xref: /illumos-gate/usr/src/uts/common/inet/tcp/tcp.c (revision 1b8adde7ba7d5e04395c141c5400dc2cffd7d809)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #include <sys/types.h>
29 #include <sys/stream.h>
30 #include <sys/strsun.h>
31 #include <sys/strsubr.h>
32 #include <sys/stropts.h>
33 #include <sys/strlog.h>
34 #include <sys/strsun.h>
35 #define	_SUN_TPI_VERSION 2
36 #include <sys/tihdr.h>
37 #include <sys/timod.h>
38 #include <sys/ddi.h>
39 #include <sys/sunddi.h>
40 #include <sys/suntpi.h>
41 #include <sys/xti_inet.h>
42 #include <sys/cmn_err.h>
43 #include <sys/debug.h>
44 #include <sys/sdt.h>
45 #include <sys/vtrace.h>
46 #include <sys/kmem.h>
47 #include <sys/ethernet.h>
48 #include <sys/cpuvar.h>
49 #include <sys/dlpi.h>
50 #include <sys/multidata.h>
51 #include <sys/multidata_impl.h>
52 #include <sys/pattr.h>
53 #include <sys/policy.h>
54 #include <sys/priv.h>
55 #include <sys/zone.h>
56 #include <sys/sunldi.h>
57 
58 #include <sys/errno.h>
59 #include <sys/signal.h>
60 #include <sys/socket.h>
61 #include <sys/sockio.h>
62 #include <sys/isa_defs.h>
63 #include <sys/md5.h>
64 #include <sys/random.h>
65 #include <sys/sodirect.h>
66 #include <sys/uio.h>
67 #include <netinet/in.h>
68 #include <netinet/tcp.h>
69 #include <netinet/ip6.h>
70 #include <netinet/icmp6.h>
71 #include <net/if.h>
72 #include <net/route.h>
73 #include <inet/ipsec_impl.h>
74 
75 #include <inet/common.h>
76 #include <inet/ip.h>
77 #include <inet/ip_impl.h>
78 #include <inet/ip6.h>
79 #include <inet/ip_ndp.h>
80 #include <inet/mi.h>
81 #include <inet/mib2.h>
82 #include <inet/nd.h>
83 #include <inet/optcom.h>
84 #include <inet/snmpcom.h>
85 #include <inet/kstatcom.h>
86 #include <inet/tcp.h>
87 #include <inet/tcp_impl.h>
88 #include <net/pfkeyv2.h>
89 #include <inet/ipsec_info.h>
90 #include <inet/ipdrop.h>
91 
92 #include <inet/ipclassifier.h>
93 #include <inet/ip_ire.h>
94 #include <inet/ip_ftable.h>
95 #include <inet/ip_if.h>
96 #include <inet/ipp_common.h>
97 #include <inet/ip_netinfo.h>
98 #include <sys/squeue.h>
99 #include <inet/kssl/ksslapi.h>
100 #include <sys/tsol/label.h>
101 #include <sys/tsol/tnet.h>
102 #include <rpc/pmap_prot.h>
103 
104 /*
105  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
106  *
107  * (Read the detailed design doc in PSARC case directory)
108  *
109  * The entire tcp state is contained in tcp_t and conn_t structure
110  * which are allocated in tandem using ipcl_conn_create() and passing
111  * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect
112  * the references on the tcp_t. The tcp_t structure is never compressed
113  * and packets always land on the correct TCP perimeter from the time
114  * eager is created till the time tcp_t dies (as such the old mentat
115  * TCP global queue is not used for detached state and no IPSEC checking
116  * is required). The global queue is still allocated to send out resets
117  * for connection which have no listeners and IP directly calls
118  * tcp_xmit_listeners_reset() which does any policy check.
119  *
120  * Protection and Synchronisation mechanism:
121  *
122  * The tcp data structure does not use any kind of lock for protecting
123  * its state but instead uses 'squeues' for mutual exclusion from various
124  * read and write side threads. To access a tcp member, the thread should
125  * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or
126  * squeue_fill). Since the squeues allow a direct function call, caller
127  * can pass any tcp function having prototype of edesc_t as argument
128  * (different from traditional STREAMs model where packets come in only
129  * designated entry points). The list of functions that can be directly
130  * called via squeue are listed before the usual function prototype.
131  *
132  * Referencing:
133  *
134  * TCP is MT-Hot and we use a reference based scheme to make sure that the
135  * tcp structure doesn't disappear when its needed. When the application
136  * creates an outgoing connection or accepts an incoming connection, we
137  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
138  * The IP reference is just a symbolic reference since ip_tcpclose()
139  * looks at tcp structure after tcp_close_output() returns which could
140  * have dropped the last TCP reference. So as long as the connection is
141  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
142  * conn_t. The classifier puts its own reference when the connection is
143  * inserted in listen or connected hash. Anytime a thread needs to enter
144  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
145  * on write side or by doing a classify on read side and then puts a
146  * reference on the conn before doing squeue_enter/tryenter/fill. For
147  * read side, the classifier itself puts the reference under fanout lock
148  * to make sure that tcp can't disappear before it gets processed. The
149  * squeue will drop this reference automatically so the called function
150  * doesn't have to do a DEC_REF.
151  *
152  * Opening a new connection:
153  *
154  * The outgoing connection open is pretty simple. tcp_open() does the
155  * work in creating the conn/tcp structure and initializing it. The
156  * squeue assignment is done based on the CPU the application
157  * is running on. So for outbound connections, processing is always done
158  * on application CPU which might be different from the incoming CPU
159  * being interrupted by the NIC. An optimal way would be to figure out
160  * the NIC <-> CPU binding at listen time, and assign the outgoing
161  * connection to the squeue attached to the CPU that will be interrupted
162  * for incoming packets (we know the NIC based on the bind IP address).
163  * This might seem like a problem if more data is going out but the
164  * fact is that in most cases the transmit is ACK driven transmit where
165  * the outgoing data normally sits on TCP's xmit queue waiting to be
166  * transmitted.
167  *
168  * Accepting a connection:
169  *
170  * This is a more interesting case because of various races involved in
171  * establishing a eager in its own perimeter. Read the meta comment on
172  * top of tcp_conn_request(). But briefly, the squeue is picked by
173  * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU.
174  *
175  * Closing a connection:
176  *
177  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
178  * via squeue to do the close and mark the tcp as detached if the connection
179  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
180  * reference but tcp_close() drop IP's reference always. So if tcp was
181  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
182  * and 1 because it is in classifier's connected hash. This is the condition
183  * we use to determine that its OK to clean up the tcp outside of squeue
184  * when time wait expires (check the ref under fanout and conn_lock and
185  * if it is 2, remove it from fanout hash and kill it).
186  *
187  * Although close just drops the necessary references and marks the
188  * tcp_detached state, tcp_close needs to know the tcp_detached has been
189  * set (under squeue) before letting the STREAM go away (because a
190  * inbound packet might attempt to go up the STREAM while the close
191  * has happened and tcp_detached is not set). So a special lock and
192  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
193  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
194  * tcp_detached.
195  *
196  * Special provisions and fast paths:
197  *
198  * We make special provision for (AF_INET, SOCK_STREAM) sockets which
199  * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP
200  * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles
201  * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY
202  * check to send packets directly to tcp_rput_data via squeue. Everyone
203  * else comes through tcp_input() on the read side.
204  *
205  * We also make special provisions for sockfs by marking tcp_issocket
206  * whenever we have only sockfs on top of TCP. This allows us to skip
207  * putting the tcp in acceptor hash since a sockfs listener can never
208  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
209  * since eager has already been allocated and the accept now happens
210  * on acceptor STREAM. There is a big blob of comment on top of
211  * tcp_conn_request explaining the new accept. When socket is POP'd,
212  * sockfs sends us an ioctl to mark the fact and we go back to old
213  * behaviour. Once tcp_issocket is unset, its never set for the
214  * life of that connection.
215  *
216  * In support of on-board asynchronous DMA hardware (e.g. Intel I/OAT)
217  * two consoldiation private KAPIs are used to enqueue M_DATA mblk_t's
218  * directly to the socket (sodirect) and start an asynchronous copyout
219  * to a user-land receive-side buffer (uioa) when a blocking socket read
220  * (e.g. read, recv, ...) is pending.
221  *
222  * This is accomplished when tcp_issocket is set and tcp_sodirect is not
223  * NULL so points to an sodirect_t and if marked enabled then we enqueue
224  * all mblk_t's directly to the socket.
225  *
226  * Further, if the sodirect_t sod_uioa and if marked enabled (due to a
227  * blocking socket read, e.g. user-land read, recv, ...) then an asynchronous
228  * copyout will be started directly to the user-land uio buffer. Also, as we
229  * have a pending read, TCP's push logic can take into account the number of
230  * bytes to be received and only awake the blocked read()er when the uioa_t
231  * byte count has been satisfied.
232  *
233  * IPsec notes :
234  *
235  * Since a packet is always executed on the correct TCP perimeter
236  * all IPsec processing is defered to IP including checking new
237  * connections and setting IPSEC policies for new connection. The
238  * only exception is tcp_xmit_listeners_reset() which is called
239  * directly from IP and needs to policy check to see if TH_RST
240  * can be sent out.
241  *
242  * PFHooks notes :
243  *
244  * For mdt case, one meta buffer contains multiple packets. Mblks for every
245  * packet are assembled and passed to the hooks. When packets are blocked,
246  * or boundary of any packet is changed, the mdt processing is stopped, and
247  * packets of the meta buffer are send to the IP path one by one.
248  */
249 
250 /*
251  * Values for squeue switch:
252  * 1: squeue_enter_nodrain
253  * 2: squeue_enter
254  * 3: squeue_fill
255  */
256 int tcp_squeue_close = 2;	/* Setable in /etc/system */
257 int tcp_squeue_wput = 2;
258 
259 squeue_func_t tcp_squeue_close_proc;
260 squeue_func_t tcp_squeue_wput_proc;
261 
262 /*
263  * Macros for sodirect:
264  *
265  * SOD_PTR_ENTER(tcp, sodp) - for the tcp_t pointer "tcp" set the
266  * sodirect_t pointer "sodp" to the socket/tcp shared sodirect_t
267  * if it exists and is enabled, else to NULL. Note, in the current
268  * sodirect implementation the sod_lockp must not be held across any
269  * STREAMS call (e.g. putnext) else a "recursive mutex_enter" PANIC
270  * will result as sod_lockp is the streamhead stdata.sd_lock.
271  *
272  * SOD_NOT_ENABLED(tcp) - return true if not a sodirect tcp_t or the
273  * sodirect_t isn't enabled, usefull for ASSERT()ing that a recieve
274  * side tcp code path dealing with a tcp_rcv_list or putnext() isn't
275  * being used when sodirect code paths should be.
276  */
277 
278 #define	SOD_PTR_ENTER(tcp, sodp)					\
279 	(sodp) = (tcp)->tcp_sodirect;					\
280 									\
281 	if ((sodp) != NULL) {						\
282 		mutex_enter((sodp)->sod_lockp);				\
283 		if (!((sodp)->sod_state & SOD_ENABLED)) {		\
284 			mutex_exit((sodp)->sod_lockp);			\
285 			(sodp) = NULL;					\
286 		}							\
287 	}
288 
289 #define	SOD_NOT_ENABLED(tcp)						\
290 	((tcp)->tcp_sodirect == NULL ||					\
291 	    !((tcp)->tcp_sodirect->sod_state & SOD_ENABLED))
292 
293 /*
294  * This controls how tiny a write must be before we try to copy it
295  * into the the mblk on the tail of the transmit queue.  Not much
296  * speedup is observed for values larger than sixteen.  Zero will
297  * disable the optimisation.
298  */
299 int tcp_tx_pull_len = 16;
300 
301 /*
302  * TCP Statistics.
303  *
304  * How TCP statistics work.
305  *
306  * There are two types of statistics invoked by two macros.
307  *
308  * TCP_STAT(name) does non-atomic increment of a named stat counter. It is
309  * supposed to be used in non MT-hot paths of the code.
310  *
311  * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is
312  * supposed to be used for DEBUG purposes and may be used on a hot path.
313  *
314  * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat
315  * (use "kstat tcp" to get them).
316  *
317  * There is also additional debugging facility that marks tcp_clean_death()
318  * instances and saves them in tcp_t structure. It is triggered by
319  * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for
320  * tcp_clean_death() calls that counts the number of times each tag was hit. It
321  * is triggered by TCP_CLD_COUNTERS define.
322  *
323  * How to add new counters.
324  *
325  * 1) Add a field in the tcp_stat structure describing your counter.
326  * 2) Add a line in the template in tcp_kstat2_init() with the name
327  *    of the counter.
328  *
329  *    IMPORTANT!! - make sure that both are in sync !!
330  * 3) Use either TCP_STAT or TCP_DBGSTAT with the name.
331  *
332  * Please avoid using private counters which are not kstat-exported.
333  *
334  * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances
335  * in tcp_t structure.
336  *
337  * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags.
338  */
339 
340 #ifndef TCP_DEBUG_COUNTER
341 #ifdef DEBUG
342 #define	TCP_DEBUG_COUNTER 1
343 #else
344 #define	TCP_DEBUG_COUNTER 0
345 #endif
346 #endif
347 
348 #define	TCP_CLD_COUNTERS 0
349 
350 #define	TCP_TAG_CLEAN_DEATH 1
351 #define	TCP_MAX_CLEAN_DEATH_TAG 32
352 
353 #ifdef lint
354 static int _lint_dummy_;
355 #endif
356 
357 #if TCP_CLD_COUNTERS
358 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG];
359 #define	TCP_CLD_STAT(x) tcp_clean_death_stat[x]++
360 #elif defined(lint)
361 #define	TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0);
362 #else
363 #define	TCP_CLD_STAT(x)
364 #endif
365 
366 #if TCP_DEBUG_COUNTER
367 #define	TCP_DBGSTAT(tcps, x)	\
368 	atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1)
369 #define	TCP_G_DBGSTAT(x)	\
370 	atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1)
371 #elif defined(lint)
372 #define	TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0);
373 #define	TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0);
374 #else
375 #define	TCP_DBGSTAT(tcps, x)
376 #define	TCP_G_DBGSTAT(x)
377 #endif
378 
379 #define	TCP_G_STAT(x)	(tcp_g_statistics.x.value.ui64++)
380 
381 tcp_g_stat_t	tcp_g_statistics;
382 kstat_t		*tcp_g_kstat;
383 
384 /*
385  * Call either ip_output or ip_output_v6. This replaces putnext() calls on the
386  * tcp write side.
387  */
388 #define	CALL_IP_WPUT(connp, q, mp) {					\
389 	tcp_stack_t	*tcps;						\
390 									\
391 	tcps = connp->conn_netstack->netstack_tcp;			\
392 	ASSERT(((q)->q_flag & QREADR) == 0);				\
393 	TCP_DBGSTAT(tcps, tcp_ip_output);				\
394 	connp->conn_send(connp, (mp), (q), IP_WPUT);			\
395 }
396 
397 /* Macros for timestamp comparisons */
398 #define	TSTMP_GEQ(a, b)	((int32_t)((a)-(b)) >= 0)
399 #define	TSTMP_LT(a, b)	((int32_t)((a)-(b)) < 0)
400 
401 /*
402  * Parameters for TCP Initial Send Sequence number (ISS) generation.  When
403  * tcp_strong_iss is set to 1, which is the default, the ISS is calculated
404  * by adding three components: a time component which grows by 1 every 4096
405  * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27);
406  * a per-connection component which grows by 125000 for every new connection;
407  * and an "extra" component that grows by a random amount centered
408  * approximately on 64000.  This causes the the ISS generator to cycle every
409  * 4.89 hours if no TCP connections are made, and faster if connections are
410  * made.
411  *
412  * When tcp_strong_iss is set to 0, ISS is calculated by adding two
413  * components: a time component which grows by 250000 every second; and
414  * a per-connection component which grows by 125000 for every new connections.
415  *
416  * A third method, when tcp_strong_iss is set to 2, for generating ISS is
417  * prescribed by Steve Bellovin.  This involves adding time, the 125000 per
418  * connection, and a one-way hash (MD5) of the connection ID <sport, dport,
419  * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered
420  * password.
421  */
422 #define	ISS_INCR	250000
423 #define	ISS_NSEC_SHT	12
424 
425 static sin_t	sin_null;	/* Zero address for quick clears */
426 static sin6_t	sin6_null;	/* Zero address for quick clears */
427 
428 /*
429  * This implementation follows the 4.3BSD interpretation of the urgent
430  * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause
431  * incompatible changes in protocols like telnet and rlogin.
432  */
433 #define	TCP_OLD_URP_INTERPRETATION	1
434 
435 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
436 	(TCP_IS_DETACHED(tcp) && \
437 	    (!(tcp)->tcp_hard_binding))
438 
439 /*
440  * TCP reassembly macros.  We hide starting and ending sequence numbers in
441  * b_next and b_prev of messages on the reassembly queue.  The messages are
442  * chained using b_cont.  These macros are used in tcp_reass() so we don't
443  * have to see the ugly casts and assignments.
444  */
445 #define	TCP_REASS_SEQ(mp)		((uint32_t)(uintptr_t)((mp)->b_next))
446 #define	TCP_REASS_SET_SEQ(mp, u)	((mp)->b_next = \
447 					(mblk_t *)(uintptr_t)(u))
448 #define	TCP_REASS_END(mp)		((uint32_t)(uintptr_t)((mp)->b_prev))
449 #define	TCP_REASS_SET_END(mp, u)	((mp)->b_prev = \
450 					(mblk_t *)(uintptr_t)(u))
451 
452 /*
453  * Implementation of TCP Timers.
454  * =============================
455  *
456  * INTERFACE:
457  *
458  * There are two basic functions dealing with tcp timers:
459  *
460  *	timeout_id_t	tcp_timeout(connp, func, time)
461  * 	clock_t		tcp_timeout_cancel(connp, timeout_id)
462  *	TCP_TIMER_RESTART(tcp, intvl)
463  *
464  * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func'
465  * after 'time' ticks passed. The function called by timeout() must adhere to
466  * the same restrictions as a driver soft interrupt handler - it must not sleep
467  * or call other functions that might sleep. The value returned is the opaque
468  * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to
469  * cancel the request. The call to tcp_timeout() may fail in which case it
470  * returns zero. This is different from the timeout(9F) function which never
471  * fails.
472  *
473  * The call-back function 'func' always receives 'connp' as its single
474  * argument. It is always executed in the squeue corresponding to the tcp
475  * structure. The tcp structure is guaranteed to be present at the time the
476  * call-back is called.
477  *
478  * NOTE: The call-back function 'func' is never called if tcp is in
479  * 	the TCPS_CLOSED state.
480  *
481  * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout()
482  * request. locks acquired by the call-back routine should not be held across
483  * the call to tcp_timeout_cancel() or a deadlock may result.
484  *
485  * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request.
486  * Otherwise, it returns an integer value greater than or equal to 0. In
487  * particular, if the call-back function is already placed on the squeue, it can
488  * not be canceled.
489  *
490  * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called
491  * 	within squeue context corresponding to the tcp instance. Since the
492  *	call-back is also called via the same squeue, there are no race
493  *	conditions described in untimeout(9F) manual page since all calls are
494  *	strictly serialized.
495  *
496  *      TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout
497  *	stored in tcp_timer_tid and starts a new one using
498  *	MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back
499  *	and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid
500  *	field.
501  *
502  * NOTE: since the timeout cancellation is not guaranteed, the cancelled
503  *	call-back may still be called, so it is possible tcp_timer() will be
504  *	called several times. This should not be a problem since tcp_timer()
505  *	should always check the tcp instance state.
506  *
507  *
508  * IMPLEMENTATION:
509  *
510  * TCP timers are implemented using three-stage process. The call to
511  * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function
512  * when the timer expires. The tcp_timer_callback() arranges the call of the
513  * tcp_timer_handler() function via squeue corresponding to the tcp
514  * instance. The tcp_timer_handler() calls actual requested timeout call-back
515  * and passes tcp instance as an argument to it. Information is passed between
516  * stages using the tcp_timer_t structure which contains the connp pointer, the
517  * tcp call-back to call and the timeout id returned by the timeout(9F).
518  *
519  * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t -
520  * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo
521  * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout()
522  * returns the pointer to this mblk.
523  *
524  * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It
525  * looks like a normal mblk without actual dblk attached to it.
526  *
527  * To optimize performance each tcp instance holds a small cache of timer
528  * mblocks. In the current implementation it caches up to two timer mblocks per
529  * tcp instance. The cache is preserved over tcp frees and is only freed when
530  * the whole tcp structure is destroyed by its kmem destructor. Since all tcp
531  * timer processing happens on a corresponding squeue, the cache manipulation
532  * does not require any locks. Experiments show that majority of timer mblocks
533  * allocations are satisfied from the tcp cache and do not involve kmem calls.
534  *
535  * The tcp_timeout() places a refhold on the connp instance which guarantees
536  * that it will be present at the time the call-back function fires. The
537  * tcp_timer_handler() drops the reference after calling the call-back, so the
538  * call-back function does not need to manipulate the references explicitly.
539  */
540 
541 typedef struct tcp_timer_s {
542 	conn_t	*connp;
543 	void 	(*tcpt_proc)(void *);
544 	timeout_id_t   tcpt_tid;
545 } tcp_timer_t;
546 
547 static kmem_cache_t *tcp_timercache;
548 kmem_cache_t	*tcp_sack_info_cache;
549 kmem_cache_t	*tcp_iphc_cache;
550 
551 /*
552  * For scalability, we must not run a timer for every TCP connection
553  * in TIME_WAIT state.  To see why, consider (for time wait interval of
554  * 4 minutes):
555  *	1000 connections/sec * 240 seconds/time wait = 240,000 active conn's
556  *
557  * This list is ordered by time, so you need only delete from the head
558  * until you get to entries which aren't old enough to delete yet.
559  * The list consists of only the detached TIME_WAIT connections.
560  *
561  * Note that the timer (tcp_time_wait_expire) is started when the tcp_t
562  * becomes detached TIME_WAIT (either by changing the state and already
563  * being detached or the other way around). This means that the TIME_WAIT
564  * state can be extended (up to doubled) if the connection doesn't become
565  * detached for a long time.
566  *
567  * The list manipulations (including tcp_time_wait_next/prev)
568  * are protected by the tcp_time_wait_lock. The content of the
569  * detached TIME_WAIT connections is protected by the normal perimeters.
570  *
571  * This list is per squeue and squeues are shared across the tcp_stack_t's.
572  * Things on tcp_time_wait_head remain associated with the tcp_stack_t
573  * and conn_netstack.
574  * The tcp_t's that are added to tcp_free_list are disassociated and
575  * have NULL tcp_tcps and conn_netstack pointers.
576  */
577 typedef struct tcp_squeue_priv_s {
578 	kmutex_t	tcp_time_wait_lock;
579 	timeout_id_t	tcp_time_wait_tid;
580 	tcp_t		*tcp_time_wait_head;
581 	tcp_t		*tcp_time_wait_tail;
582 	tcp_t		*tcp_free_list;
583 	uint_t		tcp_free_list_cnt;
584 } tcp_squeue_priv_t;
585 
586 /*
587  * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs.
588  * Running it every 5 seconds seems to give the best results.
589  */
590 #define	TCP_TIME_WAIT_DELAY drv_usectohz(5000000)
591 
592 /*
593  * To prevent memory hog, limit the number of entries in tcp_free_list
594  * to 1% of available memory / number of cpus
595  */
596 uint_t tcp_free_list_max_cnt = 0;
597 
598 #define	TCP_XMIT_LOWATER	4096
599 #define	TCP_XMIT_HIWATER	49152
600 #define	TCP_RECV_LOWATER	2048
601 #define	TCP_RECV_HIWATER	49152
602 
603 /*
604  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
605  */
606 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
607 
608 #define	TIDUSZ	4096	/* transport interface data unit size */
609 
610 /*
611  * Bind hash list size and has function.  It has to be a power of 2 for
612  * hashing.
613  */
614 #define	TCP_BIND_FANOUT_SIZE	512
615 #define	TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1))
616 /*
617  * Size of listen and acceptor hash list.  It has to be a power of 2 for
618  * hashing.
619  */
620 #define	TCP_FANOUT_SIZE		256
621 
622 #ifdef	_ILP32
623 #define	TCP_ACCEPTOR_HASH(accid)					\
624 		(((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1))
625 #else
626 #define	TCP_ACCEPTOR_HASH(accid)					\
627 		((uint_t)(accid) & (TCP_FANOUT_SIZE - 1))
628 #endif	/* _ILP32 */
629 
630 #define	IP_ADDR_CACHE_SIZE	2048
631 #define	IP_ADDR_CACHE_HASH(faddr)					\
632 	(ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1))
633 
634 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */
635 #define	TCP_HSP_HASH_SIZE 256
636 
637 #define	TCP_HSP_HASH(addr)					\
638 	(((addr>>24) ^ (addr >>16) ^			\
639 	    (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE)
640 
641 /*
642  * TCP options struct returned from tcp_parse_options.
643  */
644 typedef struct tcp_opt_s {
645 	uint32_t	tcp_opt_mss;
646 	uint32_t	tcp_opt_wscale;
647 	uint32_t	tcp_opt_ts_val;
648 	uint32_t	tcp_opt_ts_ecr;
649 	tcp_t		*tcp;
650 } tcp_opt_t;
651 
652 /*
653  * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
654  */
655 
656 #ifdef _BIG_ENDIAN
657 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
658 	(TCPOPT_TSTAMP << 8) | 10)
659 #else
660 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
661 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
662 #endif
663 
664 /*
665  * Flags returned from tcp_parse_options.
666  */
667 #define	TCP_OPT_MSS_PRESENT	1
668 #define	TCP_OPT_WSCALE_PRESENT	2
669 #define	TCP_OPT_TSTAMP_PRESENT	4
670 #define	TCP_OPT_SACK_OK_PRESENT	8
671 #define	TCP_OPT_SACK_PRESENT	16
672 
673 /* TCP option length */
674 #define	TCPOPT_NOP_LEN		1
675 #define	TCPOPT_MAXSEG_LEN	4
676 #define	TCPOPT_WS_LEN		3
677 #define	TCPOPT_REAL_WS_LEN	(TCPOPT_WS_LEN+1)
678 #define	TCPOPT_TSTAMP_LEN	10
679 #define	TCPOPT_REAL_TS_LEN	(TCPOPT_TSTAMP_LEN+2)
680 #define	TCPOPT_SACK_OK_LEN	2
681 #define	TCPOPT_REAL_SACK_OK_LEN	(TCPOPT_SACK_OK_LEN+2)
682 #define	TCPOPT_REAL_SACK_LEN	4
683 #define	TCPOPT_MAX_SACK_LEN	36
684 #define	TCPOPT_HEADER_LEN	2
685 
686 /* TCP cwnd burst factor. */
687 #define	TCP_CWND_INFINITE	65535
688 #define	TCP_CWND_SS		3
689 #define	TCP_CWND_NORMAL		5
690 
691 /* Maximum TCP initial cwin (start/restart). */
692 #define	TCP_MAX_INIT_CWND	8
693 
694 /*
695  * Initialize cwnd according to RFC 3390.  def_max_init_cwnd is
696  * either tcp_slow_start_initial or tcp_slow_start_after idle
697  * depending on the caller.  If the upper layer has not used the
698  * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd
699  * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd.
700  * If the upper layer has changed set the tcp_init_cwnd, just use
701  * it to calculate the tcp_cwnd.
702  */
703 #define	SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd)			\
704 {									\
705 	if ((tcp)->tcp_init_cwnd == 0) {				\
706 		(tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss),	\
707 		    MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \
708 	} else {							\
709 		(tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss);		\
710 	}								\
711 	tcp->tcp_cwnd_cnt = 0;						\
712 }
713 
714 /* TCP Timer control structure */
715 typedef struct tcpt_s {
716 	pfv_t	tcpt_pfv;	/* The routine we are to call */
717 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
718 } tcpt_t;
719 
720 /* Host Specific Parameter structure */
721 typedef struct tcp_hsp {
722 	struct tcp_hsp	*tcp_hsp_next;
723 	in6_addr_t	tcp_hsp_addr_v6;
724 	in6_addr_t	tcp_hsp_subnet_v6;
725 	uint_t		tcp_hsp_vers;	/* IPV4_VERSION | IPV6_VERSION */
726 	int32_t		tcp_hsp_sendspace;
727 	int32_t		tcp_hsp_recvspace;
728 	int32_t		tcp_hsp_tstamp;
729 } tcp_hsp_t;
730 #define	tcp_hsp_addr	V4_PART_OF_V6(tcp_hsp_addr_v6)
731 #define	tcp_hsp_subnet	V4_PART_OF_V6(tcp_hsp_subnet_v6)
732 
733 /*
734  * Functions called directly via squeue having a prototype of edesc_t.
735  */
736 void		tcp_conn_request(void *arg, mblk_t *mp, void *arg2);
737 static void	tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2);
738 void		tcp_accept_finish(void *arg, mblk_t *mp, void *arg2);
739 static void	tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2);
740 static void	tcp_wput_proto(void *arg, mblk_t *mp, void *arg2);
741 void 		tcp_input(void *arg, mblk_t *mp, void *arg2);
742 void		tcp_rput_data(void *arg, mblk_t *mp, void *arg2);
743 static void	tcp_close_output(void *arg, mblk_t *mp, void *arg2);
744 void		tcp_output(void *arg, mblk_t *mp, void *arg2);
745 static void	tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2);
746 static void	tcp_timer_handler(void *arg, mblk_t *mp, void *arg2);
747 static void	tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2);
748 
749 
750 /* Prototype for TCP functions */
751 static void	tcp_random_init(void);
752 int		tcp_random(void);
753 static void	tcp_accept(tcp_t *tcp, mblk_t *mp);
754 static void	tcp_accept_swap(tcp_t *listener, tcp_t *acceptor,
755 		    tcp_t *eager);
756 static int	tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp);
757 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
758     int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only,
759     boolean_t user_specified);
760 static void	tcp_closei_local(tcp_t *tcp);
761 static void	tcp_close_detached(tcp_t *tcp);
762 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph,
763 			mblk_t *idmp, mblk_t **defermp);
764 static void	tcp_connect(tcp_t *tcp, mblk_t *mp);
765 static void	tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp,
766 		    in_port_t dstport, uint_t srcid);
767 static void	tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
768 		    in_port_t dstport, uint32_t flowinfo, uint_t srcid,
769 		    uint32_t scope_id);
770 static int	tcp_clean_death(tcp_t *tcp, int err, uint8_t tag);
771 static void	tcp_def_q_set(tcp_t *tcp, mblk_t *mp);
772 static void	tcp_disconnect(tcp_t *tcp, mblk_t *mp);
773 static char	*tcp_display(tcp_t *tcp, char *, char);
774 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum);
775 static void	tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only);
776 static void	tcp_eager_unlink(tcp_t *tcp);
777 static void	tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr,
778 		    int unixerr);
779 static void	tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
780 		    int tlierr, int unixerr);
781 static int	tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
782 		    cred_t *cr);
783 static int	tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
784 		    char *value, caddr_t cp, cred_t *cr);
785 static int	tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
786 		    char *value, caddr_t cp, cred_t *cr);
787 static int	tcp_tpistate(tcp_t *tcp);
788 static void	tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp,
789     int caller_holds_lock);
790 static void	tcp_bind_hash_remove(tcp_t *tcp);
791 static tcp_t	*tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *);
792 void		tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp);
793 static void	tcp_acceptor_hash_remove(tcp_t *tcp);
794 static void	tcp_capability_req(tcp_t *tcp, mblk_t *mp);
795 static void	tcp_info_req(tcp_t *tcp, mblk_t *mp);
796 static void	tcp_addr_req(tcp_t *tcp, mblk_t *mp);
797 static void	tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp);
798 void		tcp_g_q_setup(tcp_stack_t *);
799 void		tcp_g_q_create(tcp_stack_t *);
800 void		tcp_g_q_destroy(tcp_stack_t *);
801 static int	tcp_header_init_ipv4(tcp_t *tcp);
802 static int	tcp_header_init_ipv6(tcp_t *tcp);
803 int		tcp_init(tcp_t *tcp, queue_t *q);
804 static int	tcp_init_values(tcp_t *tcp);
805 static mblk_t	*tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic);
806 static mblk_t	*tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim,
807 		    t_scalar_t addr_length);
808 static void	tcp_ip_ire_mark_advice(tcp_t *tcp);
809 static void	tcp_ip_notify(tcp_t *tcp);
810 static mblk_t	*tcp_ire_mp(mblk_t *mp);
811 static void	tcp_iss_init(tcp_t *tcp);
812 static void	tcp_keepalive_killer(void *arg);
813 static int	tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt);
814 static void	tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss);
815 static int	tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp,
816 		    int *do_disconnectp, int *t_errorp, int *sys_errorp);
817 static boolean_t tcp_allow_connopt_set(int level, int name);
818 int		tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr);
819 int		tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr);
820 int		tcp_opt_set(queue_t *q, uint_t optset_context, int level,
821 		    int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
822 		    uchar_t *outvalp, void *thisdg_attrs, cred_t *cr,
823 		    mblk_t *mblk);
824 static void	tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha);
825 static int	tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly,
826 		    uchar_t *ptr, uint_t len);
827 static int	tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
828 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt,
829     tcp_stack_t *);
830 static int	tcp_param_set(queue_t *q, mblk_t *mp, char *value,
831 		    caddr_t cp, cred_t *cr);
832 static int	tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value,
833 		    caddr_t cp, cred_t *cr);
834 static void	tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *);
835 static int	tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value,
836 		    caddr_t cp, cred_t *cr);
837 static void	tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt);
838 static mblk_t	*tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start);
839 static void	tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp);
840 static void	tcp_reinit(tcp_t *tcp);
841 static void	tcp_reinit_values(tcp_t *tcp);
842 static void	tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval,
843 		    tcp_t *thisstream, cred_t *cr);
844 
845 static uint_t	tcp_rcv_drain(queue_t *q, tcp_t *tcp);
846 static void	tcp_sack_rxmit(tcp_t *tcp, uint_t *flags);
847 static boolean_t tcp_send_rst_chk(tcp_stack_t *);
848 static void	tcp_ss_rexmit(tcp_t *tcp);
849 static mblk_t	*tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp);
850 static void	tcp_process_options(tcp_t *, tcph_t *);
851 static void	tcp_rput_common(tcp_t *tcp, mblk_t *mp);
852 static void	tcp_rsrv(queue_t *q);
853 static int	tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd);
854 static int	tcp_snmp_state(tcp_t *tcp);
855 static int	tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp,
856 		    cred_t *cr);
857 static int	tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
858 		    cred_t *cr);
859 static int	tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
860 		    cred_t *cr);
861 static int	tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
862 		    cred_t *cr);
863 static int	tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
864 		    cred_t *cr);
865 static void	tcp_timer(void *arg);
866 static void	tcp_timer_callback(void *);
867 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp,
868     boolean_t random);
869 static in_port_t tcp_get_next_priv_port(const tcp_t *);
870 static void	tcp_wput_sock(queue_t *q, mblk_t *mp);
871 void		tcp_wput_accept(queue_t *q, mblk_t *mp);
872 static void	tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent);
873 static void	tcp_wput_flush(tcp_t *tcp, mblk_t *mp);
874 static void	tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp);
875 static int	tcp_send(queue_t *q, tcp_t *tcp, const int mss,
876 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
877 		    const int num_sack_blk, int *usable, uint_t *snxt,
878 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
879 		    const int mdt_thres);
880 static int	tcp_multisend(queue_t *q, tcp_t *tcp, const int mss,
881 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
882 		    const int num_sack_blk, int *usable, uint_t *snxt,
883 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
884 		    const int mdt_thres);
885 static void	tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now,
886 		    int num_sack_blk);
887 static void	tcp_wsrv(queue_t *q);
888 static int	tcp_xmit_end(tcp_t *tcp);
889 static void	tcp_ack_timer(void *arg);
890 static mblk_t	*tcp_ack_mp(tcp_t *tcp);
891 static void	tcp_xmit_early_reset(char *str, mblk_t *mp,
892 		    uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len,
893 		    zoneid_t zoneid, tcp_stack_t *, conn_t *connp);
894 static void	tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq,
895 		    uint32_t ack, int ctl);
896 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *);
897 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr, tcp_stack_t *);
898 static int	setmaxps(queue_t *q, int maxpsz);
899 static void	tcp_set_rto(tcp_t *, time_t);
900 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *,
901 		    boolean_t, boolean_t);
902 static void	tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp,
903 		    boolean_t ipsec_mctl);
904 static mblk_t	*tcp_setsockopt_mp(int level, int cmd,
905 		    char *opt, int optlen);
906 static int	tcp_build_hdrs(queue_t *, tcp_t *);
907 static void	tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp,
908 		    uint32_t seg_seq, uint32_t seg_ack, int seg_len,
909 		    tcph_t *tcph);
910 boolean_t	tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp);
911 static mblk_t	*tcp_mdt_info_mp(mblk_t *);
912 static void	tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t);
913 static int	tcp_mdt_add_attrs(multidata_t *, const mblk_t *,
914 		    const boolean_t, const uint32_t, const uint32_t,
915 		    const uint32_t, const uint32_t, tcp_stack_t *);
916 static void	tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *,
917 		    const uint_t, const uint_t, boolean_t *);
918 static mblk_t	*tcp_lso_info_mp(mblk_t *);
919 static void	tcp_lso_update(tcp_t *, ill_lso_capab_t *);
920 static void	tcp_send_data(tcp_t *, queue_t *, mblk_t *);
921 extern mblk_t	*tcp_timermp_alloc(int);
922 extern void	tcp_timermp_free(tcp_t *);
923 static void	tcp_timer_free(tcp_t *tcp, mblk_t *mp);
924 static void	tcp_stop_lingering(tcp_t *tcp);
925 static void	tcp_close_linger_timeout(void *arg);
926 static void	*tcp_stack_init(netstackid_t stackid, netstack_t *ns);
927 static void	tcp_stack_shutdown(netstackid_t stackid, void *arg);
928 static void	tcp_stack_fini(netstackid_t stackid, void *arg);
929 static void	*tcp_g_kstat_init(tcp_g_stat_t *);
930 static void	tcp_g_kstat_fini(kstat_t *);
931 static void	*tcp_kstat_init(netstackid_t, tcp_stack_t *);
932 static void	tcp_kstat_fini(netstackid_t, kstat_t *);
933 static void	*tcp_kstat2_init(netstackid_t, tcp_stat_t *);
934 static void	tcp_kstat2_fini(netstackid_t, kstat_t *);
935 static int	tcp_kstat_update(kstat_t *kp, int rw);
936 void		tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp);
937 static int	tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
938 			tcph_t *tcph, uint_t ipvers, mblk_t *idmp);
939 static int	tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
940 			tcph_t *tcph, mblk_t *idmp);
941 static squeue_func_t tcp_squeue_switch(int);
942 
943 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t);
944 static int	tcp_openv4(queue_t *, dev_t *, int, int, cred_t *);
945 static int	tcp_openv6(queue_t *, dev_t *, int, int, cred_t *);
946 static int	tcp_close(queue_t *, int);
947 static int	tcpclose_accept(queue_t *);
948 
949 static void	tcp_squeue_add(squeue_t *);
950 static boolean_t tcp_zcopy_check(tcp_t *);
951 static void	tcp_zcopy_notify(tcp_t *);
952 static mblk_t	*tcp_zcopy_disable(tcp_t *, mblk_t *);
953 static mblk_t	*tcp_zcopy_backoff(tcp_t *, mblk_t *, int);
954 static void	tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t);
955 
956 extern void	tcp_kssl_input(tcp_t *, mblk_t *);
957 
958 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2);
959 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2);
960 
961 /*
962  * Routines related to the TCP_IOC_ABORT_CONN ioctl command.
963  *
964  * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting
965  * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure
966  * (defined in tcp.h) needs to be filled in and passed into the kernel
967  * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t
968  * structure contains the four-tuple of a TCP connection and a range of TCP
969  * states (specified by ac_start and ac_end). The use of wildcard addresses
970  * and ports is allowed. Connections with a matching four tuple and a state
971  * within the specified range will be aborted. The valid states for the
972  * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT,
973  * inclusive.
974  *
975  * An application which has its connection aborted by this ioctl will receive
976  * an error that is dependent on the connection state at the time of the abort.
977  * If the connection state is < TCPS_TIME_WAIT, an application should behave as
978  * though a RST packet has been received.  If the connection state is equal to
979  * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel
980  * and all resources associated with the connection will be freed.
981  */
982 static mblk_t	*tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *);
983 static void	tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *);
984 static void	tcp_ioctl_abort_handler(tcp_t *, mblk_t *);
985 static int	tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps);
986 static void	tcp_ioctl_abort_conn(queue_t *, mblk_t *);
987 static int	tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *,
988     boolean_t, tcp_stack_t *);
989 
990 static struct module_info tcp_rinfo =  {
991 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
992 };
993 
994 static struct module_info tcp_winfo =  {
995 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
996 };
997 
998 /*
999  * Entry points for TCP as a device. The normal case which supports
1000  * the TCP functionality.
1001  * We have separate open functions for the /dev/tcp and /dev/tcp6 devices.
1002  */
1003 struct qinit tcp_rinitv4 = {
1004 	NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_close, NULL, &tcp_rinfo
1005 };
1006 
1007 struct qinit tcp_rinitv6 = {
1008 	NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_close, NULL, &tcp_rinfo
1009 };
1010 
1011 struct qinit tcp_winit = {
1012 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
1013 };
1014 
1015 /* Initial entry point for TCP in socket mode. */
1016 struct qinit tcp_sock_winit = {
1017 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
1018 };
1019 
1020 /*
1021  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
1022  * an accept. Avoid allocating data structures since eager has already
1023  * been created.
1024  */
1025 struct qinit tcp_acceptor_rinit = {
1026 	NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo
1027 };
1028 
1029 struct qinit tcp_acceptor_winit = {
1030 	(pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo
1031 };
1032 
1033 /*
1034  * Entry points for TCP loopback (read side only)
1035  * The open routine is only used for reopens, thus no need to
1036  * have a separate one for tcp_openv6.
1037  */
1038 struct qinit tcp_loopback_rinit = {
1039 	(pfi_t)0, (pfi_t)tcp_rsrv, tcp_openv4, tcp_close, (pfi_t)0,
1040 	&tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD
1041 };
1042 
1043 /* For AF_INET aka /dev/tcp */
1044 struct streamtab tcpinfov4 = {
1045 	&tcp_rinitv4, &tcp_winit
1046 };
1047 
1048 /* For AF_INET6 aka /dev/tcp6 */
1049 struct streamtab tcpinfov6 = {
1050 	&tcp_rinitv6, &tcp_winit
1051 };
1052 
1053 /*
1054  * Have to ensure that tcp_g_q_close is not done by an
1055  * interrupt thread.
1056  */
1057 static taskq_t *tcp_taskq;
1058 
1059 /* Setable only in /etc/system. Move to ndd? */
1060 boolean_t tcp_icmp_source_quench = B_FALSE;
1061 
1062 /*
1063  * Following assumes TPI alignment requirements stay along 32 bit
1064  * boundaries
1065  */
1066 #define	ROUNDUP32(x) \
1067 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
1068 
1069 /* Template for response to info request. */
1070 static struct T_info_ack tcp_g_t_info_ack = {
1071 	T_INFO_ACK,		/* PRIM_type */
1072 	0,			/* TSDU_size */
1073 	T_INFINITE,		/* ETSDU_size */
1074 	T_INVALID,		/* CDATA_size */
1075 	T_INVALID,		/* DDATA_size */
1076 	sizeof (sin_t),		/* ADDR_size */
1077 	0,			/* OPT_size - not initialized here */
1078 	TIDUSZ,			/* TIDU_size */
1079 	T_COTS_ORD,		/* SERV_type */
1080 	TCPS_IDLE,		/* CURRENT_state */
1081 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1082 };
1083 
1084 static struct T_info_ack tcp_g_t_info_ack_v6 = {
1085 	T_INFO_ACK,		/* PRIM_type */
1086 	0,			/* TSDU_size */
1087 	T_INFINITE,		/* ETSDU_size */
1088 	T_INVALID,		/* CDATA_size */
1089 	T_INVALID,		/* DDATA_size */
1090 	sizeof (sin6_t),	/* ADDR_size */
1091 	0,			/* OPT_size - not initialized here */
1092 	TIDUSZ,		/* TIDU_size */
1093 	T_COTS_ORD,		/* SERV_type */
1094 	TCPS_IDLE,		/* CURRENT_state */
1095 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1096 };
1097 
1098 #define	MS	1L
1099 #define	SECONDS	(1000 * MS)
1100 #define	MINUTES	(60 * SECONDS)
1101 #define	HOURS	(60 * MINUTES)
1102 #define	DAYS	(24 * HOURS)
1103 
1104 #define	PARAM_MAX (~(uint32_t)0)
1105 
1106 /* Max size IP datagram is 64k - 1 */
1107 #define	TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t)))
1108 #define	TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t)))
1109 /* Max of the above */
1110 #define	TCP_MSS_MAX	TCP_MSS_MAX_IPV4
1111 
1112 /* Largest TCP port number */
1113 #define	TCP_MAX_PORT	(64 * 1024 - 1)
1114 
1115 /*
1116  * tcp_wroff_xtra is the extra space in front of TCP/IP header for link
1117  * layer header.  It has to be a multiple of 4.
1118  */
1119 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" };
1120 #define	tcps_wroff_xtra	tcps_wroff_xtra_param->tcp_param_val
1121 
1122 /*
1123  * All of these are alterable, within the min/max values given, at run time.
1124  * Note that the default value of "tcp_time_wait_interval" is four minutes,
1125  * per the TCP spec.
1126  */
1127 /* BEGIN CSTYLED */
1128 static tcpparam_t	lcl_tcp_param_arr[] = {
1129  /*min		max		value		name */
1130  { 1*SECONDS,	10*MINUTES,	1*MINUTES,	"tcp_time_wait_interval"},
1131  { 1,		PARAM_MAX,	128,		"tcp_conn_req_max_q" },
1132  { 0,		PARAM_MAX,	1024,		"tcp_conn_req_max_q0" },
1133  { 1,		1024,		1,		"tcp_conn_req_min" },
1134  { 0*MS,	20*SECONDS,	0*MS,		"tcp_conn_grace_period" },
1135  { 128,		(1<<30),	1024*1024,	"tcp_cwnd_max" },
1136  { 0,		10,		0,		"tcp_debug" },
1137  { 1024,	(32*1024),	1024,		"tcp_smallest_nonpriv_port"},
1138  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_cinterval"},
1139  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_linterval"},
1140  { 500*MS,	PARAM_MAX,	8*MINUTES,	"tcp_ip_abort_interval"},
1141  { 1*SECONDS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_cinterval"},
1142  { 500*MS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_interval"},
1143  { 1,		255,		64,		"tcp_ipv4_ttl"},
1144  { 10*SECONDS,	10*DAYS,	2*HOURS,	"tcp_keepalive_interval"},
1145  { 0,		100,		10,		"tcp_maxpsz_multiplier" },
1146  { 1,		TCP_MSS_MAX_IPV4, 536,		"tcp_mss_def_ipv4"},
1147  { 1,		TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"},
1148  { 1,		TCP_MSS_MAX,	108,		"tcp_mss_min"},
1149  { 1,		(64*1024)-1,	(4*1024)-1,	"tcp_naglim_def"},
1150  { 1*MS,	20*SECONDS,	3*SECONDS,	"tcp_rexmit_interval_initial"},
1151  { 1*MS,	2*HOURS,	60*SECONDS,	"tcp_rexmit_interval_max"},
1152  { 1*MS,	2*HOURS,	400*MS,		"tcp_rexmit_interval_min"},
1153  { 1*MS,	1*MINUTES,	100*MS,		"tcp_deferred_ack_interval" },
1154  { 0,		16,		0,		"tcp_snd_lowat_fraction" },
1155  { 0,		128000,		0,		"tcp_sth_rcv_hiwat" },
1156  { 0,		128000,		0,		"tcp_sth_rcv_lowat" },
1157  { 1,		10000,		3,		"tcp_dupack_fast_retransmit" },
1158  { 0,		1,		0,		"tcp_ignore_path_mtu" },
1159  { 1024,	TCP_MAX_PORT,	32*1024,	"tcp_smallest_anon_port"},
1160  { 1024,	TCP_MAX_PORT,	TCP_MAX_PORT,	"tcp_largest_anon_port"},
1161  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"},
1162  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"},
1163  { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"},
1164  { 1,		65536,		4,		"tcp_recv_hiwat_minmss"},
1165  { 1*SECONDS,	PARAM_MAX,	675*SECONDS,	"tcp_fin_wait_2_flush_interval"},
1166  { 8192,	(1<<30),	1024*1024,	"tcp_max_buf"},
1167 /*
1168  * Question:  What default value should I set for tcp_strong_iss?
1169  */
1170  { 0,		2,		1,		"tcp_strong_iss"},
1171  { 0,		65536,		20,		"tcp_rtt_updates"},
1172  { 0,		1,		1,		"tcp_wscale_always"},
1173  { 0,		1,		0,		"tcp_tstamp_always"},
1174  { 0,		1,		1,		"tcp_tstamp_if_wscale"},
1175  { 0*MS,	2*HOURS,	0*MS,		"tcp_rexmit_interval_extra"},
1176  { 0,		16,		2,		"tcp_deferred_acks_max"},
1177  { 1,		16384,		4,		"tcp_slow_start_after_idle"},
1178  { 1,		4,		4,		"tcp_slow_start_initial"},
1179  { 0,		2,		2,		"tcp_sack_permitted"},
1180  { 0,		1,		1,		"tcp_compression_enabled"},
1181  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS,	"tcp_ipv6_hoplimit"},
1182  { 1,		TCP_MSS_MAX_IPV6, 1220,		"tcp_mss_def_ipv6"},
1183  { 1,		TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"},
1184  { 0,		1,		0,		"tcp_rev_src_routes"},
1185  { 10*MS,	500*MS,		50*MS,		"tcp_local_dack_interval"},
1186  { 100*MS,	60*SECONDS,	1*SECONDS,	"tcp_ndd_get_info_interval"},
1187  { 0,		16,		8,		"tcp_local_dacks_max"},
1188  { 0,		2,		1,		"tcp_ecn_permitted"},
1189  { 0,		1,		1,		"tcp_rst_sent_rate_enabled"},
1190  { 0,		PARAM_MAX,	40,		"tcp_rst_sent_rate"},
1191  { 0,		100*MS,		50*MS,		"tcp_push_timer_interval"},
1192  { 0,		1,		0,		"tcp_use_smss_as_mss_opt"},
1193  { 0,		PARAM_MAX,	8*MINUTES,	"tcp_keepalive_abort_interval"},
1194 };
1195 /* END CSTYLED */
1196 
1197 /*
1198  * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of
1199  * each header fragment in the header buffer.  Each parameter value has
1200  * to be a multiple of 4 (32-bit aligned).
1201  */
1202 static tcpparam_t lcl_tcp_mdt_head_param =
1203 	{ 32, 256, 32, "tcp_mdt_hdr_head_min" };
1204 static tcpparam_t lcl_tcp_mdt_tail_param =
1205 	{ 0,  256, 32, "tcp_mdt_hdr_tail_min" };
1206 #define	tcps_mdt_hdr_head_min	tcps_mdt_head_param->tcp_param_val
1207 #define	tcps_mdt_hdr_tail_min	tcps_mdt_tail_param->tcp_param_val
1208 
1209 /*
1210  * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out
1211  * the maximum number of payload buffers associated per Multidata.
1212  */
1213 static tcpparam_t lcl_tcp_mdt_max_pbufs_param =
1214 	{ 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" };
1215 #define	tcps_mdt_max_pbufs	tcps_mdt_max_pbufs_param->tcp_param_val
1216 
1217 /* Round up the value to the nearest mss. */
1218 #define	MSS_ROUNDUP(value, mss)		((((value) - 1) / (mss) + 1) * (mss))
1219 
1220 /*
1221  * Set ECN capable transport (ECT) code point in IP header.
1222  *
1223  * Note that there are 2 ECT code points '01' and '10', which are called
1224  * ECT(1) and ECT(0) respectively.  Here we follow the original ECT code
1225  * point ECT(0) for TCP as described in RFC 2481.
1226  */
1227 #define	SET_ECT(tcp, iph) \
1228 	if ((tcp)->tcp_ipversion == IPV4_VERSION) { \
1229 		/* We need to clear the code point first. */ \
1230 		((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \
1231 		((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \
1232 	} else { \
1233 		((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \
1234 		((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \
1235 	}
1236 
1237 /*
1238  * The format argument to pass to tcp_display().
1239  * DISP_PORT_ONLY means that the returned string has only port info.
1240  * DISP_ADDR_AND_PORT means that the returned string also contains the
1241  * remote and local IP address.
1242  */
1243 #define	DISP_PORT_ONLY		1
1244 #define	DISP_ADDR_AND_PORT	2
1245 
1246 #define	NDD_TOO_QUICK_MSG \
1247 	"ndd get info rate too high for non-privileged users, try again " \
1248 	"later.\n"
1249 #define	NDD_OUT_OF_BUF_MSG	"<< Out of buffer >>\n"
1250 
1251 #define	IS_VMLOANED_MBLK(mp) \
1252 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
1253 
1254 
1255 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */
1256 boolean_t tcp_mdt_chain = B_TRUE;
1257 
1258 /*
1259  * MDT threshold in the form of effective send MSS multiplier; we take
1260  * the MDT path if the amount of unsent data exceeds the threshold value
1261  * (default threshold is 1*SMSS).
1262  */
1263 uint_t tcp_mdt_smss_threshold = 1;
1264 
1265 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
1266 
1267 /*
1268  * Forces all connections to obey the value of the tcps_maxpsz_multiplier
1269  * tunable settable via NDD.  Otherwise, the per-connection behavior is
1270  * determined dynamically during tcp_adapt_ire(), which is the default.
1271  */
1272 boolean_t tcp_static_maxpsz = B_FALSE;
1273 
1274 /* Setable in /etc/system */
1275 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
1276 uint32_t tcp_random_anon_port = 1;
1277 
1278 /*
1279  * To reach to an eager in Q0 which can be dropped due to an incoming
1280  * new SYN request when Q0 is full, a new doubly linked list is
1281  * introduced. This list allows to select an eager from Q0 in O(1) time.
1282  * This is needed to avoid spending too much time walking through the
1283  * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of
1284  * this new list has to be a member of Q0.
1285  * This list is headed by listener's tcp_t. When the list is empty,
1286  * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0,
1287  * of listener's tcp_t point to listener's tcp_t itself.
1288  *
1289  * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager
1290  * in the list. MAKE_UNDROPPABLE() takes the eager out of the list.
1291  * These macros do not affect the eager's membership to Q0.
1292  */
1293 
1294 
1295 #define	MAKE_DROPPABLE(listener, eager)					\
1296 	if ((eager)->tcp_eager_next_drop_q0 == NULL) {			\
1297 		(listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\
1298 		    = (eager);						\
1299 		(eager)->tcp_eager_prev_drop_q0 = (listener);		\
1300 		(eager)->tcp_eager_next_drop_q0 =			\
1301 		    (listener)->tcp_eager_next_drop_q0;			\
1302 		(listener)->tcp_eager_next_drop_q0 = (eager);		\
1303 	}
1304 
1305 #define	MAKE_UNDROPPABLE(eager)						\
1306 	if ((eager)->tcp_eager_next_drop_q0 != NULL) {			\
1307 		(eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0	\
1308 		    = (eager)->tcp_eager_prev_drop_q0;			\
1309 		(eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0	\
1310 		    = (eager)->tcp_eager_next_drop_q0;			\
1311 		(eager)->tcp_eager_prev_drop_q0 = NULL;			\
1312 		(eager)->tcp_eager_next_drop_q0 = NULL;			\
1313 	}
1314 
1315 /*
1316  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
1317  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
1318  * data, TCP will not respond with an ACK.  RFC 793 requires that
1319  * TCP responds with an ACK for such a bogus ACK.  By not following
1320  * the RFC, we prevent TCP from getting into an ACK storm if somehow
1321  * an attacker successfully spoofs an acceptable segment to our
1322  * peer; or when our peer is "confused."
1323  */
1324 uint32_t tcp_drop_ack_unsent_cnt = 10;
1325 
1326 /*
1327  * Hook functions to enable cluster networking
1328  * On non-clustered systems these vectors must always be NULL.
1329  */
1330 
1331 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family,
1332 			    uint8_t *laddrp, in_port_t lport) = NULL;
1333 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family,
1334 			    uint8_t *laddrp, in_port_t lport) = NULL;
1335 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family,
1336 			    uint8_t *laddrp, in_port_t lport,
1337 			    uint8_t *faddrp, in_port_t fport) = NULL;
1338 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family,
1339 			    uint8_t *laddrp, in_port_t lport,
1340 			    uint8_t *faddrp, in_port_t fport) = NULL;
1341 
1342 /*
1343  * The following are defined in ip.c
1344  */
1345 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family,
1346 				uint8_t *laddrp);
1347 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family,
1348 				uint8_t *laddrp, uint8_t *faddrp);
1349 
1350 #define	CL_INET_CONNECT(tcp)		{			\
1351 	if (cl_inet_connect != NULL) {				\
1352 		/*						\
1353 		 * Running in cluster mode - register active connection	\
1354 		 * information						\
1355 		 */							\
1356 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1357 			if ((tcp)->tcp_ipha->ipha_src != 0) {		\
1358 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET,\
1359 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\
1360 				    (in_port_t)(tcp)->tcp_lport,	\
1361 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\
1362 				    (in_port_t)(tcp)->tcp_fport);	\
1363 			}						\
1364 		} else {						\
1365 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1366 			    &(tcp)->tcp_ip6h->ip6_src)) {\
1367 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\
1368 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\
1369 				    (in_port_t)(tcp)->tcp_lport,	\
1370 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\
1371 				    (in_port_t)(tcp)->tcp_fport);	\
1372 			}						\
1373 		}							\
1374 	}								\
1375 }
1376 
1377 #define	CL_INET_DISCONNECT(tcp)	{				\
1378 	if (cl_inet_disconnect != NULL) {				\
1379 		/*							\
1380 		 * Running in cluster mode - deregister active		\
1381 		 * connection information				\
1382 		 */							\
1383 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1384 			if ((tcp)->tcp_ip_src != 0) {			\
1385 				(*cl_inet_disconnect)(IPPROTO_TCP,	\
1386 				    AF_INET,				\
1387 				    (uint8_t *)(&((tcp)->tcp_ip_src)),\
1388 				    (in_port_t)(tcp)->tcp_lport,	\
1389 				    (uint8_t *)				\
1390 				    (&((tcp)->tcp_ipha->ipha_dst)),\
1391 				    (in_port_t)(tcp)->tcp_fport);	\
1392 			}						\
1393 		} else {						\
1394 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1395 			    &(tcp)->tcp_ip_src_v6)) {			\
1396 				(*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\
1397 				    (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\
1398 				    (in_port_t)(tcp)->tcp_lport,	\
1399 				    (uint8_t *)				\
1400 				    (&((tcp)->tcp_ip6h->ip6_dst)),\
1401 				    (in_port_t)(tcp)->tcp_fport);	\
1402 			}						\
1403 		}							\
1404 	}								\
1405 }
1406 
1407 /*
1408  * Cluster networking hook for traversing current connection list.
1409  * This routine is used to extract the current list of live connections
1410  * which must continue to to be dispatched to this node.
1411  */
1412 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg);
1413 
1414 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *),
1415     void *arg, tcp_stack_t *tcps);
1416 
1417 #define	DTRACE_IP_FASTPATH(mp, iph, ill, ipha, ip6h) 			\
1418 	DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *,	\
1419 	    iph, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha,		\
1420 	    ip6_t *, ip6h, int, 0);
1421 
1422 /*
1423  * Figure out the value of window scale opton.  Note that the rwnd is
1424  * ASSUMED to be rounded up to the nearest MSS before the calculation.
1425  * We cannot find the scale value and then do a round up of tcp_rwnd
1426  * because the scale value may not be correct after that.
1427  *
1428  * Set the compiler flag to make this function inline.
1429  */
1430 static void
1431 tcp_set_ws_value(tcp_t *tcp)
1432 {
1433 	int i;
1434 	uint32_t rwnd = tcp->tcp_rwnd;
1435 
1436 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
1437 	    i++, rwnd >>= 1)
1438 		;
1439 	tcp->tcp_rcv_ws = i;
1440 }
1441 
1442 /*
1443  * Remove a connection from the list of detached TIME_WAIT connections.
1444  * It returns B_FALSE if it can't remove the connection from the list
1445  * as the connection has already been removed from the list due to an
1446  * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE.
1447  */
1448 static boolean_t
1449 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait)
1450 {
1451 	boolean_t	locked = B_FALSE;
1452 
1453 	if (tcp_time_wait == NULL) {
1454 		tcp_time_wait = *((tcp_squeue_priv_t **)
1455 		    squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP));
1456 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1457 		locked = B_TRUE;
1458 	} else {
1459 		ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock));
1460 	}
1461 
1462 	if (tcp->tcp_time_wait_expire == 0) {
1463 		ASSERT(tcp->tcp_time_wait_next == NULL);
1464 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1465 		if (locked)
1466 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1467 		return (B_FALSE);
1468 	}
1469 	ASSERT(TCP_IS_DETACHED(tcp));
1470 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1471 
1472 	if (tcp == tcp_time_wait->tcp_time_wait_head) {
1473 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1474 		tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next;
1475 		if (tcp_time_wait->tcp_time_wait_head != NULL) {
1476 			tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev =
1477 			    NULL;
1478 		} else {
1479 			tcp_time_wait->tcp_time_wait_tail = NULL;
1480 		}
1481 	} else if (tcp == tcp_time_wait->tcp_time_wait_tail) {
1482 		ASSERT(tcp != tcp_time_wait->tcp_time_wait_head);
1483 		ASSERT(tcp->tcp_time_wait_next == NULL);
1484 		tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev;
1485 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1486 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL;
1487 	} else {
1488 		ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp);
1489 		ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp);
1490 		tcp->tcp_time_wait_prev->tcp_time_wait_next =
1491 		    tcp->tcp_time_wait_next;
1492 		tcp->tcp_time_wait_next->tcp_time_wait_prev =
1493 		    tcp->tcp_time_wait_prev;
1494 	}
1495 	tcp->tcp_time_wait_next = NULL;
1496 	tcp->tcp_time_wait_prev = NULL;
1497 	tcp->tcp_time_wait_expire = 0;
1498 
1499 	if (locked)
1500 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1501 	return (B_TRUE);
1502 }
1503 
1504 /*
1505  * Add a connection to the list of detached TIME_WAIT connections
1506  * and set its time to expire.
1507  */
1508 static void
1509 tcp_time_wait_append(tcp_t *tcp)
1510 {
1511 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1512 	tcp_squeue_priv_t *tcp_time_wait =
1513 	    *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp,
1514 	    SQPRIVATE_TCP));
1515 
1516 	tcp_timers_stop(tcp);
1517 
1518 	/* Freed above */
1519 	ASSERT(tcp->tcp_timer_tid == 0);
1520 	ASSERT(tcp->tcp_ack_tid == 0);
1521 
1522 	/* must have happened at the time of detaching the tcp */
1523 	ASSERT(tcp->tcp_ptpahn == NULL);
1524 	ASSERT(tcp->tcp_flow_stopped == 0);
1525 	ASSERT(tcp->tcp_time_wait_next == NULL);
1526 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1527 	ASSERT(tcp->tcp_time_wait_expire == NULL);
1528 	ASSERT(tcp->tcp_listener == NULL);
1529 
1530 	tcp->tcp_time_wait_expire = ddi_get_lbolt();
1531 	/*
1532 	 * The value computed below in tcp->tcp_time_wait_expire may
1533 	 * appear negative or wrap around. That is ok since our
1534 	 * interest is only in the difference between the current lbolt
1535 	 * value and tcp->tcp_time_wait_expire. But the value should not
1536 	 * be zero, since it means the tcp is not in the TIME_WAIT list.
1537 	 * The corresponding comparison in tcp_time_wait_collector() uses
1538 	 * modular arithmetic.
1539 	 */
1540 	tcp->tcp_time_wait_expire +=
1541 	    drv_usectohz(tcps->tcps_time_wait_interval * 1000);
1542 	if (tcp->tcp_time_wait_expire == 0)
1543 		tcp->tcp_time_wait_expire = 1;
1544 
1545 	ASSERT(TCP_IS_DETACHED(tcp));
1546 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1547 	ASSERT(tcp->tcp_time_wait_next == NULL);
1548 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1549 	TCP_DBGSTAT(tcps, tcp_time_wait);
1550 
1551 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1552 	if (tcp_time_wait->tcp_time_wait_head == NULL) {
1553 		ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL);
1554 		tcp_time_wait->tcp_time_wait_head = tcp;
1555 	} else {
1556 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1557 		ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state ==
1558 		    TCPS_TIME_WAIT);
1559 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp;
1560 		tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail;
1561 	}
1562 	tcp_time_wait->tcp_time_wait_tail = tcp;
1563 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1564 }
1565 
1566 /* ARGSUSED */
1567 void
1568 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2)
1569 {
1570 	conn_t	*connp = (conn_t *)arg;
1571 	tcp_t	*tcp = connp->conn_tcp;
1572 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1573 
1574 	ASSERT(tcp != NULL);
1575 	if (tcp->tcp_state == TCPS_CLOSED) {
1576 		return;
1577 	}
1578 
1579 	ASSERT((tcp->tcp_family == AF_INET &&
1580 	    tcp->tcp_ipversion == IPV4_VERSION) ||
1581 	    (tcp->tcp_family == AF_INET6 &&
1582 	    (tcp->tcp_ipversion == IPV4_VERSION ||
1583 	    tcp->tcp_ipversion == IPV6_VERSION)));
1584 	ASSERT(!tcp->tcp_listener);
1585 
1586 	TCP_STAT(tcps, tcp_time_wait_reap);
1587 	ASSERT(TCP_IS_DETACHED(tcp));
1588 
1589 	/*
1590 	 * Because they have no upstream client to rebind or tcp_close()
1591 	 * them later, we axe the connection here and now.
1592 	 */
1593 	tcp_close_detached(tcp);
1594 }
1595 
1596 /*
1597  * Remove cached/latched IPsec references.
1598  */
1599 void
1600 tcp_ipsec_cleanup(tcp_t *tcp)
1601 {
1602 	conn_t		*connp = tcp->tcp_connp;
1603 
1604 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1605 
1606 	if (connp->conn_latch != NULL) {
1607 		IPLATCH_REFRELE(connp->conn_latch,
1608 		    connp->conn_netstack);
1609 		connp->conn_latch = NULL;
1610 	}
1611 	if (connp->conn_policy != NULL) {
1612 		IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
1613 		connp->conn_policy = NULL;
1614 	}
1615 }
1616 
1617 /*
1618  * Cleaup before placing on free list.
1619  * Disassociate from the netstack/tcp_stack_t since the freelist
1620  * is per squeue and not per netstack.
1621  */
1622 void
1623 tcp_cleanup(tcp_t *tcp)
1624 {
1625 	mblk_t		*mp;
1626 	char		*tcp_iphc;
1627 	int		tcp_iphc_len;
1628 	int		tcp_hdr_grown;
1629 	tcp_sack_info_t	*tcp_sack_info;
1630 	conn_t		*connp = tcp->tcp_connp;
1631 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1632 	netstack_t	*ns = tcps->tcps_netstack;
1633 	mblk_t		*tcp_rsrv_mp;
1634 
1635 	tcp_bind_hash_remove(tcp);
1636 
1637 	/* Cleanup that which needs the netstack first */
1638 	tcp_ipsec_cleanup(tcp);
1639 
1640 	tcp_free(tcp);
1641 
1642 	/* Release any SSL context */
1643 	if (tcp->tcp_kssl_ent != NULL) {
1644 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
1645 		tcp->tcp_kssl_ent = NULL;
1646 	}
1647 
1648 	if (tcp->tcp_kssl_ctx != NULL) {
1649 		kssl_release_ctx(tcp->tcp_kssl_ctx);
1650 		tcp->tcp_kssl_ctx = NULL;
1651 	}
1652 	tcp->tcp_kssl_pending = B_FALSE;
1653 
1654 	conn_delete_ire(connp, NULL);
1655 
1656 	/*
1657 	 * Since we will bzero the entire structure, we need to
1658 	 * remove it and reinsert it in global hash list. We
1659 	 * know the walkers can't get to this conn because we
1660 	 * had set CONDEMNED flag earlier and checked reference
1661 	 * under conn_lock so walker won't pick it and when we
1662 	 * go the ipcl_globalhash_remove() below, no walker
1663 	 * can get to it.
1664 	 */
1665 	ipcl_globalhash_remove(connp);
1666 
1667 	/*
1668 	 * Now it is safe to decrement the reference counts.
1669 	 * This might be the last reference on the netstack and TCPS
1670 	 * in which case it will cause the tcp_g_q_close and
1671 	 * the freeing of the IP Instance.
1672 	 */
1673 	connp->conn_netstack = NULL;
1674 	netstack_rele(ns);
1675 	ASSERT(tcps != NULL);
1676 	tcp->tcp_tcps = NULL;
1677 	TCPS_REFRELE(tcps);
1678 
1679 	/* Save some state */
1680 	mp = tcp->tcp_timercache;
1681 
1682 	tcp_sack_info = tcp->tcp_sack_info;
1683 	tcp_iphc = tcp->tcp_iphc;
1684 	tcp_iphc_len = tcp->tcp_iphc_len;
1685 	tcp_hdr_grown = tcp->tcp_hdr_grown;
1686 	tcp_rsrv_mp = tcp->tcp_rsrv_mp;
1687 
1688 	if (connp->conn_cred != NULL) {
1689 		crfree(connp->conn_cred);
1690 		connp->conn_cred = NULL;
1691 	}
1692 	if (connp->conn_peercred != NULL) {
1693 		crfree(connp->conn_peercred);
1694 		connp->conn_peercred = NULL;
1695 	}
1696 	ipcl_conn_cleanup(connp);
1697 	connp->conn_flags = IPCL_TCPCONN;
1698 	bzero(tcp, sizeof (tcp_t));
1699 
1700 	/* restore the state */
1701 	tcp->tcp_timercache = mp;
1702 
1703 	tcp->tcp_sack_info = tcp_sack_info;
1704 	tcp->tcp_iphc = tcp_iphc;
1705 	tcp->tcp_iphc_len = tcp_iphc_len;
1706 	tcp->tcp_hdr_grown = tcp_hdr_grown;
1707 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
1708 
1709 	tcp->tcp_connp = connp;
1710 
1711 	ASSERT(connp->conn_tcp == tcp);
1712 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1713 	connp->conn_state_flags = CONN_INCIPIENT;
1714 	ASSERT(connp->conn_ulp == IPPROTO_TCP);
1715 	ASSERT(connp->conn_ref == 1);
1716 }
1717 
1718 /*
1719  * Blows away all tcps whose TIME_WAIT has expired. List traversal
1720  * is done forwards from the head.
1721  * This walks all stack instances since
1722  * tcp_time_wait remains global across all stacks.
1723  */
1724 /* ARGSUSED */
1725 void
1726 tcp_time_wait_collector(void *arg)
1727 {
1728 	tcp_t *tcp;
1729 	clock_t now;
1730 	mblk_t *mp;
1731 	conn_t *connp;
1732 	kmutex_t *lock;
1733 	boolean_t removed;
1734 
1735 	squeue_t *sqp = (squeue_t *)arg;
1736 	tcp_squeue_priv_t *tcp_time_wait =
1737 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1738 
1739 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1740 	tcp_time_wait->tcp_time_wait_tid = 0;
1741 
1742 	if (tcp_time_wait->tcp_free_list != NULL &&
1743 	    tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) {
1744 		TCP_G_STAT(tcp_freelist_cleanup);
1745 		while ((tcp = tcp_time_wait->tcp_free_list) != NULL) {
1746 			tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1747 			tcp->tcp_time_wait_next = NULL;
1748 			tcp_time_wait->tcp_free_list_cnt--;
1749 			ASSERT(tcp->tcp_tcps == NULL);
1750 			CONN_DEC_REF(tcp->tcp_connp);
1751 		}
1752 		ASSERT(tcp_time_wait->tcp_free_list_cnt == 0);
1753 	}
1754 
1755 	/*
1756 	 * In order to reap time waits reliably, we should use a
1757 	 * source of time that is not adjustable by the user -- hence
1758 	 * the call to ddi_get_lbolt().
1759 	 */
1760 	now = ddi_get_lbolt();
1761 	while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) {
1762 		/*
1763 		 * Compare times using modular arithmetic, since
1764 		 * lbolt can wrapover.
1765 		 */
1766 		if ((now - tcp->tcp_time_wait_expire) < 0) {
1767 			break;
1768 		}
1769 
1770 		removed = tcp_time_wait_remove(tcp, tcp_time_wait);
1771 		ASSERT(removed);
1772 
1773 		connp = tcp->tcp_connp;
1774 		ASSERT(connp->conn_fanout != NULL);
1775 		lock = &connp->conn_fanout->connf_lock;
1776 		/*
1777 		 * This is essentially a TW reclaim fast path optimization for
1778 		 * performance where the timewait collector checks under the
1779 		 * fanout lock (so that no one else can get access to the
1780 		 * conn_t) that the refcnt is 2 i.e. one for TCP and one for
1781 		 * the classifier hash list. If ref count is indeed 2, we can
1782 		 * just remove the conn under the fanout lock and avoid
1783 		 * cleaning up the conn under the squeue, provided that
1784 		 * clustering callbacks are not enabled. If clustering is
1785 		 * enabled, we need to make the clustering callback before
1786 		 * setting the CONDEMNED flag and after dropping all locks and
1787 		 * so we forego this optimization and fall back to the slow
1788 		 * path. Also please see the comments in tcp_closei_local
1789 		 * regarding the refcnt logic.
1790 		 *
1791 		 * Since we are holding the tcp_time_wait_lock, its better
1792 		 * not to block on the fanout_lock because other connections
1793 		 * can't add themselves to time_wait list. So we do a
1794 		 * tryenter instead of mutex_enter.
1795 		 */
1796 		if (mutex_tryenter(lock)) {
1797 			mutex_enter(&connp->conn_lock);
1798 			if ((connp->conn_ref == 2) &&
1799 			    (cl_inet_disconnect == NULL)) {
1800 				ipcl_hash_remove_locked(connp,
1801 				    connp->conn_fanout);
1802 				/*
1803 				 * Set the CONDEMNED flag now itself so that
1804 				 * the refcnt cannot increase due to any
1805 				 * walker. But we have still not cleaned up
1806 				 * conn_ire_cache. This is still ok since
1807 				 * we are going to clean it up in tcp_cleanup
1808 				 * immediately and any interface unplumb
1809 				 * thread will wait till the ire is blown away
1810 				 */
1811 				connp->conn_state_flags |= CONN_CONDEMNED;
1812 				mutex_exit(lock);
1813 				mutex_exit(&connp->conn_lock);
1814 				if (tcp_time_wait->tcp_free_list_cnt <
1815 				    tcp_free_list_max_cnt) {
1816 					/* Add to head of tcp_free_list */
1817 					mutex_exit(
1818 					    &tcp_time_wait->tcp_time_wait_lock);
1819 					tcp_cleanup(tcp);
1820 					ASSERT(connp->conn_latch == NULL);
1821 					ASSERT(connp->conn_policy == NULL);
1822 					ASSERT(tcp->tcp_tcps == NULL);
1823 					ASSERT(connp->conn_netstack == NULL);
1824 
1825 					mutex_enter(
1826 					    &tcp_time_wait->tcp_time_wait_lock);
1827 					tcp->tcp_time_wait_next =
1828 					    tcp_time_wait->tcp_free_list;
1829 					tcp_time_wait->tcp_free_list = tcp;
1830 					tcp_time_wait->tcp_free_list_cnt++;
1831 					continue;
1832 				} else {
1833 					/* Do not add to tcp_free_list */
1834 					mutex_exit(
1835 					    &tcp_time_wait->tcp_time_wait_lock);
1836 					tcp_bind_hash_remove(tcp);
1837 					conn_delete_ire(tcp->tcp_connp, NULL);
1838 					tcp_ipsec_cleanup(tcp);
1839 					CONN_DEC_REF(tcp->tcp_connp);
1840 				}
1841 			} else {
1842 				CONN_INC_REF_LOCKED(connp);
1843 				mutex_exit(lock);
1844 				mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1845 				mutex_exit(&connp->conn_lock);
1846 				/*
1847 				 * We can reuse the closemp here since conn has
1848 				 * detached (otherwise we wouldn't even be in
1849 				 * time_wait list). tcp_closemp_used can safely
1850 				 * be changed without taking a lock as no other
1851 				 * thread can concurrently access it at this
1852 				 * point in the connection lifecycle.
1853 				 */
1854 
1855 				if (tcp->tcp_closemp.b_prev == NULL)
1856 					tcp->tcp_closemp_used = B_TRUE;
1857 				else
1858 					cmn_err(CE_PANIC,
1859 					    "tcp_timewait_collector: "
1860 					    "concurrent use of tcp_closemp: "
1861 					    "connp %p tcp %p\n", (void *)connp,
1862 					    (void *)tcp);
1863 
1864 				TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1865 				mp = &tcp->tcp_closemp;
1866 				squeue_fill(connp->conn_sqp, mp,
1867 				    tcp_timewait_output, connp,
1868 				    SQTAG_TCP_TIMEWAIT);
1869 			}
1870 		} else {
1871 			mutex_enter(&connp->conn_lock);
1872 			CONN_INC_REF_LOCKED(connp);
1873 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1874 			mutex_exit(&connp->conn_lock);
1875 			/*
1876 			 * We can reuse the closemp here since conn has
1877 			 * detached (otherwise we wouldn't even be in
1878 			 * time_wait list). tcp_closemp_used can safely
1879 			 * be changed without taking a lock as no other
1880 			 * thread can concurrently access it at this
1881 			 * point in the connection lifecycle.
1882 			 */
1883 
1884 			if (tcp->tcp_closemp.b_prev == NULL)
1885 				tcp->tcp_closemp_used = B_TRUE;
1886 			else
1887 				cmn_err(CE_PANIC, "tcp_timewait_collector: "
1888 				    "concurrent use of tcp_closemp: "
1889 				    "connp %p tcp %p\n", (void *)connp,
1890 				    (void *)tcp);
1891 
1892 			TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1893 			mp = &tcp->tcp_closemp;
1894 			squeue_fill(connp->conn_sqp, mp,
1895 			    tcp_timewait_output, connp, 0);
1896 		}
1897 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1898 	}
1899 
1900 	if (tcp_time_wait->tcp_free_list != NULL)
1901 		tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE;
1902 
1903 	tcp_time_wait->tcp_time_wait_tid =
1904 	    timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY);
1905 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1906 }
1907 /*
1908  * Reply to a clients T_CONN_RES TPI message. This function
1909  * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES
1910  * on the acceptor STREAM and processed in tcp_wput_accept().
1911  * Read the block comment on top of tcp_conn_request().
1912  */
1913 static void
1914 tcp_accept(tcp_t *listener, mblk_t *mp)
1915 {
1916 	tcp_t	*acceptor;
1917 	tcp_t	*eager;
1918 	tcp_t   *tcp;
1919 	struct T_conn_res	*tcr;
1920 	t_uscalar_t	acceptor_id;
1921 	t_scalar_t	seqnum;
1922 	mblk_t	*opt_mp = NULL;	/* T_OPTMGMT_REQ messages */
1923 	mblk_t	*ok_mp;
1924 	mblk_t	*mp1;
1925 	tcp_stack_t	*tcps = listener->tcp_tcps;
1926 
1927 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
1928 		tcp_err_ack(listener, mp, TPROTO, 0);
1929 		return;
1930 	}
1931 	tcr = (struct T_conn_res *)mp->b_rptr;
1932 
1933 	/*
1934 	 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the
1935 	 * read side queue of the streams device underneath us i.e. the
1936 	 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we
1937 	 * look it up in the queue_hash.  Under LP64 it sends down the
1938 	 * minor_t of the accepting endpoint.
1939 	 *
1940 	 * Once the acceptor/eager are modified (in tcp_accept_swap) the
1941 	 * fanout hash lock is held.
1942 	 * This prevents any thread from entering the acceptor queue from
1943 	 * below (since it has not been hard bound yet i.e. any inbound
1944 	 * packets will arrive on the listener or default tcp queue and
1945 	 * go through tcp_lookup).
1946 	 * The CONN_INC_REF will prevent the acceptor from closing.
1947 	 *
1948 	 * XXX It is still possible for a tli application to send down data
1949 	 * on the accepting stream while another thread calls t_accept.
1950 	 * This should not be a problem for well-behaved applications since
1951 	 * the T_OK_ACK is sent after the queue swapping is completed.
1952 	 *
1953 	 * If the accepting fd is the same as the listening fd, avoid
1954 	 * queue hash lookup since that will return an eager listener in a
1955 	 * already established state.
1956 	 */
1957 	acceptor_id = tcr->ACCEPTOR_id;
1958 	mutex_enter(&listener->tcp_eager_lock);
1959 	if (listener->tcp_acceptor_id == acceptor_id) {
1960 		eager = listener->tcp_eager_next_q;
1961 		/* only count how many T_CONN_INDs so don't count q0 */
1962 		if ((listener->tcp_conn_req_cnt_q != 1) ||
1963 		    (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) {
1964 			mutex_exit(&listener->tcp_eager_lock);
1965 			tcp_err_ack(listener, mp, TBADF, 0);
1966 			return;
1967 		}
1968 		if (listener->tcp_conn_req_cnt_q0 != 0) {
1969 			/* Throw away all the eagers on q0. */
1970 			tcp_eager_cleanup(listener, 1);
1971 		}
1972 		if (listener->tcp_syn_defense) {
1973 			listener->tcp_syn_defense = B_FALSE;
1974 			if (listener->tcp_ip_addr_cache != NULL) {
1975 				kmem_free(listener->tcp_ip_addr_cache,
1976 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
1977 				listener->tcp_ip_addr_cache = NULL;
1978 			}
1979 		}
1980 		/*
1981 		 * Transfer tcp_conn_req_max to the eager so that when
1982 		 * a disconnect occurs we can revert the endpoint to the
1983 		 * listen state.
1984 		 */
1985 		eager->tcp_conn_req_max = listener->tcp_conn_req_max;
1986 		ASSERT(listener->tcp_conn_req_cnt_q0 == 0);
1987 		/*
1988 		 * Get a reference on the acceptor just like the
1989 		 * tcp_acceptor_hash_lookup below.
1990 		 */
1991 		acceptor = listener;
1992 		CONN_INC_REF(acceptor->tcp_connp);
1993 	} else {
1994 		acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps);
1995 		if (acceptor == NULL) {
1996 			if (listener->tcp_debug) {
1997 				(void) strlog(TCP_MOD_ID, 0, 1,
1998 				    SL_ERROR|SL_TRACE,
1999 				    "tcp_accept: did not find acceptor 0x%x\n",
2000 				    acceptor_id);
2001 			}
2002 			mutex_exit(&listener->tcp_eager_lock);
2003 			tcp_err_ack(listener, mp, TPROVMISMATCH, 0);
2004 			return;
2005 		}
2006 		/*
2007 		 * Verify acceptor state. The acceptable states for an acceptor
2008 		 * include TCPS_IDLE and TCPS_BOUND.
2009 		 */
2010 		switch (acceptor->tcp_state) {
2011 		case TCPS_IDLE:
2012 			/* FALLTHRU */
2013 		case TCPS_BOUND:
2014 			break;
2015 		default:
2016 			CONN_DEC_REF(acceptor->tcp_connp);
2017 			mutex_exit(&listener->tcp_eager_lock);
2018 			tcp_err_ack(listener, mp, TOUTSTATE, 0);
2019 			return;
2020 		}
2021 	}
2022 
2023 	/* The listener must be in TCPS_LISTEN */
2024 	if (listener->tcp_state != TCPS_LISTEN) {
2025 		CONN_DEC_REF(acceptor->tcp_connp);
2026 		mutex_exit(&listener->tcp_eager_lock);
2027 		tcp_err_ack(listener, mp, TOUTSTATE, 0);
2028 		return;
2029 	}
2030 
2031 	/*
2032 	 * Rendezvous with an eager connection request packet hanging off
2033 	 * 'tcp' that has the 'seqnum' tag.  We tagged the detached open
2034 	 * tcp structure when the connection packet arrived in
2035 	 * tcp_conn_request().
2036 	 */
2037 	seqnum = tcr->SEQ_number;
2038 	eager = listener;
2039 	do {
2040 		eager = eager->tcp_eager_next_q;
2041 		if (eager == NULL) {
2042 			CONN_DEC_REF(acceptor->tcp_connp);
2043 			mutex_exit(&listener->tcp_eager_lock);
2044 			tcp_err_ack(listener, mp, TBADSEQ, 0);
2045 			return;
2046 		}
2047 	} while (eager->tcp_conn_req_seqnum != seqnum);
2048 	mutex_exit(&listener->tcp_eager_lock);
2049 
2050 	/*
2051 	 * At this point, both acceptor and listener have 2 ref
2052 	 * that they begin with. Acceptor has one additional ref
2053 	 * we placed in lookup while listener has 3 additional
2054 	 * ref for being behind the squeue (tcp_accept() is
2055 	 * done on listener's squeue); being in classifier hash;
2056 	 * and eager's ref on listener.
2057 	 */
2058 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2059 	ASSERT(acceptor->tcp_connp->conn_ref >= 3);
2060 
2061 	/*
2062 	 * The eager at this point is set in its own squeue and
2063 	 * could easily have been killed (tcp_accept_finish will
2064 	 * deal with that) because of a TH_RST so we can only
2065 	 * ASSERT for a single ref.
2066 	 */
2067 	ASSERT(eager->tcp_connp->conn_ref >= 1);
2068 
2069 	/* Pre allocate the stroptions mblk also */
2070 	opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
2071 	if (opt_mp == NULL) {
2072 		CONN_DEC_REF(acceptor->tcp_connp);
2073 		CONN_DEC_REF(eager->tcp_connp);
2074 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2075 		return;
2076 	}
2077 	DB_TYPE(opt_mp) = M_SETOPTS;
2078 	opt_mp->b_wptr += sizeof (struct stroptions);
2079 
2080 	/*
2081 	 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
2082 	 * from listener to acceptor. The message is chained on opt_mp
2083 	 * which will be sent onto eager's squeue.
2084 	 */
2085 	if (listener->tcp_bound_if != 0) {
2086 		/* allocate optmgmt req */
2087 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2088 		    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
2089 		    sizeof (int));
2090 		if (mp1 != NULL)
2091 			linkb(opt_mp, mp1);
2092 	}
2093 	if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
2094 		uint_t on = 1;
2095 
2096 		/* allocate optmgmt req */
2097 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2098 		    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
2099 		if (mp1 != NULL)
2100 			linkb(opt_mp, mp1);
2101 	}
2102 
2103 	/* Re-use mp1 to hold a copy of mp, in case reallocb fails */
2104 	if ((mp1 = copymsg(mp)) == NULL) {
2105 		CONN_DEC_REF(acceptor->tcp_connp);
2106 		CONN_DEC_REF(eager->tcp_connp);
2107 		freemsg(opt_mp);
2108 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2109 		return;
2110 	}
2111 
2112 	tcr = (struct T_conn_res *)mp1->b_rptr;
2113 
2114 	/*
2115 	 * This is an expanded version of mi_tpi_ok_ack_alloc()
2116 	 * which allocates a larger mblk and appends the new
2117 	 * local address to the ok_ack.  The address is copied by
2118 	 * soaccept() for getsockname().
2119 	 */
2120 	{
2121 		int extra;
2122 
2123 		extra = (eager->tcp_family == AF_INET) ?
2124 		    sizeof (sin_t) : sizeof (sin6_t);
2125 
2126 		/*
2127 		 * Try to re-use mp, if possible.  Otherwise, allocate
2128 		 * an mblk and return it as ok_mp.  In any case, mp
2129 		 * is no longer usable upon return.
2130 		 */
2131 		if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) {
2132 			CONN_DEC_REF(acceptor->tcp_connp);
2133 			CONN_DEC_REF(eager->tcp_connp);
2134 			freemsg(opt_mp);
2135 			/* Original mp has been freed by now, so use mp1 */
2136 			tcp_err_ack(listener, mp1, TSYSERR, ENOMEM);
2137 			return;
2138 		}
2139 
2140 		mp = NULL;	/* We should never use mp after this point */
2141 
2142 		switch (extra) {
2143 		case sizeof (sin_t): {
2144 				sin_t *sin = (sin_t *)ok_mp->b_wptr;
2145 
2146 				ok_mp->b_wptr += extra;
2147 				sin->sin_family = AF_INET;
2148 				sin->sin_port = eager->tcp_lport;
2149 				sin->sin_addr.s_addr =
2150 				    eager->tcp_ipha->ipha_src;
2151 				break;
2152 			}
2153 		case sizeof (sin6_t): {
2154 				sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr;
2155 
2156 				ok_mp->b_wptr += extra;
2157 				sin6->sin6_family = AF_INET6;
2158 				sin6->sin6_port = eager->tcp_lport;
2159 				if (eager->tcp_ipversion == IPV4_VERSION) {
2160 					sin6->sin6_flowinfo = 0;
2161 					IN6_IPADDR_TO_V4MAPPED(
2162 					    eager->tcp_ipha->ipha_src,
2163 					    &sin6->sin6_addr);
2164 				} else {
2165 					ASSERT(eager->tcp_ip6h != NULL);
2166 					sin6->sin6_flowinfo =
2167 					    eager->tcp_ip6h->ip6_vcf &
2168 					    ~IPV6_VERS_AND_FLOW_MASK;
2169 					sin6->sin6_addr =
2170 					    eager->tcp_ip6h->ip6_src;
2171 				}
2172 				sin6->sin6_scope_id = 0;
2173 				sin6->__sin6_src_id = 0;
2174 				break;
2175 			}
2176 		default:
2177 			break;
2178 		}
2179 		ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim);
2180 	}
2181 
2182 	/*
2183 	 * If there are no options we know that the T_CONN_RES will
2184 	 * succeed. However, we can't send the T_OK_ACK upstream until
2185 	 * the tcp_accept_swap is done since it would be dangerous to
2186 	 * let the application start using the new fd prior to the swap.
2187 	 */
2188 	tcp_accept_swap(listener, acceptor, eager);
2189 
2190 	/*
2191 	 * tcp_accept_swap unlinks eager from listener but does not drop
2192 	 * the eager's reference on the listener.
2193 	 */
2194 	ASSERT(eager->tcp_listener == NULL);
2195 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2196 
2197 	/*
2198 	 * The eager is now associated with its own queue. Insert in
2199 	 * the hash so that the connection can be reused for a future
2200 	 * T_CONN_RES.
2201 	 */
2202 	tcp_acceptor_hash_insert(acceptor_id, eager);
2203 
2204 	/*
2205 	 * We now do the processing of options with T_CONN_RES.
2206 	 * We delay till now since we wanted to have queue to pass to
2207 	 * option processing routines that points back to the right
2208 	 * instance structure which does not happen until after
2209 	 * tcp_accept_swap().
2210 	 *
2211 	 * Note:
2212 	 * The sanity of the logic here assumes that whatever options
2213 	 * are appropriate to inherit from listner=>eager are done
2214 	 * before this point, and whatever were to be overridden (or not)
2215 	 * in transfer logic from eager=>acceptor in tcp_accept_swap().
2216 	 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it
2217 	 *   before its ACCEPTOR_id comes down in T_CONN_RES ]
2218 	 * This may not be true at this point in time but can be fixed
2219 	 * independently. This option processing code starts with
2220 	 * the instantiated acceptor instance and the final queue at
2221 	 * this point.
2222 	 */
2223 
2224 	if (tcr->OPT_length != 0) {
2225 		/* Options to process */
2226 		int t_error = 0;
2227 		int sys_error = 0;
2228 		int do_disconnect = 0;
2229 
2230 		if (tcp_conprim_opt_process(eager, mp1,
2231 		    &do_disconnect, &t_error, &sys_error) < 0) {
2232 			eager->tcp_accept_error = 1;
2233 			if (do_disconnect) {
2234 				/*
2235 				 * An option failed which does not allow
2236 				 * connection to be accepted.
2237 				 *
2238 				 * We allow T_CONN_RES to succeed and
2239 				 * put a T_DISCON_IND on the eager queue.
2240 				 */
2241 				ASSERT(t_error == 0 && sys_error == 0);
2242 				eager->tcp_send_discon_ind = 1;
2243 			} else {
2244 				ASSERT(t_error != 0);
2245 				freemsg(ok_mp);
2246 				/*
2247 				 * Original mp was either freed or set
2248 				 * to ok_mp above, so use mp1 instead.
2249 				 */
2250 				tcp_err_ack(listener, mp1, t_error, sys_error);
2251 				goto finish;
2252 			}
2253 		}
2254 		/*
2255 		 * Most likely success in setting options (except if
2256 		 * eager->tcp_send_discon_ind set).
2257 		 * mp1 option buffer represented by OPT_length/offset
2258 		 * potentially modified and contains results of setting
2259 		 * options at this point
2260 		 */
2261 	}
2262 
2263 	/* We no longer need mp1, since all options processing has passed */
2264 	freemsg(mp1);
2265 
2266 	putnext(listener->tcp_rq, ok_mp);
2267 
2268 	mutex_enter(&listener->tcp_eager_lock);
2269 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
2270 		tcp_t	*tail;
2271 		mblk_t	*conn_ind;
2272 
2273 		/*
2274 		 * This path should not be executed if listener and
2275 		 * acceptor streams are the same.
2276 		 */
2277 		ASSERT(listener != acceptor);
2278 
2279 		tcp = listener->tcp_eager_prev_q0;
2280 		/*
2281 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
2282 		 * deferred T_conn_ind queue. We need to get to the head of
2283 		 * the queue in order to send up T_conn_ind the same order as
2284 		 * how the 3WHS is completed.
2285 		 */
2286 		while (tcp != listener) {
2287 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0)
2288 				break;
2289 			else
2290 				tcp = tcp->tcp_eager_prev_q0;
2291 		}
2292 		ASSERT(tcp != listener);
2293 		conn_ind = tcp->tcp_conn.tcp_eager_conn_ind;
2294 		ASSERT(conn_ind != NULL);
2295 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
2296 
2297 		/* Move from q0 to q */
2298 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
2299 		listener->tcp_conn_req_cnt_q0--;
2300 		listener->tcp_conn_req_cnt_q++;
2301 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
2302 		    tcp->tcp_eager_prev_q0;
2303 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
2304 		    tcp->tcp_eager_next_q0;
2305 		tcp->tcp_eager_prev_q0 = NULL;
2306 		tcp->tcp_eager_next_q0 = NULL;
2307 		tcp->tcp_conn_def_q0 = B_FALSE;
2308 
2309 		/* Make sure the tcp isn't in the list of droppables */
2310 		ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
2311 		    tcp->tcp_eager_prev_drop_q0 == NULL);
2312 
2313 		/*
2314 		 * Insert at end of the queue because sockfs sends
2315 		 * down T_CONN_RES in chronological order. Leaving
2316 		 * the older conn indications at front of the queue
2317 		 * helps reducing search time.
2318 		 */
2319 		tail = listener->tcp_eager_last_q;
2320 		if (tail != NULL)
2321 			tail->tcp_eager_next_q = tcp;
2322 		else
2323 			listener->tcp_eager_next_q = tcp;
2324 		listener->tcp_eager_last_q = tcp;
2325 		tcp->tcp_eager_next_q = NULL;
2326 		mutex_exit(&listener->tcp_eager_lock);
2327 		putnext(tcp->tcp_rq, conn_ind);
2328 	} else {
2329 		mutex_exit(&listener->tcp_eager_lock);
2330 	}
2331 
2332 	/*
2333 	 * Done with the acceptor - free it
2334 	 *
2335 	 * Note: from this point on, no access to listener should be made
2336 	 * as listener can be equal to acceptor.
2337 	 */
2338 finish:
2339 	ASSERT(acceptor->tcp_detached);
2340 	ASSERT(tcps->tcps_g_q != NULL);
2341 	acceptor->tcp_rq = tcps->tcps_g_q;
2342 	acceptor->tcp_wq = WR(tcps->tcps_g_q);
2343 	(void) tcp_clean_death(acceptor, 0, 2);
2344 	CONN_DEC_REF(acceptor->tcp_connp);
2345 
2346 	/*
2347 	 * In case we already received a FIN we have to make tcp_rput send
2348 	 * the ordrel_ind. This will also send up a window update if the window
2349 	 * has opened up.
2350 	 *
2351 	 * In the normal case of a successful connection acceptance
2352 	 * we give the O_T_BIND_REQ to the read side put procedure as an
2353 	 * indication that this was just accepted. This tells tcp_rput to
2354 	 * pass up any data queued in tcp_rcv_list.
2355 	 *
2356 	 * In the fringe case where options sent with T_CONN_RES failed and
2357 	 * we required, we would be indicating a T_DISCON_IND to blow
2358 	 * away this connection.
2359 	 */
2360 
2361 	/*
2362 	 * XXX: we currently have a problem if XTI application closes the
2363 	 * acceptor stream in between. This problem exists in on10-gate also
2364 	 * and is well know but nothing can be done short of major rewrite
2365 	 * to fix it. Now it is possible to take care of it by assigning TLI/XTI
2366 	 * eager same squeue as listener (we can distinguish non socket
2367 	 * listeners at the time of handling a SYN in tcp_conn_request)
2368 	 * and do most of the work that tcp_accept_finish does here itself
2369 	 * and then get behind the acceptor squeue to access the acceptor
2370 	 * queue.
2371 	 */
2372 	/*
2373 	 * We already have a ref on tcp so no need to do one before squeue_fill
2374 	 */
2375 	squeue_fill(eager->tcp_connp->conn_sqp, opt_mp,
2376 	    tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH);
2377 }
2378 
2379 /*
2380  * Swap information between the eager and acceptor for a TLI/XTI client.
2381  * The sockfs accept is done on the acceptor stream and control goes
2382  * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not
2383  * called. In either case, both the eager and listener are in their own
2384  * perimeter (squeue) and the code has to deal with potential race.
2385  *
2386  * See the block comment on top of tcp_accept() and tcp_wput_accept().
2387  */
2388 static void
2389 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager)
2390 {
2391 	conn_t	*econnp, *aconnp;
2392 
2393 	ASSERT(eager->tcp_rq == listener->tcp_rq);
2394 	ASSERT(eager->tcp_detached && !acceptor->tcp_detached);
2395 	ASSERT(!eager->tcp_hard_bound);
2396 	ASSERT(!TCP_IS_SOCKET(acceptor));
2397 	ASSERT(!TCP_IS_SOCKET(eager));
2398 	ASSERT(!TCP_IS_SOCKET(listener));
2399 
2400 	acceptor->tcp_detached = B_TRUE;
2401 	/*
2402 	 * To permit stream re-use by TLI/XTI, the eager needs a copy of
2403 	 * the acceptor id.
2404 	 */
2405 	eager->tcp_acceptor_id = acceptor->tcp_acceptor_id;
2406 
2407 	/* remove eager from listen list... */
2408 	mutex_enter(&listener->tcp_eager_lock);
2409 	tcp_eager_unlink(eager);
2410 	ASSERT(eager->tcp_eager_next_q == NULL &&
2411 	    eager->tcp_eager_last_q == NULL);
2412 	ASSERT(eager->tcp_eager_next_q0 == NULL &&
2413 	    eager->tcp_eager_prev_q0 == NULL);
2414 	mutex_exit(&listener->tcp_eager_lock);
2415 	eager->tcp_rq = acceptor->tcp_rq;
2416 	eager->tcp_wq = acceptor->tcp_wq;
2417 
2418 	econnp = eager->tcp_connp;
2419 	aconnp = acceptor->tcp_connp;
2420 
2421 	eager->tcp_rq->q_ptr = econnp;
2422 	eager->tcp_wq->q_ptr = econnp;
2423 
2424 	/*
2425 	 * In the TLI/XTI loopback case, we are inside the listener's squeue,
2426 	 * which might be a different squeue from our peer TCP instance.
2427 	 * For TCP Fusion, the peer expects that whenever tcp_detached is
2428 	 * clear, our TCP queues point to the acceptor's queues.  Thus, use
2429 	 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq
2430 	 * above reach global visibility prior to the clearing of tcp_detached.
2431 	 */
2432 	membar_producer();
2433 	eager->tcp_detached = B_FALSE;
2434 
2435 	ASSERT(eager->tcp_ack_tid == 0);
2436 
2437 	econnp->conn_dev = aconnp->conn_dev;
2438 	econnp->conn_minor_arena = aconnp->conn_minor_arena;
2439 	ASSERT(econnp->conn_minor_arena != NULL);
2440 	if (eager->tcp_cred != NULL)
2441 		crfree(eager->tcp_cred);
2442 	eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred;
2443 	ASSERT(econnp->conn_netstack == aconnp->conn_netstack);
2444 	ASSERT(eager->tcp_tcps == acceptor->tcp_tcps);
2445 
2446 	aconnp->conn_cred = NULL;
2447 
2448 	econnp->conn_zoneid = aconnp->conn_zoneid;
2449 	econnp->conn_allzones = aconnp->conn_allzones;
2450 
2451 	econnp->conn_mac_exempt = aconnp->conn_mac_exempt;
2452 	aconnp->conn_mac_exempt = B_FALSE;
2453 
2454 	ASSERT(aconnp->conn_peercred == NULL);
2455 
2456 	/* Do the IPC initialization */
2457 	CONN_INC_REF(econnp);
2458 
2459 	econnp->conn_multicast_loop = aconnp->conn_multicast_loop;
2460 	econnp->conn_af_isv6 = aconnp->conn_af_isv6;
2461 	econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6;
2462 
2463 	/* Done with old IPC. Drop its ref on its connp */
2464 	CONN_DEC_REF(aconnp);
2465 }
2466 
2467 
2468 /*
2469  * Adapt to the information, such as rtt and rtt_sd, provided from the
2470  * ire cached in conn_cache_ire. If no ire cached, do a ire lookup.
2471  *
2472  * Checks for multicast and broadcast destination address.
2473  * Returns zero on failure; non-zero if ok.
2474  *
2475  * Note that the MSS calculation here is based on the info given in
2476  * the IRE.  We do not do any calculation based on TCP options.  They
2477  * will be handled in tcp_rput_other() and tcp_rput_data() when TCP
2478  * knows which options to use.
2479  *
2480  * Note on how TCP gets its parameters for a connection.
2481  *
2482  * When a tcp_t structure is allocated, it gets all the default parameters.
2483  * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd,
2484  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
2485  * default.
2486  *
2487  * An incoming SYN with a multicast or broadcast destination address, is dropped
2488  * in 1 of 2 places.
2489  *
2490  * 1. If the packet was received over the wire it is dropped in
2491  * ip_rput_process_broadcast()
2492  *
2493  * 2. If the packet was received through internal IP loopback, i.e. the packet
2494  * was generated and received on the same machine, it is dropped in
2495  * ip_wput_local()
2496  *
2497  * An incoming SYN with a multicast or broadcast source address is always
2498  * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to
2499  * reject an attempt to connect to a broadcast or multicast (destination)
2500  * address.
2501  */
2502 static int
2503 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp)
2504 {
2505 	tcp_hsp_t	*hsp;
2506 	ire_t		*ire;
2507 	ire_t		*sire = NULL;
2508 	iulp_t		*ire_uinfo = NULL;
2509 	uint32_t	mss_max;
2510 	uint32_t	mss;
2511 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2512 	conn_t		*connp = tcp->tcp_connp;
2513 	boolean_t	ire_cacheable = B_FALSE;
2514 	zoneid_t	zoneid = connp->conn_zoneid;
2515 	int		match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
2516 	    MATCH_IRE_SECATTR;
2517 	ts_label_t	*tsl = crgetlabel(CONN_CRED(connp));
2518 	ill_t		*ill = NULL;
2519 	boolean_t	incoming = (ire_mp == NULL);
2520 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2521 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
2522 
2523 	ASSERT(connp->conn_ire_cache == NULL);
2524 
2525 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2526 
2527 		if (CLASSD(tcp->tcp_connp->conn_rem)) {
2528 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
2529 			return (0);
2530 		}
2531 		/*
2532 		 * If IP_NEXTHOP is set, then look for an IRE_CACHE
2533 		 * for the destination with the nexthop as gateway.
2534 		 * ire_ctable_lookup() is used because this particular
2535 		 * ire, if it exists, will be marked private.
2536 		 * If that is not available, use the interface ire
2537 		 * for the nexthop.
2538 		 *
2539 		 * TSol: tcp_update_label will detect label mismatches based
2540 		 * only on the destination's label, but that would not
2541 		 * detect label mismatches based on the security attributes
2542 		 * of routes or next hop gateway. Hence we need to pass the
2543 		 * label to ire_ftable_lookup below in order to locate the
2544 		 * right prefix (and/or) ire cache. Similarly we also need
2545 		 * pass the label to the ire_cache_lookup below to locate
2546 		 * the right ire that also matches on the label.
2547 		 */
2548 		if (tcp->tcp_connp->conn_nexthop_set) {
2549 			ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem,
2550 			    tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid,
2551 			    tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW,
2552 			    ipst);
2553 			if (ire == NULL) {
2554 				ire = ire_ftable_lookup(
2555 				    tcp->tcp_connp->conn_nexthop_v4,
2556 				    0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0,
2557 				    tsl, match_flags, ipst);
2558 				if (ire == NULL)
2559 					return (0);
2560 			} else {
2561 				ire_uinfo = &ire->ire_uinfo;
2562 			}
2563 		} else {
2564 			ire = ire_cache_lookup(tcp->tcp_connp->conn_rem,
2565 			    zoneid, tsl, ipst);
2566 			if (ire != NULL) {
2567 				ire_cacheable = B_TRUE;
2568 				ire_uinfo = (ire_mp != NULL) ?
2569 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2570 				    &ire->ire_uinfo;
2571 
2572 			} else {
2573 				if (ire_mp == NULL) {
2574 					ire = ire_ftable_lookup(
2575 					    tcp->tcp_connp->conn_rem,
2576 					    0, 0, 0, NULL, &sire, zoneid, 0,
2577 					    tsl, (MATCH_IRE_RECURSIVE |
2578 					    MATCH_IRE_DEFAULT), ipst);
2579 					if (ire == NULL)
2580 						return (0);
2581 					ire_uinfo = (sire != NULL) ?
2582 					    &sire->ire_uinfo :
2583 					    &ire->ire_uinfo;
2584 				} else {
2585 					ire = (ire_t *)ire_mp->b_rptr;
2586 					ire_uinfo =
2587 					    &((ire_t *)
2588 					    ire_mp->b_rptr)->ire_uinfo;
2589 				}
2590 			}
2591 		}
2592 		ASSERT(ire != NULL);
2593 
2594 		if ((ire->ire_src_addr == INADDR_ANY) ||
2595 		    (ire->ire_type & IRE_BROADCAST)) {
2596 			/*
2597 			 * ire->ire_mp is non null when ire_mp passed in is used
2598 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2599 			 */
2600 			if (ire->ire_mp == NULL)
2601 				ire_refrele(ire);
2602 			if (sire != NULL)
2603 				ire_refrele(sire);
2604 			return (0);
2605 		}
2606 
2607 		if (tcp->tcp_ipha->ipha_src == INADDR_ANY) {
2608 			ipaddr_t src_addr;
2609 
2610 			/*
2611 			 * ip_bind_connected() has stored the correct source
2612 			 * address in conn_src.
2613 			 */
2614 			src_addr = tcp->tcp_connp->conn_src;
2615 			tcp->tcp_ipha->ipha_src = src_addr;
2616 			/*
2617 			 * Copy of the src addr. in tcp_t is needed
2618 			 * for the lookup funcs.
2619 			 */
2620 			IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6);
2621 		}
2622 		/*
2623 		 * Set the fragment bit so that IP will tell us if the MTU
2624 		 * should change. IP tells us the latest setting of
2625 		 * ip_path_mtu_discovery through ire_frag_flag.
2626 		 */
2627 		if (ipst->ips_ip_path_mtu_discovery) {
2628 			tcp->tcp_ipha->ipha_fragment_offset_and_flags =
2629 			    htons(IPH_DF);
2630 		}
2631 		/*
2632 		 * If ire_uinfo is NULL, this is the IRE_INTERFACE case
2633 		 * for IP_NEXTHOP. No cache ire has been found for the
2634 		 * destination and we are working with the nexthop's
2635 		 * interface ire. Since we need to forward all packets
2636 		 * to the nexthop first, we "blindly" set tcp_localnet
2637 		 * to false, eventhough the destination may also be
2638 		 * onlink.
2639 		 */
2640 		if (ire_uinfo == NULL)
2641 			tcp->tcp_localnet = 0;
2642 		else
2643 			tcp->tcp_localnet = (ire->ire_gateway_addr == 0);
2644 	} else {
2645 		/*
2646 		 * For incoming connection ire_mp = NULL
2647 		 * For outgoing connection ire_mp != NULL
2648 		 * Technically we should check conn_incoming_ill
2649 		 * when ire_mp is NULL and conn_outgoing_ill when
2650 		 * ire_mp is non-NULL. But this is performance
2651 		 * critical path and for IPV*_BOUND_IF, outgoing
2652 		 * and incoming ill are always set to the same value.
2653 		 */
2654 		ill_t	*dst_ill = NULL;
2655 		ipif_t  *dst_ipif = NULL;
2656 
2657 		ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
2658 
2659 		if (connp->conn_outgoing_ill != NULL) {
2660 			/* Outgoing or incoming path */
2661 			int   err;
2662 
2663 			dst_ill = conn_get_held_ill(connp,
2664 			    &connp->conn_outgoing_ill, &err);
2665 			if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) {
2666 				ip1dbg(("tcp_adapt_ire: ill_lookup failed\n"));
2667 				return (0);
2668 			}
2669 			match_flags |= MATCH_IRE_ILL;
2670 			dst_ipif = dst_ill->ill_ipif;
2671 		}
2672 		ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6,
2673 		    0, 0, dst_ipif, zoneid, tsl, match_flags, ipst);
2674 
2675 		if (ire != NULL) {
2676 			ire_cacheable = B_TRUE;
2677 			ire_uinfo = (ire_mp != NULL) ?
2678 			    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2679 			    &ire->ire_uinfo;
2680 		} else {
2681 			if (ire_mp == NULL) {
2682 				ire = ire_ftable_lookup_v6(
2683 				    &tcp->tcp_connp->conn_remv6,
2684 				    0, 0, 0, dst_ipif, &sire, zoneid,
2685 				    0, tsl, match_flags, ipst);
2686 				if (ire == NULL) {
2687 					if (dst_ill != NULL)
2688 						ill_refrele(dst_ill);
2689 					return (0);
2690 				}
2691 				ire_uinfo = (sire != NULL) ? &sire->ire_uinfo :
2692 				    &ire->ire_uinfo;
2693 			} else {
2694 				ire = (ire_t *)ire_mp->b_rptr;
2695 				ire_uinfo =
2696 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo;
2697 			}
2698 		}
2699 		if (dst_ill != NULL)
2700 			ill_refrele(dst_ill);
2701 
2702 		ASSERT(ire != NULL);
2703 		ASSERT(ire_uinfo != NULL);
2704 
2705 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) ||
2706 		    IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
2707 			/*
2708 			 * ire->ire_mp is non null when ire_mp passed in is used
2709 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2710 			 */
2711 			if (ire->ire_mp == NULL)
2712 				ire_refrele(ire);
2713 			if (sire != NULL)
2714 				ire_refrele(sire);
2715 			return (0);
2716 		}
2717 
2718 		if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
2719 			in6_addr_t	src_addr;
2720 
2721 			/*
2722 			 * ip_bind_connected_v6() has stored the correct source
2723 			 * address per IPv6 addr. selection policy in
2724 			 * conn_src_v6.
2725 			 */
2726 			src_addr = tcp->tcp_connp->conn_srcv6;
2727 
2728 			tcp->tcp_ip6h->ip6_src = src_addr;
2729 			/*
2730 			 * Copy of the src addr. in tcp_t is needed
2731 			 * for the lookup funcs.
2732 			 */
2733 			tcp->tcp_ip_src_v6 = src_addr;
2734 			ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src,
2735 			    &connp->conn_srcv6));
2736 		}
2737 		tcp->tcp_localnet =
2738 		    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6);
2739 	}
2740 
2741 	/*
2742 	 * This allows applications to fail quickly when connections are made
2743 	 * to dead hosts. Hosts can be labeled dead by adding a reject route
2744 	 * with both the RTF_REJECT and RTF_PRIVATE flags set.
2745 	 */
2746 	if ((ire->ire_flags & RTF_REJECT) &&
2747 	    (ire->ire_flags & RTF_PRIVATE))
2748 		goto error;
2749 
2750 	/*
2751 	 * Make use of the cached rtt and rtt_sd values to calculate the
2752 	 * initial RTO.  Note that they are already initialized in
2753 	 * tcp_init_values().
2754 	 * If ire_uinfo is NULL, i.e., we do not have a cache ire for
2755 	 * IP_NEXTHOP, but instead are using the interface ire for the
2756 	 * nexthop, then we do not use the ire_uinfo from that ire to
2757 	 * do any initializations.
2758 	 */
2759 	if (ire_uinfo != NULL) {
2760 		if (ire_uinfo->iulp_rtt != 0) {
2761 			clock_t	rto;
2762 
2763 			tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt;
2764 			tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd;
2765 			rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2766 			    tcps->tcps_rexmit_interval_extra +
2767 			    (tcp->tcp_rtt_sa >> 5);
2768 
2769 			if (rto > tcps->tcps_rexmit_interval_max) {
2770 				tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
2771 			} else if (rto < tcps->tcps_rexmit_interval_min) {
2772 				tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
2773 			} else {
2774 				tcp->tcp_rto = rto;
2775 			}
2776 		}
2777 		if (ire_uinfo->iulp_ssthresh != 0)
2778 			tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh;
2779 		else
2780 			tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2781 		if (ire_uinfo->iulp_spipe > 0) {
2782 			tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe,
2783 			    tcps->tcps_max_buf);
2784 			if (tcps->tcps_snd_lowat_fraction != 0)
2785 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2786 				    tcps->tcps_snd_lowat_fraction;
2787 			(void) tcp_maxpsz_set(tcp, B_TRUE);
2788 		}
2789 		/*
2790 		 * Note that up till now, acceptor always inherits receive
2791 		 * window from the listener.  But if there is a metrics
2792 		 * associated with a host, we should use that instead of
2793 		 * inheriting it from listener. Thus we need to pass this
2794 		 * info back to the caller.
2795 		 */
2796 		if (ire_uinfo->iulp_rpipe > 0) {
2797 			tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe,
2798 			    tcps->tcps_max_buf);
2799 		}
2800 
2801 		if (ire_uinfo->iulp_rtomax > 0) {
2802 			tcp->tcp_second_timer_threshold =
2803 			    ire_uinfo->iulp_rtomax;
2804 		}
2805 
2806 		/*
2807 		 * Use the metric option settings, iulp_tstamp_ok and
2808 		 * iulp_wscale_ok, only for active open. What this means
2809 		 * is that if the other side uses timestamp or window
2810 		 * scale option, TCP will also use those options. That
2811 		 * is for passive open.  If the application sets a
2812 		 * large window, window scale is enabled regardless of
2813 		 * the value in iulp_wscale_ok.  This is the behavior
2814 		 * since 2.6.  So we keep it.
2815 		 * The only case left in passive open processing is the
2816 		 * check for SACK.
2817 		 * For ECN, it should probably be like SACK.  But the
2818 		 * current value is binary, so we treat it like the other
2819 		 * cases.  The metric only controls active open.For passive
2820 		 * open, the ndd param, tcp_ecn_permitted, controls the
2821 		 * behavior.
2822 		 */
2823 		if (!tcp_detached) {
2824 			/*
2825 			 * The if check means that the following can only
2826 			 * be turned on by the metrics only IRE, but not off.
2827 			 */
2828 			if (ire_uinfo->iulp_tstamp_ok)
2829 				tcp->tcp_snd_ts_ok = B_TRUE;
2830 			if (ire_uinfo->iulp_wscale_ok)
2831 				tcp->tcp_snd_ws_ok = B_TRUE;
2832 			if (ire_uinfo->iulp_sack == 2)
2833 				tcp->tcp_snd_sack_ok = B_TRUE;
2834 			if (ire_uinfo->iulp_ecn_ok)
2835 				tcp->tcp_ecn_ok = B_TRUE;
2836 		} else {
2837 			/*
2838 			 * Passive open.
2839 			 *
2840 			 * As above, the if check means that SACK can only be
2841 			 * turned on by the metric only IRE.
2842 			 */
2843 			if (ire_uinfo->iulp_sack > 0) {
2844 				tcp->tcp_snd_sack_ok = B_TRUE;
2845 			}
2846 		}
2847 	}
2848 
2849 
2850 	/*
2851 	 * XXX: Note that currently, ire_max_frag can be as small as 68
2852 	 * because of PMTUd.  So tcp_mss may go to negative if combined
2853 	 * length of all those options exceeds 28 bytes.  But because
2854 	 * of the tcp_mss_min check below, we may not have a problem if
2855 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
2856 	 * the negative problem still exists.  And the check defeats PMTUd.
2857 	 * In fact, if PMTUd finds that the MSS should be smaller than
2858 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
2859 	 * value.
2860 	 *
2861 	 * We do not deal with that now.  All those problems related to
2862 	 * PMTUd will be fixed later.
2863 	 */
2864 	ASSERT(ire->ire_max_frag != 0);
2865 	mss = tcp->tcp_if_mtu = ire->ire_max_frag;
2866 	if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) {
2867 		if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) {
2868 			mss = MIN(mss, IPV6_MIN_MTU);
2869 		}
2870 	}
2871 
2872 	/* Sanity check for MSS value. */
2873 	if (tcp->tcp_ipversion == IPV4_VERSION)
2874 		mss_max = tcps->tcps_mss_max_ipv4;
2875 	else
2876 		mss_max = tcps->tcps_mss_max_ipv6;
2877 
2878 	if (tcp->tcp_ipversion == IPV6_VERSION &&
2879 	    (ire->ire_frag_flag & IPH_FRAG_HDR)) {
2880 		/*
2881 		 * After receiving an ICMPv6 "packet too big" message with a
2882 		 * MTU < 1280, and for multirouted IPv6 packets, the IP layer
2883 		 * will insert a 8-byte fragment header in every packet; we
2884 		 * reduce the MSS by that amount here.
2885 		 */
2886 		mss -= sizeof (ip6_frag_t);
2887 	}
2888 
2889 	if (tcp->tcp_ipsec_overhead == 0)
2890 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
2891 
2892 	mss -= tcp->tcp_ipsec_overhead;
2893 
2894 	if (mss < tcps->tcps_mss_min)
2895 		mss = tcps->tcps_mss_min;
2896 	if (mss > mss_max)
2897 		mss = mss_max;
2898 
2899 	/* Note that this is the maximum MSS, excluding all options. */
2900 	tcp->tcp_mss = mss;
2901 
2902 	/*
2903 	 * Initialize the ISS here now that we have the full connection ID.
2904 	 * The RFC 1948 method of initial sequence number generation requires
2905 	 * knowledge of the full connection ID before setting the ISS.
2906 	 */
2907 
2908 	tcp_iss_init(tcp);
2909 
2910 	if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL))
2911 		tcp->tcp_loopback = B_TRUE;
2912 
2913 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2914 		hsp = tcp_hsp_lookup(tcp->tcp_remote, tcps);
2915 	} else {
2916 		hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6, tcps);
2917 	}
2918 
2919 	if (hsp != NULL) {
2920 		/* Only modify if we're going to make them bigger */
2921 		if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) {
2922 			tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace;
2923 			if (tcps->tcps_snd_lowat_fraction != 0)
2924 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2925 				    tcps->tcps_snd_lowat_fraction;
2926 		}
2927 
2928 		if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) {
2929 			tcp->tcp_rwnd = hsp->tcp_hsp_recvspace;
2930 		}
2931 
2932 		/* Copy timestamp flag only for active open */
2933 		if (!tcp_detached)
2934 			tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp;
2935 	}
2936 
2937 	if (sire != NULL)
2938 		IRE_REFRELE(sire);
2939 
2940 	/*
2941 	 * If we got an IRE_CACHE and an ILL, go through their properties;
2942 	 * otherwise, this is deferred until later when we have an IRE_CACHE.
2943 	 */
2944 	if (tcp->tcp_loopback ||
2945 	    (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) {
2946 		/*
2947 		 * For incoming, see if this tcp may be MDT-capable.  For
2948 		 * outgoing, this process has been taken care of through
2949 		 * tcp_rput_other.
2950 		 */
2951 		tcp_ire_ill_check(tcp, ire, ill, incoming);
2952 		tcp->tcp_ire_ill_check_done = B_TRUE;
2953 	}
2954 
2955 	mutex_enter(&connp->conn_lock);
2956 	/*
2957 	 * Make sure that conn is not marked incipient
2958 	 * for incoming connections. A blind
2959 	 * removal of incipient flag is cheaper than
2960 	 * check and removal.
2961 	 */
2962 	connp->conn_state_flags &= ~CONN_INCIPIENT;
2963 
2964 	/*
2965 	 * Must not cache forwarding table routes
2966 	 * or recache an IRE after the conn_t has
2967 	 * had conn_ire_cache cleared and is flagged
2968 	 * unusable, (see the CONN_CACHE_IRE() macro).
2969 	 */
2970 	if (ire_cacheable && CONN_CACHE_IRE(connp)) {
2971 		rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
2972 		if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
2973 			connp->conn_ire_cache = ire;
2974 			IRE_UNTRACE_REF(ire);
2975 			rw_exit(&ire->ire_bucket->irb_lock);
2976 			mutex_exit(&connp->conn_lock);
2977 			return (1);
2978 		}
2979 		rw_exit(&ire->ire_bucket->irb_lock);
2980 	}
2981 	mutex_exit(&connp->conn_lock);
2982 
2983 	if (ire->ire_mp == NULL)
2984 		ire_refrele(ire);
2985 	return (1);
2986 
2987 error:
2988 	if (ire->ire_mp == NULL)
2989 		ire_refrele(ire);
2990 	if (sire != NULL)
2991 		ire_refrele(sire);
2992 	return (0);
2993 }
2994 
2995 /*
2996  * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a
2997  * O_T_BIND_REQ/T_BIND_REQ message.
2998  */
2999 static void
3000 tcp_bind(tcp_t *tcp, mblk_t *mp)
3001 {
3002 	sin_t	*sin;
3003 	sin6_t	*sin6;
3004 	mblk_t	*mp1;
3005 	in_port_t requested_port;
3006 	in_port_t allocated_port;
3007 	struct T_bind_req *tbr;
3008 	boolean_t	bind_to_req_port_only;
3009 	boolean_t	backlog_update = B_FALSE;
3010 	boolean_t	user_specified;
3011 	in6_addr_t	v6addr;
3012 	ipaddr_t	v4addr;
3013 	uint_t	origipversion;
3014 	int	err;
3015 	queue_t *q = tcp->tcp_wq;
3016 	conn_t	*connp = tcp->tcp_connp;
3017 	mlp_type_t addrtype, mlptype;
3018 	zone_t	*zone;
3019 	cred_t	*cr;
3020 	in_port_t mlp_port;
3021 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3022 
3023 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
3024 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
3025 		if (tcp->tcp_debug) {
3026 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3027 			    "tcp_bind: bad req, len %u",
3028 			    (uint_t)(mp->b_wptr - mp->b_rptr));
3029 		}
3030 		tcp_err_ack(tcp, mp, TPROTO, 0);
3031 		return;
3032 	}
3033 	/* Make sure the largest address fits */
3034 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
3035 	if (mp1 == NULL) {
3036 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3037 		return;
3038 	}
3039 	mp = mp1;
3040 	tbr = (struct T_bind_req *)mp->b_rptr;
3041 	if (tcp->tcp_state >= TCPS_BOUND) {
3042 		if ((tcp->tcp_state == TCPS_BOUND ||
3043 		    tcp->tcp_state == TCPS_LISTEN) &&
3044 		    tcp->tcp_conn_req_max != tbr->CONIND_number &&
3045 		    tbr->CONIND_number > 0) {
3046 			/*
3047 			 * Handle listen() increasing CONIND_number.
3048 			 * This is more "liberal" then what the TPI spec
3049 			 * requires but is needed to avoid a t_unbind
3050 			 * when handling listen() since the port number
3051 			 * might be "stolen" between the unbind and bind.
3052 			 */
3053 			backlog_update = B_TRUE;
3054 			goto do_bind;
3055 		}
3056 		if (tcp->tcp_debug) {
3057 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3058 			    "tcp_bind: bad state, %d", tcp->tcp_state);
3059 		}
3060 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
3061 		return;
3062 	}
3063 	origipversion = tcp->tcp_ipversion;
3064 
3065 	switch (tbr->ADDR_length) {
3066 	case 0:			/* request for a generic port */
3067 		tbr->ADDR_offset = sizeof (struct T_bind_req);
3068 		if (tcp->tcp_family == AF_INET) {
3069 			tbr->ADDR_length = sizeof (sin_t);
3070 			sin = (sin_t *)&tbr[1];
3071 			*sin = sin_null;
3072 			sin->sin_family = AF_INET;
3073 			mp->b_wptr = (uchar_t *)&sin[1];
3074 			tcp->tcp_ipversion = IPV4_VERSION;
3075 			IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr);
3076 		} else {
3077 			ASSERT(tcp->tcp_family == AF_INET6);
3078 			tbr->ADDR_length = sizeof (sin6_t);
3079 			sin6 = (sin6_t *)&tbr[1];
3080 			*sin6 = sin6_null;
3081 			sin6->sin6_family = AF_INET6;
3082 			mp->b_wptr = (uchar_t *)&sin6[1];
3083 			tcp->tcp_ipversion = IPV6_VERSION;
3084 			V6_SET_ZERO(v6addr);
3085 		}
3086 		requested_port = 0;
3087 		break;
3088 
3089 	case sizeof (sin_t):	/* Complete IPv4 address */
3090 		sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset,
3091 		    sizeof (sin_t));
3092 		if (sin == NULL || !OK_32PTR((char *)sin)) {
3093 			if (tcp->tcp_debug) {
3094 				(void) strlog(TCP_MOD_ID, 0, 1,
3095 				    SL_ERROR|SL_TRACE,
3096 				    "tcp_bind: bad address parameter, "
3097 				    "offset %d, len %d",
3098 				    tbr->ADDR_offset, tbr->ADDR_length);
3099 			}
3100 			tcp_err_ack(tcp, mp, TPROTO, 0);
3101 			return;
3102 		}
3103 		/*
3104 		 * With sockets sockfs will accept bogus sin_family in
3105 		 * bind() and replace it with the family used in the socket
3106 		 * call.
3107 		 */
3108 		if (sin->sin_family != AF_INET ||
3109 		    tcp->tcp_family != AF_INET) {
3110 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3111 			return;
3112 		}
3113 		requested_port = ntohs(sin->sin_port);
3114 		tcp->tcp_ipversion = IPV4_VERSION;
3115 		v4addr = sin->sin_addr.s_addr;
3116 		IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr);
3117 		break;
3118 
3119 	case sizeof (sin6_t): /* Complete IPv6 address */
3120 		sin6 = (sin6_t *)mi_offset_param(mp,
3121 		    tbr->ADDR_offset, sizeof (sin6_t));
3122 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
3123 			if (tcp->tcp_debug) {
3124 				(void) strlog(TCP_MOD_ID, 0, 1,
3125 				    SL_ERROR|SL_TRACE,
3126 				    "tcp_bind: bad IPv6 address parameter, "
3127 				    "offset %d, len %d", tbr->ADDR_offset,
3128 				    tbr->ADDR_length);
3129 			}
3130 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
3131 			return;
3132 		}
3133 		if (sin6->sin6_family != AF_INET6 ||
3134 		    tcp->tcp_family != AF_INET6) {
3135 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3136 			return;
3137 		}
3138 		requested_port = ntohs(sin6->sin6_port);
3139 		tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ?
3140 		    IPV4_VERSION : IPV6_VERSION;
3141 		v6addr = sin6->sin6_addr;
3142 		break;
3143 
3144 	default:
3145 		if (tcp->tcp_debug) {
3146 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3147 			    "tcp_bind: bad address length, %d",
3148 			    tbr->ADDR_length);
3149 		}
3150 		tcp_err_ack(tcp, mp, TBADADDR, 0);
3151 		return;
3152 	}
3153 	tcp->tcp_bound_source_v6 = v6addr;
3154 
3155 	/* Check for change in ipversion */
3156 	if (origipversion != tcp->tcp_ipversion) {
3157 		ASSERT(tcp->tcp_family == AF_INET6);
3158 		err = tcp->tcp_ipversion == IPV6_VERSION ?
3159 		    tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp);
3160 		if (err) {
3161 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3162 			return;
3163 		}
3164 	}
3165 
3166 	/*
3167 	 * Initialize family specific fields. Copy of the src addr.
3168 	 * in tcp_t is needed for the lookup funcs.
3169 	 */
3170 	if (tcp->tcp_ipversion == IPV6_VERSION) {
3171 		tcp->tcp_ip6h->ip6_src = v6addr;
3172 	} else {
3173 		IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src);
3174 	}
3175 	tcp->tcp_ip_src_v6 = v6addr;
3176 
3177 	/*
3178 	 * For O_T_BIND_REQ:
3179 	 * Verify that the target port/addr is available, or choose
3180 	 * another.
3181 	 * For  T_BIND_REQ:
3182 	 * Verify that the target port/addr is available or fail.
3183 	 * In both cases when it succeeds the tcp is inserted in the
3184 	 * bind hash table. This ensures that the operation is atomic
3185 	 * under the lock on the hash bucket.
3186 	 */
3187 	bind_to_req_port_only = requested_port != 0 &&
3188 	    tbr->PRIM_type != O_T_BIND_REQ;
3189 	/*
3190 	 * Get a valid port (within the anonymous range and should not
3191 	 * be a privileged one) to use if the user has not given a port.
3192 	 * If multiple threads are here, they may all start with
3193 	 * with the same initial port. But, it should be fine as long as
3194 	 * tcp_bindi will ensure that no two threads will be assigned
3195 	 * the same port.
3196 	 *
3197 	 * NOTE: XXX If a privileged process asks for an anonymous port, we
3198 	 * still check for ports only in the range > tcp_smallest_non_priv_port,
3199 	 * unless TCP_ANONPRIVBIND option is set.
3200 	 */
3201 	mlptype = mlptSingle;
3202 	mlp_port = requested_port;
3203 	if (requested_port == 0) {
3204 		requested_port = tcp->tcp_anon_priv_bind ?
3205 		    tcp_get_next_priv_port(tcp) :
3206 		    tcp_update_next_port(tcps->tcps_next_port_to_try,
3207 		    tcp, B_TRUE);
3208 		if (requested_port == 0) {
3209 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3210 			return;
3211 		}
3212 		user_specified = B_FALSE;
3213 
3214 		/*
3215 		 * If the user went through one of the RPC interfaces to create
3216 		 * this socket and RPC is MLP in this zone, then give him an
3217 		 * anonymous MLP.
3218 		 */
3219 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3220 		if (connp->conn_anon_mlp && is_system_labeled()) {
3221 			zone = crgetzone(cr);
3222 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3223 			    IPV6_VERSION, &v6addr,
3224 			    tcps->tcps_netstack->netstack_ip);
3225 			if (addrtype == mlptSingle) {
3226 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3227 				return;
3228 			}
3229 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3230 			    PMAPPORT, addrtype);
3231 			mlp_port = PMAPPORT;
3232 		}
3233 	} else {
3234 		int i;
3235 		boolean_t priv = B_FALSE;
3236 
3237 		/*
3238 		 * If the requested_port is in the well-known privileged range,
3239 		 * verify that the stream was opened by a privileged user.
3240 		 * Note: No locks are held when inspecting tcp_g_*epriv_ports
3241 		 * but instead the code relies on:
3242 		 * - the fact that the address of the array and its size never
3243 		 *   changes
3244 		 * - the atomic assignment of the elements of the array
3245 		 */
3246 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3247 		if (requested_port < tcps->tcps_smallest_nonpriv_port) {
3248 			priv = B_TRUE;
3249 		} else {
3250 			for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
3251 				if (requested_port ==
3252 				    tcps->tcps_g_epriv_ports[i]) {
3253 					priv = B_TRUE;
3254 					break;
3255 				}
3256 			}
3257 		}
3258 		if (priv) {
3259 			if (secpolicy_net_privaddr(cr, requested_port,
3260 			    IPPROTO_TCP) != 0) {
3261 				if (tcp->tcp_debug) {
3262 					(void) strlog(TCP_MOD_ID, 0, 1,
3263 					    SL_ERROR|SL_TRACE,
3264 					    "tcp_bind: no priv for port %d",
3265 					    requested_port);
3266 				}
3267 				tcp_err_ack(tcp, mp, TACCES, 0);
3268 				return;
3269 			}
3270 		}
3271 		user_specified = B_TRUE;
3272 
3273 		if (is_system_labeled()) {
3274 			zone = crgetzone(cr);
3275 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3276 			    IPV6_VERSION, &v6addr,
3277 			    tcps->tcps_netstack->netstack_ip);
3278 			if (addrtype == mlptSingle) {
3279 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3280 				return;
3281 			}
3282 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3283 			    requested_port, addrtype);
3284 		}
3285 	}
3286 
3287 	if (mlptype != mlptSingle) {
3288 		if (secpolicy_net_bindmlp(cr) != 0) {
3289 			if (tcp->tcp_debug) {
3290 				(void) strlog(TCP_MOD_ID, 0, 1,
3291 				    SL_ERROR|SL_TRACE,
3292 				    "tcp_bind: no priv for multilevel port %d",
3293 				    requested_port);
3294 			}
3295 			tcp_err_ack(tcp, mp, TACCES, 0);
3296 			return;
3297 		}
3298 
3299 		/*
3300 		 * If we're specifically binding a shared IP address and the
3301 		 * port is MLP on shared addresses, then check to see if this
3302 		 * zone actually owns the MLP.  Reject if not.
3303 		 */
3304 		if (mlptype == mlptShared && addrtype == mlptShared) {
3305 			/*
3306 			 * No need to handle exclusive-stack zones since
3307 			 * ALL_ZONES only applies to the shared stack.
3308 			 */
3309 			zoneid_t mlpzone;
3310 
3311 			mlpzone = tsol_mlp_findzone(IPPROTO_TCP,
3312 			    htons(mlp_port));
3313 			if (connp->conn_zoneid != mlpzone) {
3314 				if (tcp->tcp_debug) {
3315 					(void) strlog(TCP_MOD_ID, 0, 1,
3316 					    SL_ERROR|SL_TRACE,
3317 					    "tcp_bind: attempt to bind port "
3318 					    "%d on shared addr in zone %d "
3319 					    "(should be %d)",
3320 					    mlp_port, connp->conn_zoneid,
3321 					    mlpzone);
3322 				}
3323 				tcp_err_ack(tcp, mp, TACCES, 0);
3324 				return;
3325 			}
3326 		}
3327 
3328 		if (!user_specified) {
3329 			err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3330 			    requested_port, B_TRUE);
3331 			if (err != 0) {
3332 				if (tcp->tcp_debug) {
3333 					(void) strlog(TCP_MOD_ID, 0, 1,
3334 					    SL_ERROR|SL_TRACE,
3335 					    "tcp_bind: cannot establish anon "
3336 					    "MLP for port %d",
3337 					    requested_port);
3338 				}
3339 				tcp_err_ack(tcp, mp, TSYSERR, err);
3340 				return;
3341 			}
3342 			connp->conn_anon_port = B_TRUE;
3343 		}
3344 		connp->conn_mlp_type = mlptype;
3345 	}
3346 
3347 	allocated_port = tcp_bindi(tcp, requested_port, &v6addr,
3348 	    tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified);
3349 
3350 	if (allocated_port == 0) {
3351 		connp->conn_mlp_type = mlptSingle;
3352 		if (connp->conn_anon_port) {
3353 			connp->conn_anon_port = B_FALSE;
3354 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3355 			    requested_port, B_FALSE);
3356 		}
3357 		if (bind_to_req_port_only) {
3358 			if (tcp->tcp_debug) {
3359 				(void) strlog(TCP_MOD_ID, 0, 1,
3360 				    SL_ERROR|SL_TRACE,
3361 				    "tcp_bind: requested addr busy");
3362 			}
3363 			tcp_err_ack(tcp, mp, TADDRBUSY, 0);
3364 		} else {
3365 			/* If we are out of ports, fail the bind. */
3366 			if (tcp->tcp_debug) {
3367 				(void) strlog(TCP_MOD_ID, 0, 1,
3368 				    SL_ERROR|SL_TRACE,
3369 				    "tcp_bind: out of ports?");
3370 			}
3371 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3372 		}
3373 		return;
3374 	}
3375 	ASSERT(tcp->tcp_state == TCPS_BOUND);
3376 do_bind:
3377 	if (!backlog_update) {
3378 		if (tcp->tcp_family == AF_INET)
3379 			sin->sin_port = htons(allocated_port);
3380 		else
3381 			sin6->sin6_port = htons(allocated_port);
3382 	}
3383 	if (tcp->tcp_family == AF_INET) {
3384 		if (tbr->CONIND_number != 0) {
3385 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3386 			    sizeof (sin_t));
3387 		} else {
3388 			/* Just verify the local IP address */
3389 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN);
3390 		}
3391 	} else {
3392 		if (tbr->CONIND_number != 0) {
3393 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3394 			    sizeof (sin6_t));
3395 		} else {
3396 			/* Just verify the local IP address */
3397 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3398 			    IPV6_ADDR_LEN);
3399 		}
3400 	}
3401 	if (mp1 == NULL) {
3402 		if (connp->conn_anon_port) {
3403 			connp->conn_anon_port = B_FALSE;
3404 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3405 			    requested_port, B_FALSE);
3406 		}
3407 		connp->conn_mlp_type = mlptSingle;
3408 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3409 		return;
3410 	}
3411 
3412 	tbr->PRIM_type = T_BIND_ACK;
3413 	mp->b_datap->db_type = M_PCPROTO;
3414 
3415 	/* Chain in the reply mp for tcp_rput() */
3416 	mp1->b_cont = mp;
3417 	mp = mp1;
3418 
3419 	tcp->tcp_conn_req_max = tbr->CONIND_number;
3420 	if (tcp->tcp_conn_req_max) {
3421 		if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min)
3422 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_min;
3423 		if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q)
3424 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q;
3425 		/*
3426 		 * If this is a listener, do not reset the eager list
3427 		 * and other stuffs.  Note that we don't check if the
3428 		 * existing eager list meets the new tcp_conn_req_max
3429 		 * requirement.
3430 		 */
3431 		if (tcp->tcp_state != TCPS_LISTEN) {
3432 			tcp->tcp_state = TCPS_LISTEN;
3433 			/* Initialize the chain. Don't need the eager_lock */
3434 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
3435 			tcp->tcp_eager_next_drop_q0 = tcp;
3436 			tcp->tcp_eager_prev_drop_q0 = tcp;
3437 			tcp->tcp_second_ctimer_threshold =
3438 			    tcps->tcps_ip_abort_linterval;
3439 		}
3440 	}
3441 
3442 	/*
3443 	 * We can call ip_bind directly which returns a T_BIND_ACK mp. The
3444 	 * processing continues in tcp_rput_other().
3445 	 *
3446 	 * We need to make sure that the conn_recv is set to a non-null
3447 	 * value before we insert the conn into the classifier table.
3448 	 * This is to avoid a race with an incoming packet which does an
3449 	 * ipcl_classify().
3450 	 */
3451 	connp->conn_recv = tcp_conn_request;
3452 	if (tcp->tcp_family == AF_INET6) {
3453 		ASSERT(tcp->tcp_connp->conn_af_isv6);
3454 		mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp);
3455 	} else {
3456 		ASSERT(!tcp->tcp_connp->conn_af_isv6);
3457 		mp = ip_bind_v4(q, mp, tcp->tcp_connp);
3458 	}
3459 	/*
3460 	 * If the bind cannot complete immediately
3461 	 * IP will arrange to call tcp_rput_other
3462 	 * when the bind completes.
3463 	 */
3464 	if (mp != NULL) {
3465 		tcp_rput_other(tcp, mp);
3466 	} else {
3467 		/*
3468 		 * Bind will be resumed later. Need to ensure
3469 		 * that conn doesn't disappear when that happens.
3470 		 * This will be decremented in ip_resume_tcp_bind().
3471 		 */
3472 		CONN_INC_REF(tcp->tcp_connp);
3473 	}
3474 }
3475 
3476 
3477 /*
3478  * If the "bind_to_req_port_only" parameter is set, if the requested port
3479  * number is available, return it, If not return 0
3480  *
3481  * If "bind_to_req_port_only" parameter is not set and
3482  * If the requested port number is available, return it.  If not, return
3483  * the first anonymous port we happen across.  If no anonymous ports are
3484  * available, return 0. addr is the requested local address, if any.
3485  *
3486  * In either case, when succeeding update the tcp_t to record the port number
3487  * and insert it in the bind hash table.
3488  *
3489  * Note that TCP over IPv4 and IPv6 sockets can use the same port number
3490  * without setting SO_REUSEADDR. This is needed so that they
3491  * can be viewed as two independent transport protocols.
3492  */
3493 static in_port_t
3494 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
3495     int reuseaddr, boolean_t quick_connect,
3496     boolean_t bind_to_req_port_only, boolean_t user_specified)
3497 {
3498 	/* number of times we have run around the loop */
3499 	int count = 0;
3500 	/* maximum number of times to run around the loop */
3501 	int loopmax;
3502 	conn_t *connp = tcp->tcp_connp;
3503 	zoneid_t zoneid = connp->conn_zoneid;
3504 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3505 
3506 	/*
3507 	 * Lookup for free addresses is done in a loop and "loopmax"
3508 	 * influences how long we spin in the loop
3509 	 */
3510 	if (bind_to_req_port_only) {
3511 		/*
3512 		 * If the requested port is busy, don't bother to look
3513 		 * for a new one. Setting loop maximum count to 1 has
3514 		 * that effect.
3515 		 */
3516 		loopmax = 1;
3517 	} else {
3518 		/*
3519 		 * If the requested port is busy, look for a free one
3520 		 * in the anonymous port range.
3521 		 * Set loopmax appropriately so that one does not look
3522 		 * forever in the case all of the anonymous ports are in use.
3523 		 */
3524 		if (tcp->tcp_anon_priv_bind) {
3525 			/*
3526 			 * loopmax =
3527 			 * 	(IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1
3528 			 */
3529 			loopmax = IPPORT_RESERVED -
3530 			    tcps->tcps_min_anonpriv_port;
3531 		} else {
3532 			loopmax = (tcps->tcps_largest_anon_port -
3533 			    tcps->tcps_smallest_anon_port + 1);
3534 		}
3535 	}
3536 	do {
3537 		uint16_t	lport;
3538 		tf_t		*tbf;
3539 		tcp_t		*ltcp;
3540 		conn_t		*lconnp;
3541 
3542 		lport = htons(port);
3543 
3544 		/*
3545 		 * Ensure that the tcp_t is not currently in the bind hash.
3546 		 * Hold the lock on the hash bucket to ensure that
3547 		 * the duplicate check plus the insertion is an atomic
3548 		 * operation.
3549 		 *
3550 		 * This function does an inline lookup on the bind hash list
3551 		 * Make sure that we access only members of tcp_t
3552 		 * and that we don't look at tcp_tcp, since we are not
3553 		 * doing a CONN_INC_REF.
3554 		 */
3555 		tcp_bind_hash_remove(tcp);
3556 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)];
3557 		mutex_enter(&tbf->tf_lock);
3558 		for (ltcp = tbf->tf_tcp; ltcp != NULL;
3559 		    ltcp = ltcp->tcp_bind_hash) {
3560 			boolean_t not_socket;
3561 			boolean_t exclbind;
3562 
3563 			if (lport != ltcp->tcp_lport)
3564 				continue;
3565 
3566 			lconnp = ltcp->tcp_connp;
3567 
3568 			/*
3569 			 * On a labeled system, we must treat bindings to ports
3570 			 * on shared IP addresses by sockets with MAC exemption
3571 			 * privilege as being in all zones, as there's
3572 			 * otherwise no way to identify the right receiver.
3573 			 */
3574 			if (!(IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) ||
3575 			    IPCL_ZONE_MATCH(connp,
3576 			    ltcp->tcp_connp->conn_zoneid)) &&
3577 			    !lconnp->conn_mac_exempt &&
3578 			    !connp->conn_mac_exempt)
3579 				continue;
3580 
3581 			/*
3582 			 * If TCP_EXCLBIND is set for either the bound or
3583 			 * binding endpoint, the semantics of bind
3584 			 * is changed according to the following.
3585 			 *
3586 			 * spec = specified address (v4 or v6)
3587 			 * unspec = unspecified address (v4 or v6)
3588 			 * A = specified addresses are different for endpoints
3589 			 *
3590 			 * bound	bind to		allowed
3591 			 * -------------------------------------
3592 			 * unspec	unspec		no
3593 			 * unspec	spec		no
3594 			 * spec		unspec		no
3595 			 * spec		spec		yes if A
3596 			 *
3597 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
3598 			 * as TCP_EXCLBIND, except that zoneid is ignored.
3599 			 *
3600 			 * Note:
3601 			 *
3602 			 * 1. Because of TLI semantics, an endpoint can go
3603 			 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or
3604 			 * TCPS_BOUND, depending on whether it is originally
3605 			 * a listener or not.  That is why we need to check
3606 			 * for states greater than or equal to TCPS_BOUND
3607 			 * here.
3608 			 *
3609 			 * 2. Ideally, we should only check for state equals
3610 			 * to TCPS_LISTEN. And the following check should be
3611 			 * added.
3612 			 *
3613 			 * if (ltcp->tcp_state == TCPS_LISTEN ||
3614 			 *	!reuseaddr || !ltcp->tcp_reuseaddr) {
3615 			 *		...
3616 			 * }
3617 			 *
3618 			 * The semantics will be changed to this.  If the
3619 			 * endpoint on the list is in state not equal to
3620 			 * TCPS_LISTEN and both endpoints have SO_REUSEADDR
3621 			 * set, let the bind succeed.
3622 			 *
3623 			 * Because of (1), we cannot do that for TLI
3624 			 * endpoints.  But we can do that for socket endpoints.
3625 			 * If in future, we can change this going back
3626 			 * semantics, we can use the above check for TLI also.
3627 			 */
3628 			not_socket = !(TCP_IS_SOCKET(ltcp) &&
3629 			    TCP_IS_SOCKET(tcp));
3630 			exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind;
3631 
3632 			if (lconnp->conn_mac_exempt || connp->conn_mac_exempt ||
3633 			    (exclbind && (not_socket ||
3634 			    ltcp->tcp_state <= TCPS_ESTABLISHED))) {
3635 				if (V6_OR_V4_INADDR_ANY(
3636 				    ltcp->tcp_bound_source_v6) ||
3637 				    V6_OR_V4_INADDR_ANY(*laddr) ||
3638 				    IN6_ARE_ADDR_EQUAL(laddr,
3639 				    &ltcp->tcp_bound_source_v6)) {
3640 					break;
3641 				}
3642 				continue;
3643 			}
3644 
3645 			/*
3646 			 * Check ipversion to allow IPv4 and IPv6 sockets to
3647 			 * have disjoint port number spaces, if *_EXCLBIND
3648 			 * is not set and only if the application binds to a
3649 			 * specific port. We use the same autoassigned port
3650 			 * number space for IPv4 and IPv6 sockets.
3651 			 */
3652 			if (tcp->tcp_ipversion != ltcp->tcp_ipversion &&
3653 			    bind_to_req_port_only)
3654 				continue;
3655 
3656 			/*
3657 			 * Ideally, we should make sure that the source
3658 			 * address, remote address, and remote port in the
3659 			 * four tuple for this tcp-connection is unique.
3660 			 * However, trying to find out the local source
3661 			 * address would require too much code duplication
3662 			 * with IP, since IP needs needs to have that code
3663 			 * to support userland TCP implementations.
3664 			 */
3665 			if (quick_connect &&
3666 			    (ltcp->tcp_state > TCPS_LISTEN) &&
3667 			    ((tcp->tcp_fport != ltcp->tcp_fport) ||
3668 			    !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
3669 			    &ltcp->tcp_remote_v6)))
3670 				continue;
3671 
3672 			if (!reuseaddr) {
3673 				/*
3674 				 * No socket option SO_REUSEADDR.
3675 				 * If existing port is bound to
3676 				 * a non-wildcard IP address
3677 				 * and the requesting stream is
3678 				 * bound to a distinct
3679 				 * different IP addresses
3680 				 * (non-wildcard, also), keep
3681 				 * going.
3682 				 */
3683 				if (!V6_OR_V4_INADDR_ANY(*laddr) &&
3684 				    !V6_OR_V4_INADDR_ANY(
3685 				    ltcp->tcp_bound_source_v6) &&
3686 				    !IN6_ARE_ADDR_EQUAL(laddr,
3687 				    &ltcp->tcp_bound_source_v6))
3688 					continue;
3689 				if (ltcp->tcp_state >= TCPS_BOUND) {
3690 					/*
3691 					 * This port is being used and
3692 					 * its state is >= TCPS_BOUND,
3693 					 * so we can't bind to it.
3694 					 */
3695 					break;
3696 				}
3697 			} else {
3698 				/*
3699 				 * socket option SO_REUSEADDR is set on the
3700 				 * binding tcp_t.
3701 				 *
3702 				 * If two streams are bound to
3703 				 * same IP address or both addr
3704 				 * and bound source are wildcards
3705 				 * (INADDR_ANY), we want to stop
3706 				 * searching.
3707 				 * We have found a match of IP source
3708 				 * address and source port, which is
3709 				 * refused regardless of the
3710 				 * SO_REUSEADDR setting, so we break.
3711 				 */
3712 				if (IN6_ARE_ADDR_EQUAL(laddr,
3713 				    &ltcp->tcp_bound_source_v6) &&
3714 				    (ltcp->tcp_state == TCPS_LISTEN ||
3715 				    ltcp->tcp_state == TCPS_BOUND))
3716 					break;
3717 			}
3718 		}
3719 		if (ltcp != NULL) {
3720 			/* The port number is busy */
3721 			mutex_exit(&tbf->tf_lock);
3722 		} else {
3723 			/*
3724 			 * This port is ours. Insert in fanout and mark as
3725 			 * bound to prevent others from getting the port
3726 			 * number.
3727 			 */
3728 			tcp->tcp_state = TCPS_BOUND;
3729 			tcp->tcp_lport = htons(port);
3730 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
3731 
3732 			ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH(
3733 			    tcp->tcp_lport)] == tbf);
3734 			tcp_bind_hash_insert(tbf, tcp, 1);
3735 
3736 			mutex_exit(&tbf->tf_lock);
3737 
3738 			/*
3739 			 * We don't want tcp_next_port_to_try to "inherit"
3740 			 * a port number supplied by the user in a bind.
3741 			 */
3742 			if (user_specified)
3743 				return (port);
3744 
3745 			/*
3746 			 * This is the only place where tcp_next_port_to_try
3747 			 * is updated. After the update, it may or may not
3748 			 * be in the valid range.
3749 			 */
3750 			if (!tcp->tcp_anon_priv_bind)
3751 				tcps->tcps_next_port_to_try = port + 1;
3752 			return (port);
3753 		}
3754 
3755 		if (tcp->tcp_anon_priv_bind) {
3756 			port = tcp_get_next_priv_port(tcp);
3757 		} else {
3758 			if (count == 0 && user_specified) {
3759 				/*
3760 				 * We may have to return an anonymous port. So
3761 				 * get one to start with.
3762 				 */
3763 				port =
3764 				    tcp_update_next_port(
3765 				    tcps->tcps_next_port_to_try,
3766 				    tcp, B_TRUE);
3767 				user_specified = B_FALSE;
3768 			} else {
3769 				port = tcp_update_next_port(port + 1, tcp,
3770 				    B_FALSE);
3771 			}
3772 		}
3773 		if (port == 0)
3774 			break;
3775 
3776 		/*
3777 		 * Don't let this loop run forever in the case where
3778 		 * all of the anonymous ports are in use.
3779 		 */
3780 	} while (++count < loopmax);
3781 	return (0);
3782 }
3783 
3784 /*
3785  * tcp_clean_death / tcp_close_detached must not be called more than once
3786  * on a tcp. Thus every function that potentially calls tcp_clean_death
3787  * must check for the tcp state before calling tcp_clean_death.
3788  * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper,
3789  * tcp_timer_handler, all check for the tcp state.
3790  */
3791 /* ARGSUSED */
3792 void
3793 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2)
3794 {
3795 	tcp_t	*tcp = ((conn_t *)arg)->conn_tcp;
3796 
3797 	freemsg(mp);
3798 	if (tcp->tcp_state > TCPS_BOUND)
3799 		(void) tcp_clean_death(((conn_t *)arg)->conn_tcp,
3800 		    ETIMEDOUT, 5);
3801 }
3802 
3803 /*
3804  * We are dying for some reason.  Try to do it gracefully.  (May be called
3805  * as writer.)
3806  *
3807  * Return -1 if the structure was not cleaned up (if the cleanup had to be
3808  * done by a service procedure).
3809  * TBD - Should the return value distinguish between the tcp_t being
3810  * freed and it being reinitialized?
3811  */
3812 static int
3813 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag)
3814 {
3815 	mblk_t	*mp;
3816 	queue_t	*q;
3817 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3818 	sodirect_t	*sodp;
3819 
3820 	TCP_CLD_STAT(tag);
3821 
3822 #if TCP_TAG_CLEAN_DEATH
3823 	tcp->tcp_cleandeathtag = tag;
3824 #endif
3825 
3826 	if (tcp->tcp_fused)
3827 		tcp_unfuse(tcp);
3828 
3829 	if (tcp->tcp_linger_tid != 0 &&
3830 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3831 		tcp_stop_lingering(tcp);
3832 	}
3833 
3834 	ASSERT(tcp != NULL);
3835 	ASSERT((tcp->tcp_family == AF_INET &&
3836 	    tcp->tcp_ipversion == IPV4_VERSION) ||
3837 	    (tcp->tcp_family == AF_INET6 &&
3838 	    (tcp->tcp_ipversion == IPV4_VERSION ||
3839 	    tcp->tcp_ipversion == IPV6_VERSION)));
3840 
3841 	if (TCP_IS_DETACHED(tcp)) {
3842 		if (tcp->tcp_hard_binding) {
3843 			/*
3844 			 * Its an eager that we are dealing with. We close the
3845 			 * eager but in case a conn_ind has already gone to the
3846 			 * listener, let tcp_accept_finish() send a discon_ind
3847 			 * to the listener and drop the last reference. If the
3848 			 * listener doesn't even know about the eager i.e. the
3849 			 * conn_ind hasn't gone up, blow away the eager and drop
3850 			 * the last reference as well. If the conn_ind has gone
3851 			 * up, state should be BOUND. tcp_accept_finish
3852 			 * will figure out that the connection has received a
3853 			 * RST and will send a DISCON_IND to the application.
3854 			 */
3855 			tcp_closei_local(tcp);
3856 			if (!tcp->tcp_tconnind_started) {
3857 				CONN_DEC_REF(tcp->tcp_connp);
3858 			} else {
3859 				tcp->tcp_state = TCPS_BOUND;
3860 			}
3861 		} else {
3862 			tcp_close_detached(tcp);
3863 		}
3864 		return (0);
3865 	}
3866 
3867 	TCP_STAT(tcps, tcp_clean_death_nondetached);
3868 
3869 	/* If sodirect, not anymore */
3870 	SOD_PTR_ENTER(tcp, sodp);
3871 	if (sodp != NULL) {
3872 		tcp->tcp_sodirect = NULL;
3873 		mutex_exit(sodp->sod_lockp);
3874 	}
3875 
3876 	q = tcp->tcp_rq;
3877 
3878 	/* Trash all inbound data */
3879 	flushq(q, FLUSHALL);
3880 
3881 	/*
3882 	 * If we are at least part way open and there is error
3883 	 * (err==0 implies no error)
3884 	 * notify our client by a T_DISCON_IND.
3885 	 */
3886 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
3887 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
3888 		    !TCP_IS_SOCKET(tcp)) {
3889 			/*
3890 			 * Send M_FLUSH according to TPI. Because sockets will
3891 			 * (and must) ignore FLUSHR we do that only for TPI
3892 			 * endpoints and sockets in STREAMS mode.
3893 			 */
3894 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
3895 		}
3896 		if (tcp->tcp_debug) {
3897 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
3898 			    "tcp_clean_death: discon err %d", err);
3899 		}
3900 		mp = mi_tpi_discon_ind(NULL, err, 0);
3901 		if (mp != NULL) {
3902 			putnext(q, mp);
3903 		} else {
3904 			if (tcp->tcp_debug) {
3905 				(void) strlog(TCP_MOD_ID, 0, 1,
3906 				    SL_ERROR|SL_TRACE,
3907 				    "tcp_clean_death, sending M_ERROR");
3908 			}
3909 			(void) putnextctl1(q, M_ERROR, EPROTO);
3910 		}
3911 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
3912 			/* SYN_SENT or SYN_RCVD */
3913 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
3914 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
3915 			/* ESTABLISHED or CLOSE_WAIT */
3916 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
3917 		}
3918 	}
3919 
3920 	tcp_reinit(tcp);
3921 	return (-1);
3922 }
3923 
3924 /*
3925  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
3926  * to expire, stop the wait and finish the close.
3927  */
3928 static void
3929 tcp_stop_lingering(tcp_t *tcp)
3930 {
3931 	clock_t	delta = 0;
3932 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3933 
3934 	tcp->tcp_linger_tid = 0;
3935 	if (tcp->tcp_state > TCPS_LISTEN) {
3936 		tcp_acceptor_hash_remove(tcp);
3937 		mutex_enter(&tcp->tcp_non_sq_lock);
3938 		if (tcp->tcp_flow_stopped) {
3939 			tcp_clrqfull(tcp);
3940 		}
3941 		mutex_exit(&tcp->tcp_non_sq_lock);
3942 
3943 		if (tcp->tcp_timer_tid != 0) {
3944 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3945 			tcp->tcp_timer_tid = 0;
3946 		}
3947 		/*
3948 		 * Need to cancel those timers which will not be used when
3949 		 * TCP is detached.  This has to be done before the tcp_wq
3950 		 * is set to the global queue.
3951 		 */
3952 		tcp_timers_stop(tcp);
3953 
3954 
3955 		tcp->tcp_detached = B_TRUE;
3956 		ASSERT(tcps->tcps_g_q != NULL);
3957 		tcp->tcp_rq = tcps->tcps_g_q;
3958 		tcp->tcp_wq = WR(tcps->tcps_g_q);
3959 
3960 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
3961 			tcp_time_wait_append(tcp);
3962 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
3963 			goto finish;
3964 		}
3965 
3966 		/*
3967 		 * If delta is zero the timer event wasn't executed and was
3968 		 * successfully canceled. In this case we need to restart it
3969 		 * with the minimal delta possible.
3970 		 */
3971 		if (delta >= 0) {
3972 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
3973 			    delta ? delta : 1);
3974 		}
3975 	} else {
3976 		tcp_closei_local(tcp);
3977 		CONN_DEC_REF(tcp->tcp_connp);
3978 	}
3979 finish:
3980 	/* Signal closing thread that it can complete close */
3981 	mutex_enter(&tcp->tcp_closelock);
3982 	tcp->tcp_detached = B_TRUE;
3983 	ASSERT(tcps->tcps_g_q != NULL);
3984 	tcp->tcp_rq = tcps->tcps_g_q;
3985 	tcp->tcp_wq = WR(tcps->tcps_g_q);
3986 	tcp->tcp_closed = 1;
3987 	cv_signal(&tcp->tcp_closecv);
3988 	mutex_exit(&tcp->tcp_closelock);
3989 }
3990 
3991 /*
3992  * Handle lingering timeouts. This function is called when the SO_LINGER timeout
3993  * expires.
3994  */
3995 static void
3996 tcp_close_linger_timeout(void *arg)
3997 {
3998 	conn_t	*connp = (conn_t *)arg;
3999 	tcp_t 	*tcp = connp->conn_tcp;
4000 
4001 	tcp->tcp_client_errno = ETIMEDOUT;
4002 	tcp_stop_lingering(tcp);
4003 }
4004 
4005 static int
4006 tcp_close(queue_t *q, int flags)
4007 {
4008 	conn_t		*connp = Q_TO_CONN(q);
4009 	tcp_t		*tcp = connp->conn_tcp;
4010 	mblk_t 		*mp = &tcp->tcp_closemp;
4011 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
4012 	mblk_t		*bp;
4013 
4014 	ASSERT(WR(q)->q_next == NULL);
4015 	ASSERT(connp->conn_ref >= 2);
4016 
4017 	/*
4018 	 * We are being closed as /dev/tcp or /dev/tcp6.
4019 	 *
4020 	 * Mark the conn as closing. ill_pending_mp_add will not
4021 	 * add any mp to the pending mp list, after this conn has
4022 	 * started closing. Same for sq_pending_mp_add
4023 	 */
4024 	mutex_enter(&connp->conn_lock);
4025 	connp->conn_state_flags |= CONN_CLOSING;
4026 	if (connp->conn_oper_pending_ill != NULL)
4027 		conn_ioctl_cleanup_reqd = B_TRUE;
4028 	CONN_INC_REF_LOCKED(connp);
4029 	mutex_exit(&connp->conn_lock);
4030 	tcp->tcp_closeflags = (uint8_t)flags;
4031 	ASSERT(connp->conn_ref >= 3);
4032 
4033 	/*
4034 	 * tcp_closemp_used is used below without any protection of a lock
4035 	 * as we don't expect any one else to use it concurrently at this
4036 	 * point otherwise it would be a major defect.
4037 	 */
4038 
4039 	if (mp->b_prev == NULL)
4040 		tcp->tcp_closemp_used = B_TRUE;
4041 	else
4042 		cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: "
4043 		    "connp %p tcp %p\n", (void *)connp, (void *)tcp);
4044 
4045 	TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
4046 
4047 	(*tcp_squeue_close_proc)(connp->conn_sqp, mp,
4048 	    tcp_close_output, connp, SQTAG_IP_TCP_CLOSE);
4049 
4050 	mutex_enter(&tcp->tcp_closelock);
4051 	while (!tcp->tcp_closed) {
4052 		if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
4053 			/*
4054 			 * The cv_wait_sig() was interrupted. We now do the
4055 			 * following:
4056 			 *
4057 			 * 1) If the endpoint was lingering, we allow this
4058 			 * to be interrupted by cancelling the linger timeout
4059 			 * and closing normally.
4060 			 *
4061 			 * 2) Revert to calling cv_wait()
4062 			 *
4063 			 * We revert to using cv_wait() to avoid an
4064 			 * infinite loop which can occur if the calling
4065 			 * thread is higher priority than the squeue worker
4066 			 * thread and is bound to the same cpu.
4067 			 */
4068 			if (tcp->tcp_linger && tcp->tcp_lingertime > 0) {
4069 				mutex_exit(&tcp->tcp_closelock);
4070 				/* Entering squeue, bump ref count. */
4071 				CONN_INC_REF(connp);
4072 				bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
4073 				squeue_enter(connp->conn_sqp, bp,
4074 				    tcp_linger_interrupted, connp,
4075 				    SQTAG_IP_TCP_CLOSE);
4076 				mutex_enter(&tcp->tcp_closelock);
4077 			}
4078 			break;
4079 		}
4080 	}
4081 	while (!tcp->tcp_closed)
4082 		cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
4083 	mutex_exit(&tcp->tcp_closelock);
4084 
4085 	/*
4086 	 * In the case of listener streams that have eagers in the q or q0
4087 	 * we wait for the eagers to drop their reference to us. tcp_rq and
4088 	 * tcp_wq of the eagers point to our queues. By waiting for the
4089 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
4090 	 * up their queue pointers and also dropped their references to us.
4091 	 */
4092 	if (tcp->tcp_wait_for_eagers) {
4093 		mutex_enter(&connp->conn_lock);
4094 		while (connp->conn_ref != 1) {
4095 			cv_wait(&connp->conn_cv, &connp->conn_lock);
4096 		}
4097 		mutex_exit(&connp->conn_lock);
4098 	}
4099 	/*
4100 	 * ioctl cleanup. The mp is queued in the
4101 	 * ill_pending_mp or in the sq_pending_mp.
4102 	 */
4103 	if (conn_ioctl_cleanup_reqd)
4104 		conn_ioctl_cleanup(connp);
4105 
4106 	qprocsoff(q);
4107 	inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
4108 
4109 	tcp->tcp_cpid = -1;
4110 
4111 	/*
4112 	 * Drop IP's reference on the conn. This is the last reference
4113 	 * on the connp if the state was less than established. If the
4114 	 * connection has gone into timewait state, then we will have
4115 	 * one ref for the TCP and one more ref (total of two) for the
4116 	 * classifier connected hash list (a timewait connections stays
4117 	 * in connected hash till closed).
4118 	 *
4119 	 * We can't assert the references because there might be other
4120 	 * transient reference places because of some walkers or queued
4121 	 * packets in squeue for the timewait state.
4122 	 */
4123 	CONN_DEC_REF(connp);
4124 	q->q_ptr = WR(q)->q_ptr = NULL;
4125 	return (0);
4126 }
4127 
4128 static int
4129 tcpclose_accept(queue_t *q)
4130 {
4131 	vmem_t	*minor_arena;
4132 	dev_t	conn_dev;
4133 
4134 	ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit);
4135 
4136 	/*
4137 	 * We had opened an acceptor STREAM for sockfs which is
4138 	 * now being closed due to some error.
4139 	 */
4140 	qprocsoff(q);
4141 
4142 	minor_arena = (vmem_t *)WR(q)->q_ptr;
4143 	conn_dev = (dev_t)RD(q)->q_ptr;
4144 	ASSERT(minor_arena != NULL);
4145 	ASSERT(conn_dev != 0);
4146 	inet_minor_free(minor_arena, conn_dev);
4147 	q->q_ptr = WR(q)->q_ptr = NULL;
4148 	return (0);
4149 }
4150 
4151 /*
4152  * Called by tcp_close() routine via squeue when lingering is
4153  * interrupted by a signal.
4154  */
4155 
4156 /* ARGSUSED */
4157 static void
4158 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2)
4159 {
4160 	conn_t	*connp = (conn_t *)arg;
4161 	tcp_t	*tcp = connp->conn_tcp;
4162 
4163 	freeb(mp);
4164 	if (tcp->tcp_linger_tid != 0 &&
4165 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
4166 		tcp_stop_lingering(tcp);
4167 		tcp->tcp_client_errno = EINTR;
4168 	}
4169 }
4170 
4171 /*
4172  * Called by streams close routine via squeues when our client blows off her
4173  * descriptor, we take this to mean: "close the stream state NOW, close the tcp
4174  * connection politely" When SO_LINGER is set (with a non-zero linger time and
4175  * it is not a nonblocking socket) then this routine sleeps until the FIN is
4176  * acked.
4177  *
4178  * NOTE: tcp_close potentially returns error when lingering.
4179  * However, the stream head currently does not pass these errors
4180  * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK
4181  * errors to the application (from tsleep()) and not errors
4182  * like ECONNRESET caused by receiving a reset packet.
4183  */
4184 
4185 /* ARGSUSED */
4186 static void
4187 tcp_close_output(void *arg, mblk_t *mp, void *arg2)
4188 {
4189 	char	*msg;
4190 	conn_t	*connp = (conn_t *)arg;
4191 	tcp_t	*tcp = connp->conn_tcp;
4192 	clock_t	delta = 0;
4193 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4194 
4195 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
4196 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
4197 
4198 	mutex_enter(&tcp->tcp_eager_lock);
4199 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
4200 		/* Cleanup for listener */
4201 		tcp_eager_cleanup(tcp, 0);
4202 		tcp->tcp_wait_for_eagers = 1;
4203 	}
4204 	mutex_exit(&tcp->tcp_eager_lock);
4205 
4206 	connp->conn_mdt_ok = B_FALSE;
4207 	tcp->tcp_mdt = B_FALSE;
4208 
4209 	connp->conn_lso_ok = B_FALSE;
4210 	tcp->tcp_lso = B_FALSE;
4211 
4212 	msg = NULL;
4213 	switch (tcp->tcp_state) {
4214 	case TCPS_CLOSED:
4215 	case TCPS_IDLE:
4216 	case TCPS_BOUND:
4217 	case TCPS_LISTEN:
4218 		break;
4219 	case TCPS_SYN_SENT:
4220 		msg = "tcp_close, during connect";
4221 		break;
4222 	case TCPS_SYN_RCVD:
4223 		/*
4224 		 * Close during the connect 3-way handshake
4225 		 * but here there may or may not be pending data
4226 		 * already on queue. Process almost same as in
4227 		 * the ESTABLISHED state.
4228 		 */
4229 		/* FALLTHRU */
4230 	default:
4231 		if (tcp->tcp_sodirect != NULL) {
4232 			/* Ok, no more sodirect */
4233 			tcp->tcp_sodirect = NULL;
4234 		}
4235 
4236 		if (tcp->tcp_fused)
4237 			tcp_unfuse(tcp);
4238 
4239 		/*
4240 		 * If SO_LINGER has set a zero linger time, abort the
4241 		 * connection with a reset.
4242 		 */
4243 		if (tcp->tcp_linger && tcp->tcp_lingertime == 0) {
4244 			msg = "tcp_close, zero lingertime";
4245 			break;
4246 		}
4247 
4248 		ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding);
4249 		/*
4250 		 * Abort connection if there is unread data queued.
4251 		 */
4252 		if (tcp->tcp_rcv_list || tcp->tcp_reass_head) {
4253 			msg = "tcp_close, unread data";
4254 			break;
4255 		}
4256 		/*
4257 		 * tcp_hard_bound is now cleared thus all packets go through
4258 		 * tcp_lookup. This fact is used by tcp_detach below.
4259 		 *
4260 		 * We have done a qwait() above which could have possibly
4261 		 * drained more messages in turn causing transition to a
4262 		 * different state. Check whether we have to do the rest
4263 		 * of the processing or not.
4264 		 */
4265 		if (tcp->tcp_state <= TCPS_LISTEN)
4266 			break;
4267 
4268 		/*
4269 		 * Transmit the FIN before detaching the tcp_t.
4270 		 * After tcp_detach returns this queue/perimeter
4271 		 * no longer owns the tcp_t thus others can modify it.
4272 		 */
4273 		(void) tcp_xmit_end(tcp);
4274 
4275 		/*
4276 		 * If lingering on close then wait until the fin is acked,
4277 		 * the SO_LINGER time passes, or a reset is sent/received.
4278 		 */
4279 		if (tcp->tcp_linger && tcp->tcp_lingertime > 0 &&
4280 		    !(tcp->tcp_fin_acked) &&
4281 		    tcp->tcp_state >= TCPS_ESTABLISHED) {
4282 			if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) {
4283 				tcp->tcp_client_errno = EWOULDBLOCK;
4284 			} else if (tcp->tcp_client_errno == 0) {
4285 
4286 				ASSERT(tcp->tcp_linger_tid == 0);
4287 
4288 				tcp->tcp_linger_tid = TCP_TIMER(tcp,
4289 				    tcp_close_linger_timeout,
4290 				    tcp->tcp_lingertime * hz);
4291 
4292 				/* tcp_close_linger_timeout will finish close */
4293 				if (tcp->tcp_linger_tid == 0)
4294 					tcp->tcp_client_errno = ENOSR;
4295 				else
4296 					return;
4297 			}
4298 
4299 			/*
4300 			 * Check if we need to detach or just close
4301 			 * the instance.
4302 			 */
4303 			if (tcp->tcp_state <= TCPS_LISTEN)
4304 				break;
4305 		}
4306 
4307 		/*
4308 		 * Make sure that no other thread will access the tcp_rq of
4309 		 * this instance (through lookups etc.) as tcp_rq will go
4310 		 * away shortly.
4311 		 */
4312 		tcp_acceptor_hash_remove(tcp);
4313 
4314 		mutex_enter(&tcp->tcp_non_sq_lock);
4315 		if (tcp->tcp_flow_stopped) {
4316 			tcp_clrqfull(tcp);
4317 		}
4318 		mutex_exit(&tcp->tcp_non_sq_lock);
4319 
4320 		if (tcp->tcp_timer_tid != 0) {
4321 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4322 			tcp->tcp_timer_tid = 0;
4323 		}
4324 		/*
4325 		 * Need to cancel those timers which will not be used when
4326 		 * TCP is detached.  This has to be done before the tcp_wq
4327 		 * is set to the global queue.
4328 		 */
4329 		tcp_timers_stop(tcp);
4330 
4331 		tcp->tcp_detached = B_TRUE;
4332 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
4333 			tcp_time_wait_append(tcp);
4334 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
4335 			ASSERT(connp->conn_ref >= 3);
4336 			goto finish;
4337 		}
4338 
4339 		/*
4340 		 * If delta is zero the timer event wasn't executed and was
4341 		 * successfully canceled. In this case we need to restart it
4342 		 * with the minimal delta possible.
4343 		 */
4344 		if (delta >= 0)
4345 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
4346 			    delta ? delta : 1);
4347 
4348 		ASSERT(connp->conn_ref >= 3);
4349 		goto finish;
4350 	}
4351 
4352 	/* Detach did not complete. Still need to remove q from stream. */
4353 	if (msg) {
4354 		if (tcp->tcp_state == TCPS_ESTABLISHED ||
4355 		    tcp->tcp_state == TCPS_CLOSE_WAIT)
4356 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
4357 		if (tcp->tcp_state == TCPS_SYN_SENT ||
4358 		    tcp->tcp_state == TCPS_SYN_RCVD)
4359 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
4360 		tcp_xmit_ctl(msg, tcp,  tcp->tcp_snxt, 0, TH_RST);
4361 	}
4362 
4363 	tcp_closei_local(tcp);
4364 	CONN_DEC_REF(connp);
4365 	ASSERT(connp->conn_ref >= 2);
4366 
4367 finish:
4368 	/*
4369 	 * Although packets are always processed on the correct
4370 	 * tcp's perimeter and access is serialized via squeue's,
4371 	 * IP still needs a queue when sending packets in time_wait
4372 	 * state so use WR(tcps_g_q) till ip_output() can be
4373 	 * changed to deal with just connp. For read side, we
4374 	 * could have set tcp_rq to NULL but there are some cases
4375 	 * in tcp_rput_data() from early days of this code which
4376 	 * do a putnext without checking if tcp is closed. Those
4377 	 * need to be identified before both tcp_rq and tcp_wq
4378 	 * can be set to NULL and tcps_g_q can disappear forever.
4379 	 */
4380 	mutex_enter(&tcp->tcp_closelock);
4381 	/*
4382 	 * Don't change the queues in the case of a listener that has
4383 	 * eagers in its q or q0. It could surprise the eagers.
4384 	 * Instead wait for the eagers outside the squeue.
4385 	 */
4386 	if (!tcp->tcp_wait_for_eagers) {
4387 		tcp->tcp_detached = B_TRUE;
4388 		/*
4389 		 * When default queue is closing we set tcps_g_q to NULL
4390 		 * after the close is done.
4391 		 */
4392 		ASSERT(tcps->tcps_g_q != NULL);
4393 		tcp->tcp_rq = tcps->tcps_g_q;
4394 		tcp->tcp_wq = WR(tcps->tcps_g_q);
4395 	}
4396 
4397 	/* Signal tcp_close() to finish closing. */
4398 	tcp->tcp_closed = 1;
4399 	cv_signal(&tcp->tcp_closecv);
4400 	mutex_exit(&tcp->tcp_closelock);
4401 }
4402 
4403 
4404 /*
4405  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
4406  * Some stream heads get upset if they see these later on as anything but NULL.
4407  */
4408 static void
4409 tcp_close_mpp(mblk_t **mpp)
4410 {
4411 	mblk_t	*mp;
4412 
4413 	if ((mp = *mpp) != NULL) {
4414 		do {
4415 			mp->b_next = NULL;
4416 			mp->b_prev = NULL;
4417 		} while ((mp = mp->b_cont) != NULL);
4418 
4419 		mp = *mpp;
4420 		*mpp = NULL;
4421 		freemsg(mp);
4422 	}
4423 }
4424 
4425 /* Do detached close. */
4426 static void
4427 tcp_close_detached(tcp_t *tcp)
4428 {
4429 	if (tcp->tcp_fused)
4430 		tcp_unfuse(tcp);
4431 
4432 	/*
4433 	 * Clustering code serializes TCP disconnect callbacks and
4434 	 * cluster tcp list walks by blocking a TCP disconnect callback
4435 	 * if a cluster tcp list walk is in progress. This ensures
4436 	 * accurate accounting of TCPs in the cluster code even though
4437 	 * the TCP list walk itself is not atomic.
4438 	 */
4439 	tcp_closei_local(tcp);
4440 	CONN_DEC_REF(tcp->tcp_connp);
4441 }
4442 
4443 /*
4444  * Stop all TCP timers, and free the timer mblks if requested.
4445  */
4446 void
4447 tcp_timers_stop(tcp_t *tcp)
4448 {
4449 	if (tcp->tcp_timer_tid != 0) {
4450 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4451 		tcp->tcp_timer_tid = 0;
4452 	}
4453 	if (tcp->tcp_ka_tid != 0) {
4454 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid);
4455 		tcp->tcp_ka_tid = 0;
4456 	}
4457 	if (tcp->tcp_ack_tid != 0) {
4458 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
4459 		tcp->tcp_ack_tid = 0;
4460 	}
4461 	if (tcp->tcp_push_tid != 0) {
4462 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
4463 		tcp->tcp_push_tid = 0;
4464 	}
4465 }
4466 
4467 /*
4468  * The tcp_t is going away. Remove it from all lists and set it
4469  * to TCPS_CLOSED. The freeing up of memory is deferred until
4470  * tcp_inactive. This is needed since a thread in tcp_rput might have
4471  * done a CONN_INC_REF on this structure before it was removed from the
4472  * hashes.
4473  */
4474 static void
4475 tcp_closei_local(tcp_t *tcp)
4476 {
4477 	ire_t 	*ire;
4478 	conn_t	*connp = tcp->tcp_connp;
4479 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4480 
4481 	if (!TCP_IS_SOCKET(tcp))
4482 		tcp_acceptor_hash_remove(tcp);
4483 
4484 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
4485 	tcp->tcp_ibsegs = 0;
4486 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
4487 	tcp->tcp_obsegs = 0;
4488 
4489 	/*
4490 	 * If we are an eager connection hanging off a listener that
4491 	 * hasn't formally accepted the connection yet, get off his
4492 	 * list and blow off any data that we have accumulated.
4493 	 */
4494 	if (tcp->tcp_listener != NULL) {
4495 		tcp_t	*listener = tcp->tcp_listener;
4496 		mutex_enter(&listener->tcp_eager_lock);
4497 		/*
4498 		 * tcp_tconnind_started == B_TRUE means that the
4499 		 * conn_ind has already gone to listener. At
4500 		 * this point, eager will be closed but we
4501 		 * leave it in listeners eager list so that
4502 		 * if listener decides to close without doing
4503 		 * accept, we can clean this up. In tcp_wput_accept
4504 		 * we take care of the case of accept on closed
4505 		 * eager.
4506 		 */
4507 		if (!tcp->tcp_tconnind_started) {
4508 			tcp_eager_unlink(tcp);
4509 			mutex_exit(&listener->tcp_eager_lock);
4510 			/*
4511 			 * We don't want to have any pointers to the
4512 			 * listener queue, after we have released our
4513 			 * reference on the listener
4514 			 */
4515 			ASSERT(tcps->tcps_g_q != NULL);
4516 			tcp->tcp_rq = tcps->tcps_g_q;
4517 			tcp->tcp_wq = WR(tcps->tcps_g_q);
4518 			CONN_DEC_REF(listener->tcp_connp);
4519 		} else {
4520 			mutex_exit(&listener->tcp_eager_lock);
4521 		}
4522 	}
4523 
4524 	/* Stop all the timers */
4525 	tcp_timers_stop(tcp);
4526 
4527 	if (tcp->tcp_state == TCPS_LISTEN) {
4528 		if (tcp->tcp_ip_addr_cache) {
4529 			kmem_free((void *)tcp->tcp_ip_addr_cache,
4530 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
4531 			tcp->tcp_ip_addr_cache = NULL;
4532 		}
4533 	}
4534 	mutex_enter(&tcp->tcp_non_sq_lock);
4535 	if (tcp->tcp_flow_stopped)
4536 		tcp_clrqfull(tcp);
4537 	mutex_exit(&tcp->tcp_non_sq_lock);
4538 
4539 	tcp_bind_hash_remove(tcp);
4540 	/*
4541 	 * If the tcp_time_wait_collector (which runs outside the squeue)
4542 	 * is trying to remove this tcp from the time wait list, we will
4543 	 * block in tcp_time_wait_remove while trying to acquire the
4544 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
4545 	 * requires the ipcl_hash_remove to be ordered after the
4546 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
4547 	 */
4548 	if (tcp->tcp_state == TCPS_TIME_WAIT)
4549 		(void) tcp_time_wait_remove(tcp, NULL);
4550 	CL_INET_DISCONNECT(tcp);
4551 	ipcl_hash_remove(connp);
4552 
4553 	/*
4554 	 * Delete the cached ire in conn_ire_cache and also mark
4555 	 * the conn as CONDEMNED
4556 	 */
4557 	mutex_enter(&connp->conn_lock);
4558 	connp->conn_state_flags |= CONN_CONDEMNED;
4559 	ire = connp->conn_ire_cache;
4560 	connp->conn_ire_cache = NULL;
4561 	mutex_exit(&connp->conn_lock);
4562 	if (ire != NULL)
4563 		IRE_REFRELE_NOTR(ire);
4564 
4565 	/* Need to cleanup any pending ioctls */
4566 	ASSERT(tcp->tcp_time_wait_next == NULL);
4567 	ASSERT(tcp->tcp_time_wait_prev == NULL);
4568 	ASSERT(tcp->tcp_time_wait_expire == 0);
4569 	tcp->tcp_state = TCPS_CLOSED;
4570 
4571 	/* Release any SSL context */
4572 	if (tcp->tcp_kssl_ent != NULL) {
4573 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
4574 		tcp->tcp_kssl_ent = NULL;
4575 	}
4576 	if (tcp->tcp_kssl_ctx != NULL) {
4577 		kssl_release_ctx(tcp->tcp_kssl_ctx);
4578 		tcp->tcp_kssl_ctx = NULL;
4579 	}
4580 	tcp->tcp_kssl_pending = B_FALSE;
4581 
4582 	tcp_ipsec_cleanup(tcp);
4583 }
4584 
4585 /*
4586  * tcp is dying (called from ipcl_conn_destroy and error cases).
4587  * Free the tcp_t in either case.
4588  */
4589 void
4590 tcp_free(tcp_t *tcp)
4591 {
4592 	mblk_t	*mp;
4593 	ip6_pkt_t	*ipp;
4594 
4595 	ASSERT(tcp != NULL);
4596 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
4597 
4598 	tcp->tcp_rq = NULL;
4599 	tcp->tcp_wq = NULL;
4600 
4601 	tcp_close_mpp(&tcp->tcp_xmit_head);
4602 	tcp_close_mpp(&tcp->tcp_reass_head);
4603 	if (tcp->tcp_rcv_list != NULL) {
4604 		/* Free b_next chain */
4605 		tcp_close_mpp(&tcp->tcp_rcv_list);
4606 	}
4607 	if ((mp = tcp->tcp_urp_mp) != NULL) {
4608 		freemsg(mp);
4609 	}
4610 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
4611 		freemsg(mp);
4612 	}
4613 
4614 	if (tcp->tcp_fused_sigurg_mp != NULL) {
4615 		freeb(tcp->tcp_fused_sigurg_mp);
4616 		tcp->tcp_fused_sigurg_mp = NULL;
4617 	}
4618 
4619 	if (tcp->tcp_sack_info != NULL) {
4620 		if (tcp->tcp_notsack_list != NULL) {
4621 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
4622 		}
4623 		bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
4624 	}
4625 
4626 	if (tcp->tcp_hopopts != NULL) {
4627 		mi_free(tcp->tcp_hopopts);
4628 		tcp->tcp_hopopts = NULL;
4629 		tcp->tcp_hopoptslen = 0;
4630 	}
4631 	ASSERT(tcp->tcp_hopoptslen == 0);
4632 	if (tcp->tcp_dstopts != NULL) {
4633 		mi_free(tcp->tcp_dstopts);
4634 		tcp->tcp_dstopts = NULL;
4635 		tcp->tcp_dstoptslen = 0;
4636 	}
4637 	ASSERT(tcp->tcp_dstoptslen == 0);
4638 	if (tcp->tcp_rtdstopts != NULL) {
4639 		mi_free(tcp->tcp_rtdstopts);
4640 		tcp->tcp_rtdstopts = NULL;
4641 		tcp->tcp_rtdstoptslen = 0;
4642 	}
4643 	ASSERT(tcp->tcp_rtdstoptslen == 0);
4644 	if (tcp->tcp_rthdr != NULL) {
4645 		mi_free(tcp->tcp_rthdr);
4646 		tcp->tcp_rthdr = NULL;
4647 		tcp->tcp_rthdrlen = 0;
4648 	}
4649 	ASSERT(tcp->tcp_rthdrlen == 0);
4650 
4651 	ipp = &tcp->tcp_sticky_ipp;
4652 	if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS |
4653 	    IPPF_RTHDR))
4654 		ip6_pkt_free(ipp);
4655 
4656 	/*
4657 	 * Free memory associated with the tcp/ip header template.
4658 	 */
4659 
4660 	if (tcp->tcp_iphc != NULL)
4661 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4662 
4663 	/*
4664 	 * Following is really a blowing away a union.
4665 	 * It happens to have exactly two members of identical size
4666 	 * the following code is enough.
4667 	 */
4668 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
4669 }
4670 
4671 
4672 /*
4673  * Put a connection confirmation message upstream built from the
4674  * address information within 'iph' and 'tcph'.  Report our success or failure.
4675  */
4676 static boolean_t
4677 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp,
4678     mblk_t **defermp)
4679 {
4680 	sin_t	sin;
4681 	sin6_t	sin6;
4682 	mblk_t	*mp;
4683 	char	*optp = NULL;
4684 	int	optlen = 0;
4685 	cred_t	*cr;
4686 
4687 	if (defermp != NULL)
4688 		*defermp = NULL;
4689 
4690 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL) {
4691 		/*
4692 		 * Return in T_CONN_CON results of option negotiation through
4693 		 * the T_CONN_REQ. Note: If there is an real end-to-end option
4694 		 * negotiation, then what is received from remote end needs
4695 		 * to be taken into account but there is no such thing (yet?)
4696 		 * in our TCP/IP.
4697 		 * Note: We do not use mi_offset_param() here as
4698 		 * tcp_opts_conn_req contents do not directly come from
4699 		 * an application and are either generated in kernel or
4700 		 * from user input that was already verified.
4701 		 */
4702 		mp = tcp->tcp_conn.tcp_opts_conn_req;
4703 		optp = (char *)(mp->b_rptr +
4704 		    ((struct T_conn_req *)mp->b_rptr)->OPT_offset);
4705 		optlen = (int)
4706 		    ((struct T_conn_req *)mp->b_rptr)->OPT_length;
4707 	}
4708 
4709 	if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) {
4710 		ipha_t *ipha = (ipha_t *)iphdr;
4711 
4712 		/* packet is IPv4 */
4713 		if (tcp->tcp_family == AF_INET) {
4714 			sin = sin_null;
4715 			sin.sin_addr.s_addr = ipha->ipha_src;
4716 			sin.sin_port = *(uint16_t *)tcph->th_lport;
4717 			sin.sin_family = AF_INET;
4718 			mp = mi_tpi_conn_con(NULL, (char *)&sin,
4719 			    (int)sizeof (sin_t), optp, optlen);
4720 		} else {
4721 			sin6 = sin6_null;
4722 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4723 			sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4724 			sin6.sin6_family = AF_INET6;
4725 			mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4726 			    (int)sizeof (sin6_t), optp, optlen);
4727 
4728 		}
4729 	} else {
4730 		ip6_t	*ip6h = (ip6_t *)iphdr;
4731 
4732 		ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION);
4733 		ASSERT(tcp->tcp_family == AF_INET6);
4734 		sin6 = sin6_null;
4735 		sin6.sin6_addr = ip6h->ip6_src;
4736 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4737 		sin6.sin6_family = AF_INET6;
4738 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4739 		mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4740 		    (int)sizeof (sin6_t), optp, optlen);
4741 	}
4742 
4743 	if (!mp)
4744 		return (B_FALSE);
4745 
4746 	if ((cr = DB_CRED(idmp)) != NULL) {
4747 		mblk_setcred(mp, cr);
4748 		DB_CPID(mp) = DB_CPID(idmp);
4749 	}
4750 
4751 	if (defermp == NULL)
4752 		putnext(tcp->tcp_rq, mp);
4753 	else
4754 		*defermp = mp;
4755 
4756 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4757 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4758 	return (B_TRUE);
4759 }
4760 
4761 /*
4762  * Defense for the SYN attack -
4763  * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest
4764  *    one from the list of droppable eagers. This list is a subset of q0.
4765  *    see comments before the definition of MAKE_DROPPABLE().
4766  * 2. Don't drop a SYN request before its first timeout. This gives every
4767  *    request at least til the first timeout to complete its 3-way handshake.
4768  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
4769  *    requests currently on the queue that has timed out. This will be used
4770  *    as an indicator of whether an attack is under way, so that appropriate
4771  *    actions can be taken. (It's incremented in tcp_timer() and decremented
4772  *    either when eager goes into ESTABLISHED, or gets freed up.)
4773  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
4774  *    # of timeout drops back to <= q0len/32 => SYN alert off
4775  */
4776 static boolean_t
4777 tcp_drop_q0(tcp_t *tcp)
4778 {
4779 	tcp_t	*eager;
4780 	mblk_t	*mp;
4781 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4782 
4783 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
4784 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
4785 
4786 	/* Pick oldest eager from the list of droppable eagers */
4787 	eager = tcp->tcp_eager_prev_drop_q0;
4788 
4789 	/* If list is empty. return B_FALSE */
4790 	if (eager == tcp) {
4791 		return (B_FALSE);
4792 	}
4793 
4794 	/* If allocated, the mp will be freed in tcp_clean_death_wrapper() */
4795 	if ((mp = allocb(0, BPRI_HI)) == NULL)
4796 		return (B_FALSE);
4797 
4798 	/*
4799 	 * Take this eager out from the list of droppable eagers since we are
4800 	 * going to drop it.
4801 	 */
4802 	MAKE_UNDROPPABLE(eager);
4803 
4804 	if (tcp->tcp_debug) {
4805 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
4806 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
4807 		    " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0,
4808 		    tcp->tcp_conn_req_cnt_q0,
4809 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4810 	}
4811 
4812 	BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop);
4813 
4814 	/* Put a reference on the conn as we are enqueueing it in the sqeue */
4815 	CONN_INC_REF(eager->tcp_connp);
4816 
4817 	/* Mark the IRE created for this SYN request temporary */
4818 	tcp_ip_ire_mark_advice(eager);
4819 	squeue_fill(eager->tcp_connp->conn_sqp, mp,
4820 	    tcp_clean_death_wrapper, eager->tcp_connp, SQTAG_TCP_DROP_Q0);
4821 
4822 	return (B_TRUE);
4823 }
4824 
4825 int
4826 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
4827     tcph_t *tcph, uint_t ipvers, mblk_t *idmp)
4828 {
4829 	tcp_t 		*ltcp = lconnp->conn_tcp;
4830 	tcp_t		*tcp = connp->conn_tcp;
4831 	mblk_t		*tpi_mp;
4832 	ipha_t		*ipha;
4833 	ip6_t		*ip6h;
4834 	sin6_t 		sin6;
4835 	in6_addr_t 	v6dst;
4836 	int		err;
4837 	int		ifindex = 0;
4838 	cred_t		*cr;
4839 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4840 
4841 	if (ipvers == IPV4_VERSION) {
4842 		ipha = (ipha_t *)mp->b_rptr;
4843 
4844 		connp->conn_send = ip_output;
4845 		connp->conn_recv = tcp_input;
4846 
4847 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4848 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4849 
4850 		sin6 = sin6_null;
4851 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4852 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst);
4853 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4854 		sin6.sin6_family = AF_INET6;
4855 		sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst,
4856 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4857 		if (tcp->tcp_recvdstaddr) {
4858 			sin6_t	sin6d;
4859 
4860 			sin6d = sin6_null;
4861 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst,
4862 			    &sin6d.sin6_addr);
4863 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4864 			sin6d.sin6_family = AF_INET;
4865 			tpi_mp = mi_tpi_extconn_ind(NULL,
4866 			    (char *)&sin6d, sizeof (sin6_t),
4867 			    (char *)&tcp,
4868 			    (t_scalar_t)sizeof (intptr_t),
4869 			    (char *)&sin6d, sizeof (sin6_t),
4870 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4871 		} else {
4872 			tpi_mp = mi_tpi_conn_ind(NULL,
4873 			    (char *)&sin6, sizeof (sin6_t),
4874 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4875 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4876 		}
4877 	} else {
4878 		ip6h = (ip6_t *)mp->b_rptr;
4879 
4880 		connp->conn_send = ip_output_v6;
4881 		connp->conn_recv = tcp_input;
4882 
4883 		connp->conn_srcv6 = ip6h->ip6_dst;
4884 		connp->conn_remv6 = ip6h->ip6_src;
4885 
4886 		/* db_cksumstuff is set at ip_fanout_tcp_v6 */
4887 		ifindex = (int)DB_CKSUMSTUFF(mp);
4888 		DB_CKSUMSTUFF(mp) = 0;
4889 
4890 		sin6 = sin6_null;
4891 		sin6.sin6_addr = ip6h->ip6_src;
4892 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4893 		sin6.sin6_family = AF_INET6;
4894 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4895 		sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst,
4896 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4897 
4898 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4899 			/* Pass up the scope_id of remote addr */
4900 			sin6.sin6_scope_id = ifindex;
4901 		} else {
4902 			sin6.sin6_scope_id = 0;
4903 		}
4904 		if (tcp->tcp_recvdstaddr) {
4905 			sin6_t	sin6d;
4906 
4907 			sin6d = sin6_null;
4908 			sin6.sin6_addr = ip6h->ip6_dst;
4909 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4910 			sin6d.sin6_family = AF_INET;
4911 			tpi_mp = mi_tpi_extconn_ind(NULL,
4912 			    (char *)&sin6d, sizeof (sin6_t),
4913 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4914 			    (char *)&sin6d, sizeof (sin6_t),
4915 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4916 		} else {
4917 			tpi_mp = mi_tpi_conn_ind(NULL,
4918 			    (char *)&sin6, sizeof (sin6_t),
4919 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4920 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4921 		}
4922 	}
4923 
4924 	if (tpi_mp == NULL)
4925 		return (ENOMEM);
4926 
4927 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4928 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4929 	connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER);
4930 	connp->conn_fully_bound = B_FALSE;
4931 
4932 	/* Inherit information from the "parent" */
4933 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
4934 	tcp->tcp_family = ltcp->tcp_family;
4935 	tcp->tcp_wq = ltcp->tcp_wq;
4936 	tcp->tcp_rq = ltcp->tcp_rq;
4937 	tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
4938 	tcp->tcp_detached = B_TRUE;
4939 	if ((err = tcp_init_values(tcp)) != 0) {
4940 		freemsg(tpi_mp);
4941 		return (err);
4942 	}
4943 
4944 	if (ipvers == IPV4_VERSION) {
4945 		if ((err = tcp_header_init_ipv4(tcp)) != 0) {
4946 			freemsg(tpi_mp);
4947 			return (err);
4948 		}
4949 		ASSERT(tcp->tcp_ipha != NULL);
4950 	} else {
4951 		/* ifindex must be already set */
4952 		ASSERT(ifindex != 0);
4953 
4954 		if (ltcp->tcp_bound_if != 0) {
4955 			/*
4956 			 * Set newtcp's bound_if equal to
4957 			 * listener's value. If ifindex is
4958 			 * not the same as ltcp->tcp_bound_if,
4959 			 * it must be a packet for the ipmp group
4960 			 * of interfaces
4961 			 */
4962 			tcp->tcp_bound_if = ltcp->tcp_bound_if;
4963 		} else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4964 			tcp->tcp_bound_if = ifindex;
4965 		}
4966 
4967 		tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary;
4968 		tcp->tcp_recvifindex = 0;
4969 		tcp->tcp_recvhops = 0xffffffffU;
4970 		ASSERT(tcp->tcp_ip6h != NULL);
4971 	}
4972 
4973 	tcp->tcp_lport = ltcp->tcp_lport;
4974 
4975 	if (ltcp->tcp_ipversion == tcp->tcp_ipversion) {
4976 		if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) {
4977 			/*
4978 			 * Listener had options of some sort; eager inherits.
4979 			 * Free up the eager template and allocate one
4980 			 * of the right size.
4981 			 */
4982 			if (tcp->tcp_hdr_grown) {
4983 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
4984 			} else {
4985 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4986 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
4987 			}
4988 			tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len,
4989 			    KM_NOSLEEP);
4990 			if (tcp->tcp_iphc == NULL) {
4991 				tcp->tcp_iphc_len = 0;
4992 				freemsg(tpi_mp);
4993 				return (ENOMEM);
4994 			}
4995 			tcp->tcp_iphc_len = ltcp->tcp_iphc_len;
4996 			tcp->tcp_hdr_grown = B_TRUE;
4997 		}
4998 		tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
4999 		tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
5000 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5001 		tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops;
5002 		tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf;
5003 
5004 		/*
5005 		 * Copy the IP+TCP header template from listener to eager
5006 		 */
5007 		bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
5008 		if (tcp->tcp_ipversion == IPV6_VERSION) {
5009 			if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt ==
5010 			    IPPROTO_RAW) {
5011 				tcp->tcp_ip6h =
5012 				    (ip6_t *)(tcp->tcp_iphc +
5013 				    sizeof (ip6i_t));
5014 			} else {
5015 				tcp->tcp_ip6h =
5016 				    (ip6_t *)(tcp->tcp_iphc);
5017 			}
5018 			tcp->tcp_ipha = NULL;
5019 		} else {
5020 			tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5021 			tcp->tcp_ip6h = NULL;
5022 		}
5023 		tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5024 		    tcp->tcp_ip_hdr_len);
5025 	} else {
5026 		/*
5027 		 * only valid case when ipversion of listener and
5028 		 * eager differ is when listener is IPv6 and
5029 		 * eager is IPv4.
5030 		 * Eager header template has been initialized to the
5031 		 * maximum v4 header sizes, which includes space for
5032 		 * TCP and IP options.
5033 		 */
5034 		ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) &&
5035 		    (tcp->tcp_ipversion == IPV4_VERSION));
5036 		ASSERT(tcp->tcp_iphc_len >=
5037 		    TCP_MAX_COMBINED_HEADER_LENGTH);
5038 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5039 		/* copy IP header fields individually */
5040 		tcp->tcp_ipha->ipha_ttl =
5041 		    ltcp->tcp_ip6h->ip6_hops;
5042 		bcopy(ltcp->tcp_tcph->th_lport,
5043 		    tcp->tcp_tcph->th_lport, sizeof (ushort_t));
5044 	}
5045 
5046 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5047 	bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport,
5048 	    sizeof (in_port_t));
5049 
5050 	if (ltcp->tcp_lport == 0) {
5051 		tcp->tcp_lport = *(in_port_t *)tcph->th_fport;
5052 		bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport,
5053 		    sizeof (in_port_t));
5054 	}
5055 
5056 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5057 		ASSERT(ipha != NULL);
5058 		tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5059 		tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5060 
5061 		/* Source routing option copyover (reverse it) */
5062 		if (tcps->tcps_rev_src_routes)
5063 			tcp_opt_reverse(tcp, ipha);
5064 	} else {
5065 		ASSERT(ip6h != NULL);
5066 		tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src;
5067 		tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst;
5068 	}
5069 
5070 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5071 	ASSERT(!tcp->tcp_tconnind_started);
5072 	/*
5073 	 * If the SYN contains a credential, it's a loopback packet; attach
5074 	 * the credential to the TPI message.
5075 	 */
5076 	if ((cr = DB_CRED(idmp)) != NULL) {
5077 		mblk_setcred(tpi_mp, cr);
5078 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5079 	}
5080 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5081 
5082 	/* Inherit the listener's SSL protection state */
5083 
5084 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5085 		kssl_hold_ent(tcp->tcp_kssl_ent);
5086 		tcp->tcp_kssl_pending = B_TRUE;
5087 	}
5088 
5089 	return (0);
5090 }
5091 
5092 
5093 int
5094 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
5095     tcph_t *tcph, mblk_t *idmp)
5096 {
5097 	tcp_t 		*ltcp = lconnp->conn_tcp;
5098 	tcp_t		*tcp = connp->conn_tcp;
5099 	sin_t		sin;
5100 	mblk_t		*tpi_mp = NULL;
5101 	int		err;
5102 	cred_t		*cr;
5103 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5104 
5105 	sin = sin_null;
5106 	sin.sin_addr.s_addr = ipha->ipha_src;
5107 	sin.sin_port = *(uint16_t *)tcph->th_lport;
5108 	sin.sin_family = AF_INET;
5109 	if (ltcp->tcp_recvdstaddr) {
5110 		sin_t	sind;
5111 
5112 		sind = sin_null;
5113 		sind.sin_addr.s_addr = ipha->ipha_dst;
5114 		sind.sin_port = *(uint16_t *)tcph->th_fport;
5115 		sind.sin_family = AF_INET;
5116 		tpi_mp = mi_tpi_extconn_ind(NULL,
5117 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
5118 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
5119 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5120 	} else {
5121 		tpi_mp = mi_tpi_conn_ind(NULL,
5122 		    (char *)&sin, sizeof (sin_t),
5123 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
5124 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5125 	}
5126 
5127 	if (tpi_mp == NULL) {
5128 		return (ENOMEM);
5129 	}
5130 
5131 	connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER);
5132 	connp->conn_send = ip_output;
5133 	connp->conn_recv = tcp_input;
5134 	connp->conn_fully_bound = B_FALSE;
5135 
5136 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
5137 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
5138 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
5139 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
5140 
5141 	/* Inherit information from the "parent" */
5142 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
5143 	tcp->tcp_family = ltcp->tcp_family;
5144 	tcp->tcp_wq = ltcp->tcp_wq;
5145 	tcp->tcp_rq = ltcp->tcp_rq;
5146 	tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
5147 	tcp->tcp_detached = B_TRUE;
5148 	if ((err = tcp_init_values(tcp)) != 0) {
5149 		freemsg(tpi_mp);
5150 		return (err);
5151 	}
5152 
5153 	/*
5154 	 * Let's make sure that eager tcp template has enough space to
5155 	 * copy IPv4 listener's tcp template. Since the conn_t structure is
5156 	 * preserved and tcp_iphc_len is also preserved, an eager conn_t may
5157 	 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or
5158 	 * more (in case of re-allocation of conn_t with tcp-IPv6 template with
5159 	 * extension headers or with ip6i_t struct). Note that bcopy() below
5160 	 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_
5161 	 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener.
5162 	 */
5163 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
5164 	ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH);
5165 
5166 	tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
5167 	tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
5168 	tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5169 	tcp->tcp_ttl = ltcp->tcp_ttl;
5170 	tcp->tcp_tos = ltcp->tcp_tos;
5171 
5172 	/* Copy the IP+TCP header template from listener to eager */
5173 	bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
5174 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5175 	tcp->tcp_ip6h = NULL;
5176 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5177 	    tcp->tcp_ip_hdr_len);
5178 
5179 	/* Initialize the IP addresses and Ports */
5180 	tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5181 	tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5182 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5183 	bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t));
5184 
5185 	/* Source routing option copyover (reverse it) */
5186 	if (tcps->tcps_rev_src_routes)
5187 		tcp_opt_reverse(tcp, ipha);
5188 
5189 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5190 	ASSERT(!tcp->tcp_tconnind_started);
5191 
5192 	/*
5193 	 * If the SYN contains a credential, it's a loopback packet; attach
5194 	 * the credential to the TPI message.
5195 	 */
5196 	if ((cr = DB_CRED(idmp)) != NULL) {
5197 		mblk_setcred(tpi_mp, cr);
5198 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5199 	}
5200 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5201 
5202 	/* Inherit the listener's SSL protection state */
5203 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5204 		kssl_hold_ent(tcp->tcp_kssl_ent);
5205 		tcp->tcp_kssl_pending = B_TRUE;
5206 	}
5207 
5208 	return (0);
5209 }
5210 
5211 /*
5212  * sets up conn for ipsec.
5213  * if the first mblk is M_CTL it is consumed and mpp is updated.
5214  * in case of error mpp is freed.
5215  */
5216 conn_t *
5217 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp)
5218 {
5219 	conn_t 		*connp = tcp->tcp_connp;
5220 	conn_t 		*econnp;
5221 	squeue_t 	*new_sqp;
5222 	mblk_t 		*first_mp = *mpp;
5223 	mblk_t		*mp = *mpp;
5224 	boolean_t	mctl_present = B_FALSE;
5225 	uint_t		ipvers;
5226 
5227 	econnp = tcp_get_conn(sqp, tcp->tcp_tcps);
5228 	if (econnp == NULL) {
5229 		freemsg(first_mp);
5230 		return (NULL);
5231 	}
5232 	if (DB_TYPE(mp) == M_CTL) {
5233 		if (mp->b_cont == NULL ||
5234 		    mp->b_cont->b_datap->db_type != M_DATA) {
5235 			freemsg(first_mp);
5236 			return (NULL);
5237 		}
5238 		mp = mp->b_cont;
5239 		if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) {
5240 			freemsg(first_mp);
5241 			return (NULL);
5242 		}
5243 
5244 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5245 		first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5246 		mctl_present = B_TRUE;
5247 	} else {
5248 		ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY);
5249 		mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5250 	}
5251 
5252 	new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5253 	DB_CKSUMSTART(mp) = 0;
5254 
5255 	ASSERT(OK_32PTR(mp->b_rptr));
5256 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5257 	if (ipvers == IPV4_VERSION) {
5258 		uint16_t  	*up;
5259 		uint32_t	ports;
5260 		ipha_t		*ipha;
5261 
5262 		ipha = (ipha_t *)mp->b_rptr;
5263 		up = (uint16_t *)((uchar_t *)ipha +
5264 		    IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET);
5265 		ports = *(uint32_t *)up;
5266 		IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP,
5267 		    ipha->ipha_dst, ipha->ipha_src, ports);
5268 	} else {
5269 		uint16_t  	*up;
5270 		uint32_t	ports;
5271 		uint16_t	ip_hdr_len;
5272 		uint8_t		*nexthdrp;
5273 		ip6_t 		*ip6h;
5274 		tcph_t		*tcph;
5275 
5276 		ip6h = (ip6_t *)mp->b_rptr;
5277 		if (ip6h->ip6_nxt == IPPROTO_TCP) {
5278 			ip_hdr_len = IPV6_HDR_LEN;
5279 		} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len,
5280 		    &nexthdrp) || *nexthdrp != IPPROTO_TCP) {
5281 			CONN_DEC_REF(econnp);
5282 			freemsg(first_mp);
5283 			return (NULL);
5284 		}
5285 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5286 		up = (uint16_t *)tcph->th_lport;
5287 		ports = *(uint32_t *)up;
5288 		IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP,
5289 		    ip6h->ip6_dst, ip6h->ip6_src, ports);
5290 	}
5291 
5292 	/*
5293 	 * The caller already ensured that there is a sqp present.
5294 	 */
5295 	econnp->conn_sqp = new_sqp;
5296 
5297 	if (connp->conn_policy != NULL) {
5298 		ipsec_in_t *ii;
5299 		ii = (ipsec_in_t *)(first_mp->b_rptr);
5300 		ASSERT(ii->ipsec_in_policy == NULL);
5301 		IPPH_REFHOLD(connp->conn_policy);
5302 		ii->ipsec_in_policy = connp->conn_policy;
5303 
5304 		first_mp->b_datap->db_type = IPSEC_POLICY_SET;
5305 		if (!ip_bind_ipsec_policy_set(econnp, first_mp)) {
5306 			CONN_DEC_REF(econnp);
5307 			freemsg(first_mp);
5308 			return (NULL);
5309 		}
5310 	}
5311 
5312 	if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) {
5313 		CONN_DEC_REF(econnp);
5314 		freemsg(first_mp);
5315 		return (NULL);
5316 	}
5317 
5318 	/*
5319 	 * If we know we have some policy, pass the "IPSEC"
5320 	 * options size TCP uses this adjust the MSS.
5321 	 */
5322 	econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp);
5323 	if (mctl_present) {
5324 		freeb(first_mp);
5325 		*mpp = mp;
5326 	}
5327 
5328 	return (econnp);
5329 }
5330 
5331 /*
5332  * tcp_get_conn/tcp_free_conn
5333  *
5334  * tcp_get_conn is used to get a clean tcp connection structure.
5335  * It tries to reuse the connections put on the freelist by the
5336  * time_wait_collector failing which it goes to kmem_cache. This
5337  * way has two benefits compared to just allocating from and
5338  * freeing to kmem_cache.
5339  * 1) The time_wait_collector can free (which includes the cleanup)
5340  * outside the squeue. So when the interrupt comes, we have a clean
5341  * connection sitting in the freelist. Obviously, this buys us
5342  * performance.
5343  *
5344  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request
5345  * has multiple disadvantages - tying up the squeue during alloc, and the
5346  * fact that IPSec policy initialization has to happen here which
5347  * requires us sending a M_CTL and checking for it i.e. real ugliness.
5348  * But allocating the conn/tcp in IP land is also not the best since
5349  * we can't check the 'q' and 'q0' which are protected by squeue and
5350  * blindly allocate memory which might have to be freed here if we are
5351  * not allowed to accept the connection. By using the freelist and
5352  * putting the conn/tcp back in freelist, we don't pay a penalty for
5353  * allocating memory without checking 'q/q0' and freeing it if we can't
5354  * accept the connection.
5355  *
5356  * Care should be taken to put the conn back in the same squeue's freelist
5357  * from which it was allocated. Best results are obtained if conn is
5358  * allocated from listener's squeue and freed to the same. Time wait
5359  * collector will free up the freelist is the connection ends up sitting
5360  * there for too long.
5361  */
5362 void *
5363 tcp_get_conn(void *arg, tcp_stack_t *tcps)
5364 {
5365 	tcp_t			*tcp = NULL;
5366 	conn_t			*connp = NULL;
5367 	squeue_t		*sqp = (squeue_t *)arg;
5368 	tcp_squeue_priv_t 	*tcp_time_wait;
5369 	netstack_t		*ns;
5370 
5371 	tcp_time_wait =
5372 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
5373 
5374 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
5375 	tcp = tcp_time_wait->tcp_free_list;
5376 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
5377 	if (tcp != NULL) {
5378 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
5379 		tcp_time_wait->tcp_free_list_cnt--;
5380 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5381 		tcp->tcp_time_wait_next = NULL;
5382 		connp = tcp->tcp_connp;
5383 		connp->conn_flags |= IPCL_REUSED;
5384 
5385 		ASSERT(tcp->tcp_tcps == NULL);
5386 		ASSERT(connp->conn_netstack == NULL);
5387 		ASSERT(tcp->tcp_rsrv_mp != NULL);
5388 		ns = tcps->tcps_netstack;
5389 		netstack_hold(ns);
5390 		connp->conn_netstack = ns;
5391 		tcp->tcp_tcps = tcps;
5392 		TCPS_REFHOLD(tcps);
5393 		ipcl_globalhash_insert(connp);
5394 		return ((void *)connp);
5395 	}
5396 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5397 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
5398 	    tcps->tcps_netstack)) == NULL)
5399 		return (NULL);
5400 	tcp = connp->conn_tcp;
5401 	/*
5402 	 * Pre-allocate the tcp_rsrv_mp.  This mblk will not be freed
5403 	 * until this conn_t/tcp_t is freed at ipcl_conn_destroy().
5404 	 */
5405 	if ((tcp->tcp_rsrv_mp = allocb(0, BPRI_HI)) == NULL) {
5406 		ipcl_conn_destroy(connp);
5407 		return (NULL);
5408 	}
5409 	mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL);
5410 	tcp->tcp_tcps = tcps;
5411 	TCPS_REFHOLD(tcps);
5412 
5413 	return ((void *)connp);
5414 }
5415 
5416 /*
5417  * Update the cached label for the given tcp_t.  This should be called once per
5418  * connection, and before any packets are sent or tcp_process_options is
5419  * invoked.  Returns B_FALSE if the correct label could not be constructed.
5420  */
5421 static boolean_t
5422 tcp_update_label(tcp_t *tcp, const cred_t *cr)
5423 {
5424 	conn_t *connp = tcp->tcp_connp;
5425 
5426 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5427 		uchar_t optbuf[IP_MAX_OPT_LENGTH];
5428 		int added;
5429 
5430 		if (tsol_compute_label(cr, tcp->tcp_remote, optbuf,
5431 		    connp->conn_mac_exempt,
5432 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5433 			return (B_FALSE);
5434 
5435 		added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len);
5436 		if (added == -1)
5437 			return (B_FALSE);
5438 		tcp->tcp_hdr_len += added;
5439 		tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added);
5440 		tcp->tcp_ip_hdr_len += added;
5441 		if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) {
5442 			tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3;
5443 			added = tsol_prepend_option(optbuf, tcp->tcp_ipha,
5444 			    tcp->tcp_hdr_len);
5445 			if (added == -1)
5446 				return (B_FALSE);
5447 			tcp->tcp_hdr_len += added;
5448 			tcp->tcp_tcph = (tcph_t *)
5449 			    ((uchar_t *)tcp->tcp_tcph + added);
5450 			tcp->tcp_ip_hdr_len += added;
5451 		}
5452 	} else {
5453 		uchar_t optbuf[TSOL_MAX_IPV6_OPTION];
5454 
5455 		if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf,
5456 		    connp->conn_mac_exempt,
5457 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5458 			return (B_FALSE);
5459 		if (tsol_update_sticky(&tcp->tcp_sticky_ipp,
5460 		    &tcp->tcp_label_len, optbuf) != 0)
5461 			return (B_FALSE);
5462 		if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0)
5463 			return (B_FALSE);
5464 	}
5465 
5466 	connp->conn_ulp_labeled = 1;
5467 
5468 	return (B_TRUE);
5469 }
5470 
5471 /* BEGIN CSTYLED */
5472 /*
5473  *
5474  * The sockfs ACCEPT path:
5475  * =======================
5476  *
5477  * The eager is now established in its own perimeter as soon as SYN is
5478  * received in tcp_conn_request(). When sockfs receives conn_ind, it
5479  * completes the accept processing on the acceptor STREAM. The sending
5480  * of conn_ind part is common for both sockfs listener and a TLI/XTI
5481  * listener but a TLI/XTI listener completes the accept processing
5482  * on the listener perimeter.
5483  *
5484  * Common control flow for 3 way handshake:
5485  * ----------------------------------------
5486  *
5487  * incoming SYN (listener perimeter) 	-> tcp_rput_data()
5488  *					-> tcp_conn_request()
5489  *
5490  * incoming SYN-ACK-ACK (eager perim) 	-> tcp_rput_data()
5491  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
5492  *
5493  * Sockfs ACCEPT Path:
5494  * -------------------
5495  *
5496  * open acceptor stream (tcp_open allocates tcp_wput_accept()
5497  * as STREAM entry point)
5498  *
5499  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept()
5500  *
5501  * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager
5502  * association (we are not behind eager's squeue but sockfs is protecting us
5503  * and no one knows about this stream yet. The STREAMS entry point q->q_info
5504  * is changed to point at tcp_wput().
5505  *
5506  * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to
5507  * listener (done on listener's perimeter).
5508  *
5509  * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish
5510  * accept.
5511  *
5512  * TLI/XTI client ACCEPT path:
5513  * ---------------------------
5514  *
5515  * soaccept() sends T_CONN_RES on the listener STREAM.
5516  *
5517  * tcp_accept() -> tcp_accept_swap() complete the processing and send
5518  * the bind_mp to eager perimeter to finish accept (tcp_rput_other()).
5519  *
5520  * Locks:
5521  * ======
5522  *
5523  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
5524  * and listeners->tcp_eager_next_q.
5525  *
5526  * Referencing:
5527  * ============
5528  *
5529  * 1) We start out in tcp_conn_request by eager placing a ref on
5530  * listener and listener adding eager to listeners->tcp_eager_next_q0.
5531  *
5532  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
5533  * doing so we place a ref on the eager. This ref is finally dropped at the
5534  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
5535  * reference is dropped by the squeue framework.
5536  *
5537  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
5538  *
5539  * The reference must be released by the same entity that added the reference
5540  * In the above scheme, the eager is the entity that adds and releases the
5541  * references. Note that tcp_accept_finish executes in the squeue of the eager
5542  * (albeit after it is attached to the acceptor stream). Though 1. executes
5543  * in the listener's squeue, the eager is nascent at this point and the
5544  * reference can be considered to have been added on behalf of the eager.
5545  *
5546  * Eager getting a Reset or listener closing:
5547  * ==========================================
5548  *
5549  * Once the listener and eager are linked, the listener never does the unlink.
5550  * If the listener needs to close, tcp_eager_cleanup() is called which queues
5551  * a message on all eager perimeter. The eager then does the unlink, clears
5552  * any pointers to the listener's queue and drops the reference to the
5553  * listener. The listener waits in tcp_close outside the squeue until its
5554  * refcount has dropped to 1. This ensures that the listener has waited for
5555  * all eagers to clear their association with the listener.
5556  *
5557  * Similarly, if eager decides to go away, it can unlink itself and close.
5558  * When the T_CONN_RES comes down, we check if eager has closed. Note that
5559  * the reference to eager is still valid because of the extra ref we put
5560  * in tcp_send_conn_ind.
5561  *
5562  * Listener can always locate the eager under the protection
5563  * of the listener->tcp_eager_lock, and then do a refhold
5564  * on the eager during the accept processing.
5565  *
5566  * The acceptor stream accesses the eager in the accept processing
5567  * based on the ref placed on eager before sending T_conn_ind.
5568  * The only entity that can negate this refhold is a listener close
5569  * which is mutually exclusive with an active acceptor stream.
5570  *
5571  * Eager's reference on the listener
5572  * ===================================
5573  *
5574  * If the accept happens (even on a closed eager) the eager drops its
5575  * reference on the listener at the start of tcp_accept_finish. If the
5576  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
5577  * the reference is dropped in tcp_closei_local. If the listener closes,
5578  * the reference is dropped in tcp_eager_kill. In all cases the reference
5579  * is dropped while executing in the eager's context (squeue).
5580  */
5581 /* END CSTYLED */
5582 
5583 /* Process the SYN packet, mp, directed at the listener 'tcp' */
5584 
5585 /*
5586  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
5587  * tcp_rput_data will not see any SYN packets.
5588  */
5589 /* ARGSUSED */
5590 void
5591 tcp_conn_request(void *arg, mblk_t *mp, void *arg2)
5592 {
5593 	tcph_t		*tcph;
5594 	uint32_t	seg_seq;
5595 	tcp_t		*eager;
5596 	uint_t		ipvers;
5597 	ipha_t		*ipha;
5598 	ip6_t		*ip6h;
5599 	int		err;
5600 	conn_t		*econnp = NULL;
5601 	squeue_t	*new_sqp;
5602 	mblk_t		*mp1;
5603 	uint_t 		ip_hdr_len;
5604 	conn_t		*connp = (conn_t *)arg;
5605 	tcp_t		*tcp = connp->conn_tcp;
5606 	cred_t		*credp;
5607 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5608 	ip_stack_t	*ipst;
5609 
5610 	if (tcp->tcp_state != TCPS_LISTEN)
5611 		goto error2;
5612 
5613 	ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0);
5614 
5615 	mutex_enter(&tcp->tcp_eager_lock);
5616 	if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) {
5617 		mutex_exit(&tcp->tcp_eager_lock);
5618 		TCP_STAT(tcps, tcp_listendrop);
5619 		BUMP_MIB(&tcps->tcps_mib, tcpListenDrop);
5620 		if (tcp->tcp_debug) {
5621 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
5622 			    "tcp_conn_request: listen backlog (max=%d) "
5623 			    "overflow (%d pending) on %s",
5624 			    tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q,
5625 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
5626 		}
5627 		goto error2;
5628 	}
5629 
5630 	if (tcp->tcp_conn_req_cnt_q0 >=
5631 	    tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) {
5632 		/*
5633 		 * Q0 is full. Drop a pending half-open req from the queue
5634 		 * to make room for the new SYN req. Also mark the time we
5635 		 * drop a SYN.
5636 		 *
5637 		 * A more aggressive defense against SYN attack will
5638 		 * be to set the "tcp_syn_defense" flag now.
5639 		 */
5640 		TCP_STAT(tcps, tcp_listendropq0);
5641 		tcp->tcp_last_rcv_lbolt = lbolt64;
5642 		if (!tcp_drop_q0(tcp)) {
5643 			mutex_exit(&tcp->tcp_eager_lock);
5644 			BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0);
5645 			if (tcp->tcp_debug) {
5646 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
5647 				    "tcp_conn_request: listen half-open queue "
5648 				    "(max=%d) full (%d pending) on %s",
5649 				    tcps->tcps_conn_req_max_q0,
5650 				    tcp->tcp_conn_req_cnt_q0,
5651 				    tcp_display(tcp, NULL,
5652 				    DISP_PORT_ONLY));
5653 			}
5654 			goto error2;
5655 		}
5656 	}
5657 	mutex_exit(&tcp->tcp_eager_lock);
5658 
5659 	/*
5660 	 * IP adds STRUIO_EAGER and ensures that the received packet is
5661 	 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6
5662 	 * link local address.  If IPSec is enabled, db_struioflag has
5663 	 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER);
5664 	 * otherwise an error case if neither of them is set.
5665 	 */
5666 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5667 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5668 		DB_CKSUMSTART(mp) = 0;
5669 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5670 		econnp = (conn_t *)tcp_get_conn(arg2, tcps);
5671 		if (econnp == NULL)
5672 			goto error2;
5673 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5674 		econnp->conn_sqp = new_sqp;
5675 	} else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) {
5676 		/*
5677 		 * mp is updated in tcp_get_ipsec_conn().
5678 		 */
5679 		econnp = tcp_get_ipsec_conn(tcp, arg2, &mp);
5680 		if (econnp == NULL) {
5681 			/*
5682 			 * mp freed by tcp_get_ipsec_conn.
5683 			 */
5684 			return;
5685 		}
5686 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5687 	} else {
5688 		goto error2;
5689 	}
5690 
5691 	ASSERT(DB_TYPE(mp) == M_DATA);
5692 
5693 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5694 	ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION);
5695 	ASSERT(OK_32PTR(mp->b_rptr));
5696 	if (ipvers == IPV4_VERSION) {
5697 		ipha = (ipha_t *)mp->b_rptr;
5698 		ip_hdr_len = IPH_HDR_LENGTH(ipha);
5699 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5700 	} else {
5701 		ip6h = (ip6_t *)mp->b_rptr;
5702 		ip_hdr_len = ip_hdr_length_v6(mp, ip6h);
5703 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5704 	}
5705 
5706 	if (tcp->tcp_family == AF_INET) {
5707 		ASSERT(ipvers == IPV4_VERSION);
5708 		err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp);
5709 	} else {
5710 		err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp);
5711 	}
5712 
5713 	if (err)
5714 		goto error3;
5715 
5716 	eager = econnp->conn_tcp;
5717 
5718 	/*
5719 	 * Pre-allocate the T_ordrel_ind mblk so that at close time, we
5720 	 * will always have that to send up.  Otherwise, we need to do
5721 	 * special handling in case the allocation fails at that time.
5722 	 */
5723 	ASSERT(eager->tcp_ordrel_mp == NULL);
5724 	if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL)
5725 		goto error3;
5726 
5727 	/* Inherit various TCP parameters from the listener */
5728 	eager->tcp_naglim = tcp->tcp_naglim;
5729 	eager->tcp_first_timer_threshold =
5730 	    tcp->tcp_first_timer_threshold;
5731 	eager->tcp_second_timer_threshold =
5732 	    tcp->tcp_second_timer_threshold;
5733 
5734 	eager->tcp_first_ctimer_threshold =
5735 	    tcp->tcp_first_ctimer_threshold;
5736 	eager->tcp_second_ctimer_threshold =
5737 	    tcp->tcp_second_ctimer_threshold;
5738 
5739 	/*
5740 	 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics.
5741 	 * If it does not, the eager's receive window will be set to the
5742 	 * listener's receive window later in this function.
5743 	 */
5744 	eager->tcp_rwnd = 0;
5745 
5746 	/*
5747 	 * Inherit listener's tcp_init_cwnd.  Need to do this before
5748 	 * calling tcp_process_options() where tcp_mss_set() is called
5749 	 * to set the initial cwnd.
5750 	 */
5751 	eager->tcp_init_cwnd = tcp->tcp_init_cwnd;
5752 
5753 	/*
5754 	 * Zones: tcp_adapt_ire() and tcp_send_data() both need the
5755 	 * zone id before the accept is completed in tcp_wput_accept().
5756 	 */
5757 	econnp->conn_zoneid = connp->conn_zoneid;
5758 	econnp->conn_allzones = connp->conn_allzones;
5759 
5760 	/* Copy nexthop information from listener to eager */
5761 	if (connp->conn_nexthop_set) {
5762 		econnp->conn_nexthop_set = connp->conn_nexthop_set;
5763 		econnp->conn_nexthop_v4 = connp->conn_nexthop_v4;
5764 	}
5765 
5766 	/*
5767 	 * TSOL: tsol_input_proc() needs the eager's cred before the
5768 	 * eager is accepted
5769 	 */
5770 	econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred;
5771 	crhold(credp);
5772 
5773 	/*
5774 	 * If the caller has the process-wide flag set, then default to MAC
5775 	 * exempt mode.  This allows read-down to unlabeled hosts.
5776 	 */
5777 	if (getpflags(NET_MAC_AWARE, credp) != 0)
5778 		econnp->conn_mac_exempt = B_TRUE;
5779 
5780 	if (is_system_labeled()) {
5781 		cred_t *cr;
5782 
5783 		if (connp->conn_mlp_type != mlptSingle) {
5784 			cr = econnp->conn_peercred = DB_CRED(mp);
5785 			if (cr != NULL)
5786 				crhold(cr);
5787 			else
5788 				cr = econnp->conn_cred;
5789 			DTRACE_PROBE2(mlp_syn_accept, conn_t *,
5790 			    econnp, cred_t *, cr)
5791 		} else {
5792 			cr = econnp->conn_cred;
5793 			DTRACE_PROBE2(syn_accept, conn_t *,
5794 			    econnp, cred_t *, cr)
5795 		}
5796 
5797 		if (!tcp_update_label(eager, cr)) {
5798 			DTRACE_PROBE3(
5799 			    tx__ip__log__error__connrequest__tcp,
5800 			    char *, "eager connp(1) label on SYN mp(2) failed",
5801 			    conn_t *, econnp, mblk_t *, mp);
5802 			goto error3;
5803 		}
5804 	}
5805 
5806 	eager->tcp_hard_binding = B_TRUE;
5807 
5808 	tcp_bind_hash_insert(&tcps->tcps_bind_fanout[
5809 	    TCP_BIND_HASH(eager->tcp_lport)], eager, 0);
5810 
5811 	CL_INET_CONNECT(eager);
5812 
5813 	/*
5814 	 * No need to check for multicast destination since ip will only pass
5815 	 * up multicasts to those that have expressed interest
5816 	 * TODO: what about rejecting broadcasts?
5817 	 * Also check that source is not a multicast or broadcast address.
5818 	 */
5819 	eager->tcp_state = TCPS_SYN_RCVD;
5820 
5821 
5822 	/*
5823 	 * There should be no ire in the mp as we are being called after
5824 	 * receiving the SYN.
5825 	 */
5826 	ASSERT(tcp_ire_mp(mp) == NULL);
5827 
5828 	/*
5829 	 * Adapt our mss, ttl, ... according to information provided in IRE.
5830 	 */
5831 
5832 	if (tcp_adapt_ire(eager, NULL) == 0) {
5833 		/* Undo the bind_hash_insert */
5834 		tcp_bind_hash_remove(eager);
5835 		goto error3;
5836 	}
5837 
5838 	/* Process all TCP options. */
5839 	tcp_process_options(eager, tcph);
5840 
5841 	/* Is the other end ECN capable? */
5842 	if (tcps->tcps_ecn_permitted >= 1 &&
5843 	    (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
5844 		eager->tcp_ecn_ok = B_TRUE;
5845 	}
5846 
5847 	/*
5848 	 * listener->tcp_rq->q_hiwat should be the default window size or a
5849 	 * window size changed via SO_RCVBUF option.  First round up the
5850 	 * eager's tcp_rwnd to the nearest MSS.  Then find out the window
5851 	 * scale option value if needed.  Call tcp_rwnd_set() to finish the
5852 	 * setting.
5853 	 *
5854 	 * Note if there is a rpipe metric associated with the remote host,
5855 	 * we should not inherit receive window size from listener.
5856 	 */
5857 	eager->tcp_rwnd = MSS_ROUNDUP(
5858 	    (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat :
5859 	    eager->tcp_rwnd), eager->tcp_mss);
5860 	if (eager->tcp_snd_ws_ok)
5861 		tcp_set_ws_value(eager);
5862 	/*
5863 	 * Note that this is the only place tcp_rwnd_set() is called for
5864 	 * accepting a connection.  We need to call it here instead of
5865 	 * after the 3-way handshake because we need to tell the other
5866 	 * side our rwnd in the SYN-ACK segment.
5867 	 */
5868 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
5869 
5870 	/*
5871 	 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ
5872 	 * via soaccept()->soinheritoptions() which essentially applies
5873 	 * all the listener options to the new STREAM. The options that we
5874 	 * need to take care of are:
5875 	 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST,
5876 	 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER,
5877 	 * SO_SNDBUF, SO_RCVBUF.
5878 	 *
5879 	 * SO_RCVBUF:	tcp_rwnd_set() above takes care of it.
5880 	 * SO_SNDBUF:	Set the tcp_xmit_hiwater for the eager. When
5881 	 *		tcp_maxpsz_set() gets called later from
5882 	 *		tcp_accept_finish(), the option takes effect.
5883 	 *
5884 	 */
5885 	/* Set the TCP options */
5886 	eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater;
5887 	eager->tcp_dgram_errind = tcp->tcp_dgram_errind;
5888 	eager->tcp_oobinline = tcp->tcp_oobinline;
5889 	eager->tcp_reuseaddr = tcp->tcp_reuseaddr;
5890 	eager->tcp_broadcast = tcp->tcp_broadcast;
5891 	eager->tcp_useloopback = tcp->tcp_useloopback;
5892 	eager->tcp_dontroute = tcp->tcp_dontroute;
5893 	eager->tcp_linger = tcp->tcp_linger;
5894 	eager->tcp_lingertime = tcp->tcp_lingertime;
5895 	if (tcp->tcp_ka_enabled)
5896 		eager->tcp_ka_enabled = 1;
5897 
5898 	/* Set the IP options */
5899 	econnp->conn_broadcast = connp->conn_broadcast;
5900 	econnp->conn_loopback = connp->conn_loopback;
5901 	econnp->conn_dontroute = connp->conn_dontroute;
5902 	econnp->conn_reuseaddr = connp->conn_reuseaddr;
5903 
5904 	/* Put a ref on the listener for the eager. */
5905 	CONN_INC_REF(connp);
5906 	mutex_enter(&tcp->tcp_eager_lock);
5907 	tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
5908 	eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0;
5909 	tcp->tcp_eager_next_q0 = eager;
5910 	eager->tcp_eager_prev_q0 = tcp;
5911 
5912 	/* Set tcp_listener before adding it to tcp_conn_fanout */
5913 	eager->tcp_listener = tcp;
5914 	eager->tcp_saved_listener = tcp;
5915 
5916 	/*
5917 	 * Tag this detached tcp vector for later retrieval
5918 	 * by our listener client in tcp_accept().
5919 	 */
5920 	eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum;
5921 	tcp->tcp_conn_req_cnt_q0++;
5922 	if (++tcp->tcp_conn_req_seqnum == -1) {
5923 		/*
5924 		 * -1 is "special" and defined in TPI as something
5925 		 * that should never be used in T_CONN_IND
5926 		 */
5927 		++tcp->tcp_conn_req_seqnum;
5928 	}
5929 	mutex_exit(&tcp->tcp_eager_lock);
5930 
5931 	if (tcp->tcp_syn_defense) {
5932 		/* Don't drop the SYN that comes from a good IP source */
5933 		ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache);
5934 		if (addr_cache != NULL && eager->tcp_remote ==
5935 		    addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) {
5936 			eager->tcp_dontdrop = B_TRUE;
5937 		}
5938 	}
5939 
5940 	/*
5941 	 * We need to insert the eager in its own perimeter but as soon
5942 	 * as we do that, we expose the eager to the classifier and
5943 	 * should not touch any field outside the eager's perimeter.
5944 	 * So do all the work necessary before inserting the eager
5945 	 * in its own perimeter. Be optimistic that ipcl_conn_insert()
5946 	 * will succeed but undo everything if it fails.
5947 	 */
5948 	seg_seq = ABE32_TO_U32(tcph->th_seq);
5949 	eager->tcp_irs = seg_seq;
5950 	eager->tcp_rack = seg_seq;
5951 	eager->tcp_rnxt = seg_seq + 1;
5952 	U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack);
5953 	BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens);
5954 	eager->tcp_state = TCPS_SYN_RCVD;
5955 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
5956 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
5957 	if (mp1 == NULL) {
5958 		/*
5959 		 * Increment the ref count as we are going to
5960 		 * enqueueing an mp in squeue
5961 		 */
5962 		CONN_INC_REF(econnp);
5963 		goto error;
5964 	}
5965 	DB_CPID(mp1) = tcp->tcp_cpid;
5966 	eager->tcp_cpid = tcp->tcp_cpid;
5967 	eager->tcp_open_time = lbolt64;
5968 
5969 	/*
5970 	 * We need to start the rto timer. In normal case, we start
5971 	 * the timer after sending the packet on the wire (or at
5972 	 * least believing that packet was sent by waiting for
5973 	 * CALL_IP_WPUT() to return). Since this is the first packet
5974 	 * being sent on the wire for the eager, our initial tcp_rto
5975 	 * is at least tcp_rexmit_interval_min which is a fairly
5976 	 * large value to allow the algorithm to adjust slowly to large
5977 	 * fluctuations of RTT during first few transmissions.
5978 	 *
5979 	 * Starting the timer first and then sending the packet in this
5980 	 * case shouldn't make much difference since tcp_rexmit_interval_min
5981 	 * is of the order of several 100ms and starting the timer
5982 	 * first and then sending the packet will result in difference
5983 	 * of few micro seconds.
5984 	 *
5985 	 * Without this optimization, we are forced to hold the fanout
5986 	 * lock across the ipcl_bind_insert() and sending the packet
5987 	 * so that we don't race against an incoming packet (maybe RST)
5988 	 * for this eager.
5989 	 *
5990 	 * It is necessary to acquire an extra reference on the eager
5991 	 * at this point and hold it until after tcp_send_data() to
5992 	 * ensure against an eager close race.
5993 	 */
5994 
5995 	CONN_INC_REF(eager->tcp_connp);
5996 
5997 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
5998 
5999 	/*
6000 	 * Insert the eager in its own perimeter now. We are ready to deal
6001 	 * with any packets on eager.
6002 	 */
6003 	if (eager->tcp_ipversion == IPV4_VERSION) {
6004 		if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) {
6005 			goto error;
6006 		}
6007 	} else {
6008 		if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) {
6009 			goto error;
6010 		}
6011 	}
6012 
6013 	/* mark conn as fully-bound */
6014 	econnp->conn_fully_bound = B_TRUE;
6015 
6016 	/* Send the SYN-ACK */
6017 	tcp_send_data(eager, eager->tcp_wq, mp1);
6018 	CONN_DEC_REF(eager->tcp_connp);
6019 	freemsg(mp);
6020 
6021 	return;
6022 error:
6023 	freemsg(mp1);
6024 	eager->tcp_closemp_used = B_TRUE;
6025 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
6026 	squeue_fill(econnp->conn_sqp, &eager->tcp_closemp, tcp_eager_kill,
6027 	    econnp, SQTAG_TCP_CONN_REQ_2);
6028 
6029 	/*
6030 	 * If a connection already exists, send the mp to that connections so
6031 	 * that it can be appropriately dealt with.
6032 	 */
6033 	ipst = tcps->tcps_netstack->netstack_ip;
6034 
6035 	if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) {
6036 		if (!IPCL_IS_CONNECTED(econnp)) {
6037 			/*
6038 			 * Something bad happened. ipcl_conn_insert()
6039 			 * failed because a connection already existed
6040 			 * in connected hash but we can't find it
6041 			 * anymore (someone blew it away). Just
6042 			 * free this message and hopefully remote
6043 			 * will retransmit at which time the SYN can be
6044 			 * treated as a new connection or dealth with
6045 			 * a TH_RST if a connection already exists.
6046 			 */
6047 			CONN_DEC_REF(econnp);
6048 			freemsg(mp);
6049 		} else {
6050 			squeue_fill(econnp->conn_sqp, mp, tcp_input,
6051 			    econnp, SQTAG_TCP_CONN_REQ_1);
6052 		}
6053 	} else {
6054 		/* Nobody wants this packet */
6055 		freemsg(mp);
6056 	}
6057 	return;
6058 error3:
6059 	CONN_DEC_REF(econnp);
6060 error2:
6061 	freemsg(mp);
6062 }
6063 
6064 /*
6065  * In an ideal case of vertical partition in NUMA architecture, its
6066  * beneficial to have the listener and all the incoming connections
6067  * tied to the same squeue. The other constraint is that incoming
6068  * connections should be tied to the squeue attached to interrupted
6069  * CPU for obvious locality reason so this leaves the listener to
6070  * be tied to the same squeue. Our only problem is that when listener
6071  * is binding, the CPU that will get interrupted by the NIC whose
6072  * IP address the listener is binding to is not even known. So
6073  * the code below allows us to change that binding at the time the
6074  * CPU is interrupted by virtue of incoming connection's squeue.
6075  *
6076  * This is usefull only in case of a listener bound to a specific IP
6077  * address. For other kind of listeners, they get bound the
6078  * very first time and there is no attempt to rebind them.
6079  */
6080 void
6081 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2)
6082 {
6083 	conn_t		*connp = (conn_t *)arg;
6084 	squeue_t	*sqp = (squeue_t *)arg2;
6085 	squeue_t	*new_sqp;
6086 	uint32_t	conn_flags;
6087 
6088 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
6089 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
6090 	} else {
6091 		goto done;
6092 	}
6093 
6094 	if (connp->conn_fanout == NULL)
6095 		goto done;
6096 
6097 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
6098 		mutex_enter(&connp->conn_fanout->connf_lock);
6099 		mutex_enter(&connp->conn_lock);
6100 		/*
6101 		 * No one from read or write side can access us now
6102 		 * except for already queued packets on this squeue.
6103 		 * But since we haven't changed the squeue yet, they
6104 		 * can't execute. If they are processed after we have
6105 		 * changed the squeue, they are sent back to the
6106 		 * correct squeue down below.
6107 		 * But a listner close can race with processing of
6108 		 * incoming SYN. If incoming SYN processing changes
6109 		 * the squeue then the listener close which is waiting
6110 		 * to enter the squeue would operate on the wrong
6111 		 * squeue. Hence we don't change the squeue here unless
6112 		 * the refcount is exactly the minimum refcount. The
6113 		 * minimum refcount of 4 is counted as - 1 each for
6114 		 * TCP and IP, 1 for being in the classifier hash, and
6115 		 * 1 for the mblk being processed.
6116 		 */
6117 
6118 		if (connp->conn_ref != 4 ||
6119 		    connp->conn_tcp->tcp_state != TCPS_LISTEN) {
6120 			mutex_exit(&connp->conn_lock);
6121 			mutex_exit(&connp->conn_fanout->connf_lock);
6122 			goto done;
6123 		}
6124 		if (connp->conn_sqp != new_sqp) {
6125 			while (connp->conn_sqp != new_sqp)
6126 				(void) casptr(&connp->conn_sqp, sqp, new_sqp);
6127 		}
6128 
6129 		do {
6130 			conn_flags = connp->conn_flags;
6131 			conn_flags |= IPCL_FULLY_BOUND;
6132 			(void) cas32(&connp->conn_flags, connp->conn_flags,
6133 			    conn_flags);
6134 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
6135 
6136 		mutex_exit(&connp->conn_fanout->connf_lock);
6137 		mutex_exit(&connp->conn_lock);
6138 	}
6139 
6140 done:
6141 	if (connp->conn_sqp != sqp) {
6142 		CONN_INC_REF(connp);
6143 		squeue_fill(connp->conn_sqp, mp,
6144 		    connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND);
6145 	} else {
6146 		tcp_conn_request(connp, mp, sqp);
6147 	}
6148 }
6149 
6150 /*
6151  * Successful connect request processing begins when our client passes
6152  * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes
6153  * our T_OK_ACK reply message upstream.  The control flow looks like this:
6154  *   upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP
6155  *   upstream <- tcp_rput()                <- IP
6156  * After various error checks are completed, tcp_connect() lays
6157  * the target address and port into the composite header template,
6158  * preallocates the T_OK_ACK reply message, construct a full 12 byte bind
6159  * request followed by an IRE request, and passes the three mblk message
6160  * down to IP looking like this:
6161  *   O_T_BIND_REQ for IP  --> IRE req --> T_OK_ACK for our client
6162  * Processing continues in tcp_rput() when we receive the following message:
6163  *   T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client
6164  * After consuming the first two mblks, tcp_rput() calls tcp_timer(),
6165  * to fire off the connection request, and then passes the T_OK_ACK mblk
6166  * upstream that we filled in below.  There are, of course, numerous
6167  * error conditions along the way which truncate the processing described
6168  * above.
6169  */
6170 static void
6171 tcp_connect(tcp_t *tcp, mblk_t *mp)
6172 {
6173 	sin_t		*sin;
6174 	sin6_t		*sin6;
6175 	queue_t		*q = tcp->tcp_wq;
6176 	struct T_conn_req	*tcr;
6177 	ipaddr_t	*dstaddrp;
6178 	in_port_t	dstport;
6179 	uint_t		srcid;
6180 
6181 	tcr = (struct T_conn_req *)mp->b_rptr;
6182 
6183 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6184 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
6185 		tcp_err_ack(tcp, mp, TPROTO, 0);
6186 		return;
6187 	}
6188 
6189 	/*
6190 	 * Pre-allocate the T_ordrel_ind mblk so that at close time, we
6191 	 * will always have that to send up.  Otherwise, we need to do
6192 	 * special handling in case the allocation fails at that time.
6193 	 */
6194 	ASSERT(tcp->tcp_ordrel_mp == NULL);
6195 	if ((tcp->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) {
6196 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
6197 		return;
6198 	}
6199 
6200 	/*
6201 	 * Determine packet type based on type of address passed in
6202 	 * the request should contain an IPv4 or IPv6 address.
6203 	 * Make sure that address family matches the type of
6204 	 * family of the the address passed down
6205 	 */
6206 	switch (tcr->DEST_length) {
6207 	default:
6208 		tcp_err_ack(tcp, mp, TBADADDR, 0);
6209 		return;
6210 
6211 	case (sizeof (sin_t) - sizeof (sin->sin_zero)): {
6212 		/*
6213 		 * XXX: The check for valid DEST_length was not there
6214 		 * in earlier releases and some buggy
6215 		 * TLI apps (e.g Sybase) got away with not feeding
6216 		 * in sin_zero part of address.
6217 		 * We allow that bug to keep those buggy apps humming.
6218 		 * Test suites require the check on DEST_length.
6219 		 * We construct a new mblk with valid DEST_length
6220 		 * free the original so the rest of the code does
6221 		 * not have to keep track of this special shorter
6222 		 * length address case.
6223 		 */
6224 		mblk_t *nmp;
6225 		struct T_conn_req *ntcr;
6226 		sin_t *nsin;
6227 
6228 		nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) +
6229 		    tcr->OPT_length, BPRI_HI);
6230 		if (nmp == NULL) {
6231 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
6232 			return;
6233 		}
6234 		ntcr = (struct T_conn_req *)nmp->b_rptr;
6235 		bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */
6236 		ntcr->PRIM_type = T_CONN_REQ;
6237 		ntcr->DEST_length = sizeof (sin_t);
6238 		ntcr->DEST_offset = sizeof (struct T_conn_req);
6239 
6240 		nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset);
6241 		*nsin = sin_null;
6242 		/* Get pointer to shorter address to copy from original mp */
6243 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6244 		    tcr->DEST_length); /* extract DEST_length worth of sin_t */
6245 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6246 			freemsg(nmp);
6247 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6248 			return;
6249 		}
6250 		nsin->sin_family = sin->sin_family;
6251 		nsin->sin_port = sin->sin_port;
6252 		nsin->sin_addr = sin->sin_addr;
6253 		/* Note:nsin->sin_zero zero-fill with sin_null assign above */
6254 		nmp->b_wptr = (uchar_t *)&nsin[1];
6255 		if (tcr->OPT_length != 0) {
6256 			ntcr->OPT_length = tcr->OPT_length;
6257 			ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr;
6258 			bcopy((uchar_t *)tcr + tcr->OPT_offset,
6259 			    (uchar_t *)ntcr + ntcr->OPT_offset,
6260 			    tcr->OPT_length);
6261 			nmp->b_wptr += tcr->OPT_length;
6262 		}
6263 		freemsg(mp);	/* original mp freed */
6264 		mp = nmp;	/* re-initialize original variables */
6265 		tcr = ntcr;
6266 	}
6267 	/* FALLTHRU */
6268 
6269 	case sizeof (sin_t):
6270 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6271 		    sizeof (sin_t));
6272 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6273 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6274 			return;
6275 		}
6276 		if (tcp->tcp_family != AF_INET ||
6277 		    sin->sin_family != AF_INET) {
6278 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6279 			return;
6280 		}
6281 		if (sin->sin_port == 0) {
6282 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6283 			return;
6284 		}
6285 		if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) {
6286 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6287 			return;
6288 		}
6289 
6290 		break;
6291 
6292 	case sizeof (sin6_t):
6293 		sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset,
6294 		    sizeof (sin6_t));
6295 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
6296 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6297 			return;
6298 		}
6299 		if (tcp->tcp_family != AF_INET6 ||
6300 		    sin6->sin6_family != AF_INET6) {
6301 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6302 			return;
6303 		}
6304 		if (sin6->sin6_port == 0) {
6305 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6306 			return;
6307 		}
6308 		break;
6309 	}
6310 	/*
6311 	 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we
6312 	 * should key on their sequence number and cut them loose.
6313 	 */
6314 
6315 	/*
6316 	 * If options passed in, feed it for verification and handling
6317 	 */
6318 	if (tcr->OPT_length != 0) {
6319 		mblk_t	*ok_mp;
6320 		mblk_t	*discon_mp;
6321 		mblk_t  *conn_opts_mp;
6322 		int t_error, sys_error, do_disconnect;
6323 
6324 		conn_opts_mp = NULL;
6325 
6326 		if (tcp_conprim_opt_process(tcp, mp,
6327 		    &do_disconnect, &t_error, &sys_error) < 0) {
6328 			if (do_disconnect) {
6329 				ASSERT(t_error == 0 && sys_error == 0);
6330 				discon_mp = mi_tpi_discon_ind(NULL,
6331 				    ECONNREFUSED, 0);
6332 				if (!discon_mp) {
6333 					tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6334 					    TSYSERR, ENOMEM);
6335 					return;
6336 				}
6337 				ok_mp = mi_tpi_ok_ack_alloc(mp);
6338 				if (!ok_mp) {
6339 					tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6340 					    TSYSERR, ENOMEM);
6341 					return;
6342 				}
6343 				qreply(q, ok_mp);
6344 				qreply(q, discon_mp); /* no flush! */
6345 			} else {
6346 				ASSERT(t_error != 0);
6347 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error,
6348 				    sys_error);
6349 			}
6350 			return;
6351 		}
6352 		/*
6353 		 * Success in setting options, the mp option buffer represented
6354 		 * by OPT_length/offset has been potentially modified and
6355 		 * contains results of option processing. We copy it in
6356 		 * another mp to save it for potentially influencing returning
6357 		 * it in T_CONN_CONN.
6358 		 */
6359 		if (tcr->OPT_length != 0) { /* there are resulting options */
6360 			conn_opts_mp = copyb(mp);
6361 			if (!conn_opts_mp) {
6362 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6363 				    TSYSERR, ENOMEM);
6364 				return;
6365 			}
6366 			ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL);
6367 			tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp;
6368 			/*
6369 			 * Note:
6370 			 * These resulting option negotiation can include any
6371 			 * end-to-end negotiation options but there no such
6372 			 * thing (yet?) in our TCP/IP.
6373 			 */
6374 		}
6375 	}
6376 
6377 	/*
6378 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
6379 	 * make sure that the template IP header in the tcp structure is an
6380 	 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION.  We
6381 	 * need to this before we call tcp_bindi() so that the port lookup
6382 	 * code will look for ports in the correct port space (IPv4 and
6383 	 * IPv6 have separate port spaces).
6384 	 */
6385 	if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION &&
6386 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6387 		int err = 0;
6388 
6389 		err = tcp_header_init_ipv4(tcp);
6390 		if (err != 0) {
6391 			mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6392 			goto connect_failed;
6393 		}
6394 		if (tcp->tcp_lport != 0)
6395 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
6396 	}
6397 
6398 	if (tcp->tcp_issocket) {
6399 		/*
6400 		 * TCP is _D_SODIRECT and sockfs is directly above so save
6401 		 * the shared sonode sodirect_t pointer (if any) to enable
6402 		 * TCP sodirect.
6403 		 */
6404 		tcp->tcp_sodirect = SOD_QTOSODP(tcp->tcp_rq);
6405 	}
6406 
6407 	switch (tcp->tcp_state) {
6408 	case TCPS_IDLE:
6409 		/*
6410 		 * We support quick connect, refer to comments in
6411 		 * tcp_connect_*()
6412 		 */
6413 		/* FALLTHRU */
6414 	case TCPS_BOUND:
6415 	case TCPS_LISTEN:
6416 		if (tcp->tcp_family == AF_INET6) {
6417 			if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6418 				tcp_connect_ipv6(tcp, mp,
6419 				    &sin6->sin6_addr,
6420 				    sin6->sin6_port, sin6->sin6_flowinfo,
6421 				    sin6->__sin6_src_id, sin6->sin6_scope_id);
6422 				return;
6423 			}
6424 			/*
6425 			 * Destination adress is mapped IPv6 address.
6426 			 * Source bound address should be unspecified or
6427 			 * IPv6 mapped address as well.
6428 			 */
6429 			if (!IN6_IS_ADDR_UNSPECIFIED(
6430 			    &tcp->tcp_bound_source_v6) &&
6431 			    !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) {
6432 				mp = mi_tpi_err_ack_alloc(mp, TSYSERR,
6433 				    EADDRNOTAVAIL);
6434 				break;
6435 			}
6436 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
6437 			dstport = sin6->sin6_port;
6438 			srcid = sin6->__sin6_src_id;
6439 		} else {
6440 			dstaddrp = &sin->sin_addr.s_addr;
6441 			dstport = sin->sin_port;
6442 			srcid = 0;
6443 		}
6444 
6445 		tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid);
6446 		return;
6447 	default:
6448 		mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0);
6449 		break;
6450 	}
6451 	/*
6452 	 * Note: Code below is the "failure" case
6453 	 */
6454 	/* return error ack and blow away saved option results if any */
6455 connect_failed:
6456 	if (mp != NULL)
6457 		putnext(tcp->tcp_rq, mp);
6458 	else {
6459 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6460 		    TSYSERR, ENOMEM);
6461 	}
6462 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6463 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6464 }
6465 
6466 /*
6467  * Handle connect to IPv4 destinations, including connections for AF_INET6
6468  * sockets connecting to IPv4 mapped IPv6 destinations.
6469  */
6470 static void
6471 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport,
6472     uint_t srcid)
6473 {
6474 	tcph_t	*tcph;
6475 	mblk_t	*mp1;
6476 	ipaddr_t dstaddr = *dstaddrp;
6477 	int32_t	oldstate;
6478 	uint16_t lport;
6479 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6480 
6481 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
6482 
6483 	/* Check for attempt to connect to INADDR_ANY */
6484 	if (dstaddr == INADDR_ANY)  {
6485 		/*
6486 		 * SunOS 4.x and 4.3 BSD allow an application
6487 		 * to connect a TCP socket to INADDR_ANY.
6488 		 * When they do this, the kernel picks the
6489 		 * address of one interface and uses it
6490 		 * instead.  The kernel usually ends up
6491 		 * picking the address of the loopback
6492 		 * interface.  This is an undocumented feature.
6493 		 * However, we provide the same thing here
6494 		 * in order to have source and binary
6495 		 * compatibility with SunOS 4.x.
6496 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
6497 		 * generate the T_CONN_CON.
6498 		 */
6499 		dstaddr = htonl(INADDR_LOOPBACK);
6500 		*dstaddrp = dstaddr;
6501 	}
6502 
6503 	/* Handle __sin6_src_id if socket not bound to an IP address */
6504 	if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) {
6505 		ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6,
6506 		    tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack);
6507 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6,
6508 		    tcp->tcp_ipha->ipha_src);
6509 	}
6510 
6511 	/*
6512 	 * Don't let an endpoint connect to itself.  Note that
6513 	 * the test here does not catch the case where the
6514 	 * source IP addr was left unspecified by the user. In
6515 	 * this case, the source addr is set in tcp_adapt_ire()
6516 	 * using the reply to the T_BIND message that we send
6517 	 * down to IP here and the check is repeated in tcp_rput_other.
6518 	 */
6519 	if (dstaddr == tcp->tcp_ipha->ipha_src &&
6520 	    dstport == tcp->tcp_lport) {
6521 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6522 		goto failed;
6523 	}
6524 
6525 	tcp->tcp_ipha->ipha_dst = dstaddr;
6526 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6);
6527 
6528 	/*
6529 	 * Massage a source route if any putting the first hop
6530 	 * in iph_dst. Compute a starting value for the checksum which
6531 	 * takes into account that the original iph_dst should be
6532 	 * included in the checksum but that ip will include the
6533 	 * first hop in the source route in the tcp checksum.
6534 	 */
6535 	tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack);
6536 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6537 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
6538 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
6539 	if ((int)tcp->tcp_sum < 0)
6540 		tcp->tcp_sum--;
6541 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6542 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6543 	    (tcp->tcp_sum >> 16));
6544 	tcph = tcp->tcp_tcph;
6545 	*(uint16_t *)tcph->th_fport = dstport;
6546 	tcp->tcp_fport = dstport;
6547 
6548 	oldstate = tcp->tcp_state;
6549 	/*
6550 	 * At this point the remote destination address and remote port fields
6551 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6552 	 * have to see which state tcp was in so we can take apropriate action.
6553 	 */
6554 	if (oldstate == TCPS_IDLE) {
6555 		/*
6556 		 * We support a quick connect capability here, allowing
6557 		 * clients to transition directly from IDLE to SYN_SENT
6558 		 * tcp_bindi will pick an unused port, insert the connection
6559 		 * in the bind hash and transition to BOUND state.
6560 		 */
6561 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6562 		    tcp, B_TRUE);
6563 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6564 		    B_FALSE, B_FALSE);
6565 		if (lport == 0) {
6566 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6567 			goto failed;
6568 		}
6569 	}
6570 	tcp->tcp_state = TCPS_SYN_SENT;
6571 
6572 	/*
6573 	 * TODO: allow data with connect requests
6574 	 * by unlinking M_DATA trailers here and
6575 	 * linking them in behind the T_OK_ACK mblk.
6576 	 * The tcp_rput() bind ack handler would then
6577 	 * feed them to tcp_wput_data() rather than call
6578 	 * tcp_timer().
6579 	 */
6580 	mp = mi_tpi_ok_ack_alloc(mp);
6581 	if (!mp) {
6582 		tcp->tcp_state = oldstate;
6583 		goto failed;
6584 	}
6585 	if (tcp->tcp_family == AF_INET) {
6586 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6587 		    sizeof (ipa_conn_t));
6588 	} else {
6589 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6590 		    sizeof (ipa6_conn_t));
6591 	}
6592 	if (mp1) {
6593 		/*
6594 		 * We need to make sure that the conn_recv is set to a non-null
6595 		 * value before we insert the conn_t into the classifier table.
6596 		 * This is to avoid a race with an incoming packet which does
6597 		 * an ipcl_classify().
6598 		 */
6599 		tcp->tcp_connp->conn_recv = tcp_input;
6600 
6601 		/* Hang onto the T_OK_ACK for later. */
6602 		linkb(mp1, mp);
6603 		mblk_setcred(mp1, tcp->tcp_cred);
6604 		if (tcp->tcp_family == AF_INET)
6605 			mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp);
6606 		else {
6607 			mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6608 			    &tcp->tcp_sticky_ipp);
6609 		}
6610 		BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6611 		tcp->tcp_active_open = 1;
6612 		/*
6613 		 * If the bind cannot complete immediately
6614 		 * IP will arrange to call tcp_rput_other
6615 		 * when the bind completes.
6616 		 */
6617 		if (mp1 != NULL)
6618 			tcp_rput_other(tcp, mp1);
6619 		return;
6620 	}
6621 	/* Error case */
6622 	tcp->tcp_state = oldstate;
6623 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6624 
6625 failed:
6626 	/* return error ack and blow away saved option results if any */
6627 	if (mp != NULL)
6628 		putnext(tcp->tcp_rq, mp);
6629 	else {
6630 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6631 		    TSYSERR, ENOMEM);
6632 	}
6633 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6634 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6635 
6636 }
6637 
6638 /*
6639  * Handle connect to IPv6 destinations.
6640  */
6641 static void
6642 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
6643     in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
6644 {
6645 	tcph_t	*tcph;
6646 	mblk_t	*mp1;
6647 	ip6_rthdr_t *rth;
6648 	int32_t  oldstate;
6649 	uint16_t lport;
6650 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6651 
6652 	ASSERT(tcp->tcp_family == AF_INET6);
6653 
6654 	/*
6655 	 * If we're here, it means that the destination address is a native
6656 	 * IPv6 address.  Return an error if tcp_ipversion is not IPv6.  A
6657 	 * reason why it might not be IPv6 is if the socket was bound to an
6658 	 * IPv4-mapped IPv6 address.
6659 	 */
6660 	if (tcp->tcp_ipversion != IPV6_VERSION) {
6661 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6662 		goto failed;
6663 	}
6664 
6665 	/*
6666 	 * Interpret a zero destination to mean loopback.
6667 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
6668 	 * generate the T_CONN_CON.
6669 	 */
6670 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) {
6671 		*dstaddrp = ipv6_loopback;
6672 	}
6673 
6674 	/* Handle __sin6_src_id if socket not bound to an IP address */
6675 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
6676 		ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src,
6677 		    tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack);
6678 		tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src;
6679 	}
6680 
6681 	/*
6682 	 * Take care of the scope_id now and add ip6i_t
6683 	 * if ip6i_t is not already allocated through TCP
6684 	 * sticky options. At this point tcp_ip6h does not
6685 	 * have dst info, thus use dstaddrp.
6686 	 */
6687 	if (scope_id != 0 &&
6688 	    IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
6689 		ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
6690 		ip6i_t  *ip6i;
6691 
6692 		ipp->ipp_ifindex = scope_id;
6693 		ip6i = (ip6i_t *)tcp->tcp_iphc;
6694 
6695 		if ((ipp->ipp_fields & IPPF_HAS_IP6I) &&
6696 		    ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) {
6697 			/* Already allocated */
6698 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6699 			ip6i->ip6i_ifindex = ipp->ipp_ifindex;
6700 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6701 		} else {
6702 			int reterr;
6703 
6704 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6705 			if (ipp->ipp_fields & IPPF_HAS_IP6I)
6706 				ip2dbg(("tcp_connect_v6: SCOPE_ID set\n"));
6707 			reterr = tcp_build_hdrs(tcp->tcp_rq, tcp);
6708 			if (reterr != 0)
6709 				goto failed;
6710 			ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n"));
6711 		}
6712 	}
6713 
6714 	/*
6715 	 * Don't let an endpoint connect to itself.  Note that
6716 	 * the test here does not catch the case where the
6717 	 * source IP addr was left unspecified by the user. In
6718 	 * this case, the source addr is set in tcp_adapt_ire()
6719 	 * using the reply to the T_BIND message that we send
6720 	 * down to IP here and the check is repeated in tcp_rput_other.
6721 	 */
6722 	if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) &&
6723 	    (dstport == tcp->tcp_lport)) {
6724 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6725 		goto failed;
6726 	}
6727 
6728 	tcp->tcp_ip6h->ip6_dst = *dstaddrp;
6729 	tcp->tcp_remote_v6 = *dstaddrp;
6730 	tcp->tcp_ip6h->ip6_vcf =
6731 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
6732 	    (flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
6733 
6734 
6735 	/*
6736 	 * Massage a routing header (if present) putting the first hop
6737 	 * in ip6_dst. Compute a starting value for the checksum which
6738 	 * takes into account that the original ip6_dst should be
6739 	 * included in the checksum but that ip will include the
6740 	 * first hop in the source route in the tcp checksum.
6741 	 */
6742 	rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph);
6743 	if (rth != NULL) {
6744 		tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth,
6745 		    tcps->tcps_netstack);
6746 		tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6747 		    (tcp->tcp_sum >> 16));
6748 	} else {
6749 		tcp->tcp_sum = 0;
6750 	}
6751 
6752 	tcph = tcp->tcp_tcph;
6753 	*(uint16_t *)tcph->th_fport = dstport;
6754 	tcp->tcp_fport = dstport;
6755 
6756 	oldstate = tcp->tcp_state;
6757 	/*
6758 	 * At this point the remote destination address and remote port fields
6759 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6760 	 * have to see which state tcp was in so we can take apropriate action.
6761 	 */
6762 	if (oldstate == TCPS_IDLE) {
6763 		/*
6764 		 * We support a quick connect capability here, allowing
6765 		 * clients to transition directly from IDLE to SYN_SENT
6766 		 * tcp_bindi will pick an unused port, insert the connection
6767 		 * in the bind hash and transition to BOUND state.
6768 		 */
6769 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6770 		    tcp, B_TRUE);
6771 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6772 		    B_FALSE, B_FALSE);
6773 		if (lport == 0) {
6774 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6775 			goto failed;
6776 		}
6777 	}
6778 	tcp->tcp_state = TCPS_SYN_SENT;
6779 	/*
6780 	 * TODO: allow data with connect requests
6781 	 * by unlinking M_DATA trailers here and
6782 	 * linking them in behind the T_OK_ACK mblk.
6783 	 * The tcp_rput() bind ack handler would then
6784 	 * feed them to tcp_wput_data() rather than call
6785 	 * tcp_timer().
6786 	 */
6787 	mp = mi_tpi_ok_ack_alloc(mp);
6788 	if (!mp) {
6789 		tcp->tcp_state = oldstate;
6790 		goto failed;
6791 	}
6792 	mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t));
6793 	if (mp1) {
6794 		/*
6795 		 * We need to make sure that the conn_recv is set to a non-null
6796 		 * value before we insert the conn_t into the classifier table.
6797 		 * This is to avoid a race with an incoming packet which does
6798 		 * an ipcl_classify().
6799 		 */
6800 		tcp->tcp_connp->conn_recv = tcp_input;
6801 
6802 		/* Hang onto the T_OK_ACK for later. */
6803 		linkb(mp1, mp);
6804 		mblk_setcred(mp1, tcp->tcp_cred);
6805 		mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6806 		    &tcp->tcp_sticky_ipp);
6807 		BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6808 		tcp->tcp_active_open = 1;
6809 		/* ip_bind_v6() may return ACK or ERROR */
6810 		if (mp1 != NULL)
6811 			tcp_rput_other(tcp, mp1);
6812 		return;
6813 	}
6814 	/* Error case */
6815 	tcp->tcp_state = oldstate;
6816 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6817 
6818 failed:
6819 	/* return error ack and blow away saved option results if any */
6820 	if (mp != NULL)
6821 		putnext(tcp->tcp_rq, mp);
6822 	else {
6823 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6824 		    TSYSERR, ENOMEM);
6825 	}
6826 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6827 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6828 }
6829 
6830 /*
6831  * We need a stream q for detached closing tcp connections
6832  * to use.  Our client hereby indicates that this q is the
6833  * one to use.
6834  */
6835 static void
6836 tcp_def_q_set(tcp_t *tcp, mblk_t *mp)
6837 {
6838 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
6839 	queue_t	*q = tcp->tcp_wq;
6840 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6841 
6842 #ifdef NS_DEBUG
6843 	(void) printf("TCP_IOC_DEFAULT_Q for stack %d\n",
6844 	    tcps->tcps_netstack->netstack_stackid);
6845 #endif
6846 	mp->b_datap->db_type = M_IOCACK;
6847 	iocp->ioc_count = 0;
6848 	mutex_enter(&tcps->tcps_g_q_lock);
6849 	if (tcps->tcps_g_q != NULL) {
6850 		mutex_exit(&tcps->tcps_g_q_lock);
6851 		iocp->ioc_error = EALREADY;
6852 	} else {
6853 		mblk_t *mp1;
6854 
6855 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0);
6856 		if (mp1 == NULL) {
6857 			mutex_exit(&tcps->tcps_g_q_lock);
6858 			iocp->ioc_error = ENOMEM;
6859 		} else {
6860 			tcps->tcps_g_q = tcp->tcp_rq;
6861 			mutex_exit(&tcps->tcps_g_q_lock);
6862 			iocp->ioc_error = 0;
6863 			iocp->ioc_rval = 0;
6864 			/*
6865 			 * We are passing tcp_sticky_ipp as NULL
6866 			 * as it is not useful for tcp_default queue
6867 			 *
6868 			 * Set conn_recv just in case.
6869 			 */
6870 			tcp->tcp_connp->conn_recv = tcp_conn_request;
6871 
6872 			mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL);
6873 			if (mp1 != NULL)
6874 				tcp_rput_other(tcp, mp1);
6875 		}
6876 	}
6877 	qreply(q, mp);
6878 }
6879 
6880 /*
6881  * Our client hereby directs us to reject the connection request
6882  * that tcp_conn_request() marked with 'seqnum'.  Rejection consists
6883  * of sending the appropriate RST, not an ICMP error.
6884  */
6885 static void
6886 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
6887 {
6888 	tcp_t	*ltcp = NULL;
6889 	t_scalar_t seqnum;
6890 	conn_t	*connp;
6891 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6892 
6893 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6894 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
6895 		tcp_err_ack(tcp, mp, TPROTO, 0);
6896 		return;
6897 	}
6898 
6899 	/*
6900 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
6901 	 * when the stream is in BOUND state. Do not send a reset,
6902 	 * since the destination IP address is not valid, and it can
6903 	 * be the initialized value of all zeros (broadcast address).
6904 	 *
6905 	 * If TCP has sent down a bind request to IP and has not
6906 	 * received the reply, reject the request.  Otherwise, TCP
6907 	 * will be confused.
6908 	 */
6909 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) {
6910 		if (tcp->tcp_debug) {
6911 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
6912 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
6913 		}
6914 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
6915 		return;
6916 	}
6917 
6918 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
6919 
6920 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
6921 
6922 		/*
6923 		 * According to TPI, for non-listeners, ignore seqnum
6924 		 * and disconnect.
6925 		 * Following interpretation of -1 seqnum is historical
6926 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
6927 		 * a valid seqnum should not be -1).
6928 		 *
6929 		 *	-1 means disconnect everything
6930 		 *	regardless even on a listener.
6931 		 */
6932 
6933 		int old_state = tcp->tcp_state;
6934 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
6935 
6936 		/*
6937 		 * The connection can't be on the tcp_time_wait_head list
6938 		 * since it is not detached.
6939 		 */
6940 		ASSERT(tcp->tcp_time_wait_next == NULL);
6941 		ASSERT(tcp->tcp_time_wait_prev == NULL);
6942 		ASSERT(tcp->tcp_time_wait_expire == 0);
6943 		ltcp = NULL;
6944 		/*
6945 		 * If it used to be a listener, check to make sure no one else
6946 		 * has taken the port before switching back to LISTEN state.
6947 		 */
6948 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6949 			connp = ipcl_lookup_listener_v4(tcp->tcp_lport,
6950 			    tcp->tcp_ipha->ipha_src,
6951 			    tcp->tcp_connp->conn_zoneid, ipst);
6952 			if (connp != NULL)
6953 				ltcp = connp->conn_tcp;
6954 		} else {
6955 			/* Allow tcp_bound_if listeners? */
6956 			connp = ipcl_lookup_listener_v6(tcp->tcp_lport,
6957 			    &tcp->tcp_ip6h->ip6_src, 0,
6958 			    tcp->tcp_connp->conn_zoneid, ipst);
6959 			if (connp != NULL)
6960 				ltcp = connp->conn_tcp;
6961 		}
6962 		if (tcp->tcp_conn_req_max && ltcp == NULL) {
6963 			tcp->tcp_state = TCPS_LISTEN;
6964 		} else if (old_state > TCPS_BOUND) {
6965 			tcp->tcp_conn_req_max = 0;
6966 			tcp->tcp_state = TCPS_BOUND;
6967 		}
6968 		if (ltcp != NULL)
6969 			CONN_DEC_REF(ltcp->tcp_connp);
6970 		if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) {
6971 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
6972 		} else if (old_state == TCPS_ESTABLISHED ||
6973 		    old_state == TCPS_CLOSE_WAIT) {
6974 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
6975 		}
6976 
6977 		if (tcp->tcp_fused)
6978 			tcp_unfuse(tcp);
6979 
6980 		mutex_enter(&tcp->tcp_eager_lock);
6981 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
6982 		    (tcp->tcp_conn_req_cnt_q != 0)) {
6983 			tcp_eager_cleanup(tcp, 0);
6984 		}
6985 		mutex_exit(&tcp->tcp_eager_lock);
6986 
6987 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
6988 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
6989 
6990 		tcp_reinit(tcp);
6991 
6992 		if (old_state >= TCPS_ESTABLISHED) {
6993 			/* Send M_FLUSH according to TPI */
6994 			(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6995 		}
6996 		mp = mi_tpi_ok_ack_alloc(mp);
6997 		if (mp)
6998 			putnext(tcp->tcp_rq, mp);
6999 		return;
7000 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
7001 		tcp_err_ack(tcp, mp, TBADSEQ, 0);
7002 		return;
7003 	}
7004 	if (tcp->tcp_state >= TCPS_ESTABLISHED) {
7005 		/* Send M_FLUSH according to TPI */
7006 		(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
7007 	}
7008 	mp = mi_tpi_ok_ack_alloc(mp);
7009 	if (mp)
7010 		putnext(tcp->tcp_rq, mp);
7011 }
7012 
7013 /*
7014  * Diagnostic routine used to return a string associated with the tcp state.
7015  * Note that if the caller does not supply a buffer, it will use an internal
7016  * static string.  This means that if multiple threads call this function at
7017  * the same time, output can be corrupted...  Note also that this function
7018  * does not check the size of the supplied buffer.  The caller has to make
7019  * sure that it is big enough.
7020  */
7021 static char *
7022 tcp_display(tcp_t *tcp, char *sup_buf, char format)
7023 {
7024 	char		buf1[30];
7025 	static char	priv_buf[INET6_ADDRSTRLEN * 2 + 80];
7026 	char		*buf;
7027 	char		*cp;
7028 	in6_addr_t	local, remote;
7029 	char		local_addrbuf[INET6_ADDRSTRLEN];
7030 	char		remote_addrbuf[INET6_ADDRSTRLEN];
7031 
7032 	if (sup_buf != NULL)
7033 		buf = sup_buf;
7034 	else
7035 		buf = priv_buf;
7036 
7037 	if (tcp == NULL)
7038 		return ("NULL_TCP");
7039 	switch (tcp->tcp_state) {
7040 	case TCPS_CLOSED:
7041 		cp = "TCP_CLOSED";
7042 		break;
7043 	case TCPS_IDLE:
7044 		cp = "TCP_IDLE";
7045 		break;
7046 	case TCPS_BOUND:
7047 		cp = "TCP_BOUND";
7048 		break;
7049 	case TCPS_LISTEN:
7050 		cp = "TCP_LISTEN";
7051 		break;
7052 	case TCPS_SYN_SENT:
7053 		cp = "TCP_SYN_SENT";
7054 		break;
7055 	case TCPS_SYN_RCVD:
7056 		cp = "TCP_SYN_RCVD";
7057 		break;
7058 	case TCPS_ESTABLISHED:
7059 		cp = "TCP_ESTABLISHED";
7060 		break;
7061 	case TCPS_CLOSE_WAIT:
7062 		cp = "TCP_CLOSE_WAIT";
7063 		break;
7064 	case TCPS_FIN_WAIT_1:
7065 		cp = "TCP_FIN_WAIT_1";
7066 		break;
7067 	case TCPS_CLOSING:
7068 		cp = "TCP_CLOSING";
7069 		break;
7070 	case TCPS_LAST_ACK:
7071 		cp = "TCP_LAST_ACK";
7072 		break;
7073 	case TCPS_FIN_WAIT_2:
7074 		cp = "TCP_FIN_WAIT_2";
7075 		break;
7076 	case TCPS_TIME_WAIT:
7077 		cp = "TCP_TIME_WAIT";
7078 		break;
7079 	default:
7080 		(void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state);
7081 		cp = buf1;
7082 		break;
7083 	}
7084 	switch (format) {
7085 	case DISP_ADDR_AND_PORT:
7086 		if (tcp->tcp_ipversion == IPV4_VERSION) {
7087 			/*
7088 			 * Note that we use the remote address in the tcp_b
7089 			 * structure.  This means that it will print out
7090 			 * the real destination address, not the next hop's
7091 			 * address if source routing is used.
7092 			 */
7093 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local);
7094 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote);
7095 
7096 		} else {
7097 			local = tcp->tcp_ip_src_v6;
7098 			remote = tcp->tcp_remote_v6;
7099 		}
7100 		(void) inet_ntop(AF_INET6, &local, local_addrbuf,
7101 		    sizeof (local_addrbuf));
7102 		(void) inet_ntop(AF_INET6, &remote, remote_addrbuf,
7103 		    sizeof (remote_addrbuf));
7104 		(void) mi_sprintf(buf, "[%s.%u, %s.%u] %s",
7105 		    local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf,
7106 		    ntohs(tcp->tcp_fport), cp);
7107 		break;
7108 	case DISP_PORT_ONLY:
7109 	default:
7110 		(void) mi_sprintf(buf, "[%u, %u] %s",
7111 		    ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp);
7112 		break;
7113 	}
7114 
7115 	return (buf);
7116 }
7117 
7118 /*
7119  * Called via squeue to get on to eager's perimeter. It sends a
7120  * TH_RST if eager is in the fanout table. The listener wants the
7121  * eager to disappear either by means of tcp_eager_blowoff() or
7122  * tcp_eager_cleanup() being called. tcp_eager_kill() can also be
7123  * called (via squeue) if the eager cannot be inserted in the
7124  * fanout table in tcp_conn_request().
7125  */
7126 /* ARGSUSED */
7127 void
7128 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2)
7129 {
7130 	conn_t	*econnp = (conn_t *)arg;
7131 	tcp_t	*eager = econnp->conn_tcp;
7132 	tcp_t	*listener = eager->tcp_listener;
7133 	tcp_stack_t	*tcps = eager->tcp_tcps;
7134 
7135 	/*
7136 	 * We could be called because listener is closing. Since
7137 	 * the eager is using listener's queue's, its not safe.
7138 	 * Better use the default queue just to send the TH_RST
7139 	 * out.
7140 	 */
7141 	ASSERT(tcps->tcps_g_q != NULL);
7142 	eager->tcp_rq = tcps->tcps_g_q;
7143 	eager->tcp_wq = WR(tcps->tcps_g_q);
7144 
7145 	/*
7146 	 * An eager's conn_fanout will be NULL if it's a duplicate
7147 	 * for an existing 4-tuples in the conn fanout table.
7148 	 * We don't want to send an RST out in such case.
7149 	 */
7150 	if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) {
7151 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
7152 		    eager, eager->tcp_snxt, 0, TH_RST);
7153 	}
7154 
7155 	/* We are here because listener wants this eager gone */
7156 	if (listener != NULL) {
7157 		mutex_enter(&listener->tcp_eager_lock);
7158 		tcp_eager_unlink(eager);
7159 		if (eager->tcp_tconnind_started) {
7160 			/*
7161 			 * The eager has sent a conn_ind up to the
7162 			 * listener but listener decides to close
7163 			 * instead. We need to drop the extra ref
7164 			 * placed on eager in tcp_rput_data() before
7165 			 * sending the conn_ind to listener.
7166 			 */
7167 			CONN_DEC_REF(econnp);
7168 		}
7169 		mutex_exit(&listener->tcp_eager_lock);
7170 		CONN_DEC_REF(listener->tcp_connp);
7171 	}
7172 
7173 	if (eager->tcp_state > TCPS_BOUND)
7174 		tcp_close_detached(eager);
7175 }
7176 
7177 /*
7178  * Reset any eager connection hanging off this listener marked
7179  * with 'seqnum' and then reclaim it's resources.
7180  */
7181 static boolean_t
7182 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
7183 {
7184 	tcp_t	*eager;
7185 	mblk_t 	*mp;
7186 	tcp_stack_t	*tcps = listener->tcp_tcps;
7187 
7188 	TCP_STAT(tcps, tcp_eager_blowoff_calls);
7189 	eager = listener;
7190 	mutex_enter(&listener->tcp_eager_lock);
7191 	do {
7192 		eager = eager->tcp_eager_next_q;
7193 		if (eager == NULL) {
7194 			mutex_exit(&listener->tcp_eager_lock);
7195 			return (B_FALSE);
7196 		}
7197 	} while (eager->tcp_conn_req_seqnum != seqnum);
7198 
7199 	if (eager->tcp_closemp_used) {
7200 		mutex_exit(&listener->tcp_eager_lock);
7201 		return (B_TRUE);
7202 	}
7203 	eager->tcp_closemp_used = B_TRUE;
7204 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7205 	CONN_INC_REF(eager->tcp_connp);
7206 	mutex_exit(&listener->tcp_eager_lock);
7207 	mp = &eager->tcp_closemp;
7208 	squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
7209 	    eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF);
7210 	return (B_TRUE);
7211 }
7212 
7213 /*
7214  * Reset any eager connection hanging off this listener
7215  * and then reclaim it's resources.
7216  */
7217 static void
7218 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
7219 {
7220 	tcp_t	*eager;
7221 	mblk_t	*mp;
7222 	tcp_stack_t	*tcps = listener->tcp_tcps;
7223 
7224 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7225 
7226 	if (!q0_only) {
7227 		/* First cleanup q */
7228 		TCP_STAT(tcps, tcp_eager_blowoff_q);
7229 		eager = listener->tcp_eager_next_q;
7230 		while (eager != NULL) {
7231 			if (!eager->tcp_closemp_used) {
7232 				eager->tcp_closemp_used = B_TRUE;
7233 				TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7234 				CONN_INC_REF(eager->tcp_connp);
7235 				mp = &eager->tcp_closemp;
7236 				squeue_fill(eager->tcp_connp->conn_sqp, mp,
7237 				    tcp_eager_kill, eager->tcp_connp,
7238 				    SQTAG_TCP_EAGER_CLEANUP);
7239 			}
7240 			eager = eager->tcp_eager_next_q;
7241 		}
7242 	}
7243 	/* Then cleanup q0 */
7244 	TCP_STAT(tcps, tcp_eager_blowoff_q0);
7245 	eager = listener->tcp_eager_next_q0;
7246 	while (eager != listener) {
7247 		if (!eager->tcp_closemp_used) {
7248 			eager->tcp_closemp_used = B_TRUE;
7249 			TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7250 			CONN_INC_REF(eager->tcp_connp);
7251 			mp = &eager->tcp_closemp;
7252 			squeue_fill(eager->tcp_connp->conn_sqp, mp,
7253 			    tcp_eager_kill, eager->tcp_connp,
7254 			    SQTAG_TCP_EAGER_CLEANUP_Q0);
7255 		}
7256 		eager = eager->tcp_eager_next_q0;
7257 	}
7258 }
7259 
7260 /*
7261  * If we are an eager connection hanging off a listener that hasn't
7262  * formally accepted the connection yet, get off his list and blow off
7263  * any data that we have accumulated.
7264  */
7265 static void
7266 tcp_eager_unlink(tcp_t *tcp)
7267 {
7268 	tcp_t	*listener = tcp->tcp_listener;
7269 
7270 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7271 	ASSERT(listener != NULL);
7272 	if (tcp->tcp_eager_next_q0 != NULL) {
7273 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
7274 
7275 		/* Remove the eager tcp from q0 */
7276 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
7277 		    tcp->tcp_eager_prev_q0;
7278 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
7279 		    tcp->tcp_eager_next_q0;
7280 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
7281 		listener->tcp_conn_req_cnt_q0--;
7282 
7283 		tcp->tcp_eager_next_q0 = NULL;
7284 		tcp->tcp_eager_prev_q0 = NULL;
7285 
7286 		/*
7287 		 * Take the eager out, if it is in the list of droppable
7288 		 * eagers.
7289 		 */
7290 		MAKE_UNDROPPABLE(tcp);
7291 
7292 		if (tcp->tcp_syn_rcvd_timeout != 0) {
7293 			/* we have timed out before */
7294 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
7295 			listener->tcp_syn_rcvd_timeout--;
7296 		}
7297 	} else {
7298 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
7299 		tcp_t	*prev = NULL;
7300 
7301 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
7302 			if (tcpp[0] == tcp) {
7303 				if (listener->tcp_eager_last_q == tcp) {
7304 					/*
7305 					 * If we are unlinking the last
7306 					 * element on the list, adjust
7307 					 * tail pointer. Set tail pointer
7308 					 * to nil when list is empty.
7309 					 */
7310 					ASSERT(tcp->tcp_eager_next_q == NULL);
7311 					if (listener->tcp_eager_last_q ==
7312 					    listener->tcp_eager_next_q) {
7313 						listener->tcp_eager_last_q =
7314 						    NULL;
7315 					} else {
7316 						/*
7317 						 * We won't get here if there
7318 						 * is only one eager in the
7319 						 * list.
7320 						 */
7321 						ASSERT(prev != NULL);
7322 						listener->tcp_eager_last_q =
7323 						    prev;
7324 					}
7325 				}
7326 				tcpp[0] = tcp->tcp_eager_next_q;
7327 				tcp->tcp_eager_next_q = NULL;
7328 				tcp->tcp_eager_last_q = NULL;
7329 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
7330 				listener->tcp_conn_req_cnt_q--;
7331 				break;
7332 			}
7333 			prev = tcpp[0];
7334 		}
7335 	}
7336 	tcp->tcp_listener = NULL;
7337 }
7338 
7339 /* Shorthand to generate and send TPI error acks to our client */
7340 static void
7341 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error)
7342 {
7343 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
7344 		putnext(tcp->tcp_rq, mp);
7345 }
7346 
7347 /* Shorthand to generate and send TPI error acks to our client */
7348 static void
7349 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
7350     int t_error, int sys_error)
7351 {
7352 	struct T_error_ack	*teackp;
7353 
7354 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
7355 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
7356 		teackp = (struct T_error_ack *)mp->b_rptr;
7357 		teackp->ERROR_prim = primitive;
7358 		teackp->TLI_error = t_error;
7359 		teackp->UNIX_error = sys_error;
7360 		putnext(tcp->tcp_rq, mp);
7361 	}
7362 }
7363 
7364 /*
7365  * Note: No locks are held when inspecting tcp_g_*epriv_ports
7366  * but instead the code relies on:
7367  * - the fact that the address of the array and its size never changes
7368  * - the atomic assignment of the elements of the array
7369  */
7370 /* ARGSUSED */
7371 static int
7372 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
7373 {
7374 	int i;
7375 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7376 
7377 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7378 		if (tcps->tcps_g_epriv_ports[i] != 0)
7379 			(void) mi_mpprintf(mp, "%d ",
7380 			    tcps->tcps_g_epriv_ports[i]);
7381 	}
7382 	return (0);
7383 }
7384 
7385 /*
7386  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7387  * threads from changing it at the same time.
7388  */
7389 /* ARGSUSED */
7390 static int
7391 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7392     cred_t *cr)
7393 {
7394 	long	new_value;
7395 	int	i;
7396 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7397 
7398 	/*
7399 	 * Fail the request if the new value does not lie within the
7400 	 * port number limits.
7401 	 */
7402 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
7403 	    new_value <= 0 || new_value >= 65536) {
7404 		return (EINVAL);
7405 	}
7406 
7407 	mutex_enter(&tcps->tcps_epriv_port_lock);
7408 	/* Check if the value is already in the list */
7409 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7410 		if (new_value == tcps->tcps_g_epriv_ports[i]) {
7411 			mutex_exit(&tcps->tcps_epriv_port_lock);
7412 			return (EEXIST);
7413 		}
7414 	}
7415 	/* Find an empty slot */
7416 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7417 		if (tcps->tcps_g_epriv_ports[i] == 0)
7418 			break;
7419 	}
7420 	if (i == tcps->tcps_g_num_epriv_ports) {
7421 		mutex_exit(&tcps->tcps_epriv_port_lock);
7422 		return (EOVERFLOW);
7423 	}
7424 	/* Set the new value */
7425 	tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value;
7426 	mutex_exit(&tcps->tcps_epriv_port_lock);
7427 	return (0);
7428 }
7429 
7430 /*
7431  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7432  * threads from changing it at the same time.
7433  */
7434 /* ARGSUSED */
7435 static int
7436 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7437     cred_t *cr)
7438 {
7439 	long	new_value;
7440 	int	i;
7441 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7442 
7443 	/*
7444 	 * Fail the request if the new value does not lie within the
7445 	 * port number limits.
7446 	 */
7447 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 ||
7448 	    new_value >= 65536) {
7449 		return (EINVAL);
7450 	}
7451 
7452 	mutex_enter(&tcps->tcps_epriv_port_lock);
7453 	/* Check that the value is already in the list */
7454 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7455 		if (tcps->tcps_g_epriv_ports[i] == new_value)
7456 			break;
7457 	}
7458 	if (i == tcps->tcps_g_num_epriv_ports) {
7459 		mutex_exit(&tcps->tcps_epriv_port_lock);
7460 		return (ESRCH);
7461 	}
7462 	/* Clear the value */
7463 	tcps->tcps_g_epriv_ports[i] = 0;
7464 	mutex_exit(&tcps->tcps_epriv_port_lock);
7465 	return (0);
7466 }
7467 
7468 /* Return the TPI/TLI equivalent of our current tcp_state */
7469 static int
7470 tcp_tpistate(tcp_t *tcp)
7471 {
7472 	switch (tcp->tcp_state) {
7473 	case TCPS_IDLE:
7474 		return (TS_UNBND);
7475 	case TCPS_LISTEN:
7476 		/*
7477 		 * Return whether there are outstanding T_CONN_IND waiting
7478 		 * for the matching T_CONN_RES. Therefore don't count q0.
7479 		 */
7480 		if (tcp->tcp_conn_req_cnt_q > 0)
7481 			return (TS_WRES_CIND);
7482 		else
7483 			return (TS_IDLE);
7484 	case TCPS_BOUND:
7485 		return (TS_IDLE);
7486 	case TCPS_SYN_SENT:
7487 		return (TS_WCON_CREQ);
7488 	case TCPS_SYN_RCVD:
7489 		/*
7490 		 * Note: assumption: this has to the active open SYN_RCVD.
7491 		 * The passive instance is detached in SYN_RCVD stage of
7492 		 * incoming connection processing so we cannot get request
7493 		 * for T_info_ack on it.
7494 		 */
7495 		return (TS_WACK_CRES);
7496 	case TCPS_ESTABLISHED:
7497 		return (TS_DATA_XFER);
7498 	case TCPS_CLOSE_WAIT:
7499 		return (TS_WREQ_ORDREL);
7500 	case TCPS_FIN_WAIT_1:
7501 		return (TS_WIND_ORDREL);
7502 	case TCPS_FIN_WAIT_2:
7503 		return (TS_WIND_ORDREL);
7504 
7505 	case TCPS_CLOSING:
7506 	case TCPS_LAST_ACK:
7507 	case TCPS_TIME_WAIT:
7508 	case TCPS_CLOSED:
7509 		/*
7510 		 * Following TS_WACK_DREQ7 is a rendition of "not
7511 		 * yet TS_IDLE" TPI state. There is no best match to any
7512 		 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we
7513 		 * choose a value chosen that will map to TLI/XTI level
7514 		 * state of TSTATECHNG (state is process of changing) which
7515 		 * captures what this dummy state represents.
7516 		 */
7517 		return (TS_WACK_DREQ7);
7518 	default:
7519 		cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s",
7520 		    tcp->tcp_state, tcp_display(tcp, NULL,
7521 		    DISP_PORT_ONLY));
7522 		return (TS_UNBND);
7523 	}
7524 }
7525 
7526 static void
7527 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp)
7528 {
7529 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7530 
7531 	if (tcp->tcp_family == AF_INET6)
7532 		*tia = tcp_g_t_info_ack_v6;
7533 	else
7534 		*tia = tcp_g_t_info_ack;
7535 	tia->CURRENT_state = tcp_tpistate(tcp);
7536 	tia->OPT_size = tcp_max_optsize;
7537 	if (tcp->tcp_mss == 0) {
7538 		/* Not yet set - tcp_open does not set mss */
7539 		if (tcp->tcp_ipversion == IPV4_VERSION)
7540 			tia->TIDU_size = tcps->tcps_mss_def_ipv4;
7541 		else
7542 			tia->TIDU_size = tcps->tcps_mss_def_ipv6;
7543 	} else {
7544 		tia->TIDU_size = tcp->tcp_mss;
7545 	}
7546 	/* TODO: Default ETSDU is 1.  Is that correct for tcp? */
7547 }
7548 
7549 /*
7550  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
7551  * tcp_wput.  Much of the T_CAPABILITY_ACK information is copied from
7552  * tcp_g_t_info_ack.  The current state of the stream is copied from
7553  * tcp_state.
7554  */
7555 static void
7556 tcp_capability_req(tcp_t *tcp, mblk_t *mp)
7557 {
7558 	t_uscalar_t		cap_bits1;
7559 	struct T_capability_ack	*tcap;
7560 
7561 	if (MBLKL(mp) < sizeof (struct T_capability_req)) {
7562 		freemsg(mp);
7563 		return;
7564 	}
7565 
7566 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
7567 
7568 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
7569 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
7570 	if (mp == NULL)
7571 		return;
7572 
7573 	tcap = (struct T_capability_ack *)mp->b_rptr;
7574 	tcap->CAP_bits1 = 0;
7575 
7576 	if (cap_bits1 & TC1_INFO) {
7577 		tcp_copy_info(&tcap->INFO_ack, tcp);
7578 		tcap->CAP_bits1 |= TC1_INFO;
7579 	}
7580 
7581 	if (cap_bits1 & TC1_ACCEPTOR_ID) {
7582 		tcap->ACCEPTOR_id = tcp->tcp_acceptor_id;
7583 		tcap->CAP_bits1 |= TC1_ACCEPTOR_ID;
7584 	}
7585 
7586 	putnext(tcp->tcp_rq, mp);
7587 }
7588 
7589 /*
7590  * This routine responds to T_INFO_REQ messages.  It is called by tcp_wput.
7591  * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack.
7592  * The current state of the stream is copied from tcp_state.
7593  */
7594 static void
7595 tcp_info_req(tcp_t *tcp, mblk_t *mp)
7596 {
7597 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
7598 	    T_INFO_ACK);
7599 	if (!mp) {
7600 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7601 		return;
7602 	}
7603 	tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp);
7604 	putnext(tcp->tcp_rq, mp);
7605 }
7606 
7607 /* Respond to the TPI addr request */
7608 static void
7609 tcp_addr_req(tcp_t *tcp, mblk_t *mp)
7610 {
7611 	sin_t	*sin;
7612 	mblk_t	*ackmp;
7613 	struct T_addr_ack *taa;
7614 
7615 	/* Make it large enough for worst case */
7616 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
7617 	    2 * sizeof (sin6_t), 1);
7618 	if (ackmp == NULL) {
7619 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7620 		return;
7621 	}
7622 
7623 	if (tcp->tcp_ipversion == IPV6_VERSION) {
7624 		tcp_addr_req_ipv6(tcp, ackmp);
7625 		return;
7626 	}
7627 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7628 
7629 	bzero(taa, sizeof (struct T_addr_ack));
7630 	ackmp->b_wptr = (uchar_t *)&taa[1];
7631 
7632 	taa->PRIM_type = T_ADDR_ACK;
7633 	ackmp->b_datap->db_type = M_PCPROTO;
7634 
7635 	/*
7636 	 * Note: Following code assumes 32 bit alignment of basic
7637 	 * data structures like sin_t and struct T_addr_ack.
7638 	 */
7639 	if (tcp->tcp_state >= TCPS_BOUND) {
7640 		/*
7641 		 * Fill in local address
7642 		 */
7643 		taa->LOCADDR_length = sizeof (sin_t);
7644 		taa->LOCADDR_offset = sizeof (*taa);
7645 
7646 		sin = (sin_t *)&taa[1];
7647 
7648 		/* Fill zeroes and then intialize non-zero fields */
7649 		*sin = sin_null;
7650 
7651 		sin->sin_family = AF_INET;
7652 
7653 		sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
7654 		sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport;
7655 
7656 		ackmp->b_wptr = (uchar_t *)&sin[1];
7657 
7658 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7659 			/*
7660 			 * Fill in Remote address
7661 			 */
7662 			taa->REMADDR_length = sizeof (sin_t);
7663 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7664 			    taa->LOCADDR_length);
7665 
7666 			sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7667 			*sin = sin_null;
7668 			sin->sin_family = AF_INET;
7669 			sin->sin_addr.s_addr = tcp->tcp_remote;
7670 			sin->sin_port = tcp->tcp_fport;
7671 
7672 			ackmp->b_wptr = (uchar_t *)&sin[1];
7673 		}
7674 	}
7675 	putnext(tcp->tcp_rq, ackmp);
7676 }
7677 
7678 /* Assumes that tcp_addr_req gets enough space and alignment */
7679 static void
7680 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp)
7681 {
7682 	sin6_t	*sin6;
7683 	struct T_addr_ack *taa;
7684 
7685 	ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
7686 	ASSERT(OK_32PTR(ackmp->b_rptr));
7687 	ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) +
7688 	    2 * sizeof (sin6_t));
7689 
7690 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7691 
7692 	bzero(taa, sizeof (struct T_addr_ack));
7693 	ackmp->b_wptr = (uchar_t *)&taa[1];
7694 
7695 	taa->PRIM_type = T_ADDR_ACK;
7696 	ackmp->b_datap->db_type = M_PCPROTO;
7697 
7698 	/*
7699 	 * Note: Following code assumes 32 bit alignment of basic
7700 	 * data structures like sin6_t and struct T_addr_ack.
7701 	 */
7702 	if (tcp->tcp_state >= TCPS_BOUND) {
7703 		/*
7704 		 * Fill in local address
7705 		 */
7706 		taa->LOCADDR_length = sizeof (sin6_t);
7707 		taa->LOCADDR_offset = sizeof (*taa);
7708 
7709 		sin6 = (sin6_t *)&taa[1];
7710 		*sin6 = sin6_null;
7711 
7712 		sin6->sin6_family = AF_INET6;
7713 		sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
7714 		sin6->sin6_port = tcp->tcp_lport;
7715 
7716 		ackmp->b_wptr = (uchar_t *)&sin6[1];
7717 
7718 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7719 			/*
7720 			 * Fill in Remote address
7721 			 */
7722 			taa->REMADDR_length = sizeof (sin6_t);
7723 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7724 			    taa->LOCADDR_length);
7725 
7726 			sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7727 			*sin6 = sin6_null;
7728 			sin6->sin6_family = AF_INET6;
7729 			sin6->sin6_flowinfo =
7730 			    tcp->tcp_ip6h->ip6_vcf &
7731 			    ~IPV6_VERS_AND_FLOW_MASK;
7732 			sin6->sin6_addr = tcp->tcp_remote_v6;
7733 			sin6->sin6_port = tcp->tcp_fport;
7734 
7735 			ackmp->b_wptr = (uchar_t *)&sin6[1];
7736 		}
7737 	}
7738 	putnext(tcp->tcp_rq, ackmp);
7739 }
7740 
7741 /*
7742  * Handle reinitialization of a tcp structure.
7743  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
7744  */
7745 static void
7746 tcp_reinit(tcp_t *tcp)
7747 {
7748 	mblk_t	*mp;
7749 	int 	err;
7750 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7751 
7752 	TCP_STAT(tcps, tcp_reinit_calls);
7753 
7754 	/* tcp_reinit should never be called for detached tcp_t's */
7755 	ASSERT(tcp->tcp_listener == NULL);
7756 	ASSERT((tcp->tcp_family == AF_INET &&
7757 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7758 	    (tcp->tcp_family == AF_INET6 &&
7759 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7760 	    tcp->tcp_ipversion == IPV6_VERSION)));
7761 
7762 	/* Cancel outstanding timers */
7763 	tcp_timers_stop(tcp);
7764 
7765 	/*
7766 	 * Reset everything in the state vector, after updating global
7767 	 * MIB data from instance counters.
7768 	 */
7769 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
7770 	tcp->tcp_ibsegs = 0;
7771 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
7772 	tcp->tcp_obsegs = 0;
7773 
7774 	tcp_close_mpp(&tcp->tcp_xmit_head);
7775 	if (tcp->tcp_snd_zcopy_aware)
7776 		tcp_zcopy_notify(tcp);
7777 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
7778 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
7779 	mutex_enter(&tcp->tcp_non_sq_lock);
7780 	if (tcp->tcp_flow_stopped &&
7781 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
7782 		tcp_clrqfull(tcp);
7783 	}
7784 	mutex_exit(&tcp->tcp_non_sq_lock);
7785 	tcp_close_mpp(&tcp->tcp_reass_head);
7786 	tcp->tcp_reass_tail = NULL;
7787 	if (tcp->tcp_rcv_list != NULL) {
7788 		/* Free b_next chain */
7789 		tcp_close_mpp(&tcp->tcp_rcv_list);
7790 		tcp->tcp_rcv_last_head = NULL;
7791 		tcp->tcp_rcv_last_tail = NULL;
7792 		tcp->tcp_rcv_cnt = 0;
7793 	}
7794 	tcp->tcp_rcv_last_tail = NULL;
7795 
7796 	if ((mp = tcp->tcp_urp_mp) != NULL) {
7797 		freemsg(mp);
7798 		tcp->tcp_urp_mp = NULL;
7799 	}
7800 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
7801 		freemsg(mp);
7802 		tcp->tcp_urp_mark_mp = NULL;
7803 	}
7804 	if (tcp->tcp_fused_sigurg_mp != NULL) {
7805 		freeb(tcp->tcp_fused_sigurg_mp);
7806 		tcp->tcp_fused_sigurg_mp = NULL;
7807 	}
7808 	if (tcp->tcp_ordrel_mp != NULL) {
7809 		freeb(tcp->tcp_ordrel_mp);
7810 		tcp->tcp_ordrel_mp = NULL;
7811 	}
7812 
7813 	/*
7814 	 * Following is a union with two members which are
7815 	 * identical types and size so the following cleanup
7816 	 * is enough.
7817 	 */
7818 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
7819 
7820 	CL_INET_DISCONNECT(tcp);
7821 
7822 	/*
7823 	 * The connection can't be on the tcp_time_wait_head list
7824 	 * since it is not detached.
7825 	 */
7826 	ASSERT(tcp->tcp_time_wait_next == NULL);
7827 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7828 	ASSERT(tcp->tcp_time_wait_expire == 0);
7829 
7830 	if (tcp->tcp_kssl_pending) {
7831 		tcp->tcp_kssl_pending = B_FALSE;
7832 
7833 		/* Don't reset if the initialized by bind. */
7834 		if (tcp->tcp_kssl_ent != NULL) {
7835 			kssl_release_ent(tcp->tcp_kssl_ent, NULL,
7836 			    KSSL_NO_PROXY);
7837 		}
7838 	}
7839 	if (tcp->tcp_kssl_ctx != NULL) {
7840 		kssl_release_ctx(tcp->tcp_kssl_ctx);
7841 		tcp->tcp_kssl_ctx = NULL;
7842 	}
7843 
7844 	/*
7845 	 * Reset/preserve other values
7846 	 */
7847 	tcp_reinit_values(tcp);
7848 	ipcl_hash_remove(tcp->tcp_connp);
7849 	conn_delete_ire(tcp->tcp_connp, NULL);
7850 	tcp_ipsec_cleanup(tcp);
7851 
7852 	if (tcp->tcp_conn_req_max != 0) {
7853 		/*
7854 		 * This is the case when a TLI program uses the same
7855 		 * transport end point to accept a connection.  This
7856 		 * makes the TCP both a listener and acceptor.  When
7857 		 * this connection is closed, we need to set the state
7858 		 * back to TCPS_LISTEN.  Make sure that the eager list
7859 		 * is reinitialized.
7860 		 *
7861 		 * Note that this stream is still bound to the four
7862 		 * tuples of the previous connection in IP.  If a new
7863 		 * SYN with different foreign address comes in, IP will
7864 		 * not find it and will send it to the global queue.  In
7865 		 * the global queue, TCP will do a tcp_lookup_listener()
7866 		 * to find this stream.  This works because this stream
7867 		 * is only removed from connected hash.
7868 		 *
7869 		 */
7870 		tcp->tcp_state = TCPS_LISTEN;
7871 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
7872 		tcp->tcp_eager_next_drop_q0 = tcp;
7873 		tcp->tcp_eager_prev_drop_q0 = tcp;
7874 		tcp->tcp_connp->conn_recv = tcp_conn_request;
7875 		if (tcp->tcp_family == AF_INET6) {
7876 			ASSERT(tcp->tcp_connp->conn_af_isv6);
7877 			(void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP,
7878 			    &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport);
7879 		} else {
7880 			ASSERT(!tcp->tcp_connp->conn_af_isv6);
7881 			(void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP,
7882 			    tcp->tcp_ipha->ipha_src, tcp->tcp_lport);
7883 		}
7884 	} else {
7885 		tcp->tcp_state = TCPS_BOUND;
7886 	}
7887 
7888 	/*
7889 	 * Initialize to default values
7890 	 * Can't fail since enough header template space already allocated
7891 	 * at open().
7892 	 */
7893 	err = tcp_init_values(tcp);
7894 	ASSERT(err == 0);
7895 	/* Restore state in tcp_tcph */
7896 	bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN);
7897 	if (tcp->tcp_ipversion == IPV4_VERSION)
7898 		tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source;
7899 	else
7900 		tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6;
7901 	/*
7902 	 * Copy of the src addr. in tcp_t is needed in tcp_t
7903 	 * since the lookup funcs can only lookup on tcp_t
7904 	 */
7905 	tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6;
7906 
7907 	ASSERT(tcp->tcp_ptpbhn != NULL);
7908 	tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat;
7909 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
7910 	tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ?
7911 	    tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4;
7912 }
7913 
7914 /*
7915  * Force values to zero that need be zero.
7916  * Do not touch values asociated with the BOUND or LISTEN state
7917  * since the connection will end up in that state after the reinit.
7918  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
7919  * structure!
7920  */
7921 static void
7922 tcp_reinit_values(tcp)
7923 	tcp_t *tcp;
7924 {
7925 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7926 
7927 #ifndef	lint
7928 #define	DONTCARE(x)
7929 #define	PRESERVE(x)
7930 #else
7931 #define	DONTCARE(x)	((x) = (x))
7932 #define	PRESERVE(x)	((x) = (x))
7933 #endif	/* lint */
7934 
7935 	PRESERVE(tcp->tcp_bind_hash);
7936 	PRESERVE(tcp->tcp_ptpbhn);
7937 	PRESERVE(tcp->tcp_acceptor_hash);
7938 	PRESERVE(tcp->tcp_ptpahn);
7939 
7940 	/* Should be ASSERT NULL on these with new code! */
7941 	ASSERT(tcp->tcp_time_wait_next == NULL);
7942 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7943 	ASSERT(tcp->tcp_time_wait_expire == 0);
7944 	PRESERVE(tcp->tcp_state);
7945 	PRESERVE(tcp->tcp_rq);
7946 	PRESERVE(tcp->tcp_wq);
7947 
7948 	ASSERT(tcp->tcp_xmit_head == NULL);
7949 	ASSERT(tcp->tcp_xmit_last == NULL);
7950 	ASSERT(tcp->tcp_unsent == 0);
7951 	ASSERT(tcp->tcp_xmit_tail == NULL);
7952 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
7953 
7954 	tcp->tcp_snxt = 0;			/* Displayed in mib */
7955 	tcp->tcp_suna = 0;			/* Displayed in mib */
7956 	tcp->tcp_swnd = 0;
7957 	DONTCARE(tcp->tcp_cwnd);		/* Init in tcp_mss_set */
7958 
7959 	ASSERT(tcp->tcp_ibsegs == 0);
7960 	ASSERT(tcp->tcp_obsegs == 0);
7961 
7962 	if (tcp->tcp_iphc != NULL) {
7963 		ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
7964 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
7965 	}
7966 
7967 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
7968 	DONTCARE(tcp->tcp_hdr_len);		/* Init in tcp_init_values */
7969 	DONTCARE(tcp->tcp_ipha);
7970 	DONTCARE(tcp->tcp_ip6h);
7971 	DONTCARE(tcp->tcp_ip_hdr_len);
7972 	DONTCARE(tcp->tcp_tcph);
7973 	DONTCARE(tcp->tcp_tcp_hdr_len);		/* Init in tcp_init_values */
7974 	tcp->tcp_valid_bits = 0;
7975 
7976 	DONTCARE(tcp->tcp_xmit_hiwater);	/* Init in tcp_init_values */
7977 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
7978 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
7979 	tcp->tcp_last_rcv_lbolt = 0;
7980 
7981 	tcp->tcp_init_cwnd = 0;
7982 
7983 	tcp->tcp_urp_last_valid = 0;
7984 	tcp->tcp_hard_binding = 0;
7985 	tcp->tcp_hard_bound = 0;
7986 	PRESERVE(tcp->tcp_cred);
7987 	PRESERVE(tcp->tcp_cpid);
7988 	PRESERVE(tcp->tcp_open_time);
7989 	PRESERVE(tcp->tcp_exclbind);
7990 
7991 	tcp->tcp_fin_acked = 0;
7992 	tcp->tcp_fin_rcvd = 0;
7993 	tcp->tcp_fin_sent = 0;
7994 	tcp->tcp_ordrel_done = 0;
7995 
7996 	tcp->tcp_debug = 0;
7997 	tcp->tcp_dontroute = 0;
7998 	tcp->tcp_broadcast = 0;
7999 
8000 	tcp->tcp_useloopback = 0;
8001 	tcp->tcp_reuseaddr = 0;
8002 	tcp->tcp_oobinline = 0;
8003 	tcp->tcp_dgram_errind = 0;
8004 
8005 	tcp->tcp_detached = 0;
8006 	tcp->tcp_bind_pending = 0;
8007 	tcp->tcp_unbind_pending = 0;
8008 
8009 	tcp->tcp_snd_ws_ok = B_FALSE;
8010 	tcp->tcp_snd_ts_ok = B_FALSE;
8011 	tcp->tcp_linger = 0;
8012 	tcp->tcp_ka_enabled = 0;
8013 	tcp->tcp_zero_win_probe = 0;
8014 
8015 	tcp->tcp_loopback = 0;
8016 	tcp->tcp_refuse = 0;
8017 	tcp->tcp_localnet = 0;
8018 	tcp->tcp_syn_defense = 0;
8019 	tcp->tcp_set_timer = 0;
8020 
8021 	tcp->tcp_active_open = 0;
8022 	tcp->tcp_rexmit = B_FALSE;
8023 	tcp->tcp_xmit_zc_clean = B_FALSE;
8024 
8025 	tcp->tcp_snd_sack_ok = B_FALSE;
8026 	PRESERVE(tcp->tcp_recvdstaddr);
8027 	tcp->tcp_hwcksum = B_FALSE;
8028 
8029 	tcp->tcp_ire_ill_check_done = B_FALSE;
8030 	DONTCARE(tcp->tcp_maxpsz);		/* Init in tcp_init_values */
8031 
8032 	tcp->tcp_mdt = B_FALSE;
8033 	tcp->tcp_mdt_hdr_head = 0;
8034 	tcp->tcp_mdt_hdr_tail = 0;
8035 
8036 	tcp->tcp_conn_def_q0 = 0;
8037 	tcp->tcp_ip_forward_progress = B_FALSE;
8038 	tcp->tcp_anon_priv_bind = 0;
8039 	tcp->tcp_ecn_ok = B_FALSE;
8040 
8041 	tcp->tcp_cwr = B_FALSE;
8042 	tcp->tcp_ecn_echo_on = B_FALSE;
8043 
8044 	if (tcp->tcp_sack_info != NULL) {
8045 		if (tcp->tcp_notsack_list != NULL) {
8046 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
8047 		}
8048 		kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info);
8049 		tcp->tcp_sack_info = NULL;
8050 	}
8051 
8052 	tcp->tcp_rcv_ws = 0;
8053 	tcp->tcp_snd_ws = 0;
8054 	tcp->tcp_ts_recent = 0;
8055 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
8056 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
8057 	tcp->tcp_if_mtu = 0;
8058 
8059 	ASSERT(tcp->tcp_reass_head == NULL);
8060 	ASSERT(tcp->tcp_reass_tail == NULL);
8061 
8062 	tcp->tcp_cwnd_cnt = 0;
8063 
8064 	ASSERT(tcp->tcp_rcv_list == NULL);
8065 	ASSERT(tcp->tcp_rcv_last_head == NULL);
8066 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
8067 	ASSERT(tcp->tcp_rcv_cnt == 0);
8068 
8069 	DONTCARE(tcp->tcp_cwnd_ssthresh);	/* Init in tcp_adapt_ire */
8070 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
8071 	tcp->tcp_csuna = 0;
8072 
8073 	tcp->tcp_rto = 0;			/* Displayed in MIB */
8074 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
8075 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
8076 	tcp->tcp_rtt_update = 0;
8077 
8078 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
8079 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
8080 
8081 	tcp->tcp_rack = 0;			/* Displayed in mib */
8082 	tcp->tcp_rack_cnt = 0;
8083 	tcp->tcp_rack_cur_max = 0;
8084 	tcp->tcp_rack_abs_max = 0;
8085 
8086 	tcp->tcp_max_swnd = 0;
8087 
8088 	ASSERT(tcp->tcp_listener == NULL);
8089 
8090 	DONTCARE(tcp->tcp_xmit_lowater);	/* Init in tcp_init_values */
8091 
8092 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
8093 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
8094 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
8095 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
8096 
8097 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
8098 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
8099 	PRESERVE(tcp->tcp_conn_req_max);
8100 	PRESERVE(tcp->tcp_conn_req_seqnum);
8101 
8102 	DONTCARE(tcp->tcp_ip_hdr_len);		/* Init in tcp_init_values */
8103 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
8104 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
8105 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
8106 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
8107 
8108 	tcp->tcp_lingertime = 0;
8109 
8110 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
8111 	ASSERT(tcp->tcp_urp_mp == NULL);
8112 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
8113 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
8114 
8115 	ASSERT(tcp->tcp_eager_next_q == NULL);
8116 	ASSERT(tcp->tcp_eager_last_q == NULL);
8117 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
8118 	    tcp->tcp_eager_prev_q0 == NULL) ||
8119 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
8120 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
8121 
8122 	ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
8123 	    tcp->tcp_eager_prev_drop_q0 == NULL) ||
8124 	    tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
8125 
8126 	tcp->tcp_client_errno = 0;
8127 
8128 	DONTCARE(tcp->tcp_sum);			/* Init in tcp_init_values */
8129 
8130 	tcp->tcp_remote_v6 = ipv6_all_zeros;	/* Displayed in MIB */
8131 
8132 	PRESERVE(tcp->tcp_bound_source_v6);
8133 	tcp->tcp_last_sent_len = 0;
8134 	tcp->tcp_dupack_cnt = 0;
8135 
8136 	tcp->tcp_fport = 0;			/* Displayed in MIB */
8137 	PRESERVE(tcp->tcp_lport);
8138 
8139 	PRESERVE(tcp->tcp_acceptor_lockp);
8140 
8141 	ASSERT(tcp->tcp_ordrel_mp == NULL);
8142 	PRESERVE(tcp->tcp_acceptor_id);
8143 	DONTCARE(tcp->tcp_ipsec_overhead);
8144 
8145 	PRESERVE(tcp->tcp_family);
8146 	if (tcp->tcp_family == AF_INET6) {
8147 		tcp->tcp_ipversion = IPV6_VERSION;
8148 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
8149 	} else {
8150 		tcp->tcp_ipversion = IPV4_VERSION;
8151 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
8152 	}
8153 
8154 	tcp->tcp_bound_if = 0;
8155 	tcp->tcp_ipv6_recvancillary = 0;
8156 	tcp->tcp_recvifindex = 0;
8157 	tcp->tcp_recvhops = 0;
8158 	tcp->tcp_closed = 0;
8159 	tcp->tcp_cleandeathtag = 0;
8160 	if (tcp->tcp_hopopts != NULL) {
8161 		mi_free(tcp->tcp_hopopts);
8162 		tcp->tcp_hopopts = NULL;
8163 		tcp->tcp_hopoptslen = 0;
8164 	}
8165 	ASSERT(tcp->tcp_hopoptslen == 0);
8166 	if (tcp->tcp_dstopts != NULL) {
8167 		mi_free(tcp->tcp_dstopts);
8168 		tcp->tcp_dstopts = NULL;
8169 		tcp->tcp_dstoptslen = 0;
8170 	}
8171 	ASSERT(tcp->tcp_dstoptslen == 0);
8172 	if (tcp->tcp_rtdstopts != NULL) {
8173 		mi_free(tcp->tcp_rtdstopts);
8174 		tcp->tcp_rtdstopts = NULL;
8175 		tcp->tcp_rtdstoptslen = 0;
8176 	}
8177 	ASSERT(tcp->tcp_rtdstoptslen == 0);
8178 	if (tcp->tcp_rthdr != NULL) {
8179 		mi_free(tcp->tcp_rthdr);
8180 		tcp->tcp_rthdr = NULL;
8181 		tcp->tcp_rthdrlen = 0;
8182 	}
8183 	ASSERT(tcp->tcp_rthdrlen == 0);
8184 	PRESERVE(tcp->tcp_drop_opt_ack_cnt);
8185 
8186 	/* Reset fusion-related fields */
8187 	tcp->tcp_fused = B_FALSE;
8188 	tcp->tcp_unfusable = B_FALSE;
8189 	tcp->tcp_fused_sigurg = B_FALSE;
8190 	tcp->tcp_direct_sockfs = B_FALSE;
8191 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
8192 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
8193 	tcp->tcp_loopback_peer = NULL;
8194 	tcp->tcp_fuse_rcv_hiwater = 0;
8195 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
8196 	tcp->tcp_fuse_rcv_unread_cnt = 0;
8197 
8198 	tcp->tcp_lso = B_FALSE;
8199 
8200 	tcp->tcp_in_ack_unsent = 0;
8201 	tcp->tcp_cork = B_FALSE;
8202 	tcp->tcp_tconnind_started = B_FALSE;
8203 
8204 	PRESERVE(tcp->tcp_squeue_bytes);
8205 
8206 	ASSERT(tcp->tcp_kssl_ctx == NULL);
8207 	ASSERT(!tcp->tcp_kssl_pending);
8208 	PRESERVE(tcp->tcp_kssl_ent);
8209 
8210 	/* Sodirect */
8211 	tcp->tcp_sodirect = NULL;
8212 
8213 	tcp->tcp_closemp_used = B_FALSE;
8214 
8215 	PRESERVE(tcp->tcp_rsrv_mp);
8216 	PRESERVE(tcp->tcp_rsrv_mp_lock);
8217 
8218 #ifdef DEBUG
8219 	DONTCARE(tcp->tcmp_stk[0]);
8220 #endif
8221 
8222 
8223 #undef	DONTCARE
8224 #undef	PRESERVE
8225 }
8226 
8227 /*
8228  * Allocate necessary resources and initialize state vector.
8229  * Guaranteed not to fail so that when an error is returned,
8230  * the caller doesn't need to do any additional cleanup.
8231  */
8232 int
8233 tcp_init(tcp_t *tcp, queue_t *q)
8234 {
8235 	int	err;
8236 
8237 	tcp->tcp_rq = q;
8238 	tcp->tcp_wq = WR(q);
8239 	tcp->tcp_state = TCPS_IDLE;
8240 	if ((err = tcp_init_values(tcp)) != 0)
8241 		tcp_timers_stop(tcp);
8242 	return (err);
8243 }
8244 
8245 static int
8246 tcp_init_values(tcp_t *tcp)
8247 {
8248 	int	err;
8249 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8250 
8251 	ASSERT((tcp->tcp_family == AF_INET &&
8252 	    tcp->tcp_ipversion == IPV4_VERSION) ||
8253 	    (tcp->tcp_family == AF_INET6 &&
8254 	    (tcp->tcp_ipversion == IPV4_VERSION ||
8255 	    tcp->tcp_ipversion == IPV6_VERSION)));
8256 
8257 	/*
8258 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
8259 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
8260 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
8261 	 * during first few transmissions of a connection as seen in slow
8262 	 * links.
8263 	 */
8264 	tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2;
8265 	tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1;
8266 	tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
8267 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
8268 	    tcps->tcps_conn_grace_period;
8269 	if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min)
8270 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
8271 	tcp->tcp_timer_backoff = 0;
8272 	tcp->tcp_ms_we_have_waited = 0;
8273 	tcp->tcp_last_recv_time = lbolt;
8274 	tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_;
8275 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
8276 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
8277 
8278 	tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier;
8279 
8280 	tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval;
8281 	tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval;
8282 	tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval;
8283 	/*
8284 	 * Fix it to tcp_ip_abort_linterval later if it turns out to be a
8285 	 * passive open.
8286 	 */
8287 	tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval;
8288 
8289 	tcp->tcp_naglim = tcps->tcps_naglim_def;
8290 
8291 	/* NOTE:  ISS is now set in tcp_adapt_ire(). */
8292 
8293 	tcp->tcp_mdt_hdr_head = 0;
8294 	tcp->tcp_mdt_hdr_tail = 0;
8295 
8296 	/* Reset fusion-related fields */
8297 	tcp->tcp_fused = B_FALSE;
8298 	tcp->tcp_unfusable = B_FALSE;
8299 	tcp->tcp_fused_sigurg = B_FALSE;
8300 	tcp->tcp_direct_sockfs = B_FALSE;
8301 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
8302 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
8303 	tcp->tcp_loopback_peer = NULL;
8304 	tcp->tcp_fuse_rcv_hiwater = 0;
8305 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
8306 	tcp->tcp_fuse_rcv_unread_cnt = 0;
8307 
8308 	/* Sodirect */
8309 	tcp->tcp_sodirect = NULL;
8310 
8311 	/* Initialize the header template */
8312 	if (tcp->tcp_ipversion == IPV4_VERSION) {
8313 		err = tcp_header_init_ipv4(tcp);
8314 	} else {
8315 		err = tcp_header_init_ipv6(tcp);
8316 	}
8317 	if (err)
8318 		return (err);
8319 
8320 	/*
8321 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
8322 	 * down tcp_rwnd. tcp_adapt_ire() will set the right value later.
8323 	 */
8324 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
8325 	tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat;
8326 	tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat;
8327 
8328 	tcp->tcp_cork = B_FALSE;
8329 	/*
8330 	 * Init the tcp_debug option.  This value determines whether TCP
8331 	 * calls strlog() to print out debug messages.  Doing this
8332 	 * initialization here means that this value is not inherited thru
8333 	 * tcp_reinit().
8334 	 */
8335 	tcp->tcp_debug = tcps->tcps_dbg;
8336 
8337 	tcp->tcp_ka_interval = tcps->tcps_keepalive_interval;
8338 	tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval;
8339 
8340 	return (0);
8341 }
8342 
8343 /*
8344  * Initialize the IPv4 header. Loses any record of any IP options.
8345  */
8346 static int
8347 tcp_header_init_ipv4(tcp_t *tcp)
8348 {
8349 	tcph_t		*tcph;
8350 	uint32_t	sum;
8351 	conn_t		*connp;
8352 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8353 
8354 	/*
8355 	 * This is a simple initialization. If there's
8356 	 * already a template, it should never be too small,
8357 	 * so reuse it.  Otherwise, allocate space for the new one.
8358 	 */
8359 	if (tcp->tcp_iphc == NULL) {
8360 		ASSERT(tcp->tcp_iphc_len == 0);
8361 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8362 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8363 		if (tcp->tcp_iphc == NULL) {
8364 			tcp->tcp_iphc_len = 0;
8365 			return (ENOMEM);
8366 		}
8367 	}
8368 
8369 	/* options are gone; may need a new label */
8370 	connp = tcp->tcp_connp;
8371 	connp->conn_mlp_type = mlptSingle;
8372 	connp->conn_ulp_labeled = !is_system_labeled();
8373 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8374 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
8375 	tcp->tcp_ip6h = NULL;
8376 	tcp->tcp_ipversion = IPV4_VERSION;
8377 	tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t);
8378 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8379 	tcp->tcp_ip_hdr_len = sizeof (ipha_t);
8380 	tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t));
8381 	tcp->tcp_ipha->ipha_version_and_hdr_length
8382 	    = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS;
8383 	tcp->tcp_ipha->ipha_ident = 0;
8384 
8385 	tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
8386 	tcp->tcp_tos = 0;
8387 	tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
8388 	tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
8389 	tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP;
8390 
8391 	tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t));
8392 	tcp->tcp_tcph = tcph;
8393 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8394 	/*
8395 	 * IP wants our header length in the checksum field to
8396 	 * allow it to perform a single pseudo-header+checksum
8397 	 * calculation on behalf of TCP.
8398 	 * Include the adjustment for a source route once IP_OPTIONS is set.
8399 	 */
8400 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8401 	sum = (sum >> 16) + (sum & 0xFFFF);
8402 	U16_TO_ABE16(sum, tcph->th_sum);
8403 	return (0);
8404 }
8405 
8406 /*
8407  * Initialize the IPv6 header. Loses any record of any IPv6 extension headers.
8408  */
8409 static int
8410 tcp_header_init_ipv6(tcp_t *tcp)
8411 {
8412 	tcph_t	*tcph;
8413 	uint32_t	sum;
8414 	conn_t	*connp;
8415 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8416 
8417 	/*
8418 	 * This is a simple initialization. If there's
8419 	 * already a template, it should never be too small,
8420 	 * so reuse it. Otherwise, allocate space for the new one.
8421 	 * Ensure that there is enough space to "downgrade" the tcp_t
8422 	 * to an IPv4 tcp_t. This requires having space for a full load
8423 	 * of IPv4 options, as well as a full load of TCP options
8424 	 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space
8425 	 * than a v6 header and a TCP header with a full load of TCP options
8426 	 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes).
8427 	 * We want to avoid reallocation in the "downgraded" case when
8428 	 * processing outbound IPv4 options.
8429 	 */
8430 	if (tcp->tcp_iphc == NULL) {
8431 		ASSERT(tcp->tcp_iphc_len == 0);
8432 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8433 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8434 		if (tcp->tcp_iphc == NULL) {
8435 			tcp->tcp_iphc_len = 0;
8436 			return (ENOMEM);
8437 		}
8438 	}
8439 
8440 	/* options are gone; may need a new label */
8441 	connp = tcp->tcp_connp;
8442 	connp->conn_mlp_type = mlptSingle;
8443 	connp->conn_ulp_labeled = !is_system_labeled();
8444 
8445 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8446 	tcp->tcp_ipversion = IPV6_VERSION;
8447 	tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t);
8448 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8449 	tcp->tcp_ip_hdr_len = IPV6_HDR_LEN;
8450 	tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
8451 	tcp->tcp_ipha = NULL;
8452 
8453 	/* Initialize the header template */
8454 
8455 	tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
8456 	tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t));
8457 	tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP;
8458 	tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit;
8459 
8460 	tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN);
8461 	tcp->tcp_tcph = tcph;
8462 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8463 	/*
8464 	 * IP wants our header length in the checksum field to
8465 	 * allow it to perform a single psuedo-header+checksum
8466 	 * calculation on behalf of TCP.
8467 	 * Include the adjustment for a source route when IPV6_RTHDR is set.
8468 	 */
8469 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8470 	sum = (sum >> 16) + (sum & 0xFFFF);
8471 	U16_TO_ABE16(sum, tcph->th_sum);
8472 	return (0);
8473 }
8474 
8475 /* At minimum we need 8 bytes in the TCP header for the lookup */
8476 #define	ICMP_MIN_TCP_HDR	8
8477 
8478 /*
8479  * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages
8480  * passed up by IP. The message is always received on the correct tcp_t.
8481  * Assumes that IP has pulled up everything up to and including the ICMP header.
8482  */
8483 void
8484 tcp_icmp_error(tcp_t *tcp, mblk_t *mp)
8485 {
8486 	icmph_t *icmph;
8487 	ipha_t	*ipha;
8488 	int	iph_hdr_length;
8489 	tcph_t	*tcph;
8490 	boolean_t ipsec_mctl = B_FALSE;
8491 	boolean_t secure;
8492 	mblk_t *first_mp = mp;
8493 	uint32_t new_mss;
8494 	uint32_t ratio;
8495 	size_t mp_size = MBLKL(mp);
8496 	uint32_t seg_seq;
8497 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8498 
8499 	/* Assume IP provides aligned packets - otherwise toss */
8500 	if (!OK_32PTR(mp->b_rptr)) {
8501 		freemsg(mp);
8502 		return;
8503 	}
8504 
8505 	/*
8506 	 * Since ICMP errors are normal data marked with M_CTL when sent
8507 	 * to TCP or UDP, we have to look for a IPSEC_IN value to identify
8508 	 * packets starting with an ipsec_info_t, see ipsec_info.h.
8509 	 */
8510 	if ((mp_size == sizeof (ipsec_info_t)) &&
8511 	    (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) {
8512 		ASSERT(mp->b_cont != NULL);
8513 		mp = mp->b_cont;
8514 		/* IP should have done this */
8515 		ASSERT(OK_32PTR(mp->b_rptr));
8516 		mp_size = MBLKL(mp);
8517 		ipsec_mctl = B_TRUE;
8518 	}
8519 
8520 	/*
8521 	 * Verify that we have a complete outer IP header. If not, drop it.
8522 	 */
8523 	if (mp_size < sizeof (ipha_t)) {
8524 noticmpv4:
8525 		freemsg(first_mp);
8526 		return;
8527 	}
8528 
8529 	ipha = (ipha_t *)mp->b_rptr;
8530 	/*
8531 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
8532 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
8533 	 */
8534 	switch (IPH_HDR_VERSION(ipha)) {
8535 	case IPV6_VERSION:
8536 		tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl);
8537 		return;
8538 	case IPV4_VERSION:
8539 		break;
8540 	default:
8541 		goto noticmpv4;
8542 	}
8543 
8544 	/* Skip past the outer IP and ICMP headers */
8545 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8546 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
8547 	/*
8548 	 * If we don't have the correct outer IP header length or if the ULP
8549 	 * is not IPPROTO_ICMP or if we don't have a complete inner IP header
8550 	 * send it upstream.
8551 	 */
8552 	if (iph_hdr_length < sizeof (ipha_t) ||
8553 	    ipha->ipha_protocol != IPPROTO_ICMP ||
8554 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
8555 		goto noticmpv4;
8556 	}
8557 	ipha = (ipha_t *)&icmph[1];
8558 
8559 	/* Skip past the inner IP and find the ULP header */
8560 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8561 	tcph = (tcph_t *)((char *)ipha + iph_hdr_length);
8562 	/*
8563 	 * If we don't have the correct inner IP header length or if the ULP
8564 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
8565 	 * bytes of TCP header, drop it.
8566 	 */
8567 	if (iph_hdr_length < sizeof (ipha_t) ||
8568 	    ipha->ipha_protocol != IPPROTO_TCP ||
8569 	    (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) {
8570 		goto noticmpv4;
8571 	}
8572 
8573 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
8574 		if (ipsec_mctl) {
8575 			secure = ipsec_in_is_secure(first_mp);
8576 		} else {
8577 			secure = B_FALSE;
8578 		}
8579 		if (secure) {
8580 			/*
8581 			 * If we are willing to accept this in clear
8582 			 * we don't have to verify policy.
8583 			 */
8584 			if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) {
8585 				if (!tcp_check_policy(tcp, first_mp,
8586 				    ipha, NULL, secure, ipsec_mctl)) {
8587 					/*
8588 					 * tcp_check_policy called
8589 					 * ip_drop_packet() on failure.
8590 					 */
8591 					return;
8592 				}
8593 			}
8594 		}
8595 	} else if (ipsec_mctl) {
8596 		/*
8597 		 * This is a hard_bound connection. IP has already
8598 		 * verified policy. We don't have to do it again.
8599 		 */
8600 		freeb(first_mp);
8601 		first_mp = mp;
8602 		ipsec_mctl = B_FALSE;
8603 	}
8604 
8605 	seg_seq = ABE32_TO_U32(tcph->th_seq);
8606 	/*
8607 	 * TCP SHOULD check that the TCP sequence number contained in
8608 	 * payload of the ICMP error message is within the range
8609 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8610 	 */
8611 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8612 		/*
8613 		 * If the ICMP message is bogus, should we kill the
8614 		 * connection, or should we just drop the bogus ICMP
8615 		 * message? It would probably make more sense to just
8616 		 * drop the message so that if this one managed to get
8617 		 * in, the real connection should not suffer.
8618 		 */
8619 		goto noticmpv4;
8620 	}
8621 
8622 	switch (icmph->icmph_type) {
8623 	case ICMP_DEST_UNREACHABLE:
8624 		switch (icmph->icmph_code) {
8625 		case ICMP_FRAGMENTATION_NEEDED:
8626 			/*
8627 			 * Reduce the MSS based on the new MTU.  This will
8628 			 * eliminate any fragmentation locally.
8629 			 * N.B.  There may well be some funny side-effects on
8630 			 * the local send policy and the remote receive policy.
8631 			 * Pending further research, we provide
8632 			 * tcp_ignore_path_mtu just in case this proves
8633 			 * disastrous somewhere.
8634 			 *
8635 			 * After updating the MSS, retransmit part of the
8636 			 * dropped segment using the new mss by calling
8637 			 * tcp_wput_data().  Need to adjust all those
8638 			 * params to make sure tcp_wput_data() work properly.
8639 			 */
8640 			if (tcps->tcps_ignore_path_mtu)
8641 				break;
8642 
8643 			/*
8644 			 * Decrease the MSS by time stamp options
8645 			 * IP options and IPSEC options. tcp_hdr_len
8646 			 * includes time stamp option and IP option
8647 			 * length.
8648 			 */
8649 
8650 			new_mss = ntohs(icmph->icmph_du_mtu) -
8651 			    tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead;
8652 
8653 			/*
8654 			 * Only update the MSS if the new one is
8655 			 * smaller than the previous one.  This is
8656 			 * to avoid problems when getting multiple
8657 			 * ICMP errors for the same MTU.
8658 			 */
8659 			if (new_mss >= tcp->tcp_mss)
8660 				break;
8661 
8662 			/*
8663 			 * Stop doing PMTU if new_mss is less than 68
8664 			 * or less than tcp_mss_min.
8665 			 * The value 68 comes from rfc 1191.
8666 			 */
8667 			if (new_mss < MAX(68, tcps->tcps_mss_min))
8668 				tcp->tcp_ipha->ipha_fragment_offset_and_flags =
8669 				    0;
8670 
8671 			ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8672 			ASSERT(ratio >= 1);
8673 			tcp_mss_set(tcp, new_mss, B_TRUE);
8674 
8675 			/*
8676 			 * Make sure we have something to
8677 			 * send.
8678 			 */
8679 			if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8680 			    (tcp->tcp_xmit_head != NULL)) {
8681 				/*
8682 				 * Shrink tcp_cwnd in
8683 				 * proportion to the old MSS/new MSS.
8684 				 */
8685 				tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8686 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8687 				    (tcp->tcp_unsent == 0)) {
8688 					tcp->tcp_rexmit_max = tcp->tcp_fss;
8689 				} else {
8690 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
8691 				}
8692 				tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8693 				tcp->tcp_rexmit = B_TRUE;
8694 				tcp->tcp_dupack_cnt = 0;
8695 				tcp->tcp_snd_burst = TCP_CWND_SS;
8696 				tcp_ss_rexmit(tcp);
8697 			}
8698 			break;
8699 		case ICMP_PORT_UNREACHABLE:
8700 		case ICMP_PROTOCOL_UNREACHABLE:
8701 			switch (tcp->tcp_state) {
8702 			case TCPS_SYN_SENT:
8703 			case TCPS_SYN_RCVD:
8704 				/*
8705 				 * ICMP can snipe away incipient
8706 				 * TCP connections as long as
8707 				 * seq number is same as initial
8708 				 * send seq number.
8709 				 */
8710 				if (seg_seq == tcp->tcp_iss) {
8711 					(void) tcp_clean_death(tcp,
8712 					    ECONNREFUSED, 6);
8713 				}
8714 				break;
8715 			}
8716 			break;
8717 		case ICMP_HOST_UNREACHABLE:
8718 		case ICMP_NET_UNREACHABLE:
8719 			/* Record the error in case we finally time out. */
8720 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
8721 				tcp->tcp_client_errno = EHOSTUNREACH;
8722 			else
8723 				tcp->tcp_client_errno = ENETUNREACH;
8724 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
8725 				if (tcp->tcp_listener != NULL &&
8726 				    tcp->tcp_listener->tcp_syn_defense) {
8727 					/*
8728 					 * Ditch the half-open connection if we
8729 					 * suspect a SYN attack is under way.
8730 					 */
8731 					tcp_ip_ire_mark_advice(tcp);
8732 					(void) tcp_clean_death(tcp,
8733 					    tcp->tcp_client_errno, 7);
8734 				}
8735 			}
8736 			break;
8737 		default:
8738 			break;
8739 		}
8740 		break;
8741 	case ICMP_SOURCE_QUENCH: {
8742 		/*
8743 		 * use a global boolean to control
8744 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
8745 		 * The default is false.
8746 		 */
8747 		if (tcp_icmp_source_quench) {
8748 			/*
8749 			 * Reduce the sending rate as if we got a
8750 			 * retransmit timeout
8751 			 */
8752 			uint32_t npkt;
8753 
8754 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
8755 			    tcp->tcp_mss;
8756 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
8757 			tcp->tcp_cwnd = tcp->tcp_mss;
8758 			tcp->tcp_cwnd_cnt = 0;
8759 		}
8760 		break;
8761 	}
8762 	}
8763 	freemsg(first_mp);
8764 }
8765 
8766 /*
8767  * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6
8768  * error messages passed up by IP.
8769  * Assumes that IP has pulled up all the extension headers as well
8770  * as the ICMPv6 header.
8771  */
8772 static void
8773 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl)
8774 {
8775 	icmp6_t *icmp6;
8776 	ip6_t	*ip6h;
8777 	uint16_t	iph_hdr_length;
8778 	tcpha_t	*tcpha;
8779 	uint8_t	*nexthdrp;
8780 	uint32_t new_mss;
8781 	uint32_t ratio;
8782 	boolean_t secure;
8783 	mblk_t *first_mp = mp;
8784 	size_t mp_size;
8785 	uint32_t seg_seq;
8786 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8787 
8788 	/*
8789 	 * The caller has determined if this is an IPSEC_IN packet and
8790 	 * set ipsec_mctl appropriately (see tcp_icmp_error).
8791 	 */
8792 	if (ipsec_mctl)
8793 		mp = mp->b_cont;
8794 
8795 	mp_size = MBLKL(mp);
8796 
8797 	/*
8798 	 * Verify that we have a complete IP header. If not, send it upstream.
8799 	 */
8800 	if (mp_size < sizeof (ip6_t)) {
8801 noticmpv6:
8802 		freemsg(first_mp);
8803 		return;
8804 	}
8805 
8806 	/*
8807 	 * Verify this is an ICMPV6 packet, else send it upstream.
8808 	 */
8809 	ip6h = (ip6_t *)mp->b_rptr;
8810 	if (ip6h->ip6_nxt == IPPROTO_ICMPV6) {
8811 		iph_hdr_length = IPV6_HDR_LEN;
8812 	} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
8813 	    &nexthdrp) ||
8814 	    *nexthdrp != IPPROTO_ICMPV6) {
8815 		goto noticmpv6;
8816 	}
8817 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
8818 	ip6h = (ip6_t *)&icmp6[1];
8819 	/*
8820 	 * Verify if we have a complete ICMP and inner IP header.
8821 	 */
8822 	if ((uchar_t *)&ip6h[1] > mp->b_wptr)
8823 		goto noticmpv6;
8824 
8825 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
8826 		goto noticmpv6;
8827 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
8828 	/*
8829 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
8830 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
8831 	 * packet.
8832 	 */
8833 	if ((*nexthdrp != IPPROTO_TCP) ||
8834 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
8835 		goto noticmpv6;
8836 	}
8837 
8838 	/*
8839 	 * ICMP errors come on the right queue or come on
8840 	 * listener/global queue for detached connections and
8841 	 * get switched to the right queue. If it comes on the
8842 	 * right queue, policy check has already been done by IP
8843 	 * and thus free the first_mp without verifying the policy.
8844 	 * If it has come for a non-hard bound connection, we need
8845 	 * to verify policy as IP may not have done it.
8846 	 */
8847 	if (!tcp->tcp_hard_bound) {
8848 		if (ipsec_mctl) {
8849 			secure = ipsec_in_is_secure(first_mp);
8850 		} else {
8851 			secure = B_FALSE;
8852 		}
8853 		if (secure) {
8854 			/*
8855 			 * If we are willing to accept this in clear
8856 			 * we don't have to verify policy.
8857 			 */
8858 			if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) {
8859 				if (!tcp_check_policy(tcp, first_mp,
8860 				    NULL, ip6h, secure, ipsec_mctl)) {
8861 					/*
8862 					 * tcp_check_policy called
8863 					 * ip_drop_packet() on failure.
8864 					 */
8865 					return;
8866 				}
8867 			}
8868 		}
8869 	} else if (ipsec_mctl) {
8870 		/*
8871 		 * This is a hard_bound connection. IP has already
8872 		 * verified policy. We don't have to do it again.
8873 		 */
8874 		freeb(first_mp);
8875 		first_mp = mp;
8876 		ipsec_mctl = B_FALSE;
8877 	}
8878 
8879 	seg_seq = ntohl(tcpha->tha_seq);
8880 	/*
8881 	 * TCP SHOULD check that the TCP sequence number contained in
8882 	 * payload of the ICMP error message is within the range
8883 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8884 	 */
8885 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8886 		/*
8887 		 * If the ICMP message is bogus, should we kill the
8888 		 * connection, or should we just drop the bogus ICMP
8889 		 * message? It would probably make more sense to just
8890 		 * drop the message so that if this one managed to get
8891 		 * in, the real connection should not suffer.
8892 		 */
8893 		goto noticmpv6;
8894 	}
8895 
8896 	switch (icmp6->icmp6_type) {
8897 	case ICMP6_PACKET_TOO_BIG:
8898 		/*
8899 		 * Reduce the MSS based on the new MTU.  This will
8900 		 * eliminate any fragmentation locally.
8901 		 * N.B.  There may well be some funny side-effects on
8902 		 * the local send policy and the remote receive policy.
8903 		 * Pending further research, we provide
8904 		 * tcp_ignore_path_mtu just in case this proves
8905 		 * disastrous somewhere.
8906 		 *
8907 		 * After updating the MSS, retransmit part of the
8908 		 * dropped segment using the new mss by calling
8909 		 * tcp_wput_data().  Need to adjust all those
8910 		 * params to make sure tcp_wput_data() work properly.
8911 		 */
8912 		if (tcps->tcps_ignore_path_mtu)
8913 			break;
8914 
8915 		/*
8916 		 * Decrease the MSS by time stamp options
8917 		 * IP options and IPSEC options. tcp_hdr_len
8918 		 * includes time stamp option and IP option
8919 		 * length.
8920 		 */
8921 		new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len -
8922 		    tcp->tcp_ipsec_overhead;
8923 
8924 		/*
8925 		 * Only update the MSS if the new one is
8926 		 * smaller than the previous one.  This is
8927 		 * to avoid problems when getting multiple
8928 		 * ICMP errors for the same MTU.
8929 		 */
8930 		if (new_mss >= tcp->tcp_mss)
8931 			break;
8932 
8933 		ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8934 		ASSERT(ratio >= 1);
8935 		tcp_mss_set(tcp, new_mss, B_TRUE);
8936 
8937 		/*
8938 		 * Make sure we have something to
8939 		 * send.
8940 		 */
8941 		if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8942 		    (tcp->tcp_xmit_head != NULL)) {
8943 			/*
8944 			 * Shrink tcp_cwnd in
8945 			 * proportion to the old MSS/new MSS.
8946 			 */
8947 			tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8948 			if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8949 			    (tcp->tcp_unsent == 0)) {
8950 				tcp->tcp_rexmit_max = tcp->tcp_fss;
8951 			} else {
8952 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
8953 			}
8954 			tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8955 			tcp->tcp_rexmit = B_TRUE;
8956 			tcp->tcp_dupack_cnt = 0;
8957 			tcp->tcp_snd_burst = TCP_CWND_SS;
8958 			tcp_ss_rexmit(tcp);
8959 		}
8960 		break;
8961 
8962 	case ICMP6_DST_UNREACH:
8963 		switch (icmp6->icmp6_code) {
8964 		case ICMP6_DST_UNREACH_NOPORT:
8965 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8966 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8967 			    (seg_seq == tcp->tcp_iss)) {
8968 				(void) tcp_clean_death(tcp,
8969 				    ECONNREFUSED, 8);
8970 			}
8971 			break;
8972 
8973 		case ICMP6_DST_UNREACH_ADMIN:
8974 		case ICMP6_DST_UNREACH_NOROUTE:
8975 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
8976 		case ICMP6_DST_UNREACH_ADDR:
8977 			/* Record the error in case we finally time out. */
8978 			tcp->tcp_client_errno = EHOSTUNREACH;
8979 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8980 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8981 			    (seg_seq == tcp->tcp_iss)) {
8982 				if (tcp->tcp_listener != NULL &&
8983 				    tcp->tcp_listener->tcp_syn_defense) {
8984 					/*
8985 					 * Ditch the half-open connection if we
8986 					 * suspect a SYN attack is under way.
8987 					 */
8988 					tcp_ip_ire_mark_advice(tcp);
8989 					(void) tcp_clean_death(tcp,
8990 					    tcp->tcp_client_errno, 9);
8991 				}
8992 			}
8993 
8994 
8995 			break;
8996 		default:
8997 			break;
8998 		}
8999 		break;
9000 
9001 	case ICMP6_PARAM_PROB:
9002 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
9003 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
9004 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
9005 		    (uchar_t *)nexthdrp) {
9006 			if (tcp->tcp_state == TCPS_SYN_SENT ||
9007 			    tcp->tcp_state == TCPS_SYN_RCVD) {
9008 				(void) tcp_clean_death(tcp,
9009 				    ECONNREFUSED, 10);
9010 			}
9011 			break;
9012 		}
9013 		break;
9014 
9015 	case ICMP6_TIME_EXCEEDED:
9016 	default:
9017 		break;
9018 	}
9019 	freemsg(first_mp);
9020 }
9021 
9022 /*
9023  * IP recognizes seven kinds of bind requests:
9024  *
9025  * - A zero-length address binds only to the protocol number.
9026  *
9027  * - A 4-byte address is treated as a request to
9028  * validate that the address is a valid local IPv4
9029  * address, appropriate for an application to bind to.
9030  * IP does the verification, but does not make any note
9031  * of the address at this time.
9032  *
9033  * - A 16-byte address contains is treated as a request
9034  * to validate a local IPv6 address, as the 4-byte
9035  * address case above.
9036  *
9037  * - A 16-byte sockaddr_in to validate the local IPv4 address and also
9038  * use it for the inbound fanout of packets.
9039  *
9040  * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also
9041  * use it for the inbound fanout of packets.
9042  *
9043  * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout
9044  * information consisting of local and remote addresses
9045  * and ports.  In this case, the addresses are both
9046  * validated as appropriate for this operation, and, if
9047  * so, the information is retained for use in the
9048  * inbound fanout.
9049  *
9050  * - A 36-byte address address (ipa6_conn_t) containing complete IPv6
9051  * fanout information, like the 12-byte case above.
9052  *
9053  * IP will also fill in the IRE request mblk with information
9054  * regarding our peer.  In all cases, we notify IP of our protocol
9055  * type by appending a single protocol byte to the bind request.
9056  */
9057 static mblk_t *
9058 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length)
9059 {
9060 	char	*cp;
9061 	mblk_t	*mp;
9062 	struct T_bind_req *tbr;
9063 	ipa_conn_t	*ac;
9064 	ipa6_conn_t	*ac6;
9065 	sin_t		*sin;
9066 	sin6_t		*sin6;
9067 
9068 	ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ);
9069 	ASSERT((tcp->tcp_family == AF_INET &&
9070 	    tcp->tcp_ipversion == IPV4_VERSION) ||
9071 	    (tcp->tcp_family == AF_INET6 &&
9072 	    (tcp->tcp_ipversion == IPV4_VERSION ||
9073 	    tcp->tcp_ipversion == IPV6_VERSION)));
9074 
9075 	mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI);
9076 	if (!mp)
9077 		return (mp);
9078 	mp->b_datap->db_type = M_PROTO;
9079 	tbr = (struct T_bind_req *)mp->b_rptr;
9080 	tbr->PRIM_type = bind_prim;
9081 	tbr->ADDR_offset = sizeof (*tbr);
9082 	tbr->CONIND_number = 0;
9083 	tbr->ADDR_length = addr_length;
9084 	cp = (char *)&tbr[1];
9085 	switch (addr_length) {
9086 	case sizeof (ipa_conn_t):
9087 		ASSERT(tcp->tcp_family == AF_INET);
9088 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
9089 
9090 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
9091 		if (mp->b_cont == NULL) {
9092 			freemsg(mp);
9093 			return (NULL);
9094 		}
9095 		mp->b_cont->b_wptr += sizeof (ire_t);
9096 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
9097 
9098 		/* cp known to be 32 bit aligned */
9099 		ac = (ipa_conn_t *)cp;
9100 		ac->ac_laddr = tcp->tcp_ipha->ipha_src;
9101 		ac->ac_faddr = tcp->tcp_remote;
9102 		ac->ac_fport = tcp->tcp_fport;
9103 		ac->ac_lport = tcp->tcp_lport;
9104 		tcp->tcp_hard_binding = 1;
9105 		break;
9106 
9107 	case sizeof (ipa6_conn_t):
9108 		ASSERT(tcp->tcp_family == AF_INET6);
9109 
9110 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
9111 		if (mp->b_cont == NULL) {
9112 			freemsg(mp);
9113 			return (NULL);
9114 		}
9115 		mp->b_cont->b_wptr += sizeof (ire_t);
9116 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
9117 
9118 		/* cp known to be 32 bit aligned */
9119 		ac6 = (ipa6_conn_t *)cp;
9120 		if (tcp->tcp_ipversion == IPV4_VERSION) {
9121 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
9122 			    &ac6->ac6_laddr);
9123 		} else {
9124 			ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src;
9125 		}
9126 		ac6->ac6_faddr = tcp->tcp_remote_v6;
9127 		ac6->ac6_fport = tcp->tcp_fport;
9128 		ac6->ac6_lport = tcp->tcp_lport;
9129 		tcp->tcp_hard_binding = 1;
9130 		break;
9131 
9132 	case sizeof (sin_t):
9133 		/*
9134 		 * NOTE: IPV6_ADDR_LEN also has same size.
9135 		 * Use family to discriminate.
9136 		 */
9137 		if (tcp->tcp_family == AF_INET) {
9138 			sin = (sin_t *)cp;
9139 
9140 			*sin = sin_null;
9141 			sin->sin_family = AF_INET;
9142 			sin->sin_addr.s_addr = tcp->tcp_bound_source;
9143 			sin->sin_port = tcp->tcp_lport;
9144 			break;
9145 		} else {
9146 			*(in6_addr_t *)cp = tcp->tcp_bound_source_v6;
9147 		}
9148 		break;
9149 
9150 	case sizeof (sin6_t):
9151 		ASSERT(tcp->tcp_family == AF_INET6);
9152 		sin6 = (sin6_t *)cp;
9153 
9154 		*sin6 = sin6_null;
9155 		sin6->sin6_family = AF_INET6;
9156 		sin6->sin6_addr = tcp->tcp_bound_source_v6;
9157 		sin6->sin6_port = tcp->tcp_lport;
9158 		break;
9159 
9160 	case IP_ADDR_LEN:
9161 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
9162 		*(uint32_t *)cp = tcp->tcp_ipha->ipha_src;
9163 		break;
9164 
9165 	}
9166 	/* Add protocol number to end */
9167 	cp[addr_length] = (char)IPPROTO_TCP;
9168 	mp->b_wptr = (uchar_t *)&cp[addr_length + 1];
9169 	return (mp);
9170 }
9171 
9172 /*
9173  * Notify IP that we are having trouble with this connection.  IP should
9174  * blow the IRE away and start over.
9175  */
9176 static void
9177 tcp_ip_notify(tcp_t *tcp)
9178 {
9179 	struct iocblk	*iocp;
9180 	ipid_t	*ipid;
9181 	mblk_t	*mp;
9182 
9183 	/* IPv6 has NUD thus notification to delete the IRE is not needed */
9184 	if (tcp->tcp_ipversion == IPV6_VERSION)
9185 		return;
9186 
9187 	mp = mkiocb(IP_IOCTL);
9188 	if (mp == NULL)
9189 		return;
9190 
9191 	iocp = (struct iocblk *)mp->b_rptr;
9192 	iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst);
9193 
9194 	mp->b_cont = allocb(iocp->ioc_count, BPRI_HI);
9195 	if (!mp->b_cont) {
9196 		freeb(mp);
9197 		return;
9198 	}
9199 
9200 	ipid = (ipid_t *)mp->b_cont->b_rptr;
9201 	mp->b_cont->b_wptr += iocp->ioc_count;
9202 	bzero(ipid, sizeof (*ipid));
9203 	ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY;
9204 	ipid->ipid_ire_type = IRE_CACHE;
9205 	ipid->ipid_addr_offset = sizeof (ipid_t);
9206 	ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst);
9207 	/*
9208 	 * Note: in the case of source routing we want to blow away the
9209 	 * route to the first source route hop.
9210 	 */
9211 	bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1],
9212 	    sizeof (tcp->tcp_ipha->ipha_dst));
9213 
9214 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
9215 }
9216 
9217 /* Unlink and return any mblk that looks like it contains an ire */
9218 static mblk_t *
9219 tcp_ire_mp(mblk_t *mp)
9220 {
9221 	mblk_t	*prev_mp;
9222 
9223 	for (;;) {
9224 		prev_mp = mp;
9225 		mp = mp->b_cont;
9226 		if (mp == NULL)
9227 			break;
9228 		switch (DB_TYPE(mp)) {
9229 		case IRE_DB_TYPE:
9230 		case IRE_DB_REQ_TYPE:
9231 			if (prev_mp != NULL)
9232 				prev_mp->b_cont = mp->b_cont;
9233 			mp->b_cont = NULL;
9234 			return (mp);
9235 		default:
9236 			break;
9237 		}
9238 	}
9239 	return (mp);
9240 }
9241 
9242 /*
9243  * Timer callback routine for keepalive probe.  We do a fake resend of
9244  * last ACKed byte.  Then set a timer using RTO.  When the timer expires,
9245  * check to see if we have heard anything from the other end for the last
9246  * RTO period.  If we have, set the timer to expire for another
9247  * tcp_keepalive_intrvl and check again.  If we have not, set a timer using
9248  * RTO << 1 and check again when it expires.  Keep exponentially increasing
9249  * the timeout if we have not heard from the other side.  If for more than
9250  * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything,
9251  * kill the connection unless the keepalive abort threshold is 0.  In
9252  * that case, we will probe "forever."
9253  */
9254 static void
9255 tcp_keepalive_killer(void *arg)
9256 {
9257 	mblk_t	*mp;
9258 	conn_t	*connp = (conn_t *)arg;
9259 	tcp_t  	*tcp = connp->conn_tcp;
9260 	int32_t	firetime;
9261 	int32_t	idletime;
9262 	int32_t	ka_intrvl;
9263 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9264 
9265 	tcp->tcp_ka_tid = 0;
9266 
9267 	if (tcp->tcp_fused)
9268 		return;
9269 
9270 	BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive);
9271 	ka_intrvl = tcp->tcp_ka_interval;
9272 
9273 	/*
9274 	 * Keepalive probe should only be sent if the application has not
9275 	 * done a close on the connection.
9276 	 */
9277 	if (tcp->tcp_state > TCPS_CLOSE_WAIT) {
9278 		return;
9279 	}
9280 	/* Timer fired too early, restart it. */
9281 	if (tcp->tcp_state < TCPS_ESTABLISHED) {
9282 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9283 		    MSEC_TO_TICK(ka_intrvl));
9284 		return;
9285 	}
9286 
9287 	idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time);
9288 	/*
9289 	 * If we have not heard from the other side for a long
9290 	 * time, kill the connection unless the keepalive abort
9291 	 * threshold is 0.  In that case, we will probe "forever."
9292 	 */
9293 	if (tcp->tcp_ka_abort_thres != 0 &&
9294 	    idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) {
9295 		BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop);
9296 		(void) tcp_clean_death(tcp, tcp->tcp_client_errno ?
9297 		    tcp->tcp_client_errno : ETIMEDOUT, 11);
9298 		return;
9299 	}
9300 
9301 	if (tcp->tcp_snxt == tcp->tcp_suna &&
9302 	    idletime >= ka_intrvl) {
9303 		/* Fake resend of last ACKed byte. */
9304 		mblk_t	*mp1 = allocb(1, BPRI_LO);
9305 
9306 		if (mp1 != NULL) {
9307 			*mp1->b_wptr++ = '\0';
9308 			mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL,
9309 			    tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE);
9310 			freeb(mp1);
9311 			/*
9312 			 * if allocation failed, fall through to start the
9313 			 * timer back.
9314 			 */
9315 			if (mp != NULL) {
9316 				tcp_send_data(tcp, tcp->tcp_wq, mp);
9317 				BUMP_MIB(&tcps->tcps_mib,
9318 				    tcpTimKeepaliveProbe);
9319 				if (tcp->tcp_ka_last_intrvl != 0) {
9320 					int max;
9321 					/*
9322 					 * We should probe again at least
9323 					 * in ka_intrvl, but not more than
9324 					 * tcp_rexmit_interval_max.
9325 					 */
9326 					max = tcps->tcps_rexmit_interval_max;
9327 					firetime = MIN(ka_intrvl - 1,
9328 					    tcp->tcp_ka_last_intrvl << 1);
9329 					if (firetime > max)
9330 						firetime = max;
9331 				} else {
9332 					firetime = tcp->tcp_rto;
9333 				}
9334 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
9335 				    tcp_keepalive_killer,
9336 				    MSEC_TO_TICK(firetime));
9337 				tcp->tcp_ka_last_intrvl = firetime;
9338 				return;
9339 			}
9340 		}
9341 	} else {
9342 		tcp->tcp_ka_last_intrvl = 0;
9343 	}
9344 
9345 	/* firetime can be negative if (mp1 == NULL || mp == NULL) */
9346 	if ((firetime = ka_intrvl - idletime) < 0) {
9347 		firetime = ka_intrvl;
9348 	}
9349 	tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9350 	    MSEC_TO_TICK(firetime));
9351 }
9352 
9353 int
9354 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
9355 {
9356 	queue_t	*q = tcp->tcp_rq;
9357 	int32_t	mss = tcp->tcp_mss;
9358 	int	maxpsz;
9359 
9360 	if (TCP_IS_DETACHED(tcp))
9361 		return (mss);
9362 
9363 	if (tcp->tcp_fused) {
9364 		maxpsz = tcp_fuse_maxpsz_set(tcp);
9365 		mss = INFPSZ;
9366 	} else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) {
9367 		/*
9368 		 * Set the sd_qn_maxpsz according to the socket send buffer
9369 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
9370 		 * instruct the stream head to copyin user data into contiguous
9371 		 * kernel-allocated buffers without breaking it up into smaller
9372 		 * chunks.  We round up the buffer size to the nearest SMSS.
9373 		 */
9374 		maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss);
9375 		if (tcp->tcp_kssl_ctx == NULL)
9376 			mss = INFPSZ;
9377 		else
9378 			mss = SSL3_MAX_RECORD_LEN;
9379 	} else {
9380 		/*
9381 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
9382 		 * (and a multiple of the mss).  This instructs the stream
9383 		 * head to break down larger than SMSS writes into SMSS-
9384 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
9385 		 */
9386 		maxpsz = tcp->tcp_maxpsz * mss;
9387 		if (maxpsz > tcp->tcp_xmit_hiwater/2) {
9388 			maxpsz = tcp->tcp_xmit_hiwater/2;
9389 			/* Round up to nearest mss */
9390 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
9391 		}
9392 	}
9393 	(void) setmaxps(q, maxpsz);
9394 	tcp->tcp_wq->q_maxpsz = maxpsz;
9395 
9396 	if (set_maxblk)
9397 		(void) mi_set_sth_maxblk(q, mss);
9398 
9399 	return (mss);
9400 }
9401 
9402 /*
9403  * Extract option values from a tcp header.  We put any found values into the
9404  * tcpopt struct and return a bitmask saying which options were found.
9405  */
9406 static int
9407 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt)
9408 {
9409 	uchar_t		*endp;
9410 	int		len;
9411 	uint32_t	mss;
9412 	uchar_t		*up = (uchar_t *)tcph;
9413 	int		found = 0;
9414 	int32_t		sack_len;
9415 	tcp_seq		sack_begin, sack_end;
9416 	tcp_t		*tcp;
9417 
9418 	endp = up + TCP_HDR_LENGTH(tcph);
9419 	up += TCP_MIN_HEADER_LENGTH;
9420 	while (up < endp) {
9421 		len = endp - up;
9422 		switch (*up) {
9423 		case TCPOPT_EOL:
9424 			break;
9425 
9426 		case TCPOPT_NOP:
9427 			up++;
9428 			continue;
9429 
9430 		case TCPOPT_MAXSEG:
9431 			if (len < TCPOPT_MAXSEG_LEN ||
9432 			    up[1] != TCPOPT_MAXSEG_LEN)
9433 				break;
9434 
9435 			mss = BE16_TO_U16(up+2);
9436 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
9437 			tcpopt->tcp_opt_mss = mss;
9438 			found |= TCP_OPT_MSS_PRESENT;
9439 
9440 			up += TCPOPT_MAXSEG_LEN;
9441 			continue;
9442 
9443 		case TCPOPT_WSCALE:
9444 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
9445 				break;
9446 
9447 			if (up[2] > TCP_MAX_WINSHIFT)
9448 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
9449 			else
9450 				tcpopt->tcp_opt_wscale = up[2];
9451 			found |= TCP_OPT_WSCALE_PRESENT;
9452 
9453 			up += TCPOPT_WS_LEN;
9454 			continue;
9455 
9456 		case TCPOPT_SACK_PERMITTED:
9457 			if (len < TCPOPT_SACK_OK_LEN ||
9458 			    up[1] != TCPOPT_SACK_OK_LEN)
9459 				break;
9460 			found |= TCP_OPT_SACK_OK_PRESENT;
9461 			up += TCPOPT_SACK_OK_LEN;
9462 			continue;
9463 
9464 		case TCPOPT_SACK:
9465 			if (len <= 2 || up[1] <= 2 || len < up[1])
9466 				break;
9467 
9468 			/* If TCP is not interested in SACK blks... */
9469 			if ((tcp = tcpopt->tcp) == NULL) {
9470 				up += up[1];
9471 				continue;
9472 			}
9473 			sack_len = up[1] - TCPOPT_HEADER_LEN;
9474 			up += TCPOPT_HEADER_LEN;
9475 
9476 			/*
9477 			 * If the list is empty, allocate one and assume
9478 			 * nothing is sack'ed.
9479 			 */
9480 			ASSERT(tcp->tcp_sack_info != NULL);
9481 			if (tcp->tcp_notsack_list == NULL) {
9482 				tcp_notsack_update(&(tcp->tcp_notsack_list),
9483 				    tcp->tcp_suna, tcp->tcp_snxt,
9484 				    &(tcp->tcp_num_notsack_blk),
9485 				    &(tcp->tcp_cnt_notsack_list));
9486 
9487 				/*
9488 				 * Make sure tcp_notsack_list is not NULL.
9489 				 * This happens when kmem_alloc(KM_NOSLEEP)
9490 				 * returns NULL.
9491 				 */
9492 				if (tcp->tcp_notsack_list == NULL) {
9493 					up += sack_len;
9494 					continue;
9495 				}
9496 				tcp->tcp_fack = tcp->tcp_suna;
9497 			}
9498 
9499 			while (sack_len > 0) {
9500 				if (up + 8 > endp) {
9501 					up = endp;
9502 					break;
9503 				}
9504 				sack_begin = BE32_TO_U32(up);
9505 				up += 4;
9506 				sack_end = BE32_TO_U32(up);
9507 				up += 4;
9508 				sack_len -= 8;
9509 				/*
9510 				 * Bounds checking.  Make sure the SACK
9511 				 * info is within tcp_suna and tcp_snxt.
9512 				 * If this SACK blk is out of bound, ignore
9513 				 * it but continue to parse the following
9514 				 * blks.
9515 				 */
9516 				if (SEQ_LEQ(sack_end, sack_begin) ||
9517 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
9518 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
9519 					continue;
9520 				}
9521 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
9522 				    sack_begin, sack_end,
9523 				    &(tcp->tcp_num_notsack_blk),
9524 				    &(tcp->tcp_cnt_notsack_list));
9525 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
9526 					tcp->tcp_fack = sack_end;
9527 				}
9528 			}
9529 			found |= TCP_OPT_SACK_PRESENT;
9530 			continue;
9531 
9532 		case TCPOPT_TSTAMP:
9533 			if (len < TCPOPT_TSTAMP_LEN ||
9534 			    up[1] != TCPOPT_TSTAMP_LEN)
9535 				break;
9536 
9537 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
9538 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
9539 
9540 			found |= TCP_OPT_TSTAMP_PRESENT;
9541 
9542 			up += TCPOPT_TSTAMP_LEN;
9543 			continue;
9544 
9545 		default:
9546 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
9547 				break;
9548 			up += up[1];
9549 			continue;
9550 		}
9551 		break;
9552 	}
9553 	return (found);
9554 }
9555 
9556 /*
9557  * Set the mss associated with a particular tcp based on its current value,
9558  * and a new one passed in. Observe minimums and maximums, and reset
9559  * other state variables that we want to view as multiples of mss.
9560  *
9561  * This function is called mainly because values like tcp_mss, tcp_cwnd,
9562  * highwater marks etc. need to be initialized or adjusted.
9563  * 1) From tcp_process_options() when the other side's SYN/SYN-ACK
9564  *    packet arrives.
9565  * 2) We need to set a new MSS when ICMP_FRAGMENTATION_NEEDED or
9566  *    ICMP6_PACKET_TOO_BIG arrives.
9567  * 3) From tcp_paws_check() if the other side stops sending the timestamp,
9568  *    to increase the MSS to use the extra bytes available.
9569  *
9570  * Callers except tcp_paws_check() ensure that they only reduce mss.
9571  */
9572 static void
9573 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss)
9574 {
9575 	uint32_t	mss_max;
9576 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9577 
9578 	if (tcp->tcp_ipversion == IPV4_VERSION)
9579 		mss_max = tcps->tcps_mss_max_ipv4;
9580 	else
9581 		mss_max = tcps->tcps_mss_max_ipv6;
9582 
9583 	if (mss < tcps->tcps_mss_min)
9584 		mss = tcps->tcps_mss_min;
9585 	if (mss > mss_max)
9586 		mss = mss_max;
9587 	/*
9588 	 * Unless naglim has been set by our client to
9589 	 * a non-mss value, force naglim to track mss.
9590 	 * This can help to aggregate small writes.
9591 	 */
9592 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
9593 		tcp->tcp_naglim = mss;
9594 	/*
9595 	 * TCP should be able to buffer at least 4 MSS data for obvious
9596 	 * performance reason.
9597 	 */
9598 	if ((mss << 2) > tcp->tcp_xmit_hiwater)
9599 		tcp->tcp_xmit_hiwater = mss << 2;
9600 
9601 	if (do_ss) {
9602 		/*
9603 		 * Either the tcp_cwnd is as yet uninitialized, or mss is
9604 		 * changing due to a reduction in MTU, presumably as a
9605 		 * result of a new path component, reset cwnd to its
9606 		 * "initial" value, as a multiple of the new mss.
9607 		 */
9608 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_initial);
9609 	} else {
9610 		/*
9611 		 * Called by tcp_paws_check(), the mss increased
9612 		 * marginally to allow use of space previously taken
9613 		 * by the timestamp option. It would be inappropriate
9614 		 * to apply slow start or tcp_init_cwnd values to
9615 		 * tcp_cwnd, simply adjust to a multiple of the new mss.
9616 		 */
9617 		tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss;
9618 		tcp->tcp_cwnd_cnt = 0;
9619 	}
9620 	tcp->tcp_mss = mss;
9621 	(void) tcp_maxpsz_set(tcp, B_TRUE);
9622 }
9623 
9624 /* For /dev/tcp aka AF_INET open */
9625 static int
9626 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9627 {
9628 	return (tcp_open(q, devp, flag, sflag, credp, B_FALSE));
9629 }
9630 
9631 /* For /dev/tcp6 aka AF_INET6 open */
9632 static int
9633 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9634 {
9635 	return (tcp_open(q, devp, flag, sflag, credp, B_TRUE));
9636 }
9637 
9638 static int
9639 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
9640     boolean_t isv6)
9641 {
9642 	tcp_t		*tcp = NULL;
9643 	conn_t		*connp;
9644 	int		err;
9645 	vmem_t		*minor_arena = NULL;
9646 	dev_t		conn_dev;
9647 	zoneid_t	zoneid;
9648 	tcp_stack_t	*tcps = NULL;
9649 
9650 	if (q->q_ptr != NULL)
9651 		return (0);
9652 
9653 	if (sflag == MODOPEN)
9654 		return (EINVAL);
9655 
9656 	if (!(flag & SO_ACCEPTOR)) {
9657 		/*
9658 		 * Special case for install: miniroot needs to be able to
9659 		 * access files via NFS as though it were always in the
9660 		 * global zone.
9661 		 */
9662 		if (credp == kcred && nfs_global_client_only != 0) {
9663 			zoneid = GLOBAL_ZONEID;
9664 			tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
9665 			    netstack_tcp;
9666 			ASSERT(tcps != NULL);
9667 		} else {
9668 			netstack_t *ns;
9669 
9670 			ns = netstack_find_by_cred(credp);
9671 			ASSERT(ns != NULL);
9672 			tcps = ns->netstack_tcp;
9673 			ASSERT(tcps != NULL);
9674 
9675 			/*
9676 			 * For exclusive stacks we set the zoneid to zero
9677 			 * to make TCP operate as if in the global zone.
9678 			 */
9679 			if (tcps->tcps_netstack->netstack_stackid !=
9680 			    GLOBAL_NETSTACKID)
9681 				zoneid = GLOBAL_ZONEID;
9682 			else
9683 				zoneid = crgetzoneid(credp);
9684 		}
9685 		/*
9686 		 * For stackid zero this is done from strplumb.c, but
9687 		 * non-zero stackids are handled here.
9688 		 */
9689 		if (tcps->tcps_g_q == NULL &&
9690 		    tcps->tcps_netstack->netstack_stackid !=
9691 		    GLOBAL_NETSTACKID) {
9692 			tcp_g_q_setup(tcps);
9693 		}
9694 	}
9695 
9696 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
9697 	    ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
9698 		minor_arena = ip_minor_arena_la;
9699 	} else {
9700 		/*
9701 		 * Either minor numbers in the large arena were exhausted
9702 		 * or a non socket application is doing the open.
9703 		 * Try to allocate from the small arena.
9704 		 */
9705 		if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
9706 			if (tcps != NULL)
9707 				netstack_rele(tcps->tcps_netstack);
9708 			return (EBUSY);
9709 		}
9710 		minor_arena = ip_minor_arena_sa;
9711 	}
9712 	ASSERT(minor_arena != NULL);
9713 
9714 	*devp = makedevice(getemajor(*devp), (minor_t)conn_dev);
9715 
9716 	if (flag & SO_ACCEPTOR) {
9717 		/* No netstack_find_by_cred, hence no netstack_rele needed */
9718 		ASSERT(tcps == NULL);
9719 		q->q_qinfo = &tcp_acceptor_rinit;
9720 		/*
9721 		 * the conn_dev and minor_arena will be subsequently used by
9722 		 * tcp_wput_accept() and tcpclose_accept() to figure out the
9723 		 * minor device number for this connection from the q_ptr.
9724 		 */
9725 		RD(q)->q_ptr = (void *)conn_dev;
9726 		WR(q)->q_qinfo = &tcp_acceptor_winit;
9727 		WR(q)->q_ptr = (void *)minor_arena;
9728 		qprocson(q);
9729 		return (0);
9730 	}
9731 
9732 	connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt), tcps);
9733 	/*
9734 	 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
9735 	 * so we drop it by one.
9736 	 */
9737 	netstack_rele(tcps->tcps_netstack);
9738 	if (connp == NULL) {
9739 		inet_minor_free(minor_arena, conn_dev);
9740 		q->q_ptr = NULL;
9741 		return (ENOSR);
9742 	}
9743 	connp->conn_sqp = IP_SQUEUE_GET(lbolt);
9744 	tcp = connp->conn_tcp;
9745 
9746 	q->q_ptr = WR(q)->q_ptr = connp;
9747 	if (isv6) {
9748 		connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6);
9749 		connp->conn_send = ip_output_v6;
9750 		connp->conn_af_isv6 = B_TRUE;
9751 		connp->conn_pkt_isv6 = B_TRUE;
9752 		connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT;
9753 		tcp->tcp_ipversion = IPV6_VERSION;
9754 		tcp->tcp_family = AF_INET6;
9755 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
9756 	} else {
9757 		connp->conn_flags |= IPCL_TCP4;
9758 		connp->conn_send = ip_output;
9759 		connp->conn_af_isv6 = B_FALSE;
9760 		connp->conn_pkt_isv6 = B_FALSE;
9761 		tcp->tcp_ipversion = IPV4_VERSION;
9762 		tcp->tcp_family = AF_INET;
9763 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
9764 	}
9765 
9766 	/*
9767 	 * TCP keeps a copy of cred for cache locality reasons but
9768 	 * we put a reference only once. If connp->conn_cred
9769 	 * becomes invalid, tcp_cred should also be set to NULL.
9770 	 */
9771 	tcp->tcp_cred = connp->conn_cred = credp;
9772 	crhold(connp->conn_cred);
9773 	tcp->tcp_cpid = curproc->p_pid;
9774 	tcp->tcp_open_time = lbolt64;
9775 	connp->conn_zoneid = zoneid;
9776 	connp->conn_mlp_type = mlptSingle;
9777 	connp->conn_ulp_labeled = !is_system_labeled();
9778 	ASSERT(connp->conn_netstack == tcps->tcps_netstack);
9779 	ASSERT(tcp->tcp_tcps == tcps);
9780 
9781 	/*
9782 	 * If the caller has the process-wide flag set, then default to MAC
9783 	 * exempt mode.  This allows read-down to unlabeled hosts.
9784 	 */
9785 	if (getpflags(NET_MAC_AWARE, credp) != 0)
9786 		connp->conn_mac_exempt = B_TRUE;
9787 
9788 	connp->conn_dev = conn_dev;
9789 	connp->conn_minor_arena = minor_arena;
9790 
9791 	ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6);
9792 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
9793 
9794 	if (flag & SO_SOCKSTR) {
9795 		/*
9796 		 * No need to insert a socket in tcp acceptor hash.
9797 		 * If it was a socket acceptor stream, we dealt with
9798 		 * it above. A socket listener can never accept a
9799 		 * connection and doesn't need acceptor_id.
9800 		 */
9801 		connp->conn_flags |= IPCL_SOCKET;
9802 		tcp->tcp_issocket = 1;
9803 		WR(q)->q_qinfo = &tcp_sock_winit;
9804 	} else {
9805 #ifdef	_ILP32
9806 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
9807 #else
9808 		tcp->tcp_acceptor_id = conn_dev;
9809 #endif	/* _ILP32 */
9810 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
9811 	}
9812 
9813 	err = tcp_init(tcp, q);
9814 	if (err != 0) {
9815 		inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
9816 		tcp_acceptor_hash_remove(tcp);
9817 		CONN_DEC_REF(connp);
9818 		q->q_ptr = WR(q)->q_ptr = NULL;
9819 		return (err);
9820 	}
9821 
9822 	RD(q)->q_hiwat = tcps->tcps_recv_hiwat;
9823 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
9824 
9825 	/* Non-zero default values */
9826 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
9827 	/*
9828 	 * Put the ref for TCP. Ref for IP was already put
9829 	 * by ipcl_conn_create. Also Make the conn_t globally
9830 	 * visible to walkers
9831 	 */
9832 	mutex_enter(&connp->conn_lock);
9833 	CONN_INC_REF_LOCKED(connp);
9834 	ASSERT(connp->conn_ref == 2);
9835 	connp->conn_state_flags &= ~CONN_INCIPIENT;
9836 	mutex_exit(&connp->conn_lock);
9837 
9838 	qprocson(q);
9839 	return (0);
9840 }
9841 
9842 /*
9843  * Some TCP options can be "set" by requesting them in the option
9844  * buffer. This is needed for XTI feature test though we do not
9845  * allow it in general. We interpret that this mechanism is more
9846  * applicable to OSI protocols and need not be allowed in general.
9847  * This routine filters out options for which it is not allowed (most)
9848  * and lets through those (few) for which it is. [ The XTI interface
9849  * test suite specifics will imply that any XTI_GENERIC level XTI_* if
9850  * ever implemented will have to be allowed here ].
9851  */
9852 static boolean_t
9853 tcp_allow_connopt_set(int level, int name)
9854 {
9855 
9856 	switch (level) {
9857 	case IPPROTO_TCP:
9858 		switch (name) {
9859 		case TCP_NODELAY:
9860 			return (B_TRUE);
9861 		default:
9862 			return (B_FALSE);
9863 		}
9864 		/*NOTREACHED*/
9865 	default:
9866 		return (B_FALSE);
9867 	}
9868 	/*NOTREACHED*/
9869 }
9870 
9871 /*
9872  * This routine gets default values of certain options whose default
9873  * values are maintained by protocol specific code
9874  */
9875 /* ARGSUSED */
9876 int
9877 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
9878 {
9879 	int32_t	*i1 = (int32_t *)ptr;
9880 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
9881 
9882 	switch (level) {
9883 	case IPPROTO_TCP:
9884 		switch (name) {
9885 		case TCP_NOTIFY_THRESHOLD:
9886 			*i1 = tcps->tcps_ip_notify_interval;
9887 			break;
9888 		case TCP_ABORT_THRESHOLD:
9889 			*i1 = tcps->tcps_ip_abort_interval;
9890 			break;
9891 		case TCP_CONN_NOTIFY_THRESHOLD:
9892 			*i1 = tcps->tcps_ip_notify_cinterval;
9893 			break;
9894 		case TCP_CONN_ABORT_THRESHOLD:
9895 			*i1 = tcps->tcps_ip_abort_cinterval;
9896 			break;
9897 		default:
9898 			return (-1);
9899 		}
9900 		break;
9901 	case IPPROTO_IP:
9902 		switch (name) {
9903 		case IP_TTL:
9904 			*i1 = tcps->tcps_ipv4_ttl;
9905 			break;
9906 		default:
9907 			return (-1);
9908 		}
9909 		break;
9910 	case IPPROTO_IPV6:
9911 		switch (name) {
9912 		case IPV6_UNICAST_HOPS:
9913 			*i1 = tcps->tcps_ipv6_hoplimit;
9914 			break;
9915 		default:
9916 			return (-1);
9917 		}
9918 		break;
9919 	default:
9920 		return (-1);
9921 	}
9922 	return (sizeof (int));
9923 }
9924 
9925 
9926 /*
9927  * TCP routine to get the values of options.
9928  */
9929 int
9930 tcp_opt_get(queue_t *q, int level, int	name, uchar_t *ptr)
9931 {
9932 	int		*i1 = (int *)ptr;
9933 	conn_t		*connp = Q_TO_CONN(q);
9934 	tcp_t		*tcp = connp->conn_tcp;
9935 	ip6_pkt_t	*ipp = &tcp->tcp_sticky_ipp;
9936 
9937 	switch (level) {
9938 	case SOL_SOCKET:
9939 		switch (name) {
9940 		case SO_LINGER:	{
9941 			struct linger *lgr = (struct linger *)ptr;
9942 
9943 			lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0;
9944 			lgr->l_linger = tcp->tcp_lingertime;
9945 			}
9946 			return (sizeof (struct linger));
9947 		case SO_DEBUG:
9948 			*i1 = tcp->tcp_debug ? SO_DEBUG : 0;
9949 			break;
9950 		case SO_KEEPALIVE:
9951 			*i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0;
9952 			break;
9953 		case SO_DONTROUTE:
9954 			*i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0;
9955 			break;
9956 		case SO_USELOOPBACK:
9957 			*i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0;
9958 			break;
9959 		case SO_BROADCAST:
9960 			*i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0;
9961 			break;
9962 		case SO_REUSEADDR:
9963 			*i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0;
9964 			break;
9965 		case SO_OOBINLINE:
9966 			*i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0;
9967 			break;
9968 		case SO_DGRAM_ERRIND:
9969 			*i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0;
9970 			break;
9971 		case SO_TYPE:
9972 			*i1 = SOCK_STREAM;
9973 			break;
9974 		case SO_SNDBUF:
9975 			*i1 = tcp->tcp_xmit_hiwater;
9976 			break;
9977 		case SO_RCVBUF:
9978 			*i1 = RD(q)->q_hiwat;
9979 			break;
9980 		case SO_SND_COPYAVOID:
9981 			*i1 = tcp->tcp_snd_zcopy_on ?
9982 			    SO_SND_COPYAVOID : 0;
9983 			break;
9984 		case SO_ALLZONES:
9985 			*i1 = connp->conn_allzones ? 1 : 0;
9986 			break;
9987 		case SO_ANON_MLP:
9988 			*i1 = connp->conn_anon_mlp;
9989 			break;
9990 		case SO_MAC_EXEMPT:
9991 			*i1 = connp->conn_mac_exempt;
9992 			break;
9993 		case SO_EXCLBIND:
9994 			*i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0;
9995 			break;
9996 		case SO_PROTOTYPE:
9997 			*i1 = IPPROTO_TCP;
9998 			break;
9999 		case SO_DOMAIN:
10000 			*i1 = tcp->tcp_family;
10001 			break;
10002 		default:
10003 			return (-1);
10004 		}
10005 		break;
10006 	case IPPROTO_TCP:
10007 		switch (name) {
10008 		case TCP_NODELAY:
10009 			*i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0;
10010 			break;
10011 		case TCP_MAXSEG:
10012 			*i1 = tcp->tcp_mss;
10013 			break;
10014 		case TCP_NOTIFY_THRESHOLD:
10015 			*i1 = (int)tcp->tcp_first_timer_threshold;
10016 			break;
10017 		case TCP_ABORT_THRESHOLD:
10018 			*i1 = tcp->tcp_second_timer_threshold;
10019 			break;
10020 		case TCP_CONN_NOTIFY_THRESHOLD:
10021 			*i1 = tcp->tcp_first_ctimer_threshold;
10022 			break;
10023 		case TCP_CONN_ABORT_THRESHOLD:
10024 			*i1 = tcp->tcp_second_ctimer_threshold;
10025 			break;
10026 		case TCP_RECVDSTADDR:
10027 			*i1 = tcp->tcp_recvdstaddr;
10028 			break;
10029 		case TCP_ANONPRIVBIND:
10030 			*i1 = tcp->tcp_anon_priv_bind;
10031 			break;
10032 		case TCP_EXCLBIND:
10033 			*i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0;
10034 			break;
10035 		case TCP_INIT_CWND:
10036 			*i1 = tcp->tcp_init_cwnd;
10037 			break;
10038 		case TCP_KEEPALIVE_THRESHOLD:
10039 			*i1 = tcp->tcp_ka_interval;
10040 			break;
10041 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10042 			*i1 = tcp->tcp_ka_abort_thres;
10043 			break;
10044 		case TCP_CORK:
10045 			*i1 = tcp->tcp_cork;
10046 			break;
10047 		default:
10048 			return (-1);
10049 		}
10050 		break;
10051 	case IPPROTO_IP:
10052 		if (tcp->tcp_family != AF_INET)
10053 			return (-1);
10054 		switch (name) {
10055 		case IP_OPTIONS:
10056 		case T_IP_OPTIONS: {
10057 			/*
10058 			 * This is compatible with BSD in that in only return
10059 			 * the reverse source route with the final destination
10060 			 * as the last entry. The first 4 bytes of the option
10061 			 * will contain the final destination.
10062 			 */
10063 			int	opt_len;
10064 
10065 			opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha;
10066 			opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH;
10067 			ASSERT(opt_len >= 0);
10068 			/* Caller ensures enough space */
10069 			if (opt_len > 0) {
10070 				/*
10071 				 * TODO: Do we have to handle getsockopt on an
10072 				 * initiator as well?
10073 				 */
10074 				return (ip_opt_get_user(tcp->tcp_ipha, ptr));
10075 			}
10076 			return (0);
10077 			}
10078 		case IP_TOS:
10079 		case T_IP_TOS:
10080 			*i1 = (int)tcp->tcp_ipha->ipha_type_of_service;
10081 			break;
10082 		case IP_TTL:
10083 			*i1 = (int)tcp->tcp_ipha->ipha_ttl;
10084 			break;
10085 		case IP_NEXTHOP:
10086 			/* Handled at IP level */
10087 			return (-EINVAL);
10088 		default:
10089 			return (-1);
10090 		}
10091 		break;
10092 	case IPPROTO_IPV6:
10093 		/*
10094 		 * IPPROTO_IPV6 options are only supported for sockets
10095 		 * that are using IPv6 on the wire.
10096 		 */
10097 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10098 			return (-1);
10099 		}
10100 		switch (name) {
10101 		case IPV6_UNICAST_HOPS:
10102 			*i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops;
10103 			break;	/* goto sizeof (int) option return */
10104 		case IPV6_BOUND_IF:
10105 			/* Zero if not set */
10106 			*i1 = tcp->tcp_bound_if;
10107 			break;	/* goto sizeof (int) option return */
10108 		case IPV6_RECVPKTINFO:
10109 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)
10110 				*i1 = 1;
10111 			else
10112 				*i1 = 0;
10113 			break;	/* goto sizeof (int) option return */
10114 		case IPV6_RECVTCLASS:
10115 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)
10116 				*i1 = 1;
10117 			else
10118 				*i1 = 0;
10119 			break;	/* goto sizeof (int) option return */
10120 		case IPV6_RECVHOPLIMIT:
10121 			if (tcp->tcp_ipv6_recvancillary &
10122 			    TCP_IPV6_RECVHOPLIMIT)
10123 				*i1 = 1;
10124 			else
10125 				*i1 = 0;
10126 			break;	/* goto sizeof (int) option return */
10127 		case IPV6_RECVHOPOPTS:
10128 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS)
10129 				*i1 = 1;
10130 			else
10131 				*i1 = 0;
10132 			break;	/* goto sizeof (int) option return */
10133 		case IPV6_RECVDSTOPTS:
10134 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS)
10135 				*i1 = 1;
10136 			else
10137 				*i1 = 0;
10138 			break;	/* goto sizeof (int) option return */
10139 		case _OLD_IPV6_RECVDSTOPTS:
10140 			if (tcp->tcp_ipv6_recvancillary &
10141 			    TCP_OLD_IPV6_RECVDSTOPTS)
10142 				*i1 = 1;
10143 			else
10144 				*i1 = 0;
10145 			break;	/* goto sizeof (int) option return */
10146 		case IPV6_RECVRTHDR:
10147 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR)
10148 				*i1 = 1;
10149 			else
10150 				*i1 = 0;
10151 			break;	/* goto sizeof (int) option return */
10152 		case IPV6_RECVRTHDRDSTOPTS:
10153 			if (tcp->tcp_ipv6_recvancillary &
10154 			    TCP_IPV6_RECVRTDSTOPTS)
10155 				*i1 = 1;
10156 			else
10157 				*i1 = 0;
10158 			break;	/* goto sizeof (int) option return */
10159 		case IPV6_PKTINFO: {
10160 			/* XXX assumes that caller has room for max size! */
10161 			struct in6_pktinfo *pkti;
10162 
10163 			pkti = (struct in6_pktinfo *)ptr;
10164 			if (ipp->ipp_fields & IPPF_IFINDEX)
10165 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
10166 			else
10167 				pkti->ipi6_ifindex = 0;
10168 			if (ipp->ipp_fields & IPPF_ADDR)
10169 				pkti->ipi6_addr = ipp->ipp_addr;
10170 			else
10171 				pkti->ipi6_addr = ipv6_all_zeros;
10172 			return (sizeof (struct in6_pktinfo));
10173 		}
10174 		case IPV6_TCLASS:
10175 			if (ipp->ipp_fields & IPPF_TCLASS)
10176 				*i1 = ipp->ipp_tclass;
10177 			else
10178 				*i1 = IPV6_FLOW_TCLASS(
10179 				    IPV6_DEFAULT_VERS_AND_FLOW);
10180 			break;	/* goto sizeof (int) option return */
10181 		case IPV6_NEXTHOP: {
10182 			sin6_t *sin6 = (sin6_t *)ptr;
10183 
10184 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
10185 				return (0);
10186 			*sin6 = sin6_null;
10187 			sin6->sin6_family = AF_INET6;
10188 			sin6->sin6_addr = ipp->ipp_nexthop;
10189 			return (sizeof (sin6_t));
10190 		}
10191 		case IPV6_HOPOPTS:
10192 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
10193 				return (0);
10194 			if (ipp->ipp_hopoptslen <= tcp->tcp_label_len)
10195 				return (0);
10196 			bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len,
10197 			    ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len);
10198 			if (tcp->tcp_label_len > 0) {
10199 				ptr[0] = ((char *)ipp->ipp_hopopts)[0];
10200 				ptr[1] = (ipp->ipp_hopoptslen -
10201 				    tcp->tcp_label_len + 7) / 8 - 1;
10202 			}
10203 			return (ipp->ipp_hopoptslen - tcp->tcp_label_len);
10204 		case IPV6_RTHDRDSTOPTS:
10205 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
10206 				return (0);
10207 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
10208 			return (ipp->ipp_rtdstoptslen);
10209 		case IPV6_RTHDR:
10210 			if (!(ipp->ipp_fields & IPPF_RTHDR))
10211 				return (0);
10212 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
10213 			return (ipp->ipp_rthdrlen);
10214 		case IPV6_DSTOPTS:
10215 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
10216 				return (0);
10217 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
10218 			return (ipp->ipp_dstoptslen);
10219 		case IPV6_SRC_PREFERENCES:
10220 			return (ip6_get_src_preferences(connp,
10221 			    (uint32_t *)ptr));
10222 		case IPV6_PATHMTU: {
10223 			struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr;
10224 
10225 			if (tcp->tcp_state < TCPS_ESTABLISHED)
10226 				return (-1);
10227 
10228 			return (ip_fill_mtuinfo(&connp->conn_remv6,
10229 			    connp->conn_fport, mtuinfo,
10230 			    connp->conn_netstack));
10231 		}
10232 		default:
10233 			return (-1);
10234 		}
10235 		break;
10236 	default:
10237 		return (-1);
10238 	}
10239 	return (sizeof (int));
10240 }
10241 
10242 /*
10243  * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements.
10244  * Parameters are assumed to be verified by the caller.
10245  */
10246 /* ARGSUSED */
10247 int
10248 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name,
10249     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
10250     void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
10251 {
10252 	conn_t	*connp = Q_TO_CONN(q);
10253 	tcp_t	*tcp = connp->conn_tcp;
10254 	int	*i1 = (int *)invalp;
10255 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
10256 	boolean_t checkonly;
10257 	int	reterr;
10258 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
10259 
10260 	switch (optset_context) {
10261 	case SETFN_OPTCOM_CHECKONLY:
10262 		checkonly = B_TRUE;
10263 		/*
10264 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
10265 		 * inlen != 0 implies value supplied and
10266 		 * 	we have to "pretend" to set it.
10267 		 * inlen == 0 implies that there is no
10268 		 * 	value part in T_CHECK request and just validation
10269 		 * done elsewhere should be enough, we just return here.
10270 		 */
10271 		if (inlen == 0) {
10272 			*outlenp = 0;
10273 			return (0);
10274 		}
10275 		break;
10276 	case SETFN_OPTCOM_NEGOTIATE:
10277 		checkonly = B_FALSE;
10278 		break;
10279 	case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */
10280 	case SETFN_CONN_NEGOTIATE:
10281 		checkonly = B_FALSE;
10282 		/*
10283 		 * Negotiating local and "association-related" options
10284 		 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ)
10285 		 * primitives is allowed by XTI, but we choose
10286 		 * to not implement this style negotiation for Internet
10287 		 * protocols (We interpret it is a must for OSI world but
10288 		 * optional for Internet protocols) for all options.
10289 		 * [ Will do only for the few options that enable test
10290 		 * suites that our XTI implementation of this feature
10291 		 * works for transports that do allow it ]
10292 		 */
10293 		if (!tcp_allow_connopt_set(level, name)) {
10294 			*outlenp = 0;
10295 			return (EINVAL);
10296 		}
10297 		break;
10298 	default:
10299 		/*
10300 		 * We should never get here
10301 		 */
10302 		*outlenp = 0;
10303 		return (EINVAL);
10304 	}
10305 
10306 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
10307 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
10308 
10309 	/*
10310 	 * For TCP, we should have no ancillary data sent down
10311 	 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs
10312 	 * has to be zero.
10313 	 */
10314 	ASSERT(thisdg_attrs == NULL);
10315 
10316 	/*
10317 	 * For fixed length options, no sanity check
10318 	 * of passed in length is done. It is assumed *_optcom_req()
10319 	 * routines do the right thing.
10320 	 */
10321 
10322 	switch (level) {
10323 	case SOL_SOCKET:
10324 		switch (name) {
10325 		case SO_LINGER: {
10326 			struct linger *lgr = (struct linger *)invalp;
10327 
10328 			if (!checkonly) {
10329 				if (lgr->l_onoff) {
10330 					tcp->tcp_linger = 1;
10331 					tcp->tcp_lingertime = lgr->l_linger;
10332 				} else {
10333 					tcp->tcp_linger = 0;
10334 					tcp->tcp_lingertime = 0;
10335 				}
10336 				/* struct copy */
10337 				*(struct linger *)outvalp = *lgr;
10338 			} else {
10339 				if (!lgr->l_onoff) {
10340 					((struct linger *)
10341 					    outvalp)->l_onoff = 0;
10342 					((struct linger *)
10343 					    outvalp)->l_linger = 0;
10344 				} else {
10345 					/* struct copy */
10346 					*(struct linger *)outvalp = *lgr;
10347 				}
10348 			}
10349 			*outlenp = sizeof (struct linger);
10350 			return (0);
10351 		}
10352 		case SO_DEBUG:
10353 			if (!checkonly)
10354 				tcp->tcp_debug = onoff;
10355 			break;
10356 		case SO_KEEPALIVE:
10357 			if (checkonly) {
10358 				/* T_CHECK case */
10359 				break;
10360 			}
10361 
10362 			if (!onoff) {
10363 				if (tcp->tcp_ka_enabled) {
10364 					if (tcp->tcp_ka_tid != 0) {
10365 						(void) TCP_TIMER_CANCEL(tcp,
10366 						    tcp->tcp_ka_tid);
10367 						tcp->tcp_ka_tid = 0;
10368 					}
10369 					tcp->tcp_ka_enabled = 0;
10370 				}
10371 				break;
10372 			}
10373 			if (!tcp->tcp_ka_enabled) {
10374 				/* Crank up the keepalive timer */
10375 				tcp->tcp_ka_last_intrvl = 0;
10376 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
10377 				    tcp_keepalive_killer,
10378 				    MSEC_TO_TICK(tcp->tcp_ka_interval));
10379 				tcp->tcp_ka_enabled = 1;
10380 			}
10381 			break;
10382 		case SO_DONTROUTE:
10383 			/*
10384 			 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are
10385 			 * only of interest to IP.  We track them here only so
10386 			 * that we can report their current value.
10387 			 */
10388 			if (!checkonly) {
10389 				tcp->tcp_dontroute = onoff;
10390 				tcp->tcp_connp->conn_dontroute = onoff;
10391 			}
10392 			break;
10393 		case SO_USELOOPBACK:
10394 			if (!checkonly) {
10395 				tcp->tcp_useloopback = onoff;
10396 				tcp->tcp_connp->conn_loopback = onoff;
10397 			}
10398 			break;
10399 		case SO_BROADCAST:
10400 			if (!checkonly) {
10401 				tcp->tcp_broadcast = onoff;
10402 				tcp->tcp_connp->conn_broadcast = onoff;
10403 			}
10404 			break;
10405 		case SO_REUSEADDR:
10406 			if (!checkonly) {
10407 				tcp->tcp_reuseaddr = onoff;
10408 				tcp->tcp_connp->conn_reuseaddr = onoff;
10409 			}
10410 			break;
10411 		case SO_OOBINLINE:
10412 			if (!checkonly)
10413 				tcp->tcp_oobinline = onoff;
10414 			break;
10415 		case SO_DGRAM_ERRIND:
10416 			if (!checkonly)
10417 				tcp->tcp_dgram_errind = onoff;
10418 			break;
10419 		case SO_SNDBUF: {
10420 			if (*i1 > tcps->tcps_max_buf) {
10421 				*outlenp = 0;
10422 				return (ENOBUFS);
10423 			}
10424 			if (checkonly)
10425 				break;
10426 
10427 			tcp->tcp_xmit_hiwater = *i1;
10428 			if (tcps->tcps_snd_lowat_fraction != 0)
10429 				tcp->tcp_xmit_lowater =
10430 				    tcp->tcp_xmit_hiwater /
10431 				    tcps->tcps_snd_lowat_fraction;
10432 			(void) tcp_maxpsz_set(tcp, B_TRUE);
10433 			/*
10434 			 * If we are flow-controlled, recheck the condition.
10435 			 * There are apps that increase SO_SNDBUF size when
10436 			 * flow-controlled (EWOULDBLOCK), and expect the flow
10437 			 * control condition to be lifted right away.
10438 			 */
10439 			mutex_enter(&tcp->tcp_non_sq_lock);
10440 			if (tcp->tcp_flow_stopped &&
10441 			    TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) {
10442 				tcp_clrqfull(tcp);
10443 			}
10444 			mutex_exit(&tcp->tcp_non_sq_lock);
10445 			break;
10446 		}
10447 		case SO_RCVBUF:
10448 			if (*i1 > tcps->tcps_max_buf) {
10449 				*outlenp = 0;
10450 				return (ENOBUFS);
10451 			}
10452 			/* Silently ignore zero */
10453 			if (!checkonly && *i1 != 0) {
10454 				*i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss);
10455 				(void) tcp_rwnd_set(tcp, *i1);
10456 			}
10457 			/*
10458 			 * XXX should we return the rwnd here
10459 			 * and tcp_opt_get ?
10460 			 */
10461 			break;
10462 		case SO_SND_COPYAVOID:
10463 			if (!checkonly) {
10464 				/* we only allow enable at most once for now */
10465 				if (tcp->tcp_loopback ||
10466 				    (tcp->tcp_kssl_ctx != NULL) ||
10467 				    (!tcp->tcp_snd_zcopy_aware &&
10468 				    (onoff != 1 || !tcp_zcopy_check(tcp)))) {
10469 					*outlenp = 0;
10470 					return (EOPNOTSUPP);
10471 				}
10472 				tcp->tcp_snd_zcopy_aware = 1;
10473 			}
10474 			break;
10475 		case SO_ALLZONES:
10476 			/* Pass option along to IP level for handling */
10477 			return (-EINVAL);
10478 		case SO_ANON_MLP:
10479 			/* Pass option along to IP level for handling */
10480 			return (-EINVAL);
10481 		case SO_MAC_EXEMPT:
10482 			/* Pass option along to IP level for handling */
10483 			return (-EINVAL);
10484 		case SO_EXCLBIND:
10485 			if (!checkonly)
10486 				tcp->tcp_exclbind = onoff;
10487 			break;
10488 		default:
10489 			*outlenp = 0;
10490 			return (EINVAL);
10491 		}
10492 		break;
10493 	case IPPROTO_TCP:
10494 		switch (name) {
10495 		case TCP_NODELAY:
10496 			if (!checkonly)
10497 				tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss;
10498 			break;
10499 		case TCP_NOTIFY_THRESHOLD:
10500 			if (!checkonly)
10501 				tcp->tcp_first_timer_threshold = *i1;
10502 			break;
10503 		case TCP_ABORT_THRESHOLD:
10504 			if (!checkonly)
10505 				tcp->tcp_second_timer_threshold = *i1;
10506 			break;
10507 		case TCP_CONN_NOTIFY_THRESHOLD:
10508 			if (!checkonly)
10509 				tcp->tcp_first_ctimer_threshold = *i1;
10510 			break;
10511 		case TCP_CONN_ABORT_THRESHOLD:
10512 			if (!checkonly)
10513 				tcp->tcp_second_ctimer_threshold = *i1;
10514 			break;
10515 		case TCP_RECVDSTADDR:
10516 			if (tcp->tcp_state > TCPS_LISTEN)
10517 				return (EOPNOTSUPP);
10518 			if (!checkonly)
10519 				tcp->tcp_recvdstaddr = onoff;
10520 			break;
10521 		case TCP_ANONPRIVBIND:
10522 			if ((reterr = secpolicy_net_privaddr(cr, 0,
10523 			    IPPROTO_TCP)) != 0) {
10524 				*outlenp = 0;
10525 				return (reterr);
10526 			}
10527 			if (!checkonly) {
10528 				tcp->tcp_anon_priv_bind = onoff;
10529 			}
10530 			break;
10531 		case TCP_EXCLBIND:
10532 			if (!checkonly)
10533 				tcp->tcp_exclbind = onoff;
10534 			break;	/* goto sizeof (int) option return */
10535 		case TCP_INIT_CWND: {
10536 			uint32_t init_cwnd = *((uint32_t *)invalp);
10537 
10538 			if (checkonly)
10539 				break;
10540 
10541 			/*
10542 			 * Only allow socket with network configuration
10543 			 * privilege to set the initial cwnd to be larger
10544 			 * than allowed by RFC 3390.
10545 			 */
10546 			if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) {
10547 				tcp->tcp_init_cwnd = init_cwnd;
10548 				break;
10549 			}
10550 			if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) {
10551 				*outlenp = 0;
10552 				return (reterr);
10553 			}
10554 			if (init_cwnd > TCP_MAX_INIT_CWND) {
10555 				*outlenp = 0;
10556 				return (EINVAL);
10557 			}
10558 			tcp->tcp_init_cwnd = init_cwnd;
10559 			break;
10560 		}
10561 		case TCP_KEEPALIVE_THRESHOLD:
10562 			if (checkonly)
10563 				break;
10564 
10565 			if (*i1 < tcps->tcps_keepalive_interval_low ||
10566 			    *i1 > tcps->tcps_keepalive_interval_high) {
10567 				*outlenp = 0;
10568 				return (EINVAL);
10569 			}
10570 			if (*i1 != tcp->tcp_ka_interval) {
10571 				tcp->tcp_ka_interval = *i1;
10572 				/*
10573 				 * Check if we need to restart the
10574 				 * keepalive timer.
10575 				 */
10576 				if (tcp->tcp_ka_tid != 0) {
10577 					ASSERT(tcp->tcp_ka_enabled);
10578 					(void) TCP_TIMER_CANCEL(tcp,
10579 					    tcp->tcp_ka_tid);
10580 					tcp->tcp_ka_last_intrvl = 0;
10581 					tcp->tcp_ka_tid = TCP_TIMER(tcp,
10582 					    tcp_keepalive_killer,
10583 					    MSEC_TO_TICK(tcp->tcp_ka_interval));
10584 				}
10585 			}
10586 			break;
10587 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10588 			if (!checkonly) {
10589 				if (*i1 <
10590 				    tcps->tcps_keepalive_abort_interval_low ||
10591 				    *i1 >
10592 				    tcps->tcps_keepalive_abort_interval_high) {
10593 					*outlenp = 0;
10594 					return (EINVAL);
10595 				}
10596 				tcp->tcp_ka_abort_thres = *i1;
10597 			}
10598 			break;
10599 		case TCP_CORK:
10600 			if (!checkonly) {
10601 				/*
10602 				 * if tcp->tcp_cork was set and is now
10603 				 * being unset, we have to make sure that
10604 				 * the remaining data gets sent out. Also
10605 				 * unset tcp->tcp_cork so that tcp_wput_data()
10606 				 * can send data even if it is less than mss
10607 				 */
10608 				if (tcp->tcp_cork && onoff == 0 &&
10609 				    tcp->tcp_unsent > 0) {
10610 					tcp->tcp_cork = B_FALSE;
10611 					tcp_wput_data(tcp, NULL, B_FALSE);
10612 				}
10613 				tcp->tcp_cork = onoff;
10614 			}
10615 			break;
10616 		default:
10617 			*outlenp = 0;
10618 			return (EINVAL);
10619 		}
10620 		break;
10621 	case IPPROTO_IP:
10622 		if (tcp->tcp_family != AF_INET) {
10623 			*outlenp = 0;
10624 			return (ENOPROTOOPT);
10625 		}
10626 		switch (name) {
10627 		case IP_OPTIONS:
10628 		case T_IP_OPTIONS:
10629 			reterr = tcp_opt_set_header(tcp, checkonly,
10630 			    invalp, inlen);
10631 			if (reterr) {
10632 				*outlenp = 0;
10633 				return (reterr);
10634 			}
10635 			/* OK return - copy input buffer into output buffer */
10636 			if (invalp != outvalp) {
10637 				/* don't trust bcopy for identical src/dst */
10638 				bcopy(invalp, outvalp, inlen);
10639 			}
10640 			*outlenp = inlen;
10641 			return (0);
10642 		case IP_TOS:
10643 		case T_IP_TOS:
10644 			if (!checkonly) {
10645 				tcp->tcp_ipha->ipha_type_of_service =
10646 				    (uchar_t)*i1;
10647 				tcp->tcp_tos = (uchar_t)*i1;
10648 			}
10649 			break;
10650 		case IP_TTL:
10651 			if (!checkonly) {
10652 				tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1;
10653 				tcp->tcp_ttl = (uchar_t)*i1;
10654 			}
10655 			break;
10656 		case IP_BOUND_IF:
10657 		case IP_NEXTHOP:
10658 			/* Handled at the IP level */
10659 			return (-EINVAL);
10660 		case IP_SEC_OPT:
10661 			/*
10662 			 * We should not allow policy setting after
10663 			 * we start listening for connections.
10664 			 */
10665 			if (tcp->tcp_state == TCPS_LISTEN) {
10666 				return (EINVAL);
10667 			} else {
10668 				/* Handled at the IP level */
10669 				return (-EINVAL);
10670 			}
10671 		default:
10672 			*outlenp = 0;
10673 			return (EINVAL);
10674 		}
10675 		break;
10676 	case IPPROTO_IPV6: {
10677 		ip6_pkt_t		*ipp;
10678 
10679 		/*
10680 		 * IPPROTO_IPV6 options are only supported for sockets
10681 		 * that are using IPv6 on the wire.
10682 		 */
10683 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10684 			*outlenp = 0;
10685 			return (ENOPROTOOPT);
10686 		}
10687 		/*
10688 		 * Only sticky options; no ancillary data
10689 		 */
10690 		ASSERT(thisdg_attrs == NULL);
10691 		ipp = &tcp->tcp_sticky_ipp;
10692 
10693 		switch (name) {
10694 		case IPV6_UNICAST_HOPS:
10695 			/* -1 means use default */
10696 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
10697 				*outlenp = 0;
10698 				return (EINVAL);
10699 			}
10700 			if (!checkonly) {
10701 				if (*i1 == -1) {
10702 					tcp->tcp_ip6h->ip6_hops =
10703 					    ipp->ipp_unicast_hops =
10704 					    (uint8_t)tcps->tcps_ipv6_hoplimit;
10705 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
10706 					/* Pass modified value to IP. */
10707 					*i1 = tcp->tcp_ip6h->ip6_hops;
10708 				} else {
10709 					tcp->tcp_ip6h->ip6_hops =
10710 					    ipp->ipp_unicast_hops =
10711 					    (uint8_t)*i1;
10712 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
10713 				}
10714 				reterr = tcp_build_hdrs(q, tcp);
10715 				if (reterr != 0)
10716 					return (reterr);
10717 			}
10718 			break;
10719 		case IPV6_BOUND_IF:
10720 			if (!checkonly) {
10721 				int error = 0;
10722 
10723 				tcp->tcp_bound_if = *i1;
10724 				error = ip_opt_set_ill(tcp->tcp_connp, *i1,
10725 				    B_TRUE, checkonly, level, name, mblk);
10726 				if (error != 0) {
10727 					*outlenp = 0;
10728 					return (error);
10729 				}
10730 			}
10731 			break;
10732 		/*
10733 		 * Set boolean switches for ancillary data delivery
10734 		 */
10735 		case IPV6_RECVPKTINFO:
10736 			if (!checkonly) {
10737 				if (onoff)
10738 					tcp->tcp_ipv6_recvancillary |=
10739 					    TCP_IPV6_RECVPKTINFO;
10740 				else
10741 					tcp->tcp_ipv6_recvancillary &=
10742 					    ~TCP_IPV6_RECVPKTINFO;
10743 				/* Force it to be sent up with the next msg */
10744 				tcp->tcp_recvifindex = 0;
10745 			}
10746 			break;
10747 		case IPV6_RECVTCLASS:
10748 			if (!checkonly) {
10749 				if (onoff)
10750 					tcp->tcp_ipv6_recvancillary |=
10751 					    TCP_IPV6_RECVTCLASS;
10752 				else
10753 					tcp->tcp_ipv6_recvancillary &=
10754 					    ~TCP_IPV6_RECVTCLASS;
10755 			}
10756 			break;
10757 		case IPV6_RECVHOPLIMIT:
10758 			if (!checkonly) {
10759 				if (onoff)
10760 					tcp->tcp_ipv6_recvancillary |=
10761 					    TCP_IPV6_RECVHOPLIMIT;
10762 				else
10763 					tcp->tcp_ipv6_recvancillary &=
10764 					    ~TCP_IPV6_RECVHOPLIMIT;
10765 				/* Force it to be sent up with the next msg */
10766 				tcp->tcp_recvhops = 0xffffffffU;
10767 			}
10768 			break;
10769 		case IPV6_RECVHOPOPTS:
10770 			if (!checkonly) {
10771 				if (onoff)
10772 					tcp->tcp_ipv6_recvancillary |=
10773 					    TCP_IPV6_RECVHOPOPTS;
10774 				else
10775 					tcp->tcp_ipv6_recvancillary &=
10776 					    ~TCP_IPV6_RECVHOPOPTS;
10777 			}
10778 			break;
10779 		case IPV6_RECVDSTOPTS:
10780 			if (!checkonly) {
10781 				if (onoff)
10782 					tcp->tcp_ipv6_recvancillary |=
10783 					    TCP_IPV6_RECVDSTOPTS;
10784 				else
10785 					tcp->tcp_ipv6_recvancillary &=
10786 					    ~TCP_IPV6_RECVDSTOPTS;
10787 			}
10788 			break;
10789 		case _OLD_IPV6_RECVDSTOPTS:
10790 			if (!checkonly) {
10791 				if (onoff)
10792 					tcp->tcp_ipv6_recvancillary |=
10793 					    TCP_OLD_IPV6_RECVDSTOPTS;
10794 				else
10795 					tcp->tcp_ipv6_recvancillary &=
10796 					    ~TCP_OLD_IPV6_RECVDSTOPTS;
10797 			}
10798 			break;
10799 		case IPV6_RECVRTHDR:
10800 			if (!checkonly) {
10801 				if (onoff)
10802 					tcp->tcp_ipv6_recvancillary |=
10803 					    TCP_IPV6_RECVRTHDR;
10804 				else
10805 					tcp->tcp_ipv6_recvancillary &=
10806 					    ~TCP_IPV6_RECVRTHDR;
10807 			}
10808 			break;
10809 		case IPV6_RECVRTHDRDSTOPTS:
10810 			if (!checkonly) {
10811 				if (onoff)
10812 					tcp->tcp_ipv6_recvancillary |=
10813 					    TCP_IPV6_RECVRTDSTOPTS;
10814 				else
10815 					tcp->tcp_ipv6_recvancillary &=
10816 					    ~TCP_IPV6_RECVRTDSTOPTS;
10817 			}
10818 			break;
10819 		case IPV6_PKTINFO:
10820 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
10821 				return (EINVAL);
10822 			if (checkonly)
10823 				break;
10824 
10825 			if (inlen == 0) {
10826 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
10827 			} else {
10828 				struct in6_pktinfo *pkti;
10829 
10830 				pkti = (struct in6_pktinfo *)invalp;
10831 				/*
10832 				 * RFC 3542 states that ipi6_addr must be
10833 				 * the unspecified address when setting the
10834 				 * IPV6_PKTINFO sticky socket option on a
10835 				 * TCP socket.
10836 				 */
10837 				if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr))
10838 					return (EINVAL);
10839 				/*
10840 				 * ip6_set_pktinfo() validates the source
10841 				 * address and interface index.
10842 				 */
10843 				reterr = ip6_set_pktinfo(cr, tcp->tcp_connp,
10844 				    pkti, mblk);
10845 				if (reterr != 0)
10846 					return (reterr);
10847 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
10848 				ipp->ipp_addr = pkti->ipi6_addr;
10849 				if (ipp->ipp_ifindex != 0)
10850 					ipp->ipp_fields |= IPPF_IFINDEX;
10851 				else
10852 					ipp->ipp_fields &= ~IPPF_IFINDEX;
10853 				if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr))
10854 					ipp->ipp_fields |= IPPF_ADDR;
10855 				else
10856 					ipp->ipp_fields &= ~IPPF_ADDR;
10857 			}
10858 			reterr = tcp_build_hdrs(q, tcp);
10859 			if (reterr != 0)
10860 				return (reterr);
10861 			break;
10862 		case IPV6_TCLASS:
10863 			if (inlen != 0 && inlen != sizeof (int))
10864 				return (EINVAL);
10865 			if (checkonly)
10866 				break;
10867 
10868 			if (inlen == 0) {
10869 				ipp->ipp_fields &= ~IPPF_TCLASS;
10870 			} else {
10871 				if (*i1 > 255 || *i1 < -1)
10872 					return (EINVAL);
10873 				if (*i1 == -1) {
10874 					ipp->ipp_tclass = 0;
10875 					*i1 = 0;
10876 				} else {
10877 					ipp->ipp_tclass = *i1;
10878 				}
10879 				ipp->ipp_fields |= IPPF_TCLASS;
10880 			}
10881 			reterr = tcp_build_hdrs(q, tcp);
10882 			if (reterr != 0)
10883 				return (reterr);
10884 			break;
10885 		case IPV6_NEXTHOP:
10886 			/*
10887 			 * IP will verify that the nexthop is reachable
10888 			 * and fail for sticky options.
10889 			 */
10890 			if (inlen != 0 && inlen != sizeof (sin6_t))
10891 				return (EINVAL);
10892 			if (checkonly)
10893 				break;
10894 
10895 			if (inlen == 0) {
10896 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
10897 			} else {
10898 				sin6_t *sin6 = (sin6_t *)invalp;
10899 
10900 				if (sin6->sin6_family != AF_INET6)
10901 					return (EAFNOSUPPORT);
10902 				if (IN6_IS_ADDR_V4MAPPED(
10903 				    &sin6->sin6_addr))
10904 					return (EADDRNOTAVAIL);
10905 				ipp->ipp_nexthop = sin6->sin6_addr;
10906 				if (!IN6_IS_ADDR_UNSPECIFIED(
10907 				    &ipp->ipp_nexthop))
10908 					ipp->ipp_fields |= IPPF_NEXTHOP;
10909 				else
10910 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
10911 			}
10912 			reterr = tcp_build_hdrs(q, tcp);
10913 			if (reterr != 0)
10914 				return (reterr);
10915 			break;
10916 		case IPV6_HOPOPTS: {
10917 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
10918 
10919 			/*
10920 			 * Sanity checks - minimum size, size a multiple of
10921 			 * eight bytes, and matching size passed in.
10922 			 */
10923 			if (inlen != 0 &&
10924 			    inlen != (8 * (hopts->ip6h_len + 1)))
10925 				return (EINVAL);
10926 
10927 			if (checkonly)
10928 				break;
10929 
10930 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10931 			    (uchar_t **)&ipp->ipp_hopopts,
10932 			    &ipp->ipp_hopoptslen, tcp->tcp_label_len);
10933 			if (reterr != 0)
10934 				return (reterr);
10935 			if (ipp->ipp_hopoptslen == 0)
10936 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
10937 			else
10938 				ipp->ipp_fields |= IPPF_HOPOPTS;
10939 			reterr = tcp_build_hdrs(q, tcp);
10940 			if (reterr != 0)
10941 				return (reterr);
10942 			break;
10943 		}
10944 		case IPV6_RTHDRDSTOPTS: {
10945 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10946 
10947 			/*
10948 			 * Sanity checks - minimum size, size a multiple of
10949 			 * eight bytes, and matching size passed in.
10950 			 */
10951 			if (inlen != 0 &&
10952 			    inlen != (8 * (dopts->ip6d_len + 1)))
10953 				return (EINVAL);
10954 
10955 			if (checkonly)
10956 				break;
10957 
10958 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10959 			    (uchar_t **)&ipp->ipp_rtdstopts,
10960 			    &ipp->ipp_rtdstoptslen, 0);
10961 			if (reterr != 0)
10962 				return (reterr);
10963 			if (ipp->ipp_rtdstoptslen == 0)
10964 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
10965 			else
10966 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
10967 			reterr = tcp_build_hdrs(q, tcp);
10968 			if (reterr != 0)
10969 				return (reterr);
10970 			break;
10971 		}
10972 		case IPV6_DSTOPTS: {
10973 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10974 
10975 			/*
10976 			 * Sanity checks - minimum size, size a multiple of
10977 			 * eight bytes, and matching size passed in.
10978 			 */
10979 			if (inlen != 0 &&
10980 			    inlen != (8 * (dopts->ip6d_len + 1)))
10981 				return (EINVAL);
10982 
10983 			if (checkonly)
10984 				break;
10985 
10986 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10987 			    (uchar_t **)&ipp->ipp_dstopts,
10988 			    &ipp->ipp_dstoptslen, 0);
10989 			if (reterr != 0)
10990 				return (reterr);
10991 			if (ipp->ipp_dstoptslen == 0)
10992 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
10993 			else
10994 				ipp->ipp_fields |= IPPF_DSTOPTS;
10995 			reterr = tcp_build_hdrs(q, tcp);
10996 			if (reterr != 0)
10997 				return (reterr);
10998 			break;
10999 		}
11000 		case IPV6_RTHDR: {
11001 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
11002 
11003 			/*
11004 			 * Sanity checks - minimum size, size a multiple of
11005 			 * eight bytes, and matching size passed in.
11006 			 */
11007 			if (inlen != 0 &&
11008 			    inlen != (8 * (rt->ip6r_len + 1)))
11009 				return (EINVAL);
11010 
11011 			if (checkonly)
11012 				break;
11013 
11014 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
11015 			    (uchar_t **)&ipp->ipp_rthdr,
11016 			    &ipp->ipp_rthdrlen, 0);
11017 			if (reterr != 0)
11018 				return (reterr);
11019 			if (ipp->ipp_rthdrlen == 0)
11020 				ipp->ipp_fields &= ~IPPF_RTHDR;
11021 			else
11022 				ipp->ipp_fields |= IPPF_RTHDR;
11023 			reterr = tcp_build_hdrs(q, tcp);
11024 			if (reterr != 0)
11025 				return (reterr);
11026 			break;
11027 		}
11028 		case IPV6_V6ONLY:
11029 			if (!checkonly)
11030 				tcp->tcp_connp->conn_ipv6_v6only = onoff;
11031 			break;
11032 		case IPV6_USE_MIN_MTU:
11033 			if (inlen != sizeof (int))
11034 				return (EINVAL);
11035 
11036 			if (*i1 < -1 || *i1 > 1)
11037 				return (EINVAL);
11038 
11039 			if (checkonly)
11040 				break;
11041 
11042 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
11043 			ipp->ipp_use_min_mtu = *i1;
11044 			break;
11045 		case IPV6_BOUND_PIF:
11046 			/* Handled at the IP level */
11047 			return (-EINVAL);
11048 		case IPV6_SEC_OPT:
11049 			/*
11050 			 * We should not allow policy setting after
11051 			 * we start listening for connections.
11052 			 */
11053 			if (tcp->tcp_state == TCPS_LISTEN) {
11054 				return (EINVAL);
11055 			} else {
11056 				/* Handled at the IP level */
11057 				return (-EINVAL);
11058 			}
11059 		case IPV6_SRC_PREFERENCES:
11060 			if (inlen != sizeof (uint32_t))
11061 				return (EINVAL);
11062 			reterr = ip6_set_src_preferences(tcp->tcp_connp,
11063 			    *(uint32_t *)invalp);
11064 			if (reterr != 0) {
11065 				*outlenp = 0;
11066 				return (reterr);
11067 			}
11068 			break;
11069 		default:
11070 			*outlenp = 0;
11071 			return (EINVAL);
11072 		}
11073 		break;
11074 	}		/* end IPPROTO_IPV6 */
11075 	default:
11076 		*outlenp = 0;
11077 		return (EINVAL);
11078 	}
11079 	/*
11080 	 * Common case of OK return with outval same as inval
11081 	 */
11082 	if (invalp != outvalp) {
11083 		/* don't trust bcopy for identical src/dst */
11084 		(void) bcopy(invalp, outvalp, inlen);
11085 	}
11086 	*outlenp = inlen;
11087 	return (0);
11088 }
11089 
11090 /*
11091  * Update tcp_sticky_hdrs based on tcp_sticky_ipp.
11092  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
11093  * headers, and the maximum size tcp header (to avoid reallocation
11094  * on the fly for additional tcp options).
11095  * Returns failure if can't allocate memory.
11096  */
11097 static int
11098 tcp_build_hdrs(queue_t *q, tcp_t *tcp)
11099 {
11100 	char	*hdrs;
11101 	uint_t	hdrs_len;
11102 	ip6i_t	*ip6i;
11103 	char	buf[TCP_MAX_HDR_LENGTH];
11104 	ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
11105 	in6_addr_t src, dst;
11106 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11107 
11108 	/*
11109 	 * save the existing tcp header and source/dest IP addresses
11110 	 */
11111 	bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len);
11112 	src = tcp->tcp_ip6h->ip6_src;
11113 	dst = tcp->tcp_ip6h->ip6_dst;
11114 	hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH;
11115 	ASSERT(hdrs_len != 0);
11116 	if (hdrs_len > tcp->tcp_iphc_len) {
11117 		/* Need to reallocate */
11118 		hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP);
11119 		if (hdrs == NULL)
11120 			return (ENOMEM);
11121 		if (tcp->tcp_iphc != NULL) {
11122 			if (tcp->tcp_hdr_grown) {
11123 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
11124 			} else {
11125 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
11126 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
11127 			}
11128 			tcp->tcp_iphc_len = 0;
11129 		}
11130 		ASSERT(tcp->tcp_iphc_len == 0);
11131 		tcp->tcp_iphc = hdrs;
11132 		tcp->tcp_iphc_len = hdrs_len;
11133 		tcp->tcp_hdr_grown = B_TRUE;
11134 	}
11135 	ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc,
11136 	    hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP);
11137 
11138 	/* Set header fields not in ipp */
11139 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
11140 		ip6i = (ip6i_t *)tcp->tcp_iphc;
11141 		tcp->tcp_ip6h = (ip6_t *)&ip6i[1];
11142 	} else {
11143 		tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
11144 	}
11145 	/*
11146 	 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one.
11147 	 *
11148 	 * tcp->tcp_tcp_hdr_len doesn't change here.
11149 	 */
11150 	tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH;
11151 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len);
11152 	tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len;
11153 
11154 	bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len);
11155 
11156 	tcp->tcp_ip6h->ip6_src = src;
11157 	tcp->tcp_ip6h->ip6_dst = dst;
11158 
11159 	/*
11160 	 * If the hop limit was not set by ip_build_hdrs_v6(), set it to
11161 	 * the default value for TCP.
11162 	 */
11163 	if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS))
11164 		tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit;
11165 
11166 	/*
11167 	 * If we're setting extension headers after a connection
11168 	 * has been established, and if we have a routing header
11169 	 * among the extension headers, call ip_massage_options_v6 to
11170 	 * manipulate the routing header/ip6_dst set the checksum
11171 	 * difference in the tcp header template.
11172 	 * (This happens in tcp_connect_ipv6 if the routing header
11173 	 * is set prior to the connect.)
11174 	 * Set the tcp_sum to zero first in case we've cleared a
11175 	 * routing header or don't have one at all.
11176 	 */
11177 	tcp->tcp_sum = 0;
11178 	if ((tcp->tcp_state >= TCPS_SYN_SENT) &&
11179 	    (tcp->tcp_ipp_fields & IPPF_RTHDR)) {
11180 		ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h,
11181 		    (uint8_t *)tcp->tcp_tcph);
11182 		if (rth != NULL) {
11183 			tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h,
11184 			    rth, tcps->tcps_netstack);
11185 			tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
11186 			    (tcp->tcp_sum >> 16));
11187 		}
11188 	}
11189 
11190 	/* Try to get everything in a single mblk */
11191 	(void) mi_set_sth_wroff(RD(q), hdrs_len + tcps->tcps_wroff_xtra);
11192 	return (0);
11193 }
11194 
11195 /*
11196  * Transfer any source route option from ipha to buf/dst in reversed form.
11197  */
11198 static int
11199 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst)
11200 {
11201 	ipoptp_t	opts;
11202 	uchar_t		*opt;
11203 	uint8_t		optval;
11204 	uint8_t		optlen;
11205 	uint32_t	len = 0;
11206 
11207 	for (optval = ipoptp_first(&opts, ipha);
11208 	    optval != IPOPT_EOL;
11209 	    optval = ipoptp_next(&opts)) {
11210 		opt = opts.ipoptp_cur;
11211 		optlen = opts.ipoptp_len;
11212 		switch (optval) {
11213 			int	off1, off2;
11214 		case IPOPT_SSRR:
11215 		case IPOPT_LSRR:
11216 
11217 			/* Reverse source route */
11218 			/*
11219 			 * First entry should be the next to last one in the
11220 			 * current source route (the last entry is our
11221 			 * address.)
11222 			 * The last entry should be the final destination.
11223 			 */
11224 			buf[IPOPT_OPTVAL] = (uint8_t)optval;
11225 			buf[IPOPT_OLEN] = (uint8_t)optlen;
11226 			off1 = IPOPT_MINOFF_SR - 1;
11227 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
11228 			if (off2 < 0) {
11229 				/* No entries in source route */
11230 				break;
11231 			}
11232 			bcopy(opt + off2, dst, IP_ADDR_LEN);
11233 			/*
11234 			 * Note: use src since ipha has not had its src
11235 			 * and dst reversed (it is in the state it was
11236 			 * received.
11237 			 */
11238 			bcopy(&ipha->ipha_src, buf + off2,
11239 			    IP_ADDR_LEN);
11240 			off2 -= IP_ADDR_LEN;
11241 
11242 			while (off2 > 0) {
11243 				bcopy(opt + off2, buf + off1,
11244 				    IP_ADDR_LEN);
11245 				off1 += IP_ADDR_LEN;
11246 				off2 -= IP_ADDR_LEN;
11247 			}
11248 			buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
11249 			buf += optlen;
11250 			len += optlen;
11251 			break;
11252 		}
11253 	}
11254 done:
11255 	/* Pad the resulting options */
11256 	while (len & 0x3) {
11257 		*buf++ = IPOPT_EOL;
11258 		len++;
11259 	}
11260 	return (len);
11261 }
11262 
11263 
11264 /*
11265  * Extract and revert a source route from ipha (if any)
11266  * and then update the relevant fields in both tcp_t and the standard header.
11267  */
11268 static void
11269 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha)
11270 {
11271 	char	buf[TCP_MAX_HDR_LENGTH];
11272 	uint_t	tcph_len;
11273 	int	len;
11274 
11275 	ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
11276 	len = IPH_HDR_LENGTH(ipha);
11277 	if (len == IP_SIMPLE_HDR_LENGTH)
11278 		/* Nothing to do */
11279 		return;
11280 	if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH ||
11281 	    (len & 0x3))
11282 		return;
11283 
11284 	tcph_len = tcp->tcp_tcp_hdr_len;
11285 	bcopy(tcp->tcp_tcph, buf, tcph_len);
11286 	tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) +
11287 	    (tcp->tcp_ipha->ipha_dst & 0xffff);
11288 	len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha +
11289 	    IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst);
11290 	len += IP_SIMPLE_HDR_LENGTH;
11291 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
11292 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
11293 	if ((int)tcp->tcp_sum < 0)
11294 		tcp->tcp_sum--;
11295 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
11296 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16));
11297 	tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len);
11298 	bcopy(buf, tcp->tcp_tcph, tcph_len);
11299 	tcp->tcp_ip_hdr_len = len;
11300 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11301 	    (IP_VERSION << 4) | (len >> 2);
11302 	len += tcph_len;
11303 	tcp->tcp_hdr_len = len;
11304 }
11305 
11306 /*
11307  * Copy the standard header into its new location,
11308  * lay in the new options and then update the relevant
11309  * fields in both tcp_t and the standard header.
11310  */
11311 static int
11312 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len)
11313 {
11314 	uint_t	tcph_len;
11315 	uint8_t	*ip_optp;
11316 	tcph_t	*new_tcph;
11317 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11318 
11319 	if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3))
11320 		return (EINVAL);
11321 
11322 	if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len)
11323 		return (EINVAL);
11324 
11325 	if (checkonly) {
11326 		/*
11327 		 * do not really set, just pretend to - T_CHECK
11328 		 */
11329 		return (0);
11330 	}
11331 
11332 	ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH;
11333 	if (tcp->tcp_label_len > 0) {
11334 		int padlen;
11335 		uint8_t opt;
11336 
11337 		/* convert list termination to no-ops */
11338 		padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN];
11339 		ip_optp += ip_optp[IPOPT_OLEN];
11340 		opt = len > 0 ? IPOPT_NOP : IPOPT_EOL;
11341 		while (--padlen >= 0)
11342 			*ip_optp++ = opt;
11343 	}
11344 	tcph_len = tcp->tcp_tcp_hdr_len;
11345 	new_tcph = (tcph_t *)(ip_optp + len);
11346 	ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len);
11347 	tcp->tcp_tcph = new_tcph;
11348 	bcopy(ptr, ip_optp, len);
11349 
11350 	len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len;
11351 
11352 	tcp->tcp_ip_hdr_len = len;
11353 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11354 	    (IP_VERSION << 4) | (len >> 2);
11355 	tcp->tcp_hdr_len = len + tcph_len;
11356 	if (!TCP_IS_DETACHED(tcp)) {
11357 		/* Always allocate room for all options. */
11358 		(void) mi_set_sth_wroff(tcp->tcp_rq,
11359 		    TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra);
11360 	}
11361 	return (0);
11362 }
11363 
11364 /* Get callback routine passed to nd_load by tcp_param_register */
11365 /* ARGSUSED */
11366 static int
11367 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
11368 {
11369 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11370 
11371 	(void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val);
11372 	return (0);
11373 }
11374 
11375 /*
11376  * Walk through the param array specified registering each element with the
11377  * named dispatch handler.
11378  */
11379 static boolean_t
11380 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps)
11381 {
11382 	for (; cnt-- > 0; tcppa++) {
11383 		if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) {
11384 			if (!nd_load(ndp, tcppa->tcp_param_name,
11385 			    tcp_param_get, tcp_param_set,
11386 			    (caddr_t)tcppa)) {
11387 				nd_free(ndp);
11388 				return (B_FALSE);
11389 			}
11390 		}
11391 	}
11392 	tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t),
11393 	    KM_SLEEP);
11394 	bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param,
11395 	    sizeof (tcpparam_t));
11396 	if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name,
11397 	    tcp_param_get, tcp_param_set_aligned,
11398 	    (caddr_t)tcps->tcps_wroff_xtra_param)) {
11399 		nd_free(ndp);
11400 		return (B_FALSE);
11401 	}
11402 	tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t),
11403 	    KM_SLEEP);
11404 	bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param,
11405 	    sizeof (tcpparam_t));
11406 	if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name,
11407 	    tcp_param_get, tcp_param_set_aligned,
11408 	    (caddr_t)tcps->tcps_mdt_head_param)) {
11409 		nd_free(ndp);
11410 		return (B_FALSE);
11411 	}
11412 	tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t),
11413 	    KM_SLEEP);
11414 	bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param,
11415 	    sizeof (tcpparam_t));
11416 	if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name,
11417 	    tcp_param_get, tcp_param_set_aligned,
11418 	    (caddr_t)tcps->tcps_mdt_tail_param)) {
11419 		nd_free(ndp);
11420 		return (B_FALSE);
11421 	}
11422 	tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t),
11423 	    KM_SLEEP);
11424 	bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param,
11425 	    sizeof (tcpparam_t));
11426 	if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name,
11427 	    tcp_param_get, tcp_param_set_aligned,
11428 	    (caddr_t)tcps->tcps_mdt_max_pbufs_param)) {
11429 		nd_free(ndp);
11430 		return (B_FALSE);
11431 	}
11432 	if (!nd_load(ndp, "tcp_extra_priv_ports",
11433 	    tcp_extra_priv_ports_get, NULL, NULL)) {
11434 		nd_free(ndp);
11435 		return (B_FALSE);
11436 	}
11437 	if (!nd_load(ndp, "tcp_extra_priv_ports_add",
11438 	    NULL, tcp_extra_priv_ports_add, NULL)) {
11439 		nd_free(ndp);
11440 		return (B_FALSE);
11441 	}
11442 	if (!nd_load(ndp, "tcp_extra_priv_ports_del",
11443 	    NULL, tcp_extra_priv_ports_del, NULL)) {
11444 		nd_free(ndp);
11445 		return (B_FALSE);
11446 	}
11447 	if (!nd_load(ndp, "tcp_status", tcp_status_report, NULL,
11448 	    NULL)) {
11449 		nd_free(ndp);
11450 		return (B_FALSE);
11451 	}
11452 	if (!nd_load(ndp, "tcp_bind_hash", tcp_bind_hash_report,
11453 	    NULL, NULL)) {
11454 		nd_free(ndp);
11455 		return (B_FALSE);
11456 	}
11457 	if (!nd_load(ndp, "tcp_listen_hash",
11458 	    tcp_listen_hash_report, NULL, NULL)) {
11459 		nd_free(ndp);
11460 		return (B_FALSE);
11461 	}
11462 	if (!nd_load(ndp, "tcp_conn_hash", tcp_conn_hash_report,
11463 	    NULL, NULL)) {
11464 		nd_free(ndp);
11465 		return (B_FALSE);
11466 	}
11467 	if (!nd_load(ndp, "tcp_acceptor_hash",
11468 	    tcp_acceptor_hash_report, NULL, NULL)) {
11469 		nd_free(ndp);
11470 		return (B_FALSE);
11471 	}
11472 	if (!nd_load(ndp, "tcp_1948_phrase", NULL,
11473 	    tcp_1948_phrase_set, NULL)) {
11474 		nd_free(ndp);
11475 		return (B_FALSE);
11476 	}
11477 	/*
11478 	 * Dummy ndd variables - only to convey obsolescence information
11479 	 * through printing of their name (no get or set routines)
11480 	 * XXX Remove in future releases ?
11481 	 */
11482 	if (!nd_load(ndp,
11483 	    "tcp_close_wait_interval(obsoleted - "
11484 	    "use tcp_time_wait_interval)", NULL, NULL, NULL)) {
11485 		nd_free(ndp);
11486 		return (B_FALSE);
11487 	}
11488 	return (B_TRUE);
11489 }
11490 
11491 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */
11492 /* ARGSUSED */
11493 static int
11494 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
11495     cred_t *cr)
11496 {
11497 	long new_value;
11498 	tcpparam_t *tcppa = (tcpparam_t *)cp;
11499 
11500 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11501 	    new_value < tcppa->tcp_param_min ||
11502 	    new_value > tcppa->tcp_param_max) {
11503 		return (EINVAL);
11504 	}
11505 	/*
11506 	 * Need to make sure new_value is a multiple of 4.  If it is not,
11507 	 * round it up.  For future 64 bit requirement, we actually make it
11508 	 * a multiple of 8.
11509 	 */
11510 	if (new_value & 0x7) {
11511 		new_value = (new_value & ~0x7) + 0x8;
11512 	}
11513 	tcppa->tcp_param_val = new_value;
11514 	return (0);
11515 }
11516 
11517 /* Set callback routine passed to nd_load by tcp_param_register */
11518 /* ARGSUSED */
11519 static int
11520 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
11521 {
11522 	long	new_value;
11523 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11524 
11525 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11526 	    new_value < tcppa->tcp_param_min ||
11527 	    new_value > tcppa->tcp_param_max) {
11528 		return (EINVAL);
11529 	}
11530 	tcppa->tcp_param_val = new_value;
11531 	return (0);
11532 }
11533 
11534 /*
11535  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
11536  * is filled, return as much as we can.  The message passed in may be
11537  * multi-part, chained using b_cont.  "start" is the starting sequence
11538  * number for this piece.
11539  */
11540 static mblk_t *
11541 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
11542 {
11543 	uint32_t	end;
11544 	mblk_t		*mp1;
11545 	mblk_t		*mp2;
11546 	mblk_t		*next_mp;
11547 	uint32_t	u1;
11548 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11549 
11550 	/* Walk through all the new pieces. */
11551 	do {
11552 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
11553 		    (uintptr_t)INT_MAX);
11554 		end = start + (int)(mp->b_wptr - mp->b_rptr);
11555 		next_mp = mp->b_cont;
11556 		if (start == end) {
11557 			/* Empty.  Blast it. */
11558 			freeb(mp);
11559 			continue;
11560 		}
11561 		mp->b_cont = NULL;
11562 		TCP_REASS_SET_SEQ(mp, start);
11563 		TCP_REASS_SET_END(mp, end);
11564 		mp1 = tcp->tcp_reass_tail;
11565 		if (!mp1) {
11566 			tcp->tcp_reass_tail = mp;
11567 			tcp->tcp_reass_head = mp;
11568 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11569 			UPDATE_MIB(&tcps->tcps_mib,
11570 			    tcpInDataUnorderBytes, end - start);
11571 			continue;
11572 		}
11573 		/* New stuff completely beyond tail? */
11574 		if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
11575 			/* Link it on end. */
11576 			mp1->b_cont = mp;
11577 			tcp->tcp_reass_tail = mp;
11578 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11579 			UPDATE_MIB(&tcps->tcps_mib,
11580 			    tcpInDataUnorderBytes, end - start);
11581 			continue;
11582 		}
11583 		mp1 = tcp->tcp_reass_head;
11584 		u1 = TCP_REASS_SEQ(mp1);
11585 		/* New stuff at the front? */
11586 		if (SEQ_LT(start, u1)) {
11587 			/* Yes... Check for overlap. */
11588 			mp->b_cont = mp1;
11589 			tcp->tcp_reass_head = mp;
11590 			tcp_reass_elim_overlap(tcp, mp);
11591 			continue;
11592 		}
11593 		/*
11594 		 * The new piece fits somewhere between the head and tail.
11595 		 * We find our slot, where mp1 precedes us and mp2 trails.
11596 		 */
11597 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
11598 			u1 = TCP_REASS_SEQ(mp2);
11599 			if (SEQ_LEQ(start, u1))
11600 				break;
11601 		}
11602 		/* Link ourselves in */
11603 		mp->b_cont = mp2;
11604 		mp1->b_cont = mp;
11605 
11606 		/* Trim overlap with following mblk(s) first */
11607 		tcp_reass_elim_overlap(tcp, mp);
11608 
11609 		/* Trim overlap with preceding mblk */
11610 		tcp_reass_elim_overlap(tcp, mp1);
11611 
11612 	} while (start = end, mp = next_mp);
11613 	mp1 = tcp->tcp_reass_head;
11614 	/* Anything ready to go? */
11615 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
11616 		return (NULL);
11617 	/* Eat what we can off the queue */
11618 	for (;;) {
11619 		mp = mp1->b_cont;
11620 		end = TCP_REASS_END(mp1);
11621 		TCP_REASS_SET_SEQ(mp1, 0);
11622 		TCP_REASS_SET_END(mp1, 0);
11623 		if (!mp) {
11624 			tcp->tcp_reass_tail = NULL;
11625 			break;
11626 		}
11627 		if (end != TCP_REASS_SEQ(mp)) {
11628 			mp1->b_cont = NULL;
11629 			break;
11630 		}
11631 		mp1 = mp;
11632 	}
11633 	mp1 = tcp->tcp_reass_head;
11634 	tcp->tcp_reass_head = mp;
11635 	return (mp1);
11636 }
11637 
11638 /* Eliminate any overlap that mp may have over later mblks */
11639 static void
11640 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
11641 {
11642 	uint32_t	end;
11643 	mblk_t		*mp1;
11644 	uint32_t	u1;
11645 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11646 
11647 	end = TCP_REASS_END(mp);
11648 	while ((mp1 = mp->b_cont) != NULL) {
11649 		u1 = TCP_REASS_SEQ(mp1);
11650 		if (!SEQ_GT(end, u1))
11651 			break;
11652 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
11653 			mp->b_wptr -= end - u1;
11654 			TCP_REASS_SET_END(mp, u1);
11655 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs);
11656 			UPDATE_MIB(&tcps->tcps_mib,
11657 			    tcpInDataPartDupBytes, end - u1);
11658 			break;
11659 		}
11660 		mp->b_cont = mp1->b_cont;
11661 		TCP_REASS_SET_SEQ(mp1, 0);
11662 		TCP_REASS_SET_END(mp1, 0);
11663 		freeb(mp1);
11664 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
11665 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1);
11666 	}
11667 	if (!mp1)
11668 		tcp->tcp_reass_tail = mp;
11669 }
11670 
11671 /*
11672  * Send up all messages queued on tcp_rcv_list.
11673  */
11674 static uint_t
11675 tcp_rcv_drain(queue_t *q, tcp_t *tcp)
11676 {
11677 	mblk_t *mp;
11678 	uint_t ret = 0;
11679 	uint_t thwin;
11680 #ifdef DEBUG
11681 	uint_t cnt = 0;
11682 #endif
11683 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11684 
11685 	/* Can't drain on an eager connection */
11686 	if (tcp->tcp_listener != NULL)
11687 		return (ret);
11688 
11689 	/* Can't be sodirect enabled */
11690 	ASSERT(SOD_NOT_ENABLED(tcp));
11691 
11692 	/* No need for the push timer now. */
11693 	if (tcp->tcp_push_tid != 0) {
11694 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11695 		tcp->tcp_push_tid = 0;
11696 	}
11697 
11698 	/*
11699 	 * Handle two cases here: we are currently fused or we were
11700 	 * previously fused and have some urgent data to be delivered
11701 	 * upstream.  The latter happens because we either ran out of
11702 	 * memory or were detached and therefore sending the SIGURG was
11703 	 * deferred until this point.  In either case we pass control
11704 	 * over to tcp_fuse_rcv_drain() since it may need to complete
11705 	 * some work.
11706 	 */
11707 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
11708 		ASSERT(tcp->tcp_fused_sigurg_mp != NULL);
11709 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
11710 		    &tcp->tcp_fused_sigurg_mp))
11711 			return (ret);
11712 	}
11713 
11714 	while ((mp = tcp->tcp_rcv_list) != NULL) {
11715 		tcp->tcp_rcv_list = mp->b_next;
11716 		mp->b_next = NULL;
11717 #ifdef DEBUG
11718 		cnt += msgdsize(mp);
11719 #endif
11720 		/* Does this need SSL processing first? */
11721 		if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) {
11722 			DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain,
11723 			    mblk_t *, mp);
11724 			tcp_kssl_input(tcp, mp);
11725 			continue;
11726 		}
11727 		putnext(q, mp);
11728 	}
11729 	ASSERT(cnt == tcp->tcp_rcv_cnt);
11730 	tcp->tcp_rcv_last_head = NULL;
11731 	tcp->tcp_rcv_last_tail = NULL;
11732 	tcp->tcp_rcv_cnt = 0;
11733 
11734 	/* Learn the latest rwnd information that we sent to the other side. */
11735 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11736 	    << tcp->tcp_rcv_ws;
11737 	/* This is peer's calculated send window (our receive window). */
11738 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11739 	/*
11740 	 * Increase the receive window to max.  But we need to do receiver
11741 	 * SWS avoidance.  This means that we need to check the increase of
11742 	 * of receive window is at least 1 MSS.
11743 	 */
11744 	if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) {
11745 		/*
11746 		 * If the window that the other side knows is less than max
11747 		 * deferred acks segments, send an update immediately.
11748 		 */
11749 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11750 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
11751 			ret = TH_ACK_NEEDED;
11752 		}
11753 		tcp->tcp_rwnd = q->q_hiwat;
11754 	}
11755 	return (ret);
11756 }
11757 
11758 /*
11759  * Queue data on tcp_rcv_list which is a b_next chain.
11760  * tcp_rcv_last_head/tail is the last element of this chain.
11761  * Each element of the chain is a b_cont chain.
11762  *
11763  * M_DATA messages are added to the current element.
11764  * Other messages are added as new (b_next) elements.
11765  */
11766 void
11767 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len)
11768 {
11769 	ASSERT(seg_len == msgdsize(mp));
11770 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
11771 
11772 	if (tcp->tcp_rcv_list == NULL) {
11773 		ASSERT(tcp->tcp_rcv_last_head == NULL);
11774 		tcp->tcp_rcv_list = mp;
11775 		tcp->tcp_rcv_last_head = mp;
11776 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
11777 		tcp->tcp_rcv_last_tail->b_cont = mp;
11778 	} else {
11779 		tcp->tcp_rcv_last_head->b_next = mp;
11780 		tcp->tcp_rcv_last_head = mp;
11781 	}
11782 
11783 	while (mp->b_cont)
11784 		mp = mp->b_cont;
11785 
11786 	tcp->tcp_rcv_last_tail = mp;
11787 	tcp->tcp_rcv_cnt += seg_len;
11788 	tcp->tcp_rwnd -= seg_len;
11789 }
11790 
11791 /*
11792  * The tcp_rcv_sod_XXX() functions enqueue data directly to the socket
11793  * above, in addition when uioa is enabled schedule an asynchronous uio
11794  * prior to enqueuing. They implement the combinhed semantics of the
11795  * tcp_rcv_XXX() functions, tcp_rcv_list push logic, and STREAMS putnext()
11796  * canputnext(), i.e. flow-control with backenable.
11797  *
11798  * tcp_sod_wakeup() is called where tcp_rcv_drain() would be called in the
11799  * non sodirect connection but as there are no tcp_tcv_list mblk_t's we deal
11800  * with the rcv_wnd and push timer and call the sodirect wakeup function.
11801  *
11802  * Must be called with sodp->sod_lockp held and will return with the lock
11803  * released.
11804  */
11805 static uint_t
11806 tcp_rcv_sod_wakeup(tcp_t *tcp, sodirect_t *sodp)
11807 {
11808 	queue_t		*q = tcp->tcp_rq;
11809 	uint_t		thwin;
11810 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11811 	uint_t		ret = 0;
11812 
11813 	/* Can't be an eager connection */
11814 	ASSERT(tcp->tcp_listener == NULL);
11815 
11816 	/* Caller must have lock held */
11817 	ASSERT(MUTEX_HELD(sodp->sod_lockp));
11818 
11819 	/* Sodirect mode so must not be a tcp_rcv_list */
11820 	ASSERT(tcp->tcp_rcv_list == NULL);
11821 
11822 	if (SOD_QFULL(sodp)) {
11823 		/* Q is full, mark Q for need backenable */
11824 		SOD_QSETBE(sodp);
11825 	}
11826 	/* Last advertised rwnd, i.e. rwnd last sent in a packet */
11827 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11828 	    << tcp->tcp_rcv_ws;
11829 	/* This is peer's calculated send window (our available rwnd). */
11830 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11831 	/*
11832 	 * Increase the receive window to max.  But we need to do receiver
11833 	 * SWS avoidance.  This means that we need to check the increase of
11834 	 * of receive window is at least 1 MSS.
11835 	 */
11836 	if (!SOD_QFULL(sodp) && (q->q_hiwat - thwin >= tcp->tcp_mss)) {
11837 		/*
11838 		 * If the window that the other side knows is less than max
11839 		 * deferred acks segments, send an update immediately.
11840 		 */
11841 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11842 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
11843 			ret = TH_ACK_NEEDED;
11844 		}
11845 		tcp->tcp_rwnd = q->q_hiwat;
11846 	}
11847 
11848 	if (!SOD_QEMPTY(sodp)) {
11849 		/* Wakeup to socket */
11850 		sodp->sod_state &= SOD_WAKE_CLR;
11851 		sodp->sod_state |= SOD_WAKE_DONE;
11852 		(sodp->sod_wakeup)(sodp);
11853 		/* wakeup() does the mutex_ext() */
11854 	} else {
11855 		/* Q is empty, no need to wake */
11856 		sodp->sod_state &= SOD_WAKE_CLR;
11857 		sodp->sod_state |= SOD_WAKE_NOT;
11858 		mutex_exit(sodp->sod_lockp);
11859 	}
11860 
11861 	/* No need for the push timer now. */
11862 	if (tcp->tcp_push_tid != 0) {
11863 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11864 		tcp->tcp_push_tid = 0;
11865 	}
11866 
11867 	return (ret);
11868 }
11869 
11870 /*
11871  * Called where tcp_rcv_enqueue()/putnext(RD(q)) would be. For M_DATA
11872  * mblk_t's if uioa enabled then start a uioa asynchronous copy directly
11873  * to the user-land buffer and flag the mblk_t as such.
11874  *
11875  * Also, handle tcp_rwnd.
11876  */
11877 uint_t
11878 tcp_rcv_sod_enqueue(tcp_t *tcp, sodirect_t *sodp, mblk_t *mp, uint_t seg_len)
11879 {
11880 	uioa_t		*uioap = &sodp->sod_uioa;
11881 	boolean_t	qfull;
11882 	uint_t		thwin;
11883 
11884 	/* Can't be an eager connection */
11885 	ASSERT(tcp->tcp_listener == NULL);
11886 
11887 	/* Caller must have lock held */
11888 	ASSERT(MUTEX_HELD(sodp->sod_lockp));
11889 
11890 	/* Sodirect mode so must not be a tcp_rcv_list */
11891 	ASSERT(tcp->tcp_rcv_list == NULL);
11892 
11893 	/* Passed in segment length must be equal to mblk_t chain data size */
11894 	ASSERT(seg_len == msgdsize(mp));
11895 
11896 	if (DB_TYPE(mp) != M_DATA) {
11897 		/* Only process M_DATA mblk_t's */
11898 		goto enq;
11899 	}
11900 	if (uioap->uioa_state & UIOA_ENABLED) {
11901 		/* Uioa is enabled */
11902 		mblk_t		*mp1 = mp;
11903 		mblk_t		*lmp = NULL;
11904 
11905 		if (seg_len > uioap->uio_resid) {
11906 			/*
11907 			 * There isn't enough uio space for the mblk_t chain
11908 			 * so disable uioa such that this and any additional
11909 			 * mblk_t data is handled by the socket and schedule
11910 			 * the socket for wakeup to finish this uioa.
11911 			 */
11912 			uioap->uioa_state &= UIOA_CLR;
11913 			uioap->uioa_state |= UIOA_FINI;
11914 			if (sodp->sod_state & SOD_WAKE_NOT) {
11915 				sodp->sod_state &= SOD_WAKE_CLR;
11916 				sodp->sod_state |= SOD_WAKE_NEED;
11917 			}
11918 			goto enq;
11919 		}
11920 		do {
11921 			uint32_t	len = MBLKL(mp1);
11922 
11923 			if (!uioamove(mp1->b_rptr, len, UIO_READ, uioap)) {
11924 				/* Scheduled, mark dblk_t as such */
11925 				DB_FLAGS(mp1) |= DBLK_UIOA;
11926 			} else {
11927 				/* Error, turn off async processing */
11928 				uioap->uioa_state &= UIOA_CLR;
11929 				uioap->uioa_state |= UIOA_FINI;
11930 				break;
11931 			}
11932 			lmp = mp1;
11933 		} while ((mp1 = mp1->b_cont) != NULL);
11934 
11935 		if (mp1 != NULL || uioap->uio_resid == 0) {
11936 			/*
11937 			 * Not all mblk_t(s) uioamoved (error) or all uio
11938 			 * space has been consumed so schedule the socket
11939 			 * for wakeup to finish this uio.
11940 			 */
11941 			sodp->sod_state &= SOD_WAKE_CLR;
11942 			sodp->sod_state |= SOD_WAKE_NEED;
11943 
11944 			/* Break the mblk chain if neccessary. */
11945 			if (mp1 != NULL && lmp != NULL) {
11946 				mp->b_next = mp1;
11947 				lmp->b_cont = NULL;
11948 			}
11949 		}
11950 	} else if (uioap->uioa_state & UIOA_FINI) {
11951 		/*
11952 		 * Post UIO_ENABLED waiting for socket to finish processing
11953 		 * so just enqueue and update tcp_rwnd.
11954 		 */
11955 		if (SOD_QFULL(sodp))
11956 			tcp->tcp_rwnd -= seg_len;
11957 	} else if (sodp->sod_want > 0) {
11958 		/*
11959 		 * Uioa isn't enabled but sodirect has a pending read().
11960 		 */
11961 		if (SOD_QCNT(sodp) + seg_len >= sodp->sod_want) {
11962 			if (sodp->sod_state & SOD_WAKE_NOT) {
11963 				/* Schedule socket for wakeup */
11964 				sodp->sod_state &= SOD_WAKE_CLR;
11965 				sodp->sod_state |= SOD_WAKE_NEED;
11966 			}
11967 			tcp->tcp_rwnd -= seg_len;
11968 		}
11969 	} else if (SOD_QCNT(sodp) + seg_len >= tcp->tcp_rq->q_hiwat >> 3) {
11970 		/*
11971 		 * No pending sodirect read() so used the default
11972 		 * TCP push logic to guess that a push is needed.
11973 		 */
11974 		if (sodp->sod_state & SOD_WAKE_NOT) {
11975 			/* Schedule socket for wakeup */
11976 			sodp->sod_state &= SOD_WAKE_CLR;
11977 			sodp->sod_state |= SOD_WAKE_NEED;
11978 		}
11979 		tcp->tcp_rwnd -= seg_len;
11980 	} else {
11981 		/* Just update tcp_rwnd */
11982 		tcp->tcp_rwnd -= seg_len;
11983 	}
11984 enq:
11985 	qfull = SOD_QFULL(sodp);
11986 
11987 	(sodp->sod_enqueue)(sodp, mp);
11988 
11989 	if (! qfull && SOD_QFULL(sodp)) {
11990 		/* Wasn't QFULL, now QFULL, need back-enable */
11991 		SOD_QSETBE(sodp);
11992 	}
11993 
11994 	/*
11995 	 * Check to see if remote avail swnd < mss due to delayed ACK,
11996 	 * first get advertised rwnd.
11997 	 */
11998 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win));
11999 	/* Minus delayed ACK count */
12000 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
12001 	if (thwin < tcp->tcp_mss) {
12002 		/* Remote avail swnd < mss, need ACK now */
12003 		return (TH_ACK_NEEDED);
12004 	}
12005 
12006 	return (0);
12007 }
12008 
12009 /*
12010  * DEFAULT TCP ENTRY POINT via squeue on READ side.
12011  *
12012  * This is the default entry function into TCP on the read side. TCP is
12013  * always entered via squeue i.e. using squeue's for mutual exclusion.
12014  * When classifier does a lookup to find the tcp, it also puts a reference
12015  * on the conn structure associated so the tcp is guaranteed to exist
12016  * when we come here. We still need to check the state because it might
12017  * as well has been closed. The squeue processing function i.e. squeue_enter,
12018  * squeue_enter_nodrain, or squeue_drain is responsible for doing the
12019  * CONN_DEC_REF.
12020  *
12021  * Apart from the default entry point, IP also sends packets directly to
12022  * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming
12023  * connections.
12024  */
12025 void
12026 tcp_input(void *arg, mblk_t *mp, void *arg2)
12027 {
12028 	conn_t	*connp = (conn_t *)arg;
12029 	tcp_t	*tcp = (tcp_t *)connp->conn_tcp;
12030 
12031 	/* arg2 is the sqp */
12032 	ASSERT(arg2 != NULL);
12033 	ASSERT(mp != NULL);
12034 
12035 	/*
12036 	 * Don't accept any input on a closed tcp as this TCP logically does
12037 	 * not exist on the system. Don't proceed further with this TCP.
12038 	 * For eg. this packet could trigger another close of this tcp
12039 	 * which would be disastrous for tcp_refcnt. tcp_close_detached /
12040 	 * tcp_clean_death / tcp_closei_local must be called at most once
12041 	 * on a TCP. In this case we need to refeed the packet into the
12042 	 * classifier and figure out where the packet should go. Need to
12043 	 * preserve the recv_ill somehow. Until we figure that out, for
12044 	 * now just drop the packet if we can't classify the packet.
12045 	 */
12046 	if (tcp->tcp_state == TCPS_CLOSED ||
12047 	    tcp->tcp_state == TCPS_BOUND) {
12048 		conn_t	*new_connp;
12049 		ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip;
12050 
12051 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
12052 		if (new_connp != NULL) {
12053 			tcp_reinput(new_connp, mp, arg2);
12054 			return;
12055 		}
12056 		/* We failed to classify. For now just drop the packet */
12057 		freemsg(mp);
12058 		return;
12059 	}
12060 
12061 	if (DB_TYPE(mp) == M_DATA)
12062 		tcp_rput_data(connp, mp, arg2);
12063 	else
12064 		tcp_rput_common(tcp, mp);
12065 }
12066 
12067 /*
12068  * The read side put procedure.
12069  * The packets passed up by ip are assume to be aligned according to
12070  * OK_32PTR and the IP+TCP headers fitting in the first mblk.
12071  */
12072 static void
12073 tcp_rput_common(tcp_t *tcp, mblk_t *mp)
12074 {
12075 	/*
12076 	 * tcp_rput_data() does not expect M_CTL except for the case
12077 	 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO
12078 	 * type. Need to make sure that any other M_CTLs don't make
12079 	 * it to tcp_rput_data since it is not expecting any and doesn't
12080 	 * check for it.
12081 	 */
12082 	if (DB_TYPE(mp) == M_CTL) {
12083 		switch (*(uint32_t *)(mp->b_rptr)) {
12084 		case TCP_IOC_ABORT_CONN:
12085 			/*
12086 			 * Handle connection abort request.
12087 			 */
12088 			tcp_ioctl_abort_handler(tcp, mp);
12089 			return;
12090 		case IPSEC_IN:
12091 			/*
12092 			 * Only secure icmp arrive in TCP and they
12093 			 * don't go through data path.
12094 			 */
12095 			tcp_icmp_error(tcp, mp);
12096 			return;
12097 		case IN_PKTINFO:
12098 			/*
12099 			 * Handle IPV6_RECVPKTINFO socket option on AF_INET6
12100 			 * sockets that are receiving IPv4 traffic. tcp
12101 			 */
12102 			ASSERT(tcp->tcp_family == AF_INET6);
12103 			ASSERT(tcp->tcp_ipv6_recvancillary &
12104 			    TCP_IPV6_RECVPKTINFO);
12105 			tcp_rput_data(tcp->tcp_connp, mp,
12106 			    tcp->tcp_connp->conn_sqp);
12107 			return;
12108 		case MDT_IOC_INFO_UPDATE:
12109 			/*
12110 			 * Handle Multidata information update; the
12111 			 * following routine will free the message.
12112 			 */
12113 			if (tcp->tcp_connp->conn_mdt_ok) {
12114 				tcp_mdt_update(tcp,
12115 				    &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab,
12116 				    B_FALSE);
12117 			}
12118 			freemsg(mp);
12119 			return;
12120 		case LSO_IOC_INFO_UPDATE:
12121 			/*
12122 			 * Handle LSO information update; the following
12123 			 * routine will free the message.
12124 			 */
12125 			if (tcp->tcp_connp->conn_lso_ok) {
12126 				tcp_lso_update(tcp,
12127 				    &((ip_lso_info_t *)mp->b_rptr)->lso_capab);
12128 			}
12129 			freemsg(mp);
12130 			return;
12131 		default:
12132 			/*
12133 			 * tcp_icmp_err() will process the M_CTL packets.
12134 			 * Non-ICMP packets, if any, will be discarded in
12135 			 * tcp_icmp_err(). We will process the ICMP packet
12136 			 * even if we are TCP_IS_DETACHED_NONEAGER as the
12137 			 * incoming ICMP packet may result in changing
12138 			 * the tcp_mss, which we would need if we have
12139 			 * packets to retransmit.
12140 			 */
12141 			tcp_icmp_error(tcp, mp);
12142 			return;
12143 		}
12144 	}
12145 
12146 	/* No point processing the message if tcp is already closed */
12147 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
12148 		freemsg(mp);
12149 		return;
12150 	}
12151 
12152 	tcp_rput_other(tcp, mp);
12153 }
12154 
12155 
12156 /* The minimum of smoothed mean deviation in RTO calculation. */
12157 #define	TCP_SD_MIN	400
12158 
12159 /*
12160  * Set RTO for this connection.  The formula is from Jacobson and Karels'
12161  * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
12162  * are the same as those in Appendix A.2 of that paper.
12163  *
12164  * m = new measurement
12165  * sa = smoothed RTT average (8 * average estimates).
12166  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
12167  */
12168 static void
12169 tcp_set_rto(tcp_t *tcp, clock_t rtt)
12170 {
12171 	long m = TICK_TO_MSEC(rtt);
12172 	clock_t sa = tcp->tcp_rtt_sa;
12173 	clock_t sv = tcp->tcp_rtt_sd;
12174 	clock_t rto;
12175 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12176 
12177 	BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate);
12178 	tcp->tcp_rtt_update++;
12179 
12180 	/* tcp_rtt_sa is not 0 means this is a new sample. */
12181 	if (sa != 0) {
12182 		/*
12183 		 * Update average estimator:
12184 		 *	new rtt = 7/8 old rtt + 1/8 Error
12185 		 */
12186 
12187 		/* m is now Error in estimate. */
12188 		m -= sa >> 3;
12189 		if ((sa += m) <= 0) {
12190 			/*
12191 			 * Don't allow the smoothed average to be negative.
12192 			 * We use 0 to denote reinitialization of the
12193 			 * variables.
12194 			 */
12195 			sa = 1;
12196 		}
12197 
12198 		/*
12199 		 * Update deviation estimator:
12200 		 *	new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
12201 		 */
12202 		if (m < 0)
12203 			m = -m;
12204 		m -= sv >> 2;
12205 		sv += m;
12206 	} else {
12207 		/*
12208 		 * This follows BSD's implementation.  So the reinitialized
12209 		 * RTO is 3 * m.  We cannot go less than 2 because if the
12210 		 * link is bandwidth dominated, doubling the window size
12211 		 * during slow start means doubling the RTT.  We want to be
12212 		 * more conservative when we reinitialize our estimates.  3
12213 		 * is just a convenient number.
12214 		 */
12215 		sa = m << 3;
12216 		sv = m << 1;
12217 	}
12218 	if (sv < TCP_SD_MIN) {
12219 		/*
12220 		 * We do not know that if sa captures the delay ACK
12221 		 * effect as in a long train of segments, a receiver
12222 		 * does not delay its ACKs.  So set the minimum of sv
12223 		 * to be TCP_SD_MIN, which is default to 400 ms, twice
12224 		 * of BSD DATO.  That means the minimum of mean
12225 		 * deviation is 100 ms.
12226 		 *
12227 		 */
12228 		sv = TCP_SD_MIN;
12229 	}
12230 	tcp->tcp_rtt_sa = sa;
12231 	tcp->tcp_rtt_sd = sv;
12232 	/*
12233 	 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
12234 	 *
12235 	 * Add tcp_rexmit_interval extra in case of extreme environment
12236 	 * where the algorithm fails to work.  The default value of
12237 	 * tcp_rexmit_interval_extra should be 0.
12238 	 *
12239 	 * As we use a finer grained clock than BSD and update
12240 	 * RTO for every ACKs, add in another .25 of RTT to the
12241 	 * deviation of RTO to accomodate burstiness of 1/4 of
12242 	 * window size.
12243 	 */
12244 	rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5);
12245 
12246 	if (rto > tcps->tcps_rexmit_interval_max) {
12247 		tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
12248 	} else if (rto < tcps->tcps_rexmit_interval_min) {
12249 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
12250 	} else {
12251 		tcp->tcp_rto = rto;
12252 	}
12253 
12254 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
12255 	tcp->tcp_timer_backoff = 0;
12256 }
12257 
12258 /*
12259  * tcp_get_seg_mp() is called to get the pointer to a segment in the
12260  * send queue which starts at the given seq. no.
12261  *
12262  * Parameters:
12263  *	tcp_t *tcp: the tcp instance pointer.
12264  *	uint32_t seq: the starting seq. no of the requested segment.
12265  *	int32_t *off: after the execution, *off will be the offset to
12266  *		the returned mblk which points to the requested seq no.
12267  *		It is the caller's responsibility to send in a non-null off.
12268  *
12269  * Return:
12270  *	A mblk_t pointer pointing to the requested segment in send queue.
12271  */
12272 static mblk_t *
12273 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off)
12274 {
12275 	int32_t	cnt;
12276 	mblk_t	*mp;
12277 
12278 	/* Defensive coding.  Make sure we don't send incorrect data. */
12279 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
12280 		return (NULL);
12281 
12282 	cnt = seq - tcp->tcp_suna;
12283 	mp = tcp->tcp_xmit_head;
12284 	while (cnt > 0 && mp != NULL) {
12285 		cnt -= mp->b_wptr - mp->b_rptr;
12286 		if (cnt < 0) {
12287 			cnt += mp->b_wptr - mp->b_rptr;
12288 			break;
12289 		}
12290 		mp = mp->b_cont;
12291 	}
12292 	ASSERT(mp != NULL);
12293 	*off = cnt;
12294 	return (mp);
12295 }
12296 
12297 /*
12298  * This function handles all retransmissions if SACK is enabled for this
12299  * connection.  First it calculates how many segments can be retransmitted
12300  * based on tcp_pipe.  Then it goes thru the notsack list to find eligible
12301  * segments.  A segment is eligible if sack_cnt for that segment is greater
12302  * than or equal tcp_dupack_fast_retransmit.  After it has retransmitted
12303  * all eligible segments, it checks to see if TCP can send some new segments
12304  * (fast recovery).  If it can, set the appropriate flag for tcp_rput_data().
12305  *
12306  * Parameters:
12307  *	tcp_t *tcp: the tcp structure of the connection.
12308  *	uint_t *flags: in return, appropriate value will be set for
12309  *	tcp_rput_data().
12310  */
12311 static void
12312 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags)
12313 {
12314 	notsack_blk_t	*notsack_blk;
12315 	int32_t		usable_swnd;
12316 	int32_t		mss;
12317 	uint32_t	seg_len;
12318 	mblk_t		*xmit_mp;
12319 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12320 
12321 	ASSERT(tcp->tcp_sack_info != NULL);
12322 	ASSERT(tcp->tcp_notsack_list != NULL);
12323 	ASSERT(tcp->tcp_rexmit == B_FALSE);
12324 
12325 	/* Defensive coding in case there is a bug... */
12326 	if (tcp->tcp_notsack_list == NULL) {
12327 		return;
12328 	}
12329 	notsack_blk = tcp->tcp_notsack_list;
12330 	mss = tcp->tcp_mss;
12331 
12332 	/*
12333 	 * Limit the num of outstanding data in the network to be
12334 	 * tcp_cwnd_ssthresh, which is half of the original congestion wnd.
12335 	 */
12336 	usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
12337 
12338 	/* At least retransmit 1 MSS of data. */
12339 	if (usable_swnd <= 0) {
12340 		usable_swnd = mss;
12341 	}
12342 
12343 	/* Make sure no new RTT samples will be taken. */
12344 	tcp->tcp_csuna = tcp->tcp_snxt;
12345 
12346 	notsack_blk = tcp->tcp_notsack_list;
12347 	while (usable_swnd > 0) {
12348 		mblk_t		*snxt_mp, *tmp_mp;
12349 		tcp_seq		begin = tcp->tcp_sack_snxt;
12350 		tcp_seq		end;
12351 		int32_t		off;
12352 
12353 		for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) {
12354 			if (SEQ_GT(notsack_blk->end, begin) &&
12355 			    (notsack_blk->sack_cnt >=
12356 			    tcps->tcps_dupack_fast_retransmit)) {
12357 				end = notsack_blk->end;
12358 				if (SEQ_LT(begin, notsack_blk->begin)) {
12359 					begin = notsack_blk->begin;
12360 				}
12361 				break;
12362 			}
12363 		}
12364 		/*
12365 		 * All holes are filled.  Manipulate tcp_cwnd to send more
12366 		 * if we can.  Note that after the SACK recovery, tcp_cwnd is
12367 		 * set to tcp_cwnd_ssthresh.
12368 		 */
12369 		if (notsack_blk == NULL) {
12370 			usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
12371 			if (usable_swnd <= 0 || tcp->tcp_unsent == 0) {
12372 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna;
12373 				ASSERT(tcp->tcp_cwnd > 0);
12374 				return;
12375 			} else {
12376 				usable_swnd = usable_swnd / mss;
12377 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna +
12378 				    MAX(usable_swnd * mss, mss);
12379 				*flags |= TH_XMIT_NEEDED;
12380 				return;
12381 			}
12382 		}
12383 
12384 		/*
12385 		 * Note that we may send more than usable_swnd allows here
12386 		 * because of round off, but no more than 1 MSS of data.
12387 		 */
12388 		seg_len = end - begin;
12389 		if (seg_len > mss)
12390 			seg_len = mss;
12391 		snxt_mp = tcp_get_seg_mp(tcp, begin, &off);
12392 		ASSERT(snxt_mp != NULL);
12393 		/* This should not happen.  Defensive coding again... */
12394 		if (snxt_mp == NULL) {
12395 			return;
12396 		}
12397 
12398 		xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off,
12399 		    &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE);
12400 		if (xmit_mp == NULL)
12401 			return;
12402 
12403 		usable_swnd -= seg_len;
12404 		tcp->tcp_pipe += seg_len;
12405 		tcp->tcp_sack_snxt = begin + seg_len;
12406 
12407 		tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12408 
12409 		/*
12410 		 * Update the send timestamp to avoid false retransmission.
12411 		 */
12412 		snxt_mp->b_prev = (mblk_t *)lbolt;
12413 
12414 		BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12415 		UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len);
12416 		BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs);
12417 		/*
12418 		 * Update tcp_rexmit_max to extend this SACK recovery phase.
12419 		 * This happens when new data sent during fast recovery is
12420 		 * also lost.  If TCP retransmits those new data, it needs
12421 		 * to extend SACK recover phase to avoid starting another
12422 		 * fast retransmit/recovery unnecessarily.
12423 		 */
12424 		if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) {
12425 			tcp->tcp_rexmit_max = tcp->tcp_sack_snxt;
12426 		}
12427 	}
12428 }
12429 
12430 /*
12431  * This function handles policy checking at TCP level for non-hard_bound/
12432  * detached connections.
12433  */
12434 static boolean_t
12435 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h,
12436     boolean_t secure, boolean_t mctl_present)
12437 {
12438 	ipsec_latch_t *ipl = NULL;
12439 	ipsec_action_t *act = NULL;
12440 	mblk_t *data_mp;
12441 	ipsec_in_t *ii;
12442 	const char *reason;
12443 	kstat_named_t *counter;
12444 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12445 	ipsec_stack_t	*ipss;
12446 	ip_stack_t	*ipst;
12447 
12448 	ASSERT(mctl_present || !secure);
12449 
12450 	ASSERT((ipha == NULL && ip6h != NULL) ||
12451 	    (ip6h == NULL && ipha != NULL));
12452 
12453 	/*
12454 	 * We don't necessarily have an ipsec_in_act action to verify
12455 	 * policy because of assymetrical policy where we have only
12456 	 * outbound policy and no inbound policy (possible with global
12457 	 * policy).
12458 	 */
12459 	if (!secure) {
12460 		if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS ||
12461 		    act->ipa_act.ipa_type == IPSEC_ACT_CLEAR)
12462 			return (B_TRUE);
12463 		ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
12464 		    "tcp_check_policy", ipha, ip6h, secure,
12465 		    tcps->tcps_netstack);
12466 		ipss = tcps->tcps_netstack->netstack_ipsec;
12467 
12468 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12469 		    DROPPER(ipss, ipds_tcp_clear),
12470 		    &tcps->tcps_dropper);
12471 		return (B_FALSE);
12472 	}
12473 
12474 	/*
12475 	 * We have a secure packet.
12476 	 */
12477 	if (act == NULL) {
12478 		ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED,
12479 		    "tcp_check_policy", ipha, ip6h, secure,
12480 		    tcps->tcps_netstack);
12481 		ipss = tcps->tcps_netstack->netstack_ipsec;
12482 
12483 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12484 		    DROPPER(ipss, ipds_tcp_secure),
12485 		    &tcps->tcps_dropper);
12486 		return (B_FALSE);
12487 	}
12488 
12489 	/*
12490 	 * XXX This whole routine is currently incorrect.  ipl should
12491 	 * be set to the latch pointer, but is currently not set, so
12492 	 * we initialize it to NULL to avoid picking up random garbage.
12493 	 */
12494 	if (ipl == NULL)
12495 		return (B_TRUE);
12496 
12497 	data_mp = first_mp->b_cont;
12498 
12499 	ii = (ipsec_in_t *)first_mp->b_rptr;
12500 
12501 	ipst = tcps->tcps_netstack->netstack_ip;
12502 
12503 	if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason,
12504 	    &counter, tcp->tcp_connp)) {
12505 		BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
12506 		return (B_TRUE);
12507 	}
12508 	(void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
12509 	    "tcp inbound policy mismatch: %s, packet dropped\n",
12510 	    reason);
12511 	BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
12512 
12513 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter,
12514 	    &tcps->tcps_dropper);
12515 	return (B_FALSE);
12516 }
12517 
12518 /*
12519  * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start
12520  * retransmission after a timeout.
12521  *
12522  * To limit the number of duplicate segments, we limit the number of segment
12523  * to be sent in one time to tcp_snd_burst, the burst variable.
12524  */
12525 static void
12526 tcp_ss_rexmit(tcp_t *tcp)
12527 {
12528 	uint32_t	snxt;
12529 	uint32_t	smax;
12530 	int32_t		win;
12531 	int32_t		mss;
12532 	int32_t		off;
12533 	int32_t		burst = tcp->tcp_snd_burst;
12534 	mblk_t		*snxt_mp;
12535 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12536 
12537 	/*
12538 	 * Note that tcp_rexmit can be set even though TCP has retransmitted
12539 	 * all unack'ed segments.
12540 	 */
12541 	if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) {
12542 		smax = tcp->tcp_rexmit_max;
12543 		snxt = tcp->tcp_rexmit_nxt;
12544 		if (SEQ_LT(snxt, tcp->tcp_suna)) {
12545 			snxt = tcp->tcp_suna;
12546 		}
12547 		win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd);
12548 		win -= snxt - tcp->tcp_suna;
12549 		mss = tcp->tcp_mss;
12550 		snxt_mp = tcp_get_seg_mp(tcp, snxt, &off);
12551 
12552 		while (SEQ_LT(snxt, smax) && (win > 0) &&
12553 		    (burst > 0) && (snxt_mp != NULL)) {
12554 			mblk_t	*xmit_mp;
12555 			mblk_t	*old_snxt_mp = snxt_mp;
12556 			uint32_t cnt = mss;
12557 
12558 			if (win < cnt) {
12559 				cnt = win;
12560 			}
12561 			if (SEQ_GT(snxt + cnt, smax)) {
12562 				cnt = smax - snxt;
12563 			}
12564 			xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off,
12565 			    &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE);
12566 			if (xmit_mp == NULL)
12567 				return;
12568 
12569 			tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12570 
12571 			snxt += cnt;
12572 			win -= cnt;
12573 			/*
12574 			 * Update the send timestamp to avoid false
12575 			 * retransmission.
12576 			 */
12577 			old_snxt_mp->b_prev = (mblk_t *)lbolt;
12578 			BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12579 			UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt);
12580 
12581 			tcp->tcp_rexmit_nxt = snxt;
12582 			burst--;
12583 		}
12584 		/*
12585 		 * If we have transmitted all we have at the time
12586 		 * we started the retranmission, we can leave
12587 		 * the rest of the job to tcp_wput_data().  But we
12588 		 * need to check the send window first.  If the
12589 		 * win is not 0, go on with tcp_wput_data().
12590 		 */
12591 		if (SEQ_LT(snxt, smax) || win == 0) {
12592 			return;
12593 		}
12594 	}
12595 	/* Only call tcp_wput_data() if there is data to be sent. */
12596 	if (tcp->tcp_unsent) {
12597 		tcp_wput_data(tcp, NULL, B_FALSE);
12598 	}
12599 }
12600 
12601 /*
12602  * Process all TCP option in SYN segment.  Note that this function should
12603  * be called after tcp_adapt_ire() is called so that the necessary info
12604  * from IRE is already set in the tcp structure.
12605  *
12606  * This function sets up the correct tcp_mss value according to the
12607  * MSS option value and our header size.  It also sets up the window scale
12608  * and timestamp values, and initialize SACK info blocks.  But it does not
12609  * change receive window size after setting the tcp_mss value.  The caller
12610  * should do the appropriate change.
12611  */
12612 void
12613 tcp_process_options(tcp_t *tcp, tcph_t *tcph)
12614 {
12615 	int options;
12616 	tcp_opt_t tcpopt;
12617 	uint32_t mss_max;
12618 	char *tmp_tcph;
12619 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12620 
12621 	tcpopt.tcp = NULL;
12622 	options = tcp_parse_options(tcph, &tcpopt);
12623 
12624 	/*
12625 	 * Process MSS option.  Note that MSS option value does not account
12626 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
12627 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
12628 	 * IPv6.
12629 	 */
12630 	if (!(options & TCP_OPT_MSS_PRESENT)) {
12631 		if (tcp->tcp_ipversion == IPV4_VERSION)
12632 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4;
12633 		else
12634 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6;
12635 	} else {
12636 		if (tcp->tcp_ipversion == IPV4_VERSION)
12637 			mss_max = tcps->tcps_mss_max_ipv4;
12638 		else
12639 			mss_max = tcps->tcps_mss_max_ipv6;
12640 		if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min)
12641 			tcpopt.tcp_opt_mss = tcps->tcps_mss_min;
12642 		else if (tcpopt.tcp_opt_mss > mss_max)
12643 			tcpopt.tcp_opt_mss = mss_max;
12644 	}
12645 
12646 	/* Process Window Scale option. */
12647 	if (options & TCP_OPT_WSCALE_PRESENT) {
12648 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
12649 		tcp->tcp_snd_ws_ok = B_TRUE;
12650 	} else {
12651 		tcp->tcp_snd_ws = B_FALSE;
12652 		tcp->tcp_snd_ws_ok = B_FALSE;
12653 		tcp->tcp_rcv_ws = B_FALSE;
12654 	}
12655 
12656 	/* Process Timestamp option. */
12657 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
12658 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
12659 		tmp_tcph = (char *)tcp->tcp_tcph;
12660 
12661 		tcp->tcp_snd_ts_ok = B_TRUE;
12662 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
12663 		tcp->tcp_last_rcv_lbolt = lbolt64;
12664 		ASSERT(OK_32PTR(tmp_tcph));
12665 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
12666 
12667 		/* Fill in our template header with basic timestamp option. */
12668 		tmp_tcph += tcp->tcp_tcp_hdr_len;
12669 		tmp_tcph[0] = TCPOPT_NOP;
12670 		tmp_tcph[1] = TCPOPT_NOP;
12671 		tmp_tcph[2] = TCPOPT_TSTAMP;
12672 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
12673 		tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12674 		tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12675 		tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4);
12676 	} else {
12677 		tcp->tcp_snd_ts_ok = B_FALSE;
12678 	}
12679 
12680 	/*
12681 	 * Process SACK options.  If SACK is enabled for this connection,
12682 	 * then allocate the SACK info structure.  Note the following ways
12683 	 * when tcp_snd_sack_ok is set to true.
12684 	 *
12685 	 * For active connection: in tcp_adapt_ire() called in
12686 	 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted
12687 	 * is checked.
12688 	 *
12689 	 * For passive connection: in tcp_adapt_ire() called in
12690 	 * tcp_accept_comm().
12691 	 *
12692 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
12693 	 * That check makes sure that if we did not send a SACK OK option,
12694 	 * we will not enable SACK for this connection even though the other
12695 	 * side sends us SACK OK option.  For active connection, the SACK
12696 	 * info structure has already been allocated.  So we need to free
12697 	 * it if SACK is disabled.
12698 	 */
12699 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
12700 	    (tcp->tcp_snd_sack_ok ||
12701 	    (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
12702 		/* This should be true only in the passive case. */
12703 		if (tcp->tcp_sack_info == NULL) {
12704 			ASSERT(TCP_IS_DETACHED(tcp));
12705 			tcp->tcp_sack_info =
12706 			    kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP);
12707 		}
12708 		if (tcp->tcp_sack_info == NULL) {
12709 			tcp->tcp_snd_sack_ok = B_FALSE;
12710 		} else {
12711 			tcp->tcp_snd_sack_ok = B_TRUE;
12712 			if (tcp->tcp_snd_ts_ok) {
12713 				tcp->tcp_max_sack_blk = 3;
12714 			} else {
12715 				tcp->tcp_max_sack_blk = 4;
12716 			}
12717 		}
12718 	} else {
12719 		/*
12720 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
12721 		 * no SACK info will be used for this
12722 		 * connection.  This assumes that SACK usage
12723 		 * permission is negotiated.  This may need
12724 		 * to be changed once this is clarified.
12725 		 */
12726 		if (tcp->tcp_sack_info != NULL) {
12727 			ASSERT(tcp->tcp_notsack_list == NULL);
12728 			kmem_cache_free(tcp_sack_info_cache,
12729 			    tcp->tcp_sack_info);
12730 			tcp->tcp_sack_info = NULL;
12731 		}
12732 		tcp->tcp_snd_sack_ok = B_FALSE;
12733 	}
12734 
12735 	/*
12736 	 * Now we know the exact TCP/IP header length, subtract
12737 	 * that from tcp_mss to get our side's MSS.
12738 	 */
12739 	tcp->tcp_mss -= tcp->tcp_hdr_len;
12740 	/*
12741 	 * Here we assume that the other side's header size will be equal to
12742 	 * our header size.  We calculate the real MSS accordingly.  Need to
12743 	 * take into additional stuffs IPsec puts in.
12744 	 *
12745 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
12746 	 */
12747 	tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead -
12748 	    ((tcp->tcp_ipversion == IPV4_VERSION ?
12749 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
12750 
12751 	/*
12752 	 * Set MSS to the smaller one of both ends of the connection.
12753 	 * We should not have called tcp_mss_set() before, but our
12754 	 * side of the MSS should have been set to a proper value
12755 	 * by tcp_adapt_ire().  tcp_mss_set() will also set up the
12756 	 * STREAM head parameters properly.
12757 	 *
12758 	 * If we have a larger-than-16-bit window but the other side
12759 	 * didn't want to do window scale, tcp_rwnd_set() will take
12760 	 * care of that.
12761 	 */
12762 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE);
12763 }
12764 
12765 /*
12766  * Sends the T_CONN_IND to the listener. The caller calls this
12767  * functions via squeue to get inside the listener's perimeter
12768  * once the 3 way hand shake is done a T_CONN_IND needs to be
12769  * sent. As an optimization, the caller can call this directly
12770  * if listener's perimeter is same as eager's.
12771  */
12772 /* ARGSUSED */
12773 void
12774 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2)
12775 {
12776 	conn_t			*lconnp = (conn_t *)arg;
12777 	tcp_t			*listener = lconnp->conn_tcp;
12778 	tcp_t			*tcp;
12779 	struct T_conn_ind	*conn_ind;
12780 	ipaddr_t 		*addr_cache;
12781 	boolean_t		need_send_conn_ind = B_FALSE;
12782 	tcp_stack_t		*tcps = listener->tcp_tcps;
12783 
12784 	/* retrieve the eager */
12785 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
12786 	ASSERT(conn_ind->OPT_offset != 0 &&
12787 	    conn_ind->OPT_length == sizeof (intptr_t));
12788 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
12789 	    conn_ind->OPT_length);
12790 
12791 	/*
12792 	 * TLI/XTI applications will get confused by
12793 	 * sending eager as an option since it violates
12794 	 * the option semantics. So remove the eager as
12795 	 * option since TLI/XTI app doesn't need it anyway.
12796 	 */
12797 	if (!TCP_IS_SOCKET(listener)) {
12798 		conn_ind->OPT_length = 0;
12799 		conn_ind->OPT_offset = 0;
12800 	}
12801 	if (listener->tcp_state == TCPS_CLOSED ||
12802 	    TCP_IS_DETACHED(listener)) {
12803 		/*
12804 		 * If listener has closed, it would have caused a
12805 		 * a cleanup/blowoff to happen for the eager. We
12806 		 * just need to return.
12807 		 */
12808 		freemsg(mp);
12809 		return;
12810 	}
12811 
12812 
12813 	/*
12814 	 * if the conn_req_q is full defer passing up the
12815 	 * T_CONN_IND until space is availabe after t_accept()
12816 	 * processing
12817 	 */
12818 	mutex_enter(&listener->tcp_eager_lock);
12819 
12820 	/*
12821 	 * Take the eager out, if it is in the list of droppable eagers
12822 	 * as we are here because the 3W handshake is over.
12823 	 */
12824 	MAKE_UNDROPPABLE(tcp);
12825 
12826 	if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) {
12827 		tcp_t *tail;
12828 
12829 		/*
12830 		 * The eager already has an extra ref put in tcp_rput_data
12831 		 * so that it stays till accept comes back even though it
12832 		 * might get into TCPS_CLOSED as a result of a TH_RST etc.
12833 		 */
12834 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
12835 		listener->tcp_conn_req_cnt_q0--;
12836 		listener->tcp_conn_req_cnt_q++;
12837 
12838 		/* Move from SYN_RCVD to ESTABLISHED list  */
12839 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12840 		    tcp->tcp_eager_prev_q0;
12841 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12842 		    tcp->tcp_eager_next_q0;
12843 		tcp->tcp_eager_prev_q0 = NULL;
12844 		tcp->tcp_eager_next_q0 = NULL;
12845 
12846 		/*
12847 		 * Insert at end of the queue because sockfs
12848 		 * sends down T_CONN_RES in chronological
12849 		 * order. Leaving the older conn indications
12850 		 * at front of the queue helps reducing search
12851 		 * time.
12852 		 */
12853 		tail = listener->tcp_eager_last_q;
12854 		if (tail != NULL)
12855 			tail->tcp_eager_next_q = tcp;
12856 		else
12857 			listener->tcp_eager_next_q = tcp;
12858 		listener->tcp_eager_last_q = tcp;
12859 		tcp->tcp_eager_next_q = NULL;
12860 		/*
12861 		 * Delay sending up the T_conn_ind until we are
12862 		 * done with the eager. Once we have have sent up
12863 		 * the T_conn_ind, the accept can potentially complete
12864 		 * any time and release the refhold we have on the eager.
12865 		 */
12866 		need_send_conn_ind = B_TRUE;
12867 	} else {
12868 		/*
12869 		 * Defer connection on q0 and set deferred
12870 		 * connection bit true
12871 		 */
12872 		tcp->tcp_conn_def_q0 = B_TRUE;
12873 
12874 		/* take tcp out of q0 ... */
12875 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12876 		    tcp->tcp_eager_next_q0;
12877 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12878 		    tcp->tcp_eager_prev_q0;
12879 
12880 		/* ... and place it at the end of q0 */
12881 		tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0;
12882 		tcp->tcp_eager_next_q0 = listener;
12883 		listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp;
12884 		listener->tcp_eager_prev_q0 = tcp;
12885 		tcp->tcp_conn.tcp_eager_conn_ind = mp;
12886 	}
12887 
12888 	/* we have timed out before */
12889 	if (tcp->tcp_syn_rcvd_timeout != 0) {
12890 		tcp->tcp_syn_rcvd_timeout = 0;
12891 		listener->tcp_syn_rcvd_timeout--;
12892 		if (listener->tcp_syn_defense &&
12893 		    listener->tcp_syn_rcvd_timeout <=
12894 		    (tcps->tcps_conn_req_max_q0 >> 5) &&
12895 		    10*MINUTES < TICK_TO_MSEC(lbolt64 -
12896 		    listener->tcp_last_rcv_lbolt)) {
12897 			/*
12898 			 * Turn off the defense mode if we
12899 			 * believe the SYN attack is over.
12900 			 */
12901 			listener->tcp_syn_defense = B_FALSE;
12902 			if (listener->tcp_ip_addr_cache) {
12903 				kmem_free((void *)listener->tcp_ip_addr_cache,
12904 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
12905 				listener->tcp_ip_addr_cache = NULL;
12906 			}
12907 		}
12908 	}
12909 	addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
12910 	if (addr_cache != NULL) {
12911 		/*
12912 		 * We have finished a 3-way handshake with this
12913 		 * remote host. This proves the IP addr is good.
12914 		 * Cache it!
12915 		 */
12916 		addr_cache[IP_ADDR_CACHE_HASH(
12917 		    tcp->tcp_remote)] = tcp->tcp_remote;
12918 	}
12919 	mutex_exit(&listener->tcp_eager_lock);
12920 	if (need_send_conn_ind)
12921 		putnext(listener->tcp_rq, mp);
12922 }
12923 
12924 mblk_t *
12925 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp,
12926     uint_t *ifindexp, ip6_pkt_t *ippp)
12927 {
12928 	ip_pktinfo_t	*pinfo;
12929 	ip6_t		*ip6h;
12930 	uchar_t		*rptr;
12931 	mblk_t		*first_mp = mp;
12932 	boolean_t	mctl_present = B_FALSE;
12933 	uint_t 		ifindex = 0;
12934 	ip6_pkt_t	ipp;
12935 	uint_t		ipvers;
12936 	uint_t		ip_hdr_len;
12937 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12938 
12939 	rptr = mp->b_rptr;
12940 	ASSERT(OK_32PTR(rptr));
12941 	ASSERT(tcp != NULL);
12942 	ipp.ipp_fields = 0;
12943 
12944 	switch DB_TYPE(mp) {
12945 	case M_CTL:
12946 		mp = mp->b_cont;
12947 		if (mp == NULL) {
12948 			freemsg(first_mp);
12949 			return (NULL);
12950 		}
12951 		if (DB_TYPE(mp) != M_DATA) {
12952 			freemsg(first_mp);
12953 			return (NULL);
12954 		}
12955 		mctl_present = B_TRUE;
12956 		break;
12957 	case M_DATA:
12958 		break;
12959 	default:
12960 		cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type");
12961 		freemsg(mp);
12962 		return (NULL);
12963 	}
12964 	ipvers = IPH_HDR_VERSION(rptr);
12965 	if (ipvers == IPV4_VERSION) {
12966 		if (tcp == NULL) {
12967 			ip_hdr_len = IPH_HDR_LENGTH(rptr);
12968 			goto done;
12969 		}
12970 
12971 		ipp.ipp_fields |= IPPF_HOPLIMIT;
12972 		ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl;
12973 
12974 		/*
12975 		 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary
12976 		 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp.
12977 		 */
12978 		if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) &&
12979 		    mctl_present) {
12980 			pinfo = (ip_pktinfo_t *)first_mp->b_rptr;
12981 			if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) &&
12982 			    (pinfo->ip_pkt_ulp_type == IN_PKTINFO) &&
12983 			    (pinfo->ip_pkt_flags & IPF_RECVIF)) {
12984 				ipp.ipp_fields |= IPPF_IFINDEX;
12985 				ipp.ipp_ifindex = pinfo->ip_pkt_ifindex;
12986 				ifindex = pinfo->ip_pkt_ifindex;
12987 			}
12988 			freeb(first_mp);
12989 			mctl_present = B_FALSE;
12990 		}
12991 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12992 	} else {
12993 		ip6h = (ip6_t *)rptr;
12994 
12995 		ASSERT(ipvers == IPV6_VERSION);
12996 		ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS;
12997 		ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20;
12998 		ipp.ipp_hoplimit = ip6h->ip6_hops;
12999 
13000 		if (ip6h->ip6_nxt != IPPROTO_TCP) {
13001 			uint8_t	nexthdrp;
13002 			ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
13003 
13004 			/* Look for ifindex information */
13005 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
13006 				ip6i_t *ip6i = (ip6i_t *)ip6h;
13007 				if ((uchar_t *)&ip6i[1] > mp->b_wptr) {
13008 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
13009 					freemsg(first_mp);
13010 					return (NULL);
13011 				}
13012 
13013 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
13014 					ASSERT(ip6i->ip6i_ifindex != 0);
13015 					ipp.ipp_fields |= IPPF_IFINDEX;
13016 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
13017 					ifindex = ip6i->ip6i_ifindex;
13018 				}
13019 				rptr = (uchar_t *)&ip6i[1];
13020 				mp->b_rptr = rptr;
13021 				if (rptr == mp->b_wptr) {
13022 					mblk_t *mp1;
13023 					mp1 = mp->b_cont;
13024 					freeb(mp);
13025 					mp = mp1;
13026 					rptr = mp->b_rptr;
13027 				}
13028 				if (MBLKL(mp) < IPV6_HDR_LEN +
13029 				    sizeof (tcph_t)) {
13030 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
13031 					freemsg(first_mp);
13032 					return (NULL);
13033 				}
13034 				ip6h = (ip6_t *)rptr;
13035 			}
13036 
13037 			/*
13038 			 * Find any potentially interesting extension headers
13039 			 * as well as the length of the IPv6 + extension
13040 			 * headers.
13041 			 */
13042 			ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp);
13043 			/* Verify if this is a TCP packet */
13044 			if (nexthdrp != IPPROTO_TCP) {
13045 				BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
13046 				freemsg(first_mp);
13047 				return (NULL);
13048 			}
13049 		} else {
13050 			ip_hdr_len = IPV6_HDR_LEN;
13051 		}
13052 	}
13053 
13054 done:
13055 	if (ipversp != NULL)
13056 		*ipversp = ipvers;
13057 	if (ip_hdr_lenp != NULL)
13058 		*ip_hdr_lenp = ip_hdr_len;
13059 	if (ippp != NULL)
13060 		*ippp = ipp;
13061 	if (ifindexp != NULL)
13062 		*ifindexp = ifindex;
13063 	if (mctl_present) {
13064 		freeb(first_mp);
13065 	}
13066 	return (mp);
13067 }
13068 
13069 /*
13070  * Handle M_DATA messages from IP. Its called directly from IP via
13071  * squeue for AF_INET type sockets fast path. No M_CTL are expected
13072  * in this path.
13073  *
13074  * For everything else (including AF_INET6 sockets with 'tcp_ipversion'
13075  * v4 and v6), we are called through tcp_input() and a M_CTL can
13076  * be present for options but tcp_find_pktinfo() deals with it. We
13077  * only expect M_DATA packets after tcp_find_pktinfo() is done.
13078  *
13079  * The first argument is always the connp/tcp to which the mp belongs.
13080  * There are no exceptions to this rule. The caller has already put
13081  * a reference on this connp/tcp and once tcp_rput_data() returns,
13082  * the squeue will do the refrele.
13083  *
13084  * The TH_SYN for the listener directly go to tcp_conn_request via
13085  * squeue.
13086  *
13087  * sqp: NULL = recursive, sqp != NULL means called from squeue
13088  */
13089 void
13090 tcp_rput_data(void *arg, mblk_t *mp, void *arg2)
13091 {
13092 	int32_t		bytes_acked;
13093 	int32_t		gap;
13094 	mblk_t		*mp1;
13095 	uint_t		flags;
13096 	uint32_t	new_swnd = 0;
13097 	uchar_t		*iphdr;
13098 	uchar_t		*rptr;
13099 	int32_t		rgap;
13100 	uint32_t	seg_ack;
13101 	int		seg_len;
13102 	uint_t		ip_hdr_len;
13103 	uint32_t	seg_seq;
13104 	tcph_t		*tcph;
13105 	int		urp;
13106 	tcp_opt_t	tcpopt;
13107 	uint_t		ipvers;
13108 	ip6_pkt_t	ipp;
13109 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
13110 	uint32_t	cwnd;
13111 	uint32_t	add;
13112 	int		npkt;
13113 	int		mss;
13114 	conn_t		*connp = (conn_t *)arg;
13115 	squeue_t	*sqp = (squeue_t *)arg2;
13116 	tcp_t		*tcp = connp->conn_tcp;
13117 	tcp_stack_t	*tcps = tcp->tcp_tcps;
13118 
13119 	/*
13120 	 * RST from fused tcp loopback peer should trigger an unfuse.
13121 	 */
13122 	if (tcp->tcp_fused) {
13123 		TCP_STAT(tcps, tcp_fusion_aborted);
13124 		tcp_unfuse(tcp);
13125 	}
13126 
13127 	iphdr = mp->b_rptr;
13128 	rptr = mp->b_rptr;
13129 	ASSERT(OK_32PTR(rptr));
13130 
13131 	/*
13132 	 * An AF_INET socket is not capable of receiving any pktinfo. Do inline
13133 	 * processing here. For rest call tcp_find_pktinfo to fill up the
13134 	 * necessary information.
13135 	 */
13136 	if (IPCL_IS_TCP4(connp)) {
13137 		ipvers = IPV4_VERSION;
13138 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
13139 	} else {
13140 		mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len,
13141 		    NULL, &ipp);
13142 		if (mp == NULL) {
13143 			TCP_STAT(tcps, tcp_rput_v6_error);
13144 			return;
13145 		}
13146 		iphdr = mp->b_rptr;
13147 		rptr = mp->b_rptr;
13148 	}
13149 	ASSERT(DB_TYPE(mp) == M_DATA);
13150 
13151 	tcph = (tcph_t *)&rptr[ip_hdr_len];
13152 	seg_seq = ABE32_TO_U32(tcph->th_seq);
13153 	seg_ack = ABE32_TO_U32(tcph->th_ack);
13154 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
13155 	seg_len = (int)(mp->b_wptr - rptr) -
13156 	    (ip_hdr_len + TCP_HDR_LENGTH(tcph));
13157 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
13158 		do {
13159 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
13160 			    (uintptr_t)INT_MAX);
13161 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
13162 		} while ((mp1 = mp1->b_cont) != NULL &&
13163 		    mp1->b_datap->db_type == M_DATA);
13164 	}
13165 
13166 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
13167 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
13168 		    seg_len, tcph);
13169 		return;
13170 	}
13171 
13172 	if (sqp != NULL) {
13173 		/*
13174 		 * This is the correct place to update tcp_last_recv_time. Note
13175 		 * that it is also updated for tcp structure that belongs to
13176 		 * global and listener queues which do not really need updating.
13177 		 * But that should not cause any harm.  And it is updated for
13178 		 * all kinds of incoming segments, not only for data segments.
13179 		 */
13180 		tcp->tcp_last_recv_time = lbolt;
13181 	}
13182 
13183 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
13184 
13185 	BUMP_LOCAL(tcp->tcp_ibsegs);
13186 	DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
13187 
13188 	if ((flags & TH_URG) && sqp != NULL) {
13189 		/*
13190 		 * TCP can't handle urgent pointers that arrive before
13191 		 * the connection has been accept()ed since it can't
13192 		 * buffer OOB data.  Discard segment if this happens.
13193 		 *
13194 		 * We can't just rely on a non-null tcp_listener to indicate
13195 		 * that the accept() has completed since unlinking of the
13196 		 * eager and completion of the accept are not atomic.
13197 		 * tcp_detached, when it is not set (B_FALSE) indicates
13198 		 * that the accept() has completed.
13199 		 *
13200 		 * Nor can it reassemble urgent pointers, so discard
13201 		 * if it's not the next segment expected.
13202 		 *
13203 		 * Otherwise, collapse chain into one mblk (discard if
13204 		 * that fails).  This makes sure the headers, retransmitted
13205 		 * data, and new data all are in the same mblk.
13206 		 */
13207 		ASSERT(mp != NULL);
13208 		if (tcp->tcp_detached || !pullupmsg(mp, -1)) {
13209 			freemsg(mp);
13210 			return;
13211 		}
13212 		/* Update pointers into message */
13213 		iphdr = rptr = mp->b_rptr;
13214 		tcph = (tcph_t *)&rptr[ip_hdr_len];
13215 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
13216 			/*
13217 			 * Since we can't handle any data with this urgent
13218 			 * pointer that is out of sequence, we expunge
13219 			 * the data.  This allows us to still register
13220 			 * the urgent mark and generate the M_PCSIG,
13221 			 * which we can do.
13222 			 */
13223 			mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
13224 			seg_len = 0;
13225 		}
13226 	}
13227 
13228 	switch (tcp->tcp_state) {
13229 	case TCPS_SYN_SENT:
13230 		if (flags & TH_ACK) {
13231 			/*
13232 			 * Note that our stack cannot send data before a
13233 			 * connection is established, therefore the
13234 			 * following check is valid.  Otherwise, it has
13235 			 * to be changed.
13236 			 */
13237 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
13238 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13239 				freemsg(mp);
13240 				if (flags & TH_RST)
13241 					return;
13242 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
13243 				    tcp, seg_ack, 0, TH_RST);
13244 				return;
13245 			}
13246 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
13247 		}
13248 		if (flags & TH_RST) {
13249 			freemsg(mp);
13250 			if (flags & TH_ACK)
13251 				(void) tcp_clean_death(tcp,
13252 				    ECONNREFUSED, 13);
13253 			return;
13254 		}
13255 		if (!(flags & TH_SYN)) {
13256 			freemsg(mp);
13257 			return;
13258 		}
13259 
13260 		/* Process all TCP options. */
13261 		tcp_process_options(tcp, tcph);
13262 		/*
13263 		 * The following changes our rwnd to be a multiple of the
13264 		 * MIN(peer MSS, our MSS) for performance reason.
13265 		 */
13266 		(void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat,
13267 		    tcp->tcp_mss));
13268 
13269 		/* Is the other end ECN capable? */
13270 		if (tcp->tcp_ecn_ok) {
13271 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
13272 				tcp->tcp_ecn_ok = B_FALSE;
13273 			}
13274 		}
13275 		/*
13276 		 * Clear ECN flags because it may interfere with later
13277 		 * processing.
13278 		 */
13279 		flags &= ~(TH_ECE|TH_CWR);
13280 
13281 		tcp->tcp_irs = seg_seq;
13282 		tcp->tcp_rack = seg_seq;
13283 		tcp->tcp_rnxt = seg_seq + 1;
13284 		U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13285 		if (!TCP_IS_DETACHED(tcp)) {
13286 			/* Allocate room for SACK options if needed. */
13287 			if (tcp->tcp_snd_sack_ok) {
13288 				(void) mi_set_sth_wroff(tcp->tcp_rq,
13289 				    tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
13290 				    (tcp->tcp_loopback ? 0 :
13291 				    tcps->tcps_wroff_xtra));
13292 			} else {
13293 				(void) mi_set_sth_wroff(tcp->tcp_rq,
13294 				    tcp->tcp_hdr_len +
13295 				    (tcp->tcp_loopback ? 0 :
13296 				    tcps->tcps_wroff_xtra));
13297 			}
13298 		}
13299 		if (flags & TH_ACK) {
13300 			/*
13301 			 * If we can't get the confirmation upstream, pretend
13302 			 * we didn't even see this one.
13303 			 *
13304 			 * XXX: how can we pretend we didn't see it if we
13305 			 * have updated rnxt et. al.
13306 			 *
13307 			 * For loopback we defer sending up the T_CONN_CON
13308 			 * until after some checks below.
13309 			 */
13310 			mp1 = NULL;
13311 			if (!tcp_conn_con(tcp, iphdr, tcph, mp,
13312 			    tcp->tcp_loopback ? &mp1 : NULL)) {
13313 				freemsg(mp);
13314 				return;
13315 			}
13316 			/* SYN was acked - making progress */
13317 			if (tcp->tcp_ipversion == IPV6_VERSION)
13318 				tcp->tcp_ip_forward_progress = B_TRUE;
13319 
13320 			/* One for the SYN */
13321 			tcp->tcp_suna = tcp->tcp_iss + 1;
13322 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
13323 			tcp->tcp_state = TCPS_ESTABLISHED;
13324 
13325 			/*
13326 			 * If SYN was retransmitted, need to reset all
13327 			 * retransmission info.  This is because this
13328 			 * segment will be treated as a dup ACK.
13329 			 */
13330 			if (tcp->tcp_rexmit) {
13331 				tcp->tcp_rexmit = B_FALSE;
13332 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
13333 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
13334 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
13335 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
13336 				tcp->tcp_ms_we_have_waited = 0;
13337 
13338 				/*
13339 				 * Set tcp_cwnd back to 1 MSS, per
13340 				 * recommendation from
13341 				 * draft-floyd-incr-init-win-01.txt,
13342 				 * Increasing TCP's Initial Window.
13343 				 */
13344 				tcp->tcp_cwnd = tcp->tcp_mss;
13345 			}
13346 
13347 			tcp->tcp_swl1 = seg_seq;
13348 			tcp->tcp_swl2 = seg_ack;
13349 
13350 			new_swnd = BE16_TO_U16(tcph->th_win);
13351 			tcp->tcp_swnd = new_swnd;
13352 			if (new_swnd > tcp->tcp_max_swnd)
13353 				tcp->tcp_max_swnd = new_swnd;
13354 
13355 			/*
13356 			 * Always send the three-way handshake ack immediately
13357 			 * in order to make the connection complete as soon as
13358 			 * possible on the accepting host.
13359 			 */
13360 			flags |= TH_ACK_NEEDED;
13361 
13362 			/*
13363 			 * Special case for loopback.  At this point we have
13364 			 * received SYN-ACK from the remote endpoint.  In
13365 			 * order to ensure that both endpoints reach the
13366 			 * fused state prior to any data exchange, the final
13367 			 * ACK needs to be sent before we indicate T_CONN_CON
13368 			 * to the module upstream.
13369 			 */
13370 			if (tcp->tcp_loopback) {
13371 				mblk_t *ack_mp;
13372 
13373 				ASSERT(!tcp->tcp_unfusable);
13374 				ASSERT(mp1 != NULL);
13375 				/*
13376 				 * For loopback, we always get a pure SYN-ACK
13377 				 * and only need to send back the final ACK
13378 				 * with no data (this is because the other
13379 				 * tcp is ours and we don't do T/TCP).  This
13380 				 * final ACK triggers the passive side to
13381 				 * perform fusion in ESTABLISHED state.
13382 				 */
13383 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
13384 					if (tcp->tcp_ack_tid != 0) {
13385 						(void) TCP_TIMER_CANCEL(tcp,
13386 						    tcp->tcp_ack_tid);
13387 						tcp->tcp_ack_tid = 0;
13388 					}
13389 					tcp_send_data(tcp, tcp->tcp_wq, ack_mp);
13390 					BUMP_LOCAL(tcp->tcp_obsegs);
13391 					BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
13392 
13393 					/* Send up T_CONN_CON */
13394 					putnext(tcp->tcp_rq, mp1);
13395 
13396 					freemsg(mp);
13397 					return;
13398 				}
13399 				/*
13400 				 * Forget fusion; we need to handle more
13401 				 * complex cases below.  Send the deferred
13402 				 * T_CONN_CON message upstream and proceed
13403 				 * as usual.  Mark this tcp as not capable
13404 				 * of fusion.
13405 				 */
13406 				TCP_STAT(tcps, tcp_fusion_unfusable);
13407 				tcp->tcp_unfusable = B_TRUE;
13408 				putnext(tcp->tcp_rq, mp1);
13409 			}
13410 
13411 			/*
13412 			 * Check to see if there is data to be sent.  If
13413 			 * yes, set the transmit flag.  Then check to see
13414 			 * if received data processing needs to be done.
13415 			 * If not, go straight to xmit_check.  This short
13416 			 * cut is OK as we don't support T/TCP.
13417 			 */
13418 			if (tcp->tcp_unsent)
13419 				flags |= TH_XMIT_NEEDED;
13420 
13421 			if (seg_len == 0 && !(flags & TH_URG)) {
13422 				freemsg(mp);
13423 				goto xmit_check;
13424 			}
13425 
13426 			flags &= ~TH_SYN;
13427 			seg_seq++;
13428 			break;
13429 		}
13430 		tcp->tcp_state = TCPS_SYN_RCVD;
13431 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
13432 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
13433 		if (mp1) {
13434 			DB_CPID(mp1) = tcp->tcp_cpid;
13435 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
13436 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
13437 		}
13438 		freemsg(mp);
13439 		return;
13440 	case TCPS_SYN_RCVD:
13441 		if (flags & TH_ACK) {
13442 			/*
13443 			 * In this state, a SYN|ACK packet is either bogus
13444 			 * because the other side must be ACKing our SYN which
13445 			 * indicates it has seen the ACK for their SYN and
13446 			 * shouldn't retransmit it or we're crossing SYNs
13447 			 * on active open.
13448 			 */
13449 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
13450 				freemsg(mp);
13451 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
13452 				    tcp, seg_ack, 0, TH_RST);
13453 				return;
13454 			}
13455 			/*
13456 			 * NOTE: RFC 793 pg. 72 says this should be
13457 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
13458 			 * but that would mean we have an ack that ignored
13459 			 * our SYN.
13460 			 */
13461 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
13462 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13463 				freemsg(mp);
13464 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
13465 				    tcp, seg_ack, 0, TH_RST);
13466 				return;
13467 			}
13468 		}
13469 		break;
13470 	case TCPS_LISTEN:
13471 		/*
13472 		 * Only a TLI listener can come through this path when a
13473 		 * acceptor is going back to be a listener and a packet
13474 		 * for the acceptor hits the classifier. For a socket
13475 		 * listener, this can never happen because a listener
13476 		 * can never accept connection on itself and hence a
13477 		 * socket acceptor can not go back to being a listener.
13478 		 */
13479 		ASSERT(!TCP_IS_SOCKET(tcp));
13480 		/*FALLTHRU*/
13481 	case TCPS_CLOSED:
13482 	case TCPS_BOUND: {
13483 		conn_t	*new_connp;
13484 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
13485 
13486 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
13487 		if (new_connp != NULL) {
13488 			tcp_reinput(new_connp, mp, connp->conn_sqp);
13489 			return;
13490 		}
13491 		/* We failed to classify. For now just drop the packet */
13492 		freemsg(mp);
13493 		return;
13494 	}
13495 	case TCPS_IDLE:
13496 		/*
13497 		 * Handle the case where the tcp_clean_death() has happened
13498 		 * on a connection (application hasn't closed yet) but a packet
13499 		 * was already queued on squeue before tcp_clean_death()
13500 		 * was processed. Calling tcp_clean_death() twice on same
13501 		 * connection can result in weird behaviour.
13502 		 */
13503 		freemsg(mp);
13504 		return;
13505 	default:
13506 		break;
13507 	}
13508 
13509 	/*
13510 	 * Already on the correct queue/perimeter.
13511 	 * If this is a detached connection and not an eager
13512 	 * connection hanging off a listener then new data
13513 	 * (past the FIN) will cause a reset.
13514 	 * We do a special check here where it
13515 	 * is out of the main line, rather than check
13516 	 * if we are detached every time we see new
13517 	 * data down below.
13518 	 */
13519 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
13520 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
13521 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
13522 		DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
13523 
13524 		freemsg(mp);
13525 		/*
13526 		 * This could be an SSL closure alert. We're detached so just
13527 		 * acknowledge it this last time.
13528 		 */
13529 		if (tcp->tcp_kssl_ctx != NULL) {
13530 			kssl_release_ctx(tcp->tcp_kssl_ctx);
13531 			tcp->tcp_kssl_ctx = NULL;
13532 
13533 			tcp->tcp_rnxt += seg_len;
13534 			U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13535 			flags |= TH_ACK_NEEDED;
13536 			goto ack_check;
13537 		}
13538 
13539 		tcp_xmit_ctl("new data when detached", tcp,
13540 		    tcp->tcp_snxt, 0, TH_RST);
13541 		(void) tcp_clean_death(tcp, EPROTO, 12);
13542 		return;
13543 	}
13544 
13545 	mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
13546 	urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION;
13547 	new_swnd = BE16_TO_U16(tcph->th_win) <<
13548 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
13549 
13550 	if (tcp->tcp_snd_ts_ok) {
13551 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
13552 			/*
13553 			 * This segment is not acceptable.
13554 			 * Drop it and send back an ACK.
13555 			 */
13556 			freemsg(mp);
13557 			flags |= TH_ACK_NEEDED;
13558 			goto ack_check;
13559 		}
13560 	} else if (tcp->tcp_snd_sack_ok) {
13561 		ASSERT(tcp->tcp_sack_info != NULL);
13562 		tcpopt.tcp = tcp;
13563 		/*
13564 		 * SACK info in already updated in tcp_parse_options.  Ignore
13565 		 * all other TCP options...
13566 		 */
13567 		(void) tcp_parse_options(tcph, &tcpopt);
13568 	}
13569 try_again:;
13570 	mss = tcp->tcp_mss;
13571 	gap = seg_seq - tcp->tcp_rnxt;
13572 	rgap = tcp->tcp_rwnd - (gap + seg_len);
13573 	/*
13574 	 * gap is the amount of sequence space between what we expect to see
13575 	 * and what we got for seg_seq.  A positive value for gap means
13576 	 * something got lost.  A negative value means we got some old stuff.
13577 	 */
13578 	if (gap < 0) {
13579 		/* Old stuff present.  Is the SYN in there? */
13580 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
13581 		    (seg_len != 0)) {
13582 			flags &= ~TH_SYN;
13583 			seg_seq++;
13584 			urp--;
13585 			/* Recompute the gaps after noting the SYN. */
13586 			goto try_again;
13587 		}
13588 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
13589 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
13590 		    (seg_len > -gap ? -gap : seg_len));
13591 		/* Remove the old stuff from seg_len. */
13592 		seg_len += gap;
13593 		/*
13594 		 * Anything left?
13595 		 * Make sure to check for unack'd FIN when rest of data
13596 		 * has been previously ack'd.
13597 		 */
13598 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
13599 			/*
13600 			 * Resets are only valid if they lie within our offered
13601 			 * window.  If the RST bit is set, we just ignore this
13602 			 * segment.
13603 			 */
13604 			if (flags & TH_RST) {
13605 				freemsg(mp);
13606 				return;
13607 			}
13608 
13609 			/*
13610 			 * The arriving of dup data packets indicate that we
13611 			 * may have postponed an ack for too long, or the other
13612 			 * side's RTT estimate is out of shape. Start acking
13613 			 * more often.
13614 			 */
13615 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
13616 			    tcp->tcp_rack_cnt >= 1 &&
13617 			    tcp->tcp_rack_abs_max > 2) {
13618 				tcp->tcp_rack_abs_max--;
13619 			}
13620 			tcp->tcp_rack_cur_max = 1;
13621 
13622 			/*
13623 			 * This segment is "unacceptable".  None of its
13624 			 * sequence space lies within our advertized window.
13625 			 *
13626 			 * Adjust seg_len to the original value for tracing.
13627 			 */
13628 			seg_len -= gap;
13629 			if (tcp->tcp_debug) {
13630 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13631 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
13632 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
13633 				    "seg_len %d, rnxt %u, snxt %u, %s",
13634 				    gap, rgap, flags, seg_seq, seg_ack,
13635 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
13636 				    tcp_display(tcp, NULL,
13637 				    DISP_ADDR_AND_PORT));
13638 			}
13639 
13640 			/*
13641 			 * Arrange to send an ACK in response to the
13642 			 * unacceptable segment per RFC 793 page 69. There
13643 			 * is only one small difference between ours and the
13644 			 * acceptability test in the RFC - we accept ACK-only
13645 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
13646 			 * will be generated.
13647 			 *
13648 			 * Note that we have to ACK an ACK-only packet at least
13649 			 * for stacks that send 0-length keep-alives with
13650 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
13651 			 * section 4.2.3.6. As long as we don't ever generate
13652 			 * an unacceptable packet in response to an incoming
13653 			 * packet that is unacceptable, it should not cause
13654 			 * "ACK wars".
13655 			 */
13656 			flags |=  TH_ACK_NEEDED;
13657 
13658 			/*
13659 			 * Continue processing this segment in order to use the
13660 			 * ACK information it contains, but skip all other
13661 			 * sequence-number processing.	Processing the ACK
13662 			 * information is necessary in order to
13663 			 * re-synchronize connections that may have lost
13664 			 * synchronization.
13665 			 *
13666 			 * We clear seg_len and flag fields related to
13667 			 * sequence number processing as they are not
13668 			 * to be trusted for an unacceptable segment.
13669 			 */
13670 			seg_len = 0;
13671 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
13672 			goto process_ack;
13673 		}
13674 
13675 		/* Fix seg_seq, and chew the gap off the front. */
13676 		seg_seq = tcp->tcp_rnxt;
13677 		urp += gap;
13678 		do {
13679 			mblk_t	*mp2;
13680 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13681 			    (uintptr_t)UINT_MAX);
13682 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
13683 			if (gap > 0) {
13684 				mp->b_rptr = mp->b_wptr - gap;
13685 				break;
13686 			}
13687 			mp2 = mp;
13688 			mp = mp->b_cont;
13689 			freeb(mp2);
13690 		} while (gap < 0);
13691 		/*
13692 		 * If the urgent data has already been acknowledged, we
13693 		 * should ignore TH_URG below
13694 		 */
13695 		if (urp < 0)
13696 			flags &= ~TH_URG;
13697 	}
13698 	/*
13699 	 * rgap is the amount of stuff received out of window.  A negative
13700 	 * value is the amount out of window.
13701 	 */
13702 	if (rgap < 0) {
13703 		mblk_t	*mp2;
13704 
13705 		if (tcp->tcp_rwnd == 0) {
13706 			BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe);
13707 		} else {
13708 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
13709 			UPDATE_MIB(&tcps->tcps_mib,
13710 			    tcpInDataPastWinBytes, -rgap);
13711 		}
13712 
13713 		/*
13714 		 * seg_len does not include the FIN, so if more than
13715 		 * just the FIN is out of window, we act like we don't
13716 		 * see it.  (If just the FIN is out of window, rgap
13717 		 * will be zero and we will go ahead and acknowledge
13718 		 * the FIN.)
13719 		 */
13720 		flags &= ~TH_FIN;
13721 
13722 		/* Fix seg_len and make sure there is something left. */
13723 		seg_len += rgap;
13724 		if (seg_len <= 0) {
13725 			/*
13726 			 * Resets are only valid if they lie within our offered
13727 			 * window.  If the RST bit is set, we just ignore this
13728 			 * segment.
13729 			 */
13730 			if (flags & TH_RST) {
13731 				freemsg(mp);
13732 				return;
13733 			}
13734 
13735 			/* Per RFC 793, we need to send back an ACK. */
13736 			flags |= TH_ACK_NEEDED;
13737 
13738 			/*
13739 			 * Send SIGURG as soon as possible i.e. even
13740 			 * if the TH_URG was delivered in a window probe
13741 			 * packet (which will be unacceptable).
13742 			 *
13743 			 * We generate a signal if none has been generated
13744 			 * for this connection or if this is a new urgent
13745 			 * byte. Also send a zero-length "unmarked" message
13746 			 * to inform SIOCATMARK that this is not the mark.
13747 			 *
13748 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
13749 			 * is sent up. This plus the check for old data
13750 			 * (gap >= 0) handles the wraparound of the sequence
13751 			 * number space without having to always track the
13752 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
13753 			 * this max in its rcv_up variable).
13754 			 *
13755 			 * This prevents duplicate SIGURGS due to a "late"
13756 			 * zero-window probe when the T_EXDATA_IND has already
13757 			 * been sent up.
13758 			 */
13759 			if ((flags & TH_URG) &&
13760 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
13761 			    tcp->tcp_urp_last))) {
13762 				mp1 = allocb(0, BPRI_MED);
13763 				if (mp1 == NULL) {
13764 					freemsg(mp);
13765 					return;
13766 				}
13767 				if (!TCP_IS_DETACHED(tcp) &&
13768 				    !putnextctl1(tcp->tcp_rq, M_PCSIG,
13769 				    SIGURG)) {
13770 					/* Try again on the rexmit. */
13771 					freemsg(mp1);
13772 					freemsg(mp);
13773 					return;
13774 				}
13775 				/*
13776 				 * If the next byte would be the mark
13777 				 * then mark with MARKNEXT else mark
13778 				 * with NOTMARKNEXT.
13779 				 */
13780 				if (gap == 0 && urp == 0)
13781 					mp1->b_flag |= MSGMARKNEXT;
13782 				else
13783 					mp1->b_flag |= MSGNOTMARKNEXT;
13784 				freemsg(tcp->tcp_urp_mark_mp);
13785 				tcp->tcp_urp_mark_mp = mp1;
13786 				flags |= TH_SEND_URP_MARK;
13787 				tcp->tcp_urp_last_valid = B_TRUE;
13788 				tcp->tcp_urp_last = urp + seg_seq;
13789 			}
13790 			/*
13791 			 * If this is a zero window probe, continue to
13792 			 * process the ACK part.  But we need to set seg_len
13793 			 * to 0 to avoid data processing.  Otherwise just
13794 			 * drop the segment and send back an ACK.
13795 			 */
13796 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
13797 				flags &= ~(TH_SYN | TH_URG);
13798 				seg_len = 0;
13799 				goto process_ack;
13800 			} else {
13801 				freemsg(mp);
13802 				goto ack_check;
13803 			}
13804 		}
13805 		/* Pitch out of window stuff off the end. */
13806 		rgap = seg_len;
13807 		mp2 = mp;
13808 		do {
13809 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
13810 			    (uintptr_t)INT_MAX);
13811 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
13812 			if (rgap < 0) {
13813 				mp2->b_wptr += rgap;
13814 				if ((mp1 = mp2->b_cont) != NULL) {
13815 					mp2->b_cont = NULL;
13816 					freemsg(mp1);
13817 				}
13818 				break;
13819 			}
13820 		} while ((mp2 = mp2->b_cont) != NULL);
13821 	}
13822 ok:;
13823 	/*
13824 	 * TCP should check ECN info for segments inside the window only.
13825 	 * Therefore the check should be done here.
13826 	 */
13827 	if (tcp->tcp_ecn_ok) {
13828 		if (flags & TH_CWR) {
13829 			tcp->tcp_ecn_echo_on = B_FALSE;
13830 		}
13831 		/*
13832 		 * Note that both ECN_CE and CWR can be set in the
13833 		 * same segment.  In this case, we once again turn
13834 		 * on ECN_ECHO.
13835 		 */
13836 		if (tcp->tcp_ipversion == IPV4_VERSION) {
13837 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
13838 
13839 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
13840 				tcp->tcp_ecn_echo_on = B_TRUE;
13841 			}
13842 		} else {
13843 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
13844 
13845 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
13846 			    htonl(IPH_ECN_CE << 20)) {
13847 				tcp->tcp_ecn_echo_on = B_TRUE;
13848 			}
13849 		}
13850 	}
13851 
13852 	/*
13853 	 * Check whether we can update tcp_ts_recent.  This test is
13854 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
13855 	 * Extensions for High Performance: An Update", Internet Draft.
13856 	 */
13857 	if (tcp->tcp_snd_ts_ok &&
13858 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
13859 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
13860 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
13861 		tcp->tcp_last_rcv_lbolt = lbolt64;
13862 	}
13863 
13864 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
13865 		/*
13866 		 * FIN in an out of order segment.  We record this in
13867 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
13868 		 * Clear the FIN so that any check on FIN flag will fail.
13869 		 * Remember that FIN also counts in the sequence number
13870 		 * space.  So we need to ack out of order FIN only segments.
13871 		 */
13872 		if (flags & TH_FIN) {
13873 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
13874 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
13875 			flags &= ~TH_FIN;
13876 			flags |= TH_ACK_NEEDED;
13877 		}
13878 		if (seg_len > 0) {
13879 			/* Fill in the SACK blk list. */
13880 			if (tcp->tcp_snd_sack_ok) {
13881 				ASSERT(tcp->tcp_sack_info != NULL);
13882 				tcp_sack_insert(tcp->tcp_sack_list,
13883 				    seg_seq, seg_seq + seg_len,
13884 				    &(tcp->tcp_num_sack_blk));
13885 			}
13886 
13887 			/*
13888 			 * Attempt reassembly and see if we have something
13889 			 * ready to go.
13890 			 */
13891 			mp = tcp_reass(tcp, mp, seg_seq);
13892 			/* Always ack out of order packets */
13893 			flags |= TH_ACK_NEEDED | TH_PUSH;
13894 			if (mp) {
13895 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13896 				    (uintptr_t)INT_MAX);
13897 				seg_len = mp->b_cont ? msgdsize(mp) :
13898 				    (int)(mp->b_wptr - mp->b_rptr);
13899 				seg_seq = tcp->tcp_rnxt;
13900 				/*
13901 				 * A gap is filled and the seq num and len
13902 				 * of the gap match that of a previously
13903 				 * received FIN, put the FIN flag back in.
13904 				 */
13905 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13906 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13907 					flags |= TH_FIN;
13908 					tcp->tcp_valid_bits &=
13909 					    ~TCP_OFO_FIN_VALID;
13910 				}
13911 			} else {
13912 				/*
13913 				 * Keep going even with NULL mp.
13914 				 * There may be a useful ACK or something else
13915 				 * we don't want to miss.
13916 				 *
13917 				 * But TCP should not perform fast retransmit
13918 				 * because of the ack number.  TCP uses
13919 				 * seg_len == 0 to determine if it is a pure
13920 				 * ACK.  And this is not a pure ACK.
13921 				 */
13922 				seg_len = 0;
13923 				ofo_seg = B_TRUE;
13924 			}
13925 		}
13926 	} else if (seg_len > 0) {
13927 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
13928 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
13929 		/*
13930 		 * If an out of order FIN was received before, and the seq
13931 		 * num and len of the new segment match that of the FIN,
13932 		 * put the FIN flag back in.
13933 		 */
13934 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13935 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13936 			flags |= TH_FIN;
13937 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
13938 		}
13939 	}
13940 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
13941 	if (flags & TH_RST) {
13942 		freemsg(mp);
13943 		switch (tcp->tcp_state) {
13944 		case TCPS_SYN_RCVD:
13945 			(void) tcp_clean_death(tcp, ECONNREFUSED, 14);
13946 			break;
13947 		case TCPS_ESTABLISHED:
13948 		case TCPS_FIN_WAIT_1:
13949 		case TCPS_FIN_WAIT_2:
13950 		case TCPS_CLOSE_WAIT:
13951 			(void) tcp_clean_death(tcp, ECONNRESET, 15);
13952 			break;
13953 		case TCPS_CLOSING:
13954 		case TCPS_LAST_ACK:
13955 			(void) tcp_clean_death(tcp, 0, 16);
13956 			break;
13957 		default:
13958 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13959 			(void) tcp_clean_death(tcp, ENXIO, 17);
13960 			break;
13961 		}
13962 		return;
13963 	}
13964 	if (flags & TH_SYN) {
13965 		/*
13966 		 * See RFC 793, Page 71
13967 		 *
13968 		 * The seq number must be in the window as it should
13969 		 * be "fixed" above.  If it is outside window, it should
13970 		 * be already rejected.  Note that we allow seg_seq to be
13971 		 * rnxt + rwnd because we want to accept 0 window probe.
13972 		 */
13973 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
13974 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
13975 		freemsg(mp);
13976 		/*
13977 		 * If the ACK flag is not set, just use our snxt as the
13978 		 * seq number of the RST segment.
13979 		 */
13980 		if (!(flags & TH_ACK)) {
13981 			seg_ack = tcp->tcp_snxt;
13982 		}
13983 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
13984 		    TH_RST|TH_ACK);
13985 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13986 		(void) tcp_clean_death(tcp, ECONNRESET, 18);
13987 		return;
13988 	}
13989 	/*
13990 	 * urp could be -1 when the urp field in the packet is 0
13991 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
13992 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
13993 	 */
13994 	if (flags & TH_URG && urp >= 0) {
13995 		if (!tcp->tcp_urp_last_valid ||
13996 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
13997 			/*
13998 			 * If we haven't generated the signal yet for this
13999 			 * urgent pointer value, do it now.  Also, send up a
14000 			 * zero-length M_DATA indicating whether or not this is
14001 			 * the mark. The latter is not needed when a
14002 			 * T_EXDATA_IND is sent up. However, if there are
14003 			 * allocation failures this code relies on the sender
14004 			 * retransmitting and the socket code for determining
14005 			 * the mark should not block waiting for the peer to
14006 			 * transmit. Thus, for simplicity we always send up the
14007 			 * mark indication.
14008 			 */
14009 			mp1 = allocb(0, BPRI_MED);
14010 			if (mp1 == NULL) {
14011 				freemsg(mp);
14012 				return;
14013 			}
14014 			if (!TCP_IS_DETACHED(tcp) &&
14015 			    !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) {
14016 				/* Try again on the rexmit. */
14017 				freemsg(mp1);
14018 				freemsg(mp);
14019 				return;
14020 			}
14021 			/*
14022 			 * Mark with NOTMARKNEXT for now.
14023 			 * The code below will change this to MARKNEXT
14024 			 * if we are at the mark.
14025 			 *
14026 			 * If there are allocation failures (e.g. in dupmsg
14027 			 * below) the next time tcp_rput_data sees the urgent
14028 			 * segment it will send up the MSG*MARKNEXT message.
14029 			 */
14030 			mp1->b_flag |= MSGNOTMARKNEXT;
14031 			freemsg(tcp->tcp_urp_mark_mp);
14032 			tcp->tcp_urp_mark_mp = mp1;
14033 			flags |= TH_SEND_URP_MARK;
14034 #ifdef DEBUG
14035 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14036 			    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
14037 			    "last %x, %s",
14038 			    seg_seq, urp, tcp->tcp_urp_last,
14039 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14040 #endif /* DEBUG */
14041 			tcp->tcp_urp_last_valid = B_TRUE;
14042 			tcp->tcp_urp_last = urp + seg_seq;
14043 		} else if (tcp->tcp_urp_mark_mp != NULL) {
14044 			/*
14045 			 * An allocation failure prevented the previous
14046 			 * tcp_rput_data from sending up the allocated
14047 			 * MSG*MARKNEXT message - send it up this time
14048 			 * around.
14049 			 */
14050 			flags |= TH_SEND_URP_MARK;
14051 		}
14052 
14053 		/*
14054 		 * If the urgent byte is in this segment, make sure that it is
14055 		 * all by itself.  This makes it much easier to deal with the
14056 		 * possibility of an allocation failure on the T_exdata_ind.
14057 		 * Note that seg_len is the number of bytes in the segment, and
14058 		 * urp is the offset into the segment of the urgent byte.
14059 		 * urp < seg_len means that the urgent byte is in this segment.
14060 		 */
14061 		if (urp < seg_len) {
14062 			if (seg_len != 1) {
14063 				uint32_t  tmp_rnxt;
14064 				/*
14065 				 * Break it up and feed it back in.
14066 				 * Re-attach the IP header.
14067 				 */
14068 				mp->b_rptr = iphdr;
14069 				if (urp > 0) {
14070 					/*
14071 					 * There is stuff before the urgent
14072 					 * byte.
14073 					 */
14074 					mp1 = dupmsg(mp);
14075 					if (!mp1) {
14076 						/*
14077 						 * Trim from urgent byte on.
14078 						 * The rest will come back.
14079 						 */
14080 						(void) adjmsg(mp,
14081 						    urp - seg_len);
14082 						tcp_rput_data(connp,
14083 						    mp, NULL);
14084 						return;
14085 					}
14086 					(void) adjmsg(mp1, urp - seg_len);
14087 					/* Feed this piece back in. */
14088 					tmp_rnxt = tcp->tcp_rnxt;
14089 					tcp_rput_data(connp, mp1, NULL);
14090 					/*
14091 					 * If the data passed back in was not
14092 					 * processed (ie: bad ACK) sending
14093 					 * the remainder back in will cause a
14094 					 * loop. In this case, drop the
14095 					 * packet and let the sender try
14096 					 * sending a good packet.
14097 					 */
14098 					if (tmp_rnxt == tcp->tcp_rnxt) {
14099 						freemsg(mp);
14100 						return;
14101 					}
14102 				}
14103 				if (urp != seg_len - 1) {
14104 					uint32_t  tmp_rnxt;
14105 					/*
14106 					 * There is stuff after the urgent
14107 					 * byte.
14108 					 */
14109 					mp1 = dupmsg(mp);
14110 					if (!mp1) {
14111 						/*
14112 						 * Trim everything beyond the
14113 						 * urgent byte.  The rest will
14114 						 * come back.
14115 						 */
14116 						(void) adjmsg(mp,
14117 						    urp + 1 - seg_len);
14118 						tcp_rput_data(connp,
14119 						    mp, NULL);
14120 						return;
14121 					}
14122 					(void) adjmsg(mp1, urp + 1 - seg_len);
14123 					tmp_rnxt = tcp->tcp_rnxt;
14124 					tcp_rput_data(connp, mp1, NULL);
14125 					/*
14126 					 * If the data passed back in was not
14127 					 * processed (ie: bad ACK) sending
14128 					 * the remainder back in will cause a
14129 					 * loop. In this case, drop the
14130 					 * packet and let the sender try
14131 					 * sending a good packet.
14132 					 */
14133 					if (tmp_rnxt == tcp->tcp_rnxt) {
14134 						freemsg(mp);
14135 						return;
14136 					}
14137 				}
14138 				tcp_rput_data(connp, mp, NULL);
14139 				return;
14140 			}
14141 			/*
14142 			 * This segment contains only the urgent byte.  We
14143 			 * have to allocate the T_exdata_ind, if we can.
14144 			 */
14145 			if (!tcp->tcp_urp_mp) {
14146 				struct T_exdata_ind *tei;
14147 				mp1 = allocb(sizeof (struct T_exdata_ind),
14148 				    BPRI_MED);
14149 				if (!mp1) {
14150 					/*
14151 					 * Sigh... It'll be back.
14152 					 * Generate any MSG*MARK message now.
14153 					 */
14154 					freemsg(mp);
14155 					seg_len = 0;
14156 					if (flags & TH_SEND_URP_MARK) {
14157 
14158 
14159 						ASSERT(tcp->tcp_urp_mark_mp);
14160 						tcp->tcp_urp_mark_mp->b_flag &=
14161 						    ~MSGNOTMARKNEXT;
14162 						tcp->tcp_urp_mark_mp->b_flag |=
14163 						    MSGMARKNEXT;
14164 					}
14165 					goto ack_check;
14166 				}
14167 				mp1->b_datap->db_type = M_PROTO;
14168 				tei = (struct T_exdata_ind *)mp1->b_rptr;
14169 				tei->PRIM_type = T_EXDATA_IND;
14170 				tei->MORE_flag = 0;
14171 				mp1->b_wptr = (uchar_t *)&tei[1];
14172 				tcp->tcp_urp_mp = mp1;
14173 #ifdef DEBUG
14174 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14175 				    "tcp_rput: allocated exdata_ind %s",
14176 				    tcp_display(tcp, NULL,
14177 				    DISP_PORT_ONLY));
14178 #endif /* DEBUG */
14179 				/*
14180 				 * There is no need to send a separate MSG*MARK
14181 				 * message since the T_EXDATA_IND will be sent
14182 				 * now.
14183 				 */
14184 				flags &= ~TH_SEND_URP_MARK;
14185 				freemsg(tcp->tcp_urp_mark_mp);
14186 				tcp->tcp_urp_mark_mp = NULL;
14187 			}
14188 			/*
14189 			 * Now we are all set.  On the next putnext upstream,
14190 			 * tcp_urp_mp will be non-NULL and will get prepended
14191 			 * to what has to be this piece containing the urgent
14192 			 * byte.  If for any reason we abort this segment below,
14193 			 * if it comes back, we will have this ready, or it
14194 			 * will get blown off in close.
14195 			 */
14196 		} else if (urp == seg_len) {
14197 			/*
14198 			 * The urgent byte is the next byte after this sequence
14199 			 * number. If there is data it is marked with
14200 			 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded
14201 			 * since it is not needed. Otherwise, if the code
14202 			 * above just allocated a zero-length tcp_urp_mark_mp
14203 			 * message, that message is tagged with MSGMARKNEXT.
14204 			 * Sending up these MSGMARKNEXT messages makes
14205 			 * SIOCATMARK work correctly even though
14206 			 * the T_EXDATA_IND will not be sent up until the
14207 			 * urgent byte arrives.
14208 			 */
14209 			if (seg_len != 0) {
14210 				flags |= TH_MARKNEXT_NEEDED;
14211 				freemsg(tcp->tcp_urp_mark_mp);
14212 				tcp->tcp_urp_mark_mp = NULL;
14213 				flags &= ~TH_SEND_URP_MARK;
14214 			} else if (tcp->tcp_urp_mark_mp != NULL) {
14215 				flags |= TH_SEND_URP_MARK;
14216 				tcp->tcp_urp_mark_mp->b_flag &=
14217 				    ~MSGNOTMARKNEXT;
14218 				tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT;
14219 			}
14220 #ifdef DEBUG
14221 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14222 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
14223 			    seg_len, flags,
14224 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14225 #endif /* DEBUG */
14226 		} else {
14227 			/* Data left until we hit mark */
14228 #ifdef DEBUG
14229 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14230 			    "tcp_rput: URP %d bytes left, %s",
14231 			    urp - seg_len, tcp_display(tcp, NULL,
14232 			    DISP_PORT_ONLY));
14233 #endif /* DEBUG */
14234 		}
14235 	}
14236 
14237 process_ack:
14238 	if (!(flags & TH_ACK)) {
14239 		freemsg(mp);
14240 		goto xmit_check;
14241 	}
14242 	}
14243 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
14244 
14245 	if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0)
14246 		tcp->tcp_ip_forward_progress = B_TRUE;
14247 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
14248 		if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) &&
14249 		    ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) {
14250 			/* 3-way handshake complete - pass up the T_CONN_IND */
14251 			tcp_t	*listener = tcp->tcp_listener;
14252 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
14253 
14254 			tcp->tcp_tconnind_started = B_TRUE;
14255 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
14256 			/*
14257 			 * We are here means eager is fine but it can
14258 			 * get a TH_RST at any point between now and till
14259 			 * accept completes and disappear. We need to
14260 			 * ensure that reference to eager is valid after
14261 			 * we get out of eager's perimeter. So we do
14262 			 * an extra refhold.
14263 			 */
14264 			CONN_INC_REF(connp);
14265 
14266 			/*
14267 			 * The listener also exists because of the refhold
14268 			 * done in tcp_conn_request. Its possible that it
14269 			 * might have closed. We will check that once we
14270 			 * get inside listeners context.
14271 			 */
14272 			CONN_INC_REF(listener->tcp_connp);
14273 			if (listener->tcp_connp->conn_sqp ==
14274 			    connp->conn_sqp) {
14275 				tcp_send_conn_ind(listener->tcp_connp, mp,
14276 				    listener->tcp_connp->conn_sqp);
14277 				CONN_DEC_REF(listener->tcp_connp);
14278 			} else if (!tcp->tcp_loopback) {
14279 				squeue_fill(listener->tcp_connp->conn_sqp, mp,
14280 				    tcp_send_conn_ind,
14281 				    listener->tcp_connp, SQTAG_TCP_CONN_IND);
14282 			} else {
14283 				squeue_enter(listener->tcp_connp->conn_sqp, mp,
14284 				    tcp_send_conn_ind, listener->tcp_connp,
14285 				    SQTAG_TCP_CONN_IND);
14286 			}
14287 		}
14288 
14289 		if (tcp->tcp_active_open) {
14290 			/*
14291 			 * We are seeing the final ack in the three way
14292 			 * hand shake of a active open'ed connection
14293 			 * so we must send up a T_CONN_CON
14294 			 */
14295 			if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) {
14296 				freemsg(mp);
14297 				return;
14298 			}
14299 			/*
14300 			 * Don't fuse the loopback endpoints for
14301 			 * simultaneous active opens.
14302 			 */
14303 			if (tcp->tcp_loopback) {
14304 				TCP_STAT(tcps, tcp_fusion_unfusable);
14305 				tcp->tcp_unfusable = B_TRUE;
14306 			}
14307 		}
14308 
14309 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
14310 		bytes_acked--;
14311 		/* SYN was acked - making progress */
14312 		if (tcp->tcp_ipversion == IPV6_VERSION)
14313 			tcp->tcp_ip_forward_progress = B_TRUE;
14314 
14315 		/*
14316 		 * If SYN was retransmitted, need to reset all
14317 		 * retransmission info as this segment will be
14318 		 * treated as a dup ACK.
14319 		 */
14320 		if (tcp->tcp_rexmit) {
14321 			tcp->tcp_rexmit = B_FALSE;
14322 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14323 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
14324 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14325 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14326 			tcp->tcp_ms_we_have_waited = 0;
14327 			tcp->tcp_cwnd = mss;
14328 		}
14329 
14330 		/*
14331 		 * We set the send window to zero here.
14332 		 * This is needed if there is data to be
14333 		 * processed already on the queue.
14334 		 * Later (at swnd_update label), the
14335 		 * "new_swnd > tcp_swnd" condition is satisfied
14336 		 * the XMIT_NEEDED flag is set in the current
14337 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
14338 		 * called if there is already data on queue in
14339 		 * this state.
14340 		 */
14341 		tcp->tcp_swnd = 0;
14342 
14343 		if (new_swnd > tcp->tcp_max_swnd)
14344 			tcp->tcp_max_swnd = new_swnd;
14345 		tcp->tcp_swl1 = seg_seq;
14346 		tcp->tcp_swl2 = seg_ack;
14347 		tcp->tcp_state = TCPS_ESTABLISHED;
14348 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
14349 
14350 		/* Fuse when both sides are in ESTABLISHED state */
14351 		if (tcp->tcp_loopback && do_tcp_fusion)
14352 			tcp_fuse(tcp, iphdr, tcph);
14353 
14354 	}
14355 	/* This code follows 4.4BSD-Lite2 mostly. */
14356 	if (bytes_acked < 0)
14357 		goto est;
14358 
14359 	/*
14360 	 * If TCP is ECN capable and the congestion experience bit is
14361 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
14362 	 * done once per window (or more loosely, per RTT).
14363 	 */
14364 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
14365 		tcp->tcp_cwr = B_FALSE;
14366 	if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
14367 		if (!tcp->tcp_cwr) {
14368 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss;
14369 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
14370 			tcp->tcp_cwnd = npkt * mss;
14371 			/*
14372 			 * If the cwnd is 0, use the timer to clock out
14373 			 * new segments.  This is required by the ECN spec.
14374 			 */
14375 			if (npkt == 0) {
14376 				TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14377 				/*
14378 				 * This makes sure that when the ACK comes
14379 				 * back, we will increase tcp_cwnd by 1 MSS.
14380 				 */
14381 				tcp->tcp_cwnd_cnt = 0;
14382 			}
14383 			tcp->tcp_cwr = B_TRUE;
14384 			/*
14385 			 * This marks the end of the current window of in
14386 			 * flight data.  That is why we don't use
14387 			 * tcp_suna + tcp_swnd.  Only data in flight can
14388 			 * provide ECN info.
14389 			 */
14390 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14391 			tcp->tcp_ecn_cwr_sent = B_FALSE;
14392 		}
14393 	}
14394 
14395 	mp1 = tcp->tcp_xmit_head;
14396 	if (bytes_acked == 0) {
14397 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
14398 			int dupack_cnt;
14399 
14400 			BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
14401 			/*
14402 			 * Fast retransmit.  When we have seen exactly three
14403 			 * identical ACKs while we have unacked data
14404 			 * outstanding we take it as a hint that our peer
14405 			 * dropped something.
14406 			 *
14407 			 * If TCP is retransmitting, don't do fast retransmit.
14408 			 */
14409 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
14410 			    ! tcp->tcp_rexmit) {
14411 				/* Do Limited Transmit */
14412 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
14413 				    tcps->tcps_dupack_fast_retransmit) {
14414 					/*
14415 					 * RFC 3042
14416 					 *
14417 					 * What we need to do is temporarily
14418 					 * increase tcp_cwnd so that new
14419 					 * data can be sent if it is allowed
14420 					 * by the receive window (tcp_rwnd).
14421 					 * tcp_wput_data() will take care of
14422 					 * the rest.
14423 					 *
14424 					 * If the connection is SACK capable,
14425 					 * only do limited xmit when there
14426 					 * is SACK info.
14427 					 *
14428 					 * Note how tcp_cwnd is incremented.
14429 					 * The first dup ACK will increase
14430 					 * it by 1 MSS.  The second dup ACK
14431 					 * will increase it by 2 MSS.  This
14432 					 * means that only 1 new segment will
14433 					 * be sent for each dup ACK.
14434 					 */
14435 					if (tcp->tcp_unsent > 0 &&
14436 					    (!tcp->tcp_snd_sack_ok ||
14437 					    (tcp->tcp_snd_sack_ok &&
14438 					    tcp->tcp_notsack_list != NULL))) {
14439 						tcp->tcp_cwnd += mss <<
14440 						    (tcp->tcp_dupack_cnt - 1);
14441 						flags |= TH_LIMIT_XMIT;
14442 					}
14443 				} else if (dupack_cnt ==
14444 				    tcps->tcps_dupack_fast_retransmit) {
14445 
14446 				/*
14447 				 * If we have reduced tcp_ssthresh
14448 				 * because of ECN, do not reduce it again
14449 				 * unless it is already one window of data
14450 				 * away.  After one window of data, tcp_cwr
14451 				 * should then be cleared.  Note that
14452 				 * for non ECN capable connection, tcp_cwr
14453 				 * should always be false.
14454 				 *
14455 				 * Adjust cwnd since the duplicate
14456 				 * ack indicates that a packet was
14457 				 * dropped (due to congestion.)
14458 				 */
14459 				if (!tcp->tcp_cwr) {
14460 					npkt = ((tcp->tcp_snxt -
14461 					    tcp->tcp_suna) >> 1) / mss;
14462 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
14463 					    mss;
14464 					tcp->tcp_cwnd = (npkt +
14465 					    tcp->tcp_dupack_cnt) * mss;
14466 				}
14467 				if (tcp->tcp_ecn_ok) {
14468 					tcp->tcp_cwr = B_TRUE;
14469 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14470 					tcp->tcp_ecn_cwr_sent = B_FALSE;
14471 				}
14472 
14473 				/*
14474 				 * We do Hoe's algorithm.  Refer to her
14475 				 * paper "Improving the Start-up Behavior
14476 				 * of a Congestion Control Scheme for TCP,"
14477 				 * appeared in SIGCOMM'96.
14478 				 *
14479 				 * Save highest seq no we have sent so far.
14480 				 * Be careful about the invisible FIN byte.
14481 				 */
14482 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
14483 				    (tcp->tcp_unsent == 0)) {
14484 					tcp->tcp_rexmit_max = tcp->tcp_fss;
14485 				} else {
14486 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
14487 				}
14488 
14489 				/*
14490 				 * Do not allow bursty traffic during.
14491 				 * fast recovery.  Refer to Fall and Floyd's
14492 				 * paper "Simulation-based Comparisons of
14493 				 * Tahoe, Reno and SACK TCP" (in CCR?)
14494 				 * This is a best current practise.
14495 				 */
14496 				tcp->tcp_snd_burst = TCP_CWND_SS;
14497 
14498 				/*
14499 				 * For SACK:
14500 				 * Calculate tcp_pipe, which is the
14501 				 * estimated number of bytes in
14502 				 * network.
14503 				 *
14504 				 * tcp_fack is the highest sack'ed seq num
14505 				 * TCP has received.
14506 				 *
14507 				 * tcp_pipe is explained in the above quoted
14508 				 * Fall and Floyd's paper.  tcp_fack is
14509 				 * explained in Mathis and Mahdavi's
14510 				 * "Forward Acknowledgment: Refining TCP
14511 				 * Congestion Control" in SIGCOMM '96.
14512 				 */
14513 				if (tcp->tcp_snd_sack_ok) {
14514 					ASSERT(tcp->tcp_sack_info != NULL);
14515 					if (tcp->tcp_notsack_list != NULL) {
14516 						tcp->tcp_pipe = tcp->tcp_snxt -
14517 						    tcp->tcp_fack;
14518 						tcp->tcp_sack_snxt = seg_ack;
14519 						flags |= TH_NEED_SACK_REXMIT;
14520 					} else {
14521 						/*
14522 						 * Always initialize tcp_pipe
14523 						 * even though we don't have
14524 						 * any SACK info.  If later
14525 						 * we get SACK info and
14526 						 * tcp_pipe is not initialized,
14527 						 * funny things will happen.
14528 						 */
14529 						tcp->tcp_pipe =
14530 						    tcp->tcp_cwnd_ssthresh;
14531 					}
14532 				} else {
14533 					flags |= TH_REXMIT_NEEDED;
14534 				} /* tcp_snd_sack_ok */
14535 
14536 				} else {
14537 					/*
14538 					 * Here we perform congestion
14539 					 * avoidance, but NOT slow start.
14540 					 * This is known as the Fast
14541 					 * Recovery Algorithm.
14542 					 */
14543 					if (tcp->tcp_snd_sack_ok &&
14544 					    tcp->tcp_notsack_list != NULL) {
14545 						flags |= TH_NEED_SACK_REXMIT;
14546 						tcp->tcp_pipe -= mss;
14547 						if (tcp->tcp_pipe < 0)
14548 							tcp->tcp_pipe = 0;
14549 					} else {
14550 					/*
14551 					 * We know that one more packet has
14552 					 * left the pipe thus we can update
14553 					 * cwnd.
14554 					 */
14555 					cwnd = tcp->tcp_cwnd + mss;
14556 					if (cwnd > tcp->tcp_cwnd_max)
14557 						cwnd = tcp->tcp_cwnd_max;
14558 					tcp->tcp_cwnd = cwnd;
14559 					if (tcp->tcp_unsent > 0)
14560 						flags |= TH_XMIT_NEEDED;
14561 					}
14562 				}
14563 			}
14564 		} else if (tcp->tcp_zero_win_probe) {
14565 			/*
14566 			 * If the window has opened, need to arrange
14567 			 * to send additional data.
14568 			 */
14569 			if (new_swnd != 0) {
14570 				/* tcp_suna != tcp_snxt */
14571 				/* Packet contains a window update */
14572 				BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate);
14573 				tcp->tcp_zero_win_probe = 0;
14574 				tcp->tcp_timer_backoff = 0;
14575 				tcp->tcp_ms_we_have_waited = 0;
14576 
14577 				/*
14578 				 * Transmit starting with tcp_suna since
14579 				 * the one byte probe is not ack'ed.
14580 				 * If TCP has sent more than one identical
14581 				 * probe, tcp_rexmit will be set.  That means
14582 				 * tcp_ss_rexmit() will send out the one
14583 				 * byte along with new data.  Otherwise,
14584 				 * fake the retransmission.
14585 				 */
14586 				flags |= TH_XMIT_NEEDED;
14587 				if (!tcp->tcp_rexmit) {
14588 					tcp->tcp_rexmit = B_TRUE;
14589 					tcp->tcp_dupack_cnt = 0;
14590 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
14591 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
14592 				}
14593 			}
14594 		}
14595 		goto swnd_update;
14596 	}
14597 
14598 	/*
14599 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
14600 	 * If the ACK value acks something that we have not yet sent, it might
14601 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
14602 	 * other side.
14603 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
14604 	 * state is handled above, so we can always just drop the segment and
14605 	 * send an ACK here.
14606 	 *
14607 	 * Should we send ACKs in response to ACK only segments?
14608 	 */
14609 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
14610 		BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent);
14611 		/* drop the received segment */
14612 		freemsg(mp);
14613 
14614 		/*
14615 		 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
14616 		 * greater than 0, check if the number of such
14617 		 * bogus ACks is greater than that count.  If yes,
14618 		 * don't send back any ACK.  This prevents TCP from
14619 		 * getting into an ACK storm if somehow an attacker
14620 		 * successfully spoofs an acceptable segment to our
14621 		 * peer.
14622 		 */
14623 		if (tcp_drop_ack_unsent_cnt > 0 &&
14624 		    ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) {
14625 			TCP_STAT(tcps, tcp_in_ack_unsent_drop);
14626 			return;
14627 		}
14628 		mp = tcp_ack_mp(tcp);
14629 		if (mp != NULL) {
14630 			BUMP_LOCAL(tcp->tcp_obsegs);
14631 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
14632 			tcp_send_data(tcp, tcp->tcp_wq, mp);
14633 		}
14634 		return;
14635 	}
14636 
14637 	/*
14638 	 * TCP gets a new ACK, update the notsack'ed list to delete those
14639 	 * blocks that are covered by this ACK.
14640 	 */
14641 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
14642 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
14643 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
14644 	}
14645 
14646 	/*
14647 	 * If we got an ACK after fast retransmit, check to see
14648 	 * if it is a partial ACK.  If it is not and the congestion
14649 	 * window was inflated to account for the other side's
14650 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
14651 	 */
14652 	if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) {
14653 		ASSERT(tcp->tcp_rexmit == B_FALSE);
14654 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
14655 			tcp->tcp_dupack_cnt = 0;
14656 			/*
14657 			 * Restore the orig tcp_cwnd_ssthresh after
14658 			 * fast retransmit phase.
14659 			 */
14660 			if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
14661 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
14662 			}
14663 			tcp->tcp_rexmit_max = seg_ack;
14664 			tcp->tcp_cwnd_cnt = 0;
14665 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14666 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14667 
14668 			/*
14669 			 * Remove all notsack info to avoid confusion with
14670 			 * the next fast retrasnmit/recovery phase.
14671 			 */
14672 			if (tcp->tcp_snd_sack_ok &&
14673 			    tcp->tcp_notsack_list != NULL) {
14674 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
14675 			}
14676 		} else {
14677 			if (tcp->tcp_snd_sack_ok &&
14678 			    tcp->tcp_notsack_list != NULL) {
14679 				flags |= TH_NEED_SACK_REXMIT;
14680 				tcp->tcp_pipe -= mss;
14681 				if (tcp->tcp_pipe < 0)
14682 					tcp->tcp_pipe = 0;
14683 			} else {
14684 				/*
14685 				 * Hoe's algorithm:
14686 				 *
14687 				 * Retransmit the unack'ed segment and
14688 				 * restart fast recovery.  Note that we
14689 				 * need to scale back tcp_cwnd to the
14690 				 * original value when we started fast
14691 				 * recovery.  This is to prevent overly
14692 				 * aggressive behaviour in sending new
14693 				 * segments.
14694 				 */
14695 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
14696 				    tcps->tcps_dupack_fast_retransmit * mss;
14697 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
14698 				flags |= TH_REXMIT_NEEDED;
14699 			}
14700 		}
14701 	} else {
14702 		tcp->tcp_dupack_cnt = 0;
14703 		if (tcp->tcp_rexmit) {
14704 			/*
14705 			 * TCP is retranmitting.  If the ACK ack's all
14706 			 * outstanding data, update tcp_rexmit_max and
14707 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
14708 			 * to the correct value.
14709 			 *
14710 			 * Note that SEQ_LEQ() is used.  This is to avoid
14711 			 * unnecessary fast retransmit caused by dup ACKs
14712 			 * received when TCP does slow start retransmission
14713 			 * after a time out.  During this phase, TCP may
14714 			 * send out segments which are already received.
14715 			 * This causes dup ACKs to be sent back.
14716 			 */
14717 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
14718 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
14719 					tcp->tcp_rexmit_nxt = seg_ack;
14720 				}
14721 				if (seg_ack != tcp->tcp_rexmit_max) {
14722 					flags |= TH_XMIT_NEEDED;
14723 				}
14724 			} else {
14725 				tcp->tcp_rexmit = B_FALSE;
14726 				tcp->tcp_xmit_zc_clean = B_FALSE;
14727 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14728 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
14729 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14730 			}
14731 			tcp->tcp_ms_we_have_waited = 0;
14732 		}
14733 	}
14734 
14735 	BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs);
14736 	UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked);
14737 	tcp->tcp_suna = seg_ack;
14738 	if (tcp->tcp_zero_win_probe != 0) {
14739 		tcp->tcp_zero_win_probe = 0;
14740 		tcp->tcp_timer_backoff = 0;
14741 	}
14742 
14743 	/*
14744 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
14745 	 * Note that it cannot be the SYN being ack'ed.  The code flow
14746 	 * will not reach here.
14747 	 */
14748 	if (mp1 == NULL) {
14749 		goto fin_acked;
14750 	}
14751 
14752 	/*
14753 	 * Update the congestion window.
14754 	 *
14755 	 * If TCP is not ECN capable or TCP is ECN capable but the
14756 	 * congestion experience bit is not set, increase the tcp_cwnd as
14757 	 * usual.
14758 	 */
14759 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
14760 		cwnd = tcp->tcp_cwnd;
14761 		add = mss;
14762 
14763 		if (cwnd >= tcp->tcp_cwnd_ssthresh) {
14764 			/*
14765 			 * This is to prevent an increase of less than 1 MSS of
14766 			 * tcp_cwnd.  With partial increase, tcp_wput_data()
14767 			 * may send out tinygrams in order to preserve mblk
14768 			 * boundaries.
14769 			 *
14770 			 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
14771 			 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
14772 			 * increased by 1 MSS for every RTTs.
14773 			 */
14774 			if (tcp->tcp_cwnd_cnt <= 0) {
14775 				tcp->tcp_cwnd_cnt = cwnd + add;
14776 			} else {
14777 				tcp->tcp_cwnd_cnt -= add;
14778 				add = 0;
14779 			}
14780 		}
14781 		tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
14782 	}
14783 
14784 	/* See if the latest urgent data has been acknowledged */
14785 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
14786 	    SEQ_GT(seg_ack, tcp->tcp_urg))
14787 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
14788 
14789 	/* Can we update the RTT estimates? */
14790 	if (tcp->tcp_snd_ts_ok) {
14791 		/* Ignore zero timestamp echo-reply. */
14792 		if (tcpopt.tcp_opt_ts_ecr != 0) {
14793 			tcp_set_rto(tcp, (int32_t)lbolt -
14794 			    (int32_t)tcpopt.tcp_opt_ts_ecr);
14795 		}
14796 
14797 		/* If needed, restart the timer. */
14798 		if (tcp->tcp_set_timer == 1) {
14799 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14800 			tcp->tcp_set_timer = 0;
14801 		}
14802 		/*
14803 		 * Update tcp_csuna in case the other side stops sending
14804 		 * us timestamps.
14805 		 */
14806 		tcp->tcp_csuna = tcp->tcp_snxt;
14807 	} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
14808 		/*
14809 		 * An ACK sequence we haven't seen before, so get the RTT
14810 		 * and update the RTO. But first check if the timestamp is
14811 		 * valid to use.
14812 		 */
14813 		if ((mp1->b_next != NULL) &&
14814 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next)))
14815 			tcp_set_rto(tcp, (int32_t)lbolt -
14816 			    (int32_t)(intptr_t)mp1->b_prev);
14817 		else
14818 			BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14819 
14820 		/* Remeber the last sequence to be ACKed */
14821 		tcp->tcp_csuna = seg_ack;
14822 		if (tcp->tcp_set_timer == 1) {
14823 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14824 			tcp->tcp_set_timer = 0;
14825 		}
14826 	} else {
14827 		BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14828 	}
14829 
14830 	/* Eat acknowledged bytes off the xmit queue. */
14831 	for (;;) {
14832 		mblk_t	*mp2;
14833 		uchar_t	*wptr;
14834 
14835 		wptr = mp1->b_wptr;
14836 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
14837 		bytes_acked -= (int)(wptr - mp1->b_rptr);
14838 		if (bytes_acked < 0) {
14839 			mp1->b_rptr = wptr + bytes_acked;
14840 			/*
14841 			 * Set a new timestamp if all the bytes timed by the
14842 			 * old timestamp have been ack'ed.
14843 			 */
14844 			if (SEQ_GT(seg_ack,
14845 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
14846 				mp1->b_prev = (mblk_t *)(uintptr_t)lbolt;
14847 				mp1->b_next = NULL;
14848 			}
14849 			break;
14850 		}
14851 		mp1->b_next = NULL;
14852 		mp1->b_prev = NULL;
14853 		mp2 = mp1;
14854 		mp1 = mp1->b_cont;
14855 
14856 		/*
14857 		 * This notification is required for some zero-copy
14858 		 * clients to maintain a copy semantic. After the data
14859 		 * is ack'ed, client is safe to modify or reuse the buffer.
14860 		 */
14861 		if (tcp->tcp_snd_zcopy_aware &&
14862 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
14863 			tcp_zcopy_notify(tcp);
14864 		freeb(mp2);
14865 		if (bytes_acked == 0) {
14866 			if (mp1 == NULL) {
14867 				/* Everything is ack'ed, clear the tail. */
14868 				tcp->tcp_xmit_tail = NULL;
14869 				/*
14870 				 * Cancel the timer unless we are still
14871 				 * waiting for an ACK for the FIN packet.
14872 				 */
14873 				if (tcp->tcp_timer_tid != 0 &&
14874 				    tcp->tcp_snxt == tcp->tcp_suna) {
14875 					(void) TCP_TIMER_CANCEL(tcp,
14876 					    tcp->tcp_timer_tid);
14877 					tcp->tcp_timer_tid = 0;
14878 				}
14879 				goto pre_swnd_update;
14880 			}
14881 			if (mp2 != tcp->tcp_xmit_tail)
14882 				break;
14883 			tcp->tcp_xmit_tail = mp1;
14884 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
14885 			    (uintptr_t)INT_MAX);
14886 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
14887 			    mp1->b_rptr);
14888 			break;
14889 		}
14890 		if (mp1 == NULL) {
14891 			/*
14892 			 * More was acked but there is nothing more
14893 			 * outstanding.  This means that the FIN was
14894 			 * just acked or that we're talking to a clown.
14895 			 */
14896 fin_acked:
14897 			ASSERT(tcp->tcp_fin_sent);
14898 			tcp->tcp_xmit_tail = NULL;
14899 			if (tcp->tcp_fin_sent) {
14900 				/* FIN was acked - making progress */
14901 				if (tcp->tcp_ipversion == IPV6_VERSION &&
14902 				    !tcp->tcp_fin_acked)
14903 					tcp->tcp_ip_forward_progress = B_TRUE;
14904 				tcp->tcp_fin_acked = B_TRUE;
14905 				if (tcp->tcp_linger_tid != 0 &&
14906 				    TCP_TIMER_CANCEL(tcp,
14907 				    tcp->tcp_linger_tid) >= 0) {
14908 					tcp_stop_lingering(tcp);
14909 					freemsg(mp);
14910 					mp = NULL;
14911 				}
14912 			} else {
14913 				/*
14914 				 * We should never get here because
14915 				 * we have already checked that the
14916 				 * number of bytes ack'ed should be
14917 				 * smaller than or equal to what we
14918 				 * have sent so far (it is the
14919 				 * acceptability check of the ACK).
14920 				 * We can only get here if the send
14921 				 * queue is corrupted.
14922 				 *
14923 				 * Terminate the connection and
14924 				 * panic the system.  It is better
14925 				 * for us to panic instead of
14926 				 * continuing to avoid other disaster.
14927 				 */
14928 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
14929 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
14930 				panic("Memory corruption "
14931 				    "detected for connection %s.",
14932 				    tcp_display(tcp, NULL,
14933 				    DISP_ADDR_AND_PORT));
14934 				/*NOTREACHED*/
14935 			}
14936 			goto pre_swnd_update;
14937 		}
14938 		ASSERT(mp2 != tcp->tcp_xmit_tail);
14939 	}
14940 	if (tcp->tcp_unsent) {
14941 		flags |= TH_XMIT_NEEDED;
14942 	}
14943 pre_swnd_update:
14944 	tcp->tcp_xmit_head = mp1;
14945 swnd_update:
14946 	/*
14947 	 * The following check is different from most other implementations.
14948 	 * For bi-directional transfer, when segments are dropped, the
14949 	 * "normal" check will not accept a window update in those
14950 	 * retransmitted segemnts.  Failing to do that, TCP may send out
14951 	 * segments which are outside receiver's window.  As TCP accepts
14952 	 * the ack in those retransmitted segments, if the window update in
14953 	 * the same segment is not accepted, TCP will incorrectly calculates
14954 	 * that it can send more segments.  This can create a deadlock
14955 	 * with the receiver if its window becomes zero.
14956 	 */
14957 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
14958 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
14959 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
14960 		/*
14961 		 * The criteria for update is:
14962 		 *
14963 		 * 1. the segment acknowledges some data.  Or
14964 		 * 2. the segment is new, i.e. it has a higher seq num. Or
14965 		 * 3. the segment is not old and the advertised window is
14966 		 * larger than the previous advertised window.
14967 		 */
14968 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
14969 			flags |= TH_XMIT_NEEDED;
14970 		tcp->tcp_swnd = new_swnd;
14971 		if (new_swnd > tcp->tcp_max_swnd)
14972 			tcp->tcp_max_swnd = new_swnd;
14973 		tcp->tcp_swl1 = seg_seq;
14974 		tcp->tcp_swl2 = seg_ack;
14975 	}
14976 est:
14977 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
14978 
14979 		switch (tcp->tcp_state) {
14980 		case TCPS_FIN_WAIT_1:
14981 			if (tcp->tcp_fin_acked) {
14982 				tcp->tcp_state = TCPS_FIN_WAIT_2;
14983 				/*
14984 				 * We implement the non-standard BSD/SunOS
14985 				 * FIN_WAIT_2 flushing algorithm.
14986 				 * If there is no user attached to this
14987 				 * TCP endpoint, then this TCP struct
14988 				 * could hang around forever in FIN_WAIT_2
14989 				 * state if the peer forgets to send us
14990 				 * a FIN.  To prevent this, we wait only
14991 				 * 2*MSL (a convenient time value) for
14992 				 * the FIN to arrive.  If it doesn't show up,
14993 				 * we flush the TCP endpoint.  This algorithm,
14994 				 * though a violation of RFC-793, has worked
14995 				 * for over 10 years in BSD systems.
14996 				 * Note: SunOS 4.x waits 675 seconds before
14997 				 * flushing the FIN_WAIT_2 connection.
14998 				 */
14999 				TCP_TIMER_RESTART(tcp,
15000 				    tcps->tcps_fin_wait_2_flush_interval);
15001 			}
15002 			break;
15003 		case TCPS_FIN_WAIT_2:
15004 			break;	/* Shutdown hook? */
15005 		case TCPS_LAST_ACK:
15006 			freemsg(mp);
15007 			if (tcp->tcp_fin_acked) {
15008 				(void) tcp_clean_death(tcp, 0, 19);
15009 				return;
15010 			}
15011 			goto xmit_check;
15012 		case TCPS_CLOSING:
15013 			if (tcp->tcp_fin_acked) {
15014 				tcp->tcp_state = TCPS_TIME_WAIT;
15015 				/*
15016 				 * Unconditionally clear the exclusive binding
15017 				 * bit so this TIME-WAIT connection won't
15018 				 * interfere with new ones.
15019 				 */
15020 				tcp->tcp_exclbind = 0;
15021 				if (!TCP_IS_DETACHED(tcp)) {
15022 					TCP_TIMER_RESTART(tcp,
15023 					    tcps->tcps_time_wait_interval);
15024 				} else {
15025 					tcp_time_wait_append(tcp);
15026 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
15027 				}
15028 			}
15029 			/*FALLTHRU*/
15030 		case TCPS_CLOSE_WAIT:
15031 			freemsg(mp);
15032 			goto xmit_check;
15033 		default:
15034 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
15035 			break;
15036 		}
15037 	}
15038 	if (flags & TH_FIN) {
15039 		/* Make sure we ack the fin */
15040 		flags |= TH_ACK_NEEDED;
15041 		if (!tcp->tcp_fin_rcvd) {
15042 			tcp->tcp_fin_rcvd = B_TRUE;
15043 			tcp->tcp_rnxt++;
15044 			tcph = tcp->tcp_tcph;
15045 			U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
15046 
15047 			/*
15048 			 * Generate the ordrel_ind at the end unless we
15049 			 * are an eager guy.
15050 			 * In the eager case tcp_rsrv will do this when run
15051 			 * after tcp_accept is done.
15052 			 */
15053 			if (tcp->tcp_listener == NULL &&
15054 			    !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding))
15055 				flags |= TH_ORDREL_NEEDED;
15056 			switch (tcp->tcp_state) {
15057 			case TCPS_SYN_RCVD:
15058 			case TCPS_ESTABLISHED:
15059 				tcp->tcp_state = TCPS_CLOSE_WAIT;
15060 				/* Keepalive? */
15061 				break;
15062 			case TCPS_FIN_WAIT_1:
15063 				if (!tcp->tcp_fin_acked) {
15064 					tcp->tcp_state = TCPS_CLOSING;
15065 					break;
15066 				}
15067 				/* FALLTHRU */
15068 			case TCPS_FIN_WAIT_2:
15069 				tcp->tcp_state = TCPS_TIME_WAIT;
15070 				/*
15071 				 * Unconditionally clear the exclusive binding
15072 				 * bit so this TIME-WAIT connection won't
15073 				 * interfere with new ones.
15074 				 */
15075 				tcp->tcp_exclbind = 0;
15076 				if (!TCP_IS_DETACHED(tcp)) {
15077 					TCP_TIMER_RESTART(tcp,
15078 					    tcps->tcps_time_wait_interval);
15079 				} else {
15080 					tcp_time_wait_append(tcp);
15081 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
15082 				}
15083 				if (seg_len) {
15084 					/*
15085 					 * implies data piggybacked on FIN.
15086 					 * break to handle data.
15087 					 */
15088 					break;
15089 				}
15090 				freemsg(mp);
15091 				goto ack_check;
15092 			}
15093 		}
15094 	}
15095 	if (mp == NULL)
15096 		goto xmit_check;
15097 	if (seg_len == 0) {
15098 		freemsg(mp);
15099 		goto xmit_check;
15100 	}
15101 	if (mp->b_rptr == mp->b_wptr) {
15102 		/*
15103 		 * The header has been consumed, so we remove the
15104 		 * zero-length mblk here.
15105 		 */
15106 		mp1 = mp;
15107 		mp = mp->b_cont;
15108 		freeb(mp1);
15109 	}
15110 	tcph = tcp->tcp_tcph;
15111 	tcp->tcp_rack_cnt++;
15112 	{
15113 		uint32_t cur_max;
15114 
15115 		cur_max = tcp->tcp_rack_cur_max;
15116 		if (tcp->tcp_rack_cnt >= cur_max) {
15117 			/*
15118 			 * We have more unacked data than we should - send
15119 			 * an ACK now.
15120 			 */
15121 			flags |= TH_ACK_NEEDED;
15122 			cur_max++;
15123 			if (cur_max > tcp->tcp_rack_abs_max)
15124 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
15125 			else
15126 				tcp->tcp_rack_cur_max = cur_max;
15127 		} else if (TCP_IS_DETACHED(tcp)) {
15128 			/* We don't have an ACK timer for detached TCP. */
15129 			flags |= TH_ACK_NEEDED;
15130 		} else if (seg_len < mss) {
15131 			/*
15132 			 * If we get a segment that is less than an mss, and we
15133 			 * already have unacknowledged data, and the amount
15134 			 * unacknowledged is not a multiple of mss, then we
15135 			 * better generate an ACK now.  Otherwise, this may be
15136 			 * the tail piece of a transaction, and we would rather
15137 			 * wait for the response.
15138 			 */
15139 			uint32_t udif;
15140 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
15141 			    (uintptr_t)INT_MAX);
15142 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
15143 			if (udif && (udif % mss))
15144 				flags |= TH_ACK_NEEDED;
15145 			else
15146 				flags |= TH_ACK_TIMER_NEEDED;
15147 		} else {
15148 			/* Start delayed ack timer */
15149 			flags |= TH_ACK_TIMER_NEEDED;
15150 		}
15151 	}
15152 	tcp->tcp_rnxt += seg_len;
15153 	U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
15154 
15155 	/* Update SACK list */
15156 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
15157 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
15158 		    &(tcp->tcp_num_sack_blk));
15159 	}
15160 
15161 	if (tcp->tcp_urp_mp) {
15162 		tcp->tcp_urp_mp->b_cont = mp;
15163 		mp = tcp->tcp_urp_mp;
15164 		tcp->tcp_urp_mp = NULL;
15165 		/* Ready for a new signal. */
15166 		tcp->tcp_urp_last_valid = B_FALSE;
15167 #ifdef DEBUG
15168 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15169 		    "tcp_rput: sending exdata_ind %s",
15170 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
15171 #endif /* DEBUG */
15172 	}
15173 
15174 	/*
15175 	 * Check for ancillary data changes compared to last segment.
15176 	 */
15177 	if (tcp->tcp_ipv6_recvancillary != 0) {
15178 		mp = tcp_rput_add_ancillary(tcp, mp, &ipp);
15179 		ASSERT(mp != NULL);
15180 	}
15181 
15182 	if (tcp->tcp_listener || tcp->tcp_hard_binding) {
15183 		/*
15184 		 * Side queue inbound data until the accept happens.
15185 		 * tcp_accept/tcp_rput drains this when the accept happens.
15186 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
15187 		 * T_EXDATA_IND) it is queued on b_next.
15188 		 * XXX Make urgent data use this. Requires:
15189 		 *	Removing tcp_listener check for TH_URG
15190 		 *	Making M_PCPROTO and MARK messages skip the eager case
15191 		 */
15192 
15193 		if (tcp->tcp_kssl_pending) {
15194 			DTRACE_PROBE1(kssl_mblk__ksslinput_pending,
15195 			    mblk_t *, mp);
15196 			tcp_kssl_input(tcp, mp);
15197 		} else {
15198 			tcp_rcv_enqueue(tcp, mp, seg_len);
15199 		}
15200 	} else {
15201 		sodirect_t	*sodp = tcp->tcp_sodirect;
15202 
15203 		/*
15204 		 * If an sodirect connection and an enabled sodirect_t then
15205 		 * sodp will be set to point to the tcp_t/sonode_t shared
15206 		 * sodirect_t and the sodirect_t's lock will be held.
15207 		 */
15208 		if (sodp != NULL) {
15209 			mutex_enter(sodp->sod_lockp);
15210 			if (!(sodp->sod_state & SOD_ENABLED) ||
15211 			    (tcp->tcp_kssl_ctx != NULL &&
15212 			    DB_TYPE(mp) == M_DATA)) {
15213 				mutex_exit(sodp->sod_lockp);
15214 				sodp = NULL;
15215 			}
15216 		}
15217 		if (mp->b_datap->db_type != M_DATA ||
15218 		    (flags & TH_MARKNEXT_NEEDED)) {
15219 			if (sodp != NULL) {
15220 				if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) {
15221 					sodp->sod_uioa.uioa_state &= UIOA_CLR;
15222 					sodp->sod_uioa.uioa_state |= UIOA_FINI;
15223 				}
15224 				if (!SOD_QEMPTY(sodp) &&
15225 				    (sodp->sod_state & SOD_WAKE_NOT)) {
15226 					flags |= tcp_rcv_sod_wakeup(tcp, sodp);
15227 					/* sod_wakeup() did the mutex_exit() */
15228 				} else {
15229 					mutex_exit(sodp->sod_lockp);
15230 				}
15231 			} else if (tcp->tcp_rcv_list != NULL) {
15232 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15233 			}
15234 			ASSERT(tcp->tcp_rcv_list == NULL ||
15235 			    tcp->tcp_fused_sigurg);
15236 
15237 			if (flags & TH_MARKNEXT_NEEDED) {
15238 #ifdef DEBUG
15239 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15240 				    "tcp_rput: sending MSGMARKNEXT %s",
15241 				    tcp_display(tcp, NULL,
15242 				    DISP_PORT_ONLY));
15243 #endif /* DEBUG */
15244 				mp->b_flag |= MSGMARKNEXT;
15245 				flags &= ~TH_MARKNEXT_NEEDED;
15246 			}
15247 
15248 			/* Does this need SSL processing first? */
15249 			if ((tcp->tcp_kssl_ctx != NULL) &&
15250 			    (DB_TYPE(mp) == M_DATA)) {
15251 				DTRACE_PROBE1(kssl_mblk__ksslinput_data1,
15252 				    mblk_t *, mp);
15253 				tcp_kssl_input(tcp, mp);
15254 			} else {
15255 				putnext(tcp->tcp_rq, mp);
15256 				if (!canputnext(tcp->tcp_rq))
15257 					tcp->tcp_rwnd -= seg_len;
15258 			}
15259 		} else if ((tcp->tcp_kssl_ctx != NULL) &&
15260 		    (DB_TYPE(mp) == M_DATA)) {
15261 			/* Do SSL processing first */
15262 			DTRACE_PROBE1(kssl_mblk__ksslinput_data2,
15263 			    mblk_t *, mp);
15264 			tcp_kssl_input(tcp, mp);
15265 		} else if (sodp != NULL) {
15266 			/*
15267 			 * Sodirect so all mblk_t's are queued on the
15268 			 * socket directly, check for wakeup of blocked
15269 			 * reader (if any), and last if flow-controled.
15270 			 */
15271 			flags |= tcp_rcv_sod_enqueue(tcp, sodp, mp, seg_len);
15272 			if ((sodp->sod_state & SOD_WAKE_NEED) ||
15273 			    (flags & (TH_PUSH|TH_FIN))) {
15274 				flags |= tcp_rcv_sod_wakeup(tcp, sodp);
15275 				/* sod_wakeup() did the mutex_exit() */
15276 			} else {
15277 				if (SOD_QFULL(sodp)) {
15278 					/* Q is full, need backenable */
15279 					SOD_QSETBE(sodp);
15280 				}
15281 				mutex_exit(sodp->sod_lockp);
15282 			}
15283 		} else if ((flags & (TH_PUSH|TH_FIN)) ||
15284 		    tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) {
15285 			if (tcp->tcp_rcv_list != NULL) {
15286 				/*
15287 				 * Enqueue the new segment first and then
15288 				 * call tcp_rcv_drain() to send all data
15289 				 * up.  The other way to do this is to
15290 				 * send all queued data up and then call
15291 				 * putnext() to send the new segment up.
15292 				 * This way can remove the else part later
15293 				 * on.
15294 				 *
15295 				 * We don't this to avoid one more call to
15296 				 * canputnext() as tcp_rcv_drain() needs to
15297 				 * call canputnext().
15298 				 */
15299 				tcp_rcv_enqueue(tcp, mp, seg_len);
15300 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15301 			} else {
15302 				putnext(tcp->tcp_rq, mp);
15303 				if (!canputnext(tcp->tcp_rq))
15304 					tcp->tcp_rwnd -= seg_len;
15305 			}
15306 		} else {
15307 			/*
15308 			 * Enqueue all packets when processing an mblk
15309 			 * from the co queue and also enqueue normal packets.
15310 			 */
15311 			tcp_rcv_enqueue(tcp, mp, seg_len);
15312 		}
15313 		/*
15314 		 * Make sure the timer is running if we have data waiting
15315 		 * for a push bit. This provides resiliency against
15316 		 * implementations that do not correctly generate push bits.
15317 		 *
15318 		 * Note, for sodirect if Q isn't empty and there's not a
15319 		 * pending wakeup then we need a timer. Also note that sodp
15320 		 * is assumed to be still valid after exit()ing the sod_lockp
15321 		 * above and while the SOD state can change it can only change
15322 		 * such that the Q is empty now even though data was added
15323 		 * above.
15324 		 */
15325 		if (((sodp != NULL && !SOD_QEMPTY(sodp) &&
15326 		    (sodp->sod_state & SOD_WAKE_NOT)) ||
15327 		    (sodp == NULL && tcp->tcp_rcv_list != NULL)) &&
15328 		    tcp->tcp_push_tid == 0) {
15329 			/*
15330 			 * The connection may be closed at this point, so don't
15331 			 * do anything for a detached tcp.
15332 			 */
15333 			if (!TCP_IS_DETACHED(tcp))
15334 				tcp->tcp_push_tid = TCP_TIMER(tcp,
15335 				    tcp_push_timer,
15336 				    MSEC_TO_TICK(
15337 				    tcps->tcps_push_timer_interval));
15338 		}
15339 	}
15340 
15341 xmit_check:
15342 	/* Is there anything left to do? */
15343 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15344 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
15345 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
15346 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
15347 		goto done;
15348 
15349 	/* Any transmit work to do and a non-zero window? */
15350 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
15351 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
15352 		if (flags & TH_REXMIT_NEEDED) {
15353 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
15354 
15355 			BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans);
15356 			if (snd_size > mss)
15357 				snd_size = mss;
15358 			if (snd_size > tcp->tcp_swnd)
15359 				snd_size = tcp->tcp_swnd;
15360 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
15361 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
15362 			    B_TRUE);
15363 
15364 			if (mp1 != NULL) {
15365 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
15366 				tcp->tcp_csuna = tcp->tcp_snxt;
15367 				BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
15368 				UPDATE_MIB(&tcps->tcps_mib,
15369 				    tcpRetransBytes, snd_size);
15370 				tcp_send_data(tcp, tcp->tcp_wq, mp1);
15371 			}
15372 		}
15373 		if (flags & TH_NEED_SACK_REXMIT) {
15374 			tcp_sack_rxmit(tcp, &flags);
15375 		}
15376 		/*
15377 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
15378 		 * out new segment.  Note that tcp_rexmit should not be
15379 		 * set, otherwise TH_LIMIT_XMIT should not be set.
15380 		 */
15381 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
15382 			if (!tcp->tcp_rexmit) {
15383 				tcp_wput_data(tcp, NULL, B_FALSE);
15384 			} else {
15385 				tcp_ss_rexmit(tcp);
15386 			}
15387 		}
15388 		/*
15389 		 * Adjust tcp_cwnd back to normal value after sending
15390 		 * new data segments.
15391 		 */
15392 		if (flags & TH_LIMIT_XMIT) {
15393 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
15394 			/*
15395 			 * This will restart the timer.  Restarting the
15396 			 * timer is used to avoid a timeout before the
15397 			 * limited transmitted segment's ACK gets back.
15398 			 */
15399 			if (tcp->tcp_xmit_head != NULL)
15400 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
15401 		}
15402 
15403 		/* Anything more to do? */
15404 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
15405 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
15406 			goto done;
15407 	}
15408 ack_check:
15409 	if (flags & TH_SEND_URP_MARK) {
15410 		ASSERT(tcp->tcp_urp_mark_mp);
15411 		/*
15412 		 * Send up any queued data and then send the mark message
15413 		 */
15414 		sodirect_t *sodp;
15415 
15416 		SOD_PTR_ENTER(tcp, sodp);
15417 
15418 		mp1 = tcp->tcp_urp_mark_mp;
15419 		tcp->tcp_urp_mark_mp = NULL;
15420 		if (sodp != NULL) {
15421 			if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) {
15422 				sodp->sod_uioa.uioa_state &= UIOA_CLR;
15423 				sodp->sod_uioa.uioa_state |= UIOA_FINI;
15424 			}
15425 			ASSERT(tcp->tcp_rcv_list == NULL);
15426 
15427 			flags |= tcp_rcv_sod_wakeup(tcp, sodp);
15428 			/* sod_wakeup() does the mutex_exit() */
15429 		} else if (tcp->tcp_rcv_list != NULL) {
15430 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15431 
15432 			ASSERT(tcp->tcp_rcv_list == NULL ||
15433 			    tcp->tcp_fused_sigurg);
15434 
15435 		}
15436 		putnext(tcp->tcp_rq, mp1);
15437 #ifdef DEBUG
15438 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15439 		    "tcp_rput: sending zero-length %s %s",
15440 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
15441 		    "MSGNOTMARKNEXT"),
15442 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
15443 #endif /* DEBUG */
15444 		flags &= ~TH_SEND_URP_MARK;
15445 	}
15446 	if (flags & TH_ACK_NEEDED) {
15447 		/*
15448 		 * Time to send an ack for some reason.
15449 		 */
15450 		mp1 = tcp_ack_mp(tcp);
15451 
15452 		if (mp1 != NULL) {
15453 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
15454 			BUMP_LOCAL(tcp->tcp_obsegs);
15455 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
15456 		}
15457 		if (tcp->tcp_ack_tid != 0) {
15458 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
15459 			tcp->tcp_ack_tid = 0;
15460 		}
15461 	}
15462 	if (flags & TH_ACK_TIMER_NEEDED) {
15463 		/*
15464 		 * Arrange for deferred ACK or push wait timeout.
15465 		 * Start timer if it is not already running.
15466 		 */
15467 		if (tcp->tcp_ack_tid == 0) {
15468 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
15469 			    MSEC_TO_TICK(tcp->tcp_localnet ?
15470 			    (clock_t)tcps->tcps_local_dack_interval :
15471 			    (clock_t)tcps->tcps_deferred_ack_interval));
15472 		}
15473 	}
15474 	if (flags & TH_ORDREL_NEEDED) {
15475 		/*
15476 		 * Send up the ordrel_ind unless we are an eager guy.
15477 		 * In the eager case tcp_rsrv will do this when run
15478 		 * after tcp_accept is done.
15479 		 */
15480 		sodirect_t *sodp;
15481 
15482 		ASSERT(tcp->tcp_listener == NULL);
15483 
15484 		SOD_PTR_ENTER(tcp, sodp);
15485 		if (sodp != NULL) {
15486 			if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) {
15487 				sodp->sod_uioa.uioa_state &= UIOA_CLR;
15488 				sodp->sod_uioa.uioa_state |= UIOA_FINI;
15489 			}
15490 			/* No more sodirect */
15491 			tcp->tcp_sodirect = NULL;
15492 			if (!SOD_QEMPTY(sodp)) {
15493 				/* Mblk(s) to process, notify */
15494 				flags |= tcp_rcv_sod_wakeup(tcp, sodp);
15495 				/* sod_wakeup() does the mutex_exit() */
15496 			} else {
15497 				/* Nothing to process */
15498 				mutex_exit(sodp->sod_lockp);
15499 			}
15500 		} else if (tcp->tcp_rcv_list != NULL) {
15501 			/*
15502 			 * Push any mblk(s) enqueued from co processing.
15503 			 */
15504 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15505 
15506 			ASSERT(tcp->tcp_rcv_list == NULL ||
15507 			    tcp->tcp_fused_sigurg);
15508 		}
15509 
15510 		mp1 = tcp->tcp_ordrel_mp;
15511 		tcp->tcp_ordrel_mp = NULL;
15512 		tcp->tcp_ordrel_done = B_TRUE;
15513 		putnext(tcp->tcp_rq, mp1);
15514 	}
15515 done:
15516 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15517 }
15518 
15519 /*
15520  * This function does PAWS protection check. Returns B_TRUE if the
15521  * segment passes the PAWS test, else returns B_FALSE.
15522  */
15523 boolean_t
15524 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp)
15525 {
15526 	uint8_t	flags;
15527 	int	options;
15528 	uint8_t *up;
15529 
15530 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
15531 	/*
15532 	 * If timestamp option is aligned nicely, get values inline,
15533 	 * otherwise call general routine to parse.  Only do that
15534 	 * if timestamp is the only option.
15535 	 */
15536 	if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH +
15537 	    TCPOPT_REAL_TS_LEN &&
15538 	    OK_32PTR((up = ((uint8_t *)tcph) +
15539 	    TCP_MIN_HEADER_LENGTH)) &&
15540 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
15541 		tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
15542 		tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
15543 
15544 		options = TCP_OPT_TSTAMP_PRESENT;
15545 	} else {
15546 		if (tcp->tcp_snd_sack_ok) {
15547 			tcpoptp->tcp = tcp;
15548 		} else {
15549 			tcpoptp->tcp = NULL;
15550 		}
15551 		options = tcp_parse_options(tcph, tcpoptp);
15552 	}
15553 
15554 	if (options & TCP_OPT_TSTAMP_PRESENT) {
15555 		/*
15556 		 * Do PAWS per RFC 1323 section 4.2.  Accept RST
15557 		 * regardless of the timestamp, page 18 RFC 1323.bis.
15558 		 */
15559 		if ((flags & TH_RST) == 0 &&
15560 		    TSTMP_LT(tcpoptp->tcp_opt_ts_val,
15561 		    tcp->tcp_ts_recent)) {
15562 			if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt +
15563 			    PAWS_TIMEOUT)) {
15564 				/* This segment is not acceptable. */
15565 				return (B_FALSE);
15566 			} else {
15567 				/*
15568 				 * Connection has been idle for
15569 				 * too long.  Reset the timestamp
15570 				 * and assume the segment is valid.
15571 				 */
15572 				tcp->tcp_ts_recent =
15573 				    tcpoptp->tcp_opt_ts_val;
15574 			}
15575 		}
15576 	} else {
15577 		/*
15578 		 * If we don't get a timestamp on every packet, we
15579 		 * figure we can't really trust 'em, so we stop sending
15580 		 * and parsing them.
15581 		 */
15582 		tcp->tcp_snd_ts_ok = B_FALSE;
15583 
15584 		tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15585 		tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15586 		tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4);
15587 		/*
15588 		 * Adjust the tcp_mss accordingly. We also need to
15589 		 * adjust tcp_cwnd here in accordance with the new mss.
15590 		 * But we avoid doing a slow start here so as to not
15591 		 * to lose on the transfer rate built up so far.
15592 		 */
15593 		tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE);
15594 		if (tcp->tcp_snd_sack_ok) {
15595 			ASSERT(tcp->tcp_sack_info != NULL);
15596 			tcp->tcp_max_sack_blk = 4;
15597 		}
15598 	}
15599 	return (B_TRUE);
15600 }
15601 
15602 /*
15603  * Attach ancillary data to a received TCP segments for the
15604  * ancillary pieces requested by the application that are
15605  * different than they were in the previous data segment.
15606  *
15607  * Save the "current" values once memory allocation is ok so that
15608  * when memory allocation fails we can just wait for the next data segment.
15609  */
15610 static mblk_t *
15611 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp)
15612 {
15613 	struct T_optdata_ind *todi;
15614 	int optlen;
15615 	uchar_t *optptr;
15616 	struct T_opthdr *toh;
15617 	uint_t addflag;	/* Which pieces to add */
15618 	mblk_t *mp1;
15619 
15620 	optlen = 0;
15621 	addflag = 0;
15622 	/* If app asked for pktinfo and the index has changed ... */
15623 	if ((ipp->ipp_fields & IPPF_IFINDEX) &&
15624 	    ipp->ipp_ifindex != tcp->tcp_recvifindex &&
15625 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) {
15626 		optlen += sizeof (struct T_opthdr) +
15627 		    sizeof (struct in6_pktinfo);
15628 		addflag |= TCP_IPV6_RECVPKTINFO;
15629 	}
15630 	/* If app asked for hoplimit and it has changed ... */
15631 	if ((ipp->ipp_fields & IPPF_HOPLIMIT) &&
15632 	    ipp->ipp_hoplimit != tcp->tcp_recvhops &&
15633 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) {
15634 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15635 		addflag |= TCP_IPV6_RECVHOPLIMIT;
15636 	}
15637 	/* If app asked for tclass and it has changed ... */
15638 	if ((ipp->ipp_fields & IPPF_TCLASS) &&
15639 	    ipp->ipp_tclass != tcp->tcp_recvtclass &&
15640 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) {
15641 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15642 		addflag |= TCP_IPV6_RECVTCLASS;
15643 	}
15644 	/*
15645 	 * If app asked for hopbyhop headers and it has changed ...
15646 	 * For security labels, note that (1) security labels can't change on
15647 	 * a connected socket at all, (2) we're connected to at most one peer,
15648 	 * (3) if anything changes, then it must be some other extra option.
15649 	 */
15650 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) &&
15651 	    ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
15652 	    (ipp->ipp_fields & IPPF_HOPOPTS),
15653 	    ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
15654 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen -
15655 		    tcp->tcp_label_len;
15656 		addflag |= TCP_IPV6_RECVHOPOPTS;
15657 		if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
15658 		    &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
15659 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
15660 			return (mp);
15661 	}
15662 	/* If app asked for dst headers before routing headers ... */
15663 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) &&
15664 	    ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen,
15665 	    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15666 	    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) {
15667 		optlen += sizeof (struct T_opthdr) +
15668 		    ipp->ipp_rtdstoptslen;
15669 		addflag |= TCP_IPV6_RECVRTDSTOPTS;
15670 		if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts,
15671 		    &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS),
15672 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen))
15673 			return (mp);
15674 	}
15675 	/* If app asked for routing headers and it has changed ... */
15676 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) &&
15677 	    ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
15678 	    (ipp->ipp_fields & IPPF_RTHDR),
15679 	    ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
15680 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
15681 		addflag |= TCP_IPV6_RECVRTHDR;
15682 		if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
15683 		    &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
15684 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
15685 			return (mp);
15686 	}
15687 	/* If app asked for dest headers and it has changed ... */
15688 	if ((tcp->tcp_ipv6_recvancillary &
15689 	    (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) &&
15690 	    ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
15691 	    (ipp->ipp_fields & IPPF_DSTOPTS),
15692 	    ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
15693 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
15694 		addflag |= TCP_IPV6_RECVDSTOPTS;
15695 		if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
15696 		    &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
15697 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
15698 			return (mp);
15699 	}
15700 
15701 	if (optlen == 0) {
15702 		/* Nothing to add */
15703 		return (mp);
15704 	}
15705 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
15706 	if (mp1 == NULL) {
15707 		/*
15708 		 * Defer sending ancillary data until the next TCP segment
15709 		 * arrives.
15710 		 */
15711 		return (mp);
15712 	}
15713 	mp1->b_cont = mp;
15714 	mp = mp1;
15715 	mp->b_wptr += sizeof (*todi) + optlen;
15716 	mp->b_datap->db_type = M_PROTO;
15717 	todi = (struct T_optdata_ind *)mp->b_rptr;
15718 	todi->PRIM_type = T_OPTDATA_IND;
15719 	todi->DATA_flag = 1;	/* MORE data */
15720 	todi->OPT_length = optlen;
15721 	todi->OPT_offset = sizeof (*todi);
15722 	optptr = (uchar_t *)&todi[1];
15723 	/*
15724 	 * If app asked for pktinfo and the index has changed ...
15725 	 * Note that the local address never changes for the connection.
15726 	 */
15727 	if (addflag & TCP_IPV6_RECVPKTINFO) {
15728 		struct in6_pktinfo *pkti;
15729 
15730 		toh = (struct T_opthdr *)optptr;
15731 		toh->level = IPPROTO_IPV6;
15732 		toh->name = IPV6_PKTINFO;
15733 		toh->len = sizeof (*toh) + sizeof (*pkti);
15734 		toh->status = 0;
15735 		optptr += sizeof (*toh);
15736 		pkti = (struct in6_pktinfo *)optptr;
15737 		if (tcp->tcp_ipversion == IPV6_VERSION)
15738 			pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src;
15739 		else
15740 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
15741 			    &pkti->ipi6_addr);
15742 		pkti->ipi6_ifindex = ipp->ipp_ifindex;
15743 		optptr += sizeof (*pkti);
15744 		ASSERT(OK_32PTR(optptr));
15745 		/* Save as "last" value */
15746 		tcp->tcp_recvifindex = ipp->ipp_ifindex;
15747 	}
15748 	/* If app asked for hoplimit and it has changed ... */
15749 	if (addflag & TCP_IPV6_RECVHOPLIMIT) {
15750 		toh = (struct T_opthdr *)optptr;
15751 		toh->level = IPPROTO_IPV6;
15752 		toh->name = IPV6_HOPLIMIT;
15753 		toh->len = sizeof (*toh) + sizeof (uint_t);
15754 		toh->status = 0;
15755 		optptr += sizeof (*toh);
15756 		*(uint_t *)optptr = ipp->ipp_hoplimit;
15757 		optptr += sizeof (uint_t);
15758 		ASSERT(OK_32PTR(optptr));
15759 		/* Save as "last" value */
15760 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
15761 	}
15762 	/* If app asked for tclass and it has changed ... */
15763 	if (addflag & TCP_IPV6_RECVTCLASS) {
15764 		toh = (struct T_opthdr *)optptr;
15765 		toh->level = IPPROTO_IPV6;
15766 		toh->name = IPV6_TCLASS;
15767 		toh->len = sizeof (*toh) + sizeof (uint_t);
15768 		toh->status = 0;
15769 		optptr += sizeof (*toh);
15770 		*(uint_t *)optptr = ipp->ipp_tclass;
15771 		optptr += sizeof (uint_t);
15772 		ASSERT(OK_32PTR(optptr));
15773 		/* Save as "last" value */
15774 		tcp->tcp_recvtclass = ipp->ipp_tclass;
15775 	}
15776 	if (addflag & TCP_IPV6_RECVHOPOPTS) {
15777 		toh = (struct T_opthdr *)optptr;
15778 		toh->level = IPPROTO_IPV6;
15779 		toh->name = IPV6_HOPOPTS;
15780 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen -
15781 		    tcp->tcp_label_len;
15782 		toh->status = 0;
15783 		optptr += sizeof (*toh);
15784 		bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr,
15785 		    ipp->ipp_hopoptslen - tcp->tcp_label_len);
15786 		optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len;
15787 		ASSERT(OK_32PTR(optptr));
15788 		/* Save as last value */
15789 		ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
15790 		    (ipp->ipp_fields & IPPF_HOPOPTS),
15791 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
15792 	}
15793 	if (addflag & TCP_IPV6_RECVRTDSTOPTS) {
15794 		toh = (struct T_opthdr *)optptr;
15795 		toh->level = IPPROTO_IPV6;
15796 		toh->name = IPV6_RTHDRDSTOPTS;
15797 		toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen;
15798 		toh->status = 0;
15799 		optptr += sizeof (*toh);
15800 		bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen);
15801 		optptr += ipp->ipp_rtdstoptslen;
15802 		ASSERT(OK_32PTR(optptr));
15803 		/* Save as last value */
15804 		ip_savebuf((void **)&tcp->tcp_rtdstopts,
15805 		    &tcp->tcp_rtdstoptslen,
15806 		    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15807 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen);
15808 	}
15809 	if (addflag & TCP_IPV6_RECVRTHDR) {
15810 		toh = (struct T_opthdr *)optptr;
15811 		toh->level = IPPROTO_IPV6;
15812 		toh->name = IPV6_RTHDR;
15813 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
15814 		toh->status = 0;
15815 		optptr += sizeof (*toh);
15816 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
15817 		optptr += ipp->ipp_rthdrlen;
15818 		ASSERT(OK_32PTR(optptr));
15819 		/* Save as last value */
15820 		ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
15821 		    (ipp->ipp_fields & IPPF_RTHDR),
15822 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
15823 	}
15824 	if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) {
15825 		toh = (struct T_opthdr *)optptr;
15826 		toh->level = IPPROTO_IPV6;
15827 		toh->name = IPV6_DSTOPTS;
15828 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
15829 		toh->status = 0;
15830 		optptr += sizeof (*toh);
15831 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
15832 		optptr += ipp->ipp_dstoptslen;
15833 		ASSERT(OK_32PTR(optptr));
15834 		/* Save as last value */
15835 		ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
15836 		    (ipp->ipp_fields & IPPF_DSTOPTS),
15837 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
15838 	}
15839 	ASSERT(optptr == mp->b_wptr);
15840 	return (mp);
15841 }
15842 
15843 
15844 /*
15845  * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK
15846  * or a "bad" IRE detected by tcp_adapt_ire.
15847  * We can't tell if the failure was due to the laddr or the faddr
15848  * thus we clear out all addresses and ports.
15849  */
15850 static void
15851 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error)
15852 {
15853 	queue_t	*q = tcp->tcp_rq;
15854 	tcph_t	*tcph;
15855 	struct T_error_ack *tea;
15856 	conn_t	*connp = tcp->tcp_connp;
15857 
15858 
15859 	ASSERT(mp->b_datap->db_type == M_PCPROTO);
15860 
15861 	if (mp->b_cont) {
15862 		freemsg(mp->b_cont);
15863 		mp->b_cont = NULL;
15864 	}
15865 	tea = (struct T_error_ack *)mp->b_rptr;
15866 	switch (tea->PRIM_type) {
15867 	case T_BIND_ACK:
15868 		/*
15869 		 * Need to unbind with classifier since we were just told that
15870 		 * our bind succeeded.
15871 		 */
15872 		tcp->tcp_hard_bound = B_FALSE;
15873 		tcp->tcp_hard_binding = B_FALSE;
15874 
15875 		ipcl_hash_remove(connp);
15876 		/* Reuse the mblk if possible */
15877 		ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >=
15878 		    sizeof (*tea));
15879 		mp->b_rptr = mp->b_datap->db_base;
15880 		mp->b_wptr = mp->b_rptr + sizeof (*tea);
15881 		tea = (struct T_error_ack *)mp->b_rptr;
15882 		tea->PRIM_type = T_ERROR_ACK;
15883 		tea->TLI_error = TSYSERR;
15884 		tea->UNIX_error = error;
15885 		if (tcp->tcp_state >= TCPS_SYN_SENT) {
15886 			tea->ERROR_prim = T_CONN_REQ;
15887 		} else {
15888 			tea->ERROR_prim = O_T_BIND_REQ;
15889 		}
15890 		break;
15891 
15892 	case T_ERROR_ACK:
15893 		if (tcp->tcp_state >= TCPS_SYN_SENT)
15894 			tea->ERROR_prim = T_CONN_REQ;
15895 		break;
15896 	default:
15897 		panic("tcp_bind_failed: unexpected TPI type");
15898 		/*NOTREACHED*/
15899 	}
15900 
15901 	tcp->tcp_state = TCPS_IDLE;
15902 	if (tcp->tcp_ipversion == IPV4_VERSION)
15903 		tcp->tcp_ipha->ipha_src = 0;
15904 	else
15905 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
15906 	/*
15907 	 * Copy of the src addr. in tcp_t is needed since
15908 	 * the lookup funcs. can only look at tcp_t
15909 	 */
15910 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
15911 
15912 	tcph = tcp->tcp_tcph;
15913 	tcph->th_lport[0] = 0;
15914 	tcph->th_lport[1] = 0;
15915 	tcp_bind_hash_remove(tcp);
15916 	bzero(&connp->u_port, sizeof (connp->u_port));
15917 	/* blow away saved option results if any */
15918 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
15919 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
15920 
15921 	conn_delete_ire(tcp->tcp_connp, NULL);
15922 	putnext(q, mp);
15923 }
15924 
15925 /*
15926  * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA
15927  * messages.
15928  */
15929 void
15930 tcp_rput_other(tcp_t *tcp, mblk_t *mp)
15931 {
15932 	mblk_t	*mp1;
15933 	uchar_t	*rptr = mp->b_rptr;
15934 	queue_t	*q = tcp->tcp_rq;
15935 	struct T_error_ack *tea;
15936 	uint32_t mss;
15937 	mblk_t *syn_mp;
15938 	mblk_t *mdti;
15939 	mblk_t *lsoi;
15940 	int	retval;
15941 	mblk_t *ire_mp;
15942 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15943 
15944 	switch (mp->b_datap->db_type) {
15945 	case M_PROTO:
15946 	case M_PCPROTO:
15947 		ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
15948 		if ((mp->b_wptr - rptr) < sizeof (t_scalar_t))
15949 			break;
15950 		tea = (struct T_error_ack *)rptr;
15951 		switch (tea->PRIM_type) {
15952 		case T_BIND_ACK:
15953 			/*
15954 			 * Adapt Multidata information, if any.  The
15955 			 * following tcp_mdt_update routine will free
15956 			 * the message.
15957 			 */
15958 			if ((mdti = tcp_mdt_info_mp(mp)) != NULL) {
15959 				tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti->
15960 				    b_rptr)->mdt_capab, B_TRUE);
15961 				freemsg(mdti);
15962 			}
15963 
15964 			/*
15965 			 * Check to update LSO information with tcp, and
15966 			 * tcp_lso_update routine will free the message.
15967 			 */
15968 			if ((lsoi = tcp_lso_info_mp(mp)) != NULL) {
15969 				tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi->
15970 				    b_rptr)->lso_capab);
15971 				freemsg(lsoi);
15972 			}
15973 
15974 			/* Get the IRE, if we had requested for it */
15975 			ire_mp = tcp_ire_mp(mp);
15976 
15977 			if (tcp->tcp_hard_binding) {
15978 				tcp->tcp_hard_binding = B_FALSE;
15979 				tcp->tcp_hard_bound = B_TRUE;
15980 				CL_INET_CONNECT(tcp);
15981 			} else {
15982 				if (ire_mp != NULL)
15983 					freeb(ire_mp);
15984 				goto after_syn_sent;
15985 			}
15986 
15987 			retval = tcp_adapt_ire(tcp, ire_mp);
15988 			if (ire_mp != NULL)
15989 				freeb(ire_mp);
15990 			if (retval == 0) {
15991 				tcp_bind_failed(tcp, mp,
15992 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15993 				    ENETUNREACH : EADDRNOTAVAIL));
15994 				return;
15995 			}
15996 			/*
15997 			 * Don't let an endpoint connect to itself.
15998 			 * Also checked in tcp_connect() but that
15999 			 * check can't handle the case when the
16000 			 * local IP address is INADDR_ANY.
16001 			 */
16002 			if (tcp->tcp_ipversion == IPV4_VERSION) {
16003 				if ((tcp->tcp_ipha->ipha_dst ==
16004 				    tcp->tcp_ipha->ipha_src) &&
16005 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
16006 				    tcp->tcp_tcph->th_fport))) {
16007 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
16008 					return;
16009 				}
16010 			} else {
16011 				if (IN6_ARE_ADDR_EQUAL(
16012 				    &tcp->tcp_ip6h->ip6_dst,
16013 				    &tcp->tcp_ip6h->ip6_src) &&
16014 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
16015 				    tcp->tcp_tcph->th_fport))) {
16016 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
16017 					return;
16018 				}
16019 			}
16020 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT);
16021 			/*
16022 			 * This should not be possible!  Just for
16023 			 * defensive coding...
16024 			 */
16025 			if (tcp->tcp_state != TCPS_SYN_SENT)
16026 				goto after_syn_sent;
16027 
16028 			if (is_system_labeled() &&
16029 			    !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) {
16030 				tcp_bind_failed(tcp, mp, EHOSTUNREACH);
16031 				return;
16032 			}
16033 
16034 			ASSERT(q == tcp->tcp_rq);
16035 			/*
16036 			 * tcp_adapt_ire() does not adjust
16037 			 * for TCP/IP header length.
16038 			 */
16039 			mss = tcp->tcp_mss - tcp->tcp_hdr_len;
16040 
16041 			/*
16042 			 * Just make sure our rwnd is at
16043 			 * least tcp_recv_hiwat_mss * MSS
16044 			 * large, and round up to the nearest
16045 			 * MSS.
16046 			 *
16047 			 * We do the round up here because
16048 			 * we need to get the interface
16049 			 * MTU first before we can do the
16050 			 * round up.
16051 			 */
16052 			tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
16053 			    tcps->tcps_recv_hiwat_minmss * mss);
16054 			q->q_hiwat = tcp->tcp_rwnd;
16055 			tcp_set_ws_value(tcp);
16056 			U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws),
16057 			    tcp->tcp_tcph->th_win);
16058 			if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always)
16059 				tcp->tcp_snd_ws_ok = B_TRUE;
16060 
16061 			/*
16062 			 * Set tcp_snd_ts_ok to true
16063 			 * so that tcp_xmit_mp will
16064 			 * include the timestamp
16065 			 * option in the SYN segment.
16066 			 */
16067 			if (tcps->tcps_tstamp_always ||
16068 			    (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) {
16069 				tcp->tcp_snd_ts_ok = B_TRUE;
16070 			}
16071 
16072 			/*
16073 			 * tcp_snd_sack_ok can be set in
16074 			 * tcp_adapt_ire() if the sack metric
16075 			 * is set.  So check it here also.
16076 			 */
16077 			if (tcps->tcps_sack_permitted == 2 ||
16078 			    tcp->tcp_snd_sack_ok) {
16079 				if (tcp->tcp_sack_info == NULL) {
16080 					tcp->tcp_sack_info =
16081 					    kmem_cache_alloc(
16082 					    tcp_sack_info_cache,
16083 					    KM_SLEEP);
16084 				}
16085 				tcp->tcp_snd_sack_ok = B_TRUE;
16086 			}
16087 
16088 			/*
16089 			 * Should we use ECN?  Note that the current
16090 			 * default value (SunOS 5.9) of tcp_ecn_permitted
16091 			 * is 1.  The reason for doing this is that there
16092 			 * are equipments out there that will drop ECN
16093 			 * enabled IP packets.  Setting it to 1 avoids
16094 			 * compatibility problems.
16095 			 */
16096 			if (tcps->tcps_ecn_permitted == 2)
16097 				tcp->tcp_ecn_ok = B_TRUE;
16098 
16099 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
16100 			syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
16101 			    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
16102 			if (syn_mp) {
16103 				cred_t *cr;
16104 				pid_t pid;
16105 
16106 				/*
16107 				 * Obtain the credential from the
16108 				 * thread calling connect(); the credential
16109 				 * lives on in the second mblk which
16110 				 * originated from T_CONN_REQ and is echoed
16111 				 * with the T_BIND_ACK from ip.  If none
16112 				 * can be found, default to the creator
16113 				 * of the socket.
16114 				 */
16115 				if (mp->b_cont == NULL ||
16116 				    (cr = DB_CRED(mp->b_cont)) == NULL) {
16117 					cr = tcp->tcp_cred;
16118 					pid = tcp->tcp_cpid;
16119 				} else {
16120 					pid = DB_CPID(mp->b_cont);
16121 				}
16122 				mblk_setcred(syn_mp, cr);
16123 				DB_CPID(syn_mp) = pid;
16124 				tcp_send_data(tcp, tcp->tcp_wq, syn_mp);
16125 			}
16126 		after_syn_sent:
16127 			/*
16128 			 * A trailer mblk indicates a waiting client upstream.
16129 			 * We complete here the processing begun in
16130 			 * either tcp_bind() or tcp_connect() by passing
16131 			 * upstream the reply message they supplied.
16132 			 */
16133 			mp1 = mp;
16134 			mp = mp->b_cont;
16135 			freeb(mp1);
16136 			if (mp)
16137 				break;
16138 			return;
16139 		case T_ERROR_ACK:
16140 			if (tcp->tcp_debug) {
16141 				(void) strlog(TCP_MOD_ID, 0, 1,
16142 				    SL_TRACE|SL_ERROR,
16143 				    "tcp_rput_other: case T_ERROR_ACK, "
16144 				    "ERROR_prim == %d",
16145 				    tea->ERROR_prim);
16146 			}
16147 			switch (tea->ERROR_prim) {
16148 			case O_T_BIND_REQ:
16149 			case T_BIND_REQ:
16150 				tcp_bind_failed(tcp, mp,
16151 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
16152 				    ENETUNREACH : EADDRNOTAVAIL));
16153 				return;
16154 			case T_UNBIND_REQ:
16155 				tcp->tcp_hard_binding = B_FALSE;
16156 				tcp->tcp_hard_bound = B_FALSE;
16157 				if (mp->b_cont) {
16158 					freemsg(mp->b_cont);
16159 					mp->b_cont = NULL;
16160 				}
16161 				if (tcp->tcp_unbind_pending)
16162 					tcp->tcp_unbind_pending = 0;
16163 				else {
16164 					/* From tcp_ip_unbind() - free */
16165 					freemsg(mp);
16166 					return;
16167 				}
16168 				break;
16169 			case T_SVR4_OPTMGMT_REQ:
16170 				if (tcp->tcp_drop_opt_ack_cnt > 0) {
16171 					/* T_OPTMGMT_REQ generated by TCP */
16172 					printf("T_SVR4_OPTMGMT_REQ failed "
16173 					    "%d/%d - dropped (cnt %d)\n",
16174 					    tea->TLI_error, tea->UNIX_error,
16175 					    tcp->tcp_drop_opt_ack_cnt);
16176 					freemsg(mp);
16177 					tcp->tcp_drop_opt_ack_cnt--;
16178 					return;
16179 				}
16180 				break;
16181 			}
16182 			if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ &&
16183 			    tcp->tcp_drop_opt_ack_cnt > 0) {
16184 				printf("T_SVR4_OPTMGMT_REQ failed %d/%d "
16185 				    "- dropped (cnt %d)\n",
16186 				    tea->TLI_error, tea->UNIX_error,
16187 				    tcp->tcp_drop_opt_ack_cnt);
16188 				freemsg(mp);
16189 				tcp->tcp_drop_opt_ack_cnt--;
16190 				return;
16191 			}
16192 			break;
16193 		case T_OPTMGMT_ACK:
16194 			if (tcp->tcp_drop_opt_ack_cnt > 0) {
16195 				/* T_OPTMGMT_REQ generated by TCP */
16196 				freemsg(mp);
16197 				tcp->tcp_drop_opt_ack_cnt--;
16198 				return;
16199 			}
16200 			break;
16201 		default:
16202 			break;
16203 		}
16204 		break;
16205 	case M_FLUSH:
16206 		if (*rptr & FLUSHR)
16207 			flushq(q, FLUSHDATA);
16208 		break;
16209 	default:
16210 		/* M_CTL will be directly sent to tcp_icmp_error() */
16211 		ASSERT(DB_TYPE(mp) != M_CTL);
16212 		break;
16213 	}
16214 	/*
16215 	 * Make sure we set this bit before sending the ACK for
16216 	 * bind. Otherwise accept could possibly run and free
16217 	 * this tcp struct.
16218 	 */
16219 	putnext(q, mp);
16220 }
16221 
16222 /* ARGSUSED */
16223 static void
16224 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2)
16225 {
16226 	conn_t	*connp = (conn_t *)arg;
16227 	tcp_t	*tcp = connp->conn_tcp;
16228 	queue_t	*q = tcp->tcp_rq;
16229 	uint_t	thwin;
16230 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16231 	sodirect_t	*sodp;
16232 	boolean_t	fc;
16233 
16234 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
16235 	tcp->tcp_rsrv_mp = mp;
16236 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
16237 
16238 	TCP_STAT(tcps, tcp_rsrv_calls);
16239 
16240 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
16241 		return;
16242 	}
16243 
16244 	if (tcp->tcp_fused) {
16245 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
16246 
16247 		ASSERT(tcp->tcp_fused);
16248 		ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused);
16249 		ASSERT(peer_tcp->tcp_loopback_peer == tcp);
16250 		ASSERT(!TCP_IS_DETACHED(tcp));
16251 		ASSERT(tcp->tcp_connp->conn_sqp ==
16252 		    peer_tcp->tcp_connp->conn_sqp);
16253 
16254 		/*
16255 		 * Normally we would not get backenabled in synchronous
16256 		 * streams mode, but in case this happens, we need to plug
16257 		 * synchronous streams during our drain to prevent a race
16258 		 * with tcp_fuse_rrw() or tcp_fuse_rinfop().
16259 		 */
16260 		TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
16261 		if (tcp->tcp_rcv_list != NULL)
16262 			(void) tcp_rcv_drain(tcp->tcp_rq, tcp);
16263 
16264 		if (peer_tcp > tcp) {
16265 			mutex_enter(&peer_tcp->tcp_non_sq_lock);
16266 			mutex_enter(&tcp->tcp_non_sq_lock);
16267 		} else {
16268 			mutex_enter(&tcp->tcp_non_sq_lock);
16269 			mutex_enter(&peer_tcp->tcp_non_sq_lock);
16270 		}
16271 
16272 		if (peer_tcp->tcp_flow_stopped &&
16273 		    (TCP_UNSENT_BYTES(peer_tcp) <=
16274 		    peer_tcp->tcp_xmit_lowater)) {
16275 			tcp_clrqfull(peer_tcp);
16276 		}
16277 		mutex_exit(&peer_tcp->tcp_non_sq_lock);
16278 		mutex_exit(&tcp->tcp_non_sq_lock);
16279 
16280 		TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
16281 		TCP_STAT(tcps, tcp_fusion_backenabled);
16282 		return;
16283 	}
16284 
16285 	SOD_PTR_ENTER(tcp, sodp);
16286 	if (sodp != NULL) {
16287 		/* An sodirect connection */
16288 		if (SOD_QFULL(sodp)) {
16289 			/* Flow-controlled, need another back-enable */
16290 			fc = B_TRUE;
16291 			SOD_QSETBE(sodp);
16292 		} else {
16293 			/* Not flow-controlled */
16294 			fc = B_FALSE;
16295 		}
16296 		mutex_exit(sodp->sod_lockp);
16297 	} else if (canputnext(q)) {
16298 		/* STREAMS, not flow-controlled */
16299 		fc = B_FALSE;
16300 	} else {
16301 		/* STREAMS, flow-controlled */
16302 		fc = B_TRUE;
16303 	}
16304 	if (!fc) {
16305 		/* Not flow-controlled, open rwnd */
16306 		tcp->tcp_rwnd = q->q_hiwat;
16307 		thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
16308 		    << tcp->tcp_rcv_ws;
16309 		thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
16310 		/*
16311 		 * Send back a window update immediately if TCP is above
16312 		 * ESTABLISHED state and the increase of the rcv window
16313 		 * that the other side knows is at least 1 MSS after flow
16314 		 * control is lifted.
16315 		 */
16316 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
16317 		    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
16318 			tcp_xmit_ctl(NULL, tcp,
16319 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
16320 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
16321 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
16322 		}
16323 	}
16324 }
16325 
16326 /*
16327  * The read side service routine is called mostly when we get back-enabled as a
16328  * result of flow control relief.  Since we don't actually queue anything in
16329  * TCP, we have no data to send out of here.  What we do is clear the receive
16330  * window, and send out a window update.
16331  */
16332 static void
16333 tcp_rsrv(queue_t *q)
16334 {
16335 	conn_t		*connp = Q_TO_CONN(q);
16336 	tcp_t		*tcp = connp->conn_tcp;
16337 	mblk_t		*mp;
16338 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16339 
16340 	/* No code does a putq on the read side */
16341 	ASSERT(q->q_first == NULL);
16342 
16343 	/* Nothing to do for the default queue */
16344 	if (q == tcps->tcps_g_q) {
16345 		return;
16346 	}
16347 
16348 	/*
16349 	 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already
16350 	 * been run.  So just return.
16351 	 */
16352 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
16353 	if ((mp = tcp->tcp_rsrv_mp) == NULL) {
16354 		mutex_exit(&tcp->tcp_rsrv_mp_lock);
16355 		return;
16356 	}
16357 	tcp->tcp_rsrv_mp = NULL;
16358 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
16359 
16360 	CONN_INC_REF(connp);
16361 	squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp,
16362 	    SQTAG_TCP_RSRV);
16363 }
16364 
16365 /*
16366  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
16367  * We do not allow the receive window to shrink.  After setting rwnd,
16368  * set the flow control hiwat of the stream.
16369  *
16370  * This function is called in 2 cases:
16371  *
16372  * 1) Before data transfer begins, in tcp_accept_comm() for accepting a
16373  *    connection (passive open) and in tcp_rput_data() for active connect.
16374  *    This is called after tcp_mss_set() when the desired MSS value is known.
16375  *    This makes sure that our window size is a mutiple of the other side's
16376  *    MSS.
16377  * 2) Handling SO_RCVBUF option.
16378  *
16379  * It is ASSUMED that the requested size is a multiple of the current MSS.
16380  *
16381  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
16382  * user requests so.
16383  */
16384 static int
16385 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
16386 {
16387 	uint32_t	mss = tcp->tcp_mss;
16388 	uint32_t	old_max_rwnd;
16389 	uint32_t	max_transmittable_rwnd;
16390 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
16391 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16392 
16393 	if (tcp->tcp_fused) {
16394 		size_t sth_hiwat;
16395 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
16396 
16397 		ASSERT(peer_tcp != NULL);
16398 		/*
16399 		 * Record the stream head's high water mark for
16400 		 * this endpoint; this is used for flow-control
16401 		 * purposes in tcp_fuse_output().
16402 		 */
16403 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
16404 		if (!tcp_detached)
16405 			(void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat);
16406 
16407 		/*
16408 		 * In the fusion case, the maxpsz stream head value of
16409 		 * our peer is set according to its send buffer size
16410 		 * and our receive buffer size; since the latter may
16411 		 * have changed we need to update the peer's maxpsz.
16412 		 */
16413 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
16414 		return (rwnd);
16415 	}
16416 
16417 	if (tcp_detached)
16418 		old_max_rwnd = tcp->tcp_rwnd;
16419 	else
16420 		old_max_rwnd = tcp->tcp_rq->q_hiwat;
16421 
16422 	/*
16423 	 * Insist on a receive window that is at least
16424 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
16425 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
16426 	 * and delayed acknowledgement.
16427 	 */
16428 	rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss);
16429 
16430 	/*
16431 	 * If window size info has already been exchanged, TCP should not
16432 	 * shrink the window.  Shrinking window is doable if done carefully.
16433 	 * We may add that support later.  But so far there is not a real
16434 	 * need to do that.
16435 	 */
16436 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
16437 		/* MSS may have changed, do a round up again. */
16438 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
16439 	}
16440 
16441 	/*
16442 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
16443 	 * can be applied even before the window scale option is decided.
16444 	 */
16445 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
16446 	if (rwnd > max_transmittable_rwnd) {
16447 		rwnd = max_transmittable_rwnd -
16448 		    (max_transmittable_rwnd % mss);
16449 		if (rwnd < mss)
16450 			rwnd = max_transmittable_rwnd;
16451 		/*
16452 		 * If we're over the limit we may have to back down tcp_rwnd.
16453 		 * The increment below won't work for us. So we set all three
16454 		 * here and the increment below will have no effect.
16455 		 */
16456 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
16457 	}
16458 	if (tcp->tcp_localnet) {
16459 		tcp->tcp_rack_abs_max =
16460 		    MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2);
16461 	} else {
16462 		/*
16463 		 * For a remote host on a different subnet (through a router),
16464 		 * we ack every other packet to be conforming to RFC1122.
16465 		 * tcp_deferred_acks_max is default to 2.
16466 		 */
16467 		tcp->tcp_rack_abs_max =
16468 		    MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2);
16469 	}
16470 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
16471 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
16472 	else
16473 		tcp->tcp_rack_cur_max = 0;
16474 	/*
16475 	 * Increment the current rwnd by the amount the maximum grew (we
16476 	 * can not overwrite it since we might be in the middle of a
16477 	 * connection.)
16478 	 */
16479 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
16480 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win);
16481 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
16482 		tcp->tcp_cwnd_max = rwnd;
16483 
16484 	if (tcp_detached)
16485 		return (rwnd);
16486 	/*
16487 	 * We set the maximum receive window into rq->q_hiwat.
16488 	 * This is not actually used for flow control.
16489 	 */
16490 	tcp->tcp_rq->q_hiwat = rwnd;
16491 	/*
16492 	 * Set the Stream head high water mark. This doesn't have to be
16493 	 * here, since we are simply using default values, but we would
16494 	 * prefer to choose these values algorithmically, with a likely
16495 	 * relationship to rwnd.
16496 	 */
16497 	(void) mi_set_sth_hiwat(tcp->tcp_rq,
16498 	    MAX(rwnd, tcps->tcps_sth_rcv_hiwat));
16499 	return (rwnd);
16500 }
16501 
16502 /*
16503  * Return SNMP stuff in buffer in mpdata.
16504  */
16505 mblk_t *
16506 tcp_snmp_get(queue_t *q, mblk_t *mpctl)
16507 {
16508 	mblk_t			*mpdata;
16509 	mblk_t			*mp_conn_ctl = NULL;
16510 	mblk_t			*mp_conn_tail;
16511 	mblk_t			*mp_attr_ctl = NULL;
16512 	mblk_t			*mp_attr_tail;
16513 	mblk_t			*mp6_conn_ctl = NULL;
16514 	mblk_t			*mp6_conn_tail;
16515 	mblk_t			*mp6_attr_ctl = NULL;
16516 	mblk_t			*mp6_attr_tail;
16517 	struct opthdr		*optp;
16518 	mib2_tcpConnEntry_t	tce;
16519 	mib2_tcp6ConnEntry_t	tce6;
16520 	mib2_transportMLPEntry_t mlp;
16521 	connf_t			*connfp;
16522 	int			i;
16523 	boolean_t 		ispriv;
16524 	zoneid_t 		zoneid;
16525 	int			v4_conn_idx;
16526 	int			v6_conn_idx;
16527 	conn_t			*connp = Q_TO_CONN(q);
16528 	tcp_stack_t		*tcps;
16529 	ip_stack_t		*ipst;
16530 	mblk_t			*mp2ctl;
16531 
16532 	/*
16533 	 * make a copy of the original message
16534 	 */
16535 	mp2ctl = copymsg(mpctl);
16536 
16537 	if (mpctl == NULL ||
16538 	    (mpdata = mpctl->b_cont) == NULL ||
16539 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
16540 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
16541 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
16542 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
16543 		freemsg(mp_conn_ctl);
16544 		freemsg(mp_attr_ctl);
16545 		freemsg(mp6_conn_ctl);
16546 		freemsg(mp6_attr_ctl);
16547 		freemsg(mpctl);
16548 		freemsg(mp2ctl);
16549 		return (NULL);
16550 	}
16551 
16552 	ipst = connp->conn_netstack->netstack_ip;
16553 	tcps = connp->conn_netstack->netstack_tcp;
16554 
16555 	/* build table of connections -- need count in fixed part */
16556 	SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4);   /* vanj */
16557 	SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min);
16558 	SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max);
16559 	SET_MIB(tcps->tcps_mib.tcpMaxConn, -1);
16560 	SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0);
16561 
16562 	ispriv =
16563 	    secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0;
16564 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16565 
16566 	v4_conn_idx = v6_conn_idx = 0;
16567 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
16568 
16569 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16570 		ipst = tcps->tcps_netstack->netstack_ip;
16571 
16572 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
16573 
16574 		connp = NULL;
16575 
16576 		while ((connp =
16577 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16578 			tcp_t *tcp;
16579 			boolean_t needattr;
16580 
16581 			if (connp->conn_zoneid != zoneid)
16582 				continue;	/* not in this zone */
16583 
16584 			tcp = connp->conn_tcp;
16585 			UPDATE_MIB(&tcps->tcps_mib,
16586 			    tcpHCInSegs, tcp->tcp_ibsegs);
16587 			tcp->tcp_ibsegs = 0;
16588 			UPDATE_MIB(&tcps->tcps_mib,
16589 			    tcpHCOutSegs, tcp->tcp_obsegs);
16590 			tcp->tcp_obsegs = 0;
16591 
16592 			tce6.tcp6ConnState = tce.tcpConnState =
16593 			    tcp_snmp_state(tcp);
16594 			if (tce.tcpConnState == MIB2_TCP_established ||
16595 			    tce.tcpConnState == MIB2_TCP_closeWait)
16596 				BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab);
16597 
16598 			needattr = B_FALSE;
16599 			bzero(&mlp, sizeof (mlp));
16600 			if (connp->conn_mlp_type != mlptSingle) {
16601 				if (connp->conn_mlp_type == mlptShared ||
16602 				    connp->conn_mlp_type == mlptBoth)
16603 					mlp.tme_flags |= MIB2_TMEF_SHARED;
16604 				if (connp->conn_mlp_type == mlptPrivate ||
16605 				    connp->conn_mlp_type == mlptBoth)
16606 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
16607 				needattr = B_TRUE;
16608 			}
16609 			if (connp->conn_peercred != NULL) {
16610 				ts_label_t *tsl;
16611 
16612 				tsl = crgetlabel(connp->conn_peercred);
16613 				mlp.tme_doi = label2doi(tsl);
16614 				mlp.tme_label = *label2bslabel(tsl);
16615 				needattr = B_TRUE;
16616 			}
16617 
16618 			/* Create a message to report on IPv6 entries */
16619 			if (tcp->tcp_ipversion == IPV6_VERSION) {
16620 			tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6;
16621 			tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6;
16622 			tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport);
16623 			tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport);
16624 			tce6.tcp6ConnIfIndex = tcp->tcp_bound_if;
16625 			/* Don't want just anybody seeing these... */
16626 			if (ispriv) {
16627 				tce6.tcp6ConnEntryInfo.ce_snxt =
16628 				    tcp->tcp_snxt;
16629 				tce6.tcp6ConnEntryInfo.ce_suna =
16630 				    tcp->tcp_suna;
16631 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16632 				    tcp->tcp_rnxt;
16633 				tce6.tcp6ConnEntryInfo.ce_rack =
16634 				    tcp->tcp_rack;
16635 			} else {
16636 				/*
16637 				 * Netstat, unfortunately, uses this to
16638 				 * get send/receive queue sizes.  How to fix?
16639 				 * Why not compute the difference only?
16640 				 */
16641 				tce6.tcp6ConnEntryInfo.ce_snxt =
16642 				    tcp->tcp_snxt - tcp->tcp_suna;
16643 				tce6.tcp6ConnEntryInfo.ce_suna = 0;
16644 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16645 				    tcp->tcp_rnxt - tcp->tcp_rack;
16646 				tce6.tcp6ConnEntryInfo.ce_rack = 0;
16647 			}
16648 
16649 			tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16650 			tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16651 			tce6.tcp6ConnEntryInfo.ce_rto =  tcp->tcp_rto;
16652 			tce6.tcp6ConnEntryInfo.ce_mss =  tcp->tcp_mss;
16653 			tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state;
16654 
16655 			tce6.tcp6ConnCreationProcess =
16656 			    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
16657 			    tcp->tcp_cpid;
16658 			tce6.tcp6ConnCreationTime = tcp->tcp_open_time;
16659 
16660 			(void) snmp_append_data2(mp6_conn_ctl->b_cont,
16661 			    &mp6_conn_tail, (char *)&tce6, sizeof (tce6));
16662 
16663 			mlp.tme_connidx = v6_conn_idx++;
16664 			if (needattr)
16665 				(void) snmp_append_data2(mp6_attr_ctl->b_cont,
16666 				    &mp6_attr_tail, (char *)&mlp, sizeof (mlp));
16667 			}
16668 			/*
16669 			 * Create an IPv4 table entry for IPv4 entries and also
16670 			 * for IPv6 entries which are bound to in6addr_any
16671 			 * but don't have IPV6_V6ONLY set.
16672 			 * (i.e. anything an IPv4 peer could connect to)
16673 			 */
16674 			if (tcp->tcp_ipversion == IPV4_VERSION ||
16675 			    (tcp->tcp_state <= TCPS_LISTEN &&
16676 			    !tcp->tcp_connp->conn_ipv6_v6only &&
16677 			    IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) {
16678 				if (tcp->tcp_ipversion == IPV6_VERSION) {
16679 					tce.tcpConnRemAddress = INADDR_ANY;
16680 					tce.tcpConnLocalAddress = INADDR_ANY;
16681 				} else {
16682 					tce.tcpConnRemAddress =
16683 					    tcp->tcp_remote;
16684 					tce.tcpConnLocalAddress =
16685 					    tcp->tcp_ip_src;
16686 				}
16687 				tce.tcpConnLocalPort = ntohs(tcp->tcp_lport);
16688 				tce.tcpConnRemPort = ntohs(tcp->tcp_fport);
16689 				/* Don't want just anybody seeing these... */
16690 				if (ispriv) {
16691 					tce.tcpConnEntryInfo.ce_snxt =
16692 					    tcp->tcp_snxt;
16693 					tce.tcpConnEntryInfo.ce_suna =
16694 					    tcp->tcp_suna;
16695 					tce.tcpConnEntryInfo.ce_rnxt =
16696 					    tcp->tcp_rnxt;
16697 					tce.tcpConnEntryInfo.ce_rack =
16698 					    tcp->tcp_rack;
16699 				} else {
16700 					/*
16701 					 * Netstat, unfortunately, uses this to
16702 					 * get send/receive queue sizes.  How
16703 					 * to fix?
16704 					 * Why not compute the difference only?
16705 					 */
16706 					tce.tcpConnEntryInfo.ce_snxt =
16707 					    tcp->tcp_snxt - tcp->tcp_suna;
16708 					tce.tcpConnEntryInfo.ce_suna = 0;
16709 					tce.tcpConnEntryInfo.ce_rnxt =
16710 					    tcp->tcp_rnxt - tcp->tcp_rack;
16711 					tce.tcpConnEntryInfo.ce_rack = 0;
16712 				}
16713 
16714 				tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16715 				tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16716 				tce.tcpConnEntryInfo.ce_rto =  tcp->tcp_rto;
16717 				tce.tcpConnEntryInfo.ce_mss =  tcp->tcp_mss;
16718 				tce.tcpConnEntryInfo.ce_state =
16719 				    tcp->tcp_state;
16720 
16721 				tce.tcpConnCreationProcess =
16722 				    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
16723 				    tcp->tcp_cpid;
16724 				tce.tcpConnCreationTime = tcp->tcp_open_time;
16725 
16726 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
16727 				    &mp_conn_tail, (char *)&tce, sizeof (tce));
16728 
16729 				mlp.tme_connidx = v4_conn_idx++;
16730 				if (needattr)
16731 					(void) snmp_append_data2(
16732 					    mp_attr_ctl->b_cont,
16733 					    &mp_attr_tail, (char *)&mlp,
16734 					    sizeof (mlp));
16735 			}
16736 		}
16737 	}
16738 
16739 	/* fixed length structure for IPv4 and IPv6 counters */
16740 	SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t));
16741 	SET_MIB(tcps->tcps_mib.tcp6ConnTableSize,
16742 	    sizeof (mib2_tcp6ConnEntry_t));
16743 	/* synchronize 32- and 64-bit counters */
16744 	SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs);
16745 	SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs);
16746 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
16747 	optp->level = MIB2_TCP;
16748 	optp->name = 0;
16749 	(void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib,
16750 	    sizeof (tcps->tcps_mib));
16751 	optp->len = msgdsize(mpdata);
16752 	qreply(q, mpctl);
16753 
16754 	/* table of connections... */
16755 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
16756 	    sizeof (struct T_optmgmt_ack)];
16757 	optp->level = MIB2_TCP;
16758 	optp->name = MIB2_TCP_CONN;
16759 	optp->len = msgdsize(mp_conn_ctl->b_cont);
16760 	qreply(q, mp_conn_ctl);
16761 
16762 	/* table of MLP attributes... */
16763 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
16764 	    sizeof (struct T_optmgmt_ack)];
16765 	optp->level = MIB2_TCP;
16766 	optp->name = EXPER_XPORT_MLP;
16767 	optp->len = msgdsize(mp_attr_ctl->b_cont);
16768 	if (optp->len == 0)
16769 		freemsg(mp_attr_ctl);
16770 	else
16771 		qreply(q, mp_attr_ctl);
16772 
16773 	/* table of IPv6 connections... */
16774 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
16775 	    sizeof (struct T_optmgmt_ack)];
16776 	optp->level = MIB2_TCP6;
16777 	optp->name = MIB2_TCP6_CONN;
16778 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
16779 	qreply(q, mp6_conn_ctl);
16780 
16781 	/* table of IPv6 MLP attributes... */
16782 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
16783 	    sizeof (struct T_optmgmt_ack)];
16784 	optp->level = MIB2_TCP6;
16785 	optp->name = EXPER_XPORT_MLP;
16786 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
16787 	if (optp->len == 0)
16788 		freemsg(mp6_attr_ctl);
16789 	else
16790 		qreply(q, mp6_attr_ctl);
16791 	return (mp2ctl);
16792 }
16793 
16794 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests  */
16795 /* ARGSUSED */
16796 int
16797 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
16798 {
16799 	mib2_tcpConnEntry_t	*tce = (mib2_tcpConnEntry_t *)ptr;
16800 
16801 	switch (level) {
16802 	case MIB2_TCP:
16803 		switch (name) {
16804 		case 13:
16805 			if (tce->tcpConnState != MIB2_TCP_deleteTCB)
16806 				return (0);
16807 			/* TODO: delete entry defined by tce */
16808 			return (1);
16809 		default:
16810 			return (0);
16811 		}
16812 	default:
16813 		return (1);
16814 	}
16815 }
16816 
16817 /* Translate TCP state to MIB2 TCP state. */
16818 static int
16819 tcp_snmp_state(tcp_t *tcp)
16820 {
16821 	if (tcp == NULL)
16822 		return (0);
16823 
16824 	switch (tcp->tcp_state) {
16825 	case TCPS_CLOSED:
16826 	case TCPS_IDLE:	/* RFC1213 doesn't have analogue for IDLE & BOUND */
16827 	case TCPS_BOUND:
16828 		return (MIB2_TCP_closed);
16829 	case TCPS_LISTEN:
16830 		return (MIB2_TCP_listen);
16831 	case TCPS_SYN_SENT:
16832 		return (MIB2_TCP_synSent);
16833 	case TCPS_SYN_RCVD:
16834 		return (MIB2_TCP_synReceived);
16835 	case TCPS_ESTABLISHED:
16836 		return (MIB2_TCP_established);
16837 	case TCPS_CLOSE_WAIT:
16838 		return (MIB2_TCP_closeWait);
16839 	case TCPS_FIN_WAIT_1:
16840 		return (MIB2_TCP_finWait1);
16841 	case TCPS_CLOSING:
16842 		return (MIB2_TCP_closing);
16843 	case TCPS_LAST_ACK:
16844 		return (MIB2_TCP_lastAck);
16845 	case TCPS_FIN_WAIT_2:
16846 		return (MIB2_TCP_finWait2);
16847 	case TCPS_TIME_WAIT:
16848 		return (MIB2_TCP_timeWait);
16849 	default:
16850 		return (0);
16851 	}
16852 }
16853 
16854 static char tcp_report_header[] =
16855 	"TCP     " MI_COL_HDRPAD_STR
16856 	"zone dest            snxt     suna     "
16857 	"swnd       rnxt     rack     rwnd       rto   mss   w sw rw t "
16858 	"recent   [lport,fport] state";
16859 
16860 /*
16861  * TCP status report triggered via the Named Dispatch mechanism.
16862  */
16863 /* ARGSUSED */
16864 static void
16865 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream,
16866     cred_t *cr)
16867 {
16868 	char hash[10], addrbuf[INET6_ADDRSTRLEN];
16869 	boolean_t ispriv = secpolicy_ip_config(cr, B_TRUE) == 0;
16870 	char cflag;
16871 	in6_addr_t	v6dst;
16872 	char buf[80];
16873 	uint_t print_len, buf_len;
16874 
16875 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16876 	if (buf_len <= 0)
16877 		return;
16878 
16879 	if (hashval >= 0)
16880 		(void) sprintf(hash, "%03d ", hashval);
16881 	else
16882 		hash[0] = '\0';
16883 
16884 	/*
16885 	 * Note that we use the remote address in the tcp_b  structure.
16886 	 * This means that it will print out the real destination address,
16887 	 * not the next hop's address if source routing is used.  This
16888 	 * avoid the confusion on the output because user may not
16889 	 * know that source routing is used for a connection.
16890 	 */
16891 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16892 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst);
16893 	} else {
16894 		v6dst = tcp->tcp_remote_v6;
16895 	}
16896 	(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16897 	/*
16898 	 * the ispriv checks are so that normal users cannot determine
16899 	 * sequence number information using NDD.
16900 	 */
16901 
16902 	if (TCP_IS_DETACHED(tcp))
16903 		cflag = '*';
16904 	else
16905 		cflag = ' ';
16906 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16907 	    "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x "
16908 	    "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n",
16909 	    hash,
16910 	    (void *)tcp,
16911 	    tcp->tcp_connp->conn_zoneid,
16912 	    addrbuf,
16913 	    (ispriv) ? tcp->tcp_snxt : 0,
16914 	    (ispriv) ? tcp->tcp_suna : 0,
16915 	    tcp->tcp_swnd,
16916 	    (ispriv) ? tcp->tcp_rnxt : 0,
16917 	    (ispriv) ? tcp->tcp_rack : 0,
16918 	    tcp->tcp_rwnd,
16919 	    tcp->tcp_rto,
16920 	    tcp->tcp_mss,
16921 	    tcp->tcp_snd_ws_ok,
16922 	    tcp->tcp_snd_ws,
16923 	    tcp->tcp_rcv_ws,
16924 	    tcp->tcp_snd_ts_ok,
16925 	    tcp->tcp_ts_recent,
16926 	    tcp_display(tcp, buf, DISP_PORT_ONLY), cflag);
16927 	if (print_len < buf_len) {
16928 		((mblk_t *)mp)->b_wptr += print_len;
16929 	} else {
16930 		((mblk_t *)mp)->b_wptr += buf_len;
16931 	}
16932 }
16933 
16934 /*
16935  * TCP status report (for listeners only) triggered via the Named Dispatch
16936  * mechanism.
16937  */
16938 /* ARGSUSED */
16939 static void
16940 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval)
16941 {
16942 	char addrbuf[INET6_ADDRSTRLEN];
16943 	in6_addr_t	v6dst;
16944 	uint_t print_len, buf_len;
16945 
16946 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16947 	if (buf_len <= 0)
16948 		return;
16949 
16950 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16951 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst);
16952 		(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16953 	} else {
16954 		(void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src,
16955 		    addrbuf, sizeof (addrbuf));
16956 	}
16957 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16958 	    "%03d "
16959 	    MI_COL_PTRFMT_STR
16960 	    "%d %s %05u %08u %d/%d/%d%c\n",
16961 	    hashval, (void *)tcp,
16962 	    tcp->tcp_connp->conn_zoneid,
16963 	    addrbuf,
16964 	    (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport),
16965 	    tcp->tcp_conn_req_seqnum,
16966 	    tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q,
16967 	    tcp->tcp_conn_req_max,
16968 	    tcp->tcp_syn_defense ? '*' : ' ');
16969 	if (print_len < buf_len) {
16970 		((mblk_t *)mp)->b_wptr += print_len;
16971 	} else {
16972 		((mblk_t *)mp)->b_wptr += buf_len;
16973 	}
16974 }
16975 
16976 /* TCP status report triggered via the Named Dispatch mechanism. */
16977 /* ARGSUSED */
16978 static int
16979 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16980 {
16981 	tcp_t	*tcp;
16982 	int	i;
16983 	conn_t	*connp;
16984 	connf_t	*connfp;
16985 	zoneid_t zoneid;
16986 	tcp_stack_t *tcps;
16987 	ip_stack_t *ipst;
16988 
16989 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16990 	tcps = Q_TO_TCP(q)->tcp_tcps;
16991 
16992 	/*
16993 	 * Because of the ndd constraint, at most we can have 64K buffer
16994 	 * to put in all TCP info.  So to be more efficient, just
16995 	 * allocate a 64K buffer here, assuming we need that large buffer.
16996 	 * This may be a problem as any user can read tcp_status.  Therefore
16997 	 * we limit the rate of doing this using tcp_ndd_get_info_interval.
16998 	 * This should be OK as normal users should not do this too often.
16999 	 */
17000 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
17001 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
17002 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
17003 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
17004 			return (0);
17005 		}
17006 	}
17007 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
17008 		/* The following may work even if we cannot get a large buf. */
17009 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
17010 		return (0);
17011 	}
17012 
17013 	(void) mi_mpprintf(mp, "%s", tcp_report_header);
17014 
17015 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
17016 
17017 		ipst = tcps->tcps_netstack->netstack_ip;
17018 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
17019 
17020 		connp = NULL;
17021 
17022 		while ((connp =
17023 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
17024 			tcp = connp->conn_tcp;
17025 			if (zoneid != GLOBAL_ZONEID &&
17026 			    zoneid != connp->conn_zoneid)
17027 				continue;
17028 			tcp_report_item(mp->b_cont, tcp, -1, tcp,
17029 			    cr);
17030 		}
17031 
17032 	}
17033 
17034 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
17035 	return (0);
17036 }
17037 
17038 /* TCP status report triggered via the Named Dispatch mechanism. */
17039 /* ARGSUSED */
17040 static int
17041 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
17042 {
17043 	tf_t	*tbf;
17044 	tcp_t	*tcp;
17045 	int	i;
17046 	zoneid_t zoneid;
17047 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
17048 
17049 	zoneid = Q_TO_CONN(q)->conn_zoneid;
17050 
17051 	/* Refer to comments in tcp_status_report(). */
17052 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
17053 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
17054 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
17055 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
17056 			return (0);
17057 		}
17058 	}
17059 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
17060 		/* The following may work even if we cannot get a large buf. */
17061 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
17062 		return (0);
17063 	}
17064 
17065 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
17066 
17067 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
17068 		tbf = &tcps->tcps_bind_fanout[i];
17069 		mutex_enter(&tbf->tf_lock);
17070 		for (tcp = tbf->tf_tcp; tcp != NULL;
17071 		    tcp = tcp->tcp_bind_hash) {
17072 			if (zoneid != GLOBAL_ZONEID &&
17073 			    zoneid != tcp->tcp_connp->conn_zoneid)
17074 				continue;
17075 			CONN_INC_REF(tcp->tcp_connp);
17076 			tcp_report_item(mp->b_cont, tcp, i,
17077 			    Q_TO_TCP(q), cr);
17078 			CONN_DEC_REF(tcp->tcp_connp);
17079 		}
17080 		mutex_exit(&tbf->tf_lock);
17081 	}
17082 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
17083 	return (0);
17084 }
17085 
17086 /* TCP status report triggered via the Named Dispatch mechanism. */
17087 /* ARGSUSED */
17088 static int
17089 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
17090 {
17091 	connf_t	*connfp;
17092 	conn_t	*connp;
17093 	tcp_t	*tcp;
17094 	int	i;
17095 	zoneid_t zoneid;
17096 	tcp_stack_t *tcps;
17097 	ip_stack_t	*ipst;
17098 
17099 	zoneid = Q_TO_CONN(q)->conn_zoneid;
17100 	tcps = Q_TO_TCP(q)->tcp_tcps;
17101 
17102 	/* Refer to comments in tcp_status_report(). */
17103 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
17104 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
17105 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
17106 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
17107 			return (0);
17108 		}
17109 	}
17110 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
17111 		/* The following may work even if we cannot get a large buf. */
17112 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
17113 		return (0);
17114 	}
17115 
17116 	(void) mi_mpprintf(mp,
17117 	    "    TCP    " MI_COL_HDRPAD_STR
17118 	    "zone IP addr         port  seqnum   backlog (q0/q/max)");
17119 
17120 	ipst = tcps->tcps_netstack->netstack_ip;
17121 
17122 	for (i = 0; i < ipst->ips_ipcl_bind_fanout_size; i++) {
17123 		connfp = &ipst->ips_ipcl_bind_fanout[i];
17124 		connp = NULL;
17125 		while ((connp =
17126 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
17127 			tcp = connp->conn_tcp;
17128 			if (zoneid != GLOBAL_ZONEID &&
17129 			    zoneid != connp->conn_zoneid)
17130 				continue;
17131 			tcp_report_listener(mp->b_cont, tcp, i);
17132 		}
17133 	}
17134 
17135 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
17136 	return (0);
17137 }
17138 
17139 /* TCP status report triggered via the Named Dispatch mechanism. */
17140 /* ARGSUSED */
17141 static int
17142 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
17143 {
17144 	connf_t	*connfp;
17145 	conn_t	*connp;
17146 	tcp_t	*tcp;
17147 	int	i;
17148 	zoneid_t zoneid;
17149 	tcp_stack_t *tcps;
17150 	ip_stack_t *ipst;
17151 
17152 	zoneid = Q_TO_CONN(q)->conn_zoneid;
17153 	tcps = Q_TO_TCP(q)->tcp_tcps;
17154 	ipst = tcps->tcps_netstack->netstack_ip;
17155 
17156 	/* Refer to comments in tcp_status_report(). */
17157 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
17158 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
17159 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
17160 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
17161 			return (0);
17162 		}
17163 	}
17164 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
17165 		/* The following may work even if we cannot get a large buf. */
17166 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
17167 		return (0);
17168 	}
17169 
17170 	(void) mi_mpprintf(mp, "tcp_conn_hash_size = %d",
17171 	    ipst->ips_ipcl_conn_fanout_size);
17172 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
17173 
17174 	for (i = 0; i < ipst->ips_ipcl_conn_fanout_size; i++) {
17175 		connfp =  &ipst->ips_ipcl_conn_fanout[i];
17176 		connp = NULL;
17177 		while ((connp =
17178 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
17179 			tcp = connp->conn_tcp;
17180 			if (zoneid != GLOBAL_ZONEID &&
17181 			    zoneid != connp->conn_zoneid)
17182 				continue;
17183 			tcp_report_item(mp->b_cont, tcp, i,
17184 			    Q_TO_TCP(q), cr);
17185 		}
17186 	}
17187 
17188 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
17189 	return (0);
17190 }
17191 
17192 /* TCP status report triggered via the Named Dispatch mechanism. */
17193 /* ARGSUSED */
17194 static int
17195 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
17196 {
17197 	tf_t	*tf;
17198 	tcp_t	*tcp;
17199 	int	i;
17200 	zoneid_t zoneid;
17201 	tcp_stack_t	*tcps;
17202 
17203 	zoneid = Q_TO_CONN(q)->conn_zoneid;
17204 	tcps = Q_TO_TCP(q)->tcp_tcps;
17205 
17206 	/* Refer to comments in tcp_status_report(). */
17207 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
17208 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
17209 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
17210 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
17211 			return (0);
17212 		}
17213 	}
17214 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
17215 		/* The following may work even if we cannot get a large buf. */
17216 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
17217 		return (0);
17218 	}
17219 
17220 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
17221 
17222 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
17223 		tf = &tcps->tcps_acceptor_fanout[i];
17224 		mutex_enter(&tf->tf_lock);
17225 		for (tcp = tf->tf_tcp; tcp != NULL;
17226 		    tcp = tcp->tcp_acceptor_hash) {
17227 			if (zoneid != GLOBAL_ZONEID &&
17228 			    zoneid != tcp->tcp_connp->conn_zoneid)
17229 				continue;
17230 			tcp_report_item(mp->b_cont, tcp, i,
17231 			    Q_TO_TCP(q), cr);
17232 		}
17233 		mutex_exit(&tf->tf_lock);
17234 	}
17235 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
17236 	return (0);
17237 }
17238 
17239 /*
17240  * tcp_timer is the timer service routine.  It handles the retransmission,
17241  * FIN_WAIT_2 flush, and zero window probe timeout events.  It figures out
17242  * from the state of the tcp instance what kind of action needs to be done
17243  * at the time it is called.
17244  */
17245 static void
17246 tcp_timer(void *arg)
17247 {
17248 	mblk_t		*mp;
17249 	clock_t		first_threshold;
17250 	clock_t		second_threshold;
17251 	clock_t		ms;
17252 	uint32_t	mss;
17253 	conn_t		*connp = (conn_t *)arg;
17254 	tcp_t		*tcp = connp->conn_tcp;
17255 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17256 
17257 	tcp->tcp_timer_tid = 0;
17258 
17259 	if (tcp->tcp_fused)
17260 		return;
17261 
17262 	first_threshold =  tcp->tcp_first_timer_threshold;
17263 	second_threshold = tcp->tcp_second_timer_threshold;
17264 	switch (tcp->tcp_state) {
17265 	case TCPS_IDLE:
17266 	case TCPS_BOUND:
17267 	case TCPS_LISTEN:
17268 		return;
17269 	case TCPS_SYN_RCVD: {
17270 		tcp_t	*listener = tcp->tcp_listener;
17271 
17272 		if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) {
17273 			ASSERT(tcp->tcp_rq == listener->tcp_rq);
17274 			/* it's our first timeout */
17275 			tcp->tcp_syn_rcvd_timeout = 1;
17276 			mutex_enter(&listener->tcp_eager_lock);
17277 			listener->tcp_syn_rcvd_timeout++;
17278 			if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) {
17279 				/*
17280 				 * Make this eager available for drop if we
17281 				 * need to drop one to accomodate a new
17282 				 * incoming SYN request.
17283 				 */
17284 				MAKE_DROPPABLE(listener, tcp);
17285 			}
17286 			if (!listener->tcp_syn_defense &&
17287 			    (listener->tcp_syn_rcvd_timeout >
17288 			    (tcps->tcps_conn_req_max_q0 >> 2)) &&
17289 			    (tcps->tcps_conn_req_max_q0 > 200)) {
17290 				/* We may be under attack. Put on a defense. */
17291 				listener->tcp_syn_defense = B_TRUE;
17292 				cmn_err(CE_WARN, "High TCP connect timeout "
17293 				    "rate! System (port %d) may be under a "
17294 				    "SYN flood attack!",
17295 				    BE16_TO_U16(listener->tcp_tcph->th_lport));
17296 
17297 				listener->tcp_ip_addr_cache = kmem_zalloc(
17298 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t),
17299 				    KM_NOSLEEP);
17300 			}
17301 			mutex_exit(&listener->tcp_eager_lock);
17302 		} else if (listener != NULL) {
17303 			mutex_enter(&listener->tcp_eager_lock);
17304 			tcp->tcp_syn_rcvd_timeout++;
17305 			if (tcp->tcp_syn_rcvd_timeout > 1 &&
17306 			    !tcp->tcp_closemp_used) {
17307 				/*
17308 				 * This is our second timeout. Put the tcp in
17309 				 * the list of droppable eagers to allow it to
17310 				 * be dropped, if needed. We don't check
17311 				 * whether tcp_dontdrop is set or not to
17312 				 * protect ourselve from a SYN attack where a
17313 				 * remote host can spoof itself as one of the
17314 				 * good IP source and continue to hold
17315 				 * resources too long.
17316 				 */
17317 				MAKE_DROPPABLE(listener, tcp);
17318 			}
17319 			mutex_exit(&listener->tcp_eager_lock);
17320 		}
17321 	}
17322 		/* FALLTHRU */
17323 	case TCPS_SYN_SENT:
17324 		first_threshold =  tcp->tcp_first_ctimer_threshold;
17325 		second_threshold = tcp->tcp_second_ctimer_threshold;
17326 		break;
17327 	case TCPS_ESTABLISHED:
17328 	case TCPS_FIN_WAIT_1:
17329 	case TCPS_CLOSING:
17330 	case TCPS_CLOSE_WAIT:
17331 	case TCPS_LAST_ACK:
17332 		/* If we have data to rexmit */
17333 		if (tcp->tcp_suna != tcp->tcp_snxt) {
17334 			clock_t	time_to_wait;
17335 
17336 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans);
17337 			if (!tcp->tcp_xmit_head)
17338 				break;
17339 			time_to_wait = lbolt -
17340 			    (clock_t)tcp->tcp_xmit_head->b_prev;
17341 			time_to_wait = tcp->tcp_rto -
17342 			    TICK_TO_MSEC(time_to_wait);
17343 			/*
17344 			 * If the timer fires too early, 1 clock tick earlier,
17345 			 * restart the timer.
17346 			 */
17347 			if (time_to_wait > msec_per_tick) {
17348 				TCP_STAT(tcps, tcp_timer_fire_early);
17349 				TCP_TIMER_RESTART(tcp, time_to_wait);
17350 				return;
17351 			}
17352 			/*
17353 			 * When we probe zero windows, we force the swnd open.
17354 			 * If our peer acks with a closed window swnd will be
17355 			 * set to zero by tcp_rput(). As long as we are
17356 			 * receiving acks tcp_rput will
17357 			 * reset 'tcp_ms_we_have_waited' so as not to trip the
17358 			 * first and second interval actions.  NOTE: the timer
17359 			 * interval is allowed to continue its exponential
17360 			 * backoff.
17361 			 */
17362 			if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) {
17363 				if (tcp->tcp_debug) {
17364 					(void) strlog(TCP_MOD_ID, 0, 1,
17365 					    SL_TRACE, "tcp_timer: zero win");
17366 				}
17367 			} else {
17368 				/*
17369 				 * After retransmission, we need to do
17370 				 * slow start.  Set the ssthresh to one
17371 				 * half of current effective window and
17372 				 * cwnd to one MSS.  Also reset
17373 				 * tcp_cwnd_cnt.
17374 				 *
17375 				 * Note that if tcp_ssthresh is reduced because
17376 				 * of ECN, do not reduce it again unless it is
17377 				 * already one window of data away (tcp_cwr
17378 				 * should then be cleared) or this is a
17379 				 * timeout for a retransmitted segment.
17380 				 */
17381 				uint32_t npkt;
17382 
17383 				if (!tcp->tcp_cwr || tcp->tcp_rexmit) {
17384 					npkt = ((tcp->tcp_timer_backoff ?
17385 					    tcp->tcp_cwnd_ssthresh :
17386 					    tcp->tcp_snxt -
17387 					    tcp->tcp_suna) >> 1) / tcp->tcp_mss;
17388 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
17389 					    tcp->tcp_mss;
17390 				}
17391 				tcp->tcp_cwnd = tcp->tcp_mss;
17392 				tcp->tcp_cwnd_cnt = 0;
17393 				if (tcp->tcp_ecn_ok) {
17394 					tcp->tcp_cwr = B_TRUE;
17395 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
17396 					tcp->tcp_ecn_cwr_sent = B_FALSE;
17397 				}
17398 			}
17399 			break;
17400 		}
17401 		/*
17402 		 * We have something to send yet we cannot send.  The
17403 		 * reason can be:
17404 		 *
17405 		 * 1. Zero send window: we need to do zero window probe.
17406 		 * 2. Zero cwnd: because of ECN, we need to "clock out
17407 		 * segments.
17408 		 * 3. SWS avoidance: receiver may have shrunk window,
17409 		 * reset our knowledge.
17410 		 *
17411 		 * Note that condition 2 can happen with either 1 or
17412 		 * 3.  But 1 and 3 are exclusive.
17413 		 */
17414 		if (tcp->tcp_unsent != 0) {
17415 			if (tcp->tcp_cwnd == 0) {
17416 				/*
17417 				 * Set tcp_cwnd to 1 MSS so that a
17418 				 * new segment can be sent out.  We
17419 				 * are "clocking out" new data when
17420 				 * the network is really congested.
17421 				 */
17422 				ASSERT(tcp->tcp_ecn_ok);
17423 				tcp->tcp_cwnd = tcp->tcp_mss;
17424 			}
17425 			if (tcp->tcp_swnd == 0) {
17426 				/* Extend window for zero window probe */
17427 				tcp->tcp_swnd++;
17428 				tcp->tcp_zero_win_probe = B_TRUE;
17429 				BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe);
17430 			} else {
17431 				/*
17432 				 * Handle timeout from sender SWS avoidance.
17433 				 * Reset our knowledge of the max send window
17434 				 * since the receiver might have reduced its
17435 				 * receive buffer.  Avoid setting tcp_max_swnd
17436 				 * to one since that will essentially disable
17437 				 * the SWS checks.
17438 				 *
17439 				 * Note that since we don't have a SWS
17440 				 * state variable, if the timeout is set
17441 				 * for ECN but not for SWS, this
17442 				 * code will also be executed.  This is
17443 				 * fine as tcp_max_swnd is updated
17444 				 * constantly and it will not affect
17445 				 * anything.
17446 				 */
17447 				tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2);
17448 			}
17449 			tcp_wput_data(tcp, NULL, B_FALSE);
17450 			return;
17451 		}
17452 		/* Is there a FIN that needs to be to re retransmitted? */
17453 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17454 		    !tcp->tcp_fin_acked)
17455 			break;
17456 		/* Nothing to do, return without restarting timer. */
17457 		TCP_STAT(tcps, tcp_timer_fire_miss);
17458 		return;
17459 	case TCPS_FIN_WAIT_2:
17460 		/*
17461 		 * User closed the TCP endpoint and peer ACK'ed our FIN.
17462 		 * We waited some time for for peer's FIN, but it hasn't
17463 		 * arrived.  We flush the connection now to avoid
17464 		 * case where the peer has rebooted.
17465 		 */
17466 		if (TCP_IS_DETACHED(tcp)) {
17467 			(void) tcp_clean_death(tcp, 0, 23);
17468 		} else {
17469 			TCP_TIMER_RESTART(tcp,
17470 			    tcps->tcps_fin_wait_2_flush_interval);
17471 		}
17472 		return;
17473 	case TCPS_TIME_WAIT:
17474 		(void) tcp_clean_death(tcp, 0, 24);
17475 		return;
17476 	default:
17477 		if (tcp->tcp_debug) {
17478 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
17479 			    "tcp_timer: strange state (%d) %s",
17480 			    tcp->tcp_state, tcp_display(tcp, NULL,
17481 			    DISP_PORT_ONLY));
17482 		}
17483 		return;
17484 	}
17485 	if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) {
17486 		/*
17487 		 * For zero window probe, we need to send indefinitely,
17488 		 * unless we have not heard from the other side for some
17489 		 * time...
17490 		 */
17491 		if ((tcp->tcp_zero_win_probe == 0) ||
17492 		    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >
17493 		    second_threshold)) {
17494 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop);
17495 			/*
17496 			 * If TCP is in SYN_RCVD state, send back a
17497 			 * RST|ACK as BSD does.  Note that tcp_zero_win_probe
17498 			 * should be zero in TCPS_SYN_RCVD state.
17499 			 */
17500 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
17501 				tcp_xmit_ctl("tcp_timer: RST sent on timeout "
17502 				    "in SYN_RCVD",
17503 				    tcp, tcp->tcp_snxt,
17504 				    tcp->tcp_rnxt, TH_RST | TH_ACK);
17505 			}
17506 			(void) tcp_clean_death(tcp,
17507 			    tcp->tcp_client_errno ?
17508 			    tcp->tcp_client_errno : ETIMEDOUT, 25);
17509 			return;
17510 		} else {
17511 			/*
17512 			 * Set tcp_ms_we_have_waited to second_threshold
17513 			 * so that in next timeout, we will do the above
17514 			 * check (lbolt - tcp_last_recv_time).  This is
17515 			 * also to avoid overflow.
17516 			 *
17517 			 * We don't need to decrement tcp_timer_backoff
17518 			 * to avoid overflow because it will be decremented
17519 			 * later if new timeout value is greater than
17520 			 * tcp_rexmit_interval_max.  In the case when
17521 			 * tcp_rexmit_interval_max is greater than
17522 			 * second_threshold, it means that we will wait
17523 			 * longer than second_threshold to send the next
17524 			 * window probe.
17525 			 */
17526 			tcp->tcp_ms_we_have_waited = second_threshold;
17527 		}
17528 	} else if (ms > first_threshold) {
17529 		if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) &&
17530 		    tcp->tcp_xmit_head != NULL) {
17531 			tcp->tcp_xmit_head =
17532 			    tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1);
17533 		}
17534 		/*
17535 		 * We have been retransmitting for too long...  The RTT
17536 		 * we calculated is probably incorrect.  Reinitialize it.
17537 		 * Need to compensate for 0 tcp_rtt_sa.  Reset
17538 		 * tcp_rtt_update so that we won't accidentally cache a
17539 		 * bad value.  But only do this if this is not a zero
17540 		 * window probe.
17541 		 */
17542 		if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) {
17543 			tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) +
17544 			    (tcp->tcp_rtt_sa >> 5);
17545 			tcp->tcp_rtt_sa = 0;
17546 			tcp_ip_notify(tcp);
17547 			tcp->tcp_rtt_update = 0;
17548 		}
17549 	}
17550 	tcp->tcp_timer_backoff++;
17551 	if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
17552 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) <
17553 	    tcps->tcps_rexmit_interval_min) {
17554 		/*
17555 		 * This means the original RTO is tcp_rexmit_interval_min.
17556 		 * So we will use tcp_rexmit_interval_min as the RTO value
17557 		 * and do the backoff.
17558 		 */
17559 		ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff;
17560 	} else {
17561 		ms <<= tcp->tcp_timer_backoff;
17562 	}
17563 	if (ms > tcps->tcps_rexmit_interval_max) {
17564 		ms = tcps->tcps_rexmit_interval_max;
17565 		/*
17566 		 * ms is at max, decrement tcp_timer_backoff to avoid
17567 		 * overflow.
17568 		 */
17569 		tcp->tcp_timer_backoff--;
17570 	}
17571 	tcp->tcp_ms_we_have_waited += ms;
17572 	if (tcp->tcp_zero_win_probe == 0) {
17573 		tcp->tcp_rto = ms;
17574 	}
17575 	TCP_TIMER_RESTART(tcp, ms);
17576 	/*
17577 	 * This is after a timeout and tcp_rto is backed off.  Set
17578 	 * tcp_set_timer to 1 so that next time RTO is updated, we will
17579 	 * restart the timer with a correct value.
17580 	 */
17581 	tcp->tcp_set_timer = 1;
17582 	mss = tcp->tcp_snxt - tcp->tcp_suna;
17583 	if (mss > tcp->tcp_mss)
17584 		mss = tcp->tcp_mss;
17585 	if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0)
17586 		mss = tcp->tcp_swnd;
17587 
17588 	if ((mp = tcp->tcp_xmit_head) != NULL)
17589 		mp->b_prev = (mblk_t *)lbolt;
17590 	mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss,
17591 	    B_TRUE);
17592 
17593 	/*
17594 	 * When slow start after retransmission begins, start with
17595 	 * this seq no.  tcp_rexmit_max marks the end of special slow
17596 	 * start phase.  tcp_snd_burst controls how many segments
17597 	 * can be sent because of an ack.
17598 	 */
17599 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
17600 	tcp->tcp_snd_burst = TCP_CWND_SS;
17601 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17602 	    (tcp->tcp_unsent == 0)) {
17603 		tcp->tcp_rexmit_max = tcp->tcp_fss;
17604 	} else {
17605 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
17606 	}
17607 	tcp->tcp_rexmit = B_TRUE;
17608 	tcp->tcp_dupack_cnt = 0;
17609 
17610 	/*
17611 	 * Remove all rexmit SACK blk to start from fresh.
17612 	 */
17613 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
17614 		TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
17615 		tcp->tcp_num_notsack_blk = 0;
17616 		tcp->tcp_cnt_notsack_list = 0;
17617 	}
17618 	if (mp == NULL) {
17619 		return;
17620 	}
17621 	/* Attach credentials to retransmitted initial SYNs. */
17622 	if (tcp->tcp_state == TCPS_SYN_SENT) {
17623 		mblk_setcred(mp, tcp->tcp_cred);
17624 		DB_CPID(mp) = tcp->tcp_cpid;
17625 	}
17626 
17627 	tcp->tcp_csuna = tcp->tcp_snxt;
17628 	BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
17629 	UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss);
17630 	tcp_send_data(tcp, tcp->tcp_wq, mp);
17631 
17632 }
17633 
17634 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */
17635 static void
17636 tcp_unbind(tcp_t *tcp, mblk_t *mp)
17637 {
17638 	conn_t	*connp;
17639 
17640 	switch (tcp->tcp_state) {
17641 	case TCPS_BOUND:
17642 	case TCPS_LISTEN:
17643 		break;
17644 	default:
17645 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
17646 		return;
17647 	}
17648 
17649 	/*
17650 	 * Need to clean up all the eagers since after the unbind, segments
17651 	 * will no longer be delivered to this listener stream.
17652 	 */
17653 	mutex_enter(&tcp->tcp_eager_lock);
17654 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
17655 		tcp_eager_cleanup(tcp, 0);
17656 	}
17657 	mutex_exit(&tcp->tcp_eager_lock);
17658 
17659 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17660 		tcp->tcp_ipha->ipha_src = 0;
17661 	} else {
17662 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
17663 	}
17664 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
17665 	bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport));
17666 	tcp_bind_hash_remove(tcp);
17667 	tcp->tcp_state = TCPS_IDLE;
17668 	tcp->tcp_mdt = B_FALSE;
17669 	/* Send M_FLUSH according to TPI */
17670 	(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
17671 	connp = tcp->tcp_connp;
17672 	connp->conn_mdt_ok = B_FALSE;
17673 	ipcl_hash_remove(connp);
17674 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
17675 	mp = mi_tpi_ok_ack_alloc(mp);
17676 	putnext(tcp->tcp_rq, mp);
17677 }
17678 
17679 /*
17680  * Don't let port fall into the privileged range.
17681  * Since the extra privileged ports can be arbitrary we also
17682  * ensure that we exclude those from consideration.
17683  * tcp_g_epriv_ports is not sorted thus we loop over it until
17684  * there are no changes.
17685  *
17686  * Note: No locks are held when inspecting tcp_g_*epriv_ports
17687  * but instead the code relies on:
17688  * - the fact that the address of the array and its size never changes
17689  * - the atomic assignment of the elements of the array
17690  *
17691  * Returns 0 if there are no more ports available.
17692  *
17693  * TS note: skip multilevel ports.
17694  */
17695 static in_port_t
17696 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random)
17697 {
17698 	int i;
17699 	boolean_t restart = B_FALSE;
17700 	tcp_stack_t *tcps = tcp->tcp_tcps;
17701 
17702 	if (random && tcp_random_anon_port != 0) {
17703 		(void) random_get_pseudo_bytes((uint8_t *)&port,
17704 		    sizeof (in_port_t));
17705 		/*
17706 		 * Unless changed by a sys admin, the smallest anon port
17707 		 * is 32768 and the largest anon port is 65535.  It is
17708 		 * very likely (50%) for the random port to be smaller
17709 		 * than the smallest anon port.  When that happens,
17710 		 * add port % (anon port range) to the smallest anon
17711 		 * port to get the random port.  It should fall into the
17712 		 * valid anon port range.
17713 		 */
17714 		if (port < tcps->tcps_smallest_anon_port) {
17715 			port = tcps->tcps_smallest_anon_port +
17716 			    port % (tcps->tcps_largest_anon_port -
17717 			    tcps->tcps_smallest_anon_port);
17718 		}
17719 	}
17720 
17721 retry:
17722 	if (port < tcps->tcps_smallest_anon_port)
17723 		port = (in_port_t)tcps->tcps_smallest_anon_port;
17724 
17725 	if (port > tcps->tcps_largest_anon_port) {
17726 		if (restart)
17727 			return (0);
17728 		restart = B_TRUE;
17729 		port = (in_port_t)tcps->tcps_smallest_anon_port;
17730 	}
17731 
17732 	if (port < tcps->tcps_smallest_nonpriv_port)
17733 		port = (in_port_t)tcps->tcps_smallest_nonpriv_port;
17734 
17735 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
17736 		if (port == tcps->tcps_g_epriv_ports[i]) {
17737 			port++;
17738 			/*
17739 			 * Make sure whether the port is in the
17740 			 * valid range.
17741 			 */
17742 			goto retry;
17743 		}
17744 	}
17745 	if (is_system_labeled() &&
17746 	    (i = tsol_next_port(crgetzone(tcp->tcp_cred), port,
17747 	    IPPROTO_TCP, B_TRUE)) != 0) {
17748 		port = i;
17749 		goto retry;
17750 	}
17751 	return (port);
17752 }
17753 
17754 /*
17755  * Return the next anonymous port in the privileged port range for
17756  * bind checking.  It starts at IPPORT_RESERVED - 1 and goes
17757  * downwards.  This is the same behavior as documented in the userland
17758  * library call rresvport(3N).
17759  *
17760  * TS note: skip multilevel ports.
17761  */
17762 static in_port_t
17763 tcp_get_next_priv_port(const tcp_t *tcp)
17764 {
17765 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
17766 	in_port_t nextport;
17767 	boolean_t restart = B_FALSE;
17768 	tcp_stack_t *tcps = tcp->tcp_tcps;
17769 retry:
17770 	if (next_priv_port < tcps->tcps_min_anonpriv_port ||
17771 	    next_priv_port >= IPPORT_RESERVED) {
17772 		next_priv_port = IPPORT_RESERVED - 1;
17773 		if (restart)
17774 			return (0);
17775 		restart = B_TRUE;
17776 	}
17777 	if (is_system_labeled() &&
17778 	    (nextport = tsol_next_port(crgetzone(tcp->tcp_cred),
17779 	    next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) {
17780 		next_priv_port = nextport;
17781 		goto retry;
17782 	}
17783 	return (next_priv_port--);
17784 }
17785 
17786 /* The write side r/w procedure. */
17787 
17788 #if CCS_STATS
17789 struct {
17790 	struct {
17791 		int64_t count, bytes;
17792 	} tot, hit;
17793 } wrw_stats;
17794 #endif
17795 
17796 /*
17797  * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO,
17798  * messages.
17799  */
17800 /* ARGSUSED */
17801 static void
17802 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2)
17803 {
17804 	conn_t	*connp = (conn_t *)arg;
17805 	tcp_t	*tcp = connp->conn_tcp;
17806 	queue_t	*q = tcp->tcp_wq;
17807 
17808 	ASSERT(DB_TYPE(mp) != M_IOCTL);
17809 	/*
17810 	 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close.
17811 	 * Once the close starts, streamhead and sockfs will not let any data
17812 	 * packets come down (close ensures that there are no threads using the
17813 	 * queue and no new threads will come down) but since qprocsoff()
17814 	 * hasn't happened yet, a M_FLUSH or some non data message might
17815 	 * get reflected back (in response to our own FLUSHRW) and get
17816 	 * processed after tcp_close() is done. The conn would still be valid
17817 	 * because a ref would have added but we need to check the state
17818 	 * before actually processing the packet.
17819 	 */
17820 	if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) {
17821 		freemsg(mp);
17822 		return;
17823 	}
17824 
17825 	switch (DB_TYPE(mp)) {
17826 	case M_IOCDATA:
17827 		tcp_wput_iocdata(tcp, mp);
17828 		break;
17829 	case M_FLUSH:
17830 		tcp_wput_flush(tcp, mp);
17831 		break;
17832 	default:
17833 		CALL_IP_WPUT(connp, q, mp);
17834 		break;
17835 	}
17836 }
17837 
17838 /*
17839  * The TCP fast path write put procedure.
17840  * NOTE: the logic of the fast path is duplicated from tcp_wput_data()
17841  */
17842 /* ARGSUSED */
17843 void
17844 tcp_output(void *arg, mblk_t *mp, void *arg2)
17845 {
17846 	int		len;
17847 	int		hdrlen;
17848 	int		plen;
17849 	mblk_t		*mp1;
17850 	uchar_t		*rptr;
17851 	uint32_t	snxt;
17852 	tcph_t		*tcph;
17853 	struct datab	*db;
17854 	uint32_t	suna;
17855 	uint32_t	mss;
17856 	ipaddr_t	*dst;
17857 	ipaddr_t	*src;
17858 	uint32_t	sum;
17859 	int		usable;
17860 	conn_t		*connp = (conn_t *)arg;
17861 	tcp_t		*tcp = connp->conn_tcp;
17862 	uint32_t	msize;
17863 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17864 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
17865 
17866 	/*
17867 	 * Try and ASSERT the minimum possible references on the
17868 	 * conn early enough. Since we are executing on write side,
17869 	 * the connection is obviously not detached and that means
17870 	 * there is a ref each for TCP and IP. Since we are behind
17871 	 * the squeue, the minimum references needed are 3. If the
17872 	 * conn is in classifier hash list, there should be an
17873 	 * extra ref for that (we check both the possibilities).
17874 	 */
17875 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17876 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17877 
17878 	ASSERT(DB_TYPE(mp) == M_DATA);
17879 	msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
17880 
17881 	mutex_enter(&tcp->tcp_non_sq_lock);
17882 	tcp->tcp_squeue_bytes -= msize;
17883 	mutex_exit(&tcp->tcp_non_sq_lock);
17884 
17885 	/* Check to see if this connection wants to be re-fused. */
17886 	if (tcp->tcp_refuse && !ipst->ips_ipobs_enabled) {
17887 		if (tcp->tcp_ipversion == IPV4_VERSION) {
17888 			tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ipha,
17889 			    &tcp->tcp_saved_tcph);
17890 		} else {
17891 			tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ip6h,
17892 			    &tcp->tcp_saved_tcph);
17893 		}
17894 	}
17895 	/* Bypass tcp protocol for fused tcp loopback */
17896 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
17897 		return;
17898 
17899 	mss = tcp->tcp_mss;
17900 	if (tcp->tcp_xmit_zc_clean)
17901 		mp = tcp_zcopy_backoff(tcp, mp, 0);
17902 
17903 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
17904 	len = (int)(mp->b_wptr - mp->b_rptr);
17905 
17906 	/*
17907 	 * Criteria for fast path:
17908 	 *
17909 	 *   1. no unsent data
17910 	 *   2. single mblk in request
17911 	 *   3. connection established
17912 	 *   4. data in mblk
17913 	 *   5. len <= mss
17914 	 *   6. no tcp_valid bits
17915 	 */
17916 	if ((tcp->tcp_unsent != 0) ||
17917 	    (tcp->tcp_cork) ||
17918 	    (mp->b_cont != NULL) ||
17919 	    (tcp->tcp_state != TCPS_ESTABLISHED) ||
17920 	    (len == 0) ||
17921 	    (len > mss) ||
17922 	    (tcp->tcp_valid_bits != 0)) {
17923 		tcp_wput_data(tcp, mp, B_FALSE);
17924 		return;
17925 	}
17926 
17927 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
17928 	ASSERT(tcp->tcp_fin_sent == 0);
17929 
17930 	/* queue new packet onto retransmission queue */
17931 	if (tcp->tcp_xmit_head == NULL) {
17932 		tcp->tcp_xmit_head = mp;
17933 	} else {
17934 		tcp->tcp_xmit_last->b_cont = mp;
17935 	}
17936 	tcp->tcp_xmit_last = mp;
17937 	tcp->tcp_xmit_tail = mp;
17938 
17939 	/* find out how much we can send */
17940 	/* BEGIN CSTYLED */
17941 	/*
17942 	 *    un-acked           usable
17943 	 *  |--------------|-----------------|
17944 	 *  tcp_suna       tcp_snxt          tcp_suna+tcp_swnd
17945 	 */
17946 	/* END CSTYLED */
17947 
17948 	/* start sending from tcp_snxt */
17949 	snxt = tcp->tcp_snxt;
17950 
17951 	/*
17952 	 * Check to see if this connection has been idled for some
17953 	 * time and no ACK is expected.  If it is, we need to slow
17954 	 * start again to get back the connection's "self-clock" as
17955 	 * described in VJ's paper.
17956 	 *
17957 	 * Refer to the comment in tcp_mss_set() for the calculation
17958 	 * of tcp_cwnd after idle.
17959 	 */
17960 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
17961 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
17962 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
17963 	}
17964 
17965 	usable = tcp->tcp_swnd;		/* tcp window size */
17966 	if (usable > tcp->tcp_cwnd)
17967 		usable = tcp->tcp_cwnd;	/* congestion window smaller */
17968 	usable -= snxt;		/* subtract stuff already sent */
17969 	suna = tcp->tcp_suna;
17970 	usable += suna;
17971 	/* usable can be < 0 if the congestion window is smaller */
17972 	if (len > usable) {
17973 		/* Can't send complete M_DATA in one shot */
17974 		goto slow;
17975 	}
17976 
17977 	mutex_enter(&tcp->tcp_non_sq_lock);
17978 	if (tcp->tcp_flow_stopped &&
17979 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
17980 		tcp_clrqfull(tcp);
17981 	}
17982 	mutex_exit(&tcp->tcp_non_sq_lock);
17983 
17984 	/*
17985 	 * determine if anything to send (Nagle).
17986 	 *
17987 	 *   1. len < tcp_mss (i.e. small)
17988 	 *   2. unacknowledged data present
17989 	 *   3. len < nagle limit
17990 	 *   4. last packet sent < nagle limit (previous packet sent)
17991 	 */
17992 	if ((len < mss) && (snxt != suna) &&
17993 	    (len < (int)tcp->tcp_naglim) &&
17994 	    (tcp->tcp_last_sent_len < tcp->tcp_naglim)) {
17995 		/*
17996 		 * This was the first unsent packet and normally
17997 		 * mss < xmit_hiwater so there is no need to worry
17998 		 * about flow control. The next packet will go
17999 		 * through the flow control check in tcp_wput_data().
18000 		 */
18001 		/* leftover work from above */
18002 		tcp->tcp_unsent = len;
18003 		tcp->tcp_xmit_tail_unsent = len;
18004 
18005 		return;
18006 	}
18007 
18008 	/* len <= tcp->tcp_mss && len == unsent so no silly window */
18009 
18010 	if (snxt == suna) {
18011 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
18012 	}
18013 
18014 	/* we have always sent something */
18015 	tcp->tcp_rack_cnt = 0;
18016 
18017 	tcp->tcp_snxt = snxt + len;
18018 	tcp->tcp_rack = tcp->tcp_rnxt;
18019 
18020 	if ((mp1 = dupb(mp)) == 0)
18021 		goto no_memory;
18022 	mp->b_prev = (mblk_t *)(uintptr_t)lbolt;
18023 	mp->b_next = (mblk_t *)(uintptr_t)snxt;
18024 
18025 	/* adjust tcp header information */
18026 	tcph = tcp->tcp_tcph;
18027 	tcph->th_flags[0] = (TH_ACK|TH_PUSH);
18028 
18029 	sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
18030 	sum = (sum >> 16) + (sum & 0xFFFF);
18031 	U16_TO_ABE16(sum, tcph->th_sum);
18032 
18033 	U32_TO_ABE32(snxt, tcph->th_seq);
18034 
18035 	BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
18036 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
18037 	BUMP_LOCAL(tcp->tcp_obsegs);
18038 
18039 	/* Update the latest receive window size in TCP header. */
18040 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
18041 	    tcph->th_win);
18042 
18043 	tcp->tcp_last_sent_len = (ushort_t)len;
18044 
18045 	plen = len + tcp->tcp_hdr_len;
18046 
18047 	if (tcp->tcp_ipversion == IPV4_VERSION) {
18048 		tcp->tcp_ipha->ipha_length = htons(plen);
18049 	} else {
18050 		tcp->tcp_ip6h->ip6_plen = htons(plen -
18051 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
18052 	}
18053 
18054 	/* see if we need to allocate a mblk for the headers */
18055 	hdrlen = tcp->tcp_hdr_len;
18056 	rptr = mp1->b_rptr - hdrlen;
18057 	db = mp1->b_datap;
18058 	if ((db->db_ref != 2) || rptr < db->db_base ||
18059 	    (!OK_32PTR(rptr))) {
18060 		/* NOTE: we assume allocb returns an OK_32PTR */
18061 		mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
18062 		    tcps->tcps_wroff_xtra, BPRI_MED);
18063 		if (!mp) {
18064 			freemsg(mp1);
18065 			goto no_memory;
18066 		}
18067 		mp->b_cont = mp1;
18068 		mp1 = mp;
18069 		/* Leave room for Link Level header */
18070 		/* hdrlen = tcp->tcp_hdr_len; */
18071 		rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra];
18072 		mp1->b_wptr = &rptr[hdrlen];
18073 	}
18074 	mp1->b_rptr = rptr;
18075 
18076 	/* Fill in the timestamp option. */
18077 	if (tcp->tcp_snd_ts_ok) {
18078 		U32_TO_BE32((uint32_t)lbolt,
18079 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
18080 		U32_TO_BE32(tcp->tcp_ts_recent,
18081 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
18082 	} else {
18083 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
18084 	}
18085 
18086 	/* copy header into outgoing packet */
18087 	dst = (ipaddr_t *)rptr;
18088 	src = (ipaddr_t *)tcp->tcp_iphc;
18089 	dst[0] = src[0];
18090 	dst[1] = src[1];
18091 	dst[2] = src[2];
18092 	dst[3] = src[3];
18093 	dst[4] = src[4];
18094 	dst[5] = src[5];
18095 	dst[6] = src[6];
18096 	dst[7] = src[7];
18097 	dst[8] = src[8];
18098 	dst[9] = src[9];
18099 	if (hdrlen -= 40) {
18100 		hdrlen >>= 2;
18101 		dst += 10;
18102 		src += 10;
18103 		do {
18104 			*dst++ = *src++;
18105 		} while (--hdrlen);
18106 	}
18107 
18108 	/*
18109 	 * Set the ECN info in the TCP header.  Note that this
18110 	 * is not the template header.
18111 	 */
18112 	if (tcp->tcp_ecn_ok) {
18113 		SET_ECT(tcp, rptr);
18114 
18115 		tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
18116 		if (tcp->tcp_ecn_echo_on)
18117 			tcph->th_flags[0] |= TH_ECE;
18118 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
18119 			tcph->th_flags[0] |= TH_CWR;
18120 			tcp->tcp_ecn_cwr_sent = B_TRUE;
18121 		}
18122 	}
18123 
18124 	if (tcp->tcp_ip_forward_progress) {
18125 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
18126 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
18127 		tcp->tcp_ip_forward_progress = B_FALSE;
18128 	}
18129 	tcp_send_data(tcp, tcp->tcp_wq, mp1);
18130 	return;
18131 
18132 	/*
18133 	 * If we ran out of memory, we pretend to have sent the packet
18134 	 * and that it was lost on the wire.
18135 	 */
18136 no_memory:
18137 	return;
18138 
18139 slow:
18140 	/* leftover work from above */
18141 	tcp->tcp_unsent = len;
18142 	tcp->tcp_xmit_tail_unsent = len;
18143 	tcp_wput_data(tcp, NULL, B_FALSE);
18144 }
18145 
18146 /*
18147  * The function called through squeue to get behind eager's perimeter to
18148  * finish the accept processing.
18149  */
18150 /* ARGSUSED */
18151 void
18152 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2)
18153 {
18154 	conn_t			*connp = (conn_t *)arg;
18155 	tcp_t			*tcp = connp->conn_tcp;
18156 	queue_t			*q = tcp->tcp_rq;
18157 	mblk_t			*mp1;
18158 	mblk_t			*stropt_mp = mp;
18159 	struct  stroptions	*stropt;
18160 	uint_t			thwin;
18161 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18162 
18163 	/*
18164 	 * Drop the eager's ref on the listener, that was placed when
18165 	 * this eager began life in tcp_conn_request.
18166 	 */
18167 	CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp);
18168 
18169 	tcp->tcp_detached = B_FALSE;
18170 
18171 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) {
18172 		/*
18173 		 * Someone blewoff the eager before we could finish
18174 		 * the accept.
18175 		 *
18176 		 * The only reason eager exists it because we put in
18177 		 * a ref on it when conn ind went up. We need to send
18178 		 * a disconnect indication up while the last reference
18179 		 * on the eager will be dropped by the squeue when we
18180 		 * return.
18181 		 */
18182 		ASSERT(tcp->tcp_listener == NULL);
18183 		if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) {
18184 			struct	T_discon_ind	*tdi;
18185 
18186 			(void) putnextctl1(q, M_FLUSH, FLUSHRW);
18187 			/*
18188 			 * Let us reuse the incoming mblk to avoid memory
18189 			 * allocation failure problems. We know that the
18190 			 * size of the incoming mblk i.e. stroptions is greater
18191 			 * than sizeof T_discon_ind. So the reallocb below
18192 			 * can't fail.
18193 			 */
18194 			freemsg(mp->b_cont);
18195 			mp->b_cont = NULL;
18196 			ASSERT(DB_REF(mp) == 1);
18197 			mp = reallocb(mp, sizeof (struct T_discon_ind),
18198 			    B_FALSE);
18199 			ASSERT(mp != NULL);
18200 			DB_TYPE(mp) = M_PROTO;
18201 			((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND;
18202 			tdi = (struct T_discon_ind *)mp->b_rptr;
18203 			if (tcp->tcp_issocket) {
18204 				tdi->DISCON_reason = ECONNREFUSED;
18205 				tdi->SEQ_number = 0;
18206 			} else {
18207 				tdi->DISCON_reason = ENOPROTOOPT;
18208 				tdi->SEQ_number =
18209 				    tcp->tcp_conn_req_seqnum;
18210 			}
18211 			mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind);
18212 			putnext(q, mp);
18213 		} else {
18214 			freemsg(mp);
18215 		}
18216 		if (tcp->tcp_hard_binding) {
18217 			tcp->tcp_hard_binding = B_FALSE;
18218 			tcp->tcp_hard_bound = B_TRUE;
18219 		}
18220 		return;
18221 	}
18222 
18223 	mp1 = stropt_mp->b_cont;
18224 	stropt_mp->b_cont = NULL;
18225 	ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS);
18226 	stropt = (struct stroptions *)stropt_mp->b_rptr;
18227 
18228 	while (mp1 != NULL) {
18229 		mp = mp1;
18230 		mp1 = mp1->b_cont;
18231 		mp->b_cont = NULL;
18232 		tcp->tcp_drop_opt_ack_cnt++;
18233 		CALL_IP_WPUT(connp, tcp->tcp_wq, mp);
18234 	}
18235 	mp = NULL;
18236 
18237 	/*
18238 	 * For a loopback connection with tcp_direct_sockfs on, note that
18239 	 * we don't have to protect tcp_rcv_list yet because synchronous
18240 	 * streams has not yet been enabled and tcp_fuse_rrw() cannot
18241 	 * possibly race with us.
18242 	 */
18243 
18244 	/*
18245 	 * Set the max window size (tcp_rq->q_hiwat) of the acceptor
18246 	 * properly.  This is the first time we know of the acceptor'
18247 	 * queue.  So we do it here.
18248 	 */
18249 	if (tcp->tcp_rcv_list == NULL) {
18250 		/*
18251 		 * Recv queue is empty, tcp_rwnd should not have changed.
18252 		 * That means it should be equal to the listener's tcp_rwnd.
18253 		 */
18254 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd;
18255 	} else {
18256 #ifdef DEBUG
18257 		uint_t cnt = 0;
18258 
18259 		mp1 = tcp->tcp_rcv_list;
18260 		while ((mp = mp1) != NULL) {
18261 			mp1 = mp->b_next;
18262 			cnt += msgdsize(mp);
18263 		}
18264 		ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt);
18265 #endif
18266 		/* There is some data, add them back to get the max. */
18267 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
18268 	}
18269 	/*
18270 	 * This is the first time we run on the correct
18271 	 * queue after tcp_accept. So fix all the q parameters
18272 	 * here.
18273 	 */
18274 	stropt->so_flags = SO_HIWAT | SO_MAXBLK | SO_WROFF;
18275 	stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
18276 
18277 	/*
18278 	 * Record the stream head's high water mark for this endpoint;
18279 	 * this is used for flow-control purposes.
18280 	 */
18281 	stropt->so_hiwat = tcp->tcp_fused ?
18282 	    tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat) :
18283 	    MAX(q->q_hiwat, tcps->tcps_sth_rcv_hiwat);
18284 
18285 	/*
18286 	 * Determine what write offset value to use depending on SACK and
18287 	 * whether the endpoint is fused or not.
18288 	 */
18289 	if (tcp->tcp_fused) {
18290 		ASSERT(tcp->tcp_loopback);
18291 		ASSERT(tcp->tcp_loopback_peer != NULL);
18292 		/*
18293 		 * For fused tcp loopback, set the stream head's write
18294 		 * offset value to zero since we won't be needing any room
18295 		 * for TCP/IP headers.  This would also improve performance
18296 		 * since it would reduce the amount of work done by kmem.
18297 		 * Non-fused tcp loopback case is handled separately below.
18298 		 */
18299 		stropt->so_wroff = 0;
18300 		/*
18301 		 * Update the peer's transmit parameters according to
18302 		 * our recently calculated high water mark value.
18303 		 */
18304 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
18305 	} else if (tcp->tcp_snd_sack_ok) {
18306 		stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
18307 		    (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra);
18308 	} else {
18309 		stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 :
18310 		    tcps->tcps_wroff_xtra);
18311 	}
18312 
18313 	/*
18314 	 * If this is endpoint is handling SSL, then reserve extra
18315 	 * offset and space at the end.
18316 	 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets,
18317 	 * overriding the previous setting. The extra cost of signing and
18318 	 * encrypting multiple MSS-size records (12 of them with Ethernet),
18319 	 * instead of a single contiguous one by the stream head
18320 	 * largely outweighs the statistical reduction of ACKs, when
18321 	 * applicable. The peer will also save on decryption and verification
18322 	 * costs.
18323 	 */
18324 	if (tcp->tcp_kssl_ctx != NULL) {
18325 		stropt->so_wroff += SSL3_WROFFSET;
18326 
18327 		stropt->so_flags |= SO_TAIL;
18328 		stropt->so_tail = SSL3_MAX_TAIL_LEN;
18329 
18330 		stropt->so_flags |= SO_COPYOPT;
18331 		stropt->so_copyopt = ZCVMUNSAFE;
18332 
18333 		stropt->so_maxblk = SSL3_MAX_RECORD_LEN;
18334 	}
18335 
18336 	/* Send the options up */
18337 	putnext(q, stropt_mp);
18338 
18339 	/*
18340 	 * Pass up any data and/or a fin that has been received.
18341 	 *
18342 	 * Adjust receive window in case it had decreased
18343 	 * (because there is data <=> tcp_rcv_list != NULL)
18344 	 * while the connection was detached. Note that
18345 	 * in case the eager was flow-controlled, w/o this
18346 	 * code, the rwnd may never open up again!
18347 	 */
18348 	if (tcp->tcp_rcv_list != NULL) {
18349 		/* We drain directly in case of fused tcp loopback */
18350 		sodirect_t *sodp;
18351 
18352 		if (!tcp->tcp_fused && canputnext(q)) {
18353 			tcp->tcp_rwnd = q->q_hiwat;
18354 			thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
18355 			    << tcp->tcp_rcv_ws;
18356 			thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
18357 			if (tcp->tcp_state >= TCPS_ESTABLISHED &&
18358 			    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
18359 				tcp_xmit_ctl(NULL,
18360 				    tcp, (tcp->tcp_swnd == 0) ?
18361 				    tcp->tcp_suna : tcp->tcp_snxt,
18362 				    tcp->tcp_rnxt, TH_ACK);
18363 				BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
18364 			}
18365 
18366 		}
18367 
18368 		SOD_PTR_ENTER(tcp, sodp);
18369 		if (sodp != NULL) {
18370 			/* Sodirect, move from rcv_list */
18371 			ASSERT(!tcp->tcp_fused);
18372 			while ((mp = tcp->tcp_rcv_list) != NULL) {
18373 				tcp->tcp_rcv_list = mp->b_next;
18374 				mp->b_next = NULL;
18375 				(void) tcp_rcv_sod_enqueue(tcp, sodp, mp,
18376 				    msgdsize(mp));
18377 			}
18378 			tcp->tcp_rcv_last_head = NULL;
18379 			tcp->tcp_rcv_last_tail = NULL;
18380 			tcp->tcp_rcv_cnt = 0;
18381 			(void) tcp_rcv_sod_wakeup(tcp, sodp);
18382 			/* sod_wakeup() did the mutex_exit() */
18383 		} else {
18384 			/* Not sodirect, drain */
18385 			(void) tcp_rcv_drain(q, tcp);
18386 		}
18387 
18388 		/*
18389 		 * For fused tcp loopback, back-enable peer endpoint
18390 		 * if it's currently flow-controlled.
18391 		 */
18392 		if (tcp->tcp_fused) {
18393 			tcp_t *peer_tcp = tcp->tcp_loopback_peer;
18394 
18395 			ASSERT(peer_tcp != NULL);
18396 			ASSERT(peer_tcp->tcp_fused);
18397 			/*
18398 			 * In order to change the peer's tcp_flow_stopped,
18399 			 * we need to take locks for both end points. The
18400 			 * highest address is taken first.
18401 			 */
18402 			if (peer_tcp > tcp) {
18403 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
18404 				mutex_enter(&tcp->tcp_non_sq_lock);
18405 			} else {
18406 				mutex_enter(&tcp->tcp_non_sq_lock);
18407 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
18408 			}
18409 			if (peer_tcp->tcp_flow_stopped) {
18410 				tcp_clrqfull(peer_tcp);
18411 				TCP_STAT(tcps, tcp_fusion_backenabled);
18412 			}
18413 			mutex_exit(&peer_tcp->tcp_non_sq_lock);
18414 			mutex_exit(&tcp->tcp_non_sq_lock);
18415 		}
18416 	}
18417 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
18418 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
18419 		mp = tcp->tcp_ordrel_mp;
18420 		tcp->tcp_ordrel_mp = NULL;
18421 		tcp->tcp_ordrel_done = B_TRUE;
18422 		putnext(q, mp);
18423 	}
18424 	if (tcp->tcp_hard_binding) {
18425 		tcp->tcp_hard_binding = B_FALSE;
18426 		tcp->tcp_hard_bound = B_TRUE;
18427 	}
18428 
18429 	/* We can enable synchronous streams now */
18430 	if (tcp->tcp_fused) {
18431 		tcp_fuse_syncstr_enable_pair(tcp);
18432 	}
18433 
18434 	if (tcp->tcp_ka_enabled) {
18435 		tcp->tcp_ka_last_intrvl = 0;
18436 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
18437 		    MSEC_TO_TICK(tcp->tcp_ka_interval));
18438 	}
18439 
18440 	/*
18441 	 * At this point, eager is fully established and will
18442 	 * have the following references -
18443 	 *
18444 	 * 2 references for connection to exist (1 for TCP and 1 for IP).
18445 	 * 1 reference for the squeue which will be dropped by the squeue as
18446 	 *	soon as this function returns.
18447 	 * There will be 1 additonal reference for being in classifier
18448 	 *	hash list provided something bad hasn't happened.
18449 	 */
18450 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
18451 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
18452 }
18453 
18454 /*
18455  * The function called through squeue to get behind listener's perimeter to
18456  * send a deffered conn_ind.
18457  */
18458 /* ARGSUSED */
18459 void
18460 tcp_send_pending(void *arg, mblk_t *mp, void *arg2)
18461 {
18462 	conn_t	*connp = (conn_t *)arg;
18463 	tcp_t *listener = connp->conn_tcp;
18464 
18465 	if (listener->tcp_state == TCPS_CLOSED ||
18466 	    TCP_IS_DETACHED(listener)) {
18467 		/*
18468 		 * If listener has closed, it would have caused a
18469 		 * a cleanup/blowoff to happen for the eager.
18470 		 */
18471 		tcp_t *tcp;
18472 		struct T_conn_ind	*conn_ind;
18473 
18474 		conn_ind = (struct T_conn_ind *)mp->b_rptr;
18475 		bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
18476 		    conn_ind->OPT_length);
18477 		/*
18478 		 * We need to drop the ref on eager that was put
18479 		 * tcp_rput_data() before trying to send the conn_ind
18480 		 * to listener. The conn_ind was deferred in tcp_send_conn_ind
18481 		 * and tcp_wput_accept() is sending this deferred conn_ind but
18482 		 * listener is closed so we drop the ref.
18483 		 */
18484 		CONN_DEC_REF(tcp->tcp_connp);
18485 		freemsg(mp);
18486 		return;
18487 	}
18488 	putnext(listener->tcp_rq, mp);
18489 }
18490 
18491 
18492 /*
18493  * This is the STREAMS entry point for T_CONN_RES coming down on
18494  * Acceptor STREAM when  sockfs listener does accept processing.
18495  * Read the block comment on top of tcp_conn_request().
18496  */
18497 void
18498 tcp_wput_accept(queue_t *q, mblk_t *mp)
18499 {
18500 	queue_t *rq = RD(q);
18501 	struct T_conn_res *conn_res;
18502 	tcp_t *eager;
18503 	tcp_t *listener;
18504 	struct T_ok_ack *ok;
18505 	t_scalar_t PRIM_type;
18506 	mblk_t *opt_mp;
18507 	conn_t *econnp;
18508 
18509 	ASSERT(DB_TYPE(mp) == M_PROTO);
18510 
18511 	conn_res = (struct T_conn_res *)mp->b_rptr;
18512 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
18513 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) {
18514 		mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
18515 		if (mp != NULL)
18516 			putnext(rq, mp);
18517 		return;
18518 	}
18519 	switch (conn_res->PRIM_type) {
18520 	case O_T_CONN_RES:
18521 	case T_CONN_RES:
18522 		/*
18523 		 * We pass up an err ack if allocb fails. This will
18524 		 * cause sockfs to issue a T_DISCON_REQ which will cause
18525 		 * tcp_eager_blowoff to be called. sockfs will then call
18526 		 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream.
18527 		 * we need to do the allocb up here because we have to
18528 		 * make sure rq->q_qinfo->qi_qclose still points to the
18529 		 * correct function (tcpclose_accept) in case allocb
18530 		 * fails.
18531 		 */
18532 		opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
18533 		if (opt_mp == NULL) {
18534 			mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
18535 			if (mp != NULL)
18536 				putnext(rq, mp);
18537 			return;
18538 		}
18539 
18540 		bcopy(mp->b_rptr + conn_res->OPT_offset,
18541 		    &eager, conn_res->OPT_length);
18542 		PRIM_type = conn_res->PRIM_type;
18543 		mp->b_datap->db_type = M_PCPROTO;
18544 		mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack);
18545 		ok = (struct T_ok_ack *)mp->b_rptr;
18546 		ok->PRIM_type = T_OK_ACK;
18547 		ok->CORRECT_prim = PRIM_type;
18548 		econnp = eager->tcp_connp;
18549 		econnp->conn_dev = (dev_t)RD(q)->q_ptr;
18550 		econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr);
18551 		eager->tcp_rq = rq;
18552 		eager->tcp_wq = q;
18553 		rq->q_ptr = econnp;
18554 		rq->q_qinfo = &tcp_rinitv4;	/* No open - same as rinitv6 */
18555 		q->q_ptr = econnp;
18556 		q->q_qinfo = &tcp_winit;
18557 		listener = eager->tcp_listener;
18558 		eager->tcp_issocket = B_TRUE;
18559 
18560 		/*
18561 		 * TCP is _D_SODIRECT and sockfs is directly above so
18562 		 * save shared sodirect_t pointer (if any).
18563 		 *
18564 		 * If tcp_fused and sodirect enabled disable it.
18565 		 */
18566 		eager->tcp_sodirect = SOD_QTOSODP(eager->tcp_rq);
18567 		if (eager->tcp_fused && eager->tcp_sodirect != NULL) {
18568 			/* Fused, disable sodirect */
18569 			mutex_enter(eager->tcp_sodirect->sod_lockp);
18570 			SOD_DISABLE(eager->tcp_sodirect);
18571 			mutex_exit(eager->tcp_sodirect->sod_lockp);
18572 			eager->tcp_sodirect = NULL;
18573 		}
18574 
18575 		econnp->conn_zoneid = listener->tcp_connp->conn_zoneid;
18576 		econnp->conn_allzones = listener->tcp_connp->conn_allzones;
18577 		ASSERT(econnp->conn_netstack ==
18578 		    listener->tcp_connp->conn_netstack);
18579 		ASSERT(eager->tcp_tcps == listener->tcp_tcps);
18580 
18581 		/* Put the ref for IP */
18582 		CONN_INC_REF(econnp);
18583 
18584 		/*
18585 		 * We should have minimum of 3 references on the conn
18586 		 * at this point. One each for TCP and IP and one for
18587 		 * the T_conn_ind that was sent up when the 3-way handshake
18588 		 * completed. In the normal case we would also have another
18589 		 * reference (making a total of 4) for the conn being in the
18590 		 * classifier hash list. However the eager could have received
18591 		 * an RST subsequently and tcp_closei_local could have removed
18592 		 * the eager from the classifier hash list, hence we can't
18593 		 * assert that reference.
18594 		 */
18595 		ASSERT(econnp->conn_ref >= 3);
18596 
18597 		/*
18598 		 * Send the new local address also up to sockfs. There
18599 		 * should already be enough space in the mp that came
18600 		 * down from soaccept().
18601 		 */
18602 		if (eager->tcp_family == AF_INET) {
18603 			sin_t *sin;
18604 
18605 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18606 			    (sizeof (struct T_ok_ack) + sizeof (sin_t)));
18607 			sin = (sin_t *)mp->b_wptr;
18608 			mp->b_wptr += sizeof (sin_t);
18609 			sin->sin_family = AF_INET;
18610 			sin->sin_port = eager->tcp_lport;
18611 			sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src;
18612 		} else {
18613 			sin6_t *sin6;
18614 
18615 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18616 			    sizeof (struct T_ok_ack) + sizeof (sin6_t));
18617 			sin6 = (sin6_t *)mp->b_wptr;
18618 			mp->b_wptr += sizeof (sin6_t);
18619 			sin6->sin6_family = AF_INET6;
18620 			sin6->sin6_port = eager->tcp_lport;
18621 			if (eager->tcp_ipversion == IPV4_VERSION) {
18622 				sin6->sin6_flowinfo = 0;
18623 				IN6_IPADDR_TO_V4MAPPED(
18624 				    eager->tcp_ipha->ipha_src,
18625 				    &sin6->sin6_addr);
18626 			} else {
18627 				ASSERT(eager->tcp_ip6h != NULL);
18628 				sin6->sin6_flowinfo =
18629 				    eager->tcp_ip6h->ip6_vcf &
18630 				    ~IPV6_VERS_AND_FLOW_MASK;
18631 				sin6->sin6_addr = eager->tcp_ip6h->ip6_src;
18632 			}
18633 			sin6->sin6_scope_id = 0;
18634 			sin6->__sin6_src_id = 0;
18635 		}
18636 
18637 		putnext(rq, mp);
18638 
18639 		opt_mp->b_datap->db_type = M_SETOPTS;
18640 		opt_mp->b_wptr += sizeof (struct stroptions);
18641 
18642 		/*
18643 		 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
18644 		 * from listener to acceptor. The message is chained on the
18645 		 * bind_mp which tcp_rput_other will send down to IP.
18646 		 */
18647 		if (listener->tcp_bound_if != 0) {
18648 			/* allocate optmgmt req */
18649 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
18650 			    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
18651 			    sizeof (int));
18652 			if (mp != NULL)
18653 				linkb(opt_mp, mp);
18654 		}
18655 		if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
18656 			uint_t on = 1;
18657 
18658 			/* allocate optmgmt req */
18659 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
18660 			    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
18661 			if (mp != NULL)
18662 				linkb(opt_mp, mp);
18663 		}
18664 
18665 
18666 		mutex_enter(&listener->tcp_eager_lock);
18667 
18668 		if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
18669 
18670 			tcp_t *tail;
18671 			tcp_t *tcp;
18672 			mblk_t *mp1;
18673 
18674 			tcp = listener->tcp_eager_prev_q0;
18675 			/*
18676 			 * listener->tcp_eager_prev_q0 points to the TAIL of the
18677 			 * deferred T_conn_ind queue. We need to get to the head
18678 			 * of the queue in order to send up T_conn_ind the same
18679 			 * order as how the 3WHS is completed.
18680 			 */
18681 			while (tcp != listener) {
18682 				if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 &&
18683 				    !tcp->tcp_kssl_pending)
18684 					break;
18685 				else
18686 					tcp = tcp->tcp_eager_prev_q0;
18687 			}
18688 			/* None of the pending eagers can be sent up now */
18689 			if (tcp == listener)
18690 				goto no_more_eagers;
18691 
18692 			mp1 = tcp->tcp_conn.tcp_eager_conn_ind;
18693 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
18694 			/* Move from q0 to q */
18695 			ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
18696 			listener->tcp_conn_req_cnt_q0--;
18697 			listener->tcp_conn_req_cnt_q++;
18698 			tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
18699 			    tcp->tcp_eager_prev_q0;
18700 			tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
18701 			    tcp->tcp_eager_next_q0;
18702 			tcp->tcp_eager_prev_q0 = NULL;
18703 			tcp->tcp_eager_next_q0 = NULL;
18704 			tcp->tcp_conn_def_q0 = B_FALSE;
18705 
18706 			/* Make sure the tcp isn't in the list of droppables */
18707 			ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
18708 			    tcp->tcp_eager_prev_drop_q0 == NULL);
18709 
18710 			/*
18711 			 * Insert at end of the queue because sockfs sends
18712 			 * down T_CONN_RES in chronological order. Leaving
18713 			 * the older conn indications at front of the queue
18714 			 * helps reducing search time.
18715 			 */
18716 			tail = listener->tcp_eager_last_q;
18717 			if (tail != NULL) {
18718 				tail->tcp_eager_next_q = tcp;
18719 			} else {
18720 				listener->tcp_eager_next_q = tcp;
18721 			}
18722 			listener->tcp_eager_last_q = tcp;
18723 			tcp->tcp_eager_next_q = NULL;
18724 
18725 			/* Need to get inside the listener perimeter */
18726 			CONN_INC_REF(listener->tcp_connp);
18727 			squeue_fill(listener->tcp_connp->conn_sqp, mp1,
18728 			    tcp_send_pending, listener->tcp_connp,
18729 			    SQTAG_TCP_SEND_PENDING);
18730 		}
18731 no_more_eagers:
18732 		tcp_eager_unlink(eager);
18733 		mutex_exit(&listener->tcp_eager_lock);
18734 
18735 		/*
18736 		 * At this point, the eager is detached from the listener
18737 		 * but we still have an extra refs on eager (apart from the
18738 		 * usual tcp references). The ref was placed in tcp_rput_data
18739 		 * before sending the conn_ind in tcp_send_conn_ind.
18740 		 * The ref will be dropped in tcp_accept_finish().
18741 		 */
18742 		squeue_enter_nodrain(econnp->conn_sqp, opt_mp,
18743 		    tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0);
18744 		return;
18745 	default:
18746 		mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0);
18747 		if (mp != NULL)
18748 			putnext(rq, mp);
18749 		return;
18750 	}
18751 }
18752 
18753 static int
18754 tcp_getmyname(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp)
18755 {
18756 	sin_t *sin = (sin_t *)sa;
18757 	sin6_t *sin6 = (sin6_t *)sa;
18758 
18759 	switch (tcp->tcp_family) {
18760 	case AF_INET:
18761 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
18762 
18763 		if (*salenp < sizeof (sin_t))
18764 			return (EINVAL);
18765 
18766 		*sin = sin_null;
18767 		sin->sin_family = AF_INET;
18768 		sin->sin_port = tcp->tcp_lport;
18769 		sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
18770 		break;
18771 
18772 	case AF_INET6:
18773 		if (*salenp < sizeof (sin6_t))
18774 			return (EINVAL);
18775 
18776 		*sin6 = sin6_null;
18777 		sin6->sin6_family = AF_INET6;
18778 		sin6->sin6_port = tcp->tcp_lport;
18779 		if (tcp->tcp_ipversion == IPV4_VERSION) {
18780 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
18781 			    &sin6->sin6_addr);
18782 		} else {
18783 			sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
18784 		}
18785 		break;
18786 	}
18787 
18788 	return (0);
18789 }
18790 
18791 static int
18792 tcp_getpeername(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp)
18793 {
18794 	sin_t *sin = (sin_t *)sa;
18795 	sin6_t *sin6 = (sin6_t *)sa;
18796 
18797 	if (tcp->tcp_state < TCPS_SYN_RCVD)
18798 		return (ENOTCONN);
18799 
18800 	switch (tcp->tcp_family) {
18801 	case AF_INET:
18802 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
18803 
18804 		if (*salenp < sizeof (sin_t))
18805 			return (EINVAL);
18806 
18807 		*sin = sin_null;
18808 		sin->sin_family = AF_INET;
18809 		sin->sin_port = tcp->tcp_fport;
18810 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6,
18811 		    sin->sin_addr.s_addr);
18812 		break;
18813 
18814 	case AF_INET6:
18815 		if (*salenp < sizeof (sin6_t))
18816 			return (EINVAL);
18817 
18818 		*sin6 = sin6_null;
18819 		sin6->sin6_family = AF_INET6;
18820 		sin6->sin6_port = tcp->tcp_fport;
18821 		sin6->sin6_addr = tcp->tcp_remote_v6;
18822 		if (tcp->tcp_ipversion == IPV6_VERSION) {
18823 			sin6->sin6_flowinfo = tcp->tcp_ip6h->ip6_vcf &
18824 			    ~IPV6_VERS_AND_FLOW_MASK;
18825 		}
18826 		break;
18827 	}
18828 
18829 	return (0);
18830 }
18831 
18832 /*
18833  * Handle special out-of-band ioctl requests (see PSARC/2008/265).
18834  */
18835 static void
18836 tcp_wput_cmdblk(queue_t *q, mblk_t *mp)
18837 {
18838 	void	*data;
18839 	mblk_t	*datamp = mp->b_cont;
18840 	tcp_t	*tcp = Q_TO_TCP(q);
18841 	cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr;
18842 
18843 	if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) {
18844 		cmdp->cb_error = EPROTO;
18845 		qreply(q, mp);
18846 		return;
18847 	}
18848 
18849 	data = datamp->b_rptr;
18850 
18851 	switch (cmdp->cb_cmd) {
18852 	case TI_GETPEERNAME:
18853 		cmdp->cb_error = tcp_getpeername(tcp, data, &cmdp->cb_len);
18854 		break;
18855 	case TI_GETMYNAME:
18856 		cmdp->cb_error = tcp_getmyname(tcp, data, &cmdp->cb_len);
18857 		break;
18858 	default:
18859 		cmdp->cb_error = EINVAL;
18860 		break;
18861 	}
18862 
18863 	qreply(q, mp);
18864 }
18865 
18866 void
18867 tcp_wput(queue_t *q, mblk_t *mp)
18868 {
18869 	conn_t	*connp = Q_TO_CONN(q);
18870 	tcp_t	*tcp;
18871 	void (*output_proc)();
18872 	t_scalar_t type;
18873 	uchar_t *rptr;
18874 	struct iocblk	*iocp;
18875 	uint32_t	msize;
18876 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
18877 
18878 	ASSERT(connp->conn_ref >= 2);
18879 
18880 	switch (DB_TYPE(mp)) {
18881 	case M_DATA:
18882 		tcp = connp->conn_tcp;
18883 		ASSERT(tcp != NULL);
18884 
18885 		msize = msgdsize(mp);
18886 
18887 		mutex_enter(&tcp->tcp_non_sq_lock);
18888 		tcp->tcp_squeue_bytes += msize;
18889 		if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) {
18890 			tcp_setqfull(tcp);
18891 		}
18892 		mutex_exit(&tcp->tcp_non_sq_lock);
18893 
18894 		CONN_INC_REF(connp);
18895 		(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
18896 		    tcp_output, connp, SQTAG_TCP_OUTPUT);
18897 		return;
18898 
18899 	case M_CMD:
18900 		tcp_wput_cmdblk(q, mp);
18901 		return;
18902 
18903 	case M_PROTO:
18904 	case M_PCPROTO:
18905 		/*
18906 		 * if it is a snmp message, don't get behind the squeue
18907 		 */
18908 		tcp = connp->conn_tcp;
18909 		rptr = mp->b_rptr;
18910 		if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
18911 			type = ((union T_primitives *)rptr)->type;
18912 		} else {
18913 			if (tcp->tcp_debug) {
18914 				(void) strlog(TCP_MOD_ID, 0, 1,
18915 				    SL_ERROR|SL_TRACE,
18916 				    "tcp_wput_proto, dropping one...");
18917 			}
18918 			freemsg(mp);
18919 			return;
18920 		}
18921 		if (type == T_SVR4_OPTMGMT_REQ) {
18922 			cred_t	*cr = DB_CREDDEF(mp, tcp->tcp_cred);
18923 			if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get,
18924 			    cr)) {
18925 				/*
18926 				 * This was a SNMP request
18927 				 */
18928 				return;
18929 			} else {
18930 				output_proc = tcp_wput_proto;
18931 			}
18932 		} else {
18933 			output_proc = tcp_wput_proto;
18934 		}
18935 		break;
18936 	case M_IOCTL:
18937 		/*
18938 		 * Most ioctls can be processed right away without going via
18939 		 * squeues - process them right here. Those that do require
18940 		 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK)
18941 		 * are processed by tcp_wput_ioctl().
18942 		 */
18943 		iocp = (struct iocblk *)mp->b_rptr;
18944 		tcp = connp->conn_tcp;
18945 
18946 		switch (iocp->ioc_cmd) {
18947 		case TCP_IOC_ABORT_CONN:
18948 			tcp_ioctl_abort_conn(q, mp);
18949 			return;
18950 		case TI_GETPEERNAME:
18951 		case TI_GETMYNAME:
18952 			mi_copyin(q, mp, NULL,
18953 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
18954 			return;
18955 		case ND_SET:
18956 			/* nd_getset does the necessary checks */
18957 		case ND_GET:
18958 			if (!nd_getset(q, tcps->tcps_g_nd, mp)) {
18959 				CALL_IP_WPUT(connp, q, mp);
18960 				return;
18961 			}
18962 			qreply(q, mp);
18963 			return;
18964 		case TCP_IOC_DEFAULT_Q:
18965 			/*
18966 			 * Wants to be the default wq. Check the credentials
18967 			 * first, the rest is executed via squeue.
18968 			 */
18969 			if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
18970 				iocp->ioc_error = EPERM;
18971 				iocp->ioc_count = 0;
18972 				mp->b_datap->db_type = M_IOCACK;
18973 				qreply(q, mp);
18974 				return;
18975 			}
18976 			output_proc = tcp_wput_ioctl;
18977 			break;
18978 		default:
18979 			output_proc = tcp_wput_ioctl;
18980 			break;
18981 		}
18982 		break;
18983 	default:
18984 		output_proc = tcp_wput_nondata;
18985 		break;
18986 	}
18987 
18988 	CONN_INC_REF(connp);
18989 	(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
18990 	    output_proc, connp, SQTAG_TCP_WPUT_OTHER);
18991 }
18992 
18993 /*
18994  * Initial STREAMS write side put() procedure for sockets. It tries to
18995  * handle the T_CAPABILITY_REQ which sockfs sends down while setting
18996  * up the socket without using the squeue. Non T_CAPABILITY_REQ messages
18997  * are handled by tcp_wput() as usual.
18998  *
18999  * All further messages will also be handled by tcp_wput() because we cannot
19000  * be sure that the above short cut is safe later.
19001  */
19002 static void
19003 tcp_wput_sock(queue_t *wq, mblk_t *mp)
19004 {
19005 	conn_t			*connp = Q_TO_CONN(wq);
19006 	tcp_t			*tcp = connp->conn_tcp;
19007 	struct T_capability_req	*car = (struct T_capability_req *)mp->b_rptr;
19008 
19009 	ASSERT(wq->q_qinfo == &tcp_sock_winit);
19010 	wq->q_qinfo = &tcp_winit;
19011 
19012 	ASSERT(IPCL_IS_TCP(connp));
19013 	ASSERT(TCP_IS_SOCKET(tcp));
19014 
19015 	if (DB_TYPE(mp) == M_PCPROTO &&
19016 	    MBLKL(mp) == sizeof (struct T_capability_req) &&
19017 	    car->PRIM_type == T_CAPABILITY_REQ) {
19018 		tcp_capability_req(tcp, mp);
19019 		return;
19020 	}
19021 
19022 	tcp_wput(wq, mp);
19023 }
19024 
19025 static boolean_t
19026 tcp_zcopy_check(tcp_t *tcp)
19027 {
19028 	conn_t	*connp = tcp->tcp_connp;
19029 	ire_t	*ire;
19030 	boolean_t	zc_enabled = B_FALSE;
19031 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19032 
19033 	if (do_tcpzcopy == 2)
19034 		zc_enabled = B_TRUE;
19035 	else if (tcp->tcp_ipversion == IPV4_VERSION &&
19036 	    IPCL_IS_CONNECTED(connp) &&
19037 	    (connp->conn_flags & IPCL_CHECK_POLICY) == 0 &&
19038 	    connp->conn_dontroute == 0 &&
19039 	    !connp->conn_nexthop_set &&
19040 	    connp->conn_outgoing_ill == NULL &&
19041 	    connp->conn_nofailover_ill == NULL &&
19042 	    do_tcpzcopy == 1) {
19043 		/*
19044 		 * the checks above  closely resemble the fast path checks
19045 		 * in tcp_send_data().
19046 		 */
19047 		mutex_enter(&connp->conn_lock);
19048 		ire = connp->conn_ire_cache;
19049 		ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
19050 		if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
19051 			IRE_REFHOLD(ire);
19052 			if (ire->ire_stq != NULL) {
19053 				ill_t	*ill = (ill_t *)ire->ire_stq->q_ptr;
19054 
19055 				zc_enabled = ill && (ill->ill_capabilities &
19056 				    ILL_CAPAB_ZEROCOPY) &&
19057 				    (ill->ill_zerocopy_capab->
19058 				    ill_zerocopy_flags != 0);
19059 			}
19060 			IRE_REFRELE(ire);
19061 		}
19062 		mutex_exit(&connp->conn_lock);
19063 	}
19064 	tcp->tcp_snd_zcopy_on = zc_enabled;
19065 	if (!TCP_IS_DETACHED(tcp)) {
19066 		if (zc_enabled) {
19067 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE);
19068 			TCP_STAT(tcps, tcp_zcopy_on);
19069 		} else {
19070 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
19071 			TCP_STAT(tcps, tcp_zcopy_off);
19072 		}
19073 	}
19074 	return (zc_enabled);
19075 }
19076 
19077 static mblk_t *
19078 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp)
19079 {
19080 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19081 
19082 	if (do_tcpzcopy == 2)
19083 		return (bp);
19084 	else if (tcp->tcp_snd_zcopy_on) {
19085 		tcp->tcp_snd_zcopy_on = B_FALSE;
19086 		if (!TCP_IS_DETACHED(tcp)) {
19087 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
19088 			TCP_STAT(tcps, tcp_zcopy_disable);
19089 		}
19090 	}
19091 	return (tcp_zcopy_backoff(tcp, bp, 0));
19092 }
19093 
19094 /*
19095  * Backoff from a zero-copy mblk by copying data to a new mblk and freeing
19096  * the original desballoca'ed segmapped mblk.
19097  */
19098 static mblk_t *
19099 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist)
19100 {
19101 	mblk_t *head, *tail, *nbp;
19102 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19103 
19104 	if (IS_VMLOANED_MBLK(bp)) {
19105 		TCP_STAT(tcps, tcp_zcopy_backoff);
19106 		if ((head = copyb(bp)) == NULL) {
19107 			/* fail to backoff; leave it for the next backoff */
19108 			tcp->tcp_xmit_zc_clean = B_FALSE;
19109 			return (bp);
19110 		}
19111 		if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
19112 			if (fix_xmitlist)
19113 				tcp_zcopy_notify(tcp);
19114 			else
19115 				head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
19116 		}
19117 		nbp = bp->b_cont;
19118 		if (fix_xmitlist) {
19119 			head->b_prev = bp->b_prev;
19120 			head->b_next = bp->b_next;
19121 			if (tcp->tcp_xmit_tail == bp)
19122 				tcp->tcp_xmit_tail = head;
19123 		}
19124 		bp->b_next = NULL;
19125 		bp->b_prev = NULL;
19126 		freeb(bp);
19127 	} else {
19128 		head = bp;
19129 		nbp = bp->b_cont;
19130 	}
19131 	tail = head;
19132 	while (nbp) {
19133 		if (IS_VMLOANED_MBLK(nbp)) {
19134 			TCP_STAT(tcps, tcp_zcopy_backoff);
19135 			if ((tail->b_cont = copyb(nbp)) == NULL) {
19136 				tcp->tcp_xmit_zc_clean = B_FALSE;
19137 				tail->b_cont = nbp;
19138 				return (head);
19139 			}
19140 			tail = tail->b_cont;
19141 			if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
19142 				if (fix_xmitlist)
19143 					tcp_zcopy_notify(tcp);
19144 				else
19145 					tail->b_datap->db_struioflag |=
19146 					    STRUIO_ZCNOTIFY;
19147 			}
19148 			bp = nbp;
19149 			nbp = nbp->b_cont;
19150 			if (fix_xmitlist) {
19151 				tail->b_prev = bp->b_prev;
19152 				tail->b_next = bp->b_next;
19153 				if (tcp->tcp_xmit_tail == bp)
19154 					tcp->tcp_xmit_tail = tail;
19155 			}
19156 			bp->b_next = NULL;
19157 			bp->b_prev = NULL;
19158 			freeb(bp);
19159 		} else {
19160 			tail->b_cont = nbp;
19161 			tail = nbp;
19162 			nbp = nbp->b_cont;
19163 		}
19164 	}
19165 	if (fix_xmitlist) {
19166 		tcp->tcp_xmit_last = tail;
19167 		tcp->tcp_xmit_zc_clean = B_TRUE;
19168 	}
19169 	return (head);
19170 }
19171 
19172 static void
19173 tcp_zcopy_notify(tcp_t *tcp)
19174 {
19175 	struct stdata	*stp;
19176 
19177 	if (tcp->tcp_detached)
19178 		return;
19179 	stp = STREAM(tcp->tcp_rq);
19180 	mutex_enter(&stp->sd_lock);
19181 	stp->sd_flag |= STZCNOTIFY;
19182 	cv_broadcast(&stp->sd_zcopy_wait);
19183 	mutex_exit(&stp->sd_lock);
19184 }
19185 
19186 static boolean_t
19187 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep)
19188 {
19189 	ire_t	*ire;
19190 	conn_t	*connp = tcp->tcp_connp;
19191 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19192 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
19193 
19194 	mutex_enter(&connp->conn_lock);
19195 	ire = connp->conn_ire_cache;
19196 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
19197 
19198 	if ((ire != NULL) &&
19199 	    (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) &&
19200 	    IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) &&
19201 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
19202 		IRE_REFHOLD(ire);
19203 		mutex_exit(&connp->conn_lock);
19204 	} else {
19205 		boolean_t cached = B_FALSE;
19206 		ts_label_t *tsl;
19207 
19208 		/* force a recheck later on */
19209 		tcp->tcp_ire_ill_check_done = B_FALSE;
19210 
19211 		TCP_DBGSTAT(tcps, tcp_ire_null1);
19212 		connp->conn_ire_cache = NULL;
19213 		mutex_exit(&connp->conn_lock);
19214 
19215 		if (ire != NULL)
19216 			IRE_REFRELE_NOTR(ire);
19217 
19218 		tsl = crgetlabel(CONN_CRED(connp));
19219 		ire = (dst ?
19220 		    ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) :
19221 		    ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst,
19222 		    connp->conn_zoneid, tsl, ipst));
19223 
19224 		if (ire == NULL) {
19225 			TCP_STAT(tcps, tcp_ire_null);
19226 			return (B_FALSE);
19227 		}
19228 
19229 		IRE_REFHOLD_NOTR(ire);
19230 
19231 		mutex_enter(&connp->conn_lock);
19232 		if (CONN_CACHE_IRE(connp)) {
19233 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
19234 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
19235 				TCP_CHECK_IREINFO(tcp, ire);
19236 				connp->conn_ire_cache = ire;
19237 				cached = B_TRUE;
19238 			}
19239 			rw_exit(&ire->ire_bucket->irb_lock);
19240 		}
19241 		mutex_exit(&connp->conn_lock);
19242 
19243 		/*
19244 		 * We can continue to use the ire but since it was
19245 		 * not cached, we should drop the extra reference.
19246 		 */
19247 		if (!cached)
19248 			IRE_REFRELE_NOTR(ire);
19249 
19250 		/*
19251 		 * Rampart note: no need to select a new label here, since
19252 		 * labels are not allowed to change during the life of a TCP
19253 		 * connection.
19254 		 */
19255 	}
19256 
19257 	*irep = ire;
19258 
19259 	return (B_TRUE);
19260 }
19261 
19262 /*
19263  * Called from tcp_send() or tcp_send_data() to find workable IRE.
19264  *
19265  * 0 = success;
19266  * 1 = failed to find ire and ill.
19267  */
19268 static boolean_t
19269 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp)
19270 {
19271 	ipha_t		*ipha;
19272 	ipaddr_t	dst;
19273 	ire_t		*ire;
19274 	ill_t		*ill;
19275 	conn_t		*connp = tcp->tcp_connp;
19276 	mblk_t		*ire_fp_mp;
19277 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19278 
19279 	if (mp != NULL)
19280 		ipha = (ipha_t *)mp->b_rptr;
19281 	else
19282 		ipha = tcp->tcp_ipha;
19283 	dst = ipha->ipha_dst;
19284 
19285 	if (!tcp_send_find_ire(tcp, &dst, &ire))
19286 		return (B_FALSE);
19287 
19288 	if ((ire->ire_flags & RTF_MULTIRT) ||
19289 	    (ire->ire_stq == NULL) ||
19290 	    (ire->ire_nce == NULL) ||
19291 	    ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) ||
19292 	    ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) ||
19293 	    MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) {
19294 		TCP_STAT(tcps, tcp_ip_ire_send);
19295 		IRE_REFRELE(ire);
19296 		return (B_FALSE);
19297 	}
19298 
19299 	ill = ire_to_ill(ire);
19300 	if (connp->conn_outgoing_ill != NULL) {
19301 		ill_t *conn_outgoing_ill = NULL;
19302 		/*
19303 		 * Choose a good ill in the group to send the packets on.
19304 		 */
19305 		ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill);
19306 		ill = ire_to_ill(ire);
19307 	}
19308 	ASSERT(ill != NULL);
19309 
19310 	if (!tcp->tcp_ire_ill_check_done) {
19311 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
19312 		tcp->tcp_ire_ill_check_done = B_TRUE;
19313 	}
19314 
19315 	*irep = ire;
19316 	*illp = ill;
19317 
19318 	return (B_TRUE);
19319 }
19320 
19321 static void
19322 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp)
19323 {
19324 	ipha_t		*ipha;
19325 	ipaddr_t	src;
19326 	ipaddr_t	dst;
19327 	uint32_t	cksum;
19328 	ire_t		*ire;
19329 	uint16_t	*up;
19330 	ill_t		*ill;
19331 	conn_t		*connp = tcp->tcp_connp;
19332 	uint32_t	hcksum_txflags = 0;
19333 	mblk_t		*ire_fp_mp;
19334 	uint_t		ire_fp_mp_len;
19335 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19336 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
19337 
19338 	ASSERT(DB_TYPE(mp) == M_DATA);
19339 
19340 	if (DB_CRED(mp) == NULL)
19341 		mblk_setcred(mp, CONN_CRED(connp));
19342 
19343 	ipha = (ipha_t *)mp->b_rptr;
19344 	src = ipha->ipha_src;
19345 	dst = ipha->ipha_dst;
19346 
19347 	DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp);
19348 
19349 	/*
19350 	 * Drop off fast path for IPv6 and also if options are present or
19351 	 * we need to resolve a TS label.
19352 	 */
19353 	if (tcp->tcp_ipversion != IPV4_VERSION ||
19354 	    !IPCL_IS_CONNECTED(connp) ||
19355 	    !CONN_IS_LSO_MD_FASTPATH(connp) ||
19356 	    (connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
19357 	    !connp->conn_ulp_labeled ||
19358 	    ipha->ipha_ident == IP_HDR_INCLUDED ||
19359 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
19360 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst)) {
19361 		if (tcp->tcp_snd_zcopy_aware)
19362 			mp = tcp_zcopy_disable(tcp, mp);
19363 		TCP_STAT(tcps, tcp_ip_send);
19364 		CALL_IP_WPUT(connp, q, mp);
19365 		return;
19366 	}
19367 
19368 	if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) {
19369 		if (tcp->tcp_snd_zcopy_aware)
19370 			mp = tcp_zcopy_backoff(tcp, mp, 0);
19371 		CALL_IP_WPUT(connp, q, mp);
19372 		return;
19373 	}
19374 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
19375 	ire_fp_mp_len = MBLKL(ire_fp_mp);
19376 
19377 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
19378 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
19379 #ifndef _BIG_ENDIAN
19380 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
19381 #endif
19382 
19383 	/*
19384 	 * Check to see if we need to re-enable LSO/MDT for this connection
19385 	 * because it was previously disabled due to changes in the ill;
19386 	 * note that by doing it here, this re-enabling only applies when
19387 	 * the packet is not dispatched through CALL_IP_WPUT().
19388 	 *
19389 	 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath
19390 	 * case, since that's how we ended up here.  For IPv6, we do the
19391 	 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue.
19392 	 */
19393 	if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) {
19394 		/*
19395 		 * Restore LSO for this connection, so that next time around
19396 		 * it is eligible to go through tcp_lsosend() path again.
19397 		 */
19398 		TCP_STAT(tcps, tcp_lso_enabled);
19399 		tcp->tcp_lso = B_TRUE;
19400 		ip1dbg(("tcp_send_data: reenabling LSO for connp %p on "
19401 		    "interface %s\n", (void *)connp, ill->ill_name));
19402 	} else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) {
19403 		/*
19404 		 * Restore MDT for this connection, so that next time around
19405 		 * it is eligible to go through tcp_multisend() path again.
19406 		 */
19407 		TCP_STAT(tcps, tcp_mdt_conn_resumed1);
19408 		tcp->tcp_mdt = B_TRUE;
19409 		ip1dbg(("tcp_send_data: reenabling MDT for connp %p on "
19410 		    "interface %s\n", (void *)connp, ill->ill_name));
19411 	}
19412 
19413 	if (tcp->tcp_snd_zcopy_aware) {
19414 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
19415 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
19416 			mp = tcp_zcopy_disable(tcp, mp);
19417 		/*
19418 		 * we shouldn't need to reset ipha as the mp containing
19419 		 * ipha should never be a zero-copy mp.
19420 		 */
19421 	}
19422 
19423 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
19424 		ASSERT(ill->ill_hcksum_capab != NULL);
19425 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
19426 	}
19427 
19428 	/* pseudo-header checksum (do it in parts for IP header checksum) */
19429 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
19430 
19431 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
19432 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
19433 
19434 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
19435 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
19436 
19437 	/* Software checksum? */
19438 	if (DB_CKSUMFLAGS(mp) == 0) {
19439 		TCP_STAT(tcps, tcp_out_sw_cksum);
19440 		TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
19441 		    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
19442 	}
19443 
19444 	ipha->ipha_fragment_offset_and_flags |=
19445 	    (uint32_t)htons(ire->ire_frag_flag);
19446 
19447 	/* Calculate IP header checksum if hardware isn't capable */
19448 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
19449 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
19450 		    ((uint16_t *)ipha)[4]);
19451 	}
19452 
19453 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
19454 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
19455 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
19456 
19457 	UPDATE_OB_PKT_COUNT(ire);
19458 	ire->ire_last_used_time = lbolt;
19459 
19460 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
19461 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
19462 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
19463 	    ntohs(ipha->ipha_length));
19464 
19465 	if (ILL_DLS_CAPABLE(ill)) {
19466 		/*
19467 		 * Send the packet directly to DLD, where it may be queued
19468 		 * depending on the availability of transmit resources at
19469 		 * the media layer.
19470 		 */
19471 		IP_DLS_ILL_TX(ill, ipha, mp, ipst, ire_fp_mp_len);
19472 	} else {
19473 		ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr;
19474 		DTRACE_PROBE4(ip4__physical__out__start,
19475 		    ill_t *, NULL, ill_t *, out_ill,
19476 		    ipha_t *, ipha, mblk_t *, mp);
19477 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
19478 		    ipst->ips_ipv4firewall_physical_out,
19479 		    NULL, out_ill, ipha, mp, mp, 0, ipst);
19480 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
19481 
19482 		if (mp != NULL) {
19483 			if (ipst->ips_ipobs_enabled) {
19484 				ipobs_hook(mp, IPOBS_HOOK_OUTBOUND,
19485 				    IP_REAL_ZONEID(connp->conn_zoneid, ipst),
19486 				    ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len,
19487 				    ipst);
19488 			}
19489 			DTRACE_IP_FASTPATH(mp, ipha, out_ill, ipha, NULL);
19490 			putnext(ire->ire_stq, mp);
19491 		}
19492 	}
19493 	IRE_REFRELE(ire);
19494 }
19495 
19496 /*
19497  * This handles the case when the receiver has shrunk its win. Per RFC 1122
19498  * if the receiver shrinks the window, i.e. moves the right window to the
19499  * left, the we should not send new data, but should retransmit normally the
19500  * old unacked data between suna and suna + swnd. We might has sent data
19501  * that is now outside the new window, pretend that we didn't send  it.
19502  */
19503 static void
19504 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count)
19505 {
19506 	uint32_t	snxt = tcp->tcp_snxt;
19507 	mblk_t		*xmit_tail;
19508 	int32_t		offset;
19509 
19510 	ASSERT(shrunk_count > 0);
19511 
19512 	/* Pretend we didn't send the data outside the window */
19513 	snxt -= shrunk_count;
19514 
19515 	/* Get the mblk and the offset in it per the shrunk window */
19516 	xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset);
19517 
19518 	ASSERT(xmit_tail != NULL);
19519 
19520 	/* Reset all the values per the now shrunk window */
19521 	tcp->tcp_snxt = snxt;
19522 	tcp->tcp_xmit_tail = xmit_tail;
19523 	tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr -
19524 	    offset;
19525 	tcp->tcp_unsent += shrunk_count;
19526 
19527 	if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0)
19528 		/*
19529 		 * Make sure the timer is running so that we will probe a zero
19530 		 * window.
19531 		 */
19532 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19533 }
19534 
19535 
19536 /*
19537  * The TCP normal data output path.
19538  * NOTE: the logic of the fast path is duplicated from this function.
19539  */
19540 static void
19541 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent)
19542 {
19543 	int		len;
19544 	mblk_t		*local_time;
19545 	mblk_t		*mp1;
19546 	uint32_t	snxt;
19547 	int		tail_unsent;
19548 	int		tcpstate;
19549 	int		usable = 0;
19550 	mblk_t		*xmit_tail;
19551 	queue_t		*q = tcp->tcp_wq;
19552 	int32_t		mss;
19553 	int32_t		num_sack_blk = 0;
19554 	int32_t		tcp_hdr_len;
19555 	int32_t		tcp_tcp_hdr_len;
19556 	int		mdt_thres;
19557 	int		rc;
19558 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19559 	ip_stack_t	*ipst;
19560 
19561 	tcpstate = tcp->tcp_state;
19562 	if (mp == NULL) {
19563 		/*
19564 		 * tcp_wput_data() with NULL mp should only be called when
19565 		 * there is unsent data.
19566 		 */
19567 		ASSERT(tcp->tcp_unsent > 0);
19568 		/* Really tacky... but we need this for detached closes. */
19569 		len = tcp->tcp_unsent;
19570 		goto data_null;
19571 	}
19572 
19573 #if CCS_STATS
19574 	wrw_stats.tot.count++;
19575 	wrw_stats.tot.bytes += msgdsize(mp);
19576 #endif
19577 	ASSERT(mp->b_datap->db_type == M_DATA);
19578 	/*
19579 	 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ,
19580 	 * or before a connection attempt has begun.
19581 	 */
19582 	if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT ||
19583 	    (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
19584 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
19585 #ifdef DEBUG
19586 			cmn_err(CE_WARN,
19587 			    "tcp_wput_data: data after ordrel, %s",
19588 			    tcp_display(tcp, NULL,
19589 			    DISP_ADDR_AND_PORT));
19590 #else
19591 			if (tcp->tcp_debug) {
19592 				(void) strlog(TCP_MOD_ID, 0, 1,
19593 				    SL_TRACE|SL_ERROR,
19594 				    "tcp_wput_data: data after ordrel, %s\n",
19595 				    tcp_display(tcp, NULL,
19596 				    DISP_ADDR_AND_PORT));
19597 			}
19598 #endif /* DEBUG */
19599 		}
19600 		if (tcp->tcp_snd_zcopy_aware &&
19601 		    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0)
19602 			tcp_zcopy_notify(tcp);
19603 		freemsg(mp);
19604 		mutex_enter(&tcp->tcp_non_sq_lock);
19605 		if (tcp->tcp_flow_stopped &&
19606 		    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
19607 			tcp_clrqfull(tcp);
19608 		}
19609 		mutex_exit(&tcp->tcp_non_sq_lock);
19610 		return;
19611 	}
19612 
19613 	/* Strip empties */
19614 	for (;;) {
19615 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
19616 		    (uintptr_t)INT_MAX);
19617 		len = (int)(mp->b_wptr - mp->b_rptr);
19618 		if (len > 0)
19619 			break;
19620 		mp1 = mp;
19621 		mp = mp->b_cont;
19622 		freeb(mp1);
19623 		if (!mp) {
19624 			return;
19625 		}
19626 	}
19627 
19628 	/* If we are the first on the list ... */
19629 	if (tcp->tcp_xmit_head == NULL) {
19630 		tcp->tcp_xmit_head = mp;
19631 		tcp->tcp_xmit_tail = mp;
19632 		tcp->tcp_xmit_tail_unsent = len;
19633 	} else {
19634 		/* If tiny tx and room in txq tail, pullup to save mblks. */
19635 		struct datab *dp;
19636 
19637 		mp1 = tcp->tcp_xmit_last;
19638 		if (len < tcp_tx_pull_len &&
19639 		    (dp = mp1->b_datap)->db_ref == 1 &&
19640 		    dp->db_lim - mp1->b_wptr >= len) {
19641 			ASSERT(len > 0);
19642 			ASSERT(!mp1->b_cont);
19643 			if (len == 1) {
19644 				*mp1->b_wptr++ = *mp->b_rptr;
19645 			} else {
19646 				bcopy(mp->b_rptr, mp1->b_wptr, len);
19647 				mp1->b_wptr += len;
19648 			}
19649 			if (mp1 == tcp->tcp_xmit_tail)
19650 				tcp->tcp_xmit_tail_unsent += len;
19651 			mp1->b_cont = mp->b_cont;
19652 			if (tcp->tcp_snd_zcopy_aware &&
19653 			    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
19654 				mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
19655 			freeb(mp);
19656 			mp = mp1;
19657 		} else {
19658 			tcp->tcp_xmit_last->b_cont = mp;
19659 		}
19660 		len += tcp->tcp_unsent;
19661 	}
19662 
19663 	/* Tack on however many more positive length mblks we have */
19664 	if ((mp1 = mp->b_cont) != NULL) {
19665 		do {
19666 			int tlen;
19667 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
19668 			    (uintptr_t)INT_MAX);
19669 			tlen = (int)(mp1->b_wptr - mp1->b_rptr);
19670 			if (tlen <= 0) {
19671 				mp->b_cont = mp1->b_cont;
19672 				freeb(mp1);
19673 			} else {
19674 				len += tlen;
19675 				mp = mp1;
19676 			}
19677 		} while ((mp1 = mp->b_cont) != NULL);
19678 	}
19679 	tcp->tcp_xmit_last = mp;
19680 	tcp->tcp_unsent = len;
19681 
19682 	if (urgent)
19683 		usable = 1;
19684 
19685 data_null:
19686 	snxt = tcp->tcp_snxt;
19687 	xmit_tail = tcp->tcp_xmit_tail;
19688 	tail_unsent = tcp->tcp_xmit_tail_unsent;
19689 
19690 	/*
19691 	 * Note that tcp_mss has been adjusted to take into account the
19692 	 * timestamp option if applicable.  Because SACK options do not
19693 	 * appear in every TCP segments and they are of variable lengths,
19694 	 * they cannot be included in tcp_mss.  Thus we need to calculate
19695 	 * the actual segment length when we need to send a segment which
19696 	 * includes SACK options.
19697 	 */
19698 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
19699 		int32_t	opt_len;
19700 
19701 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
19702 		    tcp->tcp_num_sack_blk);
19703 		opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN *
19704 		    2 + TCPOPT_HEADER_LEN;
19705 		mss = tcp->tcp_mss - opt_len;
19706 		tcp_hdr_len = tcp->tcp_hdr_len + opt_len;
19707 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len;
19708 	} else {
19709 		mss = tcp->tcp_mss;
19710 		tcp_hdr_len = tcp->tcp_hdr_len;
19711 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
19712 	}
19713 
19714 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
19715 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
19716 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
19717 	}
19718 	if (tcpstate == TCPS_SYN_RCVD) {
19719 		/*
19720 		 * The three-way connection establishment handshake is not
19721 		 * complete yet. We want to queue the data for transmission
19722 		 * after entering ESTABLISHED state (RFC793). A jump to
19723 		 * "done" label effectively leaves data on the queue.
19724 		 */
19725 		goto done;
19726 	} else {
19727 		int usable_r;
19728 
19729 		/*
19730 		 * In the special case when cwnd is zero, which can only
19731 		 * happen if the connection is ECN capable, return now.
19732 		 * New segments is sent using tcp_timer().  The timer
19733 		 * is set in tcp_rput_data().
19734 		 */
19735 		if (tcp->tcp_cwnd == 0) {
19736 			/*
19737 			 * Note that tcp_cwnd is 0 before 3-way handshake is
19738 			 * finished.
19739 			 */
19740 			ASSERT(tcp->tcp_ecn_ok ||
19741 			    tcp->tcp_state < TCPS_ESTABLISHED);
19742 			return;
19743 		}
19744 
19745 		/* NOTE: trouble if xmitting while SYN not acked? */
19746 		usable_r = snxt - tcp->tcp_suna;
19747 		usable_r = tcp->tcp_swnd - usable_r;
19748 
19749 		/*
19750 		 * Check if the receiver has shrunk the window.  If
19751 		 * tcp_wput_data() with NULL mp is called, tcp_fin_sent
19752 		 * cannot be set as there is unsent data, so FIN cannot
19753 		 * be sent out.  Otherwise, we need to take into account
19754 		 * of FIN as it consumes an "invisible" sequence number.
19755 		 */
19756 		ASSERT(tcp->tcp_fin_sent == 0);
19757 		if (usable_r < 0) {
19758 			/*
19759 			 * The receiver has shrunk the window and we have sent
19760 			 * -usable_r date beyond the window, re-adjust.
19761 			 *
19762 			 * If TCP window scaling is enabled, there can be
19763 			 * round down error as the advertised receive window
19764 			 * is actually right shifted n bits.  This means that
19765 			 * the lower n bits info is wiped out.  It will look
19766 			 * like the window is shrunk.  Do a check here to
19767 			 * see if the shrunk amount is actually within the
19768 			 * error in window calculation.  If it is, just
19769 			 * return.  Note that this check is inside the
19770 			 * shrunk window check.  This makes sure that even
19771 			 * though tcp_process_shrunk_swnd() is not called,
19772 			 * we will stop further processing.
19773 			 */
19774 			if ((-usable_r >> tcp->tcp_snd_ws) > 0) {
19775 				tcp_process_shrunk_swnd(tcp, -usable_r);
19776 			}
19777 			return;
19778 		}
19779 
19780 		/* usable = MIN(swnd, cwnd) - unacked_bytes */
19781 		if (tcp->tcp_swnd > tcp->tcp_cwnd)
19782 			usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd;
19783 
19784 		/* usable = MIN(usable, unsent) */
19785 		if (usable_r > len)
19786 			usable_r = len;
19787 
19788 		/* usable = MAX(usable, {1 for urgent, 0 for data}) */
19789 		if (usable_r > 0) {
19790 			usable = usable_r;
19791 		} else {
19792 			/* Bypass all other unnecessary processing. */
19793 			goto done;
19794 		}
19795 	}
19796 
19797 	local_time = (mblk_t *)lbolt;
19798 
19799 	/*
19800 	 * "Our" Nagle Algorithm.  This is not the same as in the old
19801 	 * BSD.  This is more in line with the true intent of Nagle.
19802 	 *
19803 	 * The conditions are:
19804 	 * 1. The amount of unsent data (or amount of data which can be
19805 	 *    sent, whichever is smaller) is less than Nagle limit.
19806 	 * 2. The last sent size is also less than Nagle limit.
19807 	 * 3. There is unack'ed data.
19808 	 * 4. Urgent pointer is not set.  Send urgent data ignoring the
19809 	 *    Nagle algorithm.  This reduces the probability that urgent
19810 	 *    bytes get "merged" together.
19811 	 * 5. The app has not closed the connection.  This eliminates the
19812 	 *    wait time of the receiving side waiting for the last piece of
19813 	 *    (small) data.
19814 	 *
19815 	 * If all are satisified, exit without sending anything.  Note
19816 	 * that Nagle limit can be smaller than 1 MSS.  Nagle limit is
19817 	 * the smaller of 1 MSS and global tcp_naglim_def (default to be
19818 	 * 4095).
19819 	 */
19820 	if (usable < (int)tcp->tcp_naglim &&
19821 	    tcp->tcp_naglim > tcp->tcp_last_sent_len &&
19822 	    snxt != tcp->tcp_suna &&
19823 	    !(tcp->tcp_valid_bits & TCP_URG_VALID) &&
19824 	    !(tcp->tcp_valid_bits & TCP_FSS_VALID)) {
19825 		goto done;
19826 	}
19827 
19828 	if (tcp->tcp_cork) {
19829 		/*
19830 		 * if the tcp->tcp_cork option is set, then we have to force
19831 		 * TCP not to send partial segment (smaller than MSS bytes).
19832 		 * We are calculating the usable now based on full mss and
19833 		 * will save the rest of remaining data for later.
19834 		 */
19835 		if (usable < mss)
19836 			goto done;
19837 		usable = (usable / mss) * mss;
19838 	}
19839 
19840 	/* Update the latest receive window size in TCP header. */
19841 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
19842 	    tcp->tcp_tcph->th_win);
19843 
19844 	/*
19845 	 * Determine if it's worthwhile to attempt LSO or MDT, based on:
19846 	 *
19847 	 * 1. Simple TCP/IP{v4,v6} (no options).
19848 	 * 2. IPSEC/IPQoS processing is not needed for the TCP connection.
19849 	 * 3. If the TCP connection is in ESTABLISHED state.
19850 	 * 4. The TCP is not detached.
19851 	 *
19852 	 * If any of the above conditions have changed during the
19853 	 * connection, stop using LSO/MDT and restore the stream head
19854 	 * parameters accordingly.
19855 	 */
19856 	ipst = tcps->tcps_netstack->netstack_ip;
19857 
19858 	if ((tcp->tcp_lso || tcp->tcp_mdt) &&
19859 	    ((tcp->tcp_ipversion == IPV4_VERSION &&
19860 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
19861 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19862 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) ||
19863 	    tcp->tcp_state != TCPS_ESTABLISHED ||
19864 	    TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) ||
19865 	    CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) ||
19866 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst))) {
19867 		if (tcp->tcp_lso) {
19868 			tcp->tcp_connp->conn_lso_ok = B_FALSE;
19869 			tcp->tcp_lso = B_FALSE;
19870 		} else {
19871 			tcp->tcp_connp->conn_mdt_ok = B_FALSE;
19872 			tcp->tcp_mdt = B_FALSE;
19873 		}
19874 
19875 		/* Anything other than detached is considered pathological */
19876 		if (!TCP_IS_DETACHED(tcp)) {
19877 			if (tcp->tcp_lso)
19878 				TCP_STAT(tcps, tcp_lso_disabled);
19879 			else
19880 				TCP_STAT(tcps, tcp_mdt_conn_halted1);
19881 			(void) tcp_maxpsz_set(tcp, B_TRUE);
19882 		}
19883 	}
19884 
19885 	/* Use MDT if sendable amount is greater than the threshold */
19886 	if (tcp->tcp_mdt &&
19887 	    (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) &&
19888 	    (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL &&
19889 	    MBLKL(xmit_tail->b_cont) > mdt_thres)) &&
19890 	    (tcp->tcp_valid_bits == 0 ||
19891 	    tcp->tcp_valid_bits == TCP_FSS_VALID)) {
19892 		ASSERT(tcp->tcp_connp->conn_mdt_ok);
19893 		rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19894 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19895 		    local_time, mdt_thres);
19896 	} else {
19897 		rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19898 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19899 		    local_time, INT_MAX);
19900 	}
19901 
19902 	/* Pretend that all we were trying to send really got sent */
19903 	if (rc < 0 && tail_unsent < 0) {
19904 		do {
19905 			xmit_tail = xmit_tail->b_cont;
19906 			xmit_tail->b_prev = local_time;
19907 			ASSERT((uintptr_t)(xmit_tail->b_wptr -
19908 			    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
19909 			tail_unsent += (int)(xmit_tail->b_wptr -
19910 			    xmit_tail->b_rptr);
19911 		} while (tail_unsent < 0);
19912 	}
19913 done:;
19914 	tcp->tcp_xmit_tail = xmit_tail;
19915 	tcp->tcp_xmit_tail_unsent = tail_unsent;
19916 	len = tcp->tcp_snxt - snxt;
19917 	if (len) {
19918 		/*
19919 		 * If new data was sent, need to update the notsack
19920 		 * list, which is, afterall, data blocks that have
19921 		 * not been sack'ed by the receiver.  New data is
19922 		 * not sack'ed.
19923 		 */
19924 		if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
19925 			/* len is a negative value. */
19926 			tcp->tcp_pipe -= len;
19927 			tcp_notsack_update(&(tcp->tcp_notsack_list),
19928 			    tcp->tcp_snxt, snxt,
19929 			    &(tcp->tcp_num_notsack_blk),
19930 			    &(tcp->tcp_cnt_notsack_list));
19931 		}
19932 		tcp->tcp_snxt = snxt + tcp->tcp_fin_sent;
19933 		tcp->tcp_rack = tcp->tcp_rnxt;
19934 		tcp->tcp_rack_cnt = 0;
19935 		if ((snxt + len) == tcp->tcp_suna) {
19936 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19937 		}
19938 	} else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) {
19939 		/*
19940 		 * Didn't send anything. Make sure the timer is running
19941 		 * so that we will probe a zero window.
19942 		 */
19943 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19944 	}
19945 	/* Note that len is the amount we just sent but with a negative sign */
19946 	tcp->tcp_unsent += len;
19947 	mutex_enter(&tcp->tcp_non_sq_lock);
19948 	if (tcp->tcp_flow_stopped) {
19949 		if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
19950 			tcp_clrqfull(tcp);
19951 		}
19952 	} else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) {
19953 		tcp_setqfull(tcp);
19954 	}
19955 	mutex_exit(&tcp->tcp_non_sq_lock);
19956 }
19957 
19958 /*
19959  * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the
19960  * outgoing TCP header with the template header, as well as other
19961  * options such as time-stamp, ECN and/or SACK.
19962  */
19963 static void
19964 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk)
19965 {
19966 	tcph_t *tcp_tmpl, *tcp_h;
19967 	uint32_t *dst, *src;
19968 	int hdrlen;
19969 
19970 	ASSERT(OK_32PTR(rptr));
19971 
19972 	/* Template header */
19973 	tcp_tmpl = tcp->tcp_tcph;
19974 
19975 	/* Header of outgoing packet */
19976 	tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
19977 
19978 	/* dst and src are opaque 32-bit fields, used for copying */
19979 	dst = (uint32_t *)rptr;
19980 	src = (uint32_t *)tcp->tcp_iphc;
19981 	hdrlen = tcp->tcp_hdr_len;
19982 
19983 	/* Fill time-stamp option if needed */
19984 	if (tcp->tcp_snd_ts_ok) {
19985 		U32_TO_BE32((uint32_t)now,
19986 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4);
19987 		U32_TO_BE32(tcp->tcp_ts_recent,
19988 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8);
19989 	} else {
19990 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
19991 	}
19992 
19993 	/*
19994 	 * Copy the template header; is this really more efficient than
19995 	 * calling bcopy()?  For simple IPv4/TCP, it may be the case,
19996 	 * but perhaps not for other scenarios.
19997 	 */
19998 	dst[0] = src[0];
19999 	dst[1] = src[1];
20000 	dst[2] = src[2];
20001 	dst[3] = src[3];
20002 	dst[4] = src[4];
20003 	dst[5] = src[5];
20004 	dst[6] = src[6];
20005 	dst[7] = src[7];
20006 	dst[8] = src[8];
20007 	dst[9] = src[9];
20008 	if (hdrlen -= 40) {
20009 		hdrlen >>= 2;
20010 		dst += 10;
20011 		src += 10;
20012 		do {
20013 			*dst++ = *src++;
20014 		} while (--hdrlen);
20015 	}
20016 
20017 	/*
20018 	 * Set the ECN info in the TCP header if it is not a zero
20019 	 * window probe.  Zero window probe is only sent in
20020 	 * tcp_wput_data() and tcp_timer().
20021 	 */
20022 	if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) {
20023 		SET_ECT(tcp, rptr);
20024 
20025 		if (tcp->tcp_ecn_echo_on)
20026 			tcp_h->th_flags[0] |= TH_ECE;
20027 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
20028 			tcp_h->th_flags[0] |= TH_CWR;
20029 			tcp->tcp_ecn_cwr_sent = B_TRUE;
20030 		}
20031 	}
20032 
20033 	/* Fill in SACK options */
20034 	if (num_sack_blk > 0) {
20035 		uchar_t *wptr = rptr + tcp->tcp_hdr_len;
20036 		sack_blk_t *tmp;
20037 		int32_t	i;
20038 
20039 		wptr[0] = TCPOPT_NOP;
20040 		wptr[1] = TCPOPT_NOP;
20041 		wptr[2] = TCPOPT_SACK;
20042 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
20043 		    sizeof (sack_blk_t);
20044 		wptr += TCPOPT_REAL_SACK_LEN;
20045 
20046 		tmp = tcp->tcp_sack_list;
20047 		for (i = 0; i < num_sack_blk; i++) {
20048 			U32_TO_BE32(tmp[i].begin, wptr);
20049 			wptr += sizeof (tcp_seq);
20050 			U32_TO_BE32(tmp[i].end, wptr);
20051 			wptr += sizeof (tcp_seq);
20052 		}
20053 		tcp_h->th_offset_and_rsrvd[0] +=
20054 		    ((num_sack_blk * 2 + 1) << 4);
20055 	}
20056 }
20057 
20058 /*
20059  * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach
20060  * the destination address and SAP attribute, and if necessary, the
20061  * hardware checksum offload attribute to a Multidata message.
20062  */
20063 static int
20064 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum,
20065     const uint32_t start, const uint32_t stuff, const uint32_t end,
20066     const uint32_t flags, tcp_stack_t *tcps)
20067 {
20068 	/* Add global destination address & SAP attribute */
20069 	if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) {
20070 		ip1dbg(("tcp_mdt_add_attrs: can't add global physical "
20071 		    "destination address+SAP\n"));
20072 
20073 		if (dlmp != NULL)
20074 			TCP_STAT(tcps, tcp_mdt_allocfail);
20075 		return (-1);
20076 	}
20077 
20078 	/* Add global hwcksum attribute */
20079 	if (hwcksum &&
20080 	    !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) {
20081 		ip1dbg(("tcp_mdt_add_attrs: can't add global hardware "
20082 		    "checksum attribute\n"));
20083 
20084 		TCP_STAT(tcps, tcp_mdt_allocfail);
20085 		return (-1);
20086 	}
20087 
20088 	return (0);
20089 }
20090 
20091 /*
20092  * Smaller and private version of pdescinfo_t used specifically for TCP,
20093  * which allows for only two payload spans per packet.
20094  */
20095 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t;
20096 
20097 /*
20098  * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit
20099  * scheme, and returns one the following:
20100  *
20101  * -1 = failed allocation.
20102  *  0 = success; burst count reached, or usable send window is too small,
20103  *      and that we'd rather wait until later before sending again.
20104  */
20105 static int
20106 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
20107     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
20108     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
20109     const int mdt_thres)
20110 {
20111 	mblk_t		*md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf;
20112 	multidata_t	*mmd;
20113 	uint_t		obsegs, obbytes, hdr_frag_sz;
20114 	uint_t		cur_hdr_off, cur_pld_off, base_pld_off, first_snxt;
20115 	int		num_burst_seg, max_pld;
20116 	pdesc_t		*pkt;
20117 	tcp_pdescinfo_t	tcp_pkt_info;
20118 	pdescinfo_t	*pkt_info;
20119 	int		pbuf_idx, pbuf_idx_nxt;
20120 	int		seg_len, len, spill, af;
20121 	boolean_t	add_buffer, zcopy, clusterwide;
20122 	boolean_t	rconfirm = B_FALSE;
20123 	boolean_t	done = B_FALSE;
20124 	uint32_t	cksum;
20125 	uint32_t	hwcksum_flags;
20126 	ire_t		*ire = NULL;
20127 	ill_t		*ill;
20128 	ipha_t		*ipha;
20129 	ip6_t		*ip6h;
20130 	ipaddr_t	src, dst;
20131 	ill_zerocopy_capab_t *zc_cap = NULL;
20132 	uint16_t	*up;
20133 	int		err;
20134 	conn_t		*connp;
20135 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20136 	ip_stack_t 	*ipst = tcps->tcps_netstack->netstack_ip;
20137 	int		usable_mmd, tail_unsent_mmd;
20138 	uint_t		snxt_mmd, obsegs_mmd, obbytes_mmd;
20139 	mblk_t		*xmit_tail_mmd;
20140 
20141 #ifdef	_BIG_ENDIAN
20142 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 28) & 0x7)
20143 #else
20144 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 4) & 0x7)
20145 #endif
20146 
20147 #define	PREP_NEW_MULTIDATA() {			\
20148 	mmd = NULL;				\
20149 	md_mp = md_hbuf = NULL;			\
20150 	cur_hdr_off = 0;			\
20151 	max_pld = tcp->tcp_mdt_max_pld;		\
20152 	pbuf_idx = pbuf_idx_nxt = -1;		\
20153 	add_buffer = B_TRUE;			\
20154 	zcopy = B_FALSE;			\
20155 }
20156 
20157 #define	PREP_NEW_PBUF() {			\
20158 	md_pbuf = md_pbuf_nxt = NULL;		\
20159 	pbuf_idx = pbuf_idx_nxt = -1;		\
20160 	cur_pld_off = 0;			\
20161 	first_snxt = *snxt;			\
20162 	ASSERT(*tail_unsent > 0);		\
20163 	base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \
20164 }
20165 
20166 	ASSERT(mdt_thres >= mss);
20167 	ASSERT(*usable > 0 && *usable > mdt_thres);
20168 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
20169 	ASSERT(!TCP_IS_DETACHED(tcp));
20170 	ASSERT(tcp->tcp_valid_bits == 0 ||
20171 	    tcp->tcp_valid_bits == TCP_FSS_VALID);
20172 	ASSERT((tcp->tcp_ipversion == IPV4_VERSION &&
20173 	    tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) ||
20174 	    (tcp->tcp_ipversion == IPV6_VERSION &&
20175 	    tcp->tcp_ip_hdr_len == IPV6_HDR_LEN));
20176 
20177 	connp = tcp->tcp_connp;
20178 	ASSERT(connp != NULL);
20179 	ASSERT(CONN_IS_LSO_MD_FASTPATH(connp));
20180 	ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp));
20181 
20182 	usable_mmd = tail_unsent_mmd = 0;
20183 	snxt_mmd = obsegs_mmd = obbytes_mmd = 0;
20184 	xmit_tail_mmd = NULL;
20185 	/*
20186 	 * Note that tcp will only declare at most 2 payload spans per
20187 	 * packet, which is much lower than the maximum allowable number
20188 	 * of packet spans per Multidata.  For this reason, we use the
20189 	 * privately declared and smaller descriptor info structure, in
20190 	 * order to save some stack space.
20191 	 */
20192 	pkt_info = (pdescinfo_t *)&tcp_pkt_info;
20193 
20194 	af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6;
20195 	if (af == AF_INET) {
20196 		dst = tcp->tcp_ipha->ipha_dst;
20197 		src = tcp->tcp_ipha->ipha_src;
20198 		ASSERT(!CLASSD(dst));
20199 	}
20200 	ASSERT(af == AF_INET ||
20201 	    !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst));
20202 
20203 	obsegs = obbytes = 0;
20204 	num_burst_seg = tcp->tcp_snd_burst;
20205 	md_mp_head = NULL;
20206 	PREP_NEW_MULTIDATA();
20207 
20208 	/*
20209 	 * Before we go on further, make sure there is an IRE that we can
20210 	 * use, and that the ILL supports MDT.  Otherwise, there's no point
20211 	 * in proceeding any further, and we should just hand everything
20212 	 * off to the legacy path.
20213 	 */
20214 	if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire))
20215 		goto legacy_send_no_md;
20216 
20217 	ASSERT(ire != NULL);
20218 	ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION);
20219 	ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6)));
20220 	ASSERT(af == AF_INET || ire->ire_nce != NULL);
20221 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
20222 	/*
20223 	 * If we do support loopback for MDT (which requires modifications
20224 	 * to the receiving paths), the following assertions should go away,
20225 	 * and we would be sending the Multidata to loopback conn later on.
20226 	 */
20227 	ASSERT(!IRE_IS_LOCAL(ire));
20228 	ASSERT(ire->ire_stq != NULL);
20229 
20230 	ill = ire_to_ill(ire);
20231 	ASSERT(ill != NULL);
20232 	ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL);
20233 
20234 	if (!tcp->tcp_ire_ill_check_done) {
20235 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
20236 		tcp->tcp_ire_ill_check_done = B_TRUE;
20237 	}
20238 
20239 	/*
20240 	 * If the underlying interface conditions have changed, or if the
20241 	 * new interface does not support MDT, go back to legacy path.
20242 	 */
20243 	if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) {
20244 		/* don't go through this path anymore for this connection */
20245 		TCP_STAT(tcps, tcp_mdt_conn_halted2);
20246 		tcp->tcp_mdt = B_FALSE;
20247 		ip1dbg(("tcp_multisend: disabling MDT for connp %p on "
20248 		    "interface %s\n", (void *)connp, ill->ill_name));
20249 		/* IRE will be released prior to returning */
20250 		goto legacy_send_no_md;
20251 	}
20252 
20253 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)
20254 		zc_cap = ill->ill_zerocopy_capab;
20255 
20256 	/*
20257 	 * Check if we can take tcp fast-path. Note that "incomplete"
20258 	 * ire's (where the link-layer for next hop is not resolved
20259 	 * or where the fast-path header in nce_fp_mp is not available
20260 	 * yet) are sent down the legacy (slow) path.
20261 	 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA
20262 	 */
20263 	if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) {
20264 		/* IRE will be released prior to returning */
20265 		goto legacy_send_no_md;
20266 	}
20267 
20268 	/* go to legacy path if interface doesn't support zerocopy */
20269 	if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 &&
20270 	    (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) {
20271 		/* IRE will be released prior to returning */
20272 		goto legacy_send_no_md;
20273 	}
20274 
20275 	/* does the interface support hardware checksum offload? */
20276 	hwcksum_flags = 0;
20277 	if (ILL_HCKSUM_CAPABLE(ill) &&
20278 	    (ill->ill_hcksum_capab->ill_hcksum_txflags &
20279 	    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL |
20280 	    HCKSUM_IPHDRCKSUM)) && dohwcksum) {
20281 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
20282 		    HCKSUM_IPHDRCKSUM)
20283 			hwcksum_flags = HCK_IPV4_HDRCKSUM;
20284 
20285 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
20286 		    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6))
20287 			hwcksum_flags |= HCK_FULLCKSUM;
20288 		else if (ill->ill_hcksum_capab->ill_hcksum_txflags &
20289 		    HCKSUM_INET_PARTIAL)
20290 			hwcksum_flags |= HCK_PARTIALCKSUM;
20291 	}
20292 
20293 	/*
20294 	 * Each header fragment consists of the leading extra space,
20295 	 * followed by the TCP/IP header, and the trailing extra space.
20296 	 * We make sure that each header fragment begins on a 32-bit
20297 	 * aligned memory address (tcp_mdt_hdr_head is already 32-bit
20298 	 * aligned in tcp_mdt_update).
20299 	 */
20300 	hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len +
20301 	    tcp->tcp_mdt_hdr_tail), 4);
20302 
20303 	/* are we starting from the beginning of data block? */
20304 	if (*tail_unsent == 0) {
20305 		*xmit_tail = (*xmit_tail)->b_cont;
20306 		ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX);
20307 		*tail_unsent = (int)MBLKL(*xmit_tail);
20308 	}
20309 
20310 	/*
20311 	 * Here we create one or more Multidata messages, each made up of
20312 	 * one header buffer and up to N payload buffers.  This entire
20313 	 * operation is done within two loops:
20314 	 *
20315 	 * The outer loop mostly deals with creating the Multidata message,
20316 	 * as well as the header buffer that gets added to it.  It also
20317 	 * links the Multidata messages together such that all of them can
20318 	 * be sent down to the lower layer in a single putnext call; this
20319 	 * linking behavior depends on the tcp_mdt_chain tunable.
20320 	 *
20321 	 * The inner loop takes an existing Multidata message, and adds
20322 	 * one or more (up to tcp_mdt_max_pld) payload buffers to it.  It
20323 	 * packetizes those buffers by filling up the corresponding header
20324 	 * buffer fragments with the proper IP and TCP headers, and by
20325 	 * describing the layout of each packet in the packet descriptors
20326 	 * that get added to the Multidata.
20327 	 */
20328 	do {
20329 		/*
20330 		 * If usable send window is too small, or data blocks in
20331 		 * transmit list are smaller than our threshold (i.e. app
20332 		 * performs large writes followed by small ones), we hand
20333 		 * off the control over to the legacy path.  Note that we'll
20334 		 * get back the control once it encounters a large block.
20335 		 */
20336 		if (*usable < mss || (*tail_unsent <= mdt_thres &&
20337 		    (*xmit_tail)->b_cont != NULL &&
20338 		    MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) {
20339 			/* send down what we've got so far */
20340 			if (md_mp_head != NULL) {
20341 				tcp_multisend_data(tcp, ire, ill, md_mp_head,
20342 				    obsegs, obbytes, &rconfirm);
20343 			}
20344 			/*
20345 			 * Pass control over to tcp_send(), but tell it to
20346 			 * return to us once a large-size transmission is
20347 			 * possible.
20348 			 */
20349 			TCP_STAT(tcps, tcp_mdt_legacy_small);
20350 			if ((err = tcp_send(q, tcp, mss, tcp_hdr_len,
20351 			    tcp_tcp_hdr_len, num_sack_blk, usable, snxt,
20352 			    tail_unsent, xmit_tail, local_time,
20353 			    mdt_thres)) <= 0) {
20354 				/* burst count reached, or alloc failed */
20355 				IRE_REFRELE(ire);
20356 				return (err);
20357 			}
20358 
20359 			/* tcp_send() may have sent everything, so check */
20360 			if (*usable <= 0) {
20361 				IRE_REFRELE(ire);
20362 				return (0);
20363 			}
20364 
20365 			TCP_STAT(tcps, tcp_mdt_legacy_ret);
20366 			/*
20367 			 * We may have delivered the Multidata, so make sure
20368 			 * to re-initialize before the next round.
20369 			 */
20370 			md_mp_head = NULL;
20371 			obsegs = obbytes = 0;
20372 			num_burst_seg = tcp->tcp_snd_burst;
20373 			PREP_NEW_MULTIDATA();
20374 
20375 			/* are we starting from the beginning of data block? */
20376 			if (*tail_unsent == 0) {
20377 				*xmit_tail = (*xmit_tail)->b_cont;
20378 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20379 				    (uintptr_t)INT_MAX);
20380 				*tail_unsent = (int)MBLKL(*xmit_tail);
20381 			}
20382 		}
20383 		/*
20384 		 * Record current values for parameters we may need to pass
20385 		 * to tcp_send() or tcp_multisend_data(). We checkpoint at
20386 		 * each iteration of the outer loop (each multidata message
20387 		 * creation). If we have a failure in the inner loop, we send
20388 		 * any complete multidata messages we have before reverting
20389 		 * to using the traditional non-md path.
20390 		 */
20391 		snxt_mmd = *snxt;
20392 		usable_mmd = *usable;
20393 		xmit_tail_mmd = *xmit_tail;
20394 		tail_unsent_mmd = *tail_unsent;
20395 		obsegs_mmd = obsegs;
20396 		obbytes_mmd = obbytes;
20397 
20398 		/*
20399 		 * max_pld limits the number of mblks in tcp's transmit
20400 		 * queue that can be added to a Multidata message.  Once
20401 		 * this counter reaches zero, no more additional mblks
20402 		 * can be added to it.  What happens afterwards depends
20403 		 * on whether or not we are set to chain the Multidata
20404 		 * messages.  If we are to link them together, reset
20405 		 * max_pld to its original value (tcp_mdt_max_pld) and
20406 		 * prepare to create a new Multidata message which will
20407 		 * get linked to md_mp_head.  Else, leave it alone and
20408 		 * let the inner loop break on its own.
20409 		 */
20410 		if (tcp_mdt_chain && max_pld == 0)
20411 			PREP_NEW_MULTIDATA();
20412 
20413 		/* adding a payload buffer; re-initialize values */
20414 		if (add_buffer)
20415 			PREP_NEW_PBUF();
20416 
20417 		/*
20418 		 * If we don't have a Multidata, either because we just
20419 		 * (re)entered this outer loop, or after we branched off
20420 		 * to tcp_send above, setup the Multidata and header
20421 		 * buffer to be used.
20422 		 */
20423 		if (md_mp == NULL) {
20424 			int md_hbuflen;
20425 			uint32_t start, stuff;
20426 
20427 			/*
20428 			 * Calculate Multidata header buffer size large enough
20429 			 * to hold all of the headers that can possibly be
20430 			 * sent at this moment.  We'd rather over-estimate
20431 			 * the size than running out of space; this is okay
20432 			 * since this buffer is small anyway.
20433 			 */
20434 			md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz;
20435 
20436 			/*
20437 			 * Start and stuff offset for partial hardware
20438 			 * checksum offload; these are currently for IPv4.
20439 			 * For full checksum offload, they are set to zero.
20440 			 */
20441 			if ((hwcksum_flags & HCK_PARTIALCKSUM)) {
20442 				if (af == AF_INET) {
20443 					start = IP_SIMPLE_HDR_LENGTH;
20444 					stuff = IP_SIMPLE_HDR_LENGTH +
20445 					    TCP_CHECKSUM_OFFSET;
20446 				} else {
20447 					start = IPV6_HDR_LEN;
20448 					stuff = IPV6_HDR_LEN +
20449 					    TCP_CHECKSUM_OFFSET;
20450 				}
20451 			} else {
20452 				start = stuff = 0;
20453 			}
20454 
20455 			/*
20456 			 * Create the header buffer, Multidata, as well as
20457 			 * any necessary attributes (destination address,
20458 			 * SAP and hardware checksum offload) that should
20459 			 * be associated with the Multidata message.
20460 			 */
20461 			ASSERT(cur_hdr_off == 0);
20462 			if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL ||
20463 			    ((md_hbuf->b_wptr += md_hbuflen),
20464 			    (mmd = mmd_alloc(md_hbuf, &md_mp,
20465 			    KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd,
20466 			    /* fastpath mblk */
20467 			    ire->ire_nce->nce_res_mp,
20468 			    /* hardware checksum enabled */
20469 			    (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)),
20470 			    /* hardware checksum offsets */
20471 			    start, stuff, 0,
20472 			    /* hardware checksum flag */
20473 			    hwcksum_flags, tcps) != 0)) {
20474 legacy_send:
20475 				/*
20476 				 * We arrive here from a failure within the
20477 				 * inner (packetizer) loop or we fail one of
20478 				 * the conditionals above. We restore the
20479 				 * previously checkpointed values for:
20480 				 *    xmit_tail
20481 				 *    usable
20482 				 *    tail_unsent
20483 				 *    snxt
20484 				 *    obbytes
20485 				 *    obsegs
20486 				 * We should then be able to dispatch any
20487 				 * complete multidata before reverting to the
20488 				 * traditional path with consistent parameters
20489 				 * (the inner loop updates these as it
20490 				 * iterates).
20491 				 */
20492 				*xmit_tail = xmit_tail_mmd;
20493 				*usable = usable_mmd;
20494 				*tail_unsent = tail_unsent_mmd;
20495 				*snxt = snxt_mmd;
20496 				obbytes = obbytes_mmd;
20497 				obsegs = obsegs_mmd;
20498 				if (md_mp != NULL) {
20499 					/* Unlink message from the chain */
20500 					if (md_mp_head != NULL) {
20501 						err = (intptr_t)rmvb(md_mp_head,
20502 						    md_mp);
20503 						/*
20504 						 * We can't assert that rmvb
20505 						 * did not return -1, since we
20506 						 * may get here before linkb
20507 						 * happens.  We do, however,
20508 						 * check if we just removed the
20509 						 * only element in the list.
20510 						 */
20511 						if (err == 0)
20512 							md_mp_head = NULL;
20513 					}
20514 					/* md_hbuf gets freed automatically */
20515 					TCP_STAT(tcps, tcp_mdt_discarded);
20516 					freeb(md_mp);
20517 				} else {
20518 					/* Either allocb or mmd_alloc failed */
20519 					TCP_STAT(tcps, tcp_mdt_allocfail);
20520 					if (md_hbuf != NULL)
20521 						freeb(md_hbuf);
20522 				}
20523 
20524 				/* send down what we've got so far */
20525 				if (md_mp_head != NULL) {
20526 					tcp_multisend_data(tcp, ire, ill,
20527 					    md_mp_head, obsegs, obbytes,
20528 					    &rconfirm);
20529 				}
20530 legacy_send_no_md:
20531 				if (ire != NULL)
20532 					IRE_REFRELE(ire);
20533 				/*
20534 				 * Too bad; let the legacy path handle this.
20535 				 * We specify INT_MAX for the threshold, since
20536 				 * we gave up with the Multidata processings
20537 				 * and let the old path have it all.
20538 				 */
20539 				TCP_STAT(tcps, tcp_mdt_legacy_all);
20540 				return (tcp_send(q, tcp, mss, tcp_hdr_len,
20541 				    tcp_tcp_hdr_len, num_sack_blk, usable,
20542 				    snxt, tail_unsent, xmit_tail, local_time,
20543 				    INT_MAX));
20544 			}
20545 
20546 			/* link to any existing ones, if applicable */
20547 			TCP_STAT(tcps, tcp_mdt_allocd);
20548 			if (md_mp_head == NULL) {
20549 				md_mp_head = md_mp;
20550 			} else if (tcp_mdt_chain) {
20551 				TCP_STAT(tcps, tcp_mdt_linked);
20552 				linkb(md_mp_head, md_mp);
20553 			}
20554 		}
20555 
20556 		ASSERT(md_mp_head != NULL);
20557 		ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL);
20558 		ASSERT(md_mp != NULL && mmd != NULL);
20559 		ASSERT(md_hbuf != NULL);
20560 
20561 		/*
20562 		 * Packetize the transmittable portion of the data block;
20563 		 * each data block is essentially added to the Multidata
20564 		 * as a payload buffer.  We also deal with adding more
20565 		 * than one payload buffers, which happens when the remaining
20566 		 * packetized portion of the current payload buffer is less
20567 		 * than MSS, while the next data block in transmit queue
20568 		 * has enough data to make up for one.  This "spillover"
20569 		 * case essentially creates a split-packet, where portions
20570 		 * of the packet's payload fragments may span across two
20571 		 * virtually discontiguous address blocks.
20572 		 */
20573 		seg_len = mss;
20574 		do {
20575 			len = seg_len;
20576 
20577 			/* one must remain NULL for DTRACE_IP_FASTPATH */
20578 			ipha = NULL;
20579 			ip6h = NULL;
20580 
20581 			ASSERT(len > 0);
20582 			ASSERT(max_pld >= 0);
20583 			ASSERT(!add_buffer || cur_pld_off == 0);
20584 
20585 			/*
20586 			 * First time around for this payload buffer; note
20587 			 * in the case of a spillover, the following has
20588 			 * been done prior to adding the split-packet
20589 			 * descriptor to Multidata, and we don't want to
20590 			 * repeat the process.
20591 			 */
20592 			if (add_buffer) {
20593 				ASSERT(mmd != NULL);
20594 				ASSERT(md_pbuf == NULL);
20595 				ASSERT(md_pbuf_nxt == NULL);
20596 				ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1);
20597 
20598 				/*
20599 				 * Have we reached the limit?  We'd get to
20600 				 * this case when we're not chaining the
20601 				 * Multidata messages together, and since
20602 				 * we're done, terminate this loop.
20603 				 */
20604 				if (max_pld == 0)
20605 					break; /* done */
20606 
20607 				if ((md_pbuf = dupb(*xmit_tail)) == NULL) {
20608 					TCP_STAT(tcps, tcp_mdt_allocfail);
20609 					goto legacy_send; /* out_of_mem */
20610 				}
20611 
20612 				if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy &&
20613 				    zc_cap != NULL) {
20614 					if (!ip_md_zcopy_attr(mmd, NULL,
20615 					    zc_cap->ill_zerocopy_flags)) {
20616 						freeb(md_pbuf);
20617 						TCP_STAT(tcps,
20618 						    tcp_mdt_allocfail);
20619 						/* out_of_mem */
20620 						goto legacy_send;
20621 					}
20622 					zcopy = B_TRUE;
20623 				}
20624 
20625 				md_pbuf->b_rptr += base_pld_off;
20626 
20627 				/*
20628 				 * Add a payload buffer to the Multidata; this
20629 				 * operation must not fail, or otherwise our
20630 				 * logic in this routine is broken.  There
20631 				 * is no memory allocation done by the
20632 				 * routine, so any returned failure simply
20633 				 * tells us that we've done something wrong.
20634 				 *
20635 				 * A failure tells us that either we're adding
20636 				 * the same payload buffer more than once, or
20637 				 * we're trying to add more buffers than
20638 				 * allowed (max_pld calculation is wrong).
20639 				 * None of the above cases should happen, and
20640 				 * we panic because either there's horrible
20641 				 * heap corruption, and/or programming mistake.
20642 				 */
20643 				pbuf_idx = mmd_addpldbuf(mmd, md_pbuf);
20644 				if (pbuf_idx < 0) {
20645 					cmn_err(CE_PANIC, "tcp_multisend: "
20646 					    "payload buffer logic error "
20647 					    "detected for tcp %p mmd %p "
20648 					    "pbuf %p (%d)\n",
20649 					    (void *)tcp, (void *)mmd,
20650 					    (void *)md_pbuf, pbuf_idx);
20651 				}
20652 
20653 				ASSERT(max_pld > 0);
20654 				--max_pld;
20655 				add_buffer = B_FALSE;
20656 			}
20657 
20658 			ASSERT(md_mp_head != NULL);
20659 			ASSERT(md_pbuf != NULL);
20660 			ASSERT(md_pbuf_nxt == NULL);
20661 			ASSERT(pbuf_idx != -1);
20662 			ASSERT(pbuf_idx_nxt == -1);
20663 			ASSERT(*usable > 0);
20664 
20665 			/*
20666 			 * We spillover to the next payload buffer only
20667 			 * if all of the following is true:
20668 			 *
20669 			 *   1. There is not enough data on the current
20670 			 *	payload buffer to make up `len',
20671 			 *   2. We are allowed to send `len',
20672 			 *   3. The next payload buffer length is large
20673 			 *	enough to accomodate `spill'.
20674 			 */
20675 			if ((spill = len - *tail_unsent) > 0 &&
20676 			    *usable >= len &&
20677 			    MBLKL((*xmit_tail)->b_cont) >= spill &&
20678 			    max_pld > 0) {
20679 				md_pbuf_nxt = dupb((*xmit_tail)->b_cont);
20680 				if (md_pbuf_nxt == NULL) {
20681 					TCP_STAT(tcps, tcp_mdt_allocfail);
20682 					goto legacy_send; /* out_of_mem */
20683 				}
20684 
20685 				if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy &&
20686 				    zc_cap != NULL) {
20687 					if (!ip_md_zcopy_attr(mmd, NULL,
20688 					    zc_cap->ill_zerocopy_flags)) {
20689 						freeb(md_pbuf_nxt);
20690 						TCP_STAT(tcps,
20691 						    tcp_mdt_allocfail);
20692 						/* out_of_mem */
20693 						goto legacy_send;
20694 					}
20695 					zcopy = B_TRUE;
20696 				}
20697 
20698 				/*
20699 				 * See comments above on the first call to
20700 				 * mmd_addpldbuf for explanation on the panic.
20701 				 */
20702 				pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt);
20703 				if (pbuf_idx_nxt < 0) {
20704 					panic("tcp_multisend: "
20705 					    "next payload buffer logic error "
20706 					    "detected for tcp %p mmd %p "
20707 					    "pbuf %p (%d)\n",
20708 					    (void *)tcp, (void *)mmd,
20709 					    (void *)md_pbuf_nxt, pbuf_idx_nxt);
20710 				}
20711 
20712 				ASSERT(max_pld > 0);
20713 				--max_pld;
20714 			} else if (spill > 0) {
20715 				/*
20716 				 * If there's a spillover, but the following
20717 				 * xmit_tail couldn't give us enough octets
20718 				 * to reach "len", then stop the current
20719 				 * Multidata creation and let the legacy
20720 				 * tcp_send() path take over.  We don't want
20721 				 * to send the tiny segment as part of this
20722 				 * Multidata for performance reasons; instead,
20723 				 * we let the legacy path deal with grouping
20724 				 * it with the subsequent small mblks.
20725 				 */
20726 				if (*usable >= len &&
20727 				    MBLKL((*xmit_tail)->b_cont) < spill) {
20728 					max_pld = 0;
20729 					break;	/* done */
20730 				}
20731 
20732 				/*
20733 				 * We can't spillover, and we are near
20734 				 * the end of the current payload buffer,
20735 				 * so send what's left.
20736 				 */
20737 				ASSERT(*tail_unsent > 0);
20738 				len = *tail_unsent;
20739 			}
20740 
20741 			/* tail_unsent is negated if there is a spillover */
20742 			*tail_unsent -= len;
20743 			*usable -= len;
20744 			ASSERT(*usable >= 0);
20745 
20746 			if (*usable < mss)
20747 				seg_len = *usable;
20748 			/*
20749 			 * Sender SWS avoidance; see comments in tcp_send();
20750 			 * everything else is the same, except that we only
20751 			 * do this here if there is no more data to be sent
20752 			 * following the current xmit_tail.  We don't check
20753 			 * for 1-byte urgent data because we shouldn't get
20754 			 * here if TCP_URG_VALID is set.
20755 			 */
20756 			if (*usable > 0 && *usable < mss &&
20757 			    ((md_pbuf_nxt == NULL &&
20758 			    (*xmit_tail)->b_cont == NULL) ||
20759 			    (md_pbuf_nxt != NULL &&
20760 			    (*xmit_tail)->b_cont->b_cont == NULL)) &&
20761 			    seg_len < (tcp->tcp_max_swnd >> 1) &&
20762 			    (tcp->tcp_unsent -
20763 			    ((*snxt + len) - tcp->tcp_snxt)) > seg_len &&
20764 			    !tcp->tcp_zero_win_probe) {
20765 				if ((*snxt + len) == tcp->tcp_snxt &&
20766 				    (*snxt + len) == tcp->tcp_suna) {
20767 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20768 				}
20769 				done = B_TRUE;
20770 			}
20771 
20772 			/*
20773 			 * Prime pump for IP's checksumming on our behalf;
20774 			 * include the adjustment for a source route if any.
20775 			 * Do this only for software/partial hardware checksum
20776 			 * offload, as this field gets zeroed out later for
20777 			 * the full hardware checksum offload case.
20778 			 */
20779 			if (!(hwcksum_flags & HCK_FULLCKSUM)) {
20780 				cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
20781 				cksum = (cksum >> 16) + (cksum & 0xFFFF);
20782 				U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum);
20783 			}
20784 
20785 			U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq);
20786 			*snxt += len;
20787 
20788 			tcp->tcp_tcph->th_flags[0] = TH_ACK;
20789 			/*
20790 			 * We set the PUSH bit only if TCP has no more buffered
20791 			 * data to be transmitted (or if sender SWS avoidance
20792 			 * takes place), as opposed to setting it for every
20793 			 * last packet in the burst.
20794 			 */
20795 			if (done ||
20796 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0)
20797 				tcp->tcp_tcph->th_flags[0] |= TH_PUSH;
20798 
20799 			/*
20800 			 * Set FIN bit if this is our last segment; snxt
20801 			 * already includes its length, and it will not
20802 			 * be adjusted after this point.
20803 			 */
20804 			if (tcp->tcp_valid_bits == TCP_FSS_VALID &&
20805 			    *snxt == tcp->tcp_fss) {
20806 				if (!tcp->tcp_fin_acked) {
20807 					tcp->tcp_tcph->th_flags[0] |= TH_FIN;
20808 					BUMP_MIB(&tcps->tcps_mib,
20809 					    tcpOutControl);
20810 				}
20811 				if (!tcp->tcp_fin_sent) {
20812 					tcp->tcp_fin_sent = B_TRUE;
20813 					/*
20814 					 * tcp state must be ESTABLISHED
20815 					 * in order for us to get here in
20816 					 * the first place.
20817 					 */
20818 					tcp->tcp_state = TCPS_FIN_WAIT_1;
20819 
20820 					/*
20821 					 * Upon returning from this routine,
20822 					 * tcp_wput_data() will set tcp_snxt
20823 					 * to be equal to snxt + tcp_fin_sent.
20824 					 * This is essentially the same as
20825 					 * setting it to tcp_fss + 1.
20826 					 */
20827 				}
20828 			}
20829 
20830 			tcp->tcp_last_sent_len = (ushort_t)len;
20831 
20832 			len += tcp_hdr_len;
20833 			if (tcp->tcp_ipversion == IPV4_VERSION)
20834 				tcp->tcp_ipha->ipha_length = htons(len);
20835 			else
20836 				tcp->tcp_ip6h->ip6_plen = htons(len -
20837 				    ((char *)&tcp->tcp_ip6h[1] -
20838 				    tcp->tcp_iphc));
20839 
20840 			pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF);
20841 
20842 			/* setup header fragment */
20843 			PDESC_HDR_ADD(pkt_info,
20844 			    md_hbuf->b_rptr + cur_hdr_off,	/* base */
20845 			    tcp->tcp_mdt_hdr_head,		/* head room */
20846 			    tcp_hdr_len,			/* len */
20847 			    tcp->tcp_mdt_hdr_tail);		/* tail room */
20848 
20849 			ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base ==
20850 			    hdr_frag_sz);
20851 			ASSERT(MBLKIN(md_hbuf,
20852 			    (pkt_info->hdr_base - md_hbuf->b_rptr),
20853 			    PDESC_HDRSIZE(pkt_info)));
20854 
20855 			/* setup first payload fragment */
20856 			PDESC_PLD_INIT(pkt_info);
20857 			PDESC_PLD_SPAN_ADD(pkt_info,
20858 			    pbuf_idx,				/* index */
20859 			    md_pbuf->b_rptr + cur_pld_off,	/* start */
20860 			    tcp->tcp_last_sent_len);		/* len */
20861 
20862 			/* create a split-packet in case of a spillover */
20863 			if (md_pbuf_nxt != NULL) {
20864 				ASSERT(spill > 0);
20865 				ASSERT(pbuf_idx_nxt > pbuf_idx);
20866 				ASSERT(!add_buffer);
20867 
20868 				md_pbuf = md_pbuf_nxt;
20869 				md_pbuf_nxt = NULL;
20870 				pbuf_idx = pbuf_idx_nxt;
20871 				pbuf_idx_nxt = -1;
20872 				cur_pld_off = spill;
20873 
20874 				/* trim out first payload fragment */
20875 				PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill);
20876 
20877 				/* setup second payload fragment */
20878 				PDESC_PLD_SPAN_ADD(pkt_info,
20879 				    pbuf_idx,			/* index */
20880 				    md_pbuf->b_rptr,		/* start */
20881 				    spill);			/* len */
20882 
20883 				if ((*xmit_tail)->b_next == NULL) {
20884 					/*
20885 					 * Store the lbolt used for RTT
20886 					 * estimation. We can only record one
20887 					 * timestamp per mblk so we do it when
20888 					 * we reach the end of the payload
20889 					 * buffer.  Also we only take a new
20890 					 * timestamp sample when the previous
20891 					 * timed data from the same mblk has
20892 					 * been ack'ed.
20893 					 */
20894 					(*xmit_tail)->b_prev = local_time;
20895 					(*xmit_tail)->b_next =
20896 					    (mblk_t *)(uintptr_t)first_snxt;
20897 				}
20898 
20899 				first_snxt = *snxt - spill;
20900 
20901 				/*
20902 				 * Advance xmit_tail; usable could be 0 by
20903 				 * the time we got here, but we made sure
20904 				 * above that we would only spillover to
20905 				 * the next data block if usable includes
20906 				 * the spilled-over amount prior to the
20907 				 * subtraction.  Therefore, we are sure
20908 				 * that xmit_tail->b_cont can't be NULL.
20909 				 */
20910 				ASSERT((*xmit_tail)->b_cont != NULL);
20911 				*xmit_tail = (*xmit_tail)->b_cont;
20912 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20913 				    (uintptr_t)INT_MAX);
20914 				*tail_unsent = (int)MBLKL(*xmit_tail) - spill;
20915 			} else {
20916 				cur_pld_off += tcp->tcp_last_sent_len;
20917 			}
20918 
20919 			/*
20920 			 * Fill in the header using the template header, and
20921 			 * add options such as time-stamp, ECN and/or SACK,
20922 			 * as needed.
20923 			 */
20924 			tcp_fill_header(tcp, pkt_info->hdr_rptr,
20925 			    (clock_t)local_time, num_sack_blk);
20926 
20927 			/* take care of some IP header businesses */
20928 			if (af == AF_INET) {
20929 				ipha = (ipha_t *)pkt_info->hdr_rptr;
20930 
20931 				ASSERT(OK_32PTR((uchar_t *)ipha));
20932 				ASSERT(PDESC_HDRL(pkt_info) >=
20933 				    IP_SIMPLE_HDR_LENGTH);
20934 				ASSERT(ipha->ipha_version_and_hdr_length ==
20935 				    IP_SIMPLE_HDR_VERSION);
20936 
20937 				/*
20938 				 * Assign ident value for current packet; see
20939 				 * related comments in ip_wput_ire() about the
20940 				 * contract private interface with clustering
20941 				 * group.
20942 				 */
20943 				clusterwide = B_FALSE;
20944 				if (cl_inet_ipident != NULL) {
20945 					ASSERT(cl_inet_isclusterwide != NULL);
20946 					if ((*cl_inet_isclusterwide)(IPPROTO_IP,
20947 					    AF_INET,
20948 					    (uint8_t *)(uintptr_t)src)) {
20949 						ipha->ipha_ident =
20950 						    (*cl_inet_ipident)
20951 						    (IPPROTO_IP, AF_INET,
20952 						    (uint8_t *)(uintptr_t)src,
20953 						    (uint8_t *)(uintptr_t)dst);
20954 						clusterwide = B_TRUE;
20955 					}
20956 				}
20957 
20958 				if (!clusterwide) {
20959 					ipha->ipha_ident = (uint16_t)
20960 					    atomic_add_32_nv(
20961 						&ire->ire_ident, 1);
20962 				}
20963 #ifndef _BIG_ENDIAN
20964 				ipha->ipha_ident = (ipha->ipha_ident << 8) |
20965 				    (ipha->ipha_ident >> 8);
20966 #endif
20967 			} else {
20968 				ip6h = (ip6_t *)pkt_info->hdr_rptr;
20969 
20970 				ASSERT(OK_32PTR((uchar_t *)ip6h));
20971 				ASSERT(IPVER(ip6h) == IPV6_VERSION);
20972 				ASSERT(ip6h->ip6_nxt == IPPROTO_TCP);
20973 				ASSERT(PDESC_HDRL(pkt_info) >=
20974 				    (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET +
20975 				    TCP_CHECKSUM_SIZE));
20976 				ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
20977 
20978 				if (tcp->tcp_ip_forward_progress) {
20979 					rconfirm = B_TRUE;
20980 					tcp->tcp_ip_forward_progress = B_FALSE;
20981 				}
20982 			}
20983 
20984 			/* at least one payload span, and at most two */
20985 			ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3);
20986 
20987 			/* add the packet descriptor to Multidata */
20988 			if ((pkt = mmd_addpdesc(mmd, pkt_info, &err,
20989 			    KM_NOSLEEP)) == NULL) {
20990 				/*
20991 				 * Any failure other than ENOMEM indicates
20992 				 * that we have passed in invalid pkt_info
20993 				 * or parameters to mmd_addpdesc, which must
20994 				 * not happen.
20995 				 *
20996 				 * EINVAL is a result of failure on boundary
20997 				 * checks against the pkt_info contents.  It
20998 				 * should not happen, and we panic because
20999 				 * either there's horrible heap corruption,
21000 				 * and/or programming mistake.
21001 				 */
21002 				if (err != ENOMEM) {
21003 					cmn_err(CE_PANIC, "tcp_multisend: "
21004 					    "pdesc logic error detected for "
21005 					    "tcp %p mmd %p pinfo %p (%d)\n",
21006 					    (void *)tcp, (void *)mmd,
21007 					    (void *)pkt_info, err);
21008 				}
21009 				TCP_STAT(tcps, tcp_mdt_addpdescfail);
21010 				goto legacy_send; /* out_of_mem */
21011 			}
21012 			ASSERT(pkt != NULL);
21013 
21014 			/* calculate IP header and TCP checksums */
21015 			if (af == AF_INET) {
21016 				/* calculate pseudo-header checksum */
21017 				cksum = (dst >> 16) + (dst & 0xFFFF) +
21018 				    (src >> 16) + (src & 0xFFFF);
21019 
21020 				/* offset for TCP header checksum */
21021 				up = IPH_TCPH_CHECKSUMP(ipha,
21022 				    IP_SIMPLE_HDR_LENGTH);
21023 			} else {
21024 				up = (uint16_t *)&ip6h->ip6_src;
21025 
21026 				/* calculate pseudo-header checksum */
21027 				cksum = up[0] + up[1] + up[2] + up[3] +
21028 				    up[4] + up[5] + up[6] + up[7] +
21029 				    up[8] + up[9] + up[10] + up[11] +
21030 				    up[12] + up[13] + up[14] + up[15];
21031 
21032 				/* Fold the initial sum */
21033 				cksum = (cksum & 0xffff) + (cksum >> 16);
21034 
21035 				up = (uint16_t *)(((uchar_t *)ip6h) +
21036 				    IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET);
21037 			}
21038 
21039 			if (hwcksum_flags & HCK_FULLCKSUM) {
21040 				/* clear checksum field for hardware */
21041 				*up = 0;
21042 			} else if (hwcksum_flags & HCK_PARTIALCKSUM) {
21043 				uint32_t sum;
21044 
21045 				/* pseudo-header checksumming */
21046 				sum = *up + cksum + IP_TCP_CSUM_COMP;
21047 				sum = (sum & 0xFFFF) + (sum >> 16);
21048 				*up = (sum & 0xFFFF) + (sum >> 16);
21049 			} else {
21050 				/* software checksumming */
21051 				TCP_STAT(tcps, tcp_out_sw_cksum);
21052 				TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
21053 				    tcp->tcp_hdr_len + tcp->tcp_last_sent_len);
21054 				*up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len,
21055 				    cksum + IP_TCP_CSUM_COMP);
21056 				if (*up == 0)
21057 					*up = 0xFFFF;
21058 			}
21059 
21060 			/* IPv4 header checksum */
21061 			if (af == AF_INET) {
21062 				ipha->ipha_fragment_offset_and_flags |=
21063 				    (uint32_t)htons(ire->ire_frag_flag);
21064 
21065 				if (hwcksum_flags & HCK_IPV4_HDRCKSUM) {
21066 					ipha->ipha_hdr_checksum = 0;
21067 				} else {
21068 					IP_HDR_CKSUM(ipha, cksum,
21069 					    ((uint32_t *)ipha)[0],
21070 					    ((uint16_t *)ipha)[4]);
21071 				}
21072 			}
21073 
21074 			if (af == AF_INET &&
21075 			    HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) ||
21076 			    af == AF_INET6 &&
21077 			    HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) {
21078 				mblk_t	*mp, *mp1;
21079 				uchar_t	*hdr_rptr, *hdr_wptr;
21080 				uchar_t	*pld_rptr, *pld_wptr;
21081 
21082 				/*
21083 				 * We reconstruct a pseudo packet for the hooks
21084 				 * framework using mmd_transform_link().
21085 				 * If it is a split packet we pullup the
21086 				 * payload. FW_HOOKS expects a pkt comprising
21087 				 * of two mblks: a header and the payload.
21088 				 */
21089 				if ((mp = mmd_transform_link(pkt)) == NULL) {
21090 					TCP_STAT(tcps, tcp_mdt_allocfail);
21091 					goto legacy_send;
21092 				}
21093 
21094 				if (pkt_info->pld_cnt > 1) {
21095 					/* split payload, more than one pld */
21096 					if ((mp1 = msgpullup(mp->b_cont, -1)) ==
21097 					    NULL) {
21098 						freemsg(mp);
21099 						TCP_STAT(tcps,
21100 						    tcp_mdt_allocfail);
21101 						goto legacy_send;
21102 					}
21103 					freemsg(mp->b_cont);
21104 					mp->b_cont = mp1;
21105 				} else {
21106 					mp1 = mp->b_cont;
21107 				}
21108 				ASSERT(mp1 != NULL && mp1->b_cont == NULL);
21109 
21110 				/*
21111 				 * Remember the message offsets. This is so we
21112 				 * can detect changes when we return from the
21113 				 * FW_HOOKS callbacks.
21114 				 */
21115 				hdr_rptr = mp->b_rptr;
21116 				hdr_wptr = mp->b_wptr;
21117 				pld_rptr = mp->b_cont->b_rptr;
21118 				pld_wptr = mp->b_cont->b_wptr;
21119 
21120 				if (af == AF_INET) {
21121 					DTRACE_PROBE4(
21122 					    ip4__physical__out__start,
21123 					    ill_t *, NULL,
21124 					    ill_t *, ill,
21125 					    ipha_t *, ipha,
21126 					    mblk_t *, mp);
21127 					FW_HOOKS(
21128 					    ipst->ips_ip4_physical_out_event,
21129 					    ipst->ips_ipv4firewall_physical_out,
21130 					    NULL, ill, ipha, mp, mp, 0, ipst);
21131 					DTRACE_PROBE1(
21132 					    ip4__physical__out__end,
21133 					    mblk_t *, mp);
21134 				} else {
21135 					DTRACE_PROBE4(
21136 					    ip6__physical__out_start,
21137 					    ill_t *, NULL,
21138 					    ill_t *, ill,
21139 					    ip6_t *, ip6h,
21140 					    mblk_t *, mp);
21141 					FW_HOOKS6(
21142 					    ipst->ips_ip6_physical_out_event,
21143 					    ipst->ips_ipv6firewall_physical_out,
21144 					    NULL, ill, ip6h, mp, mp, 0, ipst);
21145 					DTRACE_PROBE1(
21146 					    ip6__physical__out__end,
21147 					    mblk_t *, mp);
21148 				}
21149 
21150 				if (mp == NULL ||
21151 				    (mp1 = mp->b_cont) == NULL ||
21152 				    mp->b_rptr != hdr_rptr ||
21153 				    mp->b_wptr != hdr_wptr ||
21154 				    mp1->b_rptr != pld_rptr ||
21155 				    mp1->b_wptr != pld_wptr ||
21156 				    mp1->b_cont != NULL) {
21157 					/*
21158 					 * We abandon multidata processing and
21159 					 * return to the normal path, either
21160 					 * when a packet is blocked, or when
21161 					 * the boundaries of header buffer or
21162 					 * payload buffer have been changed by
21163 					 * FW_HOOKS[6].
21164 					 */
21165 					if (mp != NULL)
21166 						freemsg(mp);
21167 					goto legacy_send;
21168 				}
21169 				/* Finished with the pseudo packet */
21170 				freemsg(mp);
21171 			}
21172 			DTRACE_IP_FASTPATH(md_hbuf, pkt_info->hdr_rptr,
21173 			    ill, ipha, ip6h);
21174 			/* advance header offset */
21175 			cur_hdr_off += hdr_frag_sz;
21176 
21177 			obbytes += tcp->tcp_last_sent_len;
21178 			++obsegs;
21179 		} while (!done && *usable > 0 && --num_burst_seg > 0 &&
21180 		    *tail_unsent > 0);
21181 
21182 		if ((*xmit_tail)->b_next == NULL) {
21183 			/*
21184 			 * Store the lbolt used for RTT estimation. We can only
21185 			 * record one timestamp per mblk so we do it when we
21186 			 * reach the end of the payload buffer. Also we only
21187 			 * take a new timestamp sample when the previous timed
21188 			 * data from the same mblk has been ack'ed.
21189 			 */
21190 			(*xmit_tail)->b_prev = local_time;
21191 			(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt;
21192 		}
21193 
21194 		ASSERT(*tail_unsent >= 0);
21195 		if (*tail_unsent > 0) {
21196 			/*
21197 			 * We got here because we broke out of the above
21198 			 * loop due to of one of the following cases:
21199 			 *
21200 			 *   1. len < adjusted MSS (i.e. small),
21201 			 *   2. Sender SWS avoidance,
21202 			 *   3. max_pld is zero.
21203 			 *
21204 			 * We are done for this Multidata, so trim our
21205 			 * last payload buffer (if any) accordingly.
21206 			 */
21207 			if (md_pbuf != NULL)
21208 				md_pbuf->b_wptr -= *tail_unsent;
21209 		} else if (*usable > 0) {
21210 			*xmit_tail = (*xmit_tail)->b_cont;
21211 			ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
21212 			    (uintptr_t)INT_MAX);
21213 			*tail_unsent = (int)MBLKL(*xmit_tail);
21214 			add_buffer = B_TRUE;
21215 		}
21216 	} while (!done && *usable > 0 && num_burst_seg > 0 &&
21217 	    (tcp_mdt_chain || max_pld > 0));
21218 
21219 	if (md_mp_head != NULL) {
21220 		/* send everything down */
21221 		tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes,
21222 		    &rconfirm);
21223 	}
21224 
21225 #undef PREP_NEW_MULTIDATA
21226 #undef PREP_NEW_PBUF
21227 #undef IPVER
21228 
21229 	IRE_REFRELE(ire);
21230 	return (0);
21231 }
21232 
21233 /*
21234  * A wrapper function for sending one or more Multidata messages down to
21235  * the module below ip; this routine does not release the reference of the
21236  * IRE (caller does that).  This routine is analogous to tcp_send_data().
21237  */
21238 static void
21239 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head,
21240     const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm)
21241 {
21242 	uint64_t delta;
21243 	nce_t *nce;
21244 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21245 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
21246 
21247 	ASSERT(ire != NULL && ill != NULL);
21248 	ASSERT(ire->ire_stq != NULL);
21249 	ASSERT(md_mp_head != NULL);
21250 	ASSERT(rconfirm != NULL);
21251 
21252 	/* adjust MIBs and IRE timestamp */
21253 	DTRACE_PROBE2(tcp__trace__send, mblk_t *, md_mp_head, tcp_t *, tcp);
21254 	tcp->tcp_obsegs += obsegs;
21255 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs);
21256 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes);
21257 	TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs);
21258 
21259 	if (tcp->tcp_ipversion == IPV4_VERSION) {
21260 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs);
21261 	} else {
21262 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs);
21263 	}
21264 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs);
21265 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs);
21266 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes);
21267 
21268 	ire->ire_ob_pkt_count += obsegs;
21269 	if (ire->ire_ipif != NULL)
21270 		atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs);
21271 	ire->ire_last_used_time = lbolt;
21272 
21273 	if (ipst->ips_ipobs_enabled) {
21274 		multidata_t *dlmdp = mmd_getmultidata(md_mp_head);
21275 		pdesc_t *dl_pkt;
21276 		pdescinfo_t pinfo;
21277 		mblk_t *nmp;
21278 		zoneid_t szone = tcp->tcp_connp->conn_zoneid;
21279 
21280 		for (dl_pkt = mmd_getfirstpdesc(dlmdp, &pinfo);
21281 		    (dl_pkt != NULL);
21282 		    dl_pkt = mmd_getnextpdesc(dl_pkt, &pinfo)) {
21283 			if ((nmp = mmd_transform_link(dl_pkt)) == NULL)
21284 				continue;
21285 			ipobs_hook(nmp, IPOBS_HOOK_OUTBOUND, szone,
21286 			    ALL_ZONES, ill, tcp->tcp_ipversion, 0, ipst);
21287 			freemsg(nmp);
21288 		}
21289 	}
21290 
21291 	/* send it down */
21292 	if (ILL_DLS_CAPABLE(ill)) {
21293 		ill_dls_capab_t *ill_dls = ill->ill_dls_capab;
21294 		ill_dls->ill_tx(ill_dls->ill_tx_handle, md_mp_head);
21295 	} else {
21296 		putnext(ire->ire_stq, md_mp_head);
21297 	}
21298 
21299 	/* we're done for TCP/IPv4 */
21300 	if (tcp->tcp_ipversion == IPV4_VERSION)
21301 		return;
21302 
21303 	nce = ire->ire_nce;
21304 
21305 	ASSERT(nce != NULL);
21306 	ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT)));
21307 	ASSERT(nce->nce_state != ND_INCOMPLETE);
21308 
21309 	/* reachability confirmation? */
21310 	if (*rconfirm) {
21311 		nce->nce_last = TICK_TO_MSEC(lbolt64);
21312 		if (nce->nce_state != ND_REACHABLE) {
21313 			mutex_enter(&nce->nce_lock);
21314 			nce->nce_state = ND_REACHABLE;
21315 			nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT;
21316 			mutex_exit(&nce->nce_lock);
21317 			(void) untimeout(nce->nce_timeout_id);
21318 			if (ip_debug > 2) {
21319 				/* ip1dbg */
21320 				pr_addr_dbg("tcp_multisend_data: state "
21321 				    "for %s changed to REACHABLE\n",
21322 				    AF_INET6, &ire->ire_addr_v6);
21323 			}
21324 		}
21325 		/* reset transport reachability confirmation */
21326 		*rconfirm = B_FALSE;
21327 	}
21328 
21329 	delta =  TICK_TO_MSEC(lbolt64) - nce->nce_last;
21330 	ip1dbg(("tcp_multisend_data: delta = %" PRId64
21331 	    " ill_reachable_time = %d \n", delta, ill->ill_reachable_time));
21332 
21333 	if (delta > (uint64_t)ill->ill_reachable_time) {
21334 		mutex_enter(&nce->nce_lock);
21335 		switch (nce->nce_state) {
21336 		case ND_REACHABLE:
21337 		case ND_STALE:
21338 			/*
21339 			 * ND_REACHABLE is identical to ND_STALE in this
21340 			 * specific case. If reachable time has expired for
21341 			 * this neighbor (delta is greater than reachable
21342 			 * time), conceptually, the neighbor cache is no
21343 			 * longer in REACHABLE state, but already in STALE
21344 			 * state.  So the correct transition here is to
21345 			 * ND_DELAY.
21346 			 */
21347 			nce->nce_state = ND_DELAY;
21348 			mutex_exit(&nce->nce_lock);
21349 			NDP_RESTART_TIMER(nce,
21350 			    ipst->ips_delay_first_probe_time);
21351 			if (ip_debug > 3) {
21352 				/* ip2dbg */
21353 				pr_addr_dbg("tcp_multisend_data: state "
21354 				    "for %s changed to DELAY\n",
21355 				    AF_INET6, &ire->ire_addr_v6);
21356 			}
21357 			break;
21358 		case ND_DELAY:
21359 		case ND_PROBE:
21360 			mutex_exit(&nce->nce_lock);
21361 			/* Timers have already started */
21362 			break;
21363 		case ND_UNREACHABLE:
21364 			/*
21365 			 * ndp timer has detected that this nce is
21366 			 * unreachable and initiated deleting this nce
21367 			 * and all its associated IREs. This is a race
21368 			 * where we found the ire before it was deleted
21369 			 * and have just sent out a packet using this
21370 			 * unreachable nce.
21371 			 */
21372 			mutex_exit(&nce->nce_lock);
21373 			break;
21374 		default:
21375 			ASSERT(0);
21376 		}
21377 	}
21378 }
21379 
21380 /*
21381  * Derived from tcp_send_data().
21382  */
21383 static void
21384 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss,
21385     int num_lso_seg)
21386 {
21387 	ipha_t		*ipha;
21388 	mblk_t		*ire_fp_mp;
21389 	uint_t		ire_fp_mp_len;
21390 	uint32_t	hcksum_txflags = 0;
21391 	ipaddr_t	src;
21392 	ipaddr_t	dst;
21393 	uint32_t	cksum;
21394 	uint16_t	*up;
21395 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21396 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
21397 
21398 	ASSERT(DB_TYPE(mp) == M_DATA);
21399 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
21400 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
21401 	ASSERT(tcp->tcp_connp != NULL);
21402 	ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp));
21403 
21404 	ipha = (ipha_t *)mp->b_rptr;
21405 	src = ipha->ipha_src;
21406 	dst = ipha->ipha_dst;
21407 
21408 	DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp);
21409 
21410 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
21411 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident,
21412 	    num_lso_seg);
21413 #ifndef _BIG_ENDIAN
21414 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
21415 #endif
21416 	if (tcp->tcp_snd_zcopy_aware) {
21417 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
21418 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
21419 			mp = tcp_zcopy_disable(tcp, mp);
21420 	}
21421 
21422 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
21423 		ASSERT(ill->ill_hcksum_capab != NULL);
21424 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
21425 	}
21426 
21427 	/*
21428 	 * Since the TCP checksum should be recalculated by h/w, we can just
21429 	 * zero the checksum field for HCK_FULLCKSUM, or calculate partial
21430 	 * pseudo-header checksum for HCK_PARTIALCKSUM.
21431 	 * The partial pseudo-header excludes TCP length, that was calculated
21432 	 * in tcp_send(), so to zero *up before further processing.
21433 	 */
21434 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
21435 
21436 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
21437 	*up = 0;
21438 
21439 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
21440 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
21441 
21442 	/*
21443 	 * Append LSO flag to DB_LSOFLAGS(mp) and set the mss to DB_LSOMSS(mp).
21444 	 */
21445 	DB_LSOFLAGS(mp) |= HW_LSO;
21446 	DB_LSOMSS(mp) = mss;
21447 
21448 	ipha->ipha_fragment_offset_and_flags |=
21449 	    (uint32_t)htons(ire->ire_frag_flag);
21450 
21451 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
21452 	ire_fp_mp_len = MBLKL(ire_fp_mp);
21453 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
21454 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
21455 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
21456 
21457 	UPDATE_OB_PKT_COUNT(ire);
21458 	ire->ire_last_used_time = lbolt;
21459 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
21460 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
21461 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
21462 	    ntohs(ipha->ipha_length));
21463 
21464 	if (ILL_DLS_CAPABLE(ill)) {
21465 		/*
21466 		 * Send the packet directly to DLD, where it may be queued
21467 		 * depending on the availability of transmit resources at
21468 		 * the media layer.
21469 		 */
21470 		IP_DLS_ILL_TX(ill, ipha, mp, ipst, ire_fp_mp_len);
21471 	} else {
21472 		ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr;
21473 		DTRACE_PROBE4(ip4__physical__out__start,
21474 		    ill_t *, NULL, ill_t *, out_ill,
21475 		    ipha_t *, ipha, mblk_t *, mp);
21476 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
21477 		    ipst->ips_ipv4firewall_physical_out,
21478 		    NULL, out_ill, ipha, mp, mp, 0, ipst);
21479 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
21480 
21481 		if (mp != NULL) {
21482 			if (ipst->ips_ipobs_enabled) {
21483 				zoneid_t szone = tcp->tcp_connp->conn_zoneid;
21484 
21485 				ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone,
21486 				    ALL_ZONES, ill, tcp->tcp_ipversion,
21487 				    ire_fp_mp_len, ipst);
21488 			}
21489 			DTRACE_IP_FASTPATH(mp, ipha, out_ill, ipha, NULL);
21490 			putnext(ire->ire_stq, mp);
21491 		}
21492 	}
21493 }
21494 
21495 /*
21496  * tcp_send() is called by tcp_wput_data() for non-Multidata transmission
21497  * scheme, and returns one of the following:
21498  *
21499  * -1 = failed allocation.
21500  *  0 = success; burst count reached, or usable send window is too small,
21501  *      and that we'd rather wait until later before sending again.
21502  *  1 = success; we are called from tcp_multisend(), and both usable send
21503  *      window and tail_unsent are greater than the MDT threshold, and thus
21504  *      Multidata Transmit should be used instead.
21505  */
21506 static int
21507 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
21508     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
21509     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
21510     const int mdt_thres)
21511 {
21512 	int num_burst_seg = tcp->tcp_snd_burst;
21513 	ire_t		*ire = NULL;
21514 	ill_t		*ill = NULL;
21515 	mblk_t		*ire_fp_mp = NULL;
21516 	uint_t		ire_fp_mp_len = 0;
21517 	int		num_lso_seg = 1;
21518 	uint_t		lso_usable;
21519 	boolean_t	do_lso_send = B_FALSE;
21520 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21521 
21522 	/*
21523 	 * Check LSO capability before any further work. And the similar check
21524 	 * need to be done in for(;;) loop.
21525 	 * LSO will be deployed when therer is more than one mss of available
21526 	 * data and a burst transmission is allowed.
21527 	 */
21528 	if (tcp->tcp_lso &&
21529 	    (tcp->tcp_valid_bits == 0 ||
21530 	    tcp->tcp_valid_bits == TCP_FSS_VALID) &&
21531 	    num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
21532 		/*
21533 		 * Try to find usable IRE/ILL and do basic check to the ILL.
21534 		 */
21535 		if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill)) {
21536 			/*
21537 			 * Enable LSO with this transmission.
21538 			 * Since IRE has been hold in
21539 			 * tcp_send_find_ire_ill(), IRE_REFRELE(ire)
21540 			 * should be called before return.
21541 			 */
21542 			do_lso_send = B_TRUE;
21543 			ire_fp_mp = ire->ire_nce->nce_fp_mp;
21544 			ire_fp_mp_len = MBLKL(ire_fp_mp);
21545 			/* Round up to multiple of 4 */
21546 			ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4;
21547 		} else {
21548 			do_lso_send = B_FALSE;
21549 			ill = NULL;
21550 		}
21551 	}
21552 
21553 	for (;;) {
21554 		struct datab	*db;
21555 		tcph_t		*tcph;
21556 		uint32_t	sum;
21557 		mblk_t		*mp, *mp1;
21558 		uchar_t		*rptr;
21559 		int		len;
21560 
21561 		/*
21562 		 * If we're called by tcp_multisend(), and the amount of
21563 		 * sendable data as well as the size of current xmit_tail
21564 		 * is beyond the MDT threshold, return to the caller and
21565 		 * let the large data transmit be done using MDT.
21566 		 */
21567 		if (*usable > 0 && *usable > mdt_thres &&
21568 		    (*tail_unsent > mdt_thres || (*tail_unsent == 0 &&
21569 		    MBLKL((*xmit_tail)->b_cont) > mdt_thres))) {
21570 			ASSERT(tcp->tcp_mdt);
21571 			return (1);	/* success; do large send */
21572 		}
21573 
21574 		if (num_burst_seg == 0)
21575 			break;		/* success; burst count reached */
21576 
21577 		/*
21578 		 * Calculate the maximum payload length we can send in *one*
21579 		 * time.
21580 		 */
21581 		if (do_lso_send) {
21582 			/*
21583 			 * Check whether need to do LSO any more.
21584 			 */
21585 			if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
21586 				lso_usable = MIN(tcp->tcp_lso_max, *usable);
21587 				lso_usable = MIN(lso_usable,
21588 				    num_burst_seg * mss);
21589 
21590 				num_lso_seg = lso_usable / mss;
21591 				if (lso_usable % mss) {
21592 					num_lso_seg++;
21593 					tcp->tcp_last_sent_len = (ushort_t)
21594 					    (lso_usable % mss);
21595 				} else {
21596 					tcp->tcp_last_sent_len = (ushort_t)mss;
21597 				}
21598 			} else {
21599 				do_lso_send = B_FALSE;
21600 				num_lso_seg = 1;
21601 				lso_usable = mss;
21602 			}
21603 		}
21604 
21605 		ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1);
21606 
21607 		/*
21608 		 * Adjust num_burst_seg here.
21609 		 */
21610 		num_burst_seg -= num_lso_seg;
21611 
21612 		len = mss;
21613 		if (len > *usable) {
21614 			ASSERT(do_lso_send == B_FALSE);
21615 
21616 			len = *usable;
21617 			if (len <= 0) {
21618 				/* Terminate the loop */
21619 				break;	/* success; too small */
21620 			}
21621 			/*
21622 			 * Sender silly-window avoidance.
21623 			 * Ignore this if we are going to send a
21624 			 * zero window probe out.
21625 			 *
21626 			 * TODO: force data into microscopic window?
21627 			 *	==> (!pushed || (unsent > usable))
21628 			 */
21629 			if (len < (tcp->tcp_max_swnd >> 1) &&
21630 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len &&
21631 			    !((tcp->tcp_valid_bits & TCP_URG_VALID) &&
21632 			    len == 1) && (! tcp->tcp_zero_win_probe)) {
21633 				/*
21634 				 * If the retransmit timer is not running
21635 				 * we start it so that we will retransmit
21636 				 * in the case when the the receiver has
21637 				 * decremented the window.
21638 				 */
21639 				if (*snxt == tcp->tcp_snxt &&
21640 				    *snxt == tcp->tcp_suna) {
21641 					/*
21642 					 * We are not supposed to send
21643 					 * anything.  So let's wait a little
21644 					 * bit longer before breaking SWS
21645 					 * avoidance.
21646 					 *
21647 					 * What should the value be?
21648 					 * Suggestion: MAX(init rexmit time,
21649 					 * tcp->tcp_rto)
21650 					 */
21651 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
21652 				}
21653 				break;	/* success; too small */
21654 			}
21655 		}
21656 
21657 		tcph = tcp->tcp_tcph;
21658 
21659 		/*
21660 		 * The reason to adjust len here is that we need to set flags
21661 		 * and calculate checksum.
21662 		 */
21663 		if (do_lso_send)
21664 			len = lso_usable;
21665 
21666 		*usable -= len; /* Approximate - can be adjusted later */
21667 		if (*usable > 0)
21668 			tcph->th_flags[0] = TH_ACK;
21669 		else
21670 			tcph->th_flags[0] = (TH_ACK | TH_PUSH);
21671 
21672 		/*
21673 		 * Prime pump for IP's checksumming on our behalf
21674 		 * Include the adjustment for a source route if any.
21675 		 */
21676 		sum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
21677 		sum = (sum >> 16) + (sum & 0xFFFF);
21678 		U16_TO_ABE16(sum, tcph->th_sum);
21679 
21680 		U32_TO_ABE32(*snxt, tcph->th_seq);
21681 
21682 		/*
21683 		 * Branch off to tcp_xmit_mp() if any of the VALID bits is
21684 		 * set.  For the case when TCP_FSS_VALID is the only valid
21685 		 * bit (normal active close), branch off only when we think
21686 		 * that the FIN flag needs to be set.  Note for this case,
21687 		 * that (snxt + len) may not reflect the actual seg_len,
21688 		 * as len may be further reduced in tcp_xmit_mp().  If len
21689 		 * gets modified, we will end up here again.
21690 		 */
21691 		if (tcp->tcp_valid_bits != 0 &&
21692 		    (tcp->tcp_valid_bits != TCP_FSS_VALID ||
21693 		    ((*snxt + len) == tcp->tcp_fss))) {
21694 			uchar_t		*prev_rptr;
21695 			uint32_t	prev_snxt = tcp->tcp_snxt;
21696 
21697 			if (*tail_unsent == 0) {
21698 				ASSERT((*xmit_tail)->b_cont != NULL);
21699 				*xmit_tail = (*xmit_tail)->b_cont;
21700 				prev_rptr = (*xmit_tail)->b_rptr;
21701 				*tail_unsent = (int)((*xmit_tail)->b_wptr -
21702 				    (*xmit_tail)->b_rptr);
21703 			} else {
21704 				prev_rptr = (*xmit_tail)->b_rptr;
21705 				(*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr -
21706 				    *tail_unsent;
21707 			}
21708 			mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL,
21709 			    *snxt, B_FALSE, (uint32_t *)&len, B_FALSE);
21710 			/* Restore tcp_snxt so we get amount sent right. */
21711 			tcp->tcp_snxt = prev_snxt;
21712 			if (prev_rptr == (*xmit_tail)->b_rptr) {
21713 				/*
21714 				 * If the previous timestamp is still in use,
21715 				 * don't stomp on it.
21716 				 */
21717 				if ((*xmit_tail)->b_next == NULL) {
21718 					(*xmit_tail)->b_prev = local_time;
21719 					(*xmit_tail)->b_next =
21720 					    (mblk_t *)(uintptr_t)(*snxt);
21721 				}
21722 			} else
21723 				(*xmit_tail)->b_rptr = prev_rptr;
21724 
21725 			if (mp == NULL) {
21726 				if (ire != NULL)
21727 					IRE_REFRELE(ire);
21728 				return (-1);
21729 			}
21730 			mp1 = mp->b_cont;
21731 
21732 			if (len <= mss) /* LSO is unusable (!do_lso_send) */
21733 				tcp->tcp_last_sent_len = (ushort_t)len;
21734 			while (mp1->b_cont) {
21735 				*xmit_tail = (*xmit_tail)->b_cont;
21736 				(*xmit_tail)->b_prev = local_time;
21737 				(*xmit_tail)->b_next =
21738 				    (mblk_t *)(uintptr_t)(*snxt);
21739 				mp1 = mp1->b_cont;
21740 			}
21741 			*snxt += len;
21742 			*tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr;
21743 			BUMP_LOCAL(tcp->tcp_obsegs);
21744 			BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
21745 			UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
21746 			tcp_send_data(tcp, q, mp);
21747 			continue;
21748 		}
21749 
21750 		*snxt += len;	/* Adjust later if we don't send all of len */
21751 		BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
21752 		UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
21753 
21754 		if (*tail_unsent) {
21755 			/* Are the bytes above us in flight? */
21756 			rptr = (*xmit_tail)->b_wptr - *tail_unsent;
21757 			if (rptr != (*xmit_tail)->b_rptr) {
21758 				*tail_unsent -= len;
21759 				if (len <= mss) /* LSO is unusable */
21760 					tcp->tcp_last_sent_len = (ushort_t)len;
21761 				len += tcp_hdr_len;
21762 				if (tcp->tcp_ipversion == IPV4_VERSION)
21763 					tcp->tcp_ipha->ipha_length = htons(len);
21764 				else
21765 					tcp->tcp_ip6h->ip6_plen =
21766 					    htons(len -
21767 					    ((char *)&tcp->tcp_ip6h[1] -
21768 					    tcp->tcp_iphc));
21769 				mp = dupb(*xmit_tail);
21770 				if (mp == NULL) {
21771 					if (ire != NULL)
21772 						IRE_REFRELE(ire);
21773 					return (-1);	/* out_of_mem */
21774 				}
21775 				mp->b_rptr = rptr;
21776 				/*
21777 				 * If the old timestamp is no longer in use,
21778 				 * sample a new timestamp now.
21779 				 */
21780 				if ((*xmit_tail)->b_next == NULL) {
21781 					(*xmit_tail)->b_prev = local_time;
21782 					(*xmit_tail)->b_next =
21783 					    (mblk_t *)(uintptr_t)(*snxt-len);
21784 				}
21785 				goto must_alloc;
21786 			}
21787 		} else {
21788 			*xmit_tail = (*xmit_tail)->b_cont;
21789 			ASSERT((uintptr_t)((*xmit_tail)->b_wptr -
21790 			    (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX);
21791 			*tail_unsent = (int)((*xmit_tail)->b_wptr -
21792 			    (*xmit_tail)->b_rptr);
21793 		}
21794 
21795 		(*xmit_tail)->b_prev = local_time;
21796 		(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len);
21797 
21798 		*tail_unsent -= len;
21799 		if (len <= mss) /* LSO is unusable (!do_lso_send) */
21800 			tcp->tcp_last_sent_len = (ushort_t)len;
21801 
21802 		len += tcp_hdr_len;
21803 		if (tcp->tcp_ipversion == IPV4_VERSION)
21804 			tcp->tcp_ipha->ipha_length = htons(len);
21805 		else
21806 			tcp->tcp_ip6h->ip6_plen = htons(len -
21807 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
21808 
21809 		mp = dupb(*xmit_tail);
21810 		if (mp == NULL) {
21811 			if (ire != NULL)
21812 				IRE_REFRELE(ire);
21813 			return (-1);	/* out_of_mem */
21814 		}
21815 
21816 		len = tcp_hdr_len;
21817 		/*
21818 		 * There are four reasons to allocate a new hdr mblk:
21819 		 *  1) The bytes above us are in use by another packet
21820 		 *  2) We don't have good alignment
21821 		 *  3) The mblk is being shared
21822 		 *  4) We don't have enough room for a header
21823 		 */
21824 		rptr = mp->b_rptr - len;
21825 		if (!OK_32PTR(rptr) ||
21826 		    ((db = mp->b_datap), db->db_ref != 2) ||
21827 		    rptr < db->db_base + ire_fp_mp_len) {
21828 			/* NOTE: we assume allocb returns an OK_32PTR */
21829 
21830 		must_alloc:;
21831 			mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
21832 			    tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED);
21833 			if (mp1 == NULL) {
21834 				freemsg(mp);
21835 				if (ire != NULL)
21836 					IRE_REFRELE(ire);
21837 				return (-1);	/* out_of_mem */
21838 			}
21839 			mp1->b_cont = mp;
21840 			mp = mp1;
21841 			/* Leave room for Link Level header */
21842 			len = tcp_hdr_len;
21843 			rptr =
21844 			    &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len];
21845 			mp->b_wptr = &rptr[len];
21846 		}
21847 
21848 		/*
21849 		 * Fill in the header using the template header, and add
21850 		 * options such as time-stamp, ECN and/or SACK, as needed.
21851 		 */
21852 		tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk);
21853 
21854 		mp->b_rptr = rptr;
21855 
21856 		if (*tail_unsent) {
21857 			int spill = *tail_unsent;
21858 
21859 			mp1 = mp->b_cont;
21860 			if (mp1 == NULL)
21861 				mp1 = mp;
21862 
21863 			/*
21864 			 * If we're a little short, tack on more mblks until
21865 			 * there is no more spillover.
21866 			 */
21867 			while (spill < 0) {
21868 				mblk_t *nmp;
21869 				int nmpsz;
21870 
21871 				nmp = (*xmit_tail)->b_cont;
21872 				nmpsz = MBLKL(nmp);
21873 
21874 				/*
21875 				 * Excess data in mblk; can we split it?
21876 				 * If MDT is enabled for the connection,
21877 				 * keep on splitting as this is a transient
21878 				 * send path.
21879 				 */
21880 				if (!do_lso_send && !tcp->tcp_mdt &&
21881 				    (spill + nmpsz > 0)) {
21882 					/*
21883 					 * Don't split if stream head was
21884 					 * told to break up larger writes
21885 					 * into smaller ones.
21886 					 */
21887 					if (tcp->tcp_maxpsz > 0)
21888 						break;
21889 
21890 					/*
21891 					 * Next mblk is less than SMSS/2
21892 					 * rounded up to nearest 64-byte;
21893 					 * let it get sent as part of the
21894 					 * next segment.
21895 					 */
21896 					if (tcp->tcp_localnet &&
21897 					    !tcp->tcp_cork &&
21898 					    (nmpsz < roundup((mss >> 1), 64)))
21899 						break;
21900 				}
21901 
21902 				*xmit_tail = nmp;
21903 				ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX);
21904 				/* Stash for rtt use later */
21905 				(*xmit_tail)->b_prev = local_time;
21906 				(*xmit_tail)->b_next =
21907 				    (mblk_t *)(uintptr_t)(*snxt - len);
21908 				mp1->b_cont = dupb(*xmit_tail);
21909 				mp1 = mp1->b_cont;
21910 
21911 				spill += nmpsz;
21912 				if (mp1 == NULL) {
21913 					*tail_unsent = spill;
21914 					freemsg(mp);
21915 					if (ire != NULL)
21916 						IRE_REFRELE(ire);
21917 					return (-1);	/* out_of_mem */
21918 				}
21919 			}
21920 
21921 			/* Trim back any surplus on the last mblk */
21922 			if (spill >= 0) {
21923 				mp1->b_wptr -= spill;
21924 				*tail_unsent = spill;
21925 			} else {
21926 				/*
21927 				 * We did not send everything we could in
21928 				 * order to remain within the b_cont limit.
21929 				 */
21930 				*usable -= spill;
21931 				*snxt += spill;
21932 				tcp->tcp_last_sent_len += spill;
21933 				UPDATE_MIB(&tcps->tcps_mib,
21934 				    tcpOutDataBytes, spill);
21935 				/*
21936 				 * Adjust the checksum
21937 				 */
21938 				tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
21939 				sum += spill;
21940 				sum = (sum >> 16) + (sum & 0xFFFF);
21941 				U16_TO_ABE16(sum, tcph->th_sum);
21942 				if (tcp->tcp_ipversion == IPV4_VERSION) {
21943 					sum = ntohs(
21944 					    ((ipha_t *)rptr)->ipha_length) +
21945 					    spill;
21946 					((ipha_t *)rptr)->ipha_length =
21947 					    htons(sum);
21948 				} else {
21949 					sum = ntohs(
21950 					    ((ip6_t *)rptr)->ip6_plen) +
21951 					    spill;
21952 					((ip6_t *)rptr)->ip6_plen =
21953 					    htons(sum);
21954 				}
21955 				*tail_unsent = 0;
21956 			}
21957 		}
21958 		if (tcp->tcp_ip_forward_progress) {
21959 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
21960 			*(uint32_t *)mp->b_rptr  |= IP_FORWARD_PROG;
21961 			tcp->tcp_ip_forward_progress = B_FALSE;
21962 		}
21963 
21964 		if (do_lso_send) {
21965 			tcp_lsosend_data(tcp, mp, ire, ill, mss,
21966 			    num_lso_seg);
21967 			tcp->tcp_obsegs += num_lso_seg;
21968 
21969 			TCP_STAT(tcps, tcp_lso_times);
21970 			TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg);
21971 		} else {
21972 			tcp_send_data(tcp, q, mp);
21973 			BUMP_LOCAL(tcp->tcp_obsegs);
21974 		}
21975 	}
21976 
21977 	if (ire != NULL)
21978 		IRE_REFRELE(ire);
21979 	return (0);
21980 }
21981 
21982 /* Unlink and return any mblk that looks like it contains a MDT info */
21983 static mblk_t *
21984 tcp_mdt_info_mp(mblk_t *mp)
21985 {
21986 	mblk_t	*prev_mp;
21987 
21988 	for (;;) {
21989 		prev_mp = mp;
21990 		/* no more to process? */
21991 		if ((mp = mp->b_cont) == NULL)
21992 			break;
21993 
21994 		switch (DB_TYPE(mp)) {
21995 		case M_CTL:
21996 			if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE)
21997 				continue;
21998 			ASSERT(prev_mp != NULL);
21999 			prev_mp->b_cont = mp->b_cont;
22000 			mp->b_cont = NULL;
22001 			return (mp);
22002 		default:
22003 			break;
22004 		}
22005 	}
22006 	return (mp);
22007 }
22008 
22009 /* MDT info update routine, called when IP notifies us about MDT */
22010 static void
22011 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first)
22012 {
22013 	boolean_t prev_state;
22014 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22015 
22016 	/*
22017 	 * IP is telling us to abort MDT on this connection?  We know
22018 	 * this because the capability is only turned off when IP
22019 	 * encounters some pathological cases, e.g. link-layer change
22020 	 * where the new driver doesn't support MDT, or in situation
22021 	 * where MDT usage on the link-layer has been switched off.
22022 	 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE
22023 	 * if the link-layer doesn't support MDT, and if it does, it
22024 	 * will indicate that the feature is to be turned on.
22025 	 */
22026 	prev_state = tcp->tcp_mdt;
22027 	tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0);
22028 	if (!tcp->tcp_mdt && !first) {
22029 		TCP_STAT(tcps, tcp_mdt_conn_halted3);
22030 		ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n",
22031 		    (void *)tcp->tcp_connp));
22032 	}
22033 
22034 	/*
22035 	 * We currently only support MDT on simple TCP/{IPv4,IPv6},
22036 	 * so disable MDT otherwise.  The checks are done here
22037 	 * and in tcp_wput_data().
22038 	 */
22039 	if (tcp->tcp_mdt &&
22040 	    (tcp->tcp_ipversion == IPV4_VERSION &&
22041 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
22042 	    (tcp->tcp_ipversion == IPV6_VERSION &&
22043 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN))
22044 		tcp->tcp_mdt = B_FALSE;
22045 
22046 	if (tcp->tcp_mdt) {
22047 		if (mdt_capab->ill_mdt_version != MDT_VERSION_2) {
22048 			cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT "
22049 			    "version (%d), expected version is %d",
22050 			    mdt_capab->ill_mdt_version, MDT_VERSION_2);
22051 			tcp->tcp_mdt = B_FALSE;
22052 			return;
22053 		}
22054 
22055 		/*
22056 		 * We need the driver to be able to handle at least three
22057 		 * spans per packet in order for tcp MDT to be utilized.
22058 		 * The first is for the header portion, while the rest are
22059 		 * needed to handle a packet that straddles across two
22060 		 * virtually non-contiguous buffers; a typical tcp packet
22061 		 * therefore consists of only two spans.  Note that we take
22062 		 * a zero as "don't care".
22063 		 */
22064 		if (mdt_capab->ill_mdt_span_limit > 0 &&
22065 		    mdt_capab->ill_mdt_span_limit < 3) {
22066 			tcp->tcp_mdt = B_FALSE;
22067 			return;
22068 		}
22069 
22070 		/* a zero means driver wants default value */
22071 		tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld,
22072 		    tcps->tcps_mdt_max_pbufs);
22073 		if (tcp->tcp_mdt_max_pld == 0)
22074 			tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs;
22075 
22076 		/* ensure 32-bit alignment */
22077 		tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min,
22078 		    mdt_capab->ill_mdt_hdr_head), 4);
22079 		tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min,
22080 		    mdt_capab->ill_mdt_hdr_tail), 4);
22081 
22082 		if (!first && !prev_state) {
22083 			TCP_STAT(tcps, tcp_mdt_conn_resumed2);
22084 			ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n",
22085 			    (void *)tcp->tcp_connp));
22086 		}
22087 	}
22088 }
22089 
22090 /* Unlink and return any mblk that looks like it contains a LSO info */
22091 static mblk_t *
22092 tcp_lso_info_mp(mblk_t *mp)
22093 {
22094 	mblk_t	*prev_mp;
22095 
22096 	for (;;) {
22097 		prev_mp = mp;
22098 		/* no more to process? */
22099 		if ((mp = mp->b_cont) == NULL)
22100 			break;
22101 
22102 		switch (DB_TYPE(mp)) {
22103 		case M_CTL:
22104 			if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE)
22105 				continue;
22106 			ASSERT(prev_mp != NULL);
22107 			prev_mp->b_cont = mp->b_cont;
22108 			mp->b_cont = NULL;
22109 			return (mp);
22110 		default:
22111 			break;
22112 		}
22113 	}
22114 
22115 	return (mp);
22116 }
22117 
22118 /* LSO info update routine, called when IP notifies us about LSO */
22119 static void
22120 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab)
22121 {
22122 	tcp_stack_t *tcps = tcp->tcp_tcps;
22123 
22124 	/*
22125 	 * IP is telling us to abort LSO on this connection?  We know
22126 	 * this because the capability is only turned off when IP
22127 	 * encounters some pathological cases, e.g. link-layer change
22128 	 * where the new NIC/driver doesn't support LSO, or in situation
22129 	 * where LSO usage on the link-layer has been switched off.
22130 	 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE
22131 	 * if the link-layer doesn't support LSO, and if it does, it
22132 	 * will indicate that the feature is to be turned on.
22133 	 */
22134 	tcp->tcp_lso = (lso_capab->ill_lso_on != 0);
22135 	TCP_STAT(tcps, tcp_lso_enabled);
22136 
22137 	/*
22138 	 * We currently only support LSO on simple TCP/IPv4,
22139 	 * so disable LSO otherwise.  The checks are done here
22140 	 * and in tcp_wput_data().
22141 	 */
22142 	if (tcp->tcp_lso &&
22143 	    (tcp->tcp_ipversion == IPV4_VERSION &&
22144 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
22145 	    (tcp->tcp_ipversion == IPV6_VERSION)) {
22146 		tcp->tcp_lso = B_FALSE;
22147 		TCP_STAT(tcps, tcp_lso_disabled);
22148 	} else {
22149 		tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH,
22150 		    lso_capab->ill_lso_max);
22151 	}
22152 }
22153 
22154 static void
22155 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt)
22156 {
22157 	conn_t *connp = tcp->tcp_connp;
22158 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22159 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
22160 
22161 	ASSERT(ire != NULL);
22162 
22163 	/*
22164 	 * We may be in the fastpath here, and although we essentially do
22165 	 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return,
22166 	 * we try to keep things as brief as possible.  After all, these
22167 	 * are only best-effort checks, and we do more thorough ones prior
22168 	 * to calling tcp_send()/tcp_multisend().
22169 	 */
22170 	if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) &&
22171 	    check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) &&
22172 	    ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) &&
22173 	    !(ire->ire_flags & RTF_MULTIRT) &&
22174 	    !IPP_ENABLED(IPP_LOCAL_OUT, ipst) &&
22175 	    CONN_IS_LSO_MD_FASTPATH(connp)) {
22176 		if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) {
22177 			/* Cache the result */
22178 			connp->conn_lso_ok = B_TRUE;
22179 
22180 			ASSERT(ill->ill_lso_capab != NULL);
22181 			if (!ill->ill_lso_capab->ill_lso_on) {
22182 				ill->ill_lso_capab->ill_lso_on = 1;
22183 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
22184 				    "LSO for interface %s\n", (void *)connp,
22185 				    ill->ill_name));
22186 			}
22187 			tcp_lso_update(tcp, ill->ill_lso_capab);
22188 		} else if (ipst->ips_ip_multidata_outbound &&
22189 		    ILL_MDT_CAPABLE(ill)) {
22190 			/* Cache the result */
22191 			connp->conn_mdt_ok = B_TRUE;
22192 
22193 			ASSERT(ill->ill_mdt_capab != NULL);
22194 			if (!ill->ill_mdt_capab->ill_mdt_on) {
22195 				ill->ill_mdt_capab->ill_mdt_on = 1;
22196 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
22197 				    "MDT for interface %s\n", (void *)connp,
22198 				    ill->ill_name));
22199 			}
22200 			tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE);
22201 		}
22202 	}
22203 
22204 	/*
22205 	 * The goal is to reduce the number of generated tcp segments by
22206 	 * setting the maxpsz multiplier to 0; this will have an affect on
22207 	 * tcp_maxpsz_set().  With this behavior, tcp will pack more data
22208 	 * into each packet, up to SMSS bytes.  Doing this reduces the number
22209 	 * of outbound segments and incoming ACKs, thus allowing for better
22210 	 * network and system performance.  In contrast the legacy behavior
22211 	 * may result in sending less than SMSS size, because the last mblk
22212 	 * for some packets may have more data than needed to make up SMSS,
22213 	 * and the legacy code refused to "split" it.
22214 	 *
22215 	 * We apply the new behavior on following situations:
22216 	 *
22217 	 *   1) Loopback connections,
22218 	 *   2) Connections in which the remote peer is not on local subnet,
22219 	 *   3) Local subnet connections over the bge interface (see below).
22220 	 *
22221 	 * Ideally, we would like this behavior to apply for interfaces other
22222 	 * than bge.  However, doing so would negatively impact drivers which
22223 	 * perform dynamic mapping and unmapping of DMA resources, which are
22224 	 * increased by setting the maxpsz multiplier to 0 (more mblks per
22225 	 * packet will be generated by tcp).  The bge driver does not suffer
22226 	 * from this, as it copies the mblks into pre-mapped buffers, and
22227 	 * therefore does not require more I/O resources than before.
22228 	 *
22229 	 * Otherwise, this behavior is present on all network interfaces when
22230 	 * the destination endpoint is non-local, since reducing the number
22231 	 * of packets in general is good for the network.
22232 	 *
22233 	 * TODO We need to remove this hard-coded conditional for bge once
22234 	 *	a better "self-tuning" mechanism, or a way to comprehend
22235 	 *	the driver transmit strategy is devised.  Until the solution
22236 	 *	is found and well understood, we live with this hack.
22237 	 */
22238 	if (!tcp_static_maxpsz &&
22239 	    (tcp->tcp_loopback || !tcp->tcp_localnet ||
22240 	    (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) {
22241 		/* override the default value */
22242 		tcp->tcp_maxpsz = 0;
22243 
22244 		ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on "
22245 		    "interface %s\n", (void *)connp, tcp->tcp_maxpsz,
22246 		    ill != NULL ? ill->ill_name : ipif_loopback_name));
22247 	}
22248 
22249 	/* set the stream head parameters accordingly */
22250 	(void) tcp_maxpsz_set(tcp, B_TRUE);
22251 }
22252 
22253 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */
22254 static void
22255 tcp_wput_flush(tcp_t *tcp, mblk_t *mp)
22256 {
22257 	uchar_t	fval = *mp->b_rptr;
22258 	mblk_t	*tail;
22259 	queue_t	*q = tcp->tcp_wq;
22260 
22261 	/* TODO: How should flush interact with urgent data? */
22262 	if ((fval & FLUSHW) && tcp->tcp_xmit_head &&
22263 	    !(tcp->tcp_valid_bits & TCP_URG_VALID)) {
22264 		/*
22265 		 * Flush only data that has not yet been put on the wire.  If
22266 		 * we flush data that we have already transmitted, life, as we
22267 		 * know it, may come to an end.
22268 		 */
22269 		tail = tcp->tcp_xmit_tail;
22270 		tail->b_wptr -= tcp->tcp_xmit_tail_unsent;
22271 		tcp->tcp_xmit_tail_unsent = 0;
22272 		tcp->tcp_unsent = 0;
22273 		if (tail->b_wptr != tail->b_rptr)
22274 			tail = tail->b_cont;
22275 		if (tail) {
22276 			mblk_t **excess = &tcp->tcp_xmit_head;
22277 			for (;;) {
22278 				mblk_t *mp1 = *excess;
22279 				if (mp1 == tail)
22280 					break;
22281 				tcp->tcp_xmit_tail = mp1;
22282 				tcp->tcp_xmit_last = mp1;
22283 				excess = &mp1->b_cont;
22284 			}
22285 			*excess = NULL;
22286 			tcp_close_mpp(&tail);
22287 			if (tcp->tcp_snd_zcopy_aware)
22288 				tcp_zcopy_notify(tcp);
22289 		}
22290 		/*
22291 		 * We have no unsent data, so unsent must be less than
22292 		 * tcp_xmit_lowater, so re-enable flow.
22293 		 */
22294 		mutex_enter(&tcp->tcp_non_sq_lock);
22295 		if (tcp->tcp_flow_stopped) {
22296 			tcp_clrqfull(tcp);
22297 		}
22298 		mutex_exit(&tcp->tcp_non_sq_lock);
22299 	}
22300 	/*
22301 	 * TODO: you can't just flush these, you have to increase rwnd for one
22302 	 * thing.  For another, how should urgent data interact?
22303 	 */
22304 	if (fval & FLUSHR) {
22305 		*mp->b_rptr = fval & ~FLUSHW;
22306 		/* XXX */
22307 		qreply(q, mp);
22308 		return;
22309 	}
22310 	freemsg(mp);
22311 }
22312 
22313 /*
22314  * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA
22315  * messages.
22316  */
22317 static void
22318 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp)
22319 {
22320 	mblk_t	*mp1;
22321 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
22322 	STRUCT_HANDLE(strbuf, sb);
22323 	queue_t *q = tcp->tcp_wq;
22324 	int	error;
22325 	uint_t	addrlen;
22326 
22327 	/* Make sure it is one of ours. */
22328 	switch (iocp->ioc_cmd) {
22329 	case TI_GETMYNAME:
22330 	case TI_GETPEERNAME:
22331 		break;
22332 	default:
22333 		CALL_IP_WPUT(tcp->tcp_connp, q, mp);
22334 		return;
22335 	}
22336 	switch (mi_copy_state(q, mp, &mp1)) {
22337 	case -1:
22338 		return;
22339 	case MI_COPY_CASE(MI_COPY_IN, 1):
22340 		break;
22341 	case MI_COPY_CASE(MI_COPY_OUT, 1):
22342 		/* Copy out the strbuf. */
22343 		mi_copyout(q, mp);
22344 		return;
22345 	case MI_COPY_CASE(MI_COPY_OUT, 2):
22346 		/* All done. */
22347 		mi_copy_done(q, mp, 0);
22348 		return;
22349 	default:
22350 		mi_copy_done(q, mp, EPROTO);
22351 		return;
22352 	}
22353 	/* Check alignment of the strbuf */
22354 	if (!OK_32PTR(mp1->b_rptr)) {
22355 		mi_copy_done(q, mp, EINVAL);
22356 		return;
22357 	}
22358 
22359 	STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr);
22360 	addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t);
22361 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
22362 		mi_copy_done(q, mp, EINVAL);
22363 		return;
22364 	}
22365 
22366 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
22367 	if (mp1 == NULL)
22368 		return;
22369 
22370 	switch (iocp->ioc_cmd) {
22371 	case TI_GETMYNAME:
22372 		error = tcp_getmyname(tcp, (void *)mp1->b_rptr, &addrlen);
22373 		break;
22374 	case TI_GETPEERNAME:
22375 		error = tcp_getpeername(tcp, (void *)mp1->b_rptr, &addrlen);
22376 		break;
22377 	}
22378 
22379 	if (error != 0) {
22380 		mi_copy_done(q, mp, error);
22381 	} else {
22382 		mp1->b_wptr += addrlen;
22383 		STRUCT_FSET(sb, len, addrlen);
22384 
22385 		/* Copy out the address */
22386 		mi_copyout(q, mp);
22387 	}
22388 }
22389 
22390 /*
22391  * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL
22392  * messages.
22393  */
22394 /* ARGSUSED */
22395 static void
22396 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2)
22397 {
22398 	conn_t 	*connp = (conn_t *)arg;
22399 	tcp_t	*tcp = connp->conn_tcp;
22400 	queue_t	*q = tcp->tcp_wq;
22401 	struct iocblk	*iocp;
22402 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22403 
22404 	ASSERT(DB_TYPE(mp) == M_IOCTL);
22405 	/*
22406 	 * Try and ASSERT the minimum possible references on the
22407 	 * conn early enough. Since we are executing on write side,
22408 	 * the connection is obviously not detached and that means
22409 	 * there is a ref each for TCP and IP. Since we are behind
22410 	 * the squeue, the minimum references needed are 3. If the
22411 	 * conn is in classifier hash list, there should be an
22412 	 * extra ref for that (we check both the possibilities).
22413 	 */
22414 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
22415 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
22416 
22417 	iocp = (struct iocblk *)mp->b_rptr;
22418 	switch (iocp->ioc_cmd) {
22419 	case TCP_IOC_DEFAULT_Q:
22420 		/* Wants to be the default wq. */
22421 		if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
22422 			iocp->ioc_error = EPERM;
22423 			iocp->ioc_count = 0;
22424 			mp->b_datap->db_type = M_IOCACK;
22425 			qreply(q, mp);
22426 			return;
22427 		}
22428 		tcp_def_q_set(tcp, mp);
22429 		return;
22430 	case _SIOCSOCKFALLBACK:
22431 		/*
22432 		 * Either sockmod is about to be popped and the socket
22433 		 * would now be treated as a plain stream, or a module
22434 		 * is about to be pushed so we could no longer use read-
22435 		 * side synchronous streams for fused loopback tcp.
22436 		 * Drain any queued data and disable direct sockfs
22437 		 * interface from now on.
22438 		 */
22439 		if (!tcp->tcp_issocket) {
22440 			DB_TYPE(mp) = M_IOCNAK;
22441 			iocp->ioc_error = EINVAL;
22442 		} else {
22443 #ifdef	_ILP32
22444 			tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
22445 #else
22446 			tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev;
22447 #endif
22448 			/*
22449 			 * Insert this socket into the acceptor hash.
22450 			 * We might need it for T_CONN_RES message
22451 			 */
22452 			tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
22453 
22454 			if (tcp->tcp_fused) {
22455 				/*
22456 				 * This is a fused loopback tcp; disable
22457 				 * read-side synchronous streams interface
22458 				 * and drain any queued data.  It is okay
22459 				 * to do this for non-synchronous streams
22460 				 * fused tcp as well.
22461 				 */
22462 				tcp_fuse_disable_pair(tcp, B_FALSE);
22463 			}
22464 			tcp->tcp_issocket = B_FALSE;
22465 			tcp->tcp_sodirect = NULL;
22466 			TCP_STAT(tcps, tcp_sock_fallback);
22467 
22468 			DB_TYPE(mp) = M_IOCACK;
22469 			iocp->ioc_error = 0;
22470 		}
22471 		iocp->ioc_count = 0;
22472 		iocp->ioc_rval = 0;
22473 		qreply(q, mp);
22474 		return;
22475 	}
22476 	CALL_IP_WPUT(connp, q, mp);
22477 }
22478 
22479 /*
22480  * This routine is called by tcp_wput() to handle all TPI requests.
22481  */
22482 /* ARGSUSED */
22483 static void
22484 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2)
22485 {
22486 	conn_t 	*connp = (conn_t *)arg;
22487 	tcp_t	*tcp = connp->conn_tcp;
22488 	union T_primitives *tprim = (union T_primitives *)mp->b_rptr;
22489 	uchar_t *rptr;
22490 	t_scalar_t type;
22491 	int len;
22492 	cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred);
22493 
22494 	/*
22495 	 * Try and ASSERT the minimum possible references on the
22496 	 * conn early enough. Since we are executing on write side,
22497 	 * the connection is obviously not detached and that means
22498 	 * there is a ref each for TCP and IP. Since we are behind
22499 	 * the squeue, the minimum references needed are 3. If the
22500 	 * conn is in classifier hash list, there should be an
22501 	 * extra ref for that (we check both the possibilities).
22502 	 */
22503 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
22504 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
22505 
22506 	rptr = mp->b_rptr;
22507 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
22508 	if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
22509 		type = ((union T_primitives *)rptr)->type;
22510 		if (type == T_EXDATA_REQ) {
22511 			uint32_t msize = msgdsize(mp->b_cont);
22512 
22513 			len = msize - 1;
22514 			if (len < 0) {
22515 				freemsg(mp);
22516 				return;
22517 			}
22518 			/*
22519 			 * Try to force urgent data out on the wire.
22520 			 * Even if we have unsent data this will
22521 			 * at least send the urgent flag.
22522 			 * XXX does not handle more flag correctly.
22523 			 */
22524 			len += tcp->tcp_unsent;
22525 			len += tcp->tcp_snxt;
22526 			tcp->tcp_urg = len;
22527 			tcp->tcp_valid_bits |= TCP_URG_VALID;
22528 
22529 			/* Bypass tcp protocol for fused tcp loopback */
22530 			if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
22531 				return;
22532 		} else if (type != T_DATA_REQ) {
22533 			goto non_urgent_data;
22534 		}
22535 		/* TODO: options, flags, ... from user */
22536 		/* Set length to zero for reclamation below */
22537 		tcp_wput_data(tcp, mp->b_cont, B_TRUE);
22538 		freeb(mp);
22539 		return;
22540 	} else {
22541 		if (tcp->tcp_debug) {
22542 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
22543 			    "tcp_wput_proto, dropping one...");
22544 		}
22545 		freemsg(mp);
22546 		return;
22547 	}
22548 
22549 non_urgent_data:
22550 
22551 	switch ((int)tprim->type) {
22552 	case T_SSL_PROXY_BIND_REQ:	/* an SSL proxy endpoint bind request */
22553 		/*
22554 		 * save the kssl_ent_t from the next block, and convert this
22555 		 * back to a normal bind_req.
22556 		 */
22557 		if (mp->b_cont != NULL) {
22558 			ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t));
22559 
22560 			if (tcp->tcp_kssl_ent != NULL) {
22561 				kssl_release_ent(tcp->tcp_kssl_ent, NULL,
22562 				    KSSL_NO_PROXY);
22563 				tcp->tcp_kssl_ent = NULL;
22564 			}
22565 			bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent,
22566 			    sizeof (kssl_ent_t));
22567 			kssl_hold_ent(tcp->tcp_kssl_ent);
22568 			freemsg(mp->b_cont);
22569 			mp->b_cont = NULL;
22570 		}
22571 		tprim->type = T_BIND_REQ;
22572 
22573 	/* FALLTHROUGH */
22574 	case O_T_BIND_REQ:	/* bind request */
22575 	case T_BIND_REQ:	/* new semantics bind request */
22576 		tcp_bind(tcp, mp);
22577 		break;
22578 	case T_UNBIND_REQ:	/* unbind request */
22579 		tcp_unbind(tcp, mp);
22580 		break;
22581 	case O_T_CONN_RES:	/* old connection response XXX */
22582 	case T_CONN_RES:	/* connection response */
22583 		tcp_accept(tcp, mp);
22584 		break;
22585 	case T_CONN_REQ:	/* connection request */
22586 		tcp_connect(tcp, mp);
22587 		break;
22588 	case T_DISCON_REQ:	/* disconnect request */
22589 		tcp_disconnect(tcp, mp);
22590 		break;
22591 	case T_CAPABILITY_REQ:
22592 		tcp_capability_req(tcp, mp);	/* capability request */
22593 		break;
22594 	case T_INFO_REQ:	/* information request */
22595 		tcp_info_req(tcp, mp);
22596 		break;
22597 	case T_SVR4_OPTMGMT_REQ:	/* manage options req */
22598 		(void) svr4_optcom_req(tcp->tcp_wq, mp, cr,
22599 		    &tcp_opt_obj, B_TRUE);
22600 		break;
22601 	case T_OPTMGMT_REQ:
22602 		/*
22603 		 * Note:  no support for snmpcom_req() through new
22604 		 * T_OPTMGMT_REQ. See comments in ip.c
22605 		 */
22606 		/* Only IP is allowed to return meaningful value */
22607 		(void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj,
22608 		    B_TRUE);
22609 		break;
22610 
22611 	case T_UNITDATA_REQ:	/* unitdata request */
22612 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
22613 		break;
22614 	case T_ORDREL_REQ:	/* orderly release req */
22615 		freemsg(mp);
22616 
22617 		if (tcp->tcp_fused)
22618 			tcp_unfuse(tcp);
22619 
22620 		if (tcp_xmit_end(tcp) != 0) {
22621 			/*
22622 			 * We were crossing FINs and got a reset from
22623 			 * the other side. Just ignore it.
22624 			 */
22625 			if (tcp->tcp_debug) {
22626 				(void) strlog(TCP_MOD_ID, 0, 1,
22627 				    SL_ERROR|SL_TRACE,
22628 				    "tcp_wput_proto, T_ORDREL_REQ out of "
22629 				    "state %s",
22630 				    tcp_display(tcp, NULL,
22631 				    DISP_ADDR_AND_PORT));
22632 			}
22633 		}
22634 		break;
22635 	case T_ADDR_REQ:
22636 		tcp_addr_req(tcp, mp);
22637 		break;
22638 	default:
22639 		if (tcp->tcp_debug) {
22640 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
22641 			    "tcp_wput_proto, bogus TPI msg, type %d",
22642 			    tprim->type);
22643 		}
22644 		/*
22645 		 * We used to M_ERROR.  Sending TNOTSUPPORT gives the user
22646 		 * to recover.
22647 		 */
22648 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
22649 		break;
22650 	}
22651 }
22652 
22653 /*
22654  * The TCP write service routine should never be called...
22655  */
22656 /* ARGSUSED */
22657 static void
22658 tcp_wsrv(queue_t *q)
22659 {
22660 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
22661 
22662 	TCP_STAT(tcps, tcp_wsrv_called);
22663 }
22664 
22665 /* Non overlapping byte exchanger */
22666 static void
22667 tcp_xchg(uchar_t *a, uchar_t *b, int len)
22668 {
22669 	uchar_t	uch;
22670 
22671 	while (len-- > 0) {
22672 		uch = a[len];
22673 		a[len] = b[len];
22674 		b[len] = uch;
22675 	}
22676 }
22677 
22678 /*
22679  * Send out a control packet on the tcp connection specified.  This routine
22680  * is typically called where we need a simple ACK or RST generated.
22681  */
22682 static void
22683 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl)
22684 {
22685 	uchar_t		*rptr;
22686 	tcph_t		*tcph;
22687 	ipha_t		*ipha = NULL;
22688 	ip6_t		*ip6h = NULL;
22689 	uint32_t	sum;
22690 	int		tcp_hdr_len;
22691 	int		tcp_ip_hdr_len;
22692 	mblk_t		*mp;
22693 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22694 
22695 	/*
22696 	 * Save sum for use in source route later.
22697 	 */
22698 	ASSERT(tcp != NULL);
22699 	sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
22700 	tcp_hdr_len = tcp->tcp_hdr_len;
22701 	tcp_ip_hdr_len = tcp->tcp_ip_hdr_len;
22702 
22703 	/* If a text string is passed in with the request, pass it to strlog. */
22704 	if (str != NULL && tcp->tcp_debug) {
22705 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
22706 		    "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x",
22707 		    str, seq, ack, ctl);
22708 	}
22709 	mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra,
22710 	    BPRI_MED);
22711 	if (mp == NULL) {
22712 		return;
22713 	}
22714 	rptr = &mp->b_rptr[tcps->tcps_wroff_xtra];
22715 	mp->b_rptr = rptr;
22716 	mp->b_wptr = &rptr[tcp_hdr_len];
22717 	bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len);
22718 
22719 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22720 		ipha = (ipha_t *)rptr;
22721 		ipha->ipha_length = htons(tcp_hdr_len);
22722 	} else {
22723 		ip6h = (ip6_t *)rptr;
22724 		ASSERT(tcp != NULL);
22725 		ip6h->ip6_plen = htons(tcp->tcp_hdr_len -
22726 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22727 	}
22728 	tcph = (tcph_t *)&rptr[tcp_ip_hdr_len];
22729 	tcph->th_flags[0] = (uint8_t)ctl;
22730 	if (ctl & TH_RST) {
22731 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
22732 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22733 		/*
22734 		 * Don't send TSopt w/ TH_RST packets per RFC 1323.
22735 		 */
22736 		if (tcp->tcp_snd_ts_ok &&
22737 		    tcp->tcp_state > TCPS_SYN_SENT) {
22738 			mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN];
22739 			*(mp->b_wptr) = TCPOPT_EOL;
22740 			if (tcp->tcp_ipversion == IPV4_VERSION) {
22741 				ipha->ipha_length = htons(tcp_hdr_len -
22742 				    TCPOPT_REAL_TS_LEN);
22743 			} else {
22744 				ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) -
22745 				    TCPOPT_REAL_TS_LEN);
22746 			}
22747 			tcph->th_offset_and_rsrvd[0] -= (3 << 4);
22748 			sum -= TCPOPT_REAL_TS_LEN;
22749 		}
22750 	}
22751 	if (ctl & TH_ACK) {
22752 		if (tcp->tcp_snd_ts_ok) {
22753 			U32_TO_BE32(lbolt,
22754 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22755 			U32_TO_BE32(tcp->tcp_ts_recent,
22756 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22757 		}
22758 
22759 		/* Update the latest receive window size in TCP header. */
22760 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22761 		    tcph->th_win);
22762 		tcp->tcp_rack = ack;
22763 		tcp->tcp_rack_cnt = 0;
22764 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
22765 	}
22766 	BUMP_LOCAL(tcp->tcp_obsegs);
22767 	U32_TO_BE32(seq, tcph->th_seq);
22768 	U32_TO_BE32(ack, tcph->th_ack);
22769 	/*
22770 	 * Include the adjustment for a source route if any.
22771 	 */
22772 	sum = (sum >> 16) + (sum & 0xFFFF);
22773 	U16_TO_BE16(sum, tcph->th_sum);
22774 	tcp_send_data(tcp, tcp->tcp_wq, mp);
22775 }
22776 
22777 /*
22778  * If this routine returns B_TRUE, TCP can generate a RST in response
22779  * to a segment.  If it returns B_FALSE, TCP should not respond.
22780  */
22781 static boolean_t
22782 tcp_send_rst_chk(tcp_stack_t *tcps)
22783 {
22784 	clock_t	now;
22785 
22786 	/*
22787 	 * TCP needs to protect itself from generating too many RSTs.
22788 	 * This can be a DoS attack by sending us random segments
22789 	 * soliciting RSTs.
22790 	 *
22791 	 * What we do here is to have a limit of tcp_rst_sent_rate RSTs
22792 	 * in each 1 second interval.  In this way, TCP still generate
22793 	 * RSTs in normal cases but when under attack, the impact is
22794 	 * limited.
22795 	 */
22796 	if (tcps->tcps_rst_sent_rate_enabled != 0) {
22797 		now = lbolt;
22798 		/* lbolt can wrap around. */
22799 		if ((tcps->tcps_last_rst_intrvl > now) ||
22800 		    (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) >
22801 		    1*SECONDS)) {
22802 			tcps->tcps_last_rst_intrvl = now;
22803 			tcps->tcps_rst_cnt = 1;
22804 		} else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) {
22805 			return (B_FALSE);
22806 		}
22807 	}
22808 	return (B_TRUE);
22809 }
22810 
22811 /*
22812  * Send down the advice IP ioctl to tell IP to mark an IRE temporary.
22813  */
22814 static void
22815 tcp_ip_ire_mark_advice(tcp_t *tcp)
22816 {
22817 	mblk_t *mp;
22818 	ipic_t *ipic;
22819 
22820 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22821 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
22822 		    &ipic);
22823 	} else {
22824 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
22825 		    &ipic);
22826 	}
22827 	if (mp == NULL)
22828 		return;
22829 	ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
22830 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22831 }
22832 
22833 /*
22834  * Return an IP advice ioctl mblk and set ipic to be the pointer
22835  * to the advice structure.
22836  */
22837 static mblk_t *
22838 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic)
22839 {
22840 	struct iocblk *ioc;
22841 	mblk_t *mp, *mp1;
22842 
22843 	mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI);
22844 	if (mp == NULL)
22845 		return (NULL);
22846 	bzero(mp->b_rptr, sizeof (ipic_t) + addr_len);
22847 	*ipic = (ipic_t *)mp->b_rptr;
22848 	(*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY;
22849 	(*ipic)->ipic_addr_offset = sizeof (ipic_t);
22850 
22851 	bcopy(addr, *ipic + 1, addr_len);
22852 
22853 	(*ipic)->ipic_addr_length = addr_len;
22854 	mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len];
22855 
22856 	mp1 = mkiocb(IP_IOCTL);
22857 	if (mp1 == NULL) {
22858 		freemsg(mp);
22859 		return (NULL);
22860 	}
22861 	mp1->b_cont = mp;
22862 	ioc = (struct iocblk *)mp1->b_rptr;
22863 	ioc->ioc_count = sizeof (ipic_t) + addr_len;
22864 
22865 	return (mp1);
22866 }
22867 
22868 /*
22869  * Generate a reset based on an inbound packet, connp is set by caller
22870  * when RST is in response to an unexpected inbound packet for which
22871  * there is active tcp state in the system.
22872  *
22873  * IPSEC NOTE : Try to send the reply with the same protection as it came
22874  * in.  We still have the ipsec_mp that the packet was attached to. Thus
22875  * the packet will go out at the same level of protection as it came in by
22876  * converting the IPSEC_IN to IPSEC_OUT.
22877  */
22878 static void
22879 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq,
22880     uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid,
22881     tcp_stack_t *tcps, conn_t *connp)
22882 {
22883 	ipha_t		*ipha = NULL;
22884 	ip6_t		*ip6h = NULL;
22885 	ushort_t	len;
22886 	tcph_t		*tcph;
22887 	int		i;
22888 	mblk_t		*ipsec_mp;
22889 	boolean_t	mctl_present;
22890 	ipic_t		*ipic;
22891 	ipaddr_t	v4addr;
22892 	in6_addr_t	v6addr;
22893 	int		addr_len;
22894 	void		*addr;
22895 	queue_t		*q = tcps->tcps_g_q;
22896 	tcp_t		*tcp;
22897 	cred_t		*cr;
22898 	mblk_t		*nmp;
22899 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
22900 
22901 	if (tcps->tcps_g_q == NULL) {
22902 		/*
22903 		 * For non-zero stackids the default queue isn't created
22904 		 * until the first open, thus there can be a need to send
22905 		 * a reset before then. But we can't do that, hence we just
22906 		 * drop the packet. Later during boot, when the default queue
22907 		 * has been setup, a retransmitted packet from the peer
22908 		 * will result in a reset.
22909 		 */
22910 		ASSERT(tcps->tcps_netstack->netstack_stackid !=
22911 		    GLOBAL_NETSTACKID);
22912 		freemsg(mp);
22913 		return;
22914 	}
22915 
22916 	if (connp != NULL)
22917 		tcp = connp->conn_tcp;
22918 	else
22919 		tcp = Q_TO_TCP(q);
22920 
22921 	if (!tcp_send_rst_chk(tcps)) {
22922 		tcps->tcps_rst_unsent++;
22923 		freemsg(mp);
22924 		return;
22925 	}
22926 
22927 	if (mp->b_datap->db_type == M_CTL) {
22928 		ipsec_mp = mp;
22929 		mp = mp->b_cont;
22930 		mctl_present = B_TRUE;
22931 	} else {
22932 		ipsec_mp = mp;
22933 		mctl_present = B_FALSE;
22934 	}
22935 
22936 	if (str && q && tcps->tcps_dbg) {
22937 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
22938 		    "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, "
22939 		    "flags 0x%x",
22940 		    str, seq, ack, ctl);
22941 	}
22942 	if (mp->b_datap->db_ref != 1) {
22943 		mblk_t *mp1 = copyb(mp);
22944 		freemsg(mp);
22945 		mp = mp1;
22946 		if (!mp) {
22947 			if (mctl_present)
22948 				freeb(ipsec_mp);
22949 			return;
22950 		} else {
22951 			if (mctl_present) {
22952 				ipsec_mp->b_cont = mp;
22953 			} else {
22954 				ipsec_mp = mp;
22955 			}
22956 		}
22957 	} else if (mp->b_cont) {
22958 		freemsg(mp->b_cont);
22959 		mp->b_cont = NULL;
22960 	}
22961 	/*
22962 	 * We skip reversing source route here.
22963 	 * (for now we replace all IP options with EOL)
22964 	 */
22965 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22966 		ipha = (ipha_t *)mp->b_rptr;
22967 		for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++)
22968 			mp->b_rptr[i] = IPOPT_EOL;
22969 		/*
22970 		 * Make sure that src address isn't flagrantly invalid.
22971 		 * Not all broadcast address checking for the src address
22972 		 * is possible, since we don't know the netmask of the src
22973 		 * addr.  No check for destination address is done, since
22974 		 * IP will not pass up a packet with a broadcast dest
22975 		 * address to TCP.  Similar checks are done below for IPv6.
22976 		 */
22977 		if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST ||
22978 		    CLASSD(ipha->ipha_src)) {
22979 			freemsg(ipsec_mp);
22980 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
22981 			return;
22982 		}
22983 	} else {
22984 		ip6h = (ip6_t *)mp->b_rptr;
22985 
22986 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) ||
22987 		    IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) {
22988 			freemsg(ipsec_mp);
22989 			BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards);
22990 			return;
22991 		}
22992 
22993 		/* Remove any extension headers assuming partial overlay */
22994 		if (ip_hdr_len > IPV6_HDR_LEN) {
22995 			uint8_t *to;
22996 
22997 			to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN;
22998 			ovbcopy(ip6h, to, IPV6_HDR_LEN);
22999 			mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN;
23000 			ip_hdr_len = IPV6_HDR_LEN;
23001 			ip6h = (ip6_t *)mp->b_rptr;
23002 			ip6h->ip6_nxt = IPPROTO_TCP;
23003 		}
23004 	}
23005 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
23006 	if (tcph->th_flags[0] & TH_RST) {
23007 		freemsg(ipsec_mp);
23008 		return;
23009 	}
23010 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
23011 	len = ip_hdr_len + sizeof (tcph_t);
23012 	mp->b_wptr = &mp->b_rptr[len];
23013 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
23014 		ipha->ipha_length = htons(len);
23015 		/* Swap addresses */
23016 		v4addr = ipha->ipha_src;
23017 		ipha->ipha_src = ipha->ipha_dst;
23018 		ipha->ipha_dst = v4addr;
23019 		ipha->ipha_ident = 0;
23020 		ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
23021 		addr_len = IP_ADDR_LEN;
23022 		addr = &v4addr;
23023 	} else {
23024 		/* No ip6i_t in this case */
23025 		ip6h->ip6_plen = htons(len - IPV6_HDR_LEN);
23026 		/* Swap addresses */
23027 		v6addr = ip6h->ip6_src;
23028 		ip6h->ip6_src = ip6h->ip6_dst;
23029 		ip6h->ip6_dst = v6addr;
23030 		ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit;
23031 		addr_len = IPV6_ADDR_LEN;
23032 		addr = &v6addr;
23033 	}
23034 	tcp_xchg(tcph->th_fport, tcph->th_lport, 2);
23035 	U32_TO_BE32(ack, tcph->th_ack);
23036 	U32_TO_BE32(seq, tcph->th_seq);
23037 	U16_TO_BE16(0, tcph->th_win);
23038 	U16_TO_BE16(sizeof (tcph_t), tcph->th_sum);
23039 	tcph->th_flags[0] = (uint8_t)ctl;
23040 	if (ctl & TH_RST) {
23041 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
23042 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23043 	}
23044 
23045 	/* IP trusts us to set up labels when required. */
23046 	if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL &&
23047 	    crgetlabel(cr) != NULL) {
23048 		int err;
23049 
23050 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION)
23051 			err = tsol_check_label(cr, &mp,
23052 			    tcp->tcp_connp->conn_mac_exempt,
23053 			    tcps->tcps_netstack->netstack_ip);
23054 		else
23055 			err = tsol_check_label_v6(cr, &mp,
23056 			    tcp->tcp_connp->conn_mac_exempt,
23057 			    tcps->tcps_netstack->netstack_ip);
23058 		if (mctl_present)
23059 			ipsec_mp->b_cont = mp;
23060 		else
23061 			ipsec_mp = mp;
23062 		if (err != 0) {
23063 			freemsg(ipsec_mp);
23064 			return;
23065 		}
23066 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
23067 			ipha = (ipha_t *)mp->b_rptr;
23068 		} else {
23069 			ip6h = (ip6_t *)mp->b_rptr;
23070 		}
23071 	}
23072 
23073 	if (mctl_present) {
23074 		ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
23075 
23076 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
23077 		if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) {
23078 			return;
23079 		}
23080 	}
23081 	if (zoneid == ALL_ZONES)
23082 		zoneid = GLOBAL_ZONEID;
23083 
23084 	/* Add the zoneid so ip_output routes it properly */
23085 	if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) {
23086 		freemsg(ipsec_mp);
23087 		return;
23088 	}
23089 	ipsec_mp = nmp;
23090 
23091 	/*
23092 	 * NOTE:  one might consider tracing a TCP packet here, but
23093 	 * this function has no active TCP state and no tcp structure
23094 	 * that has a trace buffer.  If we traced here, we would have
23095 	 * to keep a local trace buffer in tcp_record_trace().
23096 	 *
23097 	 * TSol note: The mblk that contains the incoming packet was
23098 	 * reused by tcp_xmit_listener_reset, so it already contains
23099 	 * the right credentials and we don't need to call mblk_setcred.
23100 	 * Also the conn's cred is not right since it is associated
23101 	 * with tcps_g_q.
23102 	 */
23103 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp);
23104 
23105 	/*
23106 	 * Tell IP to mark the IRE used for this destination temporary.
23107 	 * This way, we can limit our exposure to DoS attack because IP
23108 	 * creates an IRE for each destination.  If there are too many,
23109 	 * the time to do any routing lookup will be extremely long.  And
23110 	 * the lookup can be in interrupt context.
23111 	 *
23112 	 * Note that in normal circumstances, this marking should not
23113 	 * affect anything.  It would be nice if only 1 message is
23114 	 * needed to inform IP that the IRE created for this RST should
23115 	 * not be added to the cache table.  But there is currently
23116 	 * not such communication mechanism between TCP and IP.  So
23117 	 * the best we can do now is to send the advice ioctl to IP
23118 	 * to mark the IRE temporary.
23119 	 */
23120 	if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) {
23121 		ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
23122 		CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
23123 	}
23124 }
23125 
23126 /*
23127  * Initiate closedown sequence on an active connection.  (May be called as
23128  * writer.)  Return value zero for OK return, non-zero for error return.
23129  */
23130 static int
23131 tcp_xmit_end(tcp_t *tcp)
23132 {
23133 	ipic_t	*ipic;
23134 	mblk_t	*mp;
23135 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23136 
23137 	if (tcp->tcp_state < TCPS_SYN_RCVD ||
23138 	    tcp->tcp_state > TCPS_CLOSE_WAIT) {
23139 		/*
23140 		 * Invalid state, only states TCPS_SYN_RCVD,
23141 		 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid
23142 		 */
23143 		return (-1);
23144 	}
23145 
23146 	tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent;
23147 	tcp->tcp_valid_bits |= TCP_FSS_VALID;
23148 	/*
23149 	 * If there is nothing more unsent, send the FIN now.
23150 	 * Otherwise, it will go out with the last segment.
23151 	 */
23152 	if (tcp->tcp_unsent == 0) {
23153 		mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
23154 		    tcp->tcp_fss, B_FALSE, NULL, B_FALSE);
23155 
23156 		if (mp) {
23157 			tcp_send_data(tcp, tcp->tcp_wq, mp);
23158 		} else {
23159 			/*
23160 			 * Couldn't allocate msg.  Pretend we got it out.
23161 			 * Wait for rexmit timeout.
23162 			 */
23163 			tcp->tcp_snxt = tcp->tcp_fss + 1;
23164 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
23165 		}
23166 
23167 		/*
23168 		 * If needed, update tcp_rexmit_snxt as tcp_snxt is
23169 		 * changed.
23170 		 */
23171 		if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) {
23172 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
23173 		}
23174 	} else {
23175 		/*
23176 		 * If tcp->tcp_cork is set, then the data will not get sent,
23177 		 * so we have to check that and unset it first.
23178 		 */
23179 		if (tcp->tcp_cork)
23180 			tcp->tcp_cork = B_FALSE;
23181 		tcp_wput_data(tcp, NULL, B_FALSE);
23182 	}
23183 
23184 	/*
23185 	 * If TCP does not get enough samples of RTT or tcp_rtt_updates
23186 	 * is 0, don't update the cache.
23187 	 */
23188 	if (tcps->tcps_rtt_updates == 0 ||
23189 	    tcp->tcp_rtt_update < tcps->tcps_rtt_updates)
23190 		return (0);
23191 
23192 	/*
23193 	 * NOTE: should not update if source routes i.e. if tcp_remote if
23194 	 * different from the destination.
23195 	 */
23196 	if (tcp->tcp_ipversion == IPV4_VERSION) {
23197 		if (tcp->tcp_remote !=  tcp->tcp_ipha->ipha_dst) {
23198 			return (0);
23199 		}
23200 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
23201 		    &ipic);
23202 	} else {
23203 		if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
23204 		    &tcp->tcp_ip6h->ip6_dst))) {
23205 			return (0);
23206 		}
23207 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
23208 		    &ipic);
23209 	}
23210 
23211 	/* Record route attributes in the IRE for use by future connections. */
23212 	if (mp == NULL)
23213 		return (0);
23214 
23215 	/*
23216 	 * We do not have a good algorithm to update ssthresh at this time.
23217 	 * So don't do any update.
23218 	 */
23219 	ipic->ipic_rtt = tcp->tcp_rtt_sa;
23220 	ipic->ipic_rtt_sd = tcp->tcp_rtt_sd;
23221 
23222 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
23223 	return (0);
23224 }
23225 
23226 /*
23227  * Generate a "no listener here" RST in response to an "unknown" segment.
23228  * connp is set by caller when RST is in response to an unexpected
23229  * inbound packet for which there is active tcp state in the system.
23230  * Note that we are reusing the incoming mp to construct the outgoing RST.
23231  */
23232 void
23233 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid,
23234     tcp_stack_t *tcps, conn_t *connp)
23235 {
23236 	uchar_t		*rptr;
23237 	uint32_t	seg_len;
23238 	tcph_t		*tcph;
23239 	uint32_t	seg_seq;
23240 	uint32_t	seg_ack;
23241 	uint_t		flags;
23242 	mblk_t		*ipsec_mp;
23243 	ipha_t 		*ipha;
23244 	ip6_t 		*ip6h;
23245 	boolean_t	mctl_present = B_FALSE;
23246 	boolean_t	check = B_TRUE;
23247 	boolean_t	policy_present;
23248 	ipsec_stack_t	*ipss = tcps->tcps_netstack->netstack_ipsec;
23249 
23250 	TCP_STAT(tcps, tcp_no_listener);
23251 
23252 	ipsec_mp = mp;
23253 
23254 	if (mp->b_datap->db_type == M_CTL) {
23255 		ipsec_in_t *ii;
23256 
23257 		mctl_present = B_TRUE;
23258 		mp = mp->b_cont;
23259 
23260 		ii = (ipsec_in_t *)ipsec_mp->b_rptr;
23261 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
23262 		if (ii->ipsec_in_dont_check) {
23263 			check = B_FALSE;
23264 			if (!ii->ipsec_in_secure) {
23265 				freeb(ipsec_mp);
23266 				mctl_present = B_FALSE;
23267 				ipsec_mp = mp;
23268 			}
23269 		}
23270 	}
23271 
23272 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
23273 		policy_present = ipss->ipsec_inbound_v4_policy_present;
23274 		ipha = (ipha_t *)mp->b_rptr;
23275 		ip6h = NULL;
23276 	} else {
23277 		policy_present = ipss->ipsec_inbound_v6_policy_present;
23278 		ipha = NULL;
23279 		ip6h = (ip6_t *)mp->b_rptr;
23280 	}
23281 
23282 	if (check && policy_present) {
23283 		/*
23284 		 * The conn_t parameter is NULL because we already know
23285 		 * nobody's home.
23286 		 */
23287 		ipsec_mp = ipsec_check_global_policy(
23288 		    ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present,
23289 		    tcps->tcps_netstack);
23290 		if (ipsec_mp == NULL)
23291 			return;
23292 	}
23293 	if (is_system_labeled() && !tsol_can_reply_error(mp)) {
23294 		DTRACE_PROBE2(
23295 		    tx__ip__log__error__nolistener__tcp,
23296 		    char *, "Could not reply with RST to mp(1)",
23297 		    mblk_t *, mp);
23298 		ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n"));
23299 		freemsg(ipsec_mp);
23300 		return;
23301 	}
23302 
23303 	rptr = mp->b_rptr;
23304 
23305 	tcph = (tcph_t *)&rptr[ip_hdr_len];
23306 	seg_seq = BE32_TO_U32(tcph->th_seq);
23307 	seg_ack = BE32_TO_U32(tcph->th_ack);
23308 	flags = tcph->th_flags[0];
23309 
23310 	seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len);
23311 	if (flags & TH_RST) {
23312 		freemsg(ipsec_mp);
23313 	} else if (flags & TH_ACK) {
23314 		tcp_xmit_early_reset("no tcp, reset",
23315 		    ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps,
23316 		    connp);
23317 	} else {
23318 		if (flags & TH_SYN) {
23319 			seg_len++;
23320 		} else {
23321 			/*
23322 			 * Here we violate the RFC.  Note that a normal
23323 			 * TCP will never send a segment without the ACK
23324 			 * flag, except for RST or SYN segment.  This
23325 			 * segment is neither.  Just drop it on the
23326 			 * floor.
23327 			 */
23328 			freemsg(ipsec_mp);
23329 			tcps->tcps_rst_unsent++;
23330 			return;
23331 		}
23332 
23333 		tcp_xmit_early_reset("no tcp, reset/ack",
23334 		    ipsec_mp, 0, seg_seq + seg_len,
23335 		    TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps, connp);
23336 	}
23337 }
23338 
23339 /*
23340  * tcp_xmit_mp is called to return a pointer to an mblk chain complete with
23341  * ip and tcp header ready to pass down to IP.  If the mp passed in is
23342  * non-NULL, then up to max_to_send bytes of data will be dup'ed off that
23343  * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary
23344  * otherwise it will dup partial mblks.)
23345  * Otherwise, an appropriate ACK packet will be generated.  This
23346  * routine is not usually called to send new data for the first time.  It
23347  * is mostly called out of the timer for retransmits, and to generate ACKs.
23348  *
23349  * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will
23350  * be adjusted by *offset.  And after dupb(), the offset and the ending mblk
23351  * of the original mblk chain will be returned in *offset and *end_mp.
23352  */
23353 mblk_t *
23354 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset,
23355     mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len,
23356     boolean_t rexmit)
23357 {
23358 	int	data_length;
23359 	int32_t	off = 0;
23360 	uint_t	flags;
23361 	mblk_t	*mp1;
23362 	mblk_t	*mp2;
23363 	uchar_t	*rptr;
23364 	tcph_t	*tcph;
23365 	int32_t	num_sack_blk = 0;
23366 	int32_t	sack_opt_len = 0;
23367 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23368 
23369 	/* Allocate for our maximum TCP header + link-level */
23370 	mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
23371 	    tcps->tcps_wroff_xtra, BPRI_MED);
23372 	if (!mp1)
23373 		return (NULL);
23374 	data_length = 0;
23375 
23376 	/*
23377 	 * Note that tcp_mss has been adjusted to take into account the
23378 	 * timestamp option if applicable.  Because SACK options do not
23379 	 * appear in every TCP segments and they are of variable lengths,
23380 	 * they cannot be included in tcp_mss.  Thus we need to calculate
23381 	 * the actual segment length when we need to send a segment which
23382 	 * includes SACK options.
23383 	 */
23384 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
23385 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
23386 		    tcp->tcp_num_sack_blk);
23387 		sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
23388 		    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
23389 		if (max_to_send + sack_opt_len > tcp->tcp_mss)
23390 			max_to_send -= sack_opt_len;
23391 	}
23392 
23393 	if (offset != NULL) {
23394 		off = *offset;
23395 		/* We use offset as an indicator that end_mp is not NULL. */
23396 		*end_mp = NULL;
23397 	}
23398 	for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) {
23399 		/* This could be faster with cooperation from downstream */
23400 		if (mp2 != mp1 && !sendall &&
23401 		    data_length + (int)(mp->b_wptr - mp->b_rptr) >
23402 		    max_to_send)
23403 			/*
23404 			 * Don't send the next mblk since the whole mblk
23405 			 * does not fit.
23406 			 */
23407 			break;
23408 		mp2->b_cont = dupb(mp);
23409 		mp2 = mp2->b_cont;
23410 		if (!mp2) {
23411 			freemsg(mp1);
23412 			return (NULL);
23413 		}
23414 		mp2->b_rptr += off;
23415 		ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
23416 		    (uintptr_t)INT_MAX);
23417 
23418 		data_length += (int)(mp2->b_wptr - mp2->b_rptr);
23419 		if (data_length > max_to_send) {
23420 			mp2->b_wptr -= data_length - max_to_send;
23421 			data_length = max_to_send;
23422 			off = mp2->b_wptr - mp->b_rptr;
23423 			break;
23424 		} else {
23425 			off = 0;
23426 		}
23427 	}
23428 	if (offset != NULL) {
23429 		*offset = off;
23430 		*end_mp = mp;
23431 	}
23432 	if (seg_len != NULL) {
23433 		*seg_len = data_length;
23434 	}
23435 
23436 	/* Update the latest receive window size in TCP header. */
23437 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
23438 	    tcp->tcp_tcph->th_win);
23439 
23440 	rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
23441 	mp1->b_rptr = rptr;
23442 	mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len;
23443 	bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
23444 	tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
23445 	U32_TO_ABE32(seq, tcph->th_seq);
23446 
23447 	/*
23448 	 * Use tcp_unsent to determine if the PUSH bit should be used assumes
23449 	 * that this function was called from tcp_wput_data. Thus, when called
23450 	 * to retransmit data the setting of the PUSH bit may appear some
23451 	 * what random in that it might get set when it should not. This
23452 	 * should not pose any performance issues.
23453 	 */
23454 	if (data_length != 0 && (tcp->tcp_unsent == 0 ||
23455 	    tcp->tcp_unsent == data_length)) {
23456 		flags = TH_ACK | TH_PUSH;
23457 	} else {
23458 		flags = TH_ACK;
23459 	}
23460 
23461 	if (tcp->tcp_ecn_ok) {
23462 		if (tcp->tcp_ecn_echo_on)
23463 			flags |= TH_ECE;
23464 
23465 		/*
23466 		 * Only set ECT bit and ECN_CWR if a segment contains new data.
23467 		 * There is no TCP flow control for non-data segments, and
23468 		 * only data segment is transmitted reliably.
23469 		 */
23470 		if (data_length > 0 && !rexmit) {
23471 			SET_ECT(tcp, rptr);
23472 			if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
23473 				flags |= TH_CWR;
23474 				tcp->tcp_ecn_cwr_sent = B_TRUE;
23475 			}
23476 		}
23477 	}
23478 
23479 	if (tcp->tcp_valid_bits) {
23480 		uint32_t u1;
23481 
23482 		if ((tcp->tcp_valid_bits & TCP_ISS_VALID) &&
23483 		    seq == tcp->tcp_iss) {
23484 			uchar_t	*wptr;
23485 
23486 			/*
23487 			 * If TCP_ISS_VALID and the seq number is tcp_iss,
23488 			 * TCP can only be in SYN-SENT, SYN-RCVD or
23489 			 * FIN-WAIT-1 state.  It can be FIN-WAIT-1 if
23490 			 * our SYN is not ack'ed but the app closes this
23491 			 * TCP connection.
23492 			 */
23493 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT ||
23494 			    tcp->tcp_state == TCPS_SYN_RCVD ||
23495 			    tcp->tcp_state == TCPS_FIN_WAIT_1);
23496 
23497 			/*
23498 			 * Tack on the MSS option.  It is always needed
23499 			 * for both active and passive open.
23500 			 *
23501 			 * MSS option value should be interface MTU - MIN
23502 			 * TCP/IP header according to RFC 793 as it means
23503 			 * the maximum segment size TCP can receive.  But
23504 			 * to get around some broken middle boxes/end hosts
23505 			 * out there, we allow the option value to be the
23506 			 * same as the MSS option size on the peer side.
23507 			 * In this way, the other side will not send
23508 			 * anything larger than they can receive.
23509 			 *
23510 			 * Note that for SYN_SENT state, the ndd param
23511 			 * tcp_use_smss_as_mss_opt has no effect as we
23512 			 * don't know the peer's MSS option value. So
23513 			 * the only case we need to take care of is in
23514 			 * SYN_RCVD state, which is done later.
23515 			 */
23516 			wptr = mp1->b_wptr;
23517 			wptr[0] = TCPOPT_MAXSEG;
23518 			wptr[1] = TCPOPT_MAXSEG_LEN;
23519 			wptr += 2;
23520 			u1 = tcp->tcp_if_mtu -
23521 			    (tcp->tcp_ipversion == IPV4_VERSION ?
23522 			    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) -
23523 			    TCP_MIN_HEADER_LENGTH;
23524 			U16_TO_BE16(u1, wptr);
23525 			mp1->b_wptr = wptr + 2;
23526 			/* Update the offset to cover the additional word */
23527 			tcph->th_offset_and_rsrvd[0] += (1 << 4);
23528 
23529 			/*
23530 			 * Note that the following way of filling in
23531 			 * TCP options are not optimal.  Some NOPs can
23532 			 * be saved.  But there is no need at this time
23533 			 * to optimize it.  When it is needed, we will
23534 			 * do it.
23535 			 */
23536 			switch (tcp->tcp_state) {
23537 			case TCPS_SYN_SENT:
23538 				flags = TH_SYN;
23539 
23540 				if (tcp->tcp_snd_ts_ok) {
23541 					uint32_t llbolt = (uint32_t)lbolt;
23542 
23543 					wptr = mp1->b_wptr;
23544 					wptr[0] = TCPOPT_NOP;
23545 					wptr[1] = TCPOPT_NOP;
23546 					wptr[2] = TCPOPT_TSTAMP;
23547 					wptr[3] = TCPOPT_TSTAMP_LEN;
23548 					wptr += 4;
23549 					U32_TO_BE32(llbolt, wptr);
23550 					wptr += 4;
23551 					ASSERT(tcp->tcp_ts_recent == 0);
23552 					U32_TO_BE32(0L, wptr);
23553 					mp1->b_wptr += TCPOPT_REAL_TS_LEN;
23554 					tcph->th_offset_and_rsrvd[0] +=
23555 					    (3 << 4);
23556 				}
23557 
23558 				/*
23559 				 * Set up all the bits to tell other side
23560 				 * we are ECN capable.
23561 				 */
23562 				if (tcp->tcp_ecn_ok) {
23563 					flags |= (TH_ECE | TH_CWR);
23564 				}
23565 				break;
23566 			case TCPS_SYN_RCVD:
23567 				flags |= TH_SYN;
23568 
23569 				/*
23570 				 * Reset the MSS option value to be SMSS
23571 				 * We should probably add back the bytes
23572 				 * for timestamp option and IPsec.  We
23573 				 * don't do that as this is a workaround
23574 				 * for broken middle boxes/end hosts, it
23575 				 * is better for us to be more cautious.
23576 				 * They may not take these things into
23577 				 * account in their SMSS calculation.  Thus
23578 				 * the peer's calculated SMSS may be smaller
23579 				 * than what it can be.  This should be OK.
23580 				 */
23581 				if (tcps->tcps_use_smss_as_mss_opt) {
23582 					u1 = tcp->tcp_mss;
23583 					U16_TO_BE16(u1, wptr);
23584 				}
23585 
23586 				/*
23587 				 * If the other side is ECN capable, reply
23588 				 * that we are also ECN capable.
23589 				 */
23590 				if (tcp->tcp_ecn_ok)
23591 					flags |= TH_ECE;
23592 				break;
23593 			default:
23594 				/*
23595 				 * The above ASSERT() makes sure that this
23596 				 * must be FIN-WAIT-1 state.  Our SYN has
23597 				 * not been ack'ed so retransmit it.
23598 				 */
23599 				flags |= TH_SYN;
23600 				break;
23601 			}
23602 
23603 			if (tcp->tcp_snd_ws_ok) {
23604 				wptr = mp1->b_wptr;
23605 				wptr[0] =  TCPOPT_NOP;
23606 				wptr[1] =  TCPOPT_WSCALE;
23607 				wptr[2] =  TCPOPT_WS_LEN;
23608 				wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
23609 				mp1->b_wptr += TCPOPT_REAL_WS_LEN;
23610 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
23611 			}
23612 
23613 			if (tcp->tcp_snd_sack_ok) {
23614 				wptr = mp1->b_wptr;
23615 				wptr[0] = TCPOPT_NOP;
23616 				wptr[1] = TCPOPT_NOP;
23617 				wptr[2] = TCPOPT_SACK_PERMITTED;
23618 				wptr[3] = TCPOPT_SACK_OK_LEN;
23619 				mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
23620 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
23621 			}
23622 
23623 			/* allocb() of adequate mblk assures space */
23624 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
23625 			    (uintptr_t)INT_MAX);
23626 			u1 = (int)(mp1->b_wptr - mp1->b_rptr);
23627 			/*
23628 			 * Get IP set to checksum on our behalf
23629 			 * Include the adjustment for a source route if any.
23630 			 */
23631 			u1 += tcp->tcp_sum;
23632 			u1 = (u1 >> 16) + (u1 & 0xFFFF);
23633 			U16_TO_BE16(u1, tcph->th_sum);
23634 			BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23635 		}
23636 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
23637 		    (seq + data_length) == tcp->tcp_fss) {
23638 			if (!tcp->tcp_fin_acked) {
23639 				flags |= TH_FIN;
23640 				BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23641 			}
23642 			if (!tcp->tcp_fin_sent) {
23643 				tcp->tcp_fin_sent = B_TRUE;
23644 				switch (tcp->tcp_state) {
23645 				case TCPS_SYN_RCVD:
23646 				case TCPS_ESTABLISHED:
23647 					tcp->tcp_state = TCPS_FIN_WAIT_1;
23648 					break;
23649 				case TCPS_CLOSE_WAIT:
23650 					tcp->tcp_state = TCPS_LAST_ACK;
23651 					break;
23652 				}
23653 				if (tcp->tcp_suna == tcp->tcp_snxt)
23654 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
23655 				tcp->tcp_snxt = tcp->tcp_fss + 1;
23656 			}
23657 		}
23658 		/*
23659 		 * Note the trick here.  u1 is unsigned.  When tcp_urg
23660 		 * is smaller than seq, u1 will become a very huge value.
23661 		 * So the comparison will fail.  Also note that tcp_urp
23662 		 * should be positive, see RFC 793 page 17.
23663 		 */
23664 		u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION;
23665 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 &&
23666 		    u1 < (uint32_t)(64 * 1024)) {
23667 			flags |= TH_URG;
23668 			BUMP_MIB(&tcps->tcps_mib, tcpOutUrg);
23669 			U32_TO_ABE16(u1, tcph->th_urp);
23670 		}
23671 	}
23672 	tcph->th_flags[0] = (uchar_t)flags;
23673 	tcp->tcp_rack = tcp->tcp_rnxt;
23674 	tcp->tcp_rack_cnt = 0;
23675 
23676 	if (tcp->tcp_snd_ts_ok) {
23677 		if (tcp->tcp_state != TCPS_SYN_SENT) {
23678 			uint32_t llbolt = (uint32_t)lbolt;
23679 
23680 			U32_TO_BE32(llbolt,
23681 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
23682 			U32_TO_BE32(tcp->tcp_ts_recent,
23683 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
23684 		}
23685 	}
23686 
23687 	if (num_sack_blk > 0) {
23688 		uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
23689 		sack_blk_t *tmp;
23690 		int32_t	i;
23691 
23692 		wptr[0] = TCPOPT_NOP;
23693 		wptr[1] = TCPOPT_NOP;
23694 		wptr[2] = TCPOPT_SACK;
23695 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
23696 		    sizeof (sack_blk_t);
23697 		wptr += TCPOPT_REAL_SACK_LEN;
23698 
23699 		tmp = tcp->tcp_sack_list;
23700 		for (i = 0; i < num_sack_blk; i++) {
23701 			U32_TO_BE32(tmp[i].begin, wptr);
23702 			wptr += sizeof (tcp_seq);
23703 			U32_TO_BE32(tmp[i].end, wptr);
23704 			wptr += sizeof (tcp_seq);
23705 		}
23706 		tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4);
23707 	}
23708 	ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX);
23709 	data_length += (int)(mp1->b_wptr - rptr);
23710 	if (tcp->tcp_ipversion == IPV4_VERSION) {
23711 		((ipha_t *)rptr)->ipha_length = htons(data_length);
23712 	} else {
23713 		ip6_t *ip6 = (ip6_t *)(rptr +
23714 		    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
23715 		    sizeof (ip6i_t) : 0));
23716 
23717 		ip6->ip6_plen = htons(data_length -
23718 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
23719 	}
23720 
23721 	/*
23722 	 * Prime pump for IP
23723 	 * Include the adjustment for a source route if any.
23724 	 */
23725 	data_length -= tcp->tcp_ip_hdr_len;
23726 	data_length += tcp->tcp_sum;
23727 	data_length = (data_length >> 16) + (data_length & 0xFFFF);
23728 	U16_TO_ABE16(data_length, tcph->th_sum);
23729 	if (tcp->tcp_ip_forward_progress) {
23730 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
23731 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
23732 		tcp->tcp_ip_forward_progress = B_FALSE;
23733 	}
23734 	return (mp1);
23735 }
23736 
23737 /* This function handles the push timeout. */
23738 void
23739 tcp_push_timer(void *arg)
23740 {
23741 	conn_t	*connp = (conn_t *)arg;
23742 	tcp_t *tcp = connp->conn_tcp;
23743 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23744 	uint_t		flags;
23745 	sodirect_t	*sodp;
23746 
23747 	TCP_DBGSTAT(tcps, tcp_push_timer_cnt);
23748 
23749 	ASSERT(tcp->tcp_listener == NULL);
23750 
23751 	/*
23752 	 * We need to plug synchronous streams during our drain to prevent
23753 	 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop().
23754 	 */
23755 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
23756 	tcp->tcp_push_tid = 0;
23757 
23758 	SOD_PTR_ENTER(tcp, sodp);
23759 	if (sodp != NULL) {
23760 		flags = tcp_rcv_sod_wakeup(tcp, sodp);
23761 		/* sod_wakeup() does the mutex_exit() */
23762 	} else if (tcp->tcp_rcv_list != NULL) {
23763 		flags = tcp_rcv_drain(tcp->tcp_rq, tcp);
23764 	}
23765 	if (flags == TH_ACK_NEEDED)
23766 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
23767 
23768 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
23769 }
23770 
23771 /*
23772  * This function handles delayed ACK timeout.
23773  */
23774 static void
23775 tcp_ack_timer(void *arg)
23776 {
23777 	conn_t	*connp = (conn_t *)arg;
23778 	tcp_t *tcp = connp->conn_tcp;
23779 	mblk_t *mp;
23780 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23781 
23782 	TCP_DBGSTAT(tcps, tcp_ack_timer_cnt);
23783 
23784 	tcp->tcp_ack_tid = 0;
23785 
23786 	if (tcp->tcp_fused)
23787 		return;
23788 
23789 	/*
23790 	 * Do not send ACK if there is no outstanding unack'ed data.
23791 	 */
23792 	if (tcp->tcp_rnxt == tcp->tcp_rack) {
23793 		return;
23794 	}
23795 
23796 	if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) {
23797 		/*
23798 		 * Make sure we don't allow deferred ACKs to result in
23799 		 * timer-based ACKing.  If we have held off an ACK
23800 		 * when there was more than an mss here, and the timer
23801 		 * goes off, we have to worry about the possibility
23802 		 * that the sender isn't doing slow-start, or is out
23803 		 * of step with us for some other reason.  We fall
23804 		 * permanently back in the direction of
23805 		 * ACK-every-other-packet as suggested in RFC 1122.
23806 		 */
23807 		if (tcp->tcp_rack_abs_max > 2)
23808 			tcp->tcp_rack_abs_max--;
23809 		tcp->tcp_rack_cur_max = 2;
23810 	}
23811 	mp = tcp_ack_mp(tcp);
23812 
23813 	if (mp != NULL) {
23814 		BUMP_LOCAL(tcp->tcp_obsegs);
23815 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
23816 		BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed);
23817 		tcp_send_data(tcp, tcp->tcp_wq, mp);
23818 	}
23819 }
23820 
23821 
23822 /* Generate an ACK-only (no data) segment for a TCP endpoint */
23823 static mblk_t *
23824 tcp_ack_mp(tcp_t *tcp)
23825 {
23826 	uint32_t	seq_no;
23827 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23828 
23829 	/*
23830 	 * There are a few cases to be considered while setting the sequence no.
23831 	 * Essentially, we can come here while processing an unacceptable pkt
23832 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
23833 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
23834 	 * If we are here for a zero window probe, stick with suna. In all
23835 	 * other cases, we check if suna + swnd encompasses snxt and set
23836 	 * the sequence number to snxt, if so. If snxt falls outside the
23837 	 * window (the receiver probably shrunk its window), we will go with
23838 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
23839 	 * receiver.
23840 	 */
23841 	if (tcp->tcp_zero_win_probe) {
23842 		seq_no = tcp->tcp_suna;
23843 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
23844 		ASSERT(tcp->tcp_swnd == 0);
23845 		seq_no = tcp->tcp_snxt;
23846 	} else {
23847 		seq_no = SEQ_GT(tcp->tcp_snxt,
23848 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
23849 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
23850 	}
23851 
23852 	if (tcp->tcp_valid_bits) {
23853 		/*
23854 		 * For the complex case where we have to send some
23855 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
23856 		 */
23857 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
23858 		    NULL, B_FALSE));
23859 	} else {
23860 		/* Generate a simple ACK */
23861 		int	data_length;
23862 		uchar_t	*rptr;
23863 		tcph_t	*tcph;
23864 		mblk_t	*mp1;
23865 		int32_t	tcp_hdr_len;
23866 		int32_t	tcp_tcp_hdr_len;
23867 		int32_t	num_sack_blk = 0;
23868 		int32_t sack_opt_len;
23869 
23870 		/*
23871 		 * Allocate space for TCP + IP headers
23872 		 * and link-level header
23873 		 */
23874 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
23875 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
23876 			    tcp->tcp_num_sack_blk);
23877 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
23878 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
23879 			tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len;
23880 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len;
23881 		} else {
23882 			tcp_hdr_len = tcp->tcp_hdr_len;
23883 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
23884 		}
23885 		mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED);
23886 		if (!mp1)
23887 			return (NULL);
23888 
23889 		/* Update the latest receive window size in TCP header. */
23890 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
23891 		    tcp->tcp_tcph->th_win);
23892 		/* copy in prototype TCP + IP header */
23893 		rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
23894 		mp1->b_rptr = rptr;
23895 		mp1->b_wptr = rptr + tcp_hdr_len;
23896 		bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
23897 
23898 		tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
23899 
23900 		/* Set the TCP sequence number. */
23901 		U32_TO_ABE32(seq_no, tcph->th_seq);
23902 
23903 		/* Set up the TCP flag field. */
23904 		tcph->th_flags[0] = (uchar_t)TH_ACK;
23905 		if (tcp->tcp_ecn_echo_on)
23906 			tcph->th_flags[0] |= TH_ECE;
23907 
23908 		tcp->tcp_rack = tcp->tcp_rnxt;
23909 		tcp->tcp_rack_cnt = 0;
23910 
23911 		/* fill in timestamp option if in use */
23912 		if (tcp->tcp_snd_ts_ok) {
23913 			uint32_t llbolt = (uint32_t)lbolt;
23914 
23915 			U32_TO_BE32(llbolt,
23916 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
23917 			U32_TO_BE32(tcp->tcp_ts_recent,
23918 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
23919 		}
23920 
23921 		/* Fill in SACK options */
23922 		if (num_sack_blk > 0) {
23923 			uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
23924 			sack_blk_t *tmp;
23925 			int32_t	i;
23926 
23927 			wptr[0] = TCPOPT_NOP;
23928 			wptr[1] = TCPOPT_NOP;
23929 			wptr[2] = TCPOPT_SACK;
23930 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
23931 			    sizeof (sack_blk_t);
23932 			wptr += TCPOPT_REAL_SACK_LEN;
23933 
23934 			tmp = tcp->tcp_sack_list;
23935 			for (i = 0; i < num_sack_blk; i++) {
23936 				U32_TO_BE32(tmp[i].begin, wptr);
23937 				wptr += sizeof (tcp_seq);
23938 				U32_TO_BE32(tmp[i].end, wptr);
23939 				wptr += sizeof (tcp_seq);
23940 			}
23941 			tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1)
23942 			    << 4);
23943 		}
23944 
23945 		if (tcp->tcp_ipversion == IPV4_VERSION) {
23946 			((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len);
23947 		} else {
23948 			/* Check for ip6i_t header in sticky hdrs */
23949 			ip6_t *ip6 = (ip6_t *)(rptr +
23950 			    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
23951 			    sizeof (ip6i_t) : 0));
23952 
23953 			ip6->ip6_plen = htons(tcp_hdr_len -
23954 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
23955 		}
23956 
23957 		/*
23958 		 * Prime pump for checksum calculation in IP.  Include the
23959 		 * adjustment for a source route if any.
23960 		 */
23961 		data_length = tcp_tcp_hdr_len + tcp->tcp_sum;
23962 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
23963 		U16_TO_ABE16(data_length, tcph->th_sum);
23964 
23965 		if (tcp->tcp_ip_forward_progress) {
23966 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
23967 			*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
23968 			tcp->tcp_ip_forward_progress = B_FALSE;
23969 		}
23970 		return (mp1);
23971 	}
23972 }
23973 
23974 /*
23975  * Hash list insertion routine for tcp_t structures.
23976  * Inserts entries with the ones bound to a specific IP address first
23977  * followed by those bound to INADDR_ANY.
23978  */
23979 static void
23980 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock)
23981 {
23982 	tcp_t	**tcpp;
23983 	tcp_t	*tcpnext;
23984 
23985 	if (tcp->tcp_ptpbhn != NULL) {
23986 		ASSERT(!caller_holds_lock);
23987 		tcp_bind_hash_remove(tcp);
23988 	}
23989 	tcpp = &tbf->tf_tcp;
23990 	if (!caller_holds_lock) {
23991 		mutex_enter(&tbf->tf_lock);
23992 	} else {
23993 		ASSERT(MUTEX_HELD(&tbf->tf_lock));
23994 	}
23995 	tcpnext = tcpp[0];
23996 	if (tcpnext) {
23997 		/*
23998 		 * If the new tcp bound to the INADDR_ANY address
23999 		 * and the first one in the list is not bound to
24000 		 * INADDR_ANY we skip all entries until we find the
24001 		 * first one bound to INADDR_ANY.
24002 		 * This makes sure that applications binding to a
24003 		 * specific address get preference over those binding to
24004 		 * INADDR_ANY.
24005 		 */
24006 		if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) &&
24007 		    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) {
24008 			while ((tcpnext = tcpp[0]) != NULL &&
24009 			    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6))
24010 				tcpp = &(tcpnext->tcp_bind_hash);
24011 			if (tcpnext)
24012 				tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
24013 		} else
24014 			tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
24015 	}
24016 	tcp->tcp_bind_hash = tcpnext;
24017 	tcp->tcp_ptpbhn = tcpp;
24018 	tcpp[0] = tcp;
24019 	if (!caller_holds_lock)
24020 		mutex_exit(&tbf->tf_lock);
24021 }
24022 
24023 /*
24024  * Hash list removal routine for tcp_t structures.
24025  */
24026 static void
24027 tcp_bind_hash_remove(tcp_t *tcp)
24028 {
24029 	tcp_t	*tcpnext;
24030 	kmutex_t *lockp;
24031 	tcp_stack_t	*tcps = tcp->tcp_tcps;
24032 
24033 	if (tcp->tcp_ptpbhn == NULL)
24034 		return;
24035 
24036 	/*
24037 	 * Extract the lock pointer in case there are concurrent
24038 	 * hash_remove's for this instance.
24039 	 */
24040 	ASSERT(tcp->tcp_lport != 0);
24041 	lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock;
24042 
24043 	ASSERT(lockp != NULL);
24044 	mutex_enter(lockp);
24045 	if (tcp->tcp_ptpbhn) {
24046 		tcpnext = tcp->tcp_bind_hash;
24047 		if (tcpnext) {
24048 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
24049 			tcp->tcp_bind_hash = NULL;
24050 		}
24051 		*tcp->tcp_ptpbhn = tcpnext;
24052 		tcp->tcp_ptpbhn = NULL;
24053 	}
24054 	mutex_exit(lockp);
24055 }
24056 
24057 
24058 /*
24059  * Hash list lookup routine for tcp_t structures.
24060  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
24061  */
24062 static tcp_t *
24063 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps)
24064 {
24065 	tf_t	*tf;
24066 	tcp_t	*tcp;
24067 
24068 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
24069 	mutex_enter(&tf->tf_lock);
24070 	for (tcp = tf->tf_tcp; tcp != NULL;
24071 	    tcp = tcp->tcp_acceptor_hash) {
24072 		if (tcp->tcp_acceptor_id == id) {
24073 			CONN_INC_REF(tcp->tcp_connp);
24074 			mutex_exit(&tf->tf_lock);
24075 			return (tcp);
24076 		}
24077 	}
24078 	mutex_exit(&tf->tf_lock);
24079 	return (NULL);
24080 }
24081 
24082 
24083 /*
24084  * Hash list insertion routine for tcp_t structures.
24085  */
24086 void
24087 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
24088 {
24089 	tf_t	*tf;
24090 	tcp_t	**tcpp;
24091 	tcp_t	*tcpnext;
24092 	tcp_stack_t	*tcps = tcp->tcp_tcps;
24093 
24094 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
24095 
24096 	if (tcp->tcp_ptpahn != NULL)
24097 		tcp_acceptor_hash_remove(tcp);
24098 	tcpp = &tf->tf_tcp;
24099 	mutex_enter(&tf->tf_lock);
24100 	tcpnext = tcpp[0];
24101 	if (tcpnext)
24102 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
24103 	tcp->tcp_acceptor_hash = tcpnext;
24104 	tcp->tcp_ptpahn = tcpp;
24105 	tcpp[0] = tcp;
24106 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
24107 	mutex_exit(&tf->tf_lock);
24108 }
24109 
24110 /*
24111  * Hash list removal routine for tcp_t structures.
24112  */
24113 static void
24114 tcp_acceptor_hash_remove(tcp_t *tcp)
24115 {
24116 	tcp_t	*tcpnext;
24117 	kmutex_t *lockp;
24118 
24119 	/*
24120 	 * Extract the lock pointer in case there are concurrent
24121 	 * hash_remove's for this instance.
24122 	 */
24123 	lockp = tcp->tcp_acceptor_lockp;
24124 
24125 	if (tcp->tcp_ptpahn == NULL)
24126 		return;
24127 
24128 	ASSERT(lockp != NULL);
24129 	mutex_enter(lockp);
24130 	if (tcp->tcp_ptpahn) {
24131 		tcpnext = tcp->tcp_acceptor_hash;
24132 		if (tcpnext) {
24133 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
24134 			tcp->tcp_acceptor_hash = NULL;
24135 		}
24136 		*tcp->tcp_ptpahn = tcpnext;
24137 		tcp->tcp_ptpahn = NULL;
24138 	}
24139 	mutex_exit(lockp);
24140 	tcp->tcp_acceptor_lockp = NULL;
24141 }
24142 
24143 /* Data for fast netmask macro used by tcp_hsp_lookup */
24144 
24145 static ipaddr_t netmasks[] = {
24146 	IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET,
24147 	IN_CLASSC_NET | IN_CLASSD_NET  /* Class C,D,E */
24148 };
24149 
24150 #define	netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30])
24151 
24152 /*
24153  * XXX This routine should go away and instead we should use the metrics
24154  * associated with the routes to determine the default sndspace and rcvspace.
24155  */
24156 static tcp_hsp_t *
24157 tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *tcps)
24158 {
24159 	tcp_hsp_t *hsp = NULL;
24160 
24161 	/* Quick check without acquiring the lock. */
24162 	if (tcps->tcps_hsp_hash == NULL)
24163 		return (NULL);
24164 
24165 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24166 
24167 	/* This routine finds the best-matching HSP for address addr. */
24168 
24169 	if (tcps->tcps_hsp_hash) {
24170 		int i;
24171 		ipaddr_t srchaddr;
24172 		tcp_hsp_t *hsp_net;
24173 
24174 		/* We do three passes: host, network, and subnet. */
24175 
24176 		srchaddr = addr;
24177 
24178 		for (i = 1; i <= 3; i++) {
24179 			/* Look for exact match on srchaddr */
24180 
24181 			hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(srchaddr)];
24182 			while (hsp) {
24183 				if (hsp->tcp_hsp_vers == IPV4_VERSION &&
24184 				    hsp->tcp_hsp_addr == srchaddr)
24185 					break;
24186 				hsp = hsp->tcp_hsp_next;
24187 			}
24188 			ASSERT(hsp == NULL ||
24189 			    hsp->tcp_hsp_vers == IPV4_VERSION);
24190 
24191 			/*
24192 			 * If this is the first pass:
24193 			 *   If we found a match, great, return it.
24194 			 *   If not, search for the network on the second pass.
24195 			 */
24196 
24197 			if (i == 1)
24198 				if (hsp)
24199 					break;
24200 				else
24201 				{
24202 					srchaddr = addr & netmask(addr);
24203 					continue;
24204 				}
24205 
24206 			/*
24207 			 * If this is the second pass:
24208 			 *   If we found a match, but there's a subnet mask,
24209 			 *    save the match but try again using the subnet
24210 			 *    mask on the third pass.
24211 			 *   Otherwise, return whatever we found.
24212 			 */
24213 
24214 			if (i == 2) {
24215 				if (hsp && hsp->tcp_hsp_subnet) {
24216 					hsp_net = hsp;
24217 					srchaddr = addr & hsp->tcp_hsp_subnet;
24218 					continue;
24219 				} else {
24220 					break;
24221 				}
24222 			}
24223 
24224 			/*
24225 			 * This must be the third pass.  If we didn't find
24226 			 * anything, return the saved network HSP instead.
24227 			 */
24228 
24229 			if (!hsp)
24230 				hsp = hsp_net;
24231 		}
24232 	}
24233 
24234 	rw_exit(&tcps->tcps_hsp_lock);
24235 	return (hsp);
24236 }
24237 
24238 /*
24239  * XXX Equally broken as the IPv4 routine. Doesn't handle longest
24240  * match lookup.
24241  */
24242 static tcp_hsp_t *
24243 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr, tcp_stack_t *tcps)
24244 {
24245 	tcp_hsp_t *hsp = NULL;
24246 
24247 	/* Quick check without acquiring the lock. */
24248 	if (tcps->tcps_hsp_hash == NULL)
24249 		return (NULL);
24250 
24251 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24252 
24253 	/* This routine finds the best-matching HSP for address addr. */
24254 
24255 	if (tcps->tcps_hsp_hash) {
24256 		int i;
24257 		in6_addr_t v6srchaddr;
24258 		tcp_hsp_t *hsp_net;
24259 
24260 		/* We do three passes: host, network, and subnet. */
24261 
24262 		v6srchaddr = *v6addr;
24263 
24264 		for (i = 1; i <= 3; i++) {
24265 			/* Look for exact match on srchaddr */
24266 
24267 			hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(
24268 			    V4_PART_OF_V6(v6srchaddr))];
24269 			while (hsp) {
24270 				if (hsp->tcp_hsp_vers == IPV6_VERSION &&
24271 				    IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
24272 				    &v6srchaddr))
24273 					break;
24274 				hsp = hsp->tcp_hsp_next;
24275 			}
24276 
24277 			/*
24278 			 * If this is the first pass:
24279 			 *   If we found a match, great, return it.
24280 			 *   If not, search for the network on the second pass.
24281 			 */
24282 
24283 			if (i == 1)
24284 				if (hsp)
24285 					break;
24286 				else {
24287 					/* Assume a 64 bit mask */
24288 					v6srchaddr.s6_addr32[0] =
24289 					    v6addr->s6_addr32[0];
24290 					v6srchaddr.s6_addr32[1] =
24291 					    v6addr->s6_addr32[1];
24292 					v6srchaddr.s6_addr32[2] = 0;
24293 					v6srchaddr.s6_addr32[3] = 0;
24294 					continue;
24295 				}
24296 
24297 			/*
24298 			 * If this is the second pass:
24299 			 *   If we found a match, but there's a subnet mask,
24300 			 *    save the match but try again using the subnet
24301 			 *    mask on the third pass.
24302 			 *   Otherwise, return whatever we found.
24303 			 */
24304 
24305 			if (i == 2) {
24306 				ASSERT(hsp == NULL ||
24307 				    hsp->tcp_hsp_vers == IPV6_VERSION);
24308 				if (hsp &&
24309 				    !IN6_IS_ADDR_UNSPECIFIED(
24310 				    &hsp->tcp_hsp_subnet_v6)) {
24311 					hsp_net = hsp;
24312 					V6_MASK_COPY(*v6addr,
24313 					    hsp->tcp_hsp_subnet_v6, v6srchaddr);
24314 					continue;
24315 				} else {
24316 					break;
24317 				}
24318 			}
24319 
24320 			/*
24321 			 * This must be the third pass.  If we didn't find
24322 			 * anything, return the saved network HSP instead.
24323 			 */
24324 
24325 			if (!hsp)
24326 				hsp = hsp_net;
24327 		}
24328 	}
24329 
24330 	rw_exit(&tcps->tcps_hsp_lock);
24331 	return (hsp);
24332 }
24333 
24334 /*
24335  * Type three generator adapted from the random() function in 4.4 BSD:
24336  */
24337 
24338 /*
24339  * Copyright (c) 1983, 1993
24340  *	The Regents of the University of California.  All rights reserved.
24341  *
24342  * Redistribution and use in source and binary forms, with or without
24343  * modification, are permitted provided that the following conditions
24344  * are met:
24345  * 1. Redistributions of source code must retain the above copyright
24346  *    notice, this list of conditions and the following disclaimer.
24347  * 2. Redistributions in binary form must reproduce the above copyright
24348  *    notice, this list of conditions and the following disclaimer in the
24349  *    documentation and/or other materials provided with the distribution.
24350  * 3. All advertising materials mentioning features or use of this software
24351  *    must display the following acknowledgement:
24352  *	This product includes software developed by the University of
24353  *	California, Berkeley and its contributors.
24354  * 4. Neither the name of the University nor the names of its contributors
24355  *    may be used to endorse or promote products derived from this software
24356  *    without specific prior written permission.
24357  *
24358  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24359  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24360  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24361  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24362  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24363  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24364  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24365  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24366  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24367  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24368  * SUCH DAMAGE.
24369  */
24370 
24371 /* Type 3 -- x**31 + x**3 + 1 */
24372 #define	DEG_3		31
24373 #define	SEP_3		3
24374 
24375 
24376 /* Protected by tcp_random_lock */
24377 static int tcp_randtbl[DEG_3 + 1];
24378 
24379 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
24380 static int *tcp_random_rptr = &tcp_randtbl[1];
24381 
24382 static int *tcp_random_state = &tcp_randtbl[1];
24383 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
24384 
24385 kmutex_t tcp_random_lock;
24386 
24387 void
24388 tcp_random_init(void)
24389 {
24390 	int i;
24391 	hrtime_t hrt;
24392 	time_t wallclock;
24393 	uint64_t result;
24394 
24395 	/*
24396 	 * Use high-res timer and current time for seed.  Gethrtime() returns
24397 	 * a longlong, which may contain resolution down to nanoseconds.
24398 	 * The current time will either be a 32-bit or a 64-bit quantity.
24399 	 * XOR the two together in a 64-bit result variable.
24400 	 * Convert the result to a 32-bit value by multiplying the high-order
24401 	 * 32-bits by the low-order 32-bits.
24402 	 */
24403 
24404 	hrt = gethrtime();
24405 	(void) drv_getparm(TIME, &wallclock);
24406 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
24407 	mutex_enter(&tcp_random_lock);
24408 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
24409 	    (result & 0xffffffff);
24410 
24411 	for (i = 1; i < DEG_3; i++)
24412 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
24413 		    + 12345;
24414 	tcp_random_fptr = &tcp_random_state[SEP_3];
24415 	tcp_random_rptr = &tcp_random_state[0];
24416 	mutex_exit(&tcp_random_lock);
24417 	for (i = 0; i < 10 * DEG_3; i++)
24418 		(void) tcp_random();
24419 }
24420 
24421 /*
24422  * tcp_random: Return a random number in the range [1 - (128K + 1)].
24423  * This range is selected to be approximately centered on TCP_ISS / 2,
24424  * and easy to compute. We get this value by generating a 32-bit random
24425  * number, selecting out the high-order 17 bits, and then adding one so
24426  * that we never return zero.
24427  */
24428 int
24429 tcp_random(void)
24430 {
24431 	int i;
24432 
24433 	mutex_enter(&tcp_random_lock);
24434 	*tcp_random_fptr += *tcp_random_rptr;
24435 
24436 	/*
24437 	 * The high-order bits are more random than the low-order bits,
24438 	 * so we select out the high-order 17 bits and add one so that
24439 	 * we never return zero.
24440 	 */
24441 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
24442 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
24443 		tcp_random_fptr = tcp_random_state;
24444 		++tcp_random_rptr;
24445 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
24446 		tcp_random_rptr = tcp_random_state;
24447 
24448 	mutex_exit(&tcp_random_lock);
24449 	return (i);
24450 }
24451 
24452 /*
24453  * XXX This will go away when TPI is extended to send
24454  * info reqs to sockfs/timod .....
24455  * Given a queue, set the max packet size for the write
24456  * side of the queue below stream head.  This value is
24457  * cached on the stream head.
24458  * Returns 1 on success, 0 otherwise.
24459  */
24460 static int
24461 setmaxps(queue_t *q, int maxpsz)
24462 {
24463 	struct stdata	*stp;
24464 	queue_t		*wq;
24465 	stp = STREAM(q);
24466 
24467 	/*
24468 	 * At this point change of a queue parameter is not allowed
24469 	 * when a multiplexor is sitting on top.
24470 	 */
24471 	if (stp->sd_flag & STPLEX)
24472 		return (0);
24473 
24474 	claimstr(stp->sd_wrq);
24475 	wq = stp->sd_wrq->q_next;
24476 	ASSERT(wq != NULL);
24477 	(void) strqset(wq, QMAXPSZ, 0, maxpsz);
24478 	releasestr(stp->sd_wrq);
24479 	return (1);
24480 }
24481 
24482 static int
24483 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp,
24484     int *t_errorp, int *sys_errorp)
24485 {
24486 	int error;
24487 	int is_absreq_failure;
24488 	t_scalar_t *opt_lenp;
24489 	t_scalar_t opt_offset;
24490 	int prim_type;
24491 	struct T_conn_req *tcreqp;
24492 	struct T_conn_res *tcresp;
24493 	cred_t *cr;
24494 
24495 	cr = DB_CREDDEF(mp, tcp->tcp_cred);
24496 
24497 	prim_type = ((union T_primitives *)mp->b_rptr)->type;
24498 	ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES ||
24499 	    prim_type == T_CONN_RES);
24500 
24501 	switch (prim_type) {
24502 	case T_CONN_REQ:
24503 		tcreqp = (struct T_conn_req *)mp->b_rptr;
24504 		opt_offset = tcreqp->OPT_offset;
24505 		opt_lenp = (t_scalar_t *)&tcreqp->OPT_length;
24506 		break;
24507 	case O_T_CONN_RES:
24508 	case T_CONN_RES:
24509 		tcresp = (struct T_conn_res *)mp->b_rptr;
24510 		opt_offset = tcresp->OPT_offset;
24511 		opt_lenp = (t_scalar_t *)&tcresp->OPT_length;
24512 		break;
24513 	}
24514 
24515 	*t_errorp = 0;
24516 	*sys_errorp = 0;
24517 	*do_disconnectp = 0;
24518 
24519 	error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp,
24520 	    opt_offset, cr, &tcp_opt_obj,
24521 	    NULL, &is_absreq_failure);
24522 
24523 	switch (error) {
24524 	case  0:		/* no error */
24525 		ASSERT(is_absreq_failure == 0);
24526 		return (0);
24527 	case ENOPROTOOPT:
24528 		*t_errorp = TBADOPT;
24529 		break;
24530 	case EACCES:
24531 		*t_errorp = TACCES;
24532 		break;
24533 	default:
24534 		*t_errorp = TSYSERR; *sys_errorp = error;
24535 		break;
24536 	}
24537 	if (is_absreq_failure != 0) {
24538 		/*
24539 		 * The connection request should get the local ack
24540 		 * T_OK_ACK and then a T_DISCON_IND.
24541 		 */
24542 		*do_disconnectp = 1;
24543 	}
24544 	return (-1);
24545 }
24546 
24547 /*
24548  * Split this function out so that if the secret changes, I'm okay.
24549  *
24550  * Initialize the tcp_iss_cookie and tcp_iss_key.
24551  */
24552 
24553 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
24554 
24555 static void
24556 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps)
24557 {
24558 	struct {
24559 		int32_t current_time;
24560 		uint32_t randnum;
24561 		uint16_t pad;
24562 		uint8_t ether[6];
24563 		uint8_t passwd[PASSWD_SIZE];
24564 	} tcp_iss_cookie;
24565 	time_t t;
24566 
24567 	/*
24568 	 * Start with the current absolute time.
24569 	 */
24570 	(void) drv_getparm(TIME, &t);
24571 	tcp_iss_cookie.current_time = t;
24572 
24573 	/*
24574 	 * XXX - Need a more random number per RFC 1750, not this crap.
24575 	 * OTOH, if what follows is pretty random, then I'm in better shape.
24576 	 */
24577 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
24578 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
24579 
24580 	/*
24581 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
24582 	 * as a good template.
24583 	 */
24584 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
24585 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
24586 
24587 	/*
24588 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
24589 	 */
24590 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
24591 
24592 	/*
24593 	 * See 4010593 if this section becomes a problem again,
24594 	 * but the local ethernet address is useful here.
24595 	 */
24596 	(void) localetheraddr(NULL,
24597 	    (struct ether_addr *)&tcp_iss_cookie.ether);
24598 
24599 	/*
24600 	 * Hash 'em all together.  The MD5Final is called per-connection.
24601 	 */
24602 	mutex_enter(&tcps->tcps_iss_key_lock);
24603 	MD5Init(&tcps->tcps_iss_key);
24604 	MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie,
24605 	    sizeof (tcp_iss_cookie));
24606 	mutex_exit(&tcps->tcps_iss_key_lock);
24607 }
24608 
24609 /*
24610  * Set the RFC 1948 pass phrase
24611  */
24612 /* ARGSUSED */
24613 static int
24614 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
24615     cred_t *cr)
24616 {
24617 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
24618 
24619 	/*
24620 	 * Basically, value contains a new pass phrase.  Pass it along!
24621 	 */
24622 	tcp_iss_key_init((uint8_t *)value, strlen(value), tcps);
24623 	return (0);
24624 }
24625 
24626 /* ARGSUSED */
24627 static int
24628 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags)
24629 {
24630 	bzero(buf, sizeof (tcp_sack_info_t));
24631 	return (0);
24632 }
24633 
24634 /* ARGSUSED */
24635 static int
24636 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags)
24637 {
24638 	bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH);
24639 	return (0);
24640 }
24641 
24642 /*
24643  * Make sure we wait until the default queue is setup, yet allow
24644  * tcp_g_q_create() to open a TCP stream.
24645  * We need to allow tcp_g_q_create() do do an open
24646  * of tcp, hence we compare curhread.
24647  * All others have to wait until the tcps_g_q has been
24648  * setup.
24649  */
24650 void
24651 tcp_g_q_setup(tcp_stack_t *tcps)
24652 {
24653 	mutex_enter(&tcps->tcps_g_q_lock);
24654 	if (tcps->tcps_g_q != NULL) {
24655 		mutex_exit(&tcps->tcps_g_q_lock);
24656 		return;
24657 	}
24658 	if (tcps->tcps_g_q_creator == NULL) {
24659 		/* This thread will set it up */
24660 		tcps->tcps_g_q_creator = curthread;
24661 		mutex_exit(&tcps->tcps_g_q_lock);
24662 		tcp_g_q_create(tcps);
24663 		mutex_enter(&tcps->tcps_g_q_lock);
24664 		ASSERT(tcps->tcps_g_q_creator == curthread);
24665 		tcps->tcps_g_q_creator = NULL;
24666 		cv_signal(&tcps->tcps_g_q_cv);
24667 		ASSERT(tcps->tcps_g_q != NULL);
24668 		mutex_exit(&tcps->tcps_g_q_lock);
24669 		return;
24670 	}
24671 	/* Everybody but the creator has to wait */
24672 	if (tcps->tcps_g_q_creator != curthread) {
24673 		while (tcps->tcps_g_q == NULL)
24674 			cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock);
24675 	}
24676 	mutex_exit(&tcps->tcps_g_q_lock);
24677 }
24678 
24679 #define	IP	"ip"
24680 
24681 #define	TCP6DEV		"/devices/pseudo/tcp6@0:tcp6"
24682 
24683 /*
24684  * Create a default tcp queue here instead of in strplumb
24685  */
24686 void
24687 tcp_g_q_create(tcp_stack_t *tcps)
24688 {
24689 	int error;
24690 	ldi_handle_t	lh = NULL;
24691 	ldi_ident_t	li = NULL;
24692 	int		rval;
24693 	cred_t		*cr;
24694 	major_t IP_MAJ;
24695 
24696 #ifdef NS_DEBUG
24697 	(void) printf("tcp_g_q_create()\n");
24698 #endif
24699 
24700 	IP_MAJ = ddi_name_to_major(IP);
24701 
24702 	ASSERT(tcps->tcps_g_q_creator == curthread);
24703 
24704 	error = ldi_ident_from_major(IP_MAJ, &li);
24705 	if (error) {
24706 #ifdef DEBUG
24707 		printf("tcp_g_q_create: lyr ident get failed error %d\n",
24708 		    error);
24709 #endif
24710 		return;
24711 	}
24712 
24713 	cr = zone_get_kcred(netstackid_to_zoneid(
24714 	    tcps->tcps_netstack->netstack_stackid));
24715 	ASSERT(cr != NULL);
24716 	/*
24717 	 * We set the tcp default queue to IPv6 because IPv4 falls
24718 	 * back to IPv6 when it can't find a client, but
24719 	 * IPv6 does not fall back to IPv4.
24720 	 */
24721 	error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li);
24722 	if (error) {
24723 #ifdef DEBUG
24724 		printf("tcp_g_q_create: open of TCP6DEV failed error %d\n",
24725 		    error);
24726 #endif
24727 		goto out;
24728 	}
24729 
24730 	/*
24731 	 * This ioctl causes the tcp framework to cache a pointer to
24732 	 * this stream, so we don't want to close the stream after
24733 	 * this operation.
24734 	 * Use the kernel credentials that are for the zone we're in.
24735 	 */
24736 	error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q,
24737 	    (intptr_t)0, FKIOCTL, cr, &rval);
24738 	if (error) {
24739 #ifdef DEBUG
24740 		printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed "
24741 		    "error %d\n", error);
24742 #endif
24743 		goto out;
24744 	}
24745 	tcps->tcps_g_q_lh = lh;	/* For tcp_g_q_close */
24746 	lh = NULL;
24747 out:
24748 	/* Close layered handles */
24749 	if (li)
24750 		ldi_ident_release(li);
24751 	/* Keep cred around until _inactive needs it */
24752 	tcps->tcps_g_q_cr = cr;
24753 }
24754 
24755 /*
24756  * We keep tcp_g_q set until all other tcp_t's in the zone
24757  * has gone away, and then when tcp_g_q_inactive() is called
24758  * we clear it.
24759  */
24760 void
24761 tcp_g_q_destroy(tcp_stack_t *tcps)
24762 {
24763 #ifdef NS_DEBUG
24764 	(void) printf("tcp_g_q_destroy()for stack %d\n",
24765 	    tcps->tcps_netstack->netstack_stackid);
24766 #endif
24767 
24768 	if (tcps->tcps_g_q == NULL) {
24769 		return;	/* Nothing to cleanup */
24770 	}
24771 	/*
24772 	 * Drop reference corresponding to the default queue.
24773 	 * This reference was added from tcp_open when the default queue
24774 	 * was created, hence we compensate for this extra drop in
24775 	 * tcp_g_q_close. If the refcnt drops to zero here it means
24776 	 * the default queue was the last one to be open, in which
24777 	 * case, then tcp_g_q_inactive will be
24778 	 * called as a result of the refrele.
24779 	 */
24780 	TCPS_REFRELE(tcps);
24781 }
24782 
24783 /*
24784  * Called when last tcp_t drops reference count using TCPS_REFRELE.
24785  * Run by tcp_q_q_inactive using a taskq.
24786  */
24787 static void
24788 tcp_g_q_close(void *arg)
24789 {
24790 	tcp_stack_t *tcps = arg;
24791 	int error;
24792 	ldi_handle_t	lh = NULL;
24793 	ldi_ident_t	li = NULL;
24794 	cred_t		*cr;
24795 	major_t IP_MAJ;
24796 
24797 	IP_MAJ = ddi_name_to_major(IP);
24798 
24799 #ifdef NS_DEBUG
24800 	(void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n",
24801 	    tcps->tcps_netstack->netstack_stackid,
24802 	    tcps->tcps_netstack->netstack_refcnt);
24803 #endif
24804 	lh = tcps->tcps_g_q_lh;
24805 	if (lh == NULL)
24806 		return;	/* Nothing to cleanup */
24807 
24808 	ASSERT(tcps->tcps_refcnt == 1);
24809 	ASSERT(tcps->tcps_g_q != NULL);
24810 
24811 	error = ldi_ident_from_major(IP_MAJ, &li);
24812 	if (error) {
24813 #ifdef DEBUG
24814 		printf("tcp_g_q_inactive: lyr ident get failed error %d\n",
24815 		    error);
24816 #endif
24817 		return;
24818 	}
24819 
24820 	cr = tcps->tcps_g_q_cr;
24821 	tcps->tcps_g_q_cr = NULL;
24822 	ASSERT(cr != NULL);
24823 
24824 	/*
24825 	 * Make sure we can break the recursion when tcp_close decrements
24826 	 * the reference count causing g_q_inactive to be called again.
24827 	 */
24828 	tcps->tcps_g_q_lh = NULL;
24829 
24830 	/* close the default queue */
24831 	(void) ldi_close(lh, FREAD|FWRITE, cr);
24832 	/*
24833 	 * At this point in time tcps and the rest of netstack_t might
24834 	 * have been deleted.
24835 	 */
24836 	tcps = NULL;
24837 
24838 	/* Close layered handles */
24839 	ldi_ident_release(li);
24840 	crfree(cr);
24841 }
24842 
24843 /*
24844  * Called when last tcp_t drops reference count using TCPS_REFRELE.
24845  *
24846  * Have to ensure that the ldi routines are not used by an
24847  * interrupt thread by using a taskq.
24848  */
24849 void
24850 tcp_g_q_inactive(tcp_stack_t *tcps)
24851 {
24852 	if (tcps->tcps_g_q_lh == NULL)
24853 		return;	/* Nothing to cleanup */
24854 
24855 	ASSERT(tcps->tcps_refcnt == 0);
24856 	TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */
24857 
24858 	if (servicing_interrupt()) {
24859 		(void) taskq_dispatch(tcp_taskq, tcp_g_q_close,
24860 		    (void *) tcps, TQ_SLEEP);
24861 	} else {
24862 		tcp_g_q_close(tcps);
24863 	}
24864 }
24865 
24866 /*
24867  * Called by IP when IP is loaded into the kernel
24868  */
24869 void
24870 tcp_ddi_g_init(void)
24871 {
24872 	tcp_timercache = kmem_cache_create("tcp_timercache",
24873 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
24874 	    NULL, NULL, NULL, NULL, NULL, 0);
24875 
24876 	tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache",
24877 	    sizeof (tcp_sack_info_t), 0,
24878 	    tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0);
24879 
24880 	tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache",
24881 	    TCP_MAX_COMBINED_HEADER_LENGTH, 0,
24882 	    tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0);
24883 
24884 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
24885 
24886 	/* Initialize the random number generator */
24887 	tcp_random_init();
24888 
24889 	tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput);
24890 	tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close);
24891 
24892 	/* A single callback independently of how many netstacks we have */
24893 	ip_squeue_init(tcp_squeue_add);
24894 
24895 	tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics);
24896 
24897 	tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1,
24898 	    TASKQ_PREPOPULATE);
24899 
24900 	/*
24901 	 * We want to be informed each time a stack is created or
24902 	 * destroyed in the kernel, so we can maintain the
24903 	 * set of tcp_stack_t's.
24904 	 */
24905 	netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown,
24906 	    tcp_stack_fini);
24907 }
24908 
24909 
24910 /*
24911  * Initialize the TCP stack instance.
24912  */
24913 static void *
24914 tcp_stack_init(netstackid_t stackid, netstack_t *ns)
24915 {
24916 	tcp_stack_t	*tcps;
24917 	tcpparam_t	*pa;
24918 	int		i;
24919 
24920 	tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP);
24921 	tcps->tcps_netstack = ns;
24922 
24923 	/* Initialize locks */
24924 	rw_init(&tcps->tcps_hsp_lock, NULL, RW_DEFAULT, NULL);
24925 	mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL);
24926 	cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL);
24927 	mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
24928 	mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
24929 
24930 	tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
24931 	tcps->tcps_g_epriv_ports[0] = 2049;
24932 	tcps->tcps_g_epriv_ports[1] = 4045;
24933 	tcps->tcps_min_anonpriv_port = 512;
24934 
24935 	tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) *
24936 	    TCP_BIND_FANOUT_SIZE, KM_SLEEP);
24937 	tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) *
24938 	    TCP_FANOUT_SIZE, KM_SLEEP);
24939 
24940 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
24941 		mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL,
24942 		    MUTEX_DEFAULT, NULL);
24943 	}
24944 
24945 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
24946 		mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL,
24947 		    MUTEX_DEFAULT, NULL);
24948 	}
24949 
24950 	/* TCP's IPsec code calls the packet dropper. */
24951 	ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement");
24952 
24953 	pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP);
24954 	tcps->tcps_params = pa;
24955 	bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr));
24956 
24957 	(void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params,
24958 	    A_CNT(lcl_tcp_param_arr), tcps);
24959 
24960 	/*
24961 	 * Note: To really walk the device tree you need the devinfo
24962 	 * pointer to your device which is only available after probe/attach.
24963 	 * The following is safe only because it uses ddi_root_node()
24964 	 */
24965 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
24966 	    tcp_opt_obj.odb_opt_arr_cnt);
24967 
24968 	/*
24969 	 * Initialize RFC 1948 secret values.  This will probably be reset once
24970 	 * by the boot scripts.
24971 	 *
24972 	 * Use NULL name, as the name is caught by the new lockstats.
24973 	 *
24974 	 * Initialize with some random, non-guessable string, like the global
24975 	 * T_INFO_ACK.
24976 	 */
24977 
24978 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
24979 	    sizeof (tcp_g_t_info_ack), tcps);
24980 
24981 	tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics);
24982 	tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps);
24983 
24984 	return (tcps);
24985 }
24986 
24987 /*
24988  * Called when the IP module is about to be unloaded.
24989  */
24990 void
24991 tcp_ddi_g_destroy(void)
24992 {
24993 	tcp_g_kstat_fini(tcp_g_kstat);
24994 	tcp_g_kstat = NULL;
24995 	bzero(&tcp_g_statistics, sizeof (tcp_g_statistics));
24996 
24997 	mutex_destroy(&tcp_random_lock);
24998 
24999 	kmem_cache_destroy(tcp_timercache);
25000 	kmem_cache_destroy(tcp_sack_info_cache);
25001 	kmem_cache_destroy(tcp_iphc_cache);
25002 
25003 	netstack_unregister(NS_TCP);
25004 	taskq_destroy(tcp_taskq);
25005 }
25006 
25007 /*
25008  * Shut down the TCP stack instance.
25009  */
25010 /* ARGSUSED */
25011 static void
25012 tcp_stack_shutdown(netstackid_t stackid, void *arg)
25013 {
25014 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
25015 
25016 	tcp_g_q_destroy(tcps);
25017 }
25018 
25019 /*
25020  * Free the TCP stack instance.
25021  */
25022 static void
25023 tcp_stack_fini(netstackid_t stackid, void *arg)
25024 {
25025 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
25026 	int i;
25027 
25028 	nd_free(&tcps->tcps_g_nd);
25029 	kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr));
25030 	tcps->tcps_params = NULL;
25031 	kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t));
25032 	tcps->tcps_wroff_xtra_param = NULL;
25033 	kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t));
25034 	tcps->tcps_mdt_head_param = NULL;
25035 	kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t));
25036 	tcps->tcps_mdt_tail_param = NULL;
25037 	kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t));
25038 	tcps->tcps_mdt_max_pbufs_param = NULL;
25039 
25040 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
25041 		ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL);
25042 		mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock);
25043 	}
25044 
25045 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
25046 		ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL);
25047 		mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock);
25048 	}
25049 
25050 	kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE);
25051 	tcps->tcps_bind_fanout = NULL;
25052 
25053 	kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE);
25054 	tcps->tcps_acceptor_fanout = NULL;
25055 
25056 	mutex_destroy(&tcps->tcps_iss_key_lock);
25057 	rw_destroy(&tcps->tcps_hsp_lock);
25058 	mutex_destroy(&tcps->tcps_g_q_lock);
25059 	cv_destroy(&tcps->tcps_g_q_cv);
25060 	mutex_destroy(&tcps->tcps_epriv_port_lock);
25061 
25062 	ip_drop_unregister(&tcps->tcps_dropper);
25063 
25064 	tcp_kstat2_fini(stackid, tcps->tcps_kstat);
25065 	tcps->tcps_kstat = NULL;
25066 	bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics));
25067 
25068 	tcp_kstat_fini(stackid, tcps->tcps_mibkp);
25069 	tcps->tcps_mibkp = NULL;
25070 
25071 	kmem_free(tcps, sizeof (*tcps));
25072 }
25073 
25074 /*
25075  * Generate ISS, taking into account NDD changes may happen halfway through.
25076  * (If the iss is not zero, set it.)
25077  */
25078 
25079 static void
25080 tcp_iss_init(tcp_t *tcp)
25081 {
25082 	MD5_CTX context;
25083 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
25084 	uint32_t answer[4];
25085 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25086 
25087 	tcps->tcps_iss_incr_extra += (ISS_INCR >> 1);
25088 	tcp->tcp_iss = tcps->tcps_iss_incr_extra;
25089 	switch (tcps->tcps_strong_iss) {
25090 	case 2:
25091 		mutex_enter(&tcps->tcps_iss_key_lock);
25092 		context = tcps->tcps_iss_key;
25093 		mutex_exit(&tcps->tcps_iss_key_lock);
25094 		arg.ports = tcp->tcp_ports;
25095 		if (tcp->tcp_ipversion == IPV4_VERSION) {
25096 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
25097 			    &arg.src);
25098 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst,
25099 			    &arg.dst);
25100 		} else {
25101 			arg.src = tcp->tcp_ip6h->ip6_src;
25102 			arg.dst = tcp->tcp_ip6h->ip6_dst;
25103 		}
25104 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
25105 		MD5Final((uchar_t *)answer, &context);
25106 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
25107 		/*
25108 		 * Now that we've hashed into a unique per-connection sequence
25109 		 * space, add a random increment per strong_iss == 1.  So I
25110 		 * guess we'll have to...
25111 		 */
25112 		/* FALLTHRU */
25113 	case 1:
25114 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
25115 		break;
25116 	default:
25117 		tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
25118 		break;
25119 	}
25120 	tcp->tcp_valid_bits = TCP_ISS_VALID;
25121 	tcp->tcp_fss = tcp->tcp_iss - 1;
25122 	tcp->tcp_suna = tcp->tcp_iss;
25123 	tcp->tcp_snxt = tcp->tcp_iss + 1;
25124 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
25125 	tcp->tcp_csuna = tcp->tcp_snxt;
25126 }
25127 
25128 /*
25129  * Exported routine for extracting active tcp connection status.
25130  *
25131  * This is used by the Solaris Cluster Networking software to
25132  * gather a list of connections that need to be forwarded to
25133  * specific nodes in the cluster when configuration changes occur.
25134  *
25135  * The callback is invoked for each tcp_t structure. Returning
25136  * non-zero from the callback routine terminates the search.
25137  */
25138 int
25139 cl_tcp_walk_list(int (*cl_callback)(cl_tcp_info_t *, void *),
25140     void *arg)
25141 {
25142 	netstack_handle_t nh;
25143 	netstack_t *ns;
25144 	int ret = 0;
25145 
25146 	netstack_next_init(&nh);
25147 	while ((ns = netstack_next(&nh)) != NULL) {
25148 		ret = cl_tcp_walk_list_stack(cl_callback, arg,
25149 		    ns->netstack_tcp);
25150 		netstack_rele(ns);
25151 	}
25152 	netstack_next_fini(&nh);
25153 	return (ret);
25154 }
25155 
25156 static int
25157 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg,
25158     tcp_stack_t *tcps)
25159 {
25160 	tcp_t *tcp;
25161 	cl_tcp_info_t	cl_tcpi;
25162 	connf_t	*connfp;
25163 	conn_t	*connp;
25164 	int	i;
25165 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
25166 
25167 	ASSERT(callback != NULL);
25168 
25169 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
25170 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
25171 		connp = NULL;
25172 
25173 		while ((connp =
25174 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
25175 
25176 			tcp = connp->conn_tcp;
25177 			cl_tcpi.cl_tcpi_version = CL_TCPI_V1;
25178 			cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion;
25179 			cl_tcpi.cl_tcpi_state = tcp->tcp_state;
25180 			cl_tcpi.cl_tcpi_lport = tcp->tcp_lport;
25181 			cl_tcpi.cl_tcpi_fport = tcp->tcp_fport;
25182 			/*
25183 			 * The macros tcp_laddr and tcp_faddr give the IPv4
25184 			 * addresses. They are copied implicitly below as
25185 			 * mapped addresses.
25186 			 */
25187 			cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6;
25188 			if (tcp->tcp_ipversion == IPV4_VERSION) {
25189 				cl_tcpi.cl_tcpi_faddr =
25190 				    tcp->tcp_ipha->ipha_dst;
25191 			} else {
25192 				cl_tcpi.cl_tcpi_faddr_v6 =
25193 				    tcp->tcp_ip6h->ip6_dst;
25194 			}
25195 
25196 			/*
25197 			 * If the callback returns non-zero
25198 			 * we terminate the traversal.
25199 			 */
25200 			if ((*callback)(&cl_tcpi, arg) != 0) {
25201 				CONN_DEC_REF(tcp->tcp_connp);
25202 				return (1);
25203 			}
25204 		}
25205 	}
25206 
25207 	return (0);
25208 }
25209 
25210 /*
25211  * Macros used for accessing the different types of sockaddr
25212  * structures inside a tcp_ioc_abort_conn_t.
25213  */
25214 #define	TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local)
25215 #define	TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote)
25216 #define	TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr)
25217 #define	TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr)
25218 #define	TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port)
25219 #define	TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port)
25220 #define	TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local)
25221 #define	TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote)
25222 #define	TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr)
25223 #define	TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr)
25224 #define	TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port)
25225 #define	TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port)
25226 
25227 /*
25228  * Return the correct error code to mimic the behavior
25229  * of a connection reset.
25230  */
25231 #define	TCP_AC_GET_ERRCODE(state, err) {	\
25232 		switch ((state)) {		\
25233 		case TCPS_SYN_SENT:		\
25234 		case TCPS_SYN_RCVD:		\
25235 			(err) = ECONNREFUSED;	\
25236 			break;			\
25237 		case TCPS_ESTABLISHED:		\
25238 		case TCPS_FIN_WAIT_1:		\
25239 		case TCPS_FIN_WAIT_2:		\
25240 		case TCPS_CLOSE_WAIT:		\
25241 			(err) = ECONNRESET;	\
25242 			break;			\
25243 		case TCPS_CLOSING:		\
25244 		case TCPS_LAST_ACK:		\
25245 		case TCPS_TIME_WAIT:		\
25246 			(err) = 0;		\
25247 			break;			\
25248 		default:			\
25249 			(err) = ENXIO;		\
25250 		}				\
25251 	}
25252 
25253 /*
25254  * Check if a tcp structure matches the info in acp.
25255  */
25256 #define	TCP_AC_ADDR_MATCH(acp, tcp)					\
25257 	(((acp)->ac_local.ss_family == AF_INET) ?		\
25258 	((TCP_AC_V4LOCAL((acp)) == INADDR_ANY ||		\
25259 	TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) &&	\
25260 	(TCP_AC_V4REMOTE((acp)) == INADDR_ANY ||		\
25261 	TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) &&	\
25262 	(TCP_AC_V4LPORT((acp)) == 0 ||				\
25263 	TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) &&		\
25264 	(TCP_AC_V4RPORT((acp)) == 0 ||				\
25265 	TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) &&		\
25266 	(acp)->ac_start <= (tcp)->tcp_state &&	\
25267 	(acp)->ac_end >= (tcp)->tcp_state) :		\
25268 	((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) ||	\
25269 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)),		\
25270 	&(tcp)->tcp_ip_src_v6)) &&				\
25271 	(IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) ||	\
25272 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)),		\
25273 	&(tcp)->tcp_remote_v6)) &&				\
25274 	(TCP_AC_V6LPORT((acp)) == 0 ||				\
25275 	TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) &&		\
25276 	(TCP_AC_V6RPORT((acp)) == 0 ||				\
25277 	TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) &&		\
25278 	(acp)->ac_start <= (tcp)->tcp_state &&	\
25279 	(acp)->ac_end >= (tcp)->tcp_state))
25280 
25281 #define	TCP_AC_MATCH(acp, tcp)					\
25282 	(((acp)->ac_zoneid == ALL_ZONES ||			\
25283 	(acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ?	\
25284 	TCP_AC_ADDR_MATCH(acp, tcp) : 0)
25285 
25286 /*
25287  * Build a message containing a tcp_ioc_abort_conn_t structure
25288  * which is filled in with information from acp and tp.
25289  */
25290 static mblk_t *
25291 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp)
25292 {
25293 	mblk_t *mp;
25294 	tcp_ioc_abort_conn_t *tacp;
25295 
25296 	mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO);
25297 	if (mp == NULL)
25298 		return (NULL);
25299 
25300 	mp->b_datap->db_type = M_CTL;
25301 
25302 	*((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN;
25303 	tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr +
25304 	    sizeof (uint32_t));
25305 
25306 	tacp->ac_start = acp->ac_start;
25307 	tacp->ac_end = acp->ac_end;
25308 	tacp->ac_zoneid = acp->ac_zoneid;
25309 
25310 	if (acp->ac_local.ss_family == AF_INET) {
25311 		tacp->ac_local.ss_family = AF_INET;
25312 		tacp->ac_remote.ss_family = AF_INET;
25313 		TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src;
25314 		TCP_AC_V4REMOTE(tacp) = tp->tcp_remote;
25315 		TCP_AC_V4LPORT(tacp) = tp->tcp_lport;
25316 		TCP_AC_V4RPORT(tacp) = tp->tcp_fport;
25317 	} else {
25318 		tacp->ac_local.ss_family = AF_INET6;
25319 		tacp->ac_remote.ss_family = AF_INET6;
25320 		TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6;
25321 		TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6;
25322 		TCP_AC_V6LPORT(tacp) = tp->tcp_lport;
25323 		TCP_AC_V6RPORT(tacp) = tp->tcp_fport;
25324 	}
25325 	mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp);
25326 	return (mp);
25327 }
25328 
25329 /*
25330  * Print a tcp_ioc_abort_conn_t structure.
25331  */
25332 static void
25333 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp)
25334 {
25335 	char lbuf[128];
25336 	char rbuf[128];
25337 	sa_family_t af;
25338 	in_port_t lport, rport;
25339 	ushort_t logflags;
25340 
25341 	af = acp->ac_local.ss_family;
25342 
25343 	if (af == AF_INET) {
25344 		(void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp),
25345 		    lbuf, 128);
25346 		(void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp),
25347 		    rbuf, 128);
25348 		lport = ntohs(TCP_AC_V4LPORT(acp));
25349 		rport = ntohs(TCP_AC_V4RPORT(acp));
25350 	} else {
25351 		(void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp),
25352 		    lbuf, 128);
25353 		(void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp),
25354 		    rbuf, 128);
25355 		lport = ntohs(TCP_AC_V6LPORT(acp));
25356 		rport = ntohs(TCP_AC_V6RPORT(acp));
25357 	}
25358 
25359 	logflags = SL_TRACE | SL_NOTE;
25360 	/*
25361 	 * Don't print this message to the console if the operation was done
25362 	 * to a non-global zone.
25363 	 */
25364 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
25365 		logflags |= SL_CONSOLE;
25366 	(void) strlog(TCP_MOD_ID, 0, 1, logflags,
25367 	    "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, "
25368 	    "start = %d, end = %d\n", lbuf, lport, rbuf, rport,
25369 	    acp->ac_start, acp->ac_end);
25370 }
25371 
25372 /*
25373  * Called inside tcp_rput when a message built using
25374  * tcp_ioctl_abort_build_msg is put into a queue.
25375  * Note that when we get here there is no wildcard in acp any more.
25376  */
25377 static void
25378 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp)
25379 {
25380 	tcp_ioc_abort_conn_t *acp;
25381 
25382 	acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t));
25383 	if (tcp->tcp_state <= acp->ac_end) {
25384 		/*
25385 		 * If we get here, we are already on the correct
25386 		 * squeue. This ioctl follows the following path
25387 		 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn
25388 		 * ->tcp_ioctl_abort->squeue_fill (if on a
25389 		 * different squeue)
25390 		 */
25391 		int errcode;
25392 
25393 		TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode);
25394 		(void) tcp_clean_death(tcp, errcode, 26);
25395 	}
25396 	freemsg(mp);
25397 }
25398 
25399 /*
25400  * Abort all matching connections on a hash chain.
25401  */
25402 static int
25403 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count,
25404     boolean_t exact, tcp_stack_t *tcps)
25405 {
25406 	int nmatch, err = 0;
25407 	tcp_t *tcp;
25408 	MBLKP mp, last, listhead = NULL;
25409 	conn_t	*tconnp;
25410 	connf_t	*connfp;
25411 	ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
25412 
25413 	connfp = &ipst->ips_ipcl_conn_fanout[index];
25414 
25415 startover:
25416 	nmatch = 0;
25417 
25418 	mutex_enter(&connfp->connf_lock);
25419 	for (tconnp = connfp->connf_head; tconnp != NULL;
25420 	    tconnp = tconnp->conn_next) {
25421 		tcp = tconnp->conn_tcp;
25422 		if (TCP_AC_MATCH(acp, tcp)) {
25423 			CONN_INC_REF(tcp->tcp_connp);
25424 			mp = tcp_ioctl_abort_build_msg(acp, tcp);
25425 			if (mp == NULL) {
25426 				err = ENOMEM;
25427 				CONN_DEC_REF(tcp->tcp_connp);
25428 				break;
25429 			}
25430 			mp->b_prev = (mblk_t *)tcp;
25431 
25432 			if (listhead == NULL) {
25433 				listhead = mp;
25434 				last = mp;
25435 			} else {
25436 				last->b_next = mp;
25437 				last = mp;
25438 			}
25439 			nmatch++;
25440 			if (exact)
25441 				break;
25442 		}
25443 
25444 		/* Avoid holding lock for too long. */
25445 		if (nmatch >= 500)
25446 			break;
25447 	}
25448 	mutex_exit(&connfp->connf_lock);
25449 
25450 	/* Pass mp into the correct tcp */
25451 	while ((mp = listhead) != NULL) {
25452 		listhead = listhead->b_next;
25453 		tcp = (tcp_t *)mp->b_prev;
25454 		mp->b_next = mp->b_prev = NULL;
25455 		squeue_fill(tcp->tcp_connp->conn_sqp, mp,
25456 		    tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET);
25457 	}
25458 
25459 	*count += nmatch;
25460 	if (nmatch >= 500 && err == 0)
25461 		goto startover;
25462 	return (err);
25463 }
25464 
25465 /*
25466  * Abort all connections that matches the attributes specified in acp.
25467  */
25468 static int
25469 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps)
25470 {
25471 	sa_family_t af;
25472 	uint32_t  ports;
25473 	uint16_t *pports;
25474 	int err = 0, count = 0;
25475 	boolean_t exact = B_FALSE; /* set when there is no wildcard */
25476 	int index = -1;
25477 	ushort_t logflags;
25478 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
25479 
25480 	af = acp->ac_local.ss_family;
25481 
25482 	if (af == AF_INET) {
25483 		if (TCP_AC_V4REMOTE(acp) != INADDR_ANY &&
25484 		    TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) {
25485 			pports = (uint16_t *)&ports;
25486 			pports[1] = TCP_AC_V4LPORT(acp);
25487 			pports[0] = TCP_AC_V4RPORT(acp);
25488 			exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY);
25489 		}
25490 	} else {
25491 		if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) &&
25492 		    TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) {
25493 			pports = (uint16_t *)&ports;
25494 			pports[1] = TCP_AC_V6LPORT(acp);
25495 			pports[0] = TCP_AC_V6RPORT(acp);
25496 			exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp));
25497 		}
25498 	}
25499 
25500 	/*
25501 	 * For cases where remote addr, local port, and remote port are non-
25502 	 * wildcards, tcp_ioctl_abort_bucket will only be called once.
25503 	 */
25504 	if (index != -1) {
25505 		err = tcp_ioctl_abort_bucket(acp, index,
25506 		    &count, exact, tcps);
25507 	} else {
25508 		/*
25509 		 * loop through all entries for wildcard case
25510 		 */
25511 		for (index = 0;
25512 		    index < ipst->ips_ipcl_conn_fanout_size;
25513 		    index++) {
25514 			err = tcp_ioctl_abort_bucket(acp, index,
25515 			    &count, exact, tcps);
25516 			if (err != 0)
25517 				break;
25518 		}
25519 	}
25520 
25521 	logflags = SL_TRACE | SL_NOTE;
25522 	/*
25523 	 * Don't print this message to the console if the operation was done
25524 	 * to a non-global zone.
25525 	 */
25526 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
25527 		logflags |= SL_CONSOLE;
25528 	(void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: "
25529 	    "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' '));
25530 	if (err == 0 && count == 0)
25531 		err = ENOENT;
25532 	return (err);
25533 }
25534 
25535 /*
25536  * Process the TCP_IOC_ABORT_CONN ioctl request.
25537  */
25538 static void
25539 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp)
25540 {
25541 	int	err;
25542 	IOCP    iocp;
25543 	MBLKP   mp1;
25544 	sa_family_t laf, raf;
25545 	tcp_ioc_abort_conn_t *acp;
25546 	zone_t		*zptr;
25547 	conn_t		*connp = Q_TO_CONN(q);
25548 	zoneid_t	zoneid = connp->conn_zoneid;
25549 	tcp_t		*tcp = connp->conn_tcp;
25550 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25551 
25552 	iocp = (IOCP)mp->b_rptr;
25553 
25554 	if ((mp1 = mp->b_cont) == NULL ||
25555 	    iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) {
25556 		err = EINVAL;
25557 		goto out;
25558 	}
25559 
25560 	/* check permissions */
25561 	if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
25562 		err = EPERM;
25563 		goto out;
25564 	}
25565 
25566 	if (mp1->b_cont != NULL) {
25567 		freemsg(mp1->b_cont);
25568 		mp1->b_cont = NULL;
25569 	}
25570 
25571 	acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr;
25572 	laf = acp->ac_local.ss_family;
25573 	raf = acp->ac_remote.ss_family;
25574 
25575 	/* check that a zone with the supplied zoneid exists */
25576 	if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) {
25577 		zptr = zone_find_by_id(zoneid);
25578 		if (zptr != NULL) {
25579 			zone_rele(zptr);
25580 		} else {
25581 			err = EINVAL;
25582 			goto out;
25583 		}
25584 	}
25585 
25586 	/*
25587 	 * For exclusive stacks we set the zoneid to zero
25588 	 * to make TCP operate as if in the global zone.
25589 	 */
25590 	if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID)
25591 		acp->ac_zoneid = GLOBAL_ZONEID;
25592 
25593 	if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT ||
25594 	    acp->ac_start > acp->ac_end || laf != raf ||
25595 	    (laf != AF_INET && laf != AF_INET6)) {
25596 		err = EINVAL;
25597 		goto out;
25598 	}
25599 
25600 	tcp_ioctl_abort_dump(acp);
25601 	err = tcp_ioctl_abort(acp, tcps);
25602 
25603 out:
25604 	if (mp1 != NULL) {
25605 		freemsg(mp1);
25606 		mp->b_cont = NULL;
25607 	}
25608 
25609 	if (err != 0)
25610 		miocnak(q, mp, 0, err);
25611 	else
25612 		miocack(q, mp, 0, 0);
25613 }
25614 
25615 /*
25616  * tcp_time_wait_processing() handles processing of incoming packets when
25617  * the tcp is in the TIME_WAIT state.
25618  * A TIME_WAIT tcp that has an associated open TCP stream is never put
25619  * on the time wait list.
25620  */
25621 void
25622 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq,
25623     uint32_t seg_ack, int seg_len, tcph_t *tcph)
25624 {
25625 	int32_t		bytes_acked;
25626 	int32_t		gap;
25627 	int32_t		rgap;
25628 	tcp_opt_t	tcpopt;
25629 	uint_t		flags;
25630 	uint32_t	new_swnd = 0;
25631 	conn_t		*connp;
25632 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25633 
25634 	BUMP_LOCAL(tcp->tcp_ibsegs);
25635 	DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
25636 
25637 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
25638 	new_swnd = BE16_TO_U16(tcph->th_win) <<
25639 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
25640 	if (tcp->tcp_snd_ts_ok) {
25641 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
25642 			tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25643 			    tcp->tcp_rnxt, TH_ACK);
25644 			goto done;
25645 		}
25646 	}
25647 	gap = seg_seq - tcp->tcp_rnxt;
25648 	rgap = tcp->tcp_rwnd - (gap + seg_len);
25649 	if (gap < 0) {
25650 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
25651 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
25652 		    (seg_len > -gap ? -gap : seg_len));
25653 		seg_len += gap;
25654 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
25655 			if (flags & TH_RST) {
25656 				goto done;
25657 			}
25658 			if ((flags & TH_FIN) && seg_len == -1) {
25659 				/*
25660 				 * When TCP receives a duplicate FIN in
25661 				 * TIME_WAIT state, restart the 2 MSL timer.
25662 				 * See page 73 in RFC 793. Make sure this TCP
25663 				 * is already on the TIME_WAIT list. If not,
25664 				 * just restart the timer.
25665 				 */
25666 				if (TCP_IS_DETACHED(tcp)) {
25667 					if (tcp_time_wait_remove(tcp, NULL) ==
25668 					    B_TRUE) {
25669 						tcp_time_wait_append(tcp);
25670 						TCP_DBGSTAT(tcps,
25671 						    tcp_rput_time_wait);
25672 					}
25673 				} else {
25674 					ASSERT(tcp != NULL);
25675 					TCP_TIMER_RESTART(tcp,
25676 					    tcps->tcps_time_wait_interval);
25677 				}
25678 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25679 				    tcp->tcp_rnxt, TH_ACK);
25680 				goto done;
25681 			}
25682 			flags |=  TH_ACK_NEEDED;
25683 			seg_len = 0;
25684 			goto process_ack;
25685 		}
25686 
25687 		/* Fix seg_seq, and chew the gap off the front. */
25688 		seg_seq = tcp->tcp_rnxt;
25689 	}
25690 
25691 	if ((flags & TH_SYN) && gap > 0 && rgap < 0) {
25692 		/*
25693 		 * Make sure that when we accept the connection, pick
25694 		 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the
25695 		 * old connection.
25696 		 *
25697 		 * The next ISS generated is equal to tcp_iss_incr_extra
25698 		 * + ISS_INCR/2 + other components depending on the
25699 		 * value of tcp_strong_iss.  We pre-calculate the new
25700 		 * ISS here and compare with tcp_snxt to determine if
25701 		 * we need to make adjustment to tcp_iss_incr_extra.
25702 		 *
25703 		 * The above calculation is ugly and is a
25704 		 * waste of CPU cycles...
25705 		 */
25706 		uint32_t new_iss = tcps->tcps_iss_incr_extra;
25707 		int32_t adj;
25708 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
25709 
25710 		switch (tcps->tcps_strong_iss) {
25711 		case 2: {
25712 			/* Add time and MD5 components. */
25713 			uint32_t answer[4];
25714 			struct {
25715 				uint32_t ports;
25716 				in6_addr_t src;
25717 				in6_addr_t dst;
25718 			} arg;
25719 			MD5_CTX context;
25720 
25721 			mutex_enter(&tcps->tcps_iss_key_lock);
25722 			context = tcps->tcps_iss_key;
25723 			mutex_exit(&tcps->tcps_iss_key_lock);
25724 			arg.ports = tcp->tcp_ports;
25725 			/* We use MAPPED addresses in tcp_iss_init */
25726 			arg.src = tcp->tcp_ip_src_v6;
25727 			if (tcp->tcp_ipversion == IPV4_VERSION) {
25728 				IN6_IPADDR_TO_V4MAPPED(
25729 				    tcp->tcp_ipha->ipha_dst,
25730 				    &arg.dst);
25731 			} else {
25732 				arg.dst =
25733 				    tcp->tcp_ip6h->ip6_dst;
25734 			}
25735 			MD5Update(&context, (uchar_t *)&arg,
25736 			    sizeof (arg));
25737 			MD5Final((uchar_t *)answer, &context);
25738 			answer[0] ^= answer[1] ^ answer[2] ^ answer[3];
25739 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0];
25740 			break;
25741 		}
25742 		case 1:
25743 			/* Add time component and min random (i.e. 1). */
25744 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1;
25745 			break;
25746 		default:
25747 			/* Add only time component. */
25748 			new_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
25749 			break;
25750 		}
25751 		if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) {
25752 			/*
25753 			 * New ISS not guaranteed to be ISS_INCR/2
25754 			 * ahead of the current tcp_snxt, so add the
25755 			 * difference to tcp_iss_incr_extra.
25756 			 */
25757 			tcps->tcps_iss_incr_extra += adj;
25758 		}
25759 		/*
25760 		 * If tcp_clean_death() can not perform the task now,
25761 		 * drop the SYN packet and let the other side re-xmit.
25762 		 * Otherwise pass the SYN packet back in, since the
25763 		 * old tcp state has been cleaned up or freed.
25764 		 */
25765 		if (tcp_clean_death(tcp, 0, 27) == -1)
25766 			goto done;
25767 		/*
25768 		 * We will come back to tcp_rput_data
25769 		 * on the global queue. Packets destined
25770 		 * for the global queue will be checked
25771 		 * with global policy. But the policy for
25772 		 * this packet has already been checked as
25773 		 * this was destined for the detached
25774 		 * connection. We need to bypass policy
25775 		 * check this time by attaching a dummy
25776 		 * ipsec_in with ipsec_in_dont_check set.
25777 		 */
25778 		connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst);
25779 		if (connp != NULL) {
25780 			TCP_STAT(tcps, tcp_time_wait_syn_success);
25781 			tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp);
25782 			return;
25783 		}
25784 		goto done;
25785 	}
25786 
25787 	/*
25788 	 * rgap is the amount of stuff received out of window.  A negative
25789 	 * value is the amount out of window.
25790 	 */
25791 	if (rgap < 0) {
25792 		BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
25793 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap);
25794 		/* Fix seg_len and make sure there is something left. */
25795 		seg_len += rgap;
25796 		if (seg_len <= 0) {
25797 			if (flags & TH_RST) {
25798 				goto done;
25799 			}
25800 			flags |=  TH_ACK_NEEDED;
25801 			seg_len = 0;
25802 			goto process_ack;
25803 		}
25804 	}
25805 	/*
25806 	 * Check whether we can update tcp_ts_recent.  This test is
25807 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
25808 	 * Extensions for High Performance: An Update", Internet Draft.
25809 	 */
25810 	if (tcp->tcp_snd_ts_ok &&
25811 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
25812 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
25813 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
25814 		tcp->tcp_last_rcv_lbolt = lbolt64;
25815 	}
25816 
25817 	if (seg_seq != tcp->tcp_rnxt && seg_len > 0) {
25818 		/* Always ack out of order packets */
25819 		flags |= TH_ACK_NEEDED;
25820 		seg_len = 0;
25821 	} else if (seg_len > 0) {
25822 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
25823 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
25824 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
25825 	}
25826 	if (flags & TH_RST) {
25827 		(void) tcp_clean_death(tcp, 0, 28);
25828 		goto done;
25829 	}
25830 	if (flags & TH_SYN) {
25831 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
25832 		    TH_RST|TH_ACK);
25833 		/*
25834 		 * Do not delete the TCP structure if it is in
25835 		 * TIME_WAIT state.  Refer to RFC 1122, 4.2.2.13.
25836 		 */
25837 		goto done;
25838 	}
25839 process_ack:
25840 	if (flags & TH_ACK) {
25841 		bytes_acked = (int)(seg_ack - tcp->tcp_suna);
25842 		if (bytes_acked <= 0) {
25843 			if (bytes_acked == 0 && seg_len == 0 &&
25844 			    new_swnd == tcp->tcp_swnd)
25845 				BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
25846 		} else {
25847 			/* Acks something not sent */
25848 			flags |= TH_ACK_NEEDED;
25849 		}
25850 	}
25851 	if (flags & TH_ACK_NEEDED) {
25852 		/*
25853 		 * Time to send an ack for some reason.
25854 		 */
25855 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25856 		    tcp->tcp_rnxt, TH_ACK);
25857 	}
25858 done:
25859 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
25860 		DB_CKSUMSTART(mp) = 0;
25861 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
25862 		TCP_STAT(tcps, tcp_time_wait_syn_fail);
25863 	}
25864 	freemsg(mp);
25865 }
25866 
25867 /*
25868  * Allocate a T_SVR4_OPTMGMT_REQ.
25869  * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so
25870  * that tcp_rput_other can drop the acks.
25871  */
25872 static mblk_t *
25873 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen)
25874 {
25875 	mblk_t *mp;
25876 	struct T_optmgmt_req *tor;
25877 	struct opthdr *oh;
25878 	uint_t size;
25879 	char *optptr;
25880 
25881 	size = sizeof (*tor) + sizeof (*oh) + optlen;
25882 	mp = allocb(size, BPRI_MED);
25883 	if (mp == NULL)
25884 		return (NULL);
25885 
25886 	mp->b_wptr += size;
25887 	mp->b_datap->db_type = M_PROTO;
25888 	tor = (struct T_optmgmt_req *)mp->b_rptr;
25889 	tor->PRIM_type = T_SVR4_OPTMGMT_REQ;
25890 	tor->MGMT_flags = T_NEGOTIATE;
25891 	tor->OPT_length = sizeof (*oh) + optlen;
25892 	tor->OPT_offset = (t_scalar_t)sizeof (*tor);
25893 
25894 	oh = (struct opthdr *)&tor[1];
25895 	oh->level = level;
25896 	oh->name = cmd;
25897 	oh->len = optlen;
25898 	if (optlen != 0) {
25899 		optptr = (char *)&oh[1];
25900 		bcopy(opt, optptr, optlen);
25901 	}
25902 	return (mp);
25903 }
25904 
25905 /*
25906  * TCP Timers Implementation.
25907  */
25908 timeout_id_t
25909 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim)
25910 {
25911 	mblk_t *mp;
25912 	tcp_timer_t *tcpt;
25913 	tcp_t *tcp = connp->conn_tcp;
25914 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25915 
25916 	ASSERT(connp->conn_sqp != NULL);
25917 
25918 	TCP_DBGSTAT(tcps, tcp_timeout_calls);
25919 
25920 	if (tcp->tcp_timercache == NULL) {
25921 		mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC);
25922 	} else {
25923 		TCP_DBGSTAT(tcps, tcp_timeout_cached_alloc);
25924 		mp = tcp->tcp_timercache;
25925 		tcp->tcp_timercache = mp->b_next;
25926 		mp->b_next = NULL;
25927 		ASSERT(mp->b_wptr == NULL);
25928 	}
25929 
25930 	CONN_INC_REF(connp);
25931 	tcpt = (tcp_timer_t *)mp->b_rptr;
25932 	tcpt->connp = connp;
25933 	tcpt->tcpt_proc = f;
25934 	tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim);
25935 	return ((timeout_id_t)mp);
25936 }
25937 
25938 static void
25939 tcp_timer_callback(void *arg)
25940 {
25941 	mblk_t *mp = (mblk_t *)arg;
25942 	tcp_timer_t *tcpt;
25943 	conn_t	*connp;
25944 
25945 	tcpt = (tcp_timer_t *)mp->b_rptr;
25946 	connp = tcpt->connp;
25947 	squeue_fill(connp->conn_sqp, mp,
25948 	    tcp_timer_handler, connp, SQTAG_TCP_TIMER);
25949 }
25950 
25951 static void
25952 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2)
25953 {
25954 	tcp_timer_t *tcpt;
25955 	conn_t *connp = (conn_t *)arg;
25956 	tcp_t *tcp = connp->conn_tcp;
25957 
25958 	tcpt = (tcp_timer_t *)mp->b_rptr;
25959 	ASSERT(connp == tcpt->connp);
25960 	ASSERT((squeue_t *)arg2 == connp->conn_sqp);
25961 
25962 	/*
25963 	 * If the TCP has reached the closed state, don't proceed any
25964 	 * further. This TCP logically does not exist on the system.
25965 	 * tcpt_proc could for example access queues, that have already
25966 	 * been qprocoff'ed off. Also see comments at the start of tcp_input
25967 	 */
25968 	if (tcp->tcp_state != TCPS_CLOSED) {
25969 		(*tcpt->tcpt_proc)(connp);
25970 	} else {
25971 		tcp->tcp_timer_tid = 0;
25972 	}
25973 	tcp_timer_free(connp->conn_tcp, mp);
25974 }
25975 
25976 /*
25977  * There is potential race with untimeout and the handler firing at the same
25978  * time. The mblock may be freed by the handler while we are trying to use
25979  * it. But since both should execute on the same squeue, this race should not
25980  * occur.
25981  */
25982 clock_t
25983 tcp_timeout_cancel(conn_t *connp, timeout_id_t id)
25984 {
25985 	mblk_t	*mp = (mblk_t *)id;
25986 	tcp_timer_t *tcpt;
25987 	clock_t delta;
25988 	tcp_stack_t	*tcps = connp->conn_tcp->tcp_tcps;
25989 
25990 	TCP_DBGSTAT(tcps, tcp_timeout_cancel_reqs);
25991 
25992 	if (mp == NULL)
25993 		return (-1);
25994 
25995 	tcpt = (tcp_timer_t *)mp->b_rptr;
25996 	ASSERT(tcpt->connp == connp);
25997 
25998 	delta = untimeout(tcpt->tcpt_tid);
25999 
26000 	if (delta >= 0) {
26001 		TCP_DBGSTAT(tcps, tcp_timeout_canceled);
26002 		tcp_timer_free(connp->conn_tcp, mp);
26003 		CONN_DEC_REF(connp);
26004 	}
26005 
26006 	return (delta);
26007 }
26008 
26009 /*
26010  * Allocate space for the timer event. The allocation looks like mblk, but it is
26011  * not a proper mblk. To avoid confusion we set b_wptr to NULL.
26012  *
26013  * Dealing with failures: If we can't allocate from the timer cache we try
26014  * allocating from dblock caches using allocb_tryhard(). In this case b_wptr
26015  * points to b_rptr.
26016  * If we can't allocate anything using allocb_tryhard(), we perform a last
26017  * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and
26018  * save the actual allocation size in b_datap.
26019  */
26020 mblk_t *
26021 tcp_timermp_alloc(int kmflags)
26022 {
26023 	mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache,
26024 	    kmflags & ~KM_PANIC);
26025 
26026 	if (mp != NULL) {
26027 		mp->b_next = mp->b_prev = NULL;
26028 		mp->b_rptr = (uchar_t *)(&mp[1]);
26029 		mp->b_wptr = NULL;
26030 		mp->b_datap = NULL;
26031 		mp->b_queue = NULL;
26032 		mp->b_cont = NULL;
26033 	} else if (kmflags & KM_PANIC) {
26034 		/*
26035 		 * Failed to allocate memory for the timer. Try allocating from
26036 		 * dblock caches.
26037 		 */
26038 		/* ipclassifier calls this from a constructor - hence no tcps */
26039 		TCP_G_STAT(tcp_timermp_allocfail);
26040 		mp = allocb_tryhard(sizeof (tcp_timer_t));
26041 		if (mp == NULL) {
26042 			size_t size = 0;
26043 			/*
26044 			 * Memory is really low. Try tryhard allocation.
26045 			 *
26046 			 * ipclassifier calls this from a constructor -
26047 			 * hence no tcps
26048 			 */
26049 			TCP_G_STAT(tcp_timermp_allocdblfail);
26050 			mp = kmem_alloc_tryhard(sizeof (mblk_t) +
26051 			    sizeof (tcp_timer_t), &size, kmflags);
26052 			mp->b_rptr = (uchar_t *)(&mp[1]);
26053 			mp->b_next = mp->b_prev = NULL;
26054 			mp->b_wptr = (uchar_t *)-1;
26055 			mp->b_datap = (dblk_t *)size;
26056 			mp->b_queue = NULL;
26057 			mp->b_cont = NULL;
26058 		}
26059 		ASSERT(mp->b_wptr != NULL);
26060 	}
26061 	/* ipclassifier calls this from a constructor - hence no tcps */
26062 	TCP_G_DBGSTAT(tcp_timermp_alloced);
26063 
26064 	return (mp);
26065 }
26066 
26067 /*
26068  * Free per-tcp timer cache.
26069  * It can only contain entries from tcp_timercache.
26070  */
26071 void
26072 tcp_timermp_free(tcp_t *tcp)
26073 {
26074 	mblk_t *mp;
26075 
26076 	while ((mp = tcp->tcp_timercache) != NULL) {
26077 		ASSERT(mp->b_wptr == NULL);
26078 		tcp->tcp_timercache = tcp->tcp_timercache->b_next;
26079 		kmem_cache_free(tcp_timercache, mp);
26080 	}
26081 }
26082 
26083 /*
26084  * Free timer event. Put it on the per-tcp timer cache if there is not too many
26085  * events there already (currently at most two events are cached).
26086  * If the event is not allocated from the timer cache, free it right away.
26087  */
26088 static void
26089 tcp_timer_free(tcp_t *tcp, mblk_t *mp)
26090 {
26091 	mblk_t *mp1 = tcp->tcp_timercache;
26092 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26093 
26094 	if (mp->b_wptr != NULL) {
26095 		/*
26096 		 * This allocation is not from a timer cache, free it right
26097 		 * away.
26098 		 */
26099 		if (mp->b_wptr != (uchar_t *)-1)
26100 			freeb(mp);
26101 		else
26102 			kmem_free(mp, (size_t)mp->b_datap);
26103 	} else if (mp1 == NULL || mp1->b_next == NULL) {
26104 		/* Cache this timer block for future allocations */
26105 		mp->b_rptr = (uchar_t *)(&mp[1]);
26106 		mp->b_next = mp1;
26107 		tcp->tcp_timercache = mp;
26108 	} else {
26109 		kmem_cache_free(tcp_timercache, mp);
26110 		TCP_DBGSTAT(tcps, tcp_timermp_freed);
26111 	}
26112 }
26113 
26114 /*
26115  * End of TCP Timers implementation.
26116  */
26117 
26118 /*
26119  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
26120  * on the specified backing STREAMS q. Note, the caller may make the
26121  * decision to call based on the tcp_t.tcp_flow_stopped value which
26122  * when check outside the q's lock is only an advisory check ...
26123  */
26124 
26125 void
26126 tcp_setqfull(tcp_t *tcp)
26127 {
26128 	queue_t *q = tcp->tcp_wq;
26129 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26130 
26131 	if (!(q->q_flag & QFULL)) {
26132 		mutex_enter(QLOCK(q));
26133 		if (!(q->q_flag & QFULL)) {
26134 			/* still need to set QFULL */
26135 			q->q_flag |= QFULL;
26136 			tcp->tcp_flow_stopped = B_TRUE;
26137 			mutex_exit(QLOCK(q));
26138 			TCP_STAT(tcps, tcp_flwctl_on);
26139 		} else {
26140 			mutex_exit(QLOCK(q));
26141 		}
26142 	}
26143 }
26144 
26145 void
26146 tcp_clrqfull(tcp_t *tcp)
26147 {
26148 	queue_t *q = tcp->tcp_wq;
26149 
26150 	if (q->q_flag & QFULL) {
26151 		mutex_enter(QLOCK(q));
26152 		if (q->q_flag & QFULL) {
26153 			q->q_flag &= ~QFULL;
26154 			tcp->tcp_flow_stopped = B_FALSE;
26155 			mutex_exit(QLOCK(q));
26156 			if (q->q_flag & QWANTW)
26157 				qbackenable(q, 0);
26158 		} else {
26159 			mutex_exit(QLOCK(q));
26160 		}
26161 	}
26162 }
26163 
26164 
26165 /*
26166  * kstats related to squeues i.e. not per IP instance
26167  */
26168 static void *
26169 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp)
26170 {
26171 	kstat_t *ksp;
26172 
26173 	tcp_g_stat_t template = {
26174 		{ "tcp_timermp_alloced",	KSTAT_DATA_UINT64 },
26175 		{ "tcp_timermp_allocfail",	KSTAT_DATA_UINT64 },
26176 		{ "tcp_timermp_allocdblfail",	KSTAT_DATA_UINT64 },
26177 		{ "tcp_freelist_cleanup",	KSTAT_DATA_UINT64 },
26178 	};
26179 
26180 	ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net",
26181 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
26182 	    KSTAT_FLAG_VIRTUAL);
26183 
26184 	if (ksp == NULL)
26185 		return (NULL);
26186 
26187 	bcopy(&template, tcp_g_statp, sizeof (template));
26188 	ksp->ks_data = (void *)tcp_g_statp;
26189 
26190 	kstat_install(ksp);
26191 	return (ksp);
26192 }
26193 
26194 static void
26195 tcp_g_kstat_fini(kstat_t *ksp)
26196 {
26197 	if (ksp != NULL) {
26198 		kstat_delete(ksp);
26199 	}
26200 }
26201 
26202 
26203 static void *
26204 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp)
26205 {
26206 	kstat_t *ksp;
26207 
26208 	tcp_stat_t template = {
26209 		{ "tcp_time_wait",		KSTAT_DATA_UINT64 },
26210 		{ "tcp_time_wait_syn",		KSTAT_DATA_UINT64 },
26211 		{ "tcp_time_wait_success",	KSTAT_DATA_UINT64 },
26212 		{ "tcp_time_wait_fail",		KSTAT_DATA_UINT64 },
26213 		{ "tcp_reinput_syn",		KSTAT_DATA_UINT64 },
26214 		{ "tcp_ip_output",		KSTAT_DATA_UINT64 },
26215 		{ "tcp_detach_non_time_wait",	KSTAT_DATA_UINT64 },
26216 		{ "tcp_detach_time_wait",	KSTAT_DATA_UINT64 },
26217 		{ "tcp_time_wait_reap",		KSTAT_DATA_UINT64 },
26218 		{ "tcp_clean_death_nondetached",	KSTAT_DATA_UINT64 },
26219 		{ "tcp_reinit_calls",		KSTAT_DATA_UINT64 },
26220 		{ "tcp_eager_err1",		KSTAT_DATA_UINT64 },
26221 		{ "tcp_eager_err2",		KSTAT_DATA_UINT64 },
26222 		{ "tcp_eager_blowoff_calls",	KSTAT_DATA_UINT64 },
26223 		{ "tcp_eager_blowoff_q",	KSTAT_DATA_UINT64 },
26224 		{ "tcp_eager_blowoff_q0",	KSTAT_DATA_UINT64 },
26225 		{ "tcp_not_hard_bound",		KSTAT_DATA_UINT64 },
26226 		{ "tcp_no_listener",		KSTAT_DATA_UINT64 },
26227 		{ "tcp_found_eager",		KSTAT_DATA_UINT64 },
26228 		{ "tcp_wrong_queue",		KSTAT_DATA_UINT64 },
26229 		{ "tcp_found_eager_binding1",	KSTAT_DATA_UINT64 },
26230 		{ "tcp_found_eager_bound1",	KSTAT_DATA_UINT64 },
26231 		{ "tcp_eager_has_listener1",	KSTAT_DATA_UINT64 },
26232 		{ "tcp_open_alloc",		KSTAT_DATA_UINT64 },
26233 		{ "tcp_open_detached_alloc",	KSTAT_DATA_UINT64 },
26234 		{ "tcp_rput_time_wait",		KSTAT_DATA_UINT64 },
26235 		{ "tcp_listendrop",		KSTAT_DATA_UINT64 },
26236 		{ "tcp_listendropq0",		KSTAT_DATA_UINT64 },
26237 		{ "tcp_wrong_rq",		KSTAT_DATA_UINT64 },
26238 		{ "tcp_rsrv_calls",		KSTAT_DATA_UINT64 },
26239 		{ "tcp_eagerfree2",		KSTAT_DATA_UINT64 },
26240 		{ "tcp_eagerfree3",		KSTAT_DATA_UINT64 },
26241 		{ "tcp_eagerfree4",		KSTAT_DATA_UINT64 },
26242 		{ "tcp_eagerfree5",		KSTAT_DATA_UINT64 },
26243 		{ "tcp_timewait_syn_fail",	KSTAT_DATA_UINT64 },
26244 		{ "tcp_listen_badflags",	KSTAT_DATA_UINT64 },
26245 		{ "tcp_timeout_calls",		KSTAT_DATA_UINT64 },
26246 		{ "tcp_timeout_cached_alloc",	KSTAT_DATA_UINT64 },
26247 		{ "tcp_timeout_cancel_reqs",	KSTAT_DATA_UINT64 },
26248 		{ "tcp_timeout_canceled",	KSTAT_DATA_UINT64 },
26249 		{ "tcp_timermp_freed",		KSTAT_DATA_UINT64 },
26250 		{ "tcp_push_timer_cnt",		KSTAT_DATA_UINT64 },
26251 		{ "tcp_ack_timer_cnt",		KSTAT_DATA_UINT64 },
26252 		{ "tcp_ire_null1",		KSTAT_DATA_UINT64 },
26253 		{ "tcp_ire_null",		KSTAT_DATA_UINT64 },
26254 		{ "tcp_ip_send",		KSTAT_DATA_UINT64 },
26255 		{ "tcp_ip_ire_send",		KSTAT_DATA_UINT64 },
26256 		{ "tcp_wsrv_called",		KSTAT_DATA_UINT64 },
26257 		{ "tcp_flwctl_on",		KSTAT_DATA_UINT64 },
26258 		{ "tcp_timer_fire_early",	KSTAT_DATA_UINT64 },
26259 		{ "tcp_timer_fire_miss",	KSTAT_DATA_UINT64 },
26260 		{ "tcp_rput_v6_error",		KSTAT_DATA_UINT64 },
26261 		{ "tcp_out_sw_cksum",		KSTAT_DATA_UINT64 },
26262 		{ "tcp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
26263 		{ "tcp_zcopy_on",		KSTAT_DATA_UINT64 },
26264 		{ "tcp_zcopy_off",		KSTAT_DATA_UINT64 },
26265 		{ "tcp_zcopy_backoff",		KSTAT_DATA_UINT64 },
26266 		{ "tcp_zcopy_disable",		KSTAT_DATA_UINT64 },
26267 		{ "tcp_mdt_pkt_out",		KSTAT_DATA_UINT64 },
26268 		{ "tcp_mdt_pkt_out_v4",		KSTAT_DATA_UINT64 },
26269 		{ "tcp_mdt_pkt_out_v6",		KSTAT_DATA_UINT64 },
26270 		{ "tcp_mdt_discarded",		KSTAT_DATA_UINT64 },
26271 		{ "tcp_mdt_conn_halted1",	KSTAT_DATA_UINT64 },
26272 		{ "tcp_mdt_conn_halted2",	KSTAT_DATA_UINT64 },
26273 		{ "tcp_mdt_conn_halted3",	KSTAT_DATA_UINT64 },
26274 		{ "tcp_mdt_conn_resumed1",	KSTAT_DATA_UINT64 },
26275 		{ "tcp_mdt_conn_resumed2",	KSTAT_DATA_UINT64 },
26276 		{ "tcp_mdt_legacy_small",	KSTAT_DATA_UINT64 },
26277 		{ "tcp_mdt_legacy_all",		KSTAT_DATA_UINT64 },
26278 		{ "tcp_mdt_legacy_ret",		KSTAT_DATA_UINT64 },
26279 		{ "tcp_mdt_allocfail",		KSTAT_DATA_UINT64 },
26280 		{ "tcp_mdt_addpdescfail",	KSTAT_DATA_UINT64 },
26281 		{ "tcp_mdt_allocd",		KSTAT_DATA_UINT64 },
26282 		{ "tcp_mdt_linked",		KSTAT_DATA_UINT64 },
26283 		{ "tcp_fusion_flowctl",		KSTAT_DATA_UINT64 },
26284 		{ "tcp_fusion_backenabled",	KSTAT_DATA_UINT64 },
26285 		{ "tcp_fusion_urg",		KSTAT_DATA_UINT64 },
26286 		{ "tcp_fusion_putnext",		KSTAT_DATA_UINT64 },
26287 		{ "tcp_fusion_unfusable",	KSTAT_DATA_UINT64 },
26288 		{ "tcp_fusion_aborted",		KSTAT_DATA_UINT64 },
26289 		{ "tcp_fusion_unqualified",	KSTAT_DATA_UINT64 },
26290 		{ "tcp_fusion_rrw_busy",	KSTAT_DATA_UINT64 },
26291 		{ "tcp_fusion_rrw_msgcnt",	KSTAT_DATA_UINT64 },
26292 		{ "tcp_fusion_rrw_plugged",	KSTAT_DATA_UINT64 },
26293 		{ "tcp_in_ack_unsent_drop",	KSTAT_DATA_UINT64 },
26294 		{ "tcp_sock_fallback",		KSTAT_DATA_UINT64 },
26295 		{ "tcp_lso_enabled",		KSTAT_DATA_UINT64 },
26296 		{ "tcp_lso_disabled",		KSTAT_DATA_UINT64 },
26297 		{ "tcp_lso_times",		KSTAT_DATA_UINT64 },
26298 		{ "tcp_lso_pkt_out",		KSTAT_DATA_UINT64 },
26299 	};
26300 
26301 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net",
26302 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
26303 	    KSTAT_FLAG_VIRTUAL, stackid);
26304 
26305 	if (ksp == NULL)
26306 		return (NULL);
26307 
26308 	bcopy(&template, tcps_statisticsp, sizeof (template));
26309 	ksp->ks_data = (void *)tcps_statisticsp;
26310 	ksp->ks_private = (void *)(uintptr_t)stackid;
26311 
26312 	kstat_install(ksp);
26313 	return (ksp);
26314 }
26315 
26316 static void
26317 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
26318 {
26319 	if (ksp != NULL) {
26320 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
26321 		kstat_delete_netstack(ksp, stackid);
26322 	}
26323 }
26324 
26325 /*
26326  * TCP Kstats implementation
26327  */
26328 static void *
26329 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps)
26330 {
26331 	kstat_t	*ksp;
26332 
26333 	tcp_named_kstat_t template = {
26334 		{ "rtoAlgorithm",	KSTAT_DATA_INT32, 0 },
26335 		{ "rtoMin",		KSTAT_DATA_INT32, 0 },
26336 		{ "rtoMax",		KSTAT_DATA_INT32, 0 },
26337 		{ "maxConn",		KSTAT_DATA_INT32, 0 },
26338 		{ "activeOpens",	KSTAT_DATA_UINT32, 0 },
26339 		{ "passiveOpens",	KSTAT_DATA_UINT32, 0 },
26340 		{ "attemptFails",	KSTAT_DATA_UINT32, 0 },
26341 		{ "estabResets",	KSTAT_DATA_UINT32, 0 },
26342 		{ "currEstab",		KSTAT_DATA_UINT32, 0 },
26343 		{ "inSegs",		KSTAT_DATA_UINT64, 0 },
26344 		{ "outSegs",		KSTAT_DATA_UINT64, 0 },
26345 		{ "retransSegs",	KSTAT_DATA_UINT32, 0 },
26346 		{ "connTableSize",	KSTAT_DATA_INT32, 0 },
26347 		{ "outRsts",		KSTAT_DATA_UINT32, 0 },
26348 		{ "outDataSegs",	KSTAT_DATA_UINT32, 0 },
26349 		{ "outDataBytes",	KSTAT_DATA_UINT32, 0 },
26350 		{ "retransBytes",	KSTAT_DATA_UINT32, 0 },
26351 		{ "outAck",		KSTAT_DATA_UINT32, 0 },
26352 		{ "outAckDelayed",	KSTAT_DATA_UINT32, 0 },
26353 		{ "outUrg",		KSTAT_DATA_UINT32, 0 },
26354 		{ "outWinUpdate",	KSTAT_DATA_UINT32, 0 },
26355 		{ "outWinProbe",	KSTAT_DATA_UINT32, 0 },
26356 		{ "outControl",		KSTAT_DATA_UINT32, 0 },
26357 		{ "outFastRetrans",	KSTAT_DATA_UINT32, 0 },
26358 		{ "inAckSegs",		KSTAT_DATA_UINT32, 0 },
26359 		{ "inAckBytes",		KSTAT_DATA_UINT32, 0 },
26360 		{ "inDupAck",		KSTAT_DATA_UINT32, 0 },
26361 		{ "inAckUnsent",	KSTAT_DATA_UINT32, 0 },
26362 		{ "inDataInorderSegs",	KSTAT_DATA_UINT32, 0 },
26363 		{ "inDataInorderBytes",	KSTAT_DATA_UINT32, 0 },
26364 		{ "inDataUnorderSegs",	KSTAT_DATA_UINT32, 0 },
26365 		{ "inDataUnorderBytes",	KSTAT_DATA_UINT32, 0 },
26366 		{ "inDataDupSegs",	KSTAT_DATA_UINT32, 0 },
26367 		{ "inDataDupBytes",	KSTAT_DATA_UINT32, 0 },
26368 		{ "inDataPartDupSegs",	KSTAT_DATA_UINT32, 0 },
26369 		{ "inDataPartDupBytes",	KSTAT_DATA_UINT32, 0 },
26370 		{ "inDataPastWinSegs",	KSTAT_DATA_UINT32, 0 },
26371 		{ "inDataPastWinBytes",	KSTAT_DATA_UINT32, 0 },
26372 		{ "inWinProbe",		KSTAT_DATA_UINT32, 0 },
26373 		{ "inWinUpdate",	KSTAT_DATA_UINT32, 0 },
26374 		{ "inClosed",		KSTAT_DATA_UINT32, 0 },
26375 		{ "rttUpdate",		KSTAT_DATA_UINT32, 0 },
26376 		{ "rttNoUpdate",	KSTAT_DATA_UINT32, 0 },
26377 		{ "timRetrans",		KSTAT_DATA_UINT32, 0 },
26378 		{ "timRetransDrop",	KSTAT_DATA_UINT32, 0 },
26379 		{ "timKeepalive",	KSTAT_DATA_UINT32, 0 },
26380 		{ "timKeepaliveProbe",	KSTAT_DATA_UINT32, 0 },
26381 		{ "timKeepaliveDrop",	KSTAT_DATA_UINT32, 0 },
26382 		{ "listenDrop",		KSTAT_DATA_UINT32, 0 },
26383 		{ "listenDropQ0",	KSTAT_DATA_UINT32, 0 },
26384 		{ "halfOpenDrop",	KSTAT_DATA_UINT32, 0 },
26385 		{ "outSackRetransSegs",	KSTAT_DATA_UINT32, 0 },
26386 		{ "connTableSize6",	KSTAT_DATA_INT32, 0 }
26387 	};
26388 
26389 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2",
26390 	    KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid);
26391 
26392 	if (ksp == NULL)
26393 		return (NULL);
26394 
26395 	template.rtoAlgorithm.value.ui32 = 4;
26396 	template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min;
26397 	template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max;
26398 	template.maxConn.value.i32 = -1;
26399 
26400 	bcopy(&template, ksp->ks_data, sizeof (template));
26401 	ksp->ks_update = tcp_kstat_update;
26402 	ksp->ks_private = (void *)(uintptr_t)stackid;
26403 
26404 	kstat_install(ksp);
26405 	return (ksp);
26406 }
26407 
26408 static void
26409 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
26410 {
26411 	if (ksp != NULL) {
26412 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
26413 		kstat_delete_netstack(ksp, stackid);
26414 	}
26415 }
26416 
26417 static int
26418 tcp_kstat_update(kstat_t *kp, int rw)
26419 {
26420 	tcp_named_kstat_t *tcpkp;
26421 	tcp_t		*tcp;
26422 	connf_t		*connfp;
26423 	conn_t		*connp;
26424 	int 		i;
26425 	netstackid_t	stackid = (netstackid_t)(uintptr_t)kp->ks_private;
26426 	netstack_t	*ns;
26427 	tcp_stack_t	*tcps;
26428 	ip_stack_t	*ipst;
26429 
26430 	if ((kp == NULL) || (kp->ks_data == NULL))
26431 		return (EIO);
26432 
26433 	if (rw == KSTAT_WRITE)
26434 		return (EACCES);
26435 
26436 	ns = netstack_find_by_stackid(stackid);
26437 	if (ns == NULL)
26438 		return (-1);
26439 	tcps = ns->netstack_tcp;
26440 	if (tcps == NULL) {
26441 		netstack_rele(ns);
26442 		return (-1);
26443 	}
26444 	tcpkp = (tcp_named_kstat_t *)kp->ks_data;
26445 
26446 	tcpkp->currEstab.value.ui32 = 0;
26447 
26448 	ipst = ns->netstack_ip;
26449 
26450 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
26451 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
26452 		connp = NULL;
26453 		while ((connp =
26454 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
26455 			tcp = connp->conn_tcp;
26456 			switch (tcp_snmp_state(tcp)) {
26457 			case MIB2_TCP_established:
26458 			case MIB2_TCP_closeWait:
26459 				tcpkp->currEstab.value.ui32++;
26460 				break;
26461 			}
26462 		}
26463 	}
26464 
26465 	tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens;
26466 	tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens;
26467 	tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails;
26468 	tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets;
26469 	tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs;
26470 	tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs;
26471 	tcpkp->retransSegs.value.ui32 =	tcps->tcps_mib.tcpRetransSegs;
26472 	tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize;
26473 	tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts;
26474 	tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs;
26475 	tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes;
26476 	tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes;
26477 	tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck;
26478 	tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed;
26479 	tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg;
26480 	tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate;
26481 	tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe;
26482 	tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl;
26483 	tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans;
26484 	tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs;
26485 	tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes;
26486 	tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck;
26487 	tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent;
26488 	tcpkp->inDataInorderSegs.value.ui32 =
26489 	    tcps->tcps_mib.tcpInDataInorderSegs;
26490 	tcpkp->inDataInorderBytes.value.ui32 =
26491 	    tcps->tcps_mib.tcpInDataInorderBytes;
26492 	tcpkp->inDataUnorderSegs.value.ui32 =
26493 	    tcps->tcps_mib.tcpInDataUnorderSegs;
26494 	tcpkp->inDataUnorderBytes.value.ui32 =
26495 	    tcps->tcps_mib.tcpInDataUnorderBytes;
26496 	tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs;
26497 	tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes;
26498 	tcpkp->inDataPartDupSegs.value.ui32 =
26499 	    tcps->tcps_mib.tcpInDataPartDupSegs;
26500 	tcpkp->inDataPartDupBytes.value.ui32 =
26501 	    tcps->tcps_mib.tcpInDataPartDupBytes;
26502 	tcpkp->inDataPastWinSegs.value.ui32 =
26503 	    tcps->tcps_mib.tcpInDataPastWinSegs;
26504 	tcpkp->inDataPastWinBytes.value.ui32 =
26505 	    tcps->tcps_mib.tcpInDataPastWinBytes;
26506 	tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe;
26507 	tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate;
26508 	tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed;
26509 	tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate;
26510 	tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate;
26511 	tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans;
26512 	tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop;
26513 	tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive;
26514 	tcpkp->timKeepaliveProbe.value.ui32 =
26515 	    tcps->tcps_mib.tcpTimKeepaliveProbe;
26516 	tcpkp->timKeepaliveDrop.value.ui32 =
26517 	    tcps->tcps_mib.tcpTimKeepaliveDrop;
26518 	tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop;
26519 	tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0;
26520 	tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop;
26521 	tcpkp->outSackRetransSegs.value.ui32 =
26522 	    tcps->tcps_mib.tcpOutSackRetransSegs;
26523 	tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize;
26524 
26525 	netstack_rele(ns);
26526 	return (0);
26527 }
26528 
26529 void
26530 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp)
26531 {
26532 	uint16_t	hdr_len;
26533 	ipha_t		*ipha;
26534 	uint8_t		*nexthdrp;
26535 	tcph_t		*tcph;
26536 	tcp_stack_t	*tcps = connp->conn_tcp->tcp_tcps;
26537 
26538 	/* Already has an eager */
26539 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
26540 		TCP_STAT(tcps, tcp_reinput_syn);
26541 		squeue_enter(connp->conn_sqp, mp, connp->conn_recv,
26542 		    connp, SQTAG_TCP_REINPUT_EAGER);
26543 		return;
26544 	}
26545 
26546 	switch (IPH_HDR_VERSION(mp->b_rptr)) {
26547 	case IPV4_VERSION:
26548 		ipha = (ipha_t *)mp->b_rptr;
26549 		hdr_len = IPH_HDR_LENGTH(ipha);
26550 		break;
26551 	case IPV6_VERSION:
26552 		if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr,
26553 		    &hdr_len, &nexthdrp)) {
26554 			CONN_DEC_REF(connp);
26555 			freemsg(mp);
26556 			return;
26557 		}
26558 		break;
26559 	}
26560 
26561 	tcph = (tcph_t *)&mp->b_rptr[hdr_len];
26562 	if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) {
26563 		mp->b_datap->db_struioflag |= STRUIO_EAGER;
26564 		DB_CKSUMSTART(mp) = (intptr_t)sqp;
26565 	}
26566 
26567 	squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp,
26568 	    SQTAG_TCP_REINPUT);
26569 }
26570 
26571 static squeue_func_t
26572 tcp_squeue_switch(int val)
26573 {
26574 	squeue_func_t rval = squeue_fill;
26575 
26576 	switch (val) {
26577 	case 1:
26578 		rval = squeue_enter_nodrain;
26579 		break;
26580 	case 2:
26581 		rval = squeue_enter;
26582 		break;
26583 	default:
26584 		break;
26585 	}
26586 	return (rval);
26587 }
26588 
26589 /*
26590  * This is called once for each squeue - globally for all stack
26591  * instances.
26592  */
26593 static void
26594 tcp_squeue_add(squeue_t *sqp)
26595 {
26596 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
26597 	    sizeof (tcp_squeue_priv_t), KM_SLEEP);
26598 
26599 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
26600 	tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector,
26601 	    sqp, TCP_TIME_WAIT_DELAY);
26602 	if (tcp_free_list_max_cnt == 0) {
26603 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
26604 		    max_ncpus : boot_max_ncpus);
26605 
26606 		/*
26607 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
26608 		 */
26609 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
26610 		    (tcp_ncpus * sizeof (tcp_t) * 100);
26611 	}
26612 	tcp_time_wait->tcp_free_list_cnt = 0;
26613 }
26614