xref: /illumos-gate/usr/src/uts/common/inet/tcp/tcp.c (revision 1cb875ae88fb9463b368e725c2444776595895cb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #include <sys/types.h>
29 #include <sys/stream.h>
30 #include <sys/strsun.h>
31 #include <sys/strsubr.h>
32 #include <sys/stropts.h>
33 #include <sys/strlog.h>
34 #define	_SUN_TPI_VERSION 2
35 #include <sys/tihdr.h>
36 #include <sys/timod.h>
37 #include <sys/ddi.h>
38 #include <sys/sunddi.h>
39 #include <sys/suntpi.h>
40 #include <sys/xti_inet.h>
41 #include <sys/cmn_err.h>
42 #include <sys/debug.h>
43 #include <sys/sdt.h>
44 #include <sys/vtrace.h>
45 #include <sys/kmem.h>
46 #include <sys/ethernet.h>
47 #include <sys/cpuvar.h>
48 #include <sys/dlpi.h>
49 #include <sys/pattr.h>
50 #include <sys/policy.h>
51 #include <sys/priv.h>
52 #include <sys/zone.h>
53 #include <sys/sunldi.h>
54 
55 #include <sys/errno.h>
56 #include <sys/signal.h>
57 #include <sys/socket.h>
58 #include <sys/socketvar.h>
59 #include <sys/sockio.h>
60 #include <sys/isa_defs.h>
61 #include <sys/md5.h>
62 #include <sys/random.h>
63 #include <sys/uio.h>
64 #include <sys/systm.h>
65 #include <netinet/in.h>
66 #include <netinet/tcp.h>
67 #include <netinet/ip6.h>
68 #include <netinet/icmp6.h>
69 #include <net/if.h>
70 #include <net/route.h>
71 #include <inet/ipsec_impl.h>
72 
73 #include <inet/common.h>
74 #include <inet/ip.h>
75 #include <inet/ip_impl.h>
76 #include <inet/ip6.h>
77 #include <inet/ip_ndp.h>
78 #include <inet/proto_set.h>
79 #include <inet/mib2.h>
80 #include <inet/nd.h>
81 #include <inet/optcom.h>
82 #include <inet/snmpcom.h>
83 #include <inet/kstatcom.h>
84 #include <inet/tcp.h>
85 #include <inet/tcp_impl.h>
86 #include <inet/udp_impl.h>
87 #include <net/pfkeyv2.h>
88 #include <inet/ipdrop.h>
89 
90 #include <inet/ipclassifier.h>
91 #include <inet/ip_ire.h>
92 #include <inet/ip_ftable.h>
93 #include <inet/ip_if.h>
94 #include <inet/ipp_common.h>
95 #include <inet/ip_rts.h>
96 #include <inet/ip_netinfo.h>
97 #include <sys/squeue_impl.h>
98 #include <sys/squeue.h>
99 #include <inet/kssl/ksslapi.h>
100 #include <sys/tsol/label.h>
101 #include <sys/tsol/tnet.h>
102 #include <rpc/pmap_prot.h>
103 #include <sys/callo.h>
104 
105 #include <sys/clock_impl.h>
106 
107 /*
108  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
109  *
110  * (Read the detailed design doc in PSARC case directory)
111  *
112  * The entire tcp state is contained in tcp_t and conn_t structure
113  * which are allocated in tandem using ipcl_conn_create() and passing
114  * IPCL_TCPCONN as a flag. We use 'conn_ref' and 'conn_lock' to protect
115  * the references on the tcp_t. The tcp_t structure is never compressed
116  * and packets always land on the correct TCP perimeter from the time
117  * eager is created till the time tcp_t dies (as such the old mentat
118  * TCP global queue is not used for detached state and no IPSEC checking
119  * is required). The global queue is still allocated to send out resets
120  * for connection which have no listeners and IP directly calls
121  * tcp_xmit_listeners_reset() which does any policy check.
122  *
123  * Protection and Synchronisation mechanism:
124  *
125  * The tcp data structure does not use any kind of lock for protecting
126  * its state but instead uses 'squeues' for mutual exclusion from various
127  * read and write side threads. To access a tcp member, the thread should
128  * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS,
129  * or SQ_NODRAIN). Since the squeues allow a direct function call, caller
130  * can pass any tcp function having prototype of edesc_t as argument
131  * (different from traditional STREAMs model where packets come in only
132  * designated entry points). The list of functions that can be directly
133  * called via squeue are listed before the usual function prototype.
134  *
135  * Referencing:
136  *
137  * TCP is MT-Hot and we use a reference based scheme to make sure that the
138  * tcp structure doesn't disappear when its needed. When the application
139  * creates an outgoing connection or accepts an incoming connection, we
140  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
141  * The IP reference is just a symbolic reference since ip_tcpclose()
142  * looks at tcp structure after tcp_close_output() returns which could
143  * have dropped the last TCP reference. So as long as the connection is
144  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
145  * conn_t. The classifier puts its own reference when the connection is
146  * inserted in listen or connected hash. Anytime a thread needs to enter
147  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
148  * on write side or by doing a classify on read side and then puts a
149  * reference on the conn before doing squeue_enter/tryenter/fill. For
150  * read side, the classifier itself puts the reference under fanout lock
151  * to make sure that tcp can't disappear before it gets processed. The
152  * squeue will drop this reference automatically so the called function
153  * doesn't have to do a DEC_REF.
154  *
155  * Opening a new connection:
156  *
157  * The outgoing connection open is pretty simple. tcp_open() does the
158  * work in creating the conn/tcp structure and initializing it. The
159  * squeue assignment is done based on the CPU the application
160  * is running on. So for outbound connections, processing is always done
161  * on application CPU which might be different from the incoming CPU
162  * being interrupted by the NIC. An optimal way would be to figure out
163  * the NIC <-> CPU binding at listen time, and assign the outgoing
164  * connection to the squeue attached to the CPU that will be interrupted
165  * for incoming packets (we know the NIC based on the bind IP address).
166  * This might seem like a problem if more data is going out but the
167  * fact is that in most cases the transmit is ACK driven transmit where
168  * the outgoing data normally sits on TCP's xmit queue waiting to be
169  * transmitted.
170  *
171  * Accepting a connection:
172  *
173  * This is a more interesting case because of various races involved in
174  * establishing a eager in its own perimeter. Read the meta comment on
175  * top of tcp_input_listener(). But briefly, the squeue is picked by
176  * ip_fanout based on the ring or the sender (if loopback).
177  *
178  * Closing a connection:
179  *
180  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
181  * via squeue to do the close and mark the tcp as detached if the connection
182  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
183  * reference but tcp_close() drop IP's reference always. So if tcp was
184  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
185  * and 1 because it is in classifier's connected hash. This is the condition
186  * we use to determine that its OK to clean up the tcp outside of squeue
187  * when time wait expires (check the ref under fanout and conn_lock and
188  * if it is 2, remove it from fanout hash and kill it).
189  *
190  * Although close just drops the necessary references and marks the
191  * tcp_detached state, tcp_close needs to know the tcp_detached has been
192  * set (under squeue) before letting the STREAM go away (because a
193  * inbound packet might attempt to go up the STREAM while the close
194  * has happened and tcp_detached is not set). So a special lock and
195  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
196  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
197  * tcp_detached.
198  *
199  * Special provisions and fast paths:
200  *
201  * We make special provisions for sockfs by marking tcp_issocket
202  * whenever we have only sockfs on top of TCP. This allows us to skip
203  * putting the tcp in acceptor hash since a sockfs listener can never
204  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
205  * since eager has already been allocated and the accept now happens
206  * on acceptor STREAM. There is a big blob of comment on top of
207  * tcp_input_listener explaining the new accept. When socket is POP'd,
208  * sockfs sends us an ioctl to mark the fact and we go back to old
209  * behaviour. Once tcp_issocket is unset, its never set for the
210  * life of that connection.
211  *
212  * IPsec notes :
213  *
214  * Since a packet is always executed on the correct TCP perimeter
215  * all IPsec processing is defered to IP including checking new
216  * connections and setting IPSEC policies for new connection. The
217  * only exception is tcp_xmit_listeners_reset() which is called
218  * directly from IP and needs to policy check to see if TH_RST
219  * can be sent out.
220  */
221 
222 /*
223  * Values for squeue switch:
224  * 1: SQ_NODRAIN
225  * 2: SQ_PROCESS
226  * 3: SQ_FILL
227  */
228 int tcp_squeue_wput = 2;	/* /etc/systems */
229 int tcp_squeue_flag;
230 
231 /*
232  * This controls how tiny a write must be before we try to copy it
233  * into the mblk on the tail of the transmit queue.  Not much
234  * speedup is observed for values larger than sixteen.  Zero will
235  * disable the optimisation.
236  */
237 int tcp_tx_pull_len = 16;
238 
239 /*
240  * TCP Statistics.
241  *
242  * How TCP statistics work.
243  *
244  * There are two types of statistics invoked by two macros.
245  *
246  * TCP_STAT(name) does non-atomic increment of a named stat counter. It is
247  * supposed to be used in non MT-hot paths of the code.
248  *
249  * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is
250  * supposed to be used for DEBUG purposes and may be used on a hot path.
251  *
252  * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat
253  * (use "kstat tcp" to get them).
254  *
255  * There is also additional debugging facility that marks tcp_clean_death()
256  * instances and saves them in tcp_t structure. It is triggered by
257  * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for
258  * tcp_clean_death() calls that counts the number of times each tag was hit. It
259  * is triggered by TCP_CLD_COUNTERS define.
260  *
261  * How to add new counters.
262  *
263  * 1) Add a field in the tcp_stat structure describing your counter.
264  * 2) Add a line in the template in tcp_kstat2_init() with the name
265  *    of the counter.
266  *
267  *    IMPORTANT!! - make sure that both are in sync !!
268  * 3) Use either TCP_STAT or TCP_DBGSTAT with the name.
269  *
270  * Please avoid using private counters which are not kstat-exported.
271  *
272  * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances
273  * in tcp_t structure.
274  *
275  * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags.
276  */
277 
278 #ifndef TCP_DEBUG_COUNTER
279 #ifdef DEBUG
280 #define	TCP_DEBUG_COUNTER 1
281 #else
282 #define	TCP_DEBUG_COUNTER 0
283 #endif
284 #endif
285 
286 #define	TCP_CLD_COUNTERS 0
287 
288 #define	TCP_TAG_CLEAN_DEATH 1
289 #define	TCP_MAX_CLEAN_DEATH_TAG 32
290 
291 #ifdef lint
292 static int _lint_dummy_;
293 #endif
294 
295 #if TCP_CLD_COUNTERS
296 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG];
297 #define	TCP_CLD_STAT(x) tcp_clean_death_stat[x]++
298 #elif defined(lint)
299 #define	TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0);
300 #else
301 #define	TCP_CLD_STAT(x)
302 #endif
303 
304 #if TCP_DEBUG_COUNTER
305 #define	TCP_DBGSTAT(tcps, x)	\
306 	atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1)
307 #define	TCP_G_DBGSTAT(x)	\
308 	atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1)
309 #elif defined(lint)
310 #define	TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0);
311 #define	TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0);
312 #else
313 #define	TCP_DBGSTAT(tcps, x)
314 #define	TCP_G_DBGSTAT(x)
315 #endif
316 
317 #define	TCP_G_STAT(x)	(tcp_g_statistics.x.value.ui64++)
318 
319 tcp_g_stat_t	tcp_g_statistics;
320 kstat_t		*tcp_g_kstat;
321 
322 /* Macros for timestamp comparisons */
323 #define	TSTMP_GEQ(a, b)	((int32_t)((a)-(b)) >= 0)
324 #define	TSTMP_LT(a, b)	((int32_t)((a)-(b)) < 0)
325 
326 /*
327  * Parameters for TCP Initial Send Sequence number (ISS) generation.  When
328  * tcp_strong_iss is set to 1, which is the default, the ISS is calculated
329  * by adding three components: a time component which grows by 1 every 4096
330  * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27);
331  * a per-connection component which grows by 125000 for every new connection;
332  * and an "extra" component that grows by a random amount centered
333  * approximately on 64000.  This causes the ISS generator to cycle every
334  * 4.89 hours if no TCP connections are made, and faster if connections are
335  * made.
336  *
337  * When tcp_strong_iss is set to 0, ISS is calculated by adding two
338  * components: a time component which grows by 250000 every second; and
339  * a per-connection component which grows by 125000 for every new connections.
340  *
341  * A third method, when tcp_strong_iss is set to 2, for generating ISS is
342  * prescribed by Steve Bellovin.  This involves adding time, the 125000 per
343  * connection, and a one-way hash (MD5) of the connection ID <sport, dport,
344  * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered
345  * password.
346  */
347 #define	ISS_INCR	250000
348 #define	ISS_NSEC_SHT	12
349 
350 static sin_t	sin_null;	/* Zero address for quick clears */
351 static sin6_t	sin6_null;	/* Zero address for quick clears */
352 
353 /*
354  * This implementation follows the 4.3BSD interpretation of the urgent
355  * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause
356  * incompatible changes in protocols like telnet and rlogin.
357  */
358 #define	TCP_OLD_URP_INTERPRETATION	1
359 
360 /*
361  * Since tcp_listener is not cleared atomically with tcp_detached
362  * being cleared we need this extra bit to tell a detached connection
363  * apart from one that is in the process of being accepted.
364  */
365 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
366 	(TCP_IS_DETACHED(tcp) &&	\
367 	    (!(tcp)->tcp_hard_binding))
368 
369 /*
370  * TCP reassembly macros.  We hide starting and ending sequence numbers in
371  * b_next and b_prev of messages on the reassembly queue.  The messages are
372  * chained using b_cont.  These macros are used in tcp_reass() so we don't
373  * have to see the ugly casts and assignments.
374  */
375 #define	TCP_REASS_SEQ(mp)		((uint32_t)(uintptr_t)((mp)->b_next))
376 #define	TCP_REASS_SET_SEQ(mp, u)	((mp)->b_next = \
377 					(mblk_t *)(uintptr_t)(u))
378 #define	TCP_REASS_END(mp)		((uint32_t)(uintptr_t)((mp)->b_prev))
379 #define	TCP_REASS_SET_END(mp, u)	((mp)->b_prev = \
380 					(mblk_t *)(uintptr_t)(u))
381 
382 /*
383  * Implementation of TCP Timers.
384  * =============================
385  *
386  * INTERFACE:
387  *
388  * There are two basic functions dealing with tcp timers:
389  *
390  *	timeout_id_t	tcp_timeout(connp, func, time)
391  * 	clock_t		tcp_timeout_cancel(connp, timeout_id)
392  *	TCP_TIMER_RESTART(tcp, intvl)
393  *
394  * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func'
395  * after 'time' ticks passed. The function called by timeout() must adhere to
396  * the same restrictions as a driver soft interrupt handler - it must not sleep
397  * or call other functions that might sleep. The value returned is the opaque
398  * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to
399  * cancel the request. The call to tcp_timeout() may fail in which case it
400  * returns zero. This is different from the timeout(9F) function which never
401  * fails.
402  *
403  * The call-back function 'func' always receives 'connp' as its single
404  * argument. It is always executed in the squeue corresponding to the tcp
405  * structure. The tcp structure is guaranteed to be present at the time the
406  * call-back is called.
407  *
408  * NOTE: The call-back function 'func' is never called if tcp is in
409  * 	the TCPS_CLOSED state.
410  *
411  * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout()
412  * request. locks acquired by the call-back routine should not be held across
413  * the call to tcp_timeout_cancel() or a deadlock may result.
414  *
415  * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request.
416  * Otherwise, it returns an integer value greater than or equal to 0. In
417  * particular, if the call-back function is already placed on the squeue, it can
418  * not be canceled.
419  *
420  * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called
421  * 	within squeue context corresponding to the tcp instance. Since the
422  *	call-back is also called via the same squeue, there are no race
423  *	conditions described in untimeout(9F) manual page since all calls are
424  *	strictly serialized.
425  *
426  *      TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout
427  *	stored in tcp_timer_tid and starts a new one using
428  *	MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back
429  *	and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid
430  *	field.
431  *
432  * NOTE: since the timeout cancellation is not guaranteed, the cancelled
433  *	call-back may still be called, so it is possible tcp_timer() will be
434  *	called several times. This should not be a problem since tcp_timer()
435  *	should always check the tcp instance state.
436  *
437  *
438  * IMPLEMENTATION:
439  *
440  * TCP timers are implemented using three-stage process. The call to
441  * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function
442  * when the timer expires. The tcp_timer_callback() arranges the call of the
443  * tcp_timer_handler() function via squeue corresponding to the tcp
444  * instance. The tcp_timer_handler() calls actual requested timeout call-back
445  * and passes tcp instance as an argument to it. Information is passed between
446  * stages using the tcp_timer_t structure which contains the connp pointer, the
447  * tcp call-back to call and the timeout id returned by the timeout(9F).
448  *
449  * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t -
450  * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo
451  * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout()
452  * returns the pointer to this mblk.
453  *
454  * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It
455  * looks like a normal mblk without actual dblk attached to it.
456  *
457  * To optimize performance each tcp instance holds a small cache of timer
458  * mblocks. In the current implementation it caches up to two timer mblocks per
459  * tcp instance. The cache is preserved over tcp frees and is only freed when
460  * the whole tcp structure is destroyed by its kmem destructor. Since all tcp
461  * timer processing happens on a corresponding squeue, the cache manipulation
462  * does not require any locks. Experiments show that majority of timer mblocks
463  * allocations are satisfied from the tcp cache and do not involve kmem calls.
464  *
465  * The tcp_timeout() places a refhold on the connp instance which guarantees
466  * that it will be present at the time the call-back function fires. The
467  * tcp_timer_handler() drops the reference after calling the call-back, so the
468  * call-back function does not need to manipulate the references explicitly.
469  */
470 
471 typedef struct tcp_timer_s {
472 	conn_t	*connp;
473 	void 	(*tcpt_proc)(void *);
474 	callout_id_t   tcpt_tid;
475 } tcp_timer_t;
476 
477 static kmem_cache_t *tcp_timercache;
478 kmem_cache_t	*tcp_sack_info_cache;
479 
480 /*
481  * For scalability, we must not run a timer for every TCP connection
482  * in TIME_WAIT state.  To see why, consider (for time wait interval of
483  * 4 minutes):
484  *	1000 connections/sec * 240 seconds/time wait = 240,000 active conn's
485  *
486  * This list is ordered by time, so you need only delete from the head
487  * until you get to entries which aren't old enough to delete yet.
488  * The list consists of only the detached TIME_WAIT connections.
489  *
490  * Note that the timer (tcp_time_wait_expire) is started when the tcp_t
491  * becomes detached TIME_WAIT (either by changing the state and already
492  * being detached or the other way around). This means that the TIME_WAIT
493  * state can be extended (up to doubled) if the connection doesn't become
494  * detached for a long time.
495  *
496  * The list manipulations (including tcp_time_wait_next/prev)
497  * are protected by the tcp_time_wait_lock. The content of the
498  * detached TIME_WAIT connections is protected by the normal perimeters.
499  *
500  * This list is per squeue and squeues are shared across the tcp_stack_t's.
501  * Things on tcp_time_wait_head remain associated with the tcp_stack_t
502  * and conn_netstack.
503  * The tcp_t's that are added to tcp_free_list are disassociated and
504  * have NULL tcp_tcps and conn_netstack pointers.
505  */
506 typedef struct tcp_squeue_priv_s {
507 	kmutex_t	tcp_time_wait_lock;
508 	callout_id_t	tcp_time_wait_tid;
509 	tcp_t		*tcp_time_wait_head;
510 	tcp_t		*tcp_time_wait_tail;
511 	tcp_t		*tcp_free_list;
512 	uint_t		tcp_free_list_cnt;
513 } tcp_squeue_priv_t;
514 
515 /*
516  * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs.
517  * Running it every 5 seconds seems to give the best results.
518  */
519 #define	TCP_TIME_WAIT_DELAY drv_usectohz(5000000)
520 
521 /*
522  * To prevent memory hog, limit the number of entries in tcp_free_list
523  * to 1% of available memory / number of cpus
524  */
525 uint_t tcp_free_list_max_cnt = 0;
526 
527 #define	TCP_XMIT_LOWATER	4096
528 #define	TCP_XMIT_HIWATER	49152
529 #define	TCP_RECV_LOWATER	2048
530 #define	TCP_RECV_HIWATER	128000
531 
532 /*
533  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
534  */
535 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
536 
537 #define	TIDUSZ	4096	/* transport interface data unit size */
538 
539 /*
540  * Bind hash list size and has function.  It has to be a power of 2 for
541  * hashing.
542  */
543 #define	TCP_BIND_FANOUT_SIZE	512
544 #define	TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1))
545 /*
546  * Size of listen and acceptor hash list.  It has to be a power of 2 for
547  * hashing.
548  */
549 #define	TCP_FANOUT_SIZE		256
550 
551 #ifdef	_ILP32
552 #define	TCP_ACCEPTOR_HASH(accid)					\
553 		(((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1))
554 #else
555 #define	TCP_ACCEPTOR_HASH(accid)					\
556 		((uint_t)(accid) & (TCP_FANOUT_SIZE - 1))
557 #endif	/* _ILP32 */
558 
559 #define	IP_ADDR_CACHE_SIZE	2048
560 #define	IP_ADDR_CACHE_HASH(faddr)					\
561 	(ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1))
562 
563 /*
564  * TCP options struct returned from tcp_parse_options.
565  */
566 typedef struct tcp_opt_s {
567 	uint32_t	tcp_opt_mss;
568 	uint32_t	tcp_opt_wscale;
569 	uint32_t	tcp_opt_ts_val;
570 	uint32_t	tcp_opt_ts_ecr;
571 	tcp_t		*tcp;
572 } tcp_opt_t;
573 
574 /*
575  * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
576  */
577 
578 #ifdef _BIG_ENDIAN
579 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
580 	(TCPOPT_TSTAMP << 8) | 10)
581 #else
582 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
583 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
584 #endif
585 
586 /*
587  * Flags returned from tcp_parse_options.
588  */
589 #define	TCP_OPT_MSS_PRESENT	1
590 #define	TCP_OPT_WSCALE_PRESENT	2
591 #define	TCP_OPT_TSTAMP_PRESENT	4
592 #define	TCP_OPT_SACK_OK_PRESENT	8
593 #define	TCP_OPT_SACK_PRESENT	16
594 
595 /* TCP option length */
596 #define	TCPOPT_NOP_LEN		1
597 #define	TCPOPT_MAXSEG_LEN	4
598 #define	TCPOPT_WS_LEN		3
599 #define	TCPOPT_REAL_WS_LEN	(TCPOPT_WS_LEN+1)
600 #define	TCPOPT_TSTAMP_LEN	10
601 #define	TCPOPT_REAL_TS_LEN	(TCPOPT_TSTAMP_LEN+2)
602 #define	TCPOPT_SACK_OK_LEN	2
603 #define	TCPOPT_REAL_SACK_OK_LEN	(TCPOPT_SACK_OK_LEN+2)
604 #define	TCPOPT_REAL_SACK_LEN	4
605 #define	TCPOPT_MAX_SACK_LEN	36
606 #define	TCPOPT_HEADER_LEN	2
607 
608 /* TCP cwnd burst factor. */
609 #define	TCP_CWND_INFINITE	65535
610 #define	TCP_CWND_SS		3
611 #define	TCP_CWND_NORMAL		5
612 
613 /* Maximum TCP initial cwin (start/restart). */
614 #define	TCP_MAX_INIT_CWND	8
615 
616 /*
617  * Initialize cwnd according to RFC 3390.  def_max_init_cwnd is
618  * either tcp_slow_start_initial or tcp_slow_start_after idle
619  * depending on the caller.  If the upper layer has not used the
620  * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd
621  * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd.
622  * If the upper layer has changed set the tcp_init_cwnd, just use
623  * it to calculate the tcp_cwnd.
624  */
625 #define	SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd)			\
626 {									\
627 	if ((tcp)->tcp_init_cwnd == 0) {				\
628 		(tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss),	\
629 		    MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \
630 	} else {							\
631 		(tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss);		\
632 	}								\
633 	tcp->tcp_cwnd_cnt = 0;						\
634 }
635 
636 /* TCP Timer control structure */
637 typedef struct tcpt_s {
638 	pfv_t	tcpt_pfv;	/* The routine we are to call */
639 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
640 } tcpt_t;
641 
642 /*
643  * Functions called directly via squeue having a prototype of edesc_t.
644  */
645 void		tcp_input_listener(void *arg, mblk_t *mp, void *arg2,
646     ip_recv_attr_t *ira);
647 static void	tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2,
648     ip_recv_attr_t *dummy);
649 void		tcp_accept_finish(void *arg, mblk_t *mp, void *arg2,
650     ip_recv_attr_t *dummy);
651 static void	tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2,
652     ip_recv_attr_t *dummy);
653 static void	tcp_wput_proto(void *arg, mblk_t *mp, void *arg2,
654     ip_recv_attr_t *dummy);
655 void		tcp_input_data(void *arg, mblk_t *mp, void *arg2,
656     ip_recv_attr_t *ira);
657 static void	tcp_close_output(void *arg, mblk_t *mp, void *arg2,
658     ip_recv_attr_t *dummy);
659 void		tcp_output(void *arg, mblk_t *mp, void *arg2,
660     ip_recv_attr_t *dummy);
661 void		tcp_output_urgent(void *arg, mblk_t *mp, void *arg2,
662     ip_recv_attr_t *dummy);
663 static void	tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2,
664     ip_recv_attr_t *dummy);
665 static void	tcp_timer_handler(void *arg, mblk_t *mp, void *arg2,
666     ip_recv_attr_t *dummy);
667 static void	tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2,
668     ip_recv_attr_t *dummy);
669 
670 
671 /* Prototype for TCP functions */
672 static void	tcp_random_init(void);
673 int		tcp_random(void);
674 static void	tcp_tli_accept(tcp_t *tcp, mblk_t *mp);
675 static void	tcp_accept_swap(tcp_t *listener, tcp_t *acceptor,
676 		    tcp_t *eager);
677 static int	tcp_set_destination(tcp_t *tcp);
678 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
679     int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only,
680     boolean_t user_specified);
681 static void	tcp_closei_local(tcp_t *tcp);
682 static void	tcp_close_detached(tcp_t *tcp);
683 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr,
684 		    mblk_t *idmp, mblk_t **defermp, ip_recv_attr_t *ira);
685 static void	tcp_tpi_connect(tcp_t *tcp, mblk_t *mp);
686 static int	tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp,
687 		    in_port_t dstport, uint_t srcid);
688 static int	tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp,
689 		    in_port_t dstport, uint32_t flowinfo,
690 		    uint_t srcid, uint32_t scope_id);
691 static int	tcp_clean_death(tcp_t *tcp, int err, uint8_t tag);
692 static void	tcp_disconnect(tcp_t *tcp, mblk_t *mp);
693 static char	*tcp_display(tcp_t *tcp, char *, char);
694 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum);
695 static void	tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only);
696 static void	tcp_eager_unlink(tcp_t *tcp);
697 static void	tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr,
698 		    int unixerr);
699 static void	tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
700 		    int tlierr, int unixerr);
701 static int	tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
702 		    cred_t *cr);
703 static int	tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
704 		    char *value, caddr_t cp, cred_t *cr);
705 static int	tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
706 		    char *value, caddr_t cp, cred_t *cr);
707 static int	tcp_tpistate(tcp_t *tcp);
708 static void	tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp,
709     int caller_holds_lock);
710 static void	tcp_bind_hash_remove(tcp_t *tcp);
711 static tcp_t	*tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *);
712 void		tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp);
713 static void	tcp_acceptor_hash_remove(tcp_t *tcp);
714 static void	tcp_capability_req(tcp_t *tcp, mblk_t *mp);
715 static void	tcp_info_req(tcp_t *tcp, mblk_t *mp);
716 static void	tcp_addr_req(tcp_t *tcp, mblk_t *mp);
717 static void	tcp_init_values(tcp_t *tcp);
718 static void	tcp_ip_notify(tcp_t *tcp);
719 static void	tcp_iss_init(tcp_t *tcp);
720 static void	tcp_keepalive_killer(void *arg);
721 static int	tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt);
722 static void	tcp_mss_set(tcp_t *tcp, uint32_t size);
723 static int	tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp,
724 		    int *do_disconnectp, int *t_errorp, int *sys_errorp);
725 static boolean_t tcp_allow_connopt_set(int level, int name);
726 int		tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr);
727 static int	tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
728 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt,
729     tcp_stack_t *);
730 static int	tcp_param_set(queue_t *q, mblk_t *mp, char *value,
731 		    caddr_t cp, cred_t *cr);
732 static int	tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value,
733 		    caddr_t cp, cred_t *cr);
734 static void	tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *);
735 static int	tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value,
736 		    caddr_t cp, cred_t *cr);
737 static void	tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt);
738 static void	tcp_update_xmit_tail(tcp_t *tcp, uint32_t snxt);
739 static mblk_t	*tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start);
740 static void	tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp);
741 static void	tcp_reinit(tcp_t *tcp);
742 static void	tcp_reinit_values(tcp_t *tcp);
743 
744 static uint_t	tcp_rwnd_reopen(tcp_t *tcp);
745 static uint_t	tcp_rcv_drain(tcp_t *tcp);
746 static void	tcp_sack_rxmit(tcp_t *tcp, uint_t *flags);
747 static boolean_t tcp_send_rst_chk(tcp_stack_t *);
748 static void	tcp_ss_rexmit(tcp_t *tcp);
749 static mblk_t	*tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp,
750     ip_recv_attr_t *);
751 static void	tcp_process_options(tcp_t *, tcpha_t *);
752 static void	tcp_rsrv(queue_t *q);
753 static int	tcp_snmp_state(tcp_t *tcp);
754 static void	tcp_timer(void *arg);
755 static void	tcp_timer_callback(void *);
756 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp,
757     boolean_t random);
758 static in_port_t tcp_get_next_priv_port(const tcp_t *);
759 static void	tcp_wput_sock(queue_t *q, mblk_t *mp);
760 static void	tcp_wput_fallback(queue_t *q, mblk_t *mp);
761 void		tcp_tpi_accept(queue_t *q, mblk_t *mp);
762 static void	tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent);
763 static void	tcp_wput_flush(tcp_t *tcp, mblk_t *mp);
764 static void	tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp);
765 static int	tcp_send(tcp_t *tcp, const int mss,
766 		    const int total_hdr_len, const int tcp_hdr_len,
767 		    const int num_sack_blk, int *usable, uint_t *snxt,
768 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time);
769 static void	tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now,
770 		    int num_sack_blk);
771 static void	tcp_wsrv(queue_t *q);
772 static int	tcp_xmit_end(tcp_t *tcp);
773 static void	tcp_ack_timer(void *arg);
774 static mblk_t	*tcp_ack_mp(tcp_t *tcp);
775 static void	tcp_xmit_early_reset(char *str, mblk_t *mp,
776 		    uint32_t seq, uint32_t ack, int ctl, ip_recv_attr_t *,
777 		    ip_stack_t *, conn_t *);
778 static void	tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq,
779 		    uint32_t ack, int ctl);
780 static void	tcp_set_rto(tcp_t *, time_t);
781 static void	tcp_icmp_input(void *, mblk_t *, void *, ip_recv_attr_t *);
782 static void	tcp_icmp_error_ipv6(tcp_t *, mblk_t *, ip_recv_attr_t *);
783 static boolean_t tcp_verifyicmp(conn_t *, void *, icmph_t *, icmp6_t *,
784     ip_recv_attr_t *);
785 static int	tcp_build_hdrs(tcp_t *);
786 static void	tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp,
787     uint32_t seg_seq, uint32_t seg_ack, int seg_len, tcpha_t *tcpha,
788     ip_recv_attr_t *ira);
789 boolean_t	tcp_paws_check(tcp_t *tcp, tcpha_t *tcpha, tcp_opt_t *tcpoptp);
790 static boolean_t tcp_zcopy_check(tcp_t *);
791 static void	tcp_zcopy_notify(tcp_t *);
792 static mblk_t	*tcp_zcopy_backoff(tcp_t *, mblk_t *, boolean_t);
793 static void	tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa);
794 static void	tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only);
795 static void	tcp_update_zcopy(tcp_t *tcp);
796 static void	tcp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t,
797     ixa_notify_arg_t);
798 static void	tcp_rexmit_after_error(tcp_t *tcp);
799 static void	tcp_send_data(tcp_t *, mblk_t *);
800 extern mblk_t	*tcp_timermp_alloc(int);
801 extern void	tcp_timermp_free(tcp_t *);
802 static void	tcp_timer_free(tcp_t *tcp, mblk_t *mp);
803 static void	tcp_stop_lingering(tcp_t *tcp);
804 static void	tcp_close_linger_timeout(void *arg);
805 static void	*tcp_stack_init(netstackid_t stackid, netstack_t *ns);
806 static void	tcp_stack_fini(netstackid_t stackid, void *arg);
807 static void	*tcp_g_kstat_init(tcp_g_stat_t *);
808 static void	tcp_g_kstat_fini(kstat_t *);
809 static void	*tcp_kstat_init(netstackid_t, tcp_stack_t *);
810 static void	tcp_kstat_fini(netstackid_t, kstat_t *);
811 static void	*tcp_kstat2_init(netstackid_t, tcp_stat_t *);
812 static void	tcp_kstat2_fini(netstackid_t, kstat_t *);
813 static int	tcp_kstat_update(kstat_t *kp, int rw);
814 static mblk_t	*tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
815     ip_recv_attr_t *ira);
816 static mblk_t	*tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp,
817     ip_recv_attr_t *ira);
818 static int	tcp_squeue_switch(int);
819 
820 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t);
821 static int	tcp_openv4(queue_t *, dev_t *, int, int, cred_t *);
822 static int	tcp_openv6(queue_t *, dev_t *, int, int, cred_t *);
823 static int	tcp_tpi_close(queue_t *, int);
824 static int	tcp_tpi_close_accept(queue_t *);
825 
826 static void	tcp_squeue_add(squeue_t *);
827 static void	tcp_setcred_data(mblk_t *, ip_recv_attr_t *);
828 
829 extern void	tcp_kssl_input(tcp_t *, mblk_t *, cred_t *);
830 
831 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy);
832 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2,
833     ip_recv_attr_t *dummy);
834 
835 static int tcp_accept(sock_lower_handle_t, sock_lower_handle_t,
836 	    sock_upper_handle_t, cred_t *);
837 static int tcp_listen(sock_lower_handle_t, int, cred_t *);
838 static int tcp_do_listen(conn_t *, struct sockaddr *, socklen_t, int, cred_t *,
839     boolean_t);
840 static int tcp_do_connect(conn_t *, const struct sockaddr *, socklen_t,
841     cred_t *, pid_t);
842 static int tcp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *,
843     boolean_t);
844 static int tcp_do_unbind(conn_t *);
845 static int tcp_bind_check(conn_t *, struct sockaddr *, socklen_t, cred_t *,
846     boolean_t);
847 
848 static void tcp_ulp_newconn(conn_t *, conn_t *, mblk_t *);
849 
850 /*
851  * Routines related to the TCP_IOC_ABORT_CONN ioctl command.
852  *
853  * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting
854  * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure
855  * (defined in tcp.h) needs to be filled in and passed into the kernel
856  * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t
857  * structure contains the four-tuple of a TCP connection and a range of TCP
858  * states (specified by ac_start and ac_end). The use of wildcard addresses
859  * and ports is allowed. Connections with a matching four tuple and a state
860  * within the specified range will be aborted. The valid states for the
861  * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT,
862  * inclusive.
863  *
864  * An application which has its connection aborted by this ioctl will receive
865  * an error that is dependent on the connection state at the time of the abort.
866  * If the connection state is < TCPS_TIME_WAIT, an application should behave as
867  * though a RST packet has been received.  If the connection state is equal to
868  * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel
869  * and all resources associated with the connection will be freed.
870  */
871 static mblk_t	*tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *);
872 static void	tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *);
873 static void	tcp_ioctl_abort_handler(void *arg, mblk_t *mp, void *arg2,
874     ip_recv_attr_t *dummy);
875 static int	tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps);
876 static void	tcp_ioctl_abort_conn(queue_t *, mblk_t *);
877 static int	tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *,
878     boolean_t, tcp_stack_t *);
879 
880 static struct module_info tcp_rinfo =  {
881 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
882 };
883 
884 static struct module_info tcp_winfo =  {
885 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
886 };
887 
888 /*
889  * Entry points for TCP as a device. The normal case which supports
890  * the TCP functionality.
891  * We have separate open functions for the /dev/tcp and /dev/tcp6 devices.
892  */
893 struct qinit tcp_rinitv4 = {
894 	NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo
895 };
896 
897 struct qinit tcp_rinitv6 = {
898 	NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo
899 };
900 
901 struct qinit tcp_winit = {
902 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
903 };
904 
905 /* Initial entry point for TCP in socket mode. */
906 struct qinit tcp_sock_winit = {
907 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
908 };
909 
910 /* TCP entry point during fallback */
911 struct qinit tcp_fallback_sock_winit = {
912 	(pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo
913 };
914 
915 /*
916  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
917  * an accept. Avoid allocating data structures since eager has already
918  * been created.
919  */
920 struct qinit tcp_acceptor_rinit = {
921 	NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo
922 };
923 
924 struct qinit tcp_acceptor_winit = {
925 	(pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo
926 };
927 
928 /* For AF_INET aka /dev/tcp */
929 struct streamtab tcpinfov4 = {
930 	&tcp_rinitv4, &tcp_winit
931 };
932 
933 /* For AF_INET6 aka /dev/tcp6 */
934 struct streamtab tcpinfov6 = {
935 	&tcp_rinitv6, &tcp_winit
936 };
937 
938 sock_downcalls_t sock_tcp_downcalls;
939 
940 /* Setable only in /etc/system. Move to ndd? */
941 boolean_t tcp_icmp_source_quench = B_FALSE;
942 
943 /*
944  * Following assumes TPI alignment requirements stay along 32 bit
945  * boundaries
946  */
947 #define	ROUNDUP32(x) \
948 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
949 
950 /* Template for response to info request. */
951 static struct T_info_ack tcp_g_t_info_ack = {
952 	T_INFO_ACK,		/* PRIM_type */
953 	0,			/* TSDU_size */
954 	T_INFINITE,		/* ETSDU_size */
955 	T_INVALID,		/* CDATA_size */
956 	T_INVALID,		/* DDATA_size */
957 	sizeof (sin_t),		/* ADDR_size */
958 	0,			/* OPT_size - not initialized here */
959 	TIDUSZ,			/* TIDU_size */
960 	T_COTS_ORD,		/* SERV_type */
961 	TCPS_IDLE,		/* CURRENT_state */
962 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
963 };
964 
965 static struct T_info_ack tcp_g_t_info_ack_v6 = {
966 	T_INFO_ACK,		/* PRIM_type */
967 	0,			/* TSDU_size */
968 	T_INFINITE,		/* ETSDU_size */
969 	T_INVALID,		/* CDATA_size */
970 	T_INVALID,		/* DDATA_size */
971 	sizeof (sin6_t),	/* ADDR_size */
972 	0,			/* OPT_size - not initialized here */
973 	TIDUSZ,		/* TIDU_size */
974 	T_COTS_ORD,		/* SERV_type */
975 	TCPS_IDLE,		/* CURRENT_state */
976 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
977 };
978 
979 #define	MS	1L
980 #define	SECONDS	(1000 * MS)
981 #define	MINUTES	(60 * SECONDS)
982 #define	HOURS	(60 * MINUTES)
983 #define	DAYS	(24 * HOURS)
984 
985 #define	PARAM_MAX (~(uint32_t)0)
986 
987 /* Max size IP datagram is 64k - 1 */
988 #define	TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcpha_t)))
989 #define	TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcpha_t)))
990 /* Max of the above */
991 #define	TCP_MSS_MAX	TCP_MSS_MAX_IPV4
992 
993 /* Largest TCP port number */
994 #define	TCP_MAX_PORT	(64 * 1024 - 1)
995 
996 /*
997  * tcp_wroff_xtra is the extra space in front of TCP/IP header for link
998  * layer header.  It has to be a multiple of 4.
999  */
1000 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" };
1001 #define	tcps_wroff_xtra	tcps_wroff_xtra_param->tcp_param_val
1002 
1003 /*
1004  * All of these are alterable, within the min/max values given, at run time.
1005  * Note that the default value of "tcp_time_wait_interval" is four minutes,
1006  * per the TCP spec.
1007  */
1008 /* BEGIN CSTYLED */
1009 static tcpparam_t	lcl_tcp_param_arr[] = {
1010  /*min		max		value		name */
1011  { 1*SECONDS,	10*MINUTES,	1*MINUTES,	"tcp_time_wait_interval"},
1012  { 1,		PARAM_MAX,	128,		"tcp_conn_req_max_q" },
1013  { 0,		PARAM_MAX,	1024,		"tcp_conn_req_max_q0" },
1014  { 1,		1024,		1,		"tcp_conn_req_min" },
1015  { 0*MS,	20*SECONDS,	0*MS,		"tcp_conn_grace_period" },
1016  { 128,		(1<<30),	1024*1024,	"tcp_cwnd_max" },
1017  { 0,		10,		0,		"tcp_debug" },
1018  { 1024,	(32*1024),	1024,		"tcp_smallest_nonpriv_port"},
1019  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_cinterval"},
1020  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_linterval"},
1021  { 500*MS,	PARAM_MAX,	8*MINUTES,	"tcp_ip_abort_interval"},
1022  { 1*SECONDS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_cinterval"},
1023  { 500*MS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_interval"},
1024  { 1,		255,		64,		"tcp_ipv4_ttl"},
1025  { 10*SECONDS,	10*DAYS,	2*HOURS,	"tcp_keepalive_interval"},
1026  { 0,		100,		10,		"tcp_maxpsz_multiplier" },
1027  { 1,		TCP_MSS_MAX_IPV4, 536,		"tcp_mss_def_ipv4"},
1028  { 1,		TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"},
1029  { 1,		TCP_MSS_MAX,	108,		"tcp_mss_min"},
1030  { 1,		(64*1024)-1,	(4*1024)-1,	"tcp_naglim_def"},
1031  { 1*MS,	20*SECONDS,	3*SECONDS,	"tcp_rexmit_interval_initial"},
1032  { 1*MS,	2*HOURS,	60*SECONDS,	"tcp_rexmit_interval_max"},
1033  { 1*MS,	2*HOURS,	400*MS,		"tcp_rexmit_interval_min"},
1034  { 1*MS,	1*MINUTES,	100*MS,		"tcp_deferred_ack_interval" },
1035  { 0,		16,		0,		"tcp_snd_lowat_fraction" },
1036  { 0,		128000,		0,		"tcp_sth_rcv_hiwat" },
1037  { 0,		128000,		0,		"tcp_sth_rcv_lowat" },
1038  { 1,		10000,		3,		"tcp_dupack_fast_retransmit" },
1039  { 0,		1,		0,		"tcp_ignore_path_mtu" },
1040  { 1024,	TCP_MAX_PORT,	32*1024,	"tcp_smallest_anon_port"},
1041  { 1024,	TCP_MAX_PORT,	TCP_MAX_PORT,	"tcp_largest_anon_port"},
1042  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"},
1043  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"},
1044  { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"},
1045  { 1,		65536,		4,		"tcp_recv_hiwat_minmss"},
1046  { 1*SECONDS,	PARAM_MAX,	675*SECONDS,	"tcp_fin_wait_2_flush_interval"},
1047  { 8192,	(1<<30),	1024*1024,	"tcp_max_buf"},
1048 /*
1049  * Question:  What default value should I set for tcp_strong_iss?
1050  */
1051  { 0,		2,		1,		"tcp_strong_iss"},
1052  { 0,		65536,		20,		"tcp_rtt_updates"},
1053  { 0,		1,		1,		"tcp_wscale_always"},
1054  { 0,		1,		0,		"tcp_tstamp_always"},
1055  { 0,		1,		1,		"tcp_tstamp_if_wscale"},
1056  { 0*MS,	2*HOURS,	0*MS,		"tcp_rexmit_interval_extra"},
1057  { 0,		16,		2,		"tcp_deferred_acks_max"},
1058  { 1,		16384,		4,		"tcp_slow_start_after_idle"},
1059  { 1,		4,		4,		"tcp_slow_start_initial"},
1060  { 0,		2,		2,		"tcp_sack_permitted"},
1061  { 0,		1,		1,		"tcp_compression_enabled"},
1062  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS,	"tcp_ipv6_hoplimit"},
1063  { 1,		TCP_MSS_MAX_IPV6, 1220,		"tcp_mss_def_ipv6"},
1064  { 1,		TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"},
1065  { 0,		1,		0,		"tcp_rev_src_routes"},
1066  { 10*MS,	500*MS,		50*MS,		"tcp_local_dack_interval"},
1067  { 0,		16,		8,		"tcp_local_dacks_max"},
1068  { 0,		2,		1,		"tcp_ecn_permitted"},
1069  { 0,		1,		1,		"tcp_rst_sent_rate_enabled"},
1070  { 0,		PARAM_MAX,	40,		"tcp_rst_sent_rate"},
1071  { 0,		100*MS,		50*MS,		"tcp_push_timer_interval"},
1072  { 0,		1,		0,		"tcp_use_smss_as_mss_opt"},
1073  { 0,		PARAM_MAX,	8*MINUTES,	"tcp_keepalive_abort_interval"},
1074  { 0,		1,		0,		"tcp_dev_flow_ctl"},
1075 };
1076 /* END CSTYLED */
1077 
1078 /* Round up the value to the nearest mss. */
1079 #define	MSS_ROUNDUP(value, mss)		((((value) - 1) / (mss) + 1) * (mss))
1080 
1081 /*
1082  * Set ECN capable transport (ECT) code point in IP header.
1083  *
1084  * Note that there are 2 ECT code points '01' and '10', which are called
1085  * ECT(1) and ECT(0) respectively.  Here we follow the original ECT code
1086  * point ECT(0) for TCP as described in RFC 2481.
1087  */
1088 #define	SET_ECT(tcp, iph) \
1089 	if ((tcp)->tcp_connp->conn_ipversion == IPV4_VERSION) { \
1090 		/* We need to clear the code point first. */ \
1091 		((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \
1092 		((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \
1093 	} else { \
1094 		((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \
1095 		((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \
1096 	}
1097 
1098 /*
1099  * The format argument to pass to tcp_display().
1100  * DISP_PORT_ONLY means that the returned string has only port info.
1101  * DISP_ADDR_AND_PORT means that the returned string also contains the
1102  * remote and local IP address.
1103  */
1104 #define	DISP_PORT_ONLY		1
1105 #define	DISP_ADDR_AND_PORT	2
1106 
1107 #define	IS_VMLOANED_MBLK(mp) \
1108 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
1109 
1110 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
1111 
1112 /*
1113  * Forces all connections to obey the value of the tcps_maxpsz_multiplier
1114  * tunable settable via NDD.  Otherwise, the per-connection behavior is
1115  * determined dynamically during tcp_set_destination(), which is the default.
1116  */
1117 boolean_t tcp_static_maxpsz = B_FALSE;
1118 
1119 /* Setable in /etc/system */
1120 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
1121 uint32_t tcp_random_anon_port = 1;
1122 
1123 /*
1124  * To reach to an eager in Q0 which can be dropped due to an incoming
1125  * new SYN request when Q0 is full, a new doubly linked list is
1126  * introduced. This list allows to select an eager from Q0 in O(1) time.
1127  * This is needed to avoid spending too much time walking through the
1128  * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of
1129  * this new list has to be a member of Q0.
1130  * This list is headed by listener's tcp_t. When the list is empty,
1131  * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0,
1132  * of listener's tcp_t point to listener's tcp_t itself.
1133  *
1134  * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager
1135  * in the list. MAKE_UNDROPPABLE() takes the eager out of the list.
1136  * These macros do not affect the eager's membership to Q0.
1137  */
1138 
1139 
1140 #define	MAKE_DROPPABLE(listener, eager)					\
1141 	if ((eager)->tcp_eager_next_drop_q0 == NULL) {			\
1142 		(listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\
1143 		    = (eager);						\
1144 		(eager)->tcp_eager_prev_drop_q0 = (listener);		\
1145 		(eager)->tcp_eager_next_drop_q0 =			\
1146 		    (listener)->tcp_eager_next_drop_q0;			\
1147 		(listener)->tcp_eager_next_drop_q0 = (eager);		\
1148 	}
1149 
1150 #define	MAKE_UNDROPPABLE(eager)						\
1151 	if ((eager)->tcp_eager_next_drop_q0 != NULL) {			\
1152 		(eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0	\
1153 		    = (eager)->tcp_eager_prev_drop_q0;			\
1154 		(eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0	\
1155 		    = (eager)->tcp_eager_next_drop_q0;			\
1156 		(eager)->tcp_eager_prev_drop_q0 = NULL;			\
1157 		(eager)->tcp_eager_next_drop_q0 = NULL;			\
1158 	}
1159 
1160 /*
1161  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
1162  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
1163  * data, TCP will not respond with an ACK.  RFC 793 requires that
1164  * TCP responds with an ACK for such a bogus ACK.  By not following
1165  * the RFC, we prevent TCP from getting into an ACK storm if somehow
1166  * an attacker successfully spoofs an acceptable segment to our
1167  * peer; or when our peer is "confused."
1168  */
1169 uint32_t tcp_drop_ack_unsent_cnt = 10;
1170 
1171 /*
1172  * Hook functions to enable cluster networking
1173  * On non-clustered systems these vectors must always be NULL.
1174  */
1175 
1176 void (*cl_inet_listen)(netstackid_t stack_id, uint8_t protocol,
1177 			    sa_family_t addr_family, uint8_t *laddrp,
1178 			    in_port_t lport, void *args) = NULL;
1179 void (*cl_inet_unlisten)(netstackid_t stack_id, uint8_t protocol,
1180 			    sa_family_t addr_family, uint8_t *laddrp,
1181 			    in_port_t lport, void *args) = NULL;
1182 
1183 int (*cl_inet_connect2)(netstackid_t stack_id, uint8_t protocol,
1184 			    boolean_t is_outgoing,
1185 			    sa_family_t addr_family,
1186 			    uint8_t *laddrp, in_port_t lport,
1187 			    uint8_t *faddrp, in_port_t fport,
1188 			    void *args) = NULL;
1189 void (*cl_inet_disconnect)(netstackid_t stack_id, uint8_t protocol,
1190 			    sa_family_t addr_family, uint8_t *laddrp,
1191 			    in_port_t lport, uint8_t *faddrp,
1192 			    in_port_t fport, void *args) = NULL;
1193 
1194 
1195 /*
1196  * int CL_INET_CONNECT(conn_t *cp, tcp_t *tcp, boolean_t is_outgoing, int err)
1197  */
1198 #define	CL_INET_CONNECT(connp, is_outgoing, err) {		\
1199 	(err) = 0;						\
1200 	if (cl_inet_connect2 != NULL) {				\
1201 		/*						\
1202 		 * Running in cluster mode - register active connection	\
1203 		 * information						\
1204 		 */							\
1205 		if ((connp)->conn_ipversion == IPV4_VERSION) {		\
1206 			if ((connp)->conn_laddr_v4 != 0) {		\
1207 				(err) = (*cl_inet_connect2)(		\
1208 				    (connp)->conn_netstack->netstack_stackid,\
1209 				    IPPROTO_TCP, is_outgoing, AF_INET,	\
1210 				    (uint8_t *)(&((connp)->conn_laddr_v4)),\
1211 				    (in_port_t)(connp)->conn_lport,	\
1212 				    (uint8_t *)(&((connp)->conn_faddr_v4)),\
1213 				    (in_port_t)(connp)->conn_fport, NULL); \
1214 			}						\
1215 		} else {						\
1216 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1217 			    &(connp)->conn_laddr_v6)) {			\
1218 				(err) = (*cl_inet_connect2)(		\
1219 				    (connp)->conn_netstack->netstack_stackid,\
1220 				    IPPROTO_TCP, is_outgoing, AF_INET6,	\
1221 				    (uint8_t *)(&((connp)->conn_laddr_v6)),\
1222 				    (in_port_t)(connp)->conn_lport,	\
1223 				    (uint8_t *)(&((connp)->conn_faddr_v6)), \
1224 				    (in_port_t)(connp)->conn_fport, NULL); \
1225 			}						\
1226 		}							\
1227 	}								\
1228 }
1229 
1230 #define	CL_INET_DISCONNECT(connp)	{				\
1231 	if (cl_inet_disconnect != NULL) {				\
1232 		/*							\
1233 		 * Running in cluster mode - deregister active		\
1234 		 * connection information				\
1235 		 */							\
1236 		if ((connp)->conn_ipversion == IPV4_VERSION) {		\
1237 			if ((connp)->conn_laddr_v4 != 0) {		\
1238 				(*cl_inet_disconnect)(			\
1239 				    (connp)->conn_netstack->netstack_stackid,\
1240 				    IPPROTO_TCP, AF_INET,		\
1241 				    (uint8_t *)(&((connp)->conn_laddr_v4)),\
1242 				    (in_port_t)(connp)->conn_lport,	\
1243 				    (uint8_t *)(&((connp)->conn_faddr_v4)),\
1244 				    (in_port_t)(connp)->conn_fport, NULL); \
1245 			}						\
1246 		} else {						\
1247 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1248 			    &(connp)->conn_laddr_v6)) {			\
1249 				(*cl_inet_disconnect)(			\
1250 				    (connp)->conn_netstack->netstack_stackid,\
1251 				    IPPROTO_TCP, AF_INET6,		\
1252 				    (uint8_t *)(&((connp)->conn_laddr_v6)),\
1253 				    (in_port_t)(connp)->conn_lport,	\
1254 				    (uint8_t *)(&((connp)->conn_faddr_v6)), \
1255 				    (in_port_t)(connp)->conn_fport, NULL); \
1256 			}						\
1257 		}							\
1258 	}								\
1259 }
1260 
1261 /*
1262  * Cluster networking hook for traversing current connection list.
1263  * This routine is used to extract the current list of live connections
1264  * which must continue to to be dispatched to this node.
1265  */
1266 int cl_tcp_walk_list(netstackid_t stack_id,
1267     int (*callback)(cl_tcp_info_t *, void *), void *arg);
1268 
1269 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *),
1270     void *arg, tcp_stack_t *tcps);
1271 
1272 static void
1273 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh)
1274 {
1275 	uint32_t default_threshold = SOCKET_RECVHIWATER >> 3;
1276 
1277 	if (IPCL_IS_NONSTR(tcp->tcp_connp)) {
1278 		conn_t *connp = tcp->tcp_connp;
1279 		struct sock_proto_props sopp;
1280 
1281 		/*
1282 		 * only increase rcvthresh upto default_threshold
1283 		 */
1284 		if (new_rcvthresh > default_threshold)
1285 			new_rcvthresh = default_threshold;
1286 
1287 		sopp.sopp_flags = SOCKOPT_RCVTHRESH;
1288 		sopp.sopp_rcvthresh = new_rcvthresh;
1289 
1290 		(*connp->conn_upcalls->su_set_proto_props)
1291 		    (connp->conn_upper_handle, &sopp);
1292 	}
1293 }
1294 /*
1295  * Figure out the value of window scale opton.  Note that the rwnd is
1296  * ASSUMED to be rounded up to the nearest MSS before the calculation.
1297  * We cannot find the scale value and then do a round up of tcp_rwnd
1298  * because the scale value may not be correct after that.
1299  *
1300  * Set the compiler flag to make this function inline.
1301  */
1302 static void
1303 tcp_set_ws_value(tcp_t *tcp)
1304 {
1305 	int i;
1306 	uint32_t rwnd = tcp->tcp_rwnd;
1307 
1308 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
1309 	    i++, rwnd >>= 1)
1310 		;
1311 	tcp->tcp_rcv_ws = i;
1312 }
1313 
1314 /*
1315  * Remove a connection from the list of detached TIME_WAIT connections.
1316  * It returns B_FALSE if it can't remove the connection from the list
1317  * as the connection has already been removed from the list due to an
1318  * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE.
1319  */
1320 static boolean_t
1321 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait)
1322 {
1323 	boolean_t	locked = B_FALSE;
1324 
1325 	if (tcp_time_wait == NULL) {
1326 		tcp_time_wait = *((tcp_squeue_priv_t **)
1327 		    squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP));
1328 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1329 		locked = B_TRUE;
1330 	} else {
1331 		ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock));
1332 	}
1333 
1334 	if (tcp->tcp_time_wait_expire == 0) {
1335 		ASSERT(tcp->tcp_time_wait_next == NULL);
1336 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1337 		if (locked)
1338 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1339 		return (B_FALSE);
1340 	}
1341 	ASSERT(TCP_IS_DETACHED(tcp));
1342 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1343 
1344 	if (tcp == tcp_time_wait->tcp_time_wait_head) {
1345 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1346 		tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next;
1347 		if (tcp_time_wait->tcp_time_wait_head != NULL) {
1348 			tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev =
1349 			    NULL;
1350 		} else {
1351 			tcp_time_wait->tcp_time_wait_tail = NULL;
1352 		}
1353 	} else if (tcp == tcp_time_wait->tcp_time_wait_tail) {
1354 		ASSERT(tcp != tcp_time_wait->tcp_time_wait_head);
1355 		ASSERT(tcp->tcp_time_wait_next == NULL);
1356 		tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev;
1357 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1358 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL;
1359 	} else {
1360 		ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp);
1361 		ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp);
1362 		tcp->tcp_time_wait_prev->tcp_time_wait_next =
1363 		    tcp->tcp_time_wait_next;
1364 		tcp->tcp_time_wait_next->tcp_time_wait_prev =
1365 		    tcp->tcp_time_wait_prev;
1366 	}
1367 	tcp->tcp_time_wait_next = NULL;
1368 	tcp->tcp_time_wait_prev = NULL;
1369 	tcp->tcp_time_wait_expire = 0;
1370 
1371 	if (locked)
1372 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1373 	return (B_TRUE);
1374 }
1375 
1376 /*
1377  * Add a connection to the list of detached TIME_WAIT connections
1378  * and set its time to expire.
1379  */
1380 static void
1381 tcp_time_wait_append(tcp_t *tcp)
1382 {
1383 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1384 	tcp_squeue_priv_t *tcp_time_wait =
1385 	    *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp,
1386 	    SQPRIVATE_TCP));
1387 
1388 	tcp_timers_stop(tcp);
1389 
1390 	/* Freed above */
1391 	ASSERT(tcp->tcp_timer_tid == 0);
1392 	ASSERT(tcp->tcp_ack_tid == 0);
1393 
1394 	/* must have happened at the time of detaching the tcp */
1395 	ASSERT(tcp->tcp_ptpahn == NULL);
1396 	ASSERT(tcp->tcp_flow_stopped == 0);
1397 	ASSERT(tcp->tcp_time_wait_next == NULL);
1398 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1399 	ASSERT(tcp->tcp_time_wait_expire == NULL);
1400 	ASSERT(tcp->tcp_listener == NULL);
1401 
1402 	tcp->tcp_time_wait_expire = ddi_get_lbolt();
1403 	/*
1404 	 * The value computed below in tcp->tcp_time_wait_expire may
1405 	 * appear negative or wrap around. That is ok since our
1406 	 * interest is only in the difference between the current lbolt
1407 	 * value and tcp->tcp_time_wait_expire. But the value should not
1408 	 * be zero, since it means the tcp is not in the TIME_WAIT list.
1409 	 * The corresponding comparison in tcp_time_wait_collector() uses
1410 	 * modular arithmetic.
1411 	 */
1412 	tcp->tcp_time_wait_expire +=
1413 	    drv_usectohz(tcps->tcps_time_wait_interval * 1000);
1414 	if (tcp->tcp_time_wait_expire == 0)
1415 		tcp->tcp_time_wait_expire = 1;
1416 
1417 	ASSERT(TCP_IS_DETACHED(tcp));
1418 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1419 	ASSERT(tcp->tcp_time_wait_next == NULL);
1420 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1421 	TCP_DBGSTAT(tcps, tcp_time_wait);
1422 
1423 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1424 	if (tcp_time_wait->tcp_time_wait_head == NULL) {
1425 		ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL);
1426 		tcp_time_wait->tcp_time_wait_head = tcp;
1427 	} else {
1428 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1429 		ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state ==
1430 		    TCPS_TIME_WAIT);
1431 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp;
1432 		tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail;
1433 	}
1434 	tcp_time_wait->tcp_time_wait_tail = tcp;
1435 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1436 }
1437 
1438 /* ARGSUSED */
1439 void
1440 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
1441 {
1442 	conn_t	*connp = (conn_t *)arg;
1443 	tcp_t	*tcp = connp->conn_tcp;
1444 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1445 
1446 	ASSERT(tcp != NULL);
1447 	if (tcp->tcp_state == TCPS_CLOSED) {
1448 		return;
1449 	}
1450 
1451 	ASSERT((connp->conn_family == AF_INET &&
1452 	    connp->conn_ipversion == IPV4_VERSION) ||
1453 	    (connp->conn_family == AF_INET6 &&
1454 	    (connp->conn_ipversion == IPV4_VERSION ||
1455 	    connp->conn_ipversion == IPV6_VERSION)));
1456 	ASSERT(!tcp->tcp_listener);
1457 
1458 	TCP_STAT(tcps, tcp_time_wait_reap);
1459 	ASSERT(TCP_IS_DETACHED(tcp));
1460 
1461 	/*
1462 	 * Because they have no upstream client to rebind or tcp_close()
1463 	 * them later, we axe the connection here and now.
1464 	 */
1465 	tcp_close_detached(tcp);
1466 }
1467 
1468 /*
1469  * Remove cached/latched IPsec references.
1470  */
1471 void
1472 tcp_ipsec_cleanup(tcp_t *tcp)
1473 {
1474 	conn_t		*connp = tcp->tcp_connp;
1475 
1476 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1477 
1478 	if (connp->conn_latch != NULL) {
1479 		IPLATCH_REFRELE(connp->conn_latch);
1480 		connp->conn_latch = NULL;
1481 	}
1482 	if (connp->conn_latch_in_policy != NULL) {
1483 		IPPOL_REFRELE(connp->conn_latch_in_policy);
1484 		connp->conn_latch_in_policy = NULL;
1485 	}
1486 	if (connp->conn_latch_in_action != NULL) {
1487 		IPACT_REFRELE(connp->conn_latch_in_action);
1488 		connp->conn_latch_in_action = NULL;
1489 	}
1490 	if (connp->conn_policy != NULL) {
1491 		IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
1492 		connp->conn_policy = NULL;
1493 	}
1494 }
1495 
1496 /*
1497  * Cleaup before placing on free list.
1498  * Disassociate from the netstack/tcp_stack_t since the freelist
1499  * is per squeue and not per netstack.
1500  */
1501 void
1502 tcp_cleanup(tcp_t *tcp)
1503 {
1504 	mblk_t		*mp;
1505 	tcp_sack_info_t	*tcp_sack_info;
1506 	conn_t		*connp = tcp->tcp_connp;
1507 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1508 	netstack_t	*ns = tcps->tcps_netstack;
1509 	mblk_t		*tcp_rsrv_mp;
1510 
1511 	tcp_bind_hash_remove(tcp);
1512 
1513 	/* Cleanup that which needs the netstack first */
1514 	tcp_ipsec_cleanup(tcp);
1515 	ixa_cleanup(connp->conn_ixa);
1516 
1517 	if (connp->conn_ht_iphc != NULL) {
1518 		kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated);
1519 		connp->conn_ht_iphc = NULL;
1520 		connp->conn_ht_iphc_allocated = 0;
1521 		connp->conn_ht_iphc_len = 0;
1522 		connp->conn_ht_ulp = NULL;
1523 		connp->conn_ht_ulp_len = 0;
1524 		tcp->tcp_ipha = NULL;
1525 		tcp->tcp_ip6h = NULL;
1526 		tcp->tcp_tcpha = NULL;
1527 	}
1528 
1529 	/* We clear any IP_OPTIONS and extension headers */
1530 	ip_pkt_free(&connp->conn_xmit_ipp);
1531 
1532 	tcp_free(tcp);
1533 
1534 	/* Release any SSL context */
1535 	if (tcp->tcp_kssl_ent != NULL) {
1536 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
1537 		tcp->tcp_kssl_ent = NULL;
1538 	}
1539 
1540 	if (tcp->tcp_kssl_ctx != NULL) {
1541 		kssl_release_ctx(tcp->tcp_kssl_ctx);
1542 		tcp->tcp_kssl_ctx = NULL;
1543 	}
1544 	tcp->tcp_kssl_pending = B_FALSE;
1545 
1546 	/*
1547 	 * Since we will bzero the entire structure, we need to
1548 	 * remove it and reinsert it in global hash list. We
1549 	 * know the walkers can't get to this conn because we
1550 	 * had set CONDEMNED flag earlier and checked reference
1551 	 * under conn_lock so walker won't pick it and when we
1552 	 * go the ipcl_globalhash_remove() below, no walker
1553 	 * can get to it.
1554 	 */
1555 	ipcl_globalhash_remove(connp);
1556 
1557 	/* Save some state */
1558 	mp = tcp->tcp_timercache;
1559 
1560 	tcp_sack_info = tcp->tcp_sack_info;
1561 	tcp_rsrv_mp = tcp->tcp_rsrv_mp;
1562 
1563 	if (connp->conn_cred != NULL) {
1564 		crfree(connp->conn_cred);
1565 		connp->conn_cred = NULL;
1566 	}
1567 	ipcl_conn_cleanup(connp);
1568 	connp->conn_flags = IPCL_TCPCONN;
1569 
1570 	/*
1571 	 * Now it is safe to decrement the reference counts.
1572 	 * This might be the last reference on the netstack
1573 	 * in which case it will cause the freeing of the IP Instance.
1574 	 */
1575 	connp->conn_netstack = NULL;
1576 	connp->conn_ixa->ixa_ipst = NULL;
1577 	netstack_rele(ns);
1578 	ASSERT(tcps != NULL);
1579 	tcp->tcp_tcps = NULL;
1580 
1581 	bzero(tcp, sizeof (tcp_t));
1582 
1583 	/* restore the state */
1584 	tcp->tcp_timercache = mp;
1585 
1586 	tcp->tcp_sack_info = tcp_sack_info;
1587 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
1588 
1589 	tcp->tcp_connp = connp;
1590 
1591 	ASSERT(connp->conn_tcp == tcp);
1592 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1593 	connp->conn_state_flags = CONN_INCIPIENT;
1594 	ASSERT(connp->conn_proto == IPPROTO_TCP);
1595 	ASSERT(connp->conn_ref == 1);
1596 }
1597 
1598 /*
1599  * Blows away all tcps whose TIME_WAIT has expired. List traversal
1600  * is done forwards from the head.
1601  * This walks all stack instances since
1602  * tcp_time_wait remains global across all stacks.
1603  */
1604 /* ARGSUSED */
1605 void
1606 tcp_time_wait_collector(void *arg)
1607 {
1608 	tcp_t *tcp;
1609 	clock_t now;
1610 	mblk_t *mp;
1611 	conn_t *connp;
1612 	kmutex_t *lock;
1613 	boolean_t removed;
1614 
1615 	squeue_t *sqp = (squeue_t *)arg;
1616 	tcp_squeue_priv_t *tcp_time_wait =
1617 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1618 
1619 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1620 	tcp_time_wait->tcp_time_wait_tid = 0;
1621 
1622 	if (tcp_time_wait->tcp_free_list != NULL &&
1623 	    tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) {
1624 		TCP_G_STAT(tcp_freelist_cleanup);
1625 		while ((tcp = tcp_time_wait->tcp_free_list) != NULL) {
1626 			tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1627 			tcp->tcp_time_wait_next = NULL;
1628 			tcp_time_wait->tcp_free_list_cnt--;
1629 			ASSERT(tcp->tcp_tcps == NULL);
1630 			CONN_DEC_REF(tcp->tcp_connp);
1631 		}
1632 		ASSERT(tcp_time_wait->tcp_free_list_cnt == 0);
1633 	}
1634 
1635 	/*
1636 	 * In order to reap time waits reliably, we should use a
1637 	 * source of time that is not adjustable by the user -- hence
1638 	 * the call to ddi_get_lbolt().
1639 	 */
1640 	now = ddi_get_lbolt();
1641 	while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) {
1642 		/*
1643 		 * Compare times using modular arithmetic, since
1644 		 * lbolt can wrapover.
1645 		 */
1646 		if ((now - tcp->tcp_time_wait_expire) < 0) {
1647 			break;
1648 		}
1649 
1650 		removed = tcp_time_wait_remove(tcp, tcp_time_wait);
1651 		ASSERT(removed);
1652 
1653 		connp = tcp->tcp_connp;
1654 		ASSERT(connp->conn_fanout != NULL);
1655 		lock = &connp->conn_fanout->connf_lock;
1656 		/*
1657 		 * This is essentially a TW reclaim fast path optimization for
1658 		 * performance where the timewait collector checks under the
1659 		 * fanout lock (so that no one else can get access to the
1660 		 * conn_t) that the refcnt is 2 i.e. one for TCP and one for
1661 		 * the classifier hash list. If ref count is indeed 2, we can
1662 		 * just remove the conn under the fanout lock and avoid
1663 		 * cleaning up the conn under the squeue, provided that
1664 		 * clustering callbacks are not enabled. If clustering is
1665 		 * enabled, we need to make the clustering callback before
1666 		 * setting the CONDEMNED flag and after dropping all locks and
1667 		 * so we forego this optimization and fall back to the slow
1668 		 * path. Also please see the comments in tcp_closei_local
1669 		 * regarding the refcnt logic.
1670 		 *
1671 		 * Since we are holding the tcp_time_wait_lock, its better
1672 		 * not to block on the fanout_lock because other connections
1673 		 * can't add themselves to time_wait list. So we do a
1674 		 * tryenter instead of mutex_enter.
1675 		 */
1676 		if (mutex_tryenter(lock)) {
1677 			mutex_enter(&connp->conn_lock);
1678 			if ((connp->conn_ref == 2) &&
1679 			    (cl_inet_disconnect == NULL)) {
1680 				ipcl_hash_remove_locked(connp,
1681 				    connp->conn_fanout);
1682 				/*
1683 				 * Set the CONDEMNED flag now itself so that
1684 				 * the refcnt cannot increase due to any
1685 				 * walker.
1686 				 */
1687 				connp->conn_state_flags |= CONN_CONDEMNED;
1688 				mutex_exit(lock);
1689 				mutex_exit(&connp->conn_lock);
1690 				if (tcp_time_wait->tcp_free_list_cnt <
1691 				    tcp_free_list_max_cnt) {
1692 					/* Add to head of tcp_free_list */
1693 					mutex_exit(
1694 					    &tcp_time_wait->tcp_time_wait_lock);
1695 					tcp_cleanup(tcp);
1696 					ASSERT(connp->conn_latch == NULL);
1697 					ASSERT(connp->conn_policy == NULL);
1698 					ASSERT(tcp->tcp_tcps == NULL);
1699 					ASSERT(connp->conn_netstack == NULL);
1700 
1701 					mutex_enter(
1702 					    &tcp_time_wait->tcp_time_wait_lock);
1703 					tcp->tcp_time_wait_next =
1704 					    tcp_time_wait->tcp_free_list;
1705 					tcp_time_wait->tcp_free_list = tcp;
1706 					tcp_time_wait->tcp_free_list_cnt++;
1707 					continue;
1708 				} else {
1709 					/* Do not add to tcp_free_list */
1710 					mutex_exit(
1711 					    &tcp_time_wait->tcp_time_wait_lock);
1712 					tcp_bind_hash_remove(tcp);
1713 					ixa_cleanup(tcp->tcp_connp->conn_ixa);
1714 					tcp_ipsec_cleanup(tcp);
1715 					CONN_DEC_REF(tcp->tcp_connp);
1716 				}
1717 			} else {
1718 				CONN_INC_REF_LOCKED(connp);
1719 				mutex_exit(lock);
1720 				mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1721 				mutex_exit(&connp->conn_lock);
1722 				/*
1723 				 * We can reuse the closemp here since conn has
1724 				 * detached (otherwise we wouldn't even be in
1725 				 * time_wait list). tcp_closemp_used can safely
1726 				 * be changed without taking a lock as no other
1727 				 * thread can concurrently access it at this
1728 				 * point in the connection lifecycle.
1729 				 */
1730 
1731 				if (tcp->tcp_closemp.b_prev == NULL)
1732 					tcp->tcp_closemp_used = B_TRUE;
1733 				else
1734 					cmn_err(CE_PANIC,
1735 					    "tcp_timewait_collector: "
1736 					    "concurrent use of tcp_closemp: "
1737 					    "connp %p tcp %p\n", (void *)connp,
1738 					    (void *)tcp);
1739 
1740 				TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1741 				mp = &tcp->tcp_closemp;
1742 				SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
1743 				    tcp_timewait_output, connp, NULL,
1744 				    SQ_FILL, SQTAG_TCP_TIMEWAIT);
1745 			}
1746 		} else {
1747 			mutex_enter(&connp->conn_lock);
1748 			CONN_INC_REF_LOCKED(connp);
1749 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1750 			mutex_exit(&connp->conn_lock);
1751 			/*
1752 			 * We can reuse the closemp here since conn has
1753 			 * detached (otherwise we wouldn't even be in
1754 			 * time_wait list). tcp_closemp_used can safely
1755 			 * be changed without taking a lock as no other
1756 			 * thread can concurrently access it at this
1757 			 * point in the connection lifecycle.
1758 			 */
1759 
1760 			if (tcp->tcp_closemp.b_prev == NULL)
1761 				tcp->tcp_closemp_used = B_TRUE;
1762 			else
1763 				cmn_err(CE_PANIC, "tcp_timewait_collector: "
1764 				    "concurrent use of tcp_closemp: "
1765 				    "connp %p tcp %p\n", (void *)connp,
1766 				    (void *)tcp);
1767 
1768 			TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1769 			mp = &tcp->tcp_closemp;
1770 			SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
1771 			    tcp_timewait_output, connp, NULL,
1772 			    SQ_FILL, SQTAG_TCP_TIMEWAIT);
1773 		}
1774 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1775 	}
1776 
1777 	if (tcp_time_wait->tcp_free_list != NULL)
1778 		tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE;
1779 
1780 	tcp_time_wait->tcp_time_wait_tid =
1781 	    timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp,
1782 	    TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION,
1783 	    CALLOUT_FLAG_ROUNDUP);
1784 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1785 }
1786 
1787 /*
1788  * Reply to a clients T_CONN_RES TPI message. This function
1789  * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES
1790  * on the acceptor STREAM and processed in tcp_accept_common().
1791  * Read the block comment on top of tcp_input_listener().
1792  */
1793 static void
1794 tcp_tli_accept(tcp_t *listener, mblk_t *mp)
1795 {
1796 	tcp_t		*acceptor;
1797 	tcp_t		*eager;
1798 	tcp_t   	*tcp;
1799 	struct T_conn_res	*tcr;
1800 	t_uscalar_t	acceptor_id;
1801 	t_scalar_t	seqnum;
1802 	mblk_t		*discon_mp = NULL;
1803 	mblk_t		*ok_mp;
1804 	mblk_t		*mp1;
1805 	tcp_stack_t	*tcps = listener->tcp_tcps;
1806 	conn_t		*econnp;
1807 
1808 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
1809 		tcp_err_ack(listener, mp, TPROTO, 0);
1810 		return;
1811 	}
1812 	tcr = (struct T_conn_res *)mp->b_rptr;
1813 
1814 	/*
1815 	 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the
1816 	 * read side queue of the streams device underneath us i.e. the
1817 	 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we
1818 	 * look it up in the queue_hash.  Under LP64 it sends down the
1819 	 * minor_t of the accepting endpoint.
1820 	 *
1821 	 * Once the acceptor/eager are modified (in tcp_accept_swap) the
1822 	 * fanout hash lock is held.
1823 	 * This prevents any thread from entering the acceptor queue from
1824 	 * below (since it has not been hard bound yet i.e. any inbound
1825 	 * packets will arrive on the listener conn_t and
1826 	 * go through the classifier).
1827 	 * The CONN_INC_REF will prevent the acceptor from closing.
1828 	 *
1829 	 * XXX It is still possible for a tli application to send down data
1830 	 * on the accepting stream while another thread calls t_accept.
1831 	 * This should not be a problem for well-behaved applications since
1832 	 * the T_OK_ACK is sent after the queue swapping is completed.
1833 	 *
1834 	 * If the accepting fd is the same as the listening fd, avoid
1835 	 * queue hash lookup since that will return an eager listener in a
1836 	 * already established state.
1837 	 */
1838 	acceptor_id = tcr->ACCEPTOR_id;
1839 	mutex_enter(&listener->tcp_eager_lock);
1840 	if (listener->tcp_acceptor_id == acceptor_id) {
1841 		eager = listener->tcp_eager_next_q;
1842 		/* only count how many T_CONN_INDs so don't count q0 */
1843 		if ((listener->tcp_conn_req_cnt_q != 1) ||
1844 		    (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) {
1845 			mutex_exit(&listener->tcp_eager_lock);
1846 			tcp_err_ack(listener, mp, TBADF, 0);
1847 			return;
1848 		}
1849 		if (listener->tcp_conn_req_cnt_q0 != 0) {
1850 			/* Throw away all the eagers on q0. */
1851 			tcp_eager_cleanup(listener, 1);
1852 		}
1853 		if (listener->tcp_syn_defense) {
1854 			listener->tcp_syn_defense = B_FALSE;
1855 			if (listener->tcp_ip_addr_cache != NULL) {
1856 				kmem_free(listener->tcp_ip_addr_cache,
1857 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
1858 				listener->tcp_ip_addr_cache = NULL;
1859 			}
1860 		}
1861 		/*
1862 		 * Transfer tcp_conn_req_max to the eager so that when
1863 		 * a disconnect occurs we can revert the endpoint to the
1864 		 * listen state.
1865 		 */
1866 		eager->tcp_conn_req_max = listener->tcp_conn_req_max;
1867 		ASSERT(listener->tcp_conn_req_cnt_q0 == 0);
1868 		/*
1869 		 * Get a reference on the acceptor just like the
1870 		 * tcp_acceptor_hash_lookup below.
1871 		 */
1872 		acceptor = listener;
1873 		CONN_INC_REF(acceptor->tcp_connp);
1874 	} else {
1875 		acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps);
1876 		if (acceptor == NULL) {
1877 			if (listener->tcp_connp->conn_debug) {
1878 				(void) strlog(TCP_MOD_ID, 0, 1,
1879 				    SL_ERROR|SL_TRACE,
1880 				    "tcp_accept: did not find acceptor 0x%x\n",
1881 				    acceptor_id);
1882 			}
1883 			mutex_exit(&listener->tcp_eager_lock);
1884 			tcp_err_ack(listener, mp, TPROVMISMATCH, 0);
1885 			return;
1886 		}
1887 		/*
1888 		 * Verify acceptor state. The acceptable states for an acceptor
1889 		 * include TCPS_IDLE and TCPS_BOUND.
1890 		 */
1891 		switch (acceptor->tcp_state) {
1892 		case TCPS_IDLE:
1893 			/* FALLTHRU */
1894 		case TCPS_BOUND:
1895 			break;
1896 		default:
1897 			CONN_DEC_REF(acceptor->tcp_connp);
1898 			mutex_exit(&listener->tcp_eager_lock);
1899 			tcp_err_ack(listener, mp, TOUTSTATE, 0);
1900 			return;
1901 		}
1902 	}
1903 
1904 	/* The listener must be in TCPS_LISTEN */
1905 	if (listener->tcp_state != TCPS_LISTEN) {
1906 		CONN_DEC_REF(acceptor->tcp_connp);
1907 		mutex_exit(&listener->tcp_eager_lock);
1908 		tcp_err_ack(listener, mp, TOUTSTATE, 0);
1909 		return;
1910 	}
1911 
1912 	/*
1913 	 * Rendezvous with an eager connection request packet hanging off
1914 	 * 'tcp' that has the 'seqnum' tag.  We tagged the detached open
1915 	 * tcp structure when the connection packet arrived in
1916 	 * tcp_input_listener().
1917 	 */
1918 	seqnum = tcr->SEQ_number;
1919 	eager = listener;
1920 	do {
1921 		eager = eager->tcp_eager_next_q;
1922 		if (eager == NULL) {
1923 			CONN_DEC_REF(acceptor->tcp_connp);
1924 			mutex_exit(&listener->tcp_eager_lock);
1925 			tcp_err_ack(listener, mp, TBADSEQ, 0);
1926 			return;
1927 		}
1928 	} while (eager->tcp_conn_req_seqnum != seqnum);
1929 	mutex_exit(&listener->tcp_eager_lock);
1930 
1931 	/*
1932 	 * At this point, both acceptor and listener have 2 ref
1933 	 * that they begin with. Acceptor has one additional ref
1934 	 * we placed in lookup while listener has 3 additional
1935 	 * ref for being behind the squeue (tcp_accept() is
1936 	 * done on listener's squeue); being in classifier hash;
1937 	 * and eager's ref on listener.
1938 	 */
1939 	ASSERT(listener->tcp_connp->conn_ref >= 5);
1940 	ASSERT(acceptor->tcp_connp->conn_ref >= 3);
1941 
1942 	/*
1943 	 * The eager at this point is set in its own squeue and
1944 	 * could easily have been killed (tcp_accept_finish will
1945 	 * deal with that) because of a TH_RST so we can only
1946 	 * ASSERT for a single ref.
1947 	 */
1948 	ASSERT(eager->tcp_connp->conn_ref >= 1);
1949 
1950 	/*
1951 	 * Pre allocate the discon_ind mblk also. tcp_accept_finish will
1952 	 * use it if something failed.
1953 	 */
1954 	discon_mp = allocb(MAX(sizeof (struct T_discon_ind),
1955 	    sizeof (struct stroptions)), BPRI_HI);
1956 	if (discon_mp == NULL) {
1957 		CONN_DEC_REF(acceptor->tcp_connp);
1958 		CONN_DEC_REF(eager->tcp_connp);
1959 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
1960 		return;
1961 	}
1962 
1963 	econnp = eager->tcp_connp;
1964 
1965 	/* Hold a copy of mp, in case reallocb fails */
1966 	if ((mp1 = copymsg(mp)) == NULL) {
1967 		CONN_DEC_REF(acceptor->tcp_connp);
1968 		CONN_DEC_REF(eager->tcp_connp);
1969 		freemsg(discon_mp);
1970 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
1971 		return;
1972 	}
1973 
1974 	tcr = (struct T_conn_res *)mp1->b_rptr;
1975 
1976 	/*
1977 	 * This is an expanded version of mi_tpi_ok_ack_alloc()
1978 	 * which allocates a larger mblk and appends the new
1979 	 * local address to the ok_ack.  The address is copied by
1980 	 * soaccept() for getsockname().
1981 	 */
1982 	{
1983 		int extra;
1984 
1985 		extra = (econnp->conn_family == AF_INET) ?
1986 		    sizeof (sin_t) : sizeof (sin6_t);
1987 
1988 		/*
1989 		 * Try to re-use mp, if possible.  Otherwise, allocate
1990 		 * an mblk and return it as ok_mp.  In any case, mp
1991 		 * is no longer usable upon return.
1992 		 */
1993 		if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) {
1994 			CONN_DEC_REF(acceptor->tcp_connp);
1995 			CONN_DEC_REF(eager->tcp_connp);
1996 			freemsg(discon_mp);
1997 			/* Original mp has been freed by now, so use mp1 */
1998 			tcp_err_ack(listener, mp1, TSYSERR, ENOMEM);
1999 			return;
2000 		}
2001 
2002 		mp = NULL;	/* We should never use mp after this point */
2003 
2004 		switch (extra) {
2005 		case sizeof (sin_t): {
2006 			sin_t *sin = (sin_t *)ok_mp->b_wptr;
2007 
2008 			ok_mp->b_wptr += extra;
2009 			sin->sin_family = AF_INET;
2010 			sin->sin_port = econnp->conn_lport;
2011 			sin->sin_addr.s_addr = econnp->conn_laddr_v4;
2012 			break;
2013 		}
2014 		case sizeof (sin6_t): {
2015 			sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr;
2016 
2017 			ok_mp->b_wptr += extra;
2018 			sin6->sin6_family = AF_INET6;
2019 			sin6->sin6_port = econnp->conn_lport;
2020 			sin6->sin6_addr = econnp->conn_laddr_v6;
2021 			sin6->sin6_flowinfo = econnp->conn_flowinfo;
2022 			if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6) &&
2023 			    (econnp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)) {
2024 				sin6->sin6_scope_id =
2025 				    econnp->conn_ixa->ixa_scopeid;
2026 			} else {
2027 				sin6->sin6_scope_id = 0;
2028 			}
2029 			sin6->__sin6_src_id = 0;
2030 			break;
2031 		}
2032 		default:
2033 			break;
2034 		}
2035 		ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim);
2036 	}
2037 
2038 	/*
2039 	 * If there are no options we know that the T_CONN_RES will
2040 	 * succeed. However, we can't send the T_OK_ACK upstream until
2041 	 * the tcp_accept_swap is done since it would be dangerous to
2042 	 * let the application start using the new fd prior to the swap.
2043 	 */
2044 	tcp_accept_swap(listener, acceptor, eager);
2045 
2046 	/*
2047 	 * tcp_accept_swap unlinks eager from listener but does not drop
2048 	 * the eager's reference on the listener.
2049 	 */
2050 	ASSERT(eager->tcp_listener == NULL);
2051 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2052 
2053 	/*
2054 	 * The eager is now associated with its own queue. Insert in
2055 	 * the hash so that the connection can be reused for a future
2056 	 * T_CONN_RES.
2057 	 */
2058 	tcp_acceptor_hash_insert(acceptor_id, eager);
2059 
2060 	/*
2061 	 * We now do the processing of options with T_CONN_RES.
2062 	 * We delay till now since we wanted to have queue to pass to
2063 	 * option processing routines that points back to the right
2064 	 * instance structure which does not happen until after
2065 	 * tcp_accept_swap().
2066 	 *
2067 	 * Note:
2068 	 * The sanity of the logic here assumes that whatever options
2069 	 * are appropriate to inherit from listner=>eager are done
2070 	 * before this point, and whatever were to be overridden (or not)
2071 	 * in transfer logic from eager=>acceptor in tcp_accept_swap().
2072 	 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it
2073 	 *   before its ACCEPTOR_id comes down in T_CONN_RES ]
2074 	 * This may not be true at this point in time but can be fixed
2075 	 * independently. This option processing code starts with
2076 	 * the instantiated acceptor instance and the final queue at
2077 	 * this point.
2078 	 */
2079 
2080 	if (tcr->OPT_length != 0) {
2081 		/* Options to process */
2082 		int t_error = 0;
2083 		int sys_error = 0;
2084 		int do_disconnect = 0;
2085 
2086 		if (tcp_conprim_opt_process(eager, mp1,
2087 		    &do_disconnect, &t_error, &sys_error) < 0) {
2088 			eager->tcp_accept_error = 1;
2089 			if (do_disconnect) {
2090 				/*
2091 				 * An option failed which does not allow
2092 				 * connection to be accepted.
2093 				 *
2094 				 * We allow T_CONN_RES to succeed and
2095 				 * put a T_DISCON_IND on the eager queue.
2096 				 */
2097 				ASSERT(t_error == 0 && sys_error == 0);
2098 				eager->tcp_send_discon_ind = 1;
2099 			} else {
2100 				ASSERT(t_error != 0);
2101 				freemsg(ok_mp);
2102 				/*
2103 				 * Original mp was either freed or set
2104 				 * to ok_mp above, so use mp1 instead.
2105 				 */
2106 				tcp_err_ack(listener, mp1, t_error, sys_error);
2107 				goto finish;
2108 			}
2109 		}
2110 		/*
2111 		 * Most likely success in setting options (except if
2112 		 * eager->tcp_send_discon_ind set).
2113 		 * mp1 option buffer represented by OPT_length/offset
2114 		 * potentially modified and contains results of setting
2115 		 * options at this point
2116 		 */
2117 	}
2118 
2119 	/* We no longer need mp1, since all options processing has passed */
2120 	freemsg(mp1);
2121 
2122 	putnext(listener->tcp_connp->conn_rq, ok_mp);
2123 
2124 	mutex_enter(&listener->tcp_eager_lock);
2125 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
2126 		tcp_t	*tail;
2127 		mblk_t	*conn_ind;
2128 
2129 		/*
2130 		 * This path should not be executed if listener and
2131 		 * acceptor streams are the same.
2132 		 */
2133 		ASSERT(listener != acceptor);
2134 
2135 		tcp = listener->tcp_eager_prev_q0;
2136 		/*
2137 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
2138 		 * deferred T_conn_ind queue. We need to get to the head of
2139 		 * the queue in order to send up T_conn_ind the same order as
2140 		 * how the 3WHS is completed.
2141 		 */
2142 		while (tcp != listener) {
2143 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0)
2144 				break;
2145 			else
2146 				tcp = tcp->tcp_eager_prev_q0;
2147 		}
2148 		ASSERT(tcp != listener);
2149 		conn_ind = tcp->tcp_conn.tcp_eager_conn_ind;
2150 		ASSERT(conn_ind != NULL);
2151 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
2152 
2153 		/* Move from q0 to q */
2154 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
2155 		listener->tcp_conn_req_cnt_q0--;
2156 		listener->tcp_conn_req_cnt_q++;
2157 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
2158 		    tcp->tcp_eager_prev_q0;
2159 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
2160 		    tcp->tcp_eager_next_q0;
2161 		tcp->tcp_eager_prev_q0 = NULL;
2162 		tcp->tcp_eager_next_q0 = NULL;
2163 		tcp->tcp_conn_def_q0 = B_FALSE;
2164 
2165 		/* Make sure the tcp isn't in the list of droppables */
2166 		ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
2167 		    tcp->tcp_eager_prev_drop_q0 == NULL);
2168 
2169 		/*
2170 		 * Insert at end of the queue because sockfs sends
2171 		 * down T_CONN_RES in chronological order. Leaving
2172 		 * the older conn indications at front of the queue
2173 		 * helps reducing search time.
2174 		 */
2175 		tail = listener->tcp_eager_last_q;
2176 		if (tail != NULL)
2177 			tail->tcp_eager_next_q = tcp;
2178 		else
2179 			listener->tcp_eager_next_q = tcp;
2180 		listener->tcp_eager_last_q = tcp;
2181 		tcp->tcp_eager_next_q = NULL;
2182 		mutex_exit(&listener->tcp_eager_lock);
2183 		putnext(tcp->tcp_connp->conn_rq, conn_ind);
2184 	} else {
2185 		mutex_exit(&listener->tcp_eager_lock);
2186 	}
2187 
2188 	/*
2189 	 * Done with the acceptor - free it
2190 	 *
2191 	 * Note: from this point on, no access to listener should be made
2192 	 * as listener can be equal to acceptor.
2193 	 */
2194 finish:
2195 	ASSERT(acceptor->tcp_detached);
2196 	acceptor->tcp_connp->conn_rq = NULL;
2197 	ASSERT(!IPCL_IS_NONSTR(acceptor->tcp_connp));
2198 	acceptor->tcp_connp->conn_wq = NULL;
2199 	(void) tcp_clean_death(acceptor, 0, 2);
2200 	CONN_DEC_REF(acceptor->tcp_connp);
2201 
2202 	/*
2203 	 * We pass discon_mp to tcp_accept_finish to get on the right squeue.
2204 	 *
2205 	 * It will update the setting for sockfs/stream head and also take
2206 	 * care of any data that arrived before accept() wad called.
2207 	 * In case we already received a FIN then tcp_accept_finish will send up
2208 	 * the ordrel. It will also send up a window update if the window
2209 	 * has opened up.
2210 	 */
2211 
2212 	/*
2213 	 * XXX: we currently have a problem if XTI application closes the
2214 	 * acceptor stream in between. This problem exists in on10-gate also
2215 	 * and is well know but nothing can be done short of major rewrite
2216 	 * to fix it. Now it is possible to take care of it by assigning TLI/XTI
2217 	 * eager same squeue as listener (we can distinguish non socket
2218 	 * listeners at the time of handling a SYN in tcp_input_listener)
2219 	 * and do most of the work that tcp_accept_finish does here itself
2220 	 * and then get behind the acceptor squeue to access the acceptor
2221 	 * queue.
2222 	 */
2223 	/*
2224 	 * We already have a ref on tcp so no need to do one before squeue_enter
2225 	 */
2226 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, discon_mp,
2227 	    tcp_accept_finish, eager->tcp_connp, NULL, SQ_FILL,
2228 	    SQTAG_TCP_ACCEPT_FINISH);
2229 }
2230 
2231 /*
2232  * Swap information between the eager and acceptor for a TLI/XTI client.
2233  * The sockfs accept is done on the acceptor stream and control goes
2234  * through tcp_tli_accept() and tcp_accept()/tcp_accept_swap() is not
2235  * called. In either case, both the eager and listener are in their own
2236  * perimeter (squeue) and the code has to deal with potential race.
2237  *
2238  * See the block comment on top of tcp_accept() and tcp_tli_accept().
2239  */
2240 static void
2241 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager)
2242 {
2243 	conn_t	*econnp, *aconnp;
2244 
2245 	ASSERT(eager->tcp_connp->conn_rq == listener->tcp_connp->conn_rq);
2246 	ASSERT(eager->tcp_detached && !acceptor->tcp_detached);
2247 	ASSERT(!TCP_IS_SOCKET(acceptor));
2248 	ASSERT(!TCP_IS_SOCKET(eager));
2249 	ASSERT(!TCP_IS_SOCKET(listener));
2250 
2251 	/*
2252 	 * Trusted Extensions may need to use a security label that is
2253 	 * different from the acceptor's label on MLP and MAC-Exempt
2254 	 * sockets. If this is the case, the required security label
2255 	 * already exists in econnp->conn_ixa->ixa_tsl. Since we make the
2256 	 * acceptor stream refer to econnp we atomatically get that label.
2257 	 */
2258 
2259 	acceptor->tcp_detached = B_TRUE;
2260 	/*
2261 	 * To permit stream re-use by TLI/XTI, the eager needs a copy of
2262 	 * the acceptor id.
2263 	 */
2264 	eager->tcp_acceptor_id = acceptor->tcp_acceptor_id;
2265 
2266 	/* remove eager from listen list... */
2267 	mutex_enter(&listener->tcp_eager_lock);
2268 	tcp_eager_unlink(eager);
2269 	ASSERT(eager->tcp_eager_next_q == NULL &&
2270 	    eager->tcp_eager_last_q == NULL);
2271 	ASSERT(eager->tcp_eager_next_q0 == NULL &&
2272 	    eager->tcp_eager_prev_q0 == NULL);
2273 	mutex_exit(&listener->tcp_eager_lock);
2274 
2275 	econnp = eager->tcp_connp;
2276 	aconnp = acceptor->tcp_connp;
2277 	econnp->conn_rq = aconnp->conn_rq;
2278 	econnp->conn_wq = aconnp->conn_wq;
2279 	econnp->conn_rq->q_ptr = econnp;
2280 	econnp->conn_wq->q_ptr = econnp;
2281 
2282 	/*
2283 	 * In the TLI/XTI loopback case, we are inside the listener's squeue,
2284 	 * which might be a different squeue from our peer TCP instance.
2285 	 * For TCP Fusion, the peer expects that whenever tcp_detached is
2286 	 * clear, our TCP queues point to the acceptor's queues.  Thus, use
2287 	 * membar_producer() to ensure that the assignments of conn_rq/conn_wq
2288 	 * above reach global visibility prior to the clearing of tcp_detached.
2289 	 */
2290 	membar_producer();
2291 	eager->tcp_detached = B_FALSE;
2292 
2293 	ASSERT(eager->tcp_ack_tid == 0);
2294 
2295 	econnp->conn_dev = aconnp->conn_dev;
2296 	econnp->conn_minor_arena = aconnp->conn_minor_arena;
2297 
2298 	ASSERT(econnp->conn_minor_arena != NULL);
2299 	if (econnp->conn_cred != NULL)
2300 		crfree(econnp->conn_cred);
2301 	econnp->conn_cred = aconnp->conn_cred;
2302 	aconnp->conn_cred = NULL;
2303 	econnp->conn_cpid = aconnp->conn_cpid;
2304 	ASSERT(econnp->conn_netstack == aconnp->conn_netstack);
2305 	ASSERT(eager->tcp_tcps == acceptor->tcp_tcps);
2306 
2307 	econnp->conn_zoneid = aconnp->conn_zoneid;
2308 	econnp->conn_allzones = aconnp->conn_allzones;
2309 	econnp->conn_ixa->ixa_zoneid = aconnp->conn_ixa->ixa_zoneid;
2310 
2311 	econnp->conn_mac_mode = aconnp->conn_mac_mode;
2312 	econnp->conn_zone_is_global = aconnp->conn_zone_is_global;
2313 	aconnp->conn_mac_mode = CONN_MAC_DEFAULT;
2314 
2315 	/* Do the IPC initialization */
2316 	CONN_INC_REF(econnp);
2317 
2318 	econnp->conn_family = aconnp->conn_family;
2319 	econnp->conn_ipversion = aconnp->conn_ipversion;
2320 
2321 	/* Done with old IPC. Drop its ref on its connp */
2322 	CONN_DEC_REF(aconnp);
2323 }
2324 
2325 
2326 /*
2327  * Adapt to the information, such as rtt and rtt_sd, provided from the
2328  * DCE and IRE maintained by IP.
2329  *
2330  * Checks for multicast and broadcast destination address.
2331  * Returns zero if ok; an errno on failure.
2332  *
2333  * Note that the MSS calculation here is based on the info given in
2334  * the DCE and IRE.  We do not do any calculation based on TCP options.  They
2335  * will be handled in tcp_input_data() when TCP knows which options to use.
2336  *
2337  * Note on how TCP gets its parameters for a connection.
2338  *
2339  * When a tcp_t structure is allocated, it gets all the default parameters.
2340  * In tcp_set_destination(), it gets those metric parameters, like rtt, rtt_sd,
2341  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
2342  * default.
2343  *
2344  * An incoming SYN with a multicast or broadcast destination address is dropped
2345  * in ip_fanout_v4/v6.
2346  *
2347  * An incoming SYN with a multicast or broadcast source address is always
2348  * dropped in tcp_set_destination, since IPDF_ALLOW_MCBC is not set in
2349  * conn_connect.
2350  * The same logic in tcp_set_destination also serves to
2351  * reject an attempt to connect to a broadcast or multicast (destination)
2352  * address.
2353  */
2354 static int
2355 tcp_set_destination(tcp_t *tcp)
2356 {
2357 	uint32_t	mss_max;
2358 	uint32_t	mss;
2359 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2360 	conn_t		*connp = tcp->tcp_connp;
2361 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2362 	iulp_t		uinfo;
2363 	int		error;
2364 	uint32_t	flags;
2365 
2366 	flags = IPDF_LSO | IPDF_ZCOPY;
2367 	/*
2368 	 * Make sure we have a dce for the destination to avoid dce_ident
2369 	 * contention for connected sockets.
2370 	 */
2371 	flags |= IPDF_UNIQUE_DCE;
2372 
2373 	if (!tcps->tcps_ignore_path_mtu)
2374 		connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY;
2375 
2376 	/* Use conn_lock to satify ASSERT; tcp is already serialized */
2377 	mutex_enter(&connp->conn_lock);
2378 	error = conn_connect(connp, &uinfo, flags);
2379 	mutex_exit(&connp->conn_lock);
2380 	if (error != 0)
2381 		return (error);
2382 
2383 	error = tcp_build_hdrs(tcp);
2384 	if (error != 0)
2385 		return (error);
2386 
2387 	tcp->tcp_localnet = uinfo.iulp_localnet;
2388 
2389 	if (uinfo.iulp_rtt != 0) {
2390 		clock_t	rto;
2391 
2392 		tcp->tcp_rtt_sa = uinfo.iulp_rtt;
2393 		tcp->tcp_rtt_sd = uinfo.iulp_rtt_sd;
2394 		rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2395 		    tcps->tcps_rexmit_interval_extra +
2396 		    (tcp->tcp_rtt_sa >> 5);
2397 
2398 		if (rto > tcps->tcps_rexmit_interval_max) {
2399 			tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
2400 		} else if (rto < tcps->tcps_rexmit_interval_min) {
2401 			tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
2402 		} else {
2403 			tcp->tcp_rto = rto;
2404 		}
2405 	}
2406 	if (uinfo.iulp_ssthresh != 0)
2407 		tcp->tcp_cwnd_ssthresh = uinfo.iulp_ssthresh;
2408 	else
2409 		tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2410 	if (uinfo.iulp_spipe > 0) {
2411 		connp->conn_sndbuf = MIN(uinfo.iulp_spipe,
2412 		    tcps->tcps_max_buf);
2413 		if (tcps->tcps_snd_lowat_fraction != 0) {
2414 			connp->conn_sndlowat = connp->conn_sndbuf /
2415 			    tcps->tcps_snd_lowat_fraction;
2416 		}
2417 		(void) tcp_maxpsz_set(tcp, B_TRUE);
2418 	}
2419 	/*
2420 	 * Note that up till now, acceptor always inherits receive
2421 	 * window from the listener.  But if there is a metrics
2422 	 * associated with a host, we should use that instead of
2423 	 * inheriting it from listener. Thus we need to pass this
2424 	 * info back to the caller.
2425 	 */
2426 	if (uinfo.iulp_rpipe > 0) {
2427 		tcp->tcp_rwnd = MIN(uinfo.iulp_rpipe,
2428 		    tcps->tcps_max_buf);
2429 	}
2430 
2431 	if (uinfo.iulp_rtomax > 0) {
2432 		tcp->tcp_second_timer_threshold =
2433 		    uinfo.iulp_rtomax;
2434 	}
2435 
2436 	/*
2437 	 * Use the metric option settings, iulp_tstamp_ok and
2438 	 * iulp_wscale_ok, only for active open. What this means
2439 	 * is that if the other side uses timestamp or window
2440 	 * scale option, TCP will also use those options. That
2441 	 * is for passive open.  If the application sets a
2442 	 * large window, window scale is enabled regardless of
2443 	 * the value in iulp_wscale_ok.  This is the behavior
2444 	 * since 2.6.  So we keep it.
2445 	 * The only case left in passive open processing is the
2446 	 * check for SACK.
2447 	 * For ECN, it should probably be like SACK.  But the
2448 	 * current value is binary, so we treat it like the other
2449 	 * cases.  The metric only controls active open.For passive
2450 	 * open, the ndd param, tcp_ecn_permitted, controls the
2451 	 * behavior.
2452 	 */
2453 	if (!tcp_detached) {
2454 		/*
2455 		 * The if check means that the following can only
2456 		 * be turned on by the metrics only IRE, but not off.
2457 		 */
2458 		if (uinfo.iulp_tstamp_ok)
2459 			tcp->tcp_snd_ts_ok = B_TRUE;
2460 		if (uinfo.iulp_wscale_ok)
2461 			tcp->tcp_snd_ws_ok = B_TRUE;
2462 		if (uinfo.iulp_sack == 2)
2463 			tcp->tcp_snd_sack_ok = B_TRUE;
2464 		if (uinfo.iulp_ecn_ok)
2465 			tcp->tcp_ecn_ok = B_TRUE;
2466 	} else {
2467 		/*
2468 		 * Passive open.
2469 		 *
2470 		 * As above, the if check means that SACK can only be
2471 		 * turned on by the metric only IRE.
2472 		 */
2473 		if (uinfo.iulp_sack > 0) {
2474 			tcp->tcp_snd_sack_ok = B_TRUE;
2475 		}
2476 	}
2477 
2478 	/*
2479 	 * XXX Note that currently, iulp_mtu can be as small as 68
2480 	 * because of PMTUd.  So tcp_mss may go to negative if combined
2481 	 * length of all those options exceeds 28 bytes.  But because
2482 	 * of the tcp_mss_min check below, we may not have a problem if
2483 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
2484 	 * the negative problem still exists.  And the check defeats PMTUd.
2485 	 * In fact, if PMTUd finds that the MSS should be smaller than
2486 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
2487 	 * value.
2488 	 *
2489 	 * We do not deal with that now.  All those problems related to
2490 	 * PMTUd will be fixed later.
2491 	 */
2492 	ASSERT(uinfo.iulp_mtu != 0);
2493 	mss = tcp->tcp_initial_pmtu = uinfo.iulp_mtu;
2494 
2495 	/* Sanity check for MSS value. */
2496 	if (connp->conn_ipversion == IPV4_VERSION)
2497 		mss_max = tcps->tcps_mss_max_ipv4;
2498 	else
2499 		mss_max = tcps->tcps_mss_max_ipv6;
2500 
2501 	if (tcp->tcp_ipsec_overhead == 0)
2502 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
2503 
2504 	mss -= tcp->tcp_ipsec_overhead;
2505 
2506 	if (mss < tcps->tcps_mss_min)
2507 		mss = tcps->tcps_mss_min;
2508 	if (mss > mss_max)
2509 		mss = mss_max;
2510 
2511 	/* Note that this is the maximum MSS, excluding all options. */
2512 	tcp->tcp_mss = mss;
2513 
2514 	/*
2515 	 * Update the tcp connection with LSO capability.
2516 	 */
2517 	tcp_update_lso(tcp, connp->conn_ixa);
2518 
2519 	/*
2520 	 * Initialize the ISS here now that we have the full connection ID.
2521 	 * The RFC 1948 method of initial sequence number generation requires
2522 	 * knowledge of the full connection ID before setting the ISS.
2523 	 */
2524 	tcp_iss_init(tcp);
2525 
2526 	tcp->tcp_loopback = (uinfo.iulp_loopback | uinfo.iulp_local);
2527 
2528 	/*
2529 	 * Make sure that conn is not marked incipient
2530 	 * for incoming connections. A blind
2531 	 * removal of incipient flag is cheaper than
2532 	 * check and removal.
2533 	 */
2534 	mutex_enter(&connp->conn_lock);
2535 	connp->conn_state_flags &= ~CONN_INCIPIENT;
2536 	mutex_exit(&connp->conn_lock);
2537 	return (0);
2538 }
2539 
2540 static void
2541 tcp_tpi_bind(tcp_t *tcp, mblk_t *mp)
2542 {
2543 	int	error;
2544 	conn_t	*connp = tcp->tcp_connp;
2545 	struct sockaddr	*sa;
2546 	mblk_t  *mp1;
2547 	struct T_bind_req *tbr;
2548 	int	backlog;
2549 	socklen_t	len;
2550 	sin_t	*sin;
2551 	sin6_t	*sin6;
2552 	cred_t		*cr;
2553 
2554 	/*
2555 	 * All Solaris components should pass a db_credp
2556 	 * for this TPI message, hence we ASSERT.
2557 	 * But in case there is some other M_PROTO that looks
2558 	 * like a TPI message sent by some other kernel
2559 	 * component, we check and return an error.
2560 	 */
2561 	cr = msg_getcred(mp, NULL);
2562 	ASSERT(cr != NULL);
2563 	if (cr == NULL) {
2564 		tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
2565 		return;
2566 	}
2567 
2568 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
2569 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
2570 		if (connp->conn_debug) {
2571 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
2572 			    "tcp_tpi_bind: bad req, len %u",
2573 			    (uint_t)(mp->b_wptr - mp->b_rptr));
2574 		}
2575 		tcp_err_ack(tcp, mp, TPROTO, 0);
2576 		return;
2577 	}
2578 	/* Make sure the largest address fits */
2579 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t), 1);
2580 	if (mp1 == NULL) {
2581 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
2582 		return;
2583 	}
2584 	mp = mp1;
2585 	tbr = (struct T_bind_req *)mp->b_rptr;
2586 
2587 	backlog = tbr->CONIND_number;
2588 	len = tbr->ADDR_length;
2589 
2590 	switch (len) {
2591 	case 0:		/* request for a generic port */
2592 		tbr->ADDR_offset = sizeof (struct T_bind_req);
2593 		if (connp->conn_family == AF_INET) {
2594 			tbr->ADDR_length = sizeof (sin_t);
2595 			sin = (sin_t *)&tbr[1];
2596 			*sin = sin_null;
2597 			sin->sin_family = AF_INET;
2598 			sa = (struct sockaddr *)sin;
2599 			len = sizeof (sin_t);
2600 			mp->b_wptr = (uchar_t *)&sin[1];
2601 		} else {
2602 			ASSERT(connp->conn_family == AF_INET6);
2603 			tbr->ADDR_length = sizeof (sin6_t);
2604 			sin6 = (sin6_t *)&tbr[1];
2605 			*sin6 = sin6_null;
2606 			sin6->sin6_family = AF_INET6;
2607 			sa = (struct sockaddr *)sin6;
2608 			len = sizeof (sin6_t);
2609 			mp->b_wptr = (uchar_t *)&sin6[1];
2610 		}
2611 		break;
2612 
2613 	case sizeof (sin_t):    /* Complete IPv4 address */
2614 		sa = (struct sockaddr *)mi_offset_param(mp, tbr->ADDR_offset,
2615 		    sizeof (sin_t));
2616 		break;
2617 
2618 	case sizeof (sin6_t): /* Complete IPv6 address */
2619 		sa = (struct sockaddr *)mi_offset_param(mp,
2620 		    tbr->ADDR_offset, sizeof (sin6_t));
2621 		break;
2622 
2623 	default:
2624 		if (connp->conn_debug) {
2625 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
2626 			    "tcp_tpi_bind: bad address length, %d",
2627 			    tbr->ADDR_length);
2628 		}
2629 		tcp_err_ack(tcp, mp, TBADADDR, 0);
2630 		return;
2631 	}
2632 
2633 	if (backlog > 0) {
2634 		error = tcp_do_listen(connp, sa, len, backlog, DB_CRED(mp),
2635 		    tbr->PRIM_type != O_T_BIND_REQ);
2636 	} else {
2637 		error = tcp_do_bind(connp, sa, len, DB_CRED(mp),
2638 		    tbr->PRIM_type != O_T_BIND_REQ);
2639 	}
2640 done:
2641 	if (error > 0) {
2642 		tcp_err_ack(tcp, mp, TSYSERR, error);
2643 	} else if (error < 0) {
2644 		tcp_err_ack(tcp, mp, -error, 0);
2645 	} else {
2646 		/*
2647 		 * Update port information as sockfs/tpi needs it for checking
2648 		 */
2649 		if (connp->conn_family == AF_INET) {
2650 			sin = (sin_t *)sa;
2651 			sin->sin_port = connp->conn_lport;
2652 		} else {
2653 			sin6 = (sin6_t *)sa;
2654 			sin6->sin6_port = connp->conn_lport;
2655 		}
2656 		mp->b_datap->db_type = M_PCPROTO;
2657 		tbr->PRIM_type = T_BIND_ACK;
2658 		putnext(connp->conn_rq, mp);
2659 	}
2660 }
2661 
2662 /*
2663  * If the "bind_to_req_port_only" parameter is set, if the requested port
2664  * number is available, return it, If not return 0
2665  *
2666  * If "bind_to_req_port_only" parameter is not set and
2667  * If the requested port number is available, return it.  If not, return
2668  * the first anonymous port we happen across.  If no anonymous ports are
2669  * available, return 0. addr is the requested local address, if any.
2670  *
2671  * In either case, when succeeding update the tcp_t to record the port number
2672  * and insert it in the bind hash table.
2673  *
2674  * Note that TCP over IPv4 and IPv6 sockets can use the same port number
2675  * without setting SO_REUSEADDR. This is needed so that they
2676  * can be viewed as two independent transport protocols.
2677  */
2678 static in_port_t
2679 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
2680     int reuseaddr, boolean_t quick_connect,
2681     boolean_t bind_to_req_port_only, boolean_t user_specified)
2682 {
2683 	/* number of times we have run around the loop */
2684 	int count = 0;
2685 	/* maximum number of times to run around the loop */
2686 	int loopmax;
2687 	conn_t *connp = tcp->tcp_connp;
2688 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2689 
2690 	/*
2691 	 * Lookup for free addresses is done in a loop and "loopmax"
2692 	 * influences how long we spin in the loop
2693 	 */
2694 	if (bind_to_req_port_only) {
2695 		/*
2696 		 * If the requested port is busy, don't bother to look
2697 		 * for a new one. Setting loop maximum count to 1 has
2698 		 * that effect.
2699 		 */
2700 		loopmax = 1;
2701 	} else {
2702 		/*
2703 		 * If the requested port is busy, look for a free one
2704 		 * in the anonymous port range.
2705 		 * Set loopmax appropriately so that one does not look
2706 		 * forever in the case all of the anonymous ports are in use.
2707 		 */
2708 		if (connp->conn_anon_priv_bind) {
2709 			/*
2710 			 * loopmax =
2711 			 * 	(IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1
2712 			 */
2713 			loopmax = IPPORT_RESERVED -
2714 			    tcps->tcps_min_anonpriv_port;
2715 		} else {
2716 			loopmax = (tcps->tcps_largest_anon_port -
2717 			    tcps->tcps_smallest_anon_port + 1);
2718 		}
2719 	}
2720 	do {
2721 		uint16_t	lport;
2722 		tf_t		*tbf;
2723 		tcp_t		*ltcp;
2724 		conn_t		*lconnp;
2725 
2726 		lport = htons(port);
2727 
2728 		/*
2729 		 * Ensure that the tcp_t is not currently in the bind hash.
2730 		 * Hold the lock on the hash bucket to ensure that
2731 		 * the duplicate check plus the insertion is an atomic
2732 		 * operation.
2733 		 *
2734 		 * This function does an inline lookup on the bind hash list
2735 		 * Make sure that we access only members of tcp_t
2736 		 * and that we don't look at tcp_tcp, since we are not
2737 		 * doing a CONN_INC_REF.
2738 		 */
2739 		tcp_bind_hash_remove(tcp);
2740 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)];
2741 		mutex_enter(&tbf->tf_lock);
2742 		for (ltcp = tbf->tf_tcp; ltcp != NULL;
2743 		    ltcp = ltcp->tcp_bind_hash) {
2744 			if (lport == ltcp->tcp_connp->conn_lport)
2745 				break;
2746 		}
2747 
2748 		for (; ltcp != NULL; ltcp = ltcp->tcp_bind_hash_port) {
2749 			boolean_t not_socket;
2750 			boolean_t exclbind;
2751 
2752 			lconnp = ltcp->tcp_connp;
2753 
2754 			/*
2755 			 * On a labeled system, we must treat bindings to ports
2756 			 * on shared IP addresses by sockets with MAC exemption
2757 			 * privilege as being in all zones, as there's
2758 			 * otherwise no way to identify the right receiver.
2759 			 */
2760 			if (!IPCL_BIND_ZONE_MATCH(lconnp, connp))
2761 				continue;
2762 
2763 			/*
2764 			 * If TCP_EXCLBIND is set for either the bound or
2765 			 * binding endpoint, the semantics of bind
2766 			 * is changed according to the following.
2767 			 *
2768 			 * spec = specified address (v4 or v6)
2769 			 * unspec = unspecified address (v4 or v6)
2770 			 * A = specified addresses are different for endpoints
2771 			 *
2772 			 * bound	bind to		allowed
2773 			 * -------------------------------------
2774 			 * unspec	unspec		no
2775 			 * unspec	spec		no
2776 			 * spec		unspec		no
2777 			 * spec		spec		yes if A
2778 			 *
2779 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
2780 			 * as TCP_EXCLBIND, except that zoneid is ignored.
2781 			 *
2782 			 * Note:
2783 			 *
2784 			 * 1. Because of TLI semantics, an endpoint can go
2785 			 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or
2786 			 * TCPS_BOUND, depending on whether it is originally
2787 			 * a listener or not.  That is why we need to check
2788 			 * for states greater than or equal to TCPS_BOUND
2789 			 * here.
2790 			 *
2791 			 * 2. Ideally, we should only check for state equals
2792 			 * to TCPS_LISTEN. And the following check should be
2793 			 * added.
2794 			 *
2795 			 * if (ltcp->tcp_state == TCPS_LISTEN ||
2796 			 *	!reuseaddr || !lconnp->conn_reuseaddr) {
2797 			 *		...
2798 			 * }
2799 			 *
2800 			 * The semantics will be changed to this.  If the
2801 			 * endpoint on the list is in state not equal to
2802 			 * TCPS_LISTEN and both endpoints have SO_REUSEADDR
2803 			 * set, let the bind succeed.
2804 			 *
2805 			 * Because of (1), we cannot do that for TLI
2806 			 * endpoints.  But we can do that for socket endpoints.
2807 			 * If in future, we can change this going back
2808 			 * semantics, we can use the above check for TLI also.
2809 			 */
2810 			not_socket = !(TCP_IS_SOCKET(ltcp) &&
2811 			    TCP_IS_SOCKET(tcp));
2812 			exclbind = lconnp->conn_exclbind ||
2813 			    connp->conn_exclbind;
2814 
2815 			if ((lconnp->conn_mac_mode != CONN_MAC_DEFAULT) ||
2816 			    (connp->conn_mac_mode != CONN_MAC_DEFAULT) ||
2817 			    (exclbind && (not_socket ||
2818 			    ltcp->tcp_state <= TCPS_ESTABLISHED))) {
2819 				if (V6_OR_V4_INADDR_ANY(
2820 				    lconnp->conn_bound_addr_v6) ||
2821 				    V6_OR_V4_INADDR_ANY(*laddr) ||
2822 				    IN6_ARE_ADDR_EQUAL(laddr,
2823 				    &lconnp->conn_bound_addr_v6)) {
2824 					break;
2825 				}
2826 				continue;
2827 			}
2828 
2829 			/*
2830 			 * Check ipversion to allow IPv4 and IPv6 sockets to
2831 			 * have disjoint port number spaces, if *_EXCLBIND
2832 			 * is not set and only if the application binds to a
2833 			 * specific port. We use the same autoassigned port
2834 			 * number space for IPv4 and IPv6 sockets.
2835 			 */
2836 			if (connp->conn_ipversion != lconnp->conn_ipversion &&
2837 			    bind_to_req_port_only)
2838 				continue;
2839 
2840 			/*
2841 			 * Ideally, we should make sure that the source
2842 			 * address, remote address, and remote port in the
2843 			 * four tuple for this tcp-connection is unique.
2844 			 * However, trying to find out the local source
2845 			 * address would require too much code duplication
2846 			 * with IP, since IP needs needs to have that code
2847 			 * to support userland TCP implementations.
2848 			 */
2849 			if (quick_connect &&
2850 			    (ltcp->tcp_state > TCPS_LISTEN) &&
2851 			    ((connp->conn_fport != lconnp->conn_fport) ||
2852 			    !IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6,
2853 			    &lconnp->conn_faddr_v6)))
2854 				continue;
2855 
2856 			if (!reuseaddr) {
2857 				/*
2858 				 * No socket option SO_REUSEADDR.
2859 				 * If existing port is bound to
2860 				 * a non-wildcard IP address
2861 				 * and the requesting stream is
2862 				 * bound to a distinct
2863 				 * different IP addresses
2864 				 * (non-wildcard, also), keep
2865 				 * going.
2866 				 */
2867 				if (!V6_OR_V4_INADDR_ANY(*laddr) &&
2868 				    !V6_OR_V4_INADDR_ANY(
2869 				    lconnp->conn_bound_addr_v6) &&
2870 				    !IN6_ARE_ADDR_EQUAL(laddr,
2871 				    &lconnp->conn_bound_addr_v6))
2872 					continue;
2873 				if (ltcp->tcp_state >= TCPS_BOUND) {
2874 					/*
2875 					 * This port is being used and
2876 					 * its state is >= TCPS_BOUND,
2877 					 * so we can't bind to it.
2878 					 */
2879 					break;
2880 				}
2881 			} else {
2882 				/*
2883 				 * socket option SO_REUSEADDR is set on the
2884 				 * binding tcp_t.
2885 				 *
2886 				 * If two streams are bound to
2887 				 * same IP address or both addr
2888 				 * and bound source are wildcards
2889 				 * (INADDR_ANY), we want to stop
2890 				 * searching.
2891 				 * We have found a match of IP source
2892 				 * address and source port, which is
2893 				 * refused regardless of the
2894 				 * SO_REUSEADDR setting, so we break.
2895 				 */
2896 				if (IN6_ARE_ADDR_EQUAL(laddr,
2897 				    &lconnp->conn_bound_addr_v6) &&
2898 				    (ltcp->tcp_state == TCPS_LISTEN ||
2899 				    ltcp->tcp_state == TCPS_BOUND))
2900 					break;
2901 			}
2902 		}
2903 		if (ltcp != NULL) {
2904 			/* The port number is busy */
2905 			mutex_exit(&tbf->tf_lock);
2906 		} else {
2907 			/*
2908 			 * This port is ours. Insert in fanout and mark as
2909 			 * bound to prevent others from getting the port
2910 			 * number.
2911 			 */
2912 			tcp->tcp_state = TCPS_BOUND;
2913 			connp->conn_lport = htons(port);
2914 
2915 			ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH(
2916 			    connp->conn_lport)] == tbf);
2917 			tcp_bind_hash_insert(tbf, tcp, 1);
2918 
2919 			mutex_exit(&tbf->tf_lock);
2920 
2921 			/*
2922 			 * We don't want tcp_next_port_to_try to "inherit"
2923 			 * a port number supplied by the user in a bind.
2924 			 */
2925 			if (user_specified)
2926 				return (port);
2927 
2928 			/*
2929 			 * This is the only place where tcp_next_port_to_try
2930 			 * is updated. After the update, it may or may not
2931 			 * be in the valid range.
2932 			 */
2933 			if (!connp->conn_anon_priv_bind)
2934 				tcps->tcps_next_port_to_try = port + 1;
2935 			return (port);
2936 		}
2937 
2938 		if (connp->conn_anon_priv_bind) {
2939 			port = tcp_get_next_priv_port(tcp);
2940 		} else {
2941 			if (count == 0 && user_specified) {
2942 				/*
2943 				 * We may have to return an anonymous port. So
2944 				 * get one to start with.
2945 				 */
2946 				port =
2947 				    tcp_update_next_port(
2948 				    tcps->tcps_next_port_to_try,
2949 				    tcp, B_TRUE);
2950 				user_specified = B_FALSE;
2951 			} else {
2952 				port = tcp_update_next_port(port + 1, tcp,
2953 				    B_FALSE);
2954 			}
2955 		}
2956 		if (port == 0)
2957 			break;
2958 
2959 		/*
2960 		 * Don't let this loop run forever in the case where
2961 		 * all of the anonymous ports are in use.
2962 		 */
2963 	} while (++count < loopmax);
2964 	return (0);
2965 }
2966 
2967 /*
2968  * tcp_clean_death / tcp_close_detached must not be called more than once
2969  * on a tcp. Thus every function that potentially calls tcp_clean_death
2970  * must check for the tcp state before calling tcp_clean_death.
2971  * Eg. tcp_input_data, tcp_eager_kill, tcp_clean_death_wrapper,
2972  * tcp_timer_handler, all check for the tcp state.
2973  */
2974 /* ARGSUSED */
2975 void
2976 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2,
2977     ip_recv_attr_t *dummy)
2978 {
2979 	tcp_t	*tcp = ((conn_t *)arg)->conn_tcp;
2980 
2981 	freemsg(mp);
2982 	if (tcp->tcp_state > TCPS_BOUND)
2983 		(void) tcp_clean_death(((conn_t *)arg)->conn_tcp,
2984 		    ETIMEDOUT, 5);
2985 }
2986 
2987 /*
2988  * We are dying for some reason.  Try to do it gracefully.  (May be called
2989  * as writer.)
2990  *
2991  * Return -1 if the structure was not cleaned up (if the cleanup had to be
2992  * done by a service procedure).
2993  * TBD - Should the return value distinguish between the tcp_t being
2994  * freed and it being reinitialized?
2995  */
2996 static int
2997 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag)
2998 {
2999 	mblk_t	*mp;
3000 	queue_t	*q;
3001 	conn_t	*connp = tcp->tcp_connp;
3002 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3003 
3004 	TCP_CLD_STAT(tag);
3005 
3006 #if TCP_TAG_CLEAN_DEATH
3007 	tcp->tcp_cleandeathtag = tag;
3008 #endif
3009 
3010 	if (tcp->tcp_fused)
3011 		tcp_unfuse(tcp);
3012 
3013 	if (tcp->tcp_linger_tid != 0 &&
3014 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3015 		tcp_stop_lingering(tcp);
3016 	}
3017 
3018 	ASSERT(tcp != NULL);
3019 	ASSERT((connp->conn_family == AF_INET &&
3020 	    connp->conn_ipversion == IPV4_VERSION) ||
3021 	    (connp->conn_family == AF_INET6 &&
3022 	    (connp->conn_ipversion == IPV4_VERSION ||
3023 	    connp->conn_ipversion == IPV6_VERSION)));
3024 
3025 	if (TCP_IS_DETACHED(tcp)) {
3026 		if (tcp->tcp_hard_binding) {
3027 			/*
3028 			 * Its an eager that we are dealing with. We close the
3029 			 * eager but in case a conn_ind has already gone to the
3030 			 * listener, let tcp_accept_finish() send a discon_ind
3031 			 * to the listener and drop the last reference. If the
3032 			 * listener doesn't even know about the eager i.e. the
3033 			 * conn_ind hasn't gone up, blow away the eager and drop
3034 			 * the last reference as well. If the conn_ind has gone
3035 			 * up, state should be BOUND. tcp_accept_finish
3036 			 * will figure out that the connection has received a
3037 			 * RST and will send a DISCON_IND to the application.
3038 			 */
3039 			tcp_closei_local(tcp);
3040 			if (!tcp->tcp_tconnind_started) {
3041 				CONN_DEC_REF(connp);
3042 			} else {
3043 				tcp->tcp_state = TCPS_BOUND;
3044 			}
3045 		} else {
3046 			tcp_close_detached(tcp);
3047 		}
3048 		return (0);
3049 	}
3050 
3051 	TCP_STAT(tcps, tcp_clean_death_nondetached);
3052 
3053 	q = connp->conn_rq;
3054 
3055 	/* Trash all inbound data */
3056 	if (!IPCL_IS_NONSTR(connp)) {
3057 		ASSERT(q != NULL);
3058 		flushq(q, FLUSHALL);
3059 	}
3060 
3061 	/*
3062 	 * If we are at least part way open and there is error
3063 	 * (err==0 implies no error)
3064 	 * notify our client by a T_DISCON_IND.
3065 	 */
3066 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
3067 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
3068 		    !TCP_IS_SOCKET(tcp)) {
3069 			/*
3070 			 * Send M_FLUSH according to TPI. Because sockets will
3071 			 * (and must) ignore FLUSHR we do that only for TPI
3072 			 * endpoints and sockets in STREAMS mode.
3073 			 */
3074 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
3075 		}
3076 		if (connp->conn_debug) {
3077 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
3078 			    "tcp_clean_death: discon err %d", err);
3079 		}
3080 		if (IPCL_IS_NONSTR(connp)) {
3081 			/* Direct socket, use upcall */
3082 			(*connp->conn_upcalls->su_disconnected)(
3083 			    connp->conn_upper_handle, tcp->tcp_connid, err);
3084 		} else {
3085 			mp = mi_tpi_discon_ind(NULL, err, 0);
3086 			if (mp != NULL) {
3087 				putnext(q, mp);
3088 			} else {
3089 				if (connp->conn_debug) {
3090 					(void) strlog(TCP_MOD_ID, 0, 1,
3091 					    SL_ERROR|SL_TRACE,
3092 					    "tcp_clean_death, sending M_ERROR");
3093 				}
3094 				(void) putnextctl1(q, M_ERROR, EPROTO);
3095 			}
3096 		}
3097 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
3098 			/* SYN_SENT or SYN_RCVD */
3099 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
3100 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
3101 			/* ESTABLISHED or CLOSE_WAIT */
3102 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
3103 		}
3104 	}
3105 
3106 	tcp_reinit(tcp);
3107 	if (IPCL_IS_NONSTR(connp))
3108 		(void) tcp_do_unbind(connp);
3109 
3110 	return (-1);
3111 }
3112 
3113 /*
3114  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
3115  * to expire, stop the wait and finish the close.
3116  */
3117 static void
3118 tcp_stop_lingering(tcp_t *tcp)
3119 {
3120 	clock_t	delta = 0;
3121 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3122 	conn_t		*connp = tcp->tcp_connp;
3123 
3124 	tcp->tcp_linger_tid = 0;
3125 	if (tcp->tcp_state > TCPS_LISTEN) {
3126 		tcp_acceptor_hash_remove(tcp);
3127 		mutex_enter(&tcp->tcp_non_sq_lock);
3128 		if (tcp->tcp_flow_stopped) {
3129 			tcp_clrqfull(tcp);
3130 		}
3131 		mutex_exit(&tcp->tcp_non_sq_lock);
3132 
3133 		if (tcp->tcp_timer_tid != 0) {
3134 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3135 			tcp->tcp_timer_tid = 0;
3136 		}
3137 		/*
3138 		 * Need to cancel those timers which will not be used when
3139 		 * TCP is detached.  This has to be done before the conn_wq
3140 		 * is cleared.
3141 		 */
3142 		tcp_timers_stop(tcp);
3143 
3144 		tcp->tcp_detached = B_TRUE;
3145 		connp->conn_rq = NULL;
3146 		connp->conn_wq = NULL;
3147 
3148 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
3149 			tcp_time_wait_append(tcp);
3150 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
3151 			goto finish;
3152 		}
3153 
3154 		/*
3155 		 * If delta is zero the timer event wasn't executed and was
3156 		 * successfully canceled. In this case we need to restart it
3157 		 * with the minimal delta possible.
3158 		 */
3159 		if (delta >= 0) {
3160 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
3161 			    delta ? delta : 1);
3162 		}
3163 	} else {
3164 		tcp_closei_local(tcp);
3165 		CONN_DEC_REF(connp);
3166 	}
3167 finish:
3168 	/* Signal closing thread that it can complete close */
3169 	mutex_enter(&tcp->tcp_closelock);
3170 	tcp->tcp_detached = B_TRUE;
3171 	connp->conn_rq = NULL;
3172 	connp->conn_wq = NULL;
3173 
3174 	tcp->tcp_closed = 1;
3175 	cv_signal(&tcp->tcp_closecv);
3176 	mutex_exit(&tcp->tcp_closelock);
3177 }
3178 
3179 /*
3180  * Handle lingering timeouts. This function is called when the SO_LINGER timeout
3181  * expires.
3182  */
3183 static void
3184 tcp_close_linger_timeout(void *arg)
3185 {
3186 	conn_t	*connp = (conn_t *)arg;
3187 	tcp_t 	*tcp = connp->conn_tcp;
3188 
3189 	tcp->tcp_client_errno = ETIMEDOUT;
3190 	tcp_stop_lingering(tcp);
3191 }
3192 
3193 static void
3194 tcp_close_common(conn_t *connp, int flags)
3195 {
3196 	tcp_t		*tcp = connp->conn_tcp;
3197 	mblk_t 		*mp = &tcp->tcp_closemp;
3198 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
3199 	mblk_t		*bp;
3200 
3201 	ASSERT(connp->conn_ref >= 2);
3202 
3203 	/*
3204 	 * Mark the conn as closing. ipsq_pending_mp_add will not
3205 	 * add any mp to the pending mp list, after this conn has
3206 	 * started closing.
3207 	 */
3208 	mutex_enter(&connp->conn_lock);
3209 	connp->conn_state_flags |= CONN_CLOSING;
3210 	if (connp->conn_oper_pending_ill != NULL)
3211 		conn_ioctl_cleanup_reqd = B_TRUE;
3212 	CONN_INC_REF_LOCKED(connp);
3213 	mutex_exit(&connp->conn_lock);
3214 	tcp->tcp_closeflags = (uint8_t)flags;
3215 	ASSERT(connp->conn_ref >= 3);
3216 
3217 	/*
3218 	 * tcp_closemp_used is used below without any protection of a lock
3219 	 * as we don't expect any one else to use it concurrently at this
3220 	 * point otherwise it would be a major defect.
3221 	 */
3222 
3223 	if (mp->b_prev == NULL)
3224 		tcp->tcp_closemp_used = B_TRUE;
3225 	else
3226 		cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: "
3227 		    "connp %p tcp %p\n", (void *)connp, (void *)tcp);
3228 
3229 	TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
3230 
3231 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp,
3232 	    NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
3233 
3234 	mutex_enter(&tcp->tcp_closelock);
3235 	while (!tcp->tcp_closed) {
3236 		if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
3237 			/*
3238 			 * The cv_wait_sig() was interrupted. We now do the
3239 			 * following:
3240 			 *
3241 			 * 1) If the endpoint was lingering, we allow this
3242 			 * to be interrupted by cancelling the linger timeout
3243 			 * and closing normally.
3244 			 *
3245 			 * 2) Revert to calling cv_wait()
3246 			 *
3247 			 * We revert to using cv_wait() to avoid an
3248 			 * infinite loop which can occur if the calling
3249 			 * thread is higher priority than the squeue worker
3250 			 * thread and is bound to the same cpu.
3251 			 */
3252 			if (connp->conn_linger && connp->conn_lingertime > 0) {
3253 				mutex_exit(&tcp->tcp_closelock);
3254 				/* Entering squeue, bump ref count. */
3255 				CONN_INC_REF(connp);
3256 				bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
3257 				SQUEUE_ENTER_ONE(connp->conn_sqp, bp,
3258 				    tcp_linger_interrupted, connp, NULL,
3259 				    tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
3260 				mutex_enter(&tcp->tcp_closelock);
3261 			}
3262 			break;
3263 		}
3264 	}
3265 	while (!tcp->tcp_closed)
3266 		cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
3267 	mutex_exit(&tcp->tcp_closelock);
3268 
3269 	/*
3270 	 * In the case of listener streams that have eagers in the q or q0
3271 	 * we wait for the eagers to drop their reference to us. conn_rq and
3272 	 * conn_wq of the eagers point to our queues. By waiting for the
3273 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
3274 	 * up their queue pointers and also dropped their references to us.
3275 	 */
3276 	if (tcp->tcp_wait_for_eagers) {
3277 		mutex_enter(&connp->conn_lock);
3278 		while (connp->conn_ref != 1) {
3279 			cv_wait(&connp->conn_cv, &connp->conn_lock);
3280 		}
3281 		mutex_exit(&connp->conn_lock);
3282 	}
3283 	/*
3284 	 * ioctl cleanup. The mp is queued in the ipx_pending_mp.
3285 	 */
3286 	if (conn_ioctl_cleanup_reqd)
3287 		conn_ioctl_cleanup(connp);
3288 
3289 	connp->conn_cpid = NOPID;
3290 }
3291 
3292 static int
3293 tcp_tpi_close(queue_t *q, int flags)
3294 {
3295 	conn_t		*connp;
3296 
3297 	ASSERT(WR(q)->q_next == NULL);
3298 
3299 	if (flags & SO_FALLBACK) {
3300 		/*
3301 		 * stream is being closed while in fallback
3302 		 * simply free the resources that were allocated
3303 		 */
3304 		inet_minor_free(WR(q)->q_ptr, (dev_t)(RD(q)->q_ptr));
3305 		qprocsoff(q);
3306 		goto done;
3307 	}
3308 
3309 	connp = Q_TO_CONN(q);
3310 	/*
3311 	 * We are being closed as /dev/tcp or /dev/tcp6.
3312 	 */
3313 	tcp_close_common(connp, flags);
3314 
3315 	qprocsoff(q);
3316 	inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
3317 
3318 	/*
3319 	 * Drop IP's reference on the conn. This is the last reference
3320 	 * on the connp if the state was less than established. If the
3321 	 * connection has gone into timewait state, then we will have
3322 	 * one ref for the TCP and one more ref (total of two) for the
3323 	 * classifier connected hash list (a timewait connections stays
3324 	 * in connected hash till closed).
3325 	 *
3326 	 * We can't assert the references because there might be other
3327 	 * transient reference places because of some walkers or queued
3328 	 * packets in squeue for the timewait state.
3329 	 */
3330 	CONN_DEC_REF(connp);
3331 done:
3332 	q->q_ptr = WR(q)->q_ptr = NULL;
3333 	return (0);
3334 }
3335 
3336 static int
3337 tcp_tpi_close_accept(queue_t *q)
3338 {
3339 	vmem_t	*minor_arena;
3340 	dev_t	conn_dev;
3341 
3342 	ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit);
3343 
3344 	/*
3345 	 * We had opened an acceptor STREAM for sockfs which is
3346 	 * now being closed due to some error.
3347 	 */
3348 	qprocsoff(q);
3349 
3350 	minor_arena = (vmem_t *)WR(q)->q_ptr;
3351 	conn_dev = (dev_t)RD(q)->q_ptr;
3352 	ASSERT(minor_arena != NULL);
3353 	ASSERT(conn_dev != 0);
3354 	inet_minor_free(minor_arena, conn_dev);
3355 	q->q_ptr = WR(q)->q_ptr = NULL;
3356 	return (0);
3357 }
3358 
3359 /*
3360  * Called by tcp_close() routine via squeue when lingering is
3361  * interrupted by a signal.
3362  */
3363 
3364 /* ARGSUSED */
3365 static void
3366 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
3367 {
3368 	conn_t	*connp = (conn_t *)arg;
3369 	tcp_t	*tcp = connp->conn_tcp;
3370 
3371 	freeb(mp);
3372 	if (tcp->tcp_linger_tid != 0 &&
3373 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3374 		tcp_stop_lingering(tcp);
3375 		tcp->tcp_client_errno = EINTR;
3376 	}
3377 }
3378 
3379 /*
3380  * Called by streams close routine via squeues when our client blows off her
3381  * descriptor, we take this to mean: "close the stream state NOW, close the tcp
3382  * connection politely" When SO_LINGER is set (with a non-zero linger time and
3383  * it is not a nonblocking socket) then this routine sleeps until the FIN is
3384  * acked.
3385  *
3386  * NOTE: tcp_close potentially returns error when lingering.
3387  * However, the stream head currently does not pass these errors
3388  * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK
3389  * errors to the application (from tsleep()) and not errors
3390  * like ECONNRESET caused by receiving a reset packet.
3391  */
3392 
3393 /* ARGSUSED */
3394 static void
3395 tcp_close_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
3396 {
3397 	char	*msg;
3398 	conn_t	*connp = (conn_t *)arg;
3399 	tcp_t	*tcp = connp->conn_tcp;
3400 	clock_t	delta = 0;
3401 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3402 
3403 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
3404 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
3405 
3406 	mutex_enter(&tcp->tcp_eager_lock);
3407 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
3408 		/* Cleanup for listener */
3409 		tcp_eager_cleanup(tcp, 0);
3410 		tcp->tcp_wait_for_eagers = 1;
3411 	}
3412 	mutex_exit(&tcp->tcp_eager_lock);
3413 
3414 	tcp->tcp_lso = B_FALSE;
3415 
3416 	msg = NULL;
3417 	switch (tcp->tcp_state) {
3418 	case TCPS_CLOSED:
3419 	case TCPS_IDLE:
3420 	case TCPS_BOUND:
3421 	case TCPS_LISTEN:
3422 		break;
3423 	case TCPS_SYN_SENT:
3424 		msg = "tcp_close, during connect";
3425 		break;
3426 	case TCPS_SYN_RCVD:
3427 		/*
3428 		 * Close during the connect 3-way handshake
3429 		 * but here there may or may not be pending data
3430 		 * already on queue. Process almost same as in
3431 		 * the ESTABLISHED state.
3432 		 */
3433 		/* FALLTHRU */
3434 	default:
3435 		if (tcp->tcp_fused)
3436 			tcp_unfuse(tcp);
3437 
3438 		/*
3439 		 * If SO_LINGER has set a zero linger time, abort the
3440 		 * connection with a reset.
3441 		 */
3442 		if (connp->conn_linger && connp->conn_lingertime == 0) {
3443 			msg = "tcp_close, zero lingertime";
3444 			break;
3445 		}
3446 
3447 		/*
3448 		 * Abort connection if there is unread data queued.
3449 		 */
3450 		if (tcp->tcp_rcv_list || tcp->tcp_reass_head) {
3451 			msg = "tcp_close, unread data";
3452 			break;
3453 		}
3454 		/*
3455 		 * We have done a qwait() above which could have possibly
3456 		 * drained more messages in turn causing transition to a
3457 		 * different state. Check whether we have to do the rest
3458 		 * of the processing or not.
3459 		 */
3460 		if (tcp->tcp_state <= TCPS_LISTEN)
3461 			break;
3462 
3463 		/*
3464 		 * Transmit the FIN before detaching the tcp_t.
3465 		 * After tcp_detach returns this queue/perimeter
3466 		 * no longer owns the tcp_t thus others can modify it.
3467 		 */
3468 		(void) tcp_xmit_end(tcp);
3469 
3470 		/*
3471 		 * If lingering on close then wait until the fin is acked,
3472 		 * the SO_LINGER time passes, or a reset is sent/received.
3473 		 */
3474 		if (connp->conn_linger && connp->conn_lingertime > 0 &&
3475 		    !(tcp->tcp_fin_acked) &&
3476 		    tcp->tcp_state >= TCPS_ESTABLISHED) {
3477 			if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) {
3478 				tcp->tcp_client_errno = EWOULDBLOCK;
3479 			} else if (tcp->tcp_client_errno == 0) {
3480 
3481 				ASSERT(tcp->tcp_linger_tid == 0);
3482 
3483 				tcp->tcp_linger_tid = TCP_TIMER(tcp,
3484 				    tcp_close_linger_timeout,
3485 				    connp->conn_lingertime * hz);
3486 
3487 				/* tcp_close_linger_timeout will finish close */
3488 				if (tcp->tcp_linger_tid == 0)
3489 					tcp->tcp_client_errno = ENOSR;
3490 				else
3491 					return;
3492 			}
3493 
3494 			/*
3495 			 * Check if we need to detach or just close
3496 			 * the instance.
3497 			 */
3498 			if (tcp->tcp_state <= TCPS_LISTEN)
3499 				break;
3500 		}
3501 
3502 		/*
3503 		 * Make sure that no other thread will access the conn_rq of
3504 		 * this instance (through lookups etc.) as conn_rq will go
3505 		 * away shortly.
3506 		 */
3507 		tcp_acceptor_hash_remove(tcp);
3508 
3509 		mutex_enter(&tcp->tcp_non_sq_lock);
3510 		if (tcp->tcp_flow_stopped) {
3511 			tcp_clrqfull(tcp);
3512 		}
3513 		mutex_exit(&tcp->tcp_non_sq_lock);
3514 
3515 		if (tcp->tcp_timer_tid != 0) {
3516 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3517 			tcp->tcp_timer_tid = 0;
3518 		}
3519 		/*
3520 		 * Need to cancel those timers which will not be used when
3521 		 * TCP is detached.  This has to be done before the conn_wq
3522 		 * is set to NULL.
3523 		 */
3524 		tcp_timers_stop(tcp);
3525 
3526 		tcp->tcp_detached = B_TRUE;
3527 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
3528 			tcp_time_wait_append(tcp);
3529 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
3530 			ASSERT(connp->conn_ref >= 3);
3531 			goto finish;
3532 		}
3533 
3534 		/*
3535 		 * If delta is zero the timer event wasn't executed and was
3536 		 * successfully canceled. In this case we need to restart it
3537 		 * with the minimal delta possible.
3538 		 */
3539 		if (delta >= 0)
3540 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
3541 			    delta ? delta : 1);
3542 
3543 		ASSERT(connp->conn_ref >= 3);
3544 		goto finish;
3545 	}
3546 
3547 	/* Detach did not complete. Still need to remove q from stream. */
3548 	if (msg) {
3549 		if (tcp->tcp_state == TCPS_ESTABLISHED ||
3550 		    tcp->tcp_state == TCPS_CLOSE_WAIT)
3551 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
3552 		if (tcp->tcp_state == TCPS_SYN_SENT ||
3553 		    tcp->tcp_state == TCPS_SYN_RCVD)
3554 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
3555 		tcp_xmit_ctl(msg, tcp,  tcp->tcp_snxt, 0, TH_RST);
3556 	}
3557 
3558 	tcp_closei_local(tcp);
3559 	CONN_DEC_REF(connp);
3560 	ASSERT(connp->conn_ref >= 2);
3561 
3562 finish:
3563 	mutex_enter(&tcp->tcp_closelock);
3564 	/*
3565 	 * Don't change the queues in the case of a listener that has
3566 	 * eagers in its q or q0. It could surprise the eagers.
3567 	 * Instead wait for the eagers outside the squeue.
3568 	 */
3569 	if (!tcp->tcp_wait_for_eagers) {
3570 		tcp->tcp_detached = B_TRUE;
3571 		connp->conn_rq = NULL;
3572 		connp->conn_wq = NULL;
3573 	}
3574 
3575 	/* Signal tcp_close() to finish closing. */
3576 	tcp->tcp_closed = 1;
3577 	cv_signal(&tcp->tcp_closecv);
3578 	mutex_exit(&tcp->tcp_closelock);
3579 }
3580 
3581 /*
3582  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
3583  * Some stream heads get upset if they see these later on as anything but NULL.
3584  */
3585 static void
3586 tcp_close_mpp(mblk_t **mpp)
3587 {
3588 	mblk_t	*mp;
3589 
3590 	if ((mp = *mpp) != NULL) {
3591 		do {
3592 			mp->b_next = NULL;
3593 			mp->b_prev = NULL;
3594 		} while ((mp = mp->b_cont) != NULL);
3595 
3596 		mp = *mpp;
3597 		*mpp = NULL;
3598 		freemsg(mp);
3599 	}
3600 }
3601 
3602 /* Do detached close. */
3603 static void
3604 tcp_close_detached(tcp_t *tcp)
3605 {
3606 	if (tcp->tcp_fused)
3607 		tcp_unfuse(tcp);
3608 
3609 	/*
3610 	 * Clustering code serializes TCP disconnect callbacks and
3611 	 * cluster tcp list walks by blocking a TCP disconnect callback
3612 	 * if a cluster tcp list walk is in progress. This ensures
3613 	 * accurate accounting of TCPs in the cluster code even though
3614 	 * the TCP list walk itself is not atomic.
3615 	 */
3616 	tcp_closei_local(tcp);
3617 	CONN_DEC_REF(tcp->tcp_connp);
3618 }
3619 
3620 /*
3621  * Stop all TCP timers, and free the timer mblks if requested.
3622  */
3623 void
3624 tcp_timers_stop(tcp_t *tcp)
3625 {
3626 	if (tcp->tcp_timer_tid != 0) {
3627 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3628 		tcp->tcp_timer_tid = 0;
3629 	}
3630 	if (tcp->tcp_ka_tid != 0) {
3631 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid);
3632 		tcp->tcp_ka_tid = 0;
3633 	}
3634 	if (tcp->tcp_ack_tid != 0) {
3635 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
3636 		tcp->tcp_ack_tid = 0;
3637 	}
3638 	if (tcp->tcp_push_tid != 0) {
3639 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
3640 		tcp->tcp_push_tid = 0;
3641 	}
3642 }
3643 
3644 /*
3645  * The tcp_t is going away. Remove it from all lists and set it
3646  * to TCPS_CLOSED. The freeing up of memory is deferred until
3647  * tcp_inactive. This is needed since a thread in tcp_rput might have
3648  * done a CONN_INC_REF on this structure before it was removed from the
3649  * hashes.
3650  */
3651 static void
3652 tcp_closei_local(tcp_t *tcp)
3653 {
3654 	conn_t		*connp = tcp->tcp_connp;
3655 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3656 
3657 	if (!TCP_IS_SOCKET(tcp))
3658 		tcp_acceptor_hash_remove(tcp);
3659 
3660 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
3661 	tcp->tcp_ibsegs = 0;
3662 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
3663 	tcp->tcp_obsegs = 0;
3664 
3665 	/*
3666 	 * If we are an eager connection hanging off a listener that
3667 	 * hasn't formally accepted the connection yet, get off his
3668 	 * list and blow off any data that we have accumulated.
3669 	 */
3670 	if (tcp->tcp_listener != NULL) {
3671 		tcp_t	*listener = tcp->tcp_listener;
3672 		mutex_enter(&listener->tcp_eager_lock);
3673 		/*
3674 		 * tcp_tconnind_started == B_TRUE means that the
3675 		 * conn_ind has already gone to listener. At
3676 		 * this point, eager will be closed but we
3677 		 * leave it in listeners eager list so that
3678 		 * if listener decides to close without doing
3679 		 * accept, we can clean this up. In tcp_tli_accept
3680 		 * we take care of the case of accept on closed
3681 		 * eager.
3682 		 */
3683 		if (!tcp->tcp_tconnind_started) {
3684 			tcp_eager_unlink(tcp);
3685 			mutex_exit(&listener->tcp_eager_lock);
3686 			/*
3687 			 * We don't want to have any pointers to the
3688 			 * listener queue, after we have released our
3689 			 * reference on the listener
3690 			 */
3691 			ASSERT(tcp->tcp_detached);
3692 			connp->conn_rq = NULL;
3693 			connp->conn_wq = NULL;
3694 			CONN_DEC_REF(listener->tcp_connp);
3695 		} else {
3696 			mutex_exit(&listener->tcp_eager_lock);
3697 		}
3698 	}
3699 
3700 	/* Stop all the timers */
3701 	tcp_timers_stop(tcp);
3702 
3703 	if (tcp->tcp_state == TCPS_LISTEN) {
3704 		if (tcp->tcp_ip_addr_cache) {
3705 			kmem_free((void *)tcp->tcp_ip_addr_cache,
3706 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
3707 			tcp->tcp_ip_addr_cache = NULL;
3708 		}
3709 	}
3710 	mutex_enter(&tcp->tcp_non_sq_lock);
3711 	if (tcp->tcp_flow_stopped)
3712 		tcp_clrqfull(tcp);
3713 	mutex_exit(&tcp->tcp_non_sq_lock);
3714 
3715 	tcp_bind_hash_remove(tcp);
3716 	/*
3717 	 * If the tcp_time_wait_collector (which runs outside the squeue)
3718 	 * is trying to remove this tcp from the time wait list, we will
3719 	 * block in tcp_time_wait_remove while trying to acquire the
3720 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
3721 	 * requires the ipcl_hash_remove to be ordered after the
3722 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
3723 	 */
3724 	if (tcp->tcp_state == TCPS_TIME_WAIT)
3725 		(void) tcp_time_wait_remove(tcp, NULL);
3726 	CL_INET_DISCONNECT(connp);
3727 	ipcl_hash_remove(connp);
3728 	ixa_cleanup(connp->conn_ixa);
3729 
3730 	/*
3731 	 * Mark the conn as CONDEMNED
3732 	 */
3733 	mutex_enter(&connp->conn_lock);
3734 	connp->conn_state_flags |= CONN_CONDEMNED;
3735 	mutex_exit(&connp->conn_lock);
3736 
3737 	/* Need to cleanup any pending ioctls */
3738 	ASSERT(tcp->tcp_time_wait_next == NULL);
3739 	ASSERT(tcp->tcp_time_wait_prev == NULL);
3740 	ASSERT(tcp->tcp_time_wait_expire == 0);
3741 	tcp->tcp_state = TCPS_CLOSED;
3742 
3743 	/* Release any SSL context */
3744 	if (tcp->tcp_kssl_ent != NULL) {
3745 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
3746 		tcp->tcp_kssl_ent = NULL;
3747 	}
3748 	if (tcp->tcp_kssl_ctx != NULL) {
3749 		kssl_release_ctx(tcp->tcp_kssl_ctx);
3750 		tcp->tcp_kssl_ctx = NULL;
3751 	}
3752 	tcp->tcp_kssl_pending = B_FALSE;
3753 
3754 	tcp_ipsec_cleanup(tcp);
3755 }
3756 
3757 /*
3758  * tcp is dying (called from ipcl_conn_destroy and error cases).
3759  * Free the tcp_t in either case.
3760  */
3761 void
3762 tcp_free(tcp_t *tcp)
3763 {
3764 	mblk_t		*mp;
3765 	conn_t		*connp = tcp->tcp_connp;
3766 
3767 	ASSERT(tcp != NULL);
3768 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
3769 
3770 	connp->conn_rq = NULL;
3771 	connp->conn_wq = NULL;
3772 
3773 	tcp_close_mpp(&tcp->tcp_xmit_head);
3774 	tcp_close_mpp(&tcp->tcp_reass_head);
3775 	if (tcp->tcp_rcv_list != NULL) {
3776 		/* Free b_next chain */
3777 		tcp_close_mpp(&tcp->tcp_rcv_list);
3778 	}
3779 	if ((mp = tcp->tcp_urp_mp) != NULL) {
3780 		freemsg(mp);
3781 	}
3782 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
3783 		freemsg(mp);
3784 	}
3785 
3786 	if (tcp->tcp_fused_sigurg_mp != NULL) {
3787 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
3788 		freeb(tcp->tcp_fused_sigurg_mp);
3789 		tcp->tcp_fused_sigurg_mp = NULL;
3790 	}
3791 
3792 	if (tcp->tcp_ordrel_mp != NULL) {
3793 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
3794 		freeb(tcp->tcp_ordrel_mp);
3795 		tcp->tcp_ordrel_mp = NULL;
3796 	}
3797 
3798 	if (tcp->tcp_sack_info != NULL) {
3799 		if (tcp->tcp_notsack_list != NULL) {
3800 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list,
3801 			    tcp);
3802 		}
3803 		bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
3804 	}
3805 
3806 	if (tcp->tcp_hopopts != NULL) {
3807 		mi_free(tcp->tcp_hopopts);
3808 		tcp->tcp_hopopts = NULL;
3809 		tcp->tcp_hopoptslen = 0;
3810 	}
3811 	ASSERT(tcp->tcp_hopoptslen == 0);
3812 	if (tcp->tcp_dstopts != NULL) {
3813 		mi_free(tcp->tcp_dstopts);
3814 		tcp->tcp_dstopts = NULL;
3815 		tcp->tcp_dstoptslen = 0;
3816 	}
3817 	ASSERT(tcp->tcp_dstoptslen == 0);
3818 	if (tcp->tcp_rthdrdstopts != NULL) {
3819 		mi_free(tcp->tcp_rthdrdstopts);
3820 		tcp->tcp_rthdrdstopts = NULL;
3821 		tcp->tcp_rthdrdstoptslen = 0;
3822 	}
3823 	ASSERT(tcp->tcp_rthdrdstoptslen == 0);
3824 	if (tcp->tcp_rthdr != NULL) {
3825 		mi_free(tcp->tcp_rthdr);
3826 		tcp->tcp_rthdr = NULL;
3827 		tcp->tcp_rthdrlen = 0;
3828 	}
3829 	ASSERT(tcp->tcp_rthdrlen == 0);
3830 
3831 	/*
3832 	 * Following is really a blowing away a union.
3833 	 * It happens to have exactly two members of identical size
3834 	 * the following code is enough.
3835 	 */
3836 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
3837 }
3838 
3839 
3840 /*
3841  * Put a connection confirmation message upstream built from the
3842  * address/flowid information with the conn and iph. Report our success or
3843  * failure.
3844  */
3845 static boolean_t
3846 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, mblk_t *idmp,
3847     mblk_t **defermp, ip_recv_attr_t *ira)
3848 {
3849 	sin_t	sin;
3850 	sin6_t	sin6;
3851 	mblk_t	*mp;
3852 	char	*optp = NULL;
3853 	int	optlen = 0;
3854 	conn_t	*connp = tcp->tcp_connp;
3855 
3856 	if (defermp != NULL)
3857 		*defermp = NULL;
3858 
3859 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL) {
3860 		/*
3861 		 * Return in T_CONN_CON results of option negotiation through
3862 		 * the T_CONN_REQ. Note: If there is an real end-to-end option
3863 		 * negotiation, then what is received from remote end needs
3864 		 * to be taken into account but there is no such thing (yet?)
3865 		 * in our TCP/IP.
3866 		 * Note: We do not use mi_offset_param() here as
3867 		 * tcp_opts_conn_req contents do not directly come from
3868 		 * an application and are either generated in kernel or
3869 		 * from user input that was already verified.
3870 		 */
3871 		mp = tcp->tcp_conn.tcp_opts_conn_req;
3872 		optp = (char *)(mp->b_rptr +
3873 		    ((struct T_conn_req *)mp->b_rptr)->OPT_offset);
3874 		optlen = (int)
3875 		    ((struct T_conn_req *)mp->b_rptr)->OPT_length;
3876 	}
3877 
3878 	if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) {
3879 
3880 		/* packet is IPv4 */
3881 		if (connp->conn_family == AF_INET) {
3882 			sin = sin_null;
3883 			sin.sin_addr.s_addr = connp->conn_faddr_v4;
3884 			sin.sin_port = connp->conn_fport;
3885 			sin.sin_family = AF_INET;
3886 			mp = mi_tpi_conn_con(NULL, (char *)&sin,
3887 			    (int)sizeof (sin_t), optp, optlen);
3888 		} else {
3889 			sin6 = sin6_null;
3890 			sin6.sin6_addr = connp->conn_faddr_v6;
3891 			sin6.sin6_port = connp->conn_fport;
3892 			sin6.sin6_family = AF_INET6;
3893 			mp = mi_tpi_conn_con(NULL, (char *)&sin6,
3894 			    (int)sizeof (sin6_t), optp, optlen);
3895 
3896 		}
3897 	} else {
3898 		ip6_t	*ip6h = (ip6_t *)iphdr;
3899 
3900 		ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION);
3901 		ASSERT(connp->conn_family == AF_INET6);
3902 		sin6 = sin6_null;
3903 		sin6.sin6_addr = connp->conn_faddr_v6;
3904 		sin6.sin6_port = connp->conn_fport;
3905 		sin6.sin6_family = AF_INET6;
3906 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
3907 		mp = mi_tpi_conn_con(NULL, (char *)&sin6,
3908 		    (int)sizeof (sin6_t), optp, optlen);
3909 	}
3910 
3911 	if (!mp)
3912 		return (B_FALSE);
3913 
3914 	mblk_copycred(mp, idmp);
3915 
3916 	if (defermp == NULL) {
3917 		conn_t *connp = tcp->tcp_connp;
3918 		if (IPCL_IS_NONSTR(connp)) {
3919 			(*connp->conn_upcalls->su_connected)
3920 			    (connp->conn_upper_handle, tcp->tcp_connid,
3921 			    ira->ira_cred, ira->ira_cpid);
3922 			freemsg(mp);
3923 		} else {
3924 			if (ira->ira_cred != NULL) {
3925 				/* So that getpeerucred works for TPI sockfs */
3926 				mblk_setcred(mp, ira->ira_cred, ira->ira_cpid);
3927 			}
3928 			putnext(connp->conn_rq, mp);
3929 		}
3930 	} else {
3931 		*defermp = mp;
3932 	}
3933 
3934 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
3935 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
3936 	return (B_TRUE);
3937 }
3938 
3939 /*
3940  * Defense for the SYN attack -
3941  * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest
3942  *    one from the list of droppable eagers. This list is a subset of q0.
3943  *    see comments before the definition of MAKE_DROPPABLE().
3944  * 2. Don't drop a SYN request before its first timeout. This gives every
3945  *    request at least til the first timeout to complete its 3-way handshake.
3946  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
3947  *    requests currently on the queue that has timed out. This will be used
3948  *    as an indicator of whether an attack is under way, so that appropriate
3949  *    actions can be taken. (It's incremented in tcp_timer() and decremented
3950  *    either when eager goes into ESTABLISHED, or gets freed up.)
3951  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
3952  *    # of timeout drops back to <= q0len/32 => SYN alert off
3953  */
3954 static boolean_t
3955 tcp_drop_q0(tcp_t *tcp)
3956 {
3957 	tcp_t	*eager;
3958 	mblk_t	*mp;
3959 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3960 
3961 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
3962 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
3963 
3964 	/* Pick oldest eager from the list of droppable eagers */
3965 	eager = tcp->tcp_eager_prev_drop_q0;
3966 
3967 	/* If list is empty. return B_FALSE */
3968 	if (eager == tcp) {
3969 		return (B_FALSE);
3970 	}
3971 
3972 	/* If allocated, the mp will be freed in tcp_clean_death_wrapper() */
3973 	if ((mp = allocb(0, BPRI_HI)) == NULL)
3974 		return (B_FALSE);
3975 
3976 	/*
3977 	 * Take this eager out from the list of droppable eagers since we are
3978 	 * going to drop it.
3979 	 */
3980 	MAKE_UNDROPPABLE(eager);
3981 
3982 	if (tcp->tcp_connp->conn_debug) {
3983 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
3984 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
3985 		    " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0,
3986 		    tcp->tcp_conn_req_cnt_q0,
3987 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
3988 	}
3989 
3990 	BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop);
3991 
3992 	/* Put a reference on the conn as we are enqueueing it in the sqeue */
3993 	CONN_INC_REF(eager->tcp_connp);
3994 
3995 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
3996 	    tcp_clean_death_wrapper, eager->tcp_connp, NULL,
3997 	    SQ_FILL, SQTAG_TCP_DROP_Q0);
3998 
3999 	return (B_TRUE);
4000 }
4001 
4002 /*
4003  * Handle a SYN on an AF_INET6 socket; can be either IPv4 or IPv6
4004  */
4005 static mblk_t *
4006 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
4007     ip_recv_attr_t *ira)
4008 {
4009 	tcp_t 		*ltcp = lconnp->conn_tcp;
4010 	tcp_t		*tcp = connp->conn_tcp;
4011 	mblk_t		*tpi_mp;
4012 	ipha_t		*ipha;
4013 	ip6_t		*ip6h;
4014 	sin6_t 		sin6;
4015 	uint_t		ifindex = ira->ira_ruifindex;
4016 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4017 
4018 	if (ira->ira_flags & IRAF_IS_IPV4) {
4019 		ipha = (ipha_t *)mp->b_rptr;
4020 
4021 		connp->conn_ipversion = IPV4_VERSION;
4022 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6);
4023 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6);
4024 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
4025 
4026 		sin6 = sin6_null;
4027 		sin6.sin6_addr = connp->conn_faddr_v6;
4028 		sin6.sin6_port = connp->conn_fport;
4029 		sin6.sin6_family = AF_INET6;
4030 		sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6,
4031 		    IPCL_ZONEID(lconnp), tcps->tcps_netstack);
4032 
4033 		if (connp->conn_recv_ancillary.crb_recvdstaddr) {
4034 			sin6_t	sin6d;
4035 
4036 			sin6d = sin6_null;
4037 			sin6d.sin6_addr = connp->conn_laddr_v6;
4038 			sin6d.sin6_port = connp->conn_lport;
4039 			sin6d.sin6_family = AF_INET;
4040 			tpi_mp = mi_tpi_extconn_ind(NULL,
4041 			    (char *)&sin6d, sizeof (sin6_t),
4042 			    (char *)&tcp,
4043 			    (t_scalar_t)sizeof (intptr_t),
4044 			    (char *)&sin6d, sizeof (sin6_t),
4045 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4046 		} else {
4047 			tpi_mp = mi_tpi_conn_ind(NULL,
4048 			    (char *)&sin6, sizeof (sin6_t),
4049 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4050 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4051 		}
4052 	} else {
4053 		ip6h = (ip6_t *)mp->b_rptr;
4054 
4055 		connp->conn_ipversion = IPV6_VERSION;
4056 		connp->conn_laddr_v6 = ip6h->ip6_dst;
4057 		connp->conn_faddr_v6 = ip6h->ip6_src;
4058 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
4059 
4060 		sin6 = sin6_null;
4061 		sin6.sin6_addr = connp->conn_faddr_v6;
4062 		sin6.sin6_port = connp->conn_fport;
4063 		sin6.sin6_family = AF_INET6;
4064 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4065 		sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6,
4066 		    IPCL_ZONEID(lconnp), tcps->tcps_netstack);
4067 
4068 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4069 			/* Pass up the scope_id of remote addr */
4070 			sin6.sin6_scope_id = ifindex;
4071 		} else {
4072 			sin6.sin6_scope_id = 0;
4073 		}
4074 		if (connp->conn_recv_ancillary.crb_recvdstaddr) {
4075 			sin6_t	sin6d;
4076 
4077 			sin6d = sin6_null;
4078 			sin6.sin6_addr = connp->conn_laddr_v6;
4079 			sin6d.sin6_port = connp->conn_lport;
4080 			sin6d.sin6_family = AF_INET6;
4081 			if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_laddr_v6))
4082 				sin6d.sin6_scope_id = ifindex;
4083 
4084 			tpi_mp = mi_tpi_extconn_ind(NULL,
4085 			    (char *)&sin6d, sizeof (sin6_t),
4086 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4087 			    (char *)&sin6d, sizeof (sin6_t),
4088 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4089 		} else {
4090 			tpi_mp = mi_tpi_conn_ind(NULL,
4091 			    (char *)&sin6, sizeof (sin6_t),
4092 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4093 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4094 		}
4095 	}
4096 
4097 	tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
4098 	return (tpi_mp);
4099 }
4100 
4101 /* Handle a SYN on an AF_INET socket */
4102 mblk_t *
4103 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp,
4104     ip_recv_attr_t *ira)
4105 {
4106 	tcp_t 		*ltcp = lconnp->conn_tcp;
4107 	tcp_t		*tcp = connp->conn_tcp;
4108 	sin_t		sin;
4109 	mblk_t		*tpi_mp = NULL;
4110 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4111 	ipha_t		*ipha;
4112 
4113 	ASSERT(ira->ira_flags & IRAF_IS_IPV4);
4114 	ipha = (ipha_t *)mp->b_rptr;
4115 
4116 	connp->conn_ipversion = IPV4_VERSION;
4117 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6);
4118 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6);
4119 	connp->conn_saddr_v6 = connp->conn_laddr_v6;
4120 
4121 	sin = sin_null;
4122 	sin.sin_addr.s_addr = connp->conn_faddr_v4;
4123 	sin.sin_port = connp->conn_fport;
4124 	sin.sin_family = AF_INET;
4125 	if (lconnp->conn_recv_ancillary.crb_recvdstaddr) {
4126 		sin_t	sind;
4127 
4128 		sind = sin_null;
4129 		sind.sin_addr.s_addr = connp->conn_laddr_v4;
4130 		sind.sin_port = connp->conn_lport;
4131 		sind.sin_family = AF_INET;
4132 		tpi_mp = mi_tpi_extconn_ind(NULL,
4133 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
4134 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
4135 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4136 	} else {
4137 		tpi_mp = mi_tpi_conn_ind(NULL,
4138 		    (char *)&sin, sizeof (sin_t),
4139 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4140 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4141 	}
4142 
4143 	tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
4144 	return (tpi_mp);
4145 }
4146 
4147 /*
4148  * tcp_get_conn/tcp_free_conn
4149  *
4150  * tcp_get_conn is used to get a clean tcp connection structure.
4151  * It tries to reuse the connections put on the freelist by the
4152  * time_wait_collector failing which it goes to kmem_cache. This
4153  * way has two benefits compared to just allocating from and
4154  * freeing to kmem_cache.
4155  * 1) The time_wait_collector can free (which includes the cleanup)
4156  * outside the squeue. So when the interrupt comes, we have a clean
4157  * connection sitting in the freelist. Obviously, this buys us
4158  * performance.
4159  *
4160  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_input_listener
4161  * has multiple disadvantages - tying up the squeue during alloc.
4162  * But allocating the conn/tcp in IP land is also not the best since
4163  * we can't check the 'q' and 'q0' which are protected by squeue and
4164  * blindly allocate memory which might have to be freed here if we are
4165  * not allowed to accept the connection. By using the freelist and
4166  * putting the conn/tcp back in freelist, we don't pay a penalty for
4167  * allocating memory without checking 'q/q0' and freeing it if we can't
4168  * accept the connection.
4169  *
4170  * Care should be taken to put the conn back in the same squeue's freelist
4171  * from which it was allocated. Best results are obtained if conn is
4172  * allocated from listener's squeue and freed to the same. Time wait
4173  * collector will free up the freelist is the connection ends up sitting
4174  * there for too long.
4175  */
4176 void *
4177 tcp_get_conn(void *arg, tcp_stack_t *tcps)
4178 {
4179 	tcp_t			*tcp = NULL;
4180 	conn_t			*connp = NULL;
4181 	squeue_t		*sqp = (squeue_t *)arg;
4182 	tcp_squeue_priv_t 	*tcp_time_wait;
4183 	netstack_t		*ns;
4184 	mblk_t			*tcp_rsrv_mp = NULL;
4185 
4186 	tcp_time_wait =
4187 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
4188 
4189 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
4190 	tcp = tcp_time_wait->tcp_free_list;
4191 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
4192 	if (tcp != NULL) {
4193 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
4194 		tcp_time_wait->tcp_free_list_cnt--;
4195 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
4196 		tcp->tcp_time_wait_next = NULL;
4197 		connp = tcp->tcp_connp;
4198 		connp->conn_flags |= IPCL_REUSED;
4199 
4200 		ASSERT(tcp->tcp_tcps == NULL);
4201 		ASSERT(connp->conn_netstack == NULL);
4202 		ASSERT(tcp->tcp_rsrv_mp != NULL);
4203 		ns = tcps->tcps_netstack;
4204 		netstack_hold(ns);
4205 		connp->conn_netstack = ns;
4206 		connp->conn_ixa->ixa_ipst = ns->netstack_ip;
4207 		tcp->tcp_tcps = tcps;
4208 		ipcl_globalhash_insert(connp);
4209 
4210 		connp->conn_ixa->ixa_notify_cookie = tcp;
4211 		ASSERT(connp->conn_ixa->ixa_notify == tcp_notify);
4212 		connp->conn_recv = tcp_input_data;
4213 		ASSERT(connp->conn_recvicmp == tcp_icmp_input);
4214 		ASSERT(connp->conn_verifyicmp == tcp_verifyicmp);
4215 		return ((void *)connp);
4216 	}
4217 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
4218 	/*
4219 	 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until
4220 	 * this conn_t/tcp_t is freed at ipcl_conn_destroy().
4221 	 */
4222 	tcp_rsrv_mp = allocb(0, BPRI_HI);
4223 	if (tcp_rsrv_mp == NULL)
4224 		return (NULL);
4225 
4226 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
4227 	    tcps->tcps_netstack)) == NULL) {
4228 		freeb(tcp_rsrv_mp);
4229 		return (NULL);
4230 	}
4231 
4232 	tcp = connp->conn_tcp;
4233 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
4234 	mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL);
4235 
4236 	tcp->tcp_tcps = tcps;
4237 
4238 	connp->conn_recv = tcp_input_data;
4239 	connp->conn_recvicmp = tcp_icmp_input;
4240 	connp->conn_verifyicmp = tcp_verifyicmp;
4241 
4242 	/*
4243 	 * Register tcp_notify to listen to capability changes detected by IP.
4244 	 * This upcall is made in the context of the call to conn_ip_output
4245 	 * thus it is inside the squeue.
4246 	 */
4247 	connp->conn_ixa->ixa_notify = tcp_notify;
4248 	connp->conn_ixa->ixa_notify_cookie = tcp;
4249 
4250 	return ((void *)connp);
4251 }
4252 
4253 /* BEGIN CSTYLED */
4254 /*
4255  *
4256  * The sockfs ACCEPT path:
4257  * =======================
4258  *
4259  * The eager is now established in its own perimeter as soon as SYN is
4260  * received in tcp_input_listener(). When sockfs receives conn_ind, it
4261  * completes the accept processing on the acceptor STREAM. The sending
4262  * of conn_ind part is common for both sockfs listener and a TLI/XTI
4263  * listener but a TLI/XTI listener completes the accept processing
4264  * on the listener perimeter.
4265  *
4266  * Common control flow for 3 way handshake:
4267  * ----------------------------------------
4268  *
4269  * incoming SYN (listener perimeter)	-> tcp_input_listener()
4270  *
4271  * incoming SYN-ACK-ACK (eager perim) 	-> tcp_input_data()
4272  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
4273  *
4274  * Sockfs ACCEPT Path:
4275  * -------------------
4276  *
4277  * open acceptor stream (tcp_open allocates tcp_tli_accept()
4278  * as STREAM entry point)
4279  *
4280  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_tli_accept()
4281  *
4282  * tcp_tli_accept() extracts the eager and makes the q->q_ptr <-> eager
4283  * association (we are not behind eager's squeue but sockfs is protecting us
4284  * and no one knows about this stream yet. The STREAMS entry point q->q_info
4285  * is changed to point at tcp_wput().
4286  *
4287  * tcp_accept_common() sends any deferred eagers via tcp_send_pending() to
4288  * listener (done on listener's perimeter).
4289  *
4290  * tcp_tli_accept() calls tcp_accept_finish() on eagers perimeter to finish
4291  * accept.
4292  *
4293  * TLI/XTI client ACCEPT path:
4294  * ---------------------------
4295  *
4296  * soaccept() sends T_CONN_RES on the listener STREAM.
4297  *
4298  * tcp_tli_accept() -> tcp_accept_swap() complete the processing and send
4299  * a M_SETOPS mblk to eager perimeter to finish accept (tcp_accept_finish()).
4300  *
4301  * Locks:
4302  * ======
4303  *
4304  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
4305  * and listeners->tcp_eager_next_q.
4306  *
4307  * Referencing:
4308  * ============
4309  *
4310  * 1) We start out in tcp_input_listener by eager placing a ref on
4311  * listener and listener adding eager to listeners->tcp_eager_next_q0.
4312  *
4313  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
4314  * doing so we place a ref on the eager. This ref is finally dropped at the
4315  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
4316  * reference is dropped by the squeue framework.
4317  *
4318  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
4319  *
4320  * The reference must be released by the same entity that added the reference
4321  * In the above scheme, the eager is the entity that adds and releases the
4322  * references. Note that tcp_accept_finish executes in the squeue of the eager
4323  * (albeit after it is attached to the acceptor stream). Though 1. executes
4324  * in the listener's squeue, the eager is nascent at this point and the
4325  * reference can be considered to have been added on behalf of the eager.
4326  *
4327  * Eager getting a Reset or listener closing:
4328  * ==========================================
4329  *
4330  * Once the listener and eager are linked, the listener never does the unlink.
4331  * If the listener needs to close, tcp_eager_cleanup() is called which queues
4332  * a message on all eager perimeter. The eager then does the unlink, clears
4333  * any pointers to the listener's queue and drops the reference to the
4334  * listener. The listener waits in tcp_close outside the squeue until its
4335  * refcount has dropped to 1. This ensures that the listener has waited for
4336  * all eagers to clear their association with the listener.
4337  *
4338  * Similarly, if eager decides to go away, it can unlink itself and close.
4339  * When the T_CONN_RES comes down, we check if eager has closed. Note that
4340  * the reference to eager is still valid because of the extra ref we put
4341  * in tcp_send_conn_ind.
4342  *
4343  * Listener can always locate the eager under the protection
4344  * of the listener->tcp_eager_lock, and then do a refhold
4345  * on the eager during the accept processing.
4346  *
4347  * The acceptor stream accesses the eager in the accept processing
4348  * based on the ref placed on eager before sending T_conn_ind.
4349  * The only entity that can negate this refhold is a listener close
4350  * which is mutually exclusive with an active acceptor stream.
4351  *
4352  * Eager's reference on the listener
4353  * ===================================
4354  *
4355  * If the accept happens (even on a closed eager) the eager drops its
4356  * reference on the listener at the start of tcp_accept_finish. If the
4357  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
4358  * the reference is dropped in tcp_closei_local. If the listener closes,
4359  * the reference is dropped in tcp_eager_kill. In all cases the reference
4360  * is dropped while executing in the eager's context (squeue).
4361  */
4362 /* END CSTYLED */
4363 
4364 /* Process the SYN packet, mp, directed at the listener 'tcp' */
4365 
4366 /*
4367  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
4368  * tcp_input_data will not see any packets for listeners since the listener
4369  * has conn_recv set to tcp_input_listener.
4370  */
4371 /* ARGSUSED */
4372 void
4373 tcp_input_listener(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4374 {
4375 	tcpha_t		*tcpha;
4376 	uint32_t	seg_seq;
4377 	tcp_t		*eager;
4378 	int		err;
4379 	conn_t		*econnp = NULL;
4380 	squeue_t	*new_sqp;
4381 	mblk_t		*mp1;
4382 	uint_t 		ip_hdr_len;
4383 	conn_t		*lconnp = (conn_t *)arg;
4384 	tcp_t		*listener = lconnp->conn_tcp;
4385 	tcp_stack_t	*tcps = listener->tcp_tcps;
4386 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
4387 	uint_t		flags;
4388 	mblk_t		*tpi_mp;
4389 	uint_t		ifindex = ira->ira_ruifindex;
4390 
4391 	ip_hdr_len = ira->ira_ip_hdr_length;
4392 	tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len];
4393 	flags = (unsigned int)tcpha->tha_flags & 0xFF;
4394 
4395 	if (!(flags & TH_SYN)) {
4396 		if ((flags & TH_RST) || (flags & TH_URG)) {
4397 			freemsg(mp);
4398 			return;
4399 		}
4400 		if (flags & TH_ACK) {
4401 			/* Note this executes in listener's squeue */
4402 			tcp_xmit_listeners_reset(mp, ira, ipst, lconnp);
4403 			return;
4404 		}
4405 
4406 		freemsg(mp);
4407 		return;
4408 	}
4409 
4410 	if (listener->tcp_state != TCPS_LISTEN)
4411 		goto error2;
4412 
4413 	ASSERT(IPCL_IS_BOUND(lconnp));
4414 
4415 	mutex_enter(&listener->tcp_eager_lock);
4416 	if (listener->tcp_conn_req_cnt_q >= listener->tcp_conn_req_max) {
4417 		mutex_exit(&listener->tcp_eager_lock);
4418 		TCP_STAT(tcps, tcp_listendrop);
4419 		BUMP_MIB(&tcps->tcps_mib, tcpListenDrop);
4420 		if (lconnp->conn_debug) {
4421 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
4422 			    "tcp_input_listener: listen backlog (max=%d) "
4423 			    "overflow (%d pending) on %s",
4424 			    listener->tcp_conn_req_max,
4425 			    listener->tcp_conn_req_cnt_q,
4426 			    tcp_display(listener, NULL, DISP_PORT_ONLY));
4427 		}
4428 		goto error2;
4429 	}
4430 
4431 	if (listener->tcp_conn_req_cnt_q0 >=
4432 	    listener->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) {
4433 		/*
4434 		 * Q0 is full. Drop a pending half-open req from the queue
4435 		 * to make room for the new SYN req. Also mark the time we
4436 		 * drop a SYN.
4437 		 *
4438 		 * A more aggressive defense against SYN attack will
4439 		 * be to set the "tcp_syn_defense" flag now.
4440 		 */
4441 		TCP_STAT(tcps, tcp_listendropq0);
4442 		listener->tcp_last_rcv_lbolt = ddi_get_lbolt64();
4443 		if (!tcp_drop_q0(listener)) {
4444 			mutex_exit(&listener->tcp_eager_lock);
4445 			BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0);
4446 			if (lconnp->conn_debug) {
4447 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
4448 				    "tcp_input_listener: listen half-open "
4449 				    "queue (max=%d) full (%d pending) on %s",
4450 				    tcps->tcps_conn_req_max_q0,
4451 				    listener->tcp_conn_req_cnt_q0,
4452 				    tcp_display(listener, NULL,
4453 				    DISP_PORT_ONLY));
4454 			}
4455 			goto error2;
4456 		}
4457 	}
4458 	mutex_exit(&listener->tcp_eager_lock);
4459 
4460 	/*
4461 	 * IP sets ira_sqp to either the senders conn_sqp (for loopback)
4462 	 * or based on the ring (for packets from GLD). Otherwise it is
4463 	 * set based on lbolt i.e., a somewhat random number.
4464 	 */
4465 	ASSERT(ira->ira_sqp != NULL);
4466 	new_sqp = ira->ira_sqp;
4467 
4468 	econnp = (conn_t *)tcp_get_conn(arg2, tcps);
4469 	if (econnp == NULL)
4470 		goto error2;
4471 
4472 	ASSERT(econnp->conn_netstack == lconnp->conn_netstack);
4473 	econnp->conn_sqp = new_sqp;
4474 	econnp->conn_initial_sqp = new_sqp;
4475 	econnp->conn_ixa->ixa_sqp = new_sqp;
4476 
4477 	econnp->conn_fport = tcpha->tha_lport;
4478 	econnp->conn_lport = tcpha->tha_fport;
4479 
4480 	err = conn_inherit_parent(lconnp, econnp);
4481 	if (err != 0)
4482 		goto error3;
4483 
4484 	ASSERT(OK_32PTR(mp->b_rptr));
4485 	ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION ||
4486 	    IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
4487 
4488 	if (lconnp->conn_family == AF_INET) {
4489 		ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION);
4490 		tpi_mp = tcp_conn_create_v4(lconnp, econnp, mp, ira);
4491 	} else {
4492 		tpi_mp = tcp_conn_create_v6(lconnp, econnp, mp, ira);
4493 	}
4494 
4495 	if (tpi_mp == NULL)
4496 		goto error3;
4497 
4498 	eager = econnp->conn_tcp;
4499 	eager->tcp_detached = B_TRUE;
4500 	SOCK_CONNID_INIT(eager->tcp_connid);
4501 
4502 	tcp_init_values(eager);
4503 
4504 	ASSERT((econnp->conn_ixa->ixa_flags &
4505 	    (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
4506 	    IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)) ==
4507 	    (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
4508 	    IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO));
4509 
4510 	if (!tcps->tcps_dev_flow_ctl)
4511 		econnp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL;
4512 
4513 	/* Prepare for diffing against previous packets */
4514 	eager->tcp_recvifindex = 0;
4515 	eager->tcp_recvhops = 0xffffffffU;
4516 
4517 	if (!(ira->ira_flags & IRAF_IS_IPV4) && econnp->conn_bound_if == 0) {
4518 		if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_faddr_v6) ||
4519 		    IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6)) {
4520 			econnp->conn_incoming_ifindex = ifindex;
4521 			econnp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET;
4522 			econnp->conn_ixa->ixa_scopeid = ifindex;
4523 		}
4524 	}
4525 
4526 	if ((ira->ira_flags & (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS)) ==
4527 	    (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS) &&
4528 	    tcps->tcps_rev_src_routes) {
4529 		ipha_t *ipha = (ipha_t *)mp->b_rptr;
4530 		ip_pkt_t *ipp = &econnp->conn_xmit_ipp;
4531 
4532 		/* Source routing option copyover (reverse it) */
4533 		err = ip_find_hdr_v4(ipha, ipp, B_TRUE);
4534 		if (err != 0) {
4535 			freemsg(tpi_mp);
4536 			goto error3;
4537 		}
4538 		ip_pkt_source_route_reverse_v4(ipp);
4539 	}
4540 
4541 	ASSERT(eager->tcp_conn.tcp_eager_conn_ind == NULL);
4542 	ASSERT(!eager->tcp_tconnind_started);
4543 	/*
4544 	 * If the SYN came with a credential, it's a loopback packet or a
4545 	 * labeled packet; attach the credential to the TPI message.
4546 	 */
4547 	if (ira->ira_cred != NULL)
4548 		mblk_setcred(tpi_mp, ira->ira_cred, ira->ira_cpid);
4549 
4550 	eager->tcp_conn.tcp_eager_conn_ind = tpi_mp;
4551 
4552 	/* Inherit the listener's SSL protection state */
4553 	if ((eager->tcp_kssl_ent = listener->tcp_kssl_ent) != NULL) {
4554 		kssl_hold_ent(eager->tcp_kssl_ent);
4555 		eager->tcp_kssl_pending = B_TRUE;
4556 	}
4557 
4558 	/* Inherit the listener's non-STREAMS flag */
4559 	if (IPCL_IS_NONSTR(lconnp)) {
4560 		econnp->conn_flags |= IPCL_NONSTR;
4561 	}
4562 
4563 	ASSERT(eager->tcp_ordrel_mp == NULL);
4564 
4565 	if (!IPCL_IS_NONSTR(econnp)) {
4566 		/*
4567 		 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that
4568 		 * at close time, we will always have that to send up.
4569 		 * Otherwise, we need to do special handling in case the
4570 		 * allocation fails at that time.
4571 		 */
4572 		if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL)
4573 			goto error3;
4574 	}
4575 	/*
4576 	 * Now that the IP addresses and ports are setup in econnp we
4577 	 * can do the IPsec policy work.
4578 	 */
4579 	if (ira->ira_flags & IRAF_IPSEC_SECURE) {
4580 		if (lconnp->conn_policy != NULL) {
4581 			/*
4582 			 * Inherit the policy from the listener; use
4583 			 * actions from ira
4584 			 */
4585 			if (!ip_ipsec_policy_inherit(econnp, lconnp, ira)) {
4586 				CONN_DEC_REF(econnp);
4587 				freemsg(mp);
4588 				goto error3;
4589 			}
4590 		}
4591 	}
4592 
4593 	/* Inherit various TCP parameters from the listener */
4594 	eager->tcp_naglim = listener->tcp_naglim;
4595 	eager->tcp_first_timer_threshold = listener->tcp_first_timer_threshold;
4596 	eager->tcp_second_timer_threshold =
4597 	    listener->tcp_second_timer_threshold;
4598 	eager->tcp_first_ctimer_threshold =
4599 	    listener->tcp_first_ctimer_threshold;
4600 	eager->tcp_second_ctimer_threshold =
4601 	    listener->tcp_second_ctimer_threshold;
4602 
4603 	/*
4604 	 * tcp_set_destination() may set tcp_rwnd according to the route
4605 	 * metrics. If it does not, the eager's receive window will be set
4606 	 * to the listener's receive window later in this function.
4607 	 */
4608 	eager->tcp_rwnd = 0;
4609 
4610 	/*
4611 	 * Inherit listener's tcp_init_cwnd.  Need to do this before
4612 	 * calling tcp_process_options() which set the initial cwnd.
4613 	 */
4614 	eager->tcp_init_cwnd = listener->tcp_init_cwnd;
4615 
4616 	if (is_system_labeled()) {
4617 		ip_xmit_attr_t *ixa = econnp->conn_ixa;
4618 
4619 		ASSERT(ira->ira_tsl != NULL);
4620 		/* Discard any old label */
4621 		if (ixa->ixa_free_flags & IXA_FREE_TSL) {
4622 			ASSERT(ixa->ixa_tsl != NULL);
4623 			label_rele(ixa->ixa_tsl);
4624 			ixa->ixa_free_flags &= ~IXA_FREE_TSL;
4625 			ixa->ixa_tsl = NULL;
4626 		}
4627 		if ((lconnp->conn_mlp_type != mlptSingle ||
4628 		    lconnp->conn_mac_mode != CONN_MAC_DEFAULT) &&
4629 		    ira->ira_tsl != NULL) {
4630 			/*
4631 			 * If this is an MLP connection or a MAC-Exempt
4632 			 * connection with an unlabeled node, packets are to be
4633 			 * exchanged using the security label of the received
4634 			 * SYN packet instead of the server application's label.
4635 			 * tsol_check_dest called from ip_set_destination
4636 			 * might later update TSF_UNLABELED by replacing
4637 			 * ixa_tsl with a new label.
4638 			 */
4639 			label_hold(ira->ira_tsl);
4640 			ip_xmit_attr_replace_tsl(ixa, ira->ira_tsl);
4641 			DTRACE_PROBE2(mlp_syn_accept, conn_t *,
4642 			    econnp, ts_label_t *, ixa->ixa_tsl)
4643 		} else {
4644 			ixa->ixa_tsl = crgetlabel(econnp->conn_cred);
4645 			DTRACE_PROBE2(syn_accept, conn_t *,
4646 			    econnp, ts_label_t *, ixa->ixa_tsl)
4647 		}
4648 		/*
4649 		 * conn_connect() called from tcp_set_destination will verify
4650 		 * the destination is allowed to receive packets at the
4651 		 * security label of the SYN-ACK we are generating. As part of
4652 		 * that, tsol_check_dest() may create a new effective label for
4653 		 * this connection.
4654 		 * Finally conn_connect() will call conn_update_label.
4655 		 * All that remains for TCP to do is to call
4656 		 * conn_build_hdr_template which is done as part of
4657 		 * tcp_set_destination.
4658 		 */
4659 	}
4660 
4661 	/*
4662 	 * Since we will clear tcp_listener before we clear tcp_detached
4663 	 * in the accept code we need tcp_hard_binding aka tcp_accept_inprogress
4664 	 * so we can tell a TCP_DETACHED_NONEAGER apart.
4665 	 */
4666 	eager->tcp_hard_binding = B_TRUE;
4667 
4668 	tcp_bind_hash_insert(&tcps->tcps_bind_fanout[
4669 	    TCP_BIND_HASH(econnp->conn_lport)], eager, 0);
4670 
4671 	CL_INET_CONNECT(econnp, B_FALSE, err);
4672 	if (err != 0) {
4673 		tcp_bind_hash_remove(eager);
4674 		goto error3;
4675 	}
4676 
4677 	/*
4678 	 * No need to check for multicast destination since ip will only pass
4679 	 * up multicasts to those that have expressed interest
4680 	 * TODO: what about rejecting broadcasts?
4681 	 * Also check that source is not a multicast or broadcast address.
4682 	 */
4683 	eager->tcp_state = TCPS_SYN_RCVD;
4684 	SOCK_CONNID_BUMP(eager->tcp_connid);
4685 
4686 	/*
4687 	 * Adapt our mss, ttl, ... based on the remote address.
4688 	 */
4689 
4690 	if (tcp_set_destination(eager) != 0) {
4691 		BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
4692 		/* Undo the bind_hash_insert */
4693 		tcp_bind_hash_remove(eager);
4694 		goto error3;
4695 	}
4696 
4697 	/* Process all TCP options. */
4698 	tcp_process_options(eager, tcpha);
4699 
4700 	/* Is the other end ECN capable? */
4701 	if (tcps->tcps_ecn_permitted >= 1 &&
4702 	    (tcpha->tha_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
4703 		eager->tcp_ecn_ok = B_TRUE;
4704 	}
4705 
4706 	/*
4707 	 * The listener's conn_rcvbuf should be the default window size or a
4708 	 * window size changed via SO_RCVBUF option. First round up the
4709 	 * eager's tcp_rwnd to the nearest MSS. Then find out the window
4710 	 * scale option value if needed. Call tcp_rwnd_set() to finish the
4711 	 * setting.
4712 	 *
4713 	 * Note if there is a rpipe metric associated with the remote host,
4714 	 * we should not inherit receive window size from listener.
4715 	 */
4716 	eager->tcp_rwnd = MSS_ROUNDUP(
4717 	    (eager->tcp_rwnd == 0 ? econnp->conn_rcvbuf :
4718 	    eager->tcp_rwnd), eager->tcp_mss);
4719 	if (eager->tcp_snd_ws_ok)
4720 		tcp_set_ws_value(eager);
4721 	/*
4722 	 * Note that this is the only place tcp_rwnd_set() is called for
4723 	 * accepting a connection.  We need to call it here instead of
4724 	 * after the 3-way handshake because we need to tell the other
4725 	 * side our rwnd in the SYN-ACK segment.
4726 	 */
4727 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
4728 
4729 	ASSERT(eager->tcp_connp->conn_rcvbuf != 0 &&
4730 	    eager->tcp_connp->conn_rcvbuf == eager->tcp_rwnd);
4731 
4732 	ASSERT(econnp->conn_rcvbuf != 0 &&
4733 	    econnp->conn_rcvbuf == eager->tcp_rwnd);
4734 
4735 	/* Put a ref on the listener for the eager. */
4736 	CONN_INC_REF(lconnp);
4737 	mutex_enter(&listener->tcp_eager_lock);
4738 	listener->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
4739 	eager->tcp_eager_next_q0 = listener->tcp_eager_next_q0;
4740 	listener->tcp_eager_next_q0 = eager;
4741 	eager->tcp_eager_prev_q0 = listener;
4742 
4743 	/* Set tcp_listener before adding it to tcp_conn_fanout */
4744 	eager->tcp_listener = listener;
4745 	eager->tcp_saved_listener = listener;
4746 
4747 	/*
4748 	 * Tag this detached tcp vector for later retrieval
4749 	 * by our listener client in tcp_accept().
4750 	 */
4751 	eager->tcp_conn_req_seqnum = listener->tcp_conn_req_seqnum;
4752 	listener->tcp_conn_req_cnt_q0++;
4753 	if (++listener->tcp_conn_req_seqnum == -1) {
4754 		/*
4755 		 * -1 is "special" and defined in TPI as something
4756 		 * that should never be used in T_CONN_IND
4757 		 */
4758 		++listener->tcp_conn_req_seqnum;
4759 	}
4760 	mutex_exit(&listener->tcp_eager_lock);
4761 
4762 	if (listener->tcp_syn_defense) {
4763 		/* Don't drop the SYN that comes from a good IP source */
4764 		ipaddr_t *addr_cache;
4765 
4766 		addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
4767 		if (addr_cache != NULL && econnp->conn_faddr_v4 ==
4768 		    addr_cache[IP_ADDR_CACHE_HASH(econnp->conn_faddr_v4)]) {
4769 			eager->tcp_dontdrop = B_TRUE;
4770 		}
4771 	}
4772 
4773 	/*
4774 	 * We need to insert the eager in its own perimeter but as soon
4775 	 * as we do that, we expose the eager to the classifier and
4776 	 * should not touch any field outside the eager's perimeter.
4777 	 * So do all the work necessary before inserting the eager
4778 	 * in its own perimeter. Be optimistic that conn_connect()
4779 	 * will succeed but undo everything if it fails.
4780 	 */
4781 	seg_seq = ntohl(tcpha->tha_seq);
4782 	eager->tcp_irs = seg_seq;
4783 	eager->tcp_rack = seg_seq;
4784 	eager->tcp_rnxt = seg_seq + 1;
4785 	eager->tcp_tcpha->tha_ack = htonl(eager->tcp_rnxt);
4786 	BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens);
4787 	eager->tcp_state = TCPS_SYN_RCVD;
4788 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
4789 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
4790 	if (mp1 == NULL) {
4791 		/*
4792 		 * Increment the ref count as we are going to
4793 		 * enqueueing an mp in squeue
4794 		 */
4795 		CONN_INC_REF(econnp);
4796 		goto error;
4797 	}
4798 
4799 	/*
4800 	 * We need to start the rto timer. In normal case, we start
4801 	 * the timer after sending the packet on the wire (or at
4802 	 * least believing that packet was sent by waiting for
4803 	 * conn_ip_output() to return). Since this is the first packet
4804 	 * being sent on the wire for the eager, our initial tcp_rto
4805 	 * is at least tcp_rexmit_interval_min which is a fairly
4806 	 * large value to allow the algorithm to adjust slowly to large
4807 	 * fluctuations of RTT during first few transmissions.
4808 	 *
4809 	 * Starting the timer first and then sending the packet in this
4810 	 * case shouldn't make much difference since tcp_rexmit_interval_min
4811 	 * is of the order of several 100ms and starting the timer
4812 	 * first and then sending the packet will result in difference
4813 	 * of few micro seconds.
4814 	 *
4815 	 * Without this optimization, we are forced to hold the fanout
4816 	 * lock across the ipcl_bind_insert() and sending the packet
4817 	 * so that we don't race against an incoming packet (maybe RST)
4818 	 * for this eager.
4819 	 *
4820 	 * It is necessary to acquire an extra reference on the eager
4821 	 * at this point and hold it until after tcp_send_data() to
4822 	 * ensure against an eager close race.
4823 	 */
4824 
4825 	CONN_INC_REF(econnp);
4826 
4827 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
4828 
4829 	/*
4830 	 * Insert the eager in its own perimeter now. We are ready to deal
4831 	 * with any packets on eager.
4832 	 */
4833 	if (ipcl_conn_insert(econnp) != 0)
4834 		goto error;
4835 
4836 	/*
4837 	 * Send the SYN-ACK. Can't use tcp_send_data since we can't update
4838 	 * pmtu etc; we are not on the eager's squeue
4839 	 */
4840 	ASSERT(econnp->conn_ixa->ixa_notify_cookie == econnp->conn_tcp);
4841 	(void) conn_ip_output(mp1, econnp->conn_ixa);
4842 	CONN_DEC_REF(econnp);
4843 	freemsg(mp);
4844 
4845 	return;
4846 error:
4847 	freemsg(mp1);
4848 	eager->tcp_closemp_used = B_TRUE;
4849 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
4850 	mp1 = &eager->tcp_closemp;
4851 	SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill,
4852 	    econnp, NULL, SQ_FILL, SQTAG_TCP_CONN_REQ_2);
4853 
4854 	/*
4855 	 * If a connection already exists, send the mp to that connections so
4856 	 * that it can be appropriately dealt with.
4857 	 */
4858 	ipst = tcps->tcps_netstack->netstack_ip;
4859 
4860 	if ((econnp = ipcl_classify(mp, ira, ipst)) != NULL) {
4861 		if (!IPCL_IS_CONNECTED(econnp)) {
4862 			/*
4863 			 * Something bad happened. ipcl_conn_insert()
4864 			 * failed because a connection already existed
4865 			 * in connected hash but we can't find it
4866 			 * anymore (someone blew it away). Just
4867 			 * free this message and hopefully remote
4868 			 * will retransmit at which time the SYN can be
4869 			 * treated as a new connection or dealth with
4870 			 * a TH_RST if a connection already exists.
4871 			 */
4872 			CONN_DEC_REF(econnp);
4873 			freemsg(mp);
4874 		} else {
4875 			SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, tcp_input_data,
4876 			    econnp, ira, SQ_FILL, SQTAG_TCP_CONN_REQ_1);
4877 		}
4878 	} else {
4879 		/* Nobody wants this packet */
4880 		freemsg(mp);
4881 	}
4882 	return;
4883 error3:
4884 	CONN_DEC_REF(econnp);
4885 error2:
4886 	freemsg(mp);
4887 }
4888 
4889 /*
4890  * In an ideal case of vertical partition in NUMA architecture, its
4891  * beneficial to have the listener and all the incoming connections
4892  * tied to the same squeue. The other constraint is that incoming
4893  * connections should be tied to the squeue attached to interrupted
4894  * CPU for obvious locality reason so this leaves the listener to
4895  * be tied to the same squeue. Our only problem is that when listener
4896  * is binding, the CPU that will get interrupted by the NIC whose
4897  * IP address the listener is binding to is not even known. So
4898  * the code below allows us to change that binding at the time the
4899  * CPU is interrupted by virtue of incoming connection's squeue.
4900  *
4901  * This is usefull only in case of a listener bound to a specific IP
4902  * address. For other kind of listeners, they get bound the
4903  * very first time and there is no attempt to rebind them.
4904  */
4905 void
4906 tcp_input_listener_unbound(void *arg, mblk_t *mp, void *arg2,
4907     ip_recv_attr_t *ira)
4908 {
4909 	conn_t		*connp = (conn_t *)arg;
4910 	squeue_t	*sqp = (squeue_t *)arg2;
4911 	squeue_t	*new_sqp;
4912 	uint32_t	conn_flags;
4913 
4914 	/*
4915 	 * IP sets ira_sqp to either the senders conn_sqp (for loopback)
4916 	 * or based on the ring (for packets from GLD). Otherwise it is
4917 	 * set based on lbolt i.e., a somewhat random number.
4918 	 */
4919 	ASSERT(ira->ira_sqp != NULL);
4920 	new_sqp = ira->ira_sqp;
4921 
4922 	if (connp->conn_fanout == NULL)
4923 		goto done;
4924 
4925 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
4926 		mutex_enter(&connp->conn_fanout->connf_lock);
4927 		mutex_enter(&connp->conn_lock);
4928 		/*
4929 		 * No one from read or write side can access us now
4930 		 * except for already queued packets on this squeue.
4931 		 * But since we haven't changed the squeue yet, they
4932 		 * can't execute. If they are processed after we have
4933 		 * changed the squeue, they are sent back to the
4934 		 * correct squeue down below.
4935 		 * But a listner close can race with processing of
4936 		 * incoming SYN. If incoming SYN processing changes
4937 		 * the squeue then the listener close which is waiting
4938 		 * to enter the squeue would operate on the wrong
4939 		 * squeue. Hence we don't change the squeue here unless
4940 		 * the refcount is exactly the minimum refcount. The
4941 		 * minimum refcount of 4 is counted as - 1 each for
4942 		 * TCP and IP, 1 for being in the classifier hash, and
4943 		 * 1 for the mblk being processed.
4944 		 */
4945 
4946 		if (connp->conn_ref != 4 ||
4947 		    connp->conn_tcp->tcp_state != TCPS_LISTEN) {
4948 			mutex_exit(&connp->conn_lock);
4949 			mutex_exit(&connp->conn_fanout->connf_lock);
4950 			goto done;
4951 		}
4952 		if (connp->conn_sqp != new_sqp) {
4953 			while (connp->conn_sqp != new_sqp)
4954 				(void) casptr(&connp->conn_sqp, sqp, new_sqp);
4955 			/* No special MT issues for outbound ixa_sqp hint */
4956 			connp->conn_ixa->ixa_sqp = new_sqp;
4957 		}
4958 
4959 		do {
4960 			conn_flags = connp->conn_flags;
4961 			conn_flags |= IPCL_FULLY_BOUND;
4962 			(void) cas32(&connp->conn_flags, connp->conn_flags,
4963 			    conn_flags);
4964 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
4965 
4966 		mutex_exit(&connp->conn_fanout->connf_lock);
4967 		mutex_exit(&connp->conn_lock);
4968 
4969 		/*
4970 		 * Assume we have picked a good squeue for the listener. Make
4971 		 * subsequent SYNs not try to change the squeue.
4972 		 */
4973 		connp->conn_recv = tcp_input_listener;
4974 	}
4975 
4976 done:
4977 	if (connp->conn_sqp != sqp) {
4978 		CONN_INC_REF(connp);
4979 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp,
4980 		    ira, SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND);
4981 	} else {
4982 		tcp_input_listener(connp, mp, sqp, ira);
4983 	}
4984 }
4985 
4986 /*
4987  * Successful connect request processing begins when our client passes
4988  * a T_CONN_REQ message into tcp_wput(), which performs function calls into
4989  * IP and the passes a T_OK_ACK (or T_ERROR_ACK upstream).
4990  *
4991  * After various error checks are completed, tcp_tpi_connect() lays
4992  * the target address and port into the composite header template.
4993  * Then we ask IP for information, including a source address if we didn't
4994  * already have one. Finally we prepare to send the SYN packet, and then
4995  * send up the T_OK_ACK reply message.
4996  */
4997 static void
4998 tcp_tpi_connect(tcp_t *tcp, mblk_t *mp)
4999 {
5000 	sin_t		*sin;
5001 	struct T_conn_req	*tcr;
5002 	struct sockaddr	*sa;
5003 	socklen_t	len;
5004 	int		error;
5005 	cred_t		*cr;
5006 	pid_t		cpid;
5007 	conn_t		*connp = tcp->tcp_connp;
5008 	queue_t		*q = connp->conn_wq;
5009 
5010 	/*
5011 	 * All Solaris components should pass a db_credp
5012 	 * for this TPI message, hence we ASSERT.
5013 	 * But in case there is some other M_PROTO that looks
5014 	 * like a TPI message sent by some other kernel
5015 	 * component, we check and return an error.
5016 	 */
5017 	cr = msg_getcred(mp, &cpid);
5018 	ASSERT(cr != NULL);
5019 	if (cr == NULL) {
5020 		tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
5021 		return;
5022 	}
5023 
5024 	tcr = (struct T_conn_req *)mp->b_rptr;
5025 
5026 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
5027 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
5028 		tcp_err_ack(tcp, mp, TPROTO, 0);
5029 		return;
5030 	}
5031 
5032 	/*
5033 	 * Pre-allocate the T_ordrel_ind mblk so that at close time, we
5034 	 * will always have that to send up.  Otherwise, we need to do
5035 	 * special handling in case the allocation fails at that time.
5036 	 * If the end point is TPI, the tcp_t can be reused and the
5037 	 * tcp_ordrel_mp may be allocated already.
5038 	 */
5039 	if (tcp->tcp_ordrel_mp == NULL) {
5040 		if ((tcp->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) {
5041 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
5042 			return;
5043 		}
5044 	}
5045 
5046 	/*
5047 	 * Determine packet type based on type of address passed in
5048 	 * the request should contain an IPv4 or IPv6 address.
5049 	 * Make sure that address family matches the type of
5050 	 * family of the address passed down.
5051 	 */
5052 	switch (tcr->DEST_length) {
5053 	default:
5054 		tcp_err_ack(tcp, mp, TBADADDR, 0);
5055 		return;
5056 
5057 	case (sizeof (sin_t) - sizeof (sin->sin_zero)): {
5058 		/*
5059 		 * XXX: The check for valid DEST_length was not there
5060 		 * in earlier releases and some buggy
5061 		 * TLI apps (e.g Sybase) got away with not feeding
5062 		 * in sin_zero part of address.
5063 		 * We allow that bug to keep those buggy apps humming.
5064 		 * Test suites require the check on DEST_length.
5065 		 * We construct a new mblk with valid DEST_length
5066 		 * free the original so the rest of the code does
5067 		 * not have to keep track of this special shorter
5068 		 * length address case.
5069 		 */
5070 		mblk_t *nmp;
5071 		struct T_conn_req *ntcr;
5072 		sin_t *nsin;
5073 
5074 		nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) +
5075 		    tcr->OPT_length, BPRI_HI);
5076 		if (nmp == NULL) {
5077 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
5078 			return;
5079 		}
5080 		ntcr = (struct T_conn_req *)nmp->b_rptr;
5081 		bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */
5082 		ntcr->PRIM_type = T_CONN_REQ;
5083 		ntcr->DEST_length = sizeof (sin_t);
5084 		ntcr->DEST_offset = sizeof (struct T_conn_req);
5085 
5086 		nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset);
5087 		*nsin = sin_null;
5088 		/* Get pointer to shorter address to copy from original mp */
5089 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
5090 		    tcr->DEST_length); /* extract DEST_length worth of sin_t */
5091 		if (sin == NULL || !OK_32PTR((char *)sin)) {
5092 			freemsg(nmp);
5093 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
5094 			return;
5095 		}
5096 		nsin->sin_family = sin->sin_family;
5097 		nsin->sin_port = sin->sin_port;
5098 		nsin->sin_addr = sin->sin_addr;
5099 		/* Note:nsin->sin_zero zero-fill with sin_null assign above */
5100 		nmp->b_wptr = (uchar_t *)&nsin[1];
5101 		if (tcr->OPT_length != 0) {
5102 			ntcr->OPT_length = tcr->OPT_length;
5103 			ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr;
5104 			bcopy((uchar_t *)tcr + tcr->OPT_offset,
5105 			    (uchar_t *)ntcr + ntcr->OPT_offset,
5106 			    tcr->OPT_length);
5107 			nmp->b_wptr += tcr->OPT_length;
5108 		}
5109 		freemsg(mp);	/* original mp freed */
5110 		mp = nmp;	/* re-initialize original variables */
5111 		tcr = ntcr;
5112 	}
5113 	/* FALLTHRU */
5114 
5115 	case sizeof (sin_t):
5116 		sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset,
5117 		    sizeof (sin_t));
5118 		len = sizeof (sin_t);
5119 		break;
5120 
5121 	case sizeof (sin6_t):
5122 		sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset,
5123 		    sizeof (sin6_t));
5124 		len = sizeof (sin6_t);
5125 		break;
5126 	}
5127 
5128 	error = proto_verify_ip_addr(connp->conn_family, sa, len);
5129 	if (error != 0) {
5130 		tcp_err_ack(tcp, mp, TSYSERR, error);
5131 		return;
5132 	}
5133 
5134 	/*
5135 	 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we
5136 	 * should key on their sequence number and cut them loose.
5137 	 */
5138 
5139 	/*
5140 	 * If options passed in, feed it for verification and handling
5141 	 */
5142 	if (tcr->OPT_length != 0) {
5143 		mblk_t	*ok_mp;
5144 		mblk_t	*discon_mp;
5145 		mblk_t  *conn_opts_mp;
5146 		int t_error, sys_error, do_disconnect;
5147 
5148 		conn_opts_mp = NULL;
5149 
5150 		if (tcp_conprim_opt_process(tcp, mp,
5151 		    &do_disconnect, &t_error, &sys_error) < 0) {
5152 			if (do_disconnect) {
5153 				ASSERT(t_error == 0 && sys_error == 0);
5154 				discon_mp = mi_tpi_discon_ind(NULL,
5155 				    ECONNREFUSED, 0);
5156 				if (!discon_mp) {
5157 					tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
5158 					    TSYSERR, ENOMEM);
5159 					return;
5160 				}
5161 				ok_mp = mi_tpi_ok_ack_alloc(mp);
5162 				if (!ok_mp) {
5163 					tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
5164 					    TSYSERR, ENOMEM);
5165 					return;
5166 				}
5167 				qreply(q, ok_mp);
5168 				qreply(q, discon_mp); /* no flush! */
5169 			} else {
5170 				ASSERT(t_error != 0);
5171 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error,
5172 				    sys_error);
5173 			}
5174 			return;
5175 		}
5176 		/*
5177 		 * Success in setting options, the mp option buffer represented
5178 		 * by OPT_length/offset has been potentially modified and
5179 		 * contains results of option processing. We copy it in
5180 		 * another mp to save it for potentially influencing returning
5181 		 * it in T_CONN_CONN.
5182 		 */
5183 		if (tcr->OPT_length != 0) { /* there are resulting options */
5184 			conn_opts_mp = copyb(mp);
5185 			if (!conn_opts_mp) {
5186 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
5187 				    TSYSERR, ENOMEM);
5188 				return;
5189 			}
5190 			ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL);
5191 			tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp;
5192 			/*
5193 			 * Note:
5194 			 * These resulting option negotiation can include any
5195 			 * end-to-end negotiation options but there no such
5196 			 * thing (yet?) in our TCP/IP.
5197 			 */
5198 		}
5199 	}
5200 
5201 	/* call the non-TPI version */
5202 	error = tcp_do_connect(tcp->tcp_connp, sa, len, cr, cpid);
5203 	if (error < 0) {
5204 		mp = mi_tpi_err_ack_alloc(mp, -error, 0);
5205 	} else if (error > 0) {
5206 		mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error);
5207 	} else {
5208 		mp = mi_tpi_ok_ack_alloc(mp);
5209 	}
5210 
5211 	/*
5212 	 * Note: Code below is the "failure" case
5213 	 */
5214 	/* return error ack and blow away saved option results if any */
5215 connect_failed:
5216 	if (mp != NULL)
5217 		putnext(connp->conn_rq, mp);
5218 	else {
5219 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
5220 		    TSYSERR, ENOMEM);
5221 	}
5222 }
5223 
5224 /*
5225  * Handle connect to IPv4 destinations, including connections for AF_INET6
5226  * sockets connecting to IPv4 mapped IPv6 destinations.
5227  * Returns zero if OK, a positive errno, or a negative TLI error.
5228  */
5229 static int
5230 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport,
5231     uint_t srcid)
5232 {
5233 	ipaddr_t 	dstaddr = *dstaddrp;
5234 	uint16_t 	lport;
5235 	conn_t		*connp = tcp->tcp_connp;
5236 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5237 	int		error;
5238 
5239 	ASSERT(connp->conn_ipversion == IPV4_VERSION);
5240 
5241 	/* Check for attempt to connect to INADDR_ANY */
5242 	if (dstaddr == INADDR_ANY)  {
5243 		/*
5244 		 * SunOS 4.x and 4.3 BSD allow an application
5245 		 * to connect a TCP socket to INADDR_ANY.
5246 		 * When they do this, the kernel picks the
5247 		 * address of one interface and uses it
5248 		 * instead.  The kernel usually ends up
5249 		 * picking the address of the loopback
5250 		 * interface.  This is an undocumented feature.
5251 		 * However, we provide the same thing here
5252 		 * in order to have source and binary
5253 		 * compatibility with SunOS 4.x.
5254 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
5255 		 * generate the T_CONN_CON.
5256 		 */
5257 		dstaddr = htonl(INADDR_LOOPBACK);
5258 		*dstaddrp = dstaddr;
5259 	}
5260 
5261 	/* Handle __sin6_src_id if socket not bound to an IP address */
5262 	if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) {
5263 		ip_srcid_find_id(srcid, &connp->conn_laddr_v6,
5264 		    IPCL_ZONEID(connp), tcps->tcps_netstack);
5265 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
5266 	}
5267 
5268 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6);
5269 	connp->conn_fport = dstport;
5270 
5271 	/*
5272 	 * At this point the remote destination address and remote port fields
5273 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
5274 	 * have to see which state tcp was in so we can take appropriate action.
5275 	 */
5276 	if (tcp->tcp_state == TCPS_IDLE) {
5277 		/*
5278 		 * We support a quick connect capability here, allowing
5279 		 * clients to transition directly from IDLE to SYN_SENT
5280 		 * tcp_bindi will pick an unused port, insert the connection
5281 		 * in the bind hash and transition to BOUND state.
5282 		 */
5283 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
5284 		    tcp, B_TRUE);
5285 		lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE,
5286 		    B_FALSE, B_FALSE);
5287 		if (lport == 0)
5288 			return (-TNOADDR);
5289 	}
5290 
5291 	/*
5292 	 * Lookup the route to determine a source address and the uinfo.
5293 	 * If there was a source route we have tcp_ipha->ipha_dst as the first
5294 	 * hop.
5295 	 * Setup TCP parameters based on the metrics/DCE.
5296 	 */
5297 	error = tcp_set_destination(tcp);
5298 	if (error != 0)
5299 		return (error);
5300 
5301 	/*
5302 	 * Don't let an endpoint connect to itself.
5303 	 */
5304 	if (connp->conn_faddr_v4 == connp->conn_laddr_v4 &&
5305 	    connp->conn_fport == connp->conn_lport)
5306 		return (-TBADADDR);
5307 
5308 	tcp->tcp_state = TCPS_SYN_SENT;
5309 
5310 	return (ipcl_conn_insert_v4(connp));
5311 }
5312 
5313 /*
5314  * Handle connect to IPv6 destinations.
5315  * Returns zero if OK, a positive errno, or a negative TLI error.
5316  */
5317 static int
5318 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport,
5319     uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
5320 {
5321 	uint16_t 	lport;
5322 	conn_t		*connp = tcp->tcp_connp;
5323 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5324 	int		error;
5325 
5326 	ASSERT(connp->conn_family == AF_INET6);
5327 
5328 	/*
5329 	 * If we're here, it means that the destination address is a native
5330 	 * IPv6 address.  Return an error if conn_ipversion is not IPv6.  A
5331 	 * reason why it might not be IPv6 is if the socket was bound to an
5332 	 * IPv4-mapped IPv6 address.
5333 	 */
5334 	if (connp->conn_ipversion != IPV6_VERSION)
5335 		return (-TBADADDR);
5336 
5337 	/*
5338 	 * Interpret a zero destination to mean loopback.
5339 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
5340 	 * generate the T_CONN_CON.
5341 	 */
5342 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp))
5343 		*dstaddrp = ipv6_loopback;
5344 
5345 	/* Handle __sin6_src_id if socket not bound to an IP address */
5346 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) {
5347 		ip_srcid_find_id(srcid, &connp->conn_laddr_v6,
5348 		    IPCL_ZONEID(connp), tcps->tcps_netstack);
5349 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
5350 	}
5351 
5352 	/*
5353 	 * Take care of the scope_id now.
5354 	 */
5355 	if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
5356 		connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET;
5357 		connp->conn_ixa->ixa_scopeid = scope_id;
5358 	} else {
5359 		connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET;
5360 	}
5361 
5362 	connp->conn_flowinfo = flowinfo;
5363 	connp->conn_faddr_v6 = *dstaddrp;
5364 	connp->conn_fport = dstport;
5365 
5366 	/*
5367 	 * At this point the remote destination address and remote port fields
5368 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
5369 	 * have to see which state tcp was in so we can take appropriate action.
5370 	 */
5371 	if (tcp->tcp_state == TCPS_IDLE) {
5372 		/*
5373 		 * We support a quick connect capability here, allowing
5374 		 * clients to transition directly from IDLE to SYN_SENT
5375 		 * tcp_bindi will pick an unused port, insert the connection
5376 		 * in the bind hash and transition to BOUND state.
5377 		 */
5378 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
5379 		    tcp, B_TRUE);
5380 		lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE,
5381 		    B_FALSE, B_FALSE);
5382 		if (lport == 0)
5383 			return (-TNOADDR);
5384 	}
5385 
5386 	/*
5387 	 * Lookup the route to determine a source address and the uinfo.
5388 	 * If there was a source route we have tcp_ip6h->ip6_dst as the first
5389 	 * hop.
5390 	 * Setup TCP parameters based on the metrics/DCE.
5391 	 */
5392 	error = tcp_set_destination(tcp);
5393 	if (error != 0)
5394 		return (error);
5395 
5396 	/*
5397 	 * Don't let an endpoint connect to itself.
5398 	 */
5399 	if (IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &connp->conn_laddr_v6) &&
5400 	    connp->conn_fport == connp->conn_lport)
5401 		return (-TBADADDR);
5402 
5403 	tcp->tcp_state = TCPS_SYN_SENT;
5404 
5405 	return (ipcl_conn_insert_v6(connp));
5406 }
5407 
5408 /*
5409  * Disconnect
5410  * Note that unlike other functions this returns a positive tli error
5411  * when it fails; it never returns an errno.
5412  */
5413 static int
5414 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum)
5415 {
5416 	tcp_t	*ltcp = NULL;
5417 	conn_t		*lconnp;
5418 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5419 	conn_t		*connp = tcp->tcp_connp;
5420 
5421 	/*
5422 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
5423 	 * when the stream is in BOUND state. Do not send a reset,
5424 	 * since the destination IP address is not valid, and it can
5425 	 * be the initialized value of all zeros (broadcast address).
5426 	 */
5427 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) {
5428 		if (connp->conn_debug) {
5429 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
5430 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
5431 		}
5432 		return (TOUTSTATE);
5433 	}
5434 
5435 
5436 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
5437 
5438 		/*
5439 		 * According to TPI, for non-listeners, ignore seqnum
5440 		 * and disconnect.
5441 		 * Following interpretation of -1 seqnum is historical
5442 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
5443 		 * a valid seqnum should not be -1).
5444 		 *
5445 		 *	-1 means disconnect everything
5446 		 *	regardless even on a listener.
5447 		 */
5448 
5449 		int old_state = tcp->tcp_state;
5450 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
5451 
5452 		/*
5453 		 * The connection can't be on the tcp_time_wait_head list
5454 		 * since it is not detached.
5455 		 */
5456 		ASSERT(tcp->tcp_time_wait_next == NULL);
5457 		ASSERT(tcp->tcp_time_wait_prev == NULL);
5458 		ASSERT(tcp->tcp_time_wait_expire == 0);
5459 		ltcp = NULL;
5460 		/*
5461 		 * If it used to be a listener, check to make sure no one else
5462 		 * has taken the port before switching back to LISTEN state.
5463 		 */
5464 		if (connp->conn_ipversion == IPV4_VERSION) {
5465 			lconnp = ipcl_lookup_listener_v4(connp->conn_lport,
5466 			    connp->conn_laddr_v4, IPCL_ZONEID(connp), ipst);
5467 			if (lconnp != NULL)
5468 				ltcp = lconnp->conn_tcp;
5469 		} else {
5470 			uint_t ifindex = 0;
5471 
5472 			if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)
5473 				ifindex = connp->conn_ixa->ixa_scopeid;
5474 
5475 			/* Allow conn_bound_if listeners? */
5476 			lconnp = ipcl_lookup_listener_v6(connp->conn_lport,
5477 			    &connp->conn_laddr_v6, ifindex, IPCL_ZONEID(connp),
5478 			    ipst);
5479 			if (lconnp != NULL)
5480 				ltcp = lconnp->conn_tcp;
5481 		}
5482 		if (tcp->tcp_conn_req_max && ltcp == NULL) {
5483 			tcp->tcp_state = TCPS_LISTEN;
5484 		} else if (old_state > TCPS_BOUND) {
5485 			tcp->tcp_conn_req_max = 0;
5486 			tcp->tcp_state = TCPS_BOUND;
5487 		}
5488 		if (ltcp != NULL)
5489 			CONN_DEC_REF(lconnp);
5490 		if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) {
5491 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
5492 		} else if (old_state == TCPS_ESTABLISHED ||
5493 		    old_state == TCPS_CLOSE_WAIT) {
5494 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
5495 		}
5496 
5497 		if (tcp->tcp_fused)
5498 			tcp_unfuse(tcp);
5499 
5500 		mutex_enter(&tcp->tcp_eager_lock);
5501 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
5502 		    (tcp->tcp_conn_req_cnt_q != 0)) {
5503 			tcp_eager_cleanup(tcp, 0);
5504 		}
5505 		mutex_exit(&tcp->tcp_eager_lock);
5506 
5507 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
5508 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
5509 
5510 		tcp_reinit(tcp);
5511 
5512 		return (0);
5513 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
5514 		return (TBADSEQ);
5515 	}
5516 	return (0);
5517 }
5518 
5519 /*
5520  * Our client hereby directs us to reject the connection request
5521  * that tcp_input_listener() marked with 'seqnum'.  Rejection consists
5522  * of sending the appropriate RST, not an ICMP error.
5523  */
5524 static void
5525 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
5526 {
5527 	t_scalar_t seqnum;
5528 	int	error;
5529 	conn_t	*connp = tcp->tcp_connp;
5530 
5531 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
5532 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
5533 		tcp_err_ack(tcp, mp, TPROTO, 0);
5534 		return;
5535 	}
5536 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
5537 	error = tcp_disconnect_common(tcp, seqnum);
5538 	if (error != 0)
5539 		tcp_err_ack(tcp, mp, error, 0);
5540 	else {
5541 		if (tcp->tcp_state >= TCPS_ESTABLISHED) {
5542 			/* Send M_FLUSH according to TPI */
5543 			(void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW);
5544 		}
5545 		mp = mi_tpi_ok_ack_alloc(mp);
5546 		if (mp != NULL)
5547 			putnext(connp->conn_rq, mp);
5548 	}
5549 }
5550 
5551 /*
5552  * Diagnostic routine used to return a string associated with the tcp state.
5553  * Note that if the caller does not supply a buffer, it will use an internal
5554  * static string.  This means that if multiple threads call this function at
5555  * the same time, output can be corrupted...  Note also that this function
5556  * does not check the size of the supplied buffer.  The caller has to make
5557  * sure that it is big enough.
5558  */
5559 static char *
5560 tcp_display(tcp_t *tcp, char *sup_buf, char format)
5561 {
5562 	char		buf1[30];
5563 	static char	priv_buf[INET6_ADDRSTRLEN * 2 + 80];
5564 	char		*buf;
5565 	char		*cp;
5566 	in6_addr_t	local, remote;
5567 	char		local_addrbuf[INET6_ADDRSTRLEN];
5568 	char		remote_addrbuf[INET6_ADDRSTRLEN];
5569 	conn_t		*connp;
5570 
5571 	if (sup_buf != NULL)
5572 		buf = sup_buf;
5573 	else
5574 		buf = priv_buf;
5575 
5576 	if (tcp == NULL)
5577 		return ("NULL_TCP");
5578 
5579 	connp = tcp->tcp_connp;
5580 	switch (tcp->tcp_state) {
5581 	case TCPS_CLOSED:
5582 		cp = "TCP_CLOSED";
5583 		break;
5584 	case TCPS_IDLE:
5585 		cp = "TCP_IDLE";
5586 		break;
5587 	case TCPS_BOUND:
5588 		cp = "TCP_BOUND";
5589 		break;
5590 	case TCPS_LISTEN:
5591 		cp = "TCP_LISTEN";
5592 		break;
5593 	case TCPS_SYN_SENT:
5594 		cp = "TCP_SYN_SENT";
5595 		break;
5596 	case TCPS_SYN_RCVD:
5597 		cp = "TCP_SYN_RCVD";
5598 		break;
5599 	case TCPS_ESTABLISHED:
5600 		cp = "TCP_ESTABLISHED";
5601 		break;
5602 	case TCPS_CLOSE_WAIT:
5603 		cp = "TCP_CLOSE_WAIT";
5604 		break;
5605 	case TCPS_FIN_WAIT_1:
5606 		cp = "TCP_FIN_WAIT_1";
5607 		break;
5608 	case TCPS_CLOSING:
5609 		cp = "TCP_CLOSING";
5610 		break;
5611 	case TCPS_LAST_ACK:
5612 		cp = "TCP_LAST_ACK";
5613 		break;
5614 	case TCPS_FIN_WAIT_2:
5615 		cp = "TCP_FIN_WAIT_2";
5616 		break;
5617 	case TCPS_TIME_WAIT:
5618 		cp = "TCP_TIME_WAIT";
5619 		break;
5620 	default:
5621 		(void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state);
5622 		cp = buf1;
5623 		break;
5624 	}
5625 	switch (format) {
5626 	case DISP_ADDR_AND_PORT:
5627 		if (connp->conn_ipversion == IPV4_VERSION) {
5628 			/*
5629 			 * Note that we use the remote address in the tcp_b
5630 			 * structure.  This means that it will print out
5631 			 * the real destination address, not the next hop's
5632 			 * address if source routing is used.
5633 			 */
5634 			IN6_IPADDR_TO_V4MAPPED(connp->conn_laddr_v4, &local);
5635 			IN6_IPADDR_TO_V4MAPPED(connp->conn_faddr_v4, &remote);
5636 
5637 		} else {
5638 			local = connp->conn_laddr_v6;
5639 			remote = connp->conn_faddr_v6;
5640 		}
5641 		(void) inet_ntop(AF_INET6, &local, local_addrbuf,
5642 		    sizeof (local_addrbuf));
5643 		(void) inet_ntop(AF_INET6, &remote, remote_addrbuf,
5644 		    sizeof (remote_addrbuf));
5645 		(void) mi_sprintf(buf, "[%s.%u, %s.%u] %s",
5646 		    local_addrbuf, ntohs(connp->conn_lport), remote_addrbuf,
5647 		    ntohs(connp->conn_fport), cp);
5648 		break;
5649 	case DISP_PORT_ONLY:
5650 	default:
5651 		(void) mi_sprintf(buf, "[%u, %u] %s",
5652 		    ntohs(connp->conn_lport), ntohs(connp->conn_fport), cp);
5653 		break;
5654 	}
5655 
5656 	return (buf);
5657 }
5658 
5659 /*
5660  * Called via squeue to get on to eager's perimeter. It sends a
5661  * TH_RST if eager is in the fanout table. The listener wants the
5662  * eager to disappear either by means of tcp_eager_blowoff() or
5663  * tcp_eager_cleanup() being called. tcp_eager_kill() can also be
5664  * called (via squeue) if the eager cannot be inserted in the
5665  * fanout table in tcp_input_listener().
5666  */
5667 /* ARGSUSED */
5668 void
5669 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
5670 {
5671 	conn_t	*econnp = (conn_t *)arg;
5672 	tcp_t	*eager = econnp->conn_tcp;
5673 	tcp_t	*listener = eager->tcp_listener;
5674 
5675 	/*
5676 	 * We could be called because listener is closing. Since
5677 	 * the eager was using listener's queue's, we avoid
5678 	 * using the listeners queues from now on.
5679 	 */
5680 	ASSERT(eager->tcp_detached);
5681 	econnp->conn_rq = NULL;
5682 	econnp->conn_wq = NULL;
5683 
5684 	/*
5685 	 * An eager's conn_fanout will be NULL if it's a duplicate
5686 	 * for an existing 4-tuples in the conn fanout table.
5687 	 * We don't want to send an RST out in such case.
5688 	 */
5689 	if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) {
5690 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
5691 		    eager, eager->tcp_snxt, 0, TH_RST);
5692 	}
5693 
5694 	/* We are here because listener wants this eager gone */
5695 	if (listener != NULL) {
5696 		mutex_enter(&listener->tcp_eager_lock);
5697 		tcp_eager_unlink(eager);
5698 		if (eager->tcp_tconnind_started) {
5699 			/*
5700 			 * The eager has sent a conn_ind up to the
5701 			 * listener but listener decides to close
5702 			 * instead. We need to drop the extra ref
5703 			 * placed on eager in tcp_input_data() before
5704 			 * sending the conn_ind to listener.
5705 			 */
5706 			CONN_DEC_REF(econnp);
5707 		}
5708 		mutex_exit(&listener->tcp_eager_lock);
5709 		CONN_DEC_REF(listener->tcp_connp);
5710 	}
5711 
5712 	if (eager->tcp_state != TCPS_CLOSED)
5713 		tcp_close_detached(eager);
5714 }
5715 
5716 /*
5717  * Reset any eager connection hanging off this listener marked
5718  * with 'seqnum' and then reclaim it's resources.
5719  */
5720 static boolean_t
5721 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
5722 {
5723 	tcp_t	*eager;
5724 	mblk_t 	*mp;
5725 	tcp_stack_t	*tcps = listener->tcp_tcps;
5726 
5727 	TCP_STAT(tcps, tcp_eager_blowoff_calls);
5728 	eager = listener;
5729 	mutex_enter(&listener->tcp_eager_lock);
5730 	do {
5731 		eager = eager->tcp_eager_next_q;
5732 		if (eager == NULL) {
5733 			mutex_exit(&listener->tcp_eager_lock);
5734 			return (B_FALSE);
5735 		}
5736 	} while (eager->tcp_conn_req_seqnum != seqnum);
5737 
5738 	if (eager->tcp_closemp_used) {
5739 		mutex_exit(&listener->tcp_eager_lock);
5740 		return (B_TRUE);
5741 	}
5742 	eager->tcp_closemp_used = B_TRUE;
5743 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
5744 	CONN_INC_REF(eager->tcp_connp);
5745 	mutex_exit(&listener->tcp_eager_lock);
5746 	mp = &eager->tcp_closemp;
5747 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
5748 	    eager->tcp_connp, NULL, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF);
5749 	return (B_TRUE);
5750 }
5751 
5752 /*
5753  * Reset any eager connection hanging off this listener
5754  * and then reclaim it's resources.
5755  */
5756 static void
5757 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
5758 {
5759 	tcp_t	*eager;
5760 	mblk_t	*mp;
5761 	tcp_stack_t	*tcps = listener->tcp_tcps;
5762 
5763 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
5764 
5765 	if (!q0_only) {
5766 		/* First cleanup q */
5767 		TCP_STAT(tcps, tcp_eager_blowoff_q);
5768 		eager = listener->tcp_eager_next_q;
5769 		while (eager != NULL) {
5770 			if (!eager->tcp_closemp_used) {
5771 				eager->tcp_closemp_used = B_TRUE;
5772 				TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
5773 				CONN_INC_REF(eager->tcp_connp);
5774 				mp = &eager->tcp_closemp;
5775 				SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
5776 				    tcp_eager_kill, eager->tcp_connp, NULL,
5777 				    SQ_FILL, SQTAG_TCP_EAGER_CLEANUP);
5778 			}
5779 			eager = eager->tcp_eager_next_q;
5780 		}
5781 	}
5782 	/* Then cleanup q0 */
5783 	TCP_STAT(tcps, tcp_eager_blowoff_q0);
5784 	eager = listener->tcp_eager_next_q0;
5785 	while (eager != listener) {
5786 		if (!eager->tcp_closemp_used) {
5787 			eager->tcp_closemp_used = B_TRUE;
5788 			TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
5789 			CONN_INC_REF(eager->tcp_connp);
5790 			mp = &eager->tcp_closemp;
5791 			SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
5792 			    tcp_eager_kill, eager->tcp_connp, NULL, SQ_FILL,
5793 			    SQTAG_TCP_EAGER_CLEANUP_Q0);
5794 		}
5795 		eager = eager->tcp_eager_next_q0;
5796 	}
5797 }
5798 
5799 /*
5800  * If we are an eager connection hanging off a listener that hasn't
5801  * formally accepted the connection yet, get off his list and blow off
5802  * any data that we have accumulated.
5803  */
5804 static void
5805 tcp_eager_unlink(tcp_t *tcp)
5806 {
5807 	tcp_t	*listener = tcp->tcp_listener;
5808 
5809 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
5810 	ASSERT(listener != NULL);
5811 	if (tcp->tcp_eager_next_q0 != NULL) {
5812 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
5813 
5814 		/* Remove the eager tcp from q0 */
5815 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
5816 		    tcp->tcp_eager_prev_q0;
5817 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
5818 		    tcp->tcp_eager_next_q0;
5819 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
5820 		listener->tcp_conn_req_cnt_q0--;
5821 
5822 		tcp->tcp_eager_next_q0 = NULL;
5823 		tcp->tcp_eager_prev_q0 = NULL;
5824 
5825 		/*
5826 		 * Take the eager out, if it is in the list of droppable
5827 		 * eagers.
5828 		 */
5829 		MAKE_UNDROPPABLE(tcp);
5830 
5831 		if (tcp->tcp_syn_rcvd_timeout != 0) {
5832 			/* we have timed out before */
5833 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
5834 			listener->tcp_syn_rcvd_timeout--;
5835 		}
5836 	} else {
5837 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
5838 		tcp_t	*prev = NULL;
5839 
5840 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
5841 			if (tcpp[0] == tcp) {
5842 				if (listener->tcp_eager_last_q == tcp) {
5843 					/*
5844 					 * If we are unlinking the last
5845 					 * element on the list, adjust
5846 					 * tail pointer. Set tail pointer
5847 					 * to nil when list is empty.
5848 					 */
5849 					ASSERT(tcp->tcp_eager_next_q == NULL);
5850 					if (listener->tcp_eager_last_q ==
5851 					    listener->tcp_eager_next_q) {
5852 						listener->tcp_eager_last_q =
5853 						    NULL;
5854 					} else {
5855 						/*
5856 						 * We won't get here if there
5857 						 * is only one eager in the
5858 						 * list.
5859 						 */
5860 						ASSERT(prev != NULL);
5861 						listener->tcp_eager_last_q =
5862 						    prev;
5863 					}
5864 				}
5865 				tcpp[0] = tcp->tcp_eager_next_q;
5866 				tcp->tcp_eager_next_q = NULL;
5867 				tcp->tcp_eager_last_q = NULL;
5868 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
5869 				listener->tcp_conn_req_cnt_q--;
5870 				break;
5871 			}
5872 			prev = tcpp[0];
5873 		}
5874 	}
5875 	tcp->tcp_listener = NULL;
5876 }
5877 
5878 /* Shorthand to generate and send TPI error acks to our client */
5879 static void
5880 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error)
5881 {
5882 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
5883 		putnext(tcp->tcp_connp->conn_rq, mp);
5884 }
5885 
5886 /* Shorthand to generate and send TPI error acks to our client */
5887 static void
5888 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
5889     int t_error, int sys_error)
5890 {
5891 	struct T_error_ack	*teackp;
5892 
5893 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
5894 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
5895 		teackp = (struct T_error_ack *)mp->b_rptr;
5896 		teackp->ERROR_prim = primitive;
5897 		teackp->TLI_error = t_error;
5898 		teackp->UNIX_error = sys_error;
5899 		putnext(tcp->tcp_connp->conn_rq, mp);
5900 	}
5901 }
5902 
5903 /*
5904  * Note: No locks are held when inspecting tcp_g_*epriv_ports
5905  * but instead the code relies on:
5906  * - the fact that the address of the array and its size never changes
5907  * - the atomic assignment of the elements of the array
5908  */
5909 /* ARGSUSED */
5910 static int
5911 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
5912 {
5913 	int i;
5914 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
5915 
5916 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
5917 		if (tcps->tcps_g_epriv_ports[i] != 0)
5918 			(void) mi_mpprintf(mp, "%d ",
5919 			    tcps->tcps_g_epriv_ports[i]);
5920 	}
5921 	return (0);
5922 }
5923 
5924 /*
5925  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
5926  * threads from changing it at the same time.
5927  */
5928 /* ARGSUSED */
5929 static int
5930 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
5931     cred_t *cr)
5932 {
5933 	long	new_value;
5934 	int	i;
5935 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
5936 
5937 	/*
5938 	 * Fail the request if the new value does not lie within the
5939 	 * port number limits.
5940 	 */
5941 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
5942 	    new_value <= 0 || new_value >= 65536) {
5943 		return (EINVAL);
5944 	}
5945 
5946 	mutex_enter(&tcps->tcps_epriv_port_lock);
5947 	/* Check if the value is already in the list */
5948 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
5949 		if (new_value == tcps->tcps_g_epriv_ports[i]) {
5950 			mutex_exit(&tcps->tcps_epriv_port_lock);
5951 			return (EEXIST);
5952 		}
5953 	}
5954 	/* Find an empty slot */
5955 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
5956 		if (tcps->tcps_g_epriv_ports[i] == 0)
5957 			break;
5958 	}
5959 	if (i == tcps->tcps_g_num_epriv_ports) {
5960 		mutex_exit(&tcps->tcps_epriv_port_lock);
5961 		return (EOVERFLOW);
5962 	}
5963 	/* Set the new value */
5964 	tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value;
5965 	mutex_exit(&tcps->tcps_epriv_port_lock);
5966 	return (0);
5967 }
5968 
5969 /*
5970  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
5971  * threads from changing it at the same time.
5972  */
5973 /* ARGSUSED */
5974 static int
5975 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
5976     cred_t *cr)
5977 {
5978 	long	new_value;
5979 	int	i;
5980 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
5981 
5982 	/*
5983 	 * Fail the request if the new value does not lie within the
5984 	 * port number limits.
5985 	 */
5986 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 ||
5987 	    new_value >= 65536) {
5988 		return (EINVAL);
5989 	}
5990 
5991 	mutex_enter(&tcps->tcps_epriv_port_lock);
5992 	/* Check that the value is already in the list */
5993 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
5994 		if (tcps->tcps_g_epriv_ports[i] == new_value)
5995 			break;
5996 	}
5997 	if (i == tcps->tcps_g_num_epriv_ports) {
5998 		mutex_exit(&tcps->tcps_epriv_port_lock);
5999 		return (ESRCH);
6000 	}
6001 	/* Clear the value */
6002 	tcps->tcps_g_epriv_ports[i] = 0;
6003 	mutex_exit(&tcps->tcps_epriv_port_lock);
6004 	return (0);
6005 }
6006 
6007 /* Return the TPI/TLI equivalent of our current tcp_state */
6008 static int
6009 tcp_tpistate(tcp_t *tcp)
6010 {
6011 	switch (tcp->tcp_state) {
6012 	case TCPS_IDLE:
6013 		return (TS_UNBND);
6014 	case TCPS_LISTEN:
6015 		/*
6016 		 * Return whether there are outstanding T_CONN_IND waiting
6017 		 * for the matching T_CONN_RES. Therefore don't count q0.
6018 		 */
6019 		if (tcp->tcp_conn_req_cnt_q > 0)
6020 			return (TS_WRES_CIND);
6021 		else
6022 			return (TS_IDLE);
6023 	case TCPS_BOUND:
6024 		return (TS_IDLE);
6025 	case TCPS_SYN_SENT:
6026 		return (TS_WCON_CREQ);
6027 	case TCPS_SYN_RCVD:
6028 		/*
6029 		 * Note: assumption: this has to the active open SYN_RCVD.
6030 		 * The passive instance is detached in SYN_RCVD stage of
6031 		 * incoming connection processing so we cannot get request
6032 		 * for T_info_ack on it.
6033 		 */
6034 		return (TS_WACK_CRES);
6035 	case TCPS_ESTABLISHED:
6036 		return (TS_DATA_XFER);
6037 	case TCPS_CLOSE_WAIT:
6038 		return (TS_WREQ_ORDREL);
6039 	case TCPS_FIN_WAIT_1:
6040 		return (TS_WIND_ORDREL);
6041 	case TCPS_FIN_WAIT_2:
6042 		return (TS_WIND_ORDREL);
6043 
6044 	case TCPS_CLOSING:
6045 	case TCPS_LAST_ACK:
6046 	case TCPS_TIME_WAIT:
6047 	case TCPS_CLOSED:
6048 		/*
6049 		 * Following TS_WACK_DREQ7 is a rendition of "not
6050 		 * yet TS_IDLE" TPI state. There is no best match to any
6051 		 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we
6052 		 * choose a value chosen that will map to TLI/XTI level
6053 		 * state of TSTATECHNG (state is process of changing) which
6054 		 * captures what this dummy state represents.
6055 		 */
6056 		return (TS_WACK_DREQ7);
6057 	default:
6058 		cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s",
6059 		    tcp->tcp_state, tcp_display(tcp, NULL,
6060 		    DISP_PORT_ONLY));
6061 		return (TS_UNBND);
6062 	}
6063 }
6064 
6065 static void
6066 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp)
6067 {
6068 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6069 	conn_t		*connp = tcp->tcp_connp;
6070 
6071 	if (connp->conn_family == AF_INET6)
6072 		*tia = tcp_g_t_info_ack_v6;
6073 	else
6074 		*tia = tcp_g_t_info_ack;
6075 	tia->CURRENT_state = tcp_tpistate(tcp);
6076 	tia->OPT_size = tcp_max_optsize;
6077 	if (tcp->tcp_mss == 0) {
6078 		/* Not yet set - tcp_open does not set mss */
6079 		if (connp->conn_ipversion == IPV4_VERSION)
6080 			tia->TIDU_size = tcps->tcps_mss_def_ipv4;
6081 		else
6082 			tia->TIDU_size = tcps->tcps_mss_def_ipv6;
6083 	} else {
6084 		tia->TIDU_size = tcp->tcp_mss;
6085 	}
6086 	/* TODO: Default ETSDU is 1.  Is that correct for tcp? */
6087 }
6088 
6089 static void
6090 tcp_do_capability_ack(tcp_t *tcp, struct T_capability_ack *tcap,
6091     t_uscalar_t cap_bits1)
6092 {
6093 	tcap->CAP_bits1 = 0;
6094 
6095 	if (cap_bits1 & TC1_INFO) {
6096 		tcp_copy_info(&tcap->INFO_ack, tcp);
6097 		tcap->CAP_bits1 |= TC1_INFO;
6098 	}
6099 
6100 	if (cap_bits1 & TC1_ACCEPTOR_ID) {
6101 		tcap->ACCEPTOR_id = tcp->tcp_acceptor_id;
6102 		tcap->CAP_bits1 |= TC1_ACCEPTOR_ID;
6103 	}
6104 
6105 }
6106 
6107 /*
6108  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
6109  * tcp_wput.  Much of the T_CAPABILITY_ACK information is copied from
6110  * tcp_g_t_info_ack.  The current state of the stream is copied from
6111  * tcp_state.
6112  */
6113 static void
6114 tcp_capability_req(tcp_t *tcp, mblk_t *mp)
6115 {
6116 	t_uscalar_t		cap_bits1;
6117 	struct T_capability_ack	*tcap;
6118 
6119 	if (MBLKL(mp) < sizeof (struct T_capability_req)) {
6120 		freemsg(mp);
6121 		return;
6122 	}
6123 
6124 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
6125 
6126 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
6127 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
6128 	if (mp == NULL)
6129 		return;
6130 
6131 	tcap = (struct T_capability_ack *)mp->b_rptr;
6132 	tcp_do_capability_ack(tcp, tcap, cap_bits1);
6133 
6134 	putnext(tcp->tcp_connp->conn_rq, mp);
6135 }
6136 
6137 /*
6138  * This routine responds to T_INFO_REQ messages.  It is called by tcp_wput.
6139  * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack.
6140  * The current state of the stream is copied from tcp_state.
6141  */
6142 static void
6143 tcp_info_req(tcp_t *tcp, mblk_t *mp)
6144 {
6145 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
6146 	    T_INFO_ACK);
6147 	if (!mp) {
6148 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
6149 		return;
6150 	}
6151 	tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp);
6152 	putnext(tcp->tcp_connp->conn_rq, mp);
6153 }
6154 
6155 /* Respond to the TPI addr request */
6156 static void
6157 tcp_addr_req(tcp_t *tcp, mblk_t *mp)
6158 {
6159 	struct sockaddr *sa;
6160 	mblk_t	*ackmp;
6161 	struct T_addr_ack *taa;
6162 	conn_t	*connp = tcp->tcp_connp;
6163 	uint_t	addrlen;
6164 
6165 	/* Make it large enough for worst case */
6166 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
6167 	    2 * sizeof (sin6_t), 1);
6168 	if (ackmp == NULL) {
6169 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
6170 		return;
6171 	}
6172 
6173 	taa = (struct T_addr_ack *)ackmp->b_rptr;
6174 
6175 	bzero(taa, sizeof (struct T_addr_ack));
6176 	ackmp->b_wptr = (uchar_t *)&taa[1];
6177 
6178 	taa->PRIM_type = T_ADDR_ACK;
6179 	ackmp->b_datap->db_type = M_PCPROTO;
6180 
6181 	if (connp->conn_family == AF_INET)
6182 		addrlen = sizeof (sin_t);
6183 	else
6184 		addrlen = sizeof (sin6_t);
6185 
6186 	/*
6187 	 * Note: Following code assumes 32 bit alignment of basic
6188 	 * data structures like sin_t and struct T_addr_ack.
6189 	 */
6190 	if (tcp->tcp_state >= TCPS_BOUND) {
6191 		/*
6192 		 * Fill in local address first
6193 		 */
6194 		taa->LOCADDR_offset = sizeof (*taa);
6195 		taa->LOCADDR_length = addrlen;
6196 		sa = (struct sockaddr *)&taa[1];
6197 		(void) conn_getsockname(connp, sa, &addrlen);
6198 		ackmp->b_wptr += addrlen;
6199 	}
6200 	if (tcp->tcp_state >= TCPS_SYN_RCVD) {
6201 		/*
6202 		 * Fill in Remote address
6203 		 */
6204 		taa->REMADDR_length = addrlen;
6205 		/* assumed 32-bit alignment */
6206 		taa->REMADDR_offset = taa->LOCADDR_offset + taa->LOCADDR_length;
6207 		sa = (struct sockaddr *)(ackmp->b_rptr + taa->REMADDR_offset);
6208 		(void) conn_getpeername(connp, sa, &addrlen);
6209 		ackmp->b_wptr += addrlen;
6210 	}
6211 	ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim);
6212 	putnext(tcp->tcp_connp->conn_rq, ackmp);
6213 }
6214 
6215 /*
6216  * Handle reinitialization of a tcp structure.
6217  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
6218  */
6219 static void
6220 tcp_reinit(tcp_t *tcp)
6221 {
6222 	mblk_t		*mp;
6223 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6224 	conn_t		*connp  = tcp->tcp_connp;
6225 
6226 	TCP_STAT(tcps, tcp_reinit_calls);
6227 
6228 	/* tcp_reinit should never be called for detached tcp_t's */
6229 	ASSERT(tcp->tcp_listener == NULL);
6230 	ASSERT((connp->conn_family == AF_INET &&
6231 	    connp->conn_ipversion == IPV4_VERSION) ||
6232 	    (connp->conn_family == AF_INET6 &&
6233 	    (connp->conn_ipversion == IPV4_VERSION ||
6234 	    connp->conn_ipversion == IPV6_VERSION)));
6235 
6236 	/* Cancel outstanding timers */
6237 	tcp_timers_stop(tcp);
6238 
6239 	/*
6240 	 * Reset everything in the state vector, after updating global
6241 	 * MIB data from instance counters.
6242 	 */
6243 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
6244 	tcp->tcp_ibsegs = 0;
6245 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
6246 	tcp->tcp_obsegs = 0;
6247 
6248 	tcp_close_mpp(&tcp->tcp_xmit_head);
6249 	if (tcp->tcp_snd_zcopy_aware)
6250 		tcp_zcopy_notify(tcp);
6251 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
6252 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
6253 	mutex_enter(&tcp->tcp_non_sq_lock);
6254 	if (tcp->tcp_flow_stopped &&
6255 	    TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) {
6256 		tcp_clrqfull(tcp);
6257 	}
6258 	mutex_exit(&tcp->tcp_non_sq_lock);
6259 	tcp_close_mpp(&tcp->tcp_reass_head);
6260 	tcp->tcp_reass_tail = NULL;
6261 	if (tcp->tcp_rcv_list != NULL) {
6262 		/* Free b_next chain */
6263 		tcp_close_mpp(&tcp->tcp_rcv_list);
6264 		tcp->tcp_rcv_last_head = NULL;
6265 		tcp->tcp_rcv_last_tail = NULL;
6266 		tcp->tcp_rcv_cnt = 0;
6267 	}
6268 	tcp->tcp_rcv_last_tail = NULL;
6269 
6270 	if ((mp = tcp->tcp_urp_mp) != NULL) {
6271 		freemsg(mp);
6272 		tcp->tcp_urp_mp = NULL;
6273 	}
6274 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
6275 		freemsg(mp);
6276 		tcp->tcp_urp_mark_mp = NULL;
6277 	}
6278 	if (tcp->tcp_fused_sigurg_mp != NULL) {
6279 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
6280 		freeb(tcp->tcp_fused_sigurg_mp);
6281 		tcp->tcp_fused_sigurg_mp = NULL;
6282 	}
6283 	if (tcp->tcp_ordrel_mp != NULL) {
6284 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
6285 		freeb(tcp->tcp_ordrel_mp);
6286 		tcp->tcp_ordrel_mp = NULL;
6287 	}
6288 
6289 	/*
6290 	 * Following is a union with two members which are
6291 	 * identical types and size so the following cleanup
6292 	 * is enough.
6293 	 */
6294 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
6295 
6296 	CL_INET_DISCONNECT(connp);
6297 
6298 	/*
6299 	 * The connection can't be on the tcp_time_wait_head list
6300 	 * since it is not detached.
6301 	 */
6302 	ASSERT(tcp->tcp_time_wait_next == NULL);
6303 	ASSERT(tcp->tcp_time_wait_prev == NULL);
6304 	ASSERT(tcp->tcp_time_wait_expire == 0);
6305 
6306 	if (tcp->tcp_kssl_pending) {
6307 		tcp->tcp_kssl_pending = B_FALSE;
6308 
6309 		/* Don't reset if the initialized by bind. */
6310 		if (tcp->tcp_kssl_ent != NULL) {
6311 			kssl_release_ent(tcp->tcp_kssl_ent, NULL,
6312 			    KSSL_NO_PROXY);
6313 		}
6314 	}
6315 	if (tcp->tcp_kssl_ctx != NULL) {
6316 		kssl_release_ctx(tcp->tcp_kssl_ctx);
6317 		tcp->tcp_kssl_ctx = NULL;
6318 	}
6319 
6320 	/*
6321 	 * Reset/preserve other values
6322 	 */
6323 	tcp_reinit_values(tcp);
6324 	ipcl_hash_remove(connp);
6325 	ixa_cleanup(connp->conn_ixa);
6326 	tcp_ipsec_cleanup(tcp);
6327 
6328 	connp->conn_laddr_v6 = connp->conn_bound_addr_v6;
6329 	connp->conn_saddr_v6 = connp->conn_bound_addr_v6;
6330 
6331 	if (tcp->tcp_conn_req_max != 0) {
6332 		/*
6333 		 * This is the case when a TLI program uses the same
6334 		 * transport end point to accept a connection.  This
6335 		 * makes the TCP both a listener and acceptor.  When
6336 		 * this connection is closed, we need to set the state
6337 		 * back to TCPS_LISTEN.  Make sure that the eager list
6338 		 * is reinitialized.
6339 		 *
6340 		 * Note that this stream is still bound to the four
6341 		 * tuples of the previous connection in IP.  If a new
6342 		 * SYN with different foreign address comes in, IP will
6343 		 * not find it and will send it to the global queue.  In
6344 		 * the global queue, TCP will do a tcp_lookup_listener()
6345 		 * to find this stream.  This works because this stream
6346 		 * is only removed from connected hash.
6347 		 *
6348 		 */
6349 		tcp->tcp_state = TCPS_LISTEN;
6350 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
6351 		tcp->tcp_eager_next_drop_q0 = tcp;
6352 		tcp->tcp_eager_prev_drop_q0 = tcp;
6353 		/*
6354 		 * Initially set conn_recv to tcp_input_listener_unbound to try
6355 		 * to pick a good squeue for the listener when the first SYN
6356 		 * arrives. tcp_input_listener_unbound sets it to
6357 		 * tcp_input_listener on that first SYN.
6358 		 */
6359 		connp->conn_recv = tcp_input_listener_unbound;
6360 
6361 		connp->conn_proto = IPPROTO_TCP;
6362 		connp->conn_faddr_v6 = ipv6_all_zeros;
6363 		connp->conn_fport = 0;
6364 
6365 		(void) ipcl_bind_insert(connp);
6366 	} else {
6367 		tcp->tcp_state = TCPS_BOUND;
6368 	}
6369 
6370 	/*
6371 	 * Initialize to default values
6372 	 */
6373 	tcp_init_values(tcp);
6374 
6375 	ASSERT(tcp->tcp_ptpbhn != NULL);
6376 	tcp->tcp_rwnd = connp->conn_rcvbuf;
6377 	tcp->tcp_mss = connp->conn_ipversion != IPV4_VERSION ?
6378 	    tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4;
6379 }
6380 
6381 /*
6382  * Force values to zero that need be zero.
6383  * Do not touch values asociated with the BOUND or LISTEN state
6384  * since the connection will end up in that state after the reinit.
6385  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
6386  * structure!
6387  */
6388 static void
6389 tcp_reinit_values(tcp)
6390 	tcp_t *tcp;
6391 {
6392 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6393 	conn_t		*connp = tcp->tcp_connp;
6394 
6395 #ifndef	lint
6396 #define	DONTCARE(x)
6397 #define	PRESERVE(x)
6398 #else
6399 #define	DONTCARE(x)	((x) = (x))
6400 #define	PRESERVE(x)	((x) = (x))
6401 #endif	/* lint */
6402 
6403 	PRESERVE(tcp->tcp_bind_hash_port);
6404 	PRESERVE(tcp->tcp_bind_hash);
6405 	PRESERVE(tcp->tcp_ptpbhn);
6406 	PRESERVE(tcp->tcp_acceptor_hash);
6407 	PRESERVE(tcp->tcp_ptpahn);
6408 
6409 	/* Should be ASSERT NULL on these with new code! */
6410 	ASSERT(tcp->tcp_time_wait_next == NULL);
6411 	ASSERT(tcp->tcp_time_wait_prev == NULL);
6412 	ASSERT(tcp->tcp_time_wait_expire == 0);
6413 	PRESERVE(tcp->tcp_state);
6414 	PRESERVE(connp->conn_rq);
6415 	PRESERVE(connp->conn_wq);
6416 
6417 	ASSERT(tcp->tcp_xmit_head == NULL);
6418 	ASSERT(tcp->tcp_xmit_last == NULL);
6419 	ASSERT(tcp->tcp_unsent == 0);
6420 	ASSERT(tcp->tcp_xmit_tail == NULL);
6421 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
6422 
6423 	tcp->tcp_snxt = 0;			/* Displayed in mib */
6424 	tcp->tcp_suna = 0;			/* Displayed in mib */
6425 	tcp->tcp_swnd = 0;
6426 	DONTCARE(tcp->tcp_cwnd);	/* Init in tcp_process_options */
6427 
6428 	ASSERT(tcp->tcp_ibsegs == 0);
6429 	ASSERT(tcp->tcp_obsegs == 0);
6430 
6431 	if (connp->conn_ht_iphc != NULL) {
6432 		kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated);
6433 		connp->conn_ht_iphc = NULL;
6434 		connp->conn_ht_iphc_allocated = 0;
6435 		connp->conn_ht_iphc_len = 0;
6436 		connp->conn_ht_ulp = NULL;
6437 		connp->conn_ht_ulp_len = 0;
6438 		tcp->tcp_ipha = NULL;
6439 		tcp->tcp_ip6h = NULL;
6440 		tcp->tcp_tcpha = NULL;
6441 	}
6442 
6443 	/* We clear any IP_OPTIONS and extension headers */
6444 	ip_pkt_free(&connp->conn_xmit_ipp);
6445 
6446 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
6447 	DONTCARE(tcp->tcp_ipha);
6448 	DONTCARE(tcp->tcp_ip6h);
6449 	DONTCARE(tcp->tcp_tcpha);
6450 	tcp->tcp_valid_bits = 0;
6451 
6452 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
6453 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
6454 	tcp->tcp_last_rcv_lbolt = 0;
6455 
6456 	tcp->tcp_init_cwnd = 0;
6457 
6458 	tcp->tcp_urp_last_valid = 0;
6459 	tcp->tcp_hard_binding = 0;
6460 
6461 	tcp->tcp_fin_acked = 0;
6462 	tcp->tcp_fin_rcvd = 0;
6463 	tcp->tcp_fin_sent = 0;
6464 	tcp->tcp_ordrel_done = 0;
6465 
6466 	tcp->tcp_detached = 0;
6467 
6468 	tcp->tcp_snd_ws_ok = B_FALSE;
6469 	tcp->tcp_snd_ts_ok = B_FALSE;
6470 	tcp->tcp_zero_win_probe = 0;
6471 
6472 	tcp->tcp_loopback = 0;
6473 	tcp->tcp_localnet = 0;
6474 	tcp->tcp_syn_defense = 0;
6475 	tcp->tcp_set_timer = 0;
6476 
6477 	tcp->tcp_active_open = 0;
6478 	tcp->tcp_rexmit = B_FALSE;
6479 	tcp->tcp_xmit_zc_clean = B_FALSE;
6480 
6481 	tcp->tcp_snd_sack_ok = B_FALSE;
6482 	tcp->tcp_hwcksum = B_FALSE;
6483 
6484 	DONTCARE(tcp->tcp_maxpsz_multiplier);	/* Init in tcp_init_values */
6485 
6486 	tcp->tcp_conn_def_q0 = 0;
6487 	tcp->tcp_ip_forward_progress = B_FALSE;
6488 	tcp->tcp_ecn_ok = B_FALSE;
6489 
6490 	tcp->tcp_cwr = B_FALSE;
6491 	tcp->tcp_ecn_echo_on = B_FALSE;
6492 	tcp->tcp_is_wnd_shrnk = B_FALSE;
6493 
6494 	if (tcp->tcp_sack_info != NULL) {
6495 		if (tcp->tcp_notsack_list != NULL) {
6496 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list,
6497 			    tcp);
6498 		}
6499 		kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info);
6500 		tcp->tcp_sack_info = NULL;
6501 	}
6502 
6503 	tcp->tcp_rcv_ws = 0;
6504 	tcp->tcp_snd_ws = 0;
6505 	tcp->tcp_ts_recent = 0;
6506 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
6507 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
6508 	tcp->tcp_initial_pmtu = 0;
6509 
6510 	ASSERT(tcp->tcp_reass_head == NULL);
6511 	ASSERT(tcp->tcp_reass_tail == NULL);
6512 
6513 	tcp->tcp_cwnd_cnt = 0;
6514 
6515 	ASSERT(tcp->tcp_rcv_list == NULL);
6516 	ASSERT(tcp->tcp_rcv_last_head == NULL);
6517 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
6518 	ASSERT(tcp->tcp_rcv_cnt == 0);
6519 
6520 	DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_set_destination */
6521 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
6522 	tcp->tcp_csuna = 0;
6523 
6524 	tcp->tcp_rto = 0;			/* Displayed in MIB */
6525 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
6526 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
6527 	tcp->tcp_rtt_update = 0;
6528 
6529 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
6530 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
6531 
6532 	tcp->tcp_rack = 0;			/* Displayed in mib */
6533 	tcp->tcp_rack_cnt = 0;
6534 	tcp->tcp_rack_cur_max = 0;
6535 	tcp->tcp_rack_abs_max = 0;
6536 
6537 	tcp->tcp_max_swnd = 0;
6538 
6539 	ASSERT(tcp->tcp_listener == NULL);
6540 
6541 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
6542 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
6543 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
6544 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
6545 
6546 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
6547 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
6548 	PRESERVE(tcp->tcp_conn_req_max);
6549 	PRESERVE(tcp->tcp_conn_req_seqnum);
6550 
6551 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
6552 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
6553 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
6554 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
6555 
6556 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
6557 	ASSERT(tcp->tcp_urp_mp == NULL);
6558 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
6559 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
6560 
6561 	ASSERT(tcp->tcp_eager_next_q == NULL);
6562 	ASSERT(tcp->tcp_eager_last_q == NULL);
6563 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
6564 	    tcp->tcp_eager_prev_q0 == NULL) ||
6565 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
6566 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
6567 
6568 	ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
6569 	    tcp->tcp_eager_prev_drop_q0 == NULL) ||
6570 	    tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
6571 
6572 	tcp->tcp_client_errno = 0;
6573 
6574 	DONTCARE(connp->conn_sum);		/* Init in tcp_init_values */
6575 
6576 	connp->conn_faddr_v6 = ipv6_all_zeros;	/* Displayed in MIB */
6577 
6578 	PRESERVE(connp->conn_bound_addr_v6);
6579 	tcp->tcp_last_sent_len = 0;
6580 	tcp->tcp_dupack_cnt = 0;
6581 
6582 	connp->conn_fport = 0;			/* Displayed in MIB */
6583 	PRESERVE(connp->conn_lport);
6584 
6585 	PRESERVE(tcp->tcp_acceptor_lockp);
6586 
6587 	ASSERT(tcp->tcp_ordrel_mp == NULL);
6588 	PRESERVE(tcp->tcp_acceptor_id);
6589 	DONTCARE(tcp->tcp_ipsec_overhead);
6590 
6591 	PRESERVE(connp->conn_family);
6592 	/* Remove any remnants of mapped address binding */
6593 	if (connp->conn_family == AF_INET6) {
6594 		connp->conn_ipversion = IPV6_VERSION;
6595 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
6596 	} else {
6597 		connp->conn_ipversion = IPV4_VERSION;
6598 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
6599 	}
6600 
6601 	connp->conn_bound_if = 0;
6602 	connp->conn_recv_ancillary.crb_all = 0;
6603 	tcp->tcp_recvifindex = 0;
6604 	tcp->tcp_recvhops = 0;
6605 	tcp->tcp_closed = 0;
6606 	tcp->tcp_cleandeathtag = 0;
6607 	if (tcp->tcp_hopopts != NULL) {
6608 		mi_free(tcp->tcp_hopopts);
6609 		tcp->tcp_hopopts = NULL;
6610 		tcp->tcp_hopoptslen = 0;
6611 	}
6612 	ASSERT(tcp->tcp_hopoptslen == 0);
6613 	if (tcp->tcp_dstopts != NULL) {
6614 		mi_free(tcp->tcp_dstopts);
6615 		tcp->tcp_dstopts = NULL;
6616 		tcp->tcp_dstoptslen = 0;
6617 	}
6618 	ASSERT(tcp->tcp_dstoptslen == 0);
6619 	if (tcp->tcp_rthdrdstopts != NULL) {
6620 		mi_free(tcp->tcp_rthdrdstopts);
6621 		tcp->tcp_rthdrdstopts = NULL;
6622 		tcp->tcp_rthdrdstoptslen = 0;
6623 	}
6624 	ASSERT(tcp->tcp_rthdrdstoptslen == 0);
6625 	if (tcp->tcp_rthdr != NULL) {
6626 		mi_free(tcp->tcp_rthdr);
6627 		tcp->tcp_rthdr = NULL;
6628 		tcp->tcp_rthdrlen = 0;
6629 	}
6630 	ASSERT(tcp->tcp_rthdrlen == 0);
6631 
6632 	/* Reset fusion-related fields */
6633 	tcp->tcp_fused = B_FALSE;
6634 	tcp->tcp_unfusable = B_FALSE;
6635 	tcp->tcp_fused_sigurg = B_FALSE;
6636 	tcp->tcp_loopback_peer = NULL;
6637 
6638 	tcp->tcp_lso = B_FALSE;
6639 
6640 	tcp->tcp_in_ack_unsent = 0;
6641 	tcp->tcp_cork = B_FALSE;
6642 	tcp->tcp_tconnind_started = B_FALSE;
6643 
6644 	PRESERVE(tcp->tcp_squeue_bytes);
6645 
6646 	ASSERT(tcp->tcp_kssl_ctx == NULL);
6647 	ASSERT(!tcp->tcp_kssl_pending);
6648 	PRESERVE(tcp->tcp_kssl_ent);
6649 
6650 	tcp->tcp_closemp_used = B_FALSE;
6651 
6652 	PRESERVE(tcp->tcp_rsrv_mp);
6653 	PRESERVE(tcp->tcp_rsrv_mp_lock);
6654 
6655 #ifdef DEBUG
6656 	DONTCARE(tcp->tcmp_stk[0]);
6657 #endif
6658 
6659 	PRESERVE(tcp->tcp_connid);
6660 
6661 
6662 #undef	DONTCARE
6663 #undef	PRESERVE
6664 }
6665 
6666 static void
6667 tcp_init_values(tcp_t *tcp)
6668 {
6669 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6670 	conn_t		*connp = tcp->tcp_connp;
6671 
6672 	ASSERT((connp->conn_family == AF_INET &&
6673 	    connp->conn_ipversion == IPV4_VERSION) ||
6674 	    (connp->conn_family == AF_INET6 &&
6675 	    (connp->conn_ipversion == IPV4_VERSION ||
6676 	    connp->conn_ipversion == IPV6_VERSION)));
6677 
6678 	/*
6679 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
6680 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
6681 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
6682 	 * during first few transmissions of a connection as seen in slow
6683 	 * links.
6684 	 */
6685 	tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2;
6686 	tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1;
6687 	tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
6688 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
6689 	    tcps->tcps_conn_grace_period;
6690 	if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min)
6691 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
6692 	tcp->tcp_timer_backoff = 0;
6693 	tcp->tcp_ms_we_have_waited = 0;
6694 	tcp->tcp_last_recv_time = ddi_get_lbolt();
6695 	tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_;
6696 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
6697 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
6698 
6699 	tcp->tcp_maxpsz_multiplier = tcps->tcps_maxpsz_multiplier;
6700 
6701 	tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval;
6702 	tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval;
6703 	tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval;
6704 	/*
6705 	 * Fix it to tcp_ip_abort_linterval later if it turns out to be a
6706 	 * passive open.
6707 	 */
6708 	tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval;
6709 
6710 	tcp->tcp_naglim = tcps->tcps_naglim_def;
6711 
6712 	/* NOTE:  ISS is now set in tcp_set_destination(). */
6713 
6714 	/* Reset fusion-related fields */
6715 	tcp->tcp_fused = B_FALSE;
6716 	tcp->tcp_unfusable = B_FALSE;
6717 	tcp->tcp_fused_sigurg = B_FALSE;
6718 	tcp->tcp_loopback_peer = NULL;
6719 
6720 	/* We rebuild the header template on the next connect/conn_request */
6721 
6722 	connp->conn_mlp_type = mlptSingle;
6723 
6724 	/*
6725 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
6726 	 * down tcp_rwnd. tcp_set_destination() will set the right value later.
6727 	 */
6728 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
6729 	tcp->tcp_rwnd = connp->conn_rcvbuf;
6730 
6731 	tcp->tcp_cork = B_FALSE;
6732 	/*
6733 	 * Init the tcp_debug option if it wasn't already set.  This value
6734 	 * determines whether TCP
6735 	 * calls strlog() to print out debug messages.  Doing this
6736 	 * initialization here means that this value is not inherited thru
6737 	 * tcp_reinit().
6738 	 */
6739 	if (!connp->conn_debug)
6740 		connp->conn_debug = tcps->tcps_dbg;
6741 
6742 	tcp->tcp_ka_interval = tcps->tcps_keepalive_interval;
6743 	tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval;
6744 }
6745 
6746 /* At minimum we need 8 bytes in the TCP header for the lookup */
6747 #define	ICMP_MIN_TCP_HDR	8
6748 
6749 /*
6750  * tcp_icmp_input is called as conn_recvicmp to process ICMP error messages
6751  * passed up by IP. The message is always received on the correct tcp_t.
6752  * Assumes that IP has pulled up everything up to and including the ICMP header.
6753  */
6754 /* ARGSUSED2 */
6755 static void
6756 tcp_icmp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
6757 {
6758 	conn_t		*connp = (conn_t *)arg1;
6759 	icmph_t		*icmph;
6760 	ipha_t		*ipha;
6761 	int		iph_hdr_length;
6762 	tcpha_t		*tcpha;
6763 	uint32_t	seg_seq;
6764 	tcp_t		*tcp = connp->conn_tcp;
6765 
6766 	/* Assume IP provides aligned packets */
6767 	ASSERT(OK_32PTR(mp->b_rptr));
6768 	ASSERT((MBLKL(mp) >= sizeof (ipha_t)));
6769 
6770 	/*
6771 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
6772 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
6773 	 */
6774 	if (!(ira->ira_flags & IRAF_IS_IPV4)) {
6775 		tcp_icmp_error_ipv6(tcp, mp, ira);
6776 		return;
6777 	}
6778 
6779 	/* Skip past the outer IP and ICMP headers */
6780 	iph_hdr_length = ira->ira_ip_hdr_length;
6781 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
6782 	/*
6783 	 * If we don't have the correct outer IP header length
6784 	 * or if we don't have a complete inner IP header
6785 	 * drop it.
6786 	 */
6787 	if (iph_hdr_length < sizeof (ipha_t) ||
6788 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
6789 noticmpv4:
6790 		freemsg(mp);
6791 		return;
6792 	}
6793 	ipha = (ipha_t *)&icmph[1];
6794 
6795 	/* Skip past the inner IP and find the ULP header */
6796 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
6797 	tcpha = (tcpha_t *)((char *)ipha + iph_hdr_length);
6798 	/*
6799 	 * If we don't have the correct inner IP header length or if the ULP
6800 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
6801 	 * bytes of TCP header, drop it.
6802 	 */
6803 	if (iph_hdr_length < sizeof (ipha_t) ||
6804 	    ipha->ipha_protocol != IPPROTO_TCP ||
6805 	    (uchar_t *)tcpha + ICMP_MIN_TCP_HDR > mp->b_wptr) {
6806 		goto noticmpv4;
6807 	}
6808 
6809 	seg_seq = ntohl(tcpha->tha_seq);
6810 	switch (icmph->icmph_type) {
6811 	case ICMP_DEST_UNREACHABLE:
6812 		switch (icmph->icmph_code) {
6813 		case ICMP_FRAGMENTATION_NEEDED:
6814 			/*
6815 			 * Update Path MTU, then try to send something out.
6816 			 */
6817 			tcp_update_pmtu(tcp, B_TRUE);
6818 			tcp_rexmit_after_error(tcp);
6819 			break;
6820 		case ICMP_PORT_UNREACHABLE:
6821 		case ICMP_PROTOCOL_UNREACHABLE:
6822 			switch (tcp->tcp_state) {
6823 			case TCPS_SYN_SENT:
6824 			case TCPS_SYN_RCVD:
6825 				/*
6826 				 * ICMP can snipe away incipient
6827 				 * TCP connections as long as
6828 				 * seq number is same as initial
6829 				 * send seq number.
6830 				 */
6831 				if (seg_seq == tcp->tcp_iss) {
6832 					(void) tcp_clean_death(tcp,
6833 					    ECONNREFUSED, 6);
6834 				}
6835 				break;
6836 			}
6837 			break;
6838 		case ICMP_HOST_UNREACHABLE:
6839 		case ICMP_NET_UNREACHABLE:
6840 			/* Record the error in case we finally time out. */
6841 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
6842 				tcp->tcp_client_errno = EHOSTUNREACH;
6843 			else
6844 				tcp->tcp_client_errno = ENETUNREACH;
6845 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
6846 				if (tcp->tcp_listener != NULL &&
6847 				    tcp->tcp_listener->tcp_syn_defense) {
6848 					/*
6849 					 * Ditch the half-open connection if we
6850 					 * suspect a SYN attack is under way.
6851 					 */
6852 					(void) tcp_clean_death(tcp,
6853 					    tcp->tcp_client_errno, 7);
6854 				}
6855 			}
6856 			break;
6857 		default:
6858 			break;
6859 		}
6860 		break;
6861 	case ICMP_SOURCE_QUENCH: {
6862 		/*
6863 		 * use a global boolean to control
6864 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
6865 		 * The default is false.
6866 		 */
6867 		if (tcp_icmp_source_quench) {
6868 			/*
6869 			 * Reduce the sending rate as if we got a
6870 			 * retransmit timeout
6871 			 */
6872 			uint32_t npkt;
6873 
6874 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
6875 			    tcp->tcp_mss;
6876 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
6877 			tcp->tcp_cwnd = tcp->tcp_mss;
6878 			tcp->tcp_cwnd_cnt = 0;
6879 		}
6880 		break;
6881 	}
6882 	}
6883 	freemsg(mp);
6884 }
6885 
6886 /*
6887  * CALLED OUTSIDE OF SQUEUE! It can not follow any pointers that tcp might
6888  * change. But it can refer to fields like tcp_suna and tcp_snxt.
6889  *
6890  * Function tcp_verifyicmp is called as conn_verifyicmp to verify the ICMP
6891  * error messages received by IP. The message is always received on the correct
6892  * tcp_t.
6893  */
6894 /* ARGSUSED */
6895 static boolean_t
6896 tcp_verifyicmp(conn_t *connp, void *arg2, icmph_t *icmph, icmp6_t *icmp6,
6897     ip_recv_attr_t *ira)
6898 {
6899 	tcpha_t		*tcpha = (tcpha_t *)arg2;
6900 	uint32_t	seq = ntohl(tcpha->tha_seq);
6901 	tcp_t		*tcp = connp->conn_tcp;
6902 
6903 	/*
6904 	 * TCP sequence number contained in payload of the ICMP error message
6905 	 * should be within the range SND.UNA <= SEG.SEQ < SND.NXT. Otherwise,
6906 	 * the message is either a stale ICMP error, or an attack from the
6907 	 * network. Fail the verification.
6908 	 */
6909 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
6910 		return (B_FALSE);
6911 
6912 	/* For "too big" we also check the ignore flag */
6913 	if (ira->ira_flags & IRAF_IS_IPV4) {
6914 		ASSERT(icmph != NULL);
6915 		if (icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
6916 		    icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED &&
6917 		    tcp->tcp_tcps->tcps_ignore_path_mtu)
6918 			return (B_FALSE);
6919 	} else {
6920 		ASSERT(icmp6 != NULL);
6921 		if (icmp6->icmp6_type == ICMP6_PACKET_TOO_BIG &&
6922 		    tcp->tcp_tcps->tcps_ignore_path_mtu)
6923 			return (B_FALSE);
6924 	}
6925 	return (B_TRUE);
6926 }
6927 
6928 /*
6929  * Update the TCP connection according to change of PMTU.
6930  *
6931  * Path MTU might have changed by either increase or decrease, so need to
6932  * adjust the MSS based on the value of ixa_pmtu. No need to handle tiny
6933  * or negative MSS, since tcp_mss_set() will do it.
6934  */
6935 static void
6936 tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only)
6937 {
6938 	uint32_t	pmtu;
6939 	int32_t		mss;
6940 	conn_t		*connp = tcp->tcp_connp;
6941 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
6942 	iaflags_t	ixaflags;
6943 
6944 	if (tcp->tcp_tcps->tcps_ignore_path_mtu)
6945 		return;
6946 
6947 	if (tcp->tcp_state < TCPS_ESTABLISHED)
6948 		return;
6949 
6950 	/*
6951 	 * Always call ip_get_pmtu() to make sure that IP has updated
6952 	 * ixa_flags properly.
6953 	 */
6954 	pmtu = ip_get_pmtu(ixa);
6955 	ixaflags = ixa->ixa_flags;
6956 
6957 	/*
6958 	 * Calculate the MSS by decreasing the PMTU by conn_ht_iphc_len and
6959 	 * IPsec overhead if applied. Make sure to use the most recent
6960 	 * IPsec information.
6961 	 */
6962 	mss = pmtu - connp->conn_ht_iphc_len - conn_ipsec_length(connp);
6963 
6964 	/*
6965 	 * Nothing to change, so just return.
6966 	 */
6967 	if (mss == tcp->tcp_mss)
6968 		return;
6969 
6970 	/*
6971 	 * Currently, for ICMP errors, only PMTU decrease is handled.
6972 	 */
6973 	if (mss > tcp->tcp_mss && decrease_only)
6974 		return;
6975 
6976 	DTRACE_PROBE2(tcp_update_pmtu, int32_t, tcp->tcp_mss, uint32_t, mss);
6977 
6978 	/*
6979 	 * Update ixa_fragsize and ixa_pmtu.
6980 	 */
6981 	ixa->ixa_fragsize = ixa->ixa_pmtu = pmtu;
6982 
6983 	/*
6984 	 * Adjust MSS and all relevant variables.
6985 	 */
6986 	tcp_mss_set(tcp, mss);
6987 
6988 	/*
6989 	 * If the PMTU is below the min size maintained by IP, then ip_get_pmtu
6990 	 * has set IXAF_PMTU_TOO_SMALL and cleared IXAF_PMTU_IPV4_DF. Since TCP
6991 	 * has a (potentially different) min size we do the same. Make sure to
6992 	 * clear IXAF_DONTFRAG, which is used by IP to decide whether to
6993 	 * fragment the packet.
6994 	 *
6995 	 * LSO over IPv6 can not be fragmented. So need to disable LSO
6996 	 * when IPv6 fragmentation is needed.
6997 	 */
6998 	if (mss < tcp->tcp_tcps->tcps_mss_min)
6999 		ixaflags |= IXAF_PMTU_TOO_SMALL;
7000 
7001 	if (ixaflags & IXAF_PMTU_TOO_SMALL)
7002 		ixaflags &= ~(IXAF_DONTFRAG | IXAF_PMTU_IPV4_DF);
7003 
7004 	if ((connp->conn_ipversion == IPV4_VERSION) &&
7005 	    !(ixaflags & IXAF_PMTU_IPV4_DF)) {
7006 		tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
7007 	}
7008 	ixa->ixa_flags = ixaflags;
7009 }
7010 
7011 /*
7012  * Do slow start retransmission after ICMP errors of PMTU changes.
7013  */
7014 static void
7015 tcp_rexmit_after_error(tcp_t *tcp)
7016 {
7017 	/*
7018 	 * All sent data has been acknowledged or no data left to send, just
7019 	 * to return.
7020 	 */
7021 	if (!SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) ||
7022 	    (tcp->tcp_xmit_head == NULL))
7023 		return;
7024 
7025 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && (tcp->tcp_unsent == 0))
7026 		tcp->tcp_rexmit_max = tcp->tcp_fss;
7027 	else
7028 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
7029 
7030 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
7031 	tcp->tcp_rexmit = B_TRUE;
7032 	tcp->tcp_dupack_cnt = 0;
7033 	tcp->tcp_snd_burst = TCP_CWND_SS;
7034 	tcp_ss_rexmit(tcp);
7035 }
7036 
7037 /*
7038  * tcp_icmp_error_ipv6 is called from tcp_icmp_input to process ICMPv6
7039  * error messages passed up by IP.
7040  * Assumes that IP has pulled up all the extension headers as well
7041  * as the ICMPv6 header.
7042  */
7043 static void
7044 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, ip_recv_attr_t *ira)
7045 {
7046 	icmp6_t		*icmp6;
7047 	ip6_t		*ip6h;
7048 	uint16_t	iph_hdr_length = ira->ira_ip_hdr_length;
7049 	tcpha_t		*tcpha;
7050 	uint8_t		*nexthdrp;
7051 	uint32_t	seg_seq;
7052 
7053 	/*
7054 	 * Verify that we have a complete IP header.
7055 	 */
7056 	ASSERT((MBLKL(mp) >= sizeof (ip6_t)));
7057 
7058 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
7059 	ip6h = (ip6_t *)&icmp6[1];
7060 	/*
7061 	 * Verify if we have a complete ICMP and inner IP header.
7062 	 */
7063 	if ((uchar_t *)&ip6h[1] > mp->b_wptr) {
7064 noticmpv6:
7065 		freemsg(mp);
7066 		return;
7067 	}
7068 
7069 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
7070 		goto noticmpv6;
7071 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
7072 	/*
7073 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
7074 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
7075 	 * packet.
7076 	 */
7077 	if ((*nexthdrp != IPPROTO_TCP) ||
7078 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
7079 		goto noticmpv6;
7080 	}
7081 
7082 	seg_seq = ntohl(tcpha->tha_seq);
7083 	switch (icmp6->icmp6_type) {
7084 	case ICMP6_PACKET_TOO_BIG:
7085 		/*
7086 		 * Update Path MTU, then try to send something out.
7087 		 */
7088 		tcp_update_pmtu(tcp, B_TRUE);
7089 		tcp_rexmit_after_error(tcp);
7090 		break;
7091 	case ICMP6_DST_UNREACH:
7092 		switch (icmp6->icmp6_code) {
7093 		case ICMP6_DST_UNREACH_NOPORT:
7094 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
7095 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
7096 			    (seg_seq == tcp->tcp_iss)) {
7097 				(void) tcp_clean_death(tcp,
7098 				    ECONNREFUSED, 8);
7099 			}
7100 			break;
7101 		case ICMP6_DST_UNREACH_ADMIN:
7102 		case ICMP6_DST_UNREACH_NOROUTE:
7103 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
7104 		case ICMP6_DST_UNREACH_ADDR:
7105 			/* Record the error in case we finally time out. */
7106 			tcp->tcp_client_errno = EHOSTUNREACH;
7107 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
7108 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
7109 			    (seg_seq == tcp->tcp_iss)) {
7110 				if (tcp->tcp_listener != NULL &&
7111 				    tcp->tcp_listener->tcp_syn_defense) {
7112 					/*
7113 					 * Ditch the half-open connection if we
7114 					 * suspect a SYN attack is under way.
7115 					 */
7116 					(void) tcp_clean_death(tcp,
7117 					    tcp->tcp_client_errno, 9);
7118 				}
7119 			}
7120 
7121 
7122 			break;
7123 		default:
7124 			break;
7125 		}
7126 		break;
7127 	case ICMP6_PARAM_PROB:
7128 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
7129 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
7130 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
7131 		    (uchar_t *)nexthdrp) {
7132 			if (tcp->tcp_state == TCPS_SYN_SENT ||
7133 			    tcp->tcp_state == TCPS_SYN_RCVD) {
7134 				(void) tcp_clean_death(tcp,
7135 				    ECONNREFUSED, 10);
7136 			}
7137 			break;
7138 		}
7139 		break;
7140 
7141 	case ICMP6_TIME_EXCEEDED:
7142 	default:
7143 		break;
7144 	}
7145 	freemsg(mp);
7146 }
7147 
7148 /*
7149  * Notify IP that we are having trouble with this connection.  IP should
7150  * make note so it can potentially use a different IRE.
7151  */
7152 static void
7153 tcp_ip_notify(tcp_t *tcp)
7154 {
7155 	conn_t		*connp = tcp->tcp_connp;
7156 	ire_t		*ire;
7157 
7158 	/*
7159 	 * Note: in the case of source routing we want to blow away the
7160 	 * route to the first source route hop.
7161 	 */
7162 	ire = connp->conn_ixa->ixa_ire;
7163 	if (ire != NULL && !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
7164 		if (ire->ire_ipversion == IPV4_VERSION) {
7165 			/*
7166 			 * As per RFC 1122, we send an RTM_LOSING to inform
7167 			 * routing protocols.
7168 			 */
7169 			ip_rts_change(RTM_LOSING, ire->ire_addr,
7170 			    ire->ire_gateway_addr, ire->ire_mask,
7171 			    connp->conn_laddr_v4,  0, 0, 0,
7172 			    (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA),
7173 			    ire->ire_ipst);
7174 		}
7175 		(void) ire_no_good(ire);
7176 	}
7177 }
7178 
7179 #pragma inline(tcp_send_data)
7180 
7181 /*
7182  * Timer callback routine for keepalive probe.  We do a fake resend of
7183  * last ACKed byte.  Then set a timer using RTO.  When the timer expires,
7184  * check to see if we have heard anything from the other end for the last
7185  * RTO period.  If we have, set the timer to expire for another
7186  * tcp_keepalive_intrvl and check again.  If we have not, set a timer using
7187  * RTO << 1 and check again when it expires.  Keep exponentially increasing
7188  * the timeout if we have not heard from the other side.  If for more than
7189  * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything,
7190  * kill the connection unless the keepalive abort threshold is 0.  In
7191  * that case, we will probe "forever."
7192  */
7193 static void
7194 tcp_keepalive_killer(void *arg)
7195 {
7196 	mblk_t	*mp;
7197 	conn_t	*connp = (conn_t *)arg;
7198 	tcp_t  	*tcp = connp->conn_tcp;
7199 	int32_t	firetime;
7200 	int32_t	idletime;
7201 	int32_t	ka_intrvl;
7202 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7203 
7204 	tcp->tcp_ka_tid = 0;
7205 
7206 	if (tcp->tcp_fused)
7207 		return;
7208 
7209 	BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive);
7210 	ka_intrvl = tcp->tcp_ka_interval;
7211 
7212 	/*
7213 	 * Keepalive probe should only be sent if the application has not
7214 	 * done a close on the connection.
7215 	 */
7216 	if (tcp->tcp_state > TCPS_CLOSE_WAIT) {
7217 		return;
7218 	}
7219 	/* Timer fired too early, restart it. */
7220 	if (tcp->tcp_state < TCPS_ESTABLISHED) {
7221 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
7222 		    MSEC_TO_TICK(ka_intrvl));
7223 		return;
7224 	}
7225 
7226 	idletime = TICK_TO_MSEC(ddi_get_lbolt() - tcp->tcp_last_recv_time);
7227 	/*
7228 	 * If we have not heard from the other side for a long
7229 	 * time, kill the connection unless the keepalive abort
7230 	 * threshold is 0.  In that case, we will probe "forever."
7231 	 */
7232 	if (tcp->tcp_ka_abort_thres != 0 &&
7233 	    idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) {
7234 		BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop);
7235 		(void) tcp_clean_death(tcp, tcp->tcp_client_errno ?
7236 		    tcp->tcp_client_errno : ETIMEDOUT, 11);
7237 		return;
7238 	}
7239 
7240 	if (tcp->tcp_snxt == tcp->tcp_suna &&
7241 	    idletime >= ka_intrvl) {
7242 		/* Fake resend of last ACKed byte. */
7243 		mblk_t	*mp1 = allocb(1, BPRI_LO);
7244 
7245 		if (mp1 != NULL) {
7246 			*mp1->b_wptr++ = '\0';
7247 			mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL,
7248 			    tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE);
7249 			freeb(mp1);
7250 			/*
7251 			 * if allocation failed, fall through to start the
7252 			 * timer back.
7253 			 */
7254 			if (mp != NULL) {
7255 				tcp_send_data(tcp, mp);
7256 				BUMP_MIB(&tcps->tcps_mib,
7257 				    tcpTimKeepaliveProbe);
7258 				if (tcp->tcp_ka_last_intrvl != 0) {
7259 					int max;
7260 					/*
7261 					 * We should probe again at least
7262 					 * in ka_intrvl, but not more than
7263 					 * tcp_rexmit_interval_max.
7264 					 */
7265 					max = tcps->tcps_rexmit_interval_max;
7266 					firetime = MIN(ka_intrvl - 1,
7267 					    tcp->tcp_ka_last_intrvl << 1);
7268 					if (firetime > max)
7269 						firetime = max;
7270 				} else {
7271 					firetime = tcp->tcp_rto;
7272 				}
7273 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
7274 				    tcp_keepalive_killer,
7275 				    MSEC_TO_TICK(firetime));
7276 				tcp->tcp_ka_last_intrvl = firetime;
7277 				return;
7278 			}
7279 		}
7280 	} else {
7281 		tcp->tcp_ka_last_intrvl = 0;
7282 	}
7283 
7284 	/* firetime can be negative if (mp1 == NULL || mp == NULL) */
7285 	if ((firetime = ka_intrvl - idletime) < 0) {
7286 		firetime = ka_intrvl;
7287 	}
7288 	tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
7289 	    MSEC_TO_TICK(firetime));
7290 }
7291 
7292 int
7293 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
7294 {
7295 	conn_t	*connp = tcp->tcp_connp;
7296 	queue_t	*q = connp->conn_rq;
7297 	int32_t	mss = tcp->tcp_mss;
7298 	int	maxpsz;
7299 
7300 	if (TCP_IS_DETACHED(tcp))
7301 		return (mss);
7302 	if (tcp->tcp_fused) {
7303 		maxpsz = tcp_fuse_maxpsz(tcp);
7304 		mss = INFPSZ;
7305 	} else if (tcp->tcp_maxpsz_multiplier == 0) {
7306 		/*
7307 		 * Set the sd_qn_maxpsz according to the socket send buffer
7308 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
7309 		 * instruct the stream head to copyin user data into contiguous
7310 		 * kernel-allocated buffers without breaking it up into smaller
7311 		 * chunks.  We round up the buffer size to the nearest SMSS.
7312 		 */
7313 		maxpsz = MSS_ROUNDUP(connp->conn_sndbuf, mss);
7314 		if (tcp->tcp_kssl_ctx == NULL)
7315 			mss = INFPSZ;
7316 		else
7317 			mss = SSL3_MAX_RECORD_LEN;
7318 	} else {
7319 		/*
7320 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
7321 		 * (and a multiple of the mss).  This instructs the stream
7322 		 * head to break down larger than SMSS writes into SMSS-
7323 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
7324 		 */
7325 		maxpsz = tcp->tcp_maxpsz_multiplier * mss;
7326 		if (maxpsz > connp->conn_sndbuf / 2) {
7327 			maxpsz = connp->conn_sndbuf / 2;
7328 			/* Round up to nearest mss */
7329 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
7330 		}
7331 	}
7332 
7333 	(void) proto_set_maxpsz(q, connp, maxpsz);
7334 	if (!(IPCL_IS_NONSTR(connp)))
7335 		connp->conn_wq->q_maxpsz = maxpsz;
7336 	if (set_maxblk)
7337 		(void) proto_set_tx_maxblk(q, connp, mss);
7338 	return (mss);
7339 }
7340 
7341 /*
7342  * Extract option values from a tcp header.  We put any found values into the
7343  * tcpopt struct and return a bitmask saying which options were found.
7344  */
7345 static int
7346 tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt)
7347 {
7348 	uchar_t		*endp;
7349 	int		len;
7350 	uint32_t	mss;
7351 	uchar_t		*up = (uchar_t *)tcpha;
7352 	int		found = 0;
7353 	int32_t		sack_len;
7354 	tcp_seq		sack_begin, sack_end;
7355 	tcp_t		*tcp;
7356 
7357 	endp = up + TCP_HDR_LENGTH(tcpha);
7358 	up += TCP_MIN_HEADER_LENGTH;
7359 	while (up < endp) {
7360 		len = endp - up;
7361 		switch (*up) {
7362 		case TCPOPT_EOL:
7363 			break;
7364 
7365 		case TCPOPT_NOP:
7366 			up++;
7367 			continue;
7368 
7369 		case TCPOPT_MAXSEG:
7370 			if (len < TCPOPT_MAXSEG_LEN ||
7371 			    up[1] != TCPOPT_MAXSEG_LEN)
7372 				break;
7373 
7374 			mss = BE16_TO_U16(up+2);
7375 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
7376 			tcpopt->tcp_opt_mss = mss;
7377 			found |= TCP_OPT_MSS_PRESENT;
7378 
7379 			up += TCPOPT_MAXSEG_LEN;
7380 			continue;
7381 
7382 		case TCPOPT_WSCALE:
7383 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
7384 				break;
7385 
7386 			if (up[2] > TCP_MAX_WINSHIFT)
7387 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
7388 			else
7389 				tcpopt->tcp_opt_wscale = up[2];
7390 			found |= TCP_OPT_WSCALE_PRESENT;
7391 
7392 			up += TCPOPT_WS_LEN;
7393 			continue;
7394 
7395 		case TCPOPT_SACK_PERMITTED:
7396 			if (len < TCPOPT_SACK_OK_LEN ||
7397 			    up[1] != TCPOPT_SACK_OK_LEN)
7398 				break;
7399 			found |= TCP_OPT_SACK_OK_PRESENT;
7400 			up += TCPOPT_SACK_OK_LEN;
7401 			continue;
7402 
7403 		case TCPOPT_SACK:
7404 			if (len <= 2 || up[1] <= 2 || len < up[1])
7405 				break;
7406 
7407 			/* If TCP is not interested in SACK blks... */
7408 			if ((tcp = tcpopt->tcp) == NULL) {
7409 				up += up[1];
7410 				continue;
7411 			}
7412 			sack_len = up[1] - TCPOPT_HEADER_LEN;
7413 			up += TCPOPT_HEADER_LEN;
7414 
7415 			/*
7416 			 * If the list is empty, allocate one and assume
7417 			 * nothing is sack'ed.
7418 			 */
7419 			ASSERT(tcp->tcp_sack_info != NULL);
7420 			if (tcp->tcp_notsack_list == NULL) {
7421 				tcp_notsack_update(&(tcp->tcp_notsack_list),
7422 				    tcp->tcp_suna, tcp->tcp_snxt,
7423 				    &(tcp->tcp_num_notsack_blk),
7424 				    &(tcp->tcp_cnt_notsack_list));
7425 
7426 				/*
7427 				 * Make sure tcp_notsack_list is not NULL.
7428 				 * This happens when kmem_alloc(KM_NOSLEEP)
7429 				 * returns NULL.
7430 				 */
7431 				if (tcp->tcp_notsack_list == NULL) {
7432 					up += sack_len;
7433 					continue;
7434 				}
7435 				tcp->tcp_fack = tcp->tcp_suna;
7436 			}
7437 
7438 			while (sack_len > 0) {
7439 				if (up + 8 > endp) {
7440 					up = endp;
7441 					break;
7442 				}
7443 				sack_begin = BE32_TO_U32(up);
7444 				up += 4;
7445 				sack_end = BE32_TO_U32(up);
7446 				up += 4;
7447 				sack_len -= 8;
7448 				/*
7449 				 * Bounds checking.  Make sure the SACK
7450 				 * info is within tcp_suna and tcp_snxt.
7451 				 * If this SACK blk is out of bound, ignore
7452 				 * it but continue to parse the following
7453 				 * blks.
7454 				 */
7455 				if (SEQ_LEQ(sack_end, sack_begin) ||
7456 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
7457 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
7458 					continue;
7459 				}
7460 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
7461 				    sack_begin, sack_end,
7462 				    &(tcp->tcp_num_notsack_blk),
7463 				    &(tcp->tcp_cnt_notsack_list));
7464 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
7465 					tcp->tcp_fack = sack_end;
7466 				}
7467 			}
7468 			found |= TCP_OPT_SACK_PRESENT;
7469 			continue;
7470 
7471 		case TCPOPT_TSTAMP:
7472 			if (len < TCPOPT_TSTAMP_LEN ||
7473 			    up[1] != TCPOPT_TSTAMP_LEN)
7474 				break;
7475 
7476 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
7477 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
7478 
7479 			found |= TCP_OPT_TSTAMP_PRESENT;
7480 
7481 			up += TCPOPT_TSTAMP_LEN;
7482 			continue;
7483 
7484 		default:
7485 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
7486 				break;
7487 			up += up[1];
7488 			continue;
7489 		}
7490 		break;
7491 	}
7492 	return (found);
7493 }
7494 
7495 /*
7496  * Set the MSS associated with a particular tcp based on its current value,
7497  * and a new one passed in. Observe minimums and maximums, and reset other
7498  * state variables that we want to view as multiples of MSS.
7499  *
7500  * The value of MSS could be either increased or descreased.
7501  */
7502 static void
7503 tcp_mss_set(tcp_t *tcp, uint32_t mss)
7504 {
7505 	uint32_t	mss_max;
7506 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7507 	conn_t		*connp = tcp->tcp_connp;
7508 
7509 	if (connp->conn_ipversion == IPV4_VERSION)
7510 		mss_max = tcps->tcps_mss_max_ipv4;
7511 	else
7512 		mss_max = tcps->tcps_mss_max_ipv6;
7513 
7514 	if (mss < tcps->tcps_mss_min)
7515 		mss = tcps->tcps_mss_min;
7516 	if (mss > mss_max)
7517 		mss = mss_max;
7518 	/*
7519 	 * Unless naglim has been set by our client to
7520 	 * a non-mss value, force naglim to track mss.
7521 	 * This can help to aggregate small writes.
7522 	 */
7523 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
7524 		tcp->tcp_naglim = mss;
7525 	/*
7526 	 * TCP should be able to buffer at least 4 MSS data for obvious
7527 	 * performance reason.
7528 	 */
7529 	if ((mss << 2) > connp->conn_sndbuf)
7530 		connp->conn_sndbuf = mss << 2;
7531 
7532 	/*
7533 	 * Set the send lowater to at least twice of MSS.
7534 	 */
7535 	if ((mss << 1) > connp->conn_sndlowat)
7536 		connp->conn_sndlowat = mss << 1;
7537 
7538 	/*
7539 	 * Update tcp_cwnd according to the new value of MSS. Keep the
7540 	 * previous ratio to preserve the transmit rate.
7541 	 */
7542 	tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss;
7543 	tcp->tcp_cwnd_cnt = 0;
7544 
7545 	tcp->tcp_mss = mss;
7546 	(void) tcp_maxpsz_set(tcp, B_TRUE);
7547 }
7548 
7549 /* For /dev/tcp aka AF_INET open */
7550 static int
7551 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
7552 {
7553 	return (tcp_open(q, devp, flag, sflag, credp, B_FALSE));
7554 }
7555 
7556 /* For /dev/tcp6 aka AF_INET6 open */
7557 static int
7558 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
7559 {
7560 	return (tcp_open(q, devp, flag, sflag, credp, B_TRUE));
7561 }
7562 
7563 static conn_t *
7564 tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket,
7565     int *errorp)
7566 {
7567 	tcp_t		*tcp = NULL;
7568 	conn_t		*connp;
7569 	zoneid_t	zoneid;
7570 	tcp_stack_t	*tcps;
7571 	squeue_t	*sqp;
7572 
7573 	ASSERT(errorp != NULL);
7574 	/*
7575 	 * Find the proper zoneid and netstack.
7576 	 */
7577 	/*
7578 	 * Special case for install: miniroot needs to be able to
7579 	 * access files via NFS as though it were always in the
7580 	 * global zone.
7581 	 */
7582 	if (credp == kcred && nfs_global_client_only != 0) {
7583 		zoneid = GLOBAL_ZONEID;
7584 		tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
7585 		    netstack_tcp;
7586 		ASSERT(tcps != NULL);
7587 	} else {
7588 		netstack_t *ns;
7589 
7590 		ns = netstack_find_by_cred(credp);
7591 		ASSERT(ns != NULL);
7592 		tcps = ns->netstack_tcp;
7593 		ASSERT(tcps != NULL);
7594 
7595 		/*
7596 		 * For exclusive stacks we set the zoneid to zero
7597 		 * to make TCP operate as if in the global zone.
7598 		 */
7599 		if (tcps->tcps_netstack->netstack_stackid !=
7600 		    GLOBAL_NETSTACKID)
7601 			zoneid = GLOBAL_ZONEID;
7602 		else
7603 			zoneid = crgetzoneid(credp);
7604 	}
7605 
7606 	sqp = IP_SQUEUE_GET((uint_t)gethrtime());
7607 	connp = (conn_t *)tcp_get_conn(sqp, tcps);
7608 	/*
7609 	 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
7610 	 * so we drop it by one.
7611 	 */
7612 	netstack_rele(tcps->tcps_netstack);
7613 	if (connp == NULL) {
7614 		*errorp = ENOSR;
7615 		return (NULL);
7616 	}
7617 	ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto);
7618 
7619 	connp->conn_sqp = sqp;
7620 	connp->conn_initial_sqp = connp->conn_sqp;
7621 	connp->conn_ixa->ixa_sqp = connp->conn_sqp;
7622 	tcp = connp->conn_tcp;
7623 
7624 	/*
7625 	 * Besides asking IP to set the checksum for us, have conn_ip_output
7626 	 * to do the following checks when necessary:
7627 	 *
7628 	 * IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid
7629 	 * IXAF_VERIFY_PMTU: verify PMTU changes
7630 	 * IXAF_VERIFY_LSO: verify LSO capability changes
7631 	 */
7632 	connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
7633 	    IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO;
7634 
7635 	if (!tcps->tcps_dev_flow_ctl)
7636 		connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL;
7637 
7638 	if (isv6) {
7639 		connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
7640 		connp->conn_ipversion = IPV6_VERSION;
7641 		connp->conn_family = AF_INET6;
7642 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
7643 		connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit;
7644 	} else {
7645 		connp->conn_ipversion = IPV4_VERSION;
7646 		connp->conn_family = AF_INET;
7647 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
7648 		connp->conn_default_ttl = tcps->tcps_ipv4_ttl;
7649 	}
7650 	connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl;
7651 
7652 	crhold(credp);
7653 	connp->conn_cred = credp;
7654 	connp->conn_cpid = curproc->p_pid;
7655 	connp->conn_open_time = ddi_get_lbolt64();
7656 
7657 	connp->conn_zoneid = zoneid;
7658 	/* conn_allzones can not be set this early, hence no IPCL_ZONEID */
7659 	connp->conn_ixa->ixa_zoneid = zoneid;
7660 	connp->conn_mlp_type = mlptSingle;
7661 	ASSERT(connp->conn_netstack == tcps->tcps_netstack);
7662 	ASSERT(tcp->tcp_tcps == tcps);
7663 
7664 	/*
7665 	 * If the caller has the process-wide flag set, then default to MAC
7666 	 * exempt mode.  This allows read-down to unlabeled hosts.
7667 	 */
7668 	if (getpflags(NET_MAC_AWARE, credp) != 0)
7669 		connp->conn_mac_mode = CONN_MAC_AWARE;
7670 
7671 	connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);
7672 
7673 	if (issocket) {
7674 		tcp->tcp_issocket = 1;
7675 	}
7676 
7677 	connp->conn_rcvbuf = tcps->tcps_recv_hiwat;
7678 	connp->conn_sndbuf = tcps->tcps_xmit_hiwat;
7679 	connp->conn_sndlowat = tcps->tcps_xmit_lowat;
7680 	connp->conn_so_type = SOCK_STREAM;
7681 	connp->conn_wroff = connp->conn_ht_iphc_allocated +
7682 	    tcps->tcps_wroff_xtra;
7683 
7684 	SOCK_CONNID_INIT(tcp->tcp_connid);
7685 	tcp->tcp_state = TCPS_IDLE;
7686 	tcp_init_values(tcp);
7687 	return (connp);
7688 }
7689 
7690 static int
7691 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
7692     boolean_t isv6)
7693 {
7694 	tcp_t		*tcp = NULL;
7695 	conn_t		*connp = NULL;
7696 	int		err;
7697 	vmem_t		*minor_arena = NULL;
7698 	dev_t		conn_dev;
7699 	boolean_t	issocket;
7700 
7701 	if (q->q_ptr != NULL)
7702 		return (0);
7703 
7704 	if (sflag == MODOPEN)
7705 		return (EINVAL);
7706 
7707 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
7708 	    ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
7709 		minor_arena = ip_minor_arena_la;
7710 	} else {
7711 		/*
7712 		 * Either minor numbers in the large arena were exhausted
7713 		 * or a non socket application is doing the open.
7714 		 * Try to allocate from the small arena.
7715 		 */
7716 		if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
7717 			return (EBUSY);
7718 		}
7719 		minor_arena = ip_minor_arena_sa;
7720 	}
7721 
7722 	ASSERT(minor_arena != NULL);
7723 
7724 	*devp = makedevice(getmajor(*devp), (minor_t)conn_dev);
7725 
7726 	if (flag & SO_FALLBACK) {
7727 		/*
7728 		 * Non streams socket needs a stream to fallback to
7729 		 */
7730 		RD(q)->q_ptr = (void *)conn_dev;
7731 		WR(q)->q_qinfo = &tcp_fallback_sock_winit;
7732 		WR(q)->q_ptr = (void *)minor_arena;
7733 		qprocson(q);
7734 		return (0);
7735 	} else if (flag & SO_ACCEPTOR) {
7736 		q->q_qinfo = &tcp_acceptor_rinit;
7737 		/*
7738 		 * the conn_dev and minor_arena will be subsequently used by
7739 		 * tcp_tli_accept() and tcp_tpi_close_accept() to figure out
7740 		 * the minor device number for this connection from the q_ptr.
7741 		 */
7742 		RD(q)->q_ptr = (void *)conn_dev;
7743 		WR(q)->q_qinfo = &tcp_acceptor_winit;
7744 		WR(q)->q_ptr = (void *)minor_arena;
7745 		qprocson(q);
7746 		return (0);
7747 	}
7748 
7749 	issocket = flag & SO_SOCKSTR;
7750 	connp = tcp_create_common(credp, isv6, issocket, &err);
7751 
7752 	if (connp == NULL) {
7753 		inet_minor_free(minor_arena, conn_dev);
7754 		q->q_ptr = WR(q)->q_ptr = NULL;
7755 		return (err);
7756 	}
7757 
7758 	connp->conn_rq = q;
7759 	connp->conn_wq = WR(q);
7760 	q->q_ptr = WR(q)->q_ptr = connp;
7761 
7762 	connp->conn_dev = conn_dev;
7763 	connp->conn_minor_arena = minor_arena;
7764 
7765 	ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6);
7766 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
7767 
7768 	tcp = connp->conn_tcp;
7769 
7770 	if (issocket) {
7771 		WR(q)->q_qinfo = &tcp_sock_winit;
7772 	} else {
7773 #ifdef  _ILP32
7774 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
7775 #else
7776 		tcp->tcp_acceptor_id = conn_dev;
7777 #endif  /* _ILP32 */
7778 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
7779 	}
7780 
7781 	/*
7782 	 * Put the ref for TCP. Ref for IP was already put
7783 	 * by ipcl_conn_create. Also Make the conn_t globally
7784 	 * visible to walkers
7785 	 */
7786 	mutex_enter(&connp->conn_lock);
7787 	CONN_INC_REF_LOCKED(connp);
7788 	ASSERT(connp->conn_ref == 2);
7789 	connp->conn_state_flags &= ~CONN_INCIPIENT;
7790 	mutex_exit(&connp->conn_lock);
7791 
7792 	qprocson(q);
7793 	return (0);
7794 }
7795 
7796 /*
7797  * Some TCP options can be "set" by requesting them in the option
7798  * buffer. This is needed for XTI feature test though we do not
7799  * allow it in general. We interpret that this mechanism is more
7800  * applicable to OSI protocols and need not be allowed in general.
7801  * This routine filters out options for which it is not allowed (most)
7802  * and lets through those (few) for which it is. [ The XTI interface
7803  * test suite specifics will imply that any XTI_GENERIC level XTI_* if
7804  * ever implemented will have to be allowed here ].
7805  */
7806 static boolean_t
7807 tcp_allow_connopt_set(int level, int name)
7808 {
7809 
7810 	switch (level) {
7811 	case IPPROTO_TCP:
7812 		switch (name) {
7813 		case TCP_NODELAY:
7814 			return (B_TRUE);
7815 		default:
7816 			return (B_FALSE);
7817 		}
7818 		/*NOTREACHED*/
7819 	default:
7820 		return (B_FALSE);
7821 	}
7822 	/*NOTREACHED*/
7823 }
7824 
7825 /*
7826  * This routine gets default values of certain options whose default
7827  * values are maintained by protocol specific code
7828  */
7829 /* ARGSUSED */
7830 int
7831 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
7832 {
7833 	int32_t	*i1 = (int32_t *)ptr;
7834 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7835 
7836 	switch (level) {
7837 	case IPPROTO_TCP:
7838 		switch (name) {
7839 		case TCP_NOTIFY_THRESHOLD:
7840 			*i1 = tcps->tcps_ip_notify_interval;
7841 			break;
7842 		case TCP_ABORT_THRESHOLD:
7843 			*i1 = tcps->tcps_ip_abort_interval;
7844 			break;
7845 		case TCP_CONN_NOTIFY_THRESHOLD:
7846 			*i1 = tcps->tcps_ip_notify_cinterval;
7847 			break;
7848 		case TCP_CONN_ABORT_THRESHOLD:
7849 			*i1 = tcps->tcps_ip_abort_cinterval;
7850 			break;
7851 		default:
7852 			return (-1);
7853 		}
7854 		break;
7855 	case IPPROTO_IP:
7856 		switch (name) {
7857 		case IP_TTL:
7858 			*i1 = tcps->tcps_ipv4_ttl;
7859 			break;
7860 		default:
7861 			return (-1);
7862 		}
7863 		break;
7864 	case IPPROTO_IPV6:
7865 		switch (name) {
7866 		case IPV6_UNICAST_HOPS:
7867 			*i1 = tcps->tcps_ipv6_hoplimit;
7868 			break;
7869 		default:
7870 			return (-1);
7871 		}
7872 		break;
7873 	default:
7874 		return (-1);
7875 	}
7876 	return (sizeof (int));
7877 }
7878 
7879 /*
7880  * TCP routine to get the values of options.
7881  */
7882 static int
7883 tcp_opt_get(conn_t *connp, int level, int name, uchar_t *ptr)
7884 {
7885 	int		*i1 = (int *)ptr;
7886 	tcp_t		*tcp = connp->conn_tcp;
7887 	conn_opt_arg_t	coas;
7888 	int		retval;
7889 
7890 	coas.coa_connp = connp;
7891 	coas.coa_ixa = connp->conn_ixa;
7892 	coas.coa_ipp = &connp->conn_xmit_ipp;
7893 	coas.coa_ancillary = B_FALSE;
7894 	coas.coa_changed = 0;
7895 
7896 	switch (level) {
7897 	case SOL_SOCKET:
7898 		switch (name) {
7899 		case SO_SND_COPYAVOID:
7900 			*i1 = tcp->tcp_snd_zcopy_on ?
7901 			    SO_SND_COPYAVOID : 0;
7902 			return (sizeof (int));
7903 		case SO_ACCEPTCONN:
7904 			*i1 = (tcp->tcp_state == TCPS_LISTEN);
7905 			return (sizeof (int));
7906 		}
7907 		break;
7908 	case IPPROTO_TCP:
7909 		switch (name) {
7910 		case TCP_NODELAY:
7911 			*i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0;
7912 			return (sizeof (int));
7913 		case TCP_MAXSEG:
7914 			*i1 = tcp->tcp_mss;
7915 			return (sizeof (int));
7916 		case TCP_NOTIFY_THRESHOLD:
7917 			*i1 = (int)tcp->tcp_first_timer_threshold;
7918 			return (sizeof (int));
7919 		case TCP_ABORT_THRESHOLD:
7920 			*i1 = tcp->tcp_second_timer_threshold;
7921 			return (sizeof (int));
7922 		case TCP_CONN_NOTIFY_THRESHOLD:
7923 			*i1 = tcp->tcp_first_ctimer_threshold;
7924 			return (sizeof (int));
7925 		case TCP_CONN_ABORT_THRESHOLD:
7926 			*i1 = tcp->tcp_second_ctimer_threshold;
7927 			return (sizeof (int));
7928 		case TCP_INIT_CWND:
7929 			*i1 = tcp->tcp_init_cwnd;
7930 			return (sizeof (int));
7931 		case TCP_KEEPALIVE_THRESHOLD:
7932 			*i1 = tcp->tcp_ka_interval;
7933 			return (sizeof (int));
7934 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
7935 			*i1 = tcp->tcp_ka_abort_thres;
7936 			return (sizeof (int));
7937 		case TCP_CORK:
7938 			*i1 = tcp->tcp_cork;
7939 			return (sizeof (int));
7940 		}
7941 		break;
7942 	case IPPROTO_IP:
7943 		if (connp->conn_family != AF_INET)
7944 			return (-1);
7945 		switch (name) {
7946 		case IP_OPTIONS:
7947 		case T_IP_OPTIONS:
7948 			/* Caller ensures enough space */
7949 			return (ip_opt_get_user(connp, ptr));
7950 		default:
7951 			break;
7952 		}
7953 		break;
7954 
7955 	case IPPROTO_IPV6:
7956 		/*
7957 		 * IPPROTO_IPV6 options are only supported for sockets
7958 		 * that are using IPv6 on the wire.
7959 		 */
7960 		if (connp->conn_ipversion != IPV6_VERSION) {
7961 			return (-1);
7962 		}
7963 		switch (name) {
7964 		case IPV6_PATHMTU:
7965 			if (tcp->tcp_state < TCPS_ESTABLISHED)
7966 				return (-1);
7967 			break;
7968 		}
7969 		break;
7970 	}
7971 	mutex_enter(&connp->conn_lock);
7972 	retval = conn_opt_get(&coas, level, name, ptr);
7973 	mutex_exit(&connp->conn_lock);
7974 	return (retval);
7975 }
7976 
7977 /*
7978  * TCP routine to get the values of options.
7979  */
7980 int
7981 tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr)
7982 {
7983 	return (tcp_opt_get(Q_TO_CONN(q), level, name, ptr));
7984 }
7985 
7986 /* returns UNIX error, the optlen is a value-result arg */
7987 int
7988 tcp_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name,
7989     void *optvalp, socklen_t *optlen, cred_t *cr)
7990 {
7991 	conn_t		*connp = (conn_t *)proto_handle;
7992 	squeue_t	*sqp = connp->conn_sqp;
7993 	int		error;
7994 	t_uscalar_t	max_optbuf_len;
7995 	void		*optvalp_buf;
7996 	int		len;
7997 
7998 	ASSERT(connp->conn_upper_handle != NULL);
7999 
8000 	error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len,
8001 	    tcp_opt_obj.odb_opt_des_arr,
8002 	    tcp_opt_obj.odb_opt_arr_cnt,
8003 	    B_FALSE, B_TRUE, cr);
8004 	if (error != 0) {
8005 		if (error < 0) {
8006 			error = proto_tlitosyserr(-error);
8007 		}
8008 		return (error);
8009 	}
8010 
8011 	optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP);
8012 
8013 	error = squeue_synch_enter(sqp, connp, NULL);
8014 	if (error == ENOMEM) {
8015 		kmem_free(optvalp_buf, max_optbuf_len);
8016 		return (ENOMEM);
8017 	}
8018 
8019 	len = tcp_opt_get(connp, level, option_name, optvalp_buf);
8020 	squeue_synch_exit(sqp, connp);
8021 
8022 	if (len == -1) {
8023 		kmem_free(optvalp_buf, max_optbuf_len);
8024 		return (EINVAL);
8025 	}
8026 
8027 	/*
8028 	 * update optlen and copy option value
8029 	 */
8030 	t_uscalar_t size = MIN(len, *optlen);
8031 
8032 	bcopy(optvalp_buf, optvalp, size);
8033 	bcopy(&size, optlen, sizeof (size));
8034 
8035 	kmem_free(optvalp_buf, max_optbuf_len);
8036 	return (0);
8037 }
8038 
8039 /*
8040  * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements.
8041  * Parameters are assumed to be verified by the caller.
8042  */
8043 /* ARGSUSED */
8044 int
8045 tcp_opt_set(conn_t *connp, uint_t optset_context, int level, int name,
8046     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
8047     void *thisdg_attrs, cred_t *cr)
8048 {
8049 	tcp_t	*tcp = connp->conn_tcp;
8050 	int	*i1 = (int *)invalp;
8051 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
8052 	boolean_t checkonly;
8053 	int	reterr;
8054 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8055 	conn_opt_arg_t	coas;
8056 
8057 	coas.coa_connp = connp;
8058 	coas.coa_ixa = connp->conn_ixa;
8059 	coas.coa_ipp = &connp->conn_xmit_ipp;
8060 	coas.coa_ancillary = B_FALSE;
8061 	coas.coa_changed = 0;
8062 
8063 	switch (optset_context) {
8064 	case SETFN_OPTCOM_CHECKONLY:
8065 		checkonly = B_TRUE;
8066 		/*
8067 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
8068 		 * inlen != 0 implies value supplied and
8069 		 * 	we have to "pretend" to set it.
8070 		 * inlen == 0 implies that there is no
8071 		 * 	value part in T_CHECK request and just validation
8072 		 * done elsewhere should be enough, we just return here.
8073 		 */
8074 		if (inlen == 0) {
8075 			*outlenp = 0;
8076 			return (0);
8077 		}
8078 		break;
8079 	case SETFN_OPTCOM_NEGOTIATE:
8080 		checkonly = B_FALSE;
8081 		break;
8082 	case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */
8083 	case SETFN_CONN_NEGOTIATE:
8084 		checkonly = B_FALSE;
8085 		/*
8086 		 * Negotiating local and "association-related" options
8087 		 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ)
8088 		 * primitives is allowed by XTI, but we choose
8089 		 * to not implement this style negotiation for Internet
8090 		 * protocols (We interpret it is a must for OSI world but
8091 		 * optional for Internet protocols) for all options.
8092 		 * [ Will do only for the few options that enable test
8093 		 * suites that our XTI implementation of this feature
8094 		 * works for transports that do allow it ]
8095 		 */
8096 		if (!tcp_allow_connopt_set(level, name)) {
8097 			*outlenp = 0;
8098 			return (EINVAL);
8099 		}
8100 		break;
8101 	default:
8102 		/*
8103 		 * We should never get here
8104 		 */
8105 		*outlenp = 0;
8106 		return (EINVAL);
8107 	}
8108 
8109 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
8110 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
8111 
8112 	/*
8113 	 * For TCP, we should have no ancillary data sent down
8114 	 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs
8115 	 * has to be zero.
8116 	 */
8117 	ASSERT(thisdg_attrs == NULL);
8118 
8119 	/*
8120 	 * For fixed length options, no sanity check
8121 	 * of passed in length is done. It is assumed *_optcom_req()
8122 	 * routines do the right thing.
8123 	 */
8124 	switch (level) {
8125 	case SOL_SOCKET:
8126 		switch (name) {
8127 		case SO_KEEPALIVE:
8128 			if (checkonly) {
8129 				/* check only case */
8130 				break;
8131 			}
8132 
8133 			if (!onoff) {
8134 				if (connp->conn_keepalive) {
8135 					if (tcp->tcp_ka_tid != 0) {
8136 						(void) TCP_TIMER_CANCEL(tcp,
8137 						    tcp->tcp_ka_tid);
8138 						tcp->tcp_ka_tid = 0;
8139 					}
8140 					connp->conn_keepalive = 0;
8141 				}
8142 				break;
8143 			}
8144 			if (!connp->conn_keepalive) {
8145 				/* Crank up the keepalive timer */
8146 				tcp->tcp_ka_last_intrvl = 0;
8147 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
8148 				    tcp_keepalive_killer,
8149 				    MSEC_TO_TICK(tcp->tcp_ka_interval));
8150 				connp->conn_keepalive = 1;
8151 			}
8152 			break;
8153 		case SO_SNDBUF: {
8154 			if (*i1 > tcps->tcps_max_buf) {
8155 				*outlenp = 0;
8156 				return (ENOBUFS);
8157 			}
8158 			if (checkonly)
8159 				break;
8160 
8161 			connp->conn_sndbuf = *i1;
8162 			if (tcps->tcps_snd_lowat_fraction != 0) {
8163 				connp->conn_sndlowat = connp->conn_sndbuf /
8164 				    tcps->tcps_snd_lowat_fraction;
8165 			}
8166 			(void) tcp_maxpsz_set(tcp, B_TRUE);
8167 			/*
8168 			 * If we are flow-controlled, recheck the condition.
8169 			 * There are apps that increase SO_SNDBUF size when
8170 			 * flow-controlled (EWOULDBLOCK), and expect the flow
8171 			 * control condition to be lifted right away.
8172 			 */
8173 			mutex_enter(&tcp->tcp_non_sq_lock);
8174 			if (tcp->tcp_flow_stopped &&
8175 			    TCP_UNSENT_BYTES(tcp) < connp->conn_sndbuf) {
8176 				tcp_clrqfull(tcp);
8177 			}
8178 			mutex_exit(&tcp->tcp_non_sq_lock);
8179 			*outlenp = inlen;
8180 			return (0);
8181 		}
8182 		case SO_RCVBUF:
8183 			if (*i1 > tcps->tcps_max_buf) {
8184 				*outlenp = 0;
8185 				return (ENOBUFS);
8186 			}
8187 			/* Silently ignore zero */
8188 			if (!checkonly && *i1 != 0) {
8189 				*i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss);
8190 				(void) tcp_rwnd_set(tcp, *i1);
8191 			}
8192 			/*
8193 			 * XXX should we return the rwnd here
8194 			 * and tcp_opt_get ?
8195 			 */
8196 			*outlenp = inlen;
8197 			return (0);
8198 		case SO_SND_COPYAVOID:
8199 			if (!checkonly) {
8200 				if (tcp->tcp_loopback ||
8201 				    (tcp->tcp_kssl_ctx != NULL) ||
8202 				    (onoff != 1) || !tcp_zcopy_check(tcp)) {
8203 					*outlenp = 0;
8204 					return (EOPNOTSUPP);
8205 				}
8206 				tcp->tcp_snd_zcopy_aware = 1;
8207 			}
8208 			*outlenp = inlen;
8209 			return (0);
8210 		}
8211 		break;
8212 	case IPPROTO_TCP:
8213 		switch (name) {
8214 		case TCP_NODELAY:
8215 			if (!checkonly)
8216 				tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss;
8217 			break;
8218 		case TCP_NOTIFY_THRESHOLD:
8219 			if (!checkonly)
8220 				tcp->tcp_first_timer_threshold = *i1;
8221 			break;
8222 		case TCP_ABORT_THRESHOLD:
8223 			if (!checkonly)
8224 				tcp->tcp_second_timer_threshold = *i1;
8225 			break;
8226 		case TCP_CONN_NOTIFY_THRESHOLD:
8227 			if (!checkonly)
8228 				tcp->tcp_first_ctimer_threshold = *i1;
8229 			break;
8230 		case TCP_CONN_ABORT_THRESHOLD:
8231 			if (!checkonly)
8232 				tcp->tcp_second_ctimer_threshold = *i1;
8233 			break;
8234 		case TCP_RECVDSTADDR:
8235 			if (tcp->tcp_state > TCPS_LISTEN) {
8236 				*outlenp = 0;
8237 				return (EOPNOTSUPP);
8238 			}
8239 			/* Setting done in conn_opt_set */
8240 			break;
8241 		case TCP_INIT_CWND: {
8242 			uint32_t init_cwnd = *((uint32_t *)invalp);
8243 
8244 			if (checkonly)
8245 				break;
8246 
8247 			/*
8248 			 * Only allow socket with network configuration
8249 			 * privilege to set the initial cwnd to be larger
8250 			 * than allowed by RFC 3390.
8251 			 */
8252 			if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) {
8253 				tcp->tcp_init_cwnd = init_cwnd;
8254 				break;
8255 			}
8256 			if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) {
8257 				*outlenp = 0;
8258 				return (reterr);
8259 			}
8260 			if (init_cwnd > TCP_MAX_INIT_CWND) {
8261 				*outlenp = 0;
8262 				return (EINVAL);
8263 			}
8264 			tcp->tcp_init_cwnd = init_cwnd;
8265 			break;
8266 		}
8267 		case TCP_KEEPALIVE_THRESHOLD:
8268 			if (checkonly)
8269 				break;
8270 
8271 			if (*i1 < tcps->tcps_keepalive_interval_low ||
8272 			    *i1 > tcps->tcps_keepalive_interval_high) {
8273 				*outlenp = 0;
8274 				return (EINVAL);
8275 			}
8276 			if (*i1 != tcp->tcp_ka_interval) {
8277 				tcp->tcp_ka_interval = *i1;
8278 				/*
8279 				 * Check if we need to restart the
8280 				 * keepalive timer.
8281 				 */
8282 				if (tcp->tcp_ka_tid != 0) {
8283 					ASSERT(connp->conn_keepalive);
8284 					(void) TCP_TIMER_CANCEL(tcp,
8285 					    tcp->tcp_ka_tid);
8286 					tcp->tcp_ka_last_intrvl = 0;
8287 					tcp->tcp_ka_tid = TCP_TIMER(tcp,
8288 					    tcp_keepalive_killer,
8289 					    MSEC_TO_TICK(tcp->tcp_ka_interval));
8290 				}
8291 			}
8292 			break;
8293 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
8294 			if (!checkonly) {
8295 				if (*i1 <
8296 				    tcps->tcps_keepalive_abort_interval_low ||
8297 				    *i1 >
8298 				    tcps->tcps_keepalive_abort_interval_high) {
8299 					*outlenp = 0;
8300 					return (EINVAL);
8301 				}
8302 				tcp->tcp_ka_abort_thres = *i1;
8303 			}
8304 			break;
8305 		case TCP_CORK:
8306 			if (!checkonly) {
8307 				/*
8308 				 * if tcp->tcp_cork was set and is now
8309 				 * being unset, we have to make sure that
8310 				 * the remaining data gets sent out. Also
8311 				 * unset tcp->tcp_cork so that tcp_wput_data()
8312 				 * can send data even if it is less than mss
8313 				 */
8314 				if (tcp->tcp_cork && onoff == 0 &&
8315 				    tcp->tcp_unsent > 0) {
8316 					tcp->tcp_cork = B_FALSE;
8317 					tcp_wput_data(tcp, NULL, B_FALSE);
8318 				}
8319 				tcp->tcp_cork = onoff;
8320 			}
8321 			break;
8322 		default:
8323 			break;
8324 		}
8325 		break;
8326 	case IPPROTO_IP:
8327 		if (connp->conn_family != AF_INET) {
8328 			*outlenp = 0;
8329 			return (EINVAL);
8330 		}
8331 		switch (name) {
8332 		case IP_SEC_OPT:
8333 			/*
8334 			 * We should not allow policy setting after
8335 			 * we start listening for connections.
8336 			 */
8337 			if (tcp->tcp_state == TCPS_LISTEN) {
8338 				return (EINVAL);
8339 			}
8340 			break;
8341 		}
8342 		break;
8343 	case IPPROTO_IPV6:
8344 		/*
8345 		 * IPPROTO_IPV6 options are only supported for sockets
8346 		 * that are using IPv6 on the wire.
8347 		 */
8348 		if (connp->conn_ipversion != IPV6_VERSION) {
8349 			*outlenp = 0;
8350 			return (EINVAL);
8351 		}
8352 
8353 		switch (name) {
8354 		case IPV6_RECVPKTINFO:
8355 			if (!checkonly) {
8356 				/* Force it to be sent up with the next msg */
8357 				tcp->tcp_recvifindex = 0;
8358 			}
8359 			break;
8360 		case IPV6_RECVTCLASS:
8361 			if (!checkonly) {
8362 				/* Force it to be sent up with the next msg */
8363 				tcp->tcp_recvtclass = 0xffffffffU;
8364 			}
8365 			break;
8366 		case IPV6_RECVHOPLIMIT:
8367 			if (!checkonly) {
8368 				/* Force it to be sent up with the next msg */
8369 				tcp->tcp_recvhops = 0xffffffffU;
8370 			}
8371 			break;
8372 		case IPV6_PKTINFO:
8373 			/* This is an extra check for TCP */
8374 			if (inlen == sizeof (struct in6_pktinfo)) {
8375 				struct in6_pktinfo *pkti;
8376 
8377 				pkti = (struct in6_pktinfo *)invalp;
8378 				/*
8379 				 * RFC 3542 states that ipi6_addr must be
8380 				 * the unspecified address when setting the
8381 				 * IPV6_PKTINFO sticky socket option on a
8382 				 * TCP socket.
8383 				 */
8384 				if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr))
8385 					return (EINVAL);
8386 			}
8387 			break;
8388 		case IPV6_SEC_OPT:
8389 			/*
8390 			 * We should not allow policy setting after
8391 			 * we start listening for connections.
8392 			 */
8393 			if (tcp->tcp_state == TCPS_LISTEN) {
8394 				return (EINVAL);
8395 			}
8396 			break;
8397 		}
8398 		break;
8399 	}
8400 	reterr = conn_opt_set(&coas, level, name, inlen, invalp,
8401 	    checkonly, cr);
8402 	if (reterr != 0) {
8403 		*outlenp = 0;
8404 		return (reterr);
8405 	}
8406 
8407 	/*
8408 	 * Common case of OK return with outval same as inval
8409 	 */
8410 	if (invalp != outvalp) {
8411 		/* don't trust bcopy for identical src/dst */
8412 		(void) bcopy(invalp, outvalp, inlen);
8413 	}
8414 	*outlenp = inlen;
8415 
8416 	if (coas.coa_changed & COA_HEADER_CHANGED) {
8417 		reterr = tcp_build_hdrs(tcp);
8418 		if (reterr != 0)
8419 			return (reterr);
8420 	}
8421 	if (coas.coa_changed & COA_ROUTE_CHANGED) {
8422 		in6_addr_t nexthop;
8423 
8424 		/*
8425 		 * If we are connected we re-cache the information.
8426 		 * We ignore errors to preserve BSD behavior.
8427 		 * Note that we don't redo IPsec policy lookup here
8428 		 * since the final destination (or source) didn't change.
8429 		 */
8430 		ip_attr_nexthop(&connp->conn_xmit_ipp, connp->conn_ixa,
8431 		    &connp->conn_faddr_v6, &nexthop);
8432 
8433 		if (!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6) &&
8434 		    !IN6_IS_ADDR_V4MAPPED_ANY(&connp->conn_faddr_v6)) {
8435 			(void) ip_attr_connect(connp, connp->conn_ixa,
8436 			    &connp->conn_laddr_v6, &connp->conn_faddr_v6,
8437 			    &nexthop, connp->conn_fport, NULL, NULL,
8438 			    IPDF_VERIFY_DST);
8439 		}
8440 	}
8441 	if ((coas.coa_changed & COA_SNDBUF_CHANGED) && !IPCL_IS_NONSTR(connp)) {
8442 		connp->conn_wq->q_hiwat = connp->conn_sndbuf;
8443 	}
8444 	if (coas.coa_changed & COA_WROFF_CHANGED) {
8445 		connp->conn_wroff = connp->conn_ht_iphc_allocated +
8446 		    tcps->tcps_wroff_xtra;
8447 		(void) proto_set_tx_wroff(connp->conn_rq, connp,
8448 		    connp->conn_wroff);
8449 	}
8450 	if (coas.coa_changed & COA_OOBINLINE_CHANGED) {
8451 		if (IPCL_IS_NONSTR(connp))
8452 			proto_set_rx_oob_opt(connp, onoff);
8453 	}
8454 	return (0);
8455 }
8456 
8457 /* ARGSUSED */
8458 int
8459 tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, int name,
8460     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
8461     void *thisdg_attrs, cred_t *cr)
8462 {
8463 	conn_t	*connp =  Q_TO_CONN(q);
8464 
8465 	return (tcp_opt_set(connp, optset_context, level, name, inlen, invalp,
8466 	    outlenp, outvalp, thisdg_attrs, cr));
8467 }
8468 
8469 int
8470 tcp_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name,
8471     const void *optvalp, socklen_t optlen, cred_t *cr)
8472 {
8473 	conn_t		*connp = (conn_t *)proto_handle;
8474 	squeue_t	*sqp = connp->conn_sqp;
8475 	int		error;
8476 
8477 	ASSERT(connp->conn_upper_handle != NULL);
8478 	/*
8479 	 * Entering the squeue synchronously can result in a context switch,
8480 	 * which can cause a rather sever performance degradation. So we try to
8481 	 * handle whatever options we can without entering the squeue.
8482 	 */
8483 	if (level == IPPROTO_TCP) {
8484 		switch (option_name) {
8485 		case TCP_NODELAY:
8486 			if (optlen != sizeof (int32_t))
8487 				return (EINVAL);
8488 			mutex_enter(&connp->conn_tcp->tcp_non_sq_lock);
8489 			connp->conn_tcp->tcp_naglim = *(int *)optvalp ? 1 :
8490 			    connp->conn_tcp->tcp_mss;
8491 			mutex_exit(&connp->conn_tcp->tcp_non_sq_lock);
8492 			return (0);
8493 		default:
8494 			break;
8495 		}
8496 	}
8497 
8498 	error = squeue_synch_enter(sqp, connp, NULL);
8499 	if (error == ENOMEM) {
8500 		return (ENOMEM);
8501 	}
8502 
8503 	error = proto_opt_check(level, option_name, optlen, NULL,
8504 	    tcp_opt_obj.odb_opt_des_arr,
8505 	    tcp_opt_obj.odb_opt_arr_cnt,
8506 	    B_TRUE, B_FALSE, cr);
8507 
8508 	if (error != 0) {
8509 		if (error < 0) {
8510 			error = proto_tlitosyserr(-error);
8511 		}
8512 		squeue_synch_exit(sqp, connp);
8513 		return (error);
8514 	}
8515 
8516 	error = tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name,
8517 	    optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp,
8518 	    NULL, cr);
8519 	squeue_synch_exit(sqp, connp);
8520 
8521 	ASSERT(error >= 0);
8522 
8523 	return (error);
8524 }
8525 
8526 /*
8527  * Build/update the tcp header template (in conn_ht_iphc) based on
8528  * conn_xmit_ipp. The headers include ip6_t, any extension
8529  * headers, and the maximum size tcp header (to avoid reallocation
8530  * on the fly for additional tcp options).
8531  *
8532  * Assumes the caller has already set conn_{faddr,laddr,fport,lport,flowinfo}.
8533  * Returns failure if can't allocate memory.
8534  */
8535 static int
8536 tcp_build_hdrs(tcp_t *tcp)
8537 {
8538 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8539 	conn_t		*connp = tcp->tcp_connp;
8540 	tcpha_t		*tcpha;
8541 	uint32_t	cksum;
8542 	int		error;
8543 
8544 	/* Grab lock to satisfy ASSERT; TCP is serialized using squeue */
8545 	mutex_enter(&connp->conn_lock);
8546 	error = conn_build_hdr_template(connp, TCP_MIN_HEADER_LENGTH,
8547 	    TCP_MAX_TCP_OPTIONS_LENGTH, &connp->conn_laddr_v6,
8548 	    &connp->conn_faddr_v6, connp->conn_flowinfo);
8549 	mutex_exit(&connp->conn_lock);
8550 	if (error != 0)
8551 		return (error);
8552 
8553 	/*
8554 	 * Any routing header/option has been massaged. The checksum difference
8555 	 * is stored in conn_sum for later use.
8556 	 */
8557 	tcpha = (tcpha_t *)connp->conn_ht_ulp;
8558 	tcp->tcp_tcpha = tcpha;
8559 
8560 	tcpha->tha_lport = connp->conn_lport;
8561 	tcpha->tha_fport = connp->conn_fport;
8562 	tcpha->tha_sum = 0;
8563 	tcpha->tha_offset_and_reserved = (5 << 4);
8564 
8565 	/*
8566 	 * IP wants our header length in the checksum field to
8567 	 * allow it to perform a single pseudo-header+checksum
8568 	 * calculation on behalf of TCP.
8569 	 * Include the adjustment for a source route once IP_OPTIONS is set.
8570 	 */
8571 	cksum = sizeof (tcpha_t) + connp->conn_sum;
8572 	cksum = (cksum >> 16) + (cksum & 0xFFFF);
8573 	ASSERT(cksum < 0x10000);
8574 	tcpha->tha_sum = htons(cksum);
8575 
8576 	if (connp->conn_ipversion == IPV4_VERSION)
8577 		tcp->tcp_ipha = (ipha_t *)connp->conn_ht_iphc;
8578 	else
8579 		tcp->tcp_ip6h = (ip6_t *)connp->conn_ht_iphc;
8580 
8581 	if (connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra >
8582 	    connp->conn_wroff) {
8583 		connp->conn_wroff = connp->conn_ht_iphc_allocated +
8584 		    tcps->tcps_wroff_xtra;
8585 		(void) proto_set_tx_wroff(connp->conn_rq, connp,
8586 		    connp->conn_wroff);
8587 	}
8588 	return (0);
8589 }
8590 
8591 /* Get callback routine passed to nd_load by tcp_param_register */
8592 /* ARGSUSED */
8593 static int
8594 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
8595 {
8596 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
8597 
8598 	(void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val);
8599 	return (0);
8600 }
8601 
8602 /*
8603  * Walk through the param array specified registering each element with the
8604  * named dispatch handler.
8605  */
8606 static boolean_t
8607 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps)
8608 {
8609 	for (; cnt-- > 0; tcppa++) {
8610 		if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) {
8611 			if (!nd_load(ndp, tcppa->tcp_param_name,
8612 			    tcp_param_get, tcp_param_set,
8613 			    (caddr_t)tcppa)) {
8614 				nd_free(ndp);
8615 				return (B_FALSE);
8616 			}
8617 		}
8618 	}
8619 	tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t),
8620 	    KM_SLEEP);
8621 	bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param,
8622 	    sizeof (tcpparam_t));
8623 	if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name,
8624 	    tcp_param_get, tcp_param_set_aligned,
8625 	    (caddr_t)tcps->tcps_wroff_xtra_param)) {
8626 		nd_free(ndp);
8627 		return (B_FALSE);
8628 	}
8629 	if (!nd_load(ndp, "tcp_extra_priv_ports",
8630 	    tcp_extra_priv_ports_get, NULL, NULL)) {
8631 		nd_free(ndp);
8632 		return (B_FALSE);
8633 	}
8634 	if (!nd_load(ndp, "tcp_extra_priv_ports_add",
8635 	    NULL, tcp_extra_priv_ports_add, NULL)) {
8636 		nd_free(ndp);
8637 		return (B_FALSE);
8638 	}
8639 	if (!nd_load(ndp, "tcp_extra_priv_ports_del",
8640 	    NULL, tcp_extra_priv_ports_del, NULL)) {
8641 		nd_free(ndp);
8642 		return (B_FALSE);
8643 	}
8644 	if (!nd_load(ndp, "tcp_1948_phrase", NULL,
8645 	    tcp_1948_phrase_set, NULL)) {
8646 		nd_free(ndp);
8647 		return (B_FALSE);
8648 	}
8649 	/*
8650 	 * Dummy ndd variables - only to convey obsolescence information
8651 	 * through printing of their name (no get or set routines)
8652 	 * XXX Remove in future releases ?
8653 	 */
8654 	if (!nd_load(ndp,
8655 	    "tcp_close_wait_interval(obsoleted - "
8656 	    "use tcp_time_wait_interval)", NULL, NULL, NULL)) {
8657 		nd_free(ndp);
8658 		return (B_FALSE);
8659 	}
8660 	return (B_TRUE);
8661 }
8662 
8663 /* ndd set routine for tcp_wroff_xtra. */
8664 /* ARGSUSED */
8665 static int
8666 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
8667     cred_t *cr)
8668 {
8669 	long new_value;
8670 	tcpparam_t *tcppa = (tcpparam_t *)cp;
8671 
8672 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
8673 	    new_value < tcppa->tcp_param_min ||
8674 	    new_value > tcppa->tcp_param_max) {
8675 		return (EINVAL);
8676 	}
8677 	/*
8678 	 * Need to make sure new_value is a multiple of 4.  If it is not,
8679 	 * round it up.  For future 64 bit requirement, we actually make it
8680 	 * a multiple of 8.
8681 	 */
8682 	if (new_value & 0x7) {
8683 		new_value = (new_value & ~0x7) + 0x8;
8684 	}
8685 	tcppa->tcp_param_val = new_value;
8686 	return (0);
8687 }
8688 
8689 /* Set callback routine passed to nd_load by tcp_param_register */
8690 /* ARGSUSED */
8691 static int
8692 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
8693 {
8694 	long	new_value;
8695 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
8696 
8697 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
8698 	    new_value < tcppa->tcp_param_min ||
8699 	    new_value > tcppa->tcp_param_max) {
8700 		return (EINVAL);
8701 	}
8702 	tcppa->tcp_param_val = new_value;
8703 	return (0);
8704 }
8705 
8706 /*
8707  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
8708  * is filled, return as much as we can.  The message passed in may be
8709  * multi-part, chained using b_cont.  "start" is the starting sequence
8710  * number for this piece.
8711  */
8712 static mblk_t *
8713 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
8714 {
8715 	uint32_t	end;
8716 	mblk_t		*mp1;
8717 	mblk_t		*mp2;
8718 	mblk_t		*next_mp;
8719 	uint32_t	u1;
8720 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8721 
8722 
8723 	/* Walk through all the new pieces. */
8724 	do {
8725 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
8726 		    (uintptr_t)INT_MAX);
8727 		end = start + (int)(mp->b_wptr - mp->b_rptr);
8728 		next_mp = mp->b_cont;
8729 		if (start == end) {
8730 			/* Empty.  Blast it. */
8731 			freeb(mp);
8732 			continue;
8733 		}
8734 		mp->b_cont = NULL;
8735 		TCP_REASS_SET_SEQ(mp, start);
8736 		TCP_REASS_SET_END(mp, end);
8737 		mp1 = tcp->tcp_reass_tail;
8738 		if (!mp1) {
8739 			tcp->tcp_reass_tail = mp;
8740 			tcp->tcp_reass_head = mp;
8741 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
8742 			UPDATE_MIB(&tcps->tcps_mib,
8743 			    tcpInDataUnorderBytes, end - start);
8744 			continue;
8745 		}
8746 		/* New stuff completely beyond tail? */
8747 		if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
8748 			/* Link it on end. */
8749 			mp1->b_cont = mp;
8750 			tcp->tcp_reass_tail = mp;
8751 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
8752 			UPDATE_MIB(&tcps->tcps_mib,
8753 			    tcpInDataUnorderBytes, end - start);
8754 			continue;
8755 		}
8756 		mp1 = tcp->tcp_reass_head;
8757 		u1 = TCP_REASS_SEQ(mp1);
8758 		/* New stuff at the front? */
8759 		if (SEQ_LT(start, u1)) {
8760 			/* Yes... Check for overlap. */
8761 			mp->b_cont = mp1;
8762 			tcp->tcp_reass_head = mp;
8763 			tcp_reass_elim_overlap(tcp, mp);
8764 			continue;
8765 		}
8766 		/*
8767 		 * The new piece fits somewhere between the head and tail.
8768 		 * We find our slot, where mp1 precedes us and mp2 trails.
8769 		 */
8770 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
8771 			u1 = TCP_REASS_SEQ(mp2);
8772 			if (SEQ_LEQ(start, u1))
8773 				break;
8774 		}
8775 		/* Link ourselves in */
8776 		mp->b_cont = mp2;
8777 		mp1->b_cont = mp;
8778 
8779 		/* Trim overlap with following mblk(s) first */
8780 		tcp_reass_elim_overlap(tcp, mp);
8781 
8782 		/* Trim overlap with preceding mblk */
8783 		tcp_reass_elim_overlap(tcp, mp1);
8784 
8785 	} while (start = end, mp = next_mp);
8786 	mp1 = tcp->tcp_reass_head;
8787 	/* Anything ready to go? */
8788 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
8789 		return (NULL);
8790 	/* Eat what we can off the queue */
8791 	for (;;) {
8792 		mp = mp1->b_cont;
8793 		end = TCP_REASS_END(mp1);
8794 		TCP_REASS_SET_SEQ(mp1, 0);
8795 		TCP_REASS_SET_END(mp1, 0);
8796 		if (!mp) {
8797 			tcp->tcp_reass_tail = NULL;
8798 			break;
8799 		}
8800 		if (end != TCP_REASS_SEQ(mp)) {
8801 			mp1->b_cont = NULL;
8802 			break;
8803 		}
8804 		mp1 = mp;
8805 	}
8806 	mp1 = tcp->tcp_reass_head;
8807 	tcp->tcp_reass_head = mp;
8808 	return (mp1);
8809 }
8810 
8811 /* Eliminate any overlap that mp may have over later mblks */
8812 static void
8813 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
8814 {
8815 	uint32_t	end;
8816 	mblk_t		*mp1;
8817 	uint32_t	u1;
8818 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8819 
8820 	end = TCP_REASS_END(mp);
8821 	while ((mp1 = mp->b_cont) != NULL) {
8822 		u1 = TCP_REASS_SEQ(mp1);
8823 		if (!SEQ_GT(end, u1))
8824 			break;
8825 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
8826 			mp->b_wptr -= end - u1;
8827 			TCP_REASS_SET_END(mp, u1);
8828 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs);
8829 			UPDATE_MIB(&tcps->tcps_mib,
8830 			    tcpInDataPartDupBytes, end - u1);
8831 			break;
8832 		}
8833 		mp->b_cont = mp1->b_cont;
8834 		TCP_REASS_SET_SEQ(mp1, 0);
8835 		TCP_REASS_SET_END(mp1, 0);
8836 		freeb(mp1);
8837 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
8838 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1);
8839 	}
8840 	if (!mp1)
8841 		tcp->tcp_reass_tail = mp;
8842 }
8843 
8844 static uint_t
8845 tcp_rwnd_reopen(tcp_t *tcp)
8846 {
8847 	uint_t ret = 0;
8848 	uint_t thwin;
8849 	conn_t *connp = tcp->tcp_connp;
8850 
8851 	/* Learn the latest rwnd information that we sent to the other side. */
8852 	thwin = ((uint_t)ntohs(tcp->tcp_tcpha->tha_win))
8853 	    << tcp->tcp_rcv_ws;
8854 	/* This is peer's calculated send window (our receive window). */
8855 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
8856 	/*
8857 	 * Increase the receive window to max.  But we need to do receiver
8858 	 * SWS avoidance.  This means that we need to check the increase of
8859 	 * of receive window is at least 1 MSS.
8860 	 */
8861 	if (connp->conn_rcvbuf - thwin >= tcp->tcp_mss) {
8862 		/*
8863 		 * If the window that the other side knows is less than max
8864 		 * deferred acks segments, send an update immediately.
8865 		 */
8866 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
8867 			BUMP_MIB(&tcp->tcp_tcps->tcps_mib, tcpOutWinUpdate);
8868 			ret = TH_ACK_NEEDED;
8869 		}
8870 		tcp->tcp_rwnd = connp->conn_rcvbuf;
8871 	}
8872 	return (ret);
8873 }
8874 
8875 /*
8876  * Send up all messages queued on tcp_rcv_list.
8877  */
8878 static uint_t
8879 tcp_rcv_drain(tcp_t *tcp)
8880 {
8881 	mblk_t *mp;
8882 	uint_t ret = 0;
8883 #ifdef DEBUG
8884 	uint_t cnt = 0;
8885 #endif
8886 	queue_t	*q = tcp->tcp_connp->conn_rq;
8887 
8888 	/* Can't drain on an eager connection */
8889 	if (tcp->tcp_listener != NULL)
8890 		return (ret);
8891 
8892 	/* Can't be a non-STREAMS connection */
8893 	ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
8894 
8895 	/* No need for the push timer now. */
8896 	if (tcp->tcp_push_tid != 0) {
8897 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
8898 		tcp->tcp_push_tid = 0;
8899 	}
8900 
8901 	/*
8902 	 * Handle two cases here: we are currently fused or we were
8903 	 * previously fused and have some urgent data to be delivered
8904 	 * upstream.  The latter happens because we either ran out of
8905 	 * memory or were detached and therefore sending the SIGURG was
8906 	 * deferred until this point.  In either case we pass control
8907 	 * over to tcp_fuse_rcv_drain() since it may need to complete
8908 	 * some work.
8909 	 */
8910 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
8911 		ASSERT(IPCL_IS_NONSTR(tcp->tcp_connp) ||
8912 		    tcp->tcp_fused_sigurg_mp != NULL);
8913 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
8914 		    &tcp->tcp_fused_sigurg_mp))
8915 			return (ret);
8916 	}
8917 
8918 	while ((mp = tcp->tcp_rcv_list) != NULL) {
8919 		tcp->tcp_rcv_list = mp->b_next;
8920 		mp->b_next = NULL;
8921 #ifdef DEBUG
8922 		cnt += msgdsize(mp);
8923 #endif
8924 		/* Does this need SSL processing first? */
8925 		if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) {
8926 			DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain,
8927 			    mblk_t *, mp);
8928 			tcp_kssl_input(tcp, mp, NULL);
8929 			continue;
8930 		}
8931 		putnext(q, mp);
8932 	}
8933 #ifdef DEBUG
8934 	ASSERT(cnt == tcp->tcp_rcv_cnt);
8935 #endif
8936 	tcp->tcp_rcv_last_head = NULL;
8937 	tcp->tcp_rcv_last_tail = NULL;
8938 	tcp->tcp_rcv_cnt = 0;
8939 
8940 	if (canputnext(q))
8941 		return (tcp_rwnd_reopen(tcp));
8942 
8943 	return (ret);
8944 }
8945 
8946 /*
8947  * Queue data on tcp_rcv_list which is a b_next chain.
8948  * tcp_rcv_last_head/tail is the last element of this chain.
8949  * Each element of the chain is a b_cont chain.
8950  *
8951  * M_DATA messages are added to the current element.
8952  * Other messages are added as new (b_next) elements.
8953  */
8954 void
8955 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len, cred_t *cr)
8956 {
8957 	ASSERT(seg_len == msgdsize(mp));
8958 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
8959 
8960 	if (is_system_labeled()) {
8961 		ASSERT(cr != NULL || msg_getcred(mp, NULL) != NULL);
8962 		/*
8963 		 * Provide for protocols above TCP such as RPC. NOPID leaves
8964 		 * db_cpid unchanged.
8965 		 * The cred could have already been set.
8966 		 */
8967 		if (cr != NULL)
8968 			mblk_setcred(mp, cr, NOPID);
8969 	}
8970 
8971 	if (tcp->tcp_rcv_list == NULL) {
8972 		ASSERT(tcp->tcp_rcv_last_head == NULL);
8973 		tcp->tcp_rcv_list = mp;
8974 		tcp->tcp_rcv_last_head = mp;
8975 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
8976 		tcp->tcp_rcv_last_tail->b_cont = mp;
8977 	} else {
8978 		tcp->tcp_rcv_last_head->b_next = mp;
8979 		tcp->tcp_rcv_last_head = mp;
8980 	}
8981 
8982 	while (mp->b_cont)
8983 		mp = mp->b_cont;
8984 
8985 	tcp->tcp_rcv_last_tail = mp;
8986 	tcp->tcp_rcv_cnt += seg_len;
8987 	tcp->tcp_rwnd -= seg_len;
8988 }
8989 
8990 /* The minimum of smoothed mean deviation in RTO calculation. */
8991 #define	TCP_SD_MIN	400
8992 
8993 /*
8994  * Set RTO for this connection.  The formula is from Jacobson and Karels'
8995  * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
8996  * are the same as those in Appendix A.2 of that paper.
8997  *
8998  * m = new measurement
8999  * sa = smoothed RTT average (8 * average estimates).
9000  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
9001  */
9002 static void
9003 tcp_set_rto(tcp_t *tcp, clock_t rtt)
9004 {
9005 	long m = TICK_TO_MSEC(rtt);
9006 	clock_t sa = tcp->tcp_rtt_sa;
9007 	clock_t sv = tcp->tcp_rtt_sd;
9008 	clock_t rto;
9009 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9010 
9011 	BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate);
9012 	tcp->tcp_rtt_update++;
9013 
9014 	/* tcp_rtt_sa is not 0 means this is a new sample. */
9015 	if (sa != 0) {
9016 		/*
9017 		 * Update average estimator:
9018 		 *	new rtt = 7/8 old rtt + 1/8 Error
9019 		 */
9020 
9021 		/* m is now Error in estimate. */
9022 		m -= sa >> 3;
9023 		if ((sa += m) <= 0) {
9024 			/*
9025 			 * Don't allow the smoothed average to be negative.
9026 			 * We use 0 to denote reinitialization of the
9027 			 * variables.
9028 			 */
9029 			sa = 1;
9030 		}
9031 
9032 		/*
9033 		 * Update deviation estimator:
9034 		 *	new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
9035 		 */
9036 		if (m < 0)
9037 			m = -m;
9038 		m -= sv >> 2;
9039 		sv += m;
9040 	} else {
9041 		/*
9042 		 * This follows BSD's implementation.  So the reinitialized
9043 		 * RTO is 3 * m.  We cannot go less than 2 because if the
9044 		 * link is bandwidth dominated, doubling the window size
9045 		 * during slow start means doubling the RTT.  We want to be
9046 		 * more conservative when we reinitialize our estimates.  3
9047 		 * is just a convenient number.
9048 		 */
9049 		sa = m << 3;
9050 		sv = m << 1;
9051 	}
9052 	if (sv < TCP_SD_MIN) {
9053 		/*
9054 		 * We do not know that if sa captures the delay ACK
9055 		 * effect as in a long train of segments, a receiver
9056 		 * does not delay its ACKs.  So set the minimum of sv
9057 		 * to be TCP_SD_MIN, which is default to 400 ms, twice
9058 		 * of BSD DATO.  That means the minimum of mean
9059 		 * deviation is 100 ms.
9060 		 *
9061 		 */
9062 		sv = TCP_SD_MIN;
9063 	}
9064 	tcp->tcp_rtt_sa = sa;
9065 	tcp->tcp_rtt_sd = sv;
9066 	/*
9067 	 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
9068 	 *
9069 	 * Add tcp_rexmit_interval extra in case of extreme environment
9070 	 * where the algorithm fails to work.  The default value of
9071 	 * tcp_rexmit_interval_extra should be 0.
9072 	 *
9073 	 * As we use a finer grained clock than BSD and update
9074 	 * RTO for every ACKs, add in another .25 of RTT to the
9075 	 * deviation of RTO to accomodate burstiness of 1/4 of
9076 	 * window size.
9077 	 */
9078 	rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5);
9079 
9080 	if (rto > tcps->tcps_rexmit_interval_max) {
9081 		tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
9082 	} else if (rto < tcps->tcps_rexmit_interval_min) {
9083 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
9084 	} else {
9085 		tcp->tcp_rto = rto;
9086 	}
9087 
9088 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
9089 	tcp->tcp_timer_backoff = 0;
9090 }
9091 
9092 /*
9093  * tcp_get_seg_mp() is called to get the pointer to a segment in the
9094  * send queue which starts at the given sequence number. If the given
9095  * sequence number is equal to last valid sequence number (tcp_snxt), the
9096  * returned mblk is the last valid mblk, and off is set to the length of
9097  * that mblk.
9098  *
9099  * send queue which starts at the given seq. no.
9100  *
9101  * Parameters:
9102  *	tcp_t *tcp: the tcp instance pointer.
9103  *	uint32_t seq: the starting seq. no of the requested segment.
9104  *	int32_t *off: after the execution, *off will be the offset to
9105  *		the returned mblk which points to the requested seq no.
9106  *		It is the caller's responsibility to send in a non-null off.
9107  *
9108  * Return:
9109  *	A mblk_t pointer pointing to the requested segment in send queue.
9110  */
9111 static mblk_t *
9112 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off)
9113 {
9114 	int32_t	cnt;
9115 	mblk_t	*mp;
9116 
9117 	/* Defensive coding.  Make sure we don't send incorrect data. */
9118 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GT(seq, tcp->tcp_snxt))
9119 		return (NULL);
9120 
9121 	cnt = seq - tcp->tcp_suna;
9122 	mp = tcp->tcp_xmit_head;
9123 	while (cnt > 0 && mp != NULL) {
9124 		cnt -= mp->b_wptr - mp->b_rptr;
9125 		if (cnt <= 0) {
9126 			cnt += mp->b_wptr - mp->b_rptr;
9127 			break;
9128 		}
9129 		mp = mp->b_cont;
9130 	}
9131 	ASSERT(mp != NULL);
9132 	*off = cnt;
9133 	return (mp);
9134 }
9135 
9136 /*
9137  * This function handles all retransmissions if SACK is enabled for this
9138  * connection.  First it calculates how many segments can be retransmitted
9139  * based on tcp_pipe.  Then it goes thru the notsack list to find eligible
9140  * segments.  A segment is eligible if sack_cnt for that segment is greater
9141  * than or equal tcp_dupack_fast_retransmit.  After it has retransmitted
9142  * all eligible segments, it checks to see if TCP can send some new segments
9143  * (fast recovery).  If it can, set the appropriate flag for tcp_input_data().
9144  *
9145  * Parameters:
9146  *	tcp_t *tcp: the tcp structure of the connection.
9147  *	uint_t *flags: in return, appropriate value will be set for
9148  *	tcp_input_data().
9149  */
9150 static void
9151 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags)
9152 {
9153 	notsack_blk_t	*notsack_blk;
9154 	int32_t		usable_swnd;
9155 	int32_t		mss;
9156 	uint32_t	seg_len;
9157 	mblk_t		*xmit_mp;
9158 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9159 
9160 	ASSERT(tcp->tcp_sack_info != NULL);
9161 	ASSERT(tcp->tcp_notsack_list != NULL);
9162 	ASSERT(tcp->tcp_rexmit == B_FALSE);
9163 
9164 	/* Defensive coding in case there is a bug... */
9165 	if (tcp->tcp_notsack_list == NULL) {
9166 		return;
9167 	}
9168 	notsack_blk = tcp->tcp_notsack_list;
9169 	mss = tcp->tcp_mss;
9170 
9171 	/*
9172 	 * Limit the num of outstanding data in the network to be
9173 	 * tcp_cwnd_ssthresh, which is half of the original congestion wnd.
9174 	 */
9175 	usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
9176 
9177 	/* At least retransmit 1 MSS of data. */
9178 	if (usable_swnd <= 0) {
9179 		usable_swnd = mss;
9180 	}
9181 
9182 	/* Make sure no new RTT samples will be taken. */
9183 	tcp->tcp_csuna = tcp->tcp_snxt;
9184 
9185 	notsack_blk = tcp->tcp_notsack_list;
9186 	while (usable_swnd > 0) {
9187 		mblk_t		*snxt_mp, *tmp_mp;
9188 		tcp_seq		begin = tcp->tcp_sack_snxt;
9189 		tcp_seq		end;
9190 		int32_t		off;
9191 
9192 		for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) {
9193 			if (SEQ_GT(notsack_blk->end, begin) &&
9194 			    (notsack_blk->sack_cnt >=
9195 			    tcps->tcps_dupack_fast_retransmit)) {
9196 				end = notsack_blk->end;
9197 				if (SEQ_LT(begin, notsack_blk->begin)) {
9198 					begin = notsack_blk->begin;
9199 				}
9200 				break;
9201 			}
9202 		}
9203 		/*
9204 		 * All holes are filled.  Manipulate tcp_cwnd to send more
9205 		 * if we can.  Note that after the SACK recovery, tcp_cwnd is
9206 		 * set to tcp_cwnd_ssthresh.
9207 		 */
9208 		if (notsack_blk == NULL) {
9209 			usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
9210 			if (usable_swnd <= 0 || tcp->tcp_unsent == 0) {
9211 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna;
9212 				ASSERT(tcp->tcp_cwnd > 0);
9213 				return;
9214 			} else {
9215 				usable_swnd = usable_swnd / mss;
9216 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna +
9217 				    MAX(usable_swnd * mss, mss);
9218 				*flags |= TH_XMIT_NEEDED;
9219 				return;
9220 			}
9221 		}
9222 
9223 		/*
9224 		 * Note that we may send more than usable_swnd allows here
9225 		 * because of round off, but no more than 1 MSS of data.
9226 		 */
9227 		seg_len = end - begin;
9228 		if (seg_len > mss)
9229 			seg_len = mss;
9230 		snxt_mp = tcp_get_seg_mp(tcp, begin, &off);
9231 		ASSERT(snxt_mp != NULL);
9232 		/* This should not happen.  Defensive coding again... */
9233 		if (snxt_mp == NULL) {
9234 			return;
9235 		}
9236 
9237 		xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off,
9238 		    &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE);
9239 		if (xmit_mp == NULL)
9240 			return;
9241 
9242 		usable_swnd -= seg_len;
9243 		tcp->tcp_pipe += seg_len;
9244 		tcp->tcp_sack_snxt = begin + seg_len;
9245 
9246 		tcp_send_data(tcp, xmit_mp);
9247 
9248 		/*
9249 		 * Update the send timestamp to avoid false retransmission.
9250 		 */
9251 		snxt_mp->b_prev = (mblk_t *)ddi_get_lbolt();
9252 
9253 		BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
9254 		UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len);
9255 		BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs);
9256 		/*
9257 		 * Update tcp_rexmit_max to extend this SACK recovery phase.
9258 		 * This happens when new data sent during fast recovery is
9259 		 * also lost.  If TCP retransmits those new data, it needs
9260 		 * to extend SACK recover phase to avoid starting another
9261 		 * fast retransmit/recovery unnecessarily.
9262 		 */
9263 		if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) {
9264 			tcp->tcp_rexmit_max = tcp->tcp_sack_snxt;
9265 		}
9266 	}
9267 }
9268 
9269 /*
9270  * tcp_ss_rexmit() is called to do slow start retransmission after a timeout
9271  * or ICMP errors.
9272  *
9273  * To limit the number of duplicate segments, we limit the number of segment
9274  * to be sent in one time to tcp_snd_burst, the burst variable.
9275  */
9276 static void
9277 tcp_ss_rexmit(tcp_t *tcp)
9278 {
9279 	uint32_t	snxt;
9280 	uint32_t	smax;
9281 	int32_t		win;
9282 	int32_t		mss;
9283 	int32_t		off;
9284 	int32_t		burst = tcp->tcp_snd_burst;
9285 	mblk_t		*snxt_mp;
9286 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9287 
9288 	/*
9289 	 * Note that tcp_rexmit can be set even though TCP has retransmitted
9290 	 * all unack'ed segments.
9291 	 */
9292 	if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) {
9293 		smax = tcp->tcp_rexmit_max;
9294 		snxt = tcp->tcp_rexmit_nxt;
9295 		if (SEQ_LT(snxt, tcp->tcp_suna)) {
9296 			snxt = tcp->tcp_suna;
9297 		}
9298 		win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd);
9299 		win -= snxt - tcp->tcp_suna;
9300 		mss = tcp->tcp_mss;
9301 		snxt_mp = tcp_get_seg_mp(tcp, snxt, &off);
9302 
9303 		while (SEQ_LT(snxt, smax) && (win > 0) &&
9304 		    (burst > 0) && (snxt_mp != NULL)) {
9305 			mblk_t	*xmit_mp;
9306 			mblk_t	*old_snxt_mp = snxt_mp;
9307 			uint32_t cnt = mss;
9308 
9309 			if (win < cnt) {
9310 				cnt = win;
9311 			}
9312 			if (SEQ_GT(snxt + cnt, smax)) {
9313 				cnt = smax - snxt;
9314 			}
9315 			xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off,
9316 			    &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE);
9317 			if (xmit_mp == NULL)
9318 				return;
9319 
9320 			tcp_send_data(tcp, xmit_mp);
9321 
9322 			snxt += cnt;
9323 			win -= cnt;
9324 			/*
9325 			 * Update the send timestamp to avoid false
9326 			 * retransmission.
9327 			 */
9328 			old_snxt_mp->b_prev = (mblk_t *)ddi_get_lbolt();
9329 			BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
9330 			UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt);
9331 
9332 			tcp->tcp_rexmit_nxt = snxt;
9333 			burst--;
9334 		}
9335 		/*
9336 		 * If we have transmitted all we have at the time
9337 		 * we started the retranmission, we can leave
9338 		 * the rest of the job to tcp_wput_data().  But we
9339 		 * need to check the send window first.  If the
9340 		 * win is not 0, go on with tcp_wput_data().
9341 		 */
9342 		if (SEQ_LT(snxt, smax) || win == 0) {
9343 			return;
9344 		}
9345 	}
9346 	/* Only call tcp_wput_data() if there is data to be sent. */
9347 	if (tcp->tcp_unsent) {
9348 		tcp_wput_data(tcp, NULL, B_FALSE);
9349 	}
9350 }
9351 
9352 /*
9353  * Process all TCP option in SYN segment.  Note that this function should
9354  * be called after tcp_set_destination() is called so that the necessary info
9355  * from IRE is already set in the tcp structure.
9356  *
9357  * This function sets up the correct tcp_mss value according to the
9358  * MSS option value and our header size.  It also sets up the window scale
9359  * and timestamp values, and initialize SACK info blocks.  But it does not
9360  * change receive window size after setting the tcp_mss value.  The caller
9361  * should do the appropriate change.
9362  */
9363 void
9364 tcp_process_options(tcp_t *tcp, tcpha_t *tcpha)
9365 {
9366 	int options;
9367 	tcp_opt_t tcpopt;
9368 	uint32_t mss_max;
9369 	char *tmp_tcph;
9370 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9371 	conn_t		*connp = tcp->tcp_connp;
9372 
9373 	tcpopt.tcp = NULL;
9374 	options = tcp_parse_options(tcpha, &tcpopt);
9375 
9376 	/*
9377 	 * Process MSS option.  Note that MSS option value does not account
9378 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
9379 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
9380 	 * IPv6.
9381 	 */
9382 	if (!(options & TCP_OPT_MSS_PRESENT)) {
9383 		if (connp->conn_ipversion == IPV4_VERSION)
9384 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4;
9385 		else
9386 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6;
9387 	} else {
9388 		if (connp->conn_ipversion == IPV4_VERSION)
9389 			mss_max = tcps->tcps_mss_max_ipv4;
9390 		else
9391 			mss_max = tcps->tcps_mss_max_ipv6;
9392 		if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min)
9393 			tcpopt.tcp_opt_mss = tcps->tcps_mss_min;
9394 		else if (tcpopt.tcp_opt_mss > mss_max)
9395 			tcpopt.tcp_opt_mss = mss_max;
9396 	}
9397 
9398 	/* Process Window Scale option. */
9399 	if (options & TCP_OPT_WSCALE_PRESENT) {
9400 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
9401 		tcp->tcp_snd_ws_ok = B_TRUE;
9402 	} else {
9403 		tcp->tcp_snd_ws = B_FALSE;
9404 		tcp->tcp_snd_ws_ok = B_FALSE;
9405 		tcp->tcp_rcv_ws = B_FALSE;
9406 	}
9407 
9408 	/* Process Timestamp option. */
9409 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
9410 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
9411 		tmp_tcph = (char *)tcp->tcp_tcpha;
9412 
9413 		tcp->tcp_snd_ts_ok = B_TRUE;
9414 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
9415 		tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64();
9416 		ASSERT(OK_32PTR(tmp_tcph));
9417 		ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH);
9418 
9419 		/* Fill in our template header with basic timestamp option. */
9420 		tmp_tcph += connp->conn_ht_ulp_len;
9421 		tmp_tcph[0] = TCPOPT_NOP;
9422 		tmp_tcph[1] = TCPOPT_NOP;
9423 		tmp_tcph[2] = TCPOPT_TSTAMP;
9424 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
9425 		connp->conn_ht_iphc_len += TCPOPT_REAL_TS_LEN;
9426 		connp->conn_ht_ulp_len += TCPOPT_REAL_TS_LEN;
9427 		tcp->tcp_tcpha->tha_offset_and_reserved += (3 << 4);
9428 	} else {
9429 		tcp->tcp_snd_ts_ok = B_FALSE;
9430 	}
9431 
9432 	/*
9433 	 * Process SACK options.  If SACK is enabled for this connection,
9434 	 * then allocate the SACK info structure.  Note the following ways
9435 	 * when tcp_snd_sack_ok is set to true.
9436 	 *
9437 	 * For active connection: in tcp_set_destination() called in
9438 	 * tcp_connect().
9439 	 *
9440 	 * For passive connection: in tcp_set_destination() called in
9441 	 * tcp_input_listener().
9442 	 *
9443 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
9444 	 * That check makes sure that if we did not send a SACK OK option,
9445 	 * we will not enable SACK for this connection even though the other
9446 	 * side sends us SACK OK option.  For active connection, the SACK
9447 	 * info structure has already been allocated.  So we need to free
9448 	 * it if SACK is disabled.
9449 	 */
9450 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
9451 	    (tcp->tcp_snd_sack_ok ||
9452 	    (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
9453 		/* This should be true only in the passive case. */
9454 		if (tcp->tcp_sack_info == NULL) {
9455 			ASSERT(TCP_IS_DETACHED(tcp));
9456 			tcp->tcp_sack_info =
9457 			    kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP);
9458 		}
9459 		if (tcp->tcp_sack_info == NULL) {
9460 			tcp->tcp_snd_sack_ok = B_FALSE;
9461 		} else {
9462 			tcp->tcp_snd_sack_ok = B_TRUE;
9463 			if (tcp->tcp_snd_ts_ok) {
9464 				tcp->tcp_max_sack_blk = 3;
9465 			} else {
9466 				tcp->tcp_max_sack_blk = 4;
9467 			}
9468 		}
9469 	} else {
9470 		/*
9471 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
9472 		 * no SACK info will be used for this
9473 		 * connection.  This assumes that SACK usage
9474 		 * permission is negotiated.  This may need
9475 		 * to be changed once this is clarified.
9476 		 */
9477 		if (tcp->tcp_sack_info != NULL) {
9478 			ASSERT(tcp->tcp_notsack_list == NULL);
9479 			kmem_cache_free(tcp_sack_info_cache,
9480 			    tcp->tcp_sack_info);
9481 			tcp->tcp_sack_info = NULL;
9482 		}
9483 		tcp->tcp_snd_sack_ok = B_FALSE;
9484 	}
9485 
9486 	/*
9487 	 * Now we know the exact TCP/IP header length, subtract
9488 	 * that from tcp_mss to get our side's MSS.
9489 	 */
9490 	tcp->tcp_mss -= connp->conn_ht_iphc_len;
9491 
9492 	/*
9493 	 * Here we assume that the other side's header size will be equal to
9494 	 * our header size.  We calculate the real MSS accordingly.  Need to
9495 	 * take into additional stuffs IPsec puts in.
9496 	 *
9497 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
9498 	 */
9499 	tcpopt.tcp_opt_mss -= connp->conn_ht_iphc_len +
9500 	    tcp->tcp_ipsec_overhead -
9501 	    ((connp->conn_ipversion == IPV4_VERSION ?
9502 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
9503 
9504 	/*
9505 	 * Set MSS to the smaller one of both ends of the connection.
9506 	 * We should not have called tcp_mss_set() before, but our
9507 	 * side of the MSS should have been set to a proper value
9508 	 * by tcp_set_destination().  tcp_mss_set() will also set up the
9509 	 * STREAM head parameters properly.
9510 	 *
9511 	 * If we have a larger-than-16-bit window but the other side
9512 	 * didn't want to do window scale, tcp_rwnd_set() will take
9513 	 * care of that.
9514 	 */
9515 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss));
9516 
9517 	/*
9518 	 * Initialize tcp_cwnd value. After tcp_mss_set(), tcp_mss has been
9519 	 * updated properly.
9520 	 */
9521 	SET_TCP_INIT_CWND(tcp, tcp->tcp_mss, tcps->tcps_slow_start_initial);
9522 }
9523 
9524 /*
9525  * Sends the T_CONN_IND to the listener. The caller calls this
9526  * functions via squeue to get inside the listener's perimeter
9527  * once the 3 way hand shake is done a T_CONN_IND needs to be
9528  * sent. As an optimization, the caller can call this directly
9529  * if listener's perimeter is same as eager's.
9530  */
9531 /* ARGSUSED */
9532 void
9533 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2)
9534 {
9535 	conn_t			*lconnp = (conn_t *)arg;
9536 	tcp_t			*listener = lconnp->conn_tcp;
9537 	tcp_t			*tcp;
9538 	struct T_conn_ind	*conn_ind;
9539 	ipaddr_t 		*addr_cache;
9540 	boolean_t		need_send_conn_ind = B_FALSE;
9541 	tcp_stack_t		*tcps = listener->tcp_tcps;
9542 
9543 	/* retrieve the eager */
9544 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
9545 	ASSERT(conn_ind->OPT_offset != 0 &&
9546 	    conn_ind->OPT_length == sizeof (intptr_t));
9547 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
9548 	    conn_ind->OPT_length);
9549 
9550 	/*
9551 	 * TLI/XTI applications will get confused by
9552 	 * sending eager as an option since it violates
9553 	 * the option semantics. So remove the eager as
9554 	 * option since TLI/XTI app doesn't need it anyway.
9555 	 */
9556 	if (!TCP_IS_SOCKET(listener)) {
9557 		conn_ind->OPT_length = 0;
9558 		conn_ind->OPT_offset = 0;
9559 	}
9560 	if (listener->tcp_state != TCPS_LISTEN) {
9561 		/*
9562 		 * If listener has closed, it would have caused a
9563 		 * a cleanup/blowoff to happen for the eager. We
9564 		 * just need to return.
9565 		 */
9566 		freemsg(mp);
9567 		return;
9568 	}
9569 
9570 
9571 	/*
9572 	 * if the conn_req_q is full defer passing up the
9573 	 * T_CONN_IND until space is availabe after t_accept()
9574 	 * processing
9575 	 */
9576 	mutex_enter(&listener->tcp_eager_lock);
9577 
9578 	/*
9579 	 * Take the eager out, if it is in the list of droppable eagers
9580 	 * as we are here because the 3W handshake is over.
9581 	 */
9582 	MAKE_UNDROPPABLE(tcp);
9583 
9584 	if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) {
9585 		tcp_t *tail;
9586 
9587 		/*
9588 		 * The eager already has an extra ref put in tcp_input_data
9589 		 * so that it stays till accept comes back even though it
9590 		 * might get into TCPS_CLOSED as a result of a TH_RST etc.
9591 		 */
9592 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
9593 		listener->tcp_conn_req_cnt_q0--;
9594 		listener->tcp_conn_req_cnt_q++;
9595 
9596 		/* Move from SYN_RCVD to ESTABLISHED list  */
9597 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
9598 		    tcp->tcp_eager_prev_q0;
9599 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
9600 		    tcp->tcp_eager_next_q0;
9601 		tcp->tcp_eager_prev_q0 = NULL;
9602 		tcp->tcp_eager_next_q0 = NULL;
9603 
9604 		/*
9605 		 * Insert at end of the queue because sockfs
9606 		 * sends down T_CONN_RES in chronological
9607 		 * order. Leaving the older conn indications
9608 		 * at front of the queue helps reducing search
9609 		 * time.
9610 		 */
9611 		tail = listener->tcp_eager_last_q;
9612 		if (tail != NULL)
9613 			tail->tcp_eager_next_q = tcp;
9614 		else
9615 			listener->tcp_eager_next_q = tcp;
9616 		listener->tcp_eager_last_q = tcp;
9617 		tcp->tcp_eager_next_q = NULL;
9618 		/*
9619 		 * Delay sending up the T_conn_ind until we are
9620 		 * done with the eager. Once we have have sent up
9621 		 * the T_conn_ind, the accept can potentially complete
9622 		 * any time and release the refhold we have on the eager.
9623 		 */
9624 		need_send_conn_ind = B_TRUE;
9625 	} else {
9626 		/*
9627 		 * Defer connection on q0 and set deferred
9628 		 * connection bit true
9629 		 */
9630 		tcp->tcp_conn_def_q0 = B_TRUE;
9631 
9632 		/* take tcp out of q0 ... */
9633 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
9634 		    tcp->tcp_eager_next_q0;
9635 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
9636 		    tcp->tcp_eager_prev_q0;
9637 
9638 		/* ... and place it at the end of q0 */
9639 		tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0;
9640 		tcp->tcp_eager_next_q0 = listener;
9641 		listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp;
9642 		listener->tcp_eager_prev_q0 = tcp;
9643 		tcp->tcp_conn.tcp_eager_conn_ind = mp;
9644 	}
9645 
9646 	/* we have timed out before */
9647 	if (tcp->tcp_syn_rcvd_timeout != 0) {
9648 		tcp->tcp_syn_rcvd_timeout = 0;
9649 		listener->tcp_syn_rcvd_timeout--;
9650 		if (listener->tcp_syn_defense &&
9651 		    listener->tcp_syn_rcvd_timeout <=
9652 		    (tcps->tcps_conn_req_max_q0 >> 5) &&
9653 		    10*MINUTES < TICK_TO_MSEC(ddi_get_lbolt64() -
9654 		    listener->tcp_last_rcv_lbolt)) {
9655 			/*
9656 			 * Turn off the defense mode if we
9657 			 * believe the SYN attack is over.
9658 			 */
9659 			listener->tcp_syn_defense = B_FALSE;
9660 			if (listener->tcp_ip_addr_cache) {
9661 				kmem_free((void *)listener->tcp_ip_addr_cache,
9662 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
9663 				listener->tcp_ip_addr_cache = NULL;
9664 			}
9665 		}
9666 	}
9667 	addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
9668 	if (addr_cache != NULL) {
9669 		/*
9670 		 * We have finished a 3-way handshake with this
9671 		 * remote host. This proves the IP addr is good.
9672 		 * Cache it!
9673 		 */
9674 		addr_cache[IP_ADDR_CACHE_HASH(tcp->tcp_connp->conn_faddr_v4)] =
9675 		    tcp->tcp_connp->conn_faddr_v4;
9676 	}
9677 	mutex_exit(&listener->tcp_eager_lock);
9678 	if (need_send_conn_ind)
9679 		tcp_ulp_newconn(lconnp, tcp->tcp_connp, mp);
9680 }
9681 
9682 /*
9683  * Send the newconn notification to ulp. The eager is blown off if the
9684  * notification fails.
9685  */
9686 static void
9687 tcp_ulp_newconn(conn_t *lconnp, conn_t *econnp, mblk_t *mp)
9688 {
9689 	if (IPCL_IS_NONSTR(lconnp)) {
9690 		cred_t	*cr;
9691 		pid_t	cpid = NOPID;
9692 
9693 		ASSERT(econnp->conn_tcp->tcp_listener == lconnp->conn_tcp);
9694 		ASSERT(econnp->conn_tcp->tcp_saved_listener ==
9695 		    lconnp->conn_tcp);
9696 
9697 		cr = msg_getcred(mp, &cpid);
9698 
9699 		/* Keep the message around in case of a fallback to TPI */
9700 		econnp->conn_tcp->tcp_conn.tcp_eager_conn_ind = mp;
9701 		/*
9702 		 * Notify the ULP about the newconn. It is guaranteed that no
9703 		 * tcp_accept() call will be made for the eager if the
9704 		 * notification fails, so it's safe to blow it off in that
9705 		 * case.
9706 		 *
9707 		 * The upper handle will be assigned when tcp_accept() is
9708 		 * called.
9709 		 */
9710 		if ((*lconnp->conn_upcalls->su_newconn)
9711 		    (lconnp->conn_upper_handle,
9712 		    (sock_lower_handle_t)econnp,
9713 		    &sock_tcp_downcalls, cr, cpid,
9714 		    &econnp->conn_upcalls) == NULL) {
9715 			/* Failed to allocate a socket */
9716 			BUMP_MIB(&lconnp->conn_tcp->tcp_tcps->tcps_mib,
9717 			    tcpEstabResets);
9718 			(void) tcp_eager_blowoff(lconnp->conn_tcp,
9719 			    econnp->conn_tcp->tcp_conn_req_seqnum);
9720 		}
9721 	} else {
9722 		putnext(lconnp->conn_rq, mp);
9723 	}
9724 }
9725 
9726 /*
9727  * Handle a packet that has been reclassified by TCP.
9728  * This function drops the ref on connp that the caller had.
9729  */
9730 static void
9731 tcp_reinput(conn_t *connp, mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst)
9732 {
9733 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
9734 
9735 	if (connp->conn_incoming_ifindex != 0 &&
9736 	    connp->conn_incoming_ifindex != ira->ira_ruifindex) {
9737 		freemsg(mp);
9738 		CONN_DEC_REF(connp);
9739 		return;
9740 	}
9741 
9742 	if (CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss) ||
9743 	    (ira->ira_flags & IRAF_IPSEC_SECURE)) {
9744 		ip6_t *ip6h;
9745 		ipha_t *ipha;
9746 
9747 		if (ira->ira_flags & IRAF_IS_IPV4) {
9748 			ipha = (ipha_t *)mp->b_rptr;
9749 			ip6h = NULL;
9750 		} else {
9751 			ipha = NULL;
9752 			ip6h = (ip6_t *)mp->b_rptr;
9753 		}
9754 		mp = ipsec_check_inbound_policy(mp, connp, ipha, ip6h, ira);
9755 		if (mp == NULL) {
9756 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
9757 			/* Note that mp is NULL */
9758 			ip_drop_input("ipIfStatsInDiscards", mp, NULL);
9759 			CONN_DEC_REF(connp);
9760 			return;
9761 		}
9762 	}
9763 
9764 	if (IPCL_IS_TCP(connp)) {
9765 		/*
9766 		 * do not drain, certain use cases can blow
9767 		 * the stack
9768 		 */
9769 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
9770 		    connp->conn_recv, connp, ira,
9771 		    SQ_NODRAIN, SQTAG_IP_TCP_INPUT);
9772 	} else {
9773 		/* Not TCP; must be SOCK_RAW, IPPROTO_TCP */
9774 		(connp->conn_recv)(connp, mp, NULL,
9775 		    ira);
9776 		CONN_DEC_REF(connp);
9777 	}
9778 
9779 }
9780 
9781 boolean_t tcp_outbound_squeue_switch = B_FALSE;
9782 
9783 /*
9784  * Handle M_DATA messages from IP. Its called directly from IP via
9785  * squeue for received IP packets.
9786  *
9787  * The first argument is always the connp/tcp to which the mp belongs.
9788  * There are no exceptions to this rule. The caller has already put
9789  * a reference on this connp/tcp and once tcp_input_data() returns,
9790  * the squeue will do the refrele.
9791  *
9792  * The TH_SYN for the listener directly go to tcp_input_listener via
9793  * squeue. ICMP errors go directly to tcp_icmp_input().
9794  *
9795  * sqp: NULL = recursive, sqp != NULL means called from squeue
9796  */
9797 void
9798 tcp_input_data(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
9799 {
9800 	int32_t		bytes_acked;
9801 	int32_t		gap;
9802 	mblk_t		*mp1;
9803 	uint_t		flags;
9804 	uint32_t	new_swnd = 0;
9805 	uchar_t		*iphdr;
9806 	uchar_t		*rptr;
9807 	int32_t		rgap;
9808 	uint32_t	seg_ack;
9809 	int		seg_len;
9810 	uint_t		ip_hdr_len;
9811 	uint32_t	seg_seq;
9812 	tcpha_t		*tcpha;
9813 	int		urp;
9814 	tcp_opt_t	tcpopt;
9815 	ip_pkt_t	ipp;
9816 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
9817 	uint32_t	cwnd;
9818 	uint32_t	add;
9819 	int		npkt;
9820 	int		mss;
9821 	conn_t		*connp = (conn_t *)arg;
9822 	squeue_t	*sqp = (squeue_t *)arg2;
9823 	tcp_t		*tcp = connp->conn_tcp;
9824 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9825 
9826 	/*
9827 	 * RST from fused tcp loopback peer should trigger an unfuse.
9828 	 */
9829 	if (tcp->tcp_fused) {
9830 		TCP_STAT(tcps, tcp_fusion_aborted);
9831 		tcp_unfuse(tcp);
9832 	}
9833 
9834 	iphdr = mp->b_rptr;
9835 	rptr = mp->b_rptr;
9836 	ASSERT(OK_32PTR(rptr));
9837 
9838 	ip_hdr_len = ira->ira_ip_hdr_length;
9839 	if (connp->conn_recv_ancillary.crb_all != 0) {
9840 		/*
9841 		 * Record packet information in the ip_pkt_t
9842 		 */
9843 		ipp.ipp_fields = 0;
9844 		if (ira->ira_flags & IRAF_IS_IPV4) {
9845 			(void) ip_find_hdr_v4((ipha_t *)rptr, &ipp,
9846 			    B_FALSE);
9847 		} else {
9848 			uint8_t nexthdrp;
9849 
9850 			/*
9851 			 * IPv6 packets can only be received by applications
9852 			 * that are prepared to receive IPv6 addresses.
9853 			 * The IP fanout must ensure this.
9854 			 */
9855 			ASSERT(connp->conn_family == AF_INET6);
9856 
9857 			(void) ip_find_hdr_v6(mp, (ip6_t *)rptr, B_TRUE, &ipp,
9858 			    &nexthdrp);
9859 			ASSERT(nexthdrp == IPPROTO_TCP);
9860 
9861 			/* Could have caused a pullup? */
9862 			iphdr = mp->b_rptr;
9863 			rptr = mp->b_rptr;
9864 		}
9865 	}
9866 	ASSERT(DB_TYPE(mp) == M_DATA);
9867 	ASSERT(mp->b_next == NULL);
9868 
9869 	tcpha = (tcpha_t *)&rptr[ip_hdr_len];
9870 	seg_seq = ntohl(tcpha->tha_seq);
9871 	seg_ack = ntohl(tcpha->tha_ack);
9872 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
9873 	seg_len = (int)(mp->b_wptr - rptr) -
9874 	    (ip_hdr_len + TCP_HDR_LENGTH(tcpha));
9875 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
9876 		do {
9877 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
9878 			    (uintptr_t)INT_MAX);
9879 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
9880 		} while ((mp1 = mp1->b_cont) != NULL &&
9881 		    mp1->b_datap->db_type == M_DATA);
9882 	}
9883 
9884 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
9885 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
9886 		    seg_len, tcpha, ira);
9887 		return;
9888 	}
9889 
9890 	if (sqp != NULL) {
9891 		/*
9892 		 * This is the correct place to update tcp_last_recv_time. Note
9893 		 * that it is also updated for tcp structure that belongs to
9894 		 * global and listener queues which do not really need updating.
9895 		 * But that should not cause any harm.  And it is updated for
9896 		 * all kinds of incoming segments, not only for data segments.
9897 		 */
9898 		tcp->tcp_last_recv_time = LBOLT_FASTPATH;
9899 	}
9900 
9901 	flags = (unsigned int)tcpha->tha_flags & 0xFF;
9902 
9903 	BUMP_LOCAL(tcp->tcp_ibsegs);
9904 	DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
9905 
9906 	if ((flags & TH_URG) && sqp != NULL) {
9907 		/*
9908 		 * TCP can't handle urgent pointers that arrive before
9909 		 * the connection has been accept()ed since it can't
9910 		 * buffer OOB data.  Discard segment if this happens.
9911 		 *
9912 		 * We can't just rely on a non-null tcp_listener to indicate
9913 		 * that the accept() has completed since unlinking of the
9914 		 * eager and completion of the accept are not atomic.
9915 		 * tcp_detached, when it is not set (B_FALSE) indicates
9916 		 * that the accept() has completed.
9917 		 *
9918 		 * Nor can it reassemble urgent pointers, so discard
9919 		 * if it's not the next segment expected.
9920 		 *
9921 		 * Otherwise, collapse chain into one mblk (discard if
9922 		 * that fails).  This makes sure the headers, retransmitted
9923 		 * data, and new data all are in the same mblk.
9924 		 */
9925 		ASSERT(mp != NULL);
9926 		if (tcp->tcp_detached || !pullupmsg(mp, -1)) {
9927 			freemsg(mp);
9928 			return;
9929 		}
9930 		/* Update pointers into message */
9931 		iphdr = rptr = mp->b_rptr;
9932 		tcpha = (tcpha_t *)&rptr[ip_hdr_len];
9933 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
9934 			/*
9935 			 * Since we can't handle any data with this urgent
9936 			 * pointer that is out of sequence, we expunge
9937 			 * the data.  This allows us to still register
9938 			 * the urgent mark and generate the M_PCSIG,
9939 			 * which we can do.
9940 			 */
9941 			mp->b_wptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha);
9942 			seg_len = 0;
9943 		}
9944 	}
9945 
9946 	switch (tcp->tcp_state) {
9947 	case TCPS_SYN_SENT:
9948 		if (connp->conn_final_sqp == NULL &&
9949 		    tcp_outbound_squeue_switch && sqp != NULL) {
9950 			ASSERT(connp->conn_initial_sqp == connp->conn_sqp);
9951 			connp->conn_final_sqp = sqp;
9952 			if (connp->conn_final_sqp != connp->conn_sqp) {
9953 				DTRACE_PROBE1(conn__final__sqp__switch,
9954 				    conn_t *, connp);
9955 				CONN_INC_REF(connp);
9956 				SQUEUE_SWITCH(connp, connp->conn_final_sqp);
9957 				SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
9958 				    tcp_input_data, connp, ira, ip_squeue_flag,
9959 				    SQTAG_CONNECT_FINISH);
9960 				return;
9961 			}
9962 			DTRACE_PROBE1(conn__final__sqp__same, conn_t *, connp);
9963 		}
9964 		if (flags & TH_ACK) {
9965 			/*
9966 			 * Note that our stack cannot send data before a
9967 			 * connection is established, therefore the
9968 			 * following check is valid.  Otherwise, it has
9969 			 * to be changed.
9970 			 */
9971 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
9972 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
9973 				freemsg(mp);
9974 				if (flags & TH_RST)
9975 					return;
9976 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
9977 				    tcp, seg_ack, 0, TH_RST);
9978 				return;
9979 			}
9980 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
9981 		}
9982 		if (flags & TH_RST) {
9983 			freemsg(mp);
9984 			if (flags & TH_ACK)
9985 				(void) tcp_clean_death(tcp,
9986 				    ECONNREFUSED, 13);
9987 			return;
9988 		}
9989 		if (!(flags & TH_SYN)) {
9990 			freemsg(mp);
9991 			return;
9992 		}
9993 
9994 		/* Process all TCP options. */
9995 		tcp_process_options(tcp, tcpha);
9996 		/*
9997 		 * The following changes our rwnd to be a multiple of the
9998 		 * MIN(peer MSS, our MSS) for performance reason.
9999 		 */
10000 		(void) tcp_rwnd_set(tcp, MSS_ROUNDUP(connp->conn_rcvbuf,
10001 		    tcp->tcp_mss));
10002 
10003 		/* Is the other end ECN capable? */
10004 		if (tcp->tcp_ecn_ok) {
10005 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
10006 				tcp->tcp_ecn_ok = B_FALSE;
10007 			}
10008 		}
10009 		/*
10010 		 * Clear ECN flags because it may interfere with later
10011 		 * processing.
10012 		 */
10013 		flags &= ~(TH_ECE|TH_CWR);
10014 
10015 		tcp->tcp_irs = seg_seq;
10016 		tcp->tcp_rack = seg_seq;
10017 		tcp->tcp_rnxt = seg_seq + 1;
10018 		tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt);
10019 		if (!TCP_IS_DETACHED(tcp)) {
10020 			/* Allocate room for SACK options if needed. */
10021 			connp->conn_wroff = connp->conn_ht_iphc_len;
10022 			if (tcp->tcp_snd_sack_ok)
10023 				connp->conn_wroff += TCPOPT_MAX_SACK_LEN;
10024 			if (!tcp->tcp_loopback)
10025 				connp->conn_wroff += tcps->tcps_wroff_xtra;
10026 
10027 			(void) proto_set_tx_wroff(connp->conn_rq, connp,
10028 			    connp->conn_wroff);
10029 		}
10030 		if (flags & TH_ACK) {
10031 			/*
10032 			 * If we can't get the confirmation upstream, pretend
10033 			 * we didn't even see this one.
10034 			 *
10035 			 * XXX: how can we pretend we didn't see it if we
10036 			 * have updated rnxt et. al.
10037 			 *
10038 			 * For loopback we defer sending up the T_CONN_CON
10039 			 * until after some checks below.
10040 			 */
10041 			mp1 = NULL;
10042 			/*
10043 			 * tcp_sendmsg() checks tcp_state without entering
10044 			 * the squeue so tcp_state should be updated before
10045 			 * sending up connection confirmation
10046 			 */
10047 			tcp->tcp_state = TCPS_ESTABLISHED;
10048 			if (!tcp_conn_con(tcp, iphdr, mp,
10049 			    tcp->tcp_loopback ? &mp1 : NULL, ira)) {
10050 				tcp->tcp_state = TCPS_SYN_SENT;
10051 				freemsg(mp);
10052 				return;
10053 			}
10054 			/* SYN was acked - making progress */
10055 			tcp->tcp_ip_forward_progress = B_TRUE;
10056 
10057 			/* One for the SYN */
10058 			tcp->tcp_suna = tcp->tcp_iss + 1;
10059 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
10060 
10061 			/*
10062 			 * If SYN was retransmitted, need to reset all
10063 			 * retransmission info.  This is because this
10064 			 * segment will be treated as a dup ACK.
10065 			 */
10066 			if (tcp->tcp_rexmit) {
10067 				tcp->tcp_rexmit = B_FALSE;
10068 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
10069 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
10070 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
10071 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
10072 				tcp->tcp_ms_we_have_waited = 0;
10073 
10074 				/*
10075 				 * Set tcp_cwnd back to 1 MSS, per
10076 				 * recommendation from
10077 				 * draft-floyd-incr-init-win-01.txt,
10078 				 * Increasing TCP's Initial Window.
10079 				 */
10080 				tcp->tcp_cwnd = tcp->tcp_mss;
10081 			}
10082 
10083 			tcp->tcp_swl1 = seg_seq;
10084 			tcp->tcp_swl2 = seg_ack;
10085 
10086 			new_swnd = ntohs(tcpha->tha_win);
10087 			tcp->tcp_swnd = new_swnd;
10088 			if (new_swnd > tcp->tcp_max_swnd)
10089 				tcp->tcp_max_swnd = new_swnd;
10090 
10091 			/*
10092 			 * Always send the three-way handshake ack immediately
10093 			 * in order to make the connection complete as soon as
10094 			 * possible on the accepting host.
10095 			 */
10096 			flags |= TH_ACK_NEEDED;
10097 
10098 			/*
10099 			 * Special case for loopback.  At this point we have
10100 			 * received SYN-ACK from the remote endpoint.  In
10101 			 * order to ensure that both endpoints reach the
10102 			 * fused state prior to any data exchange, the final
10103 			 * ACK needs to be sent before we indicate T_CONN_CON
10104 			 * to the module upstream.
10105 			 */
10106 			if (tcp->tcp_loopback) {
10107 				mblk_t *ack_mp;
10108 
10109 				ASSERT(!tcp->tcp_unfusable);
10110 				ASSERT(mp1 != NULL);
10111 				/*
10112 				 * For loopback, we always get a pure SYN-ACK
10113 				 * and only need to send back the final ACK
10114 				 * with no data (this is because the other
10115 				 * tcp is ours and we don't do T/TCP).  This
10116 				 * final ACK triggers the passive side to
10117 				 * perform fusion in ESTABLISHED state.
10118 				 */
10119 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
10120 					if (tcp->tcp_ack_tid != 0) {
10121 						(void) TCP_TIMER_CANCEL(tcp,
10122 						    tcp->tcp_ack_tid);
10123 						tcp->tcp_ack_tid = 0;
10124 					}
10125 					tcp_send_data(tcp, ack_mp);
10126 					BUMP_LOCAL(tcp->tcp_obsegs);
10127 					BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
10128 
10129 					if (!IPCL_IS_NONSTR(connp)) {
10130 						/* Send up T_CONN_CON */
10131 						if (ira->ira_cred != NULL) {
10132 							mblk_setcred(mp1,
10133 							    ira->ira_cred,
10134 							    ira->ira_cpid);
10135 						}
10136 						putnext(connp->conn_rq, mp1);
10137 					} else {
10138 						(*connp->conn_upcalls->
10139 						    su_connected)
10140 						    (connp->conn_upper_handle,
10141 						    tcp->tcp_connid,
10142 						    ira->ira_cred,
10143 						    ira->ira_cpid);
10144 						freemsg(mp1);
10145 					}
10146 
10147 					freemsg(mp);
10148 					return;
10149 				}
10150 				/*
10151 				 * Forget fusion; we need to handle more
10152 				 * complex cases below.  Send the deferred
10153 				 * T_CONN_CON message upstream and proceed
10154 				 * as usual.  Mark this tcp as not capable
10155 				 * of fusion.
10156 				 */
10157 				TCP_STAT(tcps, tcp_fusion_unfusable);
10158 				tcp->tcp_unfusable = B_TRUE;
10159 				if (!IPCL_IS_NONSTR(connp)) {
10160 					if (ira->ira_cred != NULL) {
10161 						mblk_setcred(mp1, ira->ira_cred,
10162 						    ira->ira_cpid);
10163 					}
10164 					putnext(connp->conn_rq, mp1);
10165 				} else {
10166 					(*connp->conn_upcalls->su_connected)
10167 					    (connp->conn_upper_handle,
10168 					    tcp->tcp_connid, ira->ira_cred,
10169 					    ira->ira_cpid);
10170 					freemsg(mp1);
10171 				}
10172 			}
10173 
10174 			/*
10175 			 * Check to see if there is data to be sent.  If
10176 			 * yes, set the transmit flag.  Then check to see
10177 			 * if received data processing needs to be done.
10178 			 * If not, go straight to xmit_check.  This short
10179 			 * cut is OK as we don't support T/TCP.
10180 			 */
10181 			if (tcp->tcp_unsent)
10182 				flags |= TH_XMIT_NEEDED;
10183 
10184 			if (seg_len == 0 && !(flags & TH_URG)) {
10185 				freemsg(mp);
10186 				goto xmit_check;
10187 			}
10188 
10189 			flags &= ~TH_SYN;
10190 			seg_seq++;
10191 			break;
10192 		}
10193 		tcp->tcp_state = TCPS_SYN_RCVD;
10194 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
10195 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
10196 		if (mp1 != NULL) {
10197 			tcp_send_data(tcp, mp1);
10198 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
10199 		}
10200 		freemsg(mp);
10201 		return;
10202 	case TCPS_SYN_RCVD:
10203 		if (flags & TH_ACK) {
10204 			/*
10205 			 * In this state, a SYN|ACK packet is either bogus
10206 			 * because the other side must be ACKing our SYN which
10207 			 * indicates it has seen the ACK for their SYN and
10208 			 * shouldn't retransmit it or we're crossing SYNs
10209 			 * on active open.
10210 			 */
10211 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
10212 				freemsg(mp);
10213 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
10214 				    tcp, seg_ack, 0, TH_RST);
10215 				return;
10216 			}
10217 			/*
10218 			 * NOTE: RFC 793 pg. 72 says this should be
10219 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
10220 			 * but that would mean we have an ack that ignored
10221 			 * our SYN.
10222 			 */
10223 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
10224 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
10225 				freemsg(mp);
10226 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
10227 				    tcp, seg_ack, 0, TH_RST);
10228 				return;
10229 			}
10230 		}
10231 		break;
10232 	case TCPS_LISTEN:
10233 		/*
10234 		 * Only a TLI listener can come through this path when a
10235 		 * acceptor is going back to be a listener and a packet
10236 		 * for the acceptor hits the classifier. For a socket
10237 		 * listener, this can never happen because a listener
10238 		 * can never accept connection on itself and hence a
10239 		 * socket acceptor can not go back to being a listener.
10240 		 */
10241 		ASSERT(!TCP_IS_SOCKET(tcp));
10242 		/*FALLTHRU*/
10243 	case TCPS_CLOSED:
10244 	case TCPS_BOUND: {
10245 		conn_t	*new_connp;
10246 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
10247 
10248 		/*
10249 		 * Don't accept any input on a closed tcp as this TCP logically
10250 		 * does not exist on the system. Don't proceed further with
10251 		 * this TCP. For instance, this packet could trigger another
10252 		 * close of this tcp which would be disastrous for tcp_refcnt.
10253 		 * tcp_close_detached / tcp_clean_death / tcp_closei_local must
10254 		 * be called at most once on a TCP. In this case we need to
10255 		 * refeed the packet into the classifier and figure out where
10256 		 * the packet should go.
10257 		 */
10258 		new_connp = ipcl_classify(mp, ira, ipst);
10259 		if (new_connp != NULL) {
10260 			/* Drops ref on new_connp */
10261 			tcp_reinput(new_connp, mp, ira, ipst);
10262 			return;
10263 		}
10264 		/* We failed to classify. For now just drop the packet */
10265 		freemsg(mp);
10266 		return;
10267 	}
10268 	case TCPS_IDLE:
10269 		/*
10270 		 * Handle the case where the tcp_clean_death() has happened
10271 		 * on a connection (application hasn't closed yet) but a packet
10272 		 * was already queued on squeue before tcp_clean_death()
10273 		 * was processed. Calling tcp_clean_death() twice on same
10274 		 * connection can result in weird behaviour.
10275 		 */
10276 		freemsg(mp);
10277 		return;
10278 	default:
10279 		break;
10280 	}
10281 
10282 	/*
10283 	 * Already on the correct queue/perimeter.
10284 	 * If this is a detached connection and not an eager
10285 	 * connection hanging off a listener then new data
10286 	 * (past the FIN) will cause a reset.
10287 	 * We do a special check here where it
10288 	 * is out of the main line, rather than check
10289 	 * if we are detached every time we see new
10290 	 * data down below.
10291 	 */
10292 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
10293 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
10294 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
10295 		DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
10296 
10297 		freemsg(mp);
10298 		/*
10299 		 * This could be an SSL closure alert. We're detached so just
10300 		 * acknowledge it this last time.
10301 		 */
10302 		if (tcp->tcp_kssl_ctx != NULL) {
10303 			kssl_release_ctx(tcp->tcp_kssl_ctx);
10304 			tcp->tcp_kssl_ctx = NULL;
10305 
10306 			tcp->tcp_rnxt += seg_len;
10307 			tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt);
10308 			flags |= TH_ACK_NEEDED;
10309 			goto ack_check;
10310 		}
10311 
10312 		tcp_xmit_ctl("new data when detached", tcp,
10313 		    tcp->tcp_snxt, 0, TH_RST);
10314 		(void) tcp_clean_death(tcp, EPROTO, 12);
10315 		return;
10316 	}
10317 
10318 	mp->b_rptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha);
10319 	urp = ntohs(tcpha->tha_urp) - TCP_OLD_URP_INTERPRETATION;
10320 	new_swnd = ntohs(tcpha->tha_win) <<
10321 	    ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws);
10322 
10323 	if (tcp->tcp_snd_ts_ok) {
10324 		if (!tcp_paws_check(tcp, tcpha, &tcpopt)) {
10325 			/*
10326 			 * This segment is not acceptable.
10327 			 * Drop it and send back an ACK.
10328 			 */
10329 			freemsg(mp);
10330 			flags |= TH_ACK_NEEDED;
10331 			goto ack_check;
10332 		}
10333 	} else if (tcp->tcp_snd_sack_ok) {
10334 		ASSERT(tcp->tcp_sack_info != NULL);
10335 		tcpopt.tcp = tcp;
10336 		/*
10337 		 * SACK info in already updated in tcp_parse_options.  Ignore
10338 		 * all other TCP options...
10339 		 */
10340 		(void) tcp_parse_options(tcpha, &tcpopt);
10341 	}
10342 try_again:;
10343 	mss = tcp->tcp_mss;
10344 	gap = seg_seq - tcp->tcp_rnxt;
10345 	rgap = tcp->tcp_rwnd - (gap + seg_len);
10346 	/*
10347 	 * gap is the amount of sequence space between what we expect to see
10348 	 * and what we got for seg_seq.  A positive value for gap means
10349 	 * something got lost.  A negative value means we got some old stuff.
10350 	 */
10351 	if (gap < 0) {
10352 		/* Old stuff present.  Is the SYN in there? */
10353 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
10354 		    (seg_len != 0)) {
10355 			flags &= ~TH_SYN;
10356 			seg_seq++;
10357 			urp--;
10358 			/* Recompute the gaps after noting the SYN. */
10359 			goto try_again;
10360 		}
10361 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
10362 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
10363 		    (seg_len > -gap ? -gap : seg_len));
10364 		/* Remove the old stuff from seg_len. */
10365 		seg_len += gap;
10366 		/*
10367 		 * Anything left?
10368 		 * Make sure to check for unack'd FIN when rest of data
10369 		 * has been previously ack'd.
10370 		 */
10371 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
10372 			/*
10373 			 * Resets are only valid if they lie within our offered
10374 			 * window.  If the RST bit is set, we just ignore this
10375 			 * segment.
10376 			 */
10377 			if (flags & TH_RST) {
10378 				freemsg(mp);
10379 				return;
10380 			}
10381 
10382 			/*
10383 			 * The arriving of dup data packets indicate that we
10384 			 * may have postponed an ack for too long, or the other
10385 			 * side's RTT estimate is out of shape. Start acking
10386 			 * more often.
10387 			 */
10388 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
10389 			    tcp->tcp_rack_cnt >= 1 &&
10390 			    tcp->tcp_rack_abs_max > 2) {
10391 				tcp->tcp_rack_abs_max--;
10392 			}
10393 			tcp->tcp_rack_cur_max = 1;
10394 
10395 			/*
10396 			 * This segment is "unacceptable".  None of its
10397 			 * sequence space lies within our advertized window.
10398 			 *
10399 			 * Adjust seg_len to the original value for tracing.
10400 			 */
10401 			seg_len -= gap;
10402 			if (connp->conn_debug) {
10403 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
10404 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
10405 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
10406 				    "seg_len %d, rnxt %u, snxt %u, %s",
10407 				    gap, rgap, flags, seg_seq, seg_ack,
10408 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
10409 				    tcp_display(tcp, NULL,
10410 				    DISP_ADDR_AND_PORT));
10411 			}
10412 
10413 			/*
10414 			 * Arrange to send an ACK in response to the
10415 			 * unacceptable segment per RFC 793 page 69. There
10416 			 * is only one small difference between ours and the
10417 			 * acceptability test in the RFC - we accept ACK-only
10418 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
10419 			 * will be generated.
10420 			 *
10421 			 * Note that we have to ACK an ACK-only packet at least
10422 			 * for stacks that send 0-length keep-alives with
10423 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
10424 			 * section 4.2.3.6. As long as we don't ever generate
10425 			 * an unacceptable packet in response to an incoming
10426 			 * packet that is unacceptable, it should not cause
10427 			 * "ACK wars".
10428 			 */
10429 			flags |=  TH_ACK_NEEDED;
10430 
10431 			/*
10432 			 * Continue processing this segment in order to use the
10433 			 * ACK information it contains, but skip all other
10434 			 * sequence-number processing.	Processing the ACK
10435 			 * information is necessary in order to
10436 			 * re-synchronize connections that may have lost
10437 			 * synchronization.
10438 			 *
10439 			 * We clear seg_len and flag fields related to
10440 			 * sequence number processing as they are not
10441 			 * to be trusted for an unacceptable segment.
10442 			 */
10443 			seg_len = 0;
10444 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
10445 			goto process_ack;
10446 		}
10447 
10448 		/* Fix seg_seq, and chew the gap off the front. */
10449 		seg_seq = tcp->tcp_rnxt;
10450 		urp += gap;
10451 		do {
10452 			mblk_t	*mp2;
10453 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
10454 			    (uintptr_t)UINT_MAX);
10455 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
10456 			if (gap > 0) {
10457 				mp->b_rptr = mp->b_wptr - gap;
10458 				break;
10459 			}
10460 			mp2 = mp;
10461 			mp = mp->b_cont;
10462 			freeb(mp2);
10463 		} while (gap < 0);
10464 		/*
10465 		 * If the urgent data has already been acknowledged, we
10466 		 * should ignore TH_URG below
10467 		 */
10468 		if (urp < 0)
10469 			flags &= ~TH_URG;
10470 	}
10471 	/*
10472 	 * rgap is the amount of stuff received out of window.  A negative
10473 	 * value is the amount out of window.
10474 	 */
10475 	if (rgap < 0) {
10476 		mblk_t	*mp2;
10477 
10478 		if (tcp->tcp_rwnd == 0) {
10479 			BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe);
10480 		} else {
10481 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
10482 			UPDATE_MIB(&tcps->tcps_mib,
10483 			    tcpInDataPastWinBytes, -rgap);
10484 		}
10485 
10486 		/*
10487 		 * seg_len does not include the FIN, so if more than
10488 		 * just the FIN is out of window, we act like we don't
10489 		 * see it.  (If just the FIN is out of window, rgap
10490 		 * will be zero and we will go ahead and acknowledge
10491 		 * the FIN.)
10492 		 */
10493 		flags &= ~TH_FIN;
10494 
10495 		/* Fix seg_len and make sure there is something left. */
10496 		seg_len += rgap;
10497 		if (seg_len <= 0) {
10498 			/*
10499 			 * Resets are only valid if they lie within our offered
10500 			 * window.  If the RST bit is set, we just ignore this
10501 			 * segment.
10502 			 */
10503 			if (flags & TH_RST) {
10504 				freemsg(mp);
10505 				return;
10506 			}
10507 
10508 			/* Per RFC 793, we need to send back an ACK. */
10509 			flags |= TH_ACK_NEEDED;
10510 
10511 			/*
10512 			 * Send SIGURG as soon as possible i.e. even
10513 			 * if the TH_URG was delivered in a window probe
10514 			 * packet (which will be unacceptable).
10515 			 *
10516 			 * We generate a signal if none has been generated
10517 			 * for this connection or if this is a new urgent
10518 			 * byte. Also send a zero-length "unmarked" message
10519 			 * to inform SIOCATMARK that this is not the mark.
10520 			 *
10521 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
10522 			 * is sent up. This plus the check for old data
10523 			 * (gap >= 0) handles the wraparound of the sequence
10524 			 * number space without having to always track the
10525 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
10526 			 * this max in its rcv_up variable).
10527 			 *
10528 			 * This prevents duplicate SIGURGS due to a "late"
10529 			 * zero-window probe when the T_EXDATA_IND has already
10530 			 * been sent up.
10531 			 */
10532 			if ((flags & TH_URG) &&
10533 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
10534 			    tcp->tcp_urp_last))) {
10535 				if (IPCL_IS_NONSTR(connp)) {
10536 					if (!TCP_IS_DETACHED(tcp)) {
10537 						(*connp->conn_upcalls->
10538 						    su_signal_oob)
10539 						    (connp->conn_upper_handle,
10540 						    urp);
10541 					}
10542 				} else {
10543 					mp1 = allocb(0, BPRI_MED);
10544 					if (mp1 == NULL) {
10545 						freemsg(mp);
10546 						return;
10547 					}
10548 					if (!TCP_IS_DETACHED(tcp) &&
10549 					    !putnextctl1(connp->conn_rq,
10550 					    M_PCSIG, SIGURG)) {
10551 						/* Try again on the rexmit. */
10552 						freemsg(mp1);
10553 						freemsg(mp);
10554 						return;
10555 					}
10556 					/*
10557 					 * If the next byte would be the mark
10558 					 * then mark with MARKNEXT else mark
10559 					 * with NOTMARKNEXT.
10560 					 */
10561 					if (gap == 0 && urp == 0)
10562 						mp1->b_flag |= MSGMARKNEXT;
10563 					else
10564 						mp1->b_flag |= MSGNOTMARKNEXT;
10565 					freemsg(tcp->tcp_urp_mark_mp);
10566 					tcp->tcp_urp_mark_mp = mp1;
10567 					flags |= TH_SEND_URP_MARK;
10568 				}
10569 				tcp->tcp_urp_last_valid = B_TRUE;
10570 				tcp->tcp_urp_last = urp + seg_seq;
10571 			}
10572 			/*
10573 			 * If this is a zero window probe, continue to
10574 			 * process the ACK part.  But we need to set seg_len
10575 			 * to 0 to avoid data processing.  Otherwise just
10576 			 * drop the segment and send back an ACK.
10577 			 */
10578 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
10579 				flags &= ~(TH_SYN | TH_URG);
10580 				seg_len = 0;
10581 				goto process_ack;
10582 			} else {
10583 				freemsg(mp);
10584 				goto ack_check;
10585 			}
10586 		}
10587 		/* Pitch out of window stuff off the end. */
10588 		rgap = seg_len;
10589 		mp2 = mp;
10590 		do {
10591 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
10592 			    (uintptr_t)INT_MAX);
10593 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
10594 			if (rgap < 0) {
10595 				mp2->b_wptr += rgap;
10596 				if ((mp1 = mp2->b_cont) != NULL) {
10597 					mp2->b_cont = NULL;
10598 					freemsg(mp1);
10599 				}
10600 				break;
10601 			}
10602 		} while ((mp2 = mp2->b_cont) != NULL);
10603 	}
10604 ok:;
10605 	/*
10606 	 * TCP should check ECN info for segments inside the window only.
10607 	 * Therefore the check should be done here.
10608 	 */
10609 	if (tcp->tcp_ecn_ok) {
10610 		if (flags & TH_CWR) {
10611 			tcp->tcp_ecn_echo_on = B_FALSE;
10612 		}
10613 		/*
10614 		 * Note that both ECN_CE and CWR can be set in the
10615 		 * same segment.  In this case, we once again turn
10616 		 * on ECN_ECHO.
10617 		 */
10618 		if (connp->conn_ipversion == IPV4_VERSION) {
10619 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
10620 
10621 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
10622 				tcp->tcp_ecn_echo_on = B_TRUE;
10623 			}
10624 		} else {
10625 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
10626 
10627 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
10628 			    htonl(IPH_ECN_CE << 20)) {
10629 				tcp->tcp_ecn_echo_on = B_TRUE;
10630 			}
10631 		}
10632 	}
10633 
10634 	/*
10635 	 * Check whether we can update tcp_ts_recent.  This test is
10636 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
10637 	 * Extensions for High Performance: An Update", Internet Draft.
10638 	 */
10639 	if (tcp->tcp_snd_ts_ok &&
10640 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
10641 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
10642 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
10643 		tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64();
10644 	}
10645 
10646 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
10647 		/*
10648 		 * FIN in an out of order segment.  We record this in
10649 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
10650 		 * Clear the FIN so that any check on FIN flag will fail.
10651 		 * Remember that FIN also counts in the sequence number
10652 		 * space.  So we need to ack out of order FIN only segments.
10653 		 */
10654 		if (flags & TH_FIN) {
10655 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
10656 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
10657 			flags &= ~TH_FIN;
10658 			flags |= TH_ACK_NEEDED;
10659 		}
10660 		if (seg_len > 0) {
10661 			/* Fill in the SACK blk list. */
10662 			if (tcp->tcp_snd_sack_ok) {
10663 				ASSERT(tcp->tcp_sack_info != NULL);
10664 				tcp_sack_insert(tcp->tcp_sack_list,
10665 				    seg_seq, seg_seq + seg_len,
10666 				    &(tcp->tcp_num_sack_blk));
10667 			}
10668 
10669 			/*
10670 			 * Attempt reassembly and see if we have something
10671 			 * ready to go.
10672 			 */
10673 			mp = tcp_reass(tcp, mp, seg_seq);
10674 			/* Always ack out of order packets */
10675 			flags |= TH_ACK_NEEDED | TH_PUSH;
10676 			if (mp) {
10677 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
10678 				    (uintptr_t)INT_MAX);
10679 				seg_len = mp->b_cont ? msgdsize(mp) :
10680 				    (int)(mp->b_wptr - mp->b_rptr);
10681 				seg_seq = tcp->tcp_rnxt;
10682 				/*
10683 				 * A gap is filled and the seq num and len
10684 				 * of the gap match that of a previously
10685 				 * received FIN, put the FIN flag back in.
10686 				 */
10687 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
10688 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
10689 					flags |= TH_FIN;
10690 					tcp->tcp_valid_bits &=
10691 					    ~TCP_OFO_FIN_VALID;
10692 				}
10693 			} else {
10694 				/*
10695 				 * Keep going even with NULL mp.
10696 				 * There may be a useful ACK or something else
10697 				 * we don't want to miss.
10698 				 *
10699 				 * But TCP should not perform fast retransmit
10700 				 * because of the ack number.  TCP uses
10701 				 * seg_len == 0 to determine if it is a pure
10702 				 * ACK.  And this is not a pure ACK.
10703 				 */
10704 				seg_len = 0;
10705 				ofo_seg = B_TRUE;
10706 			}
10707 		}
10708 	} else if (seg_len > 0) {
10709 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
10710 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
10711 		/*
10712 		 * If an out of order FIN was received before, and the seq
10713 		 * num and len of the new segment match that of the FIN,
10714 		 * put the FIN flag back in.
10715 		 */
10716 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
10717 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
10718 			flags |= TH_FIN;
10719 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
10720 		}
10721 	}
10722 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
10723 	if (flags & TH_RST) {
10724 		freemsg(mp);
10725 		switch (tcp->tcp_state) {
10726 		case TCPS_SYN_RCVD:
10727 			(void) tcp_clean_death(tcp, ECONNREFUSED, 14);
10728 			break;
10729 		case TCPS_ESTABLISHED:
10730 		case TCPS_FIN_WAIT_1:
10731 		case TCPS_FIN_WAIT_2:
10732 		case TCPS_CLOSE_WAIT:
10733 			(void) tcp_clean_death(tcp, ECONNRESET, 15);
10734 			break;
10735 		case TCPS_CLOSING:
10736 		case TCPS_LAST_ACK:
10737 			(void) tcp_clean_death(tcp, 0, 16);
10738 			break;
10739 		default:
10740 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
10741 			(void) tcp_clean_death(tcp, ENXIO, 17);
10742 			break;
10743 		}
10744 		return;
10745 	}
10746 	if (flags & TH_SYN) {
10747 		/*
10748 		 * See RFC 793, Page 71
10749 		 *
10750 		 * The seq number must be in the window as it should
10751 		 * be "fixed" above.  If it is outside window, it should
10752 		 * be already rejected.  Note that we allow seg_seq to be
10753 		 * rnxt + rwnd because we want to accept 0 window probe.
10754 		 */
10755 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
10756 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
10757 		freemsg(mp);
10758 		/*
10759 		 * If the ACK flag is not set, just use our snxt as the
10760 		 * seq number of the RST segment.
10761 		 */
10762 		if (!(flags & TH_ACK)) {
10763 			seg_ack = tcp->tcp_snxt;
10764 		}
10765 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
10766 		    TH_RST|TH_ACK);
10767 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
10768 		(void) tcp_clean_death(tcp, ECONNRESET, 18);
10769 		return;
10770 	}
10771 	/*
10772 	 * urp could be -1 when the urp field in the packet is 0
10773 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
10774 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
10775 	 */
10776 	if (flags & TH_URG && urp >= 0) {
10777 		if (!tcp->tcp_urp_last_valid ||
10778 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
10779 			/*
10780 			 * Non-STREAMS sockets handle the urgent data a litte
10781 			 * differently from STREAMS based sockets. There is no
10782 			 * need to mark any mblks with the MSG{NOT,}MARKNEXT
10783 			 * flags to keep SIOCATMARK happy. Instead a
10784 			 * su_signal_oob upcall is made to update the mark.
10785 			 * Neither is a T_EXDATA_IND mblk needed to be
10786 			 * prepended to the urgent data. The urgent data is
10787 			 * delivered using the su_recv upcall, where we set
10788 			 * the MSG_OOB flag to indicate that it is urg data.
10789 			 *
10790 			 * Neither TH_SEND_URP_MARK nor TH_MARKNEXT_NEEDED
10791 			 * are used by non-STREAMS sockets.
10792 			 */
10793 			if (IPCL_IS_NONSTR(connp)) {
10794 				if (!TCP_IS_DETACHED(tcp)) {
10795 					(*connp->conn_upcalls->su_signal_oob)
10796 					    (connp->conn_upper_handle, urp);
10797 				}
10798 			} else {
10799 				/*
10800 				 * If we haven't generated the signal yet for
10801 				 * this urgent pointer value, do it now.  Also,
10802 				 * send up a zero-length M_DATA indicating
10803 				 * whether or not this is the mark. The latter
10804 				 * is not needed when a T_EXDATA_IND is sent up.
10805 				 * However, if there are allocation failures
10806 				 * this code relies on the sender retransmitting
10807 				 * and the socket code for determining the mark
10808 				 * should not block waiting for the peer to
10809 				 * transmit. Thus, for simplicity we always
10810 				 * send up the mark indication.
10811 				 */
10812 				mp1 = allocb(0, BPRI_MED);
10813 				if (mp1 == NULL) {
10814 					freemsg(mp);
10815 					return;
10816 				}
10817 				if (!TCP_IS_DETACHED(tcp) &&
10818 				    !putnextctl1(connp->conn_rq, M_PCSIG,
10819 				    SIGURG)) {
10820 					/* Try again on the rexmit. */
10821 					freemsg(mp1);
10822 					freemsg(mp);
10823 					return;
10824 				}
10825 				/*
10826 				 * Mark with NOTMARKNEXT for now.
10827 				 * The code below will change this to MARKNEXT
10828 				 * if we are at the mark.
10829 				 *
10830 				 * If there are allocation failures (e.g. in
10831 				 * dupmsg below) the next time tcp_rput_data
10832 				 * sees the urgent segment it will send up the
10833 				 * MSGMARKNEXT message.
10834 				 */
10835 				mp1->b_flag |= MSGNOTMARKNEXT;
10836 				freemsg(tcp->tcp_urp_mark_mp);
10837 				tcp->tcp_urp_mark_mp = mp1;
10838 				flags |= TH_SEND_URP_MARK;
10839 #ifdef DEBUG
10840 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
10841 				    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
10842 				    "last %x, %s",
10843 				    seg_seq, urp, tcp->tcp_urp_last,
10844 				    tcp_display(tcp, NULL, DISP_PORT_ONLY));
10845 #endif /* DEBUG */
10846 			}
10847 			tcp->tcp_urp_last_valid = B_TRUE;
10848 			tcp->tcp_urp_last = urp + seg_seq;
10849 		} else if (tcp->tcp_urp_mark_mp != NULL) {
10850 			/*
10851 			 * An allocation failure prevented the previous
10852 			 * tcp_input_data from sending up the allocated
10853 			 * MSG*MARKNEXT message - send it up this time
10854 			 * around.
10855 			 */
10856 			flags |= TH_SEND_URP_MARK;
10857 		}
10858 
10859 		/*
10860 		 * If the urgent byte is in this segment, make sure that it is
10861 		 * all by itself.  This makes it much easier to deal with the
10862 		 * possibility of an allocation failure on the T_exdata_ind.
10863 		 * Note that seg_len is the number of bytes in the segment, and
10864 		 * urp is the offset into the segment of the urgent byte.
10865 		 * urp < seg_len means that the urgent byte is in this segment.
10866 		 */
10867 		if (urp < seg_len) {
10868 			if (seg_len != 1) {
10869 				uint32_t  tmp_rnxt;
10870 				/*
10871 				 * Break it up and feed it back in.
10872 				 * Re-attach the IP header.
10873 				 */
10874 				mp->b_rptr = iphdr;
10875 				if (urp > 0) {
10876 					/*
10877 					 * There is stuff before the urgent
10878 					 * byte.
10879 					 */
10880 					mp1 = dupmsg(mp);
10881 					if (!mp1) {
10882 						/*
10883 						 * Trim from urgent byte on.
10884 						 * The rest will come back.
10885 						 */
10886 						(void) adjmsg(mp,
10887 						    urp - seg_len);
10888 						tcp_input_data(connp,
10889 						    mp, NULL, ira);
10890 						return;
10891 					}
10892 					(void) adjmsg(mp1, urp - seg_len);
10893 					/* Feed this piece back in. */
10894 					tmp_rnxt = tcp->tcp_rnxt;
10895 					tcp_input_data(connp, mp1, NULL, ira);
10896 					/*
10897 					 * If the data passed back in was not
10898 					 * processed (ie: bad ACK) sending
10899 					 * the remainder back in will cause a
10900 					 * loop. In this case, drop the
10901 					 * packet and let the sender try
10902 					 * sending a good packet.
10903 					 */
10904 					if (tmp_rnxt == tcp->tcp_rnxt) {
10905 						freemsg(mp);
10906 						return;
10907 					}
10908 				}
10909 				if (urp != seg_len - 1) {
10910 					uint32_t  tmp_rnxt;
10911 					/*
10912 					 * There is stuff after the urgent
10913 					 * byte.
10914 					 */
10915 					mp1 = dupmsg(mp);
10916 					if (!mp1) {
10917 						/*
10918 						 * Trim everything beyond the
10919 						 * urgent byte.  The rest will
10920 						 * come back.
10921 						 */
10922 						(void) adjmsg(mp,
10923 						    urp + 1 - seg_len);
10924 						tcp_input_data(connp,
10925 						    mp, NULL, ira);
10926 						return;
10927 					}
10928 					(void) adjmsg(mp1, urp + 1 - seg_len);
10929 					tmp_rnxt = tcp->tcp_rnxt;
10930 					tcp_input_data(connp, mp1, NULL, ira);
10931 					/*
10932 					 * If the data passed back in was not
10933 					 * processed (ie: bad ACK) sending
10934 					 * the remainder back in will cause a
10935 					 * loop. In this case, drop the
10936 					 * packet and let the sender try
10937 					 * sending a good packet.
10938 					 */
10939 					if (tmp_rnxt == tcp->tcp_rnxt) {
10940 						freemsg(mp);
10941 						return;
10942 					}
10943 				}
10944 				tcp_input_data(connp, mp, NULL, ira);
10945 				return;
10946 			}
10947 			/*
10948 			 * This segment contains only the urgent byte.  We
10949 			 * have to allocate the T_exdata_ind, if we can.
10950 			 */
10951 			if (IPCL_IS_NONSTR(connp)) {
10952 				int error;
10953 
10954 				(*connp->conn_upcalls->su_recv)
10955 				    (connp->conn_upper_handle, mp, seg_len,
10956 				    MSG_OOB, &error, NULL);
10957 				/*
10958 				 * We should never be in middle of a
10959 				 * fallback, the squeue guarantees that.
10960 				 */
10961 				ASSERT(error != EOPNOTSUPP);
10962 				mp = NULL;
10963 				goto update_ack;
10964 			} else if (!tcp->tcp_urp_mp) {
10965 				struct T_exdata_ind *tei;
10966 				mp1 = allocb(sizeof (struct T_exdata_ind),
10967 				    BPRI_MED);
10968 				if (!mp1) {
10969 					/*
10970 					 * Sigh... It'll be back.
10971 					 * Generate any MSG*MARK message now.
10972 					 */
10973 					freemsg(mp);
10974 					seg_len = 0;
10975 					if (flags & TH_SEND_URP_MARK) {
10976 
10977 
10978 						ASSERT(tcp->tcp_urp_mark_mp);
10979 						tcp->tcp_urp_mark_mp->b_flag &=
10980 						    ~MSGNOTMARKNEXT;
10981 						tcp->tcp_urp_mark_mp->b_flag |=
10982 						    MSGMARKNEXT;
10983 					}
10984 					goto ack_check;
10985 				}
10986 				mp1->b_datap->db_type = M_PROTO;
10987 				tei = (struct T_exdata_ind *)mp1->b_rptr;
10988 				tei->PRIM_type = T_EXDATA_IND;
10989 				tei->MORE_flag = 0;
10990 				mp1->b_wptr = (uchar_t *)&tei[1];
10991 				tcp->tcp_urp_mp = mp1;
10992 #ifdef DEBUG
10993 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
10994 				    "tcp_rput: allocated exdata_ind %s",
10995 				    tcp_display(tcp, NULL,
10996 				    DISP_PORT_ONLY));
10997 #endif /* DEBUG */
10998 				/*
10999 				 * There is no need to send a separate MSG*MARK
11000 				 * message since the T_EXDATA_IND will be sent
11001 				 * now.
11002 				 */
11003 				flags &= ~TH_SEND_URP_MARK;
11004 				freemsg(tcp->tcp_urp_mark_mp);
11005 				tcp->tcp_urp_mark_mp = NULL;
11006 			}
11007 			/*
11008 			 * Now we are all set.  On the next putnext upstream,
11009 			 * tcp_urp_mp will be non-NULL and will get prepended
11010 			 * to what has to be this piece containing the urgent
11011 			 * byte.  If for any reason we abort this segment below,
11012 			 * if it comes back, we will have this ready, or it
11013 			 * will get blown off in close.
11014 			 */
11015 		} else if (urp == seg_len) {
11016 			/*
11017 			 * The urgent byte is the next byte after this sequence
11018 			 * number. If this endpoint is non-STREAMS, then there
11019 			 * is nothing to do here since the socket has already
11020 			 * been notified about the urg pointer by the
11021 			 * su_signal_oob call above.
11022 			 *
11023 			 * In case of STREAMS, some more work might be needed.
11024 			 * If there is data it is marked with MSGMARKNEXT and
11025 			 * and any tcp_urp_mark_mp is discarded since it is not
11026 			 * needed. Otherwise, if the code above just allocated
11027 			 * a zero-length tcp_urp_mark_mp message, that message
11028 			 * is tagged with MSGMARKNEXT. Sending up these
11029 			 * MSGMARKNEXT messages makes SIOCATMARK work correctly
11030 			 * even though the T_EXDATA_IND will not be sent up
11031 			 * until the urgent byte arrives.
11032 			 */
11033 			if (!IPCL_IS_NONSTR(tcp->tcp_connp)) {
11034 				if (seg_len != 0) {
11035 					flags |= TH_MARKNEXT_NEEDED;
11036 					freemsg(tcp->tcp_urp_mark_mp);
11037 					tcp->tcp_urp_mark_mp = NULL;
11038 					flags &= ~TH_SEND_URP_MARK;
11039 				} else if (tcp->tcp_urp_mark_mp != NULL) {
11040 					flags |= TH_SEND_URP_MARK;
11041 					tcp->tcp_urp_mark_mp->b_flag &=
11042 					    ~MSGNOTMARKNEXT;
11043 					tcp->tcp_urp_mark_mp->b_flag |=
11044 					    MSGMARKNEXT;
11045 				}
11046 			}
11047 #ifdef DEBUG
11048 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
11049 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
11050 			    seg_len, flags,
11051 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
11052 #endif /* DEBUG */
11053 		}
11054 #ifdef DEBUG
11055 		else {
11056 			/* Data left until we hit mark */
11057 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
11058 			    "tcp_rput: URP %d bytes left, %s",
11059 			    urp - seg_len, tcp_display(tcp, NULL,
11060 			    DISP_PORT_ONLY));
11061 		}
11062 #endif /* DEBUG */
11063 	}
11064 
11065 process_ack:
11066 	if (!(flags & TH_ACK)) {
11067 		freemsg(mp);
11068 		goto xmit_check;
11069 	}
11070 	}
11071 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
11072 
11073 	if (bytes_acked > 0)
11074 		tcp->tcp_ip_forward_progress = B_TRUE;
11075 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
11076 		if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) &&
11077 		    ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) {
11078 			/* 3-way handshake complete - pass up the T_CONN_IND */
11079 			tcp_t	*listener = tcp->tcp_listener;
11080 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
11081 
11082 			tcp->tcp_tconnind_started = B_TRUE;
11083 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
11084 			/*
11085 			 * We are here means eager is fine but it can
11086 			 * get a TH_RST at any point between now and till
11087 			 * accept completes and disappear. We need to
11088 			 * ensure that reference to eager is valid after
11089 			 * we get out of eager's perimeter. So we do
11090 			 * an extra refhold.
11091 			 */
11092 			CONN_INC_REF(connp);
11093 
11094 			/*
11095 			 * The listener also exists because of the refhold
11096 			 * done in tcp_input_listener. Its possible that it
11097 			 * might have closed. We will check that once we
11098 			 * get inside listeners context.
11099 			 */
11100 			CONN_INC_REF(listener->tcp_connp);
11101 			if (listener->tcp_connp->conn_sqp ==
11102 			    connp->conn_sqp) {
11103 				/*
11104 				 * We optimize by not calling an SQUEUE_ENTER
11105 				 * on the listener since we know that the
11106 				 * listener and eager squeues are the same.
11107 				 * We are able to make this check safely only
11108 				 * because neither the eager nor the listener
11109 				 * can change its squeue. Only an active connect
11110 				 * can change its squeue
11111 				 */
11112 				tcp_send_conn_ind(listener->tcp_connp, mp,
11113 				    listener->tcp_connp->conn_sqp);
11114 				CONN_DEC_REF(listener->tcp_connp);
11115 			} else if (!tcp->tcp_loopback) {
11116 				SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp,
11117 				    mp, tcp_send_conn_ind,
11118 				    listener->tcp_connp, NULL, SQ_FILL,
11119 				    SQTAG_TCP_CONN_IND);
11120 			} else {
11121 				SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp,
11122 				    mp, tcp_send_conn_ind,
11123 				    listener->tcp_connp, NULL, SQ_PROCESS,
11124 				    SQTAG_TCP_CONN_IND);
11125 			}
11126 		}
11127 
11128 		/*
11129 		 * We are seeing the final ack in the three way
11130 		 * hand shake of a active open'ed connection
11131 		 * so we must send up a T_CONN_CON
11132 		 *
11133 		 * tcp_sendmsg() checks tcp_state without entering
11134 		 * the squeue so tcp_state should be updated before
11135 		 * sending up connection confirmation.
11136 		 */
11137 		tcp->tcp_state = TCPS_ESTABLISHED;
11138 		if (tcp->tcp_active_open) {
11139 			if (!tcp_conn_con(tcp, iphdr, mp, NULL, ira)) {
11140 				freemsg(mp);
11141 				tcp->tcp_state = TCPS_SYN_RCVD;
11142 				return;
11143 			}
11144 			/*
11145 			 * Don't fuse the loopback endpoints for
11146 			 * simultaneous active opens.
11147 			 */
11148 			if (tcp->tcp_loopback) {
11149 				TCP_STAT(tcps, tcp_fusion_unfusable);
11150 				tcp->tcp_unfusable = B_TRUE;
11151 			}
11152 		}
11153 
11154 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
11155 		bytes_acked--;
11156 		/* SYN was acked - making progress */
11157 		tcp->tcp_ip_forward_progress = B_TRUE;
11158 
11159 		/*
11160 		 * If SYN was retransmitted, need to reset all
11161 		 * retransmission info as this segment will be
11162 		 * treated as a dup ACK.
11163 		 */
11164 		if (tcp->tcp_rexmit) {
11165 			tcp->tcp_rexmit = B_FALSE;
11166 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
11167 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
11168 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
11169 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
11170 			tcp->tcp_ms_we_have_waited = 0;
11171 			tcp->tcp_cwnd = mss;
11172 		}
11173 
11174 		/*
11175 		 * We set the send window to zero here.
11176 		 * This is needed if there is data to be
11177 		 * processed already on the queue.
11178 		 * Later (at swnd_update label), the
11179 		 * "new_swnd > tcp_swnd" condition is satisfied
11180 		 * the XMIT_NEEDED flag is set in the current
11181 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
11182 		 * called if there is already data on queue in
11183 		 * this state.
11184 		 */
11185 		tcp->tcp_swnd = 0;
11186 
11187 		if (new_swnd > tcp->tcp_max_swnd)
11188 			tcp->tcp_max_swnd = new_swnd;
11189 		tcp->tcp_swl1 = seg_seq;
11190 		tcp->tcp_swl2 = seg_ack;
11191 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
11192 
11193 		/* Fuse when both sides are in ESTABLISHED state */
11194 		if (tcp->tcp_loopback && do_tcp_fusion)
11195 			tcp_fuse(tcp, iphdr, tcpha);
11196 
11197 	}
11198 	/* This code follows 4.4BSD-Lite2 mostly. */
11199 	if (bytes_acked < 0)
11200 		goto est;
11201 
11202 	/*
11203 	 * If TCP is ECN capable and the congestion experience bit is
11204 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
11205 	 * done once per window (or more loosely, per RTT).
11206 	 */
11207 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
11208 		tcp->tcp_cwr = B_FALSE;
11209 	if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
11210 		if (!tcp->tcp_cwr) {
11211 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss;
11212 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
11213 			tcp->tcp_cwnd = npkt * mss;
11214 			/*
11215 			 * If the cwnd is 0, use the timer to clock out
11216 			 * new segments.  This is required by the ECN spec.
11217 			 */
11218 			if (npkt == 0) {
11219 				TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
11220 				/*
11221 				 * This makes sure that when the ACK comes
11222 				 * back, we will increase tcp_cwnd by 1 MSS.
11223 				 */
11224 				tcp->tcp_cwnd_cnt = 0;
11225 			}
11226 			tcp->tcp_cwr = B_TRUE;
11227 			/*
11228 			 * This marks the end of the current window of in
11229 			 * flight data.  That is why we don't use
11230 			 * tcp_suna + tcp_swnd.  Only data in flight can
11231 			 * provide ECN info.
11232 			 */
11233 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
11234 			tcp->tcp_ecn_cwr_sent = B_FALSE;
11235 		}
11236 	}
11237 
11238 	mp1 = tcp->tcp_xmit_head;
11239 	if (bytes_acked == 0) {
11240 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
11241 			int dupack_cnt;
11242 
11243 			BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
11244 			/*
11245 			 * Fast retransmit.  When we have seen exactly three
11246 			 * identical ACKs while we have unacked data
11247 			 * outstanding we take it as a hint that our peer
11248 			 * dropped something.
11249 			 *
11250 			 * If TCP is retransmitting, don't do fast retransmit.
11251 			 */
11252 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
11253 			    ! tcp->tcp_rexmit) {
11254 				/* Do Limited Transmit */
11255 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
11256 				    tcps->tcps_dupack_fast_retransmit) {
11257 					/*
11258 					 * RFC 3042
11259 					 *
11260 					 * What we need to do is temporarily
11261 					 * increase tcp_cwnd so that new
11262 					 * data can be sent if it is allowed
11263 					 * by the receive window (tcp_rwnd).
11264 					 * tcp_wput_data() will take care of
11265 					 * the rest.
11266 					 *
11267 					 * If the connection is SACK capable,
11268 					 * only do limited xmit when there
11269 					 * is SACK info.
11270 					 *
11271 					 * Note how tcp_cwnd is incremented.
11272 					 * The first dup ACK will increase
11273 					 * it by 1 MSS.  The second dup ACK
11274 					 * will increase it by 2 MSS.  This
11275 					 * means that only 1 new segment will
11276 					 * be sent for each dup ACK.
11277 					 */
11278 					if (tcp->tcp_unsent > 0 &&
11279 					    (!tcp->tcp_snd_sack_ok ||
11280 					    (tcp->tcp_snd_sack_ok &&
11281 					    tcp->tcp_notsack_list != NULL))) {
11282 						tcp->tcp_cwnd += mss <<
11283 						    (tcp->tcp_dupack_cnt - 1);
11284 						flags |= TH_LIMIT_XMIT;
11285 					}
11286 				} else if (dupack_cnt ==
11287 				    tcps->tcps_dupack_fast_retransmit) {
11288 
11289 				/*
11290 				 * If we have reduced tcp_ssthresh
11291 				 * because of ECN, do not reduce it again
11292 				 * unless it is already one window of data
11293 				 * away.  After one window of data, tcp_cwr
11294 				 * should then be cleared.  Note that
11295 				 * for non ECN capable connection, tcp_cwr
11296 				 * should always be false.
11297 				 *
11298 				 * Adjust cwnd since the duplicate
11299 				 * ack indicates that a packet was
11300 				 * dropped (due to congestion.)
11301 				 */
11302 				if (!tcp->tcp_cwr) {
11303 					npkt = ((tcp->tcp_snxt -
11304 					    tcp->tcp_suna) >> 1) / mss;
11305 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
11306 					    mss;
11307 					tcp->tcp_cwnd = (npkt +
11308 					    tcp->tcp_dupack_cnt) * mss;
11309 				}
11310 				if (tcp->tcp_ecn_ok) {
11311 					tcp->tcp_cwr = B_TRUE;
11312 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
11313 					tcp->tcp_ecn_cwr_sent = B_FALSE;
11314 				}
11315 
11316 				/*
11317 				 * We do Hoe's algorithm.  Refer to her
11318 				 * paper "Improving the Start-up Behavior
11319 				 * of a Congestion Control Scheme for TCP,"
11320 				 * appeared in SIGCOMM'96.
11321 				 *
11322 				 * Save highest seq no we have sent so far.
11323 				 * Be careful about the invisible FIN byte.
11324 				 */
11325 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
11326 				    (tcp->tcp_unsent == 0)) {
11327 					tcp->tcp_rexmit_max = tcp->tcp_fss;
11328 				} else {
11329 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
11330 				}
11331 
11332 				/*
11333 				 * Do not allow bursty traffic during.
11334 				 * fast recovery.  Refer to Fall and Floyd's
11335 				 * paper "Simulation-based Comparisons of
11336 				 * Tahoe, Reno and SACK TCP" (in CCR?)
11337 				 * This is a best current practise.
11338 				 */
11339 				tcp->tcp_snd_burst = TCP_CWND_SS;
11340 
11341 				/*
11342 				 * For SACK:
11343 				 * Calculate tcp_pipe, which is the
11344 				 * estimated number of bytes in
11345 				 * network.
11346 				 *
11347 				 * tcp_fack is the highest sack'ed seq num
11348 				 * TCP has received.
11349 				 *
11350 				 * tcp_pipe is explained in the above quoted
11351 				 * Fall and Floyd's paper.  tcp_fack is
11352 				 * explained in Mathis and Mahdavi's
11353 				 * "Forward Acknowledgment: Refining TCP
11354 				 * Congestion Control" in SIGCOMM '96.
11355 				 */
11356 				if (tcp->tcp_snd_sack_ok) {
11357 					ASSERT(tcp->tcp_sack_info != NULL);
11358 					if (tcp->tcp_notsack_list != NULL) {
11359 						tcp->tcp_pipe = tcp->tcp_snxt -
11360 						    tcp->tcp_fack;
11361 						tcp->tcp_sack_snxt = seg_ack;
11362 						flags |= TH_NEED_SACK_REXMIT;
11363 					} else {
11364 						/*
11365 						 * Always initialize tcp_pipe
11366 						 * even though we don't have
11367 						 * any SACK info.  If later
11368 						 * we get SACK info and
11369 						 * tcp_pipe is not initialized,
11370 						 * funny things will happen.
11371 						 */
11372 						tcp->tcp_pipe =
11373 						    tcp->tcp_cwnd_ssthresh;
11374 					}
11375 				} else {
11376 					flags |= TH_REXMIT_NEEDED;
11377 				} /* tcp_snd_sack_ok */
11378 
11379 				} else {
11380 					/*
11381 					 * Here we perform congestion
11382 					 * avoidance, but NOT slow start.
11383 					 * This is known as the Fast
11384 					 * Recovery Algorithm.
11385 					 */
11386 					if (tcp->tcp_snd_sack_ok &&
11387 					    tcp->tcp_notsack_list != NULL) {
11388 						flags |= TH_NEED_SACK_REXMIT;
11389 						tcp->tcp_pipe -= mss;
11390 						if (tcp->tcp_pipe < 0)
11391 							tcp->tcp_pipe = 0;
11392 					} else {
11393 					/*
11394 					 * We know that one more packet has
11395 					 * left the pipe thus we can update
11396 					 * cwnd.
11397 					 */
11398 					cwnd = tcp->tcp_cwnd + mss;
11399 					if (cwnd > tcp->tcp_cwnd_max)
11400 						cwnd = tcp->tcp_cwnd_max;
11401 					tcp->tcp_cwnd = cwnd;
11402 					if (tcp->tcp_unsent > 0)
11403 						flags |= TH_XMIT_NEEDED;
11404 					}
11405 				}
11406 			}
11407 		} else if (tcp->tcp_zero_win_probe) {
11408 			/*
11409 			 * If the window has opened, need to arrange
11410 			 * to send additional data.
11411 			 */
11412 			if (new_swnd != 0) {
11413 				/* tcp_suna != tcp_snxt */
11414 				/* Packet contains a window update */
11415 				BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate);
11416 				tcp->tcp_zero_win_probe = 0;
11417 				tcp->tcp_timer_backoff = 0;
11418 				tcp->tcp_ms_we_have_waited = 0;
11419 
11420 				/*
11421 				 * Transmit starting with tcp_suna since
11422 				 * the one byte probe is not ack'ed.
11423 				 * If TCP has sent more than one identical
11424 				 * probe, tcp_rexmit will be set.  That means
11425 				 * tcp_ss_rexmit() will send out the one
11426 				 * byte along with new data.  Otherwise,
11427 				 * fake the retransmission.
11428 				 */
11429 				flags |= TH_XMIT_NEEDED;
11430 				if (!tcp->tcp_rexmit) {
11431 					tcp->tcp_rexmit = B_TRUE;
11432 					tcp->tcp_dupack_cnt = 0;
11433 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
11434 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
11435 				}
11436 			}
11437 		}
11438 		goto swnd_update;
11439 	}
11440 
11441 	/*
11442 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
11443 	 * If the ACK value acks something that we have not yet sent, it might
11444 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
11445 	 * other side.
11446 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
11447 	 * state is handled above, so we can always just drop the segment and
11448 	 * send an ACK here.
11449 	 *
11450 	 * In the case where the peer shrinks the window, we see the new window
11451 	 * update, but all the data sent previously is queued up by the peer.
11452 	 * To account for this, in tcp_process_shrunk_swnd(), the sequence
11453 	 * number, which was already sent, and within window, is recorded.
11454 	 * tcp_snxt is then updated.
11455 	 *
11456 	 * If the window has previously shrunk, and an ACK for data not yet
11457 	 * sent, according to tcp_snxt is recieved, it may still be valid. If
11458 	 * the ACK is for data within the window at the time the window was
11459 	 * shrunk, then the ACK is acceptable. In this case tcp_snxt is set to
11460 	 * the sequence number ACK'ed.
11461 	 *
11462 	 * If the ACK covers all the data sent at the time the window was
11463 	 * shrunk, we can now set tcp_is_wnd_shrnk to B_FALSE.
11464 	 *
11465 	 * Should we send ACKs in response to ACK only segments?
11466 	 */
11467 
11468 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
11469 		if ((tcp->tcp_is_wnd_shrnk) &&
11470 		    (SEQ_LEQ(seg_ack, tcp->tcp_snxt_shrunk))) {
11471 			uint32_t data_acked_ahead_snxt;
11472 
11473 			data_acked_ahead_snxt = seg_ack - tcp->tcp_snxt;
11474 			tcp_update_xmit_tail(tcp, seg_ack);
11475 			tcp->tcp_unsent -= data_acked_ahead_snxt;
11476 		} else {
11477 			BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent);
11478 			/* drop the received segment */
11479 			freemsg(mp);
11480 
11481 			/*
11482 			 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
11483 			 * greater than 0, check if the number of such
11484 			 * bogus ACks is greater than that count.  If yes,
11485 			 * don't send back any ACK.  This prevents TCP from
11486 			 * getting into an ACK storm if somehow an attacker
11487 			 * successfully spoofs an acceptable segment to our
11488 			 * peer.
11489 			 */
11490 			if (tcp_drop_ack_unsent_cnt > 0 &&
11491 			    ++tcp->tcp_in_ack_unsent >
11492 			    tcp_drop_ack_unsent_cnt) {
11493 				TCP_STAT(tcps, tcp_in_ack_unsent_drop);
11494 				return;
11495 			}
11496 			mp = tcp_ack_mp(tcp);
11497 			if (mp != NULL) {
11498 				BUMP_LOCAL(tcp->tcp_obsegs);
11499 				BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
11500 				tcp_send_data(tcp, mp);
11501 			}
11502 			return;
11503 		}
11504 	} else if (tcp->tcp_is_wnd_shrnk && SEQ_GEQ(seg_ack,
11505 	    tcp->tcp_snxt_shrunk)) {
11506 			tcp->tcp_is_wnd_shrnk = B_FALSE;
11507 	}
11508 
11509 	/*
11510 	 * TCP gets a new ACK, update the notsack'ed list to delete those
11511 	 * blocks that are covered by this ACK.
11512 	 */
11513 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
11514 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
11515 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
11516 	}
11517 
11518 	/*
11519 	 * If we got an ACK after fast retransmit, check to see
11520 	 * if it is a partial ACK.  If it is not and the congestion
11521 	 * window was inflated to account for the other side's
11522 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
11523 	 */
11524 	if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) {
11525 		ASSERT(tcp->tcp_rexmit == B_FALSE);
11526 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
11527 			tcp->tcp_dupack_cnt = 0;
11528 			/*
11529 			 * Restore the orig tcp_cwnd_ssthresh after
11530 			 * fast retransmit phase.
11531 			 */
11532 			if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
11533 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
11534 			}
11535 			tcp->tcp_rexmit_max = seg_ack;
11536 			tcp->tcp_cwnd_cnt = 0;
11537 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
11538 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
11539 
11540 			/*
11541 			 * Remove all notsack info to avoid confusion with
11542 			 * the next fast retrasnmit/recovery phase.
11543 			 */
11544 			if (tcp->tcp_snd_sack_ok &&
11545 			    tcp->tcp_notsack_list != NULL) {
11546 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list,
11547 				    tcp);
11548 			}
11549 		} else {
11550 			if (tcp->tcp_snd_sack_ok &&
11551 			    tcp->tcp_notsack_list != NULL) {
11552 				flags |= TH_NEED_SACK_REXMIT;
11553 				tcp->tcp_pipe -= mss;
11554 				if (tcp->tcp_pipe < 0)
11555 					tcp->tcp_pipe = 0;
11556 			} else {
11557 				/*
11558 				 * Hoe's algorithm:
11559 				 *
11560 				 * Retransmit the unack'ed segment and
11561 				 * restart fast recovery.  Note that we
11562 				 * need to scale back tcp_cwnd to the
11563 				 * original value when we started fast
11564 				 * recovery.  This is to prevent overly
11565 				 * aggressive behaviour in sending new
11566 				 * segments.
11567 				 */
11568 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
11569 				    tcps->tcps_dupack_fast_retransmit * mss;
11570 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
11571 				flags |= TH_REXMIT_NEEDED;
11572 			}
11573 		}
11574 	} else {
11575 		tcp->tcp_dupack_cnt = 0;
11576 		if (tcp->tcp_rexmit) {
11577 			/*
11578 			 * TCP is retranmitting.  If the ACK ack's all
11579 			 * outstanding data, update tcp_rexmit_max and
11580 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
11581 			 * to the correct value.
11582 			 *
11583 			 * Note that SEQ_LEQ() is used.  This is to avoid
11584 			 * unnecessary fast retransmit caused by dup ACKs
11585 			 * received when TCP does slow start retransmission
11586 			 * after a time out.  During this phase, TCP may
11587 			 * send out segments which are already received.
11588 			 * This causes dup ACKs to be sent back.
11589 			 */
11590 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
11591 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
11592 					tcp->tcp_rexmit_nxt = seg_ack;
11593 				}
11594 				if (seg_ack != tcp->tcp_rexmit_max) {
11595 					flags |= TH_XMIT_NEEDED;
11596 				}
11597 			} else {
11598 				tcp->tcp_rexmit = B_FALSE;
11599 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
11600 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
11601 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
11602 			}
11603 			tcp->tcp_ms_we_have_waited = 0;
11604 		}
11605 	}
11606 
11607 	BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs);
11608 	UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked);
11609 	tcp->tcp_suna = seg_ack;
11610 	if (tcp->tcp_zero_win_probe != 0) {
11611 		tcp->tcp_zero_win_probe = 0;
11612 		tcp->tcp_timer_backoff = 0;
11613 	}
11614 
11615 	/*
11616 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
11617 	 * Note that it cannot be the SYN being ack'ed.  The code flow
11618 	 * will not reach here.
11619 	 */
11620 	if (mp1 == NULL) {
11621 		goto fin_acked;
11622 	}
11623 
11624 	/*
11625 	 * Update the congestion window.
11626 	 *
11627 	 * If TCP is not ECN capable or TCP is ECN capable but the
11628 	 * congestion experience bit is not set, increase the tcp_cwnd as
11629 	 * usual.
11630 	 */
11631 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
11632 		cwnd = tcp->tcp_cwnd;
11633 		add = mss;
11634 
11635 		if (cwnd >= tcp->tcp_cwnd_ssthresh) {
11636 			/*
11637 			 * This is to prevent an increase of less than 1 MSS of
11638 			 * tcp_cwnd.  With partial increase, tcp_wput_data()
11639 			 * may send out tinygrams in order to preserve mblk
11640 			 * boundaries.
11641 			 *
11642 			 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
11643 			 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
11644 			 * increased by 1 MSS for every RTTs.
11645 			 */
11646 			if (tcp->tcp_cwnd_cnt <= 0) {
11647 				tcp->tcp_cwnd_cnt = cwnd + add;
11648 			} else {
11649 				tcp->tcp_cwnd_cnt -= add;
11650 				add = 0;
11651 			}
11652 		}
11653 		tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
11654 	}
11655 
11656 	/* See if the latest urgent data has been acknowledged */
11657 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
11658 	    SEQ_GT(seg_ack, tcp->tcp_urg))
11659 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
11660 
11661 	/* Can we update the RTT estimates? */
11662 	if (tcp->tcp_snd_ts_ok) {
11663 		/* Ignore zero timestamp echo-reply. */
11664 		if (tcpopt.tcp_opt_ts_ecr != 0) {
11665 			tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH -
11666 			    (int32_t)tcpopt.tcp_opt_ts_ecr);
11667 		}
11668 
11669 		/* If needed, restart the timer. */
11670 		if (tcp->tcp_set_timer == 1) {
11671 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
11672 			tcp->tcp_set_timer = 0;
11673 		}
11674 		/*
11675 		 * Update tcp_csuna in case the other side stops sending
11676 		 * us timestamps.
11677 		 */
11678 		tcp->tcp_csuna = tcp->tcp_snxt;
11679 	} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
11680 		/*
11681 		 * An ACK sequence we haven't seen before, so get the RTT
11682 		 * and update the RTO. But first check if the timestamp is
11683 		 * valid to use.
11684 		 */
11685 		if ((mp1->b_next != NULL) &&
11686 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next)))
11687 			tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH -
11688 			    (int32_t)(intptr_t)mp1->b_prev);
11689 		else
11690 			BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
11691 
11692 		/* Remeber the last sequence to be ACKed */
11693 		tcp->tcp_csuna = seg_ack;
11694 		if (tcp->tcp_set_timer == 1) {
11695 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
11696 			tcp->tcp_set_timer = 0;
11697 		}
11698 	} else {
11699 		BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
11700 	}
11701 
11702 	/* Eat acknowledged bytes off the xmit queue. */
11703 	for (;;) {
11704 		mblk_t	*mp2;
11705 		uchar_t	*wptr;
11706 
11707 		wptr = mp1->b_wptr;
11708 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
11709 		bytes_acked -= (int)(wptr - mp1->b_rptr);
11710 		if (bytes_acked < 0) {
11711 			mp1->b_rptr = wptr + bytes_acked;
11712 			/*
11713 			 * Set a new timestamp if all the bytes timed by the
11714 			 * old timestamp have been ack'ed.
11715 			 */
11716 			if (SEQ_GT(seg_ack,
11717 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
11718 				mp1->b_prev =
11719 				    (mblk_t *)(uintptr_t)LBOLT_FASTPATH;
11720 				mp1->b_next = NULL;
11721 			}
11722 			break;
11723 		}
11724 		mp1->b_next = NULL;
11725 		mp1->b_prev = NULL;
11726 		mp2 = mp1;
11727 		mp1 = mp1->b_cont;
11728 
11729 		/*
11730 		 * This notification is required for some zero-copy
11731 		 * clients to maintain a copy semantic. After the data
11732 		 * is ack'ed, client is safe to modify or reuse the buffer.
11733 		 */
11734 		if (tcp->tcp_snd_zcopy_aware &&
11735 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
11736 			tcp_zcopy_notify(tcp);
11737 		freeb(mp2);
11738 		if (bytes_acked == 0) {
11739 			if (mp1 == NULL) {
11740 				/* Everything is ack'ed, clear the tail. */
11741 				tcp->tcp_xmit_tail = NULL;
11742 				/*
11743 				 * Cancel the timer unless we are still
11744 				 * waiting for an ACK for the FIN packet.
11745 				 */
11746 				if (tcp->tcp_timer_tid != 0 &&
11747 				    tcp->tcp_snxt == tcp->tcp_suna) {
11748 					(void) TCP_TIMER_CANCEL(tcp,
11749 					    tcp->tcp_timer_tid);
11750 					tcp->tcp_timer_tid = 0;
11751 				}
11752 				goto pre_swnd_update;
11753 			}
11754 			if (mp2 != tcp->tcp_xmit_tail)
11755 				break;
11756 			tcp->tcp_xmit_tail = mp1;
11757 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
11758 			    (uintptr_t)INT_MAX);
11759 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
11760 			    mp1->b_rptr);
11761 			break;
11762 		}
11763 		if (mp1 == NULL) {
11764 			/*
11765 			 * More was acked but there is nothing more
11766 			 * outstanding.  This means that the FIN was
11767 			 * just acked or that we're talking to a clown.
11768 			 */
11769 fin_acked:
11770 			ASSERT(tcp->tcp_fin_sent);
11771 			tcp->tcp_xmit_tail = NULL;
11772 			if (tcp->tcp_fin_sent) {
11773 				/* FIN was acked - making progress */
11774 				if (!tcp->tcp_fin_acked)
11775 					tcp->tcp_ip_forward_progress = B_TRUE;
11776 				tcp->tcp_fin_acked = B_TRUE;
11777 				if (tcp->tcp_linger_tid != 0 &&
11778 				    TCP_TIMER_CANCEL(tcp,
11779 				    tcp->tcp_linger_tid) >= 0) {
11780 					tcp_stop_lingering(tcp);
11781 					freemsg(mp);
11782 					mp = NULL;
11783 				}
11784 			} else {
11785 				/*
11786 				 * We should never get here because
11787 				 * we have already checked that the
11788 				 * number of bytes ack'ed should be
11789 				 * smaller than or equal to what we
11790 				 * have sent so far (it is the
11791 				 * acceptability check of the ACK).
11792 				 * We can only get here if the send
11793 				 * queue is corrupted.
11794 				 *
11795 				 * Terminate the connection and
11796 				 * panic the system.  It is better
11797 				 * for us to panic instead of
11798 				 * continuing to avoid other disaster.
11799 				 */
11800 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
11801 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
11802 				panic("Memory corruption "
11803 				    "detected for connection %s.",
11804 				    tcp_display(tcp, NULL,
11805 				    DISP_ADDR_AND_PORT));
11806 				/*NOTREACHED*/
11807 			}
11808 			goto pre_swnd_update;
11809 		}
11810 		ASSERT(mp2 != tcp->tcp_xmit_tail);
11811 	}
11812 	if (tcp->tcp_unsent) {
11813 		flags |= TH_XMIT_NEEDED;
11814 	}
11815 pre_swnd_update:
11816 	tcp->tcp_xmit_head = mp1;
11817 swnd_update:
11818 	/*
11819 	 * The following check is different from most other implementations.
11820 	 * For bi-directional transfer, when segments are dropped, the
11821 	 * "normal" check will not accept a window update in those
11822 	 * retransmitted segemnts.  Failing to do that, TCP may send out
11823 	 * segments which are outside receiver's window.  As TCP accepts
11824 	 * the ack in those retransmitted segments, if the window update in
11825 	 * the same segment is not accepted, TCP will incorrectly calculates
11826 	 * that it can send more segments.  This can create a deadlock
11827 	 * with the receiver if its window becomes zero.
11828 	 */
11829 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
11830 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
11831 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
11832 		/*
11833 		 * The criteria for update is:
11834 		 *
11835 		 * 1. the segment acknowledges some data.  Or
11836 		 * 2. the segment is new, i.e. it has a higher seq num. Or
11837 		 * 3. the segment is not old and the advertised window is
11838 		 * larger than the previous advertised window.
11839 		 */
11840 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
11841 			flags |= TH_XMIT_NEEDED;
11842 		tcp->tcp_swnd = new_swnd;
11843 		if (new_swnd > tcp->tcp_max_swnd)
11844 			tcp->tcp_max_swnd = new_swnd;
11845 		tcp->tcp_swl1 = seg_seq;
11846 		tcp->tcp_swl2 = seg_ack;
11847 	}
11848 est:
11849 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
11850 
11851 		switch (tcp->tcp_state) {
11852 		case TCPS_FIN_WAIT_1:
11853 			if (tcp->tcp_fin_acked) {
11854 				tcp->tcp_state = TCPS_FIN_WAIT_2;
11855 				/*
11856 				 * We implement the non-standard BSD/SunOS
11857 				 * FIN_WAIT_2 flushing algorithm.
11858 				 * If there is no user attached to this
11859 				 * TCP endpoint, then this TCP struct
11860 				 * could hang around forever in FIN_WAIT_2
11861 				 * state if the peer forgets to send us
11862 				 * a FIN.  To prevent this, we wait only
11863 				 * 2*MSL (a convenient time value) for
11864 				 * the FIN to arrive.  If it doesn't show up,
11865 				 * we flush the TCP endpoint.  This algorithm,
11866 				 * though a violation of RFC-793, has worked
11867 				 * for over 10 years in BSD systems.
11868 				 * Note: SunOS 4.x waits 675 seconds before
11869 				 * flushing the FIN_WAIT_2 connection.
11870 				 */
11871 				TCP_TIMER_RESTART(tcp,
11872 				    tcps->tcps_fin_wait_2_flush_interval);
11873 			}
11874 			break;
11875 		case TCPS_FIN_WAIT_2:
11876 			break;	/* Shutdown hook? */
11877 		case TCPS_LAST_ACK:
11878 			freemsg(mp);
11879 			if (tcp->tcp_fin_acked) {
11880 				(void) tcp_clean_death(tcp, 0, 19);
11881 				return;
11882 			}
11883 			goto xmit_check;
11884 		case TCPS_CLOSING:
11885 			if (tcp->tcp_fin_acked) {
11886 				tcp->tcp_state = TCPS_TIME_WAIT;
11887 				/*
11888 				 * Unconditionally clear the exclusive binding
11889 				 * bit so this TIME-WAIT connection won't
11890 				 * interfere with new ones.
11891 				 */
11892 				connp->conn_exclbind = 0;
11893 				if (!TCP_IS_DETACHED(tcp)) {
11894 					TCP_TIMER_RESTART(tcp,
11895 					    tcps->tcps_time_wait_interval);
11896 				} else {
11897 					tcp_time_wait_append(tcp);
11898 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
11899 				}
11900 			}
11901 			/*FALLTHRU*/
11902 		case TCPS_CLOSE_WAIT:
11903 			freemsg(mp);
11904 			goto xmit_check;
11905 		default:
11906 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
11907 			break;
11908 		}
11909 	}
11910 	if (flags & TH_FIN) {
11911 		/* Make sure we ack the fin */
11912 		flags |= TH_ACK_NEEDED;
11913 		if (!tcp->tcp_fin_rcvd) {
11914 			tcp->tcp_fin_rcvd = B_TRUE;
11915 			tcp->tcp_rnxt++;
11916 			tcpha = tcp->tcp_tcpha;
11917 			tcpha->tha_ack = htonl(tcp->tcp_rnxt);
11918 
11919 			/*
11920 			 * Generate the ordrel_ind at the end unless we
11921 			 * are an eager guy.
11922 			 * In the eager case tcp_rsrv will do this when run
11923 			 * after tcp_accept is done.
11924 			 */
11925 			if (tcp->tcp_listener == NULL &&
11926 			    !TCP_IS_DETACHED(tcp) && !tcp->tcp_hard_binding)
11927 				flags |= TH_ORDREL_NEEDED;
11928 			switch (tcp->tcp_state) {
11929 			case TCPS_SYN_RCVD:
11930 			case TCPS_ESTABLISHED:
11931 				tcp->tcp_state = TCPS_CLOSE_WAIT;
11932 				/* Keepalive? */
11933 				break;
11934 			case TCPS_FIN_WAIT_1:
11935 				if (!tcp->tcp_fin_acked) {
11936 					tcp->tcp_state = TCPS_CLOSING;
11937 					break;
11938 				}
11939 				/* FALLTHRU */
11940 			case TCPS_FIN_WAIT_2:
11941 				tcp->tcp_state = TCPS_TIME_WAIT;
11942 				/*
11943 				 * Unconditionally clear the exclusive binding
11944 				 * bit so this TIME-WAIT connection won't
11945 				 * interfere with new ones.
11946 				 */
11947 				connp->conn_exclbind = 0;
11948 				if (!TCP_IS_DETACHED(tcp)) {
11949 					TCP_TIMER_RESTART(tcp,
11950 					    tcps->tcps_time_wait_interval);
11951 				} else {
11952 					tcp_time_wait_append(tcp);
11953 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
11954 				}
11955 				if (seg_len) {
11956 					/*
11957 					 * implies data piggybacked on FIN.
11958 					 * break to handle data.
11959 					 */
11960 					break;
11961 				}
11962 				freemsg(mp);
11963 				goto ack_check;
11964 			}
11965 		}
11966 	}
11967 	if (mp == NULL)
11968 		goto xmit_check;
11969 	if (seg_len == 0) {
11970 		freemsg(mp);
11971 		goto xmit_check;
11972 	}
11973 	if (mp->b_rptr == mp->b_wptr) {
11974 		/*
11975 		 * The header has been consumed, so we remove the
11976 		 * zero-length mblk here.
11977 		 */
11978 		mp1 = mp;
11979 		mp = mp->b_cont;
11980 		freeb(mp1);
11981 	}
11982 update_ack:
11983 	tcpha = tcp->tcp_tcpha;
11984 	tcp->tcp_rack_cnt++;
11985 	{
11986 		uint32_t cur_max;
11987 
11988 		cur_max = tcp->tcp_rack_cur_max;
11989 		if (tcp->tcp_rack_cnt >= cur_max) {
11990 			/*
11991 			 * We have more unacked data than we should - send
11992 			 * an ACK now.
11993 			 */
11994 			flags |= TH_ACK_NEEDED;
11995 			cur_max++;
11996 			if (cur_max > tcp->tcp_rack_abs_max)
11997 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
11998 			else
11999 				tcp->tcp_rack_cur_max = cur_max;
12000 		} else if (TCP_IS_DETACHED(tcp)) {
12001 			/* We don't have an ACK timer for detached TCP. */
12002 			flags |= TH_ACK_NEEDED;
12003 		} else if (seg_len < mss) {
12004 			/*
12005 			 * If we get a segment that is less than an mss, and we
12006 			 * already have unacknowledged data, and the amount
12007 			 * unacknowledged is not a multiple of mss, then we
12008 			 * better generate an ACK now.  Otherwise, this may be
12009 			 * the tail piece of a transaction, and we would rather
12010 			 * wait for the response.
12011 			 */
12012 			uint32_t udif;
12013 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
12014 			    (uintptr_t)INT_MAX);
12015 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
12016 			if (udif && (udif % mss))
12017 				flags |= TH_ACK_NEEDED;
12018 			else
12019 				flags |= TH_ACK_TIMER_NEEDED;
12020 		} else {
12021 			/* Start delayed ack timer */
12022 			flags |= TH_ACK_TIMER_NEEDED;
12023 		}
12024 	}
12025 	tcp->tcp_rnxt += seg_len;
12026 	tcpha->tha_ack = htonl(tcp->tcp_rnxt);
12027 
12028 	if (mp == NULL)
12029 		goto xmit_check;
12030 
12031 	/* Update SACK list */
12032 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
12033 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
12034 		    &(tcp->tcp_num_sack_blk));
12035 	}
12036 
12037 	if (tcp->tcp_urp_mp) {
12038 		tcp->tcp_urp_mp->b_cont = mp;
12039 		mp = tcp->tcp_urp_mp;
12040 		tcp->tcp_urp_mp = NULL;
12041 		/* Ready for a new signal. */
12042 		tcp->tcp_urp_last_valid = B_FALSE;
12043 #ifdef DEBUG
12044 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
12045 		    "tcp_rput: sending exdata_ind %s",
12046 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
12047 #endif /* DEBUG */
12048 	}
12049 
12050 	/*
12051 	 * Check for ancillary data changes compared to last segment.
12052 	 */
12053 	if (connp->conn_recv_ancillary.crb_all != 0) {
12054 		mp = tcp_input_add_ancillary(tcp, mp, &ipp, ira);
12055 		if (mp == NULL)
12056 			return;
12057 	}
12058 
12059 	if (tcp->tcp_listener != NULL || tcp->tcp_hard_binding) {
12060 		/*
12061 		 * Side queue inbound data until the accept happens.
12062 		 * tcp_accept/tcp_rput drains this when the accept happens.
12063 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
12064 		 * T_EXDATA_IND) it is queued on b_next.
12065 		 * XXX Make urgent data use this. Requires:
12066 		 *	Removing tcp_listener check for TH_URG
12067 		 *	Making M_PCPROTO and MARK messages skip the eager case
12068 		 */
12069 
12070 		if (tcp->tcp_kssl_pending) {
12071 			DTRACE_PROBE1(kssl_mblk__ksslinput_pending,
12072 			    mblk_t *, mp);
12073 			tcp_kssl_input(tcp, mp, ira->ira_cred);
12074 		} else {
12075 			tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred);
12076 		}
12077 	} else if (IPCL_IS_NONSTR(connp)) {
12078 		/*
12079 		 * Non-STREAMS socket
12080 		 *
12081 		 * Note that no KSSL processing is done here, because
12082 		 * KSSL is not supported for non-STREAMS sockets.
12083 		 */
12084 		boolean_t push = flags & (TH_PUSH|TH_FIN);
12085 		int error;
12086 
12087 		if ((*connp->conn_upcalls->su_recv)(
12088 		    connp->conn_upper_handle,
12089 		    mp, seg_len, 0, &error, &push) <= 0) {
12090 			/*
12091 			 * We should never be in middle of a
12092 			 * fallback, the squeue guarantees that.
12093 			 */
12094 			ASSERT(error != EOPNOTSUPP);
12095 			if (error == ENOSPC)
12096 				tcp->tcp_rwnd -= seg_len;
12097 		} else if (push) {
12098 			/* PUSH bit set and sockfs is not flow controlled */
12099 			flags |= tcp_rwnd_reopen(tcp);
12100 		}
12101 	} else {
12102 		/* STREAMS socket */
12103 		if (mp->b_datap->db_type != M_DATA ||
12104 		    (flags & TH_MARKNEXT_NEEDED)) {
12105 			if (tcp->tcp_rcv_list != NULL) {
12106 				flags |= tcp_rcv_drain(tcp);
12107 			}
12108 			ASSERT(tcp->tcp_rcv_list == NULL ||
12109 			    tcp->tcp_fused_sigurg);
12110 
12111 			if (flags & TH_MARKNEXT_NEEDED) {
12112 #ifdef DEBUG
12113 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
12114 				    "tcp_rput: sending MSGMARKNEXT %s",
12115 				    tcp_display(tcp, NULL,
12116 				    DISP_PORT_ONLY));
12117 #endif /* DEBUG */
12118 				mp->b_flag |= MSGMARKNEXT;
12119 				flags &= ~TH_MARKNEXT_NEEDED;
12120 			}
12121 
12122 			/* Does this need SSL processing first? */
12123 			if ((tcp->tcp_kssl_ctx != NULL) &&
12124 			    (DB_TYPE(mp) == M_DATA)) {
12125 				DTRACE_PROBE1(kssl_mblk__ksslinput_data1,
12126 				    mblk_t *, mp);
12127 				tcp_kssl_input(tcp, mp, ira->ira_cred);
12128 			} else {
12129 				if (is_system_labeled())
12130 					tcp_setcred_data(mp, ira);
12131 
12132 				putnext(connp->conn_rq, mp);
12133 				if (!canputnext(connp->conn_rq))
12134 					tcp->tcp_rwnd -= seg_len;
12135 			}
12136 		} else if ((tcp->tcp_kssl_ctx != NULL) &&
12137 		    (DB_TYPE(mp) == M_DATA)) {
12138 			/* Does this need SSL processing first? */
12139 			DTRACE_PROBE1(kssl_mblk__ksslinput_data2, mblk_t *, mp);
12140 			tcp_kssl_input(tcp, mp, ira->ira_cred);
12141 		} else if ((flags & (TH_PUSH|TH_FIN)) ||
12142 		    tcp->tcp_rcv_cnt + seg_len >= connp->conn_rcvbuf >> 3) {
12143 			if (tcp->tcp_rcv_list != NULL) {
12144 				/*
12145 				 * Enqueue the new segment first and then
12146 				 * call tcp_rcv_drain() to send all data
12147 				 * up.  The other way to do this is to
12148 				 * send all queued data up and then call
12149 				 * putnext() to send the new segment up.
12150 				 * This way can remove the else part later
12151 				 * on.
12152 				 *
12153 				 * We don't do this to avoid one more call to
12154 				 * canputnext() as tcp_rcv_drain() needs to
12155 				 * call canputnext().
12156 				 */
12157 				tcp_rcv_enqueue(tcp, mp, seg_len,
12158 				    ira->ira_cred);
12159 				flags |= tcp_rcv_drain(tcp);
12160 			} else {
12161 				if (is_system_labeled())
12162 					tcp_setcred_data(mp, ira);
12163 
12164 				putnext(connp->conn_rq, mp);
12165 				if (!canputnext(connp->conn_rq))
12166 					tcp->tcp_rwnd -= seg_len;
12167 			}
12168 		} else {
12169 			/*
12170 			 * Enqueue all packets when processing an mblk
12171 			 * from the co queue and also enqueue normal packets.
12172 			 */
12173 			tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred);
12174 		}
12175 		/*
12176 		 * Make sure the timer is running if we have data waiting
12177 		 * for a push bit. This provides resiliency against
12178 		 * implementations that do not correctly generate push bits.
12179 		 */
12180 		if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) {
12181 			/*
12182 			 * The connection may be closed at this point, so don't
12183 			 * do anything for a detached tcp.
12184 			 */
12185 			if (!TCP_IS_DETACHED(tcp))
12186 				tcp->tcp_push_tid = TCP_TIMER(tcp,
12187 				    tcp_push_timer,
12188 				    MSEC_TO_TICK(
12189 				    tcps->tcps_push_timer_interval));
12190 		}
12191 	}
12192 
12193 xmit_check:
12194 	/* Is there anything left to do? */
12195 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
12196 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
12197 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
12198 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
12199 		goto done;
12200 
12201 	/* Any transmit work to do and a non-zero window? */
12202 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
12203 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
12204 		if (flags & TH_REXMIT_NEEDED) {
12205 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
12206 
12207 			BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans);
12208 			if (snd_size > mss)
12209 				snd_size = mss;
12210 			if (snd_size > tcp->tcp_swnd)
12211 				snd_size = tcp->tcp_swnd;
12212 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
12213 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
12214 			    B_TRUE);
12215 
12216 			if (mp1 != NULL) {
12217 				tcp->tcp_xmit_head->b_prev =
12218 				    (mblk_t *)LBOLT_FASTPATH;
12219 				tcp->tcp_csuna = tcp->tcp_snxt;
12220 				BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12221 				UPDATE_MIB(&tcps->tcps_mib,
12222 				    tcpRetransBytes, snd_size);
12223 				tcp_send_data(tcp, mp1);
12224 			}
12225 		}
12226 		if (flags & TH_NEED_SACK_REXMIT) {
12227 			tcp_sack_rxmit(tcp, &flags);
12228 		}
12229 		/*
12230 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
12231 		 * out new segment.  Note that tcp_rexmit should not be
12232 		 * set, otherwise TH_LIMIT_XMIT should not be set.
12233 		 */
12234 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
12235 			if (!tcp->tcp_rexmit) {
12236 				tcp_wput_data(tcp, NULL, B_FALSE);
12237 			} else {
12238 				tcp_ss_rexmit(tcp);
12239 			}
12240 		}
12241 		/*
12242 		 * Adjust tcp_cwnd back to normal value after sending
12243 		 * new data segments.
12244 		 */
12245 		if (flags & TH_LIMIT_XMIT) {
12246 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
12247 			/*
12248 			 * This will restart the timer.  Restarting the
12249 			 * timer is used to avoid a timeout before the
12250 			 * limited transmitted segment's ACK gets back.
12251 			 */
12252 			if (tcp->tcp_xmit_head != NULL)
12253 				tcp->tcp_xmit_head->b_prev =
12254 				    (mblk_t *)LBOLT_FASTPATH;
12255 		}
12256 
12257 		/* Anything more to do? */
12258 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
12259 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
12260 			goto done;
12261 	}
12262 ack_check:
12263 	if (flags & TH_SEND_URP_MARK) {
12264 		ASSERT(tcp->tcp_urp_mark_mp);
12265 		ASSERT(!IPCL_IS_NONSTR(connp));
12266 		/*
12267 		 * Send up any queued data and then send the mark message
12268 		 */
12269 		if (tcp->tcp_rcv_list != NULL) {
12270 			flags |= tcp_rcv_drain(tcp);
12271 
12272 		}
12273 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
12274 		mp1 = tcp->tcp_urp_mark_mp;
12275 		tcp->tcp_urp_mark_mp = NULL;
12276 		if (is_system_labeled())
12277 			tcp_setcred_data(mp1, ira);
12278 
12279 		putnext(connp->conn_rq, mp1);
12280 #ifdef DEBUG
12281 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
12282 		    "tcp_rput: sending zero-length %s %s",
12283 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
12284 		    "MSGNOTMARKNEXT"),
12285 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
12286 #endif /* DEBUG */
12287 		flags &= ~TH_SEND_URP_MARK;
12288 	}
12289 	if (flags & TH_ACK_NEEDED) {
12290 		/*
12291 		 * Time to send an ack for some reason.
12292 		 */
12293 		mp1 = tcp_ack_mp(tcp);
12294 
12295 		if (mp1 != NULL) {
12296 			tcp_send_data(tcp, mp1);
12297 			BUMP_LOCAL(tcp->tcp_obsegs);
12298 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
12299 		}
12300 		if (tcp->tcp_ack_tid != 0) {
12301 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
12302 			tcp->tcp_ack_tid = 0;
12303 		}
12304 	}
12305 	if (flags & TH_ACK_TIMER_NEEDED) {
12306 		/*
12307 		 * Arrange for deferred ACK or push wait timeout.
12308 		 * Start timer if it is not already running.
12309 		 */
12310 		if (tcp->tcp_ack_tid == 0) {
12311 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
12312 			    MSEC_TO_TICK(tcp->tcp_localnet ?
12313 			    (clock_t)tcps->tcps_local_dack_interval :
12314 			    (clock_t)tcps->tcps_deferred_ack_interval));
12315 		}
12316 	}
12317 	if (flags & TH_ORDREL_NEEDED) {
12318 		/*
12319 		 * Send up the ordrel_ind unless we are an eager guy.
12320 		 * In the eager case tcp_rsrv will do this when run
12321 		 * after tcp_accept is done.
12322 		 */
12323 		ASSERT(tcp->tcp_listener == NULL);
12324 		ASSERT(!tcp->tcp_detached);
12325 
12326 		if (IPCL_IS_NONSTR(connp)) {
12327 			ASSERT(tcp->tcp_ordrel_mp == NULL);
12328 			tcp->tcp_ordrel_done = B_TRUE;
12329 			(*connp->conn_upcalls->su_opctl)
12330 			    (connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0);
12331 			goto done;
12332 		}
12333 
12334 		if (tcp->tcp_rcv_list != NULL) {
12335 			/*
12336 			 * Push any mblk(s) enqueued from co processing.
12337 			 */
12338 			flags |= tcp_rcv_drain(tcp);
12339 		}
12340 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
12341 
12342 		mp1 = tcp->tcp_ordrel_mp;
12343 		tcp->tcp_ordrel_mp = NULL;
12344 		tcp->tcp_ordrel_done = B_TRUE;
12345 		putnext(connp->conn_rq, mp1);
12346 	}
12347 done:
12348 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
12349 }
12350 
12351 /*
12352  * This routine adjusts next-to-send sequence number variables, in the
12353  * case where the reciever has shrunk it's window.
12354  */
12355 static void
12356 tcp_update_xmit_tail(tcp_t *tcp, uint32_t snxt)
12357 {
12358 	mblk_t *xmit_tail;
12359 	int32_t offset;
12360 
12361 	tcp->tcp_snxt = snxt;
12362 
12363 	/* Get the mblk, and the offset in it, as per the shrunk window */
12364 	xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset);
12365 	ASSERT(xmit_tail != NULL);
12366 	tcp->tcp_xmit_tail = xmit_tail;
12367 	tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr -
12368 	    xmit_tail->b_rptr - offset;
12369 }
12370 
12371 /*
12372  * This function does PAWS protection check. Returns B_TRUE if the
12373  * segment passes the PAWS test, else returns B_FALSE.
12374  */
12375 boolean_t
12376 tcp_paws_check(tcp_t *tcp, tcpha_t *tcpha, tcp_opt_t *tcpoptp)
12377 {
12378 	uint8_t	flags;
12379 	int	options;
12380 	uint8_t *up;
12381 	conn_t	*connp = tcp->tcp_connp;
12382 
12383 	flags = (unsigned int)tcpha->tha_flags & 0xFF;
12384 	/*
12385 	 * If timestamp option is aligned nicely, get values inline,
12386 	 * otherwise call general routine to parse.  Only do that
12387 	 * if timestamp is the only option.
12388 	 */
12389 	if (TCP_HDR_LENGTH(tcpha) == (uint32_t)TCP_MIN_HEADER_LENGTH +
12390 	    TCPOPT_REAL_TS_LEN &&
12391 	    OK_32PTR((up = ((uint8_t *)tcpha) +
12392 	    TCP_MIN_HEADER_LENGTH)) &&
12393 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
12394 		tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
12395 		tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
12396 
12397 		options = TCP_OPT_TSTAMP_PRESENT;
12398 	} else {
12399 		if (tcp->tcp_snd_sack_ok) {
12400 			tcpoptp->tcp = tcp;
12401 		} else {
12402 			tcpoptp->tcp = NULL;
12403 		}
12404 		options = tcp_parse_options(tcpha, tcpoptp);
12405 	}
12406 
12407 	if (options & TCP_OPT_TSTAMP_PRESENT) {
12408 		/*
12409 		 * Do PAWS per RFC 1323 section 4.2.  Accept RST
12410 		 * regardless of the timestamp, page 18 RFC 1323.bis.
12411 		 */
12412 		if ((flags & TH_RST) == 0 &&
12413 		    TSTMP_LT(tcpoptp->tcp_opt_ts_val,
12414 		    tcp->tcp_ts_recent)) {
12415 			if (TSTMP_LT(LBOLT_FASTPATH,
12416 			    tcp->tcp_last_rcv_lbolt + PAWS_TIMEOUT)) {
12417 				/* This segment is not acceptable. */
12418 				return (B_FALSE);
12419 			} else {
12420 				/*
12421 				 * Connection has been idle for
12422 				 * too long.  Reset the timestamp
12423 				 * and assume the segment is valid.
12424 				 */
12425 				tcp->tcp_ts_recent =
12426 				    tcpoptp->tcp_opt_ts_val;
12427 			}
12428 		}
12429 	} else {
12430 		/*
12431 		 * If we don't get a timestamp on every packet, we
12432 		 * figure we can't really trust 'em, so we stop sending
12433 		 * and parsing them.
12434 		 */
12435 		tcp->tcp_snd_ts_ok = B_FALSE;
12436 
12437 		connp->conn_ht_iphc_len -= TCPOPT_REAL_TS_LEN;
12438 		connp->conn_ht_ulp_len -= TCPOPT_REAL_TS_LEN;
12439 		tcp->tcp_tcpha->tha_offset_and_reserved -= (3 << 4);
12440 		/*
12441 		 * Adjust the tcp_mss and tcp_cwnd accordingly. We avoid
12442 		 * doing a slow start here so as to not to lose on the
12443 		 * transfer rate built up so far.
12444 		 */
12445 		tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN);
12446 		if (tcp->tcp_snd_sack_ok) {
12447 			ASSERT(tcp->tcp_sack_info != NULL);
12448 			tcp->tcp_max_sack_blk = 4;
12449 		}
12450 	}
12451 	return (B_TRUE);
12452 }
12453 
12454 /*
12455  * Attach ancillary data to a received TCP segments for the
12456  * ancillary pieces requested by the application that are
12457  * different than they were in the previous data segment.
12458  *
12459  * Save the "current" values once memory allocation is ok so that
12460  * when memory allocation fails we can just wait for the next data segment.
12461  */
12462 static mblk_t *
12463 tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp,
12464     ip_recv_attr_t *ira)
12465 {
12466 	struct T_optdata_ind *todi;
12467 	int optlen;
12468 	uchar_t *optptr;
12469 	struct T_opthdr *toh;
12470 	crb_t addflag;	/* Which pieces to add */
12471 	mblk_t *mp1;
12472 	conn_t	*connp = tcp->tcp_connp;
12473 
12474 	optlen = 0;
12475 	addflag.crb_all = 0;
12476 	/* If app asked for pktinfo and the index has changed ... */
12477 	if (connp->conn_recv_ancillary.crb_ip_recvpktinfo &&
12478 	    ira->ira_ruifindex != tcp->tcp_recvifindex) {
12479 		optlen += sizeof (struct T_opthdr) +
12480 		    sizeof (struct in6_pktinfo);
12481 		addflag.crb_ip_recvpktinfo = 1;
12482 	}
12483 	/* If app asked for hoplimit and it has changed ... */
12484 	if (connp->conn_recv_ancillary.crb_ipv6_recvhoplimit &&
12485 	    ipp->ipp_hoplimit != tcp->tcp_recvhops) {
12486 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
12487 		addflag.crb_ipv6_recvhoplimit = 1;
12488 	}
12489 	/* If app asked for tclass and it has changed ... */
12490 	if (connp->conn_recv_ancillary.crb_ipv6_recvtclass &&
12491 	    ipp->ipp_tclass != tcp->tcp_recvtclass) {
12492 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
12493 		addflag.crb_ipv6_recvtclass = 1;
12494 	}
12495 	/*
12496 	 * If app asked for hopbyhop headers and it has changed ...
12497 	 * For security labels, note that (1) security labels can't change on
12498 	 * a connected socket at all, (2) we're connected to at most one peer,
12499 	 * (3) if anything changes, then it must be some other extra option.
12500 	 */
12501 	if (connp->conn_recv_ancillary.crb_ipv6_recvhopopts &&
12502 	    ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
12503 	    (ipp->ipp_fields & IPPF_HOPOPTS),
12504 	    ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
12505 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen;
12506 		addflag.crb_ipv6_recvhopopts = 1;
12507 		if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
12508 		    &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
12509 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
12510 			return (mp);
12511 	}
12512 	/* If app asked for dst headers before routing headers ... */
12513 	if (connp->conn_recv_ancillary.crb_ipv6_recvrthdrdstopts &&
12514 	    ip_cmpbuf(tcp->tcp_rthdrdstopts, tcp->tcp_rthdrdstoptslen,
12515 	    (ipp->ipp_fields & IPPF_RTHDRDSTOPTS),
12516 	    ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) {
12517 		optlen += sizeof (struct T_opthdr) +
12518 		    ipp->ipp_rthdrdstoptslen;
12519 		addflag.crb_ipv6_recvrthdrdstopts = 1;
12520 		if (!ip_allocbuf((void **)&tcp->tcp_rthdrdstopts,
12521 		    &tcp->tcp_rthdrdstoptslen,
12522 		    (ipp->ipp_fields & IPPF_RTHDRDSTOPTS),
12523 		    ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen))
12524 			return (mp);
12525 	}
12526 	/* If app asked for routing headers and it has changed ... */
12527 	if (connp->conn_recv_ancillary.crb_ipv6_recvrthdr &&
12528 	    ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
12529 	    (ipp->ipp_fields & IPPF_RTHDR),
12530 	    ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
12531 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
12532 		addflag.crb_ipv6_recvrthdr = 1;
12533 		if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
12534 		    &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
12535 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
12536 			return (mp);
12537 	}
12538 	/* If app asked for dest headers and it has changed ... */
12539 	if ((connp->conn_recv_ancillary.crb_ipv6_recvdstopts ||
12540 	    connp->conn_recv_ancillary.crb_old_ipv6_recvdstopts) &&
12541 	    ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
12542 	    (ipp->ipp_fields & IPPF_DSTOPTS),
12543 	    ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
12544 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
12545 		addflag.crb_ipv6_recvdstopts = 1;
12546 		if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
12547 		    &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
12548 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
12549 			return (mp);
12550 	}
12551 
12552 	if (optlen == 0) {
12553 		/* Nothing to add */
12554 		return (mp);
12555 	}
12556 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
12557 	if (mp1 == NULL) {
12558 		/*
12559 		 * Defer sending ancillary data until the next TCP segment
12560 		 * arrives.
12561 		 */
12562 		return (mp);
12563 	}
12564 	mp1->b_cont = mp;
12565 	mp = mp1;
12566 	mp->b_wptr += sizeof (*todi) + optlen;
12567 	mp->b_datap->db_type = M_PROTO;
12568 	todi = (struct T_optdata_ind *)mp->b_rptr;
12569 	todi->PRIM_type = T_OPTDATA_IND;
12570 	todi->DATA_flag = 1;	/* MORE data */
12571 	todi->OPT_length = optlen;
12572 	todi->OPT_offset = sizeof (*todi);
12573 	optptr = (uchar_t *)&todi[1];
12574 	/*
12575 	 * If app asked for pktinfo and the index has changed ...
12576 	 * Note that the local address never changes for the connection.
12577 	 */
12578 	if (addflag.crb_ip_recvpktinfo) {
12579 		struct in6_pktinfo *pkti;
12580 		uint_t ifindex;
12581 
12582 		ifindex = ira->ira_ruifindex;
12583 		toh = (struct T_opthdr *)optptr;
12584 		toh->level = IPPROTO_IPV6;
12585 		toh->name = IPV6_PKTINFO;
12586 		toh->len = sizeof (*toh) + sizeof (*pkti);
12587 		toh->status = 0;
12588 		optptr += sizeof (*toh);
12589 		pkti = (struct in6_pktinfo *)optptr;
12590 		pkti->ipi6_addr = connp->conn_laddr_v6;
12591 		pkti->ipi6_ifindex = ifindex;
12592 		optptr += sizeof (*pkti);
12593 		ASSERT(OK_32PTR(optptr));
12594 		/* Save as "last" value */
12595 		tcp->tcp_recvifindex = ifindex;
12596 	}
12597 	/* If app asked for hoplimit and it has changed ... */
12598 	if (addflag.crb_ipv6_recvhoplimit) {
12599 		toh = (struct T_opthdr *)optptr;
12600 		toh->level = IPPROTO_IPV6;
12601 		toh->name = IPV6_HOPLIMIT;
12602 		toh->len = sizeof (*toh) + sizeof (uint_t);
12603 		toh->status = 0;
12604 		optptr += sizeof (*toh);
12605 		*(uint_t *)optptr = ipp->ipp_hoplimit;
12606 		optptr += sizeof (uint_t);
12607 		ASSERT(OK_32PTR(optptr));
12608 		/* Save as "last" value */
12609 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
12610 	}
12611 	/* If app asked for tclass and it has changed ... */
12612 	if (addflag.crb_ipv6_recvtclass) {
12613 		toh = (struct T_opthdr *)optptr;
12614 		toh->level = IPPROTO_IPV6;
12615 		toh->name = IPV6_TCLASS;
12616 		toh->len = sizeof (*toh) + sizeof (uint_t);
12617 		toh->status = 0;
12618 		optptr += sizeof (*toh);
12619 		*(uint_t *)optptr = ipp->ipp_tclass;
12620 		optptr += sizeof (uint_t);
12621 		ASSERT(OK_32PTR(optptr));
12622 		/* Save as "last" value */
12623 		tcp->tcp_recvtclass = ipp->ipp_tclass;
12624 	}
12625 	if (addflag.crb_ipv6_recvhopopts) {
12626 		toh = (struct T_opthdr *)optptr;
12627 		toh->level = IPPROTO_IPV6;
12628 		toh->name = IPV6_HOPOPTS;
12629 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen;
12630 		toh->status = 0;
12631 		optptr += sizeof (*toh);
12632 		bcopy((uchar_t *)ipp->ipp_hopopts, optptr, ipp->ipp_hopoptslen);
12633 		optptr += ipp->ipp_hopoptslen;
12634 		ASSERT(OK_32PTR(optptr));
12635 		/* Save as last value */
12636 		ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
12637 		    (ipp->ipp_fields & IPPF_HOPOPTS),
12638 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
12639 	}
12640 	if (addflag.crb_ipv6_recvrthdrdstopts) {
12641 		toh = (struct T_opthdr *)optptr;
12642 		toh->level = IPPROTO_IPV6;
12643 		toh->name = IPV6_RTHDRDSTOPTS;
12644 		toh->len = sizeof (*toh) + ipp->ipp_rthdrdstoptslen;
12645 		toh->status = 0;
12646 		optptr += sizeof (*toh);
12647 		bcopy(ipp->ipp_rthdrdstopts, optptr, ipp->ipp_rthdrdstoptslen);
12648 		optptr += ipp->ipp_rthdrdstoptslen;
12649 		ASSERT(OK_32PTR(optptr));
12650 		/* Save as last value */
12651 		ip_savebuf((void **)&tcp->tcp_rthdrdstopts,
12652 		    &tcp->tcp_rthdrdstoptslen,
12653 		    (ipp->ipp_fields & IPPF_RTHDRDSTOPTS),
12654 		    ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen);
12655 	}
12656 	if (addflag.crb_ipv6_recvrthdr) {
12657 		toh = (struct T_opthdr *)optptr;
12658 		toh->level = IPPROTO_IPV6;
12659 		toh->name = IPV6_RTHDR;
12660 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
12661 		toh->status = 0;
12662 		optptr += sizeof (*toh);
12663 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
12664 		optptr += ipp->ipp_rthdrlen;
12665 		ASSERT(OK_32PTR(optptr));
12666 		/* Save as last value */
12667 		ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
12668 		    (ipp->ipp_fields & IPPF_RTHDR),
12669 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
12670 	}
12671 	if (addflag.crb_ipv6_recvdstopts) {
12672 		toh = (struct T_opthdr *)optptr;
12673 		toh->level = IPPROTO_IPV6;
12674 		toh->name = IPV6_DSTOPTS;
12675 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
12676 		toh->status = 0;
12677 		optptr += sizeof (*toh);
12678 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
12679 		optptr += ipp->ipp_dstoptslen;
12680 		ASSERT(OK_32PTR(optptr));
12681 		/* Save as last value */
12682 		ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
12683 		    (ipp->ipp_fields & IPPF_DSTOPTS),
12684 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
12685 	}
12686 	ASSERT(optptr == mp->b_wptr);
12687 	return (mp);
12688 }
12689 
12690 /* ARGSUSED */
12691 static void
12692 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
12693 {
12694 	conn_t	*connp = (conn_t *)arg;
12695 	tcp_t	*tcp = connp->conn_tcp;
12696 	queue_t	*q = connp->conn_rq;
12697 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12698 
12699 	ASSERT(!IPCL_IS_NONSTR(connp));
12700 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
12701 	tcp->tcp_rsrv_mp = mp;
12702 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
12703 
12704 	TCP_STAT(tcps, tcp_rsrv_calls);
12705 
12706 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
12707 		return;
12708 	}
12709 
12710 	if (tcp->tcp_fused) {
12711 		tcp_fuse_backenable(tcp);
12712 		return;
12713 	}
12714 
12715 	if (canputnext(q)) {
12716 		/* Not flow-controlled, open rwnd */
12717 		tcp->tcp_rwnd = connp->conn_rcvbuf;
12718 
12719 		/*
12720 		 * Send back a window update immediately if TCP is above
12721 		 * ESTABLISHED state and the increase of the rcv window
12722 		 * that the other side knows is at least 1 MSS after flow
12723 		 * control is lifted.
12724 		 */
12725 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
12726 		    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
12727 			tcp_xmit_ctl(NULL, tcp,
12728 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
12729 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
12730 		}
12731 	}
12732 }
12733 
12734 /*
12735  * The read side service routine is called mostly when we get back-enabled as a
12736  * result of flow control relief.  Since we don't actually queue anything in
12737  * TCP, we have no data to send out of here.  What we do is clear the receive
12738  * window, and send out a window update.
12739  */
12740 static void
12741 tcp_rsrv(queue_t *q)
12742 {
12743 	conn_t		*connp = Q_TO_CONN(q);
12744 	tcp_t		*tcp = connp->conn_tcp;
12745 	mblk_t		*mp;
12746 
12747 	/* No code does a putq on the read side */
12748 	ASSERT(q->q_first == NULL);
12749 
12750 	/*
12751 	 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already
12752 	 * been run.  So just return.
12753 	 */
12754 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
12755 	if ((mp = tcp->tcp_rsrv_mp) == NULL) {
12756 		mutex_exit(&tcp->tcp_rsrv_mp_lock);
12757 		return;
12758 	}
12759 	tcp->tcp_rsrv_mp = NULL;
12760 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
12761 
12762 	CONN_INC_REF(connp);
12763 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp,
12764 	    NULL, SQ_PROCESS, SQTAG_TCP_RSRV);
12765 }
12766 
12767 /*
12768  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
12769  * We do not allow the receive window to shrink.  After setting rwnd,
12770  * set the flow control hiwat of the stream.
12771  *
12772  * This function is called in 2 cases:
12773  *
12774  * 1) Before data transfer begins, in tcp_input_listener() for accepting a
12775  *    connection (passive open) and in tcp_input_data() for active connect.
12776  *    This is called after tcp_mss_set() when the desired MSS value is known.
12777  *    This makes sure that our window size is a mutiple of the other side's
12778  *    MSS.
12779  * 2) Handling SO_RCVBUF option.
12780  *
12781  * It is ASSUMED that the requested size is a multiple of the current MSS.
12782  *
12783  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
12784  * user requests so.
12785  */
12786 int
12787 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
12788 {
12789 	uint32_t	mss = tcp->tcp_mss;
12790 	uint32_t	old_max_rwnd;
12791 	uint32_t	max_transmittable_rwnd;
12792 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
12793 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12794 	conn_t		*connp = tcp->tcp_connp;
12795 
12796 	/*
12797 	 * Insist on a receive window that is at least
12798 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
12799 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
12800 	 * and delayed acknowledgement.
12801 	 */
12802 	rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss);
12803 
12804 	if (tcp->tcp_fused) {
12805 		size_t sth_hiwat;
12806 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
12807 
12808 		ASSERT(peer_tcp != NULL);
12809 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
12810 		if (!tcp_detached) {
12811 			(void) proto_set_rx_hiwat(connp->conn_rq, connp,
12812 			    sth_hiwat);
12813 			tcp_set_recv_threshold(tcp, sth_hiwat >> 3);
12814 		}
12815 
12816 		/*
12817 		 * In the fusion case, the maxpsz stream head value of
12818 		 * our peer is set according to its send buffer size
12819 		 * and our receive buffer size; since the latter may
12820 		 * have changed we need to update the peer's maxpsz.
12821 		 */
12822 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
12823 		return (sth_hiwat);
12824 	}
12825 
12826 	if (tcp_detached)
12827 		old_max_rwnd = tcp->tcp_rwnd;
12828 	else
12829 		old_max_rwnd = connp->conn_rcvbuf;
12830 
12831 
12832 	/*
12833 	 * If window size info has already been exchanged, TCP should not
12834 	 * shrink the window.  Shrinking window is doable if done carefully.
12835 	 * We may add that support later.  But so far there is not a real
12836 	 * need to do that.
12837 	 */
12838 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
12839 		/* MSS may have changed, do a round up again. */
12840 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
12841 	}
12842 
12843 	/*
12844 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
12845 	 * can be applied even before the window scale option is decided.
12846 	 */
12847 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
12848 	if (rwnd > max_transmittable_rwnd) {
12849 		rwnd = max_transmittable_rwnd -
12850 		    (max_transmittable_rwnd % mss);
12851 		if (rwnd < mss)
12852 			rwnd = max_transmittable_rwnd;
12853 		/*
12854 		 * If we're over the limit we may have to back down tcp_rwnd.
12855 		 * The increment below won't work for us. So we set all three
12856 		 * here and the increment below will have no effect.
12857 		 */
12858 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
12859 	}
12860 	if (tcp->tcp_localnet) {
12861 		tcp->tcp_rack_abs_max =
12862 		    MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2);
12863 	} else {
12864 		/*
12865 		 * For a remote host on a different subnet (through a router),
12866 		 * we ack every other packet to be conforming to RFC1122.
12867 		 * tcp_deferred_acks_max is default to 2.
12868 		 */
12869 		tcp->tcp_rack_abs_max =
12870 		    MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2);
12871 	}
12872 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
12873 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
12874 	else
12875 		tcp->tcp_rack_cur_max = 0;
12876 	/*
12877 	 * Increment the current rwnd by the amount the maximum grew (we
12878 	 * can not overwrite it since we might be in the middle of a
12879 	 * connection.)
12880 	 */
12881 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
12882 	connp->conn_rcvbuf = rwnd;
12883 
12884 	/* Are we already connected? */
12885 	if (tcp->tcp_tcpha != NULL) {
12886 		tcp->tcp_tcpha->tha_win =
12887 		    htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
12888 	}
12889 
12890 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
12891 		tcp->tcp_cwnd_max = rwnd;
12892 
12893 	if (tcp_detached)
12894 		return (rwnd);
12895 
12896 	tcp_set_recv_threshold(tcp, rwnd >> 3);
12897 
12898 	(void) proto_set_rx_hiwat(connp->conn_rq, connp, rwnd);
12899 	return (rwnd);
12900 }
12901 
12902 /*
12903  * Return SNMP stuff in buffer in mpdata.
12904  */
12905 mblk_t *
12906 tcp_snmp_get(queue_t *q, mblk_t *mpctl)
12907 {
12908 	mblk_t			*mpdata;
12909 	mblk_t			*mp_conn_ctl = NULL;
12910 	mblk_t			*mp_conn_tail;
12911 	mblk_t			*mp_attr_ctl = NULL;
12912 	mblk_t			*mp_attr_tail;
12913 	mblk_t			*mp6_conn_ctl = NULL;
12914 	mblk_t			*mp6_conn_tail;
12915 	mblk_t			*mp6_attr_ctl = NULL;
12916 	mblk_t			*mp6_attr_tail;
12917 	struct opthdr		*optp;
12918 	mib2_tcpConnEntry_t	tce;
12919 	mib2_tcp6ConnEntry_t	tce6;
12920 	mib2_transportMLPEntry_t mlp;
12921 	connf_t			*connfp;
12922 	int			i;
12923 	boolean_t 		ispriv;
12924 	zoneid_t 		zoneid;
12925 	int			v4_conn_idx;
12926 	int			v6_conn_idx;
12927 	conn_t			*connp = Q_TO_CONN(q);
12928 	tcp_stack_t		*tcps;
12929 	ip_stack_t		*ipst;
12930 	mblk_t			*mp2ctl;
12931 
12932 	/*
12933 	 * make a copy of the original message
12934 	 */
12935 	mp2ctl = copymsg(mpctl);
12936 
12937 	if (mpctl == NULL ||
12938 	    (mpdata = mpctl->b_cont) == NULL ||
12939 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
12940 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
12941 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
12942 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
12943 		freemsg(mp_conn_ctl);
12944 		freemsg(mp_attr_ctl);
12945 		freemsg(mp6_conn_ctl);
12946 		freemsg(mp6_attr_ctl);
12947 		freemsg(mpctl);
12948 		freemsg(mp2ctl);
12949 		return (NULL);
12950 	}
12951 
12952 	ipst = connp->conn_netstack->netstack_ip;
12953 	tcps = connp->conn_netstack->netstack_tcp;
12954 
12955 	/* build table of connections -- need count in fixed part */
12956 	SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4);   /* vanj */
12957 	SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min);
12958 	SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max);
12959 	SET_MIB(tcps->tcps_mib.tcpMaxConn, -1);
12960 	SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0);
12961 
12962 	ispriv =
12963 	    secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0;
12964 	zoneid = Q_TO_CONN(q)->conn_zoneid;
12965 
12966 	v4_conn_idx = v6_conn_idx = 0;
12967 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
12968 
12969 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
12970 		ipst = tcps->tcps_netstack->netstack_ip;
12971 
12972 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
12973 
12974 		connp = NULL;
12975 
12976 		while ((connp =
12977 		    ipcl_get_next_conn(connfp, connp, IPCL_TCPCONN)) != NULL) {
12978 			tcp_t *tcp;
12979 			boolean_t needattr;
12980 
12981 			if (connp->conn_zoneid != zoneid)
12982 				continue;	/* not in this zone */
12983 
12984 			tcp = connp->conn_tcp;
12985 			UPDATE_MIB(&tcps->tcps_mib,
12986 			    tcpHCInSegs, tcp->tcp_ibsegs);
12987 			tcp->tcp_ibsegs = 0;
12988 			UPDATE_MIB(&tcps->tcps_mib,
12989 			    tcpHCOutSegs, tcp->tcp_obsegs);
12990 			tcp->tcp_obsegs = 0;
12991 
12992 			tce6.tcp6ConnState = tce.tcpConnState =
12993 			    tcp_snmp_state(tcp);
12994 			if (tce.tcpConnState == MIB2_TCP_established ||
12995 			    tce.tcpConnState == MIB2_TCP_closeWait)
12996 				BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab);
12997 
12998 			needattr = B_FALSE;
12999 			bzero(&mlp, sizeof (mlp));
13000 			if (connp->conn_mlp_type != mlptSingle) {
13001 				if (connp->conn_mlp_type == mlptShared ||
13002 				    connp->conn_mlp_type == mlptBoth)
13003 					mlp.tme_flags |= MIB2_TMEF_SHARED;
13004 				if (connp->conn_mlp_type == mlptPrivate ||
13005 				    connp->conn_mlp_type == mlptBoth)
13006 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
13007 				needattr = B_TRUE;
13008 			}
13009 			if (connp->conn_anon_mlp) {
13010 				mlp.tme_flags |= MIB2_TMEF_ANONMLP;
13011 				needattr = B_TRUE;
13012 			}
13013 			switch (connp->conn_mac_mode) {
13014 			case CONN_MAC_DEFAULT:
13015 				break;
13016 			case CONN_MAC_AWARE:
13017 				mlp.tme_flags |= MIB2_TMEF_MACEXEMPT;
13018 				needattr = B_TRUE;
13019 				break;
13020 			case CONN_MAC_IMPLICIT:
13021 				mlp.tme_flags |= MIB2_TMEF_MACIMPLICIT;
13022 				needattr = B_TRUE;
13023 				break;
13024 			}
13025 			if (connp->conn_ixa->ixa_tsl != NULL) {
13026 				ts_label_t *tsl;
13027 
13028 				tsl = connp->conn_ixa->ixa_tsl;
13029 				mlp.tme_flags |= MIB2_TMEF_IS_LABELED;
13030 				mlp.tme_doi = label2doi(tsl);
13031 				mlp.tme_label = *label2bslabel(tsl);
13032 				needattr = B_TRUE;
13033 			}
13034 
13035 			/* Create a message to report on IPv6 entries */
13036 			if (connp->conn_ipversion == IPV6_VERSION) {
13037 			tce6.tcp6ConnLocalAddress = connp->conn_laddr_v6;
13038 			tce6.tcp6ConnRemAddress = connp->conn_faddr_v6;
13039 			tce6.tcp6ConnLocalPort = ntohs(connp->conn_lport);
13040 			tce6.tcp6ConnRemPort = ntohs(connp->conn_fport);
13041 			if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET) {
13042 				tce6.tcp6ConnIfIndex =
13043 				    connp->conn_ixa->ixa_scopeid;
13044 			} else {
13045 				tce6.tcp6ConnIfIndex = connp->conn_bound_if;
13046 			}
13047 			/* Don't want just anybody seeing these... */
13048 			if (ispriv) {
13049 				tce6.tcp6ConnEntryInfo.ce_snxt =
13050 				    tcp->tcp_snxt;
13051 				tce6.tcp6ConnEntryInfo.ce_suna =
13052 				    tcp->tcp_suna;
13053 				tce6.tcp6ConnEntryInfo.ce_rnxt =
13054 				    tcp->tcp_rnxt;
13055 				tce6.tcp6ConnEntryInfo.ce_rack =
13056 				    tcp->tcp_rack;
13057 			} else {
13058 				/*
13059 				 * Netstat, unfortunately, uses this to
13060 				 * get send/receive queue sizes.  How to fix?
13061 				 * Why not compute the difference only?
13062 				 */
13063 				tce6.tcp6ConnEntryInfo.ce_snxt =
13064 				    tcp->tcp_snxt - tcp->tcp_suna;
13065 				tce6.tcp6ConnEntryInfo.ce_suna = 0;
13066 				tce6.tcp6ConnEntryInfo.ce_rnxt =
13067 				    tcp->tcp_rnxt - tcp->tcp_rack;
13068 				tce6.tcp6ConnEntryInfo.ce_rack = 0;
13069 			}
13070 
13071 			tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd;
13072 			tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
13073 			tce6.tcp6ConnEntryInfo.ce_rto =  tcp->tcp_rto;
13074 			tce6.tcp6ConnEntryInfo.ce_mss =  tcp->tcp_mss;
13075 			tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state;
13076 
13077 			tce6.tcp6ConnCreationProcess =
13078 			    (connp->conn_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
13079 			    connp->conn_cpid;
13080 			tce6.tcp6ConnCreationTime = connp->conn_open_time;
13081 
13082 			(void) snmp_append_data2(mp6_conn_ctl->b_cont,
13083 			    &mp6_conn_tail, (char *)&tce6, sizeof (tce6));
13084 
13085 			mlp.tme_connidx = v6_conn_idx++;
13086 			if (needattr)
13087 				(void) snmp_append_data2(mp6_attr_ctl->b_cont,
13088 				    &mp6_attr_tail, (char *)&mlp, sizeof (mlp));
13089 			}
13090 			/*
13091 			 * Create an IPv4 table entry for IPv4 entries and also
13092 			 * for IPv6 entries which are bound to in6addr_any
13093 			 * but don't have IPV6_V6ONLY set.
13094 			 * (i.e. anything an IPv4 peer could connect to)
13095 			 */
13096 			if (connp->conn_ipversion == IPV4_VERSION ||
13097 			    (tcp->tcp_state <= TCPS_LISTEN &&
13098 			    !connp->conn_ipv6_v6only &&
13099 			    IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6))) {
13100 				if (connp->conn_ipversion == IPV6_VERSION) {
13101 					tce.tcpConnRemAddress = INADDR_ANY;
13102 					tce.tcpConnLocalAddress = INADDR_ANY;
13103 				} else {
13104 					tce.tcpConnRemAddress =
13105 					    connp->conn_faddr_v4;
13106 					tce.tcpConnLocalAddress =
13107 					    connp->conn_laddr_v4;
13108 				}
13109 				tce.tcpConnLocalPort = ntohs(connp->conn_lport);
13110 				tce.tcpConnRemPort = ntohs(connp->conn_fport);
13111 				/* Don't want just anybody seeing these... */
13112 				if (ispriv) {
13113 					tce.tcpConnEntryInfo.ce_snxt =
13114 					    tcp->tcp_snxt;
13115 					tce.tcpConnEntryInfo.ce_suna =
13116 					    tcp->tcp_suna;
13117 					tce.tcpConnEntryInfo.ce_rnxt =
13118 					    tcp->tcp_rnxt;
13119 					tce.tcpConnEntryInfo.ce_rack =
13120 					    tcp->tcp_rack;
13121 				} else {
13122 					/*
13123 					 * Netstat, unfortunately, uses this to
13124 					 * get send/receive queue sizes.  How
13125 					 * to fix?
13126 					 * Why not compute the difference only?
13127 					 */
13128 					tce.tcpConnEntryInfo.ce_snxt =
13129 					    tcp->tcp_snxt - tcp->tcp_suna;
13130 					tce.tcpConnEntryInfo.ce_suna = 0;
13131 					tce.tcpConnEntryInfo.ce_rnxt =
13132 					    tcp->tcp_rnxt - tcp->tcp_rack;
13133 					tce.tcpConnEntryInfo.ce_rack = 0;
13134 				}
13135 
13136 				tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd;
13137 				tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
13138 				tce.tcpConnEntryInfo.ce_rto =  tcp->tcp_rto;
13139 				tce.tcpConnEntryInfo.ce_mss =  tcp->tcp_mss;
13140 				tce.tcpConnEntryInfo.ce_state =
13141 				    tcp->tcp_state;
13142 
13143 				tce.tcpConnCreationProcess =
13144 				    (connp->conn_cpid < 0) ?
13145 				    MIB2_UNKNOWN_PROCESS :
13146 				    connp->conn_cpid;
13147 				tce.tcpConnCreationTime = connp->conn_open_time;
13148 
13149 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
13150 				    &mp_conn_tail, (char *)&tce, sizeof (tce));
13151 
13152 				mlp.tme_connidx = v4_conn_idx++;
13153 				if (needattr)
13154 					(void) snmp_append_data2(
13155 					    mp_attr_ctl->b_cont,
13156 					    &mp_attr_tail, (char *)&mlp,
13157 					    sizeof (mlp));
13158 			}
13159 		}
13160 	}
13161 
13162 	/* fixed length structure for IPv4 and IPv6 counters */
13163 	SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t));
13164 	SET_MIB(tcps->tcps_mib.tcp6ConnTableSize,
13165 	    sizeof (mib2_tcp6ConnEntry_t));
13166 	/* synchronize 32- and 64-bit counters */
13167 	SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs);
13168 	SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs);
13169 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
13170 	optp->level = MIB2_TCP;
13171 	optp->name = 0;
13172 	(void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib,
13173 	    sizeof (tcps->tcps_mib));
13174 	optp->len = msgdsize(mpdata);
13175 	qreply(q, mpctl);
13176 
13177 	/* table of connections... */
13178 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
13179 	    sizeof (struct T_optmgmt_ack)];
13180 	optp->level = MIB2_TCP;
13181 	optp->name = MIB2_TCP_CONN;
13182 	optp->len = msgdsize(mp_conn_ctl->b_cont);
13183 	qreply(q, mp_conn_ctl);
13184 
13185 	/* table of MLP attributes... */
13186 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
13187 	    sizeof (struct T_optmgmt_ack)];
13188 	optp->level = MIB2_TCP;
13189 	optp->name = EXPER_XPORT_MLP;
13190 	optp->len = msgdsize(mp_attr_ctl->b_cont);
13191 	if (optp->len == 0)
13192 		freemsg(mp_attr_ctl);
13193 	else
13194 		qreply(q, mp_attr_ctl);
13195 
13196 	/* table of IPv6 connections... */
13197 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
13198 	    sizeof (struct T_optmgmt_ack)];
13199 	optp->level = MIB2_TCP6;
13200 	optp->name = MIB2_TCP6_CONN;
13201 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
13202 	qreply(q, mp6_conn_ctl);
13203 
13204 	/* table of IPv6 MLP attributes... */
13205 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
13206 	    sizeof (struct T_optmgmt_ack)];
13207 	optp->level = MIB2_TCP6;
13208 	optp->name = EXPER_XPORT_MLP;
13209 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
13210 	if (optp->len == 0)
13211 		freemsg(mp6_attr_ctl);
13212 	else
13213 		qreply(q, mp6_attr_ctl);
13214 	return (mp2ctl);
13215 }
13216 
13217 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests  */
13218 /* ARGSUSED */
13219 int
13220 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
13221 {
13222 	mib2_tcpConnEntry_t	*tce = (mib2_tcpConnEntry_t *)ptr;
13223 
13224 	switch (level) {
13225 	case MIB2_TCP:
13226 		switch (name) {
13227 		case 13:
13228 			if (tce->tcpConnState != MIB2_TCP_deleteTCB)
13229 				return (0);
13230 			/* TODO: delete entry defined by tce */
13231 			return (1);
13232 		default:
13233 			return (0);
13234 		}
13235 	default:
13236 		return (1);
13237 	}
13238 }
13239 
13240 /* Translate TCP state to MIB2 TCP state. */
13241 static int
13242 tcp_snmp_state(tcp_t *tcp)
13243 {
13244 	if (tcp == NULL)
13245 		return (0);
13246 
13247 	switch (tcp->tcp_state) {
13248 	case TCPS_CLOSED:
13249 	case TCPS_IDLE:	/* RFC1213 doesn't have analogue for IDLE & BOUND */
13250 	case TCPS_BOUND:
13251 		return (MIB2_TCP_closed);
13252 	case TCPS_LISTEN:
13253 		return (MIB2_TCP_listen);
13254 	case TCPS_SYN_SENT:
13255 		return (MIB2_TCP_synSent);
13256 	case TCPS_SYN_RCVD:
13257 		return (MIB2_TCP_synReceived);
13258 	case TCPS_ESTABLISHED:
13259 		return (MIB2_TCP_established);
13260 	case TCPS_CLOSE_WAIT:
13261 		return (MIB2_TCP_closeWait);
13262 	case TCPS_FIN_WAIT_1:
13263 		return (MIB2_TCP_finWait1);
13264 	case TCPS_CLOSING:
13265 		return (MIB2_TCP_closing);
13266 	case TCPS_LAST_ACK:
13267 		return (MIB2_TCP_lastAck);
13268 	case TCPS_FIN_WAIT_2:
13269 		return (MIB2_TCP_finWait2);
13270 	case TCPS_TIME_WAIT:
13271 		return (MIB2_TCP_timeWait);
13272 	default:
13273 		return (0);
13274 	}
13275 }
13276 
13277 /*
13278  * tcp_timer is the timer service routine.  It handles the retransmission,
13279  * FIN_WAIT_2 flush, and zero window probe timeout events.  It figures out
13280  * from the state of the tcp instance what kind of action needs to be done
13281  * at the time it is called.
13282  */
13283 static void
13284 tcp_timer(void *arg)
13285 {
13286 	mblk_t		*mp;
13287 	clock_t		first_threshold;
13288 	clock_t		second_threshold;
13289 	clock_t		ms;
13290 	uint32_t	mss;
13291 	conn_t		*connp = (conn_t *)arg;
13292 	tcp_t		*tcp = connp->conn_tcp;
13293 	tcp_stack_t	*tcps = tcp->tcp_tcps;
13294 
13295 	tcp->tcp_timer_tid = 0;
13296 
13297 	if (tcp->tcp_fused)
13298 		return;
13299 
13300 	first_threshold =  tcp->tcp_first_timer_threshold;
13301 	second_threshold = tcp->tcp_second_timer_threshold;
13302 	switch (tcp->tcp_state) {
13303 	case TCPS_IDLE:
13304 	case TCPS_BOUND:
13305 	case TCPS_LISTEN:
13306 		return;
13307 	case TCPS_SYN_RCVD: {
13308 		tcp_t	*listener = tcp->tcp_listener;
13309 
13310 		if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) {
13311 			/* it's our first timeout */
13312 			tcp->tcp_syn_rcvd_timeout = 1;
13313 			mutex_enter(&listener->tcp_eager_lock);
13314 			listener->tcp_syn_rcvd_timeout++;
13315 			if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) {
13316 				/*
13317 				 * Make this eager available for drop if we
13318 				 * need to drop one to accomodate a new
13319 				 * incoming SYN request.
13320 				 */
13321 				MAKE_DROPPABLE(listener, tcp);
13322 			}
13323 			if (!listener->tcp_syn_defense &&
13324 			    (listener->tcp_syn_rcvd_timeout >
13325 			    (tcps->tcps_conn_req_max_q0 >> 2)) &&
13326 			    (tcps->tcps_conn_req_max_q0 > 200)) {
13327 				/* We may be under attack. Put on a defense. */
13328 				listener->tcp_syn_defense = B_TRUE;
13329 				cmn_err(CE_WARN, "High TCP connect timeout "
13330 				    "rate! System (port %d) may be under a "
13331 				    "SYN flood attack!",
13332 				    ntohs(listener->tcp_connp->conn_lport));
13333 
13334 				listener->tcp_ip_addr_cache = kmem_zalloc(
13335 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t),
13336 				    KM_NOSLEEP);
13337 			}
13338 			mutex_exit(&listener->tcp_eager_lock);
13339 		} else if (listener != NULL) {
13340 			mutex_enter(&listener->tcp_eager_lock);
13341 			tcp->tcp_syn_rcvd_timeout++;
13342 			if (tcp->tcp_syn_rcvd_timeout > 1 &&
13343 			    !tcp->tcp_closemp_used) {
13344 				/*
13345 				 * This is our second timeout. Put the tcp in
13346 				 * the list of droppable eagers to allow it to
13347 				 * be dropped, if needed. We don't check
13348 				 * whether tcp_dontdrop is set or not to
13349 				 * protect ourselve from a SYN attack where a
13350 				 * remote host can spoof itself as one of the
13351 				 * good IP source and continue to hold
13352 				 * resources too long.
13353 				 */
13354 				MAKE_DROPPABLE(listener, tcp);
13355 			}
13356 			mutex_exit(&listener->tcp_eager_lock);
13357 		}
13358 	}
13359 		/* FALLTHRU */
13360 	case TCPS_SYN_SENT:
13361 		first_threshold =  tcp->tcp_first_ctimer_threshold;
13362 		second_threshold = tcp->tcp_second_ctimer_threshold;
13363 		break;
13364 	case TCPS_ESTABLISHED:
13365 	case TCPS_FIN_WAIT_1:
13366 	case TCPS_CLOSING:
13367 	case TCPS_CLOSE_WAIT:
13368 	case TCPS_LAST_ACK:
13369 		/* If we have data to rexmit */
13370 		if (tcp->tcp_suna != tcp->tcp_snxt) {
13371 			clock_t	time_to_wait;
13372 
13373 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans);
13374 			if (!tcp->tcp_xmit_head)
13375 				break;
13376 			time_to_wait = ddi_get_lbolt() -
13377 			    (clock_t)tcp->tcp_xmit_head->b_prev;
13378 			time_to_wait = tcp->tcp_rto -
13379 			    TICK_TO_MSEC(time_to_wait);
13380 			/*
13381 			 * If the timer fires too early, 1 clock tick earlier,
13382 			 * restart the timer.
13383 			 */
13384 			if (time_to_wait > msec_per_tick) {
13385 				TCP_STAT(tcps, tcp_timer_fire_early);
13386 				TCP_TIMER_RESTART(tcp, time_to_wait);
13387 				return;
13388 			}
13389 			/*
13390 			 * When we probe zero windows, we force the swnd open.
13391 			 * If our peer acks with a closed window swnd will be
13392 			 * set to zero by tcp_rput(). As long as we are
13393 			 * receiving acks tcp_rput will
13394 			 * reset 'tcp_ms_we_have_waited' so as not to trip the
13395 			 * first and second interval actions.  NOTE: the timer
13396 			 * interval is allowed to continue its exponential
13397 			 * backoff.
13398 			 */
13399 			if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) {
13400 				if (connp->conn_debug) {
13401 					(void) strlog(TCP_MOD_ID, 0, 1,
13402 					    SL_TRACE, "tcp_timer: zero win");
13403 				}
13404 			} else {
13405 				/*
13406 				 * After retransmission, we need to do
13407 				 * slow start.  Set the ssthresh to one
13408 				 * half of current effective window and
13409 				 * cwnd to one MSS.  Also reset
13410 				 * tcp_cwnd_cnt.
13411 				 *
13412 				 * Note that if tcp_ssthresh is reduced because
13413 				 * of ECN, do not reduce it again unless it is
13414 				 * already one window of data away (tcp_cwr
13415 				 * should then be cleared) or this is a
13416 				 * timeout for a retransmitted segment.
13417 				 */
13418 				uint32_t npkt;
13419 
13420 				if (!tcp->tcp_cwr || tcp->tcp_rexmit) {
13421 					npkt = ((tcp->tcp_timer_backoff ?
13422 					    tcp->tcp_cwnd_ssthresh :
13423 					    tcp->tcp_snxt -
13424 					    tcp->tcp_suna) >> 1) / tcp->tcp_mss;
13425 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
13426 					    tcp->tcp_mss;
13427 				}
13428 				tcp->tcp_cwnd = tcp->tcp_mss;
13429 				tcp->tcp_cwnd_cnt = 0;
13430 				if (tcp->tcp_ecn_ok) {
13431 					tcp->tcp_cwr = B_TRUE;
13432 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
13433 					tcp->tcp_ecn_cwr_sent = B_FALSE;
13434 				}
13435 			}
13436 			break;
13437 		}
13438 		/*
13439 		 * We have something to send yet we cannot send.  The
13440 		 * reason can be:
13441 		 *
13442 		 * 1. Zero send window: we need to do zero window probe.
13443 		 * 2. Zero cwnd: because of ECN, we need to "clock out
13444 		 * segments.
13445 		 * 3. SWS avoidance: receiver may have shrunk window,
13446 		 * reset our knowledge.
13447 		 *
13448 		 * Note that condition 2 can happen with either 1 or
13449 		 * 3.  But 1 and 3 are exclusive.
13450 		 */
13451 		if (tcp->tcp_unsent != 0) {
13452 			/*
13453 			 * Should not hold the zero-copy messages for too long.
13454 			 */
13455 			if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean)
13456 				tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp,
13457 				    tcp->tcp_xmit_head, B_TRUE);
13458 
13459 			if (tcp->tcp_cwnd == 0) {
13460 				/*
13461 				 * Set tcp_cwnd to 1 MSS so that a
13462 				 * new segment can be sent out.  We
13463 				 * are "clocking out" new data when
13464 				 * the network is really congested.
13465 				 */
13466 				ASSERT(tcp->tcp_ecn_ok);
13467 				tcp->tcp_cwnd = tcp->tcp_mss;
13468 			}
13469 			if (tcp->tcp_swnd == 0) {
13470 				/* Extend window for zero window probe */
13471 				tcp->tcp_swnd++;
13472 				tcp->tcp_zero_win_probe = B_TRUE;
13473 				BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe);
13474 			} else {
13475 				/*
13476 				 * Handle timeout from sender SWS avoidance.
13477 				 * Reset our knowledge of the max send window
13478 				 * since the receiver might have reduced its
13479 				 * receive buffer.  Avoid setting tcp_max_swnd
13480 				 * to one since that will essentially disable
13481 				 * the SWS checks.
13482 				 *
13483 				 * Note that since we don't have a SWS
13484 				 * state variable, if the timeout is set
13485 				 * for ECN but not for SWS, this
13486 				 * code will also be executed.  This is
13487 				 * fine as tcp_max_swnd is updated
13488 				 * constantly and it will not affect
13489 				 * anything.
13490 				 */
13491 				tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2);
13492 			}
13493 			tcp_wput_data(tcp, NULL, B_FALSE);
13494 			return;
13495 		}
13496 		/* Is there a FIN that needs to be to re retransmitted? */
13497 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
13498 		    !tcp->tcp_fin_acked)
13499 			break;
13500 		/* Nothing to do, return without restarting timer. */
13501 		TCP_STAT(tcps, tcp_timer_fire_miss);
13502 		return;
13503 	case TCPS_FIN_WAIT_2:
13504 		/*
13505 		 * User closed the TCP endpoint and peer ACK'ed our FIN.
13506 		 * We waited some time for for peer's FIN, but it hasn't
13507 		 * arrived.  We flush the connection now to avoid
13508 		 * case where the peer has rebooted.
13509 		 */
13510 		if (TCP_IS_DETACHED(tcp)) {
13511 			(void) tcp_clean_death(tcp, 0, 23);
13512 		} else {
13513 			TCP_TIMER_RESTART(tcp,
13514 			    tcps->tcps_fin_wait_2_flush_interval);
13515 		}
13516 		return;
13517 	case TCPS_TIME_WAIT:
13518 		(void) tcp_clean_death(tcp, 0, 24);
13519 		return;
13520 	default:
13521 		if (connp->conn_debug) {
13522 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
13523 			    "tcp_timer: strange state (%d) %s",
13524 			    tcp->tcp_state, tcp_display(tcp, NULL,
13525 			    DISP_PORT_ONLY));
13526 		}
13527 		return;
13528 	}
13529 
13530 	if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) {
13531 		/*
13532 		 * Should not hold the zero-copy messages for too long.
13533 		 */
13534 		if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean)
13535 			tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp,
13536 			    tcp->tcp_xmit_head, B_TRUE);
13537 
13538 		/*
13539 		 * For zero window probe, we need to send indefinitely,
13540 		 * unless we have not heard from the other side for some
13541 		 * time...
13542 		 */
13543 		if ((tcp->tcp_zero_win_probe == 0) ||
13544 		    (TICK_TO_MSEC(ddi_get_lbolt() - tcp->tcp_last_recv_time) >
13545 		    second_threshold)) {
13546 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop);
13547 			/*
13548 			 * If TCP is in SYN_RCVD state, send back a
13549 			 * RST|ACK as BSD does.  Note that tcp_zero_win_probe
13550 			 * should be zero in TCPS_SYN_RCVD state.
13551 			 */
13552 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
13553 				tcp_xmit_ctl("tcp_timer: RST sent on timeout "
13554 				    "in SYN_RCVD",
13555 				    tcp, tcp->tcp_snxt,
13556 				    tcp->tcp_rnxt, TH_RST | TH_ACK);
13557 			}
13558 			(void) tcp_clean_death(tcp,
13559 			    tcp->tcp_client_errno ?
13560 			    tcp->tcp_client_errno : ETIMEDOUT, 25);
13561 			return;
13562 		} else {
13563 			/*
13564 			 * Set tcp_ms_we_have_waited to second_threshold
13565 			 * so that in next timeout, we will do the above
13566 			 * check (ddi_get_lbolt() - tcp_last_recv_time).
13567 			 * This is also to avoid overflow.
13568 			 *
13569 			 * We don't need to decrement tcp_timer_backoff
13570 			 * to avoid overflow because it will be decremented
13571 			 * later if new timeout value is greater than
13572 			 * tcp_rexmit_interval_max.  In the case when
13573 			 * tcp_rexmit_interval_max is greater than
13574 			 * second_threshold, it means that we will wait
13575 			 * longer than second_threshold to send the next
13576 			 * window probe.
13577 			 */
13578 			tcp->tcp_ms_we_have_waited = second_threshold;
13579 		}
13580 	} else if (ms > first_threshold) {
13581 		/*
13582 		 * Should not hold the zero-copy messages for too long.
13583 		 */
13584 		if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean)
13585 			tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp,
13586 			    tcp->tcp_xmit_head, B_TRUE);
13587 
13588 		/*
13589 		 * We have been retransmitting for too long...  The RTT
13590 		 * we calculated is probably incorrect.  Reinitialize it.
13591 		 * Need to compensate for 0 tcp_rtt_sa.  Reset
13592 		 * tcp_rtt_update so that we won't accidentally cache a
13593 		 * bad value.  But only do this if this is not a zero
13594 		 * window probe.
13595 		 */
13596 		if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) {
13597 			tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) +
13598 			    (tcp->tcp_rtt_sa >> 5);
13599 			tcp->tcp_rtt_sa = 0;
13600 			tcp_ip_notify(tcp);
13601 			tcp->tcp_rtt_update = 0;
13602 		}
13603 	}
13604 	tcp->tcp_timer_backoff++;
13605 	if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
13606 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) <
13607 	    tcps->tcps_rexmit_interval_min) {
13608 		/*
13609 		 * This means the original RTO is tcp_rexmit_interval_min.
13610 		 * So we will use tcp_rexmit_interval_min as the RTO value
13611 		 * and do the backoff.
13612 		 */
13613 		ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff;
13614 	} else {
13615 		ms <<= tcp->tcp_timer_backoff;
13616 	}
13617 	if (ms > tcps->tcps_rexmit_interval_max) {
13618 		ms = tcps->tcps_rexmit_interval_max;
13619 		/*
13620 		 * ms is at max, decrement tcp_timer_backoff to avoid
13621 		 * overflow.
13622 		 */
13623 		tcp->tcp_timer_backoff--;
13624 	}
13625 	tcp->tcp_ms_we_have_waited += ms;
13626 	if (tcp->tcp_zero_win_probe == 0) {
13627 		tcp->tcp_rto = ms;
13628 	}
13629 	TCP_TIMER_RESTART(tcp, ms);
13630 	/*
13631 	 * This is after a timeout and tcp_rto is backed off.  Set
13632 	 * tcp_set_timer to 1 so that next time RTO is updated, we will
13633 	 * restart the timer with a correct value.
13634 	 */
13635 	tcp->tcp_set_timer = 1;
13636 	mss = tcp->tcp_snxt - tcp->tcp_suna;
13637 	if (mss > tcp->tcp_mss)
13638 		mss = tcp->tcp_mss;
13639 	if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0)
13640 		mss = tcp->tcp_swnd;
13641 
13642 	if ((mp = tcp->tcp_xmit_head) != NULL)
13643 		mp->b_prev = (mblk_t *)ddi_get_lbolt();
13644 	mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss,
13645 	    B_TRUE);
13646 
13647 	/*
13648 	 * When slow start after retransmission begins, start with
13649 	 * this seq no.  tcp_rexmit_max marks the end of special slow
13650 	 * start phase.  tcp_snd_burst controls how many segments
13651 	 * can be sent because of an ack.
13652 	 */
13653 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
13654 	tcp->tcp_snd_burst = TCP_CWND_SS;
13655 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
13656 	    (tcp->tcp_unsent == 0)) {
13657 		tcp->tcp_rexmit_max = tcp->tcp_fss;
13658 	} else {
13659 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
13660 	}
13661 	tcp->tcp_rexmit = B_TRUE;
13662 	tcp->tcp_dupack_cnt = 0;
13663 
13664 	/*
13665 	 * Remove all rexmit SACK blk to start from fresh.
13666 	 */
13667 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL)
13668 		TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp);
13669 	if (mp == NULL) {
13670 		return;
13671 	}
13672 
13673 	tcp->tcp_csuna = tcp->tcp_snxt;
13674 	BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
13675 	UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss);
13676 	tcp_send_data(tcp, mp);
13677 
13678 }
13679 
13680 static int
13681 tcp_do_unbind(conn_t *connp)
13682 {
13683 	tcp_t *tcp = connp->conn_tcp;
13684 
13685 	switch (tcp->tcp_state) {
13686 	case TCPS_BOUND:
13687 	case TCPS_LISTEN:
13688 		break;
13689 	default:
13690 		return (-TOUTSTATE);
13691 	}
13692 
13693 	/*
13694 	 * Need to clean up all the eagers since after the unbind, segments
13695 	 * will no longer be delivered to this listener stream.
13696 	 */
13697 	mutex_enter(&tcp->tcp_eager_lock);
13698 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
13699 		tcp_eager_cleanup(tcp, 0);
13700 	}
13701 	mutex_exit(&tcp->tcp_eager_lock);
13702 
13703 	connp->conn_laddr_v6 = ipv6_all_zeros;
13704 	connp->conn_saddr_v6 = ipv6_all_zeros;
13705 	tcp_bind_hash_remove(tcp);
13706 	tcp->tcp_state = TCPS_IDLE;
13707 
13708 	ip_unbind(connp);
13709 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
13710 
13711 	return (0);
13712 }
13713 
13714 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */
13715 static void
13716 tcp_tpi_unbind(tcp_t *tcp, mblk_t *mp)
13717 {
13718 	conn_t *connp = tcp->tcp_connp;
13719 	int error;
13720 
13721 	error = tcp_do_unbind(connp);
13722 	if (error > 0) {
13723 		tcp_err_ack(tcp, mp, TSYSERR, error);
13724 	} else if (error < 0) {
13725 		tcp_err_ack(tcp, mp, -error, 0);
13726 	} else {
13727 		/* Send M_FLUSH according to TPI */
13728 		(void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW);
13729 
13730 		mp = mi_tpi_ok_ack_alloc(mp);
13731 		if (mp != NULL)
13732 			putnext(connp->conn_rq, mp);
13733 	}
13734 }
13735 
13736 /*
13737  * Don't let port fall into the privileged range.
13738  * Since the extra privileged ports can be arbitrary we also
13739  * ensure that we exclude those from consideration.
13740  * tcp_g_epriv_ports is not sorted thus we loop over it until
13741  * there are no changes.
13742  *
13743  * Note: No locks are held when inspecting tcp_g_*epriv_ports
13744  * but instead the code relies on:
13745  * - the fact that the address of the array and its size never changes
13746  * - the atomic assignment of the elements of the array
13747  *
13748  * Returns 0 if there are no more ports available.
13749  *
13750  * TS note: skip multilevel ports.
13751  */
13752 static in_port_t
13753 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random)
13754 {
13755 	int i;
13756 	boolean_t restart = B_FALSE;
13757 	tcp_stack_t *tcps = tcp->tcp_tcps;
13758 
13759 	if (random && tcp_random_anon_port != 0) {
13760 		(void) random_get_pseudo_bytes((uint8_t *)&port,
13761 		    sizeof (in_port_t));
13762 		/*
13763 		 * Unless changed by a sys admin, the smallest anon port
13764 		 * is 32768 and the largest anon port is 65535.  It is
13765 		 * very likely (50%) for the random port to be smaller
13766 		 * than the smallest anon port.  When that happens,
13767 		 * add port % (anon port range) to the smallest anon
13768 		 * port to get the random port.  It should fall into the
13769 		 * valid anon port range.
13770 		 */
13771 		if (port < tcps->tcps_smallest_anon_port) {
13772 			port = tcps->tcps_smallest_anon_port +
13773 			    port % (tcps->tcps_largest_anon_port -
13774 			    tcps->tcps_smallest_anon_port);
13775 		}
13776 	}
13777 
13778 retry:
13779 	if (port < tcps->tcps_smallest_anon_port)
13780 		port = (in_port_t)tcps->tcps_smallest_anon_port;
13781 
13782 	if (port > tcps->tcps_largest_anon_port) {
13783 		if (restart)
13784 			return (0);
13785 		restart = B_TRUE;
13786 		port = (in_port_t)tcps->tcps_smallest_anon_port;
13787 	}
13788 
13789 	if (port < tcps->tcps_smallest_nonpriv_port)
13790 		port = (in_port_t)tcps->tcps_smallest_nonpriv_port;
13791 
13792 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
13793 		if (port == tcps->tcps_g_epriv_ports[i]) {
13794 			port++;
13795 			/*
13796 			 * Make sure whether the port is in the
13797 			 * valid range.
13798 			 */
13799 			goto retry;
13800 		}
13801 	}
13802 	if (is_system_labeled() &&
13803 	    (i = tsol_next_port(crgetzone(tcp->tcp_connp->conn_cred), port,
13804 	    IPPROTO_TCP, B_TRUE)) != 0) {
13805 		port = i;
13806 		goto retry;
13807 	}
13808 	return (port);
13809 }
13810 
13811 /*
13812  * Return the next anonymous port in the privileged port range for
13813  * bind checking.  It starts at IPPORT_RESERVED - 1 and goes
13814  * downwards.  This is the same behavior as documented in the userland
13815  * library call rresvport(3N).
13816  *
13817  * TS note: skip multilevel ports.
13818  */
13819 static in_port_t
13820 tcp_get_next_priv_port(const tcp_t *tcp)
13821 {
13822 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
13823 	in_port_t nextport;
13824 	boolean_t restart = B_FALSE;
13825 	tcp_stack_t *tcps = tcp->tcp_tcps;
13826 retry:
13827 	if (next_priv_port < tcps->tcps_min_anonpriv_port ||
13828 	    next_priv_port >= IPPORT_RESERVED) {
13829 		next_priv_port = IPPORT_RESERVED - 1;
13830 		if (restart)
13831 			return (0);
13832 		restart = B_TRUE;
13833 	}
13834 	if (is_system_labeled() &&
13835 	    (nextport = tsol_next_port(crgetzone(tcp->tcp_connp->conn_cred),
13836 	    next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) {
13837 		next_priv_port = nextport;
13838 		goto retry;
13839 	}
13840 	return (next_priv_port--);
13841 }
13842 
13843 /* The write side r/w procedure. */
13844 
13845 #if CCS_STATS
13846 struct {
13847 	struct {
13848 		int64_t count, bytes;
13849 	} tot, hit;
13850 } wrw_stats;
13851 #endif
13852 
13853 /*
13854  * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO,
13855  * messages.
13856  */
13857 /* ARGSUSED */
13858 static void
13859 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
13860 {
13861 	conn_t	*connp = (conn_t *)arg;
13862 	tcp_t	*tcp = connp->conn_tcp;
13863 
13864 	ASSERT(DB_TYPE(mp) != M_IOCTL);
13865 	/*
13866 	 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close.
13867 	 * Once the close starts, streamhead and sockfs will not let any data
13868 	 * packets come down (close ensures that there are no threads using the
13869 	 * queue and no new threads will come down) but since qprocsoff()
13870 	 * hasn't happened yet, a M_FLUSH or some non data message might
13871 	 * get reflected back (in response to our own FLUSHRW) and get
13872 	 * processed after tcp_close() is done. The conn would still be valid
13873 	 * because a ref would have added but we need to check the state
13874 	 * before actually processing the packet.
13875 	 */
13876 	if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) {
13877 		freemsg(mp);
13878 		return;
13879 	}
13880 
13881 	switch (DB_TYPE(mp)) {
13882 	case M_IOCDATA:
13883 		tcp_wput_iocdata(tcp, mp);
13884 		break;
13885 	case M_FLUSH:
13886 		tcp_wput_flush(tcp, mp);
13887 		break;
13888 	default:
13889 		ip_wput_nondata(connp->conn_wq, mp);
13890 		break;
13891 	}
13892 }
13893 
13894 /*
13895  * The TCP fast path write put procedure.
13896  * NOTE: the logic of the fast path is duplicated from tcp_wput_data()
13897  */
13898 /* ARGSUSED */
13899 void
13900 tcp_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
13901 {
13902 	int		len;
13903 	int		hdrlen;
13904 	int		plen;
13905 	mblk_t		*mp1;
13906 	uchar_t		*rptr;
13907 	uint32_t	snxt;
13908 	tcpha_t		*tcpha;
13909 	struct datab	*db;
13910 	uint32_t	suna;
13911 	uint32_t	mss;
13912 	ipaddr_t	*dst;
13913 	ipaddr_t	*src;
13914 	uint32_t	sum;
13915 	int		usable;
13916 	conn_t		*connp = (conn_t *)arg;
13917 	tcp_t		*tcp = connp->conn_tcp;
13918 	uint32_t	msize;
13919 	tcp_stack_t	*tcps = tcp->tcp_tcps;
13920 	ip_xmit_attr_t	*ixa;
13921 
13922 	/*
13923 	 * Try and ASSERT the minimum possible references on the
13924 	 * conn early enough. Since we are executing on write side,
13925 	 * the connection is obviously not detached and that means
13926 	 * there is a ref each for TCP and IP. Since we are behind
13927 	 * the squeue, the minimum references needed are 3. If the
13928 	 * conn is in classifier hash list, there should be an
13929 	 * extra ref for that (we check both the possibilities).
13930 	 */
13931 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
13932 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
13933 
13934 	ASSERT(DB_TYPE(mp) == M_DATA);
13935 	msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
13936 
13937 	mutex_enter(&tcp->tcp_non_sq_lock);
13938 	tcp->tcp_squeue_bytes -= msize;
13939 	mutex_exit(&tcp->tcp_non_sq_lock);
13940 
13941 	/* Bypass tcp protocol for fused tcp loopback */
13942 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
13943 		return;
13944 
13945 	mss = tcp->tcp_mss;
13946 	/*
13947 	 * If ZEROCOPY has turned off, try not to send any zero-copy message
13948 	 * down. Do backoff, now.
13949 	 */
13950 	if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_snd_zcopy_on)
13951 		mp = tcp_zcopy_backoff(tcp, mp, B_FALSE);
13952 
13953 
13954 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
13955 	len = (int)(mp->b_wptr - mp->b_rptr);
13956 
13957 	/*
13958 	 * Criteria for fast path:
13959 	 *
13960 	 *   1. no unsent data
13961 	 *   2. single mblk in request
13962 	 *   3. connection established
13963 	 *   4. data in mblk
13964 	 *   5. len <= mss
13965 	 *   6. no tcp_valid bits
13966 	 */
13967 	if ((tcp->tcp_unsent != 0) ||
13968 	    (tcp->tcp_cork) ||
13969 	    (mp->b_cont != NULL) ||
13970 	    (tcp->tcp_state != TCPS_ESTABLISHED) ||
13971 	    (len == 0) ||
13972 	    (len > mss) ||
13973 	    (tcp->tcp_valid_bits != 0)) {
13974 		tcp_wput_data(tcp, mp, B_FALSE);
13975 		return;
13976 	}
13977 
13978 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
13979 	ASSERT(tcp->tcp_fin_sent == 0);
13980 
13981 	/* queue new packet onto retransmission queue */
13982 	if (tcp->tcp_xmit_head == NULL) {
13983 		tcp->tcp_xmit_head = mp;
13984 	} else {
13985 		tcp->tcp_xmit_last->b_cont = mp;
13986 	}
13987 	tcp->tcp_xmit_last = mp;
13988 	tcp->tcp_xmit_tail = mp;
13989 
13990 	/* find out how much we can send */
13991 	/* BEGIN CSTYLED */
13992 	/*
13993 	 *    un-acked	   usable
13994 	 *  |--------------|-----------------|
13995 	 *  tcp_suna       tcp_snxt	  tcp_suna+tcp_swnd
13996 	 */
13997 	/* END CSTYLED */
13998 
13999 	/* start sending from tcp_snxt */
14000 	snxt = tcp->tcp_snxt;
14001 
14002 	/*
14003 	 * Check to see if this connection has been idled for some
14004 	 * time and no ACK is expected.  If it is, we need to slow
14005 	 * start again to get back the connection's "self-clock" as
14006 	 * described in VJ's paper.
14007 	 *
14008 	 * Reinitialize tcp_cwnd after idle.
14009 	 */
14010 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
14011 	    (TICK_TO_MSEC(ddi_get_lbolt() - tcp->tcp_last_recv_time) >=
14012 	    tcp->tcp_rto)) {
14013 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
14014 	}
14015 
14016 	usable = tcp->tcp_swnd;		/* tcp window size */
14017 	if (usable > tcp->tcp_cwnd)
14018 		usable = tcp->tcp_cwnd;	/* congestion window smaller */
14019 	usable -= snxt;		/* subtract stuff already sent */
14020 	suna = tcp->tcp_suna;
14021 	usable += suna;
14022 	/* usable can be < 0 if the congestion window is smaller */
14023 	if (len > usable) {
14024 		/* Can't send complete M_DATA in one shot */
14025 		goto slow;
14026 	}
14027 
14028 	mutex_enter(&tcp->tcp_non_sq_lock);
14029 	if (tcp->tcp_flow_stopped &&
14030 	    TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) {
14031 		tcp_clrqfull(tcp);
14032 	}
14033 	mutex_exit(&tcp->tcp_non_sq_lock);
14034 
14035 	/*
14036 	 * determine if anything to send (Nagle).
14037 	 *
14038 	 *   1. len < tcp_mss (i.e. small)
14039 	 *   2. unacknowledged data present
14040 	 *   3. len < nagle limit
14041 	 *   4. last packet sent < nagle limit (previous packet sent)
14042 	 */
14043 	if ((len < mss) && (snxt != suna) &&
14044 	    (len < (int)tcp->tcp_naglim) &&
14045 	    (tcp->tcp_last_sent_len < tcp->tcp_naglim)) {
14046 		/*
14047 		 * This was the first unsent packet and normally
14048 		 * mss < xmit_hiwater so there is no need to worry
14049 		 * about flow control. The next packet will go
14050 		 * through the flow control check in tcp_wput_data().
14051 		 */
14052 		/* leftover work from above */
14053 		tcp->tcp_unsent = len;
14054 		tcp->tcp_xmit_tail_unsent = len;
14055 
14056 		return;
14057 	}
14058 
14059 	/* len <= tcp->tcp_mss && len == unsent so no silly window */
14060 
14061 	if (snxt == suna) {
14062 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14063 	}
14064 
14065 	/* we have always sent something */
14066 	tcp->tcp_rack_cnt = 0;
14067 
14068 	tcp->tcp_snxt = snxt + len;
14069 	tcp->tcp_rack = tcp->tcp_rnxt;
14070 
14071 	if ((mp1 = dupb(mp)) == 0)
14072 		goto no_memory;
14073 	mp->b_prev = (mblk_t *)(uintptr_t)ddi_get_lbolt();
14074 	mp->b_next = (mblk_t *)(uintptr_t)snxt;
14075 
14076 	/* adjust tcp header information */
14077 	tcpha = tcp->tcp_tcpha;
14078 	tcpha->tha_flags = (TH_ACK|TH_PUSH);
14079 
14080 	sum = len + connp->conn_ht_ulp_len + connp->conn_sum;
14081 	sum = (sum >> 16) + (sum & 0xFFFF);
14082 	tcpha->tha_sum = htons(sum);
14083 
14084 	tcpha->tha_seq = htonl(snxt);
14085 
14086 	BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
14087 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
14088 	BUMP_LOCAL(tcp->tcp_obsegs);
14089 
14090 	/* Update the latest receive window size in TCP header. */
14091 	tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
14092 
14093 	tcp->tcp_last_sent_len = (ushort_t)len;
14094 
14095 	plen = len + connp->conn_ht_iphc_len;
14096 
14097 	ixa = connp->conn_ixa;
14098 	ixa->ixa_pktlen = plen;
14099 
14100 	if (ixa->ixa_flags & IXAF_IS_IPV4) {
14101 		tcp->tcp_ipha->ipha_length = htons(plen);
14102 	} else {
14103 		tcp->tcp_ip6h->ip6_plen = htons(plen - IPV6_HDR_LEN);
14104 	}
14105 
14106 	/* see if we need to allocate a mblk for the headers */
14107 	hdrlen = connp->conn_ht_iphc_len;
14108 	rptr = mp1->b_rptr - hdrlen;
14109 	db = mp1->b_datap;
14110 	if ((db->db_ref != 2) || rptr < db->db_base ||
14111 	    (!OK_32PTR(rptr))) {
14112 		/* NOTE: we assume allocb returns an OK_32PTR */
14113 		mp = allocb(hdrlen + tcps->tcps_wroff_xtra, BPRI_MED);
14114 		if (!mp) {
14115 			freemsg(mp1);
14116 			goto no_memory;
14117 		}
14118 		mp->b_cont = mp1;
14119 		mp1 = mp;
14120 		/* Leave room for Link Level header */
14121 		rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra];
14122 		mp1->b_wptr = &rptr[hdrlen];
14123 	}
14124 	mp1->b_rptr = rptr;
14125 
14126 	/* Fill in the timestamp option. */
14127 	if (tcp->tcp_snd_ts_ok) {
14128 		uint32_t llbolt = (uint32_t)LBOLT_FASTPATH;
14129 
14130 		U32_TO_BE32(llbolt,
14131 		    (char *)tcpha + TCP_MIN_HEADER_LENGTH+4);
14132 		U32_TO_BE32(tcp->tcp_ts_recent,
14133 		    (char *)tcpha + TCP_MIN_HEADER_LENGTH+8);
14134 	} else {
14135 		ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH);
14136 	}
14137 
14138 	/* copy header into outgoing packet */
14139 	dst = (ipaddr_t *)rptr;
14140 	src = (ipaddr_t *)connp->conn_ht_iphc;
14141 	dst[0] = src[0];
14142 	dst[1] = src[1];
14143 	dst[2] = src[2];
14144 	dst[3] = src[3];
14145 	dst[4] = src[4];
14146 	dst[5] = src[5];
14147 	dst[6] = src[6];
14148 	dst[7] = src[7];
14149 	dst[8] = src[8];
14150 	dst[9] = src[9];
14151 	if (hdrlen -= 40) {
14152 		hdrlen >>= 2;
14153 		dst += 10;
14154 		src += 10;
14155 		do {
14156 			*dst++ = *src++;
14157 		} while (--hdrlen);
14158 	}
14159 
14160 	/*
14161 	 * Set the ECN info in the TCP header.  Note that this
14162 	 * is not the template header.
14163 	 */
14164 	if (tcp->tcp_ecn_ok) {
14165 		SET_ECT(tcp, rptr);
14166 
14167 		tcpha = (tcpha_t *)(rptr + ixa->ixa_ip_hdr_length);
14168 		if (tcp->tcp_ecn_echo_on)
14169 			tcpha->tha_flags |= TH_ECE;
14170 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
14171 			tcpha->tha_flags |= TH_CWR;
14172 			tcp->tcp_ecn_cwr_sent = B_TRUE;
14173 		}
14174 	}
14175 
14176 	if (tcp->tcp_ip_forward_progress) {
14177 		tcp->tcp_ip_forward_progress = B_FALSE;
14178 		connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF;
14179 	} else {
14180 		connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF;
14181 	}
14182 	tcp_send_data(tcp, mp1);
14183 	return;
14184 
14185 	/*
14186 	 * If we ran out of memory, we pretend to have sent the packet
14187 	 * and that it was lost on the wire.
14188 	 */
14189 no_memory:
14190 	return;
14191 
14192 slow:
14193 	/* leftover work from above */
14194 	tcp->tcp_unsent = len;
14195 	tcp->tcp_xmit_tail_unsent = len;
14196 	tcp_wput_data(tcp, NULL, B_FALSE);
14197 }
14198 
14199 /*
14200  * This runs at the tail end of accept processing on the squeue of the
14201  * new connection.
14202  */
14203 /* ARGSUSED */
14204 void
14205 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
14206 {
14207 	conn_t			*connp = (conn_t *)arg;
14208 	tcp_t			*tcp = connp->conn_tcp;
14209 	queue_t			*q = connp->conn_rq;
14210 	tcp_stack_t		*tcps = tcp->tcp_tcps;
14211 	/* socket options */
14212 	struct sock_proto_props	sopp;
14213 
14214 	/* We should just receive a single mblk that fits a T_discon_ind */
14215 	ASSERT(mp->b_cont == NULL);
14216 
14217 	/*
14218 	 * Drop the eager's ref on the listener, that was placed when
14219 	 * this eager began life in tcp_input_listener.
14220 	 */
14221 	CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp);
14222 	if (IPCL_IS_NONSTR(connp)) {
14223 		/* Safe to free conn_ind message */
14224 		freemsg(tcp->tcp_conn.tcp_eager_conn_ind);
14225 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
14226 	}
14227 
14228 	tcp->tcp_detached = B_FALSE;
14229 
14230 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) {
14231 		/*
14232 		 * Someone blewoff the eager before we could finish
14233 		 * the accept.
14234 		 *
14235 		 * The only reason eager exists it because we put in
14236 		 * a ref on it when conn ind went up. We need to send
14237 		 * a disconnect indication up while the last reference
14238 		 * on the eager will be dropped by the squeue when we
14239 		 * return.
14240 		 */
14241 		ASSERT(tcp->tcp_listener == NULL);
14242 		if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) {
14243 			if (IPCL_IS_NONSTR(connp)) {
14244 				ASSERT(tcp->tcp_issocket);
14245 				(*connp->conn_upcalls->su_disconnected)(
14246 				    connp->conn_upper_handle, tcp->tcp_connid,
14247 				    ECONNREFUSED);
14248 				freemsg(mp);
14249 			} else {
14250 				struct	T_discon_ind	*tdi;
14251 
14252 				(void) putnextctl1(q, M_FLUSH, FLUSHRW);
14253 				/*
14254 				 * Let us reuse the incoming mblk to avoid
14255 				 * memory allocation failure problems. We know
14256 				 * that the size of the incoming mblk i.e.
14257 				 * stroptions is greater than sizeof
14258 				 * T_discon_ind.
14259 				 */
14260 				ASSERT(DB_REF(mp) == 1);
14261 				ASSERT(MBLKSIZE(mp) >=
14262 				    sizeof (struct T_discon_ind));
14263 
14264 				DB_TYPE(mp) = M_PROTO;
14265 				((union T_primitives *)mp->b_rptr)->type =
14266 				    T_DISCON_IND;
14267 				tdi = (struct T_discon_ind *)mp->b_rptr;
14268 				if (tcp->tcp_issocket) {
14269 					tdi->DISCON_reason = ECONNREFUSED;
14270 					tdi->SEQ_number = 0;
14271 				} else {
14272 					tdi->DISCON_reason = ENOPROTOOPT;
14273 					tdi->SEQ_number =
14274 					    tcp->tcp_conn_req_seqnum;
14275 				}
14276 				mp->b_wptr = mp->b_rptr +
14277 				    sizeof (struct T_discon_ind);
14278 				putnext(q, mp);
14279 			}
14280 		}
14281 		tcp->tcp_hard_binding = B_FALSE;
14282 		return;
14283 	}
14284 
14285 	/*
14286 	 * Set max window size (conn_rcvbuf) of the acceptor.
14287 	 */
14288 	if (tcp->tcp_rcv_list == NULL) {
14289 		/*
14290 		 * Recv queue is empty, tcp_rwnd should not have changed.
14291 		 * That means it should be equal to the listener's tcp_rwnd.
14292 		 */
14293 		connp->conn_rcvbuf = tcp->tcp_rwnd;
14294 	} else {
14295 #ifdef DEBUG
14296 		mblk_t *tmp;
14297 		mblk_t	*mp1;
14298 		uint_t	cnt = 0;
14299 
14300 		mp1 = tcp->tcp_rcv_list;
14301 		while ((tmp = mp1) != NULL) {
14302 			mp1 = tmp->b_next;
14303 			cnt += msgdsize(tmp);
14304 		}
14305 		ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt);
14306 #endif
14307 		/* There is some data, add them back to get the max. */
14308 		connp->conn_rcvbuf = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
14309 	}
14310 	/*
14311 	 * This is the first time we run on the correct
14312 	 * queue after tcp_accept. So fix all the q parameters
14313 	 * here.
14314 	 */
14315 	sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF;
14316 	sopp.sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
14317 
14318 	sopp.sopp_rxhiwat = tcp->tcp_fused ?
14319 	    tcp_fuse_set_rcv_hiwat(tcp, connp->conn_rcvbuf) :
14320 	    connp->conn_rcvbuf;
14321 
14322 	/*
14323 	 * Determine what write offset value to use depending on SACK and
14324 	 * whether the endpoint is fused or not.
14325 	 */
14326 	if (tcp->tcp_fused) {
14327 		ASSERT(tcp->tcp_loopback);
14328 		ASSERT(tcp->tcp_loopback_peer != NULL);
14329 		/*
14330 		 * For fused tcp loopback, set the stream head's write
14331 		 * offset value to zero since we won't be needing any room
14332 		 * for TCP/IP headers.  This would also improve performance
14333 		 * since it would reduce the amount of work done by kmem.
14334 		 * Non-fused tcp loopback case is handled separately below.
14335 		 */
14336 		sopp.sopp_wroff = 0;
14337 		/*
14338 		 * Update the peer's transmit parameters according to
14339 		 * our recently calculated high water mark value.
14340 		 */
14341 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
14342 	} else if (tcp->tcp_snd_sack_ok) {
14343 		sopp.sopp_wroff = connp->conn_ht_iphc_allocated +
14344 		    (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra);
14345 	} else {
14346 		sopp.sopp_wroff = connp->conn_ht_iphc_len +
14347 		    (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra);
14348 	}
14349 
14350 	/*
14351 	 * If this is endpoint is handling SSL, then reserve extra
14352 	 * offset and space at the end.
14353 	 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets,
14354 	 * overriding the previous setting. The extra cost of signing and
14355 	 * encrypting multiple MSS-size records (12 of them with Ethernet),
14356 	 * instead of a single contiguous one by the stream head
14357 	 * largely outweighs the statistical reduction of ACKs, when
14358 	 * applicable. The peer will also save on decryption and verification
14359 	 * costs.
14360 	 */
14361 	if (tcp->tcp_kssl_ctx != NULL) {
14362 		sopp.sopp_wroff += SSL3_WROFFSET;
14363 
14364 		sopp.sopp_flags |= SOCKOPT_TAIL;
14365 		sopp.sopp_tail = SSL3_MAX_TAIL_LEN;
14366 
14367 		sopp.sopp_flags |= SOCKOPT_ZCOPY;
14368 		sopp.sopp_zcopyflag = ZCVMUNSAFE;
14369 
14370 		sopp.sopp_maxblk = SSL3_MAX_RECORD_LEN;
14371 	}
14372 
14373 	/* Send the options up */
14374 	if (IPCL_IS_NONSTR(connp)) {
14375 		if (sopp.sopp_flags & SOCKOPT_TAIL) {
14376 			ASSERT(tcp->tcp_kssl_ctx != NULL);
14377 			ASSERT(sopp.sopp_flags & SOCKOPT_ZCOPY);
14378 		}
14379 		if (tcp->tcp_loopback) {
14380 			sopp.sopp_flags |= SOCKOPT_LOOPBACK;
14381 			sopp.sopp_loopback = B_TRUE;
14382 		}
14383 		(*connp->conn_upcalls->su_set_proto_props)
14384 		    (connp->conn_upper_handle, &sopp);
14385 		freemsg(mp);
14386 	} else {
14387 		/*
14388 		 * Let us reuse the incoming mblk to avoid
14389 		 * memory allocation failure problems. We know
14390 		 * that the size of the incoming mblk is at least
14391 		 * stroptions
14392 		 */
14393 		struct stroptions *stropt;
14394 
14395 		ASSERT(DB_REF(mp) == 1);
14396 		ASSERT(MBLKSIZE(mp) >= sizeof (struct stroptions));
14397 
14398 		DB_TYPE(mp) = M_SETOPTS;
14399 		stropt = (struct stroptions *)mp->b_rptr;
14400 		mp->b_wptr = mp->b_rptr + sizeof (struct stroptions);
14401 		stropt = (struct stroptions *)mp->b_rptr;
14402 		stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK;
14403 		stropt->so_hiwat = sopp.sopp_rxhiwat;
14404 		stropt->so_wroff = sopp.sopp_wroff;
14405 		stropt->so_maxblk = sopp.sopp_maxblk;
14406 
14407 		if (sopp.sopp_flags & SOCKOPT_TAIL) {
14408 			ASSERT(tcp->tcp_kssl_ctx != NULL);
14409 
14410 			stropt->so_flags |= SO_TAIL | SO_COPYOPT;
14411 			stropt->so_tail = sopp.sopp_tail;
14412 			stropt->so_copyopt = sopp.sopp_zcopyflag;
14413 		}
14414 
14415 		/* Send the options up */
14416 		putnext(q, mp);
14417 	}
14418 
14419 	/*
14420 	 * Pass up any data and/or a fin that has been received.
14421 	 *
14422 	 * Adjust receive window in case it had decreased
14423 	 * (because there is data <=> tcp_rcv_list != NULL)
14424 	 * while the connection was detached. Note that
14425 	 * in case the eager was flow-controlled, w/o this
14426 	 * code, the rwnd may never open up again!
14427 	 */
14428 	if (tcp->tcp_rcv_list != NULL) {
14429 		if (IPCL_IS_NONSTR(connp)) {
14430 			mblk_t *mp;
14431 			int space_left;
14432 			int error;
14433 			boolean_t push = B_TRUE;
14434 
14435 			if (!tcp->tcp_fused && (*connp->conn_upcalls->su_recv)
14436 			    (connp->conn_upper_handle, NULL, 0, 0, &error,
14437 			    &push) >= 0) {
14438 				tcp->tcp_rwnd = connp->conn_rcvbuf;
14439 				if (tcp->tcp_state >= TCPS_ESTABLISHED &&
14440 				    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
14441 					tcp_xmit_ctl(NULL,
14442 					    tcp, (tcp->tcp_swnd == 0) ?
14443 					    tcp->tcp_suna : tcp->tcp_snxt,
14444 					    tcp->tcp_rnxt, TH_ACK);
14445 				}
14446 			}
14447 			while ((mp = tcp->tcp_rcv_list) != NULL) {
14448 				push = B_TRUE;
14449 				tcp->tcp_rcv_list = mp->b_next;
14450 				mp->b_next = NULL;
14451 				space_left = (*connp->conn_upcalls->su_recv)
14452 				    (connp->conn_upper_handle, mp, msgdsize(mp),
14453 				    0, &error, &push);
14454 				if (space_left < 0) {
14455 					/*
14456 					 * We should never be in middle of a
14457 					 * fallback, the squeue guarantees that.
14458 					 */
14459 					ASSERT(error != EOPNOTSUPP);
14460 				}
14461 			}
14462 			tcp->tcp_rcv_last_head = NULL;
14463 			tcp->tcp_rcv_last_tail = NULL;
14464 			tcp->tcp_rcv_cnt = 0;
14465 		} else {
14466 			/* We drain directly in case of fused tcp loopback */
14467 
14468 			if (!tcp->tcp_fused && canputnext(q)) {
14469 				tcp->tcp_rwnd = connp->conn_rcvbuf;
14470 				if (tcp->tcp_state >= TCPS_ESTABLISHED &&
14471 				    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
14472 					tcp_xmit_ctl(NULL,
14473 					    tcp, (tcp->tcp_swnd == 0) ?
14474 					    tcp->tcp_suna : tcp->tcp_snxt,
14475 					    tcp->tcp_rnxt, TH_ACK);
14476 				}
14477 			}
14478 
14479 			(void) tcp_rcv_drain(tcp);
14480 		}
14481 
14482 		/*
14483 		 * For fused tcp loopback, back-enable peer endpoint
14484 		 * if it's currently flow-controlled.
14485 		 */
14486 		if (tcp->tcp_fused) {
14487 			tcp_t *peer_tcp = tcp->tcp_loopback_peer;
14488 
14489 			ASSERT(peer_tcp != NULL);
14490 			ASSERT(peer_tcp->tcp_fused);
14491 
14492 			mutex_enter(&peer_tcp->tcp_non_sq_lock);
14493 			if (peer_tcp->tcp_flow_stopped) {
14494 				tcp_clrqfull(peer_tcp);
14495 				TCP_STAT(tcps, tcp_fusion_backenabled);
14496 			}
14497 			mutex_exit(&peer_tcp->tcp_non_sq_lock);
14498 		}
14499 	}
14500 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
14501 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
14502 		tcp->tcp_ordrel_done = B_TRUE;
14503 		if (IPCL_IS_NONSTR(connp)) {
14504 			ASSERT(tcp->tcp_ordrel_mp == NULL);
14505 			(*connp->conn_upcalls->su_opctl)(
14506 			    connp->conn_upper_handle,
14507 			    SOCK_OPCTL_SHUT_RECV, 0);
14508 		} else {
14509 			mp = tcp->tcp_ordrel_mp;
14510 			tcp->tcp_ordrel_mp = NULL;
14511 			putnext(q, mp);
14512 		}
14513 	}
14514 	tcp->tcp_hard_binding = B_FALSE;
14515 
14516 	if (connp->conn_keepalive) {
14517 		tcp->tcp_ka_last_intrvl = 0;
14518 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
14519 		    MSEC_TO_TICK(tcp->tcp_ka_interval));
14520 	}
14521 
14522 	/*
14523 	 * At this point, eager is fully established and will
14524 	 * have the following references -
14525 	 *
14526 	 * 2 references for connection to exist (1 for TCP and 1 for IP).
14527 	 * 1 reference for the squeue which will be dropped by the squeue as
14528 	 *	soon as this function returns.
14529 	 * There will be 1 additonal reference for being in classifier
14530 	 *	hash list provided something bad hasn't happened.
14531 	 */
14532 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
14533 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
14534 }
14535 
14536 /*
14537  * The function called through squeue to get behind listener's perimeter to
14538  * send a deferred conn_ind.
14539  */
14540 /* ARGSUSED */
14541 void
14542 tcp_send_pending(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
14543 {
14544 	conn_t	*lconnp = (conn_t *)arg;
14545 	tcp_t *listener = lconnp->conn_tcp;
14546 	struct T_conn_ind *conn_ind;
14547 	tcp_t *tcp;
14548 
14549 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
14550 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
14551 	    conn_ind->OPT_length);
14552 
14553 	if (listener->tcp_state != TCPS_LISTEN) {
14554 		/*
14555 		 * If listener has closed, it would have caused a
14556 		 * a cleanup/blowoff to happen for the eager, so
14557 		 * we don't need to do anything more.
14558 		 */
14559 		freemsg(mp);
14560 		return;
14561 	}
14562 
14563 	tcp_ulp_newconn(lconnp, tcp->tcp_connp, mp);
14564 }
14565 
14566 /*
14567  * Common to TPI and sockfs accept code.
14568  */
14569 /* ARGSUSED2 */
14570 static int
14571 tcp_accept_common(conn_t *lconnp, conn_t *econnp, cred_t *cr)
14572 {
14573 	tcp_t *listener, *eager;
14574 	mblk_t *discon_mp;
14575 
14576 	listener = lconnp->conn_tcp;
14577 	ASSERT(listener->tcp_state == TCPS_LISTEN);
14578 	eager = econnp->conn_tcp;
14579 	ASSERT(eager->tcp_listener != NULL);
14580 
14581 	/*
14582 	 * Pre allocate the discon_ind mblk also. tcp_accept_finish will
14583 	 * use it if something failed.
14584 	 */
14585 	discon_mp = allocb(MAX(sizeof (struct T_discon_ind),
14586 	    sizeof (struct stroptions)), BPRI_HI);
14587 
14588 	if (discon_mp == NULL) {
14589 		return (-TPROTO);
14590 	}
14591 	eager->tcp_issocket = B_TRUE;
14592 
14593 	econnp->conn_zoneid = listener->tcp_connp->conn_zoneid;
14594 	econnp->conn_allzones = listener->tcp_connp->conn_allzones;
14595 	ASSERT(econnp->conn_netstack ==
14596 	    listener->tcp_connp->conn_netstack);
14597 	ASSERT(eager->tcp_tcps == listener->tcp_tcps);
14598 
14599 	/* Put the ref for IP */
14600 	CONN_INC_REF(econnp);
14601 
14602 	/*
14603 	 * We should have minimum of 3 references on the conn
14604 	 * at this point. One each for TCP and IP and one for
14605 	 * the T_conn_ind that was sent up when the 3-way handshake
14606 	 * completed. In the normal case we would also have another
14607 	 * reference (making a total of 4) for the conn being in the
14608 	 * classifier hash list. However the eager could have received
14609 	 * an RST subsequently and tcp_closei_local could have removed
14610 	 * the eager from the classifier hash list, hence we can't
14611 	 * assert that reference.
14612 	 */
14613 	ASSERT(econnp->conn_ref >= 3);
14614 
14615 	mutex_enter(&listener->tcp_eager_lock);
14616 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
14617 
14618 		tcp_t *tail;
14619 		tcp_t *tcp;
14620 		mblk_t *mp1;
14621 
14622 		tcp = listener->tcp_eager_prev_q0;
14623 		/*
14624 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
14625 		 * deferred T_conn_ind queue. We need to get to the head
14626 		 * of the queue in order to send up T_conn_ind the same
14627 		 * order as how the 3WHS is completed.
14628 		 */
14629 		while (tcp != listener) {
14630 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 &&
14631 			    !tcp->tcp_kssl_pending)
14632 				break;
14633 			else
14634 				tcp = tcp->tcp_eager_prev_q0;
14635 		}
14636 		/* None of the pending eagers can be sent up now */
14637 		if (tcp == listener)
14638 			goto no_more_eagers;
14639 
14640 		mp1 = tcp->tcp_conn.tcp_eager_conn_ind;
14641 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
14642 		/* Move from q0 to q */
14643 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
14644 		listener->tcp_conn_req_cnt_q0--;
14645 		listener->tcp_conn_req_cnt_q++;
14646 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
14647 		    tcp->tcp_eager_prev_q0;
14648 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
14649 		    tcp->tcp_eager_next_q0;
14650 		tcp->tcp_eager_prev_q0 = NULL;
14651 		tcp->tcp_eager_next_q0 = NULL;
14652 		tcp->tcp_conn_def_q0 = B_FALSE;
14653 
14654 		/* Make sure the tcp isn't in the list of droppables */
14655 		ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
14656 		    tcp->tcp_eager_prev_drop_q0 == NULL);
14657 
14658 		/*
14659 		 * Insert at end of the queue because sockfs sends
14660 		 * down T_CONN_RES in chronological order. Leaving
14661 		 * the older conn indications at front of the queue
14662 		 * helps reducing search time.
14663 		 */
14664 		tail = listener->tcp_eager_last_q;
14665 		if (tail != NULL) {
14666 			tail->tcp_eager_next_q = tcp;
14667 		} else {
14668 			listener->tcp_eager_next_q = tcp;
14669 		}
14670 		listener->tcp_eager_last_q = tcp;
14671 		tcp->tcp_eager_next_q = NULL;
14672 
14673 		/* Need to get inside the listener perimeter */
14674 		CONN_INC_REF(listener->tcp_connp);
14675 		SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp1,
14676 		    tcp_send_pending, listener->tcp_connp, NULL, SQ_FILL,
14677 		    SQTAG_TCP_SEND_PENDING);
14678 	}
14679 no_more_eagers:
14680 	tcp_eager_unlink(eager);
14681 	mutex_exit(&listener->tcp_eager_lock);
14682 
14683 	/*
14684 	 * At this point, the eager is detached from the listener
14685 	 * but we still have an extra refs on eager (apart from the
14686 	 * usual tcp references). The ref was placed in tcp_rput_data
14687 	 * before sending the conn_ind in tcp_send_conn_ind.
14688 	 * The ref will be dropped in tcp_accept_finish().
14689 	 */
14690 	SQUEUE_ENTER_ONE(econnp->conn_sqp, discon_mp, tcp_accept_finish,
14691 	    econnp, NULL, SQ_NODRAIN, SQTAG_TCP_ACCEPT_FINISH_Q0);
14692 	return (0);
14693 }
14694 
14695 int
14696 tcp_accept(sock_lower_handle_t lproto_handle,
14697     sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle,
14698     cred_t *cr)
14699 {
14700 	conn_t *lconnp, *econnp;
14701 	tcp_t *listener, *eager;
14702 
14703 	lconnp = (conn_t *)lproto_handle;
14704 	listener = lconnp->conn_tcp;
14705 	ASSERT(listener->tcp_state == TCPS_LISTEN);
14706 	econnp = (conn_t *)eproto_handle;
14707 	eager = econnp->conn_tcp;
14708 	ASSERT(eager->tcp_listener != NULL);
14709 
14710 	/*
14711 	 * It is OK to manipulate these fields outside the eager's squeue
14712 	 * because they will not start being used until tcp_accept_finish
14713 	 * has been called.
14714 	 */
14715 	ASSERT(lconnp->conn_upper_handle != NULL);
14716 	ASSERT(econnp->conn_upper_handle == NULL);
14717 	econnp->conn_upper_handle = sock_handle;
14718 	econnp->conn_upcalls = lconnp->conn_upcalls;
14719 	ASSERT(IPCL_IS_NONSTR(econnp));
14720 	return (tcp_accept_common(lconnp, econnp, cr));
14721 }
14722 
14723 
14724 /*
14725  * This is the STREAMS entry point for T_CONN_RES coming down on
14726  * Acceptor STREAM when  sockfs listener does accept processing.
14727  * Read the block comment on top of tcp_input_listener().
14728  */
14729 void
14730 tcp_tpi_accept(queue_t *q, mblk_t *mp)
14731 {
14732 	queue_t *rq = RD(q);
14733 	struct T_conn_res *conn_res;
14734 	tcp_t *eager;
14735 	tcp_t *listener;
14736 	struct T_ok_ack *ok;
14737 	t_scalar_t PRIM_type;
14738 	conn_t *econnp;
14739 	cred_t *cr;
14740 
14741 	ASSERT(DB_TYPE(mp) == M_PROTO);
14742 
14743 	/*
14744 	 * All Solaris components should pass a db_credp
14745 	 * for this TPI message, hence we ASSERT.
14746 	 * But in case there is some other M_PROTO that looks
14747 	 * like a TPI message sent by some other kernel
14748 	 * component, we check and return an error.
14749 	 */
14750 	cr = msg_getcred(mp, NULL);
14751 	ASSERT(cr != NULL);
14752 	if (cr == NULL) {
14753 		mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL);
14754 		if (mp != NULL)
14755 			putnext(rq, mp);
14756 		return;
14757 	}
14758 	conn_res = (struct T_conn_res *)mp->b_rptr;
14759 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
14760 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) {
14761 		mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
14762 		if (mp != NULL)
14763 			putnext(rq, mp);
14764 		return;
14765 	}
14766 	switch (conn_res->PRIM_type) {
14767 	case O_T_CONN_RES:
14768 	case T_CONN_RES:
14769 		/*
14770 		 * We pass up an err ack if allocb fails. This will
14771 		 * cause sockfs to issue a T_DISCON_REQ which will cause
14772 		 * tcp_eager_blowoff to be called. sockfs will then call
14773 		 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream.
14774 		 * we need to do the allocb up here because we have to
14775 		 * make sure rq->q_qinfo->qi_qclose still points to the
14776 		 * correct function (tcp_tpi_close_accept) in case allocb
14777 		 * fails.
14778 		 */
14779 		bcopy(mp->b_rptr + conn_res->OPT_offset,
14780 		    &eager, conn_res->OPT_length);
14781 		PRIM_type = conn_res->PRIM_type;
14782 		mp->b_datap->db_type = M_PCPROTO;
14783 		mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack);
14784 		ok = (struct T_ok_ack *)mp->b_rptr;
14785 		ok->PRIM_type = T_OK_ACK;
14786 		ok->CORRECT_prim = PRIM_type;
14787 		econnp = eager->tcp_connp;
14788 		econnp->conn_dev = (dev_t)RD(q)->q_ptr;
14789 		econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr);
14790 		econnp->conn_rq = rq;
14791 		econnp->conn_wq = q;
14792 		rq->q_ptr = econnp;
14793 		rq->q_qinfo = &tcp_rinitv4;	/* No open - same as rinitv6 */
14794 		q->q_ptr = econnp;
14795 		q->q_qinfo = &tcp_winit;
14796 		listener = eager->tcp_listener;
14797 
14798 		if (tcp_accept_common(listener->tcp_connp,
14799 		    econnp, cr) < 0) {
14800 			mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
14801 			if (mp != NULL)
14802 				putnext(rq, mp);
14803 			return;
14804 		}
14805 
14806 		/*
14807 		 * Send the new local address also up to sockfs. There
14808 		 * should already be enough space in the mp that came
14809 		 * down from soaccept().
14810 		 */
14811 		if (econnp->conn_family == AF_INET) {
14812 			sin_t *sin;
14813 
14814 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
14815 			    (sizeof (struct T_ok_ack) + sizeof (sin_t)));
14816 			sin = (sin_t *)mp->b_wptr;
14817 			mp->b_wptr += sizeof (sin_t);
14818 			sin->sin_family = AF_INET;
14819 			sin->sin_port = econnp->conn_lport;
14820 			sin->sin_addr.s_addr = econnp->conn_laddr_v4;
14821 		} else {
14822 			sin6_t *sin6;
14823 
14824 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
14825 			    sizeof (struct T_ok_ack) + sizeof (sin6_t));
14826 			sin6 = (sin6_t *)mp->b_wptr;
14827 			mp->b_wptr += sizeof (sin6_t);
14828 			sin6->sin6_family = AF_INET6;
14829 			sin6->sin6_port = econnp->conn_lport;
14830 			sin6->sin6_addr = econnp->conn_laddr_v6;
14831 			if (econnp->conn_ipversion == IPV4_VERSION) {
14832 				sin6->sin6_flowinfo = 0;
14833 			} else {
14834 				ASSERT(eager->tcp_ip6h != NULL);
14835 				sin6->sin6_flowinfo =
14836 				    eager->tcp_ip6h->ip6_vcf &
14837 				    ~IPV6_VERS_AND_FLOW_MASK;
14838 			}
14839 			if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6) &&
14840 			    (econnp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)) {
14841 				sin6->sin6_scope_id =
14842 				    econnp->conn_ixa->ixa_scopeid;
14843 			} else {
14844 				sin6->sin6_scope_id = 0;
14845 			}
14846 			sin6->__sin6_src_id = 0;
14847 		}
14848 
14849 		putnext(rq, mp);
14850 		return;
14851 	default:
14852 		mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0);
14853 		if (mp != NULL)
14854 			putnext(rq, mp);
14855 		return;
14856 	}
14857 }
14858 
14859 /*
14860  * Handle special out-of-band ioctl requests (see PSARC/2008/265).
14861  */
14862 static void
14863 tcp_wput_cmdblk(queue_t *q, mblk_t *mp)
14864 {
14865 	void	*data;
14866 	mblk_t	*datamp = mp->b_cont;
14867 	conn_t	*connp = Q_TO_CONN(q);
14868 	tcp_t	*tcp = connp->conn_tcp;
14869 	cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr;
14870 
14871 	if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) {
14872 		cmdp->cb_error = EPROTO;
14873 		qreply(q, mp);
14874 		return;
14875 	}
14876 
14877 	data = datamp->b_rptr;
14878 
14879 	switch (cmdp->cb_cmd) {
14880 	case TI_GETPEERNAME:
14881 		if (tcp->tcp_state < TCPS_SYN_RCVD)
14882 			cmdp->cb_error = ENOTCONN;
14883 		else
14884 			cmdp->cb_error = conn_getpeername(connp, data,
14885 			    &cmdp->cb_len);
14886 		break;
14887 	case TI_GETMYNAME:
14888 		cmdp->cb_error = conn_getsockname(connp, data, &cmdp->cb_len);
14889 		break;
14890 	default:
14891 		cmdp->cb_error = EINVAL;
14892 		break;
14893 	}
14894 
14895 	qreply(q, mp);
14896 }
14897 
14898 void
14899 tcp_wput(queue_t *q, mblk_t *mp)
14900 {
14901 	conn_t	*connp = Q_TO_CONN(q);
14902 	tcp_t	*tcp;
14903 	void (*output_proc)();
14904 	t_scalar_t type;
14905 	uchar_t *rptr;
14906 	struct iocblk	*iocp;
14907 	size_t size;
14908 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
14909 
14910 	ASSERT(connp->conn_ref >= 2);
14911 
14912 	switch (DB_TYPE(mp)) {
14913 	case M_DATA:
14914 		tcp = connp->conn_tcp;
14915 		ASSERT(tcp != NULL);
14916 
14917 		size = msgdsize(mp);
14918 
14919 		mutex_enter(&tcp->tcp_non_sq_lock);
14920 		tcp->tcp_squeue_bytes += size;
14921 		if (TCP_UNSENT_BYTES(tcp) > connp->conn_sndbuf) {
14922 			tcp_setqfull(tcp);
14923 		}
14924 		mutex_exit(&tcp->tcp_non_sq_lock);
14925 
14926 		CONN_INC_REF(connp);
14927 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, connp,
14928 		    NULL, tcp_squeue_flag, SQTAG_TCP_OUTPUT);
14929 		return;
14930 
14931 	case M_CMD:
14932 		tcp_wput_cmdblk(q, mp);
14933 		return;
14934 
14935 	case M_PROTO:
14936 	case M_PCPROTO:
14937 		/*
14938 		 * if it is a snmp message, don't get behind the squeue
14939 		 */
14940 		tcp = connp->conn_tcp;
14941 		rptr = mp->b_rptr;
14942 		if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
14943 			type = ((union T_primitives *)rptr)->type;
14944 		} else {
14945 			if (connp->conn_debug) {
14946 				(void) strlog(TCP_MOD_ID, 0, 1,
14947 				    SL_ERROR|SL_TRACE,
14948 				    "tcp_wput_proto, dropping one...");
14949 			}
14950 			freemsg(mp);
14951 			return;
14952 		}
14953 		if (type == T_SVR4_OPTMGMT_REQ) {
14954 			/*
14955 			 * All Solaris components should pass a db_credp
14956 			 * for this TPI message, hence we ASSERT.
14957 			 * But in case there is some other M_PROTO that looks
14958 			 * like a TPI message sent by some other kernel
14959 			 * component, we check and return an error.
14960 			 */
14961 			cred_t	*cr = msg_getcred(mp, NULL);
14962 
14963 			ASSERT(cr != NULL);
14964 			if (cr == NULL) {
14965 				tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
14966 				return;
14967 			}
14968 			if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get,
14969 			    cr)) {
14970 				/*
14971 				 * This was a SNMP request
14972 				 */
14973 				return;
14974 			} else {
14975 				output_proc = tcp_wput_proto;
14976 			}
14977 		} else {
14978 			output_proc = tcp_wput_proto;
14979 		}
14980 		break;
14981 	case M_IOCTL:
14982 		/*
14983 		 * Most ioctls can be processed right away without going via
14984 		 * squeues - process them right here. Those that do require
14985 		 * squeue (currently _SIOCSOCKFALLBACK)
14986 		 * are processed by tcp_wput_ioctl().
14987 		 */
14988 		iocp = (struct iocblk *)mp->b_rptr;
14989 		tcp = connp->conn_tcp;
14990 
14991 		switch (iocp->ioc_cmd) {
14992 		case TCP_IOC_ABORT_CONN:
14993 			tcp_ioctl_abort_conn(q, mp);
14994 			return;
14995 		case TI_GETPEERNAME:
14996 		case TI_GETMYNAME:
14997 			mi_copyin(q, mp, NULL,
14998 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
14999 			return;
15000 		case ND_SET:
15001 			/* nd_getset does the necessary checks */
15002 		case ND_GET:
15003 			if (nd_getset(q, tcps->tcps_g_nd, mp)) {
15004 				qreply(q, mp);
15005 				return;
15006 			}
15007 			ip_wput_nondata(q, mp);
15008 			return;
15009 
15010 		default:
15011 			output_proc = tcp_wput_ioctl;
15012 			break;
15013 		}
15014 		break;
15015 	default:
15016 		output_proc = tcp_wput_nondata;
15017 		break;
15018 	}
15019 
15020 	CONN_INC_REF(connp);
15021 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, output_proc, connp,
15022 	    NULL, tcp_squeue_flag, SQTAG_TCP_WPUT_OTHER);
15023 }
15024 
15025 /*
15026  * Initial STREAMS write side put() procedure for sockets. It tries to
15027  * handle the T_CAPABILITY_REQ which sockfs sends down while setting
15028  * up the socket without using the squeue. Non T_CAPABILITY_REQ messages
15029  * are handled by tcp_wput() as usual.
15030  *
15031  * All further messages will also be handled by tcp_wput() because we cannot
15032  * be sure that the above short cut is safe later.
15033  */
15034 static void
15035 tcp_wput_sock(queue_t *wq, mblk_t *mp)
15036 {
15037 	conn_t			*connp = Q_TO_CONN(wq);
15038 	tcp_t			*tcp = connp->conn_tcp;
15039 	struct T_capability_req	*car = (struct T_capability_req *)mp->b_rptr;
15040 
15041 	ASSERT(wq->q_qinfo == &tcp_sock_winit);
15042 	wq->q_qinfo = &tcp_winit;
15043 
15044 	ASSERT(IPCL_IS_TCP(connp));
15045 	ASSERT(TCP_IS_SOCKET(tcp));
15046 
15047 	if (DB_TYPE(mp) == M_PCPROTO &&
15048 	    MBLKL(mp) == sizeof (struct T_capability_req) &&
15049 	    car->PRIM_type == T_CAPABILITY_REQ) {
15050 		tcp_capability_req(tcp, mp);
15051 		return;
15052 	}
15053 
15054 	tcp_wput(wq, mp);
15055 }
15056 
15057 /* ARGSUSED */
15058 static void
15059 tcp_wput_fallback(queue_t *wq, mblk_t *mp)
15060 {
15061 #ifdef DEBUG
15062 	cmn_err(CE_CONT, "tcp_wput_fallback: Message during fallback \n");
15063 #endif
15064 	freemsg(mp);
15065 }
15066 
15067 /*
15068  * Check the usability of ZEROCOPY. It's instead checking the flag set by IP.
15069  */
15070 static boolean_t
15071 tcp_zcopy_check(tcp_t *tcp)
15072 {
15073 	conn_t		*connp = tcp->tcp_connp;
15074 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
15075 	boolean_t	zc_enabled = B_FALSE;
15076 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15077 
15078 	if (do_tcpzcopy == 2)
15079 		zc_enabled = B_TRUE;
15080 	else if ((do_tcpzcopy == 1) && (ixa->ixa_flags & IXAF_ZCOPY_CAPAB))
15081 		zc_enabled = B_TRUE;
15082 
15083 	tcp->tcp_snd_zcopy_on = zc_enabled;
15084 	if (!TCP_IS_DETACHED(tcp)) {
15085 		if (zc_enabled) {
15086 			ixa->ixa_flags |= IXAF_VERIFY_ZCOPY;
15087 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
15088 			    ZCVMSAFE);
15089 			TCP_STAT(tcps, tcp_zcopy_on);
15090 		} else {
15091 			ixa->ixa_flags &= ~IXAF_VERIFY_ZCOPY;
15092 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
15093 			    ZCVMUNSAFE);
15094 			TCP_STAT(tcps, tcp_zcopy_off);
15095 		}
15096 	}
15097 	return (zc_enabled);
15098 }
15099 
15100 /*
15101  * Backoff from a zero-copy message by copying data to a new allocated
15102  * message and freeing the original desballoca'ed segmapped message.
15103  *
15104  * This function is called by following two callers:
15105  * 1. tcp_timer: fix_xmitlist is set to B_TRUE, because it's safe to free
15106  *    the origial desballoca'ed message and notify sockfs. This is in re-
15107  *    transmit state.
15108  * 2. tcp_output: fix_xmitlist is set to B_FALSE. Flag STRUIO_ZCNOTIFY need
15109  *    to be copied to new message.
15110  */
15111 static mblk_t *
15112 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, boolean_t fix_xmitlist)
15113 {
15114 	mblk_t		*nbp;
15115 	mblk_t		*head = NULL;
15116 	mblk_t		*tail = NULL;
15117 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15118 
15119 	ASSERT(bp != NULL);
15120 	while (bp != NULL) {
15121 		if (IS_VMLOANED_MBLK(bp)) {
15122 			TCP_STAT(tcps, tcp_zcopy_backoff);
15123 			if ((nbp = copyb(bp)) == NULL) {
15124 				tcp->tcp_xmit_zc_clean = B_FALSE;
15125 				if (tail != NULL)
15126 					tail->b_cont = bp;
15127 				return ((head == NULL) ? bp : head);
15128 			}
15129 
15130 			if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
15131 				if (fix_xmitlist)
15132 					tcp_zcopy_notify(tcp);
15133 				else
15134 					nbp->b_datap->db_struioflag |=
15135 					    STRUIO_ZCNOTIFY;
15136 			}
15137 			nbp->b_cont = bp->b_cont;
15138 
15139 			/*
15140 			 * Copy saved information and adjust tcp_xmit_tail
15141 			 * if needed.
15142 			 */
15143 			if (fix_xmitlist) {
15144 				nbp->b_prev = bp->b_prev;
15145 				nbp->b_next = bp->b_next;
15146 
15147 				if (tcp->tcp_xmit_tail == bp)
15148 					tcp->tcp_xmit_tail = nbp;
15149 			}
15150 
15151 			/* Free the original message. */
15152 			bp->b_prev = NULL;
15153 			bp->b_next = NULL;
15154 			freeb(bp);
15155 
15156 			bp = nbp;
15157 		}
15158 
15159 		if (head == NULL) {
15160 			head = bp;
15161 		}
15162 		if (tail == NULL) {
15163 			tail = bp;
15164 		} else {
15165 			tail->b_cont = bp;
15166 			tail = bp;
15167 		}
15168 
15169 		/* Move forward. */
15170 		bp = bp->b_cont;
15171 	}
15172 
15173 	if (fix_xmitlist) {
15174 		tcp->tcp_xmit_last = tail;
15175 		tcp->tcp_xmit_zc_clean = B_TRUE;
15176 	}
15177 
15178 	return (head);
15179 }
15180 
15181 static void
15182 tcp_zcopy_notify(tcp_t *tcp)
15183 {
15184 	struct stdata	*stp;
15185 	conn_t		*connp;
15186 
15187 	if (tcp->tcp_detached)
15188 		return;
15189 	connp = tcp->tcp_connp;
15190 	if (IPCL_IS_NONSTR(connp)) {
15191 		(*connp->conn_upcalls->su_zcopy_notify)
15192 		    (connp->conn_upper_handle);
15193 		return;
15194 	}
15195 	stp = STREAM(connp->conn_rq);
15196 	mutex_enter(&stp->sd_lock);
15197 	stp->sd_flag |= STZCNOTIFY;
15198 	cv_broadcast(&stp->sd_zcopy_wait);
15199 	mutex_exit(&stp->sd_lock);
15200 }
15201 
15202 /*
15203  * Update the TCP connection according to change of LSO capability.
15204  */
15205 static void
15206 tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa)
15207 {
15208 	/*
15209 	 * We check against IPv4 header length to preserve the old behavior
15210 	 * of only enabling LSO when there are no IP options.
15211 	 * But this restriction might not be necessary at all. Before removing
15212 	 * it, need to verify how LSO is handled for source routing case, with
15213 	 * which IP does software checksum.
15214 	 *
15215 	 * For IPv6, whenever any extension header is needed, LSO is supressed.
15216 	 */
15217 	if (ixa->ixa_ip_hdr_length != ((ixa->ixa_flags & IXAF_IS_IPV4) ?
15218 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN))
15219 		return;
15220 
15221 	/*
15222 	 * Either the LSO capability newly became usable, or it has changed.
15223 	 */
15224 	if (ixa->ixa_flags & IXAF_LSO_CAPAB) {
15225 		ill_lso_capab_t	*lsoc = &ixa->ixa_lso_capab;
15226 
15227 		ASSERT(lsoc->ill_lso_max > 0);
15228 		tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, lsoc->ill_lso_max);
15229 
15230 		DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso,
15231 		    boolean_t, B_TRUE, uint32_t, tcp->tcp_lso_max);
15232 
15233 		/*
15234 		 * If LSO to be enabled, notify the STREAM header with larger
15235 		 * data block.
15236 		 */
15237 		if (!tcp->tcp_lso)
15238 			tcp->tcp_maxpsz_multiplier = 0;
15239 
15240 		tcp->tcp_lso = B_TRUE;
15241 		TCP_STAT(tcp->tcp_tcps, tcp_lso_enabled);
15242 	} else { /* LSO capability is not usable any more. */
15243 		DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso,
15244 		    boolean_t, B_FALSE, uint32_t, tcp->tcp_lso_max);
15245 
15246 		/*
15247 		 * If LSO to be disabled, notify the STREAM header with smaller
15248 		 * data block. And need to restore fragsize to PMTU.
15249 		 */
15250 		if (tcp->tcp_lso) {
15251 			tcp->tcp_maxpsz_multiplier =
15252 			    tcp->tcp_tcps->tcps_maxpsz_multiplier;
15253 			ixa->ixa_fragsize = ixa->ixa_pmtu;
15254 			tcp->tcp_lso = B_FALSE;
15255 			TCP_STAT(tcp->tcp_tcps, tcp_lso_disabled);
15256 		}
15257 	}
15258 
15259 	(void) tcp_maxpsz_set(tcp, B_TRUE);
15260 }
15261 
15262 /*
15263  * Update the TCP connection according to change of ZEROCOPY capability.
15264  */
15265 static void
15266 tcp_update_zcopy(tcp_t *tcp)
15267 {
15268 	conn_t		*connp = tcp->tcp_connp;
15269 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15270 
15271 	if (tcp->tcp_snd_zcopy_on) {
15272 		tcp->tcp_snd_zcopy_on = B_FALSE;
15273 		if (!TCP_IS_DETACHED(tcp)) {
15274 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
15275 			    ZCVMUNSAFE);
15276 			TCP_STAT(tcps, tcp_zcopy_off);
15277 		}
15278 	} else {
15279 		tcp->tcp_snd_zcopy_on = B_TRUE;
15280 		if (!TCP_IS_DETACHED(tcp)) {
15281 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
15282 			    ZCVMSAFE);
15283 			TCP_STAT(tcps, tcp_zcopy_on);
15284 		}
15285 	}
15286 }
15287 
15288 /*
15289  * Notify function registered with ip_xmit_attr_t. It's called in the squeue
15290  * so it's safe to update the TCP connection.
15291  */
15292 /* ARGSUSED1 */
15293 static void
15294 tcp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype,
15295     ixa_notify_arg_t narg)
15296 {
15297 	tcp_t		*tcp = (tcp_t *)arg;
15298 	conn_t		*connp = tcp->tcp_connp;
15299 
15300 	switch (ntype) {
15301 	case IXAN_LSO:
15302 		tcp_update_lso(tcp, connp->conn_ixa);
15303 		break;
15304 	case IXAN_PMTU:
15305 		tcp_update_pmtu(tcp, B_FALSE);
15306 		break;
15307 	case IXAN_ZCOPY:
15308 		tcp_update_zcopy(tcp);
15309 		break;
15310 	default:
15311 		break;
15312 	}
15313 }
15314 
15315 static void
15316 tcp_send_data(tcp_t *tcp, mblk_t *mp)
15317 {
15318 	conn_t		*connp = tcp->tcp_connp;
15319 
15320 	/*
15321 	 * Check here to avoid sending zero-copy message down to IP when
15322 	 * ZEROCOPY capability has turned off. We only need to deal with
15323 	 * the race condition between sockfs and the notification here.
15324 	 * Since we have tried to backoff the tcp_xmit_head when turning
15325 	 * zero-copy off and new messages in tcp_output(), we simply drop
15326 	 * the dup'ed packet here and let tcp retransmit, if tcp_xmit_zc_clean
15327 	 * is not true.
15328 	 */
15329 	if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_snd_zcopy_on &&
15330 	    !tcp->tcp_xmit_zc_clean) {
15331 		ip_drop_output("TCP ZC was disabled but not clean", mp, NULL);
15332 		freemsg(mp);
15333 		return;
15334 	}
15335 
15336 	ASSERT(connp->conn_ixa->ixa_notify_cookie == connp->conn_tcp);
15337 	(void) conn_ip_output(mp, connp->conn_ixa);
15338 }
15339 
15340 /*
15341  * This handles the case when the receiver has shrunk its win. Per RFC 1122
15342  * if the receiver shrinks the window, i.e. moves the right window to the
15343  * left, the we should not send new data, but should retransmit normally the
15344  * old unacked data between suna and suna + swnd. We might has sent data
15345  * that is now outside the new window, pretend that we didn't send  it.
15346  */
15347 static void
15348 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count)
15349 {
15350 	uint32_t	snxt = tcp->tcp_snxt;
15351 
15352 	ASSERT(shrunk_count > 0);
15353 
15354 	if (!tcp->tcp_is_wnd_shrnk) {
15355 		tcp->tcp_snxt_shrunk = snxt;
15356 		tcp->tcp_is_wnd_shrnk = B_TRUE;
15357 	} else if (SEQ_GT(snxt, tcp->tcp_snxt_shrunk)) {
15358 		tcp->tcp_snxt_shrunk = snxt;
15359 	}
15360 
15361 	/* Pretend we didn't send the data outside the window */
15362 	snxt -= shrunk_count;
15363 
15364 	/* Reset all the values per the now shrunk window */
15365 	tcp_update_xmit_tail(tcp, snxt);
15366 	tcp->tcp_unsent += shrunk_count;
15367 
15368 	/*
15369 	 * If the SACK option is set, delete the entire list of
15370 	 * notsack'ed blocks.
15371 	 */
15372 	if (tcp->tcp_sack_info != NULL) {
15373 		if (tcp->tcp_notsack_list != NULL)
15374 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp);
15375 	}
15376 
15377 	if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0)
15378 		/*
15379 		 * Make sure the timer is running so that we will probe a zero
15380 		 * window.
15381 		 */
15382 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
15383 }
15384 
15385 
15386 /*
15387  * The TCP normal data output path.
15388  * NOTE: the logic of the fast path is duplicated from this function.
15389  */
15390 static void
15391 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent)
15392 {
15393 	int		len;
15394 	mblk_t		*local_time;
15395 	mblk_t		*mp1;
15396 	uint32_t	snxt;
15397 	int		tail_unsent;
15398 	int		tcpstate;
15399 	int		usable = 0;
15400 	mblk_t		*xmit_tail;
15401 	int32_t		mss;
15402 	int32_t		num_sack_blk = 0;
15403 	int32_t		total_hdr_len;
15404 	int32_t		tcp_hdr_len;
15405 	int		rc;
15406 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15407 	conn_t		*connp = tcp->tcp_connp;
15408 
15409 	tcpstate = tcp->tcp_state;
15410 	if (mp == NULL) {
15411 		/*
15412 		 * tcp_wput_data() with NULL mp should only be called when
15413 		 * there is unsent data.
15414 		 */
15415 		ASSERT(tcp->tcp_unsent > 0);
15416 		/* Really tacky... but we need this for detached closes. */
15417 		len = tcp->tcp_unsent;
15418 		goto data_null;
15419 	}
15420 
15421 #if CCS_STATS
15422 	wrw_stats.tot.count++;
15423 	wrw_stats.tot.bytes += msgdsize(mp);
15424 #endif
15425 	ASSERT(mp->b_datap->db_type == M_DATA);
15426 	/*
15427 	 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ,
15428 	 * or before a connection attempt has begun.
15429 	 */
15430 	if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT ||
15431 	    (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
15432 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
15433 #ifdef DEBUG
15434 			cmn_err(CE_WARN,
15435 			    "tcp_wput_data: data after ordrel, %s",
15436 			    tcp_display(tcp, NULL,
15437 			    DISP_ADDR_AND_PORT));
15438 #else
15439 			if (connp->conn_debug) {
15440 				(void) strlog(TCP_MOD_ID, 0, 1,
15441 				    SL_TRACE|SL_ERROR,
15442 				    "tcp_wput_data: data after ordrel, %s\n",
15443 				    tcp_display(tcp, NULL,
15444 				    DISP_ADDR_AND_PORT));
15445 			}
15446 #endif /* DEBUG */
15447 		}
15448 		if (tcp->tcp_snd_zcopy_aware &&
15449 		    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
15450 			tcp_zcopy_notify(tcp);
15451 		freemsg(mp);
15452 		mutex_enter(&tcp->tcp_non_sq_lock);
15453 		if (tcp->tcp_flow_stopped &&
15454 		    TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) {
15455 			tcp_clrqfull(tcp);
15456 		}
15457 		mutex_exit(&tcp->tcp_non_sq_lock);
15458 		return;
15459 	}
15460 
15461 	/* Strip empties */
15462 	for (;;) {
15463 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
15464 		    (uintptr_t)INT_MAX);
15465 		len = (int)(mp->b_wptr - mp->b_rptr);
15466 		if (len > 0)
15467 			break;
15468 		mp1 = mp;
15469 		mp = mp->b_cont;
15470 		freeb(mp1);
15471 		if (!mp) {
15472 			return;
15473 		}
15474 	}
15475 
15476 	/* If we are the first on the list ... */
15477 	if (tcp->tcp_xmit_head == NULL) {
15478 		tcp->tcp_xmit_head = mp;
15479 		tcp->tcp_xmit_tail = mp;
15480 		tcp->tcp_xmit_tail_unsent = len;
15481 	} else {
15482 		/* If tiny tx and room in txq tail, pullup to save mblks. */
15483 		struct datab *dp;
15484 
15485 		mp1 = tcp->tcp_xmit_last;
15486 		if (len < tcp_tx_pull_len &&
15487 		    (dp = mp1->b_datap)->db_ref == 1 &&
15488 		    dp->db_lim - mp1->b_wptr >= len) {
15489 			ASSERT(len > 0);
15490 			ASSERT(!mp1->b_cont);
15491 			if (len == 1) {
15492 				*mp1->b_wptr++ = *mp->b_rptr;
15493 			} else {
15494 				bcopy(mp->b_rptr, mp1->b_wptr, len);
15495 				mp1->b_wptr += len;
15496 			}
15497 			if (mp1 == tcp->tcp_xmit_tail)
15498 				tcp->tcp_xmit_tail_unsent += len;
15499 			mp1->b_cont = mp->b_cont;
15500 			if (tcp->tcp_snd_zcopy_aware &&
15501 			    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
15502 				mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
15503 			freeb(mp);
15504 			mp = mp1;
15505 		} else {
15506 			tcp->tcp_xmit_last->b_cont = mp;
15507 		}
15508 		len += tcp->tcp_unsent;
15509 	}
15510 
15511 	/* Tack on however many more positive length mblks we have */
15512 	if ((mp1 = mp->b_cont) != NULL) {
15513 		do {
15514 			int tlen;
15515 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
15516 			    (uintptr_t)INT_MAX);
15517 			tlen = (int)(mp1->b_wptr - mp1->b_rptr);
15518 			if (tlen <= 0) {
15519 				mp->b_cont = mp1->b_cont;
15520 				freeb(mp1);
15521 			} else {
15522 				len += tlen;
15523 				mp = mp1;
15524 			}
15525 		} while ((mp1 = mp->b_cont) != NULL);
15526 	}
15527 	tcp->tcp_xmit_last = mp;
15528 	tcp->tcp_unsent = len;
15529 
15530 	if (urgent)
15531 		usable = 1;
15532 
15533 data_null:
15534 	snxt = tcp->tcp_snxt;
15535 	xmit_tail = tcp->tcp_xmit_tail;
15536 	tail_unsent = tcp->tcp_xmit_tail_unsent;
15537 
15538 	/*
15539 	 * Note that tcp_mss has been adjusted to take into account the
15540 	 * timestamp option if applicable.  Because SACK options do not
15541 	 * appear in every TCP segments and they are of variable lengths,
15542 	 * they cannot be included in tcp_mss.  Thus we need to calculate
15543 	 * the actual segment length when we need to send a segment which
15544 	 * includes SACK options.
15545 	 */
15546 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
15547 		int32_t	opt_len;
15548 
15549 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
15550 		    tcp->tcp_num_sack_blk);
15551 		opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN *
15552 		    2 + TCPOPT_HEADER_LEN;
15553 		mss = tcp->tcp_mss - opt_len;
15554 		total_hdr_len = connp->conn_ht_iphc_len + opt_len;
15555 		tcp_hdr_len = connp->conn_ht_ulp_len + opt_len;
15556 	} else {
15557 		mss = tcp->tcp_mss;
15558 		total_hdr_len = connp->conn_ht_iphc_len;
15559 		tcp_hdr_len = connp->conn_ht_ulp_len;
15560 	}
15561 
15562 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
15563 	    (TICK_TO_MSEC((clock_t)LBOLT_FASTPATH - tcp->tcp_last_recv_time) >=
15564 	    tcp->tcp_rto)) {
15565 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
15566 	}
15567 	if (tcpstate == TCPS_SYN_RCVD) {
15568 		/*
15569 		 * The three-way connection establishment handshake is not
15570 		 * complete yet. We want to queue the data for transmission
15571 		 * after entering ESTABLISHED state (RFC793). A jump to
15572 		 * "done" label effectively leaves data on the queue.
15573 		 */
15574 		goto done;
15575 	} else {
15576 		int usable_r;
15577 
15578 		/*
15579 		 * In the special case when cwnd is zero, which can only
15580 		 * happen if the connection is ECN capable, return now.
15581 		 * New segments is sent using tcp_timer().  The timer
15582 		 * is set in tcp_input_data().
15583 		 */
15584 		if (tcp->tcp_cwnd == 0) {
15585 			/*
15586 			 * Note that tcp_cwnd is 0 before 3-way handshake is
15587 			 * finished.
15588 			 */
15589 			ASSERT(tcp->tcp_ecn_ok ||
15590 			    tcp->tcp_state < TCPS_ESTABLISHED);
15591 			return;
15592 		}
15593 
15594 		/* NOTE: trouble if xmitting while SYN not acked? */
15595 		usable_r = snxt - tcp->tcp_suna;
15596 		usable_r = tcp->tcp_swnd - usable_r;
15597 
15598 		/*
15599 		 * Check if the receiver has shrunk the window.  If
15600 		 * tcp_wput_data() with NULL mp is called, tcp_fin_sent
15601 		 * cannot be set as there is unsent data, so FIN cannot
15602 		 * be sent out.  Otherwise, we need to take into account
15603 		 * of FIN as it consumes an "invisible" sequence number.
15604 		 */
15605 		ASSERT(tcp->tcp_fin_sent == 0);
15606 		if (usable_r < 0) {
15607 			/*
15608 			 * The receiver has shrunk the window and we have sent
15609 			 * -usable_r date beyond the window, re-adjust.
15610 			 *
15611 			 * If TCP window scaling is enabled, there can be
15612 			 * round down error as the advertised receive window
15613 			 * is actually right shifted n bits.  This means that
15614 			 * the lower n bits info is wiped out.  It will look
15615 			 * like the window is shrunk.  Do a check here to
15616 			 * see if the shrunk amount is actually within the
15617 			 * error in window calculation.  If it is, just
15618 			 * return.  Note that this check is inside the
15619 			 * shrunk window check.  This makes sure that even
15620 			 * though tcp_process_shrunk_swnd() is not called,
15621 			 * we will stop further processing.
15622 			 */
15623 			if ((-usable_r >> tcp->tcp_snd_ws) > 0) {
15624 				tcp_process_shrunk_swnd(tcp, -usable_r);
15625 			}
15626 			return;
15627 		}
15628 
15629 		/* usable = MIN(swnd, cwnd) - unacked_bytes */
15630 		if (tcp->tcp_swnd > tcp->tcp_cwnd)
15631 			usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd;
15632 
15633 		/* usable = MIN(usable, unsent) */
15634 		if (usable_r > len)
15635 			usable_r = len;
15636 
15637 		/* usable = MAX(usable, {1 for urgent, 0 for data}) */
15638 		if (usable_r > 0) {
15639 			usable = usable_r;
15640 		} else {
15641 			/* Bypass all other unnecessary processing. */
15642 			goto done;
15643 		}
15644 	}
15645 
15646 	local_time = (mblk_t *)LBOLT_FASTPATH;
15647 
15648 	/*
15649 	 * "Our" Nagle Algorithm.  This is not the same as in the old
15650 	 * BSD.  This is more in line with the true intent of Nagle.
15651 	 *
15652 	 * The conditions are:
15653 	 * 1. The amount of unsent data (or amount of data which can be
15654 	 *    sent, whichever is smaller) is less than Nagle limit.
15655 	 * 2. The last sent size is also less than Nagle limit.
15656 	 * 3. There is unack'ed data.
15657 	 * 4. Urgent pointer is not set.  Send urgent data ignoring the
15658 	 *    Nagle algorithm.  This reduces the probability that urgent
15659 	 *    bytes get "merged" together.
15660 	 * 5. The app has not closed the connection.  This eliminates the
15661 	 *    wait time of the receiving side waiting for the last piece of
15662 	 *    (small) data.
15663 	 *
15664 	 * If all are satisified, exit without sending anything.  Note
15665 	 * that Nagle limit can be smaller than 1 MSS.  Nagle limit is
15666 	 * the smaller of 1 MSS and global tcp_naglim_def (default to be
15667 	 * 4095).
15668 	 */
15669 	if (usable < (int)tcp->tcp_naglim &&
15670 	    tcp->tcp_naglim > tcp->tcp_last_sent_len &&
15671 	    snxt != tcp->tcp_suna &&
15672 	    !(tcp->tcp_valid_bits & TCP_URG_VALID) &&
15673 	    !(tcp->tcp_valid_bits & TCP_FSS_VALID)) {
15674 		goto done;
15675 	}
15676 
15677 	/*
15678 	 * If tcp_zero_win_probe is not set and the tcp->tcp_cork option
15679 	 * is set, then we have to force TCP not to send partial segment
15680 	 * (smaller than MSS bytes). We are calculating the usable now
15681 	 * based on full mss and will save the rest of remaining data for
15682 	 * later. When tcp_zero_win_probe is set, TCP needs to send out
15683 	 * something to do zero window probe.
15684 	 */
15685 	if (tcp->tcp_cork && !tcp->tcp_zero_win_probe) {
15686 		if (usable < mss)
15687 			goto done;
15688 		usable = (usable / mss) * mss;
15689 	}
15690 
15691 	/* Update the latest receive window size in TCP header. */
15692 	tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
15693 
15694 	/* Send the packet. */
15695 	rc = tcp_send(tcp, mss, total_hdr_len, tcp_hdr_len,
15696 	    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
15697 	    local_time);
15698 
15699 	/* Pretend that all we were trying to send really got sent */
15700 	if (rc < 0 && tail_unsent < 0) {
15701 		do {
15702 			xmit_tail = xmit_tail->b_cont;
15703 			xmit_tail->b_prev = local_time;
15704 			ASSERT((uintptr_t)(xmit_tail->b_wptr -
15705 			    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
15706 			tail_unsent += (int)(xmit_tail->b_wptr -
15707 			    xmit_tail->b_rptr);
15708 		} while (tail_unsent < 0);
15709 	}
15710 done:;
15711 	tcp->tcp_xmit_tail = xmit_tail;
15712 	tcp->tcp_xmit_tail_unsent = tail_unsent;
15713 	len = tcp->tcp_snxt - snxt;
15714 	if (len) {
15715 		/*
15716 		 * If new data was sent, need to update the notsack
15717 		 * list, which is, afterall, data blocks that have
15718 		 * not been sack'ed by the receiver.  New data is
15719 		 * not sack'ed.
15720 		 */
15721 		if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
15722 			/* len is a negative value. */
15723 			tcp->tcp_pipe -= len;
15724 			tcp_notsack_update(&(tcp->tcp_notsack_list),
15725 			    tcp->tcp_snxt, snxt,
15726 			    &(tcp->tcp_num_notsack_blk),
15727 			    &(tcp->tcp_cnt_notsack_list));
15728 		}
15729 		tcp->tcp_snxt = snxt + tcp->tcp_fin_sent;
15730 		tcp->tcp_rack = tcp->tcp_rnxt;
15731 		tcp->tcp_rack_cnt = 0;
15732 		if ((snxt + len) == tcp->tcp_suna) {
15733 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
15734 		}
15735 	} else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) {
15736 		/*
15737 		 * Didn't send anything. Make sure the timer is running
15738 		 * so that we will probe a zero window.
15739 		 */
15740 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
15741 	}
15742 	/* Note that len is the amount we just sent but with a negative sign */
15743 	tcp->tcp_unsent += len;
15744 	mutex_enter(&tcp->tcp_non_sq_lock);
15745 	if (tcp->tcp_flow_stopped) {
15746 		if (TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) {
15747 			tcp_clrqfull(tcp);
15748 		}
15749 	} else if (TCP_UNSENT_BYTES(tcp) >= connp->conn_sndbuf) {
15750 		if (!(tcp->tcp_detached))
15751 			tcp_setqfull(tcp);
15752 	}
15753 	mutex_exit(&tcp->tcp_non_sq_lock);
15754 }
15755 
15756 /*
15757  * tcp_fill_header is called by tcp_send() to fill the outgoing TCP header
15758  * with the template header, as well as other options such as time-stamp,
15759  * ECN and/or SACK.
15760  */
15761 static void
15762 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk)
15763 {
15764 	tcpha_t *tcp_tmpl, *tcpha;
15765 	uint32_t *dst, *src;
15766 	int hdrlen;
15767 	conn_t *connp = tcp->tcp_connp;
15768 
15769 	ASSERT(OK_32PTR(rptr));
15770 
15771 	/* Template header */
15772 	tcp_tmpl = tcp->tcp_tcpha;
15773 
15774 	/* Header of outgoing packet */
15775 	tcpha = (tcpha_t *)(rptr + connp->conn_ixa->ixa_ip_hdr_length);
15776 
15777 	/* dst and src are opaque 32-bit fields, used for copying */
15778 	dst = (uint32_t *)rptr;
15779 	src = (uint32_t *)connp->conn_ht_iphc;
15780 	hdrlen = connp->conn_ht_iphc_len;
15781 
15782 	/* Fill time-stamp option if needed */
15783 	if (tcp->tcp_snd_ts_ok) {
15784 		U32_TO_BE32((uint32_t)now,
15785 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4);
15786 		U32_TO_BE32(tcp->tcp_ts_recent,
15787 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8);
15788 	} else {
15789 		ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH);
15790 	}
15791 
15792 	/*
15793 	 * Copy the template header; is this really more efficient than
15794 	 * calling bcopy()?  For simple IPv4/TCP, it may be the case,
15795 	 * but perhaps not for other scenarios.
15796 	 */
15797 	dst[0] = src[0];
15798 	dst[1] = src[1];
15799 	dst[2] = src[2];
15800 	dst[3] = src[3];
15801 	dst[4] = src[4];
15802 	dst[5] = src[5];
15803 	dst[6] = src[6];
15804 	dst[7] = src[7];
15805 	dst[8] = src[8];
15806 	dst[9] = src[9];
15807 	if (hdrlen -= 40) {
15808 		hdrlen >>= 2;
15809 		dst += 10;
15810 		src += 10;
15811 		do {
15812 			*dst++ = *src++;
15813 		} while (--hdrlen);
15814 	}
15815 
15816 	/*
15817 	 * Set the ECN info in the TCP header if it is not a zero
15818 	 * window probe.  Zero window probe is only sent in
15819 	 * tcp_wput_data() and tcp_timer().
15820 	 */
15821 	if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) {
15822 		SET_ECT(tcp, rptr);
15823 
15824 		if (tcp->tcp_ecn_echo_on)
15825 			tcpha->tha_flags |= TH_ECE;
15826 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
15827 			tcpha->tha_flags |= TH_CWR;
15828 			tcp->tcp_ecn_cwr_sent = B_TRUE;
15829 		}
15830 	}
15831 
15832 	/* Fill in SACK options */
15833 	if (num_sack_blk > 0) {
15834 		uchar_t *wptr = rptr + connp->conn_ht_iphc_len;
15835 		sack_blk_t *tmp;
15836 		int32_t	i;
15837 
15838 		wptr[0] = TCPOPT_NOP;
15839 		wptr[1] = TCPOPT_NOP;
15840 		wptr[2] = TCPOPT_SACK;
15841 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
15842 		    sizeof (sack_blk_t);
15843 		wptr += TCPOPT_REAL_SACK_LEN;
15844 
15845 		tmp = tcp->tcp_sack_list;
15846 		for (i = 0; i < num_sack_blk; i++) {
15847 			U32_TO_BE32(tmp[i].begin, wptr);
15848 			wptr += sizeof (tcp_seq);
15849 			U32_TO_BE32(tmp[i].end, wptr);
15850 			wptr += sizeof (tcp_seq);
15851 		}
15852 		tcpha->tha_offset_and_reserved +=
15853 		    ((num_sack_blk * 2 + 1) << 4);
15854 	}
15855 }
15856 
15857 /*
15858  * tcp_send() is called by tcp_wput_data() and returns one of the following:
15859  *
15860  * -1 = failed allocation.
15861  *  0 = success; burst count reached, or usable send window is too small,
15862  *      and that we'd rather wait until later before sending again.
15863  */
15864 static int
15865 tcp_send(tcp_t *tcp, const int mss, const int total_hdr_len,
15866     const int tcp_hdr_len, const int num_sack_blk, int *usable,
15867     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time)
15868 {
15869 	int		num_burst_seg = tcp->tcp_snd_burst;
15870 	int		num_lso_seg = 1;
15871 	uint_t		lso_usable;
15872 	boolean_t	do_lso_send = B_FALSE;
15873 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15874 	conn_t		*connp = tcp->tcp_connp;
15875 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
15876 
15877 	/*
15878 	 * Check LSO possibility. The value of tcp->tcp_lso indicates whether
15879 	 * the underlying connection is LSO capable. Will check whether having
15880 	 * enough available data to initiate LSO transmission in the for(){}
15881 	 * loops.
15882 	 */
15883 	if (tcp->tcp_lso && (tcp->tcp_valid_bits & ~TCP_FSS_VALID) == 0)
15884 			do_lso_send = B_TRUE;
15885 
15886 	for (;;) {
15887 		struct datab	*db;
15888 		tcpha_t		*tcpha;
15889 		uint32_t	sum;
15890 		mblk_t		*mp, *mp1;
15891 		uchar_t		*rptr;
15892 		int		len;
15893 
15894 		/*
15895 		 * Burst count reached, return successfully.
15896 		 */
15897 		if (num_burst_seg == 0)
15898 			break;
15899 
15900 		/*
15901 		 * Calculate the maximum payload length we can send at one
15902 		 * time.
15903 		 */
15904 		if (do_lso_send) {
15905 			/*
15906 			 * Check whether be able to to do LSO for the current
15907 			 * available data.
15908 			 */
15909 			if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
15910 				lso_usable = MIN(tcp->tcp_lso_max, *usable);
15911 				lso_usable = MIN(lso_usable,
15912 				    num_burst_seg * mss);
15913 
15914 				num_lso_seg = lso_usable / mss;
15915 				if (lso_usable % mss) {
15916 					num_lso_seg++;
15917 					tcp->tcp_last_sent_len = (ushort_t)
15918 					    (lso_usable % mss);
15919 				} else {
15920 					tcp->tcp_last_sent_len = (ushort_t)mss;
15921 				}
15922 			} else {
15923 				do_lso_send = B_FALSE;
15924 				num_lso_seg = 1;
15925 				lso_usable = mss;
15926 			}
15927 		}
15928 
15929 		ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1);
15930 #ifdef DEBUG
15931 		DTRACE_PROBE2(tcp_send_lso, int, num_lso_seg, boolean_t,
15932 		    do_lso_send);
15933 #endif
15934 		/*
15935 		 * Adjust num_burst_seg here.
15936 		 */
15937 		num_burst_seg -= num_lso_seg;
15938 
15939 		len = mss;
15940 		if (len > *usable) {
15941 			ASSERT(do_lso_send == B_FALSE);
15942 
15943 			len = *usable;
15944 			if (len <= 0) {
15945 				/* Terminate the loop */
15946 				break;	/* success; too small */
15947 			}
15948 			/*
15949 			 * Sender silly-window avoidance.
15950 			 * Ignore this if we are going to send a
15951 			 * zero window probe out.
15952 			 *
15953 			 * TODO: force data into microscopic window?
15954 			 *	==> (!pushed || (unsent > usable))
15955 			 */
15956 			if (len < (tcp->tcp_max_swnd >> 1) &&
15957 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len &&
15958 			    !((tcp->tcp_valid_bits & TCP_URG_VALID) &&
15959 			    len == 1) && (! tcp->tcp_zero_win_probe)) {
15960 				/*
15961 				 * If the retransmit timer is not running
15962 				 * we start it so that we will retransmit
15963 				 * in the case when the receiver has
15964 				 * decremented the window.
15965 				 */
15966 				if (*snxt == tcp->tcp_snxt &&
15967 				    *snxt == tcp->tcp_suna) {
15968 					/*
15969 					 * We are not supposed to send
15970 					 * anything.  So let's wait a little
15971 					 * bit longer before breaking SWS
15972 					 * avoidance.
15973 					 *
15974 					 * What should the value be?
15975 					 * Suggestion: MAX(init rexmit time,
15976 					 * tcp->tcp_rto)
15977 					 */
15978 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
15979 				}
15980 				break;	/* success; too small */
15981 			}
15982 		}
15983 
15984 		tcpha = tcp->tcp_tcpha;
15985 
15986 		/*
15987 		 * The reason to adjust len here is that we need to set flags
15988 		 * and calculate checksum.
15989 		 */
15990 		if (do_lso_send)
15991 			len = lso_usable;
15992 
15993 		*usable -= len; /* Approximate - can be adjusted later */
15994 		if (*usable > 0)
15995 			tcpha->tha_flags = TH_ACK;
15996 		else
15997 			tcpha->tha_flags = (TH_ACK | TH_PUSH);
15998 
15999 		/*
16000 		 * Prime pump for IP's checksumming on our behalf.
16001 		 * Include the adjustment for a source route if any.
16002 		 * In case of LSO, the partial pseudo-header checksum should
16003 		 * exclusive TCP length, so zero tha_sum before IP calculate
16004 		 * pseudo-header checksum for partial checksum offload.
16005 		 */
16006 		if (do_lso_send) {
16007 			sum = 0;
16008 		} else {
16009 			sum = len + tcp_hdr_len + connp->conn_sum;
16010 			sum = (sum >> 16) + (sum & 0xFFFF);
16011 		}
16012 		tcpha->tha_sum = htons(sum);
16013 		tcpha->tha_seq = htonl(*snxt);
16014 
16015 		/*
16016 		 * Branch off to tcp_xmit_mp() if any of the VALID bits is
16017 		 * set.  For the case when TCP_FSS_VALID is the only valid
16018 		 * bit (normal active close), branch off only when we think
16019 		 * that the FIN flag needs to be set.  Note for this case,
16020 		 * that (snxt + len) may not reflect the actual seg_len,
16021 		 * as len may be further reduced in tcp_xmit_mp().  If len
16022 		 * gets modified, we will end up here again.
16023 		 */
16024 		if (tcp->tcp_valid_bits != 0 &&
16025 		    (tcp->tcp_valid_bits != TCP_FSS_VALID ||
16026 		    ((*snxt + len) == tcp->tcp_fss))) {
16027 			uchar_t		*prev_rptr;
16028 			uint32_t	prev_snxt = tcp->tcp_snxt;
16029 
16030 			if (*tail_unsent == 0) {
16031 				ASSERT((*xmit_tail)->b_cont != NULL);
16032 				*xmit_tail = (*xmit_tail)->b_cont;
16033 				prev_rptr = (*xmit_tail)->b_rptr;
16034 				*tail_unsent = (int)((*xmit_tail)->b_wptr -
16035 				    (*xmit_tail)->b_rptr);
16036 			} else {
16037 				prev_rptr = (*xmit_tail)->b_rptr;
16038 				(*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr -
16039 				    *tail_unsent;
16040 			}
16041 			mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL,
16042 			    *snxt, B_FALSE, (uint32_t *)&len, B_FALSE);
16043 			/* Restore tcp_snxt so we get amount sent right. */
16044 			tcp->tcp_snxt = prev_snxt;
16045 			if (prev_rptr == (*xmit_tail)->b_rptr) {
16046 				/*
16047 				 * If the previous timestamp is still in use,
16048 				 * don't stomp on it.
16049 				 */
16050 				if ((*xmit_tail)->b_next == NULL) {
16051 					(*xmit_tail)->b_prev = local_time;
16052 					(*xmit_tail)->b_next =
16053 					    (mblk_t *)(uintptr_t)(*snxt);
16054 				}
16055 			} else
16056 				(*xmit_tail)->b_rptr = prev_rptr;
16057 
16058 			if (mp == NULL) {
16059 				return (-1);
16060 			}
16061 			mp1 = mp->b_cont;
16062 
16063 			if (len <= mss) /* LSO is unusable (!do_lso_send) */
16064 				tcp->tcp_last_sent_len = (ushort_t)len;
16065 			while (mp1->b_cont) {
16066 				*xmit_tail = (*xmit_tail)->b_cont;
16067 				(*xmit_tail)->b_prev = local_time;
16068 				(*xmit_tail)->b_next =
16069 				    (mblk_t *)(uintptr_t)(*snxt);
16070 				mp1 = mp1->b_cont;
16071 			}
16072 			*snxt += len;
16073 			*tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr;
16074 			BUMP_LOCAL(tcp->tcp_obsegs);
16075 			BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
16076 			UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
16077 			tcp_send_data(tcp, mp);
16078 			continue;
16079 		}
16080 
16081 		*snxt += len;	/* Adjust later if we don't send all of len */
16082 		BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
16083 		UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
16084 
16085 		if (*tail_unsent) {
16086 			/* Are the bytes above us in flight? */
16087 			rptr = (*xmit_tail)->b_wptr - *tail_unsent;
16088 			if (rptr != (*xmit_tail)->b_rptr) {
16089 				*tail_unsent -= len;
16090 				if (len <= mss) /* LSO is unusable */
16091 					tcp->tcp_last_sent_len = (ushort_t)len;
16092 				len += total_hdr_len;
16093 				ixa->ixa_pktlen = len;
16094 
16095 				if (ixa->ixa_flags & IXAF_IS_IPV4) {
16096 					tcp->tcp_ipha->ipha_length = htons(len);
16097 				} else {
16098 					tcp->tcp_ip6h->ip6_plen =
16099 					    htons(len - IPV6_HDR_LEN);
16100 				}
16101 
16102 				mp = dupb(*xmit_tail);
16103 				if (mp == NULL) {
16104 					return (-1);	/* out_of_mem */
16105 				}
16106 				mp->b_rptr = rptr;
16107 				/*
16108 				 * If the old timestamp is no longer in use,
16109 				 * sample a new timestamp now.
16110 				 */
16111 				if ((*xmit_tail)->b_next == NULL) {
16112 					(*xmit_tail)->b_prev = local_time;
16113 					(*xmit_tail)->b_next =
16114 					    (mblk_t *)(uintptr_t)(*snxt-len);
16115 				}
16116 				goto must_alloc;
16117 			}
16118 		} else {
16119 			*xmit_tail = (*xmit_tail)->b_cont;
16120 			ASSERT((uintptr_t)((*xmit_tail)->b_wptr -
16121 			    (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX);
16122 			*tail_unsent = (int)((*xmit_tail)->b_wptr -
16123 			    (*xmit_tail)->b_rptr);
16124 		}
16125 
16126 		(*xmit_tail)->b_prev = local_time;
16127 		(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len);
16128 
16129 		*tail_unsent -= len;
16130 		if (len <= mss) /* LSO is unusable (!do_lso_send) */
16131 			tcp->tcp_last_sent_len = (ushort_t)len;
16132 
16133 		len += total_hdr_len;
16134 		ixa->ixa_pktlen = len;
16135 
16136 		if (ixa->ixa_flags & IXAF_IS_IPV4) {
16137 			tcp->tcp_ipha->ipha_length = htons(len);
16138 		} else {
16139 			tcp->tcp_ip6h->ip6_plen = htons(len - IPV6_HDR_LEN);
16140 		}
16141 
16142 		mp = dupb(*xmit_tail);
16143 		if (mp == NULL) {
16144 			return (-1);	/* out_of_mem */
16145 		}
16146 
16147 		len = total_hdr_len;
16148 		/*
16149 		 * There are four reasons to allocate a new hdr mblk:
16150 		 *  1) The bytes above us are in use by another packet
16151 		 *  2) We don't have good alignment
16152 		 *  3) The mblk is being shared
16153 		 *  4) We don't have enough room for a header
16154 		 */
16155 		rptr = mp->b_rptr - len;
16156 		if (!OK_32PTR(rptr) ||
16157 		    ((db = mp->b_datap), db->db_ref != 2) ||
16158 		    rptr < db->db_base) {
16159 			/* NOTE: we assume allocb returns an OK_32PTR */
16160 
16161 		must_alloc:;
16162 			mp1 = allocb(connp->conn_ht_iphc_allocated +
16163 			    tcps->tcps_wroff_xtra, BPRI_MED);
16164 			if (mp1 == NULL) {
16165 				freemsg(mp);
16166 				return (-1);	/* out_of_mem */
16167 			}
16168 			mp1->b_cont = mp;
16169 			mp = mp1;
16170 			/* Leave room for Link Level header */
16171 			len = total_hdr_len;
16172 			rptr = &mp->b_rptr[tcps->tcps_wroff_xtra];
16173 			mp->b_wptr = &rptr[len];
16174 		}
16175 
16176 		/*
16177 		 * Fill in the header using the template header, and add
16178 		 * options such as time-stamp, ECN and/or SACK, as needed.
16179 		 */
16180 		tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk);
16181 
16182 		mp->b_rptr = rptr;
16183 
16184 		if (*tail_unsent) {
16185 			int spill = *tail_unsent;
16186 
16187 			mp1 = mp->b_cont;
16188 			if (mp1 == NULL)
16189 				mp1 = mp;
16190 
16191 			/*
16192 			 * If we're a little short, tack on more mblks until
16193 			 * there is no more spillover.
16194 			 */
16195 			while (spill < 0) {
16196 				mblk_t *nmp;
16197 				int nmpsz;
16198 
16199 				nmp = (*xmit_tail)->b_cont;
16200 				nmpsz = MBLKL(nmp);
16201 
16202 				/*
16203 				 * Excess data in mblk; can we split it?
16204 				 * If LSO is enabled for the connection,
16205 				 * keep on splitting as this is a transient
16206 				 * send path.
16207 				 */
16208 				if (!do_lso_send && (spill + nmpsz > 0)) {
16209 					/*
16210 					 * Don't split if stream head was
16211 					 * told to break up larger writes
16212 					 * into smaller ones.
16213 					 */
16214 					if (tcp->tcp_maxpsz_multiplier > 0)
16215 						break;
16216 
16217 					/*
16218 					 * Next mblk is less than SMSS/2
16219 					 * rounded up to nearest 64-byte;
16220 					 * let it get sent as part of the
16221 					 * next segment.
16222 					 */
16223 					if (tcp->tcp_localnet &&
16224 					    !tcp->tcp_cork &&
16225 					    (nmpsz < roundup((mss >> 1), 64)))
16226 						break;
16227 				}
16228 
16229 				*xmit_tail = nmp;
16230 				ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX);
16231 				/* Stash for rtt use later */
16232 				(*xmit_tail)->b_prev = local_time;
16233 				(*xmit_tail)->b_next =
16234 				    (mblk_t *)(uintptr_t)(*snxt - len);
16235 				mp1->b_cont = dupb(*xmit_tail);
16236 				mp1 = mp1->b_cont;
16237 
16238 				spill += nmpsz;
16239 				if (mp1 == NULL) {
16240 					*tail_unsent = spill;
16241 					freemsg(mp);
16242 					return (-1);	/* out_of_mem */
16243 				}
16244 			}
16245 
16246 			/* Trim back any surplus on the last mblk */
16247 			if (spill >= 0) {
16248 				mp1->b_wptr -= spill;
16249 				*tail_unsent = spill;
16250 			} else {
16251 				/*
16252 				 * We did not send everything we could in
16253 				 * order to remain within the b_cont limit.
16254 				 */
16255 				*usable -= spill;
16256 				*snxt += spill;
16257 				tcp->tcp_last_sent_len += spill;
16258 				UPDATE_MIB(&tcps->tcps_mib,
16259 				    tcpOutDataBytes, spill);
16260 				/*
16261 				 * Adjust the checksum
16262 				 */
16263 				tcpha = (tcpha_t *)(rptr +
16264 				    ixa->ixa_ip_hdr_length);
16265 				sum += spill;
16266 				sum = (sum >> 16) + (sum & 0xFFFF);
16267 				tcpha->tha_sum = htons(sum);
16268 				if (connp->conn_ipversion == IPV4_VERSION) {
16269 					sum = ntohs(
16270 					    ((ipha_t *)rptr)->ipha_length) +
16271 					    spill;
16272 					((ipha_t *)rptr)->ipha_length =
16273 					    htons(sum);
16274 				} else {
16275 					sum = ntohs(
16276 					    ((ip6_t *)rptr)->ip6_plen) +
16277 					    spill;
16278 					((ip6_t *)rptr)->ip6_plen =
16279 					    htons(sum);
16280 				}
16281 				ixa->ixa_pktlen += spill;
16282 				*tail_unsent = 0;
16283 			}
16284 		}
16285 		if (tcp->tcp_ip_forward_progress) {
16286 			tcp->tcp_ip_forward_progress = B_FALSE;
16287 			ixa->ixa_flags |= IXAF_REACH_CONF;
16288 		} else {
16289 			ixa->ixa_flags &= ~IXAF_REACH_CONF;
16290 		}
16291 
16292 		/*
16293 		 * Append LSO information, both flags and mss, to the mp.
16294 		 */
16295 		if (do_lso_send) {
16296 			lso_info_set(mp, mss, HW_LSO);
16297 			ixa->ixa_fragsize = IP_MAXPACKET;
16298 			ixa->ixa_extra_ident = num_lso_seg - 1;
16299 
16300 			DTRACE_PROBE2(tcp_send_lso, int, num_lso_seg,
16301 			    boolean_t, B_TRUE);
16302 
16303 			tcp_send_data(tcp, mp);
16304 
16305 			/*
16306 			 * Restore values of ixa_fragsize and ixa_extra_ident.
16307 			 */
16308 			ixa->ixa_fragsize = ixa->ixa_pmtu;
16309 			ixa->ixa_extra_ident = 0;
16310 			tcp->tcp_obsegs += num_lso_seg;
16311 			TCP_STAT(tcps, tcp_lso_times);
16312 			TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg);
16313 		} else {
16314 			tcp_send_data(tcp, mp);
16315 			BUMP_LOCAL(tcp->tcp_obsegs);
16316 		}
16317 	}
16318 
16319 	return (0);
16320 }
16321 
16322 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */
16323 static void
16324 tcp_wput_flush(tcp_t *tcp, mblk_t *mp)
16325 {
16326 	uchar_t	fval = *mp->b_rptr;
16327 	mblk_t	*tail;
16328 	conn_t	*connp = tcp->tcp_connp;
16329 	queue_t	*q = connp->conn_wq;
16330 
16331 	/* TODO: How should flush interact with urgent data? */
16332 	if ((fval & FLUSHW) && tcp->tcp_xmit_head &&
16333 	    !(tcp->tcp_valid_bits & TCP_URG_VALID)) {
16334 		/*
16335 		 * Flush only data that has not yet been put on the wire.  If
16336 		 * we flush data that we have already transmitted, life, as we
16337 		 * know it, may come to an end.
16338 		 */
16339 		tail = tcp->tcp_xmit_tail;
16340 		tail->b_wptr -= tcp->tcp_xmit_tail_unsent;
16341 		tcp->tcp_xmit_tail_unsent = 0;
16342 		tcp->tcp_unsent = 0;
16343 		if (tail->b_wptr != tail->b_rptr)
16344 			tail = tail->b_cont;
16345 		if (tail) {
16346 			mblk_t **excess = &tcp->tcp_xmit_head;
16347 			for (;;) {
16348 				mblk_t *mp1 = *excess;
16349 				if (mp1 == tail)
16350 					break;
16351 				tcp->tcp_xmit_tail = mp1;
16352 				tcp->tcp_xmit_last = mp1;
16353 				excess = &mp1->b_cont;
16354 			}
16355 			*excess = NULL;
16356 			tcp_close_mpp(&tail);
16357 			if (tcp->tcp_snd_zcopy_aware)
16358 				tcp_zcopy_notify(tcp);
16359 		}
16360 		/*
16361 		 * We have no unsent data, so unsent must be less than
16362 		 * conn_sndlowat, so re-enable flow.
16363 		 */
16364 		mutex_enter(&tcp->tcp_non_sq_lock);
16365 		if (tcp->tcp_flow_stopped) {
16366 			tcp_clrqfull(tcp);
16367 		}
16368 		mutex_exit(&tcp->tcp_non_sq_lock);
16369 	}
16370 	/*
16371 	 * TODO: you can't just flush these, you have to increase rwnd for one
16372 	 * thing.  For another, how should urgent data interact?
16373 	 */
16374 	if (fval & FLUSHR) {
16375 		*mp->b_rptr = fval & ~FLUSHW;
16376 		/* XXX */
16377 		qreply(q, mp);
16378 		return;
16379 	}
16380 	freemsg(mp);
16381 }
16382 
16383 /*
16384  * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA
16385  * messages.
16386  */
16387 static void
16388 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp)
16389 {
16390 	mblk_t		*mp1;
16391 	struct iocblk	*iocp = (struct iocblk *)mp->b_rptr;
16392 	STRUCT_HANDLE(strbuf, sb);
16393 	uint_t		addrlen;
16394 	conn_t		*connp = tcp->tcp_connp;
16395 	queue_t 	*q = connp->conn_wq;
16396 
16397 	/* Make sure it is one of ours. */
16398 	switch (iocp->ioc_cmd) {
16399 	case TI_GETMYNAME:
16400 	case TI_GETPEERNAME:
16401 		break;
16402 	default:
16403 		ip_wput_nondata(q, mp);
16404 		return;
16405 	}
16406 	switch (mi_copy_state(q, mp, &mp1)) {
16407 	case -1:
16408 		return;
16409 	case MI_COPY_CASE(MI_COPY_IN, 1):
16410 		break;
16411 	case MI_COPY_CASE(MI_COPY_OUT, 1):
16412 		/* Copy out the strbuf. */
16413 		mi_copyout(q, mp);
16414 		return;
16415 	case MI_COPY_CASE(MI_COPY_OUT, 2):
16416 		/* All done. */
16417 		mi_copy_done(q, mp, 0);
16418 		return;
16419 	default:
16420 		mi_copy_done(q, mp, EPROTO);
16421 		return;
16422 	}
16423 	/* Check alignment of the strbuf */
16424 	if (!OK_32PTR(mp1->b_rptr)) {
16425 		mi_copy_done(q, mp, EINVAL);
16426 		return;
16427 	}
16428 
16429 	STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr);
16430 
16431 	if (connp->conn_family == AF_INET)
16432 		addrlen = sizeof (sin_t);
16433 	else
16434 		addrlen = sizeof (sin6_t);
16435 
16436 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
16437 		mi_copy_done(q, mp, EINVAL);
16438 		return;
16439 	}
16440 
16441 	switch (iocp->ioc_cmd) {
16442 	case TI_GETMYNAME:
16443 		break;
16444 	case TI_GETPEERNAME:
16445 		if (tcp->tcp_state < TCPS_SYN_RCVD) {
16446 			mi_copy_done(q, mp, ENOTCONN);
16447 			return;
16448 		}
16449 		break;
16450 	}
16451 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
16452 	if (!mp1)
16453 		return;
16454 
16455 	STRUCT_FSET(sb, len, addrlen);
16456 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
16457 	case TI_GETMYNAME:
16458 		(void) conn_getsockname(connp, (struct sockaddr *)mp1->b_wptr,
16459 		    &addrlen);
16460 		break;
16461 	case TI_GETPEERNAME:
16462 		(void) conn_getpeername(connp, (struct sockaddr *)mp1->b_wptr,
16463 		    &addrlen);
16464 		break;
16465 	}
16466 	mp1->b_wptr += addrlen;
16467 	/* Copy out the address */
16468 	mi_copyout(q, mp);
16469 }
16470 
16471 static void
16472 tcp_use_pure_tpi(tcp_t *tcp)
16473 {
16474 	conn_t		*connp = tcp->tcp_connp;
16475 
16476 #ifdef	_ILP32
16477 	tcp->tcp_acceptor_id = (t_uscalar_t)connp->conn_rq;
16478 #else
16479 	tcp->tcp_acceptor_id = connp->conn_dev;
16480 #endif
16481 	/*
16482 	 * Insert this socket into the acceptor hash.
16483 	 * We might need it for T_CONN_RES message
16484 	 */
16485 	tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
16486 
16487 	tcp->tcp_issocket = B_FALSE;
16488 	TCP_STAT(tcp->tcp_tcps, tcp_sock_fallback);
16489 }
16490 
16491 /*
16492  * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL
16493  * messages.
16494  */
16495 /* ARGSUSED */
16496 static void
16497 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
16498 {
16499 	conn_t 		*connp = (conn_t *)arg;
16500 	tcp_t		*tcp = connp->conn_tcp;
16501 	queue_t		*q = connp->conn_wq;
16502 	struct iocblk	*iocp;
16503 
16504 	ASSERT(DB_TYPE(mp) == M_IOCTL);
16505 	/*
16506 	 * Try and ASSERT the minimum possible references on the
16507 	 * conn early enough. Since we are executing on write side,
16508 	 * the connection is obviously not detached and that means
16509 	 * there is a ref each for TCP and IP. Since we are behind
16510 	 * the squeue, the minimum references needed are 3. If the
16511 	 * conn is in classifier hash list, there should be an
16512 	 * extra ref for that (we check both the possibilities).
16513 	 */
16514 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
16515 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
16516 
16517 	iocp = (struct iocblk *)mp->b_rptr;
16518 	switch (iocp->ioc_cmd) {
16519 	case _SIOCSOCKFALLBACK:
16520 		/*
16521 		 * Either sockmod is about to be popped and the socket
16522 		 * would now be treated as a plain stream, or a module
16523 		 * is about to be pushed so we could no longer use read-
16524 		 * side synchronous streams for fused loopback tcp.
16525 		 * Drain any queued data and disable direct sockfs
16526 		 * interface from now on.
16527 		 */
16528 		if (!tcp->tcp_issocket) {
16529 			DB_TYPE(mp) = M_IOCNAK;
16530 			iocp->ioc_error = EINVAL;
16531 		} else {
16532 			tcp_use_pure_tpi(tcp);
16533 			DB_TYPE(mp) = M_IOCACK;
16534 			iocp->ioc_error = 0;
16535 		}
16536 		iocp->ioc_count = 0;
16537 		iocp->ioc_rval = 0;
16538 		qreply(q, mp);
16539 		return;
16540 	}
16541 	ip_wput_nondata(q, mp);
16542 }
16543 
16544 /*
16545  * This routine is called by tcp_wput() to handle all TPI requests.
16546  */
16547 /* ARGSUSED */
16548 static void
16549 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
16550 {
16551 	conn_t		*connp = (conn_t *)arg;
16552 	tcp_t		*tcp = connp->conn_tcp;
16553 	union T_primitives *tprim = (union T_primitives *)mp->b_rptr;
16554 	uchar_t		*rptr;
16555 	t_scalar_t	type;
16556 	cred_t		*cr;
16557 
16558 	/*
16559 	 * Try and ASSERT the minimum possible references on the
16560 	 * conn early enough. Since we are executing on write side,
16561 	 * the connection is obviously not detached and that means
16562 	 * there is a ref each for TCP and IP. Since we are behind
16563 	 * the squeue, the minimum references needed are 3. If the
16564 	 * conn is in classifier hash list, there should be an
16565 	 * extra ref for that (we check both the possibilities).
16566 	 */
16567 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
16568 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
16569 
16570 	rptr = mp->b_rptr;
16571 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
16572 	if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
16573 		type = ((union T_primitives *)rptr)->type;
16574 		if (type == T_EXDATA_REQ) {
16575 			tcp_output_urgent(connp, mp, arg2, NULL);
16576 		} else if (type != T_DATA_REQ) {
16577 			goto non_urgent_data;
16578 		} else {
16579 			/* TODO: options, flags, ... from user */
16580 			/* Set length to zero for reclamation below */
16581 			tcp_wput_data(tcp, mp->b_cont, B_TRUE);
16582 			freeb(mp);
16583 		}
16584 		return;
16585 	} else {
16586 		if (connp->conn_debug) {
16587 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
16588 			    "tcp_wput_proto, dropping one...");
16589 		}
16590 		freemsg(mp);
16591 		return;
16592 	}
16593 
16594 non_urgent_data:
16595 
16596 	switch ((int)tprim->type) {
16597 	case T_SSL_PROXY_BIND_REQ:	/* an SSL proxy endpoint bind request */
16598 		/*
16599 		 * save the kssl_ent_t from the next block, and convert this
16600 		 * back to a normal bind_req.
16601 		 */
16602 		if (mp->b_cont != NULL) {
16603 			ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t));
16604 
16605 			if (tcp->tcp_kssl_ent != NULL) {
16606 				kssl_release_ent(tcp->tcp_kssl_ent, NULL,
16607 				    KSSL_NO_PROXY);
16608 				tcp->tcp_kssl_ent = NULL;
16609 			}
16610 			bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent,
16611 			    sizeof (kssl_ent_t));
16612 			kssl_hold_ent(tcp->tcp_kssl_ent);
16613 			freemsg(mp->b_cont);
16614 			mp->b_cont = NULL;
16615 		}
16616 		tprim->type = T_BIND_REQ;
16617 
16618 	/* FALLTHROUGH */
16619 	case O_T_BIND_REQ:	/* bind request */
16620 	case T_BIND_REQ:	/* new semantics bind request */
16621 		tcp_tpi_bind(tcp, mp);
16622 		break;
16623 	case T_UNBIND_REQ:	/* unbind request */
16624 		tcp_tpi_unbind(tcp, mp);
16625 		break;
16626 	case O_T_CONN_RES:	/* old connection response XXX */
16627 	case T_CONN_RES:	/* connection response */
16628 		tcp_tli_accept(tcp, mp);
16629 		break;
16630 	case T_CONN_REQ:	/* connection request */
16631 		tcp_tpi_connect(tcp, mp);
16632 		break;
16633 	case T_DISCON_REQ:	/* disconnect request */
16634 		tcp_disconnect(tcp, mp);
16635 		break;
16636 	case T_CAPABILITY_REQ:
16637 		tcp_capability_req(tcp, mp);	/* capability request */
16638 		break;
16639 	case T_INFO_REQ:	/* information request */
16640 		tcp_info_req(tcp, mp);
16641 		break;
16642 	case T_SVR4_OPTMGMT_REQ:	/* manage options req */
16643 	case T_OPTMGMT_REQ:
16644 		/*
16645 		 * Note:  no support for snmpcom_req() through new
16646 		 * T_OPTMGMT_REQ. See comments in ip.c
16647 		 */
16648 
16649 		/*
16650 		 * All Solaris components should pass a db_credp
16651 		 * for this TPI message, hence we ASSERT.
16652 		 * But in case there is some other M_PROTO that looks
16653 		 * like a TPI message sent by some other kernel
16654 		 * component, we check and return an error.
16655 		 */
16656 		cr = msg_getcred(mp, NULL);
16657 		ASSERT(cr != NULL);
16658 		if (cr == NULL) {
16659 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
16660 			return;
16661 		}
16662 		/*
16663 		 * If EINPROGRESS is returned, the request has been queued
16664 		 * for subsequent processing by ip_restart_optmgmt(), which
16665 		 * will do the CONN_DEC_REF().
16666 		 */
16667 		if ((int)tprim->type == T_SVR4_OPTMGMT_REQ) {
16668 			svr4_optcom_req(connp->conn_wq, mp, cr, &tcp_opt_obj);
16669 		} else {
16670 			tpi_optcom_req(connp->conn_wq, mp, cr, &tcp_opt_obj);
16671 		}
16672 		break;
16673 
16674 	case T_UNITDATA_REQ:	/* unitdata request */
16675 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
16676 		break;
16677 	case T_ORDREL_REQ:	/* orderly release req */
16678 		freemsg(mp);
16679 
16680 		if (tcp->tcp_fused)
16681 			tcp_unfuse(tcp);
16682 
16683 		if (tcp_xmit_end(tcp) != 0) {
16684 			/*
16685 			 * We were crossing FINs and got a reset from
16686 			 * the other side. Just ignore it.
16687 			 */
16688 			if (connp->conn_debug) {
16689 				(void) strlog(TCP_MOD_ID, 0, 1,
16690 				    SL_ERROR|SL_TRACE,
16691 				    "tcp_wput_proto, T_ORDREL_REQ out of "
16692 				    "state %s",
16693 				    tcp_display(tcp, NULL,
16694 				    DISP_ADDR_AND_PORT));
16695 			}
16696 		}
16697 		break;
16698 	case T_ADDR_REQ:
16699 		tcp_addr_req(tcp, mp);
16700 		break;
16701 	default:
16702 		if (connp->conn_debug) {
16703 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
16704 			    "tcp_wput_proto, bogus TPI msg, type %d",
16705 			    tprim->type);
16706 		}
16707 		/*
16708 		 * We used to M_ERROR.  Sending TNOTSUPPORT gives the user
16709 		 * to recover.
16710 		 */
16711 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
16712 		break;
16713 	}
16714 }
16715 
16716 /*
16717  * The TCP write service routine should never be called...
16718  */
16719 /* ARGSUSED */
16720 static void
16721 tcp_wsrv(queue_t *q)
16722 {
16723 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
16724 
16725 	TCP_STAT(tcps, tcp_wsrv_called);
16726 }
16727 
16728 /*
16729  * Send out a control packet on the tcp connection specified.  This routine
16730  * is typically called where we need a simple ACK or RST generated.
16731  */
16732 static void
16733 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl)
16734 {
16735 	uchar_t		*rptr;
16736 	tcpha_t		*tcpha;
16737 	ipha_t		*ipha = NULL;
16738 	ip6_t		*ip6h = NULL;
16739 	uint32_t	sum;
16740 	int		total_hdr_len;
16741 	int		ip_hdr_len;
16742 	mblk_t		*mp;
16743 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16744 	conn_t		*connp = tcp->tcp_connp;
16745 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
16746 
16747 	/*
16748 	 * Save sum for use in source route later.
16749 	 */
16750 	sum = connp->conn_ht_ulp_len + connp->conn_sum;
16751 	total_hdr_len = connp->conn_ht_iphc_len;
16752 	ip_hdr_len = ixa->ixa_ip_hdr_length;
16753 
16754 	/* If a text string is passed in with the request, pass it to strlog. */
16755 	if (str != NULL && connp->conn_debug) {
16756 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
16757 		    "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x",
16758 		    str, seq, ack, ctl);
16759 	}
16760 	mp = allocb(connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra,
16761 	    BPRI_MED);
16762 	if (mp == NULL) {
16763 		return;
16764 	}
16765 	rptr = &mp->b_rptr[tcps->tcps_wroff_xtra];
16766 	mp->b_rptr = rptr;
16767 	mp->b_wptr = &rptr[total_hdr_len];
16768 	bcopy(connp->conn_ht_iphc, rptr, total_hdr_len);
16769 
16770 	ixa->ixa_pktlen = total_hdr_len;
16771 
16772 	if (ixa->ixa_flags & IXAF_IS_IPV4) {
16773 		ipha = (ipha_t *)rptr;
16774 		ipha->ipha_length = htons(total_hdr_len);
16775 	} else {
16776 		ip6h = (ip6_t *)rptr;
16777 		ip6h->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN);
16778 	}
16779 	tcpha = (tcpha_t *)&rptr[ip_hdr_len];
16780 	tcpha->tha_flags = (uint8_t)ctl;
16781 	if (ctl & TH_RST) {
16782 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
16783 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
16784 		/*
16785 		 * Don't send TSopt w/ TH_RST packets per RFC 1323.
16786 		 */
16787 		if (tcp->tcp_snd_ts_ok &&
16788 		    tcp->tcp_state > TCPS_SYN_SENT) {
16789 			mp->b_wptr = &rptr[total_hdr_len - TCPOPT_REAL_TS_LEN];
16790 			*(mp->b_wptr) = TCPOPT_EOL;
16791 
16792 			ixa->ixa_pktlen = total_hdr_len - TCPOPT_REAL_TS_LEN;
16793 
16794 			if (connp->conn_ipversion == IPV4_VERSION) {
16795 				ipha->ipha_length = htons(total_hdr_len -
16796 				    TCPOPT_REAL_TS_LEN);
16797 			} else {
16798 				ip6h->ip6_plen = htons(total_hdr_len -
16799 				    IPV6_HDR_LEN - TCPOPT_REAL_TS_LEN);
16800 			}
16801 			tcpha->tha_offset_and_reserved -= (3 << 4);
16802 			sum -= TCPOPT_REAL_TS_LEN;
16803 		}
16804 	}
16805 	if (ctl & TH_ACK) {
16806 		if (tcp->tcp_snd_ts_ok) {
16807 			uint32_t llbolt = (uint32_t)ddi_get_lbolt();
16808 
16809 			U32_TO_BE32(llbolt,
16810 			    (char *)tcpha + TCP_MIN_HEADER_LENGTH+4);
16811 			U32_TO_BE32(tcp->tcp_ts_recent,
16812 			    (char *)tcpha + TCP_MIN_HEADER_LENGTH+8);
16813 		}
16814 
16815 		/* Update the latest receive window size in TCP header. */
16816 		tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
16817 		tcp->tcp_rack = ack;
16818 		tcp->tcp_rack_cnt = 0;
16819 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
16820 	}
16821 	BUMP_LOCAL(tcp->tcp_obsegs);
16822 	tcpha->tha_seq = htonl(seq);
16823 	tcpha->tha_ack = htonl(ack);
16824 	/*
16825 	 * Include the adjustment for a source route if any.
16826 	 */
16827 	sum = (sum >> 16) + (sum & 0xFFFF);
16828 	tcpha->tha_sum = htons(sum);
16829 	tcp_send_data(tcp, mp);
16830 }
16831 
16832 /*
16833  * If this routine returns B_TRUE, TCP can generate a RST in response
16834  * to a segment.  If it returns B_FALSE, TCP should not respond.
16835  */
16836 static boolean_t
16837 tcp_send_rst_chk(tcp_stack_t *tcps)
16838 {
16839 	clock_t	now;
16840 
16841 	/*
16842 	 * TCP needs to protect itself from generating too many RSTs.
16843 	 * This can be a DoS attack by sending us random segments
16844 	 * soliciting RSTs.
16845 	 *
16846 	 * What we do here is to have a limit of tcp_rst_sent_rate RSTs
16847 	 * in each 1 second interval.  In this way, TCP still generate
16848 	 * RSTs in normal cases but when under attack, the impact is
16849 	 * limited.
16850 	 */
16851 	if (tcps->tcps_rst_sent_rate_enabled != 0) {
16852 		now = ddi_get_lbolt();
16853 		/* lbolt can wrap around. */
16854 		if ((tcps->tcps_last_rst_intrvl > now) ||
16855 		    (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) >
16856 		    1*SECONDS)) {
16857 			tcps->tcps_last_rst_intrvl = now;
16858 			tcps->tcps_rst_cnt = 1;
16859 		} else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) {
16860 			return (B_FALSE);
16861 		}
16862 	}
16863 	return (B_TRUE);
16864 }
16865 
16866 /*
16867  * Generate a reset based on an inbound packet, connp is set by caller
16868  * when RST is in response to an unexpected inbound packet for which
16869  * there is active tcp state in the system.
16870  *
16871  * IPSEC NOTE : Try to send the reply with the same protection as it came
16872  * in.  We have the ip_recv_attr_t which is reversed to form the ip_xmit_attr_t.
16873  * That way the packet will go out at the same level of protection as it
16874  * came in with.
16875  */
16876 static void
16877 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, uint32_t ack, int ctl,
16878     ip_recv_attr_t *ira, ip_stack_t *ipst, conn_t *connp)
16879 {
16880 	ipha_t		*ipha = NULL;
16881 	ip6_t		*ip6h = NULL;
16882 	ushort_t	len;
16883 	tcpha_t		*tcpha;
16884 	int		i;
16885 	ipaddr_t	v4addr;
16886 	in6_addr_t	v6addr;
16887 	netstack_t	*ns = ipst->ips_netstack;
16888 	tcp_stack_t	*tcps = ns->netstack_tcp;
16889 	ip_xmit_attr_t	ixas, *ixa;
16890 	uint_t		ip_hdr_len = ira->ira_ip_hdr_length;
16891 	boolean_t	need_refrele = B_FALSE;		/* ixa_refrele(ixa) */
16892 	ushort_t	port;
16893 
16894 	if (!tcp_send_rst_chk(tcps)) {
16895 		tcps->tcps_rst_unsent++;
16896 		freemsg(mp);
16897 		return;
16898 	}
16899 
16900 	/*
16901 	 * If connp != NULL we use conn_ixa to keep IP_NEXTHOP and other
16902 	 * options from the listener. In that case the caller must ensure that
16903 	 * we are running on the listener = connp squeue.
16904 	 *
16905 	 * We get a safe copy of conn_ixa so we don't need to restore anything
16906 	 * we or ip_output_simple might change in the ixa.
16907 	 */
16908 	if (connp != NULL) {
16909 		ASSERT(connp->conn_on_sqp);
16910 
16911 		ixa = conn_get_ixa_exclusive(connp);
16912 		if (ixa == NULL) {
16913 			tcps->tcps_rst_unsent++;
16914 			freemsg(mp);
16915 			return;
16916 		}
16917 		need_refrele = B_TRUE;
16918 	} else {
16919 		bzero(&ixas, sizeof (ixas));
16920 		ixa = &ixas;
16921 		/*
16922 		 * IXAF_VERIFY_SOURCE is overkill since we know the
16923 		 * packet was for us.
16924 		 */
16925 		ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE;
16926 		ixa->ixa_protocol = IPPROTO_TCP;
16927 		ixa->ixa_zoneid = ira->ira_zoneid;
16928 		ixa->ixa_ifindex = 0;
16929 		ixa->ixa_ipst = ipst;
16930 		ixa->ixa_cred = kcred;
16931 		ixa->ixa_cpid = NOPID;
16932 	}
16933 
16934 	if (str && tcps->tcps_dbg) {
16935 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
16936 		    "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, "
16937 		    "flags 0x%x",
16938 		    str, seq, ack, ctl);
16939 	}
16940 	if (mp->b_datap->db_ref != 1) {
16941 		mblk_t *mp1 = copyb(mp);
16942 		freemsg(mp);
16943 		mp = mp1;
16944 		if (mp == NULL)
16945 			goto done;
16946 	} else if (mp->b_cont) {
16947 		freemsg(mp->b_cont);
16948 		mp->b_cont = NULL;
16949 		DB_CKSUMFLAGS(mp) = 0;
16950 	}
16951 	/*
16952 	 * We skip reversing source route here.
16953 	 * (for now we replace all IP options with EOL)
16954 	 */
16955 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
16956 		ipha = (ipha_t *)mp->b_rptr;
16957 		for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++)
16958 			mp->b_rptr[i] = IPOPT_EOL;
16959 		/*
16960 		 * Make sure that src address isn't flagrantly invalid.
16961 		 * Not all broadcast address checking for the src address
16962 		 * is possible, since we don't know the netmask of the src
16963 		 * addr.  No check for destination address is done, since
16964 		 * IP will not pass up a packet with a broadcast dest
16965 		 * address to TCP.  Similar checks are done below for IPv6.
16966 		 */
16967 		if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST ||
16968 		    CLASSD(ipha->ipha_src)) {
16969 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
16970 			ip_drop_input("ipIfStatsInDiscards", mp, NULL);
16971 			freemsg(mp);
16972 			goto done;
16973 		}
16974 	} else {
16975 		ip6h = (ip6_t *)mp->b_rptr;
16976 
16977 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) ||
16978 		    IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) {
16979 			BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards);
16980 			ip_drop_input("ipIfStatsInDiscards", mp, NULL);
16981 			freemsg(mp);
16982 			goto done;
16983 		}
16984 
16985 		/* Remove any extension headers assuming partial overlay */
16986 		if (ip_hdr_len > IPV6_HDR_LEN) {
16987 			uint8_t *to;
16988 
16989 			to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN;
16990 			ovbcopy(ip6h, to, IPV6_HDR_LEN);
16991 			mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN;
16992 			ip_hdr_len = IPV6_HDR_LEN;
16993 			ip6h = (ip6_t *)mp->b_rptr;
16994 			ip6h->ip6_nxt = IPPROTO_TCP;
16995 		}
16996 	}
16997 	tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len];
16998 	if (tcpha->tha_flags & TH_RST) {
16999 		freemsg(mp);
17000 		goto done;
17001 	}
17002 	tcpha->tha_offset_and_reserved = (5 << 4);
17003 	len = ip_hdr_len + sizeof (tcpha_t);
17004 	mp->b_wptr = &mp->b_rptr[len];
17005 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
17006 		ipha->ipha_length = htons(len);
17007 		/* Swap addresses */
17008 		v4addr = ipha->ipha_src;
17009 		ipha->ipha_src = ipha->ipha_dst;
17010 		ipha->ipha_dst = v4addr;
17011 		ipha->ipha_ident = 0;
17012 		ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
17013 		ixa->ixa_flags |= IXAF_IS_IPV4;
17014 		ixa->ixa_ip_hdr_length = ip_hdr_len;
17015 	} else {
17016 		ip6h->ip6_plen = htons(len - IPV6_HDR_LEN);
17017 		/* Swap addresses */
17018 		v6addr = ip6h->ip6_src;
17019 		ip6h->ip6_src = ip6h->ip6_dst;
17020 		ip6h->ip6_dst = v6addr;
17021 		ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit;
17022 		ixa->ixa_flags &= ~IXAF_IS_IPV4;
17023 
17024 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_dst)) {
17025 			ixa->ixa_flags |= IXAF_SCOPEID_SET;
17026 			ixa->ixa_scopeid = ira->ira_ruifindex;
17027 		}
17028 		ixa->ixa_ip_hdr_length = IPV6_HDR_LEN;
17029 	}
17030 	ixa->ixa_pktlen = len;
17031 
17032 	/* Swap the ports */
17033 	port = tcpha->tha_fport;
17034 	tcpha->tha_fport = tcpha->tha_lport;
17035 	tcpha->tha_lport = port;
17036 
17037 	tcpha->tha_ack = htonl(ack);
17038 	tcpha->tha_seq = htonl(seq);
17039 	tcpha->tha_win = 0;
17040 	tcpha->tha_sum = htons(sizeof (tcpha_t));
17041 	tcpha->tha_flags = (uint8_t)ctl;
17042 	if (ctl & TH_RST) {
17043 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
17044 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
17045 	}
17046 
17047 	/* Discard any old label */
17048 	if (ixa->ixa_free_flags & IXA_FREE_TSL) {
17049 		ASSERT(ixa->ixa_tsl != NULL);
17050 		label_rele(ixa->ixa_tsl);
17051 		ixa->ixa_free_flags &= ~IXA_FREE_TSL;
17052 	}
17053 	ixa->ixa_tsl = ira->ira_tsl;	/* Behave as a multi-level responder */
17054 
17055 	if (ira->ira_flags & IRAF_IPSEC_SECURE) {
17056 		/*
17057 		 * Apply IPsec based on how IPsec was applied to
17058 		 * the packet that caused the RST.
17059 		 */
17060 		if (!ipsec_in_to_out(ira, ixa, mp, ipha, ip6h)) {
17061 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
17062 			/* Note: mp already consumed and ip_drop_packet done */
17063 			goto done;
17064 		}
17065 	} else {
17066 		/*
17067 		 * This is in clear. The RST message we are building
17068 		 * here should go out in clear, independent of our policy.
17069 		 */
17070 		ixa->ixa_flags |= IXAF_NO_IPSEC;
17071 	}
17072 
17073 	/*
17074 	 * NOTE:  one might consider tracing a TCP packet here, but
17075 	 * this function has no active TCP state and no tcp structure
17076 	 * that has a trace buffer.  If we traced here, we would have
17077 	 * to keep a local trace buffer in tcp_record_trace().
17078 	 */
17079 
17080 	(void) ip_output_simple(mp, ixa);
17081 done:
17082 	ixa_cleanup(ixa);
17083 	if (need_refrele) {
17084 		ASSERT(ixa != &ixas);
17085 		ixa_refrele(ixa);
17086 	}
17087 }
17088 
17089 /*
17090  * Initiate closedown sequence on an active connection.  (May be called as
17091  * writer.)  Return value zero for OK return, non-zero for error return.
17092  */
17093 static int
17094 tcp_xmit_end(tcp_t *tcp)
17095 {
17096 	mblk_t		*mp;
17097 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17098 	iulp_t		uinfo;
17099 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
17100 	conn_t		*connp = tcp->tcp_connp;
17101 
17102 	if (tcp->tcp_state < TCPS_SYN_RCVD ||
17103 	    tcp->tcp_state > TCPS_CLOSE_WAIT) {
17104 		/*
17105 		 * Invalid state, only states TCPS_SYN_RCVD,
17106 		 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid
17107 		 */
17108 		return (-1);
17109 	}
17110 
17111 	tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent;
17112 	tcp->tcp_valid_bits |= TCP_FSS_VALID;
17113 	/*
17114 	 * If there is nothing more unsent, send the FIN now.
17115 	 * Otherwise, it will go out with the last segment.
17116 	 */
17117 	if (tcp->tcp_unsent == 0) {
17118 		mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
17119 		    tcp->tcp_fss, B_FALSE, NULL, B_FALSE);
17120 
17121 		if (mp) {
17122 			tcp_send_data(tcp, mp);
17123 		} else {
17124 			/*
17125 			 * Couldn't allocate msg.  Pretend we got it out.
17126 			 * Wait for rexmit timeout.
17127 			 */
17128 			tcp->tcp_snxt = tcp->tcp_fss + 1;
17129 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
17130 		}
17131 
17132 		/*
17133 		 * If needed, update tcp_rexmit_snxt as tcp_snxt is
17134 		 * changed.
17135 		 */
17136 		if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) {
17137 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
17138 		}
17139 	} else {
17140 		/*
17141 		 * If tcp->tcp_cork is set, then the data will not get sent,
17142 		 * so we have to check that and unset it first.
17143 		 */
17144 		if (tcp->tcp_cork)
17145 			tcp->tcp_cork = B_FALSE;
17146 		tcp_wput_data(tcp, NULL, B_FALSE);
17147 	}
17148 
17149 	/*
17150 	 * If TCP does not get enough samples of RTT or tcp_rtt_updates
17151 	 * is 0, don't update the cache.
17152 	 */
17153 	if (tcps->tcps_rtt_updates == 0 ||
17154 	    tcp->tcp_rtt_update < tcps->tcps_rtt_updates)
17155 		return (0);
17156 
17157 	/*
17158 	 * We do not have a good algorithm to update ssthresh at this time.
17159 	 * So don't do any update.
17160 	 */
17161 	bzero(&uinfo, sizeof (uinfo));
17162 	uinfo.iulp_rtt = tcp->tcp_rtt_sa;
17163 	uinfo.iulp_rtt_sd = tcp->tcp_rtt_sd;
17164 
17165 	/*
17166 	 * Note that uinfo is kept for conn_faddr in the DCE. Could update even
17167 	 * if source routed but we don't.
17168 	 */
17169 	if (connp->conn_ipversion == IPV4_VERSION) {
17170 		if (connp->conn_faddr_v4 !=  tcp->tcp_ipha->ipha_dst) {
17171 			return (0);
17172 		}
17173 		(void) dce_update_uinfo_v4(connp->conn_faddr_v4, &uinfo, ipst);
17174 	} else {
17175 		uint_t ifindex;
17176 
17177 		if (!(IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6,
17178 		    &tcp->tcp_ip6h->ip6_dst))) {
17179 			return (0);
17180 		}
17181 		ifindex = 0;
17182 		if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_faddr_v6)) {
17183 			ip_xmit_attr_t *ixa = connp->conn_ixa;
17184 
17185 			/*
17186 			 * If we are going to create a DCE we'd better have
17187 			 * an ifindex
17188 			 */
17189 			if (ixa->ixa_nce != NULL) {
17190 				ifindex = ixa->ixa_nce->nce_common->ncec_ill->
17191 				    ill_phyint->phyint_ifindex;
17192 			} else {
17193 				return (0);
17194 			}
17195 		}
17196 
17197 		(void) dce_update_uinfo(&connp->conn_faddr_v6, ifindex, &uinfo,
17198 		    ipst);
17199 	}
17200 	return (0);
17201 }
17202 
17203 /*
17204  * Generate a "no listener here" RST in response to an "unknown" segment.
17205  * connp is set by caller when RST is in response to an unexpected
17206  * inbound packet for which there is active tcp state in the system.
17207  * Note that we are reusing the incoming mp to construct the outgoing RST.
17208  */
17209 void
17210 tcp_xmit_listeners_reset(mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst,
17211     conn_t *connp)
17212 {
17213 	uchar_t		*rptr;
17214 	uint32_t	seg_len;
17215 	tcpha_t		*tcpha;
17216 	uint32_t	seg_seq;
17217 	uint32_t	seg_ack;
17218 	uint_t		flags;
17219 	ipha_t 		*ipha;
17220 	ip6_t 		*ip6h;
17221 	boolean_t	policy_present;
17222 	netstack_t	*ns = ipst->ips_netstack;
17223 	tcp_stack_t	*tcps = ns->netstack_tcp;
17224 	ipsec_stack_t	*ipss = tcps->tcps_netstack->netstack_ipsec;
17225 	uint_t		ip_hdr_len = ira->ira_ip_hdr_length;
17226 
17227 	TCP_STAT(tcps, tcp_no_listener);
17228 
17229 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
17230 		policy_present = ipss->ipsec_inbound_v4_policy_present;
17231 		ipha = (ipha_t *)mp->b_rptr;
17232 		ip6h = NULL;
17233 	} else {
17234 		policy_present = ipss->ipsec_inbound_v6_policy_present;
17235 		ipha = NULL;
17236 		ip6h = (ip6_t *)mp->b_rptr;
17237 	}
17238 
17239 	if (policy_present) {
17240 		/*
17241 		 * The conn_t parameter is NULL because we already know
17242 		 * nobody's home.
17243 		 */
17244 		mp = ipsec_check_global_policy(mp, (conn_t *)NULL, ipha, ip6h,
17245 		    ira, ns);
17246 		if (mp == NULL)
17247 			return;
17248 	}
17249 	if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) {
17250 		DTRACE_PROBE2(
17251 		    tx__ip__log__error__nolistener__tcp,
17252 		    char *, "Could not reply with RST to mp(1)",
17253 		    mblk_t *, mp);
17254 		ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n"));
17255 		freemsg(mp);
17256 		return;
17257 	}
17258 
17259 	rptr = mp->b_rptr;
17260 
17261 	tcpha = (tcpha_t *)&rptr[ip_hdr_len];
17262 	seg_seq = ntohl(tcpha->tha_seq);
17263 	seg_ack = ntohl(tcpha->tha_ack);
17264 	flags = tcpha->tha_flags;
17265 
17266 	seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcpha) + ip_hdr_len);
17267 	if (flags & TH_RST) {
17268 		freemsg(mp);
17269 	} else if (flags & TH_ACK) {
17270 		tcp_xmit_early_reset("no tcp, reset", mp, seg_ack, 0, TH_RST,
17271 		    ira, ipst, connp);
17272 	} else {
17273 		if (flags & TH_SYN) {
17274 			seg_len++;
17275 		} else {
17276 			/*
17277 			 * Here we violate the RFC.  Note that a normal
17278 			 * TCP will never send a segment without the ACK
17279 			 * flag, except for RST or SYN segment.  This
17280 			 * segment is neither.  Just drop it on the
17281 			 * floor.
17282 			 */
17283 			freemsg(mp);
17284 			tcps->tcps_rst_unsent++;
17285 			return;
17286 		}
17287 
17288 		tcp_xmit_early_reset("no tcp, reset/ack", mp, 0,
17289 		    seg_seq + seg_len, TH_RST | TH_ACK, ira, ipst, connp);
17290 	}
17291 }
17292 
17293 /*
17294  * tcp_xmit_mp is called to return a pointer to an mblk chain complete with
17295  * ip and tcp header ready to pass down to IP.  If the mp passed in is
17296  * non-NULL, then up to max_to_send bytes of data will be dup'ed off that
17297  * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary
17298  * otherwise it will dup partial mblks.)
17299  * Otherwise, an appropriate ACK packet will be generated.  This
17300  * routine is not usually called to send new data for the first time.  It
17301  * is mostly called out of the timer for retransmits, and to generate ACKs.
17302  *
17303  * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will
17304  * be adjusted by *offset.  And after dupb(), the offset and the ending mblk
17305  * of the original mblk chain will be returned in *offset and *end_mp.
17306  */
17307 mblk_t *
17308 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset,
17309     mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len,
17310     boolean_t rexmit)
17311 {
17312 	int	data_length;
17313 	int32_t	off = 0;
17314 	uint_t	flags;
17315 	mblk_t	*mp1;
17316 	mblk_t	*mp2;
17317 	uchar_t	*rptr;
17318 	tcpha_t	*tcpha;
17319 	int32_t	num_sack_blk = 0;
17320 	int32_t	sack_opt_len = 0;
17321 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17322 	conn_t		*connp = tcp->tcp_connp;
17323 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
17324 
17325 	/* Allocate for our maximum TCP header + link-level */
17326 	mp1 = allocb(connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra,
17327 	    BPRI_MED);
17328 	if (!mp1)
17329 		return (NULL);
17330 	data_length = 0;
17331 
17332 	/*
17333 	 * Note that tcp_mss has been adjusted to take into account the
17334 	 * timestamp option if applicable.  Because SACK options do not
17335 	 * appear in every TCP segments and they are of variable lengths,
17336 	 * they cannot be included in tcp_mss.  Thus we need to calculate
17337 	 * the actual segment length when we need to send a segment which
17338 	 * includes SACK options.
17339 	 */
17340 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
17341 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
17342 		    tcp->tcp_num_sack_blk);
17343 		sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
17344 		    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
17345 		if (max_to_send + sack_opt_len > tcp->tcp_mss)
17346 			max_to_send -= sack_opt_len;
17347 	}
17348 
17349 	if (offset != NULL) {
17350 		off = *offset;
17351 		/* We use offset as an indicator that end_mp is not NULL. */
17352 		*end_mp = NULL;
17353 	}
17354 	for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) {
17355 		/* This could be faster with cooperation from downstream */
17356 		if (mp2 != mp1 && !sendall &&
17357 		    data_length + (int)(mp->b_wptr - mp->b_rptr) >
17358 		    max_to_send)
17359 			/*
17360 			 * Don't send the next mblk since the whole mblk
17361 			 * does not fit.
17362 			 */
17363 			break;
17364 		mp2->b_cont = dupb(mp);
17365 		mp2 = mp2->b_cont;
17366 		if (!mp2) {
17367 			freemsg(mp1);
17368 			return (NULL);
17369 		}
17370 		mp2->b_rptr += off;
17371 		ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
17372 		    (uintptr_t)INT_MAX);
17373 
17374 		data_length += (int)(mp2->b_wptr - mp2->b_rptr);
17375 		if (data_length > max_to_send) {
17376 			mp2->b_wptr -= data_length - max_to_send;
17377 			data_length = max_to_send;
17378 			off = mp2->b_wptr - mp->b_rptr;
17379 			break;
17380 		} else {
17381 			off = 0;
17382 		}
17383 	}
17384 	if (offset != NULL) {
17385 		*offset = off;
17386 		*end_mp = mp;
17387 	}
17388 	if (seg_len != NULL) {
17389 		*seg_len = data_length;
17390 	}
17391 
17392 	/* Update the latest receive window size in TCP header. */
17393 	tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
17394 
17395 	rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
17396 	mp1->b_rptr = rptr;
17397 	mp1->b_wptr = rptr + connp->conn_ht_iphc_len + sack_opt_len;
17398 	bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len);
17399 	tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length];
17400 	tcpha->tha_seq = htonl(seq);
17401 
17402 	/*
17403 	 * Use tcp_unsent to determine if the PUSH bit should be used assumes
17404 	 * that this function was called from tcp_wput_data. Thus, when called
17405 	 * to retransmit data the setting of the PUSH bit may appear some
17406 	 * what random in that it might get set when it should not. This
17407 	 * should not pose any performance issues.
17408 	 */
17409 	if (data_length != 0 && (tcp->tcp_unsent == 0 ||
17410 	    tcp->tcp_unsent == data_length)) {
17411 		flags = TH_ACK | TH_PUSH;
17412 	} else {
17413 		flags = TH_ACK;
17414 	}
17415 
17416 	if (tcp->tcp_ecn_ok) {
17417 		if (tcp->tcp_ecn_echo_on)
17418 			flags |= TH_ECE;
17419 
17420 		/*
17421 		 * Only set ECT bit and ECN_CWR if a segment contains new data.
17422 		 * There is no TCP flow control for non-data segments, and
17423 		 * only data segment is transmitted reliably.
17424 		 */
17425 		if (data_length > 0 && !rexmit) {
17426 			SET_ECT(tcp, rptr);
17427 			if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
17428 				flags |= TH_CWR;
17429 				tcp->tcp_ecn_cwr_sent = B_TRUE;
17430 			}
17431 		}
17432 	}
17433 
17434 	if (tcp->tcp_valid_bits) {
17435 		uint32_t u1;
17436 
17437 		if ((tcp->tcp_valid_bits & TCP_ISS_VALID) &&
17438 		    seq == tcp->tcp_iss) {
17439 			uchar_t	*wptr;
17440 
17441 			/*
17442 			 * If TCP_ISS_VALID and the seq number is tcp_iss,
17443 			 * TCP can only be in SYN-SENT, SYN-RCVD or
17444 			 * FIN-WAIT-1 state.  It can be FIN-WAIT-1 if
17445 			 * our SYN is not ack'ed but the app closes this
17446 			 * TCP connection.
17447 			 */
17448 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT ||
17449 			    tcp->tcp_state == TCPS_SYN_RCVD ||
17450 			    tcp->tcp_state == TCPS_FIN_WAIT_1);
17451 
17452 			/*
17453 			 * Tack on the MSS option.  It is always needed
17454 			 * for both active and passive open.
17455 			 *
17456 			 * MSS option value should be interface MTU - MIN
17457 			 * TCP/IP header according to RFC 793 as it means
17458 			 * the maximum segment size TCP can receive.  But
17459 			 * to get around some broken middle boxes/end hosts
17460 			 * out there, we allow the option value to be the
17461 			 * same as the MSS option size on the peer side.
17462 			 * In this way, the other side will not send
17463 			 * anything larger than they can receive.
17464 			 *
17465 			 * Note that for SYN_SENT state, the ndd param
17466 			 * tcp_use_smss_as_mss_opt has no effect as we
17467 			 * don't know the peer's MSS option value. So
17468 			 * the only case we need to take care of is in
17469 			 * SYN_RCVD state, which is done later.
17470 			 */
17471 			wptr = mp1->b_wptr;
17472 			wptr[0] = TCPOPT_MAXSEG;
17473 			wptr[1] = TCPOPT_MAXSEG_LEN;
17474 			wptr += 2;
17475 			u1 = tcp->tcp_initial_pmtu -
17476 			    (connp->conn_ipversion == IPV4_VERSION ?
17477 			    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) -
17478 			    TCP_MIN_HEADER_LENGTH;
17479 			U16_TO_BE16(u1, wptr);
17480 			mp1->b_wptr = wptr + 2;
17481 			/* Update the offset to cover the additional word */
17482 			tcpha->tha_offset_and_reserved += (1 << 4);
17483 
17484 			/*
17485 			 * Note that the following way of filling in
17486 			 * TCP options are not optimal.  Some NOPs can
17487 			 * be saved.  But there is no need at this time
17488 			 * to optimize it.  When it is needed, we will
17489 			 * do it.
17490 			 */
17491 			switch (tcp->tcp_state) {
17492 			case TCPS_SYN_SENT:
17493 				flags = TH_SYN;
17494 
17495 				if (tcp->tcp_snd_ts_ok) {
17496 					uint32_t llbolt =
17497 					    (uint32_t)ddi_get_lbolt();
17498 
17499 					wptr = mp1->b_wptr;
17500 					wptr[0] = TCPOPT_NOP;
17501 					wptr[1] = TCPOPT_NOP;
17502 					wptr[2] = TCPOPT_TSTAMP;
17503 					wptr[3] = TCPOPT_TSTAMP_LEN;
17504 					wptr += 4;
17505 					U32_TO_BE32(llbolt, wptr);
17506 					wptr += 4;
17507 					ASSERT(tcp->tcp_ts_recent == 0);
17508 					U32_TO_BE32(0L, wptr);
17509 					mp1->b_wptr += TCPOPT_REAL_TS_LEN;
17510 					tcpha->tha_offset_and_reserved +=
17511 					    (3 << 4);
17512 				}
17513 
17514 				/*
17515 				 * Set up all the bits to tell other side
17516 				 * we are ECN capable.
17517 				 */
17518 				if (tcp->tcp_ecn_ok) {
17519 					flags |= (TH_ECE | TH_CWR);
17520 				}
17521 				break;
17522 			case TCPS_SYN_RCVD:
17523 				flags |= TH_SYN;
17524 
17525 				/*
17526 				 * Reset the MSS option value to be SMSS
17527 				 * We should probably add back the bytes
17528 				 * for timestamp option and IPsec.  We
17529 				 * don't do that as this is a workaround
17530 				 * for broken middle boxes/end hosts, it
17531 				 * is better for us to be more cautious.
17532 				 * They may not take these things into
17533 				 * account in their SMSS calculation.  Thus
17534 				 * the peer's calculated SMSS may be smaller
17535 				 * than what it can be.  This should be OK.
17536 				 */
17537 				if (tcps->tcps_use_smss_as_mss_opt) {
17538 					u1 = tcp->tcp_mss;
17539 					U16_TO_BE16(u1, wptr);
17540 				}
17541 
17542 				/*
17543 				 * If the other side is ECN capable, reply
17544 				 * that we are also ECN capable.
17545 				 */
17546 				if (tcp->tcp_ecn_ok)
17547 					flags |= TH_ECE;
17548 				break;
17549 			default:
17550 				/*
17551 				 * The above ASSERT() makes sure that this
17552 				 * must be FIN-WAIT-1 state.  Our SYN has
17553 				 * not been ack'ed so retransmit it.
17554 				 */
17555 				flags |= TH_SYN;
17556 				break;
17557 			}
17558 
17559 			if (tcp->tcp_snd_ws_ok) {
17560 				wptr = mp1->b_wptr;
17561 				wptr[0] =  TCPOPT_NOP;
17562 				wptr[1] =  TCPOPT_WSCALE;
17563 				wptr[2] =  TCPOPT_WS_LEN;
17564 				wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
17565 				mp1->b_wptr += TCPOPT_REAL_WS_LEN;
17566 				tcpha->tha_offset_and_reserved += (1 << 4);
17567 			}
17568 
17569 			if (tcp->tcp_snd_sack_ok) {
17570 				wptr = mp1->b_wptr;
17571 				wptr[0] = TCPOPT_NOP;
17572 				wptr[1] = TCPOPT_NOP;
17573 				wptr[2] = TCPOPT_SACK_PERMITTED;
17574 				wptr[3] = TCPOPT_SACK_OK_LEN;
17575 				mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
17576 				tcpha->tha_offset_and_reserved += (1 << 4);
17577 			}
17578 
17579 			/* allocb() of adequate mblk assures space */
17580 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
17581 			    (uintptr_t)INT_MAX);
17582 			u1 = (int)(mp1->b_wptr - mp1->b_rptr);
17583 			/*
17584 			 * Get IP set to checksum on our behalf
17585 			 * Include the adjustment for a source route if any.
17586 			 */
17587 			u1 += connp->conn_sum;
17588 			u1 = (u1 >> 16) + (u1 & 0xFFFF);
17589 			tcpha->tha_sum = htons(u1);
17590 			BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
17591 		}
17592 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17593 		    (seq + data_length) == tcp->tcp_fss) {
17594 			if (!tcp->tcp_fin_acked) {
17595 				flags |= TH_FIN;
17596 				BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
17597 			}
17598 			if (!tcp->tcp_fin_sent) {
17599 				tcp->tcp_fin_sent = B_TRUE;
17600 				switch (tcp->tcp_state) {
17601 				case TCPS_SYN_RCVD:
17602 				case TCPS_ESTABLISHED:
17603 					tcp->tcp_state = TCPS_FIN_WAIT_1;
17604 					break;
17605 				case TCPS_CLOSE_WAIT:
17606 					tcp->tcp_state = TCPS_LAST_ACK;
17607 					break;
17608 				}
17609 				if (tcp->tcp_suna == tcp->tcp_snxt)
17610 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
17611 				tcp->tcp_snxt = tcp->tcp_fss + 1;
17612 			}
17613 		}
17614 		/*
17615 		 * Note the trick here.  u1 is unsigned.  When tcp_urg
17616 		 * is smaller than seq, u1 will become a very huge value.
17617 		 * So the comparison will fail.  Also note that tcp_urp
17618 		 * should be positive, see RFC 793 page 17.
17619 		 */
17620 		u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION;
17621 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 &&
17622 		    u1 < (uint32_t)(64 * 1024)) {
17623 			flags |= TH_URG;
17624 			BUMP_MIB(&tcps->tcps_mib, tcpOutUrg);
17625 			tcpha->tha_urp = htons(u1);
17626 		}
17627 	}
17628 	tcpha->tha_flags = (uchar_t)flags;
17629 	tcp->tcp_rack = tcp->tcp_rnxt;
17630 	tcp->tcp_rack_cnt = 0;
17631 
17632 	if (tcp->tcp_snd_ts_ok) {
17633 		if (tcp->tcp_state != TCPS_SYN_SENT) {
17634 			uint32_t llbolt = (uint32_t)ddi_get_lbolt();
17635 
17636 			U32_TO_BE32(llbolt,
17637 			    (char *)tcpha + TCP_MIN_HEADER_LENGTH+4);
17638 			U32_TO_BE32(tcp->tcp_ts_recent,
17639 			    (char *)tcpha + TCP_MIN_HEADER_LENGTH+8);
17640 		}
17641 	}
17642 
17643 	if (num_sack_blk > 0) {
17644 		uchar_t *wptr = (uchar_t *)tcpha + connp->conn_ht_ulp_len;
17645 		sack_blk_t *tmp;
17646 		int32_t	i;
17647 
17648 		wptr[0] = TCPOPT_NOP;
17649 		wptr[1] = TCPOPT_NOP;
17650 		wptr[2] = TCPOPT_SACK;
17651 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
17652 		    sizeof (sack_blk_t);
17653 		wptr += TCPOPT_REAL_SACK_LEN;
17654 
17655 		tmp = tcp->tcp_sack_list;
17656 		for (i = 0; i < num_sack_blk; i++) {
17657 			U32_TO_BE32(tmp[i].begin, wptr);
17658 			wptr += sizeof (tcp_seq);
17659 			U32_TO_BE32(tmp[i].end, wptr);
17660 			wptr += sizeof (tcp_seq);
17661 		}
17662 		tcpha->tha_offset_and_reserved += ((num_sack_blk * 2 + 1) << 4);
17663 	}
17664 	ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX);
17665 	data_length += (int)(mp1->b_wptr - rptr);
17666 
17667 	ixa->ixa_pktlen = data_length;
17668 
17669 	if (ixa->ixa_flags & IXAF_IS_IPV4) {
17670 		((ipha_t *)rptr)->ipha_length = htons(data_length);
17671 	} else {
17672 		ip6_t *ip6 = (ip6_t *)rptr;
17673 
17674 		ip6->ip6_plen = htons(data_length - IPV6_HDR_LEN);
17675 	}
17676 
17677 	/*
17678 	 * Prime pump for IP
17679 	 * Include the adjustment for a source route if any.
17680 	 */
17681 	data_length -= ixa->ixa_ip_hdr_length;
17682 	data_length += connp->conn_sum;
17683 	data_length = (data_length >> 16) + (data_length & 0xFFFF);
17684 	tcpha->tha_sum = htons(data_length);
17685 	if (tcp->tcp_ip_forward_progress) {
17686 		tcp->tcp_ip_forward_progress = B_FALSE;
17687 		connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF;
17688 	} else {
17689 		connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF;
17690 	}
17691 	return (mp1);
17692 }
17693 
17694 /* This function handles the push timeout. */
17695 void
17696 tcp_push_timer(void *arg)
17697 {
17698 	conn_t	*connp = (conn_t *)arg;
17699 	tcp_t *tcp = connp->conn_tcp;
17700 
17701 	TCP_DBGSTAT(tcp->tcp_tcps, tcp_push_timer_cnt);
17702 
17703 	ASSERT(tcp->tcp_listener == NULL);
17704 
17705 	ASSERT(!IPCL_IS_NONSTR(connp));
17706 
17707 	tcp->tcp_push_tid = 0;
17708 
17709 	if (tcp->tcp_rcv_list != NULL &&
17710 	    tcp_rcv_drain(tcp) == TH_ACK_NEEDED)
17711 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
17712 }
17713 
17714 /*
17715  * This function handles delayed ACK timeout.
17716  */
17717 static void
17718 tcp_ack_timer(void *arg)
17719 {
17720 	conn_t	*connp = (conn_t *)arg;
17721 	tcp_t *tcp = connp->conn_tcp;
17722 	mblk_t *mp;
17723 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17724 
17725 	TCP_DBGSTAT(tcps, tcp_ack_timer_cnt);
17726 
17727 	tcp->tcp_ack_tid = 0;
17728 
17729 	if (tcp->tcp_fused)
17730 		return;
17731 
17732 	/*
17733 	 * Do not send ACK if there is no outstanding unack'ed data.
17734 	 */
17735 	if (tcp->tcp_rnxt == tcp->tcp_rack) {
17736 		return;
17737 	}
17738 
17739 	if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) {
17740 		/*
17741 		 * Make sure we don't allow deferred ACKs to result in
17742 		 * timer-based ACKing.  If we have held off an ACK
17743 		 * when there was more than an mss here, and the timer
17744 		 * goes off, we have to worry about the possibility
17745 		 * that the sender isn't doing slow-start, or is out
17746 		 * of step with us for some other reason.  We fall
17747 		 * permanently back in the direction of
17748 		 * ACK-every-other-packet as suggested in RFC 1122.
17749 		 */
17750 		if (tcp->tcp_rack_abs_max > 2)
17751 			tcp->tcp_rack_abs_max--;
17752 		tcp->tcp_rack_cur_max = 2;
17753 	}
17754 	mp = tcp_ack_mp(tcp);
17755 
17756 	if (mp != NULL) {
17757 		BUMP_LOCAL(tcp->tcp_obsegs);
17758 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
17759 		BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed);
17760 		tcp_send_data(tcp, mp);
17761 	}
17762 }
17763 
17764 
17765 /* Generate an ACK-only (no data) segment for a TCP endpoint */
17766 static mblk_t *
17767 tcp_ack_mp(tcp_t *tcp)
17768 {
17769 	uint32_t	seq_no;
17770 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17771 	conn_t		*connp = tcp->tcp_connp;
17772 
17773 	/*
17774 	 * There are a few cases to be considered while setting the sequence no.
17775 	 * Essentially, we can come here while processing an unacceptable pkt
17776 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
17777 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
17778 	 * If we are here for a zero window probe, stick with suna. In all
17779 	 * other cases, we check if suna + swnd encompasses snxt and set
17780 	 * the sequence number to snxt, if so. If snxt falls outside the
17781 	 * window (the receiver probably shrunk its window), we will go with
17782 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
17783 	 * receiver.
17784 	 */
17785 	if (tcp->tcp_zero_win_probe) {
17786 		seq_no = tcp->tcp_suna;
17787 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
17788 		ASSERT(tcp->tcp_swnd == 0);
17789 		seq_no = tcp->tcp_snxt;
17790 	} else {
17791 		seq_no = SEQ_GT(tcp->tcp_snxt,
17792 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
17793 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
17794 	}
17795 
17796 	if (tcp->tcp_valid_bits) {
17797 		/*
17798 		 * For the complex case where we have to send some
17799 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
17800 		 */
17801 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
17802 		    NULL, B_FALSE));
17803 	} else {
17804 		/* Generate a simple ACK */
17805 		int	data_length;
17806 		uchar_t	*rptr;
17807 		tcpha_t	*tcpha;
17808 		mblk_t	*mp1;
17809 		int32_t	total_hdr_len;
17810 		int32_t	tcp_hdr_len;
17811 		int32_t	num_sack_blk = 0;
17812 		int32_t sack_opt_len;
17813 		ip_xmit_attr_t *ixa = connp->conn_ixa;
17814 
17815 		/*
17816 		 * Allocate space for TCP + IP headers
17817 		 * and link-level header
17818 		 */
17819 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
17820 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
17821 			    tcp->tcp_num_sack_blk);
17822 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
17823 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
17824 			total_hdr_len = connp->conn_ht_iphc_len + sack_opt_len;
17825 			tcp_hdr_len = connp->conn_ht_ulp_len + sack_opt_len;
17826 		} else {
17827 			total_hdr_len = connp->conn_ht_iphc_len;
17828 			tcp_hdr_len = connp->conn_ht_ulp_len;
17829 		}
17830 		mp1 = allocb(total_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED);
17831 		if (!mp1)
17832 			return (NULL);
17833 
17834 		/* Update the latest receive window size in TCP header. */
17835 		tcp->tcp_tcpha->tha_win =
17836 		    htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
17837 		/* copy in prototype TCP + IP header */
17838 		rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
17839 		mp1->b_rptr = rptr;
17840 		mp1->b_wptr = rptr + total_hdr_len;
17841 		bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len);
17842 
17843 		tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length];
17844 
17845 		/* Set the TCP sequence number. */
17846 		tcpha->tha_seq = htonl(seq_no);
17847 
17848 		/* Set up the TCP flag field. */
17849 		tcpha->tha_flags = (uchar_t)TH_ACK;
17850 		if (tcp->tcp_ecn_echo_on)
17851 			tcpha->tha_flags |= TH_ECE;
17852 
17853 		tcp->tcp_rack = tcp->tcp_rnxt;
17854 		tcp->tcp_rack_cnt = 0;
17855 
17856 		/* fill in timestamp option if in use */
17857 		if (tcp->tcp_snd_ts_ok) {
17858 			uint32_t llbolt = (uint32_t)LBOLT_FASTPATH;
17859 
17860 			U32_TO_BE32(llbolt,
17861 			    (char *)tcpha + TCP_MIN_HEADER_LENGTH+4);
17862 			U32_TO_BE32(tcp->tcp_ts_recent,
17863 			    (char *)tcpha + TCP_MIN_HEADER_LENGTH+8);
17864 		}
17865 
17866 		/* Fill in SACK options */
17867 		if (num_sack_blk > 0) {
17868 			uchar_t *wptr = (uchar_t *)tcpha +
17869 			    connp->conn_ht_ulp_len;
17870 			sack_blk_t *tmp;
17871 			int32_t	i;
17872 
17873 			wptr[0] = TCPOPT_NOP;
17874 			wptr[1] = TCPOPT_NOP;
17875 			wptr[2] = TCPOPT_SACK;
17876 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
17877 			    sizeof (sack_blk_t);
17878 			wptr += TCPOPT_REAL_SACK_LEN;
17879 
17880 			tmp = tcp->tcp_sack_list;
17881 			for (i = 0; i < num_sack_blk; i++) {
17882 				U32_TO_BE32(tmp[i].begin, wptr);
17883 				wptr += sizeof (tcp_seq);
17884 				U32_TO_BE32(tmp[i].end, wptr);
17885 				wptr += sizeof (tcp_seq);
17886 			}
17887 			tcpha->tha_offset_and_reserved +=
17888 			    ((num_sack_blk * 2 + 1) << 4);
17889 		}
17890 
17891 		ixa->ixa_pktlen = total_hdr_len;
17892 
17893 		if (ixa->ixa_flags & IXAF_IS_IPV4) {
17894 			((ipha_t *)rptr)->ipha_length = htons(total_hdr_len);
17895 		} else {
17896 			ip6_t *ip6 = (ip6_t *)rptr;
17897 
17898 			ip6->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN);
17899 		}
17900 
17901 		/*
17902 		 * Prime pump for checksum calculation in IP.  Include the
17903 		 * adjustment for a source route if any.
17904 		 */
17905 		data_length = tcp_hdr_len + connp->conn_sum;
17906 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
17907 		tcpha->tha_sum = htons(data_length);
17908 
17909 		if (tcp->tcp_ip_forward_progress) {
17910 			tcp->tcp_ip_forward_progress = B_FALSE;
17911 			connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF;
17912 		} else {
17913 			connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF;
17914 		}
17915 		return (mp1);
17916 	}
17917 }
17918 
17919 /*
17920  * Hash list insertion routine for tcp_t structures. Each hash bucket
17921  * contains a list of tcp_t entries, and each entry is bound to a unique
17922  * port. If there are multiple tcp_t's that are bound to the same port, then
17923  * one of them will be linked into the hash bucket list, and the rest will
17924  * hang off of that one entry. For each port, entries bound to a specific IP
17925  * address will be inserted before those those bound to INADDR_ANY.
17926  */
17927 static void
17928 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock)
17929 {
17930 	tcp_t	**tcpp;
17931 	tcp_t	*tcpnext;
17932 	tcp_t	*tcphash;
17933 	conn_t	*connp = tcp->tcp_connp;
17934 	conn_t	*connext;
17935 
17936 	if (tcp->tcp_ptpbhn != NULL) {
17937 		ASSERT(!caller_holds_lock);
17938 		tcp_bind_hash_remove(tcp);
17939 	}
17940 	tcpp = &tbf->tf_tcp;
17941 	if (!caller_holds_lock) {
17942 		mutex_enter(&tbf->tf_lock);
17943 	} else {
17944 		ASSERT(MUTEX_HELD(&tbf->tf_lock));
17945 	}
17946 	tcphash = tcpp[0];
17947 	tcpnext = NULL;
17948 	if (tcphash != NULL) {
17949 		/* Look for an entry using the same port */
17950 		while ((tcphash = tcpp[0]) != NULL &&
17951 		    connp->conn_lport != tcphash->tcp_connp->conn_lport)
17952 			tcpp = &(tcphash->tcp_bind_hash);
17953 
17954 		/* The port was not found, just add to the end */
17955 		if (tcphash == NULL)
17956 			goto insert;
17957 
17958 		/*
17959 		 * OK, there already exists an entry bound to the
17960 		 * same port.
17961 		 *
17962 		 * If the new tcp bound to the INADDR_ANY address
17963 		 * and the first one in the list is not bound to
17964 		 * INADDR_ANY we skip all entries until we find the
17965 		 * first one bound to INADDR_ANY.
17966 		 * This makes sure that applications binding to a
17967 		 * specific address get preference over those binding to
17968 		 * INADDR_ANY.
17969 		 */
17970 		tcpnext = tcphash;
17971 		connext = tcpnext->tcp_connp;
17972 		tcphash = NULL;
17973 		if (V6_OR_V4_INADDR_ANY(connp->conn_bound_addr_v6) &&
17974 		    !V6_OR_V4_INADDR_ANY(connext->conn_bound_addr_v6)) {
17975 			while ((tcpnext = tcpp[0]) != NULL) {
17976 				connext = tcpnext->tcp_connp;
17977 				if (!V6_OR_V4_INADDR_ANY(
17978 				    connext->conn_bound_addr_v6))
17979 					tcpp = &(tcpnext->tcp_bind_hash_port);
17980 				else
17981 					break;
17982 			}
17983 			if (tcpnext != NULL) {
17984 				tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port;
17985 				tcphash = tcpnext->tcp_bind_hash;
17986 				if (tcphash != NULL) {
17987 					tcphash->tcp_ptpbhn =
17988 					    &(tcp->tcp_bind_hash);
17989 					tcpnext->tcp_bind_hash = NULL;
17990 				}
17991 			}
17992 		} else {
17993 			tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port;
17994 			tcphash = tcpnext->tcp_bind_hash;
17995 			if (tcphash != NULL) {
17996 				tcphash->tcp_ptpbhn =
17997 				    &(tcp->tcp_bind_hash);
17998 				tcpnext->tcp_bind_hash = NULL;
17999 			}
18000 		}
18001 	}
18002 insert:
18003 	tcp->tcp_bind_hash_port = tcpnext;
18004 	tcp->tcp_bind_hash = tcphash;
18005 	tcp->tcp_ptpbhn = tcpp;
18006 	tcpp[0] = tcp;
18007 	if (!caller_holds_lock)
18008 		mutex_exit(&tbf->tf_lock);
18009 }
18010 
18011 /*
18012  * Hash list removal routine for tcp_t structures.
18013  */
18014 static void
18015 tcp_bind_hash_remove(tcp_t *tcp)
18016 {
18017 	tcp_t	*tcpnext;
18018 	kmutex_t *lockp;
18019 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18020 	conn_t		*connp = tcp->tcp_connp;
18021 
18022 	if (tcp->tcp_ptpbhn == NULL)
18023 		return;
18024 
18025 	/*
18026 	 * Extract the lock pointer in case there are concurrent
18027 	 * hash_remove's for this instance.
18028 	 */
18029 	ASSERT(connp->conn_lport != 0);
18030 	lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(
18031 	    connp->conn_lport)].tf_lock;
18032 
18033 	ASSERT(lockp != NULL);
18034 	mutex_enter(lockp);
18035 	if (tcp->tcp_ptpbhn) {
18036 		tcpnext = tcp->tcp_bind_hash_port;
18037 		if (tcpnext != NULL) {
18038 			tcp->tcp_bind_hash_port = NULL;
18039 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
18040 			tcpnext->tcp_bind_hash = tcp->tcp_bind_hash;
18041 			if (tcpnext->tcp_bind_hash != NULL) {
18042 				tcpnext->tcp_bind_hash->tcp_ptpbhn =
18043 				    &(tcpnext->tcp_bind_hash);
18044 				tcp->tcp_bind_hash = NULL;
18045 			}
18046 		} else if ((tcpnext = tcp->tcp_bind_hash) != NULL) {
18047 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
18048 			tcp->tcp_bind_hash = NULL;
18049 		}
18050 		*tcp->tcp_ptpbhn = tcpnext;
18051 		tcp->tcp_ptpbhn = NULL;
18052 	}
18053 	mutex_exit(lockp);
18054 }
18055 
18056 
18057 /*
18058  * Hash list lookup routine for tcp_t structures.
18059  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
18060  */
18061 static tcp_t *
18062 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps)
18063 {
18064 	tf_t	*tf;
18065 	tcp_t	*tcp;
18066 
18067 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
18068 	mutex_enter(&tf->tf_lock);
18069 	for (tcp = tf->tf_tcp; tcp != NULL;
18070 	    tcp = tcp->tcp_acceptor_hash) {
18071 		if (tcp->tcp_acceptor_id == id) {
18072 			CONN_INC_REF(tcp->tcp_connp);
18073 			mutex_exit(&tf->tf_lock);
18074 			return (tcp);
18075 		}
18076 	}
18077 	mutex_exit(&tf->tf_lock);
18078 	return (NULL);
18079 }
18080 
18081 
18082 /*
18083  * Hash list insertion routine for tcp_t structures.
18084  */
18085 void
18086 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
18087 {
18088 	tf_t	*tf;
18089 	tcp_t	**tcpp;
18090 	tcp_t	*tcpnext;
18091 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18092 
18093 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
18094 
18095 	if (tcp->tcp_ptpahn != NULL)
18096 		tcp_acceptor_hash_remove(tcp);
18097 	tcpp = &tf->tf_tcp;
18098 	mutex_enter(&tf->tf_lock);
18099 	tcpnext = tcpp[0];
18100 	if (tcpnext)
18101 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
18102 	tcp->tcp_acceptor_hash = tcpnext;
18103 	tcp->tcp_ptpahn = tcpp;
18104 	tcpp[0] = tcp;
18105 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
18106 	mutex_exit(&tf->tf_lock);
18107 }
18108 
18109 /*
18110  * Hash list removal routine for tcp_t structures.
18111  */
18112 static void
18113 tcp_acceptor_hash_remove(tcp_t *tcp)
18114 {
18115 	tcp_t	*tcpnext;
18116 	kmutex_t *lockp;
18117 
18118 	/*
18119 	 * Extract the lock pointer in case there are concurrent
18120 	 * hash_remove's for this instance.
18121 	 */
18122 	lockp = tcp->tcp_acceptor_lockp;
18123 
18124 	if (tcp->tcp_ptpahn == NULL)
18125 		return;
18126 
18127 	ASSERT(lockp != NULL);
18128 	mutex_enter(lockp);
18129 	if (tcp->tcp_ptpahn) {
18130 		tcpnext = tcp->tcp_acceptor_hash;
18131 		if (tcpnext) {
18132 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
18133 			tcp->tcp_acceptor_hash = NULL;
18134 		}
18135 		*tcp->tcp_ptpahn = tcpnext;
18136 		tcp->tcp_ptpahn = NULL;
18137 	}
18138 	mutex_exit(lockp);
18139 	tcp->tcp_acceptor_lockp = NULL;
18140 }
18141 
18142 /*
18143  * Type three generator adapted from the random() function in 4.4 BSD:
18144  */
18145 
18146 /*
18147  * Copyright (c) 1983, 1993
18148  *	The Regents of the University of California.  All rights reserved.
18149  *
18150  * Redistribution and use in source and binary forms, with or without
18151  * modification, are permitted provided that the following conditions
18152  * are met:
18153  * 1. Redistributions of source code must retain the above copyright
18154  *    notice, this list of conditions and the following disclaimer.
18155  * 2. Redistributions in binary form must reproduce the above copyright
18156  *    notice, this list of conditions and the following disclaimer in the
18157  *    documentation and/or other materials provided with the distribution.
18158  * 3. All advertising materials mentioning features or use of this software
18159  *    must display the following acknowledgement:
18160  *	This product includes software developed by the University of
18161  *	California, Berkeley and its contributors.
18162  * 4. Neither the name of the University nor the names of its contributors
18163  *    may be used to endorse or promote products derived from this software
18164  *    without specific prior written permission.
18165  *
18166  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18167  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18168  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18169  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
18170  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18171  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
18172  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
18173  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
18174  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
18175  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
18176  * SUCH DAMAGE.
18177  */
18178 
18179 /* Type 3 -- x**31 + x**3 + 1 */
18180 #define	DEG_3		31
18181 #define	SEP_3		3
18182 
18183 
18184 /* Protected by tcp_random_lock */
18185 static int tcp_randtbl[DEG_3 + 1];
18186 
18187 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
18188 static int *tcp_random_rptr = &tcp_randtbl[1];
18189 
18190 static int *tcp_random_state = &tcp_randtbl[1];
18191 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
18192 
18193 kmutex_t tcp_random_lock;
18194 
18195 void
18196 tcp_random_init(void)
18197 {
18198 	int i;
18199 	hrtime_t hrt;
18200 	time_t wallclock;
18201 	uint64_t result;
18202 
18203 	/*
18204 	 * Use high-res timer and current time for seed.  Gethrtime() returns
18205 	 * a longlong, which may contain resolution down to nanoseconds.
18206 	 * The current time will either be a 32-bit or a 64-bit quantity.
18207 	 * XOR the two together in a 64-bit result variable.
18208 	 * Convert the result to a 32-bit value by multiplying the high-order
18209 	 * 32-bits by the low-order 32-bits.
18210 	 */
18211 
18212 	hrt = gethrtime();
18213 	(void) drv_getparm(TIME, &wallclock);
18214 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
18215 	mutex_enter(&tcp_random_lock);
18216 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
18217 	    (result & 0xffffffff);
18218 
18219 	for (i = 1; i < DEG_3; i++)
18220 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
18221 		    + 12345;
18222 	tcp_random_fptr = &tcp_random_state[SEP_3];
18223 	tcp_random_rptr = &tcp_random_state[0];
18224 	mutex_exit(&tcp_random_lock);
18225 	for (i = 0; i < 10 * DEG_3; i++)
18226 		(void) tcp_random();
18227 }
18228 
18229 /*
18230  * tcp_random: Return a random number in the range [1 - (128K + 1)].
18231  * This range is selected to be approximately centered on TCP_ISS / 2,
18232  * and easy to compute. We get this value by generating a 32-bit random
18233  * number, selecting out the high-order 17 bits, and then adding one so
18234  * that we never return zero.
18235  */
18236 int
18237 tcp_random(void)
18238 {
18239 	int i;
18240 
18241 	mutex_enter(&tcp_random_lock);
18242 	*tcp_random_fptr += *tcp_random_rptr;
18243 
18244 	/*
18245 	 * The high-order bits are more random than the low-order bits,
18246 	 * so we select out the high-order 17 bits and add one so that
18247 	 * we never return zero.
18248 	 */
18249 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
18250 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
18251 		tcp_random_fptr = tcp_random_state;
18252 		++tcp_random_rptr;
18253 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
18254 		tcp_random_rptr = tcp_random_state;
18255 
18256 	mutex_exit(&tcp_random_lock);
18257 	return (i);
18258 }
18259 
18260 static int
18261 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp,
18262     int *t_errorp, int *sys_errorp)
18263 {
18264 	int error;
18265 	int is_absreq_failure;
18266 	t_scalar_t *opt_lenp;
18267 	t_scalar_t opt_offset;
18268 	int prim_type;
18269 	struct T_conn_req *tcreqp;
18270 	struct T_conn_res *tcresp;
18271 	cred_t *cr;
18272 
18273 	/*
18274 	 * All Solaris components should pass a db_credp
18275 	 * for this TPI message, hence we ASSERT.
18276 	 * But in case there is some other M_PROTO that looks
18277 	 * like a TPI message sent by some other kernel
18278 	 * component, we check and return an error.
18279 	 */
18280 	cr = msg_getcred(mp, NULL);
18281 	ASSERT(cr != NULL);
18282 	if (cr == NULL)
18283 		return (-1);
18284 
18285 	prim_type = ((union T_primitives *)mp->b_rptr)->type;
18286 	ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES ||
18287 	    prim_type == T_CONN_RES);
18288 
18289 	switch (prim_type) {
18290 	case T_CONN_REQ:
18291 		tcreqp = (struct T_conn_req *)mp->b_rptr;
18292 		opt_offset = tcreqp->OPT_offset;
18293 		opt_lenp = (t_scalar_t *)&tcreqp->OPT_length;
18294 		break;
18295 	case O_T_CONN_RES:
18296 	case T_CONN_RES:
18297 		tcresp = (struct T_conn_res *)mp->b_rptr;
18298 		opt_offset = tcresp->OPT_offset;
18299 		opt_lenp = (t_scalar_t *)&tcresp->OPT_length;
18300 		break;
18301 	}
18302 
18303 	*t_errorp = 0;
18304 	*sys_errorp = 0;
18305 	*do_disconnectp = 0;
18306 
18307 	error = tpi_optcom_buf(tcp->tcp_connp->conn_wq, mp, opt_lenp,
18308 	    opt_offset, cr, &tcp_opt_obj,
18309 	    NULL, &is_absreq_failure);
18310 
18311 	switch (error) {
18312 	case  0:		/* no error */
18313 		ASSERT(is_absreq_failure == 0);
18314 		return (0);
18315 	case ENOPROTOOPT:
18316 		*t_errorp = TBADOPT;
18317 		break;
18318 	case EACCES:
18319 		*t_errorp = TACCES;
18320 		break;
18321 	default:
18322 		*t_errorp = TSYSERR; *sys_errorp = error;
18323 		break;
18324 	}
18325 	if (is_absreq_failure != 0) {
18326 		/*
18327 		 * The connection request should get the local ack
18328 		 * T_OK_ACK and then a T_DISCON_IND.
18329 		 */
18330 		*do_disconnectp = 1;
18331 	}
18332 	return (-1);
18333 }
18334 
18335 /*
18336  * Split this function out so that if the secret changes, I'm okay.
18337  *
18338  * Initialize the tcp_iss_cookie and tcp_iss_key.
18339  */
18340 
18341 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
18342 
18343 static void
18344 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps)
18345 {
18346 	struct {
18347 		int32_t current_time;
18348 		uint32_t randnum;
18349 		uint16_t pad;
18350 		uint8_t ether[6];
18351 		uint8_t passwd[PASSWD_SIZE];
18352 	} tcp_iss_cookie;
18353 	time_t t;
18354 
18355 	/*
18356 	 * Start with the current absolute time.
18357 	 */
18358 	(void) drv_getparm(TIME, &t);
18359 	tcp_iss_cookie.current_time = t;
18360 
18361 	/*
18362 	 * XXX - Need a more random number per RFC 1750, not this crap.
18363 	 * OTOH, if what follows is pretty random, then I'm in better shape.
18364 	 */
18365 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
18366 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
18367 
18368 	/*
18369 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
18370 	 * as a good template.
18371 	 */
18372 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
18373 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
18374 
18375 	/*
18376 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
18377 	 */
18378 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
18379 
18380 	/*
18381 	 * See 4010593 if this section becomes a problem again,
18382 	 * but the local ethernet address is useful here.
18383 	 */
18384 	(void) localetheraddr(NULL,
18385 	    (struct ether_addr *)&tcp_iss_cookie.ether);
18386 
18387 	/*
18388 	 * Hash 'em all together.  The MD5Final is called per-connection.
18389 	 */
18390 	mutex_enter(&tcps->tcps_iss_key_lock);
18391 	MD5Init(&tcps->tcps_iss_key);
18392 	MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie,
18393 	    sizeof (tcp_iss_cookie));
18394 	mutex_exit(&tcps->tcps_iss_key_lock);
18395 }
18396 
18397 /*
18398  * Set the RFC 1948 pass phrase
18399  */
18400 /* ARGSUSED */
18401 static int
18402 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
18403     cred_t *cr)
18404 {
18405 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
18406 
18407 	/*
18408 	 * Basically, value contains a new pass phrase.  Pass it along!
18409 	 */
18410 	tcp_iss_key_init((uint8_t *)value, strlen(value), tcps);
18411 	return (0);
18412 }
18413 
18414 /* ARGSUSED */
18415 static int
18416 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags)
18417 {
18418 	bzero(buf, sizeof (tcp_sack_info_t));
18419 	return (0);
18420 }
18421 
18422 /*
18423  * Called by IP when IP is loaded into the kernel
18424  */
18425 void
18426 tcp_ddi_g_init(void)
18427 {
18428 	tcp_timercache = kmem_cache_create("tcp_timercache",
18429 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
18430 	    NULL, NULL, NULL, NULL, NULL, 0);
18431 
18432 	tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache",
18433 	    sizeof (tcp_sack_info_t), 0,
18434 	    tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0);
18435 
18436 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
18437 
18438 	/* Initialize the random number generator */
18439 	tcp_random_init();
18440 
18441 	/* A single callback independently of how many netstacks we have */
18442 	ip_squeue_init(tcp_squeue_add);
18443 
18444 	tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics);
18445 
18446 	tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput);
18447 
18448 	/*
18449 	 * We want to be informed each time a stack is created or
18450 	 * destroyed in the kernel, so we can maintain the
18451 	 * set of tcp_stack_t's.
18452 	 */
18453 	netstack_register(NS_TCP, tcp_stack_init, NULL, tcp_stack_fini);
18454 }
18455 
18456 
18457 #define	INET_NAME	"ip"
18458 
18459 /*
18460  * Initialize the TCP stack instance.
18461  */
18462 static void *
18463 tcp_stack_init(netstackid_t stackid, netstack_t *ns)
18464 {
18465 	tcp_stack_t	*tcps;
18466 	tcpparam_t	*pa;
18467 	int		i;
18468 	int		error = 0;
18469 	major_t		major;
18470 
18471 	tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP);
18472 	tcps->tcps_netstack = ns;
18473 
18474 	/* Initialize locks */
18475 	mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
18476 	mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
18477 
18478 	tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
18479 	tcps->tcps_g_epriv_ports[0] = 2049;
18480 	tcps->tcps_g_epriv_ports[1] = 4045;
18481 	tcps->tcps_min_anonpriv_port = 512;
18482 
18483 	tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) *
18484 	    TCP_BIND_FANOUT_SIZE, KM_SLEEP);
18485 	tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) *
18486 	    TCP_FANOUT_SIZE, KM_SLEEP);
18487 
18488 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
18489 		mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL,
18490 		    MUTEX_DEFAULT, NULL);
18491 	}
18492 
18493 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
18494 		mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL,
18495 		    MUTEX_DEFAULT, NULL);
18496 	}
18497 
18498 	/* TCP's IPsec code calls the packet dropper. */
18499 	ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement");
18500 
18501 	pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP);
18502 	tcps->tcps_params = pa;
18503 	bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr));
18504 
18505 	(void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params,
18506 	    A_CNT(lcl_tcp_param_arr), tcps);
18507 
18508 	/*
18509 	 * Note: To really walk the device tree you need the devinfo
18510 	 * pointer to your device which is only available after probe/attach.
18511 	 * The following is safe only because it uses ddi_root_node()
18512 	 */
18513 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
18514 	    tcp_opt_obj.odb_opt_arr_cnt);
18515 
18516 	/*
18517 	 * Initialize RFC 1948 secret values.  This will probably be reset once
18518 	 * by the boot scripts.
18519 	 *
18520 	 * Use NULL name, as the name is caught by the new lockstats.
18521 	 *
18522 	 * Initialize with some random, non-guessable string, like the global
18523 	 * T_INFO_ACK.
18524 	 */
18525 
18526 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
18527 	    sizeof (tcp_g_t_info_ack), tcps);
18528 
18529 	tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics);
18530 	tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps);
18531 
18532 	major = mod_name_to_major(INET_NAME);
18533 	error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident);
18534 	ASSERT(error == 0);
18535 	tcps->tcps_ixa_cleanup_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL);
18536 	ASSERT(tcps->tcps_ixa_cleanup_mp != NULL);
18537 	cv_init(&tcps->tcps_ixa_cleanup_cv, NULL, CV_DEFAULT, NULL);
18538 	mutex_init(&tcps->tcps_ixa_cleanup_lock, NULL, MUTEX_DEFAULT, NULL);
18539 
18540 	return (tcps);
18541 }
18542 
18543 /*
18544  * Called when the IP module is about to be unloaded.
18545  */
18546 void
18547 tcp_ddi_g_destroy(void)
18548 {
18549 	tcp_g_kstat_fini(tcp_g_kstat);
18550 	tcp_g_kstat = NULL;
18551 	bzero(&tcp_g_statistics, sizeof (tcp_g_statistics));
18552 
18553 	mutex_destroy(&tcp_random_lock);
18554 
18555 	kmem_cache_destroy(tcp_timercache);
18556 	kmem_cache_destroy(tcp_sack_info_cache);
18557 
18558 	netstack_unregister(NS_TCP);
18559 }
18560 
18561 /*
18562  * Free the TCP stack instance.
18563  */
18564 static void
18565 tcp_stack_fini(netstackid_t stackid, void *arg)
18566 {
18567 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
18568 	int i;
18569 
18570 	freeb(tcps->tcps_ixa_cleanup_mp);
18571 	tcps->tcps_ixa_cleanup_mp = NULL;
18572 	cv_destroy(&tcps->tcps_ixa_cleanup_cv);
18573 	mutex_destroy(&tcps->tcps_ixa_cleanup_lock);
18574 
18575 	nd_free(&tcps->tcps_g_nd);
18576 	kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr));
18577 	tcps->tcps_params = NULL;
18578 	kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t));
18579 	tcps->tcps_wroff_xtra_param = NULL;
18580 
18581 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
18582 		ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL);
18583 		mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock);
18584 	}
18585 
18586 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
18587 		ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL);
18588 		mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock);
18589 	}
18590 
18591 	kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE);
18592 	tcps->tcps_bind_fanout = NULL;
18593 
18594 	kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE);
18595 	tcps->tcps_acceptor_fanout = NULL;
18596 
18597 	mutex_destroy(&tcps->tcps_iss_key_lock);
18598 	mutex_destroy(&tcps->tcps_epriv_port_lock);
18599 
18600 	ip_drop_unregister(&tcps->tcps_dropper);
18601 
18602 	tcp_kstat2_fini(stackid, tcps->tcps_kstat);
18603 	tcps->tcps_kstat = NULL;
18604 	bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics));
18605 
18606 	tcp_kstat_fini(stackid, tcps->tcps_mibkp);
18607 	tcps->tcps_mibkp = NULL;
18608 
18609 	ldi_ident_release(tcps->tcps_ldi_ident);
18610 	kmem_free(tcps, sizeof (*tcps));
18611 }
18612 
18613 /*
18614  * Generate ISS, taking into account NDD changes may happen halfway through.
18615  * (If the iss is not zero, set it.)
18616  */
18617 
18618 static void
18619 tcp_iss_init(tcp_t *tcp)
18620 {
18621 	MD5_CTX context;
18622 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
18623 	uint32_t answer[4];
18624 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18625 	conn_t		*connp = tcp->tcp_connp;
18626 
18627 	tcps->tcps_iss_incr_extra += (ISS_INCR >> 1);
18628 	tcp->tcp_iss = tcps->tcps_iss_incr_extra;
18629 	switch (tcps->tcps_strong_iss) {
18630 	case 2:
18631 		mutex_enter(&tcps->tcps_iss_key_lock);
18632 		context = tcps->tcps_iss_key;
18633 		mutex_exit(&tcps->tcps_iss_key_lock);
18634 		arg.ports = connp->conn_ports;
18635 		arg.src = connp->conn_laddr_v6;
18636 		arg.dst = connp->conn_faddr_v6;
18637 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
18638 		MD5Final((uchar_t *)answer, &context);
18639 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
18640 		/*
18641 		 * Now that we've hashed into a unique per-connection sequence
18642 		 * space, add a random increment per strong_iss == 1.  So I
18643 		 * guess we'll have to...
18644 		 */
18645 		/* FALLTHRU */
18646 	case 1:
18647 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
18648 		break;
18649 	default:
18650 		tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
18651 		break;
18652 	}
18653 	tcp->tcp_valid_bits = TCP_ISS_VALID;
18654 	tcp->tcp_fss = tcp->tcp_iss - 1;
18655 	tcp->tcp_suna = tcp->tcp_iss;
18656 	tcp->tcp_snxt = tcp->tcp_iss + 1;
18657 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
18658 	tcp->tcp_csuna = tcp->tcp_snxt;
18659 }
18660 
18661 /*
18662  * Exported routine for extracting active tcp connection status.
18663  *
18664  * This is used by the Solaris Cluster Networking software to
18665  * gather a list of connections that need to be forwarded to
18666  * specific nodes in the cluster when configuration changes occur.
18667  *
18668  * The callback is invoked for each tcp_t structure from all netstacks,
18669  * if 'stack_id' is less than 0. Otherwise, only for tcp_t structures
18670  * from the netstack with the specified stack_id. Returning
18671  * non-zero from the callback routine terminates the search.
18672  */
18673 int
18674 cl_tcp_walk_list(netstackid_t stack_id,
18675     int (*cl_callback)(cl_tcp_info_t *, void *), void *arg)
18676 {
18677 	netstack_handle_t nh;
18678 	netstack_t *ns;
18679 	int ret = 0;
18680 
18681 	if (stack_id >= 0) {
18682 		if ((ns = netstack_find_by_stackid(stack_id)) == NULL)
18683 			return (EINVAL);
18684 
18685 		ret = cl_tcp_walk_list_stack(cl_callback, arg,
18686 		    ns->netstack_tcp);
18687 		netstack_rele(ns);
18688 		return (ret);
18689 	}
18690 
18691 	netstack_next_init(&nh);
18692 	while ((ns = netstack_next(&nh)) != NULL) {
18693 		ret = cl_tcp_walk_list_stack(cl_callback, arg,
18694 		    ns->netstack_tcp);
18695 		netstack_rele(ns);
18696 	}
18697 	netstack_next_fini(&nh);
18698 	return (ret);
18699 }
18700 
18701 static int
18702 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg,
18703     tcp_stack_t *tcps)
18704 {
18705 	tcp_t *tcp;
18706 	cl_tcp_info_t	cl_tcpi;
18707 	connf_t	*connfp;
18708 	conn_t	*connp;
18709 	int	i;
18710 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
18711 
18712 	ASSERT(callback != NULL);
18713 
18714 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
18715 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
18716 		connp = NULL;
18717 
18718 		while ((connp =
18719 		    ipcl_get_next_conn(connfp, connp, IPCL_TCPCONN)) != NULL) {
18720 
18721 			tcp = connp->conn_tcp;
18722 			cl_tcpi.cl_tcpi_version = CL_TCPI_V1;
18723 			cl_tcpi.cl_tcpi_ipversion = connp->conn_ipversion;
18724 			cl_tcpi.cl_tcpi_state = tcp->tcp_state;
18725 			cl_tcpi.cl_tcpi_lport = connp->conn_lport;
18726 			cl_tcpi.cl_tcpi_fport = connp->conn_fport;
18727 			cl_tcpi.cl_tcpi_laddr_v6 = connp->conn_laddr_v6;
18728 			cl_tcpi.cl_tcpi_faddr_v6 = connp->conn_faddr_v6;
18729 
18730 			/*
18731 			 * If the callback returns non-zero
18732 			 * we terminate the traversal.
18733 			 */
18734 			if ((*callback)(&cl_tcpi, arg) != 0) {
18735 				CONN_DEC_REF(tcp->tcp_connp);
18736 				return (1);
18737 			}
18738 		}
18739 	}
18740 
18741 	return (0);
18742 }
18743 
18744 /*
18745  * Macros used for accessing the different types of sockaddr
18746  * structures inside a tcp_ioc_abort_conn_t.
18747  */
18748 #define	TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local)
18749 #define	TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote)
18750 #define	TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr)
18751 #define	TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr)
18752 #define	TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port)
18753 #define	TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port)
18754 #define	TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local)
18755 #define	TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote)
18756 #define	TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr)
18757 #define	TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr)
18758 #define	TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port)
18759 #define	TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port)
18760 
18761 /*
18762  * Return the correct error code to mimic the behavior
18763  * of a connection reset.
18764  */
18765 #define	TCP_AC_GET_ERRCODE(state, err) {	\
18766 		switch ((state)) {		\
18767 		case TCPS_SYN_SENT:		\
18768 		case TCPS_SYN_RCVD:		\
18769 			(err) = ECONNREFUSED;	\
18770 			break;			\
18771 		case TCPS_ESTABLISHED:		\
18772 		case TCPS_FIN_WAIT_1:		\
18773 		case TCPS_FIN_WAIT_2:		\
18774 		case TCPS_CLOSE_WAIT:		\
18775 			(err) = ECONNRESET;	\
18776 			break;			\
18777 		case TCPS_CLOSING:		\
18778 		case TCPS_LAST_ACK:		\
18779 		case TCPS_TIME_WAIT:		\
18780 			(err) = 0;		\
18781 			break;			\
18782 		default:			\
18783 			(err) = ENXIO;		\
18784 		}				\
18785 	}
18786 
18787 /*
18788  * Check if a tcp structure matches the info in acp.
18789  */
18790 #define	TCP_AC_ADDR_MATCH(acp, connp, tcp)			\
18791 	(((acp)->ac_local.ss_family == AF_INET) ?		\
18792 	((TCP_AC_V4LOCAL((acp)) == INADDR_ANY ||		\
18793 	TCP_AC_V4LOCAL((acp)) == (connp)->conn_laddr_v4) &&	\
18794 	(TCP_AC_V4REMOTE((acp)) == INADDR_ANY ||		\
18795 	TCP_AC_V4REMOTE((acp)) == (connp)->conn_faddr_v4) &&	\
18796 	(TCP_AC_V4LPORT((acp)) == 0 ||				\
18797 	TCP_AC_V4LPORT((acp)) == (connp)->conn_lport) &&	\
18798 	(TCP_AC_V4RPORT((acp)) == 0 ||				\
18799 	TCP_AC_V4RPORT((acp)) == (connp)->conn_fport) &&	\
18800 	(acp)->ac_start <= (tcp)->tcp_state &&			\
18801 	(acp)->ac_end >= (tcp)->tcp_state) :			\
18802 	((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) ||	\
18803 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)),		\
18804 	&(connp)->conn_laddr_v6)) &&				\
18805 	(IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) ||	\
18806 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)),		\
18807 	&(connp)->conn_faddr_v6)) &&				\
18808 	(TCP_AC_V6LPORT((acp)) == 0 ||				\
18809 	TCP_AC_V6LPORT((acp)) == (connp)->conn_lport) &&	\
18810 	(TCP_AC_V6RPORT((acp)) == 0 ||				\
18811 	TCP_AC_V6RPORT((acp)) == (connp)->conn_fport) &&	\
18812 	(acp)->ac_start <= (tcp)->tcp_state &&			\
18813 	(acp)->ac_end >= (tcp)->tcp_state))
18814 
18815 #define	TCP_AC_MATCH(acp, connp, tcp)				\
18816 	(((acp)->ac_zoneid == ALL_ZONES ||			\
18817 	(acp)->ac_zoneid == (connp)->conn_zoneid) ?		\
18818 	TCP_AC_ADDR_MATCH(acp, connp, tcp) : 0)
18819 
18820 /*
18821  * Build a message containing a tcp_ioc_abort_conn_t structure
18822  * which is filled in with information from acp and tp.
18823  */
18824 static mblk_t *
18825 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp)
18826 {
18827 	mblk_t *mp;
18828 	tcp_ioc_abort_conn_t *tacp;
18829 
18830 	mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO);
18831 	if (mp == NULL)
18832 		return (NULL);
18833 
18834 	*((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN;
18835 	tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr +
18836 	    sizeof (uint32_t));
18837 
18838 	tacp->ac_start = acp->ac_start;
18839 	tacp->ac_end = acp->ac_end;
18840 	tacp->ac_zoneid = acp->ac_zoneid;
18841 
18842 	if (acp->ac_local.ss_family == AF_INET) {
18843 		tacp->ac_local.ss_family = AF_INET;
18844 		tacp->ac_remote.ss_family = AF_INET;
18845 		TCP_AC_V4LOCAL(tacp) = tp->tcp_connp->conn_laddr_v4;
18846 		TCP_AC_V4REMOTE(tacp) = tp->tcp_connp->conn_faddr_v4;
18847 		TCP_AC_V4LPORT(tacp) = tp->tcp_connp->conn_lport;
18848 		TCP_AC_V4RPORT(tacp) = tp->tcp_connp->conn_fport;
18849 	} else {
18850 		tacp->ac_local.ss_family = AF_INET6;
18851 		tacp->ac_remote.ss_family = AF_INET6;
18852 		TCP_AC_V6LOCAL(tacp) = tp->tcp_connp->conn_laddr_v6;
18853 		TCP_AC_V6REMOTE(tacp) = tp->tcp_connp->conn_faddr_v6;
18854 		TCP_AC_V6LPORT(tacp) = tp->tcp_connp->conn_lport;
18855 		TCP_AC_V6RPORT(tacp) = tp->tcp_connp->conn_fport;
18856 	}
18857 	mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp);
18858 	return (mp);
18859 }
18860 
18861 /*
18862  * Print a tcp_ioc_abort_conn_t structure.
18863  */
18864 static void
18865 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp)
18866 {
18867 	char lbuf[128];
18868 	char rbuf[128];
18869 	sa_family_t af;
18870 	in_port_t lport, rport;
18871 	ushort_t logflags;
18872 
18873 	af = acp->ac_local.ss_family;
18874 
18875 	if (af == AF_INET) {
18876 		(void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp),
18877 		    lbuf, 128);
18878 		(void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp),
18879 		    rbuf, 128);
18880 		lport = ntohs(TCP_AC_V4LPORT(acp));
18881 		rport = ntohs(TCP_AC_V4RPORT(acp));
18882 	} else {
18883 		(void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp),
18884 		    lbuf, 128);
18885 		(void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp),
18886 		    rbuf, 128);
18887 		lport = ntohs(TCP_AC_V6LPORT(acp));
18888 		rport = ntohs(TCP_AC_V6RPORT(acp));
18889 	}
18890 
18891 	logflags = SL_TRACE | SL_NOTE;
18892 	/*
18893 	 * Don't print this message to the console if the operation was done
18894 	 * to a non-global zone.
18895 	 */
18896 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
18897 		logflags |= SL_CONSOLE;
18898 	(void) strlog(TCP_MOD_ID, 0, 1, logflags,
18899 	    "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, "
18900 	    "start = %d, end = %d\n", lbuf, lport, rbuf, rport,
18901 	    acp->ac_start, acp->ac_end);
18902 }
18903 
18904 /*
18905  * Called using SQ_FILL when a message built using
18906  * tcp_ioctl_abort_build_msg is put into a queue.
18907  * Note that when we get here there is no wildcard in acp any more.
18908  */
18909 /* ARGSUSED2 */
18910 static void
18911 tcp_ioctl_abort_handler(void *arg, mblk_t *mp, void *arg2,
18912     ip_recv_attr_t *dummy)
18913 {
18914 	conn_t			*connp = (conn_t *)arg;
18915 	tcp_t			*tcp = connp->conn_tcp;
18916 	tcp_ioc_abort_conn_t	*acp;
18917 
18918 	/*
18919 	 * Don't accept any input on a closed tcp as this TCP logically does
18920 	 * not exist on the system. Don't proceed further with this TCP.
18921 	 * For eg. this packet could trigger another close of this tcp
18922 	 * which would be disastrous for tcp_refcnt. tcp_close_detached /
18923 	 * tcp_clean_death / tcp_closei_local must be called at most once
18924 	 * on a TCP.
18925 	 */
18926 	if (tcp->tcp_state == TCPS_CLOSED ||
18927 	    tcp->tcp_state == TCPS_BOUND) {
18928 		freemsg(mp);
18929 		return;
18930 	}
18931 
18932 	acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t));
18933 	if (tcp->tcp_state <= acp->ac_end) {
18934 		/*
18935 		 * If we get here, we are already on the correct
18936 		 * squeue. This ioctl follows the following path
18937 		 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn
18938 		 * ->tcp_ioctl_abort->squeue_enter (if on a
18939 		 * different squeue)
18940 		 */
18941 		int errcode;
18942 
18943 		TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode);
18944 		(void) tcp_clean_death(tcp, errcode, 26);
18945 	}
18946 	freemsg(mp);
18947 }
18948 
18949 /*
18950  * Abort all matching connections on a hash chain.
18951  */
18952 static int
18953 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count,
18954     boolean_t exact, tcp_stack_t *tcps)
18955 {
18956 	int nmatch, err = 0;
18957 	tcp_t *tcp;
18958 	MBLKP mp, last, listhead = NULL;
18959 	conn_t	*tconnp;
18960 	connf_t	*connfp;
18961 	ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
18962 
18963 	connfp = &ipst->ips_ipcl_conn_fanout[index];
18964 
18965 startover:
18966 	nmatch = 0;
18967 
18968 	mutex_enter(&connfp->connf_lock);
18969 	for (tconnp = connfp->connf_head; tconnp != NULL;
18970 	    tconnp = tconnp->conn_next) {
18971 		tcp = tconnp->conn_tcp;
18972 		/*
18973 		 * We are missing a check on sin6_scope_id for linklocals here,
18974 		 * but current usage is just for aborting based on zoneid
18975 		 * for shared-IP zones.
18976 		 */
18977 		if (TCP_AC_MATCH(acp, tconnp, tcp)) {
18978 			CONN_INC_REF(tconnp);
18979 			mp = tcp_ioctl_abort_build_msg(acp, tcp);
18980 			if (mp == NULL) {
18981 				err = ENOMEM;
18982 				CONN_DEC_REF(tconnp);
18983 				break;
18984 			}
18985 			mp->b_prev = (mblk_t *)tcp;
18986 
18987 			if (listhead == NULL) {
18988 				listhead = mp;
18989 				last = mp;
18990 			} else {
18991 				last->b_next = mp;
18992 				last = mp;
18993 			}
18994 			nmatch++;
18995 			if (exact)
18996 				break;
18997 		}
18998 
18999 		/* Avoid holding lock for too long. */
19000 		if (nmatch >= 500)
19001 			break;
19002 	}
19003 	mutex_exit(&connfp->connf_lock);
19004 
19005 	/* Pass mp into the correct tcp */
19006 	while ((mp = listhead) != NULL) {
19007 		listhead = listhead->b_next;
19008 		tcp = (tcp_t *)mp->b_prev;
19009 		mp->b_next = mp->b_prev = NULL;
19010 		SQUEUE_ENTER_ONE(tcp->tcp_connp->conn_sqp, mp,
19011 		    tcp_ioctl_abort_handler, tcp->tcp_connp, NULL,
19012 		    SQ_FILL, SQTAG_TCP_ABORT_BUCKET);
19013 	}
19014 
19015 	*count += nmatch;
19016 	if (nmatch >= 500 && err == 0)
19017 		goto startover;
19018 	return (err);
19019 }
19020 
19021 /*
19022  * Abort all connections that matches the attributes specified in acp.
19023  */
19024 static int
19025 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps)
19026 {
19027 	sa_family_t af;
19028 	uint32_t  ports;
19029 	uint16_t *pports;
19030 	int err = 0, count = 0;
19031 	boolean_t exact = B_FALSE; /* set when there is no wildcard */
19032 	int index = -1;
19033 	ushort_t logflags;
19034 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
19035 
19036 	af = acp->ac_local.ss_family;
19037 
19038 	if (af == AF_INET) {
19039 		if (TCP_AC_V4REMOTE(acp) != INADDR_ANY &&
19040 		    TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) {
19041 			pports = (uint16_t *)&ports;
19042 			pports[1] = TCP_AC_V4LPORT(acp);
19043 			pports[0] = TCP_AC_V4RPORT(acp);
19044 			exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY);
19045 		}
19046 	} else {
19047 		if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) &&
19048 		    TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) {
19049 			pports = (uint16_t *)&ports;
19050 			pports[1] = TCP_AC_V6LPORT(acp);
19051 			pports[0] = TCP_AC_V6RPORT(acp);
19052 			exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp));
19053 		}
19054 	}
19055 
19056 	/*
19057 	 * For cases where remote addr, local port, and remote port are non-
19058 	 * wildcards, tcp_ioctl_abort_bucket will only be called once.
19059 	 */
19060 	if (index != -1) {
19061 		err = tcp_ioctl_abort_bucket(acp, index,
19062 		    &count, exact, tcps);
19063 	} else {
19064 		/*
19065 		 * loop through all entries for wildcard case
19066 		 */
19067 		for (index = 0;
19068 		    index < ipst->ips_ipcl_conn_fanout_size;
19069 		    index++) {
19070 			err = tcp_ioctl_abort_bucket(acp, index,
19071 			    &count, exact, tcps);
19072 			if (err != 0)
19073 				break;
19074 		}
19075 	}
19076 
19077 	logflags = SL_TRACE | SL_NOTE;
19078 	/*
19079 	 * Don't print this message to the console if the operation was done
19080 	 * to a non-global zone.
19081 	 */
19082 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
19083 		logflags |= SL_CONSOLE;
19084 	(void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: "
19085 	    "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' '));
19086 	if (err == 0 && count == 0)
19087 		err = ENOENT;
19088 	return (err);
19089 }
19090 
19091 /*
19092  * Process the TCP_IOC_ABORT_CONN ioctl request.
19093  */
19094 static void
19095 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp)
19096 {
19097 	int	err;
19098 	IOCP    iocp;
19099 	MBLKP   mp1;
19100 	sa_family_t laf, raf;
19101 	tcp_ioc_abort_conn_t *acp;
19102 	zone_t		*zptr;
19103 	conn_t		*connp = Q_TO_CONN(q);
19104 	zoneid_t	zoneid = connp->conn_zoneid;
19105 	tcp_t		*tcp = connp->conn_tcp;
19106 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19107 
19108 	iocp = (IOCP)mp->b_rptr;
19109 
19110 	if ((mp1 = mp->b_cont) == NULL ||
19111 	    iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) {
19112 		err = EINVAL;
19113 		goto out;
19114 	}
19115 
19116 	/* check permissions */
19117 	if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
19118 		err = EPERM;
19119 		goto out;
19120 	}
19121 
19122 	if (mp1->b_cont != NULL) {
19123 		freemsg(mp1->b_cont);
19124 		mp1->b_cont = NULL;
19125 	}
19126 
19127 	acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr;
19128 	laf = acp->ac_local.ss_family;
19129 	raf = acp->ac_remote.ss_family;
19130 
19131 	/* check that a zone with the supplied zoneid exists */
19132 	if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) {
19133 		zptr = zone_find_by_id(zoneid);
19134 		if (zptr != NULL) {
19135 			zone_rele(zptr);
19136 		} else {
19137 			err = EINVAL;
19138 			goto out;
19139 		}
19140 	}
19141 
19142 	/*
19143 	 * For exclusive stacks we set the zoneid to zero
19144 	 * to make TCP operate as if in the global zone.
19145 	 */
19146 	if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID)
19147 		acp->ac_zoneid = GLOBAL_ZONEID;
19148 
19149 	if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT ||
19150 	    acp->ac_start > acp->ac_end || laf != raf ||
19151 	    (laf != AF_INET && laf != AF_INET6)) {
19152 		err = EINVAL;
19153 		goto out;
19154 	}
19155 
19156 	tcp_ioctl_abort_dump(acp);
19157 	err = tcp_ioctl_abort(acp, tcps);
19158 
19159 out:
19160 	if (mp1 != NULL) {
19161 		freemsg(mp1);
19162 		mp->b_cont = NULL;
19163 	}
19164 
19165 	if (err != 0)
19166 		miocnak(q, mp, 0, err);
19167 	else
19168 		miocack(q, mp, 0, 0);
19169 }
19170 
19171 /*
19172  * tcp_time_wait_processing() handles processing of incoming packets when
19173  * the tcp is in the TIME_WAIT state.
19174  * A TIME_WAIT tcp that has an associated open TCP stream is never put
19175  * on the time wait list.
19176  */
19177 void
19178 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq,
19179     uint32_t seg_ack, int seg_len, tcpha_t *tcpha, ip_recv_attr_t *ira)
19180 {
19181 	int32_t		bytes_acked;
19182 	int32_t		gap;
19183 	int32_t		rgap;
19184 	tcp_opt_t	tcpopt;
19185 	uint_t		flags;
19186 	uint32_t	new_swnd = 0;
19187 	conn_t		*nconnp;
19188 	conn_t		*connp = tcp->tcp_connp;
19189 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19190 
19191 	BUMP_LOCAL(tcp->tcp_ibsegs);
19192 	DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
19193 
19194 	flags = (unsigned int)tcpha->tha_flags & 0xFF;
19195 	new_swnd = ntohs(tcpha->tha_win) <<
19196 	    ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws);
19197 	if (tcp->tcp_snd_ts_ok) {
19198 		if (!tcp_paws_check(tcp, tcpha, &tcpopt)) {
19199 			tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
19200 			    tcp->tcp_rnxt, TH_ACK);
19201 			goto done;
19202 		}
19203 	}
19204 	gap = seg_seq - tcp->tcp_rnxt;
19205 	rgap = tcp->tcp_rwnd - (gap + seg_len);
19206 	if (gap < 0) {
19207 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
19208 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
19209 		    (seg_len > -gap ? -gap : seg_len));
19210 		seg_len += gap;
19211 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
19212 			if (flags & TH_RST) {
19213 				goto done;
19214 			}
19215 			if ((flags & TH_FIN) && seg_len == -1) {
19216 				/*
19217 				 * When TCP receives a duplicate FIN in
19218 				 * TIME_WAIT state, restart the 2 MSL timer.
19219 				 * See page 73 in RFC 793. Make sure this TCP
19220 				 * is already on the TIME_WAIT list. If not,
19221 				 * just restart the timer.
19222 				 */
19223 				if (TCP_IS_DETACHED(tcp)) {
19224 					if (tcp_time_wait_remove(tcp, NULL) ==
19225 					    B_TRUE) {
19226 						tcp_time_wait_append(tcp);
19227 						TCP_DBGSTAT(tcps,
19228 						    tcp_rput_time_wait);
19229 					}
19230 				} else {
19231 					ASSERT(tcp != NULL);
19232 					TCP_TIMER_RESTART(tcp,
19233 					    tcps->tcps_time_wait_interval);
19234 				}
19235 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
19236 				    tcp->tcp_rnxt, TH_ACK);
19237 				goto done;
19238 			}
19239 			flags |=  TH_ACK_NEEDED;
19240 			seg_len = 0;
19241 			goto process_ack;
19242 		}
19243 
19244 		/* Fix seg_seq, and chew the gap off the front. */
19245 		seg_seq = tcp->tcp_rnxt;
19246 	}
19247 
19248 	if ((flags & TH_SYN) && gap > 0 && rgap < 0) {
19249 		/*
19250 		 * Make sure that when we accept the connection, pick
19251 		 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the
19252 		 * old connection.
19253 		 *
19254 		 * The next ISS generated is equal to tcp_iss_incr_extra
19255 		 * + ISS_INCR/2 + other components depending on the
19256 		 * value of tcp_strong_iss.  We pre-calculate the new
19257 		 * ISS here and compare with tcp_snxt to determine if
19258 		 * we need to make adjustment to tcp_iss_incr_extra.
19259 		 *
19260 		 * The above calculation is ugly and is a
19261 		 * waste of CPU cycles...
19262 		 */
19263 		uint32_t new_iss = tcps->tcps_iss_incr_extra;
19264 		int32_t adj;
19265 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
19266 
19267 		switch (tcps->tcps_strong_iss) {
19268 		case 2: {
19269 			/* Add time and MD5 components. */
19270 			uint32_t answer[4];
19271 			struct {
19272 				uint32_t ports;
19273 				in6_addr_t src;
19274 				in6_addr_t dst;
19275 			} arg;
19276 			MD5_CTX context;
19277 
19278 			mutex_enter(&tcps->tcps_iss_key_lock);
19279 			context = tcps->tcps_iss_key;
19280 			mutex_exit(&tcps->tcps_iss_key_lock);
19281 			arg.ports = connp->conn_ports;
19282 			/* We use MAPPED addresses in tcp_iss_init */
19283 			arg.src = connp->conn_laddr_v6;
19284 			arg.dst = connp->conn_faddr_v6;
19285 			MD5Update(&context, (uchar_t *)&arg,
19286 			    sizeof (arg));
19287 			MD5Final((uchar_t *)answer, &context);
19288 			answer[0] ^= answer[1] ^ answer[2] ^ answer[3];
19289 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0];
19290 			break;
19291 		}
19292 		case 1:
19293 			/* Add time component and min random (i.e. 1). */
19294 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1;
19295 			break;
19296 		default:
19297 			/* Add only time component. */
19298 			new_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
19299 			break;
19300 		}
19301 		if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) {
19302 			/*
19303 			 * New ISS not guaranteed to be ISS_INCR/2
19304 			 * ahead of the current tcp_snxt, so add the
19305 			 * difference to tcp_iss_incr_extra.
19306 			 */
19307 			tcps->tcps_iss_incr_extra += adj;
19308 		}
19309 		/*
19310 		 * If tcp_clean_death() can not perform the task now,
19311 		 * drop the SYN packet and let the other side re-xmit.
19312 		 * Otherwise pass the SYN packet back in, since the
19313 		 * old tcp state has been cleaned up or freed.
19314 		 */
19315 		if (tcp_clean_death(tcp, 0, 27) == -1)
19316 			goto done;
19317 		nconnp = ipcl_classify(mp, ira, ipst);
19318 		if (nconnp != NULL) {
19319 			TCP_STAT(tcps, tcp_time_wait_syn_success);
19320 			/* Drops ref on nconnp */
19321 			tcp_reinput(nconnp, mp, ira, ipst);
19322 			return;
19323 		}
19324 		goto done;
19325 	}
19326 
19327 	/*
19328 	 * rgap is the amount of stuff received out of window.  A negative
19329 	 * value is the amount out of window.
19330 	 */
19331 	if (rgap < 0) {
19332 		BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
19333 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap);
19334 		/* Fix seg_len and make sure there is something left. */
19335 		seg_len += rgap;
19336 		if (seg_len <= 0) {
19337 			if (flags & TH_RST) {
19338 				goto done;
19339 			}
19340 			flags |=  TH_ACK_NEEDED;
19341 			seg_len = 0;
19342 			goto process_ack;
19343 		}
19344 	}
19345 	/*
19346 	 * Check whether we can update tcp_ts_recent.  This test is
19347 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
19348 	 * Extensions for High Performance: An Update", Internet Draft.
19349 	 */
19350 	if (tcp->tcp_snd_ts_ok &&
19351 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
19352 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
19353 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
19354 		tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64();
19355 	}
19356 
19357 	if (seg_seq != tcp->tcp_rnxt && seg_len > 0) {
19358 		/* Always ack out of order packets */
19359 		flags |= TH_ACK_NEEDED;
19360 		seg_len = 0;
19361 	} else if (seg_len > 0) {
19362 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
19363 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
19364 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
19365 	}
19366 	if (flags & TH_RST) {
19367 		(void) tcp_clean_death(tcp, 0, 28);
19368 		goto done;
19369 	}
19370 	if (flags & TH_SYN) {
19371 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
19372 		    TH_RST|TH_ACK);
19373 		/*
19374 		 * Do not delete the TCP structure if it is in
19375 		 * TIME_WAIT state.  Refer to RFC 1122, 4.2.2.13.
19376 		 */
19377 		goto done;
19378 	}
19379 process_ack:
19380 	if (flags & TH_ACK) {
19381 		bytes_acked = (int)(seg_ack - tcp->tcp_suna);
19382 		if (bytes_acked <= 0) {
19383 			if (bytes_acked == 0 && seg_len == 0 &&
19384 			    new_swnd == tcp->tcp_swnd)
19385 				BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
19386 		} else {
19387 			/* Acks something not sent */
19388 			flags |= TH_ACK_NEEDED;
19389 		}
19390 	}
19391 	if (flags & TH_ACK_NEEDED) {
19392 		/*
19393 		 * Time to send an ack for some reason.
19394 		 */
19395 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
19396 		    tcp->tcp_rnxt, TH_ACK);
19397 	}
19398 done:
19399 	freemsg(mp);
19400 }
19401 
19402 /*
19403  * TCP Timers Implementation.
19404  */
19405 timeout_id_t
19406 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim)
19407 {
19408 	mblk_t *mp;
19409 	tcp_timer_t *tcpt;
19410 	tcp_t *tcp = connp->conn_tcp;
19411 
19412 	ASSERT(connp->conn_sqp != NULL);
19413 
19414 	TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_calls);
19415 
19416 	if (tcp->tcp_timercache == NULL) {
19417 		mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC);
19418 	} else {
19419 		TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_cached_alloc);
19420 		mp = tcp->tcp_timercache;
19421 		tcp->tcp_timercache = mp->b_next;
19422 		mp->b_next = NULL;
19423 		ASSERT(mp->b_wptr == NULL);
19424 	}
19425 
19426 	CONN_INC_REF(connp);
19427 	tcpt = (tcp_timer_t *)mp->b_rptr;
19428 	tcpt->connp = connp;
19429 	tcpt->tcpt_proc = f;
19430 	/*
19431 	 * TCP timers are normal timeouts. Plus, they do not require more than
19432 	 * a 10 millisecond resolution. By choosing a coarser resolution and by
19433 	 * rounding up the expiration to the next resolution boundary, we can
19434 	 * batch timers in the callout subsystem to make TCP timers more
19435 	 * efficient. The roundup also protects short timers from expiring too
19436 	 * early before they have a chance to be cancelled.
19437 	 */
19438 	tcpt->tcpt_tid = timeout_generic(CALLOUT_NORMAL, tcp_timer_callback, mp,
19439 	    TICK_TO_NSEC(tim), CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP);
19440 
19441 	return ((timeout_id_t)mp);
19442 }
19443 
19444 static void
19445 tcp_timer_callback(void *arg)
19446 {
19447 	mblk_t *mp = (mblk_t *)arg;
19448 	tcp_timer_t *tcpt;
19449 	conn_t	*connp;
19450 
19451 	tcpt = (tcp_timer_t *)mp->b_rptr;
19452 	connp = tcpt->connp;
19453 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_timer_handler, connp,
19454 	    NULL, SQ_FILL, SQTAG_TCP_TIMER);
19455 }
19456 
19457 /* ARGSUSED */
19458 static void
19459 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
19460 {
19461 	tcp_timer_t *tcpt;
19462 	conn_t *connp = (conn_t *)arg;
19463 	tcp_t *tcp = connp->conn_tcp;
19464 
19465 	tcpt = (tcp_timer_t *)mp->b_rptr;
19466 	ASSERT(connp == tcpt->connp);
19467 	ASSERT((squeue_t *)arg2 == connp->conn_sqp);
19468 
19469 	/*
19470 	 * If the TCP has reached the closed state, don't proceed any
19471 	 * further. This TCP logically does not exist on the system.
19472 	 * tcpt_proc could for example access queues, that have already
19473 	 * been qprocoff'ed off.
19474 	 */
19475 	if (tcp->tcp_state != TCPS_CLOSED) {
19476 		(*tcpt->tcpt_proc)(connp);
19477 	} else {
19478 		tcp->tcp_timer_tid = 0;
19479 	}
19480 	tcp_timer_free(connp->conn_tcp, mp);
19481 }
19482 
19483 /*
19484  * There is potential race with untimeout and the handler firing at the same
19485  * time. The mblock may be freed by the handler while we are trying to use
19486  * it. But since both should execute on the same squeue, this race should not
19487  * occur.
19488  */
19489 clock_t
19490 tcp_timeout_cancel(conn_t *connp, timeout_id_t id)
19491 {
19492 	mblk_t	*mp = (mblk_t *)id;
19493 	tcp_timer_t *tcpt;
19494 	clock_t delta;
19495 
19496 	TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_cancel_reqs);
19497 
19498 	if (mp == NULL)
19499 		return (-1);
19500 
19501 	tcpt = (tcp_timer_t *)mp->b_rptr;
19502 	ASSERT(tcpt->connp == connp);
19503 
19504 	delta = untimeout_default(tcpt->tcpt_tid, 0);
19505 
19506 	if (delta >= 0) {
19507 		TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_canceled);
19508 		tcp_timer_free(connp->conn_tcp, mp);
19509 		CONN_DEC_REF(connp);
19510 	}
19511 
19512 	return (delta);
19513 }
19514 
19515 /*
19516  * Allocate space for the timer event. The allocation looks like mblk, but it is
19517  * not a proper mblk. To avoid confusion we set b_wptr to NULL.
19518  *
19519  * Dealing with failures: If we can't allocate from the timer cache we try
19520  * allocating from dblock caches using allocb_tryhard(). In this case b_wptr
19521  * points to b_rptr.
19522  * If we can't allocate anything using allocb_tryhard(), we perform a last
19523  * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and
19524  * save the actual allocation size in b_datap.
19525  */
19526 mblk_t *
19527 tcp_timermp_alloc(int kmflags)
19528 {
19529 	mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache,
19530 	    kmflags & ~KM_PANIC);
19531 
19532 	if (mp != NULL) {
19533 		mp->b_next = mp->b_prev = NULL;
19534 		mp->b_rptr = (uchar_t *)(&mp[1]);
19535 		mp->b_wptr = NULL;
19536 		mp->b_datap = NULL;
19537 		mp->b_queue = NULL;
19538 		mp->b_cont = NULL;
19539 	} else if (kmflags & KM_PANIC) {
19540 		/*
19541 		 * Failed to allocate memory for the timer. Try allocating from
19542 		 * dblock caches.
19543 		 */
19544 		/* ipclassifier calls this from a constructor - hence no tcps */
19545 		TCP_G_STAT(tcp_timermp_allocfail);
19546 		mp = allocb_tryhard(sizeof (tcp_timer_t));
19547 		if (mp == NULL) {
19548 			size_t size = 0;
19549 			/*
19550 			 * Memory is really low. Try tryhard allocation.
19551 			 *
19552 			 * ipclassifier calls this from a constructor -
19553 			 * hence no tcps
19554 			 */
19555 			TCP_G_STAT(tcp_timermp_allocdblfail);
19556 			mp = kmem_alloc_tryhard(sizeof (mblk_t) +
19557 			    sizeof (tcp_timer_t), &size, kmflags);
19558 			mp->b_rptr = (uchar_t *)(&mp[1]);
19559 			mp->b_next = mp->b_prev = NULL;
19560 			mp->b_wptr = (uchar_t *)-1;
19561 			mp->b_datap = (dblk_t *)size;
19562 			mp->b_queue = NULL;
19563 			mp->b_cont = NULL;
19564 		}
19565 		ASSERT(mp->b_wptr != NULL);
19566 	}
19567 	/* ipclassifier calls this from a constructor - hence no tcps */
19568 	TCP_G_DBGSTAT(tcp_timermp_alloced);
19569 
19570 	return (mp);
19571 }
19572 
19573 /*
19574  * Free per-tcp timer cache.
19575  * It can only contain entries from tcp_timercache.
19576  */
19577 void
19578 tcp_timermp_free(tcp_t *tcp)
19579 {
19580 	mblk_t *mp;
19581 
19582 	while ((mp = tcp->tcp_timercache) != NULL) {
19583 		ASSERT(mp->b_wptr == NULL);
19584 		tcp->tcp_timercache = tcp->tcp_timercache->b_next;
19585 		kmem_cache_free(tcp_timercache, mp);
19586 	}
19587 }
19588 
19589 /*
19590  * Free timer event. Put it on the per-tcp timer cache if there is not too many
19591  * events there already (currently at most two events are cached).
19592  * If the event is not allocated from the timer cache, free it right away.
19593  */
19594 static void
19595 tcp_timer_free(tcp_t *tcp, mblk_t *mp)
19596 {
19597 	mblk_t *mp1 = tcp->tcp_timercache;
19598 
19599 	if (mp->b_wptr != NULL) {
19600 		/*
19601 		 * This allocation is not from a timer cache, free it right
19602 		 * away.
19603 		 */
19604 		if (mp->b_wptr != (uchar_t *)-1)
19605 			freeb(mp);
19606 		else
19607 			kmem_free(mp, (size_t)mp->b_datap);
19608 	} else if (mp1 == NULL || mp1->b_next == NULL) {
19609 		/* Cache this timer block for future allocations */
19610 		mp->b_rptr = (uchar_t *)(&mp[1]);
19611 		mp->b_next = mp1;
19612 		tcp->tcp_timercache = mp;
19613 	} else {
19614 		kmem_cache_free(tcp_timercache, mp);
19615 		TCP_DBGSTAT(tcp->tcp_tcps, tcp_timermp_freed);
19616 	}
19617 }
19618 
19619 /*
19620  * End of TCP Timers implementation.
19621  */
19622 
19623 /*
19624  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
19625  * on the specified backing STREAMS q. Note, the caller may make the
19626  * decision to call based on the tcp_t.tcp_flow_stopped value which
19627  * when check outside the q's lock is only an advisory check ...
19628  */
19629 void
19630 tcp_setqfull(tcp_t *tcp)
19631 {
19632 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19633 	conn_t	*connp = tcp->tcp_connp;
19634 
19635 	if (tcp->tcp_closed)
19636 		return;
19637 
19638 	conn_setqfull(connp, &tcp->tcp_flow_stopped);
19639 	if (tcp->tcp_flow_stopped)
19640 		TCP_STAT(tcps, tcp_flwctl_on);
19641 }
19642 
19643 void
19644 tcp_clrqfull(tcp_t *tcp)
19645 {
19646 	conn_t  *connp = tcp->tcp_connp;
19647 
19648 	if (tcp->tcp_closed)
19649 		return;
19650 	conn_clrqfull(connp, &tcp->tcp_flow_stopped);
19651 }
19652 
19653 /*
19654  * kstats related to squeues i.e. not per IP instance
19655  */
19656 static void *
19657 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp)
19658 {
19659 	kstat_t *ksp;
19660 
19661 	tcp_g_stat_t template = {
19662 		{ "tcp_timermp_alloced",	KSTAT_DATA_UINT64 },
19663 		{ "tcp_timermp_allocfail",	KSTAT_DATA_UINT64 },
19664 		{ "tcp_timermp_allocdblfail",	KSTAT_DATA_UINT64 },
19665 		{ "tcp_freelist_cleanup",	KSTAT_DATA_UINT64 },
19666 	};
19667 
19668 	ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net",
19669 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
19670 	    KSTAT_FLAG_VIRTUAL);
19671 
19672 	if (ksp == NULL)
19673 		return (NULL);
19674 
19675 	bcopy(&template, tcp_g_statp, sizeof (template));
19676 	ksp->ks_data = (void *)tcp_g_statp;
19677 
19678 	kstat_install(ksp);
19679 	return (ksp);
19680 }
19681 
19682 static void
19683 tcp_g_kstat_fini(kstat_t *ksp)
19684 {
19685 	if (ksp != NULL) {
19686 		kstat_delete(ksp);
19687 	}
19688 }
19689 
19690 
19691 static void *
19692 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp)
19693 {
19694 	kstat_t *ksp;
19695 
19696 	tcp_stat_t template = {
19697 		{ "tcp_time_wait",		KSTAT_DATA_UINT64 },
19698 		{ "tcp_time_wait_syn",		KSTAT_DATA_UINT64 },
19699 		{ "tcp_time_wait_syn_success",	KSTAT_DATA_UINT64 },
19700 		{ "tcp_detach_non_time_wait",	KSTAT_DATA_UINT64 },
19701 		{ "tcp_detach_time_wait",	KSTAT_DATA_UINT64 },
19702 		{ "tcp_time_wait_reap",		KSTAT_DATA_UINT64 },
19703 		{ "tcp_clean_death_nondetached",	KSTAT_DATA_UINT64 },
19704 		{ "tcp_reinit_calls",		KSTAT_DATA_UINT64 },
19705 		{ "tcp_eager_err1",		KSTAT_DATA_UINT64 },
19706 		{ "tcp_eager_err2",		KSTAT_DATA_UINT64 },
19707 		{ "tcp_eager_blowoff_calls",	KSTAT_DATA_UINT64 },
19708 		{ "tcp_eager_blowoff_q",	KSTAT_DATA_UINT64 },
19709 		{ "tcp_eager_blowoff_q0",	KSTAT_DATA_UINT64 },
19710 		{ "tcp_not_hard_bound",		KSTAT_DATA_UINT64 },
19711 		{ "tcp_no_listener",		KSTAT_DATA_UINT64 },
19712 		{ "tcp_found_eager",		KSTAT_DATA_UINT64 },
19713 		{ "tcp_wrong_queue",		KSTAT_DATA_UINT64 },
19714 		{ "tcp_found_eager_binding1",	KSTAT_DATA_UINT64 },
19715 		{ "tcp_found_eager_bound1",	KSTAT_DATA_UINT64 },
19716 		{ "tcp_eager_has_listener1",	KSTAT_DATA_UINT64 },
19717 		{ "tcp_open_alloc",		KSTAT_DATA_UINT64 },
19718 		{ "tcp_open_detached_alloc",	KSTAT_DATA_UINT64 },
19719 		{ "tcp_rput_time_wait",		KSTAT_DATA_UINT64 },
19720 		{ "tcp_listendrop",		KSTAT_DATA_UINT64 },
19721 		{ "tcp_listendropq0",		KSTAT_DATA_UINT64 },
19722 		{ "tcp_wrong_rq",		KSTAT_DATA_UINT64 },
19723 		{ "tcp_rsrv_calls",		KSTAT_DATA_UINT64 },
19724 		{ "tcp_eagerfree2",		KSTAT_DATA_UINT64 },
19725 		{ "tcp_eagerfree3",		KSTAT_DATA_UINT64 },
19726 		{ "tcp_eagerfree4",		KSTAT_DATA_UINT64 },
19727 		{ "tcp_eagerfree5",		KSTAT_DATA_UINT64 },
19728 		{ "tcp_timewait_syn_fail",	KSTAT_DATA_UINT64 },
19729 		{ "tcp_listen_badflags",	KSTAT_DATA_UINT64 },
19730 		{ "tcp_timeout_calls",		KSTAT_DATA_UINT64 },
19731 		{ "tcp_timeout_cached_alloc",	KSTAT_DATA_UINT64 },
19732 		{ "tcp_timeout_cancel_reqs",	KSTAT_DATA_UINT64 },
19733 		{ "tcp_timeout_canceled",	KSTAT_DATA_UINT64 },
19734 		{ "tcp_timermp_freed",		KSTAT_DATA_UINT64 },
19735 		{ "tcp_push_timer_cnt",		KSTAT_DATA_UINT64 },
19736 		{ "tcp_ack_timer_cnt",		KSTAT_DATA_UINT64 },
19737 		{ "tcp_wsrv_called",		KSTAT_DATA_UINT64 },
19738 		{ "tcp_flwctl_on",		KSTAT_DATA_UINT64 },
19739 		{ "tcp_timer_fire_early",	KSTAT_DATA_UINT64 },
19740 		{ "tcp_timer_fire_miss",	KSTAT_DATA_UINT64 },
19741 		{ "tcp_rput_v6_error",		KSTAT_DATA_UINT64 },
19742 		{ "tcp_zcopy_on",		KSTAT_DATA_UINT64 },
19743 		{ "tcp_zcopy_off",		KSTAT_DATA_UINT64 },
19744 		{ "tcp_zcopy_backoff",		KSTAT_DATA_UINT64 },
19745 		{ "tcp_fusion_flowctl",		KSTAT_DATA_UINT64 },
19746 		{ "tcp_fusion_backenabled",	KSTAT_DATA_UINT64 },
19747 		{ "tcp_fusion_urg",		KSTAT_DATA_UINT64 },
19748 		{ "tcp_fusion_putnext",		KSTAT_DATA_UINT64 },
19749 		{ "tcp_fusion_unfusable",	KSTAT_DATA_UINT64 },
19750 		{ "tcp_fusion_aborted",		KSTAT_DATA_UINT64 },
19751 		{ "tcp_fusion_unqualified",	KSTAT_DATA_UINT64 },
19752 		{ "tcp_fusion_rrw_busy",	KSTAT_DATA_UINT64 },
19753 		{ "tcp_fusion_rrw_msgcnt",	KSTAT_DATA_UINT64 },
19754 		{ "tcp_fusion_rrw_plugged",	KSTAT_DATA_UINT64 },
19755 		{ "tcp_in_ack_unsent_drop",	KSTAT_DATA_UINT64 },
19756 		{ "tcp_sock_fallback",		KSTAT_DATA_UINT64 },
19757 		{ "tcp_lso_enabled",		KSTAT_DATA_UINT64 },
19758 		{ "tcp_lso_disabled",		KSTAT_DATA_UINT64 },
19759 		{ "tcp_lso_times",		KSTAT_DATA_UINT64 },
19760 		{ "tcp_lso_pkt_out",		KSTAT_DATA_UINT64 },
19761 	};
19762 
19763 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net",
19764 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
19765 	    KSTAT_FLAG_VIRTUAL, stackid);
19766 
19767 	if (ksp == NULL)
19768 		return (NULL);
19769 
19770 	bcopy(&template, tcps_statisticsp, sizeof (template));
19771 	ksp->ks_data = (void *)tcps_statisticsp;
19772 	ksp->ks_private = (void *)(uintptr_t)stackid;
19773 
19774 	kstat_install(ksp);
19775 	return (ksp);
19776 }
19777 
19778 static void
19779 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
19780 {
19781 	if (ksp != NULL) {
19782 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
19783 		kstat_delete_netstack(ksp, stackid);
19784 	}
19785 }
19786 
19787 /*
19788  * TCP Kstats implementation
19789  */
19790 static void *
19791 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps)
19792 {
19793 	kstat_t	*ksp;
19794 
19795 	tcp_named_kstat_t template = {
19796 		{ "rtoAlgorithm",	KSTAT_DATA_INT32, 0 },
19797 		{ "rtoMin",		KSTAT_DATA_INT32, 0 },
19798 		{ "rtoMax",		KSTAT_DATA_INT32, 0 },
19799 		{ "maxConn",		KSTAT_DATA_INT32, 0 },
19800 		{ "activeOpens",	KSTAT_DATA_UINT32, 0 },
19801 		{ "passiveOpens",	KSTAT_DATA_UINT32, 0 },
19802 		{ "attemptFails",	KSTAT_DATA_UINT32, 0 },
19803 		{ "estabResets",	KSTAT_DATA_UINT32, 0 },
19804 		{ "currEstab",		KSTAT_DATA_UINT32, 0 },
19805 		{ "inSegs",		KSTAT_DATA_UINT64, 0 },
19806 		{ "outSegs",		KSTAT_DATA_UINT64, 0 },
19807 		{ "retransSegs",	KSTAT_DATA_UINT32, 0 },
19808 		{ "connTableSize",	KSTAT_DATA_INT32, 0 },
19809 		{ "outRsts",		KSTAT_DATA_UINT32, 0 },
19810 		{ "outDataSegs",	KSTAT_DATA_UINT32, 0 },
19811 		{ "outDataBytes",	KSTAT_DATA_UINT32, 0 },
19812 		{ "retransBytes",	KSTAT_DATA_UINT32, 0 },
19813 		{ "outAck",		KSTAT_DATA_UINT32, 0 },
19814 		{ "outAckDelayed",	KSTAT_DATA_UINT32, 0 },
19815 		{ "outUrg",		KSTAT_DATA_UINT32, 0 },
19816 		{ "outWinUpdate",	KSTAT_DATA_UINT32, 0 },
19817 		{ "outWinProbe",	KSTAT_DATA_UINT32, 0 },
19818 		{ "outControl",		KSTAT_DATA_UINT32, 0 },
19819 		{ "outFastRetrans",	KSTAT_DATA_UINT32, 0 },
19820 		{ "inAckSegs",		KSTAT_DATA_UINT32, 0 },
19821 		{ "inAckBytes",		KSTAT_DATA_UINT32, 0 },
19822 		{ "inDupAck",		KSTAT_DATA_UINT32, 0 },
19823 		{ "inAckUnsent",	KSTAT_DATA_UINT32, 0 },
19824 		{ "inDataInorderSegs",	KSTAT_DATA_UINT32, 0 },
19825 		{ "inDataInorderBytes",	KSTAT_DATA_UINT32, 0 },
19826 		{ "inDataUnorderSegs",	KSTAT_DATA_UINT32, 0 },
19827 		{ "inDataUnorderBytes",	KSTAT_DATA_UINT32, 0 },
19828 		{ "inDataDupSegs",	KSTAT_DATA_UINT32, 0 },
19829 		{ "inDataDupBytes",	KSTAT_DATA_UINT32, 0 },
19830 		{ "inDataPartDupSegs",	KSTAT_DATA_UINT32, 0 },
19831 		{ "inDataPartDupBytes",	KSTAT_DATA_UINT32, 0 },
19832 		{ "inDataPastWinSegs",	KSTAT_DATA_UINT32, 0 },
19833 		{ "inDataPastWinBytes",	KSTAT_DATA_UINT32, 0 },
19834 		{ "inWinProbe",		KSTAT_DATA_UINT32, 0 },
19835 		{ "inWinUpdate",	KSTAT_DATA_UINT32, 0 },
19836 		{ "inClosed",		KSTAT_DATA_UINT32, 0 },
19837 		{ "rttUpdate",		KSTAT_DATA_UINT32, 0 },
19838 		{ "rttNoUpdate",	KSTAT_DATA_UINT32, 0 },
19839 		{ "timRetrans",		KSTAT_DATA_UINT32, 0 },
19840 		{ "timRetransDrop",	KSTAT_DATA_UINT32, 0 },
19841 		{ "timKeepalive",	KSTAT_DATA_UINT32, 0 },
19842 		{ "timKeepaliveProbe",	KSTAT_DATA_UINT32, 0 },
19843 		{ "timKeepaliveDrop",	KSTAT_DATA_UINT32, 0 },
19844 		{ "listenDrop",		KSTAT_DATA_UINT32, 0 },
19845 		{ "listenDropQ0",	KSTAT_DATA_UINT32, 0 },
19846 		{ "halfOpenDrop",	KSTAT_DATA_UINT32, 0 },
19847 		{ "outSackRetransSegs",	KSTAT_DATA_UINT32, 0 },
19848 		{ "connTableSize6",	KSTAT_DATA_INT32, 0 }
19849 	};
19850 
19851 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2",
19852 	    KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid);
19853 
19854 	if (ksp == NULL)
19855 		return (NULL);
19856 
19857 	template.rtoAlgorithm.value.ui32 = 4;
19858 	template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min;
19859 	template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max;
19860 	template.maxConn.value.i32 = -1;
19861 
19862 	bcopy(&template, ksp->ks_data, sizeof (template));
19863 	ksp->ks_update = tcp_kstat_update;
19864 	ksp->ks_private = (void *)(uintptr_t)stackid;
19865 
19866 	kstat_install(ksp);
19867 	return (ksp);
19868 }
19869 
19870 static void
19871 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
19872 {
19873 	if (ksp != NULL) {
19874 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
19875 		kstat_delete_netstack(ksp, stackid);
19876 	}
19877 }
19878 
19879 static int
19880 tcp_kstat_update(kstat_t *kp, int rw)
19881 {
19882 	tcp_named_kstat_t *tcpkp;
19883 	tcp_t		*tcp;
19884 	connf_t		*connfp;
19885 	conn_t		*connp;
19886 	int 		i;
19887 	netstackid_t	stackid = (netstackid_t)(uintptr_t)kp->ks_private;
19888 	netstack_t	*ns;
19889 	tcp_stack_t	*tcps;
19890 	ip_stack_t	*ipst;
19891 
19892 	if ((kp == NULL) || (kp->ks_data == NULL))
19893 		return (EIO);
19894 
19895 	if (rw == KSTAT_WRITE)
19896 		return (EACCES);
19897 
19898 	ns = netstack_find_by_stackid(stackid);
19899 	if (ns == NULL)
19900 		return (-1);
19901 	tcps = ns->netstack_tcp;
19902 	if (tcps == NULL) {
19903 		netstack_rele(ns);
19904 		return (-1);
19905 	}
19906 
19907 	tcpkp = (tcp_named_kstat_t *)kp->ks_data;
19908 
19909 	tcpkp->currEstab.value.ui32 = 0;
19910 
19911 	ipst = ns->netstack_ip;
19912 
19913 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
19914 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
19915 		connp = NULL;
19916 		while ((connp =
19917 		    ipcl_get_next_conn(connfp, connp, IPCL_TCPCONN)) != NULL) {
19918 			tcp = connp->conn_tcp;
19919 			switch (tcp_snmp_state(tcp)) {
19920 			case MIB2_TCP_established:
19921 			case MIB2_TCP_closeWait:
19922 				tcpkp->currEstab.value.ui32++;
19923 				break;
19924 			}
19925 		}
19926 	}
19927 
19928 	tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens;
19929 	tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens;
19930 	tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails;
19931 	tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets;
19932 	tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs;
19933 	tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs;
19934 	tcpkp->retransSegs.value.ui32 =	tcps->tcps_mib.tcpRetransSegs;
19935 	tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize;
19936 	tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts;
19937 	tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs;
19938 	tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes;
19939 	tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes;
19940 	tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck;
19941 	tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed;
19942 	tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg;
19943 	tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate;
19944 	tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe;
19945 	tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl;
19946 	tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans;
19947 	tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs;
19948 	tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes;
19949 	tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck;
19950 	tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent;
19951 	tcpkp->inDataInorderSegs.value.ui32 =
19952 	    tcps->tcps_mib.tcpInDataInorderSegs;
19953 	tcpkp->inDataInorderBytes.value.ui32 =
19954 	    tcps->tcps_mib.tcpInDataInorderBytes;
19955 	tcpkp->inDataUnorderSegs.value.ui32 =
19956 	    tcps->tcps_mib.tcpInDataUnorderSegs;
19957 	tcpkp->inDataUnorderBytes.value.ui32 =
19958 	    tcps->tcps_mib.tcpInDataUnorderBytes;
19959 	tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs;
19960 	tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes;
19961 	tcpkp->inDataPartDupSegs.value.ui32 =
19962 	    tcps->tcps_mib.tcpInDataPartDupSegs;
19963 	tcpkp->inDataPartDupBytes.value.ui32 =
19964 	    tcps->tcps_mib.tcpInDataPartDupBytes;
19965 	tcpkp->inDataPastWinSegs.value.ui32 =
19966 	    tcps->tcps_mib.tcpInDataPastWinSegs;
19967 	tcpkp->inDataPastWinBytes.value.ui32 =
19968 	    tcps->tcps_mib.tcpInDataPastWinBytes;
19969 	tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe;
19970 	tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate;
19971 	tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed;
19972 	tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate;
19973 	tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate;
19974 	tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans;
19975 	tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop;
19976 	tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive;
19977 	tcpkp->timKeepaliveProbe.value.ui32 =
19978 	    tcps->tcps_mib.tcpTimKeepaliveProbe;
19979 	tcpkp->timKeepaliveDrop.value.ui32 =
19980 	    tcps->tcps_mib.tcpTimKeepaliveDrop;
19981 	tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop;
19982 	tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0;
19983 	tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop;
19984 	tcpkp->outSackRetransSegs.value.ui32 =
19985 	    tcps->tcps_mib.tcpOutSackRetransSegs;
19986 	tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize;
19987 
19988 	netstack_rele(ns);
19989 	return (0);
19990 }
19991 
19992 static int
19993 tcp_squeue_switch(int val)
19994 {
19995 	int rval = SQ_FILL;
19996 
19997 	switch (val) {
19998 	case 1:
19999 		rval = SQ_NODRAIN;
20000 		break;
20001 	case 2:
20002 		rval = SQ_PROCESS;
20003 		break;
20004 	default:
20005 		break;
20006 	}
20007 	return (rval);
20008 }
20009 
20010 /*
20011  * This is called once for each squeue - globally for all stack
20012  * instances.
20013  */
20014 static void
20015 tcp_squeue_add(squeue_t *sqp)
20016 {
20017 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
20018 	    sizeof (tcp_squeue_priv_t), KM_SLEEP);
20019 
20020 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
20021 	tcp_time_wait->tcp_time_wait_tid =
20022 	    timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp,
20023 	    TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION,
20024 	    CALLOUT_FLAG_ROUNDUP);
20025 	if (tcp_free_list_max_cnt == 0) {
20026 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
20027 		    max_ncpus : boot_max_ncpus);
20028 
20029 		/*
20030 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
20031 		 */
20032 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
20033 		    (tcp_ncpus * sizeof (tcp_t) * 100);
20034 	}
20035 	tcp_time_wait->tcp_free_list_cnt = 0;
20036 }
20037 
20038 /*
20039  * On a labeled system we have some protocols above TCP, such as RPC, which
20040  * appear to assume that every mblk in a chain has a db_credp.
20041  */
20042 static void
20043 tcp_setcred_data(mblk_t *mp, ip_recv_attr_t *ira)
20044 {
20045 	ASSERT(is_system_labeled());
20046 	ASSERT(ira->ira_cred != NULL);
20047 
20048 	while (mp != NULL) {
20049 		mblk_setcred(mp, ira->ira_cred, NOPID);
20050 		mp = mp->b_cont;
20051 	}
20052 }
20053 
20054 static int
20055 tcp_bind_select_lport(tcp_t *tcp, in_port_t *requested_port_ptr,
20056     boolean_t bind_to_req_port_only, cred_t *cr)
20057 {
20058 	in_port_t	mlp_port;
20059 	mlp_type_t 	addrtype, mlptype;
20060 	boolean_t	user_specified;
20061 	in_port_t	allocated_port;
20062 	in_port_t	requested_port = *requested_port_ptr;
20063 	conn_t		*connp = tcp->tcp_connp;
20064 	zone_t		*zone;
20065 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20066 	in6_addr_t	v6addr = connp->conn_laddr_v6;
20067 
20068 	/*
20069 	 * XXX It's up to the caller to specify bind_to_req_port_only or not.
20070 	 */
20071 	ASSERT(cr != NULL);
20072 
20073 	/*
20074 	 * Get a valid port (within the anonymous range and should not
20075 	 * be a privileged one) to use if the user has not given a port.
20076 	 * If multiple threads are here, they may all start with
20077 	 * with the same initial port. But, it should be fine as long as
20078 	 * tcp_bindi will ensure that no two threads will be assigned
20079 	 * the same port.
20080 	 *
20081 	 * NOTE: XXX If a privileged process asks for an anonymous port, we
20082 	 * still check for ports only in the range > tcp_smallest_non_priv_port,
20083 	 * unless TCP_ANONPRIVBIND option is set.
20084 	 */
20085 	mlptype = mlptSingle;
20086 	mlp_port = requested_port;
20087 	if (requested_port == 0) {
20088 		requested_port = connp->conn_anon_priv_bind ?
20089 		    tcp_get_next_priv_port(tcp) :
20090 		    tcp_update_next_port(tcps->tcps_next_port_to_try,
20091 		    tcp, B_TRUE);
20092 		if (requested_port == 0) {
20093 			return (-TNOADDR);
20094 		}
20095 		user_specified = B_FALSE;
20096 
20097 		/*
20098 		 * If the user went through one of the RPC interfaces to create
20099 		 * this socket and RPC is MLP in this zone, then give him an
20100 		 * anonymous MLP.
20101 		 */
20102 		if (connp->conn_anon_mlp && is_system_labeled()) {
20103 			zone = crgetzone(cr);
20104 			addrtype = tsol_mlp_addr_type(
20105 			    connp->conn_allzones ? ALL_ZONES : zone->zone_id,
20106 			    IPV6_VERSION, &v6addr,
20107 			    tcps->tcps_netstack->netstack_ip);
20108 			if (addrtype == mlptSingle) {
20109 				return (-TNOADDR);
20110 			}
20111 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
20112 			    PMAPPORT, addrtype);
20113 			mlp_port = PMAPPORT;
20114 		}
20115 	} else {
20116 		int i;
20117 		boolean_t priv = B_FALSE;
20118 
20119 		/*
20120 		 * If the requested_port is in the well-known privileged range,
20121 		 * verify that the stream was opened by a privileged user.
20122 		 * Note: No locks are held when inspecting tcp_g_*epriv_ports
20123 		 * but instead the code relies on:
20124 		 * - the fact that the address of the array and its size never
20125 		 *   changes
20126 		 * - the atomic assignment of the elements of the array
20127 		 */
20128 		if (requested_port < tcps->tcps_smallest_nonpriv_port) {
20129 			priv = B_TRUE;
20130 		} else {
20131 			for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
20132 				if (requested_port ==
20133 				    tcps->tcps_g_epriv_ports[i]) {
20134 					priv = B_TRUE;
20135 					break;
20136 				}
20137 			}
20138 		}
20139 		if (priv) {
20140 			if (secpolicy_net_privaddr(cr, requested_port,
20141 			    IPPROTO_TCP) != 0) {
20142 				if (connp->conn_debug) {
20143 					(void) strlog(TCP_MOD_ID, 0, 1,
20144 					    SL_ERROR|SL_TRACE,
20145 					    "tcp_bind: no priv for port %d",
20146 					    requested_port);
20147 				}
20148 				return (-TACCES);
20149 			}
20150 		}
20151 		user_specified = B_TRUE;
20152 
20153 		connp = tcp->tcp_connp;
20154 		if (is_system_labeled()) {
20155 			zone = crgetzone(cr);
20156 			addrtype = tsol_mlp_addr_type(
20157 			    connp->conn_allzones ? ALL_ZONES : zone->zone_id,
20158 			    IPV6_VERSION, &v6addr,
20159 			    tcps->tcps_netstack->netstack_ip);
20160 			if (addrtype == mlptSingle) {
20161 				return (-TNOADDR);
20162 			}
20163 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
20164 			    requested_port, addrtype);
20165 		}
20166 	}
20167 
20168 	if (mlptype != mlptSingle) {
20169 		if (secpolicy_net_bindmlp(cr) != 0) {
20170 			if (connp->conn_debug) {
20171 				(void) strlog(TCP_MOD_ID, 0, 1,
20172 				    SL_ERROR|SL_TRACE,
20173 				    "tcp_bind: no priv for multilevel port %d",
20174 				    requested_port);
20175 			}
20176 			return (-TACCES);
20177 		}
20178 
20179 		/*
20180 		 * If we're specifically binding a shared IP address and the
20181 		 * port is MLP on shared addresses, then check to see if this
20182 		 * zone actually owns the MLP.  Reject if not.
20183 		 */
20184 		if (mlptype == mlptShared && addrtype == mlptShared) {
20185 			/*
20186 			 * No need to handle exclusive-stack zones since
20187 			 * ALL_ZONES only applies to the shared stack.
20188 			 */
20189 			zoneid_t mlpzone;
20190 
20191 			mlpzone = tsol_mlp_findzone(IPPROTO_TCP,
20192 			    htons(mlp_port));
20193 			if (connp->conn_zoneid != mlpzone) {
20194 				if (connp->conn_debug) {
20195 					(void) strlog(TCP_MOD_ID, 0, 1,
20196 					    SL_ERROR|SL_TRACE,
20197 					    "tcp_bind: attempt to bind port "
20198 					    "%d on shared addr in zone %d "
20199 					    "(should be %d)",
20200 					    mlp_port, connp->conn_zoneid,
20201 					    mlpzone);
20202 				}
20203 				return (-TACCES);
20204 			}
20205 		}
20206 
20207 		if (!user_specified) {
20208 			int err;
20209 			err = tsol_mlp_anon(zone, mlptype, connp->conn_proto,
20210 			    requested_port, B_TRUE);
20211 			if (err != 0) {
20212 				if (connp->conn_debug) {
20213 					(void) strlog(TCP_MOD_ID, 0, 1,
20214 					    SL_ERROR|SL_TRACE,
20215 					    "tcp_bind: cannot establish anon "
20216 					    "MLP for port %d",
20217 					    requested_port);
20218 				}
20219 				return (err);
20220 			}
20221 			connp->conn_anon_port = B_TRUE;
20222 		}
20223 		connp->conn_mlp_type = mlptype;
20224 	}
20225 
20226 	allocated_port = tcp_bindi(tcp, requested_port, &v6addr,
20227 	    connp->conn_reuseaddr, B_FALSE, bind_to_req_port_only,
20228 	    user_specified);
20229 
20230 	if (allocated_port == 0) {
20231 		connp->conn_mlp_type = mlptSingle;
20232 		if (connp->conn_anon_port) {
20233 			connp->conn_anon_port = B_FALSE;
20234 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_proto,
20235 			    requested_port, B_FALSE);
20236 		}
20237 		if (bind_to_req_port_only) {
20238 			if (connp->conn_debug) {
20239 				(void) strlog(TCP_MOD_ID, 0, 1,
20240 				    SL_ERROR|SL_TRACE,
20241 				    "tcp_bind: requested addr busy");
20242 			}
20243 			return (-TADDRBUSY);
20244 		} else {
20245 			/* If we are out of ports, fail the bind. */
20246 			if (connp->conn_debug) {
20247 				(void) strlog(TCP_MOD_ID, 0, 1,
20248 				    SL_ERROR|SL_TRACE,
20249 				    "tcp_bind: out of ports?");
20250 			}
20251 			return (-TNOADDR);
20252 		}
20253 	}
20254 
20255 	/* Pass the allocated port back */
20256 	*requested_port_ptr = allocated_port;
20257 	return (0);
20258 }
20259 
20260 /*
20261  * Check the address and check/pick a local port number.
20262  */
20263 static int
20264 tcp_bind_check(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,
20265     boolean_t bind_to_req_port_only)
20266 {
20267 	tcp_t	*tcp = connp->conn_tcp;
20268 	sin_t	*sin;
20269 	sin6_t  *sin6;
20270 	in_port_t	requested_port;
20271 	ipaddr_t	v4addr;
20272 	in6_addr_t	v6addr;
20273 	ip_laddr_t	laddr_type = IPVL_UNICAST_UP;	/* INADDR_ANY */
20274 	zoneid_t	zoneid = IPCL_ZONEID(connp);
20275 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
20276 	uint_t		scopeid = 0;
20277 	int		error = 0;
20278 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
20279 
20280 	ASSERT((uintptr_t)len <= (uintptr_t)INT_MAX);
20281 
20282 	if (tcp->tcp_state == TCPS_BOUND) {
20283 		return (0);
20284 	} else if (tcp->tcp_state > TCPS_BOUND) {
20285 		if (connp->conn_debug) {
20286 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
20287 			    "tcp_bind: bad state, %d", tcp->tcp_state);
20288 		}
20289 		return (-TOUTSTATE);
20290 	}
20291 
20292 	ASSERT(sa != NULL && len != 0);
20293 
20294 	if (!OK_32PTR((char *)sa)) {
20295 		if (connp->conn_debug) {
20296 			(void) strlog(TCP_MOD_ID, 0, 1,
20297 			    SL_ERROR|SL_TRACE,
20298 			    "tcp_bind: bad address parameter, "
20299 			    "address %p, len %d",
20300 			    (void *)sa, len);
20301 		}
20302 		return (-TPROTO);
20303 	}
20304 
20305 	error = proto_verify_ip_addr(connp->conn_family, sa, len);
20306 	if (error != 0) {
20307 		return (error);
20308 	}
20309 
20310 	switch (len) {
20311 	case sizeof (sin_t):	/* Complete IPv4 address */
20312 		sin = (sin_t *)sa;
20313 		requested_port = ntohs(sin->sin_port);
20314 		v4addr = sin->sin_addr.s_addr;
20315 		IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr);
20316 		if (v4addr != INADDR_ANY) {
20317 			laddr_type = ip_laddr_verify_v4(v4addr, zoneid, ipst,
20318 			    B_FALSE);
20319 		}
20320 		break;
20321 
20322 	case sizeof (sin6_t): /* Complete IPv6 address */
20323 		sin6 = (sin6_t *)sa;
20324 		v6addr = sin6->sin6_addr;
20325 		requested_port = ntohs(sin6->sin6_port);
20326 		if (IN6_IS_ADDR_V4MAPPED(&v6addr)) {
20327 			if (connp->conn_ipv6_v6only)
20328 				return (EADDRNOTAVAIL);
20329 
20330 			IN6_V4MAPPED_TO_IPADDR(&v6addr, v4addr);
20331 			if (v4addr != INADDR_ANY) {
20332 				laddr_type = ip_laddr_verify_v4(v4addr,
20333 				    zoneid, ipst, B_FALSE);
20334 			}
20335 		} else {
20336 			if (!IN6_IS_ADDR_UNSPECIFIED(&v6addr)) {
20337 				if (IN6_IS_ADDR_LINKSCOPE(&v6addr))
20338 					scopeid = sin6->sin6_scope_id;
20339 				laddr_type = ip_laddr_verify_v6(&v6addr,
20340 				    zoneid, ipst, B_FALSE, scopeid);
20341 			}
20342 		}
20343 		break;
20344 
20345 	default:
20346 		if (connp->conn_debug) {
20347 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
20348 			    "tcp_bind: bad address length, %d", len);
20349 		}
20350 		return (EAFNOSUPPORT);
20351 		/* return (-TBADADDR); */
20352 	}
20353 
20354 	/* Is the local address a valid unicast address? */
20355 	if (laddr_type == IPVL_BAD)
20356 		return (EADDRNOTAVAIL);
20357 
20358 	connp->conn_bound_addr_v6 = v6addr;
20359 	if (scopeid != 0) {
20360 		ixa->ixa_flags |= IXAF_SCOPEID_SET;
20361 		ixa->ixa_scopeid = scopeid;
20362 		connp->conn_incoming_ifindex = scopeid;
20363 	} else {
20364 		ixa->ixa_flags &= ~IXAF_SCOPEID_SET;
20365 		connp->conn_incoming_ifindex = connp->conn_bound_if;
20366 	}
20367 
20368 	connp->conn_laddr_v6 = v6addr;
20369 	connp->conn_saddr_v6 = v6addr;
20370 
20371 	bind_to_req_port_only = requested_port != 0 && bind_to_req_port_only;
20372 
20373 	error = tcp_bind_select_lport(tcp, &requested_port,
20374 	    bind_to_req_port_only, cr);
20375 	if (error != 0) {
20376 		connp->conn_laddr_v6 = ipv6_all_zeros;
20377 		connp->conn_saddr_v6 = ipv6_all_zeros;
20378 		connp->conn_bound_addr_v6 = ipv6_all_zeros;
20379 	}
20380 	return (error);
20381 }
20382 
20383 /*
20384  * Return unix error is tli error is TSYSERR, otherwise return a negative
20385  * tli error.
20386  */
20387 int
20388 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,
20389     boolean_t bind_to_req_port_only)
20390 {
20391 	int error;
20392 	tcp_t *tcp = connp->conn_tcp;
20393 
20394 	if (tcp->tcp_state >= TCPS_BOUND) {
20395 		if (connp->conn_debug) {
20396 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
20397 			    "tcp_bind: bad state, %d", tcp->tcp_state);
20398 		}
20399 		return (-TOUTSTATE);
20400 	}
20401 
20402 	error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only);
20403 	if (error != 0)
20404 		return (error);
20405 
20406 	ASSERT(tcp->tcp_state == TCPS_BOUND);
20407 	tcp->tcp_conn_req_max = 0;
20408 	return (0);
20409 }
20410 
20411 int
20412 tcp_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa,
20413     socklen_t len, cred_t *cr)
20414 {
20415 	int 		error;
20416 	conn_t		*connp = (conn_t *)proto_handle;
20417 	squeue_t	*sqp = connp->conn_sqp;
20418 
20419 	/* All Solaris components should pass a cred for this operation. */
20420 	ASSERT(cr != NULL);
20421 
20422 	ASSERT(sqp != NULL);
20423 	ASSERT(connp->conn_upper_handle != NULL);
20424 
20425 	error = squeue_synch_enter(sqp, connp, NULL);
20426 	if (error != 0) {
20427 		/* failed to enter */
20428 		return (ENOSR);
20429 	}
20430 
20431 	/* binding to a NULL address really means unbind */
20432 	if (sa == NULL) {
20433 		if (connp->conn_tcp->tcp_state < TCPS_LISTEN)
20434 			error = tcp_do_unbind(connp);
20435 		else
20436 			error = EINVAL;
20437 	} else {
20438 		error = tcp_do_bind(connp, sa, len, cr, B_TRUE);
20439 	}
20440 
20441 	squeue_synch_exit(sqp, connp);
20442 
20443 	if (error < 0) {
20444 		if (error == -TOUTSTATE)
20445 			error = EINVAL;
20446 		else
20447 			error = proto_tlitosyserr(-error);
20448 	}
20449 
20450 	return (error);
20451 }
20452 
20453 /*
20454  * If the return value from this function is positive, it's a UNIX error.
20455  * Otherwise, if it's negative, then the absolute value is a TLI error.
20456  * the TPI routine tcp_tpi_connect() is a wrapper function for this.
20457  */
20458 int
20459 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len,
20460     cred_t *cr, pid_t pid)
20461 {
20462 	tcp_t		*tcp = connp->conn_tcp;
20463 	sin_t		*sin = (sin_t *)sa;
20464 	sin6_t		*sin6 = (sin6_t *)sa;
20465 	ipaddr_t	*dstaddrp;
20466 	in_port_t	dstport;
20467 	uint_t		srcid;
20468 	int		error;
20469 	uint32_t	mss;
20470 	mblk_t		*syn_mp;
20471 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20472 	int32_t		oldstate;
20473 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
20474 
20475 	oldstate = tcp->tcp_state;
20476 
20477 	switch (len) {
20478 	default:
20479 		/*
20480 		 * Should never happen
20481 		 */
20482 		return (EINVAL);
20483 
20484 	case sizeof (sin_t):
20485 		sin = (sin_t *)sa;
20486 		if (sin->sin_port == 0) {
20487 			return (-TBADADDR);
20488 		}
20489 		if (connp->conn_ipv6_v6only) {
20490 			return (EAFNOSUPPORT);
20491 		}
20492 		break;
20493 
20494 	case sizeof (sin6_t):
20495 		sin6 = (sin6_t *)sa;
20496 		if (sin6->sin6_port == 0) {
20497 			return (-TBADADDR);
20498 		}
20499 		break;
20500 	}
20501 	/*
20502 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
20503 	 * make sure that the conn_ipversion is IPV4_VERSION.  We
20504 	 * need to this before we call tcp_bindi() so that the port lookup
20505 	 * code will look for ports in the correct port space (IPv4 and
20506 	 * IPv6 have separate port spaces).
20507 	 */
20508 	if (connp->conn_family == AF_INET6 &&
20509 	    connp->conn_ipversion == IPV6_VERSION &&
20510 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
20511 		if (connp->conn_ipv6_v6only)
20512 			return (EADDRNOTAVAIL);
20513 
20514 		connp->conn_ipversion = IPV4_VERSION;
20515 	}
20516 
20517 	switch (tcp->tcp_state) {
20518 	case TCPS_LISTEN:
20519 		/*
20520 		 * Listening sockets are not allowed to issue connect().
20521 		 */
20522 		if (IPCL_IS_NONSTR(connp))
20523 			return (EOPNOTSUPP);
20524 		/* FALLTHRU */
20525 	case TCPS_IDLE:
20526 		/*
20527 		 * We support quick connect, refer to comments in
20528 		 * tcp_connect_*()
20529 		 */
20530 		/* FALLTHRU */
20531 	case TCPS_BOUND:
20532 		break;
20533 	default:
20534 		return (-TOUTSTATE);
20535 	}
20536 
20537 	/*
20538 	 * We update our cred/cpid based on the caller of connect
20539 	 */
20540 	if (connp->conn_cred != cr) {
20541 		crhold(cr);
20542 		crfree(connp->conn_cred);
20543 		connp->conn_cred = cr;
20544 	}
20545 	connp->conn_cpid = pid;
20546 
20547 	/* Cache things in the ixa without any refhold */
20548 	ixa->ixa_cred = cr;
20549 	ixa->ixa_cpid = pid;
20550 	if (is_system_labeled()) {
20551 		/* We need to restart with a label based on the cred */
20552 		ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred);
20553 	}
20554 
20555 	if (connp->conn_family == AF_INET6) {
20556 		if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
20557 			error = tcp_connect_ipv6(tcp, &sin6->sin6_addr,
20558 			    sin6->sin6_port, sin6->sin6_flowinfo,
20559 			    sin6->__sin6_src_id, sin6->sin6_scope_id);
20560 		} else {
20561 			/*
20562 			 * Destination adress is mapped IPv6 address.
20563 			 * Source bound address should be unspecified or
20564 			 * IPv6 mapped address as well.
20565 			 */
20566 			if (!IN6_IS_ADDR_UNSPECIFIED(
20567 			    &connp->conn_bound_addr_v6) &&
20568 			    !IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) {
20569 				return (EADDRNOTAVAIL);
20570 			}
20571 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
20572 			dstport = sin6->sin6_port;
20573 			srcid = sin6->__sin6_src_id;
20574 			error = tcp_connect_ipv4(tcp, dstaddrp, dstport,
20575 			    srcid);
20576 		}
20577 	} else {
20578 		dstaddrp = &sin->sin_addr.s_addr;
20579 		dstport = sin->sin_port;
20580 		srcid = 0;
20581 		error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid);
20582 	}
20583 
20584 	if (error != 0)
20585 		goto connect_failed;
20586 
20587 	CL_INET_CONNECT(connp, B_TRUE, error);
20588 	if (error != 0)
20589 		goto connect_failed;
20590 
20591 	/* connect succeeded */
20592 	BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
20593 	tcp->tcp_active_open = 1;
20594 
20595 	/*
20596 	 * tcp_set_destination() does not adjust for TCP/IP header length.
20597 	 */
20598 	mss = tcp->tcp_mss - connp->conn_ht_iphc_len;
20599 
20600 	/*
20601 	 * Just make sure our rwnd is at least rcvbuf * MSS large, and round up
20602 	 * to the nearest MSS.
20603 	 *
20604 	 * We do the round up here because we need to get the interface MTU
20605 	 * first before we can do the round up.
20606 	 */
20607 	tcp->tcp_rwnd = connp->conn_rcvbuf;
20608 	tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
20609 	    tcps->tcps_recv_hiwat_minmss * mss);
20610 	connp->conn_rcvbuf = tcp->tcp_rwnd;
20611 	tcp_set_ws_value(tcp);
20612 	tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
20613 	if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always)
20614 		tcp->tcp_snd_ws_ok = B_TRUE;
20615 
20616 	/*
20617 	 * Set tcp_snd_ts_ok to true
20618 	 * so that tcp_xmit_mp will
20619 	 * include the timestamp
20620 	 * option in the SYN segment.
20621 	 */
20622 	if (tcps->tcps_tstamp_always ||
20623 	    (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) {
20624 		tcp->tcp_snd_ts_ok = B_TRUE;
20625 	}
20626 
20627 	/*
20628 	 * tcp_snd_sack_ok can be set in
20629 	 * tcp_set_destination() if the sack metric
20630 	 * is set.  So check it here also.
20631 	 */
20632 	if (tcps->tcps_sack_permitted == 2 ||
20633 	    tcp->tcp_snd_sack_ok) {
20634 		if (tcp->tcp_sack_info == NULL) {
20635 			tcp->tcp_sack_info = kmem_cache_alloc(
20636 			    tcp_sack_info_cache, KM_SLEEP);
20637 		}
20638 		tcp->tcp_snd_sack_ok = B_TRUE;
20639 	}
20640 
20641 	/*
20642 	 * Should we use ECN?  Note that the current
20643 	 * default value (SunOS 5.9) of tcp_ecn_permitted
20644 	 * is 1.  The reason for doing this is that there
20645 	 * are equipments out there that will drop ECN
20646 	 * enabled IP packets.  Setting it to 1 avoids
20647 	 * compatibility problems.
20648 	 */
20649 	if (tcps->tcps_ecn_permitted == 2)
20650 		tcp->tcp_ecn_ok = B_TRUE;
20651 
20652 	TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20653 	syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
20654 	    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
20655 	if (syn_mp != NULL) {
20656 		/*
20657 		 * We must bump the generation before sending the syn
20658 		 * to ensure that we use the right generation in case
20659 		 * this thread issues a "connected" up call.
20660 		 */
20661 		SOCK_CONNID_BUMP(tcp->tcp_connid);
20662 		tcp_send_data(tcp, syn_mp);
20663 	}
20664 
20665 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
20666 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
20667 	return (0);
20668 
20669 connect_failed:
20670 	connp->conn_faddr_v6 = ipv6_all_zeros;
20671 	connp->conn_fport = 0;
20672 	tcp->tcp_state = oldstate;
20673 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
20674 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
20675 	return (error);
20676 }
20677 
20678 int
20679 tcp_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa,
20680     socklen_t len, sock_connid_t *id, cred_t *cr)
20681 {
20682 	conn_t		*connp = (conn_t *)proto_handle;
20683 	squeue_t	*sqp = connp->conn_sqp;
20684 	int		error;
20685 
20686 	ASSERT(connp->conn_upper_handle != NULL);
20687 
20688 	/* All Solaris components should pass a cred for this operation. */
20689 	ASSERT(cr != NULL);
20690 
20691 	error = proto_verify_ip_addr(connp->conn_family, sa, len);
20692 	if (error != 0) {
20693 		return (error);
20694 	}
20695 
20696 	error = squeue_synch_enter(sqp, connp, NULL);
20697 	if (error != 0) {
20698 		/* failed to enter */
20699 		return (ENOSR);
20700 	}
20701 
20702 	/*
20703 	 * TCP supports quick connect, so no need to do an implicit bind
20704 	 */
20705 	error = tcp_do_connect(connp, sa, len, cr, curproc->p_pid);
20706 	if (error == 0) {
20707 		*id = connp->conn_tcp->tcp_connid;
20708 	} else if (error < 0) {
20709 		if (error == -TOUTSTATE) {
20710 			switch (connp->conn_tcp->tcp_state) {
20711 			case TCPS_SYN_SENT:
20712 				error = EALREADY;
20713 				break;
20714 			case TCPS_ESTABLISHED:
20715 				error = EISCONN;
20716 				break;
20717 			case TCPS_LISTEN:
20718 				error = EOPNOTSUPP;
20719 				break;
20720 			default:
20721 				error = EINVAL;
20722 				break;
20723 			}
20724 		} else {
20725 			error = proto_tlitosyserr(-error);
20726 		}
20727 	}
20728 
20729 	if (connp->conn_tcp->tcp_loopback) {
20730 		struct sock_proto_props sopp;
20731 
20732 		sopp.sopp_flags = SOCKOPT_LOOPBACK;
20733 		sopp.sopp_loopback = B_TRUE;
20734 
20735 		(*connp->conn_upcalls->su_set_proto_props)(
20736 		    connp->conn_upper_handle, &sopp);
20737 	}
20738 done:
20739 	squeue_synch_exit(sqp, connp);
20740 
20741 	return ((error == 0) ? EINPROGRESS : error);
20742 }
20743 
20744 /* ARGSUSED */
20745 sock_lower_handle_t
20746 tcp_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls,
20747     uint_t *smodep, int *errorp, int flags, cred_t *credp)
20748 {
20749 	conn_t		*connp;
20750 	boolean_t	isv6 = family == AF_INET6;
20751 	if (type != SOCK_STREAM || (family != AF_INET && family != AF_INET6) ||
20752 	    (proto != 0 && proto != IPPROTO_TCP)) {
20753 		*errorp = EPROTONOSUPPORT;
20754 		return (NULL);
20755 	}
20756 
20757 	connp = tcp_create_common(credp, isv6, B_TRUE, errorp);
20758 	if (connp == NULL) {
20759 		return (NULL);
20760 	}
20761 
20762 	/*
20763 	 * Put the ref for TCP. Ref for IP was already put
20764 	 * by ipcl_conn_create. Also Make the conn_t globally
20765 	 * visible to walkers
20766 	 */
20767 	mutex_enter(&connp->conn_lock);
20768 	CONN_INC_REF_LOCKED(connp);
20769 	ASSERT(connp->conn_ref == 2);
20770 	connp->conn_state_flags &= ~CONN_INCIPIENT;
20771 
20772 	connp->conn_flags |= IPCL_NONSTR;
20773 	mutex_exit(&connp->conn_lock);
20774 
20775 	ASSERT(errorp != NULL);
20776 	*errorp = 0;
20777 	*sock_downcalls = &sock_tcp_downcalls;
20778 	*smodep = SM_CONNREQUIRED | SM_EXDATA | SM_ACCEPTSUPP |
20779 	    SM_SENDFILESUPP;
20780 
20781 	return ((sock_lower_handle_t)connp);
20782 }
20783 
20784 /* ARGSUSED */
20785 void
20786 tcp_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle,
20787     sock_upcalls_t *sock_upcalls, int flags, cred_t *cr)
20788 {
20789 	conn_t *connp = (conn_t *)proto_handle;
20790 	struct sock_proto_props sopp;
20791 
20792 	ASSERT(connp->conn_upper_handle == NULL);
20793 
20794 	/* All Solaris components should pass a cred for this operation. */
20795 	ASSERT(cr != NULL);
20796 
20797 	sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT |
20798 	    SOCKOPT_MAXPSZ | SOCKOPT_MAXBLK | SOCKOPT_RCVTIMER |
20799 	    SOCKOPT_RCVTHRESH | SOCKOPT_MAXADDRLEN | SOCKOPT_MINPSZ;
20800 
20801 	sopp.sopp_rxhiwat = SOCKET_RECVHIWATER;
20802 	sopp.sopp_rxlowat = SOCKET_RECVLOWATER;
20803 	sopp.sopp_maxpsz = INFPSZ;
20804 	sopp.sopp_maxblk = INFPSZ;
20805 	sopp.sopp_rcvtimer = SOCKET_TIMER_INTERVAL;
20806 	sopp.sopp_rcvthresh = SOCKET_RECVHIWATER >> 3;
20807 	sopp.sopp_maxaddrlen = sizeof (sin6_t);
20808 	sopp.sopp_minpsz = (tcp_rinfo.mi_minpsz == 1) ? 0 :
20809 	    tcp_rinfo.mi_minpsz;
20810 
20811 	connp->conn_upcalls = sock_upcalls;
20812 	connp->conn_upper_handle = sock_handle;
20813 
20814 	ASSERT(connp->conn_rcvbuf != 0 &&
20815 	    connp->conn_rcvbuf == connp->conn_tcp->tcp_rwnd);
20816 	(*sock_upcalls->su_set_proto_props)(sock_handle, &sopp);
20817 }
20818 
20819 /* ARGSUSED */
20820 int
20821 tcp_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr)
20822 {
20823 	conn_t *connp = (conn_t *)proto_handle;
20824 
20825 	ASSERT(connp->conn_upper_handle != NULL);
20826 
20827 	/* All Solaris components should pass a cred for this operation. */
20828 	ASSERT(cr != NULL);
20829 
20830 	tcp_close_common(connp, flags);
20831 
20832 	ip_free_helper_stream(connp);
20833 
20834 	/*
20835 	 * Drop IP's reference on the conn. This is the last reference
20836 	 * on the connp if the state was less than established. If the
20837 	 * connection has gone into timewait state, then we will have
20838 	 * one ref for the TCP and one more ref (total of two) for the
20839 	 * classifier connected hash list (a timewait connections stays
20840 	 * in connected hash till closed).
20841 	 *
20842 	 * We can't assert the references because there might be other
20843 	 * transient reference places because of some walkers or queued
20844 	 * packets in squeue for the timewait state.
20845 	 */
20846 	CONN_DEC_REF(connp);
20847 	return (0);
20848 }
20849 
20850 /* ARGSUSED */
20851 int
20852 tcp_sendmsg(sock_lower_handle_t proto_handle, mblk_t *mp, struct nmsghdr *msg,
20853     cred_t *cr)
20854 {
20855 	tcp_t		*tcp;
20856 	uint32_t	msize;
20857 	conn_t *connp = (conn_t *)proto_handle;
20858 	int32_t		tcpstate;
20859 
20860 	/* All Solaris components should pass a cred for this operation. */
20861 	ASSERT(cr != NULL);
20862 
20863 	ASSERT(connp->conn_ref >= 2);
20864 	ASSERT(connp->conn_upper_handle != NULL);
20865 
20866 	if (msg->msg_controllen != 0) {
20867 		freemsg(mp);
20868 		return (EOPNOTSUPP);
20869 	}
20870 
20871 	switch (DB_TYPE(mp)) {
20872 	case M_DATA:
20873 		tcp = connp->conn_tcp;
20874 		ASSERT(tcp != NULL);
20875 
20876 		tcpstate = tcp->tcp_state;
20877 		if (tcpstate < TCPS_ESTABLISHED) {
20878 			freemsg(mp);
20879 			/*
20880 			 * We return ENOTCONN if the endpoint is trying to
20881 			 * connect or has never been connected, and EPIPE if it
20882 			 * has been disconnected. The connection id helps us
20883 			 * distinguish between the last two cases.
20884 			 */
20885 			return ((tcpstate == TCPS_SYN_SENT) ? ENOTCONN :
20886 			    ((tcp->tcp_connid > 0) ? EPIPE : ENOTCONN));
20887 		} else if (tcpstate > TCPS_CLOSE_WAIT) {
20888 			freemsg(mp);
20889 			return (EPIPE);
20890 		}
20891 
20892 		msize = msgdsize(mp);
20893 
20894 		mutex_enter(&tcp->tcp_non_sq_lock);
20895 		tcp->tcp_squeue_bytes += msize;
20896 		/*
20897 		 * Squeue Flow Control
20898 		 */
20899 		if (TCP_UNSENT_BYTES(tcp) > connp->conn_sndbuf) {
20900 			tcp_setqfull(tcp);
20901 		}
20902 		mutex_exit(&tcp->tcp_non_sq_lock);
20903 
20904 		/*
20905 		 * The application may pass in an address in the msghdr, but
20906 		 * we ignore the address on connection-oriented sockets.
20907 		 * Just like BSD this code does not generate an error for
20908 		 * TCP (a CONNREQUIRED socket) when sending to an address
20909 		 * passed in with sendto/sendmsg. Instead the data is
20910 		 * delivered on the connection as if no address had been
20911 		 * supplied.
20912 		 */
20913 		CONN_INC_REF(connp);
20914 
20915 		if (msg->msg_flags & MSG_OOB) {
20916 			SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output_urgent,
20917 			    connp, NULL, tcp_squeue_flag, SQTAG_TCP_OUTPUT);
20918 		} else {
20919 			SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output,
20920 			    connp, NULL, tcp_squeue_flag, SQTAG_TCP_OUTPUT);
20921 		}
20922 
20923 		return (0);
20924 
20925 	default:
20926 		ASSERT(0);
20927 	}
20928 
20929 	freemsg(mp);
20930 	return (0);
20931 }
20932 
20933 /* ARGSUSED2 */
20934 void
20935 tcp_output_urgent(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
20936 {
20937 	int len;
20938 	uint32_t msize;
20939 	conn_t *connp = (conn_t *)arg;
20940 	tcp_t *tcp = connp->conn_tcp;
20941 
20942 	msize = msgdsize(mp);
20943 
20944 	len = msize - 1;
20945 	if (len < 0) {
20946 		freemsg(mp);
20947 		return;
20948 	}
20949 
20950 	/*
20951 	 * Try to force urgent data out on the wire. Even if we have unsent
20952 	 * data this will at least send the urgent flag.
20953 	 * XXX does not handle more flag correctly.
20954 	 */
20955 	len += tcp->tcp_unsent;
20956 	len += tcp->tcp_snxt;
20957 	tcp->tcp_urg = len;
20958 	tcp->tcp_valid_bits |= TCP_URG_VALID;
20959 
20960 	/* Bypass tcp protocol for fused tcp loopback */
20961 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
20962 		return;
20963 
20964 	/* Strip off the T_EXDATA_REQ if the data is from TPI */
20965 	if (DB_TYPE(mp) != M_DATA) {
20966 		mblk_t *mp1 = mp;
20967 		ASSERT(!IPCL_IS_NONSTR(connp));
20968 		mp = mp->b_cont;
20969 		freeb(mp1);
20970 	}
20971 	tcp_wput_data(tcp, mp, B_TRUE);
20972 }
20973 
20974 /* ARGSUSED3 */
20975 int
20976 tcp_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr,
20977     socklen_t *addrlenp, cred_t *cr)
20978 {
20979 	conn_t	*connp = (conn_t *)proto_handle;
20980 	tcp_t	*tcp = connp->conn_tcp;
20981 
20982 	ASSERT(connp->conn_upper_handle != NULL);
20983 	/* All Solaris components should pass a cred for this operation. */
20984 	ASSERT(cr != NULL);
20985 
20986 	ASSERT(tcp != NULL);
20987 	if (tcp->tcp_state < TCPS_SYN_RCVD)
20988 		return (ENOTCONN);
20989 
20990 	return (conn_getpeername(connp, addr, addrlenp));
20991 }
20992 
20993 /* ARGSUSED3 */
20994 int
20995 tcp_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr,
20996     socklen_t *addrlenp, cred_t *cr)
20997 {
20998 	conn_t	*connp = (conn_t *)proto_handle;
20999 
21000 	/* All Solaris components should pass a cred for this operation. */
21001 	ASSERT(cr != NULL);
21002 
21003 	ASSERT(connp->conn_upper_handle != NULL);
21004 	return (conn_getsockname(connp, addr, addrlenp));
21005 }
21006 
21007 /*
21008  * tcp_fallback
21009  *
21010  * A direct socket is falling back to using STREAMS. The queue
21011  * that is being passed down was created using tcp_open() with
21012  * the SO_FALLBACK flag set. As a result, the queue is not
21013  * associated with a conn, and the q_ptrs instead contain the
21014  * dev and minor area that should be used.
21015  *
21016  * The 'issocket' flag indicates whether the FireEngine
21017  * optimizations should be used. The common case would be that
21018  * optimizations are enabled, and they might be subsequently
21019  * disabled using the _SIOCSOCKFALLBACK ioctl.
21020  */
21021 
21022 /*
21023  * An active connection is falling back to TPI. Gather all the information
21024  * required by the STREAM head and TPI sonode and send it up.
21025  */
21026 void
21027 tcp_fallback_noneager(tcp_t *tcp, mblk_t *stropt_mp, queue_t *q,
21028     boolean_t issocket, so_proto_quiesced_cb_t quiesced_cb)
21029 {
21030 	conn_t			*connp = tcp->tcp_connp;
21031 	struct stroptions	*stropt;
21032 	struct T_capability_ack tca;
21033 	struct sockaddr_in6	laddr, faddr;
21034 	socklen_t 		laddrlen, faddrlen;
21035 	short			opts;
21036 	int			error;
21037 	mblk_t			*mp;
21038 
21039 	connp->conn_dev = (dev_t)RD(q)->q_ptr;
21040 	connp->conn_minor_arena = WR(q)->q_ptr;
21041 
21042 	RD(q)->q_ptr = WR(q)->q_ptr = connp;
21043 
21044 	connp->conn_rq = RD(q);
21045 	connp->conn_wq = WR(q);
21046 
21047 	WR(q)->q_qinfo = &tcp_sock_winit;
21048 
21049 	if (!issocket)
21050 		tcp_use_pure_tpi(tcp);
21051 
21052 	/*
21053 	 * free the helper stream
21054 	 */
21055 	ip_free_helper_stream(connp);
21056 
21057 	/*
21058 	 * Notify the STREAM head about options
21059 	 */
21060 	DB_TYPE(stropt_mp) = M_SETOPTS;
21061 	stropt = (struct stroptions *)stropt_mp->b_rptr;
21062 	stropt_mp->b_wptr += sizeof (struct stroptions);
21063 	stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK;
21064 
21065 	stropt->so_wroff = connp->conn_ht_iphc_len + (tcp->tcp_loopback ? 0 :
21066 	    tcp->tcp_tcps->tcps_wroff_xtra);
21067 	if (tcp->tcp_snd_sack_ok)
21068 		stropt->so_wroff += TCPOPT_MAX_SACK_LEN;
21069 	stropt->so_hiwat = connp->conn_rcvbuf;
21070 	stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
21071 
21072 	putnext(RD(q), stropt_mp);
21073 
21074 	/*
21075 	 * Collect the information needed to sync with the sonode
21076 	 */
21077 	tcp_do_capability_ack(tcp, &tca, TC1_INFO|TC1_ACCEPTOR_ID);
21078 
21079 	laddrlen = faddrlen = sizeof (sin6_t);
21080 	(void) tcp_getsockname((sock_lower_handle_t)connp,
21081 	    (struct sockaddr *)&laddr, &laddrlen, CRED());
21082 	error = tcp_getpeername((sock_lower_handle_t)connp,
21083 	    (struct sockaddr *)&faddr, &faddrlen, CRED());
21084 	if (error != 0)
21085 		faddrlen = 0;
21086 
21087 	opts = 0;
21088 	if (connp->conn_oobinline)
21089 		opts |= SO_OOBINLINE;
21090 	if (connp->conn_ixa->ixa_flags & IXAF_DONTROUTE)
21091 		opts |= SO_DONTROUTE;
21092 
21093 	/*
21094 	 * Notify the socket that the protocol is now quiescent,
21095 	 * and it's therefore safe move data from the socket
21096 	 * to the stream head.
21097 	 */
21098 	(*quiesced_cb)(connp->conn_upper_handle, q, &tca,
21099 	    (struct sockaddr *)&laddr, laddrlen,
21100 	    (struct sockaddr *)&faddr, faddrlen, opts);
21101 
21102 	while ((mp = tcp->tcp_rcv_list) != NULL) {
21103 		tcp->tcp_rcv_list = mp->b_next;
21104 		mp->b_next = NULL;
21105 		/* We never do fallback for kernel RPC */
21106 		putnext(q, mp);
21107 	}
21108 	tcp->tcp_rcv_last_head = NULL;
21109 	tcp->tcp_rcv_last_tail = NULL;
21110 	tcp->tcp_rcv_cnt = 0;
21111 }
21112 
21113 /*
21114  * An eager is falling back to TPI. All we have to do is send
21115  * up a T_CONN_IND.
21116  */
21117 void
21118 tcp_fallback_eager(tcp_t *eager, boolean_t direct_sockfs)
21119 {
21120 	tcp_t *listener = eager->tcp_listener;
21121 	mblk_t *mp = eager->tcp_conn.tcp_eager_conn_ind;
21122 
21123 	ASSERT(listener != NULL);
21124 	ASSERT(mp != NULL);
21125 
21126 	eager->tcp_conn.tcp_eager_conn_ind = NULL;
21127 
21128 	/*
21129 	 * TLI/XTI applications will get confused by
21130 	 * sending eager as an option since it violates
21131 	 * the option semantics. So remove the eager as
21132 	 * option since TLI/XTI app doesn't need it anyway.
21133 	 */
21134 	if (!direct_sockfs) {
21135 		struct T_conn_ind *conn_ind;
21136 
21137 		conn_ind = (struct T_conn_ind *)mp->b_rptr;
21138 		conn_ind->OPT_length = 0;
21139 		conn_ind->OPT_offset = 0;
21140 	}
21141 
21142 	/*
21143 	 * Sockfs guarantees that the listener will not be closed
21144 	 * during fallback. So we can safely use the listener's queue.
21145 	 */
21146 	putnext(listener->tcp_connp->conn_rq, mp);
21147 }
21148 
21149 int
21150 tcp_fallback(sock_lower_handle_t proto_handle, queue_t *q,
21151     boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb)
21152 {
21153 	tcp_t			*tcp;
21154 	conn_t 			*connp = (conn_t *)proto_handle;
21155 	int			error;
21156 	mblk_t			*stropt_mp;
21157 	mblk_t			*ordrel_mp;
21158 
21159 	tcp = connp->conn_tcp;
21160 
21161 	stropt_mp = allocb_wait(sizeof (struct stroptions), BPRI_HI, STR_NOSIG,
21162 	    NULL);
21163 
21164 	/* Pre-allocate the T_ordrel_ind mblk. */
21165 	ASSERT(tcp->tcp_ordrel_mp == NULL);
21166 	ordrel_mp = allocb_wait(sizeof (struct T_ordrel_ind), BPRI_HI,
21167 	    STR_NOSIG, NULL);
21168 	ordrel_mp->b_datap->db_type = M_PROTO;
21169 	((struct T_ordrel_ind *)ordrel_mp->b_rptr)->PRIM_type = T_ORDREL_IND;
21170 	ordrel_mp->b_wptr += sizeof (struct T_ordrel_ind);
21171 
21172 	/*
21173 	 * Enter the squeue so that no new packets can come in
21174 	 */
21175 	error = squeue_synch_enter(connp->conn_sqp, connp, NULL);
21176 	if (error != 0) {
21177 		/* failed to enter, free all the pre-allocated messages. */
21178 		freeb(stropt_mp);
21179 		freeb(ordrel_mp);
21180 		/*
21181 		 * We cannot process the eager, so at least send out a
21182 		 * RST so the peer can reconnect.
21183 		 */
21184 		if (tcp->tcp_listener != NULL) {
21185 			(void) tcp_eager_blowoff(tcp->tcp_listener,
21186 			    tcp->tcp_conn_req_seqnum);
21187 		}
21188 		return (ENOMEM);
21189 	}
21190 
21191 	/*
21192 	 * Both endpoints must be of the same type (either STREAMS or
21193 	 * non-STREAMS) for fusion to be enabled. So if we are fused,
21194 	 * we have to unfuse.
21195 	 */
21196 	if (tcp->tcp_fused)
21197 		tcp_unfuse(tcp);
21198 
21199 	/*
21200 	 * No longer a direct socket
21201 	 */
21202 	connp->conn_flags &= ~IPCL_NONSTR;
21203 	tcp->tcp_ordrel_mp = ordrel_mp;
21204 
21205 	if (tcp->tcp_listener != NULL) {
21206 		/* The eager will deal with opts when accept() is called */
21207 		freeb(stropt_mp);
21208 		tcp_fallback_eager(tcp, direct_sockfs);
21209 	} else {
21210 		tcp_fallback_noneager(tcp, stropt_mp, q, direct_sockfs,
21211 		    quiesced_cb);
21212 	}
21213 
21214 	/*
21215 	 * There should be atleast two ref's (IP + TCP)
21216 	 */
21217 	ASSERT(connp->conn_ref >= 2);
21218 	squeue_synch_exit(connp->conn_sqp, connp);
21219 
21220 	return (0);
21221 }
21222 
21223 /* ARGSUSED */
21224 static void
21225 tcp_shutdown_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
21226 {
21227 	conn_t 	*connp = (conn_t *)arg;
21228 	tcp_t	*tcp = connp->conn_tcp;
21229 
21230 	freemsg(mp);
21231 
21232 	if (tcp->tcp_fused)
21233 		tcp_unfuse(tcp);
21234 
21235 	if (tcp_xmit_end(tcp) != 0) {
21236 		/*
21237 		 * We were crossing FINs and got a reset from
21238 		 * the other side. Just ignore it.
21239 		 */
21240 		if (connp->conn_debug) {
21241 			(void) strlog(TCP_MOD_ID, 0, 1,
21242 			    SL_ERROR|SL_TRACE,
21243 			    "tcp_shutdown_output() out of state %s",
21244 			    tcp_display(tcp, NULL, DISP_ADDR_AND_PORT));
21245 		}
21246 	}
21247 }
21248 
21249 /* ARGSUSED */
21250 int
21251 tcp_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr)
21252 {
21253 	conn_t  *connp = (conn_t *)proto_handle;
21254 	tcp_t   *tcp = connp->conn_tcp;
21255 
21256 	ASSERT(connp->conn_upper_handle != NULL);
21257 
21258 	/* All Solaris components should pass a cred for this operation. */
21259 	ASSERT(cr != NULL);
21260 
21261 	/*
21262 	 * X/Open requires that we check the connected state.
21263 	 */
21264 	if (tcp->tcp_state < TCPS_SYN_SENT)
21265 		return (ENOTCONN);
21266 
21267 	/* shutdown the send side */
21268 	if (how != SHUT_RD) {
21269 		mblk_t *bp;
21270 
21271 		bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
21272 		CONN_INC_REF(connp);
21273 		SQUEUE_ENTER_ONE(connp->conn_sqp, bp, tcp_shutdown_output,
21274 		    connp, NULL, SQ_NODRAIN, SQTAG_TCP_SHUTDOWN_OUTPUT);
21275 
21276 		(*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
21277 		    SOCK_OPCTL_SHUT_SEND, 0);
21278 	}
21279 
21280 	/* shutdown the recv side */
21281 	if (how != SHUT_WR)
21282 		(*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
21283 		    SOCK_OPCTL_SHUT_RECV, 0);
21284 
21285 	return (0);
21286 }
21287 
21288 /*
21289  * SOP_LISTEN() calls into tcp_listen().
21290  */
21291 /* ARGSUSED */
21292 int
21293 tcp_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr)
21294 {
21295 	conn_t	*connp = (conn_t *)proto_handle;
21296 	int 	error;
21297 	squeue_t *sqp = connp->conn_sqp;
21298 
21299 	ASSERT(connp->conn_upper_handle != NULL);
21300 
21301 	/* All Solaris components should pass a cred for this operation. */
21302 	ASSERT(cr != NULL);
21303 
21304 	error = squeue_synch_enter(sqp, connp, NULL);
21305 	if (error != 0) {
21306 		/* failed to enter */
21307 		return (ENOBUFS);
21308 	}
21309 
21310 	error = tcp_do_listen(connp, NULL, 0, backlog, cr, FALSE);
21311 	if (error == 0) {
21312 		(*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
21313 		    SOCK_OPCTL_ENAB_ACCEPT, (uintptr_t)backlog);
21314 	} else if (error < 0) {
21315 		if (error == -TOUTSTATE)
21316 			error = EINVAL;
21317 		else
21318 			error = proto_tlitosyserr(-error);
21319 	}
21320 	squeue_synch_exit(sqp, connp);
21321 	return (error);
21322 }
21323 
21324 static int
21325 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len,
21326     int backlog, cred_t *cr, boolean_t bind_to_req_port_only)
21327 {
21328 	tcp_t		*tcp = connp->conn_tcp;
21329 	int		error = 0;
21330 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21331 
21332 	/* All Solaris components should pass a cred for this operation. */
21333 	ASSERT(cr != NULL);
21334 
21335 	if (tcp->tcp_state >= TCPS_BOUND) {
21336 		if ((tcp->tcp_state == TCPS_BOUND ||
21337 		    tcp->tcp_state == TCPS_LISTEN) && backlog > 0) {
21338 			/*
21339 			 * Handle listen() increasing backlog.
21340 			 * This is more "liberal" then what the TPI spec
21341 			 * requires but is needed to avoid a t_unbind
21342 			 * when handling listen() since the port number
21343 			 * might be "stolen" between the unbind and bind.
21344 			 */
21345 			goto do_listen;
21346 		}
21347 		if (connp->conn_debug) {
21348 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
21349 			    "tcp_listen: bad state, %d", tcp->tcp_state);
21350 		}
21351 		return (-TOUTSTATE);
21352 	} else {
21353 		if (sa == NULL) {
21354 			sin6_t	addr;
21355 			sin_t *sin;
21356 			sin6_t *sin6;
21357 
21358 			ASSERT(IPCL_IS_NONSTR(connp));
21359 			/* Do an implicit bind: Request for a generic port. */
21360 			if (connp->conn_family == AF_INET) {
21361 				len = sizeof (sin_t);
21362 				sin = (sin_t *)&addr;
21363 				*sin = sin_null;
21364 				sin->sin_family = AF_INET;
21365 			} else {
21366 				ASSERT(connp->conn_family == AF_INET6);
21367 				len = sizeof (sin6_t);
21368 				sin6 = (sin6_t *)&addr;
21369 				*sin6 = sin6_null;
21370 				sin6->sin6_family = AF_INET6;
21371 			}
21372 			sa = (struct sockaddr *)&addr;
21373 		}
21374 
21375 		error = tcp_bind_check(connp, sa, len, cr,
21376 		    bind_to_req_port_only);
21377 		if (error)
21378 			return (error);
21379 		/* Fall through and do the fanout insertion */
21380 	}
21381 
21382 do_listen:
21383 	ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN);
21384 	tcp->tcp_conn_req_max = backlog;
21385 	if (tcp->tcp_conn_req_max) {
21386 		if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min)
21387 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_min;
21388 		if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q)
21389 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q;
21390 		/*
21391 		 * If this is a listener, do not reset the eager list
21392 		 * and other stuffs.  Note that we don't check if the
21393 		 * existing eager list meets the new tcp_conn_req_max
21394 		 * requirement.
21395 		 */
21396 		if (tcp->tcp_state != TCPS_LISTEN) {
21397 			tcp->tcp_state = TCPS_LISTEN;
21398 			/* Initialize the chain. Don't need the eager_lock */
21399 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
21400 			tcp->tcp_eager_next_drop_q0 = tcp;
21401 			tcp->tcp_eager_prev_drop_q0 = tcp;
21402 			tcp->tcp_second_ctimer_threshold =
21403 			    tcps->tcps_ip_abort_linterval;
21404 		}
21405 	}
21406 
21407 	/*
21408 	 * We need to make sure that the conn_recv is set to a non-null
21409 	 * value before we insert the conn into the classifier table.
21410 	 * This is to avoid a race with an incoming packet which does an
21411 	 * ipcl_classify().
21412 	 * We initially set it to tcp_input_listener_unbound to try to
21413 	 * pick a good squeue for the listener when the first SYN arrives.
21414 	 * tcp_input_listener_unbound sets it to tcp_input_listener on that
21415 	 * first SYN.
21416 	 */
21417 	connp->conn_recv = tcp_input_listener_unbound;
21418 
21419 	/* Insert the listener in the classifier table */
21420 	error = ip_laddr_fanout_insert(connp);
21421 	if (error != 0) {
21422 		/* Undo the bind - release the port number */
21423 		tcp->tcp_state = TCPS_IDLE;
21424 		connp->conn_bound_addr_v6 = ipv6_all_zeros;
21425 
21426 		connp->conn_laddr_v6 = ipv6_all_zeros;
21427 		connp->conn_saddr_v6 = ipv6_all_zeros;
21428 		connp->conn_ports = 0;
21429 
21430 		if (connp->conn_anon_port) {
21431 			zone_t		*zone;
21432 
21433 			zone = crgetzone(cr);
21434 			connp->conn_anon_port = B_FALSE;
21435 			(void) tsol_mlp_anon(zone, connp->conn_mlp_type,
21436 			    connp->conn_proto, connp->conn_lport, B_FALSE);
21437 		}
21438 		connp->conn_mlp_type = mlptSingle;
21439 
21440 		tcp_bind_hash_remove(tcp);
21441 		return (error);
21442 	}
21443 	return (error);
21444 }
21445 
21446 void
21447 tcp_clr_flowctrl(sock_lower_handle_t proto_handle)
21448 {
21449 	conn_t  *connp = (conn_t *)proto_handle;
21450 	tcp_t	*tcp = connp->conn_tcp;
21451 	mblk_t *mp;
21452 	int error;
21453 
21454 	ASSERT(connp->conn_upper_handle != NULL);
21455 
21456 	/*
21457 	 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_clr_flowctrl()
21458 	 * is currently running.
21459 	 */
21460 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
21461 	if ((mp = tcp->tcp_rsrv_mp) == NULL) {
21462 		mutex_exit(&tcp->tcp_rsrv_mp_lock);
21463 		return;
21464 	}
21465 	tcp->tcp_rsrv_mp = NULL;
21466 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
21467 
21468 	error = squeue_synch_enter(connp->conn_sqp, connp, mp);
21469 	ASSERT(error == 0);
21470 
21471 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
21472 	tcp->tcp_rsrv_mp = mp;
21473 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
21474 
21475 	if (tcp->tcp_fused) {
21476 		tcp_fuse_backenable(tcp);
21477 	} else {
21478 		tcp->tcp_rwnd = connp->conn_rcvbuf;
21479 		/*
21480 		 * Send back a window update immediately if TCP is above
21481 		 * ESTABLISHED state and the increase of the rcv window
21482 		 * that the other side knows is at least 1 MSS after flow
21483 		 * control is lifted.
21484 		 */
21485 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
21486 		    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
21487 			tcp_xmit_ctl(NULL, tcp,
21488 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
21489 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
21490 		}
21491 	}
21492 
21493 	squeue_synch_exit(connp->conn_sqp, connp);
21494 }
21495 
21496 /* ARGSUSED */
21497 int
21498 tcp_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg,
21499     int mode, int32_t *rvalp, cred_t *cr)
21500 {
21501 	conn_t  	*connp = (conn_t *)proto_handle;
21502 	int		error;
21503 
21504 	ASSERT(connp->conn_upper_handle != NULL);
21505 
21506 	/* All Solaris components should pass a cred for this operation. */
21507 	ASSERT(cr != NULL);
21508 
21509 	/*
21510 	 * If we don't have a helper stream then create one.
21511 	 * ip_create_helper_stream takes care of locking the conn_t,
21512 	 * so this check for NULL is just a performance optimization.
21513 	 */
21514 	if (connp->conn_helper_info == NULL) {
21515 		tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps;
21516 
21517 		/*
21518 		 * Create a helper stream for non-STREAMS socket.
21519 		 */
21520 		error = ip_create_helper_stream(connp, tcps->tcps_ldi_ident);
21521 		if (error != 0) {
21522 			ip0dbg(("tcp_ioctl: create of IP helper stream "
21523 			    "failed %d\n", error));
21524 			return (error);
21525 		}
21526 	}
21527 
21528 	switch (cmd) {
21529 		case ND_SET:
21530 		case ND_GET:
21531 		case _SIOCSOCKFALLBACK:
21532 		case TCP_IOC_ABORT_CONN:
21533 		case TI_GETPEERNAME:
21534 		case TI_GETMYNAME:
21535 			ip1dbg(("tcp_ioctl: cmd 0x%x on non sreams socket",
21536 			    cmd));
21537 			error = EINVAL;
21538 			break;
21539 		default:
21540 			/*
21541 			 * Pass on to IP using helper stream
21542 			 */
21543 			error = ldi_ioctl(connp->conn_helper_info->iphs_handle,
21544 			    cmd, arg, mode, cr, rvalp);
21545 			break;
21546 	}
21547 	return (error);
21548 }
21549 
21550 sock_downcalls_t sock_tcp_downcalls = {
21551 	tcp_activate,
21552 	tcp_accept,
21553 	tcp_bind,
21554 	tcp_listen,
21555 	tcp_connect,
21556 	tcp_getpeername,
21557 	tcp_getsockname,
21558 	tcp_getsockopt,
21559 	tcp_setsockopt,
21560 	tcp_sendmsg,
21561 	NULL,
21562 	NULL,
21563 	NULL,
21564 	tcp_shutdown,
21565 	tcp_clr_flowctrl,
21566 	tcp_ioctl,
21567 	tcp_close,
21568 };
21569