xref: /illumos-gate/usr/src/uts/common/inet/tcp/tcp.c (revision 2017c9656f884256b400be40fa25d96d630bf02a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #include <sys/types.h>
29 #include <sys/stream.h>
30 #include <sys/strsun.h>
31 #include <sys/strsubr.h>
32 #include <sys/stropts.h>
33 #include <sys/strlog.h>
34 #define	_SUN_TPI_VERSION 2
35 #include <sys/tihdr.h>
36 #include <sys/timod.h>
37 #include <sys/ddi.h>
38 #include <sys/sunddi.h>
39 #include <sys/suntpi.h>
40 #include <sys/xti_inet.h>
41 #include <sys/cmn_err.h>
42 #include <sys/debug.h>
43 #include <sys/sdt.h>
44 #include <sys/vtrace.h>
45 #include <sys/kmem.h>
46 #include <sys/ethernet.h>
47 #include <sys/cpuvar.h>
48 #include <sys/dlpi.h>
49 #include <sys/multidata.h>
50 #include <sys/multidata_impl.h>
51 #include <sys/pattr.h>
52 #include <sys/policy.h>
53 #include <sys/priv.h>
54 #include <sys/zone.h>
55 #include <sys/sunldi.h>
56 
57 #include <sys/errno.h>
58 #include <sys/signal.h>
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 #include <sys/sockio.h>
62 #include <sys/isa_defs.h>
63 #include <sys/md5.h>
64 #include <sys/random.h>
65 #include <sys/uio.h>
66 #include <sys/systm.h>
67 #include <netinet/in.h>
68 #include <netinet/tcp.h>
69 #include <netinet/ip6.h>
70 #include <netinet/icmp6.h>
71 #include <net/if.h>
72 #include <net/route.h>
73 #include <inet/ipsec_impl.h>
74 
75 #include <inet/common.h>
76 #include <inet/ip.h>
77 #include <inet/ip_impl.h>
78 #include <inet/ip6.h>
79 #include <inet/ip_ndp.h>
80 #include <inet/proto_set.h>
81 #include <inet/mib2.h>
82 #include <inet/nd.h>
83 #include <inet/optcom.h>
84 #include <inet/snmpcom.h>
85 #include <inet/kstatcom.h>
86 #include <inet/tcp.h>
87 #include <inet/tcp_impl.h>
88 #include <inet/udp_impl.h>
89 #include <net/pfkeyv2.h>
90 #include <inet/ipsec_info.h>
91 #include <inet/ipdrop.h>
92 
93 #include <inet/ipclassifier.h>
94 #include <inet/ip_ire.h>
95 #include <inet/ip_ftable.h>
96 #include <inet/ip_if.h>
97 #include <inet/ipp_common.h>
98 #include <inet/ip_netinfo.h>
99 #include <sys/squeue_impl.h>
100 #include <sys/squeue.h>
101 #include <inet/kssl/ksslapi.h>
102 #include <sys/tsol/label.h>
103 #include <sys/tsol/tnet.h>
104 #include <rpc/pmap_prot.h>
105 #include <sys/callo.h>
106 
107 /*
108  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
109  *
110  * (Read the detailed design doc in PSARC case directory)
111  *
112  * The entire tcp state is contained in tcp_t and conn_t structure
113  * which are allocated in tandem using ipcl_conn_create() and passing
114  * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect
115  * the references on the tcp_t. The tcp_t structure is never compressed
116  * and packets always land on the correct TCP perimeter from the time
117  * eager is created till the time tcp_t dies (as such the old mentat
118  * TCP global queue is not used for detached state and no IPSEC checking
119  * is required). The global queue is still allocated to send out resets
120  * for connection which have no listeners and IP directly calls
121  * tcp_xmit_listeners_reset() which does any policy check.
122  *
123  * Protection and Synchronisation mechanism:
124  *
125  * The tcp data structure does not use any kind of lock for protecting
126  * its state but instead uses 'squeues' for mutual exclusion from various
127  * read and write side threads. To access a tcp member, the thread should
128  * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS,
129  * or SQ_NODRAIN). Since the squeues allow a direct function call, caller
130  * can pass any tcp function having prototype of edesc_t as argument
131  * (different from traditional STREAMs model where packets come in only
132  * designated entry points). The list of functions that can be directly
133  * called via squeue are listed before the usual function prototype.
134  *
135  * Referencing:
136  *
137  * TCP is MT-Hot and we use a reference based scheme to make sure that the
138  * tcp structure doesn't disappear when its needed. When the application
139  * creates an outgoing connection or accepts an incoming connection, we
140  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
141  * The IP reference is just a symbolic reference since ip_tcpclose()
142  * looks at tcp structure after tcp_close_output() returns which could
143  * have dropped the last TCP reference. So as long as the connection is
144  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
145  * conn_t. The classifier puts its own reference when the connection is
146  * inserted in listen or connected hash. Anytime a thread needs to enter
147  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
148  * on write side or by doing a classify on read side and then puts a
149  * reference on the conn before doing squeue_enter/tryenter/fill. For
150  * read side, the classifier itself puts the reference under fanout lock
151  * to make sure that tcp can't disappear before it gets processed. The
152  * squeue will drop this reference automatically so the called function
153  * doesn't have to do a DEC_REF.
154  *
155  * Opening a new connection:
156  *
157  * The outgoing connection open is pretty simple. tcp_open() does the
158  * work in creating the conn/tcp structure and initializing it. The
159  * squeue assignment is done based on the CPU the application
160  * is running on. So for outbound connections, processing is always done
161  * on application CPU which might be different from the incoming CPU
162  * being interrupted by the NIC. An optimal way would be to figure out
163  * the NIC <-> CPU binding at listen time, and assign the outgoing
164  * connection to the squeue attached to the CPU that will be interrupted
165  * for incoming packets (we know the NIC based on the bind IP address).
166  * This might seem like a problem if more data is going out but the
167  * fact is that in most cases the transmit is ACK driven transmit where
168  * the outgoing data normally sits on TCP's xmit queue waiting to be
169  * transmitted.
170  *
171  * Accepting a connection:
172  *
173  * This is a more interesting case because of various races involved in
174  * establishing a eager in its own perimeter. Read the meta comment on
175  * top of tcp_conn_request(). But briefly, the squeue is picked by
176  * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU.
177  *
178  * Closing a connection:
179  *
180  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
181  * via squeue to do the close and mark the tcp as detached if the connection
182  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
183  * reference but tcp_close() drop IP's reference always. So if tcp was
184  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
185  * and 1 because it is in classifier's connected hash. This is the condition
186  * we use to determine that its OK to clean up the tcp outside of squeue
187  * when time wait expires (check the ref under fanout and conn_lock and
188  * if it is 2, remove it from fanout hash and kill it).
189  *
190  * Although close just drops the necessary references and marks the
191  * tcp_detached state, tcp_close needs to know the tcp_detached has been
192  * set (under squeue) before letting the STREAM go away (because a
193  * inbound packet might attempt to go up the STREAM while the close
194  * has happened and tcp_detached is not set). So a special lock and
195  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
196  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
197  * tcp_detached.
198  *
199  * Special provisions and fast paths:
200  *
201  * We make special provision for (AF_INET, SOCK_STREAM) sockets which
202  * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP
203  * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles
204  * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY
205  * check to send packets directly to tcp_rput_data via squeue. Everyone
206  * else comes through tcp_input() on the read side.
207  *
208  * We also make special provisions for sockfs by marking tcp_issocket
209  * whenever we have only sockfs on top of TCP. This allows us to skip
210  * putting the tcp in acceptor hash since a sockfs listener can never
211  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
212  * since eager has already been allocated and the accept now happens
213  * on acceptor STREAM. There is a big blob of comment on top of
214  * tcp_conn_request explaining the new accept. When socket is POP'd,
215  * sockfs sends us an ioctl to mark the fact and we go back to old
216  * behaviour. Once tcp_issocket is unset, its never set for the
217  * life of that connection.
218  *
219  * IPsec notes :
220  *
221  * Since a packet is always executed on the correct TCP perimeter
222  * all IPsec processing is defered to IP including checking new
223  * connections and setting IPSEC policies for new connection. The
224  * only exception is tcp_xmit_listeners_reset() which is called
225  * directly from IP and needs to policy check to see if TH_RST
226  * can be sent out.
227  *
228  * PFHooks notes :
229  *
230  * For mdt case, one meta buffer contains multiple packets. Mblks for every
231  * packet are assembled and passed to the hooks. When packets are blocked,
232  * or boundary of any packet is changed, the mdt processing is stopped, and
233  * packets of the meta buffer are send to the IP path one by one.
234  */
235 
236 /*
237  * Values for squeue switch:
238  * 1: SQ_NODRAIN
239  * 2: SQ_PROCESS
240  * 3: SQ_FILL
241  */
242 int tcp_squeue_wput = 2;	/* /etc/systems */
243 int tcp_squeue_flag;
244 
245 /*
246  * This controls how tiny a write must be before we try to copy it
247  * into the the mblk on the tail of the transmit queue.  Not much
248  * speedup is observed for values larger than sixteen.  Zero will
249  * disable the optimisation.
250  */
251 int tcp_tx_pull_len = 16;
252 
253 /*
254  * TCP Statistics.
255  *
256  * How TCP statistics work.
257  *
258  * There are two types of statistics invoked by two macros.
259  *
260  * TCP_STAT(name) does non-atomic increment of a named stat counter. It is
261  * supposed to be used in non MT-hot paths of the code.
262  *
263  * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is
264  * supposed to be used for DEBUG purposes and may be used on a hot path.
265  *
266  * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat
267  * (use "kstat tcp" to get them).
268  *
269  * There is also additional debugging facility that marks tcp_clean_death()
270  * instances and saves them in tcp_t structure. It is triggered by
271  * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for
272  * tcp_clean_death() calls that counts the number of times each tag was hit. It
273  * is triggered by TCP_CLD_COUNTERS define.
274  *
275  * How to add new counters.
276  *
277  * 1) Add a field in the tcp_stat structure describing your counter.
278  * 2) Add a line in the template in tcp_kstat2_init() with the name
279  *    of the counter.
280  *
281  *    IMPORTANT!! - make sure that both are in sync !!
282  * 3) Use either TCP_STAT or TCP_DBGSTAT with the name.
283  *
284  * Please avoid using private counters which are not kstat-exported.
285  *
286  * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances
287  * in tcp_t structure.
288  *
289  * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags.
290  */
291 
292 #ifndef TCP_DEBUG_COUNTER
293 #ifdef DEBUG
294 #define	TCP_DEBUG_COUNTER 1
295 #else
296 #define	TCP_DEBUG_COUNTER 0
297 #endif
298 #endif
299 
300 #define	TCP_CLD_COUNTERS 0
301 
302 #define	TCP_TAG_CLEAN_DEATH 1
303 #define	TCP_MAX_CLEAN_DEATH_TAG 32
304 
305 #ifdef lint
306 static int _lint_dummy_;
307 #endif
308 
309 #if TCP_CLD_COUNTERS
310 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG];
311 #define	TCP_CLD_STAT(x) tcp_clean_death_stat[x]++
312 #elif defined(lint)
313 #define	TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0);
314 #else
315 #define	TCP_CLD_STAT(x)
316 #endif
317 
318 #if TCP_DEBUG_COUNTER
319 #define	TCP_DBGSTAT(tcps, x)	\
320 	atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1)
321 #define	TCP_G_DBGSTAT(x)	\
322 	atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1)
323 #elif defined(lint)
324 #define	TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0);
325 #define	TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0);
326 #else
327 #define	TCP_DBGSTAT(tcps, x)
328 #define	TCP_G_DBGSTAT(x)
329 #endif
330 
331 #define	TCP_G_STAT(x)	(tcp_g_statistics.x.value.ui64++)
332 
333 tcp_g_stat_t	tcp_g_statistics;
334 kstat_t		*tcp_g_kstat;
335 
336 /*
337  * Call either ip_output or ip_output_v6. This replaces putnext() calls on the
338  * tcp write side.
339  */
340 #define	CALL_IP_WPUT(connp, q, mp) {					\
341 	ASSERT(((q)->q_flag & QREADR) == 0);				\
342 	TCP_DBGSTAT(connp->conn_netstack->netstack_tcp, tcp_ip_output);	\
343 	connp->conn_send(connp, (mp), (q), IP_WPUT);			\
344 }
345 
346 /* Macros for timestamp comparisons */
347 #define	TSTMP_GEQ(a, b)	((int32_t)((a)-(b)) >= 0)
348 #define	TSTMP_LT(a, b)	((int32_t)((a)-(b)) < 0)
349 
350 /*
351  * Parameters for TCP Initial Send Sequence number (ISS) generation.  When
352  * tcp_strong_iss is set to 1, which is the default, the ISS is calculated
353  * by adding three components: a time component which grows by 1 every 4096
354  * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27);
355  * a per-connection component which grows by 125000 for every new connection;
356  * and an "extra" component that grows by a random amount centered
357  * approximately on 64000.  This causes the the ISS generator to cycle every
358  * 4.89 hours if no TCP connections are made, and faster if connections are
359  * made.
360  *
361  * When tcp_strong_iss is set to 0, ISS is calculated by adding two
362  * components: a time component which grows by 250000 every second; and
363  * a per-connection component which grows by 125000 for every new connections.
364  *
365  * A third method, when tcp_strong_iss is set to 2, for generating ISS is
366  * prescribed by Steve Bellovin.  This involves adding time, the 125000 per
367  * connection, and a one-way hash (MD5) of the connection ID <sport, dport,
368  * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered
369  * password.
370  */
371 #define	ISS_INCR	250000
372 #define	ISS_NSEC_SHT	12
373 
374 static sin_t	sin_null;	/* Zero address for quick clears */
375 static sin6_t	sin6_null;	/* Zero address for quick clears */
376 
377 /*
378  * This implementation follows the 4.3BSD interpretation of the urgent
379  * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause
380  * incompatible changes in protocols like telnet and rlogin.
381  */
382 #define	TCP_OLD_URP_INTERPRETATION	1
383 
384 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
385 	(TCP_IS_DETACHED(tcp) && \
386 	    (!(tcp)->tcp_hard_binding))
387 
388 /*
389  * TCP reassembly macros.  We hide starting and ending sequence numbers in
390  * b_next and b_prev of messages on the reassembly queue.  The messages are
391  * chained using b_cont.  These macros are used in tcp_reass() so we don't
392  * have to see the ugly casts and assignments.
393  */
394 #define	TCP_REASS_SEQ(mp)		((uint32_t)(uintptr_t)((mp)->b_next))
395 #define	TCP_REASS_SET_SEQ(mp, u)	((mp)->b_next = \
396 					(mblk_t *)(uintptr_t)(u))
397 #define	TCP_REASS_END(mp)		((uint32_t)(uintptr_t)((mp)->b_prev))
398 #define	TCP_REASS_SET_END(mp, u)	((mp)->b_prev = \
399 					(mblk_t *)(uintptr_t)(u))
400 
401 /*
402  * Implementation of TCP Timers.
403  * =============================
404  *
405  * INTERFACE:
406  *
407  * There are two basic functions dealing with tcp timers:
408  *
409  *	timeout_id_t	tcp_timeout(connp, func, time)
410  * 	clock_t		tcp_timeout_cancel(connp, timeout_id)
411  *	TCP_TIMER_RESTART(tcp, intvl)
412  *
413  * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func'
414  * after 'time' ticks passed. The function called by timeout() must adhere to
415  * the same restrictions as a driver soft interrupt handler - it must not sleep
416  * or call other functions that might sleep. The value returned is the opaque
417  * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to
418  * cancel the request. The call to tcp_timeout() may fail in which case it
419  * returns zero. This is different from the timeout(9F) function which never
420  * fails.
421  *
422  * The call-back function 'func' always receives 'connp' as its single
423  * argument. It is always executed in the squeue corresponding to the tcp
424  * structure. The tcp structure is guaranteed to be present at the time the
425  * call-back is called.
426  *
427  * NOTE: The call-back function 'func' is never called if tcp is in
428  * 	the TCPS_CLOSED state.
429  *
430  * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout()
431  * request. locks acquired by the call-back routine should not be held across
432  * the call to tcp_timeout_cancel() or a deadlock may result.
433  *
434  * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request.
435  * Otherwise, it returns an integer value greater than or equal to 0. In
436  * particular, if the call-back function is already placed on the squeue, it can
437  * not be canceled.
438  *
439  * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called
440  * 	within squeue context corresponding to the tcp instance. Since the
441  *	call-back is also called via the same squeue, there are no race
442  *	conditions described in untimeout(9F) manual page since all calls are
443  *	strictly serialized.
444  *
445  *      TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout
446  *	stored in tcp_timer_tid and starts a new one using
447  *	MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back
448  *	and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid
449  *	field.
450  *
451  * NOTE: since the timeout cancellation is not guaranteed, the cancelled
452  *	call-back may still be called, so it is possible tcp_timer() will be
453  *	called several times. This should not be a problem since tcp_timer()
454  *	should always check the tcp instance state.
455  *
456  *
457  * IMPLEMENTATION:
458  *
459  * TCP timers are implemented using three-stage process. The call to
460  * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function
461  * when the timer expires. The tcp_timer_callback() arranges the call of the
462  * tcp_timer_handler() function via squeue corresponding to the tcp
463  * instance. The tcp_timer_handler() calls actual requested timeout call-back
464  * and passes tcp instance as an argument to it. Information is passed between
465  * stages using the tcp_timer_t structure which contains the connp pointer, the
466  * tcp call-back to call and the timeout id returned by the timeout(9F).
467  *
468  * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t -
469  * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo
470  * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout()
471  * returns the pointer to this mblk.
472  *
473  * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It
474  * looks like a normal mblk without actual dblk attached to it.
475  *
476  * To optimize performance each tcp instance holds a small cache of timer
477  * mblocks. In the current implementation it caches up to two timer mblocks per
478  * tcp instance. The cache is preserved over tcp frees and is only freed when
479  * the whole tcp structure is destroyed by its kmem destructor. Since all tcp
480  * timer processing happens on a corresponding squeue, the cache manipulation
481  * does not require any locks. Experiments show that majority of timer mblocks
482  * allocations are satisfied from the tcp cache and do not involve kmem calls.
483  *
484  * The tcp_timeout() places a refhold on the connp instance which guarantees
485  * that it will be present at the time the call-back function fires. The
486  * tcp_timer_handler() drops the reference after calling the call-back, so the
487  * call-back function does not need to manipulate the references explicitly.
488  */
489 
490 typedef struct tcp_timer_s {
491 	conn_t	*connp;
492 	void 	(*tcpt_proc)(void *);
493 	callout_id_t   tcpt_tid;
494 } tcp_timer_t;
495 
496 static kmem_cache_t *tcp_timercache;
497 kmem_cache_t	*tcp_sack_info_cache;
498 kmem_cache_t	*tcp_iphc_cache;
499 
500 /*
501  * For scalability, we must not run a timer for every TCP connection
502  * in TIME_WAIT state.  To see why, consider (for time wait interval of
503  * 4 minutes):
504  *	1000 connections/sec * 240 seconds/time wait = 240,000 active conn's
505  *
506  * This list is ordered by time, so you need only delete from the head
507  * until you get to entries which aren't old enough to delete yet.
508  * The list consists of only the detached TIME_WAIT connections.
509  *
510  * Note that the timer (tcp_time_wait_expire) is started when the tcp_t
511  * becomes detached TIME_WAIT (either by changing the state and already
512  * being detached or the other way around). This means that the TIME_WAIT
513  * state can be extended (up to doubled) if the connection doesn't become
514  * detached for a long time.
515  *
516  * The list manipulations (including tcp_time_wait_next/prev)
517  * are protected by the tcp_time_wait_lock. The content of the
518  * detached TIME_WAIT connections is protected by the normal perimeters.
519  *
520  * This list is per squeue and squeues are shared across the tcp_stack_t's.
521  * Things on tcp_time_wait_head remain associated with the tcp_stack_t
522  * and conn_netstack.
523  * The tcp_t's that are added to tcp_free_list are disassociated and
524  * have NULL tcp_tcps and conn_netstack pointers.
525  */
526 typedef struct tcp_squeue_priv_s {
527 	kmutex_t	tcp_time_wait_lock;
528 	callout_id_t	tcp_time_wait_tid;
529 	tcp_t		*tcp_time_wait_head;
530 	tcp_t		*tcp_time_wait_tail;
531 	tcp_t		*tcp_free_list;
532 	uint_t		tcp_free_list_cnt;
533 } tcp_squeue_priv_t;
534 
535 /*
536  * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs.
537  * Running it every 5 seconds seems to give the best results.
538  */
539 #define	TCP_TIME_WAIT_DELAY drv_usectohz(5000000)
540 
541 /*
542  * To prevent memory hog, limit the number of entries in tcp_free_list
543  * to 1% of available memory / number of cpus
544  */
545 uint_t tcp_free_list_max_cnt = 0;
546 
547 #define	TCP_XMIT_LOWATER	4096
548 #define	TCP_XMIT_HIWATER	49152
549 #define	TCP_RECV_LOWATER	2048
550 #define	TCP_RECV_HIWATER	49152
551 
552 /*
553  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
554  */
555 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
556 
557 #define	TIDUSZ	4096	/* transport interface data unit size */
558 
559 /*
560  * Bind hash list size and has function.  It has to be a power of 2 for
561  * hashing.
562  */
563 #define	TCP_BIND_FANOUT_SIZE	512
564 #define	TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1))
565 /*
566  * Size of listen and acceptor hash list.  It has to be a power of 2 for
567  * hashing.
568  */
569 #define	TCP_FANOUT_SIZE		256
570 
571 #ifdef	_ILP32
572 #define	TCP_ACCEPTOR_HASH(accid)					\
573 		(((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1))
574 #else
575 #define	TCP_ACCEPTOR_HASH(accid)					\
576 		((uint_t)(accid) & (TCP_FANOUT_SIZE - 1))
577 #endif	/* _ILP32 */
578 
579 #define	IP_ADDR_CACHE_SIZE	2048
580 #define	IP_ADDR_CACHE_HASH(faddr)					\
581 	(ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1))
582 
583 /*
584  * TCP options struct returned from tcp_parse_options.
585  */
586 typedef struct tcp_opt_s {
587 	uint32_t	tcp_opt_mss;
588 	uint32_t	tcp_opt_wscale;
589 	uint32_t	tcp_opt_ts_val;
590 	uint32_t	tcp_opt_ts_ecr;
591 	tcp_t		*tcp;
592 } tcp_opt_t;
593 
594 /*
595  * TCP option struct passing information b/w lisenter and eager.
596  */
597 struct tcp_options {
598 	uint_t			to_flags;
599 	ssize_t			to_boundif;	/* IPV6_BOUND_IF */
600 };
601 
602 #define	TCPOPT_BOUNDIF		0x00000001	/* set IPV6_BOUND_IF */
603 #define	TCPOPT_RECVPKTINFO	0x00000002	/* set IPV6_RECVPKTINFO */
604 
605 /*
606  * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
607  */
608 
609 #ifdef _BIG_ENDIAN
610 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
611 	(TCPOPT_TSTAMP << 8) | 10)
612 #else
613 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
614 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
615 #endif
616 
617 /*
618  * Flags returned from tcp_parse_options.
619  */
620 #define	TCP_OPT_MSS_PRESENT	1
621 #define	TCP_OPT_WSCALE_PRESENT	2
622 #define	TCP_OPT_TSTAMP_PRESENT	4
623 #define	TCP_OPT_SACK_OK_PRESENT	8
624 #define	TCP_OPT_SACK_PRESENT	16
625 
626 /* TCP option length */
627 #define	TCPOPT_NOP_LEN		1
628 #define	TCPOPT_MAXSEG_LEN	4
629 #define	TCPOPT_WS_LEN		3
630 #define	TCPOPT_REAL_WS_LEN	(TCPOPT_WS_LEN+1)
631 #define	TCPOPT_TSTAMP_LEN	10
632 #define	TCPOPT_REAL_TS_LEN	(TCPOPT_TSTAMP_LEN+2)
633 #define	TCPOPT_SACK_OK_LEN	2
634 #define	TCPOPT_REAL_SACK_OK_LEN	(TCPOPT_SACK_OK_LEN+2)
635 #define	TCPOPT_REAL_SACK_LEN	4
636 #define	TCPOPT_MAX_SACK_LEN	36
637 #define	TCPOPT_HEADER_LEN	2
638 
639 /* TCP cwnd burst factor. */
640 #define	TCP_CWND_INFINITE	65535
641 #define	TCP_CWND_SS		3
642 #define	TCP_CWND_NORMAL		5
643 
644 /* Maximum TCP initial cwin (start/restart). */
645 #define	TCP_MAX_INIT_CWND	8
646 
647 /*
648  * Initialize cwnd according to RFC 3390.  def_max_init_cwnd is
649  * either tcp_slow_start_initial or tcp_slow_start_after idle
650  * depending on the caller.  If the upper layer has not used the
651  * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd
652  * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd.
653  * If the upper layer has changed set the tcp_init_cwnd, just use
654  * it to calculate the tcp_cwnd.
655  */
656 #define	SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd)			\
657 {									\
658 	if ((tcp)->tcp_init_cwnd == 0) {				\
659 		(tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss),	\
660 		    MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \
661 	} else {							\
662 		(tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss);		\
663 	}								\
664 	tcp->tcp_cwnd_cnt = 0;						\
665 }
666 
667 /* TCP Timer control structure */
668 typedef struct tcpt_s {
669 	pfv_t	tcpt_pfv;	/* The routine we are to call */
670 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
671 } tcpt_t;
672 
673 /*
674  * Functions called directly via squeue having a prototype of edesc_t.
675  */
676 void		tcp_conn_request(void *arg, mblk_t *mp, void *arg2);
677 static void	tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2);
678 void		tcp_accept_finish(void *arg, mblk_t *mp, void *arg2);
679 static void	tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2);
680 static void	tcp_wput_proto(void *arg, mblk_t *mp, void *arg2);
681 void 		tcp_input(void *arg, mblk_t *mp, void *arg2);
682 void		tcp_rput_data(void *arg, mblk_t *mp, void *arg2);
683 static void	tcp_close_output(void *arg, mblk_t *mp, void *arg2);
684 void		tcp_output(void *arg, mblk_t *mp, void *arg2);
685 void		tcp_output_urgent(void *arg, mblk_t *mp, void *arg2);
686 static void	tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2);
687 static void	tcp_timer_handler(void *arg, mblk_t *mp, void *arg2);
688 static void	tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2);
689 
690 
691 /* Prototype for TCP functions */
692 static void	tcp_random_init(void);
693 int		tcp_random(void);
694 static void	tcp_tli_accept(tcp_t *tcp, mblk_t *mp);
695 static void	tcp_accept_swap(tcp_t *listener, tcp_t *acceptor,
696 		    tcp_t *eager);
697 static int	tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp);
698 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
699     int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only,
700     boolean_t user_specified);
701 static void	tcp_closei_local(tcp_t *tcp);
702 static void	tcp_close_detached(tcp_t *tcp);
703 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph,
704 			mblk_t *idmp, mblk_t **defermp);
705 static void	tcp_tpi_connect(tcp_t *tcp, mblk_t *mp);
706 static int	tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp,
707 		    in_port_t dstport, uint_t srcid, cred_t *cr, pid_t pid);
708 static int 	tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp,
709 		    in_port_t dstport, uint32_t flowinfo, uint_t srcid,
710 		    uint32_t scope_id, cred_t *cr, pid_t pid);
711 static int	tcp_clean_death(tcp_t *tcp, int err, uint8_t tag);
712 static void	tcp_def_q_set(tcp_t *tcp, mblk_t *mp);
713 static void	tcp_disconnect(tcp_t *tcp, mblk_t *mp);
714 static char	*tcp_display(tcp_t *tcp, char *, char);
715 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum);
716 static void	tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only);
717 static void	tcp_eager_unlink(tcp_t *tcp);
718 static void	tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr,
719 		    int unixerr);
720 static void	tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
721 		    int tlierr, int unixerr);
722 static int	tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
723 		    cred_t *cr);
724 static int	tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
725 		    char *value, caddr_t cp, cred_t *cr);
726 static int	tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
727 		    char *value, caddr_t cp, cred_t *cr);
728 static int	tcp_tpistate(tcp_t *tcp);
729 static void	tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp,
730     int caller_holds_lock);
731 static void	tcp_bind_hash_remove(tcp_t *tcp);
732 static tcp_t	*tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *);
733 void		tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp);
734 static void	tcp_acceptor_hash_remove(tcp_t *tcp);
735 static void	tcp_capability_req(tcp_t *tcp, mblk_t *mp);
736 static void	tcp_info_req(tcp_t *tcp, mblk_t *mp);
737 static void	tcp_addr_req(tcp_t *tcp, mblk_t *mp);
738 static void	tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp);
739 void		tcp_g_q_setup(tcp_stack_t *);
740 void		tcp_g_q_create(tcp_stack_t *);
741 void		tcp_g_q_destroy(tcp_stack_t *);
742 static int	tcp_header_init_ipv4(tcp_t *tcp);
743 static int	tcp_header_init_ipv6(tcp_t *tcp);
744 int		tcp_init(tcp_t *tcp, queue_t *q);
745 static int	tcp_init_values(tcp_t *tcp);
746 static mblk_t	*tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic);
747 static void	tcp_ip_ire_mark_advice(tcp_t *tcp);
748 static void	tcp_ip_notify(tcp_t *tcp);
749 static mblk_t	*tcp_ire_mp(mblk_t **mpp);
750 static void	tcp_iss_init(tcp_t *tcp);
751 static void	tcp_keepalive_killer(void *arg);
752 static int	tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt);
753 static void	tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss);
754 static int	tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp,
755 		    int *do_disconnectp, int *t_errorp, int *sys_errorp);
756 static boolean_t tcp_allow_connopt_set(int level, int name);
757 int		tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr);
758 int		tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr);
759 int		tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level,
760 		    int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
761 		    uchar_t *outvalp, void *thisdg_attrs, cred_t *cr,
762 		    mblk_t *mblk);
763 static void	tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha);
764 static int	tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly,
765 		    uchar_t *ptr, uint_t len);
766 static int	tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
767 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt,
768     tcp_stack_t *);
769 static int	tcp_param_set(queue_t *q, mblk_t *mp, char *value,
770 		    caddr_t cp, cred_t *cr);
771 static int	tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value,
772 		    caddr_t cp, cred_t *cr);
773 static void	tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *);
774 static int	tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value,
775 		    caddr_t cp, cred_t *cr);
776 static void	tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt);
777 static mblk_t	*tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start);
778 static void	tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp);
779 static void	tcp_reinit(tcp_t *tcp);
780 static void	tcp_reinit_values(tcp_t *tcp);
781 
782 static uint_t	tcp_rwnd_reopen(tcp_t *tcp);
783 static uint_t	tcp_rcv_drain(tcp_t *tcp);
784 static void	tcp_sack_rxmit(tcp_t *tcp, uint_t *flags);
785 static boolean_t tcp_send_rst_chk(tcp_stack_t *);
786 static void	tcp_ss_rexmit(tcp_t *tcp);
787 static mblk_t	*tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp);
788 static void	tcp_process_options(tcp_t *, tcph_t *);
789 static void	tcp_rput_common(tcp_t *tcp, mblk_t *mp);
790 static void	tcp_rsrv(queue_t *q);
791 static int	tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd);
792 static int	tcp_snmp_state(tcp_t *tcp);
793 static void	tcp_timer(void *arg);
794 static void	tcp_timer_callback(void *);
795 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp,
796     boolean_t random);
797 static in_port_t tcp_get_next_priv_port(const tcp_t *);
798 static void	tcp_wput_sock(queue_t *q, mblk_t *mp);
799 static void	tcp_wput_fallback(queue_t *q, mblk_t *mp);
800 void		tcp_tpi_accept(queue_t *q, mblk_t *mp);
801 static void	tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent);
802 static void	tcp_wput_flush(tcp_t *tcp, mblk_t *mp);
803 static void	tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp);
804 static int	tcp_send(queue_t *q, tcp_t *tcp, const int mss,
805 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
806 		    const int num_sack_blk, int *usable, uint_t *snxt,
807 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
808 		    const int mdt_thres);
809 static int	tcp_multisend(queue_t *q, tcp_t *tcp, const int mss,
810 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
811 		    const int num_sack_blk, int *usable, uint_t *snxt,
812 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
813 		    const int mdt_thres);
814 static void	tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now,
815 		    int num_sack_blk);
816 static void	tcp_wsrv(queue_t *q);
817 static int	tcp_xmit_end(tcp_t *tcp);
818 static void	tcp_ack_timer(void *arg);
819 static mblk_t	*tcp_ack_mp(tcp_t *tcp);
820 static void	tcp_xmit_early_reset(char *str, mblk_t *mp,
821 		    uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len,
822 		    zoneid_t zoneid, tcp_stack_t *, conn_t *connp);
823 static void	tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq,
824 		    uint32_t ack, int ctl);
825 static int	setmaxps(queue_t *q, int maxpsz);
826 static void	tcp_set_rto(tcp_t *, time_t);
827 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *,
828 		    boolean_t, boolean_t);
829 static void	tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp,
830 		    boolean_t ipsec_mctl);
831 static int	tcp_build_hdrs(tcp_t *);
832 static void	tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp,
833 		    uint32_t seg_seq, uint32_t seg_ack, int seg_len,
834 		    tcph_t *tcph);
835 boolean_t	tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp);
836 static mblk_t	*tcp_mdt_info_mp(mblk_t *);
837 static void	tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t);
838 static int	tcp_mdt_add_attrs(multidata_t *, const mblk_t *,
839 		    const boolean_t, const uint32_t, const uint32_t,
840 		    const uint32_t, const uint32_t, tcp_stack_t *);
841 static void	tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *,
842 		    const uint_t, const uint_t, boolean_t *);
843 static mblk_t	*tcp_lso_info_mp(mblk_t *);
844 static void	tcp_lso_update(tcp_t *, ill_lso_capab_t *);
845 static void	tcp_send_data(tcp_t *, queue_t *, mblk_t *);
846 extern mblk_t	*tcp_timermp_alloc(int);
847 extern void	tcp_timermp_free(tcp_t *);
848 static void	tcp_timer_free(tcp_t *tcp, mblk_t *mp);
849 static void	tcp_stop_lingering(tcp_t *tcp);
850 static void	tcp_close_linger_timeout(void *arg);
851 static void	*tcp_stack_init(netstackid_t stackid, netstack_t *ns);
852 static void	tcp_stack_shutdown(netstackid_t stackid, void *arg);
853 static void	tcp_stack_fini(netstackid_t stackid, void *arg);
854 static void	*tcp_g_kstat_init(tcp_g_stat_t *);
855 static void	tcp_g_kstat_fini(kstat_t *);
856 static void	*tcp_kstat_init(netstackid_t, tcp_stack_t *);
857 static void	tcp_kstat_fini(netstackid_t, kstat_t *);
858 static void	*tcp_kstat2_init(netstackid_t, tcp_stat_t *);
859 static void	tcp_kstat2_fini(netstackid_t, kstat_t *);
860 static int	tcp_kstat_update(kstat_t *kp, int rw);
861 void		tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp);
862 static int	tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
863 			tcph_t *tcph, uint_t ipvers, mblk_t *idmp);
864 static int	tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
865 			tcph_t *tcph, mblk_t *idmp);
866 static int	tcp_squeue_switch(int);
867 
868 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t);
869 static int	tcp_openv4(queue_t *, dev_t *, int, int, cred_t *);
870 static int	tcp_openv6(queue_t *, dev_t *, int, int, cred_t *);
871 static int	tcp_tpi_close(queue_t *, int);
872 static int	tcp_tpi_close_accept(queue_t *);
873 
874 static void	tcp_squeue_add(squeue_t *);
875 static boolean_t tcp_zcopy_check(tcp_t *);
876 static void	tcp_zcopy_notify(tcp_t *);
877 static mblk_t	*tcp_zcopy_disable(tcp_t *, mblk_t *);
878 static mblk_t	*tcp_zcopy_backoff(tcp_t *, mblk_t *, int);
879 static void	tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t);
880 
881 extern void	tcp_kssl_input(tcp_t *, mblk_t *);
882 
883 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2);
884 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2);
885 
886 static int tcp_accept(sock_lower_handle_t, sock_lower_handle_t,
887 	    sock_upper_handle_t, cred_t *);
888 static int tcp_listen(sock_lower_handle_t, int, cred_t *);
889 static int tcp_post_ip_bind(tcp_t *, mblk_t *, int, cred_t *, pid_t);
890 static int tcp_do_listen(conn_t *, struct sockaddr *, socklen_t, int, cred_t *,
891     boolean_t);
892 static int tcp_do_connect(conn_t *, const struct sockaddr *, socklen_t,
893     cred_t *, pid_t);
894 static int tcp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *,
895     boolean_t);
896 static int tcp_do_unbind(conn_t *);
897 static int tcp_bind_check(conn_t *, struct sockaddr *, socklen_t, cred_t *,
898     boolean_t);
899 
900 static void tcp_ulp_newconn(conn_t *, conn_t *, mblk_t *);
901 
902 /*
903  * Routines related to the TCP_IOC_ABORT_CONN ioctl command.
904  *
905  * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting
906  * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure
907  * (defined in tcp.h) needs to be filled in and passed into the kernel
908  * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t
909  * structure contains the four-tuple of a TCP connection and a range of TCP
910  * states (specified by ac_start and ac_end). The use of wildcard addresses
911  * and ports is allowed. Connections with a matching four tuple and a state
912  * within the specified range will be aborted. The valid states for the
913  * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT,
914  * inclusive.
915  *
916  * An application which has its connection aborted by this ioctl will receive
917  * an error that is dependent on the connection state at the time of the abort.
918  * If the connection state is < TCPS_TIME_WAIT, an application should behave as
919  * though a RST packet has been received.  If the connection state is equal to
920  * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel
921  * and all resources associated with the connection will be freed.
922  */
923 static mblk_t	*tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *);
924 static void	tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *);
925 static void	tcp_ioctl_abort_handler(tcp_t *, mblk_t *);
926 static int	tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps);
927 static void	tcp_ioctl_abort_conn(queue_t *, mblk_t *);
928 static int	tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *,
929     boolean_t, tcp_stack_t *);
930 
931 static struct module_info tcp_rinfo =  {
932 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
933 };
934 
935 static struct module_info tcp_winfo =  {
936 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
937 };
938 
939 /*
940  * Entry points for TCP as a device. The normal case which supports
941  * the TCP functionality.
942  * We have separate open functions for the /dev/tcp and /dev/tcp6 devices.
943  */
944 struct qinit tcp_rinitv4 = {
945 	NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo
946 };
947 
948 struct qinit tcp_rinitv6 = {
949 	NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo
950 };
951 
952 struct qinit tcp_winit = {
953 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
954 };
955 
956 /* Initial entry point for TCP in socket mode. */
957 struct qinit tcp_sock_winit = {
958 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
959 };
960 
961 /* TCP entry point during fallback */
962 struct qinit tcp_fallback_sock_winit = {
963 	(pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo
964 };
965 
966 /*
967  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
968  * an accept. Avoid allocating data structures since eager has already
969  * been created.
970  */
971 struct qinit tcp_acceptor_rinit = {
972 	NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo
973 };
974 
975 struct qinit tcp_acceptor_winit = {
976 	(pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo
977 };
978 
979 /*
980  * Entry points for TCP loopback (read side only)
981  * The open routine is only used for reopens, thus no need to
982  * have a separate one for tcp_openv6.
983  */
984 struct qinit tcp_loopback_rinit = {
985 	(pfi_t)0, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, (pfi_t)0,
986 	&tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD
987 };
988 
989 /* For AF_INET aka /dev/tcp */
990 struct streamtab tcpinfov4 = {
991 	&tcp_rinitv4, &tcp_winit
992 };
993 
994 /* For AF_INET6 aka /dev/tcp6 */
995 struct streamtab tcpinfov6 = {
996 	&tcp_rinitv6, &tcp_winit
997 };
998 
999 sock_downcalls_t sock_tcp_downcalls;
1000 
1001 /*
1002  * Have to ensure that tcp_g_q_close is not done by an
1003  * interrupt thread.
1004  */
1005 static taskq_t *tcp_taskq;
1006 
1007 /* Setable only in /etc/system. Move to ndd? */
1008 boolean_t tcp_icmp_source_quench = B_FALSE;
1009 
1010 /*
1011  * Following assumes TPI alignment requirements stay along 32 bit
1012  * boundaries
1013  */
1014 #define	ROUNDUP32(x) \
1015 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
1016 
1017 /* Template for response to info request. */
1018 static struct T_info_ack tcp_g_t_info_ack = {
1019 	T_INFO_ACK,		/* PRIM_type */
1020 	0,			/* TSDU_size */
1021 	T_INFINITE,		/* ETSDU_size */
1022 	T_INVALID,		/* CDATA_size */
1023 	T_INVALID,		/* DDATA_size */
1024 	sizeof (sin_t),		/* ADDR_size */
1025 	0,			/* OPT_size - not initialized here */
1026 	TIDUSZ,			/* TIDU_size */
1027 	T_COTS_ORD,		/* SERV_type */
1028 	TCPS_IDLE,		/* CURRENT_state */
1029 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1030 };
1031 
1032 static struct T_info_ack tcp_g_t_info_ack_v6 = {
1033 	T_INFO_ACK,		/* PRIM_type */
1034 	0,			/* TSDU_size */
1035 	T_INFINITE,		/* ETSDU_size */
1036 	T_INVALID,		/* CDATA_size */
1037 	T_INVALID,		/* DDATA_size */
1038 	sizeof (sin6_t),	/* ADDR_size */
1039 	0,			/* OPT_size - not initialized here */
1040 	TIDUSZ,		/* TIDU_size */
1041 	T_COTS_ORD,		/* SERV_type */
1042 	TCPS_IDLE,		/* CURRENT_state */
1043 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1044 };
1045 
1046 #define	MS	1L
1047 #define	SECONDS	(1000 * MS)
1048 #define	MINUTES	(60 * SECONDS)
1049 #define	HOURS	(60 * MINUTES)
1050 #define	DAYS	(24 * HOURS)
1051 
1052 #define	PARAM_MAX (~(uint32_t)0)
1053 
1054 /* Max size IP datagram is 64k - 1 */
1055 #define	TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t)))
1056 #define	TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t)))
1057 /* Max of the above */
1058 #define	TCP_MSS_MAX	TCP_MSS_MAX_IPV4
1059 
1060 /* Largest TCP port number */
1061 #define	TCP_MAX_PORT	(64 * 1024 - 1)
1062 
1063 /*
1064  * tcp_wroff_xtra is the extra space in front of TCP/IP header for link
1065  * layer header.  It has to be a multiple of 4.
1066  */
1067 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" };
1068 #define	tcps_wroff_xtra	tcps_wroff_xtra_param->tcp_param_val
1069 
1070 /*
1071  * All of these are alterable, within the min/max values given, at run time.
1072  * Note that the default value of "tcp_time_wait_interval" is four minutes,
1073  * per the TCP spec.
1074  */
1075 /* BEGIN CSTYLED */
1076 static tcpparam_t	lcl_tcp_param_arr[] = {
1077  /*min		max		value		name */
1078  { 1*SECONDS,	10*MINUTES,	1*MINUTES,	"tcp_time_wait_interval"},
1079  { 1,		PARAM_MAX,	128,		"tcp_conn_req_max_q" },
1080  { 0,		PARAM_MAX,	1024,		"tcp_conn_req_max_q0" },
1081  { 1,		1024,		1,		"tcp_conn_req_min" },
1082  { 0*MS,	20*SECONDS,	0*MS,		"tcp_conn_grace_period" },
1083  { 128,		(1<<30),	1024*1024,	"tcp_cwnd_max" },
1084  { 0,		10,		0,		"tcp_debug" },
1085  { 1024,	(32*1024),	1024,		"tcp_smallest_nonpriv_port"},
1086  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_cinterval"},
1087  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_linterval"},
1088  { 500*MS,	PARAM_MAX,	8*MINUTES,	"tcp_ip_abort_interval"},
1089  { 1*SECONDS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_cinterval"},
1090  { 500*MS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_interval"},
1091  { 1,		255,		64,		"tcp_ipv4_ttl"},
1092  { 10*SECONDS,	10*DAYS,	2*HOURS,	"tcp_keepalive_interval"},
1093  { 0,		100,		10,		"tcp_maxpsz_multiplier" },
1094  { 1,		TCP_MSS_MAX_IPV4, 536,		"tcp_mss_def_ipv4"},
1095  { 1,		TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"},
1096  { 1,		TCP_MSS_MAX,	108,		"tcp_mss_min"},
1097  { 1,		(64*1024)-1,	(4*1024)-1,	"tcp_naglim_def"},
1098  { 1*MS,	20*SECONDS,	3*SECONDS,	"tcp_rexmit_interval_initial"},
1099  { 1*MS,	2*HOURS,	60*SECONDS,	"tcp_rexmit_interval_max"},
1100  { 1*MS,	2*HOURS,	400*MS,		"tcp_rexmit_interval_min"},
1101  { 1*MS,	1*MINUTES,	100*MS,		"tcp_deferred_ack_interval" },
1102  { 0,		16,		0,		"tcp_snd_lowat_fraction" },
1103  { 0,		128000,		0,		"tcp_sth_rcv_hiwat" },
1104  { 0,		128000,		0,		"tcp_sth_rcv_lowat" },
1105  { 1,		10000,		3,		"tcp_dupack_fast_retransmit" },
1106  { 0,		1,		0,		"tcp_ignore_path_mtu" },
1107  { 1024,	TCP_MAX_PORT,	32*1024,	"tcp_smallest_anon_port"},
1108  { 1024,	TCP_MAX_PORT,	TCP_MAX_PORT,	"tcp_largest_anon_port"},
1109  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"},
1110  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"},
1111  { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"},
1112  { 1,		65536,		4,		"tcp_recv_hiwat_minmss"},
1113  { 1*SECONDS,	PARAM_MAX,	675*SECONDS,	"tcp_fin_wait_2_flush_interval"},
1114  { 8192,	(1<<30),	1024*1024,	"tcp_max_buf"},
1115 /*
1116  * Question:  What default value should I set for tcp_strong_iss?
1117  */
1118  { 0,		2,		1,		"tcp_strong_iss"},
1119  { 0,		65536,		20,		"tcp_rtt_updates"},
1120  { 0,		1,		1,		"tcp_wscale_always"},
1121  { 0,		1,		0,		"tcp_tstamp_always"},
1122  { 0,		1,		1,		"tcp_tstamp_if_wscale"},
1123  { 0*MS,	2*HOURS,	0*MS,		"tcp_rexmit_interval_extra"},
1124  { 0,		16,		2,		"tcp_deferred_acks_max"},
1125  { 1,		16384,		4,		"tcp_slow_start_after_idle"},
1126  { 1,		4,		4,		"tcp_slow_start_initial"},
1127  { 0,		2,		2,		"tcp_sack_permitted"},
1128  { 0,		1,		1,		"tcp_compression_enabled"},
1129  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS,	"tcp_ipv6_hoplimit"},
1130  { 1,		TCP_MSS_MAX_IPV6, 1220,		"tcp_mss_def_ipv6"},
1131  { 1,		TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"},
1132  { 0,		1,		0,		"tcp_rev_src_routes"},
1133  { 10*MS,	500*MS,		50*MS,		"tcp_local_dack_interval"},
1134  { 0,		16,		8,		"tcp_local_dacks_max"},
1135  { 0,		2,		1,		"tcp_ecn_permitted"},
1136  { 0,		1,		1,		"tcp_rst_sent_rate_enabled"},
1137  { 0,		PARAM_MAX,	40,		"tcp_rst_sent_rate"},
1138  { 0,		100*MS,		50*MS,		"tcp_push_timer_interval"},
1139  { 0,		1,		0,		"tcp_use_smss_as_mss_opt"},
1140  { 0,		PARAM_MAX,	8*MINUTES,	"tcp_keepalive_abort_interval"},
1141 };
1142 /* END CSTYLED */
1143 
1144 /*
1145  * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of
1146  * each header fragment in the header buffer.  Each parameter value has
1147  * to be a multiple of 4 (32-bit aligned).
1148  */
1149 static tcpparam_t lcl_tcp_mdt_head_param =
1150 	{ 32, 256, 32, "tcp_mdt_hdr_head_min" };
1151 static tcpparam_t lcl_tcp_mdt_tail_param =
1152 	{ 0,  256, 32, "tcp_mdt_hdr_tail_min" };
1153 #define	tcps_mdt_hdr_head_min	tcps_mdt_head_param->tcp_param_val
1154 #define	tcps_mdt_hdr_tail_min	tcps_mdt_tail_param->tcp_param_val
1155 
1156 /*
1157  * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out
1158  * the maximum number of payload buffers associated per Multidata.
1159  */
1160 static tcpparam_t lcl_tcp_mdt_max_pbufs_param =
1161 	{ 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" };
1162 #define	tcps_mdt_max_pbufs	tcps_mdt_max_pbufs_param->tcp_param_val
1163 
1164 /* Round up the value to the nearest mss. */
1165 #define	MSS_ROUNDUP(value, mss)		((((value) - 1) / (mss) + 1) * (mss))
1166 
1167 /*
1168  * Set ECN capable transport (ECT) code point in IP header.
1169  *
1170  * Note that there are 2 ECT code points '01' and '10', which are called
1171  * ECT(1) and ECT(0) respectively.  Here we follow the original ECT code
1172  * point ECT(0) for TCP as described in RFC 2481.
1173  */
1174 #define	SET_ECT(tcp, iph) \
1175 	if ((tcp)->tcp_ipversion == IPV4_VERSION) { \
1176 		/* We need to clear the code point first. */ \
1177 		((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \
1178 		((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \
1179 	} else { \
1180 		((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \
1181 		((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \
1182 	}
1183 
1184 /*
1185  * The format argument to pass to tcp_display().
1186  * DISP_PORT_ONLY means that the returned string has only port info.
1187  * DISP_ADDR_AND_PORT means that the returned string also contains the
1188  * remote and local IP address.
1189  */
1190 #define	DISP_PORT_ONLY		1
1191 #define	DISP_ADDR_AND_PORT	2
1192 
1193 #define	IS_VMLOANED_MBLK(mp) \
1194 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
1195 
1196 
1197 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */
1198 boolean_t tcp_mdt_chain = B_TRUE;
1199 
1200 /*
1201  * MDT threshold in the form of effective send MSS multiplier; we take
1202  * the MDT path if the amount of unsent data exceeds the threshold value
1203  * (default threshold is 1*SMSS).
1204  */
1205 uint_t tcp_mdt_smss_threshold = 1;
1206 
1207 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
1208 
1209 /*
1210  * Forces all connections to obey the value of the tcps_maxpsz_multiplier
1211  * tunable settable via NDD.  Otherwise, the per-connection behavior is
1212  * determined dynamically during tcp_adapt_ire(), which is the default.
1213  */
1214 boolean_t tcp_static_maxpsz = B_FALSE;
1215 
1216 /* Setable in /etc/system */
1217 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
1218 uint32_t tcp_random_anon_port = 1;
1219 
1220 /*
1221  * To reach to an eager in Q0 which can be dropped due to an incoming
1222  * new SYN request when Q0 is full, a new doubly linked list is
1223  * introduced. This list allows to select an eager from Q0 in O(1) time.
1224  * This is needed to avoid spending too much time walking through the
1225  * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of
1226  * this new list has to be a member of Q0.
1227  * This list is headed by listener's tcp_t. When the list is empty,
1228  * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0,
1229  * of listener's tcp_t point to listener's tcp_t itself.
1230  *
1231  * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager
1232  * in the list. MAKE_UNDROPPABLE() takes the eager out of the list.
1233  * These macros do not affect the eager's membership to Q0.
1234  */
1235 
1236 
1237 #define	MAKE_DROPPABLE(listener, eager)					\
1238 	if ((eager)->tcp_eager_next_drop_q0 == NULL) {			\
1239 		(listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\
1240 		    = (eager);						\
1241 		(eager)->tcp_eager_prev_drop_q0 = (listener);		\
1242 		(eager)->tcp_eager_next_drop_q0 =			\
1243 		    (listener)->tcp_eager_next_drop_q0;			\
1244 		(listener)->tcp_eager_next_drop_q0 = (eager);		\
1245 	}
1246 
1247 #define	MAKE_UNDROPPABLE(eager)						\
1248 	if ((eager)->tcp_eager_next_drop_q0 != NULL) {			\
1249 		(eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0	\
1250 		    = (eager)->tcp_eager_prev_drop_q0;			\
1251 		(eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0	\
1252 		    = (eager)->tcp_eager_next_drop_q0;			\
1253 		(eager)->tcp_eager_prev_drop_q0 = NULL;			\
1254 		(eager)->tcp_eager_next_drop_q0 = NULL;			\
1255 	}
1256 
1257 /*
1258  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
1259  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
1260  * data, TCP will not respond with an ACK.  RFC 793 requires that
1261  * TCP responds with an ACK for such a bogus ACK.  By not following
1262  * the RFC, we prevent TCP from getting into an ACK storm if somehow
1263  * an attacker successfully spoofs an acceptable segment to our
1264  * peer; or when our peer is "confused."
1265  */
1266 uint32_t tcp_drop_ack_unsent_cnt = 10;
1267 
1268 /*
1269  * Hook functions to enable cluster networking
1270  * On non-clustered systems these vectors must always be NULL.
1271  */
1272 
1273 void (*cl_inet_listen)(netstackid_t stack_id, uint8_t protocol,
1274 			    sa_family_t addr_family, uint8_t *laddrp,
1275 			    in_port_t lport, void *args) = NULL;
1276 void (*cl_inet_unlisten)(netstackid_t stack_id, uint8_t protocol,
1277 			    sa_family_t addr_family, uint8_t *laddrp,
1278 			    in_port_t lport, void *args) = NULL;
1279 
1280 int (*cl_inet_connect2)(netstackid_t stack_id, uint8_t protocol,
1281 			    boolean_t is_outgoing,
1282 			    sa_family_t addr_family,
1283 			    uint8_t *laddrp, in_port_t lport,
1284 			    uint8_t *faddrp, in_port_t fport,
1285 			    void *args) = NULL;
1286 
1287 void (*cl_inet_disconnect)(netstackid_t stack_id, uint8_t protocol,
1288 			    sa_family_t addr_family, uint8_t *laddrp,
1289 			    in_port_t lport, uint8_t *faddrp,
1290 			    in_port_t fport, void *args) = NULL;
1291 
1292 /*
1293  * The following are defined in ip.c
1294  */
1295 extern int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol,
1296 			    sa_family_t addr_family, uint8_t *laddrp,
1297 			    void *args);
1298 extern uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol,
1299 			    sa_family_t addr_family, uint8_t *laddrp,
1300 			    uint8_t *faddrp, void *args);
1301 
1302 
1303 /*
1304  * int CL_INET_CONNECT(conn_t *cp, tcp_t *tcp, boolean_t is_outgoing, int err)
1305  */
1306 #define	CL_INET_CONNECT(connp, tcp, is_outgoing, err) {		\
1307 	(err) = 0;						\
1308 	if (cl_inet_connect2 != NULL) {				\
1309 		/*						\
1310 		 * Running in cluster mode - register active connection	\
1311 		 * information						\
1312 		 */							\
1313 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1314 			if ((tcp)->tcp_ipha->ipha_src != 0) {		\
1315 				(err) = (*cl_inet_connect2)(		\
1316 				    (connp)->conn_netstack->netstack_stackid,\
1317 				    IPPROTO_TCP, is_outgoing, AF_INET,	\
1318 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\
1319 				    (in_port_t)(tcp)->tcp_lport,	\
1320 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\
1321 				    (in_port_t)(tcp)->tcp_fport, NULL);	\
1322 			}						\
1323 		} else {						\
1324 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1325 			    &(tcp)->tcp_ip6h->ip6_src)) {		\
1326 				(err) = (*cl_inet_connect2)(		\
1327 				    (connp)->conn_netstack->netstack_stackid,\
1328 				    IPPROTO_TCP, is_outgoing, AF_INET6,	\
1329 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\
1330 				    (in_port_t)(tcp)->tcp_lport,	\
1331 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\
1332 				    (in_port_t)(tcp)->tcp_fport, NULL);	\
1333 			}						\
1334 		}							\
1335 	}								\
1336 }
1337 
1338 #define	CL_INET_DISCONNECT(connp, tcp)	{				\
1339 	if (cl_inet_disconnect != NULL) {				\
1340 		/*							\
1341 		 * Running in cluster mode - deregister active		\
1342 		 * connection information				\
1343 		 */							\
1344 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1345 			if ((tcp)->tcp_ip_src != 0) {			\
1346 				(*cl_inet_disconnect)(			\
1347 				    (connp)->conn_netstack->netstack_stackid,\
1348 				    IPPROTO_TCP, AF_INET,		\
1349 				    (uint8_t *)(&((tcp)->tcp_ip_src)),	\
1350 				    (in_port_t)(tcp)->tcp_lport,	\
1351 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\
1352 				    (in_port_t)(tcp)->tcp_fport, NULL);	\
1353 			}						\
1354 		} else {						\
1355 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1356 			    &(tcp)->tcp_ip_src_v6)) {			\
1357 				(*cl_inet_disconnect)(			\
1358 				    (connp)->conn_netstack->netstack_stackid,\
1359 				    IPPROTO_TCP, AF_INET6,		\
1360 				    (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\
1361 				    (in_port_t)(tcp)->tcp_lport,	\
1362 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\
1363 				    (in_port_t)(tcp)->tcp_fport, NULL);	\
1364 			}						\
1365 		}							\
1366 	}								\
1367 }
1368 
1369 /*
1370  * Cluster networking hook for traversing current connection list.
1371  * This routine is used to extract the current list of live connections
1372  * which must continue to to be dispatched to this node.
1373  */
1374 int cl_tcp_walk_list(netstackid_t stack_id,
1375     int (*callback)(cl_tcp_info_t *, void *), void *arg);
1376 
1377 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *),
1378     void *arg, tcp_stack_t *tcps);
1379 
1380 #define	DTRACE_IP_FASTPATH(mp, iph, ill, ipha, ip6h) 			\
1381 	DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *,	\
1382 	    iph, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha,		\
1383 	    ip6_t *, ip6h, int, 0);
1384 
1385 /*
1386  * Figure out the value of window scale opton.  Note that the rwnd is
1387  * ASSUMED to be rounded up to the nearest MSS before the calculation.
1388  * We cannot find the scale value and then do a round up of tcp_rwnd
1389  * because the scale value may not be correct after that.
1390  *
1391  * Set the compiler flag to make this function inline.
1392  */
1393 static void
1394 tcp_set_ws_value(tcp_t *tcp)
1395 {
1396 	int i;
1397 	uint32_t rwnd = tcp->tcp_rwnd;
1398 
1399 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
1400 	    i++, rwnd >>= 1)
1401 		;
1402 	tcp->tcp_rcv_ws = i;
1403 }
1404 
1405 /*
1406  * Remove a connection from the list of detached TIME_WAIT connections.
1407  * It returns B_FALSE if it can't remove the connection from the list
1408  * as the connection has already been removed from the list due to an
1409  * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE.
1410  */
1411 static boolean_t
1412 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait)
1413 {
1414 	boolean_t	locked = B_FALSE;
1415 
1416 	if (tcp_time_wait == NULL) {
1417 		tcp_time_wait = *((tcp_squeue_priv_t **)
1418 		    squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP));
1419 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1420 		locked = B_TRUE;
1421 	} else {
1422 		ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock));
1423 	}
1424 
1425 	if (tcp->tcp_time_wait_expire == 0) {
1426 		ASSERT(tcp->tcp_time_wait_next == NULL);
1427 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1428 		if (locked)
1429 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1430 		return (B_FALSE);
1431 	}
1432 	ASSERT(TCP_IS_DETACHED(tcp));
1433 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1434 
1435 	if (tcp == tcp_time_wait->tcp_time_wait_head) {
1436 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1437 		tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next;
1438 		if (tcp_time_wait->tcp_time_wait_head != NULL) {
1439 			tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev =
1440 			    NULL;
1441 		} else {
1442 			tcp_time_wait->tcp_time_wait_tail = NULL;
1443 		}
1444 	} else if (tcp == tcp_time_wait->tcp_time_wait_tail) {
1445 		ASSERT(tcp != tcp_time_wait->tcp_time_wait_head);
1446 		ASSERT(tcp->tcp_time_wait_next == NULL);
1447 		tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev;
1448 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1449 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL;
1450 	} else {
1451 		ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp);
1452 		ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp);
1453 		tcp->tcp_time_wait_prev->tcp_time_wait_next =
1454 		    tcp->tcp_time_wait_next;
1455 		tcp->tcp_time_wait_next->tcp_time_wait_prev =
1456 		    tcp->tcp_time_wait_prev;
1457 	}
1458 	tcp->tcp_time_wait_next = NULL;
1459 	tcp->tcp_time_wait_prev = NULL;
1460 	tcp->tcp_time_wait_expire = 0;
1461 
1462 	if (locked)
1463 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1464 	return (B_TRUE);
1465 }
1466 
1467 /*
1468  * Add a connection to the list of detached TIME_WAIT connections
1469  * and set its time to expire.
1470  */
1471 static void
1472 tcp_time_wait_append(tcp_t *tcp)
1473 {
1474 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1475 	tcp_squeue_priv_t *tcp_time_wait =
1476 	    *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp,
1477 	    SQPRIVATE_TCP));
1478 
1479 	tcp_timers_stop(tcp);
1480 
1481 	/* Freed above */
1482 	ASSERT(tcp->tcp_timer_tid == 0);
1483 	ASSERT(tcp->tcp_ack_tid == 0);
1484 
1485 	/* must have happened at the time of detaching the tcp */
1486 	ASSERT(tcp->tcp_ptpahn == NULL);
1487 	ASSERT(tcp->tcp_flow_stopped == 0);
1488 	ASSERT(tcp->tcp_time_wait_next == NULL);
1489 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1490 	ASSERT(tcp->tcp_time_wait_expire == NULL);
1491 	ASSERT(tcp->tcp_listener == NULL);
1492 
1493 	tcp->tcp_time_wait_expire = ddi_get_lbolt();
1494 	/*
1495 	 * The value computed below in tcp->tcp_time_wait_expire may
1496 	 * appear negative or wrap around. That is ok since our
1497 	 * interest is only in the difference between the current lbolt
1498 	 * value and tcp->tcp_time_wait_expire. But the value should not
1499 	 * be zero, since it means the tcp is not in the TIME_WAIT list.
1500 	 * The corresponding comparison in tcp_time_wait_collector() uses
1501 	 * modular arithmetic.
1502 	 */
1503 	tcp->tcp_time_wait_expire +=
1504 	    drv_usectohz(tcps->tcps_time_wait_interval * 1000);
1505 	if (tcp->tcp_time_wait_expire == 0)
1506 		tcp->tcp_time_wait_expire = 1;
1507 
1508 	ASSERT(TCP_IS_DETACHED(tcp));
1509 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1510 	ASSERT(tcp->tcp_time_wait_next == NULL);
1511 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1512 	TCP_DBGSTAT(tcps, tcp_time_wait);
1513 
1514 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1515 	if (tcp_time_wait->tcp_time_wait_head == NULL) {
1516 		ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL);
1517 		tcp_time_wait->tcp_time_wait_head = tcp;
1518 	} else {
1519 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1520 		ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state ==
1521 		    TCPS_TIME_WAIT);
1522 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp;
1523 		tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail;
1524 	}
1525 	tcp_time_wait->tcp_time_wait_tail = tcp;
1526 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1527 }
1528 
1529 /* ARGSUSED */
1530 void
1531 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2)
1532 {
1533 	conn_t	*connp = (conn_t *)arg;
1534 	tcp_t	*tcp = connp->conn_tcp;
1535 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1536 
1537 	ASSERT(tcp != NULL);
1538 	if (tcp->tcp_state == TCPS_CLOSED) {
1539 		return;
1540 	}
1541 
1542 	ASSERT((tcp->tcp_family == AF_INET &&
1543 	    tcp->tcp_ipversion == IPV4_VERSION) ||
1544 	    (tcp->tcp_family == AF_INET6 &&
1545 	    (tcp->tcp_ipversion == IPV4_VERSION ||
1546 	    tcp->tcp_ipversion == IPV6_VERSION)));
1547 	ASSERT(!tcp->tcp_listener);
1548 
1549 	TCP_STAT(tcps, tcp_time_wait_reap);
1550 	ASSERT(TCP_IS_DETACHED(tcp));
1551 
1552 	/*
1553 	 * Because they have no upstream client to rebind or tcp_close()
1554 	 * them later, we axe the connection here and now.
1555 	 */
1556 	tcp_close_detached(tcp);
1557 }
1558 
1559 /*
1560  * Remove cached/latched IPsec references.
1561  */
1562 void
1563 tcp_ipsec_cleanup(tcp_t *tcp)
1564 {
1565 	conn_t		*connp = tcp->tcp_connp;
1566 
1567 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1568 
1569 	if (connp->conn_latch != NULL) {
1570 		IPLATCH_REFRELE(connp->conn_latch,
1571 		    connp->conn_netstack);
1572 		connp->conn_latch = NULL;
1573 	}
1574 	if (connp->conn_policy != NULL) {
1575 		IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
1576 		connp->conn_policy = NULL;
1577 	}
1578 }
1579 
1580 /*
1581  * Cleaup before placing on free list.
1582  * Disassociate from the netstack/tcp_stack_t since the freelist
1583  * is per squeue and not per netstack.
1584  */
1585 void
1586 tcp_cleanup(tcp_t *tcp)
1587 {
1588 	mblk_t		*mp;
1589 	char		*tcp_iphc;
1590 	int		tcp_iphc_len;
1591 	int		tcp_hdr_grown;
1592 	tcp_sack_info_t	*tcp_sack_info;
1593 	conn_t		*connp = tcp->tcp_connp;
1594 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1595 	netstack_t	*ns = tcps->tcps_netstack;
1596 	mblk_t		*tcp_rsrv_mp;
1597 
1598 	tcp_bind_hash_remove(tcp);
1599 
1600 	/* Cleanup that which needs the netstack first */
1601 	tcp_ipsec_cleanup(tcp);
1602 
1603 	tcp_free(tcp);
1604 
1605 	/* Release any SSL context */
1606 	if (tcp->tcp_kssl_ent != NULL) {
1607 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
1608 		tcp->tcp_kssl_ent = NULL;
1609 	}
1610 
1611 	if (tcp->tcp_kssl_ctx != NULL) {
1612 		kssl_release_ctx(tcp->tcp_kssl_ctx);
1613 		tcp->tcp_kssl_ctx = NULL;
1614 	}
1615 	tcp->tcp_kssl_pending = B_FALSE;
1616 
1617 	conn_delete_ire(connp, NULL);
1618 
1619 	/*
1620 	 * Since we will bzero the entire structure, we need to
1621 	 * remove it and reinsert it in global hash list. We
1622 	 * know the walkers can't get to this conn because we
1623 	 * had set CONDEMNED flag earlier and checked reference
1624 	 * under conn_lock so walker won't pick it and when we
1625 	 * go the ipcl_globalhash_remove() below, no walker
1626 	 * can get to it.
1627 	 */
1628 	ipcl_globalhash_remove(connp);
1629 
1630 	/*
1631 	 * Now it is safe to decrement the reference counts.
1632 	 * This might be the last reference on the netstack and TCPS
1633 	 * in which case it will cause the tcp_g_q_close and
1634 	 * the freeing of the IP Instance.
1635 	 */
1636 	connp->conn_netstack = NULL;
1637 	netstack_rele(ns);
1638 	ASSERT(tcps != NULL);
1639 	tcp->tcp_tcps = NULL;
1640 	TCPS_REFRELE(tcps);
1641 
1642 	/* Save some state */
1643 	mp = tcp->tcp_timercache;
1644 
1645 	tcp_sack_info = tcp->tcp_sack_info;
1646 	tcp_iphc = tcp->tcp_iphc;
1647 	tcp_iphc_len = tcp->tcp_iphc_len;
1648 	tcp_hdr_grown = tcp->tcp_hdr_grown;
1649 	tcp_rsrv_mp = tcp->tcp_rsrv_mp;
1650 
1651 	if (connp->conn_cred != NULL) {
1652 		crfree(connp->conn_cred);
1653 		connp->conn_cred = NULL;
1654 	}
1655 	if (connp->conn_peercred != NULL) {
1656 		crfree(connp->conn_peercred);
1657 		connp->conn_peercred = NULL;
1658 	}
1659 	ipcl_conn_cleanup(connp);
1660 	connp->conn_flags = IPCL_TCPCONN;
1661 	bzero(tcp, sizeof (tcp_t));
1662 
1663 	/* restore the state */
1664 	tcp->tcp_timercache = mp;
1665 
1666 	tcp->tcp_sack_info = tcp_sack_info;
1667 	tcp->tcp_iphc = tcp_iphc;
1668 	tcp->tcp_iphc_len = tcp_iphc_len;
1669 	tcp->tcp_hdr_grown = tcp_hdr_grown;
1670 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
1671 
1672 	tcp->tcp_connp = connp;
1673 
1674 	ASSERT(connp->conn_tcp == tcp);
1675 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1676 	connp->conn_state_flags = CONN_INCIPIENT;
1677 	ASSERT(connp->conn_ulp == IPPROTO_TCP);
1678 	ASSERT(connp->conn_ref == 1);
1679 }
1680 
1681 /*
1682  * Blows away all tcps whose TIME_WAIT has expired. List traversal
1683  * is done forwards from the head.
1684  * This walks all stack instances since
1685  * tcp_time_wait remains global across all stacks.
1686  */
1687 /* ARGSUSED */
1688 void
1689 tcp_time_wait_collector(void *arg)
1690 {
1691 	tcp_t *tcp;
1692 	clock_t now;
1693 	mblk_t *mp;
1694 	conn_t *connp;
1695 	kmutex_t *lock;
1696 	boolean_t removed;
1697 
1698 	squeue_t *sqp = (squeue_t *)arg;
1699 	tcp_squeue_priv_t *tcp_time_wait =
1700 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1701 
1702 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1703 	tcp_time_wait->tcp_time_wait_tid = 0;
1704 
1705 	if (tcp_time_wait->tcp_free_list != NULL &&
1706 	    tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) {
1707 		TCP_G_STAT(tcp_freelist_cleanup);
1708 		while ((tcp = tcp_time_wait->tcp_free_list) != NULL) {
1709 			tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1710 			tcp->tcp_time_wait_next = NULL;
1711 			tcp_time_wait->tcp_free_list_cnt--;
1712 			ASSERT(tcp->tcp_tcps == NULL);
1713 			CONN_DEC_REF(tcp->tcp_connp);
1714 		}
1715 		ASSERT(tcp_time_wait->tcp_free_list_cnt == 0);
1716 	}
1717 
1718 	/*
1719 	 * In order to reap time waits reliably, we should use a
1720 	 * source of time that is not adjustable by the user -- hence
1721 	 * the call to ddi_get_lbolt().
1722 	 */
1723 	now = ddi_get_lbolt();
1724 	while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) {
1725 		/*
1726 		 * Compare times using modular arithmetic, since
1727 		 * lbolt can wrapover.
1728 		 */
1729 		if ((now - tcp->tcp_time_wait_expire) < 0) {
1730 			break;
1731 		}
1732 
1733 		removed = tcp_time_wait_remove(tcp, tcp_time_wait);
1734 		ASSERT(removed);
1735 
1736 		connp = tcp->tcp_connp;
1737 		ASSERT(connp->conn_fanout != NULL);
1738 		lock = &connp->conn_fanout->connf_lock;
1739 		/*
1740 		 * This is essentially a TW reclaim fast path optimization for
1741 		 * performance where the timewait collector checks under the
1742 		 * fanout lock (so that no one else can get access to the
1743 		 * conn_t) that the refcnt is 2 i.e. one for TCP and one for
1744 		 * the classifier hash list. If ref count is indeed 2, we can
1745 		 * just remove the conn under the fanout lock and avoid
1746 		 * cleaning up the conn under the squeue, provided that
1747 		 * clustering callbacks are not enabled. If clustering is
1748 		 * enabled, we need to make the clustering callback before
1749 		 * setting the CONDEMNED flag and after dropping all locks and
1750 		 * so we forego this optimization and fall back to the slow
1751 		 * path. Also please see the comments in tcp_closei_local
1752 		 * regarding the refcnt logic.
1753 		 *
1754 		 * Since we are holding the tcp_time_wait_lock, its better
1755 		 * not to block on the fanout_lock because other connections
1756 		 * can't add themselves to time_wait list. So we do a
1757 		 * tryenter instead of mutex_enter.
1758 		 */
1759 		if (mutex_tryenter(lock)) {
1760 			mutex_enter(&connp->conn_lock);
1761 			if ((connp->conn_ref == 2) &&
1762 			    (cl_inet_disconnect == NULL)) {
1763 				ipcl_hash_remove_locked(connp,
1764 				    connp->conn_fanout);
1765 				/*
1766 				 * Set the CONDEMNED flag now itself so that
1767 				 * the refcnt cannot increase due to any
1768 				 * walker. But we have still not cleaned up
1769 				 * conn_ire_cache. This is still ok since
1770 				 * we are going to clean it up in tcp_cleanup
1771 				 * immediately and any interface unplumb
1772 				 * thread will wait till the ire is blown away
1773 				 */
1774 				connp->conn_state_flags |= CONN_CONDEMNED;
1775 				mutex_exit(lock);
1776 				mutex_exit(&connp->conn_lock);
1777 				if (tcp_time_wait->tcp_free_list_cnt <
1778 				    tcp_free_list_max_cnt) {
1779 					/* Add to head of tcp_free_list */
1780 					mutex_exit(
1781 					    &tcp_time_wait->tcp_time_wait_lock);
1782 					tcp_cleanup(tcp);
1783 					ASSERT(connp->conn_latch == NULL);
1784 					ASSERT(connp->conn_policy == NULL);
1785 					ASSERT(tcp->tcp_tcps == NULL);
1786 					ASSERT(connp->conn_netstack == NULL);
1787 
1788 					mutex_enter(
1789 					    &tcp_time_wait->tcp_time_wait_lock);
1790 					tcp->tcp_time_wait_next =
1791 					    tcp_time_wait->tcp_free_list;
1792 					tcp_time_wait->tcp_free_list = tcp;
1793 					tcp_time_wait->tcp_free_list_cnt++;
1794 					continue;
1795 				} else {
1796 					/* Do not add to tcp_free_list */
1797 					mutex_exit(
1798 					    &tcp_time_wait->tcp_time_wait_lock);
1799 					tcp_bind_hash_remove(tcp);
1800 					conn_delete_ire(tcp->tcp_connp, NULL);
1801 					tcp_ipsec_cleanup(tcp);
1802 					CONN_DEC_REF(tcp->tcp_connp);
1803 				}
1804 			} else {
1805 				CONN_INC_REF_LOCKED(connp);
1806 				mutex_exit(lock);
1807 				mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1808 				mutex_exit(&connp->conn_lock);
1809 				/*
1810 				 * We can reuse the closemp here since conn has
1811 				 * detached (otherwise we wouldn't even be in
1812 				 * time_wait list). tcp_closemp_used can safely
1813 				 * be changed without taking a lock as no other
1814 				 * thread can concurrently access it at this
1815 				 * point in the connection lifecycle.
1816 				 */
1817 
1818 				if (tcp->tcp_closemp.b_prev == NULL)
1819 					tcp->tcp_closemp_used = B_TRUE;
1820 				else
1821 					cmn_err(CE_PANIC,
1822 					    "tcp_timewait_collector: "
1823 					    "concurrent use of tcp_closemp: "
1824 					    "connp %p tcp %p\n", (void *)connp,
1825 					    (void *)tcp);
1826 
1827 				TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1828 				mp = &tcp->tcp_closemp;
1829 				SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
1830 				    tcp_timewait_output, connp,
1831 				    SQ_FILL, SQTAG_TCP_TIMEWAIT);
1832 			}
1833 		} else {
1834 			mutex_enter(&connp->conn_lock);
1835 			CONN_INC_REF_LOCKED(connp);
1836 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1837 			mutex_exit(&connp->conn_lock);
1838 			/*
1839 			 * We can reuse the closemp here since conn has
1840 			 * detached (otherwise we wouldn't even be in
1841 			 * time_wait list). tcp_closemp_used can safely
1842 			 * be changed without taking a lock as no other
1843 			 * thread can concurrently access it at this
1844 			 * point in the connection lifecycle.
1845 			 */
1846 
1847 			if (tcp->tcp_closemp.b_prev == NULL)
1848 				tcp->tcp_closemp_used = B_TRUE;
1849 			else
1850 				cmn_err(CE_PANIC, "tcp_timewait_collector: "
1851 				    "concurrent use of tcp_closemp: "
1852 				    "connp %p tcp %p\n", (void *)connp,
1853 				    (void *)tcp);
1854 
1855 			TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1856 			mp = &tcp->tcp_closemp;
1857 			SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
1858 			    tcp_timewait_output, connp,
1859 			    SQ_FILL, SQTAG_TCP_TIMEWAIT);
1860 		}
1861 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1862 	}
1863 
1864 	if (tcp_time_wait->tcp_free_list != NULL)
1865 		tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE;
1866 
1867 	tcp_time_wait->tcp_time_wait_tid =
1868 	    timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp,
1869 	    TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION,
1870 	    CALLOUT_FLAG_ROUNDUP);
1871 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1872 }
1873 
1874 /*
1875  * Reply to a clients T_CONN_RES TPI message. This function
1876  * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES
1877  * on the acceptor STREAM and processed in tcp_wput_accept().
1878  * Read the block comment on top of tcp_conn_request().
1879  */
1880 static void
1881 tcp_tli_accept(tcp_t *listener, mblk_t *mp)
1882 {
1883 	tcp_t	*acceptor;
1884 	tcp_t	*eager;
1885 	tcp_t   *tcp;
1886 	struct T_conn_res	*tcr;
1887 	t_uscalar_t	acceptor_id;
1888 	t_scalar_t	seqnum;
1889 	mblk_t	*opt_mp = NULL;	/* T_OPTMGMT_REQ messages */
1890 	struct tcp_options *tcpopt;
1891 	mblk_t	*ok_mp;
1892 	mblk_t	*mp1;
1893 	tcp_stack_t	*tcps = listener->tcp_tcps;
1894 
1895 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
1896 		tcp_err_ack(listener, mp, TPROTO, 0);
1897 		return;
1898 	}
1899 	tcr = (struct T_conn_res *)mp->b_rptr;
1900 
1901 	/*
1902 	 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the
1903 	 * read side queue of the streams device underneath us i.e. the
1904 	 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we
1905 	 * look it up in the queue_hash.  Under LP64 it sends down the
1906 	 * minor_t of the accepting endpoint.
1907 	 *
1908 	 * Once the acceptor/eager are modified (in tcp_accept_swap) the
1909 	 * fanout hash lock is held.
1910 	 * This prevents any thread from entering the acceptor queue from
1911 	 * below (since it has not been hard bound yet i.e. any inbound
1912 	 * packets will arrive on the listener or default tcp queue and
1913 	 * go through tcp_lookup).
1914 	 * The CONN_INC_REF will prevent the acceptor from closing.
1915 	 *
1916 	 * XXX It is still possible for a tli application to send down data
1917 	 * on the accepting stream while another thread calls t_accept.
1918 	 * This should not be a problem for well-behaved applications since
1919 	 * the T_OK_ACK is sent after the queue swapping is completed.
1920 	 *
1921 	 * If the accepting fd is the same as the listening fd, avoid
1922 	 * queue hash lookup since that will return an eager listener in a
1923 	 * already established state.
1924 	 */
1925 	acceptor_id = tcr->ACCEPTOR_id;
1926 	mutex_enter(&listener->tcp_eager_lock);
1927 	if (listener->tcp_acceptor_id == acceptor_id) {
1928 		eager = listener->tcp_eager_next_q;
1929 		/* only count how many T_CONN_INDs so don't count q0 */
1930 		if ((listener->tcp_conn_req_cnt_q != 1) ||
1931 		    (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) {
1932 			mutex_exit(&listener->tcp_eager_lock);
1933 			tcp_err_ack(listener, mp, TBADF, 0);
1934 			return;
1935 		}
1936 		if (listener->tcp_conn_req_cnt_q0 != 0) {
1937 			/* Throw away all the eagers on q0. */
1938 			tcp_eager_cleanup(listener, 1);
1939 		}
1940 		if (listener->tcp_syn_defense) {
1941 			listener->tcp_syn_defense = B_FALSE;
1942 			if (listener->tcp_ip_addr_cache != NULL) {
1943 				kmem_free(listener->tcp_ip_addr_cache,
1944 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
1945 				listener->tcp_ip_addr_cache = NULL;
1946 			}
1947 		}
1948 		/*
1949 		 * Transfer tcp_conn_req_max to the eager so that when
1950 		 * a disconnect occurs we can revert the endpoint to the
1951 		 * listen state.
1952 		 */
1953 		eager->tcp_conn_req_max = listener->tcp_conn_req_max;
1954 		ASSERT(listener->tcp_conn_req_cnt_q0 == 0);
1955 		/*
1956 		 * Get a reference on the acceptor just like the
1957 		 * tcp_acceptor_hash_lookup below.
1958 		 */
1959 		acceptor = listener;
1960 		CONN_INC_REF(acceptor->tcp_connp);
1961 	} else {
1962 		acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps);
1963 		if (acceptor == NULL) {
1964 			if (listener->tcp_debug) {
1965 				(void) strlog(TCP_MOD_ID, 0, 1,
1966 				    SL_ERROR|SL_TRACE,
1967 				    "tcp_accept: did not find acceptor 0x%x\n",
1968 				    acceptor_id);
1969 			}
1970 			mutex_exit(&listener->tcp_eager_lock);
1971 			tcp_err_ack(listener, mp, TPROVMISMATCH, 0);
1972 			return;
1973 		}
1974 		/*
1975 		 * Verify acceptor state. The acceptable states for an acceptor
1976 		 * include TCPS_IDLE and TCPS_BOUND.
1977 		 */
1978 		switch (acceptor->tcp_state) {
1979 		case TCPS_IDLE:
1980 			/* FALLTHRU */
1981 		case TCPS_BOUND:
1982 			break;
1983 		default:
1984 			CONN_DEC_REF(acceptor->tcp_connp);
1985 			mutex_exit(&listener->tcp_eager_lock);
1986 			tcp_err_ack(listener, mp, TOUTSTATE, 0);
1987 			return;
1988 		}
1989 	}
1990 
1991 	/* The listener must be in TCPS_LISTEN */
1992 	if (listener->tcp_state != TCPS_LISTEN) {
1993 		CONN_DEC_REF(acceptor->tcp_connp);
1994 		mutex_exit(&listener->tcp_eager_lock);
1995 		tcp_err_ack(listener, mp, TOUTSTATE, 0);
1996 		return;
1997 	}
1998 
1999 	/*
2000 	 * Rendezvous with an eager connection request packet hanging off
2001 	 * 'tcp' that has the 'seqnum' tag.  We tagged the detached open
2002 	 * tcp structure when the connection packet arrived in
2003 	 * tcp_conn_request().
2004 	 */
2005 	seqnum = tcr->SEQ_number;
2006 	eager = listener;
2007 	do {
2008 		eager = eager->tcp_eager_next_q;
2009 		if (eager == NULL) {
2010 			CONN_DEC_REF(acceptor->tcp_connp);
2011 			mutex_exit(&listener->tcp_eager_lock);
2012 			tcp_err_ack(listener, mp, TBADSEQ, 0);
2013 			return;
2014 		}
2015 	} while (eager->tcp_conn_req_seqnum != seqnum);
2016 	mutex_exit(&listener->tcp_eager_lock);
2017 
2018 	/*
2019 	 * At this point, both acceptor and listener have 2 ref
2020 	 * that they begin with. Acceptor has one additional ref
2021 	 * we placed in lookup while listener has 3 additional
2022 	 * ref for being behind the squeue (tcp_accept() is
2023 	 * done on listener's squeue); being in classifier hash;
2024 	 * and eager's ref on listener.
2025 	 */
2026 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2027 	ASSERT(acceptor->tcp_connp->conn_ref >= 3);
2028 
2029 	/*
2030 	 * The eager at this point is set in its own squeue and
2031 	 * could easily have been killed (tcp_accept_finish will
2032 	 * deal with that) because of a TH_RST so we can only
2033 	 * ASSERT for a single ref.
2034 	 */
2035 	ASSERT(eager->tcp_connp->conn_ref >= 1);
2036 
2037 	/* Pre allocate the stroptions mblk also */
2038 	opt_mp = allocb(MAX(sizeof (struct tcp_options),
2039 	    sizeof (struct T_conn_res)), BPRI_HI);
2040 	if (opt_mp == NULL) {
2041 		CONN_DEC_REF(acceptor->tcp_connp);
2042 		CONN_DEC_REF(eager->tcp_connp);
2043 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2044 		return;
2045 	}
2046 	DB_TYPE(opt_mp) = M_SETOPTS;
2047 	opt_mp->b_wptr += sizeof (struct tcp_options);
2048 	tcpopt = (struct tcp_options *)opt_mp->b_rptr;
2049 	tcpopt->to_flags = 0;
2050 
2051 	/*
2052 	 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
2053 	 * from listener to acceptor.
2054 	 */
2055 	if (listener->tcp_bound_if != 0) {
2056 		tcpopt->to_flags |= TCPOPT_BOUNDIF;
2057 		tcpopt->to_boundif = listener->tcp_bound_if;
2058 	}
2059 	if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
2060 		tcpopt->to_flags |= TCPOPT_RECVPKTINFO;
2061 	}
2062 
2063 	/* Re-use mp1 to hold a copy of mp, in case reallocb fails */
2064 	if ((mp1 = copymsg(mp)) == NULL) {
2065 		CONN_DEC_REF(acceptor->tcp_connp);
2066 		CONN_DEC_REF(eager->tcp_connp);
2067 		freemsg(opt_mp);
2068 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2069 		return;
2070 	}
2071 
2072 	tcr = (struct T_conn_res *)mp1->b_rptr;
2073 
2074 	/*
2075 	 * This is an expanded version of mi_tpi_ok_ack_alloc()
2076 	 * which allocates a larger mblk and appends the new
2077 	 * local address to the ok_ack.  The address is copied by
2078 	 * soaccept() for getsockname().
2079 	 */
2080 	{
2081 		int extra;
2082 
2083 		extra = (eager->tcp_family == AF_INET) ?
2084 		    sizeof (sin_t) : sizeof (sin6_t);
2085 
2086 		/*
2087 		 * Try to re-use mp, if possible.  Otherwise, allocate
2088 		 * an mblk and return it as ok_mp.  In any case, mp
2089 		 * is no longer usable upon return.
2090 		 */
2091 		if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) {
2092 			CONN_DEC_REF(acceptor->tcp_connp);
2093 			CONN_DEC_REF(eager->tcp_connp);
2094 			freemsg(opt_mp);
2095 			/* Original mp has been freed by now, so use mp1 */
2096 			tcp_err_ack(listener, mp1, TSYSERR, ENOMEM);
2097 			return;
2098 		}
2099 
2100 		mp = NULL;	/* We should never use mp after this point */
2101 
2102 		switch (extra) {
2103 		case sizeof (sin_t): {
2104 				sin_t *sin = (sin_t *)ok_mp->b_wptr;
2105 
2106 				ok_mp->b_wptr += extra;
2107 				sin->sin_family = AF_INET;
2108 				sin->sin_port = eager->tcp_lport;
2109 				sin->sin_addr.s_addr =
2110 				    eager->tcp_ipha->ipha_src;
2111 				break;
2112 			}
2113 		case sizeof (sin6_t): {
2114 				sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr;
2115 
2116 				ok_mp->b_wptr += extra;
2117 				sin6->sin6_family = AF_INET6;
2118 				sin6->sin6_port = eager->tcp_lport;
2119 				if (eager->tcp_ipversion == IPV4_VERSION) {
2120 					sin6->sin6_flowinfo = 0;
2121 					IN6_IPADDR_TO_V4MAPPED(
2122 					    eager->tcp_ipha->ipha_src,
2123 					    &sin6->sin6_addr);
2124 				} else {
2125 					ASSERT(eager->tcp_ip6h != NULL);
2126 					sin6->sin6_flowinfo =
2127 					    eager->tcp_ip6h->ip6_vcf &
2128 					    ~IPV6_VERS_AND_FLOW_MASK;
2129 					sin6->sin6_addr =
2130 					    eager->tcp_ip6h->ip6_src;
2131 				}
2132 				sin6->sin6_scope_id = 0;
2133 				sin6->__sin6_src_id = 0;
2134 				break;
2135 			}
2136 		default:
2137 			break;
2138 		}
2139 		ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim);
2140 	}
2141 
2142 	/*
2143 	 * If there are no options we know that the T_CONN_RES will
2144 	 * succeed. However, we can't send the T_OK_ACK upstream until
2145 	 * the tcp_accept_swap is done since it would be dangerous to
2146 	 * let the application start using the new fd prior to the swap.
2147 	 */
2148 	tcp_accept_swap(listener, acceptor, eager);
2149 
2150 	/*
2151 	 * tcp_accept_swap unlinks eager from listener but does not drop
2152 	 * the eager's reference on the listener.
2153 	 */
2154 	ASSERT(eager->tcp_listener == NULL);
2155 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2156 
2157 	/*
2158 	 * The eager is now associated with its own queue. Insert in
2159 	 * the hash so that the connection can be reused for a future
2160 	 * T_CONN_RES.
2161 	 */
2162 	tcp_acceptor_hash_insert(acceptor_id, eager);
2163 
2164 	/*
2165 	 * We now do the processing of options with T_CONN_RES.
2166 	 * We delay till now since we wanted to have queue to pass to
2167 	 * option processing routines that points back to the right
2168 	 * instance structure which does not happen until after
2169 	 * tcp_accept_swap().
2170 	 *
2171 	 * Note:
2172 	 * The sanity of the logic here assumes that whatever options
2173 	 * are appropriate to inherit from listner=>eager are done
2174 	 * before this point, and whatever were to be overridden (or not)
2175 	 * in transfer logic from eager=>acceptor in tcp_accept_swap().
2176 	 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it
2177 	 *   before its ACCEPTOR_id comes down in T_CONN_RES ]
2178 	 * This may not be true at this point in time but can be fixed
2179 	 * independently. This option processing code starts with
2180 	 * the instantiated acceptor instance and the final queue at
2181 	 * this point.
2182 	 */
2183 
2184 	if (tcr->OPT_length != 0) {
2185 		/* Options to process */
2186 		int t_error = 0;
2187 		int sys_error = 0;
2188 		int do_disconnect = 0;
2189 
2190 		if (tcp_conprim_opt_process(eager, mp1,
2191 		    &do_disconnect, &t_error, &sys_error) < 0) {
2192 			eager->tcp_accept_error = 1;
2193 			if (do_disconnect) {
2194 				/*
2195 				 * An option failed which does not allow
2196 				 * connection to be accepted.
2197 				 *
2198 				 * We allow T_CONN_RES to succeed and
2199 				 * put a T_DISCON_IND on the eager queue.
2200 				 */
2201 				ASSERT(t_error == 0 && sys_error == 0);
2202 				eager->tcp_send_discon_ind = 1;
2203 			} else {
2204 				ASSERT(t_error != 0);
2205 				freemsg(ok_mp);
2206 				/*
2207 				 * Original mp was either freed or set
2208 				 * to ok_mp above, so use mp1 instead.
2209 				 */
2210 				tcp_err_ack(listener, mp1, t_error, sys_error);
2211 				goto finish;
2212 			}
2213 		}
2214 		/*
2215 		 * Most likely success in setting options (except if
2216 		 * eager->tcp_send_discon_ind set).
2217 		 * mp1 option buffer represented by OPT_length/offset
2218 		 * potentially modified and contains results of setting
2219 		 * options at this point
2220 		 */
2221 	}
2222 
2223 	/* We no longer need mp1, since all options processing has passed */
2224 	freemsg(mp1);
2225 
2226 	putnext(listener->tcp_rq, ok_mp);
2227 
2228 	mutex_enter(&listener->tcp_eager_lock);
2229 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
2230 		tcp_t	*tail;
2231 		mblk_t	*conn_ind;
2232 
2233 		/*
2234 		 * This path should not be executed if listener and
2235 		 * acceptor streams are the same.
2236 		 */
2237 		ASSERT(listener != acceptor);
2238 
2239 		tcp = listener->tcp_eager_prev_q0;
2240 		/*
2241 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
2242 		 * deferred T_conn_ind queue. We need to get to the head of
2243 		 * the queue in order to send up T_conn_ind the same order as
2244 		 * how the 3WHS is completed.
2245 		 */
2246 		while (tcp != listener) {
2247 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0)
2248 				break;
2249 			else
2250 				tcp = tcp->tcp_eager_prev_q0;
2251 		}
2252 		ASSERT(tcp != listener);
2253 		conn_ind = tcp->tcp_conn.tcp_eager_conn_ind;
2254 		ASSERT(conn_ind != NULL);
2255 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
2256 
2257 		/* Move from q0 to q */
2258 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
2259 		listener->tcp_conn_req_cnt_q0--;
2260 		listener->tcp_conn_req_cnt_q++;
2261 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
2262 		    tcp->tcp_eager_prev_q0;
2263 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
2264 		    tcp->tcp_eager_next_q0;
2265 		tcp->tcp_eager_prev_q0 = NULL;
2266 		tcp->tcp_eager_next_q0 = NULL;
2267 		tcp->tcp_conn_def_q0 = B_FALSE;
2268 
2269 		/* Make sure the tcp isn't in the list of droppables */
2270 		ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
2271 		    tcp->tcp_eager_prev_drop_q0 == NULL);
2272 
2273 		/*
2274 		 * Insert at end of the queue because sockfs sends
2275 		 * down T_CONN_RES in chronological order. Leaving
2276 		 * the older conn indications at front of the queue
2277 		 * helps reducing search time.
2278 		 */
2279 		tail = listener->tcp_eager_last_q;
2280 		if (tail != NULL)
2281 			tail->tcp_eager_next_q = tcp;
2282 		else
2283 			listener->tcp_eager_next_q = tcp;
2284 		listener->tcp_eager_last_q = tcp;
2285 		tcp->tcp_eager_next_q = NULL;
2286 		mutex_exit(&listener->tcp_eager_lock);
2287 		putnext(tcp->tcp_rq, conn_ind);
2288 	} else {
2289 		mutex_exit(&listener->tcp_eager_lock);
2290 	}
2291 
2292 	/*
2293 	 * Done with the acceptor - free it
2294 	 *
2295 	 * Note: from this point on, no access to listener should be made
2296 	 * as listener can be equal to acceptor.
2297 	 */
2298 finish:
2299 	ASSERT(acceptor->tcp_detached);
2300 	ASSERT(tcps->tcps_g_q != NULL);
2301 	ASSERT(!IPCL_IS_NONSTR(acceptor->tcp_connp));
2302 	acceptor->tcp_rq = tcps->tcps_g_q;
2303 	acceptor->tcp_wq = WR(tcps->tcps_g_q);
2304 	(void) tcp_clean_death(acceptor, 0, 2);
2305 	CONN_DEC_REF(acceptor->tcp_connp);
2306 
2307 	/*
2308 	 * In case we already received a FIN we have to make tcp_rput send
2309 	 * the ordrel_ind. This will also send up a window update if the window
2310 	 * has opened up.
2311 	 *
2312 	 * In the normal case of a successful connection acceptance
2313 	 * we give the O_T_BIND_REQ to the read side put procedure as an
2314 	 * indication that this was just accepted. This tells tcp_rput to
2315 	 * pass up any data queued in tcp_rcv_list.
2316 	 *
2317 	 * In the fringe case where options sent with T_CONN_RES failed and
2318 	 * we required, we would be indicating a T_DISCON_IND to blow
2319 	 * away this connection.
2320 	 */
2321 
2322 	/*
2323 	 * XXX: we currently have a problem if XTI application closes the
2324 	 * acceptor stream in between. This problem exists in on10-gate also
2325 	 * and is well know but nothing can be done short of major rewrite
2326 	 * to fix it. Now it is possible to take care of it by assigning TLI/XTI
2327 	 * eager same squeue as listener (we can distinguish non socket
2328 	 * listeners at the time of handling a SYN in tcp_conn_request)
2329 	 * and do most of the work that tcp_accept_finish does here itself
2330 	 * and then get behind the acceptor squeue to access the acceptor
2331 	 * queue.
2332 	 */
2333 	/*
2334 	 * We already have a ref on tcp so no need to do one before squeue_enter
2335 	 */
2336 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, opt_mp, tcp_accept_finish,
2337 	    eager->tcp_connp, SQ_FILL, SQTAG_TCP_ACCEPT_FINISH);
2338 }
2339 
2340 /*
2341  * Swap information between the eager and acceptor for a TLI/XTI client.
2342  * The sockfs accept is done on the acceptor stream and control goes
2343  * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not
2344  * called. In either case, both the eager and listener are in their own
2345  * perimeter (squeue) and the code has to deal with potential race.
2346  *
2347  * See the block comment on top of tcp_accept() and tcp_wput_accept().
2348  */
2349 static void
2350 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager)
2351 {
2352 	conn_t	*econnp, *aconnp;
2353 
2354 	ASSERT(eager->tcp_rq == listener->tcp_rq);
2355 	ASSERT(eager->tcp_detached && !acceptor->tcp_detached);
2356 	ASSERT(!eager->tcp_hard_bound);
2357 	ASSERT(!TCP_IS_SOCKET(acceptor));
2358 	ASSERT(!TCP_IS_SOCKET(eager));
2359 	ASSERT(!TCP_IS_SOCKET(listener));
2360 
2361 	acceptor->tcp_detached = B_TRUE;
2362 	/*
2363 	 * To permit stream re-use by TLI/XTI, the eager needs a copy of
2364 	 * the acceptor id.
2365 	 */
2366 	eager->tcp_acceptor_id = acceptor->tcp_acceptor_id;
2367 
2368 	/* remove eager from listen list... */
2369 	mutex_enter(&listener->tcp_eager_lock);
2370 	tcp_eager_unlink(eager);
2371 	ASSERT(eager->tcp_eager_next_q == NULL &&
2372 	    eager->tcp_eager_last_q == NULL);
2373 	ASSERT(eager->tcp_eager_next_q0 == NULL &&
2374 	    eager->tcp_eager_prev_q0 == NULL);
2375 	mutex_exit(&listener->tcp_eager_lock);
2376 	eager->tcp_rq = acceptor->tcp_rq;
2377 	eager->tcp_wq = acceptor->tcp_wq;
2378 
2379 	econnp = eager->tcp_connp;
2380 	aconnp = acceptor->tcp_connp;
2381 
2382 	eager->tcp_rq->q_ptr = econnp;
2383 	eager->tcp_wq->q_ptr = econnp;
2384 
2385 	/*
2386 	 * In the TLI/XTI loopback case, we are inside the listener's squeue,
2387 	 * which might be a different squeue from our peer TCP instance.
2388 	 * For TCP Fusion, the peer expects that whenever tcp_detached is
2389 	 * clear, our TCP queues point to the acceptor's queues.  Thus, use
2390 	 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq
2391 	 * above reach global visibility prior to the clearing of tcp_detached.
2392 	 */
2393 	membar_producer();
2394 	eager->tcp_detached = B_FALSE;
2395 
2396 	ASSERT(eager->tcp_ack_tid == 0);
2397 
2398 	econnp->conn_dev = aconnp->conn_dev;
2399 	econnp->conn_minor_arena = aconnp->conn_minor_arena;
2400 	ASSERT(econnp->conn_minor_arena != NULL);
2401 	if (eager->tcp_cred != NULL)
2402 		crfree(eager->tcp_cred);
2403 	eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred;
2404 	ASSERT(econnp->conn_netstack == aconnp->conn_netstack);
2405 	ASSERT(eager->tcp_tcps == acceptor->tcp_tcps);
2406 
2407 	aconnp->conn_cred = NULL;
2408 
2409 	econnp->conn_zoneid = aconnp->conn_zoneid;
2410 	econnp->conn_allzones = aconnp->conn_allzones;
2411 
2412 	econnp->conn_mac_exempt = aconnp->conn_mac_exempt;
2413 	aconnp->conn_mac_exempt = B_FALSE;
2414 
2415 	ASSERT(aconnp->conn_peercred == NULL);
2416 
2417 	/* Do the IPC initialization */
2418 	CONN_INC_REF(econnp);
2419 
2420 	econnp->conn_multicast_loop = aconnp->conn_multicast_loop;
2421 	econnp->conn_af_isv6 = aconnp->conn_af_isv6;
2422 	econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6;
2423 
2424 	/* Done with old IPC. Drop its ref on its connp */
2425 	CONN_DEC_REF(aconnp);
2426 }
2427 
2428 
2429 /*
2430  * Adapt to the information, such as rtt and rtt_sd, provided from the
2431  * ire cached in conn_cache_ire. If no ire cached, do a ire lookup.
2432  *
2433  * Checks for multicast and broadcast destination address.
2434  * Returns zero on failure; non-zero if ok.
2435  *
2436  * Note that the MSS calculation here is based on the info given in
2437  * the IRE.  We do not do any calculation based on TCP options.  They
2438  * will be handled in tcp_rput_other() and tcp_rput_data() when TCP
2439  * knows which options to use.
2440  *
2441  * Note on how TCP gets its parameters for a connection.
2442  *
2443  * When a tcp_t structure is allocated, it gets all the default parameters.
2444  * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd,
2445  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
2446  * default.
2447  *
2448  * An incoming SYN with a multicast or broadcast destination address, is dropped
2449  * in 1 of 2 places.
2450  *
2451  * 1. If the packet was received over the wire it is dropped in
2452  * ip_rput_process_broadcast()
2453  *
2454  * 2. If the packet was received through internal IP loopback, i.e. the packet
2455  * was generated and received on the same machine, it is dropped in
2456  * ip_wput_local()
2457  *
2458  * An incoming SYN with a multicast or broadcast source address is always
2459  * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to
2460  * reject an attempt to connect to a broadcast or multicast (destination)
2461  * address.
2462  */
2463 static int
2464 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp)
2465 {
2466 	ire_t		*ire;
2467 	ire_t		*sire = NULL;
2468 	iulp_t		*ire_uinfo = NULL;
2469 	uint32_t	mss_max;
2470 	uint32_t	mss;
2471 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2472 	conn_t		*connp = tcp->tcp_connp;
2473 	boolean_t	ire_cacheable = B_FALSE;
2474 	zoneid_t	zoneid = connp->conn_zoneid;
2475 	int		match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
2476 	    MATCH_IRE_SECATTR;
2477 	ts_label_t	*tsl = crgetlabel(CONN_CRED(connp));
2478 	ill_t		*ill = NULL;
2479 	boolean_t	incoming = (ire_mp == NULL);
2480 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2481 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
2482 
2483 	ASSERT(connp->conn_ire_cache == NULL);
2484 
2485 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2486 
2487 		if (CLASSD(tcp->tcp_connp->conn_rem)) {
2488 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
2489 			return (0);
2490 		}
2491 		/*
2492 		 * If IP_NEXTHOP is set, then look for an IRE_CACHE
2493 		 * for the destination with the nexthop as gateway.
2494 		 * ire_ctable_lookup() is used because this particular
2495 		 * ire, if it exists, will be marked private.
2496 		 * If that is not available, use the interface ire
2497 		 * for the nexthop.
2498 		 *
2499 		 * TSol: tcp_update_label will detect label mismatches based
2500 		 * only on the destination's label, but that would not
2501 		 * detect label mismatches based on the security attributes
2502 		 * of routes or next hop gateway. Hence we need to pass the
2503 		 * label to ire_ftable_lookup below in order to locate the
2504 		 * right prefix (and/or) ire cache. Similarly we also need
2505 		 * pass the label to the ire_cache_lookup below to locate
2506 		 * the right ire that also matches on the label.
2507 		 */
2508 		if (tcp->tcp_connp->conn_nexthop_set) {
2509 			ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem,
2510 			    tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid,
2511 			    tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW,
2512 			    ipst);
2513 			if (ire == NULL) {
2514 				ire = ire_ftable_lookup(
2515 				    tcp->tcp_connp->conn_nexthop_v4,
2516 				    0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0,
2517 				    tsl, match_flags, ipst);
2518 				if (ire == NULL)
2519 					return (0);
2520 			} else {
2521 				ire_uinfo = &ire->ire_uinfo;
2522 			}
2523 		} else {
2524 			ire = ire_cache_lookup(tcp->tcp_connp->conn_rem,
2525 			    zoneid, tsl, ipst);
2526 			if (ire != NULL) {
2527 				ire_cacheable = B_TRUE;
2528 				ire_uinfo = (ire_mp != NULL) ?
2529 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2530 				    &ire->ire_uinfo;
2531 
2532 			} else {
2533 				if (ire_mp == NULL) {
2534 					ire = ire_ftable_lookup(
2535 					    tcp->tcp_connp->conn_rem,
2536 					    0, 0, 0, NULL, &sire, zoneid, 0,
2537 					    tsl, (MATCH_IRE_RECURSIVE |
2538 					    MATCH_IRE_DEFAULT), ipst);
2539 					if (ire == NULL)
2540 						return (0);
2541 					ire_uinfo = (sire != NULL) ?
2542 					    &sire->ire_uinfo :
2543 					    &ire->ire_uinfo;
2544 				} else {
2545 					ire = (ire_t *)ire_mp->b_rptr;
2546 					ire_uinfo =
2547 					    &((ire_t *)
2548 					    ire_mp->b_rptr)->ire_uinfo;
2549 				}
2550 			}
2551 		}
2552 		ASSERT(ire != NULL);
2553 
2554 		if ((ire->ire_src_addr == INADDR_ANY) ||
2555 		    (ire->ire_type & IRE_BROADCAST)) {
2556 			/*
2557 			 * ire->ire_mp is non null when ire_mp passed in is used
2558 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2559 			 */
2560 			if (ire->ire_mp == NULL)
2561 				ire_refrele(ire);
2562 			if (sire != NULL)
2563 				ire_refrele(sire);
2564 			return (0);
2565 		}
2566 
2567 		if (tcp->tcp_ipha->ipha_src == INADDR_ANY) {
2568 			ipaddr_t src_addr;
2569 
2570 			/*
2571 			 * ip_bind_connected() has stored the correct source
2572 			 * address in conn_src.
2573 			 */
2574 			src_addr = tcp->tcp_connp->conn_src;
2575 			tcp->tcp_ipha->ipha_src = src_addr;
2576 			/*
2577 			 * Copy of the src addr. in tcp_t is needed
2578 			 * for the lookup funcs.
2579 			 */
2580 			IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6);
2581 		}
2582 		/*
2583 		 * Set the fragment bit so that IP will tell us if the MTU
2584 		 * should change. IP tells us the latest setting of
2585 		 * ip_path_mtu_discovery through ire_frag_flag.
2586 		 */
2587 		if (ipst->ips_ip_path_mtu_discovery) {
2588 			tcp->tcp_ipha->ipha_fragment_offset_and_flags =
2589 			    htons(IPH_DF);
2590 		}
2591 		/*
2592 		 * If ire_uinfo is NULL, this is the IRE_INTERFACE case
2593 		 * for IP_NEXTHOP. No cache ire has been found for the
2594 		 * destination and we are working with the nexthop's
2595 		 * interface ire. Since we need to forward all packets
2596 		 * to the nexthop first, we "blindly" set tcp_localnet
2597 		 * to false, eventhough the destination may also be
2598 		 * onlink.
2599 		 */
2600 		if (ire_uinfo == NULL)
2601 			tcp->tcp_localnet = 0;
2602 		else
2603 			tcp->tcp_localnet = (ire->ire_gateway_addr == 0);
2604 	} else {
2605 		/*
2606 		 * For incoming connection ire_mp = NULL
2607 		 * For outgoing connection ire_mp != NULL
2608 		 * Technically we should check conn_incoming_ill
2609 		 * when ire_mp is NULL and conn_outgoing_ill when
2610 		 * ire_mp is non-NULL. But this is performance
2611 		 * critical path and for IPV*_BOUND_IF, outgoing
2612 		 * and incoming ill are always set to the same value.
2613 		 */
2614 		ill_t	*dst_ill = NULL;
2615 		ipif_t  *dst_ipif = NULL;
2616 
2617 		ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
2618 
2619 		if (connp->conn_outgoing_ill != NULL) {
2620 			/* Outgoing or incoming path */
2621 			int   err;
2622 
2623 			dst_ill = conn_get_held_ill(connp,
2624 			    &connp->conn_outgoing_ill, &err);
2625 			if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) {
2626 				ip1dbg(("tcp_adapt_ire: ill_lookup failed\n"));
2627 				return (0);
2628 			}
2629 			match_flags |= MATCH_IRE_ILL;
2630 			dst_ipif = dst_ill->ill_ipif;
2631 		}
2632 		ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6,
2633 		    0, 0, dst_ipif, zoneid, tsl, match_flags, ipst);
2634 
2635 		if (ire != NULL) {
2636 			ire_cacheable = B_TRUE;
2637 			ire_uinfo = (ire_mp != NULL) ?
2638 			    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2639 			    &ire->ire_uinfo;
2640 		} else {
2641 			if (ire_mp == NULL) {
2642 				ire = ire_ftable_lookup_v6(
2643 				    &tcp->tcp_connp->conn_remv6,
2644 				    0, 0, 0, dst_ipif, &sire, zoneid,
2645 				    0, tsl, match_flags, ipst);
2646 				if (ire == NULL) {
2647 					if (dst_ill != NULL)
2648 						ill_refrele(dst_ill);
2649 					return (0);
2650 				}
2651 				ire_uinfo = (sire != NULL) ? &sire->ire_uinfo :
2652 				    &ire->ire_uinfo;
2653 			} else {
2654 				ire = (ire_t *)ire_mp->b_rptr;
2655 				ire_uinfo =
2656 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo;
2657 			}
2658 		}
2659 		if (dst_ill != NULL)
2660 			ill_refrele(dst_ill);
2661 
2662 		ASSERT(ire != NULL);
2663 		ASSERT(ire_uinfo != NULL);
2664 
2665 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) ||
2666 		    IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
2667 			/*
2668 			 * ire->ire_mp is non null when ire_mp passed in is used
2669 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2670 			 */
2671 			if (ire->ire_mp == NULL)
2672 				ire_refrele(ire);
2673 			if (sire != NULL)
2674 				ire_refrele(sire);
2675 			return (0);
2676 		}
2677 
2678 		if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
2679 			in6_addr_t	src_addr;
2680 
2681 			/*
2682 			 * ip_bind_connected_v6() has stored the correct source
2683 			 * address per IPv6 addr. selection policy in
2684 			 * conn_src_v6.
2685 			 */
2686 			src_addr = tcp->tcp_connp->conn_srcv6;
2687 
2688 			tcp->tcp_ip6h->ip6_src = src_addr;
2689 			/*
2690 			 * Copy of the src addr. in tcp_t is needed
2691 			 * for the lookup funcs.
2692 			 */
2693 			tcp->tcp_ip_src_v6 = src_addr;
2694 			ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src,
2695 			    &connp->conn_srcv6));
2696 		}
2697 		tcp->tcp_localnet =
2698 		    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6);
2699 	}
2700 
2701 	/*
2702 	 * This allows applications to fail quickly when connections are made
2703 	 * to dead hosts. Hosts can be labeled dead by adding a reject route
2704 	 * with both the RTF_REJECT and RTF_PRIVATE flags set.
2705 	 */
2706 	if ((ire->ire_flags & RTF_REJECT) &&
2707 	    (ire->ire_flags & RTF_PRIVATE))
2708 		goto error;
2709 
2710 	/*
2711 	 * Make use of the cached rtt and rtt_sd values to calculate the
2712 	 * initial RTO.  Note that they are already initialized in
2713 	 * tcp_init_values().
2714 	 * If ire_uinfo is NULL, i.e., we do not have a cache ire for
2715 	 * IP_NEXTHOP, but instead are using the interface ire for the
2716 	 * nexthop, then we do not use the ire_uinfo from that ire to
2717 	 * do any initializations.
2718 	 */
2719 	if (ire_uinfo != NULL) {
2720 		if (ire_uinfo->iulp_rtt != 0) {
2721 			clock_t	rto;
2722 
2723 			tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt;
2724 			tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd;
2725 			rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2726 			    tcps->tcps_rexmit_interval_extra +
2727 			    (tcp->tcp_rtt_sa >> 5);
2728 
2729 			if (rto > tcps->tcps_rexmit_interval_max) {
2730 				tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
2731 			} else if (rto < tcps->tcps_rexmit_interval_min) {
2732 				tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
2733 			} else {
2734 				tcp->tcp_rto = rto;
2735 			}
2736 		}
2737 		if (ire_uinfo->iulp_ssthresh != 0)
2738 			tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh;
2739 		else
2740 			tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2741 		if (ire_uinfo->iulp_spipe > 0) {
2742 			tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe,
2743 			    tcps->tcps_max_buf);
2744 			if (tcps->tcps_snd_lowat_fraction != 0)
2745 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2746 				    tcps->tcps_snd_lowat_fraction;
2747 			(void) tcp_maxpsz_set(tcp, B_TRUE);
2748 		}
2749 		/*
2750 		 * Note that up till now, acceptor always inherits receive
2751 		 * window from the listener.  But if there is a metrics
2752 		 * associated with a host, we should use that instead of
2753 		 * inheriting it from listener. Thus we need to pass this
2754 		 * info back to the caller.
2755 		 */
2756 		if (ire_uinfo->iulp_rpipe > 0) {
2757 			tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe,
2758 			    tcps->tcps_max_buf);
2759 		}
2760 
2761 		if (ire_uinfo->iulp_rtomax > 0) {
2762 			tcp->tcp_second_timer_threshold =
2763 			    ire_uinfo->iulp_rtomax;
2764 		}
2765 
2766 		/*
2767 		 * Use the metric option settings, iulp_tstamp_ok and
2768 		 * iulp_wscale_ok, only for active open. What this means
2769 		 * is that if the other side uses timestamp or window
2770 		 * scale option, TCP will also use those options. That
2771 		 * is for passive open.  If the application sets a
2772 		 * large window, window scale is enabled regardless of
2773 		 * the value in iulp_wscale_ok.  This is the behavior
2774 		 * since 2.6.  So we keep it.
2775 		 * The only case left in passive open processing is the
2776 		 * check for SACK.
2777 		 * For ECN, it should probably be like SACK.  But the
2778 		 * current value is binary, so we treat it like the other
2779 		 * cases.  The metric only controls active open.For passive
2780 		 * open, the ndd param, tcp_ecn_permitted, controls the
2781 		 * behavior.
2782 		 */
2783 		if (!tcp_detached) {
2784 			/*
2785 			 * The if check means that the following can only
2786 			 * be turned on by the metrics only IRE, but not off.
2787 			 */
2788 			if (ire_uinfo->iulp_tstamp_ok)
2789 				tcp->tcp_snd_ts_ok = B_TRUE;
2790 			if (ire_uinfo->iulp_wscale_ok)
2791 				tcp->tcp_snd_ws_ok = B_TRUE;
2792 			if (ire_uinfo->iulp_sack == 2)
2793 				tcp->tcp_snd_sack_ok = B_TRUE;
2794 			if (ire_uinfo->iulp_ecn_ok)
2795 				tcp->tcp_ecn_ok = B_TRUE;
2796 		} else {
2797 			/*
2798 			 * Passive open.
2799 			 *
2800 			 * As above, the if check means that SACK can only be
2801 			 * turned on by the metric only IRE.
2802 			 */
2803 			if (ire_uinfo->iulp_sack > 0) {
2804 				tcp->tcp_snd_sack_ok = B_TRUE;
2805 			}
2806 		}
2807 	}
2808 
2809 
2810 	/*
2811 	 * XXX: Note that currently, ire_max_frag can be as small as 68
2812 	 * because of PMTUd.  So tcp_mss may go to negative if combined
2813 	 * length of all those options exceeds 28 bytes.  But because
2814 	 * of the tcp_mss_min check below, we may not have a problem if
2815 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
2816 	 * the negative problem still exists.  And the check defeats PMTUd.
2817 	 * In fact, if PMTUd finds that the MSS should be smaller than
2818 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
2819 	 * value.
2820 	 *
2821 	 * We do not deal with that now.  All those problems related to
2822 	 * PMTUd will be fixed later.
2823 	 */
2824 	ASSERT(ire->ire_max_frag != 0);
2825 	mss = tcp->tcp_if_mtu = ire->ire_max_frag;
2826 	if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) {
2827 		if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) {
2828 			mss = MIN(mss, IPV6_MIN_MTU);
2829 		}
2830 	}
2831 
2832 	/* Sanity check for MSS value. */
2833 	if (tcp->tcp_ipversion == IPV4_VERSION)
2834 		mss_max = tcps->tcps_mss_max_ipv4;
2835 	else
2836 		mss_max = tcps->tcps_mss_max_ipv6;
2837 
2838 	if (tcp->tcp_ipversion == IPV6_VERSION &&
2839 	    (ire->ire_frag_flag & IPH_FRAG_HDR)) {
2840 		/*
2841 		 * After receiving an ICMPv6 "packet too big" message with a
2842 		 * MTU < 1280, and for multirouted IPv6 packets, the IP layer
2843 		 * will insert a 8-byte fragment header in every packet; we
2844 		 * reduce the MSS by that amount here.
2845 		 */
2846 		mss -= sizeof (ip6_frag_t);
2847 	}
2848 
2849 	if (tcp->tcp_ipsec_overhead == 0)
2850 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
2851 
2852 	mss -= tcp->tcp_ipsec_overhead;
2853 
2854 	if (mss < tcps->tcps_mss_min)
2855 		mss = tcps->tcps_mss_min;
2856 	if (mss > mss_max)
2857 		mss = mss_max;
2858 
2859 	/* Note that this is the maximum MSS, excluding all options. */
2860 	tcp->tcp_mss = mss;
2861 
2862 	/*
2863 	 * Initialize the ISS here now that we have the full connection ID.
2864 	 * The RFC 1948 method of initial sequence number generation requires
2865 	 * knowledge of the full connection ID before setting the ISS.
2866 	 */
2867 
2868 	tcp_iss_init(tcp);
2869 
2870 	if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL))
2871 		tcp->tcp_loopback = B_TRUE;
2872 
2873 	if (sire != NULL)
2874 		IRE_REFRELE(sire);
2875 
2876 	/*
2877 	 * If we got an IRE_CACHE and an ILL, go through their properties;
2878 	 * otherwise, this is deferred until later when we have an IRE_CACHE.
2879 	 */
2880 	if (tcp->tcp_loopback ||
2881 	    (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) {
2882 		/*
2883 		 * For incoming, see if this tcp may be MDT-capable.  For
2884 		 * outgoing, this process has been taken care of through
2885 		 * tcp_rput_other.
2886 		 */
2887 		tcp_ire_ill_check(tcp, ire, ill, incoming);
2888 		tcp->tcp_ire_ill_check_done = B_TRUE;
2889 	}
2890 
2891 	mutex_enter(&connp->conn_lock);
2892 	/*
2893 	 * Make sure that conn is not marked incipient
2894 	 * for incoming connections. A blind
2895 	 * removal of incipient flag is cheaper than
2896 	 * check and removal.
2897 	 */
2898 	connp->conn_state_flags &= ~CONN_INCIPIENT;
2899 
2900 	/*
2901 	 * Must not cache forwarding table routes
2902 	 * or recache an IRE after the conn_t has
2903 	 * had conn_ire_cache cleared and is flagged
2904 	 * unusable, (see the CONN_CACHE_IRE() macro).
2905 	 */
2906 	if (ire_cacheable && CONN_CACHE_IRE(connp)) {
2907 		rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
2908 		if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
2909 			connp->conn_ire_cache = ire;
2910 			IRE_UNTRACE_REF(ire);
2911 			rw_exit(&ire->ire_bucket->irb_lock);
2912 			mutex_exit(&connp->conn_lock);
2913 			return (1);
2914 		}
2915 		rw_exit(&ire->ire_bucket->irb_lock);
2916 	}
2917 	mutex_exit(&connp->conn_lock);
2918 
2919 	if (ire->ire_mp == NULL)
2920 		ire_refrele(ire);
2921 	return (1);
2922 
2923 error:
2924 	if (ire->ire_mp == NULL)
2925 		ire_refrele(ire);
2926 	if (sire != NULL)
2927 		ire_refrele(sire);
2928 	return (0);
2929 }
2930 
2931 static void
2932 tcp_tpi_bind(tcp_t *tcp, mblk_t *mp)
2933 {
2934 	int	error;
2935 	conn_t	*connp = tcp->tcp_connp;
2936 	struct sockaddr	*sa;
2937 	mblk_t  *mp1;
2938 	struct T_bind_req *tbr;
2939 	int	backlog;
2940 	socklen_t	len;
2941 	sin_t	*sin;
2942 	sin6_t	*sin6;
2943 	cred_t		*cr;
2944 
2945 	/*
2946 	 * All Solaris components should pass a db_credp
2947 	 * for this TPI message, hence we ASSERT.
2948 	 * But in case there is some other M_PROTO that looks
2949 	 * like a TPI message sent by some other kernel
2950 	 * component, we check and return an error.
2951 	 */
2952 	cr = msg_getcred(mp, NULL);
2953 	ASSERT(cr != NULL);
2954 	if (cr == NULL) {
2955 		tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
2956 		return;
2957 	}
2958 
2959 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
2960 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
2961 		if (tcp->tcp_debug) {
2962 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
2963 			    "tcp_tpi_bind: bad req, len %u",
2964 			    (uint_t)(mp->b_wptr - mp->b_rptr));
2965 		}
2966 		tcp_err_ack(tcp, mp, TPROTO, 0);
2967 		return;
2968 	}
2969 	/* Make sure the largest address fits */
2970 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
2971 	if (mp1 == NULL) {
2972 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
2973 		return;
2974 	}
2975 	mp = mp1;
2976 	tbr = (struct T_bind_req *)mp->b_rptr;
2977 
2978 	backlog = tbr->CONIND_number;
2979 	len = tbr->ADDR_length;
2980 
2981 	switch (len) {
2982 	case 0:		/* request for a generic port */
2983 		tbr->ADDR_offset = sizeof (struct T_bind_req);
2984 		if (tcp->tcp_family == AF_INET) {
2985 			tbr->ADDR_length = sizeof (sin_t);
2986 			sin = (sin_t *)&tbr[1];
2987 			*sin = sin_null;
2988 			sin->sin_family = AF_INET;
2989 			sa = (struct sockaddr *)sin;
2990 			len = sizeof (sin_t);
2991 			mp->b_wptr = (uchar_t *)&sin[1];
2992 		} else {
2993 			ASSERT(tcp->tcp_family == AF_INET6);
2994 			tbr->ADDR_length = sizeof (sin6_t);
2995 			sin6 = (sin6_t *)&tbr[1];
2996 			*sin6 = sin6_null;
2997 			sin6->sin6_family = AF_INET6;
2998 			sa = (struct sockaddr *)sin6;
2999 			len = sizeof (sin6_t);
3000 			mp->b_wptr = (uchar_t *)&sin6[1];
3001 		}
3002 		break;
3003 
3004 	case sizeof (sin_t):    /* Complete IPv4 address */
3005 		sa = (struct sockaddr *)mi_offset_param(mp, tbr->ADDR_offset,
3006 		    sizeof (sin_t));
3007 		break;
3008 
3009 	case sizeof (sin6_t): /* Complete IPv6 address */
3010 		sa = (struct sockaddr *)mi_offset_param(mp,
3011 		    tbr->ADDR_offset, sizeof (sin6_t));
3012 		break;
3013 
3014 	default:
3015 		if (tcp->tcp_debug) {
3016 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3017 			    "tcp_tpi_bind: bad address length, %d",
3018 			    tbr->ADDR_length);
3019 		}
3020 		tcp_err_ack(tcp, mp, TBADADDR, 0);
3021 		return;
3022 	}
3023 
3024 	if (backlog > 0) {
3025 		error = tcp_do_listen(connp, sa, len, backlog, DB_CRED(mp),
3026 		    tbr->PRIM_type != O_T_BIND_REQ);
3027 	} else {
3028 		error = tcp_do_bind(connp, sa, len, DB_CRED(mp),
3029 		    tbr->PRIM_type != O_T_BIND_REQ);
3030 	}
3031 done:
3032 	if (error > 0) {
3033 		tcp_err_ack(tcp, mp, TSYSERR, error);
3034 	} else if (error < 0) {
3035 		tcp_err_ack(tcp, mp, -error, 0);
3036 	} else {
3037 		/*
3038 		 * Update port information as sockfs/tpi needs it for checking
3039 		 */
3040 		if (tcp->tcp_family == AF_INET) {
3041 			sin = (sin_t *)sa;
3042 			sin->sin_port = tcp->tcp_lport;
3043 		} else {
3044 			sin6 = (sin6_t *)sa;
3045 			sin6->sin6_port = tcp->tcp_lport;
3046 		}
3047 		mp->b_datap->db_type = M_PCPROTO;
3048 		tbr->PRIM_type = T_BIND_ACK;
3049 		putnext(tcp->tcp_rq, mp);
3050 	}
3051 }
3052 
3053 /*
3054  * If the "bind_to_req_port_only" parameter is set, if the requested port
3055  * number is available, return it, If not return 0
3056  *
3057  * If "bind_to_req_port_only" parameter is not set and
3058  * If the requested port number is available, return it.  If not, return
3059  * the first anonymous port we happen across.  If no anonymous ports are
3060  * available, return 0. addr is the requested local address, if any.
3061  *
3062  * In either case, when succeeding update the tcp_t to record the port number
3063  * and insert it in the bind hash table.
3064  *
3065  * Note that TCP over IPv4 and IPv6 sockets can use the same port number
3066  * without setting SO_REUSEADDR. This is needed so that they
3067  * can be viewed as two independent transport protocols.
3068  */
3069 static in_port_t
3070 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
3071     int reuseaddr, boolean_t quick_connect,
3072     boolean_t bind_to_req_port_only, boolean_t user_specified)
3073 {
3074 	/* number of times we have run around the loop */
3075 	int count = 0;
3076 	/* maximum number of times to run around the loop */
3077 	int loopmax;
3078 	conn_t *connp = tcp->tcp_connp;
3079 	zoneid_t zoneid = connp->conn_zoneid;
3080 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3081 
3082 	/*
3083 	 * Lookup for free addresses is done in a loop and "loopmax"
3084 	 * influences how long we spin in the loop
3085 	 */
3086 	if (bind_to_req_port_only) {
3087 		/*
3088 		 * If the requested port is busy, don't bother to look
3089 		 * for a new one. Setting loop maximum count to 1 has
3090 		 * that effect.
3091 		 */
3092 		loopmax = 1;
3093 	} else {
3094 		/*
3095 		 * If the requested port is busy, look for a free one
3096 		 * in the anonymous port range.
3097 		 * Set loopmax appropriately so that one does not look
3098 		 * forever in the case all of the anonymous ports are in use.
3099 		 */
3100 		if (tcp->tcp_anon_priv_bind) {
3101 			/*
3102 			 * loopmax =
3103 			 * 	(IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1
3104 			 */
3105 			loopmax = IPPORT_RESERVED -
3106 			    tcps->tcps_min_anonpriv_port;
3107 		} else {
3108 			loopmax = (tcps->tcps_largest_anon_port -
3109 			    tcps->tcps_smallest_anon_port + 1);
3110 		}
3111 	}
3112 	do {
3113 		uint16_t	lport;
3114 		tf_t		*tbf;
3115 		tcp_t		*ltcp;
3116 		conn_t		*lconnp;
3117 
3118 		lport = htons(port);
3119 
3120 		/*
3121 		 * Ensure that the tcp_t is not currently in the bind hash.
3122 		 * Hold the lock on the hash bucket to ensure that
3123 		 * the duplicate check plus the insertion is an atomic
3124 		 * operation.
3125 		 *
3126 		 * This function does an inline lookup on the bind hash list
3127 		 * Make sure that we access only members of tcp_t
3128 		 * and that we don't look at tcp_tcp, since we are not
3129 		 * doing a CONN_INC_REF.
3130 		 */
3131 		tcp_bind_hash_remove(tcp);
3132 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)];
3133 		mutex_enter(&tbf->tf_lock);
3134 		for (ltcp = tbf->tf_tcp; ltcp != NULL;
3135 		    ltcp = ltcp->tcp_bind_hash) {
3136 			if (lport == ltcp->tcp_lport)
3137 				break;
3138 		}
3139 
3140 		for (; ltcp != NULL; ltcp = ltcp->tcp_bind_hash_port) {
3141 			boolean_t not_socket;
3142 			boolean_t exclbind;
3143 
3144 			lconnp = ltcp->tcp_connp;
3145 
3146 			/*
3147 			 * On a labeled system, we must treat bindings to ports
3148 			 * on shared IP addresses by sockets with MAC exemption
3149 			 * privilege as being in all zones, as there's
3150 			 * otherwise no way to identify the right receiver.
3151 			 */
3152 			if (!(IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) ||
3153 			    IPCL_ZONE_MATCH(connp,
3154 			    ltcp->tcp_connp->conn_zoneid)) &&
3155 			    !lconnp->conn_mac_exempt &&
3156 			    !connp->conn_mac_exempt)
3157 				continue;
3158 
3159 			/*
3160 			 * If TCP_EXCLBIND is set for either the bound or
3161 			 * binding endpoint, the semantics of bind
3162 			 * is changed according to the following.
3163 			 *
3164 			 * spec = specified address (v4 or v6)
3165 			 * unspec = unspecified address (v4 or v6)
3166 			 * A = specified addresses are different for endpoints
3167 			 *
3168 			 * bound	bind to		allowed
3169 			 * -------------------------------------
3170 			 * unspec	unspec		no
3171 			 * unspec	spec		no
3172 			 * spec		unspec		no
3173 			 * spec		spec		yes if A
3174 			 *
3175 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
3176 			 * as TCP_EXCLBIND, except that zoneid is ignored.
3177 			 *
3178 			 * Note:
3179 			 *
3180 			 * 1. Because of TLI semantics, an endpoint can go
3181 			 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or
3182 			 * TCPS_BOUND, depending on whether it is originally
3183 			 * a listener or not.  That is why we need to check
3184 			 * for states greater than or equal to TCPS_BOUND
3185 			 * here.
3186 			 *
3187 			 * 2. Ideally, we should only check for state equals
3188 			 * to TCPS_LISTEN. And the following check should be
3189 			 * added.
3190 			 *
3191 			 * if (ltcp->tcp_state == TCPS_LISTEN ||
3192 			 *	!reuseaddr || !ltcp->tcp_reuseaddr) {
3193 			 *		...
3194 			 * }
3195 			 *
3196 			 * The semantics will be changed to this.  If the
3197 			 * endpoint on the list is in state not equal to
3198 			 * TCPS_LISTEN and both endpoints have SO_REUSEADDR
3199 			 * set, let the bind succeed.
3200 			 *
3201 			 * Because of (1), we cannot do that for TLI
3202 			 * endpoints.  But we can do that for socket endpoints.
3203 			 * If in future, we can change this going back
3204 			 * semantics, we can use the above check for TLI also.
3205 			 */
3206 			not_socket = !(TCP_IS_SOCKET(ltcp) &&
3207 			    TCP_IS_SOCKET(tcp));
3208 			exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind;
3209 
3210 			if (lconnp->conn_mac_exempt || connp->conn_mac_exempt ||
3211 			    (exclbind && (not_socket ||
3212 			    ltcp->tcp_state <= TCPS_ESTABLISHED))) {
3213 				if (V6_OR_V4_INADDR_ANY(
3214 				    ltcp->tcp_bound_source_v6) ||
3215 				    V6_OR_V4_INADDR_ANY(*laddr) ||
3216 				    IN6_ARE_ADDR_EQUAL(laddr,
3217 				    &ltcp->tcp_bound_source_v6)) {
3218 					break;
3219 				}
3220 				continue;
3221 			}
3222 
3223 			/*
3224 			 * Check ipversion to allow IPv4 and IPv6 sockets to
3225 			 * have disjoint port number spaces, if *_EXCLBIND
3226 			 * is not set and only if the application binds to a
3227 			 * specific port. We use the same autoassigned port
3228 			 * number space for IPv4 and IPv6 sockets.
3229 			 */
3230 			if (tcp->tcp_ipversion != ltcp->tcp_ipversion &&
3231 			    bind_to_req_port_only)
3232 				continue;
3233 
3234 			/*
3235 			 * Ideally, we should make sure that the source
3236 			 * address, remote address, and remote port in the
3237 			 * four tuple for this tcp-connection is unique.
3238 			 * However, trying to find out the local source
3239 			 * address would require too much code duplication
3240 			 * with IP, since IP needs needs to have that code
3241 			 * to support userland TCP implementations.
3242 			 */
3243 			if (quick_connect &&
3244 			    (ltcp->tcp_state > TCPS_LISTEN) &&
3245 			    ((tcp->tcp_fport != ltcp->tcp_fport) ||
3246 			    !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
3247 			    &ltcp->tcp_remote_v6)))
3248 				continue;
3249 
3250 			if (!reuseaddr) {
3251 				/*
3252 				 * No socket option SO_REUSEADDR.
3253 				 * If existing port is bound to
3254 				 * a non-wildcard IP address
3255 				 * and the requesting stream is
3256 				 * bound to a distinct
3257 				 * different IP addresses
3258 				 * (non-wildcard, also), keep
3259 				 * going.
3260 				 */
3261 				if (!V6_OR_V4_INADDR_ANY(*laddr) &&
3262 				    !V6_OR_V4_INADDR_ANY(
3263 				    ltcp->tcp_bound_source_v6) &&
3264 				    !IN6_ARE_ADDR_EQUAL(laddr,
3265 				    &ltcp->tcp_bound_source_v6))
3266 					continue;
3267 				if (ltcp->tcp_state >= TCPS_BOUND) {
3268 					/*
3269 					 * This port is being used and
3270 					 * its state is >= TCPS_BOUND,
3271 					 * so we can't bind to it.
3272 					 */
3273 					break;
3274 				}
3275 			} else {
3276 				/*
3277 				 * socket option SO_REUSEADDR is set on the
3278 				 * binding tcp_t.
3279 				 *
3280 				 * If two streams are bound to
3281 				 * same IP address or both addr
3282 				 * and bound source are wildcards
3283 				 * (INADDR_ANY), we want to stop
3284 				 * searching.
3285 				 * We have found a match of IP source
3286 				 * address and source port, which is
3287 				 * refused regardless of the
3288 				 * SO_REUSEADDR setting, so we break.
3289 				 */
3290 				if (IN6_ARE_ADDR_EQUAL(laddr,
3291 				    &ltcp->tcp_bound_source_v6) &&
3292 				    (ltcp->tcp_state == TCPS_LISTEN ||
3293 				    ltcp->tcp_state == TCPS_BOUND))
3294 					break;
3295 			}
3296 		}
3297 		if (ltcp != NULL) {
3298 			/* The port number is busy */
3299 			mutex_exit(&tbf->tf_lock);
3300 		} else {
3301 			/*
3302 			 * This port is ours. Insert in fanout and mark as
3303 			 * bound to prevent others from getting the port
3304 			 * number.
3305 			 */
3306 			tcp->tcp_state = TCPS_BOUND;
3307 			tcp->tcp_lport = htons(port);
3308 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
3309 
3310 			ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH(
3311 			    tcp->tcp_lport)] == tbf);
3312 			tcp_bind_hash_insert(tbf, tcp, 1);
3313 
3314 			mutex_exit(&tbf->tf_lock);
3315 
3316 			/*
3317 			 * We don't want tcp_next_port_to_try to "inherit"
3318 			 * a port number supplied by the user in a bind.
3319 			 */
3320 			if (user_specified)
3321 				return (port);
3322 
3323 			/*
3324 			 * This is the only place where tcp_next_port_to_try
3325 			 * is updated. After the update, it may or may not
3326 			 * be in the valid range.
3327 			 */
3328 			if (!tcp->tcp_anon_priv_bind)
3329 				tcps->tcps_next_port_to_try = port + 1;
3330 			return (port);
3331 		}
3332 
3333 		if (tcp->tcp_anon_priv_bind) {
3334 			port = tcp_get_next_priv_port(tcp);
3335 		} else {
3336 			if (count == 0 && user_specified) {
3337 				/*
3338 				 * We may have to return an anonymous port. So
3339 				 * get one to start with.
3340 				 */
3341 				port =
3342 				    tcp_update_next_port(
3343 				    tcps->tcps_next_port_to_try,
3344 				    tcp, B_TRUE);
3345 				user_specified = B_FALSE;
3346 			} else {
3347 				port = tcp_update_next_port(port + 1, tcp,
3348 				    B_FALSE);
3349 			}
3350 		}
3351 		if (port == 0)
3352 			break;
3353 
3354 		/*
3355 		 * Don't let this loop run forever in the case where
3356 		 * all of the anonymous ports are in use.
3357 		 */
3358 	} while (++count < loopmax);
3359 	return (0);
3360 }
3361 
3362 /*
3363  * tcp_clean_death / tcp_close_detached must not be called more than once
3364  * on a tcp. Thus every function that potentially calls tcp_clean_death
3365  * must check for the tcp state before calling tcp_clean_death.
3366  * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper,
3367  * tcp_timer_handler, all check for the tcp state.
3368  */
3369 /* ARGSUSED */
3370 void
3371 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2)
3372 {
3373 	tcp_t	*tcp = ((conn_t *)arg)->conn_tcp;
3374 
3375 	freemsg(mp);
3376 	if (tcp->tcp_state > TCPS_BOUND)
3377 		(void) tcp_clean_death(((conn_t *)arg)->conn_tcp,
3378 		    ETIMEDOUT, 5);
3379 }
3380 
3381 /*
3382  * We are dying for some reason.  Try to do it gracefully.  (May be called
3383  * as writer.)
3384  *
3385  * Return -1 if the structure was not cleaned up (if the cleanup had to be
3386  * done by a service procedure).
3387  * TBD - Should the return value distinguish between the tcp_t being
3388  * freed and it being reinitialized?
3389  */
3390 static int
3391 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag)
3392 {
3393 	mblk_t	*mp;
3394 	queue_t	*q;
3395 	conn_t	*connp = tcp->tcp_connp;
3396 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3397 
3398 	TCP_CLD_STAT(tag);
3399 
3400 #if TCP_TAG_CLEAN_DEATH
3401 	tcp->tcp_cleandeathtag = tag;
3402 #endif
3403 
3404 	if (tcp->tcp_fused)
3405 		tcp_unfuse(tcp);
3406 
3407 	if (tcp->tcp_linger_tid != 0 &&
3408 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3409 		tcp_stop_lingering(tcp);
3410 	}
3411 
3412 	ASSERT(tcp != NULL);
3413 	ASSERT((tcp->tcp_family == AF_INET &&
3414 	    tcp->tcp_ipversion == IPV4_VERSION) ||
3415 	    (tcp->tcp_family == AF_INET6 &&
3416 	    (tcp->tcp_ipversion == IPV4_VERSION ||
3417 	    tcp->tcp_ipversion == IPV6_VERSION)));
3418 
3419 	if (TCP_IS_DETACHED(tcp)) {
3420 		if (tcp->tcp_hard_binding) {
3421 			/*
3422 			 * Its an eager that we are dealing with. We close the
3423 			 * eager but in case a conn_ind has already gone to the
3424 			 * listener, let tcp_accept_finish() send a discon_ind
3425 			 * to the listener and drop the last reference. If the
3426 			 * listener doesn't even know about the eager i.e. the
3427 			 * conn_ind hasn't gone up, blow away the eager and drop
3428 			 * the last reference as well. If the conn_ind has gone
3429 			 * up, state should be BOUND. tcp_accept_finish
3430 			 * will figure out that the connection has received a
3431 			 * RST and will send a DISCON_IND to the application.
3432 			 */
3433 			tcp_closei_local(tcp);
3434 			if (!tcp->tcp_tconnind_started) {
3435 				CONN_DEC_REF(connp);
3436 			} else {
3437 				tcp->tcp_state = TCPS_BOUND;
3438 			}
3439 		} else {
3440 			tcp_close_detached(tcp);
3441 		}
3442 		return (0);
3443 	}
3444 
3445 	TCP_STAT(tcps, tcp_clean_death_nondetached);
3446 
3447 	q = tcp->tcp_rq;
3448 
3449 	/* Trash all inbound data */
3450 	if (!IPCL_IS_NONSTR(connp)) {
3451 		ASSERT(q != NULL);
3452 		flushq(q, FLUSHALL);
3453 	}
3454 
3455 	/*
3456 	 * If we are at least part way open and there is error
3457 	 * (err==0 implies no error)
3458 	 * notify our client by a T_DISCON_IND.
3459 	 */
3460 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
3461 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
3462 		    !TCP_IS_SOCKET(tcp)) {
3463 			/*
3464 			 * Send M_FLUSH according to TPI. Because sockets will
3465 			 * (and must) ignore FLUSHR we do that only for TPI
3466 			 * endpoints and sockets in STREAMS mode.
3467 			 */
3468 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
3469 		}
3470 		if (tcp->tcp_debug) {
3471 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
3472 			    "tcp_clean_death: discon err %d", err);
3473 		}
3474 		if (IPCL_IS_NONSTR(connp)) {
3475 			/* Direct socket, use upcall */
3476 			(*connp->conn_upcalls->su_disconnected)(
3477 			    connp->conn_upper_handle, tcp->tcp_connid, err);
3478 		} else {
3479 			mp = mi_tpi_discon_ind(NULL, err, 0);
3480 			if (mp != NULL) {
3481 				putnext(q, mp);
3482 			} else {
3483 				if (tcp->tcp_debug) {
3484 					(void) strlog(TCP_MOD_ID, 0, 1,
3485 					    SL_ERROR|SL_TRACE,
3486 					    "tcp_clean_death, sending M_ERROR");
3487 				}
3488 				(void) putnextctl1(q, M_ERROR, EPROTO);
3489 			}
3490 		}
3491 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
3492 			/* SYN_SENT or SYN_RCVD */
3493 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
3494 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
3495 			/* ESTABLISHED or CLOSE_WAIT */
3496 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
3497 		}
3498 	}
3499 
3500 	tcp_reinit(tcp);
3501 	if (IPCL_IS_NONSTR(connp))
3502 		(void) tcp_do_unbind(connp);
3503 
3504 	return (-1);
3505 }
3506 
3507 /*
3508  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
3509  * to expire, stop the wait and finish the close.
3510  */
3511 static void
3512 tcp_stop_lingering(tcp_t *tcp)
3513 {
3514 	clock_t	delta = 0;
3515 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3516 
3517 	tcp->tcp_linger_tid = 0;
3518 	if (tcp->tcp_state > TCPS_LISTEN) {
3519 		tcp_acceptor_hash_remove(tcp);
3520 		mutex_enter(&tcp->tcp_non_sq_lock);
3521 		if (tcp->tcp_flow_stopped) {
3522 			tcp_clrqfull(tcp);
3523 		}
3524 		mutex_exit(&tcp->tcp_non_sq_lock);
3525 
3526 		if (tcp->tcp_timer_tid != 0) {
3527 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3528 			tcp->tcp_timer_tid = 0;
3529 		}
3530 		/*
3531 		 * Need to cancel those timers which will not be used when
3532 		 * TCP is detached.  This has to be done before the tcp_wq
3533 		 * is set to the global queue.
3534 		 */
3535 		tcp_timers_stop(tcp);
3536 
3537 		tcp->tcp_detached = B_TRUE;
3538 		ASSERT(tcps->tcps_g_q != NULL);
3539 		tcp->tcp_rq = tcps->tcps_g_q;
3540 		tcp->tcp_wq = WR(tcps->tcps_g_q);
3541 
3542 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
3543 			tcp_time_wait_append(tcp);
3544 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
3545 			goto finish;
3546 		}
3547 
3548 		/*
3549 		 * If delta is zero the timer event wasn't executed and was
3550 		 * successfully canceled. In this case we need to restart it
3551 		 * with the minimal delta possible.
3552 		 */
3553 		if (delta >= 0) {
3554 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
3555 			    delta ? delta : 1);
3556 		}
3557 	} else {
3558 		tcp_closei_local(tcp);
3559 		CONN_DEC_REF(tcp->tcp_connp);
3560 	}
3561 finish:
3562 	/* Signal closing thread that it can complete close */
3563 	mutex_enter(&tcp->tcp_closelock);
3564 	tcp->tcp_detached = B_TRUE;
3565 	ASSERT(tcps->tcps_g_q != NULL);
3566 
3567 	tcp->tcp_rq = tcps->tcps_g_q;
3568 	tcp->tcp_wq = WR(tcps->tcps_g_q);
3569 
3570 	tcp->tcp_closed = 1;
3571 	cv_signal(&tcp->tcp_closecv);
3572 	mutex_exit(&tcp->tcp_closelock);
3573 }
3574 
3575 /*
3576  * Handle lingering timeouts. This function is called when the SO_LINGER timeout
3577  * expires.
3578  */
3579 static void
3580 tcp_close_linger_timeout(void *arg)
3581 {
3582 	conn_t	*connp = (conn_t *)arg;
3583 	tcp_t 	*tcp = connp->conn_tcp;
3584 
3585 	tcp->tcp_client_errno = ETIMEDOUT;
3586 	tcp_stop_lingering(tcp);
3587 }
3588 
3589 static void
3590 tcp_close_common(conn_t *connp, int flags)
3591 {
3592 	tcp_t		*tcp = connp->conn_tcp;
3593 	mblk_t 		*mp = &tcp->tcp_closemp;
3594 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
3595 	mblk_t		*bp;
3596 
3597 	ASSERT(connp->conn_ref >= 2);
3598 
3599 	/*
3600 	 * Mark the conn as closing. ill_pending_mp_add will not
3601 	 * add any mp to the pending mp list, after this conn has
3602 	 * started closing. Same for sq_pending_mp_add
3603 	 */
3604 	mutex_enter(&connp->conn_lock);
3605 	connp->conn_state_flags |= CONN_CLOSING;
3606 	if (connp->conn_oper_pending_ill != NULL)
3607 		conn_ioctl_cleanup_reqd = B_TRUE;
3608 	CONN_INC_REF_LOCKED(connp);
3609 	mutex_exit(&connp->conn_lock);
3610 	tcp->tcp_closeflags = (uint8_t)flags;
3611 	ASSERT(connp->conn_ref >= 3);
3612 
3613 	/*
3614 	 * tcp_closemp_used is used below without any protection of a lock
3615 	 * as we don't expect any one else to use it concurrently at this
3616 	 * point otherwise it would be a major defect.
3617 	 */
3618 
3619 	if (mp->b_prev == NULL)
3620 		tcp->tcp_closemp_used = B_TRUE;
3621 	else
3622 		cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: "
3623 		    "connp %p tcp %p\n", (void *)connp, (void *)tcp);
3624 
3625 	TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
3626 
3627 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp,
3628 	    tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
3629 
3630 	mutex_enter(&tcp->tcp_closelock);
3631 	while (!tcp->tcp_closed) {
3632 		if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
3633 			/*
3634 			 * The cv_wait_sig() was interrupted. We now do the
3635 			 * following:
3636 			 *
3637 			 * 1) If the endpoint was lingering, we allow this
3638 			 * to be interrupted by cancelling the linger timeout
3639 			 * and closing normally.
3640 			 *
3641 			 * 2) Revert to calling cv_wait()
3642 			 *
3643 			 * We revert to using cv_wait() to avoid an
3644 			 * infinite loop which can occur if the calling
3645 			 * thread is higher priority than the squeue worker
3646 			 * thread and is bound to the same cpu.
3647 			 */
3648 			if (tcp->tcp_linger && tcp->tcp_lingertime > 0) {
3649 				mutex_exit(&tcp->tcp_closelock);
3650 				/* Entering squeue, bump ref count. */
3651 				CONN_INC_REF(connp);
3652 				bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
3653 				SQUEUE_ENTER_ONE(connp->conn_sqp, bp,
3654 				    tcp_linger_interrupted, connp,
3655 				    tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
3656 				mutex_enter(&tcp->tcp_closelock);
3657 			}
3658 			break;
3659 		}
3660 	}
3661 	while (!tcp->tcp_closed)
3662 		cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
3663 	mutex_exit(&tcp->tcp_closelock);
3664 
3665 	/*
3666 	 * In the case of listener streams that have eagers in the q or q0
3667 	 * we wait for the eagers to drop their reference to us. tcp_rq and
3668 	 * tcp_wq of the eagers point to our queues. By waiting for the
3669 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
3670 	 * up their queue pointers and also dropped their references to us.
3671 	 */
3672 	if (tcp->tcp_wait_for_eagers) {
3673 		mutex_enter(&connp->conn_lock);
3674 		while (connp->conn_ref != 1) {
3675 			cv_wait(&connp->conn_cv, &connp->conn_lock);
3676 		}
3677 		mutex_exit(&connp->conn_lock);
3678 	}
3679 	/*
3680 	 * ioctl cleanup. The mp is queued in the
3681 	 * ill_pending_mp or in the sq_pending_mp.
3682 	 */
3683 	if (conn_ioctl_cleanup_reqd)
3684 		conn_ioctl_cleanup(connp);
3685 
3686 	tcp->tcp_cpid = -1;
3687 }
3688 
3689 static int
3690 tcp_tpi_close(queue_t *q, int flags)
3691 {
3692 	conn_t		*connp;
3693 
3694 	ASSERT(WR(q)->q_next == NULL);
3695 
3696 	if (flags & SO_FALLBACK) {
3697 		/*
3698 		 * stream is being closed while in fallback
3699 		 * simply free the resources that were allocated
3700 		 */
3701 		inet_minor_free(WR(q)->q_ptr, (dev_t)(RD(q)->q_ptr));
3702 		qprocsoff(q);
3703 		goto done;
3704 	}
3705 
3706 	connp = Q_TO_CONN(q);
3707 	/*
3708 	 * We are being closed as /dev/tcp or /dev/tcp6.
3709 	 */
3710 	tcp_close_common(connp, flags);
3711 
3712 	qprocsoff(q);
3713 	inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
3714 
3715 	/*
3716 	 * Drop IP's reference on the conn. This is the last reference
3717 	 * on the connp if the state was less than established. If the
3718 	 * connection has gone into timewait state, then we will have
3719 	 * one ref for the TCP and one more ref (total of two) for the
3720 	 * classifier connected hash list (a timewait connections stays
3721 	 * in connected hash till closed).
3722 	 *
3723 	 * We can't assert the references because there might be other
3724 	 * transient reference places because of some walkers or queued
3725 	 * packets in squeue for the timewait state.
3726 	 */
3727 	CONN_DEC_REF(connp);
3728 done:
3729 	q->q_ptr = WR(q)->q_ptr = NULL;
3730 	return (0);
3731 }
3732 
3733 static int
3734 tcp_tpi_close_accept(queue_t *q)
3735 {
3736 	vmem_t	*minor_arena;
3737 	dev_t	conn_dev;
3738 
3739 	ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit);
3740 
3741 	/*
3742 	 * We had opened an acceptor STREAM for sockfs which is
3743 	 * now being closed due to some error.
3744 	 */
3745 	qprocsoff(q);
3746 
3747 	minor_arena = (vmem_t *)WR(q)->q_ptr;
3748 	conn_dev = (dev_t)RD(q)->q_ptr;
3749 	ASSERT(minor_arena != NULL);
3750 	ASSERT(conn_dev != 0);
3751 	inet_minor_free(minor_arena, conn_dev);
3752 	q->q_ptr = WR(q)->q_ptr = NULL;
3753 	return (0);
3754 }
3755 
3756 /*
3757  * Called by tcp_close() routine via squeue when lingering is
3758  * interrupted by a signal.
3759  */
3760 
3761 /* ARGSUSED */
3762 static void
3763 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2)
3764 {
3765 	conn_t	*connp = (conn_t *)arg;
3766 	tcp_t	*tcp = connp->conn_tcp;
3767 
3768 	freeb(mp);
3769 	if (tcp->tcp_linger_tid != 0 &&
3770 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3771 		tcp_stop_lingering(tcp);
3772 		tcp->tcp_client_errno = EINTR;
3773 	}
3774 }
3775 
3776 /*
3777  * Called by streams close routine via squeues when our client blows off her
3778  * descriptor, we take this to mean: "close the stream state NOW, close the tcp
3779  * connection politely" When SO_LINGER is set (with a non-zero linger time and
3780  * it is not a nonblocking socket) then this routine sleeps until the FIN is
3781  * acked.
3782  *
3783  * NOTE: tcp_close potentially returns error when lingering.
3784  * However, the stream head currently does not pass these errors
3785  * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK
3786  * errors to the application (from tsleep()) and not errors
3787  * like ECONNRESET caused by receiving a reset packet.
3788  */
3789 
3790 /* ARGSUSED */
3791 static void
3792 tcp_close_output(void *arg, mblk_t *mp, void *arg2)
3793 {
3794 	char	*msg;
3795 	conn_t	*connp = (conn_t *)arg;
3796 	tcp_t	*tcp = connp->conn_tcp;
3797 	clock_t	delta = 0;
3798 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3799 
3800 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
3801 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
3802 
3803 	mutex_enter(&tcp->tcp_eager_lock);
3804 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
3805 		/* Cleanup for listener */
3806 		tcp_eager_cleanup(tcp, 0);
3807 		tcp->tcp_wait_for_eagers = 1;
3808 	}
3809 	mutex_exit(&tcp->tcp_eager_lock);
3810 
3811 	connp->conn_mdt_ok = B_FALSE;
3812 	tcp->tcp_mdt = B_FALSE;
3813 
3814 	connp->conn_lso_ok = B_FALSE;
3815 	tcp->tcp_lso = B_FALSE;
3816 
3817 	msg = NULL;
3818 	switch (tcp->tcp_state) {
3819 	case TCPS_CLOSED:
3820 	case TCPS_IDLE:
3821 	case TCPS_BOUND:
3822 	case TCPS_LISTEN:
3823 		break;
3824 	case TCPS_SYN_SENT:
3825 		msg = "tcp_close, during connect";
3826 		break;
3827 	case TCPS_SYN_RCVD:
3828 		/*
3829 		 * Close during the connect 3-way handshake
3830 		 * but here there may or may not be pending data
3831 		 * already on queue. Process almost same as in
3832 		 * the ESTABLISHED state.
3833 		 */
3834 		/* FALLTHRU */
3835 	default:
3836 		if (tcp->tcp_fused)
3837 			tcp_unfuse(tcp);
3838 
3839 		/*
3840 		 * If SO_LINGER has set a zero linger time, abort the
3841 		 * connection with a reset.
3842 		 */
3843 		if (tcp->tcp_linger && tcp->tcp_lingertime == 0) {
3844 			msg = "tcp_close, zero lingertime";
3845 			break;
3846 		}
3847 
3848 		ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding);
3849 		/*
3850 		 * Abort connection if there is unread data queued.
3851 		 */
3852 		if (tcp->tcp_rcv_list || tcp->tcp_reass_head) {
3853 			msg = "tcp_close, unread data";
3854 			break;
3855 		}
3856 		/*
3857 		 * tcp_hard_bound is now cleared thus all packets go through
3858 		 * tcp_lookup. This fact is used by tcp_detach below.
3859 		 *
3860 		 * We have done a qwait() above which could have possibly
3861 		 * drained more messages in turn causing transition to a
3862 		 * different state. Check whether we have to do the rest
3863 		 * of the processing or not.
3864 		 */
3865 		if (tcp->tcp_state <= TCPS_LISTEN)
3866 			break;
3867 
3868 		/*
3869 		 * Transmit the FIN before detaching the tcp_t.
3870 		 * After tcp_detach returns this queue/perimeter
3871 		 * no longer owns the tcp_t thus others can modify it.
3872 		 */
3873 		(void) tcp_xmit_end(tcp);
3874 
3875 		/*
3876 		 * If lingering on close then wait until the fin is acked,
3877 		 * the SO_LINGER time passes, or a reset is sent/received.
3878 		 */
3879 		if (tcp->tcp_linger && tcp->tcp_lingertime > 0 &&
3880 		    !(tcp->tcp_fin_acked) &&
3881 		    tcp->tcp_state >= TCPS_ESTABLISHED) {
3882 			if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) {
3883 				tcp->tcp_client_errno = EWOULDBLOCK;
3884 			} else if (tcp->tcp_client_errno == 0) {
3885 
3886 				ASSERT(tcp->tcp_linger_tid == 0);
3887 
3888 				tcp->tcp_linger_tid = TCP_TIMER(tcp,
3889 				    tcp_close_linger_timeout,
3890 				    tcp->tcp_lingertime * hz);
3891 
3892 				/* tcp_close_linger_timeout will finish close */
3893 				if (tcp->tcp_linger_tid == 0)
3894 					tcp->tcp_client_errno = ENOSR;
3895 				else
3896 					return;
3897 			}
3898 
3899 			/*
3900 			 * Check if we need to detach or just close
3901 			 * the instance.
3902 			 */
3903 			if (tcp->tcp_state <= TCPS_LISTEN)
3904 				break;
3905 		}
3906 
3907 		/*
3908 		 * Make sure that no other thread will access the tcp_rq of
3909 		 * this instance (through lookups etc.) as tcp_rq will go
3910 		 * away shortly.
3911 		 */
3912 		tcp_acceptor_hash_remove(tcp);
3913 
3914 		mutex_enter(&tcp->tcp_non_sq_lock);
3915 		if (tcp->tcp_flow_stopped) {
3916 			tcp_clrqfull(tcp);
3917 		}
3918 		mutex_exit(&tcp->tcp_non_sq_lock);
3919 
3920 		if (tcp->tcp_timer_tid != 0) {
3921 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3922 			tcp->tcp_timer_tid = 0;
3923 		}
3924 		/*
3925 		 * Need to cancel those timers which will not be used when
3926 		 * TCP is detached.  This has to be done before the tcp_wq
3927 		 * is set to the global queue.
3928 		 */
3929 		tcp_timers_stop(tcp);
3930 
3931 		tcp->tcp_detached = B_TRUE;
3932 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
3933 			tcp_time_wait_append(tcp);
3934 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
3935 			ASSERT(connp->conn_ref >= 3);
3936 			goto finish;
3937 		}
3938 
3939 		/*
3940 		 * If delta is zero the timer event wasn't executed and was
3941 		 * successfully canceled. In this case we need to restart it
3942 		 * with the minimal delta possible.
3943 		 */
3944 		if (delta >= 0)
3945 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
3946 			    delta ? delta : 1);
3947 
3948 		ASSERT(connp->conn_ref >= 3);
3949 		goto finish;
3950 	}
3951 
3952 	/* Detach did not complete. Still need to remove q from stream. */
3953 	if (msg) {
3954 		if (tcp->tcp_state == TCPS_ESTABLISHED ||
3955 		    tcp->tcp_state == TCPS_CLOSE_WAIT)
3956 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
3957 		if (tcp->tcp_state == TCPS_SYN_SENT ||
3958 		    tcp->tcp_state == TCPS_SYN_RCVD)
3959 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
3960 		tcp_xmit_ctl(msg, tcp,  tcp->tcp_snxt, 0, TH_RST);
3961 	}
3962 
3963 	tcp_closei_local(tcp);
3964 	CONN_DEC_REF(connp);
3965 	ASSERT(connp->conn_ref >= 2);
3966 
3967 finish:
3968 	/*
3969 	 * Although packets are always processed on the correct
3970 	 * tcp's perimeter and access is serialized via squeue's,
3971 	 * IP still needs a queue when sending packets in time_wait
3972 	 * state so use WR(tcps_g_q) till ip_output() can be
3973 	 * changed to deal with just connp. For read side, we
3974 	 * could have set tcp_rq to NULL but there are some cases
3975 	 * in tcp_rput_data() from early days of this code which
3976 	 * do a putnext without checking if tcp is closed. Those
3977 	 * need to be identified before both tcp_rq and tcp_wq
3978 	 * can be set to NULL and tcps_g_q can disappear forever.
3979 	 */
3980 	mutex_enter(&tcp->tcp_closelock);
3981 	/*
3982 	 * Don't change the queues in the case of a listener that has
3983 	 * eagers in its q or q0. It could surprise the eagers.
3984 	 * Instead wait for the eagers outside the squeue.
3985 	 */
3986 	if (!tcp->tcp_wait_for_eagers) {
3987 		tcp->tcp_detached = B_TRUE;
3988 		/*
3989 		 * When default queue is closing we set tcps_g_q to NULL
3990 		 * after the close is done.
3991 		 */
3992 		ASSERT(tcps->tcps_g_q != NULL);
3993 		tcp->tcp_rq = tcps->tcps_g_q;
3994 		tcp->tcp_wq = WR(tcps->tcps_g_q);
3995 	}
3996 
3997 	/* Signal tcp_close() to finish closing. */
3998 	tcp->tcp_closed = 1;
3999 	cv_signal(&tcp->tcp_closecv);
4000 	mutex_exit(&tcp->tcp_closelock);
4001 }
4002 
4003 /*
4004  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
4005  * Some stream heads get upset if they see these later on as anything but NULL.
4006  */
4007 static void
4008 tcp_close_mpp(mblk_t **mpp)
4009 {
4010 	mblk_t	*mp;
4011 
4012 	if ((mp = *mpp) != NULL) {
4013 		do {
4014 			mp->b_next = NULL;
4015 			mp->b_prev = NULL;
4016 		} while ((mp = mp->b_cont) != NULL);
4017 
4018 		mp = *mpp;
4019 		*mpp = NULL;
4020 		freemsg(mp);
4021 	}
4022 }
4023 
4024 /* Do detached close. */
4025 static void
4026 tcp_close_detached(tcp_t *tcp)
4027 {
4028 	if (tcp->tcp_fused)
4029 		tcp_unfuse(tcp);
4030 
4031 	/*
4032 	 * Clustering code serializes TCP disconnect callbacks and
4033 	 * cluster tcp list walks by blocking a TCP disconnect callback
4034 	 * if a cluster tcp list walk is in progress. This ensures
4035 	 * accurate accounting of TCPs in the cluster code even though
4036 	 * the TCP list walk itself is not atomic.
4037 	 */
4038 	tcp_closei_local(tcp);
4039 	CONN_DEC_REF(tcp->tcp_connp);
4040 }
4041 
4042 /*
4043  * Stop all TCP timers, and free the timer mblks if requested.
4044  */
4045 void
4046 tcp_timers_stop(tcp_t *tcp)
4047 {
4048 	if (tcp->tcp_timer_tid != 0) {
4049 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4050 		tcp->tcp_timer_tid = 0;
4051 	}
4052 	if (tcp->tcp_ka_tid != 0) {
4053 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid);
4054 		tcp->tcp_ka_tid = 0;
4055 	}
4056 	if (tcp->tcp_ack_tid != 0) {
4057 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
4058 		tcp->tcp_ack_tid = 0;
4059 	}
4060 	if (tcp->tcp_push_tid != 0) {
4061 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
4062 		tcp->tcp_push_tid = 0;
4063 	}
4064 }
4065 
4066 /*
4067  * The tcp_t is going away. Remove it from all lists and set it
4068  * to TCPS_CLOSED. The freeing up of memory is deferred until
4069  * tcp_inactive. This is needed since a thread in tcp_rput might have
4070  * done a CONN_INC_REF on this structure before it was removed from the
4071  * hashes.
4072  */
4073 static void
4074 tcp_closei_local(tcp_t *tcp)
4075 {
4076 	ire_t 	*ire;
4077 	conn_t	*connp = tcp->tcp_connp;
4078 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4079 
4080 	if (!TCP_IS_SOCKET(tcp))
4081 		tcp_acceptor_hash_remove(tcp);
4082 
4083 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
4084 	tcp->tcp_ibsegs = 0;
4085 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
4086 	tcp->tcp_obsegs = 0;
4087 
4088 	/*
4089 	 * If we are an eager connection hanging off a listener that
4090 	 * hasn't formally accepted the connection yet, get off his
4091 	 * list and blow off any data that we have accumulated.
4092 	 */
4093 	if (tcp->tcp_listener != NULL) {
4094 		tcp_t	*listener = tcp->tcp_listener;
4095 		mutex_enter(&listener->tcp_eager_lock);
4096 		/*
4097 		 * tcp_tconnind_started == B_TRUE means that the
4098 		 * conn_ind has already gone to listener. At
4099 		 * this point, eager will be closed but we
4100 		 * leave it in listeners eager list so that
4101 		 * if listener decides to close without doing
4102 		 * accept, we can clean this up. In tcp_wput_accept
4103 		 * we take care of the case of accept on closed
4104 		 * eager.
4105 		 */
4106 		if (!tcp->tcp_tconnind_started) {
4107 			tcp_eager_unlink(tcp);
4108 			mutex_exit(&listener->tcp_eager_lock);
4109 			/*
4110 			 * We don't want to have any pointers to the
4111 			 * listener queue, after we have released our
4112 			 * reference on the listener
4113 			 */
4114 			ASSERT(tcps->tcps_g_q != NULL);
4115 			tcp->tcp_rq = tcps->tcps_g_q;
4116 			tcp->tcp_wq = WR(tcps->tcps_g_q);
4117 			CONN_DEC_REF(listener->tcp_connp);
4118 		} else {
4119 			mutex_exit(&listener->tcp_eager_lock);
4120 		}
4121 	}
4122 
4123 	/* Stop all the timers */
4124 	tcp_timers_stop(tcp);
4125 
4126 	if (tcp->tcp_state == TCPS_LISTEN) {
4127 		if (tcp->tcp_ip_addr_cache) {
4128 			kmem_free((void *)tcp->tcp_ip_addr_cache,
4129 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
4130 			tcp->tcp_ip_addr_cache = NULL;
4131 		}
4132 	}
4133 	mutex_enter(&tcp->tcp_non_sq_lock);
4134 	if (tcp->tcp_flow_stopped)
4135 		tcp_clrqfull(tcp);
4136 	mutex_exit(&tcp->tcp_non_sq_lock);
4137 
4138 	tcp_bind_hash_remove(tcp);
4139 	/*
4140 	 * If the tcp_time_wait_collector (which runs outside the squeue)
4141 	 * is trying to remove this tcp from the time wait list, we will
4142 	 * block in tcp_time_wait_remove while trying to acquire the
4143 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
4144 	 * requires the ipcl_hash_remove to be ordered after the
4145 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
4146 	 */
4147 	if (tcp->tcp_state == TCPS_TIME_WAIT)
4148 		(void) tcp_time_wait_remove(tcp, NULL);
4149 	CL_INET_DISCONNECT(connp, tcp);
4150 	ipcl_hash_remove(connp);
4151 
4152 	/*
4153 	 * Delete the cached ire in conn_ire_cache and also mark
4154 	 * the conn as CONDEMNED
4155 	 */
4156 	mutex_enter(&connp->conn_lock);
4157 	connp->conn_state_flags |= CONN_CONDEMNED;
4158 	ire = connp->conn_ire_cache;
4159 	connp->conn_ire_cache = NULL;
4160 	mutex_exit(&connp->conn_lock);
4161 	if (ire != NULL)
4162 		IRE_REFRELE_NOTR(ire);
4163 
4164 	/* Need to cleanup any pending ioctls */
4165 	ASSERT(tcp->tcp_time_wait_next == NULL);
4166 	ASSERT(tcp->tcp_time_wait_prev == NULL);
4167 	ASSERT(tcp->tcp_time_wait_expire == 0);
4168 	tcp->tcp_state = TCPS_CLOSED;
4169 
4170 	/* Release any SSL context */
4171 	if (tcp->tcp_kssl_ent != NULL) {
4172 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
4173 		tcp->tcp_kssl_ent = NULL;
4174 	}
4175 	if (tcp->tcp_kssl_ctx != NULL) {
4176 		kssl_release_ctx(tcp->tcp_kssl_ctx);
4177 		tcp->tcp_kssl_ctx = NULL;
4178 	}
4179 	tcp->tcp_kssl_pending = B_FALSE;
4180 
4181 	tcp_ipsec_cleanup(tcp);
4182 }
4183 
4184 /*
4185  * tcp is dying (called from ipcl_conn_destroy and error cases).
4186  * Free the tcp_t in either case.
4187  */
4188 void
4189 tcp_free(tcp_t *tcp)
4190 {
4191 	mblk_t	*mp;
4192 	ip6_pkt_t	*ipp;
4193 
4194 	ASSERT(tcp != NULL);
4195 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
4196 
4197 	tcp->tcp_rq = NULL;
4198 	tcp->tcp_wq = NULL;
4199 
4200 	tcp_close_mpp(&tcp->tcp_xmit_head);
4201 	tcp_close_mpp(&tcp->tcp_reass_head);
4202 	if (tcp->tcp_rcv_list != NULL) {
4203 		/* Free b_next chain */
4204 		tcp_close_mpp(&tcp->tcp_rcv_list);
4205 	}
4206 	if ((mp = tcp->tcp_urp_mp) != NULL) {
4207 		freemsg(mp);
4208 	}
4209 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
4210 		freemsg(mp);
4211 	}
4212 
4213 	if (tcp->tcp_fused_sigurg_mp != NULL) {
4214 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
4215 		freeb(tcp->tcp_fused_sigurg_mp);
4216 		tcp->tcp_fused_sigurg_mp = NULL;
4217 	}
4218 
4219 	if (tcp->tcp_ordrel_mp != NULL) {
4220 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
4221 		freeb(tcp->tcp_ordrel_mp);
4222 		tcp->tcp_ordrel_mp = NULL;
4223 	}
4224 
4225 	if (tcp->tcp_sack_info != NULL) {
4226 		if (tcp->tcp_notsack_list != NULL) {
4227 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
4228 		}
4229 		bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
4230 	}
4231 
4232 	if (tcp->tcp_hopopts != NULL) {
4233 		mi_free(tcp->tcp_hopopts);
4234 		tcp->tcp_hopopts = NULL;
4235 		tcp->tcp_hopoptslen = 0;
4236 	}
4237 	ASSERT(tcp->tcp_hopoptslen == 0);
4238 	if (tcp->tcp_dstopts != NULL) {
4239 		mi_free(tcp->tcp_dstopts);
4240 		tcp->tcp_dstopts = NULL;
4241 		tcp->tcp_dstoptslen = 0;
4242 	}
4243 	ASSERT(tcp->tcp_dstoptslen == 0);
4244 	if (tcp->tcp_rtdstopts != NULL) {
4245 		mi_free(tcp->tcp_rtdstopts);
4246 		tcp->tcp_rtdstopts = NULL;
4247 		tcp->tcp_rtdstoptslen = 0;
4248 	}
4249 	ASSERT(tcp->tcp_rtdstoptslen == 0);
4250 	if (tcp->tcp_rthdr != NULL) {
4251 		mi_free(tcp->tcp_rthdr);
4252 		tcp->tcp_rthdr = NULL;
4253 		tcp->tcp_rthdrlen = 0;
4254 	}
4255 	ASSERT(tcp->tcp_rthdrlen == 0);
4256 
4257 	ipp = &tcp->tcp_sticky_ipp;
4258 	if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS |
4259 	    IPPF_RTHDR))
4260 		ip6_pkt_free(ipp);
4261 
4262 	/*
4263 	 * Free memory associated with the tcp/ip header template.
4264 	 */
4265 
4266 	if (tcp->tcp_iphc != NULL)
4267 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4268 
4269 	/*
4270 	 * Following is really a blowing away a union.
4271 	 * It happens to have exactly two members of identical size
4272 	 * the following code is enough.
4273 	 */
4274 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
4275 }
4276 
4277 
4278 /*
4279  * Put a connection confirmation message upstream built from the
4280  * address information within 'iph' and 'tcph'.  Report our success or failure.
4281  */
4282 static boolean_t
4283 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp,
4284     mblk_t **defermp)
4285 {
4286 	sin_t	sin;
4287 	sin6_t	sin6;
4288 	mblk_t	*mp;
4289 	char	*optp = NULL;
4290 	int	optlen = 0;
4291 
4292 	if (defermp != NULL)
4293 		*defermp = NULL;
4294 
4295 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL) {
4296 		/*
4297 		 * Return in T_CONN_CON results of option negotiation through
4298 		 * the T_CONN_REQ. Note: If there is an real end-to-end option
4299 		 * negotiation, then what is received from remote end needs
4300 		 * to be taken into account but there is no such thing (yet?)
4301 		 * in our TCP/IP.
4302 		 * Note: We do not use mi_offset_param() here as
4303 		 * tcp_opts_conn_req contents do not directly come from
4304 		 * an application and are either generated in kernel or
4305 		 * from user input that was already verified.
4306 		 */
4307 		mp = tcp->tcp_conn.tcp_opts_conn_req;
4308 		optp = (char *)(mp->b_rptr +
4309 		    ((struct T_conn_req *)mp->b_rptr)->OPT_offset);
4310 		optlen = (int)
4311 		    ((struct T_conn_req *)mp->b_rptr)->OPT_length;
4312 	}
4313 
4314 	if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) {
4315 		ipha_t *ipha = (ipha_t *)iphdr;
4316 
4317 		/* packet is IPv4 */
4318 		if (tcp->tcp_family == AF_INET) {
4319 			sin = sin_null;
4320 			sin.sin_addr.s_addr = ipha->ipha_src;
4321 			sin.sin_port = *(uint16_t *)tcph->th_lport;
4322 			sin.sin_family = AF_INET;
4323 			mp = mi_tpi_conn_con(NULL, (char *)&sin,
4324 			    (int)sizeof (sin_t), optp, optlen);
4325 		} else {
4326 			sin6 = sin6_null;
4327 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4328 			sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4329 			sin6.sin6_family = AF_INET6;
4330 			mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4331 			    (int)sizeof (sin6_t), optp, optlen);
4332 
4333 		}
4334 	} else {
4335 		ip6_t	*ip6h = (ip6_t *)iphdr;
4336 
4337 		ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION);
4338 		ASSERT(tcp->tcp_family == AF_INET6);
4339 		sin6 = sin6_null;
4340 		sin6.sin6_addr = ip6h->ip6_src;
4341 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4342 		sin6.sin6_family = AF_INET6;
4343 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4344 		mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4345 		    (int)sizeof (sin6_t), optp, optlen);
4346 	}
4347 
4348 	if (!mp)
4349 		return (B_FALSE);
4350 
4351 	mblk_copycred(mp, idmp);
4352 
4353 	if (defermp == NULL) {
4354 		conn_t *connp = tcp->tcp_connp;
4355 		if (IPCL_IS_NONSTR(connp)) {
4356 			cred_t *cr;
4357 			pid_t cpid;
4358 
4359 			cr = msg_getcred(mp, &cpid);
4360 			(*connp->conn_upcalls->su_connected)
4361 			    (connp->conn_upper_handle, tcp->tcp_connid, cr,
4362 			    cpid);
4363 			freemsg(mp);
4364 		} else {
4365 			putnext(tcp->tcp_rq, mp);
4366 		}
4367 	} else {
4368 		*defermp = mp;
4369 	}
4370 
4371 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4372 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4373 	return (B_TRUE);
4374 }
4375 
4376 /*
4377  * Defense for the SYN attack -
4378  * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest
4379  *    one from the list of droppable eagers. This list is a subset of q0.
4380  *    see comments before the definition of MAKE_DROPPABLE().
4381  * 2. Don't drop a SYN request before its first timeout. This gives every
4382  *    request at least til the first timeout to complete its 3-way handshake.
4383  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
4384  *    requests currently on the queue that has timed out. This will be used
4385  *    as an indicator of whether an attack is under way, so that appropriate
4386  *    actions can be taken. (It's incremented in tcp_timer() and decremented
4387  *    either when eager goes into ESTABLISHED, or gets freed up.)
4388  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
4389  *    # of timeout drops back to <= q0len/32 => SYN alert off
4390  */
4391 static boolean_t
4392 tcp_drop_q0(tcp_t *tcp)
4393 {
4394 	tcp_t	*eager;
4395 	mblk_t	*mp;
4396 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4397 
4398 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
4399 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
4400 
4401 	/* Pick oldest eager from the list of droppable eagers */
4402 	eager = tcp->tcp_eager_prev_drop_q0;
4403 
4404 	/* If list is empty. return B_FALSE */
4405 	if (eager == tcp) {
4406 		return (B_FALSE);
4407 	}
4408 
4409 	/* If allocated, the mp will be freed in tcp_clean_death_wrapper() */
4410 	if ((mp = allocb(0, BPRI_HI)) == NULL)
4411 		return (B_FALSE);
4412 
4413 	/*
4414 	 * Take this eager out from the list of droppable eagers since we are
4415 	 * going to drop it.
4416 	 */
4417 	MAKE_UNDROPPABLE(eager);
4418 
4419 	if (tcp->tcp_debug) {
4420 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
4421 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
4422 		    " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0,
4423 		    tcp->tcp_conn_req_cnt_q0,
4424 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4425 	}
4426 
4427 	BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop);
4428 
4429 	/* Put a reference on the conn as we are enqueueing it in the sqeue */
4430 	CONN_INC_REF(eager->tcp_connp);
4431 
4432 	/* Mark the IRE created for this SYN request temporary */
4433 	tcp_ip_ire_mark_advice(eager);
4434 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
4435 	    tcp_clean_death_wrapper, eager->tcp_connp,
4436 	    SQ_FILL, SQTAG_TCP_DROP_Q0);
4437 
4438 	return (B_TRUE);
4439 }
4440 
4441 int
4442 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
4443     tcph_t *tcph, uint_t ipvers, mblk_t *idmp)
4444 {
4445 	tcp_t 		*ltcp = lconnp->conn_tcp;
4446 	tcp_t		*tcp = connp->conn_tcp;
4447 	mblk_t		*tpi_mp;
4448 	ipha_t		*ipha;
4449 	ip6_t		*ip6h;
4450 	sin6_t 		sin6;
4451 	in6_addr_t 	v6dst;
4452 	int		err;
4453 	int		ifindex = 0;
4454 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4455 
4456 	if (ipvers == IPV4_VERSION) {
4457 		ipha = (ipha_t *)mp->b_rptr;
4458 
4459 		connp->conn_send = ip_output;
4460 		connp->conn_recv = tcp_input;
4461 
4462 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst,
4463 		    &connp->conn_bound_source_v6);
4464 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4465 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4466 
4467 		sin6 = sin6_null;
4468 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4469 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst);
4470 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4471 		sin6.sin6_family = AF_INET6;
4472 		sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst,
4473 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4474 		if (tcp->tcp_recvdstaddr) {
4475 			sin6_t	sin6d;
4476 
4477 			sin6d = sin6_null;
4478 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst,
4479 			    &sin6d.sin6_addr);
4480 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4481 			sin6d.sin6_family = AF_INET;
4482 			tpi_mp = mi_tpi_extconn_ind(NULL,
4483 			    (char *)&sin6d, sizeof (sin6_t),
4484 			    (char *)&tcp,
4485 			    (t_scalar_t)sizeof (intptr_t),
4486 			    (char *)&sin6d, sizeof (sin6_t),
4487 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4488 		} else {
4489 			tpi_mp = mi_tpi_conn_ind(NULL,
4490 			    (char *)&sin6, sizeof (sin6_t),
4491 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4492 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4493 		}
4494 	} else {
4495 		ip6h = (ip6_t *)mp->b_rptr;
4496 
4497 		connp->conn_send = ip_output_v6;
4498 		connp->conn_recv = tcp_input;
4499 
4500 		connp->conn_bound_source_v6 = ip6h->ip6_dst;
4501 		connp->conn_srcv6 = ip6h->ip6_dst;
4502 		connp->conn_remv6 = ip6h->ip6_src;
4503 
4504 		/* db_cksumstuff is set at ip_fanout_tcp_v6 */
4505 		ifindex = (int)DB_CKSUMSTUFF(mp);
4506 		DB_CKSUMSTUFF(mp) = 0;
4507 
4508 		sin6 = sin6_null;
4509 		sin6.sin6_addr = ip6h->ip6_src;
4510 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4511 		sin6.sin6_family = AF_INET6;
4512 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4513 		sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst,
4514 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4515 
4516 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4517 			/* Pass up the scope_id of remote addr */
4518 			sin6.sin6_scope_id = ifindex;
4519 		} else {
4520 			sin6.sin6_scope_id = 0;
4521 		}
4522 		if (tcp->tcp_recvdstaddr) {
4523 			sin6_t	sin6d;
4524 
4525 			sin6d = sin6_null;
4526 			sin6.sin6_addr = ip6h->ip6_dst;
4527 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4528 			sin6d.sin6_family = AF_INET;
4529 			tpi_mp = mi_tpi_extconn_ind(NULL,
4530 			    (char *)&sin6d, sizeof (sin6_t),
4531 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4532 			    (char *)&sin6d, sizeof (sin6_t),
4533 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4534 		} else {
4535 			tpi_mp = mi_tpi_conn_ind(NULL,
4536 			    (char *)&sin6, sizeof (sin6_t),
4537 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4538 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4539 		}
4540 	}
4541 
4542 	if (tpi_mp == NULL)
4543 		return (ENOMEM);
4544 
4545 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4546 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4547 	connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER);
4548 	connp->conn_fully_bound = B_FALSE;
4549 
4550 	/* Inherit information from the "parent" */
4551 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
4552 	tcp->tcp_family = ltcp->tcp_family;
4553 
4554 	tcp->tcp_wq = ltcp->tcp_wq;
4555 	tcp->tcp_rq = ltcp->tcp_rq;
4556 
4557 	tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
4558 	tcp->tcp_detached = B_TRUE;
4559 	SOCK_CONNID_INIT(tcp->tcp_connid);
4560 	if ((err = tcp_init_values(tcp)) != 0) {
4561 		freemsg(tpi_mp);
4562 		return (err);
4563 	}
4564 
4565 	if (ipvers == IPV4_VERSION) {
4566 		if ((err = tcp_header_init_ipv4(tcp)) != 0) {
4567 			freemsg(tpi_mp);
4568 			return (err);
4569 		}
4570 		ASSERT(tcp->tcp_ipha != NULL);
4571 	} else {
4572 		/* ifindex must be already set */
4573 		ASSERT(ifindex != 0);
4574 
4575 		if (ltcp->tcp_bound_if != 0)
4576 			tcp->tcp_bound_if = ltcp->tcp_bound_if;
4577 		else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src))
4578 			tcp->tcp_bound_if = ifindex;
4579 
4580 		tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary;
4581 		tcp->tcp_recvifindex = 0;
4582 		tcp->tcp_recvhops = 0xffffffffU;
4583 		ASSERT(tcp->tcp_ip6h != NULL);
4584 	}
4585 
4586 	tcp->tcp_lport = ltcp->tcp_lport;
4587 
4588 	if (ltcp->tcp_ipversion == tcp->tcp_ipversion) {
4589 		if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) {
4590 			/*
4591 			 * Listener had options of some sort; eager inherits.
4592 			 * Free up the eager template and allocate one
4593 			 * of the right size.
4594 			 */
4595 			if (tcp->tcp_hdr_grown) {
4596 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
4597 			} else {
4598 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4599 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
4600 			}
4601 			tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len,
4602 			    KM_NOSLEEP);
4603 			if (tcp->tcp_iphc == NULL) {
4604 				tcp->tcp_iphc_len = 0;
4605 				freemsg(tpi_mp);
4606 				return (ENOMEM);
4607 			}
4608 			tcp->tcp_iphc_len = ltcp->tcp_iphc_len;
4609 			tcp->tcp_hdr_grown = B_TRUE;
4610 		}
4611 		tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
4612 		tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
4613 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
4614 		tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops;
4615 		tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf;
4616 
4617 		/*
4618 		 * Copy the IP+TCP header template from listener to eager
4619 		 */
4620 		bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
4621 		if (tcp->tcp_ipversion == IPV6_VERSION) {
4622 			if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt ==
4623 			    IPPROTO_RAW) {
4624 				tcp->tcp_ip6h =
4625 				    (ip6_t *)(tcp->tcp_iphc +
4626 				    sizeof (ip6i_t));
4627 			} else {
4628 				tcp->tcp_ip6h =
4629 				    (ip6_t *)(tcp->tcp_iphc);
4630 			}
4631 			tcp->tcp_ipha = NULL;
4632 		} else {
4633 			tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
4634 			tcp->tcp_ip6h = NULL;
4635 		}
4636 		tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
4637 		    tcp->tcp_ip_hdr_len);
4638 	} else {
4639 		/*
4640 		 * only valid case when ipversion of listener and
4641 		 * eager differ is when listener is IPv6 and
4642 		 * eager is IPv4.
4643 		 * Eager header template has been initialized to the
4644 		 * maximum v4 header sizes, which includes space for
4645 		 * TCP and IP options.
4646 		 */
4647 		ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) &&
4648 		    (tcp->tcp_ipversion == IPV4_VERSION));
4649 		ASSERT(tcp->tcp_iphc_len >=
4650 		    TCP_MAX_COMBINED_HEADER_LENGTH);
4651 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
4652 		/* copy IP header fields individually */
4653 		tcp->tcp_ipha->ipha_ttl =
4654 		    ltcp->tcp_ip6h->ip6_hops;
4655 		bcopy(ltcp->tcp_tcph->th_lport,
4656 		    tcp->tcp_tcph->th_lport, sizeof (ushort_t));
4657 	}
4658 
4659 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
4660 	bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport,
4661 	    sizeof (in_port_t));
4662 
4663 	if (ltcp->tcp_lport == 0) {
4664 		tcp->tcp_lport = *(in_port_t *)tcph->th_fport;
4665 		bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport,
4666 		    sizeof (in_port_t));
4667 	}
4668 
4669 	if (tcp->tcp_ipversion == IPV4_VERSION) {
4670 		ASSERT(ipha != NULL);
4671 		tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
4672 		tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
4673 
4674 		/* Source routing option copyover (reverse it) */
4675 		if (tcps->tcps_rev_src_routes)
4676 			tcp_opt_reverse(tcp, ipha);
4677 	} else {
4678 		ASSERT(ip6h != NULL);
4679 		tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src;
4680 		tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst;
4681 	}
4682 
4683 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
4684 	ASSERT(!tcp->tcp_tconnind_started);
4685 	/*
4686 	 * If the SYN contains a credential, it's a loopback packet; attach
4687 	 * the credential to the TPI message.
4688 	 */
4689 	mblk_copycred(tpi_mp, idmp);
4690 
4691 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
4692 
4693 	/* Inherit the listener's SSL protection state */
4694 
4695 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
4696 		kssl_hold_ent(tcp->tcp_kssl_ent);
4697 		tcp->tcp_kssl_pending = B_TRUE;
4698 	}
4699 
4700 	/* Inherit the listener's non-STREAMS flag */
4701 	if (IPCL_IS_NONSTR(lconnp)) {
4702 		connp->conn_flags |= IPCL_NONSTR;
4703 	}
4704 
4705 	return (0);
4706 }
4707 
4708 
4709 int
4710 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
4711     tcph_t *tcph, mblk_t *idmp)
4712 {
4713 	tcp_t 		*ltcp = lconnp->conn_tcp;
4714 	tcp_t		*tcp = connp->conn_tcp;
4715 	sin_t		sin;
4716 	mblk_t		*tpi_mp = NULL;
4717 	int		err;
4718 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4719 
4720 	sin = sin_null;
4721 	sin.sin_addr.s_addr = ipha->ipha_src;
4722 	sin.sin_port = *(uint16_t *)tcph->th_lport;
4723 	sin.sin_family = AF_INET;
4724 	if (ltcp->tcp_recvdstaddr) {
4725 		sin_t	sind;
4726 
4727 		sind = sin_null;
4728 		sind.sin_addr.s_addr = ipha->ipha_dst;
4729 		sind.sin_port = *(uint16_t *)tcph->th_fport;
4730 		sind.sin_family = AF_INET;
4731 		tpi_mp = mi_tpi_extconn_ind(NULL,
4732 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
4733 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
4734 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4735 	} else {
4736 		tpi_mp = mi_tpi_conn_ind(NULL,
4737 		    (char *)&sin, sizeof (sin_t),
4738 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4739 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4740 	}
4741 
4742 	if (tpi_mp == NULL) {
4743 		return (ENOMEM);
4744 	}
4745 
4746 	connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER);
4747 	connp->conn_send = ip_output;
4748 	connp->conn_recv = tcp_input;
4749 	connp->conn_fully_bound = B_FALSE;
4750 
4751 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_bound_source_v6);
4752 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4753 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4754 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4755 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4756 
4757 	/* Inherit information from the "parent" */
4758 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
4759 	tcp->tcp_family = ltcp->tcp_family;
4760 	tcp->tcp_wq = ltcp->tcp_wq;
4761 	tcp->tcp_rq = ltcp->tcp_rq;
4762 	tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
4763 	tcp->tcp_detached = B_TRUE;
4764 	SOCK_CONNID_INIT(tcp->tcp_connid);
4765 	if ((err = tcp_init_values(tcp)) != 0) {
4766 		freemsg(tpi_mp);
4767 		return (err);
4768 	}
4769 
4770 	/*
4771 	 * Let's make sure that eager tcp template has enough space to
4772 	 * copy IPv4 listener's tcp template. Since the conn_t structure is
4773 	 * preserved and tcp_iphc_len is also preserved, an eager conn_t may
4774 	 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or
4775 	 * more (in case of re-allocation of conn_t with tcp-IPv6 template with
4776 	 * extension headers or with ip6i_t struct). Note that bcopy() below
4777 	 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_
4778 	 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener.
4779 	 */
4780 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
4781 	ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH);
4782 
4783 	tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
4784 	tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
4785 	tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
4786 	tcp->tcp_ttl = ltcp->tcp_ttl;
4787 	tcp->tcp_tos = ltcp->tcp_tos;
4788 
4789 	/* Copy the IP+TCP header template from listener to eager */
4790 	bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
4791 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
4792 	tcp->tcp_ip6h = NULL;
4793 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
4794 	    tcp->tcp_ip_hdr_len);
4795 
4796 	/* Initialize the IP addresses and Ports */
4797 	tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
4798 	tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
4799 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
4800 	bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t));
4801 
4802 	/* Source routing option copyover (reverse it) */
4803 	if (tcps->tcps_rev_src_routes)
4804 		tcp_opt_reverse(tcp, ipha);
4805 
4806 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
4807 	ASSERT(!tcp->tcp_tconnind_started);
4808 
4809 	/*
4810 	 * If the SYN contains a credential, it's a loopback packet; attach
4811 	 * the credential to the TPI message.
4812 	 */
4813 	mblk_copycred(tpi_mp, idmp);
4814 
4815 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
4816 
4817 	/* Inherit the listener's SSL protection state */
4818 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
4819 		kssl_hold_ent(tcp->tcp_kssl_ent);
4820 		tcp->tcp_kssl_pending = B_TRUE;
4821 	}
4822 
4823 	/* Inherit the listener's non-STREAMS flag */
4824 	if (IPCL_IS_NONSTR(lconnp)) {
4825 		connp->conn_flags |= IPCL_NONSTR;
4826 	}
4827 
4828 	return (0);
4829 }
4830 
4831 /*
4832  * sets up conn for ipsec.
4833  * if the first mblk is M_CTL it is consumed and mpp is updated.
4834  * in case of error mpp is freed.
4835  */
4836 conn_t *
4837 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp)
4838 {
4839 	conn_t 		*connp = tcp->tcp_connp;
4840 	conn_t 		*econnp;
4841 	squeue_t 	*new_sqp;
4842 	mblk_t 		*first_mp = *mpp;
4843 	mblk_t		*mp = *mpp;
4844 	boolean_t	mctl_present = B_FALSE;
4845 	uint_t		ipvers;
4846 
4847 	econnp = tcp_get_conn(sqp, tcp->tcp_tcps);
4848 	if (econnp == NULL) {
4849 		freemsg(first_mp);
4850 		return (NULL);
4851 	}
4852 	if (DB_TYPE(mp) == M_CTL) {
4853 		if (mp->b_cont == NULL ||
4854 		    mp->b_cont->b_datap->db_type != M_DATA) {
4855 			freemsg(first_mp);
4856 			return (NULL);
4857 		}
4858 		mp = mp->b_cont;
4859 		if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) {
4860 			freemsg(first_mp);
4861 			return (NULL);
4862 		}
4863 
4864 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
4865 		first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
4866 		mctl_present = B_TRUE;
4867 	} else {
4868 		ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY);
4869 		mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
4870 	}
4871 
4872 	new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
4873 	DB_CKSUMSTART(mp) = 0;
4874 
4875 	ASSERT(OK_32PTR(mp->b_rptr));
4876 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
4877 	if (ipvers == IPV4_VERSION) {
4878 		uint16_t  	*up;
4879 		uint32_t	ports;
4880 		ipha_t		*ipha;
4881 
4882 		ipha = (ipha_t *)mp->b_rptr;
4883 		up = (uint16_t *)((uchar_t *)ipha +
4884 		    IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET);
4885 		ports = *(uint32_t *)up;
4886 		IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP,
4887 		    ipha->ipha_dst, ipha->ipha_src, ports);
4888 	} else {
4889 		uint16_t  	*up;
4890 		uint32_t	ports;
4891 		uint16_t	ip_hdr_len;
4892 		uint8_t		*nexthdrp;
4893 		ip6_t 		*ip6h;
4894 		tcph_t		*tcph;
4895 
4896 		ip6h = (ip6_t *)mp->b_rptr;
4897 		if (ip6h->ip6_nxt == IPPROTO_TCP) {
4898 			ip_hdr_len = IPV6_HDR_LEN;
4899 		} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len,
4900 		    &nexthdrp) || *nexthdrp != IPPROTO_TCP) {
4901 			CONN_DEC_REF(econnp);
4902 			freemsg(first_mp);
4903 			return (NULL);
4904 		}
4905 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
4906 		up = (uint16_t *)tcph->th_lport;
4907 		ports = *(uint32_t *)up;
4908 		IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP,
4909 		    ip6h->ip6_dst, ip6h->ip6_src, ports);
4910 	}
4911 
4912 	/*
4913 	 * The caller already ensured that there is a sqp present.
4914 	 */
4915 	econnp->conn_sqp = new_sqp;
4916 	econnp->conn_initial_sqp = new_sqp;
4917 
4918 	if (connp->conn_policy != NULL) {
4919 		ipsec_in_t *ii;
4920 		ii = (ipsec_in_t *)(first_mp->b_rptr);
4921 		ASSERT(ii->ipsec_in_policy == NULL);
4922 		IPPH_REFHOLD(connp->conn_policy);
4923 		ii->ipsec_in_policy = connp->conn_policy;
4924 
4925 		first_mp->b_datap->db_type = IPSEC_POLICY_SET;
4926 		if (!ip_bind_ipsec_policy_set(econnp, first_mp)) {
4927 			CONN_DEC_REF(econnp);
4928 			freemsg(first_mp);
4929 			return (NULL);
4930 		}
4931 	}
4932 
4933 	if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) {
4934 		CONN_DEC_REF(econnp);
4935 		freemsg(first_mp);
4936 		return (NULL);
4937 	}
4938 
4939 	/*
4940 	 * If we know we have some policy, pass the "IPSEC"
4941 	 * options size TCP uses this adjust the MSS.
4942 	 */
4943 	econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp);
4944 	if (mctl_present) {
4945 		freeb(first_mp);
4946 		*mpp = mp;
4947 	}
4948 
4949 	return (econnp);
4950 }
4951 
4952 /*
4953  * tcp_get_conn/tcp_free_conn
4954  *
4955  * tcp_get_conn is used to get a clean tcp connection structure.
4956  * It tries to reuse the connections put on the freelist by the
4957  * time_wait_collector failing which it goes to kmem_cache. This
4958  * way has two benefits compared to just allocating from and
4959  * freeing to kmem_cache.
4960  * 1) The time_wait_collector can free (which includes the cleanup)
4961  * outside the squeue. So when the interrupt comes, we have a clean
4962  * connection sitting in the freelist. Obviously, this buys us
4963  * performance.
4964  *
4965  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request
4966  * has multiple disadvantages - tying up the squeue during alloc, and the
4967  * fact that IPSec policy initialization has to happen here which
4968  * requires us sending a M_CTL and checking for it i.e. real ugliness.
4969  * But allocating the conn/tcp in IP land is also not the best since
4970  * we can't check the 'q' and 'q0' which are protected by squeue and
4971  * blindly allocate memory which might have to be freed here if we are
4972  * not allowed to accept the connection. By using the freelist and
4973  * putting the conn/tcp back in freelist, we don't pay a penalty for
4974  * allocating memory without checking 'q/q0' and freeing it if we can't
4975  * accept the connection.
4976  *
4977  * Care should be taken to put the conn back in the same squeue's freelist
4978  * from which it was allocated. Best results are obtained if conn is
4979  * allocated from listener's squeue and freed to the same. Time wait
4980  * collector will free up the freelist is the connection ends up sitting
4981  * there for too long.
4982  */
4983 void *
4984 tcp_get_conn(void *arg, tcp_stack_t *tcps)
4985 {
4986 	tcp_t			*tcp = NULL;
4987 	conn_t			*connp = NULL;
4988 	squeue_t		*sqp = (squeue_t *)arg;
4989 	tcp_squeue_priv_t 	*tcp_time_wait;
4990 	netstack_t		*ns;
4991 	mblk_t			*tcp_rsrv_mp = NULL;
4992 
4993 	tcp_time_wait =
4994 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
4995 
4996 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
4997 	tcp = tcp_time_wait->tcp_free_list;
4998 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
4999 	if (tcp != NULL) {
5000 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
5001 		tcp_time_wait->tcp_free_list_cnt--;
5002 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5003 		tcp->tcp_time_wait_next = NULL;
5004 		connp = tcp->tcp_connp;
5005 		connp->conn_flags |= IPCL_REUSED;
5006 
5007 		ASSERT(tcp->tcp_tcps == NULL);
5008 		ASSERT(connp->conn_netstack == NULL);
5009 		ASSERT(tcp->tcp_rsrv_mp != NULL);
5010 		ns = tcps->tcps_netstack;
5011 		netstack_hold(ns);
5012 		connp->conn_netstack = ns;
5013 		tcp->tcp_tcps = tcps;
5014 		TCPS_REFHOLD(tcps);
5015 		ipcl_globalhash_insert(connp);
5016 		return ((void *)connp);
5017 	}
5018 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5019 	/*
5020 	 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until
5021 	 * this conn_t/tcp_t is freed at ipcl_conn_destroy().
5022 	 */
5023 	tcp_rsrv_mp = allocb(0, BPRI_HI);
5024 	if (tcp_rsrv_mp == NULL)
5025 		return (NULL);
5026 
5027 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
5028 	    tcps->tcps_netstack)) == NULL) {
5029 		freeb(tcp_rsrv_mp);
5030 		return (NULL);
5031 	}
5032 
5033 	tcp = connp->conn_tcp;
5034 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
5035 	mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL);
5036 
5037 	tcp->tcp_tcps = tcps;
5038 	TCPS_REFHOLD(tcps);
5039 
5040 	return ((void *)connp);
5041 }
5042 
5043 /*
5044  * Update the cached label for the given tcp_t.  This should be called once per
5045  * connection, and before any packets are sent or tcp_process_options is
5046  * invoked.  Returns B_FALSE if the correct label could not be constructed.
5047  */
5048 static boolean_t
5049 tcp_update_label(tcp_t *tcp, const cred_t *cr)
5050 {
5051 	conn_t *connp = tcp->tcp_connp;
5052 
5053 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5054 		uchar_t optbuf[IP_MAX_OPT_LENGTH];
5055 		int added;
5056 
5057 		if (tsol_compute_label(cr, tcp->tcp_remote, optbuf,
5058 		    connp->conn_mac_exempt,
5059 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5060 			return (B_FALSE);
5061 
5062 		added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len);
5063 		if (added == -1)
5064 			return (B_FALSE);
5065 		tcp->tcp_hdr_len += added;
5066 		tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added);
5067 		tcp->tcp_ip_hdr_len += added;
5068 		if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) {
5069 			tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3;
5070 			added = tsol_prepend_option(optbuf, tcp->tcp_ipha,
5071 			    tcp->tcp_hdr_len);
5072 			if (added == -1)
5073 				return (B_FALSE);
5074 			tcp->tcp_hdr_len += added;
5075 			tcp->tcp_tcph = (tcph_t *)
5076 			    ((uchar_t *)tcp->tcp_tcph + added);
5077 			tcp->tcp_ip_hdr_len += added;
5078 		}
5079 	} else {
5080 		uchar_t optbuf[TSOL_MAX_IPV6_OPTION];
5081 
5082 		if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf,
5083 		    connp->conn_mac_exempt,
5084 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5085 			return (B_FALSE);
5086 		if (tsol_update_sticky(&tcp->tcp_sticky_ipp,
5087 		    &tcp->tcp_label_len, optbuf) != 0)
5088 			return (B_FALSE);
5089 		if (tcp_build_hdrs(tcp) != 0)
5090 			return (B_FALSE);
5091 	}
5092 
5093 	connp->conn_ulp_labeled = 1;
5094 
5095 	return (B_TRUE);
5096 }
5097 
5098 /* BEGIN CSTYLED */
5099 /*
5100  *
5101  * The sockfs ACCEPT path:
5102  * =======================
5103  *
5104  * The eager is now established in its own perimeter as soon as SYN is
5105  * received in tcp_conn_request(). When sockfs receives conn_ind, it
5106  * completes the accept processing on the acceptor STREAM. The sending
5107  * of conn_ind part is common for both sockfs listener and a TLI/XTI
5108  * listener but a TLI/XTI listener completes the accept processing
5109  * on the listener perimeter.
5110  *
5111  * Common control flow for 3 way handshake:
5112  * ----------------------------------------
5113  *
5114  * incoming SYN (listener perimeter) 	-> tcp_rput_data()
5115  *					-> tcp_conn_request()
5116  *
5117  * incoming SYN-ACK-ACK (eager perim) 	-> tcp_rput_data()
5118  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
5119  *
5120  * Sockfs ACCEPT Path:
5121  * -------------------
5122  *
5123  * open acceptor stream (tcp_open allocates tcp_wput_accept()
5124  * as STREAM entry point)
5125  *
5126  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept()
5127  *
5128  * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager
5129  * association (we are not behind eager's squeue but sockfs is protecting us
5130  * and no one knows about this stream yet. The STREAMS entry point q->q_info
5131  * is changed to point at tcp_wput().
5132  *
5133  * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to
5134  * listener (done on listener's perimeter).
5135  *
5136  * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish
5137  * accept.
5138  *
5139  * TLI/XTI client ACCEPT path:
5140  * ---------------------------
5141  *
5142  * soaccept() sends T_CONN_RES on the listener STREAM.
5143  *
5144  * tcp_accept() -> tcp_accept_swap() complete the processing and send
5145  * the bind_mp to eager perimeter to finish accept (tcp_rput_other()).
5146  *
5147  * Locks:
5148  * ======
5149  *
5150  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
5151  * and listeners->tcp_eager_next_q.
5152  *
5153  * Referencing:
5154  * ============
5155  *
5156  * 1) We start out in tcp_conn_request by eager placing a ref on
5157  * listener and listener adding eager to listeners->tcp_eager_next_q0.
5158  *
5159  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
5160  * doing so we place a ref on the eager. This ref is finally dropped at the
5161  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
5162  * reference is dropped by the squeue framework.
5163  *
5164  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
5165  *
5166  * The reference must be released by the same entity that added the reference
5167  * In the above scheme, the eager is the entity that adds and releases the
5168  * references. Note that tcp_accept_finish executes in the squeue of the eager
5169  * (albeit after it is attached to the acceptor stream). Though 1. executes
5170  * in the listener's squeue, the eager is nascent at this point and the
5171  * reference can be considered to have been added on behalf of the eager.
5172  *
5173  * Eager getting a Reset or listener closing:
5174  * ==========================================
5175  *
5176  * Once the listener and eager are linked, the listener never does the unlink.
5177  * If the listener needs to close, tcp_eager_cleanup() is called which queues
5178  * a message on all eager perimeter. The eager then does the unlink, clears
5179  * any pointers to the listener's queue and drops the reference to the
5180  * listener. The listener waits in tcp_close outside the squeue until its
5181  * refcount has dropped to 1. This ensures that the listener has waited for
5182  * all eagers to clear their association with the listener.
5183  *
5184  * Similarly, if eager decides to go away, it can unlink itself and close.
5185  * When the T_CONN_RES comes down, we check if eager has closed. Note that
5186  * the reference to eager is still valid because of the extra ref we put
5187  * in tcp_send_conn_ind.
5188  *
5189  * Listener can always locate the eager under the protection
5190  * of the listener->tcp_eager_lock, and then do a refhold
5191  * on the eager during the accept processing.
5192  *
5193  * The acceptor stream accesses the eager in the accept processing
5194  * based on the ref placed on eager before sending T_conn_ind.
5195  * The only entity that can negate this refhold is a listener close
5196  * which is mutually exclusive with an active acceptor stream.
5197  *
5198  * Eager's reference on the listener
5199  * ===================================
5200  *
5201  * If the accept happens (even on a closed eager) the eager drops its
5202  * reference on the listener at the start of tcp_accept_finish. If the
5203  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
5204  * the reference is dropped in tcp_closei_local. If the listener closes,
5205  * the reference is dropped in tcp_eager_kill. In all cases the reference
5206  * is dropped while executing in the eager's context (squeue).
5207  */
5208 /* END CSTYLED */
5209 
5210 /* Process the SYN packet, mp, directed at the listener 'tcp' */
5211 
5212 /*
5213  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
5214  * tcp_rput_data will not see any SYN packets.
5215  */
5216 /* ARGSUSED */
5217 void
5218 tcp_conn_request(void *arg, mblk_t *mp, void *arg2)
5219 {
5220 	tcph_t		*tcph;
5221 	uint32_t	seg_seq;
5222 	tcp_t		*eager;
5223 	uint_t		ipvers;
5224 	ipha_t		*ipha;
5225 	ip6_t		*ip6h;
5226 	int		err;
5227 	conn_t		*econnp = NULL;
5228 	squeue_t	*new_sqp;
5229 	mblk_t		*mp1;
5230 	uint_t 		ip_hdr_len;
5231 	conn_t		*connp = (conn_t *)arg;
5232 	tcp_t		*tcp = connp->conn_tcp;
5233 	cred_t		*credp;
5234 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5235 	ip_stack_t	*ipst;
5236 
5237 	if (tcp->tcp_state != TCPS_LISTEN)
5238 		goto error2;
5239 
5240 	ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0);
5241 
5242 	mutex_enter(&tcp->tcp_eager_lock);
5243 	if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) {
5244 		mutex_exit(&tcp->tcp_eager_lock);
5245 		TCP_STAT(tcps, tcp_listendrop);
5246 		BUMP_MIB(&tcps->tcps_mib, tcpListenDrop);
5247 		if (tcp->tcp_debug) {
5248 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
5249 			    "tcp_conn_request: listen backlog (max=%d) "
5250 			    "overflow (%d pending) on %s",
5251 			    tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q,
5252 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
5253 		}
5254 		goto error2;
5255 	}
5256 
5257 	if (tcp->tcp_conn_req_cnt_q0 >=
5258 	    tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) {
5259 		/*
5260 		 * Q0 is full. Drop a pending half-open req from the queue
5261 		 * to make room for the new SYN req. Also mark the time we
5262 		 * drop a SYN.
5263 		 *
5264 		 * A more aggressive defense against SYN attack will
5265 		 * be to set the "tcp_syn_defense" flag now.
5266 		 */
5267 		TCP_STAT(tcps, tcp_listendropq0);
5268 		tcp->tcp_last_rcv_lbolt = lbolt64;
5269 		if (!tcp_drop_q0(tcp)) {
5270 			mutex_exit(&tcp->tcp_eager_lock);
5271 			BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0);
5272 			if (tcp->tcp_debug) {
5273 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
5274 				    "tcp_conn_request: listen half-open queue "
5275 				    "(max=%d) full (%d pending) on %s",
5276 				    tcps->tcps_conn_req_max_q0,
5277 				    tcp->tcp_conn_req_cnt_q0,
5278 				    tcp_display(tcp, NULL,
5279 				    DISP_PORT_ONLY));
5280 			}
5281 			goto error2;
5282 		}
5283 	}
5284 	mutex_exit(&tcp->tcp_eager_lock);
5285 
5286 	/*
5287 	 * IP adds STRUIO_EAGER and ensures that the received packet is
5288 	 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6
5289 	 * link local address.  If IPSec is enabled, db_struioflag has
5290 	 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER);
5291 	 * otherwise an error case if neither of them is set.
5292 	 */
5293 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5294 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5295 		DB_CKSUMSTART(mp) = 0;
5296 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5297 		econnp = (conn_t *)tcp_get_conn(arg2, tcps);
5298 		if (econnp == NULL)
5299 			goto error2;
5300 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5301 		econnp->conn_sqp = new_sqp;
5302 		econnp->conn_initial_sqp = new_sqp;
5303 	} else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) {
5304 		/*
5305 		 * mp is updated in tcp_get_ipsec_conn().
5306 		 */
5307 		econnp = tcp_get_ipsec_conn(tcp, arg2, &mp);
5308 		if (econnp == NULL) {
5309 			/*
5310 			 * mp freed by tcp_get_ipsec_conn.
5311 			 */
5312 			return;
5313 		}
5314 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5315 	} else {
5316 		goto error2;
5317 	}
5318 
5319 	ASSERT(DB_TYPE(mp) == M_DATA);
5320 
5321 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5322 	ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION);
5323 	ASSERT(OK_32PTR(mp->b_rptr));
5324 	if (ipvers == IPV4_VERSION) {
5325 		ipha = (ipha_t *)mp->b_rptr;
5326 		ip_hdr_len = IPH_HDR_LENGTH(ipha);
5327 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5328 	} else {
5329 		ip6h = (ip6_t *)mp->b_rptr;
5330 		ip_hdr_len = ip_hdr_length_v6(mp, ip6h);
5331 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5332 	}
5333 
5334 	if (tcp->tcp_family == AF_INET) {
5335 		ASSERT(ipvers == IPV4_VERSION);
5336 		err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp);
5337 	} else {
5338 		err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp);
5339 	}
5340 
5341 	if (err)
5342 		goto error3;
5343 
5344 	eager = econnp->conn_tcp;
5345 	ASSERT(eager->tcp_ordrel_mp == NULL);
5346 
5347 	if (!IPCL_IS_NONSTR(econnp)) {
5348 		/*
5349 		 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that
5350 		 * at close time, we will always have that to send up.
5351 		 * Otherwise, we need to do special handling in case the
5352 		 * allocation fails at that time.
5353 		 */
5354 		if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL)
5355 			goto error3;
5356 	}
5357 	/* Inherit various TCP parameters from the listener */
5358 	eager->tcp_naglim = tcp->tcp_naglim;
5359 	eager->tcp_first_timer_threshold = tcp->tcp_first_timer_threshold;
5360 	eager->tcp_second_timer_threshold = tcp->tcp_second_timer_threshold;
5361 
5362 	eager->tcp_first_ctimer_threshold = tcp->tcp_first_ctimer_threshold;
5363 	eager->tcp_second_ctimer_threshold = tcp->tcp_second_ctimer_threshold;
5364 
5365 	/*
5366 	 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics.
5367 	 * If it does not, the eager's receive window will be set to the
5368 	 * listener's receive window later in this function.
5369 	 */
5370 	eager->tcp_rwnd = 0;
5371 
5372 	/*
5373 	 * Inherit listener's tcp_init_cwnd.  Need to do this before
5374 	 * calling tcp_process_options() where tcp_mss_set() is called
5375 	 * to set the initial cwnd.
5376 	 */
5377 	eager->tcp_init_cwnd = tcp->tcp_init_cwnd;
5378 
5379 	/*
5380 	 * Zones: tcp_adapt_ire() and tcp_send_data() both need the
5381 	 * zone id before the accept is completed in tcp_wput_accept().
5382 	 */
5383 	econnp->conn_zoneid = connp->conn_zoneid;
5384 	econnp->conn_allzones = connp->conn_allzones;
5385 
5386 	/* Copy nexthop information from listener to eager */
5387 	if (connp->conn_nexthop_set) {
5388 		econnp->conn_nexthop_set = connp->conn_nexthop_set;
5389 		econnp->conn_nexthop_v4 = connp->conn_nexthop_v4;
5390 	}
5391 
5392 	/*
5393 	 * TSOL: tsol_input_proc() needs the eager's cred before the
5394 	 * eager is accepted
5395 	 */
5396 	econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred;
5397 	crhold(credp);
5398 
5399 	/*
5400 	 * If the caller has the process-wide flag set, then default to MAC
5401 	 * exempt mode.  This allows read-down to unlabeled hosts.
5402 	 */
5403 	if (getpflags(NET_MAC_AWARE, credp) != 0)
5404 		econnp->conn_mac_exempt = B_TRUE;
5405 
5406 	if (is_system_labeled()) {
5407 		cred_t *cr;
5408 
5409 		if (connp->conn_mlp_type != mlptSingle) {
5410 			cr = econnp->conn_peercred = msg_getcred(mp, NULL);
5411 			if (cr != NULL)
5412 				crhold(cr);
5413 			else
5414 				cr = econnp->conn_cred;
5415 			DTRACE_PROBE2(mlp_syn_accept, conn_t *,
5416 			    econnp, cred_t *, cr)
5417 		} else {
5418 			cr = econnp->conn_cred;
5419 			DTRACE_PROBE2(syn_accept, conn_t *,
5420 			    econnp, cred_t *, cr)
5421 		}
5422 
5423 		if (!tcp_update_label(eager, cr)) {
5424 			DTRACE_PROBE3(
5425 			    tx__ip__log__error__connrequest__tcp,
5426 			    char *, "eager connp(1) label on SYN mp(2) failed",
5427 			    conn_t *, econnp, mblk_t *, mp);
5428 			goto error3;
5429 		}
5430 	}
5431 
5432 	eager->tcp_hard_binding = B_TRUE;
5433 
5434 	tcp_bind_hash_insert(&tcps->tcps_bind_fanout[
5435 	    TCP_BIND_HASH(eager->tcp_lport)], eager, 0);
5436 
5437 	CL_INET_CONNECT(connp, eager, B_FALSE, err);
5438 	if (err != 0) {
5439 		tcp_bind_hash_remove(eager);
5440 		goto error3;
5441 	}
5442 
5443 	/*
5444 	 * No need to check for multicast destination since ip will only pass
5445 	 * up multicasts to those that have expressed interest
5446 	 * TODO: what about rejecting broadcasts?
5447 	 * Also check that source is not a multicast or broadcast address.
5448 	 */
5449 	eager->tcp_state = TCPS_SYN_RCVD;
5450 
5451 
5452 	/*
5453 	 * There should be no ire in the mp as we are being called after
5454 	 * receiving the SYN.
5455 	 */
5456 	ASSERT(tcp_ire_mp(&mp) == NULL);
5457 
5458 	/*
5459 	 * Adapt our mss, ttl, ... according to information provided in IRE.
5460 	 */
5461 
5462 	if (tcp_adapt_ire(eager, NULL) == 0) {
5463 		/* Undo the bind_hash_insert */
5464 		tcp_bind_hash_remove(eager);
5465 		goto error3;
5466 	}
5467 
5468 	/* Process all TCP options. */
5469 	tcp_process_options(eager, tcph);
5470 
5471 	/* Is the other end ECN capable? */
5472 	if (tcps->tcps_ecn_permitted >= 1 &&
5473 	    (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
5474 		eager->tcp_ecn_ok = B_TRUE;
5475 	}
5476 
5477 	/*
5478 	 * listener->tcp_rq->q_hiwat should be the default window size or a
5479 	 * window size changed via SO_RCVBUF option.  First round up the
5480 	 * eager's tcp_rwnd to the nearest MSS.  Then find out the window
5481 	 * scale option value if needed.  Call tcp_rwnd_set() to finish the
5482 	 * setting.
5483 	 *
5484 	 * Note if there is a rpipe metric associated with the remote host,
5485 	 * we should not inherit receive window size from listener.
5486 	 */
5487 	eager->tcp_rwnd = MSS_ROUNDUP(
5488 	    (eager->tcp_rwnd == 0 ? tcp->tcp_recv_hiwater:
5489 	    eager->tcp_rwnd), eager->tcp_mss);
5490 	if (eager->tcp_snd_ws_ok)
5491 		tcp_set_ws_value(eager);
5492 	/*
5493 	 * Note that this is the only place tcp_rwnd_set() is called for
5494 	 * accepting a connection.  We need to call it here instead of
5495 	 * after the 3-way handshake because we need to tell the other
5496 	 * side our rwnd in the SYN-ACK segment.
5497 	 */
5498 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
5499 
5500 	/*
5501 	 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ
5502 	 * via soaccept()->soinheritoptions() which essentially applies
5503 	 * all the listener options to the new STREAM. The options that we
5504 	 * need to take care of are:
5505 	 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST,
5506 	 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER,
5507 	 * SO_SNDBUF, SO_RCVBUF.
5508 	 *
5509 	 * SO_RCVBUF:	tcp_rwnd_set() above takes care of it.
5510 	 * SO_SNDBUF:	Set the tcp_xmit_hiwater for the eager. When
5511 	 *		tcp_maxpsz_set() gets called later from
5512 	 *		tcp_accept_finish(), the option takes effect.
5513 	 *
5514 	 */
5515 	/* Set the TCP options */
5516 	eager->tcp_recv_hiwater = tcp->tcp_recv_hiwater;
5517 	eager->tcp_recv_lowater = tcp->tcp_recv_lowater;
5518 	eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater;
5519 	eager->tcp_dgram_errind = tcp->tcp_dgram_errind;
5520 	eager->tcp_oobinline = tcp->tcp_oobinline;
5521 	eager->tcp_reuseaddr = tcp->tcp_reuseaddr;
5522 	eager->tcp_broadcast = tcp->tcp_broadcast;
5523 	eager->tcp_useloopback = tcp->tcp_useloopback;
5524 	eager->tcp_dontroute = tcp->tcp_dontroute;
5525 	eager->tcp_debug = tcp->tcp_debug;
5526 	eager->tcp_linger = tcp->tcp_linger;
5527 	eager->tcp_lingertime = tcp->tcp_lingertime;
5528 	if (tcp->tcp_ka_enabled)
5529 		eager->tcp_ka_enabled = 1;
5530 
5531 	/* Set the IP options */
5532 	econnp->conn_broadcast = connp->conn_broadcast;
5533 	econnp->conn_loopback = connp->conn_loopback;
5534 	econnp->conn_dontroute = connp->conn_dontroute;
5535 	econnp->conn_reuseaddr = connp->conn_reuseaddr;
5536 
5537 	/* Put a ref on the listener for the eager. */
5538 	CONN_INC_REF(connp);
5539 	mutex_enter(&tcp->tcp_eager_lock);
5540 	tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
5541 	eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0;
5542 	tcp->tcp_eager_next_q0 = eager;
5543 	eager->tcp_eager_prev_q0 = tcp;
5544 
5545 	/* Set tcp_listener before adding it to tcp_conn_fanout */
5546 	eager->tcp_listener = tcp;
5547 	eager->tcp_saved_listener = tcp;
5548 
5549 	/*
5550 	 * Tag this detached tcp vector for later retrieval
5551 	 * by our listener client in tcp_accept().
5552 	 */
5553 	eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum;
5554 	tcp->tcp_conn_req_cnt_q0++;
5555 	if (++tcp->tcp_conn_req_seqnum == -1) {
5556 		/*
5557 		 * -1 is "special" and defined in TPI as something
5558 		 * that should never be used in T_CONN_IND
5559 		 */
5560 		++tcp->tcp_conn_req_seqnum;
5561 	}
5562 	mutex_exit(&tcp->tcp_eager_lock);
5563 
5564 	if (tcp->tcp_syn_defense) {
5565 		/* Don't drop the SYN that comes from a good IP source */
5566 		ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache);
5567 		if (addr_cache != NULL && eager->tcp_remote ==
5568 		    addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) {
5569 			eager->tcp_dontdrop = B_TRUE;
5570 		}
5571 	}
5572 
5573 	/*
5574 	 * We need to insert the eager in its own perimeter but as soon
5575 	 * as we do that, we expose the eager to the classifier and
5576 	 * should not touch any field outside the eager's perimeter.
5577 	 * So do all the work necessary before inserting the eager
5578 	 * in its own perimeter. Be optimistic that ipcl_conn_insert()
5579 	 * will succeed but undo everything if it fails.
5580 	 */
5581 	seg_seq = ABE32_TO_U32(tcph->th_seq);
5582 	eager->tcp_irs = seg_seq;
5583 	eager->tcp_rack = seg_seq;
5584 	eager->tcp_rnxt = seg_seq + 1;
5585 	U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack);
5586 	BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens);
5587 	eager->tcp_state = TCPS_SYN_RCVD;
5588 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
5589 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
5590 	if (mp1 == NULL) {
5591 		/*
5592 		 * Increment the ref count as we are going to
5593 		 * enqueueing an mp in squeue
5594 		 */
5595 		CONN_INC_REF(econnp);
5596 		goto error;
5597 	}
5598 
5599 	/*
5600 	 * Note that in theory this should use the current pid
5601 	 * so that getpeerucred on the client returns the actual listener
5602 	 * that does accept. But accept() hasn't been called yet. We could use
5603 	 * the pid of the process that did bind/listen on the server.
5604 	 * However, with common usage like inetd() the bind/listen can be done
5605 	 * by a different process than the accept().
5606 	 * Hence we do the simple thing of using the open pid here.
5607 	 * Note that db_credp is set later in tcp_send_data().
5608 	 */
5609 	mblk_setcred(mp1, credp, tcp->tcp_cpid);
5610 	eager->tcp_cpid = tcp->tcp_cpid;
5611 	eager->tcp_open_time = lbolt64;
5612 
5613 	/*
5614 	 * We need to start the rto timer. In normal case, we start
5615 	 * the timer after sending the packet on the wire (or at
5616 	 * least believing that packet was sent by waiting for
5617 	 * CALL_IP_WPUT() to return). Since this is the first packet
5618 	 * being sent on the wire for the eager, our initial tcp_rto
5619 	 * is at least tcp_rexmit_interval_min which is a fairly
5620 	 * large value to allow the algorithm to adjust slowly to large
5621 	 * fluctuations of RTT during first few transmissions.
5622 	 *
5623 	 * Starting the timer first and then sending the packet in this
5624 	 * case shouldn't make much difference since tcp_rexmit_interval_min
5625 	 * is of the order of several 100ms and starting the timer
5626 	 * first and then sending the packet will result in difference
5627 	 * of few micro seconds.
5628 	 *
5629 	 * Without this optimization, we are forced to hold the fanout
5630 	 * lock across the ipcl_bind_insert() and sending the packet
5631 	 * so that we don't race against an incoming packet (maybe RST)
5632 	 * for this eager.
5633 	 *
5634 	 * It is necessary to acquire an extra reference on the eager
5635 	 * at this point and hold it until after tcp_send_data() to
5636 	 * ensure against an eager close race.
5637 	 */
5638 
5639 	CONN_INC_REF(eager->tcp_connp);
5640 
5641 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
5642 
5643 	/*
5644 	 * Insert the eager in its own perimeter now. We are ready to deal
5645 	 * with any packets on eager.
5646 	 */
5647 	if (eager->tcp_ipversion == IPV4_VERSION) {
5648 		if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) {
5649 			goto error;
5650 		}
5651 	} else {
5652 		if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) {
5653 			goto error;
5654 		}
5655 	}
5656 
5657 	/* mark conn as fully-bound */
5658 	econnp->conn_fully_bound = B_TRUE;
5659 
5660 	/* Send the SYN-ACK */
5661 	tcp_send_data(eager, eager->tcp_wq, mp1);
5662 	CONN_DEC_REF(eager->tcp_connp);
5663 	freemsg(mp);
5664 
5665 	return;
5666 error:
5667 	freemsg(mp1);
5668 	eager->tcp_closemp_used = B_TRUE;
5669 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
5670 	mp1 = &eager->tcp_closemp;
5671 	SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill,
5672 	    econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_2);
5673 
5674 	/*
5675 	 * If a connection already exists, send the mp to that connections so
5676 	 * that it can be appropriately dealt with.
5677 	 */
5678 	ipst = tcps->tcps_netstack->netstack_ip;
5679 
5680 	if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) {
5681 		if (!IPCL_IS_CONNECTED(econnp)) {
5682 			/*
5683 			 * Something bad happened. ipcl_conn_insert()
5684 			 * failed because a connection already existed
5685 			 * in connected hash but we can't find it
5686 			 * anymore (someone blew it away). Just
5687 			 * free this message and hopefully remote
5688 			 * will retransmit at which time the SYN can be
5689 			 * treated as a new connection or dealth with
5690 			 * a TH_RST if a connection already exists.
5691 			 */
5692 			CONN_DEC_REF(econnp);
5693 			freemsg(mp);
5694 		} else {
5695 			SQUEUE_ENTER_ONE(econnp->conn_sqp, mp,
5696 			    tcp_input, econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_1);
5697 		}
5698 	} else {
5699 		/* Nobody wants this packet */
5700 		freemsg(mp);
5701 	}
5702 	return;
5703 error3:
5704 	CONN_DEC_REF(econnp);
5705 error2:
5706 	freemsg(mp);
5707 }
5708 
5709 /*
5710  * In an ideal case of vertical partition in NUMA architecture, its
5711  * beneficial to have the listener and all the incoming connections
5712  * tied to the same squeue. The other constraint is that incoming
5713  * connections should be tied to the squeue attached to interrupted
5714  * CPU for obvious locality reason so this leaves the listener to
5715  * be tied to the same squeue. Our only problem is that when listener
5716  * is binding, the CPU that will get interrupted by the NIC whose
5717  * IP address the listener is binding to is not even known. So
5718  * the code below allows us to change that binding at the time the
5719  * CPU is interrupted by virtue of incoming connection's squeue.
5720  *
5721  * This is usefull only in case of a listener bound to a specific IP
5722  * address. For other kind of listeners, they get bound the
5723  * very first time and there is no attempt to rebind them.
5724  */
5725 void
5726 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2)
5727 {
5728 	conn_t		*connp = (conn_t *)arg;
5729 	squeue_t	*sqp = (squeue_t *)arg2;
5730 	squeue_t	*new_sqp;
5731 	uint32_t	conn_flags;
5732 
5733 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5734 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5735 	} else {
5736 		goto done;
5737 	}
5738 
5739 	if (connp->conn_fanout == NULL)
5740 		goto done;
5741 
5742 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
5743 		mutex_enter(&connp->conn_fanout->connf_lock);
5744 		mutex_enter(&connp->conn_lock);
5745 		/*
5746 		 * No one from read or write side can access us now
5747 		 * except for already queued packets on this squeue.
5748 		 * But since we haven't changed the squeue yet, they
5749 		 * can't execute. If they are processed after we have
5750 		 * changed the squeue, they are sent back to the
5751 		 * correct squeue down below.
5752 		 * But a listner close can race with processing of
5753 		 * incoming SYN. If incoming SYN processing changes
5754 		 * the squeue then the listener close which is waiting
5755 		 * to enter the squeue would operate on the wrong
5756 		 * squeue. Hence we don't change the squeue here unless
5757 		 * the refcount is exactly the minimum refcount. The
5758 		 * minimum refcount of 4 is counted as - 1 each for
5759 		 * TCP and IP, 1 for being in the classifier hash, and
5760 		 * 1 for the mblk being processed.
5761 		 */
5762 
5763 		if (connp->conn_ref != 4 ||
5764 		    connp->conn_tcp->tcp_state != TCPS_LISTEN) {
5765 			mutex_exit(&connp->conn_lock);
5766 			mutex_exit(&connp->conn_fanout->connf_lock);
5767 			goto done;
5768 		}
5769 		if (connp->conn_sqp != new_sqp) {
5770 			while (connp->conn_sqp != new_sqp)
5771 				(void) casptr(&connp->conn_sqp, sqp, new_sqp);
5772 		}
5773 
5774 		do {
5775 			conn_flags = connp->conn_flags;
5776 			conn_flags |= IPCL_FULLY_BOUND;
5777 			(void) cas32(&connp->conn_flags, connp->conn_flags,
5778 			    conn_flags);
5779 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
5780 
5781 		mutex_exit(&connp->conn_fanout->connf_lock);
5782 		mutex_exit(&connp->conn_lock);
5783 	}
5784 
5785 done:
5786 	if (connp->conn_sqp != sqp) {
5787 		CONN_INC_REF(connp);
5788 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp,
5789 		    SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND);
5790 	} else {
5791 		tcp_conn_request(connp, mp, sqp);
5792 	}
5793 }
5794 
5795 /*
5796  * Successful connect request processing begins when our client passes
5797  * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes
5798  * our T_OK_ACK reply message upstream.  The control flow looks like this:
5799  *   upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_tpi_connect() -> IP
5800  *   upstream <- tcp_rput()		<- IP
5801  * After various error checks are completed, tcp_tpi_connect() lays
5802  * the target address and port into the composite header template,
5803  * preallocates the T_OK_ACK reply message, construct a full 12 byte bind
5804  * request followed by an IRE request, and passes the three mblk message
5805  * down to IP looking like this:
5806  *   O_T_BIND_REQ for IP  --> IRE req --> T_OK_ACK for our client
5807  * Processing continues in tcp_rput() when we receive the following message:
5808  *   T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client
5809  * After consuming the first two mblks, tcp_rput() calls tcp_timer(),
5810  * to fire off the connection request, and then passes the T_OK_ACK mblk
5811  * upstream that we filled in below.  There are, of course, numerous
5812  * error conditions along the way which truncate the processing described
5813  * above.
5814  */
5815 static void
5816 tcp_tpi_connect(tcp_t *tcp, mblk_t *mp)
5817 {
5818 	sin_t		*sin;
5819 	queue_t		*q = tcp->tcp_wq;
5820 	struct T_conn_req	*tcr;
5821 	struct sockaddr	*sa;
5822 	socklen_t	len;
5823 	int		error;
5824 	cred_t		*cr;
5825 	pid_t		cpid;
5826 
5827 	/*
5828 	 * All Solaris components should pass a db_credp
5829 	 * for this TPI message, hence we ASSERT.
5830 	 * But in case there is some other M_PROTO that looks
5831 	 * like a TPI message sent by some other kernel
5832 	 * component, we check and return an error.
5833 	 */
5834 	cr = msg_getcred(mp, &cpid);
5835 	ASSERT(cr != NULL);
5836 	if (cr == NULL) {
5837 		tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
5838 		return;
5839 	}
5840 
5841 	tcr = (struct T_conn_req *)mp->b_rptr;
5842 
5843 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
5844 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
5845 		tcp_err_ack(tcp, mp, TPROTO, 0);
5846 		return;
5847 	}
5848 
5849 	/*
5850 	 * Pre-allocate the T_ordrel_ind mblk so that at close time, we
5851 	 * will always have that to send up.  Otherwise, we need to do
5852 	 * special handling in case the allocation fails at that time.
5853 	 * If the end point is TPI, the tcp_t can be reused and the
5854 	 * tcp_ordrel_mp may be allocated already.
5855 	 */
5856 	if (tcp->tcp_ordrel_mp == NULL) {
5857 		if ((tcp->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) {
5858 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
5859 			return;
5860 		}
5861 	}
5862 
5863 	/*
5864 	 * Determine packet type based on type of address passed in
5865 	 * the request should contain an IPv4 or IPv6 address.
5866 	 * Make sure that address family matches the type of
5867 	 * family of the the address passed down
5868 	 */
5869 	switch (tcr->DEST_length) {
5870 	default:
5871 		tcp_err_ack(tcp, mp, TBADADDR, 0);
5872 		return;
5873 
5874 	case (sizeof (sin_t) - sizeof (sin->sin_zero)): {
5875 		/*
5876 		 * XXX: The check for valid DEST_length was not there
5877 		 * in earlier releases and some buggy
5878 		 * TLI apps (e.g Sybase) got away with not feeding
5879 		 * in sin_zero part of address.
5880 		 * We allow that bug to keep those buggy apps humming.
5881 		 * Test suites require the check on DEST_length.
5882 		 * We construct a new mblk with valid DEST_length
5883 		 * free the original so the rest of the code does
5884 		 * not have to keep track of this special shorter
5885 		 * length address case.
5886 		 */
5887 		mblk_t *nmp;
5888 		struct T_conn_req *ntcr;
5889 		sin_t *nsin;
5890 
5891 		nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) +
5892 		    tcr->OPT_length, BPRI_HI);
5893 		if (nmp == NULL) {
5894 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
5895 			return;
5896 		}
5897 		ntcr = (struct T_conn_req *)nmp->b_rptr;
5898 		bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */
5899 		ntcr->PRIM_type = T_CONN_REQ;
5900 		ntcr->DEST_length = sizeof (sin_t);
5901 		ntcr->DEST_offset = sizeof (struct T_conn_req);
5902 
5903 		nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset);
5904 		*nsin = sin_null;
5905 		/* Get pointer to shorter address to copy from original mp */
5906 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
5907 		    tcr->DEST_length); /* extract DEST_length worth of sin_t */
5908 		if (sin == NULL || !OK_32PTR((char *)sin)) {
5909 			freemsg(nmp);
5910 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
5911 			return;
5912 		}
5913 		nsin->sin_family = sin->sin_family;
5914 		nsin->sin_port = sin->sin_port;
5915 		nsin->sin_addr = sin->sin_addr;
5916 		/* Note:nsin->sin_zero zero-fill with sin_null assign above */
5917 		nmp->b_wptr = (uchar_t *)&nsin[1];
5918 		if (tcr->OPT_length != 0) {
5919 			ntcr->OPT_length = tcr->OPT_length;
5920 			ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr;
5921 			bcopy((uchar_t *)tcr + tcr->OPT_offset,
5922 			    (uchar_t *)ntcr + ntcr->OPT_offset,
5923 			    tcr->OPT_length);
5924 			nmp->b_wptr += tcr->OPT_length;
5925 		}
5926 		freemsg(mp);	/* original mp freed */
5927 		mp = nmp;	/* re-initialize original variables */
5928 		tcr = ntcr;
5929 	}
5930 	/* FALLTHRU */
5931 
5932 	case sizeof (sin_t):
5933 		sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset,
5934 		    sizeof (sin_t));
5935 		len = sizeof (sin_t);
5936 		break;
5937 
5938 	case sizeof (sin6_t):
5939 		sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset,
5940 		    sizeof (sin6_t));
5941 		len = sizeof (sin6_t);
5942 		break;
5943 	}
5944 
5945 	error = proto_verify_ip_addr(tcp->tcp_family, sa, len);
5946 	if (error != 0) {
5947 		tcp_err_ack(tcp, mp, TSYSERR, error);
5948 		return;
5949 	}
5950 
5951 	/*
5952 	 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we
5953 	 * should key on their sequence number and cut them loose.
5954 	 */
5955 
5956 	/*
5957 	 * If options passed in, feed it for verification and handling
5958 	 */
5959 	if (tcr->OPT_length != 0) {
5960 		mblk_t	*ok_mp;
5961 		mblk_t	*discon_mp;
5962 		mblk_t  *conn_opts_mp;
5963 		int t_error, sys_error, do_disconnect;
5964 
5965 		conn_opts_mp = NULL;
5966 
5967 		if (tcp_conprim_opt_process(tcp, mp,
5968 		    &do_disconnect, &t_error, &sys_error) < 0) {
5969 			if (do_disconnect) {
5970 				ASSERT(t_error == 0 && sys_error == 0);
5971 				discon_mp = mi_tpi_discon_ind(NULL,
5972 				    ECONNREFUSED, 0);
5973 				if (!discon_mp) {
5974 					tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
5975 					    TSYSERR, ENOMEM);
5976 					return;
5977 				}
5978 				ok_mp = mi_tpi_ok_ack_alloc(mp);
5979 				if (!ok_mp) {
5980 					tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
5981 					    TSYSERR, ENOMEM);
5982 					return;
5983 				}
5984 				qreply(q, ok_mp);
5985 				qreply(q, discon_mp); /* no flush! */
5986 			} else {
5987 				ASSERT(t_error != 0);
5988 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error,
5989 				    sys_error);
5990 			}
5991 			return;
5992 		}
5993 		/*
5994 		 * Success in setting options, the mp option buffer represented
5995 		 * by OPT_length/offset has been potentially modified and
5996 		 * contains results of option processing. We copy it in
5997 		 * another mp to save it for potentially influencing returning
5998 		 * it in T_CONN_CONN.
5999 		 */
6000 		if (tcr->OPT_length != 0) { /* there are resulting options */
6001 			conn_opts_mp = copyb(mp);
6002 			if (!conn_opts_mp) {
6003 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6004 				    TSYSERR, ENOMEM);
6005 				return;
6006 			}
6007 			ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL);
6008 			tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp;
6009 			/*
6010 			 * Note:
6011 			 * These resulting option negotiation can include any
6012 			 * end-to-end negotiation options but there no such
6013 			 * thing (yet?) in our TCP/IP.
6014 			 */
6015 		}
6016 	}
6017 
6018 	/* call the non-TPI version */
6019 	error = tcp_do_connect(tcp->tcp_connp, sa, len, cr, cpid);
6020 	if (error < 0) {
6021 		mp = mi_tpi_err_ack_alloc(mp, -error, 0);
6022 	} else if (error > 0) {
6023 		mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error);
6024 	} else {
6025 		mp = mi_tpi_ok_ack_alloc(mp);
6026 	}
6027 
6028 	/*
6029 	 * Note: Code below is the "failure" case
6030 	 */
6031 	/* return error ack and blow away saved option results if any */
6032 connect_failed:
6033 	if (mp != NULL)
6034 		putnext(tcp->tcp_rq, mp);
6035 	else {
6036 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6037 		    TSYSERR, ENOMEM);
6038 	}
6039 }
6040 
6041 /*
6042  * Handle connect to IPv4 destinations, including connections for AF_INET6
6043  * sockets connecting to IPv4 mapped IPv6 destinations.
6044  */
6045 static int
6046 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport,
6047     uint_t srcid, cred_t *cr, pid_t pid)
6048 {
6049 	tcph_t	*tcph;
6050 	mblk_t	*mp;
6051 	ipaddr_t dstaddr = *dstaddrp;
6052 	int32_t	oldstate;
6053 	uint16_t lport;
6054 	int	error = 0;
6055 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6056 
6057 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
6058 
6059 	/* Check for attempt to connect to INADDR_ANY */
6060 	if (dstaddr == INADDR_ANY)  {
6061 		/*
6062 		 * SunOS 4.x and 4.3 BSD allow an application
6063 		 * to connect a TCP socket to INADDR_ANY.
6064 		 * When they do this, the kernel picks the
6065 		 * address of one interface and uses it
6066 		 * instead.  The kernel usually ends up
6067 		 * picking the address of the loopback
6068 		 * interface.  This is an undocumented feature.
6069 		 * However, we provide the same thing here
6070 		 * in order to have source and binary
6071 		 * compatibility with SunOS 4.x.
6072 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
6073 		 * generate the T_CONN_CON.
6074 		 */
6075 		dstaddr = htonl(INADDR_LOOPBACK);
6076 		*dstaddrp = dstaddr;
6077 	}
6078 
6079 	/* Handle __sin6_src_id if socket not bound to an IP address */
6080 	if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) {
6081 		ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6,
6082 		    tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack);
6083 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6,
6084 		    tcp->tcp_ipha->ipha_src);
6085 	}
6086 
6087 	/*
6088 	 * Don't let an endpoint connect to itself.  Note that
6089 	 * the test here does not catch the case where the
6090 	 * source IP addr was left unspecified by the user. In
6091 	 * this case, the source addr is set in tcp_adapt_ire()
6092 	 * using the reply to the T_BIND message that we send
6093 	 * down to IP here and the check is repeated in tcp_rput_other.
6094 	 */
6095 	if (dstaddr == tcp->tcp_ipha->ipha_src &&
6096 	    dstport == tcp->tcp_lport) {
6097 		error = -TBADADDR;
6098 		goto failed;
6099 	}
6100 
6101 	tcp->tcp_ipha->ipha_dst = dstaddr;
6102 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6);
6103 
6104 	/*
6105 	 * Massage a source route if any putting the first hop
6106 	 * in iph_dst. Compute a starting value for the checksum which
6107 	 * takes into account that the original iph_dst should be
6108 	 * included in the checksum but that ip will include the
6109 	 * first hop in the source route in the tcp checksum.
6110 	 */
6111 	tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack);
6112 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6113 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
6114 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
6115 	if ((int)tcp->tcp_sum < 0)
6116 		tcp->tcp_sum--;
6117 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6118 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6119 	    (tcp->tcp_sum >> 16));
6120 	tcph = tcp->tcp_tcph;
6121 	*(uint16_t *)tcph->th_fport = dstport;
6122 	tcp->tcp_fport = dstport;
6123 
6124 	oldstate = tcp->tcp_state;
6125 	/*
6126 	 * At this point the remote destination address and remote port fields
6127 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6128 	 * have to see which state tcp was in so we can take apropriate action.
6129 	 */
6130 	if (oldstate == TCPS_IDLE) {
6131 		/*
6132 		 * We support a quick connect capability here, allowing
6133 		 * clients to transition directly from IDLE to SYN_SENT
6134 		 * tcp_bindi will pick an unused port, insert the connection
6135 		 * in the bind hash and transition to BOUND state.
6136 		 */
6137 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6138 		    tcp, B_TRUE);
6139 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6140 		    B_FALSE, B_FALSE);
6141 		if (lport == 0) {
6142 			error = -TNOADDR;
6143 			goto failed;
6144 		}
6145 	}
6146 	tcp->tcp_state = TCPS_SYN_SENT;
6147 
6148 	mp = allocb(sizeof (ire_t), BPRI_HI);
6149 	if (mp == NULL) {
6150 		tcp->tcp_state = oldstate;
6151 		error = ENOMEM;
6152 		goto failed;
6153 	}
6154 
6155 	mp->b_wptr += sizeof (ire_t);
6156 	mp->b_datap->db_type = IRE_DB_REQ_TYPE;
6157 	tcp->tcp_hard_binding = 1;
6158 
6159 	/*
6160 	 * We need to make sure that the conn_recv is set to a non-null
6161 	 * value before we insert the conn_t into the classifier table.
6162 	 * This is to avoid a race with an incoming packet which does
6163 	 * an ipcl_classify().
6164 	 */
6165 	tcp->tcp_connp->conn_recv = tcp_input;
6166 
6167 	if (tcp->tcp_family == AF_INET) {
6168 		error = ip_proto_bind_connected_v4(tcp->tcp_connp, &mp,
6169 		    IPPROTO_TCP, &tcp->tcp_ipha->ipha_src, tcp->tcp_lport,
6170 		    tcp->tcp_remote, tcp->tcp_fport, B_TRUE, B_TRUE, cr);
6171 	} else {
6172 		in6_addr_t v6src;
6173 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6174 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src);
6175 		} else {
6176 			v6src = tcp->tcp_ip6h->ip6_src;
6177 		}
6178 		error = ip_proto_bind_connected_v6(tcp->tcp_connp, &mp,
6179 		    IPPROTO_TCP, &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6,
6180 		    &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE, cr);
6181 	}
6182 	BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6183 	tcp->tcp_active_open = 1;
6184 
6185 
6186 	return (tcp_post_ip_bind(tcp, mp, error, cr, pid));
6187 failed:
6188 	/* return error ack and blow away saved option results if any */
6189 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6190 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6191 	return (error);
6192 }
6193 
6194 /*
6195  * Handle connect to IPv6 destinations.
6196  */
6197 static int
6198 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport,
6199     uint32_t flowinfo, uint_t srcid, uint32_t scope_id, cred_t *cr, pid_t pid)
6200 {
6201 	tcph_t	*tcph;
6202 	mblk_t	*mp;
6203 	ip6_rthdr_t *rth;
6204 	int32_t  oldstate;
6205 	uint16_t lport;
6206 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6207 	int	error = 0;
6208 	conn_t	*connp = tcp->tcp_connp;
6209 
6210 	ASSERT(tcp->tcp_family == AF_INET6);
6211 
6212 	/*
6213 	 * If we're here, it means that the destination address is a native
6214 	 * IPv6 address.  Return an error if tcp_ipversion is not IPv6.  A
6215 	 * reason why it might not be IPv6 is if the socket was bound to an
6216 	 * IPv4-mapped IPv6 address.
6217 	 */
6218 	if (tcp->tcp_ipversion != IPV6_VERSION) {
6219 		return (-TBADADDR);
6220 	}
6221 
6222 	/*
6223 	 * Interpret a zero destination to mean loopback.
6224 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
6225 	 * generate the T_CONN_CON.
6226 	 */
6227 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) {
6228 		*dstaddrp = ipv6_loopback;
6229 	}
6230 
6231 	/* Handle __sin6_src_id if socket not bound to an IP address */
6232 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
6233 		ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src,
6234 		    connp->conn_zoneid, tcps->tcps_netstack);
6235 		tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src;
6236 	}
6237 
6238 	/*
6239 	 * Take care of the scope_id now and add ip6i_t
6240 	 * if ip6i_t is not already allocated through TCP
6241 	 * sticky options. At this point tcp_ip6h does not
6242 	 * have dst info, thus use dstaddrp.
6243 	 */
6244 	if (scope_id != 0 &&
6245 	    IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
6246 		ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
6247 		ip6i_t  *ip6i;
6248 
6249 		ipp->ipp_ifindex = scope_id;
6250 		ip6i = (ip6i_t *)tcp->tcp_iphc;
6251 
6252 		if ((ipp->ipp_fields & IPPF_HAS_IP6I) &&
6253 		    ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) {
6254 			/* Already allocated */
6255 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6256 			ip6i->ip6i_ifindex = ipp->ipp_ifindex;
6257 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6258 		} else {
6259 			int reterr;
6260 
6261 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6262 			if (ipp->ipp_fields & IPPF_HAS_IP6I)
6263 				ip2dbg(("tcp_connect_v6: SCOPE_ID set\n"));
6264 			reterr = tcp_build_hdrs(tcp);
6265 			if (reterr != 0)
6266 				goto failed;
6267 			ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n"));
6268 		}
6269 	}
6270 
6271 	/*
6272 	 * Don't let an endpoint connect to itself.  Note that
6273 	 * the test here does not catch the case where the
6274 	 * source IP addr was left unspecified by the user. In
6275 	 * this case, the source addr is set in tcp_adapt_ire()
6276 	 * using the reply to the T_BIND message that we send
6277 	 * down to IP here and the check is repeated in tcp_rput_other.
6278 	 */
6279 	if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) &&
6280 	    (dstport == tcp->tcp_lport)) {
6281 		error = -TBADADDR;
6282 		goto failed;
6283 	}
6284 
6285 	tcp->tcp_ip6h->ip6_dst = *dstaddrp;
6286 	tcp->tcp_remote_v6 = *dstaddrp;
6287 	tcp->tcp_ip6h->ip6_vcf =
6288 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
6289 	    (flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
6290 
6291 	/*
6292 	 * Massage a routing header (if present) putting the first hop
6293 	 * in ip6_dst. Compute a starting value for the checksum which
6294 	 * takes into account that the original ip6_dst should be
6295 	 * included in the checksum but that ip will include the
6296 	 * first hop in the source route in the tcp checksum.
6297 	 */
6298 	rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph);
6299 	if (rth != NULL) {
6300 		tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth,
6301 		    tcps->tcps_netstack);
6302 		tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6303 		    (tcp->tcp_sum >> 16));
6304 	} else {
6305 		tcp->tcp_sum = 0;
6306 	}
6307 
6308 	tcph = tcp->tcp_tcph;
6309 	*(uint16_t *)tcph->th_fport = dstport;
6310 	tcp->tcp_fport = dstport;
6311 
6312 	oldstate = tcp->tcp_state;
6313 	/*
6314 	 * At this point the remote destination address and remote port fields
6315 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6316 	 * have to see which state tcp was in so we can take apropriate action.
6317 	 */
6318 	if (oldstate == TCPS_IDLE) {
6319 		/*
6320 		 * We support a quick connect capability here, allowing
6321 		 * clients to transition directly from IDLE to SYN_SENT
6322 		 * tcp_bindi will pick an unused port, insert the connection
6323 		 * in the bind hash and transition to BOUND state.
6324 		 */
6325 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6326 		    tcp, B_TRUE);
6327 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6328 		    B_FALSE, B_FALSE);
6329 		if (lport == 0) {
6330 			error = -TNOADDR;
6331 			goto failed;
6332 		}
6333 	}
6334 	tcp->tcp_state = TCPS_SYN_SENT;
6335 
6336 	mp = allocb(sizeof (ire_t), BPRI_HI);
6337 	if (mp != NULL) {
6338 		in6_addr_t v6src;
6339 
6340 		mp->b_wptr += sizeof (ire_t);
6341 		mp->b_datap->db_type = IRE_DB_REQ_TYPE;
6342 
6343 		tcp->tcp_hard_binding = 1;
6344 
6345 		/*
6346 		 * We need to make sure that the conn_recv is set to a non-null
6347 		 * value before we insert the conn_t into the classifier table.
6348 		 * This is to avoid a race with an incoming packet which does
6349 		 * an ipcl_classify().
6350 		 */
6351 		tcp->tcp_connp->conn_recv = tcp_input;
6352 
6353 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6354 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src);
6355 		} else {
6356 			v6src = tcp->tcp_ip6h->ip6_src;
6357 		}
6358 		error = ip_proto_bind_connected_v6(connp, &mp, IPPROTO_TCP,
6359 		    &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6,
6360 		    &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE, cr);
6361 		BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6362 		tcp->tcp_active_open = 1;
6363 
6364 		return (tcp_post_ip_bind(tcp, mp, error, cr, pid));
6365 	}
6366 	/* Error case */
6367 	tcp->tcp_state = oldstate;
6368 	error = ENOMEM;
6369 
6370 failed:
6371 	/* return error ack and blow away saved option results if any */
6372 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6373 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6374 	return (error);
6375 }
6376 
6377 /*
6378  * We need a stream q for detached closing tcp connections
6379  * to use.  Our client hereby indicates that this q is the
6380  * one to use.
6381  */
6382 static void
6383 tcp_def_q_set(tcp_t *tcp, mblk_t *mp)
6384 {
6385 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
6386 	queue_t	*q = tcp->tcp_wq;
6387 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6388 
6389 #ifdef NS_DEBUG
6390 	(void) printf("TCP_IOC_DEFAULT_Q for stack %d\n",
6391 	    tcps->tcps_netstack->netstack_stackid);
6392 #endif
6393 	mp->b_datap->db_type = M_IOCACK;
6394 	iocp->ioc_count = 0;
6395 	mutex_enter(&tcps->tcps_g_q_lock);
6396 	if (tcps->tcps_g_q != NULL) {
6397 		mutex_exit(&tcps->tcps_g_q_lock);
6398 		iocp->ioc_error = EALREADY;
6399 	} else {
6400 		int error = 0;
6401 		conn_t *connp = tcp->tcp_connp;
6402 		ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
6403 
6404 		tcps->tcps_g_q = tcp->tcp_rq;
6405 		mutex_exit(&tcps->tcps_g_q_lock);
6406 		iocp->ioc_error = 0;
6407 		iocp->ioc_rval = 0;
6408 		/*
6409 		 * We are passing tcp_sticky_ipp as NULL
6410 		 * as it is not useful for tcp_default queue
6411 		 *
6412 		 * Set conn_recv just in case.
6413 		 */
6414 		tcp->tcp_connp->conn_recv = tcp_conn_request;
6415 
6416 		ASSERT(connp->conn_af_isv6);
6417 		connp->conn_ulp = IPPROTO_TCP;
6418 
6419 		if (ipst->ips_ipcl_proto_fanout_v6[IPPROTO_TCP].connf_head !=
6420 		    NULL || connp->conn_mac_exempt) {
6421 			error = -TBADADDR;
6422 		} else {
6423 			connp->conn_srcv6 = ipv6_all_zeros;
6424 			ipcl_proto_insert_v6(connp, IPPROTO_TCP);
6425 		}
6426 
6427 		(void) tcp_post_ip_bind(tcp, NULL, error, NULL, 0);
6428 	}
6429 	qreply(q, mp);
6430 }
6431 
6432 static int
6433 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum)
6434 {
6435 	tcp_t	*ltcp = NULL;
6436 	conn_t	*connp;
6437 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6438 
6439 	/*
6440 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
6441 	 * when the stream is in BOUND state. Do not send a reset,
6442 	 * since the destination IP address is not valid, and it can
6443 	 * be the initialized value of all zeros (broadcast address).
6444 	 *
6445 	 * XXX There won't be any pending bind request to IP.
6446 	 */
6447 	if (tcp->tcp_state <= TCPS_BOUND) {
6448 		if (tcp->tcp_debug) {
6449 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
6450 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
6451 		}
6452 		return (TOUTSTATE);
6453 	}
6454 
6455 
6456 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
6457 
6458 		/*
6459 		 * According to TPI, for non-listeners, ignore seqnum
6460 		 * and disconnect.
6461 		 * Following interpretation of -1 seqnum is historical
6462 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
6463 		 * a valid seqnum should not be -1).
6464 		 *
6465 		 *	-1 means disconnect everything
6466 		 *	regardless even on a listener.
6467 		 */
6468 
6469 		int old_state = tcp->tcp_state;
6470 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
6471 
6472 		/*
6473 		 * The connection can't be on the tcp_time_wait_head list
6474 		 * since it is not detached.
6475 		 */
6476 		ASSERT(tcp->tcp_time_wait_next == NULL);
6477 		ASSERT(tcp->tcp_time_wait_prev == NULL);
6478 		ASSERT(tcp->tcp_time_wait_expire == 0);
6479 		ltcp = NULL;
6480 		/*
6481 		 * If it used to be a listener, check to make sure no one else
6482 		 * has taken the port before switching back to LISTEN state.
6483 		 */
6484 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6485 			connp = ipcl_lookup_listener_v4(tcp->tcp_lport,
6486 			    tcp->tcp_ipha->ipha_src,
6487 			    tcp->tcp_connp->conn_zoneid, ipst);
6488 			if (connp != NULL)
6489 				ltcp = connp->conn_tcp;
6490 		} else {
6491 			/* Allow tcp_bound_if listeners? */
6492 			connp = ipcl_lookup_listener_v6(tcp->tcp_lport,
6493 			    &tcp->tcp_ip6h->ip6_src, 0,
6494 			    tcp->tcp_connp->conn_zoneid, ipst);
6495 			if (connp != NULL)
6496 				ltcp = connp->conn_tcp;
6497 		}
6498 		if (tcp->tcp_conn_req_max && ltcp == NULL) {
6499 			tcp->tcp_state = TCPS_LISTEN;
6500 		} else if (old_state > TCPS_BOUND) {
6501 			tcp->tcp_conn_req_max = 0;
6502 			tcp->tcp_state = TCPS_BOUND;
6503 		}
6504 		if (ltcp != NULL)
6505 			CONN_DEC_REF(ltcp->tcp_connp);
6506 		if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) {
6507 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
6508 		} else if (old_state == TCPS_ESTABLISHED ||
6509 		    old_state == TCPS_CLOSE_WAIT) {
6510 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
6511 		}
6512 
6513 		if (tcp->tcp_fused)
6514 			tcp_unfuse(tcp);
6515 
6516 		mutex_enter(&tcp->tcp_eager_lock);
6517 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
6518 		    (tcp->tcp_conn_req_cnt_q != 0)) {
6519 			tcp_eager_cleanup(tcp, 0);
6520 		}
6521 		mutex_exit(&tcp->tcp_eager_lock);
6522 
6523 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
6524 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
6525 
6526 		tcp_reinit(tcp);
6527 
6528 		return (0);
6529 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
6530 		return (TBADSEQ);
6531 	}
6532 	return (0);
6533 }
6534 
6535 /*
6536  * Our client hereby directs us to reject the connection request
6537  * that tcp_conn_request() marked with 'seqnum'.  Rejection consists
6538  * of sending the appropriate RST, not an ICMP error.
6539  */
6540 static void
6541 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
6542 {
6543 	t_scalar_t seqnum;
6544 	int	error;
6545 
6546 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6547 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
6548 		tcp_err_ack(tcp, mp, TPROTO, 0);
6549 		return;
6550 	}
6551 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
6552 	error = tcp_disconnect_common(tcp, seqnum);
6553 	if (error != 0)
6554 		tcp_err_ack(tcp, mp, error, 0);
6555 	else {
6556 		if (tcp->tcp_state >= TCPS_ESTABLISHED) {
6557 			/* Send M_FLUSH according to TPI */
6558 			(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6559 		}
6560 		mp = mi_tpi_ok_ack_alloc(mp);
6561 		if (mp)
6562 			putnext(tcp->tcp_rq, mp);
6563 	}
6564 }
6565 
6566 /*
6567  * Diagnostic routine used to return a string associated with the tcp state.
6568  * Note that if the caller does not supply a buffer, it will use an internal
6569  * static string.  This means that if multiple threads call this function at
6570  * the same time, output can be corrupted...  Note also that this function
6571  * does not check the size of the supplied buffer.  The caller has to make
6572  * sure that it is big enough.
6573  */
6574 static char *
6575 tcp_display(tcp_t *tcp, char *sup_buf, char format)
6576 {
6577 	char		buf1[30];
6578 	static char	priv_buf[INET6_ADDRSTRLEN * 2 + 80];
6579 	char		*buf;
6580 	char		*cp;
6581 	in6_addr_t	local, remote;
6582 	char		local_addrbuf[INET6_ADDRSTRLEN];
6583 	char		remote_addrbuf[INET6_ADDRSTRLEN];
6584 
6585 	if (sup_buf != NULL)
6586 		buf = sup_buf;
6587 	else
6588 		buf = priv_buf;
6589 
6590 	if (tcp == NULL)
6591 		return ("NULL_TCP");
6592 	switch (tcp->tcp_state) {
6593 	case TCPS_CLOSED:
6594 		cp = "TCP_CLOSED";
6595 		break;
6596 	case TCPS_IDLE:
6597 		cp = "TCP_IDLE";
6598 		break;
6599 	case TCPS_BOUND:
6600 		cp = "TCP_BOUND";
6601 		break;
6602 	case TCPS_LISTEN:
6603 		cp = "TCP_LISTEN";
6604 		break;
6605 	case TCPS_SYN_SENT:
6606 		cp = "TCP_SYN_SENT";
6607 		break;
6608 	case TCPS_SYN_RCVD:
6609 		cp = "TCP_SYN_RCVD";
6610 		break;
6611 	case TCPS_ESTABLISHED:
6612 		cp = "TCP_ESTABLISHED";
6613 		break;
6614 	case TCPS_CLOSE_WAIT:
6615 		cp = "TCP_CLOSE_WAIT";
6616 		break;
6617 	case TCPS_FIN_WAIT_1:
6618 		cp = "TCP_FIN_WAIT_1";
6619 		break;
6620 	case TCPS_CLOSING:
6621 		cp = "TCP_CLOSING";
6622 		break;
6623 	case TCPS_LAST_ACK:
6624 		cp = "TCP_LAST_ACK";
6625 		break;
6626 	case TCPS_FIN_WAIT_2:
6627 		cp = "TCP_FIN_WAIT_2";
6628 		break;
6629 	case TCPS_TIME_WAIT:
6630 		cp = "TCP_TIME_WAIT";
6631 		break;
6632 	default:
6633 		(void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state);
6634 		cp = buf1;
6635 		break;
6636 	}
6637 	switch (format) {
6638 	case DISP_ADDR_AND_PORT:
6639 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6640 			/*
6641 			 * Note that we use the remote address in the tcp_b
6642 			 * structure.  This means that it will print out
6643 			 * the real destination address, not the next hop's
6644 			 * address if source routing is used.
6645 			 */
6646 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local);
6647 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote);
6648 
6649 		} else {
6650 			local = tcp->tcp_ip_src_v6;
6651 			remote = tcp->tcp_remote_v6;
6652 		}
6653 		(void) inet_ntop(AF_INET6, &local, local_addrbuf,
6654 		    sizeof (local_addrbuf));
6655 		(void) inet_ntop(AF_INET6, &remote, remote_addrbuf,
6656 		    sizeof (remote_addrbuf));
6657 		(void) mi_sprintf(buf, "[%s.%u, %s.%u] %s",
6658 		    local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf,
6659 		    ntohs(tcp->tcp_fport), cp);
6660 		break;
6661 	case DISP_PORT_ONLY:
6662 	default:
6663 		(void) mi_sprintf(buf, "[%u, %u] %s",
6664 		    ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp);
6665 		break;
6666 	}
6667 
6668 	return (buf);
6669 }
6670 
6671 /*
6672  * Called via squeue to get on to eager's perimeter. It sends a
6673  * TH_RST if eager is in the fanout table. The listener wants the
6674  * eager to disappear either by means of tcp_eager_blowoff() or
6675  * tcp_eager_cleanup() being called. tcp_eager_kill() can also be
6676  * called (via squeue) if the eager cannot be inserted in the
6677  * fanout table in tcp_conn_request().
6678  */
6679 /* ARGSUSED */
6680 void
6681 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2)
6682 {
6683 	conn_t	*econnp = (conn_t *)arg;
6684 	tcp_t	*eager = econnp->conn_tcp;
6685 	tcp_t	*listener = eager->tcp_listener;
6686 	tcp_stack_t	*tcps = eager->tcp_tcps;
6687 
6688 	/*
6689 	 * We could be called because listener is closing. Since
6690 	 * the eager is using listener's queue's, its not safe.
6691 	 * Better use the default queue just to send the TH_RST
6692 	 * out.
6693 	 */
6694 	ASSERT(tcps->tcps_g_q != NULL);
6695 	eager->tcp_rq = tcps->tcps_g_q;
6696 	eager->tcp_wq = WR(tcps->tcps_g_q);
6697 
6698 	/*
6699 	 * An eager's conn_fanout will be NULL if it's a duplicate
6700 	 * for an existing 4-tuples in the conn fanout table.
6701 	 * We don't want to send an RST out in such case.
6702 	 */
6703 	if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) {
6704 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
6705 		    eager, eager->tcp_snxt, 0, TH_RST);
6706 	}
6707 
6708 	/* We are here because listener wants this eager gone */
6709 	if (listener != NULL) {
6710 		mutex_enter(&listener->tcp_eager_lock);
6711 		tcp_eager_unlink(eager);
6712 		if (eager->tcp_tconnind_started) {
6713 			/*
6714 			 * The eager has sent a conn_ind up to the
6715 			 * listener but listener decides to close
6716 			 * instead. We need to drop the extra ref
6717 			 * placed on eager in tcp_rput_data() before
6718 			 * sending the conn_ind to listener.
6719 			 */
6720 			CONN_DEC_REF(econnp);
6721 		}
6722 		mutex_exit(&listener->tcp_eager_lock);
6723 		CONN_DEC_REF(listener->tcp_connp);
6724 	}
6725 
6726 	if (eager->tcp_state > TCPS_BOUND)
6727 		tcp_close_detached(eager);
6728 }
6729 
6730 /*
6731  * Reset any eager connection hanging off this listener marked
6732  * with 'seqnum' and then reclaim it's resources.
6733  */
6734 static boolean_t
6735 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
6736 {
6737 	tcp_t	*eager;
6738 	mblk_t 	*mp;
6739 	tcp_stack_t	*tcps = listener->tcp_tcps;
6740 
6741 	TCP_STAT(tcps, tcp_eager_blowoff_calls);
6742 	eager = listener;
6743 	mutex_enter(&listener->tcp_eager_lock);
6744 	do {
6745 		eager = eager->tcp_eager_next_q;
6746 		if (eager == NULL) {
6747 			mutex_exit(&listener->tcp_eager_lock);
6748 			return (B_FALSE);
6749 		}
6750 	} while (eager->tcp_conn_req_seqnum != seqnum);
6751 
6752 	if (eager->tcp_closemp_used) {
6753 		mutex_exit(&listener->tcp_eager_lock);
6754 		return (B_TRUE);
6755 	}
6756 	eager->tcp_closemp_used = B_TRUE;
6757 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
6758 	CONN_INC_REF(eager->tcp_connp);
6759 	mutex_exit(&listener->tcp_eager_lock);
6760 	mp = &eager->tcp_closemp;
6761 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
6762 	    eager->tcp_connp, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF);
6763 	return (B_TRUE);
6764 }
6765 
6766 /*
6767  * Reset any eager connection hanging off this listener
6768  * and then reclaim it's resources.
6769  */
6770 static void
6771 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
6772 {
6773 	tcp_t	*eager;
6774 	mblk_t	*mp;
6775 	tcp_stack_t	*tcps = listener->tcp_tcps;
6776 
6777 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
6778 
6779 	if (!q0_only) {
6780 		/* First cleanup q */
6781 		TCP_STAT(tcps, tcp_eager_blowoff_q);
6782 		eager = listener->tcp_eager_next_q;
6783 		while (eager != NULL) {
6784 			if (!eager->tcp_closemp_used) {
6785 				eager->tcp_closemp_used = B_TRUE;
6786 				TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
6787 				CONN_INC_REF(eager->tcp_connp);
6788 				mp = &eager->tcp_closemp;
6789 				SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
6790 				    tcp_eager_kill, eager->tcp_connp,
6791 				    SQ_FILL, SQTAG_TCP_EAGER_CLEANUP);
6792 			}
6793 			eager = eager->tcp_eager_next_q;
6794 		}
6795 	}
6796 	/* Then cleanup q0 */
6797 	TCP_STAT(tcps, tcp_eager_blowoff_q0);
6798 	eager = listener->tcp_eager_next_q0;
6799 	while (eager != listener) {
6800 		if (!eager->tcp_closemp_used) {
6801 			eager->tcp_closemp_used = B_TRUE;
6802 			TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
6803 			CONN_INC_REF(eager->tcp_connp);
6804 			mp = &eager->tcp_closemp;
6805 			SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
6806 			    tcp_eager_kill, eager->tcp_connp, SQ_FILL,
6807 			    SQTAG_TCP_EAGER_CLEANUP_Q0);
6808 		}
6809 		eager = eager->tcp_eager_next_q0;
6810 	}
6811 }
6812 
6813 /*
6814  * If we are an eager connection hanging off a listener that hasn't
6815  * formally accepted the connection yet, get off his list and blow off
6816  * any data that we have accumulated.
6817  */
6818 static void
6819 tcp_eager_unlink(tcp_t *tcp)
6820 {
6821 	tcp_t	*listener = tcp->tcp_listener;
6822 
6823 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
6824 	ASSERT(listener != NULL);
6825 	if (tcp->tcp_eager_next_q0 != NULL) {
6826 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
6827 
6828 		/* Remove the eager tcp from q0 */
6829 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
6830 		    tcp->tcp_eager_prev_q0;
6831 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
6832 		    tcp->tcp_eager_next_q0;
6833 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
6834 		listener->tcp_conn_req_cnt_q0--;
6835 
6836 		tcp->tcp_eager_next_q0 = NULL;
6837 		tcp->tcp_eager_prev_q0 = NULL;
6838 
6839 		/*
6840 		 * Take the eager out, if it is in the list of droppable
6841 		 * eagers.
6842 		 */
6843 		MAKE_UNDROPPABLE(tcp);
6844 
6845 		if (tcp->tcp_syn_rcvd_timeout != 0) {
6846 			/* we have timed out before */
6847 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
6848 			listener->tcp_syn_rcvd_timeout--;
6849 		}
6850 	} else {
6851 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
6852 		tcp_t	*prev = NULL;
6853 
6854 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
6855 			if (tcpp[0] == tcp) {
6856 				if (listener->tcp_eager_last_q == tcp) {
6857 					/*
6858 					 * If we are unlinking the last
6859 					 * element on the list, adjust
6860 					 * tail pointer. Set tail pointer
6861 					 * to nil when list is empty.
6862 					 */
6863 					ASSERT(tcp->tcp_eager_next_q == NULL);
6864 					if (listener->tcp_eager_last_q ==
6865 					    listener->tcp_eager_next_q) {
6866 						listener->tcp_eager_last_q =
6867 						    NULL;
6868 					} else {
6869 						/*
6870 						 * We won't get here if there
6871 						 * is only one eager in the
6872 						 * list.
6873 						 */
6874 						ASSERT(prev != NULL);
6875 						listener->tcp_eager_last_q =
6876 						    prev;
6877 					}
6878 				}
6879 				tcpp[0] = tcp->tcp_eager_next_q;
6880 				tcp->tcp_eager_next_q = NULL;
6881 				tcp->tcp_eager_last_q = NULL;
6882 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
6883 				listener->tcp_conn_req_cnt_q--;
6884 				break;
6885 			}
6886 			prev = tcpp[0];
6887 		}
6888 	}
6889 	tcp->tcp_listener = NULL;
6890 }
6891 
6892 /* Shorthand to generate and send TPI error acks to our client */
6893 static void
6894 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error)
6895 {
6896 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
6897 		putnext(tcp->tcp_rq, mp);
6898 }
6899 
6900 /* Shorthand to generate and send TPI error acks to our client */
6901 static void
6902 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
6903     int t_error, int sys_error)
6904 {
6905 	struct T_error_ack	*teackp;
6906 
6907 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
6908 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
6909 		teackp = (struct T_error_ack *)mp->b_rptr;
6910 		teackp->ERROR_prim = primitive;
6911 		teackp->TLI_error = t_error;
6912 		teackp->UNIX_error = sys_error;
6913 		putnext(tcp->tcp_rq, mp);
6914 	}
6915 }
6916 
6917 /*
6918  * Note: No locks are held when inspecting tcp_g_*epriv_ports
6919  * but instead the code relies on:
6920  * - the fact that the address of the array and its size never changes
6921  * - the atomic assignment of the elements of the array
6922  */
6923 /* ARGSUSED */
6924 static int
6925 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
6926 {
6927 	int i;
6928 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
6929 
6930 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
6931 		if (tcps->tcps_g_epriv_ports[i] != 0)
6932 			(void) mi_mpprintf(mp, "%d ",
6933 			    tcps->tcps_g_epriv_ports[i]);
6934 	}
6935 	return (0);
6936 }
6937 
6938 /*
6939  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
6940  * threads from changing it at the same time.
6941  */
6942 /* ARGSUSED */
6943 static int
6944 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
6945     cred_t *cr)
6946 {
6947 	long	new_value;
6948 	int	i;
6949 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
6950 
6951 	/*
6952 	 * Fail the request if the new value does not lie within the
6953 	 * port number limits.
6954 	 */
6955 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
6956 	    new_value <= 0 || new_value >= 65536) {
6957 		return (EINVAL);
6958 	}
6959 
6960 	mutex_enter(&tcps->tcps_epriv_port_lock);
6961 	/* Check if the value is already in the list */
6962 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
6963 		if (new_value == tcps->tcps_g_epriv_ports[i]) {
6964 			mutex_exit(&tcps->tcps_epriv_port_lock);
6965 			return (EEXIST);
6966 		}
6967 	}
6968 	/* Find an empty slot */
6969 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
6970 		if (tcps->tcps_g_epriv_ports[i] == 0)
6971 			break;
6972 	}
6973 	if (i == tcps->tcps_g_num_epriv_ports) {
6974 		mutex_exit(&tcps->tcps_epriv_port_lock);
6975 		return (EOVERFLOW);
6976 	}
6977 	/* Set the new value */
6978 	tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value;
6979 	mutex_exit(&tcps->tcps_epriv_port_lock);
6980 	return (0);
6981 }
6982 
6983 /*
6984  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
6985  * threads from changing it at the same time.
6986  */
6987 /* ARGSUSED */
6988 static int
6989 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
6990     cred_t *cr)
6991 {
6992 	long	new_value;
6993 	int	i;
6994 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
6995 
6996 	/*
6997 	 * Fail the request if the new value does not lie within the
6998 	 * port number limits.
6999 	 */
7000 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 ||
7001 	    new_value >= 65536) {
7002 		return (EINVAL);
7003 	}
7004 
7005 	mutex_enter(&tcps->tcps_epriv_port_lock);
7006 	/* Check that the value is already in the list */
7007 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7008 		if (tcps->tcps_g_epriv_ports[i] == new_value)
7009 			break;
7010 	}
7011 	if (i == tcps->tcps_g_num_epriv_ports) {
7012 		mutex_exit(&tcps->tcps_epriv_port_lock);
7013 		return (ESRCH);
7014 	}
7015 	/* Clear the value */
7016 	tcps->tcps_g_epriv_ports[i] = 0;
7017 	mutex_exit(&tcps->tcps_epriv_port_lock);
7018 	return (0);
7019 }
7020 
7021 /* Return the TPI/TLI equivalent of our current tcp_state */
7022 static int
7023 tcp_tpistate(tcp_t *tcp)
7024 {
7025 	switch (tcp->tcp_state) {
7026 	case TCPS_IDLE:
7027 		return (TS_UNBND);
7028 	case TCPS_LISTEN:
7029 		/*
7030 		 * Return whether there are outstanding T_CONN_IND waiting
7031 		 * for the matching T_CONN_RES. Therefore don't count q0.
7032 		 */
7033 		if (tcp->tcp_conn_req_cnt_q > 0)
7034 			return (TS_WRES_CIND);
7035 		else
7036 			return (TS_IDLE);
7037 	case TCPS_BOUND:
7038 		return (TS_IDLE);
7039 	case TCPS_SYN_SENT:
7040 		return (TS_WCON_CREQ);
7041 	case TCPS_SYN_RCVD:
7042 		/*
7043 		 * Note: assumption: this has to the active open SYN_RCVD.
7044 		 * The passive instance is detached in SYN_RCVD stage of
7045 		 * incoming connection processing so we cannot get request
7046 		 * for T_info_ack on it.
7047 		 */
7048 		return (TS_WACK_CRES);
7049 	case TCPS_ESTABLISHED:
7050 		return (TS_DATA_XFER);
7051 	case TCPS_CLOSE_WAIT:
7052 		return (TS_WREQ_ORDREL);
7053 	case TCPS_FIN_WAIT_1:
7054 		return (TS_WIND_ORDREL);
7055 	case TCPS_FIN_WAIT_2:
7056 		return (TS_WIND_ORDREL);
7057 
7058 	case TCPS_CLOSING:
7059 	case TCPS_LAST_ACK:
7060 	case TCPS_TIME_WAIT:
7061 	case TCPS_CLOSED:
7062 		/*
7063 		 * Following TS_WACK_DREQ7 is a rendition of "not
7064 		 * yet TS_IDLE" TPI state. There is no best match to any
7065 		 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we
7066 		 * choose a value chosen that will map to TLI/XTI level
7067 		 * state of TSTATECHNG (state is process of changing) which
7068 		 * captures what this dummy state represents.
7069 		 */
7070 		return (TS_WACK_DREQ7);
7071 	default:
7072 		cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s",
7073 		    tcp->tcp_state, tcp_display(tcp, NULL,
7074 		    DISP_PORT_ONLY));
7075 		return (TS_UNBND);
7076 	}
7077 }
7078 
7079 static void
7080 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp)
7081 {
7082 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7083 
7084 	if (tcp->tcp_family == AF_INET6)
7085 		*tia = tcp_g_t_info_ack_v6;
7086 	else
7087 		*tia = tcp_g_t_info_ack;
7088 	tia->CURRENT_state = tcp_tpistate(tcp);
7089 	tia->OPT_size = tcp_max_optsize;
7090 	if (tcp->tcp_mss == 0) {
7091 		/* Not yet set - tcp_open does not set mss */
7092 		if (tcp->tcp_ipversion == IPV4_VERSION)
7093 			tia->TIDU_size = tcps->tcps_mss_def_ipv4;
7094 		else
7095 			tia->TIDU_size = tcps->tcps_mss_def_ipv6;
7096 	} else {
7097 		tia->TIDU_size = tcp->tcp_mss;
7098 	}
7099 	/* TODO: Default ETSDU is 1.  Is that correct for tcp? */
7100 }
7101 
7102 static void
7103 tcp_do_capability_ack(tcp_t *tcp, struct T_capability_ack *tcap,
7104     t_uscalar_t cap_bits1)
7105 {
7106 	tcap->CAP_bits1 = 0;
7107 
7108 	if (cap_bits1 & TC1_INFO) {
7109 		tcp_copy_info(&tcap->INFO_ack, tcp);
7110 		tcap->CAP_bits1 |= TC1_INFO;
7111 	}
7112 
7113 	if (cap_bits1 & TC1_ACCEPTOR_ID) {
7114 		tcap->ACCEPTOR_id = tcp->tcp_acceptor_id;
7115 		tcap->CAP_bits1 |= TC1_ACCEPTOR_ID;
7116 	}
7117 
7118 }
7119 
7120 /*
7121  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
7122  * tcp_wput.  Much of the T_CAPABILITY_ACK information is copied from
7123  * tcp_g_t_info_ack.  The current state of the stream is copied from
7124  * tcp_state.
7125  */
7126 static void
7127 tcp_capability_req(tcp_t *tcp, mblk_t *mp)
7128 {
7129 	t_uscalar_t		cap_bits1;
7130 	struct T_capability_ack	*tcap;
7131 
7132 	if (MBLKL(mp) < sizeof (struct T_capability_req)) {
7133 		freemsg(mp);
7134 		return;
7135 	}
7136 
7137 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
7138 
7139 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
7140 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
7141 	if (mp == NULL)
7142 		return;
7143 
7144 	tcap = (struct T_capability_ack *)mp->b_rptr;
7145 	tcp_do_capability_ack(tcp, tcap, cap_bits1);
7146 
7147 	putnext(tcp->tcp_rq, mp);
7148 }
7149 
7150 /*
7151  * This routine responds to T_INFO_REQ messages.  It is called by tcp_wput.
7152  * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack.
7153  * The current state of the stream is copied from tcp_state.
7154  */
7155 static void
7156 tcp_info_req(tcp_t *tcp, mblk_t *mp)
7157 {
7158 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
7159 	    T_INFO_ACK);
7160 	if (!mp) {
7161 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7162 		return;
7163 	}
7164 	tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp);
7165 	putnext(tcp->tcp_rq, mp);
7166 }
7167 
7168 /* Respond to the TPI addr request */
7169 static void
7170 tcp_addr_req(tcp_t *tcp, mblk_t *mp)
7171 {
7172 	sin_t	*sin;
7173 	mblk_t	*ackmp;
7174 	struct T_addr_ack *taa;
7175 
7176 	/* Make it large enough for worst case */
7177 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
7178 	    2 * sizeof (sin6_t), 1);
7179 	if (ackmp == NULL) {
7180 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7181 		return;
7182 	}
7183 
7184 	if (tcp->tcp_ipversion == IPV6_VERSION) {
7185 		tcp_addr_req_ipv6(tcp, ackmp);
7186 		return;
7187 	}
7188 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7189 
7190 	bzero(taa, sizeof (struct T_addr_ack));
7191 	ackmp->b_wptr = (uchar_t *)&taa[1];
7192 
7193 	taa->PRIM_type = T_ADDR_ACK;
7194 	ackmp->b_datap->db_type = M_PCPROTO;
7195 
7196 	/*
7197 	 * Note: Following code assumes 32 bit alignment of basic
7198 	 * data structures like sin_t and struct T_addr_ack.
7199 	 */
7200 	if (tcp->tcp_state >= TCPS_BOUND) {
7201 		/*
7202 		 * Fill in local address
7203 		 */
7204 		taa->LOCADDR_length = sizeof (sin_t);
7205 		taa->LOCADDR_offset = sizeof (*taa);
7206 
7207 		sin = (sin_t *)&taa[1];
7208 
7209 		/* Fill zeroes and then intialize non-zero fields */
7210 		*sin = sin_null;
7211 
7212 		sin->sin_family = AF_INET;
7213 
7214 		sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
7215 		sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport;
7216 
7217 		ackmp->b_wptr = (uchar_t *)&sin[1];
7218 
7219 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7220 			/*
7221 			 * Fill in Remote address
7222 			 */
7223 			taa->REMADDR_length = sizeof (sin_t);
7224 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7225 			    taa->LOCADDR_length);
7226 
7227 			sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7228 			*sin = sin_null;
7229 			sin->sin_family = AF_INET;
7230 			sin->sin_addr.s_addr = tcp->tcp_remote;
7231 			sin->sin_port = tcp->tcp_fport;
7232 
7233 			ackmp->b_wptr = (uchar_t *)&sin[1];
7234 		}
7235 	}
7236 	putnext(tcp->tcp_rq, ackmp);
7237 }
7238 
7239 /* Assumes that tcp_addr_req gets enough space and alignment */
7240 static void
7241 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp)
7242 {
7243 	sin6_t	*sin6;
7244 	struct T_addr_ack *taa;
7245 
7246 	ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
7247 	ASSERT(OK_32PTR(ackmp->b_rptr));
7248 	ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) +
7249 	    2 * sizeof (sin6_t));
7250 
7251 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7252 
7253 	bzero(taa, sizeof (struct T_addr_ack));
7254 	ackmp->b_wptr = (uchar_t *)&taa[1];
7255 
7256 	taa->PRIM_type = T_ADDR_ACK;
7257 	ackmp->b_datap->db_type = M_PCPROTO;
7258 
7259 	/*
7260 	 * Note: Following code assumes 32 bit alignment of basic
7261 	 * data structures like sin6_t and struct T_addr_ack.
7262 	 */
7263 	if (tcp->tcp_state >= TCPS_BOUND) {
7264 		/*
7265 		 * Fill in local address
7266 		 */
7267 		taa->LOCADDR_length = sizeof (sin6_t);
7268 		taa->LOCADDR_offset = sizeof (*taa);
7269 
7270 		sin6 = (sin6_t *)&taa[1];
7271 		*sin6 = sin6_null;
7272 
7273 		sin6->sin6_family = AF_INET6;
7274 		sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
7275 		sin6->sin6_port = tcp->tcp_lport;
7276 
7277 		ackmp->b_wptr = (uchar_t *)&sin6[1];
7278 
7279 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7280 			/*
7281 			 * Fill in Remote address
7282 			 */
7283 			taa->REMADDR_length = sizeof (sin6_t);
7284 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7285 			    taa->LOCADDR_length);
7286 
7287 			sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7288 			*sin6 = sin6_null;
7289 			sin6->sin6_family = AF_INET6;
7290 			sin6->sin6_flowinfo =
7291 			    tcp->tcp_ip6h->ip6_vcf &
7292 			    ~IPV6_VERS_AND_FLOW_MASK;
7293 			sin6->sin6_addr = tcp->tcp_remote_v6;
7294 			sin6->sin6_port = tcp->tcp_fport;
7295 
7296 			ackmp->b_wptr = (uchar_t *)&sin6[1];
7297 		}
7298 	}
7299 	putnext(tcp->tcp_rq, ackmp);
7300 }
7301 
7302 /*
7303  * Handle reinitialization of a tcp structure.
7304  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
7305  */
7306 static void
7307 tcp_reinit(tcp_t *tcp)
7308 {
7309 	mblk_t	*mp;
7310 	int 	err;
7311 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7312 
7313 	TCP_STAT(tcps, tcp_reinit_calls);
7314 
7315 	/* tcp_reinit should never be called for detached tcp_t's */
7316 	ASSERT(tcp->tcp_listener == NULL);
7317 	ASSERT((tcp->tcp_family == AF_INET &&
7318 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7319 	    (tcp->tcp_family == AF_INET6 &&
7320 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7321 	    tcp->tcp_ipversion == IPV6_VERSION)));
7322 
7323 	/* Cancel outstanding timers */
7324 	tcp_timers_stop(tcp);
7325 
7326 	/*
7327 	 * Reset everything in the state vector, after updating global
7328 	 * MIB data from instance counters.
7329 	 */
7330 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
7331 	tcp->tcp_ibsegs = 0;
7332 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
7333 	tcp->tcp_obsegs = 0;
7334 
7335 	tcp_close_mpp(&tcp->tcp_xmit_head);
7336 	if (tcp->tcp_snd_zcopy_aware)
7337 		tcp_zcopy_notify(tcp);
7338 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
7339 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
7340 	mutex_enter(&tcp->tcp_non_sq_lock);
7341 	if (tcp->tcp_flow_stopped &&
7342 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
7343 		tcp_clrqfull(tcp);
7344 	}
7345 	mutex_exit(&tcp->tcp_non_sq_lock);
7346 	tcp_close_mpp(&tcp->tcp_reass_head);
7347 	tcp->tcp_reass_tail = NULL;
7348 	if (tcp->tcp_rcv_list != NULL) {
7349 		/* Free b_next chain */
7350 		tcp_close_mpp(&tcp->tcp_rcv_list);
7351 		tcp->tcp_rcv_last_head = NULL;
7352 		tcp->tcp_rcv_last_tail = NULL;
7353 		tcp->tcp_rcv_cnt = 0;
7354 	}
7355 	tcp->tcp_rcv_last_tail = NULL;
7356 
7357 	if ((mp = tcp->tcp_urp_mp) != NULL) {
7358 		freemsg(mp);
7359 		tcp->tcp_urp_mp = NULL;
7360 	}
7361 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
7362 		freemsg(mp);
7363 		tcp->tcp_urp_mark_mp = NULL;
7364 	}
7365 	if (tcp->tcp_fused_sigurg_mp != NULL) {
7366 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
7367 		freeb(tcp->tcp_fused_sigurg_mp);
7368 		tcp->tcp_fused_sigurg_mp = NULL;
7369 	}
7370 	if (tcp->tcp_ordrel_mp != NULL) {
7371 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
7372 		freeb(tcp->tcp_ordrel_mp);
7373 		tcp->tcp_ordrel_mp = NULL;
7374 	}
7375 
7376 	/*
7377 	 * Following is a union with two members which are
7378 	 * identical types and size so the following cleanup
7379 	 * is enough.
7380 	 */
7381 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
7382 
7383 	CL_INET_DISCONNECT(tcp->tcp_connp, tcp);
7384 
7385 	/*
7386 	 * The connection can't be on the tcp_time_wait_head list
7387 	 * since it is not detached.
7388 	 */
7389 	ASSERT(tcp->tcp_time_wait_next == NULL);
7390 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7391 	ASSERT(tcp->tcp_time_wait_expire == 0);
7392 
7393 	if (tcp->tcp_kssl_pending) {
7394 		tcp->tcp_kssl_pending = B_FALSE;
7395 
7396 		/* Don't reset if the initialized by bind. */
7397 		if (tcp->tcp_kssl_ent != NULL) {
7398 			kssl_release_ent(tcp->tcp_kssl_ent, NULL,
7399 			    KSSL_NO_PROXY);
7400 		}
7401 	}
7402 	if (tcp->tcp_kssl_ctx != NULL) {
7403 		kssl_release_ctx(tcp->tcp_kssl_ctx);
7404 		tcp->tcp_kssl_ctx = NULL;
7405 	}
7406 
7407 	/*
7408 	 * Reset/preserve other values
7409 	 */
7410 	tcp_reinit_values(tcp);
7411 	ipcl_hash_remove(tcp->tcp_connp);
7412 	conn_delete_ire(tcp->tcp_connp, NULL);
7413 	tcp_ipsec_cleanup(tcp);
7414 
7415 	if (tcp->tcp_conn_req_max != 0) {
7416 		/*
7417 		 * This is the case when a TLI program uses the same
7418 		 * transport end point to accept a connection.  This
7419 		 * makes the TCP both a listener and acceptor.  When
7420 		 * this connection is closed, we need to set the state
7421 		 * back to TCPS_LISTEN.  Make sure that the eager list
7422 		 * is reinitialized.
7423 		 *
7424 		 * Note that this stream is still bound to the four
7425 		 * tuples of the previous connection in IP.  If a new
7426 		 * SYN with different foreign address comes in, IP will
7427 		 * not find it and will send it to the global queue.  In
7428 		 * the global queue, TCP will do a tcp_lookup_listener()
7429 		 * to find this stream.  This works because this stream
7430 		 * is only removed from connected hash.
7431 		 *
7432 		 */
7433 		tcp->tcp_state = TCPS_LISTEN;
7434 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
7435 		tcp->tcp_eager_next_drop_q0 = tcp;
7436 		tcp->tcp_eager_prev_drop_q0 = tcp;
7437 		tcp->tcp_connp->conn_recv = tcp_conn_request;
7438 		if (tcp->tcp_family == AF_INET6) {
7439 			ASSERT(tcp->tcp_connp->conn_af_isv6);
7440 			(void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP,
7441 			    &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport);
7442 		} else {
7443 			ASSERT(!tcp->tcp_connp->conn_af_isv6);
7444 			(void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP,
7445 			    tcp->tcp_ipha->ipha_src, tcp->tcp_lport);
7446 		}
7447 	} else {
7448 		tcp->tcp_state = TCPS_BOUND;
7449 	}
7450 
7451 	/*
7452 	 * Initialize to default values
7453 	 * Can't fail since enough header template space already allocated
7454 	 * at open().
7455 	 */
7456 	err = tcp_init_values(tcp);
7457 	ASSERT(err == 0);
7458 	/* Restore state in tcp_tcph */
7459 	bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN);
7460 	if (tcp->tcp_ipversion == IPV4_VERSION)
7461 		tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source;
7462 	else
7463 		tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6;
7464 	/*
7465 	 * Copy of the src addr. in tcp_t is needed in tcp_t
7466 	 * since the lookup funcs can only lookup on tcp_t
7467 	 */
7468 	tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6;
7469 
7470 	ASSERT(tcp->tcp_ptpbhn != NULL);
7471 	if (!IPCL_IS_NONSTR(tcp->tcp_connp))
7472 		tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat;
7473 	tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat;
7474 	tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat;
7475 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
7476 	tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ?
7477 	    tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4;
7478 }
7479 
7480 /*
7481  * Force values to zero that need be zero.
7482  * Do not touch values asociated with the BOUND or LISTEN state
7483  * since the connection will end up in that state after the reinit.
7484  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
7485  * structure!
7486  */
7487 static void
7488 tcp_reinit_values(tcp)
7489 	tcp_t *tcp;
7490 {
7491 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7492 
7493 #ifndef	lint
7494 #define	DONTCARE(x)
7495 #define	PRESERVE(x)
7496 #else
7497 #define	DONTCARE(x)	((x) = (x))
7498 #define	PRESERVE(x)	((x) = (x))
7499 #endif	/* lint */
7500 
7501 	PRESERVE(tcp->tcp_bind_hash_port);
7502 	PRESERVE(tcp->tcp_bind_hash);
7503 	PRESERVE(tcp->tcp_ptpbhn);
7504 	PRESERVE(tcp->tcp_acceptor_hash);
7505 	PRESERVE(tcp->tcp_ptpahn);
7506 
7507 	/* Should be ASSERT NULL on these with new code! */
7508 	ASSERT(tcp->tcp_time_wait_next == NULL);
7509 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7510 	ASSERT(tcp->tcp_time_wait_expire == 0);
7511 	PRESERVE(tcp->tcp_state);
7512 	PRESERVE(tcp->tcp_rq);
7513 	PRESERVE(tcp->tcp_wq);
7514 
7515 	ASSERT(tcp->tcp_xmit_head == NULL);
7516 	ASSERT(tcp->tcp_xmit_last == NULL);
7517 	ASSERT(tcp->tcp_unsent == 0);
7518 	ASSERT(tcp->tcp_xmit_tail == NULL);
7519 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
7520 
7521 	tcp->tcp_snxt = 0;			/* Displayed in mib */
7522 	tcp->tcp_suna = 0;			/* Displayed in mib */
7523 	tcp->tcp_swnd = 0;
7524 	DONTCARE(tcp->tcp_cwnd);		/* Init in tcp_mss_set */
7525 
7526 	ASSERT(tcp->tcp_ibsegs == 0);
7527 	ASSERT(tcp->tcp_obsegs == 0);
7528 
7529 	if (tcp->tcp_iphc != NULL) {
7530 		ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
7531 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
7532 	}
7533 
7534 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
7535 	DONTCARE(tcp->tcp_hdr_len);		/* Init in tcp_init_values */
7536 	DONTCARE(tcp->tcp_ipha);
7537 	DONTCARE(tcp->tcp_ip6h);
7538 	DONTCARE(tcp->tcp_ip_hdr_len);
7539 	DONTCARE(tcp->tcp_tcph);
7540 	DONTCARE(tcp->tcp_tcp_hdr_len);		/* Init in tcp_init_values */
7541 	tcp->tcp_valid_bits = 0;
7542 
7543 	DONTCARE(tcp->tcp_xmit_hiwater);	/* Init in tcp_init_values */
7544 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
7545 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
7546 	tcp->tcp_last_rcv_lbolt = 0;
7547 
7548 	tcp->tcp_init_cwnd = 0;
7549 
7550 	tcp->tcp_urp_last_valid = 0;
7551 	tcp->tcp_hard_binding = 0;
7552 	tcp->tcp_hard_bound = 0;
7553 	PRESERVE(tcp->tcp_cred);
7554 	PRESERVE(tcp->tcp_cpid);
7555 	PRESERVE(tcp->tcp_open_time);
7556 	PRESERVE(tcp->tcp_exclbind);
7557 
7558 	tcp->tcp_fin_acked = 0;
7559 	tcp->tcp_fin_rcvd = 0;
7560 	tcp->tcp_fin_sent = 0;
7561 	tcp->tcp_ordrel_done = 0;
7562 
7563 	tcp->tcp_debug = 0;
7564 	tcp->tcp_dontroute = 0;
7565 	tcp->tcp_broadcast = 0;
7566 
7567 	tcp->tcp_useloopback = 0;
7568 	tcp->tcp_reuseaddr = 0;
7569 	tcp->tcp_oobinline = 0;
7570 	tcp->tcp_dgram_errind = 0;
7571 
7572 	tcp->tcp_detached = 0;
7573 	tcp->tcp_bind_pending = 0;
7574 	tcp->tcp_unbind_pending = 0;
7575 
7576 	tcp->tcp_snd_ws_ok = B_FALSE;
7577 	tcp->tcp_snd_ts_ok = B_FALSE;
7578 	tcp->tcp_linger = 0;
7579 	tcp->tcp_ka_enabled = 0;
7580 	tcp->tcp_zero_win_probe = 0;
7581 
7582 	tcp->tcp_loopback = 0;
7583 	tcp->tcp_refuse = 0;
7584 	tcp->tcp_localnet = 0;
7585 	tcp->tcp_syn_defense = 0;
7586 	tcp->tcp_set_timer = 0;
7587 
7588 	tcp->tcp_active_open = 0;
7589 	tcp->tcp_rexmit = B_FALSE;
7590 	tcp->tcp_xmit_zc_clean = B_FALSE;
7591 
7592 	tcp->tcp_snd_sack_ok = B_FALSE;
7593 	PRESERVE(tcp->tcp_recvdstaddr);
7594 	tcp->tcp_hwcksum = B_FALSE;
7595 
7596 	tcp->tcp_ire_ill_check_done = B_FALSE;
7597 	DONTCARE(tcp->tcp_maxpsz);		/* Init in tcp_init_values */
7598 
7599 	tcp->tcp_mdt = B_FALSE;
7600 	tcp->tcp_mdt_hdr_head = 0;
7601 	tcp->tcp_mdt_hdr_tail = 0;
7602 
7603 	tcp->tcp_conn_def_q0 = 0;
7604 	tcp->tcp_ip_forward_progress = B_FALSE;
7605 	tcp->tcp_anon_priv_bind = 0;
7606 	tcp->tcp_ecn_ok = B_FALSE;
7607 
7608 	tcp->tcp_cwr = B_FALSE;
7609 	tcp->tcp_ecn_echo_on = B_FALSE;
7610 
7611 	if (tcp->tcp_sack_info != NULL) {
7612 		if (tcp->tcp_notsack_list != NULL) {
7613 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
7614 		}
7615 		kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info);
7616 		tcp->tcp_sack_info = NULL;
7617 	}
7618 
7619 	tcp->tcp_rcv_ws = 0;
7620 	tcp->tcp_snd_ws = 0;
7621 	tcp->tcp_ts_recent = 0;
7622 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
7623 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
7624 	tcp->tcp_if_mtu = 0;
7625 
7626 	ASSERT(tcp->tcp_reass_head == NULL);
7627 	ASSERT(tcp->tcp_reass_tail == NULL);
7628 
7629 	tcp->tcp_cwnd_cnt = 0;
7630 
7631 	ASSERT(tcp->tcp_rcv_list == NULL);
7632 	ASSERT(tcp->tcp_rcv_last_head == NULL);
7633 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
7634 	ASSERT(tcp->tcp_rcv_cnt == 0);
7635 
7636 	DONTCARE(tcp->tcp_cwnd_ssthresh);	/* Init in tcp_adapt_ire */
7637 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
7638 	tcp->tcp_csuna = 0;
7639 
7640 	tcp->tcp_rto = 0;			/* Displayed in MIB */
7641 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
7642 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
7643 	tcp->tcp_rtt_update = 0;
7644 
7645 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
7646 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
7647 
7648 	tcp->tcp_rack = 0;			/* Displayed in mib */
7649 	tcp->tcp_rack_cnt = 0;
7650 	tcp->tcp_rack_cur_max = 0;
7651 	tcp->tcp_rack_abs_max = 0;
7652 
7653 	tcp->tcp_max_swnd = 0;
7654 
7655 	ASSERT(tcp->tcp_listener == NULL);
7656 
7657 	DONTCARE(tcp->tcp_xmit_lowater);	/* Init in tcp_init_values */
7658 
7659 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
7660 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
7661 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
7662 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
7663 
7664 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
7665 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
7666 	PRESERVE(tcp->tcp_conn_req_max);
7667 	PRESERVE(tcp->tcp_conn_req_seqnum);
7668 
7669 	DONTCARE(tcp->tcp_ip_hdr_len);		/* Init in tcp_init_values */
7670 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
7671 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
7672 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
7673 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
7674 
7675 	tcp->tcp_lingertime = 0;
7676 
7677 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
7678 	ASSERT(tcp->tcp_urp_mp == NULL);
7679 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
7680 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
7681 
7682 	ASSERT(tcp->tcp_eager_next_q == NULL);
7683 	ASSERT(tcp->tcp_eager_last_q == NULL);
7684 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
7685 	    tcp->tcp_eager_prev_q0 == NULL) ||
7686 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
7687 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
7688 
7689 	ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
7690 	    tcp->tcp_eager_prev_drop_q0 == NULL) ||
7691 	    tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
7692 
7693 	tcp->tcp_client_errno = 0;
7694 
7695 	DONTCARE(tcp->tcp_sum);			/* Init in tcp_init_values */
7696 
7697 	tcp->tcp_remote_v6 = ipv6_all_zeros;	/* Displayed in MIB */
7698 
7699 	PRESERVE(tcp->tcp_bound_source_v6);
7700 	tcp->tcp_last_sent_len = 0;
7701 	tcp->tcp_dupack_cnt = 0;
7702 
7703 	tcp->tcp_fport = 0;			/* Displayed in MIB */
7704 	PRESERVE(tcp->tcp_lport);
7705 
7706 	PRESERVE(tcp->tcp_acceptor_lockp);
7707 
7708 	ASSERT(tcp->tcp_ordrel_mp == NULL);
7709 	PRESERVE(tcp->tcp_acceptor_id);
7710 	DONTCARE(tcp->tcp_ipsec_overhead);
7711 
7712 	PRESERVE(tcp->tcp_family);
7713 	if (tcp->tcp_family == AF_INET6) {
7714 		tcp->tcp_ipversion = IPV6_VERSION;
7715 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
7716 	} else {
7717 		tcp->tcp_ipversion = IPV4_VERSION;
7718 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
7719 	}
7720 
7721 	tcp->tcp_bound_if = 0;
7722 	tcp->tcp_ipv6_recvancillary = 0;
7723 	tcp->tcp_recvifindex = 0;
7724 	tcp->tcp_recvhops = 0;
7725 	tcp->tcp_closed = 0;
7726 	tcp->tcp_cleandeathtag = 0;
7727 	if (tcp->tcp_hopopts != NULL) {
7728 		mi_free(tcp->tcp_hopopts);
7729 		tcp->tcp_hopopts = NULL;
7730 		tcp->tcp_hopoptslen = 0;
7731 	}
7732 	ASSERT(tcp->tcp_hopoptslen == 0);
7733 	if (tcp->tcp_dstopts != NULL) {
7734 		mi_free(tcp->tcp_dstopts);
7735 		tcp->tcp_dstopts = NULL;
7736 		tcp->tcp_dstoptslen = 0;
7737 	}
7738 	ASSERT(tcp->tcp_dstoptslen == 0);
7739 	if (tcp->tcp_rtdstopts != NULL) {
7740 		mi_free(tcp->tcp_rtdstopts);
7741 		tcp->tcp_rtdstopts = NULL;
7742 		tcp->tcp_rtdstoptslen = 0;
7743 	}
7744 	ASSERT(tcp->tcp_rtdstoptslen == 0);
7745 	if (tcp->tcp_rthdr != NULL) {
7746 		mi_free(tcp->tcp_rthdr);
7747 		tcp->tcp_rthdr = NULL;
7748 		tcp->tcp_rthdrlen = 0;
7749 	}
7750 	ASSERT(tcp->tcp_rthdrlen == 0);
7751 	PRESERVE(tcp->tcp_drop_opt_ack_cnt);
7752 
7753 	/* Reset fusion-related fields */
7754 	tcp->tcp_fused = B_FALSE;
7755 	tcp->tcp_unfusable = B_FALSE;
7756 	tcp->tcp_fused_sigurg = B_FALSE;
7757 	tcp->tcp_direct_sockfs = B_FALSE;
7758 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
7759 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
7760 	tcp->tcp_loopback_peer = NULL;
7761 	tcp->tcp_fuse_rcv_hiwater = 0;
7762 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
7763 	tcp->tcp_fuse_rcv_unread_cnt = 0;
7764 
7765 	tcp->tcp_lso = B_FALSE;
7766 
7767 	tcp->tcp_in_ack_unsent = 0;
7768 	tcp->tcp_cork = B_FALSE;
7769 	tcp->tcp_tconnind_started = B_FALSE;
7770 
7771 	PRESERVE(tcp->tcp_squeue_bytes);
7772 
7773 	ASSERT(tcp->tcp_kssl_ctx == NULL);
7774 	ASSERT(!tcp->tcp_kssl_pending);
7775 	PRESERVE(tcp->tcp_kssl_ent);
7776 
7777 	tcp->tcp_closemp_used = B_FALSE;
7778 
7779 	PRESERVE(tcp->tcp_rsrv_mp);
7780 	PRESERVE(tcp->tcp_rsrv_mp_lock);
7781 
7782 #ifdef DEBUG
7783 	DONTCARE(tcp->tcmp_stk[0]);
7784 #endif
7785 
7786 	PRESERVE(tcp->tcp_connid);
7787 
7788 
7789 #undef	DONTCARE
7790 #undef	PRESERVE
7791 }
7792 
7793 /*
7794  * Allocate necessary resources and initialize state vector.
7795  * Guaranteed not to fail so that when an error is returned,
7796  * the caller doesn't need to do any additional cleanup.
7797  */
7798 int
7799 tcp_init(tcp_t *tcp, queue_t *q)
7800 {
7801 	int	err;
7802 
7803 	tcp->tcp_rq = q;
7804 	tcp->tcp_wq = WR(q);
7805 	tcp->tcp_state = TCPS_IDLE;
7806 	if ((err = tcp_init_values(tcp)) != 0)
7807 		tcp_timers_stop(tcp);
7808 	return (err);
7809 }
7810 
7811 static int
7812 tcp_init_values(tcp_t *tcp)
7813 {
7814 	int	err;
7815 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7816 
7817 	ASSERT((tcp->tcp_family == AF_INET &&
7818 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7819 	    (tcp->tcp_family == AF_INET6 &&
7820 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7821 	    tcp->tcp_ipversion == IPV6_VERSION)));
7822 
7823 	/*
7824 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
7825 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
7826 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
7827 	 * during first few transmissions of a connection as seen in slow
7828 	 * links.
7829 	 */
7830 	tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2;
7831 	tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1;
7832 	tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
7833 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
7834 	    tcps->tcps_conn_grace_period;
7835 	if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min)
7836 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
7837 	tcp->tcp_timer_backoff = 0;
7838 	tcp->tcp_ms_we_have_waited = 0;
7839 	tcp->tcp_last_recv_time = lbolt;
7840 	tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_;
7841 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
7842 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
7843 
7844 	tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier;
7845 
7846 	tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval;
7847 	tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval;
7848 	tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval;
7849 	/*
7850 	 * Fix it to tcp_ip_abort_linterval later if it turns out to be a
7851 	 * passive open.
7852 	 */
7853 	tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval;
7854 
7855 	tcp->tcp_naglim = tcps->tcps_naglim_def;
7856 
7857 	/* NOTE:  ISS is now set in tcp_adapt_ire(). */
7858 
7859 	tcp->tcp_mdt_hdr_head = 0;
7860 	tcp->tcp_mdt_hdr_tail = 0;
7861 
7862 	/* Reset fusion-related fields */
7863 	tcp->tcp_fused = B_FALSE;
7864 	tcp->tcp_unfusable = B_FALSE;
7865 	tcp->tcp_fused_sigurg = B_FALSE;
7866 	tcp->tcp_direct_sockfs = B_FALSE;
7867 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
7868 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
7869 	tcp->tcp_loopback_peer = NULL;
7870 	tcp->tcp_fuse_rcv_hiwater = 0;
7871 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
7872 	tcp->tcp_fuse_rcv_unread_cnt = 0;
7873 
7874 	/* Initialize the header template */
7875 	if (tcp->tcp_ipversion == IPV4_VERSION) {
7876 		err = tcp_header_init_ipv4(tcp);
7877 	} else {
7878 		err = tcp_header_init_ipv6(tcp);
7879 	}
7880 	if (err)
7881 		return (err);
7882 
7883 	/*
7884 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
7885 	 * down tcp_rwnd. tcp_adapt_ire() will set the right value later.
7886 	 */
7887 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
7888 	tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat;
7889 	tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat;
7890 
7891 	tcp->tcp_cork = B_FALSE;
7892 	/*
7893 	 * Init the tcp_debug option.  This value determines whether TCP
7894 	 * calls strlog() to print out debug messages.  Doing this
7895 	 * initialization here means that this value is not inherited thru
7896 	 * tcp_reinit().
7897 	 */
7898 	tcp->tcp_debug = tcps->tcps_dbg;
7899 
7900 	tcp->tcp_ka_interval = tcps->tcps_keepalive_interval;
7901 	tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval;
7902 
7903 	return (0);
7904 }
7905 
7906 /*
7907  * Initialize the IPv4 header. Loses any record of any IP options.
7908  */
7909 static int
7910 tcp_header_init_ipv4(tcp_t *tcp)
7911 {
7912 	tcph_t		*tcph;
7913 	uint32_t	sum;
7914 	conn_t		*connp;
7915 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7916 
7917 	/*
7918 	 * This is a simple initialization. If there's
7919 	 * already a template, it should never be too small,
7920 	 * so reuse it.  Otherwise, allocate space for the new one.
7921 	 */
7922 	if (tcp->tcp_iphc == NULL) {
7923 		ASSERT(tcp->tcp_iphc_len == 0);
7924 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
7925 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
7926 		if (tcp->tcp_iphc == NULL) {
7927 			tcp->tcp_iphc_len = 0;
7928 			return (ENOMEM);
7929 		}
7930 	}
7931 
7932 	/* options are gone; may need a new label */
7933 	connp = tcp->tcp_connp;
7934 	connp->conn_mlp_type = mlptSingle;
7935 	connp->conn_ulp_labeled = !is_system_labeled();
7936 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
7937 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
7938 	tcp->tcp_ip6h = NULL;
7939 	tcp->tcp_ipversion = IPV4_VERSION;
7940 	tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t);
7941 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
7942 	tcp->tcp_ip_hdr_len = sizeof (ipha_t);
7943 	tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t));
7944 	tcp->tcp_ipha->ipha_version_and_hdr_length
7945 	    = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS;
7946 	tcp->tcp_ipha->ipha_ident = 0;
7947 
7948 	tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
7949 	tcp->tcp_tos = 0;
7950 	tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
7951 	tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
7952 	tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP;
7953 
7954 	tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t));
7955 	tcp->tcp_tcph = tcph;
7956 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
7957 	/*
7958 	 * IP wants our header length in the checksum field to
7959 	 * allow it to perform a single pseudo-header+checksum
7960 	 * calculation on behalf of TCP.
7961 	 * Include the adjustment for a source route once IP_OPTIONS is set.
7962 	 */
7963 	sum = sizeof (tcph_t) + tcp->tcp_sum;
7964 	sum = (sum >> 16) + (sum & 0xFFFF);
7965 	U16_TO_ABE16(sum, tcph->th_sum);
7966 	return (0);
7967 }
7968 
7969 /*
7970  * Initialize the IPv6 header. Loses any record of any IPv6 extension headers.
7971  */
7972 static int
7973 tcp_header_init_ipv6(tcp_t *tcp)
7974 {
7975 	tcph_t	*tcph;
7976 	uint32_t	sum;
7977 	conn_t	*connp;
7978 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7979 
7980 	/*
7981 	 * This is a simple initialization. If there's
7982 	 * already a template, it should never be too small,
7983 	 * so reuse it. Otherwise, allocate space for the new one.
7984 	 * Ensure that there is enough space to "downgrade" the tcp_t
7985 	 * to an IPv4 tcp_t. This requires having space for a full load
7986 	 * of IPv4 options, as well as a full load of TCP options
7987 	 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space
7988 	 * than a v6 header and a TCP header with a full load of TCP options
7989 	 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes).
7990 	 * We want to avoid reallocation in the "downgraded" case when
7991 	 * processing outbound IPv4 options.
7992 	 */
7993 	if (tcp->tcp_iphc == NULL) {
7994 		ASSERT(tcp->tcp_iphc_len == 0);
7995 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
7996 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
7997 		if (tcp->tcp_iphc == NULL) {
7998 			tcp->tcp_iphc_len = 0;
7999 			return (ENOMEM);
8000 		}
8001 	}
8002 
8003 	/* options are gone; may need a new label */
8004 	connp = tcp->tcp_connp;
8005 	connp->conn_mlp_type = mlptSingle;
8006 	connp->conn_ulp_labeled = !is_system_labeled();
8007 
8008 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8009 	tcp->tcp_ipversion = IPV6_VERSION;
8010 	tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t);
8011 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8012 	tcp->tcp_ip_hdr_len = IPV6_HDR_LEN;
8013 	tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
8014 	tcp->tcp_ipha = NULL;
8015 
8016 	/* Initialize the header template */
8017 
8018 	tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
8019 	tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t));
8020 	tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP;
8021 	tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit;
8022 
8023 	tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN);
8024 	tcp->tcp_tcph = tcph;
8025 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8026 	/*
8027 	 * IP wants our header length in the checksum field to
8028 	 * allow it to perform a single psuedo-header+checksum
8029 	 * calculation on behalf of TCP.
8030 	 * Include the adjustment for a source route when IPV6_RTHDR is set.
8031 	 */
8032 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8033 	sum = (sum >> 16) + (sum & 0xFFFF);
8034 	U16_TO_ABE16(sum, tcph->th_sum);
8035 	return (0);
8036 }
8037 
8038 /* At minimum we need 8 bytes in the TCP header for the lookup */
8039 #define	ICMP_MIN_TCP_HDR	8
8040 
8041 /*
8042  * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages
8043  * passed up by IP. The message is always received on the correct tcp_t.
8044  * Assumes that IP has pulled up everything up to and including the ICMP header.
8045  */
8046 void
8047 tcp_icmp_error(tcp_t *tcp, mblk_t *mp)
8048 {
8049 	icmph_t *icmph;
8050 	ipha_t	*ipha;
8051 	int	iph_hdr_length;
8052 	tcph_t	*tcph;
8053 	boolean_t ipsec_mctl = B_FALSE;
8054 	boolean_t secure;
8055 	mblk_t *first_mp = mp;
8056 	int32_t new_mss;
8057 	uint32_t ratio;
8058 	size_t mp_size = MBLKL(mp);
8059 	uint32_t seg_seq;
8060 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8061 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
8062 
8063 	/* Assume IP provides aligned packets - otherwise toss */
8064 	if (!OK_32PTR(mp->b_rptr)) {
8065 		freemsg(mp);
8066 		return;
8067 	}
8068 
8069 	/*
8070 	 * Since ICMP errors are normal data marked with M_CTL when sent
8071 	 * to TCP or UDP, we have to look for a IPSEC_IN value to identify
8072 	 * packets starting with an ipsec_info_t, see ipsec_info.h.
8073 	 */
8074 	if ((mp_size == sizeof (ipsec_info_t)) &&
8075 	    (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) {
8076 		ASSERT(mp->b_cont != NULL);
8077 		mp = mp->b_cont;
8078 		/* IP should have done this */
8079 		ASSERT(OK_32PTR(mp->b_rptr));
8080 		mp_size = MBLKL(mp);
8081 		ipsec_mctl = B_TRUE;
8082 	}
8083 
8084 	/*
8085 	 * Verify that we have a complete outer IP header. If not, drop it.
8086 	 */
8087 	if (mp_size < sizeof (ipha_t)) {
8088 noticmpv4:
8089 		freemsg(first_mp);
8090 		return;
8091 	}
8092 
8093 	ipha = (ipha_t *)mp->b_rptr;
8094 	/*
8095 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
8096 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
8097 	 */
8098 	switch (IPH_HDR_VERSION(ipha)) {
8099 	case IPV6_VERSION:
8100 		tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl);
8101 		return;
8102 	case IPV4_VERSION:
8103 		break;
8104 	default:
8105 		goto noticmpv4;
8106 	}
8107 
8108 	/* Skip past the outer IP and ICMP headers */
8109 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8110 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
8111 	/*
8112 	 * If we don't have the correct outer IP header length or if the ULP
8113 	 * is not IPPROTO_ICMP or if we don't have a complete inner IP header
8114 	 * send it upstream.
8115 	 */
8116 	if (iph_hdr_length < sizeof (ipha_t) ||
8117 	    ipha->ipha_protocol != IPPROTO_ICMP ||
8118 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
8119 		goto noticmpv4;
8120 	}
8121 	ipha = (ipha_t *)&icmph[1];
8122 
8123 	/* Skip past the inner IP and find the ULP header */
8124 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8125 	tcph = (tcph_t *)((char *)ipha + iph_hdr_length);
8126 	/*
8127 	 * If we don't have the correct inner IP header length or if the ULP
8128 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
8129 	 * bytes of TCP header, drop it.
8130 	 */
8131 	if (iph_hdr_length < sizeof (ipha_t) ||
8132 	    ipha->ipha_protocol != IPPROTO_TCP ||
8133 	    (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) {
8134 		goto noticmpv4;
8135 	}
8136 
8137 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
8138 		if (ipsec_mctl) {
8139 			secure = ipsec_in_is_secure(first_mp);
8140 		} else {
8141 			secure = B_FALSE;
8142 		}
8143 		if (secure) {
8144 			/*
8145 			 * If we are willing to accept this in clear
8146 			 * we don't have to verify policy.
8147 			 */
8148 			if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) {
8149 				if (!tcp_check_policy(tcp, first_mp,
8150 				    ipha, NULL, secure, ipsec_mctl)) {
8151 					/*
8152 					 * tcp_check_policy called
8153 					 * ip_drop_packet() on failure.
8154 					 */
8155 					return;
8156 				}
8157 			}
8158 		}
8159 	} else if (ipsec_mctl) {
8160 		/*
8161 		 * This is a hard_bound connection. IP has already
8162 		 * verified policy. We don't have to do it again.
8163 		 */
8164 		freeb(first_mp);
8165 		first_mp = mp;
8166 		ipsec_mctl = B_FALSE;
8167 	}
8168 
8169 	seg_seq = ABE32_TO_U32(tcph->th_seq);
8170 	/*
8171 	 * TCP SHOULD check that the TCP sequence number contained in
8172 	 * payload of the ICMP error message is within the range
8173 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8174 	 */
8175 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8176 		/*
8177 		 * The ICMP message is bogus, just drop it.  But if this is
8178 		 * an ICMP too big message, IP has already changed
8179 		 * the ire_max_frag to the bogus value.  We need to change
8180 		 * it back.
8181 		 */
8182 		if (icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
8183 		    icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) {
8184 			conn_t *connp = tcp->tcp_connp;
8185 			ire_t *ire;
8186 			int flag;
8187 
8188 			if (tcp->tcp_ipversion == IPV4_VERSION) {
8189 				flag = tcp->tcp_ipha->
8190 				    ipha_fragment_offset_and_flags;
8191 			} else {
8192 				flag = 0;
8193 			}
8194 			mutex_enter(&connp->conn_lock);
8195 			if ((ire = connp->conn_ire_cache) != NULL) {
8196 				mutex_enter(&ire->ire_lock);
8197 				mutex_exit(&connp->conn_lock);
8198 				ire->ire_max_frag = tcp->tcp_if_mtu;
8199 				ire->ire_frag_flag |= flag;
8200 				mutex_exit(&ire->ire_lock);
8201 			} else {
8202 				mutex_exit(&connp->conn_lock);
8203 			}
8204 		}
8205 		goto noticmpv4;
8206 	}
8207 
8208 	switch (icmph->icmph_type) {
8209 	case ICMP_DEST_UNREACHABLE:
8210 		switch (icmph->icmph_code) {
8211 		case ICMP_FRAGMENTATION_NEEDED:
8212 			/*
8213 			 * Reduce the MSS based on the new MTU.  This will
8214 			 * eliminate any fragmentation locally.
8215 			 * N.B.  There may well be some funny side-effects on
8216 			 * the local send policy and the remote receive policy.
8217 			 * Pending further research, we provide
8218 			 * tcp_ignore_path_mtu just in case this proves
8219 			 * disastrous somewhere.
8220 			 *
8221 			 * After updating the MSS, retransmit part of the
8222 			 * dropped segment using the new mss by calling
8223 			 * tcp_wput_data().  Need to adjust all those
8224 			 * params to make sure tcp_wput_data() work properly.
8225 			 */
8226 			if (tcps->tcps_ignore_path_mtu ||
8227 			    tcp->tcp_ipha->ipha_fragment_offset_and_flags == 0)
8228 				break;
8229 
8230 			/*
8231 			 * Decrease the MSS by time stamp options
8232 			 * IP options and IPSEC options. tcp_hdr_len
8233 			 * includes time stamp option and IP option
8234 			 * length.  Note that new_mss may be negative
8235 			 * if tcp_ipsec_overhead is large and the
8236 			 * icmph_du_mtu is the minimum value, which is 68.
8237 			 */
8238 			new_mss = ntohs(icmph->icmph_du_mtu) -
8239 			    tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead;
8240 
8241 			DTRACE_PROBE2(tcp__pmtu__change, tcp_t *, tcp, int,
8242 			    new_mss);
8243 
8244 			/*
8245 			 * Only update the MSS if the new one is
8246 			 * smaller than the previous one.  This is
8247 			 * to avoid problems when getting multiple
8248 			 * ICMP errors for the same MTU.
8249 			 */
8250 			if (new_mss >= tcp->tcp_mss)
8251 				break;
8252 
8253 			/*
8254 			 * Note that we are using the template header's DF
8255 			 * bit in the fast path sending.  So we need to compare
8256 			 * the new mss with both tcps_mss_min and ip_pmtu_min.
8257 			 * And stop doing IPv4 PMTUd if new_mss is less than
8258 			 * MAX(tcps_mss_min, ip_pmtu_min).
8259 			 */
8260 			if (new_mss < tcps->tcps_mss_min ||
8261 			    new_mss < ipst->ips_ip_pmtu_min) {
8262 				tcp->tcp_ipha->ipha_fragment_offset_and_flags =
8263 				    0;
8264 			}
8265 
8266 			ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8267 			ASSERT(ratio >= 1);
8268 			tcp_mss_set(tcp, new_mss, B_TRUE);
8269 
8270 			/*
8271 			 * Make sure we have something to
8272 			 * send.
8273 			 */
8274 			if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8275 			    (tcp->tcp_xmit_head != NULL)) {
8276 				/*
8277 				 * Shrink tcp_cwnd in
8278 				 * proportion to the old MSS/new MSS.
8279 				 */
8280 				tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8281 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8282 				    (tcp->tcp_unsent == 0)) {
8283 					tcp->tcp_rexmit_max = tcp->tcp_fss;
8284 				} else {
8285 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
8286 				}
8287 				tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8288 				tcp->tcp_rexmit = B_TRUE;
8289 				tcp->tcp_dupack_cnt = 0;
8290 				tcp->tcp_snd_burst = TCP_CWND_SS;
8291 				tcp_ss_rexmit(tcp);
8292 			}
8293 			break;
8294 		case ICMP_PORT_UNREACHABLE:
8295 		case ICMP_PROTOCOL_UNREACHABLE:
8296 			switch (tcp->tcp_state) {
8297 			case TCPS_SYN_SENT:
8298 			case TCPS_SYN_RCVD:
8299 				/*
8300 				 * ICMP can snipe away incipient
8301 				 * TCP connections as long as
8302 				 * seq number is same as initial
8303 				 * send seq number.
8304 				 */
8305 				if (seg_seq == tcp->tcp_iss) {
8306 					(void) tcp_clean_death(tcp,
8307 					    ECONNREFUSED, 6);
8308 				}
8309 				break;
8310 			}
8311 			break;
8312 		case ICMP_HOST_UNREACHABLE:
8313 		case ICMP_NET_UNREACHABLE:
8314 			/* Record the error in case we finally time out. */
8315 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
8316 				tcp->tcp_client_errno = EHOSTUNREACH;
8317 			else
8318 				tcp->tcp_client_errno = ENETUNREACH;
8319 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
8320 				if (tcp->tcp_listener != NULL &&
8321 				    tcp->tcp_listener->tcp_syn_defense) {
8322 					/*
8323 					 * Ditch the half-open connection if we
8324 					 * suspect a SYN attack is under way.
8325 					 */
8326 					tcp_ip_ire_mark_advice(tcp);
8327 					(void) tcp_clean_death(tcp,
8328 					    tcp->tcp_client_errno, 7);
8329 				}
8330 			}
8331 			break;
8332 		default:
8333 			break;
8334 		}
8335 		break;
8336 	case ICMP_SOURCE_QUENCH: {
8337 		/*
8338 		 * use a global boolean to control
8339 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
8340 		 * The default is false.
8341 		 */
8342 		if (tcp_icmp_source_quench) {
8343 			/*
8344 			 * Reduce the sending rate as if we got a
8345 			 * retransmit timeout
8346 			 */
8347 			uint32_t npkt;
8348 
8349 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
8350 			    tcp->tcp_mss;
8351 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
8352 			tcp->tcp_cwnd = tcp->tcp_mss;
8353 			tcp->tcp_cwnd_cnt = 0;
8354 		}
8355 		break;
8356 	}
8357 	}
8358 	freemsg(first_mp);
8359 }
8360 
8361 /*
8362  * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6
8363  * error messages passed up by IP.
8364  * Assumes that IP has pulled up all the extension headers as well
8365  * as the ICMPv6 header.
8366  */
8367 static void
8368 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl)
8369 {
8370 	icmp6_t *icmp6;
8371 	ip6_t	*ip6h;
8372 	uint16_t	iph_hdr_length;
8373 	tcpha_t	*tcpha;
8374 	uint8_t	*nexthdrp;
8375 	uint32_t new_mss;
8376 	uint32_t ratio;
8377 	boolean_t secure;
8378 	mblk_t *first_mp = mp;
8379 	size_t mp_size;
8380 	uint32_t seg_seq;
8381 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8382 
8383 	/*
8384 	 * The caller has determined if this is an IPSEC_IN packet and
8385 	 * set ipsec_mctl appropriately (see tcp_icmp_error).
8386 	 */
8387 	if (ipsec_mctl)
8388 		mp = mp->b_cont;
8389 
8390 	mp_size = MBLKL(mp);
8391 
8392 	/*
8393 	 * Verify that we have a complete IP header. If not, send it upstream.
8394 	 */
8395 	if (mp_size < sizeof (ip6_t)) {
8396 noticmpv6:
8397 		freemsg(first_mp);
8398 		return;
8399 	}
8400 
8401 	/*
8402 	 * Verify this is an ICMPV6 packet, else send it upstream.
8403 	 */
8404 	ip6h = (ip6_t *)mp->b_rptr;
8405 	if (ip6h->ip6_nxt == IPPROTO_ICMPV6) {
8406 		iph_hdr_length = IPV6_HDR_LEN;
8407 	} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
8408 	    &nexthdrp) ||
8409 	    *nexthdrp != IPPROTO_ICMPV6) {
8410 		goto noticmpv6;
8411 	}
8412 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
8413 	ip6h = (ip6_t *)&icmp6[1];
8414 	/*
8415 	 * Verify if we have a complete ICMP and inner IP header.
8416 	 */
8417 	if ((uchar_t *)&ip6h[1] > mp->b_wptr)
8418 		goto noticmpv6;
8419 
8420 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
8421 		goto noticmpv6;
8422 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
8423 	/*
8424 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
8425 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
8426 	 * packet.
8427 	 */
8428 	if ((*nexthdrp != IPPROTO_TCP) ||
8429 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
8430 		goto noticmpv6;
8431 	}
8432 
8433 	/*
8434 	 * ICMP errors come on the right queue or come on
8435 	 * listener/global queue for detached connections and
8436 	 * get switched to the right queue. If it comes on the
8437 	 * right queue, policy check has already been done by IP
8438 	 * and thus free the first_mp without verifying the policy.
8439 	 * If it has come for a non-hard bound connection, we need
8440 	 * to verify policy as IP may not have done it.
8441 	 */
8442 	if (!tcp->tcp_hard_bound) {
8443 		if (ipsec_mctl) {
8444 			secure = ipsec_in_is_secure(first_mp);
8445 		} else {
8446 			secure = B_FALSE;
8447 		}
8448 		if (secure) {
8449 			/*
8450 			 * If we are willing to accept this in clear
8451 			 * we don't have to verify policy.
8452 			 */
8453 			if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) {
8454 				if (!tcp_check_policy(tcp, first_mp,
8455 				    NULL, ip6h, secure, ipsec_mctl)) {
8456 					/*
8457 					 * tcp_check_policy called
8458 					 * ip_drop_packet() on failure.
8459 					 */
8460 					return;
8461 				}
8462 			}
8463 		}
8464 	} else if (ipsec_mctl) {
8465 		/*
8466 		 * This is a hard_bound connection. IP has already
8467 		 * verified policy. We don't have to do it again.
8468 		 */
8469 		freeb(first_mp);
8470 		first_mp = mp;
8471 		ipsec_mctl = B_FALSE;
8472 	}
8473 
8474 	seg_seq = ntohl(tcpha->tha_seq);
8475 	/*
8476 	 * TCP SHOULD check that the TCP sequence number contained in
8477 	 * payload of the ICMP error message is within the range
8478 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8479 	 */
8480 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8481 		/*
8482 		 * If the ICMP message is bogus, should we kill the
8483 		 * connection, or should we just drop the bogus ICMP
8484 		 * message? It would probably make more sense to just
8485 		 * drop the message so that if this one managed to get
8486 		 * in, the real connection should not suffer.
8487 		 */
8488 		goto noticmpv6;
8489 	}
8490 
8491 	switch (icmp6->icmp6_type) {
8492 	case ICMP6_PACKET_TOO_BIG:
8493 		/*
8494 		 * Reduce the MSS based on the new MTU.  This will
8495 		 * eliminate any fragmentation locally.
8496 		 * N.B.  There may well be some funny side-effects on
8497 		 * the local send policy and the remote receive policy.
8498 		 * Pending further research, we provide
8499 		 * tcp_ignore_path_mtu just in case this proves
8500 		 * disastrous somewhere.
8501 		 *
8502 		 * After updating the MSS, retransmit part of the
8503 		 * dropped segment using the new mss by calling
8504 		 * tcp_wput_data().  Need to adjust all those
8505 		 * params to make sure tcp_wput_data() work properly.
8506 		 */
8507 		if (tcps->tcps_ignore_path_mtu)
8508 			break;
8509 
8510 		/*
8511 		 * Decrease the MSS by time stamp options
8512 		 * IP options and IPSEC options. tcp_hdr_len
8513 		 * includes time stamp option and IP option
8514 		 * length.
8515 		 */
8516 		new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len -
8517 		    tcp->tcp_ipsec_overhead;
8518 
8519 		/*
8520 		 * Only update the MSS if the new one is
8521 		 * smaller than the previous one.  This is
8522 		 * to avoid problems when getting multiple
8523 		 * ICMP errors for the same MTU.
8524 		 */
8525 		if (new_mss >= tcp->tcp_mss)
8526 			break;
8527 
8528 		ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8529 		ASSERT(ratio >= 1);
8530 		tcp_mss_set(tcp, new_mss, B_TRUE);
8531 
8532 		/*
8533 		 * Make sure we have something to
8534 		 * send.
8535 		 */
8536 		if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8537 		    (tcp->tcp_xmit_head != NULL)) {
8538 			/*
8539 			 * Shrink tcp_cwnd in
8540 			 * proportion to the old MSS/new MSS.
8541 			 */
8542 			tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8543 			if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8544 			    (tcp->tcp_unsent == 0)) {
8545 				tcp->tcp_rexmit_max = tcp->tcp_fss;
8546 			} else {
8547 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
8548 			}
8549 			tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8550 			tcp->tcp_rexmit = B_TRUE;
8551 			tcp->tcp_dupack_cnt = 0;
8552 			tcp->tcp_snd_burst = TCP_CWND_SS;
8553 			tcp_ss_rexmit(tcp);
8554 		}
8555 		break;
8556 
8557 	case ICMP6_DST_UNREACH:
8558 		switch (icmp6->icmp6_code) {
8559 		case ICMP6_DST_UNREACH_NOPORT:
8560 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8561 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8562 			    (seg_seq == tcp->tcp_iss)) {
8563 				(void) tcp_clean_death(tcp,
8564 				    ECONNREFUSED, 8);
8565 			}
8566 			break;
8567 
8568 		case ICMP6_DST_UNREACH_ADMIN:
8569 		case ICMP6_DST_UNREACH_NOROUTE:
8570 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
8571 		case ICMP6_DST_UNREACH_ADDR:
8572 			/* Record the error in case we finally time out. */
8573 			tcp->tcp_client_errno = EHOSTUNREACH;
8574 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8575 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8576 			    (seg_seq == tcp->tcp_iss)) {
8577 				if (tcp->tcp_listener != NULL &&
8578 				    tcp->tcp_listener->tcp_syn_defense) {
8579 					/*
8580 					 * Ditch the half-open connection if we
8581 					 * suspect a SYN attack is under way.
8582 					 */
8583 					tcp_ip_ire_mark_advice(tcp);
8584 					(void) tcp_clean_death(tcp,
8585 					    tcp->tcp_client_errno, 9);
8586 				}
8587 			}
8588 
8589 
8590 			break;
8591 		default:
8592 			break;
8593 		}
8594 		break;
8595 
8596 	case ICMP6_PARAM_PROB:
8597 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
8598 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
8599 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
8600 		    (uchar_t *)nexthdrp) {
8601 			if (tcp->tcp_state == TCPS_SYN_SENT ||
8602 			    tcp->tcp_state == TCPS_SYN_RCVD) {
8603 				(void) tcp_clean_death(tcp,
8604 				    ECONNREFUSED, 10);
8605 			}
8606 			break;
8607 		}
8608 		break;
8609 
8610 	case ICMP6_TIME_EXCEEDED:
8611 	default:
8612 		break;
8613 	}
8614 	freemsg(first_mp);
8615 }
8616 
8617 /*
8618  * Notify IP that we are having trouble with this connection.  IP should
8619  * blow the IRE away and start over.
8620  */
8621 static void
8622 tcp_ip_notify(tcp_t *tcp)
8623 {
8624 	struct iocblk	*iocp;
8625 	ipid_t	*ipid;
8626 	mblk_t	*mp;
8627 
8628 	/* IPv6 has NUD thus notification to delete the IRE is not needed */
8629 	if (tcp->tcp_ipversion == IPV6_VERSION)
8630 		return;
8631 
8632 	mp = mkiocb(IP_IOCTL);
8633 	if (mp == NULL)
8634 		return;
8635 
8636 	iocp = (struct iocblk *)mp->b_rptr;
8637 	iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst);
8638 
8639 	mp->b_cont = allocb(iocp->ioc_count, BPRI_HI);
8640 	if (!mp->b_cont) {
8641 		freeb(mp);
8642 		return;
8643 	}
8644 
8645 	ipid = (ipid_t *)mp->b_cont->b_rptr;
8646 	mp->b_cont->b_wptr += iocp->ioc_count;
8647 	bzero(ipid, sizeof (*ipid));
8648 	ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY;
8649 	ipid->ipid_ire_type = IRE_CACHE;
8650 	ipid->ipid_addr_offset = sizeof (ipid_t);
8651 	ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst);
8652 	/*
8653 	 * Note: in the case of source routing we want to blow away the
8654 	 * route to the first source route hop.
8655 	 */
8656 	bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1],
8657 	    sizeof (tcp->tcp_ipha->ipha_dst));
8658 
8659 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
8660 }
8661 
8662 /* Unlink and return any mblk that looks like it contains an ire */
8663 static mblk_t *
8664 tcp_ire_mp(mblk_t **mpp)
8665 {
8666 	mblk_t 	*mp = *mpp;
8667 	mblk_t	*prev_mp = NULL;
8668 
8669 	for (;;) {
8670 		switch (DB_TYPE(mp)) {
8671 		case IRE_DB_TYPE:
8672 		case IRE_DB_REQ_TYPE:
8673 			if (mp == *mpp) {
8674 				*mpp = mp->b_cont;
8675 			} else {
8676 				prev_mp->b_cont = mp->b_cont;
8677 			}
8678 			mp->b_cont = NULL;
8679 			return (mp);
8680 		default:
8681 			break;
8682 		}
8683 		prev_mp = mp;
8684 		mp = mp->b_cont;
8685 		if (mp == NULL)
8686 			break;
8687 	}
8688 	return (mp);
8689 }
8690 
8691 /*
8692  * Timer callback routine for keepalive probe.  We do a fake resend of
8693  * last ACKed byte.  Then set a timer using RTO.  When the timer expires,
8694  * check to see if we have heard anything from the other end for the last
8695  * RTO period.  If we have, set the timer to expire for another
8696  * tcp_keepalive_intrvl and check again.  If we have not, set a timer using
8697  * RTO << 1 and check again when it expires.  Keep exponentially increasing
8698  * the timeout if we have not heard from the other side.  If for more than
8699  * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything,
8700  * kill the connection unless the keepalive abort threshold is 0.  In
8701  * that case, we will probe "forever."
8702  */
8703 static void
8704 tcp_keepalive_killer(void *arg)
8705 {
8706 	mblk_t	*mp;
8707 	conn_t	*connp = (conn_t *)arg;
8708 	tcp_t  	*tcp = connp->conn_tcp;
8709 	int32_t	firetime;
8710 	int32_t	idletime;
8711 	int32_t	ka_intrvl;
8712 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8713 
8714 	tcp->tcp_ka_tid = 0;
8715 
8716 	if (tcp->tcp_fused)
8717 		return;
8718 
8719 	BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive);
8720 	ka_intrvl = tcp->tcp_ka_interval;
8721 
8722 	/*
8723 	 * Keepalive probe should only be sent if the application has not
8724 	 * done a close on the connection.
8725 	 */
8726 	if (tcp->tcp_state > TCPS_CLOSE_WAIT) {
8727 		return;
8728 	}
8729 	/* Timer fired too early, restart it. */
8730 	if (tcp->tcp_state < TCPS_ESTABLISHED) {
8731 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
8732 		    MSEC_TO_TICK(ka_intrvl));
8733 		return;
8734 	}
8735 
8736 	idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time);
8737 	/*
8738 	 * If we have not heard from the other side for a long
8739 	 * time, kill the connection unless the keepalive abort
8740 	 * threshold is 0.  In that case, we will probe "forever."
8741 	 */
8742 	if (tcp->tcp_ka_abort_thres != 0 &&
8743 	    idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) {
8744 		BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop);
8745 		(void) tcp_clean_death(tcp, tcp->tcp_client_errno ?
8746 		    tcp->tcp_client_errno : ETIMEDOUT, 11);
8747 		return;
8748 	}
8749 
8750 	if (tcp->tcp_snxt == tcp->tcp_suna &&
8751 	    idletime >= ka_intrvl) {
8752 		/* Fake resend of last ACKed byte. */
8753 		mblk_t	*mp1 = allocb(1, BPRI_LO);
8754 
8755 		if (mp1 != NULL) {
8756 			*mp1->b_wptr++ = '\0';
8757 			mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL,
8758 			    tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE);
8759 			freeb(mp1);
8760 			/*
8761 			 * if allocation failed, fall through to start the
8762 			 * timer back.
8763 			 */
8764 			if (mp != NULL) {
8765 				tcp_send_data(tcp, tcp->tcp_wq, mp);
8766 				BUMP_MIB(&tcps->tcps_mib,
8767 				    tcpTimKeepaliveProbe);
8768 				if (tcp->tcp_ka_last_intrvl != 0) {
8769 					int max;
8770 					/*
8771 					 * We should probe again at least
8772 					 * in ka_intrvl, but not more than
8773 					 * tcp_rexmit_interval_max.
8774 					 */
8775 					max = tcps->tcps_rexmit_interval_max;
8776 					firetime = MIN(ka_intrvl - 1,
8777 					    tcp->tcp_ka_last_intrvl << 1);
8778 					if (firetime > max)
8779 						firetime = max;
8780 				} else {
8781 					firetime = tcp->tcp_rto;
8782 				}
8783 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
8784 				    tcp_keepalive_killer,
8785 				    MSEC_TO_TICK(firetime));
8786 				tcp->tcp_ka_last_intrvl = firetime;
8787 				return;
8788 			}
8789 		}
8790 	} else {
8791 		tcp->tcp_ka_last_intrvl = 0;
8792 	}
8793 
8794 	/* firetime can be negative if (mp1 == NULL || mp == NULL) */
8795 	if ((firetime = ka_intrvl - idletime) < 0) {
8796 		firetime = ka_intrvl;
8797 	}
8798 	tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
8799 	    MSEC_TO_TICK(firetime));
8800 }
8801 
8802 int
8803 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
8804 {
8805 	queue_t	*q = tcp->tcp_rq;
8806 	int32_t	mss = tcp->tcp_mss;
8807 	int	maxpsz;
8808 	conn_t	*connp = tcp->tcp_connp;
8809 
8810 	if (TCP_IS_DETACHED(tcp))
8811 		return (mss);
8812 	if (tcp->tcp_fused) {
8813 		maxpsz = tcp_fuse_maxpsz_set(tcp);
8814 		mss = INFPSZ;
8815 	} else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) {
8816 		/*
8817 		 * Set the sd_qn_maxpsz according to the socket send buffer
8818 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
8819 		 * instruct the stream head to copyin user data into contiguous
8820 		 * kernel-allocated buffers without breaking it up into smaller
8821 		 * chunks.  We round up the buffer size to the nearest SMSS.
8822 		 */
8823 		maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss);
8824 		if (tcp->tcp_kssl_ctx == NULL)
8825 			mss = INFPSZ;
8826 		else
8827 			mss = SSL3_MAX_RECORD_LEN;
8828 	} else {
8829 		/*
8830 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
8831 		 * (and a multiple of the mss).  This instructs the stream
8832 		 * head to break down larger than SMSS writes into SMSS-
8833 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
8834 		 */
8835 		/* XXX tune this with ndd tcp_maxpsz_multiplier */
8836 		maxpsz = tcp->tcp_maxpsz * mss;
8837 		if (maxpsz > tcp->tcp_xmit_hiwater/2) {
8838 			maxpsz = tcp->tcp_xmit_hiwater/2;
8839 			/* Round up to nearest mss */
8840 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
8841 		}
8842 	}
8843 
8844 	(void) proto_set_maxpsz(q, connp, maxpsz);
8845 	if (!(IPCL_IS_NONSTR(connp))) {
8846 		/* XXX do it in set_maxpsz()? */
8847 		tcp->tcp_wq->q_maxpsz = maxpsz;
8848 	}
8849 
8850 	if (set_maxblk)
8851 		(void) proto_set_tx_maxblk(q, connp, mss);
8852 	return (mss);
8853 }
8854 
8855 /*
8856  * Extract option values from a tcp header.  We put any found values into the
8857  * tcpopt struct and return a bitmask saying which options were found.
8858  */
8859 static int
8860 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt)
8861 {
8862 	uchar_t		*endp;
8863 	int		len;
8864 	uint32_t	mss;
8865 	uchar_t		*up = (uchar_t *)tcph;
8866 	int		found = 0;
8867 	int32_t		sack_len;
8868 	tcp_seq		sack_begin, sack_end;
8869 	tcp_t		*tcp;
8870 
8871 	endp = up + TCP_HDR_LENGTH(tcph);
8872 	up += TCP_MIN_HEADER_LENGTH;
8873 	while (up < endp) {
8874 		len = endp - up;
8875 		switch (*up) {
8876 		case TCPOPT_EOL:
8877 			break;
8878 
8879 		case TCPOPT_NOP:
8880 			up++;
8881 			continue;
8882 
8883 		case TCPOPT_MAXSEG:
8884 			if (len < TCPOPT_MAXSEG_LEN ||
8885 			    up[1] != TCPOPT_MAXSEG_LEN)
8886 				break;
8887 
8888 			mss = BE16_TO_U16(up+2);
8889 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
8890 			tcpopt->tcp_opt_mss = mss;
8891 			found |= TCP_OPT_MSS_PRESENT;
8892 
8893 			up += TCPOPT_MAXSEG_LEN;
8894 			continue;
8895 
8896 		case TCPOPT_WSCALE:
8897 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
8898 				break;
8899 
8900 			if (up[2] > TCP_MAX_WINSHIFT)
8901 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
8902 			else
8903 				tcpopt->tcp_opt_wscale = up[2];
8904 			found |= TCP_OPT_WSCALE_PRESENT;
8905 
8906 			up += TCPOPT_WS_LEN;
8907 			continue;
8908 
8909 		case TCPOPT_SACK_PERMITTED:
8910 			if (len < TCPOPT_SACK_OK_LEN ||
8911 			    up[1] != TCPOPT_SACK_OK_LEN)
8912 				break;
8913 			found |= TCP_OPT_SACK_OK_PRESENT;
8914 			up += TCPOPT_SACK_OK_LEN;
8915 			continue;
8916 
8917 		case TCPOPT_SACK:
8918 			if (len <= 2 || up[1] <= 2 || len < up[1])
8919 				break;
8920 
8921 			/* If TCP is not interested in SACK blks... */
8922 			if ((tcp = tcpopt->tcp) == NULL) {
8923 				up += up[1];
8924 				continue;
8925 			}
8926 			sack_len = up[1] - TCPOPT_HEADER_LEN;
8927 			up += TCPOPT_HEADER_LEN;
8928 
8929 			/*
8930 			 * If the list is empty, allocate one and assume
8931 			 * nothing is sack'ed.
8932 			 */
8933 			ASSERT(tcp->tcp_sack_info != NULL);
8934 			if (tcp->tcp_notsack_list == NULL) {
8935 				tcp_notsack_update(&(tcp->tcp_notsack_list),
8936 				    tcp->tcp_suna, tcp->tcp_snxt,
8937 				    &(tcp->tcp_num_notsack_blk),
8938 				    &(tcp->tcp_cnt_notsack_list));
8939 
8940 				/*
8941 				 * Make sure tcp_notsack_list is not NULL.
8942 				 * This happens when kmem_alloc(KM_NOSLEEP)
8943 				 * returns NULL.
8944 				 */
8945 				if (tcp->tcp_notsack_list == NULL) {
8946 					up += sack_len;
8947 					continue;
8948 				}
8949 				tcp->tcp_fack = tcp->tcp_suna;
8950 			}
8951 
8952 			while (sack_len > 0) {
8953 				if (up + 8 > endp) {
8954 					up = endp;
8955 					break;
8956 				}
8957 				sack_begin = BE32_TO_U32(up);
8958 				up += 4;
8959 				sack_end = BE32_TO_U32(up);
8960 				up += 4;
8961 				sack_len -= 8;
8962 				/*
8963 				 * Bounds checking.  Make sure the SACK
8964 				 * info is within tcp_suna and tcp_snxt.
8965 				 * If this SACK blk is out of bound, ignore
8966 				 * it but continue to parse the following
8967 				 * blks.
8968 				 */
8969 				if (SEQ_LEQ(sack_end, sack_begin) ||
8970 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
8971 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
8972 					continue;
8973 				}
8974 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
8975 				    sack_begin, sack_end,
8976 				    &(tcp->tcp_num_notsack_blk),
8977 				    &(tcp->tcp_cnt_notsack_list));
8978 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
8979 					tcp->tcp_fack = sack_end;
8980 				}
8981 			}
8982 			found |= TCP_OPT_SACK_PRESENT;
8983 			continue;
8984 
8985 		case TCPOPT_TSTAMP:
8986 			if (len < TCPOPT_TSTAMP_LEN ||
8987 			    up[1] != TCPOPT_TSTAMP_LEN)
8988 				break;
8989 
8990 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
8991 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
8992 
8993 			found |= TCP_OPT_TSTAMP_PRESENT;
8994 
8995 			up += TCPOPT_TSTAMP_LEN;
8996 			continue;
8997 
8998 		default:
8999 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
9000 				break;
9001 			up += up[1];
9002 			continue;
9003 		}
9004 		break;
9005 	}
9006 	return (found);
9007 }
9008 
9009 /*
9010  * Set the mss associated with a particular tcp based on its current value,
9011  * and a new one passed in. Observe minimums and maximums, and reset
9012  * other state variables that we want to view as multiples of mss.
9013  *
9014  * This function is called mainly because values like tcp_mss, tcp_cwnd,
9015  * highwater marks etc. need to be initialized or adjusted.
9016  * 1) From tcp_process_options() when the other side's SYN/SYN-ACK
9017  *    packet arrives.
9018  * 2) We need to set a new MSS when ICMP_FRAGMENTATION_NEEDED or
9019  *    ICMP6_PACKET_TOO_BIG arrives.
9020  * 3) From tcp_paws_check() if the other side stops sending the timestamp,
9021  *    to increase the MSS to use the extra bytes available.
9022  *
9023  * Callers except tcp_paws_check() ensure that they only reduce mss.
9024  */
9025 static void
9026 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss)
9027 {
9028 	uint32_t	mss_max;
9029 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9030 
9031 	if (tcp->tcp_ipversion == IPV4_VERSION)
9032 		mss_max = tcps->tcps_mss_max_ipv4;
9033 	else
9034 		mss_max = tcps->tcps_mss_max_ipv6;
9035 
9036 	if (mss < tcps->tcps_mss_min)
9037 		mss = tcps->tcps_mss_min;
9038 	if (mss > mss_max)
9039 		mss = mss_max;
9040 	/*
9041 	 * Unless naglim has been set by our client to
9042 	 * a non-mss value, force naglim to track mss.
9043 	 * This can help to aggregate small writes.
9044 	 */
9045 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
9046 		tcp->tcp_naglim = mss;
9047 	/*
9048 	 * TCP should be able to buffer at least 4 MSS data for obvious
9049 	 * performance reason.
9050 	 */
9051 	if ((mss << 2) > tcp->tcp_xmit_hiwater)
9052 		tcp->tcp_xmit_hiwater = mss << 2;
9053 
9054 	if (do_ss) {
9055 		/*
9056 		 * Either the tcp_cwnd is as yet uninitialized, or mss is
9057 		 * changing due to a reduction in MTU, presumably as a
9058 		 * result of a new path component, reset cwnd to its
9059 		 * "initial" value, as a multiple of the new mss.
9060 		 */
9061 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_initial);
9062 	} else {
9063 		/*
9064 		 * Called by tcp_paws_check(), the mss increased
9065 		 * marginally to allow use of space previously taken
9066 		 * by the timestamp option. It would be inappropriate
9067 		 * to apply slow start or tcp_init_cwnd values to
9068 		 * tcp_cwnd, simply adjust to a multiple of the new mss.
9069 		 */
9070 		tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss;
9071 		tcp->tcp_cwnd_cnt = 0;
9072 	}
9073 	tcp->tcp_mss = mss;
9074 	(void) tcp_maxpsz_set(tcp, B_TRUE);
9075 }
9076 
9077 /* For /dev/tcp aka AF_INET open */
9078 static int
9079 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9080 {
9081 	return (tcp_open(q, devp, flag, sflag, credp, B_FALSE));
9082 }
9083 
9084 /* For /dev/tcp6 aka AF_INET6 open */
9085 static int
9086 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9087 {
9088 	return (tcp_open(q, devp, flag, sflag, credp, B_TRUE));
9089 }
9090 
9091 static conn_t *
9092 tcp_create_common(queue_t *q, cred_t *credp, boolean_t isv6,
9093     boolean_t issocket, int *errorp)
9094 {
9095 	tcp_t		*tcp = NULL;
9096 	conn_t		*connp;
9097 	int		err;
9098 	zoneid_t	zoneid;
9099 	tcp_stack_t	*tcps;
9100 	squeue_t	*sqp;
9101 
9102 	ASSERT(errorp != NULL);
9103 	/*
9104 	 * Find the proper zoneid and netstack.
9105 	 */
9106 	/*
9107 	 * Special case for install: miniroot needs to be able to
9108 	 * access files via NFS as though it were always in the
9109 	 * global zone.
9110 	 */
9111 	if (credp == kcred && nfs_global_client_only != 0) {
9112 		zoneid = GLOBAL_ZONEID;
9113 		tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
9114 		    netstack_tcp;
9115 		ASSERT(tcps != NULL);
9116 	} else {
9117 		netstack_t *ns;
9118 
9119 		ns = netstack_find_by_cred(credp);
9120 		ASSERT(ns != NULL);
9121 		tcps = ns->netstack_tcp;
9122 		ASSERT(tcps != NULL);
9123 
9124 		/*
9125 		 * For exclusive stacks we set the zoneid to zero
9126 		 * to make TCP operate as if in the global zone.
9127 		 */
9128 		if (tcps->tcps_netstack->netstack_stackid !=
9129 		    GLOBAL_NETSTACKID)
9130 			zoneid = GLOBAL_ZONEID;
9131 		else
9132 			zoneid = crgetzoneid(credp);
9133 	}
9134 	/*
9135 	 * For stackid zero this is done from strplumb.c, but
9136 	 * non-zero stackids are handled here.
9137 	 */
9138 	if (tcps->tcps_g_q == NULL &&
9139 	    tcps->tcps_netstack->netstack_stackid !=
9140 	    GLOBAL_NETSTACKID) {
9141 		tcp_g_q_setup(tcps);
9142 	}
9143 
9144 	sqp = IP_SQUEUE_GET((uint_t)gethrtime());
9145 	connp = (conn_t *)tcp_get_conn(sqp, tcps);
9146 	/*
9147 	 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
9148 	 * so we drop it by one.
9149 	 */
9150 	netstack_rele(tcps->tcps_netstack);
9151 	if (connp == NULL) {
9152 		*errorp = ENOSR;
9153 		return (NULL);
9154 	}
9155 	connp->conn_sqp = sqp;
9156 	connp->conn_initial_sqp = connp->conn_sqp;
9157 	tcp = connp->conn_tcp;
9158 
9159 	if (isv6) {
9160 		connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6);
9161 		connp->conn_send = ip_output_v6;
9162 		connp->conn_af_isv6 = B_TRUE;
9163 		connp->conn_pkt_isv6 = B_TRUE;
9164 		connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT;
9165 		tcp->tcp_ipversion = IPV6_VERSION;
9166 		tcp->tcp_family = AF_INET6;
9167 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
9168 	} else {
9169 		connp->conn_flags |= IPCL_TCP4;
9170 		connp->conn_send = ip_output;
9171 		connp->conn_af_isv6 = B_FALSE;
9172 		connp->conn_pkt_isv6 = B_FALSE;
9173 		tcp->tcp_ipversion = IPV4_VERSION;
9174 		tcp->tcp_family = AF_INET;
9175 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
9176 	}
9177 
9178 	/*
9179 	 * TCP keeps a copy of cred for cache locality reasons but
9180 	 * we put a reference only once. If connp->conn_cred
9181 	 * becomes invalid, tcp_cred should also be set to NULL.
9182 	 */
9183 	tcp->tcp_cred = connp->conn_cred = credp;
9184 	crhold(connp->conn_cred);
9185 	tcp->tcp_cpid = curproc->p_pid;
9186 	tcp->tcp_open_time = lbolt64;
9187 	connp->conn_zoneid = zoneid;
9188 	connp->conn_mlp_type = mlptSingle;
9189 	connp->conn_ulp_labeled = !is_system_labeled();
9190 	ASSERT(connp->conn_netstack == tcps->tcps_netstack);
9191 	ASSERT(tcp->tcp_tcps == tcps);
9192 
9193 	/*
9194 	 * If the caller has the process-wide flag set, then default to MAC
9195 	 * exempt mode.  This allows read-down to unlabeled hosts.
9196 	 */
9197 	if (getpflags(NET_MAC_AWARE, credp) != 0)
9198 		connp->conn_mac_exempt = B_TRUE;
9199 
9200 	connp->conn_dev = NULL;
9201 	if (issocket) {
9202 		connp->conn_flags |= IPCL_SOCKET;
9203 		tcp->tcp_issocket = 1;
9204 	}
9205 
9206 	tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat;
9207 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
9208 	tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat;
9209 
9210 	/* Non-zero default values */
9211 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
9212 
9213 	if (q == NULL) {
9214 		/*
9215 		 * Create a helper stream for non-STREAMS socket.
9216 		 */
9217 		err = ip_create_helper_stream(connp, tcps->tcps_ldi_ident);
9218 		if (err != 0) {
9219 			ip1dbg(("tcp_create_common: create of IP helper stream "
9220 			    "failed\n"));
9221 			CONN_DEC_REF(connp);
9222 			*errorp = err;
9223 			return (NULL);
9224 		}
9225 		q = connp->conn_rq;
9226 	} else {
9227 		RD(q)->q_hiwat = tcps->tcps_recv_hiwat;
9228 	}
9229 
9230 	SOCK_CONNID_INIT(tcp->tcp_connid);
9231 	err = tcp_init(tcp, q);
9232 	if (err != 0) {
9233 		CONN_DEC_REF(connp);
9234 		*errorp = err;
9235 		return (NULL);
9236 	}
9237 
9238 	return (connp);
9239 }
9240 
9241 static int
9242 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
9243     boolean_t isv6)
9244 {
9245 	tcp_t		*tcp = NULL;
9246 	conn_t		*connp = NULL;
9247 	int		err;
9248 	vmem_t		*minor_arena = NULL;
9249 	dev_t		conn_dev;
9250 	boolean_t	issocket;
9251 
9252 	if (q->q_ptr != NULL)
9253 		return (0);
9254 
9255 	if (sflag == MODOPEN)
9256 		return (EINVAL);
9257 
9258 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
9259 	    ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
9260 		minor_arena = ip_minor_arena_la;
9261 	} else {
9262 		/*
9263 		 * Either minor numbers in the large arena were exhausted
9264 		 * or a non socket application is doing the open.
9265 		 * Try to allocate from the small arena.
9266 		 */
9267 		if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
9268 			return (EBUSY);
9269 		}
9270 		minor_arena = ip_minor_arena_sa;
9271 	}
9272 
9273 	ASSERT(minor_arena != NULL);
9274 
9275 	*devp = makedevice(getmajor(*devp), (minor_t)conn_dev);
9276 
9277 	if (flag & SO_FALLBACK) {
9278 		/*
9279 		 * Non streams socket needs a stream to fallback to
9280 		 */
9281 		RD(q)->q_ptr = (void *)conn_dev;
9282 		WR(q)->q_qinfo = &tcp_fallback_sock_winit;
9283 		WR(q)->q_ptr = (void *)minor_arena;
9284 		qprocson(q);
9285 		return (0);
9286 	} else if (flag & SO_ACCEPTOR) {
9287 		q->q_qinfo = &tcp_acceptor_rinit;
9288 		/*
9289 		 * the conn_dev and minor_arena will be subsequently used by
9290 		 * tcp_wput_accept() and tcp_tpi_close_accept() to figure out
9291 		 * the minor device number for this connection from the q_ptr.
9292 		 */
9293 		RD(q)->q_ptr = (void *)conn_dev;
9294 		WR(q)->q_qinfo = &tcp_acceptor_winit;
9295 		WR(q)->q_ptr = (void *)minor_arena;
9296 		qprocson(q);
9297 		return (0);
9298 	}
9299 
9300 	issocket = flag & SO_SOCKSTR;
9301 	connp = tcp_create_common(q, credp, isv6, issocket, &err);
9302 
9303 	if (connp == NULL) {
9304 		inet_minor_free(minor_arena, conn_dev);
9305 		q->q_ptr = WR(q)->q_ptr = NULL;
9306 		return (err);
9307 	}
9308 
9309 	q->q_ptr = WR(q)->q_ptr = connp;
9310 
9311 	connp->conn_dev = conn_dev;
9312 	connp->conn_minor_arena = minor_arena;
9313 
9314 	ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6);
9315 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
9316 
9317 	tcp = connp->conn_tcp;
9318 
9319 	if (issocket) {
9320 		WR(q)->q_qinfo = &tcp_sock_winit;
9321 	} else {
9322 #ifdef  _ILP32
9323 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
9324 #else
9325 		tcp->tcp_acceptor_id = conn_dev;
9326 #endif  /* _ILP32 */
9327 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
9328 	}
9329 
9330 	/*
9331 	 * Put the ref for TCP. Ref for IP was already put
9332 	 * by ipcl_conn_create. Also Make the conn_t globally
9333 	 * visible to walkers
9334 	 */
9335 	mutex_enter(&connp->conn_lock);
9336 	CONN_INC_REF_LOCKED(connp);
9337 	ASSERT(connp->conn_ref == 2);
9338 	connp->conn_state_flags &= ~CONN_INCIPIENT;
9339 	mutex_exit(&connp->conn_lock);
9340 
9341 	qprocson(q);
9342 	return (0);
9343 }
9344 
9345 /*
9346  * Some TCP options can be "set" by requesting them in the option
9347  * buffer. This is needed for XTI feature test though we do not
9348  * allow it in general. We interpret that this mechanism is more
9349  * applicable to OSI protocols and need not be allowed in general.
9350  * This routine filters out options for which it is not allowed (most)
9351  * and lets through those (few) for which it is. [ The XTI interface
9352  * test suite specifics will imply that any XTI_GENERIC level XTI_* if
9353  * ever implemented will have to be allowed here ].
9354  */
9355 static boolean_t
9356 tcp_allow_connopt_set(int level, int name)
9357 {
9358 
9359 	switch (level) {
9360 	case IPPROTO_TCP:
9361 		switch (name) {
9362 		case TCP_NODELAY:
9363 			return (B_TRUE);
9364 		default:
9365 			return (B_FALSE);
9366 		}
9367 		/*NOTREACHED*/
9368 	default:
9369 		return (B_FALSE);
9370 	}
9371 	/*NOTREACHED*/
9372 }
9373 
9374 /*
9375  * this routine gets default values of certain options whose default
9376  * values are maintained by protocol specific code
9377  */
9378 /* ARGSUSED */
9379 int
9380 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
9381 {
9382 	int32_t	*i1 = (int32_t *)ptr;
9383 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
9384 
9385 	switch (level) {
9386 	case IPPROTO_TCP:
9387 		switch (name) {
9388 		case TCP_NOTIFY_THRESHOLD:
9389 			*i1 = tcps->tcps_ip_notify_interval;
9390 			break;
9391 		case TCP_ABORT_THRESHOLD:
9392 			*i1 = tcps->tcps_ip_abort_interval;
9393 			break;
9394 		case TCP_CONN_NOTIFY_THRESHOLD:
9395 			*i1 = tcps->tcps_ip_notify_cinterval;
9396 			break;
9397 		case TCP_CONN_ABORT_THRESHOLD:
9398 			*i1 = tcps->tcps_ip_abort_cinterval;
9399 			break;
9400 		default:
9401 			return (-1);
9402 		}
9403 		break;
9404 	case IPPROTO_IP:
9405 		switch (name) {
9406 		case IP_TTL:
9407 			*i1 = tcps->tcps_ipv4_ttl;
9408 			break;
9409 		default:
9410 			return (-1);
9411 		}
9412 		break;
9413 	case IPPROTO_IPV6:
9414 		switch (name) {
9415 		case IPV6_UNICAST_HOPS:
9416 			*i1 = tcps->tcps_ipv6_hoplimit;
9417 			break;
9418 		default:
9419 			return (-1);
9420 		}
9421 		break;
9422 	default:
9423 		return (-1);
9424 	}
9425 	return (sizeof (int));
9426 }
9427 
9428 static int
9429 tcp_opt_get(conn_t *connp, int level, int name, uchar_t *ptr)
9430 {
9431 	int		*i1 = (int *)ptr;
9432 	tcp_t		*tcp = connp->conn_tcp;
9433 	ip6_pkt_t	*ipp = &tcp->tcp_sticky_ipp;
9434 
9435 	switch (level) {
9436 	case SOL_SOCKET:
9437 		switch (name) {
9438 		case SO_LINGER:	{
9439 			struct linger *lgr = (struct linger *)ptr;
9440 
9441 			lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0;
9442 			lgr->l_linger = tcp->tcp_lingertime;
9443 			}
9444 			return (sizeof (struct linger));
9445 		case SO_DEBUG:
9446 			*i1 = tcp->tcp_debug ? SO_DEBUG : 0;
9447 			break;
9448 		case SO_KEEPALIVE:
9449 			*i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0;
9450 			break;
9451 		case SO_DONTROUTE:
9452 			*i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0;
9453 			break;
9454 		case SO_USELOOPBACK:
9455 			*i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0;
9456 			break;
9457 		case SO_BROADCAST:
9458 			*i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0;
9459 			break;
9460 		case SO_REUSEADDR:
9461 			*i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0;
9462 			break;
9463 		case SO_OOBINLINE:
9464 			*i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0;
9465 			break;
9466 		case SO_DGRAM_ERRIND:
9467 			*i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0;
9468 			break;
9469 		case SO_TYPE:
9470 			*i1 = SOCK_STREAM;
9471 			break;
9472 		case SO_SNDBUF:
9473 			*i1 = tcp->tcp_xmit_hiwater;
9474 			break;
9475 		case SO_RCVBUF:
9476 			*i1 = tcp->tcp_recv_hiwater;
9477 			break;
9478 		case SO_SND_COPYAVOID:
9479 			*i1 = tcp->tcp_snd_zcopy_on ?
9480 			    SO_SND_COPYAVOID : 0;
9481 			break;
9482 		case SO_ALLZONES:
9483 			*i1 = connp->conn_allzones ? 1 : 0;
9484 			break;
9485 		case SO_ANON_MLP:
9486 			*i1 = connp->conn_anon_mlp;
9487 			break;
9488 		case SO_MAC_EXEMPT:
9489 			*i1 = connp->conn_mac_exempt;
9490 			break;
9491 		case SO_EXCLBIND:
9492 			*i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0;
9493 			break;
9494 		case SO_PROTOTYPE:
9495 			*i1 = IPPROTO_TCP;
9496 			break;
9497 		case SO_DOMAIN:
9498 			*i1 = tcp->tcp_family;
9499 			break;
9500 		case SO_ACCEPTCONN:
9501 			*i1 = (tcp->tcp_state == TCPS_LISTEN);
9502 		default:
9503 			return (-1);
9504 		}
9505 		break;
9506 	case IPPROTO_TCP:
9507 		switch (name) {
9508 		case TCP_NODELAY:
9509 			*i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0;
9510 			break;
9511 		case TCP_MAXSEG:
9512 			*i1 = tcp->tcp_mss;
9513 			break;
9514 		case TCP_NOTIFY_THRESHOLD:
9515 			*i1 = (int)tcp->tcp_first_timer_threshold;
9516 			break;
9517 		case TCP_ABORT_THRESHOLD:
9518 			*i1 = tcp->tcp_second_timer_threshold;
9519 			break;
9520 		case TCP_CONN_NOTIFY_THRESHOLD:
9521 			*i1 = tcp->tcp_first_ctimer_threshold;
9522 			break;
9523 		case TCP_CONN_ABORT_THRESHOLD:
9524 			*i1 = tcp->tcp_second_ctimer_threshold;
9525 			break;
9526 		case TCP_RECVDSTADDR:
9527 			*i1 = tcp->tcp_recvdstaddr;
9528 			break;
9529 		case TCP_ANONPRIVBIND:
9530 			*i1 = tcp->tcp_anon_priv_bind;
9531 			break;
9532 		case TCP_EXCLBIND:
9533 			*i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0;
9534 			break;
9535 		case TCP_INIT_CWND:
9536 			*i1 = tcp->tcp_init_cwnd;
9537 			break;
9538 		case TCP_KEEPALIVE_THRESHOLD:
9539 			*i1 = tcp->tcp_ka_interval;
9540 			break;
9541 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
9542 			*i1 = tcp->tcp_ka_abort_thres;
9543 			break;
9544 		case TCP_CORK:
9545 			*i1 = tcp->tcp_cork;
9546 			break;
9547 		default:
9548 			return (-1);
9549 		}
9550 		break;
9551 	case IPPROTO_IP:
9552 		if (tcp->tcp_family != AF_INET)
9553 			return (-1);
9554 		switch (name) {
9555 		case IP_OPTIONS:
9556 		case T_IP_OPTIONS: {
9557 			/*
9558 			 * This is compatible with BSD in that in only return
9559 			 * the reverse source route with the final destination
9560 			 * as the last entry. The first 4 bytes of the option
9561 			 * will contain the final destination.
9562 			 */
9563 			int	opt_len;
9564 
9565 			opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha;
9566 			opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH;
9567 			ASSERT(opt_len >= 0);
9568 			/* Caller ensures enough space */
9569 			if (opt_len > 0) {
9570 				/*
9571 				 * TODO: Do we have to handle getsockopt on an
9572 				 * initiator as well?
9573 				 */
9574 				return (ip_opt_get_user(tcp->tcp_ipha, ptr));
9575 			}
9576 			return (0);
9577 			}
9578 		case IP_TOS:
9579 		case T_IP_TOS:
9580 			*i1 = (int)tcp->tcp_ipha->ipha_type_of_service;
9581 			break;
9582 		case IP_TTL:
9583 			*i1 = (int)tcp->tcp_ipha->ipha_ttl;
9584 			break;
9585 		case IP_NEXTHOP:
9586 			/* Handled at IP level */
9587 			return (-EINVAL);
9588 		default:
9589 			return (-1);
9590 		}
9591 		break;
9592 	case IPPROTO_IPV6:
9593 		/*
9594 		 * IPPROTO_IPV6 options are only supported for sockets
9595 		 * that are using IPv6 on the wire.
9596 		 */
9597 		if (tcp->tcp_ipversion != IPV6_VERSION) {
9598 			return (-1);
9599 		}
9600 		switch (name) {
9601 		case IPV6_UNICAST_HOPS:
9602 			*i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops;
9603 			break;	/* goto sizeof (int) option return */
9604 		case IPV6_BOUND_IF:
9605 			/* Zero if not set */
9606 			*i1 = tcp->tcp_bound_if;
9607 			break;	/* goto sizeof (int) option return */
9608 		case IPV6_RECVPKTINFO:
9609 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)
9610 				*i1 = 1;
9611 			else
9612 				*i1 = 0;
9613 			break;	/* goto sizeof (int) option return */
9614 		case IPV6_RECVTCLASS:
9615 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)
9616 				*i1 = 1;
9617 			else
9618 				*i1 = 0;
9619 			break;	/* goto sizeof (int) option return */
9620 		case IPV6_RECVHOPLIMIT:
9621 			if (tcp->tcp_ipv6_recvancillary &
9622 			    TCP_IPV6_RECVHOPLIMIT)
9623 				*i1 = 1;
9624 			else
9625 				*i1 = 0;
9626 			break;	/* goto sizeof (int) option return */
9627 		case IPV6_RECVHOPOPTS:
9628 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS)
9629 				*i1 = 1;
9630 			else
9631 				*i1 = 0;
9632 			break;	/* goto sizeof (int) option return */
9633 		case IPV6_RECVDSTOPTS:
9634 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS)
9635 				*i1 = 1;
9636 			else
9637 				*i1 = 0;
9638 			break;	/* goto sizeof (int) option return */
9639 		case _OLD_IPV6_RECVDSTOPTS:
9640 			if (tcp->tcp_ipv6_recvancillary &
9641 			    TCP_OLD_IPV6_RECVDSTOPTS)
9642 				*i1 = 1;
9643 			else
9644 				*i1 = 0;
9645 			break;	/* goto sizeof (int) option return */
9646 		case IPV6_RECVRTHDR:
9647 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR)
9648 				*i1 = 1;
9649 			else
9650 				*i1 = 0;
9651 			break;	/* goto sizeof (int) option return */
9652 		case IPV6_RECVRTHDRDSTOPTS:
9653 			if (tcp->tcp_ipv6_recvancillary &
9654 			    TCP_IPV6_RECVRTDSTOPTS)
9655 				*i1 = 1;
9656 			else
9657 				*i1 = 0;
9658 			break;	/* goto sizeof (int) option return */
9659 		case IPV6_PKTINFO: {
9660 			/* XXX assumes that caller has room for max size! */
9661 			struct in6_pktinfo *pkti;
9662 
9663 			pkti = (struct in6_pktinfo *)ptr;
9664 			if (ipp->ipp_fields & IPPF_IFINDEX)
9665 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
9666 			else
9667 				pkti->ipi6_ifindex = 0;
9668 			if (ipp->ipp_fields & IPPF_ADDR)
9669 				pkti->ipi6_addr = ipp->ipp_addr;
9670 			else
9671 				pkti->ipi6_addr = ipv6_all_zeros;
9672 			return (sizeof (struct in6_pktinfo));
9673 		}
9674 		case IPV6_TCLASS:
9675 			if (ipp->ipp_fields & IPPF_TCLASS)
9676 				*i1 = ipp->ipp_tclass;
9677 			else
9678 				*i1 = IPV6_FLOW_TCLASS(
9679 				    IPV6_DEFAULT_VERS_AND_FLOW);
9680 			break;	/* goto sizeof (int) option return */
9681 		case IPV6_NEXTHOP: {
9682 			sin6_t *sin6 = (sin6_t *)ptr;
9683 
9684 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
9685 				return (0);
9686 			*sin6 = sin6_null;
9687 			sin6->sin6_family = AF_INET6;
9688 			sin6->sin6_addr = ipp->ipp_nexthop;
9689 			return (sizeof (sin6_t));
9690 		}
9691 		case IPV6_HOPOPTS:
9692 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
9693 				return (0);
9694 			if (ipp->ipp_hopoptslen <= tcp->tcp_label_len)
9695 				return (0);
9696 			bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len,
9697 			    ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len);
9698 			if (tcp->tcp_label_len > 0) {
9699 				ptr[0] = ((char *)ipp->ipp_hopopts)[0];
9700 				ptr[1] = (ipp->ipp_hopoptslen -
9701 				    tcp->tcp_label_len + 7) / 8 - 1;
9702 			}
9703 			return (ipp->ipp_hopoptslen - tcp->tcp_label_len);
9704 		case IPV6_RTHDRDSTOPTS:
9705 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
9706 				return (0);
9707 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
9708 			return (ipp->ipp_rtdstoptslen);
9709 		case IPV6_RTHDR:
9710 			if (!(ipp->ipp_fields & IPPF_RTHDR))
9711 				return (0);
9712 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
9713 			return (ipp->ipp_rthdrlen);
9714 		case IPV6_DSTOPTS:
9715 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
9716 				return (0);
9717 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
9718 			return (ipp->ipp_dstoptslen);
9719 		case IPV6_SRC_PREFERENCES:
9720 			return (ip6_get_src_preferences(connp,
9721 			    (uint32_t *)ptr));
9722 		case IPV6_PATHMTU: {
9723 			struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr;
9724 
9725 			if (tcp->tcp_state < TCPS_ESTABLISHED)
9726 				return (-1);
9727 
9728 			return (ip_fill_mtuinfo(&connp->conn_remv6,
9729 			    connp->conn_fport, mtuinfo,
9730 			    connp->conn_netstack));
9731 		}
9732 		default:
9733 			return (-1);
9734 		}
9735 		break;
9736 	default:
9737 		return (-1);
9738 	}
9739 	return (sizeof (int));
9740 }
9741 
9742 /*
9743  * TCP routine to get the values of options.
9744  */
9745 int
9746 tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr)
9747 {
9748 	return (tcp_opt_get(Q_TO_CONN(q), level, name, ptr));
9749 }
9750 
9751 /* returns UNIX error, the optlen is a value-result arg */
9752 int
9753 tcp_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name,
9754     void *optvalp, socklen_t *optlen, cred_t *cr)
9755 {
9756 	conn_t		*connp = (conn_t *)proto_handle;
9757 	squeue_t	*sqp = connp->conn_sqp;
9758 	int		error;
9759 	t_uscalar_t	max_optbuf_len;
9760 	void		*optvalp_buf;
9761 	int		len;
9762 
9763 	ASSERT(connp->conn_upper_handle != NULL);
9764 
9765 	error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len,
9766 	    tcp_opt_obj.odb_opt_des_arr,
9767 	    tcp_opt_obj.odb_opt_arr_cnt,
9768 	    tcp_opt_obj.odb_topmost_tpiprovider,
9769 	    B_FALSE, B_TRUE, cr);
9770 	if (error != 0) {
9771 		if (error < 0) {
9772 			error = proto_tlitosyserr(-error);
9773 		}
9774 		return (error);
9775 	}
9776 
9777 	optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP);
9778 
9779 	error = squeue_synch_enter(sqp, connp, NULL);
9780 	if (error == ENOMEM) {
9781 		return (ENOMEM);
9782 	}
9783 
9784 	len = tcp_opt_get(connp, level, option_name, optvalp_buf);
9785 	squeue_synch_exit(sqp, connp);
9786 
9787 	if (len < 0) {
9788 		/*
9789 		 * Pass on to IP
9790 		 */
9791 		kmem_free(optvalp_buf, max_optbuf_len);
9792 		return (ip_get_options(connp, level, option_name,
9793 		    optvalp, optlen, cr));
9794 	} else {
9795 		/*
9796 		 * update optlen and copy option value
9797 		 */
9798 		t_uscalar_t size = MIN(len, *optlen);
9799 		bcopy(optvalp_buf, optvalp, size);
9800 		bcopy(&size, optlen, sizeof (size));
9801 
9802 		kmem_free(optvalp_buf, max_optbuf_len);
9803 		return (0);
9804 	}
9805 }
9806 
9807 /*
9808  * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements.
9809  * Parameters are assumed to be verified by the caller.
9810  */
9811 /* ARGSUSED */
9812 int
9813 tcp_opt_set(conn_t *connp, uint_t optset_context, int level, int name,
9814     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
9815     void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
9816 {
9817 	tcp_t	*tcp = connp->conn_tcp;
9818 	int	*i1 = (int *)invalp;
9819 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
9820 	boolean_t checkonly;
9821 	int	reterr;
9822 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9823 
9824 	switch (optset_context) {
9825 	case SETFN_OPTCOM_CHECKONLY:
9826 		checkonly = B_TRUE;
9827 		/*
9828 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
9829 		 * inlen != 0 implies value supplied and
9830 		 * 	we have to "pretend" to set it.
9831 		 * inlen == 0 implies that there is no
9832 		 * 	value part in T_CHECK request and just validation
9833 		 * done elsewhere should be enough, we just return here.
9834 		 */
9835 		if (inlen == 0) {
9836 			*outlenp = 0;
9837 			return (0);
9838 		}
9839 		break;
9840 	case SETFN_OPTCOM_NEGOTIATE:
9841 		checkonly = B_FALSE;
9842 		break;
9843 	case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */
9844 	case SETFN_CONN_NEGOTIATE:
9845 		checkonly = B_FALSE;
9846 		/*
9847 		 * Negotiating local and "association-related" options
9848 		 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ)
9849 		 * primitives is allowed by XTI, but we choose
9850 		 * to not implement this style negotiation for Internet
9851 		 * protocols (We interpret it is a must for OSI world but
9852 		 * optional for Internet protocols) for all options.
9853 		 * [ Will do only for the few options that enable test
9854 		 * suites that our XTI implementation of this feature
9855 		 * works for transports that do allow it ]
9856 		 */
9857 		if (!tcp_allow_connopt_set(level, name)) {
9858 			*outlenp = 0;
9859 			return (EINVAL);
9860 		}
9861 		break;
9862 	default:
9863 		/*
9864 		 * We should never get here
9865 		 */
9866 		*outlenp = 0;
9867 		return (EINVAL);
9868 	}
9869 
9870 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
9871 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
9872 
9873 	/*
9874 	 * For TCP, we should have no ancillary data sent down
9875 	 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs
9876 	 * has to be zero.
9877 	 */
9878 	ASSERT(thisdg_attrs == NULL);
9879 
9880 	/*
9881 	 * For fixed length options, no sanity check
9882 	 * of passed in length is done. It is assumed *_optcom_req()
9883 	 * routines do the right thing.
9884 	 */
9885 	switch (level) {
9886 	case SOL_SOCKET:
9887 		switch (name) {
9888 		case SO_LINGER: {
9889 			struct linger *lgr = (struct linger *)invalp;
9890 
9891 			if (!checkonly) {
9892 				if (lgr->l_onoff) {
9893 					tcp->tcp_linger = 1;
9894 					tcp->tcp_lingertime = lgr->l_linger;
9895 				} else {
9896 					tcp->tcp_linger = 0;
9897 					tcp->tcp_lingertime = 0;
9898 				}
9899 				/* struct copy */
9900 				*(struct linger *)outvalp = *lgr;
9901 			} else {
9902 				if (!lgr->l_onoff) {
9903 					((struct linger *)
9904 					    outvalp)->l_onoff = 0;
9905 					((struct linger *)
9906 					    outvalp)->l_linger = 0;
9907 				} else {
9908 					/* struct copy */
9909 					*(struct linger *)outvalp = *lgr;
9910 				}
9911 			}
9912 			*outlenp = sizeof (struct linger);
9913 			return (0);
9914 		}
9915 		case SO_DEBUG:
9916 			if (!checkonly)
9917 				tcp->tcp_debug = onoff;
9918 			break;
9919 		case SO_KEEPALIVE:
9920 			if (checkonly) {
9921 				/* check only case */
9922 				break;
9923 			}
9924 
9925 			if (!onoff) {
9926 				if (tcp->tcp_ka_enabled) {
9927 					if (tcp->tcp_ka_tid != 0) {
9928 						(void) TCP_TIMER_CANCEL(tcp,
9929 						    tcp->tcp_ka_tid);
9930 						tcp->tcp_ka_tid = 0;
9931 					}
9932 					tcp->tcp_ka_enabled = 0;
9933 				}
9934 				break;
9935 			}
9936 			if (!tcp->tcp_ka_enabled) {
9937 				/* Crank up the keepalive timer */
9938 				tcp->tcp_ka_last_intrvl = 0;
9939 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
9940 				    tcp_keepalive_killer,
9941 				    MSEC_TO_TICK(tcp->tcp_ka_interval));
9942 				tcp->tcp_ka_enabled = 1;
9943 			}
9944 			break;
9945 		case SO_DONTROUTE:
9946 			/*
9947 			 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are
9948 			 * only of interest to IP.  We track them here only so
9949 			 * that we can report their current value.
9950 			 */
9951 			if (!checkonly) {
9952 				tcp->tcp_dontroute = onoff;
9953 				tcp->tcp_connp->conn_dontroute = onoff;
9954 			}
9955 			break;
9956 		case SO_USELOOPBACK:
9957 			if (!checkonly) {
9958 				tcp->tcp_useloopback = onoff;
9959 				tcp->tcp_connp->conn_loopback = onoff;
9960 			}
9961 			break;
9962 		case SO_BROADCAST:
9963 			if (!checkonly) {
9964 				tcp->tcp_broadcast = onoff;
9965 				tcp->tcp_connp->conn_broadcast = onoff;
9966 			}
9967 			break;
9968 		case SO_REUSEADDR:
9969 			if (!checkonly) {
9970 				tcp->tcp_reuseaddr = onoff;
9971 				tcp->tcp_connp->conn_reuseaddr = onoff;
9972 			}
9973 			break;
9974 		case SO_OOBINLINE:
9975 			if (!checkonly) {
9976 				tcp->tcp_oobinline = onoff;
9977 				if (IPCL_IS_NONSTR(tcp->tcp_connp))
9978 					proto_set_rx_oob_opt(connp, onoff);
9979 			}
9980 			break;
9981 		case SO_DGRAM_ERRIND:
9982 			if (!checkonly)
9983 				tcp->tcp_dgram_errind = onoff;
9984 			break;
9985 		case SO_SNDBUF: {
9986 			if (*i1 > tcps->tcps_max_buf) {
9987 				*outlenp = 0;
9988 				return (ENOBUFS);
9989 			}
9990 			if (checkonly)
9991 				break;
9992 
9993 			tcp->tcp_xmit_hiwater = *i1;
9994 			if (tcps->tcps_snd_lowat_fraction != 0)
9995 				tcp->tcp_xmit_lowater =
9996 				    tcp->tcp_xmit_hiwater /
9997 				    tcps->tcps_snd_lowat_fraction;
9998 			(void) tcp_maxpsz_set(tcp, B_TRUE);
9999 			/*
10000 			 * If we are flow-controlled, recheck the condition.
10001 			 * There are apps that increase SO_SNDBUF size when
10002 			 * flow-controlled (EWOULDBLOCK), and expect the flow
10003 			 * control condition to be lifted right away.
10004 			 */
10005 			mutex_enter(&tcp->tcp_non_sq_lock);
10006 			if (tcp->tcp_flow_stopped &&
10007 			    TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) {
10008 				tcp_clrqfull(tcp);
10009 			}
10010 			mutex_exit(&tcp->tcp_non_sq_lock);
10011 			break;
10012 		}
10013 		case SO_RCVBUF:
10014 			if (*i1 > tcps->tcps_max_buf) {
10015 				*outlenp = 0;
10016 				return (ENOBUFS);
10017 			}
10018 			/* Silently ignore zero */
10019 			if (!checkonly && *i1 != 0) {
10020 				*i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss);
10021 				(void) tcp_rwnd_set(tcp, *i1);
10022 			}
10023 			/*
10024 			 * XXX should we return the rwnd here
10025 			 * and tcp_opt_get ?
10026 			 */
10027 			break;
10028 		case SO_SND_COPYAVOID:
10029 			if (!checkonly) {
10030 				/* we only allow enable at most once for now */
10031 				if (tcp->tcp_loopback ||
10032 				    (tcp->tcp_kssl_ctx != NULL) ||
10033 				    (!tcp->tcp_snd_zcopy_aware &&
10034 				    (onoff != 1 || !tcp_zcopy_check(tcp)))) {
10035 					*outlenp = 0;
10036 					return (EOPNOTSUPP);
10037 				}
10038 				tcp->tcp_snd_zcopy_aware = 1;
10039 			}
10040 			break;
10041 		case SO_RCVTIMEO:
10042 		case SO_SNDTIMEO:
10043 			/*
10044 			 * Pass these two options in order for third part
10045 			 * protocol usage. Here just return directly.
10046 			 */
10047 			return (0);
10048 		case SO_ALLZONES:
10049 			/* Pass option along to IP level for handling */
10050 			return (-EINVAL);
10051 		case SO_ANON_MLP:
10052 			/* Pass option along to IP level for handling */
10053 			return (-EINVAL);
10054 		case SO_MAC_EXEMPT:
10055 			/* Pass option along to IP level for handling */
10056 			return (-EINVAL);
10057 		case SO_EXCLBIND:
10058 			if (!checkonly)
10059 				tcp->tcp_exclbind = onoff;
10060 			break;
10061 		default:
10062 			*outlenp = 0;
10063 			return (EINVAL);
10064 		}
10065 		break;
10066 	case IPPROTO_TCP:
10067 		switch (name) {
10068 		case TCP_NODELAY:
10069 			if (!checkonly)
10070 				tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss;
10071 			break;
10072 		case TCP_NOTIFY_THRESHOLD:
10073 			if (!checkonly)
10074 				tcp->tcp_first_timer_threshold = *i1;
10075 			break;
10076 		case TCP_ABORT_THRESHOLD:
10077 			if (!checkonly)
10078 				tcp->tcp_second_timer_threshold = *i1;
10079 			break;
10080 		case TCP_CONN_NOTIFY_THRESHOLD:
10081 			if (!checkonly)
10082 				tcp->tcp_first_ctimer_threshold = *i1;
10083 			break;
10084 		case TCP_CONN_ABORT_THRESHOLD:
10085 			if (!checkonly)
10086 				tcp->tcp_second_ctimer_threshold = *i1;
10087 			break;
10088 		case TCP_RECVDSTADDR:
10089 			if (tcp->tcp_state > TCPS_LISTEN)
10090 				return (EOPNOTSUPP);
10091 			if (!checkonly)
10092 				tcp->tcp_recvdstaddr = onoff;
10093 			break;
10094 		case TCP_ANONPRIVBIND:
10095 			if ((reterr = secpolicy_net_privaddr(cr, 0,
10096 			    IPPROTO_TCP)) != 0) {
10097 				*outlenp = 0;
10098 				return (reterr);
10099 			}
10100 			if (!checkonly) {
10101 				tcp->tcp_anon_priv_bind = onoff;
10102 			}
10103 			break;
10104 		case TCP_EXCLBIND:
10105 			if (!checkonly)
10106 				tcp->tcp_exclbind = onoff;
10107 			break;	/* goto sizeof (int) option return */
10108 		case TCP_INIT_CWND: {
10109 			uint32_t init_cwnd = *((uint32_t *)invalp);
10110 
10111 			if (checkonly)
10112 				break;
10113 
10114 			/*
10115 			 * Only allow socket with network configuration
10116 			 * privilege to set the initial cwnd to be larger
10117 			 * than allowed by RFC 3390.
10118 			 */
10119 			if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) {
10120 				tcp->tcp_init_cwnd = init_cwnd;
10121 				break;
10122 			}
10123 			if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) {
10124 				*outlenp = 0;
10125 				return (reterr);
10126 			}
10127 			if (init_cwnd > TCP_MAX_INIT_CWND) {
10128 				*outlenp = 0;
10129 				return (EINVAL);
10130 			}
10131 			tcp->tcp_init_cwnd = init_cwnd;
10132 			break;
10133 		}
10134 		case TCP_KEEPALIVE_THRESHOLD:
10135 			if (checkonly)
10136 				break;
10137 
10138 			if (*i1 < tcps->tcps_keepalive_interval_low ||
10139 			    *i1 > tcps->tcps_keepalive_interval_high) {
10140 				*outlenp = 0;
10141 				return (EINVAL);
10142 			}
10143 			if (*i1 != tcp->tcp_ka_interval) {
10144 				tcp->tcp_ka_interval = *i1;
10145 				/*
10146 				 * Check if we need to restart the
10147 				 * keepalive timer.
10148 				 */
10149 				if (tcp->tcp_ka_tid != 0) {
10150 					ASSERT(tcp->tcp_ka_enabled);
10151 					(void) TCP_TIMER_CANCEL(tcp,
10152 					    tcp->tcp_ka_tid);
10153 					tcp->tcp_ka_last_intrvl = 0;
10154 					tcp->tcp_ka_tid = TCP_TIMER(tcp,
10155 					    tcp_keepalive_killer,
10156 					    MSEC_TO_TICK(tcp->tcp_ka_interval));
10157 				}
10158 			}
10159 			break;
10160 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10161 			if (!checkonly) {
10162 				if (*i1 <
10163 				    tcps->tcps_keepalive_abort_interval_low ||
10164 				    *i1 >
10165 				    tcps->tcps_keepalive_abort_interval_high) {
10166 					*outlenp = 0;
10167 					return (EINVAL);
10168 				}
10169 				tcp->tcp_ka_abort_thres = *i1;
10170 			}
10171 			break;
10172 		case TCP_CORK:
10173 			if (!checkonly) {
10174 				/*
10175 				 * if tcp->tcp_cork was set and is now
10176 				 * being unset, we have to make sure that
10177 				 * the remaining data gets sent out. Also
10178 				 * unset tcp->tcp_cork so that tcp_wput_data()
10179 				 * can send data even if it is less than mss
10180 				 */
10181 				if (tcp->tcp_cork && onoff == 0 &&
10182 				    tcp->tcp_unsent > 0) {
10183 					tcp->tcp_cork = B_FALSE;
10184 					tcp_wput_data(tcp, NULL, B_FALSE);
10185 				}
10186 				tcp->tcp_cork = onoff;
10187 			}
10188 			break;
10189 		default:
10190 			*outlenp = 0;
10191 			return (EINVAL);
10192 		}
10193 		break;
10194 	case IPPROTO_IP:
10195 		if (tcp->tcp_family != AF_INET) {
10196 			*outlenp = 0;
10197 			return (ENOPROTOOPT);
10198 		}
10199 		switch (name) {
10200 		case IP_OPTIONS:
10201 		case T_IP_OPTIONS:
10202 			reterr = tcp_opt_set_header(tcp, checkonly,
10203 			    invalp, inlen);
10204 			if (reterr) {
10205 				*outlenp = 0;
10206 				return (reterr);
10207 			}
10208 			/* OK return - copy input buffer into output buffer */
10209 			if (invalp != outvalp) {
10210 				/* don't trust bcopy for identical src/dst */
10211 				bcopy(invalp, outvalp, inlen);
10212 			}
10213 			*outlenp = inlen;
10214 			return (0);
10215 		case IP_TOS:
10216 		case T_IP_TOS:
10217 			if (!checkonly) {
10218 				tcp->tcp_ipha->ipha_type_of_service =
10219 				    (uchar_t)*i1;
10220 				tcp->tcp_tos = (uchar_t)*i1;
10221 			}
10222 			break;
10223 		case IP_TTL:
10224 			if (!checkonly) {
10225 				tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1;
10226 				tcp->tcp_ttl = (uchar_t)*i1;
10227 			}
10228 			break;
10229 		case IP_BOUND_IF:
10230 		case IP_NEXTHOP:
10231 			/* Handled at the IP level */
10232 			return (-EINVAL);
10233 		case IP_SEC_OPT:
10234 			/*
10235 			 * We should not allow policy setting after
10236 			 * we start listening for connections.
10237 			 */
10238 			if (tcp->tcp_state == TCPS_LISTEN) {
10239 				return (EINVAL);
10240 			} else {
10241 				/* Handled at the IP level */
10242 				return (-EINVAL);
10243 			}
10244 		default:
10245 			*outlenp = 0;
10246 			return (EINVAL);
10247 		}
10248 		break;
10249 	case IPPROTO_IPV6: {
10250 		ip6_pkt_t		*ipp;
10251 
10252 		/*
10253 		 * IPPROTO_IPV6 options are only supported for sockets
10254 		 * that are using IPv6 on the wire.
10255 		 */
10256 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10257 			*outlenp = 0;
10258 			return (ENOPROTOOPT);
10259 		}
10260 		/*
10261 		 * Only sticky options; no ancillary data
10262 		 */
10263 		ipp = &tcp->tcp_sticky_ipp;
10264 
10265 		switch (name) {
10266 		case IPV6_UNICAST_HOPS:
10267 			/* -1 means use default */
10268 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
10269 				*outlenp = 0;
10270 				return (EINVAL);
10271 			}
10272 			if (!checkonly) {
10273 				if (*i1 == -1) {
10274 					tcp->tcp_ip6h->ip6_hops =
10275 					    ipp->ipp_unicast_hops =
10276 					    (uint8_t)tcps->tcps_ipv6_hoplimit;
10277 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
10278 					/* Pass modified value to IP. */
10279 					*i1 = tcp->tcp_ip6h->ip6_hops;
10280 				} else {
10281 					tcp->tcp_ip6h->ip6_hops =
10282 					    ipp->ipp_unicast_hops =
10283 					    (uint8_t)*i1;
10284 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
10285 				}
10286 				reterr = tcp_build_hdrs(tcp);
10287 				if (reterr != 0)
10288 					return (reterr);
10289 			}
10290 			break;
10291 		case IPV6_BOUND_IF:
10292 			if (!checkonly) {
10293 				tcp->tcp_bound_if = *i1;
10294 				PASS_OPT_TO_IP(connp);
10295 			}
10296 			break;
10297 		/*
10298 		 * Set boolean switches for ancillary data delivery
10299 		 */
10300 		case IPV6_RECVPKTINFO:
10301 			if (!checkonly) {
10302 				if (onoff)
10303 					tcp->tcp_ipv6_recvancillary |=
10304 					    TCP_IPV6_RECVPKTINFO;
10305 				else
10306 					tcp->tcp_ipv6_recvancillary &=
10307 					    ~TCP_IPV6_RECVPKTINFO;
10308 				/* Force it to be sent up with the next msg */
10309 				tcp->tcp_recvifindex = 0;
10310 				PASS_OPT_TO_IP(connp);
10311 			}
10312 			break;
10313 		case IPV6_RECVTCLASS:
10314 			if (!checkonly) {
10315 				if (onoff)
10316 					tcp->tcp_ipv6_recvancillary |=
10317 					    TCP_IPV6_RECVTCLASS;
10318 				else
10319 					tcp->tcp_ipv6_recvancillary &=
10320 					    ~TCP_IPV6_RECVTCLASS;
10321 				PASS_OPT_TO_IP(connp);
10322 			}
10323 			break;
10324 		case IPV6_RECVHOPLIMIT:
10325 			if (!checkonly) {
10326 				if (onoff)
10327 					tcp->tcp_ipv6_recvancillary |=
10328 					    TCP_IPV6_RECVHOPLIMIT;
10329 				else
10330 					tcp->tcp_ipv6_recvancillary &=
10331 					    ~TCP_IPV6_RECVHOPLIMIT;
10332 				/* Force it to be sent up with the next msg */
10333 				tcp->tcp_recvhops = 0xffffffffU;
10334 				PASS_OPT_TO_IP(connp);
10335 			}
10336 			break;
10337 		case IPV6_RECVHOPOPTS:
10338 			if (!checkonly) {
10339 				if (onoff)
10340 					tcp->tcp_ipv6_recvancillary |=
10341 					    TCP_IPV6_RECVHOPOPTS;
10342 				else
10343 					tcp->tcp_ipv6_recvancillary &=
10344 					    ~TCP_IPV6_RECVHOPOPTS;
10345 				PASS_OPT_TO_IP(connp);
10346 			}
10347 			break;
10348 		case IPV6_RECVDSTOPTS:
10349 			if (!checkonly) {
10350 				if (onoff)
10351 					tcp->tcp_ipv6_recvancillary |=
10352 					    TCP_IPV6_RECVDSTOPTS;
10353 				else
10354 					tcp->tcp_ipv6_recvancillary &=
10355 					    ~TCP_IPV6_RECVDSTOPTS;
10356 				PASS_OPT_TO_IP(connp);
10357 			}
10358 			break;
10359 		case _OLD_IPV6_RECVDSTOPTS:
10360 			if (!checkonly) {
10361 				if (onoff)
10362 					tcp->tcp_ipv6_recvancillary |=
10363 					    TCP_OLD_IPV6_RECVDSTOPTS;
10364 				else
10365 					tcp->tcp_ipv6_recvancillary &=
10366 					    ~TCP_OLD_IPV6_RECVDSTOPTS;
10367 			}
10368 			break;
10369 		case IPV6_RECVRTHDR:
10370 			if (!checkonly) {
10371 				if (onoff)
10372 					tcp->tcp_ipv6_recvancillary |=
10373 					    TCP_IPV6_RECVRTHDR;
10374 				else
10375 					tcp->tcp_ipv6_recvancillary &=
10376 					    ~TCP_IPV6_RECVRTHDR;
10377 				PASS_OPT_TO_IP(connp);
10378 			}
10379 			break;
10380 		case IPV6_RECVRTHDRDSTOPTS:
10381 			if (!checkonly) {
10382 				if (onoff)
10383 					tcp->tcp_ipv6_recvancillary |=
10384 					    TCP_IPV6_RECVRTDSTOPTS;
10385 				else
10386 					tcp->tcp_ipv6_recvancillary &=
10387 					    ~TCP_IPV6_RECVRTDSTOPTS;
10388 				PASS_OPT_TO_IP(connp);
10389 			}
10390 			break;
10391 		case IPV6_PKTINFO:
10392 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
10393 				return (EINVAL);
10394 			if (checkonly)
10395 				break;
10396 
10397 			if (inlen == 0) {
10398 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
10399 			} else {
10400 				struct in6_pktinfo *pkti;
10401 
10402 				pkti = (struct in6_pktinfo *)invalp;
10403 				/*
10404 				 * RFC 3542 states that ipi6_addr must be
10405 				 * the unspecified address when setting the
10406 				 * IPV6_PKTINFO sticky socket option on a
10407 				 * TCP socket.
10408 				 */
10409 				if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr))
10410 					return (EINVAL);
10411 				/*
10412 				 * IP will validate the source address and
10413 				 * interface index.
10414 				 */
10415 				if (IPCL_IS_NONSTR(tcp->tcp_connp)) {
10416 					reterr = ip_set_options(tcp->tcp_connp,
10417 					    level, name, invalp, inlen, cr);
10418 				} else {
10419 					reterr = ip6_set_pktinfo(cr,
10420 					    tcp->tcp_connp, pkti);
10421 				}
10422 				if (reterr != 0)
10423 					return (reterr);
10424 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
10425 				ipp->ipp_addr = pkti->ipi6_addr;
10426 				if (ipp->ipp_ifindex != 0)
10427 					ipp->ipp_fields |= IPPF_IFINDEX;
10428 				else
10429 					ipp->ipp_fields &= ~IPPF_IFINDEX;
10430 				if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr))
10431 					ipp->ipp_fields |= IPPF_ADDR;
10432 				else
10433 					ipp->ipp_fields &= ~IPPF_ADDR;
10434 			}
10435 			reterr = tcp_build_hdrs(tcp);
10436 			if (reterr != 0)
10437 				return (reterr);
10438 			break;
10439 		case IPV6_TCLASS:
10440 			if (inlen != 0 && inlen != sizeof (int))
10441 				return (EINVAL);
10442 			if (checkonly)
10443 				break;
10444 
10445 			if (inlen == 0) {
10446 				ipp->ipp_fields &= ~IPPF_TCLASS;
10447 			} else {
10448 				if (*i1 > 255 || *i1 < -1)
10449 					return (EINVAL);
10450 				if (*i1 == -1) {
10451 					ipp->ipp_tclass = 0;
10452 					*i1 = 0;
10453 				} else {
10454 					ipp->ipp_tclass = *i1;
10455 				}
10456 				ipp->ipp_fields |= IPPF_TCLASS;
10457 			}
10458 			reterr = tcp_build_hdrs(tcp);
10459 			if (reterr != 0)
10460 				return (reterr);
10461 			break;
10462 		case IPV6_NEXTHOP:
10463 			/*
10464 			 * IP will verify that the nexthop is reachable
10465 			 * and fail for sticky options.
10466 			 */
10467 			if (inlen != 0 && inlen != sizeof (sin6_t))
10468 				return (EINVAL);
10469 			if (checkonly)
10470 				break;
10471 
10472 			if (inlen == 0) {
10473 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
10474 			} else {
10475 				sin6_t *sin6 = (sin6_t *)invalp;
10476 
10477 				if (sin6->sin6_family != AF_INET6)
10478 					return (EAFNOSUPPORT);
10479 				if (IN6_IS_ADDR_V4MAPPED(
10480 				    &sin6->sin6_addr))
10481 					return (EADDRNOTAVAIL);
10482 				ipp->ipp_nexthop = sin6->sin6_addr;
10483 				if (!IN6_IS_ADDR_UNSPECIFIED(
10484 				    &ipp->ipp_nexthop))
10485 					ipp->ipp_fields |= IPPF_NEXTHOP;
10486 				else
10487 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
10488 			}
10489 			reterr = tcp_build_hdrs(tcp);
10490 			if (reterr != 0)
10491 				return (reterr);
10492 			PASS_OPT_TO_IP(connp);
10493 			break;
10494 		case IPV6_HOPOPTS: {
10495 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
10496 
10497 			/*
10498 			 * Sanity checks - minimum size, size a multiple of
10499 			 * eight bytes, and matching size passed in.
10500 			 */
10501 			if (inlen != 0 &&
10502 			    inlen != (8 * (hopts->ip6h_len + 1)))
10503 				return (EINVAL);
10504 
10505 			if (checkonly)
10506 				break;
10507 
10508 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10509 			    (uchar_t **)&ipp->ipp_hopopts,
10510 			    &ipp->ipp_hopoptslen, tcp->tcp_label_len);
10511 			if (reterr != 0)
10512 				return (reterr);
10513 			if (ipp->ipp_hopoptslen == 0)
10514 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
10515 			else
10516 				ipp->ipp_fields |= IPPF_HOPOPTS;
10517 			reterr = tcp_build_hdrs(tcp);
10518 			if (reterr != 0)
10519 				return (reterr);
10520 			break;
10521 		}
10522 		case IPV6_RTHDRDSTOPTS: {
10523 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10524 
10525 			/*
10526 			 * Sanity checks - minimum size, size a multiple of
10527 			 * eight bytes, and matching size passed in.
10528 			 */
10529 			if (inlen != 0 &&
10530 			    inlen != (8 * (dopts->ip6d_len + 1)))
10531 				return (EINVAL);
10532 
10533 			if (checkonly)
10534 				break;
10535 
10536 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10537 			    (uchar_t **)&ipp->ipp_rtdstopts,
10538 			    &ipp->ipp_rtdstoptslen, 0);
10539 			if (reterr != 0)
10540 				return (reterr);
10541 			if (ipp->ipp_rtdstoptslen == 0)
10542 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
10543 			else
10544 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
10545 			reterr = tcp_build_hdrs(tcp);
10546 			if (reterr != 0)
10547 				return (reterr);
10548 			break;
10549 		}
10550 		case IPV6_DSTOPTS: {
10551 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10552 
10553 			/*
10554 			 * Sanity checks - minimum size, size a multiple of
10555 			 * eight bytes, and matching size passed in.
10556 			 */
10557 			if (inlen != 0 &&
10558 			    inlen != (8 * (dopts->ip6d_len + 1)))
10559 				return (EINVAL);
10560 
10561 			if (checkonly)
10562 				break;
10563 
10564 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10565 			    (uchar_t **)&ipp->ipp_dstopts,
10566 			    &ipp->ipp_dstoptslen, 0);
10567 			if (reterr != 0)
10568 				return (reterr);
10569 			if (ipp->ipp_dstoptslen == 0)
10570 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
10571 			else
10572 				ipp->ipp_fields |= IPPF_DSTOPTS;
10573 			reterr = tcp_build_hdrs(tcp);
10574 			if (reterr != 0)
10575 				return (reterr);
10576 			break;
10577 		}
10578 		case IPV6_RTHDR: {
10579 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
10580 
10581 			/*
10582 			 * Sanity checks - minimum size, size a multiple of
10583 			 * eight bytes, and matching size passed in.
10584 			 */
10585 			if (inlen != 0 &&
10586 			    inlen != (8 * (rt->ip6r_len + 1)))
10587 				return (EINVAL);
10588 
10589 			if (checkonly)
10590 				break;
10591 
10592 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10593 			    (uchar_t **)&ipp->ipp_rthdr,
10594 			    &ipp->ipp_rthdrlen, 0);
10595 			if (reterr != 0)
10596 				return (reterr);
10597 			if (ipp->ipp_rthdrlen == 0)
10598 				ipp->ipp_fields &= ~IPPF_RTHDR;
10599 			else
10600 				ipp->ipp_fields |= IPPF_RTHDR;
10601 			reterr = tcp_build_hdrs(tcp);
10602 			if (reterr != 0)
10603 				return (reterr);
10604 			break;
10605 		}
10606 		case IPV6_V6ONLY:
10607 			if (!checkonly) {
10608 				tcp->tcp_connp->conn_ipv6_v6only = onoff;
10609 			}
10610 			break;
10611 		case IPV6_USE_MIN_MTU:
10612 			if (inlen != sizeof (int))
10613 				return (EINVAL);
10614 
10615 			if (*i1 < -1 || *i1 > 1)
10616 				return (EINVAL);
10617 
10618 			if (checkonly)
10619 				break;
10620 
10621 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
10622 			ipp->ipp_use_min_mtu = *i1;
10623 			break;
10624 		case IPV6_SEC_OPT:
10625 			/*
10626 			 * We should not allow policy setting after
10627 			 * we start listening for connections.
10628 			 */
10629 			if (tcp->tcp_state == TCPS_LISTEN) {
10630 				return (EINVAL);
10631 			} else {
10632 				/* Handled at the IP level */
10633 				return (-EINVAL);
10634 			}
10635 		case IPV6_SRC_PREFERENCES:
10636 			if (inlen != sizeof (uint32_t))
10637 				return (EINVAL);
10638 			reterr = ip6_set_src_preferences(tcp->tcp_connp,
10639 			    *(uint32_t *)invalp);
10640 			if (reterr != 0) {
10641 				*outlenp = 0;
10642 				return (reterr);
10643 			}
10644 			break;
10645 		default:
10646 			*outlenp = 0;
10647 			return (EINVAL);
10648 		}
10649 		break;
10650 	}		/* end IPPROTO_IPV6 */
10651 	default:
10652 		*outlenp = 0;
10653 		return (EINVAL);
10654 	}
10655 	/*
10656 	 * Common case of OK return with outval same as inval
10657 	 */
10658 	if (invalp != outvalp) {
10659 		/* don't trust bcopy for identical src/dst */
10660 		(void) bcopy(invalp, outvalp, inlen);
10661 	}
10662 	*outlenp = inlen;
10663 	return (0);
10664 }
10665 
10666 /* ARGSUSED */
10667 int
10668 tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, int name,
10669     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
10670     void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
10671 {
10672 	conn_t	*connp =  Q_TO_CONN(q);
10673 
10674 	return (tcp_opt_set(connp, optset_context, level, name, inlen, invalp,
10675 	    outlenp, outvalp, thisdg_attrs, cr, mblk));
10676 }
10677 
10678 int
10679 tcp_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name,
10680     const void *optvalp, socklen_t optlen, cred_t *cr)
10681 {
10682 	conn_t		*connp = (conn_t *)proto_handle;
10683 	squeue_t	*sqp = connp->conn_sqp;
10684 	int		error;
10685 
10686 	ASSERT(connp->conn_upper_handle != NULL);
10687 	/*
10688 	 * Entering the squeue synchronously can result in a context switch,
10689 	 * which can cause a rather sever performance degradation. So we try to
10690 	 * handle whatever options we can without entering the squeue.
10691 	 */
10692 	if (level == IPPROTO_TCP) {
10693 		switch (option_name) {
10694 		case TCP_NODELAY:
10695 			if (optlen != sizeof (int32_t))
10696 				return (EINVAL);
10697 			mutex_enter(&connp->conn_tcp->tcp_non_sq_lock);
10698 			connp->conn_tcp->tcp_naglim = *(int *)optvalp ? 1 :
10699 			    connp->conn_tcp->tcp_mss;
10700 			mutex_exit(&connp->conn_tcp->tcp_non_sq_lock);
10701 			return (0);
10702 		default:
10703 			break;
10704 		}
10705 	}
10706 
10707 	error = squeue_synch_enter(sqp, connp, NULL);
10708 	if (error == ENOMEM) {
10709 		return (ENOMEM);
10710 	}
10711 
10712 	error = proto_opt_check(level, option_name, optlen, NULL,
10713 	    tcp_opt_obj.odb_opt_des_arr,
10714 	    tcp_opt_obj.odb_opt_arr_cnt,
10715 	    tcp_opt_obj.odb_topmost_tpiprovider,
10716 	    B_TRUE, B_FALSE, cr);
10717 
10718 	if (error != 0) {
10719 		if (error < 0) {
10720 			error = proto_tlitosyserr(-error);
10721 		}
10722 		squeue_synch_exit(sqp, connp);
10723 		return (error);
10724 	}
10725 
10726 	error = tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name,
10727 	    optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp,
10728 	    NULL, cr, NULL);
10729 	squeue_synch_exit(sqp, connp);
10730 
10731 	if (error < 0) {
10732 		/*
10733 		 * Pass on to ip
10734 		 */
10735 		error = ip_set_options(connp, level, option_name, optvalp,
10736 		    optlen, cr);
10737 	}
10738 	return (error);
10739 }
10740 
10741 /*
10742  * Update tcp_sticky_hdrs based on tcp_sticky_ipp.
10743  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
10744  * headers, and the maximum size tcp header (to avoid reallocation
10745  * on the fly for additional tcp options).
10746  * Returns failure if can't allocate memory.
10747  */
10748 static int
10749 tcp_build_hdrs(tcp_t *tcp)
10750 {
10751 	char	*hdrs;
10752 	uint_t	hdrs_len;
10753 	ip6i_t	*ip6i;
10754 	char	buf[TCP_MAX_HDR_LENGTH];
10755 	ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
10756 	in6_addr_t src, dst;
10757 	tcp_stack_t	*tcps = tcp->tcp_tcps;
10758 	conn_t *connp = tcp->tcp_connp;
10759 
10760 	/*
10761 	 * save the existing tcp header and source/dest IP addresses
10762 	 */
10763 	bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len);
10764 	src = tcp->tcp_ip6h->ip6_src;
10765 	dst = tcp->tcp_ip6h->ip6_dst;
10766 	hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH;
10767 	ASSERT(hdrs_len != 0);
10768 	if (hdrs_len > tcp->tcp_iphc_len) {
10769 		/* Need to reallocate */
10770 		hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP);
10771 		if (hdrs == NULL)
10772 			return (ENOMEM);
10773 		if (tcp->tcp_iphc != NULL) {
10774 			if (tcp->tcp_hdr_grown) {
10775 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
10776 			} else {
10777 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
10778 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
10779 			}
10780 			tcp->tcp_iphc_len = 0;
10781 		}
10782 		ASSERT(tcp->tcp_iphc_len == 0);
10783 		tcp->tcp_iphc = hdrs;
10784 		tcp->tcp_iphc_len = hdrs_len;
10785 		tcp->tcp_hdr_grown = B_TRUE;
10786 	}
10787 	ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc,
10788 	    hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP);
10789 
10790 	/* Set header fields not in ipp */
10791 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
10792 		ip6i = (ip6i_t *)tcp->tcp_iphc;
10793 		tcp->tcp_ip6h = (ip6_t *)&ip6i[1];
10794 	} else {
10795 		tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
10796 	}
10797 	/*
10798 	 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one.
10799 	 *
10800 	 * tcp->tcp_tcp_hdr_len doesn't change here.
10801 	 */
10802 	tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH;
10803 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len);
10804 	tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len;
10805 
10806 	bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len);
10807 
10808 	tcp->tcp_ip6h->ip6_src = src;
10809 	tcp->tcp_ip6h->ip6_dst = dst;
10810 
10811 	/*
10812 	 * If the hop limit was not set by ip_build_hdrs_v6(), set it to
10813 	 * the default value for TCP.
10814 	 */
10815 	if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS))
10816 		tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit;
10817 
10818 	/*
10819 	 * If we're setting extension headers after a connection
10820 	 * has been established, and if we have a routing header
10821 	 * among the extension headers, call ip_massage_options_v6 to
10822 	 * manipulate the routing header/ip6_dst set the checksum
10823 	 * difference in the tcp header template.
10824 	 * (This happens in tcp_connect_ipv6 if the routing header
10825 	 * is set prior to the connect.)
10826 	 * Set the tcp_sum to zero first in case we've cleared a
10827 	 * routing header or don't have one at all.
10828 	 */
10829 	tcp->tcp_sum = 0;
10830 	if ((tcp->tcp_state >= TCPS_SYN_SENT) &&
10831 	    (tcp->tcp_ipp_fields & IPPF_RTHDR)) {
10832 		ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h,
10833 		    (uint8_t *)tcp->tcp_tcph);
10834 		if (rth != NULL) {
10835 			tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h,
10836 			    rth, tcps->tcps_netstack);
10837 			tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
10838 			    (tcp->tcp_sum >> 16));
10839 		}
10840 	}
10841 
10842 	/* Try to get everything in a single mblk */
10843 	(void) proto_set_tx_wroff(tcp->tcp_rq, connp,
10844 	    hdrs_len + tcps->tcps_wroff_xtra);
10845 	return (0);
10846 }
10847 
10848 /*
10849  * Transfer any source route option from ipha to buf/dst in reversed form.
10850  */
10851 static int
10852 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst)
10853 {
10854 	ipoptp_t	opts;
10855 	uchar_t		*opt;
10856 	uint8_t		optval;
10857 	uint8_t		optlen;
10858 	uint32_t	len = 0;
10859 
10860 	for (optval = ipoptp_first(&opts, ipha);
10861 	    optval != IPOPT_EOL;
10862 	    optval = ipoptp_next(&opts)) {
10863 		opt = opts.ipoptp_cur;
10864 		optlen = opts.ipoptp_len;
10865 		switch (optval) {
10866 			int	off1, off2;
10867 		case IPOPT_SSRR:
10868 		case IPOPT_LSRR:
10869 
10870 			/* Reverse source route */
10871 			/*
10872 			 * First entry should be the next to last one in the
10873 			 * current source route (the last entry is our
10874 			 * address.)
10875 			 * The last entry should be the final destination.
10876 			 */
10877 			buf[IPOPT_OPTVAL] = (uint8_t)optval;
10878 			buf[IPOPT_OLEN] = (uint8_t)optlen;
10879 			off1 = IPOPT_MINOFF_SR - 1;
10880 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
10881 			if (off2 < 0) {
10882 				/* No entries in source route */
10883 				break;
10884 			}
10885 			bcopy(opt + off2, dst, IP_ADDR_LEN);
10886 			/*
10887 			 * Note: use src since ipha has not had its src
10888 			 * and dst reversed (it is in the state it was
10889 			 * received.
10890 			 */
10891 			bcopy(&ipha->ipha_src, buf + off2,
10892 			    IP_ADDR_LEN);
10893 			off2 -= IP_ADDR_LEN;
10894 
10895 			while (off2 > 0) {
10896 				bcopy(opt + off2, buf + off1,
10897 				    IP_ADDR_LEN);
10898 				off1 += IP_ADDR_LEN;
10899 				off2 -= IP_ADDR_LEN;
10900 			}
10901 			buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
10902 			buf += optlen;
10903 			len += optlen;
10904 			break;
10905 		}
10906 	}
10907 done:
10908 	/* Pad the resulting options */
10909 	while (len & 0x3) {
10910 		*buf++ = IPOPT_EOL;
10911 		len++;
10912 	}
10913 	return (len);
10914 }
10915 
10916 
10917 /*
10918  * Extract and revert a source route from ipha (if any)
10919  * and then update the relevant fields in both tcp_t and the standard header.
10920  */
10921 static void
10922 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha)
10923 {
10924 	char	buf[TCP_MAX_HDR_LENGTH];
10925 	uint_t	tcph_len;
10926 	int	len;
10927 
10928 	ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
10929 	len = IPH_HDR_LENGTH(ipha);
10930 	if (len == IP_SIMPLE_HDR_LENGTH)
10931 		/* Nothing to do */
10932 		return;
10933 	if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH ||
10934 	    (len & 0x3))
10935 		return;
10936 
10937 	tcph_len = tcp->tcp_tcp_hdr_len;
10938 	bcopy(tcp->tcp_tcph, buf, tcph_len);
10939 	tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) +
10940 	    (tcp->tcp_ipha->ipha_dst & 0xffff);
10941 	len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha +
10942 	    IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst);
10943 	len += IP_SIMPLE_HDR_LENGTH;
10944 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
10945 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
10946 	if ((int)tcp->tcp_sum < 0)
10947 		tcp->tcp_sum--;
10948 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
10949 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16));
10950 	tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len);
10951 	bcopy(buf, tcp->tcp_tcph, tcph_len);
10952 	tcp->tcp_ip_hdr_len = len;
10953 	tcp->tcp_ipha->ipha_version_and_hdr_length =
10954 	    (IP_VERSION << 4) | (len >> 2);
10955 	len += tcph_len;
10956 	tcp->tcp_hdr_len = len;
10957 }
10958 
10959 /*
10960  * Copy the standard header into its new location,
10961  * lay in the new options and then update the relevant
10962  * fields in both tcp_t and the standard header.
10963  */
10964 static int
10965 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len)
10966 {
10967 	uint_t	tcph_len;
10968 	uint8_t	*ip_optp;
10969 	tcph_t	*new_tcph;
10970 	tcp_stack_t	*tcps = tcp->tcp_tcps;
10971 	conn_t	*connp = tcp->tcp_connp;
10972 
10973 	if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3))
10974 		return (EINVAL);
10975 
10976 	if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len)
10977 		return (EINVAL);
10978 
10979 	if (checkonly) {
10980 		/*
10981 		 * do not really set, just pretend to - T_CHECK
10982 		 */
10983 		return (0);
10984 	}
10985 
10986 	ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH;
10987 	if (tcp->tcp_label_len > 0) {
10988 		int padlen;
10989 		uint8_t opt;
10990 
10991 		/* convert list termination to no-ops */
10992 		padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN];
10993 		ip_optp += ip_optp[IPOPT_OLEN];
10994 		opt = len > 0 ? IPOPT_NOP : IPOPT_EOL;
10995 		while (--padlen >= 0)
10996 			*ip_optp++ = opt;
10997 	}
10998 	tcph_len = tcp->tcp_tcp_hdr_len;
10999 	new_tcph = (tcph_t *)(ip_optp + len);
11000 	ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len);
11001 	tcp->tcp_tcph = new_tcph;
11002 	bcopy(ptr, ip_optp, len);
11003 
11004 	len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len;
11005 
11006 	tcp->tcp_ip_hdr_len = len;
11007 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11008 	    (IP_VERSION << 4) | (len >> 2);
11009 	tcp->tcp_hdr_len = len + tcph_len;
11010 	if (!TCP_IS_DETACHED(tcp)) {
11011 		/* Always allocate room for all options. */
11012 		(void) proto_set_tx_wroff(tcp->tcp_rq, connp,
11013 		    TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra);
11014 	}
11015 	return (0);
11016 }
11017 
11018 /* Get callback routine passed to nd_load by tcp_param_register */
11019 /* ARGSUSED */
11020 static int
11021 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
11022 {
11023 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11024 
11025 	(void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val);
11026 	return (0);
11027 }
11028 
11029 /*
11030  * Walk through the param array specified registering each element with the
11031  * named dispatch handler.
11032  */
11033 static boolean_t
11034 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps)
11035 {
11036 	for (; cnt-- > 0; tcppa++) {
11037 		if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) {
11038 			if (!nd_load(ndp, tcppa->tcp_param_name,
11039 			    tcp_param_get, tcp_param_set,
11040 			    (caddr_t)tcppa)) {
11041 				nd_free(ndp);
11042 				return (B_FALSE);
11043 			}
11044 		}
11045 	}
11046 	tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t),
11047 	    KM_SLEEP);
11048 	bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param,
11049 	    sizeof (tcpparam_t));
11050 	if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name,
11051 	    tcp_param_get, tcp_param_set_aligned,
11052 	    (caddr_t)tcps->tcps_wroff_xtra_param)) {
11053 		nd_free(ndp);
11054 		return (B_FALSE);
11055 	}
11056 	tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t),
11057 	    KM_SLEEP);
11058 	bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param,
11059 	    sizeof (tcpparam_t));
11060 	if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name,
11061 	    tcp_param_get, tcp_param_set_aligned,
11062 	    (caddr_t)tcps->tcps_mdt_head_param)) {
11063 		nd_free(ndp);
11064 		return (B_FALSE);
11065 	}
11066 	tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t),
11067 	    KM_SLEEP);
11068 	bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param,
11069 	    sizeof (tcpparam_t));
11070 	if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name,
11071 	    tcp_param_get, tcp_param_set_aligned,
11072 	    (caddr_t)tcps->tcps_mdt_tail_param)) {
11073 		nd_free(ndp);
11074 		return (B_FALSE);
11075 	}
11076 	tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t),
11077 	    KM_SLEEP);
11078 	bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param,
11079 	    sizeof (tcpparam_t));
11080 	if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name,
11081 	    tcp_param_get, tcp_param_set_aligned,
11082 	    (caddr_t)tcps->tcps_mdt_max_pbufs_param)) {
11083 		nd_free(ndp);
11084 		return (B_FALSE);
11085 	}
11086 	if (!nd_load(ndp, "tcp_extra_priv_ports",
11087 	    tcp_extra_priv_ports_get, NULL, NULL)) {
11088 		nd_free(ndp);
11089 		return (B_FALSE);
11090 	}
11091 	if (!nd_load(ndp, "tcp_extra_priv_ports_add",
11092 	    NULL, tcp_extra_priv_ports_add, NULL)) {
11093 		nd_free(ndp);
11094 		return (B_FALSE);
11095 	}
11096 	if (!nd_load(ndp, "tcp_extra_priv_ports_del",
11097 	    NULL, tcp_extra_priv_ports_del, NULL)) {
11098 		nd_free(ndp);
11099 		return (B_FALSE);
11100 	}
11101 	if (!nd_load(ndp, "tcp_1948_phrase", NULL,
11102 	    tcp_1948_phrase_set, NULL)) {
11103 		nd_free(ndp);
11104 		return (B_FALSE);
11105 	}
11106 	/*
11107 	 * Dummy ndd variables - only to convey obsolescence information
11108 	 * through printing of their name (no get or set routines)
11109 	 * XXX Remove in future releases ?
11110 	 */
11111 	if (!nd_load(ndp,
11112 	    "tcp_close_wait_interval(obsoleted - "
11113 	    "use tcp_time_wait_interval)", NULL, NULL, NULL)) {
11114 		nd_free(ndp);
11115 		return (B_FALSE);
11116 	}
11117 	return (B_TRUE);
11118 }
11119 
11120 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */
11121 /* ARGSUSED */
11122 static int
11123 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
11124     cred_t *cr)
11125 {
11126 	long new_value;
11127 	tcpparam_t *tcppa = (tcpparam_t *)cp;
11128 
11129 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11130 	    new_value < tcppa->tcp_param_min ||
11131 	    new_value > tcppa->tcp_param_max) {
11132 		return (EINVAL);
11133 	}
11134 	/*
11135 	 * Need to make sure new_value is a multiple of 4.  If it is not,
11136 	 * round it up.  For future 64 bit requirement, we actually make it
11137 	 * a multiple of 8.
11138 	 */
11139 	if (new_value & 0x7) {
11140 		new_value = (new_value & ~0x7) + 0x8;
11141 	}
11142 	tcppa->tcp_param_val = new_value;
11143 	return (0);
11144 }
11145 
11146 /* Set callback routine passed to nd_load by tcp_param_register */
11147 /* ARGSUSED */
11148 static int
11149 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
11150 {
11151 	long	new_value;
11152 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11153 
11154 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11155 	    new_value < tcppa->tcp_param_min ||
11156 	    new_value > tcppa->tcp_param_max) {
11157 		return (EINVAL);
11158 	}
11159 	tcppa->tcp_param_val = new_value;
11160 	return (0);
11161 }
11162 
11163 /*
11164  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
11165  * is filled, return as much as we can.  The message passed in may be
11166  * multi-part, chained using b_cont.  "start" is the starting sequence
11167  * number for this piece.
11168  */
11169 static mblk_t *
11170 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
11171 {
11172 	uint32_t	end;
11173 	mblk_t		*mp1;
11174 	mblk_t		*mp2;
11175 	mblk_t		*next_mp;
11176 	uint32_t	u1;
11177 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11178 
11179 	/* Walk through all the new pieces. */
11180 	do {
11181 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
11182 		    (uintptr_t)INT_MAX);
11183 		end = start + (int)(mp->b_wptr - mp->b_rptr);
11184 		next_mp = mp->b_cont;
11185 		if (start == end) {
11186 			/* Empty.  Blast it. */
11187 			freeb(mp);
11188 			continue;
11189 		}
11190 		mp->b_cont = NULL;
11191 		TCP_REASS_SET_SEQ(mp, start);
11192 		TCP_REASS_SET_END(mp, end);
11193 		mp1 = tcp->tcp_reass_tail;
11194 		if (!mp1) {
11195 			tcp->tcp_reass_tail = mp;
11196 			tcp->tcp_reass_head = mp;
11197 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11198 			UPDATE_MIB(&tcps->tcps_mib,
11199 			    tcpInDataUnorderBytes, end - start);
11200 			continue;
11201 		}
11202 		/* New stuff completely beyond tail? */
11203 		if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
11204 			/* Link it on end. */
11205 			mp1->b_cont = mp;
11206 			tcp->tcp_reass_tail = mp;
11207 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11208 			UPDATE_MIB(&tcps->tcps_mib,
11209 			    tcpInDataUnorderBytes, end - start);
11210 			continue;
11211 		}
11212 		mp1 = tcp->tcp_reass_head;
11213 		u1 = TCP_REASS_SEQ(mp1);
11214 		/* New stuff at the front? */
11215 		if (SEQ_LT(start, u1)) {
11216 			/* Yes... Check for overlap. */
11217 			mp->b_cont = mp1;
11218 			tcp->tcp_reass_head = mp;
11219 			tcp_reass_elim_overlap(tcp, mp);
11220 			continue;
11221 		}
11222 		/*
11223 		 * The new piece fits somewhere between the head and tail.
11224 		 * We find our slot, where mp1 precedes us and mp2 trails.
11225 		 */
11226 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
11227 			u1 = TCP_REASS_SEQ(mp2);
11228 			if (SEQ_LEQ(start, u1))
11229 				break;
11230 		}
11231 		/* Link ourselves in */
11232 		mp->b_cont = mp2;
11233 		mp1->b_cont = mp;
11234 
11235 		/* Trim overlap with following mblk(s) first */
11236 		tcp_reass_elim_overlap(tcp, mp);
11237 
11238 		/* Trim overlap with preceding mblk */
11239 		tcp_reass_elim_overlap(tcp, mp1);
11240 
11241 	} while (start = end, mp = next_mp);
11242 	mp1 = tcp->tcp_reass_head;
11243 	/* Anything ready to go? */
11244 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
11245 		return (NULL);
11246 	/* Eat what we can off the queue */
11247 	for (;;) {
11248 		mp = mp1->b_cont;
11249 		end = TCP_REASS_END(mp1);
11250 		TCP_REASS_SET_SEQ(mp1, 0);
11251 		TCP_REASS_SET_END(mp1, 0);
11252 		if (!mp) {
11253 			tcp->tcp_reass_tail = NULL;
11254 			break;
11255 		}
11256 		if (end != TCP_REASS_SEQ(mp)) {
11257 			mp1->b_cont = NULL;
11258 			break;
11259 		}
11260 		mp1 = mp;
11261 	}
11262 	mp1 = tcp->tcp_reass_head;
11263 	tcp->tcp_reass_head = mp;
11264 	return (mp1);
11265 }
11266 
11267 /* Eliminate any overlap that mp may have over later mblks */
11268 static void
11269 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
11270 {
11271 	uint32_t	end;
11272 	mblk_t		*mp1;
11273 	uint32_t	u1;
11274 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11275 
11276 	end = TCP_REASS_END(mp);
11277 	while ((mp1 = mp->b_cont) != NULL) {
11278 		u1 = TCP_REASS_SEQ(mp1);
11279 		if (!SEQ_GT(end, u1))
11280 			break;
11281 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
11282 			mp->b_wptr -= end - u1;
11283 			TCP_REASS_SET_END(mp, u1);
11284 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs);
11285 			UPDATE_MIB(&tcps->tcps_mib,
11286 			    tcpInDataPartDupBytes, end - u1);
11287 			break;
11288 		}
11289 		mp->b_cont = mp1->b_cont;
11290 		TCP_REASS_SET_SEQ(mp1, 0);
11291 		TCP_REASS_SET_END(mp1, 0);
11292 		freeb(mp1);
11293 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
11294 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1);
11295 	}
11296 	if (!mp1)
11297 		tcp->tcp_reass_tail = mp;
11298 }
11299 
11300 static uint_t
11301 tcp_rwnd_reopen(tcp_t *tcp)
11302 {
11303 	uint_t ret = 0;
11304 	uint_t thwin;
11305 
11306 	/* Learn the latest rwnd information that we sent to the other side. */
11307 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11308 	    << tcp->tcp_rcv_ws;
11309 	/* This is peer's calculated send window (our receive window). */
11310 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11311 	/*
11312 	 * Increase the receive window to max.  But we need to do receiver
11313 	 * SWS avoidance.  This means that we need to check the increase of
11314 	 * of receive window is at least 1 MSS.
11315 	 */
11316 	if (tcp->tcp_recv_hiwater - thwin >= tcp->tcp_mss) {
11317 		/*
11318 		 * If the window that the other side knows is less than max
11319 		 * deferred acks segments, send an update immediately.
11320 		 */
11321 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11322 			BUMP_MIB(&tcp->tcp_tcps->tcps_mib, tcpOutWinUpdate);
11323 			ret = TH_ACK_NEEDED;
11324 		}
11325 		tcp->tcp_rwnd = tcp->tcp_recv_hiwater;
11326 	}
11327 	return (ret);
11328 }
11329 
11330 /*
11331  * Send up all messages queued on tcp_rcv_list.
11332  */
11333 static uint_t
11334 tcp_rcv_drain(tcp_t *tcp)
11335 {
11336 	mblk_t *mp;
11337 	uint_t ret = 0;
11338 #ifdef DEBUG
11339 	uint_t cnt = 0;
11340 #endif
11341 	queue_t	*q = tcp->tcp_rq;
11342 
11343 	/* Can't drain on an eager connection */
11344 	if (tcp->tcp_listener != NULL)
11345 		return (ret);
11346 
11347 	/* Can't be a non-STREAMS connection */
11348 	ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
11349 
11350 	/* No need for the push timer now. */
11351 	if (tcp->tcp_push_tid != 0) {
11352 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11353 		tcp->tcp_push_tid = 0;
11354 	}
11355 
11356 	/*
11357 	 * Handle two cases here: we are currently fused or we were
11358 	 * previously fused and have some urgent data to be delivered
11359 	 * upstream.  The latter happens because we either ran out of
11360 	 * memory or were detached and therefore sending the SIGURG was
11361 	 * deferred until this point.  In either case we pass control
11362 	 * over to tcp_fuse_rcv_drain() since it may need to complete
11363 	 * some work.
11364 	 */
11365 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
11366 		ASSERT(IPCL_IS_NONSTR(tcp->tcp_connp) ||
11367 		    tcp->tcp_fused_sigurg_mp != NULL);
11368 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
11369 		    &tcp->tcp_fused_sigurg_mp))
11370 			return (ret);
11371 	}
11372 
11373 	while ((mp = tcp->tcp_rcv_list) != NULL) {
11374 		tcp->tcp_rcv_list = mp->b_next;
11375 		mp->b_next = NULL;
11376 #ifdef DEBUG
11377 		cnt += msgdsize(mp);
11378 #endif
11379 		/* Does this need SSL processing first? */
11380 		if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) {
11381 			DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain,
11382 			    mblk_t *, mp);
11383 			tcp_kssl_input(tcp, mp);
11384 			continue;
11385 		}
11386 		putnext(q, mp);
11387 	}
11388 #ifdef DEBUG
11389 	ASSERT(cnt == tcp->tcp_rcv_cnt);
11390 #endif
11391 	tcp->tcp_rcv_last_head = NULL;
11392 	tcp->tcp_rcv_last_tail = NULL;
11393 	tcp->tcp_rcv_cnt = 0;
11394 
11395 	if (canputnext(q))
11396 		return (tcp_rwnd_reopen(tcp));
11397 
11398 	return (ret);
11399 }
11400 
11401 /*
11402  * Queue data on tcp_rcv_list which is a b_next chain.
11403  * tcp_rcv_last_head/tail is the last element of this chain.
11404  * Each element of the chain is a b_cont chain.
11405  *
11406  * M_DATA messages are added to the current element.
11407  * Other messages are added as new (b_next) elements.
11408  */
11409 void
11410 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len)
11411 {
11412 	ASSERT(seg_len == msgdsize(mp));
11413 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
11414 
11415 	if (tcp->tcp_rcv_list == NULL) {
11416 		ASSERT(tcp->tcp_rcv_last_head == NULL);
11417 		tcp->tcp_rcv_list = mp;
11418 		tcp->tcp_rcv_last_head = mp;
11419 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
11420 		tcp->tcp_rcv_last_tail->b_cont = mp;
11421 	} else {
11422 		tcp->tcp_rcv_last_head->b_next = mp;
11423 		tcp->tcp_rcv_last_head = mp;
11424 	}
11425 
11426 	while (mp->b_cont)
11427 		mp = mp->b_cont;
11428 
11429 	tcp->tcp_rcv_last_tail = mp;
11430 	tcp->tcp_rcv_cnt += seg_len;
11431 	tcp->tcp_rwnd -= seg_len;
11432 }
11433 
11434 /*
11435  * DEFAULT TCP ENTRY POINT via squeue on READ side.
11436  *
11437  * This is the default entry function into TCP on the read side. TCP is
11438  * always entered via squeue i.e. using squeue's for mutual exclusion.
11439  * When classifier does a lookup to find the tcp, it also puts a reference
11440  * on the conn structure associated so the tcp is guaranteed to exist
11441  * when we come here. We still need to check the state because it might
11442  * as well has been closed. The squeue processing function i.e. squeue_enter,
11443  * is responsible for doing the CONN_DEC_REF.
11444  *
11445  * Apart from the default entry point, IP also sends packets directly to
11446  * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming
11447  * connections.
11448  */
11449 boolean_t tcp_outbound_squeue_switch = B_FALSE;
11450 void
11451 tcp_input(void *arg, mblk_t *mp, void *arg2)
11452 {
11453 	conn_t	*connp = (conn_t *)arg;
11454 	tcp_t	*tcp = (tcp_t *)connp->conn_tcp;
11455 
11456 	/* arg2 is the sqp */
11457 	ASSERT(arg2 != NULL);
11458 	ASSERT(mp != NULL);
11459 
11460 	/*
11461 	 * Don't accept any input on a closed tcp as this TCP logically does
11462 	 * not exist on the system. Don't proceed further with this TCP.
11463 	 * For eg. this packet could trigger another close of this tcp
11464 	 * which would be disastrous for tcp_refcnt. tcp_close_detached /
11465 	 * tcp_clean_death / tcp_closei_local must be called at most once
11466 	 * on a TCP. In this case we need to refeed the packet into the
11467 	 * classifier and figure out where the packet should go. Need to
11468 	 * preserve the recv_ill somehow. Until we figure that out, for
11469 	 * now just drop the packet if we can't classify the packet.
11470 	 */
11471 	if (tcp->tcp_state == TCPS_CLOSED ||
11472 	    tcp->tcp_state == TCPS_BOUND) {
11473 		conn_t	*new_connp;
11474 		ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip;
11475 
11476 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
11477 		if (new_connp != NULL) {
11478 			tcp_reinput(new_connp, mp, arg2);
11479 			return;
11480 		}
11481 		/* We failed to classify. For now just drop the packet */
11482 		freemsg(mp);
11483 		return;
11484 	}
11485 
11486 	if (DB_TYPE(mp) != M_DATA) {
11487 		tcp_rput_common(tcp, mp);
11488 		return;
11489 	}
11490 
11491 	if (mp->b_datap->db_struioflag & STRUIO_CONNECT) {
11492 		squeue_t	*final_sqp;
11493 
11494 		mp->b_datap->db_struioflag &= ~STRUIO_CONNECT;
11495 		final_sqp = (squeue_t *)DB_CKSUMSTART(mp);
11496 		DB_CKSUMSTART(mp) = 0;
11497 		if (tcp->tcp_state == TCPS_SYN_SENT &&
11498 		    connp->conn_final_sqp == NULL &&
11499 		    tcp_outbound_squeue_switch) {
11500 			ASSERT(connp->conn_initial_sqp == connp->conn_sqp);
11501 			connp->conn_final_sqp = final_sqp;
11502 			if (connp->conn_final_sqp != connp->conn_sqp) {
11503 				CONN_INC_REF(connp);
11504 				SQUEUE_SWITCH(connp, connp->conn_final_sqp);
11505 				SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
11506 				    tcp_rput_data, connp, ip_squeue_flag,
11507 				    SQTAG_CONNECT_FINISH);
11508 				return;
11509 			}
11510 		}
11511 	}
11512 	tcp_rput_data(connp, mp, arg2);
11513 }
11514 
11515 /*
11516  * The read side put procedure.
11517  * The packets passed up by ip are assume to be aligned according to
11518  * OK_32PTR and the IP+TCP headers fitting in the first mblk.
11519  */
11520 static void
11521 tcp_rput_common(tcp_t *tcp, mblk_t *mp)
11522 {
11523 	/*
11524 	 * tcp_rput_data() does not expect M_CTL except for the case
11525 	 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO
11526 	 * type. Need to make sure that any other M_CTLs don't make
11527 	 * it to tcp_rput_data since it is not expecting any and doesn't
11528 	 * check for it.
11529 	 */
11530 	if (DB_TYPE(mp) == M_CTL) {
11531 		switch (*(uint32_t *)(mp->b_rptr)) {
11532 		case TCP_IOC_ABORT_CONN:
11533 			/*
11534 			 * Handle connection abort request.
11535 			 */
11536 			tcp_ioctl_abort_handler(tcp, mp);
11537 			return;
11538 		case IPSEC_IN:
11539 			/*
11540 			 * Only secure icmp arrive in TCP and they
11541 			 * don't go through data path.
11542 			 */
11543 			tcp_icmp_error(tcp, mp);
11544 			return;
11545 		case IN_PKTINFO:
11546 			/*
11547 			 * Handle IPV6_RECVPKTINFO socket option on AF_INET6
11548 			 * sockets that are receiving IPv4 traffic. tcp
11549 			 */
11550 			ASSERT(tcp->tcp_family == AF_INET6);
11551 			ASSERT(tcp->tcp_ipv6_recvancillary &
11552 			    TCP_IPV6_RECVPKTINFO);
11553 			tcp_rput_data(tcp->tcp_connp, mp,
11554 			    tcp->tcp_connp->conn_sqp);
11555 			return;
11556 		case MDT_IOC_INFO_UPDATE:
11557 			/*
11558 			 * Handle Multidata information update; the
11559 			 * following routine will free the message.
11560 			 */
11561 			if (tcp->tcp_connp->conn_mdt_ok) {
11562 				tcp_mdt_update(tcp,
11563 				    &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab,
11564 				    B_FALSE);
11565 			}
11566 			freemsg(mp);
11567 			return;
11568 		case LSO_IOC_INFO_UPDATE:
11569 			/*
11570 			 * Handle LSO information update; the following
11571 			 * routine will free the message.
11572 			 */
11573 			if (tcp->tcp_connp->conn_lso_ok) {
11574 				tcp_lso_update(tcp,
11575 				    &((ip_lso_info_t *)mp->b_rptr)->lso_capab);
11576 			}
11577 			freemsg(mp);
11578 			return;
11579 		default:
11580 			/*
11581 			 * tcp_icmp_err() will process the M_CTL packets.
11582 			 * Non-ICMP packets, if any, will be discarded in
11583 			 * tcp_icmp_err(). We will process the ICMP packet
11584 			 * even if we are TCP_IS_DETACHED_NONEAGER as the
11585 			 * incoming ICMP packet may result in changing
11586 			 * the tcp_mss, which we would need if we have
11587 			 * packets to retransmit.
11588 			 */
11589 			tcp_icmp_error(tcp, mp);
11590 			return;
11591 		}
11592 	}
11593 
11594 	/* No point processing the message if tcp is already closed */
11595 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
11596 		freemsg(mp);
11597 		return;
11598 	}
11599 
11600 	tcp_rput_other(tcp, mp);
11601 }
11602 
11603 
11604 /* The minimum of smoothed mean deviation in RTO calculation. */
11605 #define	TCP_SD_MIN	400
11606 
11607 /*
11608  * Set RTO for this connection.  The formula is from Jacobson and Karels'
11609  * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
11610  * are the same as those in Appendix A.2 of that paper.
11611  *
11612  * m = new measurement
11613  * sa = smoothed RTT average (8 * average estimates).
11614  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
11615  */
11616 static void
11617 tcp_set_rto(tcp_t *tcp, clock_t rtt)
11618 {
11619 	long m = TICK_TO_MSEC(rtt);
11620 	clock_t sa = tcp->tcp_rtt_sa;
11621 	clock_t sv = tcp->tcp_rtt_sd;
11622 	clock_t rto;
11623 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11624 
11625 	BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate);
11626 	tcp->tcp_rtt_update++;
11627 
11628 	/* tcp_rtt_sa is not 0 means this is a new sample. */
11629 	if (sa != 0) {
11630 		/*
11631 		 * Update average estimator:
11632 		 *	new rtt = 7/8 old rtt + 1/8 Error
11633 		 */
11634 
11635 		/* m is now Error in estimate. */
11636 		m -= sa >> 3;
11637 		if ((sa += m) <= 0) {
11638 			/*
11639 			 * Don't allow the smoothed average to be negative.
11640 			 * We use 0 to denote reinitialization of the
11641 			 * variables.
11642 			 */
11643 			sa = 1;
11644 		}
11645 
11646 		/*
11647 		 * Update deviation estimator:
11648 		 *	new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
11649 		 */
11650 		if (m < 0)
11651 			m = -m;
11652 		m -= sv >> 2;
11653 		sv += m;
11654 	} else {
11655 		/*
11656 		 * This follows BSD's implementation.  So the reinitialized
11657 		 * RTO is 3 * m.  We cannot go less than 2 because if the
11658 		 * link is bandwidth dominated, doubling the window size
11659 		 * during slow start means doubling the RTT.  We want to be
11660 		 * more conservative when we reinitialize our estimates.  3
11661 		 * is just a convenient number.
11662 		 */
11663 		sa = m << 3;
11664 		sv = m << 1;
11665 	}
11666 	if (sv < TCP_SD_MIN) {
11667 		/*
11668 		 * We do not know that if sa captures the delay ACK
11669 		 * effect as in a long train of segments, a receiver
11670 		 * does not delay its ACKs.  So set the minimum of sv
11671 		 * to be TCP_SD_MIN, which is default to 400 ms, twice
11672 		 * of BSD DATO.  That means the minimum of mean
11673 		 * deviation is 100 ms.
11674 		 *
11675 		 */
11676 		sv = TCP_SD_MIN;
11677 	}
11678 	tcp->tcp_rtt_sa = sa;
11679 	tcp->tcp_rtt_sd = sv;
11680 	/*
11681 	 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
11682 	 *
11683 	 * Add tcp_rexmit_interval extra in case of extreme environment
11684 	 * where the algorithm fails to work.  The default value of
11685 	 * tcp_rexmit_interval_extra should be 0.
11686 	 *
11687 	 * As we use a finer grained clock than BSD and update
11688 	 * RTO for every ACKs, add in another .25 of RTT to the
11689 	 * deviation of RTO to accomodate burstiness of 1/4 of
11690 	 * window size.
11691 	 */
11692 	rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5);
11693 
11694 	if (rto > tcps->tcps_rexmit_interval_max) {
11695 		tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
11696 	} else if (rto < tcps->tcps_rexmit_interval_min) {
11697 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
11698 	} else {
11699 		tcp->tcp_rto = rto;
11700 	}
11701 
11702 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
11703 	tcp->tcp_timer_backoff = 0;
11704 }
11705 
11706 /*
11707  * tcp_get_seg_mp() is called to get the pointer to a segment in the
11708  * send queue which starts at the given seq. no.
11709  *
11710  * Parameters:
11711  *	tcp_t *tcp: the tcp instance pointer.
11712  *	uint32_t seq: the starting seq. no of the requested segment.
11713  *	int32_t *off: after the execution, *off will be the offset to
11714  *		the returned mblk which points to the requested seq no.
11715  *		It is the caller's responsibility to send in a non-null off.
11716  *
11717  * Return:
11718  *	A mblk_t pointer pointing to the requested segment in send queue.
11719  */
11720 static mblk_t *
11721 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off)
11722 {
11723 	int32_t	cnt;
11724 	mblk_t	*mp;
11725 
11726 	/* Defensive coding.  Make sure we don't send incorrect data. */
11727 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
11728 		return (NULL);
11729 
11730 	cnt = seq - tcp->tcp_suna;
11731 	mp = tcp->tcp_xmit_head;
11732 	while (cnt > 0 && mp != NULL) {
11733 		cnt -= mp->b_wptr - mp->b_rptr;
11734 		if (cnt < 0) {
11735 			cnt += mp->b_wptr - mp->b_rptr;
11736 			break;
11737 		}
11738 		mp = mp->b_cont;
11739 	}
11740 	ASSERT(mp != NULL);
11741 	*off = cnt;
11742 	return (mp);
11743 }
11744 
11745 /*
11746  * This function handles all retransmissions if SACK is enabled for this
11747  * connection.  First it calculates how many segments can be retransmitted
11748  * based on tcp_pipe.  Then it goes thru the notsack list to find eligible
11749  * segments.  A segment is eligible if sack_cnt for that segment is greater
11750  * than or equal tcp_dupack_fast_retransmit.  After it has retransmitted
11751  * all eligible segments, it checks to see if TCP can send some new segments
11752  * (fast recovery).  If it can, set the appropriate flag for tcp_rput_data().
11753  *
11754  * Parameters:
11755  *	tcp_t *tcp: the tcp structure of the connection.
11756  *	uint_t *flags: in return, appropriate value will be set for
11757  *	tcp_rput_data().
11758  */
11759 static void
11760 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags)
11761 {
11762 	notsack_blk_t	*notsack_blk;
11763 	int32_t		usable_swnd;
11764 	int32_t		mss;
11765 	uint32_t	seg_len;
11766 	mblk_t		*xmit_mp;
11767 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11768 
11769 	ASSERT(tcp->tcp_sack_info != NULL);
11770 	ASSERT(tcp->tcp_notsack_list != NULL);
11771 	ASSERT(tcp->tcp_rexmit == B_FALSE);
11772 
11773 	/* Defensive coding in case there is a bug... */
11774 	if (tcp->tcp_notsack_list == NULL) {
11775 		return;
11776 	}
11777 	notsack_blk = tcp->tcp_notsack_list;
11778 	mss = tcp->tcp_mss;
11779 
11780 	/*
11781 	 * Limit the num of outstanding data in the network to be
11782 	 * tcp_cwnd_ssthresh, which is half of the original congestion wnd.
11783 	 */
11784 	usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
11785 
11786 	/* At least retransmit 1 MSS of data. */
11787 	if (usable_swnd <= 0) {
11788 		usable_swnd = mss;
11789 	}
11790 
11791 	/* Make sure no new RTT samples will be taken. */
11792 	tcp->tcp_csuna = tcp->tcp_snxt;
11793 
11794 	notsack_blk = tcp->tcp_notsack_list;
11795 	while (usable_swnd > 0) {
11796 		mblk_t		*snxt_mp, *tmp_mp;
11797 		tcp_seq		begin = tcp->tcp_sack_snxt;
11798 		tcp_seq		end;
11799 		int32_t		off;
11800 
11801 		for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) {
11802 			if (SEQ_GT(notsack_blk->end, begin) &&
11803 			    (notsack_blk->sack_cnt >=
11804 			    tcps->tcps_dupack_fast_retransmit)) {
11805 				end = notsack_blk->end;
11806 				if (SEQ_LT(begin, notsack_blk->begin)) {
11807 					begin = notsack_blk->begin;
11808 				}
11809 				break;
11810 			}
11811 		}
11812 		/*
11813 		 * All holes are filled.  Manipulate tcp_cwnd to send more
11814 		 * if we can.  Note that after the SACK recovery, tcp_cwnd is
11815 		 * set to tcp_cwnd_ssthresh.
11816 		 */
11817 		if (notsack_blk == NULL) {
11818 			usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
11819 			if (usable_swnd <= 0 || tcp->tcp_unsent == 0) {
11820 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna;
11821 				ASSERT(tcp->tcp_cwnd > 0);
11822 				return;
11823 			} else {
11824 				usable_swnd = usable_swnd / mss;
11825 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna +
11826 				    MAX(usable_swnd * mss, mss);
11827 				*flags |= TH_XMIT_NEEDED;
11828 				return;
11829 			}
11830 		}
11831 
11832 		/*
11833 		 * Note that we may send more than usable_swnd allows here
11834 		 * because of round off, but no more than 1 MSS of data.
11835 		 */
11836 		seg_len = end - begin;
11837 		if (seg_len > mss)
11838 			seg_len = mss;
11839 		snxt_mp = tcp_get_seg_mp(tcp, begin, &off);
11840 		ASSERT(snxt_mp != NULL);
11841 		/* This should not happen.  Defensive coding again... */
11842 		if (snxt_mp == NULL) {
11843 			return;
11844 		}
11845 
11846 		xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off,
11847 		    &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE);
11848 		if (xmit_mp == NULL)
11849 			return;
11850 
11851 		usable_swnd -= seg_len;
11852 		tcp->tcp_pipe += seg_len;
11853 		tcp->tcp_sack_snxt = begin + seg_len;
11854 
11855 		tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
11856 
11857 		/*
11858 		 * Update the send timestamp to avoid false retransmission.
11859 		 */
11860 		snxt_mp->b_prev = (mblk_t *)lbolt;
11861 
11862 		BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
11863 		UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len);
11864 		BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs);
11865 		/*
11866 		 * Update tcp_rexmit_max to extend this SACK recovery phase.
11867 		 * This happens when new data sent during fast recovery is
11868 		 * also lost.  If TCP retransmits those new data, it needs
11869 		 * to extend SACK recover phase to avoid starting another
11870 		 * fast retransmit/recovery unnecessarily.
11871 		 */
11872 		if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) {
11873 			tcp->tcp_rexmit_max = tcp->tcp_sack_snxt;
11874 		}
11875 	}
11876 }
11877 
11878 /*
11879  * This function handles policy checking at TCP level for non-hard_bound/
11880  * detached connections.
11881  */
11882 static boolean_t
11883 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h,
11884     boolean_t secure, boolean_t mctl_present)
11885 {
11886 	ipsec_latch_t *ipl = NULL;
11887 	ipsec_action_t *act = NULL;
11888 	mblk_t *data_mp;
11889 	ipsec_in_t *ii;
11890 	const char *reason;
11891 	kstat_named_t *counter;
11892 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11893 	ipsec_stack_t	*ipss;
11894 	ip_stack_t	*ipst;
11895 
11896 	ASSERT(mctl_present || !secure);
11897 
11898 	ASSERT((ipha == NULL && ip6h != NULL) ||
11899 	    (ip6h == NULL && ipha != NULL));
11900 
11901 	/*
11902 	 * We don't necessarily have an ipsec_in_act action to verify
11903 	 * policy because of assymetrical policy where we have only
11904 	 * outbound policy and no inbound policy (possible with global
11905 	 * policy).
11906 	 */
11907 	if (!secure) {
11908 		if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS ||
11909 		    act->ipa_act.ipa_type == IPSEC_ACT_CLEAR)
11910 			return (B_TRUE);
11911 		ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
11912 		    "tcp_check_policy", ipha, ip6h, secure,
11913 		    tcps->tcps_netstack);
11914 		ipss = tcps->tcps_netstack->netstack_ipsec;
11915 
11916 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
11917 		    DROPPER(ipss, ipds_tcp_clear),
11918 		    &tcps->tcps_dropper);
11919 		return (B_FALSE);
11920 	}
11921 
11922 	/*
11923 	 * We have a secure packet.
11924 	 */
11925 	if (act == NULL) {
11926 		ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED,
11927 		    "tcp_check_policy", ipha, ip6h, secure,
11928 		    tcps->tcps_netstack);
11929 		ipss = tcps->tcps_netstack->netstack_ipsec;
11930 
11931 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
11932 		    DROPPER(ipss, ipds_tcp_secure),
11933 		    &tcps->tcps_dropper);
11934 		return (B_FALSE);
11935 	}
11936 
11937 	/*
11938 	 * XXX This whole routine is currently incorrect.  ipl should
11939 	 * be set to the latch pointer, but is currently not set, so
11940 	 * we initialize it to NULL to avoid picking up random garbage.
11941 	 */
11942 	if (ipl == NULL)
11943 		return (B_TRUE);
11944 
11945 	data_mp = first_mp->b_cont;
11946 
11947 	ii = (ipsec_in_t *)first_mp->b_rptr;
11948 
11949 	ipst = tcps->tcps_netstack->netstack_ip;
11950 
11951 	if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason,
11952 	    &counter, tcp->tcp_connp)) {
11953 		BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
11954 		return (B_TRUE);
11955 	}
11956 	(void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
11957 	    "tcp inbound policy mismatch: %s, packet dropped\n",
11958 	    reason);
11959 	BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
11960 
11961 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter,
11962 	    &tcps->tcps_dropper);
11963 	return (B_FALSE);
11964 }
11965 
11966 /*
11967  * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start
11968  * retransmission after a timeout.
11969  *
11970  * To limit the number of duplicate segments, we limit the number of segment
11971  * to be sent in one time to tcp_snd_burst, the burst variable.
11972  */
11973 static void
11974 tcp_ss_rexmit(tcp_t *tcp)
11975 {
11976 	uint32_t	snxt;
11977 	uint32_t	smax;
11978 	int32_t		win;
11979 	int32_t		mss;
11980 	int32_t		off;
11981 	int32_t		burst = tcp->tcp_snd_burst;
11982 	mblk_t		*snxt_mp;
11983 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11984 
11985 	/*
11986 	 * Note that tcp_rexmit can be set even though TCP has retransmitted
11987 	 * all unack'ed segments.
11988 	 */
11989 	if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) {
11990 		smax = tcp->tcp_rexmit_max;
11991 		snxt = tcp->tcp_rexmit_nxt;
11992 		if (SEQ_LT(snxt, tcp->tcp_suna)) {
11993 			snxt = tcp->tcp_suna;
11994 		}
11995 		win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd);
11996 		win -= snxt - tcp->tcp_suna;
11997 		mss = tcp->tcp_mss;
11998 		snxt_mp = tcp_get_seg_mp(tcp, snxt, &off);
11999 
12000 		while (SEQ_LT(snxt, smax) && (win > 0) &&
12001 		    (burst > 0) && (snxt_mp != NULL)) {
12002 			mblk_t	*xmit_mp;
12003 			mblk_t	*old_snxt_mp = snxt_mp;
12004 			uint32_t cnt = mss;
12005 
12006 			if (win < cnt) {
12007 				cnt = win;
12008 			}
12009 			if (SEQ_GT(snxt + cnt, smax)) {
12010 				cnt = smax - snxt;
12011 			}
12012 			xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off,
12013 			    &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE);
12014 			if (xmit_mp == NULL)
12015 				return;
12016 
12017 			tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12018 
12019 			snxt += cnt;
12020 			win -= cnt;
12021 			/*
12022 			 * Update the send timestamp to avoid false
12023 			 * retransmission.
12024 			 */
12025 			old_snxt_mp->b_prev = (mblk_t *)lbolt;
12026 			BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12027 			UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt);
12028 
12029 			tcp->tcp_rexmit_nxt = snxt;
12030 			burst--;
12031 		}
12032 		/*
12033 		 * If we have transmitted all we have at the time
12034 		 * we started the retranmission, we can leave
12035 		 * the rest of the job to tcp_wput_data().  But we
12036 		 * need to check the send window first.  If the
12037 		 * win is not 0, go on with tcp_wput_data().
12038 		 */
12039 		if (SEQ_LT(snxt, smax) || win == 0) {
12040 			return;
12041 		}
12042 	}
12043 	/* Only call tcp_wput_data() if there is data to be sent. */
12044 	if (tcp->tcp_unsent) {
12045 		tcp_wput_data(tcp, NULL, B_FALSE);
12046 	}
12047 }
12048 
12049 /*
12050  * Process all TCP option in SYN segment.  Note that this function should
12051  * be called after tcp_adapt_ire() is called so that the necessary info
12052  * from IRE is already set in the tcp structure.
12053  *
12054  * This function sets up the correct tcp_mss value according to the
12055  * MSS option value and our header size.  It also sets up the window scale
12056  * and timestamp values, and initialize SACK info blocks.  But it does not
12057  * change receive window size after setting the tcp_mss value.  The caller
12058  * should do the appropriate change.
12059  */
12060 void
12061 tcp_process_options(tcp_t *tcp, tcph_t *tcph)
12062 {
12063 	int options;
12064 	tcp_opt_t tcpopt;
12065 	uint32_t mss_max;
12066 	char *tmp_tcph;
12067 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12068 
12069 	tcpopt.tcp = NULL;
12070 	options = tcp_parse_options(tcph, &tcpopt);
12071 
12072 	/*
12073 	 * Process MSS option.  Note that MSS option value does not account
12074 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
12075 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
12076 	 * IPv6.
12077 	 */
12078 	if (!(options & TCP_OPT_MSS_PRESENT)) {
12079 		if (tcp->tcp_ipversion == IPV4_VERSION)
12080 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4;
12081 		else
12082 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6;
12083 	} else {
12084 		if (tcp->tcp_ipversion == IPV4_VERSION)
12085 			mss_max = tcps->tcps_mss_max_ipv4;
12086 		else
12087 			mss_max = tcps->tcps_mss_max_ipv6;
12088 		if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min)
12089 			tcpopt.tcp_opt_mss = tcps->tcps_mss_min;
12090 		else if (tcpopt.tcp_opt_mss > mss_max)
12091 			tcpopt.tcp_opt_mss = mss_max;
12092 	}
12093 
12094 	/* Process Window Scale option. */
12095 	if (options & TCP_OPT_WSCALE_PRESENT) {
12096 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
12097 		tcp->tcp_snd_ws_ok = B_TRUE;
12098 	} else {
12099 		tcp->tcp_snd_ws = B_FALSE;
12100 		tcp->tcp_snd_ws_ok = B_FALSE;
12101 		tcp->tcp_rcv_ws = B_FALSE;
12102 	}
12103 
12104 	/* Process Timestamp option. */
12105 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
12106 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
12107 		tmp_tcph = (char *)tcp->tcp_tcph;
12108 
12109 		tcp->tcp_snd_ts_ok = B_TRUE;
12110 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
12111 		tcp->tcp_last_rcv_lbolt = lbolt64;
12112 		ASSERT(OK_32PTR(tmp_tcph));
12113 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
12114 
12115 		/* Fill in our template header with basic timestamp option. */
12116 		tmp_tcph += tcp->tcp_tcp_hdr_len;
12117 		tmp_tcph[0] = TCPOPT_NOP;
12118 		tmp_tcph[1] = TCPOPT_NOP;
12119 		tmp_tcph[2] = TCPOPT_TSTAMP;
12120 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
12121 		tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12122 		tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12123 		tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4);
12124 	} else {
12125 		tcp->tcp_snd_ts_ok = B_FALSE;
12126 	}
12127 
12128 	/*
12129 	 * Process SACK options.  If SACK is enabled for this connection,
12130 	 * then allocate the SACK info structure.  Note the following ways
12131 	 * when tcp_snd_sack_ok is set to true.
12132 	 *
12133 	 * For active connection: in tcp_adapt_ire() called in
12134 	 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted
12135 	 * is checked.
12136 	 *
12137 	 * For passive connection: in tcp_adapt_ire() called in
12138 	 * tcp_accept_comm().
12139 	 *
12140 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
12141 	 * That check makes sure that if we did not send a SACK OK option,
12142 	 * we will not enable SACK for this connection even though the other
12143 	 * side sends us SACK OK option.  For active connection, the SACK
12144 	 * info structure has already been allocated.  So we need to free
12145 	 * it if SACK is disabled.
12146 	 */
12147 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
12148 	    (tcp->tcp_snd_sack_ok ||
12149 	    (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
12150 		/* This should be true only in the passive case. */
12151 		if (tcp->tcp_sack_info == NULL) {
12152 			ASSERT(TCP_IS_DETACHED(tcp));
12153 			tcp->tcp_sack_info =
12154 			    kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP);
12155 		}
12156 		if (tcp->tcp_sack_info == NULL) {
12157 			tcp->tcp_snd_sack_ok = B_FALSE;
12158 		} else {
12159 			tcp->tcp_snd_sack_ok = B_TRUE;
12160 			if (tcp->tcp_snd_ts_ok) {
12161 				tcp->tcp_max_sack_blk = 3;
12162 			} else {
12163 				tcp->tcp_max_sack_blk = 4;
12164 			}
12165 		}
12166 	} else {
12167 		/*
12168 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
12169 		 * no SACK info will be used for this
12170 		 * connection.  This assumes that SACK usage
12171 		 * permission is negotiated.  This may need
12172 		 * to be changed once this is clarified.
12173 		 */
12174 		if (tcp->tcp_sack_info != NULL) {
12175 			ASSERT(tcp->tcp_notsack_list == NULL);
12176 			kmem_cache_free(tcp_sack_info_cache,
12177 			    tcp->tcp_sack_info);
12178 			tcp->tcp_sack_info = NULL;
12179 		}
12180 		tcp->tcp_snd_sack_ok = B_FALSE;
12181 	}
12182 
12183 	/*
12184 	 * Now we know the exact TCP/IP header length, subtract
12185 	 * that from tcp_mss to get our side's MSS.
12186 	 */
12187 	tcp->tcp_mss -= tcp->tcp_hdr_len;
12188 	/*
12189 	 * Here we assume that the other side's header size will be equal to
12190 	 * our header size.  We calculate the real MSS accordingly.  Need to
12191 	 * take into additional stuffs IPsec puts in.
12192 	 *
12193 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
12194 	 */
12195 	tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead -
12196 	    ((tcp->tcp_ipversion == IPV4_VERSION ?
12197 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
12198 
12199 	/*
12200 	 * Set MSS to the smaller one of both ends of the connection.
12201 	 * We should not have called tcp_mss_set() before, but our
12202 	 * side of the MSS should have been set to a proper value
12203 	 * by tcp_adapt_ire().  tcp_mss_set() will also set up the
12204 	 * STREAM head parameters properly.
12205 	 *
12206 	 * If we have a larger-than-16-bit window but the other side
12207 	 * didn't want to do window scale, tcp_rwnd_set() will take
12208 	 * care of that.
12209 	 */
12210 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE);
12211 }
12212 
12213 /*
12214  * Sends the T_CONN_IND to the listener. The caller calls this
12215  * functions via squeue to get inside the listener's perimeter
12216  * once the 3 way hand shake is done a T_CONN_IND needs to be
12217  * sent. As an optimization, the caller can call this directly
12218  * if listener's perimeter is same as eager's.
12219  */
12220 /* ARGSUSED */
12221 void
12222 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2)
12223 {
12224 	conn_t			*lconnp = (conn_t *)arg;
12225 	tcp_t			*listener = lconnp->conn_tcp;
12226 	tcp_t			*tcp;
12227 	struct T_conn_ind	*conn_ind;
12228 	ipaddr_t 		*addr_cache;
12229 	boolean_t		need_send_conn_ind = B_FALSE;
12230 	tcp_stack_t		*tcps = listener->tcp_tcps;
12231 
12232 	/* retrieve the eager */
12233 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
12234 	ASSERT(conn_ind->OPT_offset != 0 &&
12235 	    conn_ind->OPT_length == sizeof (intptr_t));
12236 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
12237 	    conn_ind->OPT_length);
12238 
12239 	/*
12240 	 * TLI/XTI applications will get confused by
12241 	 * sending eager as an option since it violates
12242 	 * the option semantics. So remove the eager as
12243 	 * option since TLI/XTI app doesn't need it anyway.
12244 	 */
12245 	if (!TCP_IS_SOCKET(listener)) {
12246 		conn_ind->OPT_length = 0;
12247 		conn_ind->OPT_offset = 0;
12248 	}
12249 	if (listener->tcp_state == TCPS_CLOSED ||
12250 	    TCP_IS_DETACHED(listener)) {
12251 		/*
12252 		 * If listener has closed, it would have caused a
12253 		 * a cleanup/blowoff to happen for the eager. We
12254 		 * just need to return.
12255 		 */
12256 		freemsg(mp);
12257 		return;
12258 	}
12259 
12260 
12261 	/*
12262 	 * if the conn_req_q is full defer passing up the
12263 	 * T_CONN_IND until space is availabe after t_accept()
12264 	 * processing
12265 	 */
12266 	mutex_enter(&listener->tcp_eager_lock);
12267 
12268 	/*
12269 	 * Take the eager out, if it is in the list of droppable eagers
12270 	 * as we are here because the 3W handshake is over.
12271 	 */
12272 	MAKE_UNDROPPABLE(tcp);
12273 
12274 	if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) {
12275 		tcp_t *tail;
12276 
12277 		/*
12278 		 * The eager already has an extra ref put in tcp_rput_data
12279 		 * so that it stays till accept comes back even though it
12280 		 * might get into TCPS_CLOSED as a result of a TH_RST etc.
12281 		 */
12282 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
12283 		listener->tcp_conn_req_cnt_q0--;
12284 		listener->tcp_conn_req_cnt_q++;
12285 
12286 		/* Move from SYN_RCVD to ESTABLISHED list  */
12287 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12288 		    tcp->tcp_eager_prev_q0;
12289 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12290 		    tcp->tcp_eager_next_q0;
12291 		tcp->tcp_eager_prev_q0 = NULL;
12292 		tcp->tcp_eager_next_q0 = NULL;
12293 
12294 		/*
12295 		 * Insert at end of the queue because sockfs
12296 		 * sends down T_CONN_RES in chronological
12297 		 * order. Leaving the older conn indications
12298 		 * at front of the queue helps reducing search
12299 		 * time.
12300 		 */
12301 		tail = listener->tcp_eager_last_q;
12302 		if (tail != NULL)
12303 			tail->tcp_eager_next_q = tcp;
12304 		else
12305 			listener->tcp_eager_next_q = tcp;
12306 		listener->tcp_eager_last_q = tcp;
12307 		tcp->tcp_eager_next_q = NULL;
12308 		/*
12309 		 * Delay sending up the T_conn_ind until we are
12310 		 * done with the eager. Once we have have sent up
12311 		 * the T_conn_ind, the accept can potentially complete
12312 		 * any time and release the refhold we have on the eager.
12313 		 */
12314 		need_send_conn_ind = B_TRUE;
12315 	} else {
12316 		/*
12317 		 * Defer connection on q0 and set deferred
12318 		 * connection bit true
12319 		 */
12320 		tcp->tcp_conn_def_q0 = B_TRUE;
12321 
12322 		/* take tcp out of q0 ... */
12323 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12324 		    tcp->tcp_eager_next_q0;
12325 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12326 		    tcp->tcp_eager_prev_q0;
12327 
12328 		/* ... and place it at the end of q0 */
12329 		tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0;
12330 		tcp->tcp_eager_next_q0 = listener;
12331 		listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp;
12332 		listener->tcp_eager_prev_q0 = tcp;
12333 		tcp->tcp_conn.tcp_eager_conn_ind = mp;
12334 	}
12335 
12336 	/* we have timed out before */
12337 	if (tcp->tcp_syn_rcvd_timeout != 0) {
12338 		tcp->tcp_syn_rcvd_timeout = 0;
12339 		listener->tcp_syn_rcvd_timeout--;
12340 		if (listener->tcp_syn_defense &&
12341 		    listener->tcp_syn_rcvd_timeout <=
12342 		    (tcps->tcps_conn_req_max_q0 >> 5) &&
12343 		    10*MINUTES < TICK_TO_MSEC(lbolt64 -
12344 		    listener->tcp_last_rcv_lbolt)) {
12345 			/*
12346 			 * Turn off the defense mode if we
12347 			 * believe the SYN attack is over.
12348 			 */
12349 			listener->tcp_syn_defense = B_FALSE;
12350 			if (listener->tcp_ip_addr_cache) {
12351 				kmem_free((void *)listener->tcp_ip_addr_cache,
12352 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
12353 				listener->tcp_ip_addr_cache = NULL;
12354 			}
12355 		}
12356 	}
12357 	addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
12358 	if (addr_cache != NULL) {
12359 		/*
12360 		 * We have finished a 3-way handshake with this
12361 		 * remote host. This proves the IP addr is good.
12362 		 * Cache it!
12363 		 */
12364 		addr_cache[IP_ADDR_CACHE_HASH(
12365 		    tcp->tcp_remote)] = tcp->tcp_remote;
12366 	}
12367 	mutex_exit(&listener->tcp_eager_lock);
12368 	if (need_send_conn_ind)
12369 		tcp_ulp_newconn(lconnp, tcp->tcp_connp, mp);
12370 }
12371 
12372 /*
12373  * Send the newconn notification to ulp. The eager is blown off if the
12374  * notification fails.
12375  */
12376 static void
12377 tcp_ulp_newconn(conn_t *lconnp, conn_t *econnp, mblk_t *mp)
12378 {
12379 	if (IPCL_IS_NONSTR(lconnp)) {
12380 		cred_t	*cr;
12381 		pid_t	cpid;
12382 
12383 		cr = msg_getcred(mp, &cpid);
12384 
12385 		ASSERT(econnp->conn_tcp->tcp_listener == lconnp->conn_tcp);
12386 		ASSERT(econnp->conn_tcp->tcp_saved_listener ==
12387 		    lconnp->conn_tcp);
12388 
12389 		/* Keep the message around in case of a fallback to TPI */
12390 		econnp->conn_tcp->tcp_conn.tcp_eager_conn_ind = mp;
12391 
12392 		/*
12393 		 * Notify the ULP about the newconn. It is guaranteed that no
12394 		 * tcp_accept() call will be made for the eager if the
12395 		 * notification fails, so it's safe to blow it off in that
12396 		 * case.
12397 		 *
12398 		 * The upper handle will be assigned when tcp_accept() is
12399 		 * called.
12400 		 */
12401 		if ((*lconnp->conn_upcalls->su_newconn)
12402 		    (lconnp->conn_upper_handle,
12403 		    (sock_lower_handle_t)econnp,
12404 		    &sock_tcp_downcalls, cr, cpid,
12405 		    &econnp->conn_upcalls) == NULL) {
12406 			/* Failed to allocate a socket */
12407 			BUMP_MIB(&lconnp->conn_tcp->tcp_tcps->tcps_mib,
12408 			    tcpEstabResets);
12409 			(void) tcp_eager_blowoff(lconnp->conn_tcp,
12410 			    econnp->conn_tcp->tcp_conn_req_seqnum);
12411 		}
12412 	} else {
12413 		putnext(lconnp->conn_tcp->tcp_rq, mp);
12414 	}
12415 }
12416 
12417 mblk_t *
12418 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp,
12419     uint_t *ifindexp, ip6_pkt_t *ippp)
12420 {
12421 	ip_pktinfo_t	*pinfo;
12422 	ip6_t		*ip6h;
12423 	uchar_t		*rptr;
12424 	mblk_t		*first_mp = mp;
12425 	boolean_t	mctl_present = B_FALSE;
12426 	uint_t 		ifindex = 0;
12427 	ip6_pkt_t	ipp;
12428 	uint_t		ipvers;
12429 	uint_t		ip_hdr_len;
12430 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12431 
12432 	rptr = mp->b_rptr;
12433 	ASSERT(OK_32PTR(rptr));
12434 	ASSERT(tcp != NULL);
12435 	ipp.ipp_fields = 0;
12436 
12437 	switch DB_TYPE(mp) {
12438 	case M_CTL:
12439 		mp = mp->b_cont;
12440 		if (mp == NULL) {
12441 			freemsg(first_mp);
12442 			return (NULL);
12443 		}
12444 		if (DB_TYPE(mp) != M_DATA) {
12445 			freemsg(first_mp);
12446 			return (NULL);
12447 		}
12448 		mctl_present = B_TRUE;
12449 		break;
12450 	case M_DATA:
12451 		break;
12452 	default:
12453 		cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type");
12454 		freemsg(mp);
12455 		return (NULL);
12456 	}
12457 	ipvers = IPH_HDR_VERSION(rptr);
12458 	if (ipvers == IPV4_VERSION) {
12459 		if (tcp == NULL) {
12460 			ip_hdr_len = IPH_HDR_LENGTH(rptr);
12461 			goto done;
12462 		}
12463 
12464 		ipp.ipp_fields |= IPPF_HOPLIMIT;
12465 		ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl;
12466 
12467 		/*
12468 		 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary
12469 		 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp.
12470 		 */
12471 		if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) &&
12472 		    mctl_present) {
12473 			pinfo = (ip_pktinfo_t *)first_mp->b_rptr;
12474 			if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) &&
12475 			    (pinfo->ip_pkt_ulp_type == IN_PKTINFO) &&
12476 			    (pinfo->ip_pkt_flags & IPF_RECVIF)) {
12477 				ipp.ipp_fields |= IPPF_IFINDEX;
12478 				ipp.ipp_ifindex = pinfo->ip_pkt_ifindex;
12479 				ifindex = pinfo->ip_pkt_ifindex;
12480 			}
12481 			freeb(first_mp);
12482 			mctl_present = B_FALSE;
12483 		}
12484 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12485 	} else {
12486 		ip6h = (ip6_t *)rptr;
12487 
12488 		ASSERT(ipvers == IPV6_VERSION);
12489 		ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS;
12490 		ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20;
12491 		ipp.ipp_hoplimit = ip6h->ip6_hops;
12492 
12493 		if (ip6h->ip6_nxt != IPPROTO_TCP) {
12494 			uint8_t	nexthdrp;
12495 			ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
12496 
12497 			/* Look for ifindex information */
12498 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
12499 				ip6i_t *ip6i = (ip6i_t *)ip6h;
12500 				if ((uchar_t *)&ip6i[1] > mp->b_wptr) {
12501 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12502 					freemsg(first_mp);
12503 					return (NULL);
12504 				}
12505 
12506 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
12507 					ASSERT(ip6i->ip6i_ifindex != 0);
12508 					ipp.ipp_fields |= IPPF_IFINDEX;
12509 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
12510 					ifindex = ip6i->ip6i_ifindex;
12511 				}
12512 				rptr = (uchar_t *)&ip6i[1];
12513 				mp->b_rptr = rptr;
12514 				if (rptr == mp->b_wptr) {
12515 					mblk_t *mp1;
12516 					mp1 = mp->b_cont;
12517 					freeb(mp);
12518 					mp = mp1;
12519 					rptr = mp->b_rptr;
12520 				}
12521 				if (MBLKL(mp) < IPV6_HDR_LEN +
12522 				    sizeof (tcph_t)) {
12523 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12524 					freemsg(first_mp);
12525 					return (NULL);
12526 				}
12527 				ip6h = (ip6_t *)rptr;
12528 			}
12529 
12530 			/*
12531 			 * Find any potentially interesting extension headers
12532 			 * as well as the length of the IPv6 + extension
12533 			 * headers.
12534 			 */
12535 			ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp);
12536 			/* Verify if this is a TCP packet */
12537 			if (nexthdrp != IPPROTO_TCP) {
12538 				BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12539 				freemsg(first_mp);
12540 				return (NULL);
12541 			}
12542 		} else {
12543 			ip_hdr_len = IPV6_HDR_LEN;
12544 		}
12545 	}
12546 
12547 done:
12548 	if (ipversp != NULL)
12549 		*ipversp = ipvers;
12550 	if (ip_hdr_lenp != NULL)
12551 		*ip_hdr_lenp = ip_hdr_len;
12552 	if (ippp != NULL)
12553 		*ippp = ipp;
12554 	if (ifindexp != NULL)
12555 		*ifindexp = ifindex;
12556 	if (mctl_present) {
12557 		freeb(first_mp);
12558 	}
12559 	return (mp);
12560 }
12561 
12562 /*
12563  * Handle M_DATA messages from IP. Its called directly from IP via
12564  * squeue for AF_INET type sockets fast path. No M_CTL are expected
12565  * in this path.
12566  *
12567  * For everything else (including AF_INET6 sockets with 'tcp_ipversion'
12568  * v4 and v6), we are called through tcp_input() and a M_CTL can
12569  * be present for options but tcp_find_pktinfo() deals with it. We
12570  * only expect M_DATA packets after tcp_find_pktinfo() is done.
12571  *
12572  * The first argument is always the connp/tcp to which the mp belongs.
12573  * There are no exceptions to this rule. The caller has already put
12574  * a reference on this connp/tcp and once tcp_rput_data() returns,
12575  * the squeue will do the refrele.
12576  *
12577  * The TH_SYN for the listener directly go to tcp_conn_request via
12578  * squeue.
12579  *
12580  * sqp: NULL = recursive, sqp != NULL means called from squeue
12581  */
12582 void
12583 tcp_rput_data(void *arg, mblk_t *mp, void *arg2)
12584 {
12585 	int32_t		bytes_acked;
12586 	int32_t		gap;
12587 	mblk_t		*mp1;
12588 	uint_t		flags;
12589 	uint32_t	new_swnd = 0;
12590 	uchar_t		*iphdr;
12591 	uchar_t		*rptr;
12592 	int32_t		rgap;
12593 	uint32_t	seg_ack;
12594 	int		seg_len;
12595 	uint_t		ip_hdr_len;
12596 	uint32_t	seg_seq;
12597 	tcph_t		*tcph;
12598 	int		urp;
12599 	tcp_opt_t	tcpopt;
12600 	uint_t		ipvers;
12601 	ip6_pkt_t	ipp;
12602 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
12603 	uint32_t	cwnd;
12604 	uint32_t	add;
12605 	int		npkt;
12606 	int		mss;
12607 	conn_t		*connp = (conn_t *)arg;
12608 	squeue_t	*sqp = (squeue_t *)arg2;
12609 	tcp_t		*tcp = connp->conn_tcp;
12610 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12611 
12612 	/*
12613 	 * RST from fused tcp loopback peer should trigger an unfuse.
12614 	 */
12615 	if (tcp->tcp_fused) {
12616 		TCP_STAT(tcps, tcp_fusion_aborted);
12617 		tcp_unfuse(tcp);
12618 	}
12619 
12620 	iphdr = mp->b_rptr;
12621 	rptr = mp->b_rptr;
12622 	ASSERT(OK_32PTR(rptr));
12623 
12624 	/*
12625 	 * An AF_INET socket is not capable of receiving any pktinfo. Do inline
12626 	 * processing here. For rest call tcp_find_pktinfo to fill up the
12627 	 * necessary information.
12628 	 */
12629 	if (IPCL_IS_TCP4(connp)) {
12630 		ipvers = IPV4_VERSION;
12631 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12632 	} else {
12633 		mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len,
12634 		    NULL, &ipp);
12635 		if (mp == NULL) {
12636 			TCP_STAT(tcps, tcp_rput_v6_error);
12637 			return;
12638 		}
12639 		iphdr = mp->b_rptr;
12640 		rptr = mp->b_rptr;
12641 	}
12642 	ASSERT(DB_TYPE(mp) == M_DATA);
12643 	ASSERT(mp->b_next == NULL);
12644 
12645 	tcph = (tcph_t *)&rptr[ip_hdr_len];
12646 	seg_seq = ABE32_TO_U32(tcph->th_seq);
12647 	seg_ack = ABE32_TO_U32(tcph->th_ack);
12648 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
12649 	seg_len = (int)(mp->b_wptr - rptr) -
12650 	    (ip_hdr_len + TCP_HDR_LENGTH(tcph));
12651 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
12652 		do {
12653 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
12654 			    (uintptr_t)INT_MAX);
12655 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
12656 		} while ((mp1 = mp1->b_cont) != NULL &&
12657 		    mp1->b_datap->db_type == M_DATA);
12658 	}
12659 
12660 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
12661 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
12662 		    seg_len, tcph);
12663 		return;
12664 	}
12665 
12666 	if (sqp != NULL) {
12667 		/*
12668 		 * This is the correct place to update tcp_last_recv_time. Note
12669 		 * that it is also updated for tcp structure that belongs to
12670 		 * global and listener queues which do not really need updating.
12671 		 * But that should not cause any harm.  And it is updated for
12672 		 * all kinds of incoming segments, not only for data segments.
12673 		 */
12674 		tcp->tcp_last_recv_time = lbolt;
12675 	}
12676 
12677 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
12678 
12679 	BUMP_LOCAL(tcp->tcp_ibsegs);
12680 	DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
12681 
12682 	if ((flags & TH_URG) && sqp != NULL) {
12683 		/*
12684 		 * TCP can't handle urgent pointers that arrive before
12685 		 * the connection has been accept()ed since it can't
12686 		 * buffer OOB data.  Discard segment if this happens.
12687 		 *
12688 		 * We can't just rely on a non-null tcp_listener to indicate
12689 		 * that the accept() has completed since unlinking of the
12690 		 * eager and completion of the accept are not atomic.
12691 		 * tcp_detached, when it is not set (B_FALSE) indicates
12692 		 * that the accept() has completed.
12693 		 *
12694 		 * Nor can it reassemble urgent pointers, so discard
12695 		 * if it's not the next segment expected.
12696 		 *
12697 		 * Otherwise, collapse chain into one mblk (discard if
12698 		 * that fails).  This makes sure the headers, retransmitted
12699 		 * data, and new data all are in the same mblk.
12700 		 */
12701 		ASSERT(mp != NULL);
12702 		if (tcp->tcp_detached || !pullupmsg(mp, -1)) {
12703 			freemsg(mp);
12704 			return;
12705 		}
12706 		/* Update pointers into message */
12707 		iphdr = rptr = mp->b_rptr;
12708 		tcph = (tcph_t *)&rptr[ip_hdr_len];
12709 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
12710 			/*
12711 			 * Since we can't handle any data with this urgent
12712 			 * pointer that is out of sequence, we expunge
12713 			 * the data.  This allows us to still register
12714 			 * the urgent mark and generate the M_PCSIG,
12715 			 * which we can do.
12716 			 */
12717 			mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
12718 			seg_len = 0;
12719 		}
12720 	}
12721 
12722 	switch (tcp->tcp_state) {
12723 	case TCPS_SYN_SENT:
12724 		if (flags & TH_ACK) {
12725 			/*
12726 			 * Note that our stack cannot send data before a
12727 			 * connection is established, therefore the
12728 			 * following check is valid.  Otherwise, it has
12729 			 * to be changed.
12730 			 */
12731 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
12732 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
12733 				freemsg(mp);
12734 				if (flags & TH_RST)
12735 					return;
12736 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
12737 				    tcp, seg_ack, 0, TH_RST);
12738 				return;
12739 			}
12740 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
12741 		}
12742 		if (flags & TH_RST) {
12743 			freemsg(mp);
12744 			if (flags & TH_ACK)
12745 				(void) tcp_clean_death(tcp,
12746 				    ECONNREFUSED, 13);
12747 			return;
12748 		}
12749 		if (!(flags & TH_SYN)) {
12750 			freemsg(mp);
12751 			return;
12752 		}
12753 
12754 		/* Process all TCP options. */
12755 		tcp_process_options(tcp, tcph);
12756 		/*
12757 		 * The following changes our rwnd to be a multiple of the
12758 		 * MIN(peer MSS, our MSS) for performance reason.
12759 		 */
12760 		(void) tcp_rwnd_set(tcp,
12761 		    MSS_ROUNDUP(tcp->tcp_recv_hiwater, tcp->tcp_mss));
12762 
12763 		/* Is the other end ECN capable? */
12764 		if (tcp->tcp_ecn_ok) {
12765 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
12766 				tcp->tcp_ecn_ok = B_FALSE;
12767 			}
12768 		}
12769 		/*
12770 		 * Clear ECN flags because it may interfere with later
12771 		 * processing.
12772 		 */
12773 		flags &= ~(TH_ECE|TH_CWR);
12774 
12775 		tcp->tcp_irs = seg_seq;
12776 		tcp->tcp_rack = seg_seq;
12777 		tcp->tcp_rnxt = seg_seq + 1;
12778 		U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
12779 		if (!TCP_IS_DETACHED(tcp)) {
12780 			/* Allocate room for SACK options if needed. */
12781 			if (tcp->tcp_snd_sack_ok) {
12782 				(void) proto_set_tx_wroff(tcp->tcp_rq, connp,
12783 				    tcp->tcp_hdr_len +
12784 				    TCPOPT_MAX_SACK_LEN +
12785 				    (tcp->tcp_loopback ? 0 :
12786 				    tcps->tcps_wroff_xtra));
12787 			} else {
12788 				(void) proto_set_tx_wroff(tcp->tcp_rq, connp,
12789 				    tcp->tcp_hdr_len +
12790 				    (tcp->tcp_loopback ? 0 :
12791 				    tcps->tcps_wroff_xtra));
12792 			}
12793 		}
12794 		if (flags & TH_ACK) {
12795 			/*
12796 			 * If we can't get the confirmation upstream, pretend
12797 			 * we didn't even see this one.
12798 			 *
12799 			 * XXX: how can we pretend we didn't see it if we
12800 			 * have updated rnxt et. al.
12801 			 *
12802 			 * For loopback we defer sending up the T_CONN_CON
12803 			 * until after some checks below.
12804 			 */
12805 			mp1 = NULL;
12806 			/*
12807 			 * tcp_sendmsg() checks tcp_state without entering
12808 			 * the squeue so tcp_state should be updated before
12809 			 * sending up connection confirmation
12810 			 */
12811 			tcp->tcp_state = TCPS_ESTABLISHED;
12812 			if (!tcp_conn_con(tcp, iphdr, tcph, mp,
12813 			    tcp->tcp_loopback ? &mp1 : NULL)) {
12814 				tcp->tcp_state = TCPS_SYN_SENT;
12815 				freemsg(mp);
12816 				return;
12817 			}
12818 			/* SYN was acked - making progress */
12819 			if (tcp->tcp_ipversion == IPV6_VERSION)
12820 				tcp->tcp_ip_forward_progress = B_TRUE;
12821 
12822 			/* One for the SYN */
12823 			tcp->tcp_suna = tcp->tcp_iss + 1;
12824 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
12825 
12826 			/*
12827 			 * If SYN was retransmitted, need to reset all
12828 			 * retransmission info.  This is because this
12829 			 * segment will be treated as a dup ACK.
12830 			 */
12831 			if (tcp->tcp_rexmit) {
12832 				tcp->tcp_rexmit = B_FALSE;
12833 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
12834 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
12835 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
12836 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
12837 				tcp->tcp_ms_we_have_waited = 0;
12838 
12839 				/*
12840 				 * Set tcp_cwnd back to 1 MSS, per
12841 				 * recommendation from
12842 				 * draft-floyd-incr-init-win-01.txt,
12843 				 * Increasing TCP's Initial Window.
12844 				 */
12845 				tcp->tcp_cwnd = tcp->tcp_mss;
12846 			}
12847 
12848 			tcp->tcp_swl1 = seg_seq;
12849 			tcp->tcp_swl2 = seg_ack;
12850 
12851 			new_swnd = BE16_TO_U16(tcph->th_win);
12852 			tcp->tcp_swnd = new_swnd;
12853 			if (new_swnd > tcp->tcp_max_swnd)
12854 				tcp->tcp_max_swnd = new_swnd;
12855 
12856 			/*
12857 			 * Always send the three-way handshake ack immediately
12858 			 * in order to make the connection complete as soon as
12859 			 * possible on the accepting host.
12860 			 */
12861 			flags |= TH_ACK_NEEDED;
12862 
12863 			/*
12864 			 * Special case for loopback.  At this point we have
12865 			 * received SYN-ACK from the remote endpoint.  In
12866 			 * order to ensure that both endpoints reach the
12867 			 * fused state prior to any data exchange, the final
12868 			 * ACK needs to be sent before we indicate T_CONN_CON
12869 			 * to the module upstream.
12870 			 */
12871 			if (tcp->tcp_loopback) {
12872 				mblk_t *ack_mp;
12873 
12874 				ASSERT(!tcp->tcp_unfusable);
12875 				ASSERT(mp1 != NULL);
12876 				/*
12877 				 * For loopback, we always get a pure SYN-ACK
12878 				 * and only need to send back the final ACK
12879 				 * with no data (this is because the other
12880 				 * tcp is ours and we don't do T/TCP).  This
12881 				 * final ACK triggers the passive side to
12882 				 * perform fusion in ESTABLISHED state.
12883 				 */
12884 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
12885 					if (tcp->tcp_ack_tid != 0) {
12886 						(void) TCP_TIMER_CANCEL(tcp,
12887 						    tcp->tcp_ack_tid);
12888 						tcp->tcp_ack_tid = 0;
12889 					}
12890 					tcp_send_data(tcp, tcp->tcp_wq, ack_mp);
12891 					BUMP_LOCAL(tcp->tcp_obsegs);
12892 					BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
12893 
12894 					if (!IPCL_IS_NONSTR(connp)) {
12895 						/* Send up T_CONN_CON */
12896 						putnext(tcp->tcp_rq, mp1);
12897 					} else {
12898 						cred_t	*cr;
12899 						pid_t	cpid;
12900 
12901 						cr = msg_getcred(mp1, &cpid);
12902 						(*connp->conn_upcalls->
12903 						    su_connected)
12904 						    (connp->conn_upper_handle,
12905 						    tcp->tcp_connid, cr, cpid);
12906 						freemsg(mp1);
12907 					}
12908 
12909 					freemsg(mp);
12910 					return;
12911 				}
12912 				/*
12913 				 * Forget fusion; we need to handle more
12914 				 * complex cases below.  Send the deferred
12915 				 * T_CONN_CON message upstream and proceed
12916 				 * as usual.  Mark this tcp as not capable
12917 				 * of fusion.
12918 				 */
12919 				TCP_STAT(tcps, tcp_fusion_unfusable);
12920 				tcp->tcp_unfusable = B_TRUE;
12921 				if (!IPCL_IS_NONSTR(connp)) {
12922 					putnext(tcp->tcp_rq, mp1);
12923 				} else {
12924 					cred_t	*cr;
12925 					pid_t	cpid;
12926 
12927 					cr = msg_getcred(mp1, &cpid);
12928 					(*connp->conn_upcalls->su_connected)
12929 					    (connp->conn_upper_handle,
12930 					    tcp->tcp_connid, cr, cpid);
12931 					freemsg(mp1);
12932 				}
12933 			}
12934 
12935 			/*
12936 			 * Check to see if there is data to be sent.  If
12937 			 * yes, set the transmit flag.  Then check to see
12938 			 * if received data processing needs to be done.
12939 			 * If not, go straight to xmit_check.  This short
12940 			 * cut is OK as we don't support T/TCP.
12941 			 */
12942 			if (tcp->tcp_unsent)
12943 				flags |= TH_XMIT_NEEDED;
12944 
12945 			if (seg_len == 0 && !(flags & TH_URG)) {
12946 				freemsg(mp);
12947 				goto xmit_check;
12948 			}
12949 
12950 			flags &= ~TH_SYN;
12951 			seg_seq++;
12952 			break;
12953 		}
12954 		tcp->tcp_state = TCPS_SYN_RCVD;
12955 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
12956 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
12957 		if (mp1) {
12958 			/*
12959 			 * See comment in tcp_conn_request() for why we use
12960 			 * the open() time pid here.
12961 			 */
12962 			DB_CPID(mp1) = tcp->tcp_cpid;
12963 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
12964 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
12965 		}
12966 		freemsg(mp);
12967 		return;
12968 	case TCPS_SYN_RCVD:
12969 		if (flags & TH_ACK) {
12970 			/*
12971 			 * In this state, a SYN|ACK packet is either bogus
12972 			 * because the other side must be ACKing our SYN which
12973 			 * indicates it has seen the ACK for their SYN and
12974 			 * shouldn't retransmit it or we're crossing SYNs
12975 			 * on active open.
12976 			 */
12977 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
12978 				freemsg(mp);
12979 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
12980 				    tcp, seg_ack, 0, TH_RST);
12981 				return;
12982 			}
12983 			/*
12984 			 * NOTE: RFC 793 pg. 72 says this should be
12985 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
12986 			 * but that would mean we have an ack that ignored
12987 			 * our SYN.
12988 			 */
12989 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
12990 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
12991 				freemsg(mp);
12992 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
12993 				    tcp, seg_ack, 0, TH_RST);
12994 				return;
12995 			}
12996 		}
12997 		break;
12998 	case TCPS_LISTEN:
12999 		/*
13000 		 * Only a TLI listener can come through this path when a
13001 		 * acceptor is going back to be a listener and a packet
13002 		 * for the acceptor hits the classifier. For a socket
13003 		 * listener, this can never happen because a listener
13004 		 * can never accept connection on itself and hence a
13005 		 * socket acceptor can not go back to being a listener.
13006 		 */
13007 		ASSERT(!TCP_IS_SOCKET(tcp));
13008 		/*FALLTHRU*/
13009 	case TCPS_CLOSED:
13010 	case TCPS_BOUND: {
13011 		conn_t	*new_connp;
13012 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
13013 
13014 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
13015 		if (new_connp != NULL) {
13016 			tcp_reinput(new_connp, mp, connp->conn_sqp);
13017 			return;
13018 		}
13019 		/* We failed to classify. For now just drop the packet */
13020 		freemsg(mp);
13021 		return;
13022 	}
13023 	case TCPS_IDLE:
13024 		/*
13025 		 * Handle the case where the tcp_clean_death() has happened
13026 		 * on a connection (application hasn't closed yet) but a packet
13027 		 * was already queued on squeue before tcp_clean_death()
13028 		 * was processed. Calling tcp_clean_death() twice on same
13029 		 * connection can result in weird behaviour.
13030 		 */
13031 		freemsg(mp);
13032 		return;
13033 	default:
13034 		break;
13035 	}
13036 
13037 	/*
13038 	 * Already on the correct queue/perimeter.
13039 	 * If this is a detached connection and not an eager
13040 	 * connection hanging off a listener then new data
13041 	 * (past the FIN) will cause a reset.
13042 	 * We do a special check here where it
13043 	 * is out of the main line, rather than check
13044 	 * if we are detached every time we see new
13045 	 * data down below.
13046 	 */
13047 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
13048 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
13049 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
13050 		DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
13051 
13052 		freemsg(mp);
13053 		/*
13054 		 * This could be an SSL closure alert. We're detached so just
13055 		 * acknowledge it this last time.
13056 		 */
13057 		if (tcp->tcp_kssl_ctx != NULL) {
13058 			kssl_release_ctx(tcp->tcp_kssl_ctx);
13059 			tcp->tcp_kssl_ctx = NULL;
13060 
13061 			tcp->tcp_rnxt += seg_len;
13062 			U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13063 			flags |= TH_ACK_NEEDED;
13064 			goto ack_check;
13065 		}
13066 
13067 		tcp_xmit_ctl("new data when detached", tcp,
13068 		    tcp->tcp_snxt, 0, TH_RST);
13069 		(void) tcp_clean_death(tcp, EPROTO, 12);
13070 		return;
13071 	}
13072 
13073 	mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
13074 	urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION;
13075 	new_swnd = BE16_TO_U16(tcph->th_win) <<
13076 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
13077 
13078 	if (tcp->tcp_snd_ts_ok) {
13079 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
13080 			/*
13081 			 * This segment is not acceptable.
13082 			 * Drop it and send back an ACK.
13083 			 */
13084 			freemsg(mp);
13085 			flags |= TH_ACK_NEEDED;
13086 			goto ack_check;
13087 		}
13088 	} else if (tcp->tcp_snd_sack_ok) {
13089 		ASSERT(tcp->tcp_sack_info != NULL);
13090 		tcpopt.tcp = tcp;
13091 		/*
13092 		 * SACK info in already updated in tcp_parse_options.  Ignore
13093 		 * all other TCP options...
13094 		 */
13095 		(void) tcp_parse_options(tcph, &tcpopt);
13096 	}
13097 try_again:;
13098 	mss = tcp->tcp_mss;
13099 	gap = seg_seq - tcp->tcp_rnxt;
13100 	rgap = tcp->tcp_rwnd - (gap + seg_len);
13101 	/*
13102 	 * gap is the amount of sequence space between what we expect to see
13103 	 * and what we got for seg_seq.  A positive value for gap means
13104 	 * something got lost.  A negative value means we got some old stuff.
13105 	 */
13106 	if (gap < 0) {
13107 		/* Old stuff present.  Is the SYN in there? */
13108 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
13109 		    (seg_len != 0)) {
13110 			flags &= ~TH_SYN;
13111 			seg_seq++;
13112 			urp--;
13113 			/* Recompute the gaps after noting the SYN. */
13114 			goto try_again;
13115 		}
13116 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
13117 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
13118 		    (seg_len > -gap ? -gap : seg_len));
13119 		/* Remove the old stuff from seg_len. */
13120 		seg_len += gap;
13121 		/*
13122 		 * Anything left?
13123 		 * Make sure to check for unack'd FIN when rest of data
13124 		 * has been previously ack'd.
13125 		 */
13126 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
13127 			/*
13128 			 * Resets are only valid if they lie within our offered
13129 			 * window.  If the RST bit is set, we just ignore this
13130 			 * segment.
13131 			 */
13132 			if (flags & TH_RST) {
13133 				freemsg(mp);
13134 				return;
13135 			}
13136 
13137 			/*
13138 			 * The arriving of dup data packets indicate that we
13139 			 * may have postponed an ack for too long, or the other
13140 			 * side's RTT estimate is out of shape. Start acking
13141 			 * more often.
13142 			 */
13143 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
13144 			    tcp->tcp_rack_cnt >= 1 &&
13145 			    tcp->tcp_rack_abs_max > 2) {
13146 				tcp->tcp_rack_abs_max--;
13147 			}
13148 			tcp->tcp_rack_cur_max = 1;
13149 
13150 			/*
13151 			 * This segment is "unacceptable".  None of its
13152 			 * sequence space lies within our advertized window.
13153 			 *
13154 			 * Adjust seg_len to the original value for tracing.
13155 			 */
13156 			seg_len -= gap;
13157 			if (tcp->tcp_debug) {
13158 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13159 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
13160 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
13161 				    "seg_len %d, rnxt %u, snxt %u, %s",
13162 				    gap, rgap, flags, seg_seq, seg_ack,
13163 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
13164 				    tcp_display(tcp, NULL,
13165 				    DISP_ADDR_AND_PORT));
13166 			}
13167 
13168 			/*
13169 			 * Arrange to send an ACK in response to the
13170 			 * unacceptable segment per RFC 793 page 69. There
13171 			 * is only one small difference between ours and the
13172 			 * acceptability test in the RFC - we accept ACK-only
13173 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
13174 			 * will be generated.
13175 			 *
13176 			 * Note that we have to ACK an ACK-only packet at least
13177 			 * for stacks that send 0-length keep-alives with
13178 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
13179 			 * section 4.2.3.6. As long as we don't ever generate
13180 			 * an unacceptable packet in response to an incoming
13181 			 * packet that is unacceptable, it should not cause
13182 			 * "ACK wars".
13183 			 */
13184 			flags |=  TH_ACK_NEEDED;
13185 
13186 			/*
13187 			 * Continue processing this segment in order to use the
13188 			 * ACK information it contains, but skip all other
13189 			 * sequence-number processing.	Processing the ACK
13190 			 * information is necessary in order to
13191 			 * re-synchronize connections that may have lost
13192 			 * synchronization.
13193 			 *
13194 			 * We clear seg_len and flag fields related to
13195 			 * sequence number processing as they are not
13196 			 * to be trusted for an unacceptable segment.
13197 			 */
13198 			seg_len = 0;
13199 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
13200 			goto process_ack;
13201 		}
13202 
13203 		/* Fix seg_seq, and chew the gap off the front. */
13204 		seg_seq = tcp->tcp_rnxt;
13205 		urp += gap;
13206 		do {
13207 			mblk_t	*mp2;
13208 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13209 			    (uintptr_t)UINT_MAX);
13210 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
13211 			if (gap > 0) {
13212 				mp->b_rptr = mp->b_wptr - gap;
13213 				break;
13214 			}
13215 			mp2 = mp;
13216 			mp = mp->b_cont;
13217 			freeb(mp2);
13218 		} while (gap < 0);
13219 		/*
13220 		 * If the urgent data has already been acknowledged, we
13221 		 * should ignore TH_URG below
13222 		 */
13223 		if (urp < 0)
13224 			flags &= ~TH_URG;
13225 	}
13226 	/*
13227 	 * rgap is the amount of stuff received out of window.  A negative
13228 	 * value is the amount out of window.
13229 	 */
13230 	if (rgap < 0) {
13231 		mblk_t	*mp2;
13232 
13233 		if (tcp->tcp_rwnd == 0) {
13234 			BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe);
13235 		} else {
13236 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
13237 			UPDATE_MIB(&tcps->tcps_mib,
13238 			    tcpInDataPastWinBytes, -rgap);
13239 		}
13240 
13241 		/*
13242 		 * seg_len does not include the FIN, so if more than
13243 		 * just the FIN is out of window, we act like we don't
13244 		 * see it.  (If just the FIN is out of window, rgap
13245 		 * will be zero and we will go ahead and acknowledge
13246 		 * the FIN.)
13247 		 */
13248 		flags &= ~TH_FIN;
13249 
13250 		/* Fix seg_len and make sure there is something left. */
13251 		seg_len += rgap;
13252 		if (seg_len <= 0) {
13253 			/*
13254 			 * Resets are only valid if they lie within our offered
13255 			 * window.  If the RST bit is set, we just ignore this
13256 			 * segment.
13257 			 */
13258 			if (flags & TH_RST) {
13259 				freemsg(mp);
13260 				return;
13261 			}
13262 
13263 			/* Per RFC 793, we need to send back an ACK. */
13264 			flags |= TH_ACK_NEEDED;
13265 
13266 			/*
13267 			 * Send SIGURG as soon as possible i.e. even
13268 			 * if the TH_URG was delivered in a window probe
13269 			 * packet (which will be unacceptable).
13270 			 *
13271 			 * We generate a signal if none has been generated
13272 			 * for this connection or if this is a new urgent
13273 			 * byte. Also send a zero-length "unmarked" message
13274 			 * to inform SIOCATMARK that this is not the mark.
13275 			 *
13276 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
13277 			 * is sent up. This plus the check for old data
13278 			 * (gap >= 0) handles the wraparound of the sequence
13279 			 * number space without having to always track the
13280 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
13281 			 * this max in its rcv_up variable).
13282 			 *
13283 			 * This prevents duplicate SIGURGS due to a "late"
13284 			 * zero-window probe when the T_EXDATA_IND has already
13285 			 * been sent up.
13286 			 */
13287 			if ((flags & TH_URG) &&
13288 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
13289 			    tcp->tcp_urp_last))) {
13290 				if (IPCL_IS_NONSTR(connp)) {
13291 					if (!TCP_IS_DETACHED(tcp)) {
13292 						(*connp->conn_upcalls->
13293 						    su_signal_oob)
13294 						    (connp->conn_upper_handle,
13295 						    urp);
13296 					}
13297 				} else {
13298 					mp1 = allocb(0, BPRI_MED);
13299 					if (mp1 == NULL) {
13300 						freemsg(mp);
13301 						return;
13302 					}
13303 					if (!TCP_IS_DETACHED(tcp) &&
13304 					    !putnextctl1(tcp->tcp_rq,
13305 					    M_PCSIG, SIGURG)) {
13306 						/* Try again on the rexmit. */
13307 						freemsg(mp1);
13308 						freemsg(mp);
13309 						return;
13310 					}
13311 					/*
13312 					 * If the next byte would be the mark
13313 					 * then mark with MARKNEXT else mark
13314 					 * with NOTMARKNEXT.
13315 					 */
13316 					if (gap == 0 && urp == 0)
13317 						mp1->b_flag |= MSGMARKNEXT;
13318 					else
13319 						mp1->b_flag |= MSGNOTMARKNEXT;
13320 					freemsg(tcp->tcp_urp_mark_mp);
13321 					tcp->tcp_urp_mark_mp = mp1;
13322 					flags |= TH_SEND_URP_MARK;
13323 				}
13324 				tcp->tcp_urp_last_valid = B_TRUE;
13325 				tcp->tcp_urp_last = urp + seg_seq;
13326 			}
13327 			/*
13328 			 * If this is a zero window probe, continue to
13329 			 * process the ACK part.  But we need to set seg_len
13330 			 * to 0 to avoid data processing.  Otherwise just
13331 			 * drop the segment and send back an ACK.
13332 			 */
13333 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
13334 				flags &= ~(TH_SYN | TH_URG);
13335 				seg_len = 0;
13336 				goto process_ack;
13337 			} else {
13338 				freemsg(mp);
13339 				goto ack_check;
13340 			}
13341 		}
13342 		/* Pitch out of window stuff off the end. */
13343 		rgap = seg_len;
13344 		mp2 = mp;
13345 		do {
13346 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
13347 			    (uintptr_t)INT_MAX);
13348 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
13349 			if (rgap < 0) {
13350 				mp2->b_wptr += rgap;
13351 				if ((mp1 = mp2->b_cont) != NULL) {
13352 					mp2->b_cont = NULL;
13353 					freemsg(mp1);
13354 				}
13355 				break;
13356 			}
13357 		} while ((mp2 = mp2->b_cont) != NULL);
13358 	}
13359 ok:;
13360 	/*
13361 	 * TCP should check ECN info for segments inside the window only.
13362 	 * Therefore the check should be done here.
13363 	 */
13364 	if (tcp->tcp_ecn_ok) {
13365 		if (flags & TH_CWR) {
13366 			tcp->tcp_ecn_echo_on = B_FALSE;
13367 		}
13368 		/*
13369 		 * Note that both ECN_CE and CWR can be set in the
13370 		 * same segment.  In this case, we once again turn
13371 		 * on ECN_ECHO.
13372 		 */
13373 		if (tcp->tcp_ipversion == IPV4_VERSION) {
13374 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
13375 
13376 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
13377 				tcp->tcp_ecn_echo_on = B_TRUE;
13378 			}
13379 		} else {
13380 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
13381 
13382 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
13383 			    htonl(IPH_ECN_CE << 20)) {
13384 				tcp->tcp_ecn_echo_on = B_TRUE;
13385 			}
13386 		}
13387 	}
13388 
13389 	/*
13390 	 * Check whether we can update tcp_ts_recent.  This test is
13391 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
13392 	 * Extensions for High Performance: An Update", Internet Draft.
13393 	 */
13394 	if (tcp->tcp_snd_ts_ok &&
13395 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
13396 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
13397 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
13398 		tcp->tcp_last_rcv_lbolt = lbolt64;
13399 	}
13400 
13401 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
13402 		/*
13403 		 * FIN in an out of order segment.  We record this in
13404 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
13405 		 * Clear the FIN so that any check on FIN flag will fail.
13406 		 * Remember that FIN also counts in the sequence number
13407 		 * space.  So we need to ack out of order FIN only segments.
13408 		 */
13409 		if (flags & TH_FIN) {
13410 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
13411 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
13412 			flags &= ~TH_FIN;
13413 			flags |= TH_ACK_NEEDED;
13414 		}
13415 		if (seg_len > 0) {
13416 			/* Fill in the SACK blk list. */
13417 			if (tcp->tcp_snd_sack_ok) {
13418 				ASSERT(tcp->tcp_sack_info != NULL);
13419 				tcp_sack_insert(tcp->tcp_sack_list,
13420 				    seg_seq, seg_seq + seg_len,
13421 				    &(tcp->tcp_num_sack_blk));
13422 			}
13423 
13424 			/*
13425 			 * Attempt reassembly and see if we have something
13426 			 * ready to go.
13427 			 */
13428 			mp = tcp_reass(tcp, mp, seg_seq);
13429 			/* Always ack out of order packets */
13430 			flags |= TH_ACK_NEEDED | TH_PUSH;
13431 			if (mp) {
13432 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13433 				    (uintptr_t)INT_MAX);
13434 				seg_len = mp->b_cont ? msgdsize(mp) :
13435 				    (int)(mp->b_wptr - mp->b_rptr);
13436 				seg_seq = tcp->tcp_rnxt;
13437 				/*
13438 				 * A gap is filled and the seq num and len
13439 				 * of the gap match that of a previously
13440 				 * received FIN, put the FIN flag back in.
13441 				 */
13442 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13443 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13444 					flags |= TH_FIN;
13445 					tcp->tcp_valid_bits &=
13446 					    ~TCP_OFO_FIN_VALID;
13447 				}
13448 			} else {
13449 				/*
13450 				 * Keep going even with NULL mp.
13451 				 * There may be a useful ACK or something else
13452 				 * we don't want to miss.
13453 				 *
13454 				 * But TCP should not perform fast retransmit
13455 				 * because of the ack number.  TCP uses
13456 				 * seg_len == 0 to determine if it is a pure
13457 				 * ACK.  And this is not a pure ACK.
13458 				 */
13459 				seg_len = 0;
13460 				ofo_seg = B_TRUE;
13461 			}
13462 		}
13463 	} else if (seg_len > 0) {
13464 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
13465 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
13466 		/*
13467 		 * If an out of order FIN was received before, and the seq
13468 		 * num and len of the new segment match that of the FIN,
13469 		 * put the FIN flag back in.
13470 		 */
13471 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13472 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13473 			flags |= TH_FIN;
13474 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
13475 		}
13476 	}
13477 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
13478 	if (flags & TH_RST) {
13479 		freemsg(mp);
13480 		switch (tcp->tcp_state) {
13481 		case TCPS_SYN_RCVD:
13482 			(void) tcp_clean_death(tcp, ECONNREFUSED, 14);
13483 			break;
13484 		case TCPS_ESTABLISHED:
13485 		case TCPS_FIN_WAIT_1:
13486 		case TCPS_FIN_WAIT_2:
13487 		case TCPS_CLOSE_WAIT:
13488 			(void) tcp_clean_death(tcp, ECONNRESET, 15);
13489 			break;
13490 		case TCPS_CLOSING:
13491 		case TCPS_LAST_ACK:
13492 			(void) tcp_clean_death(tcp, 0, 16);
13493 			break;
13494 		default:
13495 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13496 			(void) tcp_clean_death(tcp, ENXIO, 17);
13497 			break;
13498 		}
13499 		return;
13500 	}
13501 	if (flags & TH_SYN) {
13502 		/*
13503 		 * See RFC 793, Page 71
13504 		 *
13505 		 * The seq number must be in the window as it should
13506 		 * be "fixed" above.  If it is outside window, it should
13507 		 * be already rejected.  Note that we allow seg_seq to be
13508 		 * rnxt + rwnd because we want to accept 0 window probe.
13509 		 */
13510 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
13511 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
13512 		freemsg(mp);
13513 		/*
13514 		 * If the ACK flag is not set, just use our snxt as the
13515 		 * seq number of the RST segment.
13516 		 */
13517 		if (!(flags & TH_ACK)) {
13518 			seg_ack = tcp->tcp_snxt;
13519 		}
13520 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
13521 		    TH_RST|TH_ACK);
13522 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13523 		(void) tcp_clean_death(tcp, ECONNRESET, 18);
13524 		return;
13525 	}
13526 	/*
13527 	 * urp could be -1 when the urp field in the packet is 0
13528 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
13529 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
13530 	 */
13531 	if (flags & TH_URG && urp >= 0) {
13532 		if (!tcp->tcp_urp_last_valid ||
13533 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
13534 			if (IPCL_IS_NONSTR(connp)) {
13535 				if (!TCP_IS_DETACHED(tcp)) {
13536 					(*connp->conn_upcalls->su_signal_oob)
13537 					    (connp->conn_upper_handle, urp);
13538 				}
13539 			} else {
13540 				/*
13541 				 * If we haven't generated the signal yet for
13542 				 * this urgent pointer value, do it now.  Also,
13543 				 * send up a zero-length M_DATA indicating
13544 				 * whether or not this is the mark. The latter
13545 				 * is not needed when a T_EXDATA_IND is sent up.
13546 				 * However, if there are allocation failures
13547 				 * this code relies on the sender retransmitting
13548 				 * and the socket code for determining the mark
13549 				 * should not block waiting for the peer to
13550 				 * transmit. Thus, for simplicity we always
13551 				 * send up the mark indication.
13552 				 */
13553 				mp1 = allocb(0, BPRI_MED);
13554 				if (mp1 == NULL) {
13555 					freemsg(mp);
13556 					return;
13557 				}
13558 				if (!TCP_IS_DETACHED(tcp) &&
13559 				    !putnextctl1(tcp->tcp_rq, M_PCSIG,
13560 				    SIGURG)) {
13561 					/* Try again on the rexmit. */
13562 					freemsg(mp1);
13563 					freemsg(mp);
13564 					return;
13565 				}
13566 				/*
13567 				 * Mark with NOTMARKNEXT for now.
13568 				 * The code below will change this to MARKNEXT
13569 				 * if we are at the mark.
13570 				 *
13571 				 * If there are allocation failures (e.g. in
13572 				 * dupmsg below) the next time tcp_rput_data
13573 				 * sees the urgent segment it will send up the
13574 				 * MSGMARKNEXT message.
13575 				 */
13576 				mp1->b_flag |= MSGNOTMARKNEXT;
13577 				freemsg(tcp->tcp_urp_mark_mp);
13578 				tcp->tcp_urp_mark_mp = mp1;
13579 				flags |= TH_SEND_URP_MARK;
13580 #ifdef DEBUG
13581 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13582 				    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
13583 				    "last %x, %s",
13584 				    seg_seq, urp, tcp->tcp_urp_last,
13585 				    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13586 #endif /* DEBUG */
13587 			}
13588 			tcp->tcp_urp_last_valid = B_TRUE;
13589 			tcp->tcp_urp_last = urp + seg_seq;
13590 		} else if (tcp->tcp_urp_mark_mp != NULL) {
13591 			/*
13592 			 * An allocation failure prevented the previous
13593 			 * tcp_rput_data from sending up the allocated
13594 			 * MSG*MARKNEXT message - send it up this time
13595 			 * around.
13596 			 */
13597 			flags |= TH_SEND_URP_MARK;
13598 		}
13599 
13600 		/*
13601 		 * If the urgent byte is in this segment, make sure that it is
13602 		 * all by itself.  This makes it much easier to deal with the
13603 		 * possibility of an allocation failure on the T_exdata_ind.
13604 		 * Note that seg_len is the number of bytes in the segment, and
13605 		 * urp is the offset into the segment of the urgent byte.
13606 		 * urp < seg_len means that the urgent byte is in this segment.
13607 		 */
13608 		if (urp < seg_len) {
13609 			if (seg_len != 1) {
13610 				uint32_t  tmp_rnxt;
13611 				/*
13612 				 * Break it up and feed it back in.
13613 				 * Re-attach the IP header.
13614 				 */
13615 				mp->b_rptr = iphdr;
13616 				if (urp > 0) {
13617 					/*
13618 					 * There is stuff before the urgent
13619 					 * byte.
13620 					 */
13621 					mp1 = dupmsg(mp);
13622 					if (!mp1) {
13623 						/*
13624 						 * Trim from urgent byte on.
13625 						 * The rest will come back.
13626 						 */
13627 						(void) adjmsg(mp,
13628 						    urp - seg_len);
13629 						tcp_rput_data(connp,
13630 						    mp, NULL);
13631 						return;
13632 					}
13633 					(void) adjmsg(mp1, urp - seg_len);
13634 					/* Feed this piece back in. */
13635 					tmp_rnxt = tcp->tcp_rnxt;
13636 					tcp_rput_data(connp, mp1, NULL);
13637 					/*
13638 					 * If the data passed back in was not
13639 					 * processed (ie: bad ACK) sending
13640 					 * the remainder back in will cause a
13641 					 * loop. In this case, drop the
13642 					 * packet and let the sender try
13643 					 * sending a good packet.
13644 					 */
13645 					if (tmp_rnxt == tcp->tcp_rnxt) {
13646 						freemsg(mp);
13647 						return;
13648 					}
13649 				}
13650 				if (urp != seg_len - 1) {
13651 					uint32_t  tmp_rnxt;
13652 					/*
13653 					 * There is stuff after the urgent
13654 					 * byte.
13655 					 */
13656 					mp1 = dupmsg(mp);
13657 					if (!mp1) {
13658 						/*
13659 						 * Trim everything beyond the
13660 						 * urgent byte.  The rest will
13661 						 * come back.
13662 						 */
13663 						(void) adjmsg(mp,
13664 						    urp + 1 - seg_len);
13665 						tcp_rput_data(connp,
13666 						    mp, NULL);
13667 						return;
13668 					}
13669 					(void) adjmsg(mp1, urp + 1 - seg_len);
13670 					tmp_rnxt = tcp->tcp_rnxt;
13671 					tcp_rput_data(connp, mp1, NULL);
13672 					/*
13673 					 * If the data passed back in was not
13674 					 * processed (ie: bad ACK) sending
13675 					 * the remainder back in will cause a
13676 					 * loop. In this case, drop the
13677 					 * packet and let the sender try
13678 					 * sending a good packet.
13679 					 */
13680 					if (tmp_rnxt == tcp->tcp_rnxt) {
13681 						freemsg(mp);
13682 						return;
13683 					}
13684 				}
13685 				tcp_rput_data(connp, mp, NULL);
13686 				return;
13687 			}
13688 			/*
13689 			 * This segment contains only the urgent byte.  We
13690 			 * have to allocate the T_exdata_ind, if we can.
13691 			 */
13692 			if (IPCL_IS_NONSTR(connp)) {
13693 				int error;
13694 
13695 				(*connp->conn_upcalls->su_recv)
13696 				    (connp->conn_upper_handle, mp, seg_len,
13697 				    MSG_OOB, &error, NULL);
13698 				/*
13699 				 * We should never be in middle of a
13700 				 * fallback, the squeue guarantees that.
13701 				 */
13702 				ASSERT(error != EOPNOTSUPP);
13703 				mp = NULL;
13704 				goto update_ack;
13705 			} else if (!tcp->tcp_urp_mp) {
13706 				struct T_exdata_ind *tei;
13707 				mp1 = allocb(sizeof (struct T_exdata_ind),
13708 				    BPRI_MED);
13709 				if (!mp1) {
13710 					/*
13711 					 * Sigh... It'll be back.
13712 					 * Generate any MSG*MARK message now.
13713 					 */
13714 					freemsg(mp);
13715 					seg_len = 0;
13716 					if (flags & TH_SEND_URP_MARK) {
13717 
13718 
13719 						ASSERT(tcp->tcp_urp_mark_mp);
13720 						tcp->tcp_urp_mark_mp->b_flag &=
13721 						    ~MSGNOTMARKNEXT;
13722 						tcp->tcp_urp_mark_mp->b_flag |=
13723 						    MSGMARKNEXT;
13724 					}
13725 					goto ack_check;
13726 				}
13727 				mp1->b_datap->db_type = M_PROTO;
13728 				tei = (struct T_exdata_ind *)mp1->b_rptr;
13729 				tei->PRIM_type = T_EXDATA_IND;
13730 				tei->MORE_flag = 0;
13731 				mp1->b_wptr = (uchar_t *)&tei[1];
13732 				tcp->tcp_urp_mp = mp1;
13733 #ifdef DEBUG
13734 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13735 				    "tcp_rput: allocated exdata_ind %s",
13736 				    tcp_display(tcp, NULL,
13737 				    DISP_PORT_ONLY));
13738 #endif /* DEBUG */
13739 				/*
13740 				 * There is no need to send a separate MSG*MARK
13741 				 * message since the T_EXDATA_IND will be sent
13742 				 * now.
13743 				 */
13744 				flags &= ~TH_SEND_URP_MARK;
13745 				freemsg(tcp->tcp_urp_mark_mp);
13746 				tcp->tcp_urp_mark_mp = NULL;
13747 			}
13748 			/*
13749 			 * Now we are all set.  On the next putnext upstream,
13750 			 * tcp_urp_mp will be non-NULL and will get prepended
13751 			 * to what has to be this piece containing the urgent
13752 			 * byte.  If for any reason we abort this segment below,
13753 			 * if it comes back, we will have this ready, or it
13754 			 * will get blown off in close.
13755 			 */
13756 		} else if (urp == seg_len) {
13757 			/*
13758 			 * The urgent byte is the next byte after this sequence
13759 			 * number. If there is data it is marked with
13760 			 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded
13761 			 * since it is not needed. Otherwise, if the code
13762 			 * above just allocated a zero-length tcp_urp_mark_mp
13763 			 * message, that message is tagged with MSGMARKNEXT.
13764 			 * Sending up these MSGMARKNEXT messages makes
13765 			 * SIOCATMARK work correctly even though
13766 			 * the T_EXDATA_IND will not be sent up until the
13767 			 * urgent byte arrives.
13768 			 */
13769 			if (seg_len != 0) {
13770 				flags |= TH_MARKNEXT_NEEDED;
13771 				freemsg(tcp->tcp_urp_mark_mp);
13772 				tcp->tcp_urp_mark_mp = NULL;
13773 				flags &= ~TH_SEND_URP_MARK;
13774 			} else if (tcp->tcp_urp_mark_mp != NULL) {
13775 				flags |= TH_SEND_URP_MARK;
13776 				tcp->tcp_urp_mark_mp->b_flag &=
13777 				    ~MSGNOTMARKNEXT;
13778 				tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT;
13779 			}
13780 #ifdef DEBUG
13781 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13782 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
13783 			    seg_len, flags,
13784 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13785 #endif /* DEBUG */
13786 		}
13787 #ifdef DEBUG
13788 		else {
13789 			/* Data left until we hit mark */
13790 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13791 			    "tcp_rput: URP %d bytes left, %s",
13792 			    urp - seg_len, tcp_display(tcp, NULL,
13793 			    DISP_PORT_ONLY));
13794 		}
13795 #endif /* DEBUG */
13796 	}
13797 
13798 process_ack:
13799 	if (!(flags & TH_ACK)) {
13800 		freemsg(mp);
13801 		goto xmit_check;
13802 	}
13803 	}
13804 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
13805 
13806 	if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0)
13807 		tcp->tcp_ip_forward_progress = B_TRUE;
13808 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
13809 		if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) &&
13810 		    ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) {
13811 			/* 3-way handshake complete - pass up the T_CONN_IND */
13812 			tcp_t	*listener = tcp->tcp_listener;
13813 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
13814 
13815 			tcp->tcp_tconnind_started = B_TRUE;
13816 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
13817 			/*
13818 			 * We are here means eager is fine but it can
13819 			 * get a TH_RST at any point between now and till
13820 			 * accept completes and disappear. We need to
13821 			 * ensure that reference to eager is valid after
13822 			 * we get out of eager's perimeter. So we do
13823 			 * an extra refhold.
13824 			 */
13825 			CONN_INC_REF(connp);
13826 
13827 			/*
13828 			 * The listener also exists because of the refhold
13829 			 * done in tcp_conn_request. Its possible that it
13830 			 * might have closed. We will check that once we
13831 			 * get inside listeners context.
13832 			 */
13833 			CONN_INC_REF(listener->tcp_connp);
13834 			if (listener->tcp_connp->conn_sqp ==
13835 			    connp->conn_sqp) {
13836 				/*
13837 				 * We optimize by not calling an SQUEUE_ENTER
13838 				 * on the listener since we know that the
13839 				 * listener and eager squeues are the same.
13840 				 * We are able to make this check safely only
13841 				 * because neither the eager nor the listener
13842 				 * can change its squeue. Only an active connect
13843 				 * can change its squeue
13844 				 */
13845 				tcp_send_conn_ind(listener->tcp_connp, mp,
13846 				    listener->tcp_connp->conn_sqp);
13847 				CONN_DEC_REF(listener->tcp_connp);
13848 			} else if (!tcp->tcp_loopback) {
13849 				SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp,
13850 				    mp, tcp_send_conn_ind,
13851 				    listener->tcp_connp, SQ_FILL,
13852 				    SQTAG_TCP_CONN_IND);
13853 			} else {
13854 				SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp,
13855 				    mp, tcp_send_conn_ind,
13856 				    listener->tcp_connp, SQ_PROCESS,
13857 				    SQTAG_TCP_CONN_IND);
13858 			}
13859 		}
13860 
13861 		/*
13862 		 * We are seeing the final ack in the three way
13863 		 * hand shake of a active open'ed connection
13864 		 * so we must send up a T_CONN_CON
13865 		 *
13866 		 * tcp_sendmsg() checks tcp_state without entering
13867 		 * the squeue so tcp_state should be updated before
13868 		 * sending up connection confirmation.
13869 		 */
13870 		tcp->tcp_state = TCPS_ESTABLISHED;
13871 		if (tcp->tcp_active_open) {
13872 			if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) {
13873 				freemsg(mp);
13874 				tcp->tcp_state = TCPS_SYN_RCVD;
13875 				return;
13876 			}
13877 			/*
13878 			 * Don't fuse the loopback endpoints for
13879 			 * simultaneous active opens.
13880 			 */
13881 			if (tcp->tcp_loopback) {
13882 				TCP_STAT(tcps, tcp_fusion_unfusable);
13883 				tcp->tcp_unfusable = B_TRUE;
13884 			}
13885 		}
13886 
13887 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
13888 		bytes_acked--;
13889 		/* SYN was acked - making progress */
13890 		if (tcp->tcp_ipversion == IPV6_VERSION)
13891 			tcp->tcp_ip_forward_progress = B_TRUE;
13892 
13893 		/*
13894 		 * If SYN was retransmitted, need to reset all
13895 		 * retransmission info as this segment will be
13896 		 * treated as a dup ACK.
13897 		 */
13898 		if (tcp->tcp_rexmit) {
13899 			tcp->tcp_rexmit = B_FALSE;
13900 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
13901 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
13902 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
13903 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
13904 			tcp->tcp_ms_we_have_waited = 0;
13905 			tcp->tcp_cwnd = mss;
13906 		}
13907 
13908 		/*
13909 		 * We set the send window to zero here.
13910 		 * This is needed if there is data to be
13911 		 * processed already on the queue.
13912 		 * Later (at swnd_update label), the
13913 		 * "new_swnd > tcp_swnd" condition is satisfied
13914 		 * the XMIT_NEEDED flag is set in the current
13915 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
13916 		 * called if there is already data on queue in
13917 		 * this state.
13918 		 */
13919 		tcp->tcp_swnd = 0;
13920 
13921 		if (new_swnd > tcp->tcp_max_swnd)
13922 			tcp->tcp_max_swnd = new_swnd;
13923 		tcp->tcp_swl1 = seg_seq;
13924 		tcp->tcp_swl2 = seg_ack;
13925 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
13926 
13927 		/* Fuse when both sides are in ESTABLISHED state */
13928 		if (tcp->tcp_loopback && do_tcp_fusion)
13929 			tcp_fuse(tcp, iphdr, tcph);
13930 
13931 	}
13932 	/* This code follows 4.4BSD-Lite2 mostly. */
13933 	if (bytes_acked < 0)
13934 		goto est;
13935 
13936 	/*
13937 	 * If TCP is ECN capable and the congestion experience bit is
13938 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
13939 	 * done once per window (or more loosely, per RTT).
13940 	 */
13941 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
13942 		tcp->tcp_cwr = B_FALSE;
13943 	if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
13944 		if (!tcp->tcp_cwr) {
13945 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss;
13946 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
13947 			tcp->tcp_cwnd = npkt * mss;
13948 			/*
13949 			 * If the cwnd is 0, use the timer to clock out
13950 			 * new segments.  This is required by the ECN spec.
13951 			 */
13952 			if (npkt == 0) {
13953 				TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
13954 				/*
13955 				 * This makes sure that when the ACK comes
13956 				 * back, we will increase tcp_cwnd by 1 MSS.
13957 				 */
13958 				tcp->tcp_cwnd_cnt = 0;
13959 			}
13960 			tcp->tcp_cwr = B_TRUE;
13961 			/*
13962 			 * This marks the end of the current window of in
13963 			 * flight data.  That is why we don't use
13964 			 * tcp_suna + tcp_swnd.  Only data in flight can
13965 			 * provide ECN info.
13966 			 */
13967 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
13968 			tcp->tcp_ecn_cwr_sent = B_FALSE;
13969 		}
13970 	}
13971 
13972 	mp1 = tcp->tcp_xmit_head;
13973 	if (bytes_acked == 0) {
13974 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
13975 			int dupack_cnt;
13976 
13977 			BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
13978 			/*
13979 			 * Fast retransmit.  When we have seen exactly three
13980 			 * identical ACKs while we have unacked data
13981 			 * outstanding we take it as a hint that our peer
13982 			 * dropped something.
13983 			 *
13984 			 * If TCP is retransmitting, don't do fast retransmit.
13985 			 */
13986 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
13987 			    ! tcp->tcp_rexmit) {
13988 				/* Do Limited Transmit */
13989 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
13990 				    tcps->tcps_dupack_fast_retransmit) {
13991 					/*
13992 					 * RFC 3042
13993 					 *
13994 					 * What we need to do is temporarily
13995 					 * increase tcp_cwnd so that new
13996 					 * data can be sent if it is allowed
13997 					 * by the receive window (tcp_rwnd).
13998 					 * tcp_wput_data() will take care of
13999 					 * the rest.
14000 					 *
14001 					 * If the connection is SACK capable,
14002 					 * only do limited xmit when there
14003 					 * is SACK info.
14004 					 *
14005 					 * Note how tcp_cwnd is incremented.
14006 					 * The first dup ACK will increase
14007 					 * it by 1 MSS.  The second dup ACK
14008 					 * will increase it by 2 MSS.  This
14009 					 * means that only 1 new segment will
14010 					 * be sent for each dup ACK.
14011 					 */
14012 					if (tcp->tcp_unsent > 0 &&
14013 					    (!tcp->tcp_snd_sack_ok ||
14014 					    (tcp->tcp_snd_sack_ok &&
14015 					    tcp->tcp_notsack_list != NULL))) {
14016 						tcp->tcp_cwnd += mss <<
14017 						    (tcp->tcp_dupack_cnt - 1);
14018 						flags |= TH_LIMIT_XMIT;
14019 					}
14020 				} else if (dupack_cnt ==
14021 				    tcps->tcps_dupack_fast_retransmit) {
14022 
14023 				/*
14024 				 * If we have reduced tcp_ssthresh
14025 				 * because of ECN, do not reduce it again
14026 				 * unless it is already one window of data
14027 				 * away.  After one window of data, tcp_cwr
14028 				 * should then be cleared.  Note that
14029 				 * for non ECN capable connection, tcp_cwr
14030 				 * should always be false.
14031 				 *
14032 				 * Adjust cwnd since the duplicate
14033 				 * ack indicates that a packet was
14034 				 * dropped (due to congestion.)
14035 				 */
14036 				if (!tcp->tcp_cwr) {
14037 					npkt = ((tcp->tcp_snxt -
14038 					    tcp->tcp_suna) >> 1) / mss;
14039 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
14040 					    mss;
14041 					tcp->tcp_cwnd = (npkt +
14042 					    tcp->tcp_dupack_cnt) * mss;
14043 				}
14044 				if (tcp->tcp_ecn_ok) {
14045 					tcp->tcp_cwr = B_TRUE;
14046 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14047 					tcp->tcp_ecn_cwr_sent = B_FALSE;
14048 				}
14049 
14050 				/*
14051 				 * We do Hoe's algorithm.  Refer to her
14052 				 * paper "Improving the Start-up Behavior
14053 				 * of a Congestion Control Scheme for TCP,"
14054 				 * appeared in SIGCOMM'96.
14055 				 *
14056 				 * Save highest seq no we have sent so far.
14057 				 * Be careful about the invisible FIN byte.
14058 				 */
14059 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
14060 				    (tcp->tcp_unsent == 0)) {
14061 					tcp->tcp_rexmit_max = tcp->tcp_fss;
14062 				} else {
14063 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
14064 				}
14065 
14066 				/*
14067 				 * Do not allow bursty traffic during.
14068 				 * fast recovery.  Refer to Fall and Floyd's
14069 				 * paper "Simulation-based Comparisons of
14070 				 * Tahoe, Reno and SACK TCP" (in CCR?)
14071 				 * This is a best current practise.
14072 				 */
14073 				tcp->tcp_snd_burst = TCP_CWND_SS;
14074 
14075 				/*
14076 				 * For SACK:
14077 				 * Calculate tcp_pipe, which is the
14078 				 * estimated number of bytes in
14079 				 * network.
14080 				 *
14081 				 * tcp_fack is the highest sack'ed seq num
14082 				 * TCP has received.
14083 				 *
14084 				 * tcp_pipe is explained in the above quoted
14085 				 * Fall and Floyd's paper.  tcp_fack is
14086 				 * explained in Mathis and Mahdavi's
14087 				 * "Forward Acknowledgment: Refining TCP
14088 				 * Congestion Control" in SIGCOMM '96.
14089 				 */
14090 				if (tcp->tcp_snd_sack_ok) {
14091 					ASSERT(tcp->tcp_sack_info != NULL);
14092 					if (tcp->tcp_notsack_list != NULL) {
14093 						tcp->tcp_pipe = tcp->tcp_snxt -
14094 						    tcp->tcp_fack;
14095 						tcp->tcp_sack_snxt = seg_ack;
14096 						flags |= TH_NEED_SACK_REXMIT;
14097 					} else {
14098 						/*
14099 						 * Always initialize tcp_pipe
14100 						 * even though we don't have
14101 						 * any SACK info.  If later
14102 						 * we get SACK info and
14103 						 * tcp_pipe is not initialized,
14104 						 * funny things will happen.
14105 						 */
14106 						tcp->tcp_pipe =
14107 						    tcp->tcp_cwnd_ssthresh;
14108 					}
14109 				} else {
14110 					flags |= TH_REXMIT_NEEDED;
14111 				} /* tcp_snd_sack_ok */
14112 
14113 				} else {
14114 					/*
14115 					 * Here we perform congestion
14116 					 * avoidance, but NOT slow start.
14117 					 * This is known as the Fast
14118 					 * Recovery Algorithm.
14119 					 */
14120 					if (tcp->tcp_snd_sack_ok &&
14121 					    tcp->tcp_notsack_list != NULL) {
14122 						flags |= TH_NEED_SACK_REXMIT;
14123 						tcp->tcp_pipe -= mss;
14124 						if (tcp->tcp_pipe < 0)
14125 							tcp->tcp_pipe = 0;
14126 					} else {
14127 					/*
14128 					 * We know that one more packet has
14129 					 * left the pipe thus we can update
14130 					 * cwnd.
14131 					 */
14132 					cwnd = tcp->tcp_cwnd + mss;
14133 					if (cwnd > tcp->tcp_cwnd_max)
14134 						cwnd = tcp->tcp_cwnd_max;
14135 					tcp->tcp_cwnd = cwnd;
14136 					if (tcp->tcp_unsent > 0)
14137 						flags |= TH_XMIT_NEEDED;
14138 					}
14139 				}
14140 			}
14141 		} else if (tcp->tcp_zero_win_probe) {
14142 			/*
14143 			 * If the window has opened, need to arrange
14144 			 * to send additional data.
14145 			 */
14146 			if (new_swnd != 0) {
14147 				/* tcp_suna != tcp_snxt */
14148 				/* Packet contains a window update */
14149 				BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate);
14150 				tcp->tcp_zero_win_probe = 0;
14151 				tcp->tcp_timer_backoff = 0;
14152 				tcp->tcp_ms_we_have_waited = 0;
14153 
14154 				/*
14155 				 * Transmit starting with tcp_suna since
14156 				 * the one byte probe is not ack'ed.
14157 				 * If TCP has sent more than one identical
14158 				 * probe, tcp_rexmit will be set.  That means
14159 				 * tcp_ss_rexmit() will send out the one
14160 				 * byte along with new data.  Otherwise,
14161 				 * fake the retransmission.
14162 				 */
14163 				flags |= TH_XMIT_NEEDED;
14164 				if (!tcp->tcp_rexmit) {
14165 					tcp->tcp_rexmit = B_TRUE;
14166 					tcp->tcp_dupack_cnt = 0;
14167 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
14168 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
14169 				}
14170 			}
14171 		}
14172 		goto swnd_update;
14173 	}
14174 
14175 	/*
14176 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
14177 	 * If the ACK value acks something that we have not yet sent, it might
14178 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
14179 	 * other side.
14180 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
14181 	 * state is handled above, so we can always just drop the segment and
14182 	 * send an ACK here.
14183 	 *
14184 	 * Should we send ACKs in response to ACK only segments?
14185 	 */
14186 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
14187 		BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent);
14188 		/* drop the received segment */
14189 		freemsg(mp);
14190 
14191 		/*
14192 		 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
14193 		 * greater than 0, check if the number of such
14194 		 * bogus ACks is greater than that count.  If yes,
14195 		 * don't send back any ACK.  This prevents TCP from
14196 		 * getting into an ACK storm if somehow an attacker
14197 		 * successfully spoofs an acceptable segment to our
14198 		 * peer.
14199 		 */
14200 		if (tcp_drop_ack_unsent_cnt > 0 &&
14201 		    ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) {
14202 			TCP_STAT(tcps, tcp_in_ack_unsent_drop);
14203 			return;
14204 		}
14205 		mp = tcp_ack_mp(tcp);
14206 		if (mp != NULL) {
14207 			BUMP_LOCAL(tcp->tcp_obsegs);
14208 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
14209 			tcp_send_data(tcp, tcp->tcp_wq, mp);
14210 		}
14211 		return;
14212 	}
14213 
14214 	/*
14215 	 * TCP gets a new ACK, update the notsack'ed list to delete those
14216 	 * blocks that are covered by this ACK.
14217 	 */
14218 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
14219 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
14220 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
14221 	}
14222 
14223 	/*
14224 	 * If we got an ACK after fast retransmit, check to see
14225 	 * if it is a partial ACK.  If it is not and the congestion
14226 	 * window was inflated to account for the other side's
14227 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
14228 	 */
14229 	if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) {
14230 		ASSERT(tcp->tcp_rexmit == B_FALSE);
14231 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
14232 			tcp->tcp_dupack_cnt = 0;
14233 			/*
14234 			 * Restore the orig tcp_cwnd_ssthresh after
14235 			 * fast retransmit phase.
14236 			 */
14237 			if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
14238 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
14239 			}
14240 			tcp->tcp_rexmit_max = seg_ack;
14241 			tcp->tcp_cwnd_cnt = 0;
14242 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14243 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14244 
14245 			/*
14246 			 * Remove all notsack info to avoid confusion with
14247 			 * the next fast retrasnmit/recovery phase.
14248 			 */
14249 			if (tcp->tcp_snd_sack_ok &&
14250 			    tcp->tcp_notsack_list != NULL) {
14251 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
14252 			}
14253 		} else {
14254 			if (tcp->tcp_snd_sack_ok &&
14255 			    tcp->tcp_notsack_list != NULL) {
14256 				flags |= TH_NEED_SACK_REXMIT;
14257 				tcp->tcp_pipe -= mss;
14258 				if (tcp->tcp_pipe < 0)
14259 					tcp->tcp_pipe = 0;
14260 			} else {
14261 				/*
14262 				 * Hoe's algorithm:
14263 				 *
14264 				 * Retransmit the unack'ed segment and
14265 				 * restart fast recovery.  Note that we
14266 				 * need to scale back tcp_cwnd to the
14267 				 * original value when we started fast
14268 				 * recovery.  This is to prevent overly
14269 				 * aggressive behaviour in sending new
14270 				 * segments.
14271 				 */
14272 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
14273 				    tcps->tcps_dupack_fast_retransmit * mss;
14274 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
14275 				flags |= TH_REXMIT_NEEDED;
14276 			}
14277 		}
14278 	} else {
14279 		tcp->tcp_dupack_cnt = 0;
14280 		if (tcp->tcp_rexmit) {
14281 			/*
14282 			 * TCP is retranmitting.  If the ACK ack's all
14283 			 * outstanding data, update tcp_rexmit_max and
14284 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
14285 			 * to the correct value.
14286 			 *
14287 			 * Note that SEQ_LEQ() is used.  This is to avoid
14288 			 * unnecessary fast retransmit caused by dup ACKs
14289 			 * received when TCP does slow start retransmission
14290 			 * after a time out.  During this phase, TCP may
14291 			 * send out segments which are already received.
14292 			 * This causes dup ACKs to be sent back.
14293 			 */
14294 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
14295 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
14296 					tcp->tcp_rexmit_nxt = seg_ack;
14297 				}
14298 				if (seg_ack != tcp->tcp_rexmit_max) {
14299 					flags |= TH_XMIT_NEEDED;
14300 				}
14301 			} else {
14302 				tcp->tcp_rexmit = B_FALSE;
14303 				tcp->tcp_xmit_zc_clean = B_FALSE;
14304 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14305 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
14306 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14307 			}
14308 			tcp->tcp_ms_we_have_waited = 0;
14309 		}
14310 	}
14311 
14312 	BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs);
14313 	UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked);
14314 	tcp->tcp_suna = seg_ack;
14315 	if (tcp->tcp_zero_win_probe != 0) {
14316 		tcp->tcp_zero_win_probe = 0;
14317 		tcp->tcp_timer_backoff = 0;
14318 	}
14319 
14320 	/*
14321 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
14322 	 * Note that it cannot be the SYN being ack'ed.  The code flow
14323 	 * will not reach here.
14324 	 */
14325 	if (mp1 == NULL) {
14326 		goto fin_acked;
14327 	}
14328 
14329 	/*
14330 	 * Update the congestion window.
14331 	 *
14332 	 * If TCP is not ECN capable or TCP is ECN capable but the
14333 	 * congestion experience bit is not set, increase the tcp_cwnd as
14334 	 * usual.
14335 	 */
14336 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
14337 		cwnd = tcp->tcp_cwnd;
14338 		add = mss;
14339 
14340 		if (cwnd >= tcp->tcp_cwnd_ssthresh) {
14341 			/*
14342 			 * This is to prevent an increase of less than 1 MSS of
14343 			 * tcp_cwnd.  With partial increase, tcp_wput_data()
14344 			 * may send out tinygrams in order to preserve mblk
14345 			 * boundaries.
14346 			 *
14347 			 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
14348 			 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
14349 			 * increased by 1 MSS for every RTTs.
14350 			 */
14351 			if (tcp->tcp_cwnd_cnt <= 0) {
14352 				tcp->tcp_cwnd_cnt = cwnd + add;
14353 			} else {
14354 				tcp->tcp_cwnd_cnt -= add;
14355 				add = 0;
14356 			}
14357 		}
14358 		tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
14359 	}
14360 
14361 	/* See if the latest urgent data has been acknowledged */
14362 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
14363 	    SEQ_GT(seg_ack, tcp->tcp_urg))
14364 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
14365 
14366 	/* Can we update the RTT estimates? */
14367 	if (tcp->tcp_snd_ts_ok) {
14368 		/* Ignore zero timestamp echo-reply. */
14369 		if (tcpopt.tcp_opt_ts_ecr != 0) {
14370 			tcp_set_rto(tcp, (int32_t)lbolt -
14371 			    (int32_t)tcpopt.tcp_opt_ts_ecr);
14372 		}
14373 
14374 		/* If needed, restart the timer. */
14375 		if (tcp->tcp_set_timer == 1) {
14376 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14377 			tcp->tcp_set_timer = 0;
14378 		}
14379 		/*
14380 		 * Update tcp_csuna in case the other side stops sending
14381 		 * us timestamps.
14382 		 */
14383 		tcp->tcp_csuna = tcp->tcp_snxt;
14384 	} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
14385 		/*
14386 		 * An ACK sequence we haven't seen before, so get the RTT
14387 		 * and update the RTO. But first check if the timestamp is
14388 		 * valid to use.
14389 		 */
14390 		if ((mp1->b_next != NULL) &&
14391 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next)))
14392 			tcp_set_rto(tcp, (int32_t)lbolt -
14393 			    (int32_t)(intptr_t)mp1->b_prev);
14394 		else
14395 			BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14396 
14397 		/* Remeber the last sequence to be ACKed */
14398 		tcp->tcp_csuna = seg_ack;
14399 		if (tcp->tcp_set_timer == 1) {
14400 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14401 			tcp->tcp_set_timer = 0;
14402 		}
14403 	} else {
14404 		BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14405 	}
14406 
14407 	/* Eat acknowledged bytes off the xmit queue. */
14408 	for (;;) {
14409 		mblk_t	*mp2;
14410 		uchar_t	*wptr;
14411 
14412 		wptr = mp1->b_wptr;
14413 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
14414 		bytes_acked -= (int)(wptr - mp1->b_rptr);
14415 		if (bytes_acked < 0) {
14416 			mp1->b_rptr = wptr + bytes_acked;
14417 			/*
14418 			 * Set a new timestamp if all the bytes timed by the
14419 			 * old timestamp have been ack'ed.
14420 			 */
14421 			if (SEQ_GT(seg_ack,
14422 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
14423 				mp1->b_prev = (mblk_t *)(uintptr_t)lbolt;
14424 				mp1->b_next = NULL;
14425 			}
14426 			break;
14427 		}
14428 		mp1->b_next = NULL;
14429 		mp1->b_prev = NULL;
14430 		mp2 = mp1;
14431 		mp1 = mp1->b_cont;
14432 
14433 		/*
14434 		 * This notification is required for some zero-copy
14435 		 * clients to maintain a copy semantic. After the data
14436 		 * is ack'ed, client is safe to modify or reuse the buffer.
14437 		 */
14438 		if (tcp->tcp_snd_zcopy_aware &&
14439 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
14440 			tcp_zcopy_notify(tcp);
14441 		freeb(mp2);
14442 		if (bytes_acked == 0) {
14443 			if (mp1 == NULL) {
14444 				/* Everything is ack'ed, clear the tail. */
14445 				tcp->tcp_xmit_tail = NULL;
14446 				/*
14447 				 * Cancel the timer unless we are still
14448 				 * waiting for an ACK for the FIN packet.
14449 				 */
14450 				if (tcp->tcp_timer_tid != 0 &&
14451 				    tcp->tcp_snxt == tcp->tcp_suna) {
14452 					(void) TCP_TIMER_CANCEL(tcp,
14453 					    tcp->tcp_timer_tid);
14454 					tcp->tcp_timer_tid = 0;
14455 				}
14456 				goto pre_swnd_update;
14457 			}
14458 			if (mp2 != tcp->tcp_xmit_tail)
14459 				break;
14460 			tcp->tcp_xmit_tail = mp1;
14461 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
14462 			    (uintptr_t)INT_MAX);
14463 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
14464 			    mp1->b_rptr);
14465 			break;
14466 		}
14467 		if (mp1 == NULL) {
14468 			/*
14469 			 * More was acked but there is nothing more
14470 			 * outstanding.  This means that the FIN was
14471 			 * just acked or that we're talking to a clown.
14472 			 */
14473 fin_acked:
14474 			ASSERT(tcp->tcp_fin_sent);
14475 			tcp->tcp_xmit_tail = NULL;
14476 			if (tcp->tcp_fin_sent) {
14477 				/* FIN was acked - making progress */
14478 				if (tcp->tcp_ipversion == IPV6_VERSION &&
14479 				    !tcp->tcp_fin_acked)
14480 					tcp->tcp_ip_forward_progress = B_TRUE;
14481 				tcp->tcp_fin_acked = B_TRUE;
14482 				if (tcp->tcp_linger_tid != 0 &&
14483 				    TCP_TIMER_CANCEL(tcp,
14484 				    tcp->tcp_linger_tid) >= 0) {
14485 					tcp_stop_lingering(tcp);
14486 					freemsg(mp);
14487 					mp = NULL;
14488 				}
14489 			} else {
14490 				/*
14491 				 * We should never get here because
14492 				 * we have already checked that the
14493 				 * number of bytes ack'ed should be
14494 				 * smaller than or equal to what we
14495 				 * have sent so far (it is the
14496 				 * acceptability check of the ACK).
14497 				 * We can only get here if the send
14498 				 * queue is corrupted.
14499 				 *
14500 				 * Terminate the connection and
14501 				 * panic the system.  It is better
14502 				 * for us to panic instead of
14503 				 * continuing to avoid other disaster.
14504 				 */
14505 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
14506 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
14507 				panic("Memory corruption "
14508 				    "detected for connection %s.",
14509 				    tcp_display(tcp, NULL,
14510 				    DISP_ADDR_AND_PORT));
14511 				/*NOTREACHED*/
14512 			}
14513 			goto pre_swnd_update;
14514 		}
14515 		ASSERT(mp2 != tcp->tcp_xmit_tail);
14516 	}
14517 	if (tcp->tcp_unsent) {
14518 		flags |= TH_XMIT_NEEDED;
14519 	}
14520 pre_swnd_update:
14521 	tcp->tcp_xmit_head = mp1;
14522 swnd_update:
14523 	/*
14524 	 * The following check is different from most other implementations.
14525 	 * For bi-directional transfer, when segments are dropped, the
14526 	 * "normal" check will not accept a window update in those
14527 	 * retransmitted segemnts.  Failing to do that, TCP may send out
14528 	 * segments which are outside receiver's window.  As TCP accepts
14529 	 * the ack in those retransmitted segments, if the window update in
14530 	 * the same segment is not accepted, TCP will incorrectly calculates
14531 	 * that it can send more segments.  This can create a deadlock
14532 	 * with the receiver if its window becomes zero.
14533 	 */
14534 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
14535 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
14536 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
14537 		/*
14538 		 * The criteria for update is:
14539 		 *
14540 		 * 1. the segment acknowledges some data.  Or
14541 		 * 2. the segment is new, i.e. it has a higher seq num. Or
14542 		 * 3. the segment is not old and the advertised window is
14543 		 * larger than the previous advertised window.
14544 		 */
14545 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
14546 			flags |= TH_XMIT_NEEDED;
14547 		tcp->tcp_swnd = new_swnd;
14548 		if (new_swnd > tcp->tcp_max_swnd)
14549 			tcp->tcp_max_swnd = new_swnd;
14550 		tcp->tcp_swl1 = seg_seq;
14551 		tcp->tcp_swl2 = seg_ack;
14552 	}
14553 est:
14554 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
14555 
14556 		switch (tcp->tcp_state) {
14557 		case TCPS_FIN_WAIT_1:
14558 			if (tcp->tcp_fin_acked) {
14559 				tcp->tcp_state = TCPS_FIN_WAIT_2;
14560 				/*
14561 				 * We implement the non-standard BSD/SunOS
14562 				 * FIN_WAIT_2 flushing algorithm.
14563 				 * If there is no user attached to this
14564 				 * TCP endpoint, then this TCP struct
14565 				 * could hang around forever in FIN_WAIT_2
14566 				 * state if the peer forgets to send us
14567 				 * a FIN.  To prevent this, we wait only
14568 				 * 2*MSL (a convenient time value) for
14569 				 * the FIN to arrive.  If it doesn't show up,
14570 				 * we flush the TCP endpoint.  This algorithm,
14571 				 * though a violation of RFC-793, has worked
14572 				 * for over 10 years in BSD systems.
14573 				 * Note: SunOS 4.x waits 675 seconds before
14574 				 * flushing the FIN_WAIT_2 connection.
14575 				 */
14576 				TCP_TIMER_RESTART(tcp,
14577 				    tcps->tcps_fin_wait_2_flush_interval);
14578 			}
14579 			break;
14580 		case TCPS_FIN_WAIT_2:
14581 			break;	/* Shutdown hook? */
14582 		case TCPS_LAST_ACK:
14583 			freemsg(mp);
14584 			if (tcp->tcp_fin_acked) {
14585 				(void) tcp_clean_death(tcp, 0, 19);
14586 				return;
14587 			}
14588 			goto xmit_check;
14589 		case TCPS_CLOSING:
14590 			if (tcp->tcp_fin_acked) {
14591 				tcp->tcp_state = TCPS_TIME_WAIT;
14592 				/*
14593 				 * Unconditionally clear the exclusive binding
14594 				 * bit so this TIME-WAIT connection won't
14595 				 * interfere with new ones.
14596 				 */
14597 				tcp->tcp_exclbind = 0;
14598 				if (!TCP_IS_DETACHED(tcp)) {
14599 					TCP_TIMER_RESTART(tcp,
14600 					    tcps->tcps_time_wait_interval);
14601 				} else {
14602 					tcp_time_wait_append(tcp);
14603 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
14604 				}
14605 			}
14606 			/*FALLTHRU*/
14607 		case TCPS_CLOSE_WAIT:
14608 			freemsg(mp);
14609 			goto xmit_check;
14610 		default:
14611 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
14612 			break;
14613 		}
14614 	}
14615 	if (flags & TH_FIN) {
14616 		/* Make sure we ack the fin */
14617 		flags |= TH_ACK_NEEDED;
14618 		if (!tcp->tcp_fin_rcvd) {
14619 			tcp->tcp_fin_rcvd = B_TRUE;
14620 			tcp->tcp_rnxt++;
14621 			tcph = tcp->tcp_tcph;
14622 			U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14623 
14624 			/*
14625 			 * Generate the ordrel_ind at the end unless we
14626 			 * are an eager guy.
14627 			 * In the eager case tcp_rsrv will do this when run
14628 			 * after tcp_accept is done.
14629 			 */
14630 			if (tcp->tcp_listener == NULL &&
14631 			    !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding))
14632 				flags |= TH_ORDREL_NEEDED;
14633 			switch (tcp->tcp_state) {
14634 			case TCPS_SYN_RCVD:
14635 			case TCPS_ESTABLISHED:
14636 				tcp->tcp_state = TCPS_CLOSE_WAIT;
14637 				/* Keepalive? */
14638 				break;
14639 			case TCPS_FIN_WAIT_1:
14640 				if (!tcp->tcp_fin_acked) {
14641 					tcp->tcp_state = TCPS_CLOSING;
14642 					break;
14643 				}
14644 				/* FALLTHRU */
14645 			case TCPS_FIN_WAIT_2:
14646 				tcp->tcp_state = TCPS_TIME_WAIT;
14647 				/*
14648 				 * Unconditionally clear the exclusive binding
14649 				 * bit so this TIME-WAIT connection won't
14650 				 * interfere with new ones.
14651 				 */
14652 				tcp->tcp_exclbind = 0;
14653 				if (!TCP_IS_DETACHED(tcp)) {
14654 					TCP_TIMER_RESTART(tcp,
14655 					    tcps->tcps_time_wait_interval);
14656 				} else {
14657 					tcp_time_wait_append(tcp);
14658 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
14659 				}
14660 				if (seg_len) {
14661 					/*
14662 					 * implies data piggybacked on FIN.
14663 					 * break to handle data.
14664 					 */
14665 					break;
14666 				}
14667 				freemsg(mp);
14668 				goto ack_check;
14669 			}
14670 		}
14671 	}
14672 	if (mp == NULL)
14673 		goto xmit_check;
14674 	if (seg_len == 0) {
14675 		freemsg(mp);
14676 		goto xmit_check;
14677 	}
14678 	if (mp->b_rptr == mp->b_wptr) {
14679 		/*
14680 		 * The header has been consumed, so we remove the
14681 		 * zero-length mblk here.
14682 		 */
14683 		mp1 = mp;
14684 		mp = mp->b_cont;
14685 		freeb(mp1);
14686 	}
14687 update_ack:
14688 	tcph = tcp->tcp_tcph;
14689 	tcp->tcp_rack_cnt++;
14690 	{
14691 		uint32_t cur_max;
14692 
14693 		cur_max = tcp->tcp_rack_cur_max;
14694 		if (tcp->tcp_rack_cnt >= cur_max) {
14695 			/*
14696 			 * We have more unacked data than we should - send
14697 			 * an ACK now.
14698 			 */
14699 			flags |= TH_ACK_NEEDED;
14700 			cur_max++;
14701 			if (cur_max > tcp->tcp_rack_abs_max)
14702 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
14703 			else
14704 				tcp->tcp_rack_cur_max = cur_max;
14705 		} else if (TCP_IS_DETACHED(tcp)) {
14706 			/* We don't have an ACK timer for detached TCP. */
14707 			flags |= TH_ACK_NEEDED;
14708 		} else if (seg_len < mss) {
14709 			/*
14710 			 * If we get a segment that is less than an mss, and we
14711 			 * already have unacknowledged data, and the amount
14712 			 * unacknowledged is not a multiple of mss, then we
14713 			 * better generate an ACK now.  Otherwise, this may be
14714 			 * the tail piece of a transaction, and we would rather
14715 			 * wait for the response.
14716 			 */
14717 			uint32_t udif;
14718 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
14719 			    (uintptr_t)INT_MAX);
14720 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
14721 			if (udif && (udif % mss))
14722 				flags |= TH_ACK_NEEDED;
14723 			else
14724 				flags |= TH_ACK_TIMER_NEEDED;
14725 		} else {
14726 			/* Start delayed ack timer */
14727 			flags |= TH_ACK_TIMER_NEEDED;
14728 		}
14729 	}
14730 	tcp->tcp_rnxt += seg_len;
14731 	U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14732 
14733 	if (mp == NULL)
14734 		goto xmit_check;
14735 
14736 	/* Update SACK list */
14737 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
14738 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
14739 		    &(tcp->tcp_num_sack_blk));
14740 	}
14741 
14742 	if (tcp->tcp_urp_mp) {
14743 		tcp->tcp_urp_mp->b_cont = mp;
14744 		mp = tcp->tcp_urp_mp;
14745 		tcp->tcp_urp_mp = NULL;
14746 		/* Ready for a new signal. */
14747 		tcp->tcp_urp_last_valid = B_FALSE;
14748 #ifdef DEBUG
14749 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14750 		    "tcp_rput: sending exdata_ind %s",
14751 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14752 #endif /* DEBUG */
14753 	}
14754 
14755 	/*
14756 	 * Check for ancillary data changes compared to last segment.
14757 	 */
14758 	if (tcp->tcp_ipv6_recvancillary != 0) {
14759 		mp = tcp_rput_add_ancillary(tcp, mp, &ipp);
14760 		ASSERT(mp != NULL);
14761 	}
14762 
14763 	if (tcp->tcp_listener || tcp->tcp_hard_binding) {
14764 		/*
14765 		 * Side queue inbound data until the accept happens.
14766 		 * tcp_accept/tcp_rput drains this when the accept happens.
14767 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
14768 		 * T_EXDATA_IND) it is queued on b_next.
14769 		 * XXX Make urgent data use this. Requires:
14770 		 *	Removing tcp_listener check for TH_URG
14771 		 *	Making M_PCPROTO and MARK messages skip the eager case
14772 		 */
14773 
14774 		if (tcp->tcp_kssl_pending) {
14775 			DTRACE_PROBE1(kssl_mblk__ksslinput_pending,
14776 			    mblk_t *, mp);
14777 			tcp_kssl_input(tcp, mp);
14778 		} else {
14779 			tcp_rcv_enqueue(tcp, mp, seg_len);
14780 		}
14781 	} else {
14782 		if (mp->b_datap->db_type != M_DATA ||
14783 		    (flags & TH_MARKNEXT_NEEDED)) {
14784 			if (IPCL_IS_NONSTR(connp)) {
14785 				int error;
14786 
14787 				if ((*connp->conn_upcalls->su_recv)
14788 				    (connp->conn_upper_handle, mp,
14789 				    seg_len, 0, &error, NULL) <= 0) {
14790 					/*
14791 					 * We should never be in middle of a
14792 					 * fallback, the squeue guarantees that.
14793 					 */
14794 					ASSERT(error != EOPNOTSUPP);
14795 					if (error == ENOSPC)
14796 						tcp->tcp_rwnd -= seg_len;
14797 				}
14798 			} else if (tcp->tcp_rcv_list != NULL) {
14799 				flags |= tcp_rcv_drain(tcp);
14800 			}
14801 			ASSERT(tcp->tcp_rcv_list == NULL ||
14802 			    tcp->tcp_fused_sigurg);
14803 
14804 			if (flags & TH_MARKNEXT_NEEDED) {
14805 #ifdef DEBUG
14806 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14807 				    "tcp_rput: sending MSGMARKNEXT %s",
14808 				    tcp_display(tcp, NULL,
14809 				    DISP_PORT_ONLY));
14810 #endif /* DEBUG */
14811 				mp->b_flag |= MSGMARKNEXT;
14812 				flags &= ~TH_MARKNEXT_NEEDED;
14813 			}
14814 
14815 			/* Does this need SSL processing first? */
14816 			if ((tcp->tcp_kssl_ctx != NULL) &&
14817 			    (DB_TYPE(mp) == M_DATA)) {
14818 				DTRACE_PROBE1(kssl_mblk__ksslinput_data1,
14819 				    mblk_t *, mp);
14820 				tcp_kssl_input(tcp, mp);
14821 			} else if (!IPCL_IS_NONSTR(connp)) {
14822 				/* Already handled non-STREAMS case. */
14823 				putnext(tcp->tcp_rq, mp);
14824 				if (!canputnext(tcp->tcp_rq))
14825 					tcp->tcp_rwnd -= seg_len;
14826 			}
14827 		} else if ((tcp->tcp_kssl_ctx != NULL) &&
14828 		    (DB_TYPE(mp) == M_DATA)) {
14829 			/* Does this need SSL processing first? */
14830 			DTRACE_PROBE1(kssl_mblk__ksslinput_data2, mblk_t *, mp);
14831 			tcp_kssl_input(tcp, mp);
14832 		} else if (IPCL_IS_NONSTR(connp)) {
14833 			/* Non-STREAMS socket */
14834 			boolean_t push = flags & (TH_PUSH|TH_FIN);
14835 			int	error;
14836 
14837 			if ((*connp->conn_upcalls->su_recv)(
14838 			    connp->conn_upper_handle,
14839 			    mp, seg_len, 0, &error, &push) <= 0) {
14840 				/*
14841 				 * We should never be in middle of a
14842 				 * fallback, the squeue guarantees that.
14843 				 */
14844 				ASSERT(error != EOPNOTSUPP);
14845 				if (error == ENOSPC)
14846 					tcp->tcp_rwnd -= seg_len;
14847 			} else if (push) {
14848 				/*
14849 				 * PUSH bit set and sockfs is not
14850 				 * flow controlled
14851 				 */
14852 				flags |= tcp_rwnd_reopen(tcp);
14853 			}
14854 		} else if ((flags & (TH_PUSH|TH_FIN)) ||
14855 		    tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_recv_hiwater >> 3) {
14856 			if (tcp->tcp_rcv_list != NULL) {
14857 				/*
14858 				 * Enqueue the new segment first and then
14859 				 * call tcp_rcv_drain() to send all data
14860 				 * up.  The other way to do this is to
14861 				 * send all queued data up and then call
14862 				 * putnext() to send the new segment up.
14863 				 * This way can remove the else part later
14864 				 * on.
14865 				 *
14866 				 * We don't do this to avoid one more call to
14867 				 * canputnext() as tcp_rcv_drain() needs to
14868 				 * call canputnext().
14869 				 */
14870 				tcp_rcv_enqueue(tcp, mp, seg_len);
14871 				flags |= tcp_rcv_drain(tcp);
14872 			} else {
14873 				putnext(tcp->tcp_rq, mp);
14874 				if (!canputnext(tcp->tcp_rq))
14875 					tcp->tcp_rwnd -= seg_len;
14876 			}
14877 		} else {
14878 			/*
14879 			 * Enqueue all packets when processing an mblk
14880 			 * from the co queue and also enqueue normal packets.
14881 			 */
14882 			tcp_rcv_enqueue(tcp, mp, seg_len);
14883 		}
14884 		/*
14885 		 * Make sure the timer is running if we have data waiting
14886 		 * for a push bit. This provides resiliency against
14887 		 * implementations that do not correctly generate push bits.
14888 		 */
14889 		if (!IPCL_IS_NONSTR(connp) && tcp->tcp_rcv_list != NULL &&
14890 		    tcp->tcp_push_tid == 0) {
14891 			/*
14892 			 * The connection may be closed at this point, so don't
14893 			 * do anything for a detached tcp.
14894 			 */
14895 			if (!TCP_IS_DETACHED(tcp))
14896 				tcp->tcp_push_tid = TCP_TIMER(tcp,
14897 				    tcp_push_timer,
14898 				    MSEC_TO_TICK(
14899 				    tcps->tcps_push_timer_interval));
14900 		}
14901 	}
14902 
14903 xmit_check:
14904 	/* Is there anything left to do? */
14905 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
14906 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
14907 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
14908 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
14909 		goto done;
14910 
14911 	/* Any transmit work to do and a non-zero window? */
14912 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
14913 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
14914 		if (flags & TH_REXMIT_NEEDED) {
14915 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
14916 
14917 			BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans);
14918 			if (snd_size > mss)
14919 				snd_size = mss;
14920 			if (snd_size > tcp->tcp_swnd)
14921 				snd_size = tcp->tcp_swnd;
14922 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
14923 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
14924 			    B_TRUE);
14925 
14926 			if (mp1 != NULL) {
14927 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
14928 				tcp->tcp_csuna = tcp->tcp_snxt;
14929 				BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
14930 				UPDATE_MIB(&tcps->tcps_mib,
14931 				    tcpRetransBytes, snd_size);
14932 				tcp_send_data(tcp, tcp->tcp_wq, mp1);
14933 			}
14934 		}
14935 		if (flags & TH_NEED_SACK_REXMIT) {
14936 			tcp_sack_rxmit(tcp, &flags);
14937 		}
14938 		/*
14939 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
14940 		 * out new segment.  Note that tcp_rexmit should not be
14941 		 * set, otherwise TH_LIMIT_XMIT should not be set.
14942 		 */
14943 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
14944 			if (!tcp->tcp_rexmit) {
14945 				tcp_wput_data(tcp, NULL, B_FALSE);
14946 			} else {
14947 				tcp_ss_rexmit(tcp);
14948 			}
14949 		}
14950 		/*
14951 		 * Adjust tcp_cwnd back to normal value after sending
14952 		 * new data segments.
14953 		 */
14954 		if (flags & TH_LIMIT_XMIT) {
14955 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
14956 			/*
14957 			 * This will restart the timer.  Restarting the
14958 			 * timer is used to avoid a timeout before the
14959 			 * limited transmitted segment's ACK gets back.
14960 			 */
14961 			if (tcp->tcp_xmit_head != NULL)
14962 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
14963 		}
14964 
14965 		/* Anything more to do? */
14966 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
14967 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
14968 			goto done;
14969 	}
14970 ack_check:
14971 	if (flags & TH_SEND_URP_MARK) {
14972 		ASSERT(tcp->tcp_urp_mark_mp);
14973 		ASSERT(!IPCL_IS_NONSTR(connp));
14974 		/*
14975 		 * Send up any queued data and then send the mark message
14976 		 */
14977 		if (tcp->tcp_rcv_list != NULL) {
14978 			flags |= tcp_rcv_drain(tcp);
14979 
14980 		}
14981 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
14982 		mp1 = tcp->tcp_urp_mark_mp;
14983 		tcp->tcp_urp_mark_mp = NULL;
14984 		putnext(tcp->tcp_rq, mp1);
14985 #ifdef DEBUG
14986 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14987 		    "tcp_rput: sending zero-length %s %s",
14988 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
14989 		    "MSGNOTMARKNEXT"),
14990 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14991 #endif /* DEBUG */
14992 		flags &= ~TH_SEND_URP_MARK;
14993 	}
14994 	if (flags & TH_ACK_NEEDED) {
14995 		/*
14996 		 * Time to send an ack for some reason.
14997 		 */
14998 		mp1 = tcp_ack_mp(tcp);
14999 
15000 		if (mp1 != NULL) {
15001 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
15002 			BUMP_LOCAL(tcp->tcp_obsegs);
15003 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
15004 		}
15005 		if (tcp->tcp_ack_tid != 0) {
15006 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
15007 			tcp->tcp_ack_tid = 0;
15008 		}
15009 	}
15010 	if (flags & TH_ACK_TIMER_NEEDED) {
15011 		/*
15012 		 * Arrange for deferred ACK or push wait timeout.
15013 		 * Start timer if it is not already running.
15014 		 */
15015 		if (tcp->tcp_ack_tid == 0) {
15016 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
15017 			    MSEC_TO_TICK(tcp->tcp_localnet ?
15018 			    (clock_t)tcps->tcps_local_dack_interval :
15019 			    (clock_t)tcps->tcps_deferred_ack_interval));
15020 		}
15021 	}
15022 	if (flags & TH_ORDREL_NEEDED) {
15023 		/*
15024 		 * Send up the ordrel_ind unless we are an eager guy.
15025 		 * In the eager case tcp_rsrv will do this when run
15026 		 * after tcp_accept is done.
15027 		 */
15028 		ASSERT(tcp->tcp_listener == NULL);
15029 
15030 		if (IPCL_IS_NONSTR(connp)) {
15031 			ASSERT(tcp->tcp_ordrel_mp == NULL);
15032 			tcp->tcp_ordrel_done = B_TRUE;
15033 			(*connp->conn_upcalls->su_opctl)
15034 			    (connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0);
15035 			goto done;
15036 		}
15037 
15038 		if (tcp->tcp_rcv_list != NULL) {
15039 			/*
15040 			 * Push any mblk(s) enqueued from co processing.
15041 			 */
15042 			flags |= tcp_rcv_drain(tcp);
15043 		}
15044 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
15045 
15046 		mp1 = tcp->tcp_ordrel_mp;
15047 		tcp->tcp_ordrel_mp = NULL;
15048 		tcp->tcp_ordrel_done = B_TRUE;
15049 		putnext(tcp->tcp_rq, mp1);
15050 	}
15051 done:
15052 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15053 }
15054 
15055 /*
15056  * This function does PAWS protection check. Returns B_TRUE if the
15057  * segment passes the PAWS test, else returns B_FALSE.
15058  */
15059 boolean_t
15060 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp)
15061 {
15062 	uint8_t	flags;
15063 	int	options;
15064 	uint8_t *up;
15065 
15066 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
15067 	/*
15068 	 * If timestamp option is aligned nicely, get values inline,
15069 	 * otherwise call general routine to parse.  Only do that
15070 	 * if timestamp is the only option.
15071 	 */
15072 	if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH +
15073 	    TCPOPT_REAL_TS_LEN &&
15074 	    OK_32PTR((up = ((uint8_t *)tcph) +
15075 	    TCP_MIN_HEADER_LENGTH)) &&
15076 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
15077 		tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
15078 		tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
15079 
15080 		options = TCP_OPT_TSTAMP_PRESENT;
15081 	} else {
15082 		if (tcp->tcp_snd_sack_ok) {
15083 			tcpoptp->tcp = tcp;
15084 		} else {
15085 			tcpoptp->tcp = NULL;
15086 		}
15087 		options = tcp_parse_options(tcph, tcpoptp);
15088 	}
15089 
15090 	if (options & TCP_OPT_TSTAMP_PRESENT) {
15091 		/*
15092 		 * Do PAWS per RFC 1323 section 4.2.  Accept RST
15093 		 * regardless of the timestamp, page 18 RFC 1323.bis.
15094 		 */
15095 		if ((flags & TH_RST) == 0 &&
15096 		    TSTMP_LT(tcpoptp->tcp_opt_ts_val,
15097 		    tcp->tcp_ts_recent)) {
15098 			if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt +
15099 			    PAWS_TIMEOUT)) {
15100 				/* This segment is not acceptable. */
15101 				return (B_FALSE);
15102 			} else {
15103 				/*
15104 				 * Connection has been idle for
15105 				 * too long.  Reset the timestamp
15106 				 * and assume the segment is valid.
15107 				 */
15108 				tcp->tcp_ts_recent =
15109 				    tcpoptp->tcp_opt_ts_val;
15110 			}
15111 		}
15112 	} else {
15113 		/*
15114 		 * If we don't get a timestamp on every packet, we
15115 		 * figure we can't really trust 'em, so we stop sending
15116 		 * and parsing them.
15117 		 */
15118 		tcp->tcp_snd_ts_ok = B_FALSE;
15119 
15120 		tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15121 		tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15122 		tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4);
15123 		/*
15124 		 * Adjust the tcp_mss accordingly. We also need to
15125 		 * adjust tcp_cwnd here in accordance with the new mss.
15126 		 * But we avoid doing a slow start here so as to not
15127 		 * to lose on the transfer rate built up so far.
15128 		 */
15129 		tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE);
15130 		if (tcp->tcp_snd_sack_ok) {
15131 			ASSERT(tcp->tcp_sack_info != NULL);
15132 			tcp->tcp_max_sack_blk = 4;
15133 		}
15134 	}
15135 	return (B_TRUE);
15136 }
15137 
15138 /*
15139  * Attach ancillary data to a received TCP segments for the
15140  * ancillary pieces requested by the application that are
15141  * different than they were in the previous data segment.
15142  *
15143  * Save the "current" values once memory allocation is ok so that
15144  * when memory allocation fails we can just wait for the next data segment.
15145  */
15146 static mblk_t *
15147 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp)
15148 {
15149 	struct T_optdata_ind *todi;
15150 	int optlen;
15151 	uchar_t *optptr;
15152 	struct T_opthdr *toh;
15153 	uint_t addflag;	/* Which pieces to add */
15154 	mblk_t *mp1;
15155 
15156 	optlen = 0;
15157 	addflag = 0;
15158 	/* If app asked for pktinfo and the index has changed ... */
15159 	if ((ipp->ipp_fields & IPPF_IFINDEX) &&
15160 	    ipp->ipp_ifindex != tcp->tcp_recvifindex &&
15161 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) {
15162 		optlen += sizeof (struct T_opthdr) +
15163 		    sizeof (struct in6_pktinfo);
15164 		addflag |= TCP_IPV6_RECVPKTINFO;
15165 	}
15166 	/* If app asked for hoplimit and it has changed ... */
15167 	if ((ipp->ipp_fields & IPPF_HOPLIMIT) &&
15168 	    ipp->ipp_hoplimit != tcp->tcp_recvhops &&
15169 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) {
15170 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15171 		addflag |= TCP_IPV6_RECVHOPLIMIT;
15172 	}
15173 	/* If app asked for tclass and it has changed ... */
15174 	if ((ipp->ipp_fields & IPPF_TCLASS) &&
15175 	    ipp->ipp_tclass != tcp->tcp_recvtclass &&
15176 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) {
15177 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15178 		addflag |= TCP_IPV6_RECVTCLASS;
15179 	}
15180 	/*
15181 	 * If app asked for hopbyhop headers and it has changed ...
15182 	 * For security labels, note that (1) security labels can't change on
15183 	 * a connected socket at all, (2) we're connected to at most one peer,
15184 	 * (3) if anything changes, then it must be some other extra option.
15185 	 */
15186 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) &&
15187 	    ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
15188 	    (ipp->ipp_fields & IPPF_HOPOPTS),
15189 	    ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
15190 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen -
15191 		    tcp->tcp_label_len;
15192 		addflag |= TCP_IPV6_RECVHOPOPTS;
15193 		if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
15194 		    &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
15195 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
15196 			return (mp);
15197 	}
15198 	/* If app asked for dst headers before routing headers ... */
15199 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) &&
15200 	    ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen,
15201 	    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15202 	    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) {
15203 		optlen += sizeof (struct T_opthdr) +
15204 		    ipp->ipp_rtdstoptslen;
15205 		addflag |= TCP_IPV6_RECVRTDSTOPTS;
15206 		if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts,
15207 		    &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS),
15208 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen))
15209 			return (mp);
15210 	}
15211 	/* If app asked for routing headers and it has changed ... */
15212 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) &&
15213 	    ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
15214 	    (ipp->ipp_fields & IPPF_RTHDR),
15215 	    ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
15216 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
15217 		addflag |= TCP_IPV6_RECVRTHDR;
15218 		if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
15219 		    &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
15220 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
15221 			return (mp);
15222 	}
15223 	/* If app asked for dest headers and it has changed ... */
15224 	if ((tcp->tcp_ipv6_recvancillary &
15225 	    (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) &&
15226 	    ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
15227 	    (ipp->ipp_fields & IPPF_DSTOPTS),
15228 	    ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
15229 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
15230 		addflag |= TCP_IPV6_RECVDSTOPTS;
15231 		if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
15232 		    &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
15233 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
15234 			return (mp);
15235 	}
15236 
15237 	if (optlen == 0) {
15238 		/* Nothing to add */
15239 		return (mp);
15240 	}
15241 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
15242 	if (mp1 == NULL) {
15243 		/*
15244 		 * Defer sending ancillary data until the next TCP segment
15245 		 * arrives.
15246 		 */
15247 		return (mp);
15248 	}
15249 	mp1->b_cont = mp;
15250 	mp = mp1;
15251 	mp->b_wptr += sizeof (*todi) + optlen;
15252 	mp->b_datap->db_type = M_PROTO;
15253 	todi = (struct T_optdata_ind *)mp->b_rptr;
15254 	todi->PRIM_type = T_OPTDATA_IND;
15255 	todi->DATA_flag = 1;	/* MORE data */
15256 	todi->OPT_length = optlen;
15257 	todi->OPT_offset = sizeof (*todi);
15258 	optptr = (uchar_t *)&todi[1];
15259 	/*
15260 	 * If app asked for pktinfo and the index has changed ...
15261 	 * Note that the local address never changes for the connection.
15262 	 */
15263 	if (addflag & TCP_IPV6_RECVPKTINFO) {
15264 		struct in6_pktinfo *pkti;
15265 
15266 		toh = (struct T_opthdr *)optptr;
15267 		toh->level = IPPROTO_IPV6;
15268 		toh->name = IPV6_PKTINFO;
15269 		toh->len = sizeof (*toh) + sizeof (*pkti);
15270 		toh->status = 0;
15271 		optptr += sizeof (*toh);
15272 		pkti = (struct in6_pktinfo *)optptr;
15273 		if (tcp->tcp_ipversion == IPV6_VERSION)
15274 			pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src;
15275 		else
15276 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
15277 			    &pkti->ipi6_addr);
15278 		pkti->ipi6_ifindex = ipp->ipp_ifindex;
15279 		optptr += sizeof (*pkti);
15280 		ASSERT(OK_32PTR(optptr));
15281 		/* Save as "last" value */
15282 		tcp->tcp_recvifindex = ipp->ipp_ifindex;
15283 	}
15284 	/* If app asked for hoplimit and it has changed ... */
15285 	if (addflag & TCP_IPV6_RECVHOPLIMIT) {
15286 		toh = (struct T_opthdr *)optptr;
15287 		toh->level = IPPROTO_IPV6;
15288 		toh->name = IPV6_HOPLIMIT;
15289 		toh->len = sizeof (*toh) + sizeof (uint_t);
15290 		toh->status = 0;
15291 		optptr += sizeof (*toh);
15292 		*(uint_t *)optptr = ipp->ipp_hoplimit;
15293 		optptr += sizeof (uint_t);
15294 		ASSERT(OK_32PTR(optptr));
15295 		/* Save as "last" value */
15296 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
15297 	}
15298 	/* If app asked for tclass and it has changed ... */
15299 	if (addflag & TCP_IPV6_RECVTCLASS) {
15300 		toh = (struct T_opthdr *)optptr;
15301 		toh->level = IPPROTO_IPV6;
15302 		toh->name = IPV6_TCLASS;
15303 		toh->len = sizeof (*toh) + sizeof (uint_t);
15304 		toh->status = 0;
15305 		optptr += sizeof (*toh);
15306 		*(uint_t *)optptr = ipp->ipp_tclass;
15307 		optptr += sizeof (uint_t);
15308 		ASSERT(OK_32PTR(optptr));
15309 		/* Save as "last" value */
15310 		tcp->tcp_recvtclass = ipp->ipp_tclass;
15311 	}
15312 	if (addflag & TCP_IPV6_RECVHOPOPTS) {
15313 		toh = (struct T_opthdr *)optptr;
15314 		toh->level = IPPROTO_IPV6;
15315 		toh->name = IPV6_HOPOPTS;
15316 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen -
15317 		    tcp->tcp_label_len;
15318 		toh->status = 0;
15319 		optptr += sizeof (*toh);
15320 		bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr,
15321 		    ipp->ipp_hopoptslen - tcp->tcp_label_len);
15322 		optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len;
15323 		ASSERT(OK_32PTR(optptr));
15324 		/* Save as last value */
15325 		ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
15326 		    (ipp->ipp_fields & IPPF_HOPOPTS),
15327 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
15328 	}
15329 	if (addflag & TCP_IPV6_RECVRTDSTOPTS) {
15330 		toh = (struct T_opthdr *)optptr;
15331 		toh->level = IPPROTO_IPV6;
15332 		toh->name = IPV6_RTHDRDSTOPTS;
15333 		toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen;
15334 		toh->status = 0;
15335 		optptr += sizeof (*toh);
15336 		bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen);
15337 		optptr += ipp->ipp_rtdstoptslen;
15338 		ASSERT(OK_32PTR(optptr));
15339 		/* Save as last value */
15340 		ip_savebuf((void **)&tcp->tcp_rtdstopts,
15341 		    &tcp->tcp_rtdstoptslen,
15342 		    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15343 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen);
15344 	}
15345 	if (addflag & TCP_IPV6_RECVRTHDR) {
15346 		toh = (struct T_opthdr *)optptr;
15347 		toh->level = IPPROTO_IPV6;
15348 		toh->name = IPV6_RTHDR;
15349 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
15350 		toh->status = 0;
15351 		optptr += sizeof (*toh);
15352 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
15353 		optptr += ipp->ipp_rthdrlen;
15354 		ASSERT(OK_32PTR(optptr));
15355 		/* Save as last value */
15356 		ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
15357 		    (ipp->ipp_fields & IPPF_RTHDR),
15358 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
15359 	}
15360 	if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) {
15361 		toh = (struct T_opthdr *)optptr;
15362 		toh->level = IPPROTO_IPV6;
15363 		toh->name = IPV6_DSTOPTS;
15364 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
15365 		toh->status = 0;
15366 		optptr += sizeof (*toh);
15367 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
15368 		optptr += ipp->ipp_dstoptslen;
15369 		ASSERT(OK_32PTR(optptr));
15370 		/* Save as last value */
15371 		ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
15372 		    (ipp->ipp_fields & IPPF_DSTOPTS),
15373 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
15374 	}
15375 	ASSERT(optptr == mp->b_wptr);
15376 	return (mp);
15377 }
15378 
15379 /*
15380  * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA
15381  * messages.
15382  */
15383 void
15384 tcp_rput_other(tcp_t *tcp, mblk_t *mp)
15385 {
15386 	uchar_t	*rptr = mp->b_rptr;
15387 	queue_t	*q = tcp->tcp_rq;
15388 	struct T_error_ack *tea;
15389 
15390 	switch (mp->b_datap->db_type) {
15391 	case M_PROTO:
15392 	case M_PCPROTO:
15393 		ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
15394 		if ((mp->b_wptr - rptr) < sizeof (t_scalar_t))
15395 			break;
15396 		tea = (struct T_error_ack *)rptr;
15397 		ASSERT(tea->PRIM_type != T_BIND_ACK);
15398 		ASSERT(tea->ERROR_prim != O_T_BIND_REQ &&
15399 		    tea->ERROR_prim != T_BIND_REQ);
15400 		switch (tea->PRIM_type) {
15401 		case T_ERROR_ACK:
15402 			if (tcp->tcp_debug) {
15403 				(void) strlog(TCP_MOD_ID, 0, 1,
15404 				    SL_TRACE|SL_ERROR,
15405 				    "tcp_rput_other: case T_ERROR_ACK, "
15406 				    "ERROR_prim == %d",
15407 				    tea->ERROR_prim);
15408 			}
15409 			switch (tea->ERROR_prim) {
15410 			case T_SVR4_OPTMGMT_REQ:
15411 				if (tcp->tcp_drop_opt_ack_cnt > 0) {
15412 					/* T_OPTMGMT_REQ generated by TCP */
15413 					printf("T_SVR4_OPTMGMT_REQ failed "
15414 					    "%d/%d - dropped (cnt %d)\n",
15415 					    tea->TLI_error, tea->UNIX_error,
15416 					    tcp->tcp_drop_opt_ack_cnt);
15417 					freemsg(mp);
15418 					tcp->tcp_drop_opt_ack_cnt--;
15419 					return;
15420 				}
15421 				break;
15422 			}
15423 			if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ &&
15424 			    tcp->tcp_drop_opt_ack_cnt > 0) {
15425 				printf("T_SVR4_OPTMGMT_REQ failed %d/%d "
15426 				    "- dropped (cnt %d)\n",
15427 				    tea->TLI_error, tea->UNIX_error,
15428 				    tcp->tcp_drop_opt_ack_cnt);
15429 				freemsg(mp);
15430 				tcp->tcp_drop_opt_ack_cnt--;
15431 				return;
15432 			}
15433 			break;
15434 		case T_OPTMGMT_ACK:
15435 			if (tcp->tcp_drop_opt_ack_cnt > 0) {
15436 				/* T_OPTMGMT_REQ generated by TCP */
15437 				freemsg(mp);
15438 				tcp->tcp_drop_opt_ack_cnt--;
15439 				return;
15440 			}
15441 			break;
15442 		default:
15443 			ASSERT(tea->ERROR_prim != T_UNBIND_REQ);
15444 			break;
15445 		}
15446 		break;
15447 	case M_FLUSH:
15448 		if (*rptr & FLUSHR)
15449 			flushq(q, FLUSHDATA);
15450 		break;
15451 	default:
15452 		/* M_CTL will be directly sent to tcp_icmp_error() */
15453 		ASSERT(DB_TYPE(mp) != M_CTL);
15454 		break;
15455 	}
15456 	/*
15457 	 * Make sure we set this bit before sending the ACK for
15458 	 * bind. Otherwise accept could possibly run and free
15459 	 * this tcp struct.
15460 	 */
15461 	ASSERT(q != NULL);
15462 	putnext(q, mp);
15463 }
15464 
15465 /* ARGSUSED */
15466 static void
15467 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2)
15468 {
15469 	conn_t	*connp = (conn_t *)arg;
15470 	tcp_t	*tcp = connp->conn_tcp;
15471 	queue_t	*q = tcp->tcp_rq;
15472 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15473 
15474 	ASSERT(!IPCL_IS_NONSTR(connp));
15475 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
15476 	tcp->tcp_rsrv_mp = mp;
15477 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
15478 
15479 	TCP_STAT(tcps, tcp_rsrv_calls);
15480 
15481 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
15482 		return;
15483 	}
15484 
15485 	if (tcp->tcp_fused) {
15486 		tcp_fuse_backenable(tcp);
15487 		return;
15488 	}
15489 
15490 	if (canputnext(q)) {
15491 		/* Not flow-controlled, open rwnd */
15492 		tcp->tcp_rwnd = q->q_hiwat;
15493 
15494 		/*
15495 		 * Send back a window update immediately if TCP is above
15496 		 * ESTABLISHED state and the increase of the rcv window
15497 		 * that the other side knows is at least 1 MSS after flow
15498 		 * control is lifted.
15499 		 */
15500 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
15501 		    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
15502 			tcp_xmit_ctl(NULL, tcp,
15503 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
15504 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
15505 		}
15506 	}
15507 }
15508 
15509 /*
15510  * The read side service routine is called mostly when we get back-enabled as a
15511  * result of flow control relief.  Since we don't actually queue anything in
15512  * TCP, we have no data to send out of here.  What we do is clear the receive
15513  * window, and send out a window update.
15514  */
15515 static void
15516 tcp_rsrv(queue_t *q)
15517 {
15518 	conn_t		*connp = Q_TO_CONN(q);
15519 	tcp_t		*tcp = connp->conn_tcp;
15520 	mblk_t		*mp;
15521 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15522 
15523 	/* No code does a putq on the read side */
15524 	ASSERT(q->q_first == NULL);
15525 
15526 	/* Nothing to do for the default queue */
15527 	if (q == tcps->tcps_g_q) {
15528 		return;
15529 	}
15530 
15531 	/*
15532 	 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already
15533 	 * been run.  So just return.
15534 	 */
15535 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
15536 	if ((mp = tcp->tcp_rsrv_mp) == NULL) {
15537 		mutex_exit(&tcp->tcp_rsrv_mp_lock);
15538 		return;
15539 	}
15540 	tcp->tcp_rsrv_mp = NULL;
15541 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
15542 
15543 	CONN_INC_REF(connp);
15544 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp,
15545 	    SQ_PROCESS, SQTAG_TCP_RSRV);
15546 }
15547 
15548 /*
15549  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
15550  * We do not allow the receive window to shrink.  After setting rwnd,
15551  * set the flow control hiwat of the stream.
15552  *
15553  * This function is called in 2 cases:
15554  *
15555  * 1) Before data transfer begins, in tcp_accept_comm() for accepting a
15556  *    connection (passive open) and in tcp_rput_data() for active connect.
15557  *    This is called after tcp_mss_set() when the desired MSS value is known.
15558  *    This makes sure that our window size is a mutiple of the other side's
15559  *    MSS.
15560  * 2) Handling SO_RCVBUF option.
15561  *
15562  * It is ASSUMED that the requested size is a multiple of the current MSS.
15563  *
15564  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
15565  * user requests so.
15566  */
15567 static int
15568 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
15569 {
15570 	uint32_t	mss = tcp->tcp_mss;
15571 	uint32_t	old_max_rwnd;
15572 	uint32_t	max_transmittable_rwnd;
15573 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
15574 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15575 
15576 	if (tcp->tcp_fused) {
15577 		size_t sth_hiwat;
15578 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
15579 
15580 		ASSERT(peer_tcp != NULL);
15581 		/*
15582 		 * Record the stream head's high water mark for
15583 		 * this endpoint; this is used for flow-control
15584 		 * purposes in tcp_fuse_output().
15585 		 */
15586 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
15587 		if (!tcp_detached) {
15588 			(void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp,
15589 			    sth_hiwat);
15590 			if (IPCL_IS_NONSTR(tcp->tcp_connp)) {
15591 				conn_t *connp = tcp->tcp_connp;
15592 				struct sock_proto_props sopp;
15593 
15594 				sopp.sopp_flags = SOCKOPT_RCVTHRESH;
15595 				sopp.sopp_rcvthresh = sth_hiwat >> 3;
15596 
15597 				(*connp->conn_upcalls->su_set_proto_props)
15598 				    (connp->conn_upper_handle, &sopp);
15599 			}
15600 		}
15601 
15602 		/*
15603 		 * In the fusion case, the maxpsz stream head value of
15604 		 * our peer is set according to its send buffer size
15605 		 * and our receive buffer size; since the latter may
15606 		 * have changed we need to update the peer's maxpsz.
15607 		 */
15608 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
15609 		return (rwnd);
15610 	}
15611 
15612 	if (tcp_detached) {
15613 		old_max_rwnd = tcp->tcp_rwnd;
15614 	} else {
15615 		old_max_rwnd = tcp->tcp_recv_hiwater;
15616 	}
15617 
15618 	/*
15619 	 * Insist on a receive window that is at least
15620 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
15621 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
15622 	 * and delayed acknowledgement.
15623 	 */
15624 	rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss);
15625 
15626 	/*
15627 	 * If window size info has already been exchanged, TCP should not
15628 	 * shrink the window.  Shrinking window is doable if done carefully.
15629 	 * We may add that support later.  But so far there is not a real
15630 	 * need to do that.
15631 	 */
15632 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
15633 		/* MSS may have changed, do a round up again. */
15634 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
15635 	}
15636 
15637 	/*
15638 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
15639 	 * can be applied even before the window scale option is decided.
15640 	 */
15641 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
15642 	if (rwnd > max_transmittable_rwnd) {
15643 		rwnd = max_transmittable_rwnd -
15644 		    (max_transmittable_rwnd % mss);
15645 		if (rwnd < mss)
15646 			rwnd = max_transmittable_rwnd;
15647 		/*
15648 		 * If we're over the limit we may have to back down tcp_rwnd.
15649 		 * The increment below won't work for us. So we set all three
15650 		 * here and the increment below will have no effect.
15651 		 */
15652 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
15653 	}
15654 	if (tcp->tcp_localnet) {
15655 		tcp->tcp_rack_abs_max =
15656 		    MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2);
15657 	} else {
15658 		/*
15659 		 * For a remote host on a different subnet (through a router),
15660 		 * we ack every other packet to be conforming to RFC1122.
15661 		 * tcp_deferred_acks_max is default to 2.
15662 		 */
15663 		tcp->tcp_rack_abs_max =
15664 		    MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2);
15665 	}
15666 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
15667 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
15668 	else
15669 		tcp->tcp_rack_cur_max = 0;
15670 	/*
15671 	 * Increment the current rwnd by the amount the maximum grew (we
15672 	 * can not overwrite it since we might be in the middle of a
15673 	 * connection.)
15674 	 */
15675 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
15676 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win);
15677 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
15678 		tcp->tcp_cwnd_max = rwnd;
15679 
15680 	if (tcp_detached)
15681 		return (rwnd);
15682 	/*
15683 	 * We set the maximum receive window into rq->q_hiwat if it is
15684 	 * a STREAMS socket.
15685 	 * This is not actually used for flow control.
15686 	 */
15687 	if (!IPCL_IS_NONSTR(tcp->tcp_connp))
15688 		tcp->tcp_rq->q_hiwat = rwnd;
15689 	tcp->tcp_recv_hiwater = rwnd;
15690 	/*
15691 	 * Set the STREAM head high water mark. This doesn't have to be
15692 	 * here, since we are simply using default values, but we would
15693 	 * prefer to choose these values algorithmically, with a likely
15694 	 * relationship to rwnd.
15695 	 */
15696 	(void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp,
15697 	    MAX(rwnd, tcps->tcps_sth_rcv_hiwat));
15698 	return (rwnd);
15699 }
15700 
15701 /*
15702  * Return SNMP stuff in buffer in mpdata.
15703  */
15704 mblk_t *
15705 tcp_snmp_get(queue_t *q, mblk_t *mpctl)
15706 {
15707 	mblk_t			*mpdata;
15708 	mblk_t			*mp_conn_ctl = NULL;
15709 	mblk_t			*mp_conn_tail;
15710 	mblk_t			*mp_attr_ctl = NULL;
15711 	mblk_t			*mp_attr_tail;
15712 	mblk_t			*mp6_conn_ctl = NULL;
15713 	mblk_t			*mp6_conn_tail;
15714 	mblk_t			*mp6_attr_ctl = NULL;
15715 	mblk_t			*mp6_attr_tail;
15716 	struct opthdr		*optp;
15717 	mib2_tcpConnEntry_t	tce;
15718 	mib2_tcp6ConnEntry_t	tce6;
15719 	mib2_transportMLPEntry_t mlp;
15720 	connf_t			*connfp;
15721 	int			i;
15722 	boolean_t 		ispriv;
15723 	zoneid_t 		zoneid;
15724 	int			v4_conn_idx;
15725 	int			v6_conn_idx;
15726 	conn_t			*connp = Q_TO_CONN(q);
15727 	tcp_stack_t		*tcps;
15728 	ip_stack_t		*ipst;
15729 	mblk_t			*mp2ctl;
15730 
15731 	/*
15732 	 * make a copy of the original message
15733 	 */
15734 	mp2ctl = copymsg(mpctl);
15735 
15736 	if (mpctl == NULL ||
15737 	    (mpdata = mpctl->b_cont) == NULL ||
15738 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
15739 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
15740 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
15741 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
15742 		freemsg(mp_conn_ctl);
15743 		freemsg(mp_attr_ctl);
15744 		freemsg(mp6_conn_ctl);
15745 		freemsg(mp6_attr_ctl);
15746 		freemsg(mpctl);
15747 		freemsg(mp2ctl);
15748 		return (NULL);
15749 	}
15750 
15751 	ipst = connp->conn_netstack->netstack_ip;
15752 	tcps = connp->conn_netstack->netstack_tcp;
15753 
15754 	/* build table of connections -- need count in fixed part */
15755 	SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4);   /* vanj */
15756 	SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min);
15757 	SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max);
15758 	SET_MIB(tcps->tcps_mib.tcpMaxConn, -1);
15759 	SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0);
15760 
15761 	ispriv =
15762 	    secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0;
15763 	zoneid = Q_TO_CONN(q)->conn_zoneid;
15764 
15765 	v4_conn_idx = v6_conn_idx = 0;
15766 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
15767 
15768 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
15769 		ipst = tcps->tcps_netstack->netstack_ip;
15770 
15771 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
15772 
15773 		connp = NULL;
15774 
15775 		while ((connp =
15776 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
15777 			tcp_t *tcp;
15778 			boolean_t needattr;
15779 
15780 			if (connp->conn_zoneid != zoneid)
15781 				continue;	/* not in this zone */
15782 
15783 			tcp = connp->conn_tcp;
15784 			UPDATE_MIB(&tcps->tcps_mib,
15785 			    tcpHCInSegs, tcp->tcp_ibsegs);
15786 			tcp->tcp_ibsegs = 0;
15787 			UPDATE_MIB(&tcps->tcps_mib,
15788 			    tcpHCOutSegs, tcp->tcp_obsegs);
15789 			tcp->tcp_obsegs = 0;
15790 
15791 			tce6.tcp6ConnState = tce.tcpConnState =
15792 			    tcp_snmp_state(tcp);
15793 			if (tce.tcpConnState == MIB2_TCP_established ||
15794 			    tce.tcpConnState == MIB2_TCP_closeWait)
15795 				BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab);
15796 
15797 			needattr = B_FALSE;
15798 			bzero(&mlp, sizeof (mlp));
15799 			if (connp->conn_mlp_type != mlptSingle) {
15800 				if (connp->conn_mlp_type == mlptShared ||
15801 				    connp->conn_mlp_type == mlptBoth)
15802 					mlp.tme_flags |= MIB2_TMEF_SHARED;
15803 				if (connp->conn_mlp_type == mlptPrivate ||
15804 				    connp->conn_mlp_type == mlptBoth)
15805 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
15806 				needattr = B_TRUE;
15807 			}
15808 			if (connp->conn_peercred != NULL) {
15809 				ts_label_t *tsl;
15810 
15811 				tsl = crgetlabel(connp->conn_peercred);
15812 				mlp.tme_doi = label2doi(tsl);
15813 				mlp.tme_label = *label2bslabel(tsl);
15814 				needattr = B_TRUE;
15815 			}
15816 
15817 			/* Create a message to report on IPv6 entries */
15818 			if (tcp->tcp_ipversion == IPV6_VERSION) {
15819 			tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6;
15820 			tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6;
15821 			tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport);
15822 			tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport);
15823 			tce6.tcp6ConnIfIndex = tcp->tcp_bound_if;
15824 			/* Don't want just anybody seeing these... */
15825 			if (ispriv) {
15826 				tce6.tcp6ConnEntryInfo.ce_snxt =
15827 				    tcp->tcp_snxt;
15828 				tce6.tcp6ConnEntryInfo.ce_suna =
15829 				    tcp->tcp_suna;
15830 				tce6.tcp6ConnEntryInfo.ce_rnxt =
15831 				    tcp->tcp_rnxt;
15832 				tce6.tcp6ConnEntryInfo.ce_rack =
15833 				    tcp->tcp_rack;
15834 			} else {
15835 				/*
15836 				 * Netstat, unfortunately, uses this to
15837 				 * get send/receive queue sizes.  How to fix?
15838 				 * Why not compute the difference only?
15839 				 */
15840 				tce6.tcp6ConnEntryInfo.ce_snxt =
15841 				    tcp->tcp_snxt - tcp->tcp_suna;
15842 				tce6.tcp6ConnEntryInfo.ce_suna = 0;
15843 				tce6.tcp6ConnEntryInfo.ce_rnxt =
15844 				    tcp->tcp_rnxt - tcp->tcp_rack;
15845 				tce6.tcp6ConnEntryInfo.ce_rack = 0;
15846 			}
15847 
15848 			tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd;
15849 			tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
15850 			tce6.tcp6ConnEntryInfo.ce_rto =  tcp->tcp_rto;
15851 			tce6.tcp6ConnEntryInfo.ce_mss =  tcp->tcp_mss;
15852 			tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state;
15853 
15854 			tce6.tcp6ConnCreationProcess =
15855 			    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
15856 			    tcp->tcp_cpid;
15857 			tce6.tcp6ConnCreationTime = tcp->tcp_open_time;
15858 
15859 			(void) snmp_append_data2(mp6_conn_ctl->b_cont,
15860 			    &mp6_conn_tail, (char *)&tce6, sizeof (tce6));
15861 
15862 			mlp.tme_connidx = v6_conn_idx++;
15863 			if (needattr)
15864 				(void) snmp_append_data2(mp6_attr_ctl->b_cont,
15865 				    &mp6_attr_tail, (char *)&mlp, sizeof (mlp));
15866 			}
15867 			/*
15868 			 * Create an IPv4 table entry for IPv4 entries and also
15869 			 * for IPv6 entries which are bound to in6addr_any
15870 			 * but don't have IPV6_V6ONLY set.
15871 			 * (i.e. anything an IPv4 peer could connect to)
15872 			 */
15873 			if (tcp->tcp_ipversion == IPV4_VERSION ||
15874 			    (tcp->tcp_state <= TCPS_LISTEN &&
15875 			    !tcp->tcp_connp->conn_ipv6_v6only &&
15876 			    IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) {
15877 				if (tcp->tcp_ipversion == IPV6_VERSION) {
15878 					tce.tcpConnRemAddress = INADDR_ANY;
15879 					tce.tcpConnLocalAddress = INADDR_ANY;
15880 				} else {
15881 					tce.tcpConnRemAddress =
15882 					    tcp->tcp_remote;
15883 					tce.tcpConnLocalAddress =
15884 					    tcp->tcp_ip_src;
15885 				}
15886 				tce.tcpConnLocalPort = ntohs(tcp->tcp_lport);
15887 				tce.tcpConnRemPort = ntohs(tcp->tcp_fport);
15888 				/* Don't want just anybody seeing these... */
15889 				if (ispriv) {
15890 					tce.tcpConnEntryInfo.ce_snxt =
15891 					    tcp->tcp_snxt;
15892 					tce.tcpConnEntryInfo.ce_suna =
15893 					    tcp->tcp_suna;
15894 					tce.tcpConnEntryInfo.ce_rnxt =
15895 					    tcp->tcp_rnxt;
15896 					tce.tcpConnEntryInfo.ce_rack =
15897 					    tcp->tcp_rack;
15898 				} else {
15899 					/*
15900 					 * Netstat, unfortunately, uses this to
15901 					 * get send/receive queue sizes.  How
15902 					 * to fix?
15903 					 * Why not compute the difference only?
15904 					 */
15905 					tce.tcpConnEntryInfo.ce_snxt =
15906 					    tcp->tcp_snxt - tcp->tcp_suna;
15907 					tce.tcpConnEntryInfo.ce_suna = 0;
15908 					tce.tcpConnEntryInfo.ce_rnxt =
15909 					    tcp->tcp_rnxt - tcp->tcp_rack;
15910 					tce.tcpConnEntryInfo.ce_rack = 0;
15911 				}
15912 
15913 				tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd;
15914 				tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
15915 				tce.tcpConnEntryInfo.ce_rto =  tcp->tcp_rto;
15916 				tce.tcpConnEntryInfo.ce_mss =  tcp->tcp_mss;
15917 				tce.tcpConnEntryInfo.ce_state =
15918 				    tcp->tcp_state;
15919 
15920 				tce.tcpConnCreationProcess =
15921 				    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
15922 				    tcp->tcp_cpid;
15923 				tce.tcpConnCreationTime = tcp->tcp_open_time;
15924 
15925 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
15926 				    &mp_conn_tail, (char *)&tce, sizeof (tce));
15927 
15928 				mlp.tme_connidx = v4_conn_idx++;
15929 				if (needattr)
15930 					(void) snmp_append_data2(
15931 					    mp_attr_ctl->b_cont,
15932 					    &mp_attr_tail, (char *)&mlp,
15933 					    sizeof (mlp));
15934 			}
15935 		}
15936 	}
15937 
15938 	/* fixed length structure for IPv4 and IPv6 counters */
15939 	SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t));
15940 	SET_MIB(tcps->tcps_mib.tcp6ConnTableSize,
15941 	    sizeof (mib2_tcp6ConnEntry_t));
15942 	/* synchronize 32- and 64-bit counters */
15943 	SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs);
15944 	SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs);
15945 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
15946 	optp->level = MIB2_TCP;
15947 	optp->name = 0;
15948 	(void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib,
15949 	    sizeof (tcps->tcps_mib));
15950 	optp->len = msgdsize(mpdata);
15951 	qreply(q, mpctl);
15952 
15953 	/* table of connections... */
15954 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
15955 	    sizeof (struct T_optmgmt_ack)];
15956 	optp->level = MIB2_TCP;
15957 	optp->name = MIB2_TCP_CONN;
15958 	optp->len = msgdsize(mp_conn_ctl->b_cont);
15959 	qreply(q, mp_conn_ctl);
15960 
15961 	/* table of MLP attributes... */
15962 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
15963 	    sizeof (struct T_optmgmt_ack)];
15964 	optp->level = MIB2_TCP;
15965 	optp->name = EXPER_XPORT_MLP;
15966 	optp->len = msgdsize(mp_attr_ctl->b_cont);
15967 	if (optp->len == 0)
15968 		freemsg(mp_attr_ctl);
15969 	else
15970 		qreply(q, mp_attr_ctl);
15971 
15972 	/* table of IPv6 connections... */
15973 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
15974 	    sizeof (struct T_optmgmt_ack)];
15975 	optp->level = MIB2_TCP6;
15976 	optp->name = MIB2_TCP6_CONN;
15977 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
15978 	qreply(q, mp6_conn_ctl);
15979 
15980 	/* table of IPv6 MLP attributes... */
15981 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
15982 	    sizeof (struct T_optmgmt_ack)];
15983 	optp->level = MIB2_TCP6;
15984 	optp->name = EXPER_XPORT_MLP;
15985 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
15986 	if (optp->len == 0)
15987 		freemsg(mp6_attr_ctl);
15988 	else
15989 		qreply(q, mp6_attr_ctl);
15990 	return (mp2ctl);
15991 }
15992 
15993 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests  */
15994 /* ARGSUSED */
15995 int
15996 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
15997 {
15998 	mib2_tcpConnEntry_t	*tce = (mib2_tcpConnEntry_t *)ptr;
15999 
16000 	switch (level) {
16001 	case MIB2_TCP:
16002 		switch (name) {
16003 		case 13:
16004 			if (tce->tcpConnState != MIB2_TCP_deleteTCB)
16005 				return (0);
16006 			/* TODO: delete entry defined by tce */
16007 			return (1);
16008 		default:
16009 			return (0);
16010 		}
16011 	default:
16012 		return (1);
16013 	}
16014 }
16015 
16016 /* Translate TCP state to MIB2 TCP state. */
16017 static int
16018 tcp_snmp_state(tcp_t *tcp)
16019 {
16020 	if (tcp == NULL)
16021 		return (0);
16022 
16023 	switch (tcp->tcp_state) {
16024 	case TCPS_CLOSED:
16025 	case TCPS_IDLE:	/* RFC1213 doesn't have analogue for IDLE & BOUND */
16026 	case TCPS_BOUND:
16027 		return (MIB2_TCP_closed);
16028 	case TCPS_LISTEN:
16029 		return (MIB2_TCP_listen);
16030 	case TCPS_SYN_SENT:
16031 		return (MIB2_TCP_synSent);
16032 	case TCPS_SYN_RCVD:
16033 		return (MIB2_TCP_synReceived);
16034 	case TCPS_ESTABLISHED:
16035 		return (MIB2_TCP_established);
16036 	case TCPS_CLOSE_WAIT:
16037 		return (MIB2_TCP_closeWait);
16038 	case TCPS_FIN_WAIT_1:
16039 		return (MIB2_TCP_finWait1);
16040 	case TCPS_CLOSING:
16041 		return (MIB2_TCP_closing);
16042 	case TCPS_LAST_ACK:
16043 		return (MIB2_TCP_lastAck);
16044 	case TCPS_FIN_WAIT_2:
16045 		return (MIB2_TCP_finWait2);
16046 	case TCPS_TIME_WAIT:
16047 		return (MIB2_TCP_timeWait);
16048 	default:
16049 		return (0);
16050 	}
16051 }
16052 
16053 /*
16054  * tcp_timer is the timer service routine.  It handles the retransmission,
16055  * FIN_WAIT_2 flush, and zero window probe timeout events.  It figures out
16056  * from the state of the tcp instance what kind of action needs to be done
16057  * at the time it is called.
16058  */
16059 static void
16060 tcp_timer(void *arg)
16061 {
16062 	mblk_t		*mp;
16063 	clock_t		first_threshold;
16064 	clock_t		second_threshold;
16065 	clock_t		ms;
16066 	uint32_t	mss;
16067 	conn_t		*connp = (conn_t *)arg;
16068 	tcp_t		*tcp = connp->conn_tcp;
16069 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16070 
16071 	tcp->tcp_timer_tid = 0;
16072 
16073 	if (tcp->tcp_fused)
16074 		return;
16075 
16076 	first_threshold =  tcp->tcp_first_timer_threshold;
16077 	second_threshold = tcp->tcp_second_timer_threshold;
16078 	switch (tcp->tcp_state) {
16079 	case TCPS_IDLE:
16080 	case TCPS_BOUND:
16081 	case TCPS_LISTEN:
16082 		return;
16083 	case TCPS_SYN_RCVD: {
16084 		tcp_t	*listener = tcp->tcp_listener;
16085 
16086 		if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) {
16087 			ASSERT(tcp->tcp_rq == listener->tcp_rq);
16088 			/* it's our first timeout */
16089 			tcp->tcp_syn_rcvd_timeout = 1;
16090 			mutex_enter(&listener->tcp_eager_lock);
16091 			listener->tcp_syn_rcvd_timeout++;
16092 			if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) {
16093 				/*
16094 				 * Make this eager available for drop if we
16095 				 * need to drop one to accomodate a new
16096 				 * incoming SYN request.
16097 				 */
16098 				MAKE_DROPPABLE(listener, tcp);
16099 			}
16100 			if (!listener->tcp_syn_defense &&
16101 			    (listener->tcp_syn_rcvd_timeout >
16102 			    (tcps->tcps_conn_req_max_q0 >> 2)) &&
16103 			    (tcps->tcps_conn_req_max_q0 > 200)) {
16104 				/* We may be under attack. Put on a defense. */
16105 				listener->tcp_syn_defense = B_TRUE;
16106 				cmn_err(CE_WARN, "High TCP connect timeout "
16107 				    "rate! System (port %d) may be under a "
16108 				    "SYN flood attack!",
16109 				    BE16_TO_U16(listener->tcp_tcph->th_lport));
16110 
16111 				listener->tcp_ip_addr_cache = kmem_zalloc(
16112 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t),
16113 				    KM_NOSLEEP);
16114 			}
16115 			mutex_exit(&listener->tcp_eager_lock);
16116 		} else if (listener != NULL) {
16117 			mutex_enter(&listener->tcp_eager_lock);
16118 			tcp->tcp_syn_rcvd_timeout++;
16119 			if (tcp->tcp_syn_rcvd_timeout > 1 &&
16120 			    !tcp->tcp_closemp_used) {
16121 				/*
16122 				 * This is our second timeout. Put the tcp in
16123 				 * the list of droppable eagers to allow it to
16124 				 * be dropped, if needed. We don't check
16125 				 * whether tcp_dontdrop is set or not to
16126 				 * protect ourselve from a SYN attack where a
16127 				 * remote host can spoof itself as one of the
16128 				 * good IP source and continue to hold
16129 				 * resources too long.
16130 				 */
16131 				MAKE_DROPPABLE(listener, tcp);
16132 			}
16133 			mutex_exit(&listener->tcp_eager_lock);
16134 		}
16135 	}
16136 		/* FALLTHRU */
16137 	case TCPS_SYN_SENT:
16138 		first_threshold =  tcp->tcp_first_ctimer_threshold;
16139 		second_threshold = tcp->tcp_second_ctimer_threshold;
16140 		break;
16141 	case TCPS_ESTABLISHED:
16142 	case TCPS_FIN_WAIT_1:
16143 	case TCPS_CLOSING:
16144 	case TCPS_CLOSE_WAIT:
16145 	case TCPS_LAST_ACK:
16146 		/* If we have data to rexmit */
16147 		if (tcp->tcp_suna != tcp->tcp_snxt) {
16148 			clock_t	time_to_wait;
16149 
16150 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans);
16151 			if (!tcp->tcp_xmit_head)
16152 				break;
16153 			time_to_wait = lbolt -
16154 			    (clock_t)tcp->tcp_xmit_head->b_prev;
16155 			time_to_wait = tcp->tcp_rto -
16156 			    TICK_TO_MSEC(time_to_wait);
16157 			/*
16158 			 * If the timer fires too early, 1 clock tick earlier,
16159 			 * restart the timer.
16160 			 */
16161 			if (time_to_wait > msec_per_tick) {
16162 				TCP_STAT(tcps, tcp_timer_fire_early);
16163 				TCP_TIMER_RESTART(tcp, time_to_wait);
16164 				return;
16165 			}
16166 			/*
16167 			 * When we probe zero windows, we force the swnd open.
16168 			 * If our peer acks with a closed window swnd will be
16169 			 * set to zero by tcp_rput(). As long as we are
16170 			 * receiving acks tcp_rput will
16171 			 * reset 'tcp_ms_we_have_waited' so as not to trip the
16172 			 * first and second interval actions.  NOTE: the timer
16173 			 * interval is allowed to continue its exponential
16174 			 * backoff.
16175 			 */
16176 			if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) {
16177 				if (tcp->tcp_debug) {
16178 					(void) strlog(TCP_MOD_ID, 0, 1,
16179 					    SL_TRACE, "tcp_timer: zero win");
16180 				}
16181 			} else {
16182 				/*
16183 				 * After retransmission, we need to do
16184 				 * slow start.  Set the ssthresh to one
16185 				 * half of current effective window and
16186 				 * cwnd to one MSS.  Also reset
16187 				 * tcp_cwnd_cnt.
16188 				 *
16189 				 * Note that if tcp_ssthresh is reduced because
16190 				 * of ECN, do not reduce it again unless it is
16191 				 * already one window of data away (tcp_cwr
16192 				 * should then be cleared) or this is a
16193 				 * timeout for a retransmitted segment.
16194 				 */
16195 				uint32_t npkt;
16196 
16197 				if (!tcp->tcp_cwr || tcp->tcp_rexmit) {
16198 					npkt = ((tcp->tcp_timer_backoff ?
16199 					    tcp->tcp_cwnd_ssthresh :
16200 					    tcp->tcp_snxt -
16201 					    tcp->tcp_suna) >> 1) / tcp->tcp_mss;
16202 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
16203 					    tcp->tcp_mss;
16204 				}
16205 				tcp->tcp_cwnd = tcp->tcp_mss;
16206 				tcp->tcp_cwnd_cnt = 0;
16207 				if (tcp->tcp_ecn_ok) {
16208 					tcp->tcp_cwr = B_TRUE;
16209 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
16210 					tcp->tcp_ecn_cwr_sent = B_FALSE;
16211 				}
16212 			}
16213 			break;
16214 		}
16215 		/*
16216 		 * We have something to send yet we cannot send.  The
16217 		 * reason can be:
16218 		 *
16219 		 * 1. Zero send window: we need to do zero window probe.
16220 		 * 2. Zero cwnd: because of ECN, we need to "clock out
16221 		 * segments.
16222 		 * 3. SWS avoidance: receiver may have shrunk window,
16223 		 * reset our knowledge.
16224 		 *
16225 		 * Note that condition 2 can happen with either 1 or
16226 		 * 3.  But 1 and 3 are exclusive.
16227 		 */
16228 		if (tcp->tcp_unsent != 0) {
16229 			if (tcp->tcp_cwnd == 0) {
16230 				/*
16231 				 * Set tcp_cwnd to 1 MSS so that a
16232 				 * new segment can be sent out.  We
16233 				 * are "clocking out" new data when
16234 				 * the network is really congested.
16235 				 */
16236 				ASSERT(tcp->tcp_ecn_ok);
16237 				tcp->tcp_cwnd = tcp->tcp_mss;
16238 			}
16239 			if (tcp->tcp_swnd == 0) {
16240 				/* Extend window for zero window probe */
16241 				tcp->tcp_swnd++;
16242 				tcp->tcp_zero_win_probe = B_TRUE;
16243 				BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe);
16244 			} else {
16245 				/*
16246 				 * Handle timeout from sender SWS avoidance.
16247 				 * Reset our knowledge of the max send window
16248 				 * since the receiver might have reduced its
16249 				 * receive buffer.  Avoid setting tcp_max_swnd
16250 				 * to one since that will essentially disable
16251 				 * the SWS checks.
16252 				 *
16253 				 * Note that since we don't have a SWS
16254 				 * state variable, if the timeout is set
16255 				 * for ECN but not for SWS, this
16256 				 * code will also be executed.  This is
16257 				 * fine as tcp_max_swnd is updated
16258 				 * constantly and it will not affect
16259 				 * anything.
16260 				 */
16261 				tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2);
16262 			}
16263 			tcp_wput_data(tcp, NULL, B_FALSE);
16264 			return;
16265 		}
16266 		/* Is there a FIN that needs to be to re retransmitted? */
16267 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
16268 		    !tcp->tcp_fin_acked)
16269 			break;
16270 		/* Nothing to do, return without restarting timer. */
16271 		TCP_STAT(tcps, tcp_timer_fire_miss);
16272 		return;
16273 	case TCPS_FIN_WAIT_2:
16274 		/*
16275 		 * User closed the TCP endpoint and peer ACK'ed our FIN.
16276 		 * We waited some time for for peer's FIN, but it hasn't
16277 		 * arrived.  We flush the connection now to avoid
16278 		 * case where the peer has rebooted.
16279 		 */
16280 		if (TCP_IS_DETACHED(tcp)) {
16281 			(void) tcp_clean_death(tcp, 0, 23);
16282 		} else {
16283 			TCP_TIMER_RESTART(tcp,
16284 			    tcps->tcps_fin_wait_2_flush_interval);
16285 		}
16286 		return;
16287 	case TCPS_TIME_WAIT:
16288 		(void) tcp_clean_death(tcp, 0, 24);
16289 		return;
16290 	default:
16291 		if (tcp->tcp_debug) {
16292 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
16293 			    "tcp_timer: strange state (%d) %s",
16294 			    tcp->tcp_state, tcp_display(tcp, NULL,
16295 			    DISP_PORT_ONLY));
16296 		}
16297 		return;
16298 	}
16299 	if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) {
16300 		/*
16301 		 * For zero window probe, we need to send indefinitely,
16302 		 * unless we have not heard from the other side for some
16303 		 * time...
16304 		 */
16305 		if ((tcp->tcp_zero_win_probe == 0) ||
16306 		    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >
16307 		    second_threshold)) {
16308 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop);
16309 			/*
16310 			 * If TCP is in SYN_RCVD state, send back a
16311 			 * RST|ACK as BSD does.  Note that tcp_zero_win_probe
16312 			 * should be zero in TCPS_SYN_RCVD state.
16313 			 */
16314 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
16315 				tcp_xmit_ctl("tcp_timer: RST sent on timeout "
16316 				    "in SYN_RCVD",
16317 				    tcp, tcp->tcp_snxt,
16318 				    tcp->tcp_rnxt, TH_RST | TH_ACK);
16319 			}
16320 			(void) tcp_clean_death(tcp,
16321 			    tcp->tcp_client_errno ?
16322 			    tcp->tcp_client_errno : ETIMEDOUT, 25);
16323 			return;
16324 		} else {
16325 			/*
16326 			 * Set tcp_ms_we_have_waited to second_threshold
16327 			 * so that in next timeout, we will do the above
16328 			 * check (lbolt - tcp_last_recv_time).  This is
16329 			 * also to avoid overflow.
16330 			 *
16331 			 * We don't need to decrement tcp_timer_backoff
16332 			 * to avoid overflow because it will be decremented
16333 			 * later if new timeout value is greater than
16334 			 * tcp_rexmit_interval_max.  In the case when
16335 			 * tcp_rexmit_interval_max is greater than
16336 			 * second_threshold, it means that we will wait
16337 			 * longer than second_threshold to send the next
16338 			 * window probe.
16339 			 */
16340 			tcp->tcp_ms_we_have_waited = second_threshold;
16341 		}
16342 	} else if (ms > first_threshold) {
16343 		if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) &&
16344 		    tcp->tcp_xmit_head != NULL) {
16345 			tcp->tcp_xmit_head =
16346 			    tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1);
16347 		}
16348 		/*
16349 		 * We have been retransmitting for too long...  The RTT
16350 		 * we calculated is probably incorrect.  Reinitialize it.
16351 		 * Need to compensate for 0 tcp_rtt_sa.  Reset
16352 		 * tcp_rtt_update so that we won't accidentally cache a
16353 		 * bad value.  But only do this if this is not a zero
16354 		 * window probe.
16355 		 */
16356 		if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) {
16357 			tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) +
16358 			    (tcp->tcp_rtt_sa >> 5);
16359 			tcp->tcp_rtt_sa = 0;
16360 			tcp_ip_notify(tcp);
16361 			tcp->tcp_rtt_update = 0;
16362 		}
16363 	}
16364 	tcp->tcp_timer_backoff++;
16365 	if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
16366 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) <
16367 	    tcps->tcps_rexmit_interval_min) {
16368 		/*
16369 		 * This means the original RTO is tcp_rexmit_interval_min.
16370 		 * So we will use tcp_rexmit_interval_min as the RTO value
16371 		 * and do the backoff.
16372 		 */
16373 		ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff;
16374 	} else {
16375 		ms <<= tcp->tcp_timer_backoff;
16376 	}
16377 	if (ms > tcps->tcps_rexmit_interval_max) {
16378 		ms = tcps->tcps_rexmit_interval_max;
16379 		/*
16380 		 * ms is at max, decrement tcp_timer_backoff to avoid
16381 		 * overflow.
16382 		 */
16383 		tcp->tcp_timer_backoff--;
16384 	}
16385 	tcp->tcp_ms_we_have_waited += ms;
16386 	if (tcp->tcp_zero_win_probe == 0) {
16387 		tcp->tcp_rto = ms;
16388 	}
16389 	TCP_TIMER_RESTART(tcp, ms);
16390 	/*
16391 	 * This is after a timeout and tcp_rto is backed off.  Set
16392 	 * tcp_set_timer to 1 so that next time RTO is updated, we will
16393 	 * restart the timer with a correct value.
16394 	 */
16395 	tcp->tcp_set_timer = 1;
16396 	mss = tcp->tcp_snxt - tcp->tcp_suna;
16397 	if (mss > tcp->tcp_mss)
16398 		mss = tcp->tcp_mss;
16399 	if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0)
16400 		mss = tcp->tcp_swnd;
16401 
16402 	if ((mp = tcp->tcp_xmit_head) != NULL)
16403 		mp->b_prev = (mblk_t *)lbolt;
16404 	mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss,
16405 	    B_TRUE);
16406 
16407 	/*
16408 	 * When slow start after retransmission begins, start with
16409 	 * this seq no.  tcp_rexmit_max marks the end of special slow
16410 	 * start phase.  tcp_snd_burst controls how many segments
16411 	 * can be sent because of an ack.
16412 	 */
16413 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
16414 	tcp->tcp_snd_burst = TCP_CWND_SS;
16415 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
16416 	    (tcp->tcp_unsent == 0)) {
16417 		tcp->tcp_rexmit_max = tcp->tcp_fss;
16418 	} else {
16419 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
16420 	}
16421 	tcp->tcp_rexmit = B_TRUE;
16422 	tcp->tcp_dupack_cnt = 0;
16423 
16424 	/*
16425 	 * Remove all rexmit SACK blk to start from fresh.
16426 	 */
16427 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
16428 		TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
16429 		tcp->tcp_num_notsack_blk = 0;
16430 		tcp->tcp_cnt_notsack_list = 0;
16431 	}
16432 	if (mp == NULL) {
16433 		return;
16434 	}
16435 	/*
16436 	 * Attach credentials to retransmitted initial SYNs.
16437 	 * In theory we should use the credentials from the connect()
16438 	 * call to ensure that getpeerucred() on the peer will be correct.
16439 	 * But we assume that SYN's are not dropped for loopback connections.
16440 	 */
16441 	if (tcp->tcp_state == TCPS_SYN_SENT) {
16442 		mblk_setcred(mp, tcp->tcp_cred, tcp->tcp_cpid);
16443 	}
16444 
16445 	tcp->tcp_csuna = tcp->tcp_snxt;
16446 	BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
16447 	UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss);
16448 	tcp_send_data(tcp, tcp->tcp_wq, mp);
16449 
16450 }
16451 
16452 static int
16453 tcp_do_unbind(conn_t *connp)
16454 {
16455 	tcp_t *tcp = connp->conn_tcp;
16456 	int error = 0;
16457 
16458 	switch (tcp->tcp_state) {
16459 	case TCPS_BOUND:
16460 	case TCPS_LISTEN:
16461 		break;
16462 	default:
16463 		return (-TOUTSTATE);
16464 	}
16465 
16466 	/*
16467 	 * Need to clean up all the eagers since after the unbind, segments
16468 	 * will no longer be delivered to this listener stream.
16469 	 */
16470 	mutex_enter(&tcp->tcp_eager_lock);
16471 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
16472 		tcp_eager_cleanup(tcp, 0);
16473 	}
16474 	mutex_exit(&tcp->tcp_eager_lock);
16475 
16476 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16477 		tcp->tcp_ipha->ipha_src = 0;
16478 	} else {
16479 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
16480 	}
16481 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
16482 	bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport));
16483 	tcp_bind_hash_remove(tcp);
16484 	tcp->tcp_state = TCPS_IDLE;
16485 	tcp->tcp_mdt = B_FALSE;
16486 
16487 	connp = tcp->tcp_connp;
16488 	connp->conn_mdt_ok = B_FALSE;
16489 	ipcl_hash_remove(connp);
16490 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
16491 
16492 	return (error);
16493 }
16494 
16495 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */
16496 static void
16497 tcp_tpi_unbind(tcp_t *tcp, mblk_t *mp)
16498 {
16499 	int error = tcp_do_unbind(tcp->tcp_connp);
16500 
16501 	if (error > 0) {
16502 		tcp_err_ack(tcp, mp, TSYSERR, error);
16503 	} else if (error < 0) {
16504 		tcp_err_ack(tcp, mp, -error, 0);
16505 	} else {
16506 		/* Send M_FLUSH according to TPI */
16507 		(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
16508 
16509 		mp = mi_tpi_ok_ack_alloc(mp);
16510 		putnext(tcp->tcp_rq, mp);
16511 	}
16512 }
16513 
16514 /*
16515  * Don't let port fall into the privileged range.
16516  * Since the extra privileged ports can be arbitrary we also
16517  * ensure that we exclude those from consideration.
16518  * tcp_g_epriv_ports is not sorted thus we loop over it until
16519  * there are no changes.
16520  *
16521  * Note: No locks are held when inspecting tcp_g_*epriv_ports
16522  * but instead the code relies on:
16523  * - the fact that the address of the array and its size never changes
16524  * - the atomic assignment of the elements of the array
16525  *
16526  * Returns 0 if there are no more ports available.
16527  *
16528  * TS note: skip multilevel ports.
16529  */
16530 static in_port_t
16531 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random)
16532 {
16533 	int i;
16534 	boolean_t restart = B_FALSE;
16535 	tcp_stack_t *tcps = tcp->tcp_tcps;
16536 
16537 	if (random && tcp_random_anon_port != 0) {
16538 		(void) random_get_pseudo_bytes((uint8_t *)&port,
16539 		    sizeof (in_port_t));
16540 		/*
16541 		 * Unless changed by a sys admin, the smallest anon port
16542 		 * is 32768 and the largest anon port is 65535.  It is
16543 		 * very likely (50%) for the random port to be smaller
16544 		 * than the smallest anon port.  When that happens,
16545 		 * add port % (anon port range) to the smallest anon
16546 		 * port to get the random port.  It should fall into the
16547 		 * valid anon port range.
16548 		 */
16549 		if (port < tcps->tcps_smallest_anon_port) {
16550 			port = tcps->tcps_smallest_anon_port +
16551 			    port % (tcps->tcps_largest_anon_port -
16552 			    tcps->tcps_smallest_anon_port);
16553 		}
16554 	}
16555 
16556 retry:
16557 	if (port < tcps->tcps_smallest_anon_port)
16558 		port = (in_port_t)tcps->tcps_smallest_anon_port;
16559 
16560 	if (port > tcps->tcps_largest_anon_port) {
16561 		if (restart)
16562 			return (0);
16563 		restart = B_TRUE;
16564 		port = (in_port_t)tcps->tcps_smallest_anon_port;
16565 	}
16566 
16567 	if (port < tcps->tcps_smallest_nonpriv_port)
16568 		port = (in_port_t)tcps->tcps_smallest_nonpriv_port;
16569 
16570 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
16571 		if (port == tcps->tcps_g_epriv_ports[i]) {
16572 			port++;
16573 			/*
16574 			 * Make sure whether the port is in the
16575 			 * valid range.
16576 			 */
16577 			goto retry;
16578 		}
16579 	}
16580 	if (is_system_labeled() &&
16581 	    (i = tsol_next_port(crgetzone(tcp->tcp_cred), port,
16582 	    IPPROTO_TCP, B_TRUE)) != 0) {
16583 		port = i;
16584 		goto retry;
16585 	}
16586 	return (port);
16587 }
16588 
16589 /*
16590  * Return the next anonymous port in the privileged port range for
16591  * bind checking.  It starts at IPPORT_RESERVED - 1 and goes
16592  * downwards.  This is the same behavior as documented in the userland
16593  * library call rresvport(3N).
16594  *
16595  * TS note: skip multilevel ports.
16596  */
16597 static in_port_t
16598 tcp_get_next_priv_port(const tcp_t *tcp)
16599 {
16600 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
16601 	in_port_t nextport;
16602 	boolean_t restart = B_FALSE;
16603 	tcp_stack_t *tcps = tcp->tcp_tcps;
16604 retry:
16605 	if (next_priv_port < tcps->tcps_min_anonpriv_port ||
16606 	    next_priv_port >= IPPORT_RESERVED) {
16607 		next_priv_port = IPPORT_RESERVED - 1;
16608 		if (restart)
16609 			return (0);
16610 		restart = B_TRUE;
16611 	}
16612 	if (is_system_labeled() &&
16613 	    (nextport = tsol_next_port(crgetzone(tcp->tcp_cred),
16614 	    next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) {
16615 		next_priv_port = nextport;
16616 		goto retry;
16617 	}
16618 	return (next_priv_port--);
16619 }
16620 
16621 /* The write side r/w procedure. */
16622 
16623 #if CCS_STATS
16624 struct {
16625 	struct {
16626 		int64_t count, bytes;
16627 	} tot, hit;
16628 } wrw_stats;
16629 #endif
16630 
16631 /*
16632  * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO,
16633  * messages.
16634  */
16635 /* ARGSUSED */
16636 static void
16637 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2)
16638 {
16639 	conn_t	*connp = (conn_t *)arg;
16640 	tcp_t	*tcp = connp->conn_tcp;
16641 	queue_t	*q = tcp->tcp_wq;
16642 
16643 	ASSERT(DB_TYPE(mp) != M_IOCTL);
16644 	/*
16645 	 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close.
16646 	 * Once the close starts, streamhead and sockfs will not let any data
16647 	 * packets come down (close ensures that there are no threads using the
16648 	 * queue and no new threads will come down) but since qprocsoff()
16649 	 * hasn't happened yet, a M_FLUSH or some non data message might
16650 	 * get reflected back (in response to our own FLUSHRW) and get
16651 	 * processed after tcp_close() is done. The conn would still be valid
16652 	 * because a ref would have added but we need to check the state
16653 	 * before actually processing the packet.
16654 	 */
16655 	if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) {
16656 		freemsg(mp);
16657 		return;
16658 	}
16659 
16660 	switch (DB_TYPE(mp)) {
16661 	case M_IOCDATA:
16662 		tcp_wput_iocdata(tcp, mp);
16663 		break;
16664 	case M_FLUSH:
16665 		tcp_wput_flush(tcp, mp);
16666 		break;
16667 	default:
16668 		CALL_IP_WPUT(connp, q, mp);
16669 		break;
16670 	}
16671 }
16672 
16673 /*
16674  * The TCP fast path write put procedure.
16675  * NOTE: the logic of the fast path is duplicated from tcp_wput_data()
16676  */
16677 /* ARGSUSED */
16678 void
16679 tcp_output(void *arg, mblk_t *mp, void *arg2)
16680 {
16681 	int		len;
16682 	int		hdrlen;
16683 	int		plen;
16684 	mblk_t		*mp1;
16685 	uchar_t		*rptr;
16686 	uint32_t	snxt;
16687 	tcph_t		*tcph;
16688 	struct datab	*db;
16689 	uint32_t	suna;
16690 	uint32_t	mss;
16691 	ipaddr_t	*dst;
16692 	ipaddr_t	*src;
16693 	uint32_t	sum;
16694 	int		usable;
16695 	conn_t		*connp = (conn_t *)arg;
16696 	tcp_t		*tcp = connp->conn_tcp;
16697 	uint32_t	msize;
16698 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16699 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
16700 
16701 	/*
16702 	 * Try and ASSERT the minimum possible references on the
16703 	 * conn early enough. Since we are executing on write side,
16704 	 * the connection is obviously not detached and that means
16705 	 * there is a ref each for TCP and IP. Since we are behind
16706 	 * the squeue, the minimum references needed are 3. If the
16707 	 * conn is in classifier hash list, there should be an
16708 	 * extra ref for that (we check both the possibilities).
16709 	 */
16710 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
16711 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
16712 
16713 	ASSERT(DB_TYPE(mp) == M_DATA);
16714 	msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
16715 
16716 	mutex_enter(&tcp->tcp_non_sq_lock);
16717 	tcp->tcp_squeue_bytes -= msize;
16718 	mutex_exit(&tcp->tcp_non_sq_lock);
16719 
16720 	/* Check to see if this connection wants to be re-fused. */
16721 	if (tcp->tcp_refuse && !ipst->ips_ipobs_enabled) {
16722 		if (tcp->tcp_ipversion == IPV4_VERSION) {
16723 			tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ipha,
16724 			    &tcp->tcp_saved_tcph);
16725 		} else {
16726 			tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ip6h,
16727 			    &tcp->tcp_saved_tcph);
16728 		}
16729 	}
16730 	/* Bypass tcp protocol for fused tcp loopback */
16731 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
16732 		return;
16733 
16734 	mss = tcp->tcp_mss;
16735 	if (tcp->tcp_xmit_zc_clean)
16736 		mp = tcp_zcopy_backoff(tcp, mp, 0);
16737 
16738 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
16739 	len = (int)(mp->b_wptr - mp->b_rptr);
16740 
16741 	/*
16742 	 * Criteria for fast path:
16743 	 *
16744 	 *   1. no unsent data
16745 	 *   2. single mblk in request
16746 	 *   3. connection established
16747 	 *   4. data in mblk
16748 	 *   5. len <= mss
16749 	 *   6. no tcp_valid bits
16750 	 */
16751 	if ((tcp->tcp_unsent != 0) ||
16752 	    (tcp->tcp_cork) ||
16753 	    (mp->b_cont != NULL) ||
16754 	    (tcp->tcp_state != TCPS_ESTABLISHED) ||
16755 	    (len == 0) ||
16756 	    (len > mss) ||
16757 	    (tcp->tcp_valid_bits != 0)) {
16758 		tcp_wput_data(tcp, mp, B_FALSE);
16759 		return;
16760 	}
16761 
16762 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
16763 	ASSERT(tcp->tcp_fin_sent == 0);
16764 
16765 	/* queue new packet onto retransmission queue */
16766 	if (tcp->tcp_xmit_head == NULL) {
16767 		tcp->tcp_xmit_head = mp;
16768 	} else {
16769 		tcp->tcp_xmit_last->b_cont = mp;
16770 	}
16771 	tcp->tcp_xmit_last = mp;
16772 	tcp->tcp_xmit_tail = mp;
16773 
16774 	/* find out how much we can send */
16775 	/* BEGIN CSTYLED */
16776 	/*
16777 	 *    un-acked	   usable
16778 	 *  |--------------|-----------------|
16779 	 *  tcp_suna       tcp_snxt	  tcp_suna+tcp_swnd
16780 	 */
16781 	/* END CSTYLED */
16782 
16783 	/* start sending from tcp_snxt */
16784 	snxt = tcp->tcp_snxt;
16785 
16786 	/*
16787 	 * Check to see if this connection has been idled for some
16788 	 * time and no ACK is expected.  If it is, we need to slow
16789 	 * start again to get back the connection's "self-clock" as
16790 	 * described in VJ's paper.
16791 	 *
16792 	 * Refer to the comment in tcp_mss_set() for the calculation
16793 	 * of tcp_cwnd after idle.
16794 	 */
16795 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
16796 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
16797 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
16798 	}
16799 
16800 	usable = tcp->tcp_swnd;		/* tcp window size */
16801 	if (usable > tcp->tcp_cwnd)
16802 		usable = tcp->tcp_cwnd;	/* congestion window smaller */
16803 	usable -= snxt;		/* subtract stuff already sent */
16804 	suna = tcp->tcp_suna;
16805 	usable += suna;
16806 	/* usable can be < 0 if the congestion window is smaller */
16807 	if (len > usable) {
16808 		/* Can't send complete M_DATA in one shot */
16809 		goto slow;
16810 	}
16811 
16812 	mutex_enter(&tcp->tcp_non_sq_lock);
16813 	if (tcp->tcp_flow_stopped &&
16814 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
16815 		tcp_clrqfull(tcp);
16816 	}
16817 	mutex_exit(&tcp->tcp_non_sq_lock);
16818 
16819 	/*
16820 	 * determine if anything to send (Nagle).
16821 	 *
16822 	 *   1. len < tcp_mss (i.e. small)
16823 	 *   2. unacknowledged data present
16824 	 *   3. len < nagle limit
16825 	 *   4. last packet sent < nagle limit (previous packet sent)
16826 	 */
16827 	if ((len < mss) && (snxt != suna) &&
16828 	    (len < (int)tcp->tcp_naglim) &&
16829 	    (tcp->tcp_last_sent_len < tcp->tcp_naglim)) {
16830 		/*
16831 		 * This was the first unsent packet and normally
16832 		 * mss < xmit_hiwater so there is no need to worry
16833 		 * about flow control. The next packet will go
16834 		 * through the flow control check in tcp_wput_data().
16835 		 */
16836 		/* leftover work from above */
16837 		tcp->tcp_unsent = len;
16838 		tcp->tcp_xmit_tail_unsent = len;
16839 
16840 		return;
16841 	}
16842 
16843 	/* len <= tcp->tcp_mss && len == unsent so no silly window */
16844 
16845 	if (snxt == suna) {
16846 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
16847 	}
16848 
16849 	/* we have always sent something */
16850 	tcp->tcp_rack_cnt = 0;
16851 
16852 	tcp->tcp_snxt = snxt + len;
16853 	tcp->tcp_rack = tcp->tcp_rnxt;
16854 
16855 	if ((mp1 = dupb(mp)) == 0)
16856 		goto no_memory;
16857 	mp->b_prev = (mblk_t *)(uintptr_t)lbolt;
16858 	mp->b_next = (mblk_t *)(uintptr_t)snxt;
16859 
16860 	/* adjust tcp header information */
16861 	tcph = tcp->tcp_tcph;
16862 	tcph->th_flags[0] = (TH_ACK|TH_PUSH);
16863 
16864 	sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
16865 	sum = (sum >> 16) + (sum & 0xFFFF);
16866 	U16_TO_ABE16(sum, tcph->th_sum);
16867 
16868 	U32_TO_ABE32(snxt, tcph->th_seq);
16869 
16870 	BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
16871 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
16872 	BUMP_LOCAL(tcp->tcp_obsegs);
16873 
16874 	/* Update the latest receive window size in TCP header. */
16875 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
16876 	    tcph->th_win);
16877 
16878 	tcp->tcp_last_sent_len = (ushort_t)len;
16879 
16880 	plen = len + tcp->tcp_hdr_len;
16881 
16882 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16883 		tcp->tcp_ipha->ipha_length = htons(plen);
16884 	} else {
16885 		tcp->tcp_ip6h->ip6_plen = htons(plen -
16886 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
16887 	}
16888 
16889 	/* see if we need to allocate a mblk for the headers */
16890 	hdrlen = tcp->tcp_hdr_len;
16891 	rptr = mp1->b_rptr - hdrlen;
16892 	db = mp1->b_datap;
16893 	if ((db->db_ref != 2) || rptr < db->db_base ||
16894 	    (!OK_32PTR(rptr))) {
16895 		/* NOTE: we assume allocb returns an OK_32PTR */
16896 		mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
16897 		    tcps->tcps_wroff_xtra, BPRI_MED);
16898 		if (!mp) {
16899 			freemsg(mp1);
16900 			goto no_memory;
16901 		}
16902 		mp->b_cont = mp1;
16903 		mp1 = mp;
16904 		/* Leave room for Link Level header */
16905 		/* hdrlen = tcp->tcp_hdr_len; */
16906 		rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra];
16907 		mp1->b_wptr = &rptr[hdrlen];
16908 	}
16909 	mp1->b_rptr = rptr;
16910 
16911 	/* Fill in the timestamp option. */
16912 	if (tcp->tcp_snd_ts_ok) {
16913 		U32_TO_BE32((uint32_t)lbolt,
16914 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
16915 		U32_TO_BE32(tcp->tcp_ts_recent,
16916 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
16917 	} else {
16918 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
16919 	}
16920 
16921 	/* copy header into outgoing packet */
16922 	dst = (ipaddr_t *)rptr;
16923 	src = (ipaddr_t *)tcp->tcp_iphc;
16924 	dst[0] = src[0];
16925 	dst[1] = src[1];
16926 	dst[2] = src[2];
16927 	dst[3] = src[3];
16928 	dst[4] = src[4];
16929 	dst[5] = src[5];
16930 	dst[6] = src[6];
16931 	dst[7] = src[7];
16932 	dst[8] = src[8];
16933 	dst[9] = src[9];
16934 	if (hdrlen -= 40) {
16935 		hdrlen >>= 2;
16936 		dst += 10;
16937 		src += 10;
16938 		do {
16939 			*dst++ = *src++;
16940 		} while (--hdrlen);
16941 	}
16942 
16943 	/*
16944 	 * Set the ECN info in the TCP header.  Note that this
16945 	 * is not the template header.
16946 	 */
16947 	if (tcp->tcp_ecn_ok) {
16948 		SET_ECT(tcp, rptr);
16949 
16950 		tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
16951 		if (tcp->tcp_ecn_echo_on)
16952 			tcph->th_flags[0] |= TH_ECE;
16953 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
16954 			tcph->th_flags[0] |= TH_CWR;
16955 			tcp->tcp_ecn_cwr_sent = B_TRUE;
16956 		}
16957 	}
16958 
16959 	if (tcp->tcp_ip_forward_progress) {
16960 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
16961 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
16962 		tcp->tcp_ip_forward_progress = B_FALSE;
16963 	}
16964 	tcp_send_data(tcp, tcp->tcp_wq, mp1);
16965 	return;
16966 
16967 	/*
16968 	 * If we ran out of memory, we pretend to have sent the packet
16969 	 * and that it was lost on the wire.
16970 	 */
16971 no_memory:
16972 	return;
16973 
16974 slow:
16975 	/* leftover work from above */
16976 	tcp->tcp_unsent = len;
16977 	tcp->tcp_xmit_tail_unsent = len;
16978 	tcp_wput_data(tcp, NULL, B_FALSE);
16979 }
16980 
16981 /* ARGSUSED */
16982 void
16983 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2)
16984 {
16985 	conn_t			*connp = (conn_t *)arg;
16986 	tcp_t			*tcp = connp->conn_tcp;
16987 	queue_t			*q = tcp->tcp_rq;
16988 	struct tcp_options	*tcpopt;
16989 	tcp_stack_t		*tcps = tcp->tcp_tcps;
16990 
16991 	/* socket options */
16992 	uint_t 			sopp_flags;
16993 	ssize_t			sopp_rxhiwat;
16994 	ssize_t			sopp_maxblk;
16995 	ushort_t		sopp_wroff;
16996 	ushort_t		sopp_tail;
16997 	ushort_t		sopp_copyopt;
16998 
16999 	tcpopt = (struct tcp_options *)mp->b_rptr;
17000 
17001 	/*
17002 	 * Drop the eager's ref on the listener, that was placed when
17003 	 * this eager began life in tcp_conn_request.
17004 	 */
17005 	CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp);
17006 	if (IPCL_IS_NONSTR(connp)) {
17007 		/* Safe to free conn_ind message */
17008 		freemsg(tcp->tcp_conn.tcp_eager_conn_ind);
17009 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
17010 	}
17011 
17012 	tcp->tcp_detached = B_FALSE;
17013 
17014 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) {
17015 		/*
17016 		 * Someone blewoff the eager before we could finish
17017 		 * the accept.
17018 		 *
17019 		 * The only reason eager exists it because we put in
17020 		 * a ref on it when conn ind went up. We need to send
17021 		 * a disconnect indication up while the last reference
17022 		 * on the eager will be dropped by the squeue when we
17023 		 * return.
17024 		 */
17025 		ASSERT(tcp->tcp_listener == NULL);
17026 		if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) {
17027 			if (IPCL_IS_NONSTR(connp)) {
17028 				ASSERT(tcp->tcp_issocket);
17029 				(*connp->conn_upcalls->su_disconnected)(
17030 				    connp->conn_upper_handle, tcp->tcp_connid,
17031 				    ECONNREFUSED);
17032 				freemsg(mp);
17033 			} else {
17034 				struct	T_discon_ind	*tdi;
17035 
17036 				(void) putnextctl1(q, M_FLUSH, FLUSHRW);
17037 				/*
17038 				 * Let us reuse the incoming mblk to avoid
17039 				 * memory allocation failure problems. We know
17040 				 * that the size of the incoming mblk i.e.
17041 				 * stroptions is greater than sizeof
17042 				 * T_discon_ind. So the reallocb below can't
17043 				 * fail.
17044 				 */
17045 				freemsg(mp->b_cont);
17046 				mp->b_cont = NULL;
17047 				ASSERT(DB_REF(mp) == 1);
17048 				mp = reallocb(mp, sizeof (struct T_discon_ind),
17049 				    B_FALSE);
17050 				ASSERT(mp != NULL);
17051 				DB_TYPE(mp) = M_PROTO;
17052 				((union T_primitives *)mp->b_rptr)->type =
17053 				    T_DISCON_IND;
17054 				tdi = (struct T_discon_ind *)mp->b_rptr;
17055 				if (tcp->tcp_issocket) {
17056 					tdi->DISCON_reason = ECONNREFUSED;
17057 					tdi->SEQ_number = 0;
17058 				} else {
17059 					tdi->DISCON_reason = ENOPROTOOPT;
17060 					tdi->SEQ_number =
17061 					    tcp->tcp_conn_req_seqnum;
17062 				}
17063 				mp->b_wptr = mp->b_rptr +
17064 				    sizeof (struct T_discon_ind);
17065 				putnext(q, mp);
17066 				return;
17067 			}
17068 		}
17069 		if (tcp->tcp_hard_binding) {
17070 			tcp->tcp_hard_binding = B_FALSE;
17071 			tcp->tcp_hard_bound = B_TRUE;
17072 		}
17073 		return;
17074 	}
17075 
17076 	if (tcpopt->to_flags & TCPOPT_BOUNDIF) {
17077 		int boundif = tcpopt->to_boundif;
17078 		uint_t len = sizeof (int);
17079 
17080 		(void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6,
17081 		    IPV6_BOUND_IF, len, (uchar_t *)&boundif, &len,
17082 		    (uchar_t *)&boundif, NULL, tcp->tcp_cred, NULL);
17083 	}
17084 	if (tcpopt->to_flags & TCPOPT_RECVPKTINFO) {
17085 		uint_t on = 1;
17086 		uint_t len = sizeof (uint_t);
17087 		(void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6,
17088 		    IPV6_RECVPKTINFO, len, (uchar_t *)&on, &len,
17089 		    (uchar_t *)&on, NULL, tcp->tcp_cred, NULL);
17090 	}
17091 
17092 	/*
17093 	 * For a loopback connection with tcp_direct_sockfs on, note that
17094 	 * we don't have to protect tcp_rcv_list yet because synchronous
17095 	 * streams has not yet been enabled and tcp_fuse_rrw() cannot
17096 	 * possibly race with us.
17097 	 */
17098 
17099 	/*
17100 	 * Set the max window size (tcp_rq->q_hiwat) of the acceptor
17101 	 * properly.  This is the first time we know of the acceptor'
17102 	 * queue.  So we do it here.
17103 	 *
17104 	 * XXX
17105 	 */
17106 	if (tcp->tcp_rcv_list == NULL) {
17107 		/*
17108 		 * Recv queue is empty, tcp_rwnd should not have changed.
17109 		 * That means it should be equal to the listener's tcp_rwnd.
17110 		 */
17111 		if (!IPCL_IS_NONSTR(connp))
17112 			tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd;
17113 		tcp->tcp_recv_hiwater = tcp->tcp_rwnd;
17114 	} else {
17115 #ifdef DEBUG
17116 		mblk_t *tmp;
17117 		mblk_t	*mp1;
17118 		uint_t	cnt = 0;
17119 
17120 		mp1 = tcp->tcp_rcv_list;
17121 		while ((tmp = mp1) != NULL) {
17122 			mp1 = tmp->b_next;
17123 			cnt += msgdsize(tmp);
17124 		}
17125 		ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt);
17126 #endif
17127 		/* There is some data, add them back to get the max. */
17128 		if (!IPCL_IS_NONSTR(connp))
17129 			tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
17130 		tcp->tcp_recv_hiwater = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
17131 	}
17132 	/*
17133 	 * This is the first time we run on the correct
17134 	 * queue after tcp_accept. So fix all the q parameters
17135 	 * here.
17136 	 */
17137 	sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF;
17138 	sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
17139 
17140 	/*
17141 	 * Record the stream head's high water mark for this endpoint;
17142 	 * this is used for flow-control purposes.
17143 	 */
17144 	sopp_rxhiwat = tcp->tcp_fused ?
17145 	    tcp_fuse_set_rcv_hiwat(tcp, tcp->tcp_recv_hiwater) :
17146 	    MAX(tcp->tcp_recv_hiwater, tcps->tcps_sth_rcv_hiwat);
17147 
17148 	/*
17149 	 * Determine what write offset value to use depending on SACK and
17150 	 * whether the endpoint is fused or not.
17151 	 */
17152 	if (tcp->tcp_fused) {
17153 		ASSERT(tcp->tcp_loopback);
17154 		ASSERT(tcp->tcp_loopback_peer != NULL);
17155 		/*
17156 		 * For fused tcp loopback, set the stream head's write
17157 		 * offset value to zero since we won't be needing any room
17158 		 * for TCP/IP headers.  This would also improve performance
17159 		 * since it would reduce the amount of work done by kmem.
17160 		 * Non-fused tcp loopback case is handled separately below.
17161 		 */
17162 		sopp_wroff = 0;
17163 		/*
17164 		 * Update the peer's transmit parameters according to
17165 		 * our recently calculated high water mark value.
17166 		 */
17167 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
17168 	} else if (tcp->tcp_snd_sack_ok) {
17169 		sopp_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
17170 		    (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra);
17171 	} else {
17172 		sopp_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 :
17173 		    tcps->tcps_wroff_xtra);
17174 	}
17175 
17176 	/*
17177 	 * If this is endpoint is handling SSL, then reserve extra
17178 	 * offset and space at the end.
17179 	 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets,
17180 	 * overriding the previous setting. The extra cost of signing and
17181 	 * encrypting multiple MSS-size records (12 of them with Ethernet),
17182 	 * instead of a single contiguous one by the stream head
17183 	 * largely outweighs the statistical reduction of ACKs, when
17184 	 * applicable. The peer will also save on decryption and verification
17185 	 * costs.
17186 	 */
17187 	if (tcp->tcp_kssl_ctx != NULL) {
17188 		sopp_wroff += SSL3_WROFFSET;
17189 
17190 		sopp_flags |= SOCKOPT_TAIL;
17191 		sopp_tail = SSL3_MAX_TAIL_LEN;
17192 
17193 		sopp_flags |= SOCKOPT_ZCOPY;
17194 		sopp_copyopt = ZCVMUNSAFE;
17195 
17196 		sopp_maxblk = SSL3_MAX_RECORD_LEN;
17197 	}
17198 
17199 	/* Send the options up */
17200 	if (IPCL_IS_NONSTR(connp)) {
17201 		struct sock_proto_props sopp;
17202 
17203 		sopp.sopp_flags = sopp_flags;
17204 		sopp.sopp_wroff = sopp_wroff;
17205 		sopp.sopp_maxblk = sopp_maxblk;
17206 		sopp.sopp_rxhiwat = sopp_rxhiwat;
17207 		if (sopp_flags & SOCKOPT_TAIL) {
17208 			ASSERT(tcp->tcp_kssl_ctx != NULL);
17209 			ASSERT(sopp_flags & SOCKOPT_ZCOPY);
17210 			sopp.sopp_tail = sopp_tail;
17211 			sopp.sopp_zcopyflag = sopp_copyopt;
17212 		}
17213 		(*connp->conn_upcalls->su_set_proto_props)
17214 		    (connp->conn_upper_handle, &sopp);
17215 	} else {
17216 		struct stroptions *stropt;
17217 		mblk_t *stropt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
17218 		if (stropt_mp == NULL) {
17219 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
17220 			return;
17221 		}
17222 		DB_TYPE(stropt_mp) = M_SETOPTS;
17223 		stropt = (struct stroptions *)stropt_mp->b_rptr;
17224 		stropt_mp->b_wptr += sizeof (struct stroptions);
17225 		stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK;
17226 		stropt->so_hiwat = sopp_rxhiwat;
17227 		stropt->so_wroff = sopp_wroff;
17228 		stropt->so_maxblk = sopp_maxblk;
17229 
17230 		if (sopp_flags & SOCKOPT_TAIL) {
17231 			ASSERT(tcp->tcp_kssl_ctx != NULL);
17232 
17233 			stropt->so_flags |= SO_TAIL | SO_COPYOPT;
17234 			stropt->so_tail = sopp_tail;
17235 			stropt->so_copyopt = sopp_copyopt;
17236 		}
17237 
17238 		/* Send the options up */
17239 		putnext(q, stropt_mp);
17240 	}
17241 
17242 	freemsg(mp);
17243 	/*
17244 	 * Pass up any data and/or a fin that has been received.
17245 	 *
17246 	 * Adjust receive window in case it had decreased
17247 	 * (because there is data <=> tcp_rcv_list != NULL)
17248 	 * while the connection was detached. Note that
17249 	 * in case the eager was flow-controlled, w/o this
17250 	 * code, the rwnd may never open up again!
17251 	 */
17252 	if (tcp->tcp_rcv_list != NULL) {
17253 		if (IPCL_IS_NONSTR(connp)) {
17254 			mblk_t *mp;
17255 			int space_left;
17256 			int error;
17257 			boolean_t push = B_TRUE;
17258 
17259 			if (!tcp->tcp_fused && (*connp->conn_upcalls->su_recv)
17260 			    (connp->conn_upper_handle, NULL, 0, 0, &error,
17261 			    &push) >= 0) {
17262 				tcp->tcp_rwnd = tcp->tcp_recv_hiwater;
17263 				if (tcp->tcp_state >= TCPS_ESTABLISHED &&
17264 				    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
17265 					tcp_xmit_ctl(NULL,
17266 					    tcp, (tcp->tcp_swnd == 0) ?
17267 					    tcp->tcp_suna : tcp->tcp_snxt,
17268 					    tcp->tcp_rnxt, TH_ACK);
17269 				}
17270 			}
17271 			while ((mp = tcp->tcp_rcv_list) != NULL) {
17272 				push = B_TRUE;
17273 				tcp->tcp_rcv_list = mp->b_next;
17274 				mp->b_next = NULL;
17275 				space_left = (*connp->conn_upcalls->su_recv)
17276 				    (connp->conn_upper_handle, mp, msgdsize(mp),
17277 				    0, &error, &push);
17278 				if (space_left < 0) {
17279 					/*
17280 					 * We should never be in middle of a
17281 					 * fallback, the squeue guarantees that.
17282 					 */
17283 					ASSERT(error != EOPNOTSUPP);
17284 				}
17285 			}
17286 			tcp->tcp_rcv_last_head = NULL;
17287 			tcp->tcp_rcv_last_tail = NULL;
17288 			tcp->tcp_rcv_cnt = 0;
17289 		} else {
17290 			/* We drain directly in case of fused tcp loopback */
17291 
17292 			if (!tcp->tcp_fused && canputnext(q)) {
17293 				tcp->tcp_rwnd = q->q_hiwat;
17294 				if (tcp->tcp_state >= TCPS_ESTABLISHED &&
17295 				    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
17296 					tcp_xmit_ctl(NULL,
17297 					    tcp, (tcp->tcp_swnd == 0) ?
17298 					    tcp->tcp_suna : tcp->tcp_snxt,
17299 					    tcp->tcp_rnxt, TH_ACK);
17300 				}
17301 			}
17302 
17303 			(void) tcp_rcv_drain(tcp);
17304 		}
17305 
17306 		/*
17307 		 * For fused tcp loopback, back-enable peer endpoint
17308 		 * if it's currently flow-controlled.
17309 		 */
17310 		if (tcp->tcp_fused) {
17311 			tcp_t *peer_tcp = tcp->tcp_loopback_peer;
17312 
17313 			ASSERT(peer_tcp != NULL);
17314 			ASSERT(peer_tcp->tcp_fused);
17315 			/*
17316 			 * In order to change the peer's tcp_flow_stopped,
17317 			 * we need to take locks for both end points. The
17318 			 * highest address is taken first.
17319 			 */
17320 			if (peer_tcp > tcp) {
17321 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
17322 				mutex_enter(&tcp->tcp_non_sq_lock);
17323 			} else {
17324 				mutex_enter(&tcp->tcp_non_sq_lock);
17325 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
17326 			}
17327 			if (peer_tcp->tcp_flow_stopped) {
17328 				tcp_clrqfull(peer_tcp);
17329 				TCP_STAT(tcps, tcp_fusion_backenabled);
17330 			}
17331 			mutex_exit(&peer_tcp->tcp_non_sq_lock);
17332 			mutex_exit(&tcp->tcp_non_sq_lock);
17333 		}
17334 	}
17335 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
17336 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
17337 		tcp->tcp_ordrel_done = B_TRUE;
17338 		if (IPCL_IS_NONSTR(connp)) {
17339 			ASSERT(tcp->tcp_ordrel_mp == NULL);
17340 			(*connp->conn_upcalls->su_opctl)(
17341 			    connp->conn_upper_handle,
17342 			    SOCK_OPCTL_SHUT_RECV, 0);
17343 		} else {
17344 			mp = tcp->tcp_ordrel_mp;
17345 			tcp->tcp_ordrel_mp = NULL;
17346 			putnext(q, mp);
17347 		}
17348 	}
17349 	if (tcp->tcp_hard_binding) {
17350 		tcp->tcp_hard_binding = B_FALSE;
17351 		tcp->tcp_hard_bound = B_TRUE;
17352 	}
17353 
17354 	/* We can enable synchronous streams for STREAMS tcp endpoint now */
17355 	if (tcp->tcp_fused && !IPCL_IS_NONSTR(connp) &&
17356 	    tcp->tcp_loopback_peer != NULL &&
17357 	    !IPCL_IS_NONSTR(tcp->tcp_loopback_peer->tcp_connp)) {
17358 		tcp_fuse_syncstr_enable_pair(tcp);
17359 	}
17360 
17361 	if (tcp->tcp_ka_enabled) {
17362 		tcp->tcp_ka_last_intrvl = 0;
17363 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
17364 		    MSEC_TO_TICK(tcp->tcp_ka_interval));
17365 	}
17366 
17367 	/*
17368 	 * At this point, eager is fully established and will
17369 	 * have the following references -
17370 	 *
17371 	 * 2 references for connection to exist (1 for TCP and 1 for IP).
17372 	 * 1 reference for the squeue which will be dropped by the squeue as
17373 	 *	soon as this function returns.
17374 	 * There will be 1 additonal reference for being in classifier
17375 	 *	hash list provided something bad hasn't happened.
17376 	 */
17377 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17378 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17379 }
17380 
17381 /*
17382  * The function called through squeue to get behind listener's perimeter to
17383  * send a deffered conn_ind.
17384  */
17385 /* ARGSUSED */
17386 void
17387 tcp_send_pending(void *arg, mblk_t *mp, void *arg2)
17388 {
17389 	conn_t	*connp = (conn_t *)arg;
17390 	tcp_t *listener = connp->conn_tcp;
17391 	struct T_conn_ind *conn_ind;
17392 	tcp_t *tcp;
17393 
17394 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
17395 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
17396 	    conn_ind->OPT_length);
17397 
17398 	if (listener->tcp_state == TCPS_CLOSED ||
17399 	    TCP_IS_DETACHED(listener)) {
17400 		/*
17401 		 * If listener has closed, it would have caused a
17402 		 * a cleanup/blowoff to happen for the eager.
17403 		 *
17404 		 * We need to drop the ref on eager that was put
17405 		 * tcp_rput_data() before trying to send the conn_ind
17406 		 * to listener. The conn_ind was deferred in tcp_send_conn_ind
17407 		 * and tcp_wput_accept() is sending this deferred conn_ind but
17408 		 * listener is closed so we drop the ref.
17409 		 */
17410 		CONN_DEC_REF(tcp->tcp_connp);
17411 		freemsg(mp);
17412 		return;
17413 	}
17414 
17415 	tcp_ulp_newconn(connp, tcp->tcp_connp, mp);
17416 }
17417 
17418 /* ARGSUSED */
17419 static int
17420 tcp_accept_common(conn_t *lconnp, conn_t *econnp, cred_t *cr)
17421 {
17422 	tcp_t *listener, *eager;
17423 	mblk_t *opt_mp;
17424 	struct tcp_options *tcpopt;
17425 
17426 	listener = lconnp->conn_tcp;
17427 	ASSERT(listener->tcp_state == TCPS_LISTEN);
17428 	eager = econnp->conn_tcp;
17429 	ASSERT(eager->tcp_listener != NULL);
17430 
17431 	ASSERT(eager->tcp_rq != NULL);
17432 
17433 	opt_mp = allocb(sizeof (struct tcp_options), BPRI_HI);
17434 	if (opt_mp == NULL) {
17435 		return (-TPROTO);
17436 	}
17437 	bzero((char *)opt_mp->b_rptr, sizeof (struct tcp_options));
17438 	eager->tcp_issocket = B_TRUE;
17439 
17440 	econnp->conn_zoneid = listener->tcp_connp->conn_zoneid;
17441 	econnp->conn_allzones = listener->tcp_connp->conn_allzones;
17442 	ASSERT(econnp->conn_netstack ==
17443 	    listener->tcp_connp->conn_netstack);
17444 	ASSERT(eager->tcp_tcps == listener->tcp_tcps);
17445 
17446 	/* Put the ref for IP */
17447 	CONN_INC_REF(econnp);
17448 
17449 	/*
17450 	 * We should have minimum of 3 references on the conn
17451 	 * at this point. One each for TCP and IP and one for
17452 	 * the T_conn_ind that was sent up when the 3-way handshake
17453 	 * completed. In the normal case we would also have another
17454 	 * reference (making a total of 4) for the conn being in the
17455 	 * classifier hash list. However the eager could have received
17456 	 * an RST subsequently and tcp_closei_local could have removed
17457 	 * the eager from the classifier hash list, hence we can't
17458 	 * assert that reference.
17459 	 */
17460 	ASSERT(econnp->conn_ref >= 3);
17461 
17462 	opt_mp->b_datap->db_type = M_SETOPTS;
17463 	opt_mp->b_wptr += sizeof (struct tcp_options);
17464 
17465 	/*
17466 	 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
17467 	 * from listener to acceptor.
17468 	 */
17469 	tcpopt = (struct tcp_options *)opt_mp->b_rptr;
17470 	tcpopt->to_flags = 0;
17471 
17472 	if (listener->tcp_bound_if != 0) {
17473 		tcpopt->to_flags |= TCPOPT_BOUNDIF;
17474 		tcpopt->to_boundif = listener->tcp_bound_if;
17475 	}
17476 	if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
17477 		tcpopt->to_flags |= TCPOPT_RECVPKTINFO;
17478 	}
17479 
17480 	mutex_enter(&listener->tcp_eager_lock);
17481 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
17482 
17483 		tcp_t *tail;
17484 		tcp_t *tcp;
17485 		mblk_t *mp1;
17486 
17487 		tcp = listener->tcp_eager_prev_q0;
17488 		/*
17489 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
17490 		 * deferred T_conn_ind queue. We need to get to the head
17491 		 * of the queue in order to send up T_conn_ind the same
17492 		 * order as how the 3WHS is completed.
17493 		 */
17494 		while (tcp != listener) {
17495 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 &&
17496 			    !tcp->tcp_kssl_pending)
17497 				break;
17498 			else
17499 				tcp = tcp->tcp_eager_prev_q0;
17500 		}
17501 		/* None of the pending eagers can be sent up now */
17502 		if (tcp == listener)
17503 			goto no_more_eagers;
17504 
17505 		mp1 = tcp->tcp_conn.tcp_eager_conn_ind;
17506 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
17507 		/* Move from q0 to q */
17508 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
17509 		listener->tcp_conn_req_cnt_q0--;
17510 		listener->tcp_conn_req_cnt_q++;
17511 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
17512 		    tcp->tcp_eager_prev_q0;
17513 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
17514 		    tcp->tcp_eager_next_q0;
17515 		tcp->tcp_eager_prev_q0 = NULL;
17516 		tcp->tcp_eager_next_q0 = NULL;
17517 		tcp->tcp_conn_def_q0 = B_FALSE;
17518 
17519 		/* Make sure the tcp isn't in the list of droppables */
17520 		ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
17521 		    tcp->tcp_eager_prev_drop_q0 == NULL);
17522 
17523 		/*
17524 		 * Insert at end of the queue because sockfs sends
17525 		 * down T_CONN_RES in chronological order. Leaving
17526 		 * the older conn indications at front of the queue
17527 		 * helps reducing search time.
17528 		 */
17529 		tail = listener->tcp_eager_last_q;
17530 		if (tail != NULL) {
17531 			tail->tcp_eager_next_q = tcp;
17532 		} else {
17533 			listener->tcp_eager_next_q = tcp;
17534 		}
17535 		listener->tcp_eager_last_q = tcp;
17536 		tcp->tcp_eager_next_q = NULL;
17537 
17538 		/* Need to get inside the listener perimeter */
17539 		CONN_INC_REF(listener->tcp_connp);
17540 		SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp1,
17541 		    tcp_send_pending, listener->tcp_connp, SQ_FILL,
17542 		    SQTAG_TCP_SEND_PENDING);
17543 	}
17544 no_more_eagers:
17545 	tcp_eager_unlink(eager);
17546 	mutex_exit(&listener->tcp_eager_lock);
17547 
17548 	/*
17549 	 * At this point, the eager is detached from the listener
17550 	 * but we still have an extra refs on eager (apart from the
17551 	 * usual tcp references). The ref was placed in tcp_rput_data
17552 	 * before sending the conn_ind in tcp_send_conn_ind.
17553 	 * The ref will be dropped in tcp_accept_finish().
17554 	 */
17555 	SQUEUE_ENTER_ONE(econnp->conn_sqp, opt_mp, tcp_accept_finish,
17556 	    econnp, SQ_NODRAIN, SQTAG_TCP_ACCEPT_FINISH_Q0);
17557 	return (0);
17558 }
17559 
17560 int
17561 tcp_accept(sock_lower_handle_t lproto_handle,
17562     sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle,
17563     cred_t *cr)
17564 {
17565 	conn_t *lconnp, *econnp;
17566 	tcp_t *listener, *eager;
17567 	tcp_stack_t	*tcps;
17568 
17569 	lconnp = (conn_t *)lproto_handle;
17570 	listener = lconnp->conn_tcp;
17571 	ASSERT(listener->tcp_state == TCPS_LISTEN);
17572 	econnp = (conn_t *)eproto_handle;
17573 	eager = econnp->conn_tcp;
17574 	ASSERT(eager->tcp_listener != NULL);
17575 	tcps = eager->tcp_tcps;
17576 
17577 	/*
17578 	 * It is OK to manipulate these fields outside the eager's squeue
17579 	 * because they will not start being used until tcp_accept_finish
17580 	 * has been called.
17581 	 */
17582 	ASSERT(lconnp->conn_upper_handle != NULL);
17583 	ASSERT(econnp->conn_upper_handle == NULL);
17584 	econnp->conn_upper_handle = sock_handle;
17585 	econnp->conn_upcalls = lconnp->conn_upcalls;
17586 	ASSERT(IPCL_IS_NONSTR(econnp));
17587 	/*
17588 	 * Create helper stream if it is a non-TPI TCP connection.
17589 	 */
17590 	if (ip_create_helper_stream(econnp, tcps->tcps_ldi_ident)) {
17591 		ip1dbg(("tcp_accept: create of IP helper stream"
17592 		    " failed\n"));
17593 		return (EPROTO);
17594 	}
17595 	eager->tcp_rq = econnp->conn_rq;
17596 	eager->tcp_wq = econnp->conn_wq;
17597 
17598 	ASSERT(eager->tcp_rq != NULL);
17599 
17600 	return (tcp_accept_common(lconnp, econnp, cr));
17601 }
17602 
17603 
17604 /*
17605  * This is the STREAMS entry point for T_CONN_RES coming down on
17606  * Acceptor STREAM when  sockfs listener does accept processing.
17607  * Read the block comment on top of tcp_conn_request().
17608  */
17609 void
17610 tcp_tpi_accept(queue_t *q, mblk_t *mp)
17611 {
17612 	queue_t *rq = RD(q);
17613 	struct T_conn_res *conn_res;
17614 	tcp_t *eager;
17615 	tcp_t *listener;
17616 	struct T_ok_ack *ok;
17617 	t_scalar_t PRIM_type;
17618 	conn_t *econnp;
17619 	cred_t *cr;
17620 
17621 	ASSERT(DB_TYPE(mp) == M_PROTO);
17622 
17623 	/*
17624 	 * All Solaris components should pass a db_credp
17625 	 * for this TPI message, hence we ASSERT.
17626 	 * But in case there is some other M_PROTO that looks
17627 	 * like a TPI message sent by some other kernel
17628 	 * component, we check and return an error.
17629 	 */
17630 	cr = msg_getcred(mp, NULL);
17631 	ASSERT(cr != NULL);
17632 	if (cr == NULL) {
17633 		mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL);
17634 		if (mp != NULL)
17635 			putnext(rq, mp);
17636 		return;
17637 	}
17638 	conn_res = (struct T_conn_res *)mp->b_rptr;
17639 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
17640 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) {
17641 		mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
17642 		if (mp != NULL)
17643 			putnext(rq, mp);
17644 		return;
17645 	}
17646 	switch (conn_res->PRIM_type) {
17647 	case O_T_CONN_RES:
17648 	case T_CONN_RES:
17649 		/*
17650 		 * We pass up an err ack if allocb fails. This will
17651 		 * cause sockfs to issue a T_DISCON_REQ which will cause
17652 		 * tcp_eager_blowoff to be called. sockfs will then call
17653 		 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream.
17654 		 * we need to do the allocb up here because we have to
17655 		 * make sure rq->q_qinfo->qi_qclose still points to the
17656 		 * correct function (tcp_tpi_close_accept) in case allocb
17657 		 * fails.
17658 		 */
17659 		bcopy(mp->b_rptr + conn_res->OPT_offset,
17660 		    &eager, conn_res->OPT_length);
17661 		PRIM_type = conn_res->PRIM_type;
17662 		mp->b_datap->db_type = M_PCPROTO;
17663 		mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack);
17664 		ok = (struct T_ok_ack *)mp->b_rptr;
17665 		ok->PRIM_type = T_OK_ACK;
17666 		ok->CORRECT_prim = PRIM_type;
17667 		econnp = eager->tcp_connp;
17668 		econnp->conn_dev = (dev_t)RD(q)->q_ptr;
17669 		econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr);
17670 		eager->tcp_rq = rq;
17671 		eager->tcp_wq = q;
17672 		rq->q_ptr = econnp;
17673 		rq->q_qinfo = &tcp_rinitv4;	/* No open - same as rinitv6 */
17674 		q->q_ptr = econnp;
17675 		q->q_qinfo = &tcp_winit;
17676 		listener = eager->tcp_listener;
17677 
17678 		if (tcp_accept_common(listener->tcp_connp,
17679 		    econnp, cr) < 0) {
17680 			mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
17681 			if (mp != NULL)
17682 				putnext(rq, mp);
17683 			return;
17684 		}
17685 
17686 		/*
17687 		 * Send the new local address also up to sockfs. There
17688 		 * should already be enough space in the mp that came
17689 		 * down from soaccept().
17690 		 */
17691 		if (eager->tcp_family == AF_INET) {
17692 			sin_t *sin;
17693 
17694 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
17695 			    (sizeof (struct T_ok_ack) + sizeof (sin_t)));
17696 			sin = (sin_t *)mp->b_wptr;
17697 			mp->b_wptr += sizeof (sin_t);
17698 			sin->sin_family = AF_INET;
17699 			sin->sin_port = eager->tcp_lport;
17700 			sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src;
17701 		} else {
17702 			sin6_t *sin6;
17703 
17704 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
17705 			    sizeof (struct T_ok_ack) + sizeof (sin6_t));
17706 			sin6 = (sin6_t *)mp->b_wptr;
17707 			mp->b_wptr += sizeof (sin6_t);
17708 			sin6->sin6_family = AF_INET6;
17709 			sin6->sin6_port = eager->tcp_lport;
17710 			if (eager->tcp_ipversion == IPV4_VERSION) {
17711 				sin6->sin6_flowinfo = 0;
17712 				IN6_IPADDR_TO_V4MAPPED(
17713 				    eager->tcp_ipha->ipha_src,
17714 				    &sin6->sin6_addr);
17715 			} else {
17716 				ASSERT(eager->tcp_ip6h != NULL);
17717 				sin6->sin6_flowinfo =
17718 				    eager->tcp_ip6h->ip6_vcf &
17719 				    ~IPV6_VERS_AND_FLOW_MASK;
17720 				sin6->sin6_addr = eager->tcp_ip6h->ip6_src;
17721 			}
17722 			sin6->sin6_scope_id = 0;
17723 			sin6->__sin6_src_id = 0;
17724 		}
17725 
17726 		putnext(rq, mp);
17727 		return;
17728 	default:
17729 		mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0);
17730 		if (mp != NULL)
17731 			putnext(rq, mp);
17732 		return;
17733 	}
17734 }
17735 
17736 static int
17737 tcp_do_getsockname(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp)
17738 {
17739 	sin_t *sin = (sin_t *)sa;
17740 	sin6_t *sin6 = (sin6_t *)sa;
17741 
17742 	switch (tcp->tcp_family) {
17743 	case AF_INET:
17744 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
17745 
17746 		if (*salenp < sizeof (sin_t))
17747 			return (EINVAL);
17748 
17749 		*sin = sin_null;
17750 		sin->sin_family = AF_INET;
17751 		if (tcp->tcp_state >= TCPS_BOUND) {
17752 			sin->sin_port = tcp->tcp_lport;
17753 			sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
17754 		}
17755 		*salenp = sizeof (sin_t);
17756 		break;
17757 
17758 	case AF_INET6:
17759 		if (*salenp < sizeof (sin6_t))
17760 			return (EINVAL);
17761 
17762 		*sin6 = sin6_null;
17763 		sin6->sin6_family = AF_INET6;
17764 		if (tcp->tcp_state >= TCPS_BOUND) {
17765 			sin6->sin6_port = tcp->tcp_lport;
17766 			if (tcp->tcp_ipversion == IPV4_VERSION) {
17767 				IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
17768 				    &sin6->sin6_addr);
17769 			} else {
17770 				sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
17771 			}
17772 		}
17773 		*salenp = sizeof (sin6_t);
17774 		break;
17775 	}
17776 
17777 	return (0);
17778 }
17779 
17780 static int
17781 tcp_do_getpeername(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp)
17782 {
17783 	sin_t *sin = (sin_t *)sa;
17784 	sin6_t *sin6 = (sin6_t *)sa;
17785 
17786 	if (tcp->tcp_state < TCPS_SYN_RCVD)
17787 		return (ENOTCONN);
17788 
17789 	switch (tcp->tcp_family) {
17790 	case AF_INET:
17791 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
17792 
17793 		if (*salenp < sizeof (sin_t))
17794 			return (EINVAL);
17795 
17796 		*sin = sin_null;
17797 		sin->sin_family = AF_INET;
17798 		sin->sin_port = tcp->tcp_fport;
17799 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6,
17800 		    sin->sin_addr.s_addr);
17801 		*salenp = sizeof (sin_t);
17802 		break;
17803 
17804 	case AF_INET6:
17805 		if (*salenp < sizeof (sin6_t))
17806 			return (EINVAL);
17807 
17808 		*sin6 = sin6_null;
17809 		sin6->sin6_family = AF_INET6;
17810 		sin6->sin6_port = tcp->tcp_fport;
17811 		sin6->sin6_addr = tcp->tcp_remote_v6;
17812 		if (tcp->tcp_ipversion == IPV6_VERSION) {
17813 			sin6->sin6_flowinfo = tcp->tcp_ip6h->ip6_vcf &
17814 			    ~IPV6_VERS_AND_FLOW_MASK;
17815 		}
17816 		*salenp = sizeof (sin6_t);
17817 		break;
17818 	}
17819 
17820 	return (0);
17821 }
17822 
17823 /*
17824  * Handle special out-of-band ioctl requests (see PSARC/2008/265).
17825  */
17826 static void
17827 tcp_wput_cmdblk(queue_t *q, mblk_t *mp)
17828 {
17829 	void	*data;
17830 	mblk_t	*datamp = mp->b_cont;
17831 	tcp_t	*tcp = Q_TO_TCP(q);
17832 	cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr;
17833 
17834 	if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) {
17835 		cmdp->cb_error = EPROTO;
17836 		qreply(q, mp);
17837 		return;
17838 	}
17839 
17840 	data = datamp->b_rptr;
17841 
17842 	switch (cmdp->cb_cmd) {
17843 	case TI_GETPEERNAME:
17844 		cmdp->cb_error = tcp_do_getpeername(tcp, data, &cmdp->cb_len);
17845 		break;
17846 	case TI_GETMYNAME:
17847 		cmdp->cb_error = tcp_do_getsockname(tcp, data, &cmdp->cb_len);
17848 		break;
17849 	default:
17850 		cmdp->cb_error = EINVAL;
17851 		break;
17852 	}
17853 
17854 	qreply(q, mp);
17855 }
17856 
17857 void
17858 tcp_wput(queue_t *q, mblk_t *mp)
17859 {
17860 	conn_t	*connp = Q_TO_CONN(q);
17861 	tcp_t	*tcp;
17862 	void (*output_proc)();
17863 	t_scalar_t type;
17864 	uchar_t *rptr;
17865 	struct iocblk	*iocp;
17866 	size_t size;
17867 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
17868 
17869 	ASSERT(connp->conn_ref >= 2);
17870 
17871 	switch (DB_TYPE(mp)) {
17872 	case M_DATA:
17873 		tcp = connp->conn_tcp;
17874 		ASSERT(tcp != NULL);
17875 
17876 		size = msgdsize(mp);
17877 
17878 		mutex_enter(&tcp->tcp_non_sq_lock);
17879 		tcp->tcp_squeue_bytes += size;
17880 		if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) {
17881 			tcp_setqfull(tcp);
17882 		}
17883 		mutex_exit(&tcp->tcp_non_sq_lock);
17884 
17885 		CONN_INC_REF(connp);
17886 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, connp,
17887 		    tcp_squeue_flag, SQTAG_TCP_OUTPUT);
17888 		return;
17889 
17890 	case M_CMD:
17891 		tcp_wput_cmdblk(q, mp);
17892 		return;
17893 
17894 	case M_PROTO:
17895 	case M_PCPROTO:
17896 		/*
17897 		 * if it is a snmp message, don't get behind the squeue
17898 		 */
17899 		tcp = connp->conn_tcp;
17900 		rptr = mp->b_rptr;
17901 		if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
17902 			type = ((union T_primitives *)rptr)->type;
17903 		} else {
17904 			if (tcp->tcp_debug) {
17905 				(void) strlog(TCP_MOD_ID, 0, 1,
17906 				    SL_ERROR|SL_TRACE,
17907 				    "tcp_wput_proto, dropping one...");
17908 			}
17909 			freemsg(mp);
17910 			return;
17911 		}
17912 		if (type == T_SVR4_OPTMGMT_REQ) {
17913 			/*
17914 			 * All Solaris components should pass a db_credp
17915 			 * for this TPI message, hence we ASSERT.
17916 			 * But in case there is some other M_PROTO that looks
17917 			 * like a TPI message sent by some other kernel
17918 			 * component, we check and return an error.
17919 			 */
17920 			cred_t	*cr = msg_getcred(mp, NULL);
17921 
17922 			ASSERT(cr != NULL);
17923 			if (cr == NULL) {
17924 				tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
17925 				return;
17926 			}
17927 			if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get,
17928 			    cr)) {
17929 				/*
17930 				 * This was a SNMP request
17931 				 */
17932 				return;
17933 			} else {
17934 				output_proc = tcp_wput_proto;
17935 			}
17936 		} else {
17937 			output_proc = tcp_wput_proto;
17938 		}
17939 		break;
17940 	case M_IOCTL:
17941 		/*
17942 		 * Most ioctls can be processed right away without going via
17943 		 * squeues - process them right here. Those that do require
17944 		 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK)
17945 		 * are processed by tcp_wput_ioctl().
17946 		 */
17947 		iocp = (struct iocblk *)mp->b_rptr;
17948 		tcp = connp->conn_tcp;
17949 
17950 		switch (iocp->ioc_cmd) {
17951 		case TCP_IOC_ABORT_CONN:
17952 			tcp_ioctl_abort_conn(q, mp);
17953 			return;
17954 		case TI_GETPEERNAME:
17955 		case TI_GETMYNAME:
17956 			mi_copyin(q, mp, NULL,
17957 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
17958 			return;
17959 		case ND_SET:
17960 			/* nd_getset does the necessary checks */
17961 		case ND_GET:
17962 			if (!nd_getset(q, tcps->tcps_g_nd, mp)) {
17963 				CALL_IP_WPUT(connp, q, mp);
17964 				return;
17965 			}
17966 			qreply(q, mp);
17967 			return;
17968 		case TCP_IOC_DEFAULT_Q:
17969 			/*
17970 			 * Wants to be the default wq. Check the credentials
17971 			 * first, the rest is executed via squeue.
17972 			 */
17973 			if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
17974 				iocp->ioc_error = EPERM;
17975 				iocp->ioc_count = 0;
17976 				mp->b_datap->db_type = M_IOCACK;
17977 				qreply(q, mp);
17978 				return;
17979 			}
17980 			output_proc = tcp_wput_ioctl;
17981 			break;
17982 		default:
17983 			output_proc = tcp_wput_ioctl;
17984 			break;
17985 		}
17986 		break;
17987 	default:
17988 		output_proc = tcp_wput_nondata;
17989 		break;
17990 	}
17991 
17992 	CONN_INC_REF(connp);
17993 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, output_proc, connp,
17994 	    tcp_squeue_flag, SQTAG_TCP_WPUT_OTHER);
17995 }
17996 
17997 /*
17998  * Initial STREAMS write side put() procedure for sockets. It tries to
17999  * handle the T_CAPABILITY_REQ which sockfs sends down while setting
18000  * up the socket without using the squeue. Non T_CAPABILITY_REQ messages
18001  * are handled by tcp_wput() as usual.
18002  *
18003  * All further messages will also be handled by tcp_wput() because we cannot
18004  * be sure that the above short cut is safe later.
18005  */
18006 static void
18007 tcp_wput_sock(queue_t *wq, mblk_t *mp)
18008 {
18009 	conn_t			*connp = Q_TO_CONN(wq);
18010 	tcp_t			*tcp = connp->conn_tcp;
18011 	struct T_capability_req	*car = (struct T_capability_req *)mp->b_rptr;
18012 
18013 	ASSERT(wq->q_qinfo == &tcp_sock_winit);
18014 	wq->q_qinfo = &tcp_winit;
18015 
18016 	ASSERT(IPCL_IS_TCP(connp));
18017 	ASSERT(TCP_IS_SOCKET(tcp));
18018 
18019 	if (DB_TYPE(mp) == M_PCPROTO &&
18020 	    MBLKL(mp) == sizeof (struct T_capability_req) &&
18021 	    car->PRIM_type == T_CAPABILITY_REQ) {
18022 		tcp_capability_req(tcp, mp);
18023 		return;
18024 	}
18025 
18026 	tcp_wput(wq, mp);
18027 }
18028 
18029 /* ARGSUSED */
18030 static void
18031 tcp_wput_fallback(queue_t *wq, mblk_t *mp)
18032 {
18033 #ifdef DEBUG
18034 	cmn_err(CE_CONT, "tcp_wput_fallback: Message during fallback \n");
18035 #endif
18036 	freemsg(mp);
18037 }
18038 
18039 static boolean_t
18040 tcp_zcopy_check(tcp_t *tcp)
18041 {
18042 	conn_t	*connp = tcp->tcp_connp;
18043 	ire_t	*ire;
18044 	boolean_t	zc_enabled = B_FALSE;
18045 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18046 
18047 	if (do_tcpzcopy == 2)
18048 		zc_enabled = B_TRUE;
18049 	else if (tcp->tcp_ipversion == IPV4_VERSION &&
18050 	    IPCL_IS_CONNECTED(connp) &&
18051 	    (connp->conn_flags & IPCL_CHECK_POLICY) == 0 &&
18052 	    connp->conn_dontroute == 0 &&
18053 	    !connp->conn_nexthop_set &&
18054 	    connp->conn_outgoing_ill == NULL &&
18055 	    do_tcpzcopy == 1) {
18056 		/*
18057 		 * the checks above  closely resemble the fast path checks
18058 		 * in tcp_send_data().
18059 		 */
18060 		mutex_enter(&connp->conn_lock);
18061 		ire = connp->conn_ire_cache;
18062 		ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18063 		if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18064 			IRE_REFHOLD(ire);
18065 			if (ire->ire_stq != NULL) {
18066 				ill_t	*ill = (ill_t *)ire->ire_stq->q_ptr;
18067 
18068 				zc_enabled = ill && (ill->ill_capabilities &
18069 				    ILL_CAPAB_ZEROCOPY) &&
18070 				    (ill->ill_zerocopy_capab->
18071 				    ill_zerocopy_flags != 0);
18072 			}
18073 			IRE_REFRELE(ire);
18074 		}
18075 		mutex_exit(&connp->conn_lock);
18076 	}
18077 	tcp->tcp_snd_zcopy_on = zc_enabled;
18078 	if (!TCP_IS_DETACHED(tcp)) {
18079 		if (zc_enabled) {
18080 			(void) proto_set_tx_copyopt(tcp->tcp_rq, connp,
18081 			    ZCVMSAFE);
18082 			TCP_STAT(tcps, tcp_zcopy_on);
18083 		} else {
18084 			(void) proto_set_tx_copyopt(tcp->tcp_rq, connp,
18085 			    ZCVMUNSAFE);
18086 			TCP_STAT(tcps, tcp_zcopy_off);
18087 		}
18088 	}
18089 	return (zc_enabled);
18090 }
18091 
18092 static mblk_t *
18093 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp)
18094 {
18095 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18096 
18097 	if (do_tcpzcopy == 2)
18098 		return (bp);
18099 	else if (tcp->tcp_snd_zcopy_on) {
18100 		tcp->tcp_snd_zcopy_on = B_FALSE;
18101 		if (!TCP_IS_DETACHED(tcp)) {
18102 			(void) proto_set_tx_copyopt(tcp->tcp_rq, tcp->tcp_connp,
18103 			    ZCVMUNSAFE);
18104 			TCP_STAT(tcps, tcp_zcopy_disable);
18105 		}
18106 	}
18107 	return (tcp_zcopy_backoff(tcp, bp, 0));
18108 }
18109 
18110 /*
18111  * Backoff from a zero-copy mblk by copying data to a new mblk and freeing
18112  * the original desballoca'ed segmapped mblk.
18113  */
18114 static mblk_t *
18115 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist)
18116 {
18117 	mblk_t *head, *tail, *nbp;
18118 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18119 
18120 	if (IS_VMLOANED_MBLK(bp)) {
18121 		TCP_STAT(tcps, tcp_zcopy_backoff);
18122 		if ((head = copyb(bp)) == NULL) {
18123 			/* fail to backoff; leave it for the next backoff */
18124 			tcp->tcp_xmit_zc_clean = B_FALSE;
18125 			return (bp);
18126 		}
18127 		if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18128 			if (fix_xmitlist)
18129 				tcp_zcopy_notify(tcp);
18130 			else
18131 				head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
18132 		}
18133 		nbp = bp->b_cont;
18134 		if (fix_xmitlist) {
18135 			head->b_prev = bp->b_prev;
18136 			head->b_next = bp->b_next;
18137 			if (tcp->tcp_xmit_tail == bp)
18138 				tcp->tcp_xmit_tail = head;
18139 		}
18140 		bp->b_next = NULL;
18141 		bp->b_prev = NULL;
18142 		freeb(bp);
18143 	} else {
18144 		head = bp;
18145 		nbp = bp->b_cont;
18146 	}
18147 	tail = head;
18148 	while (nbp) {
18149 		if (IS_VMLOANED_MBLK(nbp)) {
18150 			TCP_STAT(tcps, tcp_zcopy_backoff);
18151 			if ((tail->b_cont = copyb(nbp)) == NULL) {
18152 				tcp->tcp_xmit_zc_clean = B_FALSE;
18153 				tail->b_cont = nbp;
18154 				return (head);
18155 			}
18156 			tail = tail->b_cont;
18157 			if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18158 				if (fix_xmitlist)
18159 					tcp_zcopy_notify(tcp);
18160 				else
18161 					tail->b_datap->db_struioflag |=
18162 					    STRUIO_ZCNOTIFY;
18163 			}
18164 			bp = nbp;
18165 			nbp = nbp->b_cont;
18166 			if (fix_xmitlist) {
18167 				tail->b_prev = bp->b_prev;
18168 				tail->b_next = bp->b_next;
18169 				if (tcp->tcp_xmit_tail == bp)
18170 					tcp->tcp_xmit_tail = tail;
18171 			}
18172 			bp->b_next = NULL;
18173 			bp->b_prev = NULL;
18174 			freeb(bp);
18175 		} else {
18176 			tail->b_cont = nbp;
18177 			tail = nbp;
18178 			nbp = nbp->b_cont;
18179 		}
18180 	}
18181 	if (fix_xmitlist) {
18182 		tcp->tcp_xmit_last = tail;
18183 		tcp->tcp_xmit_zc_clean = B_TRUE;
18184 	}
18185 	return (head);
18186 }
18187 
18188 static void
18189 tcp_zcopy_notify(tcp_t *tcp)
18190 {
18191 	struct stdata	*stp;
18192 	conn_t *connp;
18193 
18194 	if (tcp->tcp_detached)
18195 		return;
18196 	connp = tcp->tcp_connp;
18197 	if (IPCL_IS_NONSTR(connp)) {
18198 		(*connp->conn_upcalls->su_zcopy_notify)
18199 		    (connp->conn_upper_handle);
18200 		return;
18201 	}
18202 	stp = STREAM(tcp->tcp_rq);
18203 	mutex_enter(&stp->sd_lock);
18204 	stp->sd_flag |= STZCNOTIFY;
18205 	cv_broadcast(&stp->sd_zcopy_wait);
18206 	mutex_exit(&stp->sd_lock);
18207 }
18208 
18209 static boolean_t
18210 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep)
18211 {
18212 	ire_t	*ire;
18213 	conn_t	*connp = tcp->tcp_connp;
18214 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18215 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
18216 
18217 	mutex_enter(&connp->conn_lock);
18218 	ire = connp->conn_ire_cache;
18219 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18220 
18221 	if ((ire != NULL) &&
18222 	    (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) &&
18223 	    IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) &&
18224 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18225 		IRE_REFHOLD(ire);
18226 		mutex_exit(&connp->conn_lock);
18227 	} else {
18228 		boolean_t cached = B_FALSE;
18229 		ts_label_t *tsl;
18230 
18231 		/* force a recheck later on */
18232 		tcp->tcp_ire_ill_check_done = B_FALSE;
18233 
18234 		TCP_DBGSTAT(tcps, tcp_ire_null1);
18235 		connp->conn_ire_cache = NULL;
18236 		mutex_exit(&connp->conn_lock);
18237 
18238 		if (ire != NULL)
18239 			IRE_REFRELE_NOTR(ire);
18240 
18241 		tsl = crgetlabel(CONN_CRED(connp));
18242 		ire = (dst ?
18243 		    ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) :
18244 		    ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst,
18245 		    connp->conn_zoneid, tsl, ipst));
18246 
18247 		if (ire == NULL) {
18248 			TCP_STAT(tcps, tcp_ire_null);
18249 			return (B_FALSE);
18250 		}
18251 
18252 		IRE_REFHOLD_NOTR(ire);
18253 
18254 		mutex_enter(&connp->conn_lock);
18255 		if (CONN_CACHE_IRE(connp)) {
18256 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
18257 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18258 				TCP_CHECK_IREINFO(tcp, ire);
18259 				connp->conn_ire_cache = ire;
18260 				cached = B_TRUE;
18261 			}
18262 			rw_exit(&ire->ire_bucket->irb_lock);
18263 		}
18264 		mutex_exit(&connp->conn_lock);
18265 
18266 		/*
18267 		 * We can continue to use the ire but since it was
18268 		 * not cached, we should drop the extra reference.
18269 		 */
18270 		if (!cached)
18271 			IRE_REFRELE_NOTR(ire);
18272 
18273 		/*
18274 		 * Rampart note: no need to select a new label here, since
18275 		 * labels are not allowed to change during the life of a TCP
18276 		 * connection.
18277 		 */
18278 	}
18279 
18280 	*irep = ire;
18281 
18282 	return (B_TRUE);
18283 }
18284 
18285 /*
18286  * Called from tcp_send() or tcp_send_data() to find workable IRE.
18287  *
18288  * 0 = success;
18289  * 1 = failed to find ire and ill.
18290  */
18291 static boolean_t
18292 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp)
18293 {
18294 	ipha_t		*ipha;
18295 	ipaddr_t	dst;
18296 	ire_t		*ire;
18297 	ill_t		*ill;
18298 	mblk_t		*ire_fp_mp;
18299 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18300 
18301 	if (mp != NULL)
18302 		ipha = (ipha_t *)mp->b_rptr;
18303 	else
18304 		ipha = tcp->tcp_ipha;
18305 	dst = ipha->ipha_dst;
18306 
18307 	if (!tcp_send_find_ire(tcp, &dst, &ire))
18308 		return (B_FALSE);
18309 
18310 	if ((ire->ire_flags & RTF_MULTIRT) ||
18311 	    (ire->ire_stq == NULL) ||
18312 	    (ire->ire_nce == NULL) ||
18313 	    ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) ||
18314 	    ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) ||
18315 	    MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) {
18316 		TCP_STAT(tcps, tcp_ip_ire_send);
18317 		IRE_REFRELE(ire);
18318 		return (B_FALSE);
18319 	}
18320 
18321 	ill = ire_to_ill(ire);
18322 	ASSERT(ill != NULL);
18323 
18324 	if (!tcp->tcp_ire_ill_check_done) {
18325 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
18326 		tcp->tcp_ire_ill_check_done = B_TRUE;
18327 	}
18328 
18329 	*irep = ire;
18330 	*illp = ill;
18331 
18332 	return (B_TRUE);
18333 }
18334 
18335 static void
18336 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp)
18337 {
18338 	ipha_t		*ipha;
18339 	ipaddr_t	src;
18340 	ipaddr_t	dst;
18341 	uint32_t	cksum;
18342 	ire_t		*ire;
18343 	uint16_t	*up;
18344 	ill_t		*ill;
18345 	conn_t		*connp = tcp->tcp_connp;
18346 	uint32_t	hcksum_txflags = 0;
18347 	mblk_t		*ire_fp_mp;
18348 	uint_t		ire_fp_mp_len;
18349 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18350 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
18351 	cred_t		*cr;
18352 	pid_t		cpid;
18353 
18354 	ASSERT(DB_TYPE(mp) == M_DATA);
18355 
18356 	/*
18357 	 * Here we need to handle the overloading of the cred_t for
18358 	 * both getpeerucred and TX.
18359 	 * If this is a SYN then the caller already set db_credp so
18360 	 * that getpeerucred will work. But if TX is in use we might have
18361 	 * a conn_peercred which is different, and we need to use that cred
18362 	 * to make TX use the correct label and label dependent route.
18363 	 */
18364 	if (is_system_labeled()) {
18365 		cr = msg_getcred(mp, &cpid);
18366 		if (cr == NULL || connp->conn_peercred != NULL)
18367 			mblk_setcred(mp, CONN_CRED(connp), cpid);
18368 	}
18369 
18370 	ipha = (ipha_t *)mp->b_rptr;
18371 	src = ipha->ipha_src;
18372 	dst = ipha->ipha_dst;
18373 
18374 	ASSERT(q != NULL);
18375 	DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp);
18376 
18377 	/*
18378 	 * Drop off fast path for IPv6 and also if options are present or
18379 	 * we need to resolve a TS label.
18380 	 */
18381 	if (tcp->tcp_ipversion != IPV4_VERSION ||
18382 	    !IPCL_IS_CONNECTED(connp) ||
18383 	    !CONN_IS_LSO_MD_FASTPATH(connp) ||
18384 	    (connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
18385 	    !connp->conn_ulp_labeled ||
18386 	    ipha->ipha_ident == IP_HDR_INCLUDED ||
18387 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
18388 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst)) {
18389 		if (tcp->tcp_snd_zcopy_aware)
18390 			mp = tcp_zcopy_disable(tcp, mp);
18391 		TCP_STAT(tcps, tcp_ip_send);
18392 		CALL_IP_WPUT(connp, q, mp);
18393 		return;
18394 	}
18395 
18396 	if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) {
18397 		if (tcp->tcp_snd_zcopy_aware)
18398 			mp = tcp_zcopy_backoff(tcp, mp, 0);
18399 		CALL_IP_WPUT(connp, q, mp);
18400 		return;
18401 	}
18402 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
18403 	ire_fp_mp_len = MBLKL(ire_fp_mp);
18404 
18405 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
18406 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
18407 #ifndef _BIG_ENDIAN
18408 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
18409 #endif
18410 
18411 	/*
18412 	 * Check to see if we need to re-enable LSO/MDT for this connection
18413 	 * because it was previously disabled due to changes in the ill;
18414 	 * note that by doing it here, this re-enabling only applies when
18415 	 * the packet is not dispatched through CALL_IP_WPUT().
18416 	 *
18417 	 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath
18418 	 * case, since that's how we ended up here.  For IPv6, we do the
18419 	 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue.
18420 	 */
18421 	if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) {
18422 		/*
18423 		 * Restore LSO for this connection, so that next time around
18424 		 * it is eligible to go through tcp_lsosend() path again.
18425 		 */
18426 		TCP_STAT(tcps, tcp_lso_enabled);
18427 		tcp->tcp_lso = B_TRUE;
18428 		ip1dbg(("tcp_send_data: reenabling LSO for connp %p on "
18429 		    "interface %s\n", (void *)connp, ill->ill_name));
18430 	} else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) {
18431 		/*
18432 		 * Restore MDT for this connection, so that next time around
18433 		 * it is eligible to go through tcp_multisend() path again.
18434 		 */
18435 		TCP_STAT(tcps, tcp_mdt_conn_resumed1);
18436 		tcp->tcp_mdt = B_TRUE;
18437 		ip1dbg(("tcp_send_data: reenabling MDT for connp %p on "
18438 		    "interface %s\n", (void *)connp, ill->ill_name));
18439 	}
18440 
18441 	if (tcp->tcp_snd_zcopy_aware) {
18442 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
18443 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
18444 			mp = tcp_zcopy_disable(tcp, mp);
18445 		/*
18446 		 * we shouldn't need to reset ipha as the mp containing
18447 		 * ipha should never be a zero-copy mp.
18448 		 */
18449 	}
18450 
18451 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
18452 		ASSERT(ill->ill_hcksum_capab != NULL);
18453 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
18454 	}
18455 
18456 	/* pseudo-header checksum (do it in parts for IP header checksum) */
18457 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
18458 
18459 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
18460 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
18461 
18462 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
18463 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
18464 
18465 	/* Software checksum? */
18466 	if (DB_CKSUMFLAGS(mp) == 0) {
18467 		TCP_STAT(tcps, tcp_out_sw_cksum);
18468 		TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
18469 		    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
18470 	}
18471 
18472 	/* Calculate IP header checksum if hardware isn't capable */
18473 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
18474 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
18475 		    ((uint16_t *)ipha)[4]);
18476 	}
18477 
18478 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
18479 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
18480 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
18481 
18482 	UPDATE_OB_PKT_COUNT(ire);
18483 	ire->ire_last_used_time = lbolt;
18484 
18485 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
18486 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
18487 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
18488 	    ntohs(ipha->ipha_length));
18489 
18490 	DTRACE_PROBE4(ip4__physical__out__start,
18491 	    ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp);
18492 	FW_HOOKS(ipst->ips_ip4_physical_out_event,
18493 	    ipst->ips_ipv4firewall_physical_out,
18494 	    NULL, ill, ipha, mp, mp, 0, ipst);
18495 	DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
18496 	DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL);
18497 
18498 	if (mp != NULL) {
18499 		if (ipst->ips_ipobs_enabled) {
18500 			zoneid_t szone;
18501 
18502 			szone = ip_get_zoneid_v4(ipha->ipha_src, mp,
18503 			    ipst, ALL_ZONES);
18504 			ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone,
18505 			    ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, ipst);
18506 		}
18507 
18508 		ILL_SEND_TX(ill, ire, connp, mp, 0, NULL);
18509 	}
18510 
18511 	IRE_REFRELE(ire);
18512 }
18513 
18514 /*
18515  * This handles the case when the receiver has shrunk its win. Per RFC 1122
18516  * if the receiver shrinks the window, i.e. moves the right window to the
18517  * left, the we should not send new data, but should retransmit normally the
18518  * old unacked data between suna and suna + swnd. We might has sent data
18519  * that is now outside the new window, pretend that we didn't send  it.
18520  */
18521 static void
18522 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count)
18523 {
18524 	uint32_t	snxt = tcp->tcp_snxt;
18525 	mblk_t		*xmit_tail;
18526 	int32_t		offset;
18527 
18528 	ASSERT(shrunk_count > 0);
18529 
18530 	/* Pretend we didn't send the data outside the window */
18531 	snxt -= shrunk_count;
18532 
18533 	/* Get the mblk and the offset in it per the shrunk window */
18534 	xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset);
18535 
18536 	ASSERT(xmit_tail != NULL);
18537 
18538 	/* Reset all the values per the now shrunk window */
18539 	tcp->tcp_snxt = snxt;
18540 	tcp->tcp_xmit_tail = xmit_tail;
18541 	tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr -
18542 	    offset;
18543 	tcp->tcp_unsent += shrunk_count;
18544 
18545 	if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0)
18546 		/*
18547 		 * Make sure the timer is running so that we will probe a zero
18548 		 * window.
18549 		 */
18550 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
18551 }
18552 
18553 
18554 /*
18555  * The TCP normal data output path.
18556  * NOTE: the logic of the fast path is duplicated from this function.
18557  */
18558 static void
18559 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent)
18560 {
18561 	int		len;
18562 	mblk_t		*local_time;
18563 	mblk_t		*mp1;
18564 	uint32_t	snxt;
18565 	int		tail_unsent;
18566 	int		tcpstate;
18567 	int		usable = 0;
18568 	mblk_t		*xmit_tail;
18569 	queue_t		*q = tcp->tcp_wq;
18570 	int32_t		mss;
18571 	int32_t		num_sack_blk = 0;
18572 	int32_t		tcp_hdr_len;
18573 	int32_t		tcp_tcp_hdr_len;
18574 	int		mdt_thres;
18575 	int		rc;
18576 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18577 	ip_stack_t	*ipst;
18578 
18579 	tcpstate = tcp->tcp_state;
18580 	if (mp == NULL) {
18581 		/*
18582 		 * tcp_wput_data() with NULL mp should only be called when
18583 		 * there is unsent data.
18584 		 */
18585 		ASSERT(tcp->tcp_unsent > 0);
18586 		/* Really tacky... but we need this for detached closes. */
18587 		len = tcp->tcp_unsent;
18588 		goto data_null;
18589 	}
18590 
18591 #if CCS_STATS
18592 	wrw_stats.tot.count++;
18593 	wrw_stats.tot.bytes += msgdsize(mp);
18594 #endif
18595 	ASSERT(mp->b_datap->db_type == M_DATA);
18596 	/*
18597 	 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ,
18598 	 * or before a connection attempt has begun.
18599 	 */
18600 	if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT ||
18601 	    (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
18602 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
18603 #ifdef DEBUG
18604 			cmn_err(CE_WARN,
18605 			    "tcp_wput_data: data after ordrel, %s",
18606 			    tcp_display(tcp, NULL,
18607 			    DISP_ADDR_AND_PORT));
18608 #else
18609 			if (tcp->tcp_debug) {
18610 				(void) strlog(TCP_MOD_ID, 0, 1,
18611 				    SL_TRACE|SL_ERROR,
18612 				    "tcp_wput_data: data after ordrel, %s\n",
18613 				    tcp_display(tcp, NULL,
18614 				    DISP_ADDR_AND_PORT));
18615 			}
18616 #endif /* DEBUG */
18617 		}
18618 		if (tcp->tcp_snd_zcopy_aware &&
18619 		    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0)
18620 			tcp_zcopy_notify(tcp);
18621 		freemsg(mp);
18622 		mutex_enter(&tcp->tcp_non_sq_lock);
18623 		if (tcp->tcp_flow_stopped &&
18624 		    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
18625 			tcp_clrqfull(tcp);
18626 		}
18627 		mutex_exit(&tcp->tcp_non_sq_lock);
18628 		return;
18629 	}
18630 
18631 	/* Strip empties */
18632 	for (;;) {
18633 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
18634 		    (uintptr_t)INT_MAX);
18635 		len = (int)(mp->b_wptr - mp->b_rptr);
18636 		if (len > 0)
18637 			break;
18638 		mp1 = mp;
18639 		mp = mp->b_cont;
18640 		freeb(mp1);
18641 		if (!mp) {
18642 			return;
18643 		}
18644 	}
18645 
18646 	/* If we are the first on the list ... */
18647 	if (tcp->tcp_xmit_head == NULL) {
18648 		tcp->tcp_xmit_head = mp;
18649 		tcp->tcp_xmit_tail = mp;
18650 		tcp->tcp_xmit_tail_unsent = len;
18651 	} else {
18652 		/* If tiny tx and room in txq tail, pullup to save mblks. */
18653 		struct datab *dp;
18654 
18655 		mp1 = tcp->tcp_xmit_last;
18656 		if (len < tcp_tx_pull_len &&
18657 		    (dp = mp1->b_datap)->db_ref == 1 &&
18658 		    dp->db_lim - mp1->b_wptr >= len) {
18659 			ASSERT(len > 0);
18660 			ASSERT(!mp1->b_cont);
18661 			if (len == 1) {
18662 				*mp1->b_wptr++ = *mp->b_rptr;
18663 			} else {
18664 				bcopy(mp->b_rptr, mp1->b_wptr, len);
18665 				mp1->b_wptr += len;
18666 			}
18667 			if (mp1 == tcp->tcp_xmit_tail)
18668 				tcp->tcp_xmit_tail_unsent += len;
18669 			mp1->b_cont = mp->b_cont;
18670 			if (tcp->tcp_snd_zcopy_aware &&
18671 			    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
18672 				mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
18673 			freeb(mp);
18674 			mp = mp1;
18675 		} else {
18676 			tcp->tcp_xmit_last->b_cont = mp;
18677 		}
18678 		len += tcp->tcp_unsent;
18679 	}
18680 
18681 	/* Tack on however many more positive length mblks we have */
18682 	if ((mp1 = mp->b_cont) != NULL) {
18683 		do {
18684 			int tlen;
18685 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
18686 			    (uintptr_t)INT_MAX);
18687 			tlen = (int)(mp1->b_wptr - mp1->b_rptr);
18688 			if (tlen <= 0) {
18689 				mp->b_cont = mp1->b_cont;
18690 				freeb(mp1);
18691 			} else {
18692 				len += tlen;
18693 				mp = mp1;
18694 			}
18695 		} while ((mp1 = mp->b_cont) != NULL);
18696 	}
18697 	tcp->tcp_xmit_last = mp;
18698 	tcp->tcp_unsent = len;
18699 
18700 	if (urgent)
18701 		usable = 1;
18702 
18703 data_null:
18704 	snxt = tcp->tcp_snxt;
18705 	xmit_tail = tcp->tcp_xmit_tail;
18706 	tail_unsent = tcp->tcp_xmit_tail_unsent;
18707 
18708 	/*
18709 	 * Note that tcp_mss has been adjusted to take into account the
18710 	 * timestamp option if applicable.  Because SACK options do not
18711 	 * appear in every TCP segments and they are of variable lengths,
18712 	 * they cannot be included in tcp_mss.  Thus we need to calculate
18713 	 * the actual segment length when we need to send a segment which
18714 	 * includes SACK options.
18715 	 */
18716 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
18717 		int32_t	opt_len;
18718 
18719 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
18720 		    tcp->tcp_num_sack_blk);
18721 		opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN *
18722 		    2 + TCPOPT_HEADER_LEN;
18723 		mss = tcp->tcp_mss - opt_len;
18724 		tcp_hdr_len = tcp->tcp_hdr_len + opt_len;
18725 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len;
18726 	} else {
18727 		mss = tcp->tcp_mss;
18728 		tcp_hdr_len = tcp->tcp_hdr_len;
18729 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
18730 	}
18731 
18732 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
18733 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
18734 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
18735 	}
18736 	if (tcpstate == TCPS_SYN_RCVD) {
18737 		/*
18738 		 * The three-way connection establishment handshake is not
18739 		 * complete yet. We want to queue the data for transmission
18740 		 * after entering ESTABLISHED state (RFC793). A jump to
18741 		 * "done" label effectively leaves data on the queue.
18742 		 */
18743 		goto done;
18744 	} else {
18745 		int usable_r;
18746 
18747 		/*
18748 		 * In the special case when cwnd is zero, which can only
18749 		 * happen if the connection is ECN capable, return now.
18750 		 * New segments is sent using tcp_timer().  The timer
18751 		 * is set in tcp_rput_data().
18752 		 */
18753 		if (tcp->tcp_cwnd == 0) {
18754 			/*
18755 			 * Note that tcp_cwnd is 0 before 3-way handshake is
18756 			 * finished.
18757 			 */
18758 			ASSERT(tcp->tcp_ecn_ok ||
18759 			    tcp->tcp_state < TCPS_ESTABLISHED);
18760 			return;
18761 		}
18762 
18763 		/* NOTE: trouble if xmitting while SYN not acked? */
18764 		usable_r = snxt - tcp->tcp_suna;
18765 		usable_r = tcp->tcp_swnd - usable_r;
18766 
18767 		/*
18768 		 * Check if the receiver has shrunk the window.  If
18769 		 * tcp_wput_data() with NULL mp is called, tcp_fin_sent
18770 		 * cannot be set as there is unsent data, so FIN cannot
18771 		 * be sent out.  Otherwise, we need to take into account
18772 		 * of FIN as it consumes an "invisible" sequence number.
18773 		 */
18774 		ASSERT(tcp->tcp_fin_sent == 0);
18775 		if (usable_r < 0) {
18776 			/*
18777 			 * The receiver has shrunk the window and we have sent
18778 			 * -usable_r date beyond the window, re-adjust.
18779 			 *
18780 			 * If TCP window scaling is enabled, there can be
18781 			 * round down error as the advertised receive window
18782 			 * is actually right shifted n bits.  This means that
18783 			 * the lower n bits info is wiped out.  It will look
18784 			 * like the window is shrunk.  Do a check here to
18785 			 * see if the shrunk amount is actually within the
18786 			 * error in window calculation.  If it is, just
18787 			 * return.  Note that this check is inside the
18788 			 * shrunk window check.  This makes sure that even
18789 			 * though tcp_process_shrunk_swnd() is not called,
18790 			 * we will stop further processing.
18791 			 */
18792 			if ((-usable_r >> tcp->tcp_snd_ws) > 0) {
18793 				tcp_process_shrunk_swnd(tcp, -usable_r);
18794 			}
18795 			return;
18796 		}
18797 
18798 		/* usable = MIN(swnd, cwnd) - unacked_bytes */
18799 		if (tcp->tcp_swnd > tcp->tcp_cwnd)
18800 			usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd;
18801 
18802 		/* usable = MIN(usable, unsent) */
18803 		if (usable_r > len)
18804 			usable_r = len;
18805 
18806 		/* usable = MAX(usable, {1 for urgent, 0 for data}) */
18807 		if (usable_r > 0) {
18808 			usable = usable_r;
18809 		} else {
18810 			/* Bypass all other unnecessary processing. */
18811 			goto done;
18812 		}
18813 	}
18814 
18815 	local_time = (mblk_t *)lbolt;
18816 
18817 	/*
18818 	 * "Our" Nagle Algorithm.  This is not the same as in the old
18819 	 * BSD.  This is more in line with the true intent of Nagle.
18820 	 *
18821 	 * The conditions are:
18822 	 * 1. The amount of unsent data (or amount of data which can be
18823 	 *    sent, whichever is smaller) is less than Nagle limit.
18824 	 * 2. The last sent size is also less than Nagle limit.
18825 	 * 3. There is unack'ed data.
18826 	 * 4. Urgent pointer is not set.  Send urgent data ignoring the
18827 	 *    Nagle algorithm.  This reduces the probability that urgent
18828 	 *    bytes get "merged" together.
18829 	 * 5. The app has not closed the connection.  This eliminates the
18830 	 *    wait time of the receiving side waiting for the last piece of
18831 	 *    (small) data.
18832 	 *
18833 	 * If all are satisified, exit without sending anything.  Note
18834 	 * that Nagle limit can be smaller than 1 MSS.  Nagle limit is
18835 	 * the smaller of 1 MSS and global tcp_naglim_def (default to be
18836 	 * 4095).
18837 	 */
18838 	if (usable < (int)tcp->tcp_naglim &&
18839 	    tcp->tcp_naglim > tcp->tcp_last_sent_len &&
18840 	    snxt != tcp->tcp_suna &&
18841 	    !(tcp->tcp_valid_bits & TCP_URG_VALID) &&
18842 	    !(tcp->tcp_valid_bits & TCP_FSS_VALID)) {
18843 		goto done;
18844 	}
18845 
18846 	if (tcp->tcp_cork) {
18847 		/*
18848 		 * if the tcp->tcp_cork option is set, then we have to force
18849 		 * TCP not to send partial segment (smaller than MSS bytes).
18850 		 * We are calculating the usable now based on full mss and
18851 		 * will save the rest of remaining data for later.
18852 		 */
18853 		if (usable < mss)
18854 			goto done;
18855 		usable = (usable / mss) * mss;
18856 	}
18857 
18858 	/* Update the latest receive window size in TCP header. */
18859 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
18860 	    tcp->tcp_tcph->th_win);
18861 
18862 	/*
18863 	 * Determine if it's worthwhile to attempt LSO or MDT, based on:
18864 	 *
18865 	 * 1. Simple TCP/IP{v4,v6} (no options).
18866 	 * 2. IPSEC/IPQoS processing is not needed for the TCP connection.
18867 	 * 3. If the TCP connection is in ESTABLISHED state.
18868 	 * 4. The TCP is not detached.
18869 	 *
18870 	 * If any of the above conditions have changed during the
18871 	 * connection, stop using LSO/MDT and restore the stream head
18872 	 * parameters accordingly.
18873 	 */
18874 	ipst = tcps->tcps_netstack->netstack_ip;
18875 
18876 	if ((tcp->tcp_lso || tcp->tcp_mdt) &&
18877 	    ((tcp->tcp_ipversion == IPV4_VERSION &&
18878 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
18879 	    (tcp->tcp_ipversion == IPV6_VERSION &&
18880 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) ||
18881 	    tcp->tcp_state != TCPS_ESTABLISHED ||
18882 	    TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) ||
18883 	    CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) ||
18884 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst))) {
18885 		if (tcp->tcp_lso) {
18886 			tcp->tcp_connp->conn_lso_ok = B_FALSE;
18887 			tcp->tcp_lso = B_FALSE;
18888 		} else {
18889 			tcp->tcp_connp->conn_mdt_ok = B_FALSE;
18890 			tcp->tcp_mdt = B_FALSE;
18891 		}
18892 
18893 		/* Anything other than detached is considered pathological */
18894 		if (!TCP_IS_DETACHED(tcp)) {
18895 			if (tcp->tcp_lso)
18896 				TCP_STAT(tcps, tcp_lso_disabled);
18897 			else
18898 				TCP_STAT(tcps, tcp_mdt_conn_halted1);
18899 			(void) tcp_maxpsz_set(tcp, B_TRUE);
18900 		}
18901 	}
18902 
18903 	/* Use MDT if sendable amount is greater than the threshold */
18904 	if (tcp->tcp_mdt &&
18905 	    (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) &&
18906 	    (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL &&
18907 	    MBLKL(xmit_tail->b_cont) > mdt_thres)) &&
18908 	    (tcp->tcp_valid_bits == 0 ||
18909 	    tcp->tcp_valid_bits == TCP_FSS_VALID)) {
18910 		ASSERT(tcp->tcp_connp->conn_mdt_ok);
18911 		rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
18912 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
18913 		    local_time, mdt_thres);
18914 	} else {
18915 		rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
18916 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
18917 		    local_time, INT_MAX);
18918 	}
18919 
18920 	/* Pretend that all we were trying to send really got sent */
18921 	if (rc < 0 && tail_unsent < 0) {
18922 		do {
18923 			xmit_tail = xmit_tail->b_cont;
18924 			xmit_tail->b_prev = local_time;
18925 			ASSERT((uintptr_t)(xmit_tail->b_wptr -
18926 			    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
18927 			tail_unsent += (int)(xmit_tail->b_wptr -
18928 			    xmit_tail->b_rptr);
18929 		} while (tail_unsent < 0);
18930 	}
18931 done:;
18932 	tcp->tcp_xmit_tail = xmit_tail;
18933 	tcp->tcp_xmit_tail_unsent = tail_unsent;
18934 	len = tcp->tcp_snxt - snxt;
18935 	if (len) {
18936 		/*
18937 		 * If new data was sent, need to update the notsack
18938 		 * list, which is, afterall, data blocks that have
18939 		 * not been sack'ed by the receiver.  New data is
18940 		 * not sack'ed.
18941 		 */
18942 		if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
18943 			/* len is a negative value. */
18944 			tcp->tcp_pipe -= len;
18945 			tcp_notsack_update(&(tcp->tcp_notsack_list),
18946 			    tcp->tcp_snxt, snxt,
18947 			    &(tcp->tcp_num_notsack_blk),
18948 			    &(tcp->tcp_cnt_notsack_list));
18949 		}
18950 		tcp->tcp_snxt = snxt + tcp->tcp_fin_sent;
18951 		tcp->tcp_rack = tcp->tcp_rnxt;
18952 		tcp->tcp_rack_cnt = 0;
18953 		if ((snxt + len) == tcp->tcp_suna) {
18954 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
18955 		}
18956 	} else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) {
18957 		/*
18958 		 * Didn't send anything. Make sure the timer is running
18959 		 * so that we will probe a zero window.
18960 		 */
18961 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
18962 	}
18963 	/* Note that len is the amount we just sent but with a negative sign */
18964 	tcp->tcp_unsent += len;
18965 	mutex_enter(&tcp->tcp_non_sq_lock);
18966 	if (tcp->tcp_flow_stopped) {
18967 		if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
18968 			tcp_clrqfull(tcp);
18969 		}
18970 	} else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) {
18971 		tcp_setqfull(tcp);
18972 	}
18973 	mutex_exit(&tcp->tcp_non_sq_lock);
18974 }
18975 
18976 /*
18977  * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the
18978  * outgoing TCP header with the template header, as well as other
18979  * options such as time-stamp, ECN and/or SACK.
18980  */
18981 static void
18982 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk)
18983 {
18984 	tcph_t *tcp_tmpl, *tcp_h;
18985 	uint32_t *dst, *src;
18986 	int hdrlen;
18987 
18988 	ASSERT(OK_32PTR(rptr));
18989 
18990 	/* Template header */
18991 	tcp_tmpl = tcp->tcp_tcph;
18992 
18993 	/* Header of outgoing packet */
18994 	tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
18995 
18996 	/* dst and src are opaque 32-bit fields, used for copying */
18997 	dst = (uint32_t *)rptr;
18998 	src = (uint32_t *)tcp->tcp_iphc;
18999 	hdrlen = tcp->tcp_hdr_len;
19000 
19001 	/* Fill time-stamp option if needed */
19002 	if (tcp->tcp_snd_ts_ok) {
19003 		U32_TO_BE32((uint32_t)now,
19004 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4);
19005 		U32_TO_BE32(tcp->tcp_ts_recent,
19006 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8);
19007 	} else {
19008 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
19009 	}
19010 
19011 	/*
19012 	 * Copy the template header; is this really more efficient than
19013 	 * calling bcopy()?  For simple IPv4/TCP, it may be the case,
19014 	 * but perhaps not for other scenarios.
19015 	 */
19016 	dst[0] = src[0];
19017 	dst[1] = src[1];
19018 	dst[2] = src[2];
19019 	dst[3] = src[3];
19020 	dst[4] = src[4];
19021 	dst[5] = src[5];
19022 	dst[6] = src[6];
19023 	dst[7] = src[7];
19024 	dst[8] = src[8];
19025 	dst[9] = src[9];
19026 	if (hdrlen -= 40) {
19027 		hdrlen >>= 2;
19028 		dst += 10;
19029 		src += 10;
19030 		do {
19031 			*dst++ = *src++;
19032 		} while (--hdrlen);
19033 	}
19034 
19035 	/*
19036 	 * Set the ECN info in the TCP header if it is not a zero
19037 	 * window probe.  Zero window probe is only sent in
19038 	 * tcp_wput_data() and tcp_timer().
19039 	 */
19040 	if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) {
19041 		SET_ECT(tcp, rptr);
19042 
19043 		if (tcp->tcp_ecn_echo_on)
19044 			tcp_h->th_flags[0] |= TH_ECE;
19045 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
19046 			tcp_h->th_flags[0] |= TH_CWR;
19047 			tcp->tcp_ecn_cwr_sent = B_TRUE;
19048 		}
19049 	}
19050 
19051 	/* Fill in SACK options */
19052 	if (num_sack_blk > 0) {
19053 		uchar_t *wptr = rptr + tcp->tcp_hdr_len;
19054 		sack_blk_t *tmp;
19055 		int32_t	i;
19056 
19057 		wptr[0] = TCPOPT_NOP;
19058 		wptr[1] = TCPOPT_NOP;
19059 		wptr[2] = TCPOPT_SACK;
19060 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
19061 		    sizeof (sack_blk_t);
19062 		wptr += TCPOPT_REAL_SACK_LEN;
19063 
19064 		tmp = tcp->tcp_sack_list;
19065 		for (i = 0; i < num_sack_blk; i++) {
19066 			U32_TO_BE32(tmp[i].begin, wptr);
19067 			wptr += sizeof (tcp_seq);
19068 			U32_TO_BE32(tmp[i].end, wptr);
19069 			wptr += sizeof (tcp_seq);
19070 		}
19071 		tcp_h->th_offset_and_rsrvd[0] +=
19072 		    ((num_sack_blk * 2 + 1) << 4);
19073 	}
19074 }
19075 
19076 /*
19077  * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach
19078  * the destination address and SAP attribute, and if necessary, the
19079  * hardware checksum offload attribute to a Multidata message.
19080  */
19081 static int
19082 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum,
19083     const uint32_t start, const uint32_t stuff, const uint32_t end,
19084     const uint32_t flags, tcp_stack_t *tcps)
19085 {
19086 	/* Add global destination address & SAP attribute */
19087 	if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) {
19088 		ip1dbg(("tcp_mdt_add_attrs: can't add global physical "
19089 		    "destination address+SAP\n"));
19090 
19091 		if (dlmp != NULL)
19092 			TCP_STAT(tcps, tcp_mdt_allocfail);
19093 		return (-1);
19094 	}
19095 
19096 	/* Add global hwcksum attribute */
19097 	if (hwcksum &&
19098 	    !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) {
19099 		ip1dbg(("tcp_mdt_add_attrs: can't add global hardware "
19100 		    "checksum attribute\n"));
19101 
19102 		TCP_STAT(tcps, tcp_mdt_allocfail);
19103 		return (-1);
19104 	}
19105 
19106 	return (0);
19107 }
19108 
19109 /*
19110  * Smaller and private version of pdescinfo_t used specifically for TCP,
19111  * which allows for only two payload spans per packet.
19112  */
19113 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t;
19114 
19115 /*
19116  * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit
19117  * scheme, and returns one the following:
19118  *
19119  * -1 = failed allocation.
19120  *  0 = success; burst count reached, or usable send window is too small,
19121  *      and that we'd rather wait until later before sending again.
19122  */
19123 static int
19124 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
19125     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
19126     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
19127     const int mdt_thres)
19128 {
19129 	mblk_t		*md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf;
19130 	multidata_t	*mmd;
19131 	uint_t		obsegs, obbytes, hdr_frag_sz;
19132 	uint_t		cur_hdr_off, cur_pld_off, base_pld_off, first_snxt;
19133 	int		num_burst_seg, max_pld;
19134 	pdesc_t		*pkt;
19135 	tcp_pdescinfo_t	tcp_pkt_info;
19136 	pdescinfo_t	*pkt_info;
19137 	int		pbuf_idx, pbuf_idx_nxt;
19138 	int		seg_len, len, spill, af;
19139 	boolean_t	add_buffer, zcopy, clusterwide;
19140 	boolean_t	rconfirm = B_FALSE;
19141 	boolean_t	done = B_FALSE;
19142 	uint32_t	cksum;
19143 	uint32_t	hwcksum_flags;
19144 	ire_t		*ire = NULL;
19145 	ill_t		*ill;
19146 	ipha_t		*ipha;
19147 	ip6_t		*ip6h;
19148 	ipaddr_t	src, dst;
19149 	ill_zerocopy_capab_t *zc_cap = NULL;
19150 	uint16_t	*up;
19151 	int		err;
19152 	conn_t		*connp;
19153 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19154 	ip_stack_t 	*ipst = tcps->tcps_netstack->netstack_ip;
19155 	int		usable_mmd, tail_unsent_mmd;
19156 	uint_t		snxt_mmd, obsegs_mmd, obbytes_mmd;
19157 	mblk_t		*xmit_tail_mmd;
19158 	netstackid_t	stack_id;
19159 
19160 #ifdef	_BIG_ENDIAN
19161 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 28) & 0x7)
19162 #else
19163 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 4) & 0x7)
19164 #endif
19165 
19166 #define	PREP_NEW_MULTIDATA() {			\
19167 	mmd = NULL;				\
19168 	md_mp = md_hbuf = NULL;			\
19169 	cur_hdr_off = 0;			\
19170 	max_pld = tcp->tcp_mdt_max_pld;		\
19171 	pbuf_idx = pbuf_idx_nxt = -1;		\
19172 	add_buffer = B_TRUE;			\
19173 	zcopy = B_FALSE;			\
19174 }
19175 
19176 #define	PREP_NEW_PBUF() {			\
19177 	md_pbuf = md_pbuf_nxt = NULL;		\
19178 	pbuf_idx = pbuf_idx_nxt = -1;		\
19179 	cur_pld_off = 0;			\
19180 	first_snxt = *snxt;			\
19181 	ASSERT(*tail_unsent > 0);		\
19182 	base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \
19183 }
19184 
19185 	ASSERT(mdt_thres >= mss);
19186 	ASSERT(*usable > 0 && *usable > mdt_thres);
19187 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
19188 	ASSERT(!TCP_IS_DETACHED(tcp));
19189 	ASSERT(tcp->tcp_valid_bits == 0 ||
19190 	    tcp->tcp_valid_bits == TCP_FSS_VALID);
19191 	ASSERT((tcp->tcp_ipversion == IPV4_VERSION &&
19192 	    tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) ||
19193 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19194 	    tcp->tcp_ip_hdr_len == IPV6_HDR_LEN));
19195 
19196 	connp = tcp->tcp_connp;
19197 	ASSERT(connp != NULL);
19198 	ASSERT(CONN_IS_LSO_MD_FASTPATH(connp));
19199 	ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp));
19200 
19201 	stack_id = connp->conn_netstack->netstack_stackid;
19202 
19203 	usable_mmd = tail_unsent_mmd = 0;
19204 	snxt_mmd = obsegs_mmd = obbytes_mmd = 0;
19205 	xmit_tail_mmd = NULL;
19206 	/*
19207 	 * Note that tcp will only declare at most 2 payload spans per
19208 	 * packet, which is much lower than the maximum allowable number
19209 	 * of packet spans per Multidata.  For this reason, we use the
19210 	 * privately declared and smaller descriptor info structure, in
19211 	 * order to save some stack space.
19212 	 */
19213 	pkt_info = (pdescinfo_t *)&tcp_pkt_info;
19214 
19215 	af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6;
19216 	if (af == AF_INET) {
19217 		dst = tcp->tcp_ipha->ipha_dst;
19218 		src = tcp->tcp_ipha->ipha_src;
19219 		ASSERT(!CLASSD(dst));
19220 	}
19221 	ASSERT(af == AF_INET ||
19222 	    !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst));
19223 
19224 	obsegs = obbytes = 0;
19225 	num_burst_seg = tcp->tcp_snd_burst;
19226 	md_mp_head = NULL;
19227 	PREP_NEW_MULTIDATA();
19228 
19229 	/*
19230 	 * Before we go on further, make sure there is an IRE that we can
19231 	 * use, and that the ILL supports MDT.  Otherwise, there's no point
19232 	 * in proceeding any further, and we should just hand everything
19233 	 * off to the legacy path.
19234 	 */
19235 	if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire))
19236 		goto legacy_send_no_md;
19237 
19238 	ASSERT(ire != NULL);
19239 	ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION);
19240 	ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6)));
19241 	ASSERT(af == AF_INET || ire->ire_nce != NULL);
19242 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
19243 	/*
19244 	 * If we do support loopback for MDT (which requires modifications
19245 	 * to the receiving paths), the following assertions should go away,
19246 	 * and we would be sending the Multidata to loopback conn later on.
19247 	 */
19248 	ASSERT(!IRE_IS_LOCAL(ire));
19249 	ASSERT(ire->ire_stq != NULL);
19250 
19251 	ill = ire_to_ill(ire);
19252 	ASSERT(ill != NULL);
19253 	ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL);
19254 
19255 	if (!tcp->tcp_ire_ill_check_done) {
19256 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
19257 		tcp->tcp_ire_ill_check_done = B_TRUE;
19258 	}
19259 
19260 	/*
19261 	 * If the underlying interface conditions have changed, or if the
19262 	 * new interface does not support MDT, go back to legacy path.
19263 	 */
19264 	if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) {
19265 		/* don't go through this path anymore for this connection */
19266 		TCP_STAT(tcps, tcp_mdt_conn_halted2);
19267 		tcp->tcp_mdt = B_FALSE;
19268 		ip1dbg(("tcp_multisend: disabling MDT for connp %p on "
19269 		    "interface %s\n", (void *)connp, ill->ill_name));
19270 		/* IRE will be released prior to returning */
19271 		goto legacy_send_no_md;
19272 	}
19273 
19274 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)
19275 		zc_cap = ill->ill_zerocopy_capab;
19276 
19277 	/*
19278 	 * Check if we can take tcp fast-path. Note that "incomplete"
19279 	 * ire's (where the link-layer for next hop is not resolved
19280 	 * or where the fast-path header in nce_fp_mp is not available
19281 	 * yet) are sent down the legacy (slow) path.
19282 	 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA
19283 	 */
19284 	if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) {
19285 		/* IRE will be released prior to returning */
19286 		goto legacy_send_no_md;
19287 	}
19288 
19289 	/* go to legacy path if interface doesn't support zerocopy */
19290 	if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 &&
19291 	    (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) {
19292 		/* IRE will be released prior to returning */
19293 		goto legacy_send_no_md;
19294 	}
19295 
19296 	/* does the interface support hardware checksum offload? */
19297 	hwcksum_flags = 0;
19298 	if (ILL_HCKSUM_CAPABLE(ill) &&
19299 	    (ill->ill_hcksum_capab->ill_hcksum_txflags &
19300 	    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL |
19301 	    HCKSUM_IPHDRCKSUM)) && dohwcksum) {
19302 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19303 		    HCKSUM_IPHDRCKSUM)
19304 			hwcksum_flags = HCK_IPV4_HDRCKSUM;
19305 
19306 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19307 		    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6))
19308 			hwcksum_flags |= HCK_FULLCKSUM;
19309 		else if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19310 		    HCKSUM_INET_PARTIAL)
19311 			hwcksum_flags |= HCK_PARTIALCKSUM;
19312 	}
19313 
19314 	/*
19315 	 * Each header fragment consists of the leading extra space,
19316 	 * followed by the TCP/IP header, and the trailing extra space.
19317 	 * We make sure that each header fragment begins on a 32-bit
19318 	 * aligned memory address (tcp_mdt_hdr_head is already 32-bit
19319 	 * aligned in tcp_mdt_update).
19320 	 */
19321 	hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len +
19322 	    tcp->tcp_mdt_hdr_tail), 4);
19323 
19324 	/* are we starting from the beginning of data block? */
19325 	if (*tail_unsent == 0) {
19326 		*xmit_tail = (*xmit_tail)->b_cont;
19327 		ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX);
19328 		*tail_unsent = (int)MBLKL(*xmit_tail);
19329 	}
19330 
19331 	/*
19332 	 * Here we create one or more Multidata messages, each made up of
19333 	 * one header buffer and up to N payload buffers.  This entire
19334 	 * operation is done within two loops:
19335 	 *
19336 	 * The outer loop mostly deals with creating the Multidata message,
19337 	 * as well as the header buffer that gets added to it.  It also
19338 	 * links the Multidata messages together such that all of them can
19339 	 * be sent down to the lower layer in a single putnext call; this
19340 	 * linking behavior depends on the tcp_mdt_chain tunable.
19341 	 *
19342 	 * The inner loop takes an existing Multidata message, and adds
19343 	 * one or more (up to tcp_mdt_max_pld) payload buffers to it.  It
19344 	 * packetizes those buffers by filling up the corresponding header
19345 	 * buffer fragments with the proper IP and TCP headers, and by
19346 	 * describing the layout of each packet in the packet descriptors
19347 	 * that get added to the Multidata.
19348 	 */
19349 	do {
19350 		/*
19351 		 * If usable send window is too small, or data blocks in
19352 		 * transmit list are smaller than our threshold (i.e. app
19353 		 * performs large writes followed by small ones), we hand
19354 		 * off the control over to the legacy path.  Note that we'll
19355 		 * get back the control once it encounters a large block.
19356 		 */
19357 		if (*usable < mss || (*tail_unsent <= mdt_thres &&
19358 		    (*xmit_tail)->b_cont != NULL &&
19359 		    MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) {
19360 			/* send down what we've got so far */
19361 			if (md_mp_head != NULL) {
19362 				tcp_multisend_data(tcp, ire, ill, md_mp_head,
19363 				    obsegs, obbytes, &rconfirm);
19364 			}
19365 			/*
19366 			 * Pass control over to tcp_send(), but tell it to
19367 			 * return to us once a large-size transmission is
19368 			 * possible.
19369 			 */
19370 			TCP_STAT(tcps, tcp_mdt_legacy_small);
19371 			if ((err = tcp_send(q, tcp, mss, tcp_hdr_len,
19372 			    tcp_tcp_hdr_len, num_sack_blk, usable, snxt,
19373 			    tail_unsent, xmit_tail, local_time,
19374 			    mdt_thres)) <= 0) {
19375 				/* burst count reached, or alloc failed */
19376 				IRE_REFRELE(ire);
19377 				return (err);
19378 			}
19379 
19380 			/* tcp_send() may have sent everything, so check */
19381 			if (*usable <= 0) {
19382 				IRE_REFRELE(ire);
19383 				return (0);
19384 			}
19385 
19386 			TCP_STAT(tcps, tcp_mdt_legacy_ret);
19387 			/*
19388 			 * We may have delivered the Multidata, so make sure
19389 			 * to re-initialize before the next round.
19390 			 */
19391 			md_mp_head = NULL;
19392 			obsegs = obbytes = 0;
19393 			num_burst_seg = tcp->tcp_snd_burst;
19394 			PREP_NEW_MULTIDATA();
19395 
19396 			/* are we starting from the beginning of data block? */
19397 			if (*tail_unsent == 0) {
19398 				*xmit_tail = (*xmit_tail)->b_cont;
19399 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
19400 				    (uintptr_t)INT_MAX);
19401 				*tail_unsent = (int)MBLKL(*xmit_tail);
19402 			}
19403 		}
19404 		/*
19405 		 * Record current values for parameters we may need to pass
19406 		 * to tcp_send() or tcp_multisend_data(). We checkpoint at
19407 		 * each iteration of the outer loop (each multidata message
19408 		 * creation). If we have a failure in the inner loop, we send
19409 		 * any complete multidata messages we have before reverting
19410 		 * to using the traditional non-md path.
19411 		 */
19412 		snxt_mmd = *snxt;
19413 		usable_mmd = *usable;
19414 		xmit_tail_mmd = *xmit_tail;
19415 		tail_unsent_mmd = *tail_unsent;
19416 		obsegs_mmd = obsegs;
19417 		obbytes_mmd = obbytes;
19418 
19419 		/*
19420 		 * max_pld limits the number of mblks in tcp's transmit
19421 		 * queue that can be added to a Multidata message.  Once
19422 		 * this counter reaches zero, no more additional mblks
19423 		 * can be added to it.  What happens afterwards depends
19424 		 * on whether or not we are set to chain the Multidata
19425 		 * messages.  If we are to link them together, reset
19426 		 * max_pld to its original value (tcp_mdt_max_pld) and
19427 		 * prepare to create a new Multidata message which will
19428 		 * get linked to md_mp_head.  Else, leave it alone and
19429 		 * let the inner loop break on its own.
19430 		 */
19431 		if (tcp_mdt_chain && max_pld == 0)
19432 			PREP_NEW_MULTIDATA();
19433 
19434 		/* adding a payload buffer; re-initialize values */
19435 		if (add_buffer)
19436 			PREP_NEW_PBUF();
19437 
19438 		/*
19439 		 * If we don't have a Multidata, either because we just
19440 		 * (re)entered this outer loop, or after we branched off
19441 		 * to tcp_send above, setup the Multidata and header
19442 		 * buffer to be used.
19443 		 */
19444 		if (md_mp == NULL) {
19445 			int md_hbuflen;
19446 			uint32_t start, stuff;
19447 
19448 			/*
19449 			 * Calculate Multidata header buffer size large enough
19450 			 * to hold all of the headers that can possibly be
19451 			 * sent at this moment.  We'd rather over-estimate
19452 			 * the size than running out of space; this is okay
19453 			 * since this buffer is small anyway.
19454 			 */
19455 			md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz;
19456 
19457 			/*
19458 			 * Start and stuff offset for partial hardware
19459 			 * checksum offload; these are currently for IPv4.
19460 			 * For full checksum offload, they are set to zero.
19461 			 */
19462 			if ((hwcksum_flags & HCK_PARTIALCKSUM)) {
19463 				if (af == AF_INET) {
19464 					start = IP_SIMPLE_HDR_LENGTH;
19465 					stuff = IP_SIMPLE_HDR_LENGTH +
19466 					    TCP_CHECKSUM_OFFSET;
19467 				} else {
19468 					start = IPV6_HDR_LEN;
19469 					stuff = IPV6_HDR_LEN +
19470 					    TCP_CHECKSUM_OFFSET;
19471 				}
19472 			} else {
19473 				start = stuff = 0;
19474 			}
19475 
19476 			/*
19477 			 * Create the header buffer, Multidata, as well as
19478 			 * any necessary attributes (destination address,
19479 			 * SAP and hardware checksum offload) that should
19480 			 * be associated with the Multidata message.
19481 			 */
19482 			ASSERT(cur_hdr_off == 0);
19483 			if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL ||
19484 			    ((md_hbuf->b_wptr += md_hbuflen),
19485 			    (mmd = mmd_alloc(md_hbuf, &md_mp,
19486 			    KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd,
19487 			    /* fastpath mblk */
19488 			    ire->ire_nce->nce_res_mp,
19489 			    /* hardware checksum enabled */
19490 			    (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)),
19491 			    /* hardware checksum offsets */
19492 			    start, stuff, 0,
19493 			    /* hardware checksum flag */
19494 			    hwcksum_flags, tcps) != 0)) {
19495 legacy_send:
19496 				/*
19497 				 * We arrive here from a failure within the
19498 				 * inner (packetizer) loop or we fail one of
19499 				 * the conditionals above. We restore the
19500 				 * previously checkpointed values for:
19501 				 *    xmit_tail
19502 				 *    usable
19503 				 *    tail_unsent
19504 				 *    snxt
19505 				 *    obbytes
19506 				 *    obsegs
19507 				 * We should then be able to dispatch any
19508 				 * complete multidata before reverting to the
19509 				 * traditional path with consistent parameters
19510 				 * (the inner loop updates these as it
19511 				 * iterates).
19512 				 */
19513 				*xmit_tail = xmit_tail_mmd;
19514 				*usable = usable_mmd;
19515 				*tail_unsent = tail_unsent_mmd;
19516 				*snxt = snxt_mmd;
19517 				obbytes = obbytes_mmd;
19518 				obsegs = obsegs_mmd;
19519 				if (md_mp != NULL) {
19520 					/* Unlink message from the chain */
19521 					if (md_mp_head != NULL) {
19522 						err = (intptr_t)rmvb(md_mp_head,
19523 						    md_mp);
19524 						/*
19525 						 * We can't assert that rmvb
19526 						 * did not return -1, since we
19527 						 * may get here before linkb
19528 						 * happens.  We do, however,
19529 						 * check if we just removed the
19530 						 * only element in the list.
19531 						 */
19532 						if (err == 0)
19533 							md_mp_head = NULL;
19534 					}
19535 					/* md_hbuf gets freed automatically */
19536 					TCP_STAT(tcps, tcp_mdt_discarded);
19537 					freeb(md_mp);
19538 				} else {
19539 					/* Either allocb or mmd_alloc failed */
19540 					TCP_STAT(tcps, tcp_mdt_allocfail);
19541 					if (md_hbuf != NULL)
19542 						freeb(md_hbuf);
19543 				}
19544 
19545 				/* send down what we've got so far */
19546 				if (md_mp_head != NULL) {
19547 					tcp_multisend_data(tcp, ire, ill,
19548 					    md_mp_head, obsegs, obbytes,
19549 					    &rconfirm);
19550 				}
19551 legacy_send_no_md:
19552 				if (ire != NULL)
19553 					IRE_REFRELE(ire);
19554 				/*
19555 				 * Too bad; let the legacy path handle this.
19556 				 * We specify INT_MAX for the threshold, since
19557 				 * we gave up with the Multidata processings
19558 				 * and let the old path have it all.
19559 				 */
19560 				TCP_STAT(tcps, tcp_mdt_legacy_all);
19561 				return (tcp_send(q, tcp, mss, tcp_hdr_len,
19562 				    tcp_tcp_hdr_len, num_sack_blk, usable,
19563 				    snxt, tail_unsent, xmit_tail, local_time,
19564 				    INT_MAX));
19565 			}
19566 
19567 			/* link to any existing ones, if applicable */
19568 			TCP_STAT(tcps, tcp_mdt_allocd);
19569 			if (md_mp_head == NULL) {
19570 				md_mp_head = md_mp;
19571 			} else if (tcp_mdt_chain) {
19572 				TCP_STAT(tcps, tcp_mdt_linked);
19573 				linkb(md_mp_head, md_mp);
19574 			}
19575 		}
19576 
19577 		ASSERT(md_mp_head != NULL);
19578 		ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL);
19579 		ASSERT(md_mp != NULL && mmd != NULL);
19580 		ASSERT(md_hbuf != NULL);
19581 
19582 		/*
19583 		 * Packetize the transmittable portion of the data block;
19584 		 * each data block is essentially added to the Multidata
19585 		 * as a payload buffer.  We also deal with adding more
19586 		 * than one payload buffers, which happens when the remaining
19587 		 * packetized portion of the current payload buffer is less
19588 		 * than MSS, while the next data block in transmit queue
19589 		 * has enough data to make up for one.  This "spillover"
19590 		 * case essentially creates a split-packet, where portions
19591 		 * of the packet's payload fragments may span across two
19592 		 * virtually discontiguous address blocks.
19593 		 */
19594 		seg_len = mss;
19595 		do {
19596 			len = seg_len;
19597 
19598 			/* one must remain NULL for DTRACE_IP_FASTPATH */
19599 			ipha = NULL;
19600 			ip6h = NULL;
19601 
19602 			ASSERT(len > 0);
19603 			ASSERT(max_pld >= 0);
19604 			ASSERT(!add_buffer || cur_pld_off == 0);
19605 
19606 			/*
19607 			 * First time around for this payload buffer; note
19608 			 * in the case of a spillover, the following has
19609 			 * been done prior to adding the split-packet
19610 			 * descriptor to Multidata, and we don't want to
19611 			 * repeat the process.
19612 			 */
19613 			if (add_buffer) {
19614 				ASSERT(mmd != NULL);
19615 				ASSERT(md_pbuf == NULL);
19616 				ASSERT(md_pbuf_nxt == NULL);
19617 				ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1);
19618 
19619 				/*
19620 				 * Have we reached the limit?  We'd get to
19621 				 * this case when we're not chaining the
19622 				 * Multidata messages together, and since
19623 				 * we're done, terminate this loop.
19624 				 */
19625 				if (max_pld == 0)
19626 					break; /* done */
19627 
19628 				if ((md_pbuf = dupb(*xmit_tail)) == NULL) {
19629 					TCP_STAT(tcps, tcp_mdt_allocfail);
19630 					goto legacy_send; /* out_of_mem */
19631 				}
19632 
19633 				if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy &&
19634 				    zc_cap != NULL) {
19635 					if (!ip_md_zcopy_attr(mmd, NULL,
19636 					    zc_cap->ill_zerocopy_flags)) {
19637 						freeb(md_pbuf);
19638 						TCP_STAT(tcps,
19639 						    tcp_mdt_allocfail);
19640 						/* out_of_mem */
19641 						goto legacy_send;
19642 					}
19643 					zcopy = B_TRUE;
19644 				}
19645 
19646 				md_pbuf->b_rptr += base_pld_off;
19647 
19648 				/*
19649 				 * Add a payload buffer to the Multidata; this
19650 				 * operation must not fail, or otherwise our
19651 				 * logic in this routine is broken.  There
19652 				 * is no memory allocation done by the
19653 				 * routine, so any returned failure simply
19654 				 * tells us that we've done something wrong.
19655 				 *
19656 				 * A failure tells us that either we're adding
19657 				 * the same payload buffer more than once, or
19658 				 * we're trying to add more buffers than
19659 				 * allowed (max_pld calculation is wrong).
19660 				 * None of the above cases should happen, and
19661 				 * we panic because either there's horrible
19662 				 * heap corruption, and/or programming mistake.
19663 				 */
19664 				pbuf_idx = mmd_addpldbuf(mmd, md_pbuf);
19665 				if (pbuf_idx < 0) {
19666 					cmn_err(CE_PANIC, "tcp_multisend: "
19667 					    "payload buffer logic error "
19668 					    "detected for tcp %p mmd %p "
19669 					    "pbuf %p (%d)\n",
19670 					    (void *)tcp, (void *)mmd,
19671 					    (void *)md_pbuf, pbuf_idx);
19672 				}
19673 
19674 				ASSERT(max_pld > 0);
19675 				--max_pld;
19676 				add_buffer = B_FALSE;
19677 			}
19678 
19679 			ASSERT(md_mp_head != NULL);
19680 			ASSERT(md_pbuf != NULL);
19681 			ASSERT(md_pbuf_nxt == NULL);
19682 			ASSERT(pbuf_idx != -1);
19683 			ASSERT(pbuf_idx_nxt == -1);
19684 			ASSERT(*usable > 0);
19685 
19686 			/*
19687 			 * We spillover to the next payload buffer only
19688 			 * if all of the following is true:
19689 			 *
19690 			 *   1. There is not enough data on the current
19691 			 *	payload buffer to make up `len',
19692 			 *   2. We are allowed to send `len',
19693 			 *   3. The next payload buffer length is large
19694 			 *	enough to accomodate `spill'.
19695 			 */
19696 			if ((spill = len - *tail_unsent) > 0 &&
19697 			    *usable >= len &&
19698 			    MBLKL((*xmit_tail)->b_cont) >= spill &&
19699 			    max_pld > 0) {
19700 				md_pbuf_nxt = dupb((*xmit_tail)->b_cont);
19701 				if (md_pbuf_nxt == NULL) {
19702 					TCP_STAT(tcps, tcp_mdt_allocfail);
19703 					goto legacy_send; /* out_of_mem */
19704 				}
19705 
19706 				if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy &&
19707 				    zc_cap != NULL) {
19708 					if (!ip_md_zcopy_attr(mmd, NULL,
19709 					    zc_cap->ill_zerocopy_flags)) {
19710 						freeb(md_pbuf_nxt);
19711 						TCP_STAT(tcps,
19712 						    tcp_mdt_allocfail);
19713 						/* out_of_mem */
19714 						goto legacy_send;
19715 					}
19716 					zcopy = B_TRUE;
19717 				}
19718 
19719 				/*
19720 				 * See comments above on the first call to
19721 				 * mmd_addpldbuf for explanation on the panic.
19722 				 */
19723 				pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt);
19724 				if (pbuf_idx_nxt < 0) {
19725 					panic("tcp_multisend: "
19726 					    "next payload buffer logic error "
19727 					    "detected for tcp %p mmd %p "
19728 					    "pbuf %p (%d)\n",
19729 					    (void *)tcp, (void *)mmd,
19730 					    (void *)md_pbuf_nxt, pbuf_idx_nxt);
19731 				}
19732 
19733 				ASSERT(max_pld > 0);
19734 				--max_pld;
19735 			} else if (spill > 0) {
19736 				/*
19737 				 * If there's a spillover, but the following
19738 				 * xmit_tail couldn't give us enough octets
19739 				 * to reach "len", then stop the current
19740 				 * Multidata creation and let the legacy
19741 				 * tcp_send() path take over.  We don't want
19742 				 * to send the tiny segment as part of this
19743 				 * Multidata for performance reasons; instead,
19744 				 * we let the legacy path deal with grouping
19745 				 * it with the subsequent small mblks.
19746 				 */
19747 				if (*usable >= len &&
19748 				    MBLKL((*xmit_tail)->b_cont) < spill) {
19749 					max_pld = 0;
19750 					break;	/* done */
19751 				}
19752 
19753 				/*
19754 				 * We can't spillover, and we are near
19755 				 * the end of the current payload buffer,
19756 				 * so send what's left.
19757 				 */
19758 				ASSERT(*tail_unsent > 0);
19759 				len = *tail_unsent;
19760 			}
19761 
19762 			/* tail_unsent is negated if there is a spillover */
19763 			*tail_unsent -= len;
19764 			*usable -= len;
19765 			ASSERT(*usable >= 0);
19766 
19767 			if (*usable < mss)
19768 				seg_len = *usable;
19769 			/*
19770 			 * Sender SWS avoidance; see comments in tcp_send();
19771 			 * everything else is the same, except that we only
19772 			 * do this here if there is no more data to be sent
19773 			 * following the current xmit_tail.  We don't check
19774 			 * for 1-byte urgent data because we shouldn't get
19775 			 * here if TCP_URG_VALID is set.
19776 			 */
19777 			if (*usable > 0 && *usable < mss &&
19778 			    ((md_pbuf_nxt == NULL &&
19779 			    (*xmit_tail)->b_cont == NULL) ||
19780 			    (md_pbuf_nxt != NULL &&
19781 			    (*xmit_tail)->b_cont->b_cont == NULL)) &&
19782 			    seg_len < (tcp->tcp_max_swnd >> 1) &&
19783 			    (tcp->tcp_unsent -
19784 			    ((*snxt + len) - tcp->tcp_snxt)) > seg_len &&
19785 			    !tcp->tcp_zero_win_probe) {
19786 				if ((*snxt + len) == tcp->tcp_snxt &&
19787 				    (*snxt + len) == tcp->tcp_suna) {
19788 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19789 				}
19790 				done = B_TRUE;
19791 			}
19792 
19793 			/*
19794 			 * Prime pump for IP's checksumming on our behalf;
19795 			 * include the adjustment for a source route if any.
19796 			 * Do this only for software/partial hardware checksum
19797 			 * offload, as this field gets zeroed out later for
19798 			 * the full hardware checksum offload case.
19799 			 */
19800 			if (!(hwcksum_flags & HCK_FULLCKSUM)) {
19801 				cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
19802 				cksum = (cksum >> 16) + (cksum & 0xFFFF);
19803 				U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum);
19804 			}
19805 
19806 			U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq);
19807 			*snxt += len;
19808 
19809 			tcp->tcp_tcph->th_flags[0] = TH_ACK;
19810 			/*
19811 			 * We set the PUSH bit only if TCP has no more buffered
19812 			 * data to be transmitted (or if sender SWS avoidance
19813 			 * takes place), as opposed to setting it for every
19814 			 * last packet in the burst.
19815 			 */
19816 			if (done ||
19817 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0)
19818 				tcp->tcp_tcph->th_flags[0] |= TH_PUSH;
19819 
19820 			/*
19821 			 * Set FIN bit if this is our last segment; snxt
19822 			 * already includes its length, and it will not
19823 			 * be adjusted after this point.
19824 			 */
19825 			if (tcp->tcp_valid_bits == TCP_FSS_VALID &&
19826 			    *snxt == tcp->tcp_fss) {
19827 				if (!tcp->tcp_fin_acked) {
19828 					tcp->tcp_tcph->th_flags[0] |= TH_FIN;
19829 					BUMP_MIB(&tcps->tcps_mib,
19830 					    tcpOutControl);
19831 				}
19832 				if (!tcp->tcp_fin_sent) {
19833 					tcp->tcp_fin_sent = B_TRUE;
19834 					/*
19835 					 * tcp state must be ESTABLISHED
19836 					 * in order for us to get here in
19837 					 * the first place.
19838 					 */
19839 					tcp->tcp_state = TCPS_FIN_WAIT_1;
19840 
19841 					/*
19842 					 * Upon returning from this routine,
19843 					 * tcp_wput_data() will set tcp_snxt
19844 					 * to be equal to snxt + tcp_fin_sent.
19845 					 * This is essentially the same as
19846 					 * setting it to tcp_fss + 1.
19847 					 */
19848 				}
19849 			}
19850 
19851 			tcp->tcp_last_sent_len = (ushort_t)len;
19852 
19853 			len += tcp_hdr_len;
19854 			if (tcp->tcp_ipversion == IPV4_VERSION)
19855 				tcp->tcp_ipha->ipha_length = htons(len);
19856 			else
19857 				tcp->tcp_ip6h->ip6_plen = htons(len -
19858 				    ((char *)&tcp->tcp_ip6h[1] -
19859 				    tcp->tcp_iphc));
19860 
19861 			pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF);
19862 
19863 			/* setup header fragment */
19864 			PDESC_HDR_ADD(pkt_info,
19865 			    md_hbuf->b_rptr + cur_hdr_off,	/* base */
19866 			    tcp->tcp_mdt_hdr_head,		/* head room */
19867 			    tcp_hdr_len,			/* len */
19868 			    tcp->tcp_mdt_hdr_tail);		/* tail room */
19869 
19870 			ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base ==
19871 			    hdr_frag_sz);
19872 			ASSERT(MBLKIN(md_hbuf,
19873 			    (pkt_info->hdr_base - md_hbuf->b_rptr),
19874 			    PDESC_HDRSIZE(pkt_info)));
19875 
19876 			/* setup first payload fragment */
19877 			PDESC_PLD_INIT(pkt_info);
19878 			PDESC_PLD_SPAN_ADD(pkt_info,
19879 			    pbuf_idx,				/* index */
19880 			    md_pbuf->b_rptr + cur_pld_off,	/* start */
19881 			    tcp->tcp_last_sent_len);		/* len */
19882 
19883 			/* create a split-packet in case of a spillover */
19884 			if (md_pbuf_nxt != NULL) {
19885 				ASSERT(spill > 0);
19886 				ASSERT(pbuf_idx_nxt > pbuf_idx);
19887 				ASSERT(!add_buffer);
19888 
19889 				md_pbuf = md_pbuf_nxt;
19890 				md_pbuf_nxt = NULL;
19891 				pbuf_idx = pbuf_idx_nxt;
19892 				pbuf_idx_nxt = -1;
19893 				cur_pld_off = spill;
19894 
19895 				/* trim out first payload fragment */
19896 				PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill);
19897 
19898 				/* setup second payload fragment */
19899 				PDESC_PLD_SPAN_ADD(pkt_info,
19900 				    pbuf_idx,			/* index */
19901 				    md_pbuf->b_rptr,		/* start */
19902 				    spill);			/* len */
19903 
19904 				if ((*xmit_tail)->b_next == NULL) {
19905 					/*
19906 					 * Store the lbolt used for RTT
19907 					 * estimation. We can only record one
19908 					 * timestamp per mblk so we do it when
19909 					 * we reach the end of the payload
19910 					 * buffer.  Also we only take a new
19911 					 * timestamp sample when the previous
19912 					 * timed data from the same mblk has
19913 					 * been ack'ed.
19914 					 */
19915 					(*xmit_tail)->b_prev = local_time;
19916 					(*xmit_tail)->b_next =
19917 					    (mblk_t *)(uintptr_t)first_snxt;
19918 				}
19919 
19920 				first_snxt = *snxt - spill;
19921 
19922 				/*
19923 				 * Advance xmit_tail; usable could be 0 by
19924 				 * the time we got here, but we made sure
19925 				 * above that we would only spillover to
19926 				 * the next data block if usable includes
19927 				 * the spilled-over amount prior to the
19928 				 * subtraction.  Therefore, we are sure
19929 				 * that xmit_tail->b_cont can't be NULL.
19930 				 */
19931 				ASSERT((*xmit_tail)->b_cont != NULL);
19932 				*xmit_tail = (*xmit_tail)->b_cont;
19933 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
19934 				    (uintptr_t)INT_MAX);
19935 				*tail_unsent = (int)MBLKL(*xmit_tail) - spill;
19936 			} else {
19937 				cur_pld_off += tcp->tcp_last_sent_len;
19938 			}
19939 
19940 			/*
19941 			 * Fill in the header using the template header, and
19942 			 * add options such as time-stamp, ECN and/or SACK,
19943 			 * as needed.
19944 			 */
19945 			tcp_fill_header(tcp, pkt_info->hdr_rptr,
19946 			    (clock_t)local_time, num_sack_blk);
19947 
19948 			/* take care of some IP header businesses */
19949 			if (af == AF_INET) {
19950 				ipha = (ipha_t *)pkt_info->hdr_rptr;
19951 
19952 				ASSERT(OK_32PTR((uchar_t *)ipha));
19953 				ASSERT(PDESC_HDRL(pkt_info) >=
19954 				    IP_SIMPLE_HDR_LENGTH);
19955 				ASSERT(ipha->ipha_version_and_hdr_length ==
19956 				    IP_SIMPLE_HDR_VERSION);
19957 
19958 				/*
19959 				 * Assign ident value for current packet; see
19960 				 * related comments in ip_wput_ire() about the
19961 				 * contract private interface with clustering
19962 				 * group.
19963 				 */
19964 				clusterwide = B_FALSE;
19965 				if (cl_inet_ipident != NULL) {
19966 					ASSERT(cl_inet_isclusterwide != NULL);
19967 					if ((*cl_inet_isclusterwide)(stack_id,
19968 					    IPPROTO_IP, AF_INET,
19969 					    (uint8_t *)(uintptr_t)src, NULL)) {
19970 						ipha->ipha_ident =
19971 						    (*cl_inet_ipident)(stack_id,
19972 						    IPPROTO_IP, AF_INET,
19973 						    (uint8_t *)(uintptr_t)src,
19974 						    (uint8_t *)(uintptr_t)dst,
19975 						    NULL);
19976 						clusterwide = B_TRUE;
19977 					}
19978 				}
19979 
19980 				if (!clusterwide) {
19981 					ipha->ipha_ident = (uint16_t)
19982 					    atomic_add_32_nv(
19983 						&ire->ire_ident, 1);
19984 				}
19985 #ifndef _BIG_ENDIAN
19986 				ipha->ipha_ident = (ipha->ipha_ident << 8) |
19987 				    (ipha->ipha_ident >> 8);
19988 #endif
19989 			} else {
19990 				ip6h = (ip6_t *)pkt_info->hdr_rptr;
19991 
19992 				ASSERT(OK_32PTR((uchar_t *)ip6h));
19993 				ASSERT(IPVER(ip6h) == IPV6_VERSION);
19994 				ASSERT(ip6h->ip6_nxt == IPPROTO_TCP);
19995 				ASSERT(PDESC_HDRL(pkt_info) >=
19996 				    (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET +
19997 				    TCP_CHECKSUM_SIZE));
19998 				ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
19999 
20000 				if (tcp->tcp_ip_forward_progress) {
20001 					rconfirm = B_TRUE;
20002 					tcp->tcp_ip_forward_progress = B_FALSE;
20003 				}
20004 			}
20005 
20006 			/* at least one payload span, and at most two */
20007 			ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3);
20008 
20009 			/* add the packet descriptor to Multidata */
20010 			if ((pkt = mmd_addpdesc(mmd, pkt_info, &err,
20011 			    KM_NOSLEEP)) == NULL) {
20012 				/*
20013 				 * Any failure other than ENOMEM indicates
20014 				 * that we have passed in invalid pkt_info
20015 				 * or parameters to mmd_addpdesc, which must
20016 				 * not happen.
20017 				 *
20018 				 * EINVAL is a result of failure on boundary
20019 				 * checks against the pkt_info contents.  It
20020 				 * should not happen, and we panic because
20021 				 * either there's horrible heap corruption,
20022 				 * and/or programming mistake.
20023 				 */
20024 				if (err != ENOMEM) {
20025 					cmn_err(CE_PANIC, "tcp_multisend: "
20026 					    "pdesc logic error detected for "
20027 					    "tcp %p mmd %p pinfo %p (%d)\n",
20028 					    (void *)tcp, (void *)mmd,
20029 					    (void *)pkt_info, err);
20030 				}
20031 				TCP_STAT(tcps, tcp_mdt_addpdescfail);
20032 				goto legacy_send; /* out_of_mem */
20033 			}
20034 			ASSERT(pkt != NULL);
20035 
20036 			/* calculate IP header and TCP checksums */
20037 			if (af == AF_INET) {
20038 				/* calculate pseudo-header checksum */
20039 				cksum = (dst >> 16) + (dst & 0xFFFF) +
20040 				    (src >> 16) + (src & 0xFFFF);
20041 
20042 				/* offset for TCP header checksum */
20043 				up = IPH_TCPH_CHECKSUMP(ipha,
20044 				    IP_SIMPLE_HDR_LENGTH);
20045 			} else {
20046 				up = (uint16_t *)&ip6h->ip6_src;
20047 
20048 				/* calculate pseudo-header checksum */
20049 				cksum = up[0] + up[1] + up[2] + up[3] +
20050 				    up[4] + up[5] + up[6] + up[7] +
20051 				    up[8] + up[9] + up[10] + up[11] +
20052 				    up[12] + up[13] + up[14] + up[15];
20053 
20054 				/* Fold the initial sum */
20055 				cksum = (cksum & 0xffff) + (cksum >> 16);
20056 
20057 				up = (uint16_t *)(((uchar_t *)ip6h) +
20058 				    IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET);
20059 			}
20060 
20061 			if (hwcksum_flags & HCK_FULLCKSUM) {
20062 				/* clear checksum field for hardware */
20063 				*up = 0;
20064 			} else if (hwcksum_flags & HCK_PARTIALCKSUM) {
20065 				uint32_t sum;
20066 
20067 				/* pseudo-header checksumming */
20068 				sum = *up + cksum + IP_TCP_CSUM_COMP;
20069 				sum = (sum & 0xFFFF) + (sum >> 16);
20070 				*up = (sum & 0xFFFF) + (sum >> 16);
20071 			} else {
20072 				/* software checksumming */
20073 				TCP_STAT(tcps, tcp_out_sw_cksum);
20074 				TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
20075 				    tcp->tcp_hdr_len + tcp->tcp_last_sent_len);
20076 				*up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len,
20077 				    cksum + IP_TCP_CSUM_COMP);
20078 				if (*up == 0)
20079 					*up = 0xFFFF;
20080 			}
20081 
20082 			/* IPv4 header checksum */
20083 			if (af == AF_INET) {
20084 				if (hwcksum_flags & HCK_IPV4_HDRCKSUM) {
20085 					ipha->ipha_hdr_checksum = 0;
20086 				} else {
20087 					IP_HDR_CKSUM(ipha, cksum,
20088 					    ((uint32_t *)ipha)[0],
20089 					    ((uint16_t *)ipha)[4]);
20090 				}
20091 			}
20092 
20093 			if (af == AF_INET &&
20094 			    HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) ||
20095 			    af == AF_INET6 &&
20096 			    HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) {
20097 				mblk_t	*mp, *mp1;
20098 				uchar_t	*hdr_rptr, *hdr_wptr;
20099 				uchar_t	*pld_rptr, *pld_wptr;
20100 
20101 				/*
20102 				 * We reconstruct a pseudo packet for the hooks
20103 				 * framework using mmd_transform_link().
20104 				 * If it is a split packet we pullup the
20105 				 * payload. FW_HOOKS expects a pkt comprising
20106 				 * of two mblks: a header and the payload.
20107 				 */
20108 				if ((mp = mmd_transform_link(pkt)) == NULL) {
20109 					TCP_STAT(tcps, tcp_mdt_allocfail);
20110 					goto legacy_send;
20111 				}
20112 
20113 				if (pkt_info->pld_cnt > 1) {
20114 					/* split payload, more than one pld */
20115 					if ((mp1 = msgpullup(mp->b_cont, -1)) ==
20116 					    NULL) {
20117 						freemsg(mp);
20118 						TCP_STAT(tcps,
20119 						    tcp_mdt_allocfail);
20120 						goto legacy_send;
20121 					}
20122 					freemsg(mp->b_cont);
20123 					mp->b_cont = mp1;
20124 				} else {
20125 					mp1 = mp->b_cont;
20126 				}
20127 				ASSERT(mp1 != NULL && mp1->b_cont == NULL);
20128 
20129 				/*
20130 				 * Remember the message offsets. This is so we
20131 				 * can detect changes when we return from the
20132 				 * FW_HOOKS callbacks.
20133 				 */
20134 				hdr_rptr = mp->b_rptr;
20135 				hdr_wptr = mp->b_wptr;
20136 				pld_rptr = mp->b_cont->b_rptr;
20137 				pld_wptr = mp->b_cont->b_wptr;
20138 
20139 				if (af == AF_INET) {
20140 					DTRACE_PROBE4(
20141 					    ip4__physical__out__start,
20142 					    ill_t *, NULL,
20143 					    ill_t *, ill,
20144 					    ipha_t *, ipha,
20145 					    mblk_t *, mp);
20146 					FW_HOOKS(
20147 					    ipst->ips_ip4_physical_out_event,
20148 					    ipst->ips_ipv4firewall_physical_out,
20149 					    NULL, ill, ipha, mp, mp, 0, ipst);
20150 					DTRACE_PROBE1(
20151 					    ip4__physical__out__end,
20152 					    mblk_t *, mp);
20153 				} else {
20154 					DTRACE_PROBE4(
20155 					    ip6__physical__out_start,
20156 					    ill_t *, NULL,
20157 					    ill_t *, ill,
20158 					    ip6_t *, ip6h,
20159 					    mblk_t *, mp);
20160 					FW_HOOKS6(
20161 					    ipst->ips_ip6_physical_out_event,
20162 					    ipst->ips_ipv6firewall_physical_out,
20163 					    NULL, ill, ip6h, mp, mp, 0, ipst);
20164 					DTRACE_PROBE1(
20165 					    ip6__physical__out__end,
20166 					    mblk_t *, mp);
20167 				}
20168 
20169 				if (mp == NULL ||
20170 				    (mp1 = mp->b_cont) == NULL ||
20171 				    mp->b_rptr != hdr_rptr ||
20172 				    mp->b_wptr != hdr_wptr ||
20173 				    mp1->b_rptr != pld_rptr ||
20174 				    mp1->b_wptr != pld_wptr ||
20175 				    mp1->b_cont != NULL) {
20176 					/*
20177 					 * We abandon multidata processing and
20178 					 * return to the normal path, either
20179 					 * when a packet is blocked, or when
20180 					 * the boundaries of header buffer or
20181 					 * payload buffer have been changed by
20182 					 * FW_HOOKS[6].
20183 					 */
20184 					if (mp != NULL)
20185 						freemsg(mp);
20186 					goto legacy_send;
20187 				}
20188 				/* Finished with the pseudo packet */
20189 				freemsg(mp);
20190 			}
20191 			DTRACE_IP_FASTPATH(md_hbuf, pkt_info->hdr_rptr,
20192 			    ill, ipha, ip6h);
20193 			/* advance header offset */
20194 			cur_hdr_off += hdr_frag_sz;
20195 
20196 			obbytes += tcp->tcp_last_sent_len;
20197 			++obsegs;
20198 		} while (!done && *usable > 0 && --num_burst_seg > 0 &&
20199 		    *tail_unsent > 0);
20200 
20201 		if ((*xmit_tail)->b_next == NULL) {
20202 			/*
20203 			 * Store the lbolt used for RTT estimation. We can only
20204 			 * record one timestamp per mblk so we do it when we
20205 			 * reach the end of the payload buffer. Also we only
20206 			 * take a new timestamp sample when the previous timed
20207 			 * data from the same mblk has been ack'ed.
20208 			 */
20209 			(*xmit_tail)->b_prev = local_time;
20210 			(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt;
20211 		}
20212 
20213 		ASSERT(*tail_unsent >= 0);
20214 		if (*tail_unsent > 0) {
20215 			/*
20216 			 * We got here because we broke out of the above
20217 			 * loop due to of one of the following cases:
20218 			 *
20219 			 *   1. len < adjusted MSS (i.e. small),
20220 			 *   2. Sender SWS avoidance,
20221 			 *   3. max_pld is zero.
20222 			 *
20223 			 * We are done for this Multidata, so trim our
20224 			 * last payload buffer (if any) accordingly.
20225 			 */
20226 			if (md_pbuf != NULL)
20227 				md_pbuf->b_wptr -= *tail_unsent;
20228 		} else if (*usable > 0) {
20229 			*xmit_tail = (*xmit_tail)->b_cont;
20230 			ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20231 			    (uintptr_t)INT_MAX);
20232 			*tail_unsent = (int)MBLKL(*xmit_tail);
20233 			add_buffer = B_TRUE;
20234 		}
20235 	} while (!done && *usable > 0 && num_burst_seg > 0 &&
20236 	    (tcp_mdt_chain || max_pld > 0));
20237 
20238 	if (md_mp_head != NULL) {
20239 		/* send everything down */
20240 		tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes,
20241 		    &rconfirm);
20242 	}
20243 
20244 #undef PREP_NEW_MULTIDATA
20245 #undef PREP_NEW_PBUF
20246 #undef IPVER
20247 
20248 	IRE_REFRELE(ire);
20249 	return (0);
20250 }
20251 
20252 /*
20253  * A wrapper function for sending one or more Multidata messages down to
20254  * the module below ip; this routine does not release the reference of the
20255  * IRE (caller does that).  This routine is analogous to tcp_send_data().
20256  */
20257 static void
20258 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head,
20259     const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm)
20260 {
20261 	uint64_t delta;
20262 	nce_t *nce;
20263 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20264 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
20265 
20266 	ASSERT(ire != NULL && ill != NULL);
20267 	ASSERT(ire->ire_stq != NULL);
20268 	ASSERT(md_mp_head != NULL);
20269 	ASSERT(rconfirm != NULL);
20270 
20271 	/* adjust MIBs and IRE timestamp */
20272 	DTRACE_PROBE2(tcp__trace__send, mblk_t *, md_mp_head, tcp_t *, tcp);
20273 	tcp->tcp_obsegs += obsegs;
20274 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs);
20275 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes);
20276 	TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs);
20277 
20278 	if (tcp->tcp_ipversion == IPV4_VERSION) {
20279 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs);
20280 	} else {
20281 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs);
20282 	}
20283 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs);
20284 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs);
20285 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes);
20286 
20287 	ire->ire_ob_pkt_count += obsegs;
20288 	if (ire->ire_ipif != NULL)
20289 		atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs);
20290 	ire->ire_last_used_time = lbolt;
20291 
20292 	if (ipst->ips_ipobs_enabled) {
20293 		multidata_t *dlmdp = mmd_getmultidata(md_mp_head);
20294 		pdesc_t *dl_pkt;
20295 		pdescinfo_t pinfo;
20296 		mblk_t *nmp;
20297 		zoneid_t szone = tcp->tcp_connp->conn_zoneid;
20298 
20299 		for (dl_pkt = mmd_getfirstpdesc(dlmdp, &pinfo);
20300 		    (dl_pkt != NULL);
20301 		    dl_pkt = mmd_getnextpdesc(dl_pkt, &pinfo)) {
20302 			if ((nmp = mmd_transform_link(dl_pkt)) == NULL)
20303 				continue;
20304 			ipobs_hook(nmp, IPOBS_HOOK_OUTBOUND, szone,
20305 			    ALL_ZONES, ill, tcp->tcp_ipversion, 0, ipst);
20306 			freemsg(nmp);
20307 		}
20308 	}
20309 
20310 	/* send it down */
20311 	putnext(ire->ire_stq, md_mp_head);
20312 
20313 	/* we're done for TCP/IPv4 */
20314 	if (tcp->tcp_ipversion == IPV4_VERSION)
20315 		return;
20316 
20317 	nce = ire->ire_nce;
20318 
20319 	ASSERT(nce != NULL);
20320 	ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT)));
20321 	ASSERT(nce->nce_state != ND_INCOMPLETE);
20322 
20323 	/* reachability confirmation? */
20324 	if (*rconfirm) {
20325 		nce->nce_last = TICK_TO_MSEC(lbolt64);
20326 		if (nce->nce_state != ND_REACHABLE) {
20327 			mutex_enter(&nce->nce_lock);
20328 			nce->nce_state = ND_REACHABLE;
20329 			nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT;
20330 			mutex_exit(&nce->nce_lock);
20331 			(void) untimeout(nce->nce_timeout_id);
20332 			if (ip_debug > 2) {
20333 				/* ip1dbg */
20334 				pr_addr_dbg("tcp_multisend_data: state "
20335 				    "for %s changed to REACHABLE\n",
20336 				    AF_INET6, &ire->ire_addr_v6);
20337 			}
20338 		}
20339 		/* reset transport reachability confirmation */
20340 		*rconfirm = B_FALSE;
20341 	}
20342 
20343 	delta =  TICK_TO_MSEC(lbolt64) - nce->nce_last;
20344 	ip1dbg(("tcp_multisend_data: delta = %" PRId64
20345 	    " ill_reachable_time = %d \n", delta, ill->ill_reachable_time));
20346 
20347 	if (delta > (uint64_t)ill->ill_reachable_time) {
20348 		mutex_enter(&nce->nce_lock);
20349 		switch (nce->nce_state) {
20350 		case ND_REACHABLE:
20351 		case ND_STALE:
20352 			/*
20353 			 * ND_REACHABLE is identical to ND_STALE in this
20354 			 * specific case. If reachable time has expired for
20355 			 * this neighbor (delta is greater than reachable
20356 			 * time), conceptually, the neighbor cache is no
20357 			 * longer in REACHABLE state, but already in STALE
20358 			 * state.  So the correct transition here is to
20359 			 * ND_DELAY.
20360 			 */
20361 			nce->nce_state = ND_DELAY;
20362 			mutex_exit(&nce->nce_lock);
20363 			NDP_RESTART_TIMER(nce,
20364 			    ipst->ips_delay_first_probe_time);
20365 			if (ip_debug > 3) {
20366 				/* ip2dbg */
20367 				pr_addr_dbg("tcp_multisend_data: state "
20368 				    "for %s changed to DELAY\n",
20369 				    AF_INET6, &ire->ire_addr_v6);
20370 			}
20371 			break;
20372 		case ND_DELAY:
20373 		case ND_PROBE:
20374 			mutex_exit(&nce->nce_lock);
20375 			/* Timers have already started */
20376 			break;
20377 		case ND_UNREACHABLE:
20378 			/*
20379 			 * ndp timer has detected that this nce is
20380 			 * unreachable and initiated deleting this nce
20381 			 * and all its associated IREs. This is a race
20382 			 * where we found the ire before it was deleted
20383 			 * and have just sent out a packet using this
20384 			 * unreachable nce.
20385 			 */
20386 			mutex_exit(&nce->nce_lock);
20387 			break;
20388 		default:
20389 			ASSERT(0);
20390 		}
20391 	}
20392 }
20393 
20394 /*
20395  * Derived from tcp_send_data().
20396  */
20397 static void
20398 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss,
20399     int num_lso_seg)
20400 {
20401 	ipha_t		*ipha;
20402 	mblk_t		*ire_fp_mp;
20403 	uint_t		ire_fp_mp_len;
20404 	uint32_t	hcksum_txflags = 0;
20405 	ipaddr_t	src;
20406 	ipaddr_t	dst;
20407 	uint32_t	cksum;
20408 	uint16_t	*up;
20409 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20410 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
20411 
20412 	ASSERT(DB_TYPE(mp) == M_DATA);
20413 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
20414 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
20415 	ASSERT(tcp->tcp_connp != NULL);
20416 	ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp));
20417 
20418 	ipha = (ipha_t *)mp->b_rptr;
20419 	src = ipha->ipha_src;
20420 	dst = ipha->ipha_dst;
20421 
20422 	DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp);
20423 
20424 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
20425 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident,
20426 	    num_lso_seg);
20427 #ifndef _BIG_ENDIAN
20428 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
20429 #endif
20430 	if (tcp->tcp_snd_zcopy_aware) {
20431 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
20432 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
20433 			mp = tcp_zcopy_disable(tcp, mp);
20434 	}
20435 
20436 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
20437 		ASSERT(ill->ill_hcksum_capab != NULL);
20438 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
20439 	}
20440 
20441 	/*
20442 	 * Since the TCP checksum should be recalculated by h/w, we can just
20443 	 * zero the checksum field for HCK_FULLCKSUM, or calculate partial
20444 	 * pseudo-header checksum for HCK_PARTIALCKSUM.
20445 	 * The partial pseudo-header excludes TCP length, that was calculated
20446 	 * in tcp_send(), so to zero *up before further processing.
20447 	 */
20448 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
20449 
20450 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
20451 	*up = 0;
20452 
20453 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
20454 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
20455 
20456 	/*
20457 	 * Append LSO flags and mss to the mp.
20458 	 */
20459 	lso_info_set(mp, mss, HW_LSO);
20460 
20461 	ipha->ipha_fragment_offset_and_flags |=
20462 	    (uint32_t)htons(ire->ire_frag_flag);
20463 
20464 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
20465 	ire_fp_mp_len = MBLKL(ire_fp_mp);
20466 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
20467 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
20468 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
20469 
20470 	UPDATE_OB_PKT_COUNT(ire);
20471 	ire->ire_last_used_time = lbolt;
20472 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
20473 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
20474 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
20475 	    ntohs(ipha->ipha_length));
20476 
20477 	DTRACE_PROBE4(ip4__physical__out__start,
20478 	    ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp);
20479 	FW_HOOKS(ipst->ips_ip4_physical_out_event,
20480 	    ipst->ips_ipv4firewall_physical_out, NULL,
20481 	    ill, ipha, mp, mp, 0, ipst);
20482 	DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
20483 	DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL);
20484 
20485 	if (mp != NULL) {
20486 		if (ipst->ips_ipobs_enabled) {
20487 			zoneid_t szone;
20488 
20489 			szone = ip_get_zoneid_v4(ipha->ipha_src, mp,
20490 			    ipst, ALL_ZONES);
20491 			ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone,
20492 			    ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, ipst);
20493 		}
20494 
20495 		ILL_SEND_TX(ill, ire, tcp->tcp_connp, mp, 0, NULL);
20496 	}
20497 }
20498 
20499 /*
20500  * tcp_send() is called by tcp_wput_data() for non-Multidata transmission
20501  * scheme, and returns one of the following:
20502  *
20503  * -1 = failed allocation.
20504  *  0 = success; burst count reached, or usable send window is too small,
20505  *      and that we'd rather wait until later before sending again.
20506  *  1 = success; we are called from tcp_multisend(), and both usable send
20507  *      window and tail_unsent are greater than the MDT threshold, and thus
20508  *      Multidata Transmit should be used instead.
20509  */
20510 static int
20511 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
20512     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
20513     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
20514     const int mdt_thres)
20515 {
20516 	int num_burst_seg = tcp->tcp_snd_burst;
20517 	ire_t		*ire = NULL;
20518 	ill_t		*ill = NULL;
20519 	mblk_t		*ire_fp_mp = NULL;
20520 	uint_t		ire_fp_mp_len = 0;
20521 	int		num_lso_seg = 1;
20522 	uint_t		lso_usable;
20523 	boolean_t	do_lso_send = B_FALSE;
20524 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20525 
20526 	/*
20527 	 * Check LSO capability before any further work. And the similar check
20528 	 * need to be done in for(;;) loop.
20529 	 * LSO will be deployed when therer is more than one mss of available
20530 	 * data and a burst transmission is allowed.
20531 	 */
20532 	if (tcp->tcp_lso &&
20533 	    (tcp->tcp_valid_bits == 0 ||
20534 	    tcp->tcp_valid_bits == TCP_FSS_VALID) &&
20535 	    num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
20536 		/*
20537 		 * Try to find usable IRE/ILL and do basic check to the ILL.
20538 		 * Double check LSO usability before going further, since the
20539 		 * underlying interface could have been changed. In case of any
20540 		 * change of LSO capability, set tcp_ire_ill_check_done to
20541 		 * B_FALSE to force to check the ILL with the next send.
20542 		 */
20543 		if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill) &&
20544 		    tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) {
20545 			/*
20546 			 * Enable LSO with this transmission.
20547 			 * Since IRE has been hold in tcp_send_find_ire_ill(),
20548 			 * IRE_REFRELE(ire) should be called before return.
20549 			 */
20550 			do_lso_send = B_TRUE;
20551 			ire_fp_mp = ire->ire_nce->nce_fp_mp;
20552 			ire_fp_mp_len = MBLKL(ire_fp_mp);
20553 			/* Round up to multiple of 4 */
20554 			ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4;
20555 		} else {
20556 			tcp->tcp_lso = B_FALSE;
20557 			tcp->tcp_ire_ill_check_done = B_FALSE;
20558 			do_lso_send = B_FALSE;
20559 			ill = NULL;
20560 		}
20561 	}
20562 
20563 	for (;;) {
20564 		struct datab	*db;
20565 		tcph_t		*tcph;
20566 		uint32_t	sum;
20567 		mblk_t		*mp, *mp1;
20568 		uchar_t		*rptr;
20569 		int		len;
20570 
20571 		/*
20572 		 * If we're called by tcp_multisend(), and the amount of
20573 		 * sendable data as well as the size of current xmit_tail
20574 		 * is beyond the MDT threshold, return to the caller and
20575 		 * let the large data transmit be done using MDT.
20576 		 */
20577 		if (*usable > 0 && *usable > mdt_thres &&
20578 		    (*tail_unsent > mdt_thres || (*tail_unsent == 0 &&
20579 		    MBLKL((*xmit_tail)->b_cont) > mdt_thres))) {
20580 			ASSERT(tcp->tcp_mdt);
20581 			return (1);	/* success; do large send */
20582 		}
20583 
20584 		if (num_burst_seg == 0)
20585 			break;		/* success; burst count reached */
20586 
20587 		/*
20588 		 * Calculate the maximum payload length we can send in *one*
20589 		 * time.
20590 		 */
20591 		if (do_lso_send) {
20592 			/*
20593 			 * Check whether need to do LSO any more.
20594 			 */
20595 			if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
20596 				lso_usable = MIN(tcp->tcp_lso_max, *usable);
20597 				lso_usable = MIN(lso_usable,
20598 				    num_burst_seg * mss);
20599 
20600 				num_lso_seg = lso_usable / mss;
20601 				if (lso_usable % mss) {
20602 					num_lso_seg++;
20603 					tcp->tcp_last_sent_len = (ushort_t)
20604 					    (lso_usable % mss);
20605 				} else {
20606 					tcp->tcp_last_sent_len = (ushort_t)mss;
20607 				}
20608 			} else {
20609 				do_lso_send = B_FALSE;
20610 				num_lso_seg = 1;
20611 				lso_usable = mss;
20612 			}
20613 		}
20614 
20615 		ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1);
20616 
20617 		/*
20618 		 * Adjust num_burst_seg here.
20619 		 */
20620 		num_burst_seg -= num_lso_seg;
20621 
20622 		len = mss;
20623 		if (len > *usable) {
20624 			ASSERT(do_lso_send == B_FALSE);
20625 
20626 			len = *usable;
20627 			if (len <= 0) {
20628 				/* Terminate the loop */
20629 				break;	/* success; too small */
20630 			}
20631 			/*
20632 			 * Sender silly-window avoidance.
20633 			 * Ignore this if we are going to send a
20634 			 * zero window probe out.
20635 			 *
20636 			 * TODO: force data into microscopic window?
20637 			 *	==> (!pushed || (unsent > usable))
20638 			 */
20639 			if (len < (tcp->tcp_max_swnd >> 1) &&
20640 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len &&
20641 			    !((tcp->tcp_valid_bits & TCP_URG_VALID) &&
20642 			    len == 1) && (! tcp->tcp_zero_win_probe)) {
20643 				/*
20644 				 * If the retransmit timer is not running
20645 				 * we start it so that we will retransmit
20646 				 * in the case when the the receiver has
20647 				 * decremented the window.
20648 				 */
20649 				if (*snxt == tcp->tcp_snxt &&
20650 				    *snxt == tcp->tcp_suna) {
20651 					/*
20652 					 * We are not supposed to send
20653 					 * anything.  So let's wait a little
20654 					 * bit longer before breaking SWS
20655 					 * avoidance.
20656 					 *
20657 					 * What should the value be?
20658 					 * Suggestion: MAX(init rexmit time,
20659 					 * tcp->tcp_rto)
20660 					 */
20661 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20662 				}
20663 				break;	/* success; too small */
20664 			}
20665 		}
20666 
20667 		tcph = tcp->tcp_tcph;
20668 
20669 		/*
20670 		 * The reason to adjust len here is that we need to set flags
20671 		 * and calculate checksum.
20672 		 */
20673 		if (do_lso_send)
20674 			len = lso_usable;
20675 
20676 		*usable -= len; /* Approximate - can be adjusted later */
20677 		if (*usable > 0)
20678 			tcph->th_flags[0] = TH_ACK;
20679 		else
20680 			tcph->th_flags[0] = (TH_ACK | TH_PUSH);
20681 
20682 		/*
20683 		 * Prime pump for IP's checksumming on our behalf
20684 		 * Include the adjustment for a source route if any.
20685 		 */
20686 		sum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
20687 		sum = (sum >> 16) + (sum & 0xFFFF);
20688 		U16_TO_ABE16(sum, tcph->th_sum);
20689 
20690 		U32_TO_ABE32(*snxt, tcph->th_seq);
20691 
20692 		/*
20693 		 * Branch off to tcp_xmit_mp() if any of the VALID bits is
20694 		 * set.  For the case when TCP_FSS_VALID is the only valid
20695 		 * bit (normal active close), branch off only when we think
20696 		 * that the FIN flag needs to be set.  Note for this case,
20697 		 * that (snxt + len) may not reflect the actual seg_len,
20698 		 * as len may be further reduced in tcp_xmit_mp().  If len
20699 		 * gets modified, we will end up here again.
20700 		 */
20701 		if (tcp->tcp_valid_bits != 0 &&
20702 		    (tcp->tcp_valid_bits != TCP_FSS_VALID ||
20703 		    ((*snxt + len) == tcp->tcp_fss))) {
20704 			uchar_t		*prev_rptr;
20705 			uint32_t	prev_snxt = tcp->tcp_snxt;
20706 
20707 			if (*tail_unsent == 0) {
20708 				ASSERT((*xmit_tail)->b_cont != NULL);
20709 				*xmit_tail = (*xmit_tail)->b_cont;
20710 				prev_rptr = (*xmit_tail)->b_rptr;
20711 				*tail_unsent = (int)((*xmit_tail)->b_wptr -
20712 				    (*xmit_tail)->b_rptr);
20713 			} else {
20714 				prev_rptr = (*xmit_tail)->b_rptr;
20715 				(*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr -
20716 				    *tail_unsent;
20717 			}
20718 			mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL,
20719 			    *snxt, B_FALSE, (uint32_t *)&len, B_FALSE);
20720 			/* Restore tcp_snxt so we get amount sent right. */
20721 			tcp->tcp_snxt = prev_snxt;
20722 			if (prev_rptr == (*xmit_tail)->b_rptr) {
20723 				/*
20724 				 * If the previous timestamp is still in use,
20725 				 * don't stomp on it.
20726 				 */
20727 				if ((*xmit_tail)->b_next == NULL) {
20728 					(*xmit_tail)->b_prev = local_time;
20729 					(*xmit_tail)->b_next =
20730 					    (mblk_t *)(uintptr_t)(*snxt);
20731 				}
20732 			} else
20733 				(*xmit_tail)->b_rptr = prev_rptr;
20734 
20735 			if (mp == NULL) {
20736 				if (ire != NULL)
20737 					IRE_REFRELE(ire);
20738 				return (-1);
20739 			}
20740 			mp1 = mp->b_cont;
20741 
20742 			if (len <= mss) /* LSO is unusable (!do_lso_send) */
20743 				tcp->tcp_last_sent_len = (ushort_t)len;
20744 			while (mp1->b_cont) {
20745 				*xmit_tail = (*xmit_tail)->b_cont;
20746 				(*xmit_tail)->b_prev = local_time;
20747 				(*xmit_tail)->b_next =
20748 				    (mblk_t *)(uintptr_t)(*snxt);
20749 				mp1 = mp1->b_cont;
20750 			}
20751 			*snxt += len;
20752 			*tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr;
20753 			BUMP_LOCAL(tcp->tcp_obsegs);
20754 			BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
20755 			UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
20756 			tcp_send_data(tcp, q, mp);
20757 			continue;
20758 		}
20759 
20760 		*snxt += len;	/* Adjust later if we don't send all of len */
20761 		BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
20762 		UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
20763 
20764 		if (*tail_unsent) {
20765 			/* Are the bytes above us in flight? */
20766 			rptr = (*xmit_tail)->b_wptr - *tail_unsent;
20767 			if (rptr != (*xmit_tail)->b_rptr) {
20768 				*tail_unsent -= len;
20769 				if (len <= mss) /* LSO is unusable */
20770 					tcp->tcp_last_sent_len = (ushort_t)len;
20771 				len += tcp_hdr_len;
20772 				if (tcp->tcp_ipversion == IPV4_VERSION)
20773 					tcp->tcp_ipha->ipha_length = htons(len);
20774 				else
20775 					tcp->tcp_ip6h->ip6_plen =
20776 					    htons(len -
20777 					    ((char *)&tcp->tcp_ip6h[1] -
20778 					    tcp->tcp_iphc));
20779 				mp = dupb(*xmit_tail);
20780 				if (mp == NULL) {
20781 					if (ire != NULL)
20782 						IRE_REFRELE(ire);
20783 					return (-1);	/* out_of_mem */
20784 				}
20785 				mp->b_rptr = rptr;
20786 				/*
20787 				 * If the old timestamp is no longer in use,
20788 				 * sample a new timestamp now.
20789 				 */
20790 				if ((*xmit_tail)->b_next == NULL) {
20791 					(*xmit_tail)->b_prev = local_time;
20792 					(*xmit_tail)->b_next =
20793 					    (mblk_t *)(uintptr_t)(*snxt-len);
20794 				}
20795 				goto must_alloc;
20796 			}
20797 		} else {
20798 			*xmit_tail = (*xmit_tail)->b_cont;
20799 			ASSERT((uintptr_t)((*xmit_tail)->b_wptr -
20800 			    (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX);
20801 			*tail_unsent = (int)((*xmit_tail)->b_wptr -
20802 			    (*xmit_tail)->b_rptr);
20803 		}
20804 
20805 		(*xmit_tail)->b_prev = local_time;
20806 		(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len);
20807 
20808 		*tail_unsent -= len;
20809 		if (len <= mss) /* LSO is unusable (!do_lso_send) */
20810 			tcp->tcp_last_sent_len = (ushort_t)len;
20811 
20812 		len += tcp_hdr_len;
20813 		if (tcp->tcp_ipversion == IPV4_VERSION)
20814 			tcp->tcp_ipha->ipha_length = htons(len);
20815 		else
20816 			tcp->tcp_ip6h->ip6_plen = htons(len -
20817 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
20818 
20819 		mp = dupb(*xmit_tail);
20820 		if (mp == NULL) {
20821 			if (ire != NULL)
20822 				IRE_REFRELE(ire);
20823 			return (-1);	/* out_of_mem */
20824 		}
20825 
20826 		len = tcp_hdr_len;
20827 		/*
20828 		 * There are four reasons to allocate a new hdr mblk:
20829 		 *  1) The bytes above us are in use by another packet
20830 		 *  2) We don't have good alignment
20831 		 *  3) The mblk is being shared
20832 		 *  4) We don't have enough room for a header
20833 		 */
20834 		rptr = mp->b_rptr - len;
20835 		if (!OK_32PTR(rptr) ||
20836 		    ((db = mp->b_datap), db->db_ref != 2) ||
20837 		    rptr < db->db_base + ire_fp_mp_len) {
20838 			/* NOTE: we assume allocb returns an OK_32PTR */
20839 
20840 		must_alloc:;
20841 			mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
20842 			    tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED);
20843 			if (mp1 == NULL) {
20844 				freemsg(mp);
20845 				if (ire != NULL)
20846 					IRE_REFRELE(ire);
20847 				return (-1);	/* out_of_mem */
20848 			}
20849 			mp1->b_cont = mp;
20850 			mp = mp1;
20851 			/* Leave room for Link Level header */
20852 			len = tcp_hdr_len;
20853 			rptr =
20854 			    &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len];
20855 			mp->b_wptr = &rptr[len];
20856 		}
20857 
20858 		/*
20859 		 * Fill in the header using the template header, and add
20860 		 * options such as time-stamp, ECN and/or SACK, as needed.
20861 		 */
20862 		tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk);
20863 
20864 		mp->b_rptr = rptr;
20865 
20866 		if (*tail_unsent) {
20867 			int spill = *tail_unsent;
20868 
20869 			mp1 = mp->b_cont;
20870 			if (mp1 == NULL)
20871 				mp1 = mp;
20872 
20873 			/*
20874 			 * If we're a little short, tack on more mblks until
20875 			 * there is no more spillover.
20876 			 */
20877 			while (spill < 0) {
20878 				mblk_t *nmp;
20879 				int nmpsz;
20880 
20881 				nmp = (*xmit_tail)->b_cont;
20882 				nmpsz = MBLKL(nmp);
20883 
20884 				/*
20885 				 * Excess data in mblk; can we split it?
20886 				 * If MDT is enabled for the connection,
20887 				 * keep on splitting as this is a transient
20888 				 * send path.
20889 				 */
20890 				if (!do_lso_send && !tcp->tcp_mdt &&
20891 				    (spill + nmpsz > 0)) {
20892 					/*
20893 					 * Don't split if stream head was
20894 					 * told to break up larger writes
20895 					 * into smaller ones.
20896 					 */
20897 					if (tcp->tcp_maxpsz > 0)
20898 						break;
20899 
20900 					/*
20901 					 * Next mblk is less than SMSS/2
20902 					 * rounded up to nearest 64-byte;
20903 					 * let it get sent as part of the
20904 					 * next segment.
20905 					 */
20906 					if (tcp->tcp_localnet &&
20907 					    !tcp->tcp_cork &&
20908 					    (nmpsz < roundup((mss >> 1), 64)))
20909 						break;
20910 				}
20911 
20912 				*xmit_tail = nmp;
20913 				ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX);
20914 				/* Stash for rtt use later */
20915 				(*xmit_tail)->b_prev = local_time;
20916 				(*xmit_tail)->b_next =
20917 				    (mblk_t *)(uintptr_t)(*snxt - len);
20918 				mp1->b_cont = dupb(*xmit_tail);
20919 				mp1 = mp1->b_cont;
20920 
20921 				spill += nmpsz;
20922 				if (mp1 == NULL) {
20923 					*tail_unsent = spill;
20924 					freemsg(mp);
20925 					if (ire != NULL)
20926 						IRE_REFRELE(ire);
20927 					return (-1);	/* out_of_mem */
20928 				}
20929 			}
20930 
20931 			/* Trim back any surplus on the last mblk */
20932 			if (spill >= 0) {
20933 				mp1->b_wptr -= spill;
20934 				*tail_unsent = spill;
20935 			} else {
20936 				/*
20937 				 * We did not send everything we could in
20938 				 * order to remain within the b_cont limit.
20939 				 */
20940 				*usable -= spill;
20941 				*snxt += spill;
20942 				tcp->tcp_last_sent_len += spill;
20943 				UPDATE_MIB(&tcps->tcps_mib,
20944 				    tcpOutDataBytes, spill);
20945 				/*
20946 				 * Adjust the checksum
20947 				 */
20948 				tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
20949 				sum += spill;
20950 				sum = (sum >> 16) + (sum & 0xFFFF);
20951 				U16_TO_ABE16(sum, tcph->th_sum);
20952 				if (tcp->tcp_ipversion == IPV4_VERSION) {
20953 					sum = ntohs(
20954 					    ((ipha_t *)rptr)->ipha_length) +
20955 					    spill;
20956 					((ipha_t *)rptr)->ipha_length =
20957 					    htons(sum);
20958 				} else {
20959 					sum = ntohs(
20960 					    ((ip6_t *)rptr)->ip6_plen) +
20961 					    spill;
20962 					((ip6_t *)rptr)->ip6_plen =
20963 					    htons(sum);
20964 				}
20965 				*tail_unsent = 0;
20966 			}
20967 		}
20968 		if (tcp->tcp_ip_forward_progress) {
20969 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
20970 			*(uint32_t *)mp->b_rptr  |= IP_FORWARD_PROG;
20971 			tcp->tcp_ip_forward_progress = B_FALSE;
20972 		}
20973 
20974 		if (do_lso_send) {
20975 			tcp_lsosend_data(tcp, mp, ire, ill, mss,
20976 			    num_lso_seg);
20977 			tcp->tcp_obsegs += num_lso_seg;
20978 
20979 			TCP_STAT(tcps, tcp_lso_times);
20980 			TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg);
20981 		} else {
20982 			tcp_send_data(tcp, q, mp);
20983 			BUMP_LOCAL(tcp->tcp_obsegs);
20984 		}
20985 	}
20986 
20987 	if (ire != NULL)
20988 		IRE_REFRELE(ire);
20989 	return (0);
20990 }
20991 
20992 /* Unlink and return any mblk that looks like it contains a MDT info */
20993 static mblk_t *
20994 tcp_mdt_info_mp(mblk_t *mp)
20995 {
20996 	mblk_t	*prev_mp;
20997 
20998 	for (;;) {
20999 		prev_mp = mp;
21000 		/* no more to process? */
21001 		if ((mp = mp->b_cont) == NULL)
21002 			break;
21003 
21004 		switch (DB_TYPE(mp)) {
21005 		case M_CTL:
21006 			if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE)
21007 				continue;
21008 			ASSERT(prev_mp != NULL);
21009 			prev_mp->b_cont = mp->b_cont;
21010 			mp->b_cont = NULL;
21011 			return (mp);
21012 		default:
21013 			break;
21014 		}
21015 	}
21016 	return (mp);
21017 }
21018 
21019 /* MDT info update routine, called when IP notifies us about MDT */
21020 static void
21021 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first)
21022 {
21023 	boolean_t prev_state;
21024 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21025 
21026 	/*
21027 	 * IP is telling us to abort MDT on this connection?  We know
21028 	 * this because the capability is only turned off when IP
21029 	 * encounters some pathological cases, e.g. link-layer change
21030 	 * where the new driver doesn't support MDT, or in situation
21031 	 * where MDT usage on the link-layer has been switched off.
21032 	 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE
21033 	 * if the link-layer doesn't support MDT, and if it does, it
21034 	 * will indicate that the feature is to be turned on.
21035 	 */
21036 	prev_state = tcp->tcp_mdt;
21037 	tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0);
21038 	if (!tcp->tcp_mdt && !first) {
21039 		TCP_STAT(tcps, tcp_mdt_conn_halted3);
21040 		ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n",
21041 		    (void *)tcp->tcp_connp));
21042 	}
21043 
21044 	/*
21045 	 * We currently only support MDT on simple TCP/{IPv4,IPv6},
21046 	 * so disable MDT otherwise.  The checks are done here
21047 	 * and in tcp_wput_data().
21048 	 */
21049 	if (tcp->tcp_mdt &&
21050 	    (tcp->tcp_ipversion == IPV4_VERSION &&
21051 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
21052 	    (tcp->tcp_ipversion == IPV6_VERSION &&
21053 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN))
21054 		tcp->tcp_mdt = B_FALSE;
21055 
21056 	if (tcp->tcp_mdt) {
21057 		if (mdt_capab->ill_mdt_version != MDT_VERSION_2) {
21058 			cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT "
21059 			    "version (%d), expected version is %d",
21060 			    mdt_capab->ill_mdt_version, MDT_VERSION_2);
21061 			tcp->tcp_mdt = B_FALSE;
21062 			return;
21063 		}
21064 
21065 		/*
21066 		 * We need the driver to be able to handle at least three
21067 		 * spans per packet in order for tcp MDT to be utilized.
21068 		 * The first is for the header portion, while the rest are
21069 		 * needed to handle a packet that straddles across two
21070 		 * virtually non-contiguous buffers; a typical tcp packet
21071 		 * therefore consists of only two spans.  Note that we take
21072 		 * a zero as "don't care".
21073 		 */
21074 		if (mdt_capab->ill_mdt_span_limit > 0 &&
21075 		    mdt_capab->ill_mdt_span_limit < 3) {
21076 			tcp->tcp_mdt = B_FALSE;
21077 			return;
21078 		}
21079 
21080 		/* a zero means driver wants default value */
21081 		tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld,
21082 		    tcps->tcps_mdt_max_pbufs);
21083 		if (tcp->tcp_mdt_max_pld == 0)
21084 			tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs;
21085 
21086 		/* ensure 32-bit alignment */
21087 		tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min,
21088 		    mdt_capab->ill_mdt_hdr_head), 4);
21089 		tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min,
21090 		    mdt_capab->ill_mdt_hdr_tail), 4);
21091 
21092 		if (!first && !prev_state) {
21093 			TCP_STAT(tcps, tcp_mdt_conn_resumed2);
21094 			ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n",
21095 			    (void *)tcp->tcp_connp));
21096 		}
21097 	}
21098 }
21099 
21100 /* Unlink and return any mblk that looks like it contains a LSO info */
21101 static mblk_t *
21102 tcp_lso_info_mp(mblk_t *mp)
21103 {
21104 	mblk_t	*prev_mp;
21105 
21106 	for (;;) {
21107 		prev_mp = mp;
21108 		/* no more to process? */
21109 		if ((mp = mp->b_cont) == NULL)
21110 			break;
21111 
21112 		switch (DB_TYPE(mp)) {
21113 		case M_CTL:
21114 			if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE)
21115 				continue;
21116 			ASSERT(prev_mp != NULL);
21117 			prev_mp->b_cont = mp->b_cont;
21118 			mp->b_cont = NULL;
21119 			return (mp);
21120 		default:
21121 			break;
21122 		}
21123 	}
21124 
21125 	return (mp);
21126 }
21127 
21128 /* LSO info update routine, called when IP notifies us about LSO */
21129 static void
21130 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab)
21131 {
21132 	tcp_stack_t *tcps = tcp->tcp_tcps;
21133 
21134 	/*
21135 	 * IP is telling us to abort LSO on this connection?  We know
21136 	 * this because the capability is only turned off when IP
21137 	 * encounters some pathological cases, e.g. link-layer change
21138 	 * where the new NIC/driver doesn't support LSO, or in situation
21139 	 * where LSO usage on the link-layer has been switched off.
21140 	 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE
21141 	 * if the link-layer doesn't support LSO, and if it does, it
21142 	 * will indicate that the feature is to be turned on.
21143 	 */
21144 	tcp->tcp_lso = (lso_capab->ill_lso_on != 0);
21145 	TCP_STAT(tcps, tcp_lso_enabled);
21146 
21147 	/*
21148 	 * We currently only support LSO on simple TCP/IPv4,
21149 	 * so disable LSO otherwise.  The checks are done here
21150 	 * and in tcp_wput_data().
21151 	 */
21152 	if (tcp->tcp_lso &&
21153 	    (tcp->tcp_ipversion == IPV4_VERSION &&
21154 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
21155 	    (tcp->tcp_ipversion == IPV6_VERSION)) {
21156 		tcp->tcp_lso = B_FALSE;
21157 		TCP_STAT(tcps, tcp_lso_disabled);
21158 	} else {
21159 		tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH,
21160 		    lso_capab->ill_lso_max);
21161 	}
21162 }
21163 
21164 static void
21165 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt)
21166 {
21167 	conn_t *connp = tcp->tcp_connp;
21168 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21169 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
21170 
21171 	ASSERT(ire != NULL);
21172 
21173 	/*
21174 	 * We may be in the fastpath here, and although we essentially do
21175 	 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return,
21176 	 * we try to keep things as brief as possible.  After all, these
21177 	 * are only best-effort checks, and we do more thorough ones prior
21178 	 * to calling tcp_send()/tcp_multisend().
21179 	 */
21180 	if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) &&
21181 	    check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) &&
21182 	    ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) &&
21183 	    !(ire->ire_flags & RTF_MULTIRT) &&
21184 	    !IPP_ENABLED(IPP_LOCAL_OUT, ipst) &&
21185 	    CONN_IS_LSO_MD_FASTPATH(connp)) {
21186 		if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) {
21187 			/* Cache the result */
21188 			connp->conn_lso_ok = B_TRUE;
21189 
21190 			ASSERT(ill->ill_lso_capab != NULL);
21191 			if (!ill->ill_lso_capab->ill_lso_on) {
21192 				ill->ill_lso_capab->ill_lso_on = 1;
21193 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
21194 				    "LSO for interface %s\n", (void *)connp,
21195 				    ill->ill_name));
21196 			}
21197 			tcp_lso_update(tcp, ill->ill_lso_capab);
21198 		} else if (ipst->ips_ip_multidata_outbound &&
21199 		    ILL_MDT_CAPABLE(ill)) {
21200 			/* Cache the result */
21201 			connp->conn_mdt_ok = B_TRUE;
21202 
21203 			ASSERT(ill->ill_mdt_capab != NULL);
21204 			if (!ill->ill_mdt_capab->ill_mdt_on) {
21205 				ill->ill_mdt_capab->ill_mdt_on = 1;
21206 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
21207 				    "MDT for interface %s\n", (void *)connp,
21208 				    ill->ill_name));
21209 			}
21210 			tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE);
21211 		}
21212 	}
21213 
21214 	/*
21215 	 * The goal is to reduce the number of generated tcp segments by
21216 	 * setting the maxpsz multiplier to 0; this will have an affect on
21217 	 * tcp_maxpsz_set().  With this behavior, tcp will pack more data
21218 	 * into each packet, up to SMSS bytes.  Doing this reduces the number
21219 	 * of outbound segments and incoming ACKs, thus allowing for better
21220 	 * network and system performance.  In contrast the legacy behavior
21221 	 * may result in sending less than SMSS size, because the last mblk
21222 	 * for some packets may have more data than needed to make up SMSS,
21223 	 * and the legacy code refused to "split" it.
21224 	 *
21225 	 * We apply the new behavior on following situations:
21226 	 *
21227 	 *   1) Loopback connections,
21228 	 *   2) Connections in which the remote peer is not on local subnet,
21229 	 *   3) Local subnet connections over the bge interface (see below).
21230 	 *
21231 	 * Ideally, we would like this behavior to apply for interfaces other
21232 	 * than bge.  However, doing so would negatively impact drivers which
21233 	 * perform dynamic mapping and unmapping of DMA resources, which are
21234 	 * increased by setting the maxpsz multiplier to 0 (more mblks per
21235 	 * packet will be generated by tcp).  The bge driver does not suffer
21236 	 * from this, as it copies the mblks into pre-mapped buffers, and
21237 	 * therefore does not require more I/O resources than before.
21238 	 *
21239 	 * Otherwise, this behavior is present on all network interfaces when
21240 	 * the destination endpoint is non-local, since reducing the number
21241 	 * of packets in general is good for the network.
21242 	 *
21243 	 * TODO We need to remove this hard-coded conditional for bge once
21244 	 *	a better "self-tuning" mechanism, or a way to comprehend
21245 	 *	the driver transmit strategy is devised.  Until the solution
21246 	 *	is found and well understood, we live with this hack.
21247 	 */
21248 	if (!tcp_static_maxpsz &&
21249 	    (tcp->tcp_loopback || !tcp->tcp_localnet ||
21250 	    (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) {
21251 		/* override the default value */
21252 		tcp->tcp_maxpsz = 0;
21253 
21254 		ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on "
21255 		    "interface %s\n", (void *)connp, tcp->tcp_maxpsz,
21256 		    ill != NULL ? ill->ill_name : ipif_loopback_name));
21257 	}
21258 
21259 	/* set the stream head parameters accordingly */
21260 	(void) tcp_maxpsz_set(tcp, B_TRUE);
21261 }
21262 
21263 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */
21264 static void
21265 tcp_wput_flush(tcp_t *tcp, mblk_t *mp)
21266 {
21267 	uchar_t	fval = *mp->b_rptr;
21268 	mblk_t	*tail;
21269 	queue_t	*q = tcp->tcp_wq;
21270 
21271 	/* TODO: How should flush interact with urgent data? */
21272 	if ((fval & FLUSHW) && tcp->tcp_xmit_head &&
21273 	    !(tcp->tcp_valid_bits & TCP_URG_VALID)) {
21274 		/*
21275 		 * Flush only data that has not yet been put on the wire.  If
21276 		 * we flush data that we have already transmitted, life, as we
21277 		 * know it, may come to an end.
21278 		 */
21279 		tail = tcp->tcp_xmit_tail;
21280 		tail->b_wptr -= tcp->tcp_xmit_tail_unsent;
21281 		tcp->tcp_xmit_tail_unsent = 0;
21282 		tcp->tcp_unsent = 0;
21283 		if (tail->b_wptr != tail->b_rptr)
21284 			tail = tail->b_cont;
21285 		if (tail) {
21286 			mblk_t **excess = &tcp->tcp_xmit_head;
21287 			for (;;) {
21288 				mblk_t *mp1 = *excess;
21289 				if (mp1 == tail)
21290 					break;
21291 				tcp->tcp_xmit_tail = mp1;
21292 				tcp->tcp_xmit_last = mp1;
21293 				excess = &mp1->b_cont;
21294 			}
21295 			*excess = NULL;
21296 			tcp_close_mpp(&tail);
21297 			if (tcp->tcp_snd_zcopy_aware)
21298 				tcp_zcopy_notify(tcp);
21299 		}
21300 		/*
21301 		 * We have no unsent data, so unsent must be less than
21302 		 * tcp_xmit_lowater, so re-enable flow.
21303 		 */
21304 		mutex_enter(&tcp->tcp_non_sq_lock);
21305 		if (tcp->tcp_flow_stopped) {
21306 			tcp_clrqfull(tcp);
21307 		}
21308 		mutex_exit(&tcp->tcp_non_sq_lock);
21309 	}
21310 	/*
21311 	 * TODO: you can't just flush these, you have to increase rwnd for one
21312 	 * thing.  For another, how should urgent data interact?
21313 	 */
21314 	if (fval & FLUSHR) {
21315 		*mp->b_rptr = fval & ~FLUSHW;
21316 		/* XXX */
21317 		qreply(q, mp);
21318 		return;
21319 	}
21320 	freemsg(mp);
21321 }
21322 
21323 /*
21324  * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA
21325  * messages.
21326  */
21327 static void
21328 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp)
21329 {
21330 	mblk_t	*mp1;
21331 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
21332 	STRUCT_HANDLE(strbuf, sb);
21333 	queue_t *q = tcp->tcp_wq;
21334 	int	error;
21335 	uint_t	addrlen;
21336 
21337 	/* Make sure it is one of ours. */
21338 	switch (iocp->ioc_cmd) {
21339 	case TI_GETMYNAME:
21340 	case TI_GETPEERNAME:
21341 		break;
21342 	default:
21343 		CALL_IP_WPUT(tcp->tcp_connp, q, mp);
21344 		return;
21345 	}
21346 	switch (mi_copy_state(q, mp, &mp1)) {
21347 	case -1:
21348 		return;
21349 	case MI_COPY_CASE(MI_COPY_IN, 1):
21350 		break;
21351 	case MI_COPY_CASE(MI_COPY_OUT, 1):
21352 		/* Copy out the strbuf. */
21353 		mi_copyout(q, mp);
21354 		return;
21355 	case MI_COPY_CASE(MI_COPY_OUT, 2):
21356 		/* All done. */
21357 		mi_copy_done(q, mp, 0);
21358 		return;
21359 	default:
21360 		mi_copy_done(q, mp, EPROTO);
21361 		return;
21362 	}
21363 	/* Check alignment of the strbuf */
21364 	if (!OK_32PTR(mp1->b_rptr)) {
21365 		mi_copy_done(q, mp, EINVAL);
21366 		return;
21367 	}
21368 
21369 	STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr);
21370 	addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t);
21371 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
21372 		mi_copy_done(q, mp, EINVAL);
21373 		return;
21374 	}
21375 
21376 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
21377 	if (mp1 == NULL)
21378 		return;
21379 
21380 	switch (iocp->ioc_cmd) {
21381 	case TI_GETMYNAME:
21382 		error = tcp_do_getsockname(tcp, (void *)mp1->b_rptr, &addrlen);
21383 		break;
21384 	case TI_GETPEERNAME:
21385 		error = tcp_do_getpeername(tcp, (void *)mp1->b_rptr, &addrlen);
21386 		break;
21387 	}
21388 
21389 	if (error != 0) {
21390 		mi_copy_done(q, mp, error);
21391 	} else {
21392 		mp1->b_wptr += addrlen;
21393 		STRUCT_FSET(sb, len, addrlen);
21394 
21395 		/* Copy out the address */
21396 		mi_copyout(q, mp);
21397 	}
21398 }
21399 
21400 static void
21401 tcp_disable_direct_sockfs(tcp_t *tcp)
21402 {
21403 #ifdef	_ILP32
21404 	tcp->tcp_acceptor_id = (t_uscalar_t)tcp->tcp_rq;
21405 #else
21406 	tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev;
21407 #endif
21408 	/*
21409 	 * Insert this socket into the acceptor hash.
21410 	 * We might need it for T_CONN_RES message
21411 	 */
21412 	tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
21413 
21414 	if (tcp->tcp_fused) {
21415 		/*
21416 		 * This is a fused loopback tcp; disable
21417 		 * read-side synchronous streams interface
21418 		 * and drain any queued data.  It is okay
21419 		 * to do this for non-synchronous streams
21420 		 * fused tcp as well.
21421 		 */
21422 		tcp_fuse_disable_pair(tcp, B_FALSE);
21423 	}
21424 	tcp->tcp_issocket = B_FALSE;
21425 	TCP_STAT(tcp->tcp_tcps, tcp_sock_fallback);
21426 }
21427 
21428 /*
21429  * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL
21430  * messages.
21431  */
21432 /* ARGSUSED */
21433 static void
21434 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2)
21435 {
21436 	conn_t 	*connp = (conn_t *)arg;
21437 	tcp_t	*tcp = connp->conn_tcp;
21438 	queue_t	*q = tcp->tcp_wq;
21439 	struct iocblk	*iocp;
21440 
21441 	ASSERT(DB_TYPE(mp) == M_IOCTL);
21442 	/*
21443 	 * Try and ASSERT the minimum possible references on the
21444 	 * conn early enough. Since we are executing on write side,
21445 	 * the connection is obviously not detached and that means
21446 	 * there is a ref each for TCP and IP. Since we are behind
21447 	 * the squeue, the minimum references needed are 3. If the
21448 	 * conn is in classifier hash list, there should be an
21449 	 * extra ref for that (we check both the possibilities).
21450 	 */
21451 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
21452 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
21453 
21454 	iocp = (struct iocblk *)mp->b_rptr;
21455 	switch (iocp->ioc_cmd) {
21456 	case TCP_IOC_DEFAULT_Q:
21457 		/* Wants to be the default wq. */
21458 		if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
21459 			iocp->ioc_error = EPERM;
21460 			iocp->ioc_count = 0;
21461 			mp->b_datap->db_type = M_IOCACK;
21462 			qreply(q, mp);
21463 			return;
21464 		}
21465 		tcp_def_q_set(tcp, mp);
21466 		return;
21467 	case _SIOCSOCKFALLBACK:
21468 		/*
21469 		 * Either sockmod is about to be popped and the socket
21470 		 * would now be treated as a plain stream, or a module
21471 		 * is about to be pushed so we could no longer use read-
21472 		 * side synchronous streams for fused loopback tcp.
21473 		 * Drain any queued data and disable direct sockfs
21474 		 * interface from now on.
21475 		 */
21476 		if (!tcp->tcp_issocket) {
21477 			DB_TYPE(mp) = M_IOCNAK;
21478 			iocp->ioc_error = EINVAL;
21479 		} else {
21480 			tcp_disable_direct_sockfs(tcp);
21481 			DB_TYPE(mp) = M_IOCACK;
21482 			iocp->ioc_error = 0;
21483 		}
21484 		iocp->ioc_count = 0;
21485 		iocp->ioc_rval = 0;
21486 		qreply(q, mp);
21487 		return;
21488 	}
21489 	CALL_IP_WPUT(connp, q, mp);
21490 }
21491 
21492 /*
21493  * This routine is called by tcp_wput() to handle all TPI requests.
21494  */
21495 /* ARGSUSED */
21496 static void
21497 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2)
21498 {
21499 	conn_t 	*connp = (conn_t *)arg;
21500 	tcp_t	*tcp = connp->conn_tcp;
21501 	union T_primitives *tprim = (union T_primitives *)mp->b_rptr;
21502 	uchar_t *rptr;
21503 	t_scalar_t type;
21504 	cred_t *cr;
21505 
21506 	/*
21507 	 * Try and ASSERT the minimum possible references on the
21508 	 * conn early enough. Since we are executing on write side,
21509 	 * the connection is obviously not detached and that means
21510 	 * there is a ref each for TCP and IP. Since we are behind
21511 	 * the squeue, the minimum references needed are 3. If the
21512 	 * conn is in classifier hash list, there should be an
21513 	 * extra ref for that (we check both the possibilities).
21514 	 */
21515 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
21516 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
21517 
21518 	rptr = mp->b_rptr;
21519 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
21520 	if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
21521 		type = ((union T_primitives *)rptr)->type;
21522 		if (type == T_EXDATA_REQ) {
21523 			tcp_output_urgent(connp, mp->b_cont, arg2);
21524 			freeb(mp);
21525 		} else if (type != T_DATA_REQ) {
21526 			goto non_urgent_data;
21527 		} else {
21528 			/* TODO: options, flags, ... from user */
21529 			/* Set length to zero for reclamation below */
21530 			tcp_wput_data(tcp, mp->b_cont, B_TRUE);
21531 			freeb(mp);
21532 		}
21533 		return;
21534 	} else {
21535 		if (tcp->tcp_debug) {
21536 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
21537 			    "tcp_wput_proto, dropping one...");
21538 		}
21539 		freemsg(mp);
21540 		return;
21541 	}
21542 
21543 non_urgent_data:
21544 
21545 	switch ((int)tprim->type) {
21546 	case T_SSL_PROXY_BIND_REQ:	/* an SSL proxy endpoint bind request */
21547 		/*
21548 		 * save the kssl_ent_t from the next block, and convert this
21549 		 * back to a normal bind_req.
21550 		 */
21551 		if (mp->b_cont != NULL) {
21552 			ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t));
21553 
21554 			if (tcp->tcp_kssl_ent != NULL) {
21555 				kssl_release_ent(tcp->tcp_kssl_ent, NULL,
21556 				    KSSL_NO_PROXY);
21557 				tcp->tcp_kssl_ent = NULL;
21558 			}
21559 			bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent,
21560 			    sizeof (kssl_ent_t));
21561 			kssl_hold_ent(tcp->tcp_kssl_ent);
21562 			freemsg(mp->b_cont);
21563 			mp->b_cont = NULL;
21564 		}
21565 		tprim->type = T_BIND_REQ;
21566 
21567 	/* FALLTHROUGH */
21568 	case O_T_BIND_REQ:	/* bind request */
21569 	case T_BIND_REQ:	/* new semantics bind request */
21570 		tcp_tpi_bind(tcp, mp);
21571 		break;
21572 	case T_UNBIND_REQ:	/* unbind request */
21573 		tcp_tpi_unbind(tcp, mp);
21574 		break;
21575 	case O_T_CONN_RES:	/* old connection response XXX */
21576 	case T_CONN_RES:	/* connection response */
21577 		tcp_tli_accept(tcp, mp);
21578 		break;
21579 	case T_CONN_REQ:	/* connection request */
21580 		tcp_tpi_connect(tcp, mp);
21581 		break;
21582 	case T_DISCON_REQ:	/* disconnect request */
21583 		tcp_disconnect(tcp, mp);
21584 		break;
21585 	case T_CAPABILITY_REQ:
21586 		tcp_capability_req(tcp, mp);	/* capability request */
21587 		break;
21588 	case T_INFO_REQ:	/* information request */
21589 		tcp_info_req(tcp, mp);
21590 		break;
21591 	case T_SVR4_OPTMGMT_REQ:	/* manage options req */
21592 	case T_OPTMGMT_REQ:
21593 		/*
21594 		 * Note:  no support for snmpcom_req() through new
21595 		 * T_OPTMGMT_REQ. See comments in ip.c
21596 		 */
21597 
21598 		/*
21599 		 * All Solaris components should pass a db_credp
21600 		 * for this TPI message, hence we ASSERT.
21601 		 * But in case there is some other M_PROTO that looks
21602 		 * like a TPI message sent by some other kernel
21603 		 * component, we check and return an error.
21604 		 */
21605 		cr = msg_getcred(mp, NULL);
21606 		ASSERT(cr != NULL);
21607 		if (cr == NULL) {
21608 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
21609 			return;
21610 		}
21611 		/*
21612 		 * If EINPROGRESS is returned, the request has been queued
21613 		 * for subsequent processing by ip_restart_optmgmt(), which
21614 		 * will do the CONN_DEC_REF().
21615 		 */
21616 		CONN_INC_REF(connp);
21617 		if ((int)tprim->type == T_SVR4_OPTMGMT_REQ) {
21618 			if (svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj,
21619 			    B_TRUE) != EINPROGRESS) {
21620 				CONN_DEC_REF(connp);
21621 			}
21622 		} else {
21623 			if (tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj,
21624 			    B_TRUE) != EINPROGRESS) {
21625 				CONN_DEC_REF(connp);
21626 			}
21627 		}
21628 		break;
21629 
21630 	case T_UNITDATA_REQ:	/* unitdata request */
21631 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
21632 		break;
21633 	case T_ORDREL_REQ:	/* orderly release req */
21634 		freemsg(mp);
21635 
21636 		if (tcp->tcp_fused)
21637 			tcp_unfuse(tcp);
21638 
21639 		if (tcp_xmit_end(tcp) != 0) {
21640 			/*
21641 			 * We were crossing FINs and got a reset from
21642 			 * the other side. Just ignore it.
21643 			 */
21644 			if (tcp->tcp_debug) {
21645 				(void) strlog(TCP_MOD_ID, 0, 1,
21646 				    SL_ERROR|SL_TRACE,
21647 				    "tcp_wput_proto, T_ORDREL_REQ out of "
21648 				    "state %s",
21649 				    tcp_display(tcp, NULL,
21650 				    DISP_ADDR_AND_PORT));
21651 			}
21652 		}
21653 		break;
21654 	case T_ADDR_REQ:
21655 		tcp_addr_req(tcp, mp);
21656 		break;
21657 	default:
21658 		if (tcp->tcp_debug) {
21659 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
21660 			    "tcp_wput_proto, bogus TPI msg, type %d",
21661 			    tprim->type);
21662 		}
21663 		/*
21664 		 * We used to M_ERROR.  Sending TNOTSUPPORT gives the user
21665 		 * to recover.
21666 		 */
21667 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
21668 		break;
21669 	}
21670 }
21671 
21672 /*
21673  * The TCP write service routine should never be called...
21674  */
21675 /* ARGSUSED */
21676 static void
21677 tcp_wsrv(queue_t *q)
21678 {
21679 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
21680 
21681 	TCP_STAT(tcps, tcp_wsrv_called);
21682 }
21683 
21684 /* Non overlapping byte exchanger */
21685 static void
21686 tcp_xchg(uchar_t *a, uchar_t *b, int len)
21687 {
21688 	uchar_t	uch;
21689 
21690 	while (len-- > 0) {
21691 		uch = a[len];
21692 		a[len] = b[len];
21693 		b[len] = uch;
21694 	}
21695 }
21696 
21697 /*
21698  * Send out a control packet on the tcp connection specified.  This routine
21699  * is typically called where we need a simple ACK or RST generated.
21700  */
21701 static void
21702 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl)
21703 {
21704 	uchar_t		*rptr;
21705 	tcph_t		*tcph;
21706 	ipha_t		*ipha = NULL;
21707 	ip6_t		*ip6h = NULL;
21708 	uint32_t	sum;
21709 	int		tcp_hdr_len;
21710 	int		tcp_ip_hdr_len;
21711 	mblk_t		*mp;
21712 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21713 
21714 	/*
21715 	 * Save sum for use in source route later.
21716 	 */
21717 	ASSERT(tcp != NULL);
21718 	sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
21719 	tcp_hdr_len = tcp->tcp_hdr_len;
21720 	tcp_ip_hdr_len = tcp->tcp_ip_hdr_len;
21721 
21722 	/* If a text string is passed in with the request, pass it to strlog. */
21723 	if (str != NULL && tcp->tcp_debug) {
21724 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
21725 		    "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x",
21726 		    str, seq, ack, ctl);
21727 	}
21728 	mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra,
21729 	    BPRI_MED);
21730 	if (mp == NULL) {
21731 		return;
21732 	}
21733 	rptr = &mp->b_rptr[tcps->tcps_wroff_xtra];
21734 	mp->b_rptr = rptr;
21735 	mp->b_wptr = &rptr[tcp_hdr_len];
21736 	bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len);
21737 
21738 	if (tcp->tcp_ipversion == IPV4_VERSION) {
21739 		ipha = (ipha_t *)rptr;
21740 		ipha->ipha_length = htons(tcp_hdr_len);
21741 	} else {
21742 		ip6h = (ip6_t *)rptr;
21743 		ASSERT(tcp != NULL);
21744 		ip6h->ip6_plen = htons(tcp->tcp_hdr_len -
21745 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
21746 	}
21747 	tcph = (tcph_t *)&rptr[tcp_ip_hdr_len];
21748 	tcph->th_flags[0] = (uint8_t)ctl;
21749 	if (ctl & TH_RST) {
21750 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
21751 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
21752 		/*
21753 		 * Don't send TSopt w/ TH_RST packets per RFC 1323.
21754 		 */
21755 		if (tcp->tcp_snd_ts_ok &&
21756 		    tcp->tcp_state > TCPS_SYN_SENT) {
21757 			mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN];
21758 			*(mp->b_wptr) = TCPOPT_EOL;
21759 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21760 				ipha->ipha_length = htons(tcp_hdr_len -
21761 				    TCPOPT_REAL_TS_LEN);
21762 			} else {
21763 				ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) -
21764 				    TCPOPT_REAL_TS_LEN);
21765 			}
21766 			tcph->th_offset_and_rsrvd[0] -= (3 << 4);
21767 			sum -= TCPOPT_REAL_TS_LEN;
21768 		}
21769 	}
21770 	if (ctl & TH_ACK) {
21771 		if (tcp->tcp_snd_ts_ok) {
21772 			U32_TO_BE32(lbolt,
21773 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
21774 			U32_TO_BE32(tcp->tcp_ts_recent,
21775 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
21776 		}
21777 
21778 		/* Update the latest receive window size in TCP header. */
21779 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
21780 		    tcph->th_win);
21781 		tcp->tcp_rack = ack;
21782 		tcp->tcp_rack_cnt = 0;
21783 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
21784 	}
21785 	BUMP_LOCAL(tcp->tcp_obsegs);
21786 	U32_TO_BE32(seq, tcph->th_seq);
21787 	U32_TO_BE32(ack, tcph->th_ack);
21788 	/*
21789 	 * Include the adjustment for a source route if any.
21790 	 */
21791 	sum = (sum >> 16) + (sum & 0xFFFF);
21792 	U16_TO_BE16(sum, tcph->th_sum);
21793 	tcp_send_data(tcp, tcp->tcp_wq, mp);
21794 }
21795 
21796 /*
21797  * If this routine returns B_TRUE, TCP can generate a RST in response
21798  * to a segment.  If it returns B_FALSE, TCP should not respond.
21799  */
21800 static boolean_t
21801 tcp_send_rst_chk(tcp_stack_t *tcps)
21802 {
21803 	clock_t	now;
21804 
21805 	/*
21806 	 * TCP needs to protect itself from generating too many RSTs.
21807 	 * This can be a DoS attack by sending us random segments
21808 	 * soliciting RSTs.
21809 	 *
21810 	 * What we do here is to have a limit of tcp_rst_sent_rate RSTs
21811 	 * in each 1 second interval.  In this way, TCP still generate
21812 	 * RSTs in normal cases but when under attack, the impact is
21813 	 * limited.
21814 	 */
21815 	if (tcps->tcps_rst_sent_rate_enabled != 0) {
21816 		now = lbolt;
21817 		/* lbolt can wrap around. */
21818 		if ((tcps->tcps_last_rst_intrvl > now) ||
21819 		    (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) >
21820 		    1*SECONDS)) {
21821 			tcps->tcps_last_rst_intrvl = now;
21822 			tcps->tcps_rst_cnt = 1;
21823 		} else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) {
21824 			return (B_FALSE);
21825 		}
21826 	}
21827 	return (B_TRUE);
21828 }
21829 
21830 /*
21831  * Send down the advice IP ioctl to tell IP to mark an IRE temporary.
21832  */
21833 static void
21834 tcp_ip_ire_mark_advice(tcp_t *tcp)
21835 {
21836 	mblk_t *mp;
21837 	ipic_t *ipic;
21838 
21839 	if (tcp->tcp_ipversion == IPV4_VERSION) {
21840 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
21841 		    &ipic);
21842 	} else {
21843 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
21844 		    &ipic);
21845 	}
21846 	if (mp == NULL)
21847 		return;
21848 	ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
21849 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
21850 }
21851 
21852 /*
21853  * Return an IP advice ioctl mblk and set ipic to be the pointer
21854  * to the advice structure.
21855  */
21856 static mblk_t *
21857 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic)
21858 {
21859 	struct iocblk *ioc;
21860 	mblk_t *mp, *mp1;
21861 
21862 	mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI);
21863 	if (mp == NULL)
21864 		return (NULL);
21865 	bzero(mp->b_rptr, sizeof (ipic_t) + addr_len);
21866 	*ipic = (ipic_t *)mp->b_rptr;
21867 	(*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY;
21868 	(*ipic)->ipic_addr_offset = sizeof (ipic_t);
21869 
21870 	bcopy(addr, *ipic + 1, addr_len);
21871 
21872 	(*ipic)->ipic_addr_length = addr_len;
21873 	mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len];
21874 
21875 	mp1 = mkiocb(IP_IOCTL);
21876 	if (mp1 == NULL) {
21877 		freemsg(mp);
21878 		return (NULL);
21879 	}
21880 	mp1->b_cont = mp;
21881 	ioc = (struct iocblk *)mp1->b_rptr;
21882 	ioc->ioc_count = sizeof (ipic_t) + addr_len;
21883 
21884 	return (mp1);
21885 }
21886 
21887 /*
21888  * Generate a reset based on an inbound packet, connp is set by caller
21889  * when RST is in response to an unexpected inbound packet for which
21890  * there is active tcp state in the system.
21891  *
21892  * IPSEC NOTE : Try to send the reply with the same protection as it came
21893  * in.  We still have the ipsec_mp that the packet was attached to. Thus
21894  * the packet will go out at the same level of protection as it came in by
21895  * converting the IPSEC_IN to IPSEC_OUT.
21896  */
21897 static void
21898 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq,
21899     uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid,
21900     tcp_stack_t *tcps, conn_t *connp)
21901 {
21902 	ipha_t		*ipha = NULL;
21903 	ip6_t		*ip6h = NULL;
21904 	ushort_t	len;
21905 	tcph_t		*tcph;
21906 	int		i;
21907 	mblk_t		*ipsec_mp;
21908 	boolean_t	mctl_present;
21909 	ipic_t		*ipic;
21910 	ipaddr_t	v4addr;
21911 	in6_addr_t	v6addr;
21912 	int		addr_len;
21913 	void		*addr;
21914 	queue_t		*q = tcps->tcps_g_q;
21915 	tcp_t		*tcp;
21916 	cred_t		*cr;
21917 	mblk_t		*nmp;
21918 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
21919 
21920 	if (tcps->tcps_g_q == NULL) {
21921 		/*
21922 		 * For non-zero stackids the default queue isn't created
21923 		 * until the first open, thus there can be a need to send
21924 		 * a reset before then. But we can't do that, hence we just
21925 		 * drop the packet. Later during boot, when the default queue
21926 		 * has been setup, a retransmitted packet from the peer
21927 		 * will result in a reset.
21928 		 */
21929 		ASSERT(tcps->tcps_netstack->netstack_stackid !=
21930 		    GLOBAL_NETSTACKID);
21931 		freemsg(mp);
21932 		return;
21933 	}
21934 
21935 	if (connp != NULL)
21936 		tcp = connp->conn_tcp;
21937 	else
21938 		tcp = Q_TO_TCP(q);
21939 
21940 	if (!tcp_send_rst_chk(tcps)) {
21941 		tcps->tcps_rst_unsent++;
21942 		freemsg(mp);
21943 		return;
21944 	}
21945 
21946 	if (mp->b_datap->db_type == M_CTL) {
21947 		ipsec_mp = mp;
21948 		mp = mp->b_cont;
21949 		mctl_present = B_TRUE;
21950 	} else {
21951 		ipsec_mp = mp;
21952 		mctl_present = B_FALSE;
21953 	}
21954 
21955 	if (str && q && tcps->tcps_dbg) {
21956 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
21957 		    "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, "
21958 		    "flags 0x%x",
21959 		    str, seq, ack, ctl);
21960 	}
21961 	if (mp->b_datap->db_ref != 1) {
21962 		mblk_t *mp1 = copyb(mp);
21963 		freemsg(mp);
21964 		mp = mp1;
21965 		if (!mp) {
21966 			if (mctl_present)
21967 				freeb(ipsec_mp);
21968 			return;
21969 		} else {
21970 			if (mctl_present) {
21971 				ipsec_mp->b_cont = mp;
21972 			} else {
21973 				ipsec_mp = mp;
21974 			}
21975 		}
21976 	} else if (mp->b_cont) {
21977 		freemsg(mp->b_cont);
21978 		mp->b_cont = NULL;
21979 	}
21980 	/*
21981 	 * We skip reversing source route here.
21982 	 * (for now we replace all IP options with EOL)
21983 	 */
21984 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
21985 		ipha = (ipha_t *)mp->b_rptr;
21986 		for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++)
21987 			mp->b_rptr[i] = IPOPT_EOL;
21988 		/*
21989 		 * Make sure that src address isn't flagrantly invalid.
21990 		 * Not all broadcast address checking for the src address
21991 		 * is possible, since we don't know the netmask of the src
21992 		 * addr.  No check for destination address is done, since
21993 		 * IP will not pass up a packet with a broadcast dest
21994 		 * address to TCP.  Similar checks are done below for IPv6.
21995 		 */
21996 		if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST ||
21997 		    CLASSD(ipha->ipha_src)) {
21998 			freemsg(ipsec_mp);
21999 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
22000 			return;
22001 		}
22002 	} else {
22003 		ip6h = (ip6_t *)mp->b_rptr;
22004 
22005 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) ||
22006 		    IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) {
22007 			freemsg(ipsec_mp);
22008 			BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards);
22009 			return;
22010 		}
22011 
22012 		/* Remove any extension headers assuming partial overlay */
22013 		if (ip_hdr_len > IPV6_HDR_LEN) {
22014 			uint8_t *to;
22015 
22016 			to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN;
22017 			ovbcopy(ip6h, to, IPV6_HDR_LEN);
22018 			mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN;
22019 			ip_hdr_len = IPV6_HDR_LEN;
22020 			ip6h = (ip6_t *)mp->b_rptr;
22021 			ip6h->ip6_nxt = IPPROTO_TCP;
22022 		}
22023 	}
22024 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
22025 	if (tcph->th_flags[0] & TH_RST) {
22026 		freemsg(ipsec_mp);
22027 		return;
22028 	}
22029 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
22030 	len = ip_hdr_len + sizeof (tcph_t);
22031 	mp->b_wptr = &mp->b_rptr[len];
22032 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22033 		ipha->ipha_length = htons(len);
22034 		/* Swap addresses */
22035 		v4addr = ipha->ipha_src;
22036 		ipha->ipha_src = ipha->ipha_dst;
22037 		ipha->ipha_dst = v4addr;
22038 		ipha->ipha_ident = 0;
22039 		ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
22040 		addr_len = IP_ADDR_LEN;
22041 		addr = &v4addr;
22042 	} else {
22043 		/* No ip6i_t in this case */
22044 		ip6h->ip6_plen = htons(len - IPV6_HDR_LEN);
22045 		/* Swap addresses */
22046 		v6addr = ip6h->ip6_src;
22047 		ip6h->ip6_src = ip6h->ip6_dst;
22048 		ip6h->ip6_dst = v6addr;
22049 		ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit;
22050 		addr_len = IPV6_ADDR_LEN;
22051 		addr = &v6addr;
22052 	}
22053 	tcp_xchg(tcph->th_fport, tcph->th_lport, 2);
22054 	U32_TO_BE32(ack, tcph->th_ack);
22055 	U32_TO_BE32(seq, tcph->th_seq);
22056 	U16_TO_BE16(0, tcph->th_win);
22057 	U16_TO_BE16(sizeof (tcph_t), tcph->th_sum);
22058 	tcph->th_flags[0] = (uint8_t)ctl;
22059 	if (ctl & TH_RST) {
22060 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
22061 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22062 	}
22063 
22064 	/* IP trusts us to set up labels when required. */
22065 	if (is_system_labeled() && (cr = msg_getcred(mp, NULL)) != NULL &&
22066 	    crgetlabel(cr) != NULL) {
22067 		int err;
22068 
22069 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION)
22070 			err = tsol_check_label(cr, &mp,
22071 			    tcp->tcp_connp->conn_mac_exempt,
22072 			    tcps->tcps_netstack->netstack_ip);
22073 		else
22074 			err = tsol_check_label_v6(cr, &mp,
22075 			    tcp->tcp_connp->conn_mac_exempt,
22076 			    tcps->tcps_netstack->netstack_ip);
22077 		if (mctl_present)
22078 			ipsec_mp->b_cont = mp;
22079 		else
22080 			ipsec_mp = mp;
22081 		if (err != 0) {
22082 			freemsg(ipsec_mp);
22083 			return;
22084 		}
22085 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22086 			ipha = (ipha_t *)mp->b_rptr;
22087 		} else {
22088 			ip6h = (ip6_t *)mp->b_rptr;
22089 		}
22090 	}
22091 
22092 	if (mctl_present) {
22093 		ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
22094 
22095 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
22096 		if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) {
22097 			return;
22098 		}
22099 	}
22100 	if (zoneid == ALL_ZONES)
22101 		zoneid = GLOBAL_ZONEID;
22102 
22103 	/* Add the zoneid so ip_output routes it properly */
22104 	if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) {
22105 		freemsg(ipsec_mp);
22106 		return;
22107 	}
22108 	ipsec_mp = nmp;
22109 
22110 	/*
22111 	 * NOTE:  one might consider tracing a TCP packet here, but
22112 	 * this function has no active TCP state and no tcp structure
22113 	 * that has a trace buffer.  If we traced here, we would have
22114 	 * to keep a local trace buffer in tcp_record_trace().
22115 	 *
22116 	 * TSol note: The mblk that contains the incoming packet was
22117 	 * reused by tcp_xmit_listener_reset, so it already contains
22118 	 * the right credentials and we don't need to call mblk_setcred.
22119 	 * Also the conn's cred is not right since it is associated
22120 	 * with tcps_g_q.
22121 	 */
22122 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp);
22123 
22124 	/*
22125 	 * Tell IP to mark the IRE used for this destination temporary.
22126 	 * This way, we can limit our exposure to DoS attack because IP
22127 	 * creates an IRE for each destination.  If there are too many,
22128 	 * the time to do any routing lookup will be extremely long.  And
22129 	 * the lookup can be in interrupt context.
22130 	 *
22131 	 * Note that in normal circumstances, this marking should not
22132 	 * affect anything.  It would be nice if only 1 message is
22133 	 * needed to inform IP that the IRE created for this RST should
22134 	 * not be added to the cache table.  But there is currently
22135 	 * not such communication mechanism between TCP and IP.  So
22136 	 * the best we can do now is to send the advice ioctl to IP
22137 	 * to mark the IRE temporary.
22138 	 */
22139 	if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) {
22140 		ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
22141 		CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22142 	}
22143 }
22144 
22145 /*
22146  * Initiate closedown sequence on an active connection.  (May be called as
22147  * writer.)  Return value zero for OK return, non-zero for error return.
22148  */
22149 static int
22150 tcp_xmit_end(tcp_t *tcp)
22151 {
22152 	ipic_t	*ipic;
22153 	mblk_t	*mp;
22154 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22155 
22156 	if (tcp->tcp_state < TCPS_SYN_RCVD ||
22157 	    tcp->tcp_state > TCPS_CLOSE_WAIT) {
22158 		/*
22159 		 * Invalid state, only states TCPS_SYN_RCVD,
22160 		 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid
22161 		 */
22162 		return (-1);
22163 	}
22164 
22165 	tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent;
22166 	tcp->tcp_valid_bits |= TCP_FSS_VALID;
22167 	/*
22168 	 * If there is nothing more unsent, send the FIN now.
22169 	 * Otherwise, it will go out with the last segment.
22170 	 */
22171 	if (tcp->tcp_unsent == 0) {
22172 		mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
22173 		    tcp->tcp_fss, B_FALSE, NULL, B_FALSE);
22174 
22175 		if (mp) {
22176 			tcp_send_data(tcp, tcp->tcp_wq, mp);
22177 		} else {
22178 			/*
22179 			 * Couldn't allocate msg.  Pretend we got it out.
22180 			 * Wait for rexmit timeout.
22181 			 */
22182 			tcp->tcp_snxt = tcp->tcp_fss + 1;
22183 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
22184 		}
22185 
22186 		/*
22187 		 * If needed, update tcp_rexmit_snxt as tcp_snxt is
22188 		 * changed.
22189 		 */
22190 		if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) {
22191 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
22192 		}
22193 	} else {
22194 		/*
22195 		 * If tcp->tcp_cork is set, then the data will not get sent,
22196 		 * so we have to check that and unset it first.
22197 		 */
22198 		if (tcp->tcp_cork)
22199 			tcp->tcp_cork = B_FALSE;
22200 		tcp_wput_data(tcp, NULL, B_FALSE);
22201 	}
22202 
22203 	/*
22204 	 * If TCP does not get enough samples of RTT or tcp_rtt_updates
22205 	 * is 0, don't update the cache.
22206 	 */
22207 	if (tcps->tcps_rtt_updates == 0 ||
22208 	    tcp->tcp_rtt_update < tcps->tcps_rtt_updates)
22209 		return (0);
22210 
22211 	/*
22212 	 * NOTE: should not update if source routes i.e. if tcp_remote if
22213 	 * different from the destination.
22214 	 */
22215 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22216 		if (tcp->tcp_remote !=  tcp->tcp_ipha->ipha_dst) {
22217 			return (0);
22218 		}
22219 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
22220 		    &ipic);
22221 	} else {
22222 		if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
22223 		    &tcp->tcp_ip6h->ip6_dst))) {
22224 			return (0);
22225 		}
22226 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
22227 		    &ipic);
22228 	}
22229 
22230 	/* Record route attributes in the IRE for use by future connections. */
22231 	if (mp == NULL)
22232 		return (0);
22233 
22234 	/*
22235 	 * We do not have a good algorithm to update ssthresh at this time.
22236 	 * So don't do any update.
22237 	 */
22238 	ipic->ipic_rtt = tcp->tcp_rtt_sa;
22239 	ipic->ipic_rtt_sd = tcp->tcp_rtt_sd;
22240 
22241 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22242 
22243 	return (0);
22244 }
22245 
22246 /* ARGSUSED */
22247 void
22248 tcp_xmit_reset(void *arg, mblk_t *mp, void *arg2)
22249 {
22250 	conn_t *connp = (conn_t *)arg;
22251 	mblk_t *mp1;
22252 	tcp_t *tcp = connp->conn_tcp;
22253 	tcp_xmit_reset_event_t *eventp;
22254 
22255 	ASSERT(mp->b_datap->db_type == M_PROTO &&
22256 	    MBLKL(mp) == sizeof (tcp_xmit_reset_event_t));
22257 
22258 	if (tcp->tcp_state != TCPS_LISTEN) {
22259 		freemsg(mp);
22260 		return;
22261 	}
22262 
22263 	mp1 = mp->b_cont;
22264 	mp->b_cont = NULL;
22265 	eventp = (tcp_xmit_reset_event_t *)mp->b_rptr;
22266 	ASSERT(eventp->tcp_xre_tcps->tcps_netstack ==
22267 	    connp->conn_netstack);
22268 
22269 	tcp_xmit_listeners_reset(mp1, eventp->tcp_xre_iphdrlen,
22270 	    eventp->tcp_xre_zoneid, eventp->tcp_xre_tcps, connp);
22271 	freemsg(mp);
22272 }
22273 
22274 /*
22275  * Generate a "no listener here" RST in response to an "unknown" segment.
22276  * connp is set by caller when RST is in response to an unexpected
22277  * inbound packet for which there is active tcp state in the system.
22278  * Note that we are reusing the incoming mp to construct the outgoing RST.
22279  */
22280 void
22281 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid,
22282     tcp_stack_t *tcps, conn_t *connp)
22283 {
22284 	uchar_t		*rptr;
22285 	uint32_t	seg_len;
22286 	tcph_t		*tcph;
22287 	uint32_t	seg_seq;
22288 	uint32_t	seg_ack;
22289 	uint_t		flags;
22290 	mblk_t		*ipsec_mp;
22291 	ipha_t 		*ipha;
22292 	ip6_t 		*ip6h;
22293 	boolean_t	mctl_present = B_FALSE;
22294 	boolean_t	check = B_TRUE;
22295 	boolean_t	policy_present;
22296 	ipsec_stack_t	*ipss = tcps->tcps_netstack->netstack_ipsec;
22297 
22298 	TCP_STAT(tcps, tcp_no_listener);
22299 
22300 	ipsec_mp = mp;
22301 
22302 	if (mp->b_datap->db_type == M_CTL) {
22303 		ipsec_in_t *ii;
22304 
22305 		mctl_present = B_TRUE;
22306 		mp = mp->b_cont;
22307 
22308 		ii = (ipsec_in_t *)ipsec_mp->b_rptr;
22309 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
22310 		if (ii->ipsec_in_dont_check) {
22311 			check = B_FALSE;
22312 			if (!ii->ipsec_in_secure) {
22313 				freeb(ipsec_mp);
22314 				mctl_present = B_FALSE;
22315 				ipsec_mp = mp;
22316 			}
22317 		}
22318 	}
22319 
22320 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22321 		policy_present = ipss->ipsec_inbound_v4_policy_present;
22322 		ipha = (ipha_t *)mp->b_rptr;
22323 		ip6h = NULL;
22324 	} else {
22325 		policy_present = ipss->ipsec_inbound_v6_policy_present;
22326 		ipha = NULL;
22327 		ip6h = (ip6_t *)mp->b_rptr;
22328 	}
22329 
22330 	if (check && policy_present) {
22331 		/*
22332 		 * The conn_t parameter is NULL because we already know
22333 		 * nobody's home.
22334 		 */
22335 		ipsec_mp = ipsec_check_global_policy(
22336 		    ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present,
22337 		    tcps->tcps_netstack);
22338 		if (ipsec_mp == NULL)
22339 			return;
22340 	}
22341 	if (is_system_labeled() && !tsol_can_reply_error(mp)) {
22342 		DTRACE_PROBE2(
22343 		    tx__ip__log__error__nolistener__tcp,
22344 		    char *, "Could not reply with RST to mp(1)",
22345 		    mblk_t *, mp);
22346 		ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n"));
22347 		freemsg(ipsec_mp);
22348 		return;
22349 	}
22350 
22351 	rptr = mp->b_rptr;
22352 
22353 	tcph = (tcph_t *)&rptr[ip_hdr_len];
22354 	seg_seq = BE32_TO_U32(tcph->th_seq);
22355 	seg_ack = BE32_TO_U32(tcph->th_ack);
22356 	flags = tcph->th_flags[0];
22357 
22358 	seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len);
22359 	if (flags & TH_RST) {
22360 		freemsg(ipsec_mp);
22361 	} else if (flags & TH_ACK) {
22362 		tcp_xmit_early_reset("no tcp, reset",
22363 		    ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps,
22364 		    connp);
22365 	} else {
22366 		if (flags & TH_SYN) {
22367 			seg_len++;
22368 		} else {
22369 			/*
22370 			 * Here we violate the RFC.  Note that a normal
22371 			 * TCP will never send a segment without the ACK
22372 			 * flag, except for RST or SYN segment.  This
22373 			 * segment is neither.  Just drop it on the
22374 			 * floor.
22375 			 */
22376 			freemsg(ipsec_mp);
22377 			tcps->tcps_rst_unsent++;
22378 			return;
22379 		}
22380 
22381 		tcp_xmit_early_reset("no tcp, reset/ack",
22382 		    ipsec_mp, 0, seg_seq + seg_len,
22383 		    TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps, connp);
22384 	}
22385 }
22386 
22387 /*
22388  * tcp_xmit_mp is called to return a pointer to an mblk chain complete with
22389  * ip and tcp header ready to pass down to IP.  If the mp passed in is
22390  * non-NULL, then up to max_to_send bytes of data will be dup'ed off that
22391  * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary
22392  * otherwise it will dup partial mblks.)
22393  * Otherwise, an appropriate ACK packet will be generated.  This
22394  * routine is not usually called to send new data for the first time.  It
22395  * is mostly called out of the timer for retransmits, and to generate ACKs.
22396  *
22397  * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will
22398  * be adjusted by *offset.  And after dupb(), the offset and the ending mblk
22399  * of the original mblk chain will be returned in *offset and *end_mp.
22400  */
22401 mblk_t *
22402 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset,
22403     mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len,
22404     boolean_t rexmit)
22405 {
22406 	int	data_length;
22407 	int32_t	off = 0;
22408 	uint_t	flags;
22409 	mblk_t	*mp1;
22410 	mblk_t	*mp2;
22411 	uchar_t	*rptr;
22412 	tcph_t	*tcph;
22413 	int32_t	num_sack_blk = 0;
22414 	int32_t	sack_opt_len = 0;
22415 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22416 
22417 	/* Allocate for our maximum TCP header + link-level */
22418 	mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
22419 	    tcps->tcps_wroff_xtra, BPRI_MED);
22420 	if (!mp1)
22421 		return (NULL);
22422 	data_length = 0;
22423 
22424 	/*
22425 	 * Note that tcp_mss has been adjusted to take into account the
22426 	 * timestamp option if applicable.  Because SACK options do not
22427 	 * appear in every TCP segments and they are of variable lengths,
22428 	 * they cannot be included in tcp_mss.  Thus we need to calculate
22429 	 * the actual segment length when we need to send a segment which
22430 	 * includes SACK options.
22431 	 */
22432 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
22433 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
22434 		    tcp->tcp_num_sack_blk);
22435 		sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
22436 		    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
22437 		if (max_to_send + sack_opt_len > tcp->tcp_mss)
22438 			max_to_send -= sack_opt_len;
22439 	}
22440 
22441 	if (offset != NULL) {
22442 		off = *offset;
22443 		/* We use offset as an indicator that end_mp is not NULL. */
22444 		*end_mp = NULL;
22445 	}
22446 	for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) {
22447 		/* This could be faster with cooperation from downstream */
22448 		if (mp2 != mp1 && !sendall &&
22449 		    data_length + (int)(mp->b_wptr - mp->b_rptr) >
22450 		    max_to_send)
22451 			/*
22452 			 * Don't send the next mblk since the whole mblk
22453 			 * does not fit.
22454 			 */
22455 			break;
22456 		mp2->b_cont = dupb(mp);
22457 		mp2 = mp2->b_cont;
22458 		if (!mp2) {
22459 			freemsg(mp1);
22460 			return (NULL);
22461 		}
22462 		mp2->b_rptr += off;
22463 		ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
22464 		    (uintptr_t)INT_MAX);
22465 
22466 		data_length += (int)(mp2->b_wptr - mp2->b_rptr);
22467 		if (data_length > max_to_send) {
22468 			mp2->b_wptr -= data_length - max_to_send;
22469 			data_length = max_to_send;
22470 			off = mp2->b_wptr - mp->b_rptr;
22471 			break;
22472 		} else {
22473 			off = 0;
22474 		}
22475 	}
22476 	if (offset != NULL) {
22477 		*offset = off;
22478 		*end_mp = mp;
22479 	}
22480 	if (seg_len != NULL) {
22481 		*seg_len = data_length;
22482 	}
22483 
22484 	/* Update the latest receive window size in TCP header. */
22485 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22486 	    tcp->tcp_tcph->th_win);
22487 
22488 	rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
22489 	mp1->b_rptr = rptr;
22490 	mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len;
22491 	bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
22492 	tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
22493 	U32_TO_ABE32(seq, tcph->th_seq);
22494 
22495 	/*
22496 	 * Use tcp_unsent to determine if the PUSH bit should be used assumes
22497 	 * that this function was called from tcp_wput_data. Thus, when called
22498 	 * to retransmit data the setting of the PUSH bit may appear some
22499 	 * what random in that it might get set when it should not. This
22500 	 * should not pose any performance issues.
22501 	 */
22502 	if (data_length != 0 && (tcp->tcp_unsent == 0 ||
22503 	    tcp->tcp_unsent == data_length)) {
22504 		flags = TH_ACK | TH_PUSH;
22505 	} else {
22506 		flags = TH_ACK;
22507 	}
22508 
22509 	if (tcp->tcp_ecn_ok) {
22510 		if (tcp->tcp_ecn_echo_on)
22511 			flags |= TH_ECE;
22512 
22513 		/*
22514 		 * Only set ECT bit and ECN_CWR if a segment contains new data.
22515 		 * There is no TCP flow control for non-data segments, and
22516 		 * only data segment is transmitted reliably.
22517 		 */
22518 		if (data_length > 0 && !rexmit) {
22519 			SET_ECT(tcp, rptr);
22520 			if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
22521 				flags |= TH_CWR;
22522 				tcp->tcp_ecn_cwr_sent = B_TRUE;
22523 			}
22524 		}
22525 	}
22526 
22527 	if (tcp->tcp_valid_bits) {
22528 		uint32_t u1;
22529 
22530 		if ((tcp->tcp_valid_bits & TCP_ISS_VALID) &&
22531 		    seq == tcp->tcp_iss) {
22532 			uchar_t	*wptr;
22533 
22534 			/*
22535 			 * If TCP_ISS_VALID and the seq number is tcp_iss,
22536 			 * TCP can only be in SYN-SENT, SYN-RCVD or
22537 			 * FIN-WAIT-1 state.  It can be FIN-WAIT-1 if
22538 			 * our SYN is not ack'ed but the app closes this
22539 			 * TCP connection.
22540 			 */
22541 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT ||
22542 			    tcp->tcp_state == TCPS_SYN_RCVD ||
22543 			    tcp->tcp_state == TCPS_FIN_WAIT_1);
22544 
22545 			/*
22546 			 * Tack on the MSS option.  It is always needed
22547 			 * for both active and passive open.
22548 			 *
22549 			 * MSS option value should be interface MTU - MIN
22550 			 * TCP/IP header according to RFC 793 as it means
22551 			 * the maximum segment size TCP can receive.  But
22552 			 * to get around some broken middle boxes/end hosts
22553 			 * out there, we allow the option value to be the
22554 			 * same as the MSS option size on the peer side.
22555 			 * In this way, the other side will not send
22556 			 * anything larger than they can receive.
22557 			 *
22558 			 * Note that for SYN_SENT state, the ndd param
22559 			 * tcp_use_smss_as_mss_opt has no effect as we
22560 			 * don't know the peer's MSS option value. So
22561 			 * the only case we need to take care of is in
22562 			 * SYN_RCVD state, which is done later.
22563 			 */
22564 			wptr = mp1->b_wptr;
22565 			wptr[0] = TCPOPT_MAXSEG;
22566 			wptr[1] = TCPOPT_MAXSEG_LEN;
22567 			wptr += 2;
22568 			u1 = tcp->tcp_if_mtu -
22569 			    (tcp->tcp_ipversion == IPV4_VERSION ?
22570 			    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) -
22571 			    TCP_MIN_HEADER_LENGTH;
22572 			U16_TO_BE16(u1, wptr);
22573 			mp1->b_wptr = wptr + 2;
22574 			/* Update the offset to cover the additional word */
22575 			tcph->th_offset_and_rsrvd[0] += (1 << 4);
22576 
22577 			/*
22578 			 * Note that the following way of filling in
22579 			 * TCP options are not optimal.  Some NOPs can
22580 			 * be saved.  But there is no need at this time
22581 			 * to optimize it.  When it is needed, we will
22582 			 * do it.
22583 			 */
22584 			switch (tcp->tcp_state) {
22585 			case TCPS_SYN_SENT:
22586 				flags = TH_SYN;
22587 
22588 				if (tcp->tcp_snd_ts_ok) {
22589 					uint32_t llbolt = (uint32_t)lbolt;
22590 
22591 					wptr = mp1->b_wptr;
22592 					wptr[0] = TCPOPT_NOP;
22593 					wptr[1] = TCPOPT_NOP;
22594 					wptr[2] = TCPOPT_TSTAMP;
22595 					wptr[3] = TCPOPT_TSTAMP_LEN;
22596 					wptr += 4;
22597 					U32_TO_BE32(llbolt, wptr);
22598 					wptr += 4;
22599 					ASSERT(tcp->tcp_ts_recent == 0);
22600 					U32_TO_BE32(0L, wptr);
22601 					mp1->b_wptr += TCPOPT_REAL_TS_LEN;
22602 					tcph->th_offset_and_rsrvd[0] +=
22603 					    (3 << 4);
22604 				}
22605 
22606 				/*
22607 				 * Set up all the bits to tell other side
22608 				 * we are ECN capable.
22609 				 */
22610 				if (tcp->tcp_ecn_ok) {
22611 					flags |= (TH_ECE | TH_CWR);
22612 				}
22613 				break;
22614 			case TCPS_SYN_RCVD:
22615 				flags |= TH_SYN;
22616 
22617 				/*
22618 				 * Reset the MSS option value to be SMSS
22619 				 * We should probably add back the bytes
22620 				 * for timestamp option and IPsec.  We
22621 				 * don't do that as this is a workaround
22622 				 * for broken middle boxes/end hosts, it
22623 				 * is better for us to be more cautious.
22624 				 * They may not take these things into
22625 				 * account in their SMSS calculation.  Thus
22626 				 * the peer's calculated SMSS may be smaller
22627 				 * than what it can be.  This should be OK.
22628 				 */
22629 				if (tcps->tcps_use_smss_as_mss_opt) {
22630 					u1 = tcp->tcp_mss;
22631 					U16_TO_BE16(u1, wptr);
22632 				}
22633 
22634 				/*
22635 				 * If the other side is ECN capable, reply
22636 				 * that we are also ECN capable.
22637 				 */
22638 				if (tcp->tcp_ecn_ok)
22639 					flags |= TH_ECE;
22640 				break;
22641 			default:
22642 				/*
22643 				 * The above ASSERT() makes sure that this
22644 				 * must be FIN-WAIT-1 state.  Our SYN has
22645 				 * not been ack'ed so retransmit it.
22646 				 */
22647 				flags |= TH_SYN;
22648 				break;
22649 			}
22650 
22651 			if (tcp->tcp_snd_ws_ok) {
22652 				wptr = mp1->b_wptr;
22653 				wptr[0] =  TCPOPT_NOP;
22654 				wptr[1] =  TCPOPT_WSCALE;
22655 				wptr[2] =  TCPOPT_WS_LEN;
22656 				wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
22657 				mp1->b_wptr += TCPOPT_REAL_WS_LEN;
22658 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
22659 			}
22660 
22661 			if (tcp->tcp_snd_sack_ok) {
22662 				wptr = mp1->b_wptr;
22663 				wptr[0] = TCPOPT_NOP;
22664 				wptr[1] = TCPOPT_NOP;
22665 				wptr[2] = TCPOPT_SACK_PERMITTED;
22666 				wptr[3] = TCPOPT_SACK_OK_LEN;
22667 				mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
22668 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
22669 			}
22670 
22671 			/* allocb() of adequate mblk assures space */
22672 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
22673 			    (uintptr_t)INT_MAX);
22674 			u1 = (int)(mp1->b_wptr - mp1->b_rptr);
22675 			/*
22676 			 * Get IP set to checksum on our behalf
22677 			 * Include the adjustment for a source route if any.
22678 			 */
22679 			u1 += tcp->tcp_sum;
22680 			u1 = (u1 >> 16) + (u1 & 0xFFFF);
22681 			U16_TO_BE16(u1, tcph->th_sum);
22682 			BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22683 		}
22684 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
22685 		    (seq + data_length) == tcp->tcp_fss) {
22686 			if (!tcp->tcp_fin_acked) {
22687 				flags |= TH_FIN;
22688 				BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22689 			}
22690 			if (!tcp->tcp_fin_sent) {
22691 				tcp->tcp_fin_sent = B_TRUE;
22692 				switch (tcp->tcp_state) {
22693 				case TCPS_SYN_RCVD:
22694 				case TCPS_ESTABLISHED:
22695 					tcp->tcp_state = TCPS_FIN_WAIT_1;
22696 					break;
22697 				case TCPS_CLOSE_WAIT:
22698 					tcp->tcp_state = TCPS_LAST_ACK;
22699 					break;
22700 				}
22701 				if (tcp->tcp_suna == tcp->tcp_snxt)
22702 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
22703 				tcp->tcp_snxt = tcp->tcp_fss + 1;
22704 			}
22705 		}
22706 		/*
22707 		 * Note the trick here.  u1 is unsigned.  When tcp_urg
22708 		 * is smaller than seq, u1 will become a very huge value.
22709 		 * So the comparison will fail.  Also note that tcp_urp
22710 		 * should be positive, see RFC 793 page 17.
22711 		 */
22712 		u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION;
22713 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 &&
22714 		    u1 < (uint32_t)(64 * 1024)) {
22715 			flags |= TH_URG;
22716 			BUMP_MIB(&tcps->tcps_mib, tcpOutUrg);
22717 			U32_TO_ABE16(u1, tcph->th_urp);
22718 		}
22719 	}
22720 	tcph->th_flags[0] = (uchar_t)flags;
22721 	tcp->tcp_rack = tcp->tcp_rnxt;
22722 	tcp->tcp_rack_cnt = 0;
22723 
22724 	if (tcp->tcp_snd_ts_ok) {
22725 		if (tcp->tcp_state != TCPS_SYN_SENT) {
22726 			uint32_t llbolt = (uint32_t)lbolt;
22727 
22728 			U32_TO_BE32(llbolt,
22729 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22730 			U32_TO_BE32(tcp->tcp_ts_recent,
22731 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22732 		}
22733 	}
22734 
22735 	if (num_sack_blk > 0) {
22736 		uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
22737 		sack_blk_t *tmp;
22738 		int32_t	i;
22739 
22740 		wptr[0] = TCPOPT_NOP;
22741 		wptr[1] = TCPOPT_NOP;
22742 		wptr[2] = TCPOPT_SACK;
22743 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
22744 		    sizeof (sack_blk_t);
22745 		wptr += TCPOPT_REAL_SACK_LEN;
22746 
22747 		tmp = tcp->tcp_sack_list;
22748 		for (i = 0; i < num_sack_blk; i++) {
22749 			U32_TO_BE32(tmp[i].begin, wptr);
22750 			wptr += sizeof (tcp_seq);
22751 			U32_TO_BE32(tmp[i].end, wptr);
22752 			wptr += sizeof (tcp_seq);
22753 		}
22754 		tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4);
22755 	}
22756 	ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX);
22757 	data_length += (int)(mp1->b_wptr - rptr);
22758 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22759 		((ipha_t *)rptr)->ipha_length = htons(data_length);
22760 	} else {
22761 		ip6_t *ip6 = (ip6_t *)(rptr +
22762 		    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
22763 		    sizeof (ip6i_t) : 0));
22764 
22765 		ip6->ip6_plen = htons(data_length -
22766 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22767 	}
22768 
22769 	/*
22770 	 * Prime pump for IP
22771 	 * Include the adjustment for a source route if any.
22772 	 */
22773 	data_length -= tcp->tcp_ip_hdr_len;
22774 	data_length += tcp->tcp_sum;
22775 	data_length = (data_length >> 16) + (data_length & 0xFFFF);
22776 	U16_TO_ABE16(data_length, tcph->th_sum);
22777 	if (tcp->tcp_ip_forward_progress) {
22778 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
22779 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
22780 		tcp->tcp_ip_forward_progress = B_FALSE;
22781 	}
22782 	return (mp1);
22783 }
22784 
22785 /* This function handles the push timeout. */
22786 void
22787 tcp_push_timer(void *arg)
22788 {
22789 	conn_t	*connp = (conn_t *)arg;
22790 	tcp_t *tcp = connp->conn_tcp;
22791 
22792 	TCP_DBGSTAT(tcp->tcp_tcps, tcp_push_timer_cnt);
22793 
22794 	ASSERT(tcp->tcp_listener == NULL);
22795 
22796 	ASSERT(!IPCL_IS_NONSTR(connp));
22797 
22798 	/*
22799 	 * We need to plug synchronous streams during our drain to prevent
22800 	 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop().
22801 	 */
22802 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
22803 	tcp->tcp_push_tid = 0;
22804 
22805 	if (tcp->tcp_rcv_list != NULL &&
22806 	    tcp_rcv_drain(tcp) == TH_ACK_NEEDED)
22807 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
22808 
22809 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
22810 }
22811 
22812 /*
22813  * This function handles delayed ACK timeout.
22814  */
22815 static void
22816 tcp_ack_timer(void *arg)
22817 {
22818 	conn_t	*connp = (conn_t *)arg;
22819 	tcp_t *tcp = connp->conn_tcp;
22820 	mblk_t *mp;
22821 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22822 
22823 	TCP_DBGSTAT(tcps, tcp_ack_timer_cnt);
22824 
22825 	tcp->tcp_ack_tid = 0;
22826 
22827 	if (tcp->tcp_fused)
22828 		return;
22829 
22830 	/*
22831 	 * Do not send ACK if there is no outstanding unack'ed data.
22832 	 */
22833 	if (tcp->tcp_rnxt == tcp->tcp_rack) {
22834 		return;
22835 	}
22836 
22837 	if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) {
22838 		/*
22839 		 * Make sure we don't allow deferred ACKs to result in
22840 		 * timer-based ACKing.  If we have held off an ACK
22841 		 * when there was more than an mss here, and the timer
22842 		 * goes off, we have to worry about the possibility
22843 		 * that the sender isn't doing slow-start, or is out
22844 		 * of step with us for some other reason.  We fall
22845 		 * permanently back in the direction of
22846 		 * ACK-every-other-packet as suggested in RFC 1122.
22847 		 */
22848 		if (tcp->tcp_rack_abs_max > 2)
22849 			tcp->tcp_rack_abs_max--;
22850 		tcp->tcp_rack_cur_max = 2;
22851 	}
22852 	mp = tcp_ack_mp(tcp);
22853 
22854 	if (mp != NULL) {
22855 		BUMP_LOCAL(tcp->tcp_obsegs);
22856 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
22857 		BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed);
22858 		tcp_send_data(tcp, tcp->tcp_wq, mp);
22859 	}
22860 }
22861 
22862 
22863 /* Generate an ACK-only (no data) segment for a TCP endpoint */
22864 static mblk_t *
22865 tcp_ack_mp(tcp_t *tcp)
22866 {
22867 	uint32_t	seq_no;
22868 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22869 
22870 	/*
22871 	 * There are a few cases to be considered while setting the sequence no.
22872 	 * Essentially, we can come here while processing an unacceptable pkt
22873 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
22874 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
22875 	 * If we are here for a zero window probe, stick with suna. In all
22876 	 * other cases, we check if suna + swnd encompasses snxt and set
22877 	 * the sequence number to snxt, if so. If snxt falls outside the
22878 	 * window (the receiver probably shrunk its window), we will go with
22879 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
22880 	 * receiver.
22881 	 */
22882 	if (tcp->tcp_zero_win_probe) {
22883 		seq_no = tcp->tcp_suna;
22884 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
22885 		ASSERT(tcp->tcp_swnd == 0);
22886 		seq_no = tcp->tcp_snxt;
22887 	} else {
22888 		seq_no = SEQ_GT(tcp->tcp_snxt,
22889 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
22890 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
22891 	}
22892 
22893 	if (tcp->tcp_valid_bits) {
22894 		/*
22895 		 * For the complex case where we have to send some
22896 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
22897 		 */
22898 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
22899 		    NULL, B_FALSE));
22900 	} else {
22901 		/* Generate a simple ACK */
22902 		int	data_length;
22903 		uchar_t	*rptr;
22904 		tcph_t	*tcph;
22905 		mblk_t	*mp1;
22906 		int32_t	tcp_hdr_len;
22907 		int32_t	tcp_tcp_hdr_len;
22908 		int32_t	num_sack_blk = 0;
22909 		int32_t sack_opt_len;
22910 
22911 		/*
22912 		 * Allocate space for TCP + IP headers
22913 		 * and link-level header
22914 		 */
22915 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
22916 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
22917 			    tcp->tcp_num_sack_blk);
22918 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
22919 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
22920 			tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len;
22921 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len;
22922 		} else {
22923 			tcp_hdr_len = tcp->tcp_hdr_len;
22924 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
22925 		}
22926 		mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED);
22927 		if (!mp1)
22928 			return (NULL);
22929 
22930 		/* Update the latest receive window size in TCP header. */
22931 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22932 		    tcp->tcp_tcph->th_win);
22933 		/* copy in prototype TCP + IP header */
22934 		rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
22935 		mp1->b_rptr = rptr;
22936 		mp1->b_wptr = rptr + tcp_hdr_len;
22937 		bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
22938 
22939 		tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
22940 
22941 		/* Set the TCP sequence number. */
22942 		U32_TO_ABE32(seq_no, tcph->th_seq);
22943 
22944 		/* Set up the TCP flag field. */
22945 		tcph->th_flags[0] = (uchar_t)TH_ACK;
22946 		if (tcp->tcp_ecn_echo_on)
22947 			tcph->th_flags[0] |= TH_ECE;
22948 
22949 		tcp->tcp_rack = tcp->tcp_rnxt;
22950 		tcp->tcp_rack_cnt = 0;
22951 
22952 		/* fill in timestamp option if in use */
22953 		if (tcp->tcp_snd_ts_ok) {
22954 			uint32_t llbolt = (uint32_t)lbolt;
22955 
22956 			U32_TO_BE32(llbolt,
22957 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22958 			U32_TO_BE32(tcp->tcp_ts_recent,
22959 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22960 		}
22961 
22962 		/* Fill in SACK options */
22963 		if (num_sack_blk > 0) {
22964 			uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
22965 			sack_blk_t *tmp;
22966 			int32_t	i;
22967 
22968 			wptr[0] = TCPOPT_NOP;
22969 			wptr[1] = TCPOPT_NOP;
22970 			wptr[2] = TCPOPT_SACK;
22971 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
22972 			    sizeof (sack_blk_t);
22973 			wptr += TCPOPT_REAL_SACK_LEN;
22974 
22975 			tmp = tcp->tcp_sack_list;
22976 			for (i = 0; i < num_sack_blk; i++) {
22977 				U32_TO_BE32(tmp[i].begin, wptr);
22978 				wptr += sizeof (tcp_seq);
22979 				U32_TO_BE32(tmp[i].end, wptr);
22980 				wptr += sizeof (tcp_seq);
22981 			}
22982 			tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1)
22983 			    << 4);
22984 		}
22985 
22986 		if (tcp->tcp_ipversion == IPV4_VERSION) {
22987 			((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len);
22988 		} else {
22989 			/* Check for ip6i_t header in sticky hdrs */
22990 			ip6_t *ip6 = (ip6_t *)(rptr +
22991 			    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
22992 			    sizeof (ip6i_t) : 0));
22993 
22994 			ip6->ip6_plen = htons(tcp_hdr_len -
22995 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22996 		}
22997 
22998 		/*
22999 		 * Prime pump for checksum calculation in IP.  Include the
23000 		 * adjustment for a source route if any.
23001 		 */
23002 		data_length = tcp_tcp_hdr_len + tcp->tcp_sum;
23003 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
23004 		U16_TO_ABE16(data_length, tcph->th_sum);
23005 
23006 		if (tcp->tcp_ip_forward_progress) {
23007 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
23008 			*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
23009 			tcp->tcp_ip_forward_progress = B_FALSE;
23010 		}
23011 		return (mp1);
23012 	}
23013 }
23014 
23015 /*
23016  * Hash list insertion routine for tcp_t structures. Each hash bucket
23017  * contains a list of tcp_t entries, and each entry is bound to a unique
23018  * port. If there are multiple tcp_t's that are bound to the same port, then
23019  * one of them will be linked into the hash bucket list, and the rest will
23020  * hang off of that one entry. For each port, entries bound to a specific IP
23021  * address will be inserted before those those bound to INADDR_ANY.
23022  */
23023 static void
23024 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock)
23025 {
23026 	tcp_t	**tcpp;
23027 	tcp_t	*tcpnext;
23028 	tcp_t	*tcphash;
23029 
23030 	if (tcp->tcp_ptpbhn != NULL) {
23031 		ASSERT(!caller_holds_lock);
23032 		tcp_bind_hash_remove(tcp);
23033 	}
23034 	tcpp = &tbf->tf_tcp;
23035 	if (!caller_holds_lock) {
23036 		mutex_enter(&tbf->tf_lock);
23037 	} else {
23038 		ASSERT(MUTEX_HELD(&tbf->tf_lock));
23039 	}
23040 	tcphash = tcpp[0];
23041 	tcpnext = NULL;
23042 	if (tcphash != NULL) {
23043 		/* Look for an entry using the same port */
23044 		while ((tcphash = tcpp[0]) != NULL &&
23045 		    tcp->tcp_lport != tcphash->tcp_lport)
23046 			tcpp = &(tcphash->tcp_bind_hash);
23047 
23048 		/* The port was not found, just add to the end */
23049 		if (tcphash == NULL)
23050 			goto insert;
23051 
23052 		/*
23053 		 * OK, there already exists an entry bound to the
23054 		 * same port.
23055 		 *
23056 		 * If the new tcp bound to the INADDR_ANY address
23057 		 * and the first one in the list is not bound to
23058 		 * INADDR_ANY we skip all entries until we find the
23059 		 * first one bound to INADDR_ANY.
23060 		 * This makes sure that applications binding to a
23061 		 * specific address get preference over those binding to
23062 		 * INADDR_ANY.
23063 		 */
23064 		tcpnext = tcphash;
23065 		tcphash = NULL;
23066 		if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) &&
23067 		    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) {
23068 			while ((tcpnext = tcpp[0]) != NULL &&
23069 			    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6))
23070 				tcpp = &(tcpnext->tcp_bind_hash_port);
23071 
23072 			if (tcpnext) {
23073 				tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port;
23074 				tcphash = tcpnext->tcp_bind_hash;
23075 				if (tcphash != NULL) {
23076 					tcphash->tcp_ptpbhn =
23077 					    &(tcp->tcp_bind_hash);
23078 					tcpnext->tcp_bind_hash = NULL;
23079 				}
23080 			}
23081 		} else {
23082 			tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port;
23083 			tcphash = tcpnext->tcp_bind_hash;
23084 			if (tcphash != NULL) {
23085 				tcphash->tcp_ptpbhn =
23086 				    &(tcp->tcp_bind_hash);
23087 				tcpnext->tcp_bind_hash = NULL;
23088 			}
23089 		}
23090 	}
23091 insert:
23092 	tcp->tcp_bind_hash_port = tcpnext;
23093 	tcp->tcp_bind_hash = tcphash;
23094 	tcp->tcp_ptpbhn = tcpp;
23095 	tcpp[0] = tcp;
23096 	if (!caller_holds_lock)
23097 		mutex_exit(&tbf->tf_lock);
23098 }
23099 
23100 /*
23101  * Hash list removal routine for tcp_t structures.
23102  */
23103 static void
23104 tcp_bind_hash_remove(tcp_t *tcp)
23105 {
23106 	tcp_t	*tcpnext;
23107 	kmutex_t *lockp;
23108 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23109 
23110 	if (tcp->tcp_ptpbhn == NULL)
23111 		return;
23112 
23113 	/*
23114 	 * Extract the lock pointer in case there are concurrent
23115 	 * hash_remove's for this instance.
23116 	 */
23117 	ASSERT(tcp->tcp_lport != 0);
23118 	lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock;
23119 
23120 	ASSERT(lockp != NULL);
23121 	mutex_enter(lockp);
23122 	if (tcp->tcp_ptpbhn) {
23123 		tcpnext = tcp->tcp_bind_hash_port;
23124 		if (tcpnext != NULL) {
23125 			tcp->tcp_bind_hash_port = NULL;
23126 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
23127 			tcpnext->tcp_bind_hash = tcp->tcp_bind_hash;
23128 			if (tcpnext->tcp_bind_hash != NULL) {
23129 				tcpnext->tcp_bind_hash->tcp_ptpbhn =
23130 				    &(tcpnext->tcp_bind_hash);
23131 				tcp->tcp_bind_hash = NULL;
23132 			}
23133 		} else if ((tcpnext = tcp->tcp_bind_hash) != NULL) {
23134 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
23135 			tcp->tcp_bind_hash = NULL;
23136 		}
23137 		*tcp->tcp_ptpbhn = tcpnext;
23138 		tcp->tcp_ptpbhn = NULL;
23139 	}
23140 	mutex_exit(lockp);
23141 }
23142 
23143 
23144 /*
23145  * Hash list lookup routine for tcp_t structures.
23146  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
23147  */
23148 static tcp_t *
23149 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps)
23150 {
23151 	tf_t	*tf;
23152 	tcp_t	*tcp;
23153 
23154 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
23155 	mutex_enter(&tf->tf_lock);
23156 	for (tcp = tf->tf_tcp; tcp != NULL;
23157 	    tcp = tcp->tcp_acceptor_hash) {
23158 		if (tcp->tcp_acceptor_id == id) {
23159 			CONN_INC_REF(tcp->tcp_connp);
23160 			mutex_exit(&tf->tf_lock);
23161 			return (tcp);
23162 		}
23163 	}
23164 	mutex_exit(&tf->tf_lock);
23165 	return (NULL);
23166 }
23167 
23168 
23169 /*
23170  * Hash list insertion routine for tcp_t structures.
23171  */
23172 void
23173 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
23174 {
23175 	tf_t	*tf;
23176 	tcp_t	**tcpp;
23177 	tcp_t	*tcpnext;
23178 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23179 
23180 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
23181 
23182 	if (tcp->tcp_ptpahn != NULL)
23183 		tcp_acceptor_hash_remove(tcp);
23184 	tcpp = &tf->tf_tcp;
23185 	mutex_enter(&tf->tf_lock);
23186 	tcpnext = tcpp[0];
23187 	if (tcpnext)
23188 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
23189 	tcp->tcp_acceptor_hash = tcpnext;
23190 	tcp->tcp_ptpahn = tcpp;
23191 	tcpp[0] = tcp;
23192 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
23193 	mutex_exit(&tf->tf_lock);
23194 }
23195 
23196 /*
23197  * Hash list removal routine for tcp_t structures.
23198  */
23199 static void
23200 tcp_acceptor_hash_remove(tcp_t *tcp)
23201 {
23202 	tcp_t	*tcpnext;
23203 	kmutex_t *lockp;
23204 
23205 	/*
23206 	 * Extract the lock pointer in case there are concurrent
23207 	 * hash_remove's for this instance.
23208 	 */
23209 	lockp = tcp->tcp_acceptor_lockp;
23210 
23211 	if (tcp->tcp_ptpahn == NULL)
23212 		return;
23213 
23214 	ASSERT(lockp != NULL);
23215 	mutex_enter(lockp);
23216 	if (tcp->tcp_ptpahn) {
23217 		tcpnext = tcp->tcp_acceptor_hash;
23218 		if (tcpnext) {
23219 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
23220 			tcp->tcp_acceptor_hash = NULL;
23221 		}
23222 		*tcp->tcp_ptpahn = tcpnext;
23223 		tcp->tcp_ptpahn = NULL;
23224 	}
23225 	mutex_exit(lockp);
23226 	tcp->tcp_acceptor_lockp = NULL;
23227 }
23228 
23229 /*
23230  * Type three generator adapted from the random() function in 4.4 BSD:
23231  */
23232 
23233 /*
23234  * Copyright (c) 1983, 1993
23235  *	The Regents of the University of California.  All rights reserved.
23236  *
23237  * Redistribution and use in source and binary forms, with or without
23238  * modification, are permitted provided that the following conditions
23239  * are met:
23240  * 1. Redistributions of source code must retain the above copyright
23241  *    notice, this list of conditions and the following disclaimer.
23242  * 2. Redistributions in binary form must reproduce the above copyright
23243  *    notice, this list of conditions and the following disclaimer in the
23244  *    documentation and/or other materials provided with the distribution.
23245  * 3. All advertising materials mentioning features or use of this software
23246  *    must display the following acknowledgement:
23247  *	This product includes software developed by the University of
23248  *	California, Berkeley and its contributors.
23249  * 4. Neither the name of the University nor the names of its contributors
23250  *    may be used to endorse or promote products derived from this software
23251  *    without specific prior written permission.
23252  *
23253  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23254  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23255  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23256  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23257  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23258  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23259  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23260  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23261  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23262  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23263  * SUCH DAMAGE.
23264  */
23265 
23266 /* Type 3 -- x**31 + x**3 + 1 */
23267 #define	DEG_3		31
23268 #define	SEP_3		3
23269 
23270 
23271 /* Protected by tcp_random_lock */
23272 static int tcp_randtbl[DEG_3 + 1];
23273 
23274 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
23275 static int *tcp_random_rptr = &tcp_randtbl[1];
23276 
23277 static int *tcp_random_state = &tcp_randtbl[1];
23278 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
23279 
23280 kmutex_t tcp_random_lock;
23281 
23282 void
23283 tcp_random_init(void)
23284 {
23285 	int i;
23286 	hrtime_t hrt;
23287 	time_t wallclock;
23288 	uint64_t result;
23289 
23290 	/*
23291 	 * Use high-res timer and current time for seed.  Gethrtime() returns
23292 	 * a longlong, which may contain resolution down to nanoseconds.
23293 	 * The current time will either be a 32-bit or a 64-bit quantity.
23294 	 * XOR the two together in a 64-bit result variable.
23295 	 * Convert the result to a 32-bit value by multiplying the high-order
23296 	 * 32-bits by the low-order 32-bits.
23297 	 */
23298 
23299 	hrt = gethrtime();
23300 	(void) drv_getparm(TIME, &wallclock);
23301 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
23302 	mutex_enter(&tcp_random_lock);
23303 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
23304 	    (result & 0xffffffff);
23305 
23306 	for (i = 1; i < DEG_3; i++)
23307 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
23308 		    + 12345;
23309 	tcp_random_fptr = &tcp_random_state[SEP_3];
23310 	tcp_random_rptr = &tcp_random_state[0];
23311 	mutex_exit(&tcp_random_lock);
23312 	for (i = 0; i < 10 * DEG_3; i++)
23313 		(void) tcp_random();
23314 }
23315 
23316 /*
23317  * tcp_random: Return a random number in the range [1 - (128K + 1)].
23318  * This range is selected to be approximately centered on TCP_ISS / 2,
23319  * and easy to compute. We get this value by generating a 32-bit random
23320  * number, selecting out the high-order 17 bits, and then adding one so
23321  * that we never return zero.
23322  */
23323 int
23324 tcp_random(void)
23325 {
23326 	int i;
23327 
23328 	mutex_enter(&tcp_random_lock);
23329 	*tcp_random_fptr += *tcp_random_rptr;
23330 
23331 	/*
23332 	 * The high-order bits are more random than the low-order bits,
23333 	 * so we select out the high-order 17 bits and add one so that
23334 	 * we never return zero.
23335 	 */
23336 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
23337 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
23338 		tcp_random_fptr = tcp_random_state;
23339 		++tcp_random_rptr;
23340 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
23341 		tcp_random_rptr = tcp_random_state;
23342 
23343 	mutex_exit(&tcp_random_lock);
23344 	return (i);
23345 }
23346 
23347 static int
23348 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp,
23349     int *t_errorp, int *sys_errorp)
23350 {
23351 	int error;
23352 	int is_absreq_failure;
23353 	t_scalar_t *opt_lenp;
23354 	t_scalar_t opt_offset;
23355 	int prim_type;
23356 	struct T_conn_req *tcreqp;
23357 	struct T_conn_res *tcresp;
23358 	cred_t *cr;
23359 
23360 	/*
23361 	 * All Solaris components should pass a db_credp
23362 	 * for this TPI message, hence we ASSERT.
23363 	 * But in case there is some other M_PROTO that looks
23364 	 * like a TPI message sent by some other kernel
23365 	 * component, we check and return an error.
23366 	 */
23367 	cr = msg_getcred(mp, NULL);
23368 	ASSERT(cr != NULL);
23369 	if (cr == NULL)
23370 		return (-1);
23371 
23372 	prim_type = ((union T_primitives *)mp->b_rptr)->type;
23373 	ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES ||
23374 	    prim_type == T_CONN_RES);
23375 
23376 	switch (prim_type) {
23377 	case T_CONN_REQ:
23378 		tcreqp = (struct T_conn_req *)mp->b_rptr;
23379 		opt_offset = tcreqp->OPT_offset;
23380 		opt_lenp = (t_scalar_t *)&tcreqp->OPT_length;
23381 		break;
23382 	case O_T_CONN_RES:
23383 	case T_CONN_RES:
23384 		tcresp = (struct T_conn_res *)mp->b_rptr;
23385 		opt_offset = tcresp->OPT_offset;
23386 		opt_lenp = (t_scalar_t *)&tcresp->OPT_length;
23387 		break;
23388 	}
23389 
23390 	*t_errorp = 0;
23391 	*sys_errorp = 0;
23392 	*do_disconnectp = 0;
23393 
23394 	error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp,
23395 	    opt_offset, cr, &tcp_opt_obj,
23396 	    NULL, &is_absreq_failure);
23397 
23398 	switch (error) {
23399 	case  0:		/* no error */
23400 		ASSERT(is_absreq_failure == 0);
23401 		return (0);
23402 	case ENOPROTOOPT:
23403 		*t_errorp = TBADOPT;
23404 		break;
23405 	case EACCES:
23406 		*t_errorp = TACCES;
23407 		break;
23408 	default:
23409 		*t_errorp = TSYSERR; *sys_errorp = error;
23410 		break;
23411 	}
23412 	if (is_absreq_failure != 0) {
23413 		/*
23414 		 * The connection request should get the local ack
23415 		 * T_OK_ACK and then a T_DISCON_IND.
23416 		 */
23417 		*do_disconnectp = 1;
23418 	}
23419 	return (-1);
23420 }
23421 
23422 /*
23423  * Split this function out so that if the secret changes, I'm okay.
23424  *
23425  * Initialize the tcp_iss_cookie and tcp_iss_key.
23426  */
23427 
23428 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
23429 
23430 static void
23431 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps)
23432 {
23433 	struct {
23434 		int32_t current_time;
23435 		uint32_t randnum;
23436 		uint16_t pad;
23437 		uint8_t ether[6];
23438 		uint8_t passwd[PASSWD_SIZE];
23439 	} tcp_iss_cookie;
23440 	time_t t;
23441 
23442 	/*
23443 	 * Start with the current absolute time.
23444 	 */
23445 	(void) drv_getparm(TIME, &t);
23446 	tcp_iss_cookie.current_time = t;
23447 
23448 	/*
23449 	 * XXX - Need a more random number per RFC 1750, not this crap.
23450 	 * OTOH, if what follows is pretty random, then I'm in better shape.
23451 	 */
23452 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
23453 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
23454 
23455 	/*
23456 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
23457 	 * as a good template.
23458 	 */
23459 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
23460 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
23461 
23462 	/*
23463 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
23464 	 */
23465 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
23466 
23467 	/*
23468 	 * See 4010593 if this section becomes a problem again,
23469 	 * but the local ethernet address is useful here.
23470 	 */
23471 	(void) localetheraddr(NULL,
23472 	    (struct ether_addr *)&tcp_iss_cookie.ether);
23473 
23474 	/*
23475 	 * Hash 'em all together.  The MD5Final is called per-connection.
23476 	 */
23477 	mutex_enter(&tcps->tcps_iss_key_lock);
23478 	MD5Init(&tcps->tcps_iss_key);
23479 	MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie,
23480 	    sizeof (tcp_iss_cookie));
23481 	mutex_exit(&tcps->tcps_iss_key_lock);
23482 }
23483 
23484 /*
23485  * Set the RFC 1948 pass phrase
23486  */
23487 /* ARGSUSED */
23488 static int
23489 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
23490     cred_t *cr)
23491 {
23492 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
23493 
23494 	/*
23495 	 * Basically, value contains a new pass phrase.  Pass it along!
23496 	 */
23497 	tcp_iss_key_init((uint8_t *)value, strlen(value), tcps);
23498 	return (0);
23499 }
23500 
23501 /* ARGSUSED */
23502 static int
23503 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags)
23504 {
23505 	bzero(buf, sizeof (tcp_sack_info_t));
23506 	return (0);
23507 }
23508 
23509 /* ARGSUSED */
23510 static int
23511 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags)
23512 {
23513 	bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH);
23514 	return (0);
23515 }
23516 
23517 /*
23518  * Make sure we wait until the default queue is setup, yet allow
23519  * tcp_g_q_create() to open a TCP stream.
23520  * We need to allow tcp_g_q_create() do do an open
23521  * of tcp, hence we compare curhread.
23522  * All others have to wait until the tcps_g_q has been
23523  * setup.
23524  */
23525 void
23526 tcp_g_q_setup(tcp_stack_t *tcps)
23527 {
23528 	mutex_enter(&tcps->tcps_g_q_lock);
23529 	if (tcps->tcps_g_q != NULL) {
23530 		mutex_exit(&tcps->tcps_g_q_lock);
23531 		return;
23532 	}
23533 	if (tcps->tcps_g_q_creator == NULL) {
23534 		/* This thread will set it up */
23535 		tcps->tcps_g_q_creator = curthread;
23536 		mutex_exit(&tcps->tcps_g_q_lock);
23537 		tcp_g_q_create(tcps);
23538 		mutex_enter(&tcps->tcps_g_q_lock);
23539 		ASSERT(tcps->tcps_g_q_creator == curthread);
23540 		tcps->tcps_g_q_creator = NULL;
23541 		cv_signal(&tcps->tcps_g_q_cv);
23542 		ASSERT(tcps->tcps_g_q != NULL);
23543 		mutex_exit(&tcps->tcps_g_q_lock);
23544 		return;
23545 	}
23546 	/* Everybody but the creator has to wait */
23547 	if (tcps->tcps_g_q_creator != curthread) {
23548 		while (tcps->tcps_g_q == NULL)
23549 			cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock);
23550 	}
23551 	mutex_exit(&tcps->tcps_g_q_lock);
23552 }
23553 
23554 #define	IP	"ip"
23555 
23556 #define	TCP6DEV		"/devices/pseudo/tcp6@0:tcp6"
23557 
23558 /*
23559  * Create a default tcp queue here instead of in strplumb
23560  */
23561 void
23562 tcp_g_q_create(tcp_stack_t *tcps)
23563 {
23564 	int error;
23565 	ldi_handle_t	lh = NULL;
23566 	ldi_ident_t	li = NULL;
23567 	int		rval;
23568 	cred_t		*cr;
23569 	major_t IP_MAJ;
23570 
23571 #ifdef NS_DEBUG
23572 	(void) printf("tcp_g_q_create()\n");
23573 #endif
23574 
23575 	IP_MAJ = ddi_name_to_major(IP);
23576 
23577 	ASSERT(tcps->tcps_g_q_creator == curthread);
23578 
23579 	error = ldi_ident_from_major(IP_MAJ, &li);
23580 	if (error) {
23581 #ifdef DEBUG
23582 		printf("tcp_g_q_create: lyr ident get failed error %d\n",
23583 		    error);
23584 #endif
23585 		return;
23586 	}
23587 
23588 	cr = zone_get_kcred(netstackid_to_zoneid(
23589 	    tcps->tcps_netstack->netstack_stackid));
23590 	ASSERT(cr != NULL);
23591 	/*
23592 	 * We set the tcp default queue to IPv6 because IPv4 falls
23593 	 * back to IPv6 when it can't find a client, but
23594 	 * IPv6 does not fall back to IPv4.
23595 	 */
23596 	error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li);
23597 	if (error) {
23598 #ifdef DEBUG
23599 		printf("tcp_g_q_create: open of TCP6DEV failed error %d\n",
23600 		    error);
23601 #endif
23602 		goto out;
23603 	}
23604 
23605 	/*
23606 	 * This ioctl causes the tcp framework to cache a pointer to
23607 	 * this stream, so we don't want to close the stream after
23608 	 * this operation.
23609 	 * Use the kernel credentials that are for the zone we're in.
23610 	 */
23611 	error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q,
23612 	    (intptr_t)0, FKIOCTL, cr, &rval);
23613 	if (error) {
23614 #ifdef DEBUG
23615 		printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed "
23616 		    "error %d\n", error);
23617 #endif
23618 		goto out;
23619 	}
23620 	tcps->tcps_g_q_lh = lh;	/* For tcp_g_q_close */
23621 	lh = NULL;
23622 out:
23623 	/* Close layered handles */
23624 	if (li)
23625 		ldi_ident_release(li);
23626 	/* Keep cred around until _inactive needs it */
23627 	tcps->tcps_g_q_cr = cr;
23628 }
23629 
23630 /*
23631  * We keep tcp_g_q set until all other tcp_t's in the zone
23632  * has gone away, and then when tcp_g_q_inactive() is called
23633  * we clear it.
23634  */
23635 void
23636 tcp_g_q_destroy(tcp_stack_t *tcps)
23637 {
23638 #ifdef NS_DEBUG
23639 	(void) printf("tcp_g_q_destroy()for stack %d\n",
23640 	    tcps->tcps_netstack->netstack_stackid);
23641 #endif
23642 
23643 	if (tcps->tcps_g_q == NULL) {
23644 		return;	/* Nothing to cleanup */
23645 	}
23646 	/*
23647 	 * Drop reference corresponding to the default queue.
23648 	 * This reference was added from tcp_open when the default queue
23649 	 * was created, hence we compensate for this extra drop in
23650 	 * tcp_g_q_close. If the refcnt drops to zero here it means
23651 	 * the default queue was the last one to be open, in which
23652 	 * case, then tcp_g_q_inactive will be
23653 	 * called as a result of the refrele.
23654 	 */
23655 	TCPS_REFRELE(tcps);
23656 }
23657 
23658 /*
23659  * Called when last tcp_t drops reference count using TCPS_REFRELE.
23660  * Run by tcp_q_q_inactive using a taskq.
23661  */
23662 static void
23663 tcp_g_q_close(void *arg)
23664 {
23665 	tcp_stack_t *tcps = arg;
23666 	int error;
23667 	ldi_handle_t	lh = NULL;
23668 	ldi_ident_t	li = NULL;
23669 	cred_t		*cr;
23670 	major_t IP_MAJ;
23671 
23672 	IP_MAJ = ddi_name_to_major(IP);
23673 
23674 #ifdef NS_DEBUG
23675 	(void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n",
23676 	    tcps->tcps_netstack->netstack_stackid,
23677 	    tcps->tcps_netstack->netstack_refcnt);
23678 #endif
23679 	lh = tcps->tcps_g_q_lh;
23680 	if (lh == NULL)
23681 		return;	/* Nothing to cleanup */
23682 
23683 	ASSERT(tcps->tcps_refcnt == 1);
23684 	ASSERT(tcps->tcps_g_q != NULL);
23685 
23686 	error = ldi_ident_from_major(IP_MAJ, &li);
23687 	if (error) {
23688 #ifdef DEBUG
23689 		printf("tcp_g_q_inactive: lyr ident get failed error %d\n",
23690 		    error);
23691 #endif
23692 		return;
23693 	}
23694 
23695 	cr = tcps->tcps_g_q_cr;
23696 	tcps->tcps_g_q_cr = NULL;
23697 	ASSERT(cr != NULL);
23698 
23699 	/*
23700 	 * Make sure we can break the recursion when tcp_close decrements
23701 	 * the reference count causing g_q_inactive to be called again.
23702 	 */
23703 	tcps->tcps_g_q_lh = NULL;
23704 
23705 	/* close the default queue */
23706 	(void) ldi_close(lh, FREAD|FWRITE, cr);
23707 	/*
23708 	 * At this point in time tcps and the rest of netstack_t might
23709 	 * have been deleted.
23710 	 */
23711 	tcps = NULL;
23712 
23713 	/* Close layered handles */
23714 	ldi_ident_release(li);
23715 	crfree(cr);
23716 }
23717 
23718 /*
23719  * Called when last tcp_t drops reference count using TCPS_REFRELE.
23720  *
23721  * Have to ensure that the ldi routines are not used by an
23722  * interrupt thread by using a taskq.
23723  */
23724 void
23725 tcp_g_q_inactive(tcp_stack_t *tcps)
23726 {
23727 	if (tcps->tcps_g_q_lh == NULL)
23728 		return;	/* Nothing to cleanup */
23729 
23730 	ASSERT(tcps->tcps_refcnt == 0);
23731 	TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */
23732 
23733 	if (servicing_interrupt()) {
23734 		(void) taskq_dispatch(tcp_taskq, tcp_g_q_close,
23735 		    (void *) tcps, TQ_SLEEP);
23736 	} else {
23737 		tcp_g_q_close(tcps);
23738 	}
23739 }
23740 
23741 /*
23742  * Called by IP when IP is loaded into the kernel
23743  */
23744 void
23745 tcp_ddi_g_init(void)
23746 {
23747 	tcp_timercache = kmem_cache_create("tcp_timercache",
23748 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
23749 	    NULL, NULL, NULL, NULL, NULL, 0);
23750 
23751 	tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache",
23752 	    sizeof (tcp_sack_info_t), 0,
23753 	    tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0);
23754 
23755 	tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache",
23756 	    TCP_MAX_COMBINED_HEADER_LENGTH, 0,
23757 	    tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0);
23758 
23759 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
23760 
23761 	/* Initialize the random number generator */
23762 	tcp_random_init();
23763 
23764 	/* A single callback independently of how many netstacks we have */
23765 	ip_squeue_init(tcp_squeue_add);
23766 
23767 	tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics);
23768 
23769 	tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1,
23770 	    TASKQ_PREPOPULATE);
23771 
23772 	tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput);
23773 
23774 	/*
23775 	 * We want to be informed each time a stack is created or
23776 	 * destroyed in the kernel, so we can maintain the
23777 	 * set of tcp_stack_t's.
23778 	 */
23779 	netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown,
23780 	    tcp_stack_fini);
23781 }
23782 
23783 
23784 #define	INET_NAME	"ip"
23785 
23786 /*
23787  * Initialize the TCP stack instance.
23788  */
23789 static void *
23790 tcp_stack_init(netstackid_t stackid, netstack_t *ns)
23791 {
23792 	tcp_stack_t	*tcps;
23793 	tcpparam_t	*pa;
23794 	int		i;
23795 	int		error = 0;
23796 	major_t		major;
23797 
23798 	tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP);
23799 	tcps->tcps_netstack = ns;
23800 
23801 	/* Initialize locks */
23802 	mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL);
23803 	cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL);
23804 	mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
23805 	mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
23806 
23807 	tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
23808 	tcps->tcps_g_epriv_ports[0] = 2049;
23809 	tcps->tcps_g_epriv_ports[1] = 4045;
23810 	tcps->tcps_min_anonpriv_port = 512;
23811 
23812 	tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) *
23813 	    TCP_BIND_FANOUT_SIZE, KM_SLEEP);
23814 	tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) *
23815 	    TCP_FANOUT_SIZE, KM_SLEEP);
23816 
23817 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
23818 		mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL,
23819 		    MUTEX_DEFAULT, NULL);
23820 	}
23821 
23822 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
23823 		mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL,
23824 		    MUTEX_DEFAULT, NULL);
23825 	}
23826 
23827 	/* TCP's IPsec code calls the packet dropper. */
23828 	ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement");
23829 
23830 	pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP);
23831 	tcps->tcps_params = pa;
23832 	bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr));
23833 
23834 	(void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params,
23835 	    A_CNT(lcl_tcp_param_arr), tcps);
23836 
23837 	/*
23838 	 * Note: To really walk the device tree you need the devinfo
23839 	 * pointer to your device which is only available after probe/attach.
23840 	 * The following is safe only because it uses ddi_root_node()
23841 	 */
23842 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
23843 	    tcp_opt_obj.odb_opt_arr_cnt);
23844 
23845 	/*
23846 	 * Initialize RFC 1948 secret values.  This will probably be reset once
23847 	 * by the boot scripts.
23848 	 *
23849 	 * Use NULL name, as the name is caught by the new lockstats.
23850 	 *
23851 	 * Initialize with some random, non-guessable string, like the global
23852 	 * T_INFO_ACK.
23853 	 */
23854 
23855 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
23856 	    sizeof (tcp_g_t_info_ack), tcps);
23857 
23858 	tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics);
23859 	tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps);
23860 
23861 	major = mod_name_to_major(INET_NAME);
23862 	error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident);
23863 	ASSERT(error == 0);
23864 	return (tcps);
23865 }
23866 
23867 /*
23868  * Called when the IP module is about to be unloaded.
23869  */
23870 void
23871 tcp_ddi_g_destroy(void)
23872 {
23873 	tcp_g_kstat_fini(tcp_g_kstat);
23874 	tcp_g_kstat = NULL;
23875 	bzero(&tcp_g_statistics, sizeof (tcp_g_statistics));
23876 
23877 	mutex_destroy(&tcp_random_lock);
23878 
23879 	kmem_cache_destroy(tcp_timercache);
23880 	kmem_cache_destroy(tcp_sack_info_cache);
23881 	kmem_cache_destroy(tcp_iphc_cache);
23882 
23883 	netstack_unregister(NS_TCP);
23884 	taskq_destroy(tcp_taskq);
23885 }
23886 
23887 /*
23888  * Shut down the TCP stack instance.
23889  */
23890 /* ARGSUSED */
23891 static void
23892 tcp_stack_shutdown(netstackid_t stackid, void *arg)
23893 {
23894 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
23895 
23896 	tcp_g_q_destroy(tcps);
23897 }
23898 
23899 /*
23900  * Free the TCP stack instance.
23901  */
23902 static void
23903 tcp_stack_fini(netstackid_t stackid, void *arg)
23904 {
23905 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
23906 	int i;
23907 
23908 	nd_free(&tcps->tcps_g_nd);
23909 	kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr));
23910 	tcps->tcps_params = NULL;
23911 	kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t));
23912 	tcps->tcps_wroff_xtra_param = NULL;
23913 	kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t));
23914 	tcps->tcps_mdt_head_param = NULL;
23915 	kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t));
23916 	tcps->tcps_mdt_tail_param = NULL;
23917 	kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t));
23918 	tcps->tcps_mdt_max_pbufs_param = NULL;
23919 
23920 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
23921 		ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL);
23922 		mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock);
23923 	}
23924 
23925 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
23926 		ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL);
23927 		mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock);
23928 	}
23929 
23930 	kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE);
23931 	tcps->tcps_bind_fanout = NULL;
23932 
23933 	kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE);
23934 	tcps->tcps_acceptor_fanout = NULL;
23935 
23936 	mutex_destroy(&tcps->tcps_iss_key_lock);
23937 	mutex_destroy(&tcps->tcps_g_q_lock);
23938 	cv_destroy(&tcps->tcps_g_q_cv);
23939 	mutex_destroy(&tcps->tcps_epriv_port_lock);
23940 
23941 	ip_drop_unregister(&tcps->tcps_dropper);
23942 
23943 	tcp_kstat2_fini(stackid, tcps->tcps_kstat);
23944 	tcps->tcps_kstat = NULL;
23945 	bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics));
23946 
23947 	tcp_kstat_fini(stackid, tcps->tcps_mibkp);
23948 	tcps->tcps_mibkp = NULL;
23949 
23950 	ldi_ident_release(tcps->tcps_ldi_ident);
23951 	kmem_free(tcps, sizeof (*tcps));
23952 }
23953 
23954 /*
23955  * Generate ISS, taking into account NDD changes may happen halfway through.
23956  * (If the iss is not zero, set it.)
23957  */
23958 
23959 static void
23960 tcp_iss_init(tcp_t *tcp)
23961 {
23962 	MD5_CTX context;
23963 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
23964 	uint32_t answer[4];
23965 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23966 
23967 	tcps->tcps_iss_incr_extra += (ISS_INCR >> 1);
23968 	tcp->tcp_iss = tcps->tcps_iss_incr_extra;
23969 	switch (tcps->tcps_strong_iss) {
23970 	case 2:
23971 		mutex_enter(&tcps->tcps_iss_key_lock);
23972 		context = tcps->tcps_iss_key;
23973 		mutex_exit(&tcps->tcps_iss_key_lock);
23974 		arg.ports = tcp->tcp_ports;
23975 		if (tcp->tcp_ipversion == IPV4_VERSION) {
23976 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
23977 			    &arg.src);
23978 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst,
23979 			    &arg.dst);
23980 		} else {
23981 			arg.src = tcp->tcp_ip6h->ip6_src;
23982 			arg.dst = tcp->tcp_ip6h->ip6_dst;
23983 		}
23984 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
23985 		MD5Final((uchar_t *)answer, &context);
23986 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
23987 		/*
23988 		 * Now that we've hashed into a unique per-connection sequence
23989 		 * space, add a random increment per strong_iss == 1.  So I
23990 		 * guess we'll have to...
23991 		 */
23992 		/* FALLTHRU */
23993 	case 1:
23994 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
23995 		break;
23996 	default:
23997 		tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
23998 		break;
23999 	}
24000 	tcp->tcp_valid_bits = TCP_ISS_VALID;
24001 	tcp->tcp_fss = tcp->tcp_iss - 1;
24002 	tcp->tcp_suna = tcp->tcp_iss;
24003 	tcp->tcp_snxt = tcp->tcp_iss + 1;
24004 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
24005 	tcp->tcp_csuna = tcp->tcp_snxt;
24006 }
24007 
24008 /*
24009  * Exported routine for extracting active tcp connection status.
24010  *
24011  * This is used by the Solaris Cluster Networking software to
24012  * gather a list of connections that need to be forwarded to
24013  * specific nodes in the cluster when configuration changes occur.
24014  *
24015  * The callback is invoked for each tcp_t structure from all netstacks,
24016  * if 'stack_id' is less than 0. Otherwise, only for tcp_t structures
24017  * from the netstack with the specified stack_id. Returning
24018  * non-zero from the callback routine terminates the search.
24019  */
24020 int
24021 cl_tcp_walk_list(netstackid_t stack_id,
24022     int (*cl_callback)(cl_tcp_info_t *, void *), void *arg)
24023 {
24024 	netstack_handle_t nh;
24025 	netstack_t *ns;
24026 	int ret = 0;
24027 
24028 	if (stack_id >= 0) {
24029 		if ((ns = netstack_find_by_stackid(stack_id)) == NULL)
24030 			return (EINVAL);
24031 
24032 		ret = cl_tcp_walk_list_stack(cl_callback, arg,
24033 		    ns->netstack_tcp);
24034 		netstack_rele(ns);
24035 		return (ret);
24036 	}
24037 
24038 	netstack_next_init(&nh);
24039 	while ((ns = netstack_next(&nh)) != NULL) {
24040 		ret = cl_tcp_walk_list_stack(cl_callback, arg,
24041 		    ns->netstack_tcp);
24042 		netstack_rele(ns);
24043 	}
24044 	netstack_next_fini(&nh);
24045 	return (ret);
24046 }
24047 
24048 static int
24049 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg,
24050     tcp_stack_t *tcps)
24051 {
24052 	tcp_t *tcp;
24053 	cl_tcp_info_t	cl_tcpi;
24054 	connf_t	*connfp;
24055 	conn_t	*connp;
24056 	int	i;
24057 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
24058 
24059 	ASSERT(callback != NULL);
24060 
24061 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
24062 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
24063 		connp = NULL;
24064 
24065 		while ((connp =
24066 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
24067 
24068 			tcp = connp->conn_tcp;
24069 			cl_tcpi.cl_tcpi_version = CL_TCPI_V1;
24070 			cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion;
24071 			cl_tcpi.cl_tcpi_state = tcp->tcp_state;
24072 			cl_tcpi.cl_tcpi_lport = tcp->tcp_lport;
24073 			cl_tcpi.cl_tcpi_fport = tcp->tcp_fport;
24074 			/*
24075 			 * The macros tcp_laddr and tcp_faddr give the IPv4
24076 			 * addresses. They are copied implicitly below as
24077 			 * mapped addresses.
24078 			 */
24079 			cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6;
24080 			if (tcp->tcp_ipversion == IPV4_VERSION) {
24081 				cl_tcpi.cl_tcpi_faddr =
24082 				    tcp->tcp_ipha->ipha_dst;
24083 			} else {
24084 				cl_tcpi.cl_tcpi_faddr_v6 =
24085 				    tcp->tcp_ip6h->ip6_dst;
24086 			}
24087 
24088 			/*
24089 			 * If the callback returns non-zero
24090 			 * we terminate the traversal.
24091 			 */
24092 			if ((*callback)(&cl_tcpi, arg) != 0) {
24093 				CONN_DEC_REF(tcp->tcp_connp);
24094 				return (1);
24095 			}
24096 		}
24097 	}
24098 
24099 	return (0);
24100 }
24101 
24102 /*
24103  * Macros used for accessing the different types of sockaddr
24104  * structures inside a tcp_ioc_abort_conn_t.
24105  */
24106 #define	TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local)
24107 #define	TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote)
24108 #define	TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr)
24109 #define	TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr)
24110 #define	TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port)
24111 #define	TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port)
24112 #define	TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local)
24113 #define	TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote)
24114 #define	TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr)
24115 #define	TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr)
24116 #define	TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port)
24117 #define	TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port)
24118 
24119 /*
24120  * Return the correct error code to mimic the behavior
24121  * of a connection reset.
24122  */
24123 #define	TCP_AC_GET_ERRCODE(state, err) {	\
24124 		switch ((state)) {		\
24125 		case TCPS_SYN_SENT:		\
24126 		case TCPS_SYN_RCVD:		\
24127 			(err) = ECONNREFUSED;	\
24128 			break;			\
24129 		case TCPS_ESTABLISHED:		\
24130 		case TCPS_FIN_WAIT_1:		\
24131 		case TCPS_FIN_WAIT_2:		\
24132 		case TCPS_CLOSE_WAIT:		\
24133 			(err) = ECONNRESET;	\
24134 			break;			\
24135 		case TCPS_CLOSING:		\
24136 		case TCPS_LAST_ACK:		\
24137 		case TCPS_TIME_WAIT:		\
24138 			(err) = 0;		\
24139 			break;			\
24140 		default:			\
24141 			(err) = ENXIO;		\
24142 		}				\
24143 	}
24144 
24145 /*
24146  * Check if a tcp structure matches the info in acp.
24147  */
24148 #define	TCP_AC_ADDR_MATCH(acp, tcp)					\
24149 	(((acp)->ac_local.ss_family == AF_INET) ?		\
24150 	((TCP_AC_V4LOCAL((acp)) == INADDR_ANY ||		\
24151 	TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) &&	\
24152 	(TCP_AC_V4REMOTE((acp)) == INADDR_ANY ||		\
24153 	TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) &&	\
24154 	(TCP_AC_V4LPORT((acp)) == 0 ||				\
24155 	TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) &&		\
24156 	(TCP_AC_V4RPORT((acp)) == 0 ||				\
24157 	TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) &&		\
24158 	(acp)->ac_start <= (tcp)->tcp_state &&	\
24159 	(acp)->ac_end >= (tcp)->tcp_state) :		\
24160 	((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) ||	\
24161 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)),		\
24162 	&(tcp)->tcp_ip_src_v6)) &&				\
24163 	(IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) ||	\
24164 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)),		\
24165 	&(tcp)->tcp_remote_v6)) &&				\
24166 	(TCP_AC_V6LPORT((acp)) == 0 ||				\
24167 	TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) &&		\
24168 	(TCP_AC_V6RPORT((acp)) == 0 ||				\
24169 	TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) &&		\
24170 	(acp)->ac_start <= (tcp)->tcp_state &&	\
24171 	(acp)->ac_end >= (tcp)->tcp_state))
24172 
24173 #define	TCP_AC_MATCH(acp, tcp)					\
24174 	(((acp)->ac_zoneid == ALL_ZONES ||			\
24175 	(acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ?	\
24176 	TCP_AC_ADDR_MATCH(acp, tcp) : 0)
24177 
24178 /*
24179  * Build a message containing a tcp_ioc_abort_conn_t structure
24180  * which is filled in with information from acp and tp.
24181  */
24182 static mblk_t *
24183 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp)
24184 {
24185 	mblk_t *mp;
24186 	tcp_ioc_abort_conn_t *tacp;
24187 
24188 	mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO);
24189 	if (mp == NULL)
24190 		return (NULL);
24191 
24192 	mp->b_datap->db_type = M_CTL;
24193 
24194 	*((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN;
24195 	tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr +
24196 	    sizeof (uint32_t));
24197 
24198 	tacp->ac_start = acp->ac_start;
24199 	tacp->ac_end = acp->ac_end;
24200 	tacp->ac_zoneid = acp->ac_zoneid;
24201 
24202 	if (acp->ac_local.ss_family == AF_INET) {
24203 		tacp->ac_local.ss_family = AF_INET;
24204 		tacp->ac_remote.ss_family = AF_INET;
24205 		TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src;
24206 		TCP_AC_V4REMOTE(tacp) = tp->tcp_remote;
24207 		TCP_AC_V4LPORT(tacp) = tp->tcp_lport;
24208 		TCP_AC_V4RPORT(tacp) = tp->tcp_fport;
24209 	} else {
24210 		tacp->ac_local.ss_family = AF_INET6;
24211 		tacp->ac_remote.ss_family = AF_INET6;
24212 		TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6;
24213 		TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6;
24214 		TCP_AC_V6LPORT(tacp) = tp->tcp_lport;
24215 		TCP_AC_V6RPORT(tacp) = tp->tcp_fport;
24216 	}
24217 	mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp);
24218 	return (mp);
24219 }
24220 
24221 /*
24222  * Print a tcp_ioc_abort_conn_t structure.
24223  */
24224 static void
24225 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp)
24226 {
24227 	char lbuf[128];
24228 	char rbuf[128];
24229 	sa_family_t af;
24230 	in_port_t lport, rport;
24231 	ushort_t logflags;
24232 
24233 	af = acp->ac_local.ss_family;
24234 
24235 	if (af == AF_INET) {
24236 		(void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp),
24237 		    lbuf, 128);
24238 		(void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp),
24239 		    rbuf, 128);
24240 		lport = ntohs(TCP_AC_V4LPORT(acp));
24241 		rport = ntohs(TCP_AC_V4RPORT(acp));
24242 	} else {
24243 		(void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp),
24244 		    lbuf, 128);
24245 		(void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp),
24246 		    rbuf, 128);
24247 		lport = ntohs(TCP_AC_V6LPORT(acp));
24248 		rport = ntohs(TCP_AC_V6RPORT(acp));
24249 	}
24250 
24251 	logflags = SL_TRACE | SL_NOTE;
24252 	/*
24253 	 * Don't print this message to the console if the operation was done
24254 	 * to a non-global zone.
24255 	 */
24256 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
24257 		logflags |= SL_CONSOLE;
24258 	(void) strlog(TCP_MOD_ID, 0, 1, logflags,
24259 	    "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, "
24260 	    "start = %d, end = %d\n", lbuf, lport, rbuf, rport,
24261 	    acp->ac_start, acp->ac_end);
24262 }
24263 
24264 /*
24265  * Called inside tcp_rput when a message built using
24266  * tcp_ioctl_abort_build_msg is put into a queue.
24267  * Note that when we get here there is no wildcard in acp any more.
24268  */
24269 static void
24270 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp)
24271 {
24272 	tcp_ioc_abort_conn_t *acp;
24273 
24274 	acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t));
24275 	if (tcp->tcp_state <= acp->ac_end) {
24276 		/*
24277 		 * If we get here, we are already on the correct
24278 		 * squeue. This ioctl follows the following path
24279 		 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn
24280 		 * ->tcp_ioctl_abort->squeue_enter (if on a
24281 		 * different squeue)
24282 		 */
24283 		int errcode;
24284 
24285 		TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode);
24286 		(void) tcp_clean_death(tcp, errcode, 26);
24287 	}
24288 	freemsg(mp);
24289 }
24290 
24291 /*
24292  * Abort all matching connections on a hash chain.
24293  */
24294 static int
24295 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count,
24296     boolean_t exact, tcp_stack_t *tcps)
24297 {
24298 	int nmatch, err = 0;
24299 	tcp_t *tcp;
24300 	MBLKP mp, last, listhead = NULL;
24301 	conn_t	*tconnp;
24302 	connf_t	*connfp;
24303 	ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
24304 
24305 	connfp = &ipst->ips_ipcl_conn_fanout[index];
24306 
24307 startover:
24308 	nmatch = 0;
24309 
24310 	mutex_enter(&connfp->connf_lock);
24311 	for (tconnp = connfp->connf_head; tconnp != NULL;
24312 	    tconnp = tconnp->conn_next) {
24313 		tcp = tconnp->conn_tcp;
24314 		if (TCP_AC_MATCH(acp, tcp)) {
24315 			CONN_INC_REF(tcp->tcp_connp);
24316 			mp = tcp_ioctl_abort_build_msg(acp, tcp);
24317 			if (mp == NULL) {
24318 				err = ENOMEM;
24319 				CONN_DEC_REF(tcp->tcp_connp);
24320 				break;
24321 			}
24322 			mp->b_prev = (mblk_t *)tcp;
24323 
24324 			if (listhead == NULL) {
24325 				listhead = mp;
24326 				last = mp;
24327 			} else {
24328 				last->b_next = mp;
24329 				last = mp;
24330 			}
24331 			nmatch++;
24332 			if (exact)
24333 				break;
24334 		}
24335 
24336 		/* Avoid holding lock for too long. */
24337 		if (nmatch >= 500)
24338 			break;
24339 	}
24340 	mutex_exit(&connfp->connf_lock);
24341 
24342 	/* Pass mp into the correct tcp */
24343 	while ((mp = listhead) != NULL) {
24344 		listhead = listhead->b_next;
24345 		tcp = (tcp_t *)mp->b_prev;
24346 		mp->b_next = mp->b_prev = NULL;
24347 		SQUEUE_ENTER_ONE(tcp->tcp_connp->conn_sqp, mp, tcp_input,
24348 		    tcp->tcp_connp, SQ_FILL, SQTAG_TCP_ABORT_BUCKET);
24349 	}
24350 
24351 	*count += nmatch;
24352 	if (nmatch >= 500 && err == 0)
24353 		goto startover;
24354 	return (err);
24355 }
24356 
24357 /*
24358  * Abort all connections that matches the attributes specified in acp.
24359  */
24360 static int
24361 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps)
24362 {
24363 	sa_family_t af;
24364 	uint32_t  ports;
24365 	uint16_t *pports;
24366 	int err = 0, count = 0;
24367 	boolean_t exact = B_FALSE; /* set when there is no wildcard */
24368 	int index = -1;
24369 	ushort_t logflags;
24370 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
24371 
24372 	af = acp->ac_local.ss_family;
24373 
24374 	if (af == AF_INET) {
24375 		if (TCP_AC_V4REMOTE(acp) != INADDR_ANY &&
24376 		    TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) {
24377 			pports = (uint16_t *)&ports;
24378 			pports[1] = TCP_AC_V4LPORT(acp);
24379 			pports[0] = TCP_AC_V4RPORT(acp);
24380 			exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY);
24381 		}
24382 	} else {
24383 		if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) &&
24384 		    TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) {
24385 			pports = (uint16_t *)&ports;
24386 			pports[1] = TCP_AC_V6LPORT(acp);
24387 			pports[0] = TCP_AC_V6RPORT(acp);
24388 			exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp));
24389 		}
24390 	}
24391 
24392 	/*
24393 	 * For cases where remote addr, local port, and remote port are non-
24394 	 * wildcards, tcp_ioctl_abort_bucket will only be called once.
24395 	 */
24396 	if (index != -1) {
24397 		err = tcp_ioctl_abort_bucket(acp, index,
24398 		    &count, exact, tcps);
24399 	} else {
24400 		/*
24401 		 * loop through all entries for wildcard case
24402 		 */
24403 		for (index = 0;
24404 		    index < ipst->ips_ipcl_conn_fanout_size;
24405 		    index++) {
24406 			err = tcp_ioctl_abort_bucket(acp, index,
24407 			    &count, exact, tcps);
24408 			if (err != 0)
24409 				break;
24410 		}
24411 	}
24412 
24413 	logflags = SL_TRACE | SL_NOTE;
24414 	/*
24415 	 * Don't print this message to the console if the operation was done
24416 	 * to a non-global zone.
24417 	 */
24418 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
24419 		logflags |= SL_CONSOLE;
24420 	(void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: "
24421 	    "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' '));
24422 	if (err == 0 && count == 0)
24423 		err = ENOENT;
24424 	return (err);
24425 }
24426 
24427 /*
24428  * Process the TCP_IOC_ABORT_CONN ioctl request.
24429  */
24430 static void
24431 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp)
24432 {
24433 	int	err;
24434 	IOCP    iocp;
24435 	MBLKP   mp1;
24436 	sa_family_t laf, raf;
24437 	tcp_ioc_abort_conn_t *acp;
24438 	zone_t		*zptr;
24439 	conn_t		*connp = Q_TO_CONN(q);
24440 	zoneid_t	zoneid = connp->conn_zoneid;
24441 	tcp_t		*tcp = connp->conn_tcp;
24442 	tcp_stack_t	*tcps = tcp->tcp_tcps;
24443 
24444 	iocp = (IOCP)mp->b_rptr;
24445 
24446 	if ((mp1 = mp->b_cont) == NULL ||
24447 	    iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) {
24448 		err = EINVAL;
24449 		goto out;
24450 	}
24451 
24452 	/* check permissions */
24453 	if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
24454 		err = EPERM;
24455 		goto out;
24456 	}
24457 
24458 	if (mp1->b_cont != NULL) {
24459 		freemsg(mp1->b_cont);
24460 		mp1->b_cont = NULL;
24461 	}
24462 
24463 	acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr;
24464 	laf = acp->ac_local.ss_family;
24465 	raf = acp->ac_remote.ss_family;
24466 
24467 	/* check that a zone with the supplied zoneid exists */
24468 	if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) {
24469 		zptr = zone_find_by_id(zoneid);
24470 		if (zptr != NULL) {
24471 			zone_rele(zptr);
24472 		} else {
24473 			err = EINVAL;
24474 			goto out;
24475 		}
24476 	}
24477 
24478 	/*
24479 	 * For exclusive stacks we set the zoneid to zero
24480 	 * to make TCP operate as if in the global zone.
24481 	 */
24482 	if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID)
24483 		acp->ac_zoneid = GLOBAL_ZONEID;
24484 
24485 	if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT ||
24486 	    acp->ac_start > acp->ac_end || laf != raf ||
24487 	    (laf != AF_INET && laf != AF_INET6)) {
24488 		err = EINVAL;
24489 		goto out;
24490 	}
24491 
24492 	tcp_ioctl_abort_dump(acp);
24493 	err = tcp_ioctl_abort(acp, tcps);
24494 
24495 out:
24496 	if (mp1 != NULL) {
24497 		freemsg(mp1);
24498 		mp->b_cont = NULL;
24499 	}
24500 
24501 	if (err != 0)
24502 		miocnak(q, mp, 0, err);
24503 	else
24504 		miocack(q, mp, 0, 0);
24505 }
24506 
24507 /*
24508  * tcp_time_wait_processing() handles processing of incoming packets when
24509  * the tcp is in the TIME_WAIT state.
24510  * A TIME_WAIT tcp that has an associated open TCP stream is never put
24511  * on the time wait list.
24512  */
24513 void
24514 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq,
24515     uint32_t seg_ack, int seg_len, tcph_t *tcph)
24516 {
24517 	int32_t		bytes_acked;
24518 	int32_t		gap;
24519 	int32_t		rgap;
24520 	tcp_opt_t	tcpopt;
24521 	uint_t		flags;
24522 	uint32_t	new_swnd = 0;
24523 	conn_t		*connp;
24524 	tcp_stack_t	*tcps = tcp->tcp_tcps;
24525 
24526 	BUMP_LOCAL(tcp->tcp_ibsegs);
24527 	DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
24528 
24529 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
24530 	new_swnd = BE16_TO_U16(tcph->th_win) <<
24531 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
24532 	if (tcp->tcp_snd_ts_ok) {
24533 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
24534 			tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
24535 			    tcp->tcp_rnxt, TH_ACK);
24536 			goto done;
24537 		}
24538 	}
24539 	gap = seg_seq - tcp->tcp_rnxt;
24540 	rgap = tcp->tcp_rwnd - (gap + seg_len);
24541 	if (gap < 0) {
24542 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
24543 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
24544 		    (seg_len > -gap ? -gap : seg_len));
24545 		seg_len += gap;
24546 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
24547 			if (flags & TH_RST) {
24548 				goto done;
24549 			}
24550 			if ((flags & TH_FIN) && seg_len == -1) {
24551 				/*
24552 				 * When TCP receives a duplicate FIN in
24553 				 * TIME_WAIT state, restart the 2 MSL timer.
24554 				 * See page 73 in RFC 793. Make sure this TCP
24555 				 * is already on the TIME_WAIT list. If not,
24556 				 * just restart the timer.
24557 				 */
24558 				if (TCP_IS_DETACHED(tcp)) {
24559 					if (tcp_time_wait_remove(tcp, NULL) ==
24560 					    B_TRUE) {
24561 						tcp_time_wait_append(tcp);
24562 						TCP_DBGSTAT(tcps,
24563 						    tcp_rput_time_wait);
24564 					}
24565 				} else {
24566 					ASSERT(tcp != NULL);
24567 					TCP_TIMER_RESTART(tcp,
24568 					    tcps->tcps_time_wait_interval);
24569 				}
24570 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
24571 				    tcp->tcp_rnxt, TH_ACK);
24572 				goto done;
24573 			}
24574 			flags |=  TH_ACK_NEEDED;
24575 			seg_len = 0;
24576 			goto process_ack;
24577 		}
24578 
24579 		/* Fix seg_seq, and chew the gap off the front. */
24580 		seg_seq = tcp->tcp_rnxt;
24581 	}
24582 
24583 	if ((flags & TH_SYN) && gap > 0 && rgap < 0) {
24584 		/*
24585 		 * Make sure that when we accept the connection, pick
24586 		 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the
24587 		 * old connection.
24588 		 *
24589 		 * The next ISS generated is equal to tcp_iss_incr_extra
24590 		 * + ISS_INCR/2 + other components depending on the
24591 		 * value of tcp_strong_iss.  We pre-calculate the new
24592 		 * ISS here and compare with tcp_snxt to determine if
24593 		 * we need to make adjustment to tcp_iss_incr_extra.
24594 		 *
24595 		 * The above calculation is ugly and is a
24596 		 * waste of CPU cycles...
24597 		 */
24598 		uint32_t new_iss = tcps->tcps_iss_incr_extra;
24599 		int32_t adj;
24600 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
24601 
24602 		switch (tcps->tcps_strong_iss) {
24603 		case 2: {
24604 			/* Add time and MD5 components. */
24605 			uint32_t answer[4];
24606 			struct {
24607 				uint32_t ports;
24608 				in6_addr_t src;
24609 				in6_addr_t dst;
24610 			} arg;
24611 			MD5_CTX context;
24612 
24613 			mutex_enter(&tcps->tcps_iss_key_lock);
24614 			context = tcps->tcps_iss_key;
24615 			mutex_exit(&tcps->tcps_iss_key_lock);
24616 			arg.ports = tcp->tcp_ports;
24617 			/* We use MAPPED addresses in tcp_iss_init */
24618 			arg.src = tcp->tcp_ip_src_v6;
24619 			if (tcp->tcp_ipversion == IPV4_VERSION) {
24620 				IN6_IPADDR_TO_V4MAPPED(
24621 				    tcp->tcp_ipha->ipha_dst,
24622 				    &arg.dst);
24623 			} else {
24624 				arg.dst =
24625 				    tcp->tcp_ip6h->ip6_dst;
24626 			}
24627 			MD5Update(&context, (uchar_t *)&arg,
24628 			    sizeof (arg));
24629 			MD5Final((uchar_t *)answer, &context);
24630 			answer[0] ^= answer[1] ^ answer[2] ^ answer[3];
24631 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0];
24632 			break;
24633 		}
24634 		case 1:
24635 			/* Add time component and min random (i.e. 1). */
24636 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1;
24637 			break;
24638 		default:
24639 			/* Add only time component. */
24640 			new_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
24641 			break;
24642 		}
24643 		if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) {
24644 			/*
24645 			 * New ISS not guaranteed to be ISS_INCR/2
24646 			 * ahead of the current tcp_snxt, so add the
24647 			 * difference to tcp_iss_incr_extra.
24648 			 */
24649 			tcps->tcps_iss_incr_extra += adj;
24650 		}
24651 		/*
24652 		 * If tcp_clean_death() can not perform the task now,
24653 		 * drop the SYN packet and let the other side re-xmit.
24654 		 * Otherwise pass the SYN packet back in, since the
24655 		 * old tcp state has been cleaned up or freed.
24656 		 */
24657 		if (tcp_clean_death(tcp, 0, 27) == -1)
24658 			goto done;
24659 		/*
24660 		 * We will come back to tcp_rput_data
24661 		 * on the global queue. Packets destined
24662 		 * for the global queue will be checked
24663 		 * with global policy. But the policy for
24664 		 * this packet has already been checked as
24665 		 * this was destined for the detached
24666 		 * connection. We need to bypass policy
24667 		 * check this time by attaching a dummy
24668 		 * ipsec_in with ipsec_in_dont_check set.
24669 		 */
24670 		connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst);
24671 		if (connp != NULL) {
24672 			TCP_STAT(tcps, tcp_time_wait_syn_success);
24673 			tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp);
24674 			return;
24675 		}
24676 		goto done;
24677 	}
24678 
24679 	/*
24680 	 * rgap is the amount of stuff received out of window.  A negative
24681 	 * value is the amount out of window.
24682 	 */
24683 	if (rgap < 0) {
24684 		BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
24685 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap);
24686 		/* Fix seg_len and make sure there is something left. */
24687 		seg_len += rgap;
24688 		if (seg_len <= 0) {
24689 			if (flags & TH_RST) {
24690 				goto done;
24691 			}
24692 			flags |=  TH_ACK_NEEDED;
24693 			seg_len = 0;
24694 			goto process_ack;
24695 		}
24696 	}
24697 	/*
24698 	 * Check whether we can update tcp_ts_recent.  This test is
24699 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
24700 	 * Extensions for High Performance: An Update", Internet Draft.
24701 	 */
24702 	if (tcp->tcp_snd_ts_ok &&
24703 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
24704 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
24705 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
24706 		tcp->tcp_last_rcv_lbolt = lbolt64;
24707 	}
24708 
24709 	if (seg_seq != tcp->tcp_rnxt && seg_len > 0) {
24710 		/* Always ack out of order packets */
24711 		flags |= TH_ACK_NEEDED;
24712 		seg_len = 0;
24713 	} else if (seg_len > 0) {
24714 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
24715 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
24716 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
24717 	}
24718 	if (flags & TH_RST) {
24719 		(void) tcp_clean_death(tcp, 0, 28);
24720 		goto done;
24721 	}
24722 	if (flags & TH_SYN) {
24723 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
24724 		    TH_RST|TH_ACK);
24725 		/*
24726 		 * Do not delete the TCP structure if it is in
24727 		 * TIME_WAIT state.  Refer to RFC 1122, 4.2.2.13.
24728 		 */
24729 		goto done;
24730 	}
24731 process_ack:
24732 	if (flags & TH_ACK) {
24733 		bytes_acked = (int)(seg_ack - tcp->tcp_suna);
24734 		if (bytes_acked <= 0) {
24735 			if (bytes_acked == 0 && seg_len == 0 &&
24736 			    new_swnd == tcp->tcp_swnd)
24737 				BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
24738 		} else {
24739 			/* Acks something not sent */
24740 			flags |= TH_ACK_NEEDED;
24741 		}
24742 	}
24743 	if (flags & TH_ACK_NEEDED) {
24744 		/*
24745 		 * Time to send an ack for some reason.
24746 		 */
24747 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
24748 		    tcp->tcp_rnxt, TH_ACK);
24749 	}
24750 done:
24751 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
24752 		DB_CKSUMSTART(mp) = 0;
24753 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
24754 		TCP_STAT(tcps, tcp_time_wait_syn_fail);
24755 	}
24756 	freemsg(mp);
24757 }
24758 
24759 /*
24760  * TCP Timers Implementation.
24761  */
24762 timeout_id_t
24763 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim)
24764 {
24765 	mblk_t *mp;
24766 	tcp_timer_t *tcpt;
24767 	tcp_t *tcp = connp->conn_tcp;
24768 
24769 	ASSERT(connp->conn_sqp != NULL);
24770 
24771 	TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_calls);
24772 
24773 	if (tcp->tcp_timercache == NULL) {
24774 		mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC);
24775 	} else {
24776 		TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_cached_alloc);
24777 		mp = tcp->tcp_timercache;
24778 		tcp->tcp_timercache = mp->b_next;
24779 		mp->b_next = NULL;
24780 		ASSERT(mp->b_wptr == NULL);
24781 	}
24782 
24783 	CONN_INC_REF(connp);
24784 	tcpt = (tcp_timer_t *)mp->b_rptr;
24785 	tcpt->connp = connp;
24786 	tcpt->tcpt_proc = f;
24787 	/*
24788 	 * TCP timers are normal timeouts. Plus, they do not require more than
24789 	 * a 10 millisecond resolution. By choosing a coarser resolution and by
24790 	 * rounding up the expiration to the next resolution boundary, we can
24791 	 * batch timers in the callout subsystem to make TCP timers more
24792 	 * efficient. The roundup also protects short timers from expiring too
24793 	 * early before they have a chance to be cancelled.
24794 	 */
24795 	tcpt->tcpt_tid = timeout_generic(CALLOUT_NORMAL, tcp_timer_callback, mp,
24796 	    TICK_TO_NSEC(tim), CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP);
24797 
24798 	return ((timeout_id_t)mp);
24799 }
24800 
24801 static void
24802 tcp_timer_callback(void *arg)
24803 {
24804 	mblk_t *mp = (mblk_t *)arg;
24805 	tcp_timer_t *tcpt;
24806 	conn_t	*connp;
24807 
24808 	tcpt = (tcp_timer_t *)mp->b_rptr;
24809 	connp = tcpt->connp;
24810 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_timer_handler, connp,
24811 	    SQ_FILL, SQTAG_TCP_TIMER);
24812 }
24813 
24814 static void
24815 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2)
24816 {
24817 	tcp_timer_t *tcpt;
24818 	conn_t *connp = (conn_t *)arg;
24819 	tcp_t *tcp = connp->conn_tcp;
24820 
24821 	tcpt = (tcp_timer_t *)mp->b_rptr;
24822 	ASSERT(connp == tcpt->connp);
24823 	ASSERT((squeue_t *)arg2 == connp->conn_sqp);
24824 
24825 	/*
24826 	 * If the TCP has reached the closed state, don't proceed any
24827 	 * further. This TCP logically does not exist on the system.
24828 	 * tcpt_proc could for example access queues, that have already
24829 	 * been qprocoff'ed off. Also see comments at the start of tcp_input
24830 	 */
24831 	if (tcp->tcp_state != TCPS_CLOSED) {
24832 		(*tcpt->tcpt_proc)(connp);
24833 	} else {
24834 		tcp->tcp_timer_tid = 0;
24835 	}
24836 	tcp_timer_free(connp->conn_tcp, mp);
24837 }
24838 
24839 /*
24840  * There is potential race with untimeout and the handler firing at the same
24841  * time. The mblock may be freed by the handler while we are trying to use
24842  * it. But since both should execute on the same squeue, this race should not
24843  * occur.
24844  */
24845 clock_t
24846 tcp_timeout_cancel(conn_t *connp, timeout_id_t id)
24847 {
24848 	mblk_t	*mp = (mblk_t *)id;
24849 	tcp_timer_t *tcpt;
24850 	clock_t delta;
24851 
24852 	TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_cancel_reqs);
24853 
24854 	if (mp == NULL)
24855 		return (-1);
24856 
24857 	tcpt = (tcp_timer_t *)mp->b_rptr;
24858 	ASSERT(tcpt->connp == connp);
24859 
24860 	delta = untimeout_default(tcpt->tcpt_tid, 0);
24861 
24862 	if (delta >= 0) {
24863 		TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_canceled);
24864 		tcp_timer_free(connp->conn_tcp, mp);
24865 		CONN_DEC_REF(connp);
24866 	}
24867 
24868 	return (delta);
24869 }
24870 
24871 /*
24872  * Allocate space for the timer event. The allocation looks like mblk, but it is
24873  * not a proper mblk. To avoid confusion we set b_wptr to NULL.
24874  *
24875  * Dealing with failures: If we can't allocate from the timer cache we try
24876  * allocating from dblock caches using allocb_tryhard(). In this case b_wptr
24877  * points to b_rptr.
24878  * If we can't allocate anything using allocb_tryhard(), we perform a last
24879  * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and
24880  * save the actual allocation size in b_datap.
24881  */
24882 mblk_t *
24883 tcp_timermp_alloc(int kmflags)
24884 {
24885 	mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache,
24886 	    kmflags & ~KM_PANIC);
24887 
24888 	if (mp != NULL) {
24889 		mp->b_next = mp->b_prev = NULL;
24890 		mp->b_rptr = (uchar_t *)(&mp[1]);
24891 		mp->b_wptr = NULL;
24892 		mp->b_datap = NULL;
24893 		mp->b_queue = NULL;
24894 		mp->b_cont = NULL;
24895 	} else if (kmflags & KM_PANIC) {
24896 		/*
24897 		 * Failed to allocate memory for the timer. Try allocating from
24898 		 * dblock caches.
24899 		 */
24900 		/* ipclassifier calls this from a constructor - hence no tcps */
24901 		TCP_G_STAT(tcp_timermp_allocfail);
24902 		mp = allocb_tryhard(sizeof (tcp_timer_t));
24903 		if (mp == NULL) {
24904 			size_t size = 0;
24905 			/*
24906 			 * Memory is really low. Try tryhard allocation.
24907 			 *
24908 			 * ipclassifier calls this from a constructor -
24909 			 * hence no tcps
24910 			 */
24911 			TCP_G_STAT(tcp_timermp_allocdblfail);
24912 			mp = kmem_alloc_tryhard(sizeof (mblk_t) +
24913 			    sizeof (tcp_timer_t), &size, kmflags);
24914 			mp->b_rptr = (uchar_t *)(&mp[1]);
24915 			mp->b_next = mp->b_prev = NULL;
24916 			mp->b_wptr = (uchar_t *)-1;
24917 			mp->b_datap = (dblk_t *)size;
24918 			mp->b_queue = NULL;
24919 			mp->b_cont = NULL;
24920 		}
24921 		ASSERT(mp->b_wptr != NULL);
24922 	}
24923 	/* ipclassifier calls this from a constructor - hence no tcps */
24924 	TCP_G_DBGSTAT(tcp_timermp_alloced);
24925 
24926 	return (mp);
24927 }
24928 
24929 /*
24930  * Free per-tcp timer cache.
24931  * It can only contain entries from tcp_timercache.
24932  */
24933 void
24934 tcp_timermp_free(tcp_t *tcp)
24935 {
24936 	mblk_t *mp;
24937 
24938 	while ((mp = tcp->tcp_timercache) != NULL) {
24939 		ASSERT(mp->b_wptr == NULL);
24940 		tcp->tcp_timercache = tcp->tcp_timercache->b_next;
24941 		kmem_cache_free(tcp_timercache, mp);
24942 	}
24943 }
24944 
24945 /*
24946  * Free timer event. Put it on the per-tcp timer cache if there is not too many
24947  * events there already (currently at most two events are cached).
24948  * If the event is not allocated from the timer cache, free it right away.
24949  */
24950 static void
24951 tcp_timer_free(tcp_t *tcp, mblk_t *mp)
24952 {
24953 	mblk_t *mp1 = tcp->tcp_timercache;
24954 
24955 	if (mp->b_wptr != NULL) {
24956 		/*
24957 		 * This allocation is not from a timer cache, free it right
24958 		 * away.
24959 		 */
24960 		if (mp->b_wptr != (uchar_t *)-1)
24961 			freeb(mp);
24962 		else
24963 			kmem_free(mp, (size_t)mp->b_datap);
24964 	} else if (mp1 == NULL || mp1->b_next == NULL) {
24965 		/* Cache this timer block for future allocations */
24966 		mp->b_rptr = (uchar_t *)(&mp[1]);
24967 		mp->b_next = mp1;
24968 		tcp->tcp_timercache = mp;
24969 	} else {
24970 		kmem_cache_free(tcp_timercache, mp);
24971 		TCP_DBGSTAT(tcp->tcp_tcps, tcp_timermp_freed);
24972 	}
24973 }
24974 
24975 /*
24976  * End of TCP Timers implementation.
24977  */
24978 
24979 /*
24980  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
24981  * on the specified backing STREAMS q. Note, the caller may make the
24982  * decision to call based on the tcp_t.tcp_flow_stopped value which
24983  * when check outside the q's lock is only an advisory check ...
24984  */
24985 void
24986 tcp_setqfull(tcp_t *tcp)
24987 {
24988 	tcp_stack_t	*tcps = tcp->tcp_tcps;
24989 	conn_t	*connp = tcp->tcp_connp;
24990 
24991 	if (tcp->tcp_closed)
24992 		return;
24993 
24994 	if (IPCL_IS_NONSTR(connp)) {
24995 		(*connp->conn_upcalls->su_txq_full)
24996 		    (tcp->tcp_connp->conn_upper_handle, B_TRUE);
24997 		tcp->tcp_flow_stopped = B_TRUE;
24998 	} else {
24999 		queue_t *q = tcp->tcp_wq;
25000 
25001 		if (!(q->q_flag & QFULL)) {
25002 			mutex_enter(QLOCK(q));
25003 			if (!(q->q_flag & QFULL)) {
25004 				/* still need to set QFULL */
25005 				q->q_flag |= QFULL;
25006 				tcp->tcp_flow_stopped = B_TRUE;
25007 				mutex_exit(QLOCK(q));
25008 				TCP_STAT(tcps, tcp_flwctl_on);
25009 			} else {
25010 				mutex_exit(QLOCK(q));
25011 			}
25012 		}
25013 	}
25014 }
25015 
25016 void
25017 tcp_clrqfull(tcp_t *tcp)
25018 {
25019 	conn_t  *connp = tcp->tcp_connp;
25020 
25021 	if (tcp->tcp_closed)
25022 		return;
25023 
25024 	if (IPCL_IS_NONSTR(connp)) {
25025 		(*connp->conn_upcalls->su_txq_full)
25026 		    (tcp->tcp_connp->conn_upper_handle, B_FALSE);
25027 		tcp->tcp_flow_stopped = B_FALSE;
25028 	} else {
25029 		queue_t *q = tcp->tcp_wq;
25030 
25031 		if (q->q_flag & QFULL) {
25032 			mutex_enter(QLOCK(q));
25033 			if (q->q_flag & QFULL) {
25034 				q->q_flag &= ~QFULL;
25035 				tcp->tcp_flow_stopped = B_FALSE;
25036 				mutex_exit(QLOCK(q));
25037 				if (q->q_flag & QWANTW)
25038 					qbackenable(q, 0);
25039 			} else {
25040 				mutex_exit(QLOCK(q));
25041 			}
25042 		}
25043 	}
25044 }
25045 
25046 /*
25047  * kstats related to squeues i.e. not per IP instance
25048  */
25049 static void *
25050 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp)
25051 {
25052 	kstat_t *ksp;
25053 
25054 	tcp_g_stat_t template = {
25055 		{ "tcp_timermp_alloced",	KSTAT_DATA_UINT64 },
25056 		{ "tcp_timermp_allocfail",	KSTAT_DATA_UINT64 },
25057 		{ "tcp_timermp_allocdblfail",	KSTAT_DATA_UINT64 },
25058 		{ "tcp_freelist_cleanup",	KSTAT_DATA_UINT64 },
25059 	};
25060 
25061 	ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net",
25062 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
25063 	    KSTAT_FLAG_VIRTUAL);
25064 
25065 	if (ksp == NULL)
25066 		return (NULL);
25067 
25068 	bcopy(&template, tcp_g_statp, sizeof (template));
25069 	ksp->ks_data = (void *)tcp_g_statp;
25070 
25071 	kstat_install(ksp);
25072 	return (ksp);
25073 }
25074 
25075 static void
25076 tcp_g_kstat_fini(kstat_t *ksp)
25077 {
25078 	if (ksp != NULL) {
25079 		kstat_delete(ksp);
25080 	}
25081 }
25082 
25083 
25084 static void *
25085 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp)
25086 {
25087 	kstat_t *ksp;
25088 
25089 	tcp_stat_t template = {
25090 		{ "tcp_time_wait",		KSTAT_DATA_UINT64 },
25091 		{ "tcp_time_wait_syn",		KSTAT_DATA_UINT64 },
25092 		{ "tcp_time_wait_success",	KSTAT_DATA_UINT64 },
25093 		{ "tcp_time_wait_fail",		KSTAT_DATA_UINT64 },
25094 		{ "tcp_reinput_syn",		KSTAT_DATA_UINT64 },
25095 		{ "tcp_ip_output",		KSTAT_DATA_UINT64 },
25096 		{ "tcp_detach_non_time_wait",	KSTAT_DATA_UINT64 },
25097 		{ "tcp_detach_time_wait",	KSTAT_DATA_UINT64 },
25098 		{ "tcp_time_wait_reap",		KSTAT_DATA_UINT64 },
25099 		{ "tcp_clean_death_nondetached",	KSTAT_DATA_UINT64 },
25100 		{ "tcp_reinit_calls",		KSTAT_DATA_UINT64 },
25101 		{ "tcp_eager_err1",		KSTAT_DATA_UINT64 },
25102 		{ "tcp_eager_err2",		KSTAT_DATA_UINT64 },
25103 		{ "tcp_eager_blowoff_calls",	KSTAT_DATA_UINT64 },
25104 		{ "tcp_eager_blowoff_q",	KSTAT_DATA_UINT64 },
25105 		{ "tcp_eager_blowoff_q0",	KSTAT_DATA_UINT64 },
25106 		{ "tcp_not_hard_bound",		KSTAT_DATA_UINT64 },
25107 		{ "tcp_no_listener",		KSTAT_DATA_UINT64 },
25108 		{ "tcp_found_eager",		KSTAT_DATA_UINT64 },
25109 		{ "tcp_wrong_queue",		KSTAT_DATA_UINT64 },
25110 		{ "tcp_found_eager_binding1",	KSTAT_DATA_UINT64 },
25111 		{ "tcp_found_eager_bound1",	KSTAT_DATA_UINT64 },
25112 		{ "tcp_eager_has_listener1",	KSTAT_DATA_UINT64 },
25113 		{ "tcp_open_alloc",		KSTAT_DATA_UINT64 },
25114 		{ "tcp_open_detached_alloc",	KSTAT_DATA_UINT64 },
25115 		{ "tcp_rput_time_wait",		KSTAT_DATA_UINT64 },
25116 		{ "tcp_listendrop",		KSTAT_DATA_UINT64 },
25117 		{ "tcp_listendropq0",		KSTAT_DATA_UINT64 },
25118 		{ "tcp_wrong_rq",		KSTAT_DATA_UINT64 },
25119 		{ "tcp_rsrv_calls",		KSTAT_DATA_UINT64 },
25120 		{ "tcp_eagerfree2",		KSTAT_DATA_UINT64 },
25121 		{ "tcp_eagerfree3",		KSTAT_DATA_UINT64 },
25122 		{ "tcp_eagerfree4",		KSTAT_DATA_UINT64 },
25123 		{ "tcp_eagerfree5",		KSTAT_DATA_UINT64 },
25124 		{ "tcp_timewait_syn_fail",	KSTAT_DATA_UINT64 },
25125 		{ "tcp_listen_badflags",	KSTAT_DATA_UINT64 },
25126 		{ "tcp_timeout_calls",		KSTAT_DATA_UINT64 },
25127 		{ "tcp_timeout_cached_alloc",	KSTAT_DATA_UINT64 },
25128 		{ "tcp_timeout_cancel_reqs",	KSTAT_DATA_UINT64 },
25129 		{ "tcp_timeout_canceled",	KSTAT_DATA_UINT64 },
25130 		{ "tcp_timermp_freed",		KSTAT_DATA_UINT64 },
25131 		{ "tcp_push_timer_cnt",		KSTAT_DATA_UINT64 },
25132 		{ "tcp_ack_timer_cnt",		KSTAT_DATA_UINT64 },
25133 		{ "tcp_ire_null1",		KSTAT_DATA_UINT64 },
25134 		{ "tcp_ire_null",		KSTAT_DATA_UINT64 },
25135 		{ "tcp_ip_send",		KSTAT_DATA_UINT64 },
25136 		{ "tcp_ip_ire_send",		KSTAT_DATA_UINT64 },
25137 		{ "tcp_wsrv_called",		KSTAT_DATA_UINT64 },
25138 		{ "tcp_flwctl_on",		KSTAT_DATA_UINT64 },
25139 		{ "tcp_timer_fire_early",	KSTAT_DATA_UINT64 },
25140 		{ "tcp_timer_fire_miss",	KSTAT_DATA_UINT64 },
25141 		{ "tcp_rput_v6_error",		KSTAT_DATA_UINT64 },
25142 		{ "tcp_out_sw_cksum",		KSTAT_DATA_UINT64 },
25143 		{ "tcp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
25144 		{ "tcp_zcopy_on",		KSTAT_DATA_UINT64 },
25145 		{ "tcp_zcopy_off",		KSTAT_DATA_UINT64 },
25146 		{ "tcp_zcopy_backoff",		KSTAT_DATA_UINT64 },
25147 		{ "tcp_zcopy_disable",		KSTAT_DATA_UINT64 },
25148 		{ "tcp_mdt_pkt_out",		KSTAT_DATA_UINT64 },
25149 		{ "tcp_mdt_pkt_out_v4",		KSTAT_DATA_UINT64 },
25150 		{ "tcp_mdt_pkt_out_v6",		KSTAT_DATA_UINT64 },
25151 		{ "tcp_mdt_discarded",		KSTAT_DATA_UINT64 },
25152 		{ "tcp_mdt_conn_halted1",	KSTAT_DATA_UINT64 },
25153 		{ "tcp_mdt_conn_halted2",	KSTAT_DATA_UINT64 },
25154 		{ "tcp_mdt_conn_halted3",	KSTAT_DATA_UINT64 },
25155 		{ "tcp_mdt_conn_resumed1",	KSTAT_DATA_UINT64 },
25156 		{ "tcp_mdt_conn_resumed2",	KSTAT_DATA_UINT64 },
25157 		{ "tcp_mdt_legacy_small",	KSTAT_DATA_UINT64 },
25158 		{ "tcp_mdt_legacy_all",		KSTAT_DATA_UINT64 },
25159 		{ "tcp_mdt_legacy_ret",		KSTAT_DATA_UINT64 },
25160 		{ "tcp_mdt_allocfail",		KSTAT_DATA_UINT64 },
25161 		{ "tcp_mdt_addpdescfail",	KSTAT_DATA_UINT64 },
25162 		{ "tcp_mdt_allocd",		KSTAT_DATA_UINT64 },
25163 		{ "tcp_mdt_linked",		KSTAT_DATA_UINT64 },
25164 		{ "tcp_fusion_flowctl",		KSTAT_DATA_UINT64 },
25165 		{ "tcp_fusion_backenabled",	KSTAT_DATA_UINT64 },
25166 		{ "tcp_fusion_urg",		KSTAT_DATA_UINT64 },
25167 		{ "tcp_fusion_putnext",		KSTAT_DATA_UINT64 },
25168 		{ "tcp_fusion_unfusable",	KSTAT_DATA_UINT64 },
25169 		{ "tcp_fusion_aborted",		KSTAT_DATA_UINT64 },
25170 		{ "tcp_fusion_unqualified",	KSTAT_DATA_UINT64 },
25171 		{ "tcp_fusion_rrw_busy",	KSTAT_DATA_UINT64 },
25172 		{ "tcp_fusion_rrw_msgcnt",	KSTAT_DATA_UINT64 },
25173 		{ "tcp_fusion_rrw_plugged",	KSTAT_DATA_UINT64 },
25174 		{ "tcp_in_ack_unsent_drop",	KSTAT_DATA_UINT64 },
25175 		{ "tcp_sock_fallback",		KSTAT_DATA_UINT64 },
25176 		{ "tcp_lso_enabled",		KSTAT_DATA_UINT64 },
25177 		{ "tcp_lso_disabled",		KSTAT_DATA_UINT64 },
25178 		{ "tcp_lso_times",		KSTAT_DATA_UINT64 },
25179 		{ "tcp_lso_pkt_out",		KSTAT_DATA_UINT64 },
25180 	};
25181 
25182 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net",
25183 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
25184 	    KSTAT_FLAG_VIRTUAL, stackid);
25185 
25186 	if (ksp == NULL)
25187 		return (NULL);
25188 
25189 	bcopy(&template, tcps_statisticsp, sizeof (template));
25190 	ksp->ks_data = (void *)tcps_statisticsp;
25191 	ksp->ks_private = (void *)(uintptr_t)stackid;
25192 
25193 	kstat_install(ksp);
25194 	return (ksp);
25195 }
25196 
25197 static void
25198 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
25199 {
25200 	if (ksp != NULL) {
25201 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
25202 		kstat_delete_netstack(ksp, stackid);
25203 	}
25204 }
25205 
25206 /*
25207  * TCP Kstats implementation
25208  */
25209 static void *
25210 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps)
25211 {
25212 	kstat_t	*ksp;
25213 
25214 	tcp_named_kstat_t template = {
25215 		{ "rtoAlgorithm",	KSTAT_DATA_INT32, 0 },
25216 		{ "rtoMin",		KSTAT_DATA_INT32, 0 },
25217 		{ "rtoMax",		KSTAT_DATA_INT32, 0 },
25218 		{ "maxConn",		KSTAT_DATA_INT32, 0 },
25219 		{ "activeOpens",	KSTAT_DATA_UINT32, 0 },
25220 		{ "passiveOpens",	KSTAT_DATA_UINT32, 0 },
25221 		{ "attemptFails",	KSTAT_DATA_UINT32, 0 },
25222 		{ "estabResets",	KSTAT_DATA_UINT32, 0 },
25223 		{ "currEstab",		KSTAT_DATA_UINT32, 0 },
25224 		{ "inSegs",		KSTAT_DATA_UINT64, 0 },
25225 		{ "outSegs",		KSTAT_DATA_UINT64, 0 },
25226 		{ "retransSegs",	KSTAT_DATA_UINT32, 0 },
25227 		{ "connTableSize",	KSTAT_DATA_INT32, 0 },
25228 		{ "outRsts",		KSTAT_DATA_UINT32, 0 },
25229 		{ "outDataSegs",	KSTAT_DATA_UINT32, 0 },
25230 		{ "outDataBytes",	KSTAT_DATA_UINT32, 0 },
25231 		{ "retransBytes",	KSTAT_DATA_UINT32, 0 },
25232 		{ "outAck",		KSTAT_DATA_UINT32, 0 },
25233 		{ "outAckDelayed",	KSTAT_DATA_UINT32, 0 },
25234 		{ "outUrg",		KSTAT_DATA_UINT32, 0 },
25235 		{ "outWinUpdate",	KSTAT_DATA_UINT32, 0 },
25236 		{ "outWinProbe",	KSTAT_DATA_UINT32, 0 },
25237 		{ "outControl",		KSTAT_DATA_UINT32, 0 },
25238 		{ "outFastRetrans",	KSTAT_DATA_UINT32, 0 },
25239 		{ "inAckSegs",		KSTAT_DATA_UINT32, 0 },
25240 		{ "inAckBytes",		KSTAT_DATA_UINT32, 0 },
25241 		{ "inDupAck",		KSTAT_DATA_UINT32, 0 },
25242 		{ "inAckUnsent",	KSTAT_DATA_UINT32, 0 },
25243 		{ "inDataInorderSegs",	KSTAT_DATA_UINT32, 0 },
25244 		{ "inDataInorderBytes",	KSTAT_DATA_UINT32, 0 },
25245 		{ "inDataUnorderSegs",	KSTAT_DATA_UINT32, 0 },
25246 		{ "inDataUnorderBytes",	KSTAT_DATA_UINT32, 0 },
25247 		{ "inDataDupSegs",	KSTAT_DATA_UINT32, 0 },
25248 		{ "inDataDupBytes",	KSTAT_DATA_UINT32, 0 },
25249 		{ "inDataPartDupSegs",	KSTAT_DATA_UINT32, 0 },
25250 		{ "inDataPartDupBytes",	KSTAT_DATA_UINT32, 0 },
25251 		{ "inDataPastWinSegs",	KSTAT_DATA_UINT32, 0 },
25252 		{ "inDataPastWinBytes",	KSTAT_DATA_UINT32, 0 },
25253 		{ "inWinProbe",		KSTAT_DATA_UINT32, 0 },
25254 		{ "inWinUpdate",	KSTAT_DATA_UINT32, 0 },
25255 		{ "inClosed",		KSTAT_DATA_UINT32, 0 },
25256 		{ "rttUpdate",		KSTAT_DATA_UINT32, 0 },
25257 		{ "rttNoUpdate",	KSTAT_DATA_UINT32, 0 },
25258 		{ "timRetrans",		KSTAT_DATA_UINT32, 0 },
25259 		{ "timRetransDrop",	KSTAT_DATA_UINT32, 0 },
25260 		{ "timKeepalive",	KSTAT_DATA_UINT32, 0 },
25261 		{ "timKeepaliveProbe",	KSTAT_DATA_UINT32, 0 },
25262 		{ "timKeepaliveDrop",	KSTAT_DATA_UINT32, 0 },
25263 		{ "listenDrop",		KSTAT_DATA_UINT32, 0 },
25264 		{ "listenDropQ0",	KSTAT_DATA_UINT32, 0 },
25265 		{ "halfOpenDrop",	KSTAT_DATA_UINT32, 0 },
25266 		{ "outSackRetransSegs",	KSTAT_DATA_UINT32, 0 },
25267 		{ "connTableSize6",	KSTAT_DATA_INT32, 0 }
25268 	};
25269 
25270 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2",
25271 	    KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid);
25272 
25273 	if (ksp == NULL)
25274 		return (NULL);
25275 
25276 	template.rtoAlgorithm.value.ui32 = 4;
25277 	template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min;
25278 	template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max;
25279 	template.maxConn.value.i32 = -1;
25280 
25281 	bcopy(&template, ksp->ks_data, sizeof (template));
25282 	ksp->ks_update = tcp_kstat_update;
25283 	ksp->ks_private = (void *)(uintptr_t)stackid;
25284 
25285 	kstat_install(ksp);
25286 	return (ksp);
25287 }
25288 
25289 static void
25290 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
25291 {
25292 	if (ksp != NULL) {
25293 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
25294 		kstat_delete_netstack(ksp, stackid);
25295 	}
25296 }
25297 
25298 static int
25299 tcp_kstat_update(kstat_t *kp, int rw)
25300 {
25301 	tcp_named_kstat_t *tcpkp;
25302 	tcp_t		*tcp;
25303 	connf_t		*connfp;
25304 	conn_t		*connp;
25305 	int 		i;
25306 	netstackid_t	stackid = (netstackid_t)(uintptr_t)kp->ks_private;
25307 	netstack_t	*ns;
25308 	tcp_stack_t	*tcps;
25309 	ip_stack_t	*ipst;
25310 
25311 	if ((kp == NULL) || (kp->ks_data == NULL))
25312 		return (EIO);
25313 
25314 	if (rw == KSTAT_WRITE)
25315 		return (EACCES);
25316 
25317 	ns = netstack_find_by_stackid(stackid);
25318 	if (ns == NULL)
25319 		return (-1);
25320 	tcps = ns->netstack_tcp;
25321 	if (tcps == NULL) {
25322 		netstack_rele(ns);
25323 		return (-1);
25324 	}
25325 
25326 	tcpkp = (tcp_named_kstat_t *)kp->ks_data;
25327 
25328 	tcpkp->currEstab.value.ui32 = 0;
25329 
25330 	ipst = ns->netstack_ip;
25331 
25332 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
25333 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
25334 		connp = NULL;
25335 		while ((connp =
25336 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
25337 			tcp = connp->conn_tcp;
25338 			switch (tcp_snmp_state(tcp)) {
25339 			case MIB2_TCP_established:
25340 			case MIB2_TCP_closeWait:
25341 				tcpkp->currEstab.value.ui32++;
25342 				break;
25343 			}
25344 		}
25345 	}
25346 
25347 	tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens;
25348 	tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens;
25349 	tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails;
25350 	tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets;
25351 	tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs;
25352 	tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs;
25353 	tcpkp->retransSegs.value.ui32 =	tcps->tcps_mib.tcpRetransSegs;
25354 	tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize;
25355 	tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts;
25356 	tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs;
25357 	tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes;
25358 	tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes;
25359 	tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck;
25360 	tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed;
25361 	tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg;
25362 	tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate;
25363 	tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe;
25364 	tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl;
25365 	tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans;
25366 	tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs;
25367 	tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes;
25368 	tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck;
25369 	tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent;
25370 	tcpkp->inDataInorderSegs.value.ui32 =
25371 	    tcps->tcps_mib.tcpInDataInorderSegs;
25372 	tcpkp->inDataInorderBytes.value.ui32 =
25373 	    tcps->tcps_mib.tcpInDataInorderBytes;
25374 	tcpkp->inDataUnorderSegs.value.ui32 =
25375 	    tcps->tcps_mib.tcpInDataUnorderSegs;
25376 	tcpkp->inDataUnorderBytes.value.ui32 =
25377 	    tcps->tcps_mib.tcpInDataUnorderBytes;
25378 	tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs;
25379 	tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes;
25380 	tcpkp->inDataPartDupSegs.value.ui32 =
25381 	    tcps->tcps_mib.tcpInDataPartDupSegs;
25382 	tcpkp->inDataPartDupBytes.value.ui32 =
25383 	    tcps->tcps_mib.tcpInDataPartDupBytes;
25384 	tcpkp->inDataPastWinSegs.value.ui32 =
25385 	    tcps->tcps_mib.tcpInDataPastWinSegs;
25386 	tcpkp->inDataPastWinBytes.value.ui32 =
25387 	    tcps->tcps_mib.tcpInDataPastWinBytes;
25388 	tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe;
25389 	tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate;
25390 	tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed;
25391 	tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate;
25392 	tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate;
25393 	tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans;
25394 	tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop;
25395 	tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive;
25396 	tcpkp->timKeepaliveProbe.value.ui32 =
25397 	    tcps->tcps_mib.tcpTimKeepaliveProbe;
25398 	tcpkp->timKeepaliveDrop.value.ui32 =
25399 	    tcps->tcps_mib.tcpTimKeepaliveDrop;
25400 	tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop;
25401 	tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0;
25402 	tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop;
25403 	tcpkp->outSackRetransSegs.value.ui32 =
25404 	    tcps->tcps_mib.tcpOutSackRetransSegs;
25405 	tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize;
25406 
25407 	netstack_rele(ns);
25408 	return (0);
25409 }
25410 
25411 void
25412 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp)
25413 {
25414 	uint16_t	hdr_len;
25415 	ipha_t		*ipha;
25416 	uint8_t		*nexthdrp;
25417 	tcph_t		*tcph;
25418 	tcp_stack_t	*tcps = connp->conn_tcp->tcp_tcps;
25419 
25420 	/* Already has an eager */
25421 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
25422 		TCP_STAT(tcps, tcp_reinput_syn);
25423 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp,
25424 		    SQ_PROCESS, SQTAG_TCP_REINPUT_EAGER);
25425 		return;
25426 	}
25427 
25428 	switch (IPH_HDR_VERSION(mp->b_rptr)) {
25429 	case IPV4_VERSION:
25430 		ipha = (ipha_t *)mp->b_rptr;
25431 		hdr_len = IPH_HDR_LENGTH(ipha);
25432 		break;
25433 	case IPV6_VERSION:
25434 		if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr,
25435 		    &hdr_len, &nexthdrp)) {
25436 			CONN_DEC_REF(connp);
25437 			freemsg(mp);
25438 			return;
25439 		}
25440 		break;
25441 	}
25442 
25443 	tcph = (tcph_t *)&mp->b_rptr[hdr_len];
25444 	if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) {
25445 		mp->b_datap->db_struioflag |= STRUIO_EAGER;
25446 		DB_CKSUMSTART(mp) = (intptr_t)sqp;
25447 	}
25448 
25449 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp,
25450 	    SQ_FILL, SQTAG_TCP_REINPUT);
25451 }
25452 
25453 static int
25454 tcp_squeue_switch(int val)
25455 {
25456 	int rval = SQ_FILL;
25457 
25458 	switch (val) {
25459 	case 1:
25460 		rval = SQ_NODRAIN;
25461 		break;
25462 	case 2:
25463 		rval = SQ_PROCESS;
25464 		break;
25465 	default:
25466 		break;
25467 	}
25468 	return (rval);
25469 }
25470 
25471 /*
25472  * This is called once for each squeue - globally for all stack
25473  * instances.
25474  */
25475 static void
25476 tcp_squeue_add(squeue_t *sqp)
25477 {
25478 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
25479 	    sizeof (tcp_squeue_priv_t), KM_SLEEP);
25480 
25481 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
25482 	tcp_time_wait->tcp_time_wait_tid =
25483 	    timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp,
25484 	    TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION,
25485 	    CALLOUT_FLAG_ROUNDUP);
25486 	if (tcp_free_list_max_cnt == 0) {
25487 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
25488 		    max_ncpus : boot_max_ncpus);
25489 
25490 		/*
25491 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
25492 		 */
25493 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
25494 		    (tcp_ncpus * sizeof (tcp_t) * 100);
25495 	}
25496 	tcp_time_wait->tcp_free_list_cnt = 0;
25497 }
25498 
25499 static int
25500 tcp_post_ip_bind(tcp_t *tcp, mblk_t *mp, int error, cred_t *cr, pid_t pid)
25501 {
25502 	mblk_t	*ire_mp = NULL;
25503 	mblk_t	*syn_mp;
25504 	mblk_t	*mdti;
25505 	mblk_t	*lsoi;
25506 	int	retval;
25507 	tcph_t	*tcph;
25508 	uint32_t	mss;
25509 	queue_t	*q = tcp->tcp_rq;
25510 	conn_t	*connp = tcp->tcp_connp;
25511 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25512 
25513 	if (error == 0) {
25514 		/*
25515 		 * Adapt Multidata information, if any.  The
25516 		 * following tcp_mdt_update routine will free
25517 		 * the message.
25518 		 */
25519 		if (mp != NULL && ((mdti = tcp_mdt_info_mp(mp)) != NULL)) {
25520 			tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti->
25521 			    b_rptr)->mdt_capab, B_TRUE);
25522 			freemsg(mdti);
25523 		}
25524 
25525 		/*
25526 		 * Check to update LSO information with tcp, and
25527 		 * tcp_lso_update routine will free the message.
25528 		 */
25529 		if (mp != NULL && ((lsoi = tcp_lso_info_mp(mp)) != NULL)) {
25530 			tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi->
25531 			    b_rptr)->lso_capab);
25532 			freemsg(lsoi);
25533 		}
25534 
25535 		/* Get the IRE, if we had requested for it */
25536 		if (mp != NULL)
25537 			ire_mp = tcp_ire_mp(&mp);
25538 
25539 		if (tcp->tcp_hard_binding) {
25540 			tcp->tcp_hard_binding = B_FALSE;
25541 			tcp->tcp_hard_bound = B_TRUE;
25542 			CL_INET_CONNECT(tcp->tcp_connp, tcp, B_TRUE, retval);
25543 			if (retval != 0) {
25544 				error = EADDRINUSE;
25545 				goto bind_failed;
25546 			}
25547 		} else {
25548 			if (ire_mp != NULL)
25549 				freeb(ire_mp);
25550 			goto after_syn_sent;
25551 		}
25552 
25553 		retval = tcp_adapt_ire(tcp, ire_mp);
25554 		if (ire_mp != NULL)
25555 			freeb(ire_mp);
25556 		if (retval == 0) {
25557 			error = (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
25558 			    ENETUNREACH : EADDRNOTAVAIL);
25559 			goto ipcl_rm;
25560 		}
25561 		/*
25562 		 * Don't let an endpoint connect to itself.
25563 		 * Also checked in tcp_connect() but that
25564 		 * check can't handle the case when the
25565 		 * local IP address is INADDR_ANY.
25566 		 */
25567 		if (tcp->tcp_ipversion == IPV4_VERSION) {
25568 			if ((tcp->tcp_ipha->ipha_dst ==
25569 			    tcp->tcp_ipha->ipha_src) &&
25570 			    (BE16_EQL(tcp->tcp_tcph->th_lport,
25571 			    tcp->tcp_tcph->th_fport))) {
25572 				error = EADDRNOTAVAIL;
25573 				goto ipcl_rm;
25574 			}
25575 		} else {
25576 			if (IN6_ARE_ADDR_EQUAL(
25577 			    &tcp->tcp_ip6h->ip6_dst,
25578 			    &tcp->tcp_ip6h->ip6_src) &&
25579 			    (BE16_EQL(tcp->tcp_tcph->th_lport,
25580 			    tcp->tcp_tcph->th_fport))) {
25581 				error = EADDRNOTAVAIL;
25582 				goto ipcl_rm;
25583 			}
25584 		}
25585 		ASSERT(tcp->tcp_state == TCPS_SYN_SENT);
25586 		/*
25587 		 * This should not be possible!  Just for
25588 		 * defensive coding...
25589 		 */
25590 		if (tcp->tcp_state != TCPS_SYN_SENT)
25591 			goto after_syn_sent;
25592 
25593 		if (is_system_labeled() &&
25594 		    !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) {
25595 			error = EHOSTUNREACH;
25596 			goto ipcl_rm;
25597 		}
25598 
25599 		/*
25600 		 * tcp_adapt_ire() does not adjust
25601 		 * for TCP/IP header length.
25602 		 */
25603 		mss = tcp->tcp_mss - tcp->tcp_hdr_len;
25604 
25605 		/*
25606 		 * Just make sure our rwnd is at
25607 		 * least tcp_recv_hiwat_mss * MSS
25608 		 * large, and round up to the nearest
25609 		 * MSS.
25610 		 *
25611 		 * We do the round up here because
25612 		 * we need to get the interface
25613 		 * MTU first before we can do the
25614 		 * round up.
25615 		 */
25616 		tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
25617 		    tcps->tcps_recv_hiwat_minmss * mss);
25618 		if (!IPCL_IS_NONSTR(connp))
25619 			q->q_hiwat = tcp->tcp_rwnd;
25620 		tcp->tcp_recv_hiwater = tcp->tcp_rwnd;
25621 		tcp_set_ws_value(tcp);
25622 		U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws),
25623 		    tcp->tcp_tcph->th_win);
25624 		if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always)
25625 			tcp->tcp_snd_ws_ok = B_TRUE;
25626 
25627 		/*
25628 		 * Set tcp_snd_ts_ok to true
25629 		 * so that tcp_xmit_mp will
25630 		 * include the timestamp
25631 		 * option in the SYN segment.
25632 		 */
25633 		if (tcps->tcps_tstamp_always ||
25634 		    (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) {
25635 			tcp->tcp_snd_ts_ok = B_TRUE;
25636 		}
25637 
25638 		/*
25639 		 * tcp_snd_sack_ok can be set in
25640 		 * tcp_adapt_ire() if the sack metric
25641 		 * is set.  So check it here also.
25642 		 */
25643 		if (tcps->tcps_sack_permitted == 2 ||
25644 		    tcp->tcp_snd_sack_ok) {
25645 			if (tcp->tcp_sack_info == NULL) {
25646 				tcp->tcp_sack_info =
25647 				    kmem_cache_alloc(tcp_sack_info_cache,
25648 				    KM_SLEEP);
25649 			}
25650 			tcp->tcp_snd_sack_ok = B_TRUE;
25651 		}
25652 
25653 		/*
25654 		 * Should we use ECN?  Note that the current
25655 		 * default value (SunOS 5.9) of tcp_ecn_permitted
25656 		 * is 1.  The reason for doing this is that there
25657 		 * are equipments out there that will drop ECN
25658 		 * enabled IP packets.  Setting it to 1 avoids
25659 		 * compatibility problems.
25660 		 */
25661 		if (tcps->tcps_ecn_permitted == 2)
25662 			tcp->tcp_ecn_ok = B_TRUE;
25663 
25664 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
25665 		syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
25666 		    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
25667 		if (syn_mp) {
25668 			if (cr == NULL) {
25669 				cr = tcp->tcp_cred;
25670 				pid = tcp->tcp_cpid;
25671 			}
25672 			mblk_setcred(syn_mp, cr, pid);
25673 			tcp_send_data(tcp, tcp->tcp_wq, syn_mp);
25674 		}
25675 	after_syn_sent:
25676 		if (mp != NULL) {
25677 			ASSERT(mp->b_cont == NULL);
25678 			freeb(mp);
25679 		}
25680 		return (error);
25681 	} else {
25682 		/* error */
25683 		if (tcp->tcp_debug) {
25684 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
25685 			    "tcp_post_ip_bind: error == %d", error);
25686 		}
25687 		if (mp != NULL) {
25688 			freeb(mp);
25689 		}
25690 	}
25691 
25692 ipcl_rm:
25693 	/*
25694 	 * Need to unbind with classifier since we were just
25695 	 * told that our bind succeeded. a.k.a error == 0 at the entry.
25696 	 */
25697 	tcp->tcp_hard_bound = B_FALSE;
25698 	tcp->tcp_hard_binding = B_FALSE;
25699 
25700 	ipcl_hash_remove(connp);
25701 
25702 bind_failed:
25703 	tcp->tcp_state = TCPS_IDLE;
25704 	if (tcp->tcp_ipversion == IPV4_VERSION)
25705 		tcp->tcp_ipha->ipha_src = 0;
25706 	else
25707 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
25708 	/*
25709 	 * Copy of the src addr. in tcp_t is needed since
25710 	 * the lookup funcs. can only look at tcp_t
25711 	 */
25712 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
25713 
25714 	tcph = tcp->tcp_tcph;
25715 	tcph->th_lport[0] = 0;
25716 	tcph->th_lport[1] = 0;
25717 	tcp_bind_hash_remove(tcp);
25718 	bzero(&connp->u_port, sizeof (connp->u_port));
25719 	/* blow away saved option results if any */
25720 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
25721 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
25722 
25723 	conn_delete_ire(tcp->tcp_connp, NULL);
25724 
25725 	return (error);
25726 }
25727 
25728 static int
25729 tcp_bind_select_lport(tcp_t *tcp, in_port_t *requested_port_ptr,
25730     boolean_t bind_to_req_port_only, cred_t *cr)
25731 {
25732 	in_port_t	mlp_port;
25733 	mlp_type_t 	addrtype, mlptype;
25734 	boolean_t	user_specified;
25735 	in_port_t	allocated_port;
25736 	in_port_t	requested_port = *requested_port_ptr;
25737 	conn_t		*connp;
25738 	zone_t		*zone;
25739 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25740 	in6_addr_t	v6addr = tcp->tcp_ip_src_v6;
25741 
25742 	/*
25743 	 * XXX It's up to the caller to specify bind_to_req_port_only or not.
25744 	 */
25745 	if (cr == NULL)
25746 		cr = tcp->tcp_cred;
25747 	/*
25748 	 * Get a valid port (within the anonymous range and should not
25749 	 * be a privileged one) to use if the user has not given a port.
25750 	 * If multiple threads are here, they may all start with
25751 	 * with the same initial port. But, it should be fine as long as
25752 	 * tcp_bindi will ensure that no two threads will be assigned
25753 	 * the same port.
25754 	 *
25755 	 * NOTE: XXX If a privileged process asks for an anonymous port, we
25756 	 * still check for ports only in the range > tcp_smallest_non_priv_port,
25757 	 * unless TCP_ANONPRIVBIND option is set.
25758 	 */
25759 	mlptype = mlptSingle;
25760 	mlp_port = requested_port;
25761 	if (requested_port == 0) {
25762 		requested_port = tcp->tcp_anon_priv_bind ?
25763 		    tcp_get_next_priv_port(tcp) :
25764 		    tcp_update_next_port(tcps->tcps_next_port_to_try,
25765 		    tcp, B_TRUE);
25766 		if (requested_port == 0) {
25767 			return (-TNOADDR);
25768 		}
25769 		user_specified = B_FALSE;
25770 
25771 		/*
25772 		 * If the user went through one of the RPC interfaces to create
25773 		 * this socket and RPC is MLP in this zone, then give him an
25774 		 * anonymous MLP.
25775 		 */
25776 		connp = tcp->tcp_connp;
25777 		if (connp->conn_anon_mlp && is_system_labeled()) {
25778 			zone = crgetzone(cr);
25779 			addrtype = tsol_mlp_addr_type(zone->zone_id,
25780 			    IPV6_VERSION, &v6addr,
25781 			    tcps->tcps_netstack->netstack_ip);
25782 			if (addrtype == mlptSingle) {
25783 				return (-TNOADDR);
25784 			}
25785 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
25786 			    PMAPPORT, addrtype);
25787 			mlp_port = PMAPPORT;
25788 		}
25789 	} else {
25790 		int i;
25791 		boolean_t priv = B_FALSE;
25792 
25793 		/*
25794 		 * If the requested_port is in the well-known privileged range,
25795 		 * verify that the stream was opened by a privileged user.
25796 		 * Note: No locks are held when inspecting tcp_g_*epriv_ports
25797 		 * but instead the code relies on:
25798 		 * - the fact that the address of the array and its size never
25799 		 *   changes
25800 		 * - the atomic assignment of the elements of the array
25801 		 */
25802 		if (requested_port < tcps->tcps_smallest_nonpriv_port) {
25803 			priv = B_TRUE;
25804 		} else {
25805 			for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
25806 				if (requested_port ==
25807 				    tcps->tcps_g_epriv_ports[i]) {
25808 					priv = B_TRUE;
25809 					break;
25810 				}
25811 			}
25812 		}
25813 		if (priv) {
25814 			if (secpolicy_net_privaddr(cr, requested_port,
25815 			    IPPROTO_TCP) != 0) {
25816 				if (tcp->tcp_debug) {
25817 					(void) strlog(TCP_MOD_ID, 0, 1,
25818 					    SL_ERROR|SL_TRACE,
25819 					    "tcp_bind: no priv for port %d",
25820 					    requested_port);
25821 				}
25822 				return (-TACCES);
25823 			}
25824 		}
25825 		user_specified = B_TRUE;
25826 
25827 		connp = tcp->tcp_connp;
25828 		if (is_system_labeled()) {
25829 			zone = crgetzone(cr);
25830 			addrtype = tsol_mlp_addr_type(zone->zone_id,
25831 			    IPV6_VERSION, &v6addr,
25832 			    tcps->tcps_netstack->netstack_ip);
25833 			if (addrtype == mlptSingle) {
25834 				return (-TNOADDR);
25835 			}
25836 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
25837 			    requested_port, addrtype);
25838 		}
25839 	}
25840 
25841 	if (mlptype != mlptSingle) {
25842 		if (secpolicy_net_bindmlp(cr) != 0) {
25843 			if (tcp->tcp_debug) {
25844 				(void) strlog(TCP_MOD_ID, 0, 1,
25845 				    SL_ERROR|SL_TRACE,
25846 				    "tcp_bind: no priv for multilevel port %d",
25847 				    requested_port);
25848 			}
25849 			return (-TACCES);
25850 		}
25851 
25852 		/*
25853 		 * If we're specifically binding a shared IP address and the
25854 		 * port is MLP on shared addresses, then check to see if this
25855 		 * zone actually owns the MLP.  Reject if not.
25856 		 */
25857 		if (mlptype == mlptShared && addrtype == mlptShared) {
25858 			/*
25859 			 * No need to handle exclusive-stack zones since
25860 			 * ALL_ZONES only applies to the shared stack.
25861 			 */
25862 			zoneid_t mlpzone;
25863 
25864 			mlpzone = tsol_mlp_findzone(IPPROTO_TCP,
25865 			    htons(mlp_port));
25866 			if (connp->conn_zoneid != mlpzone) {
25867 				if (tcp->tcp_debug) {
25868 					(void) strlog(TCP_MOD_ID, 0, 1,
25869 					    SL_ERROR|SL_TRACE,
25870 					    "tcp_bind: attempt to bind port "
25871 					    "%d on shared addr in zone %d "
25872 					    "(should be %d)",
25873 					    mlp_port, connp->conn_zoneid,
25874 					    mlpzone);
25875 				}
25876 				return (-TACCES);
25877 			}
25878 		}
25879 
25880 		if (!user_specified) {
25881 			int err;
25882 			err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
25883 			    requested_port, B_TRUE);
25884 			if (err != 0) {
25885 				if (tcp->tcp_debug) {
25886 					(void) strlog(TCP_MOD_ID, 0, 1,
25887 					    SL_ERROR|SL_TRACE,
25888 					    "tcp_bind: cannot establish anon "
25889 					    "MLP for port %d",
25890 					    requested_port);
25891 				}
25892 				return (err);
25893 			}
25894 			connp->conn_anon_port = B_TRUE;
25895 		}
25896 		connp->conn_mlp_type = mlptype;
25897 	}
25898 
25899 	allocated_port = tcp_bindi(tcp, requested_port, &v6addr,
25900 	    tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified);
25901 
25902 	if (allocated_port == 0) {
25903 		connp->conn_mlp_type = mlptSingle;
25904 		if (connp->conn_anon_port) {
25905 			connp->conn_anon_port = B_FALSE;
25906 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
25907 			    requested_port, B_FALSE);
25908 		}
25909 		if (bind_to_req_port_only) {
25910 			if (tcp->tcp_debug) {
25911 				(void) strlog(TCP_MOD_ID, 0, 1,
25912 				    SL_ERROR|SL_TRACE,
25913 				    "tcp_bind: requested addr busy");
25914 			}
25915 			return (-TADDRBUSY);
25916 		} else {
25917 			/* If we are out of ports, fail the bind. */
25918 			if (tcp->tcp_debug) {
25919 				(void) strlog(TCP_MOD_ID, 0, 1,
25920 				    SL_ERROR|SL_TRACE,
25921 				    "tcp_bind: out of ports?");
25922 			}
25923 			return (-TNOADDR);
25924 		}
25925 	}
25926 
25927 	/* Pass the allocated port back */
25928 	*requested_port_ptr = allocated_port;
25929 	return (0);
25930 }
25931 
25932 static int
25933 tcp_bind_check(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,
25934     boolean_t bind_to_req_port_only)
25935 {
25936 	tcp_t	*tcp = connp->conn_tcp;
25937 	sin_t	*sin;
25938 	sin6_t  *sin6;
25939 	in_port_t requested_port;
25940 	ipaddr_t	v4addr;
25941 	in6_addr_t	v6addr;
25942 	uint_t	origipversion;
25943 	int	error = 0;
25944 
25945 	ASSERT((uintptr_t)len <= (uintptr_t)INT_MAX);
25946 
25947 	if (tcp->tcp_state == TCPS_BOUND) {
25948 		return (0);
25949 	} else if (tcp->tcp_state > TCPS_BOUND) {
25950 		if (tcp->tcp_debug) {
25951 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
25952 			    "tcp_bind: bad state, %d", tcp->tcp_state);
25953 		}
25954 		return (-TOUTSTATE);
25955 	}
25956 	origipversion = tcp->tcp_ipversion;
25957 
25958 	ASSERT(sa != NULL && len != 0);
25959 
25960 	if (!OK_32PTR((char *)sa)) {
25961 		if (tcp->tcp_debug) {
25962 			(void) strlog(TCP_MOD_ID, 0, 1,
25963 			    SL_ERROR|SL_TRACE,
25964 			    "tcp_bind: bad address parameter, "
25965 			    "address %p, len %d",
25966 			    (void *)sa, len);
25967 		}
25968 		return (-TPROTO);
25969 	}
25970 
25971 	switch (len) {
25972 	case sizeof (sin_t):	/* Complete IPv4 address */
25973 		sin = (sin_t *)sa;
25974 		/*
25975 		 * With sockets sockfs will accept bogus sin_family in
25976 		 * bind() and replace it with the family used in the socket
25977 		 * call.
25978 		 */
25979 		if (sin->sin_family != AF_INET ||
25980 		    tcp->tcp_family != AF_INET) {
25981 			return (EAFNOSUPPORT);
25982 		}
25983 		requested_port = ntohs(sin->sin_port);
25984 		tcp->tcp_ipversion = IPV4_VERSION;
25985 		v4addr = sin->sin_addr.s_addr;
25986 		IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr);
25987 		break;
25988 
25989 	case sizeof (sin6_t): /* Complete IPv6 address */
25990 		sin6 = (sin6_t *)sa;
25991 		if (sin6->sin6_family != AF_INET6 ||
25992 		    tcp->tcp_family != AF_INET6) {
25993 			return (EAFNOSUPPORT);
25994 		}
25995 		requested_port = ntohs(sin6->sin6_port);
25996 		tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ?
25997 		    IPV4_VERSION : IPV6_VERSION;
25998 		v6addr = sin6->sin6_addr;
25999 		break;
26000 
26001 	default:
26002 		if (tcp->tcp_debug) {
26003 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
26004 			    "tcp_bind: bad address length, %d", len);
26005 		}
26006 		return (EAFNOSUPPORT);
26007 		/* return (-TBADADDR); */
26008 	}
26009 
26010 	tcp->tcp_bound_source_v6 = v6addr;
26011 
26012 	/* Check for change in ipversion */
26013 	if (origipversion != tcp->tcp_ipversion) {
26014 		ASSERT(tcp->tcp_family == AF_INET6);
26015 		error = tcp->tcp_ipversion == IPV6_VERSION ?
26016 		    tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp);
26017 		if (error) {
26018 			return (ENOMEM);
26019 		}
26020 	}
26021 
26022 	/*
26023 	 * Initialize family specific fields. Copy of the src addr.
26024 	 * in tcp_t is needed for the lookup funcs.
26025 	 */
26026 	if (tcp->tcp_ipversion == IPV6_VERSION) {
26027 		tcp->tcp_ip6h->ip6_src = v6addr;
26028 	} else {
26029 		IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src);
26030 	}
26031 	tcp->tcp_ip_src_v6 = v6addr;
26032 
26033 	bind_to_req_port_only = requested_port != 0 && bind_to_req_port_only;
26034 
26035 	error = tcp_bind_select_lport(tcp, &requested_port,
26036 	    bind_to_req_port_only, cr);
26037 
26038 	return (error);
26039 }
26040 
26041 /*
26042  * Return unix error is tli error is TSYSERR, otherwise return a negative
26043  * tli error.
26044  */
26045 int
26046 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,
26047     boolean_t bind_to_req_port_only)
26048 {
26049 	int error;
26050 	tcp_t *tcp = connp->conn_tcp;
26051 
26052 	if (tcp->tcp_state >= TCPS_BOUND) {
26053 		if (tcp->tcp_debug) {
26054 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
26055 			    "tcp_bind: bad state, %d", tcp->tcp_state);
26056 		}
26057 		return (-TOUTSTATE);
26058 	}
26059 
26060 	error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only);
26061 	if (error != 0)
26062 		return (error);
26063 
26064 	ASSERT(tcp->tcp_state == TCPS_BOUND);
26065 
26066 	tcp->tcp_conn_req_max = 0;
26067 
26068 	if (tcp->tcp_family == AF_INET6) {
26069 		ASSERT(tcp->tcp_connp->conn_af_isv6);
26070 		error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP,
26071 		    &tcp->tcp_bound_source_v6, 0, B_FALSE);
26072 	} else {
26073 		ASSERT(!tcp->tcp_connp->conn_af_isv6);
26074 		error = ip_proto_bind_laddr_v4(connp, NULL, IPPROTO_TCP,
26075 		    tcp->tcp_ipha->ipha_src, 0, B_FALSE);
26076 	}
26077 	return (tcp_post_ip_bind(tcp, NULL, error, NULL, 0));
26078 }
26079 
26080 int
26081 tcp_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa,
26082     socklen_t len, cred_t *cr)
26083 {
26084 	int 		error;
26085 	conn_t		*connp = (conn_t *)proto_handle;
26086 	squeue_t	*sqp = connp->conn_sqp;
26087 
26088 	/* All Solaris components should pass a cred for this operation. */
26089 	ASSERT(cr != NULL);
26090 
26091 	ASSERT(sqp != NULL);
26092 	ASSERT(connp->conn_upper_handle != NULL);
26093 
26094 	error = squeue_synch_enter(sqp, connp, NULL);
26095 	if (error != 0) {
26096 		/* failed to enter */
26097 		return (ENOSR);
26098 	}
26099 
26100 	/* binding to a NULL address really means unbind */
26101 	if (sa == NULL) {
26102 		if (connp->conn_tcp->tcp_state < TCPS_LISTEN)
26103 			error = tcp_do_unbind(connp);
26104 		else
26105 			error = EINVAL;
26106 	} else {
26107 		error = tcp_do_bind(connp, sa, len, cr, B_TRUE);
26108 	}
26109 
26110 	squeue_synch_exit(sqp, connp);
26111 
26112 	if (error < 0) {
26113 		if (error == -TOUTSTATE)
26114 			error = EINVAL;
26115 		else
26116 			error = proto_tlitosyserr(-error);
26117 	}
26118 
26119 	return (error);
26120 }
26121 
26122 /*
26123  * If the return value from this function is positive, it's a UNIX error.
26124  * Otherwise, if it's negative, then the absolute value is a TLI error.
26125  * the TPI routine tcp_tpi_connect() is a wrapper function for this.
26126  */
26127 int
26128 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len,
26129     cred_t *cr, pid_t pid)
26130 {
26131 	tcp_t		*tcp = connp->conn_tcp;
26132 	sin_t		*sin = (sin_t *)sa;
26133 	sin6_t		*sin6 = (sin6_t *)sa;
26134 	ipaddr_t	*dstaddrp;
26135 	in_port_t	dstport;
26136 	uint_t		srcid;
26137 	int		error = 0;
26138 
26139 	switch (len) {
26140 	default:
26141 		/*
26142 		 * Should never happen
26143 		 */
26144 		return (EINVAL);
26145 
26146 	case sizeof (sin_t):
26147 		sin = (sin_t *)sa;
26148 		if (sin->sin_port == 0) {
26149 			return (-TBADADDR);
26150 		}
26151 		if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) {
26152 			return (EAFNOSUPPORT);
26153 		}
26154 		break;
26155 
26156 	case sizeof (sin6_t):
26157 		sin6 = (sin6_t *)sa;
26158 		if (sin6->sin6_port == 0) {
26159 			return (-TBADADDR);
26160 		}
26161 		break;
26162 	}
26163 	/*
26164 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
26165 	 * make sure that the template IP header in the tcp structure is an
26166 	 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION.  We
26167 	 * need to this before we call tcp_bindi() so that the port lookup
26168 	 * code will look for ports in the correct port space (IPv4 and
26169 	 * IPv6 have separate port spaces).
26170 	 */
26171 	if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION &&
26172 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
26173 		int err = 0;
26174 
26175 		err = tcp_header_init_ipv4(tcp);
26176 			if (err != 0) {
26177 				error = ENOMEM;
26178 				goto connect_failed;
26179 			}
26180 		if (tcp->tcp_lport != 0)
26181 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
26182 	}
26183 
26184 	switch (tcp->tcp_state) {
26185 	case TCPS_LISTEN:
26186 		/*
26187 		 * Listening sockets are not allowed to issue connect().
26188 		 */
26189 		if (IPCL_IS_NONSTR(connp))
26190 			return (EOPNOTSUPP);
26191 		/* FALLTHRU */
26192 	case TCPS_IDLE:
26193 		/*
26194 		 * We support quick connect, refer to comments in
26195 		 * tcp_connect_*()
26196 		 */
26197 		/* FALLTHRU */
26198 	case TCPS_BOUND:
26199 		/*
26200 		 * We must bump the generation before the operation start.
26201 		 * This is done to ensure that any upcall made later on sends
26202 		 * up the right generation to the socket.
26203 		 */
26204 		SOCK_CONNID_BUMP(tcp->tcp_connid);
26205 
26206 		if (tcp->tcp_family == AF_INET6) {
26207 			if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
26208 				return (tcp_connect_ipv6(tcp,
26209 				    &sin6->sin6_addr,
26210 				    sin6->sin6_port, sin6->sin6_flowinfo,
26211 				    sin6->__sin6_src_id, sin6->sin6_scope_id,
26212 				    cr, pid));
26213 			}
26214 			/*
26215 			 * Destination adress is mapped IPv6 address.
26216 			 * Source bound address should be unspecified or
26217 			 * IPv6 mapped address as well.
26218 			 */
26219 			if (!IN6_IS_ADDR_UNSPECIFIED(
26220 			    &tcp->tcp_bound_source_v6) &&
26221 			    !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) {
26222 				return (EADDRNOTAVAIL);
26223 			}
26224 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
26225 			dstport = sin6->sin6_port;
26226 			srcid = sin6->__sin6_src_id;
26227 		} else {
26228 			dstaddrp = &sin->sin_addr.s_addr;
26229 			dstport = sin->sin_port;
26230 			srcid = 0;
26231 		}
26232 
26233 		error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid, cr,
26234 		    pid);
26235 		break;
26236 	default:
26237 		return (-TOUTSTATE);
26238 	}
26239 	/*
26240 	 * Note: Code below is the "failure" case
26241 	 */
26242 connect_failed:
26243 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
26244 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
26245 	return (error);
26246 }
26247 
26248 int
26249 tcp_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa,
26250     socklen_t len, sock_connid_t *id, cred_t *cr)
26251 {
26252 	conn_t		*connp = (conn_t *)proto_handle;
26253 	tcp_t		*tcp = connp->conn_tcp;
26254 	squeue_t	*sqp = connp->conn_sqp;
26255 	int		error;
26256 
26257 	ASSERT(connp->conn_upper_handle != NULL);
26258 
26259 	/* All Solaris components should pass a cred for this operation. */
26260 	ASSERT(cr != NULL);
26261 
26262 	error = proto_verify_ip_addr(tcp->tcp_family, sa, len);
26263 	if (error != 0) {
26264 		return (error);
26265 	}
26266 
26267 	error = squeue_synch_enter(sqp, connp, NULL);
26268 	if (error != 0) {
26269 		/* failed to enter */
26270 		return (ENOSR);
26271 	}
26272 
26273 	/*
26274 	 * TCP supports quick connect, so no need to do an implicit bind
26275 	 */
26276 	error = tcp_do_connect(connp, sa, len, cr, curproc->p_pid);
26277 	if (error == 0) {
26278 		*id = connp->conn_tcp->tcp_connid;
26279 	} else if (error < 0) {
26280 		if (error == -TOUTSTATE) {
26281 			switch (connp->conn_tcp->tcp_state) {
26282 			case TCPS_SYN_SENT:
26283 				error = EALREADY;
26284 				break;
26285 			case TCPS_ESTABLISHED:
26286 				error = EISCONN;
26287 				break;
26288 			case TCPS_LISTEN:
26289 				error = EOPNOTSUPP;
26290 				break;
26291 			default:
26292 				error = EINVAL;
26293 				break;
26294 			}
26295 		} else {
26296 			error = proto_tlitosyserr(-error);
26297 		}
26298 	}
26299 done:
26300 	squeue_synch_exit(sqp, connp);
26301 
26302 	return ((error == 0) ? EINPROGRESS : error);
26303 }
26304 
26305 /* ARGSUSED */
26306 sock_lower_handle_t
26307 tcp_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls,
26308     uint_t *smodep, int *errorp, int flags, cred_t *credp)
26309 {
26310 	conn_t		*connp;
26311 	boolean_t	isv6 = family == AF_INET6;
26312 	if (type != SOCK_STREAM || (family != AF_INET && family != AF_INET6) ||
26313 	    (proto != 0 && proto != IPPROTO_TCP)) {
26314 		*errorp = EPROTONOSUPPORT;
26315 		return (NULL);
26316 	}
26317 
26318 	connp = tcp_create_common(NULL, credp, isv6, B_TRUE, errorp);
26319 	if (connp == NULL) {
26320 		return (NULL);
26321 	}
26322 
26323 	/*
26324 	 * Put the ref for TCP. Ref for IP was already put
26325 	 * by ipcl_conn_create. Also Make the conn_t globally
26326 	 * visible to walkers
26327 	 */
26328 	mutex_enter(&connp->conn_lock);
26329 	CONN_INC_REF_LOCKED(connp);
26330 	ASSERT(connp->conn_ref == 2);
26331 	connp->conn_state_flags &= ~CONN_INCIPIENT;
26332 
26333 	connp->conn_flags |= IPCL_NONSTR;
26334 	mutex_exit(&connp->conn_lock);
26335 
26336 	ASSERT(errorp != NULL);
26337 	*errorp = 0;
26338 	*sock_downcalls = &sock_tcp_downcalls;
26339 	*smodep = SM_CONNREQUIRED | SM_EXDATA | SM_ACCEPTSUPP |
26340 	    SM_SENDFILESUPP;
26341 
26342 	return ((sock_lower_handle_t)connp);
26343 }
26344 
26345 /* ARGSUSED */
26346 void
26347 tcp_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle,
26348     sock_upcalls_t *sock_upcalls, int flags, cred_t *cr)
26349 {
26350 	conn_t *connp = (conn_t *)proto_handle;
26351 	struct sock_proto_props sopp;
26352 
26353 	ASSERT(connp->conn_upper_handle == NULL);
26354 
26355 	/* All Solaris components should pass a cred for this operation. */
26356 	ASSERT(cr != NULL);
26357 
26358 	sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT |
26359 	    SOCKOPT_MAXPSZ | SOCKOPT_MAXBLK | SOCKOPT_RCVTIMER |
26360 	    SOCKOPT_RCVTHRESH | SOCKOPT_MAXADDRLEN | SOCKOPT_MINPSZ;
26361 
26362 	sopp.sopp_rxhiwat = SOCKET_RECVHIWATER;
26363 	sopp.sopp_rxlowat = SOCKET_RECVLOWATER;
26364 	sopp.sopp_maxpsz = INFPSZ;
26365 	sopp.sopp_maxblk = INFPSZ;
26366 	sopp.sopp_rcvtimer = SOCKET_TIMER_INTERVAL;
26367 	sopp.sopp_rcvthresh = SOCKET_RECVHIWATER >> 3;
26368 	sopp.sopp_maxaddrlen = sizeof (sin6_t);
26369 	sopp.sopp_minpsz = (tcp_rinfo.mi_minpsz == 1) ? 0 :
26370 	    tcp_rinfo.mi_minpsz;
26371 
26372 	connp->conn_upcalls = sock_upcalls;
26373 	connp->conn_upper_handle = sock_handle;
26374 
26375 	(*sock_upcalls->su_set_proto_props)(sock_handle, &sopp);
26376 }
26377 
26378 /* ARGSUSED */
26379 int
26380 tcp_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr)
26381 {
26382 	conn_t *connp = (conn_t *)proto_handle;
26383 
26384 	ASSERT(connp->conn_upper_handle != NULL);
26385 
26386 	/* All Solaris components should pass a cred for this operation. */
26387 	ASSERT(cr != NULL);
26388 
26389 	tcp_close_common(connp, flags);
26390 
26391 	ip_free_helper_stream(connp);
26392 
26393 	/*
26394 	 * Drop IP's reference on the conn. This is the last reference
26395 	 * on the connp if the state was less than established. If the
26396 	 * connection has gone into timewait state, then we will have
26397 	 * one ref for the TCP and one more ref (total of two) for the
26398 	 * classifier connected hash list (a timewait connections stays
26399 	 * in connected hash till closed).
26400 	 *
26401 	 * We can't assert the references because there might be other
26402 	 * transient reference places because of some walkers or queued
26403 	 * packets in squeue for the timewait state.
26404 	 */
26405 	CONN_DEC_REF(connp);
26406 	return (0);
26407 }
26408 
26409 /* ARGSUSED */
26410 int
26411 tcp_sendmsg(sock_lower_handle_t proto_handle, mblk_t *mp, struct nmsghdr *msg,
26412     cred_t *cr)
26413 {
26414 	tcp_t		*tcp;
26415 	uint32_t	msize;
26416 	conn_t *connp = (conn_t *)proto_handle;
26417 	int32_t		tcpstate;
26418 
26419 	/* All Solaris components should pass a cred for this operation. */
26420 	ASSERT(cr != NULL);
26421 
26422 	ASSERT(connp->conn_ref >= 2);
26423 	ASSERT(connp->conn_upper_handle != NULL);
26424 
26425 	if (msg->msg_controllen != 0) {
26426 		return (EOPNOTSUPP);
26427 
26428 	}
26429 	switch (DB_TYPE(mp)) {
26430 	case M_DATA:
26431 		tcp = connp->conn_tcp;
26432 		ASSERT(tcp != NULL);
26433 
26434 		tcpstate = tcp->tcp_state;
26435 		if (tcpstate < TCPS_ESTABLISHED) {
26436 			freemsg(mp);
26437 			return (ENOTCONN);
26438 		} else if (tcpstate > TCPS_CLOSE_WAIT) {
26439 			freemsg(mp);
26440 			return (EPIPE);
26441 		}
26442 
26443 		msize = msgdsize(mp);
26444 
26445 		mutex_enter(&tcp->tcp_non_sq_lock);
26446 		tcp->tcp_squeue_bytes += msize;
26447 		/*
26448 		 * Squeue Flow Control
26449 		 */
26450 		if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) {
26451 			tcp_setqfull(tcp);
26452 		}
26453 		mutex_exit(&tcp->tcp_non_sq_lock);
26454 
26455 		/*
26456 		 * The application may pass in an address in the msghdr, but
26457 		 * we ignore the address on connection-oriented sockets.
26458 		 * Just like BSD this code does not generate an error for
26459 		 * TCP (a CONNREQUIRED socket) when sending to an address
26460 		 * passed in with sendto/sendmsg. Instead the data is
26461 		 * delivered on the connection as if no address had been
26462 		 * supplied.
26463 		 */
26464 		CONN_INC_REF(connp);
26465 
26466 		if (msg != NULL && msg->msg_flags & MSG_OOB) {
26467 			SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
26468 			    tcp_output_urgent, connp, tcp_squeue_flag,
26469 			    SQTAG_TCP_OUTPUT);
26470 		} else {
26471 			SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output,
26472 			    connp, tcp_squeue_flag, SQTAG_TCP_OUTPUT);
26473 		}
26474 
26475 		return (0);
26476 
26477 	default:
26478 		ASSERT(0);
26479 	}
26480 
26481 	freemsg(mp);
26482 	return (0);
26483 }
26484 
26485 /* ARGSUSED */
26486 void
26487 tcp_output_urgent(void *arg, mblk_t *mp, void *arg2)
26488 {
26489 	int len;
26490 	uint32_t msize;
26491 	conn_t *connp = (conn_t *)arg;
26492 	tcp_t *tcp = connp->conn_tcp;
26493 
26494 	msize = msgdsize(mp);
26495 
26496 	len = msize - 1;
26497 	if (len < 0) {
26498 		freemsg(mp);
26499 		return;
26500 	}
26501 
26502 	/*
26503 	 * Try to force urgent data out on the wire.
26504 	 * Even if we have unsent data this will
26505 	 * at least send the urgent flag.
26506 	 * XXX does not handle more flag correctly.
26507 	 */
26508 	len += tcp->tcp_unsent;
26509 	len += tcp->tcp_snxt;
26510 	tcp->tcp_urg = len;
26511 	tcp->tcp_valid_bits |= TCP_URG_VALID;
26512 
26513 	/* Bypass tcp protocol for fused tcp loopback */
26514 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
26515 		return;
26516 	tcp_wput_data(tcp, mp, B_TRUE);
26517 }
26518 
26519 /* ARGSUSED */
26520 int
26521 tcp_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr,
26522     socklen_t *addrlenp, cred_t *cr)
26523 {
26524 	conn_t	*connp = (conn_t *)proto_handle;
26525 	tcp_t	*tcp = connp->conn_tcp;
26526 
26527 	ASSERT(connp->conn_upper_handle != NULL);
26528 	/* All Solaris components should pass a cred for this operation. */
26529 	ASSERT(cr != NULL);
26530 
26531 	ASSERT(tcp != NULL);
26532 
26533 	return (tcp_do_getpeername(tcp, addr, addrlenp));
26534 }
26535 
26536 /* ARGSUSED */
26537 int
26538 tcp_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr,
26539     socklen_t *addrlenp, cred_t *cr)
26540 {
26541 	conn_t	*connp = (conn_t *)proto_handle;
26542 	tcp_t	*tcp = connp->conn_tcp;
26543 
26544 	/* All Solaris components should pass a cred for this operation. */
26545 	ASSERT(cr != NULL);
26546 
26547 	ASSERT(connp->conn_upper_handle != NULL);
26548 
26549 	return (tcp_do_getsockname(tcp, addr, addrlenp));
26550 }
26551 
26552 /*
26553  * tcp_fallback
26554  *
26555  * A direct socket is falling back to using STREAMS. The queue
26556  * that is being passed down was created using tcp_open() with
26557  * the SO_FALLBACK flag set. As a result, the queue is not
26558  * associated with a conn, and the q_ptrs instead contain the
26559  * dev and minor area that should be used.
26560  *
26561  * The 'direct_sockfs' flag indicates whether the FireEngine
26562  * optimizations should be used. The common case would be that
26563  * optimizations are enabled, and they might be subsequently
26564  * disabled using the _SIOCSOCKFALLBACK ioctl.
26565  */
26566 
26567 /*
26568  * An active connection is falling back to TPI. Gather all the information
26569  * required by the STREAM head and TPI sonode and send it up.
26570  */
26571 void
26572 tcp_fallback_noneager(tcp_t *tcp, mblk_t *stropt_mp, queue_t *q,
26573     boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb)
26574 {
26575 	conn_t			*connp = tcp->tcp_connp;
26576 	struct stroptions	*stropt;
26577 	struct T_capability_ack tca;
26578 	struct sockaddr_in6	laddr, faddr;
26579 	socklen_t 		laddrlen, faddrlen;
26580 	short			opts;
26581 	int			error;
26582 	mblk_t			*mp;
26583 
26584 	connp->conn_dev = (dev_t)RD(q)->q_ptr;
26585 	connp->conn_minor_arena = WR(q)->q_ptr;
26586 
26587 	RD(q)->q_ptr = WR(q)->q_ptr = connp;
26588 
26589 	connp->conn_tcp->tcp_rq = connp->conn_rq = RD(q);
26590 	connp->conn_tcp->tcp_wq = connp->conn_wq = WR(q);
26591 
26592 	WR(q)->q_qinfo = &tcp_sock_winit;
26593 
26594 	if (!direct_sockfs)
26595 		tcp_disable_direct_sockfs(tcp);
26596 
26597 	/*
26598 	 * free the helper stream
26599 	 */
26600 	ip_free_helper_stream(connp);
26601 
26602 	/*
26603 	 * Notify the STREAM head about options
26604 	 */
26605 	DB_TYPE(stropt_mp) = M_SETOPTS;
26606 	stropt = (struct stroptions *)stropt_mp->b_rptr;
26607 	stropt_mp->b_wptr += sizeof (struct stroptions);
26608 	stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK;
26609 
26610 	stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 :
26611 	    tcp->tcp_tcps->tcps_wroff_xtra);
26612 	if (tcp->tcp_snd_sack_ok)
26613 		stropt->so_wroff += TCPOPT_MAX_SACK_LEN;
26614 	stropt->so_hiwat = tcp->tcp_fused ?
26615 	    tcp_fuse_set_rcv_hiwat(tcp, tcp->tcp_recv_hiwater) :
26616 	    MAX(tcp->tcp_recv_hiwater, tcp->tcp_tcps->tcps_sth_rcv_hiwat);
26617 	stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
26618 
26619 	putnext(RD(q), stropt_mp);
26620 
26621 	/*
26622 	 * Collect the information needed to sync with the sonode
26623 	 */
26624 	tcp_do_capability_ack(tcp, &tca, TC1_INFO|TC1_ACCEPTOR_ID);
26625 
26626 	laddrlen = faddrlen = sizeof (sin6_t);
26627 	(void) tcp_do_getsockname(tcp, (struct sockaddr *)&laddr, &laddrlen);
26628 	error = tcp_do_getpeername(tcp, (struct sockaddr *)&faddr, &faddrlen);
26629 	if (error != 0)
26630 		faddrlen = 0;
26631 
26632 	opts = 0;
26633 	if (tcp->tcp_oobinline)
26634 		opts |= SO_OOBINLINE;
26635 	if (tcp->tcp_dontroute)
26636 		opts |= SO_DONTROUTE;
26637 
26638 	/*
26639 	 * Notify the socket that the protocol is now quiescent,
26640 	 * and it's therefore safe move data from the socket
26641 	 * to the stream head.
26642 	 */
26643 	(*quiesced_cb)(connp->conn_upper_handle, q, &tca,
26644 	    (struct sockaddr *)&laddr, laddrlen,
26645 	    (struct sockaddr *)&faddr, faddrlen, opts);
26646 
26647 	while ((mp = tcp->tcp_rcv_list) != NULL) {
26648 		tcp->tcp_rcv_list = mp->b_next;
26649 		mp->b_next = NULL;
26650 		putnext(q, mp);
26651 	}
26652 	tcp->tcp_rcv_last_head = NULL;
26653 	tcp->tcp_rcv_last_tail = NULL;
26654 	tcp->tcp_rcv_cnt = 0;
26655 }
26656 
26657 /*
26658  * An eager is falling back to TPI. All we have to do is send
26659  * up a T_CONN_IND.
26660  */
26661 void
26662 tcp_fallback_eager(tcp_t *eager, boolean_t direct_sockfs)
26663 {
26664 	tcp_t *listener = eager->tcp_listener;
26665 	mblk_t *mp = eager->tcp_conn.tcp_eager_conn_ind;
26666 
26667 	ASSERT(listener != NULL);
26668 	ASSERT(mp != NULL);
26669 
26670 	eager->tcp_conn.tcp_eager_conn_ind = NULL;
26671 
26672 	/*
26673 	 * TLI/XTI applications will get confused by
26674 	 * sending eager as an option since it violates
26675 	 * the option semantics. So remove the eager as
26676 	 * option since TLI/XTI app doesn't need it anyway.
26677 	 */
26678 	if (!direct_sockfs) {
26679 		struct T_conn_ind *conn_ind;
26680 
26681 		conn_ind = (struct T_conn_ind *)mp->b_rptr;
26682 		conn_ind->OPT_length = 0;
26683 		conn_ind->OPT_offset = 0;
26684 	}
26685 
26686 	/*
26687 	 * Sockfs guarantees that the listener will not be closed
26688 	 * during fallback. So we can safely use the listener's queue.
26689 	 */
26690 	putnext(listener->tcp_rq, mp);
26691 }
26692 
26693 int
26694 tcp_fallback(sock_lower_handle_t proto_handle, queue_t *q,
26695     boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb)
26696 {
26697 	tcp_t			*tcp;
26698 	conn_t 			*connp = (conn_t *)proto_handle;
26699 	int			error;
26700 	mblk_t			*stropt_mp;
26701 	mblk_t			*ordrel_mp;
26702 	mblk_t			*fused_sigurp_mp;
26703 
26704 	tcp = connp->conn_tcp;
26705 
26706 	stropt_mp = allocb_wait(sizeof (struct stroptions), BPRI_HI, STR_NOSIG,
26707 	    NULL);
26708 
26709 	/* Pre-allocate the T_ordrel_ind mblk. */
26710 	ASSERT(tcp->tcp_ordrel_mp == NULL);
26711 	ordrel_mp = allocb_wait(sizeof (struct T_ordrel_ind), BPRI_HI,
26712 	    STR_NOSIG, NULL);
26713 	ordrel_mp->b_datap->db_type = M_PROTO;
26714 	((struct T_ordrel_ind *)ordrel_mp->b_rptr)->PRIM_type = T_ORDREL_IND;
26715 	ordrel_mp->b_wptr += sizeof (struct T_ordrel_ind);
26716 
26717 	/* Pre-allocate the M_PCSIG used by fusion */
26718 	fused_sigurp_mp = allocb_wait(1, BPRI_HI, STR_NOSIG, NULL);
26719 
26720 	/*
26721 	 * Enter the squeue so that no new packets can come in
26722 	 */
26723 	error = squeue_synch_enter(connp->conn_sqp, connp, NULL);
26724 	if (error != 0) {
26725 		/* failed to enter, free all the pre-allocated messages. */
26726 		freeb(stropt_mp);
26727 		freeb(ordrel_mp);
26728 		freeb(fused_sigurp_mp);
26729 		/*
26730 		 * We cannot process the eager, so at least send out a
26731 		 * RST so the peer can reconnect.
26732 		 */
26733 		if (tcp->tcp_listener != NULL) {
26734 			(void) tcp_eager_blowoff(tcp->tcp_listener,
26735 			    tcp->tcp_conn_req_seqnum);
26736 		}
26737 		return (ENOMEM);
26738 	}
26739 
26740 	/*
26741 	 * No longer a direct socket
26742 	 */
26743 	connp->conn_flags &= ~IPCL_NONSTR;
26744 
26745 	tcp->tcp_ordrel_mp = ordrel_mp;
26746 
26747 	if (tcp->tcp_fused) {
26748 		ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
26749 		tcp->tcp_fused_sigurg_mp = fused_sigurp_mp;
26750 	} else {
26751 		freeb(fused_sigurp_mp);
26752 	}
26753 
26754 	if (tcp->tcp_listener != NULL) {
26755 		/* The eager will deal with opts when accept() is called */
26756 		freeb(stropt_mp);
26757 		tcp_fallback_eager(tcp, direct_sockfs);
26758 	} else {
26759 		tcp_fallback_noneager(tcp, stropt_mp, q, direct_sockfs,
26760 		    quiesced_cb);
26761 	}
26762 
26763 	/*
26764 	 * There should be atleast two ref's (IP + TCP)
26765 	 */
26766 	ASSERT(connp->conn_ref >= 2);
26767 	squeue_synch_exit(connp->conn_sqp, connp);
26768 
26769 	return (0);
26770 }
26771 
26772 /* ARGSUSED */
26773 static void
26774 tcp_shutdown_output(void *arg, mblk_t *mp, void *arg2)
26775 {
26776 	conn_t 	*connp = (conn_t *)arg;
26777 	tcp_t	*tcp = connp->conn_tcp;
26778 
26779 	freemsg(mp);
26780 
26781 	if (tcp->tcp_fused)
26782 		tcp_unfuse(tcp);
26783 
26784 	if (tcp_xmit_end(tcp) != 0) {
26785 		/*
26786 		 * We were crossing FINs and got a reset from
26787 		 * the other side. Just ignore it.
26788 		 */
26789 		if (tcp->tcp_debug) {
26790 			(void) strlog(TCP_MOD_ID, 0, 1,
26791 			    SL_ERROR|SL_TRACE,
26792 			    "tcp_shutdown_output() out of state %s",
26793 			    tcp_display(tcp, NULL, DISP_ADDR_AND_PORT));
26794 		}
26795 	}
26796 }
26797 
26798 /* ARGSUSED */
26799 int
26800 tcp_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr)
26801 {
26802 	conn_t  *connp = (conn_t *)proto_handle;
26803 	tcp_t   *tcp = connp->conn_tcp;
26804 
26805 	ASSERT(connp->conn_upper_handle != NULL);
26806 
26807 	/* All Solaris components should pass a cred for this operation. */
26808 	ASSERT(cr != NULL);
26809 
26810 	/*
26811 	 * X/Open requires that we check the connected state.
26812 	 */
26813 	if (tcp->tcp_state < TCPS_SYN_SENT)
26814 		return (ENOTCONN);
26815 
26816 	/* shutdown the send side */
26817 	if (how != SHUT_RD) {
26818 		mblk_t *bp;
26819 
26820 		bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
26821 		CONN_INC_REF(connp);
26822 		SQUEUE_ENTER_ONE(connp->conn_sqp, bp, tcp_shutdown_output,
26823 		    connp, SQ_NODRAIN, SQTAG_TCP_SHUTDOWN_OUTPUT);
26824 
26825 		(*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
26826 		    SOCK_OPCTL_SHUT_SEND, 0);
26827 	}
26828 
26829 	/* shutdown the recv side */
26830 	if (how != SHUT_WR)
26831 		(*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
26832 		    SOCK_OPCTL_SHUT_RECV, 0);
26833 
26834 	return (0);
26835 }
26836 
26837 /*
26838  * SOP_LISTEN() calls into tcp_listen().
26839  */
26840 /* ARGSUSED */
26841 int
26842 tcp_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr)
26843 {
26844 	conn_t	*connp = (conn_t *)proto_handle;
26845 	int 	error;
26846 	squeue_t *sqp = connp->conn_sqp;
26847 
26848 	ASSERT(connp->conn_upper_handle != NULL);
26849 
26850 	/* All Solaris components should pass a cred for this operation. */
26851 	ASSERT(cr != NULL);
26852 
26853 	error = squeue_synch_enter(sqp, connp, NULL);
26854 	if (error != 0) {
26855 		/* failed to enter */
26856 		return (ENOBUFS);
26857 	}
26858 
26859 	error = tcp_do_listen(connp, NULL, 0, backlog, cr, FALSE);
26860 	if (error == 0) {
26861 		(*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
26862 		    SOCK_OPCTL_ENAB_ACCEPT, (uintptr_t)backlog);
26863 	} else if (error < 0) {
26864 		if (error == -TOUTSTATE)
26865 			error = EINVAL;
26866 		else
26867 			error = proto_tlitosyserr(-error);
26868 	}
26869 	squeue_synch_exit(sqp, connp);
26870 	return (error);
26871 }
26872 
26873 static int
26874 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len,
26875     int backlog, cred_t *cr, boolean_t bind_to_req_port_only)
26876 {
26877 	tcp_t		*tcp = connp->conn_tcp;
26878 	int		error = 0;
26879 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26880 
26881 	/* All Solaris components should pass a cred for this operation. */
26882 	ASSERT(cr != NULL);
26883 
26884 	if (tcp->tcp_state >= TCPS_BOUND) {
26885 		if ((tcp->tcp_state == TCPS_BOUND ||
26886 		    tcp->tcp_state == TCPS_LISTEN) && backlog > 0) {
26887 			/*
26888 			 * Handle listen() increasing backlog.
26889 			 * This is more "liberal" then what the TPI spec
26890 			 * requires but is needed to avoid a t_unbind
26891 			 * when handling listen() since the port number
26892 			 * might be "stolen" between the unbind and bind.
26893 			 */
26894 			goto do_listen;
26895 		}
26896 		if (tcp->tcp_debug) {
26897 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
26898 			    "tcp_listen: bad state, %d", tcp->tcp_state);
26899 		}
26900 		return (-TOUTSTATE);
26901 	} else {
26902 		if (sa == NULL) {
26903 			sin6_t	addr;
26904 			sin_t *sin;
26905 			sin6_t *sin6;
26906 
26907 			ASSERT(IPCL_IS_NONSTR(connp));
26908 
26909 			/* Do an implicit bind: Request for a generic port. */
26910 			if (tcp->tcp_family == AF_INET) {
26911 				len = sizeof (sin_t);
26912 				sin = (sin_t *)&addr;
26913 				*sin = sin_null;
26914 				sin->sin_family = AF_INET;
26915 				tcp->tcp_ipversion = IPV4_VERSION;
26916 			} else {
26917 				ASSERT(tcp->tcp_family == AF_INET6);
26918 				len = sizeof (sin6_t);
26919 				sin6 = (sin6_t *)&addr;
26920 				*sin6 = sin6_null;
26921 				sin6->sin6_family = AF_INET6;
26922 				tcp->tcp_ipversion = IPV6_VERSION;
26923 			}
26924 			sa = (struct sockaddr *)&addr;
26925 		}
26926 
26927 		error = tcp_bind_check(connp, sa, len, cr,
26928 		    bind_to_req_port_only);
26929 		if (error)
26930 			return (error);
26931 		/* Fall through and do the fanout insertion */
26932 	}
26933 
26934 do_listen:
26935 	ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN);
26936 	tcp->tcp_conn_req_max = backlog;
26937 	if (tcp->tcp_conn_req_max) {
26938 		if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min)
26939 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_min;
26940 		if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q)
26941 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q;
26942 		/*
26943 		 * If this is a listener, do not reset the eager list
26944 		 * and other stuffs.  Note that we don't check if the
26945 		 * existing eager list meets the new tcp_conn_req_max
26946 		 * requirement.
26947 		 */
26948 		if (tcp->tcp_state != TCPS_LISTEN) {
26949 			tcp->tcp_state = TCPS_LISTEN;
26950 			/* Initialize the chain. Don't need the eager_lock */
26951 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
26952 			tcp->tcp_eager_next_drop_q0 = tcp;
26953 			tcp->tcp_eager_prev_drop_q0 = tcp;
26954 			tcp->tcp_second_ctimer_threshold =
26955 			    tcps->tcps_ip_abort_linterval;
26956 		}
26957 	}
26958 
26959 	/*
26960 	 * We can call ip_bind directly, the processing continues
26961 	 * in tcp_post_ip_bind().
26962 	 *
26963 	 * We need to make sure that the conn_recv is set to a non-null
26964 	 * value before we insert the conn into the classifier table.
26965 	 * This is to avoid a race with an incoming packet which does an
26966 	 * ipcl_classify().
26967 	 */
26968 	connp->conn_recv = tcp_conn_request;
26969 	if (tcp->tcp_family == AF_INET) {
26970 		error = ip_proto_bind_laddr_v4(connp, NULL,
26971 		    IPPROTO_TCP, tcp->tcp_bound_source, tcp->tcp_lport, B_TRUE);
26972 	} else {
26973 		error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP,
26974 		    &tcp->tcp_bound_source_v6, tcp->tcp_lport, B_TRUE);
26975 	}
26976 	return (tcp_post_ip_bind(tcp, NULL, error, NULL, 0));
26977 }
26978 
26979 void
26980 tcp_clr_flowctrl(sock_lower_handle_t proto_handle)
26981 {
26982 	conn_t  *connp = (conn_t *)proto_handle;
26983 	tcp_t	*tcp = connp->conn_tcp;
26984 	mblk_t *mp;
26985 	int error;
26986 
26987 	ASSERT(connp->conn_upper_handle != NULL);
26988 
26989 	/*
26990 	 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_clr_flowctrl()
26991 	 * is currently running.
26992 	 */
26993 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
26994 	if ((mp = tcp->tcp_rsrv_mp) == NULL) {
26995 		mutex_exit(&tcp->tcp_rsrv_mp_lock);
26996 		return;
26997 	}
26998 	tcp->tcp_rsrv_mp = NULL;
26999 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
27000 
27001 	error = squeue_synch_enter(connp->conn_sqp, connp, mp);
27002 	ASSERT(error == 0);
27003 
27004 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
27005 	tcp->tcp_rsrv_mp = mp;
27006 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
27007 
27008 	if (tcp->tcp_fused) {
27009 		tcp_fuse_backenable(tcp);
27010 	} else {
27011 		tcp->tcp_rwnd = tcp->tcp_recv_hiwater;
27012 		/*
27013 		 * Send back a window update immediately if TCP is above
27014 		 * ESTABLISHED state and the increase of the rcv window
27015 		 * that the other side knows is at least 1 MSS after flow
27016 		 * control is lifted.
27017 		 */
27018 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
27019 		    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
27020 			tcp_xmit_ctl(NULL, tcp,
27021 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
27022 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
27023 		}
27024 	}
27025 
27026 	squeue_synch_exit(connp->conn_sqp, connp);
27027 }
27028 
27029 /* ARGSUSED */
27030 int
27031 tcp_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg,
27032     int mode, int32_t *rvalp, cred_t *cr)
27033 {
27034 	conn_t  	*connp = (conn_t *)proto_handle;
27035 	int		error;
27036 
27037 	ASSERT(connp->conn_upper_handle != NULL);
27038 
27039 	/* All Solaris components should pass a cred for this operation. */
27040 	ASSERT(cr != NULL);
27041 
27042 	switch (cmd) {
27043 		case ND_SET:
27044 		case ND_GET:
27045 		case TCP_IOC_DEFAULT_Q:
27046 		case _SIOCSOCKFALLBACK:
27047 		case TCP_IOC_ABORT_CONN:
27048 		case TI_GETPEERNAME:
27049 		case TI_GETMYNAME:
27050 			ip1dbg(("tcp_ioctl: cmd 0x%x on non sreams socket",
27051 			    cmd));
27052 			error = EINVAL;
27053 			break;
27054 		default:
27055 			/*
27056 			 * Pass on to IP using helper stream
27057 			 */
27058 			error = ldi_ioctl(connp->conn_helper_info->iphs_handle,
27059 			    cmd, arg, mode, cr, rvalp);
27060 			break;
27061 	}
27062 	return (error);
27063 }
27064 
27065 sock_downcalls_t sock_tcp_downcalls = {
27066 	tcp_activate,
27067 	tcp_accept,
27068 	tcp_bind,
27069 	tcp_listen,
27070 	tcp_connect,
27071 	tcp_getpeername,
27072 	tcp_getsockname,
27073 	tcp_getsockopt,
27074 	tcp_setsockopt,
27075 	tcp_sendmsg,
27076 	NULL,
27077 	NULL,
27078 	NULL,
27079 	tcp_shutdown,
27080 	tcp_clr_flowctrl,
27081 	tcp_ioctl,
27082 	tcp_close,
27083 };
27084