xref: /illumos-gate/usr/src/uts/common/inet/tcp/tcp.c (revision 3e95bd4ab92abca814bd28e854607d1975c7dc88)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 /* Copyright (c) 1990 Mentat Inc. */
26 
27 #include <sys/types.h>
28 #include <sys/stream.h>
29 #include <sys/strsun.h>
30 #include <sys/strsubr.h>
31 #include <sys/stropts.h>
32 #include <sys/strlog.h>
33 #define	_SUN_TPI_VERSION 2
34 #include <sys/tihdr.h>
35 #include <sys/timod.h>
36 #include <sys/ddi.h>
37 #include <sys/sunddi.h>
38 #include <sys/suntpi.h>
39 #include <sys/xti_inet.h>
40 #include <sys/cmn_err.h>
41 #include <sys/debug.h>
42 #include <sys/sdt.h>
43 #include <sys/vtrace.h>
44 #include <sys/kmem.h>
45 #include <sys/ethernet.h>
46 #include <sys/cpuvar.h>
47 #include <sys/dlpi.h>
48 #include <sys/pattr.h>
49 #include <sys/policy.h>
50 #include <sys/priv.h>
51 #include <sys/zone.h>
52 #include <sys/sunldi.h>
53 
54 #include <sys/errno.h>
55 #include <sys/signal.h>
56 #include <sys/socket.h>
57 #include <sys/socketvar.h>
58 #include <sys/sockio.h>
59 #include <sys/isa_defs.h>
60 #include <sys/md5.h>
61 #include <sys/random.h>
62 #include <sys/uio.h>
63 #include <sys/systm.h>
64 #include <netinet/in.h>
65 #include <netinet/tcp.h>
66 #include <netinet/ip6.h>
67 #include <netinet/icmp6.h>
68 #include <net/if.h>
69 #include <net/route.h>
70 #include <inet/ipsec_impl.h>
71 
72 #include <inet/common.h>
73 #include <inet/ip.h>
74 #include <inet/ip_impl.h>
75 #include <inet/ip6.h>
76 #include <inet/ip_ndp.h>
77 #include <inet/proto_set.h>
78 #include <inet/mib2.h>
79 #include <inet/optcom.h>
80 #include <inet/snmpcom.h>
81 #include <inet/kstatcom.h>
82 #include <inet/tcp.h>
83 #include <inet/tcp_impl.h>
84 #include <inet/tcp_cluster.h>
85 #include <inet/udp_impl.h>
86 #include <net/pfkeyv2.h>
87 #include <inet/ipdrop.h>
88 
89 #include <inet/ipclassifier.h>
90 #include <inet/ip_ire.h>
91 #include <inet/ip_ftable.h>
92 #include <inet/ip_if.h>
93 #include <inet/ipp_common.h>
94 #include <inet/ip_rts.h>
95 #include <inet/ip_netinfo.h>
96 #include <sys/squeue_impl.h>
97 #include <sys/squeue.h>
98 #include <inet/kssl/ksslapi.h>
99 #include <sys/tsol/label.h>
100 #include <sys/tsol/tnet.h>
101 #include <rpc/pmap_prot.h>
102 #include <sys/callo.h>
103 
104 /*
105  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
106  *
107  * (Read the detailed design doc in PSARC case directory)
108  *
109  * The entire tcp state is contained in tcp_t and conn_t structure
110  * which are allocated in tandem using ipcl_conn_create() and passing
111  * IPCL_TCPCONN as a flag. We use 'conn_ref' and 'conn_lock' to protect
112  * the references on the tcp_t. The tcp_t structure is never compressed
113  * and packets always land on the correct TCP perimeter from the time
114  * eager is created till the time tcp_t dies (as such the old mentat
115  * TCP global queue is not used for detached state and no IPSEC checking
116  * is required). The global queue is still allocated to send out resets
117  * for connection which have no listeners and IP directly calls
118  * tcp_xmit_listeners_reset() which does any policy check.
119  *
120  * Protection and Synchronisation mechanism:
121  *
122  * The tcp data structure does not use any kind of lock for protecting
123  * its state but instead uses 'squeues' for mutual exclusion from various
124  * read and write side threads. To access a tcp member, the thread should
125  * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS,
126  * or SQ_NODRAIN). Since the squeues allow a direct function call, caller
127  * can pass any tcp function having prototype of edesc_t as argument
128  * (different from traditional STREAMs model where packets come in only
129  * designated entry points). The list of functions that can be directly
130  * called via squeue are listed before the usual function prototype.
131  *
132  * Referencing:
133  *
134  * TCP is MT-Hot and we use a reference based scheme to make sure that the
135  * tcp structure doesn't disappear when its needed. When the application
136  * creates an outgoing connection or accepts an incoming connection, we
137  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
138  * The IP reference is just a symbolic reference since ip_tcpclose()
139  * looks at tcp structure after tcp_close_output() returns which could
140  * have dropped the last TCP reference. So as long as the connection is
141  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
142  * conn_t. The classifier puts its own reference when the connection is
143  * inserted in listen or connected hash. Anytime a thread needs to enter
144  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
145  * on write side or by doing a classify on read side and then puts a
146  * reference on the conn before doing squeue_enter/tryenter/fill. For
147  * read side, the classifier itself puts the reference under fanout lock
148  * to make sure that tcp can't disappear before it gets processed. The
149  * squeue will drop this reference automatically so the called function
150  * doesn't have to do a DEC_REF.
151  *
152  * Opening a new connection:
153  *
154  * The outgoing connection open is pretty simple. tcp_open() does the
155  * work in creating the conn/tcp structure and initializing it. The
156  * squeue assignment is done based on the CPU the application
157  * is running on. So for outbound connections, processing is always done
158  * on application CPU which might be different from the incoming CPU
159  * being interrupted by the NIC. An optimal way would be to figure out
160  * the NIC <-> CPU binding at listen time, and assign the outgoing
161  * connection to the squeue attached to the CPU that will be interrupted
162  * for incoming packets (we know the NIC based on the bind IP address).
163  * This might seem like a problem if more data is going out but the
164  * fact is that in most cases the transmit is ACK driven transmit where
165  * the outgoing data normally sits on TCP's xmit queue waiting to be
166  * transmitted.
167  *
168  * Accepting a connection:
169  *
170  * This is a more interesting case because of various races involved in
171  * establishing a eager in its own perimeter. Read the meta comment on
172  * top of tcp_input_listener(). But briefly, the squeue is picked by
173  * ip_fanout based on the ring or the sender (if loopback).
174  *
175  * Closing a connection:
176  *
177  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
178  * via squeue to do the close and mark the tcp as detached if the connection
179  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
180  * reference but tcp_close() drop IP's reference always. So if tcp was
181  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
182  * and 1 because it is in classifier's connected hash. This is the condition
183  * we use to determine that its OK to clean up the tcp outside of squeue
184  * when time wait expires (check the ref under fanout and conn_lock and
185  * if it is 2, remove it from fanout hash and kill it).
186  *
187  * Although close just drops the necessary references and marks the
188  * tcp_detached state, tcp_close needs to know the tcp_detached has been
189  * set (under squeue) before letting the STREAM go away (because a
190  * inbound packet might attempt to go up the STREAM while the close
191  * has happened and tcp_detached is not set). So a special lock and
192  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
193  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
194  * tcp_detached.
195  *
196  * Special provisions and fast paths:
197  *
198  * We make special provisions for sockfs by marking tcp_issocket
199  * whenever we have only sockfs on top of TCP. This allows us to skip
200  * putting the tcp in acceptor hash since a sockfs listener can never
201  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
202  * since eager has already been allocated and the accept now happens
203  * on acceptor STREAM. There is a big blob of comment on top of
204  * tcp_input_listener explaining the new accept. When socket is POP'd,
205  * sockfs sends us an ioctl to mark the fact and we go back to old
206  * behaviour. Once tcp_issocket is unset, its never set for the
207  * life of that connection.
208  *
209  * IPsec notes :
210  *
211  * Since a packet is always executed on the correct TCP perimeter
212  * all IPsec processing is defered to IP including checking new
213  * connections and setting IPSEC policies for new connection. The
214  * only exception is tcp_xmit_listeners_reset() which is called
215  * directly from IP and needs to policy check to see if TH_RST
216  * can be sent out.
217  */
218 
219 /*
220  * Values for squeue switch:
221  * 1: SQ_NODRAIN
222  * 2: SQ_PROCESS
223  * 3: SQ_FILL
224  */
225 int tcp_squeue_wput = 2;	/* /etc/systems */
226 int tcp_squeue_flag;
227 
228 /*
229  * To prevent memory hog, limit the number of entries in tcp_free_list
230  * to 1% of available memory / number of cpus
231  */
232 uint_t tcp_free_list_max_cnt = 0;
233 
234 #define	TCP_XMIT_LOWATER	4096
235 #define	TCP_XMIT_HIWATER	49152
236 #define	TCP_RECV_LOWATER	2048
237 #define	TCP_RECV_HIWATER	128000
238 
239 #define	TIDUSZ	4096	/* transport interface data unit size */
240 
241 /*
242  * Size of acceptor hash list.  It has to be a power of 2 for hashing.
243  */
244 #define	TCP_ACCEPTOR_FANOUT_SIZE		256
245 
246 #ifdef	_ILP32
247 #define	TCP_ACCEPTOR_HASH(accid)					\
248 		(((uint_t)(accid) >> 8) & (TCP_ACCEPTOR_FANOUT_SIZE - 1))
249 #else
250 #define	TCP_ACCEPTOR_HASH(accid)					\
251 		((uint_t)(accid) & (TCP_ACCEPTOR_FANOUT_SIZE - 1))
252 #endif	/* _ILP32 */
253 
254 /* Minimum number of connections per listener. */
255 static uint32_t tcp_min_conn_listener = 2;
256 
257 uint32_t tcp_early_abort = 30;
258 
259 /* TCP Timer control structure */
260 typedef struct tcpt_s {
261 	pfv_t	tcpt_pfv;	/* The routine we are to call */
262 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
263 } tcpt_t;
264 
265 /*
266  * Functions called directly via squeue having a prototype of edesc_t.
267  */
268 void		tcp_input_listener(void *arg, mblk_t *mp, void *arg2,
269     ip_recv_attr_t *ira);
270 void		tcp_input_data(void *arg, mblk_t *mp, void *arg2,
271     ip_recv_attr_t *ira);
272 static void	tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2,
273     ip_recv_attr_t *dummy);
274 
275 
276 /* Prototype for TCP functions */
277 static void	tcp_random_init(void);
278 int		tcp_random(void);
279 static int	tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp,
280 		    in_port_t dstport, uint_t srcid);
281 static int	tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp,
282 		    in_port_t dstport, uint32_t flowinfo,
283 		    uint_t srcid, uint32_t scope_id);
284 static void	tcp_iss_init(tcp_t *tcp);
285 static void	tcp_reinit(tcp_t *tcp);
286 static void	tcp_reinit_values(tcp_t *tcp);
287 
288 static void	tcp_wsrv(queue_t *q);
289 static void	tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa);
290 static void	tcp_update_zcopy(tcp_t *tcp);
291 static void	tcp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t,
292     ixa_notify_arg_t);
293 static void	*tcp_stack_init(netstackid_t stackid, netstack_t *ns);
294 static void	tcp_stack_fini(netstackid_t stackid, void *arg);
295 
296 static int	tcp_squeue_switch(int);
297 
298 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t);
299 static int	tcp_openv4(queue_t *, dev_t *, int, int, cred_t *);
300 static int	tcp_openv6(queue_t *, dev_t *, int, int, cred_t *);
301 
302 static void	tcp_squeue_add(squeue_t *);
303 
304 struct module_info tcp_rinfo =  {
305 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
306 };
307 
308 static struct module_info tcp_winfo =  {
309 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
310 };
311 
312 /*
313  * Entry points for TCP as a device. The normal case which supports
314  * the TCP functionality.
315  * We have separate open functions for the /dev/tcp and /dev/tcp6 devices.
316  */
317 struct qinit tcp_rinitv4 = {
318 	NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo
319 };
320 
321 struct qinit tcp_rinitv6 = {
322 	NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo
323 };
324 
325 struct qinit tcp_winit = {
326 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
327 };
328 
329 /* Initial entry point for TCP in socket mode. */
330 struct qinit tcp_sock_winit = {
331 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
332 };
333 
334 /* TCP entry point during fallback */
335 struct qinit tcp_fallback_sock_winit = {
336 	(pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo
337 };
338 
339 /*
340  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
341  * an accept. Avoid allocating data structures since eager has already
342  * been created.
343  */
344 struct qinit tcp_acceptor_rinit = {
345 	NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo
346 };
347 
348 struct qinit tcp_acceptor_winit = {
349 	(pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo
350 };
351 
352 /* For AF_INET aka /dev/tcp */
353 struct streamtab tcpinfov4 = {
354 	&tcp_rinitv4, &tcp_winit
355 };
356 
357 /* For AF_INET6 aka /dev/tcp6 */
358 struct streamtab tcpinfov6 = {
359 	&tcp_rinitv6, &tcp_winit
360 };
361 
362 /*
363  * Following assumes TPI alignment requirements stay along 32 bit
364  * boundaries
365  */
366 #define	ROUNDUP32(x) \
367 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
368 
369 /* Template for response to info request. */
370 struct T_info_ack tcp_g_t_info_ack = {
371 	T_INFO_ACK,		/* PRIM_type */
372 	0,			/* TSDU_size */
373 	T_INFINITE,		/* ETSDU_size */
374 	T_INVALID,		/* CDATA_size */
375 	T_INVALID,		/* DDATA_size */
376 	sizeof (sin_t),		/* ADDR_size */
377 	0,			/* OPT_size - not initialized here */
378 	TIDUSZ,			/* TIDU_size */
379 	T_COTS_ORD,		/* SERV_type */
380 	TCPS_IDLE,		/* CURRENT_state */
381 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
382 };
383 
384 struct T_info_ack tcp_g_t_info_ack_v6 = {
385 	T_INFO_ACK,		/* PRIM_type */
386 	0,			/* TSDU_size */
387 	T_INFINITE,		/* ETSDU_size */
388 	T_INVALID,		/* CDATA_size */
389 	T_INVALID,		/* DDATA_size */
390 	sizeof (sin6_t),	/* ADDR_size */
391 	0,			/* OPT_size - not initialized here */
392 	TIDUSZ,		/* TIDU_size */
393 	T_COTS_ORD,		/* SERV_type */
394 	TCPS_IDLE,		/* CURRENT_state */
395 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
396 };
397 
398 /*
399  * TCP tunables related declarations. Definitions are in tcp_tunables.c
400  */
401 extern mod_prop_info_t tcp_propinfo_tbl[];
402 extern int tcp_propinfo_count;
403 
404 #define	MB	(1024 * 1024)
405 
406 #define	IS_VMLOANED_MBLK(mp) \
407 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
408 
409 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
410 
411 /*
412  * Forces all connections to obey the value of the tcps_maxpsz_multiplier
413  * tunable settable via NDD.  Otherwise, the per-connection behavior is
414  * determined dynamically during tcp_set_destination(), which is the default.
415  */
416 boolean_t tcp_static_maxpsz = B_FALSE;
417 
418 /*
419  * If the receive buffer size is changed, this function is called to update
420  * the upper socket layer on the new delayed receive wake up threshold.
421  */
422 static void
423 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh)
424 {
425 	uint32_t default_threshold = SOCKET_RECVHIWATER >> 3;
426 
427 	if (IPCL_IS_NONSTR(tcp->tcp_connp)) {
428 		conn_t *connp = tcp->tcp_connp;
429 		struct sock_proto_props sopp;
430 
431 		/*
432 		 * only increase rcvthresh upto default_threshold
433 		 */
434 		if (new_rcvthresh > default_threshold)
435 			new_rcvthresh = default_threshold;
436 
437 		sopp.sopp_flags = SOCKOPT_RCVTHRESH;
438 		sopp.sopp_rcvthresh = new_rcvthresh;
439 
440 		(*connp->conn_upcalls->su_set_proto_props)
441 		    (connp->conn_upper_handle, &sopp);
442 	}
443 }
444 
445 /*
446  * Figure out the value of window scale opton.  Note that the rwnd is
447  * ASSUMED to be rounded up to the nearest MSS before the calculation.
448  * We cannot find the scale value and then do a round up of tcp_rwnd
449  * because the scale value may not be correct after that.
450  *
451  * Set the compiler flag to make this function inline.
452  */
453 void
454 tcp_set_ws_value(tcp_t *tcp)
455 {
456 	int i;
457 	uint32_t rwnd = tcp->tcp_rwnd;
458 
459 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
460 	    i++, rwnd >>= 1)
461 		;
462 	tcp->tcp_rcv_ws = i;
463 }
464 
465 /*
466  * Remove cached/latched IPsec references.
467  */
468 void
469 tcp_ipsec_cleanup(tcp_t *tcp)
470 {
471 	conn_t		*connp = tcp->tcp_connp;
472 
473 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
474 
475 	if (connp->conn_latch != NULL) {
476 		IPLATCH_REFRELE(connp->conn_latch);
477 		connp->conn_latch = NULL;
478 	}
479 	if (connp->conn_latch_in_policy != NULL) {
480 		IPPOL_REFRELE(connp->conn_latch_in_policy);
481 		connp->conn_latch_in_policy = NULL;
482 	}
483 	if (connp->conn_latch_in_action != NULL) {
484 		IPACT_REFRELE(connp->conn_latch_in_action);
485 		connp->conn_latch_in_action = NULL;
486 	}
487 	if (connp->conn_policy != NULL) {
488 		IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
489 		connp->conn_policy = NULL;
490 	}
491 }
492 
493 /*
494  * Cleaup before placing on free list.
495  * Disassociate from the netstack/tcp_stack_t since the freelist
496  * is per squeue and not per netstack.
497  */
498 void
499 tcp_cleanup(tcp_t *tcp)
500 {
501 	mblk_t		*mp;
502 	conn_t		*connp = tcp->tcp_connp;
503 	tcp_stack_t	*tcps = tcp->tcp_tcps;
504 	netstack_t	*ns = tcps->tcps_netstack;
505 	mblk_t		*tcp_rsrv_mp;
506 
507 	tcp_bind_hash_remove(tcp);
508 
509 	/* Cleanup that which needs the netstack first */
510 	tcp_ipsec_cleanup(tcp);
511 	ixa_cleanup(connp->conn_ixa);
512 
513 	if (connp->conn_ht_iphc != NULL) {
514 		kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated);
515 		connp->conn_ht_iphc = NULL;
516 		connp->conn_ht_iphc_allocated = 0;
517 		connp->conn_ht_iphc_len = 0;
518 		connp->conn_ht_ulp = NULL;
519 		connp->conn_ht_ulp_len = 0;
520 		tcp->tcp_ipha = NULL;
521 		tcp->tcp_ip6h = NULL;
522 		tcp->tcp_tcpha = NULL;
523 	}
524 
525 	/* We clear any IP_OPTIONS and extension headers */
526 	ip_pkt_free(&connp->conn_xmit_ipp);
527 
528 	tcp_free(tcp);
529 
530 	/* Release any SSL context */
531 	if (tcp->tcp_kssl_ent != NULL) {
532 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
533 		tcp->tcp_kssl_ent = NULL;
534 	}
535 
536 	if (tcp->tcp_kssl_ctx != NULL) {
537 		kssl_release_ctx(tcp->tcp_kssl_ctx);
538 		tcp->tcp_kssl_ctx = NULL;
539 	}
540 	tcp->tcp_kssl_pending = B_FALSE;
541 
542 	/*
543 	 * Since we will bzero the entire structure, we need to
544 	 * remove it and reinsert it in global hash list. We
545 	 * know the walkers can't get to this conn because we
546 	 * had set CONDEMNED flag earlier and checked reference
547 	 * under conn_lock so walker won't pick it and when we
548 	 * go the ipcl_globalhash_remove() below, no walker
549 	 * can get to it.
550 	 */
551 	ipcl_globalhash_remove(connp);
552 
553 	/* Save some state */
554 	mp = tcp->tcp_timercache;
555 
556 	tcp_rsrv_mp = tcp->tcp_rsrv_mp;
557 
558 	if (connp->conn_cred != NULL) {
559 		crfree(connp->conn_cred);
560 		connp->conn_cred = NULL;
561 	}
562 	ipcl_conn_cleanup(connp);
563 	connp->conn_flags = IPCL_TCPCONN;
564 
565 	/*
566 	 * Now it is safe to decrement the reference counts.
567 	 * This might be the last reference on the netstack
568 	 * in which case it will cause the freeing of the IP Instance.
569 	 */
570 	connp->conn_netstack = NULL;
571 	connp->conn_ixa->ixa_ipst = NULL;
572 	netstack_rele(ns);
573 	ASSERT(tcps != NULL);
574 	tcp->tcp_tcps = NULL;
575 
576 	bzero(tcp, sizeof (tcp_t));
577 
578 	/* restore the state */
579 	tcp->tcp_timercache = mp;
580 
581 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
582 
583 	tcp->tcp_connp = connp;
584 
585 	ASSERT(connp->conn_tcp == tcp);
586 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
587 	connp->conn_state_flags = CONN_INCIPIENT;
588 	ASSERT(connp->conn_proto == IPPROTO_TCP);
589 	ASSERT(connp->conn_ref == 1);
590 }
591 
592 /*
593  * Adapt to the information, such as rtt and rtt_sd, provided from the
594  * DCE and IRE maintained by IP.
595  *
596  * Checks for multicast and broadcast destination address.
597  * Returns zero if ok; an errno on failure.
598  *
599  * Note that the MSS calculation here is based on the info given in
600  * the DCE and IRE.  We do not do any calculation based on TCP options.  They
601  * will be handled in tcp_input_data() when TCP knows which options to use.
602  *
603  * Note on how TCP gets its parameters for a connection.
604  *
605  * When a tcp_t structure is allocated, it gets all the default parameters.
606  * In tcp_set_destination(), it gets those metric parameters, like rtt, rtt_sd,
607  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
608  * default.
609  *
610  * An incoming SYN with a multicast or broadcast destination address is dropped
611  * in ip_fanout_v4/v6.
612  *
613  * An incoming SYN with a multicast or broadcast source address is always
614  * dropped in tcp_set_destination, since IPDF_ALLOW_MCBC is not set in
615  * conn_connect.
616  * The same logic in tcp_set_destination also serves to
617  * reject an attempt to connect to a broadcast or multicast (destination)
618  * address.
619  */
620 int
621 tcp_set_destination(tcp_t *tcp)
622 {
623 	uint32_t	mss_max;
624 	uint32_t	mss;
625 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
626 	conn_t		*connp = tcp->tcp_connp;
627 	tcp_stack_t	*tcps = tcp->tcp_tcps;
628 	iulp_t		uinfo;
629 	int		error;
630 	uint32_t	flags;
631 
632 	flags = IPDF_LSO | IPDF_ZCOPY;
633 	/*
634 	 * Make sure we have a dce for the destination to avoid dce_ident
635 	 * contention for connected sockets.
636 	 */
637 	flags |= IPDF_UNIQUE_DCE;
638 
639 	if (!tcps->tcps_ignore_path_mtu)
640 		connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY;
641 
642 	/* Use conn_lock to satify ASSERT; tcp is already serialized */
643 	mutex_enter(&connp->conn_lock);
644 	error = conn_connect(connp, &uinfo, flags);
645 	mutex_exit(&connp->conn_lock);
646 	if (error != 0)
647 		return (error);
648 
649 	error = tcp_build_hdrs(tcp);
650 	if (error != 0)
651 		return (error);
652 
653 	tcp->tcp_localnet = uinfo.iulp_localnet;
654 
655 	if (uinfo.iulp_rtt != 0) {
656 		clock_t	rto;
657 
658 		tcp->tcp_rtt_sa = uinfo.iulp_rtt;
659 		tcp->tcp_rtt_sd = uinfo.iulp_rtt_sd;
660 		rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
661 		    tcps->tcps_rexmit_interval_extra +
662 		    (tcp->tcp_rtt_sa >> 5);
663 
664 		TCP_SET_RTO(tcp, rto);
665 	}
666 	if (uinfo.iulp_ssthresh != 0)
667 		tcp->tcp_cwnd_ssthresh = uinfo.iulp_ssthresh;
668 	else
669 		tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
670 	if (uinfo.iulp_spipe > 0) {
671 		connp->conn_sndbuf = MIN(uinfo.iulp_spipe,
672 		    tcps->tcps_max_buf);
673 		if (tcps->tcps_snd_lowat_fraction != 0) {
674 			connp->conn_sndlowat = connp->conn_sndbuf /
675 			    tcps->tcps_snd_lowat_fraction;
676 		}
677 		(void) tcp_maxpsz_set(tcp, B_TRUE);
678 	}
679 	/*
680 	 * Note that up till now, acceptor always inherits receive
681 	 * window from the listener.  But if there is a metrics
682 	 * associated with a host, we should use that instead of
683 	 * inheriting it from listener. Thus we need to pass this
684 	 * info back to the caller.
685 	 */
686 	if (uinfo.iulp_rpipe > 0) {
687 		tcp->tcp_rwnd = MIN(uinfo.iulp_rpipe,
688 		    tcps->tcps_max_buf);
689 	}
690 
691 	if (uinfo.iulp_rtomax > 0) {
692 		tcp->tcp_second_timer_threshold =
693 		    uinfo.iulp_rtomax;
694 	}
695 
696 	/*
697 	 * Use the metric option settings, iulp_tstamp_ok and
698 	 * iulp_wscale_ok, only for active open. What this means
699 	 * is that if the other side uses timestamp or window
700 	 * scale option, TCP will also use those options. That
701 	 * is for passive open.  If the application sets a
702 	 * large window, window scale is enabled regardless of
703 	 * the value in iulp_wscale_ok.  This is the behavior
704 	 * since 2.6.  So we keep it.
705 	 * The only case left in passive open processing is the
706 	 * check for SACK.
707 	 * For ECN, it should probably be like SACK.  But the
708 	 * current value is binary, so we treat it like the other
709 	 * cases.  The metric only controls active open.For passive
710 	 * open, the ndd param, tcp_ecn_permitted, controls the
711 	 * behavior.
712 	 */
713 	if (!tcp_detached) {
714 		/*
715 		 * The if check means that the following can only
716 		 * be turned on by the metrics only IRE, but not off.
717 		 */
718 		if (uinfo.iulp_tstamp_ok)
719 			tcp->tcp_snd_ts_ok = B_TRUE;
720 		if (uinfo.iulp_wscale_ok)
721 			tcp->tcp_snd_ws_ok = B_TRUE;
722 		if (uinfo.iulp_sack == 2)
723 			tcp->tcp_snd_sack_ok = B_TRUE;
724 		if (uinfo.iulp_ecn_ok)
725 			tcp->tcp_ecn_ok = B_TRUE;
726 	} else {
727 		/*
728 		 * Passive open.
729 		 *
730 		 * As above, the if check means that SACK can only be
731 		 * turned on by the metric only IRE.
732 		 */
733 		if (uinfo.iulp_sack > 0) {
734 			tcp->tcp_snd_sack_ok = B_TRUE;
735 		}
736 	}
737 
738 	/*
739 	 * XXX Note that currently, iulp_mtu can be as small as 68
740 	 * because of PMTUd.  So tcp_mss may go to negative if combined
741 	 * length of all those options exceeds 28 bytes.  But because
742 	 * of the tcp_mss_min check below, we may not have a problem if
743 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
744 	 * the negative problem still exists.  And the check defeats PMTUd.
745 	 * In fact, if PMTUd finds that the MSS should be smaller than
746 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
747 	 * value.
748 	 *
749 	 * We do not deal with that now.  All those problems related to
750 	 * PMTUd will be fixed later.
751 	 */
752 	ASSERT(uinfo.iulp_mtu != 0);
753 	mss = tcp->tcp_initial_pmtu = uinfo.iulp_mtu;
754 
755 	/* Sanity check for MSS value. */
756 	if (connp->conn_ipversion == IPV4_VERSION)
757 		mss_max = tcps->tcps_mss_max_ipv4;
758 	else
759 		mss_max = tcps->tcps_mss_max_ipv6;
760 
761 	if (tcp->tcp_ipsec_overhead == 0)
762 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
763 
764 	mss -= tcp->tcp_ipsec_overhead;
765 
766 	if (mss < tcps->tcps_mss_min)
767 		mss = tcps->tcps_mss_min;
768 	if (mss > mss_max)
769 		mss = mss_max;
770 
771 	/* Note that this is the maximum MSS, excluding all options. */
772 	tcp->tcp_mss = mss;
773 
774 	/*
775 	 * Update the tcp connection with LSO capability.
776 	 */
777 	tcp_update_lso(tcp, connp->conn_ixa);
778 
779 	/*
780 	 * Initialize the ISS here now that we have the full connection ID.
781 	 * The RFC 1948 method of initial sequence number generation requires
782 	 * knowledge of the full connection ID before setting the ISS.
783 	 */
784 	tcp_iss_init(tcp);
785 
786 	tcp->tcp_loopback = (uinfo.iulp_loopback | uinfo.iulp_local);
787 
788 	/*
789 	 * Make sure that conn is not marked incipient
790 	 * for incoming connections. A blind
791 	 * removal of incipient flag is cheaper than
792 	 * check and removal.
793 	 */
794 	mutex_enter(&connp->conn_lock);
795 	connp->conn_state_flags &= ~CONN_INCIPIENT;
796 	mutex_exit(&connp->conn_lock);
797 	return (0);
798 }
799 
800 /*
801  * tcp_clean_death / tcp_close_detached must not be called more than once
802  * on a tcp. Thus every function that potentially calls tcp_clean_death
803  * must check for the tcp state before calling tcp_clean_death.
804  * Eg. tcp_input_data, tcp_eager_kill, tcp_clean_death_wrapper,
805  * tcp_timer_handler, all check for the tcp state.
806  */
807 /* ARGSUSED */
808 void
809 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2,
810     ip_recv_attr_t *dummy)
811 {
812 	tcp_t	*tcp = ((conn_t *)arg)->conn_tcp;
813 
814 	freemsg(mp);
815 	if (tcp->tcp_state > TCPS_BOUND)
816 		(void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT);
817 }
818 
819 /*
820  * We are dying for some reason.  Try to do it gracefully.  (May be called
821  * as writer.)
822  *
823  * Return -1 if the structure was not cleaned up (if the cleanup had to be
824  * done by a service procedure).
825  * TBD - Should the return value distinguish between the tcp_t being
826  * freed and it being reinitialized?
827  */
828 int
829 tcp_clean_death(tcp_t *tcp, int err)
830 {
831 	mblk_t	*mp;
832 	queue_t	*q;
833 	conn_t	*connp = tcp->tcp_connp;
834 	tcp_stack_t	*tcps = tcp->tcp_tcps;
835 
836 	if (tcp->tcp_fused)
837 		tcp_unfuse(tcp);
838 
839 	if (tcp->tcp_linger_tid != 0 &&
840 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
841 		tcp_stop_lingering(tcp);
842 	}
843 
844 	ASSERT(tcp != NULL);
845 	ASSERT((connp->conn_family == AF_INET &&
846 	    connp->conn_ipversion == IPV4_VERSION) ||
847 	    (connp->conn_family == AF_INET6 &&
848 	    (connp->conn_ipversion == IPV4_VERSION ||
849 	    connp->conn_ipversion == IPV6_VERSION)));
850 
851 	if (TCP_IS_DETACHED(tcp)) {
852 		if (tcp->tcp_hard_binding) {
853 			/*
854 			 * Its an eager that we are dealing with. We close the
855 			 * eager but in case a conn_ind has already gone to the
856 			 * listener, let tcp_accept_finish() send a discon_ind
857 			 * to the listener and drop the last reference. If the
858 			 * listener doesn't even know about the eager i.e. the
859 			 * conn_ind hasn't gone up, blow away the eager and drop
860 			 * the last reference as well. If the conn_ind has gone
861 			 * up, state should be BOUND. tcp_accept_finish
862 			 * will figure out that the connection has received a
863 			 * RST and will send a DISCON_IND to the application.
864 			 */
865 			tcp_closei_local(tcp);
866 			if (!tcp->tcp_tconnind_started) {
867 				CONN_DEC_REF(connp);
868 			} else {
869 				int32_t oldstate = tcp->tcp_state;
870 
871 				tcp->tcp_state = TCPS_BOUND;
872 				DTRACE_TCP6(state__change, void, NULL,
873 				    ip_xmit_attr_t *, connp->conn_ixa,
874 				    void, NULL, tcp_t *, tcp, void, NULL,
875 				    int32_t, oldstate);
876 			}
877 		} else {
878 			tcp_close_detached(tcp);
879 		}
880 		return (0);
881 	}
882 
883 	TCP_STAT(tcps, tcp_clean_death_nondetached);
884 
885 	/*
886 	 * The connection is dead.  Decrement listener connection counter if
887 	 * necessary.
888 	 */
889 	if (tcp->tcp_listen_cnt != NULL)
890 		TCP_DECR_LISTEN_CNT(tcp);
891 
892 	/*
893 	 * When a connection is moved to TIME_WAIT state, the connection
894 	 * counter is already decremented.  So no need to decrement here
895 	 * again.  See SET_TIME_WAIT() macro.
896 	 */
897 	if (tcp->tcp_state >= TCPS_ESTABLISHED &&
898 	    tcp->tcp_state < TCPS_TIME_WAIT) {
899 		TCPS_CONN_DEC(tcps);
900 	}
901 
902 	q = connp->conn_rq;
903 
904 	/* Trash all inbound data */
905 	if (!IPCL_IS_NONSTR(connp)) {
906 		ASSERT(q != NULL);
907 		flushq(q, FLUSHALL);
908 	}
909 
910 	/*
911 	 * If we are at least part way open and there is error
912 	 * (err==0 implies no error)
913 	 * notify our client by a T_DISCON_IND.
914 	 */
915 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
916 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
917 		    !TCP_IS_SOCKET(tcp)) {
918 			/*
919 			 * Send M_FLUSH according to TPI. Because sockets will
920 			 * (and must) ignore FLUSHR we do that only for TPI
921 			 * endpoints and sockets in STREAMS mode.
922 			 */
923 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
924 		}
925 		if (connp->conn_debug) {
926 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
927 			    "tcp_clean_death: discon err %d", err);
928 		}
929 		if (IPCL_IS_NONSTR(connp)) {
930 			/* Direct socket, use upcall */
931 			(*connp->conn_upcalls->su_disconnected)(
932 			    connp->conn_upper_handle, tcp->tcp_connid, err);
933 		} else {
934 			mp = mi_tpi_discon_ind(NULL, err, 0);
935 			if (mp != NULL) {
936 				putnext(q, mp);
937 			} else {
938 				if (connp->conn_debug) {
939 					(void) strlog(TCP_MOD_ID, 0, 1,
940 					    SL_ERROR|SL_TRACE,
941 					    "tcp_clean_death, sending M_ERROR");
942 				}
943 				(void) putnextctl1(q, M_ERROR, EPROTO);
944 			}
945 		}
946 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
947 			/* SYN_SENT or SYN_RCVD */
948 			TCPS_BUMP_MIB(tcps, tcpAttemptFails);
949 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
950 			/* ESTABLISHED or CLOSE_WAIT */
951 			TCPS_BUMP_MIB(tcps, tcpEstabResets);
952 		}
953 	}
954 
955 	/*
956 	 * ESTABLISHED non-STREAMS eagers are not 'detached' because
957 	 * an upper handle is obtained when the SYN-ACK comes in. So it
958 	 * should receive the 'disconnected' upcall, but tcp_reinit should
959 	 * not be called since this is an eager.
960 	 */
961 	if (tcp->tcp_listener != NULL && IPCL_IS_NONSTR(connp)) {
962 		tcp_closei_local(tcp);
963 		tcp->tcp_state = TCPS_BOUND;
964 		return (0);
965 	}
966 
967 	tcp_reinit(tcp);
968 	if (IPCL_IS_NONSTR(connp))
969 		(void) tcp_do_unbind(connp);
970 
971 	return (-1);
972 }
973 
974 /*
975  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
976  * to expire, stop the wait and finish the close.
977  */
978 void
979 tcp_stop_lingering(tcp_t *tcp)
980 {
981 	clock_t	delta = 0;
982 	tcp_stack_t	*tcps = tcp->tcp_tcps;
983 	conn_t		*connp = tcp->tcp_connp;
984 
985 	tcp->tcp_linger_tid = 0;
986 	if (tcp->tcp_state > TCPS_LISTEN) {
987 		tcp_acceptor_hash_remove(tcp);
988 		mutex_enter(&tcp->tcp_non_sq_lock);
989 		if (tcp->tcp_flow_stopped) {
990 			tcp_clrqfull(tcp);
991 		}
992 		mutex_exit(&tcp->tcp_non_sq_lock);
993 
994 		if (tcp->tcp_timer_tid != 0) {
995 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
996 			tcp->tcp_timer_tid = 0;
997 		}
998 		/*
999 		 * Need to cancel those timers which will not be used when
1000 		 * TCP is detached.  This has to be done before the conn_wq
1001 		 * is cleared.
1002 		 */
1003 		tcp_timers_stop(tcp);
1004 
1005 		tcp->tcp_detached = B_TRUE;
1006 		connp->conn_rq = NULL;
1007 		connp->conn_wq = NULL;
1008 
1009 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
1010 			tcp_time_wait_append(tcp);
1011 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
1012 			goto finish;
1013 		}
1014 
1015 		/*
1016 		 * If delta is zero the timer event wasn't executed and was
1017 		 * successfully canceled. In this case we need to restart it
1018 		 * with the minimal delta possible.
1019 		 */
1020 		if (delta >= 0) {
1021 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
1022 			    delta ? delta : 1);
1023 		}
1024 	} else {
1025 		tcp_closei_local(tcp);
1026 		CONN_DEC_REF(connp);
1027 	}
1028 finish:
1029 	tcp->tcp_detached = B_TRUE;
1030 	connp->conn_rq = NULL;
1031 	connp->conn_wq = NULL;
1032 
1033 	/* Signal closing thread that it can complete close */
1034 	mutex_enter(&tcp->tcp_closelock);
1035 	tcp->tcp_closed = 1;
1036 	cv_signal(&tcp->tcp_closecv);
1037 	mutex_exit(&tcp->tcp_closelock);
1038 
1039 	/* If we have an upper handle (socket), release it */
1040 	if (IPCL_IS_NONSTR(connp)) {
1041 		ASSERT(connp->conn_upper_handle != NULL);
1042 		(*connp->conn_upcalls->su_closed)(connp->conn_upper_handle);
1043 		connp->conn_upper_handle = NULL;
1044 		connp->conn_upcalls = NULL;
1045 	}
1046 }
1047 
1048 void
1049 tcp_close_common(conn_t *connp, int flags)
1050 {
1051 	tcp_t		*tcp = connp->conn_tcp;
1052 	mblk_t 		*mp = &tcp->tcp_closemp;
1053 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
1054 	mblk_t		*bp;
1055 
1056 	ASSERT(connp->conn_ref >= 2);
1057 
1058 	/*
1059 	 * Mark the conn as closing. ipsq_pending_mp_add will not
1060 	 * add any mp to the pending mp list, after this conn has
1061 	 * started closing.
1062 	 */
1063 	mutex_enter(&connp->conn_lock);
1064 	connp->conn_state_flags |= CONN_CLOSING;
1065 	if (connp->conn_oper_pending_ill != NULL)
1066 		conn_ioctl_cleanup_reqd = B_TRUE;
1067 	CONN_INC_REF_LOCKED(connp);
1068 	mutex_exit(&connp->conn_lock);
1069 	tcp->tcp_closeflags = (uint8_t)flags;
1070 	ASSERT(connp->conn_ref >= 3);
1071 
1072 	/*
1073 	 * tcp_closemp_used is used below without any protection of a lock
1074 	 * as we don't expect any one else to use it concurrently at this
1075 	 * point otherwise it would be a major defect.
1076 	 */
1077 
1078 	if (mp->b_prev == NULL)
1079 		tcp->tcp_closemp_used = B_TRUE;
1080 	else
1081 		cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: "
1082 		    "connp %p tcp %p\n", (void *)connp, (void *)tcp);
1083 
1084 	TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1085 
1086 	/*
1087 	 * Cleanup any queued ioctls here. This must be done before the wq/rq
1088 	 * are re-written by tcp_close_output().
1089 	 */
1090 	if (conn_ioctl_cleanup_reqd)
1091 		conn_ioctl_cleanup(connp);
1092 
1093 	/*
1094 	 * As CONN_CLOSING is set, no further ioctls should be passed down to
1095 	 * IP for this conn (see the guards in tcp_ioctl, tcp_wput_ioctl and
1096 	 * tcp_wput_iocdata). If the ioctl was queued on an ipsq,
1097 	 * conn_ioctl_cleanup should have found it and removed it. If the ioctl
1098 	 * was still in flight at the time, we wait for it here. See comments
1099 	 * for CONN_INC_IOCTLREF in ip.h for details.
1100 	 */
1101 	mutex_enter(&connp->conn_lock);
1102 	while (connp->conn_ioctlref > 0)
1103 		cv_wait(&connp->conn_cv, &connp->conn_lock);
1104 	ASSERT(connp->conn_ioctlref == 0);
1105 	ASSERT(connp->conn_oper_pending_ill == NULL);
1106 	mutex_exit(&connp->conn_lock);
1107 
1108 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp,
1109 	    NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
1110 
1111 	/*
1112 	 * For non-STREAMS sockets, the normal case is that the conn makes
1113 	 * an upcall when it's finally closed, so there is no need to wait
1114 	 * in the protocol. But in case of SO_LINGER the thread sleeps here
1115 	 * so it can properly deal with the thread being interrupted.
1116 	 */
1117 	if (IPCL_IS_NONSTR(connp) && connp->conn_linger == 0)
1118 		goto nowait;
1119 
1120 	mutex_enter(&tcp->tcp_closelock);
1121 	while (!tcp->tcp_closed) {
1122 		if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
1123 			/*
1124 			 * The cv_wait_sig() was interrupted. We now do the
1125 			 * following:
1126 			 *
1127 			 * 1) If the endpoint was lingering, we allow this
1128 			 * to be interrupted by cancelling the linger timeout
1129 			 * and closing normally.
1130 			 *
1131 			 * 2) Revert to calling cv_wait()
1132 			 *
1133 			 * We revert to using cv_wait() to avoid an
1134 			 * infinite loop which can occur if the calling
1135 			 * thread is higher priority than the squeue worker
1136 			 * thread and is bound to the same cpu.
1137 			 */
1138 			if (connp->conn_linger && connp->conn_lingertime > 0) {
1139 				mutex_exit(&tcp->tcp_closelock);
1140 				/* Entering squeue, bump ref count. */
1141 				CONN_INC_REF(connp);
1142 				bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
1143 				SQUEUE_ENTER_ONE(connp->conn_sqp, bp,
1144 				    tcp_linger_interrupted, connp, NULL,
1145 				    tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
1146 				mutex_enter(&tcp->tcp_closelock);
1147 			}
1148 			break;
1149 		}
1150 	}
1151 	while (!tcp->tcp_closed)
1152 		cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
1153 	mutex_exit(&tcp->tcp_closelock);
1154 
1155 	/*
1156 	 * In the case of listener streams that have eagers in the q or q0
1157 	 * we wait for the eagers to drop their reference to us. conn_rq and
1158 	 * conn_wq of the eagers point to our queues. By waiting for the
1159 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
1160 	 * up their queue pointers and also dropped their references to us.
1161 	 *
1162 	 * For non-STREAMS sockets we do not have to wait here; the
1163 	 * listener will instead make a su_closed upcall when the last
1164 	 * reference is dropped.
1165 	 */
1166 	if (tcp->tcp_wait_for_eagers && !IPCL_IS_NONSTR(connp)) {
1167 		mutex_enter(&connp->conn_lock);
1168 		while (connp->conn_ref != 1) {
1169 			cv_wait(&connp->conn_cv, &connp->conn_lock);
1170 		}
1171 		mutex_exit(&connp->conn_lock);
1172 	}
1173 
1174 nowait:
1175 	connp->conn_cpid = NOPID;
1176 }
1177 
1178 /*
1179  * Called by tcp_close() routine via squeue when lingering is
1180  * interrupted by a signal.
1181  */
1182 
1183 /* ARGSUSED */
1184 static void
1185 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
1186 {
1187 	conn_t	*connp = (conn_t *)arg;
1188 	tcp_t	*tcp = connp->conn_tcp;
1189 
1190 	freeb(mp);
1191 	if (tcp->tcp_linger_tid != 0 &&
1192 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
1193 		tcp_stop_lingering(tcp);
1194 		tcp->tcp_client_errno = EINTR;
1195 	}
1196 }
1197 
1198 /*
1199  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
1200  * Some stream heads get upset if they see these later on as anything but NULL.
1201  */
1202 void
1203 tcp_close_mpp(mblk_t **mpp)
1204 {
1205 	mblk_t	*mp;
1206 
1207 	if ((mp = *mpp) != NULL) {
1208 		do {
1209 			mp->b_next = NULL;
1210 			mp->b_prev = NULL;
1211 		} while ((mp = mp->b_cont) != NULL);
1212 
1213 		mp = *mpp;
1214 		*mpp = NULL;
1215 		freemsg(mp);
1216 	}
1217 }
1218 
1219 /* Do detached close. */
1220 void
1221 tcp_close_detached(tcp_t *tcp)
1222 {
1223 	if (tcp->tcp_fused)
1224 		tcp_unfuse(tcp);
1225 
1226 	/*
1227 	 * Clustering code serializes TCP disconnect callbacks and
1228 	 * cluster tcp list walks by blocking a TCP disconnect callback
1229 	 * if a cluster tcp list walk is in progress. This ensures
1230 	 * accurate accounting of TCPs in the cluster code even though
1231 	 * the TCP list walk itself is not atomic.
1232 	 */
1233 	tcp_closei_local(tcp);
1234 	CONN_DEC_REF(tcp->tcp_connp);
1235 }
1236 
1237 /*
1238  * The tcp_t is going away. Remove it from all lists and set it
1239  * to TCPS_CLOSED. The freeing up of memory is deferred until
1240  * tcp_inactive. This is needed since a thread in tcp_rput might have
1241  * done a CONN_INC_REF on this structure before it was removed from the
1242  * hashes.
1243  */
1244 void
1245 tcp_closei_local(tcp_t *tcp)
1246 {
1247 	conn_t		*connp = tcp->tcp_connp;
1248 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1249 	int32_t		oldstate;
1250 
1251 	if (!TCP_IS_SOCKET(tcp))
1252 		tcp_acceptor_hash_remove(tcp);
1253 
1254 	TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs);
1255 	tcp->tcp_ibsegs = 0;
1256 	TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs);
1257 	tcp->tcp_obsegs = 0;
1258 
1259 	/*
1260 	 * This can be called via tcp_time_wait_processing() if TCP gets a
1261 	 * SYN with sequence number outside the TIME-WAIT connection's
1262 	 * window.  So we need to check for TIME-WAIT state here as the
1263 	 * connection counter is already decremented.  See SET_TIME_WAIT()
1264 	 * macro
1265 	 */
1266 	if (tcp->tcp_state >= TCPS_ESTABLISHED &&
1267 	    tcp->tcp_state < TCPS_TIME_WAIT) {
1268 		TCPS_CONN_DEC(tcps);
1269 	}
1270 
1271 	/*
1272 	 * If we are an eager connection hanging off a listener that
1273 	 * hasn't formally accepted the connection yet, get off his
1274 	 * list and blow off any data that we have accumulated.
1275 	 */
1276 	if (tcp->tcp_listener != NULL) {
1277 		tcp_t	*listener = tcp->tcp_listener;
1278 		mutex_enter(&listener->tcp_eager_lock);
1279 		/*
1280 		 * tcp_tconnind_started == B_TRUE means that the
1281 		 * conn_ind has already gone to listener. At
1282 		 * this point, eager will be closed but we
1283 		 * leave it in listeners eager list so that
1284 		 * if listener decides to close without doing
1285 		 * accept, we can clean this up. In tcp_tli_accept
1286 		 * we take care of the case of accept on closed
1287 		 * eager.
1288 		 */
1289 		if (!tcp->tcp_tconnind_started) {
1290 			tcp_eager_unlink(tcp);
1291 			mutex_exit(&listener->tcp_eager_lock);
1292 			/*
1293 			 * We don't want to have any pointers to the
1294 			 * listener queue, after we have released our
1295 			 * reference on the listener
1296 			 */
1297 			ASSERT(tcp->tcp_detached);
1298 			connp->conn_rq = NULL;
1299 			connp->conn_wq = NULL;
1300 			CONN_DEC_REF(listener->tcp_connp);
1301 		} else {
1302 			mutex_exit(&listener->tcp_eager_lock);
1303 		}
1304 	}
1305 
1306 	/* Stop all the timers */
1307 	tcp_timers_stop(tcp);
1308 
1309 	if (tcp->tcp_state == TCPS_LISTEN) {
1310 		if (tcp->tcp_ip_addr_cache) {
1311 			kmem_free((void *)tcp->tcp_ip_addr_cache,
1312 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
1313 			tcp->tcp_ip_addr_cache = NULL;
1314 		}
1315 	}
1316 
1317 	/* Decrement listerner connection counter if necessary. */
1318 	if (tcp->tcp_listen_cnt != NULL)
1319 		TCP_DECR_LISTEN_CNT(tcp);
1320 
1321 	mutex_enter(&tcp->tcp_non_sq_lock);
1322 	if (tcp->tcp_flow_stopped)
1323 		tcp_clrqfull(tcp);
1324 	mutex_exit(&tcp->tcp_non_sq_lock);
1325 
1326 	tcp_bind_hash_remove(tcp);
1327 	/*
1328 	 * If the tcp_time_wait_collector (which runs outside the squeue)
1329 	 * is trying to remove this tcp from the time wait list, we will
1330 	 * block in tcp_time_wait_remove while trying to acquire the
1331 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
1332 	 * requires the ipcl_hash_remove to be ordered after the
1333 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
1334 	 */
1335 	if (tcp->tcp_state == TCPS_TIME_WAIT)
1336 		(void) tcp_time_wait_remove(tcp, NULL);
1337 	CL_INET_DISCONNECT(connp);
1338 	ipcl_hash_remove(connp);
1339 	oldstate = tcp->tcp_state;
1340 	tcp->tcp_state = TCPS_CLOSED;
1341 	/* Need to probe before ixa_cleanup() is called */
1342 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1343 	    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
1344 	    int32_t, oldstate);
1345 	ixa_cleanup(connp->conn_ixa);
1346 
1347 	/*
1348 	 * Mark the conn as CONDEMNED
1349 	 */
1350 	mutex_enter(&connp->conn_lock);
1351 	connp->conn_state_flags |= CONN_CONDEMNED;
1352 	mutex_exit(&connp->conn_lock);
1353 
1354 	ASSERT(tcp->tcp_time_wait_next == NULL);
1355 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1356 	ASSERT(tcp->tcp_time_wait_expire == 0);
1357 
1358 	/* Release any SSL context */
1359 	if (tcp->tcp_kssl_ent != NULL) {
1360 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
1361 		tcp->tcp_kssl_ent = NULL;
1362 	}
1363 	if (tcp->tcp_kssl_ctx != NULL) {
1364 		kssl_release_ctx(tcp->tcp_kssl_ctx);
1365 		tcp->tcp_kssl_ctx = NULL;
1366 	}
1367 	tcp->tcp_kssl_pending = B_FALSE;
1368 
1369 	tcp_ipsec_cleanup(tcp);
1370 }
1371 
1372 /*
1373  * tcp is dying (called from ipcl_conn_destroy and error cases).
1374  * Free the tcp_t in either case.
1375  */
1376 void
1377 tcp_free(tcp_t *tcp)
1378 {
1379 	mblk_t		*mp;
1380 	conn_t		*connp = tcp->tcp_connp;
1381 
1382 	ASSERT(tcp != NULL);
1383 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
1384 
1385 	connp->conn_rq = NULL;
1386 	connp->conn_wq = NULL;
1387 
1388 	tcp_close_mpp(&tcp->tcp_xmit_head);
1389 	tcp_close_mpp(&tcp->tcp_reass_head);
1390 	if (tcp->tcp_rcv_list != NULL) {
1391 		/* Free b_next chain */
1392 		tcp_close_mpp(&tcp->tcp_rcv_list);
1393 	}
1394 	if ((mp = tcp->tcp_urp_mp) != NULL) {
1395 		freemsg(mp);
1396 	}
1397 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
1398 		freemsg(mp);
1399 	}
1400 
1401 	if (tcp->tcp_fused_sigurg_mp != NULL) {
1402 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1403 		freeb(tcp->tcp_fused_sigurg_mp);
1404 		tcp->tcp_fused_sigurg_mp = NULL;
1405 	}
1406 
1407 	if (tcp->tcp_ordrel_mp != NULL) {
1408 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1409 		freeb(tcp->tcp_ordrel_mp);
1410 		tcp->tcp_ordrel_mp = NULL;
1411 	}
1412 
1413 	TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp);
1414 	bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
1415 
1416 	if (tcp->tcp_hopopts != NULL) {
1417 		mi_free(tcp->tcp_hopopts);
1418 		tcp->tcp_hopopts = NULL;
1419 		tcp->tcp_hopoptslen = 0;
1420 	}
1421 	ASSERT(tcp->tcp_hopoptslen == 0);
1422 	if (tcp->tcp_dstopts != NULL) {
1423 		mi_free(tcp->tcp_dstopts);
1424 		tcp->tcp_dstopts = NULL;
1425 		tcp->tcp_dstoptslen = 0;
1426 	}
1427 	ASSERT(tcp->tcp_dstoptslen == 0);
1428 	if (tcp->tcp_rthdrdstopts != NULL) {
1429 		mi_free(tcp->tcp_rthdrdstopts);
1430 		tcp->tcp_rthdrdstopts = NULL;
1431 		tcp->tcp_rthdrdstoptslen = 0;
1432 	}
1433 	ASSERT(tcp->tcp_rthdrdstoptslen == 0);
1434 	if (tcp->tcp_rthdr != NULL) {
1435 		mi_free(tcp->tcp_rthdr);
1436 		tcp->tcp_rthdr = NULL;
1437 		tcp->tcp_rthdrlen = 0;
1438 	}
1439 	ASSERT(tcp->tcp_rthdrlen == 0);
1440 
1441 	/*
1442 	 * Following is really a blowing away a union.
1443 	 * It happens to have exactly two members of identical size
1444 	 * the following code is enough.
1445 	 */
1446 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
1447 
1448 	/*
1449 	 * If this is a non-STREAM socket still holding on to an upper
1450 	 * handle, release it. As a result of fallback we might also see
1451 	 * STREAMS based conns with upper handles, in which case there is
1452 	 * nothing to do other than clearing the field.
1453 	 */
1454 	if (connp->conn_upper_handle != NULL) {
1455 		if (IPCL_IS_NONSTR(connp)) {
1456 			(*connp->conn_upcalls->su_closed)(
1457 			    connp->conn_upper_handle);
1458 			tcp->tcp_detached = B_TRUE;
1459 		}
1460 		connp->conn_upper_handle = NULL;
1461 		connp->conn_upcalls = NULL;
1462 	}
1463 }
1464 
1465 /*
1466  * tcp_get_conn/tcp_free_conn
1467  *
1468  * tcp_get_conn is used to get a clean tcp connection structure.
1469  * It tries to reuse the connections put on the freelist by the
1470  * time_wait_collector failing which it goes to kmem_cache. This
1471  * way has two benefits compared to just allocating from and
1472  * freeing to kmem_cache.
1473  * 1) The time_wait_collector can free (which includes the cleanup)
1474  * outside the squeue. So when the interrupt comes, we have a clean
1475  * connection sitting in the freelist. Obviously, this buys us
1476  * performance.
1477  *
1478  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_input_listener
1479  * has multiple disadvantages - tying up the squeue during alloc.
1480  * But allocating the conn/tcp in IP land is also not the best since
1481  * we can't check the 'q' and 'q0' which are protected by squeue and
1482  * blindly allocate memory which might have to be freed here if we are
1483  * not allowed to accept the connection. By using the freelist and
1484  * putting the conn/tcp back in freelist, we don't pay a penalty for
1485  * allocating memory without checking 'q/q0' and freeing it if we can't
1486  * accept the connection.
1487  *
1488  * Care should be taken to put the conn back in the same squeue's freelist
1489  * from which it was allocated. Best results are obtained if conn is
1490  * allocated from listener's squeue and freed to the same. Time wait
1491  * collector will free up the freelist is the connection ends up sitting
1492  * there for too long.
1493  */
1494 void *
1495 tcp_get_conn(void *arg, tcp_stack_t *tcps)
1496 {
1497 	tcp_t			*tcp = NULL;
1498 	conn_t			*connp = NULL;
1499 	squeue_t		*sqp = (squeue_t *)arg;
1500 	tcp_squeue_priv_t 	*tcp_time_wait;
1501 	netstack_t		*ns;
1502 	mblk_t			*tcp_rsrv_mp = NULL;
1503 
1504 	tcp_time_wait =
1505 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1506 
1507 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1508 	tcp = tcp_time_wait->tcp_free_list;
1509 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
1510 	if (tcp != NULL) {
1511 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1512 		tcp_time_wait->tcp_free_list_cnt--;
1513 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1514 		tcp->tcp_time_wait_next = NULL;
1515 		connp = tcp->tcp_connp;
1516 		connp->conn_flags |= IPCL_REUSED;
1517 
1518 		ASSERT(tcp->tcp_tcps == NULL);
1519 		ASSERT(connp->conn_netstack == NULL);
1520 		ASSERT(tcp->tcp_rsrv_mp != NULL);
1521 		ns = tcps->tcps_netstack;
1522 		netstack_hold(ns);
1523 		connp->conn_netstack = ns;
1524 		connp->conn_ixa->ixa_ipst = ns->netstack_ip;
1525 		tcp->tcp_tcps = tcps;
1526 		ipcl_globalhash_insert(connp);
1527 
1528 		connp->conn_ixa->ixa_notify_cookie = tcp;
1529 		ASSERT(connp->conn_ixa->ixa_notify == tcp_notify);
1530 		connp->conn_recv = tcp_input_data;
1531 		ASSERT(connp->conn_recvicmp == tcp_icmp_input);
1532 		ASSERT(connp->conn_verifyicmp == tcp_verifyicmp);
1533 		return ((void *)connp);
1534 	}
1535 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1536 	/*
1537 	 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until
1538 	 * this conn_t/tcp_t is freed at ipcl_conn_destroy().
1539 	 */
1540 	tcp_rsrv_mp = allocb(0, BPRI_HI);
1541 	if (tcp_rsrv_mp == NULL)
1542 		return (NULL);
1543 
1544 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
1545 	    tcps->tcps_netstack)) == NULL) {
1546 		freeb(tcp_rsrv_mp);
1547 		return (NULL);
1548 	}
1549 
1550 	tcp = connp->conn_tcp;
1551 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
1552 	mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL);
1553 
1554 	tcp->tcp_tcps = tcps;
1555 
1556 	connp->conn_recv = tcp_input_data;
1557 	connp->conn_recvicmp = tcp_icmp_input;
1558 	connp->conn_verifyicmp = tcp_verifyicmp;
1559 
1560 	/*
1561 	 * Register tcp_notify to listen to capability changes detected by IP.
1562 	 * This upcall is made in the context of the call to conn_ip_output
1563 	 * thus it is inside the squeue.
1564 	 */
1565 	connp->conn_ixa->ixa_notify = tcp_notify;
1566 	connp->conn_ixa->ixa_notify_cookie = tcp;
1567 
1568 	return ((void *)connp);
1569 }
1570 
1571 /*
1572  * Handle connect to IPv4 destinations, including connections for AF_INET6
1573  * sockets connecting to IPv4 mapped IPv6 destinations.
1574  * Returns zero if OK, a positive errno, or a negative TLI error.
1575  */
1576 static int
1577 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport,
1578     uint_t srcid)
1579 {
1580 	ipaddr_t 	dstaddr = *dstaddrp;
1581 	uint16_t 	lport;
1582 	conn_t		*connp = tcp->tcp_connp;
1583 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1584 	int		error;
1585 
1586 	ASSERT(connp->conn_ipversion == IPV4_VERSION);
1587 
1588 	/* Check for attempt to connect to INADDR_ANY */
1589 	if (dstaddr == INADDR_ANY)  {
1590 		/*
1591 		 * SunOS 4.x and 4.3 BSD allow an application
1592 		 * to connect a TCP socket to INADDR_ANY.
1593 		 * When they do this, the kernel picks the
1594 		 * address of one interface and uses it
1595 		 * instead.  The kernel usually ends up
1596 		 * picking the address of the loopback
1597 		 * interface.  This is an undocumented feature.
1598 		 * However, we provide the same thing here
1599 		 * in order to have source and binary
1600 		 * compatibility with SunOS 4.x.
1601 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
1602 		 * generate the T_CONN_CON.
1603 		 */
1604 		dstaddr = htonl(INADDR_LOOPBACK);
1605 		*dstaddrp = dstaddr;
1606 	}
1607 
1608 	/* Handle __sin6_src_id if socket not bound to an IP address */
1609 	if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) {
1610 		ip_srcid_find_id(srcid, &connp->conn_laddr_v6,
1611 		    IPCL_ZONEID(connp), tcps->tcps_netstack);
1612 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
1613 	}
1614 
1615 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6);
1616 	connp->conn_fport = dstport;
1617 
1618 	/*
1619 	 * At this point the remote destination address and remote port fields
1620 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
1621 	 * have to see which state tcp was in so we can take appropriate action.
1622 	 */
1623 	if (tcp->tcp_state == TCPS_IDLE) {
1624 		/*
1625 		 * We support a quick connect capability here, allowing
1626 		 * clients to transition directly from IDLE to SYN_SENT
1627 		 * tcp_bindi will pick an unused port, insert the connection
1628 		 * in the bind hash and transition to BOUND state.
1629 		 */
1630 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
1631 		    tcp, B_TRUE);
1632 		lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE,
1633 		    B_FALSE, B_FALSE);
1634 		if (lport == 0)
1635 			return (-TNOADDR);
1636 	}
1637 
1638 	/*
1639 	 * Lookup the route to determine a source address and the uinfo.
1640 	 * Setup TCP parameters based on the metrics/DCE.
1641 	 */
1642 	error = tcp_set_destination(tcp);
1643 	if (error != 0)
1644 		return (error);
1645 
1646 	/*
1647 	 * Don't let an endpoint connect to itself.
1648 	 */
1649 	if (connp->conn_faddr_v4 == connp->conn_laddr_v4 &&
1650 	    connp->conn_fport == connp->conn_lport)
1651 		return (-TBADADDR);
1652 
1653 	tcp->tcp_state = TCPS_SYN_SENT;
1654 
1655 	return (ipcl_conn_insert_v4(connp));
1656 }
1657 
1658 /*
1659  * Handle connect to IPv6 destinations.
1660  * Returns zero if OK, a positive errno, or a negative TLI error.
1661  */
1662 static int
1663 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport,
1664     uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
1665 {
1666 	uint16_t 	lport;
1667 	conn_t		*connp = tcp->tcp_connp;
1668 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1669 	int		error;
1670 
1671 	ASSERT(connp->conn_family == AF_INET6);
1672 
1673 	/*
1674 	 * If we're here, it means that the destination address is a native
1675 	 * IPv6 address.  Return an error if conn_ipversion is not IPv6.  A
1676 	 * reason why it might not be IPv6 is if the socket was bound to an
1677 	 * IPv4-mapped IPv6 address.
1678 	 */
1679 	if (connp->conn_ipversion != IPV6_VERSION)
1680 		return (-TBADADDR);
1681 
1682 	/*
1683 	 * Interpret a zero destination to mean loopback.
1684 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
1685 	 * generate the T_CONN_CON.
1686 	 */
1687 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp))
1688 		*dstaddrp = ipv6_loopback;
1689 
1690 	/* Handle __sin6_src_id if socket not bound to an IP address */
1691 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) {
1692 		ip_srcid_find_id(srcid, &connp->conn_laddr_v6,
1693 		    IPCL_ZONEID(connp), tcps->tcps_netstack);
1694 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
1695 	}
1696 
1697 	/*
1698 	 * Take care of the scope_id now.
1699 	 */
1700 	if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
1701 		connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET;
1702 		connp->conn_ixa->ixa_scopeid = scope_id;
1703 	} else {
1704 		connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET;
1705 	}
1706 
1707 	connp->conn_flowinfo = flowinfo;
1708 	connp->conn_faddr_v6 = *dstaddrp;
1709 	connp->conn_fport = dstport;
1710 
1711 	/*
1712 	 * At this point the remote destination address and remote port fields
1713 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
1714 	 * have to see which state tcp was in so we can take appropriate action.
1715 	 */
1716 	if (tcp->tcp_state == TCPS_IDLE) {
1717 		/*
1718 		 * We support a quick connect capability here, allowing
1719 		 * clients to transition directly from IDLE to SYN_SENT
1720 		 * tcp_bindi will pick an unused port, insert the connection
1721 		 * in the bind hash and transition to BOUND state.
1722 		 */
1723 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
1724 		    tcp, B_TRUE);
1725 		lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE,
1726 		    B_FALSE, B_FALSE);
1727 		if (lport == 0)
1728 			return (-TNOADDR);
1729 	}
1730 
1731 	/*
1732 	 * Lookup the route to determine a source address and the uinfo.
1733 	 * Setup TCP parameters based on the metrics/DCE.
1734 	 */
1735 	error = tcp_set_destination(tcp);
1736 	if (error != 0)
1737 		return (error);
1738 
1739 	/*
1740 	 * Don't let an endpoint connect to itself.
1741 	 */
1742 	if (IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &connp->conn_laddr_v6) &&
1743 	    connp->conn_fport == connp->conn_lport)
1744 		return (-TBADADDR);
1745 
1746 	tcp->tcp_state = TCPS_SYN_SENT;
1747 
1748 	return (ipcl_conn_insert_v6(connp));
1749 }
1750 
1751 /*
1752  * Disconnect
1753  * Note that unlike other functions this returns a positive tli error
1754  * when it fails; it never returns an errno.
1755  */
1756 static int
1757 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum)
1758 {
1759 	conn_t		*lconnp;
1760 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1761 	conn_t		*connp = tcp->tcp_connp;
1762 
1763 	/*
1764 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
1765 	 * when the stream is in BOUND state. Do not send a reset,
1766 	 * since the destination IP address is not valid, and it can
1767 	 * be the initialized value of all zeros (broadcast address).
1768 	 */
1769 	if (tcp->tcp_state <= TCPS_BOUND) {
1770 		if (connp->conn_debug) {
1771 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
1772 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
1773 		}
1774 		return (TOUTSTATE);
1775 	} else if (tcp->tcp_state >= TCPS_ESTABLISHED) {
1776 		TCPS_CONN_DEC(tcps);
1777 	}
1778 
1779 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
1780 
1781 		/*
1782 		 * According to TPI, for non-listeners, ignore seqnum
1783 		 * and disconnect.
1784 		 * Following interpretation of -1 seqnum is historical
1785 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
1786 		 * a valid seqnum should not be -1).
1787 		 *
1788 		 *	-1 means disconnect everything
1789 		 *	regardless even on a listener.
1790 		 */
1791 
1792 		int old_state = tcp->tcp_state;
1793 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
1794 
1795 		/*
1796 		 * The connection can't be on the tcp_time_wait_head list
1797 		 * since it is not detached.
1798 		 */
1799 		ASSERT(tcp->tcp_time_wait_next == NULL);
1800 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1801 		ASSERT(tcp->tcp_time_wait_expire == 0);
1802 		/*
1803 		 * If it used to be a listener, check to make sure no one else
1804 		 * has taken the port before switching back to LISTEN state.
1805 		 */
1806 		if (connp->conn_ipversion == IPV4_VERSION) {
1807 			lconnp = ipcl_lookup_listener_v4(connp->conn_lport,
1808 			    connp->conn_laddr_v4, IPCL_ZONEID(connp), ipst);
1809 		} else {
1810 			uint_t ifindex = 0;
1811 
1812 			if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)
1813 				ifindex = connp->conn_ixa->ixa_scopeid;
1814 
1815 			/* Allow conn_bound_if listeners? */
1816 			lconnp = ipcl_lookup_listener_v6(connp->conn_lport,
1817 			    &connp->conn_laddr_v6, ifindex, IPCL_ZONEID(connp),
1818 			    ipst);
1819 		}
1820 		if (tcp->tcp_conn_req_max && lconnp == NULL) {
1821 			tcp->tcp_state = TCPS_LISTEN;
1822 			DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1823 			    connp->conn_ixa, void, NULL, tcp_t *, tcp, void,
1824 			    NULL, int32_t, old_state);
1825 		} else if (old_state > TCPS_BOUND) {
1826 			tcp->tcp_conn_req_max = 0;
1827 			tcp->tcp_state = TCPS_BOUND;
1828 			DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1829 			    connp->conn_ixa, void, NULL, tcp_t *, tcp, void,
1830 			    NULL, int32_t, old_state);
1831 
1832 			/*
1833 			 * If this end point is not going to become a listener,
1834 			 * decrement the listener connection count if
1835 			 * necessary.  Note that we do not do this if it is
1836 			 * going to be a listner (the above if case) since
1837 			 * then it may remove the counter struct.
1838 			 */
1839 			if (tcp->tcp_listen_cnt != NULL)
1840 				TCP_DECR_LISTEN_CNT(tcp);
1841 		}
1842 		if (lconnp != NULL)
1843 			CONN_DEC_REF(lconnp);
1844 		switch (old_state) {
1845 		case TCPS_SYN_SENT:
1846 		case TCPS_SYN_RCVD:
1847 			TCPS_BUMP_MIB(tcps, tcpAttemptFails);
1848 			break;
1849 		case TCPS_ESTABLISHED:
1850 		case TCPS_CLOSE_WAIT:
1851 			TCPS_BUMP_MIB(tcps, tcpEstabResets);
1852 			break;
1853 		}
1854 
1855 		if (tcp->tcp_fused)
1856 			tcp_unfuse(tcp);
1857 
1858 		mutex_enter(&tcp->tcp_eager_lock);
1859 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
1860 		    (tcp->tcp_conn_req_cnt_q != 0)) {
1861 			tcp_eager_cleanup(tcp, 0);
1862 		}
1863 		mutex_exit(&tcp->tcp_eager_lock);
1864 
1865 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
1866 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
1867 
1868 		tcp_reinit(tcp);
1869 
1870 		return (0);
1871 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
1872 		return (TBADSEQ);
1873 	}
1874 	return (0);
1875 }
1876 
1877 /*
1878  * Our client hereby directs us to reject the connection request
1879  * that tcp_input_listener() marked with 'seqnum'.  Rejection consists
1880  * of sending the appropriate RST, not an ICMP error.
1881  */
1882 void
1883 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
1884 {
1885 	t_scalar_t seqnum;
1886 	int	error;
1887 	conn_t	*connp = tcp->tcp_connp;
1888 
1889 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
1890 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
1891 		tcp_err_ack(tcp, mp, TPROTO, 0);
1892 		return;
1893 	}
1894 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
1895 	error = tcp_disconnect_common(tcp, seqnum);
1896 	if (error != 0)
1897 		tcp_err_ack(tcp, mp, error, 0);
1898 	else {
1899 		if (tcp->tcp_state >= TCPS_ESTABLISHED) {
1900 			/* Send M_FLUSH according to TPI */
1901 			(void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW);
1902 		}
1903 		mp = mi_tpi_ok_ack_alloc(mp);
1904 		if (mp != NULL)
1905 			putnext(connp->conn_rq, mp);
1906 	}
1907 }
1908 
1909 /*
1910  * Handle reinitialization of a tcp structure.
1911  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
1912  */
1913 static void
1914 tcp_reinit(tcp_t *tcp)
1915 {
1916 	mblk_t		*mp;
1917 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1918 	conn_t		*connp  = tcp->tcp_connp;
1919 	int32_t		oldstate;
1920 
1921 	/* tcp_reinit should never be called for detached tcp_t's */
1922 	ASSERT(tcp->tcp_listener == NULL);
1923 	ASSERT((connp->conn_family == AF_INET &&
1924 	    connp->conn_ipversion == IPV4_VERSION) ||
1925 	    (connp->conn_family == AF_INET6 &&
1926 	    (connp->conn_ipversion == IPV4_VERSION ||
1927 	    connp->conn_ipversion == IPV6_VERSION)));
1928 
1929 	/* Cancel outstanding timers */
1930 	tcp_timers_stop(tcp);
1931 
1932 	/*
1933 	 * Reset everything in the state vector, after updating global
1934 	 * MIB data from instance counters.
1935 	 */
1936 	TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs);
1937 	tcp->tcp_ibsegs = 0;
1938 	TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs);
1939 	tcp->tcp_obsegs = 0;
1940 
1941 	tcp_close_mpp(&tcp->tcp_xmit_head);
1942 	if (tcp->tcp_snd_zcopy_aware)
1943 		tcp_zcopy_notify(tcp);
1944 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
1945 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
1946 	mutex_enter(&tcp->tcp_non_sq_lock);
1947 	if (tcp->tcp_flow_stopped &&
1948 	    TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) {
1949 		tcp_clrqfull(tcp);
1950 	}
1951 	mutex_exit(&tcp->tcp_non_sq_lock);
1952 	tcp_close_mpp(&tcp->tcp_reass_head);
1953 	tcp->tcp_reass_tail = NULL;
1954 	if (tcp->tcp_rcv_list != NULL) {
1955 		/* Free b_next chain */
1956 		tcp_close_mpp(&tcp->tcp_rcv_list);
1957 		tcp->tcp_rcv_last_head = NULL;
1958 		tcp->tcp_rcv_last_tail = NULL;
1959 		tcp->tcp_rcv_cnt = 0;
1960 	}
1961 	tcp->tcp_rcv_last_tail = NULL;
1962 
1963 	if ((mp = tcp->tcp_urp_mp) != NULL) {
1964 		freemsg(mp);
1965 		tcp->tcp_urp_mp = NULL;
1966 	}
1967 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
1968 		freemsg(mp);
1969 		tcp->tcp_urp_mark_mp = NULL;
1970 	}
1971 	if (tcp->tcp_fused_sigurg_mp != NULL) {
1972 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1973 		freeb(tcp->tcp_fused_sigurg_mp);
1974 		tcp->tcp_fused_sigurg_mp = NULL;
1975 	}
1976 	if (tcp->tcp_ordrel_mp != NULL) {
1977 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1978 		freeb(tcp->tcp_ordrel_mp);
1979 		tcp->tcp_ordrel_mp = NULL;
1980 	}
1981 
1982 	/*
1983 	 * Following is a union with two members which are
1984 	 * identical types and size so the following cleanup
1985 	 * is enough.
1986 	 */
1987 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
1988 
1989 	CL_INET_DISCONNECT(connp);
1990 
1991 	/*
1992 	 * The connection can't be on the tcp_time_wait_head list
1993 	 * since it is not detached.
1994 	 */
1995 	ASSERT(tcp->tcp_time_wait_next == NULL);
1996 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1997 	ASSERT(tcp->tcp_time_wait_expire == 0);
1998 
1999 	if (tcp->tcp_kssl_pending) {
2000 		tcp->tcp_kssl_pending = B_FALSE;
2001 
2002 		/* Don't reset if the initialized by bind. */
2003 		if (tcp->tcp_kssl_ent != NULL) {
2004 			kssl_release_ent(tcp->tcp_kssl_ent, NULL,
2005 			    KSSL_NO_PROXY);
2006 		}
2007 	}
2008 	if (tcp->tcp_kssl_ctx != NULL) {
2009 		kssl_release_ctx(tcp->tcp_kssl_ctx);
2010 		tcp->tcp_kssl_ctx = NULL;
2011 	}
2012 
2013 	/*
2014 	 * Reset/preserve other values
2015 	 */
2016 	tcp_reinit_values(tcp);
2017 	ipcl_hash_remove(connp);
2018 	/* Note that ixa_cred gets cleared in ixa_cleanup */
2019 	ixa_cleanup(connp->conn_ixa);
2020 	tcp_ipsec_cleanup(tcp);
2021 
2022 	connp->conn_laddr_v6 = connp->conn_bound_addr_v6;
2023 	connp->conn_saddr_v6 = connp->conn_bound_addr_v6;
2024 	oldstate = tcp->tcp_state;
2025 
2026 	if (tcp->tcp_conn_req_max != 0) {
2027 		/*
2028 		 * This is the case when a TLI program uses the same
2029 		 * transport end point to accept a connection.  This
2030 		 * makes the TCP both a listener and acceptor.  When
2031 		 * this connection is closed, we need to set the state
2032 		 * back to TCPS_LISTEN.  Make sure that the eager list
2033 		 * is reinitialized.
2034 		 *
2035 		 * Note that this stream is still bound to the four
2036 		 * tuples of the previous connection in IP.  If a new
2037 		 * SYN with different foreign address comes in, IP will
2038 		 * not find it and will send it to the global queue.  In
2039 		 * the global queue, TCP will do a tcp_lookup_listener()
2040 		 * to find this stream.  This works because this stream
2041 		 * is only removed from connected hash.
2042 		 *
2043 		 */
2044 		tcp->tcp_state = TCPS_LISTEN;
2045 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
2046 		tcp->tcp_eager_next_drop_q0 = tcp;
2047 		tcp->tcp_eager_prev_drop_q0 = tcp;
2048 		/*
2049 		 * Initially set conn_recv to tcp_input_listener_unbound to try
2050 		 * to pick a good squeue for the listener when the first SYN
2051 		 * arrives. tcp_input_listener_unbound sets it to
2052 		 * tcp_input_listener on that first SYN.
2053 		 */
2054 		connp->conn_recv = tcp_input_listener_unbound;
2055 
2056 		connp->conn_proto = IPPROTO_TCP;
2057 		connp->conn_faddr_v6 = ipv6_all_zeros;
2058 		connp->conn_fport = 0;
2059 
2060 		(void) ipcl_bind_insert(connp);
2061 	} else {
2062 		tcp->tcp_state = TCPS_BOUND;
2063 	}
2064 
2065 	/*
2066 	 * Initialize to default values
2067 	 */
2068 	tcp_init_values(tcp, NULL);
2069 
2070 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
2071 	    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
2072 	    int32_t, oldstate);
2073 
2074 	ASSERT(tcp->tcp_ptpbhn != NULL);
2075 	tcp->tcp_rwnd = connp->conn_rcvbuf;
2076 	tcp->tcp_mss = connp->conn_ipversion != IPV4_VERSION ?
2077 	    tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4;
2078 }
2079 
2080 /*
2081  * Force values to zero that need be zero.
2082  * Do not touch values asociated with the BOUND or LISTEN state
2083  * since the connection will end up in that state after the reinit.
2084  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
2085  * structure!
2086  */
2087 static void
2088 tcp_reinit_values(tcp)
2089 	tcp_t *tcp;
2090 {
2091 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2092 	conn_t		*connp = tcp->tcp_connp;
2093 
2094 #ifndef	lint
2095 #define	DONTCARE(x)
2096 #define	PRESERVE(x)
2097 #else
2098 #define	DONTCARE(x)	((x) = (x))
2099 #define	PRESERVE(x)	((x) = (x))
2100 #endif	/* lint */
2101 
2102 	PRESERVE(tcp->tcp_bind_hash_port);
2103 	PRESERVE(tcp->tcp_bind_hash);
2104 	PRESERVE(tcp->tcp_ptpbhn);
2105 	PRESERVE(tcp->tcp_acceptor_hash);
2106 	PRESERVE(tcp->tcp_ptpahn);
2107 
2108 	/* Should be ASSERT NULL on these with new code! */
2109 	ASSERT(tcp->tcp_time_wait_next == NULL);
2110 	ASSERT(tcp->tcp_time_wait_prev == NULL);
2111 	ASSERT(tcp->tcp_time_wait_expire == 0);
2112 	PRESERVE(tcp->tcp_state);
2113 	PRESERVE(connp->conn_rq);
2114 	PRESERVE(connp->conn_wq);
2115 
2116 	ASSERT(tcp->tcp_xmit_head == NULL);
2117 	ASSERT(tcp->tcp_xmit_last == NULL);
2118 	ASSERT(tcp->tcp_unsent == 0);
2119 	ASSERT(tcp->tcp_xmit_tail == NULL);
2120 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
2121 
2122 	tcp->tcp_snxt = 0;			/* Displayed in mib */
2123 	tcp->tcp_suna = 0;			/* Displayed in mib */
2124 	tcp->tcp_swnd = 0;
2125 	DONTCARE(tcp->tcp_cwnd);	/* Init in tcp_process_options */
2126 
2127 	ASSERT(tcp->tcp_ibsegs == 0);
2128 	ASSERT(tcp->tcp_obsegs == 0);
2129 
2130 	if (connp->conn_ht_iphc != NULL) {
2131 		kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated);
2132 		connp->conn_ht_iphc = NULL;
2133 		connp->conn_ht_iphc_allocated = 0;
2134 		connp->conn_ht_iphc_len = 0;
2135 		connp->conn_ht_ulp = NULL;
2136 		connp->conn_ht_ulp_len = 0;
2137 		tcp->tcp_ipha = NULL;
2138 		tcp->tcp_ip6h = NULL;
2139 		tcp->tcp_tcpha = NULL;
2140 	}
2141 
2142 	/* We clear any IP_OPTIONS and extension headers */
2143 	ip_pkt_free(&connp->conn_xmit_ipp);
2144 
2145 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
2146 	DONTCARE(tcp->tcp_ipha);
2147 	DONTCARE(tcp->tcp_ip6h);
2148 	DONTCARE(tcp->tcp_tcpha);
2149 	tcp->tcp_valid_bits = 0;
2150 
2151 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
2152 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
2153 	tcp->tcp_last_rcv_lbolt = 0;
2154 
2155 	tcp->tcp_init_cwnd = 0;
2156 
2157 	tcp->tcp_urp_last_valid = 0;
2158 	tcp->tcp_hard_binding = 0;
2159 
2160 	tcp->tcp_fin_acked = 0;
2161 	tcp->tcp_fin_rcvd = 0;
2162 	tcp->tcp_fin_sent = 0;
2163 	tcp->tcp_ordrel_done = 0;
2164 
2165 	tcp->tcp_detached = 0;
2166 
2167 	tcp->tcp_snd_ws_ok = B_FALSE;
2168 	tcp->tcp_snd_ts_ok = B_FALSE;
2169 	tcp->tcp_zero_win_probe = 0;
2170 
2171 	tcp->tcp_loopback = 0;
2172 	tcp->tcp_localnet = 0;
2173 	tcp->tcp_syn_defense = 0;
2174 	tcp->tcp_set_timer = 0;
2175 
2176 	tcp->tcp_active_open = 0;
2177 	tcp->tcp_rexmit = B_FALSE;
2178 	tcp->tcp_xmit_zc_clean = B_FALSE;
2179 
2180 	tcp->tcp_snd_sack_ok = B_FALSE;
2181 	tcp->tcp_hwcksum = B_FALSE;
2182 
2183 	DONTCARE(tcp->tcp_maxpsz_multiplier);	/* Init in tcp_init_values */
2184 
2185 	tcp->tcp_conn_def_q0 = 0;
2186 	tcp->tcp_ip_forward_progress = B_FALSE;
2187 	tcp->tcp_ecn_ok = B_FALSE;
2188 
2189 	tcp->tcp_cwr = B_FALSE;
2190 	tcp->tcp_ecn_echo_on = B_FALSE;
2191 	tcp->tcp_is_wnd_shrnk = B_FALSE;
2192 
2193 	TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp);
2194 	bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
2195 
2196 	tcp->tcp_rcv_ws = 0;
2197 	tcp->tcp_snd_ws = 0;
2198 	tcp->tcp_ts_recent = 0;
2199 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
2200 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
2201 	tcp->tcp_initial_pmtu = 0;
2202 
2203 	ASSERT(tcp->tcp_reass_head == NULL);
2204 	ASSERT(tcp->tcp_reass_tail == NULL);
2205 
2206 	tcp->tcp_cwnd_cnt = 0;
2207 
2208 	ASSERT(tcp->tcp_rcv_list == NULL);
2209 	ASSERT(tcp->tcp_rcv_last_head == NULL);
2210 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
2211 	ASSERT(tcp->tcp_rcv_cnt == 0);
2212 
2213 	DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_set_destination */
2214 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
2215 	tcp->tcp_csuna = 0;
2216 
2217 	tcp->tcp_rto = 0;			/* Displayed in MIB */
2218 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
2219 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
2220 	tcp->tcp_rtt_update = 0;
2221 
2222 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
2223 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
2224 
2225 	tcp->tcp_rack = 0;			/* Displayed in mib */
2226 	tcp->tcp_rack_cnt = 0;
2227 	tcp->tcp_rack_cur_max = 0;
2228 	tcp->tcp_rack_abs_max = 0;
2229 
2230 	tcp->tcp_max_swnd = 0;
2231 
2232 	ASSERT(tcp->tcp_listener == NULL);
2233 
2234 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
2235 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
2236 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
2237 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
2238 
2239 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
2240 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
2241 	PRESERVE(tcp->tcp_conn_req_max);
2242 	PRESERVE(tcp->tcp_conn_req_seqnum);
2243 
2244 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
2245 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
2246 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
2247 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
2248 
2249 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
2250 	ASSERT(tcp->tcp_urp_mp == NULL);
2251 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
2252 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
2253 
2254 	ASSERT(tcp->tcp_eager_next_q == NULL);
2255 	ASSERT(tcp->tcp_eager_last_q == NULL);
2256 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
2257 	    tcp->tcp_eager_prev_q0 == NULL) ||
2258 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
2259 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
2260 
2261 	ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
2262 	    tcp->tcp_eager_prev_drop_q0 == NULL) ||
2263 	    tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
2264 
2265 	tcp->tcp_client_errno = 0;
2266 
2267 	DONTCARE(connp->conn_sum);		/* Init in tcp_init_values */
2268 
2269 	connp->conn_faddr_v6 = ipv6_all_zeros;	/* Displayed in MIB */
2270 
2271 	PRESERVE(connp->conn_bound_addr_v6);
2272 	tcp->tcp_last_sent_len = 0;
2273 	tcp->tcp_dupack_cnt = 0;
2274 
2275 	connp->conn_fport = 0;			/* Displayed in MIB */
2276 	PRESERVE(connp->conn_lport);
2277 
2278 	PRESERVE(tcp->tcp_acceptor_lockp);
2279 
2280 	ASSERT(tcp->tcp_ordrel_mp == NULL);
2281 	PRESERVE(tcp->tcp_acceptor_id);
2282 	DONTCARE(tcp->tcp_ipsec_overhead);
2283 
2284 	PRESERVE(connp->conn_family);
2285 	/* Remove any remnants of mapped address binding */
2286 	if (connp->conn_family == AF_INET6) {
2287 		connp->conn_ipversion = IPV6_VERSION;
2288 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
2289 	} else {
2290 		connp->conn_ipversion = IPV4_VERSION;
2291 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
2292 	}
2293 
2294 	connp->conn_bound_if = 0;
2295 	connp->conn_recv_ancillary.crb_all = 0;
2296 	tcp->tcp_recvifindex = 0;
2297 	tcp->tcp_recvhops = 0;
2298 	tcp->tcp_closed = 0;
2299 	if (tcp->tcp_hopopts != NULL) {
2300 		mi_free(tcp->tcp_hopopts);
2301 		tcp->tcp_hopopts = NULL;
2302 		tcp->tcp_hopoptslen = 0;
2303 	}
2304 	ASSERT(tcp->tcp_hopoptslen == 0);
2305 	if (tcp->tcp_dstopts != NULL) {
2306 		mi_free(tcp->tcp_dstopts);
2307 		tcp->tcp_dstopts = NULL;
2308 		tcp->tcp_dstoptslen = 0;
2309 	}
2310 	ASSERT(tcp->tcp_dstoptslen == 0);
2311 	if (tcp->tcp_rthdrdstopts != NULL) {
2312 		mi_free(tcp->tcp_rthdrdstopts);
2313 		tcp->tcp_rthdrdstopts = NULL;
2314 		tcp->tcp_rthdrdstoptslen = 0;
2315 	}
2316 	ASSERT(tcp->tcp_rthdrdstoptslen == 0);
2317 	if (tcp->tcp_rthdr != NULL) {
2318 		mi_free(tcp->tcp_rthdr);
2319 		tcp->tcp_rthdr = NULL;
2320 		tcp->tcp_rthdrlen = 0;
2321 	}
2322 	ASSERT(tcp->tcp_rthdrlen == 0);
2323 
2324 	/* Reset fusion-related fields */
2325 	tcp->tcp_fused = B_FALSE;
2326 	tcp->tcp_unfusable = B_FALSE;
2327 	tcp->tcp_fused_sigurg = B_FALSE;
2328 	tcp->tcp_loopback_peer = NULL;
2329 
2330 	tcp->tcp_lso = B_FALSE;
2331 
2332 	tcp->tcp_in_ack_unsent = 0;
2333 	tcp->tcp_cork = B_FALSE;
2334 	tcp->tcp_tconnind_started = B_FALSE;
2335 
2336 	PRESERVE(tcp->tcp_squeue_bytes);
2337 
2338 	ASSERT(tcp->tcp_kssl_ctx == NULL);
2339 	ASSERT(!tcp->tcp_kssl_pending);
2340 	PRESERVE(tcp->tcp_kssl_ent);
2341 
2342 	tcp->tcp_closemp_used = B_FALSE;
2343 
2344 	PRESERVE(tcp->tcp_rsrv_mp);
2345 	PRESERVE(tcp->tcp_rsrv_mp_lock);
2346 
2347 #ifdef DEBUG
2348 	DONTCARE(tcp->tcmp_stk[0]);
2349 #endif
2350 
2351 	PRESERVE(tcp->tcp_connid);
2352 
2353 	ASSERT(tcp->tcp_listen_cnt == NULL);
2354 	ASSERT(tcp->tcp_reass_tid == 0);
2355 
2356 #undef	DONTCARE
2357 #undef	PRESERVE
2358 }
2359 
2360 /*
2361  * Initialize the various fields in tcp_t.  If parent (the listener) is non
2362  * NULL, certain values will be inheritted from it.
2363  */
2364 void
2365 tcp_init_values(tcp_t *tcp, tcp_t *parent)
2366 {
2367 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2368 	conn_t		*connp = tcp->tcp_connp;
2369 	clock_t		rto;
2370 
2371 	ASSERT((connp->conn_family == AF_INET &&
2372 	    connp->conn_ipversion == IPV4_VERSION) ||
2373 	    (connp->conn_family == AF_INET6 &&
2374 	    (connp->conn_ipversion == IPV4_VERSION ||
2375 	    connp->conn_ipversion == IPV6_VERSION)));
2376 
2377 	if (parent == NULL) {
2378 		tcp->tcp_naglim = tcps->tcps_naglim_def;
2379 
2380 		tcp->tcp_rto_initial = tcps->tcps_rexmit_interval_initial;
2381 		tcp->tcp_rto_min = tcps->tcps_rexmit_interval_min;
2382 		tcp->tcp_rto_max = tcps->tcps_rexmit_interval_max;
2383 
2384 		tcp->tcp_first_ctimer_threshold =
2385 		    tcps->tcps_ip_notify_cinterval;
2386 		tcp->tcp_second_ctimer_threshold =
2387 		    tcps->tcps_ip_abort_cinterval;
2388 		tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval;
2389 		tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval;
2390 
2391 		tcp->tcp_fin_wait_2_flush_interval =
2392 		    tcps->tcps_fin_wait_2_flush_interval;
2393 
2394 		tcp->tcp_ka_interval = tcps->tcps_keepalive_interval;
2395 		tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval;
2396 
2397 		/*
2398 		 * Default value of tcp_init_cwnd is 0, so no need to set here
2399 		 * if parent is NULL.  But we need to inherit it from parent.
2400 		 */
2401 	} else {
2402 		/* Inherit various TCP parameters from the parent. */
2403 		tcp->tcp_naglim = parent->tcp_naglim;
2404 
2405 		tcp->tcp_rto_initial = parent->tcp_rto_initial;
2406 		tcp->tcp_rto_min = parent->tcp_rto_min;
2407 		tcp->tcp_rto_max = parent->tcp_rto_max;
2408 
2409 		tcp->tcp_first_ctimer_threshold =
2410 		    parent->tcp_first_ctimer_threshold;
2411 		tcp->tcp_second_ctimer_threshold =
2412 		    parent->tcp_second_ctimer_threshold;
2413 		tcp->tcp_first_timer_threshold =
2414 		    parent->tcp_first_timer_threshold;
2415 		tcp->tcp_second_timer_threshold =
2416 		    parent->tcp_second_timer_threshold;
2417 
2418 		tcp->tcp_fin_wait_2_flush_interval =
2419 		    parent->tcp_fin_wait_2_flush_interval;
2420 
2421 		tcp->tcp_ka_interval = parent->tcp_ka_interval;
2422 		tcp->tcp_ka_abort_thres = parent->tcp_ka_abort_thres;
2423 
2424 		tcp->tcp_init_cwnd = parent->tcp_init_cwnd;
2425 	}
2426 
2427 	/*
2428 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
2429 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
2430 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
2431 	 * during first few transmissions of a connection as seen in slow
2432 	 * links.
2433 	 */
2434 	tcp->tcp_rtt_sa = tcp->tcp_rto_initial << 2;
2435 	tcp->tcp_rtt_sd = tcp->tcp_rto_initial >> 1;
2436 	rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2437 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
2438 	    tcps->tcps_conn_grace_period;
2439 	TCP_SET_RTO(tcp, rto);
2440 
2441 	tcp->tcp_timer_backoff = 0;
2442 	tcp->tcp_ms_we_have_waited = 0;
2443 	tcp->tcp_last_recv_time = ddi_get_lbolt();
2444 	tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_;
2445 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2446 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
2447 
2448 	tcp->tcp_maxpsz_multiplier = tcps->tcps_maxpsz_multiplier;
2449 
2450 	/* NOTE:  ISS is now set in tcp_set_destination(). */
2451 
2452 	/* Reset fusion-related fields */
2453 	tcp->tcp_fused = B_FALSE;
2454 	tcp->tcp_unfusable = B_FALSE;
2455 	tcp->tcp_fused_sigurg = B_FALSE;
2456 	tcp->tcp_loopback_peer = NULL;
2457 
2458 	/* We rebuild the header template on the next connect/conn_request */
2459 
2460 	connp->conn_mlp_type = mlptSingle;
2461 
2462 	/*
2463 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
2464 	 * down tcp_rwnd. tcp_set_destination() will set the right value later.
2465 	 */
2466 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
2467 	tcp->tcp_rwnd = connp->conn_rcvbuf;
2468 
2469 	tcp->tcp_cork = B_FALSE;
2470 	/*
2471 	 * Init the tcp_debug option if it wasn't already set.  This value
2472 	 * determines whether TCP
2473 	 * calls strlog() to print out debug messages.  Doing this
2474 	 * initialization here means that this value is not inherited thru
2475 	 * tcp_reinit().
2476 	 */
2477 	if (!connp->conn_debug)
2478 		connp->conn_debug = tcps->tcps_dbg;
2479 }
2480 
2481 /*
2482  * Update the TCP connection according to change of PMTU.
2483  *
2484  * Path MTU might have changed by either increase or decrease, so need to
2485  * adjust the MSS based on the value of ixa_pmtu. No need to handle tiny
2486  * or negative MSS, since tcp_mss_set() will do it.
2487  */
2488 void
2489 tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only)
2490 {
2491 	uint32_t	pmtu;
2492 	int32_t		mss;
2493 	conn_t		*connp = tcp->tcp_connp;
2494 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
2495 	iaflags_t	ixaflags;
2496 
2497 	if (tcp->tcp_tcps->tcps_ignore_path_mtu)
2498 		return;
2499 
2500 	if (tcp->tcp_state < TCPS_ESTABLISHED)
2501 		return;
2502 
2503 	/*
2504 	 * Always call ip_get_pmtu() to make sure that IP has updated
2505 	 * ixa_flags properly.
2506 	 */
2507 	pmtu = ip_get_pmtu(ixa);
2508 	ixaflags = ixa->ixa_flags;
2509 
2510 	/*
2511 	 * Calculate the MSS by decreasing the PMTU by conn_ht_iphc_len and
2512 	 * IPsec overhead if applied. Make sure to use the most recent
2513 	 * IPsec information.
2514 	 */
2515 	mss = pmtu - connp->conn_ht_iphc_len - conn_ipsec_length(connp);
2516 
2517 	/*
2518 	 * Nothing to change, so just return.
2519 	 */
2520 	if (mss == tcp->tcp_mss)
2521 		return;
2522 
2523 	/*
2524 	 * Currently, for ICMP errors, only PMTU decrease is handled.
2525 	 */
2526 	if (mss > tcp->tcp_mss && decrease_only)
2527 		return;
2528 
2529 	DTRACE_PROBE2(tcp_update_pmtu, int32_t, tcp->tcp_mss, uint32_t, mss);
2530 
2531 	/*
2532 	 * Update ixa_fragsize and ixa_pmtu.
2533 	 */
2534 	ixa->ixa_fragsize = ixa->ixa_pmtu = pmtu;
2535 
2536 	/*
2537 	 * Adjust MSS and all relevant variables.
2538 	 */
2539 	tcp_mss_set(tcp, mss);
2540 
2541 	/*
2542 	 * If the PMTU is below the min size maintained by IP, then ip_get_pmtu
2543 	 * has set IXAF_PMTU_TOO_SMALL and cleared IXAF_PMTU_IPV4_DF. Since TCP
2544 	 * has a (potentially different) min size we do the same. Make sure to
2545 	 * clear IXAF_DONTFRAG, which is used by IP to decide whether to
2546 	 * fragment the packet.
2547 	 *
2548 	 * LSO over IPv6 can not be fragmented. So need to disable LSO
2549 	 * when IPv6 fragmentation is needed.
2550 	 */
2551 	if (mss < tcp->tcp_tcps->tcps_mss_min)
2552 		ixaflags |= IXAF_PMTU_TOO_SMALL;
2553 
2554 	if (ixaflags & IXAF_PMTU_TOO_SMALL)
2555 		ixaflags &= ~(IXAF_DONTFRAG | IXAF_PMTU_IPV4_DF);
2556 
2557 	if ((connp->conn_ipversion == IPV4_VERSION) &&
2558 	    !(ixaflags & IXAF_PMTU_IPV4_DF)) {
2559 		tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
2560 	}
2561 	ixa->ixa_flags = ixaflags;
2562 }
2563 
2564 int
2565 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
2566 {
2567 	conn_t	*connp = tcp->tcp_connp;
2568 	queue_t	*q = connp->conn_rq;
2569 	int32_t	mss = tcp->tcp_mss;
2570 	int	maxpsz;
2571 
2572 	if (TCP_IS_DETACHED(tcp))
2573 		return (mss);
2574 	if (tcp->tcp_fused) {
2575 		maxpsz = tcp_fuse_maxpsz(tcp);
2576 		mss = INFPSZ;
2577 	} else if (tcp->tcp_maxpsz_multiplier == 0) {
2578 		/*
2579 		 * Set the sd_qn_maxpsz according to the socket send buffer
2580 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
2581 		 * instruct the stream head to copyin user data into contiguous
2582 		 * kernel-allocated buffers without breaking it up into smaller
2583 		 * chunks.  We round up the buffer size to the nearest SMSS.
2584 		 */
2585 		maxpsz = MSS_ROUNDUP(connp->conn_sndbuf, mss);
2586 		if (tcp->tcp_kssl_ctx == NULL)
2587 			mss = INFPSZ;
2588 		else
2589 			mss = SSL3_MAX_RECORD_LEN;
2590 	} else {
2591 		/*
2592 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
2593 		 * (and a multiple of the mss).  This instructs the stream
2594 		 * head to break down larger than SMSS writes into SMSS-
2595 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
2596 		 */
2597 		maxpsz = tcp->tcp_maxpsz_multiplier * mss;
2598 		if (maxpsz > connp->conn_sndbuf / 2) {
2599 			maxpsz = connp->conn_sndbuf / 2;
2600 			/* Round up to nearest mss */
2601 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
2602 		}
2603 	}
2604 
2605 	(void) proto_set_maxpsz(q, connp, maxpsz);
2606 	if (!(IPCL_IS_NONSTR(connp)))
2607 		connp->conn_wq->q_maxpsz = maxpsz;
2608 	if (set_maxblk)
2609 		(void) proto_set_tx_maxblk(q, connp, mss);
2610 	return (mss);
2611 }
2612 
2613 /* For /dev/tcp aka AF_INET open */
2614 static int
2615 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2616 {
2617 	return (tcp_open(q, devp, flag, sflag, credp, B_FALSE));
2618 }
2619 
2620 /* For /dev/tcp6 aka AF_INET6 open */
2621 static int
2622 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2623 {
2624 	return (tcp_open(q, devp, flag, sflag, credp, B_TRUE));
2625 }
2626 
2627 conn_t *
2628 tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket,
2629     int *errorp)
2630 {
2631 	tcp_t		*tcp = NULL;
2632 	conn_t		*connp;
2633 	zoneid_t	zoneid;
2634 	tcp_stack_t	*tcps;
2635 	squeue_t	*sqp;
2636 
2637 	ASSERT(errorp != NULL);
2638 	/*
2639 	 * Find the proper zoneid and netstack.
2640 	 */
2641 	/*
2642 	 * Special case for install: miniroot needs to be able to
2643 	 * access files via NFS as though it were always in the
2644 	 * global zone.
2645 	 */
2646 	if (credp == kcred && nfs_global_client_only != 0) {
2647 		zoneid = GLOBAL_ZONEID;
2648 		tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
2649 		    netstack_tcp;
2650 		ASSERT(tcps != NULL);
2651 	} else {
2652 		netstack_t *ns;
2653 		int err;
2654 
2655 		if ((err = secpolicy_basic_net_access(credp)) != 0) {
2656 			*errorp = err;
2657 			return (NULL);
2658 		}
2659 
2660 		ns = netstack_find_by_cred(credp);
2661 		ASSERT(ns != NULL);
2662 		tcps = ns->netstack_tcp;
2663 		ASSERT(tcps != NULL);
2664 
2665 		/*
2666 		 * For exclusive stacks we set the zoneid to zero
2667 		 * to make TCP operate as if in the global zone.
2668 		 */
2669 		if (tcps->tcps_netstack->netstack_stackid !=
2670 		    GLOBAL_NETSTACKID)
2671 			zoneid = GLOBAL_ZONEID;
2672 		else
2673 			zoneid = crgetzoneid(credp);
2674 	}
2675 
2676 	sqp = IP_SQUEUE_GET((uint_t)gethrtime());
2677 	connp = (conn_t *)tcp_get_conn(sqp, tcps);
2678 	/*
2679 	 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
2680 	 * so we drop it by one.
2681 	 */
2682 	netstack_rele(tcps->tcps_netstack);
2683 	if (connp == NULL) {
2684 		*errorp = ENOSR;
2685 		return (NULL);
2686 	}
2687 	ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto);
2688 
2689 	connp->conn_sqp = sqp;
2690 	connp->conn_initial_sqp = connp->conn_sqp;
2691 	connp->conn_ixa->ixa_sqp = connp->conn_sqp;
2692 	tcp = connp->conn_tcp;
2693 
2694 	/*
2695 	 * Besides asking IP to set the checksum for us, have conn_ip_output
2696 	 * to do the following checks when necessary:
2697 	 *
2698 	 * IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid
2699 	 * IXAF_VERIFY_PMTU: verify PMTU changes
2700 	 * IXAF_VERIFY_LSO: verify LSO capability changes
2701 	 */
2702 	connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
2703 	    IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO;
2704 
2705 	if (!tcps->tcps_dev_flow_ctl)
2706 		connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL;
2707 
2708 	if (isv6) {
2709 		connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
2710 		connp->conn_ipversion = IPV6_VERSION;
2711 		connp->conn_family = AF_INET6;
2712 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
2713 		connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit;
2714 	} else {
2715 		connp->conn_ipversion = IPV4_VERSION;
2716 		connp->conn_family = AF_INET;
2717 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
2718 		connp->conn_default_ttl = tcps->tcps_ipv4_ttl;
2719 	}
2720 	connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl;
2721 
2722 	crhold(credp);
2723 	connp->conn_cred = credp;
2724 	connp->conn_cpid = curproc->p_pid;
2725 	connp->conn_open_time = ddi_get_lbolt64();
2726 
2727 	/* Cache things in the ixa without any refhold */
2728 	ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
2729 	connp->conn_ixa->ixa_cred = credp;
2730 	connp->conn_ixa->ixa_cpid = connp->conn_cpid;
2731 
2732 	connp->conn_zoneid = zoneid;
2733 	/* conn_allzones can not be set this early, hence no IPCL_ZONEID */
2734 	connp->conn_ixa->ixa_zoneid = zoneid;
2735 	connp->conn_mlp_type = mlptSingle;
2736 	ASSERT(connp->conn_netstack == tcps->tcps_netstack);
2737 	ASSERT(tcp->tcp_tcps == tcps);
2738 
2739 	/*
2740 	 * If the caller has the process-wide flag set, then default to MAC
2741 	 * exempt mode.  This allows read-down to unlabeled hosts.
2742 	 */
2743 	if (getpflags(NET_MAC_AWARE, credp) != 0)
2744 		connp->conn_mac_mode = CONN_MAC_AWARE;
2745 
2746 	connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);
2747 
2748 	if (issocket) {
2749 		tcp->tcp_issocket = 1;
2750 	}
2751 
2752 	connp->conn_rcvbuf = tcps->tcps_recv_hiwat;
2753 	connp->conn_sndbuf = tcps->tcps_xmit_hiwat;
2754 	connp->conn_sndlowat = tcps->tcps_xmit_lowat;
2755 	connp->conn_so_type = SOCK_STREAM;
2756 	connp->conn_wroff = connp->conn_ht_iphc_allocated +
2757 	    tcps->tcps_wroff_xtra;
2758 
2759 	SOCK_CONNID_INIT(tcp->tcp_connid);
2760 	/* DTrace ignores this - it isn't a tcp:::state-change */
2761 	tcp->tcp_state = TCPS_IDLE;
2762 	tcp_init_values(tcp, NULL);
2763 	return (connp);
2764 }
2765 
2766 static int
2767 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
2768     boolean_t isv6)
2769 {
2770 	tcp_t		*tcp = NULL;
2771 	conn_t		*connp = NULL;
2772 	int		err;
2773 	vmem_t		*minor_arena = NULL;
2774 	dev_t		conn_dev;
2775 	boolean_t	issocket;
2776 
2777 	if (q->q_ptr != NULL)
2778 		return (0);
2779 
2780 	if (sflag == MODOPEN)
2781 		return (EINVAL);
2782 
2783 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
2784 	    ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
2785 		minor_arena = ip_minor_arena_la;
2786 	} else {
2787 		/*
2788 		 * Either minor numbers in the large arena were exhausted
2789 		 * or a non socket application is doing the open.
2790 		 * Try to allocate from the small arena.
2791 		 */
2792 		if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
2793 			return (EBUSY);
2794 		}
2795 		minor_arena = ip_minor_arena_sa;
2796 	}
2797 
2798 	ASSERT(minor_arena != NULL);
2799 
2800 	*devp = makedevice(getmajor(*devp), (minor_t)conn_dev);
2801 
2802 	if (flag & SO_FALLBACK) {
2803 		/*
2804 		 * Non streams socket needs a stream to fallback to
2805 		 */
2806 		RD(q)->q_ptr = (void *)conn_dev;
2807 		WR(q)->q_qinfo = &tcp_fallback_sock_winit;
2808 		WR(q)->q_ptr = (void *)minor_arena;
2809 		qprocson(q);
2810 		return (0);
2811 	} else if (flag & SO_ACCEPTOR) {
2812 		q->q_qinfo = &tcp_acceptor_rinit;
2813 		/*
2814 		 * the conn_dev and minor_arena will be subsequently used by
2815 		 * tcp_tli_accept() and tcp_tpi_close_accept() to figure out
2816 		 * the minor device number for this connection from the q_ptr.
2817 		 */
2818 		RD(q)->q_ptr = (void *)conn_dev;
2819 		WR(q)->q_qinfo = &tcp_acceptor_winit;
2820 		WR(q)->q_ptr = (void *)minor_arena;
2821 		qprocson(q);
2822 		return (0);
2823 	}
2824 
2825 	issocket = flag & SO_SOCKSTR;
2826 	connp = tcp_create_common(credp, isv6, issocket, &err);
2827 
2828 	if (connp == NULL) {
2829 		inet_minor_free(minor_arena, conn_dev);
2830 		q->q_ptr = WR(q)->q_ptr = NULL;
2831 		return (err);
2832 	}
2833 
2834 	connp->conn_rq = q;
2835 	connp->conn_wq = WR(q);
2836 	q->q_ptr = WR(q)->q_ptr = connp;
2837 
2838 	connp->conn_dev = conn_dev;
2839 	connp->conn_minor_arena = minor_arena;
2840 
2841 	ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6);
2842 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
2843 
2844 	tcp = connp->conn_tcp;
2845 
2846 	if (issocket) {
2847 		WR(q)->q_qinfo = &tcp_sock_winit;
2848 	} else {
2849 #ifdef  _ILP32
2850 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
2851 #else
2852 		tcp->tcp_acceptor_id = conn_dev;
2853 #endif  /* _ILP32 */
2854 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
2855 	}
2856 
2857 	/*
2858 	 * Put the ref for TCP. Ref for IP was already put
2859 	 * by ipcl_conn_create. Also Make the conn_t globally
2860 	 * visible to walkers
2861 	 */
2862 	mutex_enter(&connp->conn_lock);
2863 	CONN_INC_REF_LOCKED(connp);
2864 	ASSERT(connp->conn_ref == 2);
2865 	connp->conn_state_flags &= ~CONN_INCIPIENT;
2866 	mutex_exit(&connp->conn_lock);
2867 
2868 	qprocson(q);
2869 	return (0);
2870 }
2871 
2872 /*
2873  * Build/update the tcp header template (in conn_ht_iphc) based on
2874  * conn_xmit_ipp. The headers include ip6_t, any extension
2875  * headers, and the maximum size tcp header (to avoid reallocation
2876  * on the fly for additional tcp options).
2877  *
2878  * Assumes the caller has already set conn_{faddr,laddr,fport,lport,flowinfo}.
2879  * Returns failure if can't allocate memory.
2880  */
2881 int
2882 tcp_build_hdrs(tcp_t *tcp)
2883 {
2884 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2885 	conn_t		*connp = tcp->tcp_connp;
2886 	char		buf[TCP_MAX_HDR_LENGTH];
2887 	uint_t		buflen;
2888 	uint_t		ulplen = TCP_MIN_HEADER_LENGTH;
2889 	uint_t		extralen = TCP_MAX_TCP_OPTIONS_LENGTH;
2890 	tcpha_t		*tcpha;
2891 	uint32_t	cksum;
2892 	int		error;
2893 
2894 	/*
2895 	 * We might be called after the connection is set up, and we might
2896 	 * have TS options already in the TCP header. Thus we  save any
2897 	 * existing tcp header.
2898 	 */
2899 	buflen = connp->conn_ht_ulp_len;
2900 	if (buflen != 0) {
2901 		bcopy(connp->conn_ht_ulp, buf, buflen);
2902 		extralen -= buflen - ulplen;
2903 		ulplen = buflen;
2904 	}
2905 
2906 	/* Grab lock to satisfy ASSERT; TCP is serialized using squeue */
2907 	mutex_enter(&connp->conn_lock);
2908 	error = conn_build_hdr_template(connp, ulplen, extralen,
2909 	    &connp->conn_laddr_v6, &connp->conn_faddr_v6, connp->conn_flowinfo);
2910 	mutex_exit(&connp->conn_lock);
2911 	if (error != 0)
2912 		return (error);
2913 
2914 	/*
2915 	 * Any routing header/option has been massaged. The checksum difference
2916 	 * is stored in conn_sum for later use.
2917 	 */
2918 	tcpha = (tcpha_t *)connp->conn_ht_ulp;
2919 	tcp->tcp_tcpha = tcpha;
2920 
2921 	/* restore any old tcp header */
2922 	if (buflen != 0) {
2923 		bcopy(buf, connp->conn_ht_ulp, buflen);
2924 	} else {
2925 		tcpha->tha_sum = 0;
2926 		tcpha->tha_urp = 0;
2927 		tcpha->tha_ack = 0;
2928 		tcpha->tha_offset_and_reserved = (5 << 4);
2929 		tcpha->tha_lport = connp->conn_lport;
2930 		tcpha->tha_fport = connp->conn_fport;
2931 	}
2932 
2933 	/*
2934 	 * IP wants our header length in the checksum field to
2935 	 * allow it to perform a single pseudo-header+checksum
2936 	 * calculation on behalf of TCP.
2937 	 * Include the adjustment for a source route once IP_OPTIONS is set.
2938 	 */
2939 	cksum = sizeof (tcpha_t) + connp->conn_sum;
2940 	cksum = (cksum >> 16) + (cksum & 0xFFFF);
2941 	ASSERT(cksum < 0x10000);
2942 	tcpha->tha_sum = htons(cksum);
2943 
2944 	if (connp->conn_ipversion == IPV4_VERSION)
2945 		tcp->tcp_ipha = (ipha_t *)connp->conn_ht_iphc;
2946 	else
2947 		tcp->tcp_ip6h = (ip6_t *)connp->conn_ht_iphc;
2948 
2949 	if (connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra >
2950 	    connp->conn_wroff) {
2951 		connp->conn_wroff = connp->conn_ht_iphc_allocated +
2952 		    tcps->tcps_wroff_xtra;
2953 		(void) proto_set_tx_wroff(connp->conn_rq, connp,
2954 		    connp->conn_wroff);
2955 	}
2956 	return (0);
2957 }
2958 
2959 /*
2960  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
2961  * We do not allow the receive window to shrink.  After setting rwnd,
2962  * set the flow control hiwat of the stream.
2963  *
2964  * This function is called in 2 cases:
2965  *
2966  * 1) Before data transfer begins, in tcp_input_listener() for accepting a
2967  *    connection (passive open) and in tcp_input_data() for active connect.
2968  *    This is called after tcp_mss_set() when the desired MSS value is known.
2969  *    This makes sure that our window size is a mutiple of the other side's
2970  *    MSS.
2971  * 2) Handling SO_RCVBUF option.
2972  *
2973  * It is ASSUMED that the requested size is a multiple of the current MSS.
2974  *
2975  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
2976  * user requests so.
2977  */
2978 int
2979 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
2980 {
2981 	uint32_t	mss = tcp->tcp_mss;
2982 	uint32_t	old_max_rwnd;
2983 	uint32_t	max_transmittable_rwnd;
2984 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2985 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2986 	conn_t		*connp = tcp->tcp_connp;
2987 
2988 	/*
2989 	 * Insist on a receive window that is at least
2990 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
2991 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
2992 	 * and delayed acknowledgement.
2993 	 */
2994 	rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss);
2995 
2996 	if (tcp->tcp_fused) {
2997 		size_t sth_hiwat;
2998 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
2999 
3000 		ASSERT(peer_tcp != NULL);
3001 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
3002 		if (!tcp_detached) {
3003 			(void) proto_set_rx_hiwat(connp->conn_rq, connp,
3004 			    sth_hiwat);
3005 			tcp_set_recv_threshold(tcp, sth_hiwat >> 3);
3006 		}
3007 
3008 		/* Caller could have changed tcp_rwnd; update tha_win */
3009 		if (tcp->tcp_tcpha != NULL) {
3010 			tcp->tcp_tcpha->tha_win =
3011 			    htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
3012 		}
3013 		if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
3014 			tcp->tcp_cwnd_max = rwnd;
3015 
3016 		/*
3017 		 * In the fusion case, the maxpsz stream head value of
3018 		 * our peer is set according to its send buffer size
3019 		 * and our receive buffer size; since the latter may
3020 		 * have changed we need to update the peer's maxpsz.
3021 		 */
3022 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
3023 		return (sth_hiwat);
3024 	}
3025 
3026 	if (tcp_detached)
3027 		old_max_rwnd = tcp->tcp_rwnd;
3028 	else
3029 		old_max_rwnd = connp->conn_rcvbuf;
3030 
3031 
3032 	/*
3033 	 * If window size info has already been exchanged, TCP should not
3034 	 * shrink the window.  Shrinking window is doable if done carefully.
3035 	 * We may add that support later.  But so far there is not a real
3036 	 * need to do that.
3037 	 */
3038 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
3039 		/* MSS may have changed, do a round up again. */
3040 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
3041 	}
3042 
3043 	/*
3044 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
3045 	 * can be applied even before the window scale option is decided.
3046 	 */
3047 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
3048 	if (rwnd > max_transmittable_rwnd) {
3049 		rwnd = max_transmittable_rwnd -
3050 		    (max_transmittable_rwnd % mss);
3051 		if (rwnd < mss)
3052 			rwnd = max_transmittable_rwnd;
3053 		/*
3054 		 * If we're over the limit we may have to back down tcp_rwnd.
3055 		 * The increment below won't work for us. So we set all three
3056 		 * here and the increment below will have no effect.
3057 		 */
3058 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
3059 	}
3060 	if (tcp->tcp_localnet) {
3061 		tcp->tcp_rack_abs_max =
3062 		    MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2);
3063 	} else {
3064 		/*
3065 		 * For a remote host on a different subnet (through a router),
3066 		 * we ack every other packet to be conforming to RFC1122.
3067 		 * tcp_deferred_acks_max is default to 2.
3068 		 */
3069 		tcp->tcp_rack_abs_max =
3070 		    MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2);
3071 	}
3072 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
3073 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
3074 	else
3075 		tcp->tcp_rack_cur_max = 0;
3076 	/*
3077 	 * Increment the current rwnd by the amount the maximum grew (we
3078 	 * can not overwrite it since we might be in the middle of a
3079 	 * connection.)
3080 	 */
3081 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
3082 	connp->conn_rcvbuf = rwnd;
3083 
3084 	/* Are we already connected? */
3085 	if (tcp->tcp_tcpha != NULL) {
3086 		tcp->tcp_tcpha->tha_win =
3087 		    htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
3088 	}
3089 
3090 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
3091 		tcp->tcp_cwnd_max = rwnd;
3092 
3093 	if (tcp_detached)
3094 		return (rwnd);
3095 
3096 	tcp_set_recv_threshold(tcp, rwnd >> 3);
3097 
3098 	(void) proto_set_rx_hiwat(connp->conn_rq, connp, rwnd);
3099 	return (rwnd);
3100 }
3101 
3102 int
3103 tcp_do_unbind(conn_t *connp)
3104 {
3105 	tcp_t *tcp = connp->conn_tcp;
3106 	int32_t oldstate;
3107 
3108 	switch (tcp->tcp_state) {
3109 	case TCPS_BOUND:
3110 	case TCPS_LISTEN:
3111 		break;
3112 	default:
3113 		return (-TOUTSTATE);
3114 	}
3115 
3116 	/*
3117 	 * Need to clean up all the eagers since after the unbind, segments
3118 	 * will no longer be delivered to this listener stream.
3119 	 */
3120 	mutex_enter(&tcp->tcp_eager_lock);
3121 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
3122 		tcp_eager_cleanup(tcp, 0);
3123 	}
3124 	mutex_exit(&tcp->tcp_eager_lock);
3125 
3126 	/* Clean up the listener connection counter if necessary. */
3127 	if (tcp->tcp_listen_cnt != NULL)
3128 		TCP_DECR_LISTEN_CNT(tcp);
3129 	connp->conn_laddr_v6 = ipv6_all_zeros;
3130 	connp->conn_saddr_v6 = ipv6_all_zeros;
3131 	tcp_bind_hash_remove(tcp);
3132 	oldstate = tcp->tcp_state;
3133 	tcp->tcp_state = TCPS_IDLE;
3134 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
3135 	    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
3136 	    int32_t, oldstate);
3137 
3138 	ip_unbind(connp);
3139 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
3140 
3141 	return (0);
3142 }
3143 
3144 /*
3145  * Collect protocol properties to send to the upper handle.
3146  */
3147 void
3148 tcp_get_proto_props(tcp_t *tcp, struct sock_proto_props *sopp)
3149 {
3150 	conn_t *connp = tcp->tcp_connp;
3151 
3152 	sopp->sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF;
3153 	sopp->sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
3154 
3155 	sopp->sopp_rxhiwat = tcp->tcp_fused ?
3156 	    tcp_fuse_set_rcv_hiwat(tcp, connp->conn_rcvbuf) :
3157 	    connp->conn_rcvbuf;
3158 	/*
3159 	 * Determine what write offset value to use depending on SACK and
3160 	 * whether the endpoint is fused or not.
3161 	 */
3162 	if (tcp->tcp_fused) {
3163 		ASSERT(tcp->tcp_loopback);
3164 		ASSERT(tcp->tcp_loopback_peer != NULL);
3165 		/*
3166 		 * For fused tcp loopback, set the stream head's write
3167 		 * offset value to zero since we won't be needing any room
3168 		 * for TCP/IP headers.  This would also improve performance
3169 		 * since it would reduce the amount of work done by kmem.
3170 		 * Non-fused tcp loopback case is handled separately below.
3171 		 */
3172 		sopp->sopp_wroff = 0;
3173 		/*
3174 		 * Update the peer's transmit parameters according to
3175 		 * our recently calculated high water mark value.
3176 		 */
3177 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
3178 	} else if (tcp->tcp_snd_sack_ok) {
3179 		sopp->sopp_wroff = connp->conn_ht_iphc_allocated +
3180 		    (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra);
3181 	} else {
3182 		sopp->sopp_wroff = connp->conn_ht_iphc_len +
3183 		    (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra);
3184 	}
3185 
3186 	/*
3187 	 * If this is endpoint is handling SSL, then reserve extra
3188 	 * offset and space at the end.
3189 	 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets,
3190 	 * overriding the previous setting. The extra cost of signing and
3191 	 * encrypting multiple MSS-size records (12 of them with Ethernet),
3192 	 * instead of a single contiguous one by the stream head
3193 	 * largely outweighs the statistical reduction of ACKs, when
3194 	 * applicable. The peer will also save on decryption and verification
3195 	 * costs.
3196 	 */
3197 	if (tcp->tcp_kssl_ctx != NULL) {
3198 		sopp.sopp_wroff += SSL3_WROFFSET;
3199 
3200 		sopp.sopp_flags |= SOCKOPT_TAIL;
3201 		sopp.sopp_tail = SSL3_MAX_TAIL_LEN;
3202 
3203 		sopp.sopp_flags |= SOCKOPT_ZCOPY;
3204 		sopp.sopp_zcopyflag = ZCVMUNSAFE;
3205 
3206 		sopp.sopp_maxblk = SSL3_MAX_RECORD_LEN;
3207 	}
3208 	if (tcp->tcp_loopback) {
3209 		sopp->sopp_flags |= SOCKOPT_LOOPBACK;
3210 		sopp->sopp_loopback = B_TRUE;
3211 	}
3212 }
3213 
3214 /*
3215  * Check the usability of ZEROCOPY. It's instead checking the flag set by IP.
3216  */
3217 boolean_t
3218 tcp_zcopy_check(tcp_t *tcp)
3219 {
3220 	conn_t		*connp = tcp->tcp_connp;
3221 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
3222 	boolean_t	zc_enabled = B_FALSE;
3223 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3224 
3225 	if (do_tcpzcopy == 2)
3226 		zc_enabled = B_TRUE;
3227 	else if ((do_tcpzcopy == 1) && (ixa->ixa_flags & IXAF_ZCOPY_CAPAB))
3228 		zc_enabled = B_TRUE;
3229 
3230 	tcp->tcp_snd_zcopy_on = zc_enabled;
3231 	if (!TCP_IS_DETACHED(tcp)) {
3232 		if (zc_enabled) {
3233 			ixa->ixa_flags |= IXAF_VERIFY_ZCOPY;
3234 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
3235 			    ZCVMSAFE);
3236 			TCP_STAT(tcps, tcp_zcopy_on);
3237 		} else {
3238 			ixa->ixa_flags &= ~IXAF_VERIFY_ZCOPY;
3239 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
3240 			    ZCVMUNSAFE);
3241 			TCP_STAT(tcps, tcp_zcopy_off);
3242 		}
3243 	}
3244 	return (zc_enabled);
3245 }
3246 
3247 /*
3248  * Backoff from a zero-copy message by copying data to a new allocated
3249  * message and freeing the original desballoca'ed segmapped message.
3250  *
3251  * This function is called by following two callers:
3252  * 1. tcp_timer: fix_xmitlist is set to B_TRUE, because it's safe to free
3253  *    the origial desballoca'ed message and notify sockfs. This is in re-
3254  *    transmit state.
3255  * 2. tcp_output: fix_xmitlist is set to B_FALSE. Flag STRUIO_ZCNOTIFY need
3256  *    to be copied to new message.
3257  */
3258 mblk_t *
3259 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, boolean_t fix_xmitlist)
3260 {
3261 	mblk_t		*nbp;
3262 	mblk_t		*head = NULL;
3263 	mblk_t		*tail = NULL;
3264 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3265 
3266 	ASSERT(bp != NULL);
3267 	while (bp != NULL) {
3268 		if (IS_VMLOANED_MBLK(bp)) {
3269 			TCP_STAT(tcps, tcp_zcopy_backoff);
3270 			if ((nbp = copyb(bp)) == NULL) {
3271 				tcp->tcp_xmit_zc_clean = B_FALSE;
3272 				if (tail != NULL)
3273 					tail->b_cont = bp;
3274 				return ((head == NULL) ? bp : head);
3275 			}
3276 
3277 			if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
3278 				if (fix_xmitlist)
3279 					tcp_zcopy_notify(tcp);
3280 				else
3281 					nbp->b_datap->db_struioflag |=
3282 					    STRUIO_ZCNOTIFY;
3283 			}
3284 			nbp->b_cont = bp->b_cont;
3285 
3286 			/*
3287 			 * Copy saved information and adjust tcp_xmit_tail
3288 			 * if needed.
3289 			 */
3290 			if (fix_xmitlist) {
3291 				nbp->b_prev = bp->b_prev;
3292 				nbp->b_next = bp->b_next;
3293 
3294 				if (tcp->tcp_xmit_tail == bp)
3295 					tcp->tcp_xmit_tail = nbp;
3296 			}
3297 
3298 			/* Free the original message. */
3299 			bp->b_prev = NULL;
3300 			bp->b_next = NULL;
3301 			freeb(bp);
3302 
3303 			bp = nbp;
3304 		}
3305 
3306 		if (head == NULL) {
3307 			head = bp;
3308 		}
3309 		if (tail == NULL) {
3310 			tail = bp;
3311 		} else {
3312 			tail->b_cont = bp;
3313 			tail = bp;
3314 		}
3315 
3316 		/* Move forward. */
3317 		bp = bp->b_cont;
3318 	}
3319 
3320 	if (fix_xmitlist) {
3321 		tcp->tcp_xmit_last = tail;
3322 		tcp->tcp_xmit_zc_clean = B_TRUE;
3323 	}
3324 
3325 	return (head);
3326 }
3327 
3328 void
3329 tcp_zcopy_notify(tcp_t *tcp)
3330 {
3331 	struct stdata	*stp;
3332 	conn_t		*connp;
3333 
3334 	if (tcp->tcp_detached)
3335 		return;
3336 	connp = tcp->tcp_connp;
3337 	if (IPCL_IS_NONSTR(connp)) {
3338 		(*connp->conn_upcalls->su_zcopy_notify)
3339 		    (connp->conn_upper_handle);
3340 		return;
3341 	}
3342 	stp = STREAM(connp->conn_rq);
3343 	mutex_enter(&stp->sd_lock);
3344 	stp->sd_flag |= STZCNOTIFY;
3345 	cv_broadcast(&stp->sd_zcopy_wait);
3346 	mutex_exit(&stp->sd_lock);
3347 }
3348 
3349 /*
3350  * Update the TCP connection according to change of LSO capability.
3351  */
3352 static void
3353 tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa)
3354 {
3355 	/*
3356 	 * We check against IPv4 header length to preserve the old behavior
3357 	 * of only enabling LSO when there are no IP options.
3358 	 * But this restriction might not be necessary at all. Before removing
3359 	 * it, need to verify how LSO is handled for source routing case, with
3360 	 * which IP does software checksum.
3361 	 *
3362 	 * For IPv6, whenever any extension header is needed, LSO is supressed.
3363 	 */
3364 	if (ixa->ixa_ip_hdr_length != ((ixa->ixa_flags & IXAF_IS_IPV4) ?
3365 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN))
3366 		return;
3367 
3368 	/*
3369 	 * Either the LSO capability newly became usable, or it has changed.
3370 	 */
3371 	if (ixa->ixa_flags & IXAF_LSO_CAPAB) {
3372 		ill_lso_capab_t	*lsoc = &ixa->ixa_lso_capab;
3373 
3374 		ASSERT(lsoc->ill_lso_max > 0);
3375 		tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, lsoc->ill_lso_max);
3376 
3377 		DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso,
3378 		    boolean_t, B_TRUE, uint32_t, tcp->tcp_lso_max);
3379 
3380 		/*
3381 		 * If LSO to be enabled, notify the STREAM header with larger
3382 		 * data block.
3383 		 */
3384 		if (!tcp->tcp_lso)
3385 			tcp->tcp_maxpsz_multiplier = 0;
3386 
3387 		tcp->tcp_lso = B_TRUE;
3388 		TCP_STAT(tcp->tcp_tcps, tcp_lso_enabled);
3389 	} else { /* LSO capability is not usable any more. */
3390 		DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso,
3391 		    boolean_t, B_FALSE, uint32_t, tcp->tcp_lso_max);
3392 
3393 		/*
3394 		 * If LSO to be disabled, notify the STREAM header with smaller
3395 		 * data block. And need to restore fragsize to PMTU.
3396 		 */
3397 		if (tcp->tcp_lso) {
3398 			tcp->tcp_maxpsz_multiplier =
3399 			    tcp->tcp_tcps->tcps_maxpsz_multiplier;
3400 			ixa->ixa_fragsize = ixa->ixa_pmtu;
3401 			tcp->tcp_lso = B_FALSE;
3402 			TCP_STAT(tcp->tcp_tcps, tcp_lso_disabled);
3403 		}
3404 	}
3405 
3406 	(void) tcp_maxpsz_set(tcp, B_TRUE);
3407 }
3408 
3409 /*
3410  * Update the TCP connection according to change of ZEROCOPY capability.
3411  */
3412 static void
3413 tcp_update_zcopy(tcp_t *tcp)
3414 {
3415 	conn_t		*connp = tcp->tcp_connp;
3416 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3417 
3418 	if (tcp->tcp_snd_zcopy_on) {
3419 		tcp->tcp_snd_zcopy_on = B_FALSE;
3420 		if (!TCP_IS_DETACHED(tcp)) {
3421 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
3422 			    ZCVMUNSAFE);
3423 			TCP_STAT(tcps, tcp_zcopy_off);
3424 		}
3425 	} else {
3426 		tcp->tcp_snd_zcopy_on = B_TRUE;
3427 		if (!TCP_IS_DETACHED(tcp)) {
3428 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
3429 			    ZCVMSAFE);
3430 			TCP_STAT(tcps, tcp_zcopy_on);
3431 		}
3432 	}
3433 }
3434 
3435 /*
3436  * Notify function registered with ip_xmit_attr_t. It's called in the squeue
3437  * so it's safe to update the TCP connection.
3438  */
3439 /* ARGSUSED1 */
3440 static void
3441 tcp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype,
3442     ixa_notify_arg_t narg)
3443 {
3444 	tcp_t		*tcp = (tcp_t *)arg;
3445 	conn_t		*connp = tcp->tcp_connp;
3446 
3447 	switch (ntype) {
3448 	case IXAN_LSO:
3449 		tcp_update_lso(tcp, connp->conn_ixa);
3450 		break;
3451 	case IXAN_PMTU:
3452 		tcp_update_pmtu(tcp, B_FALSE);
3453 		break;
3454 	case IXAN_ZCOPY:
3455 		tcp_update_zcopy(tcp);
3456 		break;
3457 	default:
3458 		break;
3459 	}
3460 }
3461 
3462 /*
3463  * The TCP write service routine should never be called...
3464  */
3465 /* ARGSUSED */
3466 static void
3467 tcp_wsrv(queue_t *q)
3468 {
3469 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
3470 
3471 	TCP_STAT(tcps, tcp_wsrv_called);
3472 }
3473 
3474 /*
3475  * Hash list lookup routine for tcp_t structures.
3476  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
3477  */
3478 tcp_t *
3479 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps)
3480 {
3481 	tf_t	*tf;
3482 	tcp_t	*tcp;
3483 
3484 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
3485 	mutex_enter(&tf->tf_lock);
3486 	for (tcp = tf->tf_tcp; tcp != NULL;
3487 	    tcp = tcp->tcp_acceptor_hash) {
3488 		if (tcp->tcp_acceptor_id == id) {
3489 			CONN_INC_REF(tcp->tcp_connp);
3490 			mutex_exit(&tf->tf_lock);
3491 			return (tcp);
3492 		}
3493 	}
3494 	mutex_exit(&tf->tf_lock);
3495 	return (NULL);
3496 }
3497 
3498 /*
3499  * Hash list insertion routine for tcp_t structures.
3500  */
3501 void
3502 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
3503 {
3504 	tf_t	*tf;
3505 	tcp_t	**tcpp;
3506 	tcp_t	*tcpnext;
3507 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3508 
3509 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
3510 
3511 	if (tcp->tcp_ptpahn != NULL)
3512 		tcp_acceptor_hash_remove(tcp);
3513 	tcpp = &tf->tf_tcp;
3514 	mutex_enter(&tf->tf_lock);
3515 	tcpnext = tcpp[0];
3516 	if (tcpnext)
3517 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
3518 	tcp->tcp_acceptor_hash = tcpnext;
3519 	tcp->tcp_ptpahn = tcpp;
3520 	tcpp[0] = tcp;
3521 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
3522 	mutex_exit(&tf->tf_lock);
3523 }
3524 
3525 /*
3526  * Hash list removal routine for tcp_t structures.
3527  */
3528 void
3529 tcp_acceptor_hash_remove(tcp_t *tcp)
3530 {
3531 	tcp_t	*tcpnext;
3532 	kmutex_t *lockp;
3533 
3534 	/*
3535 	 * Extract the lock pointer in case there are concurrent
3536 	 * hash_remove's for this instance.
3537 	 */
3538 	lockp = tcp->tcp_acceptor_lockp;
3539 
3540 	if (tcp->tcp_ptpahn == NULL)
3541 		return;
3542 
3543 	ASSERT(lockp != NULL);
3544 	mutex_enter(lockp);
3545 	if (tcp->tcp_ptpahn) {
3546 		tcpnext = tcp->tcp_acceptor_hash;
3547 		if (tcpnext) {
3548 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
3549 			tcp->tcp_acceptor_hash = NULL;
3550 		}
3551 		*tcp->tcp_ptpahn = tcpnext;
3552 		tcp->tcp_ptpahn = NULL;
3553 	}
3554 	mutex_exit(lockp);
3555 	tcp->tcp_acceptor_lockp = NULL;
3556 }
3557 
3558 /*
3559  * Type three generator adapted from the random() function in 4.4 BSD:
3560  */
3561 
3562 /*
3563  * Copyright (c) 1983, 1993
3564  *	The Regents of the University of California.  All rights reserved.
3565  *
3566  * Redistribution and use in source and binary forms, with or without
3567  * modification, are permitted provided that the following conditions
3568  * are met:
3569  * 1. Redistributions of source code must retain the above copyright
3570  *    notice, this list of conditions and the following disclaimer.
3571  * 2. Redistributions in binary form must reproduce the above copyright
3572  *    notice, this list of conditions and the following disclaimer in the
3573  *    documentation and/or other materials provided with the distribution.
3574  * 3. All advertising materials mentioning features or use of this software
3575  *    must display the following acknowledgement:
3576  *	This product includes software developed by the University of
3577  *	California, Berkeley and its contributors.
3578  * 4. Neither the name of the University nor the names of its contributors
3579  *    may be used to endorse or promote products derived from this software
3580  *    without specific prior written permission.
3581  *
3582  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
3583  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
3584  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
3585  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
3586  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
3587  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
3588  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
3589  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
3590  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
3591  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
3592  * SUCH DAMAGE.
3593  */
3594 
3595 /* Type 3 -- x**31 + x**3 + 1 */
3596 #define	DEG_3		31
3597 #define	SEP_3		3
3598 
3599 
3600 /* Protected by tcp_random_lock */
3601 static int tcp_randtbl[DEG_3 + 1];
3602 
3603 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
3604 static int *tcp_random_rptr = &tcp_randtbl[1];
3605 
3606 static int *tcp_random_state = &tcp_randtbl[1];
3607 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
3608 
3609 kmutex_t tcp_random_lock;
3610 
3611 void
3612 tcp_random_init(void)
3613 {
3614 	int i;
3615 	hrtime_t hrt;
3616 	time_t wallclock;
3617 	uint64_t result;
3618 
3619 	/*
3620 	 * Use high-res timer and current time for seed.  Gethrtime() returns
3621 	 * a longlong, which may contain resolution down to nanoseconds.
3622 	 * The current time will either be a 32-bit or a 64-bit quantity.
3623 	 * XOR the two together in a 64-bit result variable.
3624 	 * Convert the result to a 32-bit value by multiplying the high-order
3625 	 * 32-bits by the low-order 32-bits.
3626 	 */
3627 
3628 	hrt = gethrtime();
3629 	(void) drv_getparm(TIME, &wallclock);
3630 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
3631 	mutex_enter(&tcp_random_lock);
3632 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
3633 	    (result & 0xffffffff);
3634 
3635 	for (i = 1; i < DEG_3; i++)
3636 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
3637 		    + 12345;
3638 	tcp_random_fptr = &tcp_random_state[SEP_3];
3639 	tcp_random_rptr = &tcp_random_state[0];
3640 	mutex_exit(&tcp_random_lock);
3641 	for (i = 0; i < 10 * DEG_3; i++)
3642 		(void) tcp_random();
3643 }
3644 
3645 /*
3646  * tcp_random: Return a random number in the range [1 - (128K + 1)].
3647  * This range is selected to be approximately centered on TCP_ISS / 2,
3648  * and easy to compute. We get this value by generating a 32-bit random
3649  * number, selecting out the high-order 17 bits, and then adding one so
3650  * that we never return zero.
3651  */
3652 int
3653 tcp_random(void)
3654 {
3655 	int i;
3656 
3657 	mutex_enter(&tcp_random_lock);
3658 	*tcp_random_fptr += *tcp_random_rptr;
3659 
3660 	/*
3661 	 * The high-order bits are more random than the low-order bits,
3662 	 * so we select out the high-order 17 bits and add one so that
3663 	 * we never return zero.
3664 	 */
3665 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
3666 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
3667 		tcp_random_fptr = tcp_random_state;
3668 		++tcp_random_rptr;
3669 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
3670 		tcp_random_rptr = tcp_random_state;
3671 
3672 	mutex_exit(&tcp_random_lock);
3673 	return (i);
3674 }
3675 
3676 /*
3677  * Split this function out so that if the secret changes, I'm okay.
3678  *
3679  * Initialize the tcp_iss_cookie and tcp_iss_key.
3680  */
3681 
3682 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
3683 
3684 void
3685 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps)
3686 {
3687 	struct {
3688 		int32_t current_time;
3689 		uint32_t randnum;
3690 		uint16_t pad;
3691 		uint8_t ether[6];
3692 		uint8_t passwd[PASSWD_SIZE];
3693 	} tcp_iss_cookie;
3694 	time_t t;
3695 
3696 	/*
3697 	 * Start with the current absolute time.
3698 	 */
3699 	(void) drv_getparm(TIME, &t);
3700 	tcp_iss_cookie.current_time = t;
3701 
3702 	/*
3703 	 * XXX - Need a more random number per RFC 1750, not this crap.
3704 	 * OTOH, if what follows is pretty random, then I'm in better shape.
3705 	 */
3706 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
3707 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
3708 
3709 	/*
3710 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
3711 	 * as a good template.
3712 	 */
3713 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
3714 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
3715 
3716 	/*
3717 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
3718 	 */
3719 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
3720 
3721 	/*
3722 	 * See 4010593 if this section becomes a problem again,
3723 	 * but the local ethernet address is useful here.
3724 	 */
3725 	(void) localetheraddr(NULL,
3726 	    (struct ether_addr *)&tcp_iss_cookie.ether);
3727 
3728 	/*
3729 	 * Hash 'em all together.  The MD5Final is called per-connection.
3730 	 */
3731 	mutex_enter(&tcps->tcps_iss_key_lock);
3732 	MD5Init(&tcps->tcps_iss_key);
3733 	MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie,
3734 	    sizeof (tcp_iss_cookie));
3735 	mutex_exit(&tcps->tcps_iss_key_lock);
3736 }
3737 
3738 /*
3739  * Called by IP when IP is loaded into the kernel
3740  */
3741 void
3742 tcp_ddi_g_init(void)
3743 {
3744 	tcp_timercache = kmem_cache_create("tcp_timercache",
3745 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
3746 	    NULL, NULL, NULL, NULL, NULL, 0);
3747 
3748 	tcp_notsack_blk_cache = kmem_cache_create("tcp_notsack_blk_cache",
3749 	    sizeof (notsack_blk_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3750 
3751 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
3752 
3753 	/* Initialize the random number generator */
3754 	tcp_random_init();
3755 
3756 	/* A single callback independently of how many netstacks we have */
3757 	ip_squeue_init(tcp_squeue_add);
3758 
3759 	tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics);
3760 
3761 	tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput);
3762 
3763 	/*
3764 	 * We want to be informed each time a stack is created or
3765 	 * destroyed in the kernel, so we can maintain the
3766 	 * set of tcp_stack_t's.
3767 	 */
3768 	netstack_register(NS_TCP, tcp_stack_init, NULL, tcp_stack_fini);
3769 
3770 	mutex_enter(&cpu_lock);
3771 	register_cpu_setup_func(tcp_cpu_update, NULL);
3772 	mutex_exit(&cpu_lock);
3773 }
3774 
3775 
3776 #define	INET_NAME	"ip"
3777 
3778 /*
3779  * Initialize the TCP stack instance.
3780  */
3781 static void *
3782 tcp_stack_init(netstackid_t stackid, netstack_t *ns)
3783 {
3784 	tcp_stack_t	*tcps;
3785 	int		i;
3786 	int		error = 0;
3787 	major_t		major;
3788 	size_t		arrsz;
3789 
3790 	tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP);
3791 	tcps->tcps_netstack = ns;
3792 
3793 	/* Initialize locks */
3794 	mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
3795 	mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
3796 
3797 	tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
3798 	tcps->tcps_g_epriv_ports[0] = ULP_DEF_EPRIV_PORT1;
3799 	tcps->tcps_g_epriv_ports[1] = ULP_DEF_EPRIV_PORT2;
3800 	tcps->tcps_min_anonpriv_port = 512;
3801 
3802 	tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) *
3803 	    TCP_BIND_FANOUT_SIZE, KM_SLEEP);
3804 	tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) *
3805 	    TCP_ACCEPTOR_FANOUT_SIZE, KM_SLEEP);
3806 
3807 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
3808 		mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL,
3809 		    MUTEX_DEFAULT, NULL);
3810 	}
3811 
3812 	for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) {
3813 		mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL,
3814 		    MUTEX_DEFAULT, NULL);
3815 	}
3816 
3817 	/* TCP's IPsec code calls the packet dropper. */
3818 	ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement");
3819 
3820 	arrsz = tcp_propinfo_count * sizeof (mod_prop_info_t);
3821 	tcps->tcps_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz,
3822 	    KM_SLEEP);
3823 	bcopy(tcp_propinfo_tbl, tcps->tcps_propinfo_tbl, arrsz);
3824 
3825 	/*
3826 	 * Note: To really walk the device tree you need the devinfo
3827 	 * pointer to your device which is only available after probe/attach.
3828 	 * The following is safe only because it uses ddi_root_node()
3829 	 */
3830 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
3831 	    tcp_opt_obj.odb_opt_arr_cnt);
3832 
3833 	/*
3834 	 * Initialize RFC 1948 secret values.  This will probably be reset once
3835 	 * by the boot scripts.
3836 	 *
3837 	 * Use NULL name, as the name is caught by the new lockstats.
3838 	 *
3839 	 * Initialize with some random, non-guessable string, like the global
3840 	 * T_INFO_ACK.
3841 	 */
3842 
3843 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
3844 	    sizeof (tcp_g_t_info_ack), tcps);
3845 
3846 	tcps->tcps_kstat = tcp_kstat2_init(stackid);
3847 	tcps->tcps_mibkp = tcp_kstat_init(stackid);
3848 
3849 	major = mod_name_to_major(INET_NAME);
3850 	error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident);
3851 	ASSERT(error == 0);
3852 	tcps->tcps_ixa_cleanup_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL);
3853 	ASSERT(tcps->tcps_ixa_cleanup_mp != NULL);
3854 	cv_init(&tcps->tcps_ixa_cleanup_cv, NULL, CV_DEFAULT, NULL);
3855 	mutex_init(&tcps->tcps_ixa_cleanup_lock, NULL, MUTEX_DEFAULT, NULL);
3856 
3857 	mutex_init(&tcps->tcps_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
3858 	tcps->tcps_reclaim = B_FALSE;
3859 	tcps->tcps_reclaim_tid = 0;
3860 	tcps->tcps_reclaim_period = tcps->tcps_rexmit_interval_max;
3861 
3862 	/*
3863 	 * ncpus is the current number of CPUs, which can be bigger than
3864 	 * boot_ncpus.  But we don't want to use ncpus to allocate all the
3865 	 * tcp_stats_cpu_t at system boot up time since it will be 1.  While
3866 	 * we handle adding CPU in tcp_cpu_update(), it will be slow if
3867 	 * there are many CPUs as we will be adding them 1 by 1.
3868 	 *
3869 	 * Note that tcps_sc_cnt never decreases and the tcps_sc[x] pointers
3870 	 * are not freed until the stack is going away.  So there is no need
3871 	 * to grab a lock to access the per CPU tcps_sc[x] pointer.
3872 	 */
3873 	tcps->tcps_sc_cnt = MAX(ncpus, boot_ncpus);
3874 	tcps->tcps_sc = kmem_zalloc(max_ncpus  * sizeof (tcp_stats_cpu_t *),
3875 	    KM_SLEEP);
3876 	for (i = 0; i < tcps->tcps_sc_cnt; i++) {
3877 		tcps->tcps_sc[i] = kmem_zalloc(sizeof (tcp_stats_cpu_t),
3878 		    KM_SLEEP);
3879 	}
3880 
3881 	mutex_init(&tcps->tcps_listener_conf_lock, NULL, MUTEX_DEFAULT, NULL);
3882 	list_create(&tcps->tcps_listener_conf, sizeof (tcp_listener_t),
3883 	    offsetof(tcp_listener_t, tl_link));
3884 
3885 	return (tcps);
3886 }
3887 
3888 /*
3889  * Called when the IP module is about to be unloaded.
3890  */
3891 void
3892 tcp_ddi_g_destroy(void)
3893 {
3894 	mutex_enter(&cpu_lock);
3895 	unregister_cpu_setup_func(tcp_cpu_update, NULL);
3896 	mutex_exit(&cpu_lock);
3897 
3898 	tcp_g_kstat_fini(tcp_g_kstat);
3899 	tcp_g_kstat = NULL;
3900 	bzero(&tcp_g_statistics, sizeof (tcp_g_statistics));
3901 
3902 	mutex_destroy(&tcp_random_lock);
3903 
3904 	kmem_cache_destroy(tcp_timercache);
3905 	kmem_cache_destroy(tcp_notsack_blk_cache);
3906 
3907 	netstack_unregister(NS_TCP);
3908 }
3909 
3910 /*
3911  * Free the TCP stack instance.
3912  */
3913 static void
3914 tcp_stack_fini(netstackid_t stackid, void *arg)
3915 {
3916 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
3917 	int i;
3918 
3919 	freeb(tcps->tcps_ixa_cleanup_mp);
3920 	tcps->tcps_ixa_cleanup_mp = NULL;
3921 	cv_destroy(&tcps->tcps_ixa_cleanup_cv);
3922 	mutex_destroy(&tcps->tcps_ixa_cleanup_lock);
3923 
3924 	/*
3925 	 * Set tcps_reclaim to false tells tcp_reclaim_timer() not to restart
3926 	 * the timer.
3927 	 */
3928 	mutex_enter(&tcps->tcps_reclaim_lock);
3929 	tcps->tcps_reclaim = B_FALSE;
3930 	mutex_exit(&tcps->tcps_reclaim_lock);
3931 	if (tcps->tcps_reclaim_tid != 0)
3932 		(void) untimeout(tcps->tcps_reclaim_tid);
3933 	mutex_destroy(&tcps->tcps_reclaim_lock);
3934 
3935 	tcp_listener_conf_cleanup(tcps);
3936 
3937 	for (i = 0; i < tcps->tcps_sc_cnt; i++)
3938 		kmem_free(tcps->tcps_sc[i], sizeof (tcp_stats_cpu_t));
3939 	kmem_free(tcps->tcps_sc, max_ncpus * sizeof (tcp_stats_cpu_t *));
3940 
3941 	kmem_free(tcps->tcps_propinfo_tbl,
3942 	    tcp_propinfo_count * sizeof (mod_prop_info_t));
3943 	tcps->tcps_propinfo_tbl = NULL;
3944 
3945 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
3946 		ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL);
3947 		mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock);
3948 	}
3949 
3950 	for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) {
3951 		ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL);
3952 		mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock);
3953 	}
3954 
3955 	kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE);
3956 	tcps->tcps_bind_fanout = NULL;
3957 
3958 	kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) *
3959 	    TCP_ACCEPTOR_FANOUT_SIZE);
3960 	tcps->tcps_acceptor_fanout = NULL;
3961 
3962 	mutex_destroy(&tcps->tcps_iss_key_lock);
3963 	mutex_destroy(&tcps->tcps_epriv_port_lock);
3964 
3965 	ip_drop_unregister(&tcps->tcps_dropper);
3966 
3967 	tcp_kstat2_fini(stackid, tcps->tcps_kstat);
3968 	tcps->tcps_kstat = NULL;
3969 
3970 	tcp_kstat_fini(stackid, tcps->tcps_mibkp);
3971 	tcps->tcps_mibkp = NULL;
3972 
3973 	ldi_ident_release(tcps->tcps_ldi_ident);
3974 	kmem_free(tcps, sizeof (*tcps));
3975 }
3976 
3977 /*
3978  * Generate ISS, taking into account NDD changes may happen halfway through.
3979  * (If the iss is not zero, set it.)
3980  */
3981 
3982 static void
3983 tcp_iss_init(tcp_t *tcp)
3984 {
3985 	MD5_CTX context;
3986 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
3987 	uint32_t answer[4];
3988 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3989 	conn_t		*connp = tcp->tcp_connp;
3990 
3991 	tcps->tcps_iss_incr_extra += (ISS_INCR >> 1);
3992 	tcp->tcp_iss = tcps->tcps_iss_incr_extra;
3993 	switch (tcps->tcps_strong_iss) {
3994 	case 2:
3995 		mutex_enter(&tcps->tcps_iss_key_lock);
3996 		context = tcps->tcps_iss_key;
3997 		mutex_exit(&tcps->tcps_iss_key_lock);
3998 		arg.ports = connp->conn_ports;
3999 		arg.src = connp->conn_laddr_v6;
4000 		arg.dst = connp->conn_faddr_v6;
4001 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
4002 		MD5Final((uchar_t *)answer, &context);
4003 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
4004 		/*
4005 		 * Now that we've hashed into a unique per-connection sequence
4006 		 * space, add a random increment per strong_iss == 1.  So I
4007 		 * guess we'll have to...
4008 		 */
4009 		/* FALLTHRU */
4010 	case 1:
4011 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
4012 		break;
4013 	default:
4014 		tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
4015 		break;
4016 	}
4017 	tcp->tcp_valid_bits = TCP_ISS_VALID;
4018 	tcp->tcp_fss = tcp->tcp_iss - 1;
4019 	tcp->tcp_suna = tcp->tcp_iss;
4020 	tcp->tcp_snxt = tcp->tcp_iss + 1;
4021 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
4022 	tcp->tcp_csuna = tcp->tcp_snxt;
4023 }
4024 
4025 /*
4026  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
4027  * on the specified backing STREAMS q. Note, the caller may make the
4028  * decision to call based on the tcp_t.tcp_flow_stopped value which
4029  * when check outside the q's lock is only an advisory check ...
4030  */
4031 void
4032 tcp_setqfull(tcp_t *tcp)
4033 {
4034 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4035 	conn_t	*connp = tcp->tcp_connp;
4036 
4037 	if (tcp->tcp_closed)
4038 		return;
4039 
4040 	conn_setqfull(connp, &tcp->tcp_flow_stopped);
4041 	if (tcp->tcp_flow_stopped)
4042 		TCP_STAT(tcps, tcp_flwctl_on);
4043 }
4044 
4045 void
4046 tcp_clrqfull(tcp_t *tcp)
4047 {
4048 	conn_t  *connp = tcp->tcp_connp;
4049 
4050 	if (tcp->tcp_closed)
4051 		return;
4052 	conn_clrqfull(connp, &tcp->tcp_flow_stopped);
4053 }
4054 
4055 static int
4056 tcp_squeue_switch(int val)
4057 {
4058 	int rval = SQ_FILL;
4059 
4060 	switch (val) {
4061 	case 1:
4062 		rval = SQ_NODRAIN;
4063 		break;
4064 	case 2:
4065 		rval = SQ_PROCESS;
4066 		break;
4067 	default:
4068 		break;
4069 	}
4070 	return (rval);
4071 }
4072 
4073 /*
4074  * This is called once for each squeue - globally for all stack
4075  * instances.
4076  */
4077 static void
4078 tcp_squeue_add(squeue_t *sqp)
4079 {
4080 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
4081 	    sizeof (tcp_squeue_priv_t), KM_SLEEP);
4082 
4083 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
4084 	if (tcp_free_list_max_cnt == 0) {
4085 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
4086 		    max_ncpus : boot_max_ncpus);
4087 
4088 		/*
4089 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
4090 		 */
4091 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
4092 		    (tcp_ncpus * sizeof (tcp_t) * 100);
4093 	}
4094 	tcp_time_wait->tcp_free_list_cnt = 0;
4095 }
4096 /*
4097  * Return unix error is tli error is TSYSERR, otherwise return a negative
4098  * tli error.
4099  */
4100 int
4101 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,
4102     boolean_t bind_to_req_port_only)
4103 {
4104 	int error;
4105 	tcp_t *tcp = connp->conn_tcp;
4106 
4107 	if (tcp->tcp_state >= TCPS_BOUND) {
4108 		if (connp->conn_debug) {
4109 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
4110 			    "tcp_bind: bad state, %d", tcp->tcp_state);
4111 		}
4112 		return (-TOUTSTATE);
4113 	}
4114 
4115 	error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only);
4116 	if (error != 0)
4117 		return (error);
4118 
4119 	ASSERT(tcp->tcp_state == TCPS_BOUND);
4120 	tcp->tcp_conn_req_max = 0;
4121 	return (0);
4122 }
4123 
4124 /*
4125  * If the return value from this function is positive, it's a UNIX error.
4126  * Otherwise, if it's negative, then the absolute value is a TLI error.
4127  * the TPI routine tcp_tpi_connect() is a wrapper function for this.
4128  */
4129 int
4130 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len,
4131     cred_t *cr, pid_t pid)
4132 {
4133 	tcp_t		*tcp = connp->conn_tcp;
4134 	sin_t		*sin = (sin_t *)sa;
4135 	sin6_t		*sin6 = (sin6_t *)sa;
4136 	ipaddr_t	*dstaddrp;
4137 	in_port_t	dstport;
4138 	uint_t		srcid;
4139 	int		error;
4140 	uint32_t	mss;
4141 	mblk_t		*syn_mp;
4142 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4143 	int32_t		oldstate;
4144 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
4145 
4146 	oldstate = tcp->tcp_state;
4147 
4148 	switch (len) {
4149 	default:
4150 		/*
4151 		 * Should never happen
4152 		 */
4153 		return (EINVAL);
4154 
4155 	case sizeof (sin_t):
4156 		sin = (sin_t *)sa;
4157 		if (sin->sin_port == 0) {
4158 			return (-TBADADDR);
4159 		}
4160 		if (connp->conn_ipv6_v6only) {
4161 			return (EAFNOSUPPORT);
4162 		}
4163 		break;
4164 
4165 	case sizeof (sin6_t):
4166 		sin6 = (sin6_t *)sa;
4167 		if (sin6->sin6_port == 0) {
4168 			return (-TBADADDR);
4169 		}
4170 		break;
4171 	}
4172 	/*
4173 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
4174 	 * make sure that the conn_ipversion is IPV4_VERSION.  We
4175 	 * need to this before we call tcp_bindi() so that the port lookup
4176 	 * code will look for ports in the correct port space (IPv4 and
4177 	 * IPv6 have separate port spaces).
4178 	 */
4179 	if (connp->conn_family == AF_INET6 &&
4180 	    connp->conn_ipversion == IPV6_VERSION &&
4181 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
4182 		if (connp->conn_ipv6_v6only)
4183 			return (EADDRNOTAVAIL);
4184 
4185 		connp->conn_ipversion = IPV4_VERSION;
4186 	}
4187 
4188 	switch (tcp->tcp_state) {
4189 	case TCPS_LISTEN:
4190 		/*
4191 		 * Listening sockets are not allowed to issue connect().
4192 		 */
4193 		if (IPCL_IS_NONSTR(connp))
4194 			return (EOPNOTSUPP);
4195 		/* FALLTHRU */
4196 	case TCPS_IDLE:
4197 		/*
4198 		 * We support quick connect, refer to comments in
4199 		 * tcp_connect_*()
4200 		 */
4201 		/* FALLTHRU */
4202 	case TCPS_BOUND:
4203 		break;
4204 	default:
4205 		return (-TOUTSTATE);
4206 	}
4207 
4208 	/*
4209 	 * We update our cred/cpid based on the caller of connect
4210 	 */
4211 	if (connp->conn_cred != cr) {
4212 		crhold(cr);
4213 		crfree(connp->conn_cred);
4214 		connp->conn_cred = cr;
4215 	}
4216 	connp->conn_cpid = pid;
4217 
4218 	/* Cache things in the ixa without any refhold */
4219 	ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED));
4220 	ixa->ixa_cred = cr;
4221 	ixa->ixa_cpid = pid;
4222 	if (is_system_labeled()) {
4223 		/* We need to restart with a label based on the cred */
4224 		ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred);
4225 	}
4226 
4227 	if (connp->conn_family == AF_INET6) {
4228 		if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
4229 			error = tcp_connect_ipv6(tcp, &sin6->sin6_addr,
4230 			    sin6->sin6_port, sin6->sin6_flowinfo,
4231 			    sin6->__sin6_src_id, sin6->sin6_scope_id);
4232 		} else {
4233 			/*
4234 			 * Destination adress is mapped IPv6 address.
4235 			 * Source bound address should be unspecified or
4236 			 * IPv6 mapped address as well.
4237 			 */
4238 			if (!IN6_IS_ADDR_UNSPECIFIED(
4239 			    &connp->conn_bound_addr_v6) &&
4240 			    !IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) {
4241 				return (EADDRNOTAVAIL);
4242 			}
4243 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
4244 			dstport = sin6->sin6_port;
4245 			srcid = sin6->__sin6_src_id;
4246 			error = tcp_connect_ipv4(tcp, dstaddrp, dstport,
4247 			    srcid);
4248 		}
4249 	} else {
4250 		dstaddrp = &sin->sin_addr.s_addr;
4251 		dstport = sin->sin_port;
4252 		srcid = 0;
4253 		error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid);
4254 	}
4255 
4256 	if (error != 0)
4257 		goto connect_failed;
4258 
4259 	CL_INET_CONNECT(connp, B_TRUE, error);
4260 	if (error != 0)
4261 		goto connect_failed;
4262 
4263 	/* connect succeeded */
4264 	TCPS_BUMP_MIB(tcps, tcpActiveOpens);
4265 	tcp->tcp_active_open = 1;
4266 
4267 	/*
4268 	 * tcp_set_destination() does not adjust for TCP/IP header length.
4269 	 */
4270 	mss = tcp->tcp_mss - connp->conn_ht_iphc_len;
4271 
4272 	/*
4273 	 * Just make sure our rwnd is at least rcvbuf * MSS large, and round up
4274 	 * to the nearest MSS.
4275 	 *
4276 	 * We do the round up here because we need to get the interface MTU
4277 	 * first before we can do the round up.
4278 	 */
4279 	tcp->tcp_rwnd = connp->conn_rcvbuf;
4280 	tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
4281 	    tcps->tcps_recv_hiwat_minmss * mss);
4282 	connp->conn_rcvbuf = tcp->tcp_rwnd;
4283 	tcp_set_ws_value(tcp);
4284 	tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
4285 	if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always)
4286 		tcp->tcp_snd_ws_ok = B_TRUE;
4287 
4288 	/*
4289 	 * Set tcp_snd_ts_ok to true
4290 	 * so that tcp_xmit_mp will
4291 	 * include the timestamp
4292 	 * option in the SYN segment.
4293 	 */
4294 	if (tcps->tcps_tstamp_always ||
4295 	    (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) {
4296 		tcp->tcp_snd_ts_ok = B_TRUE;
4297 	}
4298 
4299 	/*
4300 	 * Note that tcp_snd_sack_ok can be set in tcp_set_destination() if
4301 	 * the SACK metric is set.  So here we just check the per stack SACK
4302 	 * permitted param.
4303 	 */
4304 	if (tcps->tcps_sack_permitted == 2) {
4305 		ASSERT(tcp->tcp_num_sack_blk == 0);
4306 		ASSERT(tcp->tcp_notsack_list == NULL);
4307 		tcp->tcp_snd_sack_ok = B_TRUE;
4308 	}
4309 
4310 	/*
4311 	 * Should we use ECN?  Note that the current
4312 	 * default value (SunOS 5.9) of tcp_ecn_permitted
4313 	 * is 1.  The reason for doing this is that there
4314 	 * are equipments out there that will drop ECN
4315 	 * enabled IP packets.  Setting it to 1 avoids
4316 	 * compatibility problems.
4317 	 */
4318 	if (tcps->tcps_ecn_permitted == 2)
4319 		tcp->tcp_ecn_ok = B_TRUE;
4320 
4321 	/* Trace change from BOUND -> SYN_SENT here */
4322 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4323 	    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
4324 	    int32_t, TCPS_BOUND);
4325 
4326 	TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
4327 	syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
4328 	    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
4329 	if (syn_mp != NULL) {
4330 		/*
4331 		 * We must bump the generation before sending the syn
4332 		 * to ensure that we use the right generation in case
4333 		 * this thread issues a "connected" up call.
4334 		 */
4335 		SOCK_CONNID_BUMP(tcp->tcp_connid);
4336 		/*
4337 		 * DTrace sending the first SYN as a
4338 		 * tcp:::connect-request event.
4339 		 */
4340 		DTRACE_TCP5(connect__request, mblk_t *, NULL,
4341 		    ip_xmit_attr_t *, connp->conn_ixa,
4342 		    void_ip_t *, syn_mp->b_rptr, tcp_t *, tcp,
4343 		    tcph_t *,
4344 		    &syn_mp->b_rptr[connp->conn_ixa->ixa_ip_hdr_length]);
4345 		tcp_send_data(tcp, syn_mp);
4346 	}
4347 
4348 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4349 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4350 	return (0);
4351 
4352 connect_failed:
4353 	connp->conn_faddr_v6 = ipv6_all_zeros;
4354 	connp->conn_fport = 0;
4355 	tcp->tcp_state = oldstate;
4356 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4357 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4358 	return (error);
4359 }
4360 
4361 int
4362 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len,
4363     int backlog, cred_t *cr, boolean_t bind_to_req_port_only)
4364 {
4365 	tcp_t		*tcp = connp->conn_tcp;
4366 	int		error = 0;
4367 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4368 	int32_t		oldstate;
4369 
4370 	/* All Solaris components should pass a cred for this operation. */
4371 	ASSERT(cr != NULL);
4372 
4373 	if (tcp->tcp_state >= TCPS_BOUND) {
4374 		if ((tcp->tcp_state == TCPS_BOUND ||
4375 		    tcp->tcp_state == TCPS_LISTEN) && backlog > 0) {
4376 			/*
4377 			 * Handle listen() increasing backlog.
4378 			 * This is more "liberal" then what the TPI spec
4379 			 * requires but is needed to avoid a t_unbind
4380 			 * when handling listen() since the port number
4381 			 * might be "stolen" between the unbind and bind.
4382 			 */
4383 			goto do_listen;
4384 		}
4385 		if (connp->conn_debug) {
4386 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
4387 			    "tcp_listen: bad state, %d", tcp->tcp_state);
4388 		}
4389 		return (-TOUTSTATE);
4390 	} else {
4391 		if (sa == NULL) {
4392 			sin6_t	addr;
4393 			sin_t *sin;
4394 			sin6_t *sin6;
4395 
4396 			ASSERT(IPCL_IS_NONSTR(connp));
4397 			/* Do an implicit bind: Request for a generic port. */
4398 			if (connp->conn_family == AF_INET) {
4399 				len = sizeof (sin_t);
4400 				sin = (sin_t *)&addr;
4401 				*sin = sin_null;
4402 				sin->sin_family = AF_INET;
4403 			} else {
4404 				ASSERT(connp->conn_family == AF_INET6);
4405 				len = sizeof (sin6_t);
4406 				sin6 = (sin6_t *)&addr;
4407 				*sin6 = sin6_null;
4408 				sin6->sin6_family = AF_INET6;
4409 			}
4410 			sa = (struct sockaddr *)&addr;
4411 		}
4412 
4413 		error = tcp_bind_check(connp, sa, len, cr,
4414 		    bind_to_req_port_only);
4415 		if (error)
4416 			return (error);
4417 		/* Fall through and do the fanout insertion */
4418 	}
4419 
4420 do_listen:
4421 	ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN);
4422 	tcp->tcp_conn_req_max = backlog;
4423 	if (tcp->tcp_conn_req_max) {
4424 		if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min)
4425 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_min;
4426 		if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q)
4427 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q;
4428 		/*
4429 		 * If this is a listener, do not reset the eager list
4430 		 * and other stuffs.  Note that we don't check if the
4431 		 * existing eager list meets the new tcp_conn_req_max
4432 		 * requirement.
4433 		 */
4434 		if (tcp->tcp_state != TCPS_LISTEN) {
4435 			tcp->tcp_state = TCPS_LISTEN;
4436 			DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4437 			    connp->conn_ixa, void, NULL, tcp_t *, tcp,
4438 			    void, NULL, int32_t, TCPS_BOUND);
4439 			/* Initialize the chain. Don't need the eager_lock */
4440 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
4441 			tcp->tcp_eager_next_drop_q0 = tcp;
4442 			tcp->tcp_eager_prev_drop_q0 = tcp;
4443 			tcp->tcp_second_ctimer_threshold =
4444 			    tcps->tcps_ip_abort_linterval;
4445 		}
4446 	}
4447 
4448 	/*
4449 	 * We need to make sure that the conn_recv is set to a non-null
4450 	 * value before we insert the conn into the classifier table.
4451 	 * This is to avoid a race with an incoming packet which does an
4452 	 * ipcl_classify().
4453 	 * We initially set it to tcp_input_listener_unbound to try to
4454 	 * pick a good squeue for the listener when the first SYN arrives.
4455 	 * tcp_input_listener_unbound sets it to tcp_input_listener on that
4456 	 * first SYN.
4457 	 */
4458 	connp->conn_recv = tcp_input_listener_unbound;
4459 
4460 	/* Insert the listener in the classifier table */
4461 	error = ip_laddr_fanout_insert(connp);
4462 	if (error != 0) {
4463 		/* Undo the bind - release the port number */
4464 		oldstate = tcp->tcp_state;
4465 		tcp->tcp_state = TCPS_IDLE;
4466 		DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4467 		    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
4468 		    int32_t, oldstate);
4469 		connp->conn_bound_addr_v6 = ipv6_all_zeros;
4470 
4471 		connp->conn_laddr_v6 = ipv6_all_zeros;
4472 		connp->conn_saddr_v6 = ipv6_all_zeros;
4473 		connp->conn_ports = 0;
4474 
4475 		if (connp->conn_anon_port) {
4476 			zone_t		*zone;
4477 
4478 			zone = crgetzone(cr);
4479 			connp->conn_anon_port = B_FALSE;
4480 			(void) tsol_mlp_anon(zone, connp->conn_mlp_type,
4481 			    connp->conn_proto, connp->conn_lport, B_FALSE);
4482 		}
4483 		connp->conn_mlp_type = mlptSingle;
4484 
4485 		tcp_bind_hash_remove(tcp);
4486 		return (error);
4487 	} else {
4488 		/*
4489 		 * If there is a connection limit, allocate and initialize
4490 		 * the counter struct.  Note that since listen can be called
4491 		 * multiple times, the struct may have been allready allocated.
4492 		 */
4493 		if (!list_is_empty(&tcps->tcps_listener_conf) &&
4494 		    tcp->tcp_listen_cnt == NULL) {
4495 			tcp_listen_cnt_t *tlc;
4496 			uint32_t ratio;
4497 
4498 			ratio = tcp_find_listener_conf(tcps,
4499 			    ntohs(connp->conn_lport));
4500 			if (ratio != 0) {
4501 				uint32_t mem_ratio, tot_buf;
4502 
4503 				tlc = kmem_alloc(sizeof (tcp_listen_cnt_t),
4504 				    KM_SLEEP);
4505 				/*
4506 				 * Calculate the connection limit based on
4507 				 * the configured ratio and maxusers.  Maxusers
4508 				 * are calculated based on memory size,
4509 				 * ~ 1 user per MB.  Note that the conn_rcvbuf
4510 				 * and conn_sndbuf may change after a
4511 				 * connection is accepted.  So what we have
4512 				 * is only an approximation.
4513 				 */
4514 				if ((tot_buf = connp->conn_rcvbuf +
4515 				    connp->conn_sndbuf) < MB) {
4516 					mem_ratio = MB / tot_buf;
4517 					tlc->tlc_max = maxusers / ratio *
4518 					    mem_ratio;
4519 				} else {
4520 					mem_ratio = tot_buf / MB;
4521 					tlc->tlc_max = maxusers / ratio /
4522 					    mem_ratio;
4523 				}
4524 				/* At least we should allow two connections! */
4525 				if (tlc->tlc_max <= tcp_min_conn_listener)
4526 					tlc->tlc_max = tcp_min_conn_listener;
4527 				tlc->tlc_cnt = 1;
4528 				tlc->tlc_drop = 0;
4529 				tcp->tcp_listen_cnt = tlc;
4530 			}
4531 		}
4532 	}
4533 	return (error);
4534 }
4535