 17642 * of tcp_cwnd after idle. 17643 */ 17644 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 17645 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 17646 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 17647 } 17648 17649 usable = tcp->tcp_swnd; /* tcp window size */ 17650 if (usable > tcp->tcp_cwnd) 17651 usable = tcp->tcp_cwnd; /* congestion window smaller */ 17652 usable -= snxt; /* subtract stuff already sent */ 17653 suna = tcp->tcp_suna; 17654 usable += suna; 17655 /* usable can be < 0 if the congestion window is smaller */ 17656 if (len > usable) { 17657 /* Can't send complete M_DATA in one shot */ 17658 goto slow; 17659 } 17660 17661 mutex_enter(&tcp->tcp_non_sq_lock); 17662 if (tcp->tcp_flow_stopped && 17663 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 17664 tcp_clrqfull(tcp); 17665 } 17666 mutex_exit(&tcp->tcp_non_sq_lock); 17667 17668 /* 17669 * determine if anything to send (Nagle). 17670 * 17671 * 1. len < tcp_mss (i.e. small) 17672 * 2. unacknowledged data present 17673 * 3. len < nagle limit 17674 * 4. last packet sent < nagle limit (previous packet sent) 17675 */ 17676 if ((len < mss) && (snxt != suna) && 17677 (len < (int)tcp->tcp_naglim) && 17678 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 17679 /* 17680 * This was the first unsent packet and normally 17681 * mss < xmit_hiwater so there is no need to worry 17682 * about flow control. The next packet will go 17683 * through the flow control check in tcp_wput_data(). 17684 */ 17685 /* leftover work from above */ 17686 tcp->tcp_unsent = len; 17687 tcp->tcp_xmit_tail_unsent = len; 17688 17689 return; 17690 } 17691 17692 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 17693 17694 if (snxt == suna) { 17695 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17696 } 17697 17698 /* we have always sent something */ 17699 tcp->tcp_rack_cnt = 0; 17700 17701 tcp->tcp_snxt = snxt + len; 17702 tcp->tcp_rack = tcp->tcp_rnxt; 17703 17704 if ((mp1 = dupb(mp)) == 0) 17705 goto no_memory; 17706 mp->b_prev = (mblk_t *)(uintptr_t)lbolt; 17707 mp->b_next = (mblk_t *)(uintptr_t)snxt; 17708 17709 /* adjust tcp header information */ 17710 tcph = tcp->tcp_tcph; 17711 tcph->th_flags[0] = (TH_ACK|TH_PUSH); 17712 17713 sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 17714 sum = (sum >> 16) + (sum & 0xFFFF); 17715 U16_TO_ABE16(sum, tcph->th_sum); 17716 17717 U32_TO_ABE32(snxt, tcph->th_seq); 17718 17719 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 17720 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 17721 BUMP_LOCAL(tcp->tcp_obsegs); 17722 17723 /* Update the latest receive window size in TCP header. */ 17724 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 17725 tcph->th_win); 17726 17727 tcp->tcp_last_sent_len = (ushort_t)len; 17728 17729 plen = len + tcp->tcp_hdr_len; 17730 17731 if (tcp->tcp_ipversion == IPV4_VERSION) { 17732 tcp->tcp_ipha->ipha_length = htons(plen); 17733 } else { 17734 tcp->tcp_ip6h->ip6_plen = htons(plen - 17735 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 17736 } 17737 17738 /* see if we need to allocate a mblk for the headers */ 17739 hdrlen = tcp->tcp_hdr_len; 17740 rptr = mp1->b_rptr - hdrlen; 17741 db = mp1->b_datap; 17742 if ((db->db_ref != 2) || rptr < db->db_base || 17743 (!OK_32PTR(rptr))) { 17744 /* NOTE: we assume allocb returns an OK_32PTR */ 17745 mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 17746 tcps->tcps_wroff_xtra, BPRI_MED); 17747 if (!mp) { 17748 freemsg(mp1); 17749 goto no_memory; 17750 } 17751 mp->b_cont = mp1; 17752 mp1 = mp; 17753 /* Leave room for Link Level header */ 17754 /* hdrlen = tcp->tcp_hdr_len; */ 17755 rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra]; 17756 mp1->b_wptr = &rptr[hdrlen]; 17757 } 17758 mp1->b_rptr = rptr; 17759 17760 /* Fill in the timestamp option. */ 17761 if (tcp->tcp_snd_ts_ok) { 17762 U32_TO_BE32((uint32_t)lbolt, 17763 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 17764 U32_TO_BE32(tcp->tcp_ts_recent, 17765 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 17766 } else { 17767 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 17768 } 17769 17770 /* copy header into outgoing packet */ 17771 dst = (ipaddr_t *)rptr; 17772 src = (ipaddr_t *)tcp->tcp_iphc; 17773 dst[0] = src[0]; 17774 dst[1] = src[1]; 17775 dst[2] = src[2]; 17776 dst[3] = src[3]; 17777 dst[4] = src[4]; 17778 dst[5] = src[5]; 17779 dst[6] = src[6]; 17780 dst[7] = src[7]; 17781 dst[8] = src[8]; 17782 dst[9] = src[9]; 17783 if (hdrlen -= 40) { 17784 hdrlen >>= 2; 17785 dst += 10; 17786 src += 10; 17787 do { 17788 *dst++ = *src++; 17789 } while (--hdrlen); 17790 } 17791 17792 /* 17793 * Set the ECN info in the TCP header. Note that this 17794 * is not the template header. 17795 */ 17796 if (tcp->tcp_ecn_ok) { 17797 SET_ECT(tcp, rptr); 17798 17799 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 17800 if (tcp->tcp_ecn_echo_on) 17801 tcph->th_flags[0] |= TH_ECE; 17802 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 17803 tcph->th_flags[0] |= TH_CWR; 17804 tcp->tcp_ecn_cwr_sent = B_TRUE; 17805 } 17806 } 17807 17808 if (tcp->tcp_ip_forward_progress) { 17809 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 17810 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 17811 tcp->tcp_ip_forward_progress = B_FALSE; 17812 } 17813 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 17814 tcp_send_data(tcp, tcp->tcp_wq, mp1); 17815 return; 17816 17817 /* 17818 * If we ran out of memory, we pretend to have sent the packet 17819 * and that it was lost on the wire. 17820 */ 17821 no_memory: 17822 return; 17823 17824 slow: 17825 /* leftover work from above */ 17826 tcp->tcp_unsent = len; 17827 tcp->tcp_xmit_tail_unsent = len; 17828 tcp_wput_data(tcp, NULL, B_FALSE); 17829 } 17830 17831 /* 17832 * The function called through squeue to get behind eager's perimeter to 17833 * finish the accept processing. 17834 */ 17835 /* ARGSUSED */ 17836 void 17837 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2) 17838 { 17839 conn_t *connp = (conn_t *)arg; 17840 tcp_t *tcp = connp->conn_tcp; 17841 queue_t *q = tcp->tcp_rq; 17842 mblk_t *mp1; 17843 mblk_t *stropt_mp = mp; 17844 struct stroptions *stropt; 17845 uint_t thwin; 17846 tcp_stack_t *tcps = tcp->tcp_tcps; 17847 17848 /* 17849 * Drop the eager's ref on the listener, that was placed when 17850 * this eager began life in tcp_conn_request. 17851 */ 17852 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 17853 17854 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 17855 /* 17856 * Someone blewoff the eager before we could finish 17857 * the accept. 17858 * 17859 * The only reason eager exists it because we put in 17860 * a ref on it when conn ind went up. We need to send 17861 * a disconnect indication up while the last reference 17862 * on the eager will be dropped by the squeue when we 17863 * return. 17864 */ 17865 ASSERT(tcp->tcp_listener == NULL); 17866 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 17867 struct T_discon_ind *tdi; 17868 17869 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 17870 /* 17871 * Let us reuse the incoming mblk to avoid memory 17872 * allocation failure problems. We know that the 17873 * size of the incoming mblk i.e. stroptions is greater 17874 * than sizeof T_discon_ind. So the reallocb below 17875 * can't fail. 17876 */ 17877 freemsg(mp->b_cont); 17878 mp->b_cont = NULL; 17879 ASSERT(DB_REF(mp) == 1); 17880 mp = reallocb(mp, sizeof (struct T_discon_ind), 17881 B_FALSE); 17882 ASSERT(mp != NULL); 17883 DB_TYPE(mp) = M_PROTO; 17884 ((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND; 17885 tdi = (struct T_discon_ind *)mp->b_rptr; 17886 if (tcp->tcp_issocket) { 17887 tdi->DISCON_reason = ECONNREFUSED; 17888 tdi->SEQ_number = 0; 17889 } else { 17890 tdi->DISCON_reason = ENOPROTOOPT; 17891 tdi->SEQ_number = 17892 tcp->tcp_conn_req_seqnum; 17893 } 17894 mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind); 17895 putnext(q, mp); 17896 } else { 17897 freemsg(mp); 17898 } 17899 if (tcp->tcp_hard_binding) { 17900 tcp->tcp_hard_binding = B_FALSE; 17901 tcp->tcp_hard_bound = B_TRUE; 17902 } 17903 tcp->tcp_detached = B_FALSE; 17904 return; 17905 } 17906 17907 mp1 = stropt_mp->b_cont; 17908 stropt_mp->b_cont = NULL; 17909 ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS); 17910 stropt = (struct stroptions *)stropt_mp->b_rptr; 17911 17912 while (mp1 != NULL) { 17913 mp = mp1; 17914 mp1 = mp1->b_cont; 17915 mp->b_cont = NULL; 17916 tcp->tcp_drop_opt_ack_cnt++; 17917 CALL_IP_WPUT(connp, tcp->tcp_wq, mp); 17918 } 17919 mp = NULL; 17920 17921 /* 17922 * For a loopback connection with tcp_direct_sockfs on, note that 17923 * we don't have to protect tcp_rcv_list yet because synchronous 17924 * streams has not yet been enabled and tcp_fuse_rrw() cannot 17925 * possibly race with us. 17926 */ 17927 17928 /* 17929 * Set the max window size (tcp_rq->q_hiwat) of the acceptor 17930 * properly. This is the first time we know of the acceptor' 17931 * queue. So we do it here. 17932 */ 17933 if (tcp->tcp_rcv_list == NULL) { 17934 /* 17935 * Recv queue is empty, tcp_rwnd should not have changed. 17936 * That means it should be equal to the listener's tcp_rwnd. 17937 */ 17938 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd; 17939 } else { 17940 #ifdef DEBUG 17941 uint_t cnt = 0; 17942 17943 mp1 = tcp->tcp_rcv_list; 17944 while ((mp = mp1) != NULL) { 17945 mp1 = mp->b_next; 17946 cnt += msgdsize(mp); 17947 } 17948 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 17949 #endif 17950 /* There is some data, add them back to get the max. */ 17951 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 17952 } 17953 17954 stropt->so_flags = SO_HIWAT; 17955 stropt->so_hiwat = MAX(q->q_hiwat, tcps->tcps_sth_rcv_hiwat); 17956 17957 stropt->so_flags |= SO_MAXBLK; 17958 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 17959 17960 /* 17961 * This is the first time we run on the correct 17962 * queue after tcp_accept. So fix all the q parameters 17963 * here. 17964 */ 17965 /* Allocate room for SACK options if needed. */ 17966 stropt->so_flags |= SO_WROFF; 17967 if (tcp->tcp_fused) { 17968 ASSERT(tcp->tcp_loopback); 17969 ASSERT(tcp->tcp_loopback_peer != NULL); 17970 /* 17971 * For fused tcp loopback, set the stream head's write 17972 * offset value to zero since we won't be needing any room 17973 * for TCP/IP headers. This would also improve performance 17974 * since it would reduce the amount of work done by kmem. 17975 * Non-fused tcp loopback case is handled separately below. 17976 */ 17977 stropt->so_wroff = 0; 17978 /* 17979 * Record the stream head's high water mark for this endpoint; 17980 * this is used for flow-control purposes in tcp_fuse_output(). 17981 */ 17982 stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat); 17983 /* 17984 * Update the peer's transmit parameters according to 17985 * our recently calculated high water mark value. 17986 */ 17987 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 17988 } else if (tcp->tcp_snd_sack_ok) { 17989 stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 17990 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 17991 } else { 17992 stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 17993 tcps->tcps_wroff_xtra); 17994 } 17995 17996 /* 17997 * If this is endpoint is handling SSL, then reserve extra 17998 * offset and space at the end. 17999 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 18000 * overriding the previous setting. The extra cost of signing and 18001 * encrypting multiple MSS-size records (12 of them with Ethernet), 18002 * instead of a single contiguous one by the stream head 18003 * largely outweighs the statistical reduction of ACKs, when 18004 * applicable. The peer will also save on decyption and verification 18005 * costs. 18006 */ 18007 if (tcp->tcp_kssl_ctx != NULL) { 18008 stropt->so_wroff += SSL3_WROFFSET; 18009 18010 stropt->so_flags |= SO_TAIL; 18011 stropt->so_tail = SSL3_MAX_TAIL_LEN; 18012 18013 stropt->so_maxblk = SSL3_MAX_RECORD_LEN; 18014 } 18015 18016 /* Send the options up */ 18017 putnext(q, stropt_mp); 18018 18019 /* 18020 * Pass up any data and/or a fin that has been received. 18021 * 18022 * Adjust receive window in case it had decreased 18023 * (because there is data <=> tcp_rcv_list != NULL) 18024 * while the connection was detached. Note that 18025 * in case the eager was flow-controlled, w/o this 18026 * code, the rwnd may never open up again! 18027 */ 18028 if (tcp->tcp_rcv_list != NULL) { 18029 /* We drain directly in case of fused tcp loopback */ 18030 if (!tcp->tcp_fused && canputnext(q)) { 18031 tcp->tcp_rwnd = q->q_hiwat; 18032 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 18033 << tcp->tcp_rcv_ws; 18034 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 18035 if (tcp->tcp_state >= TCPS_ESTABLISHED && 18036 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 18037 tcp_xmit_ctl(NULL, 18038 tcp, (tcp->tcp_swnd == 0) ? 18039 tcp->tcp_suna : tcp->tcp_snxt, 18040 tcp->tcp_rnxt, TH_ACK); 18041 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 18042 } 18043 18044 } 18045 (void) tcp_rcv_drain(q, tcp); 18046 18047 /* 18048 * For fused tcp loopback, back-enable peer endpoint 18049 * if it's currently flow-controlled. 18050 */ 18051 if (tcp->tcp_fused) { 18052 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 18053 18054 ASSERT(peer_tcp != NULL); 18055 ASSERT(peer_tcp->tcp_fused); 18056 /* 18057 * In order to change the peer's tcp_flow_stopped, 18058 * we need to take locks for both end points. The 18059 * highest address is taken first. 18060 */ 18061 if (peer_tcp > tcp) { 18062 mutex_enter(&peer_tcp->tcp_non_sq_lock); 18063 mutex_enter(&tcp->tcp_non_sq_lock); 18064 } else { 18065 mutex_enter(&tcp->tcp_non_sq_lock); 18066 mutex_enter(&peer_tcp->tcp_non_sq_lock); 18067 } 18068 if (peer_tcp->tcp_flow_stopped) { 18069 tcp_clrqfull(peer_tcp); 18070 TCP_STAT(tcps, tcp_fusion_backenabled); 18071 } 18072 mutex_exit(&peer_tcp->tcp_non_sq_lock); 18073 mutex_exit(&tcp->tcp_non_sq_lock); 18074 } 18075 } 18076 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 18077 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 18078 mp = mi_tpi_ordrel_ind(); 18079 if (mp) { 18080 tcp->tcp_ordrel_done = B_TRUE; 18081 putnext(q, mp); 18082 if (tcp->tcp_deferred_clean_death) { 18083 /* 18084 * tcp_clean_death was deferred 18085 * for T_ORDREL_IND - do it now 18086 */ 18087 (void) tcp_clean_death(tcp, 18088 tcp->tcp_client_errno, 21); 18089 tcp->tcp_deferred_clean_death = B_FALSE; 18090 } 18091 } else { 18092 /* 18093 * Run the orderly release in the 18094 * service routine. 18095 */ 18096 qenable(q); 18097 } 18098 } 18099 if (tcp->tcp_hard_binding) { 18100 tcp->tcp_hard_binding = B_FALSE; 18101 tcp->tcp_hard_bound = B_TRUE; 18102 } 18103 18104 tcp->tcp_detached = B_FALSE; 18105 18106 /* We can enable synchronous streams now */ 18107 if (tcp->tcp_fused) { 18108 tcp_fuse_syncstr_enable_pair(tcp); 18109 } 18110 18111 if (tcp->tcp_ka_enabled) { 18112 tcp->tcp_ka_last_intrvl = 0; 18113 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 18114 MSEC_TO_TICK(tcp->tcp_ka_interval)); 18115 } 18116 18117 /* 18118 * At this point, eager is fully established and will 18119 * have the following references - 18120 * 18121 * 2 references for connection to exist (1 for TCP and 1 for IP). 18122 * 1 reference for the squeue which will be dropped by the squeue as 18123 * soon as this function returns. 18124 * There will be 1 additonal reference for being in classifier 18125 * hash list provided something bad hasn't happened. 18126 */ 18127 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 18128 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 18129 } 18130 18131 /* 18132 * The function called through squeue to get behind listener's perimeter to 18133 * send a deffered conn_ind. 18134 */ 18135 /* ARGSUSED */ 18136 void 18137 tcp_send_pending(void *arg, mblk_t *mp, void *arg2) 18138 { 18139 conn_t *connp = (conn_t *)arg; 18140 tcp_t *listener = connp->conn_tcp; 18141 18142 if (listener->tcp_state == TCPS_CLOSED || 18143 TCP_IS_DETACHED(listener)) { 18144 /* 18145 * If listener has closed, it would have caused a 18146 * a cleanup/blowoff to happen for the eager. 18147 */ 18148 tcp_t *tcp; 18149 struct T_conn_ind *conn_ind; 18150 18151 conn_ind = (struct T_conn_ind *)mp->b_rptr; 18152 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 18153 conn_ind->OPT_length); 18154 /* 18155 * We need to drop the ref on eager that was put 18156 * tcp_rput_data() before trying to send the conn_ind 18157 * to listener. The conn_ind was deferred in tcp_send_conn_ind 18158 * and tcp_wput_accept() is sending this deferred conn_ind but 18159 * listener is closed so we drop the ref. 18160 */ 18161 CONN_DEC_REF(tcp->tcp_connp); 18162 freemsg(mp); 18163 return; 18164 } 18165 putnext(listener->tcp_rq, mp); 18166 } 18167 18168 18169 /* 18170 * This is the STREAMS entry point for T_CONN_RES coming down on 18171 * Acceptor STREAM when sockfs listener does accept processing. 18172 * Read the block comment on top of tcp_conn_request(). 18173 */ 18174 void 18175 tcp_wput_accept(queue_t *q, mblk_t *mp) 18176 { 18177 queue_t *rq = RD(q); 18178 struct T_conn_res *conn_res; 18179 tcp_t *eager; 18180 tcp_t *listener; 18181 struct T_ok_ack *ok; 18182 t_scalar_t PRIM_type; 18183 mblk_t *opt_mp; 18184 conn_t *econnp; 18185 18186 ASSERT(DB_TYPE(mp) == M_PROTO); 18187 18188 conn_res = (struct T_conn_res *)mp->b_rptr; 18189 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 18190 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 18191 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 18192 if (mp != NULL) 18193 putnext(rq, mp); 18194 return; 18195 } 18196 switch (conn_res->PRIM_type) { 18197 case O_T_CONN_RES: 18198 case T_CONN_RES: 18199 /* 18200 * We pass up an err ack if allocb fails. This will 18201 * cause sockfs to issue a T_DISCON_REQ which will cause 18202 * tcp_eager_blowoff to be called. sockfs will then call 18203 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 18204 * we need to do the allocb up here because we have to 18205 * make sure rq->q_qinfo->qi_qclose still points to the 18206 * correct function (tcpclose_accept) in case allocb 18207 * fails. 18208 */ 18209 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 18210 if (opt_mp == NULL) { 18211 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 18212 if (mp != NULL) 18213 putnext(rq, mp); 18214 return; 18215 } 18216 18217 bcopy(mp->b_rptr + conn_res->OPT_offset, 18218 &eager, conn_res->OPT_length); 18219 PRIM_type = conn_res->PRIM_type; 18220 mp->b_datap->db_type = M_PCPROTO; 18221 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 18222 ok = (struct T_ok_ack *)mp->b_rptr; 18223 ok->PRIM_type = T_OK_ACK; 18224 ok->CORRECT_prim = PRIM_type; 18225 econnp = eager->tcp_connp; 18226 econnp->conn_dev = (dev_t)q->q_ptr; 18227 eager->tcp_rq = rq; 18228 eager->tcp_wq = q; 18229 rq->q_ptr = econnp; 18230 rq->q_qinfo = &tcp_rinit; 18231 q->q_ptr = econnp; 18232 q->q_qinfo = &tcp_winit; 18233 listener = eager->tcp_listener; 18234 eager->tcp_issocket = B_TRUE; 18235 18236 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 18237 econnp->conn_allzones = listener->tcp_connp->conn_allzones; 18238 ASSERT(econnp->conn_netstack == 18239 listener->tcp_connp->conn_netstack); 18240 ASSERT(eager->tcp_tcps == listener->tcp_tcps); 18241 18242 /* Put the ref for IP */ 18243 CONN_INC_REF(econnp); 18244 18245 /* 18246 * We should have minimum of 3 references on the conn 18247 * at this point. One each for TCP and IP and one for 18248 * the T_conn_ind that was sent up when the 3-way handshake 18249 * completed. In the normal case we would also have another 18250 * reference (making a total of 4) for the conn being in the 18251 * classifier hash list. However the eager could have received 18252 * an RST subsequently and tcp_closei_local could have removed 18253 * the eager from the classifier hash list, hence we can't 18254 * assert that reference. 18255 */ 18256 ASSERT(econnp->conn_ref >= 3); 18257 18258 /* 18259 * Send the new local address also up to sockfs. There 18260 * should already be enough space in the mp that came 18261 * down from soaccept(). 18262 */ 18263 if (eager->tcp_family == AF_INET) { 18264 sin_t *sin; 18265 18266 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18267 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 18268 sin = (sin_t *)mp->b_wptr; 18269 mp->b_wptr += sizeof (sin_t); 18270 sin->sin_family = AF_INET; 18271 sin->sin_port = eager->tcp_lport; 18272 sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src; 18273 } else { 18274 sin6_t *sin6; 18275 18276 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18277 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 18278 sin6 = (sin6_t *)mp->b_wptr; 18279 mp->b_wptr += sizeof (sin6_t); 18280 sin6->sin6_family = AF_INET6; 18281 sin6->sin6_port = eager->tcp_lport; 18282 if (eager->tcp_ipversion == IPV4_VERSION) { 18283 sin6->sin6_flowinfo = 0; 18284 IN6_IPADDR_TO_V4MAPPED( 18285 eager->tcp_ipha->ipha_src, 18286 &sin6->sin6_addr); 18287 } else { 18288 ASSERT(eager->tcp_ip6h != NULL); 18289 sin6->sin6_flowinfo = 18290 eager->tcp_ip6h->ip6_vcf & 18291 ~IPV6_VERS_AND_FLOW_MASK; 18292 sin6->sin6_addr = eager->tcp_ip6h->ip6_src; 18293 } 18294 sin6->sin6_scope_id = 0; 18295 sin6->__sin6_src_id = 0; 18296 } 18297 18298 putnext(rq, mp); 18299 18300 opt_mp->b_datap->db_type = M_SETOPTS; 18301 opt_mp->b_wptr += sizeof (struct stroptions); 18302 18303 /* 18304 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 18305 * from listener to acceptor. The message is chained on the 18306 * bind_mp which tcp_rput_other will send down to IP. 18307 */ 18308 if (listener->tcp_bound_if != 0) { 18309 /* allocate optmgmt req */ 18310 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 18311 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 18312 sizeof (int)); 18313 if (mp != NULL) 18314 linkb(opt_mp, mp); 18315 } 18316 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 18317 uint_t on = 1; 18318 18319 /* allocate optmgmt req */ 18320 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 18321 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 18322 if (mp != NULL) 18323 linkb(opt_mp, mp); 18324 } 18325 18326 18327 mutex_enter(&listener->tcp_eager_lock); 18328 18329 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 18330 18331 tcp_t *tail; 18332 tcp_t *tcp; 18333 mblk_t *mp1; 18334 18335 tcp = listener->tcp_eager_prev_q0; 18336 /* 18337 * listener->tcp_eager_prev_q0 points to the TAIL of the 18338 * deferred T_conn_ind queue. We need to get to the head 18339 * of the queue in order to send up T_conn_ind the same 18340 * order as how the 3WHS is completed. 18341 */ 18342 while (tcp != listener) { 18343 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 18344 !tcp->tcp_kssl_pending) 18345 break; 18346 else 18347 tcp = tcp->tcp_eager_prev_q0; 18348 } 18349 /* None of the pending eagers can be sent up now */ 18350 if (tcp == listener) 18351 goto no_more_eagers; 18352 18353 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 18354 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 18355 /* Move from q0 to q */ 18356 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 18357 listener->tcp_conn_req_cnt_q0--; 18358 listener->tcp_conn_req_cnt_q++; 18359 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 18360 tcp->tcp_eager_prev_q0; 18361 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 18362 tcp->tcp_eager_next_q0; 18363 tcp->tcp_eager_prev_q0 = NULL; 18364 tcp->tcp_eager_next_q0 = NULL; 18365 tcp->tcp_conn_def_q0 = B_FALSE; 18366 18367 /* Make sure the tcp isn't in the list of droppables */ 18368 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 18369 tcp->tcp_eager_prev_drop_q0 == NULL); 18370 18371 /* 18372 * Insert at end of the queue because sockfs sends 18373 * down T_CONN_RES in chronological order. Leaving 18374 * the older conn indications at front of the queue 18375 * helps reducing search time. 18376 */ 18377 tail = listener->tcp_eager_last_q; 18378 if (tail != NULL) { 18379 tail->tcp_eager_next_q = tcp; 18380 } else { 18381 listener->tcp_eager_next_q = tcp; 18382 } 18383 listener->tcp_eager_last_q = tcp; 18384 tcp->tcp_eager_next_q = NULL; 18385 18386 /* Need to get inside the listener perimeter */ 18387 CONN_INC_REF(listener->tcp_connp); 18388 squeue_fill(listener->tcp_connp->conn_sqp, mp1, 18389 tcp_send_pending, listener->tcp_connp, 18390 SQTAG_TCP_SEND_PENDING); 18391 } 18392 no_more_eagers: 18393 tcp_eager_unlink(eager); 18394 mutex_exit(&listener->tcp_eager_lock); 18395 18396 /* 18397 * At this point, the eager is detached from the listener 18398 * but we still have an extra refs on eager (apart from the 18399 * usual tcp references). The ref was placed in tcp_rput_data 18400 * before sending the conn_ind in tcp_send_conn_ind. 18401 * The ref will be dropped in tcp_accept_finish(). 18402 */ 18403 squeue_enter_nodrain(econnp->conn_sqp, opt_mp, 18404 tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0); 18405 return; 18406 default: 18407 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 18408 if (mp != NULL) 18409 putnext(rq, mp); 18410 return; 18411 } 18412 } 18413 18414 void 18415 tcp_wput(queue_t *q, mblk_t *mp) 18416 { 18417 conn_t *connp = Q_TO_CONN(q); 18418 tcp_t *tcp; 18419 void (*output_proc)(); 18420 t_scalar_t type; 18421 uchar_t *rptr; 18422 struct iocblk *iocp; 18423 uint32_t msize; 18424 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 18425 18426 ASSERT(connp->conn_ref >= 2); 18427 18428 switch (DB_TYPE(mp)) { 18429 case M_DATA: 18430 tcp = connp->conn_tcp; 18431 ASSERT(tcp != NULL); 18432 18433 msize = msgdsize(mp); 18434 18435 mutex_enter(&tcp->tcp_non_sq_lock); 18436 tcp->tcp_squeue_bytes += msize; 18437 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 18438 tcp_setqfull(tcp); 18439 } 18440 mutex_exit(&tcp->tcp_non_sq_lock); 18441 18442 CONN_INC_REF(connp); 18443 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 18444 tcp_output, connp, SQTAG_TCP_OUTPUT); 18445 return; 18446 case M_PROTO: 18447 case M_PCPROTO: 18448 /* 18449 * if it is a snmp message, don't get behind the squeue 18450 */ 18451 tcp = connp->conn_tcp; 18452 rptr = mp->b_rptr; 18453 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 18454 type = ((union T_primitives *)rptr)->type; 18455 } else { 18456 if (tcp->tcp_debug) { 18457 (void) strlog(TCP_MOD_ID, 0, 1, 18458 SL_ERROR|SL_TRACE, 18459 "tcp_wput_proto, dropping one..."); 18460 } 18461 freemsg(mp); 18462 return; 18463 } 18464 if (type == T_SVR4_OPTMGMT_REQ) { 18465 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 18466 if (snmpcom_req(q, mp, tcp_snmp_set, tcp_snmp_get, 18467 cr)) { 18468 /* 18469 * This was a SNMP request 18470 */ 18471 return; 18472 } else { 18473 output_proc = tcp_wput_proto; 18474 } 18475 } else { 18476 output_proc = tcp_wput_proto; 18477 } 18478 break; 18479 case M_IOCTL: 18480 /* 18481 * Most ioctls can be processed right away without going via 18482 * squeues - process them right here. Those that do require 18483 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK) 18484 * are processed by tcp_wput_ioctl(). 18485 */ 18486 iocp = (struct iocblk *)mp->b_rptr; 18487 tcp = connp->conn_tcp; 18488 18489 switch (iocp->ioc_cmd) { 18490 case TCP_IOC_ABORT_CONN: 18491 tcp_ioctl_abort_conn(q, mp); 18492 return; 18493 case TI_GETPEERNAME: 18494 if (tcp->tcp_state < TCPS_SYN_RCVD) { 18495 iocp->ioc_error = ENOTCONN; 18496 iocp->ioc_count = 0; 18497 mp->b_datap->db_type = M_IOCACK; 18498 qreply(q, mp); 18499 return; 18500 } 18501 /* FALLTHRU */ 18502 case TI_GETMYNAME: 18503 mi_copyin(q, mp, NULL, 18504 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 18505 return; 18506 case ND_SET: 18507 /* nd_getset does the necessary checks */ 18508 case ND_GET: 18509 if (!nd_getset(q, tcps->tcps_g_nd, mp)) { 18510 CALL_IP_WPUT(connp, q, mp); 18511 return; 18512 } 18513 qreply(q, mp); 18514 return; 18515 case TCP_IOC_DEFAULT_Q: 18516 /* 18517 * Wants to be the default wq. Check the credentials 18518 * first, the rest is executed via squeue. 18519 */ 18520 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 18521 iocp->ioc_error = EPERM; 18522 iocp->ioc_count = 0; 18523 mp->b_datap->db_type = M_IOCACK; 18524 qreply(q, mp); 18525 return; 18526 } 18527 output_proc = tcp_wput_ioctl; 18528 break; 18529 default: 18530 output_proc = tcp_wput_ioctl; 18531 break; 18532 } 18533 break; 18534 default: 18535 output_proc = tcp_wput_nondata; 18536 break; 18537 } 18538 18539 CONN_INC_REF(connp); 18540 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 18541 output_proc, connp, SQTAG_TCP_WPUT_OTHER); 18542 } 18543 18544 /* 18545 * Initial STREAMS write side put() procedure for sockets. It tries to 18546 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 18547 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 18548 * are handled by tcp_wput() as usual. 18549 * 18550 * All further messages will also be handled by tcp_wput() because we cannot 18551 * be sure that the above short cut is safe later. 18552 */ 18553 static void 18554 tcp_wput_sock(queue_t *wq, mblk_t *mp) 18555 { 18556 conn_t *connp = Q_TO_CONN(wq); 18557 tcp_t *tcp = connp->conn_tcp; 18558 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 18559 18560 ASSERT(wq->q_qinfo == &tcp_sock_winit); 18561 wq->q_qinfo = &tcp_winit; 18562 18563 ASSERT(IPCL_IS_TCP(connp)); 18564 ASSERT(TCP_IS_SOCKET(tcp)); 18565 18566 if (DB_TYPE(mp) == M_PCPROTO && 18567 MBLKL(mp) == sizeof (struct T_capability_req) && 18568 car->PRIM_type == T_CAPABILITY_REQ) { 18569 tcp_capability_req(tcp, mp); 18570 return; 18571 } 18572 18573 tcp_wput(wq, mp); 18574 } 18575 18576 static boolean_t 18577 tcp_zcopy_check(tcp_t *tcp) 18578 { 18579 conn_t *connp = tcp->tcp_connp; 18580 ire_t *ire; 18581 boolean_t zc_enabled = B_FALSE; 18582 tcp_stack_t *tcps = tcp->tcp_tcps; 18583 18584 if (do_tcpzcopy == 2) 18585 zc_enabled = B_TRUE; 18586 else if (tcp->tcp_ipversion == IPV4_VERSION && 18587 IPCL_IS_CONNECTED(connp) && 18588 (connp->conn_flags & IPCL_CHECK_POLICY) == 0 && 18589 connp->conn_dontroute == 0 && 18590 !connp->conn_nexthop_set && 18591 connp->conn_xmit_if_ill == NULL && 18592 connp->conn_nofailover_ill == NULL && 18593 do_tcpzcopy == 1) { 18594 /* 18595 * the checks above closely resemble the fast path checks 18596 * in tcp_send_data(). 18597 */ 18598 mutex_enter(&connp->conn_lock); 18599 ire = connp->conn_ire_cache; 18600 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18601 if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18602 IRE_REFHOLD(ire); 18603 if (ire->ire_stq != NULL) { 18604 ill_t *ill = (ill_t *)ire->ire_stq->q_ptr; 18605 18606 zc_enabled = ill && (ill->ill_capabilities & 18607 ILL_CAPAB_ZEROCOPY) && 18608 (ill->ill_zerocopy_capab-> 18609 ill_zerocopy_flags != 0); 18610 } 18611 IRE_REFRELE(ire); 18612 } 18613 mutex_exit(&connp->conn_lock); 18614 } 18615 tcp->tcp_snd_zcopy_on = zc_enabled; 18616 if (!TCP_IS_DETACHED(tcp)) { 18617 if (zc_enabled) { 18618 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE); 18619 TCP_STAT(tcps, tcp_zcopy_on); 18620 } else { 18621 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 18622 TCP_STAT(tcps, tcp_zcopy_off); 18623 } 18624 } 18625 return (zc_enabled); 18626 } 18627 18628 static mblk_t * 18629 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp) 18630 { 18631 tcp_stack_t *tcps = tcp->tcp_tcps; 18632 18633 if (do_tcpzcopy == 2) 18634 return (bp); 18635 else if (tcp->tcp_snd_zcopy_on) { 18636 tcp->tcp_snd_zcopy_on = B_FALSE; 18637 if (!TCP_IS_DETACHED(tcp)) { 18638 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 18639 TCP_STAT(tcps, tcp_zcopy_disable); 18640 } 18641 } 18642 return (tcp_zcopy_backoff(tcp, bp, 0)); 18643 } 18644 18645 /* 18646 * Backoff from a zero-copy mblk by copying data to a new mblk and freeing 18647 * the original desballoca'ed segmapped mblk. 18648 */ 18649 static mblk_t * 18650 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist) 18651 { 18652 mblk_t *head, *tail, *nbp; 18653 tcp_stack_t *tcps = tcp->tcp_tcps; 18654 18655 if (IS_VMLOANED_MBLK(bp)) { 18656 TCP_STAT(tcps, tcp_zcopy_backoff); 18657 if ((head = copyb(bp)) == NULL) { 18658 /* fail to backoff; leave it for the next backoff */ 18659 tcp->tcp_xmit_zc_clean = B_FALSE; 18660 return (bp); 18661 } 18662 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18663 if (fix_xmitlist) 18664 tcp_zcopy_notify(tcp); 18665 else 18666 head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18667 } 18668 nbp = bp->b_cont; 18669 if (fix_xmitlist) { 18670 head->b_prev = bp->b_prev; 18671 head->b_next = bp->b_next; 18672 if (tcp->tcp_xmit_tail == bp) 18673 tcp->tcp_xmit_tail = head; 18674 } 18675 bp->b_next = NULL; 18676 bp->b_prev = NULL; 18677 freeb(bp); 18678 } else { 18679 head = bp; 18680 nbp = bp->b_cont; 18681 } 18682 tail = head; 18683 while (nbp) { 18684 if (IS_VMLOANED_MBLK(nbp)) { 18685 TCP_STAT(tcps, tcp_zcopy_backoff); 18686 if ((tail->b_cont = copyb(nbp)) == NULL) { 18687 tcp->tcp_xmit_zc_clean = B_FALSE; 18688 tail->b_cont = nbp; 18689 return (head); 18690 } 18691 tail = tail->b_cont; 18692 if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18693 if (fix_xmitlist) 18694 tcp_zcopy_notify(tcp); 18695 else 18696 tail->b_datap->db_struioflag |= 18697 STRUIO_ZCNOTIFY; 18698 } 18699 bp = nbp; 18700 nbp = nbp->b_cont; 18701 if (fix_xmitlist) { 18702 tail->b_prev = bp->b_prev; 18703 tail->b_next = bp->b_next; 18704 if (tcp->tcp_xmit_tail == bp) 18705 tcp->tcp_xmit_tail = tail; 18706 } 18707 bp->b_next = NULL; 18708 bp->b_prev = NULL; 18709 freeb(bp); 18710 } else { 18711 tail->b_cont = nbp; 18712 tail = nbp; 18713 nbp = nbp->b_cont; 18714 } 18715 } 18716 if (fix_xmitlist) { 18717 tcp->tcp_xmit_last = tail; 18718 tcp->tcp_xmit_zc_clean = B_TRUE; 18719 } 18720 return (head); 18721 } 18722 18723 static void 18724 tcp_zcopy_notify(tcp_t *tcp) 18725 { 18726 struct stdata *stp; 18727 18728 if (tcp->tcp_detached) 18729 return; 18730 stp = STREAM(tcp->tcp_rq); 18731 mutex_enter(&stp->sd_lock); 18732 stp->sd_flag |= STZCNOTIFY; 18733 cv_broadcast(&stp->sd_zcopy_wait); 18734 mutex_exit(&stp->sd_lock); 18735 } 18736 18737 static boolean_t 18738 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep) 18739 { 18740 ire_t *ire; 18741 conn_t *connp = tcp->tcp_connp; 18742 tcp_stack_t *tcps = tcp->tcp_tcps; 18743 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 18744 18745 mutex_enter(&connp->conn_lock); 18746 ire = connp->conn_ire_cache; 18747 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18748 18749 if ((ire != NULL) && 18750 (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) && 18751 IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) && 18752 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18753 IRE_REFHOLD(ire); 18754 mutex_exit(&connp->conn_lock); 18755 } else { 18756 boolean_t cached = B_FALSE; 18757 ts_label_t *tsl; 18758 18759 /* force a recheck later on */ 18760 tcp->tcp_ire_ill_check_done = B_FALSE; 18761 18762 TCP_DBGSTAT(tcps, tcp_ire_null1); 18763 connp->conn_ire_cache = NULL; 18764 mutex_exit(&connp->conn_lock); 18765 18766 if (ire != NULL) 18767 IRE_REFRELE_NOTR(ire); 18768 18769 tsl = crgetlabel(CONN_CRED(connp)); 18770 ire = (dst ? 18771 ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) : 18772 ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst, 18773 connp->conn_zoneid, tsl, ipst)); 18774 18775 if (ire == NULL) { 18776 TCP_STAT(tcps, tcp_ire_null); 18777 return (B_FALSE); 18778 } 18779 18780 IRE_REFHOLD_NOTR(ire); 18781 /* 18782 * Since we are inside the squeue, there cannot be another 18783 * thread in TCP trying to set the conn_ire_cache now. The 18784 * check for IRE_MARK_CONDEMNED ensures that an interface 18785 * unplumb thread has not yet started cleaning up the conns. 18786 * Hence we don't need to grab the conn lock. 18787 */ 18788 if (CONN_CACHE_IRE(connp)) { 18789 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 18790 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18791 TCP_CHECK_IREINFO(tcp, ire); 18792 connp->conn_ire_cache = ire; 18793 cached = B_TRUE; 18794 } 18795 rw_exit(&ire->ire_bucket->irb_lock); 18796 } 18797 18798 /* 18799 * We can continue to use the ire but since it was 18800 * not cached, we should drop the extra reference. 18801 */ 18802 if (!cached) 18803 IRE_REFRELE_NOTR(ire); 18804 18805 /* 18806 * Rampart note: no need to select a new label here, since 18807 * labels are not allowed to change during the life of a TCP 18808 * connection. 18809 */ 18810 } 18811 18812 *irep = ire; 18813 18814 return (B_TRUE); 18815 } 18816 18817 /* 18818 * Called from tcp_send() or tcp_send_data() to find workable IRE. 18819 * 18820 * 0 = success; 18821 * 1 = failed to find ire and ill. 18822 */ 18823 static boolean_t 18824 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp) 18825 { 18826 ipha_t *ipha; 18827 ipaddr_t dst; 18828 ire_t *ire; 18829 ill_t *ill; 18830 conn_t *connp = tcp->tcp_connp; 18831 mblk_t *ire_fp_mp; 18832 tcp_stack_t *tcps = tcp->tcp_tcps; 18833 18834 if (mp != NULL) 18835 ipha = (ipha_t *)mp->b_rptr; 18836 else 18837 ipha = tcp->tcp_ipha; 18838 dst = ipha->ipha_dst; 18839 18840 if (!tcp_send_find_ire(tcp, &dst, &ire)) 18841 return (B_FALSE); 18842 18843 if ((ire->ire_flags & RTF_MULTIRT) || 18844 (ire->ire_stq == NULL) || 18845 (ire->ire_nce == NULL) || 18846 ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) || 18847 ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) || 18848 MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) { 18849 TCP_STAT(tcps, tcp_ip_ire_send); 18850 IRE_REFRELE(ire); 18851 return (B_FALSE); 18852 } 18853 18854 ill = ire_to_ill(ire); 18855 if (connp->conn_outgoing_ill != NULL) { 18856 ill_t *conn_outgoing_ill = NULL; 18857 /* 18858 * Choose a good ill in the group to send the packets on. 18859 */ 18860 ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill); 18861 ill = ire_to_ill(ire); 18862 } 18863 ASSERT(ill != NULL); 18864 18865 if (!tcp->tcp_ire_ill_check_done) { 18866 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 18867 tcp->tcp_ire_ill_check_done = B_TRUE; 18868 } 18869 18870 *irep = ire; 18871 *illp = ill; 18872 18873 return (B_TRUE); 18874 } 18875 18876 static void 18877 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp) 18878 { 18879 ipha_t *ipha; 18880 ipaddr_t src; 18881 ipaddr_t dst; 18882 uint32_t cksum; 18883 ire_t *ire; 18884 uint16_t *up; 18885 ill_t *ill; 18886 conn_t *connp = tcp->tcp_connp; 18887 uint32_t hcksum_txflags = 0; 18888 mblk_t *ire_fp_mp; 18889 uint_t ire_fp_mp_len; 18890 tcp_stack_t *tcps = tcp->tcp_tcps; 18891 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 18892 18893 ASSERT(DB_TYPE(mp) == M_DATA); 18894 18895 if (DB_CRED(mp) == NULL) 18896 mblk_setcred(mp, CONN_CRED(connp)); 18897 18898 ipha = (ipha_t *)mp->b_rptr; 18899 src = ipha->ipha_src; 18900 dst = ipha->ipha_dst; 18901 18902 /* 18903 * Drop off fast path for IPv6 and also if options are present or 18904 * we need to resolve a TS label. 18905 */ 18906 if (tcp->tcp_ipversion != IPV4_VERSION || 18907 !IPCL_IS_CONNECTED(connp) || 18908 !CONN_IS_LSO_MD_FASTPATH(connp) || 18909 (connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 18910 !connp->conn_ulp_labeled || 18911 ipha->ipha_ident == IP_HDR_INCLUDED || 18912 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 18913 IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 18914 if (tcp->tcp_snd_zcopy_aware) 18915 mp = tcp_zcopy_disable(tcp, mp); 18916 TCP_STAT(tcps, tcp_ip_send); 18917 CALL_IP_WPUT(connp, q, mp); 18918 return; 18919 } 18920 18921 if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) { 18922 if (tcp->tcp_snd_zcopy_aware) 18923 mp = tcp_zcopy_backoff(tcp, mp, 0); 18924 CALL_IP_WPUT(connp, q, mp); 18925 return; 18926 } 18927 ire_fp_mp = ire->ire_nce->nce_fp_mp; 18928 ire_fp_mp_len = MBLKL(ire_fp_mp); 18929 18930 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 18931 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 18932 #ifndef _BIG_ENDIAN 18933 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 18934 #endif 18935 18936 /* 18937 * Check to see if we need to re-enable LSO/MDT for this connection 18938 * because it was previously disabled due to changes in the ill; 18939 * note that by doing it here, this re-enabling only applies when 18940 * the packet is not dispatched through CALL_IP_WPUT(). 18941 * 18942 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath 18943 * case, since that's how we ended up here. For IPv6, we do the 18944 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue. 18945 */ 18946 if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) { 18947 /* 18948 * Restore LSO for this connection, so that next time around 18949 * it is eligible to go through tcp_lsosend() path again. 18950 */ 18951 TCP_STAT(tcps, tcp_lso_enabled); 18952 tcp->tcp_lso = B_TRUE; 18953 ip1dbg(("tcp_send_data: reenabling LSO for connp %p on " 18954 "interface %s\n", (void *)connp, ill->ill_name)); 18955 } else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) { 18956 /* 18957 * Restore MDT for this connection, so that next time around 18958 * it is eligible to go through tcp_multisend() path again. 18959 */ 18960 TCP_STAT(tcps, tcp_mdt_conn_resumed1); 18961 tcp->tcp_mdt = B_TRUE; 18962 ip1dbg(("tcp_send_data: reenabling MDT for connp %p on " 18963 "interface %s\n", (void *)connp, ill->ill_name)); 18964 } 18965 18966 if (tcp->tcp_snd_zcopy_aware) { 18967 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 18968 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 18969 mp = tcp_zcopy_disable(tcp, mp); 18970 /* 18971 * we shouldn't need to reset ipha as the mp containing 18972 * ipha should never be a zero-copy mp. 18973 */ 18974 } 18975 18976 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 18977 ASSERT(ill->ill_hcksum_capab != NULL); 18978 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 18979 } 18980 18981 /* pseudo-header checksum (do it in parts for IP header checksum) */ 18982 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 18983 18984 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 18985 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 18986 18987 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 18988 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 18989 18990 /* Software checksum? */ 18991 if (DB_CKSUMFLAGS(mp) == 0) { 18992 TCP_STAT(tcps, tcp_out_sw_cksum); 18993 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 18994 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 18995 } 18996 18997 ipha->ipha_fragment_offset_and_flags |= 18998 (uint32_t)htons(ire->ire_frag_flag); 18999 19000 /* Calculate IP header checksum if hardware isn't capable */ 19001 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 19002 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 19003 ((uint16_t *)ipha)[4]); 19004 } 19005 19006 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 19007 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 19008 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 19009 19010 UPDATE_OB_PKT_COUNT(ire); 19011 ire->ire_last_used_time = lbolt; 19012 19013 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 19014 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 19015 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 19016 ntohs(ipha->ipha_length)); 19017 19018 if (ILL_DLS_CAPABLE(ill)) { 19019 /* 19020 * Send the packet directly to DLD, where it may be queued 19021 * depending on the availability of transmit resources at 19022 * the media layer. 19023 */ 19024 IP_DLS_ILL_TX(ill, ipha, mp, ipst); 19025 } else { 19026 ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr; 19027 DTRACE_PROBE4(ip4__physical__out__start, 19028 ill_t *, NULL, ill_t *, out_ill, 19029 ipha_t *, ipha, mblk_t *, mp); 19030 FW_HOOKS(ipst->ips_ip4_physical_out_event, 19031 ipst->ips_ipv4firewall_physical_out, 19032 NULL, out_ill, ipha, mp, mp, ipst); 19033 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 19034 if (mp != NULL) 19035 putnext(ire->ire_stq, mp); 19036 } 19037 IRE_REFRELE(ire); 19038 } 19039 19040 /* 19041 * This handles the case when the receiver has shrunk its win. Per RFC 1122 19042 * if the receiver shrinks the window, i.e. moves the right window to the 19043 * left, the we should not send new data, but should retransmit normally the 19044 * old unacked data between suna and suna + swnd. We might has sent data 19045 * that is now outside the new window, pretend that we didn't send it. 19046 */ 19047 static void 19048 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 19049 { 19050 uint32_t snxt = tcp->tcp_snxt; 19051 mblk_t *xmit_tail; 19052 int32_t offset; 19053 19054 ASSERT(shrunk_count > 0); 19055 19056 /* Pretend we didn't send the data outside the window */ 19057 snxt -= shrunk_count; 19058 19059 /* Get the mblk and the offset in it per the shrunk window */ 19060 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 19061 19062 ASSERT(xmit_tail != NULL); 19063 19064 /* Reset all the values per the now shrunk window */ 19065 tcp->tcp_snxt = snxt; 19066 tcp->tcp_xmit_tail = xmit_tail; 19067 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr - 19068 offset; 19069 tcp->tcp_unsent += shrunk_count; 19070 19071 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 19072 /* 19073 * Make sure the timer is running so that we will probe a zero 19074 * window. 19075 */ 19076 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19077 } 19078 19079 19080 /* 19081 * The TCP normal data output path. 19082 * NOTE: the logic of the fast path is duplicated from this function. 19083 */ 19084 static void 19085 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 19086 { 19087 int len; 19088 mblk_t *local_time; 19089 mblk_t *mp1; 19090 uint32_t snxt; 19091 int tail_unsent; 19092 int tcpstate; 19093 int usable = 0; 19094 mblk_t *xmit_tail; 19095 queue_t *q = tcp->tcp_wq; 19096 int32_t mss; 19097 int32_t num_sack_blk = 0; 19098 int32_t tcp_hdr_len; 19099 int32_t tcp_tcp_hdr_len; 19100 int mdt_thres; 19101 int rc; 19102 tcp_stack_t *tcps = tcp->tcp_tcps; 19103 ip_stack_t *ipst; 19104 19105 tcpstate = tcp->tcp_state; 19106 if (mp == NULL) { 19107 /* 19108 * tcp_wput_data() with NULL mp should only be called when 19109 * there is unsent data. 19110 */ 19111 ASSERT(tcp->tcp_unsent > 0); 19112 /* Really tacky... but we need this for detached closes. */ 19113 len = tcp->tcp_unsent; 19114 goto data_null; 19115 } 19116 19117 #if CCS_STATS 19118 wrw_stats.tot.count++; 19119 wrw_stats.tot.bytes += msgdsize(mp); 19120 #endif 19121 ASSERT(mp->b_datap->db_type == M_DATA); 19122 /* 19123 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 19124 * or before a connection attempt has begun. 19125 */ 19126 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 19127 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 19128 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 19129 #ifdef DEBUG 19130 cmn_err(CE_WARN, 19131 "tcp_wput_data: data after ordrel, %s", 19132 tcp_display(tcp, NULL, 19133 DISP_ADDR_AND_PORT)); 19134 #else 19135 if (tcp->tcp_debug) { 19136 (void) strlog(TCP_MOD_ID, 0, 1, 19137 SL_TRACE|SL_ERROR, 19138 "tcp_wput_data: data after ordrel, %s\n", 19139 tcp_display(tcp, NULL, 19140 DISP_ADDR_AND_PORT)); 19141 } 19142 #endif /* DEBUG */ 19143 } 19144 if (tcp->tcp_snd_zcopy_aware && 19145 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0) 19146 tcp_zcopy_notify(tcp); 19147 freemsg(mp); 19148 mutex_enter(&tcp->tcp_non_sq_lock); 19149 if (tcp->tcp_flow_stopped && 19150 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19151 tcp_clrqfull(tcp); 19152 } 19153 mutex_exit(&tcp->tcp_non_sq_lock); 19154 return; 19155 } 19156 19157 /* Strip empties */ 19158 for (;;) { 19159 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 19160 (uintptr_t)INT_MAX); 19161 len = (int)(mp->b_wptr - mp->b_rptr); 19162 if (len > 0) 19163 break; 19164 mp1 = mp; 19165 mp = mp->b_cont; 19166 freeb(mp1); 19167 if (!mp) { 19168 return; 19169 } 19170 } 19171 19172 /* If we are the first on the list ... */ 19173 if (tcp->tcp_xmit_head == NULL) { 19174 tcp->tcp_xmit_head = mp; 19175 tcp->tcp_xmit_tail = mp; 19176 tcp->tcp_xmit_tail_unsent = len; 19177 } else { 19178 /* If tiny tx and room in txq tail, pullup to save mblks. */ 19179 struct datab *dp; 19180 19181 mp1 = tcp->tcp_xmit_last; 19182 if (len < tcp_tx_pull_len && 19183 (dp = mp1->b_datap)->db_ref == 1 && 19184 dp->db_lim - mp1->b_wptr >= len) { 19185 ASSERT(len > 0); 19186 ASSERT(!mp1->b_cont); 19187 if (len == 1) { 19188 *mp1->b_wptr++ = *mp->b_rptr; 19189 } else { 19190 bcopy(mp->b_rptr, mp1->b_wptr, len); 19191 mp1->b_wptr += len; 19192 } 19193 if (mp1 == tcp->tcp_xmit_tail) 19194 tcp->tcp_xmit_tail_unsent += len; 19195 mp1->b_cont = mp->b_cont; 19196 if (tcp->tcp_snd_zcopy_aware && 19197 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 19198 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 19199 freeb(mp); 19200 mp = mp1; 19201 } else { 19202 tcp->tcp_xmit_last->b_cont = mp; 19203 } 19204 len += tcp->tcp_unsent; 19205 } 19206 19207 /* Tack on however many more positive length mblks we have */ 19208 if ((mp1 = mp->b_cont) != NULL) { 19209 do { 19210 int tlen; 19211 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 19212 (uintptr_t)INT_MAX); 19213 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 19214 if (tlen <= 0) { 19215 mp->b_cont = mp1->b_cont; 19216 freeb(mp1); 19217 } else { 19218 len += tlen; 19219 mp = mp1; 19220 } 19221 } while ((mp1 = mp->b_cont) != NULL); 19222 } 19223 tcp->tcp_xmit_last = mp; 19224 tcp->tcp_unsent = len; 19225 19226 if (urgent) 19227 usable = 1; 19228 19229 data_null: 19230 snxt = tcp->tcp_snxt; 19231 xmit_tail = tcp->tcp_xmit_tail; 19232 tail_unsent = tcp->tcp_xmit_tail_unsent; 19233 19234 /* 19235 * Note that tcp_mss has been adjusted to take into account the 19236 * timestamp option if applicable. Because SACK options do not 19237 * appear in every TCP segments and they are of variable lengths, 19238 * they cannot be included in tcp_mss. Thus we need to calculate 19239 * the actual segment length when we need to send a segment which 19240 * includes SACK options. 19241 */ 19242 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 19243 int32_t opt_len; 19244 19245 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 19246 tcp->tcp_num_sack_blk); 19247 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 19248 2 + TCPOPT_HEADER_LEN; 19249 mss = tcp->tcp_mss - opt_len; 19250 tcp_hdr_len = tcp->tcp_hdr_len + opt_len; 19251 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len; 19252 } else { 19253 mss = tcp->tcp_mss; 19254 tcp_hdr_len = tcp->tcp_hdr_len; 19255 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 19256 } 19257 19258 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 19259 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 19260 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 19261 } 19262 if (tcpstate == TCPS_SYN_RCVD) { 19263 /* 19264 * The three-way connection establishment handshake is not 19265 * complete yet. We want to queue the data for transmission 19266 * after entering ESTABLISHED state (RFC793). A jump to 19267 * "done" label effectively leaves data on the queue. 19268 */ 19269 goto done; 19270 } else { 19271 int usable_r; 19272 19273 /* 19274 * In the special case when cwnd is zero, which can only 19275 * happen if the connection is ECN capable, return now. 19276 * New segments is sent using tcp_timer(). The timer 19277 * is set in tcp_rput_data(). 19278 */ 19279 if (tcp->tcp_cwnd == 0) { 19280 /* 19281 * Note that tcp_cwnd is 0 before 3-way handshake is 19282 * finished. 19283 */ 19284 ASSERT(tcp->tcp_ecn_ok || 19285 tcp->tcp_state < TCPS_ESTABLISHED); 19286 return; 19287 } 19288 19289 /* NOTE: trouble if xmitting while SYN not acked? */ 19290 usable_r = snxt - tcp->tcp_suna; 19291 usable_r = tcp->tcp_swnd - usable_r; 19292 19293 /* 19294 * Check if the receiver has shrunk the window. If 19295 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 19296 * cannot be set as there is unsent data, so FIN cannot 19297 * be sent out. Otherwise, we need to take into account 19298 * of FIN as it consumes an "invisible" sequence number. 19299 */ 19300 ASSERT(tcp->tcp_fin_sent == 0); 19301 if (usable_r < 0) { 19302 /* 19303 * The receiver has shrunk the window and we have sent 19304 * -usable_r date beyond the window, re-adjust. 19305 * 19306 * If TCP window scaling is enabled, there can be 19307 * round down error as the advertised receive window 19308 * is actually right shifted n bits. This means that 19309 * the lower n bits info is wiped out. It will look 19310 * like the window is shrunk. Do a check here to 19311 * see if the shrunk amount is actually within the 19312 * error in window calculation. If it is, just 19313 * return. Note that this check is inside the 19314 * shrunk window check. This makes sure that even 19315 * though tcp_process_shrunk_swnd() is not called, 19316 * we will stop further processing. 19317 */ 19318 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 19319 tcp_process_shrunk_swnd(tcp, -usable_r); 19320 } 19321 return; 19322 } 19323 19324 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 19325 if (tcp->tcp_swnd > tcp->tcp_cwnd) 19326 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 19327 19328 /* usable = MIN(usable, unsent) */ 19329 if (usable_r > len) 19330 usable_r = len; 19331 19332 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 19333 if (usable_r > 0) { 19334 usable = usable_r; 19335 } else { 19336 /* Bypass all other unnecessary processing. */ 19337 goto done; 19338 } 19339 } 19340 19341 local_time = (mblk_t *)lbolt; 19342 19343 /* 19344 * "Our" Nagle Algorithm. This is not the same as in the old 19345 * BSD. This is more in line with the true intent of Nagle. 19346 * 19347 * The conditions are: 19348 * 1. The amount of unsent data (or amount of data which can be 19349 * sent, whichever is smaller) is less than Nagle limit. 19350 * 2. The last sent size is also less than Nagle limit. 19351 * 3. There is unack'ed data. 19352 * 4. Urgent pointer is not set. Send urgent data ignoring the 19353 * Nagle algorithm. This reduces the probability that urgent 19354 * bytes get "merged" together. 19355 * 5. The app has not closed the connection. This eliminates the 19356 * wait time of the receiving side waiting for the last piece of 19357 * (small) data. 19358 * 19359 * If all are satisified, exit without sending anything. Note 19360 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 19361 * the smaller of 1 MSS and global tcp_naglim_def (default to be 19362 * 4095). 19363 */ 19364 if (usable < (int)tcp->tcp_naglim && 19365 tcp->tcp_naglim > tcp->tcp_last_sent_len && 19366 snxt != tcp->tcp_suna && 19367 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 19368 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 19369 goto done; 19370 } 19371 19372 if (tcp->tcp_cork) { 19373 /* 19374 * if the tcp->tcp_cork option is set, then we have to force 19375 * TCP not to send partial segment (smaller than MSS bytes). 19376 * We are calculating the usable now based on full mss and 19377 * will save the rest of remaining data for later. 19378 */ 19379 if (usable < mss) 19380 goto done; 19381 usable = (usable / mss) * mss; 19382 } 19383 19384 /* Update the latest receive window size in TCP header. */ 19385 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 19386 tcp->tcp_tcph->th_win); 19387 19388 /* 19389 * Determine if it's worthwhile to attempt LSO or MDT, based on: 19390 * 19391 * 1. Simple TCP/IP{v4,v6} (no options). 19392 * 2. IPSEC/IPQoS processing is not needed for the TCP connection. 19393 * 3. If the TCP connection is in ESTABLISHED state. 19394 * 4. The TCP is not detached. 19395 * 19396 * If any of the above conditions have changed during the 19397 * connection, stop using LSO/MDT and restore the stream head 19398 * parameters accordingly. 19399 */ 19400 ipst = tcps->tcps_netstack->netstack_ip; 19401 19402 if ((tcp->tcp_lso || tcp->tcp_mdt) && 19403 ((tcp->tcp_ipversion == IPV4_VERSION && 19404 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 19405 (tcp->tcp_ipversion == IPV6_VERSION && 19406 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) || 19407 tcp->tcp_state != TCPS_ESTABLISHED || 19408 TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) || 19409 CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) || 19410 IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 19411 if (tcp->tcp_lso) { 19412 tcp->tcp_connp->conn_lso_ok = B_FALSE; 19413 tcp->tcp_lso = B_FALSE; 19414 } else { 19415 tcp->tcp_connp->conn_mdt_ok = B_FALSE; 19416 tcp->tcp_mdt = B_FALSE; 19417 } 19418 19419 /* Anything other than detached is considered pathological */ 19420 if (!TCP_IS_DETACHED(tcp)) { 19421 if (tcp->tcp_lso) 19422 TCP_STAT(tcps, tcp_lso_disabled); 19423 else 19424 TCP_STAT(tcps, tcp_mdt_conn_halted1); 19425 (void) tcp_maxpsz_set(tcp, B_TRUE); 19426 } 19427 } 19428 19429 /* Use MDT if sendable amount is greater than the threshold */ 19430 if (tcp->tcp_mdt && 19431 (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) && 19432 (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL && 19433 MBLKL(xmit_tail->b_cont) > mdt_thres)) && 19434 (tcp->tcp_valid_bits == 0 || 19435 tcp->tcp_valid_bits == TCP_FSS_VALID)) { 19436 ASSERT(tcp->tcp_connp->conn_mdt_ok); 19437 rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19438 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19439 local_time, mdt_thres); 19440 } else { 19441 rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19442 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19443 local_time, INT_MAX); 19444 } 19445 19446 /* Pretend that all we were trying to send really got sent */ 19447 if (rc < 0 && tail_unsent < 0) { 19448 do { 19449 xmit_tail = xmit_tail->b_cont; 19450 xmit_tail->b_prev = local_time; 19451 ASSERT((uintptr_t)(xmit_tail->b_wptr - 19452 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 19453 tail_unsent += (int)(xmit_tail->b_wptr - 19454 xmit_tail->b_rptr); 19455 } while (tail_unsent < 0); 19456 } 19457 done:; 19458 tcp->tcp_xmit_tail = xmit_tail; 19459 tcp->tcp_xmit_tail_unsent = tail_unsent; 19460 len = tcp->tcp_snxt - snxt; 19461 if (len) { 19462 /* 19463 * If new data was sent, need to update the notsack 19464 * list, which is, afterall, data blocks that have 19465 * not been sack'ed by the receiver. New data is 19466 * not sack'ed. 19467 */ 19468 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 19469 /* len is a negative value. */ 19470 tcp->tcp_pipe -= len; 19471 tcp_notsack_update(&(tcp->tcp_notsack_list), 19472 tcp->tcp_snxt, snxt, 19473 &(tcp->tcp_num_notsack_blk), 19474 &(tcp->tcp_cnt_notsack_list)); 19475 } 19476 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 19477 tcp->tcp_rack = tcp->tcp_rnxt; 19478 tcp->tcp_rack_cnt = 0; 19479 if ((snxt + len) == tcp->tcp_suna) { 19480 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19481 } 19482 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 19483 /* 19484 * Didn't send anything. Make sure the timer is running 19485 * so that we will probe a zero window. 19486 */ 19487 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19488 } 19489 /* Note that len is the amount we just sent but with a negative sign */ 19490 tcp->tcp_unsent += len; 19491 mutex_enter(&tcp->tcp_non_sq_lock); 19492 if (tcp->tcp_flow_stopped) { 19493 if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19494 tcp_clrqfull(tcp); 19495 } 19496 } else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) { 19497 tcp_setqfull(tcp); 19498 } 19499 mutex_exit(&tcp->tcp_non_sq_lock); 19500 } 19501 19502 /* 19503 * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the 19504 * outgoing TCP header with the template header, as well as other 19505 * options such as time-stamp, ECN and/or SACK. 19506 */ 19507 static void 19508 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 19509 { 19510 tcph_t *tcp_tmpl, *tcp_h; 19511 uint32_t *dst, *src; 19512 int hdrlen; 19513 19514 ASSERT(OK_32PTR(rptr)); 19515 19516 /* Template header */ 19517 tcp_tmpl = tcp->tcp_tcph; 19518 19519 /* Header of outgoing packet */ 19520 tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 19521 19522 /* dst and src are opaque 32-bit fields, used for copying */ 19523 dst = (uint32_t *)rptr; 19524 src = (uint32_t *)tcp->tcp_iphc; 19525 hdrlen = tcp->tcp_hdr_len; 19526 19527 /* Fill time-stamp option if needed */ 19528 if (tcp->tcp_snd_ts_ok) { 19529 U32_TO_BE32((uint32_t)now, 19530 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 19531 U32_TO_BE32(tcp->tcp_ts_recent, 19532 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 19533 } else { 19534 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 19535 } 19536 19537 /* 19538 * Copy the template header; is this really more efficient than 19539 * calling bcopy()? For simple IPv4/TCP, it may be the case, 19540 * but perhaps not for other scenarios. 19541 */ 19542 dst[0] = src[0]; 19543 dst[1] = src[1]; 19544 dst[2] = src[2]; 19545 dst[3] = src[3]; 19546 dst[4] = src[4]; 19547 dst[5] = src[5]; 19548 dst[6] = src[6]; 19549 dst[7] = src[7]; 19550 dst[8] = src[8]; 19551 dst[9] = src[9]; 19552 if (hdrlen -= 40) { 19553 hdrlen >>= 2; 19554 dst += 10; 19555 src += 10; 19556 do { 19557 *dst++ = *src++; 19558 } while (--hdrlen); 19559 } 19560 19561 /* 19562 * Set the ECN info in the TCP header if it is not a zero 19563 * window probe. Zero window probe is only sent in 19564 * tcp_wput_data() and tcp_timer(). 19565 */ 19566 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 19567 SET_ECT(tcp, rptr); 19568 19569 if (tcp->tcp_ecn_echo_on) 19570 tcp_h->th_flags[0] |= TH_ECE; 19571 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 19572 tcp_h->th_flags[0] |= TH_CWR; 19573 tcp->tcp_ecn_cwr_sent = B_TRUE; 19574 } 19575 } 19576 19577 /* Fill in SACK options */ 19578 if (num_sack_blk > 0) { 19579 uchar_t *wptr = rptr + tcp->tcp_hdr_len; 19580 sack_blk_t *tmp; 19581 int32_t i; 19582 19583 wptr[0] = TCPOPT_NOP; 19584 wptr[1] = TCPOPT_NOP; 19585 wptr[2] = TCPOPT_SACK; 19586 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 19587 sizeof (sack_blk_t); 19588 wptr += TCPOPT_REAL_SACK_LEN; 19589 19590 tmp = tcp->tcp_sack_list; 19591 for (i = 0; i < num_sack_blk; i++) { 19592 U32_TO_BE32(tmp[i].begin, wptr); 19593 wptr += sizeof (tcp_seq); 19594 U32_TO_BE32(tmp[i].end, wptr); 19595 wptr += sizeof (tcp_seq); 19596 } 19597 tcp_h->th_offset_and_rsrvd[0] += 19598 ((num_sack_blk * 2 + 1) << 4); 19599 } 19600 } 19601 19602 /* 19603 * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach 19604 * the destination address and SAP attribute, and if necessary, the 19605 * hardware checksum offload attribute to a Multidata message. 19606 */ 19607 static int 19608 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum, 19609 const uint32_t start, const uint32_t stuff, const uint32_t end, 19610 const uint32_t flags, tcp_stack_t *tcps) 19611 { 19612 /* Add global destination address & SAP attribute */ 19613 if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) { 19614 ip1dbg(("tcp_mdt_add_attrs: can't add global physical " 19615 "destination address+SAP\n")); 19616 19617 if (dlmp != NULL) 19618 TCP_STAT(tcps, tcp_mdt_allocfail); 19619 return (-1); 19620 } 19621 19622 /* Add global hwcksum attribute */ 19623 if (hwcksum && 19624 !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) { 19625 ip1dbg(("tcp_mdt_add_attrs: can't add global hardware " 19626 "checksum attribute\n")); 19627 19628 TCP_STAT(tcps, tcp_mdt_allocfail); 19629 return (-1); 19630 } 19631 19632 return (0); 19633 } 19634 19635 /* 19636 * Smaller and private version of pdescinfo_t used specifically for TCP, 19637 * which allows for only two payload spans per packet. 19638 */ 19639 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t; 19640 19641 /* 19642 * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit 19643 * scheme, and returns one the following: 19644 * 19645 * -1 = failed allocation. 19646 * 0 = success; burst count reached, or usable send window is too small, 19647 * and that we'd rather wait until later before sending again. 19648 */ 19649 static int 19650 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 19651 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 19652 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 19653 const int mdt_thres) 19654 { 19655 mblk_t *md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf; 19656 multidata_t *mmd; 19657 uint_t obsegs, obbytes, hdr_frag_sz; 19658 uint_t cur_hdr_off, cur_pld_off, base_pld_off, first_snxt; 19659 int num_burst_seg, max_pld; 19660 pdesc_t *pkt; 19661 tcp_pdescinfo_t tcp_pkt_info; 19662 pdescinfo_t *pkt_info; 19663 int pbuf_idx, pbuf_idx_nxt; 19664 int seg_len, len, spill, af; 19665 boolean_t add_buffer, zcopy, clusterwide; 19666 boolean_t buf_trunked = B_FALSE; 19667 boolean_t rconfirm = B_FALSE; 19668 boolean_t done = B_FALSE; 19669 uint32_t cksum; 19670 uint32_t hwcksum_flags; 19671 ire_t *ire = NULL; 19672 ill_t *ill; 19673 ipha_t *ipha; 19674 ip6_t *ip6h; 19675 ipaddr_t src, dst; 19676 ill_zerocopy_capab_t *zc_cap = NULL; 19677 uint16_t *up; 19678 int err; 19679 conn_t *connp; 19680 mblk_t *mp, *mp1, *fw_mp_head = NULL; 19681 uchar_t *pld_start; 19682 tcp_stack_t *tcps = tcp->tcp_tcps; 19683 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19684 19685 #ifdef _BIG_ENDIAN 19686 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 28) & 0x7) 19687 #else 19688 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 4) & 0x7) 19689 #endif 19690 19691 #define PREP_NEW_MULTIDATA() { \ 19692 mmd = NULL; \ 19693 md_mp = md_hbuf = NULL; \ 19694 cur_hdr_off = 0; \ 19695 max_pld = tcp->tcp_mdt_max_pld; \ 19696 pbuf_idx = pbuf_idx_nxt = -1; \ 19697 add_buffer = B_TRUE; \ 19698 zcopy = B_FALSE; \ 19699 } 19700 19701 #define PREP_NEW_PBUF() { \ 19702 md_pbuf = md_pbuf_nxt = NULL; \ 19703 pbuf_idx = pbuf_idx_nxt = -1; \ 19704 cur_pld_off = 0; \ 19705 first_snxt = *snxt; \ 19706 ASSERT(*tail_unsent > 0); \ 19707 base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \ 19708 } 19709 19710 ASSERT(mdt_thres >= mss); 19711 ASSERT(*usable > 0 && *usable > mdt_thres); 19712 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 19713 ASSERT(!TCP_IS_DETACHED(tcp)); 19714 ASSERT(tcp->tcp_valid_bits == 0 || 19715 tcp->tcp_valid_bits == TCP_FSS_VALID); 19716 ASSERT((tcp->tcp_ipversion == IPV4_VERSION && 19717 tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) || 19718 (tcp->tcp_ipversion == IPV6_VERSION && 19719 tcp->tcp_ip_hdr_len == IPV6_HDR_LEN)); 19720 19721 connp = tcp->tcp_connp; 19722 ASSERT(connp != NULL); 19723 ASSERT(CONN_IS_LSO_MD_FASTPATH(connp)); 19724 ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp)); 19725 19726 /* 19727 * Note that tcp will only declare at most 2 payload spans per 19728 * packet, which is much lower than the maximum allowable number 19729 * of packet spans per Multidata. For this reason, we use the 19730 * privately declared and smaller descriptor info structure, in 19731 * order to save some stack space. 19732 */ 19733 pkt_info = (pdescinfo_t *)&tcp_pkt_info; 19734 19735 af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; 19736 if (af == AF_INET) { 19737 dst = tcp->tcp_ipha->ipha_dst; 19738 src = tcp->tcp_ipha->ipha_src; 19739 ASSERT(!CLASSD(dst)); 19740 } 19741 ASSERT(af == AF_INET || 19742 !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst)); 19743 19744 obsegs = obbytes = 0; 19745 num_burst_seg = tcp->tcp_snd_burst; 19746 md_mp_head = NULL; 19747 PREP_NEW_MULTIDATA(); 19748 19749 /* 19750 * Before we go on further, make sure there is an IRE that we can 19751 * use, and that the ILL supports MDT. Otherwise, there's no point 19752 * in proceeding any further, and we should just hand everything 19753 * off to the legacy path. 19754 */ 19755 if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire)) 19756 goto legacy_send_no_md; 19757 19758 ASSERT(ire != NULL); 19759 ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION); 19760 ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6))); 19761 ASSERT(af == AF_INET || ire->ire_nce != NULL); 19762 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19763 /* 19764 * If we do support loopback for MDT (which requires modifications 19765 * to the receiving paths), the following assertions should go away, 19766 * and we would be sending the Multidata to loopback conn later on. 19767 */ 19768 ASSERT(!IRE_IS_LOCAL(ire)); 19769 ASSERT(ire->ire_stq != NULL); 19770 19771 ill = ire_to_ill(ire); 19772 ASSERT(ill != NULL); 19773 ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL); 19774 19775 if (!tcp->tcp_ire_ill_check_done) { 19776 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 19777 tcp->tcp_ire_ill_check_done = B_TRUE; 19778 } 19779 19780 /* 19781 * If the underlying interface conditions have changed, or if the 19782 * new interface does not support MDT, go back to legacy path. 19783 */ 19784 if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) { 19785 /* don't go through this path anymore for this connection */ 19786 TCP_STAT(tcps, tcp_mdt_conn_halted2); 19787 tcp->tcp_mdt = B_FALSE; 19788 ip1dbg(("tcp_multisend: disabling MDT for connp %p on " 19789 "interface %s\n", (void *)connp, ill->ill_name)); 19790 /* IRE will be released prior to returning */ 19791 goto legacy_send_no_md; 19792 } 19793 19794 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) 19795 zc_cap = ill->ill_zerocopy_capab; 19796 19797 /* 19798 * Check if we can take tcp fast-path. Note that "incomplete" 19799 * ire's (where the link-layer for next hop is not resolved 19800 * or where the fast-path header in nce_fp_mp is not available 19801 * yet) are sent down the legacy (slow) path. 19802 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA 19803 */ 19804 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 19805 /* IRE will be released prior to returning */ 19806 goto legacy_send_no_md; 19807 } 19808 19809 /* go to legacy path if interface doesn't support zerocopy */ 19810 if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 && 19811 (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) { 19812 /* IRE will be released prior to returning */ 19813 goto legacy_send_no_md; 19814 } 19815 19816 /* does the interface support hardware checksum offload? */ 19817 hwcksum_flags = 0; 19818 if (ILL_HCKSUM_CAPABLE(ill) && 19819 (ill->ill_hcksum_capab->ill_hcksum_txflags & 19820 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL | 19821 HCKSUM_IPHDRCKSUM)) && dohwcksum) { 19822 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19823 HCKSUM_IPHDRCKSUM) 19824 hwcksum_flags = HCK_IPV4_HDRCKSUM; 19825 19826 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19827 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6)) 19828 hwcksum_flags |= HCK_FULLCKSUM; 19829 else if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19830 HCKSUM_INET_PARTIAL) 19831 hwcksum_flags |= HCK_PARTIALCKSUM; 19832 } 19833 19834 /* 19835 * Each header fragment consists of the leading extra space, 19836 * followed by the TCP/IP header, and the trailing extra space. 19837 * We make sure that each header fragment begins on a 32-bit 19838 * aligned memory address (tcp_mdt_hdr_head is already 32-bit 19839 * aligned in tcp_mdt_update). 19840 */ 19841 hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len + 19842 tcp->tcp_mdt_hdr_tail), 4); 19843 19844 /* are we starting from the beginning of data block? */ 19845 if (*tail_unsent == 0) { 19846 *xmit_tail = (*xmit_tail)->b_cont; 19847 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); 19848 *tail_unsent = (int)MBLKL(*xmit_tail); 19849 } 19850 19851 /* 19852 * Here we create one or more Multidata messages, each made up of 19853 * one header buffer and up to N payload buffers. This entire 19854 * operation is done within two loops: 19855 * 19856 * The outer loop mostly deals with creating the Multidata message, 19857 * as well as the header buffer that gets added to it. It also 19858 * links the Multidata messages together such that all of them can 19859 * be sent down to the lower layer in a single putnext call; this 19860 * linking behavior depends on the tcp_mdt_chain tunable. 19861 * 19862 * The inner loop takes an existing Multidata message, and adds 19863 * one or more (up to tcp_mdt_max_pld) payload buffers to it. It 19864 * packetizes those buffers by filling up the corresponding header 19865 * buffer fragments with the proper IP and TCP headers, and by 19866 * describing the layout of each packet in the packet descriptors 19867 * that get added to the Multidata. 19868 */ 19869 do { 19870 /* 19871 * If usable send window is too small, or data blocks in 19872 * transmit list are smaller than our threshold (i.e. app 19873 * performs large writes followed by small ones), we hand 19874 * off the control over to the legacy path. Note that we'll 19875 * get back the control once it encounters a large block. 19876 */ 19877 if (*usable < mss || (*tail_unsent <= mdt_thres && 19878 (*xmit_tail)->b_cont != NULL && 19879 MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) { 19880 /* send down what we've got so far */ 19881 if (md_mp_head != NULL) { 19882 tcp_multisend_data(tcp, ire, ill, md_mp_head, 19883 obsegs, obbytes, &rconfirm); 19884 } 19885 /* 19886 * Pass control over to tcp_send(), but tell it to 19887 * return to us once a large-size transmission is 19888 * possible. 19889 */ 19890 TCP_STAT(tcps, tcp_mdt_legacy_small); 19891 if ((err = tcp_send(q, tcp, mss, tcp_hdr_len, 19892 tcp_tcp_hdr_len, num_sack_blk, usable, snxt, 19893 tail_unsent, xmit_tail, local_time, 19894 mdt_thres)) <= 0) { 19895 /* burst count reached, or alloc failed */ 19896 IRE_REFRELE(ire); 19897 return (err); 19898 } 19899 19900 /* tcp_send() may have sent everything, so check */ 19901 if (*usable <= 0) { 19902 IRE_REFRELE(ire); 19903 return (0); 19904 } 19905 19906 TCP_STAT(tcps, tcp_mdt_legacy_ret); 19907 /* 19908 * We may have delivered the Multidata, so make sure 19909 * to re-initialize before the next round. 19910 */ 19911 md_mp_head = NULL; 19912 obsegs = obbytes = 0; 19913 num_burst_seg = tcp->tcp_snd_burst; 19914 PREP_NEW_MULTIDATA(); 19915 19916 /* are we starting from the beginning of data block? */ 19917 if (*tail_unsent == 0) { 19918 *xmit_tail = (*xmit_tail)->b_cont; 19919 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 19920 (uintptr_t)INT_MAX); 19921 *tail_unsent = (int)MBLKL(*xmit_tail); 19922 } 19923 } 19924 19925 /* 19926 * max_pld limits the number of mblks in tcp's transmit 19927 * queue that can be added to a Multidata message. Once 19928 * this counter reaches zero, no more additional mblks 19929 * can be added to it. What happens afterwards depends 19930 * on whether or not we are set to chain the Multidata 19931 * messages. If we are to link them together, reset 19932 * max_pld to its original value (tcp_mdt_max_pld) and 19933 * prepare to create a new Multidata message which will 19934 * get linked to md_mp_head. Else, leave it alone and 19935 * let the inner loop break on its own. 19936 */ 19937 if (tcp_mdt_chain && max_pld == 0) 19938 PREP_NEW_MULTIDATA(); 19939 19940 /* adding a payload buffer; re-initialize values */ 19941 if (add_buffer) 19942 PREP_NEW_PBUF(); 19943 19944 /* 19945 * If we don't have a Multidata, either because we just 19946 * (re)entered this outer loop, or after we branched off 19947 * to tcp_send above, setup the Multidata and header 19948 * buffer to be used. 19949 */ 19950 if (md_mp == NULL) { 19951 int md_hbuflen; 19952 uint32_t start, stuff; 19953 19954 /* 19955 * Calculate Multidata header buffer size large enough 19956 * to hold all of the headers that can possibly be 19957 * sent at this moment. We'd rather over-estimate 19958 * the size than running out of space; this is okay 19959 * since this buffer is small anyway. 19960 */ 19961 md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz; 19962 19963 /* 19964 * Start and stuff offset for partial hardware 19965 * checksum offload; these are currently for IPv4. 19966 * For full checksum offload, they are set to zero. 19967 */ 19968 if ((hwcksum_flags & HCK_PARTIALCKSUM)) { 19969 if (af == AF_INET) { 19970 start = IP_SIMPLE_HDR_LENGTH; 19971 stuff = IP_SIMPLE_HDR_LENGTH + 19972 TCP_CHECKSUM_OFFSET; 19973 } else { 19974 start = IPV6_HDR_LEN; 19975 stuff = IPV6_HDR_LEN + 19976 TCP_CHECKSUM_OFFSET; 19977 } 19978 } else { 19979 start = stuff = 0; 19980 } 19981 19982 /* 19983 * Create the header buffer, Multidata, as well as 19984 * any necessary attributes (destination address, 19985 * SAP and hardware checksum offload) that should 19986 * be associated with the Multidata message. 19987 */ 19988 ASSERT(cur_hdr_off == 0); 19989 if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL || 19990 ((md_hbuf->b_wptr += md_hbuflen), 19991 (mmd = mmd_alloc(md_hbuf, &md_mp, 19992 KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd, 19993 /* fastpath mblk */ 19994 ire->ire_nce->nce_res_mp, 19995 /* hardware checksum enabled */ 19996 (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)), 19997 /* hardware checksum offsets */ 19998 start, stuff, 0, 19999 /* hardware checksum flag */ 20000 hwcksum_flags, tcps) != 0)) { 20001 legacy_send: 20002 if (md_mp != NULL) { 20003 /* Unlink message from the chain */ 20004 if (md_mp_head != NULL) { 20005 err = (intptr_t)rmvb(md_mp_head, 20006 md_mp); 20007 /* 20008 * We can't assert that rmvb 20009 * did not return -1, since we 20010 * may get here before linkb 20011 * happens. We do, however, 20012 * check if we just removed the 20013 * only element in the list. 20014 */ 20015 if (err == 0) 20016 md_mp_head = NULL; 20017 } 20018 /* md_hbuf gets freed automatically */ 20019 TCP_STAT(tcps, tcp_mdt_discarded); 20020 freeb(md_mp); 20021 } else { 20022 /* Either allocb or mmd_alloc failed */ 20023 TCP_STAT(tcps, tcp_mdt_allocfail); 20024 if (md_hbuf != NULL) 20025 freeb(md_hbuf); 20026 } 20027 20028 /* send down what we've got so far */ 20029 if (md_mp_head != NULL) { 20030 tcp_multisend_data(tcp, ire, ill, 20031 md_mp_head, obsegs, obbytes, 20032 &rconfirm); 20033 } 20034 legacy_send_no_md: 20035 if (ire != NULL) 20036 IRE_REFRELE(ire); 20037 /* 20038 * Too bad; let the legacy path handle this. 20039 * We specify INT_MAX for the threshold, since 20040 * we gave up with the Multidata processings 20041 * and let the old path have it all. 20042 */ 20043 TCP_STAT(tcps, tcp_mdt_legacy_all); 20044 return (tcp_send(q, tcp, mss, tcp_hdr_len, 20045 tcp_tcp_hdr_len, num_sack_blk, usable, 20046 snxt, tail_unsent, xmit_tail, local_time, 20047 INT_MAX)); 20048 } 20049 20050 /* link to any existing ones, if applicable */ 20051 TCP_STAT(tcps, tcp_mdt_allocd); 20052 if (md_mp_head == NULL) { 20053 md_mp_head = md_mp; 20054 } else if (tcp_mdt_chain) { 20055 TCP_STAT(tcps, tcp_mdt_linked); 20056 linkb(md_mp_head, md_mp); 20057 } 20058 } 20059 20060 ASSERT(md_mp_head != NULL); 20061 ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL); 20062 ASSERT(md_mp != NULL && mmd != NULL); 20063 ASSERT(md_hbuf != NULL); 20064 20065 /* 20066 * Packetize the transmittable portion of the data block; 20067 * each data block is essentially added to the Multidata 20068 * as a payload buffer. We also deal with adding more 20069 * than one payload buffers, which happens when the remaining 20070 * packetized portion of the current payload buffer is less 20071 * than MSS, while the next data block in transmit queue 20072 * has enough data to make up for one. This "spillover" 20073 * case essentially creates a split-packet, where portions 20074 * of the packet's payload fragments may span across two 20075 * virtually discontiguous address blocks. 20076 */ 20077 seg_len = mss; 20078 do { 20079 len = seg_len; 20080 20081 ASSERT(len > 0); 20082 ASSERT(max_pld >= 0); 20083 ASSERT(!add_buffer || cur_pld_off == 0); 20084 20085 /* 20086 * First time around for this payload buffer; note 20087 * in the case of a spillover, the following has 20088 * been done prior to adding the split-packet 20089 * descriptor to Multidata, and we don't want to 20090 * repeat the process. 20091 */ 20092 if (add_buffer) { 20093 ASSERT(mmd != NULL); 20094 ASSERT(md_pbuf == NULL); 20095 ASSERT(md_pbuf_nxt == NULL); 20096 ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1); 20097 20098 /* 20099 * Have we reached the limit? We'd get to 20100 * this case when we're not chaining the 20101 * Multidata messages together, and since 20102 * we're done, terminate this loop. 20103 */ 20104 if (max_pld == 0) 20105 break; /* done */ 20106 20107 if ((md_pbuf = dupb(*xmit_tail)) == NULL) { 20108 TCP_STAT(tcps, tcp_mdt_allocfail); 20109 goto legacy_send; /* out_of_mem */ 20110 } 20111 20112 if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy && 20113 zc_cap != NULL) { 20114 if (!ip_md_zcopy_attr(mmd, NULL, 20115 zc_cap->ill_zerocopy_flags)) { 20116 freeb(md_pbuf); 20117 TCP_STAT(tcps, 20118 tcp_mdt_allocfail); 20119 /* out_of_mem */ 20120 goto legacy_send; 20121 } 20122 zcopy = B_TRUE; 20123 } 20124 20125 md_pbuf->b_rptr += base_pld_off; 20126 20127 /* 20128 * Add a payload buffer to the Multidata; this 20129 * operation must not fail, or otherwise our 20130 * logic in this routine is broken. There 20131 * is no memory allocation done by the 20132 * routine, so any returned failure simply 20133 * tells us that we've done something wrong. 20134 * 20135 * A failure tells us that either we're adding 20136 * the same payload buffer more than once, or 20137 * we're trying to add more buffers than 20138 * allowed (max_pld calculation is wrong). 20139 * None of the above cases should happen, and 20140 * we panic because either there's horrible 20141 * heap corruption, and/or programming mistake. 20142 */ 20143 pbuf_idx = mmd_addpldbuf(mmd, md_pbuf); 20144 if (pbuf_idx < 0) { 20145 cmn_err(CE_PANIC, "tcp_multisend: " 20146 "payload buffer logic error " 20147 "detected for tcp %p mmd %p " 20148 "pbuf %p (%d)\n", 20149 (void *)tcp, (void *)mmd, 20150 (void *)md_pbuf, pbuf_idx); 20151 } 20152 20153 ASSERT(max_pld > 0); 20154 --max_pld; 20155 add_buffer = B_FALSE; 20156 } 20157 20158 ASSERT(md_mp_head != NULL); 20159 ASSERT(md_pbuf != NULL); 20160 ASSERT(md_pbuf_nxt == NULL); 20161 ASSERT(pbuf_idx != -1); 20162 ASSERT(pbuf_idx_nxt == -1); 20163 ASSERT(*usable > 0); 20164 20165 /* 20166 * We spillover to the next payload buffer only 20167 * if all of the following is true: 20168 * 20169 * 1. There is not enough data on the current 20170 * payload buffer to make up `len', 20171 * 2. We are allowed to send `len', 20172 * 3. The next payload buffer length is large 20173 * enough to accomodate `spill'. 20174 */ 20175 if ((spill = len - *tail_unsent) > 0 && 20176 *usable >= len && 20177 MBLKL((*xmit_tail)->b_cont) >= spill && 20178 max_pld > 0) { 20179 md_pbuf_nxt = dupb((*xmit_tail)->b_cont); 20180 if (md_pbuf_nxt == NULL) { 20181 TCP_STAT(tcps, tcp_mdt_allocfail); 20182 goto legacy_send; /* out_of_mem */ 20183 } 20184 20185 if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy && 20186 zc_cap != NULL) { 20187 if (!ip_md_zcopy_attr(mmd, NULL, 20188 zc_cap->ill_zerocopy_flags)) { 20189 freeb(md_pbuf_nxt); 20190 TCP_STAT(tcps, 20191 tcp_mdt_allocfail); 20192 /* out_of_mem */ 20193 goto legacy_send; 20194 } 20195 zcopy = B_TRUE; 20196 } 20197 20198 /* 20199 * See comments above on the first call to 20200 * mmd_addpldbuf for explanation on the panic. 20201 */ 20202 pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt); 20203 if (pbuf_idx_nxt < 0) { 20204 panic("tcp_multisend: " 20205 "next payload buffer logic error " 20206 "detected for tcp %p mmd %p " 20207 "pbuf %p (%d)\n", 20208 (void *)tcp, (void *)mmd, 20209 (void *)md_pbuf_nxt, pbuf_idx_nxt); 20210 } 20211 20212 ASSERT(max_pld > 0); 20213 --max_pld; 20214 } else if (spill > 0) { 20215 /* 20216 * If there's a spillover, but the following 20217 * xmit_tail couldn't give us enough octets 20218 * to reach "len", then stop the current 20219 * Multidata creation and let the legacy 20220 * tcp_send() path take over. We don't want 20221 * to send the tiny segment as part of this 20222 * Multidata for performance reasons; instead, 20223 * we let the legacy path deal with grouping 20224 * it with the subsequent small mblks. 20225 */ 20226 if (*usable >= len && 20227 MBLKL((*xmit_tail)->b_cont) < spill) { 20228 max_pld = 0; 20229 break; /* done */ 20230 } 20231 20232 /* 20233 * We can't spillover, and we are near 20234 * the end of the current payload buffer, 20235 * so send what's left. 20236 */ 20237 ASSERT(*tail_unsent > 0); 20238 len = *tail_unsent; 20239 } 20240 20241 /* tail_unsent is negated if there is a spillover */ 20242 *tail_unsent -= len; 20243 *usable -= len; 20244 ASSERT(*usable >= 0); 20245 20246 if (*usable < mss) 20247 seg_len = *usable; 20248 /* 20249 * Sender SWS avoidance; see comments in tcp_send(); 20250 * everything else is the same, except that we only 20251 * do this here if there is no more data to be sent 20252 * following the current xmit_tail. We don't check 20253 * for 1-byte urgent data because we shouldn't get 20254 * here if TCP_URG_VALID is set. 20255 */ 20256 if (*usable > 0 && *usable < mss && 20257 ((md_pbuf_nxt == NULL && 20258 (*xmit_tail)->b_cont == NULL) || 20259 (md_pbuf_nxt != NULL && 20260 (*xmit_tail)->b_cont->b_cont == NULL)) && 20261 seg_len < (tcp->tcp_max_swnd >> 1) && 20262 (tcp->tcp_unsent - 20263 ((*snxt + len) - tcp->tcp_snxt)) > seg_len && 20264 !tcp->tcp_zero_win_probe) { 20265 if ((*snxt + len) == tcp->tcp_snxt && 20266 (*snxt + len) == tcp->tcp_suna) { 20267 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20268 } 20269 done = B_TRUE; 20270 } 20271 20272 /* 20273 * Prime pump for IP's checksumming on our behalf; 20274 * include the adjustment for a source route if any. 20275 * Do this only for software/partial hardware checksum 20276 * offload, as this field gets zeroed out later for 20277 * the full hardware checksum offload case. 20278 */ 20279 if (!(hwcksum_flags & HCK_FULLCKSUM)) { 20280 cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 20281 cksum = (cksum >> 16) + (cksum & 0xFFFF); 20282 U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum); 20283 } 20284 20285 U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq); 20286 *snxt += len; 20287 20288 tcp->tcp_tcph->th_flags[0] = TH_ACK; 20289 /* 20290 * We set the PUSH bit only if TCP has no more buffered 20291 * data to be transmitted (or if sender SWS avoidance 20292 * takes place), as opposed to setting it for every 20293 * last packet in the burst. 20294 */ 20295 if (done || 20296 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0) 20297 tcp->tcp_tcph->th_flags[0] |= TH_PUSH; 20298 20299 /* 20300 * Set FIN bit if this is our last segment; snxt 20301 * already includes its length, and it will not 20302 * be adjusted after this point. 20303 */ 20304 if (tcp->tcp_valid_bits == TCP_FSS_VALID && 20305 *snxt == tcp->tcp_fss) { 20306 if (!tcp->tcp_fin_acked) { 20307 tcp->tcp_tcph->th_flags[0] |= TH_FIN; 20308 BUMP_MIB(&tcps->tcps_mib, 20309 tcpOutControl); 20310 } 20311 if (!tcp->tcp_fin_sent) { 20312 tcp->tcp_fin_sent = B_TRUE; 20313 /* 20314 * tcp state must be ESTABLISHED 20315 * in order for us to get here in 20316 * the first place. 20317 */ 20318 tcp->tcp_state = TCPS_FIN_WAIT_1; 20319 20320 /* 20321 * Upon returning from this routine, 20322 * tcp_wput_data() will set tcp_snxt 20323 * to be equal to snxt + tcp_fin_sent. 20324 * This is essentially the same as 20325 * setting it to tcp_fss + 1. 20326 */ 20327 } 20328 } 20329 20330 tcp->tcp_last_sent_len = (ushort_t)len; 20331 20332 len += tcp_hdr_len; 20333 if (tcp->tcp_ipversion == IPV4_VERSION) 20334 tcp->tcp_ipha->ipha_length = htons(len); 20335 else 20336 tcp->tcp_ip6h->ip6_plen = htons(len - 20337 ((char *)&tcp->tcp_ip6h[1] - 20338 tcp->tcp_iphc)); 20339 20340 pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF); 20341 20342 /* setup header fragment */ 20343 PDESC_HDR_ADD(pkt_info, 20344 md_hbuf->b_rptr + cur_hdr_off, /* base */ 20345 tcp->tcp_mdt_hdr_head, /* head room */ 20346 tcp_hdr_len, /* len */ 20347 tcp->tcp_mdt_hdr_tail); /* tail room */ 20348 20349 ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base == 20350 hdr_frag_sz); 20351 ASSERT(MBLKIN(md_hbuf, 20352 (pkt_info->hdr_base - md_hbuf->b_rptr), 20353 PDESC_HDRSIZE(pkt_info))); 20354 20355 /* setup first payload fragment */ 20356 PDESC_PLD_INIT(pkt_info); 20357 PDESC_PLD_SPAN_ADD(pkt_info, 20358 pbuf_idx, /* index */ 20359 md_pbuf->b_rptr + cur_pld_off, /* start */ 20360 tcp->tcp_last_sent_len); /* len */ 20361 20362 /* create a split-packet in case of a spillover */ 20363 if (md_pbuf_nxt != NULL) { 20364 ASSERT(spill > 0); 20365 ASSERT(pbuf_idx_nxt > pbuf_idx); 20366 ASSERT(!add_buffer); 20367 20368 md_pbuf = md_pbuf_nxt; 20369 md_pbuf_nxt = NULL; 20370 pbuf_idx = pbuf_idx_nxt; 20371 pbuf_idx_nxt = -1; 20372 cur_pld_off = spill; 20373 20374 /* trim out first payload fragment */ 20375 PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill); 20376 20377 /* setup second payload fragment */ 20378 PDESC_PLD_SPAN_ADD(pkt_info, 20379 pbuf_idx, /* index */ 20380 md_pbuf->b_rptr, /* start */ 20381 spill); /* len */ 20382 20383 if ((*xmit_tail)->b_next == NULL) { 20384 /* 20385 * Store the lbolt used for RTT 20386 * estimation. We can only record one 20387 * timestamp per mblk so we do it when 20388 * we reach the end of the payload 20389 * buffer. Also we only take a new 20390 * timestamp sample when the previous 20391 * timed data from the same mblk has 20392 * been ack'ed. 20393 */ 20394 (*xmit_tail)->b_prev = local_time; 20395 (*xmit_tail)->b_next = 20396 (mblk_t *)(uintptr_t)first_snxt; 20397 } 20398 20399 first_snxt = *snxt - spill; 20400 20401 /* 20402 * Advance xmit_tail; usable could be 0 by 20403 * the time we got here, but we made sure 20404 * above that we would only spillover to 20405 * the next data block if usable includes 20406 * the spilled-over amount prior to the 20407 * subtraction. Therefore, we are sure 20408 * that xmit_tail->b_cont can't be NULL. 20409 */ 20410 ASSERT((*xmit_tail)->b_cont != NULL); 20411 *xmit_tail = (*xmit_tail)->b_cont; 20412 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20413 (uintptr_t)INT_MAX); 20414 *tail_unsent = (int)MBLKL(*xmit_tail) - spill; 20415 } else { 20416 cur_pld_off += tcp->tcp_last_sent_len; 20417 } 20418 20419 /* 20420 * Fill in the header using the template header, and 20421 * add options such as time-stamp, ECN and/or SACK, 20422 * as needed. 20423 */ 20424 tcp_fill_header(tcp, pkt_info->hdr_rptr, 20425 (clock_t)local_time, num_sack_blk); 20426 20427 /* take care of some IP header businesses */ 20428 if (af == AF_INET) { 20429 ipha = (ipha_t *)pkt_info->hdr_rptr; 20430 20431 ASSERT(OK_32PTR((uchar_t *)ipha)); 20432 ASSERT(PDESC_HDRL(pkt_info) >= 20433 IP_SIMPLE_HDR_LENGTH); 20434 ASSERT(ipha->ipha_version_and_hdr_length == 20435 IP_SIMPLE_HDR_VERSION); 20436 20437 /* 20438 * Assign ident value for current packet; see 20439 * related comments in ip_wput_ire() about the 20440 * contract private interface with clustering 20441 * group. 20442 */ 20443 clusterwide = B_FALSE; 20444 if (cl_inet_ipident != NULL) { 20445 ASSERT(cl_inet_isclusterwide != NULL); 20446 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 20447 AF_INET, 20448 (uint8_t *)(uintptr_t)src)) { 20449 ipha->ipha_ident = 20450 (*cl_inet_ipident) 20451 (IPPROTO_IP, AF_INET, 20452 (uint8_t *)(uintptr_t)src, 20453 (uint8_t *)(uintptr_t)dst); 20454 clusterwide = B_TRUE; 20455 } 20456 } 20457 20458 if (!clusterwide) { 20459 ipha->ipha_ident = (uint16_t) 20460 atomic_add_32_nv( 20461 &ire->ire_ident, 1); 20462 } 20463 #ifndef _BIG_ENDIAN 20464 ipha->ipha_ident = (ipha->ipha_ident << 8) | 20465 (ipha->ipha_ident >> 8); 20466 #endif 20467 } else { 20468 ip6h = (ip6_t *)pkt_info->hdr_rptr; 20469 20470 ASSERT(OK_32PTR((uchar_t *)ip6h)); 20471 ASSERT(IPVER(ip6h) == IPV6_VERSION); 20472 ASSERT(ip6h->ip6_nxt == IPPROTO_TCP); 20473 ASSERT(PDESC_HDRL(pkt_info) >= 20474 (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET + 20475 TCP_CHECKSUM_SIZE)); 20476 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 20477 20478 if (tcp->tcp_ip_forward_progress) { 20479 rconfirm = B_TRUE; 20480 tcp->tcp_ip_forward_progress = B_FALSE; 20481 } 20482 } 20483 20484 /* at least one payload span, and at most two */ 20485 ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3); 20486 20487 /* add the packet descriptor to Multidata */ 20488 if ((pkt = mmd_addpdesc(mmd, pkt_info, &err, 20489 KM_NOSLEEP)) == NULL) { 20490 /* 20491 * Any failure other than ENOMEM indicates 20492 * that we have passed in invalid pkt_info 20493 * or parameters to mmd_addpdesc, which must 20494 * not happen. 20495 * 20496 * EINVAL is a result of failure on boundary 20497 * checks against the pkt_info contents. It 20498 * should not happen, and we panic because 20499 * either there's horrible heap corruption, 20500 * and/or programming mistake. 20501 */ 20502 if (err != ENOMEM) { 20503 cmn_err(CE_PANIC, "tcp_multisend: " 20504 "pdesc logic error detected for " 20505 "tcp %p mmd %p pinfo %p (%d)\n", 20506 (void *)tcp, (void *)mmd, 20507 (void *)pkt_info, err); 20508 } 20509 TCP_STAT(tcps, tcp_mdt_addpdescfail); 20510 goto legacy_send; /* out_of_mem */ 20511 } 20512 ASSERT(pkt != NULL); 20513 20514 /* calculate IP header and TCP checksums */ 20515 if (af == AF_INET) { 20516 /* calculate pseudo-header checksum */ 20517 cksum = (dst >> 16) + (dst & 0xFFFF) + 20518 (src >> 16) + (src & 0xFFFF); 20519 20520 /* offset for TCP header checksum */ 20521 up = IPH_TCPH_CHECKSUMP(ipha, 20522 IP_SIMPLE_HDR_LENGTH); 20523 } else { 20524 up = (uint16_t *)&ip6h->ip6_src; 20525 20526 /* calculate pseudo-header checksum */ 20527 cksum = up[0] + up[1] + up[2] + up[3] + 20528 up[4] + up[5] + up[6] + up[7] + 20529 up[8] + up[9] + up[10] + up[11] + 20530 up[12] + up[13] + up[14] + up[15]; 20531 20532 /* Fold the initial sum */ 20533 cksum = (cksum & 0xffff) + (cksum >> 16); 20534 20535 up = (uint16_t *)(((uchar_t *)ip6h) + 20536 IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET); 20537 } 20538 20539 if (hwcksum_flags & HCK_FULLCKSUM) { 20540 /* clear checksum field for hardware */ 20541 *up = 0; 20542 } else if (hwcksum_flags & HCK_PARTIALCKSUM) { 20543 uint32_t sum; 20544 20545 /* pseudo-header checksumming */ 20546 sum = *up + cksum + IP_TCP_CSUM_COMP; 20547 sum = (sum & 0xFFFF) + (sum >> 16); 20548 *up = (sum & 0xFFFF) + (sum >> 16); 20549 } else { 20550 /* software checksumming */ 20551 TCP_STAT(tcps, tcp_out_sw_cksum); 20552 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 20553 tcp->tcp_hdr_len + tcp->tcp_last_sent_len); 20554 *up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len, 20555 cksum + IP_TCP_CSUM_COMP); 20556 if (*up == 0) 20557 *up = 0xFFFF; 20558 } 20559 20560 /* IPv4 header checksum */ 20561 if (af == AF_INET) { 20562 ipha->ipha_fragment_offset_and_flags |= 20563 (uint32_t)htons(ire->ire_frag_flag); 20564 20565 if (hwcksum_flags & HCK_IPV4_HDRCKSUM) { 20566 ipha->ipha_hdr_checksum = 0; 20567 } else { 20568 IP_HDR_CKSUM(ipha, cksum, 20569 ((uint32_t *)ipha)[0], 20570 ((uint16_t *)ipha)[4]); 20571 } 20572 } 20573 20574 if (af == AF_INET && 20575 HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) || 20576 af == AF_INET6 && 20577 HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) { 20578 /* build header(IP/TCP) mblk for this segment */ 20579 if ((mp = dupb(md_hbuf)) == NULL) 20580 goto legacy_send; 20581 20582 mp->b_rptr = pkt_info->hdr_rptr; 20583 mp->b_wptr = pkt_info->hdr_wptr; 20584 20585 /* build payload mblk for this segment */ 20586 if ((mp1 = dupb(*xmit_tail)) == NULL) { 20587 freemsg(mp); 20588 goto legacy_send; 20589 } 20590 mp1->b_wptr = md_pbuf->b_rptr + cur_pld_off; 20591 mp1->b_rptr = mp1->b_wptr - 20592 tcp->tcp_last_sent_len; 20593 linkb(mp, mp1); 20594 20595 pld_start = mp1->b_rptr; 20596 20597 if (af == AF_INET) { 20598 DTRACE_PROBE4( 20599 ip4__physical__out__start, 20600 ill_t *, NULL, 20601 ill_t *, ill, 20602 ipha_t *, ipha, 20603 mblk_t *, mp); 20604 FW_HOOKS( 20605 ipst->ips_ip4_physical_out_event, 20606 ipst->ips_ipv4firewall_physical_out, 20607 NULL, ill, ipha, mp, mp, ipst); 20608 DTRACE_PROBE1( 20609 ip4__physical__out__end, 20610 mblk_t *, mp); 20611 } else { 20612 DTRACE_PROBE4( 20613 ip6__physical__out_start, 20614 ill_t *, NULL, 20615 ill_t *, ill, 20616 ip6_t *, ip6h, 20617 mblk_t *, mp); 20618 FW_HOOKS6( 20619 ipst->ips_ip6_physical_out_event, 20620 ipst->ips_ipv6firewall_physical_out, 20621 NULL, ill, ip6h, mp, mp, ipst); 20622 DTRACE_PROBE1( 20623 ip6__physical__out__end, 20624 mblk_t *, mp); 20625 } 20626 20627 if (buf_trunked && mp != NULL) { 20628 /* 20629 * Need to pass it to normal path. 20630 */ 20631 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 20632 } else if (mp == NULL || 20633 mp->b_rptr != pkt_info->hdr_rptr || 20634 mp->b_wptr != pkt_info->hdr_wptr || 20635 (mp1 = mp->b_cont) == NULL || 20636 mp1->b_rptr != pld_start || 20637 mp1->b_wptr != pld_start + 20638 tcp->tcp_last_sent_len || 20639 mp1->b_cont != NULL) { 20640 /* 20641 * Need to pass all packets of this 20642 * buffer to normal path, either when 20643 * packet is blocked, or when boundary 20644 * of header buffer or payload buffer 20645 * has been changed by FW_HOOKS[6]. 20646 */ 20647 buf_trunked = B_TRUE; 20648 if (md_mp_head != NULL) { 20649 err = (intptr_t)rmvb(md_mp_head, 20650 md_mp); 20651 if (err == 0) 20652 md_mp_head = NULL; 20653 } 20654 20655 /* send down what we've got so far */ 20656 if (md_mp_head != NULL) { 20657 tcp_multisend_data(tcp, ire, 20658 ill, md_mp_head, obsegs, 20659 obbytes, &rconfirm); 20660 } 20661 md_mp_head = NULL; 20662 20663 if (mp != NULL) 20664 CALL_IP_WPUT(tcp->tcp_connp, 20665 q, mp); 20666 20667 mp1 = fw_mp_head; 20668 do { 20669 mp = mp1; 20670 mp1 = mp1->b_next; 20671 mp->b_next = NULL; 20672 mp->b_prev = NULL; 20673 CALL_IP_WPUT(tcp->tcp_connp, 20674 q, mp); 20675 } while (mp1 != NULL); 20676 20677 fw_mp_head = NULL; 20678 } else { 20679 if (fw_mp_head == NULL) 20680 fw_mp_head = mp; 20681 else 20682 fw_mp_head->b_prev->b_next = mp; 20683 fw_mp_head->b_prev = mp; 20684 } 20685 } 20686 20687 /* advance header offset */ 20688 cur_hdr_off += hdr_frag_sz; 20689 20690 obbytes += tcp->tcp_last_sent_len; 20691 ++obsegs; 20692 } while (!done && *usable > 0 && --num_burst_seg > 0 && 20693 *tail_unsent > 0); 20694 20695 if ((*xmit_tail)->b_next == NULL) { 20696 /* 20697 * Store the lbolt used for RTT estimation. We can only 20698 * record one timestamp per mblk so we do it when we 20699 * reach the end of the payload buffer. Also we only 20700 * take a new timestamp sample when the previous timed 20701 * data from the same mblk has been ack'ed. 20702 */ 20703 (*xmit_tail)->b_prev = local_time; 20704 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt; 20705 } 20706 20707 ASSERT(*tail_unsent >= 0); 20708 if (*tail_unsent > 0) { 20709 /* 20710 * We got here because we broke out of the above 20711 * loop due to of one of the following cases: 20712 * 20713 * 1. len < adjusted MSS (i.e. small), 20714 * 2. Sender SWS avoidance, 20715 * 3. max_pld is zero. 20716 * 20717 * We are done for this Multidata, so trim our 20718 * last payload buffer (if any) accordingly. 20719 */ 20720 if (md_pbuf != NULL) 20721 md_pbuf->b_wptr -= *tail_unsent; 20722 } else if (*usable > 0) { 20723 *xmit_tail = (*xmit_tail)->b_cont; 20724 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20725 (uintptr_t)INT_MAX); 20726 *tail_unsent = (int)MBLKL(*xmit_tail); 20727 add_buffer = B_TRUE; 20728 } 20729 20730 while (fw_mp_head) { 20731 mp = fw_mp_head; 20732 fw_mp_head = fw_mp_head->b_next; 20733 mp->b_prev = mp->b_next = NULL; 20734 freemsg(mp); 20735 } 20736 if (buf_trunked) { 20737 TCP_STAT(tcps, tcp_mdt_discarded); 20738 freeb(md_mp); 20739 buf_trunked = B_FALSE; 20740 } 20741 } while (!done && *usable > 0 && num_burst_seg > 0 && 20742 (tcp_mdt_chain || max_pld > 0)); 20743 20744 if (md_mp_head != NULL) { 20745 /* send everything down */ 20746 tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, 20747 &rconfirm); 20748 } 20749 20750 #undef PREP_NEW_MULTIDATA 20751 #undef PREP_NEW_PBUF 20752 #undef IPVER 20753 20754 IRE_REFRELE(ire); 20755 return (0); 20756 } 20757 20758 /* 20759 * A wrapper function for sending one or more Multidata messages down to 20760 * the module below ip; this routine does not release the reference of the 20761 * IRE (caller does that). This routine is analogous to tcp_send_data(). 20762 */ 20763 static void 20764 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head, 20765 const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm) 20766 { 20767 uint64_t delta; 20768 nce_t *nce; 20769 tcp_stack_t *tcps = tcp->tcp_tcps; 20770 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 20771 20772 ASSERT(ire != NULL && ill != NULL); 20773 ASSERT(ire->ire_stq != NULL); 20774 ASSERT(md_mp_head != NULL); 20775 ASSERT(rconfirm != NULL); 20776 20777 /* adjust MIBs and IRE timestamp */ 20778 TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT); 20779 tcp->tcp_obsegs += obsegs; 20780 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs); 20781 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes); 20782 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs); 20783 20784 if (tcp->tcp_ipversion == IPV4_VERSION) { 20785 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs); 20786 } else { 20787 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs); 20788 } 20789 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs); 20790 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs); 20791 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes); 20792 20793 ire->ire_ob_pkt_count += obsegs; 20794 if (ire->ire_ipif != NULL) 20795 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs); 20796 ire->ire_last_used_time = lbolt; 20797 20798 /* send it down */ 20799 putnext(ire->ire_stq, md_mp_head); 20800 20801 /* we're done for TCP/IPv4 */ 20802 if (tcp->tcp_ipversion == IPV4_VERSION) 20803 return; 20804 20805 nce = ire->ire_nce; 20806 20807 ASSERT(nce != NULL); 20808 ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT))); 20809 ASSERT(nce->nce_state != ND_INCOMPLETE); 20810 20811 /* reachability confirmation? */ 20812 if (*rconfirm) { 20813 nce->nce_last = TICK_TO_MSEC(lbolt64); 20814 if (nce->nce_state != ND_REACHABLE) { 20815 mutex_enter(&nce->nce_lock); 20816 nce->nce_state = ND_REACHABLE; 20817 nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT; 20818 mutex_exit(&nce->nce_lock); 20819 (void) untimeout(nce->nce_timeout_id); 20820 if (ip_debug > 2) { 20821 /* ip1dbg */ 20822 pr_addr_dbg("tcp_multisend_data: state " 20823 "for %s changed to REACHABLE\n", 20824 AF_INET6, &ire->ire_addr_v6); 20825 } 20826 } 20827 /* reset transport reachability confirmation */ 20828 *rconfirm = B_FALSE; 20829 } 20830 20831 delta = TICK_TO_MSEC(lbolt64) - nce->nce_last; 20832 ip1dbg(("tcp_multisend_data: delta = %" PRId64 20833 " ill_reachable_time = %d \n", delta, ill->ill_reachable_time)); 20834 20835 if (delta > (uint64_t)ill->ill_reachable_time) { 20836 mutex_enter(&nce->nce_lock); 20837 switch (nce->nce_state) { 20838 case ND_REACHABLE: 20839 case ND_STALE: 20840 /* 20841 * ND_REACHABLE is identical to ND_STALE in this 20842 * specific case. If reachable time has expired for 20843 * this neighbor (delta is greater than reachable 20844 * time), conceptually, the neighbor cache is no 20845 * longer in REACHABLE state, but already in STALE 20846 * state. So the correct transition here is to 20847 * ND_DELAY. 20848 */ 20849 nce->nce_state = ND_DELAY; 20850 mutex_exit(&nce->nce_lock); 20851 NDP_RESTART_TIMER(nce, 20852 ipst->ips_delay_first_probe_time); 20853 if (ip_debug > 3) { 20854 /* ip2dbg */ 20855 pr_addr_dbg("tcp_multisend_data: state " 20856 "for %s changed to DELAY\n", 20857 AF_INET6, &ire->ire_addr_v6); 20858 } 20859 break; 20860 case ND_DELAY: 20861 case ND_PROBE: 20862 mutex_exit(&nce->nce_lock); 20863 /* Timers have already started */ 20864 break; 20865 case ND_UNREACHABLE: 20866 /* 20867 * ndp timer has detected that this nce is 20868 * unreachable and initiated deleting this nce 20869 * and all its associated IREs. This is a race 20870 * where we found the ire before it was deleted 20871 * and have just sent out a packet using this 20872 * unreachable nce. 20873 */ 20874 mutex_exit(&nce->nce_lock); 20875 break; 20876 default: 20877 ASSERT(0); 20878 } 20879 } 20880 } 20881 20882 /* 20883 * Derived from tcp_send_data(). 20884 */ 20885 static void 20886 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss, 20887 int num_lso_seg) 20888 { 20889 ipha_t *ipha; 20890 mblk_t *ire_fp_mp; 20891 uint_t ire_fp_mp_len; 20892 uint32_t hcksum_txflags = 0; 20893 ipaddr_t src; 20894 ipaddr_t dst; 20895 uint32_t cksum; 20896 uint16_t *up; 20897 tcp_stack_t *tcps = tcp->tcp_tcps; 20898 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 20899 20900 ASSERT(DB_TYPE(mp) == M_DATA); 20901 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 20902 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 20903 ASSERT(tcp->tcp_connp != NULL); 20904 ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp)); 20905 20906 ipha = (ipha_t *)mp->b_rptr; 20907 src = ipha->ipha_src; 20908 dst = ipha->ipha_dst; 20909 20910 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 20911 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 20912 num_lso_seg); 20913 #ifndef _BIG_ENDIAN 20914 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 20915 #endif 20916 if (tcp->tcp_snd_zcopy_aware) { 20917 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 20918 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 20919 mp = tcp_zcopy_disable(tcp, mp); 20920 } 20921 20922 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 20923 ASSERT(ill->ill_hcksum_capab != NULL); 20924 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 20925 } 20926 20927 /* 20928 * Since the TCP checksum should be recalculated by h/w, we can just 20929 * zero the checksum field for HCK_FULLCKSUM, or calculate partial 20930 * pseudo-header checksum for HCK_PARTIALCKSUM. 20931 * The partial pseudo-header excludes TCP length, that was calculated 20932 * in tcp_send(), so to zero *up before further processing. 20933 */ 20934 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 20935 20936 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 20937 *up = 0; 20938 20939 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 20940 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 20941 20942 /* 20943 * Append LSO flag to DB_LSOFLAGS(mp) and set the mss to DB_LSOMSS(mp). 20944 */ 20945 DB_LSOFLAGS(mp) |= HW_LSO; 20946 DB_LSOMSS(mp) = mss; 20947 20948 ipha->ipha_fragment_offset_and_flags |= 20949 (uint32_t)htons(ire->ire_frag_flag); 20950 20951 ire_fp_mp = ire->ire_nce->nce_fp_mp; 20952 ire_fp_mp_len = MBLKL(ire_fp_mp); 20953 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 20954 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 20955 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 20956 20957 UPDATE_OB_PKT_COUNT(ire); 20958 ire->ire_last_used_time = lbolt; 20959 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 20960 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 20961 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 20962 ntohs(ipha->ipha_length)); 20963 20964 if (ILL_DLS_CAPABLE(ill)) { 20965 /* 20966 * Send the packet directly to DLD, where it may be queued 20967 * depending on the availability of transmit resources at 20968 * the media layer. 20969 */ 20970 IP_DLS_ILL_TX(ill, ipha, mp, ipst); 20971 } else { 20972 ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr; 20973 DTRACE_PROBE4(ip4__physical__out__start, 20974 ill_t *, NULL, ill_t *, out_ill, 20975 ipha_t *, ipha, mblk_t *, mp); 20976 FW_HOOKS(ipst->ips_ip4_physical_out_event, 20977 ipst->ips_ipv4firewall_physical_out, 20978 NULL, out_ill, ipha, mp, mp, ipst); 20979 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 20980 if (mp != NULL) 20981 putnext(ire->ire_stq, mp); 20982 } 20983 } 20984 20985 /* 20986 * tcp_send() is called by tcp_wput_data() for non-Multidata transmission 20987 * scheme, and returns one of the following: 20988 * 20989 * -1 = failed allocation. 20990 * 0 = success; burst count reached, or usable send window is too small, 20991 * and that we'd rather wait until later before sending again. 20992 * 1 = success; we are called from tcp_multisend(), and both usable send 20993 * window and tail_unsent are greater than the MDT threshold, and thus 20994 * Multidata Transmit should be used instead. 20995 */ 20996 static int 20997 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 20998 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 20999 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 21000 const int mdt_thres) 21001 { 21002 int num_burst_seg = tcp->tcp_snd_burst; 21003 ire_t *ire = NULL; 21004 ill_t *ill = NULL; 21005 mblk_t *ire_fp_mp = NULL; 21006 uint_t ire_fp_mp_len = 0; 21007 int num_lso_seg = 1; 21008 uint_t lso_usable; 21009 boolean_t do_lso_send = B_FALSE; 21010 tcp_stack_t *tcps = tcp->tcp_tcps; 21011 21012 /* 21013 * Check LSO capability before any further work. And the similar check 21014 * need to be done in for(;;) loop. 21015 * LSO will be deployed when therer is more than one mss of available 21016 * data and a burst transmission is allowed. 21017 */ 21018 if (tcp->tcp_lso && 21019 (tcp->tcp_valid_bits == 0 || 21020 tcp->tcp_valid_bits == TCP_FSS_VALID) && 21021 num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 21022 /* 21023 * Try to find usable IRE/ILL and do basic check to the ILL. 21024 */ 21025 if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill)) { 21026 /* 21027 * Enable LSO with this transmission. 21028 * Since IRE has been hold in 21029 * tcp_send_find_ire_ill(), IRE_REFRELE(ire) 21030 * should be called before return. 21031 */ 21032 do_lso_send = B_TRUE; 21033 ire_fp_mp = ire->ire_nce->nce_fp_mp; 21034 ire_fp_mp_len = MBLKL(ire_fp_mp); 21035 /* Round up to multiple of 4 */ 21036 ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4; 21037 } else { 21038 do_lso_send = B_FALSE; 21039 ill = NULL; 21040 } 21041 } 21042 21043 for (;;) { 21044 struct datab *db; 21045 tcph_t *tcph; 21046 uint32_t sum; 21047 mblk_t *mp, *mp1; 21048 uchar_t *rptr; 21049 int len; 21050 21051 /* 21052 * If we're called by tcp_multisend(), and the amount of 21053 * sendable data as well as the size of current xmit_tail 21054 * is beyond the MDT threshold, return to the caller and 21055 * let the large data transmit be done using MDT. 21056 */ 21057 if (*usable > 0 && *usable > mdt_thres && 21058 (*tail_unsent > mdt_thres || (*tail_unsent == 0 && 21059 MBLKL((*xmit_tail)->b_cont) > mdt_thres))) { 21060 ASSERT(tcp->tcp_mdt); 21061 return (1); /* success; do large send */ 21062 } 21063 21064 if (num_burst_seg == 0) 21065 break; /* success; burst count reached */ 21066 21067 /* 21068 * Calculate the maximum payload length we can send in *one* 21069 * time. 21070 */ 21071 if (do_lso_send) { 21072 /* 21073 * Check whether need to do LSO any more. 21074 */ 21075 if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 21076 lso_usable = MIN(tcp->tcp_lso_max, *usable); 21077 lso_usable = MIN(lso_usable, 21078 num_burst_seg * mss); 21079 21080 num_lso_seg = lso_usable / mss; 21081 if (lso_usable % mss) { 21082 num_lso_seg++; 21083 tcp->tcp_last_sent_len = (ushort_t) 21084 (lso_usable % mss); 21085 } else { 21086 tcp->tcp_last_sent_len = (ushort_t)mss; 21087 } 21088 } else { 21089 do_lso_send = B_FALSE; 21090 num_lso_seg = 1; 21091 lso_usable = mss; 21092 } 21093 } 21094 21095 ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1); 21096 21097 /* 21098 * Adjust num_burst_seg here. 21099 */ 21100 num_burst_seg -= num_lso_seg; 21101 21102 len = mss; 21103 if (len > *usable) { 21104 ASSERT(do_lso_send == B_FALSE); 21105 21106 len = *usable; 21107 if (len <= 0) { 21108 /* Terminate the loop */ 21109 break; /* success; too small */ 21110 } 21111 /* 21112 * Sender silly-window avoidance. 21113 * Ignore this if we are going to send a 21114 * zero window probe out. 21115 * 21116 * TODO: force data into microscopic window? 21117 * ==> (!pushed || (unsent > usable)) 21118 */ 21119 if (len < (tcp->tcp_max_swnd >> 1) && 21120 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 21121 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 21122 len == 1) && (! tcp->tcp_zero_win_probe)) { 21123 /* 21124 * If the retransmit timer is not running 21125 * we start it so that we will retransmit 21126 * in the case when the the receiver has 21127 * decremented the window. 21128 */ 21129 if (*snxt == tcp->tcp_snxt && 21130 *snxt == tcp->tcp_suna) { 21131 /* 21132 * We are not supposed to send 21133 * anything. So let's wait a little 21134 * bit longer before breaking SWS 21135 * avoidance. 21136 * 21137 * What should the value be? 21138 * Suggestion: MAX(init rexmit time, 21139 * tcp->tcp_rto) 21140 */ 21141 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 21142 } 21143 break; /* success; too small */ 21144 } 21145 } 21146 21147 tcph = tcp->tcp_tcph; 21148 21149 /* 21150 * The reason to adjust len here is that we need to set flags 21151 * and calculate checksum. 21152 */ 21153 if (do_lso_send) 21154 len = lso_usable; 21155 21156 *usable -= len; /* Approximate - can be adjusted later */ 21157 if (*usable > 0) 21158 tcph->th_flags[0] = TH_ACK; 21159 else 21160 tcph->th_flags[0] = (TH_ACK | TH_PUSH); 21161 21162 /* 21163 * Prime pump for IP's checksumming on our behalf 21164 * Include the adjustment for a source route if any. 21165 */ 21166 sum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 21167 sum = (sum >> 16) + (sum & 0xFFFF); 21168 U16_TO_ABE16(sum, tcph->th_sum); 21169 21170 U32_TO_ABE32(*snxt, tcph->th_seq); 21171 21172 /* 21173 * Branch off to tcp_xmit_mp() if any of the VALID bits is 21174 * set. For the case when TCP_FSS_VALID is the only valid 21175 * bit (normal active close), branch off only when we think 21176 * that the FIN flag needs to be set. Note for this case, 21177 * that (snxt + len) may not reflect the actual seg_len, 21178 * as len may be further reduced in tcp_xmit_mp(). If len 21179 * gets modified, we will end up here again. 21180 */ 21181 if (tcp->tcp_valid_bits != 0 && 21182 (tcp->tcp_valid_bits != TCP_FSS_VALID || 21183 ((*snxt + len) == tcp->tcp_fss))) { 21184 uchar_t *prev_rptr; 21185 uint32_t prev_snxt = tcp->tcp_snxt; 21186 21187 if (*tail_unsent == 0) { 21188 ASSERT((*xmit_tail)->b_cont != NULL); 21189 *xmit_tail = (*xmit_tail)->b_cont; 21190 prev_rptr = (*xmit_tail)->b_rptr; 21191 *tail_unsent = (int)((*xmit_tail)->b_wptr - 21192 (*xmit_tail)->b_rptr); 21193 } else { 21194 prev_rptr = (*xmit_tail)->b_rptr; 21195 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 21196 *tail_unsent; 21197 } 21198 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 21199 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 21200 /* Restore tcp_snxt so we get amount sent right. */ 21201 tcp->tcp_snxt = prev_snxt; 21202 if (prev_rptr == (*xmit_tail)->b_rptr) { 21203 /* 21204 * If the previous timestamp is still in use, 21205 * don't stomp on it. 21206 */ 21207 if ((*xmit_tail)->b_next == NULL) { 21208 (*xmit_tail)->b_prev = local_time; 21209 (*xmit_tail)->b_next = 21210 (mblk_t *)(uintptr_t)(*snxt); 21211 } 21212 } else 21213 (*xmit_tail)->b_rptr = prev_rptr; 21214 21215 if (mp == NULL) { 21216 if (ire != NULL) 21217 IRE_REFRELE(ire); 21218 return (-1); 21219 } 21220 mp1 = mp->b_cont; 21221 21222 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 21223 tcp->tcp_last_sent_len = (ushort_t)len; 21224 while (mp1->b_cont) { 21225 *xmit_tail = (*xmit_tail)->b_cont; 21226 (*xmit_tail)->b_prev = local_time; 21227 (*xmit_tail)->b_next = 21228 (mblk_t *)(uintptr_t)(*snxt); 21229 mp1 = mp1->b_cont; 21230 } 21231 *snxt += len; 21232 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 21233 BUMP_LOCAL(tcp->tcp_obsegs); 21234 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 21235 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 21236 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 21237 tcp_send_data(tcp, q, mp); 21238 continue; 21239 } 21240 21241 *snxt += len; /* Adjust later if we don't send all of len */ 21242 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 21243 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 21244 21245 if (*tail_unsent) { 21246 /* Are the bytes above us in flight? */ 21247 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 21248 if (rptr != (*xmit_tail)->b_rptr) { 21249 *tail_unsent -= len; 21250 if (len <= mss) /* LSO is unusable */ 21251 tcp->tcp_last_sent_len = (ushort_t)len; 21252 len += tcp_hdr_len; 21253 if (tcp->tcp_ipversion == IPV4_VERSION) 21254 tcp->tcp_ipha->ipha_length = htons(len); 21255 else 21256 tcp->tcp_ip6h->ip6_plen = 21257 htons(len - 21258 ((char *)&tcp->tcp_ip6h[1] - 21259 tcp->tcp_iphc)); 21260 mp = dupb(*xmit_tail); 21261 if (mp == NULL) { 21262 if (ire != NULL) 21263 IRE_REFRELE(ire); 21264 return (-1); /* out_of_mem */ 21265 } 21266 mp->b_rptr = rptr; 21267 /* 21268 * If the old timestamp is no longer in use, 21269 * sample a new timestamp now. 21270 */ 21271 if ((*xmit_tail)->b_next == NULL) { 21272 (*xmit_tail)->b_prev = local_time; 21273 (*xmit_tail)->b_next = 21274 (mblk_t *)(uintptr_t)(*snxt-len); 21275 } 21276 goto must_alloc; 21277 } 21278 } else { 21279 *xmit_tail = (*xmit_tail)->b_cont; 21280 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 21281 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 21282 *tail_unsent = (int)((*xmit_tail)->b_wptr - 21283 (*xmit_tail)->b_rptr); 21284 } 21285 21286 (*xmit_tail)->b_prev = local_time; 21287 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 21288 21289 *tail_unsent -= len; 21290 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 21291 tcp->tcp_last_sent_len = (ushort_t)len; 21292 21293 len += tcp_hdr_len; 21294 if (tcp->tcp_ipversion == IPV4_VERSION) 21295 tcp->tcp_ipha->ipha_length = htons(len); 21296 else 21297 tcp->tcp_ip6h->ip6_plen = htons(len - 21298 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21299 21300 mp = dupb(*xmit_tail); 21301 if (mp == NULL) { 21302 if (ire != NULL) 21303 IRE_REFRELE(ire); 21304 return (-1); /* out_of_mem */ 21305 } 21306 21307 len = tcp_hdr_len; 21308 /* 21309 * There are four reasons to allocate a new hdr mblk: 21310 * 1) The bytes above us are in use by another packet 21311 * 2) We don't have good alignment 21312 * 3) The mblk is being shared 21313 * 4) We don't have enough room for a header 21314 */ 21315 rptr = mp->b_rptr - len; 21316 if (!OK_32PTR(rptr) || 21317 ((db = mp->b_datap), db->db_ref != 2) || 21318 rptr < db->db_base + ire_fp_mp_len) { 21319 /* NOTE: we assume allocb returns an OK_32PTR */ 21320 21321 must_alloc:; 21322 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 21323 tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED); 21324 if (mp1 == NULL) { 21325 freemsg(mp); 21326 if (ire != NULL) 21327 IRE_REFRELE(ire); 21328 return (-1); /* out_of_mem */ 21329 } 21330 mp1->b_cont = mp; 21331 mp = mp1; 21332 /* Leave room for Link Level header */ 21333 len = tcp_hdr_len; 21334 rptr = 21335 &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len]; 21336 mp->b_wptr = &rptr[len]; 21337 } 21338 21339 /* 21340 * Fill in the header using the template header, and add 21341 * options such as time-stamp, ECN and/or SACK, as needed. 21342 */ 21343 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 21344 21345 mp->b_rptr = rptr; 21346 21347 if (*tail_unsent) { 21348 int spill = *tail_unsent; 21349 21350 mp1 = mp->b_cont; 21351 if (mp1 == NULL) 21352 mp1 = mp; 21353 21354 /* 21355 * If we're a little short, tack on more mblks until 21356 * there is no more spillover. 21357 */ 21358 while (spill < 0) { 21359 mblk_t *nmp; 21360 int nmpsz; 21361 21362 nmp = (*xmit_tail)->b_cont; 21363 nmpsz = MBLKL(nmp); 21364 21365 /* 21366 * Excess data in mblk; can we split it? 21367 * If MDT is enabled for the connection, 21368 * keep on splitting as this is a transient 21369 * send path. 21370 */ 21371 if (!do_lso_send && !tcp->tcp_mdt && 21372 (spill + nmpsz > 0)) { 21373 /* 21374 * Don't split if stream head was 21375 * told to break up larger writes 21376 * into smaller ones. 21377 */ 21378 if (tcp->tcp_maxpsz > 0) 21379 break; 21380 21381 /* 21382 * Next mblk is less than SMSS/2 21383 * rounded up to nearest 64-byte; 21384 * let it get sent as part of the 21385 * next segment. 21386 */ 21387 if (tcp->tcp_localnet && 21388 !tcp->tcp_cork && 21389 (nmpsz < roundup((mss >> 1), 64))) 21390 break; 21391 } 21392 21393 *xmit_tail = nmp; 21394 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 21395 /* Stash for rtt use later */ 21396 (*xmit_tail)->b_prev = local_time; 21397 (*xmit_tail)->b_next = 21398 (mblk_t *)(uintptr_t)(*snxt - len); 21399 mp1->b_cont = dupb(*xmit_tail); 21400 mp1 = mp1->b_cont; 21401 21402 spill += nmpsz; 21403 if (mp1 == NULL) { 21404 *tail_unsent = spill; 21405 freemsg(mp); 21406 if (ire != NULL) 21407 IRE_REFRELE(ire); 21408 return (-1); /* out_of_mem */ 21409 } 21410 } 21411 21412 /* Trim back any surplus on the last mblk */ 21413 if (spill >= 0) { 21414 mp1->b_wptr -= spill; 21415 *tail_unsent = spill; 21416 } else { 21417 /* 21418 * We did not send everything we could in 21419 * order to remain within the b_cont limit. 21420 */ 21421 *usable -= spill; 21422 *snxt += spill; 21423 tcp->tcp_last_sent_len += spill; 21424 UPDATE_MIB(&tcps->tcps_mib, 21425 tcpOutDataBytes, spill); 21426 /* 21427 * Adjust the checksum 21428 */ 21429 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 21430 sum += spill; 21431 sum = (sum >> 16) + (sum & 0xFFFF); 21432 U16_TO_ABE16(sum, tcph->th_sum); 21433 if (tcp->tcp_ipversion == IPV4_VERSION) { 21434 sum = ntohs( 21435 ((ipha_t *)rptr)->ipha_length) + 21436 spill; 21437 ((ipha_t *)rptr)->ipha_length = 21438 htons(sum); 21439 } else { 21440 sum = ntohs( 21441 ((ip6_t *)rptr)->ip6_plen) + 21442 spill; 21443 ((ip6_t *)rptr)->ip6_plen = 21444 htons(sum); 21445 } 21446 *tail_unsent = 0; 21447 } 21448 } 21449 if (tcp->tcp_ip_forward_progress) { 21450 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 21451 *(uint32_t *)mp->b_rptr |= IP_FORWARD_PROG; 21452 tcp->tcp_ip_forward_progress = B_FALSE; 21453 } 21454 21455 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 21456 if (do_lso_send) { 21457 tcp_lsosend_data(tcp, mp, ire, ill, mss, 21458 num_lso_seg); 21459 tcp->tcp_obsegs += num_lso_seg; 21460 21461 TCP_STAT(tcps, tcp_lso_times); 21462 TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg); 21463 } else { 21464 tcp_send_data(tcp, q, mp); 21465 BUMP_LOCAL(tcp->tcp_obsegs); 21466 } 21467 } 21468 21469 if (ire != NULL) 21470 IRE_REFRELE(ire); 21471 return (0); 21472 } 21473 21474 /* Unlink and return any mblk that looks like it contains a MDT info */ 21475 static mblk_t * 21476 tcp_mdt_info_mp(mblk_t *mp) 21477 { 21478 mblk_t *prev_mp; 21479 21480 for (;;) { 21481 prev_mp = mp; 21482 /* no more to process? */ 21483 if ((mp = mp->b_cont) == NULL) 21484 break; 21485 21486 switch (DB_TYPE(mp)) { 21487 case M_CTL: 21488 if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE) 21489 continue; 21490 ASSERT(prev_mp != NULL); 21491 prev_mp->b_cont = mp->b_cont; 21492 mp->b_cont = NULL; 21493 return (mp); 21494 default: 21495 break; 21496 } 21497 } 21498 return (mp); 21499 } 21500 21501 /* MDT info update routine, called when IP notifies us about MDT */ 21502 static void 21503 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first) 21504 { 21505 boolean_t prev_state; 21506 tcp_stack_t *tcps = tcp->tcp_tcps; 21507 21508 /* 21509 * IP is telling us to abort MDT on this connection? We know 21510 * this because the capability is only turned off when IP 21511 * encounters some pathological cases, e.g. link-layer change 21512 * where the new driver doesn't support MDT, or in situation 21513 * where MDT usage on the link-layer has been switched off. 21514 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE 21515 * if the link-layer doesn't support MDT, and if it does, it 21516 * will indicate that the feature is to be turned on. 21517 */ 21518 prev_state = tcp->tcp_mdt; 21519 tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0); 21520 if (!tcp->tcp_mdt && !first) { 21521 TCP_STAT(tcps, tcp_mdt_conn_halted3); 21522 ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n", 21523 (void *)tcp->tcp_connp)); 21524 } 21525 21526 /* 21527 * We currently only support MDT on simple TCP/{IPv4,IPv6}, 21528 * so disable MDT otherwise. The checks are done here 21529 * and in tcp_wput_data(). 21530 */ 21531 if (tcp->tcp_mdt && 21532 (tcp->tcp_ipversion == IPV4_VERSION && 21533 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21534 (tcp->tcp_ipversion == IPV6_VERSION && 21535 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)) 21536 tcp->tcp_mdt = B_FALSE; 21537 21538 if (tcp->tcp_mdt) { 21539 if (mdt_capab->ill_mdt_version != MDT_VERSION_2) { 21540 cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT " 21541 "version (%d), expected version is %d", 21542 mdt_capab->ill_mdt_version, MDT_VERSION_2); 21543 tcp->tcp_mdt = B_FALSE; 21544 return; 21545 } 21546 21547 /* 21548 * We need the driver to be able to handle at least three 21549 * spans per packet in order for tcp MDT to be utilized. 21550 * The first is for the header portion, while the rest are 21551 * needed to handle a packet that straddles across two 21552 * virtually non-contiguous buffers; a typical tcp packet 21553 * therefore consists of only two spans. Note that we take 21554 * a zero as "don't care". 21555 */ 21556 if (mdt_capab->ill_mdt_span_limit > 0 && 21557 mdt_capab->ill_mdt_span_limit < 3) { 21558 tcp->tcp_mdt = B_FALSE; 21559 return; 21560 } 21561 21562 /* a zero means driver wants default value */ 21563 tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld, 21564 tcps->tcps_mdt_max_pbufs); 21565 if (tcp->tcp_mdt_max_pld == 0) 21566 tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs; 21567 21568 /* ensure 32-bit alignment */ 21569 tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min, 21570 mdt_capab->ill_mdt_hdr_head), 4); 21571 tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min, 21572 mdt_capab->ill_mdt_hdr_tail), 4); 21573 21574 if (!first && !prev_state) { 21575 TCP_STAT(tcps, tcp_mdt_conn_resumed2); 21576 ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n", 21577 (void *)tcp->tcp_connp)); 21578 } 21579 } 21580 } 21581 21582 /* Unlink and return any mblk that looks like it contains a LSO info */ 21583 static mblk_t * 21584 tcp_lso_info_mp(mblk_t *mp) 21585 { 21586 mblk_t *prev_mp; 21587 21588 for (;;) { 21589 prev_mp = mp; 21590 /* no more to process? */ 21591 if ((mp = mp->b_cont) == NULL) 21592 break; 21593 21594 switch (DB_TYPE(mp)) { 21595 case M_CTL: 21596 if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE) 21597 continue; 21598 ASSERT(prev_mp != NULL); 21599 prev_mp->b_cont = mp->b_cont; 21600 mp->b_cont = NULL; 21601 return (mp); 21602 default: 21603 break; 21604 } 21605 } 21606 21607 return (mp); 21608 } 21609 21610 /* LSO info update routine, called when IP notifies us about LSO */ 21611 static void 21612 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab) 21613 { 21614 tcp_stack_t *tcps = tcp->tcp_tcps; 21615 21616 /* 21617 * IP is telling us to abort LSO on this connection? We know 21618 * this because the capability is only turned off when IP 21619 * encounters some pathological cases, e.g. link-layer change 21620 * where the new NIC/driver doesn't support LSO, or in situation 21621 * where LSO usage on the link-layer has been switched off. 21622 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE 21623 * if the link-layer doesn't support LSO, and if it does, it 21624 * will indicate that the feature is to be turned on. 21625 */ 21626 tcp->tcp_lso = (lso_capab->ill_lso_on != 0); 21627 TCP_STAT(tcps, tcp_lso_enabled); 21628 21629 /* 21630 * We currently only support LSO on simple TCP/IPv4, 21631 * so disable LSO otherwise. The checks are done here 21632 * and in tcp_wput_data(). 21633 */ 21634 if (tcp->tcp_lso && 21635 (tcp->tcp_ipversion == IPV4_VERSION && 21636 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21637 (tcp->tcp_ipversion == IPV6_VERSION)) { 21638 tcp->tcp_lso = B_FALSE; 21639 TCP_STAT(tcps, tcp_lso_disabled); 21640 } else { 21641 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, 21642 lso_capab->ill_lso_max); 21643 } 21644 } 21645 21646 static void 21647 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt) 21648 { 21649 conn_t *connp = tcp->tcp_connp; 21650 tcp_stack_t *tcps = tcp->tcp_tcps; 21651 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 21652 21653 ASSERT(ire != NULL); 21654 21655 /* 21656 * We may be in the fastpath here, and although we essentially do 21657 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return, 21658 * we try to keep things as brief as possible. After all, these 21659 * are only best-effort checks, and we do more thorough ones prior 21660 * to calling tcp_send()/tcp_multisend(). 21661 */ 21662 if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) && 21663 check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) && 21664 ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) && 21665 !(ire->ire_flags & RTF_MULTIRT) && 21666 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 21667 CONN_IS_LSO_MD_FASTPATH(connp)) { 21668 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 21669 /* Cache the result */ 21670 connp->conn_lso_ok = B_TRUE; 21671 21672 ASSERT(ill->ill_lso_capab != NULL); 21673 if (!ill->ill_lso_capab->ill_lso_on) { 21674 ill->ill_lso_capab->ill_lso_on = 1; 21675 ip1dbg(("tcp_ire_ill_check: connp %p enables " 21676 "LSO for interface %s\n", (void *)connp, 21677 ill->ill_name)); 21678 } 21679 tcp_lso_update(tcp, ill->ill_lso_capab); 21680 } else if (ipst->ips_ip_multidata_outbound && 21681 ILL_MDT_CAPABLE(ill)) { 21682 /* Cache the result */ 21683 connp->conn_mdt_ok = B_TRUE; 21684 21685 ASSERT(ill->ill_mdt_capab != NULL); 21686 if (!ill->ill_mdt_capab->ill_mdt_on) { 21687 ill->ill_mdt_capab->ill_mdt_on = 1; 21688 ip1dbg(("tcp_ire_ill_check: connp %p enables " 21689 "MDT for interface %s\n", (void *)connp, 21690 ill->ill_name)); 21691 } 21692 tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE); 21693 } 21694 } 21695 21696 /* 21697 * The goal is to reduce the number of generated tcp segments by 21698 * setting the maxpsz multiplier to 0; this will have an affect on 21699 * tcp_maxpsz_set(). With this behavior, tcp will pack more data 21700 * into each packet, up to SMSS bytes. Doing this reduces the number 21701 * of outbound segments and incoming ACKs, thus allowing for better 21702 * network and system performance. In contrast the legacy behavior 21703 * may result in sending less than SMSS size, because the last mblk 21704 * for some packets may have more data than needed to make up SMSS, 21705 * and the legacy code refused to "split" it. 21706 * 21707 * We apply the new behavior on following situations: 21708 * 21709 * 1) Loopback connections, 21710 * 2) Connections in which the remote peer is not on local subnet, 21711 * 3) Local subnet connections over the bge interface (see below). 21712 * 21713 * Ideally, we would like this behavior to apply for interfaces other 21714 * than bge. However, doing so would negatively impact drivers which 21715 * perform dynamic mapping and unmapping of DMA resources, which are 21716 * increased by setting the maxpsz multiplier to 0 (more mblks per 21717 * packet will be generated by tcp). The bge driver does not suffer 21718 * from this, as it copies the mblks into pre-mapped buffers, and 21719 * therefore does not require more I/O resources than before. 21720 * 21721 * Otherwise, this behavior is present on all network interfaces when 21722 * the destination endpoint is non-local, since reducing the number 21723 * of packets in general is good for the network. 21724 * 21725 * TODO We need to remove this hard-coded conditional for bge once 21726 * a better "self-tuning" mechanism, or a way to comprehend 21727 * the driver transmit strategy is devised. Until the solution 21728 * is found and well understood, we live with this hack. 21729 */ 21730 if (!tcp_static_maxpsz && 21731 (tcp->tcp_loopback || !tcp->tcp_localnet || 21732 (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) { 21733 /* override the default value */ 21734 tcp->tcp_maxpsz = 0; 21735 21736 ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on " 21737 "interface %s\n", (void *)connp, tcp->tcp_maxpsz, 21738 ill != NULL ? ill->ill_name : ipif_loopback_name)); 21739 } 21740 21741 /* set the stream head parameters accordingly */ 21742 (void) tcp_maxpsz_set(tcp, B_TRUE); 21743 } 21744 21745 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 21746 static void 21747 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 21748 { 21749 uchar_t fval = *mp->b_rptr; 21750 mblk_t *tail; 21751 queue_t *q = tcp->tcp_wq; 21752 21753 /* TODO: How should flush interact with urgent data? */ 21754 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 21755 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 21756 /* 21757 * Flush only data that has not yet been put on the wire. If 21758 * we flush data that we have already transmitted, life, as we 21759 * know it, may come to an end. 21760 */ 21761 tail = tcp->tcp_xmit_tail; 21762 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 21763 tcp->tcp_xmit_tail_unsent = 0; 21764 tcp->tcp_unsent = 0; 21765 if (tail->b_wptr != tail->b_rptr) 21766 tail = tail->b_cont; 21767 if (tail) { 21768 mblk_t **excess = &tcp->tcp_xmit_head; 21769 for (;;) { 21770 mblk_t *mp1 = *excess; 21771 if (mp1 == tail) 21772 break; 21773 tcp->tcp_xmit_tail = mp1; 21774 tcp->tcp_xmit_last = mp1; 21775 excess = &mp1->b_cont; 21776 } 21777 *excess = NULL; 21778 tcp_close_mpp(&tail); 21779 if (tcp->tcp_snd_zcopy_aware) 21780 tcp_zcopy_notify(tcp); 21781 } 21782 /* 21783 * We have no unsent data, so unsent must be less than 21784 * tcp_xmit_lowater, so re-enable flow. 21785 */ 21786 mutex_enter(&tcp->tcp_non_sq_lock); 21787 if (tcp->tcp_flow_stopped) { 21788 tcp_clrqfull(tcp); 21789 } 21790 mutex_exit(&tcp->tcp_non_sq_lock); 21791 } 21792 /* 21793 * TODO: you can't just flush these, you have to increase rwnd for one 21794 * thing. For another, how should urgent data interact? 21795 */ 21796 if (fval & FLUSHR) { 21797 *mp->b_rptr = fval & ~FLUSHW; 21798 /* XXX */ 21799 qreply(q, mp); 21800 return; 21801 } 21802 freemsg(mp); 21803 } 21804 21805 /* 21806 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 21807 * messages. 21808 */ 21809 static void 21810 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 21811 { 21812 mblk_t *mp1; 21813 STRUCT_HANDLE(strbuf, sb); 21814 uint16_t port; 21815 queue_t *q = tcp->tcp_wq; 21816 in6_addr_t v6addr; 21817 ipaddr_t v4addr; 21818 uint32_t flowinfo = 0; 21819 int addrlen; 21820 21821 /* Make sure it is one of ours. */ 21822 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 21823 case TI_GETMYNAME: 21824 case TI_GETPEERNAME: 21825 break; 21826 default: 21827 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 21828 return; 21829 } 21830 switch (mi_copy_state(q, mp, &mp1)) { 21831 case -1: 21832 return; 21833 case MI_COPY_CASE(MI_COPY_IN, 1): 21834 break; 21835 case MI_COPY_CASE(MI_COPY_OUT, 1): 21836 /* Copy out the strbuf. */ 21837 mi_copyout(q, mp); 21838 return; 21839 case MI_COPY_CASE(MI_COPY_OUT, 2): 21840 /* All done. */ 21841 mi_copy_done(q, mp, 0); 21842 return; 21843 default: 21844 mi_copy_done(q, mp, EPROTO); 21845 return; 21846 } 21847 /* Check alignment of the strbuf */ 21848 if (!OK_32PTR(mp1->b_rptr)) { 21849 mi_copy_done(q, mp, EINVAL); 21850 return; 21851 } 21852 21853 STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag, 21854 (void *)mp1->b_rptr); 21855 addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t); 21856 21857 if (STRUCT_FGET(sb, maxlen) < addrlen) { 21858 mi_copy_done(q, mp, EINVAL); 21859 return; 21860 } 21861 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 21862 case TI_GETMYNAME: 21863 if (tcp->tcp_family == AF_INET) { 21864 if (tcp->tcp_ipversion == IPV4_VERSION) { 21865 v4addr = tcp->tcp_ipha->ipha_src; 21866 } else { 21867 /* can't return an address in this case */ 21868 v4addr = 0; 21869 } 21870 } else { 21871 /* tcp->tcp_family == AF_INET6 */ 21872 if (tcp->tcp_ipversion == IPV4_VERSION) { 21873 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 21874 &v6addr); 21875 } else { 21876 v6addr = tcp->tcp_ip6h->ip6_src; 21877 } 21878 } 21879 port = tcp->tcp_lport; 21880 break; 21881 case TI_GETPEERNAME: 21882 if (tcp->tcp_family == AF_INET) { 21883 if (tcp->tcp_ipversion == IPV4_VERSION) { 21884 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 21885 v4addr); 21886 } else { 21887 /* can't return an address in this case */ 21888 v4addr = 0; 21889 } 21890 } else { 21891 /* tcp->tcp_family == AF_INET6) */ 21892 v6addr = tcp->tcp_remote_v6; 21893 if (tcp->tcp_ipversion == IPV6_VERSION) { 21894 /* 21895 * No flowinfo if tcp->tcp_ipversion is v4. 21896 * 21897 * flowinfo was already initialized to zero 21898 * where it was declared above, so only 21899 * set it if ipversion is v6. 21900 */ 21901 flowinfo = tcp->tcp_ip6h->ip6_vcf & 21902 ~IPV6_VERS_AND_FLOW_MASK; 21903 } 21904 } 21905 port = tcp->tcp_fport; 21906 break; 21907 default: 21908 mi_copy_done(q, mp, EPROTO); 21909 return; 21910 } 21911 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 21912 if (!mp1) 21913 return; 21914 21915 if (tcp->tcp_family == AF_INET) { 21916 sin_t *sin; 21917 21918 STRUCT_FSET(sb, len, (int)sizeof (sin_t)); 21919 sin = (sin_t *)mp1->b_rptr; 21920 mp1->b_wptr = (uchar_t *)&sin[1]; 21921 *sin = sin_null; 21922 sin->sin_family = AF_INET; 21923 sin->sin_addr.s_addr = v4addr; 21924 sin->sin_port = port; 21925 } else { 21926 /* tcp->tcp_family == AF_INET6 */ 21927 sin6_t *sin6; 21928 21929 STRUCT_FSET(sb, len, (int)sizeof (sin6_t)); 21930 sin6 = (sin6_t *)mp1->b_rptr; 21931 mp1->b_wptr = (uchar_t *)&sin6[1]; 21932 *sin6 = sin6_null; 21933 sin6->sin6_family = AF_INET6; 21934 sin6->sin6_flowinfo = flowinfo; 21935 sin6->sin6_addr = v6addr; 21936 sin6->sin6_port = port; 21937 } 21938 /* Copy out the address */ 21939 mi_copyout(q, mp); 21940 } 21941 21942 /* 21943 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 21944 * messages. 21945 */ 21946 /* ARGSUSED */ 21947 static void 21948 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2) 21949 { 21950 conn_t *connp = (conn_t *)arg; 21951 tcp_t *tcp = connp->conn_tcp; 21952 queue_t *q = tcp->tcp_wq; 21953 struct iocblk *iocp; 21954 tcp_stack_t *tcps = tcp->tcp_tcps; 21955 21956 ASSERT(DB_TYPE(mp) == M_IOCTL); 21957 /* 21958 * Try and ASSERT the minimum possible references on the 21959 * conn early enough. Since we are executing on write side, 21960 * the connection is obviously not detached and that means 21961 * there is a ref each for TCP and IP. Since we are behind 21962 * the squeue, the minimum references needed are 3. If the 21963 * conn is in classifier hash list, there should be an 21964 * extra ref for that (we check both the possibilities). 21965 */ 21966 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 21967 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 21968 21969 iocp = (struct iocblk *)mp->b_rptr; 21970 switch (iocp->ioc_cmd) { 21971 case TCP_IOC_DEFAULT_Q: 21972 /* Wants to be the default wq. */ 21973 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 21974 iocp->ioc_error = EPERM; 21975 iocp->ioc_count = 0; 21976 mp->b_datap->db_type = M_IOCACK; 21977 qreply(q, mp); 21978 return; 21979 } 21980 tcp_def_q_set(tcp, mp); 21981 return; 21982 case _SIOCSOCKFALLBACK: 21983 /* 21984 * Either sockmod is about to be popped and the socket 21985 * would now be treated as a plain stream, or a module 21986 * is about to be pushed so we could no longer use read- 21987 * side synchronous streams for fused loopback tcp. 21988 * Drain any queued data and disable direct sockfs 21989 * interface from now on. 21990 */ 21991 if (!tcp->tcp_issocket) { 21992 DB_TYPE(mp) = M_IOCNAK; 21993 iocp->ioc_error = EINVAL; 21994 } else { 21995 #ifdef _ILP32 21996 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 21997 #else 21998 tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev; 21999 #endif 22000 /* 22001 * Insert this socket into the acceptor hash. 22002 * We might need it for T_CONN_RES message 22003 */ 22004 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 22005 22006 if (tcp->tcp_fused) { 22007 /* 22008 * This is a fused loopback tcp; disable 22009 * read-side synchronous streams interface 22010 * and drain any queued data. It is okay 22011 * to do this for non-synchronous streams 22012 * fused tcp as well. 22013 */ 22014 tcp_fuse_disable_pair(tcp, B_FALSE); 22015 } 22016 tcp->tcp_issocket = B_FALSE; 22017 TCP_STAT(tcps, tcp_sock_fallback); 22018 22019 DB_TYPE(mp) = M_IOCACK; 22020 iocp->ioc_error = 0; 22021 } 22022 iocp->ioc_count = 0; 22023 iocp->ioc_rval = 0; 22024 qreply(q, mp); 22025 return; 22026 } 22027 CALL_IP_WPUT(connp, q, mp); 22028 } 22029 22030 /* 22031 * This routine is called by tcp_wput() to handle all TPI requests. 22032 */ 22033 /* ARGSUSED */ 22034 static void 22035 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2) 22036 { 22037 conn_t *connp = (conn_t *)arg; 22038 tcp_t *tcp = connp->conn_tcp; 22039 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 22040 uchar_t *rptr; 22041 t_scalar_t type; 22042 int len; 22043 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 22044 22045 /* 22046 * Try and ASSERT the minimum possible references on the 22047 * conn early enough. Since we are executing on write side, 22048 * the connection is obviously not detached and that means 22049 * there is a ref each for TCP and IP. Since we are behind 22050 * the squeue, the minimum references needed are 3. If the 22051 * conn is in classifier hash list, there should be an 22052 * extra ref for that (we check both the possibilities). 22053 */ 22054 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 22055 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 22056 22057 rptr = mp->b_rptr; 22058 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 22059 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 22060 type = ((union T_primitives *)rptr)->type; 22061 if (type == T_EXDATA_REQ) { 22062 uint32_t msize = msgdsize(mp->b_cont); 22063 22064 len = msize - 1; 22065 if (len < 0) { 22066 freemsg(mp); 22067 return; 22068 } 22069 /* 22070 * Try to force urgent data out on the wire. 22071 * Even if we have unsent data this will 22072 * at least send the urgent flag. 22073 * XXX does not handle more flag correctly. 22074 */ 22075 len += tcp->tcp_unsent; 22076 len += tcp->tcp_snxt; 22077 tcp->tcp_urg = len; 22078 tcp->tcp_valid_bits |= TCP_URG_VALID; 22079 22080 /* Bypass tcp protocol for fused tcp loopback */ 22081 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 22082 return; 22083 } else if (type != T_DATA_REQ) { 22084 goto non_urgent_data; 22085 } 22086 /* TODO: options, flags, ... from user */ 22087 /* Set length to zero for reclamation below */ 22088 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 22089 freeb(mp); 22090 return; 22091 } else { 22092 if (tcp->tcp_debug) { 22093 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 22094 "tcp_wput_proto, dropping one..."); 22095 } 22096 freemsg(mp); 22097 return; 22098 } 22099 22100 non_urgent_data: 22101 22102 switch ((int)tprim->type) { 22103 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 22104 /* 22105 * save the kssl_ent_t from the next block, and convert this 22106 * back to a normal bind_req. 22107 */ 22108 if (mp->b_cont != NULL) { 22109 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 22110 22111 if (tcp->tcp_kssl_ent != NULL) { 22112 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 22113 KSSL_NO_PROXY); 22114 tcp->tcp_kssl_ent = NULL; 22115 } 22116 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 22117 sizeof (kssl_ent_t)); 22118 kssl_hold_ent(tcp->tcp_kssl_ent); 22119 freemsg(mp->b_cont); 22120 mp->b_cont = NULL; 22121 } 22122 tprim->type = T_BIND_REQ; 22123 22124 /* FALLTHROUGH */ 22125 case O_T_BIND_REQ: /* bind request */ 22126 case T_BIND_REQ: /* new semantics bind request */ 22127 tcp_bind(tcp, mp); 22128 break; 22129 case T_UNBIND_REQ: /* unbind request */ 22130 tcp_unbind(tcp, mp); 22131 break; 22132 case O_T_CONN_RES: /* old connection response XXX */ 22133 case T_CONN_RES: /* connection response */ 22134 tcp_accept(tcp, mp); 22135 break; 22136 case T_CONN_REQ: /* connection request */ 22137 tcp_connect(tcp, mp); 22138 break; 22139 case T_DISCON_REQ: /* disconnect request */ 22140 tcp_disconnect(tcp, mp); 22141 break; 22142 case T_CAPABILITY_REQ: 22143 tcp_capability_req(tcp, mp); /* capability request */ 22144 break; 22145 case T_INFO_REQ: /* information request */ 22146 tcp_info_req(tcp, mp); 22147 break; 22148 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 22149 /* Only IP is allowed to return meaningful value */ 22150 (void) svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj); 22151 break; 22152 case T_OPTMGMT_REQ: 22153 /* 22154 * Note: no support for snmpcom_req() through new 22155 * T_OPTMGMT_REQ. See comments in ip.c 22156 */ 22157 /* Only IP is allowed to return meaningful value */ 22158 (void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj); 22159 break; 22160 22161 case T_UNITDATA_REQ: /* unitdata request */ 22162 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 22163 break; 22164 case T_ORDREL_REQ: /* orderly release req */ 22165 freemsg(mp); 22166 22167 if (tcp->tcp_fused) 22168 tcp_unfuse(tcp); 22169 22170 if (tcp_xmit_end(tcp) != 0) { 22171 /* 22172 * We were crossing FINs and got a reset from 22173 * the other side. Just ignore it. 22174 */ 22175 if (tcp->tcp_debug) { 22176 (void) strlog(TCP_MOD_ID, 0, 1, 22177 SL_ERROR|SL_TRACE, 22178 "tcp_wput_proto, T_ORDREL_REQ out of " 22179 "state %s", 22180 tcp_display(tcp, NULL, 22181 DISP_ADDR_AND_PORT)); 22182 } 22183 } 22184 break; 22185 case T_ADDR_REQ: 22186 tcp_addr_req(tcp, mp); 22187 break; 22188 default: 22189 if (tcp->tcp_debug) { 22190 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 22191 "tcp_wput_proto, bogus TPI msg, type %d", 22192 tprim->type); 22193 } 22194 /* 22195 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 22196 * to recover. 22197 */ 22198 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 22199 break; 22200 } 22201 } 22202 22203 /* 22204 * The TCP write service routine should never be called... 22205 */ 22206 /* ARGSUSED */ 22207 static void 22208 tcp_wsrv(queue_t *q) 22209 { 22210 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 22211 22212 TCP_STAT(tcps, tcp_wsrv_called); 22213 } 22214 22215 /* Non overlapping byte exchanger */ 22216 static void 22217 tcp_xchg(uchar_t *a, uchar_t *b, int len) 22218 { 22219 uchar_t uch; 22220 22221 while (len-- > 0) { 22222 uch = a[len]; 22223 a[len] = b[len]; 22224 b[len] = uch; 22225 } 22226 } 22227 22228 /* 22229 * Send out a control packet on the tcp connection specified. This routine 22230 * is typically called where we need a simple ACK or RST generated. 22231 */ 22232 static void 22233 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 22234 { 22235 uchar_t *rptr; 22236 tcph_t *tcph; 22237 ipha_t *ipha = NULL; 22238 ip6_t *ip6h = NULL; 22239 uint32_t sum; 22240 int tcp_hdr_len; 22241 int tcp_ip_hdr_len; 22242 mblk_t *mp; 22243 tcp_stack_t *tcps = tcp->tcp_tcps; 22244 22245 /* 22246 * Save sum for use in source route later. 22247 */ 22248 ASSERT(tcp != NULL); 22249 sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 22250 tcp_hdr_len = tcp->tcp_hdr_len; 22251 tcp_ip_hdr_len = tcp->tcp_ip_hdr_len; 22252 22253 /* If a text string is passed in with the request, pass it to strlog. */ 22254 if (str != NULL && tcp->tcp_debug) { 22255 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22256 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 22257 str, seq, ack, ctl); 22258 } 22259 mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra, 22260 BPRI_MED); 22261 if (mp == NULL) { 22262 return; 22263 } 22264 rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; 22265 mp->b_rptr = rptr; 22266 mp->b_wptr = &rptr[tcp_hdr_len]; 22267 bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len); 22268 22269 if (tcp->tcp_ipversion == IPV4_VERSION) { 22270 ipha = (ipha_t *)rptr; 22271 ipha->ipha_length = htons(tcp_hdr_len); 22272 } else { 22273 ip6h = (ip6_t *)rptr; 22274 ASSERT(tcp != NULL); 22275 ip6h->ip6_plen = htons(tcp->tcp_hdr_len - 22276 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22277 } 22278 tcph = (tcph_t *)&rptr[tcp_ip_hdr_len]; 22279 tcph->th_flags[0] = (uint8_t)ctl; 22280 if (ctl & TH_RST) { 22281 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 22282 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22283 /* 22284 * Don't send TSopt w/ TH_RST packets per RFC 1323. 22285 */ 22286 if (tcp->tcp_snd_ts_ok && 22287 tcp->tcp_state > TCPS_SYN_SENT) { 22288 mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN]; 22289 *(mp->b_wptr) = TCPOPT_EOL; 22290 if (tcp->tcp_ipversion == IPV4_VERSION) { 22291 ipha->ipha_length = htons(tcp_hdr_len - 22292 TCPOPT_REAL_TS_LEN); 22293 } else { 22294 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 22295 TCPOPT_REAL_TS_LEN); 22296 } 22297 tcph->th_offset_and_rsrvd[0] -= (3 << 4); 22298 sum -= TCPOPT_REAL_TS_LEN; 22299 } 22300 } 22301 if (ctl & TH_ACK) { 22302 if (tcp->tcp_snd_ts_ok) { 22303 U32_TO_BE32(lbolt, 22304 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22305 U32_TO_BE32(tcp->tcp_ts_recent, 22306 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22307 } 22308 22309 /* Update the latest receive window size in TCP header. */ 22310 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22311 tcph->th_win); 22312 tcp->tcp_rack = ack; 22313 tcp->tcp_rack_cnt = 0; 22314 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 22315 } 22316 BUMP_LOCAL(tcp->tcp_obsegs); 22317 U32_TO_BE32(seq, tcph->th_seq); 22318 U32_TO_BE32(ack, tcph->th_ack); 22319 /* 22320 * Include the adjustment for a source route if any. 22321 */ 22322 sum = (sum >> 16) + (sum & 0xFFFF); 22323 U16_TO_BE16(sum, tcph->th_sum); 22324 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 22325 tcp_send_data(tcp, tcp->tcp_wq, mp); 22326 } 22327 22328 /* 22329 * If this routine returns B_TRUE, TCP can generate a RST in response 22330 * to a segment. If it returns B_FALSE, TCP should not respond. 22331 */ 22332 static boolean_t 22333 tcp_send_rst_chk(tcp_stack_t *tcps) 22334 { 22335 clock_t now; 22336 22337 /* 22338 * TCP needs to protect itself from generating too many RSTs. 22339 * This can be a DoS attack by sending us random segments 22340 * soliciting RSTs. 22341 * 22342 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 22343 * in each 1 second interval. In this way, TCP still generate 22344 * RSTs in normal cases but when under attack, the impact is 22345 * limited. 22346 */ 22347 if (tcps->tcps_rst_sent_rate_enabled != 0) { 22348 now = lbolt; 22349 /* lbolt can wrap around. */ 22350 if ((tcps->tcps_last_rst_intrvl > now) || 22351 (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) > 22352 1*SECONDS)) { 22353 tcps->tcps_last_rst_intrvl = now; 22354 tcps->tcps_rst_cnt = 1; 22355 } else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) { 22356 return (B_FALSE); 22357 } 22358 } 22359 return (B_TRUE); 22360 } 22361 22362 /* 22363 * Send down the advice IP ioctl to tell IP to mark an IRE temporary. 22364 */ 22365 static void 22366 tcp_ip_ire_mark_advice(tcp_t *tcp) 22367 { 22368 mblk_t *mp; 22369 ipic_t *ipic; 22370 22371 if (tcp->tcp_ipversion == IPV4_VERSION) { 22372 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22373 &ipic); 22374 } else { 22375 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22376 &ipic); 22377 } 22378 if (mp == NULL) 22379 return; 22380 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22381 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22382 } 22383 22384 /* 22385 * Return an IP advice ioctl mblk and set ipic to be the pointer 22386 * to the advice structure. 22387 */ 22388 static mblk_t * 22389 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic) 22390 { 22391 struct iocblk *ioc; 22392 mblk_t *mp, *mp1; 22393 22394 mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI); 22395 if (mp == NULL) 22396 return (NULL); 22397 bzero(mp->b_rptr, sizeof (ipic_t) + addr_len); 22398 *ipic = (ipic_t *)mp->b_rptr; 22399 (*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY; 22400 (*ipic)->ipic_addr_offset = sizeof (ipic_t); 22401 22402 bcopy(addr, *ipic + 1, addr_len); 22403 22404 (*ipic)->ipic_addr_length = addr_len; 22405 mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len]; 22406 22407 mp1 = mkiocb(IP_IOCTL); 22408 if (mp1 == NULL) { 22409 freemsg(mp); 22410 return (NULL); 22411 } 22412 mp1->b_cont = mp; 22413 ioc = (struct iocblk *)mp1->b_rptr; 22414 ioc->ioc_count = sizeof (ipic_t) + addr_len; 22415 22416 return (mp1); 22417 } 22418 22419 /* 22420 * Generate a reset based on an inbound packet for which there is no active 22421 * tcp state that we can find. 22422 * 22423 * IPSEC NOTE : Try to send the reply with the same protection as it came 22424 * in. We still have the ipsec_mp that the packet was attached to. Thus 22425 * the packet will go out at the same level of protection as it came in by 22426 * converting the IPSEC_IN to IPSEC_OUT. 22427 */ 22428 static void 22429 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, 22430 uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid, 22431 tcp_stack_t *tcps) 22432 { 22433 ipha_t *ipha = NULL; 22434 ip6_t *ip6h = NULL; 22435 ushort_t len; 22436 tcph_t *tcph; 22437 int i; 22438 mblk_t *ipsec_mp; 22439 boolean_t mctl_present; 22440 ipic_t *ipic; 22441 ipaddr_t v4addr; 22442 in6_addr_t v6addr; 22443 int addr_len; 22444 void *addr; 22445 queue_t *q = tcps->tcps_g_q; 22446 tcp_t *tcp; 22447 cred_t *cr; 22448 mblk_t *nmp; 22449 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 22450 22451 if (tcps->tcps_g_q == NULL) { 22452 /* 22453 * For non-zero stackids the default queue isn't created 22454 * until the first open, thus there can be a need to send 22455 * a reset before then. But we can't do that, hence we just 22456 * drop the packet. Later during boot, when the default queue 22457 * has been setup, a retransmitted packet from the peer 22458 * will result in a reset. 22459 */ 22460 ASSERT(tcps->tcps_netstack->netstack_stackid != 22461 GLOBAL_NETSTACKID); 22462 freemsg(mp); 22463 return; 22464 } 22465 22466 tcp = Q_TO_TCP(q); 22467 22468 if (!tcp_send_rst_chk(tcps)) { 22469 tcps->tcps_rst_unsent++; 22470 freemsg(mp); 22471 return; 22472 } 22473 22474 if (mp->b_datap->db_type == M_CTL) { 22475 ipsec_mp = mp; 22476 mp = mp->b_cont; 22477 mctl_present = B_TRUE; 22478 } else { 22479 ipsec_mp = mp; 22480 mctl_present = B_FALSE; 22481 } 22482 22483 if (str && q && tcps->tcps_dbg) { 22484 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22485 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 22486 "flags 0x%x", 22487 str, seq, ack, ctl); 22488 } 22489 if (mp->b_datap->db_ref != 1) { 22490 mblk_t *mp1 = copyb(mp); 22491 freemsg(mp); 22492 mp = mp1; 22493 if (!mp) { 22494 if (mctl_present) 22495 freeb(ipsec_mp); 22496 return; 22497 } else { 22498 if (mctl_present) { 22499 ipsec_mp->b_cont = mp; 22500 } else { 22501 ipsec_mp = mp; 22502 } 22503 } 22504 } else if (mp->b_cont) { 22505 freemsg(mp->b_cont); 22506 mp->b_cont = NULL; 22507 } 22508 /* 22509 * We skip reversing source route here. 22510 * (for now we replace all IP options with EOL) 22511 */ 22512 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22513 ipha = (ipha_t *)mp->b_rptr; 22514 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 22515 mp->b_rptr[i] = IPOPT_EOL; 22516 /* 22517 * Make sure that src address isn't flagrantly invalid. 22518 * Not all broadcast address checking for the src address 22519 * is possible, since we don't know the netmask of the src 22520 * addr. No check for destination address is done, since 22521 * IP will not pass up a packet with a broadcast dest 22522 * address to TCP. Similar checks are done below for IPv6. 22523 */ 22524 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 22525 CLASSD(ipha->ipha_src)) { 22526 freemsg(ipsec_mp); 22527 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 22528 return; 22529 } 22530 } else { 22531 ip6h = (ip6_t *)mp->b_rptr; 22532 22533 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 22534 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 22535 freemsg(ipsec_mp); 22536 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards); 22537 return; 22538 } 22539 22540 /* Remove any extension headers assuming partial overlay */ 22541 if (ip_hdr_len > IPV6_HDR_LEN) { 22542 uint8_t *to; 22543 22544 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 22545 ovbcopy(ip6h, to, IPV6_HDR_LEN); 22546 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 22547 ip_hdr_len = IPV6_HDR_LEN; 22548 ip6h = (ip6_t *)mp->b_rptr; 22549 ip6h->ip6_nxt = IPPROTO_TCP; 22550 } 22551 } 22552 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 22553 if (tcph->th_flags[0] & TH_RST) { 22554 freemsg(ipsec_mp); 22555 return; 22556 } 22557 tcph->th_offset_and_rsrvd[0] = (5 << 4); 22558 len = ip_hdr_len + sizeof (tcph_t); 22559 mp->b_wptr = &mp->b_rptr[len]; 22560 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22561 ipha->ipha_length = htons(len); 22562 /* Swap addresses */ 22563 v4addr = ipha->ipha_src; 22564 ipha->ipha_src = ipha->ipha_dst; 22565 ipha->ipha_dst = v4addr; 22566 ipha->ipha_ident = 0; 22567 ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 22568 addr_len = IP_ADDR_LEN; 22569 addr = &v4addr; 22570 } else { 22571 /* No ip6i_t in this case */ 22572 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 22573 /* Swap addresses */ 22574 v6addr = ip6h->ip6_src; 22575 ip6h->ip6_src = ip6h->ip6_dst; 22576 ip6h->ip6_dst = v6addr; 22577 ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit; 22578 addr_len = IPV6_ADDR_LEN; 22579 addr = &v6addr; 22580 } 22581 tcp_xchg(tcph->th_fport, tcph->th_lport, 2); 22582 U32_TO_BE32(ack, tcph->th_ack); 22583 U32_TO_BE32(seq, tcph->th_seq); 22584 U16_TO_BE16(0, tcph->th_win); 22585 U16_TO_BE16(sizeof (tcph_t), tcph->th_sum); 22586 tcph->th_flags[0] = (uint8_t)ctl; 22587 if (ctl & TH_RST) { 22588 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 22589 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22590 } 22591 22592 /* IP trusts us to set up labels when required. */ 22593 if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL && 22594 crgetlabel(cr) != NULL) { 22595 int err, adjust; 22596 22597 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) 22598 err = tsol_check_label(cr, &mp, &adjust, 22599 tcp->tcp_connp->conn_mac_exempt, 22600 tcps->tcps_netstack->netstack_ip); 22601 else 22602 err = tsol_check_label_v6(cr, &mp, &adjust, 22603 tcp->tcp_connp->conn_mac_exempt, 22604 tcps->tcps_netstack->netstack_ip); 22605 if (mctl_present) 22606 ipsec_mp->b_cont = mp; 22607 else 22608 ipsec_mp = mp; 22609 if (err != 0) { 22610 freemsg(ipsec_mp); 22611 return; 22612 } 22613 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22614 ipha = (ipha_t *)mp->b_rptr; 22615 adjust += ntohs(ipha->ipha_length); 22616 ipha->ipha_length = htons(adjust); 22617 } else { 22618 ip6h = (ip6_t *)mp->b_rptr; 22619 } 22620 } 22621 22622 if (mctl_present) { 22623 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22624 22625 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22626 if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) { 22627 return; 22628 } 22629 } 22630 if (zoneid == ALL_ZONES) 22631 zoneid = GLOBAL_ZONEID; 22632 22633 /* Add the zoneid so ip_output routes it properly */ 22634 if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) { 22635 freemsg(ipsec_mp); 22636 return; 22637 } 22638 ipsec_mp = nmp; 22639 22640 /* 22641 * NOTE: one might consider tracing a TCP packet here, but 22642 * this function has no active TCP state and no tcp structure 22643 * that has a trace buffer. If we traced here, we would have 22644 * to keep a local trace buffer in tcp_record_trace(). 22645 * 22646 * TSol note: The mblk that contains the incoming packet was 22647 * reused by tcp_xmit_listener_reset, so it already contains 22648 * the right credentials and we don't need to call mblk_setcred. 22649 * Also the conn's cred is not right since it is associated 22650 * with tcps_g_q. 22651 */ 22652 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp); 22653 22654 /* 22655 * Tell IP to mark the IRE used for this destination temporary. 22656 * This way, we can limit our exposure to DoS attack because IP 22657 * creates an IRE for each destination. If there are too many, 22658 * the time to do any routing lookup will be extremely long. And 22659 * the lookup can be in interrupt context. 22660 * 22661 * Note that in normal circumstances, this marking should not 22662 * affect anything. It would be nice if only 1 message is 22663 * needed to inform IP that the IRE created for this RST should 22664 * not be added to the cache table. But there is currently 22665 * not such communication mechanism between TCP and IP. So 22666 * the best we can do now is to send the advice ioctl to IP 22667 * to mark the IRE temporary. 22668 */ 22669 if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) { 22670 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22671 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22672 } 22673 } 22674 22675 /* 22676 * Initiate closedown sequence on an active connection. (May be called as 22677 * writer.) Return value zero for OK return, non-zero for error return. 22678 */ 22679 static int 22680 tcp_xmit_end(tcp_t *tcp) 22681 { 22682 ipic_t *ipic; 22683 mblk_t *mp; 22684 tcp_stack_t *tcps = tcp->tcp_tcps; 22685 22686 if (tcp->tcp_state < TCPS_SYN_RCVD || 22687 tcp->tcp_state > TCPS_CLOSE_WAIT) { 22688 /* 22689 * Invalid state, only states TCPS_SYN_RCVD, 22690 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 22691 */ 22692 return (-1); 22693 } 22694 22695 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 22696 tcp->tcp_valid_bits |= TCP_FSS_VALID; 22697 /* 22698 * If there is nothing more unsent, send the FIN now. 22699 * Otherwise, it will go out with the last segment. 22700 */ 22701 if (tcp->tcp_unsent == 0) { 22702 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 22703 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 22704 22705 if (mp) { 22706 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 22707 tcp_send_data(tcp, tcp->tcp_wq, mp); 22708 } else { 22709 /* 22710 * Couldn't allocate msg. Pretend we got it out. 22711 * Wait for rexmit timeout. 22712 */ 22713 tcp->tcp_snxt = tcp->tcp_fss + 1; 22714 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 22715 } 22716 22717 /* 22718 * If needed, update tcp_rexmit_snxt as tcp_snxt is 22719 * changed. 22720 */ 22721 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 22722 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 22723 } 22724 } else { 22725 /* 22726 * If tcp->tcp_cork is set, then the data will not get sent, 22727 * so we have to check that and unset it first. 22728 */ 22729 if (tcp->tcp_cork) 22730 tcp->tcp_cork = B_FALSE; 22731 tcp_wput_data(tcp, NULL, B_FALSE); 22732 } 22733 22734 /* 22735 * If TCP does not get enough samples of RTT or tcp_rtt_updates 22736 * is 0, don't update the cache. 22737 */ 22738 if (tcps->tcps_rtt_updates == 0 || 22739 tcp->tcp_rtt_update < tcps->tcps_rtt_updates) 22740 return (0); 22741 22742 /* 22743 * NOTE: should not update if source routes i.e. if tcp_remote if 22744 * different from the destination. 22745 */ 22746 if (tcp->tcp_ipversion == IPV4_VERSION) { 22747 if (tcp->tcp_remote != tcp->tcp_ipha->ipha_dst) { 22748 return (0); 22749 } 22750 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22751 &ipic); 22752 } else { 22753 if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 22754 &tcp->tcp_ip6h->ip6_dst))) { 22755 return (0); 22756 } 22757 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22758 &ipic); 22759 } 22760 22761 /* Record route attributes in the IRE for use by future connections. */ 22762 if (mp == NULL) 22763 return (0); 22764 22765 /* 22766 * We do not have a good algorithm to update ssthresh at this time. 22767 * So don't do any update. 22768 */ 22769 ipic->ipic_rtt = tcp->tcp_rtt_sa; 22770 ipic->ipic_rtt_sd = tcp->tcp_rtt_sd; 22771 22772 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22773 return (0); 22774 } 22775 22776 /* 22777 * Generate a "no listener here" RST in response to an "unknown" segment. 22778 * Note that we are reusing the incoming mp to construct the outgoing 22779 * RST. 22780 */ 22781 void 22782 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid, 22783 tcp_stack_t *tcps) 22784 { 22785 uchar_t *rptr; 22786 uint32_t seg_len; 22787 tcph_t *tcph; 22788 uint32_t seg_seq; 22789 uint32_t seg_ack; 22790 uint_t flags; 22791 mblk_t *ipsec_mp; 22792 ipha_t *ipha; 22793 ip6_t *ip6h; 22794 boolean_t mctl_present = B_FALSE; 22795 boolean_t check = B_TRUE; 22796 boolean_t policy_present; 22797 ipsec_stack_t *ipss = tcps->tcps_netstack->netstack_ipsec; 22798 22799 TCP_STAT(tcps, tcp_no_listener); 22800 22801 ipsec_mp = mp; 22802 22803 if (mp->b_datap->db_type == M_CTL) { 22804 ipsec_in_t *ii; 22805 22806 mctl_present = B_TRUE; 22807 mp = mp->b_cont; 22808 22809 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22810 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22811 if (ii->ipsec_in_dont_check) { 22812 check = B_FALSE; 22813 if (!ii->ipsec_in_secure) { 22814 freeb(ipsec_mp); 22815 mctl_present = B_FALSE; 22816 ipsec_mp = mp; 22817 } 22818 } 22819 } 22820 22821 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22822 policy_present = ipss->ipsec_inbound_v4_policy_present; 22823 ipha = (ipha_t *)mp->b_rptr; 22824 ip6h = NULL; 22825 } else { 22826 policy_present = ipss->ipsec_inbound_v6_policy_present; 22827 ipha = NULL; 22828 ip6h = (ip6_t *)mp->b_rptr; 22829 } 22830 22831 if (check && policy_present) { 22832 /* 22833 * The conn_t parameter is NULL because we already know 22834 * nobody's home. 22835 */ 22836 ipsec_mp = ipsec_check_global_policy( 22837 ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present, 22838 tcps->tcps_netstack); 22839 if (ipsec_mp == NULL) 22840 return; 22841 } 22842 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 22843 DTRACE_PROBE2( 22844 tx__ip__log__error__nolistener__tcp, 22845 char *, "Could not reply with RST to mp(1)", 22846 mblk_t *, mp); 22847 ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); 22848 freemsg(ipsec_mp); 22849 return; 22850 } 22851 22852 rptr = mp->b_rptr; 22853 22854 tcph = (tcph_t *)&rptr[ip_hdr_len]; 22855 seg_seq = BE32_TO_U32(tcph->th_seq); 22856 seg_ack = BE32_TO_U32(tcph->th_ack); 22857 flags = tcph->th_flags[0]; 22858 22859 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len); 22860 if (flags & TH_RST) { 22861 freemsg(ipsec_mp); 22862 } else if (flags & TH_ACK) { 22863 tcp_xmit_early_reset("no tcp, reset", 22864 ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps); 22865 } else { 22866 if (flags & TH_SYN) { 22867 seg_len++; 22868 } else { 22869 /* 22870 * Here we violate the RFC. Note that a normal 22871 * TCP will never send a segment without the ACK 22872 * flag, except for RST or SYN segment. This 22873 * segment is neither. Just drop it on the 22874 * floor. 22875 */ 22876 freemsg(ipsec_mp); 22877 tcps->tcps_rst_unsent++; 22878 return; 22879 } 22880 22881 tcp_xmit_early_reset("no tcp, reset/ack", 22882 ipsec_mp, 0, seg_seq + seg_len, 22883 TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps); 22884 } 22885 } 22886 22887 /* 22888 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 22889 * ip and tcp header ready to pass down to IP. If the mp passed in is 22890 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 22891 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 22892 * otherwise it will dup partial mblks.) 22893 * Otherwise, an appropriate ACK packet will be generated. This 22894 * routine is not usually called to send new data for the first time. It 22895 * is mostly called out of the timer for retransmits, and to generate ACKs. 22896 * 22897 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 22898 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 22899 * of the original mblk chain will be returned in *offset and *end_mp. 22900 */ 22901 mblk_t * 22902 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 22903 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 22904 boolean_t rexmit) 22905 { 22906 int data_length; 22907 int32_t off = 0; 22908 uint_t flags; 22909 mblk_t *mp1; 22910 mblk_t *mp2; 22911 uchar_t *rptr; 22912 tcph_t *tcph; 22913 int32_t num_sack_blk = 0; 22914 int32_t sack_opt_len = 0; 22915 tcp_stack_t *tcps = tcp->tcp_tcps; 22916 22917 /* Allocate for our maximum TCP header + link-level */ 22918 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 22919 tcps->tcps_wroff_xtra, BPRI_MED); 22920 if (!mp1) 22921 return (NULL); 22922 data_length = 0; 22923 22924 /* 22925 * Note that tcp_mss has been adjusted to take into account the 22926 * timestamp option if applicable. Because SACK options do not 22927 * appear in every TCP segments and they are of variable lengths, 22928 * they cannot be included in tcp_mss. Thus we need to calculate 22929 * the actual segment length when we need to send a segment which 22930 * includes SACK options. 22931 */ 22932 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 22933 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 22934 tcp->tcp_num_sack_blk); 22935 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 22936 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 22937 if (max_to_send + sack_opt_len > tcp->tcp_mss) 22938 max_to_send -= sack_opt_len; 22939 } 22940 22941 if (offset != NULL) { 22942 off = *offset; 22943 /* We use offset as an indicator that end_mp is not NULL. */ 22944 *end_mp = NULL; 22945 } 22946 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 22947 /* This could be faster with cooperation from downstream */ 22948 if (mp2 != mp1 && !sendall && 22949 data_length + (int)(mp->b_wptr - mp->b_rptr) > 22950 max_to_send) 22951 /* 22952 * Don't send the next mblk since the whole mblk 22953 * does not fit. 22954 */ 22955 break; 22956 mp2->b_cont = dupb(mp); 22957 mp2 = mp2->b_cont; 22958 if (!mp2) { 22959 freemsg(mp1); 22960 return (NULL); 22961 } 22962 mp2->b_rptr += off; 22963 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 22964 (uintptr_t)INT_MAX); 22965 22966 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 22967 if (data_length > max_to_send) { 22968 mp2->b_wptr -= data_length - max_to_send; 22969 data_length = max_to_send; 22970 off = mp2->b_wptr - mp->b_rptr; 22971 break; 22972 } else { 22973 off = 0; 22974 } 22975 } 22976 if (offset != NULL) { 22977 *offset = off; 22978 *end_mp = mp; 22979 } 22980 if (seg_len != NULL) { 22981 *seg_len = data_length; 22982 } 22983 22984 /* Update the latest receive window size in TCP header. */ 22985 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22986 tcp->tcp_tcph->th_win); 22987 22988 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 22989 mp1->b_rptr = rptr; 22990 mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len; 22991 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 22992 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 22993 U32_TO_ABE32(seq, tcph->th_seq); 22994 22995 /* 22996 * Use tcp_unsent to determine if the PUSH bit should be used assumes 22997 * that this function was called from tcp_wput_data. Thus, when called 22998 * to retransmit data the setting of the PUSH bit may appear some 22999 * what random in that it might get set when it should not. This 23000 * should not pose any performance issues. 23001 */ 23002 if (data_length != 0 && (tcp->tcp_unsent == 0 || 23003 tcp->tcp_unsent == data_length)) { 23004 flags = TH_ACK | TH_PUSH; 23005 } else { 23006 flags = TH_ACK; 23007 } 23008 23009 if (tcp->tcp_ecn_ok) { 23010 if (tcp->tcp_ecn_echo_on) 23011 flags |= TH_ECE; 23012 23013 /* 23014 * Only set ECT bit and ECN_CWR if a segment contains new data. 23015 * There is no TCP flow control for non-data segments, and 23016 * only data segment is transmitted reliably. 23017 */ 23018 if (data_length > 0 && !rexmit) { 23019 SET_ECT(tcp, rptr); 23020 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 23021 flags |= TH_CWR; 23022 tcp->tcp_ecn_cwr_sent = B_TRUE; 23023 } 23024 } 23025 } 23026 23027 if (tcp->tcp_valid_bits) { 23028 uint32_t u1; 23029 23030 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 23031 seq == tcp->tcp_iss) { 23032 uchar_t *wptr; 23033 23034 /* 23035 * If TCP_ISS_VALID and the seq number is tcp_iss, 23036 * TCP can only be in SYN-SENT, SYN-RCVD or 23037 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 23038 * our SYN is not ack'ed but the app closes this 23039 * TCP connection. 23040 */ 23041 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 23042 tcp->tcp_state == TCPS_SYN_RCVD || 23043 tcp->tcp_state == TCPS_FIN_WAIT_1); 23044 23045 /* 23046 * Tack on the MSS option. It is always needed 23047 * for both active and passive open. 23048 * 23049 * MSS option value should be interface MTU - MIN 23050 * TCP/IP header according to RFC 793 as it means 23051 * the maximum segment size TCP can receive. But 23052 * to get around some broken middle boxes/end hosts 23053 * out there, we allow the option value to be the 23054 * same as the MSS option size on the peer side. 23055 * In this way, the other side will not send 23056 * anything larger than they can receive. 23057 * 23058 * Note that for SYN_SENT state, the ndd param 23059 * tcp_use_smss_as_mss_opt has no effect as we 23060 * don't know the peer's MSS option value. So 23061 * the only case we need to take care of is in 23062 * SYN_RCVD state, which is done later. 23063 */ 23064 wptr = mp1->b_wptr; 23065 wptr[0] = TCPOPT_MAXSEG; 23066 wptr[1] = TCPOPT_MAXSEG_LEN; 23067 wptr += 2; 23068 u1 = tcp->tcp_if_mtu - 23069 (tcp->tcp_ipversion == IPV4_VERSION ? 23070 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 23071 TCP_MIN_HEADER_LENGTH; 23072 U16_TO_BE16(u1, wptr); 23073 mp1->b_wptr = wptr + 2; 23074 /* Update the offset to cover the additional word */ 23075 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23076 23077 /* 23078 * Note that the following way of filling in 23079 * TCP options are not optimal. Some NOPs can 23080 * be saved. But there is no need at this time 23081 * to optimize it. When it is needed, we will 23082 * do it. 23083 */ 23084 switch (tcp->tcp_state) { 23085 case TCPS_SYN_SENT: 23086 flags = TH_SYN; 23087 23088 if (tcp->tcp_snd_ts_ok) { 23089 uint32_t llbolt = (uint32_t)lbolt; 23090 23091 wptr = mp1->b_wptr; 23092 wptr[0] = TCPOPT_NOP; 23093 wptr[1] = TCPOPT_NOP; 23094 wptr[2] = TCPOPT_TSTAMP; 23095 wptr[3] = TCPOPT_TSTAMP_LEN; 23096 wptr += 4; 23097 U32_TO_BE32(llbolt, wptr); 23098 wptr += 4; 23099 ASSERT(tcp->tcp_ts_recent == 0); 23100 U32_TO_BE32(0L, wptr); 23101 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 23102 tcph->th_offset_and_rsrvd[0] += 23103 (3 << 4); 23104 } 23105 23106 /* 23107 * Set up all the bits to tell other side 23108 * we are ECN capable. 23109 */ 23110 if (tcp->tcp_ecn_ok) { 23111 flags |= (TH_ECE | TH_CWR); 23112 } 23113 break; 23114 case TCPS_SYN_RCVD: 23115 flags |= TH_SYN; 23116 23117 /* 23118 * Reset the MSS option value to be SMSS 23119 * We should probably add back the bytes 23120 * for timestamp option and IPsec. We 23121 * don't do that as this is a workaround 23122 * for broken middle boxes/end hosts, it 23123 * is better for us to be more cautious. 23124 * They may not take these things into 23125 * account in their SMSS calculation. Thus 23126 * the peer's calculated SMSS may be smaller 23127 * than what it can be. This should be OK. 23128 */ 23129 if (tcps->tcps_use_smss_as_mss_opt) { 23130 u1 = tcp->tcp_mss; 23131 U16_TO_BE16(u1, wptr); 23132 } 23133 23134 /* 23135 * If the other side is ECN capable, reply 23136 * that we are also ECN capable. 23137 */ 23138 if (tcp->tcp_ecn_ok) 23139 flags |= TH_ECE; 23140 break; 23141 default: 23142 /* 23143 * The above ASSERT() makes sure that this 23144 * must be FIN-WAIT-1 state. Our SYN has 23145 * not been ack'ed so retransmit it. 23146 */ 23147 flags |= TH_SYN; 23148 break; 23149 } 23150 23151 if (tcp->tcp_snd_ws_ok) { 23152 wptr = mp1->b_wptr; 23153 wptr[0] = TCPOPT_NOP; 23154 wptr[1] = TCPOPT_WSCALE; 23155 wptr[2] = TCPOPT_WS_LEN; 23156 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 23157 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 23158 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23159 } 23160 23161 if (tcp->tcp_snd_sack_ok) { 23162 wptr = mp1->b_wptr; 23163 wptr[0] = TCPOPT_NOP; 23164 wptr[1] = TCPOPT_NOP; 23165 wptr[2] = TCPOPT_SACK_PERMITTED; 23166 wptr[3] = TCPOPT_SACK_OK_LEN; 23167 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 23168 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23169 } 23170 23171 /* allocb() of adequate mblk assures space */ 23172 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 23173 (uintptr_t)INT_MAX); 23174 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 23175 /* 23176 * Get IP set to checksum on our behalf 23177 * Include the adjustment for a source route if any. 23178 */ 23179 u1 += tcp->tcp_sum; 23180 u1 = (u1 >> 16) + (u1 & 0xFFFF); 23181 U16_TO_BE16(u1, tcph->th_sum); 23182 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 23183 } 23184 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 23185 (seq + data_length) == tcp->tcp_fss) { 23186 if (!tcp->tcp_fin_acked) { 23187 flags |= TH_FIN; 23188 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 23189 } 23190 if (!tcp->tcp_fin_sent) { 23191 tcp->tcp_fin_sent = B_TRUE; 23192 switch (tcp->tcp_state) { 23193 case TCPS_SYN_RCVD: 23194 case TCPS_ESTABLISHED: 23195 tcp->tcp_state = TCPS_FIN_WAIT_1; 23196 break; 23197 case TCPS_CLOSE_WAIT: 23198 tcp->tcp_state = TCPS_LAST_ACK; 23199 break; 23200 } 23201 if (tcp->tcp_suna == tcp->tcp_snxt) 23202 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 23203 tcp->tcp_snxt = tcp->tcp_fss + 1; 23204 } 23205 } 23206 /* 23207 * Note the trick here. u1 is unsigned. When tcp_urg 23208 * is smaller than seq, u1 will become a very huge value. 23209 * So the comparison will fail. Also note that tcp_urp 23210 * should be positive, see RFC 793 page 17. 23211 */ 23212 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 23213 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 23214 u1 < (uint32_t)(64 * 1024)) { 23215 flags |= TH_URG; 23216 BUMP_MIB(&tcps->tcps_mib, tcpOutUrg); 23217 U32_TO_ABE16(u1, tcph->th_urp); 23218 } 23219 } 23220 tcph->th_flags[0] = (uchar_t)flags; 23221 tcp->tcp_rack = tcp->tcp_rnxt; 23222 tcp->tcp_rack_cnt = 0; 23223 23224 if (tcp->tcp_snd_ts_ok) { 23225 if (tcp->tcp_state != TCPS_SYN_SENT) { 23226 uint32_t llbolt = (uint32_t)lbolt; 23227 23228 U32_TO_BE32(llbolt, 23229 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23230 U32_TO_BE32(tcp->tcp_ts_recent, 23231 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23232 } 23233 } 23234 23235 if (num_sack_blk > 0) { 23236 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23237 sack_blk_t *tmp; 23238 int32_t i; 23239 23240 wptr[0] = TCPOPT_NOP; 23241 wptr[1] = TCPOPT_NOP; 23242 wptr[2] = TCPOPT_SACK; 23243 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23244 sizeof (sack_blk_t); 23245 wptr += TCPOPT_REAL_SACK_LEN; 23246 23247 tmp = tcp->tcp_sack_list; 23248 for (i = 0; i < num_sack_blk; i++) { 23249 U32_TO_BE32(tmp[i].begin, wptr); 23250 wptr += sizeof (tcp_seq); 23251 U32_TO_BE32(tmp[i].end, wptr); 23252 wptr += sizeof (tcp_seq); 23253 } 23254 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); 23255 } 23256 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 23257 data_length += (int)(mp1->b_wptr - rptr); 23258 if (tcp->tcp_ipversion == IPV4_VERSION) { 23259 ((ipha_t *)rptr)->ipha_length = htons(data_length); 23260 } else { 23261 ip6_t *ip6 = (ip6_t *)(rptr + 23262 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23263 sizeof (ip6i_t) : 0)); 23264 23265 ip6->ip6_plen = htons(data_length - 23266 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23267 } 23268 23269 /* 23270 * Prime pump for IP 23271 * Include the adjustment for a source route if any. 23272 */ 23273 data_length -= tcp->tcp_ip_hdr_len; 23274 data_length += tcp->tcp_sum; 23275 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23276 U16_TO_ABE16(data_length, tcph->th_sum); 23277 if (tcp->tcp_ip_forward_progress) { 23278 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23279 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23280 tcp->tcp_ip_forward_progress = B_FALSE; 23281 } 23282 return (mp1); 23283 } 23284 23285 /* This function handles the push timeout. */ 23286 void 23287 tcp_push_timer(void *arg) 23288 { 23289 conn_t *connp = (conn_t *)arg; 23290 tcp_t *tcp = connp->conn_tcp; 23291 tcp_stack_t *tcps = tcp->tcp_tcps; 23292 23293 TCP_DBGSTAT(tcps, tcp_push_timer_cnt); 23294 23295 ASSERT(tcp->tcp_listener == NULL); 23296 23297 /* 23298 * We need to plug synchronous streams during our drain to prevent 23299 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop(). 23300 */ 23301 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 23302 tcp->tcp_push_tid = 0; 23303 if ((tcp->tcp_rcv_list != NULL) && 23304 (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED)) 23305 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 23306 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 23307 } 23308 23309 /* 23310 * This function handles delayed ACK timeout. 23311 */ 23312 static void 23313 tcp_ack_timer(void *arg) 23314 { 23315 conn_t *connp = (conn_t *)arg; 23316 tcp_t *tcp = connp->conn_tcp; 23317 mblk_t *mp; 23318 tcp_stack_t *tcps = tcp->tcp_tcps; 23319 23320 TCP_DBGSTAT(tcps, tcp_ack_timer_cnt); 23321 23322 tcp->tcp_ack_tid = 0; 23323 23324 if (tcp->tcp_fused) 23325 return; 23326 23327 /* 23328 * Do not send ACK if there is no outstanding unack'ed data. 23329 */ 23330 if (tcp->tcp_rnxt == tcp->tcp_rack) { 23331 return; 23332 } 23333 23334 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 23335 /* 23336 * Make sure we don't allow deferred ACKs to result in 23337 * timer-based ACKing. If we have held off an ACK 23338 * when there was more than an mss here, and the timer 23339 * goes off, we have to worry about the possibility 23340 * that the sender isn't doing slow-start, or is out 23341 * of step with us for some other reason. We fall 23342 * permanently back in the direction of 23343 * ACK-every-other-packet as suggested in RFC 1122. 23344 */ 23345 if (tcp->tcp_rack_abs_max > 2) 23346 tcp->tcp_rack_abs_max--; 23347 tcp->tcp_rack_cur_max = 2; 23348 } 23349 mp = tcp_ack_mp(tcp); 23350 23351 if (mp != NULL) { 23352 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 23353 BUMP_LOCAL(tcp->tcp_obsegs); 23354 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 23355 BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed); 23356 tcp_send_data(tcp, tcp->tcp_wq, mp); 23357 } 23358 } 23359 23360 23361 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 23362 static mblk_t * 23363 tcp_ack_mp(tcp_t *tcp) 23364 { 23365 uint32_t seq_no; 23366 tcp_stack_t *tcps = tcp->tcp_tcps; 23367 23368 /* 23369 * There are a few cases to be considered while setting the sequence no. 23370 * Essentially, we can come here while processing an unacceptable pkt 23371 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 23372 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 23373 * If we are here for a zero window probe, stick with suna. In all 23374 * other cases, we check if suna + swnd encompasses snxt and set 23375 * the sequence number to snxt, if so. If snxt falls outside the 23376 * window (the receiver probably shrunk its window), we will go with 23377 * suna + swnd, otherwise the sequence no will be unacceptable to the 23378 * receiver. 23379 */ 23380 if (tcp->tcp_zero_win_probe) { 23381 seq_no = tcp->tcp_suna; 23382 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 23383 ASSERT(tcp->tcp_swnd == 0); 23384 seq_no = tcp->tcp_snxt; 23385 } else { 23386 seq_no = SEQ_GT(tcp->tcp_snxt, 23387 (tcp->tcp_suna + tcp->tcp_swnd)) ? 23388 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 23389 } 23390 23391 if (tcp->tcp_valid_bits) { 23392 /* 23393 * For the complex case where we have to send some 23394 * controls (FIN or SYN), let tcp_xmit_mp do it. 23395 */ 23396 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 23397 NULL, B_FALSE)); 23398 } else { 23399 /* Generate a simple ACK */ 23400 int data_length; 23401 uchar_t *rptr; 23402 tcph_t *tcph; 23403 mblk_t *mp1; 23404 int32_t tcp_hdr_len; 23405 int32_t tcp_tcp_hdr_len; 23406 int32_t num_sack_blk = 0; 23407 int32_t sack_opt_len; 23408 23409 /* 23410 * Allocate space for TCP + IP headers 23411 * and link-level header 23412 */ 23413 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 23414 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 23415 tcp->tcp_num_sack_blk); 23416 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 23417 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 23418 tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len; 23419 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len; 23420 } else { 23421 tcp_hdr_len = tcp->tcp_hdr_len; 23422 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 23423 } 23424 mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); 23425 if (!mp1) 23426 return (NULL); 23427 23428 /* Update the latest receive window size in TCP header. */ 23429 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 23430 tcp->tcp_tcph->th_win); 23431 /* copy in prototype TCP + IP header */ 23432 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 23433 mp1->b_rptr = rptr; 23434 mp1->b_wptr = rptr + tcp_hdr_len; 23435 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 23436 23437 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 23438 23439 /* Set the TCP sequence number. */ 23440 U32_TO_ABE32(seq_no, tcph->th_seq); 23441 23442 /* Set up the TCP flag field. */ 23443 tcph->th_flags[0] = (uchar_t)TH_ACK; 23444 if (tcp->tcp_ecn_echo_on) 23445 tcph->th_flags[0] |= TH_ECE; 23446 23447 tcp->tcp_rack = tcp->tcp_rnxt; 23448 tcp->tcp_rack_cnt = 0; 23449 23450 /* fill in timestamp option if in use */ 23451 if (tcp->tcp_snd_ts_ok) { 23452 uint32_t llbolt = (uint32_t)lbolt; 23453 23454 U32_TO_BE32(llbolt, 23455 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23456 U32_TO_BE32(tcp->tcp_ts_recent, 23457 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23458 } 23459 23460 /* Fill in SACK options */ 23461 if (num_sack_blk > 0) { 23462 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23463 sack_blk_t *tmp; 23464 int32_t i; 23465 23466 wptr[0] = TCPOPT_NOP; 23467 wptr[1] = TCPOPT_NOP; 23468 wptr[2] = TCPOPT_SACK; 23469 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23470 sizeof (sack_blk_t); 23471 wptr += TCPOPT_REAL_SACK_LEN; 23472 23473 tmp = tcp->tcp_sack_list; 23474 for (i = 0; i < num_sack_blk; i++) { 23475 U32_TO_BE32(tmp[i].begin, wptr); 23476 wptr += sizeof (tcp_seq); 23477 U32_TO_BE32(tmp[i].end, wptr); 23478 wptr += sizeof (tcp_seq); 23479 } 23480 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) 23481 << 4); 23482 } 23483 23484 if (tcp->tcp_ipversion == IPV4_VERSION) { 23485 ((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len); 23486 } else { 23487 /* Check for ip6i_t header in sticky hdrs */ 23488 ip6_t *ip6 = (ip6_t *)(rptr + 23489 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23490 sizeof (ip6i_t) : 0)); 23491 23492 ip6->ip6_plen = htons(tcp_hdr_len - 23493 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23494 } 23495 23496 /* 23497 * Prime pump for checksum calculation in IP. Include the 23498 * adjustment for a source route if any. 23499 */ 23500 data_length = tcp_tcp_hdr_len + tcp->tcp_sum; 23501 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23502 U16_TO_ABE16(data_length, tcph->th_sum); 23503 23504 if (tcp->tcp_ip_forward_progress) { 23505 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23506 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23507 tcp->tcp_ip_forward_progress = B_FALSE; 23508 } 23509 return (mp1); 23510 } 23511 } 23512 23513 /* 23514 * To create a temporary tcp structure for inserting into bind hash list. 23515 * The parameter is assumed to be in network byte order, ready for use. 23516 */ 23517 /* ARGSUSED */ 23518 static tcp_t * 23519 tcp_alloc_temp_tcp(in_port_t port, tcp_stack_t *tcps) 23520 { 23521 conn_t *connp; 23522 tcp_t *tcp; 23523 23524 connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP, tcps->tcps_netstack); 23525 if (connp == NULL) 23526 return (NULL); 23527 23528 tcp = connp->conn_tcp; 23529 tcp->tcp_tcps = tcps; 23530 TCPS_REFHOLD(tcps); 23531 23532 /* 23533 * Only initialize the necessary info in those structures. Note 23534 * that since INADDR_ANY is all 0, we do not need to set 23535 * tcp_bound_source to INADDR_ANY here. 23536 */ 23537 tcp->tcp_state = TCPS_BOUND; 23538 tcp->tcp_lport = port; 23539 tcp->tcp_exclbind = 1; 23540 tcp->tcp_reserved_port = 1; 23541 23542 /* Just for place holding... */ 23543 tcp->tcp_ipversion = IPV4_VERSION; 23544 23545 return (tcp); 23546 } 23547 23548 /* 23549 * To remove a port range specified by lo_port and hi_port from the 23550 * reserved port ranges. This is one of the three public functions of 23551 * the reserved port interface. Note that a port range has to be removed 23552 * as a whole. Ports in a range cannot be removed individually. 23553 * 23554 * Params: 23555 * in_port_t lo_port: the beginning port of the reserved port range to 23556 * be deleted. 23557 * in_port_t hi_port: the ending port of the reserved port range to 23558 * be deleted. 23559 * 23560 * Return: 23561 * B_TRUE if the deletion is successful, B_FALSE otherwise. 23562 * 23563 * Assumes that nca is only for zoneid=0 23564 */ 23565 boolean_t 23566 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port) 23567 { 23568 int i, j; 23569 int size; 23570 tcp_t **temp_tcp_array; 23571 tcp_t *tcp; 23572 tcp_stack_t *tcps; 23573 23574 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_tcp; 23575 ASSERT(tcps != NULL); 23576 23577 rw_enter(&tcps->tcps_reserved_port_lock, RW_WRITER); 23578 23579 /* First make sure that the port ranage is indeed reserved. */ 23580 for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) { 23581 if (tcps->tcps_reserved_port[i].lo_port == lo_port) { 23582 hi_port = tcps->tcps_reserved_port[i].hi_port; 23583 temp_tcp_array = 23584 tcps->tcps_reserved_port[i].temp_tcp_array; 23585 break; 23586 } 23587 } 23588 if (i == tcps->tcps_reserved_port_array_size) { 23589 rw_exit(&tcps->tcps_reserved_port_lock); 23590 netstack_rele(tcps->tcps_netstack); 23591 return (B_FALSE); 23592 } 23593 23594 /* 23595 * Remove the range from the array. This simple loop is possible 23596 * because port ranges are inserted in ascending order. 23597 */ 23598 for (j = i; j < tcps->tcps_reserved_port_array_size - 1; j++) { 23599 tcps->tcps_reserved_port[j].lo_port = 23600 tcps->tcps_reserved_port[j+1].lo_port; 23601 tcps->tcps_reserved_port[j].hi_port = 23602 tcps->tcps_reserved_port[j+1].hi_port; 23603 tcps->tcps_reserved_port[j].temp_tcp_array = 23604 tcps->tcps_reserved_port[j+1].temp_tcp_array; 23605 } 23606 23607 /* Remove all the temporary tcp structures. */ 23608 size = hi_port - lo_port + 1; 23609 while (size > 0) { 23610 tcp = temp_tcp_array[size - 1]; 23611 ASSERT(tcp != NULL); 23612 tcp_bind_hash_remove(tcp); 23613 CONN_DEC_REF(tcp->tcp_connp); 23614 size--; 23615 } 23616 kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *)); 23617 tcps->tcps_reserved_port_array_size--; 23618 rw_exit(&tcps->tcps_reserved_port_lock); 23619 netstack_rele(tcps->tcps_netstack); 23620 return (B_TRUE); 23621 } 23622 23623 /* 23624 * Macro to remove temporary tcp structure from the bind hash list. The 23625 * first parameter is the list of tcp to be removed. The second parameter 23626 * is the number of tcps in the array. 23627 */ 23628 #define TCP_TMP_TCP_REMOVE(tcp_array, num, tcps) \ 23629 { \ 23630 while ((num) > 0) { \ 23631 tcp_t *tcp = (tcp_array)[(num) - 1]; \ 23632 tf_t *tbf; \ 23633 tcp_t *tcpnext; \ 23634 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \ 23635 mutex_enter(&tbf->tf_lock); \ 23636 tcpnext = tcp->tcp_bind_hash; \ 23637 if (tcpnext) { \ 23638 tcpnext->tcp_ptpbhn = \ 23639 tcp->tcp_ptpbhn; \ 23640 } \ 23641 *tcp->tcp_ptpbhn = tcpnext; \ 23642 mutex_exit(&tbf->tf_lock); \ 23643 kmem_free(tcp, sizeof (tcp_t)); \ 23644 (tcp_array)[(num) - 1] = NULL; \ 23645 (num)--; \ 23646 } \ 23647 } 23648 23649 /* 23650 * The public interface for other modules to call to reserve a port range 23651 * in TCP. The caller passes in how large a port range it wants. TCP 23652 * will try to find a range and return it via lo_port and hi_port. This is 23653 * used by NCA's nca_conn_init. 23654 * NCA can only be used in the global zone so this only affects the global 23655 * zone's ports. 23656 * 23657 * Params: 23658 * int size: the size of the port range to be reserved. 23659 * in_port_t *lo_port (referenced): returns the beginning port of the 23660 * reserved port range added. 23661 * in_port_t *hi_port (referenced): returns the ending port of the 23662 * reserved port range added. 23663 * 23664 * Return: 23665 * B_TRUE if the port reservation is successful, B_FALSE otherwise. 23666 * 23667 * Assumes that nca is only for zoneid=0 23668 */ 23669 boolean_t 23670 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port) 23671 { 23672 tcp_t *tcp; 23673 tcp_t *tmp_tcp; 23674 tcp_t **temp_tcp_array; 23675 tf_t *tbf; 23676 in_port_t net_port; 23677 in_port_t port; 23678 int32_t cur_size; 23679 int i, j; 23680 boolean_t used; 23681 tcp_rport_t tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE]; 23682 zoneid_t zoneid = GLOBAL_ZONEID; 23683 tcp_stack_t *tcps; 23684 23685 /* Sanity check. */ 23686 if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) { 23687 return (B_FALSE); 23688 } 23689 23690 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_tcp; 23691 ASSERT(tcps != NULL); 23692 23693 rw_enter(&tcps->tcps_reserved_port_lock, RW_WRITER); 23694 if (tcps->tcps_reserved_port_array_size == 23695 TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) { 23696 rw_exit(&tcps->tcps_reserved_port_lock); 23697 netstack_rele(tcps->tcps_netstack); 23698 return (B_FALSE); 23699 } 23700 23701 /* 23702 * Find the starting port to try. Since the port ranges are ordered 23703 * in the reserved port array, we can do a simple search here. 23704 */ 23705 *lo_port = TCP_SMALLEST_RESERVED_PORT; 23706 *hi_port = TCP_LARGEST_RESERVED_PORT; 23707 for (i = 0; i < tcps->tcps_reserved_port_array_size; 23708 *lo_port = tcps->tcps_reserved_port[i].hi_port + 1, i++) { 23709 if (tcps->tcps_reserved_port[i].lo_port - *lo_port >= size) { 23710 *hi_port = tcps->tcps_reserved_port[i].lo_port - 1; 23711 break; 23712 } 23713 } 23714 /* No available port range. */ 23715 if (i == tcps->tcps_reserved_port_array_size && 23716 *hi_port - *lo_port < size) { 23717 rw_exit(&tcps->tcps_reserved_port_lock); 23718 netstack_rele(tcps->tcps_netstack); 23719 return (B_FALSE); 23720 } 23721 23722 temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP); 23723 if (temp_tcp_array == NULL) { 23724 rw_exit(&tcps->tcps_reserved_port_lock); 23725 netstack_rele(tcps->tcps_netstack); 23726 return (B_FALSE); 23727 } 23728 23729 /* Go thru the port range to see if some ports are already bound. */ 23730 for (port = *lo_port, cur_size = 0; 23731 cur_size < size && port <= *hi_port; 23732 cur_size++, port++) { 23733 used = B_FALSE; 23734 net_port = htons(port); 23735 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(net_port)]; 23736 mutex_enter(&tbf->tf_lock); 23737 for (tcp = tbf->tf_tcp; tcp != NULL; 23738 tcp = tcp->tcp_bind_hash) { 23739 if (IPCL_ZONE_MATCH(tcp->tcp_connp, zoneid) && 23740 net_port == tcp->tcp_lport) { 23741 /* 23742 * A port is already bound. Search again 23743 * starting from port + 1. Release all 23744 * temporary tcps. 23745 */ 23746 mutex_exit(&tbf->tf_lock); 23747 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size, 23748 tcps); 23749 *lo_port = port + 1; 23750 cur_size = -1; 23751 used = B_TRUE; 23752 break; 23753 } 23754 } 23755 if (!used) { 23756 if ((tmp_tcp = tcp_alloc_temp_tcp(net_port, tcps)) == 23757 NULL) { 23758 /* 23759 * Allocation failure. Just fail the request. 23760 * Need to remove all those temporary tcp 23761 * structures. 23762 */ 23763 mutex_exit(&tbf->tf_lock); 23764 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size, 23765 tcps); 23766 rw_exit(&tcps->tcps_reserved_port_lock); 23767 kmem_free(temp_tcp_array, 23768 (hi_port - lo_port + 1) * 23769 sizeof (tcp_t *)); 23770 netstack_rele(tcps->tcps_netstack); 23771 return (B_FALSE); 23772 } 23773 temp_tcp_array[cur_size] = tmp_tcp; 23774 tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE); 23775 mutex_exit(&tbf->tf_lock); 23776 } 23777 } 23778 23779 /* 23780 * The current range is not large enough. We can actually do another 23781 * search if this search is done between 2 reserved port ranges. But 23782 * for first release, we just stop here and return saying that no port 23783 * range is available. 23784 */ 23785 if (cur_size < size) { 23786 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size, tcps); 23787 rw_exit(&tcps->tcps_reserved_port_lock); 23788 kmem_free(temp_tcp_array, size * sizeof (tcp_t *)); 23789 netstack_rele(tcps->tcps_netstack); 23790 return (B_FALSE); 23791 } 23792 *hi_port = port - 1; 23793 23794 /* 23795 * Insert range into array in ascending order. Since this function 23796 * must not be called often, we choose to use the simplest method. 23797 * The above array should not consume excessive stack space as 23798 * the size must be very small. If in future releases, we find 23799 * that we should provide more reserved port ranges, this function 23800 * has to be modified to be more efficient. 23801 */ 23802 if (tcps->tcps_reserved_port_array_size == 0) { 23803 tcps->tcps_reserved_port[0].lo_port = *lo_port; 23804 tcps->tcps_reserved_port[0].hi_port = *hi_port; 23805 tcps->tcps_reserved_port[0].temp_tcp_array = temp_tcp_array; 23806 } else { 23807 for (i = 0, j = 0; i < tcps->tcps_reserved_port_array_size; 23808 i++, j++) { 23809 if (*lo_port < tcps->tcps_reserved_port[i].lo_port && 23810 i == j) { 23811 tmp_ports[j].lo_port = *lo_port; 23812 tmp_ports[j].hi_port = *hi_port; 23813 tmp_ports[j].temp_tcp_array = temp_tcp_array; 23814 j++; 23815 } 23816 tmp_ports[j].lo_port = 23817 tcps->tcps_reserved_port[i].lo_port; 23818 tmp_ports[j].hi_port = 23819 tcps->tcps_reserved_port[i].hi_port; 23820 tmp_ports[j].temp_tcp_array = 23821 tcps->tcps_reserved_port[i].temp_tcp_array; 23822 } 23823 if (j == i) { 23824 tmp_ports[j].lo_port = *lo_port; 23825 tmp_ports[j].hi_port = *hi_port; 23826 tmp_ports[j].temp_tcp_array = temp_tcp_array; 23827 } 23828 bcopy(tmp_ports, tcps->tcps_reserved_port, sizeof (tmp_ports)); 23829 } 23830 tcps->tcps_reserved_port_array_size++; 23831 rw_exit(&tcps->tcps_reserved_port_lock); 23832 netstack_rele(tcps->tcps_netstack); 23833 return (B_TRUE); 23834 } 23835 23836 /* 23837 * Check to see if a port is in any reserved port range. 23838 * 23839 * Params: 23840 * in_port_t port: the port to be verified. 23841 * 23842 * Return: 23843 * B_TRUE is the port is inside a reserved port range, B_FALSE otherwise. 23844 */ 23845 boolean_t 23846 tcp_reserved_port_check(in_port_t port, tcp_stack_t *tcps) 23847 { 23848 int i; 23849 23850 rw_enter(&tcps->tcps_reserved_port_lock, RW_READER); 23851 for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) { 23852 if (port >= tcps->tcps_reserved_port[i].lo_port || 23853 port <= tcps->tcps_reserved_port[i].hi_port) { 23854 rw_exit(&tcps->tcps_reserved_port_lock); 23855 return (B_TRUE); 23856 } 23857 } 23858 rw_exit(&tcps->tcps_reserved_port_lock); 23859 return (B_FALSE); 23860 } 23861 23862 /* 23863 * To list all reserved port ranges. This is the function to handle 23864 * ndd tcp_reserved_port_list. 23865 */ 23866 /* ARGSUSED */ 23867 static int 23868 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 23869 { 23870 int i; 23871 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 23872 23873 rw_enter(&tcps->tcps_reserved_port_lock, RW_READER); 23874 if (tcps->tcps_reserved_port_array_size > 0) 23875 (void) mi_mpprintf(mp, "The following ports are reserved:"); 23876 else 23877 (void) mi_mpprintf(mp, "No port is reserved."); 23878 for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) { 23879 (void) mi_mpprintf(mp, "%d-%d", 23880 tcps->tcps_reserved_port[i].lo_port, 23881 tcps->tcps_reserved_port[i].hi_port); 23882 } 23883 rw_exit(&tcps->tcps_reserved_port_lock); 23884 return (0); 23885 } 23886 23887 /* 23888 * Hash list insertion routine for tcp_t structures. 23889 * Inserts entries with the ones bound to a specific IP address first 23890 * followed by those bound to INADDR_ANY. 23891 */ 23892 static void 23893 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 23894 { 23895 tcp_t **tcpp; 23896 tcp_t *tcpnext; 23897 23898 if (tcp->tcp_ptpbhn != NULL) { 23899 ASSERT(!caller_holds_lock); 23900 tcp_bind_hash_remove(tcp); 23901 } 23902 tcpp = &tbf->tf_tcp; 23903 if (!caller_holds_lock) { 23904 mutex_enter(&tbf->tf_lock); 23905 } else { 23906 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 23907 } 23908 tcpnext = tcpp[0]; 23909 if (tcpnext) { 23910 /* 23911 * If the new tcp bound to the INADDR_ANY address 23912 * and the first one in the list is not bound to 23913 * INADDR_ANY we skip all entries until we find the 23914 * first one bound to INADDR_ANY. 23915 * This makes sure that applications binding to a 23916 * specific address get preference over those binding to 23917 * INADDR_ANY. 23918 */ 23919 if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) && 23920 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) { 23921 while ((tcpnext = tcpp[0]) != NULL && 23922 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) 23923 tcpp = &(tcpnext->tcp_bind_hash); 23924 if (tcpnext) 23925 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 23926 } else 23927 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 23928 } 23929 tcp->tcp_bind_hash = tcpnext; 23930 tcp->tcp_ptpbhn = tcpp; 23931 tcpp[0] = tcp; 23932 if (!caller_holds_lock) 23933 mutex_exit(&tbf->tf_lock); 23934 } 23935 23936 /* 23937 * Hash list removal routine for tcp_t structures. 23938 */ 23939 static void 23940 tcp_bind_hash_remove(tcp_t *tcp) 23941 { 23942 tcp_t *tcpnext; 23943 kmutex_t *lockp; 23944 tcp_stack_t *tcps = tcp->tcp_tcps; 23945 23946 if (tcp->tcp_ptpbhn == NULL) 23947 return; 23948 23949 /* 23950 * Extract the lock pointer in case there are concurrent 23951 * hash_remove's for this instance. 23952 */ 23953 ASSERT(tcp->tcp_lport != 0); 23954 lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock; 23955 23956 ASSERT(lockp != NULL); 23957 mutex_enter(lockp); 23958 if (tcp->tcp_ptpbhn) { 23959 tcpnext = tcp->tcp_bind_hash; 23960 if (tcpnext) { 23961 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 23962 tcp->tcp_bind_hash = NULL; 23963 } 23964 *tcp->tcp_ptpbhn = tcpnext; 23965 tcp->tcp_ptpbhn = NULL; 23966 } 23967 mutex_exit(lockp); 23968 } 23969 23970 23971 /* 23972 * Hash list lookup routine for tcp_t structures. 23973 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 23974 */ 23975 static tcp_t * 23976 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 23977 { 23978 tf_t *tf; 23979 tcp_t *tcp; 23980 23981 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23982 mutex_enter(&tf->tf_lock); 23983 for (tcp = tf->tf_tcp; tcp != NULL; 23984 tcp = tcp->tcp_acceptor_hash) { 23985 if (tcp->tcp_acceptor_id == id) { 23986 CONN_INC_REF(tcp->tcp_connp); 23987 mutex_exit(&tf->tf_lock); 23988 return (tcp); 23989 } 23990 } 23991 mutex_exit(&tf->tf_lock); 23992 return (NULL); 23993 } 23994 23995 23996 /* 23997 * Hash list insertion routine for tcp_t structures. 23998 */ 23999 void 24000 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 24001 { 24002 tf_t *tf; 24003 tcp_t **tcpp; 24004 tcp_t *tcpnext; 24005 tcp_stack_t *tcps = tcp->tcp_tcps; 24006 24007 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 24008 24009 if (tcp->tcp_ptpahn != NULL) 24010 tcp_acceptor_hash_remove(tcp); 24011 tcpp = &tf->tf_tcp; 24012 mutex_enter(&tf->tf_lock); 24013 tcpnext = tcpp[0]; 24014 if (tcpnext) 24015 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 24016 tcp->tcp_acceptor_hash = tcpnext; 24017 tcp->tcp_ptpahn = tcpp; 24018 tcpp[0] = tcp; 24019 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 24020 mutex_exit(&tf->tf_lock); 24021 } 24022 24023 /* 24024 * Hash list removal routine for tcp_t structures. 24025 */ 24026 static void 24027 tcp_acceptor_hash_remove(tcp_t *tcp) 24028 { 24029 tcp_t *tcpnext; 24030 kmutex_t *lockp; 24031 24032 /* 24033 * Extract the lock pointer in case there are concurrent 24034 * hash_remove's for this instance. 24035 */ 24036 lockp = tcp->tcp_acceptor_lockp; 24037 24038 if (tcp->tcp_ptpahn == NULL) 24039 return; 24040 24041 ASSERT(lockp != NULL); 24042 mutex_enter(lockp); 24043 if (tcp->tcp_ptpahn) { 24044 tcpnext = tcp->tcp_acceptor_hash; 24045 if (tcpnext) { 24046 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 24047 tcp->tcp_acceptor_hash = NULL; 24048 } 24049 *tcp->tcp_ptpahn = tcpnext; 24050 tcp->tcp_ptpahn = NULL; 24051 } 24052 mutex_exit(lockp); 24053 tcp->tcp_acceptor_lockp = NULL; 24054 } 24055 24056 /* ARGSUSED */ 24057 static int 24058 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af) 24059 { 24060 int error = 0; 24061 int retval; 24062 char *end; 24063 tcp_hsp_t *hsp; 24064 tcp_hsp_t *hspprev; 24065 ipaddr_t addr = 0; /* Address we're looking for */ 24066 in6_addr_t v6addr; /* Address we're looking for */ 24067 uint32_t hash; /* Hash of that address */ 24068 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 24069 24070 /* 24071 * If the following variables are still zero after parsing the input 24072 * string, the user didn't specify them and we don't change them in 24073 * the HSP. 24074 */ 24075 24076 ipaddr_t mask = 0; /* Subnet mask */ 24077 in6_addr_t v6mask; 24078 long sendspace = 0; /* Send buffer size */ 24079 long recvspace = 0; /* Receive buffer size */ 24080 long timestamp = 0; /* Originate TCP TSTAMP option, 1 = yes */ 24081 boolean_t delete = B_FALSE; /* User asked to delete this HSP */ 24082 24083 rw_enter(&tcps->tcps_hsp_lock, RW_WRITER); 24084 24085 /* Parse and validate address */ 24086 if (af == AF_INET) { 24087 retval = inet_pton(af, value, &addr); 24088 if (retval == 1) 24089 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 24090 } else if (af == AF_INET6) { 24091 retval = inet_pton(af, value, &v6addr); 24092 } else { 24093 error = EINVAL; 24094 goto done; 24095 } 24096 if (retval == 0) { 24097 error = EINVAL; 24098 goto done; 24099 } 24100 24101 while ((*value) && *value != ' ') 24102 value++; 24103 24104 /* Parse individual keywords, set variables if found */ 24105 while (*value) { 24106 /* Skip leading blanks */ 24107 24108 while (*value == ' ' || *value == '\t') 24109 value++; 24110 24111 /* If at end of string, we're done */ 24112 24113 if (!*value) 24114 break; 24115 24116 /* We have a word, figure out what it is */ 24117 24118 if (strncmp("mask", value, 4) == 0) { 24119 value += 4; 24120 while (*value == ' ' || *value == '\t') 24121 value++; 24122 /* Parse subnet mask */ 24123 if (af == AF_INET) { 24124 retval = inet_pton(af, value, &mask); 24125 if (retval == 1) { 24126 V4MASK_TO_V6(mask, v6mask); 24127 } 24128 } else if (af == AF_INET6) { 24129 retval = inet_pton(af, value, &v6mask); 24130 } 24131 if (retval != 1) { 24132 error = EINVAL; 24133 goto done; 24134 } 24135 while ((*value) && *value != ' ') 24136 value++; 24137 } else if (strncmp("sendspace", value, 9) == 0) { 24138 value += 9; 24139 24140 if (ddi_strtol(value, &end, 0, &sendspace) != 0 || 24141 sendspace < TCP_XMIT_HIWATER || 24142 sendspace >= (1L<<30)) { 24143 error = EINVAL; 24144 goto done; 24145 } 24146 value = end; 24147 } else if (strncmp("recvspace", value, 9) == 0) { 24148 value += 9; 24149 24150 if (ddi_strtol(value, &end, 0, &recvspace) != 0 || 24151 recvspace < TCP_RECV_HIWATER || 24152 recvspace >= (1L<<30)) { 24153 error = EINVAL; 24154 goto done; 24155 } 24156 value = end; 24157 } else if (strncmp("timestamp", value, 9) == 0) { 24158 value += 9; 24159 24160 if (ddi_strtol(value, &end, 0, ×tamp) != 0 || 24161 timestamp < 0 || timestamp > 1) { 24162 error = EINVAL; 24163 goto done; 24164 } 24165 24166 /* 24167 * We increment timestamp so we know it's been set; 24168 * this is undone when we put it in the HSP 24169 */ 24170 timestamp++; 24171 value = end; 24172 } else if (strncmp("delete", value, 6) == 0) { 24173 value += 6; 24174 delete = B_TRUE; 24175 } else { 24176 error = EINVAL; 24177 goto done; 24178 } 24179 } 24180 24181 /* Hash address for lookup */ 24182 24183 hash = TCP_HSP_HASH(addr); 24184 24185 if (delete) { 24186 /* 24187 * Note that deletes don't return an error if the thing 24188 * we're trying to delete isn't there. 24189 */ 24190 if (tcps->tcps_hsp_hash == NULL) 24191 goto done; 24192 hsp = tcps->tcps_hsp_hash[hash]; 24193 24194 if (hsp) { 24195 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 24196 &v6addr)) { 24197 tcps->tcps_hsp_hash[hash] = hsp->tcp_hsp_next; 24198 mi_free((char *)hsp); 24199 } else { 24200 hspprev = hsp; 24201 while ((hsp = hsp->tcp_hsp_next) != NULL) { 24202 if (IN6_ARE_ADDR_EQUAL( 24203 &hsp->tcp_hsp_addr_v6, &v6addr)) { 24204 hspprev->tcp_hsp_next = 24205 hsp->tcp_hsp_next; 24206 mi_free((char *)hsp); 24207 break; 24208 } 24209 hspprev = hsp; 24210 } 24211 } 24212 } 24213 } else { 24214 /* 24215 * We're adding/modifying an HSP. If we haven't already done 24216 * so, allocate the hash table. 24217 */ 24218 24219 if (!tcps->tcps_hsp_hash) { 24220 tcps->tcps_hsp_hash = (tcp_hsp_t **) 24221 mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE); 24222 if (!tcps->tcps_hsp_hash) { 24223 error = EINVAL; 24224 goto done; 24225 } 24226 } 24227 24228 /* Get head of hash chain */ 24229 24230 hsp = tcps->tcps_hsp_hash[hash]; 24231 24232 /* Try to find pre-existing hsp on hash chain */ 24233 /* Doesn't handle CIDR prefixes. */ 24234 while (hsp) { 24235 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr)) 24236 break; 24237 hsp = hsp->tcp_hsp_next; 24238 } 24239 24240 /* 24241 * If we didn't, create one with default values and put it 24242 * at head of hash chain 24243 */ 24244 24245 if (!hsp) { 24246 hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t)); 24247 if (!hsp) { 24248 error = EINVAL; 24249 goto done; 24250 } 24251 hsp->tcp_hsp_next = tcps->tcps_hsp_hash[hash]; 24252 tcps->tcps_hsp_hash[hash] = hsp; 24253 } 24254 24255 /* Set values that the user asked us to change */ 24256 24257 hsp->tcp_hsp_addr_v6 = v6addr; 24258 if (IN6_IS_ADDR_V4MAPPED(&v6addr)) 24259 hsp->tcp_hsp_vers = IPV4_VERSION; 24260 else 24261 hsp->tcp_hsp_vers = IPV6_VERSION; 24262 hsp->tcp_hsp_subnet_v6 = v6mask; 24263 if (sendspace > 0) 24264 hsp->tcp_hsp_sendspace = sendspace; 24265 if (recvspace > 0) 24266 hsp->tcp_hsp_recvspace = recvspace; 24267 if (timestamp > 0) 24268 hsp->tcp_hsp_tstamp = timestamp - 1; 24269 } 24270 24271 done: 24272 rw_exit(&tcps->tcps_hsp_lock); 24273 return (error); 24274 } 24275 24276 /* Set callback routine passed to nd_load by tcp_param_register. */ 24277 /* ARGSUSED */ 24278 static int 24279 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 24280 { 24281 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET)); 24282 } 24283 /* ARGSUSED */ 24284 static int 24285 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 24286 cred_t *cr) 24287 { 24288 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6)); 24289 } 24290 24291 /* TCP host parameters report triggered via the Named Dispatch mechanism. */ 24292 /* ARGSUSED */ 24293 static int 24294 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 24295 { 24296 tcp_hsp_t *hsp; 24297 int i; 24298 char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN]; 24299 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 24300 24301 rw_enter(&tcps->tcps_hsp_lock, RW_READER); 24302 (void) mi_mpprintf(mp, 24303 "Hash HSP " MI_COL_HDRPAD_STR 24304 "Address Subnet Mask Send Receive TStamp"); 24305 if (tcps->tcps_hsp_hash) { 24306 for (i = 0; i < TCP_HSP_HASH_SIZE; i++) { 24307 hsp = tcps->tcps_hsp_hash[i]; 24308 while (hsp) { 24309 if (hsp->tcp_hsp_vers == IPV4_VERSION) { 24310 (void) inet_ntop(AF_INET, 24311 &hsp->tcp_hsp_addr, 24312 addrbuf, sizeof (addrbuf)); 24313 (void) inet_ntop(AF_INET, 24314 &hsp->tcp_hsp_subnet, 24315 subnetbuf, sizeof (subnetbuf)); 24316 } else { 24317 (void) inet_ntop(AF_INET6, 24318 &hsp->tcp_hsp_addr_v6, 24319 addrbuf, sizeof (addrbuf)); 24320 (void) inet_ntop(AF_INET6, 24321 &hsp->tcp_hsp_subnet_v6, 24322 subnetbuf, sizeof (subnetbuf)); 24323 } 24324 (void) mi_mpprintf(mp, 24325 " %03d " MI_COL_PTRFMT_STR 24326 "%s %s %010d %010d %d", 24327 i, 24328 (void *)hsp, 24329 addrbuf, 24330 subnetbuf, 24331 hsp->tcp_hsp_sendspace, 24332 hsp->tcp_hsp_recvspace, 24333 hsp->tcp_hsp_tstamp); 24334 24335 hsp = hsp->tcp_hsp_next; 24336 } 24337 } 24338 } 24339 rw_exit(&tcps->tcps_hsp_lock); 24340 return (0); 24341 } 24342 24343 24344 /* Data for fast netmask macro used by tcp_hsp_lookup */ 24345 24346 static ipaddr_t netmasks[] = { 24347 IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET, 24348 IN_CLASSC_NET | IN_CLASSD_NET /* Class C,D,E */ 24349 }; 24350 24351 #define netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30]) 24352 24353 /* 24354 * XXX This routine should go away and instead we should use the metrics 24355 * associated with the routes to determine the default sndspace and rcvspace. 24356 */ 24357 static tcp_hsp_t * 24358 tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *tcps) 24359 { 24360 tcp_hsp_t *hsp = NULL; 24361 24362 /* Quick check without acquiring the lock. */ 24363 if (tcps->tcps_hsp_hash == NULL) 24364 return (NULL); 24365 24366 rw_enter(&tcps->tcps_hsp_lock, RW_READER); 24367 24368 /* This routine finds the best-matching HSP for address addr. */ 24369 24370 if (tcps->tcps_hsp_hash) { 24371 int i; 24372 ipaddr_t srchaddr; 24373 tcp_hsp_t *hsp_net; 24374 24375 /* We do three passes: host, network, and subnet. */ 24376 24377 srchaddr = addr; 24378 24379 for (i = 1; i <= 3; i++) { 24380 /* Look for exact match on srchaddr */ 24381 24382 hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(srchaddr)]; 24383 while (hsp) { 24384 if (hsp->tcp_hsp_vers == IPV4_VERSION && 24385 hsp->tcp_hsp_addr == srchaddr) 24386 break; 24387 hsp = hsp->tcp_hsp_next; 24388 } 24389 ASSERT(hsp == NULL || 24390 hsp->tcp_hsp_vers == IPV4_VERSION); 24391 24392 /* 24393 * If this is the first pass: 24394 * If we found a match, great, return it. 24395 * If not, search for the network on the second pass. 24396 */ 24397 24398 if (i == 1) 24399 if (hsp) 24400 break; 24401 else 24402 { 24403 srchaddr = addr & netmask(addr); 24404 continue; 24405 } 24406 24407 /* 24408 * If this is the second pass: 24409 * If we found a match, but there's a subnet mask, 24410 * save the match but try again using the subnet 24411 * mask on the third pass. 24412 * Otherwise, return whatever we found. 24413 */ 24414 24415 if (i == 2) { 24416 if (hsp && hsp->tcp_hsp_subnet) { 24417 hsp_net = hsp; 24418 srchaddr = addr & hsp->tcp_hsp_subnet; 24419 continue; 24420 } else { 24421 break; 24422 } 24423 } 24424 24425 /* 24426 * This must be the third pass. If we didn't find 24427 * anything, return the saved network HSP instead. 24428 */ 24429 24430 if (!hsp) 24431 hsp = hsp_net; 24432 } 24433 } 24434 24435 rw_exit(&tcps->tcps_hsp_lock); 24436 return (hsp); 24437 } 24438 24439 /* 24440 * XXX Equally broken as the IPv4 routine. Doesn't handle longest 24441 * match lookup. 24442 */ 24443 static tcp_hsp_t * 24444 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr, tcp_stack_t *tcps) 24445 { 24446 tcp_hsp_t *hsp = NULL; 24447 24448 /* Quick check without acquiring the lock. */ 24449 if (tcps->tcps_hsp_hash == NULL) 24450 return (NULL); 24451 24452 rw_enter(&tcps->tcps_hsp_lock, RW_READER); 24453 24454 /* This routine finds the best-matching HSP for address addr. */ 24455 24456 if (tcps->tcps_hsp_hash) { 24457 int i; 24458 in6_addr_t v6srchaddr; 24459 tcp_hsp_t *hsp_net; 24460 24461 /* We do three passes: host, network, and subnet. */ 24462 24463 v6srchaddr = *v6addr; 24464 24465 for (i = 1; i <= 3; i++) { 24466 /* Look for exact match on srchaddr */ 24467 24468 hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH( 24469 V4_PART_OF_V6(v6srchaddr))]; 24470 while (hsp) { 24471 if (hsp->tcp_hsp_vers == IPV6_VERSION && 24472 IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 24473 &v6srchaddr)) 24474 break; 24475 hsp = hsp->tcp_hsp_next; 24476 } 24477 24478 /* 24479 * If this is the first pass: 24480 * If we found a match, great, return it. 24481 * If not, search for the network on the second pass. 24482 */ 24483 24484 if (i == 1) 24485 if (hsp) 24486 break; 24487 else { 24488 /* Assume a 64 bit mask */ 24489 v6srchaddr.s6_addr32[0] = 24490 v6addr->s6_addr32[0]; 24491 v6srchaddr.s6_addr32[1] = 24492 v6addr->s6_addr32[1]; 24493 v6srchaddr.s6_addr32[2] = 0; 24494 v6srchaddr.s6_addr32[3] = 0; 24495 continue; 24496 } 24497 24498 /* 24499 * If this is the second pass: 24500 * If we found a match, but there's a subnet mask, 24501 * save the match but try again using the subnet 24502 * mask on the third pass. 24503 * Otherwise, return whatever we found. 24504 */ 24505 24506 if (i == 2) { 24507 ASSERT(hsp == NULL || 24508 hsp->tcp_hsp_vers == IPV6_VERSION); 24509 if (hsp && 24510 !IN6_IS_ADDR_UNSPECIFIED( 24511 &hsp->tcp_hsp_subnet_v6)) { 24512 hsp_net = hsp; 24513 V6_MASK_COPY(*v6addr, 24514 hsp->tcp_hsp_subnet_v6, v6srchaddr); 24515 continue; 24516 } else { 24517 break; 24518 } 24519 } 24520 24521 /* 24522 * This must be the third pass. If we didn't find 24523 * anything, return the saved network HSP instead. 24524 */ 24525 24526 if (!hsp) 24527 hsp = hsp_net; 24528 } 24529 } 24530 24531 rw_exit(&tcps->tcps_hsp_lock); 24532 return (hsp); 24533 } 24534 24535 /* 24536 * Type three generator adapted from the random() function in 4.4 BSD: 24537 */ 24538 24539 /* 24540 * Copyright (c) 1983, 1993 24541 * The Regents of the University of California. All rights reserved. 24542 * 24543 * Redistribution and use in source and binary forms, with or without 24544 * modification, are permitted provided that the following conditions 24545 * are met: 24546 * 1. Redistributions of source code must retain the above copyright 24547 * notice, this list of conditions and the following disclaimer. 24548 * 2. Redistributions in binary form must reproduce the above copyright 24549 * notice, this list of conditions and the following disclaimer in the 24550 * documentation and/or other materials provided with the distribution. 24551 * 3. All advertising materials mentioning features or use of this software 24552 * must display the following acknowledgement: 24553 * This product includes software developed by the University of 24554 * California, Berkeley and its contributors. 24555 * 4. Neither the name of the University nor the names of its contributors 24556 * may be used to endorse or promote products derived from this software 24557 * without specific prior written permission. 24558 * 24559 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24560 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24561 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24562 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24563 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24564 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24565 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24566 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24567 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24568 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24569 * SUCH DAMAGE. 24570 */ 24571 24572 /* Type 3 -- x**31 + x**3 + 1 */ 24573 #define DEG_3 31 24574 #define SEP_3 3 24575 24576 24577 /* Protected by tcp_random_lock */ 24578 static int tcp_randtbl[DEG_3 + 1]; 24579 24580 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 24581 static int *tcp_random_rptr = &tcp_randtbl[1]; 24582 24583 static int *tcp_random_state = &tcp_randtbl[1]; 24584 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 24585 24586 kmutex_t tcp_random_lock; 24587 24588 void 24589 tcp_random_init(void) 24590 { 24591 int i; 24592 hrtime_t hrt; 24593 time_t wallclock; 24594 uint64_t result; 24595 24596 /* 24597 * Use high-res timer and current time for seed. Gethrtime() returns 24598 * a longlong, which may contain resolution down to nanoseconds. 24599 * The current time will either be a 32-bit or a 64-bit quantity. 24600 * XOR the two together in a 64-bit result variable. 24601 * Convert the result to a 32-bit value by multiplying the high-order 24602 * 32-bits by the low-order 32-bits. 24603 */ 24604 24605 hrt = gethrtime(); 24606 (void) drv_getparm(TIME, &wallclock); 24607 result = (uint64_t)wallclock ^ (uint64_t)hrt; 24608 mutex_enter(&tcp_random_lock); 24609 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 24610 (result & 0xffffffff); 24611 24612 for (i = 1; i < DEG_3; i++) 24613 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 24614 + 12345; 24615 tcp_random_fptr = &tcp_random_state[SEP_3]; 24616 tcp_random_rptr = &tcp_random_state[0]; 24617 mutex_exit(&tcp_random_lock); 24618 for (i = 0; i < 10 * DEG_3; i++) 24619 (void) tcp_random(); 24620 } 24621 24622 /* 24623 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 24624 * This range is selected to be approximately centered on TCP_ISS / 2, 24625 * and easy to compute. We get this value by generating a 32-bit random 24626 * number, selecting out the high-order 17 bits, and then adding one so 24627 * that we never return zero. 24628 */ 24629 int 24630 tcp_random(void) 24631 { 24632 int i; 24633 24634 mutex_enter(&tcp_random_lock); 24635 *tcp_random_fptr += *tcp_random_rptr; 24636 24637 /* 24638 * The high-order bits are more random than the low-order bits, 24639 * so we select out the high-order 17 bits and add one so that 24640 * we never return zero. 24641 */ 24642 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 24643 if (++tcp_random_fptr >= tcp_random_end_ptr) { 24644 tcp_random_fptr = tcp_random_state; 24645 ++tcp_random_rptr; 24646 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 24647 tcp_random_rptr = tcp_random_state; 24648 24649 mutex_exit(&tcp_random_lock); 24650 return (i); 24651 } 24652 24653 /* 24654 * XXX This will go away when TPI is extended to send 24655 * info reqs to sockfs/timod ..... 24656 * Given a queue, set the max packet size for the write 24657 * side of the queue below stream head. This value is 24658 * cached on the stream head. 24659 * Returns 1 on success, 0 otherwise. 24660 */ 24661 static int 24662 setmaxps(queue_t *q, int maxpsz) 24663 { 24664 struct stdata *stp; 24665 queue_t *wq; 24666 stp = STREAM(q); 24667 24668 /* 24669 * At this point change of a queue parameter is not allowed 24670 * when a multiplexor is sitting on top. 24671 */ 24672 if (stp->sd_flag & STPLEX) 24673 return (0); 24674 24675 claimstr(stp->sd_wrq); 24676 wq = stp->sd_wrq->q_next; 24677 ASSERT(wq != NULL); 24678 (void) strqset(wq, QMAXPSZ, 0, maxpsz); 24679 releasestr(stp->sd_wrq); 24680 return (1); 24681 } 24682 24683 static int 24684 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 24685 int *t_errorp, int *sys_errorp) 24686 { 24687 int error; 24688 int is_absreq_failure; 24689 t_scalar_t *opt_lenp; 24690 t_scalar_t opt_offset; 24691 int prim_type; 24692 struct T_conn_req *tcreqp; 24693 struct T_conn_res *tcresp; 24694 cred_t *cr; 24695 24696 cr = DB_CREDDEF(mp, tcp->tcp_cred); 24697 24698 prim_type = ((union T_primitives *)mp->b_rptr)->type; 24699 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 24700 prim_type == T_CONN_RES); 24701 24702 switch (prim_type) { 24703 case T_CONN_REQ: 24704 tcreqp = (struct T_conn_req *)mp->b_rptr; 24705 opt_offset = tcreqp->OPT_offset; 24706 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 24707 break; 24708 case O_T_CONN_RES: 24709 case T_CONN_RES: 24710 tcresp = (struct T_conn_res *)mp->b_rptr; 24711 opt_offset = tcresp->OPT_offset; 24712 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 24713 break; 24714 } 24715 24716 *t_errorp = 0; 24717 *sys_errorp = 0; 24718 *do_disconnectp = 0; 24719 24720 error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp, 24721 opt_offset, cr, &tcp_opt_obj, 24722 NULL, &is_absreq_failure); 24723 24724 switch (error) { 24725 case 0: /* no error */ 24726 ASSERT(is_absreq_failure == 0); 24727 return (0); 24728 case ENOPROTOOPT: 24729 *t_errorp = TBADOPT; 24730 break; 24731 case EACCES: 24732 *t_errorp = TACCES; 24733 break; 24734 default: 24735 *t_errorp = TSYSERR; *sys_errorp = error; 24736 break; 24737 } 24738 if (is_absreq_failure != 0) { 24739 /* 24740 * The connection request should get the local ack 24741 * T_OK_ACK and then a T_DISCON_IND. 24742 */ 24743 *do_disconnectp = 1; 24744 } 24745 return (-1); 24746 } 24747 24748 /* 24749 * Split this function out so that if the secret changes, I'm okay. 24750 * 24751 * Initialize the tcp_iss_cookie and tcp_iss_key. 24752 */ 24753 24754 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 24755 24756 static void 24757 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 24758 { 24759 struct { 24760 int32_t current_time; 24761 uint32_t randnum; 24762 uint16_t pad; 24763 uint8_t ether[6]; 24764 uint8_t passwd[PASSWD_SIZE]; 24765 } tcp_iss_cookie; 24766 time_t t; 24767 24768 /* 24769 * Start with the current absolute time. 24770 */ 24771 (void) drv_getparm(TIME, &t); 24772 tcp_iss_cookie.current_time = t; 24773 24774 /* 24775 * XXX - Need a more random number per RFC 1750, not this crap. 24776 * OTOH, if what follows is pretty random, then I'm in better shape. 24777 */ 24778 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 24779 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 24780 24781 /* 24782 * The cpu_type_info is pretty non-random. Ugggh. It does serve 24783 * as a good template. 24784 */ 24785 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 24786 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 24787 24788 /* 24789 * The pass-phrase. Normally this is supplied by user-called NDD. 24790 */ 24791 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 24792 24793 /* 24794 * See 4010593 if this section becomes a problem again, 24795 * but the local ethernet address is useful here. 24796 */ 24797 (void) localetheraddr(NULL, 24798 (struct ether_addr *)&tcp_iss_cookie.ether); 24799 24800 /* 24801 * Hash 'em all together. The MD5Final is called per-connection. 24802 */ 24803 mutex_enter(&tcps->tcps_iss_key_lock); 24804 MD5Init(&tcps->tcps_iss_key); 24805 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 24806 sizeof (tcp_iss_cookie)); 24807 mutex_exit(&tcps->tcps_iss_key_lock); 24808 } 24809 24810 /* 24811 * Set the RFC 1948 pass phrase 24812 */ 24813 /* ARGSUSED */ 24814 static int 24815 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 24816 cred_t *cr) 24817 { 24818 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 24819 24820 /* 24821 * Basically, value contains a new pass phrase. Pass it along! 24822 */ 24823 tcp_iss_key_init((uint8_t *)value, strlen(value), tcps); 24824 return (0); 24825 } 24826 24827 /* ARGSUSED */ 24828 static int 24829 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 24830 { 24831 bzero(buf, sizeof (tcp_sack_info_t)); 24832 return (0); 24833 } 24834 24835 /* ARGSUSED */ 24836 static int 24837 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags) 24838 { 24839 bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH); 24840 return (0); 24841 } 24842 24843 /* 24844 * Make sure we wait until the default queue is setup, yet allow 24845 * tcp_g_q_create() to open a TCP stream. 24846 * We need to allow tcp_g_q_create() do do an open 24847 * of tcp, hence we compare curhread. 24848 * All others have to wait until the tcps_g_q has been 24849 * setup. 24850 */ 24851 void 24852 tcp_g_q_setup(tcp_stack_t *tcps) 24853 { 24854 mutex_enter(&tcps->tcps_g_q_lock); 24855 if (tcps->tcps_g_q != NULL) { 24856 mutex_exit(&tcps->tcps_g_q_lock); 24857 return; 24858 } 24859 if (tcps->tcps_g_q_creator == NULL) { 24860 /* This thread will set it up */ 24861 tcps->tcps_g_q_creator = curthread; 24862 mutex_exit(&tcps->tcps_g_q_lock); 24863 tcp_g_q_create(tcps); 24864 mutex_enter(&tcps->tcps_g_q_lock); 24865 ASSERT(tcps->tcps_g_q_creator == curthread); 24866 tcps->tcps_g_q_creator = NULL; 24867 cv_signal(&tcps->tcps_g_q_cv); 24868 ASSERT(tcps->tcps_g_q != NULL); 24869 mutex_exit(&tcps->tcps_g_q_lock); 24870 return; 24871 } 24872 /* Everybody but the creator has to wait */ 24873 if (tcps->tcps_g_q_creator != curthread) { 24874 while (tcps->tcps_g_q == NULL) 24875 cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock); 24876 } 24877 mutex_exit(&tcps->tcps_g_q_lock); 24878 } 24879 24880 major_t IP_MAJ; 24881 #define IP "ip" 24882 24883 #define TCP6DEV "/devices/pseudo/tcp6@0:tcp6" 24884 24885 /* 24886 * Create a default tcp queue here instead of in strplumb 24887 */ 24888 void 24889 tcp_g_q_create(tcp_stack_t *tcps) 24890 { 24891 int error; 24892 ldi_handle_t lh = NULL; 24893 ldi_ident_t li = NULL; 24894 int rval; 24895 cred_t *cr; 24896 24897 #ifdef NS_DEBUG 24898 (void) printf("tcp_g_q_create()\n"); 24899 #endif 24900 24901 ASSERT(tcps->tcps_g_q_creator == curthread); 24902 24903 error = ldi_ident_from_major(IP_MAJ, &li); 24904 if (error) { 24905 #ifdef DEBUG 24906 printf("tcp_g_q_create: lyr ident get failed error %d\n", 24907 error); 24908 #endif 24909 return; 24910 } 24911 24912 cr = zone_get_kcred(netstackid_to_zoneid( 24913 tcps->tcps_netstack->netstack_stackid)); 24914 ASSERT(cr != NULL); 24915 /* 24916 * We set the tcp default queue to IPv6 because IPv4 falls 24917 * back to IPv6 when it can't find a client, but 24918 * IPv6 does not fall back to IPv4. 24919 */ 24920 error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li); 24921 if (error) { 24922 #ifdef DEBUG 24923 printf("tcp_g_q_create: open of TCP6DEV failed error %d\n", 24924 error); 24925 #endif 24926 goto out; 24927 } 24928 24929 /* 24930 * This ioctl causes the tcp framework to cache a pointer to 24931 * this stream, so we don't want to close the stream after 24932 * this operation. 24933 * Use the kernel credentials that are for the zone we're in. 24934 */ 24935 error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q, 24936 (intptr_t)0, FKIOCTL, cr, &rval); 24937 if (error) { 24938 #ifdef DEBUG 24939 printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed " 24940 "error %d\n", error); 24941 #endif 24942 goto out; 24943 } 24944 tcps->tcps_g_q_lh = lh; /* For tcp_g_q_close */ 24945 lh = NULL; 24946 out: 24947 /* Close layered handles */ 24948 if (li) 24949 ldi_ident_release(li); 24950 /* Keep cred around until _inactive needs it */ 24951 tcps->tcps_g_q_cr = cr; 24952 } 24953 24954 /* 24955 * We keep tcp_g_q set until all other tcp_t's in the zone 24956 * has gone away, and then when tcp_g_q_inactive() is called 24957 * we clear it. 24958 */ 24959 void 24960 tcp_g_q_destroy(tcp_stack_t *tcps) 24961 { 24962 #ifdef NS_DEBUG 24963 (void) printf("tcp_g_q_destroy()for stack %d\n", 24964 tcps->tcps_netstack->netstack_stackid); 24965 #endif 24966 24967 if (tcps->tcps_g_q == NULL) { 24968 return; /* Nothing to cleanup */ 24969 } 24970 /* 24971 * Drop reference corresponding to the default queue. 24972 * This reference was added from tcp_open when the default queue 24973 * was created, hence we compensate for this extra drop in 24974 * tcp_g_q_close. If the refcnt drops to zero here it means 24975 * the default queue was the last one to be open, in which 24976 * case, then tcp_g_q_inactive will be 24977 * called as a result of the refrele. 24978 */ 24979 TCPS_REFRELE(tcps); 24980 } 24981 24982 /* 24983 * Called when last tcp_t drops reference count using TCPS_REFRELE. 24984 * Run by tcp_q_q_inactive using a taskq. 24985 */ 24986 static void 24987 tcp_g_q_close(void *arg) 24988 { 24989 tcp_stack_t *tcps = arg; 24990 int error; 24991 ldi_handle_t lh = NULL; 24992 ldi_ident_t li = NULL; 24993 cred_t *cr; 24994 24995 #ifdef NS_DEBUG 24996 (void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n", 24997 tcps->tcps_netstack->netstack_stackid, 24998 tcps->tcps_netstack->netstack_refcnt); 24999 #endif 25000 lh = tcps->tcps_g_q_lh; 25001 if (lh == NULL) 25002 return; /* Nothing to cleanup */ 25003 25004 ASSERT(tcps->tcps_refcnt == 1); 25005 ASSERT(tcps->tcps_g_q != NULL); 25006 25007 error = ldi_ident_from_major(IP_MAJ, &li); 25008 if (error) { 25009 #ifdef DEBUG 25010 printf("tcp_g_q_inactive: lyr ident get failed error %d\n", 25011 error); 25012 #endif 25013 return; 25014 } 25015 25016 cr = tcps->tcps_g_q_cr; 25017 tcps->tcps_g_q_cr = NULL; 25018 ASSERT(cr != NULL); 25019 25020 /* 25021 * Make sure we can break the recursion when tcp_close decrements 25022 * the reference count causing g_q_inactive to be called again. 25023 */ 25024 tcps->tcps_g_q_lh = NULL; 25025 25026 /* close the default queue */ 25027 (void) ldi_close(lh, FREAD|FWRITE, cr); 25028 /* 25029 * At this point in time tcps and the rest of netstack_t might 25030 * have been deleted. 25031 */ 25032 tcps = NULL; 25033 25034 /* Close layered handles */ 25035 ldi_ident_release(li); 25036 crfree(cr); 25037 } 25038 25039 /* 25040 * Called when last tcp_t drops reference count using TCPS_REFRELE. 25041 * 25042 * Have to ensure that the ldi routines are not used by an 25043 * interrupt thread by using a taskq. 25044 */ 25045 void 25046 tcp_g_q_inactive(tcp_stack_t *tcps) 25047 { 25048 if (tcps->tcps_g_q_lh == NULL) 25049 return; /* Nothing to cleanup */ 25050 25051 ASSERT(tcps->tcps_refcnt == 0); 25052 TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */ 25053 25054 if (servicing_interrupt()) { 25055 (void) taskq_dispatch(tcp_taskq, tcp_g_q_close, 25056 (void *) tcps, TQ_SLEEP); 25057 } else { 25058 tcp_g_q_close(tcps); 25059 } 25060 } 25061 25062 /* 25063 * Called by IP when IP is loaded into the kernel 25064 */ 25065 void 25066 tcp_ddi_g_init(void) 25067 { 25068 IP_MAJ = ddi_name_to_major(IP); 25069 25070 tcp_timercache = kmem_cache_create("tcp_timercache", 25071 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 25072 NULL, NULL, NULL, NULL, NULL, 0); 25073 25074 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 25075 sizeof (tcp_sack_info_t), 0, 25076 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 25077 25078 tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache", 25079 TCP_MAX_COMBINED_HEADER_LENGTH, 0, 25080 tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0); 25081 25082 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 25083 25084 /* Initialize the random number generator */ 25085 tcp_random_init(); 25086 25087 tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput); 25088 tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close); 25089 25090 /* A single callback independently of how many netstacks we have */ 25091 ip_squeue_init(tcp_squeue_add); 25092 25093 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 25094 25095 tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1, 25096 TASKQ_PREPOPULATE); 25097 25098 /* 25099 * We want to be informed each time a stack is created or 25100 * destroyed in the kernel, so we can maintain the 25101 * set of tcp_stack_t's. 25102 */ 25103 netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown, 25104 tcp_stack_fini); 25105 } 25106 25107 25108 /* 25109 * Initialize the TCP stack instance. 25110 */ 25111 static void * 25112 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 25113 { 25114 tcp_stack_t *tcps; 25115 tcpparam_t *pa; 25116 int i; 25117 25118 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 25119 tcps->tcps_netstack = ns; 25120 25121 /* Initialize locks */ 25122 rw_init(&tcps->tcps_hsp_lock, NULL, RW_DEFAULT, NULL); 25123 mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL); 25124 cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL); 25125 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 25126 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 25127 rw_init(&tcps->tcps_reserved_port_lock, NULL, RW_DEFAULT, NULL); 25128 25129 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 25130 tcps->tcps_g_epriv_ports[0] = 2049; 25131 tcps->tcps_g_epriv_ports[1] = 4045; 25132 tcps->tcps_min_anonpriv_port = 512; 25133 25134 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 25135 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 25136 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 25137 TCP_FANOUT_SIZE, KM_SLEEP); 25138 tcps->tcps_reserved_port = kmem_zalloc(sizeof (tcp_rport_t) * 25139 TCP_RESERVED_PORTS_ARRAY_MAX_SIZE, KM_SLEEP); 25140 25141 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 25142 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 25143 MUTEX_DEFAULT, NULL); 25144 } 25145 25146 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 25147 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 25148 MUTEX_DEFAULT, NULL); 25149 } 25150 25151 /* TCP's IPsec code calls the packet dropper. */ 25152 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 25153 25154 pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP); 25155 tcps->tcps_params = pa; 25156 bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 25157 25158 (void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params, 25159 A_CNT(lcl_tcp_param_arr), tcps); 25160 25161 /* 25162 * Note: To really walk the device tree you need the devinfo 25163 * pointer to your device which is only available after probe/attach. 25164 * The following is safe only because it uses ddi_root_node() 25165 */ 25166 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 25167 tcp_opt_obj.odb_opt_arr_cnt); 25168 25169 /* 25170 * Initialize RFC 1948 secret values. This will probably be reset once 25171 * by the boot scripts. 25172 * 25173 * Use NULL name, as the name is caught by the new lockstats. 25174 * 25175 * Initialize with some random, non-guessable string, like the global 25176 * T_INFO_ACK. 25177 */ 25178 25179 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 25180 sizeof (tcp_g_t_info_ack), tcps); 25181 25182 tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics); 25183 tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps); 25184 25185 return (tcps); 25186 } 25187 25188 /* 25189 * Called when the IP module is about to be unloaded. 25190 */ 25191 void 25192 tcp_ddi_g_destroy(void) 25193 { 25194 tcp_g_kstat_fini(tcp_g_kstat); 25195 tcp_g_kstat = NULL; 25196 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 25197 25198 mutex_destroy(&tcp_random_lock); 25199 25200 kmem_cache_destroy(tcp_timercache); 25201 kmem_cache_destroy(tcp_sack_info_cache); 25202 kmem_cache_destroy(tcp_iphc_cache); 25203 25204 netstack_unregister(NS_TCP); 25205 taskq_destroy(tcp_taskq); 25206 } 25207 25208 /* 25209 * Shut down the TCP stack instance. 25210 */ 25211 /* ARGSUSED */ 25212 static void 25213 tcp_stack_shutdown(netstackid_t stackid, void *arg) 25214 { 25215 tcp_stack_t *tcps = (tcp_stack_t *)arg; 25216 25217 tcp_g_q_destroy(tcps); 25218 } 25219 25220 /* 25221 * Free the TCP stack instance. 25222 */ 25223 static void 25224 tcp_stack_fini(netstackid_t stackid, void *arg) 25225 { 25226 tcp_stack_t *tcps = (tcp_stack_t *)arg; 25227 int i; 25228 25229 nd_free(&tcps->tcps_g_nd); 25230 kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 25231 tcps->tcps_params = NULL; 25232 kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t)); 25233 tcps->tcps_wroff_xtra_param = NULL; 25234 kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t)); 25235 tcps->tcps_mdt_head_param = NULL; 25236 kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t)); 25237 tcps->tcps_mdt_tail_param = NULL; 25238 kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t)); 25239 tcps->tcps_mdt_max_pbufs_param = NULL; 25240 25241 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 25242 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 25243 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 25244 } 25245 25246 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 25247 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 25248 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 25249 } 25250 25251 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 25252 tcps->tcps_bind_fanout = NULL; 25253 25254 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE); 25255 tcps->tcps_acceptor_fanout = NULL; 25256 25257 kmem_free(tcps->tcps_reserved_port, sizeof (tcp_rport_t) * 25258 TCP_RESERVED_PORTS_ARRAY_MAX_SIZE); 25259 tcps->tcps_reserved_port = NULL; 25260 25261 mutex_destroy(&tcps->tcps_iss_key_lock); 25262 rw_destroy(&tcps->tcps_hsp_lock); 25263 mutex_destroy(&tcps->tcps_g_q_lock); 25264 cv_destroy(&tcps->tcps_g_q_cv); 25265 mutex_destroy(&tcps->tcps_epriv_port_lock); 25266 rw_destroy(&tcps->tcps_reserved_port_lock); 25267 25268 ip_drop_unregister(&tcps->tcps_dropper); 25269 25270 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 25271 tcps->tcps_kstat = NULL; 25272 bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics)); 25273 25274 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 25275 tcps->tcps_mibkp = NULL; 25276 25277 kmem_free(tcps, sizeof (*tcps)); 25278 } 25279 25280 /* 25281 * Generate ISS, taking into account NDD changes may happen halfway through. 25282 * (If the iss is not zero, set it.) 25283 */ 25284 25285 static void 25286 tcp_iss_init(tcp_t *tcp) 25287 { 25288 MD5_CTX context; 25289 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 25290 uint32_t answer[4]; 25291 tcp_stack_t *tcps = tcp->tcp_tcps; 25292 25293 tcps->tcps_iss_incr_extra += (ISS_INCR >> 1); 25294 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 25295 switch (tcps->tcps_strong_iss) { 25296 case 2: 25297 mutex_enter(&tcps->tcps_iss_key_lock); 25298 context = tcps->tcps_iss_key; 25299 mutex_exit(&tcps->tcps_iss_key_lock); 25300 arg.ports = tcp->tcp_ports; 25301 if (tcp->tcp_ipversion == IPV4_VERSION) { 25302 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 25303 &arg.src); 25304 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst, 25305 &arg.dst); 25306 } else { 25307 arg.src = tcp->tcp_ip6h->ip6_src; 25308 arg.dst = tcp->tcp_ip6h->ip6_dst; 25309 } 25310 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 25311 MD5Final((uchar_t *)answer, &context); 25312 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 25313 /* 25314 * Now that we've hashed into a unique per-connection sequence 25315 * space, add a random increment per strong_iss == 1. So I 25316 * guess we'll have to... 25317 */ 25318 /* FALLTHRU */ 25319 case 1: 25320 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 25321 break; 25322 default: 25323 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 25324 break; 25325 } 25326 tcp->tcp_valid_bits = TCP_ISS_VALID; 25327 tcp->tcp_fss = tcp->tcp_iss - 1; 25328 tcp->tcp_suna = tcp->tcp_iss; 25329 tcp->tcp_snxt = tcp->tcp_iss + 1; 25330 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 25331 tcp->tcp_csuna = tcp->tcp_snxt; 25332 } 25333 25334 /* 25335 * Exported routine for extracting active tcp connection status. 25336 * 25337 * This is used by the Solaris Cluster Networking software to 25338 * gather a list of connections that need to be forwarded to 25339 * specific nodes in the cluster when configuration changes occur. 25340 * 25341 * The callback is invoked for each tcp_t structure. Returning 25342 * non-zero from the callback routine terminates the search. 25343 */ 25344 int 25345 cl_tcp_walk_list(int (*cl_callback)(cl_tcp_info_t *, void *), 25346 void *arg) 25347 { 25348 netstack_handle_t nh; 25349 netstack_t *ns; 25350 int ret = 0; 25351 25352 netstack_next_init(&nh); 25353 while ((ns = netstack_next(&nh)) != NULL) { 25354 ret = cl_tcp_walk_list_stack(cl_callback, arg, 25355 ns->netstack_tcp); 25356 netstack_rele(ns); 25357 } 25358 netstack_next_fini(&nh); 25359 return (ret); 25360 } 25361 25362 static int 25363 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg, 25364 tcp_stack_t *tcps) 25365 { 25366 tcp_t *tcp; 25367 cl_tcp_info_t cl_tcpi; 25368 connf_t *connfp; 25369 conn_t *connp; 25370 int i; 25371 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25372 25373 ASSERT(callback != NULL); 25374 25375 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 25376 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 25377 connp = NULL; 25378 25379 while ((connp = 25380 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 25381 25382 tcp = connp->conn_tcp; 25383 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 25384 cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion; 25385 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 25386 cl_tcpi.cl_tcpi_lport = tcp->tcp_lport; 25387 cl_tcpi.cl_tcpi_fport = tcp->tcp_fport; 25388 /* 25389 * The macros tcp_laddr and tcp_faddr give the IPv4 25390 * addresses. They are copied implicitly below as 25391 * mapped addresses. 25392 */ 25393 cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6; 25394 if (tcp->tcp_ipversion == IPV4_VERSION) { 25395 cl_tcpi.cl_tcpi_faddr = 25396 tcp->tcp_ipha->ipha_dst; 25397 } else { 25398 cl_tcpi.cl_tcpi_faddr_v6 = 25399 tcp->tcp_ip6h->ip6_dst; 25400 } 25401 25402 /* 25403 * If the callback returns non-zero 25404 * we terminate the traversal. 25405 */ 25406 if ((*callback)(&cl_tcpi, arg) != 0) { 25407 CONN_DEC_REF(tcp->tcp_connp); 25408 return (1); 25409 } 25410 } 25411 } 25412 25413 return (0); 25414 } 25415 25416 /* 25417 * Macros used for accessing the different types of sockaddr 25418 * structures inside a tcp_ioc_abort_conn_t. 25419 */ 25420 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 25421 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 25422 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 25423 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 25424 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 25425 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 25426 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 25427 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 25428 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 25429 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 25430 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 25431 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 25432 25433 /* 25434 * Return the correct error code to mimic the behavior 25435 * of a connection reset. 25436 */ 25437 #define TCP_AC_GET_ERRCODE(state, err) { \ 25438 switch ((state)) { \ 25439 case TCPS_SYN_SENT: \ 25440 case TCPS_SYN_RCVD: \ 25441 (err) = ECONNREFUSED; \ 25442 break; \ 25443 case TCPS_ESTABLISHED: \ 25444 case TCPS_FIN_WAIT_1: \ 25445 case TCPS_FIN_WAIT_2: \ 25446 case TCPS_CLOSE_WAIT: \ 25447 (err) = ECONNRESET; \ 25448 break; \ 25449 case TCPS_CLOSING: \ 25450 case TCPS_LAST_ACK: \ 25451 case TCPS_TIME_WAIT: \ 25452 (err) = 0; \ 25453 break; \ 25454 default: \ 25455 (err) = ENXIO; \ 25456 } \ 25457 } 25458 25459 /* 25460 * Check if a tcp structure matches the info in acp. 25461 */ 25462 #define TCP_AC_ADDR_MATCH(acp, tcp) \ 25463 (((acp)->ac_local.ss_family == AF_INET) ? \ 25464 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 25465 TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) && \ 25466 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 25467 TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) && \ 25468 (TCP_AC_V4LPORT((acp)) == 0 || \ 25469 TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) && \ 25470 (TCP_AC_V4RPORT((acp)) == 0 || \ 25471 TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) && \ 25472 (acp)->ac_start <= (tcp)->tcp_state && \ 25473 (acp)->ac_end >= (tcp)->tcp_state) : \ 25474 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 25475 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 25476 &(tcp)->tcp_ip_src_v6)) && \ 25477 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 25478 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 25479 &(tcp)->tcp_remote_v6)) && \ 25480 (TCP_AC_V6LPORT((acp)) == 0 || \ 25481 TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) && \ 25482 (TCP_AC_V6RPORT((acp)) == 0 || \ 25483 TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) && \ 25484 (acp)->ac_start <= (tcp)->tcp_state && \ 25485 (acp)->ac_end >= (tcp)->tcp_state)) 25486 25487 #define TCP_AC_MATCH(acp, tcp) \ 25488 (((acp)->ac_zoneid == ALL_ZONES || \ 25489 (acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ? \ 25490 TCP_AC_ADDR_MATCH(acp, tcp) : 0) 25491 25492 /* 25493 * Build a message containing a tcp_ioc_abort_conn_t structure 25494 * which is filled in with information from acp and tp. 25495 */ 25496 static mblk_t * 25497 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 25498 { 25499 mblk_t *mp; 25500 tcp_ioc_abort_conn_t *tacp; 25501 25502 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 25503 if (mp == NULL) 25504 return (NULL); 25505 25506 mp->b_datap->db_type = M_CTL; 25507 25508 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 25509 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 25510 sizeof (uint32_t)); 25511 25512 tacp->ac_start = acp->ac_start; 25513 tacp->ac_end = acp->ac_end; 25514 tacp->ac_zoneid = acp->ac_zoneid; 25515 25516 if (acp->ac_local.ss_family == AF_INET) { 25517 tacp->ac_local.ss_family = AF_INET; 25518 tacp->ac_remote.ss_family = AF_INET; 25519 TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src; 25520 TCP_AC_V4REMOTE(tacp) = tp->tcp_remote; 25521 TCP_AC_V4LPORT(tacp) = tp->tcp_lport; 25522 TCP_AC_V4RPORT(tacp) = tp->tcp_fport; 25523 } else { 25524 tacp->ac_local.ss_family = AF_INET6; 25525 tacp->ac_remote.ss_family = AF_INET6; 25526 TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6; 25527 TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6; 25528 TCP_AC_V6LPORT(tacp) = tp->tcp_lport; 25529 TCP_AC_V6RPORT(tacp) = tp->tcp_fport; 25530 } 25531 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 25532 return (mp); 25533 } 25534 25535 /* 25536 * Print a tcp_ioc_abort_conn_t structure. 25537 */ 25538 static void 25539 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 25540 { 25541 char lbuf[128]; 25542 char rbuf[128]; 25543 sa_family_t af; 25544 in_port_t lport, rport; 25545 ushort_t logflags; 25546 25547 af = acp->ac_local.ss_family; 25548 25549 if (af == AF_INET) { 25550 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 25551 lbuf, 128); 25552 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 25553 rbuf, 128); 25554 lport = ntohs(TCP_AC_V4LPORT(acp)); 25555 rport = ntohs(TCP_AC_V4RPORT(acp)); 25556 } else { 25557 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 25558 lbuf, 128); 25559 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 25560 rbuf, 128); 25561 lport = ntohs(TCP_AC_V6LPORT(acp)); 25562 rport = ntohs(TCP_AC_V6RPORT(acp)); 25563 } 25564 25565 logflags = SL_TRACE | SL_NOTE; 25566 /* 25567 * Don't print this message to the console if the operation was done 25568 * to a non-global zone. 25569 */ 25570 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 25571 logflags |= SL_CONSOLE; 25572 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 25573 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 25574 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 25575 acp->ac_start, acp->ac_end); 25576 } 25577 25578 /* 25579 * Called inside tcp_rput when a message built using 25580 * tcp_ioctl_abort_build_msg is put into a queue. 25581 * Note that when we get here there is no wildcard in acp any more. 25582 */ 25583 static void 25584 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp) 25585 { 25586 tcp_ioc_abort_conn_t *acp; 25587 25588 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 25589 if (tcp->tcp_state <= acp->ac_end) { 25590 /* 25591 * If we get here, we are already on the correct 25592 * squeue. This ioctl follows the following path 25593 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 25594 * ->tcp_ioctl_abort->squeue_fill (if on a 25595 * different squeue) 25596 */ 25597 int errcode; 25598 25599 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 25600 (void) tcp_clean_death(tcp, errcode, 26); 25601 } 25602 freemsg(mp); 25603 } 25604 25605 /* 25606 * Abort all matching connections on a hash chain. 25607 */ 25608 static int 25609 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 25610 boolean_t exact, tcp_stack_t *tcps) 25611 { 25612 int nmatch, err = 0; 25613 tcp_t *tcp; 25614 MBLKP mp, last, listhead = NULL; 25615 conn_t *tconnp; 25616 connf_t *connfp; 25617 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25618 25619 connfp = &ipst->ips_ipcl_conn_fanout[index]; 25620 25621 startover: 25622 nmatch = 0; 25623 25624 mutex_enter(&connfp->connf_lock); 25625 for (tconnp = connfp->connf_head; tconnp != NULL; 25626 tconnp = tconnp->conn_next) { 25627 tcp = tconnp->conn_tcp; 25628 if (TCP_AC_MATCH(acp, tcp)) { 25629 CONN_INC_REF(tcp->tcp_connp); 25630 mp = tcp_ioctl_abort_build_msg(acp, tcp); 25631 if (mp == NULL) { 25632 err = ENOMEM; 25633 CONN_DEC_REF(tcp->tcp_connp); 25634 break; 25635 } 25636 mp->b_prev = (mblk_t *)tcp; 25637 25638 if (listhead == NULL) { 25639 listhead = mp; 25640 last = mp; 25641 } else { 25642 last->b_next = mp; 25643 last = mp; 25644 } 25645 nmatch++; 25646 if (exact) 25647 break; 25648 } 25649 25650 /* Avoid holding lock for too long. */ 25651 if (nmatch >= 500) 25652 break; 25653 } 25654 mutex_exit(&connfp->connf_lock); 25655 25656 /* Pass mp into the correct tcp */ 25657 while ((mp = listhead) != NULL) { 25658 listhead = listhead->b_next; 25659 tcp = (tcp_t *)mp->b_prev; 25660 mp->b_next = mp->b_prev = NULL; 25661 squeue_fill(tcp->tcp_connp->conn_sqp, mp, 25662 tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET); 25663 } 25664 25665 *count += nmatch; 25666 if (nmatch >= 500 && err == 0) 25667 goto startover; 25668 return (err); 25669 } 25670 25671 /* 25672 * Abort all connections that matches the attributes specified in acp. 25673 */ 25674 static int 25675 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps) 25676 { 25677 sa_family_t af; 25678 uint32_t ports; 25679 uint16_t *pports; 25680 int err = 0, count = 0; 25681 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 25682 int index = -1; 25683 ushort_t logflags; 25684 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25685 25686 af = acp->ac_local.ss_family; 25687 25688 if (af == AF_INET) { 25689 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 25690 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 25691 pports = (uint16_t *)&ports; 25692 pports[1] = TCP_AC_V4LPORT(acp); 25693 pports[0] = TCP_AC_V4RPORT(acp); 25694 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 25695 } 25696 } else { 25697 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 25698 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 25699 pports = (uint16_t *)&ports; 25700 pports[1] = TCP_AC_V6LPORT(acp); 25701 pports[0] = TCP_AC_V6RPORT(acp); 25702 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 25703 } 25704 } 25705 25706 /* 25707 * For cases where remote addr, local port, and remote port are non- 25708 * wildcards, tcp_ioctl_abort_bucket will only be called once. 25709 */ 25710 if (index != -1) { 25711 err = tcp_ioctl_abort_bucket(acp, index, 25712 &count, exact, tcps); 25713 } else { 25714 /* 25715 * loop through all entries for wildcard case 25716 */ 25717 for (index = 0; 25718 index < ipst->ips_ipcl_conn_fanout_size; 25719 index++) { 25720 err = tcp_ioctl_abort_bucket(acp, index, 25721 &count, exact, tcps); 25722 if (err != 0) 25723 break; 25724 } 25725 } 25726 25727 logflags = SL_TRACE | SL_NOTE; 25728 /* 25729 * Don't print this message to the console if the operation was done 25730 * to a non-global zone. 25731 */ 25732 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 25733 logflags |= SL_CONSOLE; 25734 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 25735 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 25736 if (err == 0 && count == 0) 25737 err = ENOENT; 25738 return (err); 25739 } 25740 25741 /* 25742 * Process the TCP_IOC_ABORT_CONN ioctl request. 25743 */ 25744 static void 25745 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 25746 { 25747 int err; 25748 IOCP iocp; 25749 MBLKP mp1; 25750 sa_family_t laf, raf; 25751 tcp_ioc_abort_conn_t *acp; 25752 zone_t *zptr; 25753 conn_t *connp = Q_TO_CONN(q); 25754 zoneid_t zoneid = connp->conn_zoneid; 25755 tcp_t *tcp = connp->conn_tcp; 25756 tcp_stack_t *tcps = tcp->tcp_tcps; 25757 25758 iocp = (IOCP)mp->b_rptr; 25759 25760 if ((mp1 = mp->b_cont) == NULL || 25761 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 25762 err = EINVAL; 25763 goto out; 25764 } 25765 25766 /* check permissions */ 25767 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 25768 err = EPERM; 25769 goto out; 25770 } 25771 25772 if (mp1->b_cont != NULL) { 25773 freemsg(mp1->b_cont); 25774 mp1->b_cont = NULL; 25775 } 25776 25777 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 25778 laf = acp->ac_local.ss_family; 25779 raf = acp->ac_remote.ss_family; 25780 25781 /* check that a zone with the supplied zoneid exists */ 25782 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 25783 zptr = zone_find_by_id(zoneid); 25784 if (zptr != NULL) { 25785 zone_rele(zptr); 25786 } else { 25787 err = EINVAL; 25788 goto out; 25789 } 25790 } 25791 25792 /* 25793 * For exclusive stacks we set the zoneid to zero 25794 * to make TCP operate as if in the global zone. 25795 */ 25796 if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID) 25797 acp->ac_zoneid = GLOBAL_ZONEID; 25798 25799 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 25800 acp->ac_start > acp->ac_end || laf != raf || 25801 (laf != AF_INET && laf != AF_INET6)) { 25802 err = EINVAL; 25803 goto out; 25804 } 25805 25806 tcp_ioctl_abort_dump(acp); 25807 err = tcp_ioctl_abort(acp, tcps); 25808 25809 out: 25810 if (mp1 != NULL) { 25811 freemsg(mp1); 25812 mp->b_cont = NULL; 25813 } 25814 25815 if (err != 0) 25816 miocnak(q, mp, 0, err); 25817 else 25818 miocack(q, mp, 0, 0); 25819 } 25820 25821 /* 25822 * tcp_time_wait_processing() handles processing of incoming packets when 25823 * the tcp is in the TIME_WAIT state. 25824 * A TIME_WAIT tcp that has an associated open TCP stream is never put 25825 * on the time wait list. 25826 */ 25827 void 25828 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 25829 uint32_t seg_ack, int seg_len, tcph_t *tcph) 25830 { 25831 int32_t bytes_acked; 25832 int32_t gap; 25833 int32_t rgap; 25834 tcp_opt_t tcpopt; 25835 uint_t flags; 25836 uint32_t new_swnd = 0; 25837 conn_t *connp; 25838 tcp_stack_t *tcps = tcp->tcp_tcps; 25839 25840 BUMP_LOCAL(tcp->tcp_ibsegs); 25841 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 25842 25843 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 25844 new_swnd = BE16_TO_U16(tcph->th_win) << 25845 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 25846 if (tcp->tcp_snd_ts_ok) { 25847 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 25848 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25849 tcp->tcp_rnxt, TH_ACK); 25850 goto done; 25851 } 25852 } 25853 gap = seg_seq - tcp->tcp_rnxt; 25854 rgap = tcp->tcp_rwnd - (gap + seg_len); 25855 if (gap < 0) { 25856 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 25857 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 25858 (seg_len > -gap ? -gap : seg_len)); 25859 seg_len += gap; 25860 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 25861 if (flags & TH_RST) { 25862 goto done; 25863 } 25864 if ((flags & TH_FIN) && seg_len == -1) { 25865 /* 25866 * When TCP receives a duplicate FIN in 25867 * TIME_WAIT state, restart the 2 MSL timer. 25868 * See page 73 in RFC 793. Make sure this TCP 25869 * is already on the TIME_WAIT list. If not, 25870 * just restart the timer. 25871 */ 25872 if (TCP_IS_DETACHED(tcp)) { 25873 if (tcp_time_wait_remove(tcp, NULL) == 25874 B_TRUE) { 25875 tcp_time_wait_append(tcp); 25876 TCP_DBGSTAT(tcps, 25877 tcp_rput_time_wait); 25878 } 25879 } else { 25880 ASSERT(tcp != NULL); 25881 TCP_TIMER_RESTART(tcp, 25882 tcps->tcps_time_wait_interval); 25883 } 25884 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25885 tcp->tcp_rnxt, TH_ACK); 25886 goto done; 25887 } 25888 flags |= TH_ACK_NEEDED; 25889 seg_len = 0; 25890 goto process_ack; 25891 } 25892 25893 /* Fix seg_seq, and chew the gap off the front. */ 25894 seg_seq = tcp->tcp_rnxt; 25895 } 25896 25897 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 25898 /* 25899 * Make sure that when we accept the connection, pick 25900 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 25901 * old connection. 25902 * 25903 * The next ISS generated is equal to tcp_iss_incr_extra 25904 * + ISS_INCR/2 + other components depending on the 25905 * value of tcp_strong_iss. We pre-calculate the new 25906 * ISS here and compare with tcp_snxt to determine if 25907 * we need to make adjustment to tcp_iss_incr_extra. 25908 * 25909 * The above calculation is ugly and is a 25910 * waste of CPU cycles... 25911 */ 25912 uint32_t new_iss = tcps->tcps_iss_incr_extra; 25913 int32_t adj; 25914 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25915 25916 switch (tcps->tcps_strong_iss) { 25917 case 2: { 25918 /* Add time and MD5 components. */ 25919 uint32_t answer[4]; 25920 struct { 25921 uint32_t ports; 25922 in6_addr_t src; 25923 in6_addr_t dst; 25924 } arg; 25925 MD5_CTX context; 25926 25927 mutex_enter(&tcps->tcps_iss_key_lock); 25928 context = tcps->tcps_iss_key; 25929 mutex_exit(&tcps->tcps_iss_key_lock); 25930 arg.ports = tcp->tcp_ports; 25931 /* We use MAPPED addresses in tcp_iss_init */ 25932 arg.src = tcp->tcp_ip_src_v6; 25933 if (tcp->tcp_ipversion == IPV4_VERSION) { 25934 IN6_IPADDR_TO_V4MAPPED( 25935 tcp->tcp_ipha->ipha_dst, 25936 &arg.dst); 25937 } else { 25938 arg.dst = 25939 tcp->tcp_ip6h->ip6_dst; 25940 } 25941 MD5Update(&context, (uchar_t *)&arg, 25942 sizeof (arg)); 25943 MD5Final((uchar_t *)answer, &context); 25944 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 25945 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 25946 break; 25947 } 25948 case 1: 25949 /* Add time component and min random (i.e. 1). */ 25950 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 25951 break; 25952 default: 25953 /* Add only time component. */ 25954 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 25955 break; 25956 } 25957 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 25958 /* 25959 * New ISS not guaranteed to be ISS_INCR/2 25960 * ahead of the current tcp_snxt, so add the 25961 * difference to tcp_iss_incr_extra. 25962 */ 25963 tcps->tcps_iss_incr_extra += adj; 25964 } 25965 /* 25966 * If tcp_clean_death() can not perform the task now, 25967 * drop the SYN packet and let the other side re-xmit. 25968 * Otherwise pass the SYN packet back in, since the 25969 * old tcp state has been cleaned up or freed. 25970 */ 25971 if (tcp_clean_death(tcp, 0, 27) == -1) 25972 goto done; 25973 /* 25974 * We will come back to tcp_rput_data 25975 * on the global queue. Packets destined 25976 * for the global queue will be checked 25977 * with global policy. But the policy for 25978 * this packet has already been checked as 25979 * this was destined for the detached 25980 * connection. We need to bypass policy 25981 * check this time by attaching a dummy 25982 * ipsec_in with ipsec_in_dont_check set. 25983 */ 25984 connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst); 25985 if (connp != NULL) { 25986 TCP_STAT(tcps, tcp_time_wait_syn_success); 25987 tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp); 25988 return; 25989 } 25990 goto done; 25991 } 25992 25993 /* 25994 * rgap is the amount of stuff received out of window. A negative 25995 * value is the amount out of window. 25996 */ 25997 if (rgap < 0) { 25998 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 25999 UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap); 26000 /* Fix seg_len and make sure there is something left. */ 26001 seg_len += rgap; 26002 if (seg_len <= 0) { 26003 if (flags & TH_RST) { 26004 goto done; 26005 } 26006 flags |= TH_ACK_NEEDED; 26007 seg_len = 0; 26008 goto process_ack; 26009 } 26010 } 26011 /* 26012 * Check whether we can update tcp_ts_recent. This test is 26013 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 26014 * Extensions for High Performance: An Update", Internet Draft. 26015 */ 26016 if (tcp->tcp_snd_ts_ok && 26017 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 26018 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 26019 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 26020 tcp->tcp_last_rcv_lbolt = lbolt64; 26021 } 26022 26023 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 26024 /* Always ack out of order packets */ 26025 flags |= TH_ACK_NEEDED; 26026 seg_len = 0; 26027 } else if (seg_len > 0) { 26028 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 26029 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 26030 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 26031 } 26032 if (flags & TH_RST) { 26033 (void) tcp_clean_death(tcp, 0, 28); 26034 goto done; 26035 } 26036 if (flags & TH_SYN) { 26037 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 26038 TH_RST|TH_ACK); 26039 /* 26040 * Do not delete the TCP structure if it is in 26041 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 26042 */ 26043 goto done; 26044 } 26045 process_ack: 26046 if (flags & TH_ACK) { 26047 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 26048 if (bytes_acked <= 0) { 26049 if (bytes_acked == 0 && seg_len == 0 && 26050 new_swnd == tcp->tcp_swnd) 26051 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 26052 } else { 26053 /* Acks something not sent */ 26054 flags |= TH_ACK_NEEDED; 26055 } 26056 } 26057 if (flags & TH_ACK_NEEDED) { 26058 /* 26059 * Time to send an ack for some reason. 26060 */ 26061 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 26062 tcp->tcp_rnxt, TH_ACK); 26063 } 26064 done: 26065 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 26066 DB_CKSUMSTART(mp) = 0; 26067 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 26068 TCP_STAT(tcps, tcp_time_wait_syn_fail); 26069 } 26070 freemsg(mp); 26071 } 26072 26073 /* 26074 * Allocate a T_SVR4_OPTMGMT_REQ. 26075 * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so 26076 * that tcp_rput_other can drop the acks. 26077 */ 26078 static mblk_t * 26079 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen) 26080 { 26081 mblk_t *mp; 26082 struct T_optmgmt_req *tor; 26083 struct opthdr *oh; 26084 uint_t size; 26085 char *optptr; 26086 26087 size = sizeof (*tor) + sizeof (*oh) + optlen; 26088 mp = allocb(size, BPRI_MED); 26089 if (mp == NULL) 26090 return (NULL); 26091 26092 mp->b_wptr += size; 26093 mp->b_datap->db_type = M_PROTO; 26094 tor = (struct T_optmgmt_req *)mp->b_rptr; 26095 tor->PRIM_type = T_SVR4_OPTMGMT_REQ; 26096 tor->MGMT_flags = T_NEGOTIATE; 26097 tor->OPT_length = sizeof (*oh) + optlen; 26098 tor->OPT_offset = (t_scalar_t)sizeof (*tor); 26099 26100 oh = (struct opthdr *)&tor[1]; 26101 oh->level = level; 26102 oh->name = cmd; 26103 oh->len = optlen; 26104 if (optlen != 0) { 26105 optptr = (char *)&oh[1]; 26106 bcopy(opt, optptr, optlen); 26107 } 26108 return (mp); 26109 } 26110 26111 /* 26112 * TCP Timers Implementation. 26113 */ 26114 timeout_id_t 26115 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 26116 { 26117 mblk_t *mp; 26118 tcp_timer_t *tcpt; 26119 tcp_t *tcp = connp->conn_tcp; 26120 tcp_stack_t *tcps = tcp->tcp_tcps; 26121 26122 ASSERT(connp->conn_sqp != NULL); 26123 26124 TCP_DBGSTAT(tcps, tcp_timeout_calls); 26125 26126 if (tcp->tcp_timercache == NULL) { 26127 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 26128 } else { 26129 TCP_DBGSTAT(tcps, tcp_timeout_cached_alloc); 26130 mp = tcp->tcp_timercache; 26131 tcp->tcp_timercache = mp->b_next; 26132 mp->b_next = NULL; 26133 ASSERT(mp->b_wptr == NULL); 26134 } 26135 26136 CONN_INC_REF(connp); 26137 tcpt = (tcp_timer_t *)mp->b_rptr; 26138 tcpt->connp = connp; 26139 tcpt->tcpt_proc = f; 26140 tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim); 26141 return ((timeout_id_t)mp); 26142 } 26143 26144 static void 26145 tcp_timer_callback(void *arg) 26146 { 26147 mblk_t *mp = (mblk_t *)arg; 26148 tcp_timer_t *tcpt; 26149 conn_t *connp; 26150 26151 tcpt = (tcp_timer_t *)mp->b_rptr; 26152 connp = tcpt->connp; 26153 squeue_fill(connp->conn_sqp, mp, 26154 tcp_timer_handler, connp, SQTAG_TCP_TIMER); 26155 } 26156 26157 static void 26158 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2) 26159 { 26160 tcp_timer_t *tcpt; 26161 conn_t *connp = (conn_t *)arg; 26162 tcp_t *tcp = connp->conn_tcp; 26163 26164 tcpt = (tcp_timer_t *)mp->b_rptr; 26165 ASSERT(connp == tcpt->connp); 26166 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 26167 26168 /* 26169 * If the TCP has reached the closed state, don't proceed any 26170 * further. This TCP logically does not exist on the system. 26171 * tcpt_proc could for example access queues, that have already 26172 * been qprocoff'ed off. Also see comments at the start of tcp_input 26173 */ 26174 if (tcp->tcp_state != TCPS_CLOSED) { 26175 (*tcpt->tcpt_proc)(connp); 26176 } else { 26177 tcp->tcp_timer_tid = 0; 26178 } 26179 tcp_timer_free(connp->conn_tcp, mp); 26180 } 26181 26182 /* 26183 * There is potential race with untimeout and the handler firing at the same 26184 * time. The mblock may be freed by the handler while we are trying to use 26185 * it. But since both should execute on the same squeue, this race should not 26186 * occur. 26187 */ 26188 clock_t 26189 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 26190 { 26191 mblk_t *mp = (mblk_t *)id; 26192 tcp_timer_t *tcpt; 26193 clock_t delta; 26194 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 26195 26196 TCP_DBGSTAT(tcps, tcp_timeout_cancel_reqs); 26197 26198 if (mp == NULL) 26199 return (-1); 26200 26201 tcpt = (tcp_timer_t *)mp->b_rptr; 26202 ASSERT(tcpt->connp == connp); 26203 26204 delta = untimeout(tcpt->tcpt_tid); 26205 26206 if (delta >= 0) { 26207 TCP_DBGSTAT(tcps, tcp_timeout_canceled); 26208 tcp_timer_free(connp->conn_tcp, mp); 26209 CONN_DEC_REF(connp); 26210 } 26211 26212 return (delta); 26213 } 26214 26215 /* 26216 * Allocate space for the timer event. The allocation looks like mblk, but it is 26217 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 26218 * 26219 * Dealing with failures: If we can't allocate from the timer cache we try 26220 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 26221 * points to b_rptr. 26222 * If we can't allocate anything using allocb_tryhard(), we perform a last 26223 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 26224 * save the actual allocation size in b_datap. 26225 */ 26226 mblk_t * 26227 tcp_timermp_alloc(int kmflags) 26228 { 26229 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 26230 kmflags & ~KM_PANIC); 26231 26232 if (mp != NULL) { 26233 mp->b_next = mp->b_prev = NULL; 26234 mp->b_rptr = (uchar_t *)(&mp[1]); 26235 mp->b_wptr = NULL; 26236 mp->b_datap = NULL; 26237 mp->b_queue = NULL; 26238 mp->b_cont = NULL; 26239 } else if (kmflags & KM_PANIC) { 26240 /* 26241 * Failed to allocate memory for the timer. Try allocating from 26242 * dblock caches. 26243 */ 26244 /* ipclassifier calls this from a constructor - hence no tcps */ 26245 TCP_G_STAT(tcp_timermp_allocfail); 26246 mp = allocb_tryhard(sizeof (tcp_timer_t)); 26247 if (mp == NULL) { 26248 size_t size = 0; 26249 /* 26250 * Memory is really low. Try tryhard allocation. 26251 * 26252 * ipclassifier calls this from a constructor - 26253 * hence no tcps 26254 */ 26255 TCP_G_STAT(tcp_timermp_allocdblfail); 26256 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 26257 sizeof (tcp_timer_t), &size, kmflags); 26258 mp->b_rptr = (uchar_t *)(&mp[1]); 26259 mp->b_next = mp->b_prev = NULL; 26260 mp->b_wptr = (uchar_t *)-1; 26261 mp->b_datap = (dblk_t *)size; 26262 mp->b_queue = NULL; 26263 mp->b_cont = NULL; 26264 } 26265 ASSERT(mp->b_wptr != NULL); 26266 } 26267 /* ipclassifier calls this from a constructor - hence no tcps */ 26268 TCP_G_DBGSTAT(tcp_timermp_alloced); 26269 26270 return (mp); 26271 } 26272 26273 /* 26274 * Free per-tcp timer cache. 26275 * It can only contain entries from tcp_timercache. 26276 */ 26277 void 26278 tcp_timermp_free(tcp_t *tcp) 26279 { 26280 mblk_t *mp; 26281 26282 while ((mp = tcp->tcp_timercache) != NULL) { 26283 ASSERT(mp->b_wptr == NULL); 26284 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 26285 kmem_cache_free(tcp_timercache, mp); 26286 } 26287 } 26288 26289 /* 26290 * Free timer event. Put it on the per-tcp timer cache if there is not too many 26291 * events there already (currently at most two events are cached). 26292 * If the event is not allocated from the timer cache, free it right away. 26293 */ 26294 static void 26295 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 26296 { 26297 mblk_t *mp1 = tcp->tcp_timercache; 26298 tcp_stack_t *tcps = tcp->tcp_tcps; 26299 26300 if (mp->b_wptr != NULL) { 26301 /* 26302 * This allocation is not from a timer cache, free it right 26303 * away. 26304 */ 26305 if (mp->b_wptr != (uchar_t *)-1) 26306 freeb(mp); 26307 else 26308 kmem_free(mp, (size_t)mp->b_datap); 26309 } else if (mp1 == NULL || mp1->b_next == NULL) { 26310 /* Cache this timer block for future allocations */ 26311 mp->b_rptr = (uchar_t *)(&mp[1]); 26312 mp->b_next = mp1; 26313 tcp->tcp_timercache = mp; 26314 } else { 26315 kmem_cache_free(tcp_timercache, mp); 26316 TCP_DBGSTAT(tcps, tcp_timermp_freed); 26317 } 26318 } 26319 26320 /* 26321 * End of TCP Timers implementation. 26322 */ 26323 26324 /* 26325 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 26326 * on the specified backing STREAMS q. Note, the caller may make the 26327 * decision to call based on the tcp_t.tcp_flow_stopped value which 26328 * when check outside the q's lock is only an advisory check ... 26329 */ 26330 26331 void 26332 tcp_setqfull(tcp_t *tcp) 26333 { 26334 queue_t *q = tcp->tcp_wq; 26335 tcp_stack_t *tcps = tcp->tcp_tcps; 26336 26337 if (!(q->q_flag & QFULL)) { 26338 mutex_enter(QLOCK(q)); 26339 if (!(q->q_flag & QFULL)) { 26340 /* still need to set QFULL */ 26341 q->q_flag |= QFULL; 26342 tcp->tcp_flow_stopped = B_TRUE; 26343 mutex_exit(QLOCK(q)); 26344 TCP_STAT(tcps, tcp_flwctl_on); 26345 } else { 26346 mutex_exit(QLOCK(q)); 26347 } 26348 } 26349 } 26350 26351 void 26352 tcp_clrqfull(tcp_t *tcp) 26353 { 26354 queue_t *q = tcp->tcp_wq; 26355 26356 if (q->q_flag & QFULL) { 26357 mutex_enter(QLOCK(q)); 26358 if (q->q_flag & QFULL) { 26359 q->q_flag &= ~QFULL; 26360 tcp->tcp_flow_stopped = B_FALSE; 26361 mutex_exit(QLOCK(q)); 26362 if (q->q_flag & QWANTW) 26363 qbackenable(q, 0); 26364 } else { 26365 mutex_exit(QLOCK(q)); 26366 } 26367 } 26368 } 26369 26370 26371 /* 26372 * kstats related to squeues i.e. not per IP instance 26373 */ 26374 static void * 26375 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp) 26376 { 26377 kstat_t *ksp; 26378 26379 tcp_g_stat_t template = { 26380 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 26381 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 26382 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 26383 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 26384 }; 26385 26386 ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net", 26387 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 26388 KSTAT_FLAG_VIRTUAL); 26389 26390 if (ksp == NULL) 26391 return (NULL); 26392 26393 bcopy(&template, tcp_g_statp, sizeof (template)); 26394 ksp->ks_data = (void *)tcp_g_statp; 26395 26396 kstat_install(ksp); 26397 return (ksp); 26398 } 26399 26400 static void 26401 tcp_g_kstat_fini(kstat_t *ksp) 26402 { 26403 if (ksp != NULL) { 26404 kstat_delete(ksp); 26405 } 26406 } 26407 26408 26409 static void * 26410 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp) 26411 { 26412 kstat_t *ksp; 26413 26414 tcp_stat_t template = { 26415 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 26416 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 26417 { "tcp_time_wait_success", KSTAT_DATA_UINT64 }, 26418 { "tcp_time_wait_fail", KSTAT_DATA_UINT64 }, 26419 { "tcp_reinput_syn", KSTAT_DATA_UINT64 }, 26420 { "tcp_ip_output", KSTAT_DATA_UINT64 }, 26421 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 26422 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 26423 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 26424 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 26425 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 26426 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 26427 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 26428 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 26429 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 26430 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 26431 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 26432 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 26433 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 26434 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 26435 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 26436 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 26437 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 26438 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 26439 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 26440 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 26441 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 26442 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 26443 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 26444 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 26445 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 26446 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 26447 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 26448 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 26449 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 26450 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 26451 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 26452 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 26453 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 26454 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 26455 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 26456 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 26457 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 26458 { "tcp_ire_null1", KSTAT_DATA_UINT64 }, 26459 { "tcp_ire_null", KSTAT_DATA_UINT64 }, 26460 { "tcp_ip_send", KSTAT_DATA_UINT64 }, 26461 { "tcp_ip_ire_send", KSTAT_DATA_UINT64 }, 26462 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 26463 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 26464 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 26465 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 26466 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 26467 { "tcp_out_sw_cksum", KSTAT_DATA_UINT64 }, 26468 { "tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 26469 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 26470 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 26471 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 26472 { "tcp_zcopy_disable", KSTAT_DATA_UINT64 }, 26473 { "tcp_mdt_pkt_out", KSTAT_DATA_UINT64 }, 26474 { "tcp_mdt_pkt_out_v4", KSTAT_DATA_UINT64 }, 26475 { "tcp_mdt_pkt_out_v6", KSTAT_DATA_UINT64 }, 26476 { "tcp_mdt_discarded", KSTAT_DATA_UINT64 }, 26477 { "tcp_mdt_conn_halted1", KSTAT_DATA_UINT64 }, 26478 { "tcp_mdt_conn_halted2", KSTAT_DATA_UINT64 }, 26479 { "tcp_mdt_conn_halted3", KSTAT_DATA_UINT64 }, 26480 { "tcp_mdt_conn_resumed1", KSTAT_DATA_UINT64 }, 26481 { "tcp_mdt_conn_resumed2", KSTAT_DATA_UINT64 }, 26482 { "tcp_mdt_legacy_small", KSTAT_DATA_UINT64 }, 26483 { "tcp_mdt_legacy_all", KSTAT_DATA_UINT64 }, 26484 { "tcp_mdt_legacy_ret", KSTAT_DATA_UINT64 }, 26485 { "tcp_mdt_allocfail", KSTAT_DATA_UINT64 }, 26486 { "tcp_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 26487 { "tcp_mdt_allocd", KSTAT_DATA_UINT64 }, 26488 { "tcp_mdt_linked", KSTAT_DATA_UINT64 }, 26489 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 26490 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 26491 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 26492 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 26493 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 26494 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 26495 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 26496 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 26497 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 26498 { "tcp_fusion_rrw_plugged", KSTAT_DATA_UINT64 }, 26499 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 26500 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 26501 { "tcp_lso_enabled", KSTAT_DATA_UINT64 }, 26502 { "tcp_lso_disabled", KSTAT_DATA_UINT64 }, 26503 { "tcp_lso_times", KSTAT_DATA_UINT64 }, 26504 { "tcp_lso_pkt_out", KSTAT_DATA_UINT64 }, 26505 }; 26506 26507 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net", 26508 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 26509 KSTAT_FLAG_VIRTUAL, stackid); 26510 26511 if (ksp == NULL) 26512 return (NULL); 26513 26514 bcopy(&template, tcps_statisticsp, sizeof (template)); 26515 ksp->ks_data = (void *)tcps_statisticsp; 26516 ksp->ks_private = (void *)(uintptr_t)stackid; 26517 26518 kstat_install(ksp); 26519 return (ksp); 26520 } 26521 26522 static void 26523 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 26524 { 26525 if (ksp != NULL) { 26526 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 26527 kstat_delete_netstack(ksp, stackid); 26528 } 26529 } 26530 26531 /* 26532 * TCP Kstats implementation 26533 */ 26534 static void * 26535 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps) 26536 { 26537 kstat_t *ksp; 26538 26539 tcp_named_kstat_t template = { 26540 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 26541 { "rtoMin", KSTAT_DATA_INT32, 0 }, 26542 { "rtoMax", KSTAT_DATA_INT32, 0 }, 26543 { "maxConn", KSTAT_DATA_INT32, 0 }, 26544 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 26545 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 26546 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 26547 { "estabResets", KSTAT_DATA_UINT32, 0 }, 26548 { "currEstab", KSTAT_DATA_UINT32, 0 }, 26549 { "inSegs", KSTAT_DATA_UINT64, 0 }, 26550 { "outSegs", KSTAT_DATA_UINT64, 0 }, 26551 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 26552 { "connTableSize", KSTAT_DATA_INT32, 0 }, 26553 { "outRsts", KSTAT_DATA_UINT32, 0 }, 26554 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 26555 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 26556 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 26557 { "outAck", KSTAT_DATA_UINT32, 0 }, 26558 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 26559 { "outUrg", KSTAT_DATA_UINT32, 0 }, 26560 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 26561 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 26562 { "outControl", KSTAT_DATA_UINT32, 0 }, 26563 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 26564 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 26565 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 26566 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 26567 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 26568 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 26569 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 26570 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 26571 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 26572 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 26573 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 26574 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 26575 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 26576 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 26577 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 26578 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 26579 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 26580 { "inClosed", KSTAT_DATA_UINT32, 0 }, 26581 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 26582 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 26583 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 26584 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 26585 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 26586 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 26587 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 26588 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 26589 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 26590 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 26591 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 26592 { "connTableSize6", KSTAT_DATA_INT32, 0 } 26593 }; 26594 26595 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2", 26596 KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid); 26597 26598 if (ksp == NULL) 26599 return (NULL); 26600 26601 template.rtoAlgorithm.value.ui32 = 4; 26602 template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min; 26603 template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max; 26604 template.maxConn.value.i32 = -1; 26605 26606 bcopy(&template, ksp->ks_data, sizeof (template)); 26607 ksp->ks_update = tcp_kstat_update; 26608 ksp->ks_private = (void *)(uintptr_t)stackid; 26609 26610 kstat_install(ksp); 26611 return (ksp); 26612 } 26613 26614 static void 26615 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 26616 { 26617 if (ksp != NULL) { 26618 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 26619 kstat_delete_netstack(ksp, stackid); 26620 } 26621 } 26622 26623 static int 26624 tcp_kstat_update(kstat_t *kp, int rw) 26625 { 26626 tcp_named_kstat_t *tcpkp; 26627 tcp_t *tcp; 26628 connf_t *connfp; 26629 conn_t *connp; 26630 int i; 26631 netstackid_t stackid = (netstackid_t)(uintptr_t)kp->ks_private; 26632 netstack_t *ns; 26633 tcp_stack_t *tcps; 26634 ip_stack_t *ipst; 26635 26636 if ((kp == NULL) || (kp->ks_data == NULL)) 26637 return (EIO); 26638 26639 if (rw == KSTAT_WRITE) 26640 return (EACCES); 26641 26642 ns = netstack_find_by_stackid(stackid); 26643 if (ns == NULL) 26644 return (-1); 26645 tcps = ns->netstack_tcp; 26646 if (tcps == NULL) { 26647 netstack_rele(ns); 26648 return (-1); 26649 } 26650 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 26651 26652 tcpkp->currEstab.value.ui32 = 0; 26653 26654 ipst = ns->netstack_ip; 26655 26656 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 26657 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 26658 connp = NULL; 26659 while ((connp = 26660 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 26661 tcp = connp->conn_tcp; 26662 switch (tcp_snmp_state(tcp)) { 26663 case MIB2_TCP_established: 26664 case MIB2_TCP_closeWait: 26665 tcpkp->currEstab.value.ui32++; 26666 break; 26667 } 26668 } 26669 } 26670 26671 tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens; 26672 tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens; 26673 tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails; 26674 tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets; 26675 tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs; 26676 tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs; 26677 tcpkp->retransSegs.value.ui32 = tcps->tcps_mib.tcpRetransSegs; 26678 tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize; 26679 tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts; 26680 tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs; 26681 tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes; 26682 tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes; 26683 tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck; 26684 tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed; 26685 tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg; 26686 tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate; 26687 tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe; 26688 tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl; 26689 tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans; 26690 tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs; 26691 tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes; 26692 tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck; 26693 tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent; 26694 tcpkp->inDataInorderSegs.value.ui32 = 26695 tcps->tcps_mib.tcpInDataInorderSegs; 26696 tcpkp->inDataInorderBytes.value.ui32 = 26697 tcps->tcps_mib.tcpInDataInorderBytes; 26698 tcpkp->inDataUnorderSegs.value.ui32 = 26699 tcps->tcps_mib.tcpInDataUnorderSegs; 26700 tcpkp->inDataUnorderBytes.value.ui32 = 26701 tcps->tcps_mib.tcpInDataUnorderBytes; 26702 tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs; 26703 tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes; 26704 tcpkp->inDataPartDupSegs.value.ui32 = 26705 tcps->tcps_mib.tcpInDataPartDupSegs; 26706 tcpkp->inDataPartDupBytes.value.ui32 = 26707 tcps->tcps_mib.tcpInDataPartDupBytes; 26708 tcpkp->inDataPastWinSegs.value.ui32 = 26709 tcps->tcps_mib.tcpInDataPastWinSegs; 26710 tcpkp->inDataPastWinBytes.value.ui32 = 26711 tcps->tcps_mib.tcpInDataPastWinBytes; 26712 tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe; 26713 tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate; 26714 tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed; 26715 tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate; 26716 tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate; 26717 tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans; 26718 tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop; 26719 tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive; 26720 tcpkp->timKeepaliveProbe.value.ui32 = 26721 tcps->tcps_mib.tcpTimKeepaliveProbe; 26722 tcpkp->timKeepaliveDrop.value.ui32 = 26723 tcps->tcps_mib.tcpTimKeepaliveDrop; 26724 tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop; 26725 tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0; 26726 tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop; 26727 tcpkp->outSackRetransSegs.value.ui32 = 26728 tcps->tcps_mib.tcpOutSackRetransSegs; 26729 tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize; 26730 26731 netstack_rele(ns); 26732 return (0); 26733 } 26734 26735 void 26736 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp) 26737 { 26738 uint16_t hdr_len; 26739 ipha_t *ipha; 26740 uint8_t *nexthdrp; 26741 tcph_t *tcph; 26742 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 26743 26744 /* Already has an eager */ 26745 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 26746 TCP_STAT(tcps, tcp_reinput_syn); 26747 squeue_enter(connp->conn_sqp, mp, connp->conn_recv, 26748 connp, SQTAG_TCP_REINPUT_EAGER); 26749 return; 26750 } 26751 26752 switch (IPH_HDR_VERSION(mp->b_rptr)) { 26753 case IPV4_VERSION: 26754 ipha = (ipha_t *)mp->b_rptr; 26755 hdr_len = IPH_HDR_LENGTH(ipha); 26756 break; 26757 case IPV6_VERSION: 26758 if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, 26759 &hdr_len, &nexthdrp)) { 26760 CONN_DEC_REF(connp); 26761 freemsg(mp); 26762 return; 26763 } 26764 break; 26765 } 26766 26767 tcph = (tcph_t *)&mp->b_rptr[hdr_len]; 26768 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 26769 mp->b_datap->db_struioflag |= STRUIO_EAGER; 26770 DB_CKSUMSTART(mp) = (intptr_t)sqp; 26771 } 26772 26773 squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp, 26774 SQTAG_TCP_REINPUT); 26775 } 26776 26777 static squeue_func_t 26778 tcp_squeue_switch(int val) 26779 { 26780 squeue_func_t rval = squeue_fill; 26781 26782 switch (val) { 26783 case 1: 26784 rval = squeue_enter_nodrain; 26785 break; 26786 case 2: 26787 rval = squeue_enter; 26788 break; 26789 default: 26790 break; 26791 } 26792 return (rval); 26793 } 26794 26795 /* 26796 * This is called once for each squeue - globally for all stack 26797 * instances. 26798 */ 26799 static void 26800 tcp_squeue_add(squeue_t *sqp) 26801 { 26802 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 26803 sizeof (tcp_squeue_priv_t), KM_SLEEP); 26804 26805 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 26806 tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector, 26807 sqp, TCP_TIME_WAIT_DELAY); 26808 if (tcp_free_list_max_cnt == 0) { 26809 int tcp_ncpus = ((boot_max_ncpus == -1) ? 26810 max_ncpus : boot_max_ncpus); 26811 26812 /* 26813 * Limit number of entries to 1% of availble memory / tcp_ncpus 26814 */ 26815 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 26816 (tcp_ncpus * sizeof (tcp_t) * 100); 26817 } 26818 tcp_time_wait->tcp_free_list_cnt = 0; 26819 } 26820